Loading...
HomeMy WebLinkAbout1 LEGOLAND DR; ; CBC2019-0348; PermitPrint Date: 05/28/2020 Job Address: Permit Type: Parcel No: Valuation: Occupancy Group: # Dwelling Units: Bedrooms: 1 Legoland Dr BLDG-Commercial 2111000900 $750,000.00 Building Permit Finaled eity of Carlsbad Project Title: Description: Commercial Permit Work Class: Addition Lot #: Reference #: Construction Type Bathrooms: Orig. Plan Check #: Plan Check #: Permit No: CBC2019-0348 Status: Closed - Finaled Applied: 07/16/2019 Issued: 10/07/2019 PermitFinal Close Out: Inspector: LStor Final Inspection: 05/28/2020 LEGOLAND (CROWN CASTLE): ADD 54 SF EQUIPMENT ROOM// INSTALL ANTENNAS AT 11 LOCATIONS Applicant: Owner: MITCHELL ARCHITECTURE LEGOLAND CALIFORNIA LLC MICHELLE THURMAN 4883 Ronson Ct, N P0 Box 543185 C/O Property Tax Service Co San Diego, CA 92111-1812 DALLAS, TX 75354 858-650-3130 FEE AMOUNT BUILDING PERMIT FEE ($2000+) $2,787.00 BUILDING PLAN CHECK FEE (BLDG) $1,950.90 ELECTRICAL BLDG COMMERCIAL NEW/ADDITION/REMODEL . $242.00 MECHANICAL BLDG COMMERCIAL NEW/ADDITION/REMODEL $104.00 SB1473 GREEN BUILDING STATE STANDARDS FEE $30.00 STRONG MOTION-COMMERCIAL $210.00 SWPPP INSPECTION FEE TIER 1- Medium BLDG $246.00 SWPPP PLAN REVIEW FEE TIER 1- MEDIUM $55.00 Total Fees: $5,624.90 Total Payments To Date: $5,624.90 Balance Due: $0.00 Please take NOTICE that approval of your project includes the "Imposition" of fees, dedications, reservations, or other exactions hereafter collectively referred to as "fees/exaction." You have 90 days from the date this permit was issued to protest imposition of these fees/exactions. If you protest them, you must follow the protest procedures set forth inGovernment Code Section 66020(a), and file the protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their imposition. You are hereby FURTHER NOTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project. NOR DOES IT APPLY to any fees/exactions of which you have previously been given a NOTICE similar to this, or as to which the statute of limitation has previously otherwise expired. Building Division 1635 Faraday Avenue, Carlsbad CA 92008-7314 1 760-602-2700 1 760-602-8560 f I www.carlsbadca.gov Page 1 of 1 COMMERCIAL c r3c, - Plan Check (City of BUILDING PERMIT Est. vaiue.75'0,0 Carlsbad APPLICATION PC Deposit B2 Date Job Address ONE LEGOLAND DRIVE Suite: APN: 2111000900 Tenant Name: CROWN CASTLE CT/Project#: Lot #: Occupancy: U Construction Type: .... Fire Sprinklers: yes I no Air Conditioning: yes / no BRIEF DESCRIPTION OF WORK: Crown Castle proposes to install antennas and Remote Radio Units at (11) locations (Nodes) on the roofs of various buildings throughout the park; and install an equipment shelter i:i Addition/New: New SF and Use, New SF and Use, Deck SF, _________ Patio Cover SF (not including flatwork) El Tenant Improvement: SF, Existing Use Proposed Use SF, Existing Use Proposed Use El Pool/Spa: SF Additional Gas or Electrical Features? El Solar: KW, Modules, Mounted, Tilt: Yes / No, RMA: Yes / No, Panel Upgrade: Yes / No 0 Plumbing/Mechanical/Electrical Only: 0 Other: APPLICANT (PRIMARY) PROPERTY OWNER Name: CROWN CASTLE Name: LEGOLAND CALIFORNIA LLC Address: 1100 DEXTER AyE, STE 250 Address: 1 LEGOLAND DRIVE City: SEATTLE State:WA Zip: 98109 City: CARLSBAD State:CA Zip: 92008 Phone: 2066509591 Phone: 8886905346 Email: Iizandro.gilcrowncastle.com Email: experience©legoland.com DESIGN PROFESSIONAL CONTRACTOR BUSINESS - ?'è Name: MITCHELL J ARCHITECTURE Name: 4 41o1H'e £.iecqy Address: 4883 RONSON CT, STE N Address: l?G(okMc.0 k CLkc.(e City: SAN DIEGO State: _CAZip: 92111 City: C0IZc4c)\. State: C,4 Zip: Phone: 858-650-3130 Phone: 9sit-agq-01801 Email: mitch.campagnamitcheIIj.com Email: c5 I4lo ( E' ejzq Architect State License: C20355 State License: 9-796 Bus. License:__ Ya ______ (Sec. 7031.5 Business and Professions Code: Any City or County which requires a permit to construct, alter, improve, demolish or repair any structure, prior to its issuance, also requires the applicant for such permit to file a signed statement that he/she is licensed pursuant to the provisions of the Contractor's License Law {Chapter 9, commending with Section 7000 of Division 3 of the Business and Professions Code} or that he/she is exempt therefrom, and the basis for the alleged exemption. Any violation of Section 7031.5 by any applicant for a permit subjects the applicant to a civil penalty of not more than five hundred dollars ($500)). 1635 Faraday Ave Carlsbad, CA 92008 Ph: 760-602-2719 Fax: 760-602-8558 Email: Buildingccarlsbadca.gov B-2 Page 1 of 2 Rev. 06/18 (OPTION A): WORKERS'COMPENSATION DECLARATION: I hearby affirm under penalty of perjury one of the following declarations: 0 I have and will maintain a certificate of consent to self-insure for workers' compensation provided by Section 3700 of the Labor Code, for the performance of the work which this permit is issued. I have and will maintain worker's compensation, as required by Section 3700 of the Labor Code, for the performance ofie work for which thisermit is issued. My workers' compensation insur nce carrier and policy number are: Insurance Compan Name: LiC Ic, 4 tt/)eei't A s ( Policy No. 6L() 2O 2 (1 Expiration Date: CW7C) I 2 ô 0 Certificate of Exemption: I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to be come subject to the workers' compensation Laws of California. WARNING: Failure to secure workers compensation coverage is unlawful, and shall subject an employer to criminal penalties and civil fines up to $100,000.00, in addition the to the cost of compensation, damages as provided for in Section 3706 of the Labor Code, interest and attorney's fees. CONTRACTOR SIGNATURE:% t4 DAGENT DATE:___________ (OPTION B): OWNER-BUILDER DECLARATION: I hereby affirm that lam exempt from Contractor's License Law for the following reason: O I, as owner of the property or my employees with wages as their sole compensation, will do the work and the structure is not intended or offered for sale (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and who does such work himself or through his own employees, provided that such improvements are not intended or offered for sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale). O I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and contracts for such projects with contractor(s) licensed pursuant to the Contractor's License Law). O I am exempt under Section Business and Professions Code for this reason: 1. I personally plan to provide the major labor and materials for construction of the proposed property improvement. 0 Yes 0 No 2.1 (have / have not) signed an application for a building permit for the proposed work. 3.1 have contracted with the following person (firm) to provide the proposed construction (include name address / phone / contractors' license number): 4.1 plan to provide portions of the work, but I have hired the following person to coordinate, supervise and provide the major work (include name / address / phone / contractors' license number): S. I will provide some of the work, but I have contracted (hired) the following persons to provide the work indicated (include name / address / phone / type of work): OWNER SIGNATURE: DAGENT DATE: CONSTRUCTION LENDING AGENCY, IF ANY: I hereby affirm that there is a construction lending agency for the performance of the work this permit is issued (Sec. 3097 (i) Civil Code). Lender's Name: Lender's Address: ONLY COMPLETE THE FOLLOWING SECTION FOR NON-RESIDENTIAL BUILDING PERMITS ONLY: Is the applicant or future building occupant required to submit a business plan, acutely hazardous materials registration form or risk management and prevention program under Sections 25505, 25533 or 25534 of the Presley-Tanner Hazardous Substance Account Act? 0 Yes 0 No Is the applicant or future building occupant required to obtain a permit from the air pollution control district or air quality management district? 0 Yes 0 No Is the facility to be constructed within 1,000 feet of the outer boundary of a school site? 0 Yes 0 No IF ANY OF THE ANSWERS ARE YES, A FINAL CERTIFICATE OF OCCUPANCY MAY NOT BE ISSUED UNLESS THE APPLICANT HAS MET OR IS MEETING THE REQUIREMENTS OF THE OFFICE OF EMERGENCY SERVICES AND THE AIR POLLUTION CONTROL DISTRICT. APPLICANT CERTIFICATION: I certify that I have read the application and state that the above information is correct and that the information on the plans is accurate. I agree to comply with all City ordinances and State laws relating to building construction. I hereby authorize representative of the City of Carlsbad to enter upon the above mentioned property for inspection purposes. I ALSO AGREE TO SAVE, INDEMNIFY AND KEEP HARMLESS THE CITY OF CARLSBAD AGAINST ALL LIABILITIES, JUDGMENTS, COSTSAND EXPENSES WHICH MAY IN ANY WAY ACCRUE AGAINST SAID CITY IN CONSEQUENCE OF THE GRANTING OF THIS PERMIT.OSHA: An OSHA permit is required for excavations over5'0' deep and demolition or construction of structures over 3 stories in height. EXPIRATION: Every permit issued by the Building Official under the provisions of this Code shall expire by limitation and become null and void if the building or work authorized by such permit is not commenced within 180 days from the date of such permit or if the building or work authorized by such permit is suspended or abandoned at any time after the work is commenced for a period of 180 days (Section 106.4.4 Uniform Building Code). APPLICANT SIGNATURE: flk4dkA.LIL( .f DATE: 1635 Faraday Ave Carlsbad, CA 92008 Ph: 760-602-2719 Fax: 760-602-8558 Email: BuiIdingcarIsbadca.gov B-2 Page 2 of 2 Rev. 06/18 Permit Type: BLDG-Commercial Application Date: 07/16/2019 Owner: LEGOLAND CALIFORNIA LLC Work Class: Addition Issue Date: 10/07/2019 Subdivision: CARLSBAD TCT#94-09 UNIT#02 &amp; 03 Status: Closed - Finaled Expiration Date: 11/23/2020 Address: I LEGOLAND DR CARLSBAD, CA 92008-4610 IVR Number: 20413 Scheduled Actual Inspection Type Inspection No. Inspection Primary Inspector Reinspection Inspection Date Start Date Status Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes 0512612020 05/26/2020 BLDG-18 Exterior 128442.2020 Partial Pass Chris Renfro Reinspection Incomplete Lath/Drywall Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass on exterior lath at GRT Garden Yes restaurant parapet wall rooftop 05/27/2020 05/27/2020 BLDG-34 Rough 128590-2020 Passed Chris Renfro Complete Electrical - Checklist Item COMMENTS Passed BLDG-Building Deficiency All 11 cell sites complete Yes BLDG-Final Inspection 128740-2020 - Passed - Chris Renfro Complete Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes BLDG-Structural Final Yes BLDG-Electrical Final Yes I Thursday, May 28, 2020 Page 4 of 4 Permit Type: BLDG-Commercial Work Class: Addition Status: Closed - Finaled Application Date: 07/16/2019 Owner: LEGOLAND CALIFORNIA LLC Issue Date: 10/07/2019 Subdivision: CARLSBAD TCT#94-09 UNIT#02 &amp; 03 Expiration Date: 11/23/2020 Address: I LEGOLAND DR IVR Number: 20413 CARLSBAD, CA 92008-4610 Scheduled Actual Inspection Type InspectionNo. Inspection Primary Inspector Reinspection Inspection Date Start Date Status Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass on parking structure electrical Yes panels number 16A and 16B 100 amp breaker feeding to top level antenna equipment 03/12/2020 03/1212020 BLDG-34 Rough 122085.2020 Partial Pass Chris Renfro Reinspection Incomplete Electrical Checklist Item COMMENTS Passed BLDG-Building Deficiency Final electrical inspection for (4) cell sites Yes within Legoland.See card for areas inspected 03118/2020 03/18/2020 BLDG-81 Underground 122562-2020 Partial Pass Paul Burnette Reinspection Incomplete Combo(11,12,21,31) Checklist Item COMMENTS Passed BLDG-Building Deficiency No BLDG-11 Foundation-Ftg-Piers No (Rebar) BLDG-12 Steel-Bond Beam No BLDG-21 No Underground-Underfloor Plumbing BLDG-31 No Underground-Conduit Wiring 03/20/2020 03/20/2020 BLDG-34 Rough 122802.2020 Cancelled Paul Burnette Reinspection Incomplete Electrical Checklist Item COMMENTS Passed BLDG-Building Deficiency Final electrical inspection for (4) cell sites Yes within Legoland.See card for areas inspected 0510712020 05/07/2020 BLDG-34 Rough 126856.2020 Partial Pass Chris Renfro Reinspection Incomplete Electrical Checklist Item COMMENTS Passed BLDG-Building Deficiency Under ground LIFER ground for future Yes electrical room and cell site 05/20/2020 05/20/2020 BLDG-13 Shear 128097.2020 Passed Paul Burnette Complete Panels!HD(ok to wrap) Checklist Item COMMENTS Passed BLDG-Building Deficiency No BLDG-14 128098-2020 Passed Paul Burnette Complete Frame/Steel/BoltinglWe Iding (Decks) Thursday, May 28, 2020 Page 3 of 4 Permit Type: BLDG-Commercial Application Date: 07/16/2019 Owner: LEGOLAND CALIFORNIA LLC Work Class: Addition Issue Date: 10/07/2019 Subdivision: CARLSBAD TCT#94-09 UNIT#02 &amp; 03 Status: Closed - Finaled Expiration Date: 11/23/2020 Address: I LEGOLAND DR IVR Number: 20413 CARLSBAD, CA 92008-4610 Scheduled Actual Inspection Type • Inspection No. Inspection Primary Inspector Reinspection Inspection Date Start Date Status Checklist Item COMMENTS Passed BLDG-Building Deficiency 6 x 6 blocking at the castle hotel per RFI No detail dated 7/5/2019 BLDG-16 Roof/ReRoof 119451.2020 Passed - Luke Storno Complete (Patio) - - Checklist Item COMMENTS Passed BLDG-Building Deficiency No 02121/2020 02/21/2020 BLDG-11 120011.2020 Passed Paul Burnette Complete Foundation/FtglPiers (Rebar) Checklist Item COMMENTS Passed BLDG-Building Deficiency No BLDG-12 Steel/Bond 120012-2020 Passed Paul Burnette - Complete Beam Checklist Item COMMENTS Passed BLDG-Building Deficiency No 02/26/2020 02/2612020 BLDG-11 120483-2020 Cancelled Luke Storno Reinspection Incomplete FoundationlFtglPiers (Rebar) Checklist Item COMMENTS Passed BLDG-Building Deficiency No BLDG-I2 Steel/Bond 120484-2020 Cancelled Luke Storno Reinspection Incomplete Beam Checklist Item COMMENTS Passed BLDG-Building Deficiency No BLDG-84 Rough 120485.2020 Cancelled Luke Storno Reinspection Incomplete Combo(14,24,34,44) Checklist Item COMMENTS Passed BLDG-Building Deficiency No BLDG-14 No Frame-Steel-Bolting-Welding (Decks) BLDG-24 Rough-Topout No BLDG-34-Rough Electrical No BLDG-44 No Rough-Ducts-Dampers 03/1112020 0311112020 BLDG-34 Rough 121941-2020 Partial Pass Chris Renfro Reinspection Incomplete Electrical - Thursday, May 28 2020 Page 20f4 Building Permit Inspection History FiaIed (7city of Carlsbad Permit Type: BLDG-Commercial Application Date: 07/16/2019 Owner: LEGOLAND CALIFORNIA LLC Work Class: Addition Issue Date: 10/07/2019 Subdivision: CARLSBAD TCT#94-09 UNIT#02 &amp: 03 Status: Closed - Finaled Expiration Date: 11/23/2020 Address: I LEGOLAND DR IVR Number: 20413 CARLSBAD, CA 92008-4610 Scheduled Actual Inspection Type - Inspection No. Inspection Primary Inspector Reinspection Inspection Date Start Date Status 10/1712019 10/1712019 BLDG-14 107809.2019 Partial Pass Paul Burnette Reinspection Incomplete Frame/Steel/Bolting/We Iding (Decks) Checklist Item COMMENTS Passed BLDG-Building Deficiency No 11/19/2019 11/19/2019 BLDG-84 Rough 111204-2019 Passed Luke Storno Complete Combo(14,24,34,44) Checklist Item COMMENTS Passed BLDG-Building Deficiency No BLDG-14 No Frame-Steel-Bolting-Welding (Decks) BLDG-24 Rough-Topout No BLDG-34 Rough Electrical No BLDG-44 No Rough-Ducts-Dampers 11125/2019 11/25/2019 BLDG-15 Roof/ReRoof 111974.2019 Passed Luke Storno - - Complete (Patio) Checklist Item COMMENTS Passed BLDG-Building Deficiency Roof blocking © Smokehouse bldg. per RFI No detail. 12/06/2019 12/06/2019 BLDG-34 Rough 112834-2019 Partial Pass Luke Storno Reinspection Incomplete Electrical - Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial approval (feeders only) revise plans No to show changes to conductors 01/08/2020 01/08/2020 BLDG-13 Shear 115554.2020 Passed Luke Stomo Complete Panels/HD (Ok to wrap) - Checklist Item COMMENTS •. Passed BLDG-Building Deficiency No 01/28/2020 01/28/2020 BLDG-SW-Pre-Con 117638.2020 Passed Luke Storno Complete Checklist Item COMMENTS Passed BLDG-Building Deficiency No 02/14/2020 02/14/2020 BLDG-I4 119450-2020 Passed Luke Storno Complete Frame/Steel/Bolting/We Iding (Decks) Thursday, May 28, 2020 Page 1 of 4 ir [JCIVIL +STRUCrURAj Drnu I mL ( 7U 9 I inriU Uab d iImn coin February 14, 2020 Project Site: LEGOLAND-Node Hub I Legoland Drive Carlsbad, CA 92008 Re: Structural Observation/ Evaluation Letter Per Michell J. Architects, LAMAR Engineering conducted a site visit on February 13, 2020, at the property located on I Legolarid Drive, Carlsbad, California. Our scope was to provide a site visit to conduct structural observations and to verify the construction and layout. of the footing met our structural plans prepared by our office Based on our site visit the Contractor is approved to pour concrete using 4,500 psi per soils engineer recommendations and needs to provide special inspection for concrete construction. Please do not hesitate to contact our office, if you have any questions regarding this evaluation letter. Sincerely, Luis A. LabradE. #65416 Principal Engineer www.lamareng.com 217 Landis Avcnuc, Chula Vista, CA. 91910. LAMA.471i I%ENGINEERING WWW.LAMARENG.COM IIABRADA@LAMARENG.COM P: 619.370.9515 F: 619.764.4079 [EGOIAND CAUFORNIA RESO RT 1 LEGOLAND DR. CARLSBAD NODE HUB SAN DIEGO, CA 92008 PROJECT NUMBER: 191577 DATE: 02-13-20 BY: B.B. STRUCTURAL CONCRETE NOTES 1. THE MINIMUM 28—DAY CYLINDER STRENGTH SHALL BE AS FOLLOWS, U.N.O. ONCRETE ELB4ENT _Jc SLAB ON GRADE 4500 PSI SPREAD PAD FOOTINGS 4500 PSI CONT. FOOTINGS & G.B.'s 4500 PSI ALL CONCRETE REQUIRED TO BE GREATER THAN 2500 PSI SHALL HAVE SPECIAL INSPECTION. 2. PORTLAND CEMENT SHALL CONFORM TO ASIM C 150, TYPE I OR II. 3. AGGREGATES FOR NORMAL WEIGHT CONCRETE SHALL CONFORM TO ASIM C 33 AND SHALL BE AS DEFINED IN SECTION 1903.3. A" AGGREGATES FOR LIGHT WEIGHT CONCRETE SHALL CONFORM TO ASTM C 330. STRUCTURAL LIGHT WEIGHT CONCRETE SHALL HAVE A DENSITY RANGE OF 110 TO 115 PCF. 4. ADMIXTURES PER CBC SECT. 1903.6 MAY BE USED WITH PRIOR APPROVAL OF THE STRUCTURAL ENGINEER. 5. READY—MIX CONCRETE SHALL BE MIXED AND DELIVERED IN ACCORDANCE WITH ASTN AND PER SECT. 1903.9 - MIXING & PLACING OF CONCRETE. 6. MINIMUM CONCRETE COVER (IN INCHES) FOR REINFORCING STEEL IN NONPRESTRESSED CAST—IN—PLACE CONCRETE SHALL BE AS FOLLOWS; LOCATION NIH. COVER (IN.) CAST AGAINST AND PERMANENTLY 3 EXPOSED 10 EARTH FORMED SURFACES EXPOSED TO EARTH OR WEATHER: j6 AND LARGER BAR 2 5 BARS, 5/8 INCH WIRE,, AND SMALLER 1-1/2 NOT EXPOSED TO WEATHER OR IN CONTACT WITH THE GROUND: 114 AND fl18 BARS 1-1/2 011 AND SMALLER PRIMARY REINFORCEMENT, STIRRUPS. TIES OR SPIRALS 1-1/2" 7. SLEEVES, PIPES AND CONDUITS SHALL NOT BE PLACED THROUGH CONTINUOUS OR SPREAD FOOTINGS, GRADE SEAMS, PILE CAPS OR TIE BEAMS UNLESS SHOWN IN APPROVED BY STRUCTURAL ENGINEER AND SHOWN IN STRUCTURAL DETAILS. B. ALL SLEEVES THROUGH BEAMS, GIRDERS AND FOUNDATION WALLS SHALL BE INSTALLED AND SECURED IN POSITION PRIOR TO PLACING CONCRETE. EXCEPT AS SHOWN ON STRUCTURAL DRAWINGS, SLEEVING SHALL NOT BE PERMITTED UNLESS APPROVED BY THE ARCHITECT AND STRUCTURAL ENGINEER. LAMAR 1EG0,1AND CAUFO RNIA RESORT I4ENGINEERING k I DOD I LEGOLAND DR. CARLSBAD I \J r SAN DIEGO, CA 92008 HU WWW.LAMARENG.COM LLABRADA@LAMARENG.COM P: 619.370.9515 F: 619.764.4079 PROJECT NUMBER: DATE: BY: 191.577 02-13-20 B.B. STRUCTURAL CONCRETE NOTES (cont.) CONDUIT SHALL NOT BE PLACED IN ANY CONCRETE SLAB LESS THAN 3- 1/2 ' THICK. IF CONDUIT IS PLACED IN CONCRETE SLAB, ITS OUTSIDE DIAMETER SHALL NOT BE GREATER THAN ONE THIRD OF THE SLAB THICKNESS. ALL EXPOSED CORNERS SHALL BE CHAMFERED 3/4 INCH (U.N.O.) Ii. FRAMING CONTRACTOR TO VERIFY LOCATION OF HOWOWNS PRIOR TO POURING OF CONCRETE FOUNDATIONS. REFER TO ARCHITECTURAL DRAY,INGS FOR MOWS, GROOVES, ORNAMENTS, CLIPS, OR GROUNDS REQUIRED TO BE CAST IN THE CONCRETE AND FOR EXTENT OF DEPRESSIONS, CURBS, AND RAMPS. ALL VERTICAL SURFACES, OF CONCRETE ABOVE FINISHED GRADE SHALL BE FORMED. REFER TO ARCHITECTURAL DRA1NGS AND SPECIFICATIONS FOR ADDITIONAL REQUIREMENTS DUE TO ARCHITECTURAL C.I.P. CONCRETE; REWIRED VERIFICATION AND INSPECTION OF CONCRETE CONSTRUCTION VERIFICATION AND INSPECTION CONTINUOUS PERIODIC VERIFYING USE OF REQUIRED DESIGN MIX. - X AT THE TIME FRESH CONCRETE IS SAMPLED TO FRABRICATE, SPECIMENS FOR STRENGTH TESTS. - INSPECTION OF CONCRETE PLACEMENT FOR PROPER APPUCAI1ON TECHNIQUES. - X INSPECT FORMWORK FOR SHAPE, LOCATION AND DIMENSIONS OF THE CONCRETE MEMBER BEING FORMED. x fl1Vi1A 11I GIENNEERING ..'a.i1IkW WWW.LAMARENG.COM LLABRADA@LAMARENG.COM P: 619.370.9515 F: 619.764.4079 [EGO[AND CAUFORNIA RESORT NODE HUB I LEGOLAND DR. CARLSBAD SAN DIEGO, CA 92008 PROJECT NUMBER: 191.577 DATE: 02-13-20 BY: B.B. METAL PIPE SLEEVE 11IRU TRENCH W/ I.D. 2" GREATER THAN 0.0. OF CONDUIT BOlT. OF SECTION _X--X -NO PIPES TO BE PLACED IN THIS HEIGHT BEFORE FOOTING IS POURED PIPE PERPENDICULAR TO FTN'G LOCATE PARALLEL PIPE I 1-..jTRENCH SO THAT FOOTING ' IS NOT UNDERMINED BOlT. OF FTG.J 1 L'_-NO EXCAVATION BELOW THIS LINE PIPE PARALLEL TO FTN'G TYPICAL PIPE/TRENCH DETAIL 1011.11 Handrails. Stairways shall have handrails on each side and shall comply with Section 1014. Where glass is used to provide the handrail, the handrail shall comply with Sec- tion 2407. [DSA-AC] For applications listed in Section 1.9.1 regu- lated by the Division of the State Architect-Access Compli- ance, see Chapter JiB, Sections 1 IB-504.6 and JIB-SOS. Exceptions: Stairways within dwelling units and spiral stairways are permitted to have a handrail on one side only. Decks, patios and walkways that have a single change in elevation where the landing depth on each side of the change of elevation is greater than what is required for a landing do not require handrails. [SFMJ In Group R-3 occupancies, a continuous run of treads or flight of stairs with less than four risers does not require handrails. Changes in room elevations of three or fewer risers within dwelling units and sleeping units in Group R- 2 and R-3 do not require handrails. Ghostrider, Inc. SPECIAL INSPECTIONS • ENGINEERING • SOILS February 5, 2020 Lamar Engineering 217 Landis Avenue Chula Vista, California 91910 Attention: Site Superintendent Subject: Observation of Foundation Excavations Hub Equipment Shelter Sections Proposed Legoland Construction, 1 Legoland, Carlsbad, California 0 - Gentlemen: In accordance with your request and authorization, Ghostrider, Inc. representatives performed observations, of the foundation excavations for the Hub equipment shelter sections on January 31, 2020 in the City of Carlsbad, California. Observations Ghostrider representatives observed the equipment shelter foundation excavations prior to the placement of reinforcement and concrete. The foundation excavations were probed with a 1/2-inch diameter steel probe and .found to be firm and unyielding and suitable from a Geotechnical perspective to support the proposed building ,shelter. Subgrade soils near a conduit were found to be in poor condition and recommendations were provided to -remove these subgrade soils and replace the removed soils with a 3-sack slurry mix prior to the placement of concrete. Ghostrider Inc. recommends that 4500 psi Type V concrete be used to provide adequate protection for sulfate and corrosion potential issues. The field inspection report is presented in Appendix A. Ghostrider Inc. appreciates the opportunity to be of service to you. If you have any questions, please contact Ghostrider Inc. Sincerely, Ghostrider. Inc d zj' i'cc NO 2515 t4A L. Michal * r GE 2515 (exp. 3/31/20) Senior Geotechnical Engineer, Distribution: (2) Addressee P.O. BOX 1120 • FALLBROOK, CA. 92088 •, (760) 473-5052 • EMAIL: twghostriderOl@yahoo.com Alleyway Pavement Sections Recommendations February 5, 2020 Kansas Modern, Kansas St. and Howard Ave, San Diego, CA APPENDIX A Field Daily Report GHOSTF!IDER INC. Any Where Any Time PH. 619-379-0735 Around the World, Around the Clock Fax 619-367-5791 P.O.Box 4429 Oceanside, CA 92052 E-mail, Ghostriderinc@sbcglobal.net web, site www.ghostrider.com CLIENT Legoland PROJECT Hub Equipment Shelter Sections DATE 1/31/2020 ADDRESS 1 Legoland Drive ARCHITECT Mitchell J. Architecture, Inc. CITY Carlsbad 4883 Ronson Court, Ste. N, San Diego, CA 92111 JOB# Ghostrider, Inc. ENGINEER Lamar Engineering BUILDING PERMIT/DSA/OSHPD# CBC2019-0348 217 Landis Ave, Chula Vista, CA 91910 PLAN FILE# Not Applicable CONTRACTOR Crown Castle W. 0. # Not Applicable Soil Technician Material Native Approved Plans Available REMARKS: Inspected bottom of excavation on project using Y2" Dia. probe. Bottoms of excavation were found to be firm and unyielding; probe would not penetrate more than 4.00" inches. Also found soil in poor condition near conduit. Must be dug out near conduit and backfilled with 3-sac slurry before placement of concrete in footings. Concrete will have to be upgraded to 4500 PSI, "Type V" cement powder. This is to counteract any existing sulfur or acid in soil. Will provide engineer's letter to confirm. NOTE; Footing where found to be of width and depth as shown on drawings. Work on project is on-going. • jJ ERJ7FICATION OFCOMPUANCE: To the best of our knowledge, all afth7ic applicable sections of the building codes. For this report to be valid it must h esfing". Without a/ma! report this document is invalid. This report covers the —j rknléthisTTited, substantially complies with appro wed plans, specificationjind inoI report, signed by the special Inspector, stating "Final Report of inspection and material ions of the work reported only and doesn't constitute engineering opinion or project controL Time in: Time out: Signature ~"& R. Motsingei Authorization: THE DEPUTYS A. W.S. & LC.C. & San Diego #728: This is not government form.The Federal. State. County and City seals only signify that inspections are conducted under Federal. State, County and City Codes (2O16.C.B.C)._This document is not used for advertising, marketing or promotions.This document is used to convey compliance with the Codes. Ghostrider, Inc. 01-2008. Rev. (19) 1/2016 EsGil A SAFEbuitt'Cornpany DATE: 10/1/2019 APPLICANT U JURIS. JURISDICTION City of Carlsbad PLAN CHECK # CBC20 19-0348 SET: IV PROJECT ADDRESS: One Legoland Dr. PROJECT NAME: Proposed Antenna, RRU and Equipment Shelter (HUB) through out Legoland The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. The plans transmitted herewith will substantially comply with the jurisdiction's building codes when minor deficiencies identified below are resolved and checked by building department staff. The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held. at EsGil until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to: EsGil staff did advise the applicant that the plan check has been completed. Person contacted: Telephone #: te contacted: 3I —!O (by Email: all Telephone Fax In Person -REMARKS: Øiicant to-change -any other city sets per cloud note V,14.7 Wcm el By: Morteza Beheshti Enclosures: EsGil 9/30/2019 EsGil A SAFEbui1t'Company DATE: 9/23/2019 O APPLICANT U JURIS. JURISDICTION: City of Carlsbad PLAN CHECK #.: c19:o3i SET-4Ii PROJECT ADDRESS: One Legoland Dr. PROJECT NAME: Proposed Antenna, RRU and Equipment Shelter (HUB) through out Legoland The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. 11 The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to: Crown Castle/Michell J Architecture EsGil staff did advise the applicant that the plan check has been completed. Person contacted: Michelle Thurman Telephone #: 760-637-9308 Z melle.thtmma-)rnConitchell".com / Mail Telephone ') Fa In Person REMARKS: David Yao Enclosures: EsGil 9/17/2019 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax(858)560-1576 NOTE: The items listed below are from the previous correction list. These remaining items have not been adequately addressed. The numbers of the items are from the previous check list and may not necessarily be in sequence. The notes in bold font are current. Please make all corrections, as requested in the correction list. Submit FOUR new complete sets of plans for commercial/industrial projects (THREE sets of plans for residential projects). For expeditious processing, corrected sets can be submitted in one of two ways: Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602-2700. The City will route the plans to EsGil and the Carlsbad Planning, Engineering and Fire Departments. Bring TWO corrected set of plans and calculations/reports to EsGil, 9320 Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of plans and calculations/reports directly to the City of Carlsbad Building Department for routing to their Planning, Engineering and Fire Departments. NOTE: Plans that are submitted directly to EsGil only will not be reviewed by the City Planning, Engineering and Fire Departments until review by EsGil is complete. 16. Provide information to show the Prefab HUB is State of California approved commercial coach. Please obtain City Building Official's approval to defer the prefab HUB. Please refer to the following electrical and energy items. To speed up the review process, please note on this list (or a copy) where each correction item has been addressed, i.e., plan sheet, note or detail number, calculation page, etc. Please indicate here if any changes have been made to the plans that are not a result of corrections from this list. If there are other changes, Please briefly describe them and where they are located in the plans. Have changes been made to the plans not resulting from this correction list? Please indicate: D Yes U No The jurisdiction has contracted with EsGil, located at 9320 Chesapeake Drive, Suite 208, San Diego, California 92123; telephone number of 858/560-1468, to perform the plan review for your project. If you have any questions regarding these plan review items, please contact David Yao at Esgil. Thank you. ELECTRICAL, and ENERGY COMMENTS PLAN REVIEWER: Morteza Beheshti ELECTRICAL (2016 CALIFORNIA ELECTRICAL CODE) 3. Please complete plans. Single lines such as on E-603 shows equipment not designed for ratings overcurrent protection etc. More comments may follow. Specify all feeders and conduit size on the single line diagram. FEEDRS FOR "CC HUB"? NEED A GROUND ELECTRODE SYSTEM AT EACH SEPARATE BUILDING INDICATED AND DESIGNED ON SINGLE LINE? 5. Each structure must have its own ground electrode system and bonded to new panel being added. Design ground electrode system for each separate building in lieu of note. Single line to include design. Note: If you have any questions regarding this Electrical and Energy plan review list please contact Morteza Beheshti at (858) 560-1468. To speed the review process, note on this list (or a copy) where the corrected items have been addressed on the plans. EsGil A SAFEbuiLtCompany DATE: 914/2019 JURISDICTION: City of Carlsbad PLAN CHECK #.: (CBC2019-0348--J PROJECT ADDRESS: One Legoland Dr. O APPLICANT 0 JURIS. PROJECT NAME: Proposed Antenna, RRU and Equipment Shelter (HUB) through out Legoland El The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. Eli The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. lI The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to: Crown Castle/Michell J Architecture EsGil staff did advise the applicant that the plan check has been completed. Person contacted: Michelle Thurman Telephone #: 760-637-9308 Date contacted: 94_t (by:) Email: michelle.thurmanmitcheIli.com Mail Telephone Fax In Person El] REMARKS: By: David Yao Enclosures: EsGil 8/26/19 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax(858)560-1576 NOTE: The items listed below are from the previous correction list. These remaining items have not been adequately addressed. The numbers of the items are from the previous check list and may not necessarily be in sequence. The notes in bold font are current. Please make all corrections, as requested in the correction list. Submit FOUR new complete sets of plans for commercial/industrial projects (THREE sets of plans for residential projects). For expeditious processing, corrected sets can be submitted in one of two ways: Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602-2700. The City will route the plans to EsGil and the Carlsbad Planning, Engineering and Fire Departments. Bring TWO corrected set of plans and calculations/reports to EsGil, 9320 Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of plans and calculations/reports directly to the City of Carlsbad Building Department for routing to their Planning, Engineering and Fire Departments. NOTE: Plans that are submitted directly to EsGil only will not be reviewed by the City Planning, Engineering and Fire Departments until review by EsGil is complete. 16. Provide information to show the Prefab HUB is State of California approved commercial coach. Please obtain City Building Official 's approval to defer the prefab HUB. Please refer to the following electrical and energy items. To speed up the review process, please note on this list (or a copy) where each correction item has been addressed, i.e., plan sheet, note or detail number, calculation page, etc. Please indicate here if any changes have been made to the plans that are not a result of corrections from this list. If there are other changes, please briefly describe them and where they are located in the plans. Have changes been made to the plans not resulting from this correction list? Please indicate: U Yes U No The jurisdiction has contracted with EsGil, located at 9320 Chesapeake Drive, Suite 208, San Diego, California 92123; telephone number of 858/560-1468, to perform the plan review for your project. If you have any questions regarding these plan review items, please contact David Yao at Esgil. Thank you. ELECTRICAL, and ENERGY COMMENTS PLAN REVIEWER: Morteza Beheshti ELECTRICAL (2016 CALIFORNIA ELECTRICAL CODE) Please complete plans. Single lines such as on E-603 shows equipment not designed for ratings overcurrent protection etc. More comments may follow. Specify all feeders and conduit size on the single line diagram. Please include transformer primary and secondary protection. Ratings and ground electrode system. Provide ground electrode system design. Each structure must have its own ground electrode system and bonded to new panel being added. Design ground electrode system for each separate building in lieu of note. Single line to include design. Please coordinate between equipment locations, schedules and single line. There are multiple single line diagrams. Please clarify all equipment locations. Note: If you have any questions regarding this Electrical and Energy plan review list please contact Morteza Beheshti at (858) 560-1468. To speed the review process, note on this list (or a copy) where the corrected items have been addressed on the plans. EsGil A SAFEbulif Company DATE: 7/25/2019 U APPLICANT U JURIS. JURISDICTION: City of Carlsbad PLAN CHECK #.: CBC2019-0348 SET: I PROJECT ADDRESS: One Legoland Dr. PROJECT NAME: Proposed Antenna, RRU and Equipment Shelter (HUB) through out Legoland The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to: Crown Castle/Michell J Architecture EsGil staff did advise the applicant that the plan check has been completed. Person contacted: Crown Castle/Michell J Architecture Telephone #: 206-650-9591/858-650-3130 Date contacted: 1.', (by4 ) Email:) lizandro.gilfcrowncastle.com/mitch.campagna@mitchetlj.com Q'Maif.1 Telephone" Fax In Person LI REMARKS: By: David Yao Enclosures: EsGil 7/18/19 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858) 560-1576 PLAN REVIEW CORRECTION LIST COMMERCIAL PLAN CHECK #.: CBC2019-0348 OCCUPANCY: U TYPE OF CONSTRUCTION: VB ALLOWABLE FLOOR AREA: SPRINKLERS?: REMARKS: DATE PLANS RECEIVED BY JURISDICTION: 7/16/19 DATE INITIAL PLAN REVIEW COMPLETED: 7/25/2019 JURISDICTION: City of Carlsbad USE: shelter ACTUAL AREA: -300 sf STORIES: 1 HEIGHT: OCCUPANT LOAD: DATE PLANS RECEIVED BY ESGIL CORPORATION: 7/18/19 PLAN REVIEWER: David Yao FOREWORD (PLEASE READ): This plan review is limited to the technical requirements contained in the California version of the International Building Code, Uniform Plumbing Code, Uniform Mechanical Code, National Electrical Code and state laws regulating energy conservation, noise attenuation and access for the disabled. This plan review is based on regulations enforced by the Building Department. You may have other corrections based on laws and ordinances enforced by the Planning Department, Engineering Department, Fire Department or other departments. Clearance from those departments may be required prior to the issuance of a building permit. Code sections cited are based on the 2016 CBC, which adopts the 2015 IBC. The following items listed need clarification, modification or change. All items must be satisfied before the plans will be in conformance with the cited codes and regulations. Per Sec. 105.4 of the 2015 International Building Code, the approval of the plans does not permit the violation of any state, county or city law. To speed up the recheck process, please note on this list (or a copy) where each correction item has been addressed, i.e., plan sheet number, specification section, etc. Be sure to enclose the marked up list when you submit the revised plans. [DO NOT PAY— THIS IS NOT AN INVOICE] VALUATION AND PLAN CHECK FEE JURISDICTION: City of Carlsbad PLAN CHECK #.: CBC2019-0348 PREPARED BY: David Yao DATE: 7/25/2019 BUILDING ADDRESS: One Legoland Dr. BUILDING OCCUPANCY: U BUILDING PORTION AREA (Sq. Ft.) Valuation Multiplier Reg. Mod. VALUE ($) shelter, antennas RRU per city 750,000 Air Conditioning Fire Sprinklers TOTAL VALUE 750,000 Jurisdiction Code Icb IBY Ordinance I Bldg. Permit Fee by Ordinance V Plan Check Fee by Ordinance V Type of Review: EI Complete Review LI Structural Only 171 Repetitive Fee Repeats El Other El Hourly Hr. @ * EsGil Fee E 8i1.I Comments: Sheet of Please make all corrections, as requested in the correction list. Submit FOUR new complete sets of plans for commercial/industrial projects (THREE sets of plans for residential projects). For expeditious processing, corrected sets can be submitted in one of two ways: Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602-2700. The City will route the plans to EsGil and the Carlsbad Planning, Engineering and Fire Departments. Bring TWO corrected set of plans and calculations/reports to EsGil, 9320 Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of plans and calculations/reports directly to the City of Carlsbad Building Department for routing to their Planning, Engineering and Fire Departments. NOTE: Plans that are submitted directly to EsGil only will not be reviewed by the City Planning, Engineering and Fire Departments until review by EsGil is complete. 2. Provide a Building Code Data Legend on the Title Sheet. Include the following code information for each building proposed: Occupancy Classification(s) Description of Use equipment shelter Type of Construction VB Sprinklers: Yes or No N Floor Area Provide a statement on the Title Sheet of the plans, stating that this project shall comply with the 2016 California Building Code, which adopts the 2015 IBC, 2015 UMC, 2015 UPC and the 2014 NEC. NON-RESIDENTIAL GREEN BUILDING STANDARDS (New Buildings) The California Building Standards Commission has adopted the Green Building Standards Code and must be enforced by the local building official. The following mandatory requirements for commercial construction must be included on your plans. The following Green Building Standards apply only to newly constructed buildings. CGC 101.3. Provide a sheet on the plans labeled "Green Building Code Requirements" and include the following notes as applicable. Storm water pollution prevention. Note on the site plan that for projects which disturb less than one acre of land and are not part of a larger common plan of development or sale shall prevent the pollution of storm water runoff from the construction activities through one or more of the following measures (Section 5.106.1): a) Storm water pollution prevention. (One acre or more) Compliance with NPDES is required. See the CGC 5.106.2 for compliance requirements. Light pollution reduction. Note on the plans that exterior light pollution must comply with CGC section 5.106.8. Grading and paving. Note on the plans that the site grading or a drainage system will manage all surface water flows to keep water from entering buildings. CGC Section 5.106.10. Moisture control. Note on the plans that landscape irrigation systems shall be designed to prevent spray on structures. Exterior entries subject to foot traffic or wind-driven rain shall be designed to prevent water intrusion into the building. CGC Section 5.407.2.2.1. Waste management. Note on the plans that the contractor must submit to the Engineering Department or other Agency that regulates construction waste management a Waste Management Plan that outlines the items listed in CGC Section 5.408.1.1. Recycling. Note on the plans that a minimum of 65% of construction waste is to be recycled and/or salvaged. CGC 5.408.1. Documentation shall be provided to the enforcing agency which demonstrates compliance. CGC Section 5.408.1.4. Waste reduction. Note on the plans that 100% of trees, stumps, rocks, and associated vegetation and soils primarily from the construction will be reused or recycled. CGC 5.408.3. Documentation. Note on the plans that a building "Systems Manual" as listed in CGC Section 5.410.2.5 shall be delivered to the building owner or representative and the facilities operator. Further, note on the plans that the "Systems Manual" shall contain the required features listed in CGC Section 5.410.2.5.1. Pollutant control. Note on the plans that during construction, ends of duct openings are to be sealed, and mechanical equipment is to be covered. CGC 5.504.3. Pollutant control. Note on the plans that VOC's must comply with the limitations listed in Section 5.504.4 and Tables 4.504.1, 5.504.4.1 5.504.4.2, 5.504.4.3 and 5.504.4.5 for: Adhesives, Sealants, Paints and Coatings, Carpet and Composition Wood Products. CGC 5.504.4. Pollutant control. Note on the plans that mechanically ventilated buildings shall provide regularly occupied areas with air filtration media for outside and return air that provides at least a Minimum Efficiency Reporting Value (MERV) of 8. MERV 8 filters shall be installed prior to occupancy. CGC Section 5.504.5.3. Note on the plans that prior to final inspection the licensed contractor, architect or engineer in responsible charge of the overall construction must provide to the building department official written verification that all applicable provisions from the Green Building Standards Code have been implemented as part of the construction. CGC 102.3. STRUCTURAL Provide information to show the Prefab HUB is State of California approved commercial coach. ADDITIONAL Please refer to the following electrical and energy items. To speed up the review process, please note on this list (or a copy) where each correction item has been addressed, i.e., plan sheet, note or detail number, calculation page, etc. Please indicate here if any changes have been made to the plans that are not a result of corrections from this list. If there are other changes, please briefly describe them and where they are located in the plans. Have changes been made to the plans not resulting from this correction list? Please indicate: U Yes U No The jurisdiction has contracted with EsGil, located at 9320 Chesapeake Drive, Suite 208, San Diego, California 92123; telephone number of 858/560-1468, to perform the plan review for your project. If you have any questions regarding these plan review items, please contact David Yao at Esgil. Thank you. ELECTRICAL, and ENERGY COMMENTS PLAN REVIEWER: Morteza Beheshti ELECTRICAL (2016 CALIFORNIA ELECTRICAL CODE) Please address the City of Carlsbad EVSE ordinance requirements. Please sign all stamped plans. Please complete plans. Single lines such as on E-603 shows equipment not designed for ratings overcurrent protection etc. More comments may follow. Please include transformer primary and secondary protection. Ratings and ground electrode system. Each structure must have its own ground electrode system and bonded to new panel being added. Please coordinate between equipment locations, schedules and single line. Please provide a completed panel schedule of new or existing panels to be used. "PLI", "MHI" for instance. Panel schedule ratings shown for "DPPI" do not match single line on the same sheet. Please justify all new loads on panels or switchboards I service. Please detail conduit routing and type for underground sections or areas where susceptible to damage. ENERGY (2016 CALIFORNIA BUILDING ENERGY STANDARDS) Please include voltage drop values per the California Energy Code Section 130.5 (c) Note: If you have any questions regarding this Electrical and Energy plan review list please contact Morteza Beheshti at (858) 560-1468. To speed the review process, note on this list (or a copy) where the corrected items have been addressed on the plans. I LAMAR NNENGINE-E,RING vLsT TU RECEIVED JUL 162019 CITY OF CARLSBAD STRUCTURAL CALCULIAFIO\NIS4 PROJECT: LEGOLANDCALIFORNL RESORT NODE r 1 LEGOLAND DR. CARLSBAD SAN DIEGO, CA 92008 July 11, 2019 www.lamareng.com Page 1 of 13 Luis Labrada Proyecto: Nodo HUB 217 Landis Avenue LAMAR Date: 10/07/19 Chula Vista, CA 91910 UNENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com Contents APPENDIX I. DESIGN RETAINING WALL ..........................................................................................................................3 APPENDIX II. FOUNDATION CALCULATION......................................................................................................................8 APPENDIX III. DESIGN ATTACHMENT. RACK..................................................................................................................10 ., bd Page 2 of 13 Luis Labrada Proyecto: Nodo HUB 217 Landis Avenue LAhAAU% Date: 10/07/19 Chula Vista, CA 91910 I1P1ENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX I. DESIGN RETAINING WALL Page 3 of 13 Criteria Retained Height = 4.00 ft Wall height above soil = 0.67 ft Slope Behind Wall = 6.25 Height of Soil over Toe = 0.00 in Water height over heel = 0.0 ft Soil Data I Allow Soil Bearing = 1,500.0 psf Equivalent Fluid Pressure Method Active Heel Pressure = 30.0 psf/ft Passive Pressure = 100.0 psf/ft Soil Density, Heel = 110.00 pcf Soil Density, Toe = 110.00 pcf FootingilSoil Friction = 0.250 Soil height to ignore for passive pressure = 0.00 in [4acent Footing Load Adjacent Footing Load = 0.0 lbs Footing Width = 0.00 ft Eccentricity = 0.00 in Wall to Ftg CL Dist = 0.00 It Footing Type . Line Load Base Above/Below Soil - at Back of Wall - 0 It Poisson's Ratio = 0.300 Stem Construction • Bottom Design Height Above Ftg ft = Stem OK 0.00 Wall Material Above 'Ht" = Masonry Design Method = ASD Thickness = 8.00 Reber Size = # 4 Reber Spacing = 16.00 Reber Placed at = Center Design Data fb/FB + fa/Fa = 0.381 Total Force @ Section Service Level lbs = 240.0 Strength Level lbs Moment .... Actual Service Level ft-# = 320.0 Strength Level ft-# = Moment.....Allowable = 839.5 Shear.....Actual Service Level psi = 2.6 Strength Level psi = Shear.....Allowable psi = 44.8 Anet (Masonry) in2 = 91.50 Reber Depth 'd in = 3.75 Masonry Data fm psi = 1,500 Fs psi = 20,000 Solid Grouting = Yes Lateral Load Applied to Stem • mmm= Lateral Load 0.0 #/ft ...Height to Top. = 0.00 ft ...Height to Bottom = 0.00 ft Load Type = Wind (W) (Service Level) Wind on Exposed Stem = 0.0 psf (Service Level) Surcharge Loads Surcharge Over Heel = 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 Used for Sliding & Overturning LAxial Load Applied to Stem I Axial Dead Load = 0.0 lbs Axial Live Load = 0.0 lbs Axial Load Eccentricity = 0.0 in I Design Summary I Wall Stability Ratios Overturning = 4.02 OK Sliding = 1.51 OK Total Bearing Load = 1,487 lbs ... resultant ecc. = 1.74 in Soil Pressure @ Toe = 501 psf OK Soil Pressure @ Heel = 309 psf OK Allowable = 1,500 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 632 psf ACI Factored © Heel = 390 psf Footing Shear © Toe = 4.1 psi OK Footing Shear @ Heel = 0.0 psi OK Allowable = 75.0 psi Sliding Caics Lateral Sliding Force = 453.8 lbs less 100% Passive Force = - 312.5 lbs less 100% Friction Force = - 371.7 lbs Added Force Req'd = 0.0 lbs OK ....for 1.5 Stability = 0.0 lbs OK LuisLabrada Title HUB : Page: 1 'LA MAR 217 Landis Avenue Job #: Dsgnr: M.R Date: 13 FEB 2019 IENGINEERING Chula Vista, CA 91910 Description.... Phone: (619) 370-9515 www.lamareng.com This Wall in File: K:\Projects20191LUiS LABRADALL-19-009 LegolandCaIcs\0-HUB\rw.RPX RetainPro (c) 1987-2018, Build 11.18.07.31 License: KW-06057443 Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14,ACI 530-13 License To: GED Vertical component of active lateral soil pressure IS Modular Ratio 'n' = 21.48 considered in the calculation of soil bearing pressures. Wall Weight psf = 78.0 Load Factors Short Term Factor = 1.000 Building Code CBC 2016,ACI Equiv. Solid Thick. in= 7.60 Dead Load 1.200 Masonry Block Type = Medium Weight Live Load 1.600 Masonry Design Method = ASD Earth, H 1.600 Concrete Data Wind,W 1.000 fc psi Seismic, E 1.000 Fy psi = Page 4of13 Page: 1 Luis Labrada Title HUB : Page: 2 L1Iv1I R 217 Landis Avenue Job #: Dsgnr: M.R Date: 13 FEB 2019 INENCINEERING Chula Vista, CA 91910 Description.... Phone: (619) 370-9515 www.lamareng.com This Wall in File: K:Projects2019LUlS LABRADA\LL-19-009 LegolandCalcs0-H1JBrw.RPX RetainPro (c) 1987-2018, Build 11.18.07.31 License: KW-06057443 License To: GED Cantilevered Retaining Wall Code: CBC 2016,ACl 318-14,ACI 530-13 I Footing Dimensions & Strengths • Footing Design Results Toe Width = 3.00 ft Toe Heel Heel Width = 0.67 Factored Pressure = 632 390 psf Total Footing Width = 3.67 Mu': Upward = 2,549 0 ft-# Footing Thickness = 18.00 in Mu: Downward = 1,350 0 ft-# Mu: Design = 1,199 oft-# Key Width = 12.00 in Actual 1-Way Shear = 4.12 0.00 psi Key Depth = 12.00 in Allow 1-Way Shear = 40.00 40.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = None Spec'd fc = 2,500 psi Fy = 40,000 psi Heel Reinforcing = None Spec'd Footing Concrete Density = 150.00 pcf Key Reinforcing . None Spec'd Mm. As % = 0.0018 Other Acceptable Sizes & Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: Not req'd: Mu c phi*5*lambda*sqrt(fc)*Sm Heel: Not req'd: Mu < phi51ambdasqrt(fc)Sm Key: Not req'd: Mu c phi*5*Iambda*sqrt(fc)*Sm Min footing T&S reinf Area 1.43 1n2 Min footing T&S reinf Area per foot 0.39 in2 ift If one layer of horizontal bars: If two layers of horizontal bars: #4@ 6.17 in #4@ 12.35 in #5@ 9.57 in #5@ 19.14 in #6@ 13.58 in #6@ 27.16 in Summary of Overturning & Resisting Forces & Moments OVERTURNING RESISTING..... Force Distance Moment Force Distance Moment Item lbs ft ft-# lbs ft ft-# Heel Active Pressure = 453.8 1.83 831.9 Soil Over Heel = 3.67 Surcharge over Heel = Sloped Soil Over Heel = 3.67 Surcharge Over Toe = Surcharge Over Heel = Adjacent Footing Load = Adjacent Footing Load = Added Lateral Load = Axial Dead Load on Stem Load @ Stem Above Soil = * Axial Live Load on Stem = = Soil Over Toe = Surcharge Over Toe = Total 453.8 O.T.M. 831.9 Stem Weight(s) = 364.3 3.33 1,214.2 Earth @ Stem Transitions = = = Footing Weight = 825.0 1.83 1,512.5 Resisting/Overturning Ratio = 4.02 Key Weight = 150.0 0.50 75.0 Vertical Loads used for Soil Pressure = 1,486.7 lbs Vert. Component = 147.5 3.67 540.7 Total 1,486.7 lbs R.M.0 3,342.4 * Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation. Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance. ITilt Horizontal Deflection at Too of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Defi @ Top of Wall (approximate only) 0.018 in The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil. Page5of13 Page: 2 Luis Labrada Title HUB : Page: 3 I...I\ IS/ilk R 217 Landis Avenue Job #: Dsgnr: M.R Date: 13 FEB 2019 INENCINEERING Chula Vista, CA 91910 Description.... Phone: (619) 370-9515 www.lamareng.com This Wall in File: K:Projects\2019\LUlS LABRADA\LL-19-009 Legoland\Calcs\0-HUBrw.RPX RetainPro (c) 1987-2018, Build 11.18.07.31 License: KW-06057443 Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14,ACI 530-13 License To: GED 8 w/,."@, 16." SàlidGr•out Page 6of13 Page: 3 Pp= 112.604 Luis Labrada Title HUB : Page: 4 LIkIV1AR 217 Landis Avenue Job #: Dsgnr: M.R Date: 13 FEB 2019 INENGINEERING Chula Vista, CA 91910 Description.... Phone: (619) 370-9515 www.lamareng.com ófüi' Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14.ACI 530-13 625 0- .0) 0)' 0) D (7 Page 7of13 Page: 4 Luis Labrada Proyecto: Nodo HUB 217 Landis Avenue LAMAU% Date: 10/07/19 Chula Vista, CA 91910 FIP1ENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX II. FOUNDATION CALCULATION. Page 8 of 13 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370.9515 www.lamareng.com LAMAR IMENGINEERING Project: HUB Date: 0711112019 Engineer: M.R FOOTING CALCULATION - LINE A I Lower Flat Roof Trib. Width = 5.8 Ft. Total Wall Height =i0.i Ft. Roof DL= 50.0 Lbs/Sq. Ft. Roof LR= 20.0 Lbs/Sq. Ft. Wall DL= 83.0 Lbs/Sq. Ft. TOTAL LOAD DL 1122 Lbs/ Ft. PLR= 115 Lbs/ Ft. 5.75 ft 10.05 ft. I IttrcJ Soils Values Design Soil Bearing Capacity 1 1500 psf ,l .. - W(ft) P W L AREA (A) (LbslFt) (FT) (FT) WxL a=P/A (pcf) L (ft) (SQ.FT) Cont. 1237 1.00 1.0 1.00 1237 I 1500 I OK Page 9 of 13 Luis Labrada Proyecto: Nodo HUB 217 Landis Avenue LAMAR Date: 10/07/19 Chula Vista, CA 91910 NNENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX III. DESIGN ATTACHMENT. RACK. Page 10 of 13 t Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodo HUB Date: 07/11/2019 Engineer: M.R I : SEISMIC DESING RACK DESCRIPTION Description: BBU CABINET Wp 340.0 Lbs. bldg height = 32 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLANDDR. CARLSBAD, SAN DIEGO, CA 92008 S0s = 0.788 - U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT FpH = (0.64 * Wp )I1.4 = 155.43 Lbs FpH = 0.46 * Wp = 156.4 Lbs HORIZONTAL FpV = 0.28 * Wp = 95.2 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 z/h = - 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*lp)*(1+2*z/h) = 128.6 Lbs. Verifications 'pH max - 1.6 * SDS * I, * W= 428.7 Lbs. > 128.6 Lbs. FpH min = 0.3 * SOS * 1 *WP= 80.4 Lbs. 128.6 Lbs. Page 11 of 13 GEOMETRY asL____ Plan a= 0.50 ft b= 8.75 ft c= 2.00 ft Support= 2 Fpv Roof t I - - Fph b "+ Slab . C 1. Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodo HUB Date: 07/11/2019 Engineer: M.R I ANCHORAGE DESIGN (SEISMIC) RACK Elevation FORCES GRAVITATORY (D) FORCES SEISMIC (E) COMBINATIONS (D+E) Weight, Wp = 340.0 Lbs Overturning moment OTM = Wp*a/2 = 340.0 Lbs*ft Dy = 170.0 Lbs Horizontal force, Ex = 64.3 Lbs Vertical force, Ey = 47.6 Lbs Max axial load per anchor = Dx + Ex = 64.3 Lbs Max shear force per anchor = Dy + Ey = 217.6 Lbs Page 12 of 13 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR HENGINEERING Project: Nodo HUB Date: 07/11/2019 Engineer: M.R ELEMENT & CONNECTIONS DESIGN RACK TOP CONNECTION CONNECTION DESIGN: KB-TZ Shear V= 64.3 Lbs Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 3 0 Dia.: 3/4 in Alowable Anchor Steel Strengh Shear = 11745 Lbs. Embed.: 31/4 in Demand Capacity Shear Ratio Status 21.4 Lbs. < 11745 Lbs. 0.00 L- OKJ BOTTOM CONNECTION CONNECTION DESIGN: KB-TZ Shear V= 64.3 Lbs Anchor: Steel Carbon KB-TZ nBolt: 4 ODia.: 1/2 in Embed.: 31/4 in Demand 16.1 Lbs. (Table 3. ICC-ES ESR-2302) Alowable Anchor Steel Strengh Shear = 6940 Lbs. Capacity Shear Ratio Status 6940 Lbs. 0.00 LJ Page 13 of 13 LAMAR NNENGINEERING CVHL + STRUCTURAL Direct Line: 619.370.9515 / Fax:619.764.4079 / Email: tabrade@Ianprepgp ;. RECEIVED JUL 16 2019 CITY OF CARLSBAD BUILO STRUCTURAL CALCULATkJbON PROJECT: LEGOLAND CALIFORNIA RESORT LNL0DES:1]::2:1- SEA LIFE AQUARIUM (SLA) 1 LEGOLAND DR. CARLSBAD SAN DIEGO, CA 92008 / * EXP. '09/30/19 * 0FCW July 11, 2019 off"N CE C2 WIM 01 imfg Page 1 of 56 www.lamareng.com Luis Labrada Proyecto: Nodes 1-2- 3 217 Landis Avenue LAMAK Date: 03/07/19 Chula Vista, CA 91910 IMENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com Contents APPENDIX I. DESIGN ATTACHMENT. ANTENNAS....................................................................................................................3 APPENDIX II. DESIGN ATTACHMENT. RADIOS . ...................................................................................................................... 10 APPENDIX III. DESIGN ATTACHMENT. CABINET EQUIPMENT . ................... . ......................................................................... 17 APPENDIXIV. SCREEN WALL ...................................................................................................................................................24 APPENDIX V. ROOF VERIFICATION ..........................................................................................................................................36 APPENDIXVI. TABLES ................................................................................................................................................................41 Page 2 of 56 Luis Labrada 217 Landis Avenue LAMAR Proyecto: Nodes 1-2-3 Date: 03/07/19 Chula Vista, CA 91910 nrl.ENGINEERING; Engineer: MR P: 619-370-9515 www.lamareng.com APPENDIX I. DESIGN ATTACHMENT. ANTENNAS Page 3 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com I T.IVIL + STRUCTURAL Project: Nodes 1-2-3 Date: 07/02/2019 Engineer: M.R I SEISMIC DESING ANTENNA I DESCRIPTION Description: QUINTEL QS46512-2 ANTENNA W= 75.0 Lbs bldg height = - 37.50 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 5DS 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 75.0 Lbs. FpH = (0.64 * Wp)/1.4 = 34.3 Lbs FpH = 0.46 * Wp = 34.5 Lbs HORIZONTAL FpV = 0.28 * Wp = 21.0 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 z/h= 10 Ft FpH = (0.4*ap*SDS*Wp)/(Rp*Ip)*(1+2*zlh) 28.4 Lbs. Verifications FpH max = 1.6 * 5DS * p * WP= 94.6 Lbs. > 28.4 Lbs. FpH mm = 0.3 * 5DS * i p * WP= 17.7 Lbs. 28.4 Lbs. Page 4 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING Project: Nodes 1-2-3 Date: 07/02/2019 Engineer:M.R ANCHORAGE DESIGN (SEISMIC) ANTENNA GEOMETRY e= 1.25 d= 2.13 ft ft -y Fx - d Wp e FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy= 37.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 26.5 Lbs Vertical force, Ey = 10.5 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 70.5 Lbs Max shear force per anchor = Dy + Ey = 48.0 Lbs Page 5 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 1-2-3 Date: 07102/2019 Engineer:M.R I WIND DESING ANTENNA I DESCRIPTION Description: QU INTEL QS46512-2 ANTENNA W= 75.0 Lbs bldg height = 37.5 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or 0) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = C 1.0 110.0 mph 1.0 Flat ANALYSIS A = 1.47 For h = 37.5 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure PS = A x Kzt x I x ps30 = 23.37 psf Horizontal ps = A x Kzt x I x ps30 = 20.29 psf Roof Uplift Applied horizontal force, Fph = Ps x (bxc)I2 = 101.2 Lbs Applied vertical force, Fpv = Ps x (axc)I2 = 18.3 Lbs Page 6 of 56 e= 1.25 ft V d= 2.13 ft Wp a= 0.90 ft e b= 4.33 ft c= 1.00 ft FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx 44.0 Lbs Dy = 37.5 Lbs FORCES WIND (W) Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR Project: Nodes 1-2-3 Date: 07102/2019 111'lENGINEERING Engineer:M.R LJIIi I ANCHORAGE DESIGN (WIND) ANTENNA I GEOMETRY b Fph A Horizontal force, Wx = 61.3 Lbs Vertical force, Wy = 9.1 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 105.3 Lbs Max shear force per anchor = Dy + Wy = 46.6 Lbs Page 7 of 56 B B Fx = Dx+(Ex or Wx) = 105.3 Lbs Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 3.0 Antennas Total Quantity 4 ft H= 4.00 ft Lc= 3.00 ft 13 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 1-2-3 Date: 07/02/2019 Engineer: M.R I ELEMENT & CONNECTIONS DESIGN ANTENNA I UNISTRUT HORIZONTAL DESIGN Number of radios pair Odd number of radios M. max = PL/8 (n-1/n) mP M.max = PL/8 (n+1/n) RP(n-1)/2 1 4 1 1 I R=Pn/2 Cj Lc4c.4.c4.c4.c..l I— 1-JL•C----1 n 4 JC/2L / , 3 I- 1-nc C = 0.75 ft C = 1.00 ft Px= 105.3 Lbs M. Mmax (y-y) = 131.7 Ft-Lbs 1580.0 In-Lbs Py= 48.0 Lbs M. Mmax (x-x) = 60.0 Ft-Lbs 720.0 In-Lbs Use: Unistrut: P1000 ;1 5/8 x I 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Demand 1580.0 In-Lbs Demand 720.0 In-Lbs Capacity 5070.00 In-Lbs Capacity Pull Out 5070.00 In-Lbs Ratio Status 0.31 [ok Ratio Status 0.14 LI] Page 8 of 56 B B Fx = Dx+(Ex or Wx) = 105.3 Lbs Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 3.0 Antennas Total Quantity 4 ft H= 4.0 ft Lc= 3.0 ft IL Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 1-2-3 Date: 07/0212019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN ANTENNA CONNECTION A Radio Status Shear = 48.0 Lbs 0.53 Pull Out = 105.3 Lbs 0.48 OK Use: Ridge Pipe Clamps: FPCR-075 General Engineering Catalog - No. 17- Page 203 Thickness: 3/4 in Length: 1.05 in FRP Bolt: 3I8"xl 1/4 I Allowable Shear:: 90 Lbs Allowable Pull-Out: - 220 Lbs CONNECTION C: UNISTRUT TO EXISTING MECHANICAL SCREEN Reaction unistrut horizontal Ratio Status Ry = Py(n-1 )/2 Shear = 72.0 Lbs 0.09 OK Rx = Px(n-1)/2 -' Pull Out = 158.0 Lbs 0.53 L OK J Use: D-Bolt= 1/2 in (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Shear: 780 Lbs Allowable FRP Bolt Shear Pull-Out: 300 Lbs/in Allowable FRP Bolt Pull-Out Page 9 of 56 Luis Labrada Proyecto: Nodes 1- 2- 3 217 Landis Avenue LAMAR Date: 03/07/19 Chula Vista, CA 91910 nr1ENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX II. DESIGN ATTACHMENT. RADIOS. Page 10 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR flENGINEERING Project: Nodes 1-2-3 Date: 07/02/2019 Engineer: M.R SEISMIC DESING RADIO DESCRIPTION Description: Alu Radio Units W = 59.5 Lbs bldg height = 37.5 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. cARLsBAb, SAN DIEGO, CA 92008 SOS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q 59.5 Lbs. FpH = (0.64 * Wp)/1.4 = 27.2 Lbs FpH = 0.46 * Wp = 27.37 Lbs HORIZONTAL FpV = 0.28 * Wp = 16.66 Lbs UP OR DOWN ap = 1.0 1 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 z/h= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*lp)*(1+2*z/h) = 22.5 Lbs. Verifications pH max = 1.6* sOS * l, * WP= 75.0 Lbs. > 22.5 Lbs. FPH mm = 0.3 * S05 * 1 * WP= 14.1 Lbs. 22.5 Lbs. Page 11 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IIENGINEERINGI CIVIL A- STRUCTURAL Project: Nodes 1-2-3 Date: 07/0212019 Engineer:M.R I DESIGN FORCES (SEISMIC) I RADIO I GEOMETRY al Plan Radio Dimensions a= 0.92 ft b= 2.10 ft C = 0.92 ft Support 4 Quantity bl Fph Elevation FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a/4 = 13.7 Lbs*ft Dx= 6.5 Lbs Dy= 14.9 Lbs FORCES SEISMIC (E) Applied horizontal force, Ex = 9.3 Lbs Applied vertical force, Ey = 4.2 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 15.8 Lbs Max shear force per anchor = Dy + Ey = 19.0 Lbs Page 12 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR HENGINEERING Project: Nodes 1-2-3 Date: 07/02/2019 Engineer:M.R WIND DESING RADIO DESCRIPTION Description: Alu Radio Units W= 59.5 Lbs bldg height = 37.5 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt 1.0 Flat ANALYSIS A = 1.47 For h = 37.5 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative -1-3.80-- Psf Roof Uplift Conservative Wind Pressure PS =X x Kzt x I x ps30 = 23.37 psf Horizontal PS = A x Kzt x I x ps30 = 20.29 psf Roof Uplift Page 13 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING ---- Project: Nodes 1-2-3 Date: 07102/2019 Engineer:M.R I DESIGN FORCES (WIND) I RADIO I GEOMETRY al Plan Radio Dimensions a= 0.92 ft b= 2.10 ft C = 0.92 ft Support = 4 Quantity FORCES GRAVITATORY (D) • . Weight, Wp = Overturning moment OTM = Wp*a/4 = Dx= ... .• • •. Dy tFpv Suction Wall bl Elevation 59.5 Lbs 13.7 Lbs*ft 6.5 Lbs 14.9 Lbs Suction FORCES WIND (W) Applied horizontal force, Wx = 15.1 Lbs ........... Applied vertical force, Wy = 4.3 Lbs ...,•.• L. '... COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 21.6 Lbs Max shear, force per anchor = Dy + Wy = 19.2 Lbs Page 14 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERtNG Project: Nodes 1-2-3 Date: 07102/2019 Engineer: M.R ELEMENT & CONNECTIONS DESIGN I RADIO Load: Fx = Dx+(Ex or Wx) = 21.6 Lbs Fy = Dy+(Ey or Wy) = 19.2 Lbs 1=:ø] Unistrut vertical J L•==Ia Q = 2.0 N° of radios per vertical unist. 4.0 Qt = 3.0 Radios Total Quantity :ii H= 4.00 ft Unistrut Horizontal - Nu = 3 Unistrut B Lc = - - 8.00 ft ft UNISTRUT VERTICAL DESIGN P= 21.6 Lbs 1' V° M. Mmax = PL/3 = 14.4 Ft.-Lbs. Status 172.5 In.-Lbs. Use: Unistrut: I P1000 1 5/8 x 1 5/8-I2ga Nominal Thickness Single Channel Allowable Moment:'-5070 In-Lbs General Engineering Catalog - No. 17- Page 23 UNISTRUT HORIZONTAL VERIFY Px = 57.5 Lbs 4 M. Mmax (y-y) = 276.1 Ft.-Lbs. Radio Status 3313 In.-Lbs. 0.65 [ Ok j -I Py = 38.3 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 184.0 Ft.-Lbs. Radio Status n = 5 2208 In.-Lbs. 0.44 [ Ok J c = 1.60 ft Use: Unistrut: P1000 11 5/8 x I 5/8-I2ga Nominal Thickness Single Channel Allowable Moment: - 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Page 15 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 1-2-3 Date: 07/02/2019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN I RADIO CONNECTION A: RADIOS TO VERTICAL UNISTRUT CHANNEL NUTS WITH SPRING Status Shear = 19.2 Lbs OK Pull Out = 21.6 Lbs OK J Use: Channel Nuts: 318"-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1/2" Mm. General Engineering Catalog - No. 17 Page 68 CONNECTION B: VERTICAL UNISTRUT TO HORIZONTAL UNISTRUT CHANNEL NUTS WITH SPRING Status Shear = 38.3 Lbs OK Pull Out = 57.5 Lbs OK Use: Channel Nuts: 318"-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 - Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1/2" Mm. - General Engineering Catalog - No. 17 Paae 68 Ry = Py(n-1)I2 - Shear = 76.7 Lbs Rx = Px(n-1 )I2 Pull Out = 115.0 Lbs Use: D-Bolt: 1/2 in nBolt: 2, Shear: 780 Lbs Allowable FRP Bolt Shear Pull-Out: 300 Lbs Allowable FRP Bolt Pull-Out (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 76.7 Lbs < 780 Lbs 0.1 L OK Demand Capacity Shear Ratio Status 115.0 Lbs < 300 Lbs 0.38 L OK Page 16 of 56 Luis Labrada Proyecto: Nodes 1-2- 3 217 Landis Avenue LAMAR Date: 03/07/19 Chula Vista, CA 91910 MNENGINEERING Engineer: M.R P: 619-370-9515 www.lamarenci.com APPENDIX III. DESIGN ATTACHMENT. CABINET EQUIPMENT. Page 17 of 56 LI Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com W, A I M, N 11 4 0 R1 10 14:4 01 CIVIL + STRUCTURAL Project: Nodes 1-2-3 Date: 07/03/2019 Engineer: M.R SEISMIC DESING CABINET DESCRIPTION Description: BBU CABINET - W = 382.0 Lbs bldg height = ft ELEMENT DESIGN (SEISMIC) Location =1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = 382.0 Lbs. FpH = (0.64 * Wp )/1.4 = 174.63 Lbs FpH = 0.46 * Wp = 175.72 Lbs HORIZONTAL FpV = 0.28 * Wp = 106.96 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip =, 1.0 Ref. Table 11.5-1 ASCE 7-10 z /h = 1.O Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*Ip)*(1+2*z/h) = 144.5 Lbs. Verifications FpH max = 1.6 * SDS p * * WP= 481.6 Lbs * FpH mm = 0.3 * SDS * i p WP= 90.3 Lbs > 144.5 Lbs. [OK 144.5 Lbs. Page 18 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com W21M1 U K L. Project: Nodes 1-2-3 Date: 07/03/2019 Engineer:M.R I DESIGN FORCES (SEISMIC) I CABINET I GEOMETRY t 4 Fpv C Wall a 4 Plan a= 2.25 ft b= 2.70 ft C = 2.30 ft Support= 4 Elevation FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a/4 = 214.9 Lbs*ft Dx = 79.6 Lbs Dy = 95.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 161.4 Lbs Vertical force, Ey = 26.7 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 241 Lbs Max shear force per anchor = Dy + Ey = 122 Lbs Page 19 0f56 V Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 1-2-3 Date: 07103/2019 Engineer:M.R WIND DESING CABINET DESCRIPTION Description: BBU CABINET W= 382 Lbs bldg height = 37.5 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS A = 1.47 For h = 37.5 exposure C see fig 62 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative C 1.0 110.0 mph to Flat Wind Pressure ps=AxKztx Ix ps30= ps=AxKztxIxps30= Applied horizontal force, Fph = Ps x (bxc)I2 = Applied vertical force, Fpv = Ps x (axc)/2 = 23.37 psf Horizontal 20.29 psf Roof Uplift 145.1 Lbs 105.0 Lbs Page 20 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com EANNUMAMIN NIQUININUIUM CVIL + SIT RUCTUAAL Project: Nodes 1-2-3 Date: 07103/2019 Engineer:M.R I DESIGN FORCES (WIND) I CABINET I GEOMETRY Plan a= 2.25 ft b= 2.70 ft c= 2.30 ft Support= 4 Fpv Suction Wall fl a I H 11 , Suction b Elevation FORCES GRAVITATORY (0) .• - Weight, Wp = : 382.0 Lbs Overturning moment OTM = Wp*a14 = 214.9 Lbs*ft Dx = 79.6 Lbs . Dy = 95.5 Lbs FORCES WIND (W) Horizontal force, Wx = 160.1 Lbs Vertical force,. Wy = 26.2 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 240 Lbs Max shear force per anchor = Dy + Wy = 122 Lbs . • .. . .•...•'..''•rj ; • 4: .. ..............,_..*,• ,.. 4 Page, 21 of 56 3 Fx = Dx+(Ex or Wx) = 241.0 Lbs Fy= Dy+(Ey or Wy) = 122.2 Lbs Q = 1.0 Cabinet Total Quantity 2 ft H= 2.00 ft Lc= 8.00 ft Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 1-2-3 Date: 07/03/2019 Engineer: M.R ELEMENT & CONNECTIONS DESIGN I CABINET B I UNISTRUT HORIZONTAL DESIGN Px = 241.0 Lbs (rt-i)•P M. Mmax (y-y) = 642.6 Ft.-Lbs. Status 1 $ 1 7711 In.-Lbs. r OK 1 I.C4C.4.C4.C4-C I— irt-c Py = 122.2 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 326.0 Ft.-Lbs. Status n = 3 3912 In.-Lbs. I OK 1 C = 2.67 ft Use: Unistrut: I PIOOIA (2)1 5/8 x 5/8-12ga Nominal Thickness Allowable Moment: 18640 In-Lbs General Engineering Catalog - No. 17- Page 23 Page 22 of 56 3 Fx = Dx+(Ex or Wx) = 241.0 Lbs Fy= Dy+(Ey or Wy) = 122.2 Lbs Q = 1.0 Cabinet Total Quantity 2 ft H= 2.0 ft Lc= 8.0 ft D Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 1-2-3 Date: 07/03/2019 Engineer:M.R I ELEMENT & CONNECTIONS DESIGN I CABINET B CONNECTION A CHANNEL NUTS WITH SPRING Status Shear = 122.2 Lbs r OK Pull Out = 241.0 Lbs L _OK_j Use: Channel Nuts: 318"-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1/2" Min. General Engineering Catalog - No. 17 Page 68 CONNECTION B BOLT DESIGN Reaction unistrut horizontal Ry = Py(n-1)/2 Rx = Px(n-11)I2 Use: D-Bolt: 3/8 in. nBolt: Material: A307 Max. Shear 122.2 Lbs Max.PuII Out 241.0 Lbs Allowable Shear 2650.7 Lbs Allowable Pull-Out 4970.1 Lbs Shear = 122.2 Lbs Pull Out = 241.0 Lbs Fv = 24 ksi Ft = 45 ksi Status OK j Status L Ok i Page 23 of 56 Luis Labrada Proyecto: Nodes 1-2- 3 217 Landis Avenue LAAU%1ik/ Date: 03/07/19 Chula Vista, CA 91910 ENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX IV. SCREEN WALL ci Page 24 of 56 L Li in Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 1-2-3 Date: 0710212019 Engineer: M.R I SCREEN WALL DESIGN - FRP TYPE I Geometry W = 75 psf Weight SCREEN LENGTH L = 15.0 fl Screen total length NP = 4 Number Post NS = 3 - N° Steps between post L =[__5. ft L. between post S = 1.67 ft. Length Steps SCREEN HEIGHT H1 = 32 ft. [E] Structural Roof H2 = 8.30 ft Post Height H3 =- 6.0 ft Screen Height H4 = 2.3 ft Screen Wall Ht = 40.30 ft Total height BRACE L2 = 5.25 ft H5= 4.2 ft 8= - 38.7 ° Wind Force Exposure category (ASCE 7-10 26.7.3) Importance factor, 1.0 only, (Table 1.5-2) Basic wind speed (ASCE 7-10 26.5. 1) Topographic factor (26.8 & Table 26.8-1) = C •:,.i, 1w V = 110.0 mph Kzt = 1.0 Pressure 30 Psf. Page 25 of 56 Luis Labrada 217 Landis Avenue LAMAR Project: Nodes 1-2-3 Chula Vista, CA 91910 Date: 0710212019 P: 619.370-9515 IMENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE I FRP Channel Stifener - Desian Tributary: S = 1.67 ft - H3= 6.00 ft l7ft Demand: - Load qw = 50.1 Lbs/Ft M. Mmax (x-x) = 2705.4 In-Lbs. 6 ft Flexural Strength = 1352.7 psi Capacity Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 In2 Gross area of the section h = 3 In. lz = 3.00 In4 Moment of inertia = 1/4 In. E = - 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. - (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1352.7 psi < 6600 psi 0.2 FRP Channel Stifener - Connection Demand Shear = 150.3 Lbs Capacity Use: 112 in FRP Bolt nBolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 150.3 Lbs 780 Lbs 0.19 [J Page 26 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LAMAR Project: Nodes 1-2-3 Date: 0710212019 P: 619.370-9515 IMENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE I Top & Bottom FRP Horizonal Tube - Design Tributary: Li = 5.00 ft H3 = 6.00 ft Demand: Load qw = 90.0 Lbs/Ft 6 ft M. Mmax (x-x) = 3375.0 In.-Lbs. Flexural Strength = 1687.5 psi I _________ 5ft Caoacitv Lr Use: - HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. lz = 3.00 1n4 Moment of inertia = 1/4 In. E = - 29000000 psi Modulus of Elasticity oa = - 6600 - - Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1687.5 psi 6600 psi 0.26 LOJJ Top & Bottom FRP Horizonal Tube - Connection Demand Shear = 225.0 Lbs Capacity Use: 112 in FRP Bolt nBolt: 780 -- Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 225 Lbs 780 Lbs 0.29 OK Page 27 of 56 Luis Labrada 217 Landis Avenue Project: Nodes 1-2-3 Chula Vista, CA 91910 LAMAR Date: 0710212019 P: 619.370-9515 UMENGINEERING Engineer: M.R www.lamareng.com I SCREEN WALL DESIGN - FRP TYPE I I Geometry L = 1.75 ft Fy H= 1.67 It 0=43.66 0 B 4-Fx Loads Reactions Unistrut (Antennas + Radios) 0 A Fx= 450.0 Lbs Fy= 112.5 Lbs C Reactions Rx Ry A 450.0 112.5 Lbs B 332.1 0.00 Lbs C 117.9 112.50 Lbs Check Capacities Brace-1 Element AB: Axial force: 332.1 Lbs Tension Element AC: Axial force: 163.0 Lbs Compressive Use: L 2X2X1_4 FRP Angle b = 2 In. A = 0.938 1n2 Gross area of the section h = 2 In. lz = 0.35 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity Compressive Strength: 6600.0 psi (Appendix A. Design Values Load Chart for FRP Mätriàl) , Tensile Strength: 6600.0 psi LARR# 25520. Demand Capacity Compressive Ratio Status 173.7 psi 6600.0 psi 0.03 LcJ Demand Capacity Tension Ratio Status' 354.1 psi < 6600.0 psi 0.05 - HcKj. Page 28 of 56 Luis Labrada 217 Landis Avenue LAMAR Project: Nodes 1-2-3 Chula Vista, CA 91910 Date: 0710212019 P: 619.370-9515 flENGINEERING Engineer: M.R www.lamareng.com I SCREEN WALL DESIGN - FRP TYPE I Brace: Support Unistrut - Connection Shear= 450.0 Lbs Use: 0-Bolt: 112 in nBolt: I Shear: 780.0 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio - Status 450.0 Lbs 780.00 Lbs 0.58 _9_J CONNECTION B - FRP BOLT DESIGN Shear: 332.1 Lbs Use: D-Bolt: 112 in nBoltH 2 Shear: 780.0 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 332.1 Lbs 1560.00 Lbs 0.21 LOK1 CONNECTION C - FRP BOLT DESIGN Shear: 117.9 Lbs Use: 0-Bolt: 112 in nBolt:1 2 Shear: 780.0 -- Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 117.9 Lbs < 1560.00 Lbs 0.08 Page 29 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LAMAR Project: Nodes 1-2-3 Date: 0710212019 P: 619.370-9515 I½E NGINEERI NG Engineer: M.R www.lamareng.com U I . SCREEN WALL DESIGN - FRP TYPE I I Loads Reactions Top & Bottom FRP Horizonal Tube Reaction Unistrut Reaction = 225.0 Lbs RI = 450.0 Lbs Fx = 450.0 Lbs R2= 450.0 Lbs Fy= 112.5 Lbs Check Capacities Steel Column M. Mmax = 11517.6 : In-Lbs. Per Ram Elements Flexural Strength = 2953.24 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity oa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 2953.24 psi 6600 psi 0.45 oKJ Check Capacities Brace Axial force: 572.5 Lbs Per Ram Elements Compressive Strength: 169.9 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity oa = _6600 Psi. Allowable Compressive Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 169.9 psi < 6600 psi 0.03 OKJ FRP Steel Column to Brace (KICKER) - Connection I Reaction Steel Column to Brace: V = 572.5 Lbs Use: D-Bolt: 1I2 in n Bolt: 3 Capacity: 780 Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 572.5 Lbs 2340 Lbs 0.24 L OK Page 30 of 56 Luis Labrada 217 Landis Avenue Project: Nodes 1-2-3 Chula Vista, CA 91910 LAMAR Date: 0710212019 619.370-9515 IUENGINEERING Engineer: www.lamareng.com SCREEN WALL DESIGN - FRP TYPE I FRP Steel Column to Roof (BRAKET) - Connection Reaction Steel Column Fx = 37.6 Lbs Per Ram Elements b Fy= 60.22 Lbs d2 Steel Column: HSS_SQR 4X4X1_4 • ad1 -D-- Pte: a= 10 in dl= 7 in b= 10 in d2= 7 in t 1/4 in k= 1.5 in Bolt: Shear V = 9.4 Lbs Pull Out T = 15.055 Lbs V T Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 4 6 Dia.: 112 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 31/4 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio Status 9.4 Lbs 5495 Lbs 0.00 b_Ok Demand Capacity Pull Out Ratio Status 15.1 Lbs < 4915 Lbs 0.00 [OKJ FRP Brace to Roof (BRAKET) - Connection Reaction Steel Column Fx = 336.98 Lbs Per Ram Elements Fy= 441.78 Lbs 2.,. Steel Brace: HSS_SQR4X4X1_4 t a i i1 Plate: a= a= 10 in dl= 6 in b= 14 in d2= 10 in t= 1/4 in k= 2.0 1.5 Min Bolt: Shear V = 84.2 Lbs. Per Bolt Pull Out T = 110.4 Lbs. Per Bolt Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 4 6 Dia.: 112 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 31/4 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio Status 84.2 Lbs < 5495 Lbs 0.02 OK Demand Capacity Pull Out Ratio Status 110.4 Lbs 4915 Lbs 0.02 t OK Page 31 of 56 Li S View Section Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 1-2-3 Date: 07102/2019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I Geometry W 7.5 psf Weight SCREEN LENGTH L = 12.00 ft Screen total length B= 1.67 ft NP = 4.00 Number Post LI = 4.00 ft L. between post NS = 3.00 - NO Steps between post S = 1.33 Length Steps SCREEN HEIGHT H1= 6.0 ft Screen Height H2= 4.9 aft. [E] Structural Roof H2 = 10.9 ft Total Height Wind Force Exposure category (ASCE 7-10 26.7:3) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-I) Kzt = 1.0 Pressure - - - 30 - Psf. Applied horizontal force, Fph = Ps x (LxHi) = 2160.0 Lbs Applied vertical force, Fpv = Ps x (LxB) = 601.2 Lbs Page 32 of 56 13 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IIENGINEERING Project: Nodes 1-2-3 Date: 0710212019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I FRP Channel Stifener - Design Tributary: S = 1.33 ft H1= 6.00 ft 13f Demand: Load qw = 39.9 Lbs/Ft M. Mmax (x-x) = 2154.6 In.-Lbs. 6 ft Flexural Strength = 552.46 psi CaDacitv Use: HSS_SQR4X4XI_4FRP Channel b = 4 In. A = 3.37 In2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = - 6600 - J Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 552.46 1 < 6600 psi 0.08 OK FRP Channel Stifener - Connection Demand Shear= 119.7 Lbs Caacitv Use: 112 in FRP Bolt nBolt: I 780 - Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 119.7 Lbs 780 Lbs 0.15 OK j Page 33 of 56 LI Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING ..tmana.na.rn Project: Nodes 1-2-3 Date: 0710212019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I Top & Bottom FRP Horizonal Tube - Design Tributary: Li = 4.00 ft Hi = 6.00 ft Demand: 6ft I[UUfl] Load qw = 90.0 Lbs/Ft M. Mmax (x-x) = 2160.0 In.-Lbs. Flexural Strength = 553.85 psi 4 4 ft 4 4 ft IN Capacity Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A. = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 553.85 psi < 6600 psi 0.08 Ok Top & Bottom FRP Horizonal Tube - Connection = 180.0 Lbs Capacity Use: 112 in FRP Bolt nBolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 180.0 Lbs 780 Lbs 0.23 OK Page 34 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENCINEERING Project: Nodes 1-2-3 Date: 0710212019 Engineer: MR SCREEN WALL DESIGN - FRP TYPE I CONNECTION TO WALL GEOMETRY Fpv Suction L B BI J J Plan L= 12.00 ft LI = 4.00 ft HI= 6.00 ft B= 1.67 ft Support= 8 Fph Suction FORCES GRAVITATORY (D) Weight, Wp = 990.9 Lbs Overturning moment OTM = Wp*B/2 = 827.4 Lbs*ft Dx = 137.9 Lbs Dy= 165.2 Lbs FORCES WIND (W) Applied horizontal force, Wx = 437.3 Lbs Applied vertical force, Wy = 100.2 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 575 Lbs Max shear force per anchor = Dy + Wy = 265 Lbs CONNECTION DESIGN: FRP BOLT Shear = 265.4 Lbs Pull Out = 575.2 Lbs Use: D-Bolt: 112 in n Bolt: 3 Shear: 780 Lbs Allowable FRP Bolt Shear Pull-Out: - 300 - Lbs Allowable FRP Bolt Pull-Out (Appendix: A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 265.4 Lbs 2340 Lbs 0.11 Demand .. Capacity Shear Ratio Status 575.2 Lbs < 900 Lbs 0.64 OjLJ Page 35 of 56 Luis Labrada Proyecto: Nodes 1-2-3 217 Landis Avenue LAMAR Date: 03/07/19 Chula Vista, CA 91910 fl1ENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX V. ROOF VERIFICATION Page 36 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 LAMAR INENGINEERING Project: Nodes 1-2-3 Date: 07103/2019 Engineer: M.R VERIFY ROOF FRAMING NODE I &3 ANTENNA DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W bs] HEX454CU0000G 46.80 15.60 7.40 48.90 1 0.80 F48.90 HEX654CUO100G 51.10 12.00 7.10 39.70 1 0.59 9.70 CUUX06306F52s0-T 24.30 12.10 7.00 13.00 3 1.76 39.00 CUUX05XO6F5200 24.10 16.20 7.30 15.70 1 0.82 15.70 QUINTEL QS46512-2 1 52.00 1 12.00 1 10.80 75.00 0 0.00 0.00 Total 6.00 3.98 143.30 RADIOS DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] RRUS - 2203 7.90 7.90 3.90 10.00 12 2.57 120.00 ERICSSON RRUS -4426 15.00 13.20 5.80 48.40 1 0.53 48.40 ERICSSON RRUS -4478 18.10 13.40 8.26 59.40 1 0.77 59.40 ERICSSON RRUS-4415 16.50 13.40 5.90 46.00 2 1.10 92.00 ALCATEL LUCENT TD-RRH8X20-25 9.68 12.83 6.30 26.45 4 2.25 105.80 ALCATEL LUCENT CDMAJLTE DUAL TECH 25.00 11.00 11.00 59.50 2 1.68• ;119.00 Total 22.00 8.89 544.60 CABINET DIMENSION [in] WIGHT Quantity Area W b c a [Lbs] [sq ft] [Lbs] BBU 32.25 27.50 27.00 382.00 0 0.00 0.00 AC POWER 18.50 20.00 6.00 50.00 0 .0.00J. 0.00 TELCO CABINET 1 14.25 7.75 6.00 10.00 1 0 0.00 0.00 Total 1 0.00 0.00 0.00 Page 37 of 56 Luis Labrada 217 Landis Avenue LA lvi IkR Project: Nodes 1-2-3 Date: 07/0312019 Chula Vista, CA 91910 INENGINEERING Engineer: M.R P: 619.370-9515 Existing Load Density Concrete: 145.0 pcf Thickness: 6.0 - in DL: 72.5 lb/sq. ft. LL: 20.0 lb/sq. ft. Area [sq ft] DL I LL I DL+LL [E] Steel Deck 1 359 26058 1 7188 1 33246 ILbs. New Load Antennas Radio Cabinet Total: Quantity Area DL Lbs Lbs Lbs Lbs 6 4 143 22 9 545 0 0 0 1 28 1 13 688 New Load + Existing Load Existing New Total: New + Existing DL LL DL+LL Area [sq ft] DL LL DL+LL DL LL DL+LL Steel Deck 26058 7188 33246 13 0 -257 -257 26058 6931 32989 Antennas 0 0 0 4 143 0 143 143 01 143 Radiol 0 0 0 9 545 0 545 545 0 545 Cabineti 0 1 0 0 0 1 0 1 0 0 1 0 0 0 - Total: 33677 Chapter #34A CBC 2016 3403A.3 Existing structural elements carrying gravity load. "Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in 'design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose grawly load- carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404A.3. Any existing element that will form part of the lateral load path for any part of the addition shall be onsidered an eiisting.lateral load- carrying structural element subject to the requirements of Section 3403A.4. New Total Load: 33677 Lbs Existing Total Load: 33246 Lbs [New Total Load] - [Existing Total Load] * 100 % [New Total Load] L!J Page 38 of 56 Luis Labrada 217 Landis Avenue LAMAR Project: Nodes 1-2-3 Date: 0710312019 Chula Vista, CA 91910 IMENGINEERING Engineer: M.R P: 619.370-9515 VERIFY ROOF ANTENNA DIMENSION [in] b C a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] HEX454CU0000G 46.80 15.60 7.40 48.90 1 0.80 48.90 HEX654CU0100G 51.10 12.00 7.10 39.70 1 0.59 39.70 CUUX06306F52s0-T 24.30 12.10 7.00 13.00 2 1.18 26.00 CUUX05XO6F5200 24.10 16.20 7.30 15.70 0 0.00 0.00 QUINTELQS46512-2 1 52.00 12.00 1 10.80 1 75.00 0 1 0.00 1 0.00 Total 4.00 2.57 114.60 RADIOS DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] RRUS-2203 7.90 7.90 3.90 10.00 7 1.50 70.00 ERICSSON RRUS-4426 15.00 13.20 5.80 48.40 1 0.53 48.40 ERICSSON RRUS -4478 18.10 13.40 8.26 59.40 1 0.77 59.40 ERICSSON RRUS-4415 16.50 13.40 5.90 46.00 1 0.55 46.00 ALCATEL LUCENTTD-RRH8X2O-25 9.68 12.83 6.30 26.45 2 1.12 52.90 ALCATEL LUCENT CDMAILTE DUAL TECH 25.00 11.00 11.00 59.50 1 0.84 59.50 Total 13.00 5.31 336.20 CABINET DIMENSION [in] WIGHT Quantity Area W b c a [Lbs] [sq ft] [Lbs] BBU 32.25 27.50 27.00 382.00 3 15.47 1146.00 AC POWER 18.50 20.00 6.00 50.00 1 0.83 50.00 TELCO CABINET 14.25 7.75 6.00 10.00 1 0.32 10.00 Total 1 5.00 16.63 1206.00 Page 39 of 56 Luis Labrada 217 Landis Avenue . LAMAR Project: Nodes 1-2-3 Date: 07103/2019 Chula Vista, CA 91910 IUENGINEERING Engineer: M.R P: 619.370-9515 VERIFY ROOF FRAMING Existing Load Density Concrete: 145.0 pcf DL: 72.5 lblsq.ft. Thickness: 6.0 in LL: 20.0 lb/sq. ft. Area [sq ft] DL I LL I DL+LL [E] Steel Deck 1 302 21863 1 6031 1 27894 JLbs. Now Load Antennas Radio Cabinet Total: Quantity Area DL Lbs Lbs Lbs Lbs 4 3 115 13 5 336 5 17 1206 1 22 r 25 1 1657 New Load + Existing Load Existing New Total: New + Existing DL LL DL+LL Area [sq ft] DL LL DL+LL DL LL DL+LL Steel Deck 21863 6031 27894 25 0 -490 -490 21863 5541 27404 Antennas 0 0 0 3 115 0 115 115 0 115 Radiol 0 0 0 5 336 0 336 336 0 336 Cabinet 0 0 0 17 1206 0 1206 1206 0 1206 Total: 1 29061 Chapter #34A CBC 2016 3403A.3 Existing structural elements carrying gravity load. "Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load- carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404A.3. Any existing element that will form part of the lateral load path for any part of the addition shall be onsidered an existing lateral load- carrying structural element subject to the requirements of Section 3403A.4." New Total Load: 29061 Lbs Existing Total Load: 27894 Lbs [New Total Load] -[Existing Total Load] *100% 100% = 4.015 % [New Total Load] E4.02 :i < Page 40 of 56 Luis Labrada Proyecto: Nodes 1-2- 3 217 Landis Avenue LAMLlkR Date: 03/07/19 Chula Vista, CA 91910 flP1ENGINEERING Engineer: M.R P: 619-370-9515 www.lamarena.com - APPENDIX VI. TABLES Page 41 of 56 TABLE 1: SEISMIC DESIGN Li Page 42 of 56 5416/2019 U.S. Seismic Design Maps 'II OSHPD Legoland I Legoland Dr, Carlsbad, CA 92008, USA Latitude, Longitude: 33.1262496, -117.31192390000001 9 JseunVc\ Máknig Mds r, $ nQ Staff Parking I Parking 9 ' Map data 02019 Google Date 5/16/2019, 11:03:03 AM Design Code Reference Document ASCE7-10 Risk Category II Site Class . D . Stiff Soil Type Value Description Ss 1.127 MCER ground motion. (for 0.2 second period) S1 0.434 MCER ground motion. (for 1.0s period) SMS 1.182 Site-modified spectral acceleration value SM1 0.679 Site-modified spectral acceleration value SDS 0.788 Numeric seismic design value at 0.2 second SA SDI 0.453 Numeric seismic design value at 1.0 second SA Type Value Description SDC D Seismic design category Fa 1.049 Site amplification factor at 0.2 second F 1.566 Site amplification factor at 1.0 second PGA 0.447 MCEG peak ground acceleration FPGA 1.053 Site amplification factor at PGA PGAM 0.471 Site modified peak ground acceleration TL 8 Long-period transition period in seconds SsRT 1.127 Probabilistic risk-targeted ground motion. (0.2 second) SsUH 1.194 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration SsD 1.525 Factored deterministic acceleration value. (0.2 second) Si RT 0.434 Probabilistic risk-targeted ground motion. (1.0 second) Si UH 0.436 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.616 Factored deterministic acceleration value. (1.0 second) PGAd 0.59 Factored deterministic acceleration value. (Peak Ground Acceleration) CRS 0.944 Mapped value of the risk coefficient at short periods CR1 0.995 Mapped value of the risk coefficient at a period of 1 s Page 43 of 56 https://seismicmaps.org 1/2 5/1/2019 U.S. Seismic Design Maps MCER Response Spectrum 1.5 1.0 0.0 0.0 2.5 5.0 Period, T (sec) - Sa(g) Design Response Spectrum 0.8 0.6 -' 0.4 S.- Co C') 0.2 0.0 0.0 2.5 5.0 7.5 Period, T (sec) - Sa(g) 7.5 DISCLAIMER While the information presented on this website is believed to be correct, S.E.A.O.C. /OS.H.P.D. and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this webstie. Page 44 of 56 https://seismicmaps.org 2/2 TABLE:2 DESIGN VALUES LOAD CHART FOR FRP MATERIALS Page 45 of 56 Appendix A Design Values Load Chart for FRP Materials ALLOWABLE STRENGTH TABLE FOR FRP SHAPES: Tubes, Channels, Angles Property Direction Value Units Tensile Strength Lengthwise Crosswise 6,600 1,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 6,600 3,300 psi Flexural Strength Lengthwise Crosswise 6,600 2,200 psi Flexural Modulus Lengthwise Crosswise 1,600,000 800,000 psi Shear Strength Lengthwise Crosswise 1,400 500 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi 1/2" Bolt Bearing Lengthwise Crosswise. 6,000 3,600 psi 1/2" Bolt Shear Allowable 780 lbs 1/2" Bolt Tension Allowable 300 lbs Table Notes: Values based on 1525 series - Thermoset Polyester Class I FR (Slate Grey) A Safety Factor of 5.0 has been used to determine Allowable Loads. ALLOWABLE STRENGTH TABLE FOR FRP FLAT SHEETS: Property Direction Value Units Tensile Strength Lengthwise Crosswise 4,000 2,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 4,800 3,200 psi Flexural Strength Lengthwise Crosswise 7,000 3,000 psi Flexural Modulus Lengthwise Crosswise 2,000,000 1,100,000 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi Table Notes: Values based on 1625 series - Thermoset Vinyl Ester Class I FR (Beige) A Safety Factor of 5.0 has been used to determine Allowable Loads. I I I Hi-Tech Composite Structures Supplement for LARR #25520 Page 1 of 1 Page 46 of 56 TABLE 3: POST - INSTALATED CONCRETE ANCHOR. HILTI Page 47 of 56 ESR-2302 I Most Widely Accepted and Trusted Page 7 of 11 TABLE 3-DESIGN INFORMATION CARBON STEEL KB3 DESIGN INFORMATION Symbol Units Nominal anchor diameter 1, I 5/8 3 14 Anchor O.D. d8 (do)7 in. 0.250 0.375 0.500 0.625 0.750 (mm) (6.4) (9.5) (12.7) (15.9) (19.1) Effective mm. embedment' h9, in. 1/2 2 2 3/4 3'/ 4 33/4 5 (mm) (38) 1 (51) 1 (51) (83) (79) (102) (95) (127) Mm. member thickness in. 4 4 5 4 6 6 8 5 6 8 6 8 8 (mm) (102) (102) (127) (102) (152) (152) (203) (127) (152) (203) (152) (203) (203) in. 2/4 4'/2 3 /8 4 /8 3 /8 6/4 7'/2 9'/2 7'/2 93/4 7 /2 91I2 Critical edge distance c (11 4) (mm) (70) (98) (124) (92) (171) (143) (191) (241) (191) (248) (191) (241) in. i/ 2 1'/2 2'/8 2 1/ 2'/4 1/4 1/.4 2/4 2/4 2'I2 Cmjn (mm) (35) (51) (38) (54) (51) (41) (41) (57) (44) (44) (70) (67) (64) Mm. edge distance in. 1/4 2 /8 3'/2 4/8 43/4 4'/4 4 51I4 43/4 4 6I8 02 6I8 for s (mm) (44) (73) (89) (124) (121) (108) (102) (133) (121) (102) (175) (165) (162) in. 11/4 ik, 1/4 2'/2 2/4 2 1 /8 2/ 2'/4 2'/8 33/4 3 /8 31/4 min S ______ (mm) (32) (44) (44) (64) (57) (51) (48) (60) (54) (54) (95) (86) (83) Mm. anchor spacing in. 1/8 2/ 2/ 2 /8 2/4 2/4 2 31/ 2/4 2/4 33/4 3/4 33/s for c ? (mm) (41) (60) (60) (67) (60) (57) (51) (79) (60) (57) (95) (86) (86) in. 2 2/4 25,8 4 3/ 4/ 41/2 53/4 Mm. hole depth in concrete (mm) (51) (67) (67) (102) (98) (121) (114) (146) Mm. specified yield strength "a psi 84,800 84,800 84,800 84.800 84.800 (N/mm2) (585) (585) (585) (585) (585) psi 106,000 106,000 106,000 106,000 106,000 Mm. specified ult. strength f (N/mm2) (731) (731) (731) (731) (731) in 0.02 0.06 0.11 0.17 0.24 Effective tensile stress area A9 (mm2) (12.9) (38.7) (71.0) (109.7) (154.8) lb 2,120 6,360 11,660 18,020 25,440 Steel strength in tension N (28.3) (51.9) (80.2) (113.2) Steel strength in shear V. lb 1,640 4,470 6,635 6,750 12,230 15,660 I 16.594 (kN) (7.3) (19.9) (29.5) (30.0) (54.4) (69.7) (73.8) Pullout strength uncracked Np ,unc, lb 1,575 NA NA 6,800 NA NA 10,585 concrete2 (kN) (7.0) (30.2) (47.1) Anchorcategory3 1,2or3 - 1 Effectiveness factor - 24 4 uncracked concrete Modification factor for - 1.0 I uncracked concrete . Coefficient for pryout -. 1.0 2.0 Installation torque ft*lb (Nm) 4 (5) I 20 I (27) I 40 (54) I 60 (81) I 110 (149) Axial stiffness in service /iune, (lb/in) 116,150 162,850 203,500 1 191.100 222,150 170,700 207,400 164,000 load range COV P.. % 60 I_42 I_29 J_29 _25 _21 I_19 I_24 Strength reduction factor for tension, steel 0.75 failure modes5 Strength reduction factor I for shear, steel 0.65 failure modes5 Strength reduction factor for tension, concrete 0.65 failure modes, Condition B6 Strength reduction factor 0 for shear, concrete 0.70 failure modes, Condition B6 For SI: 1 inch = 25.4 mm, llbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-in units: 1 mm = 0.03937 inches. 'See Fig. 2 2See Section 4.1.4 of this report, NA (not applicable) denotes that this value does not govern for design. 3See ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. 4See ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. 5The carbon Steel KB3 is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable. 6For use with the load combinations of ACI 318-14 Section 5.3, ACI 318-11 Section 9.2 or IBC Section 1605.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, is not provided, or where pull-out or pry out strength overns. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. The notation in parenthesis is for the 2006 IBC. Page 48 of 56 TABLE 3-DESIGN INFORMATION, CARBON STEEL KB-TZ Nominal anchor diameter DESIGN INFORMATION Symbol Units 3' 112 5, 3 /4 Anchor O.D. in. 0.375 0.5 0.625 0.75 (mm) (9.5) (12.7) (15.9) (19.1) Effective mm. embedment' hot in. 1/3 2 2I4 2 31/4 31/ 4 31/ 33/ (mm) 1 (38) (51) (70) (51) (83) (79) (102) (83) (95) (121) Mm. member thickness2 hm, in. 31/4 4 5 5 416 I 6 8 5 618 51/3 6 8 8 (mm) (83) (102) (127) (127) (102)1(152) (152) (203) (127) (152) (203) (140) (152) (203) (203) in. 6 43/s 4 4'/ 5'/2 I 4'/3 7/3 6 6/3 8/4 I 6/4 12 10 8 9 Critical edge distance c0 (mm) (152) (111) (102) (105) (140)1(114) I (191) (152) (165) (222)1(171) (305) (254) (203) (229) In. 8 21/2 2/3 2/4 2/ 35/8 31/4 912 4/4 4/ _______ (mm) 1 (203) (64) (64) (70) (60) (92) (83) (241) (121) (105) Mm. edge distance in. 8 5 s 53/4 53/4 61/ 5/ 5 10'/ 8/ for s a (mm) (203) (127) (127) (146) (146) (156) (149) (127) (267) (225) in. 8 21/2 2/3 2/4 2/ 31/3 3 5 5 4 Smrn (mm) (203) (64) (64) (70) (60) 1 (89) (76) 1 (127) (127) (102) Mm. anchor spacing In. 8 3/ 35/s 41 / 31/2 43/4 4/4 -- 912 91/2 7/4 for c a (mm) 1 (203) (92) (92) (105) (89) (121) (108) (241) (241) 1 (197) in. 233/8 2/ 2/ 4 34 43/4 4 4% 3 5/4 Mm. hole depth in concrete h0 (mm) (51) (67) (86) (67) (102) (98) (121) (102) (117) (146) 1b1rn2 100,000 84,800 64,800 84,800 Mm. specified yield strength i (N/mm2) (690) (585) (585) (585) Mm. specified ult. strength 'PJ lb/in2 125,000 106,000 106,000 106,000 (N/mm2) (862) (731) (731) (731) In 0.052 0.101 0.162 0.237 Effective tensile stress area A,,,N (mm2) (33.6) (65.0) (104.6) (152.8) lb 6,500 10,705 17,170 25,120 Steel strength in tension Nm (kN) (28.9) (47.6) (76.4) (111.8) Steel strength in shear VS8 lb 2,180 3,595 5,495 8,090 13,675 (kN) (9.7) (16.0) (24.4) (36.0) (60.8) Steel strength in shear, V,,04 lb 2,180 2,255 5,495 7,600 11,745 seismic3 (kN) (9.7) (10.0) (24.4) (33.8) (52.2) Pullout strength uncracked Npmcr lb 2,160 2,515 I 4,110 I I 5,515 I NA I 9,145 I NA I 8,280 I 110,680 concrete (kN) (kN) (9.6) (11.2) I (18.3) (24.5) I (40.7) I (36.8) (47.5) Pullout strength cracked lb 2,270 I 3,160 I NA I 4,915 I NA NA concrete concret (kN) - (10.1) I (14.1) I (21.9) Anchor categor? 2 1 Effectiveness factor kunw uncracked concrete 24 Effectiveness factor k,, cracked concrete6 17 k,,,,dk,7 1.0 Coefficient for pryout strength, k,p 1.0 2.0 1.0 2.0 Strength reduction factor 0 for tension, steel failure 0.75 modes8 Strength reduction factor q for shear, steel failure 0.65 modes8 Strength reduction factor for tension, concrete 0.55 0.65 failure moJes or pullout, Condition B9 Strength reduction ql factor for shear, concrete failure 0.70 modes, Condition B9 stiffness in service load I I lb/in. 600,000 FAxial range'° lb/in. 135,000 For SI: 1 inch = 25.4 mm, 1 Ibf = 4.45 N. I psi = 0.006895 MPa. For pound-inch units: 1 mm = 0.03937 inches. 'See Fig. 2. 2For sand-lightweight or normal-weight concrete over metal deck, see Figures 5A, 5B, 5C and 5D and Tables 5 and 6. 3See Section 4. 1.8 of this report. 4For all design cases W,,p =1.0. NA (not applicable) denotes that this value does not control for design. See Section 4.1.4 of this report. 5See ACI 318-14 17.3.3 or ACI 318-11 D.43, as applicable. 6SeeACl 318-14 17.4.2.2orACI 318-11 D5.2.2, as applicable. ?For all design cases WIN =1.0. The appropriate effectiveness factor for cracked concrete (kc,) or uncracked concrete (ku,,) must be used. 8The KB-TZ is a ductile steel element as defined by ACI 318-142.3 or ACI 318-11 D. 1, as applicable. 9For use with the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. *Mean values shown, actual stiffness may vary considerably depending on concrete strength, loading and geometry of application. Page 49 of 56 TABLE 4: FASTENERS. LAGSCREW Page 50 of 56 108' DOWEL-TYPE FASTENERS Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections12'3'4 for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for t5.e1/4") or ASTM A 36 steel side plate (for t5=1/411) (tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D) b h U. U. . . T u ' E io on d 'E ,s,js 330 a E Em ( II 0 II 0 II 0 II 0 II 0 0 II 0 II a II 0 o 2 II is a II 0 ö5lE 00 oo. oox Ox Ow 0 Owu Oz ts 0 Z11 Z.L Z11 Z1 Z11 Z1 Z11 ZI Z11 Z1 Z11 Z1 41 Z.L 711 Z.L Al Z1 Z11 Z1 in. in. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. 0.075 114 170 130 160 120 150 110 150 110 150 100 140 100 140 100 130 90 130 90 130 90 (14 gage] 5116 220 160 200 140 190 130 190 130 190 130 180 120 180 120 170 110 170 110 160 100 318 220 160 200 140 200 130 190 130 190 120 180 120 180 120 170 110 170 100 170 100 0.105 1/4 180 140 170 130 160 120 160 120 160 110 150 110 150 110 140 100 140 100 140 90 (12 gage) 5/16 230 170 210 150 200 140 200 140 190 130 190 130 190 120 180 110 170 110 170 110 3/8 230 160 210 140 200 140 200 1:30 200 130 190 120 190 120 180 110 180 110 1 170 110 0.120 1/4 190 150 180 130 170 120 170 120 160 120 160 110 160 110 150 100 150 100 140 100 (11gage) 5/16 230 170 210 150 210 140 200 140 200 140 190 130 190 130 180 120 180 120 180 110 318 240 170 220 150 210 140 210 140 200 130 200 130 190 120 180 110 180 110 180 110 0.134 1/4 200 150 180 140 180 130 170 130 170 120 160 120 160 110 150 110 150 100 150 100 (10 gage) 5/16 240 180 220 160 210 150 210 140 200 140 200 130 200 130 190 120 180 120 180 120 3/8 240 170 220 150 220 140 210 140 210 140 200 130 200 130 190 120 190 120 180 110 0.179 1/4 220 170 210 150 200 150 200 140 190 140 190 130 190 130 180 120 170 120 170 120 (7 gage) 5/16 260 190 240 170 230 160 230 160 230 150 220 150 220 150 210 130 200 130 200 130 3/8 270 190 250 170 240 160 240 160 230 150 220 140 220 140 210 130 210 130 200 130 0.239 1/4 240 180 220 160 210 150 210 150 200 140 190 140 190 130 180 120 180 120 180 120 (3 gage) 5/16 300 220 280 190 270 180 260 180 260 170 250 160 250 160 230 150 230 150 230 140 3/8 310 220 280 190 270 180 270 180 260 170 250 160 250 160 240 140 230 140 230 140 7/18 420 290 390 260 380 240 370 240 360 230 350 220 350 220 330 200 330 200 320 190 1/2 510 340 470 300 460 290 450 280 440 270 430 260 420 260 400 240 400 230 390 230 5/8 770 490 710 430 680 400 680 400 660 380 640 370 630 360 _600 330 590 330 580 320 3/4 1110 670 1020 590 980 560 970 550 950 530 920 500 910 500 860 450 850 450 840 440 7/8 1510 880 1390 780 1330 730 1320 710 1280 690 1250 650 1230 650 1170 590 1160 590 1140 570 1 1940 1100 1780 960 1710 910 1700 890 1650 860 1600 820 1590 810 1500 740 1480 730 1460 710 1/4 1/4 240 180 220 160 210 150 210 150 200 140 200 140 190 130 180 120 180 120 180 120 5/16 310 220 280 200 270 180 270 160 260 170 250 170 250 160 230 150 230 150 230 140 3/8 320 220 290 190 280 180 270 180 270 170 260 160 250 160 240 150 240 140 230 140 7/16 480 320 440 280 420 270 420 260 410 250 390 240 390 230 370 220 360 210 360 210 1 1/2 580 390 540 340 520 320 510 320 500 310 480 290 480 290 460 270 450 260 440 260 5/8 850 530 780 470 750 440 740 440 720 420 700 400 69Q_400 660 370 650 360 -640 35j 3/4 1200 730 1100 640 1060 600 1050 590 1020 570 990 540 980 530 930 490 920 480 900 470 7/8 1600 930 1470 820 1410 770 1400 750 1360 720 1320 690 1310 680 1240 630 1220 620 1200 600 2040 1150 1870 1000 1800 950 1780 930 1730 900 . 1680 850 1660 840 1570 770 1550 760 1530 740 Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Tabulated lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood libers; screw penetration, p, into the main member equal to SD; dowel bearing strengths, F, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, FYb, of 70,000 psi for D = 1/4", 60,000 psi for D = 5/16", and 45,000 psi for D 2t3/8". Where the lag screw penetration, p, is less than SD but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/813 or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration. The length of lag screw penetration, p, not including the length of the tapered tip, E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length olpenetration, p,,,1,. Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorize1. AMERICAN WOOD COUNCIL Page 51 a 56 NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION 77 Table 12.2A Lag Screw Reference Withdrawal Values, W1 Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member shall not include the length of the tapered tip (see 12.2.1.1). Specific Gravity, ____ _______ Lag Screw Diameter, D _______ 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4" 7/8" 1" 1-1/8" 1-1/4" 0.73 397 469 538 604 668 789 905 1016 1123 1226 1327 1273 1 F_0.71 381 450 516 579 640 757 868 974 1077 1176 0.68 357 422 484 543 600 709 813 913 1009 1103 1193 1167 1 0.67 349 413 473 531 587 694 796 893 987 1078 0.58 281 332 381 428 473 559 641 719 795 869 940 __8_6_8 _1 0.55 260 307 - 352 395 437 516 592 664 734 802 0.51 0.50 232 274 314 353 390 461 528 593 656 716 775 752 ] 225 266 305 342 378 447 513 576 636 695 0.49 218 258 296 332 367 434 498 559 617 674 730 686] 0.47 205 242 278 312 345 408 467 525 580 634 0.46 0.44 199 235 269 302 334 395 453 508 562 613 664 621 1 186 220 252 283 312 369 423 475 525 574 0.43 0.42 179 212 243 273 302 357 409 459 508 554 600 579 173 205 235 264 291 344 395 443 490 535 0.41 167 198 226 254 281 332 381 428 473 516 559 538 1 1 0.40 161 190 218 245 271 320 367 412 455 497 0.39 155 183 210 236 261 308 353 397 438 479 518 498 1 F-0.38 149 176 202 227 251 296 340 81 422 461 0.37 143 169 194 218 241 285 326 367 405 443 479 460 1 [ 0.36 137 163 186 209 231 273 - 313 - 352 - 389 425 0.35 132 156 179 200 222 262 300 337 373 407 441 36f1 F 0.31 110 130 149 167 185 218 250 281 311 339 Tabulated withdrawal desien values. W. for laa screw connections shall be irniltiolied by all aoolicable adjustment factors (see Table 11.3.1). Specific gravity, 0, shall be detemined in accordance with Table 12.33A. adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'. W = 1380 G/2 D (12.2-3) The nail or spike reference withdrawal design value, W, in lbs/in, of penetration, for a smooth shank stainless steel nail or spike driven into the side grain of a wood member, with the nail or spike axis perpendicu- lar to the wood fibers, shall be determined from Table 12.213 or Equation 12.2-4, within the range of specific gravities, G, and nail or spike diameters, D, given in Table 12.21). Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3. 1) to obtain adjusted withdrawal design values, W'. W = 465 G3/2 D (12.2-4) For calculation of the fastener reference with- drawal design value in pounds, the unit reference with- drawal design value in lbs/in, of fastener penetration from 12.2.3.1a or 12.2.3.1b shall be multiplied by the length of fastener penetration, Pt, into the wood mem- ber. 12.2.3.2 Deformed shank nails (a) The reference withdrawal design value, in lbs/in, of ring shank penetration, for a Roof Sheathing Ring Shank nail or Post-Frame Ring Shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2E or Equation 12.2-5, within the range of specific gravities and nail diameters given in Table 12.2E. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Ta- ble 11.3. 1) to obtain adjusted withdrawal design values, w,. W = 1800 G2 D (12.2-5) Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorized. AMERICAN WOOD COUNCIL Page 52 of 56 TABLE 5: UNISTRUT GENERAL ENGINEERING CATALOG-NO. I Page 53 of 56 Channel Selection UJ0 I 11 I 1Ii I CHANNEL SELECTION CHART Channel Dimensions Material & Thickness Hole Pattern Styles Channel Width Height Steel Stainless Steel Alum. /1000 /IF /i HS T KO SL DS H3 In (mm) In (mm) gauge gauge In (mm) Steel Only 131000 1%(41.3) 1%(41.3) 12 ga 12 ga 0.109 (2.8) • 11111 11111 0 U U P1100 1%(41.3) 1%(41.3) 14 ga 14 ga P2000 134(41.3) 134(41.3) 16 ga P3000 134(41.3) 134(34.9) 12 ga - - - - P3300 1% (41.3) 34(22.2) 129a 12 ga - - - - P4000 134(41.3) '3'i6 (20.6) 16 ga 16 ga 0.078 (2.0) U 0 - - - P4100 1%(41.3) '3';o(20.6) 14 ga - P5000 1%(41.3) 3% (82.6) 12 ga 12 ga P5500 1%(41.3) 1 2/io (61.9) 12 ga - 0.109(2.8) • • • • CHANNELS & COMBINATIONS IN DESCENDING ORDER OF STRENGTH Area Weight I s Allow. Moment Channel 1n2 (cm2) ibslft(kg/m) ln4 (cm4) 1n3(cm') ln.lbs(N.m) P5001 1.793 6.10 6.227 1.916 48,180 11.57 9.1 259.2 31.4 5,440 P1004A 1.965 6.68 4.068 1.669 41,980 12.68 9.9 1693 27.4 4,740 1.452 4.94 2.805 1.151 28,940 P5501 9.37 7.3 116.8 18.9 3,270 2.221 7.55 1.856 1.142 28,720 P1001C41 14.33 11.2 77.2 18.7 3,250 0.897 3.05 1.098 0.627 15,770 P5000 5.78 4.5 45.7 10.3 1,780 1.111 3.78 0.928 0.571 14,360 131001 7.16 5.6 38.6 9.4 1,620 0.835 2.84 0.733 0.451 11,340 131101 5.39 4.2 30.5 7.4 1,280 1.000 3.40 0.591 0.430 10,810 P3001 6.45 5.1 24.6 7.0 1,220 0.726 2.47 0.522 0.390 9,820 P5500 4.68 3.7 21.7 6.4 1,110 0.684 2.32 0.618 0.381 9,570 P2001 4.41 3.5 25.7 6.2 1,080 0.489 2.23 0.279 0.297 7,480 P9200 3.16 3.3 11.6 4.9 850 0.492 1.67 0.358 0.265 6,670 A5000 3.17 2.5 14.9 4.3 750 0.609 2.07 0.302 0.242 6,070 A1001 3.93 3.1 12.6 4.0 690 0.387 1.88 0.166 0.205 5,150 P9000 2.50 2.8 6.9 3.4 580 0.555 1.89 0.185 0.202 5,070 P1000 3.58 2.8 7.7 3.3 570 0.790 2.69 0.176 0.201 5,060 P3301 5.10 4.0 7.3 3.3 570 Combinations not shown in catalog are available on special order. Consult factory for more details. Area Weight I s Allow. Moment Channel In' (cm') IbsIft (kg/rn) In' (cm') In3(cm3) In-lbs (N.m) 131100 0.418 1.42 0.145 0.162 4,060 2.69 2.1 6.0 2.6 460 0.500 1.70 0.120 0.153 3,850 P3000 3.23 2.5 5.0 2.5 430 0.579 1.97 0.117 0.143 3,610 P4101 3.74 2.9 4.9 2.4 410 0.342 1.16 0.125 0.140 3,520 P2000 2.21 1.7 5.2 2.3 400 0.478 1.66 0.104 0.128 3,210 P4001 3.14 2.5 4.3 2.1 360 0.459 1.56 0.077 0.103 2,590 A3301 2.96 2.3 3.2 1.7 290 0.305 1.04 0.061 0.086 2,170 A1000 1.96 1.5 2.5 1.4 250 0.395 1.34 0.037 0.072 1,800 P3300 2.55 2.0 1.5 1.2 200 0.264 0.90 0.037 0.058 1,470 A4001 1.70 1.3 1.5 1.0 170 0.213 0.73 0.045 0.055 1,400 P6001 1.38 1.1 1.9 0.9 160 0.290 0.98 0.026 0.054 1,360 P4100 1.87 1.5 1.1 0.9 150 0.244 0.83 0.023 0.049 1,230 P4000 1.57 1.2 0.9 0.8 140 0.230 0.78 0.017 0.038 950 A3300 1.48 1.2 0.7 0.6 110 0.132 0.45 0.008 0.022 560 A4000 0.85 0.7 0.3 0.4 60 0.107 0.36 0.009 0.020 510 P6000 0.69 0.5 0.4 0.3 60 0.148 0.50 0.007 0.018 460 P7001 0.96 0.8 0.3 0.3 50 0.074 0.25 0.002 0.007 170 P7000 0.48 0.4 0.1 0.1 20 1%' Framing System Page z14 of23 P1000 Channel Combinations Iii U.,k I P1001 1 P1001 A P1001 B 1%" 1%' 1W (41.3) (41.3) - (41.3) ____-- I 4 (9 ffl Lt. i .709*1~116' L (18.0) 2 (23.3) WII100 Ft: 321 Lbs (478 kg/100 m) WI/lOD Ft: 378 Lbs (562 kg/100 m) Wt/100 Fl: 378 Lbs (562 kglloo m) Allowable Moment 12,200 In-Lbs (1,378 N.m) Allowable Moment 18,640 In-Lbs (2,110 N'm) Allowable Moment 18,640 In-Lbs (2,110 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) 12 Gauge Nominal Thickness .105" (2.7mm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 C P1001 3 P1001 A3 1 54" (41.3) (42.6) (82.6 1.573" (4(1.0) .761 (19.3) 2 (21.9) 1 W. J-r--1- (41.3) p I I 2.472" (62.8) ½" -41 (TI ! 1(61.0) II I J._t 4%" fl2. i ((23.8)111 L1J (198)H I(2I.5) Wt/100 Ft: 378 Lbs (562 kg!100 m) Allowable Moment 15,950 In-Lbs (1,800 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 B3 Wt/100 Ft: 566 Lbs (843 kg/100 m) Allowable Moment 31,840 In-Lbs (3,600 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 03 Wt/100 Ft: 566 Lbs (843 kg/100 m) Allowable Moment 32,770 In-Lbs (3,700 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) P1003 _4I3) (123.8) .778 L_ I-84r (19.8) ., (21.5) WIJ100 Ft: 566 Lbs (843 kgl100 m) Allowable Moment 37,550 In-Lbs (4,240 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 C41 314" rr'ri 3WI I J Wt/100 Ft: 755 Lbs (1,124 kg/100 m) Allowable Moment 28,720 In-Lbs (3,250 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) 31, (82 WI/lOG Ft: 566 Lbs (843 kg/100 m) Allowable Moment 17,550 In-Lbs (1,980 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 C3 14 JJ(48.2) 1.930"1.320" (49.0) 2 Wt/100 Ft: 566 Lbs (843 kg/100 m) Allowable Moment 18,680 In-Lbs (2,110 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) 17A4" 11344 1.245" (44.1) (30.6) 2 (31.6) -•--- 4" -"" .489" (102.4) (12.4) Wt/100 Ft: 333 Lbs (495 kglloo m) Allowable Moment 6,240 In-Lbs (700 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) P1004 A Wt/100 Ft: 668 Lbs (994 kg/100 m) Allowable Moment 41,970 In-Lbs (4,740 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) Channel Finishes: PL, GA, HG, PG, ZD; Standard Lengths: 10'& 20' Page 55 or 56 ADJUSTABLE PIPE CLAMPS Unistrut Adjustable Pipe (.lamps are manufactured from glass-reinforced polyurethane and are adjustable to accommodate a wide range of outside diameters. They can be uti- lized with a variety of piping systems including: PVC, fiberglass, copper, rigid steel conduit and PVC coated rigid steel conduit. Care should be taken not to exceed 3 ftilhs of tnm,ie on the afflustable Part Number O.D. Pipe Size (in.) Design Load Type 1 Type 2 Lbs (kN) Lbs (kN) Torque Ft/Lbs (N'm) Wt/100 PCs Lbs (kg) 200-3100 ½- 1½ 135 (0.6) 65 (0.3) 0.8 p) 3 (1.4) 200-3110 1½- 2¼ 135(0.6) 65(0.3) 3(4) 5 (2.3) 200-3120 2¼-3¼ 145(0.6) 70(0.3) 3(4) 5(2.3) 200-3130 3-4 215(1.0) 70(0.3) 3(4) 8(3.6) 200.3140 4-6½ 215(1.0) 70(0.3) 3(4) 10(4.5) UNISTRUT pipe straps. Design loads shown represent a 3:1 safety factor. RIGID PIPE CLAMPS PVC, Sch. 80 Design Loads* FRP Bolt Part Nominal & Rigid Metal Type I Type 2 FRP Bolt Torque Wt!100 PCs Number Size (in.) In (mm) Lbs (kN) Lbs (kN) Size (in.) Ft/Lbs (N.m) Lbs (kg) FPCR-050 ½ 0.840 (21.3) 225 (1.0) 90(0.4) %x 1¼ 3(1.4) FPCR-075 34 1.050 (26.7) 225 (1.0) 90(0.4) 3A 1¼ 3(1.4) FPCR-100 1 1.315 (33.4) 225(1.0) 90(0.4) %x1¼ 4(1.8) FPCR.125 1¼ 1.660 (42.2) 225(1.0) 90(0.4) %x1¼ 5(2.3) FPCR.150 1½ 1.900 (43) 225(1.0) 90(0.4) 34x1¼ 5(2.3) FPCR-200 2 2.375 (60.3) 225(1.0) 90 (0.4) 34 x 1¼ 3(4) 5(2.3) FPCR-250 2½ 2.875 (73.0) 225 (1.0) 90 (0.4) 34 x 1¼ 7 (3.2) FPCR-300 3 3.500 (88.9) 225(1.0) 90(0.4) %x1¼ 10(4.5) FPCR400 4 4.500 (114.3) 300 (1.3) 125(0.6) 34 x 1¼ 12(5.4) FPCR.600 6 6.625 (168.3) 300(1.3) 125(0.6) 31 x 11/4 15(6.8) FPCR-800 8 8.625 (219.1) 300(1.3) 125(0.6) 31 x 1¼ 18(8.1) "Design loads shown represent a 3:1 safety factor. Rigid Pipe Clamps resemble the more traditional style of pipe clamps and are sized based on the pipe inside diameter or nominal size. Polyurethane clamps are recommended for applications up to 160"F. For high temperature applications (up to 230"F). Care should be taken not to exceed the recommended torque values of the rigid pipe clamps. Material: glass-reinforced polyurethane. Two HOLE PIPE STRAPS Bolt Material Design Load Part Dim. A Dim. B Size Thick. Type I Type2 Torque W1:1100 PCs No. In (mm) In (mm) (in.) In (mm) Lbs (kN) Lbs (kN) Ft/Lbs (N'm) Lbs (kg) FPS200 2.375 6.375 ½ ¼ 135 50 4 14 60.33 161.93 6.4 0.60 0.22 5 6.4 2.875 6.875 ¼ 135 50 4 17 FPS250 73.03 174.63 ½ 6.4 0.60 0.22 5 7.7 3.500 7.500 ¼ 135 50 4 20 FPS300 88.90 190.50 ½ 6.4 0.60 0.22 5 9.1 FPS350 4.000 8.000 ½ ¼ 135 50 4 33 101.60 203.20 6.4 0.60 0.22 5 15.0 FPS400 4.500 8.500 ½ ¼ 175 60 4 23 114.30 215.90 6.4 0.78 0.27 5 10.4 5.563 9.563 175 60 4 39 FPSSOO 141.30 242.90 ½ 6.4 0.78 0.27 5 17.7 FPS600 6.625 10.625 ½ ¼ 175 60 4 39 168.28 269.88 6.4 0.78 0.27 5 17.7 FPS800 8.625 12.625 ½ ¼ 225 125 4 51 219.08 320.68 6.4 1.00 0.56 5 23.1 FPS1000 10.750 15.750 1/4 225 125 10 77 273.05 400.05 6.4 1.00 0.56 14 34.9 FPS1200 12.750 16.250 1/4 225 125 10 83 323.85 412.75 6.4 1.00 0.56 14 37.6 FPS1400 14.000 18.000 %250 150 10 125 355.60 457.20 9.5 1.11 0.67 14 56.7 FPS1600 16.000 20.000 ~9.5 %250 150 10 143 406.40 508.00 1.11 0.67 14 64.9 FPS1800 18.000 23.000 %250 150 10 160 457.20 584.20 9.5 1.11 0.67 14 72.6 "Design loads shown represent a 3:1 safety factor. Two Hole Pipe Straps are designed for use in securing pipe, conduit and ducts to Channel. Two hole fiberglass straps can also be used independently from the channel for surface mounting. All sizes of the straps are suitable for load bearing applications. Material: fire-retardant, glass-reinforced polyester resin. For extreme chemical environments, the straps can be manufac- tured from vinyl ester resin. Larger diameter straps for special applications are also available. Contact the factory for pricing and availability of vinyl ester and large diameter straps. Two hole pipe straps should not be torqued above recommended values. Notes: Bolts and channel nuts are sold separately. When bolting onto 1%" channel a 1¼" long bolt is req'd. Fiberglass LAMAR NNENGINEERING S T T U Direct Lin e:619.370.9515 / Fax: RECEIVED JUL 16 20I9 CITY OF CARLSBAD BUILDING DIVISION STRUCTURAL CALCULATIONS PROJECT: LEGOLAND CALIFORNIA RESORT iITLE HOTEL - CHL 1 LEGOLAND DR. CARLSBAD SAN DIEGO, CA 92008 July 11, 2019 N% www.lamareng.com Page 1 of 56 Luis Labrada Proyecto: Nodes 3 217 Landis Avenue LAMAR Date: 05/07/19 Chula Vista, CA 91910 UMENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com Contents APPENDIX I. DESIGN ATTACHMENT. ANTENNAS ............................................... . .............................................................. 3 APPENDIX II. DESIGN ATTACHMENT. RADIOS . ................................................................................................................ 10 APPENDIX III. DESIGN ATTACHMENT. CABINET EQUIPMENT . ....................................................................................... 17 APPENDIX IV. SCREEN WALL .............................................................................................................................................30 APPENDIX V. ROOF VERIFICATION ....................................................................................................................................38 APPENDIXVI. TABLES ..........................................................................................................................................................41 Page 2 of 56 Luis Labrada LAMAR217 Landis Avenue Proyecto: Nodes 3 Date: 05/07/19 Chula Vista, CA 91910 IX]ENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX I. DESIGN ATTACHMENT. ANTENNAS Page 3 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com WAi k1t-1 0 e I CIVIL + STRUCIURAL Project: Nodes 3 Date: 07/03/2019 Engineer: M.R I SEISMIC DESING ANTENNA I DESCRIPTION Description: QUINTEL QS46512-2 ANTENNA W = 75.0 Lbs bldg height = 32.00 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 75.0 Lbs. FpH = (0.64 * Wp )/1.4 = 34.3 Lbs FpH = 0.46 * Wp = 34.5 Lbs HORIZONTAL FpV = 0.28 * Wp = 21.0 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*lp)*(1 +2*z/h) = 28.4 Lbs. Verifications FpH max = 1.6* SDS * p * WP = 94.6 Lbs. > 28.4 Lbs. FPH min = 0.3 * SDS * p * WP = 17.7 Lbs. 28.4 Lbs. Page 4 of 56 I Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING Project: Nodes 3 Date: 07/03/2019 Engineer:M.R I ANCHORAGE DESIGN (SEISMIC) ANTENNA I GEOMETRY e= 1.25 ft d= 2.13 ft -y Fx — d Wp e FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy= 37.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 26.5 Lbs Vertical force, Ey = 10.5 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 70.5 Lbs Max shear force per anchor = Dy + Ey = 48.0 Lbs Page 5 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING ..fl tflhlrn.n Project: Nodes 3 Date: 07103/2019 Engineer:M.R I WIND DESING ANTENNA I DESCRIPTION Description: QU INTEL QS46512-2 ANTENNA W= 75.0 Lbs bldg height = 32.0 ft ELEMENT DESIGN (WIND) ANALYSIS Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or 0) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = C 1.0 110.0 mph 1.0 Flat 1. = 1.42 For h = 32 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure PS = X x Kzt x I x ps30 = 22.58 psf Horizontal PS = l x Kzt x I x ps30 = 19.60 psf Roof Uplift Applied horizontal force, Fph = Ps x (bxc)I2 = 97.8 Lbs Applied vertical force, Fpv = Ps x (axc)/2 = 17.6 Lbs Page 6 of 56 Luis Lbrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com WII-kl L A _ 'j : CIVIL + STRUCTURAL Project: Nodes 3 Date: 07103/2019 Engineer:M.R I ANCHORAGE DESIGN (WIND) ANTENNA I GEOMETRY b Fph d e = 1.25 ft V d= 2.13 ft Wp a= 0.90 ft e b= 4.33 ft c= 1.00 ft FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy = 37.5 Lbs FORCES WIND (W) Horizontal force, Wx = 59.2 Lbs Vertical force, Wy = 8.8 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 103.2 Lbs Max shear force per anchor = Dy + Wy = 46.3 Lbs Page 7 of 56 B B Fx = Dx+(Ex or Wx) = 103.2 Lbs Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 3.0 Antennas Total Quantity 4 ft H= 4.00 ft Lc= 3.00 ft Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com iVL! CIVIL + SRUCTURAL Project: Nodes 3 Date: 07/03/2019 Engineer: M.R I ELEMENT & CONNECTIONS DESIGN ANTENNA I UNISTRUT HORIZONTAL DESIGN Number of radios pair Odd number of radios M. max = PL/8 (n-1/n) ,.p M.max = PL/8 (n+1/n) R=P(n-1)/2 I I I I I R=Pn/2 -1 I i-n.c----- n= 4 n= 3 I- 1-me C = 0.75 ft C = 1.00 ft Px= 103.2 Lbs - M. Mmax (y-y) = 129.1 Ft-Lbs 1548.7 In-Lbs Py= 48.0 Lbs M. Mmax (x-x) = 60.0 Ft-Lbs 720.0 In-Lbs Use: Unistrut: P1 000 11 5/8 x 1 5/8-12ga Nominal Thickness Single Channel Allowable Moment: - 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Demand Capacity Ratio Status 1548.7 In-Lbs < 5070.00 In-Lbs 0.31 [OK I Demand Capacity Pull Out Ratio Status 720.0 In-Lbs < 5070.00 In-Lbs 0.14 OK I Page 8 of 56 B B 4 f Fx = Dx+(Ex or Wx) = 103.2 Lbs Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 3.0 Antennas Total Quantity H= 4.0 ft Lc= 3.0 ft I I Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR HENGINEERING Project: Nodes 3 Date: 07/03/2019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN ANTENNA CONNECTION A - I Radio Status Shear= 48.0 Lbs 0.53 OK Pull Out = 103.2 Lbs 0.47 OK Use: Ridge Pipe Clamps: FPCR-075 General Engineering Catalog - No. 17- Page 203 Thickness: 3/4 in Length: 1.05 iin FRP Bolt: 318"xl 114 Allowable Shear: 90 Lbs Allowable Pull-Out: 220 Lbs CONNECTION C: UNISTRUT TO EXISTING MECHANICAL SCREEN Reaction unistrut horizontal • Ratio Status Ry = Py(n-1 )I2 - Shear = 72.0 Lbs 0.09 F—OK Rx = Px(n-1)I2 - Pull Out = 154.9 Lbs 0.52 OK Use: D-Bolt= 112 in (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Shear: 780 Lbs Allowable FRP Bolt Shear Pull-Out: 300 Lbs/in Allowable FRP Bolt Pull-Out Page 9 of 56 Lus Labrada 217 Landis Avenue LP MAR Proyecto: Nodes 3 Date: 05/07/19 Chula Vista, CA 91910 INENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX II. DESIGN ATTACHMENT. RADIOS. Page 10 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LWL1LVA1FE 1 CIVIL + SIRUCTUR+L Project: Nodes 3 Date: 07/03/2019 Engineer: M.R SEISMIC DESING RADIO DESCRIPTION Description: Alu Radio Units W = 59.5 Lbs bldg height = 32.0 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 59.5 Lbs. FpH = (0.64 * Wp )/1 .4 = 27.2 Lbs FpH = 0.46 * Wp = 27.37 Lbs HORIZONTAL FpV = 0.28 * Wp = 16.66 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*Ip)*(1 +2*zJh) = 22.5 Lbs. Verifications Fy11 max = 1.6* 5 * I * WP = 75.0 Lbs. 22.5 Lbs. DS p p Fy11 mm = 0.3 * 5DS * I p * WP = 14.1 Lbs. 22.5 Lbs. I OK 1 Page 11 of 56 bl Fph Elevation 'Luis Lbrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING Project: Nodes 3 Date: 07/03/2019 Engineer:M.R I DESIGN FORCES (SEISMIC) I RADIO I GEOMETRY a . Plan Radio Dimensions a= 0.92 ft b= 2.10 ft c= 0.92 ft Support = 4 Quantity FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a/4 = 13.7 Lbs*ft Dx= 6.5 Lbs Dy= 14.9 Lbs FORCES SEISMIC (E) Applied horizontal force, Ex = 9.3 Lbs Applied vertical force, Ey = 4.2 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 15.8 Lbs Max shear force per anchor = Dy + Ey = 19.0 Lbs Page 12 of 56 Luis Ldbrada 217 Landis Avenue Project: Nodes 3 Chula Vista, CA 91910 LAMAR Date: 0710312019 P: 619.370-9515 Engineer:M.R www.lamareng.com INENGINEERING .Uwnsstn,mfl,.n WIND DESING RADIO DESCRIPTION Description: Alu Radio Units W = 59.5 Lbs bldg height = 32.0 ft ELEMENT DESIGN (WIND) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS A = 1.42 For h = 32 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative C 1.0 110.0 mph 1.0 Flat Wind Pressure ps = Ax Kzt x lx ps30 = 22.58 psf Horizontal PS = A x Kzt x I x ps30 = 19.60 psf Roof Uplift Page 13 of 56 tFpv Suction Fph Suction Elevation Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 3 Date: 07103/2019 Engineer:M.R I DESIGN FORCES (WIND) I RADIO I GEOMETRY c Wal al b Plan Radio Dimensions a= 0.92 ft b= 2.10 ft c= 0.92 ft Support = 4 Quantity FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a/4 = 13.7 Lbs*ft Dx = 6.5 Lbs Dy= 14.9 Lbs FORCES WIND (W) Applied horizontal force, Wx = 14.5 Lbs Applied vertical force, Wy = 4.1 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 21.1 Lbs Max shear force per anchor = Dy + Wy = 19.0 Lbs Page 14 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 3 Date: 07/03/2019 Engineer: M.R ELEMENT & CONNECTiONS DESIGN Fx = Dx+(Ex or Wx) = Fy = Dy+(Ey or Wy) = Unistrut vertical Q= Qt= H= Unistrut Horizontal 21.1 Lbs 19.0 Lbs 2.0 N° of radios per vertical unist. 3.0 Radios Total Quantity 4.00 ft 7-i Nu = 3 Unistrut B Lc= 8.00 ft 8 f UNISTRUT VERTICAL DESIGN P= 21.1 Lbs M. Mmax = PL/3 = 14.0 Ft.-Lbs. Status 168.4 In.-Lbs. OKj Use: Unistrut: P1000 15/8 x 1 518-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 UNISTRUT HORIZONTAL VERIFY Px 56.1 Lbs M. Mmax (y-y) = 269.5 Ft.-Lbs. Radio Status 1 3234 In.-Lbs. 0.64 OKT] Py = 38.1 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 182.8 Ft.-Lbs. Radio Status n = 5 2193 In.-Lbs. 0.43 OK] c = 1.60 ft Use: Unistrut: P1000 1 5/8 x I 518-I2ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Page 15 of 56 Luis La'brada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING Project: Nodes 3 Date: 07/03/2019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN I RADIO CONNECTION A: RADIOS TO VERTICAL UNISTRUT CHANNEL NUTS WITH SPRING Status Shear = 19.0 Lbs OK 1 - Pull Out= 21.1 Lbs OK ] Use: Channel Nuts: 318"-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW IN Use: Hex-Head: 3/8"-1 1/2" Mm. General Engineering Catalog - No. 17 Page 68 CONNECTION B: VERTICAL UNISTRUT TO HORIZONTAL UNISTRUT Status OK 1 OK j General Engineering Catalog - No. 17- Page 66 CHANNEL NUTS WITH SPRING Shear = 38.1 Lbs Pull Out = 56.1 Lbs Use: Channel Nuts: 3!8"-16 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 3/8".1 1/2" Win. General Engineering Catalog - No. 17 Page 68 CONNECTION C Ry = Py(n-1 )I2 Shear = 76.2 Lbs Rx = Px(n-1)I2 Pull Out = 112.3 Lbs Use: D-Bolt: 1/2 in nBolt: 2 Shear: 780 Lbs Allowable, FRP Bolt Shear Pull-Out: 300 Lbs Allowable FRP Bolt Pull-Out (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 76.2 Lbs < 780 Lbs 0.1 Demand Capacity Shear Ratio Status 112.3 Lbs < 300 Lbs 0.37 ( OK 1 Page 16 of 56 1. Luis Labrada 217 Landis Avenue LAMAR Proyecto:Nodes3 Date: 05/07/19 Chula Vista, CA 91910 PENGINEERING Engineer: M.R I. ..nnfl'mla.flu.fl P: 619-370-9515 www.lamareng.com APPENDIX III. DESIGN ATTACHMENT. CABINET EQUIPMENT. Page 17 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370.9515 www.lamareng.com LAMA" IfJENGINEERING JL + SruCruRAL Project: Nodes 3 Date: 07/03/2019 Engineer: M.R I . SEISMIC DESING - ANTENNA CABINET I DESCRIPTION Description: AC POWER• W= 50.0 Lbs bldg height = 32.0 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = 50.0 Lbs. FpH = (0.64 * Wp )/1.4 = 22.86 Lbs FpH = 0.46 * Wp = 23 Lbs HORIZONTAL FpV = 0.28 * Wp = 14 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh = 1.0 •Ft. FpH = (0.4*ap*SDS*Wp)I(Rp*lp)*(l+2*z/h) = 18.9 Lbs. Verifications * FpH max = 1.6* 5DS * 1 'p WP= * FpH mm * 1 = 0.3 * 5os 'p WP= 63.0 Lbs. > 18.9 Lbs. 11.8 Lbs. 18.9 Lbs. n Page 18 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 3 Date: 07/03/2019 Engineer:M.R. I DESIGN FORCES (SEISMIC) CABINET I GEOMETRY CABINET a= 0.50 ft b= 1.54 ft L C: 167 ft 4C, Supp.= 4 a I H-FRAME L= 2.33 ft HI= 1.17 ft H2= 3.50 ft H= 4.67 ft e= 0.83 ,ft Post= 2 CONNECTION I FORCES GRAVITATORY (D) Weight, Wp = 50.0 Lbs Overturning moment OTM = Wp*e = 41.7 Lbs*ft 0x 13.5 Lbs Dy= 12.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 8.5 Lbs Vertical force, Ey = 3.5 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 22 Lbs Max shear force per anchor = Dy + Ey = 16 Lbs Fpv Wall e Fph - :: I Elevation Conection / Page 19 of 56 Luis Labrada * 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR Project: Nodes 3 Date: 07/03/2019 ENGINEERING Engineer:M.R I WIND DESING CABINET I DESCRIPTION Description: AC POWER W= 50 Lbs bldg height = 32.0 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Flat ANALYSIS A= 1.42 For h = 32 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure PS = A x Kzt x I x ps30 = 22.58 psf Horizontal ps =X x Kzt x I x ps30 = 19.60 psf Roof Uplift Applied horizontal force, Fph = Ps x (bxc) = 17.4 Lbs Applied vertical force, Fpv = Ps x (axc) = 16.4 Lbs Page 20 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 3 Date: 07/0312019 Engineer:M.R I DESIGN FORCES (WIND) CABINET GEOMETRY Fpv Wall el CABINET a= 0.5 ft b= 1.54 ft L 1.67 ft i c Supp.= 4 a I H-FRAME L= 2.33 ft H1= 1.17 ft H2= 3.50 ft H = 4.667 ft e = 0.8333333 ft Post= 2 CONNECTION I FORCES GRAVITATORY (D) Weight, Wp = 50.0 Lbs Overturning moment OTM = Wp*e = 41.7 Lbs*ft Dx= 13.5 Lbs Dy= 12.5 Lbs FORCES WIND (W) Horizontal force, Wx = 8.8 Lbs Vertical force, Wy = 4.1 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 22 Lbs Max shear force per anchor = Dy + Wy = 17 Lbs Hi H21 Conection Fph Conection 1 a Elevation -. Page 21 of 56 Luis Labrada 217'Landis Avenue .• i Project: Nodes 3 Chula Vista, CA 91910 LAMAR Date: 07/0312019 - IIJENGINEERING ngineer. www.lamareng.com I ELEMENT & CONNECTIONS DESIGN . I CABINET I Fx = Dx+(Ex or Wx) = 22.3 Lbs Fy = Dy+(Ey or Wy) = 16.6 Lbs Q = 2.0 Cabinet Total Quantity 1.167 ft L= 2.33 ft Hi = 1.17 ft H2= 3.50 ft 2.33 ft AB H= •4.67 ft ' STEEL COLUMN DESIGN Demand: N Max = 66 Lbs V Max = 178.4 Lbs M. Mmax = 8742.6 In.-Lbs. Section: Material: Use: HSS_SQR 4X4X1_4 HSS Use: ASTM A500, Grade B b = 4 In. Fy: 46000 psi. h = 4 In. E 29006000 TPS. t = 1/4 In. - A= 3.37 In2 Iz = 7.80 1n4 r= 1.51 In S = 1n3 Stress Compressive Strength aN = 19.69 psi Flexural Strength aM = 2241.68 psi Deflection D =1 .4*F*H/E13 = 0.0646496 in Allowable Comoressive Stress K= 2.1 L = 56.004 In. Column Length KL/r = 77.89 Fa = 24616.62 psi. aN/Fa + aM/Fb <1 Allowable Bendinci Stress Fl = 1.67 Load Duration Factor F2 = 0.66 Compact Section Fb= 50701.2 psi Status 0.05 [ OKIJ Page 22 of 56 Luis Labrada - 217 Landis Avenue Project: Nodes 3 Chula Vista; CA91910 LAMAR ",S, - Date: 07/0312019 P: 619.370-9515 HENGINEERING . Engineer:M.R www.lamareng.com ' ." .... 'i ELEMENT &.CONNECTIONS DESIGN CABINET rx = LL.i LOS - rn.-ijr M. Mmax (y-y) = 31.2 Ft.-Lbs. Ratio - Status 374 In.-Lbs. 0.07 1 OK 1 c4c_I-c4c _____._J I- Irt.•c Py = 16.6 Lbs - M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 23.2 Ft.-Lbs. Ratio Status n = 5 278 In.-Lbs. 0.06 r_OkJ C 0.47 ft Use: Unistrut: P1000 (2)1 5/8 x 1 5/8-12ga Nominal Thickness Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 CONNECTION A: CABINET TO UNISTRUT CHANNEL NUTS WITH SPRING Shear = 16.6 Lbs Pull Out = 22.3 Lbs Use: Channel Nuts: 318"-16 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1/2" Mm. Status - OK LOK] T General Engineering Catalog - No. 17- Page 66 General Engineering Catalog - No. 17 Page 68 - I CONNECTION B: UNISTRUT TO STEEL COLUMN . CONNECTION DESIGN: FRP BOLT Shear= 33.18 Lbs Pull Out = 44.6 Lbs 0-Bolt = 3/8 in nBolt: I Demand 33.18 Lbs Demand 44.6 Lbs Material = A307 Fv = 24 Ft= 45 Capacity Shear Ratio Status 2650.7 Lbs 0.01 [OK] Capacity Shear Ratio Status 4970.1 Lbs 0.01 [OK] Page 23 of 56 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com L A M A R !JENGNEERING ELEMENT & CONNECTIONS DESIGN CONNECTION C: STEEL COLUMN 1 Project: Nodes 3 Date: 07103/2019 Engineer:M.R CABINET I Load V. Max = 178 Lbs N max = 133 Lbs M. Mmax = 8743 In.-Lbs. Steel Column: HSSSQR 4X4X1_4 4 An 4 in 1/4 in Plate: a= 10 in l0 in. Min b= 10 in 10inMin t= 1/4 in CONNECTION DESIGN: BOLT A307 Shear V = 178.4 Lbs Pull Out T = 1381.7 Lbs - D-Bolt = 1/2 in n Bolt: 4 Material = A307 Demand 178.4 Lbs Demand 1381.7 Lbs b k d2 ajdl dl= 7 in d2= 7 in T k= 1.5 in Fv = 24 ksi Ft= 45 ksi Capacity Shear Ratio Status 18849.6 Lbs 0.01 1 0K] Capacity Shear Ratio Status 35342.9 Lbs 0.04 [OKI1 Page 24 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com loom CIVIL + ST1JCTUF1AL Project: Nodes 3 Date: 07/03/2019 Engineer: M.R I SEISMIC DESING CABINET I DESCRIPTION Description: BBU CABINET Wp = 382.0 Lbs. bldg height = 32 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SOS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT FpH = (0.64 * Wp )I1.4 = 174.63 Lbs FpH = 0.46 * Wp = 175.72 Lbs HORIZONTAL FpV= 0.28*Wp= 106.96 Lbs UPORDOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 1p= 1.0 Ref. Table 11.5-1 ASCE 7-10 z/h 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*Ip)*(1+2*zlh) = 144.5 Lbs. Verifications FpH max = 1.6 * SOS p * * WP = 481.6 Lbs. > 144.5 Lbs. FpH mm = 0.3 * SOS * ip * Wp = 90.3 Lbs. 144.5 Lbs. Page 25 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com !1'A &W-311 1 ?]CIVIL + 8TRUC11JRL Project: Nodes 3 Date: 07/03/2019 Engineer: M.R I WIND DESING CABINET I DESCRIPTION Description: BBU CABINET - Wp= 382.0 Lbs. bldg height = 32 ft - ELEMENT DESIGN (WIND) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS A = 1.66 For h = 32 exposure D see fig 6-2 ps30 = 15.90 'Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure D 1.0 110.0 'mph 1.0 Flat PS =J\ x Kzt x I x ps30 = 26.39 psf Horizontal PS = A x Kzt x I x ps30 = 22.91 psf Roof Uplift Applied horizontal force, Fph = Ps x (bxc) = 162.1 Lbs Applied vertical force, Fpv = Ps x (axc) = 118.5 Lbs Page 26 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619370-9515 www.lamareng.com t, Z Izir i TAUCURA1 • Project: Nodes 3 Date: 07/03/2019 Engineer: M.R I ANCHORAGE DESIGN (SEISMIC) CABINET I GEOMETRY a C p Plan a= 2.25 ft b= 2.67 ft C = 2.30 ft Support= 4 FORCES GRAVITATORY (D) b t I Fpv Roof Elevation Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a12 = 859.5 Lbs*ft Dy= 95.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 36.1 Lbs Vertical force, Ey = 112.5 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 36.1 Lbs Max shear force per anchor = Dy + Ey = 208.0 Lbs Page 27 of 56 Luis Labrada - .2ll Landis Avenue , Chula Vista, CA 91910', .LAMAuq;,, P: 619370-9515 . . JENGINEERING www.lamareng.com Project: Nodes 3 Date:. 07/03/2019 Engineer: M.R ANCHORAGE DESIGN (WIND) CABINET GEOMETRY pp C U Top a= 2.25 ft b= 2.67 ft C = 2.30 ft Support= 4 Roof a or c Elevation FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a/2 = 859.5 Lbs*ft Dy= 95.5 Lbs FORCES WIND (W) - Horizontal force, Wx = 40.5 Lbs Vertical force, Wy = 77.7 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 40.5 Lbs Max shear force per anchor = Dy + Wy = 173.2 Lbs Page 28 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 3 Date: 07/03/2019 Engineer: M.R IELEMENT & CONNECTIONS DESIGN CABINET.• I CONNECTION A. CABINET TO STEEL BEAM BOLT DESIGN Shear = 40.5 Lbs Pull Out = 208.0 Lbs D-Bolt= 3/8 in n Bolt: I Allowable Shear 2650.7 Lbs Allowable Pull-Out 4970.1 Lbs Material = A307 > Max. Shear 208.0 Lbs Max. Shear > . 40.5 Lbs Fv = Ft = Status Status Kiii 24 ksi 45 ksi Page 29 of 56 Luis Labrada 217 Landis Avenue LP F1Ik R Proyecto: Nodes 3 Date: 05/07/19 Chula Vista, CA 91910 UNENGINEERING Engineer: M.R P: 619-370-9515 U www.lamareng.com APPENDIX IV. SCREEN WALL Page 30 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IM1!LNL Project: Nodes 3 Date: 07103/2019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I Geometry W = 7.5 psf Weight L Li SCREEN LENGTH s L = 15.0 ft Screen total length NP = 4 Number Post NS = 3 N° Steps between post L = 5OOJ ft L. between post S = 1.67 ft. Length Steps SCREEN HEIGHT Hi = 32 ft. [E] Structural Roof H2 = 12.00 ft Post Height H3 = 7.0 'ft Screen Height H4 = 5.0 ft Screen Wall Ht = 44.00 ft Total height BRACE L2= 4.00 ft H5= 6.58 ft 8= 59 Wind Force Exposure category (ASCE 7-10 26.7.3) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Pressure 30 Psf. Page 31 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IIENGINEERINGI Project: Nodes 3 Date: 0710312019 Engineer: M.R I SCREEN WALL DESIGN .. FRP TYPE I FRP Channel Stifener - Design Tributary: S = 1.67 it H3= 7.00 ft 17 ft Demand: Load qw = 50.1 Lbs/Ft M. Mmax (x-x) = 3682.4 In.-Lbs. 7 ft Flexural Strength = 1841.18 psi Capacity Use: HSS_SQR 3X3X14 FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. lz = 3.00 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity oa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1841.18 psi 6600 psi 0.28 OK FRP Channel Stifener - Connection Demand Shear=: 175.4 Lbs Capacity Use: 1I2 in FRP Bolt nBolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 175.4 Lbs 780 Lbs 0.22 ..OKj Page 32 of 56 Luis Labrada 217 Landis Avenue . Chula Vista, CA 91910 . P:619.370-9515 www.lamareng.com' LAMAR IIENGINEERING m:mlm.. Pojecb. Nodes 3 Date 07103/2019 Engineer: M.R - TYPE I SCREEN WALL DESIGN - FRP Top & Bottom FRP Horizonal Tube - Tributary: Li = 5.00 ft Demand: Load qw E In. Flexural Strength -Lbs. 0 Lbs/Ft 7 ft psi I[E 5 f 5 f Capacity Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. Iz = 3.00 1n4 Moment of inertia = 1/4 In. - E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1968.75 psi 6600 psi 0.3 OK Top & Bottom FRP Horizonal Tube - Connection Demand Shear= 262.5 Lbs Capacity Use: 112 in FRP Bolt n Bolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 262.5 Lbs 780 Lbs 0.34 OK Page 33 of 56 Luis Labrada 217 Landis Avenue - Project: Nodes 3 Chula Vista, CA 91910. LA MAR Date: 0710312019 P: 619.370.9515 I - ENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE I Geometry L = 1.75 ft Fy H= 1.67 ft 8= 43.66 o B Fx Loads Reactions Unistrut (Antennas + Radios) e A Fx= 525.0 Lbs Fy= 131.3 Lbs C Reactions Rx Ry A 525.0 131.3 Lbs B 387.5 0.00 Lbs C 137.5 131.25 Lbs Check Capacities Brace-1 Element AB: Axial force: 387.5 Lbs Tension Element AC: Axial force: 190.1 Lbs Compressive Use: L2X2XI_4 - FRP Angle.. b = 2 In. A. = 0.938 In2 Gross area of the section h = 2 In. Iz = 0.35 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity Compressive Strength: 6600.0 psi (Appendix A. Design Values Load Chart for FRP Materials) Tensile Strength: 6600.0 psi LARR# 25520. Demand Capacity Compressive Ratio Status 202.7 psi < 6600.0 psi 0.03 TOKTj Demand Capacity Tension Ratio Status 413.1 psi 6600.0 psi 0.06 ITTOKIIII Page 34 of 56 Luis Labrada 217 Landis Avenue LAMAR Project: Nodes 3 Chula Vista, CA 91910 Date: 07/03/2019 P: 619.370-9515 INENGINEERING Engineer: M.R www.lamareng.com I SCREEN WALL DESIGN - FRP TYPE I Brace: Support Unistrut - Connection - -rrr DJLI IJDR,rl Shear = 525.0 Lbs Use: D-Bolt: 112 in nBoIt: I Shear: 780.0 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 525.0 Lbs 780.00 Lbs 0.67 OK] CONNECTION B - FRP BOLT DESIGN Shear: 387.5 Lbs Use: 0-Bolt: 112 'in nBolt: 2 Shear: 780.0 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 387.5 Lbs < 1560.00 Lbs 0.25 ETOKEI CONNECTION C - FRP BOLT DESIGN Shear: 137.5 Lbs Use: D-Bolt: - 1/2 'in nBolt: 2 Shear: 780.0 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 137.5 Lbs < 1560.00 Lbs 0.09 ETOKIIIJ Page 35 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LAMPR Project: Nodes 3 Date: 07103/2019 P: 619.370.9515 IIENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE I FRP Steel Column & Brace - Design Loads Reactions Top & Bottom FRP Horizonal Tube Reaction Unistrut Reaction = 262.5 Lbs Ri = 525.0 Lbs Fx = 525.0 Lbs R2= 525.0 Lbs Fy= 131.3 Lbs Check Capacities Steel Column M. Mmax = 11517.6 In.-Lbs. Per Ram Elements Flexural Strength = 2953.24 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. Iz = 7.80 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 2953.24 psi 6600 psi 0.45 [OKj Check Capacities Brace Axial force: 572.5 Lbs Per Ram Elements Compressive Strength: 169.9 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 In4 Moment of inertia = 1/4 In. E = 29000000 'psi Modulus of Elasticity aa = 6600 Psi. Allowable Compressive Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 169.9 psi < 6600 psi 0.03 ETOKEJ FRP Steel Column to Brace (KICKER) - Connection Reaction Steel Column to Brace: V = 572.5 Lbs Use: D-Bolt: 1/2 in nBolt: 3 Capacity: 780 Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 572.5 Lbs 2340 Lbs 0.24 EOK 1111 Page 36 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P:619.370-9515 www.lamareng.com LAMAR INENGINEERINGI Project: Nodes 3 Date: 07103I2019 Engineer: M.R I SCREEN WALL DESIGN - FRP TYPE I FRP Steel Column to Roof (BRAKET) - Connection Reaction Steel Column Fx = 37.6 Lbs Per Ram Elements b Fy= 60.22 Lbs Jg d2 Steel Column: HSS_SQR 4X4X1_4 A • ad1 Q Plate: • I a= 10 in dl= 7 in b= 10 in d2= 7 in t= 1/4 in k= 1.5 in Shear V = 9.4 Lbs ___(- Pull Out T = 15.055 Lbs I v -1 T Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 4 6 Dia.: 1/2 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 3 114 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio Status - 9.4 Lbs 5495 Lbs 0.00 OKJ Demand Capacity Pull Out Ratio Status_ 15.1 Lbs < 4915 Lbs 0.00 OK1 FRP Brace to Roof (BRAKET) - Connection Reaction Steel Column Fx = 336.98 Lbs Per Ram Elements • b Fy= 441.78 Lbs ,< d2_ Steel Brace: HSS_SQR 4X4X1_4 I + [• adi I a= 10 10 in d1 6 in b= 14 in d2= 10 in t= 1/4 in k= 2.0 1.5 Min Bolt: Shear V = 84.2 Lbs. Per Bolt _ Pull Out T= 110.4 Lbs. Per Bolt Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 4 6 Dia.: 1/2 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 31/4 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio Status 84.2 Lbs < 5495 Lbs 0.02 OK] Demand Capacity Pull Out Ratio Status 110.4 Lbs 4915 Lbs 0.02 OK . Page 37 of 56 Luis Labrada Proyecto: Nodes 3 2171andis Avenue .• Date: 05/07/19 LAMAR Chula Vista, CA 91910 •• INENGINEERING Engineer M.R P: 619-370-9515 .•• . www.lamarenQ.com • : ,2,.. APPENDIX V. ROOF VERIFICATION', Page 38 of 56 Luis Labrada Project: Nodes 3 217 Landis Avenue .LAMAR . Date: 07/03/2019 Chula Vista, CA 91910 . • HENGINEERING . Engineer:M.R P: 619.370-9515 -. VERIFY ROOF FRAMING I NODE3 1 ANTENNA DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] HEX454CU0000G 46.80 15.60 7.40 48.90 0 0.00 0.00 HEX654CU0100G 51.10 12.00 7.10 39.70 1 0.59 39.70 CUUX06306F52s0-T 24.30 12.10 7.00 13.00 3 1.76 39.00 CUUX05XO6F5200 24.10 16.20 7.30 15.70 0 0.00 0.00 QUINTELQS46512-2 52.00 12.00 10.80 75.00 0 0.00 0.00 Total 4.00 2.36 78.70 RADIOS DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] RRUS-2203 7.90 7.90 3.90 10.00 2 0.43 20.00 ERICSSON RRUS-4426 15.00 13.20 5.80 48.40 1 0.53 48.40 ERICSSON RRUS -4478 18.10 13.40 8.26 59.40 1 0.77 59.40 ERICSSON RRUS-4415 16.50 13.40 5.90 46.00 1 0.55 46.00 ALCATEL LUCENTTD-RRH8X2O-25 9.68 12.83 6.30 26.45 2 1.12 52.90 ALCATEL LUCENT CDMA/LTE DUAL TECH 25.00 11.00 11.00 59.50 1 0.84 59.50 Total 8.00 4.24 286.20 CABINET DIMENSION [in] WIGHT Quantity Area W b c a [Lbs] [sq ft] [Lbs] BBU 32.25 . 27.50 27.00 382.00 3 15.47 1146.00 AC POWER 18.50 20.00 6.00 50.00 1 0.83 50.00 TELCO CABINET 14.25 7.75 6.00 10.00 1 0.32 10.00 Total 5.00 16.63 i 1206.00 Page 39 of 56 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 LAMAR IENGINEERING _fl'p.n'U.flJt2fl Project: Nodes 3 Date: 07/03/2019 Engineer: M.R VERIFY ROOF FRAMING - I Existing Load I Density Concrete: 145.0 pcf DL: 72.5 lb/sq. ft. Thickness: 6.0 in LL: 20.0 lb/sq. ft. Area [sq ft ]I DL LL DL+LL [E] Steel Deck 237 1 17181 1 4740 1 21921 JLbs. New Load I Antennas Radio Cabinet Total: Quantity Area DL Lbs Lbs Lbs 1 Lbs 4 2 79 8 4 286 5 17 1206 17 1 23 1 1571 New Load + Existing Load Existing New Total: New + Existing DL LL DL+LL Area [sq ft] DL LL DL+LL DL LL DL+LL Steel Deck 17181 4740 21921 23 0 -464 -464 17181 4276 21457 Antennas 0 0 0 2 79 0 79 79 0 79 Radiol 0 0 0 4 286 0 286 1 286 0 286 Cabineti 0 1 0 1 0 1 17 1 1206 1 0 1 1206 1206 0 1 1206 Total: 1 23028 Chapter #34A CBC 2016 3403A.3 Existing structural elements carrying gravity load. Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load- carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404A.3. Any existing element that will form part of the lateral load path for any part of the addition shall be onsidered an existing lateral load- carrying structural element subject to the requirements of Section 3403A.4. New Total Load: 23028 Lbs Existing Total Load: 21921 Lbs [New Total Load] -(Existing Total Load] .*100% [New Total Load] = 4.807 % [481! < L 5 _II% Page 40 of 56 Luis Labrada Proyecto: Nodes 3 217 Landis Avenue LAMAR Date: 05/07/19 Chula Vista, CA 91910 IPJENGINEERING Engineer: M.R Lu P: 619-370-9515 www.lamareng.com APPENDIX VI. TABLES A Page 41 of 56 TABLE 1: SEISMIC DESIGN Page 42 of 56 5/16/2019 U.S. Seismic Design Maps OSHPD Legoland I Legoland Dr, Carlsbad, CA 92008, USA Latitude, Longitude: 33.1262496, -117.31192390000001 9Museum of Making Mtisic \ \\ 'LEGbLANDCalifornia / T - Staff Parking 9 \\ Hotel Parking 9 Map data 02019 Google Date 5/16/2019,11:03:03 AM Design Code Reference Document ASCE7-10 Risk Category . II Site Class D - Stiff Soil Type Value Description Ss 1.127 MCER ground motion. (for 0.2 second period) 0.434 MCER ground motion. (for 1.0s period) 5M5 1.182 Site-modified spectral acceleration value SM1 0.679 Site-modified spectral acceleration value SOS 0.788 Numeric seismic design value at 0.2 second SA S01 0.453 Numeric seismic design value at 1.0 second SA Type Value Description SOC D Seismic design category Fa 1.049 Site amplification factor at 0.2 second F 1.566 Site amplification factor at 1.0 second PGA 0.447 MCE0 peak ground acceleration FPGA 1.053 Site amplification factor at PGA PGAM 0.471 Site modified peak ground acceleration TL 8 Long-period transition period in seconds SsRT 1.127 Probabilistic risk-targeted ground motion. (0.2 second) SsUH 1.194 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration SsD 1.525 Factored deterministic acceleration value. (0.2 second) S1RT 0.434 Probabilistic risk-targeted ground motion. (1.0 second) Si UH 0.436 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.616 Factored deterministic acceleration value. (1.0 second) PGAd 0.59 Factored deterministic acceleration value. (Peak Ground Acceleration) CR5 0.944 Mapped value of the risk coefficient at short periods CR1 0.995 Mapped value of the risk coefficient at a period of 1 s Page 43 of 56 https://seismicmaps.org 1/2 5/16/2019 NICER Response Spectrum 1.5 2.5 5.0 Period, T (sec) - Sa(g) U.S. Seismic Design Maps 7.5 2.5 5.0 7.5 Period, T(sec) - Sa(g) DISCLAIMER While the information presented on this website is believed to be correct, SEAOC IQSD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this webstie. Design Response Spectrum 0.8 0.6 -' 0.4 C,) 0.2 0.0 0.0 Page 44 of 56 https://seismicmaps.org 2/2 TABLE:2 DESIGN VALUES LOAD CHART FOR FRP MATERIALS Page 45 of 56 Appendix A Design Values Load Chart for FRP Materials ALLOWABLE STRENGTH TABLE FOR FRP SHAPES: Tubes, Channels, Angles Property Direction Value Units Tensile Strength Lengthwise Crosswise 6,600 1,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 6,600 3,300 psi Flexural Strength Lengthwise Crosswise 6,600 2,200 psi Flexural Modulus Lengthwise Crosswise 1,600,000 800,000 psi Shear Strength Lengthwise Crosswise 1,400 500 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi 1/2" Bolt Bearing Lengthwise Crosswise 6,000 3,600 psi 1/2" Bolt Shear Allowable 780 lbs 1/2" Bolt Tension Allowable 300 lbs Table Notes: Values based on 1525 series - Thermoset Polyester Class 1 FR (Slate Grey) A Safety Factor of 5.0 has been used to determine Allowable Loads. ALLOWABLE STRENGTH TABLE FOR FRP FLAT SHEETS: Property Direction Value Units Tensile Strength Lengthwise Crosswise 4,000 2,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 4,800 3,200 psi Flexural Strength Lengthwise Crosswise 7,000 3,000 psi Flexural Modulus Lengthwise Crosswise 2,000,000 1,100,000 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi Table Notes: Values based on 1625 series - Thermoset Vinyl Ester Class 1 FR (Beige) A Safety Factor of 5.0 has been used to determine Allowable Loads. I I I Hi-Tech Composite Structures Supplement for LARR #25520 Page 1 of 1 Page 46 of 56 TABLE 3: POST - INSTALATED CONCRETE ANCHOR. HILTI Page 47 of 56 ESR.2302 I Most Widely Accepted and Trusted Page 7 of 11 TABLE 3-DESIGN INFORMATION CARBON STEEL KB3 Nominal anchor diameter DESIGN INFORMATION Symbol Units 3, 5j 3/4 . / 112 Anchor O.D. d0 (d0)7 in. 0.250 0.375 0.500 0.625 0.750 (mm) (6.4) (9.5) (12.7) (15.9) (19.1) in. 1/3 2 2 3'! 5 3'/8 4 33/4 Effective mm. embedment' h0f (mm) (38) (51) (51) (83) (79) (102) (95) (127) in. 4 4 5 4 6 6 8 5 6 8 6 8 8 Mm. member thickness h,1, (mm) (102) (102) (127) (102) (152) (152) (203) (127) (152) (203) (152) 1 (203) (203) in. 2/4 4 /2 3 /8 4/8 35/s 6 /4 5/e 7'/2 9/2 7 /2 93/4 7 /2 91/2 Critical edge distance Coc (mm) (70) (114) (98) (124) (92) (171) (143) (191) (241) (191) (248) (191) (241) in. 1/ 2 1'/3 2'/8 2 i/ 1/4 2/4 1/4 1/4 2I4 2/ 2'/2 Cmj,i ______ (mm) (35) (51) (38) (54) (51) (41) (41) (57) (44) (44) (70) (67) (64) Mm. edge distance in. 1/4 2 /8 3/3 4/8 43/4 41/4 4 51/4 43/4 4 6/ 6'/3 6/ for s a (mm) (44) (73) (89) (124) (121) (108) (102) (133) (121) (102) (175) (165) (162) in. 1/4 1/4 1/.4 2'/3 2'/4 2 1/8 2 /8 21/8 21/8 33/4 3 /8 31/4 Smin ______ (mm) (32) (44) (44) (64) (57) (51) (48) (60) (54) (54) (95) (86) 1 (83) Mm. anchor spacing in. 1/ /8 2 2 /8 2/ 2/4 2i4 2 31/ 2/4 2/4 33/4 3 /8 33/s for c a (mm) (41) (60) (60) (67) (60) (57) 1 (51) (79) (60) (57) (95) (86) (86) in. 2 2/4 2 /8 4 37/ 43/ 41/ 53/4 Mm. hole depth in concrete h4010 (mm) (51) (67) (67) (102) (98) (121) (114) (146) psi 84,800 84,800 84,800 84,800 84,800 Mm. specified yield strength 'a (N/mm2) (585) (585) (585) (585) (585) psi 106,000 106,000 106,000 106,000 106,000 Mm. specified ult. strength G.(N/mm2) (731) (731) (731) (731) (731) in 0.02 0.06 0.11 0.17 0.24 Effective tensile stress area Aso (mm2) (12.9) (38.7) (71.0) (109.7) (154.8) lb 2,120 6,360 11,660 18,020 25,440 Steel strength in tension No, (kN) (9.4) (28.3) (51.9) (80.2) (113.2) lb 1,640 4,470 6,635 I 6,750 12,230 15,660 I 16,594 Steel strength in shear V. (kN) (7.3) (19.9) (29.5) I (30.0) (54.4) (69.7) I (73.8) Pullout strength uncracked N,,,,. lb 1,575 NA NA 6,800 NA NA 10,585 concrete (kN) (7.0) (30.2) 1 (47.1) Anchor category3 1,2 or 3 - 1 Effectiveness factor k.. - 24 uncracked concrete4 Modification factor for - 1.0 uncracked concrete Coefficient for pryout - 1.0 2.0 Installation torque Tost ft*Ib (Nm) 4 I (5) I 20 I (27) I 40 (54) I 60 (81) I 110 (149) Axial stiffness in service /J (lb/in) I 116,1501 I 162,850 203,500 I 191,100 I 222,150 I I 170,700 207,400 1164,000 load range COV I3uncr % 60 I 42 I 29 29 I 25 21 I 19 I 24 Strength reduction factor i for tension, steel 0.75 failure modes5 Strength reduction factor for shear, steel 0.65 failure modes5 Strength reduction factor for tension, concrete 0.65 failure modes, Condition B6 Strength reduction factor 0 for shear, concrete 0.70 failure modes, Condition B6 For SI: 1 inch = 25.4 mm, llbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-in units: 1 mm = 0.03937 inches. 'See Fig. 2 2See Section 4.1.4 of this report, NA (not applicable) denotes that this value does not govern for design. 3See ACI 318-14 17.3.3 or ACI 318-11 0.4.3, as applicable. 4See ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. 5The carbon Steel KB3 is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 0.1, as applicable. 6For use with the load combinations of ACI 318-14 Section 5.3, ACI 318-11 Section 9.2 or IBC Section 1605.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, is not provided, or where pull-out or pry out strength overns. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. The notation in parenthesis is for the 2006 IBC. Page 48 of 56 TABLE 3-DESIGN INFORMATION, CARBON STEEL KB-TZ Nominal anchor diameter DESIGN INFORMATION Symbol Units 3 '8 5 '4 in.. 0.375 0.5 0.625 0.75 Anchor O.D. ________________________ • (mm) (9.5) (12.7) (15.9) (19.1) in. 1/2 2 2/4 2 31/4 31/ 4 31/ 3, Effective mm. embedment' h0, (mm) (38) (51) (70) (51) (83) (79) (102) (83) (95) (121) Mm. member thickness hmi, in. 31/ . 415 I 5 46 I (102)11(152) 618 I 5 I 618 5'/26 18 I 8 • (mm) (83) (102) 1(127) (127) (152)1(203) (127) (152) I (203) (140) (152) 1(203) (203) in. 6 43/9 4 41/9 51/2 I 41/2 7/3 I 6 02 8/4 I 6/4 12 10 I 8 9 Critical edge distance (mm) (152) (111) 1(102) (105) (140)1(114) Coc (191)1(152) (165) (222) 1(171) (305) (254) 1(203) (229) In. 8 2/5 2/3 2/4 2 /8 3 /8 31/4 91 43/ 4/ C (mm) 1 (203) (64) (64) (70) (60) (92) (83) (241) (121) (105) Mm. edge distance in. 8 5 5 53/4 53/4 61/ 57/i 5 10 /3 - 8/9 _______________________ for S • . .(mm) (203) (127) (127) (146) (146) (156) (149) (127) (267) (225) in. 8 2/ 21/2 2/4 2/9 3/3 3 5 5 4 smin _______ (mm) (203) (64) (64) (70) (60) (89) (76) (127) (127) (102) Mm. anchor spacing for c 2!In. - 8 35/i 3 /8 41/8 31/2 4i4 41/4 11 9'/2 (mm) (203) (92) (92) (105) (89) (121) (108) (241) (241) (197) in. 2 2 /8 33/i 2 /8 4 3/4 4/4 4 41/2 5/4 Mm. hole depth in concrete h0 (mm) (51) 1 (67) 1 (86) (67) (102) (98) (121) (102) 1 (117) 1 (146) lb/in2 100,000 84,800 84,800 84,800 Mm. specified yield strength fy (N/mm2) (690) (585) (585) (585) lb/in2 125,000 106,000 106,000 106,000 Mm. specified ult. strength "° (N/mm2) (862) (731) (731) (731) In 0.052 0.101 0.162 0.237 Effective tensile stress area A.N (mm 2) (33.6) (65.0) (104.6) (152.8) lb 6,500 10,705 17,170 25,120 Steel strength in tension N, (kN) (28.9) (47.6) (76.4) (111.8) lb 2,180 3,595 5,495 8.090 13,675 Steel strength in shear V, (kN) (9.7) (16.0) (24.4) (36.0) (60.8) Steel strength in shear, lb 2,180 2,255 5,495 7,600 11,745 seismic3 (kN) (9.7) (10.0) (24.4) (33.8) (52.2) Pullout strength uncracked Npunff lb 2,160 2,515 I 4,110 I I 5,515 I NA 9,145 NA 8,280 110,680 1(475) concrete (kN) (kN) (9.6) (11.2) I (18.3) I (24.5) (40.7) (36.8) Pullout strength cracked lb NA 2,270 I 3,160 I NA I 4,915 I NA NA concrete (kN) (10.1) I (14.1) I (21.9) Anchor category5 2 1 Effectiveness factor uncracked concrete 24 Effectiveness factor k, cracked concrete6 17 1.0 Coefficient for pryout strength, kcp 1.0 2.0 1.0 2.0 Strength reduction factor 0 for tension, steel failure 0.75 mode? Strength reduction factor 0 for shear, steel failure 0.65 modes8 Strength reduction 0 factor for tension, concrete 0.55 0.65 failure modes or pullout, Condition B9 Strength reduction 0 factor for shear, concrete failure 0.70 modes, Condition B9 Axial stiffness in service load I I lb/in. 600,000 135,000 range 10 For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-inch units: 1 mm = 0.03937 inches. 'See Fig. 2. 2For sand-lightweight or normal-weight concrete over metal deck, see Figures 5A, 5B, 5C and SD and Tables 5 and 6. 3See Section 4.1.8 of this report. 4For all design cases P.p=1.0. NA (not applicable) denotes that this value does not control for design. See Section 4.1.4 of this report. 5See ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. 6See ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. "For all design cases Wc.N =1.0. The appropriate effectiveness factor for cracked concrete (kg,) or uncracked concrete must be used. 8The KB-TZ is ductile steel element as defined by ACI 318-14 2.3 orACI 318-11 0.1, as applicable. 9For use with the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 0.4.3(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. '°Mean values shown, actual stiffness may vary considerably depending on concrete strength, loading and geometry of application. Page 49 of 56 TABLE 4: FASTENERS. LAGSCREW Page 50 of 56 Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections 1,2,3,4 for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for t5<1/4") or ASTM A 36 steel side plate (for t5=1/4") (tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D) 00 0fl 00 • ,J, 3 9 CL D.LL .I , U cc,EE U)E U) C U E d 0 - - oS' oS'E - dO 8 02 0-0 C') w u99 C') CS fn II II • o 0U) ii o 00 ii o 00g. ii 001 o w ii 01 ii . Ou ii 0 ii 0wu 0 OZ t8 0 Z11 Z Z11 Z.L. Z11 Z.1 75 Z.L Z11 Z.L Z11 Z.1 AlZ.L Z11 Z.L Al Z.L 711 Z1 in. in. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. IN. lbs. lbs. IN. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. 0.075 114 170 130 160 120 150 110 150 110 150 100 140 100 140 100 130 90 130 90 130 90 (14 gage) 5116 220 160 200 140 190 130 190 130 190 130 180 120 180 120 170 110 170 110 160 100 318 220 160 200 140 200 130 190 130 190 120 180 120 180 120 170 110 170 100 170 100 0.105 1/4 180 140 170 130 160 120 160 120 160 110 150 110 150 110 140 100 140 100 140 90 (12 gage) 5/16 230 170 210 150 200 140 200 140 190 130 190 130 190 120 180 110 170 110 170 110 3/8 230 160 210 140 200 140 200 130 200 130 190 120 190 120 180 110 180 110 170 110 0.120 1/4 190 150 180 130 170 120 170 120 160 120 160 110 160 110 150 100 150 100 140 100 (11 gage) 5/16 230 170 210 150 210 140 200 140 200 140 190 130 190 130 180 120 180 120 180 110 3/8 240 170 220 150 210 140 210 140 200 130 200 130 190 120 180 110 180 110 180 110 0.134 1/4 200 150 180 140 180 130 170 130 170 120 160 120 160 110 150 110 150 100 150 100 (10gage) 5/16 240 180 220 160 210 150 210 140 200 140 200 130 200 130 190 120 180 120 180 120 3/8 240 170 220 150 220 140 210 140 210 140 200 130 200 130 190 120 190 120 180 110 0.179 1/4 220 170 210 150 200 150 200 140 190 140 190 130 190 130 180 120 170 120 170 120 (7 gage) 5/16 260 190 240 170 230 160 230 160 230 150 220 150 220 150 210 130 200 130 200 130 3/8 270 190 250 170 240 160 240 160 230 150 220 140 220 140 210 130 210 130 200 130 0.239 1/4 240 180 220 160 210 150 210 150 200 140 190 140 190 130 180 120 180 120 180 120 (3 gage) 5/16 300 220 280 190 270 180 260 180 260 170 250 160 250 160 230 150 230 150 230 140 318 310. 220 280 190 270 180 270 180 260 170 250 160 250 160 240 140 230 140 230 140 7/16 420 290 390 260 380 240 370 240 360 230 350 220 350 220 330 200 330 200 320 190] 1/2 510 340 470 300 460 290 450 280 440 270 430 260 420 260 400 240 400 230 390 230 5/8 770 490 710 430 680 400 680 400 660 380 640 370 630 360 600 330 590 330 580 320 3/4 1110 670 1020 590 980 560 970 550 950 530 920 500 910 500 860 450 850 450 840 440 7/8 1510 880 1390 780 1330 730 1320 710 1280 690 1250 650 1230 650 1170 590 1160 590 1140 570 1 1940 1100 1780 960 1710 910 1700 890 1650 860 1600 820 1590 810 1500 740 1480 730 1460 710 114 1/4 240 180 220 160 210 150 210 150 200 140 200 140 190 130 180 120 180 120 180 120 5/16 310 220 280 200 270 180 270 180 260 170 250 170 250 160 230 150 230 150 230 140 3/8 320 220 290 190 280 180 270 180 270 170 260 160 250 160 240 150 240 140 230 140 7/16 480 320 440 280 420 270 420 260 410 250 390 240 390 230 370 220 360 210 360 210 1/2 580 390 540 340 520 320 510 320 500 310 480 290 480 290 460 270 450 260 440 260 518 850 ....,... 530 780 470 750 440 740 440 720 420 700 400 690 400 660 370 650 360 640 350 3/4 1200 730 1100 640 1060 600 1050 590 1020 570 990 540 980 530 930 490 920 480 900 470 7/8 1600 930 1470 820 1410 770 1400 750 1360 720 1320 690 1310 680 1240 630 1220 620 1200 600 1 2040 1150 1870 1000 1800 950 1780 930 1730 900 1680 850 1660 840 1570 770 1550 760 1530 740 I. Tabulated lateral design values. Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Tabulated lateral design values, Z. are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p. into the main member equal to 8D; dowel bearing strengths, F, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, FOb, of 70,000 psi for D = 1/4", 60,000 psi for D = 5/16", and 45,000 psi for D 23/8. Where the lag screw penetration, p, is less than 8D but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration. The length of lag screw penetration, p, not including the length of the tapered tip. E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, P,,m• Copyright© American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorize AMERICAN WOOD COUNCIL Page 51 o 6 Table 12.2A Lag Screw Reference Withdrawal Values, W' Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member shall not include the length of the tapered tip (see 12.2.1.1). Specific Gravity, Lag Screw Diameter, D ________ _______ ___ _______ G2 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4" 7/8" 1" 1-1/8" 1-1/4" 0.73 397 469 538 604 668 789 905 1016 1123 1226 1327 0.71 381 450 516 579 640 757 868 974 1077 1176 1273 0.68 [_0.67 357 422 484 543 600 709 813 913 1009 1103 1193 349 413 473 531 587 694 796 893 _987 1078 1167J 0.58 [_0.55 281 332 381 428 473 559 641 719 795 869 940 260 307 352 395 437 516 592 664 734 802 868] 0.51 232 274 314 353 390 461 528 593 656 716 775 L0.50 225 266 305 342 378 447 513 576 636 695 752j 0.49 218 258 296 332 367 434 498 559 617 674 730 6J [ 0.47 205 242 278 312 345 408 467 525 580 634 0.46 199 235 269 302 334 395 453 508 562 613 664 L 0.44 186 220 252 283 312 369 423 475 525 574 621 1 0.43 179 212 243 273 302 357 409 459 508 554 600 579 1 [_0.42 173 205 235 264 291 344 395 443 490 535 0.41 167 198 226 254 281 332 381 428 473 516 559 1 0.40 161 190 218 245 271 320 367 412 455 497 538] 0.39 155 183 210 236 261 308 353 397 438 479 518 0.38 149 176 202 227 251 296 340 381 422 461 498 ] 0.37 143 169 194 218 241 285 326 367 405 443 479 1 0.36 137 163 186 209 231 273 313 352 389 425 460 1 0.35 132 156 179 200 222 262 300 337 373 407 441 0.31 110 130 149 167 185 218 250 281 311 339 367 1 Tabulated withdrawal desian values. W. for las screw connections shall be multinlied by all anolicable adjustment factors (see Table ll...fl. Specific gravity, G, shall be determined in accordance with Table 12.3.3A. adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'. W = 1380 G5'2 D (12.2-3) The nail or spike reference withdrawal design value, W, in lbs/in, of penetration, for a smooth shank stainless steel nail or spike driven into the side grain of a wood member, with the nail or spike axis perpendicu- lar to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, within the range of specific gravities, G, and nail or spike diameters, D, given in Table 12.21). Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3. 1) to obtain adjusted withdrawal design values, W'. W = 465 G3/2 D (12.2-4) For calculation of the fastener reference with- drawal design value in pounds, the unit reference with- drawal design value in lbs/in, of fastener penetration from 12.2.3.1a or 12.2.3.1b shall be multiplied by the length of fastener penetration, Pt, into the wood mem- ber. 12.2.3.2 Deformed shank nails (a) The reference withdrawal design value, in lbs/in, of ring shank penetration, for a Roof Sheathing Ring Shank nail or Post-Frame Ring Shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2E or Equation 12.2-5, within the range of specific gravities and nail diameters given in Table 12.2E. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Ta- ble 11.3.1) to obtain adjusted withdrawal design values, w'. W = 1800 G2 D (12.2-5) Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorize1l. AMERICAN WOOD COUNCIL Page 520 56 - -. ..- . .. t •' -.. ,..*,-...- ,.... -.. s... ...-... . • q. TABLE .5: UNISTRUT GENERAL ENGINEERING CATALOG-NO.1 Page 53 of 56 UN ISTRUT CHANNEL SELECTION CHART Channel Dimensions Material & Thickness Hole Pattern Styles Channel Width Height Steel Stainless Steel Alum. HS T KO SL DS H3 In (mm) In (mm) gauge gauge In (mm') Steel Only 131000 154 (41.3) 154(41.3) 12 ga 12 ga 0.109 (2.8) U 0 0 0 111111 U P1100 154(41.3) 154(41.3) 14 ga 14 ga - U 0 - - P2000 154(41.3) 1%(41.3) 16 ga - - U U 111111 U - - P3000 154(41.3) 134(34.9) 12 ga - - U U U U - - P3300 1% (41.3) 54(22.2) 129a 12 ga - U U - U - - P4000 154(41.3) '3M (20.6) 16 ga 16 ga 0.078 (2.0) • 0 - - - P4100 154(41.3) '3/16(20.6) 14 ga - - U U - U - - P5000 154(41.3) 354(82.6) `12 ga 12 ga - U . U U U - - P5500 1 154(41.3) 2Yi& (61.9) 1 12 ga - 0.109(2R) U U 0 U - - CHANNELS & COMBINATIONS IN DESCENDING ORDER OF STRENGTH Area Weight I s Allow. Moment Channel In2 (cm2) IbsIft (kg/rn) In4 (cm4) In3(cm3) In-lbs (N.m) 1.793 6.10 6.227 1.916 48,180 P5001 11.57 9.1 259.2 31.4 5,440 1.965 6.68 4.068 1.669 41,980 P1004A 12.68 : 9.9 169.3 27.4 4,740 1.452 4.94 2.805 1.151 28,940 P5501 9.37 7.3 116.8 18.9 3.270 2.221 7.55 1.856 1.142 28,720 P1001C41 14.33 11.2 77.2 18.7 3,250 0.897 3.05 1.098 0.627 15,770 P5000 5.78 4.5 45.7 10.3 1.780 1.111 3.78 0.928 0.571 14,360 P1001 7.16 5.6 38.6 9.4 1.620 0.835 2.84 0.733 0.451 11,340 P1101 5.39 4.2 30.5 7.4 1.280 1.000 3.40 0.591 0.430 10,810 P3001 6.45 5.1 24.6 7.0 1.220 0.726 2.47 0.522 0.390 9,820 P5500 4.68 3.7 21.7 6.4 1,110 0.684 2.32 0.618 0.381 9,570 P2001 4.41 3.5 25.7 6.2 1,080 0.489 2.23 0.279 0.297 7,480 P9200 3.16 3.3 11.6 4.9 850 0.492 1.67 0.358 0.265 6,670 A5000 3.17 2.5 14.9 4.3 750 0.609 2.07 0.302 0.242 6.070 A1001 3.93 3.1 12.6 4.0 690 0.387 1.88 0.166 0.205 5,150 P9000 2.50 2.8 6.9 3.4 580 0.555 1.89 0.185 0.202 5,070 P1000 3.58 2.8 7.7 3.3 570 0.790 2.69 0.176 0.201 5,060 P3301 5.10 4.0 7.3 3.3 570 Combinations not shown in catalog are available on special order. Consult factory for more details. Area Weight . I s Allow. Moment Channel In2 (cm') IbsIft (kg/rn) In' (cm4) In3(cm3) In-lbs (N.m) 0.418 1.42 0.145 0.162 4,060 P1100 2.69 2.1 6.0 2.6 460 0.500 1.70 0.120 0.153 3,850 P3000 3.23 2.5 5.0 2.5 430 0.579 1.97 0.117 0.143 3,610 P4101 3.74 2.9 4.9 2.4 410 0.342 1.16 0.125 0.140 3,520 P2000 2.21 1.7 5.2. 2.3 400 0.478 1.66 0.104 0.128 3.210 P4001 3.14 2.5 4.3 2.1 360 0.459 1.56 0.077 0.103 2,590 A3301 2.96 2.3 3.2 1.7 290 0.305 1.04 0.061 0.086 2,170 A1000 1.96 1.5 2.5 1.4 250 0.395 1.34 0.037 0.072 1,800 P3300 2.55 2.0 1.5 1.2 200 0.264 0.90 0.037 0.058 1,470 A4001 1.70 1.3 1.5 .1.0 170 0.213 0.73 0.045 0.055 1,400 P6001 1.38 1.1 1.9 0.9 160 0.290 0.98 0.026 0.054 1,360 P4100 1.87 1.5 1.1 0.9 150 0.244 0.83 0.023 0.049 1,230 P4000 1.57 1.2 0.9 0.8 140 0.230 0.78 0.017 0.038 950 A3300 1.48 1.2 0.7 0.6 110 0.132 0.45 0.008 0.022 560 A4000 0.85 0.7 0.3 0.4 60 0.107 0.36 0.009 0.020 510 P6000 0.69 0.5 0.4 0.3 60 0.148 0.50 0.007 0.018 460 P7001 0.96 0.8 0.3 0.3 50 0.074 0.25 0.002 0.007 170 P7000 0.48 0.4 0.1 0.1 20 1/" Framing System M 23 UNISTRUT P1001 T 1/8° (41.3) WI/lOG Ft: 321 Lbs (478 kg/100 m) Allowable Moment 12,200 In-Lbs (1,378 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 C P1001 A 4; 31/4 (82.6) Lt (18.0) 2 (23.3) Wt/100 Ft: 378 Lbs (562 kg/laO m) Allowable Moment 18,640 In-Lbs (2,110 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 3 P1001 B 1 5N (41.3) 3 1/4" -- (82.6) LL WI/lOG Ft: 378 Lbs (562 kg/laO m) Allowable Moment 18,640 In-Lbs (2,110 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 A3 1W (41.3) 3JILJIi; (82.6) 1573 .761".864 (19.3) 2 (21.9) 1 %° r 1 .3) 2.472° I-I-(62.S) (123.8) 4 1 4i L- I j,(61- 2.403° I 0) 1 %° Tm . 41,° fi! (123.8) I-I .778° - L .847° (19.8) , (21.5) WI/lOG Ft: 378 Lbs (562 kg/100 m) Allowable Moment 15,950 In-Lbs (1,800 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 B3 WI/lOG Ft: 566 Lbs (843 kg/100 m) Allowable Moment 31,840 In-Lbs (3,600 N'm) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 D3 Wt/100 Ft: 566 Lbs (843kg/100m) Allowable Moment 32,770 In-Lbs (3,700 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) P1003 4W (123.8) .778 .84r (19.8) ., (21.5) WI/lOG Ft: 566 Lbs (843 kg/ba m) Allowable Moment 37,550 In-Lbs (4,240 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 C41 31/4" (82.6) I- 31/4° (82.6) L 2 WI/lOG Ft: 755 Lbs (1,124 kg/lOG m) Allowable Moment 28,720 In-Lbs (3,250 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) WI/lOG Ft: 566 Lbs (843 kg/100 m) Allowable Moment 17,550 In-Lbs (1,980 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 C3 31/40 (82.6 T 1.896° 14 JJ(48.2) 1.930° I I 1.320' (49.0) - 2 (33.5) WI/ba Ft: 566 Lbs (843 kg/100 m) Allowable Moment 18,680 In-Lbs (2,110 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) 147,f," 11%4° 1.245° (44.1) (30.6) 2 (31.6) L- 41 2° 89° (102.4) (12.4) WI/bOO Ft: 333 Lbs (495 kg/lOG m) Allowable Moment 6,240 In-Lbs (700 N•m) 12 Gauge Nominal Thickness .105° (2.7mm) P1004 A 1%" 1 %° (46)7A 4W (123.8) -f J6) 4,, ( - 01 2 (11.1) WI/lOG Ft: 668 Lbs (994 kg/100 m) Allowable Moment 41,970 In-Lbs (4,740 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) 3 (82 Channel Finishes: PL, GR, HG, PG, ZD; Standard Lengths: 10'& 20' Page 55öf56 Unistrut Adjustable Pipe Clamps are manufactured from glass-reinforced polyurethane and are adjustable to accommodate a wide range of outside diameters. They can be uti- lized with a variety of piping systems including: PVC, fiberglass, copper, rigid steel conduit and PVC coated rigid steel conduit. Care should be taken not to exceed ft Ilk ,f tn,nn nn th ,1inthI Part Number O.D. Pipe Size (in.) Design Load Type I Type 2 Lbs (kN) Lbs (kN) Torque FtiLbs (Nm) Wt/100 PCs Lbs (kg) 200-3100 ½- 11h 135 (0.6) 65(0.3) 0.8 p) 3(1.4) 200-3110 1½- 2'/4 135 (0.6) 65(0.3) 3(4) 5(2.3) 200-3120 2¼- 3¼ 145 (0.6) 70(0.3) 3(4) 5(2.3) 200-3130 3-4 215 (1.0) 70(0.3) 3(4) 8(3.6) 200-3140 4-6½ 215(1.0) 70(0.3) 3(4) 10(4.5) Two Hole Pipe Straps are designed for use in securing pipe, conduit and ducts to Channel. Two hole fiberglass straps can also be used independently from the channel for surface mounting. All sizes of the straps are suitable for load bearing applications. Material: fire-retardant, glass-reinforced polyester resin. For extreme chemical environments, the straps can be manufac- tured from vinyl ester resin. Larger diameter straps for special applications are also available. Contact the factory for pricing and availability of vinyl ester and large diameter straps. Two hole pipe straps should not be torqued above recommended values. Notes: Bolts and channel nuts are sold separately. When bolting onto 154° channel a 1¼° long bolt is reqd. NoClamps U NISTRUT ADJUSTABLE PIPE CLAMPS - pipe straps. Design loads shown represent a 3:1 safety factor. RIGID PIPE CLAMPS PVC, Sch. 80 Design Loads FRP Bolt Part Nominal & Rigid Metal Type I Type 2 FRP Bolt Torque WUIOO PCs Number Size (in.) In (mm) Lbs (kN) Lbs (kN) Size (in.) FtlLbs (N.m) Lbs (kg) FPCR-050 ½ 0.840 (21.3) 225(1.0) 90(0.4) %x 1¼ 3(1.4) FPCR-075 3/4 1.050 (26.7) 225(l.0) 90(0.4) 34 x 1¼ 3(1.4) FPCR-100 1 1.315 (33.4) 225 (1.0) 90(0.4) 34 x 1¼ 4(1.8) FPCR-125 1¼ 1.660 (42.2) 225(1.0) 90(0.4) ½ x 1¼ 5(2.3) FPCR-150 11h 1.900 (48.3) 225(1.0) 90(0.4) 34x1¼ 5(2.3) FPCR-200 2 2.375 (60.3) 225(1.0) 90(0.4) 34 x 1¼ 3 (4) 5(2.3) FPCR-250 2½ 2.875 (73.0) 225(1.0) 90(0.4) ½ x 1¼ 7(3.2) FPCR-300 3 3.500 (88.9) 225(1.0) 90(0.4) ½ x 11/4 10(4.5) FPCR-400 4 4.500 (114.3) 300 (1.3) 125 (0.6) ½ x 11/4 12(5.4) FPCR-600 6 6.625 (168.3) 300 (1.3) 125(0.6) ½ x 11/4 15(6.8) FPCR-800 8 8.625 (219.1) . 300 (1.3) 125 (0.6) 34 x 1114 18(8.1) *Design loads shown represent a 3:1 safety factor. Rigid Pipe Clamps resemble the more traditional style of pipe clamps and are sized based on the pipe inside diameter or nominal size. Polyurethane clamps are recommended for applications up to 160°F. For high temperature applications (up to 230°F). Care should be taken not to exceed the recommended torque values of the rigid pipe clamps. Material: glass-reinforced polyurethane. Two HOLE PIPE STRAPS Design Load Bolt Material Part Dim. A Dim. B Size Thick. Type 1 Type2 Torque Wt!100 PCs No. In (mm) In (mm) (in.) In (mm) Lbs (kN) Lbs (kN) Ft!Lbs (N.m) Lbs (kg) FPS200 2.375 6.375 ½ ¼ 135 50 4 14 60.33 161.93 6.4 0.60 0.22 5 6.4 FPS25O 2.875 6.875 ½ 1/4 135 50 4 17 73.03 174.63 6.4 0.60 0.22 5 7.7 3.500 7.500 ¼ 135 50 4 20 FPS300 88.90 190.50 ½ 6.4 0.60 0.22 5 9.1 FPS35O 4.000 8.000 ½ ¼ 135 50 4 33 101.60 203.20 6.4 0.60 0.22 5 15.0 FPS400 4.500 8.500 ½ 1/4 175 60 4 23 114.30 215.90 6.4 0.78 0.27 5 10.4 FPS500 5.563 9.563 ½ ¼ 175 60 4 39 141.30 242.90 6.4 0.78 0.27 5 17.7 FPS600 6.625 10.625 16 1/4 175 60 4 39 168.28 269.88 6.4 0.78 0.27 5 17.7 FPS800 8.625 12.625 ½ ¼ 225 125 4 51 219.08 320.68 6.4 1.00 0.56 5 23.1 FPS1000 10.750 15.750 ¼ 225 125 10 77 273.05 400.05 6.4 1.00 0.56 14 34.9 FPS1200 12.750 16.250 ½ '4 225 125 10 83 32385 412.75 6.4 1.00 0.56 14 37.6 FPS1400 14.000 18.000 ½ 34 250 150 10 125 355.60 457.20 9.5 1.11 0.67 14 56.7 16.000 20.000 3% 250 150 10 143 FPS1600 406.40 508.00 ½ 9.5 1.11 0.67 14 64.9 FPS1800 18.000 23.000 34 250 150 10 160 457.20 584.20 9.5 1.11 0.67 14 72.6 Design loads shown represent a 3:1 safety factor. Fiberglass LAMAR . NN. ENGINEERING L+ST U RECEIVED JUL 16 2019 CITY OF CAFSBAD STRUCTURAL CALCULAUTLIONSION PROJECT: LEGQLAIS[D CALIFORNIA RESORT NODE 4 -)VOK-N-BOWL - (STL) EGOLAND DR. CARLSBAD SAN DIEGO, CA 92008 July 11, 2019 IN www.lamareng.com Page 1 of 49 1 Luis Labrada Proyecto: Nodes 4 217 Landis Avenue LAMAR Date: 05/07/19 Chula Vista, CA 91910 NMENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com Contents APPENDIX I. DESIGN ATTACHMENT. ANTENNAS............................................................................................................3 APPENDIX II. DESIGN ATTACHMENT. RADIOS . .............................................................................................................. 10 APPENDIX III. DESIGN ATTACHMENT. CABINET EQUIPMENT . ............... .................... .... ... ............ ...............................18 APPENDIXIV. SCREEN WALL ...........................................................................................................................................25 APPENDIX V. ROOF VERIFICATION ..................................................................................................................................31 APPENDIXVI. TABLES ........................................................................................................................................................34 Page 2 of 49 Luis Labrada Proyecto: Nodes 4 LA MAK217Landis Avenue Date: 05/07/19 ChuIaVista, CA 91910 MENGINEERING Engineer: M.R P 619-370-9515 www.lamareng.com - APPENDIX I. DESIGN ATTACHMENT. ANTENNAS Page 3 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com IAMAR JP 6jedt: Nodes 4 IfJENGINEERING Engineer: M.R I SEISMIC DESING ANTENNA I DESCRIPTION Description: QU INTEL QS46512-2ANTEN NA W= 75.0 Lbs bldg height = 37.30 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SOS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 75.0 Lbs. FpH = (0.64 * Wp )I1.4 = 34.3 Lbs FpH = 0.46 * Wp = 34.5 Lbs HORIZONTAL FpV = 0.28 * Wp = 21.0 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 z/h= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)I(Rp*Ip)*(1 +2*z/h) = 28.4 Lbs. Verifications FpH max = 1.6 * Sos * 1 * WP = 94.6 Lbs. > 28.4 Lbs. FpH mm = 0.3 * SOS * l * WP = 17.7 Lbs. < 28.4 Lbs. Page 4 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 4 Date: 07/05/2019 Engineer:M.R I ANCHORAGE DESIGN (SEISMIC) ANTENNA I GEOMETRY e= 1.25 ft d= 2.10 ft -y Fx d e FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.6 Lbs Dy = 37.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 26.7 Lbs Vertical force, Ey = 10.5 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 71.3 Lbs Max shear force per anchor = Dy + Ey = 48.0 Lbs Page 5 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodes 4 Date: 07105/2019 Engineer:M.R I WIND DESING ANTENNA I Description: QU INTEL QS46512-2 ANTENNA W = 75.0 Lbs bldg height = 37.3 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or 0) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = C 1.0 110.0 mph 1.0'Flat ANALYSIS A = 1.47 For h = 37.3 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure PS = A x Kzt x I x ps30 = 23.35 psf Horizontal PS = A x Kzt x I x ps30 = 20.26 psf Roof Uplift Applied horizontal force, Fph = Ps x (bxc)/2 = 101.1 Lbs Applied vertical force, Fpv = Ps x (axc)/2 = 18.2 Lbs Page 6 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com 'iVWiri1 L . I /W 1Ik\1 C I VIL + STRUCIUAAL Project: Nodes 4 Date: 07105/2019 Engineer:M.R I ANCHORAGE DESIGN (WIND) ANTENNA I GEOMETRY b Fph - d e= 1.25 ft V d= 2.13 ft Wp a= 0.90 ft e b= 4.33 ft c= 1.00 ft FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx = 44.6 Lbs Dy = 37.5 Lbs FORCES WIND (W) Horizontal force, Wx = 61.4 Lbs Vertical force, Wy = 9.1 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 106.0 Lbs Max shear force per anchor = Dy + Wy = 46.6 Lbs Page 7 of 49 I Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 4 Date: 07/05/2019 Engineer: M.R I ELEMENT & CONNECTIONS DESIGN ANTENNA I A Fx = Dx+(Ex or Wx) = 106.0 Lbs B Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 1.0 Antennas Total Quantity 3 ft AL H= 3.00 ft Lc= 12.00 ft B 12 ft 4 UNISTRUT HORIZONTAL DESIGN Number of radios pair Odd number of radios M. max = PL/8 (n-1/n) ,.p M.max = PL/8 (n+lln) 1 R=P(n-1)I2 I I It R=Pn/2 L4-I-4-c-I-c -1 n= 2 ___ n= I- 1-nc C = 6.00 ft c= 12.00 ft Px= 106.0 Lbs M. Mmax (y-y) = 318.1 Ft-Lbs 3817.7 In-Lbs Py= 48.0 Lbs M. Mmax (x-x) = 144.0 Ft-Lbs 1728.0 In-Lbs Use: Unistrut: P1000 1 5/8 x I 5/8-12ga Nominal Thickness Single Channel Allowable Moment:• 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Demand Capacity Ratio Status 3817.7 In-Lbs 5070.00 In-Lbs 0.75 [ OK ] Demand Capacity Pull Out Ratio Status 1728.0 In-Lbs 5070.00 In-Lbs 0.34 OK 1 Page 8 of 49 n A Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com - CIVIL + SVVLICIVAAL Project: Nodes 4 Date: 07/05/2019 Engineer: M.R ELEMENT & CONNECTIONS DESIGN ANTENNA A Fx = Dx+(Ex or Wx) = 106.0 Lbs - B Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 1.0 Antennas Total Quantity 3 ft H= 3.0 ft Lc= 12.0 ft r.-dD B 12ft , CONNECTION A: PIPE MOUNT TO UNISTRUT Radio Status Shear = 48.0 Lbs. 0.53 OK Pull Out = 106.0 Lbs 0.48 L OK Use: Ridge Pipe Clamps: FPCR-075 General Engineering Catalog - No. 17- Page 203 Thickness: 3/4 -in Length: 1.05 in FR? Bolt: 318"xl 1/4 Allowable Shear: 90 Lbs. Allowable Pull-Out: 220 Lbs CONNECTION B: UNISTRUT TO STEEL PIPE Demand: Shear = 48.0 Lbs Pull Out = 106.0 Lbs Capacity: Use: D-Bolt: 1/2 in. Fv = 24 ksi n Bolt: 1 Ft = 45 ksi Material: A307 Demand Capacity Shear Status 48.0 Lbs 4712.4 Lbs [ OK I Demand Capacity Pull Out Status 106.0 Lbs > 8835.7 Lbs [ OK] Page 9 of 49 Luis Labrada 217 Landis Avenue LP N/ilk Proyecto: Nodes 4 Date: 05/07/19 Chula Vista, CA 91910 NUENGINEERING Engineer: M.R P: 619-370-9515 www.lamarenci.com APPENDIX II. DESIGN ATTACHMENT. RADIOS, Page 10 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com Project: Nodes 4 LAMAR Date: 07/05/2019 INENGINEERING Engineer: M.R SEISMIC DESING RADIO DESCRIPTION Description: Alu Radio Units W = 59.5 Lbs bldg height = 37.3 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 59.5 Lbs. FpH = (0.64 * Wp )/1.4 = 27.2 Lbs FpH = 0.46 * Wp = 27.37 Lbs HORIZONTAL FpV = 0.28 *Wp = 16.66 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*Ip)*(1+2*z/h) = 22.5 Lbs. Verifications FpH max = 1.6 * 5Os * I p * WP= 75.0 Lbs. > 22.5 Lbs. FpH min = 0.3 * 5OS ' * I p * Wp = 14.1 Lbs. < 22.5 Lbs. Page 11 of 49 Wall b Fph Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAM AR Project: Nodes 4 Date: 07/05/2019 I ENGINEERING Engineer:M.R ,Ufl.flfl:.,CIfl,.fl I DESIGN FORCES (SEISMIC) RADIO GEOMETRY a l b" Plan Radio Dimensions a= 0.92 ft b= 2.10 ft C = 0.92 ft Support = 4 Quantity Elevation FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a/4 = 13.7 Lbs*ft Dx= 6.5 Lbs Dy= 14.9 Lbs FORCES SEISMIC (E) Applied horizontal force, Ex = FphI4 = 5.6 Lbs Applied vertical force, Ey = Fpvl4 = 4.2 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 12.1 tbs Max shear force per anchor = Dy + Ey = 19.0 Lbs Page 12 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR Project: Nodes 4 Date: 07105/2019 ENGINEERING Engineer:M.R WIND DESING RADIO DESCRIPTION Description: Alu Radio Units W = 59.5 Lbs bldg height = 37.3 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS C 1.0 110.0 mph 1.0 Flat A= 1.47 ps30 = 15.90 13.80 Wind Pressure ps = Ax Kzt x Ix ps30 = ps = Ax Kzt x lx ps30 = For h = 37.295 exposure C see fig 6-2 Psf Horizontal Conservative Psf Roof Uplift Conservative 23.35 psf Horizontal 20.26 psf Roof Uplift Page 13 of 49 tFpv Suction Fph Suction Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodes 4 Date: 07/05/2019 Engineer:M.R I DESIGN FORCES (WIND) RADIO GEOMETRY Wal l4__ a I b Plan Radio Dimensions 0.92 ft b = 2.10 ft Elevation c= 0.92 ft Support = 4 Quantity FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a14 = 13.7 Lbs*ft Dx = 6.5 Lbs Dy= 14.9 Lbs FORCES WIND (W) Applied horizontal force, Wx = Ps x (bxc)14 = 11.3 Lbs Applied vertical force, Wy = Ps x (axc)14 = 4.3 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 17.8 Lbs Max shear force per anchor = Dy + Wy = 19.2 Lbs Page 14 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING 1.fl.p..mrnrnrna. Project: Nodes 4 Date: 07/05/2019 Engineer: M.R ELEMENT & CONNECTIONS DESIGN Fx = Dx+(Ex or Wx) = 17.8 Lbs Fy = Dy+(Ey or Wy) = 19.2 Lbs Q = 2.0 NO of radios per vertical unist. 3.0 H= 3.00 ft Lc= 12.00 ft 12 ft UNISTRUT VERTICAL DESIGN P= 17.8 Lbs jP P M. Mmax = PL/3 = 8.9 Ft.-Lbs. Status 106.8 In.-Lbs. [ OK 1 Use: Unistrut: P1000 1 5/8 x I 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 CONNECTION A - CHANNEL NUTS WITH SPRING Status Shear = 19.2 Lbs OK Pull Out = 17.8 Lbs OK F. Use: Channel Nuts: 3/8"-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1/2" Mm. General Engineering Catalog - No. 17 Page 68 Page 15 of 49 A A Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 4 Date: 07/05/2019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN .r-11] l. Fx = Dx+(Ex or Wx) = 17.8 Lbs Fy = Dy+(Ey or WY) = 19.2 Lbs Q = 2.0 N° of radios per vertical unist. 3.0 H= 3.0 ft Lc= 12.0 ft 12 ft UNISTRUT VERTICAL DESIGN P= 17.8 Lbs jP P M. Mmax = PLI3 = 8.9 Ft.-Lbs. Status 106.8 In.-Lbs. OK I- Use: Unistrut: P1000 1 5/8 x I 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 CONNECTION B CHANNEL NUTS WITH SPRING Shear = 38.3 Lbs Pull Out = 35.6 Lbs Use: Channel Nuts: 3/8-16 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1/2" Mm Status r OK OK i General Engineering Catalog - No. 17- Page 66 General Engineering Catalog - No. 17 Page 68 Page 16 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR HENGINEERING Project: Nodes 4 Date: 07/05/2019 Engineer: M.R ELEMENT & CONNECTIONS DESIGN Fx = Dx+(Ex or Wx) = 17.8 Lbs Fy = Dy+(Ey or Wy) = 19.2 Lbs Q = 13.0 Radios Total Quantity 3.0 H= 3.00 ft x Lc= 12.00 ft I ,.t 12 ft 4 UNISTRUT HORIZONTAL DESIGN Lbs Px = 35.6 M. Mmax (y-y) = 797.1 9566 Ft.-Lbs. In -Lbs. Status L OKl C4.C ..L4.C4CJ Im-c Py = 38.3 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 858.5 Ft.-Lbs. Status n = 15 10302 !n.-Lbs. [OK ] C = 0.80 ft Use: Unistrut: PIOOIA (2)1 5/8 x 1 5/8-12ga Nominal Thickness Single Channel Allowable Moment:: 18640 In-Lbs General Engineering Catalog - No. 17- Page 23 CONNECTION C BOLT DESIGN Reaction unistrut horizontal Ry = Py(n-1 )/2 -' Shear = 268.3 Lbs Rx = Px(n-1)I2 -' Pull Out = 249.1 Lbs Use: D-Bolt: 3/8 in. Fv = 24 ksi n Bolt: 2 Ft = 45 ksi Material: A307 Allowable Shear > Max. Shear Status 5301.4 Lbs > 268.3 Lbs 1110K1 Allowable Pull-Out > Max. Shear Status 9940.2 Lbs > 249.1 Lbs rOK1 Page 17 of 49 Luis Labrada 217 Landis Avenue LAMARProyecto: Nodes 4 Date: 05/07/19 Chula Vista, CA 91910 IENGINEERING Engineer: M.R P: 619-370-9515 www.lamarenq.com APPENDIX III. DESIGN ATTACHMENT. CABINET EQUIPMENT. Page 18 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA91910 P:619.370-9515 www.lamareng.com CIVIL + STAUCTUR+L1 Project: Nodes 4 Date: 07/05/2019 Engineer: M.R SEISMIC DESING CABINET DESCRIPTION Description: BBU CABINET W = 382.0 Lbs bldg height = 37.3 ft ELEMENT DESIGN (SEISMIC) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = 382.0 Lbs. FpH = (0.64 * Wp )I1.4 = 174.63. Lbs FpH = 0.46 * Wp = 175.72 Lbs HORIZONTAL FpV = 0.28 * Wp = 106.96 Lbs UP OR DOWN ap = 1.0 'Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh = 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*Ip)*(1+2*z/h) = 144.5 Lbs. Verifications FpH max = 1.6* SOS * I p WP = 481.6 Lbs. > 144.5 Lbs. [OK 1 FPH min = 0.3 * 5OS * p * Wp 90.3 Lbs. < 144.5 Lbs. [OK I Page 19 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com. LWANXTIEVU1111 Wal RE, M + SIPUC1URALI Project: Nodes 4 -Date: 07/05/2019 Engineer:M.R I DESIGN FORCES (SEISMIC) I CABINET I GEOMETRY C 0 1 aI I Plan a= 2.25 ft b= 2.70 ft C = 2.30 ft Support= 4 t I Fpv Wall a 1111fla Elevation FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a14 = 214.9 Lbs*ft Dx = 79.6 Lbs Dy = 95.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 161.4 Lbs Vertical force, Ey = 26.7 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 241 Lbs Max shear force per anchor = Dy + Ey = 122 Lbs .2 Page 20 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR flENGINEERING Project: Nodes 4 Date: 07/05/2019 Engineer:M.R WIND DESING CABINET DESCRIPTION Description: BBU CABINET W= 382 Lbs bldg height = 37.3 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS A = 1.47 For h = 37.295 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative C 1.0 110.0 mph 1.0 Flat Wind Pressure ps =;k xKzt x Ix ps30 = ps = Ax Kzt x lx ps30 = Applied horizontal force, Fph = Ps x (bxc)/2 = Applied vertical force, Fpv = Ps x (axc)I2 = 23.35 psf Horizontal 20.26 psf Roof Uplift 145.0 Lbs 104.9 Lbs Page 21 of 49 10 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMA Project: Nodes 4 Date : 07105/2019 TJENGINEERING Engineer:M.R I DESIGN FORCES (WIND) I CABINET GEOMETRY - Plan a= 2.25 ft b= 2.70 ft c= 2.30 ft Support= 4 Fpv Suction Fph Suction Elevation FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a/4 = 214.9 Lbs*ft Dx= 79.6 Lbs Dy = 95.5 Lbs FORCES WIND (W) Horizontal force, Wx = 159.9 Lbs Vertical force, Wy = 26.2 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 239 Lbs Max shear force per anchor = Dy + Wy = 122 Lbs Page 22 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR I¼ENGINEERING Project: Nodes 4 Date: 07/05/2019 Engineer: M.R ELEMENT & CONNECTIONS DESIGN I CABINET B Fx = Dx+(Ex or Wx) = 241.0 Lbs Fy = Dy+(Ey or Wy) = 122.2 Lbs Q = 1.0 Cabinet Total Quantity 3 ft H= 3.00 ft Lc= 2.00 ft X A B few I Y i 2 f UNISTRUT HORIZONTAL DESIGN Px= 241.0 Lbs 1! 1 1 M. Mmax (y-y) = 160.6 Ft.-Lbs. Status 1928 In.-Lbs. I— Py = 122.2 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 81.5 Ft.-Lbs. Status n = 3 978 In.-Lbs. OK] c = 0.67 ft Use: Unistrut: P1000 1 5/8 x I 5/8-12ga Nominal Thickness Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Page 23 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING Project: Nodes 4 Date: 07/05/2019 Engineer:M.R I ELEMENT & CONNECTIONS DESIGN I CABINET B Fx = Dx+(Ex or Wx) = 241.0 Lbs Fy = Dy+(Ey or Wy) = 122.2 Lbs Q = 1.0 Cabinet Total Quantity' 3 ft H= 3.0 ft Lc= 2.0 ft =A yl Z 2 ft CONNECTION A CHANNEL NUTS WITH SPRING Status Shear= 122.2 Lbs OK Pull Out = 241.0 Lbs OK - Use: Channel Nuts: 318"-16 -General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1/2" Mm. General Engineering Catalog - No. 17 Page 68 CONNECTION B BOLT DESIGN Reaction unistrut horizontal Ry = Py(n-1 )/2 Rx = Px(n-1 )I2 Use: D-Bolt: 3/8 in. n Bolt: I Material: A307 Allowable Shear 2650.7 Lbs Allowable Pull-Out 4970.1 Lbs - Shear = 122.2 Lbs - Pull Out = 241.0 Lbs Fv= 24 ksi Ft= 45 ksi > Max. Shear Status > 122.2 Lbs OK1 > Max. Shear Status 241.0 Lbs OK] Page 24 of 49 Luis Labrada LAMAR Proyecto: Nodes 4 217 Landis Avenue Date: 05/07/19 Chula Vista, CA 91910 EJJENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX IV. SCREEN WALL LI Page 25of 49 / Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 4 Date: 07105/2019 Engineer: M.R I SCREEN WALL DESIGN - FRP SECTOR A Geometry W = 7.5 psf Weight Lt p Li SCREEN LENGTH L = 18.3 ft Screen total length 4 ne— P1 NP= 5 NO Post NS = 3 NO Steps Between Post Li = [46'Jft L. Between Post I P2 H5fIf\ S = 1.52 Length Steps Ht I H 1II SCREEN HEIGHT H1 = 29.6i ft. [E] Structural Roof I Hi H2= 7.63 ft PostHeight BuildingI H3 = 5.0 .ft Screen Height V H4 = 2.630 ft Screen Wall Ht = 37.30 ft Total height BRACE L2= 2.00 'ft H5=' 55 ft e 0 Wind Force Exposure category (ASCE 7-10 26.7.3) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0' Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Pressure . 30 Psf. Page 26 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IIENGINEERING Project: Nodes 4 Date: 0710512019 Engineer: M.R SCREEN WALL DESIGN -"'FRP SECTOR A FRP Channel Stifener- Design Tributary: S = 1.52 ft H3= 5.00 ft 15f Demand: Load qw = 45.6 Lbs/Ft tnirrF1rn M. Mmax (x-x) = 1710.0 In.-Lbs. 5 ft Flexural Strength = 438.46 psi r Caoacitv Use: HSS_SQR 4X4X1_4 FRP Channel EU b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. - Demand Capacity Ratio Status 438.46 psi 6600 psi 0.07 OK - FRP Channel Stifener - Connection Demand Shear= 114 Lbs Caoacitv Use: 112 in FRP Bolt nBolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 114 Lbs < 780 Lbs 0.15 LiiiPi] Page 27 of 49 U Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IIENGINEERINGI Project: Nodes 4 Date: 07/0512019 Engineer: M.R SCREEN WALLDESIGN- FRP• SECTOR A I ruoutarv: Li = 4.0b ii H3= 5.00 ft T56ftg4.56 Demand: Load qw = 75.0 Lbs/Ft 5 ft M. Mmax (x-x) = 2341.8 In.-Lbs. CapaciFlexural Strength = 600.47 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity oa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio _Status 600.47 psi < 6600 psi 0.09 OK Top & Bottom FRP Horizonal Tube - Connection Demand Shear= 171.1 Lbs Capacity Use: 1I2 in FRP Bolt n Bolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 171.1 Lbs < 780 Lbs 0.22 OKJ Page 28 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LP MA R Project: Nodes 4 Date: 0710512019 P: 619.370-9515 ENGINEERING Engineer: M.R www.lamareng.com I SCREEN WALL DESIGN - FRP SECTOR A I Loads Reactions Top & Bottom FRP Horizonal Tube Reaction = 171.1 Lbs Ri = 342.2 Lbs R2 = 342.2 Lbs Check Capacities Steel Column M. Mmax = 8746.3 In.-Lbs. Flexural Strength = 2242.64 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio . Status 2242.64 psi < 6600 psi 0.34 1 OKIJ Check Capacities Brace Axial force: 638.3 Lbs Compressive Strength: 189.4 psi Use: - HSS_SQR.4X4X1.4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 'Psi. Allowable Compressive Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 189.4 psi 6600 psi 0.03 ETOKTJ Steel Column to Brace (KICKER) - Connection Reaction Steel Column to Brace: V = 638.3 Lbs D-Bolt 1/2 in n Bolt: 2 Material = A307 Demand 319.2 Fv = 24 ksi Ft= 45 ksi Allowable Shear 9424.8 Lbs Ratio Status 0.03 ETOK II] Page 29 of 49 Luis Labrada * 217 Landis Avenue Project: Nodes 4 Chula Vista, CA 91910 LAMAR Date: 07105/2019 P: 619.370-9515 IgENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP SECTOR A FRP Steel Column to Roof (BRAKET) - Connection Reaction Steel Column Fx = 46.0 Lbs b Fy= 0 Lbs d2 Steel Column: HSS_SQR 4X4X1_4 • S ad11DT Plate: V a= 10 in dl= 7 in b= 10 in d2= 7 in t= 1/4 in k= 1.5 in Bolt: Shear V = 11.51 Lbs Pull Out T = 0 Lbs I V T Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 4 0 Dia.: 1/2 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 31/4 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio Status _ 11.5 psi 5495 psi 0.00 OKJ Demand Capacity Pull Out Ratio Status 0.0 psi 4915 psi 0.00 OK J FRP Brace to Roof (BRAKET) - Connection Reaction Steel Column Fx = 638.34 Lbs b Fy= 0 Lbs .Jç, d2 Steel Brace: HSS_SQR 4X4X1_4 A a!dl I. • a= 4 in dl= 1 in b= 10 in d2= 7 in t 1/4 in k= 1.5 0Mm Bolt: Shear V = 0.0 Lbs. Per Bolt Pull Out T = 638.3 Lbs. Per Bolt I V T D-Bolt = 112 in (Appendix A. Design Values Load Chart for FRP Materials) n Bolt: 4 LARR# 25520. Shear: 780 Lbs Allowable FRP Bolt Shear Pull-Out: 300 Lbs Allowable FRP Bolt Pull-Out Demand Capacity Shear Ratio Status 0.0 Lbs 3120.0 Lbs 0 OK] Demand Capacity Shear Ratio Status - 638.3 Lbs 1200.0 Lbs 0.53 OK Page 30 of 49 • Lois Labrada ;Proyecto: Nodes 4 217 Landis Avenue LAMAR Date 05/07/19 Chula Vista, CA 91910 IENGINEERING Engineer MR P. 619-370-9515 •' www.lamareng.com APPENDIX V. ROOF VERIFICATION Page 31 of 49 Luis Labrada LAMAR Project Nodes 4 217 Landis Avenue Date: 07/05/2019 ChuIaVista, CA 91910 IENGINEERING Engineer: M.R P: 619.370-9515 VERIFY ROOF FRAMING I --. NODE ANTENNA DIMENSION [in]. b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] HEX454CU0000G 46.80 15.60 7.40 48.90 0 0.00 0.00 HEX654CU0100G 51.10 12.00 7.10 39.70 0 0.00 0.00 CUUX06306F52s0-T 24.30 12.10 7.00 13.00 3 1.76 39.00 CUUX05XO6F5200 24.10 16.20 7.30 15.70 0 0.00 0.00 QU1NTELQS46512-2 52.00 12.00 10.80 75.00 1 0.90 75.00 Total 1 4.00 1 2.66 1 114.00 RADIOS DIMENSION [in] b c . a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] RRUS -2203 7.90 7.90 3.90 10.00 7 1.50 70.00 ERICSSON RRUS -4426 15.00 13.20 5.80 48.40 1 0.53 48.40 ERICSSON RRUS -4478 18.10 13.40 8.26 59.40 1 0.77 59.40 ERICSSON RRUS-4415 16.50 13.40 5.90 46.00 1 0.55 46.00 ALCATEL LUCENT TD-RRH8X2O-25 9.68 12.83 6.30 26.45 2 1.12 52.90 ALCATEL LUCENT CDMAJLTE DUAL TECH 25.00 11.00 11.00 59.50 1 0.84 59.50 Total 1 13.00 5.31 336.20 CABINET DIMENSION [in] WIGHT Quantity Area W b c a [Lbs] [sq ft] [Lbs] BBU 3225 27.50 27.00 382.00 3 15.47 1146.00 AC POWER 18.50 20.00 6.00 50.00 1 0.83 50.00 TELCO CABINET 14.25 7.75 6.00 10.00 1 0.32 10.00 Total 5.00 1 16.63 1 1206.00 Page 32 of 49 Luis Labrada Project: Nodes 4 217 Landis Avenue LAMAR Date: 07105/2019 Chula Vista, CA 91910 IENCPJtJC Engineer: M.R P: 619.370-9515 Load Density Concrete: 145.0 pcf DL: 72.5 lb/sq. ft. Thickness: 6.0 in LL: 20.0 lb/sq. ft. Area [sq ft] DL LL DL+LL [E] Steel Deck 1 276 19974 5510 25484 Lbs. I New Load Antennas Radio Cabinet Total: Quantity Area DL Lbs Lbs Lbs Lbs 4 3 114 13 5 336 5 17 1206 22 25 1656 New Load + Existing Load - ¶ Existing New Total: New + Existing DL LL DL+LL Area [sq ft] DL LL DL+LL DL LL DL+LL Steel Deck 19974 5510 25484 25 0 -492 -492 19974 5018 24992 Antennas 0 0 0 3 114 0 114 114 0 114 Radio 0 0 0 5 336 0 336 336 0 336 Cabinati 0 0 0 17 1206 1 0 1206 1 1206 0 1206 Total: 26648 Chapter #34A CBC 2016 3403A.3 Existing structural elements carrying gravity load. Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load-carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404A.3. Any existing element that will form part of the lateral load path for any part of the addition shall be onsidered an existing lateral load-carrying structural element subject to the requirements of Section 3403A.4." New Total' Load: 26648 Lbs Existing Total Load: 25484 Lbs [New Total Load] -[Existing Total Load] *100% = 4.369 % [New Total Load] [4.37] < L 5 ]% Page 33 of 49 Luis Labrada 217 Landis Avenue LAMA Proyecto: Nodes 4 Date: 05/07/19 Chula Vista, CA 91910 INENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX VI. TABLES Page 34 of 49 TABLE 1: SEISMIC DESIGN Page 35 of 49 5/1612019 U.S. Seismic Design Maps OSH PD Legoland I Legoland Dr, Carlsbad, CA 92008, USA Latitude, Longitude: 33.1262496, -117.31192390000001 'V_ 9 Museum of Making Music, \ \ \ LEGOLAND California / Staff Parking 9 Hotel Parking Map data 02019ogIe Date 5/16/2019,11:03:03 AM Design Code Reference Document ASCE7-10 Risk Category II Site Class 0 - Stiff Soil Type Value Description Ss 1.127 MCER ground motion. (for 0.2 second period) S 0.434 MCER ground motion. (for lOs period) SMS 1.182 Site-modified spectral acceleration value SM1 0.679 Site-modified spectral acceleration value SDS 0.788 Numeric seismic design value at 0.2 second SA S01 0.453 Numeric seismic design value at 1.0 second SA Type Value Description SDC D Seismic design category F8 1.049 Site amplification factor at 0.2 second F,, 1.566 Site amplification factor at 1.0 second PGA 0.447 MCEG peak ground acceleration FPGA 1.053 Site amplification factor at PGA PGAM 0.471 Site modified peak ground acceleration TL 8 Long-period transition period in seconds SsRT 1.127 Probabilistic risk-targeted ground motion. (0.2 second) SsUH 1.194 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration SsD 1.525 Factored deterministic acceleration value. (0.2 second) SIRT 0.434 Probabilistic risk-targeted ground motion. (1.0 second) Si UH 0.436 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.616 Factored deterministic acceleration value. (1.0 second) PGAd 0.59 Factored deterministic acceleration value. (Peak Ground Acceleration) CRS 0.944 Mapped value of the risk coefficient at short periods CR1 0.995 Mapped value of the risk coefficient at a period of 1 s Page 36 of 49 https://seismicmaps.org 1/2 5/16/2019 U.S. Seismic Design Maps MCER Response Spectrum 1.5 i 1.0 0.5 0.0 0.0 2.5 5.0 7.5 Period, T (sec) - Sa(g) Design Response Spectrum 0.8 0.6 0.4 0.2 0.0 0.0 2.5 5.0 7.5 Period, T (sec) - Sa(g) DISCLAIMER While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this webstie. Page 37 of 49 https:llseismicmaps.org 2/2 TABLE:2 DESIGN VALUES LOAD CHART FOR FRP MATERIALS Page 38 of 49 Appendix A Design Values Load Chart for FRP Materials ALLOWABLE STRENGTH TABLE FOR FRP SHAPES: Tubes, Channels, Angles Property Direction Value Units Tensile Strength Lengthwise Crosswise 6,600 1,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 6,600 3,300 psi Flexural Strength Lengthwise Crosswise 6,600 2,200 psi Flexural Modulus Lengthwise Crosswise 1,600,000 800,000 psi Shear Strength Lengthwise Crosswise 1,400 500 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 . psi 1/2" Bolt Bearing Lengthwise Crosswise 6,000 3,600 psi 1/2" Bolt Shear Allowable 780 lbs 1/2" Bolt Tension Allowable 300 lbs Table Notes: Values based on 1525 series - Thermoset Polyester Class 1 FR (Slate Grey) A Safety Factor of 5.0 has been used to determine Allowable Loads. ALLOWABLE STRENGTH TABLE FOR FRP FLAT SHEETS: Property Direction Value Units Tensile Strength Lengthwise Crosswise 4,000 2,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 4,800 3,200 psi Flexural Strength Lengthwise Crosswise 7,000 3,000 psi Flexural Modulus Lengthwise Crosswise 2,000,000 1,100,000 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi Table Notes: 1) Values based on 1625 series - Thermoset Vinyl Ester Class 1 FR (Beige) ty Factor of 5.0 has been used to determine Allowable Loads.. FL6~-~ I I I Hi-Tech Composite Structures Supplement for LARR #25520 Page 1 of I Page 39 of 49 TABLE 3: POST - INSTALATED CONCRETE ANCHOR. HILTI Page 40 of 49 ESR-2302 I Most Widely Accepted and Trusted Page 7 of 11 TABLE 3-DESIGN INFORMATION CARBON STEEL KB3 DESIGN INFORMATION Symbol Units Nominal anchor diameter 14 3j '2 /9 3 14 ___________________ Anchor O.D. d4 (do)7 in. 0.250 0.375 0.500 0.625 0.750 (mm) (6.4) (9.5) (12.7) (15.9) (19.1) Effective mm. embedment' h, in. 1/3 2 2 31/4 31/ 4 33/4 5 (mm) (38) (51) 1 (51) (83) (79) (102) (95) (127) Mm. member thickness hg. in. 4 4 5 4 6 6 1 8 5 6 1 (152) 8 6 8 8 (mm) (102) (102) (127) (102) (152) (152) (203) (127) (203) (152) (203) (203) in. 2I4 4'/2 37/s 4/8 35/s 6/4 5/8 7'/2 9'/2 7/2 93/4 7'I2 91/2 Critical edge distance CDC (mm) (70) (114) (98) (124) (92) (171) (143) (191) (241) (191) (248) (191) (241) in. 1/9 2 1'/2 2'18 2 1 /8 1/9 2'!4 1/4 1/., 2/4 2/ 2/3 Cmjn ______ (mm) (35) (51) (38) (54) (51) (41) (41) (57) (44) (44) (70) (67) (6 A-) Mm. edge distance in. 1/., 2/4 3 /2 47/s 43f 4'/4 4 51/4 43/4 4 6 02 6/4 fors (mm) (44) (73) (89) (124) (121) (108) (102) (133) (121) (102) (175) (165) (162) in. 11/4 1/4 1/4 2'/3 2'/4 2 1/ 2!4 2'/ 2'/ 33/4 33/9 31/4 Smjn (mm) (32) (44) (44) (64) (57) (51) (48) (60) (54) (54) (95) (86) (83) Mm. anchor spacing in. 1/ /8 2 2/9 2/ 2/ 2/4 2 31/ 2/ 2/4 33/4 3/8 33/s for c a (mm) (41) (60) (60) (67) (60) (57) (51) (79) (60) (57) (95) (86) (86) in. 2 25/8 25/ 4 53/4 37/ 43/ 41/ Mm. hole depth in concrete hhO,9 (mm) (51) (67) (67) 1 (102) (98) (121) (114) (146) Mm. specified yield strength fy. psi 84,800 84,800 84,800 84,800 84,800 (N/mm2) (585) (585) (585) (585) (585) Mm. specified ult. strength f., psi 106,000 106,000 106,000 106,000 106,000 (N/mm2) (731) (731) (731) (731) (731) Effective tensile stress area A., in 0.02 0.06 0.11 0.24., 0.17 2 (mm ) (12.9) (38.7) (71.0) (109.7) (154.8) Steel strength in tension N.,., lb 2,120 6,360 11,660 18,020 25,440 (kN) (9.4) (28.3) (51.9) (80.2) (113.2) Steel strength in shear Vs., lb 1,640 4,470 6,635 I 6,750 12,230 15,660 16,594 (kN) (7.3) (19.9) (29.5) (30.0) (54.4) (69.7) (73.8) Pullout strength uncracked concrete lb Np ,unc, 1,575 NA NA 6,800 NA NA 10,585 (kN) (7.0) (30.2) (47.1) Anchor category3 1,2 or 3 - Effectiveness factor kuner k.,, - 24 uncracked concrete Modification factor for - 1.0 uncracked concrete Coefficient for pryout kp - 1.0 2.0 Installation torque T,fl51 ft*lb 4 20 40 I 110 (Nm) 60 I (5) (27) (54) (81) (149) Axial stiffness in service load range /3 (lb/in) 116,1501 162,850 I 203,500 I 191,100 222,150 I 170,700 207,400 164,000 COV t3uncr % 60 I 42 29 I I 29 I 25 I 21 I 19 I 24 Strength reduction factor 0 for tension, steel 0.75 failure modes5 Strength reduction factor for shear, steel 0.65 failure modes5 Strength reduction factor for tension, concrete 0.65 failure modes, Condition B6 Strength reduction factor for shear, con crete 0.70 failure modes, Condition B6 For SI: 1 inch = 25.4 mm, llbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-in units: 1 mm = 0.03937 inches. 'See Fig. 2 2See Section 4.1.4 of this report, NA (not applicable) denotes that this value does not govern for design. 3See ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. 4See ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. 5The carbon Steel KB3 is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable. 6For use with the load combinations of ACI 318-14 Section 5.3, ACI 318-11 Section 9.2 or IBC Section 1605.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, is not provided, or where pull-out or pry out strength 9overns. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. The notation in parenthesis is for the 2006 IBC. Page 41 of 49 TABLE 3-DESIGN INFORMATION, CARBON STEEL KB-TZ -. - Nominal anchor diameter DESIGN INFORMATION Symbol Units 318 1/2 S 3 /4 AnchorO.D. d0(d0) in. 0.375 0.5 0.625 0.75 (mm) (9.5) (12.7) (15.9) (19.1) Effective mm. embedment' haf in. 1/3 2 2/4 2 31/4 31/ 4 31/ 33/4 43/4 (mm) (38) (51) (70) (51) (83) (79) (102) (83) (95) (121) in. 3'/, 415 5 8Mm. 416 618 5 618 5/3 6 8' member thickness2 hmbl (mm)(83) (102) (127) (127) (102)1(152) (152) 1(203) (127) (152)1(203) (140) (152) 1(203) (203) in. 6 43/s I 4 4'/8 5'/ I 4'/ 7'/2 I 6 02 8/4 6/4 12 10 I 8 9 Critical edge distance Cac (mm) !!L (111) I 1(102) (105) (140)1(114) I (191)1(152) I (165) (222)1(171) • (305) (254) I 1(203) (229) In. 8 2/3 21/3 2/4 2/9 3 /8 31/4 912 43/4 414 Cmk, (mm) (203) (64) (64) (70) (60) 1 (92) (83) (241) (121) (105) Mm. edge distance in. 8 5 5 53/4 53/4 6/9 57/9 5 10'/3 8/ for s a (mm) 1 (203) (127) (127) (146) (146) (156) (149) (127) 1 (267) (225) in. 8 21/2 21/2 2/4 2/9 3/2 3 5 5 4 Sm in (mm) (203) (64) (64) (70) (60) (89) (76) (127) (127) (102) Mm. anchor spacing In. 8 35/s 35/9 41/5 31I2 43/ 41/ -- 91/ 73/ for c a (mm) (203) (92) (92) (105) (89) (121) (108) (241) (241) (197) in. 2 2/ 3 /8 2/ 4 3/4 4/ 4 4'/ Mm. hole depth in concrete h0 (mm) 1 (51) (67) (86) (67) (102) (98) 1 (121) (102) (117) (146) lb/in2 100.000 84,800 84,800 84,800 Mm. specified yield strength fy (N/mm2) (690) (585) (585) (585) lb/in2 125,000 106,000 106,000 106,000 Mm. specified ult. strength f.,,0 (N/mm2) (862) (731) (731) (731) In 0.052 0.101 0.162 0.237 Effective tensile stress area A,,.N (mm2) (33.6) (65.0) (104.6) (152.8) lb 6,500 10,705 17,170 25,120 Steel strength in tension Nw (kN) (28.9) - (47.6) (76.4) (111.8) lb 2,180 3,595 5,495 8,090 13,675 Steel strength in shear VS9 (kN) (9.7) (16.0) (24.4) (36.0) . (60.8) Steel strength in shear, lb 2,180 2,255 5,495 7,600 11,745 seismic (kN) (9.7) (10.0) (24.4) (33.8) (52.2) Pullout strength uncracked lb 2,160 2,515 I 4•110 NA I 5,515 NA 9,145 NA 8,280 110,680 concrete4 (kN) (9.6) (11.2) I (18.3) (24.5) (40.7) I (36.8) I (47.5) Pullout strength cracked Npw lb NA 2,270 3,160 I NA I I 4,915 NA NA concrete4 (kN) (10.1) (14.1) I (21.9) Anchor category5 2 1 Effectiveness factor kunc, uncracked concrete 24 Effectiveness factor k, cracked concrete6 17 Y'c kunc/kc,7 1.0 Coefficient for pryout strength, kc, 1.0 2.0 1.0 2.0 Strength reduction factor 0 for tension, steel failure 0.75 modes8 Strength reduction factor 0 for shear, steel failure 0.65 modes8 Strength reduction 0 factor for tension, concrete 0.55 0.65 failure modes or pullout, Condition B9 Strength reduction 0 factor for shear, concrete failure 0.70 modes, Condition B9 al stiffness in service load Fran I lb/in. 600,000 g&° fi lb/in. 135,000 For SI: 1 inch = 25.4 mm, 1 Ibf = 4.45 N. 1 psi = 0.006895 MPa. For pound-inch units: 1 mm = 0.03937 inches. 'See Fig. 2. 2For sand-lightweight or normal-weight concrete over metal deck, see Figures 5A, 5B, 5C and SD and Tables 5 and S. 3See Section 4.1.8 of this report. 4For all design cases 'P,,p=l.O. NA (not applicable) denotes that this value does not control for design. See Section 4.1.4 of this report. 55ee ACI 318-14 17.3.3 or ACI 318-11 0.43, as applicable. 6See ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. ?For all design cases Wp =1.0. The appropriate effectiveness factor for cracked concrete (ks,) or uncracked concrete must be used. 8The KB-TZ is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable. 9For use with the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 0.4.3(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. '°Mean values shown, actual stiffness may vary considerably depending on concrete strength, loading and geometry of application. Page 42 of 49 TABLE 4: FASTENERS. LAGSCREW Page 43 of 49 Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections 1,2,3,4 for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for t<1/4") or W ASTM A 36 steel side plate (for t5=1/4") (tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D) ci) . Md. 12 '0 E i J LL LL Ci C;02 di, a 00 W OI(5 II II . 0 II 0 II 0 — II 0 II II a II a) II i a. II 0än (50 (501 01 00, 0 0W( OZ p 0 Z11 Z Z11 Z Z11 Z Z11 Z Z11 Z.L Z11 Z 711 Z1 4 Z Z11 Z1 Z11 Z in. in. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. 0.075 114 170 130 160 120 150 110 150 110 150 100 140 100 140 100 130 90 130 90 130 90 ('14 gage) 5116 220 160 200 140 190 130 190 130 190 130 180 120 180 120 170 110 170 110 160 100 3/8 1 220 160 200 140 200 130 190 130 190 120 180 120 180 120 170 110 170 100 170 100 0.105 1/4 160 140 170 130 160 120 160 120 160 110 150 110 150 110 140 100 140 100 140 90 (12 gage) 5/16 230 170 210 150 200 140 200 140 190 130 190 130 190 120 180 110 170 110 170 110 3/8 230 160 210 140 200 140 200 130 200 130 1 190 120 190 120 180 110 180 110 1 170 110 0.120 1/4 190 150 180 130 170 120 170 120 160 120 160 110 160 110 150 100 150 100 140 100 (11gage) 5/16 230 170 210 150 210 140 200 140 200 140 190 130 190 130 180 120 180 120 180 110 3/8 240 170 220 150 210 140 210 140 200 130 200 130 190 120 180 110 180 110 180 110 0.134 1/4 200 150 180 140 180 130 170 130 170 120 160 120 160 110 150 110 150 100 150 100 (10 gage) 5/16 240 180 220 160 210 150 210 140 200 140 200 130 200 130 190 120 180 120 180 120 3/8 240 170 220 150 220 140 210 140 210 140 200 130 200 130 190 120 190 120 180 110 0.179 1/4 220 170 210 150 200 150 200 140 190 140 190 130 190 130 180 120 170 120 170 120 (7 gage) 5/16 260 190 240 170 230 160 230 160 230 150 220 150 220 150 210 130 200 130 200 130 318 270 190 250 170 240 160 240 160 230 150 220 140 220 140 210 130 210 130 200 130 0.239 1/4 240 180 220 160 210 150 210 150 200 140 190 140 190 130 180 120 180 120 180 120 (3 gage) 5/16 300 220 280 190 270 180 260 180 260 170 250 160 250 160 230 150 230 150 230 140 3/8 310 220 280 190 270 180 270 180 260 170 250 160 250 160 240 140 230 140 230 140 7/16 420 290 390 260 380 240 370 240 360 230 350 220 350 220 330 200 330 200 320 190 1/2 510 340 470 300 460 290 450 280 440 270 430 260 420 260 400 240 400 230 390 230 5/8 770 490 710 430 680 400 680 400 660 380 640 370 630 360 600 330 590 330 580 320 3/4 1110 670 1020 590 980 560 970 550 950 530 920 500 910 500 860 450 850 450 840 440 7/8 1510 860 1390 780 1330 730 1320 710 1280 690 1250 650 1230 650 1170 590 1160 590 1140 570 1 1940 1100 1780 960 1710 910 1700 890 1650 860 1600 820 1590 810 1500 740 1480 730 1460 710 1/4 1/4 240 180 220 160 210 150 210 150 200 140 200 140 190 130 180 120 180 120 180 120 5/16 310 220 280 200 270 180 270 180 260 170 250 170 250 160 230 150 230 150 230 140 n9n 72n 2Qn I 97n ian rio 170 qnn inn 7gn inn qAn icn qAn lAO 2m IAn 7/16 1/2 5/8 480 320 580 390 850 530 440 280 540 340 780 470 420 270 520 320 750 440 420 260 510 320 740 440 410 250 500 310 720 420 390 240 460 290 700 400 390 230 480 290 690 400 370 220 460 270 660 370 360 210 450 260 650 360 360 210] 440 260 640 350 3/4 1 1200 730 1 1100 640 1 1060 600 1 1050 590 1 1020 570 1 990 540 1 980 530 1 930 490 920 480 900 470 7/8 1600 930 1470 820 1410 770 1400 750 1360 720 1320 690 1310 680 1240 630 1220 620 1200 600 1 2040 1150 1870 1000 1800 950 1780 930 1730 900 1680 850 1660 840 1570 770 1550 760 1530 740 I. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Tabulated lateral design values, Z. are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to SD; dowel bearing strengths, F, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths. FYb, of 70,000 psi for D = 1/4', 60,000 psi for D = 5/16", and 45,000 psi for D 23/8". Where the lag screw penetration, p, is less than SD but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration. The length of lag screw penetration, p, not including the length of the tapered tip. E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, p. Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer autho4rizei. AMERICAN WOOD COUNCIL Page 4o 49 Table 12.2A Lag Screw Reference Withdrawal Values, W' Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. - Length of thread penetration in main member shall not include the length of the tapered tip (see 12.2.1.1). Specific Gravity, ________ Lag Screw Diameter, D ___ _______ G2 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4" 7/8" 1" 1-1/8" 1-1/4" 0.73 397 469 538 604 668 789 905 1016 1123 1226 1327 —1-2-737 T 0.71 381 - 450 516 579 640 757 868 974 1077 1176 0.68 1 0.67 357 422 484 543 600 709 813 913 1009 1103 1193 1167 1 349 413 473 531 587 694 796 893 987 1078 0.58 1 0.55 281 332 381 428 473 559 641 719 795 869 940 868 1 260 307 352 395 437 516 592 664 734 802 0.51 F7_50 232 274 314 353 390 461 528 593 656 716 775 752 1 225 266 305 342 378 447 513 576 636 695 0.49 F0.47- 218 258 296 332 367 434 498 559 617 674 730 686 1 205 242 278 312 345 408 467 525 580 634 0.46 199 235 269 302 334 395 453 508 562 613 664 621 1 1 0.44 186 220 252 283 312 369 423 475 525 574 0.43 1 0.42 179 212 243 273 302 357 409 459 508 554 600 57] 173 205 235 264 291 344 395 443 490 535 0.41 167 198 226 254 281 332 381 428 473 516 559 __53_8 1 0.40 161 190 218 245 271 320 367 412 455 497 0.39 1 0.38 155 183 210 236 261 308 353 397 438 479 518 498 J 149 176 202 227 251 296 340 381 422 461 0.37 [ 0.36 143 169 194 218 241 285 326 367 405 . 443 479 460 I 137 163 186 209 231 273 313 352 389 425 0.35 132 156 179 200 222 262 300 337 373 407 441 367 I F 0.31 110 130 149 167 185 218 250 281 311 339 I. Tabulated withdrawal desien values. W. for lae screw connections shall be multiolied by all anolicable adjustment factors (see Table 11.3. fl. 2. Specific gravity, 0, shall be determined in accordance with Table 12.3.3A. adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W. W = 1380 G/2 D (12.2-3) The nail or spike reference withdrawal design value, W, in lbs/in, of penetration, for a smooth shank stainless steel nail or spike driven into the side grain of a wood member, with the nail or spike axis perpendicu- lar to the wood fibers, shall be determined from Table 12.21) or Equation 12.2-4, within the range of specific gravities, G, and nail or spike diameters, D, given in Table 12.21). Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'. W = 465 G/2 D (12.2-4) For calculation of the fastener reference with- drawal design value in pounds, the unit reference with- drawal design value in lbs/in, of fastener penetration from 12.2.3.1a or 12.2.3.1b shall be multiplied by the length of fastener penetration, Pt, into the wood mem- ber. 12.2.3.2 Deformed shank nails (a) The reference withdrawal design value, in lbs/in, of ring shank penetration, for a Roof Sheathing Ring Shank nail or Post-Frame Ring Shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2E or Equation 12.2-5, within the range of specific gravities and nail diameters given in Table 12.2E. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Ta- ble 11.3. 1) to obtain adjusted withdrawal design values, WI. W = 1800 G2 D (12.2-5) a- Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorizeI. AMERICAN WOOD COUNCIL Page 450 49 TABLE 5: UNISTRUT GENERAL ENGINEERING CATALOG-NO. I Page 46 of 49 thannel Selection . . •. I1 I Fl IiU11 CHANNEL SELECTION CHAAf Channel Diiiiónsions Material & Thickness Hole Pattern Styles Channel I Width Height Steel Stainless Steel Alum. /101/1/ HS I KO SL DS H3 F in (MM) In (mm) gauge gauge In (mm) Steel Only P1000 '154(41.3) 154(41.3) 12 ga 12 ga 0.109(2.8) U 0 0 U U U 131100 154(41.3) 154(41.3) 14 ga 14 ga - U U 0 0 - - P2000 134 (41.3) 1%(41.3) 16 ga P3000 1%(41.3) 1%(34.9) 12 ga P3300 1%(41.3) 34(22.2) 12 ga 12 ga - U E -1111111 - - P4000 154(41.3) 13'16 (20.6) 16 ga 16 ga 0.078 (2.0) • U - U - - P4100 154(41.3) 13'i6 (20.6) 14 ga - - U U - U - - P5000 134(41.3) 334(82.6) 12 ga 12 ga - U U 0 U - - P5500 134(41.3) 2Yi& (61.9) 12 ga - 0.109 (2.8) 1 U 0 0 E - - CHANNELS & COMBINATIONS IN DESCENDING ORDER OF STRENGTH Area Weight I $ Allow. Moment Channel In2 (cm2) IbsIft (kg/rn) In4 (cm4) In3(cm3) In-lbs (ibm) P5001 1.793 6.10 6.227 1.916 48,180 11.57 9.1. 259.2 31.4 5,440 P1004A 1.965 6.68 4.068 1.669 41,980 12.68 9.9 169.3 27.4 4,740 P5501 1.452 4.94 2.805 1.151 28,940 9.37 7.3 116.8 18.9 3,270 P1001C41 2.221 7.55 1.856 1.142 28,720 14.33 11.2 77.2 18.7 3,250 P5000 0.897 3.05 1.098 0.627 15,770 5.78 4.5 45.7 10.3 1.780 P1001 1.111 3.78 0.928 0.571 14,360 7.16 5.6 38.6 9.4 1,620 P1101 0.835 2.84 0.733 0.451 11,340 5.39 4.2 30.5 7.4 1,280 P3001 1.000 3.40 0.591 0.430 10,810 6.45 5.1 24.6 7.0 1,220 P5500 0.726 2.47 0.522 0.390 9,820 4.68 3.7 21.7 6.4 1,110 P2001 0.684 2.32 0.618 0.381 9,570 4.41 35 25.7 6.2 1,080 P9200 0.489 2.23 0.279 0.297 7,480 3.16 3.3 11.6 4.9 850 0.492 1.67 0.358 0.265 6,670 A5000 3.17 2.5 14.9 4.3 750 A1001 0.609 2.07 0.302 0.242 6,070 3.93 3.1 12.6 4.0 690 P9000 0.387 1.88 0.166 0.205 5,150 2.50 2.8 6.9 3.4 580 P1000 0.555 1.89 0.185 0.202 5,070 3.58 2.8 7.7 3.3 570 P3301 0.790 2.69 0.176 0.201 5,060 5.10 4.0 7.3 3.3 570 Combinations not shown in catalog are available on special order. Consult factory for more details. Area Weight I s Allow. Moment, Channel In' (cm') Ibs!ft (kg/rn) In' (cm') In3(cm3) In-lbs (N.m) 131100 0.418 1.42 0.145 0.162 4,060 2.69 2.1 6.0 2.6 460 P3000 0.500 1.70 0.120 0.153 3,850 3.23 2.5 5.0 2.5 430 P4101 0.579 1.97 0.117 0.143 3,610 3.74 2.9 4.9 2.4 410 P2000 0.342 1.16 0.125 0.140 3,520 2.21 1.7 5.2 2.3 400 P4001 0.478 1.66 0.104 0.128 3,210 3.14 2.5 4.3 2.1 360 A3301 0.459 1.56 0.077 0.103 2,590 2.96 2.3 3.2 1.7 290 A1000 0.305 1.04 0.061 0.086 2,170 1.96 1.5 2.5 1.4 250 P3300 0.395 1.34 0.037 0.072 1,800 2.55 2.0 1.5 1.2 200 A4001 0.264 0.90 0.037 0.058 1,470 1.70 1.3 1.5 1.0 170 P6001 0.213 0.73 0.045 0.055 1,400 1.38 1.1 1.9 0.9 160 P4100 0.290 0.98 0.026 0.054 1,360 1.87 1.5 1.1 0.9 150 P4000 0.244 0.83 0.023 0.049 1,230 1.57 1.2 0.9 0.8 140 A3300 0.230 0.78 0.017 0.038 950 1.48 1.2 0.7 0.6 110 A4000 0.132 0.45 0.008 0.022 560 0.85 0.7 . 0.3 0.4 60 P6000 0.107 0.36 0.009 0.020 510 0.69 0.5 0.4 0.3 60 P7001 0.148 0.50 0.007 0.018 460 0.96 0.8 0.3 0.3 50 P7000 0.074 0.25 0.002 0.007 170 0.48 0.4 0.1 0.1 20 1/8' Framing System 23 Pi000 Channel Combinations P110011 P1001 (41.3) (41.3) MR.' 709LU916 (ISO) 2 (23.3) Wt/100 Ft: 321 Lbs (478kg/100m) Wt/100 Ft: 378 Lbs (562kg/100m) Allowable Moment 12,200 In-Lbs (1,378 Nm) Allowable Moment 18,640 In-Lbs (2,110 Nm) 12 Gauge Nominal Thickness .105" (2.7mm) 12 Gauge Nominal Thickness .105" (2.7mm) 131001 C P1001 3 P1001 B Wt/100 Ft: 378 Lbs (562 kg/100 m) Allowable Moment 18,640 In-Lbs (2,110 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 A3 1 IN, (41.3) i -Li-f 31/4" eI (82.61 -- LL 1 W (41.3) ](40-0) 1.67r (42.6) (32.6) 1.573' .76r (19.3) 2 (21.9) 1 %" r 1 2 j--(4l.3) .472" (62.8) (123.8)flt 41 LI-I-I 2.403" 1(61.0) 2 J_FT+() 4 "I (123.8) .778"4 I() (19.8) Wt/100 Fl: 378 Lbs (562 kg/100 m) Allowable Moment 15,950 In-Lbs (1,800 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 B3 Wt/lOO Ft: 566 Lbs (843 kg/100 m) Allowable Moment 31,640 In-Lbs (3,600 Nm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 D3 WI/lOU Fl: 566 Lbs (843kg/100m) Allowable Moment 32,770 In-Lbs (3,700 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1003 31 (82 14%" 1134 1.245" (44.1) (30.6) 2 (31.6) L- 42' (102.4) (12.4) Wt/100 Ft: 333 Lbs (495kg/100m) Allowable Moment 6,240 In-Lbs (700 N•m) 12 Gauge Nominal Thickness .105" (2.7mm) Wt/100 Ft: 566 Lbs (843 kg/1 00 m) Allowable Moment 37,550 In-Lbs (4,240 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) Wtil00 Ft: 566 Lbs (843 kg/lOU m) Allowable Moment 17,550 In-Lbs (1,980 N'm) 12 Gauge Nominal Thickness .105(2.7mm) P1001 C41 P1001 C3 P1004 A 31/4" F- 31/4" r T 1 (82.6) L 2 7 , 4 7W 4 ]1.896" .93 1.320 (490 2 (33.5) (IL l) Wt/100 Fl: 755 Lbs (1,124kg/100m) Allowable Moment 28,720 In-Lbs (3,250 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) WI/lOU Ft: 566 Lbs (843kg/100m) WI/lOU Ft: 668 Lbs (994 kg/100 m) Allowable Moment 18,680 In-Lbs (2,110 Nm) Allowable Moment 41,970 In-Lbs (4,740 Nm) 12 Gauge Nominal Thickness .105" (2.7mm) 12 Gauge Nominal Thickness .105" (2.7mm) Channel Finishes: PL, GR, HG, PG, ZD; Standard Lengths: 10'&20' Page 48of49 ADJUSTABLE PIPE CLAMPS Unistrut Adjustable Pipe Clamps are manufactured from glass-reinforced polyurethane and are adjustable to accommodate a wide range of outside diameters. They can be u- Iized with a variety of piping systems including: PVC, fiberglass, copper, rigid steel conduit and PVC coated rigid steel conduit. Care should be taken not to exceed 3 ft/lbs. of torque on the adjustable pipe straps. Design Load Part O.D. Pipe Type I Type 2 Ft/Lbs WI/1100 PCs Number Size (in.) Lbs (kN) Lbs (kN) (N°m) Lbs (kg) Torque 200-3100 ½-1½ 135(0.6) 65(0.3) 0.8(1) 3(1.4) 200-3110 1½-2¼ 135 (0.6) 65(0.3) 3(4) 5(2.3) 200-3120 2'A-3¼ 145 (0.6) 70(0.3) 3(4) 5(2.3) 200-3130 3-4 215(1.0) 70(0.3) 3(4) 8(3.6) 200-3140 4-6½ 215(1.0) 70(0.3) 3(4) 10(4.5) 'Design loads shown represent a 3:1 safety factor. Two Hole Pipe Straps are designed for use in securing pipe, conduit and ducts to Channel. Two hole fiberglass straps can also be used independently from the channel for surface mounting. All sizes of the straps are suitable for load bearing applications. Material: fire-retardant, glass-reinforced polyester resin. For extreme chemical environments, the straps can be manufac- tured from vinyl ester resin. Larger diameter straps for special applications are also available. Contact the factory for pricing and availability of vinyl ester and large diameter straps. Two hole pipe straps should not be torqued above recommended values. Notes: Bolts and channel nuts are sold separately. When bolting onto 1W channel a 1W long bolt is req'd. TiClamps UNISTRUT RIGID PIPE CLAMPS PVC, Sch. 80 Design Loads* FRP Bolt Part Nominal & Rigid Metal Type I Type 2 FRP Bolt Torque Wt!100 PCs Number Size (in.) In (mm) Lbs (kN) Lbs (kN) Size (in.) Ft/Lbs (N-m Lbs (kg) FPCR-050 ½ 0.840 (21.3) 225(1.0) 90(0.4) %x 1¼ 3(1.4) FPCR-075 Y4 1.050 (26.7) 225 (1.0) 90(0.4) Mx 1¼ 3(1.4) FPCR-100 1 1.315 (33.4) 225(1.0) 90(0.4) Mx 1¼ 4(1.8) FPCR-125 1½ 1.660 (42.2) 225 (1.0) 90(0.4) Mx 1¼ 5(2.3) FPCR-150 1½ 1.900 (48.3) 225(1.0) 90(0.4) Mx 1¼ 5(2.3) FPCR-200 2 2.375 (60.3) 225(1.0) 90(0.4) %x 1¼ 3(4) 5(2.3) FPCR-250 2½ 2.875 (73.0) 225 (1.0) 90(0.4) 34 x 1¼ 7(3.2) FPCR-300 3 3.500 (88.9) 225 (1.0) 90(0.4) 34 x 1¼ 10(4.5) FPCR-400 4 4.500 (114.3) 300(l.3) 125 (0.6) 34 x 1¼ 12(5.4) FPCR-600 6 6.625 (168.3) 300 (1.3) 125 (0.6) Mx 1¼ 15(6.8) FPCR-800 8 8.625 (219.1) 300 (1.3) 125 (0.6) Mx 1¼ 18(8.1) 'Design loads shown represent a 3:1 safety factor. Rigid Pipe Clamps resemble the more traditional style of pipe clamps and are sized based on the pipe inside diameter or nominal size. Polyurethane clamps are recommended for applications up to 160°F. For high temperature applications (up to 230°F). Care should be taken not to exceed the recommended torque values of the rigid pipe clamps. Material: glass-reinforced polyurethane. Two HOLE PIPE STRAPS Bolt Material Design Load Part Dim. A Dim. B . Size Thick. Type I Type2 Torque Wt!100 PCs No. In (mm) In (mm) (in.) In (mm) Lbs (kN) Lbs (kN) Ft/Lbs (N.m) Lbs (kg) FPS200 2.375 6.375 ½ ¼ 135 50 4 14 60.33 161.93 6.4 0.60 0.22 5 6.4 FPS250 2.875 6.875 14 ¼ 135 50 4 17 73.03 174.63 6.4 0.60 0.22 5 7.7 FPS300 3.500 7.500 14 ½ 135 50 4 20 88.90 190.50 6.4 0.60 0.22 5 9.1 FPS350 4.000 8.000 ½ ¼ 135 50 4 33 101.60 203.20 6.4 0.60 0.22 5 15.0 FPS400 4.500 8.500 ½ ¼ 175 60 4 23 114.30 215.90 6.4 0.78 0.27 5 10.4 FPS500 5.563 9.563 ½ ¼ 175 60 4 39 141.30 242.90 6.4 0.78 0.27 5 17.7 FPS600 6.625 10.625 ½ '4 175 60 4 39 168.28 269.88 6.4 0.78 0.27 5 17.7 FPS800 8.625 12.625 14 ¼ 225 125 4 51 219.08 320.68 6.4 1.00 0.56 5 23.1 FPS1000 %10.750 15.750 . '/4 225 125 10 77 273.05 400.05 6.4 1.00 0.56 14 34.9 FPS1200 12.750 16.250 ¼ 225 125 10 83 323.85 412.75 6.4 1.00 0.56 14 37.6 FPS1400 14.000 18.000 34 250 150 10 125 355.60 457.20 9.5 1.11 0.67 14 56.7 FPS1600 16.000 20.000 34 250 150 10 143 406.40 508.00 9.5 1.11 0.67 14 64.9 FPS1800 18.000 23.000 5% 34 250 150 10 160 457.20 584.20 9.5 1.11 0.67 14 72.6 °Design loads shown represent a 3:1 safety factor. Fiberglass 1 203 4-3 IMENGINEERING + STR U CTU PA L DirectLine:619,370.9515 / F2x:619.764.4079 / Email:uabrada@lamareng.com RECEIVED JUL 162019 CITY OF CARLSBAD STRUCTURAL CALCU LA1NSo1vs 0N PROJECT: LEGOLAND CALIFORNIA RESORT NODE 5- LEGO LIFE (LGL) • I LEGOLAND DR. CARLSBAD SAN DIEGO, CA 92008 *\ EXP. '09/30/191* Civ\. July II, 2019 Ii c3c 1014b034f Page 10f57 www.lamareng.com Luis Labrada Proyecto: Nodes 5 217 Landis Avenue LAMAR Date: 05/07/19 Chula Vista, CA 91910 IMENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com Contents APPENDIX I. DESIGN ATTACHMENT. ANTENNAS..........................................................................................................3 APPENDIX II. DESIGN ATTACHMENT. RADIOS . ............................................................................................................. 10 APPENDIX III. DESIGN ATTACHMENT. CABINET EQUIPMENT . .................................................................................. .18 APPENDIXIV. SCREEN WALL ..........................................................................................................................................25 APPENDIXV. ROOF VERIFICATION .................................................................................................................................39 APPENDIXVI. TABLES .......................................................................................................................................................42 • .1 Page 2 of 57 Luis Labrada Proyecto: Nodes 5 217 Landis Avenue LAMAR Date: 05/07/19 -Chula Vista, CA 91910 1I9ENGINEERING Engineer: M.R P: 619-370-9515 www.lamarenq.com APPENDIX I. DESIGN ATTACHMENT. ANTENNAS Page 3 of 57 Luis Labrada . 217 Landis Avenue Chula Vista, CA 91910 ..LAMAR P: 619.370-9515 IfJENGINEERING www.lamareng.com Project: Nodes 5 pate: 07/05/2019 Engineer: M.R 1. SEISMIC DESING ANTENNA I DESCRIPTION Description: QU INTEL QS46512-2 ANTENNA W= 75.0 Lbs bldg height = 20.83 ft ELEMENT DESIGN (SEISMIC) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 5DS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 75.0 Lbs. FpH = (0.64 * Wp )/1.4 = 34.3 Lbs FpH = 0.46 * Wp = 34.5 Lbs HORIZONTAL FpV = 0.28 * Wp = 21.0 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 z/h= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)I(Rp*lp)*(1 +2*z/h) = 28.4 Lbs. Verifications FPH max = 1.6* SDS * p * WP = 94.6 Lbs. > 28.4 Lbs. FpH mm = 0.3 *SOS * p * WP= 17.7 Lbs. 28.4 Lbs. Page 4 of 57 Luis Labrada 217 Landis Avenue ; Chula Vista, CA 91910 /.IAMAR '• P:619.370-9515 [JENGINEERING www.Iamareng.coni Project: Nodes 5 Date :47I05I2019 Engineer:M.R 1 ANCHORAGE DESIGN (SEISMIC) ANTENNA I Wp e Fx FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx = 44.0 Lbs Dy= 37.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 26.5 Lbs V Vertical force, Ey = 10.5 Lbs : COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 70.5 Lbs Max shear force per anchor = Dy + Ey = 48.0 Lbs Page 5 of 57 GEOMETRY e • 1.25 ft d= 213 ft Luis Labrada 217 Landis Avenue Chula Vista, CA 91910. P: 619.370-9515 : www.lamareng.com LAMAR IENGINEERING Project: Nodes 5 Date: 07/05/2019 Engineer:M.R I WIND DESING ANTENNA I DESCRIPTION Description: QUINTEL QS46512•2 ANTENNA W= 75.0 Lbs bldg height= 20.8 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS A = 1.30 For h = 20.83 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative C 1.0 110.0 mph 1.0 Flat Wind Pressure ps = A x Kzt x I x ps30 = 20.67 psf Horizontal PS = Ax Kzt x x ps30 = 17.94 psf Roof Uplift Applied horizontal force, Fph = Ps x (bxc)/2 = 89.5 Lbs Applied vertical force, Fpv = Ps x (axc)/2 = 16.1 Lbs Page 6 of 57 Ar b Fph - d e= 1.25 ft: d= 2.13 ft a= 0.90 ft: b= 4.33 ft C = 1.00 ft: GEOMETRY Wp e Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com PEA C'IL StRUCIUPAL Project: Nodes 5 Date: 07/05/2019 Engineer:M.R I ANCHORAGE DESIGN (WIND) ANTENNA I FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy = 37.5 Lbs FORCES WIND (W) Horizontal force, Wx = 54.2 Lbs Vertical force, Wy = 8.1 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 98.2 Lbs Max shear force per anchor = Dy + Wy = . 45.6 Lbs Page 7 of 57 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 5 Date: 07/05/2019 Engineer: M.R I ELEMENT & CONNECTIONS DESIGN ANTENNA I Fx = Dx+(Ex or Wx) = 98.2 Lbs Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 2.0 Radios Total Quantity 4. H= 4.67 ft Lc = 5.33 ft UNISTRUT HORIZONTAL DESIGN Number of radios pair lOdd number of radios M. max = PL/8 (n-11n) I ,.p M.max = PLI8 (n+1/n) 1 R=P(n-1)I2 I4 1 1 I I RPn/2 Lc4c4..c4c4.c..I I- '-j..c--.-' n 3 I.J'M..c4.c..j..c4.c.?21. = 2 I I 1'7LC c= 1.78 ft I c= 2.67 ft Px= 98.2 Lbs M. Mmax (y-y) = 174.5 Ft-Lbs Status 2094.4 In-Lbs [ OKJ Py= 48.0 Lbs M. Mmax (y-y) = 85.3 Ft-Lbs Status 1023.4 In-Lbs [ OK I Use: Unistrut: P1000 1 5/8 x 1 5/8-12ga Nominal Thickness Single Channel Allowable Moment:• 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Demand Page 8 of 57 Luis Labrada 21,T-Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com -iI'VWiri51 I'JIL+ cTAUCTUR1 Project: Nodes 5 Date': 07/0512019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN ANTENNA Fx = Dx+(Ex or Wx) = 98.2 Lbs Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 2.0 Radios Total Quantity H= 4.7 ft Lc= 5.3 ft CONNECTION A BOLT DESIGN D-Bolt= 3/8 in Shear = 48.0 Lbs n Bolt: I Fv = 24 ksi Pull Out = 98.2 Lbs Material = A307 Ft = 45 ksi Allowable Shear > Max. Shear Status 2650.7 Lbs > 48.0 Lbs I OK 1 Allowable Pull-Out > Max. Shear Status 4970.1 Lbs > 98.2 Lbs [ OK 1 CONNECTION B BOLT DESIGN D-Bolt= 3/8 in Shear = 48.0 Lbs n Bolt: I Fv = 24 ksi Pull Out = 98.2 Lbs Material = A307 Ft = 45 ksi Allowable Shear > Max. Shear Status 2650.7 Lbs > 48.0 Lbs [ OK I Allowable Pull-Out > Max. Shear Status 4970.1 Lbs > 98.2 Lbs I OK 1 Page 9 of 57 Luis Labrada .., .,. . Proyecto: Nodes 5 217-Landis Avenue LAMAR ..• .. Date: 05/07/19 Chula Vista, CA 91910 HENGINEERING Engineer MR P 619-370-9515 .................................... www.lamareng.com . ,".. - - •.-' . :. • - APP :D.IX '!I. DESIGN ATTACHMENT ,- . RADIOS. .................................. ........... Page 10 of 57 11 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com MAR EV+S1RUcTUL Project: Nodes 5 Date: 07/05/2019 Engineer: M.R SE!SMIC DESING RADIO DESCRIPTION Description: Alu Radio Units W = 59.5 Lbs bldg height = 20.8 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 S0 = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 59.5 Lbs. FpH = (0.64 * Wp )/1.4 = 27.2 Lbs FpH = 0.46 * Wp = 27.37 Lbs HORIZONTAL FpV = 0.28 * Wp = 16.66 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*Ip)*(1 +2*z/h) = 22.5 Lbs. Verifications FPH max = 1.6* S * I * WP= 75.0 Lbs. 22.5 Lbs. [OK 1 DS p p Fy11 min = 0.3 * S * I * WP= 14.1 Lbs. 22.5 Lbs. [OK I DS p p Page 11 of 57 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR Project: Nodes 5 Date: 07/05/2019 IuENGINEERING Engineer:M.R DESIGN FORCES (SEISMIC) I RADIO GEOMETRY al Plan Radio Dimensions a= 0.92 ft b= 2.10 ft c= 0.92 ft Support = 4 Quantity Fph Elevation FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a14 = 13.7 Lbs*ft Dx= 6.5 Lbs Dy= 14.9 Lbs FORCES SEISMIC (E) Applied horizontal force, Ex = 9.3 Lbs Applied vertical force, Ey = 4.2 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 15.8 Lbs Max shear force per anchor = Dy + Ey = 19.0 Lbs Page 12 of 57 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR Project: Nodes 5 Date: 07105/2019 IENGINEERING Engineer:M.R WIND DESING RADIO DESCRIPTION Description: Alu Radio Units W = 59.5 Lbs bldg height = 20.8 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Flat ANALYSIS A = 1.30 For h = 20.83 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure PS = A x Kzt x I x ps30 = 20.67 psf Horizontal ps = Ax Kzt x I x ps30 = 17.94 psf Roof Uplift Page 13 of 57 tFpvr-, Suction WaI bl Fph Suction Elevation Luis Labrada 217 Landis Avenue .Chula Vista, CA 91910 P: 619.370-9515: www.lamareng.com LAMAR Project: Nodes 5 .• . . Date: 07/05/2019 IENGINEERING . .'. . .. Engineer:M.R DESIGN FORCES (WIND) I RADIO GEOMETRY C p 4 a Plan Radio Dimensions a= 0.92 ft b= 2.10 ft C = 0.92 ft Support = 4 Quantity FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a/4 = 13.7 Lbs*ft Dx= 6.5 Lbs Dy= 14.9 Lbs FORCES WIND (W) Applied horizontal force, Wx = 13.3 Lbs Applied vertical force, Wy= 3.8 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx. = 19.8 Lbs Max shear force per anchor = Dy + Wy = 18.7 Lbs Page 14 of 57 Luis Labrada 217 Landis Avenue , 'Chula Vista, CA 91910 . LAMAR P: 619.370-9515- . ENGINEERING www.lamareng.com •..• _______________ I ELEMENT & CONNECTIONS DESIGN Project: Nodes 5 '; - Date: 07/05/2019 - Engineer: M.R RADIO Q = 2.0 NO of ~adios per vertical unist. 4.7 Lc = 5.33 ft F.0 5.33 ft UNISTRUT VERTICAL DESIGN .. P= 19.8 Lbs V M. Mmax = PLJ3 = 15.4 Ft.-Lbs. Status 185.2 In.-Lbs. OK I Use: Unistrut: P1000 1 5/8 x I 518-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog— No. 17- Page 23 CONNECTION A CHANNEL NUTS WITH SPRING - Status Shear = 19.0 Lbs Me ' Pull Out = 19.8 Lbs Use: Channel Nuts: 318"-16 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 3!8"-1 1/2" Mm. General Engineering Catalog - No. 17 Page 68 n7l' Page 15 of 57 L] - General Engineering Catalog - No. 17- Page 66 Luis Labrada 217 Landis Avenue Project: Nodes 5 Chula Vista, CA 91910 LAMAR ' Date: 07/05/2019 P: 619.370-9515 ENGINEERING Engineer:M.R www.lamareng.com ELEMENT & CONNECTIONS DESIGN RADIO Fx = Dx+(Ex Q = 2.0 N* of radios per vertical unist. 4.7 0 Lc = 5.3 ft 5.33 ft UNISTRUT VERTICAL DESIGN P= 19.8 Lbs 1P 1P M. Mmax = PL/3 = 15.4 Ft.-Lbs. Status 185.2 In.-Lbs. OK] L .1 Use: Unistrut: P1000 1 5/8 x I 518-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 CONNECTION B CHANNEL NUTS WITH SPRING Status Shear= 38.1 Lbs OK1 Pull Out = 39.7 Lbs OK j Use: Channel Nuts: 3/8-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 3/8-1 1/2" Mm General Engineering Catalog - No. 17 Page 68 Page 16of 57 Luis Labrada 217 Landis Avenue Project: Nodes 5 Chula Vista, CA 91910 LAMAR Date: 07/05/2019 P: 619.370-9515 Ia.E NGIN EE RING Engineer: M.R www.lamareng.com I ELEMENT & CONNECTIONS DESIGN I RADIO I Fx = Dx+(Ex or Wx) = 19.8 Lbs Fy = Dy+(Ey or Wy) = 19.0 Lbs i==' Q = 5.0 Radios Total Quantity 4.7 H= 4.67 ft x Lc= 5.33 ft V V 4 5.33 ft UNISTRUT HORIZONTAL DESIGN Px 39.7 Lbs ()11-01P M. Mmax (y-y) = 181.2 2174 Ft.-Lbs. In.-Lbs. Status [776K T Py = 38.1 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 174.0 Ft.-Lbs. Status n = 7 2088 In.-Lbs. T OK] c = 0.76 ft Use: Unistrut: P1000 I 5/8 x I 5/8-I2ga Nominal Thickness Single Channel Allowable Moment: - 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 CONNECTION C BOLT DESIGN Reaction unistrut horizontal Ry = Py(n-I)/2 Pull Out = 114.2 Lbs Rx = Px(n-1 )I2 - Shear = 119.0 Lbs Use: D-Bolt: 1/2 nBolt:, 2 Shear: 780.0 Lbs . Allowable Bolt Shear Pull-Out: 300.0 Lbs Allowable Bolt Pull-Out (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 119.0 Lbs 780.00 Lbs 0.15 [ OK 1 Demand Capacity Shear Ratio Status 114.2 Lbs < 306.00 Lbs 0.38 [ OK 1 ) Page 17 of 57 Luis Labrada 217 Landis Avenue LAMAR Proyecto: Nodes 5 Date: 05/07/19 Chula Vista, CA 91910 UNENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX III. DESIGN ATTACHMENT, CABINET EQUIPMENT. Page 18 of 57 Luis Labrada 217 Landis. Avenue - Chula Vista, CA91910 P: 619.370-9515 JENGNEERING www.lamareng.com Project: Nodes 5 Date: 07105/2019 Engineer: M.R SEISMIC DESING CABINET DESCRIPTION Description: BBUI CABINET W = 382.0 Lbs bldg height = 20.8 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SOS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT WP = 382.0 Lbs. FpH = (0.64 * Wp )I1.4 = 174.63 Lbs FpH = 0.46 * Wp = 175.72 Lbs HORIZONTAL FpV = 0.28 * Wp = 106.96 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 z/h = 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*Ip)*(1+2*z/h) = 144.5 Lbs. Verifications FpH max = 1.6 Sos * i p Wp = 481.6 Lbs. > 144.5 Lbs. [OK Fy11 min = 0.3 * 5OS * p * Wp = 90.3 Lbs. 144.5 Lbs. [OK Page 19 of 57 FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a/4 = 214.9 Lbs*ft Dx= 80.5 Lbs Dy = 95.5 Lbs Luis Labrada 217Landis Avenue Chula Vista, CA91910 P: 61,91.370-9515; www.lamareng.com * ' DESIGN FORCES (SEISMIC) GEOMETRY c Wall [ at b Plan a= 2.25 ft b= 2.67 ft C = 2.30 ft Support= 4 Project: Nodes 5 Date: 07/05/2019 F. ..:; •':. ... Engineer:MR. J • ..• .•,'•, I CABINET flFpv . Fph Elevation FORCES SEISMIC (E) Horizontal force, Ex = 162.4 Lbs Vertical force, Ey = 26.7 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 243 Lbs Max shear force per anchor = Dy + Ey = 122 Lbs Page 20 of 57 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR Project: Nodes 5 Date: 07105/2019 INENGINEERING Engineer:M.R DESCRIPTION WIND DESING CABINET Description: BBU CABINET W= 382 Lbs bldg height = 20.8 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS' A = 1.30 For h = 20.83 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure PS = A x Kzt x I x ps30 = 20.67 psf Horizontal. PS = Ax Kzt x I x ps30 = 17.94 psf Roof Uplift Applied horizontal force, Fph = Ps x (bxc)/2 = 126.9 Lbs Applied vertical force,. Fpv = Ps x (axc)/2 = 92.8 Lbs C 1.0 110.0 mph 1.0 Flat Page 21 of 57 GEOMETRY Plan a= 2.25 ft b= 2.67 ft c= 2.30 ft Support= 4 f Fpv Suction Wall H a 4 Suction Elevation Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAM Project: Nodes 5 Date: 07/05/2019 JENGINEERING Engineer:M.R I DESIGN FORCES (WIND) I CABINET I FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a/4 = 214.9 Lbs*ft Dx= 80.5 Lbs Dy = 95.5 Lbs FORCES WIND (W) Horizontal force, Wx = 141.7 Lbs Vertical force, Wy = 23.2 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 222 Lbs Max shear force per anchor = Dy + Wy = 119 . Lbs U Page 22 of 57 Luis Labrada 217 Landis Avenue Project: Nodes 5 Chula Vista, CA 91910 Date: 07105/2019 -9515 LAMAR HENGINEERING Engineer: www.lamareng.com ELEMENT & CONNECTIONS DESIGN I CABINET AB Fx = Dx+(Ex or Wx) = 242.9 Lbs I Fy = Dy+(Ey or Wy) = 122.2 Lbs Q = 2.0 Cabinet Total Quantity 2.58 ft H= 2.58 ft Lc= 7.92 ft El 7.92 ft A 8 UNISTRUT HORIZONTAL DESIGN Px = 242.9 Lbs M. Mmax (y-y) = 1154.1 Ft.-Lbs. Status $ Ir 13849 In-Lbs OK I..c4cL4_cj I— I-7•c Py = 122.2 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 580.9 Ft.-Lbs. Status n = 5 6971 In.-Lbs. OK ] c= 1.58 ft Use: Unistrut: PIOOIA (2)15/8 x I 5/8-12ga Nominal Thickness Allowable Moment: 18640 In-Lbs General Engineering Catalog - No. 17- Page 27 Page 23 of 57 Luis Labrada 217 Landis Avenue Chula Vista, Ck91910 P: 619.70-951'5' www.lamareng.com LAMAR INENGINEERING Project: Nodes 5 Date: 07/05/2019 Engineer:M.R ELEMENT.& CONNECTIONS DESIGN Fx = Dx+(Ex or Wx) = 242.9 Lbs Fy = Dy+(Ey or Wy) = 122.2 Lbs Q = 2.0 Cabinet Total Quantity H= 2.6 ft Lc= 7.9 ft CABINET 2.58 ft 7.92 ft CONNECTION A CHANNEL NUTS WITH SPRING - Status Shear= 122.2 Lbs OK ' Pull Out = 242.9 Lbs OK Use: Channel Nuts: 318"-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW U'se: Hex-Head: 318"-1 112" Mm. General Engineering Catalog - No. 17 1. Page 68 CONNECTION B BOLT DESIGN Reaction unistrut horizontal Ry = Py(n-1)/2 - Shear = 244.5 Lbs Rx = Px(n-1)/2 -+ Pull Out = 485.7 Lbs Use: D-Bolt: 3/8 in. Fv = 24 ksi n Bolt: 2 Ft = 45 ksi Material: A307 Demand > Capacity Shear Status 244.5 Lbs > 5301.4 Lbs [ OKj Demand > Capacity Pull-Out Status 485.7 Lbs > 9940.2 Lbs [ 0K1 Page 24 of 57 LUisLabrada Proyecto: Nodes 5 . 217 Landis Avenue ~IAMAR, . Date: 05/07/19 Chula Vista, CA 91910 NENGINEERING Engineer M R P: 619-370-9515 www.lamareng.com .• •• APPENDIX IV. SCREEN WALL.,!.''!, Page 25 of 57 Luis Labrada 217 Landis Avenue . Chula Vista, CA 91916' P: 619.370-9515 www.lamareng.com LAMAR I!LLG - Project: Nodes 5 Date: 0710512019 Engineer: M.R SCRNWALL'DESIGN - FRP TYPE I Geometry W = 7.5 psf Weight L Li SCREEN LENGTH S L= 16.0 ft Screen total length - RI NP= 4 Number Post NS= 3 NO Steps between post H3 L= 533 itt L between post H2 R2 S= 1.78 ft. Length Steps Ht 1-14 H51 SCREEN HEIGHT L2 H1= 15.16 ft. [E] Structural Roof Hi H2 = 5.67 ft Post Height Building H3= 4.7 ft Screen Height H4= 1.0 ft Screen Wall Ht = 20.83 ft Total height BRACE L2=. 4.00 ft H5= 4.58 ft 6 = 48.867 0 Wind Force Exposure category (ASCE 7-10 26.7.3) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Pressure 30 Psf. Page 26 of 57 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IIENGINEERING Project: Nodes 5 Date: 0710512019 Engineer: M.R I SCREEN WALL DESIGN - FRP.. TYPE I FRP Channel Stifener - Design Tributary: S = 1.78 ft H3= 4.67 ft 148 ft 0. Demand: Load qw = 53.4 Lbs/Ft M. Mmax (x-x) = 1746.9 In.-Lbs. 4.67 ft Flexural Strength = 873.45 psi Capacity Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. lz = 3.00 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 873.45 psi 6600 psi 0.13 OK ____j FRP Channel Stifener - Connection Demand Shear= 124.7 Lbs Capacity Use: 112 in FRP Bolt nBolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 124.7 Lbs < 780 Lbs 0.16 EÔkI Page 27 of 57 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IIENGINEERINGI Project: Nodes 5 Date: 0710512019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I Top & Bottom FRP Horizonal Tube - Design Tributary: Li = 5.:3:3 It H3= 4.67 ft Demand: Load qw = 70.1 Lbs/Ft 4.67 ft M. Mmax (x-x) = 2988.8 In.-Lbs. Flexural Strength = 1494.4 psi Capacity P5.33ft ft p Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. lz = 3.00 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1494.4 psi 6600 psi 0.23 lOKI Top & Bottom FRP Horizonal Tube - Connection Demand Shear = 186.8 Lbs Capacity Use: 1I2 in FRP Bolt n Bolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 186.8 Lbs 780 Lbs 0.24 OKj Page 28 of 57 Luis Labrada . ...... 217 Landis Avenue Chula Vista, CA 91910 'P: 619.370-9515 www.lamareng.com .... .• I . LAMAR IERI!G SCREEN WALL DESIGN - FRP Project: Nodes 5 Date: 07/0512019 Engineer: M.R k'lVd;J=fi Geometry L = 1.67 ft Fy H= 2.00 ft 8= 56.14 o B Fx Loads Reactions Unistrut 8 A Fx= 162.2 Lbs Fy= 217.2 Lbs C Reactions Rx Ry A 162.2 217.2 Lbs B -19.1 0.00 Lbs C 181.4 217.19 Lbs Check Caoacities Brace-1 Element AB: Axial force: 19.1 Lbs Tension Element AC: Axial force: 283.0 Lbs Compressive Use:, L 2X2X1_4 FRP Angle b = 2 in. A = 0.938 1n2 Gross area of the section h = 2 In. Iz = • 0.35 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity Compressive Strength: 6600.0 psi (Appendix A. Design Values Load Chart for FRP Materials) Tensile Strength: 6600.0 psi LARR# 25520. Demand Capacity Compressive Ratio Status 301.7 psi < 6600.0 psi 0.05 jTOKIJ Demand Capacity Tension Ratio Status 20.4 psi < 6600.0 psi 0.00 EITOK1 Page 29 of 57 Luis Labrada 217 Landis Avenue 4 Project: Nodes 5 Chula Vista, CA 91910 LAMAR . -Date 10`07/0512019 P: 619.370-9515 - . . IENGINEERING - .- Engineer: M.R www.lamareng.com '-'. • ' . . SCREEN WALL DESIGN - FRP TYPE I - .-- • Brace: Support Unistrut - Connection CONNECTION A - FRP BOLT DESIGN • . Shear=: 217.2 Lbs Use: D-Bolt: 112 in nBolt: I . . . . Shear: 780.0 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 217.2 Lbs 780.00 Lbs 0.28 5iJ - - . . • CONNECTION B - FRP BOLT DESIGN Shear: 19.1 Lbs . Use: D-Bolt: 112 in nBolt: 2 . Shear: 780.0 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status - 19.1 Lbs 1560.00 Lbs 0.01 EOK] CONNECTION C - FRP BOLT DESIGN Shear: 217.2 Lbs Use: D-Bolt: - - 1/2 in n Bolt: 2 Shear: 780.0 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 217.2 Lbs 1560.00 Lbs 0.14 ETOK1 Page 30 of 57 Luis Labrada 217 Landis Avenue Project: Nodes 5 Chula Vista, CA 91910 LAMAR Date: 0710512019 P: 619.370-9515 IENGINEERING . Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE I Loaas Reactions Top & Bottom FRP Horizonal Tube Reactions Brace 1 Reaction = 186.8 Lbs Rx-B = -19.1 Lbs Ri = 373.6 Lbs Ry-B = 0.0 Lbs R2 = 373.6 Lbs Rx-C = 181.4 Lbs Ry-C = 217.19 Lbs Check Capacities Steel Column M. Mmax = 372.0 In.-Lbs. Per Ram Elements Flexural Strength = 95.38 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 In2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 95.38 psi < 6600 psi 0.01 [OKj Check Capacities Brace Axial force: 805.0 Lbs Per Ram Elements Compressive Strength: 238.9 psi Use: HSS_SQR 4X4X1_4 FRP Channel . b = 4 In. A = 3.37 1n2 . Gross area, of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Compressive Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 238.9 psi < 6600 psi 0.04 E0K] FRP Steel Column to Brace (KICKER) - Connection Reaction Steel Column to Brace: V = 805.0 Lbs Use: D-Bolt: 1I2 in nBolt: 3 Capacity: 780 Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 805.0 Lbs < 2340 Lbs 0.34 1- OK I Page 31 of 57 Luis Labrada 217 Landis Avenue Project: Nodes 5 Chula Vista, CA 91910 LAMAR Date: 0710512019 P: 619.370.9515 IIENGINEERING Engineer: M.R www.lamareng.com I SCREEN WALL DESIGN - FRP TYPE I FRP Steel Column to Roof (BRAKET1 - Connection Reaction Steel Column Fx = 42.5 Lbs Per Ram Elements b Fy= 94.9 Lbs k,4 d2 Steel Column: HSS_SQR 4X4X1_4 adlj A • Plate: • a= 10 in dl= 7 in d2: 7 in 1.5 in Bolt: Shear V = 10.63 Lbs Pull Out T = 23.725 Lbs I V T Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 4 e Dia.: 1/2 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 3114 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio Status 10.6 Lbs < 5495 Lbs 0.00 OK Demand Capacity Pull Out Ratio Status - 23.7 Lbs 4915 Lbs 0.01 OK FRP Brace to Roof (BRAKET) - Connection Reaction Steel Column Fx = 655 Lbs Per Ram Elements b Fy= 759 Lbs Steel Brace: A HSS SQR 4X4X1 4 A - ad1j1 • I Plate: a= 10 in dl= 6 in i b= 14 in d2= 10 in ii..... t 1/4 in k= 2.0 1.5 Min Bolt: Shear V= 163.8 Pull Out T = 189.8 Lbs. Per Bolt =' Lbs. Per Bolt 7T Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 4 8 Dia.: 112 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 3114 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio Status 163.8 Lbs 5495 Lbs 0.03 OKJ Demand Capacity Pull Out Ratio Status 189.8 Lbs 4915 Lbs 0.04 OKJ Page 32 of 57 Luis Labrada 217 Landis Avenue LAMAR Project: Nodes 5 Chula Vista, CA 91910 Date: 07/0512019 P: 619.370-9515 •ENGINEERING Engineer: M.R www.lamareng.com I SCREEN WALL DESIGN - FRP TYPE I I U a uitiuu mr nliauIla. I UUC -LOVOININ Tributary: Li = 5.33 ft H3= 4.67 ft Demand: Load qw = 70.1 Lbs/Ft 4.67 ft M. Mmax (x-x) = 2988.8 In.-Lbs. Flexural Strength = 1494.4 psi V q 4LJ Capacity Use: . HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 In2 Gross area of the section h = 3 In. lz = 3.00 1n4 Moment of inertia = 1/4 In. . E 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1494.4 psi < 6600 psi 0.23 ETIOKIII FRP Vertical Tube to Existing Wall Demand Shear= 186.8 Lbs I] Capacity: Use: D-Bolt: 1I2 in nBolt: I Allowable Shear 320 Lbs Allowable Pull Out 378 Lbs/in Demand 186.8 Lbs Long= 4 in Side Member Thickness: 0.25 in Ref. Table 12K. Per NDS 2018 Ref. Table 12.2A. Per NDS 2018 Capacity Shear Ratio Status 320 Lbs 0.58 LOKJ Page 33 of 57 Luis Labrada : 217 Landis Avenue Chula Vista, CA 91910 ..: P: 619.370-9515 www.lamareng.com LAMAR INENGINEERINGI . Project: Nodes 5 ...Date: 07/05/2019 Engineer: M.R ISCREEN WALL DESIGN - FRP TYPE 2 Geometry W = 7.5 psf Weight Lt Li 4 10 SCREEN LENGTH L = 9.0 ft Screen total length 4 _____ NP= 3 NO Post NS= 2 NO Steps Between Post 1H3 Li =ET4.5Jft L. Between Post H2 jEO H5 IU S= 2.25 Length Steps Ht IH4 + SCREEN HEIGHT H1 = 15.16 ft. [El Structural Roof Hi H2= 6.67 ft Post Height I I Building H3 = 5.7 ft Screen Height H4 = 1.000 ft Screen Wall Ht = 21.83 ft Total height BRACE L2= 0.92 ft H5= 6.67 ft 6= 0 • Wind Force Exposure category (ASCE 7-10 26.7.3) Importance factor, 1.0 only, (Table 1.5-2) Basic wind speed (ASCE 7-10 26.5.1) Topographic factor (26.8 & Table 26.8-1) = C 1w = 1.0 V = 110.0 mph Kzt = 1.0 Pressure 30 Psf. Page 34 of 57 Luis Labrada 217 Landis Avenue . Project: Nodes 5 ChulaVista,CA9191O LAM AR . - . Däte07I05I2019 P 6193709515 ENGINEERING Engineer MR - www.Iamareng.com "'.......... .SCREENWALLDESGN -FRP TYPE 2 P.,., FRP Channel Stifener- Design Tributary: S = 2.25 ft H3= 5.67 ft 23ft Demand: Load qw = 67.5 Lbs/Ft M. Mmax (x-x) = 3255.1 In.-Lbs. 5.67 f Flexural Strength = 834.63 psi Capacity Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. . A = 3.37 1n2 Gross area of the section h = 4 In. . . lz = 7.80 . 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 834.63 psi 6600 psi 0.13 OK FRP Channel Stifener - Connection Demand Shear= 191.36 Lbs Capacity Use: 112 in FRP Bolt . . . . . . n Bolt: 2 780 Lbs Allowable Bolt Shear . .. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status - ... .. ... 191.3625 psi 1560 psi 0.12 L OK Page 35 of 57 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IIENGINEERINGI Project: Nodes 5 .'Date: '07105/2019 - Engineer: M.R SCREEN WALL DESIGN - FRP TYPE 2 1 .' Top &.Bottom FRP Horizonal Tube - Design . . Tributary: Li = 4.50 ft H3= 5.67 ft Demand: Load qw = 85.1 Lbs/Ft 5.67 ft M. Mmax (x-x) = 2583.4 In.-Lbs. P4.5ft ecu ral Strength = 662.41 psi Caøac -. Use: HSS_SQR 4X4X1_4 FRP Channel .... .. . .. ,.' b = 4 In. A = ' - 3.37 In2 Gross area of the section h = 4 .In. lz = 7.80 In4 Moment of inertia = 1/4 . In. E = 29000000 psi Modulus of Elasticity aa = 6600 . Psi. Allowable Flexural Strength. . (Appendix A. Design Values Load Chail for FRP Materials) LARR# 25520. .. . . Demand Capacity. Ratio Status 662.41 psi 6600 psi 0.1 Top & Bottom FRP Horizonal Tube - Connection . ... . .: Demand Shear= 191.4 Lbs . Capacity Use: 1/2 in FRP Bolt . . nBolt: 2 780 Lbs Allowable Bolt Shear . . . . (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. . . Demand Capacity Ratio Status '. 191.4 psi 1560 psi 0.12 Oxj. Page 36 of 57 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LAMAR P: 619.370-9515 IENGINEERING www.lamareng.com Project: Nodes 16A-1613 Date: 06130/2019 Engineer: M.R I SCREEN WALL DESIGN - FRP TYPE 2 Loads Reactions Top & Bottom FRP Horizonal Tube FRP Screen Wall Weight Reaction = 191.4 Lbs W = 225.1 Lbs RI = 382.7 Lbs R2 = 382.7 Lbs Check Capacities Steel Column M. Mmax = 17613.0 In.-Lbs. Flexural Strength = 4516.16 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 In2 Gross area of the section h = 4 In. Iz = 7.80 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 - Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 4516.16 psi < 6600 psi 0.68 1- OK Check Capacities Brace Axial force: 191.4 Lbs Compressive Strength: 56.8 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 In2 Gross area of the section h = 4 In. Iz = 7.80 In4 Moment of inertia = 1/4 In. E =' 29000000 1Psi Modulus of Elasticity aa = - 6600 - Psi. Allowable Compressive Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 56.8 psi < 6600 psi 0.01 EOKI FRP Steel Column to Brace (KICKER) - Connection Reaction Steel Column to Brace: V = 191.4 Lbs Use: D-Bolt: 112 in A = 0.196 in2 nBolt: 2 Capacity: 780 Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 974.6 psi 1560 psi 0.62 1 OKJ Page 37 of 57 Luis Labrada 217 Landis Avenue Project: Nodes 5 Chula Vista, CA 91910 LAMAR Date: 0710512019 P: 619.370-9515 IENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE 2 FRP Steel Column to Roof (BRAKET) - Connection Reaction Steel Column Fx = 325.3 Lbs b Fy= 225.1 Lbs d2 Steel Column: HSS_SQR 4X4X1_4 a—F! ad1 Q • a= 10.0 in dl= 7 in b: 17 in d2: 14 in fl Bolt: Shear V = 63.8 Lbs Pull Out T = 37.5 Lbs I V T Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 6 9 Dia.: 112 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 3114 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio Status 63.8 Lbs. 5495 Lbs. 0.01 OKTJ Demand Capacity Pull Out Ratio Status 225.1 Lbs. < 4915 psi 0.05 .OK C Page 38 of 57 - ' Luis Labrada LAMAR• 217 Landis Avenue Proyecto:Nodes5 Date: 05/07/19 Chula Vista, CA 91910 INENGINEERING • Engineer: M.R P: 619-370-9515 www.lamareng.com - APPENDIX V. ROOF VERIFICATION Page 39 of 57 Luis Labrada 217:LandiS :Avenue Chula Vista, CA 91910 P: 619.370-9515 LAMAR INENGINEERING -: VERIFY ROOF FRAMING NODE 5 . :. Project: Nodes 5 Date: 07/05/2019 Engineer: M.R . - ANTENNA DIMENSION [in] b c a WIGHT [Lbs] Quantity Area (sqftj W (Lbs] HEX454CU0000G 46.80 15.60 7.40 48.90 0 0.00 0.00 HEX654CU010OG 51.10 12.00 7.10 39.70 0 0.00 0.00 CUUX06306F52s0-T 24.30 12.10 7.00 13.00 3 1.76 39.00 CUUX05XO6F5200 24.10 16.20 7.30 15.70 0 0.00 0.00 QUINTELQS46512-2 52.00 12.00 10.80 75.00 1 0.90 75.00 .•:_ Total 4.00 2.66 114.00 RADIOS • DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] RRUS-2203 . 7.90 7.90 3.90 10.00 7 1.50 70.00 ERICSSON RRUS -4426 15.00 13.20 5.80 48.40 1 0.53 48.40 ERICSSON RRUS- 4478 18.10 13.40 8.26 59.40 1 0.77 59.40 ERICSSON RRUS-4415 16.50 13.40 5.90 46.00 1 0.55 46.00 ALCATEL LUCENTTD-RRH8X2O-25 9.68 12.83 6.30 26.45 2 1.12 52.90 ALCATEL LUCENT CDMA/LTE DUAL TECH 25.00 11.00 11.00 59.50 1 1 0.84 1 59.50 • . Total 13.00 5.31 336.20 CABINET DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] BBU 32.25 27.50 27.00 382.00 3 15.47 1146.00 AC POWER 18.50 20.00 6.00 50.00 1 0.83 50.00 TELCO.CABINET 1 14.25 7.75 6.00 1 10.00 1 1 1 0.32 1 10.00 Total 5.00 16.63 1 1206.00 Page 40 of 57 Luis Labrada 217 Landis Avenue LAMAR Chula Vista, CA 91910 IENGINEERING P: 619.370-9515 ... Project: Nodes 5 Date: 07105/2019 Engineer: M.R . :. s. VERIFY ROOF FRAMING Existing Load Density Concrete: 145:0 pcf . .DL: •72;5 lb/sq. ft. . . Thickness: 6.0 in LL: 20.0 lb/sq. ft. . ~t—ElSt—eelDeck Area [sqft] DL LL DL+LL 1 435 . 31540 1 8701. 1 40241 JLbs. New Load Antennas Radio Cabinet Total: Quantity Area DL Lbs Lbs Lbs • Lbs 4 3 114 13, 5 336 5 17 1206 22 25 1 1656 New Load + Existing Load • . Existing New Total: New + Existing DL LL DL+LL Area [sq ft] DL LL DL+LL DL LL • DL+LL Steel Deck 31540 8701 40241 25 0 -492 -492 31540 8209 39749 Antennas 01 0 0 3 114 0 114 114 0 114 Radlol 0 0 0 5 336: 0 336 0 336 Cabinet 0 0 0 17 1206 0 1206 1206 0 1206 Total: 41405. Chapter #34A CBC 2016 . 3403A.3 Existing structural elements carrying gravity load. "Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load- carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404A.3. Any existing element that will form part of the lateral load path for any part of the addition shall be onsidered an existing lateral load- carrying structural element subject to the requirements of Section 3403A.4." New Total Load: 41405 Lbs Existing Total Load: 40241 Lbs [New Total Load] -[Existing Total Load] -*100% 100% = 2.812 % [New Total Load] 281 5 '% OK Page 41 of 57 Luis Labrada Proyecto: Nodes 5 217 Landis Avenue LAMAR Date: 05/07/19 Chula Vista, CA 91910 NNENGINEERING Engineer: M.R P: 619-370-9515 www.lamarena.com APPENDIX VI. TABLES Page 42 of 57 TABLE 1: SEISMIC DESIGN Page 43 of 57 5/16/2019 U.S. Seismic Design Maps OSHPD Legoland I Legoland Dr, Carlsbad, CA 92008, USA Latitude, Longitude: 33.1262496, -117.31192390000001 tseum df If '!'Milking Music 1, \ LoaIffo(4 HteI Parking 9 Map data 02019 Google Date 5/16/2019,11:03:03 AM Design Code Reference Document ASCE7-10 Risk Category II Site Class 0 - Stiff Soil Type Value Description S5 1.127 MCER ground motion. (for 0.2 second period) Si 0.434 MCER ground motion. (for 1.0s period) 5MS 1.182 Site-modified spectral acceleration value SM1 0.679 Site-modified spectral acceleration value SOS 0.788 Numeric seismic design value at 0.2 second SA S01 0.453 Numeric seismic design value at 1.0 second SA Type Value Description SOC D Seismic design category Fa 1.049 Site amplification factor at 0.2 second Fv 1.566 Site amplification factor at 1.0 second PGA 0.447 MCE0 peak ground acceleration FPGA 1.053 Site amplification factor at PGA PGAM 0.471 Site modified peak ground acceleration TL 8 Long-period transition period in seconds SsRT 1.127 Probabilistic risk-targeted ground motion. (0.2 second) SsUH 1.194 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration SsD 1.525 Factored deterministic acceleration value. (02 second) SIRT 0.434 Probabilistic risk-targeted ground motion. (1.0 second) S1UH 0.436 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.616 Factored deterministic acceleration value. (1.0 second) PGAd 0.59 Factored deterministic acceleration value. (Peak Ground Acceleration) CRS 0.944 Mapped value of the risk coefficient at short periods CR1 0.995 Mapped value of the risk coefficient at a period of 1 S Page 44 of 57 https://seismicmaps.org . 1/2 5/16/2019 U.S. Seismic Design Maps MCER Response Spectrum 1.5 1.0 0.0 0.0 2.5 5.0 Period, T (sec) - Sa(g) Design Response Spectrum 0.8 0.6 0.4 Ce Cl) 0.2 0.0 0.0 2.5 5.0 7.5 Period, T (sec) - Sa(g) 7.5 DISCLAIMER While the information presented on this website is believed to be correct, SEAOC /OSFIPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this. information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this webstie. Page 45 of 57 https://seismicmaps.org 2/2 TABLE:2 DESIGN VALUES LOAD CHART FOR FRP MATERIALS Page 460f57 Appendix A Design Values Load Chart for FRP Materials ALLOWABLE STRENGTH TABLE FOR FRP SHAPES: Tubes, Channels, Angles Property Direction Value Units Tensile Strength Lengthwise Crosswise 6,600 1,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 6,600 3,300 psi Flexural Strength Lengthwise Crosswise 6,600 2,200 psi Flexural Modulus Lengthwise Crosswise 1,600,000 800,000 psi Shear Strength Lengthwise Crosswise 1,400 500 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi 1/2" Bolt Bearing Lengthwise Crosswise 6,000 3,600 psi 1/2" Bolt Shear Allowable 780 lbs 1/2" Bolt Tension Allowable 300 lbs Table Notes: Values based on 1525 series - Thermoset Polyester Class 1 FR (Slate Grey) A Safety Factor of 5.0 has been used to determine Allowable Loads. ALLOWABLE STRENGTH TABLE FOR FRP FLAT SHEETS: Property Direction Value Units Tensile Strength Lengthwise Crosswise 4,000 2,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 4,800 3,200 psi Flexural Strength Lengthwise Crosswise 7,000 3,000 psi Flexural Modulus Lengthwise Crosswise 2,000,000 1,100,000 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi Table Notes: Values based on 1625 series - Thermoset Vinyl Ester Class 1 FR (Beige) A Safety Factor of 5.0 has been used to determine Allowable Loads. I I I Hi-Tech Composite Structures Supplement for LARR #25520 Page 1 of 1 Page 47 of 57 TABLE 3: POST - INSTALATED CONCRETE ANCHOR. HILTI Page 48 of 57 ESR-2302 I Most Widely Accepted and Trusted Page 7 of 11 TABLE 3-DESIGN INFORMATION CARBON STEEL KB3 DESIGN INFORMATION Symbol Units Nominal anchor diameter 1j 4 3 '8 1 '2 -- 5/8 3/4 Anchor O.D. do (do)in. 0.250 0.375 0.500 0.625 0.750 (mm) (6.4) (9.5) (12.7) _______(15.9) (19.1) Effective mm. embedment' hei in. 1 /2 2 2 31/4 5 31/ 4 33/4 (mm) (38) (51) (51) (83) (79) (102) (95) (127) Mm. member thickness h.,,,in. 4 4 5 4 6 6 8 1(203) 5 6 8 6 8 8 (mm) (102) (102) (127) (102) (152) (152) (127) (152) (203) (152) (203) (203) in. 2I4 4/2 37/8 4 /8 3 /8 6/4 55/8 7'/ 9'/2 7'/2 93/4 7'/2 91/2 Critical edge distance Coe (mm) (70) (114) (98) (124) (92) (171) (143) (191) (241) (191) (248) (191) (241) in. 1/8 2 03 2'/8 2 1 /8 1/ 2/4 1/4 1/4 2/4 2/ 2'/3 Cmi,, ______ (mm) (35) (51) (38) (54) (51) (41) (41) (57) (44) (44) (70) (67) (64) Mm. edge distance in. 1/4 2/ 3'/2 4/8 43/4 4/4 4 5/4 4 6/ 6'/2 6/ for s ~ (mm) (44) (73) (89) (124) (121) (108) (102) (133) (121) (102) (175) (165) (162) in. 11/4 1/4 1/4 2'/3 2'/4 2 1/5 2/ 2'/8 2'/8 33/4 3 /8 31/ Smi,, ______ (mm) (32) (44) (44) (64) (57) (51) (48) (60) (54) (54) (95) (86) (83) Mm. anchor spacing in. 1/ 2 /8 2/ 2 /8 24 2/4 2 31/ 2 /8 2/4 33/4 3/ 33/s for c a (mm) (41) (60) (60) (67) (60) (57) (51) (79) (60) (57) (95) (86) (86) in. 2 2/ 2/ 4 3/e 43/4 4'/2 53/4 Mm. hole depth in concrete h51,,9 (mm) (51) (67) (67) (102) (98) (121) (114) (146) psi 84,800 84,800 84,800 84,800 84,800 Mm. specified yield strength fy. (N/mm2) (585) (585) (585) (585) (585) psi 106,000 106,000 106,000 106,000 106,000 Mm. specified ult. strength fw (N/mm2) (731) (731) (731) (731) (731) in 0.02 0.06 0.11 0.17 0.24 Effective tensile stress area Aso (mm) (12.9) 1 (38.7) (71.0) (109.7) (154.8) Steel strength in tension N,,,, lb 2,120 6,360 11,660 18,020 25,440 (kN) (9.4) (28.3) (51.9) (80.2) (113.2) Steel strength in shear VW lb 1,640 4,470 6,635 I 6,750 12,230 15,660 I 16,594 (kN) (7.3) (19.9) (29.5) I (30.0) (54.4) (69.7) (73.8) Pullout strength uncracked concrete2 N,9,,,,. lb 1,575 NA NA 6,800 NA NA 0,585 1(47.1) (kN) (7.0) (30.2) Anchor category3 1,2 or 3 - 1 Effectiveness factor kn,,r k91,, - 24 uncracked concrete Modification factor for W., N - 1.0 uncracked concrete Coefficient for pryout lcd,, - 1.0 2.0 Installation torque Tjfl,,g ft1b 4 I 20 I 40 I 60 I 110 (Nm) (5) (27) (54) (81) (149) Axial stiffness in service /J9 (lb/in) I 116.1501 load range 162,850 203,500 191,100 222,150 170,700 207,400 164,000 COy 0.na % 60 I 42 I 29 I 29 25 21 I 19 I 24 Strength reduction factor 4 for tension, steel 0.75 failure modes5 Strength reduction factor for shear, steel 0.65 failure modes5 Strength reduction factor for tension, concrete 0.65 failure modes, Condition B6 Strength reduction factor 0 for shear, concrete 0.70 failure modes, Condition B6 For SI: 1 inch = 25.4 mm, llbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-in units: 1 mm = 0.03937 inches. 'See Fig. 2 'See Section 4.1.4 of this report, NA (not applicable) denotes that this value does not govern for design. 3See ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. 4See ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. 5The carbon Steel KB3 is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 0.1, as applicable. 6For use with the load combinations of ACI318-14 Section 5.3, ACI 318-11 Section 9.2 or IBC Section 1605.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 0.4.3(c), as applicable, is not provided, or where pull-out or pry out strength overns. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. The notation in parenthesis is for the 2006 IBC. Page 49 of 57 TABLE 3-DESIGN INFORMATION, CARBON STEEL KB-TZ Nominal anchor diameter DESIGN INFORMATION Symbol Units 3 Ia Il 2 Si 8 /4 AnchorO.D. do(do) in. 0.375 0.5 0.625 0.75 (mm) (9.5) (12.7) (15.9) (19.1) in. 1 /2 2 2/4 2 31/ 31/ 4 31/ 33/ 43/ Effective mm. embedment' hof (mm) (38) (51) (70) (51) (83) (79) (102) (83) (95) (121) Mm. member thickness2 h,mn in. 31/4 415 I 5 416 I 618 I 5 618 I 51/2 618 I 8 (mm) (83) (102) (127) (127) (102)1(152) (152) 1(203) (127) (152)1(203) (140) (152) 1(203) (203) in. 6 4I (11 4 4'Ia 5'I2 I 41/2 7'/2 I 6 6'/2 8/4 I 6/4 12 10 I 8 9 Critical edge distance c (mm) (152) I (102) (105) I (140)1(114) (191)1(152) I (165) (222)1(171) I (305) (254) 1(203) (229) In. 8 21/2 21/3 2/4 2/ 3/ 314 gl 43/4 41/8 Cm in _______ (mm) (203) (64) (64) (70) (60) (92) (83) (241) (121) (105) Mm. edge distance in. 8 5 5 53/4 53/4 61/8 5 /8 5 10'/2 8 /8 for s a (mm) (203) (127) (127) (146) (146) (156) (149) (127) (267) (225) in. 8 2112 21/2 2/4 2/ 31/2 3 5 5 4 sn,, _______ (mm) (203) (64) (64) (70) (60) (89) (76) (127) (127) (102) Mm. anchor spacing In. 8 3ia 3 /8 41i8 31/2 43/4 4/4 912 9/2 for c a (203) (92) (92) (105) 73/4 (mm) (89) (121) (108) (241) (241) (197) in. 2 2/ 3/ 2/ 4 3/4 4/ 4 4I/ 5/ Mm. hole depth in concrete ho (mm) (51) (67) (86) (67) 1 (102) (98) 1 (121) (102) (117) 1 (146) lb/in2 100,000 84,800 84.800 84,800 Min. specified yield strength fy (N/mm2) (690) (585) (585) (585) Ibfin2 125,000 106,000 106,000 106,000 Mm. specified ult. strength G. (N/mm2) (862) (731) (731) (731) In 0.052 0.101 0.162 0.237 Effective tensile stress area A,,,.N (mm2) (33.6) (65.0) (104.6) (152.8) lb 6,500 10,705 17,170 25,120 Steel strength in tension N= (kN) (28.9) (47.6) (76.4) (111.8) lb 2,180 3,595 5,495 8,090 13.675 Steel strength in shear V, (kN) (9.7) (16.0) (24.4) (36.0) (60.8) Steel strength in shear. Vsoeq lb 2,180 2,255 5,495 7,600 11,745 seismic3 (kN) (9.7) (10.0) (24.4) (33.8) (52.2) Pullout strength uncracked lb 2.160 2,515 I 4,110 I NA I 5515 I ' NA 9,145 NA 8,280 110.680 concrete (kN) (9.6) (11.2) (18.3) (24.5) (40.7) (36.8) (47.5) Pullout strength cracked lb NA 2, 270 3,160 i NA I I 4,915 NA NA concrete (kN) (10.1) I (14.1) I (21.9) Anchor category5 2 1 Effectiveness factor kuner uncracked concrete 24 Effectiveness factor k, cracked concrete6 17 1.0 Coefficient for pryout strength, kcp 1.0 2.0 1.0 2.0 Strength reduction factor ci for tension, steel failure 0.75 modes8 Strength reduction factor 0 for shear, steel failure 0.65 modes8 Strength reduction 0 factor for tension, concrete 0.55 0.65 failure modes or pullout, Condition B9 Strength reduction 0 factor for shear, concrete failure 0.70 modes, Condition E9 Axial stiffness in service load I I lb/in. 600,000 rang&° lb/in. 135.000 For SI: 1 Inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-inch units: 1 mm = 0.03937 inches. 'See Fig. 2. 2For sand-lightweight or normal-weight concrete over metal deck, see Figures 5A, 5B, SC and 50 and Tables 5 and 6. 3See Section 4.1.8 of this report. 4For all design cases '4., =1.0. NA (not applicable) denotes that this value does not control for design. See Section 4.1.4 of this report. 5See ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. 6See ACI 318-14 17.4.2.2 or ACI 318-11 D5.2.2, as applicable. "For all design cases WC.N =1.0. The appropriate effectiveness factor for cracked concrete (lc,) or uncracked concrete must be used. 8The KB-TZ is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 0.1, as applicable. 9For use with the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. '°Mean values shown, actual stiffness may vary considerably depending on concrete strength, loading and geometry of application. Page 50 of 57 TABLE 4: FASTENERS. LAGSCREW Page 51 of 57 108 DOWEL-TYPE FASTENERS AAM Illin Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections 1,2,3,4 for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for t<1/4) or W ASTM A 36 steel side plate (for t5=1/41 (tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D) ' fl " h CL C0 LL LL C 0 ( 0 00 U o.c a!11 - 11 - ag'E • a 3 3 13 a 1') ca 11 00 11 11 CL 11 0 Z11 Z1 Z11 Zi Z11 Zi. Z11 Zi. 75 Zi. Z5 Z1 Z11 ZI Z11 Zi. Z11 1.L Z5 Z p IS o ' in. in. lbs. lbs. tbs. lbs. tbs.- tbs. lbs. tbs. tbs. tbs. tbs. tbs. tbs. lbs. lbs. lbs. lbs. lbs. lbs. tbs. 0.075 114 170 130 160 120 150 110 150 110 150 100 140 100 140 100 130 90 130 90 130 90 (14 gage) 5/16 220 160 200 140 190 130 190 130 190 130 180 120 180 120 170 110 170 110 160 100 3/8 220 160 200 140 200 130 190 130 190 120 180 120 180 120 170 110 170 100 170 100 0.105 1/4 180 140 170 130 160 120 160 120 160 110 150 110 150 110 140 100 140 100 140 90 (12 gage) 5/16 230 170 210 150 200 140 200 140 190 130 190 130 190 120 180 110 170 110 170 110 3/8 230 160 210 140 200 140 1 200 130 200 130 190 120 190 120 180 110 180 110 170 110 0.120 1/4 190 150 180 130 170 120 170 120 160 120 160 110 160 110 150 100 150 100 140 100 (11gage) 5/16 230 170 210 150 210 140 200 140 200 140 190 130 190 130 180 120 180 120 180 110 3/8 240 170 220 150 210 140 210 140 200 130 200 130 190 120 180 110 180 110 180 110 0.134 1/4 200 150 180 140 180 130 170 130 170 120 160 120 160 110 150 110 150 100 150 100 (10 gage) 5/16 240 180 220 160 210 150 210 140 200 140 200 130 200 130 190 120 180 120 180 120 3/8 240 170 220 150 220 140 210 140 210 140 200 130 200 130 190 120 190 120 180 110 0.179 1/4 220 170 210 150 200 150 200 140 190 140 190 130 190 130 180 120 170 120 170 120 (7 gage) 5/16 260 190 240 170 230 160 230 160 230 150 220 150 220 150 210 130 200 130 200 130 3/8 270 190 250 170 240 160 240 160 230 150 220 140 220 140 210 130 210 130 200 130 0.239 1/4 240 180 220 160 210 150 210 150 200 140 190 140 190 130 180 120 180 120 180 120 (3 gage) 5/16 300 220 280 190 270 180 260 180 260 170 250 160 250 160 230 150 230 150 230 140 110 llfl 1'2A -ion lOfl I7fl Inn 17(1 10(1 10(1 17(1 10(1 10(1 10(1 IRA IAA IAA 1'4fl IdA 21111 14(1 7/16 1/2 5/8 420 290 510 340 1 770 490 390 260 470 300 710 430 380 240 460 290 680 400 370 240 450 280 1 680 400 360 230 440 270 660 380 350 220 430 260 640 370 350 220 420 260 630 360 330 200 400 240 600 330 330 200 400 230 590 330 320 190 390 230 1-580_320- 3/4 1 1110 670 1020 590 980 560 970 550 950 530 920 500 910 500 1 860 450 850 450 840 440 7/8 1510 880 1390 780 1330 730 1320 710 1280 690 1250 650 1230 650 1170 590 1160 590 1140 570 1 1940 1100 1780 960 1710 910 1700 890 1650 860 1600 820 1590 810 1500 740 1480 730 1460 710 1/4 1/4 240 180 220 160 210 150 210 150 200 140 200 140 190 130 180 120 180 120 180 120 5/16 310 220 280 200 270 180 270 180 260 170 250 170 250 160 230 150 230 150 230 140 3/8 320 220 290 190 280 180 270 180 270 170 260 160 250 160 240 150 240 140 230 140 7/16 480 320 440 280 420 270 420 260 410 250 390 240 390 230 370 220 360 210 360 210 1/2 580 390 540 340 520 320 510 320 500 310 480 290 480 290 460 270 450 • 260 440 260 5/8 850 530 780 470 750 440 740 440 720 420 700 400 690 400 660 370 650 360 640 350 3/4 1200 730 1100 640 1060 600 1050 590 1020 570 990 540 980 530 930 490 920 480 900 470 7/8 1600 930 1470 820 1410 770 1400 750 1360 720 1320 690 1310 680 1240 630 1220 620 1200 600 1 2040 1150 1870 1000 1800 950 1780 930 1730 900 1680 850 1660 840 1570 770 1550 760 1530 740 I. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Tabulated lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to SD; dowel bearing strengths, IF,, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths. F,. of 70,000 psi for D = 114", 60,000 psi for D = 5116", and 45,000 psi for D 23/8". Where the lag screw penetration, p, is less than SD but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration. The length of lag screw penetration, p, not including the length of the tapered tip. E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, Copyright© American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorizei. AMERICAN WOOD COUNCIL Page 520 57 Table 12.2A Lag Screw Reference Withdrawal Values, W' Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member shall not include the lentth nf the thnered tin (see 1211'i Specific Gravity, ________ _ _______ Lag Screw Diameter, D __ G2 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4" 7/8" 1" 1-1/8" 1-1/4" 0.73 Lii 397 469 538 604 668 789 905 1016 1123 1226 1327 12737 381 450 516 579 640 757 868 974 1077 1176 0.68 357 422 484 543 600 709 813 913 1009 1103 1193 117] 349 413 473 531 587 694 796 893 987 1078 0.58 0.55 281 332 381 428 473 559 641 719 795 869 940 868 1 260 307 352 395 437 516 592 664 734 802 0.51 232 274 314 353 390 461 528 593 656 716 775 757 Lo.so 225 266 305 342 378 447 513 576 636 695 0.49 T 0.47 218 258 296 332 367 434 498 559 617 674 730 686 205 242 278 312 345 408 467 525 580 634 0.46 199 235 269 302 334 395 453 508 562 613 664 621 1 600 5797 186 220 252 283 312 369 423 475 525 574 0.43 [ 0.42 179 212 243 273 302 357 409 459 508 554 .173 205 235 264 291 344 395 443 490 535 0.41 F7_49 . 167 198 226 254 281 332 381 428 473 516 .559 537 161 190 218 245 271 320 367 412 455 497 0.39 155 183 210 236 261 308 353 - 397 438 479 518 461 ___49_8__1 L 0.38 149 176 202 227 251 296 340 381 422 0.37 Lo.36 143 169 194 218 241 285 326 367 405 443 479 —4-6-0-1 137 163 186 209 231 273 - 313 352 389 425 0.35 132 156 179 200 222 262 300 337 . 373 407 441 367 I [ 0.31 110 130 149 167 185 2li—I 250 281 311 339 I. Tabulated withdrawal design values. W. for lae screw connections shall be multinlied by all ann1itahle adh,ctn,pnt fn,tn.. (c II I 2. Specific gravity, 0, shall be determined in accordance with Table 12.3.3A. adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'. W = 1380 G/2 D (12.2-3) The nail or spike reference withdrawal design value, W, in lbs/in, of penetration, for a smooth shank stainless steel nail or spike driven into the side grain of a wood member, with the nail or spike axis perpendicu- lar to the wood fibers, shall be determined from Table 12.21) or Equation 12.2-4, within the range of specific gravities, 0, and nail or spike diameters, D, given in Table 12.21). Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3. 1) to obtain adjusted withdrawal design values, W'. W = 465 G3/2 D (12.2-4) For calculation of the fastener reference with- drawal design value in pounds, the unit reference with- drawal design value in lbs/in, of fastener penetration from 12.2.3.1a or 12.2.3.1b shall be multiplied by the length of fastener penetration, Pt, into the wood mem- ber. 12.2.3.2 Deformed shank nails (a) The reference withdrawal design value, in lbs/in, of ring shank penetration, for a Roof Sheathing Ring Shank nail or Post-Frame Ring Shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2E or Equation 12.2-5, within the range of specific gravities and nail diameters given in Table 12.2E. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Ta- ble 11.3. 1) to obtain adjusted withdrawal design values, WI. W = 1800 G2 D (12.2-5) Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorize1. AMERICAN WOOD COUNCIL Page 530 57 TABLE 5: UNISTRUT GENERAL ENGINEERING CATALOG-NO. I 4 Page 54 of 57 Zhannel Selection IJ I 11 I I1i1 CHANNEL SELECTION CHART Channel Dimensions Material & Thickness Hole Pattern Styles Channel Width Height Steel Stainless Steel Alum. /10/11/ HS T KO SL DS H3 In (mm) In (mm) gauge gauge In (mm) Steel Only P1000 134 (41.3) 1%(41.3) 12 ga 12 ga 0.109 (2.8) 5 0 0 0 0 U P1100 154(41.3) 154(41.3) 14 ga 14 ga - U U 11111 U - - P2000 134(41.3) 154(41.3) 16 ga - P3000 154(41.3) 154(34.9) 12 ga - P3300 154(41.3) 54(22.2) 12 ga 12 ga P4000 154(41.3) '3/i6 (20.6) 16 ga 16 ga 0.078(2.0) • U - U - - P4100 154(41.3) '3/is (20.6) 14 ga - - - - - P5000 154(41.3) 3'A(82.6) 12 ga 12 ga - U U 0 - - P5500 154(41.3) 2Yis (61.9) 12 ga - 0.109 (2.8) CHANNELS & COMBINATIONS IN DESCENDING ORDER OF STRENGTH Area Weight I s Allow. Moment Channel In2 (cm2) lbsift (kg/rn) In4 (cm4) 1n3(cm3) In-lbs (N.m) P5001 1.793 6.10 6,227 1.916 48,180 11.57 9.1 259.2 31.4 5,440 P1004A 1.965 6.68 4.068 1.669 41,980 12.68 9.9 169.3 27.4 4,740 P5501 1.452 4.94 2.805 1.151 28,940 9.37 7.3 116.8 18.9 3,270 P1001C41 2.221 7.55 1.856 1.142 28,720 14.33 11.2 77.2 18.7 3,250 P5000 0.897 3.05 1.098 0.627 15,770 5,78 4.5 45.7 10.3 1.780 P1001 1.111 3.78 0.928 0.571 14,360 7.16 5.6 38.6. 9.4 1,620 0.835 2.84 0.733 0.451 11,340 P1101 5.39 4.2 30.5 7.4 1,280 P3001 1.000 3.40 0.591 0.430 10,810 6.45 5.1 24.6 7.0 1.220 0.726 2.47 0.522 0.390 9,820 P5500 4.68 3.7 21.7 6.4 1,110 0.684 2.32 0.618 0.381 9,570 P2001 4.41 3.5 25.7 6.2 1,080 0.489 2.23 0.279 0.297 7,480 P9200 3.16 3.3 11.6 4.9 850 A5000 0.492 1.67 0.358 0.265 6,670 3.17 2.5 14.9 4.3 750 A1001 0.609 2.07 0.302 0.242 6,070 3.93 3.1 12.6 4.0 690 P9000 0.387 1.88 0.166 0.205 5,150 2.50 2.8 6.9 3.4 580 P1000 0.555 1.89 0.185 0.202 5,070 3.58 2.8 7.7 3.3 570 P3301 0.790 2.69 0.176 0.201 5,060 5.10 4.0 7.3 3.3 570 Combinations not shown in catalog are available on special order. Consult factory for more details. Area Weight I s Allow. Moment Channel In' (cm') lbs!ft (kg/rn) In4 (cm4) 1n3(cm') In-lbs (N.m) P1100 0.418 1.42 0.145 0.162 4,060 2.69 2.1 6.0 2.6 460 0.500 1.70 0.120 0.153 3,850 P3000 3.23 2.5 5.0 2.5 430 P4101 0.579 1.97 0.117 0.143 3,610 3.74 2.9 4.9 2.4 410 P2000 0.342 1.16 0.125 0.140 3,520 2.21 1.7 5.2 2.3 400 P4001 0.478 1.66 0.104 0.128 3,210 3.14 2.5 4.3 2.1 360 A3301 0.459 1.56 0.077 0.103 2,590 2.96 2.3 3.2 1.7 290 0.305 1.04 0.061 0.086 2,170 A1000 1.96 1.5 2.5 1.4 250 0.395 1.34 0.037 0.072 1,800 P3300 2.55 2.0 1.5 1.2 200 0.264 0.90 0.037 0.058 1,470 A4001 1.70 1.3 1.5 1.0 170 0.213 0.73 0.045 0.055 1,400 P6001 1.38 1.1 1.9 0.9 160 0.290 0.98 0.026 0.054 1,360 P4100 1.87 1.5 1.1 0.9 150 0.244 0.83 0.023 0.049 1,230 P4000 1.57 1.2 0.9 0.8 140 A3300 0.230 0.78 0.017 0.038 950 1.48 1.2 0.7 0.6 110 A4000 0.132 0.45 0.008 0.022 560 0.85 0.7 0.3 0.4 60 P6000 0.107 0.36 0.009 0.020 510 0.69 0.5 0.4 0.3 60 0.148 0.50 0.007 0.018 460 P7001 0.96 0.8 0.3 0.3 50 P7000 0.074 0.25 0.002 0.007 170 0.48 0.4 0.1 0.1 20 1%" Framing System 23 UNISTRUT P1001 1 P1001 A P1001 B /8" 1 W 1%" 1 (41.3) (41.3) (41.3) LE (82.6) ____ I 70J.J_L 916 W111 00 Ft: 321 Lbs (478 kg/100 m) Will 00 Ft: 378 Lbs (562kg/l00m) WI/100 Ft: 378 Lbs (562 kglloo m) Allowable Moment 12,200 In-Lbs (1,378 N.m) Allowable Moment 18,640 In-Lbs (2,110 N"m) Allowable Moment 18,640 In-Lbs (2,110 N"m) 12 Gauge Nominal Thickness .105" (2.7mm) 12 Gauge Nominal Thickness .105" (2.7mm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 C P1001 3 P1001 A3 1W (41.3) 3JItJIT; (82.6) 1.573* .761 .864 (19.3) 2 (21.9) r 1 13 2.472" 4 (123.S) r.r Ik'l (62.8) 41 2.403" flf I 1(61.0) I J_t 136" FILl 4W (123.8)111 L1J .778".847" (19.8) ., (21.5) Wt/100 Ft: 378 Lbs (562 kg/100 m) Allowable Moment 15,950 In-Lbs (1,800 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 B3 WI/lOG Ft: 566 Lbs (843 kg/100 m) Allowable Moment 31,840 In-Lbs (3,600 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 D3 Wt/100 Fl: 566 Lbs (843kg/100m) Allowable Moment 32,770 In-Lbs (3,700 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1003 -113) (123.8) .778" L 1-847" (19.8) 2 (21.5) WI/i0O Ft: 566 Lbs (843 kg!lOo m) Allowable Moment 37,550 In-Lbs (4,240 Nm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 3W r-826-1 rr'ri 31/4 I I I Wt/100 Ft: 755 Lbs (1,124 kglioo m) Allowable Moment 28,720 In-Lbs (3,250 N"m) 12 Gauge Nominal Thickness .105" (2.7mm) WtJlOO Ft: 566 Lbs (843 kg/100 m) Allowable Moment 17,550 In-Lbs (1,980 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 C3 rB26 1 (82.6) 1.896" 14 JJ(48.2) 1.930% 1.320" (49.0) 2 (33.5) Will 00 Ft: 566 Lbs (843kg/100m) Allowable Moment 18,680 In-Lbs (2,110 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) l" 11%4" 1.245" (44.1) (30.6) 2 (31.6) I- 41 A89" (102.4) (12.4) Wt/100 Ft: 333 Lbs (495kg/100m) Allowable Moment 6,240 In-Lbs (700 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1004 A 1%" (46.8) 7/ (4R wi 4W I (123.8) 4" (101.6) ji 2 1/i6 (11.1) Wt/100 Ft: 668 Lbs (994 kg/i 00 m) Allowable Moment 41,970 In-Lbs (4,740 N"m) 12 Gauge Nominal Thickness .105" (2.7mm) 31 (82 Channel Finishes: PL, GR, HG, PG. ZD; Standard Lengths: 10'&20' Page 56of57 pe Clamps ADJUSTABLE PIPE CLAMPS Unistrut Adjustable Pipe Clamps are manufactured from glass-reinforced polyurethane and are adjustable to accommodate a wide range of outside diameters. They can be uti- lized with a variety of piping systems including: PVC, fiberglass, copper, rigid steel conduit and PVC coated rigid steel conduit. Care should be taken not to exceed 3 ftilbs. of torque on the adjustable pipe straps. RIGID PIPE CLAMPS UNISTRUT Part Number O.D. Pipe Size (in.) Design Load Type I Type 2 Lbs (kN) Lbs (kN) Torque Ft/Lbs (N.m) Wt/100 PCs Lbs (kg) 200-3100 ½- 1½ 135 (0.6) 65(0.3) 0.8(l) 3(1.4) 200-3110 19k- 2¼ 135 (0.6) 65(0.3) 3 (4) 5(2.3) 200-3120 2¼-3¼ 145 (0.6) 70(0.3) 3(4) 5(2.3) 200-3130 3-4 215 (1.0) 70(0.3) 3(4) 8(3.6) 200-3140 4-6½ 215(1.0) 70(0.3) 3(4) 10(4.5) Design loads shown represent a 3:1 safety factor. PVC, Sch. 80 Design Loads FRP Bolt Part Nominal & Rigid Metal Type 1 Type 2 FRP Bolt Torque Wt!100 PCs Number Size (in.) In (mm)i Lbs (kN) Lbs (kN) Size (in.) Ft/Lbs (N.m) Lbs (kg) FPCR-050 ½ 0.840 (21.3) 225 (1.0) 90(0.4) 34x 1¼ 3(1.4) FPCR-075 34 1.050 (26.7) 225 (1.0) 90(0.4) 34x 11/4 3(1.4) FPCR-100 1 1.315 (33.4) 225 (1.0) 90(0.4) 34x 1¼ 4(1.8) FPCR-125 1¼ 1.660 (42.2) 225 (1.0) 90(0.4) %x 1¼ 5(2.3) FPCR-150 1½ 1.900 (48.3) 225 (1.0) 90(0.4) 34 x 1¼ 5(2.3) FPCR-200 2 2.375 (60.3) 225 (1.0) 90(0.4) 34 x 1¼ 3(4) 5(2.3) FPCR-250 21h 2.875 (73.0) 225 (1.0) 90(0.4) 34 x 1¼ 7(3.2) FPCR-300 3 3.500 (88.9) 225 (1.0) 90(0.4) %x 1¼ 10(4.5) FPCR-400 4 4.500 (114.3) 300(1.3) 125 (0.6) 34 x 1¼ 12(5.4) FPCR-600 6 6.625 (168.3) 300 (1.3) 125(0.6) 34 x 11/4 15(6.8) FPCR-800 8 8.625 (219.1) 300 0.3) 125 (0.6) 34 x 1¼ 18(8.1) *Design loads shown represent a 3:1 safety factor. Rigid Pipe Clamps resemble the more traditional style of pipe clamps and are sized based on the pipe inside diameter or nominal size. Polyurethane clamps are recommended for applications up to 160°F. For high temperature applications (up to 230°F). Care should be taken not to exceed the recommended torque values of the rigid pipe clamps. Material: glass-reinforced pblyurethane. Two HOLE PIPE STRAPS Design Load Bolt Material Part Dim. A Dim. B Size Thick. Type 1 Type2 Torque W11100 PCs No. In (mm) In (mm) (in.) In (mm) Lbs (kN) Lbs (kN) Ft/Lbs (N.m) Lbs (kg) 2.375 6.375 ¼ 135 50 4 14 FPS200 60.33 161.93 ½ 6.4 0.60 0.22 5 6.4 2.875 6.875 ¼ 135 50 4 17 FPS2SO 73.03 174.63 ½ 6.4 0.60 0.22 5 7.7 3.500 7.500 ¼ 135 50 4 20 FPS300 88.90 190.50 ½ 6.4 0.60 0.22 5 9.1 FPS35O 4.000 8.000 ½ 1/4 135 50 4 33 101.60 203.20 64 0.60 0.22 5 15.0 FPS400 4.500 8.500 ½1/4 175 60 4 23 114.30 215.90 6.4 0.78 0.27 5 10.4 5.563 9.563 ¼ 175 60 4 39 FPS500 141.30 242.90 ½ 6.4 0.78 0.27 5 17.7 FPS600 6.625 10.625 ½ 1/4 175 60 4 39 168.28 269.88 6.4 0.78 0.27 5 17.7 FPS800 8.625 12.625 ½ 1/4 225 125 4 51 219.08 320.68 6.4 1.00 0.56 5 23.1 FPS1000 10.750 15.750 1/4 225 125 10 77 273.05 400.05 6.4 1.00 0.56 14 34.9 FPS1200 12.750 16.250 ¼ 225 125 10 83 323.85 412.75 6.4 1.00 0.56 14 37.6 FPS1400 14.000 18.000 34 250 150 10 125 355.60 457.20 9.5 1.11 0.67 14 56.7 16.000 20.000 34 250 150 10 143 FPS1600 406.40 508.00 9.5 1.11 0.67 14 64.9 FPS1800 18.000 23.000 34 250 150 10 160 457.20 584.20 9.5 1.11 0.67 14 72.6 Design loads shown represent a 3:1 safety factor. Two Hole Pipe Straps are designed for use in securing pipe, conduit and ducts to Channel. Two hole fiberglass straps can also be used independently from the channel for surface mounting. All sizes of the straps are suitable for load bearing applications. Material: fire-retardant, glass-reinforced polyester resin. For extreme chemical environments, the straps can be manufac- tured from vinyl ester resin. Larger diameter straps for special applications are also available. Contact the factory for pricing and availability of vinyl ester and large diameter straps. Two hole pipe straps should not be torqued above recommended values. Notes: Bolts and channel nuts are sold separately. When bolting onto 134° channel a 1¼" long bolt is req'd. Fiberglass - - LAMA INENGINEERING ctLifleI19.370.9515/Fax rada@lamareflg.com 619764.4079 / Email:IIab RECEIVED JUL 162019 CITY OF CARLSBAD BUILDING DIVISION STRUCTURAL CALCULATIONS PROJECT: LEGOLAND CALIFORNIA RESORT NODE 6- WATER PARK (WPK) I LEGOLAND DR. CARLSBAD SAN DIEGO, CA 92008 July 11, 2019 H www.lamareng.com Luis Labrada 217 Landis Avenue LA NIl/kR Proyecto: Nodes 6 Date: 05/07/19 Chula Vista, CA 91910 INENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com Contents APPENDIX I. DESIGN ATTACHMENT. ANTENNAS..........................................................................................................3 APPENDIX II. DESIGN ATTACHMENT. RADIOS . ............................................................................................................... 10 APPENDIX Ill. DESIGN ATTACHMENT. CABINET EQUIPMENT . .................................................................................. 18 APPENDIXIV. SCREEN WALL ..............................................................................................................................................25 APPENDIXV. ROOF VERIFICATION...................................................................................................................................45 APPENDIXVI. TABLES ..........................................................................................................................................................48 .'.... .._•: Luis Labrada 217 Landis Avenue LAIiV1 P R Proyecto: Nodes 6 Date: 05/07/19 Chula Vista, CA 91910 F1P1ENGINEERING Engineer: MR P: 619-370-9515 www.lamareng.com APPENDIX I. DESIGN ATTACHMENT. ANTENNAS Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com Fr -J Lwin Li1 '1I II I [ CIVIL + STRUCIURAL Project: Nodes 6 Date: 07/05/2019 Engineer: M.R I SEISMIC DESING ANTENNA I DESCRIPTION Description: QUINTEL QS46512-2 ANTENNA W = 75.0 Lbs bldg height = 20.00 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 75.0 Lbs. FpH = (0.64 * Wp )/1.4 = 34.3 Lbs FpH = 0.46 * Wp = 34.5 Lbs HORIZONTAL FpV = 0.28 * Wp = 21.0 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh = 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*lp)*(1+2*z/h) = 28.4 Lbs. Verifications FpH max = 1.6 * 5DS * p * WP = 94.6 Lbs. FpH min = 0.3 * 5DS * i p * WP= 17.7 Lbs. > 28.4 Lbs. 28.4 Lbs. Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 6 Date: 07105/2019 Engineer:M.R I ANCHORAGE DESIGN (SEISMIC) ANTENNA I GEOMETRY e= 1.25 ft d= 2.13 ft -y Fx - d Wp e FORCES GRAVITATORY (0) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy = 37.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 26.5 Lbs Vertical force, Ey = 10.5 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 70.5 Lbs Max shear force per anchor = Dy + Ey = 48.0 Lbs Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com X T 11 ~k ~ , M FN Liii 'L11 44N1,11 CIVIL + SIVUCVURAL Project: Nodes 6 Date: 07/05/2019 Engineer:M.R I WIND DESING ANTENNA I DESCRIPTION Description: QUINTEL QS46512-2 ANTENNA W = 75.0 Lbs bldg height = 20.0 ft ELEMENT DESIGN (WIND) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS A = 1.29 For h = 20 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative C 1.0 110.0 mph 1.0 Flat Wind Pressure ps = A x Kzt x I x ps30 = ps =,X x Kzt x I x ps30 = Applied horizontal force, Fph = Ps x (bxc)I2 = Applied vertical force, Fpv = PS x (axc)/2 = 20.51 psf Horizontal 17.80 psf Roof Uplift 88.8 Lbs 16.0 Lbs b Fph - d e= 1.25 ft d= 2.13 ft a= 0.90 ft b= 4.33 ft 1.00 ft GEOMETRY Wp e 4 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com J I iVW rii 1.4 I1 1 11V i'i i iPal III I CIVIL + SrnUc1uAA7L Project: Nodes 6 Date: 07/05/2019 Engineer:M.R I ANCHORAGE DESIGN (WIND) ANTENNA I FORCES GRAVITATORY (D) FORCES WIND (W) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy = 37.5 Lbs Horizontal force, Wx = 53.8 Lbs Vertical force, Wy = 8.0 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 97.8 Lbs Max shear force per anchor = Dy + Wy = 45.5 Lbs Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 6 Date: 07/05/2019 Engineer: M.R I ELEMENT & CONNECTIONS DESIGN ANTENNA I A Fx = Dx+(Ex or Wx) = 97.8 Lbs I I Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 2.0 Radios Total Quantity 3 ft H= 3.00 ;ft Lc= 4.73 ft IP4.73 ft II - UNISTRUT HORIZONTAL DESIGN Number of radios pair IOdd number of radios M. max = PL/8 (n-1/n) I ..p M.max = P1.18 (n+1/n) RP(n-1)/2 I 1 R=Pn/2 Lcc4.c4.cc.1 __ LC-. n = 3 ILc4cLJ. n = 2 I I 1'7LC C = 1.58 ft I C = 2.37 ft Px = 97.8 Lbs M. Mmax (y-y) = 154.2 Ft-Lbs Status 1850.8 In-Lbs { OK I Py= 48.0 Lbs M. Mmax (y-y) = 75.7 Ft-Lbs Status 908.2 In-Lbs OK I Use: Unistrut: P1000 1 5/8 x I 518-I2ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodes 6 Date: 07/0512019 Engineer:M.R I ELEMENT & CONNECTIONS DESIGN ANTENNA I Fx = Dx+(Ex or Wx) = 97.8 Lbs Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 2.0 Radios Total Quantity 3 ft H= 3.0 ft Lc= 4.7 ft CONNECTION A BOLT DESIGN D-Bolt= 3I8 •in Shear = 48.0 Lbs n Bolt: I Fv = 24 ksi Pull Out = 97.8 Lbs Material = A307 Ft = 45 ksi Allowable Shear > Max—Shear Status 2650.7 Lbs > 48.0 Lbs OK ] Allowable Pull-Out > Max. Shear Status 4970.1 Lbs > 97.8 Lbs [__OK I CONNECTION B BOLT DESIGN D-Bolt= 3/8 iin Shear = 48.0 Lbs n Bolt: I Fv = 24 ksi Pull Out = 97.8 Lbs Material = A307 I Ft = 45 ksi Allowable Shear > Max. Shear Status 2650.7 Lbs > 48.0 Lbs OK 1 Allowable Pull-Out > Max. Shear Status 4970.1 Lbs > 97.8 Lbs OK] Luis Labrada LAMAR217 Landis Avenue Proyecto: Nodes 6 Date: 05/07/19 Chula Vista, CA 91910 rJ'JENGINEERJNG Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX II. DESIGN ATTACHMENT. RADIOS. Luis Labrada 217. Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR Project: Nodes 6 Date: 07/05/2019 MENGINEERING Engineer: M.R SEISMIC DESING RADIO DESCRIPTION Description: Alu Radio Units W = 59.5 Lbs bldg height = 20.0 It ELEMENT DESIGN (SEISMIC) V Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 59.5 Lbs. FpH = (0.64 * Wp )/1.4 = 27.2 Lbs FpH = 0.46 * Wp = 27.37 Lbs HORIZONTAL FpV = 0.28 * Wp = 16.66 Lbs UP OR DOWN ap= 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 z/h= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*Ip)*(1 +2*z/h) = 22.5 Lbs. Verifications FpH max = 1.6* S * I * WP= 75.0 Lbs. 22.5 Lbs. [OK I Os p p FpH mm = 0.3 * S * * WP= 14.1 Lbs. 22.5 Lbs. [OK I OS p p fir Fpv Fph Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR Project: Nodes 6 Date: 07/05/2019 NENGINEERING Engineer:M.R an.flfll.Irn.. I DESIGN FORCES (SEISMIC) I RADIO I GEOMETRY p4 C at___ Plan Radio Dimensions a= 0.92 ft b= 2.10 ft C = 0.92 ft Support = 4 Quantity Elevation FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a14 = 13.7 Lbs*ft Dx = 6.5 Lbs Dy= 14.9 Lbs FORCES SEISMIC (E) Applied horizontal force, Ex = 9.3 Lbs Applied vertical force, Ey = 4.2 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 15.8 Lbs Max shear force per anchor = Dy + Ey = 19.0 Lbs Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.larnareng.com Project: Nodes 6 LAMAR' Date: 07/05/2019 INENGINI Engineer:M.R WIND DESING RADIO DESCRIPTION Description: Alu Radio Units W = 59.5 Lbs bldg height = 20.0 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) Importance factor, tO only, (Table 1.5-2) 1w Basic wind speed (ASCE 7-10 26.5.1) V Topographic factor (26.8 & Table 26.8-1) Kzt ANALYSIS A = 1.29 For h = 20 exposure C see fig 6-2 ps30 = -. 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure PS = A x Kzt x I x ps30 = 20.51 psf Horizontal ps = A x Kzt x I x ps30 = 17.80 psf Roof Uplift = C = 1.0 = 110.0 mph = 1.0 Flat / tFpv Suction Fph Suction Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR Project: Nodes 6 Date: 07/05/2019 ENGINEERING Engineer:M.R I DESIGN FORCES (WIND) I RADIO I GEOMETRY c Wall al I b Plan Radio Dimensions a= 0.92 ft b= 2.10 ft Elevation c= 0.92 ft Support = 4 Quantity FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a/4 = 13.7 Lbs*ft Dx= 6.5 Lbs Dy= 14.9 Lbs FORCES WIND (W) Applied horizontal force, Wx = 13.2 Lbs Applied vertical force, Wy = 3.8 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 19.7 Lbs Max shear force per anchor = Dy + Wy = 18.6 Lbs \. Shear = 19.0 Lbs Pull Out = 19.7 Lbs Use: Channel Nuts: 3!8"46 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1/2" Mm Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 6 Date: 07/05/2019 Engineer: M.R ELEMENT & CONNECTIONS DESIGN -III lao] Fx = Dx+(Ex or Wx) = 19.7 Lbs Fy = Dy+(Ey or Wy) = 19.0 Lbs Q = 2.0 N° of radios per vertical unist. 30 ]2FA 3.00 iH= Lc= 4.73 ft Ic ft Nu = 2 Unistrut B 4.73 ft 4 UNISTRUT VERTICAL DESIGN P= 19.7 Lbs 1P V M. Mmax = PL13 = 9.9 Ft.-Lbs. Status 118.3 In.-Lbs. OK Use: Unistrut: P1000 1 5/8 x I 518-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 CONNECTION A CHANNEL NUTS WITH SPRING Status Loi T I OK k General Engineering Catalog - No. 17- Page 66 General Engineering Catalog - No. 17 Page 68 Luis Labrada 217 Landis Avenue Project: Nodes 6 Chula Vista, CA 91910 LAMAR Date: 07/05/2019 P: 619.370-9515 IuENGINEERING Engineer:M.R www.lamareng.com ELEMENT & CONNECTIONS DESIGN RADIO Fx = Dx+(Ex Q = 2.0 N* of radios per vertical unist. 3.0 ]I Lc = 4.7 ft ~ C UNISTRUT VERTICAL DESIGN P= 19.7 Lbs ip 1P M. Mmax = PL/3 = 9.9 Ft.-Lbs. Status 1118.3 In.-Lbs. TbK 1 Use: Unistrut: P1000 1 5/8 x 1 518-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 CONNECTION B - CHANNEL NUTS WITH SPRING Shear = 38.1 Lbs Pull Out = 39.4 Lbs Use: Channel Nuts: 3!8"-16 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW - Use: Hex-Head: 318"-1 1/2" Mm. Status 11 OK OK General Engineering Catalog - No. 17- Page 66 General Engineering Catalog - No. 17 Page 68 'irs: Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LAMAR P: 619.370-9515 INENGINEERING www.lamareng.com ELEMENT & CONNECTIONS DESIGN Fx = Dx+(Ex or Wx) = 19.7 Lbs Fy = Dy+(Ey or Wy) = 19.0 Lbs Q = 7.0 Radios Total Quantity 3.01 H= 3.00 ft Lc= 4.73 ft Project: Nodes 6 Date: 07/05/2019 Engineer: M.R 4 4.73 ft UNISTRUT HORIZONTAL DESIGN Px= 39.4 Lbs M. Mmax (y-y) = 207.3 Ft.-Lbs. Status 2488 In.-Lbs. f'öK bc4.c_L4.c-1_CJ i Py = 38.1 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 200.1 Ft.-Lbs. Status n = 9 2402 In.-Lbs. [ 0K1 C = 0.53 ft Use: Unistrut: 01000 1 5/8 x I 5/8-I2ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 CONNECTION C BOLT DESIGN Reaction unistrut horizontal Ry = Py(n-1 )I2 - Pull Out = 152.3 Lbs Rx = Px(n-1)I2 - Shear = 157.8 Lbs Use: D-Bolt: 1/2 n Bolt: 2 Shear: 780.0 Pull-Out: 300.0 Demand 157.8 Lbs Demand 152.3 Lbs Lbs Allowable Bolt Shear Lbs Allowable Bolt Pull-Out (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Capacity Shear Ratio Status 780.00 Lbs 0.2 [ -OK 1 Capacity Shear Ratio Status 300.00 Lbs 0.51 [OKJ Luis Labrada 217 Landis Avenue LA MP R Proyecto: Nodes 6 Date: 05/07/19 Chula Vista, CA 91910 1ENGINEERING Engineer: MR P: 619-370-9515 www.lamareng.com APPENDIX III. DESIGN ATTACHMENT. CABINET EQUIPMENT. Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com Project: Nodes 6 LAMAR Date: 07/05/2019 IMENGINEERING Engineer: M.R SEISMIC DESING CABINET DESCRIPTION Description:: BBU CABINET W = 382.0 Lbs bldg height = 20.0 ft ELEMENT DESIGN (SEISMIC) - Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SOS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = 382.0 Lbs. FpH = (0.64 * Wp )/1.4 = 174.63 Lbs FpH = 0.46 * Wp = 175.72 Lbs HORIZONTAL FpV = 0.28 *Wp = 106.96 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = tO Ref. Table 11.5-1 ASCE 7-10 z/h= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*lp)*(1+2*z/h) = 144.5 Lbs. Verifications FpH max = 1.6* SDS * I p *W p= 481.6 Lbs. > 144.5 Lbs. FpH mm = 0.3 * SOS * I p * Wp = 903 Lbs. < 144.5 Lbs. J Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR Project: Nodes 6 Date: 07105/2019 N!JENGINEERING Engineer:M.R I DESIGN FORCES (SEISMIC) I CABINET I GEOMETRY C a1 I Plan a= 2.25 ft b= 2.70 ft C = 2.30 ft Support= 4 Fpv Wall a b1j ,Fph Elevation FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a14 = 214.9 Lbs*ft Dx = 79.6 Lbs Dy = 95.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 161.4 Lbs Vertical force, Ey = 26.7 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 241 Lbs Max shear force per anchor = Dy + Ey = 122 Lbs Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LAMAR P: 619.370-9515 www.lamareng.com I?JENGINEERING Project: Nodes 6 * Date: 07/05/2019 Engineer:M.R WIND DESING CABINET DESCRIPTION Description: BBU CABINET W= 382 Lbs bldg height = 20.0 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS A = 1.29 For h = 20 exposure C see fig 6-2 ps30 = 15.90 • Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure PS = A x Kzt x I x ps30 = 20.51 psf Horizontal PS = Ax Kzt x I x ps30 = 17.80 psf Roof Uplift Applied horizontal force, Fph = PS x (bxc)/2 = 127.4 Lbs Applied vertical force, Fpv = Ps x (axc)/2 = 92.1 Lbs C 1.0 110.0 mph 1.0 Flat Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LWI rovil" I CIIL + sr11nellkli 9ucruAAL Project: Nodes 6 Date: 07/05/2019 Engineer:M.R I DESIGN FORCES (WIND) I CABINET I GEOMETRY a I Plan a= 2.25 ft b= 2.70 ft c= 2.30 ft Support= 4 Fpv Suction Wall [] a 4 Fph Jr I> Suction Elevation FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a14 = 214.9 Lbs*ft Dx= 79.6 Lbs Dy= 95.5 Lbs FORCES WIND (W) Horizontal force, Wx = 140.5 Lbs Vertical force, Wy = 23.0 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 220 Lbs Max shear force per anchor = Dy + Wy = 119 Lbs 3 Fx = Dx+(Ex or Wx) = 241.0 Lbs Fy = Dy+(Ey or Wy) = 122.2 Lbs Q = 1.0 Cabinet Total Quantity 2.7 H= 2.70 ft Lc= 4.50 ft Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodes 6 Date: 07/05/2019 Engineer: M.R I ELEMENT & CONNECTIONS DESIGN I CABINET B II UNISTRUT HORIZONTAL DESIGN Px= 241.0 Lbs M. Mmax (y-y) = 361.4 Ft.-Lbs. Status 1 + 1 4337 In.-Lbs. LIOK 1111 I- I-rt.c Py = 122.2 Lbs M. Mmax = PL18 (n-1/n) M. Mmax (x-x) = 183.4 Ft.-Lbs. Status n = 3 2200 In.-Lbs. [ThK1 c= 1.50 ft Use: Unistrut: P1000 1 5/8 x 1 5/8-12ga Nominal Thickness Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 F' 3 Fx = Dx+(Ex or Wx) = 241.0 Lbs AL Fy = Dy+(Ey or Wy) = 122.2 Lbs Q = 1.0 Cabinet Total Quantity 2.7 it H= 2.7 ft Lc= 4.5 ft Luis Labrada .217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR HENGINEERING Project: Nodes 6 Date: 07/05/2019 Engineer:M.R I ELEMENT & CONNECTIONS DESIGN I CABINET B CONNECTION A CHANNEL NUTS WITH SPRING Status Shear = 122.2 Lbs OK T Pull Out = 241.0 Lbs - OK Use: Channel Nuts: 318"-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1/2" Mm. General Engineering Catalog - No. 17 Page 68 CONNECTION B BOLT DESIGN Reaction unistrut horizontal Ry = Py(n-1 )I2 .-' Shear = 122.2 Lbs Rx = Px(n-1)/2 -+ Pull Out = 241.0 Lbs Use: D-Bolt: 1/2 in n Bolt: I Shear: 780.0 Lbs Allowable Bolt Shear Pull-Out: 300.0 Lbs Allowable Bolt Pull-Out (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 122.2 Lbs < 780.00 Lbs 0.16 OK Demand Capacity Shear Ratio Status 241.0 Lbs < 300.00 Lbs 0.8 OK Luis Labrada 217 Landis Avenue LA M 1k R Proyecto: Nodes 6 Date: 05/07/19 Chula Vista, CA 91910 INENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX IV. SCREEN WALL Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 L AM R Project: Nodes 6 Date: 07/05/2019 P: 619.370-9515 INENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE I Geometry W = 7.5 psf Weight L LI SCREEN LENGTH S L = 18.9 ft Screen total length - Ri NP = 5 Number Post NS = 3 NO Steps between post L =E 4.73 Jft L. between post H2 H3 R2 S = 1.58 ft. Length Steps Ht 1-14 H51 SCREEN HEIGHT L2 H1= 13 ft. [E] Structural Roof Hi H2 = 7.00 ft Post Height Building H3 = 5.0 ft Screen Height - H4 = 2.0 ft Screen Wall Ht = 20.00 ft Total height BRACE L2= 4.00 ft H5 = 4.25 ft 9 = 48.867 0 Wind Force Exposure category (ASCE 7-1626.7.3) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Pressure 30 Psf. Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INLLG Project: Nodes 6 Date:. 07105/2019 Engineer: M.R SCREEN WALL DESIGN-FRP. TYPE I FRP Channel Stifener- Desian Tributary: S = 1.58 ft H3 = 5.00 ft 146 ft Demand: Load qw = 47.4 Lbs/Ft M. Mmax (x-x) = 1777.5 Flexural Strength = 888.75 In.-Lbs. ft psi 'i Capacity Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. lz = 3.00 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity ca = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 888.75 psi 6600 psi 0.13 OK FRP Channel Stifener - Connection Demand Shear= 118.5 Lbs Capacity Use: 112 in FRP Bolt n Bolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 118.5 Lbs 780 Lbs 0.15 OKj Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 6 Date: 07105/2019 Engineer: M.R I SCREEN WALL DESIGN- FRP TYPE I Top & Bottom FRP Horizonal Tube - Design urioutarv: Li = 4.(i It H3= 5.00 ft Demand: Load qw = 75.0 Lbs/Ft 5 ft M. Mmax (x-x) = 2517.0 In.-Lbs. Flexural Strength = 1258.48 psi F773 f Z473 Caoacitv Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. .A = 2.44 In2 Gross area of the section h = 3 In. lz = 3.00 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1258.48 psi 6600 psi 0.19 - OK Top & Bottom FRP Horizonal Tube - Connection Demand Shear 177.4 Lbs Capacity Use: 1/2 in FRP Bolt n Bolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 177.375 Lbs 780 Lbs 023 OK] Luis Labrada 217 Landis Avenue Project: Nodes 6 Chula Vista, CA 91910 LAMAR Date: 07105/2019 P: 619.370-9515 IENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE I - Brace: Support Unistrut - Design ieometry L = 1. lb It ry H= 1.67 'ft 8= 43.66 a B Fx Loads Reactions Unistrut (Antennas + Radios) 8 A Fx= 200.3 Lbs Fy = 255.6 Lbs C Reactions Rx Ry A 200.3 255.6 Lbs B -67.5 0.00 Lbs C 267.9 255.61 Lbs Check CaDacities Brace-1 Element AB: Axial force: 67.5 Lbs Tension Element AC: Axial force: 370.3 Lbs Compressive Use: L 2X2X1_4 FRP Angle b = 2 In. A = 0.938 1n2 Gross area of the section h = 2 In. Iz = 0.35 In4 Moment of inertia t= 1/4 In. E = 29000000 psi Modulus of Elasticity Compressive Strength: 6600.0 psi (Appendix A. Design Values Load Chart for FRP Materials) Tensile Strength: 6600.0 psi LARR# 25520. Demand Capacity Compressive Ratio Status 394.7 psi 6600.0 psi 0.06 ETOKJ Demand Capacity Tension Ratio Status 72.0 psi 6600.0 psi 0.01 ETOKTJ Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LAMAR Project: Nodes 6 Date: 07/05/2019 P: 619.370-9515 I4ENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE I Brace: Support Unistrut - Connection -- CONNECTION A - FRP BOLT DESIGN Shear = 255.6 Lbs Use: D-Bolt: 112 in nBolt: I Shear: 780.0 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. - Demand Capacity Shear Ratio Status 255.6 Lbs < 780.00 Lbs 0.33 1OK CONNECTION B - FRP BOLT DESIGN Shear: 67.5 Lbs Use: D-Bolt: 1/2 in n Bolt: 2 Shear: 780.0 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 67.5 Lbs 1560.00 Lbs 0.04 LIIOKIII CONNECTION C - FRP BOLT DESIGN Shear: 267.9 Lbs Use: D-Bolt: 1/2 in nBolt: 2 - - Shear: 780.0 Lbs Allowable Bolt Shear (Appendix.A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear . Ratio Status 267.9 Lbs 1560.00 Lbs 0.17 OK] Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LAMAR P: 619.370.9515 .EmNG www.lamareng.com I SCREEN WALL DESIGN - FRP FRP Steel Column & Brace - Project: Nodes 6 Date: 07105/2019 Engineer: M.R TYPE I Loads Reactions Top & Bottom FRP Horizonal Tube Reaction Unistrut Reaction = 177.4 Lbs Ri = 354.8 Lbs Fx = 200.3 Lbs R2 = 354.8 Lbs Fy = 255.6 Lbs Check Capacities Steel Column M. Mmax = 11790.2 In.-Lbs. Per Ram Elements Flexural Strength = 3023.12 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 3023.12 psi 6600 psi 0.46 10K1 Check Capacities Brace Axial force: 592.4 Compressive Strength: 175.8 Use: HSS_SQR 4X4X1_4 b= 4 In. h= 4 In. t= 1/4 In. Lbs Per Ram Elements psi FRP Channel A = 3.37 1n2 lz = 7.80 1n4 E = 29000000 psi Gross area of the section Moment of inertia Modulus of Elasticity aa = 6600 Psi. Allowable Compressive Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 175.8 psi < 6600 psi 0.03 t OK1 FRP Steel Column to Brace (KICKER) - Connection Reaction Steel Column to Brace: V = 592.4 . Lbs Use: D-Bolt: 112 'in nBolt: 3 Capacity: 780 Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 592.4 Lbs 2340 Lbs 0.25 10K111 U Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodes 6 Date :'07/0512019 Engineer: M.R I SCREEN WALL DESIGN - FRP TYPE I I Reaction Steel Column Fx = 39.6 Lbs Per Ram Elements b Fy= 53.07 Lbs d2 Steel Column: HSS_SQR 4X4X1_4 A ad1 t= 1/4 in k= 1.5 in [1 Bolt: Shear V = 9.9 Lbs ___4—' Pull Out T = 13.2675 Lbs I V + T Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 4 0 Dia.: 1/2 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 31/4 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio Status 9.9 Lbs 5495 Lbs 0.00 - OK Demand Capacity Pull Out Ratio Status 13.3 Lbs 4915 Lbs 0.00 OK FRP Brace to Roof (BRAKET) - Connection Reaction Steel Column Fx = 349.19 Lbs Per Ram Elements b > Fy= 456.93 Lbs d2 Steel Brace: HSS_SQR 4X4X14 I + adi • ---------I I-- Plate: • a= b= 10 14 in in dl= 6 in d2= 10 in t= 1/4 in k= 2.0 1.5 Min F7 Shear V = 87.3 Lbs. Per Bolt ____ Pull Out T = 114.2 Lbs. Per Bolt _ '.' Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) n Bolt : 4 0 Dia.: 112 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 31/4 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio Status 87.3 Lbs 5495 Lbs 0.02 - OK Demand Capacity Pull Out Ratio Status 114.2 Lbs < 4915 Lbs 0.02 OK L : Li Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370.9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 6 Date: 0710512019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE 2 Geometry W = 7.5 psf Weight SCREEN LENGTH L = 18.9 ft Screen total length NP = 5 Number Post NS = 3 NO Steps between post L =L_473Jft L. between post S = 1.58 ft. Length Steps SCREEN HEIGHT H1 = 13 ft. [E] Structural Roof H2 = 7.00 ft Post Height H3 = 5.0 ft Screen Height H4 = 2.0 ft Screen Wall Ht = 20.00 ft Total height BRACE L2= 4.00 ft H5= 4.25 ft 0 = 48.867 0 Wind Force Exposure category (ASCE 7-10 26.7.3) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Pressure - 30 Psf. LuisLabrada 217 Landis Avenue Project: Nodes 6 Chula Vista, CA 91910 LAMAR Date: 07105/2019 P: 619.370-9515 IENG1 NE E RING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN FRP.•. TYPE 2 FRP Channel Stifener - Desian Tributary: S = 1.58 ft - H3= 5.00 ft 146 ft Demand: Load qw = 47.4 Lbs/Ft M. Mmax (x-x) = 1777.5 In.-Lbs. 5 ft Flexural Strength = 888.75 psi Capacity Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. lz = 3.00 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity oa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 888.75 psi 6600 psi 0.13 OK - FRP Channel Stifener - Connection Demand Shear= 118.5 Lbs Capacity Use: 1I2 in FRP Bolt nBolt: I . 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 118.5 Lbs < 780 Lbs 0.15 OKj U Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IIENGINEERINGI Project: Nodes 6 Date: 0710512019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE 2 Top & Bottom FRP Horizonal Tube - Design Tributary: Li = 4.73 ft H3= 5.00 ft Demand: Load qw = 75.0 Lbs/Ft 5 ft M. Mmax (x-x) = 2517.0 In.-Lbs. Flexural Strength = 1258.48 psi Capacity Pq 44.73 ft Use: HSS_SQR 3X3X1_4 b= 3 In. h = 3 In. t = 1/4 In. oa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio - Status 1258.48 psi 6600 psi 0.19 - - OK - Top & Bottom FRP Horizonal Tube - Connection Demand Shear= 177.4 Lbs Capacity Use: 1I2 in FRP Bolt nBolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 177.375 Lbs < 780 Lbs 0.23 OKJ FRP Channel A= 2.44 In2 Iz = 3.00 In4 E = 29000000 psi Gross area of the section Moment of inertia Modulus of Elasticity Luis Labrada 217 Landis Avenue LA MAR Project: Nodes 6 Chula Vista, CA 91910 Date: 0710512019 P: 619.370-9515 IENGINEERING Engineer: M.R www.lamareng.com - SCREEN WALL DESIGN - FRP TYPE 2 Brace: Support Unistrut - Design ieomery L = IJO it ry H= 1.67 ft 6= 43.66 0 B Fx Loads Reactions Unistrut (Cabinet) 6 A Fx = 122.2 Lbs Fy = 241.0 Lbs C Reactions - Rx Ry A 122.2 241.0 Lbs B -130.3 0.00 Lbs C 252.5 240.96 Lbs Check Caoacities Brace-1 Element AB: Axial force: 130.3 Lbs Tension Element AC: Axial force: 349.0 Lbs Compressive Use: L 2X2X1_4 FRP Angle b = 2 In. A =. 0.938 1n2 Gross area of the section h = 2 In. lz = 0.35 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity Compressive Strength: 6600.0 psi (Appendix A. Design Values Load Chart for FRP Materials) Tensile Strength: 6600.0 psi . LARR# 25520. Demand Capacity Compressive Ratio Status 372.1 psi < 6600.0 psi 0.06 r5k1 Demand Capacity Tension Ratio Status 138.9 psi 6600.0 psi 0.02 EOKTIJ Luis Labrada 217 Landis Avenue LA A 'Project: Nodes 6 ...:' Chula Vista, CA 91910 lvi Dat:0710512019 P: 619.370-9515 : ':.' NENGINEERING . Engineer: M.R www.lamareng.com -. - 1 . 'SCREENWALLDESIGN - FRP TYPE Brace: Support Unistrut - Connection CONNECTION A - FRP BOLT DESIGN Shear= 241.0 Lbs Use: D-Bolt: 112 in n Bolt:. I Shear: 780.0 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 241.0 Lbs 780.00 Lbs 0.31 [OKJ CONNECTION B - FRP BOLT DESIGN Shear: 130.3 Lbs Use: 0-Bolt: 112 in nBolt: 2 Shear: 780.0 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 130.3 Lbs < 1560.00 Lbs 0.08 EIITOK1 CONNECTION C - FRP BOLT DESIGN Shear: 252.5 Lbs Use: 0-Bolt: 112 ;in nBolt: 2 Shear: 780.0 ' Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 252.5 Lbs < 1560.00 Lbs 0.16 IOKII / Luis Labrada 217 Landis Avenue LAMAR Project: Nodes 6 Chula Vista, CA 91910 Date: 07/05/2019 P: 619.370-9515 . IENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE 2 FRP Steel Column & Brace - Design Loads Reactions Top & Bottom FRP Horizonal Tube Reaction Unistrut Reaction = 177.4 Lbs Fx = 122.2 Lbs R1 = 354.8 Lbs Fy= 241.0 Lbs R2= 354.8 Lbs Check Capacities Steel Column M. Mmax = 12995.9 In.-Lbs. Per Ram Elements Flexural Strength = 3332.28 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 In2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 3332.28 psi 6600 psi 0.51 roK_.j Check Capacities Brace Axial force: 829.9 Lbs Per Ram Elements Compressive Strength: 246.3 psi Use: HSS_SQR 4X4X14 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Compressive Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 246.3 psi 6600 psi 0.04 [OKTTJ FRP Steel Column to Brace (KICKER) - Connection Reaction Steel Column to Brace: V = 829.9 Lbs Use: D-Bolt: 1/2 in . nBolt: 3 Capacity: 780 Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 829.9 Lbs 2340 Lbs 0.35 OK] Luis Labrada 217 Landis Avenue Project: Nodes 6 Chula Vista, CA 91910 LAMAR Date: 07105/2019 P: 619.370-9515 IENGINEERING Engineer: M.R www.lamareng.com I SCREEN WALL DESIGN - FRP TYPE 2 I rIr IVI UIUIIII, lu rvui 11ammmr. U, - utitieuun Reaction Steel Column Fx = 45.1 Lbs Per Ram Elements b Fy = 222.27 Lbs J, d2 Steel Column: HSS_SQR 4X4X1_4 a A dl Plate: • a= 10 in d1 = 7 in 10 in d2: 7 in 1.5 in Shear V= 11.27 Lbs Pull Out T = 55.5675 Lbs V I Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 4 e Dia.: 1I2 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 31/4 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio _Stu 11.3 Lbs 5495 Lbs 0.00 OK j Demand Capacity Pull Out Ratio Status 55.6 Lbs < 4915 Lbs 0.01 OK FRP Brace to Roof (BRAKET) - Connection Reaction Steel Column Fx = 510.27 Lbs Per Ram Elements • b Fy= 633.15 Lbs d2,. Steel Brace: HSS_SQR 4X4X1_4 'd al j--------I_I-- a= 10 in dl= 6 in b= 14 in d2= 10 in t= 1/4 in k= 2.0 1.5 Min Bolt: Shear V= 127.6 F7. Lbs. Per Bolt ________ Pull Out I = 158.3 '' Lbs. Per Bolt TT "' Anchor: Steel Carbon' KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 4 0 Dia.: 112 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 3114 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. .Demand Capacity Shear Ratio Status 127.6 Lbs < 5495. Lbs 0.02 OK Demand Capacity Pull Out Ratio Status 158.3 Lbs < 4915 Lbs 0.03 OK Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERINGI Project: Nodes 6 Date: 0710512019 Engineer: M.R I SCREEN WALL DESIGN - FRP TYPE Geometry W = 7.5 psf Weight Lt LI SCREEN LENGTH S L= 18.9 ft Screen total length _4 P1 NP= 5 ,N°Post - NS= 3 NO Steps Between Post H3 Li =L4.7 Jft L. Between Post H2 P2 S= 1.58 Length Steps Ht H4 H5J , SCREEN HEIGHT L2 H1= 13 ft. [E] Structural Roof Hi H2= 7.00 ,ft Post Height Building H3= 5.0 ft Screen Height H4= 2.000 ft Screen Wall Ht= 20.00 ft Total height BRACE L2= 4.00 1ft H5= 4.25 ft e = 48.867 0 Wind Force Exposure category (ASCE 7-10 26.7.3) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Pressure 30 Psf. Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING .mflnw.Irn Project: Nodes 6 Date: 07/0512019 Engineer: M.R SCREEN WALL DESIGN FRP TYPE 3 FRP Channel Stifener - Design Tributary: S = 1.58 ft H3= 5.00 ft 16f Demand: Load qw = 47.4 Lbs/Ft 5 ft Flexural Strength = 888.75 psi Capacity Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 In2 Gross area of the section h = 3 In. lz = 3.00 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 888.75 psi 6600 psi 0.13 OK FRP Channel Stifener - Connection Demand Shear = 118.5 Lbs Capacity Use: 112 in FRP Bolt n Bolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 118.5 psi < 780 psi 0.15 ,OK] Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING eaaaa..flemn Project: Nodes 6 Date: 07105/2019 Engineer: M.R I SCREEN WALL DESIGN - FRP TYPE 3 I Reactions Top & Bottom FRP Horizonal Tube Reaction = 177.4 Lbs Ri = 354.8 Lbs R2 = 354.8 Lbs Check Capacities Steel Column M. Mmax = 11706.8 In.-Lbs. Flexural Strength = 3001.73 psi Use: HSSSQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand . Capacity Ratio Status 3001.73 psi < 6600 psi 0.46 10K1 Check Capacities Brace Axial force: 628.6 Lbs Compressive Strength: 186.5 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. Iz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Compressive Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 186.5 psi 6600 psi 0.03 E10K] Steel Column to Brace (KICKER) - Connection Reaction Steel Column to Brace: V = 628.6 Lbs D-Bolt = 112 in nBolt: 3 Material = A307 Demand 209.5 Lbs Fv= 24 ksi Ft= 45 ksi > Allowable Shear Ratio Status 14137.2 Lbs 0.01 [OK] LI Luis Labrada -. 217 Landis Avenue . • . Project: Nodes 6 Chula Vista, CA 91910 LAMAR . . Date: 07105/2019 P 619.370-9515 INENGINEERING Engineer M R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE 3 FRP Steel Column to Roof (BRAKET) - Connection Reaction Steel Column Fx = 41.7 Lbs b Fy= 798.19 Lbs .Jç d2 Steel Column: HSS_SQR 4X4X1_4 adlj • Plate: • a= 10 in d1 = 7 in b= 10 iin d2: 7 in 1.5 in H4_ Bolt: Shear V= 166.94 Lbs Pull Out T = 199.5475 Lbs I V T Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 4 e Dia.: 1/2 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 31/4 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio Status 166.9 Lbs. < 5495 Lbs. 0.03 1 O ] Demand Capacity Pull Out Ratio Status 798.2 Lbs. 4915 psi 0.16 [OK] FRP Brace to Roof (BRAKET) - Connection . - Reaction Steel Column Fx = 667.8 Lbs b Fy= 798.19 Lbs d2 Steel Brace: HSS_SQR 4X4X1_4 A • ad1 ----------I--- Plate: • a= 10 b= 14 in in dl= 6 in d2= 10 in t 1/4 in k= 2.0 1.5 Min Shear V = 10.4 Lbs. Per Bolt Pull Out T = 199.5 Lbs. Per Bolt tT r' Anchor: Steel Carbon KB-TZ . (Table 3. ICC-ES ESR-1917) nBolt: 4 o Dia.: 112 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 31/4 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio . Status 10.4 psi < 5495 psi 0.00 [0K] Demand Capacity Pull Out Ratio Status 199.5 psi < 4915 psi 0.04 TK I Luis Labrada 217 Landis Avenue LAMAR Date: 0710512019 Project: Nodes 6 Chula Vista, CA 91910 P: 619.370-9515 IME.NG!1!!iG_ . Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE 3 I rubutary: Li = 4. (S Tt H3 = 5.00 ft Demand: Load qw = 75.0 Lbs/Ft 5 ft I[LE M. Mmax (x-x) = 2517.0 In.-Lbs. Flexural Strength = 1258.48 psi Capacity 1 fl Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. lz = 3.00 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity oa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1258.48 psi 6600 psi 0.19 OK Top & Bottom FRP Horizonal Tube - Connection Demand Shear = 177.4 Lbs Capacity Use: 1/2 in FRP Bolt n Bolt: 2 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 177.4 psi 1560 psi 0.11 OK Luis Labrada 217 Landis Avenue LAMAR Proyecto: Nodes 6 Date: 05/07/19 Chula Vista, CA 91910 IENGINEERING Engineer: M.R i• .Sta!a.aaflI.aIS. P: 619-370-9515 www.lamareng.com APPENDIX V. ROOF VERIFICATION Luis Labrada 217 Landis Avenue LAMiR Project: Nodes 6 Date: 07105/2019 Chula Vista, CA 91910 IENGINEERING Engineer: M.R e'nna.a,.flflp P: 619.370-9515 FRAMING I NODE ANTENNA DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] HEX454CU0000G 46.80 15.60 7.40 48.90 0 0.00 0.00 HEX654CU0100G 51.10 12.00 7.10 39.70 0 0.00 0.00 CUUX06306F52s0-T 24.30 12.10 7.00 13.00 3 1.76 39.00 CUUX05XO6F5200 24.10 16.20 7.30 15.70 0 0.00 0.00 QU INTEL QS46512-2 1 52.00 1 12.00 1 10.80 75.00 1 0.90 75.00 Total 4.00 2.66 114.00 RADIOS DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] RRUS-2203 7.90 7.90 3.90 10.00 7 1.50 70.00 ERICSSON RRUS-4426 15.00 13.20 5.80 48.40 1 0.53 48.40 ERICSSON RRUS -4478 18.10 13.40 8.26 59.40 1 0.77 59.40 ERICSSON RRUS-4415 16.50 13.40 5.90 46.00 1 0.55 46.00 ALCATEL LUCENTTD-RRH8X2O-25 9.68 12.83 6.30 26.45 2 1.12 52.90 ALCATEL LUCENT CDMA/LTE DUAL TECH 25.00 11.00 11.00 59.50 1 0.84 59.50 Total 13.00 5.31 336.20 CABINET DIMENSION [in] WIGHT Quantity Area W b c a [Lbs] [sq ft] [Lbs] BBU 32.25 27.50 27.00 382.00 5 25.78 1910.00 AC POWER 18.50 20.00 6.00 50.00 1 0.83 50.00 TELCO CABINET 14.25 7.75 6.00 10.00 1 0.32 10.00 Total 7.00 26.94 1970.00 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 LAMAR IENGINEERING .n.nrIastp Project: Nodes 6 Date: 07105/2019 Engineer: M.R VERIFY ROOF FRAMING Existing Load Density Concrete: 145.0 pcf DL: 72.5 lb/sq. ft. Thickness: 6.0 in LL: 20.0 lb/sq. ft. Area [sq ft] DL I LL I DL+LL [E] Steel Deck 1 488 35352 1 9752 1 45104 JLbs. New Load Antennas Radio Cabinet Total: Quantity Area DL Lbs Lbs Lbs Lbs 4 3 114 13 5 336 7 27 1970 1 24 35 1 2420 I New Load + Existing Load I Existing New Total: New + Existing DL LL DL+LL Area [sq if] DL LL DL+LL DL LL DL+LL Steel Deck 35352 9752 45104 35 0 -698 -698 35352 9054 44406 Antennas 0 0 0 3 114 0 114 114 0 114 Radiol 0 0 0 5 336 0 336 1 36 0 336 Cabinetl 0 1 0 1 0 1 27 1 1970 1 0 1 1970 1970 1 0 1970 Total: 46826 I Chapter #34A CBC 2016 3403A.3 Existing structural elements carrying gravity load. "Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load- carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404A.3. Any existing element that will form part of the lateral load path for any part of the addition shall be onsidered an existing lateral load- carrying structural element subject to the requirements of Section 3403A.4." New Total Load: 46826 Lbs Existing Total Load: 45104 Lbs [New Total Load] -[Existing Total Load] .*100% = 3.678 % [New Total Load] L68 1 < C 1% L OKJ Luis Labrada Proyecto: Nodes 6 217 Landis Avenue Date: 05/07/19 LAMAR " ChuIaVista,CA919iO. INENGINEERING........ . Engineer: M.R P 619-370-9515 .. . ... www.lamareng.com . APPENDIX VI. TABLES TABLE 1: SEISMIC DESIGN 5/16/2019 U.S. Seismic Design Maps .1* OSHPD Legoland I Legoland Dr, Carlsbad, CA 92008, USA Latitude, Longitude: 33.1262496, -117.31192390000001 rnMuseumof - ¼ V Méking Music \ \ LEGOLAND California \ ':-J \ - \ Staff Parking9 \ Hotel Parking 9 Map data 02019GoogIe Date 5/16/2019,11:03:03 AM Design Code Reference Document ASCE7-10 Risk Category II Site Class D - Stiff Soil Type Value Description SS 1.127 MCER ground motion. (for 0.2 second period) S1 0.434 MCER ground motion. (for 1.Os period) SMS 1.182 Site-modified spectral acceleration value 5M1 0.679 Site-modified spectral acceleration value Sos 0.788 Numeric seismic design value at 0.2 second SA S01 0.453 Numeric seismic design value at 1.0 second SA Type Value Description SDC D Seismic design category Fa 1.049 Site amplification factor at 0.2 second F 1.566 Site amplification factor at 1.0 second PGA 0.447 MCEG peak ground acceleration FPGA 1.053 Site amplification factor at PGA PGAM 0.471 Site modified peak ground acceleration TL 8 Long-period transition period in seconds SsRT 1.127 Probabilistic risk-targeted ground motion. (0.2 second) SsUH 1.194 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration SO 1.525 Factored deterministic acceleration value. (0.2 second) S1RT 0.434 Probabilistic risk-targeted ground motion. (1.0 second) Si UH 0.436 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.616 Factored deterministic acceleration value. (1.0 second) PGAd 0.59 Factored deterministic acceleration value. (Peak Ground Acceleration) CRS 0.944 Mapped value of the risk coefficient at short periods CR1 0.995 Mapped value of the risk coefficient at a period of I s https://seismicmaps.org 1/2 0.0 0.0 2.5 5.0 Period, T (sec) - Sa(g 1.0 0.5 MCER Response Spectrum 1.5 7.5 5/16/2019 U.S. Seismic Design Maps Design Response Spectrum 0.8 0.6 -. 0.4 0 Cl) 0.2 0.0 0.0 2.5 5.0 7.5 Period, T (sec) - Sa(g) DISCLAIMER While the information presented on this website is believed to be correct, SEA.00 /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this webstie. https://seismicmaps.org 2/2 TABLE:2 DESIGN VALUES LOAD CHART FOR FRP MATERIALS Appendix A Design Values Load Chart for FRP Materials ALLOWABLE STRENGTH TABLE FOR FRP SHAPES: Tubes, Channels, Angles Property Direction Value Units Tensile Strength Lengthwise Crosswise 6,600 1,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 6,600 3,300 psi Flexural Strength Lengthwise Crosswise 6,600 2,200 psi Flexural Modulus Lengthwise Crosswise 1,600,000 800,000 psi Shear Strength Lengthwise Crosswise 1,400 500 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi 1/2" Bolt Bearing Lengthwise Crosswise 6,000 3,600 psi 1/2" Bolt Shear Allowable 780 lbs 1/2" Bolt Tension Allowable 300 lbs Table Notes: Values based on 1525 series - Thermoset Polyester Class 1 FR (Slate Grey) A Safety Factor of 5.0 has been used to determine Allowable Loads. ALLOWABLE STRENGTH TABLE FOR FRP FLAT SHEETS: Property Direction Value Units Tensile Strength Lengthwise Crosswise 4,000 2,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 4,800 3,200 psi Flexural Strength Lengthwise Crosswise 7,000 3,000 psi Flexural Modulus Lengthwise Crosswise 2,000,000 1,100,000 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi Table Notes: Values based on 1625 series - Thermoset Vinyl Ester Class I FR (Beige) A Safety Factor of 5.0 has been used to determine Allowable Loads. I I I Hi-Tech Composite Structures Supplement for LARR #25520 Page 1 of I TABLE 3: POST - INSTALATED CONCRETE ANCHOR. HILTI ESR-2302 I Most Widely Accepted and Trusted Page 7 of 11 TABLE 3-DESIGN INFORMATION CARBON STEEL KB3 Nominal anchor diameter DESIGN INFORMATION Symbol Units 1/2 /8 3/4 Anchor O.D. d0 (d0)7 in. 0.250 0.375 0.500 0.625 0.750 (mm) (6.4) (9.5) (12.7) (15.9) (19.1) Effective mm. embedment' he in. 11/2 2 2 3'/ 3'/ 4 33/4 5 (mm) (38) (51) (51) (83) (79) (102) (95) (127) Mm. member thickness hw. in. 4 4 5 4 6 6 8 5 6 8 6 8 8 (mm) (102) (102) (127) (102) (152) (152) (203) (127) (152) (203) (152) (203) (203) in. 2/4 4'/2 3'/4 47/8 35/8 6/4 55/8 71/2 91/2 71/.2 93/4 71/2 91/2 Critical edge distance cac (mm) (70) (114) (98) (124) (92) (171) (143) (191) (241) (191) (248) (191) (241) in. 1/4 2 03 2'/ 2 i/ 1 /8 2I4 1/4 1/4 2/4 2/ 2'/2 Cmjn ______ (mm) (35) (51) (38) (54) (51) (41) (41) (57) (44) (44) (70) (67) (64) Mm. edge distance in. 1/4 2/4 3'/2 4/8 43/4 4/4 4 51I4 43/,, 4 6/4 02 6/ for s (mm) (44) (73) (89) (124) (121) (108) (102) (133) (121) (102) (175) (165) (162) in. 1/4 i/4 1/4 2'/2 2'/4 2 1/ 2/ 2'/4 2'/8 33/4 3 /8 31/ sn,Jn (mm) (32) (44) (44) (64) (57) (51) (48) (60) 1 (54) (54) (95) (86) (83) Mm. anchor spacing in. 1/4 2/4 2 /8 26/s 2/4 2'!4 2 31/ 2/8 21/4 33/4 3/ 3 /8 for c (mm) (41) (60) (60) (67) (60) (57) (51) (79) (60) (57) (95) (86) (86) in. 2 2/ 2/ 4 3/ 43/4 4 / 53/4 Mm. hole depth in concrete hh0,e (mm) (51) (67) (67) (102) (98) (121) (114) (146) psi 84,800 84,800 84,800 84,800 84,800 Mm. specified yield strength IJO (N/mm2) (585) (585) (585) (585) (585) psi 106,000 106,000 106,000 106,000 106,000 Mm. specified ult. strength (N/mm2) (731) (731) (731) (731) (731) in 0.02 0.06 0.11 0.17 0.24 Effective tensile stress area Aso (mm2) (12.9) (38.7) (71.0) (109.7) (154.8) lb 2,120 6,360 11,660 18,020 25,440 Steel strength in tension N. (kN) (9.4) (28.3) (51.9) (80.2) (113.2) Steel strength in shear Vs,, lb 1,640 4,470 6,635 6,750 12,230 15,660 I I 16594 (kN) (7.3) (19.9) (29.5) (30.0) (54.4) (69.7) (73.8) Pullout strength uncracked Np ,uncr lb 1,575 NA NA 6,800 NA NA 0,585 1(47.1) concrete (kN) (7.0) (30.2) Anchor category3 1,2 or 3 - I Effectiveness factor kr - 24 uncracked concrete4 Modification factor for WcN - 1.0 uncracked concrete Coefficient for pryout kr,, - 1.0 2.0 Installation torque T1 ft*Ib 4 I 20 I 40 I 60 I 110 (Nm) (5) (27) (54) (81) (149) Axial stiffness in service load range li unc, (lb/in) 116,150 162,850 I 203,500 191,100 I 222,150 I 170,700 207,400 I I 164,000 COV I3 % 60 42 29 29 I 25 I 21 I 19 I 24 Strength reduction factor for tension, steel 0.75 failure modes5 Strength reduction factor for shear, steel 0.65 failure modes5 Strength reduction factor b for tension, concrete 0.65 failure modes, Condition B6 Strength reduction factor 0 for shear, concrete 0.70 failure modes, Condition B° For SI: 1 inch = 25.4 mm, llbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-in units: 1 mm = 0.03937 inches. 'See Fig. 2 2See Section 4.1.4 of this report, NA (not applicable) denotes that this value does not govern for design. 3See ACI 318-14 17.3.3 or ACI 318-11 0.4.3, as applicable. 4See ACI 318-14 17.4.2.2 or ACI 318-11 0.5.2.2, as applicable. 5The carbon Steel KB3 is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 0.1, as applicable. 6For use with the load combinations of ACI 318-14 Section 5.3, ACI 318-11 Section 9.2 or IBC Section 1605.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 0.4.3(c), as applicable, is not provided, or where pull-out or pry out strength 9overns. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. The notation in parenthesis is for the 2006 IBC. ESR-1 917 I Most Widely Accepted and Trusted Page 8 of 14 TABLE 3-DESIGN INFORMATION, CARBON STEEL KB-TZ Nominal anchor diameter DESIGN INFORMATION Symbol Units 3 I, 5 3, a . 'a Anchor O.D. d4(d in. 0.375 0.5 0.625 0.75 (mm) (9.5) (12.7) (15.9) (19.1) in. 11/2 2 2/4 2 31/4 31/ 4 31/ /4 43/4 Effective mm. embedment' her (mm) 1 (38) (51) (70) 1 (51) (83) (79) (102) (83) (95) (121) Mm. member thickness hmrn in. 31 4 415 I 5 416 I 618 I 5 618 I 5% 618 I 8 (mm) (83) (102) (127) (127) (102)1(152) (152) (203) (127) (152) 1(203) (140) (152) 1(203) (203) in. 6 43/4 4'/ 5'/a I 4'I 7'/2 I 6 02 8/4 I 6/4 12 10 I 8 9 Critical edge distance c0 (mm) (11) I (102) (105) (140)1(114) I (191)1(152) i (165) (222)1(171) I (305) (254) 1(203) (229) In. 8 21/2 21/ 2/4 2/ 35/ 31/ 91 43/ 4/ Cm,, _____ (mm) 1 (203) (64) 1 (64) (70) (60) (92) (83) (241) (121) (105) Mm. edge distance for s ~ in. 8 5 5 534 53/4 5/ 5 10'/ 8 /a (mm) (203) (127) (127) (146) (146) (156) (149) (127) (267) (225) in. 8 21/2 21/2 24 2/ 31/2 3 5 5 4 smfn (mm) (203) (64) (64) (70) (60) (89) (76) (127) (127) (102) Mm. anchor spacing In. 8 35/s 35/s 41/ 31/2 46 4/4 912 91/2 76 for c a (mm) (203) 1 (92) (92) (105) (89) (121) (108) (241) (241) 1 (197) in. 2 2/ 33/s 2/ 4 34 44 4 4'/2 534 Mm. hole depth in concrete h0 (mm) (51) (67) (86) (67) (102) (98) (121) (102) (117) (146) Mm. specified yield strength mç lblin2 100,000 84,800 84,800 84,800 (N/mm2) (690) (585) (585) (585) Mm. specified ult. strength Go lb/in2 125,000 106,000 106,000 106,000 (N/mm2) (862) (731) (731) (731) Effective tensile stress area A.N In 0.052 0.101 0.162 0.237 (mm2) (33.6) (65.0) (104.6) (152.8) Steel strength in tension Nw lb 6,500 10,705 17,170 25,120 (kN) (28.9) (47.6) (76.4) (111.8) Steel strength in shear VW lb 2,180 3,595 5,495 8,090 13,675 (kN) (9.7) (16.0) (24.4) (36.0) (60.8) Steel strength in shear, V,04 lb 2,180 2,255 5,495 7,600 11,745 seismic3 (kN) (9.7) (10.0) (24.4) (33.8) (52.2) Pullout strength uncracked lb 2,160 2,515 I 4,110 I NA I 5,515 I NA I 9,145 I NA I I 8,280 110,680 concrete4 (kN) (9.6) (11.2) (18. 3) (24.5) I (40.7) I (36.8) Pullout strength cracked lb 2,270 I 3,160 I NA I 4,915 I NA NA concrete (kN) (kN) (10.1) I (14.1) I (21.9) Anchor category5 2 1 Effectiveness factor uncracked concrete 24 Effectiveness factor k, cracked concrete6 17 1.0 Coefficient for pryout strength, kcp 1.0 2.0 1.0 2.0 Strength reduction factor 0 for tension, steel failure 0.75 modes' Strength reduction factor 0 for shear, steel failure 0.65 modes8 Strength reduction 0 factor for tension, concrete 0.55 0.65 failure modes or pullout, Condition B9 Strength reduction 0 factor for shear, concrete failure 0.70 modes, Condition B Axial stiffness in service load I I lbfin. 600,000 range'° lb/in. 135,000 For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-inch units: 1 mm = 0.03937 inches. 'See Fig. 2. 2For sand-lightweight or normal-weight concrete over metal deck, see Figures 5A, SB, SC and SD and Tables 5 and 6. 3See Section 4.1.8 of this report. 4For all design cases W,p=1.0. NA (not applicable) denotes that this value does not control for design. See Section 4.1.4 of this report. 5See ACI 318-14 17.3.3 or ACI 318-11 0.4.3, as applicable. 6See ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. 7For all design cases W1,N =1.0. The appropriate effectiveness factor for cracked concrete (kg,) or uncracked concrete must be used. 8The KB-TZ is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 0.1, as applicable. 9For use with the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. *Mean values shown, actual stiffness may vary considerably depending on concrete strength, loading and geometry of application. TABLE 4: FASTENERS. LAGSCREW 108 DOWEL-TYPE FASTENERS Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections 1,2,3,4 for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for t5<1/4') or ASTM A 36 steel side plate (for t5=1/4") (tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D) fl 00 .,., 3 . coO IZ 0. r-5 )oEE (I' ,E 24) C . (W E C) m o ii 0 II 0 II 0 0 II 0 E 0 E 0 2 c') 0 Oo 22 e 2 0 j.. 3j5 0 .- 0 02u) (90 0 00.... II 0 (901 II 0) (91 II II 4) 0 II a. Qwcn II 0 OZ IS 0 Z11 Z.L Z11 Zi Z11 Zi Z11 Z1 Z11 Z.L Z11 Zi Z11 Z.L Z11 Z.L Z11 Z1 Z11 Z in. in. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. 0.075 114 170 130 160 120 150 110 150 110 150 100 140 100 140 100 130 90 130 90 130 90 (14gage) 5/16 220 160 200 140 190 130 190 130 190 130 180 120 180 120 170 110 170 110 160 100 ______ 3/8 220 160 200 140 200 130 190 130 190 120 180 120 180 120 170 110 170 100 170 100 0.105 1/4 180 140 170 130 160 120 160 120 160 110 150 110 150 110 140 100 140 100 140 90 (12 gage) 5/16 230 170 210 150 200 140 200 140 190 130 190 130 190 120 160 110 170 110 170 110 3/8 230 160 210 140 200 140 200 130 200 130 190 120 190 120 180 110 180 110 170 110 0.120 1/4 190 150 180 130 170 120 170 120 160 120 160 110 160 110 150 100 150 100 140 100 (11gage) 5/16 230 170 210 150 210 140 200 140 200 140 190 130 190 130 180 120 180 120 180 110 _______ 3/8 240 170 220 150 210 140 1 210 140 200 130 200 130 190 120 180 110 180 110 180 110 0.134 1/4 200 150 180 140 180 130 170 130 170 120 160 120 160 110 150 110 150 100 150 100 (10 gage) 5/16 240 180 220 160 210 150 210 140 200 140 200 130 200 130 190 120 180 120 180 120 3/8 240 170 220 150 220 140 210 140 210 140 200 130 200 130 190 120 190 120 180 110 0.119 1/4 220 170 210 150 200 150 200 140 190 140 190 130 190 130 180 120 170 120 170 120 (7 gage) 5/16 260 190 240 170 230 160 230 160 230 150 220 150 220 150 210 130 200 130 200 130 3/8 270 190 250 170 240 160 240 160 230 150 220 140 220 140 210 130 210 130 200 130 0.239 1/4 240 180 220 160 210 150 210 150 200 140 190 140 190 130 180 120 180 120 180 120 (3 gage) 5/16 300 220 280 190 270 180 260 180 260 170 250 160 250 160 230 150 230 150 230 140 3/8 310 220 280 190 270 180 270 180 260 170 250 160 250 160 240 140 230 140 230 140 7/16 420 290 390 260 380 240 370 240 360 230 350 220 350 220 330 200 330 200 320 190 1/2 510 340 470 300 460 290 450 280 440 270 430 260 420 260 400 240 400 230 390 230 5/8 770 490 710 430 680 400 680 400 660 380 640 370 630 360 600 330 590 330 580 320 3/4 1110 670 1020 590 980 560 970 550 950 530 920 500 910 500 860 450 850 450 840 440 7/8 1510 880 1390 780 1330 730 1320 710 1280 690 1250 650 1230 650 1170 590 1160 590 1140 570 1 1940 1100 1780 960 1710 910 1700 890 1650 860 1600 820 1590 810 1500 740 1480 730 1460 710 1/4 1/4 240 180 220 160 210 150 210 150 200 140 200 140 190 130 180 120 180 120 180 120 5/16 310 220 280 200 270 180 270 180 260 170 250 170 250 160 230 150 230 150 230 140 3/8 320 220 290 190 280 180 270 180 270 170 260 160 250 160 240 150 240 140 230 140 7/16 480 320 440 280 420 270 420 260 410 250 390 240 390 230 370 220 360 210 360 210 1/2 580 390 540 340 520 320 510 320 500 310 480 290 480 290 460 270 450 260 440 260 5/8 _850530_ .780...__470 750 440 740 440 _720_420_ _700 400_ ..690..400 .660_370. 650 360 640 350 3/4 1200 730 1100 640 1060 600 1050 590 1020 570 990 540 980 530 930 490 920 480 900 470 7/8 1600 930 1470 820 1410 770 1400 750 1360 120 1320 690 1310 680 1240 630 1220 620 1200 600 1 2040 1150 1870 1000 1800 950 1780 930 1730 900 1680 850 1660 840 1570 710 1550 760 1530 740 I. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Tabulated lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table 12) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p. into the main member equal to SD; dowel bearing strengths, F, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, FY., of 70,000 psi for D = 114", 60,000 psi for D = 5/16", and 45,000 psi for D ?3/8'. Where the lag screw penetration, p, is less than SD but not less than 4D, tabulated lateral design values. Z, shall be multiplied by p/8D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration. The length of lag screw penetration, p, not including the length of the tapered tip, E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, p,.. Copyright© American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorized. AMERICAN WOOD COUNCIL NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION . 77 Table 12.2A Lag Screw Reference Withdrawal Values, W1 I Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member shall not include the 1enth of the tanered tin (see 12.2.1.1). Specific Gravity, _______ __ ___ ___ Lag Screw Diameter, D ____ _____ _______ G2 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4" 7/8" 1" 1-1/8" 1-1/4" 0.73 397 469 538 604 668 789 905 1016 1123 1226 1327 1273 381 450 516 579 640 757 868 974 1077 1176 0.68 [Th.67 357 422 484 543 600 709 694 813 913 1009 1103 1193 1167 349 413 473 531 587 796 893 987 1078 869 0.58 281 332 381 428 473 559 641 719 795 940 868 ] 260 307 352 395 437 516 592 664 734 802 0.51 1 0.50 232 274 314 353 390 461 528 593 656 716 775 752 j 225 266 305 342 378 447 513 576 636 695 0.49 218 258 296 332 367 434 498 559 617 674 730 686 1 205 242 278 312 345 408 467 525 580 634 0.46 199 235 269 302 334 395 453 508 562 613 664 621 1 0.44 186 220 252 283 312 369 423 475 525 574 0.43 179 212 243 273 302 357 409 459 508 554 600 579 7 173 205 235 264 291 344 395 443 490 535 0.41 167 198 226 254 281 332 381 428 473 516 559 538 1 161 190 218 245 271 320 367 412 455 497 0.39 [0.38 155 183 210 236 261 308 353 397 438 479 518 498 1 149 176 202 227 251 296 340 381 422 461 0.37 143 169 194 218 241 285 326 367 405 443 479 460 } 137 163 186 209 231 273 313 352 389 425 0.35 132 156 179 200 222 262 300 337 373 407 41 H36-77 0.31 110 130 149 167 185 218 250 281 311 339 I. Tabulated withdrawal design values. W. for lag screw connections shall be multiolied by all anolicable adjustment factors (see Table II 3 I 2. Specific gravity, 0, shall be determined in accordance with Table 12.3.3A. adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'. / W = 1380 G5/2 D (12.2-3) The nail or spike reference withdrawal design value, W, in lbs/in, of penetration, for a smooth shank stainless steel nail or spike driven into the side grain of a wood member, with the nail or spike axis perpendicu- lar to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, within the range of specific gravities, G, and nail or spike diameters, D, given in Table 12.21). Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3. 1) to obtain adjusted withdrawal design values, W'. W = 465 G3/2D (12.2-4) For calculation of the fastener reference with- drawal design value in pounds, the unit reference with- drawal design value in lbs/in, of fastener penetration from 12.2.3.1a or 12.2.3.1b shall be multiplied by the length of fastener penetration, Pt, into the wood mem- ber. 12.2.3.2 Deformed shank nails (a) The reference withdrawal design value, in lbs/in, of ring shank penetration, for a Roof Sheathing Ring Shank nail or Post-Frame Ring Shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2E or Equation 12.2-5, within the range of specific gravities and nail diameters given in Table 12.2E. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Ta- ble 11.3. 1) to obtain adjusted withdrawal design values, w,. W = 1800 G2 D (12.2-5) Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorized. AMERICAN WOOD COUNCIL TABLE 5: UNISTRUT GENERAL ENGINEERING CATALOG-NO.1 U NI STRUT CHANNEL SELECTION CHART - Channel Dimensions Material & Thickness Hole Pattern Styles Channel Width fl :rll_ Height Steel Stainless Steel Alum. _ 1100//il HS T KO SL DS H3 In (mm) In (mm) gauge gauge In (mm) Steel Only P1000 1%(41.3) 154(41.3) 12 ga 12 ga 0.109(2.8) U 0 U U U U P1100 1%(41.3) 1%(41.3) 14 ga 14 ga - U U U U - - P2000 1%(41.3) 1%(41.3) 16 ga - - U U U U - - P3000 154(41.3) 134(34.9) 12 ga - - U U 111111 U - - P3300 134(41.3) 54(22.2) 12 ga 12 ga -111111 E - U - - P4000 154(41.3) 'Mr, (20.6) 16 ga 16 ga 0.078(2.0) U U - U - - P4100 134(41.3) 'Me (20.6) 14 ga - - U a - U - - P5000 154(41.3) 334(82.6) 12 ga 12 ga - U U U U - - P5500 134(41.3) 2!/16 (61.9) 12 ga - 0.109 (2.8) • U U U - - CHANNELS & COMBINATIONS IN DESCENDING ORDER OF STRENGTH Area Weight I s Allow. Moment Channel In' (cm') lbs/ft (kg/rn) In4 (cm4) 1n3(cm') In-lbs (N.m) P5001 1.793 6.10 6.227 1.916 48,180 11.57 9.1 259.2 31.4 5,440 P1004A 1.965 6.68 4.068 1.669 41,980 12.68 9.9 169.3 27.4 4,740 P5501 1.452 4.94 2.805 1.151 28,940 9.37 . 7.3 116.8 18.9 3,270 P1001C41 2.221 7.55 1.856 1.142 28,720 14.33 11.2 77.2 18.7 3,250 P5000 0.897 3.05 1.098 0.627 15,770 5.78 4.5 45.7 10.3 1.780 P1001 1.111 3.78 0.928 0.571 14,360 7.16 5.6 38.6 9.4 1,620 0.835 2.84 0.733 0.451 11,340 P1101 5.39 4.2 30.5 7.4 1,280 P3001 1.000 3.40 0.591 0.430 10,810 6.45 5.1 24.6 7.0 1,220 ssoo 0.726 2.47 0.522 0.390 9,820 4.68 3.7 21.7 6.4 1,110 P2001 0.684 2.32 0.618 0.381 9,570 4.41 3.5 25.7 6.2 1,080 0.489 2.23 0.279 0.297 7,480 P9200 3.16 3.3 11.6 4.9 850 A5000 0.492 1.67 0.358 0.265 6,670 3.17 2.5 14.9 4.3 750 A1001 0.609 2.07 0.302 0.242 6,070 3.93 3.1 12.6 4.0 690 P9000 0.387 1.88 0.166 0.205 5,150 2.50 2.8 6.9 3.4 580 P1000 0.555 1.89 0.185 0.202 5,070 3.58 2.8 7.7 3.3 570 P3301 0.790 2.69 0.176 0.201 5,060 5.10 4.0 7.3 3.3 570 Combinations not shown in catalog are available on special order. Consult factory for more details. Area Weight I s Allow. Moment Channel In' (cm') IbsIft (kg/rn) In (cm4) In3(crn3) . In-lbs (N.rn) P1100 0.418 1.42 0.145 0.162 4,060 2.69 2.1 6.0 2.6 460 0.500 1.70 0.120 0.153 3,850 P3000 3.23 2.5 5.0 2.5 430 P4101 0.579 1.97 0.117 0.143 3,610 3.74 2.9 4.9 2.4 410 P2000 0.342 1.16 0.125 0.140 3,520 2.21 1.7 5.2 2.3 400 P4001 0.478 1.66 0.104 0.128 3,210 3.14 2.5 4.3 2.1 360 A3301 0.459 1.56 0.077 0.103 2,590 2.96 2.3 3.2 1.7 290 0.305 1.04 0.061 0.086 2,170 A1000 1.96 1.5 2.5 1.4 250 P3300 0.395 1.34 0.037 0.072 1,800 2.55 2.0 1.5 1.2 200 0.264 0.90 0.037 0.058 1,470 A4001 1.70 1.3 1.5 1.0 170 0.213 0.73 0.045 0.055 1,400 P6001 1.38 1.1 1.9 0.9 160 0.290 0.98 0.026 0.054 1,360 P4100 1.87 1.5 1.1 0.9 150 P4000 0.244 0.83 0.023 0.049 1,230 1.57 1.2 0.9 0.8 140 A3300 0.230 0.78 0.017 0.038 950 1.48 1.2 0.7 0.6 110 0.132 0.45 0.008 0.022 560 MOOD 0.85 0.7 0.3 0.4 60 0.107 0.36 0.009 0.020 510 P6000 0.69 0.5 0.4 0.3 60 P7001 0.148 0.50 0.007 0.018 460 0.96 0.8 0.3 0.3 50 P7000 0.074 0.25 0.002 0.007 170 0.48 0.4 0.1 0.1 20 LI 1/8" Framing System 23 "01001 T P1001 A 1%" 1W (41.3) (41.3) r-i 1 3 2. - 3 '/4"(8 6) (82.6) L (18.0) 2 (23.3) W1/100 Ft: 321 Lbs (478 kg/100 m) Wt/100 Ft: 378 Lbs (562 kg/100 m) Allowable Moment 12,200 In-Lbs (1,378 N.m) Allowable: Moment 18,640 In-Lbs (2,110 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 C P1001 3 UN ISTRUT P1001 B 154" (41.3) 3 1/," L L _____ J Will 00 Ft: 378 Lbs (562 kg/100 m) Allowable Moment 18,640 In-Lbs (2110 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 A3 1%, (41.3) .761 .864 (19.3) 2 (21.9) MA 1 54° (41.3) 4W J4 4' (123.8) 1112.403° jJ(6LO) fT 4740 (123.8) .7784,. (19.8) Wt/100 Ft: 378 Lbs (562kg/100m) Allowable Moment 15,950 In-Lbs (1,800 N'm) 12 Gauge Nominal Thickness .105(2.7mm) P1001 B3 71 (123.8) .778' . (19.8) 2 (21.5) Wt/l0O Ft: 566 Lbs (843 kg/100 m) Allowable Moment 37,550 In-Lbs (4,240 Nm) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 C41 Wt/100 Fl: 566 Lbs (843 kg/100 m) Allowable Moment 31,840 In-Lbs (3,600 Nm) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 D3 3" (82 Wt/100 Ft: 566 Lbs (843 kg/100 m) Allowable Moment 17,550 In-Lbs (1,980 Nm) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 C3 Wt/100 Ft: 566 Lbs (843 kg/100 m) Allowable Moment 32,770 In-Lbs (3700 N'm) 12 Gauge Nominal Thickness .105° (2.7mm) P1003 144° 1144' 1.245' (44.1) (30.6) 2 (31.6) ta I . 1---A I L- 42° - .4189- (102.4) (12.4) Wt/100 Ft: 333 Lbs (495 kg/100 m) Allowable Moment 6,240 In-Lbs (700 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) P1004 A Wt/100 Ft: 755 Lbs (1,124 kg/100 m) Allowable Moment 28,720 In-Lbs (3,250 N'm) 12 Gauge Nominal Thickness .105° (2.7mm) 46.8 1 54' 4I.3) ' 1.354 A" 1 (i23) (82k) _______ 41. 16 ( 1.930" 490 I 1 , 1.320 2 (33.5) (1 1.1) Wt/100 Ft: 566 Lbs (843 kg/100 m) WtI100 Ft: 668 Lbs (994 kg/100 m) AIlowabe Moment 18,680 In-Lbs (2,110 N.m) Allowable Moment 41,970 In-Lbs (4,740 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) 12 Gauge Nominal Thickness .105° (2.7mm) Channel Finishes: PL, GR, HG, PG, ZD; Standard Lengths: 10'&20' WAtIllat1.a1IlI.11i -.-... Unistrut Adjustable Pipe Clamps are manufactured from glass-reinforced polyurethane and are adjustable to accommodate a wide range of outside diameters. They can be uti- lized with a variety of piping systems including: PVC, fiberglass, copper, rigid steel conduit and PVC coated rigid steel conduit Care should be taken not to exceed 3 ftilbs. of torque on the adjustable pipe straps. Part Number O.D. Pipe Size (in.) Design Load Type I Type 2 Lbs (kN) Lbs (kN) Torque Ft/Lbs (N.m) Wt!100 PCs Lbs (kg) 200-3100 ½-1½ 135(0.6) 65(0.3) 0.8(1) 3(1.4) 200-3110 1½-2¼ 135(0.6) 65(0.3) 3(4) 5(2.3) 200-3120 2¼-3¼ 145 (0.6) 70(0.3) 3(4) 5(2.3) 200-3130 3-4 215(1.0) 70(0.3) 3(4) 8(3.6) 200-3140 4-6½ 215(1.0) 70(0.3) 3(4) 10(4.5) Design loads shown represent a 3:1 safety factor. UNISTRUT 'ADJUSTABLE PIPE CLAMPS PIPE PVC, Sch. 80 Design Loads FRP Bolt Part Nominal & Rigid Metal Type I Type 2 FRP Bolt Torque WtI100 PCs Number Size (in.) In (mm) Lbs (kN) Lbs (kN) Size (in.) Ft/Lbs (N.m) Lbs (kg) FPCR-050 ½ 0.840 (21.3) 225 (1.0) 90(0.4) 34 x 11/4 3(1.4) FPCR-075 54 1.050 (26.7) 225(1.0) 90(0.4) 34 x 1¼ 3(1.4) FPCR-100 1 1.315 (33.4) 225(1.0) 90(0.4) 34 x 1¼ 4(1.8) FPCR-125 1 1.660 (42.2) 225 (1.0) 90(0.4) 34 x 1¼ 5(2.3) FPCR150 1½ 1.900(48.3) 225(1.0) 90(0.4) 34x1¼ 5(2.3) FPCR-200 2 2.375 (60.3) 225 (1.0) 90(0.4) 34 x 1¼ 3 (4) 5(2.3) FPCR-250 2½ 2.875(730) 225(1.0) 90(0.4) 34x•1¼ 7(3.2) FPCR-300 3 3.500 (88.9) 225 (1.0) 90(0.4) 34x 1¼ 10(4.5) FPCR-400 4 4.500 (114.3) 300(l.3) 125 (0.6) 34 x 1¼ 12(5.4) FPCR-600 6 6.625 (16&3) 300(l.3) 125 (0.6) %x 1¼ 15(6.8) FPCR-800 8 8.625 (219.1) 3000.3) 125 (0.6) 34x 1¼ 18(8.1) "Design loads shown represent a 3:1 safety factor. Rigid Pipe Clamps resemble the more traditional style of pipe clamps and are sized based on the pipe inside diameter or nominal size. Polyurethane clamps are recommended for applications up to 160°F. For high temperature applications (up to 230°F). Care should be taken not to exceed the recommended torque values of the rigid pipe clamps. Material: glass-reinforced polyurethane. Two HOLE PIPE STRAPS Bolt Material Design Load Part Dim. A Dim. B Size Thick. Type I Type2 Torque wuioo PCs No. In (mm) In (mm) (in.) In (mm) Lbs (kN) Lbs (kN) Ft/Lbs (N.m) Lbs (kg) FPS200 2.375 6.375 ½ 1/4 135 50 4 14 60.33 161.93 6.4 0.60 0.22 5 6.4 2.875 6.875 ¼ 135 50 4 17 FPS250 7303 174.63 ½ 6.4 0.60 0.22 5 7.7 3.500 7.500 ¼ 135 50 4 20 FPS300 88.90 190.50 ½ 6.4 0.60 0.22 5 9.1 FPS35O 4.000 8.000 14 1/4 135 50 4 33 101.60 203.20 6.4 0.60 0.22 5 15.0 FPS400 4.500 8.500 ½ 1/4 175 60 4 23 114.30 215.90 6.4 0.78 0.27 5 10.4 5.563 9.563 ¼ 175 60 4 39 FPS500 141.30 242.90 ½ 6.4 0.78 0.27 5 17.7 FPS600 6.625 10.625 ½ ¼ 175 60 4 39 168.28 269.88 6.4 0.78 0.27 5 17.7 FPS800 8.625 12.625 ½ ¼ 225 125 4 51 219.08 320.68 6.4 1.00 0.56 5 23.1 FPS1000 10.750 15.750 ¼ 225 125 10 77 273.05 400.05 6.4 1.00 0.56 14 34.9 FPS1200 12.750 16.250 ¼ 225 125 10 83 323.85 412.75 6.4 1.00 0.56 14 37.6 FPS1400 14.000 18.000 34 250 150 10 125 355.60 457.20 9.5 1.11 0.67 14 56.7 16.000 20.000 34 250 150 10 143 FPS1600 406.40 508.00 9.5 1.11 0.67 14 64.9 FPS1800 18.000 23.000 34 250 150 10 160 457.20 584.20 9.5 1.11 0.67 14 72.6 "Design loads shown represent a 3:1 safety factor. Two Hole Pipe Straps are designed for use in securing pipe, conduit and ducts to Channel. Two hole fiberglass straps can also be used independently from the channel for surface mounting. All sizes of the straps are suitable for load bearing applications. Material: fire-retardant, glass-reinforced polyester resin. For extreme chemical environments, the straps can be manufac- tured from vinyl ester resin. Larger diameter straps for special applications are also available. Contact the factory for pricing and availability of vinyl ester and large diameter straps. Two hole pipe straps should not be torqued above recommended values. Notes: Bolts and channel nuts are sold separately. When bolting onto 154° channel a 1¼" long bolt is req'd. Fiberglass - 203 LAMAR IMENGINEERING IV IL SV U GTU RA RECEIVED JUL i62019 CITY OF CARLbBAD BUILDING DIVISJ STRUCTURAL CALCULATIONS PROJECT: LEGOLAND CALIFORNIA RESORT NODES 7,8 - CHIMA FIRST (AID) I LEGOLAND DR. CARLSBAD SAN DIEGO, CA 92008 July 11, 2019 cj3c21 o,'f -- Page 1 of 55 www.lamareng.com Luis Labrada Proyecto: Nodes 7-8 217 Landis Avenue LAMAR Date: 05/07/19 Chula Vista, CA 91910 IMENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com Contents APPENDIX I. DESIGN ATTACHMENT. ANTENNAS .................................................................................................................... 3 APPENDIX II. DESIGN ATTACHMENT. RADIOS . ..................................................................................................................... 10 APPENDIX III. DESIGN ATTACHMENT. CABINET EQUIPMENT . ........................................................................................... 18 APPENDIX IV. SCREEN WALL .................................................................................................................................................25 APPENDIX V. ROOF VERIFICATION ........................................................................................................................................33 APPENDIXVI. TABLES ..............................................................................................................................................................40 Page 2 of 55 Luis Labrada Proyecto: Nodes 7-8 217 Landis Avenue LAMAR Date: 05/07/19 Chula Vista, CA 91910 JJENGINEERING Engineer: M.R .7fl fl,Cn0 P: 619-370-9515 www.lamareng.com APPENDIX I. DESIGN ATTACHMENT. ANTENNAS Page 3 of 55 Luis Labrada 217 Landis Avenue Project: Nodos 7-8 Chula Vista, CA 91910 LAMAR Date: 07/05/2019 P: 619.370-9515 IMENGINEERING Engineer M.R www.lamareng.com I SEISMIC DESING ANTENNA I DESCRIPTION Description: QUINTEL QS46512-2 ANTENNA W= 75.0 Lbs bldg height = 18.00 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS - 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 75.0 Lbs. FpH = (0.64 * Wp )/1.4 = 34.3 Lbs FpH = 0.46 * Wp = 34.5 Lbs HORIZONTAL FpV = 0.28 * Wp = 21.0 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 z/h = 1:0 Ft. FPH = (0.4*ap*SDS*Wp)/(Rp*Ip)*(1+2*z/h) = 28.4 Lbs. Verifications FPH max = 1.6* SDS * 1 * WP= 94.6 Lbs. > 28.4 Lbs. [OK 1 FpH mm = 0.3 * SDS * 1 * WP = 17.7 Lbs. < 28.4 Lbs. [OK I Page 4 of 55 L 1 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING -w--,---..,.---'- Project: Nodos 7-8 Date: 07/0512019 Engineer:M.R I ANCHORAGE DESIGN (SEISMIC) ANTENNA I GEOMETRY e= 1.25 ft d= 2.13 ft -y Fx d Wp e FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy = 37.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 26.5 Lbs Vertical force, Ey = 10.5 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 70.5 Lbs Max shear force per anchor = Dy + Ey = 48.0 Lbs Page 5 of 55 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING Project: Nodos 7-8 Date: 07/05/2019 Engineer:M.R I WIND DESING ANTENNA DESCRIPTION Description: QU INTEL QS46512-2 ANTENNA W= 75.0 Lbs bldg height = 18.0 ft ELEMENT DESIGN (WIND) Location = I LEGOLAND•DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B,CorD) = C I Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Flat ANALYSIS A = 1.26 For h = 18 exposure C see fig 6-2 ps30 = 15.90 ,Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure PS = A x Kzt x I x ps30 = 20.00 psf Horizontal ps =X x Kzt x I x ps30 = 17.36 psf. Roof Uplift Applied horizontal force, Fph = Ps x (bxc)I2 = 86.6 Lbs Applied vertical force, Fpv = Ps x (axc)I2 = 15.6 Lbs Page 6 of 55 Fph d a Ar GEOMETRY e= 1.25 ft d= 2.13 ft a= 0.90 ft b= 4.33 ft c= 1.00 ft Wp e Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodos 7-8 Date: 07/05/2019 Engineer:M.R I ANCHORAGE DESIGN (WIND) ANTENNA I FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy = 37.5 Lbs FORCES WIND (W) Horizontal force, Wx = 52.5 Lbs Vertical force, Wy = 7.8 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 96.5 Lbs Max shear force per anchor = Dy + Wy = 45.3 Lbs Page 7 of 55 B B Fx = Dx+(Ex or Wx) = 96.5 Lbs Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 2.0 Radios Total Quantity 3 ft H= 3.00 ft Lc= 4.67 ft U Luis Labrada 217. Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING ..fl..n:arnann Project: Nodos 7-8 Date: 07/05/2019 Engineer: M.R I ELEMENT & CONNECTIONS DESIGN ANTENNA I UNISTRUT HORIZONTAL DESIGN I Number of radios pair IOdd number of radios M. max = PL/8 (n-1/n) I n.p M.max = PL/8 (n+lln) R = P (n-1)I2 Ii I I I L R = P n/2 I- L-7LC----I qA n= 3 n= 2 I I 1'LC C = 1.56 ft I c= 2.34 ft Px= 96.5 Lbs M. Mmax (y-y) = 150.2 Ft-Lbs Status 1802.4 In-Lbs t OK I Py= 48.0 Lbs M. Mmax (y-y) = 74.7 Ft-Lbs Status 896.6 In-Lbs { OK Use: Unistrut: P1000 l 5/8 x I 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Page 8 of 55 II Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodos 7-8 Date: 07/0512019 Engineer:M.R I ELEMENT & CONNECTIONS DESIGN ANTENNA I Fx = Dx+(Ex or Wx) = 96.5 Lbs Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 2.0 Radios Total Quantity 3 ft H= 3.0 ft Lc= 4.7 ft CONNECTION A BOLT DESIGN D-Bolt= 3/8 in Shear = 48.0 Lbs n Bolt: I Fv = 24 ksi Pull Out = 96.5 Lbs Material = A307 Ft = 45 ksi Allowable Shear > Max. Shear Status 2650.7 Lbs > 48.0 Lbs OK Allowable Pull-Out > Max. Shear Status 4970.1 Lbs > 96.5 Lbs L OK] CONNECTION B BOLT DESIGN D-Bolt= 3/8 in Shear = 48.0 Lbs n Bolt: I Fv = 24 ksi Pull Out = 96.5 Lbs Material = A307 Ft = 45 ksi Allowable Shear > Max. Shear Status 2650.7 Lbs > 48.0 Lbs I OK I Allowable Pull-Out > Max. Shear Status 4970.1 Lbs > 96.5 Lbs [ OKJ Page 9 of 55 Luis Labrada Proyecto: Nodes 7-8 • 217 Landis Avenue LAMAR Date: 05/07/19 Chula Vista, CA 91910 I!IJENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX II. DESIGN ATTACHMENT. RADIOS. Page 10 of 55 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com Project: Nodos 7-8 LA MA R Date: 07105/2019 I,JENGINEERING Engineer: M.R SEISMIC DESING RADIO DESCRIPTION Description: Alu Radio Units W= 59.5 'Lbs bldg height = 18.0 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 59.5 Lbs. FpH = (0.64 * Wp)/1.4 = 27.2 Lbs FpH = 0.46 * Wp = 27.37 Lbs HORIZONTAL FpV = 0.28 * Wp = 16.66 Lbs UP OR DOWN ap = 1.0 :Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh= to Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*lp)*(1+2*z/h) = 22.5 Lbs. Verifications FpH max = 1.6* S * I *W = 75.0 Lbs. 22.5 Lbs. [OK I OS p p FpH min = 0.3 * 5 * * W = 14.1 Lbs. 22.5 Lbs. [OK DS p p Page 11 of 55 Fpv bj Fph - Elevation Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodos 7-8 Date: 07/05/2019 Engineer:M.R I DESIGN FORCES (SEISMIC) I RADIO I GEOMETRY C • g4 Plan Radio Dimensions a= 0.92 ft b= 2.10. ft C = 0.92 ft Support = 4 Quantity FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a14 = 13.7 Lbs*ft Dx = 6.5 Lbs Dy= 14.9 Lbs FORCES SEISMIC (E) Applied horizontal force, Ex = 9.3 Lbs Applied vertical force, Ey = 4.2 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 15.8 Lbs Max shear force per anchor = Dy + Ey = 19.0 Lbs Page 12 of 55 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING ,fl..afl.,wfl..:fl Project: Nodos 7-8 Date: 07105/2019 Engineer:M.R WIND DESING RADIO DESCRIPTION Description: Alu Radio Units W= 59.5 Lbs bldg height = 18.0 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or 0) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Flat ANALYSIS A = 1.26 For h = 18 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure PS = A x Kzt x I x ps30 = 20.00 psf Horizontal ps = Ax Kzt x I x ps30 = 17.36 psf Roof Uplift Page 13 of 55 tFpv Suction Fph Suction Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING fl fl.UZ..rn.n Project: Nodos 7-8 Date: 07/05/2019 Engineer:M.R I DESIGN FORCES (WIND) I RADIO I GEOMETRY c Wall p 4 s--- al _____________ V b Plan Radio Dimensions a= 0.92 ft b = 2.10 ft Elevation c= 0.92 ft Support = 4 Quantity FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a/4:= 13.7 Lbsft Dx = 6.5 Lbs Dy= 14.9 Lbs FORCES WIND (W) Applied horizontal force, Wx = 12.9 Lbs Applied vertical force, Wy = 3.7 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 19.4 Lbs Max shear force per anchor = Dy + Wy = 18.5 Lbs Page 14 of 55 Luis Labrada 217 Landis Avenue Project: Nodos 7-8 Chula Vista, CA 91910 LAMAR Date: 07/05/2019 P: 619.370-9515 ENGINEER,NG Engineer: M.R www.lamareng.com LEMENT & CONNECTIONS DESIGN RADIO I C Ex or Wx) 19A Lbs Fy = Dy+(Ey or W1 Q = 2.0 N' of radios per vertical unist. 3.0 H = 3.00 ft Nu =2 Unistrut UNISTRUT VERTICAL DESIGN P= 19.4 Lbs 1P 1P M. Mmax = PL/3.= 9.7 Ft.-Lbs. Status 116.4 In.-Lbs. [ 0K1 Use: Unistrut: P1000 1 5/8 x I 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 CONNECTION A CHANNEL NUTS WITH SPRING Shear= 19.0 Lbs Pull Out = 19.4 Lbs Use: Channel Nuts: 3!8"-16 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1/2" Mm. Status EOK [OK General Engineering Catalog - No. 17- Page 66 General Engineering Catalog - No. 17 Page 68 Page 15 of 55 Luis Labrada 217 Landis Avenue Project: Nodos 7-8 Chula Vista, CA 91910 LAMAR Date: 07/05/2019 P: 619.370-9515 HENGINEERING Engineer:M.R www.lamareng.com ELEMENT & CONNECTIONS DESIGN RADIO Q = 2.0 N* of radios per vertical unist. 3.0 UNISTRUT VERTICAL DESIGN P = 19.4 Lbs M. Mmax = PL/3 = 9.7 Ft.-Lbs. Status 116.4 In.-Lbs. OK I Use: Unistrut: P1000 15/8 x I 518-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 CONNECTION B CHANNEL NUTS WITH SPRING Status Shear= 38.1 Lbs OK Pull Out = 38.8 Lbs OK Use: Channel Nuts: 3/8"-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1112" Mm. General Engineering Catalog - No. 17 Page 68 'Ii Page 16 of 55 Luis Labrada 217 Landis Avenue Project: Nodos 7-8 Chula Vista, CA 91910 LAMAR Date: 07105/2019 P: 619.370-9515 INENGINEERING Engineer: M.R www.lamareng.com ELEMENT & CONNECTIONS DESIGN RADIO Q = 7.0 Radios Total Quantity 3.0 Wic Lc = 4.67 ft 4.67 ft UNISTRUT HORIZONTAL DESIGN Px = 38.8 Lbs (-7)P M. Mmax (y-y) = 201.3 2415 Ft.-Lbs. Status In.-Lbs. Py = 38.1 Lbs M. Mmax = PL/8 (n-1/n), M. Mmax (x-x) = 197.6 Ft.-Lbs. Status n = 9 2371 In.-Lbs. OK ] c= 0.52- ft Use: Unistrut: P1000 1 5/8 x I 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 CONNECTION C BOLT DESIGN Reaction unistrut horizontal Ry = Py(n-l)/2 - Pull Out = 152.3 Lbs Rx = Px(n-I)/2 - Shear = 155.2 Lbs Use: D-Bolt: In nBolt: I Shear: 780.0 Lbs Allowable Bolt Shear Pull-Out: 300.0 Lbs Allowable Bolt Pull-Out (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear• Ratio Status 155.2 Lbs < 780.00 Lbs 0.2 ( OK] Demand Capacity Shear Ratio Status 152.3 Lbs < 300.00 Lbs 0.51 LIOK J Page 17 of 55 Luis Labrada 217 Landis Avenue LAMAR Proyecto: Nodes 7-8 Date: 05/07/19 Chula Vista, CA 91910 NENGINEERING Engineer: M.R LU P: 619-370-9515 www. lamareng .com APPENDIX III. DESIGN ATTACHMENT, CABINET EQUIPMENT, Page 18 of 55 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMA R Project: Nodos 7-8 Date: 07/0512019 IMENGINEERING Engineer: M.R SEISMIC DESING CABINET DESCRIPTION Description: BBU CABINET W = 382.0 Lbs bldg height = 18.0 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 / U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = 382.0 Lbs. FpH = (0.64 * Wp )/1.4 = 174.63 Lbs FpH = 0.46 * Wp = 175.72 Lbs HORIZONTAL FpV = 0.28 * Wp = 106.96 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 •Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 z/h= 1.0 •Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*Ip)*(I+2*z/h) = 144.5 Lbs. Verifications FpH max = 1.6 * 5DS * i p * WP = 481.6 Lbs. > 144.5 Lbs. FpH mm 0.3 * 5OS• * i p * WP = 903 Lbs. < 144.5 Lbs. [OK ro-F7-7 Page 19 of 55 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com WIR kvnj I RN I [IMICIVIL + STRUC1URALJ Project: Nodos 7-8 Date: 07105/2019 Engineer:M.R I DESIGN FORCES (SEISMIC) I CABINET I GEOMETRY a11 I Plan a= 2.25 ft b= 2.70 ft C = 2.30 ft Support= 4 t .1 Fpv Wall a I Elevation FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a14 = 214.9 Lbs*ft Dx = 79.6 Lbs Dy = 95.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 161.4 Lbs Vertical force, Ey = 26.7 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 241 Lbs Max shear force per anchor = Dy + Ey = 122 Lbs Page 20 of 55 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING Project: Nodos 7-8 Date: 07/05/2019 Engineer:M.R WIND DESING CABINET DESCRIPTION Description: BBU CABINET W= 382 Lbs bldg height = 18.0 ft ELEMENT DESIGN (WIND) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS A = 1.26 For h = 18 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative C 1.0 110.0 mph 1.0 Flat Wind Pressure PS = A x Kzt x I x ps30 = ps = Ax Kzt x I x ps30 = Applied horizontal force, Fph = Ps x (bxc)/2 = Applied vertical force, Fpv = Ps x (axc)/2 = 20.00 psf Horizontal 17.36 psf Roof Uplift 124.2 Lbs 89.8 Lbs Page 21 of 55 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR JENGINEERING Project: Nodos 7-8 Date: 07105/2019 Engineer:M.R I DESIGN FORCES (WIND) I CABINET I Suction GEOMETRY Fpv Suction Wall fl I a 10 Fph Plan a= 2.25 ft b= 2.70 ft c= 2.30 ft Support= 4 Elevation FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a/4 = 214.9 Lbs*ft Dx= 79.6 Lbs Dy= 95.5 Lbs FORCES WIND (W) Horizontal force, Wx = 137.0 Lbs Vertical force, Wy = 22.5 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 217 Lbs Max shear force per anchor = Dy + Wy = 118 Lbs Page 22 of 55 3 Fx = Dx+(Ex or Wx) = 241.0 Lbs Fy = Dy+(Ey or Wy) = 122.2 Lbs Q = 1.0 Cabinet Total Quantity 2.8 H= 2.83 ft Lc= 6.10 ft Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodos 7-8 Date: 07105/2019 Engineer: M.R ELEMENT & CONNECTIONS DESIGN I CABINET B UNISTRUT HORIZONTAL DESIGN Px = 241.0 Lbs M. Mmax (y-y) = 490.0 Ft.-Lbs. Status 5879 In.-Lbs. OK I..c4.c_Lc4.c-I-cj I- I-n.c Py = 122.2 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 248.6 Ft.-Lbs. Status n = 3 2983 In.-Lbs. OK c = 2.03 ft Use: Unistrut: PIOOIA (2)1 5/8 x I 5/8-12ga Nominal Thickness Allowable Moment: 18640 In-Lbs General Engineering Catalog - No. 17- Page 23 Page 23 of 55 Luis Labrada 217 Landis Avenue Project: Nodos 7-8 Chula Vista, CA 91910 LAMAR Date: 07/05/2019 P: 619.370-9515 HENGINEERING Engineer:M.R www.lamareng.com ELEMENT & CONNECTIONS DESIGN I CABINET Fx = Dx+(Ex or Wx) = 241.0 Lbs i Fy = Dy+(Ey or Wy) = 122.2 Lbs Q = 1.0 Cabinet Total Quantity 2.821 ft H= 2.8 ft Lc= 6.1 ft n A B II 6.1 ft CONNECTION A CHANNEL NUTS WITH SPRING Shear= 122.2 Pull Out = 241.0 Use: Channel Nuts: 318"-16 Allowable Pull-Out: 1000 Allowable Shear: 800 Status Lbs LK Lbs OK General Engineering Catalog - No. 17- Page 66 Lbs Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1/2" Mm. General Engineering Catalog - No. 17 Page 68 CONNECTION B BOLT DESIGN Reaction unistrut horizontal Ry = Py(n-1 )/2 - Shear = 122.2 Lbs Rx = Px(n-1 )I2 .- Pull Out = 241.0 Lbs Use: D-Bolt: 1/2 in nBolt: 2 Shear: 780.0 Lbs Allowable Bolt Shear Pull-Out: 300.0 Lbs Allowable Bolt Pull-Out (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 122.2 Lbs < 1560.00 Lbs 0.08 [ OK Demand Capacity Shear Ratio Status 241.0 Lbs < 600.00 Lbs 014 [OK 1 Page 24 of 55 Luis Labrada 217Landis Avenue LAMARProyecto: Nodes 7-8 Date: 05/07/19 Chula Vista, CA 91910 IENGINEERING Engineer: M.R .fl.flI.Iflfl P: 619-370-9515 www.lamareng.com APPENDIX IV. SCREEN WALL Page 25 of 55 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LAMAR Project: Nodos 7-8 Date: 07/0512019 P: 619.370-9515 •ENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE I Geometry W = 7.5 psf Weight L Li SCREEN LENGTH L = 14.0 ft Screen total length 4 - Ri NP = 4 Number Post I v NS = 3 NO Steps between post I L =j 4.67Jft L. between post H2 H5flF R2 S = 1.56 ft. Length Steps Ht i H4 SCREEN HEIGHT H1 = ii ft. [E] Structural Roof I HI 1I_ H2 = 7.00 ft Post Height I Building H3 =- 5.0 ft Screen Height + H4 = 2.0 ft Screen Wall Ht = 18.00 ft Total height BRACE L2= 4.00 'ft H5= 4.25 ft e = 48.867 ° Wind Force Exposure category (ASCE 7-10 26.7.3) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Pressure 30 - 1Psf. Page 26 of 55 Luis Labrada 217 Landis Avenue Chula Vista CA 91910 P: 619.370-9515 www.lamareng.com LAMAR ILLE!?LG Project: Nodos 7-8 Date: 07/05/2019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I FRP Channel Stifener - Design Tributary: S = 1.56 ft H3= 5.00 ft 16 ft Demand: Load qw = 46.8 Lbs/Ft M. Mmax (x-x) = 1755.0 In.-Lbs. 5 ft Flexural Strength = 877.5 psi Caacitv Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. lz = 3.00 1n4, Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 877.5 psi < 6600 psi 0.13 OK FRP Channel Stifener -Connection Demand Shear= 117.0 Lbs Capacity Use: 1/2 in FRP Bolt n Bolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 117.0 Lbs 780 Lbs 0.15 _OK_ Page 27 of 55 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodos 7-8 Date: 07/05/2019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I Toe & Bottom FRP Horizonal Tube - Desian Tributary: Li = 4.67 It H3= 5.00 ft Demand: Load qw = 75.0 Lbs/Ft 5 ft M. Mmax (x-x) = 2450.0 In.-Lbs. FUfl Flexural Strength = 1225 psi 11 Canaci 4.674.67 ft Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 In2 Gross area of the section h = 3 In. lz = 3.00 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity oa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1225 psi 6600 psi 0.19 OK Top & Bottom FRP Horizonal Tube - Connection Demand Shear = 175.0 Lbs Caacitv Use: 112 in FRP Bolt n Bolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 175 Lbs < 780 Lbs 0.22 OK1 Page 28 of 55 Luis Labrada 217 Landis Avenue Project: Nodos 7-8 Chula Vista, CA 91910 LAMAR Date: 07/0512019 P: 619.370-9515 IENGINEERING Engineer: IVIR www.lamareng.com SCREEN WALL DESIGN - FRP TYPE I Brace: Support Unistrut - Design - Geometry L = 1.75 ft Fy H= 1.67 ft e= 43.66 B Fx Loads Reactions Unistrut (Antennas + Radios) e A Fx= 200.3 Lbs Fy= 251.7 Lbs C Reactions Rx Ry A 200.3 251.7 Lbs B -63.4 0.00 Lbs C 263.7 251.66 Lbs Check Capacities Brace-1 Element AB: Axial force: 63.4 Lbs Tension Element AC: Axial force: 364.5 Lbs Compressive Use: L 2X2X1..4 FRP Angle b = 2 In. A = 0.938 1n2 Gross area of the section h = 2 In. Iz = 0.35 1n4 - Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity Compressive Strength: 6600.0 psi (Appendix A. Design Values Load Chart for FRP Materials) Tensile Strength: 6600.0 psi LARR# 25520. Demand Capacity Compressive Ratio Status 388.6 psi 6600.0 psi 0.06 L OKJ Demand Capacity Tension Ratio Status 67.6 psi 6600.0 psi 0.01 L- OK Page 29 of 55 Luis Labrada 217 Landis Avenue LA M AR Project: Nodos 7-8 Chula Vista, CA 91910 Date: 07105/2019 P: 619.370-9515 •!JENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE I Brace: Support Unistrut - Connection CONNECTION A - FRP BOLT DESIGN Shear = 251.7 Lbs Use: D-Bolt: 1/2 in n Bolt: I Shear: 780.0 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 251.7 Lbs 780.00 Lbs 0.32 [0K1 CONNECTION B - FRP BOLT DESIGN Shear: 63.4 Lbs Use: D-Bolt: 112 'in nBolt: 2 - Shear: 780.0 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 63.4 Lbs < 1560.00 Lbs 0.04 OKIIII} CONNECTION C - FRP BOLT DESIGN Shear: 263.7 Lbs Use: D-Bolt: 1I2 in nBolt: 2 Shear: 780.0 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 263.7 Lbs < 1560.00 Lbs 0.17 1ITIOKTIJ Page 30 of 55 Luis Labrada 217 Landis Avenue '. Chula Vista, CA91910 LAMAR P: 619.370-9515 INENGINEERING www.lamareng.com Project: Nodos 7-8 Date: 07/0512019 Engineer: M.R I SCREEN WALL DESIGN - FRP TYPE I I Reactions Top & Bottom FRP Horizonal Tube Reaction Unistrut Reaction = 175.0 Lbs RI = 350.0 Lbs Fx = 200.3 Lbs R2 = 350.0 Lbs Fy = 251.7 Lbs Check Capacities Steel Column M. Mmax = 11517.6 In.-Lbs. Per Ram Elements Flexural Strength = 2953.24 psi Use: HSS_SQR4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 2953.24 psi 6600 psi 0.45 1 OKTJ Check Capacities Brace Axial force: 572.5 Lbs Per Ram Elements Compressive Strength: 169.9 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Compressive Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 169.9 psi 6600 psi 0.03 EOK] FRP Steel Column to Brace (KICKER) - Connection Reaction Steel Column to Brace: V = 572.5 Lbs Use: D-Bolt: 1I2 in nBolt: 3 Capacity: 780 Allowable: Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 572.5 Lbs 2340 Lbs 0.24 L OK III Page 31 of 55 Luis Labrada 217 Landis Avenue - Project: Nodos 7-8 Chula Vista, CA 91910 LAMAR Date: 07/0512019 P: 619.370-9515 INENGINEERING Engineer: M.R www.lamareng.com I SCREEN WALL DESIGN - FRP TYPE I I eacLIon weei ouumn I-x = Jf.b LDS Ier Kam Eiements 0 Fy = 60.22 Lbs d2 Steel Column: HSS_SQR 4X4X1_4 a I d11 h-D--- Plate: I a= 10 in d1 = 7 in d2 = 7 in 1.5 in Bolt: Shear V = 9.4 Lbs Pull Out T = 15.055 Lbs V + T Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 4 e Dia.: 1/2 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 31/4 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio Status - 9.4 Lbs 5495 Lbs 0.00 OKJ Demand Capacity Pull Out Ratio -Status 15.1 Lbs 4915 Lbs 0.00 6I FRP Brace to Roof (BRAKET) - Connection Reaction Steel Column Fx = 336.98 Lbs Per Ram Elements b Fy= 441.78 Lbs d2,. Steel Brace: HSS_SQR 4X4X1_4 f + a -- • ----I I---- a= b= 10 14 in in dl= 6 in d2= 10 in t= 1/4 in k= 2.0 1.5 Min Shear V = 84.2 /-7- Lbs. Per Bolt Pull Out T= 110.4 Lbs. Per Bolt 1T r' Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 4 e Dia.: 112 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 31/4 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio Status 84.2 Lbs - 5495 Lbs 0.02 PK - 1 Demand Capacity Pull Out Ratio Status 110.4 Lbs < 4915 Lbs 0.02 OK Page 32 of 55 If Luis Labrada Proyecto: Nodes 7-8 217 Landis Avenue LAMAR Date: 05/07/19 Chula Vista, CA 91910 JfJENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIXV. ROOF VERIFICATION Page 33 of 55 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 LAMAR IENGINEERING ..nnnnau Project: Nodos 7-8 Date: 0710512019 Engineer: M.R VERIFY ROOF FRAMING - I Nodo7 I ANTENNA DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] HEX454CU0000G 46.80 15.60 7.40 48.90 2 1.60 97.80 HEX654CU0100G 51.10 12.00 7.10 39.70 0 0.00 0.00 CUUX06306F52sO-T 24.30 12.10 7.00 13.00 0 0.00 0.00 CUUX05XO6F5200 24.10 16.20 7.30 15.70 0 0.00 0.00 QUINTELQS46512-2 52.00 1 12.00 10.80 75.00 1 0.90 75.00 Total 3.00 2.50 172.80 RADIOS DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] RRUS-2203 7.90 7.90 3.90 10.00 7 1.50 70.00 ERICSSON RRUS -4426 15.00 13.20 5.80 48.40 0 0.00 0.00 ERICSSON RRUS -4478 18.10 13.40 8.26 59.40 0 0.00 0.00 ERICSSON RRUS-4415 16.50 13.40 5.90 46.00 0 0.00 0.00 ALCATEL LUCENTTD-RRH8X2O-25 9.68 12.83 6.30 26.45 2 1.12 52.90 ALCATEL LUCENT CDMNLTE DUAL TECH 25.00 11.00 11.00 59.50 1 0.84 59.50 Total 10.00 3.46 182.40 CABINET DIMENSION [in] WIGHT Quantity Area W b c a [Lbs] [sq ft] [Lbs] BBU 32.25 27.50 27.00 382.00 0 0.00 0.00 AC POWER 18.50 20.00 6.00 50.00 0 0.00 0.00 TELCO CABINET 14.25 7.75 6.00 10.00 0 0.00 0.00 Total 0.00 0.00 0.00 Page 34 of 55 Luis Labrada Project: Nodos 7-8 217 Landis Avenue LAMAR Date: 07105/2019 Chula Vista, CA 91910 IIJENGINEERING Engineer: M.R a. P: 619.370-9515 VERIFY ROOF FRAMING Existing Load Density Concrete: 145.0 pcf DL: 72.5 lb/sq. ft. Thickness: 6.0 in LL: 20.0 lb/sq. ft. Area [sq ft] DL LL DL+LL [E] Steel Deck 1 143 10368 2860 13228 1 Lbs. New Load I Antennas Radio Cabinet Total: Quantity Area DL Lbs Lbs Lbs Lbs 3 3 173 10 3 182 0 0 0 1 13 1 6 355 New Load + Existing Load Existing New Total: New + Existing DL LL DL+LL Area [sq ft] DL LL DL+LL DL LL DL+LL Steel Deck 10368 2860 13228 6 0 -119 -119 10368 2741 13109 Antennas 0 0 0 3 173 0 173 173 0 173 Radiol 0 0 0 3 182 0 182 1 182 0 182 Cabineti 0 0 0 0 0 0 0 0 0 0. - Total: 13464 Chapter #34A CBC 2016 3403A.3 Existing structural elements carrying gravity load. "Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load- carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404A.3. Any existing element that will form part of the lateral load path for any part of the addition shall be onsidered an existing lateral load- carrying structural element subject to the requirements of Section 3403A.4." New Total Load: 13464 Lbs Existing Total Load: 13228 Lbs [New Total Load] -[Existing Total Load] -*100% [New Total Load] 1.754 % [i.75 :i < C 5 1% Page 35 of 55 Luis Labrada Project: Nodos 7-8 217 Landis Avenue LAMAR Date: 0710512019 Chula Vista, CA 91910 IMENGINEERING Engineer: M.R Urnt.slmt.0 P: 619.370-9515 VERIFY ROOF FRAMING Nodo 8 ANTENNA DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sqft] W [Lbs] HEX454CU0000G 46.80 15.60 7.40 48.90 2 1.60 97.80 HEX654CU0100G 51.10 12.00 7.10 39.70 0 0.00 0.00 CUUX06306F52s0-T 24.30 12.10 7.00 13.00 0 0.00 0.00 CUUX05XO6F5200 24.10 16.20 7.30 15.70 0 0.00 0.00 QUINTELQS46512-2 52.00 12.00 10.80 75.00 1 0.90 75.00 Total 3.00 2.50 172.80 RADIOS DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] RRUS -2203 7.90 7.90 3.90 10.00 7 1.50 70.00 ERICSSON RRUS - 4426 15.00 13.20 5.80 48.40 1 0.53 48.40 ERICSSON RRUS -4478 18.10 13.40 8.26 59.40 1 0.77 59.40 ERICSSON RRUS-4415 16.50 13.40 5.90 46.00 1 0.55 46.00 ALCATEL LUCENTTD-RRH8X2O-25 9.68 12.83 6.30 26.45 2 1.12 52.90 ALCATEL LUCENT CDMA/LTE DUAL TECH 25.00 11.00 11.00 59.50 1 0.84 59.50 Total 13.00 5.31 336.20 CABINET DIMENSION [in] WIGHT Quantity Area W b c a [Lbs] [sq ft] [Lbs] BBU 32.25 27.50 27.00 382.00 3 15.47 1146.00 AC POWER 18.50 20.00 6.00 50.00 1 0.83 50.00 TELCO CABINET 14.25 7.75 6.00 10.00 1 0.32 10.00 Total 1 5.00 16.63 1206.00 Page 36 of 55 Luis Labrada Project: Nodos 7-8 217 Landis Avenue ILAMAR Date: 0710512019 Chula Vista, CA 91910 . IMENGINEERING Engineer: M.R, - P: 619.370-9515 .. - VERIFY ROOF FRAMING Existing Load Density Concrete: 145.0 pcf DL: 72.5 lb/sq. ft. Thickness: 6.0 in LL: 20.0 lb/sq. ft. Area [sq ft] DL LL DL+LL [E] Steel Deck 1 607 44008 12140 1 56148 JLbs. New Load I Antennas Radio Cabinet Total: Quantity Area DL Lbs Lbs Lbs 1 Lbs 3 3 173 13 5 336 5 17 1206 1 '21 1 24 1 1715 New Load + Existing Load Existing New Total: New + Existing DL LL DL+LL Area [sq ft] DL LL DL+LL DL LL DL+LL Steel Deck 44008 12140 56148 24 0 -489 -489 44008 11651 55659 Antennas 0 0 0 3 173 0 173 173 0 173 Radio 0 0 0 5 336 0 336 336 0 336 Cabinet 0 0 0 17 .1206 1 0 1 1206 1206 0 1206 Total: 57374 Chapter #34A CBC 2016 3403A.3 Existing structural elements carrying gravity load. -- - Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load- carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404A.3. Any existing element that will form part of the lateral load path for any part of the addition shall be onsidered an existing lateral load- carrying structural element subject to the requirements of Section 3403A.4. New Total Load: 57374 Lbs Existing Total Load: 56148 Lbs [New Total Load] -[Existing Total Load] -*100.% = 2.137 % [New Total Load] L 2.14 < L_5 LOK •1 Page 37 of 55 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 L A M A Ir"k HENGINEERING Project: Nodos 7-8 Date: 07/05/2019 Engineer: M.R ROOF FRAMING Nodo 7-8 ANTENNA DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sgft] W [Lbs] HEX454CU0000G 46.80 15.60 7.40 48.90 0 0.00 0.00 HEX654CU0100G . 51.10 12.00 7.10 39.70 0 0.00 0.00 CUUX06306F52s0-T 24.30 12.10 7.00 13.00 3 1.76 39.00 CUUX05XO6F5200 24.10 16.20 7.30 15.70 0 0.00 0.00 QUINTELQS46512-2 52.00 1 12.00 1 10.80 1 75.00 1 1 1 0.90 1 75.00 Total 4.00 2.66 114.00 RADIOS DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sqft] W [Lbs] RRUS-2203 7.90 7.90 3.90 10.00 7 1.50 70.00 ERICSSON RRUS-4426 15.00 13.20 5.80 48.40 1 0.53 48.40 ERICSSON RRUS-4478 18.10 13.40 8.26 59.40 1 0.77 59.40 ERICSSON RRUS -4415 16.50: 13.40 5.90 46.00 1 0.55 46.00 ALCATEL LUCENTTD-RRH8X2O-25 9.68 12.83 6.30 26.45 2 1.12 52.90 ALCATEL LUCENT CDMA/LTE DUAL TECH 25.00: 11.00 11.00 59.50 1 0.84 59.50 Total 13.00 5.31 336.20 CABINET DIMENSION [in] WIGHT Quantity Area W b c a [Lbs] [sq ft] [Lbs] BBU 32.25 27.50 27.00 382.00 5 25.78 1910.00 AC POWER 18.50 20.00 6.00 50.00 1 0.83 50.00 TELCO CABINET 14.25 7.75 6.00 10.00 1 0.32 10.00 Total 7.00 26.94 1970.00 Page 38 of 55 'Luis Labrada Project: Nodos 7-8 217 Landis Avenue LAMAR Date: 07/0512019 Chula Vista, CA 91910 IENGINEERING Engineer: M.R P: 619.370-9515 VERIFY ROOF FRAMING Existing Load Density Concrete: 145.0 pcf DL: 72.5 lb/sq. ft. Thickness: 6.0 in LL: 20.0 lb/sq. ft. Area [sq ft] DL I LL I DL+LL [E] Steel Deck 1 488 35352 1 9752 1 45104 JLbs. co New Load Antennas Radio Cabinet Total: Quantity Area DL Lbs Lbs Lbs Lbs 4 3 114 13 5 336 7 27 1970 1 24 35 2420 New Load + Existing Load Existing New Total: New + Existing DL LL DL+LL Area [sq ft] DL LL DL+LL DL LL DL+LL Steel Deck 35352 9752 45104 35 0 -698 -698 35352 9054 44406 Antennas 0 0 0 3 114 0 114 114 0 114 Radiol 0 0 0 5 336 0 336 336 0 336 Cabineti 0 0 0 27 .1970 0 1970 1970 0 1970 Total: 46826 Chapter #34A CBC 2016 3403A.3 Existing structural elements carrying gravity load. "Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load- carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404A.3. Any existing element that will form part of the lateral load path for any part of the addition shall be onsidered an existing lateral load- carrying structural element subject to the requirements of Section 3403A.4." New Total Load: 46826 Lbs Existing Total Load: 45104 Lbs [New Total Load] -[Existing Total Load] _*100% 100% = 3.678 % [New Total Load] LJ < 1 1% 1 oki Page 39 of 55 Luis Labrada LA \A AR Proyecto: Nodes 7-8 217 Landis Avenue Date: 05/07/19 Chula Vista, CA 91910 JENGINEERlNG Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX VI. TABLES Page 40 of 55 TABLE 1: SEISMIC DESIGN Page 41 of 55 5/16/2019 U.S. Seismic Design Maps OSHPD Legoland 9 I Legoland Dr, Carlsbad, CA 92008, USA Latitude, Longitude: 33.1262496, -117.31192390000001 Museum of Making Music \ LEGOLAND California7 Staff Parking 9 \VO. Hotel Parking 9 / \\\ 9cge / Map data 02019 Google Date 5/16/2019,11:03:03 AM Design Code Reference Document ASCE7-10 Risk Category II Site Class D- Stiff Soil Type Value Description Ss 1.127 MCER ground motion. (for 0.2 second period) S1 0.434 MCER ground motion. (for 1.05 period) SMS 1.182 Site-modified spectral acceleration value SM1 0.679 Site-modified spectral acceleration value Sps 0.788 Numeric seismic design value at 0.2 second SA SDI 0.453 Numeric seismic design value at 1.0 second SA Type Value Description SDC D Seismic design category Fa 1.049 Site amplification factor at 0.2 second F 1.566 Site amplification factor at 1.0 second PGA 0.447 MCE0 peak ground acceleration FPGA 1.053 Site amplification factor at PGA PGAM 0.471 Site modified peak ground acceleration TL 8 Long-period transition period in seconds SsRT 1127 Probabilistic risk-targeted ground motion. (0.2 second) SsUH 1.194 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration SsD 1.525 Factored deterministic acceleration value. (0.2 second) SI RI 0.434 Probabilistic risk-targeted ground motion. (1.0 second) Si UH 0.436 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.616 Factored deterministic acceleration value. (1.0 second) PGAd 0.59 Factored deterministic acceleration value. (Peak Ground Acceleration) CRS 0.944 Mapped value of the risk coefficient at short periods CR1 0.995 Mapped value of the risk coefficient at a period of 1 s Page 42 of 55 https://seismicmaps.org 1/2 5/16/2019 U.S. Seismic Design Maps 2.5 50 7.5 Period, T (sec) - Sa(g) 2.5 5.0 7.5 Period, T (sec) - Sa(g) DISCLAIMER While the information presented on this website is believed to be correct, SEA.00 /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this webstie. Page 43 of 55 https://seismicmaps.org 2/2 MCER Response Spectrum 1.5 1.0 ZM Cs C,) 0.5 0.0 0.0 Design Response Spectrum 0.8 0.6 0.4 - (5 C,) 0.2 0.0 0.0 TABLE:2 DESIGN VALUES LOAD CHART FOR FRP MATERIALS Page 44 of 55 Appendix A Design Values Load Chart for FRP Materials ALLOWABLE STRENGTH TABLE FOR FRP SHAPES: Tubes, Channels, Angles Property Direction Value Units Tensile Strength Lengthwise Crosswise 6,600 1,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 6,600 3,300 psi Flexural Strength Lengthwise Crosswise 6,600 2,200 psi Flexural Modulus Lengthwise Crosswise 1,600,000 800,000 psi Shear Strength Lengthwise Crosswise 1,400 500 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi 1/2" Bolt Bearing Lengthwise Crosswise 6,000 3,600 psi 1/2" Bolt Shear Allowable 780 lbs 1/2" Bolt Tension Allowable 300 lbs Table Notes: Values based on 1525 series - Thermoset Polyester Class 1 FR (Slate Grey) A Safety Factor of 5.0 has been used to determine Allowable Loads. ALLOWABLE STRENGTH TABLE FOR FRP FLAT SHEETS: Property Direction Value Units Tensile Strength Lengthwise Crosswise 4,000 2,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 4,800 3,200 psi Flexural Strength Lengthwise Crosswise 7,000 3,000 psi Flexural Modulus Lengthwise Crosswise 2,000,000 1,100,000 psi Modulus of Elasticity Lengthwise I Crosswise 2,800,000 psi Table Notes: 1) Values based on 1625 series - Thermoset Vinyl Ester Class 1 FR (Beige) Safety Factor of 5.0 has been used to determine Allowable Loads. FL~~- I I I Hi-Tech Composite Structures Supplement for LARR #25520 Page 1 of 1 Page 45 of 55 TABLE 3: POST - INSTALATED CONCRETE ANCHOR. HILTI Page 46 of 55 ESR-2302 I Most Widely Accepted and Trusted Page 7 of 11 TABLE 3-DESIGN INFORMATION CARBON STEEL KB3 DESIGN INFORMATION Symbol Units Nominal anchor diameter I /8 I 5 '8 3 /4 AnchorO.D. d8(do)7 in. 0.250 0.375 0.500 0.625 0.750 (mm) (6.4) (9.5) (12.7) 15.9) (19.1) Effective mm. embedment' he in. 1 /2 2 2 3I4 31/8 4 33/4 5 (mm) (38) (51) (51) (83) (79) (102) (95) (127) Mm. member thickness hm,n in. 4 4 5 4 6 6 8 5 6 8 6 8 8 (mm) (102) (102) (127) (102) (152) (152) (203) (127) (152) (203) (152) (203) (203) in. 2/4 41/2 37/ 47/ 35/ 6/ 55/ 71/ 9'/2 71I3 93/4 7 /2 91/2 Critical edge distance Coe (mm) (70) (114) (98) (124) (92) (171) (143) (191) (241) (191) (248) (191) (241) in. 1 /8 2 1'/3 21/8 2 1/ 1/8 21/4 13/ 1/ 2/4 2/ 2'I2 crnin (mm) (35) (51) (38) (54) (51) (41) (41) (57) (44) (44) (70) (67) (64) Mm. edge distance in. 1/4 2/ 31/ 47/ 43/ 41/ 4 51/ 43/4 4 6I 02 6/ for s a (mm) (44) (73) (89) (124) (121) (108) (102) (133) (121) (102) (175) (165) (162) in. 1/4 1/4 1/4 2'/2 2/4 2 1/ 2/ 21/ 21/ 33/ 33/ 31/ Smin ______ (mm) (32) (44) 1 (44) 1 (64) (57) (51) (48) (60) 1 (54) (54) (95) 1 (86) (83) Mm. anchor spacing in. 11/8 2/ 2 /8 2 /8 2 /8 2/.4 2 31/8 2/ 2'/4 33/4 3 /8 for c_> 3 /8 (mm) (41) (60) (60) (67) (60) (57) (51) (79) (60) (57) (95) (86) (86) in. 2 218 2 /8 4 3/e 414 4'/2 53/4 Mm. hole depth in concrete h,9 (mm) (51) (67) (67) (102) (98) (121) (114) (146) Mm. specified yield strength 'a psi 84,800 84,800 84,800 84,800 84,800 (N/mm2) (585) (585) (585) (585) (585) Mm. specified ult. strength I psi 106.000 106,000 106,000 106,000 106,000 (N/mm2) (731) (731) (731) (731) (731) in 0.02 0.06 0.11 0.17 0.24 Effective tensile stress area A9 2 (mm ) (12.9) (38.7) (71.0) (109.7) (154.8) Steel strength in tension N40 lb 2,120 6,360 11,660 18,020 25,440 (kN) (9.4) (28.3) (51.9) (80.2) (113.2) Steel strength in shear V40 lb 1,640 4,470 6,635 I 6,750 12,230 15,660 I 16,594 (kN) (7.3) (19.9) (29.5) (30.0) (54.4) (69.7) I (73.8) Pullout strength uncracked lb 1,575 NA NA 6,800 NA NA 10,585 concrete (kN) (7.0) I (30.2) (47.1) Anchor category3 1,2 or 3 - Effectiveness factor k0 k0 , - 24 uncracked concrete4 Modification factor for KN - 1.0 uncracked concrete Coefficient for pryout kcp - 1.0 2.0 Installation torque Tj 5 ft*lb 4 20 I 40 110 (Nm) I 60 I () I (27) I () (81) J (149) Axial stiffness in service load range (lb/in) 116,150 162,850 203,500 I 191,100 222,150 170,700 207,400 164,000 COy J1, % 60 I 42 I 29 I 29 I 25 I 21 I 19 I 24 Strength reduction factor t for tension, steel 0.75 failure modes5 Strength reduction factor for shear, steel 0.65 failure modes5 Strength reduction factor for tension, concrete 0.65 failure modes, Condition B6 Strength reduction factor 0 for shear, concrete 0.70 failure modes, Condition B6 For SI: 1 inch = 25.4 mm, llbf= 4.45 N, 1 psi = 0.006895 MPa. For pound-in units: 1 mm = 0.03937 inches. 1See Fig. 2 2See Section 4.1.4 of this report, NA (not applicable) denotes that this value does not govern for design. 3See ACI 318-14 17.3.3 or ACI 318-11 0.4.3, as applicable. 4See ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. 57he carbon Steel K133 is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable. 6For use with the load combinations of ACI 318-14 Section 5.3, ACI 318-11 Section 9.2 or IBC Section 1605.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, is not provided, or where pull-out or pry out strength 9overns. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. The notation in parenthesis is for the 2006 IBC. Page 47 of 55 TABLE 3-DESIGN INFORMATION, CARBON STEEL KB-TZ DESIGN INFORMATION Symbol Units Nominal anchor diameter 3 /8 112 '8 3/4 AnchorO.D. QQ in. 0.375 0.5 0.625 0.75 (mm) (9.5) (12.7) (15.9) (19.1) Effective mm. embedment' hef in. 11/3 2 2/4 2 31/4 31/ 4 31/ 33/ (mm) 1 (38) (51) (70) (51) (83) (79) (102) (83) (95) (121) Mm. member thickness h in. 314 415 I 5 416 I 618 I 5 618 I 51/2 618 I 8 (mm) (83) (102) (127) (127) (102)1 (152) (152)1 (203) (127) (152)1 (203) (140) (152) 1(203) (203) in. 6 43/4 4 4/8 5'/ I 4'/ 7 /2 I 6 6'/ 8/4 I 6/4 12 10 I 8 9 Critical edge distance c44 I I I I I (mm) (152) (111) (102) (105) (140)1 (114) (191)1(152) (165) (222)1(171) (305) (254) 1(203) (229) In. 8 2/3 21/2 2/4 2/ 3 /8 31/ 9 3 43/4 4 /8 Cm, (mm) 1 (203) (64) (64) (70) (60) (92) (83) (241) (121) (105) Mm. edge distance for s 2 In. 8 5 5 53/4 53/4 61/8 5/ 5 10'/s 8/4 (mm) (203) (127) (127) (146) (146) (156) (149) (127) (267) (225) in. 8 21/3 21/2 2/4 2/ 3/.3 3 5 5 4 Mm. anchor spacing Smh, _______ (mm) (203) (64) . (64) (70) (60) (89) (76) (127) (127) (102) In. 8 3 /8 3 /8 41/e 31/2 4/4 912 91/2 for c a 73/4 (mm) (203) (92) (92) (105) (89) (121) (108) (241) (241) (197) Min. hole depth in concrete h0 in. 2 2/ 3 /8 2 /8 4 3/ 43/4 4 4/ 53/ (mm) (51) (67) (86) (67) (102) (98) 1 (121) (102) (117) (146) Min. specified yield strength fy lb/in2 100,000 84,800 84,800 84,800 (N/mm2) (690) (585) (585) (585) Mi specified ult. strength "° lb/in2 125,000 106,000 106,000 106,000 (N/mm2) (862) (731) (731) (731) Effective tensile stress area A,,,.N In 0.052 0.101 0.162 0.237 (mm2) (33.6) (65.0) (104.6) (152.8) Steel strength in tension Nss lb 6,500 10,705 17,170 25,120 (kN) (28.9) (47.6) (76.4) (111.8) Steel strength in shear '4, lb 2,180 3,595 5,495 8,090 13,675 (kN) (9.7) (16.0) (24.4) (36.0) (60.8) Steel strength in shear, V,4 lb 2,180 2,255 5,495 7,600 11,745 seismic3 (kN) (9.7) (10.0) (24.4) (33.8) (52.2) Pullout strength uncracked Npunar lb 2,160 2,515 4,110 I I 5,515 I NA I 9,145 NA I 8,280 110,680 I concrete (kN) (kN) (9.6) (11.2) (18.3) (24.5) (40.7) (36.8) Pullout strength cracked N9,, (lb NA 2,270 i 3,160 I NA I 4,915 NA NA concretconcrete kN) (10.1) I (14.1) (21.9) Anchor category5 2 1 Effectiveness factor k.. uncracked concrete 24 Effectiveness factor k,, cracked concrete 17 kunc1kc,7 1.0 Coefficient for pryout strength, ks,, 1.0 . f 2.0 1.0 2.0 Strength reduction factor 0 for tension, steel failure 0.75 modes8 Strength reduction factor 0 for shear, steel failure 0.65 modes8 Strength reduction 0 factor for tension, concrete 0.55 0.65 failure modes or pullout, Condition B9 Strength reduction 0 factor for shear, concrete failure 0.70 modes, ConditiQn B9 Axial stiffness in service load lb/in. 600,000 range'° lb/in. 135,000 For SI: 1 inch = 25.4 mm. 1 lbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-inch units: 1 mm = 0.03937 inches. 'See Fig. 2. 2For sand-lightweight or normal-weight concrete over metal deck, see Figures 5A, 5B, SC and SD and Tables Sand 6. 3See Section 4.1.8 of this report. 4For all design cases P,,=1.0. NA (not applicable) denotes that this value does not control for design. See Section 4.1.4 of this report. 5See ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. 6See ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. "For all design cases Wc.N =1.0. The appropriate effectiveness factor for cracked concrete (kg,) or uncracked concrete (k,,,,) must be used. 8The KB-TZ is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 Dl, as applicable. 9For use with the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. '°Mean values shown, actual stiffness may vary considerably depending on concrete strength, loading and geometry of application. Page 48 of 55 TABLE 4: FASTENERS. LAGSCREW Page 49 of 55 108 DOWEL-TYPE FASTENERS Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections 1,2,3,4 for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for t5<1/4') or W ASTM A 36 steel side plate (for t=1/4") (tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D) C.) . 'fl CL W# h C a o E 'qO ino. 'q— 0 Im .- • ... U. V. 0 0 0 0 E o E 2 D 0 020. 0 U) 1E Al Z.L Z11 Zi 25 Z.L Z11 Z1 Z11 Z1 Z11 Z1 AlZ.L 211 Zj. Z5 Z1 Z11 - t5 0 in. in. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. 0.075 1/4 170 130 160 120 150 110 150 110 150 100 140 100 140 100 130 90 130 90 130 90 (14gage) 5116 220 160 200 140 190 130 190 130 190 130 180 120 180 120 170 110 170 110 160 100 _______ 3/8 220 160 200 140 200 130 190 130 190 120 180 120 180 120 170 110 170 100 170 100 0.105 1/4 180 140 170 130 160 120 160 120 160 110 150 110 150 110 140 100 140 100 140 90 (12 gage) 5/16 230 170 210 150 200 140 200 140 190 130 190 130 190 120 180 110 170 110 170 110 3/8 230 160 210 140 200 140 200 130 200 130 1 190 120 190 120 180 110 180 110 1 170 110 0.120 1/4 190 150 180 130 170 120 170 120 160 120 160 110 160 110 150 100 150 100 140 100 (11 gage) 5/16 230 170 210 150 210 140 200 140 200 140 190 130 190 130 180 120 180 120 180 110 3/8 240 170 220 150 210 140 210 140 200 130 200 130 190 120 180 110 180 110 180 110 0.134 1/4 200 150 180 140 180 130 170 130 170 120 160 120 160 110 150 110 150 100 150 100 (10gage 5/16 240 180 220 160 210 150 210 140 200 140 200 130 200 130 190 120 180 120 180 120 3/8 240 170 220 150 220 140 210 140 210 140 200 130 200 130 190 120 190 120 180 110 0.179 1/4 220 170 210 150 200 150 200 140 190 140 190 130 190 130 180 120 170 120 170 120 (7 gage) 5/16 260 190 240 170 230 160 230 160 230 150 220 150 220 150 210 130 200 130 200 130 3/8 270 190 250 170 240 160 240 160 230 150 220 140 220 140 210 130 210 130 200 130 0.239 1/4 240 180 220 160 210 150 210 150 200 140 190 140 190 130 180 120 180 120 180 120 (3 gage) 5/16 300 220 280 190 270 180 260 180 260 170 250 160 250 160 230 150 230 150 230 140 3/8 310 220 280 190 270 180 270 180 260 170 250 160 250 160 240 140 230 140 230 140 7/16 420 290 390 260 380 240 370 240 360 230 350 220 350 220 330 200 330 200 320 190 1/2 510 340 470 300 460 290 450 280 440 270 430 260 420 260 400 240 400 230 390 230 5/8 770 490 710 430 680 400 680 400 660 380 640 370 630 360 600 330 590 330 580 320 3/4 1110 670 1020 590 980 560 970 550 950 530 920 500 910 500 860 450 850 450 840 440 7/8 1510 880 1390 780 1330 730 1320 710 1280 690 1250 650 1230 650 1170 590 1160 590 1140 570 1 1940 1100 1780 960 1710 910 1700 890 1650 860 1600 820 1590 810 1500 740 1480 730 1460 710 1/4 1/4 240 180 220 160 210 150 210 150 200 140 200 140 190 130 180 120 180 120 180 120 5/16 310 220 280 200 270 180 270 180 260 170 250 170 250 160 230 150 230 150 230 140 iR %2fl 22(1 2Qfl 10(1 25(1 IRO 97(1 IRA 97(1 17(1 25(1 150 99fl Ion 20 ico aan Iifl 9%n IdA 7/16 1/2 480 320 580 390 440 280 540 340 420 270 520 320 420 260 510 320 410 250 500 310 390 21r0_1 390 230 480 290 370 220 460 270 360 210 450 260 360 210 440 260 5/8 _850_530. _ 780_470_ _750........440 j40_440 720 420_ 480 290 . _700..........400 _690_400_ _660_370. _650....._360_ _640_350 3/4 1 1200 730 1 1100 640 1 1060 600 1050 590 1 1020 570 1 990 540 1 980 530 1 930 490 1 920 480 1 900 470 7/8 1600 930 1470 820 1410 770 1 1400 750 1360 720 1320 690 1310 680 1240 630 1220 620 1200 600 1 2040 1150 1870 1000 1800 950 1780 930 1730 900 1680 850 1660 840 1570 770 1550 760 1530 740 I. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Tabulated lateral design values, Z. are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 3D; dowel bearing strengths, F, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, Fyb, of 70,000 psi for D = 114', 60,000 psi for D = 5/16", and 45,000 psi for D 23/8". Where the lag screw penetration, p, is less than 3D but not less than 4D, tabulated lateral design values. Z, shall be multiplied by p/8D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration. The length of lag screw penetration, p, not including the length of the tapered tip. E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, p,,,,,. Copyright © American Wood council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer author)ze1J. AMERICAN WOOD COUNCIL Page 5u 0 55 NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION . 77 Table 12.2A Lag Screw Reference Withdrawal Values, W' . Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member-shall not include the length of the tapered tip (see 12.2.1.1). Specific Gravity, _________ Lag Screw Diameter, D ____ _____ _______ G2 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4" 7/8" 1" 1-1/8" 1-1/4" 0.73 [ 0.71 397 469 538 604 668 789 905 1016 1123 1226 1327 12731 381 357 450 516 579 640 757 868 974 1077 1176 0.68 422 484 543 600 709 813 913 . 1009 1103 1193 1167 1 L 0.67 349 281 413 473 531 587 _694 796 893 987 1078 0.58 L0.55 0.51 [5o 332 381 428 473 559 641 719 795 869 940 868 j 260 307 - 352 395 437 516 592 664 734 802 232 274 314 353 390 461 528 593 656 716 775 71 225 266 305 342 378 447 513 576 636 695 0.49 218 258 296 332 367 434 498 559 617 674 730 686j 205 242 278 312 345 408 467 525 580 634 0.46 199 235 269 302 334 395 453 508 562 613 664 621 J [0.44 186 220 252 283 312 369 423 475 525 574 0.43 [ 0.42 179 212 243 273 302 357 409 459 508 554 600 579 1 173 205 235 264 291 344 395 443 490 535 516 0.41 167 198 226 254 281 332 381 428 473 559 --53-87 L 0.40 0.39 161 190 218 245 271 320 367 412 455 497 155 183 210 236 261 308 353 397 438 479 518 498 1 E 0.38 149 176 202 227 251 296 340 381 422 461 0.37 0.36 143 169 194 218 241 285 326 367 405 443 479 460 137 163 186 209 231 273 313 352 389 425 0.35 1 0.31 132 156 179 200 222 262 300 337 373 407 441 3671 110 130 149 167 185 218 250 281 311 339 I. Tabulated withdrawal design values. W. for lag screw connections shall be multiolied by all anolicable adjustment factors (see Table Ill] 2. Specific gravity, 0, shall be determined in accordance with Table 12.3.3A. adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'. W = 1380 G5/2 D (12.2-3) The nail or spike reference withdrawal design value, W, in lbs/in, of penetration, for a smooth shank stainless steel nail or spike driven into the side grain of a wood member, with the nail or spike axis perpendicu- lar to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, within the range of specific gravities, G, and nail or spike diameters, D, given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'. W = 465 G3/2 D (12.2-4) For calculation of the fastener reference with- drawal design value in pounds, the unit reference with- .drawal design value in lbs/in, of fastener penetration from 12.2.3.1a or 12.2.3.1b shall be multiplied by the length of fastener penetration, Pt, into the wood mem- ber. 12.2.3.2 Deformed shank nails (a) The reference withdrawal design value, in lbs/in, of ring shank penetration, for a Roof Sheathing Ring Shank nail or Post-Frame Ring Shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2E or Equation 12.2-5, within the range of specific gravities and nail diameters given in Table 12.2E. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Ta- ble 11.3.1) to obtain adjusted withdrawal design values, w'. W = 1800 G2 D (12.2-5) Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorizeJ. AMERICAN WOOD COUNCIL Page 51 o 55 .:. SI.•• TABLE 5: UNISTRUT GENERAL ENGINEERING. CATALOG-NO.1 Page 52 of 55 UNISTRUT CHANNEL SELECTION CHART Channel Dimensions Material & Thickness Hole Pattern Styles Channel I I Width Height Steel Stainless Steel Alum. HS T KO SL DS H3 In (mm) In (mm) gauge gauge In (mm) Steel Only P1000 1%(41.3) 1%(41.3) 12 ga 12 ga 0.109 (2.8) U 0 0 U U 111111 P1100 134(41.3) 134(41.3) 14 ga 14 ga - U 0 0 - - P2000 1%(41.3) 1%(41.3) 16 ga - - U U U 0 - - P3000 134(41.3) 1%(34.9) 12 ga - - . U0 U U - - P3300 134(41.3) 34(22.2) 12 ga 12 ga - U U - -. - P4000 1% (41.3) Wia(20.6) 16 ga 16 ga 0.078 (2.0) U U - - - P4100 1%(41.3) 13/16 (20.6) 14 ga - - 111111 0 - U - - P5000 134(41.3) 334(82.6) 12 ga 12 ga - U U U 111111 - - P5500 134(41.3) 2Yia (61.9) 12 ga - 0.109 (2.8) U 0 U 0 - - CHANNELS & COMBINATIONS IN DESCENDING ORDER OF STRENGTH Area Weight I s Allow. Moment Channel In2 (cm2) lbs/ft (kg/rn) In4 (cm4) In'(crn') In-lbs (N.m) P5001 1.793 6.10 6.227 1.916 48,180 11.57 9.1 259.2 31.4 5,440 P1004A 1.965 6.68 4.068 1.669 41,980 12.68 9.9 169.3 27.4 4,740 1.452 4.94 2.805 1.151 28,940 P5501 9.37 7.3 116.8 18.9 3.270 P1001C41 2.221 7.55 1.856 1.142 28,720 14.33 11.2 77.2 18.7 3,250 P5000 0.897 3.05 1.098 0.627 15,770 5.78 4.5 45.7 10.3 1.780 P1001 1.111 3.78 0.928 0.571 14,360 7.16 5.6 38.6 9.4 1,620 0.835 2.84 0.733 0.451 11,340 P1101 5.39 4.2 30.5 7.4 1,280 1.000 3.40 0.591 0.430 10,810 P3001 6.45 5.1 24.6 7.0 1,220 0.726 2.47 0.522 0.390 9,820 P5500 4.68 3.7 21.7 6.4 1,110 0.684 2.32 0.618 0.381 9,570 P2001 4.41 3.5 25.7 6.2 1,080 0.489 2.23 0.279 0.297 7,480 P9200 3.16 3.3 11.6 4.9 850 0.492 1.67 0.358 0.265 6,670 A5000 3.17 2.5 14.9 4.3 750 A1001 0.609 2.07 0.302 0.242 6,070 3.93 3.1 12.6 4.0 690 0.387 1.88 0.166 0.205 5,150 P9000 2.50 2.8 6.9 3.4 580 0.555 1.89 0.185 0.202 5,070 P1000 3.58 2.8 7.7 3.3 570 0.790 2.69 0.176 0.201 5,060 P3301 5.10 4.0 7.3 3.3 570 Combinations not shown in catalog are available on special order. Consult factory for more details. Area Weight I $ Allow. Moment Channel In2 (cm2) lbs/ft (kg/rn) In' (cm4) In3(cm3) In-lbs (N.rn) 0.418 1.42 0.145 0.162 4,060 P1100 2.69 2.1 6.0 2.6 460 0.500 1.70 0.120 0.153 3,850 P3000 3.23 2.5 5.0 2.5 430 0.579 1.97 0.117 0.143 3,610 P4101 3.74 2.9 4.9 2.4 410 0.342 1.16 0.125 0.140 3,520 P2000 2.21 1.7 5.2 2.3 400 0.478 1.66 0.104 0.128 3,210 P4001 3.14 2.5 4.3 2.1 360 0.459 1.56 0.077 0.103 2,590 A3301 2.96 2.3 3.2 1.7 290 0.305 1.04 0.061 0.086 2,170 A1000 1.96 1.5 2.5 1.4 250 0.395' 1.34 0.037 0.072 1,800 P3300 2.55 2.0 1.5 1.2 200 0.264 0.90 0.037 0.058 1,470 A4001 1.70 1.3 1.5 1.0 170 0.213 0.73 0.045 0.055 1,400 P6001 1.38 1.1 1.9 0.9 160 0.290 0.98 0.026 0.054 1,360 P4100 1.87 1.5 1.1 0.9 150 0.244 0.83 0.023 0.049 1,230 P4000 1.57 1.2 0.9 0.8. 140 0.230 0.78 0.017 0.038 950 A3300 1.48 1.2 0.7 0.6 110 0.132 0.45 0.008 0.022 560 A4000 0.85 0.7 0.3 0.4 60 0.107 0.36 0.009 0.020 510 P6000 0.69 0.5 0.4 0.3 60 0.148 0.50 0.007 0.018 460 P7001 0.96 0.8 0.3 0.3 50 0.074 0.25 0.002 0.007 170 P7000 0.48 0.4 0.1 0.1 20 111111/s" Page 53 of 23 P1000 Channel Combinations I Fl I IUki P1001 1 P1001 A P1001 B 1%" 1W 1%" (41.3) (41.3) (41.3) r 71 (12tH I EH WI/lao Ft: 321 Lbs (478 kglloo m) Wt/100 Ft: 378 Lbs (562 kg/100 m) WI/lao Ft: 378 Lbs (562 kg/100 m) Allowable Moment 12,200 In-Lbs (1,378 N"m) Allowable Moment 18,640 In-Lbs (2,110 N.m) Allowable Moment 18,640 In-Lbs (2,110 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) 12 Gauge Nominal Thickness .105(2.7mm) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 C 1W (41.3) (62.6) 1573 je86 .761'.4 (19.3) 2 (21.9) Wt/100 Fl: 378 Lbs (562 kg/1 00 m) Allowable Moment 15,950 In-Lbs (1,800 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 B3 P1001 3 1 IN, r 1 2.472" (41.3) 4 r-r 1-1-1 (62.8) 2 (I238) .403"444' I 1(61.0) Ii I 2 WI/I00 Ft: 566 Lbs (843 kg/i 00 m) Allowable Moment 31,840 In-Lbs (3,600 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 D3 P1001 A3 [FT+(4 3) 4%" (123.8) .778 -j_ F°) 8) (19. WI/ba Ft: 566 Lbs (843kg/100m) Allowable Moment 32,770 In-Lbs (3,700 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) P1003 31 (82 147A4- iW 1.245" (44.1) (30.6) 2 (31.6) L- 4½2" ° A89" (102.4) (12.4) WI/bOO Ft: 333 Lbs (495 kg/100 m) Allowable Moment 6,240 In-Lbs (700 N"m) 12 Gauge Nominal Thickness .105" (2.7mm) Wt/100 Ft: 566 Lbs (843 kg/100 m) Allowable Moment 37,550 In-Lbs (4,240 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) WI/laO Ft: 566 Lbs (843 kg/1100 m) Allowable Moment 17,550 In-Lbs (1,980 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 C41 P1001 C3 P1004 A 3¼' (82.6)°1 FF I1.354" (34.4) 3 '/4" (82.6) 1.896" (48.2) 1.930" 1.320" (49.0) 2 (33.5) Wt/100 Ft: 755 Lbs (1,124 kgliOO m) Allowable Moment 28,720 In-Lbs (3,250 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) WI/laO Ft: 566 Lbs (843 kg/i 00 m) Allowable Moment 18,680 In-Lbs (2,110 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) Wt/100 Ft: 668 Lbs (994 kg/1 00 m) Allowable Moment 41,970 In-Lbs (4,740 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) Channel Finishes: PL, GR, HG, PG, ZO; Standard Lengths: 10'&20' VAN at1il1IlT.1'M(il Page 540155 UnistrutAcijustable Pipe Clamps are manufactured from glass-reinforced polyurethane and are adjustable to accommodate a wide range of outside diameters. They can be uti- lized with a variety of piping systems including: PVC, fiberglass, copper, rigid steel conduit and PVC coated rigid steel conduit Care should be taken not to exceed % it /Ibs nftnmui on the iIIQthI Part Number O.D. Pipe Size (in.) Design Load Type I Type 2 Lbs (kN) Lbs (kN) Torque Ft/Lbs (N'm) Wt!100 PCs Lbs (kg) 200-3100 ½-1½ 135 (0.6) 65(0.3) 0.8(1) 3(1.4) 200-3110 1½- 2¼ 135(0.6) 65(0.3) 3(4) 5(2.3) 200-3120 2¼-3¼ 145 (0.6) 70(0.3) 3(4) 5(2.3) 200-3130 3-4 215(1.0) 70(0.3) 3(4) 8(3.6) 200-3140 4-6½ 215(1.0) 70(0.3) 3(4) 10(4.5) Two Hole Pipe Straps are designed for use in securing pipe, conduit and ducts to Channel. Two hole fiberglass straps can also be used independently from the channel for surface mounting. All sizes of the straps are suitable for load bearing applications. Material: fire-retardant, glass-reinforced polyester resin. For extreme chemical environments, the straps can be manufac- tured from vinyl ester resin. Larger diameter straps for special applications are also available. Contact the factory for pricing and availability of vinyl ester and large diameter straps. Two hole pipe straps should not be torqued above recommended values. Notes: Bolts and channel nuts are sold separately. When bolting onto 1W channel a 1W long bolt is req'd. Clamps U NISTRUT ADJUSTABLE PIPE CLAMPS ' '' pipe straps. *Design loads shown represent a 3:1 safety factor. RIGID PIPE CLAMPS PVC, Sch. 80 Design Loads FRP Bolt Part Nominal & Rigid Metal Type 1 Type 2 FRP Bolt Torque WtI100 PCs Number Size (in.) In (mm) Lbs (kN) Lbs (kN) Size (in.) Ft/Lbs (N.m) Lbs (kg) FPCR-050 ½ 0.840 (21.3) 225(l.0) 90(0.4) 3A x 1¼ 3(1.4) FPCR-075 34 1.050 (26.7) 225 (1.0) 90(0.4) 34x 11/4 3(1.4) FPCR-100 1 1.315 (33.4) 225(l.0) 90(0.4) 34 x 1¼ 4(1.8) FPCR-125 1¼ 1.660 (42.2) 225(l.0) 90(0.4) 34 x 1¼ 5(2.3) FPCR-150 1½ 1.900 (48.3) 225 (1.0) 90(0.4) %x 1¼ 5(2.3) FPCR-200 2 2.375 (60.3) 225(f.0) 90(0.4) 34 x 1¼ 3(4) 5(2.3) FPCR-250 2½ 2.875 (73.0) 225 (1.0) 90(0.4) %x 1¼ 7 (3.2) FPCR-300 3 3.500 (88.9) 225 (1.0) 90(0.4) 34x 1¼ 10(4.5) FPCR.400 4 4.500 (114.3) 300(1.3) 125 (0.6) 34 x 1¼ FPCR-600 6 6.625 (168.3) 300 (1.3) 125 (0.6) 34 x 1¼ FPCR-800 8 8.625 (219.1) 300(1.3) 125 (0.6) 34 x 1¼ 18(8.1) Design loads shown represent a 3:1 safety factor. Rigid Pipe Clamps resemble the more traditional style of pipe clamps and are sized based on the pipe inside diameter or nominal size. Polyurethane clamps are recommended for applications up to 1607. For high temperature applications (up to 230F). Care should be taken not to exceed the recommended torque values of the rigid pipe clamps. Material: glass-reinforced polyurethane. Two HOLE PIPE Design Load Bolt Material Part Dim. A Dim. B Size Thick. Type 1 Type2 Torque Wt1100 PCs No. In (mm) In (mm) (in.) In (mm) Lbs (kN) Lbs (kN) Ft/Lbs (N.m) Lbs (kg) 2.375 6.375 ¼ 135 50 4 14 FPS200 60.33 161.93 ½ 6.4 0.60 0.22 5 6.4 2.875 6.875 ¼ 135 50 4 17 FPS250 73.03 174.63 ½ 6.4 0.60 0.22 5 7.7 3.500 7.500 ¼ 135 50 4 20 FPS300 88.90 190.50 ½ 6.4 0.60 0.22 5 9.1 FPS350 4.000 8.000 ½ ¼ 135 50 4 33 101.60 203.20 6.4 0.60 0.22 5 15.0 FPS400 4.500 8.500 ½ A 175 60 4 23 114.30 215.90 6.4 0.78 0.27 5 10.4 5.563 9.563 ¼ 175 60 4 39 FPS500 141.30 242.90 ½ 6.4 0.78 0.27 5 17.7 FPS600 6.625 10.625 16 ¼ 175 60 4 39 168.28 269.88 6.4 0.78 0.27 5 17.7 FPS800 8.625 12.625 ½ ¼ 225 125 4 51 219.08 320.68 6.4 1.00 0.56 5 23.1 FPS1000 10.750 15.750 ¼ 225 125 10 77 273.05 400.05 6.4 1.00 0.56 14 34.9 FPS1200 12.750 16.250 ¼ 225 125 10 83 323.85 412.75 6.4 1.00 0.56 14 37.6 FPS1400 14.000 18.000 34 250 150 10 125 355.60 457.20 9.5 1.11 0.67 14 56.7 16.000 20.000 34 250 150 10 143 FPS1600 406.40 508.00 9.5 1.11 0.67 14 64.9 FPS1800 18.000 23.000 34 250 150 10 160 457.20 584.20 9.5 1.11 0.67 14 72.6 Design loads shown represent a 3:1 safety factor. Fiberglass Page 55 of 55 203 LAhIAR %ENGINEERING Direct Line 619 370 9515 / Fax 619 764 4079 / Email Ilabrada@lamareng core RECER' JUL 16 2019 CITY OF CA'tL:JLj, STRUCTURAL CALCULATIONS PROJECT: LEGOLAND CALIFORNIA RESORT NODES 9, 10- GARDEN RESTAURANT (GRT) I LEGOLAND DR. CARLSBAD SAN DIEGO, CA 92008 July 11, 2019 IN C 215 Page 10f52 www.lamareng.com Luis Labrada 217 Landis Avenue LA ri 1k R Proyecto: Nodes 9-10 Date: 05/07/19 Chula Vista, CA 91910 NNENGINEERING Engineer: M.R P: 619-370-9515 .www.lamareng.com Contents APPENDIX I. DESIGN ATTACHMENT. ANTENNAS..........................................................................................................3 APPENDIX II. DESIGN ATTACHMENT. RADIOS . .............................................................................................................. 10 APPENDIX III. DESIGN ATTACHMENT. CABINET EQUIPMENT . .................................................................................. 17 APPENDIXIV. SCREEN WALL ..............................................................................................................................................25 APPENDIXV. ROOF VERIFICATION ................................................................................................................................... 34 APPENDIXVI. TABLES ..........................................................................................................................................................37 Page 2 of 52 :Iiuis Labrada LAMAR . Proyecto: Nodes 9-10 -• 217 LandisAvenue Date: 05/07/19 ",Chula Vista, CA 91910 IMENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX I. DESIGN ATTACHMENT. ANTENNAS Page 3 of 52 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LAMAR P: 619.370-9515 INENG$NEERING www.lamareng.com Project: Nodes 9-10 Date: 06124/2019 Engineer: M.R I SEISMIC DESING ANTENNA I DESCRIPTION Description: QUINTEL QS46512-2 ANTENNA W = 75.0 Lbs bldg height = 12.20 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 5DS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 75.0 Lbs. FpH = (0.64 * Wp)/1.4 = 34.3 Lbs FpH = 0.46 * Wp = 34.5 Lbs HORIZONTAL FpV = 0.28 * Wp = 21.0 Lbs UP OR DOWN ap = 1.0 'Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh= 1.0 !Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*lp)*(1 +2*z/h) = 28.4 Lbs. Verifications FpH max = 1.6 * 5 * * WP = 94.6 Lbs. 28.4 Lbs. 10K I DS p p FpH min = 0.3 * 5 * I * WP = 17.7 Lbs. 28.4 Lbs. [OK I DS p p Page 4 of 52 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619370-9515 www.lamareng.com LAMAR ENGINEERING Project: Nodes 9-10 Date: 06/2412019 Engineer:M.R I ANCHORAGE DESIGN (SEISMIC) ANTENNA I GEOMETRY e=1.25 ft d= 2.13 ft -y Fx d Wp e FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy= 37.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 26.5 Lbs Vertical force, Ey = 10.5 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 70.5 Lbs Max shear force per anchor = Dy + Ey = 48.0 Lbs Page 5 of 52 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR ENGINEERING Project: Nodes 9-10 Date: 06/24/2019 Engineer:M.R I WIND DESING ANTENNA I ) DESCRIPTION Description: QUINTEL QS46512-2 ANTENNA W = 75.0 Lbs bldg height = 12.2 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or 0) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.51) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS = 1.21 For h = 1:2.2 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative C 1.0 110.0 mph 1.0 Flat Wind Pressure ps=AxKztxlxps30= 19.24 ps=AxKztxlxps30= 16.70 Applied horizontal force, Fph = Ps x (bxc)/2 = 83.3 Lbs Applied vertical force, Fpv = Ps x (axc)/2 = 15.0 Lbs psf Horizontal psf Roof Uplift Page 6 of 52 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com ii VWzi PEI CIVIL + SIRUCIURAI. Project: Nodes 9-10 Date: 06/24/2019 Engineer:M.R I ANCHORAGE DESIGN (WIND) ANTENNA I GEOMETRY 7. Fph d e= 1.25 ft d= 2.13 ft Wp a= 0.90 ft e b= 4.33 ft c= 1.00 ft FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy = 37.5 Lbs FORCES WIND (W) Horizontal force, Wx = 50.5 Lbs Vertical force, Wy = 7.5 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 94.5 Lbs Max shear force per anchor = Dy + Wy = 45.0 Lbs Page 7 of 52 11 Luis Labrada 217 Landis Avenue ., Chula Vista, CA 91910 LAMAR P: 619.370-9515 : •••. INENGINEERING www.lamareng.com Project: Nodes 9-10 Date: 06/24/2019 - - Engineer: M.R I ELEMENT & CONNECTIONS DESIGN ANTENNA I A Fx = Dx+(Ex or Wx) = 94.5 Lbs A B Fy = Dy+(Ey or Wy) = 48.0 Lbs Q 1.0 Antennas Total Quantity 3 ft H= 3.00 ft - Lc= 0.75 ft B 0.75 ft 4 No UNISTRUT HORIZONTAL DESIGN I Number of radios pair M. max = PL/8 (n-I/n) R = P (n-1)/2 I 2 C = 0.38 ft Odd number of radios 7LP M.max = PL/8 (n+1/n) R=Pn/2 ___ n = I 1-nc C = 0.75 ft. Px = 94.5 Lbs M. Mmax (y-y) = 17.7 Ft-Lbs 212.6 In-Lbs Py= 48.0 Lbs M. Mmax (x-x) = 9.0 Ft-Lbs 108.0 In-Lbs Use: Unistrut: P1000 - 1 5/8 x 1 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Demand - Capacity Ratio Status 212.6 In-Lbs < 5070.00 In-Lbs 0.04 OK ] Demand Capacity Pull Out Ratio Status 108.0 In-Lbs < 5070.00 In-Lbs 0.02 [OK j Page 8 of 52 S Luis Labrada 21.7Lafldis Avenue Chula.Vista, CA 91910 ;LAMAR 'P: 619:370-9515 INENGINEERING www.lamareng.com ;. Project: Nodes 9-10 Date 06/24/2019 Engineer:M.R ELEMENT. &CONNECTIONS DESIGN ANTENNA A Fx = Dx+(Ex or Wx) = 94.5 Lbs B Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = - 1.0 Antennas Total Quantity 3 ft H= 3.0 ft Lc= 0.8 ft B _P.75 ft CONNECTION A: PIPE MOUNT TO UNISTRUT Radio Status Shear = 48.0 Lbs 0.53 OK Pull Out = 94.5 Lbs 0.43 [_oKJ Use: Ridge Pipe Clamps: FPCR-075 General Engineering Catalog — No. 17- Page 203 Thickness: 3/4 in Length: 1.05 in FRP Bolt: 318"xl 1/4 4 Allowable Shear: 90 Lbs Allowable Pull-Out: 220 Lbs CONNECTION B: UNISTRUT TO EXISTING WALL Shear = 24.0 Lbs Pull Out = 47.2 Lbs Use: D-Bolt: 1/2 in Long = 4 in • • n Bolt: 2 Side Member Thickness: 1/4 in Shear: 320.0 Lbs Pull-Out: 378.0 • Lbs/in Demand 24.0 Lbs Demand 47.2 Lbs Allowable Screw Shear Ref. Table 12K. Per NDS 2018 Allowable Screw Pull C Ref. Table 12.2A. Per NDS 2018 Ratio Status 0.04 L OK 1 Ratio Status 0.02 [ThK I Capacity Shear 640.00 Lbs Capacity Pull Out 3024.00 Lbs Page 9 of 52 Luis Labrada 217 Landis Avenue LAMAR Proyecto: Nodes 9-10 Date: 05/07/19 Chula Vista, CA 91910. IlPIENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX II. DESIGN ATTACHMENT. RADIOS. Page 10 of 52 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING Project: Nodes 9-10 Date: 06124/2019 Engineer: M.R SEISMIC DESING RADIO DESCRIPTION Description: Alu Radio Units W = 59.5 Lbs bldg height = 12.2 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SOS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 59.5 Lbs. FpH = (0.64 * Wp )/1.4 = 27.2 Lbs FpH = 0.46 * Wp = 27.37 Lbs HORIZONTAL FpV = 0.28 * Wp = 16.66 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh = 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*lp)*(1 +2*zJh) = 22.5 Lbs. Verifications FpH max = 1.6 * 5OS * i p * WP= 75.0 Lbs. > 22.5 Lbs. FpH min = 0.3 * 5os * * WP = 14.1 Lbs. 22.5 Lbs. Page 11 of 52 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com Project: Nodes 9-10 LAMAR Date: 06/24/2019 INENGINEERING Engineer:M.R I DESIGN FORCES (SEISMIC) I RADIO I GEOMETRY Q4C a l um Plan Radio Dimensions. a= 0.92 ft b= 2.10 ft C = 0.92 ft Support = 4 Quantity Fpv bj 0. Fph Elevation FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a/4 = 13.7 Lbs*ft Dx= 6.5 Lbs Dy= 14.9 Lbs FORCES SEISMIC (E) Applied horizontal force, Ex = 9.3 Lbs Applied vertical force, Ey = 4.2 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 15.8 Lbs Max shear force per'anchor = Dy + Ey = 19.0 Lbs Page 12 of 52 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 9-10 Date: 06/24/2019 Engineer:M.R WIND DESING I RADIO DESCRIPTION Description: Alu Radio Units W = 59.5 Lbs bldg height = 12.2 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS h= 1.21 For h = 12.2 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure PS = Ax Kzt x I x ps30 = 19.24 psf Horizontal ps = Ax Kzt x I x ps30 = 16.70 psf Roof Uplift C 1.0 110.0 mph 1.0 Flat Page 13 of 52 tFpv Suction Fph Suction Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LAMAR P: 619.370-9515 UENGINEERING www.lamareng.com Project: Nodes 9-10 Date: 06/24/2019 Engineer:M.R DESIGN FORCES (WIND) I RADIO GEOMETRY Wall al b Plan Radio Dimensions a= 0.92 ft b = 2.10 ft Elevation c= 0.92 ft Support = 4 Quantity FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a/4 = 13.7 Lbs*ft Dx:= 6.5 Lbs Dy= 14.9 Lbs FORCES WIND (W) Applied horizontal force, Wx: = 12.4 Lbs Applied vertical force, Wy = 3.5 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 18.9 Lbs Max shear force per anchor = Dy + Wy = 18.4 Lbs Page 14 of 52 Luis Labrada 217 Landis Avenue Project: Nodes 9-10 Chula Vista, CA 91910 LAMAR Date: 06/24/2019 P: 619.370-9515 Engineer: ngineer: M.R www.lamareng.com ELEMENT& CONNECTIONS DESIGN I RADIO Load: C Fx = Dx+(Ex or Wx) = 18.9 Lbs Fy = Dy+(Ey or Wy) = 19.0 Lbs CA Unistrut vertical Q = 2.0 NO of radios per vertical unist. 2.7 Qt = 4.0 Radios Total Quantity H= 2.67 ft Unistrut Horizontal Nu = 2 Unistrut B Lc= 17.92 ft 2 f 4 = 2.00 ft Length Supp. Unistrut UNISTRUT VERTICAL DESIGN P= 19.0 Lbs V V M. Mmax = PL/3 = 8.5 Ft.-Lbs. Status 101.7 In.-Lbs. OK ] Use: Unistrut: P1000 1 5/8 x 1 518-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 UNISTRUT HORIZONTAL DESIGN Px = 37.8 Lbs i M. Mmax (y-y) = 45.4 544 Ft.-Lbs. In.-Lbs. Radio 0.11 Status :OK Py = 38.1 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 45.7 Ft.-Lbs. Radio Status n = 5 548 In.-Lbs. 0.11 OK I c= 0.40 ft Use: Unistrut: P1 000 1 5/8 x I 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Page 15 of 52 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 9-10 Date: 06/24/2019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN I RADIO CONNECTION A: RADIOS TO VERTICAL UNISTRUT CHANNEL NUTS WITH SPRING Status Shear= 19.0 Lbs OK Pull Out = 18.9 Lbs OK Use: Channel Nuts: 318"-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW ri Use: Hex-Head: 318"-1 1/2" Mm. General Engineering Catalog - No. 17 Page 68 CONNECTION B: VERTICAL UNISTRUT TO HORIZONTAL UNISTRUT CHANNEL NUTS WITH SPRING Status Shear = 38.1 Lbs OK Pull Out = 37.8 Lbs Use: Channel Nuts: 318"-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1/2" Mm. General Engineering Catalog - No. 17 Page 68 Reaction unistrut horizontal Ratio Status RyPy(n-1)I2 -4 Pull Out = 76.2 Lbs 0.20 OK Rx = Px(n-1 )/2 -, Shear= 75.6 Lbs 0.24 OK Use: D-Bolt = 1/2 in 24 in Embed.= 4 in Shear: 320.0 Lbs Allowable Scre Shear Ref. Table 12K. Per NDS 2018 Pull-Out: 378.0 Lbs/in Allowable Screw Pull Out Ref. Table 12.2A. Per NDS 2018 Page 16 of 52 Luis Labrada 217 Landis Avenue LAMAR Proyecto: Nodes 9-10 Date: 05/07/19 Chula Vista, CA 91910 . IENGINEERING . Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX III. DESIGN ATTACHMENT. CABINET. EQUIPMENT. Page 17 of 52 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR NGINEERING Project: Nodes 9-10 Date: 06/24/2019 Engineer: M.R SEISMIC DESING CABINET DESCRIPTION Description: BBU CABINET W = 382.0 Lbs bldg height = 12.2 ft ELEMENT DESIGN (SEISMIC) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = 382.0 Lbs. FpH = (0.64 * Wp )/1.4 = 174.63 Lbs FpH = 0.46 * Wp = 175.72 Lbs HORIZONTAL FpV = 0.28 * Wp = 106.96 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh= 1.0 Ft. FPH = (0.4*ap*SDS*Wp)/(Rp*lp)*(1+2*z/h) = 144.5 Lbs. Verifications FpH max = 1.6* SDS * p WP = 481.6 Lbs. > 144.5 Lbs. FpH mm = 0.3 * 5DS * p * WP = 90.3 Lbs. 144.5 Lbs. Page 18 of 52 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 • LAMAR P. 619.370-9515 www.lamareng.com : JENGDNEERING . Project: Nodes 9-10 Date: 0612412019 Engineer::R. I. I DESIGN FORCES (SEISMIC) CABINET• . I GEOMETRY C aI I Plan a= 1.83 ft, b= 3.25 ft C = 3.20 ft Support= 4 4.. Fpv Wall a bI 7 Fph Elevation FORCES GRAVITATORY (0) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a14 = 174.8 Lbs*ft Dx.= 53.8 Lbs Dy= 95.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 132.5 Lbs Vertical force, Ey = 26.7 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 186 Lbs Max shear force per anchor = Dy + Ey = 122 Lbs Page 19 of 52 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 9-10 Date: 06/24/2019 Engineer:M.R. WIND DESING CABINET DESCRIPTION Description: BBU CABINET W= 382 Lbs bldg height = 12.2 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B,CorD) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Flat ANALYSIS A = 1.21 For h = 12.2 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure ps=Ax Kzt xlxps30= 19.24 psf Horizontal PS = Ax Kzt x I x ps30 = 16.70 psf Roof Uplift Applied horizontal force, Fph = PS x (bxc)I2 = 200.1 Lbs Applied vertical force, Fpv = Ps x (axc)I2 = 97.8 Lbs Page 20 of 52 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR JENGINEERING n.afl.I..nu.n Project: Nodes 9-10 Date: 06/24/2019 Engineer:M.R I DESIGN FORCES (WIND) I CABINET I GEOMETRY p 4 al I Plan a= 1.83 ft b= 3.25 ft c= 3.20 ft Support= 4 Fpv Suction Wall fl a 4 Suction Elevation FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a/4 = 174.8 Lbs*ft Dx= 53.8 Lbs Dy = 95.5 Lbs FORCES WIND (W) Horizontal force, Wx = 155.1 Lbs Vertical force, Wy = 24.4 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 209 Lbs Max shear force per anchor = Dy + Wy = 120 Lbs Page 21 of 52 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com W11 m. mj CIVIL + STROCTUPVI. Project: Nodes 9-10 Date: 06/24/2019 Engineer: M.R ELEMENT & CONNECTIONS DESIGN CABINET Fx = Dx+(Ex or Wx) = 208.9 Lbs ' = Fy = Dy+(Ey or Wy) = 122.2 Lbs Q = 2.0 Cabinet Total Quantity 4.67 ft H= 4.67 ft Lc= 7.92 ft A Ii 7.92 ft - UNISTRUT HORIZONTAL DESIGN Px = 208.9 Lbs ('7L-flP M. Mmax (y-y) = 992.6 Ft.-Lbs. Radio Status 4 11911 In.-Lbs. 0.64 OK J IC I- Py = 122.2 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 580.9 Ft.-Lbs. Radio Status n = 5 6971 In.-Lbs. 0.37 OK c = 1.58 ft Use: Unistrut: PIOOIA (2)1 5/8 x 1 5/8-I2ga Nominal Thickness Allowable Moment: 18640 In-Lbs General Engineering Catalog - No. 17- Page 27 Page 22 of 52 Luis Labrada .217 Landis Avenue Chula Vista, CA91910 P: 619.370-9515 www.lamareng.com LAMAR HENGINEERING Project: Nodes 9-10 Date: 06/24/2019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN CABINET Fx = Dx+(Ex or Wx) = Fy= Dy+(EyorWy)= Q= H= Lc = 208.9 Lbs 122.2 Lbs 2.0 Cabinet Total Quantity 4.7 ft 7.9 ft Li 7.92 ft U CONNECTION A: CABINET TO UNISTRUT CHANNEL NUTS WITH SPRING Radio Status Shear= 122.2 Lbs 0.15 OK Pull Out = 208.9 Lbs 0.21 - OK Use: Channel Nuts: 318"-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 3/8"-1 1/2" Mm. General Engineering Catalog - No. 17 Page 68 CONNECTION B: UNISTRUT TO POST BOLT DESIGN Reaction unistrut horizontal Ry= Py(n-1)/2 Rx = Px(n-1)I2 Use: D-Bolt: 3/8 in. n Bolt: .2 Material: A307 Demand 244.5 Lbs Demand 417.8 Lbs - Shear= 244.5 Lbs -, Pull Out = 417.8 Lbs Fv= 24 ksi Ft= 45 ksi Capacity Shear Status 5301.4 Lbs Capacity Pull-Out Status 99402 Lbs OK Page 23 of 52 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 . . LAMAR P: 619.370-951.5 IFENGINEERING www.lamareng.com. . ELEMENT &CONNECTIONS DESIGN - Project: Nodes 9-10 Date: 06/24/2019 Engineer: M.R. •::. I CABINET Px= 417.8 Lbs !_- Px Py= 244.5 Lbs H2 I L1 = 1.3 ft Hit__________________ HI = 1.83 ft f H2 = 2.83 ft — Li L2 4 4 Rx'A 'A Rx 1 y Ry CONNECTION C: NON-PENTRATING TO DECK PENETRATING BALLAST FRAME TO BLOKING Demand: Pull Out = 928 Lbs Shear= 717 Lbs Use: D-Bolt: 1/2 in n Bolt: 3 Capacity: Shear: 320.0 Lbs Pull-Out: 378.0 Lbs/in Demand 717.0 Lbs - Demand 928.0 Lbs BLOKING TO JOIST Demand: Pull Out = 928 Lbs Capacity: Use: Simpson A35 Type connection: 4 Fl: 590 Lbs n: Demand 928.0 Lbs Reactions RAM Elements Long= 4 in Side Member Thickness: 1/4 in Allowable Screw Shear Ref. Table 12K. Per NDS 2018 Allowable Screw Pull Out Ref. Table 12.2A. Per NDS 2018 Capacity Shear Ratio Status 960.00 Lbs 0.75 L OK II Capacity Pull Out Ratio Status 4536.00 Lbs 0.2 [ OK I A35 Capacity Ratio Status 1180.00 Lbs 0.79 OK 1 Page 24 of 52 Luis Labrada Proyecto: Nodes 9-10 217 Landis Avenue LAMAR Date: 05/07/19 -Chula Vista, CA 91910 . N½ENGINEERING Engineer: M.R P: 619-370-9515 . www.lamareng.com . APPENDIx IV. SCREEN WALL Page 25 of 52 -1 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 .P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodes 9-10 Date: 0612412019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I Geometry W = 7.5 psf Weight I Li SCREEN LENGTH L= 9.58 ft Screen total length B= 1.67 ft + NP= 3.00 Number Post Li =16 4.79 Ift L. between post I Hi [LEiI NS= 3.00 NO Steps between post I S= 1.60 Length Steps I H21 I SCREEN HEIGHT I I H1= - 6.0 ft Screen Height I I H2= 12.2 ft. [E] Structural Roof J. Building I View Section Wind Force Exposure category (ASCE 7-10 26.7.3) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5. 1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Pressure 30 Psf. Applied horizontal force, Fph = Ps x (LxHi) = 1725.0 Lbs Applied vertical force, Fpv = Ps x (LxB) = 480.1 Lbs Page 26 of 52 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370.9515 www.lamareng.com LAMAR INiLJ3?LG Project: Nodes 9-10 Date: 06124/2019 Engineer: M.R I SCREEN WALL DESIGN FR! TYPE I FRP Channel Stifener - Design Tributary: S = 1.60 ft H1= 6.00 ft 16 Demand: Load qw = 48.0 Lbs/Ft M. Mmax (x-x) = 2592.0 In.-Lbs. 6 ft Flexural Strength = 664.62 psi Capacity Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 664.62 psi 6600 psi 0.1 OK FRP Channel Stifener - Connection Demand Shear = 144 Lbs Capacity Use: 1/2 in FRP Bolt n Bolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 144 Lbs 780 Lbs 0.18 OK1 Page 27 of 52 Luis Labrada - .. 217 Landis Avenue Chula Vista, CA 91910 ...' P: 619.370-9515 www.lamareng.com LAMAR ILi!G Project: Nodes 9-10 Date: 06124/2019 Engineer: 1uI.R SCREEN WALL DESIGN-FRP TYPE I Top & Bottom FRP Horizonal Tube - Design Tributary: L1= 4.79 ft H1= 6.00 ft Demand: 6 ft Load qw = 90.0 Lbs/Ft M. Mmax (x-x) = 3099.6 In.-Lbs. Flexural Strength = 794.77 psi 4.79 ft 4.79 ft Caoacitv Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity oa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 794.77 psi 6600 psi 0.12 OK 1 Top & Bottom FRP Horizonal Tube - Connection Demand Shear= 215.6 Lbs Capacity Use: 112 in FRP Bolt n Bolt: 2 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 215.6 Lbs < 1560 Lbs 0.14 OK_ Page 28 of 52 Demand 325.4 Lbs Demand 535.5 Lbs Capacity Shear 440.00 Lbs Capacity Pull Out 1788.00 Lbs Ratio Status 0.74 1 O ] Ratio Status 0.3 EOKTII Luis Labrada 217 Landis Avenue Chula Vista, CA 919110 LAMAR P: 619.370-9515 www.iama;eng.com IJ!!!! . S ., Project: 'Nodes 9-10 06124/2019 Engineer: M.R SCREEN WALL DESIGN -FRP TYPE I CONNECTION TO WALL GEOMETRY . A Fpv Suction L 4 TB BTI=I ' TTI _ Fph Plan H1j Suction L= 9.58 ft + LI= 4.79 ft HI= 6.00 ft B= 1.67 It Support= 6 FORCES GRAVITATORY (D) Weight, Wp= 821.6 Lbs Overturning moment OTM = Wp*B/2 = 686.0 Lbsft Dx= 114.3 Lbs Dy = 205.4 Lbs FORCES WIND (W) Applied horizontal force, Wx = 421.1 Lbs Applied vertical force, Wy = 120.0 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 535 Lbs Max shear force per anchor = Dy + Wy = 325 Lbs CONNECTION DESIGN: LAG SCREW Shear= 325.4 Lbs Pull Out = 535.5 Lbs Use: D-Bolt: 5/8 in nBolt: I Shear: 440.0 Lbs Pull-Out: 447.0 Lbs/in Long= 4 in Side Member Thickness: 1I4 in Allowable Screw Shear Ref. Table 12K. Per NDS 2018 Allowable Screw Pull Out Ref. Table 12.2k Per NDS 2018 Page 29 of 52 Luis Labrada - 217 Landis Avenue LAMAR Project: Nodes 9-10 Chula Vista, CA 91910 Date :1 0612412019 P: 619.370-9515 INL!!!EEJ1! Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE 2 Geometry W = 7.5 psf Weight I LI SCREEN LENGTH - L= 12.42 ft screen total length 8= 1.67 ft NP = 4.00 Number Post Li = 4.14 ft L. between post NS = 2.00 N° Steps between post S = 2.07 Length Steps SCREEN HEIGHT Hi = 6.0 ft Screen Height H2 = 12.2 ft. [E] Structural Roof H2I Building 1H[E1E] F View Section Wind Force Exposure category (ASCE 7-10 26.7.3) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8.1) Kzt = 1.0 Pressure 30 Psf. Applied horizontal force, Fph = Ps x (LxHi) = 2235.6 Lbs Applied vertical force, Fpv = Ps x (LxB) = 622.2 Lbs Page 30 of 52 KI Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IIENGINEERINGI Project: Nodes 9-10 Date: 06124/2019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE 2 FRP Channel Stifener - Design Tributary: S = 2.07 ft HI= 6.00 ft 21f Demand: Load qw = 62.1 Lbs/Ft M. Mmax (x-x) = 3353.4 In.-Lbs. 6 ft Flexural Strength = 859.85 psi Capacity Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio -Status_ 859.85 psi < 6600 psi 0.13 OK1 FRP Channel Stifener - Connection Demand Shear= 186.3 Lbs Caacitv Use: 1I2 in FRP Bolt n Bolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 186.3 Lbs 780 Lbs 0.24 rOR Page 31 of 52 Luis Labrada 217 Landis Avenue Project: Nodes 9-10 Chula Vista, CA 91910 LAMAR Date: 06/24/2019 P: 619.370-9515 IENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN -.FRP TYPE 2 Top & Bottom FRP Horizonal Tube - Design Tributary: L1= 4.14 ft H1= 6.00 ft Demand: 6 ft Load qw = 90.0 Lbs/Ft M. Mmax (x-x) = 2313.8 In.-Lbs. Flexural Strength = 593.29 psi 4.14 ft 4.14 ft Capacity Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 in. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 593.29 psi < 6600 psi 0.09 OK Top & Bottom FRP Horizonal Tube - Connection Demand Shear= 186.3 Lbs Capacity Use: 112 in FRP Bolt n Bolt: 2 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 186.3 Lbs < 1560 Lbs 0.12 OKi Page 32 of 52 Luis Labrada .: 217 Landis Avenue Project: Nodes 9-10 Chula Vista, CA 91910 LAM AR . Date: 0612412019 P: 619.370-9515 Engineer: M.R www.lamareng.com INENGINEERINGI SCREEN WALL DESIGN - FRP TYPE 2 CONNECTION TO WALL GEOMETRY A Fpv Suction L 4 IB 7BT= TIflFPh Plan Hi Suction L= 12.42 ft $ Li —: 4.14 It Hi 600 ft B= 167 ft Support = 8 FORCES GRAVITATORY (D) Weight, Wp = 1020.3 Lbs Overturning moment OTM = WpB/2 = 852.0 Lbsft Dx= 142.0 Lbs Dy= 170.1 Lbs FORCES WIND (W) Applied horizontal force, Wx = 452.6 Lbs Applied vertical force, Wy = 103.7 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wk = 595 Lbs Max shear force per anchor = Dy + Wy = 274 Lbs CONNECTION DESIGN: LAG SCREW Shear= 273.8 Lbs Pull Out = 594.6 Lbs Use: D-Bolt: 518 in Long = 4 - in n Bolt: I Side Member Thickness: 114 in Shear: 440.0 Lbs Allowable Screw Shear Ref. Table 12K. Per NDS 2018 Pull-Out: 447.0 Lbs/in Allowable Screw Pull Out Ref. Table 12.2A. Per NDS 2018 Demand Capacity Shear Ratio Status 273.8 Lbs 440.00 Lbs 0.62 1 TOK] Demand Capacity Pull Out Ratio Status 594.6 Lbs < 1788.00 Lbs 0.33 ETIOKIIII Page 33 of 52 Luis Labrada Proyecto: Nodes 9-10 LAMAR 217 Landis Avenue Date: 05/07/19 Chula Vista, CA 91910. INENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX V. ROOF VERIFICATION Page 34 of 52 Luis Labrada LAMAR Project: Nodes 9-10 217 Landis Avenue Date: 07/11/2019 Chula Vista, CA 91910 . UENGINEERING Engineer: M.R P:619.370-9515 VERIFY ROOF FRAMING - I ANTENNA DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] HEX454CU0000G 46.80 15.60 7.40 48.90 0 0.00 0.00 HEX654CU0100G 51.10 12.00 7.10 39.70 0 0.00 0.00 CUUX06306F52s0-T 24.30 12.10 7.00 13.00 0 0.00 0.00 CUUX05X06F5200 24.10 16.20 7.30 15.70 0 0.00 0.00 QUINTELQS46512-2 52.00 12.00 10.80 75.00 0 0.00 0.00 Total 0.00 0.00 0.00 RADIOS DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] RRUS - 2203 7.90 7.90 3.90 10.00 2 0.43 20.00 ERICSSON RRUS -4426 15.00 13.20 5.80 48.40 0 0.00 0.00 ERICSSON RRUS-4478 18.10 13.40 8.26 59.40 0 0.00 0.00 ERICSSON RRUS-4415 16.50 13.40 5.90 46.00 0 0.00 0.00 ALCATEL LUCENTTD-RRH8X2O-25 9.68 12.83 6.30 26.45 0 0.00 0.00 ALCATEL LUCENT CDMNLTE DUAL TECH 25.00 11.00 11.00 59.50 2 1.68 119.00 Total 4.00 2.11 139.00 CABINET DIMENSION [in] WIGHT Quantity Area W b c a [Lbs] [sq ft] [Lbs] BBU 32.25 27.50 27.00 382.00 3 15.47 1146.00 AC POWER 18.50 20.00 6.00 50.00 1 0.83 50.00 TELCO CABINET 14.25 7.75 6.00 10.00 1 0.32 10.00 Total 5.00 16.63 i 1206.00 Page 35 of 52 Lui Labrada 217 Landis Avenue LAMAR Project: Nodes 9-10 Date: 0711112019 Chula Vista, CA 91910 IENGINEERING Engineer: M.R • P: 619.370-9515 VERIFY ROOF FRAMING Load Density Concrete: 145.0 pcf DL: 72.5 lb/sq. ft. Thickness: - 6.0 in LL: 20.0 lb/sq. ft. Area [sq ft] DL I LL I DL+LL [E] Steel Deck 1 205 14863 1 4100 1 18963 Lbs. Now Load Antennas Radio Cabinet Total:l Quantity Area DL Lbs Lbs Lbs 1 Lbs 0 0 0 4 2 139 5 17 1206 9 1 19 1345 New Load + Existing Load - Existing New Total: New + Existing DL LL DL+LL Area [sq ft] DL LL DL+LL DL LL DL+LL Steel Deck 14863 4100 18963 19 0 -375 -375 14863 3725 18588 Antennas 0 0 0 0 0 0 0 0 0 0 Radiol 0 0 0 2 139 0 139 1 139 0 139 Cabineti 0 1 0 1 0 1 17 1 1206 1 0 1 1206 1 1206 1 0 1 1206 Total: 1 19933 Chapter #34A CBC 2016 3403A.3 Existing structural elements carrying gravity load. "Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load- carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404A.3. Any existing element that will form part of the lateral load path for any part of the addition shall be onsidered an existing lateral load- carrying structural element subject to the requirements of Section 3403A.4." New Total Load: 19933 Lbs Existing Total Load: 18963 Lbs [New Total Load] -[Existing Total Load] -*100% 100% = 4.866 % [New Total Load] J 4.87 j .c T 5 ]% L OK Page 36 of 52 Luis Labrada Proyecto: Nodes 9-10 217 Landis Avenue LAMAR Date: 05/07/19 Chula Vista, CA 91910 INENGINEERING Engineer: M.R P: 619-370-9515 www.lamarenQ.com APPENDIX VI. TABLES Page 37 of 52 TABLE 1: SEISMIC DESIGN Page 38 of 52 5/16/2019 U.S. Seismic Design Maps OSHPD Legoland I Legoland Dr, Carlsbad, CA 92008, USA Latitude, Longitude: 33.1262496, -117.31192390000001 Museum df1 . aking Music - 4 9M j \ ,çQ- \ [ ing Staff Oark -. Hotel Parking 9 Date Design Code Reference Document Risk Category Site Class 5/16/2019,11:03:03 AM ASCE7-10 0- Stiff Soil - Map data 02019 Google Type Value Description Ss 1.127 MCER ground motion. (for 0.2 second period) S 0.434 MCER ground motion. (for 1.0s period) SMS 1.182 Site-modified spectral acceleration value SM1 0.679 Site-modified spectral acceleration value SOS 0.788 Numeric seismic design value at 0.2 second SA S01 0.453 Numeric seismic design value at 1.0 second SA Type Value Description SDC D Seismic design category Fe 1.049 Site amplification factor at 0.2 second Fv 1.566 Site amplification factor at 1.0 second PGA 0.447 MCEG peak ground acceleration FPGA 1.053 Site amplification factor at PGA PGAM 0.471 Site modified peak ground acceleration TL 8 Long-period transition period in seconds SsRT 1.127 Probabilistic risk-targeted ground motion. (0.2 second) SsUH 1.194 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration SsD 1.525 Factored deterministic acceleration value. (0.2 second) Si RT 0.434 Probabilistic risk-targeted ground motion. (1.0 second) S1UH 0.436 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.616 Factored deterministic acceleration value. (1.0 second) PGAd 0.59 Factored deterministic acceleration value. (Peak Ground Acceleration) CRS 0.944 Mapped value of the risk coefficient at short periods CR1 0.995 Mapped value of the risk coefficient at a period of 1 s Page 39 of 52 https://seismicmaps.org . 1/2 7.5 0.8 0.6 0.4 0.2 cio 0.0 2.5 5.0: Period, T (sec) - Sa(g) 5/16/2019 U.S. Seismic Design Maps 2.5 5.0 7.5 Period, T (sec) - Sa(g) Design Response Spectrum MCER Response Spectrum 1.5 1.0 to 0.5 0.0 0.0 DISCLAIMER While the information presented on this website is believed to be correct, S.E.A.O.C. /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this webstie. Page 40 of 52 https:/Iseismicmaps.org 2/2 TABLE:2 DESIGN VALUES LOAD CHART FOR FRP MATERIALS Page 41 of 52 Appendix A Design Values Load Chart for FRP Materials ALLOWABLE STRENGTH TABLE FOR FRP SHAPES: Tubes, Channels, Angles Property Direction Value Units Tensile Strength Lengthwise Crosswise 6,600 1,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 6,600 3,300 psi Flexural Strength Lengthwise Crosswise 6,600 .2,200 psi Flexural Modulus Lengthwise Crosswise 1,600,000 800,000 psi Shear Strength Lengthwise Crosswise 1,400 500 psi Modulus of Elasticity Lengthwise Crosswie 2,800,000 psi 1/2" Bolt Bearing Lengthwise Crosswise 6,000 3,600 psi 1/2" Bolt Shear Allowable 780 lbs 1/2" Bolt Tension Allowable 300 lbs Table Notes: Values based on 1525 series - Thermoset Polyester Class 1 FR (Slate Grey) A Safety Factor of 5.0 has been used to determine Allowable Loads. ALLOWABLE STRENGTH TABLE FOR FRP FLAT SHEETS: Property Direction Value Units Tensile Strength Lengthwise Crosswise 4,000 2,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 4,800 3,200 psi Flexural Strength Lengthwise Crosswise 7,000 3,000 psi Flexural Modulus Lengthwise Crosswise 2,000,000 1,100,000 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi Table Notes: Values based on 1625 series - Thermoset Vinyl Ester Class 1 FR (Beige) A Safety Factor of 5.0 has been used to determine Allowable Loads. I I I Hi-Tech Composite Structures Supplement for LARR #25520 Page 1 of I Page 42 of 52 TABLE 3: POST - INSTALATED CONCRETE ANCHOR. HILTI Page 43 of 52 ESR-2302 I Most Widely Accepted and Trusted Page 7 of 11 TABLE 3-DESIGN INFORMATION CARBON STEEL KB3 DESIGN INFORMATION Symbol Units Nominal anchor diameter 1, 4 3'8 I '8 34 Anchor O.D. d,, (do)7 in. 0.250 0.375 0.500 0.625 0.750 (mm) (6.4) (9.5) (12.7) (15.9) (19.1) Effective mm. embedment' het in. 1/3 2 2 3/4 31/8 4 33/4 5 (mm) (38) (51) (51) (83) (79) (102) (95) (127) Mm. member thickness hmin in. 4 4 5 4 6 6 8 5 6 8 6 8 8 (mm) (102) (102) (127) (102) (152) (152) (203) (127) (152) (203) (152) (203) (203) In. /2 4 37/s 4 /8 3 /8 6/4 s' 7'/2 91/3 93/4 7 /2 91/2 Critical edge distance cac (mm) (70) (114) (98) (124) (92) (171) (143) (191) (241) (191) (248) (191) (241) in. 1 /8 2 1'/ 2'/8 2 1/ 1/8 21/4 1/4 1I4 2/4 2/8 21/2 Cmi,, (mm) (35) (51) (38) (54) (51) 1 (41) (41) (57) (44) (44) (70) (67) (64) Mm. edge distance in. 1/4 2I8 3'/2 47/ 43/4 4'/4 4 6% 51/4 43/4 4 6/4 6/2 for s? (mm) (44) (73) (89) (124) (121) (108) (102) (133) (121) (102) (175) (165) (162) in. 11/4 1/4 1/4 2'/2 2I4 2 1/9 2/ 2'/4 2'/ 33/4 3 /8 31/ Sm,n ______ (mm) (32) (44) (44) (64) (57) (51) (48) (60) (54) (54) (95) (86) (83) Mm. anchor spacing in. 1 /8 2/ 2 /8 2 /8 2/ 2/4 2 31/ /4 2 2/4 3 3/4 3 /8 33/s for c 1 (mm) (41) (60) (60) (67) (60) (57) (51) (79) (60) (57) (95) (86) (86) in. 2 2 /8 2i 4 37/s 43/ 41/ 53/4 Mm. hole depth in concrete h80,,, (mm) (51) (67) (67) (102) (98) (121) (114) (146) Mm. specified yield strength fy. psi 84,800 84,800 84,800 84,800 84,800 (N/mm2) (585) (585) (585) (585) (585) Mm. specified ult. strength f.19 psi psi 106,000 106,000 106,000 106,000 106,000 (731) (731) (731) (731) (731) in 0.02 0.06 0.11 0.17 0.24 Effective tensile stress area A,,9 (Mm') (12.9) (38.7) (71.0) (109.7) (154.8) Steel strength in tension N,,,, lb 2,120 6,360 11,660 18,020 25,440' (kN) (9.4) (28.3) (51.9) (80.2) (113.2) Steel strength in shear V,,,1 lb 1,640 4,470 6,635 I I 6,750 12,230 15,660 I 16,594 (kN) (7.3) (19.9) (29.5) (30.0) (54.4) (69.7) (73.8) Pullout strength uncracked concrete lb 1,575 NA NA I 6.800 NA NA 10,585 (47.1) (kN) (7.0) (30.2) Anchorcategory3 1,20r3 - 1 Effectiveness factor kna k,,,, - 24 4 uncracked concrete Modification factor for 1IJC,N - 1.0 uncracked concrete Coefficient for pryout k p 1.0 2.0 Installation torque T,,,,,, ft91b 4 20 40 110 (Nm) I 60 I (5) (27) (54) (81) (149) Axial stiffness in service (lb/in) 116,150 load range 162,850 203,500 I 191,100 222,150 170,700 207,400 164,000 COV Duncr % 60 I 42 29 I 29 I 25 I 21 I 19 24 Strength reduction factor i for tension, steel 0.75 failure modes5 Strength reduction factor i for shear, steel 0.65 failure modes5 Strength reduction factor ij for tension, concrete 0.65 failure modes, Condition B6 Strength reduction factor 0 for shear, concrete 0.70 failure modes, Condition B6 For SI: 1 inch = 25.4 mm, llbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-in units: 1 mm = 0.03937 inches. 'See Fig. 2 2See Section 4.1.4 of this report, NA (not applicable) denotes that this value does not govern for design. 3See ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. 4See ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. 5The carbon Steel KB3 is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable. 6For use with the load combinations of ACI 318-14 Section 5.3, ACI 318-11 Section 9.2 or IBC Section 1605.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, is not provided, or where pull-out or pry out strength 9overns. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. The notation in parenthesis is for the 2006 IBC. Page 44 of 52 TABLE 3-DESIGN INFORMATION, CARBON STEEL KB-TZ DESIGN INFORMATION Symbol Units Nominal anchor diameter __________________________ . I8 1/2 1$ 3 /4 AnchorO.D. d0(d.,I in. 0.375 0.5 0.625 0.75 (mm) (9.5) (12.7) (15.9) (19.1) Effective mm. embedment' h0, in. 1'/.2 2 2/4 2 31/4 31/ 4 31/ 33/4 43/4 (mm) (38) (51) (70) (51) (83) (79) (102) (83) (95) (121) Mm. member thickness2 h,,,, in. 3'4 415 I 5 618 I 5 618 I 51/3 618 I 8 (mm) (83) (102) (127) (127) (152) 1(203) (127) (152)1 (203) (140) (152) 1(203) (203) in. 6 43/8 4 4'/8 ± ( 5'/24'/2 7'/3 6 6'/ 8/4 I 6/4 12 10 I 8 9 Critical edge distance I (mm) (152) (111) (102) (105) (191)1(152) (165) (222)1(171) (305) (254) 1(203) (229) In. 8 21/2 21/3 2/4 2/ 35/s 3/4 912 43/4 41/ _______ (mm) (203) (64) (64) (70) (60) (92) (83) (241) (121) (105) Mm. edge distance for s k in. 8 5 5 53/4 53/4 6/ 57/8 5 10'/2 8/ (mm) (203) (127) (127) (146) (146) (156) (149) (127) (267) (225) in. 8 21/2 2/3 2/4 2/ 3/3 3 5 5 4 Mm. anchor spacing smin (mm) (203) (64) (64) (70) (60) (89) (76) (127) (127) (102) In. 8 3 /8 35/9 41/ 3'/2 _____ 46 4/4 912 9'/2 73/4 for c (mm) (203) (92) (92) (105) (89) (121) (108) (241) (241) (197) in. 2 2/9 33/9 2/9 4 34 43/4 4 41/2 534 Mm. hole depth in concrete h0 (mm) 1 (51) 1 (67) 1 (86) (67) (102) (98) (121) (102) 1 (117) 1 (146) Mm. specified yield strength fy lb/mn2 100,000 84,800 84,800 . 84,800 (N/mm2) (690) (585) (585) (585) Mm. specified ult. strength lb/in2 125,000 106,000 106,000 106,000 (N/mm2) (862) (731) (731) (731) Effective tensile stress area A.N In 0.052 0.101 0.162 0.237 (mm2) (33.6) (65.0) (104.6) (152.8) Steel strength in tension No lb 6,500 10,705 17,170 25,120 (kN) (28.9) (47.6) (76.4) (111.8) Steel strength in shear VS9 lb 2180 3,595 5,495 8,090 13,675 (kN) (9.7) (16.0) (24.4) (36.0) (60.8) Steel strength in shear, V,09 lb 2,180 2,255 5,495 7,600 11,745 seismic? (kN) (9.7) (10.0) (24.4) (33.8) (52.2) Pullout strength uncracked lb 2,160 2,515 4,110 NA I I 5,515 I NA I 9,145 I NA 8,280 110,680 concrete4 (kN) (9.6) (11.2) (18.3) (24.5) (40.7) (36.8) I() Pullout strength cracked N,,, lb NA 2,270 3,160 NA I 4,915 NA NA concrete (kN) (10.1) I (14.1) j (21.9) Anchor category5 2 1 Effectiveness factor k r4, uncracked concrete 24 Effectiveness factor k,, cracked concrete 17 1P9 p kw,cjkc,7 1.0 Coefficient for pryout strength, k 1.0 2.0 1.0 2.0 Strength reduction factor 0 for tension, steel failure 0.75 modes8 Strength reduction factor 0 for shear, steel failure 0.65 modes8 Strength reduction 0 factor for tension, concrete 0.55 0.65 failure modes or pullout, Condition B9 Strength reduction 0 factor for shear, concrete failure 0.70 modes, Condition B° Axial stiffness in service load fiw,ct I lb/in. 600,000 range'° lbflfl. 135,000 For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-inch units: 1 mm = 0.03937 inches. 'See Fig. 2. 2For sand-lightweight or normal-weight concrete over metal deck, see Figures 5A, 5B, 5C and 5D and Tables Sand 6. 3See Section 4.1.8 of this report. 4For all design cases W,. p=1.0. NA (not applicable) denotes that this value does not control for design. See Section 4.1.4 of this report. 5See ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. 8See ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. 7For all design cases WG,N =1.0. The appropriate effectiveness factor for cracked concrete (k4 ) or uncracked concrete must be used. 8The KB-TZ is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 Dl, as applicable. 9For use with the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. '°Mean values shown, actual stiffness may vary considerably depending on concrete strength, loading and geometry of application. Page 45 of 52 TABLE 4: FASTENERS. LAGSCREW Page 46 of 52 108 DOWEL-TYPE FASTENERS U) Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections 1,2,3,4 for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for t5<1/4) or W ASTM A 36 steel side plate (for t5=1/4") (tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D) 2 2 . 'CL U) . . a. w E 'qO o ina o. in— 'q AM .— 'a '.'i 8 c') E'E "u.iji u C1. 0 11 O11 S' 11 00 11 11 0% e 11 E CL 00 e &11 o11 0 2u'' I CL et cI C3 w• C3 Z Z11 Z1 41 Z1 Z11 Z,, 4 Z1 4 Z.L Z11 Z.L Z11 Z Z11 Z1 Z11 Z1 Z11 ZJ. IS D in. in. tbs. tbs. lbs. tbs. tbs. tbs. lbs. tbs. tbs. lbs. tbs. lbs. lbs. tbs. tbs. tbs. tbs. tbs. tbs. tbs. 0.075 1/4 170 130 160 120 150 110 150 110 150 100 140 100 140 100 130 90 130 90 130 90 (14 gage) 5/16 220 160 200 140 190 130 190 130 190 130 180 120 180 120 170 110 170 110 160 100 _______ 3/8 220 160 200 140 200 130 190 130 190 120 180 120 180 120 170 110 170 100 170 100 0.105 1/4 180 140 170 130 160 120 160 120 160 110 150 110 150 110 140 100 140 100 140 90 (12gage) 5/16 230 170 210 150 200 140 200 140 190 130 190 130 190 120 180 110 170 110 170 110 3/8 230 160 210 140 200 140 200 130 200 130 190 120 190 120 180 110 180 110 170 110 0.120 1/4 190 150 180 130 170 120 170 120 160 120 160 110 160 110 150 100 150 100 140 100 (11gage) 5116 230 170 210 150 210 140 200 140 200 140 190 130 190 130 180 120 180 120 180 110 3/8 240 170 220 150 210 140 210 140 200 130 200 130 190 120 180 110 180 110 180 110 0.134 1/4 200 150 180 140 180 130 170 130 170 120 160 120 160 110 150 110 150 100 150 100 (10gage) 5116 240 180 220 160 210 150 210 140 200 140 200 130 200 130 190 120 180 120 180 120 3/8 240 170 220 150 220 140 210 140 210 140 200 130 200 130 190 120 190 120 180 110 0.179 1/4 220 170 210 150 200 150 200 140 190 140 190 130 190 130 180 120 170 120 170 120 (7 gage) 5/16 260 190 240 170 230 160 230 160 230 150 220 150 220 150 210 130 200 130 200 130 ______ 3/8 270 190 250 170 240 160 240 160 230 150 220 140 220 140 210 130 210 130 200 130 0.239 1/4 240 180 220 160 210 150 210 150 200 140 190 140 190 130 180 120 180 120 180 120 (3 gage) 5/16 300 220 280 190 270 180 260 180 260 170 250 160 250 160 230 150 230 150 230 140 3/8 310 220 280 i80 270 180 270 180 280 170 9fl IRA 280 180 I 240 140 9%fl 140 I 2!%fl 140 1/2 5/8 7F16--J--Z20--29O 510 340 _770__..90 390 260 470 300 _710_430 380 240 460 290 _680_400_ 370 240 450 280 _680_400 360 230 440 270 _660_380_ 350 220F420 430 260 _640._.3700 0 220 260 360 330 200 400 240 600 330 330 200 400 230 590 330 320 190 390 230 _580_320 3/4 1110 670 1020 590 980 560 970 550 950 530 920 500 910 500 860 450 850 450 840 440 7/8 1510 880 1390 780 1330 730 1320 710 1280 690 1250 650 1230 650 1170 590 1160 590 1140 570 1 1940 1100 1780 960 1710 910 1700 890 1650 860 1600 820 1590 810 1500 740 1480 730 1460 710 1/4 1/4 240 180 220 160 210 150 210 150 200 140 200 140 190 130 180 120 180 120 180 120 5/16 310 220 280 200 270 180 270 180 260 170 250 170 250 160 230 150 230 150 230 140 3/8 320 220 290 190 280 180 270 180 270 170 260 160 250 160 240 150 240 140 230 140 7/16 480 320 440 280 420 270 420 260 410 250 390 240 390 230 370 220 360 210 360 210 1/2 580 390 540 340 520 320 510 320 500 310 480 290 480 290 460 270 450 260 7440 - 260 5/8 850 530 780 470 750 440 740 440 720 420 700 400 690 400 660 370 650 360; 640 350 3/4 1200 730 1100 640 1060 600 1050 590 1020 570 990 540 980 530 930 490 920 480 900 470 7/8 1600 930 1470 820 1410 770 1400 750 1360 720 1320 690 1310 680 1240 630 1220 620 1200 . 600 1 2040 1150 1870 1000 1800 950 1780 930 1730 900 1680 850 1660 840 1570 770 1550 760 1530 740 I. Tabulated lateral design values. Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Tabulated lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 8D; dowel bearing strengths, F, o161 ,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths. FYb, of 70,000 psi for D = 1/4", 60,000 psi for D = 5/16", and 45,000 psi for D 3/8". Where the lag screw penetration, p, is less than SD but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration. The length of lag screw penetration, p, not including the length of the tapered tip. E (see Appendix Table 1-2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, p,,,,,. Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorizel. AMERICAN WOOD COUNCIL Page 470 52 I - NATIONAL DESIGN SPECIFICATIONFOR WOOD CONSTRUCTION 77 Table 12.2A Lag Screw Reference Withdrawal Values, W' '- Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member shall not include the length of the tapered tip (see 12.2.1.1). Specific Gravity, Lag Screw Diameter, D ___ __ _______ _______ G2 • 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4" 7/8" 1" 1-1/8" 1-1/4" 0.73 [0.71 .397 469 538 604 668 789 905 1016 1123 1226 1327 —1-2 7-3 1 381 450 516 579 640 757 868 974 1077 1176 0.68 F 0.6_7 357 422 484 543 600 709 813 913 1009 1103 1193 1167 1 349 413 473 531 587 694 796 893 987 1078 0.58 0.55 . 281 332 381 428 473 559 641 719 795 869 940 ___86_8 __1 260 307 352 395 437 516 592 664 734 802 0.51 [_0.50 232 274 314 353 390 461 528 593 656 716 775 752 .225 266 305 342 378 447 513 576 636 695 0.49 218 258 296 332 367 434 498 559 617 674 730 —6-86-1 [ 0.47 205 242 278 312 345 408 467 525 580 634 0.46 199 235 269 302 334 395 453 508 562 613 664 621 ] 0.44 186 220 252 283 312 369 423 475 525 574 0.43 179 212 243 273 302 357 409 459 508 554 600 5791 0.42 173 205 235 264 291 344 395 443 490 535 0.41 L_!.4° 167 198 226 254 281 332 381 428 473 516 559 538 161 190 218 245 271 320 367 412 455 497 ''0.39 0.38 155 183 210 236 261 308 353 397 438 479 518 498 I V 149 .. 176 202 227 251 296 340 381 422 461 0.37 L 0.36 143 169 194 218 241 285 326 367 405 443 479 460 1 137 163 186 209 231 273 313 352 389 425 0.35 132 156 179 200 222 262 300 337 373 407 441 F70.31- 110 130 149 167 185 218 250 281 311 339 --36-7 1 I. Tabulated withdrawal design values, W, for lag screw connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1). 2. Specific gravity, G, shall be determined in accordance with Table 12.3.3A. adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design va!ues, W'. W = 1380 G5/2 D (12.2-3) The nail or spike reference withdrawal design value, W, in lbs/in, of penetration, for a smooth shank stainless steel nail or spike driven into the side grain of a wood member, with the nail or spike axis perpendicu- lar to the wood fibers, shall be determined from Table 12.21J or Equation 12.2-4, within the range of specific gravities, G, and nail or spike diameters, D, given in Table 1221). Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3. 1) to obtain adjusted withdrawal design values, w'. V W = 465 G3/2 D (12.2-4) For calculation of the fastener reference with- drawal design value in pounds, the unit reference with- drawal design value in lbs/in, of fastener penetration from 12.2.3.1a or 12.2.3.1b shall be multiplied by the length of fastener penetration, Pt, into the wood mem- ber. 12.2.3.2 Deformed shank nails (a) The reference withdrawal design value, in lbs/in, of ring shank penetration, for a Roof Sheathing Ring Shank nail or Post-Frame Ring Shank nail' driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2E or Equation 12.2-5, within the range of specific gravities and nail diameters given in Table 12.2E. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Ta- ble 11.3.1) to obtain adjusted withdrawal design values, W1. W = 1800 G2 D (12.2-5) Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorize1l. AMERICAN WOOD COUNCIL Page 480 52 TABLE 5: UNISTRUT GENERAL ENGINEERING CATALOG-NO.1 Page 49 of 52 Channel Selection I Fl I IULi CHANNEL SELECTION CHART Channel Dimensions Material & Thickness Hole Pattern Styles Channel I I Width Height Steel Stainless Steel Alum. HS T - KO SL DS H3 In (mm) In (mm) gauge gauge In (mm) Steel Only P1000 1% (41.3) 1%(41.3) 12 ga 12 ga 0.109 (2.8) • 0 U U U U P1100 1¼(41.3) 1%(41.3) 14 ga 14 ga - U 0 0 0 - - P2000 1%(41.3) 1%(41.3) 16 ga - - U U U - - P3000 1%(41.3) 1%(34.9) 12 ga - - U U 0 U - - P3300 1%(41.3) (22.2) 12 ga 12 ga - U - U - - P4000 1%(41.3) '/i& (20.6) 16 ga 16 ga 0.078 (2.0) U E - - - P4100 1%(41.3) u/16 (20.6) 14 ga - - U 0 - - - P5000 1%(41.3) 3!4(82.6) l2ga 12 ga - U U P5500 1%(41.3) 2Y16 (61.9) 12 ga - 0.109 (2.8) CHANNELS & COMBINATIONS IN DESCENDING ORDER OF STRENGTH Area Weight I s Allow. Moment Channel In2 (cm2) lbs!ft (kg/rn) In4 (cm') 1n3(cm3) In-lbs (N.m) P5001 1.793 6.10 6.227 1.916 48,180 11.57 9.1 259.2 31.4 5,440 P1004A 1.965 6.68 4.068 1.669 41,980 12.68 9.9 169.3 27.4 4,740 P5501 1.452 4.94 2.805 1.151 28,940 9.37 7.3 116.8 18.9 3,270 P1001C41 2.221 7.55 1.856 1.142 28,720 14.33 11.2 77.2 18.7 3,250 P5000 0.897 3.05 1.098 0.627 15,770 5.78 4.5 45.7 10.3 1.780 P1001 1.111 3.78 0.928 0.571 14,360 7.16 5.6 38.6 9.4 1,620 P1101 0.835 2.84 0.733 0.451 11,340 5.39 4.2 30.5 7.4 1,280 P3001 1.000 3.40 0.591 0.430 10,810 6.45 5.1 24.6 7.0 1,220 P5500 0.726 2.47 0.522 0.390 9,820 4.68 3.7 21.7' 6.4 1,110 P2001 0.684 2.32 0.618 0.381 9,570 4.41 35 25.7 6.2 1,080 P9200 0.489 2.23 0.279 0.297 7,480 3.16 3.3 11.6 4.9 850 A5000 0.492 1.67 0.358 0.265 6,670 3.17 2.5 14.9 4.3 750 A1001 0.609 2.07 0.302 0.242 6,070 3.93 3.1 12.6 4.0 690 P9000 0.387 1.88 0.166 0.205 5,150 2.50 2.8 6.9 3.4 580 P1000 0.555 1.89 0.185 0.202 5,070 3.58 2.8 7.7 3.3 570 P3301 0.790 2.69 0.176 0.201 5,060 5.10 4.0 7.3 3.3 570 Combinations not shown in catalog are available on special order. Consult factory for more details. Area Weight I s Allow. Moment Channel In' (cm2) lbs!ft (kg/rn) In' (cm') In3(cm3) In-lbs (N.m) P1100 0.418 1.42 0.145 0.162 4,060 2.69 2.1 6.0 2.6 460 P3000 0.500 1.70 0.120 0.153 3,850 3.23 2.5 5.0 2.5 430 P4101 0.579 1.97 0.117 0.143 3,610 3.74 2.9 4.9 2.4 410 P2000 0.342 1.16 0.125 0.140 3,520 2.21 1.7 5.2 2.3 400 P4001 0.478 1.66 0.104 0.128 3,210 3.14 2.5 4.3 2.1 360 A3301 0.459 1.56 0.077 0.103 2,590 2.96 2.3 3.2 1.7 290 Al 000 0.305 1.04 0.061 0.086 2,170 1.96 1.5 2.5 1.4 250 P3300 0.395 1.34 0.037 0.072 1,800 2.55 2.0 1.5 1.2 200 A4001 0.264 0.90 0.037 0.058 1,470 1.70 1.3 1.5 1.0 170 P6001 0.213 0.73 0.045 0.055 1,400 1.38 1.1 1.9 0.9 160 P4100 0.290 0.98 0.026 0.054 1,360 1.87 1.5 1.1 0.9 150 P4000 0.244 0.83 0.023 0.049 1,230 1.57 1.2 0.9 0.8 140 A3300 0.230 0.78 0.017 0.038 950 148 1.2 0.7 0.6 110 A4000 0.132 0.45 0.008 0.022 560 0.85 0.7 0.3 0.4 60 P6000 0.107 0.36 0.009 0.020 510 0.69 0.5 0.4 0.3 60 P7001 0.148 0.50 0.007 0.018 460 0.96 0.8 0.3 0.3 50 P7000 0.074 0.25 0.002 0.007 170 0.48 0.4 0.1 0.1 20 M /' Page 50 of 52 23 flP1000 Channel Combinations II I Fl I M P1001 1 P1001 A P1001 B 1%" (41.3) (41.3) (41.3) 1/4 3 V4 I 1' J (1La J Wt/100 Ft: 321 Lbs (478 kg/100 m) Allowable Moment 12,200 In-Lbs (1,378 N.m) 12 Gauge Nominal Thickness .105°(2.7mm) P1001 C WtI100 Ft: 378 Lbs (562 kg/100 m) Allowable Moment 18,640 In-Lbs (2,110 N.m) 12 Gauge Nominal Thickness .105(2.7mm) P1001 3 Wt/100 Ft: 378 Lbs (562 kgllOO m) Allowable Moment 18,640 In-Lbs (2,110 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 A3 1W (41.3) 3114[LJI; .761".864 (19.3) 2 (21.9) 1/6' F (41.3) ' 2A72" 4W k4-1 (62.8) -41 (123.13) 2.403" I 1(61.0) II J_t 2 '3) 4W (123.8) ji .778 (19.8) Wt/100 Fl: 378 Lbs (562 kg/100 m) Allowable Moment 15,950 In-Lbs (1,800 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 B3 WI/lCD Fl: 566 Lbs (843 kg/100 m) Allowable Moment 31,840 In-Lbs (3,600 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 D3 WI/lCD Ft: 566 Lbs (843 kg/100 m) Allowable Moment 32,770 In-Lbs (3,700 N.m) 12 Gauge Nominal Thickness .105° (2.7mm) P1003 1W 4W fl (123.8) .778" -L. ft847* (19.8) ., (21.5) WI/lCD Ft: 566 Lbs (843 kglloo m) Allowable Moment 37,550 In-Lbs (4,240 N'm) 12 Gauge Nominal Thickness .105° (2.7mm) P1001 C41 Wt/100 Fl: 755 Lbs (1,124 kglloo m) Allowable Moment 28,720 In-Lbs (3,250 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) Wt/100 Ft: 566 Lbs (843 kg/100 m) Allowable Moment 17,550 In-Lbs (1,980 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 0 31/4" 1.354 (82.6)='j[ T 1.896° ( JJ(48.2 1.930° f 1.320" (49.0) 2 (33.5) Wt/100 Fl: 566 Lbs (843 kg/100 m) Allowable Moment 18,680 In-Lbs (2,110 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) 147*" 113/640 1.245" (44.1) (30.6) 2 (31.6) r 1 --i I LL (102.4) (12.4) Wt/100 Ft: 333 Lbs (495 kg/lCD m) Allowable Moment 6,240 In-Lbs (700 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1004 A 1h2° (46.8) 1/6° (4l3)lFIL. 4 7W I 404l.6 1 L J (123.8) I z (11.1) Wt/100 Ft: 668 Lbs (994 kg/100 m) Allowable Moment 41,970 In-Lbs (4,740 N°m) 12 Gauge Nominal Thickness .105° (2.7mm) 31 (82 Channel Finishes: PL, GR, HG, PG, ZO; Standard Lengths: 10'& 20' Page 51 of 52 ADJUSTABLE PIPE CLAMPS - - Unistrut Adjustable Pipe Clamps are manufactured from glass-reinforced polyurethane and are adjustable to accommodate a wide range of outside diameters. They can be uti- lized with a variety of piping systems including: PVC, fiberglass, copper, rigid steel conduit and PVC coated rigid steel conduit. Care should be taken not to exceed It /lbs of tnrnii on the ditIt2hfp Part Number O.D. Pipe Size (in.) Design Load Type 1 Type 2 Lbs (kN) Lbs (kN) Torque Ft/Lbs (N.m) Wt/100 PCs Lbs (kg) 200-3100 ½-1½ 135(0.6) 65(0.3) 0.8(1) 3(1.4) 200-3110 1½-2¼ 135 (0.6) 65(0.3) 3(4) 5(2.3) 200-3120 2¼-.3'h 145 (0.6) 70(0.3) 3(4) 5(2.3) 200-3130 3-4 215(1.0) 70(0.3) 3(4) 8(3.6) 200-3140 4-6h 215(1.0) 70(0.3) 3(4) 10(4.5) '>Pipe Clamps U] I Fl I IUi I -• ' pipe straps. *Design loads shown represent a 3:1 safety factor. RIGID PIPE CLAMPS PVC, Sch. 80 Design Loads* FRP Bolt Part Nominal & Rigid Metal Type I Type 2 FRP Bolt Torque Wt!100 PCs Number Size (in.) In (mm) Lbs (kN) Lbs (kN) Size (in.) FtlLbs (N.m) Lbs (kg) FPCR-050 ½ 0.840 (21.3) 225 (1.0) 90(0.4) 34 x 1¼ 3(1.4) FPCR-075 34 1.050 (26.7) 225 (1.0) 90(0.4) 34 x 11/4 3(1.4) FPCR-100 1 1.315 (33.4) 225 (1.0) 90(0.4) 34 x 1¼ 4(1.8) FPCR-125 1/4 1.660 (42.2) 225 (1.0) 90(0.4) 34x 1¼ 5(2.3) FPCR-150 191 1.900 (48.3) 225(1.0) 90(0.4) 34 x 1¼ 5(2.3) FPCR-200 2 2.375 (60.3) 225(1.0) 90(0.4) 34 x 1¼ 3(4) 5(2.3) FPCR-250 2½ 2.875 (73.0) 225(1.0) 90(0.4) 34 x 1¼ 7(3.2) FPCR-300 3 3.500 (88.9) 225(1.0) 90(0.4) 34 x 1¼ 10(4.5) FPCR-400 4 4.500 (114.3) 300 (1.3) 125 (0.6) Mi x 1¼ 12(5.4) FPCR-600 6 6.625 (168.3) 300 (1.3) 125 (0.6) 34 x 1¼ ___________ 15(6.8) FPCR-800 8 8.625 (219.1) 300 (1.3) 125 (0.6) 34 x 1¼ 18(8.1) Design loads shown represent a 3:1 safety factor. Rigid Pipe Clamps resemble the more traditional style of pipe clamps and are sized based on the pipe inside diameter or nominal size. Polyurethane clamps are recommended for applications up to 16017. For high temperature applications (up to 230F). Care should be taken not to exceed the recommended torque values of the rigid pipe clamps. Material: glass-reinforced polyurethane. Two HOLE PIPE STRAPS Bolt Material Design Load Part Dim. A Dim. B Size Thick. Type I Type2 Torque Wt!100 PCs No. In (mm) In (mm) (in.) In (mm) Lbs (kN) Lbs (kN) Ft/Lbs (N.m) Lbs (kg) 2.375 6.375 ¼ 135 50 4 14 FPS200 60.33 161.93 ½ 6.4 0.60 0.22 5 6.4 2.875 6.875 ¼ 135 50 4 17 FPS250 73.03 174.63 ½ 6.4 0.60 0.22 5 7.7 3.500 7.500 ¼ 135 50 4 20 FPS300 88.90 190.50 ½ 6.4 0.60 0.22 5 9.1 FPS350 4.000 8.000 91 ¼ 135 50 4 33 101.60 203.20 6.4 0.60 0.22 5 15.0 FPS400 4.500 8.500 ½ 1/4 175 60 4 23 114.30 215.90 6.4 0.78 0.27 5 10.4 5.563 9.563 ¼ 175 60 4 39 FPSSOO 141.30 242.90 16 6.4 0.78 0.27 5 17.7 FPS600 6.625 10.625 ½ 'A 175 60 4 39 168.28 269.88 6.4 0.78 0.27 5 17.7 FPSBOO 8.625 12.625 14 1/4 225 125 4 51 219.08 320.68 6.4 1.00 0.56 5 23.1 FPS1000 10.750 15.750 'A 225 125 10 77 273.05 400.05 6.4 1.00 0.56 14 34.9 FPS1200 12.750 16.250 ¼ 225 125 10 83 323.85 412.75 6.4 1.00 0.56 14 37.6 FPS1400 14.000 18.000 34 250 150 10 125 355.60 457.20 9.5 1.11 0.67 14 56.7 16.000 20.000 34 250 150 10 143 FPS1600 406.40 508.00 9.5 1.11 0.67 14 64.9 FPS1800 18.000 23.000 34 250 150 10 160 457.20 584.20 9.5 1.11 0.67 14 72.6 Design loads shown represent a 3:1 safety factor. Two Hole Pipe Straps are designed for use in securing pipe, conduit and ducts to Channel. Two hole fiberglass straps can also be used independently from the channel for surface mounting. All sizes of the straps are suitable for load bearing applications. Material: fire-retardant, glass-reinforced polyester resin. For extreme chemical environments, the straps can be manufac- tured from vinyl ester resin. Larger diameter straps for special applications are also available. Contact the factory for pricing and availability of vinyl ester and large diameter straps. Two hole pipe straps should not be torqued above recommended values. Notes: Bolts and channel nuts are sold separately. When bolting onto 1W channel a 1W long bolt is req'd. Fiberglass -MINE&- Page 52 of 52 203 I \!IL + S T R U C T U RA L ClT"' OF pUlLD' STRUCTURAL CALCULATIONS PROJECT: LEGOLAND CALIFORNIA RESORT ,-i1-OKEHOUSE (SMK) LEGOLAND DR. CARLSBAD SAN DIEGO, CA 92008 July 11, 2019 N% cog C:V2101c=1 031fo www.lamareng.com 217 Landis Avenue, Chula Vista, CA. 91910 Luis Labrada 217 Landis Avenue LA lvi 1k R Proyecto: Nodes 11 Date: 05/07/19 Chula Vista, CA 91910 •IpINEEPJNG Engineer: M.R P: 619-370-9515 www.lamareng.com Contents APPENDIX I. DESIGN ATTACHMENT. ANTENNAS ................... . ...................................................................................... 3 APPENDIX It. DESIGN ATTACHMENT. RADIOS . ............................................................................................................. 10 APPENDIX III. DESIGN ATTACHMENT. CABINET EQUIPMENT . ................................................................................. 17 APPENDIXIV. SCREEN WALL.............................................................................................................................................24 APPENDIX V. ROOF VERIFICATION..................................................................................................................................29 APPENDIXVI. TABLES ......................................................................................................................................................... 32 Luis Labrada 217 Landis Avenue LAMARProyecto: Nodes 11 Date: 05/07/19 Chula Vista, CA 91910 NENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX I. DESIGN ATTACHMENT. ANTENNAS U Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com jJC iVii + STRUCTURAL Project: Nodes 11 Date: 07/08/2019 Engineer: M.R I SEISMIC DESING ANTENNA I DESCRIPTION Description: QUINTEL QS46512-2 ANTENNA W= 75.0 Lbs bldg height = 22.50 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 75.0 Lbs. FpH = (0.64 * Wp)/1.4 = 34.3 Lbs FpH = 0.46 * Wp = 34.5 Lbs HORIZONTAL FpV = 0.28 * Wp = 21.0 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh= 1.0 Ft. FPH = (0.4*ap*SDS*Wp)I(Rp*Ip)*(1+2*7Jh) = 28.4 Lbs. Verifications FpH max = 1.6* Sos * mm = 0.3 * SDS * l,'* W = 94.6 Lbs. > 28.4 Lbs. [OK FpH I * WP = 17.7 Lbs. 28.4 Lbs. [OK I ii 11 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 11 Date: 07/08/2019 Engineer:M.R ANCHORAGE DESIGN (SEISMIC) ANTENNA I GEOMETRY e= 1.25 ft d= 2.13 ft -y Fx d Wp e FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy = 37.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 26.5 Lbs Vertical force, Ey = 10.5 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 70.5 Lbs Max shear force per anchor = Dy + Ey = 48.0 Lbs Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING Project: Nodes 11 Date: 07/08/2019 Engineer:M.R I WIND DESING ANTENNA I DESCRIPTION Description: QU INTEL QS46512-2 ANTENNA W= 75.0 Lbs bldg height = 22.5 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS A = 1.32 For h = 22.5 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure p5 = A x Kzt x I x ps30 = 20.99 psf Horizontal PS = Ax Kzt x lx ps30 = 18.22 psf Roof Uplift Applied horizontal force, Fph = Ps x (bxc)/2 = 90.9 Lbs Applied vertical force, Fpv = Ps x (axc)/2 = 16.4 Lbs C 1.0 110.0 mph 1.0 Flat Fph d [.Jiit1LV4 b e = 1.25 ft d= 2.13 ft a= 0.90 ft b= 4.33 ft c= 1.00 ft Wp e Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com L1F1 L4 CIVIL + srAucuRAL Project: Nodes 11 Date: 07/08/2019 Engineer:M.R I ANCHORAGE DESIGN (WIND) ANTENNA I FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy = 37.5 Lbs FORCES WIND (W) Horizontal force, Wx = 55.1 Lbs Vertical force, Wy = 8.2 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 99.1 Lbs Max shear force per anchor = Dy + Wy = 45.7 Lbs B B Fx = Dx+(Ex or Wx) = 99.1 Lbs Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 1.0 Antennas Total Quantity 8.5 ft H= 8.50 ft Lc= 4.64 ft n Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com cvii + STRUC1UAAL Project: Nodes 11 Date: 07/08/2019 Engineer: M.R I ELEMENT & CONNECTIONS DESIGN ANTENNA I 4 UNISTRUT HORIZONTAL DESIGN Number of radios pair Odd number of radios M. max = PL/8 (n-1/n) M.max = PL/8 (n+1/n) 1 ___________________ Lc.4.c4.c4.c4.cd R = P (n-i )I2 R = P n12 n= 2 n= C = 2.32 ft c = 4.64 ft Px= M. Mmax (y-y) = Py = M. Mmax (x-x) = 99.1 Lbs 114.9 Ft-Lbs 1379.1 In-Lbs 48.0 Lbs 55.7 Ft-Lbs 668.2 In-Lbs Use: Unistrut: P1000 1 5/8 x I 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog —No. 17- Page 23 Demand Capacity Ratio Status 1379.1 In-Lbs < 5070.00 In-Lbs 0.27 [__OK Demand Capacity Pull Out Ratio Status 668.2 In-Lbs < 5070.00 In-Lbs 0.13 [ OK ] Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodes 11 Date: 07108/2019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN ANTENNA Fx = Dx+(Ex or Wx) = 99.1 Lbs Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 1.0 Antennas Total Quantity 8.5 ft H= 8.5 ft Lc= 4.6 ft CONNECTION A Radio Status Shear = 48.0 Lbs 0.53 [ OK Pull Out = 99.1 Lbs 0.45 LOK Unistrut Use: Ridge Pipe Clamps: FPCR-075 General Engineering Catalog - No. 17- Page 203 Thickness: 3/4 in Length: 1.05 in FRP Bolt: 3/8"xl 1/4 Allowable Shear: 90 Lbs Allowable Pull-Out: 220 Lbs Steel Beam Use: Two Hole Pipe Straps: FPS300 General Engineering Catalog - No. 17- Page 203 Thickness: 1/4 ,in Bolt: 1/2 in Allowable Shear: 50 1 Lbs Allowable Pull-Out: 135 Lbs Luis Labrada 217 Landis Avenue LP F/1 1k R Proyecto: Nodes 11 Date: 05/07/19 Chula Vista, CA 91910 IMENGINEERING Engineer: M.R P: 619-370-9515 www.lamarenci.com APPENDIX II. IDESIGN ATTACHMENT. RADIOS. Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMA N Project: Nodes 11 Date: 07/08/2019 HENGINEERING Engineer: M.R SEISMIC DESING RADIO DESCRIPTION Description: Alu Radio Units W= 59.5 •Lbs bldg height = 22.5 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 59.5 Lbs. FpH = (0.64 * Wp )/1.4 = 27.2 Lbs FpH = 0.46 * Wp = 27.37 Lbs HORIZONTAL FpV = 0.28 * Wp = 16.66 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*lp)*(1+2*z/h) = 22.5 Lbs. Verifications FpH max = 1.6* 5 * I * WP= 75.0 Lbs. 22.5 Lbs. [OK I DS p p FpH min = 0.3 * 5DS * I p * WP= 14.1 Lbs. 22.5 Lbs. [OK Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENG1NEERING Project: Nodes 11 Date: 07108/2019 Engineer:M.R I DESIGN FORCES (SEISMIC) I RADIO I GEOMETRY ,4 C a Plan Radio Dimensions a= 0.92 ft b= 2.10 ft C = 0.92 tft Support = 4 Quantity bl Fph Elevation FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a/4 = 13.7 Lbs*ft Dx= 6.5 Lbs Dy= 14.9 Lbs FORCES SEISMIC (E) Applied horizontal force, Ex = 9.3 Lbs Applied vertical force, Ey = 4.2 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 15.8 Lbs Max shear force per anchor = Dy + Ey = 19.0 Lbs Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com 10A / ~- ~il CIVIL + SVRUCVURVL Project: Nodes 11 Date: 07/08/2019 Engineer:M.R WIND DESING RADIO DESCRIPTION Description: Alu Radio Units W = 59.5 Lbs bldg height = 22.5 ft ELEMENT DESIGN (WIND) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Flat ANALYSIS A = 1.32 For h = 22.5 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure ps = A x Kzt x I x ps30 = 20.99 psf Horizontal ps = A x Kzt x I x ps30 = 18.22 psf Roof Uplift tFpv Suction Wall bl Fph Suction Elevation Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR HENGNEERING Project: Nodes 11 Date: 07/08/2019 Engineer:M.R I DESIGN FORCES (WIND) I RADIO I GEOMETRY C a$ Plan Radio Dimensions a= 0.92 ft b= 2.10 ft C = 0.92 ft Support = 4 Quantity FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a14 = 13.7 Lbs*ft Dx= 6.5 Lbs Dy= 14.9 Lbs' FORCES WIND (W) Applied horizontal force, Wx = 13.5 Lbs Applied vertical force, Wy = 3.9 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 20.0 Lbs Max shear force per anchor = Dy + Wy = 18.7 Lbs Luis Labrada 217 Landis Avenue Project: Nodes 11 Chula Vista, CA 91910 LAMAR Date: 07/08/2019 P: 619.370-9515 IUENGNEERING Engineer: M.R www.lamareng.com ELEMENT & CONNECTIONS DESIGN I RADIO c Load: Fx = Dx+(Ex or Wx) = 20.0 Lbs Fy = Dy+(Ey or Wy) = 19.0 Lbs I J*[A Unistrut vertical Q = 2.0 N° of radios per vertical unist. 8.4 = 10.0 H= 8.42 Radios Total Quantity ::M ft LAQt Unistrut Horizontal C Nu = 2 Unistrut B Lc= 17.92 ft 2 f = 2.00 ft Length Supp. Unistrut UNISTRUT VERTICAL DESIGN P= 20.0 Lbs I' V M. Mmax = PL13 = 28.1 Ft.-Lbs. Status 337.3 In.-Lbs. L OK_j Use: Unistrut: P1000 1 5/8 x I 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 UNISTRUT HORIZONTAL VERIFY Px. 40.1 Lbs M. Mmax (y-y) = 109.3 1311 Ft.-Lbs. In.-Lbs. Radio Status 0.26 [ OK 1 j Py = 38.1 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 103.9 Ft.-Lbs. Radio Status n = ii 1246 In.-Lbs. 0.25 L OK ] c= 0.18 ft Use: Unistrut: P1000 1 5/8 x 1 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com _Iwi riir 'j I Civil- f SIRUCTUfAL Project: Nodes 11 Date: 07/08/2019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN I RADIO CONNECTION A: RADIOS TO VERTICAL UNISTRUT CHANNEL NUTS WITH SPRING Status Shear = 19.0 Lbs r OK 1 Pull Out = .20.0 Lbs L OK_J Use: Channel Nuts: 318"-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex -Head: 318"-1 1/2" Mm. General Engineering Catalog - No. 17 Page 68 CONNECTION B: VERTICAL UNISTRUT TO HORIZONTAL UNISTRUT CHANNEL NUTS WITH SPRING Status Shear= 38.1 Lbs [ OK 7 Pull Out = 40.1 Lbs L OK ] Use: Channel Nuts:-3/8"-16 ' General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 'Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"4 1/2" Mm. General Engineering Catalog - No. 17 Page 68 Luis Labrada 217 Landis Avenue LA I! 1k R Proyecto: Nodes 11 Date: 05/07/19 Chula Vista, CA 919110 IMENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX III. DESIGN ATTACHMENT. CABINET EQUIPMENT. Luis Labrada : 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com Wil M & I V 11 r CIVIL + STRUCTURAL Project: Nodes 11 Date: 07/08/2019 Engineer: M.R SEISMIC DESING CABINET DESCRIPTION Description: BBU CABINET W = 382.0 Lbs bldg height = 22.5 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SOS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = 382.0 Lbs. FpH = (0.64 * Wp )/1.4 = 174.63 Lbs FpH = 0.46 * Wp = 175.72 Lbs HORIZONTAL FpV = 0.28 * Wp = 106.96 Lbs UP OR DOWN ap = 1.0 'Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 •Ref. Table 11.5-1 ASCE 7-10 z/h= tO Ft. FpH = (0.4*ap*SDS*Wp)i(Rp*lp)*(1+2*z/h) = 144.5 Lbs. Verifications FpH max = 1.6 * SOS * I p * WP= 481.6 Lbs. > 144.5 Lbs. FpH mm = 0.3 * SOS * I p * WP= 90.3 Lbs. 144.5 Lbs. Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com WAM RN 'II 4 I i IL 4- S1RUC 71 URAL Project: Nodes 11 Date: 07/08/2019 Engineer:M.R I DESIGN FORCES (SEISMIC) I CABINET I GEOMETRY C aI_______ Plan a= 1.83 ft b= 3.25 ft C = 3.20 ft Support = 4 Fpv - Wall a b Fph I P Elevation FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a14 = 174.8 Lbs*ft Dx = 53.8 Lbs Dy = 95.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 132.5 Lbs Vertical force, Ey = 26.7 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 186 Lbs Max shear force per anchor = Dy + Ey = 122 Lbs I Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com CIVIL STRUCTURAL Project: Nodes 11 Date: 07/0812019 Engineer:M.R WIND DESING CABINET DESCRIPTION Description: BBU CABINET W= 382 Lbs bldg height = 22.5 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS A = 1.32 For h = 22.5 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure ps = A x Kzt x I x ps30 = 20.99 psf Horizontal PS =,X x Kzt x I x ps30 = 18.22 psf Roof Uplift Applied horizontal force, Fph = Ps x (bxc)/2 = 218.3 Lbs Applied vertical force, Fpv = Ps x (axc)/2 = 106.7 Lbs C 1.0 110.0 mph 1.0 Flat GEOMETRY p 4 al I Plan a= 1.83 ft b= 3.25 ft C = 3.20 ft Support= 4 Fpv Suction Wall fl a 4 bL Fph j 'I, Suction Elevation Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com L I WAII tLy'vi WAS 'lILIIL Ll LlllclvL + SAUCTUAALI Project: Nodes 11 Date: 07/08/2019 Engineer:M.R I DESIGN FORCES (WIND) I CABINET I FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a14 = 174.8 Lbs*ft Dx= 53.8 Lbs Dy= 95.5 Lbs FORCES WIND (W) Horizontal force, Wx = 169.2 Lbs Vertical force, Wy = 26.7 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 223 Lbs Max shear force per anchor = Dy + Wy = 122 Lbs Fx = Dx+(Ex or Wx) = Fy = Dy+(Ey or Wy) = Q= H= Lc = 223.0 Lbs 122.2 Lbs 3.0 Cabinet Total Quantity 4.67 ft 7.92 ft Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR UNENGINEERING ELEMENT & CONNECTIONS DESIGN Project: Nodes 11 Date: 07/08/2019 Engineer: M.R CABINET 7.92 ft El 4 UNISTRUT HORIZONTAL DESIGN Px = 223.0 Lbs M. Mmax (y-y) = 1513.7 Ft.-Lbs. Radio Status 1 1 + 1 18164 In.-Lbs. 0.97 L 0K] I- Py = 122.2 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 829.8 Ft.-Lbs. Radio Status n = 7 9958 In-Lbs. 0.53 [ OK ] c = 1.13 ft Use: Unistrut: PIOOIA (2) 1 5/8 x 1 5/8-12ga Nominal Thickness Allowable Moment: 18640 In-Lbs General Engineering Catalog - No. 17- Page 27 I Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR HENGINEERING fl.a.:.ut.t.,mn Project: Nodes 11 Date: 07/08/2019 Engineer:M.R I ELEMENT & CONNECTIONS DESIGN I CABINET I Fx = Dx+(Ex or Wx) = 223.0 Lbs Fy = Dy+(Ey or Wy) = 122.2 Lbs Q = 3.0 Cabinet Total Quantity 4.67 ft H= 4.7 ft Lc= 7.9 ft CONNECTION A: CABINET TO UNISTRUT CHANNEL NUTS WITH SPRING ____ Radio Status Shear = 122.2 Lbs 0.15 OK Pull Out = 223.0 Lbs 0.22 OK Use: Channel Nuts: 3I8"-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1I2" Mm. General Engineering Catalog - No. 17 Page 68 CONNECTION B: UNISTRUT TO POST BOLT DESIGN Reaction unistrut horizontal Ry = Py(n-1 )I2 Rx = Px(n-1)/2 Use: D-Bolt: 318 in. n Bolt: 2 Material: A307 Demand 366.7 Lbs Demand 668.9 Lbs Shear = 366.7 Lbs - Pull Out = 668.9 Lbs Fv= 24 ksi Ft= 45 ksi Capacity Shear Status > 5301.4 Lbs OK I Capacity Pull-Out Status 99402 Lbs OK ] Luis Labrada 217 Landis Avenue LAM1k R Proyecto: Nodes 11 Date: 05/07/19 Chula Vista, CA 91910 INENGINEERING Engineer: M.R P: 619-370-9515 www.lamarenp.com APPENDIX IV. SCREEN WALL Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 11 Date: 07108/2019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I 5eometry W = 7.5 psf Weight Li B SCREEN LENGTH S — a.. a. a - -- - -..........- L = i. 11 creen total iengtn B= 1.67 ft NP = 4.00 Number Post Li = 4.64 Ift L. between post NS = 3.00 NO Steps between post S = 1.55 Length Steps SCREEN HEIGHT Hi = 8.5 ft Screen Height H2 = 14.0 ft. [E] Structural Roof H2 = 22.5 ft Total Height H3N Building rF View Section Wind Force Exposure category (ASCE 7-10 26.7.3) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Pressure 30 Psf. Applied horizontal force, Fph = Ps x (LxHi) = 3549.6 Lbs - Applied vertical force, Fpv = Ps x (LxB) = 697.4 Lbs 11 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IL.!iLc Project: Nodes 11 Date: 07/0812019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I FRP Channel Stifener - Design Tributary: S = 1.55 ft H1= 8.50 ft Demand: Load qw = 46.5 Lbs/Ft M. Mmax (x-x) = 5039.4 In.-Lbs. 8.5 ft r EEL NEW 0001~1 Flexural Strength = 1292.16 psi , Caoacitv Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. Iz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity oa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1292.16 psi 6600 psi 0.2 fOKJ FRP Channel Stifener - Connection Demand Shear = 197.625 Lbs Capacity Use: 1I2 in FRP Bolt nBolt: I . 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 197.625 Lbs < 780 Lbs 0.25 EITOKITI Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LAMAR Project: Nodes 11 Date: 07/08/2019 P: 619.370-9515 IENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE I Top & Bottom FRP Horizonal Tube - Design Tributary: L1= 4.64 ft HI= 8.50 ft Demand: 8.5 ft I[WEE] Load qw = 127.5 Lbs/Ft M. Mmax (x-x) = 4117.5 In.-Lbs. Flexural Strength = 1055.78 psi 4.64 ft 4.64 ft No Capacity Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 In2 Gross area of the section h = 4 In. . lz = 7.80 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1055.78 psi 6600 psi 0.16 bK1 Top & Bottom FRP Horizonal Tube - Connection Demand Shear = 295.8 Lbs Capacity Use: 1/2 in FRP Bolt n Bolt: 2 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 295.8 Lbs 1560 Lbs 0.19 ETOKTI Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING Project: Nodes 11 Date: 07/0812019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I CONNECTION TO WALL EOMETRY A Fov Suction L I Plan L= 13.92 ft LI = 4.64 ft Hl= 6.00 ft 8= 1.67 ft Support= 8 TB 4 Fph 101. Suction FORCES GRAVITATORY (D) Weight, Wp = 1125.4 Lbs Overturning moment OTM = Wp*B12 = 939.7 Lbsft Dx= 156.6 Lbs Dy= 187.6 Lbs FORCES WIND (W) Applied horizontal force, Wx = 637.8 Lbs Applied vertical force, Wy = 116.2 Lbs COMBINATIONS (04W) Max axial load per anchor = Dx + Wx = 794 Lbs Max shear force per anchor = Dy + Wy = 304 Lbs CONNECTION DESIGN: LAG SCREW Shear= 303.8 Lbs Pull Out = 794.4 Lbs Use: 0-Bolt: 518 in Long = 4 in n Bolt: 2 Side Member Thickness: 114 - in Shear: 440.0 Lbs Allowable Screw Shear Ref. Table 12K. Per NDS 2018 Pull-Outs 447.0 Lbs/in Allowable Screw Pull Out Ref. Table 12.2A. Per NDS 2018 Demand Capacity Shear Ratio Status 303.8 Lbs 880.00 Lbs 0.35 1 OK Demand Capacity Pull Out Ratio Status 794.4 Lbs < 3576.00 Lbs 0.22 EOK 111 Luis Labrada 217 Landis Avenue LA M i R Proyecto: Nodes 11 Date: 05/07/19 Chula Vista, CA 91910 RMENGINEERING Engineer: M.R P: 619-370-9515 www.lamarenq.com APPENDIX V. ROOF VERIFICATION A. Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 LAMAR IENGINEERING pa'aasa..pu...n Project: Nodes 11 Date: 07/0812019 Engineer: M.R VERIFY ROOF . I FRAMING Node 11 I ANTENNA DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] HEX454CU0000G 46.80 15.60 7.40 48.90 0 0.00 0.00 HEX654CU0100G 51.10 12.00 .7.10 39.70 0 0.00 0.00 CUUX06306F52s0-T 24.30 12.10 7.00 13.00 0 0.00 0.00 CUUX05XO6F5200 24.10 16.20 7.30 15.70 0 0.00 0.00 QUINTELQS46512-2 52.00 12.00 10.80 75.00 0 0.00 0.00 Total 0.00 0.00 0.00 RADIOS DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] RRUS - 2203 7.90 7.90 3.90 10.00 0 0.00 0.00 ERICSSON RRUS-4426 15.00 13.20 5.80, 48.40 0 0.00 0.00 ERICSSON RRUS -4478 18.10 13.40 8.26 59.40 0 0.00 0.00 ERICSSON RRUS -4415 16.50 13.40 5.90 46.00 0 0.00 0.00 ALCATEL LUCENT TD-RRH8X20-25 9.68 12.83 6.30 26:45 0 0.00 0.00 ALCATEL LUCENT CDMA/LTE DUAL TECH 25.00 11.00 11.00 59.50 0 0.00 0.00 Total 0.00 0.00 1 0.00 CABINET DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] BBU 32.25 27.50 27.00 382.00 3 15.47 1146.00 AC POWER 18.50 20.00 6.00 50.00 1 0.83 50.00 TELCO CABINET 14.25 7.75 6.00 10.00 1 0.32 10.00 Total 5.00 16.63 1206.00 Luis Labrada Project: Nodes 11 LAMAR Date: 07108/2019 217 Landis Avenue Chula Vista, CA 91910 INENGINEERING Engineer: M.R P: 619.370-9515 FRAMING Existing Load I Density Concrete: 145.0 pcf DL: 72.5 lb/sq. ft. Thickness: 6.0 in LL: 20.0 lb/sq. ft. Area [sq ft] DL I LL I DL+LL [E] Steel Deck 1 198 14355 1 3960 1 18315 JLbs. New Load Antennas Radio Cabinet Total: Quantity Area DL Lbs Lbs Lbs 1 Lbs 0 0 0 0 0 0 5 17 1206 1 5 1 17 1 1206 - New Load + Existing Load Existing New Total: New + Existing DL LL DL+LL Area [sq ft] DL LL DL+LL DL LL DL+LL Steel Deck 14355 3960 18315 17 0 -333 -333 14355 3627 17982 Antennas 0 0 0 0 0 0 0 0 0 0 Radio 0 0 0 0 0 0 0 0 0 0 Cabinet 0 0 1 0 17 1206 0 1206 1206 1 0 1206 Total: 19188 - Chapter #34A CBC 2016 3403A.3 Existing structural elements carrying gravity load. 'Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load- carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404A.3. Any existing element that will form part of the lateral load path for any part of the addition shall be onsidered an existing lateral load- carrying structural element subject to the requirements of Section 3403A.4.' New Total Load: 19188 Lbs Existing Total Load: 18315 Lbs [New Total Load] -[Existing Total Load] _*100% [New Total Load] = 4.550 % E 4.55j < Li ]% Luis Labrada 217 Landis Avenue Li F/i Proyecto: Nodes 11 Date: 05/07/19 Chula Vista, CA 91910 NNENGINEERING Engineer: M.R P: 619-370-9515 www.lamarenp.com APPENDIX VI. TABLES TABLE 1: SEISMIC DESIGN T - Ae Staff Parking 9 \ Hotel Parking 9 \ Map data 02019 Google 5/16/2019 U.S. Seismic Design Maps U. OSHPD Legoland I Legoland Dr, Carlsbad, CA 92008, USA Latitude, Longitude: 33.1262496, -117.31192390000001 S' 9 Museum of Making Music \ , LEGOLAND California 'Google Date 5/16/2019,11:03:03 AM Design Code Reference Document ASCE7-10 Risk Category II Site Class 0 - Stiff Soil Type Value Description Ss 1.127 MCER ground motion. (for 0.2 second period) S 0.434 MCER ground motion. (for 1.0s period) SMS 1.182 Site-modified spectral acceleration value SM1 0.679 Site-modified spectral acceleration value Sos 0.788 Numeric seismic design value at 0.2 second SA S01 0.453 Numeric seismic design value at 1.0 second SA Type Value Description SOC 0 Seismic design category Fa 1.049 Site amplification factor at 0.2 second Fv 1.566 Site amplification factor at 1.0 second PGA 0.447 MCEG peak ground acceleration FPGA 1.053 Site amplification factor at PGA PGAM 0.471 Site modified peak ground acceleration TL 8 Long-period transition period in seconds SsRT 1.127 Probabilistic risk-targeted ground motion. (0.2 second) SsUH 1.194 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration SO 1.525 Factored deterministic acceleration value. (0.2 second) S1RT 0.434 Probabilistic risk-targeted ground motion. (1.0 second) Si UH 0.436 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.616 Factored deterministic acceleration value. (1.0 second) PGAd 0.59 Factored deterministic acceleration value. (Peak Ground Acceleration) CRS 0.944 Mapped value of the risk coefficient at short periods CR1 0.995 Mapped value of the risk coefficient at a period of 1 s https://seismicmaps.org 1/2 5/16/2019 MCER Response Spectrum 1.5 2.5 5.0 Period, T (sec) - Sa(g) U.S. Seismic Design Maps 7.5 2.5 5.0 7.5 Period, T (sec) - Sa(g) DISCLAIMER While the information presented on this website is believed to be correct, SEAOC /.QSHPQ and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the soundijudgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this webstie. Design Response Spectrum 0.8 0.6 0.4 (5 C) 0.2 0.0 0.0 https://seismicmaps.org 2/2 TABLE:2 DESIGN VALUES LOAD CHART FOR FRP MATERIALS Appendix A Design Values Load Chart for FRP Materials ALLOWABLE STRENGTH TABLE FOR FRP SHAPES: Tubes, Channels, Angles Property Direction Value Units Tensile Strength Lengthwise Crosswise 6,600 1,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 6,600 3,300 psi Flexural Strength Lengthwise Crosswise 6,600 2,200 psi Flexural Modulus Lengthwise Crosswise 1,600,000 800,000 psi Shear Strength Lengthwise Crosswise 1,400 500 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi 1/2" Bolt Bearing Lengthwise Crosswise 6,000 3,600 psi 1/2" Bolt Shear Allowable 780 lbs 1/2" Bolt Tension Allowable 300 lbs Table Notes: Values based on 1525 series - Thermoset Polyester Class 1 FR (Slate Grey) A Safety Factor of 5.0 has been used to determine Allowable Loads. ALLOWABLE STRENGTH TABLE FOR FRP FLAT SHEETS: Property Direction Value Units Tensile Strength Lengthwise Crosswise 4,000 2,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 4,800 3,200 psi Flexural Strength Lengthwise Crosswise 7,000 3,000 psi Flexural Modulus Lengthwise Crosswise 2,000,000 1,100,000 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi Table Notes: Values based on 1625 series - Thermoset Vinyl Ester Class 1 FR (Beige) A Safety Factor of 5.0 has been used to determine Allowable Loads. I I I Hi-Tech Composite Structures Supplement for LARR #25520 Page 1 of 1 TABLE 3: POST - INSTALATED CONCRETE ANCHOR. HILTI SR-2302 I Most Widely Accepted and Trusted Page 7 of 11 TABLE 3-DESIGN INFORMATION CARBON STEEL KB3 DESIGN INFORMATION Symbol Units Nominal anchor diameter 1, 4 3 /8 112 18 34 Anchor O.D. d4 (d0)7 in. 0.250 0.375 0.500 0.625 0.750 (mm) (6.4) (9.5) (12.7) 15.9) (19.1) Effective mm. embedment' he in. IT- /2 2 2 314 5 31I8 4 33/4 (mm) (38) (51) 1 (51) (83) (79) (102) (95) (127) Mm. member thickness hw. in. 4 4 5 4 6 6 8 5 6 8 6 8 8 (mm) (102) (102) (127) (102) (152) (152) (203) (127) (152) (203) (152) (203) (203) in. 2/4 4'/2 3?/4 47/s 3/ 6/4 55/s 7'/2 9'/3 7/3 93/4 7'/2 91/2 Critical edge distance Coc (mm) (70) (114) (98) (124) (92) (171) (143) (191) (241) (191) (248) (191) (241) in. 1/8 2 1'/3 2'/ 2 1/5 1/8 2'/4 1/4 1/4 2/4 2 /8 2/3 Cmjn ______ (mm) (35) (51) (38) (54) (51) (41) (41) (57) (44) (44) (70) (67) (64) Mm. edge distance in. 1/4 2/ 3'/ 41/s 43/4 4'/4 4 5'/4 43/4 4 67/e 03 6/ for s a (mm) (44) (73) (89) (124) (121) (108) (102) (133) (121) (102) 1 (175) (165) (162) in. 04 1/4 1/4 2'/3 2'4 2 1/5 2 /8 2'/ 2'/ 33/4 33/s 31/ Smin ______ (mm) (32) (44) (44) (64) (57) (51) (48) (60) (54) (54) (95) (86) (83) Mm. anchor spacing in. 1 /8 2/ 2 /8 2 /8 2/ /4 2 2 3'/8 2 /8 2/4 33/4 3/ 33/s for c (mm) (41) (60) (60) (67) (60) (57) (51) (79) (60) (57) (95) (86) (86) in. 2 25/8 25/8 4 3/e 43/4 41/2 53/4 Mm. hole depth in concrete hhole (mm) (51) (67) (67) (102) (98) (121) (114) (146) psi 84,800 84,800 84,800 84,800 84,800 Mm. specified yield strength fy. (N/mm2) (585) (585) (585) (585) (585) psi 106,000 106,000 106,000 106,000 106,000 Mm. specified ult. strength fa (N/mm2) (731) (731) (731) (731) (731) in 0.02 0.06 0.11 0.17 0.24 Effective tensile stress area Ase (mm2) (12.9) (38.7) (71.0) (109.7) (154.8) lb 2,120 6,360 11,660 18,020 25,440 Steel strength in tension N 0 (kN) (9.4) (28.3) (51.9) (80.2) (113.2) Steel strength in shear Vsa lb 1,640 4,470 6,635 I 6,750 I 12,230 15,660 I 16,594 (kN) (7.3) (19.9) (29.5) (30.0) (54.4) (69.7) (73.8) Pullout strength uncracked Npuna lb 1,575 NA NA 6,800 NA NA 10,585 concrete (kN) (7.0) I (30.2) I (47.1) Anchor category3 1,2 or 3 - 1 Effectiveness factor kuncr - k UflCr 24 uncracked concrete4 Modification factor for WcN .. 1.0 uncracked concrete Coefficient for pryout - 1.0 2.0 Installation torque TjflSf ft*lb 4 20 I 40 60 I 110 (Nm) (5) I (27) I (54) (81) (149) Axial stiffness in service load range (lb/in) 116,150 162,850 203,500 I 191,100 222,150 I 170,700 207,400 I 164,000 COV 60 I 42 I 29 I 29 I 25 I 21 19 I 24 Strength reduction factor for tension, steel 0.75 failure modes5 Strength reduction factor for shear, steel 0.65 failure modes5 Strength reduction factor for tension, concrete 0.65 failure modes, Condition B° Strength reduction factor 0 for shear, concrete 0.70 failure modes, Condition B6 For SI: 1 inch = 25.4 mm, llbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-in units: 1 mm = 0.03937 inches. 'See Fig. 2 2See Section 4.1.4 of this report, NA (not applicable) denotes that this value does not govern for design. 3See ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. 4See ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. 5The carbon Steel KB3 is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable. 6For use with the load combinations of ACI 318-14 Section 5.3, ACI 318-11 Section 9.2 or IBC Section 1605.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 0.4.3(c), as applicable, is not provided, or where pull-out or pry out strength overns. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. The notation in parenthesis is for the 2006 IBC. ESR-1917 I Most Widely Accepted and Trusted Page 8 of 14 TABLE 3-DESIGN INFORMATION, CARBON STEEL KB-TZ DESIGN INFORMATION Symbol Units Nominal anchor diameter I8 1/2 /8 3, '4 AnchorO.D. d0(d0) in. 0.375 -0.5 0.625 0.75 (mm) (9.5) (12.7) (15.9) (19.1) Effective mm. embedment' h,,, in. 1/3 2 2/4 2 3 /4 31/8 4 1 3/ 33/4 414 (mm) 1 (38) (51) (70) (51) (83) (79) (102) (83) (95) (121) Mm. member thickness2 h,,,,, in. 3'4 415 I 5 46 618 I 5 618 I 5/ 618 I 8 (mm) (83) (102) (127) (127) (102)1 (152) (152) 1(203) (127) (152) (203) (140) (152) 1(203) (203) in. 6 43/8 I ' 4'/ 5/2 I 4'/2 7'/2 I 6 6'/.2 8/4 I 6/4 12 10 I 8 9 Critical edge distance c,.,, (mm) (152) (111) I (102) (105) (140)1(114) I (191)1(152) I (165) (222)1(171) I (305) (254) 1(203) I (229) In. 8 21I2 21/3 2/4 2 /8 3 /8 3'/ 912 43/4 4 /8 C (mm) 1 (203) (64) (64) (70) (60) (92) (83) (241) (121) (105) Mm. edge distance for s z in. 8 5 5 53/4 53/4 61/8 5 /8 5 10/3 81/8 (mm) (203) (127) (127) (146) (146) (156) (149) (127) (267) (225) in. 8 21/3 21/3 2/4 2 /8 31/ 3 5 5 4 Sm, (mm) (203) (64) (64) (70) (60) (89) (76) (127) (127) (102) Mm. anchor spacing In. 8 3 /8 3 /8 41/8 3/3 43/4 41/4 9 3 9/3 7/4 for c a (mm) 1 (203) (92) (92) (105) (89) (121) (108) (241) (241) (197) in. 2 2 /8 3 /8 2 /8 4 3/ 4/ 4 4'/ 5'/. Mm. hole depth in concrete h0 (mm) (51) (67) (86) (67) (102) (98) (121) (102) (117) (146) Mi specified yield strength lb/in2 100,000 84,800 84,800 84,800 (N/mm2) (690) (585) (585) (585) Mm. specified ult. strength lb/in2 125,000 106,000 106,000 106,000 (N/mm2) (862) (731) (731) (731) Effective tensile stress area AS,,.N In 0.052 0.101 0.162 0.237 (mm2) (33.6) (65.0) (104.6) (152.8) Steel strength in tension N,,, lb 6,500 10,705 17,170 25,120 (kN) (28.9) (47.6) (76.4) (111.8) Steel strength in shear VS8 lb 2.180 3,595 5,495 - 8,090 13,675 (kN) (9.7) (16.0) (24.4) (36.0) (60.8) Steel strength in shear, lb 2,180 2,255 5,495 7,600 11,745 seismic3 (kN) (9.7) (10.0) (24.4) (33.8) (52.2) Pullout strength uncracked N,,,,,4, lb 2,160 2,515 I I 4.110 NA I I 5,515 NA I I 9,145 NA I I 8,280 110,680 concrete4 (kN) (9.6) (11.2) I (18.3) (24.5) I (40.7) I (36.8) (47.5) Pullout strength cracked N,,, lb NA 2,270 I 3,160 NA I I 4,915 NA NA concrete (kN) (10.1) I (14.1)I I (21.9) Anchor category5 2 1 Effectiveness factor k,,,,,, uncracked concrete 24 Effectiveness factor k4, cracked concrete 17 1.0 Coefficient for pryout strength, kcp 1.0 2.0 1.0 2.0 Strength reduction factor 0 for tension, steel failure 0.75 modes8 Strength reduction factor 0 for shear, steel failure 0.65 modes8 Strength reduction 0 factor for tension, concrete 0.55 0.65 failure modes or pullout, Condition B9 Strength reduction 0 factor for shear, concrete failure 0.70 modes, Condition B Axial stiffness in service load I fiunc, I lb/in. 600,000 range" lb/in. 135,000 For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-inch units: 1 mm = 0.03937 inches. 'See Fig. 2. 2For sand-lightweight or normal-weight concrete over metal deck, see Figures 5A, SB, SC and 50 and Tables 5 and 6. 3See Section 4.1.8 of this report. 4For all design cases Pc,p =1.0. NA (not applicable) denotes that this value does not control for design. See Section 4.1.4 of this report. 55ee ACI 318-14 17.3.3 or ACI 318-11 0.4.3, as applicable. 6 See ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. 1For all design cases WGN =1.0. The appropriate effectiveness factor for cracked concrete (k4,) or uncracked concrete (k4,,,,,) must be used. 8The KB-TZ is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 Dl, as applicable. 9For use with the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 0.4.3(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. '°Mean values shown, actual stiffness may vary considerably depending on concrete strength, loading and geometry of application. TABLE 4: FASTENERS. LAGSCREW AM Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections 1,2,3,4 300 for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for t5<1/4) or W ASTM A 36 steel side plate (for t5=1/4) (tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D) C.) 0 cot h j E 00 0 0 e - 0 E 0 E a 2 a & a 2 ' 11 0 C3 00M U Z11 Z.L Z11 ZI Z11 Z Z11 Z.L Al Z.L Z11 Z1 Z11 Z1 4 Z1 Z11 Z1 4 Z t8 D in. in. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs lbs. lbs. 0.075 1/4 170 130 160 120 150 110 150 110 150 100 140 100 140 100 130 90 130 90 130 90 (14gagel 5/16 220 160 200 140 190 130 190 130 190 130 180 120 180 120 170 110 170 110 160 100 3/8 220 160 200 140 200 130 190 130 190 120 180 120 180 120 170 110 170 100 170 100 0.105 1/4 180 140 170 130 160 120 160 120 160 110 150 110 150 110 140 100 140 100 140 90 (12 gage) 5/16 230 170 210 150 200 140 200 140 190 130 190 130 190 120 180 110 170 110 170 110 3/8 230 160 210 140 200 140 200 130 200 130 190 120 190 120 180 110 180 110 170 110 0.120 1/4 190 150 180 130 170 120 170 120 160 120 160 110 160 110 150 100 150 100 140 100 (11gage) 5/16 230 170 210 150 210 140 200 140 200 140 190 130 190 130 180 120 180 120 180 110 3/8 240 170 220 150 210 140 210 140 200 130 200 130 190 120 180 110 180 110 180 110 0.134 1/4 200 150 180 140 180 130 170 130 170 120 160 120 160 110 150 110 150 100 150 100 (10gage) 5/16 240 180 220 160 210 150 210 140 200 140 200 130 200 130 190 120 180 120 180 120 3/8 240 170 220 150 220 140 210 140 210 140 200 130 200 130 190 120 190 120 180 110 0.179 1/4 220 170 210 150 200 150 200 140 190 140 190 130 190 130 180 120 170 120 170 120 (7 gage) 5/16 260 190 240 170 230 160 230 160 230 150 220 150 220 150 210 130 200 130 200 130 3/8 270 190 250 170. 240 160 240 160 230 150 220 140 220 140 210 130 210 130 200 130 0.239 114 240 180 220 160: 210 150 210 150 200 140 190 140 190 130 180 120 180 120 180 120 (3 gage) 5/16 300 220 280 190 270 180 260 180 260 170 250 160 250 160 230 150 230 150 230 140 3/8 310 220 280 190 270 180 270 180 260 170 250 160 250 160 240 140 230 140 230 140 7/16 420 290 390 260 380 240 370 240 360 230 350 220 350 220 330 200 330 200 320 190 1/2 510 340 470 300 460 290 450 280 440 270 430 260 420 260 400 240 400 230 390 230 5/8 770 490 710 430 680 400 680 400 660 380 640 370 630 360 600 330 590 330 580 320 314 1110 670 1020 590 980 560 970 550 950 530 920 500 910 500 860 450 850 450 840 440 7/8 1510 880 1390 780 1330 730 1320 710 1280 690 1250 650 1230 650 1170 590 1160 590 1140 570 1 1940 1100 1780 960 1710 910 1700 890 1650 860 1600 820 1590 810 1500 740 1480 730 1460 710 1/4 1/4 240 180 220 160 210 150 210 150 200 140 200 140 190 130 180 120 180 120 180 120 5/16 310 220 280 200 270 180 270 180 260 170 250 170 250 160 230 150 230 150 230 140 3/8 320 220 290 190 280 180 270 180 270 170 1 260 160 250 160 240 150 240 140 230 140 7/16 1/2 IL 5/8 1 480 320 580 390 850 530 540 3401 780 4701 420 270 520 320 750 440 1 510 320 1 740 440 420 260 1-710-250 500 310 720 420 390 240 480 290 700 400 390 230 480 290 690 400 370 220 460 270 660 370 360 210 450 260 650 360 360 210 440 260 640 350 3/4 1 1200 730 1 1100 640 1 1060 600 1 1050 590 1 1020 570 990 540 980 530 930 490 920 480 900 470 7/8 1600 930 1470 820 1410 770 1400 750 1360 720 1320 690 1310 680 1240 630 1220 620 1200 600 1 2040 1150 1870 1000 1800 950 1780 930 1730 900 1680 850 1660 840 1570 770 1550 760 1530 740 I. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Tabulated lateral design values, Z. are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to SD; dowel bearing strengths, IF,, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, FY,, of 70,000 psi for D = 1/4", 60,000 psi for D = 5/16', and 45,000 psi for D ?3/8'. Where the lag screw penetration, p, is less than SD but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration. The length of lag screw penetration, p, not including the length of the tapered tip. E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, p,,,. Copyright © American Wood council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorized. AMERICAN WOOD COUNCIL NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION 77 Table 12.2A Lag Screw Reference Withdrawal Values, W1 Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member shall not include the length of the tapered tip (see 12.2.1.1). Specific Gravity, ________ Lag Screw Diameter, D __ _____ _______ G2 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4" 7/8" 1" 1-1/8" 1-1/4" 0.73 1 0.71 397 469 538 604 668 789 905 1016 1123 1226 1327 1273 1 381 450 516 579 640 757 868 974 1077 1176 0.68 357 422 484 543 600 709 813 913 1009 1103 1193 11671 [0.67 349 413 473 531 587 694 796 - 893 987 1078 869 0.58 jo.55 281 332 381 428 473 559 641 719 795 940 868 j 260 307 352 395 437 516 592 664 734 - 802 0.51 232 274 314 353 390 461 528 593 656 716 775 752] 730 686 J L 0.50 225 266 305 296 342 378 447 513 576 636 695 0.49 218 258 332 367 434 498 559 617 674 j 0.47 205 242 278 312 345 408 467 525 580 634 0.46 199 235 269 302 334 395 453 508 562 613 664 186 220 252 283 312 369 423 475 525 574 621 1 0.43 179 212 243 273 302 357 409 459 508 554 600 1 0.42 173 205 235 264 291 344 395 443 490 535 579 ] 0.41 167 198 226 254 281 332 381 428 473 516 559 L 0.40 161 190 218 245 271 320 367 412 455 497 --53-87 0.39 155 183 210 236 261 308 353 397 438 479 518 149 176 202 227 251 296 340 381 422 461 498] 0.37 143 169 194 218 241 285 326 367 405 443 479 T 0.36 137 163 186 209 231 273 313 352 389 425 46J 0.35 132 156 179 200 222 262 300 337 373 407 1 441 T 0.31 110 130 149 167 185 218 250 281 311 —T3-91--36-77 Tabulated withdrawal design values, W, for lag screw connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Specific gravity, 0, shall be determined in accordance with Table 12.3.3A. adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W. W = 1380 G/2 D (12.2-3) The nail or spike reference withdrawal design value, W, in lbs/in, of penetration, for a smooth shank stainless steel nail or spike driven into the side grain of a wood member, with the nail or spike axis perpendicu- lar to the wood fibers, shall be determined from Table 12.2D or Equation 12.24, within the range of specific gravities, G, and nail or spike diameters, D, given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3. 1) to obtain adjusted withdrawal design values, W'. W = 465 G/2 D (12.2-4) For calculation of the fastener reference with- drawal design value in pounds, the unit reference with- drawal design value in lbs/in, of fastener penetration from 12.2.3.1a or 12.2.3.1b shall be multiplied by the length of fastener penetration, Pt, into the wood mem- ber. 12.2.3.2 Deformed shank nails (a) The reference withdrawal design value, in lbs/in, of ring shank penetration, for a Roof Sheathing Ring Shank nail or Post-Frame Ring Shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2E or Equation 12.2-5, within the range of specific gravities and nail diameters given in Table 12.2E. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Ta- ble 11.3. 1) to obtain adjusted withdrawal design values, WI. W = 1800 G2 D (12.2-5) a- Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorized. AMERICAN WOOD COUNCIL TABLE 5: UNISTRUT GENERAL ENGINEERING CATALOG-NO. I UN ISTRUT CHANNEL SELECTION CHART Channel Dimensions Material & Thickness Hole Pattern Styles Channel I I Width Height Steel Stainless Steel Alum. i/I//I HS I KO SL DS H3 ln(mm) In (MM) gauge gauge In (mm) Steel Only P1000 1%(41.3) 1%(41.3) 12 ga 12 ga 0.109 (2.8) U 111111 U U U P1100 1%(41.3) 1%(41.3) 14 ga 14 ga - P2000 154(41.3) 134(41.3) 16 ga - - U U - - P3000 1%(41.3) 154(34.9) 12 ga - - U U P3300 134(41.3) 34(22.2) 12 ga 12 ga - U - - - P4000 154(41.3) '3118(20.6) 16 ga 16 ga 0.078(2.0) U U P4100 154(41.3) '3/is (20.6) 14 ga - - U U - - - P5000 134(41.3) 3'A(82.6) 12 ga 12ga - U - - P5500 154(41.3) 1 21/is (61.9) 12 ga - 0.109 (2.8) • U U U - - CHANNELS & COMBINATIONS IN DESCENDING ORDER OF STRENGTH Area Weight I $ Allow. Moment Channel In2 (cm2) Ibslft (kg/rn) In4 (cm4) In3(cm3) In-lbs (N.m) P5001 1.793 6.10 6.227 1.916 48,180 11.57 9.1 259.2 31.4 5,440 P1004A 1.965 6.68 4.068 1.669 41,980 12.68 9.9 169.3 27.4 4,740 P5501 1.452 4.94 2.805 1.151 28,940 9.37 7.3 116.8 18.9 3,270 2.221 7.55 1.856 1.142 28,720 P1001C41 14.33 11.2 77.2 18.7 3,250 P5000 0.897 3.05 1.098 0.627 15,770 5.78 4.5 45.7 10.3 1.780 P1001 1.111 3.78 0.928 0.571 14,360 7.16 5.6 38.6 9.4 1,620 0.835 2.84 0.733 0.451 11,340 P1101 5.39 4.2 30.5 7.4 1,280 P3001 1.000 3.40 0.591 0.430 10,810 6.45 5.1 24.6 7.0 1,220 P5500 0.726 2.47 0.522 0.390 9,820 4.68 3.7 21.7 6.4 1,110 P2001 0.684 2.32 0.618 0.381 9,570 4.41 3.5 25.7 6.2 1,080 0.489 2.23 0.279 0.297 7,480 P9200 3.16 3.3 11.6 4.9 850 A5000 0.492 1.67 0.358 0.265 6.670 3.17 2.5 14.9 4.3 750 A1001 0.609 2.07 0.302 0.242 6.070 3.93 3.1 12.6 4.0 690 P9000 0.387 1.88 0.166 0.205 5,150 2.50 2.8 6.9 3.4 580 0.555 1.89 0.185 0.202 5,070 P1000 3.58 2.8 7.7 3.3 570 P3301 0.790 2.69 0.176 0.201 5,060 5.10 4.0 7.3 3.3 570 Combinations not shown in catalog are available on special order. Consult factory for more details. Area Weight I s Allow. Moment Channel In2 (cm2) IbsIft (kg/rn) In4 (cm4) In3(crn3) In-lbs (N.m) 0.418 1.42 0.145 0.162 4,060 P1100 2.69 2.1 6.0 2.6 460 0.500 1.70 0.120 0.153 3,850 P3000 3.23 2.5 5.0 2.5 430 0.579 1.97 0.117 0.143 3,610 P4101 3.74 2.9 4.9 2.4 410 0.342 1.16 0.125 0.140 3,520 P2000 2.21 1.7 5.2 2.3 400 0.478 1.66 0.104 0.128 3,210 P4001 3.14 2.5 4.3 2.1 360 0.459 1.56 0.077 0.103 2,590 A3301 2.96 2.3 3.2 1.7 290 0.305 1.04 0.061 0.086 2,170 A1000 1.96 1.5 2.5 1.4 250 0.395 1.34 0.037 0.072 1,800 P3300 2.55 2.0 1.5 1.2 200 0.264 0.90 0.037 0.058 1,470 A4001 1.70 1.3 1.5 1.0 170 0.213 0.73 0.045 0.055 1,400 P6001 1.38 1.1 1.9 0.9 160 0.290 0.98 0.026 0.054 1,360 P4100 1.87 1.5 1.1 0.9 150 0.244 0.83 0.023 0.049 1,230 P4000 1.57 1.2 0.9 0.8 140 0.230 0.78 0.017 0.038 950 A3300 1.48 1.2 0.7 0.6 ' 110 0.132 0.45 0.008 0.022 560 A4000 0.85 0.7 0.3 0.4 60 0.107 0.36 0.009 0.020 510 P6000 0.69 0.5 0.4 0.3 60 P7001 0.148 0.50 0.007 0.018 460 0.96 0.8 0.3 0.3 50 0.074 0.25 0.002 0.007 170 P7000 0.48 0.4 0.1 0.1 20 1/B' Framing System 23 P1000 Channel Combin,ations U N I STR U I P1001 T P1001 A P1001 B () ____ I 19;: Wt/100 FL: 321 Lbs (478kg/100m) Allowable Moment 12,200 In-Lbs (1,378 N•m) 12 Gauge Nominal Thickness .105" (2.7mm) 131001 C Wt/100 Ft: 378 Lbs (562 kg/100 m) Allowable Moment 18,640 In-Lbs (2,110 Nm) 12 Gauge Nominal Thickness .105(2.7mm) P1001 3 WLI100 Ft: 378 Lbs (562 kg/1 00 m) Allowable Moment 18,640 In-Lbs (2,110 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 A3 1W (41.3) 3 Y4[fLiTr (82.6) 1.573* .761 .864 (19.3) 1 %" r ' 1 2.472" rkl (62.8) .,. 2.403" (I23.S)Ft+ 4' I 1(61.0) Ii I J._t 2 34" (41.3) 4W (123.8) Li .778" (19.8) (2I.) Wt/100 FL: 378 Lbs (562 kg/100 rn) Allowable Moment 15,950 In-Lbs (1,800 N•m) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 B3 WLIlOO FL: 566 Lbs (843 kg/100 m) Allowable Moment 31,840 In-Lbs (3,600 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 D3 WL/100 Ft: 566 Lbs (843kg/100m) Allowable Moment 32,770 In-Lbs (3,700 N"m) 12 Gauge Nominal Thickness .105" (2.7mm) P1003 31 (82 164" 11%4 1.245" (44.1) (30.6) 2 (31.6) t IL (102.4) (12.4) WL/100 FL: 333 Lbs (495 kg/100 m) Allowable Moment 6,240 In-Lbs (700 N•m) 12 Gauge Nominal Thickness .105" (2.7mm) Wt/100 FL: 566 Lbs (843 kg/loOm) Allowable Moment 37,550 In-Lbs (4,240 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) WtJl00 FL: 566 Lbs (843 kg/laO m) Allowable Moment 17,550 In-Lbs (1,980 N.m) 12 Gauge Nominal Thickness .105' (2.7mm) P1001 C41 P1001 C3 P1004 A 12742" 7/ Hi i 1.354 3,4 -_.ji lol.6)(826) 1896 - 14 JJ48.2) 2 1.930' 1.320" (49.0) , (33.5) Wt/100 FL: 755 Lbs (1,124 kg/loo m) Wt/100 FL: 566 Lbs (843kg/100m) WL/100 FL: 668 Lbs (994 kg/100 m) Allowable Moment 28,720 In-Lbs (3,250 N.m) Allowable Moment 18,680 In-Lbs (2,110 N'm) Allowable Moment 41,970 In-Lbs (4,740 Nm) 12 Gauge Nominal Thickness .105" (2.7mm) 12 Gauge Nominal Thickness .105" (2.7mm) 12 Gauge Nominal Thickness .105" (2.7mm) Channel Finishes: PL, GR, HG, PG, ZO; Standard Lengths: 10'& 20 Part Number O.D. Pipe Size (in.) Design Load Type I Type 2 Lbs (kN) Lbs (kN) Torque Ft/Lbs (N.m) W000 PCs Lbs (kg) 200-3100 ½- 1½ 135 (0.6) 65(0.3) 0.8 p) 3(1.4) 200-3110 116-2'h 135(0.6) 65(0.3) 3(4) 5(2.3) 200-3120 2'A-3¼ 145 (0.6) 70(0.3) 3(4) 5(2.3) 200-3130 3-4 215(1.0) 70(0.3) 3(4) 8(3.6) 200-3140 4-616 215(1.0) 70(0.3) 3(4) 10(4.5) Design loads shown represent a 3:1 safety factor. Pipe Clamps UNISTRUT ADJUSTABLE PIPE CLAMPS - Unistrut Adjustable Pipe Clamps are manufactured from glass-reinforced polyurethane and are adjustable to accommodate a wide range of outside diameters. They can be uti- lized with a variety of piping systems including: PVC, fiberglass, copper, rigid steel conduit and PVC coated rigid steel conduit. 4!4 Care should be taken not to exceed 3 ftilbs. of torque on the adjustable pipe straps. RIGID PIPE CLAMPS PVC, Sch. 80 Design Loads FRP Bolt Part Nominal & Rigid Metal Type I Type 2 FRP Bolt Torque WtI100 PCs Number Size (in.) In (mm) Lbs (kN) Lbs (kN) Size (in.) FtlLbs (N.m) Lbs (kg) FPCR-050 ½ 0.840 (21.3) 225 (1.0) 90(0.4) 34 x 1¼ 3(1.4) FPCR-075 34 1.050 (26.7) 225(1.0) 90(0.4) 34x1¼ 3(1.4) FPCR-100 1 1.315 (33.4) 225 (1.0) 90(0.4) 34 x 1¼ 4(1.8) FPCR-125 1/4 1.660 (42.2)1 225(1.0) 90(0.4) %x1¼ 5(2.3) FPCR-150 112 1.900 (48.3) 225 (1.0) 90(0.4) 34 x 11/4 5(2.3) FPCR-200 2 2.375 (60.3) 225 (1.0) 90(0.4) 34 x 1¼ 3(4) 5(2.3) FPCR-250 2½ 2.875 (73.0) 225 (1.0) 90(0.4) 34 x 1¼ 7(3.2) FPCR-300 3 3.500 (88.9) 225(1.0) 90(0.4) %x 1¼ 10(4.5) FPCR-400 4 4.500 (114.3 300(1.3) 125 (0.6) 34 x 1¼ 12(5.4) FPCR-600 6 6.625 (168.3) 300(l.3) 125 (0.6) 34 x 1¼ 15(6.8) FPCR-800 8 8.625 (219.1) 300 0.3) 125 (0.6) 34 x 1¼ 18 (8.1) *Design loads shown represent a 3:1 safety factor. Rigid Pipe Clamps resemble the more traditional style of pipe clamps and are sized based on the pipe inside diameter or nominal size. Polyurethane clamps are recommended for applications up to 16017. For high temperature applications (up to 230F). Care should be taken not to exceed the recommended torque values of the rigid pipe clamps. Material: glass-reinforced polyurethane. Two HOLE PIPE STRAPS Bolt Material Design Load Part Dim. A Dim. B Size Thick. Type 1 Type2 Torque Wt!100 PCs No. In (mm) In (mm) (in.) In (mm) Lbs (kN) Lbs (kN) Ft!Lbs (N.m) Lbs (kg) 2.375 6.375 'A 135 50 4 14 FPS200 60.33 161.93 ½ 6.4 0.60 0.22 5 6.4 2.875 6.875 ¼ 135 50 4 17 FPS250 73.03 174.63 ½ 6.4 0.60 0.22 5 7.7 3.500 7.500 ¼ 135 50 4 20 FPS300 88.90 190.50 ½ 6.4 0.60 0.22 5 9.1 FPS35O 4.000 8.000 ½ 1/4 135 50 4 33 101.60 203.20 6.4 0.60 0.22 5 15.0 FPS400 4.500 8.500 ½ 1/4 175 60 4 23 114.30 215.90 6.4 0.78 0.27 5 10.4 5.563 9.563 ¼ 175 60 4 39 FPS500 141.30 242.90 ½ 6.4 0.78 0.27 5 17.7 FPS600 6.625 10.625 ½ ¼ . 175 60 4 39 168.28 269.88 6.4 0.78 0.27 5 17.7 FPS800 8.625 12.625 ½ 1/4 225 125 4 51 219.08 320.68 6.4 1.00 0.56 5 23.1 FPS1000 10.750 15.750 'A 225 125 10 77 273.05 400.05 6.4 1.00 0.56 14 34.9 FPS1200 12.750 16.250 14 225 125 10 83 323.85 412.75 6.4 1.00 0.56 14 37.6 FPS1400 14.000 18.000 34 250 150 10 125 355.60 457.20 9.5 1.11 0.67 14 56.7 16.000 20.000 34 250 150 10 143 FPS1600 406.40 508.00 9.5 1.11 0.67 14 64.9 FPS1800 18.000 23.000 34 250 150 10 160 457.20 584.20 9.5 1.11 0.67 14 72.6 *Design loads shown represent a 3:1 safety factor. Two Hole Pipe Straps are designed for use in securing pipe, conduit and ducts to Channel. Two hole fiberglass straps can also be used independently from the channel for surface mounting. All sizes of the straps are suitable for load bearing applications. Material: fire-retardant, glass-reinforced polyester resin. For extreme chemical environments, the straps can be manufac- tured from vinyl ester resin. Larger diameter straps for special applications are also available. Contact the factory for pricing and availability of vinyl ester and large diameter straps. Two hole pipe straps should not be torqued above recommended values. Notes: Bolts and channel nuts are sold separately. When bolting onto 1%" channel a 1¼" long bolt is req'd. Fiberglass 1 203 LAMAR NNENGINEERING RECEV JUL 1 6 2019 STRUCTURAL CALvCULAflONS BUILDING DIVUicM PROJECT: LEGOLAND CALIFORNIA RESORT NODE 1 KINGDOM X(FP- I LEGOLAND DR. CARLSBAD SAN DIEGO, CA 92008 July 11, 2019 i jr W4 LU www.lamareng.com Page 1 of 49 217 Landis Avenue, Chula Vista, CA. 91910 51 ki Luis Labrada ecto Node 12A-12B. Chula Vista, CA 91910 LAMAR Proy : Engineer: M.R. P: 619-370-9515 IMENGINEERING 07/05/2019 www.Iamarena.com INDEX APPENDIX I. FRP SCREEN WALL ........................................................................................................................................3 APPENDIXII. ANTENNAS . ...................................................................................................................................................... 9 APPENDIXIII. RADIOS...........................................................................................................................................................16 APPENDIX IV. CABINET EQUIPMENT................................................................................................................................24 APPENDIXV. TABLES ................. . ....................................................................................... ................................................... 34 S.., Page 2 of 49 Luis Labrada ecto Node 12A-12B. Chula Vista, CA 91910 LAM AR Proy : Engineer: M.R. P: 619-370-9515 INENGINEERING 07/05/2019 www.lamarenq.com APPENDIX I. FRP SCREEN WALL Page 3 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING Project: Nodes 12A-12B Date: 0710812019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I Geometry W = 7.5 psf Weight Lt Li 00 SCREEN LENGTH S L = 5.6 ft Screen total length _- P1 A NP= 2 NO Post NS = 3 NO Steps Between Post H3 Li = [5.6 jft L. Between Post H2 P2 S = 1.86 Length Steps Ht H4 H51 JL SCREEN HEIGHT L2 H1 = 19.83 ft. [E] Structural Root Hi vE H2 = 5.50 ,ft Post Height Building H3 = 5.5 ft Screen Height H4 = 0.000 ft Screen Wall Ht = 25.33 ft Total height BRACE L2= 4.00 ft H5= 2.75 ft 8 = 48.867 ° Wind Force Exposure category (ASCE 7-10 26.7.3) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.51) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Pressure 30 Psf. Page 4 of 49 I Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LAMAR P: 619.370-9515 www.lamareng.com INENGINEERING Project: Nodes 12A-1213 Date: 07108/2019 Engineer: M.R I SCREEN WALL DESIGN - FRP TYPE I FRP Channel Stifener - Design I rlbutarv: s = 1.6 it H3= 5.50 ft 19f Demand: Load qw = 55.8 Lbs/Ft M. Mmax (x-x) = 2531.9 In.-Lbs. 5.5 ft Flexural Strength = 1265.96 psi CaaciLv Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. lz = 3.00 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity oa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1265.96 psi 6600 psi 0.19 1 0KJ FRP Channel Stifener - Connection Demand Shear = 153.45 Lbs Capacity Use: 1I2 in FRP Bolt n Bolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 153.45 psi 780 psi 0.2 11110KT1 Page 5 of 49 11 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LAMAR P: 619.370-9515 IENGINEERING www.lamareng.com Project: Nodes 12A-128 Date: 07/0812019 Engineer: M.R I SCREEN WALL DESIGN - FRP TYPE I I Loads Reactions Top & Bottom FRP Horizonal Tube Reaction = 229.8 Lbs RI = 459.5 Lbs R2 = 459.5 Lbs Check Capacities Steel Column M. Mmax = 15164.3 In.-Lbs. Flexural Strength = 3888.29 psi Use: HSS_SQR4X4XI_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 3888.29 psi 6600 psi 0.59 T0K1 Check Caøacities Brace Axial force: 475.9 Lbs Compressive Strength: 141.2 psi Use: HSS_SQR4X4XI_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity oa = 6600 Psi. Allowable Compressive Strength. (Appendix A. Design Wlues Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 141.2 psi < 6600 psi 0.02 EOKI Steel Column to Brace (KICKER) - Connection Reaction Steel Column to Brace: V = 475.9 Lbs D-Bolt = 1I2 in Fv = 24 ksi n Bolt: 3 Ft = 45 ksi Material = A307 Demand > Allowable Shear Ratio Status 158.6 Lbs > 14137.2 Lbs 0.01 EOKT1 Page 6 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERINGI Nodes 12A-12B Date: 07108/2019 Engineer: M.R I SCREEN WALL DESIGN - FRP TYPE I I Keaction bteei oIumn = u.0 LOS 0 Fy= 631.85 Lbs d2 Steel Column: HSS_SQR 4X4X1_4 A A • ad1j 0- Plate: y a= 10 in dl= 7 in b= 10 in d2= 7 in t= 1/4 in k= 1.5 in Bolt: Shear V = 229.76 Lbs . _ Pull Out T = 157.9625 Lbs V T Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1 917) nBolt: 4 6 Dia.: 1I2 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 31/4 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio - Status 229.8 Lbs. < 5495 Lbs. 0.04 OK - Demand Capacity Pull Out Ratio -- Status - 631.9 Lbs. 4915 psi 0.13 OK FRP Brace to Roof (BRAKET) - Connection Reaction Steel Column Fx = 919.1 Lbs b Fy= 631.85 Lbs Steel Brace: HSS_SQR 4X4X1_4 ad1------I F-- a= 10 in d1 = 6 in b= 14 in d2= 10 in t= 1/4 in k= 2.0 1.5 Min Bolt: Shear V = 0.0 Lbs. Per Bolt __ Pull Out T = 158.0 Lbs. Per Bolt T Anchor: Steel Carbon KB-TZ (Table 3. ICC-ES ESR-1917) nBolt: 4 6 Dia.: 1/2 in Alowable Anchor Steel Strengh Shear = 5495 Lbs. Embed.: 3114 in Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Demand Capacity Shear Ratio Status - 0.0 psi 5495 psi 0.00 - OK Demand Capacity Pull Out Ratio - Status 158.0 psi < 4915 psi 0.03 OK Page 7 of 49 LI [1 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IIENGINEERINGI Project: Nodes 12A-12B Date: 07/0812019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I Top & Bottom FRP Horizonal Tube - Design Tributary: Li = 5.57 ft H3= 5.50 ft Demand: Load qw = 82.5 Lbs/Ft 5.5 ft WP M. Mmax (x-x) = 3839.3 In.-Lbs. Flexural Strength = 1919.67 psi I [ Capacity 5.57 ft U Use: HSS_SQR 3X3X1_4 - FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. Iz = 3.00 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1919.67 psi < 6600 psi 0.29 EoK] Top & Bottom FRP Horizonal Tube - Connection Demand Shear= 229.8 Lbs Capacity Use: 112 in FRP Bolt nBolt: 2 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 229.8 psi < 1560 psi 0.15 0KTJ Page 8 of 49 Luis Labrada ecto Node 12A-12B. Chula Vista, CA 91910 LAMLR Proy : Engineer: M.R. P: 619-370-9515 IENGINEERING 07/05/2019 www.lamareng.com APPENDIX II. ANTENNAS. Page 9 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodes 12A-1213 Date: 07/08/2019 Engineer: M.R I SEISMIC DESING ANTENNA I DESCRIPTION Description: QU INTEL QS46512-2 ANTENNA W = 75.0 Lbs bldg height = 25.40 ft ELEMENT DESIGN (SEISMIC) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 75.0 Lbs. FpH = (0.64 * Wp )/1.4 = 34.3 Lbs FpH = 0.46 * Wp = 34.5 Lbs HORIZONTAL FpV = 0.28 * Wp = 21.0 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 1p= 1.0 Ref. Table 11.5-1 ASCE 7-10 z/h= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*lp)*(1 +2*z/h) = 28.4 Lbs. Verifications FpH max = 1.6 * S * * WP = 94.6 Lbs. 28.4 Lbs. [OK I DS p p FpH min = 0.3 * S * i * WP = 17.7 Lbs. 28.4 Lbs. [OK I DS p p - . Page 100f49 U 0 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com W, ~ N fit 14,11 [41 ILI 14 414 1 UM t It ICIVIL + srRucTVRAL Project: Nodes 12A-12B Date: 07/08/2019 Engineer:M.R ANCHORAGE DESIGN (SEISMIC) ANTENNA GEOMETRY e= 1.25 ft d= 2.13 ft -y Fx d Wp e FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy= 37.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 26.5 Lbs Vertical force, Ey = 10.5 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 70.5 Lbs Max shear force per anchor = Dy + Ey = 48.0 Lbs Page 11 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING ofl .flfla•It:fl Project: Nodes 12A-12B Date: 07108/2019 Engineer:M.R I WIND DESING ANTENNA I DESCRIPTION Description: QU INTEL QS46512-2 ANTENNA W= 75.0 Lbs bldg height = 25.4 ft ELEMENT DESIGN (WIND) Location = 1 LE.GOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or 0) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS C 1.0 110.0 mph 1.0 Flat A = 1.35 For h = 25.4 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure p5 = A x Kzt x I x ps30 = 21.53 psf Horizontal PS = Ax Kzt x I x ps30 = 18.69 psf Roof Uplift Applied horizontal force, Fph = Ps x (bxc)/2 = 93.2 Lbs Applied vertical force, Fpv = Ps x (axc)/2 = 16.8 Lbs Page 12 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com M VLi AM' , I STRIJCTUAVL Project: Nodes 12A-12B Date: 07/08/2019 Engineer:M.R I ANCHORAGE DESIGN (WIND) ANTENNA I GEOMETRY a e=125ft d= 2.13 ft Wp a= 0.90 ft e b= 4.33 ft C = 1.00 ft FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy= 37.5 Lbs FORCES WIND (W) Horizontal force, Wx = 56.5 Lbs Vertical force, Wy = 8.4 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 100.5 Lbs Max shear force per anchor = Dy + Wy = 45.9 Lbs Fph d Page 13 of 49 B B Fx = Dx+(Ex or Wx) = 100.5 Lbs Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 4.0 Antennas Total Quantity 2.67 fl H= 2.67 ft Lc= 5.67 ft Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 12A-1213 Date: 07/08/2019 Engineer: M.R I ELEMENT & CONNECTIONS DESIGN ANTENNA I UNISTRUT HORIZONTAL DESIGN I Number of radios pair lOdd number of radios M. max = PL/8 (n-1/n) I M.max = PL/8 (n+iln) R = P (n-1)I2 I 1 I I I I R = P n/2 n = 5 n= 4 I I c= 1.13 ft I c= 1.42 ft Px = M. Mmax (y-y) = Py = M. Mmax (x-x) = 100.5 Lbs 341.9 Ft-Lbs 4102.5 In-Lbs 48.0 Lbs 163.3 Ft-Lbs 1959.6 In-Lbs Use: Unistrut: P1000 1 5/8 x I 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Demand Capacity Ratio Status 4102.5 In-Lbs < 5070.00 In-Lbs 0.81 OK I Demand Capacity Pull Out Ratio Status 1959.6 In-Lbs < 5070.00 In-Lbs .0.39 [OK I Page 14 of 49 B B 2.67 ft Fx = Dx+(Ex or Wx) = Fy = Dy+(Ey or Wy) = H= Lc = 100.5 Lbs 48.0 Lbs 4.0 Antennas Total Quantity 2.7 ft 5.7 ft Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR NMENGINEERING Project: Nodes 12A-12B Date: 07/08/2019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN ANTENNA 4 CONNECTION A Radio Status Shear = 48.0 Lbs 0.53 OK Pull Out = 100.5 Lbs 0.46 OK I Use: Ridge Pipe Clamps: FPCR-075 General Engineering Catalog - No. 17- Page 203 Thickness: 3/4 in Length: 1.05 in FRP Bolt: 318"xl 1/4 Allowable Shear: 90 Lbs Allowable Pull-Out: 220 Lbs CONNECTION DESIGN: FRP BOLT Shear = 200.98 Lbs Pull Out = 96.00 Lbs Use: D-Bolt: 1/2 in nBolt: 2 Shear: 780 'Lbs Allowable FRP Bolt Shear Pull-Out: 300 Lbs Allowable FRP Bolt Pull-Out (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 200.98 Lbs < 780 Lbs 0.26 OK ] Demand Capacity Shear Ratio Status 96 Lbs 300 Lbs 0.32 1 OK 1 Page 15 of 49 Luis Labrada ecto Node 12A-12B. Chula Vista, CA 91910 LAMiR Proy : Engineer: M.R. P: 619-370-9515 NENGINEERING 07/05/2019 www.lamareng.com APPENDIX III. RADIOS. Page 16 of 49 Luis Labrada 217 LandisAvenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com XT-1 "IT-3 F114 I '14D*1101121:11410[m CvrL + STPUC1URL Project: Nodes 12A-12B Date: 07/08/2019 Engineer: M.R SEISMIC DESING RADIO DESCRIPTION Description: Alu Radio Units - W= 59.5 'Lbs bldg height = 5.5 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 59.5 Lbs. FpH = (0.64 * Wp)/1.4 = 27.2 Lbs FpH = 0.46 * Wp = 27.37 Lbs HORIZONTAL FpV = 0.28 * Wp = 16.66 Lbs UP OR DOWN ap = •1.0 - Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 z/h= 1.0 Ft. FpH = (04*ap*SDS*Wp)/(Rp*lp)*(1 +2*z/h) = 22.5 Lbs. Verifications FpH max = 1.6* SDS * I p * WP = 75.0 Lbs. 22.5 Lbs. [OK I FpH min = 0.3 * SDS * 1 * WP = 14.1 Lbs. 22.5 Lbs. [OK Page 17 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com wil M I CIVIL + STRUCTURAL Project: Nodes 12A-12B Date: 07/08/2019 Engineer:M.R I DESIGN FORCES (SEISMIC) I RADIO I GEOMETRY g4C Plan Radio Dimensions a= 0.92 ft b= 2.10 ft C = 0.92 ,ft Support = 4 Quantity bl Fph Elevation FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a/4 = 13.7 Lbs*ft Dx= 6.5 Lbs Dy= 14.9 Lbs FORCES SEISMIC (E) Applied horizontal force, Ex = 9.3 Lbs Applied vertical force, Ey = 4.2 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 15.8 Lbs Max shear force per anchor = Dy + Ey = 19.0 Lbs Page 18 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR Project: Nodes 12A-1213 Date: 07/08/2019 I'aENGINEERING Engineer:M.R n.a..rn..rnmn WIND DESING RADIO DESCRIPTION Description: Alu Radio Units W= 59.5 Lbs bldg height = 5.5 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS = 1.21 For h = 5.5 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure ps = A x Kzt x I x ps30 = 19.24 psf Horizontal ps = Ax Kzt x I x ps30 = 16.70 psf Roof Uplift C 1.0 110.0 mph 1.0 Flat Page 19 of 49 tFpv Suction Fph Suction Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING Project: Nodes 12A-12B Date: 07/08/2019 Engineer:M.R I DESIGN FORCES (WIND) I RADIO I GEOMETRY Wall al I b Plan Radio Dimensions a= 0.92 ft b = 2.10 ft Elevation c= 0.92 ft Support = 4 Quantity FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a/4 = 13.7 Lbs*ft Dx= 6.5 Lbs Dy= 14.9 Lbs FORCES WIND (W) Applied horizontal force, Wx = 12.4 Lbs Applied vertical force, Wy = 3.5 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 18.9 Lbs Max shear force per anchor = Dy + Wy = 18.4 Lbs Page 20 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING fl ..I..arnfl Project: Nodes 12A-12B Date: 07/08/2019 Engineer: M.R ELEMENT & CONNECTIONS DESIGN RADIO Fx = Dx+(Ex or Wx) = Fy = Dy+(Ey or Wy) = Unistrut vertical Qt= H= Unistrut Horizontal 18.9 Lbs 19.0 Lbs 2.0 N° of radios per vertical unist. 6.0 no Radios @2 ft 3.00 ft A 3.0 A Nu = 2 Unistrut B Lc= 6.67 ft 2 f = 2.00 ft Length Supp. Unistrut UNISTRUT VERTICAL DESIGN P= 18.9 Lbs 4' 4' M. Mmax = PL/3 = 9.5 Ft.-Lbs. Status 113.4 In.-Lbs. f 0K7 I Use: Unistrut: P1000 1 5/8 x I 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 UNISTRUT HORIZONTAL DESIGN Px = 37.8 Lbs ot M. Mmax (y-y) = 64.8 Ft.-Lbs. Radio Status 778 In.-Lbs. 0.15 [_OK] In.c Py = 38.1 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 65.3 Ft.-Lbs. Radio Status n = 7 783 In.-Lbs. 0.15 U OK ] c = 0.29 ft Use: Unistrut: P1000 1 5/8 x 1 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Page 21 of 49 Luis Labrada 217 Landis Avenue Project: Nodes 12A-12B Chula Vista, CA 91910 LAMAR Date: 07/08/2019 P: 619.370-9515 JENGINEERING Engineer:M.R www.lamareng.com ELEMENT & CONNECTIONS DESIGN I RADIO CONNECTION A: RADIOS TO VERTICAL UNISTRUT CHANNEL NUTS WITH SPRING Status Shear = 19.0 Lbs I OK Pull Out = 18.9 Lbs L_OK111 Use: Channel Nuts: 318"46 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1/2" Mm. General Engineering Catalog - No. 17 Page 68 CONNECTION B: VERTICAL UNISTRUT TO HORIZONTAL UNISTRUT CHANNEL NUTS WITH SPRING Status Shear= 38.1 Lbs I OK Pull Out = 37.8 Lbs L OK1 Use: Channel Nuts: 3/8"-16 - General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1/2" Mm. General Engineering Catalog - No. 17 Page 68 tion unistrut horizontal Ratio Status Ry= Py(n-1)I2 -+ Shear = 114.2 Lbs 0.36 OK Rx = Px(n-1)I2 - Pull Out = 113.4 Lbs 0.30 L OK Use: D-Bolt = 112 in 24 in Embed. = 4 in Shear: 320.0 Lbs Allowable Screw Shear Ref. Table 12K. Per NDS 2018 Pull-Out: 378.0 Lbs/in Allowable Screw Pull Out Ref. Table 12.2A. Per NOS 2018 Page 22 of 49 Shear Demand ______ 114.2 Lbs Capacity Shear 1180.00 Lbs Capacity Pull Out 1180.00 Lbs Ratio Status 0.1 LIOK ] Ratio Status 0.1 [0K _] Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 12A-12B Date: 07108/2019 Engineer: M.R I ELEMENT & CONNECTIONS DESIGN RADIO I CONNECTION D: BLOKING TO STUD 1 Demand: Shear= 114.24 Lbs Pull Out = 113.43 Lbs . Capacity: Use= Simpson A35 Type connection= 4 Fl = 590 Lbs Pull Out A35 F2 = 590 Lbs n: 2 Demand 113.4 Lbs Page 23 of 49 Luis Labrada ecto Node 12A-12B. Chula Vista, CA 91910 LAMAR Proy Engineer: M.R. P: 619-370-9515 INENGINEERING 07/05/2019 www.lamarenci.com APPENDIX IV. CABINET EQUIPMENT Page 24 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING Project: Nodes 12A-1213 Date: 07/08/2019 Engineer: M.R I SEISMIC DESING - ANTENNA CABINET I DESCRIPTION Description: BBU CABINET W= 382.0 Lbs bldg height = 5.5 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = 382.0 Lbs. FpH = (0.64 * Wp )/1.4 = 174.63 Lbs FpH = 0.46 * Wp = 175.72 Lbs HORIZONTAL FpV = 0.28 * Wp = 106.96 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*lp)*(1+2*z/h) = 144.5 Lbs Verifications FpH max = 1.6 * 5 * I * W = 481.6 Lbs. 144.5 Lbs. [OK1 OS p p FpH min = 0.3 * S * I * W = 90.3 Lbs. 144.5 Lbs. OK---J OS p p Page 25 of 49 GEOMETRY c Wall e a1_______ b Plan a= 0.50 ft b= 1.20 ft C = 1.67 ft H= 4.67 ft e= 0.50 ft Supp.= 4 Post= 2 CONNECTION I FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*e = 191.0 Lbs*ft Dx = 79.6 Lbs Dy = 95.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = Fph/2 + Fpv*e/2b = 58.4 Lbs Vertical force, Ey = Fpv/4 = 26.7 Lbs Fpv Fph [€11 1911101 ZI1 CONNECTION 2 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com M W, TA ZVI ZP 01, RVL Project: Nodes 12A-12B Date: 07/08/2019 Engineer:M.R I DESIGN FORCES (SEISMIC) CABINET I COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 138 Lbs Max shear force per anchor = Dy + Ey = 122 Lbs Page 26 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR I½ENGINEERING Project: Nodes 12A-12B Date: 07/08/2019 Engineer: M.R I DESIGN FORCES (SEISMIC) CABINET I GEOMETRY C b Plan H Fpv Wall e Fph a= 0.50 ft c= 1.67 ft H= 4.67 ft e= 0.50 ft Supp.= 4 Al Post= 2 T CONNECTION 2 FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*e = 191.0 Lbs*ft Dy= 191.0 Lbs Mz = 95.5 Ft.-Lbs. FORCES SEISMIC (E) Horizontal force, Ex = 72.2 Lbs Vertical force, Ey = 53.5 Lbs Moment, Mz = 320.8 Ft.-Lbs. COMBINATIONS (D+E) Max axial load per post = Dx + Ex = 72 Lbs Max shear force per post, Dy + Ey = 244 Lbs Max moment per post, Mz = 416.3 Ft.-Lbs. CONNECTION 2 Page 27 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 12A-12B Date: 07/08/2019 Engineer:M.R IWIND DESING CABINET I DESCRIPTION Description: BBU CABINET W= 382 Lbs bldg height = 5.5 ft ELEMENT DESIGN (WIND) ANALYSIS Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = C 1.0 110.0 mph 1.0 Flat A = 1.21 For h = 5.5 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure PS = A x Kzt x I x ps30 = 19.24 psf Horizontal ps = Ax Kzt xix ps30 = 16.70 psf Roof Uplift Applied horizontal force, Fph = Ps x (bxc) = 38.6 Lbs Applied vertical force, Fpv = Ps x (axc) = 13.9 Lbs Page 28 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com I w1w I rL r I FAA, I ftICVIL + STflUC1URALI Project: Nodes 12A-12B Date: 07/08/2019 Engineer:M.R I DESIGN FORCES (WIND) CABINET I GEOMETRY Fpv Wall e C 0 1 al 1 b Plan a= 0.5 ft b= 1.2 ft 1:67 ft H 467 ft e= 0.5 ft v Supp. = 4 Post= 2 CONNECTION I FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*e = 191.0 Lbs*ft Dx = 79.6 Lbs Dy = 95.5 Lbs FORCES WIND (W) Horizontal force, Wx = Fph/2 + Fpv*e/2b = 12.5 Lbs Vertical force, Ey = Fpv/4 = 3.5 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 92 Lbs Max shear force per anchor = Dy + Wy = 99 Lbs I. ___•> Fph CONNECTION I CONNECTION 2 Page 29 of 49 GEOMETRY C I af' I I 1 Plan H a= 0.50 ft b= 1.20 ft C = 1.67 ft H= 4.67 ft e= 0.50 ft Supp. = 4 Post= 2 CONNECTION 2 FORCES GRAVITATORY (D) Weight, Wp = Overturning moment OTM = Wp*e = Dy = Mz= FORCES SEISMIC (E) Horizontal force, Wx = Vertical force, Wy = Moment, Mz = Fpv Fph CONNECTION I CONNECTION 2 382.0 Lbs 191.0 Lbs*ft 191.0 Lbs 95.5 Ft.-Lbs. 19.3 Lbs 7.0 Lbs 81.9 Ft.-Lbs. Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com i 1101, Wal RN 110 M+SALI Project: Nodes 12A-12B Date: 07/08/2019 Engineer:M.R I DESIGN FORCES (WIND) CABINET I COMBINATIONS (D+E) Max axial load per post = Dx + Wx = 19 Lbs Max shear force per post, Dy + Wy = 198 Lbs Max moment per post, Mz = 177.4 Ft.-Lbs. Page 30 of 49 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR NENGINEERING Project: Nodes 12A-12B Date: 07/08/2019 Engineer: M.R ELEMENT & CONNECTIONS DESIGN CABINET Fx = Dx+(Ex or Wx) = 138.0 Lbs Fy = Dy+(Ey or Wy) = 122.2 Lbs Q = 2.0 Cabinet Total Quantity 2.83 ft H= 2.83 ft Lc= 7.10 ft !J 7.1 ft A LB 4 UNISTRUT HORIZONTAL DESIGN Px = 138.0 Lbs M. Mmax (y-y) = 587.8 Ft.-Lbs. Ratio Status f 1 7054 In.-Lbs. 0.38 [OK ] I- 1-ri.c Py = 122.2 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 520.7 Ft.-Lbs. Ratio Status n = 5 6249 In.-Lbs. 0.34 OK 7 C = 1.42 ft Use: Unistrut: PIOOIA (2)1 5/8 x I 5/8-12ga Nominal Thickness Allowable Moment: 18640 In-Lbs General Engineering Catalog - No. 17- Page 23 I FRP VERTICAL TUBE DESIGN Demand: N Max = 122 Lbs M. Mmax = 4686.1 In.-Lbs. Compressive Strength = 36.27 psi Flexural Strength = 1201.56 psi Capacity: Use: HSS_SQR 4X4X1_4 IFRPChannel b= 4 In. A= 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 In4 Moment of inertia t = 1/4 In. E = 29000000 'psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. aa = 6600 Psi. Allowable Compressive Strength (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Flexural Strength Capacity Ratio Status 1201.56 psi < 6600 psi 0.18 L 0K1 Compressive Strength Capacity Ratio Status 36.27 psi < 6600 psi 0.01 0K11 Page 31 of 49 0 Luis Labrada '•... 217 Landis Avenue AK Project: Nodes 12A-12B Chula Vista, CA 91910 LAM .. ' Date: 07/08/2019 P: 619.370-9515 . .. I1ENGINEERING . Engineer: M.R.... www.lamareng.com . ..... I DESIGN FORCES (SEISMIC) CABINET I CONNECTION A: CABINET TO UNISTRUT CHANNEL NUTS WITH SPRING Status Shear = 122.2 Lbs [ Pull Out = 138.0 Lbs OKJ Use: Channel Nuts: 3/8"-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 3/8"-1 1/2" Mm. General Engineering Catalog - No. 17 Page 68 CONNECTION B: UNISTRUT TO FRP VERTICAL TUBE CONNECTION DESIGN: FRP BOLT Shear = 244.48 Lbs Pull Out = 275.98 Lbs Use: D-Bolt: 1/2 n Bolt: 2 Shear: 780 Pull-Out: 300 Demand 244.48 Lbs Demand 275.98 Lbs in Lbs Allowable FRP Bolt Shear Lbs Allowable FRP Bolt Pull-Out (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Capacity Shear Ratio Status 1560 Lbs 0.16 [ OK 7 Capacity Shear Ratio Status 600 Lbs 0.46 J Page 32 of 49 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com tv 1W I M TRUCIURVL Project: Nodes 12A-12B Date: 07/08/2019 Engineer: M.R I ELEMENT & CONNECTIONS DESIGN I CABINET I CONNECTION C: STEEL COLUMN TO CONCRETE SLAB I Load b V. Max = 72 Lbs k d2 N max = 244 Lbs M. Mmax = 416 Ft.-Lbs. A A a dl ---- Steel Column: 4x4x1/4 HSS Y • 'I in ci 4 in I...... 1/4 in Plate: _ a = 10 in 10 in. Mm dl = 7 in V 10 in 10 in. Min d2= 7 in T t= 1/4 in k= 1.5 in CONNECTION DESIGN: KB-TZ Shear V= 72 Lbs Pull Out T = 274.21 Lbs Anchor: HILTI KB3 (Table 3. ICC-ES ESR-2302) nBolt: 4 o Dia.: 1/2 in Alowable Anchor Steel Strengh Shear = 6750 Lbs. Embed.: 31/4 in Alowable Anchor Steel Strengh Pull Out = 6800 Lbs. Demand Capacity Shear Ratio Status 72.2 Lbs. < 6750 Lbs. 0.01 [OKJ Demand Capacity Pull Out Ratio Status 274.2Lbs. _6800 Lbs. 0.04 10K1 Page 33 of 49 Luis Labrada Proyecto Node 12A-12B. Chula Vista, CA 91910 LAMAR Engineer: M.R. P: 619-370-9515 NENGINEERING 07/05/2019 www.lamarenq.com APPENDIX V. TABLES, Page 34 of 49 TABLE 1: SEISMIC DESIGN Page 35 of 49 5/16/2019 U.S. Seismic Design Maps 1 OSH PD Legoland I Legoland Dr, Carlsbad, CA 92008, USA Latitude, Longitude: 33.1262496, -117.31192390000001 Museum of I Y Making Music LEG0L:ND California 4. Go ogle \ -- Staff Parking 9 Hotel Parking 9 Map data 02019 Google Date 5/16/2019,11:03:03 AM Design Code Reference Document ASCE7-10 Risk Category II Site Class 0 - Stiff Soil Type Value Description Ss 1.127 MCER ground motion. (for 0.2 second period) Si 0.434 MCER ground motion. (for lOs period) SMS 1.182 Site-modified spectral acceleration value SM1 0.679 Site-modified spectral acceleration value 5DS 0.788 Numeric seismic design value at 0.2 second SA SDI 0.453 Numeric seismic design value at 1.0 second SA Type Value Description SOC D Seismic design category Fa 1.049 Site amplification factor at 0.2 second F 1.566 Site amplification factor at 1.0 second PGA 0.447 MCE0 peak ground acceleration FPGA 1.053 Site amplification factor at PGA PGAM 0.471 Site modified peak ground acceleration TL 8 Long-period transition period in seconds SsRT 1.127 Probabilistic risk-targeted ground motion. (0.2 second) SsUH 1.194 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration SO 1.525 Factored deterministic acceleration value. (0.2 second) S1RT 0.434 Probabilistic risk-targeted ground motion. (1.0 second) S1UH 0.436 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. SID 0.616 Factored deterministic acceleration value. (1.0 second) PGAd 0.59 Factored deterministic acceleration value. (Peak Ground Acceleration) CRS 0.944 Mapped value of the risk coefficient at short periods CR1 0.995 Mapped value of the risk coefficient at a period of 1 s Page 36 of 49 https://seismicmaps.org 1/2 0.0 0.0 2.5 5.0 Period, T (sec) - Sa(g) Design Response Spectrum 0.8 0.6 Cs 0.4 U) 0.2 0.0 0.0 0.5 MCER Response Spectrum 1.5 1.0 2.5 5.0 7.5 Period, T (sec) - Sa(g) 7.5 5/16/2019 U.S. Seismic Design Maps DISCLAIMER While the information presented on this website is believed to be correct, SEA.QC IQS.HPQ and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this webstie. Page 37 of 49 https://seismicmaps.org 2/2 TABLE:2 DESIGN VALUES LOAD CHART FOR FRP MATERIALS Page 38 of 49 Appendix A Design Values Load Chart for FRP Materials ALLOWABLE STRENGTH TABLE FOR FRP SHAPES: Tubes, Channels, Angles Property Direction Value Units Tensile Strength Lengthwise Crosswise 6,600 1,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 6,600 3,300 psi Flexural Strength Lengthwise Crosswise 6,600 2,200 psi Flexural Modulus Lengthwise Crosswise 1,600,000 800,000 psi Shear Strength Lengthwise Crosswise 1,400 500 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi 1/2" Bolt Bearing Lengthwise Crosswise 6,000 3,600 psi 1/2" Bolt Shear Allowable 780 lbs 1/2" Bolt Tension Allowable 300 lbs Table Notes: Values based on 1525 series - Thermoset Polyester Class 1 FR (plate Grey) A Safety Factor of 5.0 has been used to determine Allowable Loads. ALLOWABLE STRENGTH TABLE FOR FRP FLAT SHEETS: Property Direction Value Units Tensile Strength Lengthwise Crosswise 4,000 2,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 4,800 3,200 psi Flexural Strength Lengthwise Crosswise 7,000 3,000 psi Flexural Modulus Lengthwise Crosswise 2,000,000 1,100,000 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi Table Notes: Values based on 1625 series - Thermoset Vinyl Ester Class 1 FR (Beige) A Safety Factor of 5.0 has been used to determine Allowable Loads. I I Hi-Tech Composite Structures Supplement for LARR #25520 Page 1 of 1 Page 39 of 49 TABLE 3: POST - INSTALATED CONCRETE ANCHOR. HILTI Page 40 of 49 ER-2302 I Most Widely Accepted and Trusted Page 7 of 11 TABLE 3-DESIGN INFORMATION CARBON STEEL KB3 DESIGN INFORMATION Symbol Units Nominal anchor diameter 1, 4 3/8 1/3 '8 34 Anchor O.D. d0 (do)7 in. 0.250 0.375 0.500 0.625 0.750 (mm) (6.4) (9.5) (12.7) (15.9) (19.1) Effective mm. embedment' h9, in. 1 /2 2 2 31/4 31/ 4 33/ 5 (mm) (38) (51) (51) (83) (79) (102) (95) (127) Mm. member thickness hw. in. 4 4 5 4 6 6 8 5 6 8 6 8 8 (mm) (102) (102) (127) (102) (152) (152) (203) (127) (152) (203) 1 (152) (203) (203) in. 2/ 4'/ 37/s 47/s 35/s 6/4 55/s 71I2 9 /2 71/2 93/4 7 /2 9 /2 Critical edge distance c 0 (mm) (70) (114) (98) (124) (92) (171) (143) (191) (241) (191) (248) (191) (241) in. 1 /8 2 02 2'/e 2 1/8 1 /8 21/4 1/4 1/4 2I4 2I 2'I Cm;n (mm) (35) (51) (38) (54) (51) (41) (41) (57) (44) (44) (70) (67) (64) Mm. edge distance in. 1/4 2h/ 3'/2 4/8 43/4 414 4 5/4 43/4 4 671a 03 6/ for s a (mm) (44) (73) (89) (124) (121) (108) (102) (133) (121) (102) (175) (165) (162) in. 11/4 1/4 1/4 2'I2 2'/4 2 14 2/ 2'/ 2'/9 33/4 33/s 31/ Smi,, (mm) (32) (44) (44) (64) (57) (51) (48) (60) (54) (54) (95) (86) (83) Mm. anchor spacing in. 1I8 2/ 2/ 2/ /3 2 2/4 2 31/ 2/ /4 2' 33/4 3 /8 33/s for c 1 (mm) (41) (60) (60) (67) (60) (57) (51) (79) (60) (57) (95) (86) (86) in. 2 2/ 2/ 4 34 43/4 4'/2 53/4 Mm. hole depth in concrete h". (mm) (51) (67) (67) (102) (98) (121) (114) (146) Mm. specified yield strength fy. psi 84,800 84,800 84,800 84,800 84,800 (N/mm2) (585) (585) (585) (585) (585) Mm. specified ult. strength G. psi 106,000 106,000 106,000 106,000 106,000 2 (N/mm ) (731) (731) (731) (731) (731) Effective tensile stress area As, in 0.02 0.06 0.11 0.24 2 0.17 (MM 2) (12.9) (38.7) (71.0) (109.7) (154.8) Steel strength in tension lb 2,120 6,360 11,660 18,020 25,440 (kN) (9.4) (28.3) (51.9) (80.2) (113.2) Steel strength in shear V. lb 1,640 4,470 6,635 6,750 12,230 15,660 I 16,594 (kN) (7.3) (19.9) (29.5) (30.0) (54.4) (69.7) (73.8) Pullout strength uncracked concrete Npufw lb 1,575 NA NA 6,800 NA NA 0,585 1(47.1) (kN) (7.0) (30.2) Anchor category3 1,2 or 3 - 1 Effectiveness factor k,r k nr - 24 uncracked concrete4 Modification factor for - 1.0 uncracked concrete Coefficient for pryout - 1.0 2.0 Installation torque ft*Ib 4 20 40 I 60 I 110 (Nm) (5) (27) I (54) (81) (149) Axial stiffness in service load range fl, (lb/in) _______ 116,150 I 162,850 I 203,500 I I 191,100 I 222,150 I 170,700 207,400 I 164,000 C0VIuncr % 60 I 42 I 29 I 29 I 25 I 21 I 19 I 24 Strength reduction factor for tension, steel 0.75 failure modes5 Strength reduction factor i for shear, steel 0.65 failure modes5 Strength reduction factor for tension, concrete 0.65 failure modes, Condition B6 Strength reduction factor 0 for shear, concrete 0.70 failure modes, Condition B6 For SI: 1 inch = 25.4 mm, llbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-in units: 1 mm = 0.03937 inches. 'See Fig. 2 25ee Section 4.1.4 of this report, NA (not applicable) denotes that this value does not govern for design. 3See ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. 45ee ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. 5The carbon Steel KB3 is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.I. as applicable. 6For use with the load combinations of ACI 318-14 Section 5.3, ACI 318-11 Section 9.2 or IBC Section 1605.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 0.4.3(c), as applicable, is not provided, or where pull-out or pry out strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. The notation in parenthesis is for the 2006 IBC. Page 41 of 49 TABLE 3-DESIGN INFORMATION, CARBON STEEL KB-TZ DESIGN INFORMATION Symbol Units Nominal anchor diameter 2 -1/8 '9 . 3 /4 Anchor O.D. d4(do) in. 0.375 0.5 0.625 0.75 (mm) (9.5) (12.7) (15.9) (19.1) Effective mm. embedment' her in. 1/2 2 2/4 2 31/4 31/ 4 31/ . 33/ 43/ (mm) (38) (51) (70) (51) (83) (79) (102) (83) (95) (121) Mm. member thickness2 hmrn in. 31/ 415 I 5 416 I 6 8 5 6 18 I 5'/ . 6 8 8 (mm) (83) (102) (127) (127) (102)1(152) (152) (203) (127) (152) (203) (140) (152) (203) (203) in. 6 4 /8 I ' 4'/ 5/2 I 4% 7/3 6 0 8/4 I 6/4 12 10 8 9 Critical edge distance CDC I I I (mm) () (102) (105) (140)1(114) (191) (152) (165) (222) 1(171) (305) (254) (203) (229) In. 8 21/2 21/2 2/4 2 /8 35/9 31/4 92 '4 41/8 Cm (mm) (203) (64) (64) (70) (60) (92) (83) (241) (121) (105) Mm. edge distance for s a i n. 8 5 5 53/4 53/4 8 /9 61/8 57/i 5 10I3 (mm) (203) (127) (127) (146) (146) (156) (149) (127) (267) (225) in. 8 21/2 21/2 2/4 2/ 31/2 3 5 5 4 Mm. anchor spacing smin _______ (mm) (203) (64) (64) (70) (60) (89) (76) (127) (127) (102) In. 8 35/s 35/9 41/8 31/2 43/ 41/4 912 91/2 73/4 for c a (mm) (203) (92) (92) (105) (89) (121) (108) (241) (241) (197) in. 2 2 /8 33/s 2 /8 4 34 43/4 4 4I/ Mm. hole depth in concrete h0 (mm) (51) (67) (86) (67) 1 (102) (98) 1 (121) (102) (117) 1 (146) Mm. specified yield strength fy lb/in2 100,000 84,800 84,800 84,800 (N/mm2) (690) (585) (585) (585) Mm. specified ult. strength f lb/in2 125,000 106,000 106,000 106,000 (N/mm2) (862) (731) (731) (731) Effective tensile stress area A,.N In2 0.052 0.101 0.162 0.237 (mm (33.6) (65.0) (104.6) (152.8) Steel strength in tension N lb 6,500 10,705 17,170 25,120 (kN) (28.9) (47.6) (76.4) (111.8) Steel strength in shear VM lb 2,180 3,595 5,495 8,090 13,675 (kN) (9.7) (16.0) (24.4) (36.0) (60.8) Steel strength in shear, lb 2,180 2,255 5,495 7,600 11,745 seismic3 eq (kN) (9.7) (10.0) (24.4) (33.8) (52.2) Pullout strength uncracked lb 2,160 2,515 I 4,110 I NA I 5,515 I NA 9,145 8,280 1 10,680 concrete4 (kN) (9.6) (11.2) (18.3) (24.5) (40.7) NA (36.8) (47.5) Pullout strength cracked lb 2,270 I 3,160 I NA 4,915 NA NA concrete concret (kN) M) - (10.1) I (14.1) I (21.9) Anchor category5 2 1 Effectiveness factor kuncr unãracked concrete 24 Effectiveness factor k, cracked concrete6 17 W,= kdk,7 1.0 Coefficient for pryout strength, kcp 1.0 2.0 1.0 2.0 Strength reduction factor 0 for tension, steel failure 0.75 mod es8 Strength reduction factor 0 for shear, steel failure 0.65 modes8 Strength reduction 0 factor for tension, concrete 0.55 0.65 failure modes or pullout, Condition B9 Strength reduction 0 factor for shear, concrete failure 0.70 modes, Condition B9 Axial stiffness in service load I flee, I lb/in. 600,000 range'° lb/in. 135,000 For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-inch units: 1 mm = 0.03937 inches. 'See Fig. 2: 2For sand-lightweight or normal-weight concrete over metal deck, see Figures 5A, SB. 5C and 50 and Tables 5 and 6. 3See Section 4. 1.8 of this report. 4For all design cases i14,,p =1.0. NA (not applicable) denotes that this value does not control for design. See Section 4.1.4 of this report. 5 See ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. 6See ACI 318-14 17.4.2.2 or ACI 318-11 0.5.2.2, as applicable. 7For all design cases Y4,.N =1.0. The appropriate effectiveness factor for cracked concrete (ks,) or uncracked concrete must be used. 8The KB-TZ is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 0.1, as applicable. 9For use with the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 0.4.3(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. '°Mean values shown, actual stiffness may vary considerably depending on concrete strength, loading and geometry of application. Page 42 of 49 TABLE 4: FASTENERS. LAGSCREW Page 43 of 49 Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections1'2'3'4 for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for t5<1/4') or W ASTM A 36 steel side plate (for t=1/4") (tabulated lateral design values are calculated based on an assumed length of lag -- screw penetration, p, into the main member equal to 8D) fl 48 W# h h J0 LL LL . i e i Zo OS'E eE 02 0 °2 0 -R CL Z11 Zi. Z11 Z1 Z11 Zi. Z11 Z1 Z11 Z1 4 Z.L Z11 Zi. Z, Zi. 4 Z.L Z11 te 0 in. in. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. 0.075 1/4 170 130 160 120 150 110 150 110 150 100 140 100 140 100 130 90 130 90 130 90 (14 gage) 5/16 220 160 200 140 190 130 190 130 190 130 180 120 180 120 170 110 170 110 160 100 3/8 220 160 200 140 200 130 i90 130 190 120 180 120 180 120 170 110 170 100 170 100 0.105 1/4 180 140 170 130 160 120 160 120 160 110 150 110 150 110 140 100 140 100 140 90 (112 gage) 5/16 230 170 210 150 200 140 200 140 190 130 190 130 190 120 180 110 170 110 170 110 3/8 230 160 210 140 200 140 200 130 200 130 190 120 190 120 180 110 180 110 170 110 0.120 1/4 190 150 180 130 170 120 170 120 160 120 160 110 160 110 150 100 150 100 140 100 (11 gage) 5/16 230 170 210 150 210 140 200 140 200 140 190 130 190 130 180 120 180 120 180 110 _______ 3/8 240 170 220 150 210 140 210 140 200 130 1 200 130 190 120 180 110 180 110 180 110 0.134 114 200 150 180 140 180 130 170 130 170 120 160 120 160 110 150 110 150 100 150 100 (10gage) 5/16 240 180 220 160 210 150 210 140 200 140 200 130 200 130 190 120 180 120 180 120 3/8 240 170 220 150 220 140 210 140 210 140 200 130 200 130 190 120 190 120 180 110 0.179 1/4 220 170 210 150 200 150 200 140 190 140 190 130 190 130 180 120 170 120 170 120 (7 gage) 5/16 260 190 240 170 230 160 230 160 230 150 220 150 220 150 210 130 200 130 200 130 3/8 270 190 250 170 240 160 240 160 1 230 150 220 140 220 140 210 130 210 130 200 130 0.239 1/4 240 180 220 160 210 150 210 150 200 140 190 140 190 130 180 120 180 120 180 120 (3 gage) 5/16 300 220 280 190 270 180 260 180 260 170 250 160 250 160 230 150 230 150 230 140 318 310 220 280 190 270 180 270 180 260 170 250 160 250 160 240 140 230 140 230 140 7/16 420 290 390 260 380 240 370 240 360 230 350 220 350 220 330 200 330 200 320 190 1/2 510 340 470 300 460 290 450 280 440 270 430 260 420 260 400 240 400 230 390 230 5/8 770 490 710 430 680 400 680 400 660 380 640 370 630 360 600 330 590 330 580 320 3/4 1110 670 1020 590 980 560 970 550 950 530 920 500 910 500 860 450 850 450 840 440 7/8 1510 880 1390 780 1330 730 1320 710 1280 690 1250 650 1230 650 1170 590 1160 590 1140 570 1 1940 1100 1780 960 1710 910 1700 890 1650 860 1600 820 1590 810 1500 740 1480 730 1460 710 1/4 1/4 240 180 220 160 210 150 210 150 200 140 200 140 190 130 180 120 180 120 180 120 5/16 310 220 280 200 270 180 270 180 260 170 250 170 250 160 230 150 230 150 230 140 419 142n 290 200 140 950 150 970 150 970 170 950 150 950 150 910 150 9d0 lAO 9'lfl IAn 480 320 440 280 420 270 420 260 410 250 390 240 390 230 370 220 360 210 360 210 1/2 580 390 540 340 520 320 510 320 500 310 480 290 480 290 460 270 450 260 440 260 5/8 1..,850 530 1 780 470 750 440 1_740 440 720 420 700 400 690 400 1 660 370 1 650 360 640 350 3/4 1200 730 1 1100 640 1 1060 600 1050 590 1020 570 1 990 540 1 980 530 1 930 490 1 920 480 1 900 470 7/8 1600 930 1 1470 820 1410 770 1 1400 750 1 1360 720 1320 690 1310 680 1240 630 1220 620 1200 600 1 2040 1150 1870 1000 1800 950 1780 930 1730 900 1680 850 1660 840 1570 770 1550 760 1530 740 I. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Tabulated lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to SD; dowel bearing strengths, F, of 61,850 psi forASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths. FYb, of 70.000 psi for D = 1/4", 60,000 psi for D = 5/16', and 45,000 psi for D ?318". Where the lag screw penetration, p, is less than SD but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration. The length of lag screw penetration, p, not including the length of the tapered tip. E (see Appendix Table 1-2), of the lag screw into the main member shall not be less than 4D. See 12.1 .4.6 for minimum length of penetration, pm,. Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorize l4 AMERICAN WOOD COUNCIL Page 4409 -- , NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION 77 Table 12.2A Lag Screw Reference Withdrawal Values, W Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member shall not include the length of the tanered tin (see 12.2.1.11. Specific Gravity, ________ Lag Screw Diameter, D __ _______ G2 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4" 7/8" 1" 1-1/8" 1-1/4" 0.73 397 469 538 604 668 789 905 1016 1123 1226 1327 0.71 381 450 516 579 640 757 868 974 1077 1176 1273 0.68 357 422 484 543 600 709 813 913 1009 1103 1193 0.67 349 413 473 531 587 694 796 893 987 1078 1167 0.58 281 332 381 428 473 559 641 719 795 869 940 0.55 260 307 352 395 437 516 592 664 734 802 868 0.51 232 274 314 353 390 461 528 593 656 716 775 0.50 225 266 305 342 378 447 513 576 636 695 752 0.49 218 258 296 332 367 434 498 559 617 674 730 0.47 205 242 278 312 345 408 467 525 580 634 686 0.46 199 235 269 302 334 395 453 508 562 613 664 0.44 186 220 252 283 312 369 423 475 525 574 621 0.43 179 212 243 273 302 357 409 459 508 554 600 0.42 173 205 235 264 291 344 395 443 490 535 579 0.41 167 198 226 254 281 332 381 428 473 516 559 0.40 161 190 218 245 271 320 367 412 455 497 538 0.39 155 183 210 236 261 308 353 397 438 479 518 0.38 149 176 202 227 251 296 340 381 422 461 498 0.37 143 169 194 218 241 285 326 367 405 443 479 0.36 137 163 186 209 231 273 313 352 389 425 460 0.35 132 156 179 200 222 262 300 337 373 407 441 0.31 110 1 130 149 167 185 218 250 281 311 339 367 Tabulated withdrawal design values, W, for lag screw connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Specific gravity, G, shall be determined in accordance with Table 12.3.3A. adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'. W = 1380 G5/2 D (12.2-3) The nail or spike reference withdrawal design value, W, in lbs/in, of penetration, for a smooth shank stainless steel nail or spike driven into the side grain of a wood member, with the nail or spike axis perpendicu- lar to the wood fibers, shall be determined from Table 12.21) or Equation 12.2-4, within the range of specific gravities, G, and nail or spike diameters, D, given in Table 12.21). Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3. 1) to obtain adjusted withdrawal design values, W'. W = 465 G3/2 D (12.2-4) For calculation of the fastener reference with- drawal design value in pounds, the unit reference with- drawal design value in lbs/in, of fastener penetration from 12.2.3.1a or 12.2.3.1b shall be multiplied by the length of fastener penetration, Pt, into the wood mem- ber. 12.2.3.2 Deformed shank nails (a) The reference withdrawal design value, in lbs/in, of ring shank penetration, for a Roof Sheathing Ring Shank nail or Post-Frame Ring Shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2E or Equation 12.2-5, within the range of specific gravities and nail diameters given in Table 12.2E. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Ta- ble 11.3. 1) to obtain adjusted withdrawal design values, wt. W = 1800 G2 D (12.2-5) Copyright© American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorizer. AMERICAN WOOD COUNCIL Page 450 49 . •:.:.. • ',.,..• TABLE 5: UNISTRUT GENERAL ENGINEERING CATALOG-NO. I Page 46 of 49 Channel Selection I Ill aiii CHANNEL SELECTION CHART Channel Dimensions Material & Thickness Hole Pattern Styles Channel I I Width Height Steel Stainless Steel Alum. 1 HS T KO SL DS H3 In (MM) In (MM) gauge gauge In (mm) Steel Only P1000 1%(41.3) 1f4(41.3) 12 ga 12 ga 0.109(2.8) • U U U 0 U P1100 1%(41.3) 1%(41.3) 14 ga 14 ga - UE 0 M - - P2000 14(41.3) 1%(41.3) 16 ga P3000 1%(41.3) 1%(34.9) 12 ga P3300 1%(41.3) 4(22.2) 12 ga 12 ga P4000 1% (41.3) '346 (20.6) 16 ga 16 ga 0.078 (2.0) U E - - - P4100 1%(41.3) '345(20.6) 14 ga - P5000 134(41.3) 3Y4(82.6) 12 ga 12ga - P5500 134(41.3) (61.9) 12 ga - 0.109 (2.8) CHANNELS & COMBINATIONS IN DESCENDING ORDER OF STRENGTH Area Weight I $ Allow. Moment Channel In2 (cm2) IbsIft (kg/rn) I0 (cm4) 1n3(cm3) In-lbs (N'rn) P5001 1.793 6.10 6.227 1.916 48,180 11.57 9.1 259.2 31.4 5,440 P1004A 1.965 6.68 4.068 1.669 41,980 12.68 9.9 169.3 27.4 4,740 P5501 1.452 4.94 2.805 1.151 28,940 9.37 7.3 116.8 18.9 3,270 P1001C41 2.221 7.55 1.856 1.142 28,720 14.33 11.2 77.2 18.7 3,250 P5000 0.897 3.05 1.098 0.627 15,770 5.78 4.5 45.7 10.3 1,780 P1001 1.111 3.78 0.928 0.571 14,360 7.16 5.6 38.6 9.4 1,620 P1101 0.835 2.84 0.733 0.451 11,340 5.39 4.2 30.5 7.4 1,280 P3001 1.000 3.40 0.591 0.430 10,810 6.45 5.1 24.6 7.0 1,220 0.726 2.47 0.522 0.390 9,820 P5500 4.68 3.7 21.7 6.4 1,110 P2001 0.684 2.32 0.618 0.381 9,570 4.41 3.5 25.7 6.2 1,080 P9200 0.489 2.23 0.279 0.297 7,480 3.16 3.3 11.6 4.9 850 A5000 0.492 1.67 0.358 0.265 6,670 3.17 2.5 14.9 4.3 750 A1001 0.609 2.07 0.302 0.242 6,070 3.93 3.1 12.6 4.0 690 P9000 0.387 1.88 0.166 0.205 5,150 2.50 2.8 6.9 3.4 580 P1000 0.555 1.89 0.185 0.202 5,070 3.58 2.8 7.7 3.3 570 P3301 0.790 2.69 0.176 0.201 5,060 5.10 4.0 7.3 3.3 570 Combinations not shown in catalog are available on special order. Consult factory for more details. Area Weight I s Allow. Moment Channel In' (cm') IbsIft (kg/rn) In' (cm4) 1n3(cm3) In-lbs (N.m) P1100 0.418 1.42 0.145 0.162 4,060 2.69 2.1 6.0 2.6 460 P3000 0.500 1.70 0.120 0.153 3,850 3.23 2.5 5.0 2.5 430 P4101 0.579 1.97 0.117 0.143 3,610 3.74 2.9 4.9 2.4 410 P2000 0.342 1.16 0.125 0.140 3,520 2.21 1.7 5.2 2.3 400 P4001 0.478 1.66 0.104 0.128 3,210 3.14 2.5 4.3 2.1 360 A3301 0.459 1.56 0.077 0.103 2,590 2.96 2.3 3.2 1.7 290 A1000 0.305 1.04 0.061 0.086 2,170 1.96 1.5 2.5 1.4 250 P3300 0.395 1.34 0.037 0.072 1,800 2.55 2.0 1.5 1.2 200 0.264 0.90 0.037 0.058 1,470 A4001 1.70 1.3 1.5 1.0 170 P6001 0.213 0.73 0.045 0.055 1,400 1.38 1.1 1.9 0.9 160 P4100 0.290 0.98 0.026 0.054 1,360 1.87 1.5 1.1 0.9 150 P4000 0.244 0.83 0.023 0.049 1,230 1.57 1.2 0.9 0.8 140 A3300 0.230 0.78 0.017 0.038 950 1.48 1.2 0.7 0.6 110 A4000 0.132 0.45 0.008 0.022 560 0.85 0.7 0.3 0.4 60 P6000 0.107 0.36 0.009 0.020 510 0.69 0.5 0.4 0.3 60 P7001 0.148 0.50 0.007 0.018 460 0.96 0.8 0.3 0.3 50 P7000 0.074 0.25 0.002 0.007 170 0.48 0.4 0.1 0.1 20 1% Framing System :., 23 3 (82 4 (123.8) .778" -LV.. ft847" (19.8) 2 (21.5) 17A4" 1'%4"1.245" (306) ' (31.6) - L-4 " -.1 (102.4) (12.4) P1000 Channel Combinations MOVIEIlII P1001 1 P1001 A P1001 B 1%' 1%" 1%" (41.3) (41.3) (41.3) I IWe1 2 (18.0) 2 (23.3) Wt/100 Ft: 321 Lbs (478 kg/100 m WtI100 Ft: 378 Lbs (562 kg/1 00 m) Wt/100 Ft: 378 Lbs (562 kg/100 m) Allowable Moment 112,200 In-Lbs (1,378 N'm) Allowable Moment 18,640 In-Lbs (2,110 N;m) Allowable Moment 18,640 In-Lbs (2,110 N;m) 12 Gauge Nominal Thickness .105" (2.7mm) 12 Gauge Nominal Thickness .105" (2.7mm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 C P1001 3 P1001 A3 1 W (41.3) 3114[LIJIT 1.677" (42 ; ($2.6) .761 .864 (19.3) 2 (21.9) 1 IN, (41.3) rr I 'i-i I ' I 2.472" (62.8) 474" • (123.8) 2.403" (6 I 1.0) I- 474" . -4- 1 (123.8) 41 .778 .L MT (19.8) ,, (21.5) Will 00 Ft: 378 Lbs (562 kg/100 m) Allowable Moment 15,950 In-Lbs (1,800 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 B3 WtI100 Ft: 566 Lbs (843 kg/100 m) Allowable Moment 31,840 In-Lbs (3,600 Nm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 D3 W1I100 Ft: 566 Lbs (843kg/100m) Allowable Moment 32,770 In-Lbs (3,700 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) P1003 Wtl100 Ft: 566 Lbs (843 kg/100 m) Allowable Moment 37,550 In-Lbs (4,240 Nm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 C41 Wt/100 Ft: 566 Lbs (843 kg/100 m) Allowable Moment 17,550 In-Lbs (1980 N;m) .12 Gauge Nominal Thickness .105" (2.7mm) P1001 C3 Wt/100 Ft: 333 Lbs (495 kg/100 m) Allowable Moment 6,240 In-Lbs (700 N;m) 12 Gauge Nominal Thickness .105" (2.7mm) P1004 A 3¼" r 826-1 TrT1 31A01 I I 6.8 3¼" 3 YV I 1.930"-1.320 (11.1) .0) 2 (33.5) WtI100 Ft: 755 Lbs (1,124 kg/100 m) WII100 Ft: 566 Lbs (843 kg/100 m) Will 00 Ft: 668 Lbs (994 kglloo m) Allowable Moment 28,720 In-Lbs (3,250 N;m) Allowable Moment 18,680 In-Lbs (2,110 N.m) Allowable Moment 41,970 In-Lbs (4,740 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) 12 Gauge Nominal Thickness .105" (2.7mm) 12 Gauge Nominal Thickness .105" (2.7mm) Channel Finishes: PL, GR, HG, PG, ZD; Standard Lengths: 10'& 20' MWINIF II 111-MR-.1 Page 48of49 ADJUSTABLE PIPE CLAMPS Unistrut Adjustable Pipe Clamps are manufactured from glass-reinforced polyurethane and are adjustable to accommodate a wide range of outside diameters. They can be uti- lized with a variety of piping systems including: PVC, fiberglass, copper, rigid steel conduit and PVC coated rigid steel conduit. Care should be taken not to exceed 3 ftilbs. of torque on the adjustable pipe straps. RIGID PIPE CLAMPS Part Number O.D. Pipe Size (in.) Design Load Type I Type 2 Lbs (kN) Lbs (kN) Torque Ft/Lbs (Nm) WtI100 PCs Lbs (kg) 200-3100 ½-1½ 135(0.6) 65(0.3) 0.8(1) 3(1.4) 200-3110 1½- 2¼ 135 (0.6) 65(0.3) 3 (4) 5 (2.3) 200-3120 2¼ - 31/4 145 (0.6) 70(0.3) 3 (4) 5 (2.3) 200-3130 3-4 215(1.0) 70(0.3) 3(4) 8(3.6) 200-3140 4-6½ 215(1.0) 70(0.3) 3(4) 10(4.5) *Design loads shown represent a 3:1 safety factor. UNISTRUT PVC, Sch. 80 Design Loads FRP Bolt Part Nominal & Rigid Metal Type I Type 2 FRP Bolt Torque Wt/100 PCs Number Sue (in.) In (mm) Lbs (kN) Lbs (kN) Size (in.) Ft/Lbs (Nm) Lbs (kg) FPCR-050 ½ 0.840 (21.3) 225(1.0) 90 (0.4) 34 x 1¼ 3(1.4) FPCR-075 Y4 1.050 (26.7) 225(1.0) 90(0.4) 34 x 11/4 3(1.4) FPCR-100 1 1.315 (33.4) 225(1.0) 90(0.4) 34 x 1¼ 4(1.8) FPCR-125 1¼ 1.660 (42.2) 225(1.0) 90(0.4) 34 x 1¼ 5(2.3) FPCR-150 1½ 1.900 (48.3) 225(1.0) 90(0.4) 34 x 1114 5(2.3) FPCR-200 2 2.375 (60.3) 225(1.0) 90 (0.4) 34 x 1¼ 3(4) 5(2.3) FPCR-250 2½ 2.875 (73.0) 225 (1.0) 90 (0.4) 34 x 1114 7(3-2) FPCR-300 3 3.500 (88.9) 225 (1.0) 90(0.4) 34 x 11/4 10(4.5) FPCR-400 4 4.500 (114.3) 300 (1.3) 125 (0.6) 34 x 1¼ FPCR-600 6 6.625 (168.3) 300 (1.3) 125 (0.6) 34x 11/4 FPCR-800 8 8.625 (219.1) 300 (1.3) 125 (0.6) 34x 1114 Design loads shown represent a 3:1 safety factor. Rigid Pipe Clamps resemble the more traditional style of pipe clamps and are sized based on the pipe inside diameter or nominal size. Polyurethane clamps are recommended for applications up to 160°F. For high temperature applications (up to 2307). Care should be taken not to exceed the recommended torque values of the rigid pipe clamps. Material: glass-reinforced polyurethane. Two HOLE PIPE STRAPS Design Load Bolt Material Part Dim. A Dim. B Size Thick. Type I Type2 Torque Wt/I00 PCs No. In (mm) In (mm) (in.) In (mm) Lbs (kN) Lbs (kN) Ft/Lbs (N.m) Lbs (kg) 2.375 6.375 135 50 4 14 FPS200 60.33 161.93 ½1/4 6.4 0.60 0.22 5 6.4 2.875 6.875 1/4 135 50 4 17 FPS25O 73.03 174.63 ½ 6.4 0.60 0.22 5 7.7 3.500 7.500 1/4 135 50 4 20 FPS300 88.90 190.50 9k 6.4 0.60 0.22 5 9.1 FPS350 4.000 8.000 9k ¼ 135 50 4 33 101.60 203.20 6.4 0.60 0.22 5 15.0 FPS400 4.500 8.500 1h 1/4 175 60 4 23 114.30 215.90 6.4 0.78 0.27 5 10.4 5.563 9.563 ¼ 175 60 4 39 FPS500 141.30 242.90 ½ 6.4 0.78 0.27 517.7 FPS600 6.625 10.625 16 175 60 4 39 168.28 269.88 6.4 0.78 0.27 5 17.7 FPS800 8.625 12.625 9k 225 125 4 51 219.08 320.68 6.4 1.00 0.56 5 23.1 FPS1000 10.750 15.750 ¼ 225 125 10 77 273.05 400.05 6.4 1.00 0.56 14 34.9 FPS1200 12.750 16.250 ¼ 225 125 10 83 323.85 412.75 6.4 1.00 0.56 14 37.6 FPS1400 14.000 18.000 34 250 150 10 125 355.60 457.20 9.5 1.11 0.67 14 56.7 16.000 20.000 3,4 250 150 10 143 FPS1600 406.40 508.00 9.5 1.11 0.67 14 64.9 FPS1800 18.000 23.000 34 250 150 10 160 457.20 584.20 9.5 1.11 0.67 14 72.6 *Design loads shown represent a 3:1 safety factor. Two Hole Pipe Straps are designed for use in securing pipe, conduit and ducts to Channel. Two hole fiberglass straps can also be used independently from the channel for surface mounting. All sizes of the straps are suitable for load bearing applications. Material: fire-retardant, glass-reinforced polyester resin. For extreme chemical environments, the straps can be manufac- tured from vinyl ester resin. Larger diameter straps for special applications are also available. Contact the factory for pricing and availability of vinyl ester and large diameter straps. Two hole pipe straps should not be torqued above recommended values. Notes: Bolts and channel nuts are sold separately. When bolting onto 1W channel a 1¼ long bolt is req'd. Fiberglass Page 49 of 49 2031 LAMAR UNENGINEERING RE'EIVED JUL 162019 CITY OP CIRLSBAD, BUILDING DIVISION STRUCTURAL CALCULATIONS PROJECT: IeJ.]UII1 1 0 I ru i *1.1:11 ODES 13, 14j5-PIZZA MANIA (PZM) EGOLAND DR. CARLSBAD SAN DIEGO, CA 92008 0 July 11, 2019 N%, www.lamareng.com Luis Labrada Proyecto Nodes 13-14-15 217 Landis Avenue LAMAR Date: 05/07/19 Chula Vista, CA 91910 UMENGINEERING Engineer: M.R P: 619-370-9515 N www.lamareng.com Contents APPENDIX I. DESIGN ATTACHMENT. ANTENNAS ................................... .......................................................................3 APPENDIX II. DESIGN ATTACHMENT. RADIOS . .............................................................................................................. 10 APPENDIX III. DESIGN ATTACHMENT. CABINET EQUIPMENT . .................................................................................. 17 APPENDIX IV. SCREEN WALL ..............................................................................................................................................24 APPENDIX V. ROOF VERIFICATION....................................................................................................................................40 APPENDIXVI. TABLES ...........................................................................................................................................................45 1 Luis Labrada AMAR Proyecto Nodes 13-14-15 L. 217 Landis Avenue Date: 05/07/19 Chula Vista, CA 91910 IkENGINEERING Engineer: M.R P. 619-370-9515 www.lamareng.com APPENDIX I. DESIGN ATTACHMENT ANTENNAS Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com IV FT I rN CVt1 + SFUCURAL Project: Nodes 13-14-15 Date: 06/24/2019 Engineer: M.R I SEISMIC DESING ANTENNA I DESCRIPTION Description: QU INTEL QS46512-2 ANTENNA W= 75.0 Lbs bldg height = 21.25 ft ELEMENT DESIGN (SEISMIC) -. Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 75.0 Lbs. FpH = (0.64 * Wp )I1.4 = 34.3 Lbs FpH = 0.46 * Wp = 34.5 Lbs HORIZONTAL FpV = 0.28 * Wp = 21.0 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 z/h= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)I(Rp*Ip)*(1+2*z/h) = 28.4 Lbs. Verifications FpH max = 1.6* SDS * 1 * WP = 94.6 Lbs. > 28.4 Lbs. [bK 1 FpH min 0.3 * SDS * 1 * WP= 17.7 Lbs. < 28.4 Lbs. OK 1 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodes 13-14-15 Date: 06/24/2019 Engineer:M.R I ANCHORAGE DESIGN (SEISMIC) ANTENNA I GEOMETRY e= 1.25 ft d= 2.13 ft -y Fx d Wp e FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy= 37.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 26.5 Lbs Vertical force, Ey = 10.5 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 70.5 Lbs Max shear force per anchor = Dy + Ey = 48.0 Lbs Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 13-14-15 Date: 06/24/2019 Engineer:M.R I WIND DESING ANTENNA I DESCRIPTION Description: QU INTEL QS46512-2 ANTENNA W= 75.0 Lbs bldg height = 21.3 ft ELEMENT DESIGN (WIND) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or 0) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = C 1.0 110.0 mph 1.0 Flat ANALYSIS A = 1.31 For h = 21.25 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure ps = A x Kzt x I x ps30 = p5 = A x Kzt x I x ps30 = Applied horizontal force, Fph = Ps x (bxc)/2 = Applied vertical force, Fpv = Ps x (axc)/2 = 20.75 psf Horizontal 18.01 psf Roof Uplift 89.8 Lbs 16.2 Lbs Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com X I wl ~~ ~ it "Ifliolutum CIVIL + STPUCTUHAL Project: Nodes 13-14-15 Date: 06/24/2019 Engineer:M.R I ANCHORAGE DESIGN (WIND) ANTENNA I GEOMETRY e= 1.25 ft V d= 2.13 ft Wp a= 0.90 ft b= 4.33 ft 1.00 ft FORCES GRAVITATORY (D) Weight, Wp = Overturning moment OTM = Wp*e = Dx = Dy= FORCES WIND (W) Horizontal force, Wx = Vertical force, Wy = COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = Max shear force per anchor = Dy + Wy = Fph d e 75.0 Lbs 93.8 Lbs*ft 44.0, Lbs 37.5 Lbs 54.4 Lbs 8.1 Lbs 98.4 Lbs 45.6 Lbs bl [ Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodes 13-14-15 Date: 06/24/2019 Engineer: M.R I ELEMENT & CONNECTIONS DESIGN ANTENNA I A Fx = Dx+(Ex or Wx) = 98.4 Lbs Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 1.0 Antennas Total Quantity 5.83 H= 5.83 ft Lc= 0.75 ft AL B 0.75 ft 4 UNISTRUT HORIZONTAL DESIGN Number of radios pair. Odd number of radios M. max = PLI8 (n-1/n) .p M.max = PL/8 (n+lln) 1 R=P(n-i)I2. I R=Pn/2 t.-c4c_1c-Lc-I-c-1 n= 2 n= I..• 1-m•c C = 0.38 ft c= 0.75 ft Px= 98.4 Lbs M. Mmax (y-y) = 18.5 Ft-Lbs 221.5 In-Lbs Py= 48.0 Lbs M. Mmax (x-x) = 9.0 Ft-Lbs, 108.0 In-Lbs Use: Unistrut: P1000 1 5/8 x I 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Demand 221.5 In-Lbs Demand 108.0 In-Lbs Capacity 5070.00 In-Lbs Capacity Pull Out 5070.00 In-Lbs Ratio Status 0.04 TOK I Ratio Status 0.02 OK J Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com WAWL!t CIVIl. + SIVUCIURAL Project: Nodes 13-14-15 Date: 06124/2019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN ANTENNA A Fx = Dx+(Ex or Wx) = 98.4 -, Lbs B Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = tO Antennas Total Quantity 5.83 ft H= 5.8 ft Lc= 0.8 ft B 0.75f CONNECTION A: PIPE MOUNT TO UNISTRUT I Radio Status Shear = 48.0 Lbs 0.53 OK Pull Out = 98.4 Lbs 0.45 L OK Use: Ridge Pipe Clamps: FPCR-075 General Engineering Catalog - No. 17- Page 203 Thickness: 3/4 in Length: 1.05 in FRP Bolt: 318"xl 114 Allowable Shear: 90 Lbs Allowable Pull-Out: 220 Lbs CONNECTION B: UNISTRUT TO EXISTING MECHANICAL SCREEN Shear = 24.0 Lbs Pull Out = 49.2 Lbs D-Bolt = 1/2 in (Appendix A. Design Values Load Chart for FRP Materials) n Bolt: 2 LARR# 25520. Shear: 780 Lbs Allowable FRP Bolt Shear Pull-Out: 300 Lbs Allowable FRP Bolt Pull-Out Demand Capacity Shear Ratio Status 24.0 Lbs 1560.0 Lbs 0.02 OK I Demand Capacity Shear Ratio Status 49.2 Lbs 600.0 Lbs 0.08 [-OK Luis Labrada Proyecto Nodes 13-14-15 217 Landis Avenue LAMAR Date: 05/07/19 Chula Vista, CA 91910 IMENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX II. DESIGN ATTACHMENT. RADIOS. Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com AF C I V I L + STRUC1URL Project: Nodes 13-14-15 Date: 06/24/2019 Engineer: M.R SEISMIC DESING RADIO DESCRIPTION Description: Alu Radio Units (_ W= 59.5 Lbs bldg height = 21.3 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Sos = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q: = 59.5 Lbs. FpH = (0.64 * Wp )/1.4 = 27.2 Lbs FpH = 0.46 * Wp = 27.37 Lbs HORIZONTAL FpV = 0.28 * Wp = 16.66 Lbs UP OR DOWN ap = 1.0 •Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 z/h= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*lp)*(1+2*zlh) = 22.5 Lbs. Verifications FpH max = 1.6 * S * * WP = 75.0 Lbs. 22.5 Lbs. [OK I OS 'p p FpH min = 0.3 * S * I * WP = 14.1 Lbs. 22.5 Lbs; [OK 1 OS p p Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com Project: Nodes 13-14-15 L AMAR Date: 06/24/2019 IPJENGINEERING Engineer:M.R I DESIGN FORCES (SEISMIC) I RADIO I GEOMETRY Q4C a Plan Radio Dimensions a= 0.92 ft b= 2.10 ft C = 0.92 ft Support = 4 Quantity Fpv Fph Elevation FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a/4 = 13.7 Lbs*ft Dx= 6.5 Lbs by 14.9 Lbs FORCES SEISMIC (E) Applied horizontal force, Ex.= 9.3 Lbs Applied vertical force, Ey = 4.2 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex: = 15.8 Lbs Max shear force per anchor = Dy + Ey= 19.0 Lbs Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com :h' ME J. I Project: Nodes 13-14-15 Date: 06/24/2019 Engineer:M.R WIND DESING RADIO DESCRIPTION Description: Alu Radio Units W = 59.5 Lbs bldg height = 21.3 ft ELEMENT DESIGN (WIND) Location = 1LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Flat ANALYSIS A = 1.31 For h = 21.25 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure ps = A x Kzt x I x ps30 = 20.75 psf Horizontal psAx Kzt xIxps30= 18.01 psf Roof Uplift Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 13-14-15 Date: 06/24/2019 Engineer:M.R I DESIGN FORCES (WIND) - I RADIO - I GEOMETRY Wall 4 C I#._.. a4, I b Plan Radio Dimensions a= 0.92 It tFpv Suction Suction b= 2.10 ft Elevation C = 0.92 ft Support = 4 Quantity FORCES GRAVITATORY (D) Weight, Wp = 59.5 Lbs Overturning moment OTM = Wp*a/4 = 13.7 Lbs*ft Dx = 6.5 Lbs Dy= 14.9 Lbs FORCES WIND (W) Applied horizontal force, Wx = 13.4 Lbs Applied vertical force, Wy = 3.8 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 19.9 Lbs Max shear force per anchor = Dy + Wy = 18.7 Lbs Luis Labrada 217 Landis Avenue Project: Nodes 13-14-15 Chula Vista, CA 91910 LAMAR Date: 06/24/2019 P: 619.370-9515 Engineer: ngineer: M.R www.lamareng.com ELEMENT & CONNECTIONS DESIGN I RADIO Load: C Fx = Dx+(Ex or Wx) = 19.9 Lbs Fy = Dy+(Ey or Wy) = 19.0 Lbs IWA Unistrut vertical Q = 2.0 NO of radios per vertical unist. 5.8 Qt = 5.0 n° Radios @2 ft - H= 5.83 ft :M Unistrut Horizontal Nu = 2 Unistrut B Lc= 16.25 ft 4 2 f = 2.00 ft Length Supp. Unistrut UNISTRUT VERTICAL DESIGN P = 19.9 Lbs 1P IP M. Mmax = PL/3 = 19.3 Ft.-Lbs. Status 231.8 In.-Lbs. [ OK ] Use: Unistrut: P1000 1 5/8 x 1 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 UNISTRUT HORIZONTAL DESIGN Px= 39.8 Lbs M. Mmax (y-y) = 68.2 818 Ft.-Lbs. In.-Lbs. Radio 0.16 Status r OK ] t,='n.c .1 Py = 38.1 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 65.3 Ft.-Lbs. Radio Status n = 7 783 In.-Lbs. 0.15 [-OK1 c = 0.29 ft Use: Unistrut: P1000 1 5/8 x I 5/8-I2ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 13-14-15 Date: 06/24/2019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN A: CHANNEL NUTS WITH SPRING Shear = 19.0 Lbs Pull Out = 19.9 Lbs Use: Channel Nuts: 3/8"-16 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 112" Mm. Status POK OK General Engineering Catalog - No. 17- Page 66 General Engineering Catalog - No. 17 Page 68 CONNECTION B: VERTICAL UNISTRUT TO HORIZONTAL UNISTRUT CHANNEL NUTS WITH SPRING Status Shear = 38.1 Lbs f OK Pull Out = 39.8 Lbs LOK Use: Channel Nuts: 318"-16 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 3/8"-1 1/2" Min. General Engineering Catalog - No. 17- Page 66 General Engineering Catalog - No. 17 Page 68 CONNECTION C: UNISTRUT TO EXISTING MECHANICAL SCREEN I Reaction unistrut horizontal Ratio Status Ry= Py(n-1)/2 -p Shear= 114.2 Lbs 0.15 [OK Rx = Px(n-1)/2 - Pull Out = 119.3 Lbs 0.40 j OK Use: D-Bolt = 1/2 in 24 in (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Shear: 780 Lbs Allowable FRP Bolt Shear Pull-Out: 300 Lbs/in Allowable FRP Bolt Pull-Out Luis Labrada Proyecto Nodes 13-14-15 217 Landis Avenue LAMAR Date: 05/07/19 Chula Vista, CA 91910 NNENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX III. DESIGN ATTACHMENT. CABINET EQUIPMENT. Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com wt.1 ~M' FM tj CTVIL + STRUCTURAL Project: Nodes 13-14-15 Date: 06/24/2019 Engineer: M.R SEISMIC DESING CABINET DESCRIPTION Description: BBU CABINET W = 382.0 Lbs bldg height= 21.3 ft ELEMENT DESIGN .(SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 5s 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 382.0 Lbs. FpH = (0.64 * Wp )/1.4 = 174.63 Lbs FpH = 0.46 * Wp =: 175.72 Lbs HORIZONTAL FpV = 0.28 * Wp = 106.96 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh= 1.0 Ft. FPH = (0.4*ap*SDS*Wp)/(Rp*lp)*(1+2*z/h) = 144.5 Lbs. Verifications FpHma'x = 1.6 * S0 * * W 481.6 Lbs. 144.5 Lbs. FpH min 0.3 * S0 * 1 * Wp = 90.3 Lbs. 144.5 Lbs. Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 13-14-15 Date: 06/24/2019 Engineer:M.R I DESIGN FORCES (SEISMIC) I CABINET I GEOMETRY Plan Radio Dimensions a= 0.92 ft b= 2.10 ft c= 0.92 ft Support = 4 Quantity Fpv Fph Elevation FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a14 = 87.9 Lbs*ft Dx= 41.8 Lbs Dy = 95.5 Lbs FORCES SEISMIC (E) Applied horizontal force, Ex = 59.6 Lbs Applied vertical force, Ey = 26.7 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 101.4 Lbs Max shear force per anchor = Dy + Ey = 122.2 Lbs Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 13-14-15 Date: 06/24/2019 Engineer:M.R WIND DESING CABINET DESCRIPTION Description: BBU CABINET W= 382 Lbs bldg height = 21.3 ft ELEMENT DESIGN (WIND) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) Importance factor, 1.0 only, (Table 1.5-2) 1w Basic wind speed (ASCE 7-10 26.5.1) V Topographic factor (26.8 & Table 26.8-1) Kzt ANALYSIS X = 1.31 For h = 21.25 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure PS = A x Kzt x I x ps30 = 20.75 psf Horizontal ps = Ax Kzt x I x ps30 = 18.01 psf Roof Uplift = C = 1.0 = 110.0 mph = 1.0 Flat tFpv Suction Fph Suction Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGDNEERING Project: Nodes 13-14-15 Date: 06/24/2019 Engineer:M.R I DESIGN FORCES (WIND) I CABINET I GEOMETRY c Wall - - al V b Plan Radio Dimensions a= 0.92 ft b= 2.10 ft Elevation c= 0.92 ft Support = 4 Quantity FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*a14 = 87.9 Lbs*ft Dx= 41.8 Lbs Dy = 95.5 Lbs FORCES WIND (W) Applied horizontal force, Wx = 13.4 Lbs Applied vertical force, Wy = 3.8 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 55.2 Lbs Max shear force per anchor = Dy + Wy = 99.3 Lbs Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 13-14-15 Date: 06/24/2019 Engineer: M.R I ELEMENT & CONNECTIONS DESIGN I CABINET I Load: C Fx= Dx+(ExorWx)= 101.4 Lbs Fy = Dy+(Ey or Wy) = 122.2 Lbs Unistrut vertical Q = 1.0 NO of radios per vertical unist. 5.8 Qt = 2.0 n° Radios @2 ft H= 5.83 ft Unistrut Horizontal Nu = 2 Unistrut B Lc= 12.50 ft 4 2 f = 2.00 ft Length Supp. Unistrut UNISTRUT VERTICAL DESIGN P= M. Mmax = PL/3 = Use: Unistrut: Allowable Moment: 101.4 Lbs 1P V 98.5 Ft.-Lbs. Status 1182.2 In.-Lbs. OK 1 P1000 1 5/8 x 1 5/8-12ga Nominal Thickness Single Channel 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 UNISTRUT HORIZONTAL DESIGN Px 101.4 Lbs M. Mmax (y-y) = 67.6 811 Ft.-Lbs. In.-Lbs. Radio Status 0.16 L OKj C4C4.C4.C4CJ 1 1LC Py = 122.2 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 81.5 Ft.-Lbs. Radio Status n = 3 978 In.-Lbs. 0.19 [ OK ] c = 0.67 ft Use: Unistrut: P1000 1 5/8 x I 5/8-l2ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING ,UWp..fllfl.,.:0 Project: Nodes 13-14-15 Date: 06/24/2019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN • I CABINET CONNECTION A: RADIOS TO VERTICAL UNISTRUT CHANNEL NUTS WITH SPRING Shear = 122.2 Lbs Pull Out = 101.4 Lbs Use: Channel Nuts: 318"-16 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs Status OK General Engineering Catalog - No. 17- Page 66 HEX-HEAD CAP SCREW Use: Hex-Head: 3!8"-1 1/2" Mm. General Engineering Catalog - No. 17 Page 68 CONNECTION B: VERTICAL UNISTRUT TO HORIZONTAL UNISTRUT CHANNEL NUTS WITH SPRING Status Shear = 122.2 Lbs OK Pull Out = 101.4 Lbs L OK Use: Channel Nuts: 318"-16 General Engineering Catalog - No. 17- Page 66 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 112" Mm. General Engineering Catalog - No. 17 Page 68 CONNECTION C: UNISTRUT TO EXISTING MECHANICAL SCREEN Reaction unistrut horizontal Ratio Status Ry = Py(n-1)I2 Shear = 122.2 Lbs 0.16 rOK Rx = Px(n-1)/2 .- Pull Out = 101.4 Lbs 0.34 1 OK Use: D-Bolt = 1/2 in 24 in (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Shear: 780 Lbs Allowable FRP Bolt Shear Pull-Out: 300 Lbs/in Allowable FRP Bolt Pull-Out Luis Labrada ecto Nodes 13-14-15 217 Landis Avenue Proy Date: 05/07/19 Chula Vista, CA 91910 flP1ENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX IV. SCREEN WALL Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEEIING Project: Nodes 13-14-15 Date: 06/24/2019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I Geometry W = 7.5 psf Weight Lt 4 Li SCREEN LENGTH L = 16.5 ft Screen total length P1 NP= 4 NO Post NS = 3 NO Steps Between Post 1 1L Li = 5_]ft L. Between Post H2 H3 H5 [ P2 S = 1.83 Length Steps Ht H4 SCREEN HEIGHT L2 H1 = 15.5 ft. [E] Structural Roof Hi 4 H2 = 5.83 ft Post Height Building H3 = 4.8 ft Screen Height H4 = 1.000 ft Screen Wall Ht = 21.33 ft Total height BRACE L2= 1.50 ft H5= 5.83 ft 6= 0 Wind Force Exposure category (ASCE 7-10 26.7.3) Importance factor, 1.0 only, (Table 1.5-2) Basic wind speed (ASCE 7-10 26.5.1) Topographic factor (26.8 & Table 26.8-1) = C 1w = 1.0 V = 110.0 mph Kzt = 1.0 Pressure - 30 Psf. / Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IIENGINEERING Project: Nodes 13-14-15 Date: 06/2412019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I FRP Channel Stifener - Design Tributary: S = 1.83 ft H3= 4.83 ft 181 Demand: Load qw = 54.9 Lbs/Ft M. Mmax (x-x) = 1921.1 In.-Lbs. 4.83 F*11JI1I1L Flexural Strength = 960.57 psi Caøacit v Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. Iz = 3.00 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 960.57 psi 6600 psi 0.15 LIIOKTI FRP Channel Stifener - Connection Demand Shear = 132.5835 Lbs Caacitv Use: 1/2 in FRP Bolt nBolt: I 780 ILbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 132.5835 psi < 780 psi 0.17 ETOKIIII Luis Labrada 217 Landis Avenue Project: Nodes 13-14-15 Chula Vista, CA 91910 LAMAR Date: 0612412019 P: 619.370-9515 INENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE I Tube - Design - I ruoutary: Li = O.bu ft H3= 4.83 ft Demand: Load qw = 72.5 Lbs/Ft 4.83 ft M. Mmax (x-x) = 3287.4 In.-Lbs. Flexural Strength = 1643.71 psi Caoacitv 54fftt5'.5 ft Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. lz = 3.00 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity oa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1643.71 psi < 6600 psi 0.25 [0K ] Top & Bottom FRP Horizonal Tube - Connection Demand Shear = 199.2 Lbs - Capacity Use: 1I2 in FRP Bolt n Bolt: 2 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 199.2 psi < 1560 psi 0.13 ETOKTTI II L Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING flfllflfltltufl Project: Nodes 13-14-15 Date: 06/2412019 Engineer: M.R I SCREEN WALL DESIGN - FRP TYPE I I Loads Reactions Top & Bottom FRP Horizonal Tube FRP Screen Wall Weight Reaction = 199.2 Lbs W = 240.5 Lbs RI = 398.5 Lbs R2 = 398.5 Lbs Check Capacities Steel Column M. Mmax = 3961.5 In.-Lbs. Flexural Strength = 1015.77 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. Iz = 7.80 1n4 Moment of inertia t= 1/4 In. E= 29000000 'psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 1015.77 psi < 6600 psi 0.15 E OK IIJ Check Capacities Brace Axial force: 398.5 Lbs Compressive Strength: 118.2 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = - 6600 Psi. Allowable Compressive Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 118.2 psi 6600 psi 0.02 ETOKITI FRP Steel Column to Brace (KICKER) - Connection Reaction Steel Column to Brace: V = 398.5 Lbs Use: D-Bolt: 1I2 in A = 0.196 in2 n Bolt: 4 Capacity: 780 Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 2029.4 psi 3120 psi 0.65 J OKIII Luis Labrada 217 Landis Avenue Project: odes 13-14-15 Chula Vista, CA 91910 LAMAR Date: 06/24/2019 P: 619.370-9515 www.lamareng.com : •N.NGI1'LEi5 Engineer: M.R I SCREEN WALL DESIGN - FRP TYPE I FRP Steel Column to Roof (BRAKET) - Connection Steel Column: Plate: I-X= iJU.1 LOS Fy= 240.5 Lbs HSSSQR 4X4X1_4 b £. d2 Al a= 4.5 in b= 10 in t= 1/4 in Shear V = 199.2 Lbs Pull Out T = 120.2 Lbs D-Bolt = 1/2 in nBolt: 2 Material = A307 Demand 199.2 Lbs Demand 120.2 Lbs di= 2 in d2= 7 in k= 1.5 in Fv= 24 ksi Ft= 45 ksi > Allowable Shear Ratio Status 9424.8 Lbs 0.02 OK > Allowable Shear Ratio Status 176715 Lbs 001 OK FRP Brace to Roof (BRAKET) - Connection Reaction Steel Column Fx = 398.5 Lbs b Fy= 0 Lbs d2 Steel Brace: HSS SQR 4X4X1 4 - - a dl 1 --•----EJ Plate: V a= 4.5 in dl= 2 in b= 10 in d2= 7 in t 1/4 in k= 1.5 0Mm Bolt: Shear V = 0.0 Lbs. Per Bolt Pull Out T = 199.2 Lbs. Per Bolt I V T Use: D-Bolt: 112 in n Bolt: 2 (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Capacity: 780 Allowable Bolt Shear Capacity: 330 Allowable FRP Bolt Pull-Out Demand Capacity Shear Ratio Status 0.0 psi 1560 psi 0.00 OK Demand Capacity Pull Out Ratio Status 199.2 psi 660 psi 0.30 OK Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 13-14-15 Date: 0612412019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE 2 Geometry W = 7.5 psf Weight Lt Li SCREEN LENGTH L = 13.5 ft Screen total length 4 p1 NP= 4 NO Post I 46 NS = 3 NO Steps Between Post H3 t flflEg flçll LI = [j4.5IJft L. Between Post I H2 H5 P2 S = 1.5 Length Steps Ht I H4 SCREEN HEIGHT 15.5 ft. [EJ Structural Roof JL2 Hi = I HI H2 = 5.83 ft Post Height I Building H3 = 4.8 ft Screen Height H4 = 1.000 ft Screen Wall Ht = 21.33 ft Total height BRACE L2= 1.50 ft H5= 5.83 ft 8= 0 0 Wind Force * Exposure category (ASCE 7-10 26.7.3) = C Importance factor, 1.0 only, (Table 11.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Pressure 30 Psf. Luis Labrada Project: Nodes 13-14-15 217 Landis Avenue LAMAR Date: 0612412019 Chula Vista, CA 91910 P: 619.370-9515 ENGINEERING Engineer: M.R www.lamareng.com U SCREEN WALL DESIGN - FRP TYPE 2 FRP Channel Stifener - Design Tributary: S = 1.50 ft H3= 4.83 ft Demand: Load qw = 45.0 Lbs/Ft M. Mmax (x-x) = 1574.7 In-Lbs. 4.83 f Flexural Strength = 787.35 psi Capacity Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 In2 Gross area of the section h = 3 In. lz = 3.00 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 787.35 psi < 6600 psi 0.12 tOK] FRP Channel Stifener - Connection Demand Shear = 108.675 Lbs Capacity Use: 1I2 in FRP Bolt nBolt: I . 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 108.675 psi < 780 psi 0.14 LIIOKJ Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 13-14-15 Date: 06/24/2019 Engineer: M.R I SCREEN WALL DESIGN - FRP TYPE 2 Top & Bottom FRP Horizonal Tube - Design Tributary: Li = 4.50 ft Demand: Load qw = 72.5 Lbs/Ft 4.83 ft .Flexural Strength = 1100.33 psi I [4.5ft 4.5ft Capacity Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. lz = 3.00 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1100.33 psi < 6600 psi 0.17 OcIIII Top & Bottom FRP Horizonal Tube - Connection Demand Shear = 163.0 Lbs Capacity Use: 1/2 in FRP Bolt nBolt: 2 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 163.0 psi 1560 psi 0.1 ETOKIII1 Luis Labrada 217 Landis Avenue Project: Nodes 13-14-15 Chula Vista, CA 91910 LA MAR Date: 06/2412019 P: 619.370-9515 UNENGINEERING Engineer: M.R www.lamareng.com V • I SCREEN WALL DESIGN - FRP TYPE 2 FRP Steel Column & Brace - Design Loads Reactions Top & Bottom FRP Horizonal Tube FRP Screen Wall Weight Reaction = 163.0 Lbs W = 196.8 Lbs Ri = 326.0 Lbs R2 = 326.0 Lbs Check Caoacities Steel Column M.Mmàx= 3241.2 In.-Lbs. Flexural Strength = 831.09 psi Use: HSS_SQR4X4XI_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. V (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 831.09 psi 6600 psi 0.13 [ThK1 Check Capacities Brace Axial force: 326.0 Lbs Compressive Strength: 96.7 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. Iz = 7.80 1n4 Moment of inertia = 1/4 In. E = - 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Compressive Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 96.7 psi 6600 psi 0.02 EThiC] FRP Steel Column to Brace (KICKER) - Connection Reaction Steel Column to Brace: V = 326.0 Lbs Use: D-Bolt: 112 in V A = 0.196 in2 n Bolt: 4 Capacity: 780 Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. - Demand Capacity Shear Ratio Status 1660.4 psi 3120 psi 0.53 TOkIIIII Luis Labrada 217 Landis Avenue •.. Project:. Nodes 13-14-15 Chula Vista, CA 91910 . Date :06124/2019 P: 619.370-9515 LAMAR ENGINEErnNG . Engineer: www.lamareng.com SCREEN WALL DESIGN - FRP TYPE 2 FRP Steel Column to Roof (BRAKET) - Connection Reaction Steel Column Fx = 270.1 Lbs b Fy= 196.8 Lbs d2 Steel Column: HSS_SQR 4X4X1_4 • S ad1tQ Plate: V a= 4.5 in dl= 2 in b= 10 in d2= 7 in t= 1/4 in k= 1.5 in Bolt: Shear V = 163.0 Lbs __- Pull Out T = 98.4 Lbs I V T 0-Bolt = 1/2 in Fv = 24 ksi n Bolt: 2 Ft = 45 ksi Material = A307 Demand > Allowable Shear Ratio Status 163.0 Lbs > 9424.8 Lbs 0.02 EOK Demand > Allowable Shear Ratio Status 98.4 Lbs > 17671.5 Lbs 0.01 [ThK} / FRP Brace to Roof (BRAKET) - Connection Reaction Steel Column Fx = 326.0 Lbs b Fy= 0 Lbs d2 Steel Brace: HSS SQR 4X4X1 4 A - - a dl j Plate: - a= 4.5 in dl= 2 in b= 10 in d2= 7 in t 1/4 Jn k= 1.5 0Mm Boa: Shear V = 0.0 Lbs. Per Bolt Pull Out T = 163.0 Lbs. Per Bolt . V T Use: D-Bolt: 112 in n Bolt: 2 (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Capacity: 780 Allowable Bolt Shear Capacity: 330 Allowable FRP Bolt Pull-Out Demand Capacity Shear Ratio Status 0.0 psi 1560 psi 0.00 rOKIIj Demand Capacity Pull Out Ratio Status 163.0 psi < 660 psi 0.25 [OK Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENCNEER1NG Project: Nodes 13-14-15 Date: 06124/2019 Engineer: M.R I SCREEN WALL DESIGN - FRP TYPE Geometry W = 7.5 psf Weight Lt Li SCREEN LENGTH S L = 24.3 ft Screen total length - - P1 NP= 6 NO Post NS = 3 NO Steps Between Post H3 Li = 4.9T]ft L. Between Post H2 H5 P2 S = 1.62 Length Steps Ht H4____________________________________ SCREEN HEIGHT L2 H1 = 15.5 ft. [E] Structural Roof Hi H2 = 5.83 ft Post Height Building H3 = 4.8 ft Screen Height - - - H4 = 1.000 ft Screen Wall Ht = 21.33 ft Total height BRACE L2= 1.50 ft H5= 5.83 ft 6= a Wind Force Exposure category (ASCE 7-10 26.7.3) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Pressure 30 - Psf. 11 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERIN GI Project: Nodes 13-14-15 Date: 06/2412019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE 3 Tributary: S = 1.62 ft H3= 4.83 ft 161 Demand: Load qw = 48.6 Lbs/Ft . 4.83 Flexural Strength = 850.34 psi Caoaci tv Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. lz = 3.00 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6660 si. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 850.34 psi . 6600 psi 0.13 TOKJ FRP Channel Stifener - Connection - Demand Shear = 117.369 Lbs Capacity Use: 1/2 :in FRP Bolt nBolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 117.369 psi < 780 psi 0.15 L110K111 10 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERINGI Project: Nodes 13-14-15 Date: 06124/2019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE 3 Top & Bottom FRP Horizonal Tube - Design Tributary: L1= 4.87 ft H3 = 4.83 ft Demand: Load qw = 72.5 Lbs/Ft 4.83 ft M. Mmax (x-x) = 2573.2 In.-Lbs. Flexural Strength = 1286.6 psi 4.87 ft 4.87 ft Caoacitv 41 Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 In2 Gross area of the section h = 3 In. lz = 3.00 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 1286.6 psi < 6600 psi 0.19 1 OK Top & Bottom FRP Horizonal Tube - Connection Demand Shear = 176.3 Lbs Capacity Use: 1I2 in FRP Bolt nBolt: 2 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 176.3 psi 1560 psi 0.11 [OKII1 11 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com - LAMAR ENCNEEmNG Project: Nodes 13-14-15 • Date: 0612412019 - Engineer: M.R SCREEN WALL DESIGN - FRP TYPE 3 FRP Steel Column & Brace - Design Loaas Reactions Top & Bottom FRP Horizonal Tube FRP Screen Wall Weight Reaction = 176.3 Lbs W = 212.8 Lbs Ri = 352.5 Lbs R2 = 352.5 Lbs Check Capacities Steel Column M. Mmax = 3504.9 In.-Lbs. Flexural Strength = 898.68 psi Use: HSS_SQR 4X4X1_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity - aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 898.68 psi 6600 psi 0.14 [9K] Check Capacities Brace Axial force: 352.5 Lbs Compressive Strength: 104.6 psi Use: HSS_SQR4X4XI_4 FRP Channel b = 4 In. A = 3.37 1n2 Gross area of the section h = 4 In. lz = 7.80 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Compressive Strength. (Appendix A. Design Values Load Chart for FRP Materials). LARR# 25520. Demand Capacity Ratio Status 104.6 psi < 6600 psi 0.02 FRP Steel Column to Brace (KICKER) - Connection Reaction Steel Column to Brace: V = 352.5 Lbs Use: D-Bolt: 112 in A = 0.196 in2 nBolt: 4 Capacity: 780 Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 1795.5 psi 3120 psi 0.58 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 LAMAR Project: 'Date Nodes 13-14-15 e: 06124/2019 P: 619.370-9515 IENGINEERING Engineer: M.R www.lamareng.com SCREEN WALL DESIGN - FRP TYPE 3 Reaction Steel Column Fx = 292.1 Lbs b Fy= 212.8 Lbs lg d2 Steel Column: HSS_SQR 4X4X1_4 ad1 • -Q- Pte: a= 4.5 in dl= 2 in b= 10 in d2: 7 iin n Boa: Shear V = 176.3 Lbs Pull Out T = 106.4 Lbs I T1 T D-Bolt = . 1/2 in Fv = 24 ksi n Bolt: 2 Ft = 45 ksi Material = A307 Demand > Allowable Shear Ratio Status 176.3 Lbs > 9424.8 Lbs . 0.02 E1110K1 Demand > Allowable Shear Ratio Status 106.4 Lbs > 17671.5 Lbs 0.01 OK FRP Brace to Roof (BRAKET) - Connection Reaction Steel Column Fx = 352.5 Lbs b Fy= 0 Lbs d2 Steel Brace: HSS- SOR 4X4X1 -4 A j Plate: - adl i.-ED•-.-- a= 4.5 in dl= 2 in b= 10 in d2= 7 in t= 1/4 in k= 1.5 10Mm Bolt: Shear V = 0.0 Lbs. Per Bolt Pull Out T = 176.3 Lbs. Per Bolt V T Use: D-Bolt: 1/2 in n Bolt: 2 (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Capacity: 780 Allowable Bolt Shear Capacity: 330 Allowable FRP Bolt Pull-Out Demand Capacity Shear Ratio Status 0.0 psi 1560 psi 0.00 L O!S__J Demand Capacity Pull Out Ratio Status 176.3 psi 660 psi 0.27 EIITOK ] to Luis Labrada ecto Nodes 13-14-15 217 Landis Avenue LAM AR Proy Date: 05/07/19 Chula Vista, CA 91910 NMENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX V. ROOF VERIFICATION Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 LAMAR IENGINEERING Project: Nodes 13-14-15 Date: 07/08/2019 Engineer: M.R I VERIFY ROOF FRAMING I Nodes 13 ANTENNA DIMENSION [in] b •c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] HEX454CU0000G 46.80 15.60 7.40 48.90 0 0.00 0.00 HEX654CU0100G 51.10 12.00 7.10 39.70 0 0.00 0.00 CUUX06306F52s0-T 24.30 12.10 7.00 13.00 8 4.71 104.00 CUUX05XO6F5200 24.10 16.20 7.30 15.70 0 0.00 0.00 QUINTELQS46512-2 52.00 12.00 10.80 75.00 0 0.00 0.00 Total 8.00 4.71 104.00 RADIOS DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] RRUS-2203 7.90 7.90 3.90 10.00 14 3.00 140.00 ERICSSON RRUS -4426 15.00 13.20 5.80 48.40 1 0.53 48.40 ERICSSON RRUS -4478 18.10 13.40 8.26 59.40 1 . 0.77 59.40 ERICSSON RRUS -4415 16.50 13.40 5.90 46.00 1 0.55 46.00 ALCATEL LUCENTTD-RRH8X2O-25 9.68 12.83 6.30 26.45 4 . 2.25 105.80 ALCATEL LUCENT CDMA/LTE DUAL TECH 25.00 11.00 11.00 59.50 2 1.68 .-11900 Total 23.00 8.77 518.60 CABINET DIMENSION [in] WIGHT Quantity Area W b c a [Lbs] [sq ft] [Lbs] BBU 32.25 27.50 27.00 382.00 0 0.00 0.00 AC POWER 18.50 20.00 6.00 50.00 0 0.00 0.00 TELCO CABINET 14.25 7.75 6.00 10.00 0 0.00 0.00 Total 0.00 0.00 0.00 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 LAMAR INENGINEERING Project: Nodes 13-14-15 Date: 0710812019 Engineer: M.R ( VERIFY ROOF FRAMING Existing Load Density Concrete: 145.0 pcf DL: 72.5 lb/sq. ft. Thickness: 6.0 in LL: 20.0 lb/sq. ft. Area [sq ft] DL I LL I DL+LL [E] Steel Deck 1 448 32480 1 8960 1 41440 JLbs. New Load Antennas Radio Cabinet Total: Quantity Area DL Lbs Lbs Lbs Lbs 8 5 104 23 9 519 0 0 0 1 31 13 1 623 - New Load + Existing Load I Existing New Total: New + Existing DL LL DL+LL Area [sq ft] DL LL DL+LL DL LL DL+LL Steel Deck 32480 8960 41440 13 0 -270 -270 32480 8690 41170 Antennas 0 0 0 5 104 0 104 104 0 104 Radiol 0 0 0 9 519 0 519 519 0 519 Cabineti 0 0 0 0 0 0 0 0 0 0 Total: 41793 L Chapter #34A CBC 2016 I 3403A.3 Existing structural elements carrying gravity load. 'Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load- carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404A.3. Any existing element that will form part of the lateral load path for any part of the addition shall be onsidered an existing lateral load- carrying structural element subject to the requirements of Section 3403A.4. New Total Load: 41793 Lbs Existing Total Load: 41440 Lbs [New Total Load] -[Existing Total Load] -*100% = 0.844 % [New Total Load] L 0.84 ] < r LOKJ Luis Labrada LAMAR •.• -'. Project: Nodes 13-14-15 217 Landis Avenue: . . Date: 07/08/2019 Chula Vista, CA 91910 IENGINEERING .. • Engineer:M.R ...a11a20 P: 619.370-9515 I •' VERIFY ROOF FRAMING Node 14 & 15 ANTENNA . . DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] HEX454CU0000G 46.80 15.60 7.40 48.90 0 0.00 0.00 HEX654CU0100G . 51.10 12.00 7.10 39.70 0 0.00 0.00 CUUX06306F52s0-T 24.30 12.10 7.00 13.00 4 2.35 52.00 CUUX05XO6F5200 24.10 16.20 7.30 15.70 0 0.00 0.00 QUINTELQS46512-2 52.00 1 12.00 1 10.80 1 75.00 0 1 0.00 1 0.00 Total 4.00 2.35 52.00 RADIOS DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] RRUS-2203 7.90 7.90 3.90 10.00 14 3.00 140.00 ERICSSON RRUS -4426 15.00 13.20 5.80 48.40 ..0.53 48.40 ERICSSON RRUS -4478 18.10 13.40 8.26 59.40 1 0.77 59.40 ERICSSON RRUS-4415 16.50 13.40 5.90 46.00 1 - 0.55 46.00 ALCATEL LUCENTTD-RRHBX2O-25 9.68 12.83 6.30 26.45 2 1.12 52.90 ALCATEL LUCENT CDMNLTE DUAL TECH 25.00 11.00 11.00 59.50 1 0.84 '59.50 Total 20.00 6.81 .406.20 CABINET DIMENSION [in] WIGHT Quantity Area W • b c a [Lbs] [sq ft] [Lbs] BBU 32.25 27.50 27.00 382.00 3 15.47 1146.00 AC POWER 18.50 20.00 6.00 50.00 1 0.83 50.00 TELCO CABINET 14.25 7.75 6.00 .10.00 • 1 0.32 10.00 Total 5.00 16.63 1206.00 Luis Labrada Project: Nodes 13-14-15 217 Landis Avenue LAMAR Date: 07/08/2019 Chula Vista, CA 91910 •ENGINEERING Engineer: M.R P: 619.370-9515 VERIFY ROOF FRAMING Existing Load Density Concrete: 145.0 pcf DL: 72.5 lb/sq. ft. Thickness: 6.0 in LL: 20.0 lb/sq. ft. Area [sq ft] DL LL DL+LL [E] Steel Deck 1 448 32480 1 8960 1 41440 JLbs. New Load Antennas Radio Cabinet Total: Quantity Area DL Lbs Lbs Lbs Lbs 4 2 52 20 7 406 5 17 1206 1 29 26 1664 New Load + Existing Load 1 Existing New Total: New + Existing DL LL DL+LL Area [sq ft] DL LL DL+LL DL LL DL+LL Steel Deck 32480 8960 41440 26 0 -516 -516 32480 8444 40924 Antennas 0 0 0 2 52 0 52 52 0 52 Radiol 0 0 0 7 406 0 406 406 0 406 Cabineti 0 1 0 1 0 1 17 1 1206 1 0 1 1206 1206 1 0 1 1206 Total: 1 42588 I I. Chapter #34A CBC 2016 3403A.3 Existing structural elements carrying gravity load. "Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load- carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404A.3. Any existing element that will form part of the lateral load path for any part of the addition shall be onsidered an existing lateral load- carrying structural element subject to the requirements of Section 3403A.4." New Total Load: 42588 Lbs Existing Total Load: 41440 Lbs [New Total Load] -[Existing Total Load] -*100% 100% = 2.696 % [New Total Load] EiIi < [5j% Loki Luis Labrada Proyecto Nodes 13-14-15 217 Landis Avenue LAMAR Date: 05/07/19 Chula Vista, CA 91910 IMENGINEERING Engineer: M.R P: 619-370-9515 www.lamarenci.com APPENDIX VI. TABLES TABLE 1: SEISMIC DESIGN 5/162O19 U.S. Seismic Design Maps OSHPD Legoland I Legoland Dr, Carlsbad, CA 92008, USA Latitude, Longitude: 33.1262496, -117.31192390000001 V Museum of - ¼ Making Music ' LEGbLAND California -j - Staff Parking 9 Hotel Parking 9 Map data 02019 Google Date 5/16/2019,11:03:03 AM Design Code Reference Document ASCE7-10 Risk Category II Site Class D - Stiff Soil Type Value Description Ss 1.127 MCER ground motion. (for 0.2 second period) S1 0.434 MCER ground motion. (for 1.0s period) SMS 1.182 Site-modified spectral acceleration value SMI 0.679 Site-modified spectral acceleration value SDS 0.788 Numeric seismic design value at 0.2 second SA S01 0.453 Numeric seismic design value at 1.0 second SA Type Value Description SDC 0 Seismic design category Fa 1.049 Site amplification factor at 0.2 second F 1.566 Site amplification factor at 1.0 second PGA 0.447 MCEG peak ground acceleration FPGA 1.053 Site amplification factor at PGA PGAM 0.471 Site modified peak ground acceleration TL 8 Long-period transition period in seconds SsRT 1.127 Probabilistic risk-targeted ground motion. (0.2 second) SsUH 1.194 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration SsD 1.525 Factored deterministic acceleration value. (0.2 second) S1RT 0.434 Probabilistic risk-targeted ground motion. (1.0 second) Si UH 0.436 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.616 Factored deterministic acceleration value. (1.0 second) PGAd 0.59 Factored deterministic acceleration value. (Peak Ground Acceleration) CRS 0.944 Mapped value of the risk coefficient at short periods CR1 0.995 Mapped value of the risk coefficient at a period of 1 s https://seismicmaps.org 1/2 5/16/2019 MCER Response Spectrum 1.5 U.S. Seismic Design Maps 7.5 1.0 0.5 0.0 0.0 2.5 5.0 Period, T (sec) - Sa(g): Design Response Spectrum 0.8 0.6 0.4 Cn (0 0.2 0.0 0.0 2.5 5.0 7.5 Period, T (sec) Sa(g). DISCLAIMER While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting, and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this webstie. https://seismicmaps.org 2/2 TABLE:2 DESIGN VALUES LOAD CHART FOR FRP MATERIALS Appendix A Design Values Load Chart for FRP Materials ALLOWABLE STRENGTH TABLE FOR FRP SHAPES: Tubes, Channels, Angles Property Direction Value Units Tensile Strength Lengthwise Crosswise 6,600 1,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 6,600 3,300 psi Flexural Strength Lengthwise Crosswise 6,600 2,200 psi Flexural Modulus Lengthwise Crosswise 1,600,000 800,000 psi Shear Strength Lengthwise Crosswise 1,400 500 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi 1/2" Bolt Bearing Lengthwise Crosswise 6,000 3,600 psi 1/2" Bolt Shear Allowable 780 lbs 1/2" Bolt Tension Allowable 300 lbs Table Notes: Values based on 1525 series - Thermoset Polyester Class 1 FR (Slate Grey) A Safety Factor of 5.0 has been used to determine Allowable Loads. ALLOWABLE STRENGTH TABLE FOR FRP FLAT SHEETS: Property Direction Value Units Tensile Strength Lengthwise Crosswise 4,000 2,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 4,800 3,200 psi Flexural Strength Lengthwise Crosswise 7,000 3,000 psi Flexural Modulus Lengthwise Crosswise 2,000,000 1,100,000 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi Table Notes: Values based on 1625 series - Thermoset Vinyl Ester Class 1 FR (Beige) A Safety Factor of 5.0 has been used to determine Allowable Loads. I I I Hi-Tech Composite Structures Supplement for LARR #25520 Page 1 of 1 TABLE 3: POST - INSTALATED CONCRETE ANCHOR. HILTI ESR-2302 I Most Widely Accepted and Trusted Page 7 of 11 TABLE 3-DESIGN INFORMATION CARBON STEEL KB3 - DESIGN INFORMATION Symbol Units Nominal anchor diameter 1, 4 3 /9 1 /2 5 Ia 3 /4 Anchor O.D. d4 (do)7 in. 0.250 0.375 0.500 0.625 0.750 (mm) (6.4) (9.5) (12.7) (15.9) (19.1) Effective mm. embedment' het in. 11/2 2 2 31/ 5 31/ 4 33/ (mm) (38) (51) (51) (83) (79) (102) (95) (127) Mm. member thickness hmin in. 4 4 5 4 6 6 8 5 6 8 6 8 8 (mm) (102) (102) (127) (102) (152) (152) (203) (127) (152) (203) (152) (203) (203) in. 2/4 4'/2 37/ 4/8 35/s 6/4 5ia 71/ 91/2 71/2 93/4 7 /2 91/2 Critical edge distance cac (mm) (70) (114) (98) (124) (92) (171) (143) (191) (241) (191) (248) (191) (241) in. 1 /8 2 02 2'/8 2 1/ 1/ 2/4 1/4 1/4 2/4 2 /8 2'I2 clan (mm) (35) (51) (38) (54) (51) (41) (41) (57) (44) (44) (70) (67) (64) Mm. edge distance In. 1/4 2/ 3'/3 47/s 43/4 4/4 4 5/4 43/4 4 6/ 02 6/9 for s a (mm) (44) (73) (89) (124) (121) (108) (102) (133) (121) (102) (175) (165) (162) in. 1/4 1/4 1/4 2'/2 2/4 2 17i8 2I9 2'/8 2'I8 33/4 3 /8 31/4 Sm,n (mm) (32) (44) (44) (64) (57) (51) (48) (60) (54) (54) (95) (86) (83) Mm. anchor spacing in. 1/8 2I 2/ 2 /8 2/ 2/4 2 31I 2/ 2'/4 33/4 3/9 33/s for c (mm) (41) (60) (60) (67) (60) (57) (51) (79) (60) (57) (95) (86) (86) in. 2 27 2 /8 4 3 /a 43/4 41/2 53/4 Mm. hole depth in concrete hh e (mm) 1 (51) (67) (67) (102) (98) (121) (114) (146) Min. specified yield strength fy. psi 84,800 84,800 84,800 84,800 84,800 (N/mm2) (585) (585) (585) (585) (585) Mm. specified ult. strength psi 106,000 106,000 106,000 106,000 106,000 (N/mm2) (731) (731) (731) (731) (731) in 0.02 0.06 0.11 0.17 Effective tensile stress area A 9 (mm) (12.9) (38.7) 0.24 2 (71.0) (109.7) (154.8) Steel strength in tension N lb 2,120 6,360 11,660 18,020 25,440 (kN) (9.4) (28.3) (51.9) (80.2) (113.2) Steel strength in shear V44 lb 1,640 4,470 6,635 I 6,750 12,230 15,660 I 16,594 (kN) (7.3) (19.9) (29.5) (30.0) (54.4) (69.7) (73.8) Pullout strength uncracked Np,uncr lb 1,575 NA NA I 6,800 NA NA 0,585 1(47.1) concrete (kN) (7.0) (30.2) Anchorcategory3 1,20r3 - 1 Effectiveness factor kuncr k4 - 24 4 uncracked concrete Modification factor for WCN - 1.0 I uncracked concrete Coefficient for pryout kcp - 1.0 2.0 Installation torque ft*lb 4 I 20 40 I 60 I 110 (Nm) (5) (27) I (54) (81) (149) Axial stiffness in service load range /3 (lb/in) 116,1501 162,850 I 203,500 I 191,100 222,150 I I 170,700 I 207,400 164,000 COV 0, % I 60 I 42 I 29 I 29 I 25 I 21 I 19 24 Strength reduction factor for tension, steel 0.75 failure modes5 Strength reduction factor 0 for shear, steel 0.65 failure modes5 Strength reduction factor for tension, concrete 0.65 failure modes, Condition B6 Strength reduction factor 0 for shear, concrete 0.70 failure modes, Condition B6 For SI: 1 inch = 25.4 mm, llbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-In units: 1 mm = 0.03937 inches. 'See Fig. 2 2See Section 4.1.4 of this report, NA (not applicable) denotes that this value does not govern for design. 3See ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. 45ee ACI 318-14 17.4.2.2 or ACI 318-11 D5.2.2, as applicable. 5The carbon Steel KB3 is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable. 6For use with the load combinations of ACI 318-14 Section 5.3, ACI 318-11 Section 9.2 or 113C Section 1605.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 13.4.3(c), as applicable, is not provided, or where pull-out or pry out strength 9overns. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. The notation in parenthesis is for the 2006 IBC. ESR-1917 I Most Widely Accepted and Trusted Page 8 of 14 TABLE 3-DESIGN INFORMATION, CARBON STEEL KB-TZ DESIGN INFORMATION Symbol Units Nominal anchor diameter __________________________ 3, 1/2 / 8 /4 AnchorO.D. d0(d0) in. 0.375 0.5 0.625 0.75 (mm) (9.5) ______ (12.7) (15.9) (19.1) Effective mm. embedment' hal in. 1/3 2 2/4 2 31! 31/a 4 34 4/4 (mm) (38) (51) (70) (51) (83) (79) (102) (83) (9 5) (121) Mm. member thickness2 hmr,, in. I 5 416 I 618 I 5 5/3 618 I 8 (mm) (83) (102) i (127) (127) (102)1 (152) (152)1 (203) (127) (140) (152) 1(203) (203) Critical edge distance c in. 6 4' 4 4'/a 5'/2 4'/3 7'/2 6 6/3 ±(222)(171) 12 10 89 (152) (111) I (102) (105) Imm) (152) (140) I (114) (191) (165) (305) (254) 1(203) (229) In. 8 2'/2 2/3 2/4 2/ 35/s 31/ 9 4 4' 4'/8 Mm. edge distance Cmrn _______ (mm) (203) (64) (64) 1 (70) (60) (92) 1 (83) (241) (121) (105) for s a i n. 8 5 5 53/4 53/4 5 /a 5 10/3 &'/ (mm) (203) (127) (127) (146) (146) (156) (149) (127) (267) (225) in. 8 21/2 2'/223/4 2/ 31/2 3 5 5 4 Mm. anchor spacing smin _______ (mm) (203) (64) (64) (70) (60) (89) (76) (127) (127) (102) In. 8 3 /a 35/a 41/ 31/2 43/4 4/4 9 1 2 91/2 76 for c a (mm) 1 (203) (92) (92) (105) (89) 1 (121) (108) (241) (241) (197) Mm. hole depth in concrete h0 in. 2 2 /8 33/s 2/ 4 3/4 43/4 4 4/3 53 (mm) (51) (67) (86) (67) (102) (98) (121) (102) (117) (146) Mm. specified yield strength fy lb/in2 100,000 84,800 84,800 84,800 (N/mm2) (690) (585) (585) (585) Mm. specified ult. strength l44 lb/in2 125.000 106,000 106,000 106,000 (N/mm2) (862) (731) (731) (731) Effective tensile stress area AW ,N In2 0.052 0.101 0.162 0.237 (mm 2) (33.6) (65.0) (104.6) (152.8) Steel strength in tension N, lb 6,500 10,705 17,170 25,120 (kN) - (28.9) (47.6) (76.4) (111.8) Steel strength in shear VW lb 2,180 3,595 5,495 8,090 13.675 (kN) (9.7) (16.0) (24.4) (36.0) (60.8) Steel strength in shear, lb 2,180 2,255 5,495 7,600 11,745 seismic3 vs0.04 (kN) (9.7) (10.0) (24.4) (33.8) (52.2) Pullout strength uncracked lb 2,160 2,515 4,110 NA 5,515 I 9,145 I 8,280 110,680 concrete4 (kN) (9.6) I (11.2) I (18.3) I (24.5) NA I (40.7) NA (36.8) Pullout strength cracked -rN,,.0 lb NA 2,270 NA 4,915 NA NA concrete (kN) I (10.1) i (14.1) I (21.9) Anchor category5 2 1 Effectiveness factor kurcr uncracked concrete 24 Effectiveness factor k, cracked concrete 17 kus0Jkc,7 1.0 Coefficient for pryout strength, kcp 1.0 2.0 1.0 2.0 Strength reduction factor 0 for tension, steel failure modes8 0.75 Strength reduction factor 0 for shear, steel failure mode s8 0.65 Strength reduction q$ factor for tension, concrete 0.55 0.65 failure modes or pullout, Condition B9 Strength reduction 0 factor for shear, concrete failure modes, Condition B9 0.70 Axial stiffness in service load Pose' I lb/in. 600,000 range'° . lb/in. 135,000 i-or au: 1 incn = 2b.4 mm, 1 Ib? = 4.45 N, 1 psi = 0.006895 MPa. For pound-inch units: 1 mm = 0.03937 inches. 'See Fig. 2. 2For sand-lightweight or normal-weight concrete over metal deck, see Figures 5A, 5B, 5C and SD and Tables 5 and 6. 3See Section 4.1.8 of this report. 4For all design cases 'P,=l .0. NA (not applicable) denotes that this value does not control for design. See Section 4.1.4 of this report. 55ee ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. 6See ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. 7For all design cases 1PC.N =1.0. The appropriate effectiveness factor for cracked concrete (k5,) or uncracked concrete (k,51) must be used. 8The KB-TZ is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable. 9For use with the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength ieduction factors associated with Condition A may be used. '°Mean values shown, actual stiffness may vary considerably depending on concrete strength, loading and geometry of application. TABLE 4: FASTENERS. LAGSCREW Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections 1,2,3.4 for sawn lumber or SCL with ASTM.A653, Grade 33 steel side plate (for t5d/4") or ASTM A 36 steel side plate (for t5=:1/4") (tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D) a) .2.5 . &) dIIJ8 .5 a WE (a u (5 U, (0o2 a) (0 if CL M Iz: I.-. 5 , E E 00 in oE d 02 00 o2'' o ih- (a ã II 0 (I 00 0 II 0 00 II 0 00g. II 0 001 II 01 II Oco II 0 II 0wcn II OZ t8 D Z11 Z1 711 Z1 Z11 Z.L Z11 Z1 Z11 Z1 Z11 Z1 Z11 Z1 4 Z1 Z11 Z1 Z11 Z1 in. in. tbs. lbs. lbs. tbs. tbs. lbs. lbs. tbs. tbs. tbs. tbs. tbs. tbs. tbs. tbs. tbs. tbs. tbs. tbs. lbs. 0.075 114 170 130 160 120 150 110 150 110 150 100 140 100 140 100 130 90 130 90 130 90 (14 gage) 5/16 220 160 200 140 190 130 190 130 190 130 180 120 180 120 170 110 170 110 160 100 3/8 220 160 200 140 200 130 190 130 190 120 180 120 180 120 170 110 170 100 170 100 0.105 1/4 180 140 170 130 160 120 160 120 160 110 150 110 150 110 140 100 140 100 140 90 (12gage) 5/16 230 170 210 150 200 140 200 140 190 130 190 130 190 120 180 110 170 110 170 110 3/8 230 160 210 140 200 140 200 130 200 130 190 120 190 120 180 110 180 110 170 110 0.120 1/4 190 150 180 130 170 120 170 120 160 120 160 110 160 110 150 100 150 100 140 100 (11gage) 5116 230 170 210 150 210 140 200 140 200 140 190 130 190 130 180 120 180 120 180 110 318 240 170 220 150 210 140 210 140 200 130 200 130 190 120 180 110 180 110 180 110 0.134 1/4 200 150 180 140 180 130 170 130 170 120 160 120 160 110 150 110 150 100 150 100 (10gage) 5/16 240 180 220 160 210 150 210 140 200 140 200 130 200 130 190 120 180 120 180 120 3/8 240 170 220 150 220 140 210 140 210 140 200 130 200 130 190 120 190 120 180 110 0.179 1/4 220 170 210 150 200 150 200 140 190 140 190 130 190 130 180 120 170 120 170 120 (7 gage) 5/16 260 190 240 170 230 160 230 160 230 150 220 150 220 150 210 130 200 130 200 130 3/8 270 190 250 170 240 160 240 160 230 150 220 140 220 140 210 130 210 130 200 130 0.239 1/4 240 180 220 160 210 150 210 150 200 140 190 140 190 130 180 120 180 120 180 120 (3 gage) 5/16 300 220 280 190 270 180 260 180 260 170 250 160 250 160 230 150 230 150 230 140 3/8 310 220 280 190 270 180 270 180 260 170 250 160 250 160 240 140 230 140 230 140 7/16 420 290 390 260 380 240 370 240 360 230 350 220 350 220 330 200 330 200 320 190 1/2 510 340 470 300 460 290 450 280 440 270 430 260 420 260 400 240 400 230 390 230 5/8 770 490 710__.430 680 400 680 400 660 380 640 370 630 360 600 330 590 330 580 320 3/4 1110 670 1020 590 .980 560 970 550 950 530 920 500 910 500 860 450 850 450 840 440 7/8 1510 880 1390 780 1330 730 1320 710 1280 690 1250 650 1230 650 1170 590 1160 590 1140 570 1 1940 1100 1780 960 1710 910 1700 890 1650 860 1600 820 1590 810 1500 740 1480 730 1460 710 1/4 1/4 240 180 220 160 210 150 210 150 200 140 200 140 190 130 180 120 180 120 180 120 5/16 310 220 280 200 270 180 270 180 260 170 250 170 250 160 230 150 230 150 230 140 3/8 320 220 290 190 280 180 270 180 270 170 260 160 250 160 240 150 240 140 230 140 7/16 480 320 440 280 420 270 420 260 410 250 390 240 390 230 370 220 360 210 360 210 1/2 580 390 540 340 520 320 510 320 500 310 480 290 480 290 460 270 450 260 440' 260 5/8 850 530 780 470 750 440 740 440 720 420 700 400 690 400 660 370 650 360 640 350 3/4 1200 730 1100 640 1060 600 1050 590 1020 570 990 540 980 530 930 490 920 480 900 470 7/8 1600 930 1470 820 1410 770 1400 750 1360 720 1320 690 1310 680 1240 630 1220 620 1200 600 1 2040 1150 1870 1000 1800 950 1780 930 1730 900 1680 850 1660 840 1570 770 1550 760 1530 740 I. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Tabulated lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to SD; dowel bearing strengths, FC, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, FYb. of 70,000 psi for D = 1/4", 60,000 psi for D = 5/16", and 45,000 psi for D 23/8". Where the lag screw penetration, p, is less than SD but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration. The length of lag screw penetration, p, not including the length of the tapered tip. E (see Appendix Table 1-2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minitnun, length of penetration, p. Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorized. AMERICAN WOOD COUNCIL Table 12.2A Lag Screw Reference Withdrawal Values, W Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member shall not include the length of the tapered tip (see 12.2.1.1). Specific Gravity, Lag Screw Diameter, D __________ __ ___ _____ _______ G2 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4" 7/8" 1" 1-1/8" 1-1/4" 0.73 397 469 538 604 668 789 905 1016 1123 1226 1327 0.71 381 450 516 579 640 757 868 974 1077 1176 1273 0.68 357 422 484 543 600 709 813 913 1009 1103 1193 0.67 349 413 473 531 587 694 796 893 987 1078 1167 0.58 281 332 381 428 473 559 641 719 795 869 940 0.55 260 307 352 395 437 516 592 664 734 802 868 0.51 232 274 314 353 390 461 528 593 656 716 775 0.50 225 266 305 342 378 447 513 576 636 695 752 0.49 218 258 296 332 367 434 498 559 617 674 730 0.47 205 242 278 312 345 408 467 525 580 634 686 0.46 199 235 269 302 334 395 453 508 562 613 664 0.44 186 220 252 283 312 369 423 475 525 574 621 0.43 179 212 243 273 302 357 409 459 508 554 600 0.42 173 205 235 264 291 344 395 443 490 535 579 0.41 167 198 226 254 281 332 381 428 473 516 559 0.40 161 190 218 245 271 320 367 412 455 497 538 0.39 155 183 210 236 261 308 353 397 438 479 518 0.38 149 176 202 227 251 296 340 381 422 461 498 0.37 143 169 194 218 241 285 326 367 405 443 479 0.36 137 163 186 209 231 273 313 352 389 425 460 0.35 132 156 179 200 222 262 300 337 373 407 441 0.31 110 130 149 167 185 218 250 281 311 339 367 I. Tabulated withdrawal design values. W. for laa screw connections shall be multiolied by all aoolicable adjustment factors (see Table 11.3.1). 2. Specific gravity, 0, shall be determined in accordance with Table 12.3.3A. adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W. W = 1380 G5/2 D (12.2-3) The nail or spike reference withdrawal design value, W, in lbs/in, of penetration, for a smooth shank stainless steel nail or spike driven into the side grain of a wood member, with the nail or spike axis perpendicu- lar to the wood fibers, shall be determined from Table 12.21) or Equation 12.2-4, within the range of specific gravities, G, and nail or spike diameters, D, given in Table 12.21). Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3. 1) to obtain adjusted withdrawal design values, W'. W = 465 G3/2 D (12.2-4) For calculation of the fastener reference with- drawal design value in pounds, the unit reference with- drawal design value in lbs/in, of fastener penetration from 12.2.3.1a or 12.2.3.1b shall be multiplied by the length of fastener penetration, Pt, into the wood mem- ber. 12.2.3.2 Deformed shank nails (a) The reference withdrawal design value, in lbs/in, of ring shank penetration, for a Roof Sheathing Ring Shank nail or Post-Frame Ring Shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2E or Equation 12.2-5, within the range of specific gravities and nail diameters given in Table 12.2E. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Ta- ble 11.3. 1) to obtain adjusted withdrawal design values, WI. W = 1800 G2 D (12.2-5) 6 Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorized. AMERICAN WOOD COUNCIL TABLE 5: UNISTRUT GENERAL ENGINEERING CATALOG-NO. I j ,hannel Selection , Or EM 0 11,71 UPJi CHANNEL SELECTION CART Chann4 Dimensions Material & Thickness Hole Pattern Styles Channel Width Height Steel Stainless Steel Alum. 41. ~`110' J HS I KO SL DS H3 In (mm) In (mm) gauge gauge In (mm) Steel Only P1000 1% (41.3) 1%(41.3) 12 ga 12 ga 0.109 (2.8) U 0 U U U U P1100 1%(41.3) 1%(41.3) 14 ga 14 ga P2000 1%(41.3) 1%(41.3) 16 ga P3000 1%(41.3) 1%(34.9) 12 ga - P3300 1%(41.3) 6(22.2) 129a 12 ga P4000 1%(41.3) 1Yi&(20.6) 16 ga 16 ga 0.078(2.0) U U - U - - P4100 1%(41.3) %(20.6) 14 ga - - U U - U - - P5000 15'a(41.3) 3% (82.6) 12 ga 12 ga - U U U P5500 1%(41.3) 2/is (61.9) 12 ga - 0.109 (2.8) U E U - - CHANNELS & COMBINATIONS IN DESCENDING ORDER OF STRENGTH Area Weight I s Allow. Moment Channel In2 (cm') Ibsift (kg/rn) In4 (cm4) ln'(cm') In-lbs (N.m) P5001 1.793 6.10 6.227 1.916 48,180 11.57 9.1 259.2 31.4 5,440 1.965 6.68 4.068 1.669 41,980 P1004A 12.68 9.9 169.3 27.4 4,740 P5501 1.452 4.94 2.805 1.151 28,940 9.37 7.3 116.8 18.9 3.270 P1001C41 2.221 7.55 1.856 1.142 28,720 14.33 11.2 77.2 18.7 3,250 P5000 0.897 3.05 1.098 0.627 15,770 5.78 4.5 45.7 10.3 1.780 P1001 1.111 3.78 0.928 0.571 14,360 7.16 5.6 38.6 9.4 1,620 P1101 0.835 2.84 0.733 0.451 11,340 5.39 4.2 30.5 7.4 1.280 P3001 1.000 3.40 0.591 0.430 10,810 6.45 5.1 24.6 7.0 1,220 0.726 2.47 0.522 0.390 9,820 P5500 4.68 3.7 21.7 6.4 1,110 0.684 2.32 0.618 0.381 9,570 P2001 4.41 3.5 25.7 6.2. 1,080 P9200 0.489 2.23 0.279 0.297 7,480 3.16 3.3 11.6. 4.9 850 A5000 0.492 1.67 0.358 0.265 6,670 3.17 2.5 14.9 4.3 750 A1001 0.609 2.07 0.302 0.242 6,070 3.93 3.1 12.6 4.0 690 P9000 0.387 1.88 0.166 0.205 5,150 2.50 2.8 6.9 3.4 580 0.555 1.89 0.185 0.202 5,070 P1000 3.58 2.8 7.7 3.3 570 0.790 2.69 0.176 0.201 5,060 P3301 5.10 4.0 7.3 3.3 570 Combinations not shoivn in catalog are available on special order. Consult factory for more details. Area Weight I s Allow. Moment Channel In2 (cm') IbsIft (kg/rn) In' (cm4) ln'(crn') In-lbs (N.m) 0.418 1.42 0.145 0.162 4,060 P1100 2.69 2.1 6.0 2.6 460 0.500 1.70 0.120 0.153 3,850 P3000 3.23 2.5 5.0 2.5 430 0.579 1.97 0.117 0.143 3,610 P4101 3.74 2.9 4.9 2.4 410 0.342 1.16 0.125 0.140 3,520 P2000 2.21 1.7 5.2 2.3 400 P4001 0A78 1.66 0.104 0.128 3,210 3.14 2.5 4.3 2.1 360 0.459 1.56 0.077 0.103 2,590 A3301 2.96 2.3 3.2 1.7 290 0.305 1.04 0.061 0.086 2,170 A1000 1.96 1.5 2.5 1.4 250 P3300 0.395 1.34 0.037 0.072 1,800 2.55 2.0 1.5 1.2 200 0.264 0.90 0.037 0.058 1,470 A4001 1.70 1.3 1.5 1.0 170 0.213 0.73 0.045 0.055 1,400 P6001 1.38 1.1 1.9 0.9 160 0.290 0.98 0.026 0.054 1,360 P4100 1.87 1.5 1.1 0.9 150 0.244 0.83 0.023 0.049 1,230 P4000 1.57 1.2 0.9 0.8 140 0.230 0.78 0.017 0.038 950 A3300 1.48 1.2 0.7 0.6. 110 0.132 0.45 0.008 0.022 560 A4000 0.85 0.7 0.3 0.4 60 0.107 0.36 0.009 0.020 510 P6000 0.69 0.5 0.4 0.3 60 0.148 0.50 0.007 0.018 460 P7001 0.96 0.8 0.3 0.3 50 0.074 0.25 0.002 0.007 170 FP7000 0.48 0.4 0.1 0.1 20 1/s' Framing System 23 P1000 Channel Combinations .-.. . I iiU1 P1001 T P1001 A P1001 B (41.3) . (41.3) - (41.3) ia• ) .709VU2.916" L2 2.-I (18.0) 2 (23.3) Wt/100 Ft: 321 Lbs (478 kg/1 00 in) Allowable Moment 12,200 In-Lbs (1,378 N"m) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 C Wt/100 Fl: 378 Lbs (562 kg/1 00 m) Allowable Moment 18,640 In-Lbs (2,110 N.m) 12 Gauge Nominal Thickness .105(2.7mm) P1001 3 WI/i 00 Ft: 378 Lbs (562 kg/100 m) Allowable Moment 18.640 In-Lbs (2,110 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 A3 1W (41.3) (S2.6 1.573* i#8st" J .761 (19.3) (21.9) 11 (41.3) I I 2.472" (62.8) 4W * -41 (123.8) I 2.403" L (61.0) I-I H-I-1 " (41.3) 4W P. (123.8) Li .778" -1-i_ I : (19.8) ., (21.5) Wt/100 Ft: 378 Lbs (562 kg/100 m) Allowable Moment 15,950 In-Lbs (1,800 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) .3) 4W .fl (123.8) .778" -t_ -.847" Wt/100 Ft: 566 Lbs (843 kg/100 m) Allowable Moment 37,550 In-Lbs (4,240 N•m) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 C41 Wt/100 Ft: 566 Lbs (843kg/100m) Allowable Moment 31,840 In-Lbs (3,600 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) Wt/100 Ft: 566 Lbs (843 kg/100 m) Allowable Moment 17,550 In-Lbs (1,980 N"m) 12 Gauge Nominal Thickness .105' (2.7mm) P1001 C3 Wt/100 Ft: 566 Lbs (843 kg/100 in) Allowable Moment 32,770 In-Lbs (3,700 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1003 113€4' 1.245" (44.1) (30.6) 2 (31.6) '- 4½2" A89" (102.4) (12.4) W111 00 FL: 333 Lbs (495 kg/100 m) Allowable Moment 6,240 In-Lbs (700 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) P1004 A 3 (82 P1001 B3 P1001 D3 Wt/100 Ft: 755 Lbs (1,124 kg/100 m) Allowable Moment 28,720 In-Lbs (3259 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) Ae (41.3)F 3W :r1 ___ (10 __ 1.320 /16 2 (33.5) (11.1) Wtl100 Ft: 566 Lbs (843kg/100m) Wt/100 Ft: 668 Lbs (994 kg/100 m) Allowable Moment 18,680 In-Lbs (2,110 N"m) Allowable Moment 41,970 In-Lbs (4,740 N.m) 12 Gauge Nominal Thickness .105" (2.7mm) 12 Gauge Nominal Thickness .105" (2.7mm) Channel Finishes: PL, GR, HG, PG, ZD; Standard Lengths: 10'& 20' ADJUSTABLE PIPE CLAMPS Unistrut Adjustable Pipe Clamps are manufactured from glass-reinforced polyurethane and are adjustable to accommodate a wide range of outside diameters. They can be uti- lized with a variety of piping systems including: PVC, fiberglass, copper, rigid steel conduit and PVC coated rigid steel conduit. Care should be taken not to exceed 3 ftilbs. of torque on the adjustable pipe straps. RIGID PIPE CLAMPS Part Number O.D. Pipe Size (in.) Design Load Type I Type 2 Lbs (kN) Lbs (kN) Torque FtlLbs (N.m) W11I100 PCs Lbs (kg) 200-3100 ½- 11h 135(0.6). 65(0.3) 0.8p) 3(1.4) 200-3110 19k- 2¼ 135 (0.6) 65(0.3) 3(4) 5(2.3) 200-3120 2¼- 3¼ 145 (0.6) 70(0.3) 3 (4) 5(2.3) 200-3130 3-4 215 (1.0) 70(0.3) 3(4) 8(3.6) 200-3140 4-6½ 215(1.0) 70(0.3) . 3(4) 10(4.5) Design loads shown represent a 3:1 safety factor. Pipe Clamps UNISTRUT'; PVC, Sch. 80 Design Loads FRP Bolt Part Nominal & Rigid Metal Type I Type 2 FRP Bolt Torque W000 PCs Number Size (in.) In (mm) Lbs (kN) Lbs (kN) Size (in.) Ft!Lbs (N.m) Lbs (kg) FPCR-050 ½ 0.840 (21.3) 225 (1.0) 90(0.4) 54 x 1¼ 3(1.4) FPCR-075 54 1.050 (26.7) 225 (1.0) 90(0.4) %x 11/4 3(1.4) FPCR-100 1 1.315 (33.4) 225(1.0) 90(0.4) %x1¼ 4(1.8) FPCR-125 1 Y 1.660 (42.2) 225(1.0) 90(0.4) 34x1¼ . 5(2.3) FPCR-150 1½ 1.900 (48.3) 225(1.0) 90(0.4) 34 x 11/4 5(2.3) FPCR-200 2 2.375 (60.3) 225 (1.0) 90(0.4) 34 x 11/4 3 (4) 5(2.3) FPCR-250 21h 2.875 (73.0) 225 (1.0) 90(0.4) % x 1114 7(3.2) FPCR-300 3 3.500 (88.9) 225(1.0) 90(0.4) %x 1¼ 10(4.5) FPCR.400 4 4.500 (114.3; 300(1.3) 125 (0.6) 54 X 1¼ 12(5.4) FPCR.600 6 6.625 (168.3) 300 (1.3) 125 (0.6) 34 x 1¼ 15(6.8) FPCR-800 8 8.625 (219.1) 3000.3) 125 (0.6) 34 x 1¼ 18(8.1) Design loads shown represent a 3:1 safety factor. Rigid Pipe Clamps resemble the more traditional style of pipe clamps and are sized based on the pipe inside diameter or nominal size. Polyurethane clamps are recommended for applications up to 1607. For high temperature applications (up to 230F). Care should be taken not to exceed the recommended torque values of the rigid pipe clamps. Material: glass-reinforced polyurethane. Two HOLE PIPE STRAPS Design Load Bolt Material Part Dim. A Dim. B Size Thick. Type I Type2 Torque Aft/100 PCs No. In (mm) In (mm) (in.) In (mm) Lbs (kN) Lbs (kN) Ft!Lbs (N.m) Lbs (kg) 2.375 6.375 ¼ 135 50 4 14 FPS200 60.33 161.93 ½ 6.4 0.60 0.22 5 6.4 2.875 6.875 1/4 135 50 4 17 FPS25O 73.03 174.63 ½ 6.4 0.60 0.22 5 7.7 3.500 7.500 ¼ 135 50 4 20 FPS300 88.90 190.50 ½ 6.4 0.60 0.22 5 9.1 FPS35O 4.000 8.000 ½ ¼ 135 50 4 33 101.60 203.20 6.4 0.60 0.22 5 15.0 FPS400 4.500 8.500 ½ ¼ 175 60 4 . 23 114.30 215.90 6.4 0.78 0.27 5 10.4 5.563 9.563 ¼ 175 60 4 39 FPS500 141.30 242.90 ½ 6.4 0.78 0.27 5 17.7 FPS600 6.625 10.625 ½ ¼ 175 60 4 39 168.28 269.88 6.4 0.78 0.27 5 17.7 FPS800 8.625 12.625 ½ ¼ 225 125 4 51 219.08 320.68 6.4 1.00 0.56 5 23.1 FPS1000 10.750 15.750 ¼ 225 125 10 77 273.05 400.05 6.4 1.00 0.56 14 34.9 FPS1200 12.750 16.250 ¼ 225 125 10 83 323.85 412.75 6.4 1.00 0.56 14 37.6 FPS1400 14.000 18.000 % 250 150 10 125 355.60 457.20 9.5 1.11 0.67 14 56.7 16.000 20.000 % 250 150 10 143 FPS1600 408.40 508.00 9.5 1.11 0.67 14 64.9 FPS1800 18.000 23.000 % 250 150 10 160 457.20 584.20 9.5 1.11 0.67 14 72.6 Design loads shown represent a 3:1 safety factor. Two Hole Pipe Straps are designed for use in securing pipe, conduit and ducts to Channel. Two hole fiberglass straps can also be used independently from the channel for surface mounting. All sizes of the straps are suitable for load bearing applications. Material: fire-retardant, glass-reinforced polyester resin. For extreme chemical environments, the straps can be manufac- tured from vinyl ester resin. Larger diameter straps for special applications are also available. Contact the factory for pricing and availability of vinyl ester and large diameter straps. Two hole pipe straps should not be torqued above recommended values. Notes: Bolts and channel nuts are sold separately. When bolting onto 134" channel a 1¼" long bolt is req'd. Fiberglass - -- 203 LAMAR N~JENGINEERING CIVIL + STRUCTURAL Direct Line: 619.370.9515 / Fax: 619.764.4079 / Email: Ilabrada@l èl' RECEIVE6. STRUCTURAL CALCULA°tIONS CITY ("- (JLSBPj tit LUiLD1MG DIVISIO PROJECT: LEQQLAND CALIFORNIA RESORT 7ODES 16A,>PARKING STRUCTURE (PKS) 1EGOLAND DR. CARLSBAD SAN DIEGO, CA 92008 July 11, 2019 Page 1 of 42 www.lamareng.com 'V t Luis Labrada Proyecto Nodes 16A-1613 217 Landis Avenue LAMAR Date: 07/05/19 Chula Vista, CA 91910 UENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com INDEX APPENDIXI. ANTENNAS.......................................................................................................................................................3 APPENDIX II. CABINET & RADIOS TO H-FRAME ............................................................................................................ 10 APPENDIX III. SCREEN WALL TO EXISTING WALL......................................................................................................18 APPENDIXIV. VERIFY ROOF .............................................................................................................................................23 APPENDIXV. TABLES .........................................................................................................................................................26 Page 2 of 42 Luis Labrada Proyecto Nodes 16A-168 217 Landis Avenue LAMAR Date: 07/05/19 Chula Vista, CA 91910 LF1ENGINEERING .Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX I. ANTENNAS Page 3 of 42 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com Project: Nodes 16A-16B LAMAR Date: 07/08/2019 INENGINEERING Engineer: M.R I SEISMIC DESING ANTENNA I DESCRIPTION Description: QUINTEL QS46512-2 ANTENNA W = 75.0 Lbs bldg height = 21.50 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 SDS = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = W*Q = 75.0 Lbs. FpH = (0.64 * Wp )il .4 = 34.3 Lbs FpH = 0.46 * Wp = 34.5 Lbs HORIZONTAL FpV = 0.28 *.Wp = 21.0 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table 13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 zlh= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*Ip)*(1 +2*z/h) = 28.4 Lbs. Verifications FpH max = 1.6 * S0 * *WP= 94.6 Lbs. > 28.4 Lbs. FpH min = 0.3 * S0 * 1 * WP= 17.7 Lbs. 28.4 Lbs. Page 4 of 42 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodes 16A-1613 Date: 07/08/2019 Engineer:M.R I ANCHORAGE DESIGN (SEISMIC) ANTENNA I GEOMETRY e= 1.25 ft d= 2.13 ft irA Fx d Wp e FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx= 44.0 Lbs Dy= 37.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 26.5 Lbs Vertical force, Ey = 10.5 Lbs COMBINATIONS (D+E) Max axial load per anchor= Dx + Ex = 70.5 Lbs Max shear force per anchor = Dy + Ey = 48.0 Lbs Page 5 of 42 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com W A .1 CIVIL 4 0STRU.1111,11 Project: Nodes 16A-161B Date: 07/0812019 Engineer:M.R I WIND DESING ANTENNA I DESCRIPTION Description: QU INTEL QS465 12-2 ANTENNA W= 75.0 Lbs bldg height = 21.5 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1): V = Topographic factor (26.8& Table 26.8-1) Kzt = C 1.0 110.0 mph 1.0 Flat ANALYSIS A = 1.31 For h = 21.5 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure PS = A x Kzt x I x ps30 = ps.= A x Kzt x I x ps30 = Applied horizontal force, Fph = Ps x (bxc)/2 = Applied vertical force, Fpv = Ps x (axc)/2 = 20.80 psf Horizontal 18.05 psf Roof Uplift 90.1 Lbs 16.2 Lbs Page 6 of 42 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com wkl 1I [fill', I CIVIL + STRUCTURAL Project: Nodes 16A-16B Date: 07/08/2019 Engineer:M.R ANCHORAGE DESIGN (WIND) ANTENNA I GEOMETRY b Fph d e= 1.25 ft V d= 2.13 ft Wp a= 0.90 ft e b= 4.33 ,ft C = 1.00 ft FORCES GRAVITATORY (D) Weight, Wp = 75.0 Lbs Overturning moment OTM = Wp*e = 93.8 Lbs*ft Dx = 44.0 Lbs Dy = 37.5 Lbs FORCES WIND (W) Horizontal force, Wx = Vertical force, Wy = COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = Max shear force per anchor = Dy + Wy = 54.6 Lbs 8.1 Lbs 98.6 Lbs 45.6 Lbs Page 7 of 42 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IMENGINEERING Project: Nodes 16A-16B Date: 07/08/2019 Engineer: M.R I ELEMENT & CONNECTIONS DESIGN ANTENNA I A Fx = Dx+(Ex or Wx) = 98.6 Lbs B Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 2.0 Antennas Total Quantity 5.83 ft H= 5.83 ft Lc= 0.75 ft B 0.75 ft 4 UNISTRUT HORIZONTAL DESIGN I Number of radios pair Odd number of radios M. max— PLI8 (n-1/n) n.p M.max = PLJ8 (n+lln) Lc4.c4.c4.c..1-c R = P (n-1)I2 I I I I R = P n/2 I- n = 3 JLc4.c4.c..1..c_?J. = 2 C = 0.25 ft C = 0.38 ft Px = M. Mmax (y-y) = Py = M. Mmax (x-x) = 98.6 Lbs 24.6 Ft-Lbs 295.7 In-Lbs 48.0 Lbs 12.0 Ft-Lbs 144.0 In-Lbs Use: Unistrut: P100 1 5/8 x 1 5/8-12ga Nominal Thickness Single Channel Allowable Moment: 5070 In-Lbs General Engineering Catalog - No. 17- Page 23 Demand Capacity Ratio Status 295.7 In-Lbs < 5070.00 In-Lbs 0.06 [ OK j Demand Capacity Pull Out Ratio Status 144.0 In-Lbs < 5070.00 In-Lbs 0.03 L OK ] Page 8 of 42 10 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING an.flmlc...1mn Project: Nodes 16A-1613 Date: 07/08/2019 Engineer: M.R ELEMENT & CONNECTIONS DESIGN ANTENNA A Fx = Dx+(Ex or Wx) = 98.6 Lbs B Fy = Dy+(Ey or Wy) = 48.0 Lbs Q = 2.0 Antennas Total Quantity 5.83t H= 5.8 ft Lc= 0.8 ft B 0.75f , CONNECTION A: PIPE MOUNT TO UNISTRUT Radio Status Shear = 48.0 Lbs 0.53 OK Pull Out = 98.6 Lbs 0.45 L OK Use: Ridge Pipe Clamps: FPCR-075 General Engineering Catalog - No. 17- Page 203 Thickness: 3/4 in Length: 1.05 in FRP Bolt: 318"xl 1/4 Allowable Shear: 90 Lbs Allowable Pull-Out: 220 Lbs CONNECTION B: UNISTRUT TO EXISTING WOOD WALL Demand: Shear = 48.0 Lbs Pull Out= 98.6 Lbs Capacity: Use: D-Bolt: 1/2 in Long = 4 in n Bolt: 2 Side Member Thickness: 0.25 in Allowable Shear 320 Lbs Ref. Table 12K. Per NDS 2018 Allowable Pull Out 378 Lbs/in Ref. Table 12.2A. Per NDS 2018 Demand Capacity Shear Ratio Status 48.0 Lbs < 640 Lbs 0.08 [ OK I Demand Capacity Pull Out Ratio Status 98.6 Lbs < 3024 Lbs 0.03 [ OK I Page 9 of 42 Luis Labrada 217 Landis Avenue LA FA 1k Proyecto: Nodes 16A-16B Date: 07/05/19 Chula Vista, CA 91910 NUENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX II. CABINET & RADIOS TO H- FRAME Page 10 of 42 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com CIVIL + S T RUCTU RAL Project: Nodes 16A-1613 Date: 07111/2019 Engineer: M.R I SEISMIC DESING - ANTENNA CABINET I DESCRIPTION Description: BBU CABINET W = 382.0 Lbs bldg height = 21.5 ft ELEMENT DESIGN (SEISMIC) Location = I LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 S05 = 0.788 U.S. Seismic Design SEISMIC LOAD ON THE ELEMENT Wp = 382.0 Lbs. FpH = (0.64 * Wp )I1.4 = 174.63 Lbs FpH = 0.46 * Wp = 175.72 Lbs HORIZONTAL FpV = 0.28 * Wp = 106.96 Lbs UP OR DOWN ap = 1.0 Ref. Table 13.6-1 ASCE 7-10 Rp = 2.5 Ref. Table-13.6-1 ASCE 7-10 Ip = 1.0 Ref. Table 11.5-1 ASCE 7-10 z/h= 1.0 Ft. FpH = (0.4*ap*SDS*Wp)/(Rp*lp)*(1+2*z/h) = 144.5 Lbs. Verifications FpH max = 1.6 * S05 * 1 * WP = 481.6 Lbs. > 144.5 Lbs. I OK I FPH mm = 0.3 * 5os * 1 * Wp 90.3 Lbs. < 144.5 Lbs. I OK --J Page 11 of 42 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: Nodes 16A-16B Date: 07/11/2019 Engineer:M.R I DESIGN FORCES (SEISMIC) CABINET GEOMETRY Fpv Wall el CABINET a= 1.67 ft b= 3.42 ft L 233 ft 4C 4 a H-FRAME L= 4.00 ft HI= 2.83 ft H2= 3.50 ft H= 6.33 ft e= 0.50 ft Post ,= 4 CONNECTION I FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*e = 191.0 Lbs*ft Dx = 27.9 Lbs Dy = 95.5 Lbs FORCES SEISMIC (E) Horizontal force, Ex = 43.9 Lbs Vertical force, Ey = 26.7 Lbs COMBINATIONS (D+E) Max axial load per anchor = Dx + Ex = 72 Lbs Max shear force per anchor = Dy + Ey = 122 Lbs H1 ii MIE _ Fph HI • 1 -' Conection I a I H2 I Elevation Conection Page 12 of 42 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR INENGINEERING Project: Nodes 16A-1613 Date: 07/11/2019 Engineer:M.R I WIND DESING CABINET I DESCRIPTION Description: BBU CABINET W= 382 Lbs bldg height = 21.5 ft ELEMENT DESIGN (WIND) Location = 1 LEGOLAND DR. CARLSBAD, SAN DIEGO, CA 92008 Exposure category (B, C or D) = Importance factor, 1.0 only, (Table 1.5-2) 1w = Basic wind speed (ASCE 7-10 26.5.1) V = Topographic factor (26.8 & Table 26.8-1) Kzt = ANALYSIS A = 1.31 For h = 21.5 exposure C see fig 6-2 ps30 = 15.90 Psf Horizontal Conservative 13.80 Psf Roof Uplift Conservative Wind Pressure PS = A x Kzt x I x ps30 = 20.80 psf Horizontal p5 = Ax Kzt x I x ps30 = 18.05 psf Roof Uplift Applied horizontal force, Fph = Ps x (bxc) = 118.8 Lbs Applied vertical force, Fpv = Ps x (axc) = 70.2 Lbs C 1.0 110.0 mph 1.0 Flat Page 13 of 42 Luis Labrada 217.Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR ENGINEERING Project: Nodes 16A-1613 Date: 07/11/2019 EngineerM.R I DESIGN FORCES (WIND) CABINET GEOMETRY Fpv Wall el CABINET a= 1.67 ft b= 3.42 ft L 233 ft Supp.= 4 a I H-FRAME L= 4.00 ft HI= 2.83 ft H2= 3.50 ft H= 6.33 ft e= 0.5 ft Post= 4 CONNECTION I FORCES GRAVITATORY (D) Weight, Wp = 382.0 Lbs Overturning moment OTM = Wp*e = 191.0 Lbs*ft Dx= 27.9. Lbs Dy = . 95.5 Lbs FORCES WIND (W) Horizontal force, Wx = 34.8 Lbs Vertical force, Wy = 17.6 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 63 Lbs Max shear force per anchor = Dy + Wy = 113 Lbs Fph H liii I L Conection 1 H21 a Elevation Conection I Page 14 of 42 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com . LAMAR : IENGINEERING ________________________ Project: Nodes 16A-16B Date: 07/11/2019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN CABINET Fx = Dx+(Ex or Wx) = 71.9 Lbs Fy = Dy+(Ey or Wy) = 122.2 Lbs Q = 2.0 Cabinet Total Quantity 2.83 ft L= 4.00 ft H1= 2.83 ft H2= 3.50 ft II4 ft A tB H= 6.33 ft UNISTRUT HORIZONTAL DESIGN r .L. M. Mmax (y-;)= 172.5 Ft-Lbs. Ratio Status 2070 In.-Lbs. 0.11 fl OK I I-_17LC — Py = 122.2 Lbs M. Mmax = PL/8 (n-1/n) M. Mmax (x-x) = 293.4 Ft.-Lbs. Ratio Status n = 5 3521 In.-Lbs. 0.19 [_0K1 c = 0.80 ft Use: Unistrut: PIOOIA (2)1 5/8 x 1 5/8-12ga Nominal Thickness Allowable Moment: 18640 In-Lbs General Engineering Catalog - No. 17- Page 23 FRP VERTICAL TUBE DESIGN Demand: N Max = 489 Lbs M. Mmax = 33908.6 In.-Lbs. Compressive Strength = 81.22 psi Flexural Strength = 5698.92 psi Capacity: Use: HSS_SQR 4X4X1_2 FRP Channel b= 4 In. A= 6.02 1n2 h= 4 In. lz= 11.90 1n4 t= 1/2 - In. E= 29000000 psi cya = 6600 Psi. Allowable Flexural Strength. cTa = 6600 Psi. Allowable Compressive Strength Flexural Strength Capacity 5698.92 psi 6600 psi Compressive Strength Capacity 81.22 psi 6600 psi Gross area of the section Moment of inertia Modulus of Elasticity Ratio Status 0.86 Ratio Status. 0.01 Page 15 of 42 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com O%LW. A"rAUCtURAL Project: Nodes 16A-16B Date: 07/11/2019 Engineer:M.R ELEMENT & CONNECTIONS DESIGN CABINET CONNECTION A: CABINET TO UNISTRUT CHANNEL NUTS WITH SPRING Status Shear= 122.2 Lbs T OK1 Pull Out = 71.9 Lbs OK I Use: Channel Nuts: 318"-16 Allowable Pull-Out: 1000 Lbs Allowable Shear: 800 Lbs HEX-HEAD CAP SCREW Use: Hex-Head: 318"-1 1/2" Mm. ( General Engineering Catalog - No. 17- Page 66 General Engineering Catalog - No. 17 Page 68 CONNECTION B: UNISTRUT TO FRP VERTICAL TUBE 1 CONNECTION DESIGN: FRP BOLT Shear = 244.48 Lbs Pull Out = 143.73 Lbs Use: D-Bolt: 112 in n Bolt: 2 Shear: 780 Lbs Allowable FRP Bolt Shear Pull-Out: 300 Lbs Allowable FRP Bolt Pull-Out (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Shear Ratio Status 244.48 Lbs < 1560 Lbs 0.16 ( 0K1 Demand Capacity Shear Ratio Status 143.73 Lbs < 600 Lbs 0.24 L OK 1 Page 16 of 42 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com Al x m '- F l r"4, aw 'k 1 1 4 " [011 ilk 14 4 E4 1 ilk U SI B 111;11 ~IL I Project: Nodes 16A-16B Date: 07/11/2019 Engineer:M.R I ELEMENT & CONNECTIONS DESIGN I CABINET CONNECTION C: STEEL COLUMN TO CONCRETE SLAB V. Max = 575 Lbs N max = 489 Lbs M. Mmax = 33909 In.-Lbs. Steel Column: HSS_SQR 4X4X1_2 4 in 4 in 1/4 in Plate: a= 10 'in l0 in. Min b= 10 in 10 in. Mm t= 1/4 Jn CONNECTION DESIGN: KB-TZ Shear V= 144 Lbs Pull Out I = 2544 Lbs Anchor: HILTI KB-TZ nBolt: 4 9Dia.: 1/2 in Embed.: 31/4 in Demand 35.9 Lbs. Demand 2544.3 Lbs. b k d2 A a idl 1.5 in (Table 3. ICC-ES ESR-1917) Alowable Anchor Steel Strengh Shear = 5495 Lbs. Alowable Anchor Steel Strengh Pull Out = 4915 Lbs. Capacity Shear Ratio Status 5495 Lbs. 0.01 [ OK1 Capacity Pull Out Ratio Status 4915 Lbs. 0.52 [ 0K1 Page 17 of 42 Luis Labrada Proyecto Nodes 16A-16B 217 Landis Avenue LAMAR Date: 07/05/19 Chula Vista, CA 91910 NUENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX III. SCREEN WALL TO EXISTING WALL Page 18 of 42 L Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR Project: Nodes 16A-16B Date: 0710812019 Engineer: M.R SCREEN WALL DESIGN - FRP TYPE I Geometry W = 7.5 psf Weight . LI 413 SCREEN LENGTH S L = .uu ................ it screen total length B= 1.67 ft NP = 2.00 Number Post LI = 2.00 Jft L. between post NS = 1.00 NO Steps between post S = 2.00 Length Steps SCREEN HEIGHT HI = 8.0 ft Screen Height H2 = 21.5 ft. [E] Structural Roof H2 = 29.5 ft Total Height H3 H Building [ View Section Wind Force Exposure category (ASCE 7-10 26.7.3) = C Importance factor, 1.0 only, (Table 1.5-2) 1w = 1.0 Basic wind speed (ASCE 7-10 26.5.1) V = 110.0 mph Topographic factor (26.8 & Table 26.8-1) Kzt = 1.0 Pressure 30 Psf. Applied horizontal force, Fph = Ps x (LxH 1) = 480.0 Lbs Applied vertical force, Fpv = Ps x (LxB) = 100.2 Lbs Page 19 of 42 U Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 - www.lamareng.com LAMAR IIENGINEERINGI Project: Nodes 16A-16B Date: 07/0812019 Engineer: M.R I . SCREEN -WALL DESIGN - FRP TYPE I FRP Channel Stifener - Desian Tributary: S = 2.00 ft - H1= 8.00 ft 2ft Demand: Load qw = 60.0 Lbs/Ft M. Mmax (x-x) = 5760.0 In.-Lbs. 8 ft Flexural Strength = 2880 psi Capacity Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. A = 2.44 1n2 Gross area of the section h = 3 In. lz = 3.00 In4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 2880 1 < 6600 psi 0.44 1ThK] FRP Channel Stifener - Connection Demand Shear= 240 Lbs Capacity Use: 1I2 in FRP Bolt n Bolt: I 780 Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand . Capacity Ratio Status 240 Lbs 780 Lbs 0.31 L_ OK Page 20 of 42 10 Luis Labrada 217 Landis Avenue ; Chula Vista, CA 91910 - P: 619.370-9515 LAMAR ' --1 UENGINEERING www.lamareng.com Project:, Nodes 16A-1613 Date . 07/08/2019 Engineer: M.R SCREEN WALL DESIGN -FRP TYPE I Top & Bottom FRP Horizonal Tube - Design Tributary: L1= 2.00 ft - H1= 8.00 ft Demand: 8ft Load qw = 120.0 Lbs/Ft M. Mmax (x-x) = 720.0 In.-Lbs. Flexural Strength = 360 psi 2 ft 2 ft 10 Capacity Use: HSS_SQR 3X3X1_4 FRP Channel b = 3 In. . A= 2.44 1n2 Gross area of the section h = 3 In. lz = 3.00 1n4 Moment of inertia = 1/4 In. E = 29000000 psi Modulus of Elasticity aa = 6600 Psi. Allowable Flexural Strength. (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand . Capacity Ratio Status 360 psi < 6600 psi 0.05 rThk1 Top & Bottom FRP Horizonal Tube - Connection Demand Shear= 120.0 Lbs Capacity Use: 112 . in FRP Bolt n Bolt: I 780 - Lbs Allowable Bolt Shear (Appendix A. Design Values Load Chart for FRP Materials) LARR# 25520. Demand Capacity Ratio Status 120.0 Lbs < 780 Lbs 0.15 ETOK1 LI Page 21 of 42 Fph Suction tB Fpv Suction GEOMETRY =BJ Plan L= 2.00 ft L1= 2.00 ft H1= 8.00 ft B= 1.67 ft Support= 4 10 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR I1L Project: Nodes 16A-16B - Date: 07/08/2019 Engineer: M.R SCREENWALLDESIGN - FRP - TYPE I CONNECTION TO WALL FORCES GRAVITATORY (D) Weight, Wp = 370.5 Lbs Overturning moment OTM = WpB/2 = 309.4 Lbs*ft Dx= 38.7 Lbs Dy= 185.3 Lbs FORCES WIND (W) Applied horizontal force, Wx = 140.9 Lbs Applied vertical force, Wy = 50.1 Lbs COMBINATIONS (D+W) Max axial load per anchor = Dx + Wx = 180 Lbs Max shear force per anchor = Dy + Wy = 235 Lbs CONNECTION DESIGN: LAG SCREW Shear = 235.4 Lbs Pull Out = 179.6 Lbs Use: D-Bolt: 518 :in Long = 4 in n Bolt:' I Side Member Thickness: 114 ;in Shear: 440.0 Lbs Allowable Screw Shear Ref. Table 12K. Per NDS 2018 Pull-Out: 447.0 'Lbs/in Allowable Screw Pull Out Ref. Table 12.2A. Per NDS 2018 Demand Capacity Shear Ratio Status 235.4 Lbs 440.00 Lbs 0.53 10K1 Demand Capacity Pull Out Ratio Status 179.6 Lbs 1788.00 Lbs 0.1 1- OK Page 22 of 42 Luis Labrada ecto Nodes 16A-16B 217 Landis Avenue LAMAR Proy Date: 07/05/19 Chula Vista, CA 91910 NENGINEERING Engineer: MR P: 619-370-9515 www.lamareng.com APPENDIX IV. VERIFY ROOF Page 23 of 42 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 LAMAR I¼ENGINEERING Project: Nodes 16A-16B Date: 07/0812019 Engineer: M.R VERIFY ROOF FRAMING Nodes 14 & 15 ANTENNA DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] HEX454CU0000G 46.80 15.60 7.40 48.90 0 0.00 0.00 HEX654CU0100G 51.10 12.00 7.10 39.70 0 0.00 0.00 CUUX06306F52s0-T 24.30 12.10 7.00 13.00 0 0.00 0.00 CUUX05XO6F5200 24.10 16.20 7.30 15.70 0 0.00 0.00 QUINTELQS46512-2 1 52.00 1 12.00 1 10.80 1 75.00 1 0 1 0.00 1 0.00 Total 1 0.00 1 0.00 1 0.00 RADIOS DIMENSION [in] b c a WIGHT [Lbs] Quantity Area [sq ft] W [Lbs] RRUS -2203 7.90 7.90 3.90 10.00 7 1.50 70.00 ERICSSON RRUS -4426 15.00 13.20 5.80 48.40 1 0.53 48.40 ERICSSON RRUS-4478 18.10 13.40 8.26 59.40 1 0.77 59.40 ERICSSON RRUS-4415 16.50 13.40 5.90 46.00 1 0.55 46.00 ALCATEL LUCENTTD-RRH8X2O-25 9.68 12.83 6.30 26.45 2 1.12 52.90 ALCATEL LUCENT CDMNLTE DUAL TECH 25.00 11.00 11.00 59.50 1 0.84 59.50 Total 13.00 5.31 336.20 CABINET DIMENSION [in] WIGHT Quantity Area W b c a [Lbs] [sq ft] [Lbs] BBU 32.25 27.50 27.00 382.00 4 20.63 1528.00 AC POWER 18.50 20.00 6.00 50.00 1 0.83 50.00 TELCO CABINET 14.25 7.75 6.00 10.00 1 0.32 10.00 Total 6.00 21.78 1588.00 Page 24 of 42 Luis Labrada g Project: Nodes 16A-1613 217 Landis Avenue LAMAR Date: 07/08/2019 Chula Vista, CA 91910 ENGINEERING Engineer: M.R P: 619.370-9515 VERIFY ROOF FRAMING Existing Load Density Concrete: 145.0 pcf DL: 72.5 lb/sq. ft. Thickness: 6.0 in LL: 20.0 lb/sq. ft. Area [sq ft] DL I LL I DL+LL [E] Steel Deck 1 321 23273 1 6420 1 29693 JLbs. - New Load Antennas Radio Cabinet Total: Quantity Area DL Lbs Lbs Lbs 1 Lbs 0 0 0 13 5 336 6 22 1588 1 19 1 27 1 1924 New Load + Existing Load Existing New Total: New + Existing DL LL DL+LL Area [sq ft] DL LL DL+LL DL LL DL+LL Steel Deck 23273 6420 29693 27 0 -542 -542 23273 5878 29151 Antennas 0 0 0 0 0 0 0 0 0 0 Radiol 0 0 0 5 336 0 336 336 0 336 Cabineti 0 1 0 1 0 1 22 1 1588 1 0 1588 1588 1 0 1 1588 Total: 1 31075 Chapter #34A CBC 2016 3403A.3 Existing structural elements carrying gravity load. Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load- carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404A.3. Any existing element that will form part of the lateral load path for any part of the addition shall be onsidered an existing lateral load- carrying structural element subject to the requirements of Section 3403A.4. New Total Load: 31075 Lbs Existing Total Load: 29693 Lbs [New Total Load] -[Existing Total Load] -*100% 100% = 4.448 % [New Total Load] 445 5 % OK I Page 25 of 42 Luis Labrada fl AMAR Proyecto: Nodes 16A-16B 217 Landis Avenue Date: 07/05/19 :Chula, Vista, CA919iO: IE:NGINEERING a Engineer:M.R P. 619-370-9515 wwwlamarena.com APPENDIX V. TABLES Page 26 of 42 Luis Labrada fl 4 A J5) Proyecto: Nodes 16A-16B 217 Landis Avenue Date: 06/24/19 Chula Vista, CA 91910 UUENGINEERING Engineer: M.R P 619-370-9515 www.lamareng.com : APPENDIX IV. TABLES Page 27 of 42 TABLE 1: SEISMIC DESIGN Page 28 of 42 5/16/2019 U.S. Seismic Design Maps is OSHPD Legoland I Legoland Dr, Carlsbad, CA 92008, USA Latitude, Longitude: 33.1262496, -117.31192390000001 Museum of v Making Music \ LEG&AND California . J Staff Parking 9 \ \ ---.. -. 9 Hotel Parking I Map data 02019 àogie Date 5/16/2019,11:03:03 AM Design Code Reference Document ASCE7-10 Risk Category II Site Class D - Stiff Soil Type Value Description Ss 1.127 MCER ground motion. (for 0.2 second period) Si 0.434 MCER ground motion. (for lOs period) 5MS 1.182 Site-modified spectral acceleration value 5M1 0.679 Site-modified spectral acceleration value SDS 0.788 Numeric seismic design value at 0.2 second SA S 1 0.453 Numeric seismic design value at 1.0 second SA Type Value Description SDC 0 Seismic design category Fa 1.049 Site amplification factor at 0.2 second Fv 1.566 Site amplification factor at 1.0 second PGA 0.447 MCEa peak ground acceleration FPGA 1.053 Site amplification factor at PGA PGAM 0.471 Site modified peak ground acceleration TL 8 Long-period transition period in seconds SsRT 1.127 Probabilistic risk-targeted ground motion. (0.2 second) SsUH 1.194 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration SsD 1.525 Factored deterministic acceleration value. (0:2 second) 51 RT 0.434 Probabilistic risk-targeted ground motion. (1.0 second) Si UH 0.436 Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. S1D 0.616 Factored deterministic acceleration value. (1.0 second) PGAd 0.59 Factored deterministic acceleration value. (Peak Ground Acceleration) CRS 0.944 Mapped value of the risk coefficient at short periods CR1 0.995 Mapped value of the risk coefficient at a period of 1 s Page 29 of 42 https://seismicmaps.org 1/2 5/16/2019 U.S. Seismic Design Maps 2.5 5.0 7.5 Period, T (sec) - Sa(g) 2.5 5.0 7.5 Period, T (sec) - Sa(g) DISCLAIMER While the information presented on this website is believed to be correct, S•EAOC /OSI-$PD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this webstie. Page 30 of 42 https://seismicmaps.org 2/2 MCER Response Spectrum 1.5 1.0 0.5 0.0 0.0 Design Response Spectrum 0.8 0.6 0.4 0.2 0.0 0.0 TABLE:2 DESIGN VALUES LOAD CHART FOR FRP MATERIALS Page 31 of 42 Appendix A Design Values Load Chart for FRP Materials ALLOWABLE STRENGTH TABLE FOR FRP SHAPES: Tubes, Channels, Angles Property Direction Value Units Tensile Strength Lengthwise Crosswise 6,600 1,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 6,600 3,300 psi Flexural Strength Lengthwise Crosswise 6,600 2,200 psi Flexural Modulus Lengthwise Crosswise 1,600,000 800,000 psi Shear Strength Lengthwise Crosswise 1,400 500 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi 1/2" Bolt Bearing Lengthwise Crosswise 6,000 3,600 psi 1/2" Bolt Shear Allowable 780 lbs 1/2" Bolt Tension Allowable 300 lbs Table Notes: Values based on 1525 series - Thermoset Polyester Class 1 FR (Slate Grey) A Safety Factor of 5.0 has been used to determine Allowable Loads. ALLOWABLE STRENGTH TABLE FOR FRP FLAT SHEETS: Property Direction Value Units Tensile Strength Lengthwise Crosswise 4,000 2,500 Pounds per square inch (psi) Compressive Strength Lengthwise Crosswise 4,800 3,200 psi Flexural Strength Lengthwise Crosswise 7,000 3,000 psi Flexural Modulus Lengthwise Crosswise 2,000,000 1,100,000 psi Modulus of Elasticity Lengthwise Crosswise 2,800,000 psi Table Notes: Values based on 1625 series - Thermoset Vinyl Ester Class 1 FR (Beige) A Safety Factor of 5.0 has been used to determine Allowable Loads. I I I Hi-Tech Composite Structures Supplement for LARR #25520 Page 1 of 1 Page 32 of 42 TABLE 3: POST - INSTALATED CONCRETE ANCHOR. HILTI Page 33 of 42 ESR-2302 I Most Widely Accepted and Trusted Page 7 of 11 TABLE 3-DESIGN INFORMATION CARBON STEEL KB3 DESIGN INFORMATION Symbol Units Nominal anchor diameter 1, 4 3 '8 I /3 /8 34 Anchor O.D. d0 (d0,)7 in. 0.250 0.375 0.500 0.625 0.750 (mm) (6.4) (95) (12.7) 15.9) (19.1) Effective mm. embedment' h9, in. 1/3 2 2 3'/4 31/ 4 3I 5 (mm) (38) (51) 1 (51) (83) (79) (1 2) 1 (95) (127) Mm. member thickness hwn in. 4 4 5 4 6 6 8 5 6 8 6 8 8 (mm) (102) (102) (127) (102) (152) (152) (203) (127) (152) (203) (152) (203) (203) in. 2/4 4 /2 Yle 47/8 3/8 6I4 55/s 7'I2 9% 7'I 93/4 7'/3 91/ Critical edge distance cac (mm) (70) (114) (98) (124) (92) (171) (143) (191) (241) (191) (248) (191) (241) in. 1/8 2 03 2'I5 2 1/8 1 /8 2'I4 1/4 1/4 2/4 2/9 21/2 Cmjn ______ (mm) (35) (51) (38)-(54) (51) (41) (41) (57) (44) (44) (70) (67) (64) Mm. edge distance in. 1 /4 2 /8 3'/2 41/8 43/4 4/4 4 51/4 43/4 4 67/8 02 6/9 for s a (mm) (44) (73) (89) (124) (121) (108) (102) (133) (121) (102) (175) (165) (162) in. 1/4 134 1/4 2'/2 2/4 2 1 /8 2/ 2'/ 2'4 33/4 3 /8 3'I4 sewn ______ (mm) (32) (44) (44) (64) (57) (51) (48) (60) (54) (54) (95) (86) (83) Mm. anchor spacing in. i/ 2/ 2 /8 2/3 2/ 2/4 2 31/ 2 /8 2 /4 33/4 3 /8 33/8 for c a (mm) (41) (60) (60) (67) (60) (57) (51) (79) (60) (57) (95) (86) (86) in. 2 218 2 /8 4 3/e 414 41/2 53/4 Mm. hole depth in concrete h5010 (mm) (51) (67) (67) (102) (98) (121) (114) (146) Mm. specified yield strength fy. psi 84,800 84,800 84,800 84,800 84,800 (N/mm2) (585) (585) (585) (585) (585) psi 106,000 106,000 106,000 106,000 106,000 Mi specified ult. strength ' (N/mm) (731) (731) (731) (731) (731) in' 0.02 0.06 0.11 0.17 0.24 Effective tensile stress area A40 (mm) (12.9) (38.7) (71.0) (109.7) (154.8) lb 2,120 6.360 11,660 18,020 25,440 Steel strength in tension N44 (kN) (9.4) (28.3) (51.9) (80.2) (113.2) Steel strength in shear lb 1,640 4,470 6,635 I 6,750 I 12,230 15,660 I 16,594 (kN) (7.3) (19.9) (29.5) (30.0) (54.4) (69.7) (73.8) Pullout strength uncracked concrete N,44 lb 1,575 NA NA I 6,800 NA NA 10,585 (kN) (7.0) (30.2) (47.1) Anchorcategory3 1,20r3 - 1 Effectiveness factor kuncr k UflCf - 24 4 uncracked concrete Modification factor for c.N - 1.0 uncracked concrete Coefficient for pryout k p - 1.0 2.0 Installation torque Tinst ft*lb 20 40 I 60 I 110 (Nm) (5) I (27) I (54) (81) (149) Axial stiffness in service (lb/in) 116,1501 load range 162,850 203,500 I 191,100 222,150 I 170,700 207,400 164,000 COy Pum i % 60 I 42 I 29 I 29 I 25 I 21 I 19 24 Strength reduction factor 0 for tension, steel 0.75 failure modes5 Strength reduction factor for shear, steel 0.65 failure modes5 Strength reduction factor for tension, concrete 0.65 failure modes, Condition B6 Strength reduction factor 0 for shear, concrete 0.70 failure modes, Condition B6 For SI: 1 inch = 25.4 mm, llbf = 4.45 N, 1 psi = 0.006895 MPa. For pound-in units: 1 mm = 0.03937 inches. 'See Fig. 2 2See Section 4.1.4 of this report, NA (not applicable) denotes that this value does not govern for design. 33ee ACI 318-14 17.3.3 or ACI 318-11 0.4.3, as applicable. 4See ACI 318-14 17.4.2.2 or ACI 318-11 0.5.2.2, as applicable. 5The carbon Steel KB3 is ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable. 6For use with the load combinations of ACI 318-14 Section 5.3, ACI 318-11 Section 9.2 or IBC Section 1605.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 0.4.3(c), as applicable, is not provided, or where pull-out or pry out strength overns. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. The notation in parenthesis is for the 2006 IBC. Page 34 of 42 TABLE 3-DESIGN INFORMATION, CARBON STEEL KB-TZ Nominal anchor diameter DESIGN INFORMATION Symbol Units 3 1j2 /8 3 /4 Anchor O.D. do(do) in. 0.375 0.5 0.625 0.75 (mm) (9.5) (12.7) (15.9) (19.1) Effective mm. embedment' hal in. 1 /2 2 2/4 2 31/4 31/a 4 31/ 33/ j (mm) (38) (51) (70) (51) (83) (79) (102) (83) (95) (121) Mm. member thickness 2 hm, in. 31/ 415 I 5 618 I 5 618 I 51/2 618 I 8 (mm) (83) (102) (127) (127) (102) (152) (152) (203) (127) (152) (203) (140) (152) 1(203) (203) in. 6 43/8 I 41a ±5/2 4 7I2 6 6'I, 8/4 6/4 12 10 I 8 9 Critical edge distance (mm) () (102) (105) (191)1(152) (165) (222)1(171) (305) (254) 1(203) (229) In. 8 21/2 21/2 2/4 2 /8 3°/8 31/4 91 43/4 41/8 cmin (mm) (203) (64) (64) (70) (60) (92) (83) (241) (121) (105) Mm. edge distance i n. 8 5 5 53/4 53/4 61I 57/s 5 10'/2 8 /8 for s a (mm) (203) (127) (127) (146) (146) (156) (149) (127) (267) (225) in. 8 21/2 21/2 2/4 2/ 3/3 3 5 5 4 smrn _______ (mm) (203) (64) (64) (70) (60) (89) (76) (127) (127) (102) Mm. anchor spacing for c 2tIn. - 8 35/8 3 /8 41/8 31/2 43/4 41/4 W2 91/2 (203) (92) 1 (92) (105) 73/4 (mm) (89) (121) (108) (241) (241) (197) in. 2 2°/s 3I 25/8 4 3/ 4/ 4 4I/ 5/4 Mm. hole depth in concrete ho (mm) (51) (67) (86) (67) 1 (102) (98) (121) (102) (117) (146) lb/in2 100,000 84,800 84,800 84,800 Mm. specified yield strength fy (N/mm2) (690) (585) (585) (585) lb/in2 125,000 106,000 106,000 106,000 Mm. specified ult. strength i" (N/mm2) (862) (731) (731) (731) In 0.052 0.101 0.162 0.237 Effective tensile stress area A,,.N (mm2) (33.6) (65.0) (104.6) (152.8) lb 6,500 10,705 17,170 25,120 Steel strength in tension N ,,, (kN) (28.9) - (47.6) (76.4) (111.8) lb 2,180 3,595 5,495 8,090 13,675 Steel strength in shear 14.,, (kN) (9.7) (16.0) (24.4) (36.0) (60.8) Steel strength in shear, lb 2,180 2,255 5,495 7,600 11,745 seismic3 (kN) (9.7) (10.0) (24.4) (33.8) (52.2) Pullout strength uncracked N lb 2,160 2,515 I 4,110 I (18.3) NA I 5,515 NA I 9,145 NA I 8,280 110,680 1(47.5) concrete4 (kN) (9.6) (11.2) (24.5) (40.7) (36.8) Pullout strength cracked NpW (lb NA 2,270 I 3,160 I NA I 4,915 I NA NA concrete - (10.1) I (•) I (•) Anchor category5 2 1 Effectiveness factor kumr uncracked concrete 24 Effectiveness factor k,,, cracked concrete 17 1.0 Coefficient for pryout strength, kcp 1.0 2.0 1.0 2.0 Strength reduction factor 0 for tension, steel failure 0.75 modes8 Strength reduction factor 0 for shear, steel failure 0.65 modes8 Strength reduction 0 factor for tension, concrete 0.55 0.65 failure modes or pullout, Condition 89 Strength reduction 0 factor for shear, concrete failure 0.70 modes, Condition B° Axial stiffness in service load I p0.,, I lb/in. 600,000 range'° lb/in. 135.000 For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N. 1 psi = 0.006895 MPa. For pound-inch units: 1 mm = 0.03937 inches. 'See Fig. 2. 2For sand-lightweight or normal-weight concrete over metal deck, see Figures 5A, SB. SC and 50 and Tables 5 and 6. 3See Section 4.1.8 of this report. 4For all design cases P,,,=1.0. NA (not applicable) denotes that this value does not control for design. See Section 4.1.4 of this report. °See ACI 318-14 17.3.3 or ACI 318-11 0.4.3, as applicable. °See ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable. "For all design cases 1Pc,N =1.0. The appropriate effectiveness factor for cracked concrete (ku) or uncracked concrete (k,,,,,) must be used. °The KB-TZ is a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 Dl, as applicable. °For use with the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 17.3.3(c) or ACI 318-11 0.4.3(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. '°Mean values shown, actual stiffness may vary considerably depending on concrete strength, loading and geometry of application. Page 35 of 42 TABLE 4: FASTENERS. LAGSCREW Page 36 of 42 108 DOWEL-TYPE FASTENERS Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections 1,2,3,4 for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for t5<1/4) or W ASTM A 36 steel side plate (for t=1/4) (tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D) wlhh . LL ' ° 0 g' w & dE 02 d0 d;a et 0 U) 0Z Z11 Z1 Z11 Z1 Z11 Z.L Z11 Z1 Z11 Zi. Z11 Z.L 711 Z1 Z5 Z.L Z11 Z1 15 Z1 Its 0 in. in. tbs. lbs. tbs. tbs. lbs. lbs. lbs. tbs. lbs. tbs. tbs. lbs. tbs. lbs. tbs. lbs. lbs. lbs. tbs. tbs. 0.075 1/4 170 130 160 120 150 110 150 110 150 100 140 100 140 100 130 90 130 90 130 90 (14 gage) 5/16 220 160 200 140 190 130 190 130 190 130 180 120 180 120 170 110 170 110 160 100 3/8 220 160 200 140 1 200 130 190 130 190 120 180 120 180 120 170 110 170 100 170 100 0.105 1/4 180 140 170 130 160 120 160 120 160 110 150 110 150 110 140 100 140 100 140 90 (12gage) 5/16 230 170 210 150 200 140 200 140 190 130 190 130 190 120 180 110 170 110 170 110 3/8 230 160 210 140 200 140 200 130 200 130 190 120 190 120 180 110 180 110 170 110 0.120 1/4 190 150 180 130 170 120 170 120 160 120 160 110 160 110 150 100 150 100 140 100 (11gage) 5/16 230 170 210 150 210 140 200 140 200 140 190 130 190 130 180 120 180 120 180 110 3/8 240 170 220 150 210 140 210 140 200 130 200 130 190 120 180 110 180 110 180 110 0.134 114 200 150 180 140 180 130 170 130 170 120 160 120 160 110 150 110 150 100 150 100 (10 gage) 5/16 240 180 220 160 210 150 210 140 200 140 200 130 200 130 190 120 180 120 180 120 3/8 240 170 220 150 220 140 210 140 210 140 200 130 200 130 190 120 190 120 180 110 0.179 1/4 220 170 210 150 200 150 200 140 190 140 190 130 190 130 180 120 170 120 170 120 (7 gage) 5/16 260 190 240 170 230 160 230 160 230 150 220 150 220 150 210 130 200 130 200 130 3/8 270 190 250 170 240 160 240 160 230 150 220 140 220 140 210 130 210 130 200 130 0.239 1/4 240 180 220 160 210 150 210 150 200 140 190 140 190 130 180 120 180 120 180 120 (3 gage) 5/16 300 220 280 190 270 180 260 180 260 170 250 160 250 160 230 150 230 150 230 140 3/8 310 220 280 1l1 270 180 270 180 280 170 250 180 250 150 2an 140 230 140 230 140 '7/16 1/2 1 518 420 290 510 340 770 490 390 260 470 300 710 430 380 240 460 290 1 680 400 370 240 1 450 280 1 680 400 =1= 360 230 440 270 660 380 350 220 1 430 260 640 370 350 220 420 260 _00—:360 330 200 400 240 600 330 330 200 1 400 230 590. 330 320 190 1 390 230 580 320 3/4 1110 670 1020 590 980 560 970 550 950 530 920 500 910 500 860 450 850 450 840 440 7/8 1 1510 880 1390 780 1330 730 1320 710 1280 690 1250 650 1230 650 1170 590 1160 590 1140 570 1 1940 1100 1780 960 1710 910 1700 890 1650 860 1600 820 1590 810 1500 740 1480 730 1460 710 1/4 1/4 240 180 220 160 210 150 210 150 200 140 200 140 190 130 180 120 180 120 180 120 5/16 310 220 280 200 270 180 270 180 260 170 250 170 250 160 230 150 230 150 230 140 3/8 320 220 290 190 280 180 270 180 270 170 260 160 250 160 240 150 240 140 230 140 7/16 480 320 440 280 420 270 420 260 410 250 390 240 390 , 230 370 220 360 210 360 210 1/2 580 ' 390 540 340 520 320 510 320 500 310 480 290 480 290 460 270 450 260 440 260 5/8 850 530 780 470 750 440 740 440 720 420 700 400 690 400 660 370 650 360 640 350 3/4 1200 730 1100 640 1060 600 1050 590 1020 570 990 540 980 530 930 490 920 480 900 470 7/8 1600 930 1470 820 1410 770 1400 750 1360 720 1320 690 1310 680 1240 630 1220 620 1200 600 1 2040 1150 1870 1000 1800 950 1780 930 1130 900 1680 850 1660 840 1570 770 1550 760 1530 740 I. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1). Tabulated lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to SD; dowel bearing strengths, F,, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths. F,,,. of 70,000 psi for D = 1/4', 60,000 psi for D = 5/16, and 45,000 psi for D 23/8'. Where the lag screw penetration, p, is less than SD but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration. The length of lag screw penetration, p, not including the length of the tapered tip. E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1 .4.6 for minimum length of penetration, p. Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorize. AMERICAN WOOD COUNCIL Page 370J 42 Table 12.2A Lag Screw Reference Withdrawal Values, W' Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member shall not include the length of the tapered tip (see 12.2.1.1). Specific Gravity, ________ Lag Screw Diameter, D ___ _______ G2 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4" 7/8" 1" 1-1/8" 1-1/4" 0.73 397 469 538 604 668 789 905 1016 1123 1226 1327 0.71 381 450 516 579 640 757 868 974 1077 1176 1273 0.68 357 422 484 543 600 709 813 913 1009 1103 1193 0.67 349 413 473 531 587 694 796 893 987 1078 1167 0.58 281 332 381 428 473 559 641 719 795 869 940 0.55 260 307 352 395 437 516 592 664 734 802 868 0.51 232 274 314 353 390 461 528 593 656 716 775 0.50 225 266 305 342 378 447 513 576 636 695 752 0.49 218 258 296 332 367 434 498 559 617 674 730 0.47 205 242 278 312 345 408 467 525 580 634 686 0.46 199 235 269 302 334 395 453 508 562 613 664 0.44 186 220 252 283 312 369 423 475 525 574 621 0.43 179 212 243 273 302 357 409 459 508 554 600 0.42 173 205 235 264 291 344 395 443 490 535 579 0.41 167 198 226 254 281 332 381 428 473 516 559 0.40 161 190 218 245 271 320 367 412 455 497 538 0.39 155 183 210 236 261 308 353 397 438 479 518 0.38 149 176 202 227 251 296 340 381 422 461 498 0.37 143 169 194 218 241 285 326 367 405 443 479 0.36 137 163 186 209 231 273 313 352 389 425 460 0.35 132 156 179 200 222 262 300 337 373 407 441 0.31 110 130 1 149 167 1 185 218 1 250 1 281 311 339 1 367 I. Tabulated withdrawal desien values. W. for lae screw connections shall be multiolied by all anolicable adjustment factors (see Table 11.3.1). 2. Specific gravity, G, shall be determined in accordance with Table 12.3.3A. adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'. W = 1380 G5'2 D (12.2-3) The nail or spike reference withdrawal design value, W, in lbs/in, of penetration, for a smooth shank stainless steel nail or spike driven into the side grain of a wood member, with the nail or spike axis perpendicu- lar to the wood fibers, shall be determined from Table 12.21) or Equation 12.2-4, within the range of specific gravities, G, and nail or spike diameters, D, given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3. 1) to obtain adjusted withdrawal design values, W'. W = 465 G3/2 D (12.2-4) For calculation of the fastener reference with- drawal design value in pounds, the unit reference with- drawal design value in lbs/in, of fastener penetration from 12.2.3.1a or 12.2.3.1b shall be multiplied by the length of fastener penetration, p1, into the wood mem- ber. 12.2.3.2 Deformed shank nails (a) The reference withdrawal design value, in lbs/in, of ring shank penetration, for a Roof Sheathing Ring Shank nail or Post-Frame Ring Shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2E or Equation 12.2-5, within the range of specific gravities and nail diameters given in Table 12.2E. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Ta- ble 11.3. 1) to obtain adjusted withdrawal design values, w,. W = 1800 G2 D (12.2-5) Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorizeJ. AMERICAN WOOD COUNCIL Page 380 42 TABLE 5: UNISTRUT GENERAL ENGINEERING CATALOG-NO. I Page 39 of 42 MWC~hanne- I Selection . UjIjj;1Jki CHANNEL SELECTION CHART Channel Dimensions Material & Thickness Hole Pattern Styles Channel I Width Height fir,'__ Steel Stainless Steel Alum. fo~ 00 //Il KS T KO SL DS H3 In (mm) In (mm) gauge gauge In (mm) Steel Only P1000 154 (41.3) 154(41.3) 12 g 12 g 0.109(2.8) • 0 U U 11111 U P1100 134(41.3) 134(41.3) 14 g 14 g - U 0 U - - P2000 134(41.3) 134(41.3) 16 g - - U U U U - - P3000 1%(41.3) 134(34.9) 12 g - - U E U U - - P3300 134(41.3) ¼(22.2) 12 g 12 g - U 0 - - - P4000 134(41.3) '516(20.6) 16 g 16 g 0.078(2.0) U U - U - - P4100 134(41.3) '3/16(20.6) 14 g - - U 0 - U - - P5000 134(41.3) 354(82.6) 12 g 12 g - U U U - - P5500 1%(41.3) 2Y16 (61.9) 12 ga - 0.109 (2.8) U 0U - - CHANNELS & COMBINATIONS IN DESCENDING ORDER OF STRENGTH Area Weight I s Allow. Moment Channel In2 (cm2) IbsIft (kg/rn) In4 (cm4) In3(cm3) ln.Ibs (N.m) 1.793 6.10 6.227 1.916 48,180 P5001 11.57 9.1 259.2 31.4 5,440 1.965 6.68 4.068 1.669 41,980 P1004A 12.68 9.9 169.3 27.4 4,740 1.452 4.94 2.805 1.151 28,940 P5501 9.37 7.3 116.8 18.9 3,270 2.221 7.55 1.856 1.142 28,720 P1001C41 14.33 11.2 77.2 18.7 3,250 0.897 3.05 1.098 0.627 15,770 P5000 5.78 4.5 45.7 10.3 1,780 1.111 3.78 0.928 0.571 14,360 131001 7.16 5.6 38.6 9.4 1,620 0.835 2.84 0.733 0.451 11,340 P1101 5.39 4.2 30.5 7.4 1,280 1.000 3.40 0.591 0.430 10,810 P3001 6.45 5.1 24.6 7.0 . 1,220 0.726 2.47 0.522 0.390 9,820 P5500 4.68 3.7 21.7 6.4 1,110 0.684 2.32 0.618 0.381 9,570 P2001 4.41 3.5 25.7 6.2 1,080 0.489 2.23 0.279 0.297 7,480 P9200 3.16 3.3 11.6 4.9 850 0.492 1.67 0.358 0.265 6,670 A5000. 3.17 2.5 14.9 4.3 750 0.609 2.07 0.302 0.242 6,070 A1001 3.93 3.1 12.6 4.0 690 0.387 1.88 0.166 0.205 5,150 P9000 2.50 2.8 6.9 3.4 580 0.555 1.89 0.185 0.202 5,070 P1000 3.58 2.8 7.7 3.3 570 0.790 2.69 0.176 0.201 5,060 P3301 5.10 4.0 7.3 3.3 570 Combinations not shown in catalog are available on special order. Consult factory for more details. Area Weight I s Allow. Moment Channel In2 (cm') lbslft (kg/rn) In' (cm4) In3(crn3) ln.lbs (N.m) 0.418 1.42 0.145 0.162 4,060 131100 2.69 2.1 6.0 2.6 460 0.500 1.70 0.120 0.153 3,850 P3000 3.23 2.5 5.0 2.5 430 0.579 1.97 0.117 0.143 3,610 P4101 V 374 2.9 4.9 2.4 410 0.342 1.16 0.125 0.140 3,520 P2000 2.21 1.7 5.2 2.3 400 0.478 1.66 0.104 0.128 3,210 P4001 3.14 2.5 4.3 2.1 360 0.459 1.56 0.077 0.103 2,590 A3301 2.96 2.3 3.2 1.7 290 0.305 1.04 0.061 0.086 2,170 A1000 1.96 1.5 2.5 1.4 250 0.395 1.34 0.037 0.072 1,800 P3300 2.55 2.0 1.5 1.2 200 0.264 0.90 0.037 0.058 1,470 A4001 1.70 1.3 1.5 1.0 170 0.213 0.73 0.045 0.055 1,400 P6001 1.38 1.1 1.9 0.9 160 0.290 0.98 0.026 0.054 1,360 P4100 1.87 1.5 1.1 0.9 150 0.244 0.83 0.023 0.049 1,230 P4000 1.57 1.2 0.9 0.8 140 0.230 0.78 0.017 0.038 950 A3300 1.48 1.2 0.7 0.6 110 0.132 0.45 0.008 0.022 560 A4000 0.85 0.7 0.3 0.4 60 0.107 0.36 0.009 0.020 510 P6000 0.69 0.5 0.4 0.3 60 0.148 0.50 0.007 0.018 460 P7001 0.96 0.8 0.3 0.3 50 0.074 0.25 0.002 0.007 170 P7000 0.48 0.4 0.1 0.1 20 MRS. System 23 P1000 Channel Combinations -ui I Fl I ;Il1 P1001 1 P1001 A P1001 B 1%" (41.3) 3W.LL.L.I (82.6) Li 1%' (41.3) i-F 3t4". (82.6) L' .709".L1__J.. .916' ((8.0) 2 (23.3) WtI100 FL: 321 Lbs (478 kg/ba in) Allowable Moment 12,200 In-Lbs (1,378 Nm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 C WUIOO Ft: 378 Lbs (562 kg/100 m) Allowable Moment 18,640 In-Lbs (2,110 N'm) 12 Gauge Nominal Thickness .105(2.7mm) P1001 3 Wt/100 Fl: 378 Lbs (562 kg/100 m) Allowable Moment 18,640 In-Lbs (2,110 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 A3 1W (41.3) 3 .761 .864 19.3 2 (21.9) 1 %' -f- (41.3) I' '12.472' (62.8) (123.8)-Ft-F 41 L- 2.403" I I(61.0) 'I 2 PP (41.3) 4W (123.8) L111 1J .778" -1i.. i-.-. .847" (19.8) 2 (21.5) W1/100 FL: 378 Lbs (562kg/100m) Allowable Moment 15,950 In-Lbs (1,800 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) WI/l00 Ft: 566 Lbs (843 kg/loOm) Allowable Moment 31,840 In-Lbs (3,600 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) WI/lao Ft: 566 Lbs (843 kg/100 m) Allowable Moment 32,770 In-Lbs (3,700 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) P1001 B3 P1001 D3 P1003 31 (82 rlT•i (") 4,*" (123.8) .778 k847" (19.8) 2 (21.5) Wt/100 Ft 566 Lbs (843 kg/b0 m Allowable Moment 37,550 In-Lbs (4,240 N'm) 12 Gauge Nominal Thickness .105(2.7mm) WOO Ft: 566 Lbs (843 kg/100 m) Allowable Moment 17,550 In-Lbs (1,980 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) 147A4" 11%4 1245' (44.1) (30.6) 2 (31.6) L- 42" -1 .489" (102.4) (12.4) WI/lao Ft: 333 Lbs (495 kg/i 00 m) Allowable Moment 6,240 In-Lbs (700 N'm) 12 Gauge Nominal Thickness .105(2.7mm) P1001 C41 P1001 C3 P1004 A 3W J.354" (34.4) 31/4" 1.896" (82.6) - * (48.2) 1.930" 1.320" (49.0) - 2 (33.5) 127A2" (46.8) W I (41 4W ~(IOLJO * (123.8) 2 711e, (11.1) Wt/100 Ft: 755 Lbs (1,124 kg/100 m) Allowable Moment 28,720 In-Lbs (3,250N'm) 12 Gauge Nominal Thickness .105' (2.7mm) WI/lao Ft: 566 Lbs (843 kg/i 00 m) Allowable Moment 18,680 In-Lbs (2,110 N'm) 12 Gauge Nominal Thickness .105" (2.7mm) WI/lOG Ft: 668 Lbs (994 kg/100 m) Allowable Moment 41,970 In-Lbs (4,740 Nm) 12 Gauge Nominal Thickness .105" (2.7mm) Channel Finishes: PL, GR, HG, PG, ZD; Standard Lengths: 10'&20' Page 41 of 42 Pipe Clamps UNISTRUT: I ADJUSTABLE PIPE CLAMPS unistrut Adjustable Pipe Clamps are manufactured from glass-reinforced N(D polyurethane and are adjustable to accommodate a wide range of RIGID PIPE CLAMPS Part Number O.D. Pipe Size (in.) Design Load Type 1 Type 2 Lbs (kN) Lbs (kN) Torque Ft/Lbs (N.m) WUIOO PCs Lbs (kg) 200-3100 ½-1½ 135(0.6) 65(0.3) 0.8(1) 3(1.4) 200-3110 1½-2¼ 135 (0.6) 65(0.3) 3(4) 5(2.3) 200-3120 2¼- 3¼ 145(0.6) 70(0.3) 3(4) 5(2.3) 200-3130 3-4 215(1.0) 70(0.3) 3(4) 8(3.6) 200-3140 4-6½ 215(1.0) 70(0.3) 3(4) 10(4.5) Design loads shown represent a 3:1 safety factor. outside diameters. They can be uti- lized with a variety of piping systems including: PVC, fiberglass, copper, rigid steel conduit and PVC coated rigid steel conduit. Care should be taken not to exceed 3 ftilbs. of torque on the adjustable pipe straps. PVC, Sch. 80 Design Loads* FRP Bolt Part Nominal & Rigid Metal Type 1 Type 2 FRP Bolt Torque Wt!100 PCs Number Size (in.) In (mm) Lbs (kN) Lbs (kN) Size (in.) Ft/Lbs (N.m) Lbs (kg) FPCR-050 ½ 0.840 (21.3) 225 (1.0) 90(0.4) 34 x 1114 3(1.4) FPCR-075 34 1.050 (26.7) 225 (1.0) 90(0.4) 34x 1¼ 3(1.4) FPCR-100 1 1.315 (33.4) 225 (1.0) 90(0.4) 34 x 1¼ 4(1.8) FPCR-125 1¼ 1.660 (42.2) 225 (1.0) 90(0.4) 34x 1¼ 5(2.3) FPCR-150 19k 1.900 (4&3) 225 (1.0) 90(0.4) %x 1¼ 5(2.3) FPCR-200 2 2.375 (60.31 225 (1.0) 90(0.4) %x 1¼ 3(4) 5(2.3) FPCR-250 2½ 2.875 (73.0) 225 (1.0) 90(0.4) 34 x 1¼ 7(3.2) FPCR-300 3 3.500 (88.9) 225 (1.0) 90(0.4) 34x 1¼ 10(4.5) FPCR-400 4 4.500 (114.3) 300(1.3) 125 (0.6) 34x 1¼ 12(5.4) FPCR-600 6 6.625 (168.3) . 300(1.3 125(0.6) %x1¼ __________ 15(6.8) FPCR-800 8 8.625 (219.1) 300 (1.3) 125 (0.6) Vax 1¼ 18(8.1) Design loads shown represent a 3:1 safety factor. Rigid Pipe Clamps resemble the more traditional style of pipe clamps and are sized based on the pipe inside diameter or nominal size. Polyurethane clamps are recommended for applications up to 160°F. For high temperature applications (up to 2307). Care should be taken not to exceed the recommended torque values of the rigid pipe clamps. Material: glass-reinforced polyurethane. Two HOLE PIPE STRAPS Bolt Material Design Load Part Dim. A Dim. B Size Thick. Type 1 Type2 Torque Wt/100 PCs No. In (mm) In (mm) (in.) In (mm) Lbs (kN) Lbs (kN) Ft/Lbs (N.m) Lbs (kg) FPS200 2.375 6.375 ½ ¼ 135 50 4 14 60.33 161.93 6.4 0.60 0.22 5 6.4 FPS250 2.875 6.875 ½ ¼ 135 50 4 17 73.03 174.63 6.4 0.60 0.22 5 7.7 FPS300 3.500 7.500 14 ¼ 135 50 4 20 88.90 190.50 6.4 0.60 0.22 5 9.1 FPS350 4.000 8.000 ½ 'A 135 50 4 33 101.60 203.20 6.4 0.60 0.22 5 15.0 FPS400 4.500 8.500 9k ¼ 175 60 4 23 114.30 215.90 6.4 0.78 0.27 5 10.4 FPS500 5.563 9.563 ½ ¼ 175 60 4 39 141.30 242.90 6.4 0.78 0.27 5 17.7 FPS600 6.625 10.625 ½ '4 175 60 4 39 168.28 269.88 6.4 0.78 0.27 5 17.7 FPSBOO 8.625 12.625 ½ , 'A 225 125 4 51 219.08 320.68 6.4 1.00 1 0.56 5 23.1 FPS1000 10.750 15.750 ¼ 225 125 10 77 273.05 400.05 6.4 1.00 0.56 14 34.9 FPS1200 12.750 16.250 1/4 225 125 10 83 323.85 412.75 6.4 1.00 0.56 14 37.6 FPS1400 14.000 18.000 34 250 150 10 125 355.60 457.20 9.5 1.11 0.67 14 56.7 16.000 20.000 34 250 150 10 143 FPS1600 406.40 508.00 9.5 1.11 0.67 14 64.9 FPS1800 18.000 23.000 34 250 150 10 160 457.20 584.20 9.5 Ill 0.67 14 72.6 Design loads shown represent a 3:1 safety factor. Two Hole Pipe Straps are designed for use in securing pipe, conduit and ducts to Channel. Two hole fiberglass straps can also be used independently from the channel for surface mounting. All sizes of the straps are suitable for load bearing applications. Material: fire-retardant, glass-reinforced polyester resin. For extreme chemical environments, the straps can be manufac- tured from vinyl ester resin. Larger diameter straps for special applications are also available. Contact the factory for pricing and availability of vinyl ester and large diameter straps. Two hole pipe straps should not be torqued above recommended values. Notes: Bolts and channel nuts are sold separately. When bolting onto 1W channel a 1W long bolt is req'd. Fiberglass 1 203 PFS CORPORATION Corporate 1507 Matt Pass Cottage Grove, WI. 53527 RECEIVE Phone: (608)839-1013 Fax: (608)839-1014 OCT fi 20ig APPLICATION FOR PLAN APPROVAL Commercial Modular (CM)/Special Purpose Commercial Modular California Code of Regulations Title 25 Chapter 3 Subchapter 2 Complete a separate application for each plan submittal. Provide not less than three (3). complete sets of plans, calculations and/or test data to support plans submitted. Manufacturer Celixion, LLC Address 5031 Hazel Jones Road City/State/Zip Bossier City, LA 71111 Contact Person Theresa Reagan Date 9/17/19 TYPE OF SUBMITTAL TYPE OF UNIT Ex] New model. [x] Commercial Modular (CM) [ ] Resubmission [ ] Special Purpose (SPCM) [ ] Revised Model* (Provide written instructions per 4876 (e)) Model I.D. Description of Submittal SCRC08 11-6" x 26-0" Concrete Equipment Shelter *Description of Modification:______________________________________________________ Note: For Commercial Modular submittal, indicate the following design parameters: Roof Live Load 107 psf Floor Live Load 269 psf Wind Speed (3-sec) 1 c.i mph Seismic Design Category D For PFS Use Only: Status: Approved by:Mark Severson Date Approved: 9/20/19 Mail To: State of California HCD Northern Area Office 9342 Tech Center Drive #550 Sacramento, CA. 95826 PFS Form 71W1 3/6/06 MB Rev. 2/18/13 RG Occupancy Classification I I Type of Construction V-B Exposure Category C Climate Zone7 Cg Wsw o3ll [X] Approved [ ] Rejected Plan Approval No:19-004189 Date Expires: 19.131.190 Date Received at PFS:_____________________ IBC Transmittal No. (by PFS):_______________ Project No. (by PFS):_________________ ADDITIONAL OR MODIFIED ACCEPTANCE (MODULARS/PANEL IZED) This form is to be used only when the manufacturer is seeking acceptance of an additional model, modified model or model name change which uses a previously accepted building system. Current PFS Building System Acceptance #:______________________________________________________________________________ Model Name/ No.SCRCO8 - 11 '6'x 26'0' Concrete Equipment Shelter Manufacturer's Name: Celixion, LLC Plant(s) at which model will be produced _Bossier City. LA 71111 Check One: I NEW MODEL Revised Models TECHNICAL DATA Conforms Floor Plan Showing: Braced Wall Method or Shearwalls Building Size (LxW Dimensions) Room Sizes, Light & Ventilation Schedule Exit Requirements Electrical Outlet Spacing & Smoke Detector Location of Labels & Data Plates Use Group, Type Const., Total Sq.Ft. Area Yes No N/A I 1 1 I 1 1 I Plumbing System Design or Reference No. Heat Loss Calculations or Reference No. ( ) I HVAC/Fumace Size/Model No. Thermal Performance Calculations or Reference No. ( ) I Electrical Load Calculations or Reference No. ( ) . % Service Size and Location ( ) I - Applicable Building Codes 2016 CBC . I Submit model to the followingstates: California *Description of Requested by: Theresa Reagan Date:9/17/19 idesigner) For PFS Use Staff Plan Reviewer £J 1 11I*t1tl444.0IlPIII.11110 IBC Certification Date: 9/20/19 Structural Calculation(s) Reviewed By: P.E. #: Date:________________ Remarks: **(1) copy sent to IBC within 15 days of approval. VERBAL APPROVAL GIVEN By Whom: To Whom Date:______________ MODEL WAS DEVIATED ED Revision Number:____________________________________________________________________ THIS FORM SHALL BE FILLED OUT COMPLETELY WITH EACH MODEL ACCEPTANCE OR MODIFICATION PRIOR TO SUBMITTAL TO PFS. cc: - \forms\fonu-m Rev 05/I 3/08 mb Sabre Industries TM Building Systems by Cel'lXion .-~ Model: SCRC08 11 9 -6" x 26'-O" CONCRETE SHELTER State of California APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of 11110 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09120/19 Expires: 12/31120 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove, WI I CELLXION, LLC Division of Sabre Industries 5031 Hazel Jones Road Bossier City, Louisiana 71111 (318) 213-2900 Fax: (318) 213-2864 F Digitally signed by Jeff Jeff FunkhouserJFunkhouser, P.E. _Date: 2019.09.17 P.E. 14:19:58 -04'00' OPIAI. 7....9/17I19 C 78754 '\ \ EXR_9/30/19 ) • 1 abre Industri. ESTM Building Systems by GellXion TABLE OF CONTENTS STRUCTURAL CALCULATIONS 26 Pages ENERGY CALCULATIONS 28 Pages 2016 CBC Energy ELECTRICAL LOAD CALCUATIONS I Page DRAWINGS (See drawing sheet 0-0 for index) ro,ON 9" 7/19 ( C 78754 '\ LIj mi EXP._9/30/19 CIVIL ) *\ 1* jJOFCAØ'J CELLXION, LLC A Division of Sabre Industries 5031 Hazel Jones Road Bossier City, Louisiana 71111 (318)213-2900 Fax: (318) 213-2864 APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of We 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09120/19 Expires: 12131/20 Approval # PFS: 19.004189 THIS APPROVAL GOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES .THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove, WI 4) STRUCTURAL CALCULATIONS: SCRCO8 Last Revision Date: 2016 CBC; CONCRETE 11'4' X 26'4' 7/11/2019 1.1 REFERENCE MATERIAL FOR DESIGN CALCULATIONS 2016 California Building Code 2015 International Building Code ci American Concrete Institute (ACI) 318-14 Embedment Properties for Headed Studs, TRW. Nelson, Design Data Catalog Steel Construction Manual, AISC 360-10 ASCE7-10 1.2 DESIGN CRITERIA USED IN CALCULATIONS Reinforcing Steel Yield Strength = fy = 60 ksi Structural Steel is ASTM A 36/A 36M Unconfined Compressive Strength of Concrete = f'c = 5000 psi Weight of Concrete = 115 pcI ci Stud Yield Strength = 50 ksi 1.3 INTERNATIONAL BUILDING CODE REQUIREMENTS The following is a summary of the Code requirements applicable to CellXlon precast concrete equipment shelters. 1.3.1 Occupancy Classification Occupancy to be Group U per sec 312.1. 1.3.2 Construction Type Type V-B per section 602.5 and Table 601. 1.3.3 Building Limitations Occupancy U Relative to the location of the nearest structure or property line: Walls must be rated one hour if less than 10 feet. (Table 602) Maximum size of S-2 building (Table 503) is 13,500SF, 2 story. (Table 503) Maximum size of B building (Table 503) is 9,000 SF 2 story. (Table 503) Maximum size of U building (Table 503) Is 5,500 SF. I story. (Table 503) NOTE: STANDARD SHELTERS MAYBE RATED UP TO 2-HOURS. REF: Table 721.1(2), Item number 4-1.1. Sand-lightweight concrete 4 inches thick. IF PROTECTED OPENINGS ARE REQUIRED.- 314 HOUR RATED OPENINGS ARE REQUIRED IN ONE HOUR ASSEMBLIES. 1.5 HOUR RATED OPENINGS ARE REQUIRED IN TWO HOUR ASSEMBLIES. Unprotected OenInps Mowed Protected Ooenincts Allowed Table 705.8 Not permitted up to 5 feet. Not permitted up to 3 feet. 10% permitted >5 feet to 10 feet. 15% permitted > 3 feet to 5 feet. 15% permitted> 10 feet to 15 feet. 250A permitted> 5 feet to 10 feet. 25% permitted> 15 feet to 20 feet. 45% permItted> 10 feet to 15 feet. 45% permitted >20 feet to 25 feet 75% permitted> 15 feet to 20 feet. 70% permitted >25 feet to 30 feet. No restriction >20 feet. No restriction > 30 feet. 1.4 FLOOR LOADS Floor live load required (Table 1607.1) for light storage is; 125 psi The summary loading chart in Section 2.0.1 indicates allowable loads of- 269 psf 11.500 ft wide OK For some equipment, such as batteries, a concentrated load is realized (2.5 SF in size). Section 2.3.6 shows that concentrated loads of 1859 lbs can be placed anywhere. If the concentrated load is next to the wall, 5647 lbs can be used. Page 1 of 26: CODE REQUIREMENTS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09/20119 Expires: 12131/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS UMITED TO FS - FACTORY-BUILT PORTION ONLY. V~- PES CORPORATION- Cottage Grove, WI STRUCTURAL CALCULATIONS: SCRCO8 Last Revision Date: 2016 CBC; CONCRETE 11'-6"X26'-0" 7/11/2019 1.5 ROOF LOADS Minimum roof live load required (2015 IBC 1607.11.2.1) is: L Lo R,R2 (sec 1607.11.2.1, Eq 16-251 Lo = 20 (sec 1607.11.2.11 R1 o 1.0 (worst case for smaller shelters) (sec 1607.11.2.1, Eq 16-26) F = .167 in peril slope R2 = 1.0 (for F' 4) [sec 1607.11.2.1, Eq 16-29] L 20 psf The summary loading chart in Section 2.0.1 indicates allowable loads of: 107 psf 11.500 it wide OK Snow Loads Section 1608.2 requires use of section 7 of ASCE 7-10 pf= 0.7 Ce C5 I pg (ASCE 7-10. Sec 7.3, Equation 7-11 (Mm. design load for roofs from section 2 of these Calcs) o 107 psf 11.50ftwide Ce = 1.2 (worst case-ASCE 7-10,Table 7-2, lesser factors may be used as appropriate) Ct = 1.0 (From ASCE 7-10, Table 7-3, heated structure) I = 1.0 (Category II, ASCE 7-10, Sec 1.5.1, Table 1.5-2) Using the design load from section 2 for p, and solving for p9 P9 = Pr / ( 0.7 Ce Ct I = (Allowable ground snow load) = 128 psf 11.50 it wide 1.6 WIND LOADS Sect. 1609.1.1 requires ASCE 7-10, Chapter 28; Part 2; simple diaphragm low-rise buildings: Risk Category: IF (ASCE 7-10, Section 1 and Table 1.5-11 V = 150 mph (ASCE 7-10, Section 26.5.1 and Figure 26.5-11A I Surface Roughness Category: C (ASCE 7-10, section 26.7.21 Exposure category: C (ASCE 7-10, section 26.7.21 Exposure C Adjustment Factor: X= 1.21 (ASCE 7-10, section 28.6.3 & Fig 28.6-11 Enclosure Classification: enclosed (ASCE 7-10. section 26.21 Topographic Factor: Kg = 1.0 (ASCE 7-10, sec 26.8.21 MWFRS Design Wind Pressures: (from ASCE 7-10, sec 28.6.3 & Figure 28.6-11 P. = W;d p33 (ASCE 7-10. sec 28.6.3, Eq 28.6-11 WALLS: 43.2 psf (zone A) -22.4 psf (zone B, negligible-> only 1 inch tall I 28.7 psf (zone C) -13.3 psf ( zone D, negligible-> only 1 inch tall I Zone A controls, use it for analysis Allowable load on walls: ion walls: 87.3 psf(Calcs sec 2.0.1) 9.250 it tall OK ROOF: -51.9 psf (zone E -29.5 psf (zone F I -36.1 psf (zone Cl -22.9 psf (zone H Zone E controls, use It for analysis Allowable negative load on roof: -39.6 psf (Catcs, sec 2) 11.500 it wide Plus .6 x DL ( 48.2 psf = 28.9 psf + Allow Neg Ld -68.6 psf OK 1.6.1 Check structural connections for carrying wind loads to the foundation. The worst case for the windward forces are when they are projected onto the long walls. Half of the load is carried to the floor connections and half Is carried to the roof connections. The walls are 9.250 It tall. The connections which connect the long walls to the end walls are neglected for the purposes of this particular analysis. Analysis with Calculations from section 3 Page 2 of 26: CODE REQUIREMENTS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09/20119 Expires: 12131/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES. THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. PFS CORPORATION- Cottage Grove, wi STRUCTURAL CALCULATIONS: SCRCO8 Last Revision Date: 2016 CBC; CONCRETE 11'-6"X 26'-0" 7/11/2019 1.6.1.1 Check connections for transfer of windward loads from wail to the floor and roof. The connections along the top and bottom of the walls are at a standard spacing of 56 inches. This will be the tributary width of wind load for each connection at the floor and roof. The load for this tributary area on the windward wall is then: P'(w)= P(windward wall) x tributary area (for 9.250 ft tall wall) Where tributary area = ( 9.250 ft12)x4ft8 in 21.58 sq. ft. = 43.2 psf x 21.58 sq. ft. P'(w)= 932 lbs This load is resisted by three main components of the connection at the floor: 5.95 kips Capacity of P/N 223100 in tension per Clacs Section 3.3.1 22.87 kips Capacity of the Floor Lifting Insert in shear per Clacs Section 3.7 8.35 kips Capacity of the weld which connects the plates per Clacs Section 3.8 The capacity of all 3 components exceed the wind load OK This load is resisted by three main components of the connection at the roof: 3.52 kips Capacity of P/N 223000 in V-shear per Clacs Section 3.4.3 5.95 kips Capacity of P/N 222000 In tension per Clacs Section 3.5.1 8.35 kips Capacity of the weld which connects the plates per Clacs Section 3.8 The capacity of all 3 components exceed the wind load OK 1.6.1.2 Check connections for transfer of leeward loads from wail to the floor and roof. The leeward wall has similar construction, but the loads are less and are outward. P'(l)= P(leeward wall) x tributary area Where tributary area =( 9.250 ft/2)x4ft81n 21.58 sq. ft. = 43.2 psf x 21.58 sq. ft. P(I)= 932 lbs (negative indicating an outward direction) This load is resisted by three main components of the connection at the floor: 5.95 kips Capacity of P/N 223100 in tension per Section 3.3.1 22.87 kips Capacity of Floor Lifting Insert ml shear per Section 3.7 8.35 kips Capacity of the weld which connects the plates per Section 3.8 The capacity of all 3 components exceed the wind load OK This load Is resisted by three main components of the connection at the roof: 3.52 kips Capacity of P/N 223000 in V-sheer per Section 3.4.3 5.95 kips Capacity of P/N 222000 In tension per Section 3.5.1 8.35 kips Capacity of the weld which connects the plates per Section 3.8 The capacity of all 3 components exceed the wind load OK 1.6.1.3 Windward and leeward loading transfer to endwalls: The loads on the top half of the shelter must be transferred to the ground through the connections on the endwalls. There are three connections from the roof to the endwall and three connec- tions from the endwall to the floor. The load on the projected area of the top half of the long side of the shelter Is resisted by these connections and Is assumed to distribute half of the load to each endwall. A shelter which is 26.000 feet long has a tributary area of: Area = ( 9.667 feet I 2 ) x ( 26.000 feet 12 ) = 62.8355 sq. ft. P(proj.)= 62.84 sq ft x 43.2 psf = 2.714 lbs. The roof connection consist of the same three components as were indicated in the sidewalls, except that they are loaded In a different direction. Their capacities are shown below. 7.04 kips Capacity of P/N 223000 in X-shear per Section 3.4.2 22.87 kips Capacity of the Wall Corner Insert per Section 3.6.1 8.35 kips Capacity of the weld which connects the plates per Section 3.8 Since there are three of these connections, the total capacity is: 21.12 kips OK Page 3 of 26: CODE REQUIREMENTS APPROVED: STATE OF CA- CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09120119 Expires: 12131/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES. THIS APPROVAL IS LIMITED TO FS - FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove, wi STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 11'-6 X 26'-O' 7/11/2019 1.6.1.4 Windward and Leeward loading transfer to floor: The same loads that are transferred to the endwalls from the roof need to be transferred to the floor panel. This is accomplished through the three connections at the base of the endwall. The floor connections consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below. 14.54 kips Capacity of P/N 223100 in X-shear per Section 3.3.2 22.87 kips Capacity of Floor Lifting Insert in shear per Section 3.7 8.35 kips Capacity of the weld which connects the plates per Section 3.8 Since there are three of these connections, the total capacity is: 25.05 kips OK 1.6.1.5 Find horizontal forces and overturning moments. This Is used in the tie-down anchor analysis in 1.8 below. _____Weight lbs Hor.Wind (PxA-hor) lbs Veil. Windi (PxA-vert. lbs Overturn Moment ft-lbs Width Shelt"Dims(feet)Shelter 11.50 59,110 1 11.372J 15,5211 146.811- 1.6.1.6 Components and Cladding: XKa Pod3o I ASCE 7-10, sec 30.5.2, Eq 30.5.1 1 POS MEG [from ASCE 7-10, Figure 30.5-1 1 ROOF ZONE 1: 15.7 psf 44.8 psf (100sf effective wind area) use for analysis ROOF ZONE 2: 18.6 psf -73.4 psf (20 sf effective wind area) ROOF ZONE 3: 20.0 psf -123.7 psf (10 Sf effective wind area) Allowable positive load on roof: (From section 2) 107 psf 11.500 ft wide shelter Allowable negative load on roof: (From section 2, neglecting DL) -39.6 psf 11.500 ft wide shelter Allowable negative load on roof: (From section 2, including .6 x DL) Roof Dead Load: 48.2 psf X .6 = 28.9 pal -68.6 pat 11.500 ft wide shelter OK POS NEG (from ASCE 7-10, Figure 30.5-1] WALL ZONE 4: 39.6 psf -43.4 psf (200 Sf effective wind area) use for analysis WALL ZONE 5: 45.9 psf -59.2 psf (30sf effective wind area) Allowable load on walls: (From section 2) 87.3 psf 9.250 ft tall wall OK The larger load at the corners does not produce a significant bending stress, and the shear strength of the roof panel will be more than adequate to resist this uplift load. In addition, extra connections between the roof and endwalls anchor the roof at these end zones. Page 40126: CODE REQUIREMENTS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09/20/19 Expires: 12/31/20 Approval # PFS: 19-004189 This APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove, WI I - I STRUCTURAL CALCULATIONS: SCRCO8 Last Revision Date: 2016 CBC; CONCRETE 11'-6" X 26'-O" 7/11/2019 1.7 SEISMIC LOADS Section 1613.1. requires ASCE 7-10 for analysis. Site Class is D (ASCE 7-10, Sec 11.4.2, assumed due to unknown soil properties) Occupancy Category: II I ASCE 7-10, sec 11.5.1 Table 11.5-11 Seismic Design Categc D (ASCE 7-10, sec 11.6) Seismic Importance Factor, I is: 1.00 (ASCE 7-10, Sec 11.5.1. Table 11.5-2) V= c1w [ASCE 7-10, sec 12.8.1, Eq. 12.8-1) w = 0 (ASCE 7-10, sec 12.7.21 C Se! (RI I) (ASCE 7-10, sec 12.8.1.1, Eq. 12.8-2) V= (SI(RII))D R= 4 (ASCE 7-10, Table 12.2-1, A.2 1 SOS = 2/3 5M5 I ASCE 7-10, sec 11.4.4, Eq. 11.4-31 ES, (ASCE7-10, sec 11.4.3, Eq. 11.4-11 1.044 (ASCE 7-10. Sec 11.4, Table 11.4-1 1.140 12015 IBC per USGS.gov ) 1.190 1 Cailabad. CA site location I S05 = 0.793 Design Category = D S01 = 2/3 SMI (ASCE 7-10, sec 11.4.4, Eq. 11.4-4) SMI = FvS9 (ASCE 7-10, sec 11.4.3, Eq. 11.4-2) Fv 1.562 IASCE 7-10, Sec 11.4, Table 11.4-21 L S'a 0.438 12015 IBC per USGS.gov I LSMI a 0.68 1 Caglsbad, CA site location I S09 = 0.46 Design Category = D T = 0.02 h°9 = 0.106 a T9= SDI ISD= 0.575s C, 0.198 USE SDI /((RII)xT) 1.075 max(0.044S09 I, 0.01) 0.035 Seismic Coefficient = p Cl 0.198 V= 0.198D ( Use for base shear ) Determine E for use In load combinations on individual panel design. E= E5+ E9 IASCE 7-10, sec 12.4.2, Eq. 12.4-11 Eh a pQE I ASCE 7-10, sec 12.4.2.1, Eq. 12.4-31 E9 = 0.2 S05 0 (ASCE 7-10, sec 12.4.2.2, Eq. 12.4.41 E = p0 + 0.2 Se D (ASCE 7-10. sec 12.4.2.1, Eq. 12.4-3 plus Sec 12.4.2.2, Eq. 12.4.41 = V (ASCE 7-10, sec 112.4.2.11 P= 1.0 1 ASCE 7-10, sec 12.3.4.21 E pV+ 0.2 SosD E.= E,,,8 -E, I ASCE 7-10, sec 12.4.3. Eq. 12.4.61 E,,,5 = n0 OE ASCE 7-10. sec 12.4.3.1 Eq. 12.4-71 E,,, = o °E -0.2 S05 0 Do = 2.5 (ASCE 7-10, Table 12.2-1, A.21 Page 5 of 26: CODE REQUIREMENTS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09/20/19 Expires: 12/31/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES .THIS APPROVAL IS LIMITED TO WFS FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove, WI I - I STRUCTURAL CALCULATIONS: SCRCO8 Last Revision Date: 2016 CBC; CONCRETE 11-6" X 26'-O" 7/11I2019 Load combinations: per ASCE 7-10 12.4.3.2 Comb 1.4D (Notes 1,2,31 Comb 1.20+ 1.61+0.5(LrorSorR) (Notes 1,2,31 ( Controls Floor Comb 3 120 + 1.6(Lror S or R) + (L or 0.5W) (Notes 1,2,31 Comb 4 1.20 + 1.0W + I + 0.5(Lr or S or R) (Notes 1,2,31 ( Controls Walls (H) Comb 5 (1.2+0.2Sds)D + °oQE + I + 0.2S f Notes 1, 2. 31 ( Controls Walls (V) Comb 6 0.90 + 1.0W (Notes 1, 2, 31 'C Controls Roof Comb 7 (0.9-0.2Sds)D + OQE + 1.6H Note 1: Roof and floor panels are designed using 1.40 and 1.71, exceeds req'd factors. Note 2: Wall panels are designed using 1.413 and 1.1W, exceeds req'd factors. Note 3: S. R, and Lr are used as I In panel calculations, see section 2 of these caics. Load Comb check Mm. Design Loads Walls (V): (1.2+.2S05)D + fl0 GE = 1.359 x 498 + 0 = 733 5770 pit OK Walls (H): 0.9x 0 + 1.0x 43.197 = 43 87 psi OK Roof: 0.9x 48.2 • lOx -51.909 = 95 107 psi OK Floor: 1.2x 39.61 + 1.6x 125.000 a 248 269 psf OK 1.7.1 Seismic loads from top half of the wall panel are transferred to the roof. Equipment permanently Installed in the building Is estimated at 6,500 pounds. For a 26.00 ft long shelter, this is an average of 250 pounds per linear foot. if this equipment Is mounted to the floor and braced at the top, then half the seismic load from the equipment should be added to the top of the wails. Analysis uses sec 3 of these calculations. The weight of a wall section transferred to the connections at 56" on center is: W(wali)= (56112 ft width) x( 9.250 ft high) x ( 4 /12 ft thick) x ( 115 pcf) 827 lbs W(equipment) = (56112 ft width) x( 125 plf) = 583 lbs W(top of wall) = W(wall) + W(equipment) 1,411 lbs For the wail panel, the seismic shear is: V = 280 lbs I Seismic shear per connection plate at top of wails This load is resisted by three main components of the connection at the floor 5.95 kips Capacity of P/N 223100 intension per Section 3.3.1 22.87 kips Capacity of Floor Lifting Insert in shear per Section 3.7 8.35 kips Capacity of the weld which connects the plates per Section 3.8 The capacity of all 3 components exceed the seismic load OK This load is resisted by three main components of the connection at the roof: 3.52 kips Capacity of P/N 223000 in V-shear per Section 3.4.3 5.95 kips Capacity of P/N 222000 in tension per Section 3.5.1 8.35 kips Capacity of the weld which connects the plates per Section 3.8 The capacity of all 3 components exceed the seismic load OK 1.7.2 Seismic loads from roof are transferred to the top of the endwall. The seismic load at the top connection plates of the endwaiis includes the seismic loads from the top quarter of two sidewails, one half of the roof, and one half of the total equipment. Use a 9.250 ft tall x 25.333 ft long wall & use a 11.833 it wide x 26.333 ft long roof. W(quarter wall)= 9.250 ft / 2 x 25.3 ft 12 x 4.00 /12ftx 115 pcf = 2,246 lbs. x2 = 4,491 lbs. W(halfroof)= 11.833 It x 26.333 ft l2 x 4.75 /12ftx 115 pcf = 7,092 lbs. W(equipment)= 13.000 It x . 125 plf = 1,625 lbs TOTAL: W(top of endwall) = 13,208 lbs. The seismic load is then: V(top of endwall) = 2.620 lbs. The roof connection consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below. 7:04 kips Capacity of PIN 223000 in X-shear per Section 3.4.2 22.87 kips Capacity of the Wall Corner Insert per Section 3.6.1 8.35 kips Capacity of the weld which connects the plates per Section 3.8 Since there are three of these connections, the total capacity is: 21.12 kips This capacity exceeds the seismic load OK Page 6 of 26: CODE REQUIREMENTS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of We 25 California coda of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09/20/19 Expires: 12131/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES. THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. FPS CORPORATION - Cottage Grove, WI STRUCTURAL CALCULATIONS: SCRCO8 Last Revision Date: 2016 CBC; CONCRETE iv-r X 26'-0 7/11/2019 1.7.3 Seismic loads from endwall are transferred to the floor. The connections at the bottom of the endwalls have the same seismic load as the connections at the top, except that the seismic load from the endwall itself Is added. The weight of the endwall Is: W(endwall)= 11.500 ft x 9.250 it x 4.00 112 ft x 115 pcI 4,078 lbs V(endwall)= 809 lbs V(bottom)= V(top of endwall) + V(endwall) = 3.429 lbs The same loads that are transferred to the endwalls from the roof need to be transferred to the floor panel. This is accomplished through the three connections at the base of the endwall. The floor connections consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below. 14.54 kips Capacity of P/N 223100 in X-shear per Section 3.3.2 22.87 kips Capacity of Floor Lifting Insert in shear per Section 3.7 8.35 kips Capacity of the weld which connects the plates per Section 3.8 Since there are three of these connections, the total capacity ls 25.05 kips This capacity exceeds the seismic load OK 1.8 Check shelter tie-downs to foundation For tie-down anchor capacity see Section 3.9 of these caics: Tension Pullout: 1817 lbs Per connection Horizontal Shear: 3914 lbs Per connection Vertical Shear: 3914 lbs Per connection Horizontal forces due to seismic/wind loads: Shelter Dims (feet) Shelter Weight Seis.Loacl Wind loadl (W x Cs) 1 1.6.1.5 Controlg 1 Load I Sliding I Resist, iTie-downi I Capacity Force on I Anchors I CHECK Width I Length I Height 11.50 26.00 10.125 59.110 11,725 11,372 SEISMIC 17,527 15,657 11.785 OK Sliding resistance uses (0.9-0.2S05) x it x DL of shelter (where p = 0.4) This shelter to have a total of 8 tie-down connections N/A indicates that no-tie down requirement is necessary for sliding. Overtumina forces due to seismic/wind loads: Seis.load Seismic (WxCs) Overturn 1.6.1.5 lbs. ft-lbs. lnd Over rft-'Ibs. Control'g Load I Overturn Resist. I ft-lbs. Tie-down Capacity I lbs Force on CHECK Anchors I lbs Shelter Dims (feet) Width Length Height 11.50 26.00 110.125 11,7251202,3291 146,813 ISEISMICI 251957 1 15,657 0 1 N/A Overturning resistance uses (0.9-0.2S1,5) x DL of shelter Weight of shelter and contents are the same as in the horizontal force chart above. N/A indicates that no-tie down requirement is necessary for overturning. Page 7 of 26: CODE REQUIREMENTS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements at title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09/20119 Expires: 12/31/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO WFS FACTORY-BUILT PORTION ONLY. PFS CORPORATION- Cottage Grove, WI STRUCTURAL CALCULATIONS: SCRCO8 Last Revision Date: 2016 CBC; CONCRETE 11'-6"X26-0" 7/11/2019 2.0 DESIGN CRITERIA NOTE: These calculations represent the panels of a 11.500 ft wide x 26.000 ft long x 9.250 ft tall shelter. STRUCTURAL PROPERTY UNITS LABEL Concrete Compressive Strength 5000 psi f (sand-lightweight) Reinforcing bar Yield Stress 60000 psi fy[REBAR] Concrete Density 115 pcf DENSITY Maximum Building Width 11.5 feet BLDGW Maximum Building Length 26 feet BLDGL Maximum Wall Panel Height 9.25 feet WALLH Max. Est. weight of Shelter 52,610 LBS. BLDGWT Concrete volume req'd. 15.81 YDS. CONCYDS Roof thickness at :peak 5.5 inches H[ROOF] Roof thickness at edge 4 inches Reber size used In roof # 4 Reber REBARROOF Lateral rebar spacing: roof 12 inches ROOFSPACING12 Longitudinal rebar spacing-roof: 18 inches Steel mesh used in wall: W4 Wire REBAR WALL Add vert steel used in wall # 4 Reber REBARWALL2 Steel spacing in wall (12max.) 4 inches WALLSPACING Vertical Reber spacing in wall 36 inches WALLSPACING2 Horizontal rebar spacing in wall 36 inches Wall panel thickness 4 inches WALLTHICKNESS Reber size used in floor # 6 Reber REBARFLR Number of rebar per floor rib 2 each REBARFLRQTV Spacing of ribs in floor 22 inches FLOORSPACING Floor thickness 5.75 inches H[FLOOR] Floor deck thickness 2.75 inches H[DECK] Floor rib width 6 inches B[RIB] Floor deck steel size W4 Wire Floor deck steel spacing 4 inches Area per roof rebar 0.200 sq. in. ALREBARROOF] Diameter of roof rebar 0.500 inches DIA[REBARROOF] Area per wall wire 0.040 sq. in. A[REBAR WALL] Area per extra vert wall rear 0.200 sq. in. A[REBARWALL2] Diameter of wall wire 0.356 inches DIA[REBARWALL] Diameter of wall rebar 0.500 inches Area of floor rib rebar 0.880 sq. in. A[REBARFLR] Diameter of floor rebar 0.750 inches DIA[REBARFLR] Area of deck rebar/wire 0.040 sq. in. A[REBARDECK] Diameter of deck rebar/wire 0.356 Inches DIA[REBARDECK] Page 8 of 26: ROOF, WALLS AND FLOOR APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of litle 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09/20/19 Expires: 12131/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES. THIS APPROVAL IS LIMITED TO FS. FACTORY-BUILT PORTION ONLY. PFS CORPORATION- Cottage Grove, WI STRUCTURAL CALCULATIONS: SCRCO8 Last Revision Date: 2016 CBC; CONCRETE 11'-6" X 26'-0 7/11/2019 Area of deck steel per foot 0.120 sq.inift. A[DECKSTEEL] Minimum req'd deck steel/foot 1 0.059 sq.inJft. A[DECKSTEEL-MIN] 2.0.1 STRUCTURAL LOADING SUMMARY FOR PANELS, AS DESIGNED. PANEL ALLOWABLE LOAD TYPE 11.500 ft wide roof 107 1psf LIVE floor 1 269 psf LIVE 9.250 ft tall wall I 87.3 Ipsf WIND 2.0.2 CHECK STEEL RATIOS ( ACI 318-14, sec. 18.10.2.3) Pt PV l3 = 0.80 ROOF: 0.0040 0.0027 OK Pb Pn,ax Pm FLOOR: 0.0086 OK 0.0335 0.0252 0.0033 WALL: 0.0066 0.0066 OK Min reqd. per ACI 318-14. sec 18.10.2.1 0.0025 2.0.3 CHECK DEVELOPMENT LENGTH (ACI 318-14, sec. 18.8.5.1) Wall Roof Floor Largest of: 10 d = 3.6 in 5.0 in 7.5 in 7.5 iii 7.5 in 7.5 in edh= 1.25f,,db/(65xf'C1T1 ) 5.8 in 8.2 in 12.2 in All rebar development lengths are 18 in OK 2.1 ROOF PANEL CALCULATIONS Temperature steel required: Ats Panels are 4 in thick, minimum. Maximum thickness of roof panel is 5.5 inches at center peak. Ats = Aconc x 0.0018 = 5.5 in. x 12 in. x 0.0018 = 0.1188 sq. in. per foot of width of roof panel. Use #4 rebar at 18 Inches, longitudinal: Ats(actual) = 0.1333 sq. in. OK 2.1.1 Determine shear strength: Vu(ROOF) b[ROOF] = 12.0 inches d[ROOFSHEAR]= 3 in. - DIA[REBARROOF]I2 2.75 inches Vu[ROOFJ= .85 x .85 x 2 x (fc)A.5 x b[ROOF] x d[ROOFSHEAR] = 3372 lbs. 2.1.2 Determine allowable live lead due to shear: w[ROOFSHEARLL] ROOFSPANSHEAR= bldgw - ((d[ROOFSHEAR] + 4) x 2 /12) = 10.375 feet 11.50 It wide shelter w[ROOFDL]= density x thickness ( 4.75 in avg) = 45.5 psf (concrete only) w[ROOFSHEARLL]= (Vu[ROOF] / ROOFSPANSHEAR - 1.4 x w[ROOFDL]) / 1.7 = 154 psf allowable roof live load due to shear strength 11.500 It wide Page 9 of 26: ROOF, WALLS AND FLOOR APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of tItle 25 California code of regulatIons Chapter 3 subchapter 2 Commercial Modular Date: 09/20/19 Expires: 12131120 Approval # PFS: i-oois THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. - PFS CORPORATION- Cottage Grove WI STRUCTURAL CALCULATIONS: SCRCO8 Last Revision Date: 2016 CBC; CONCRETE 11'-6" X 26'-0 7/11/2019 2.1.3 Determine allowable live load due to moment: w[ROOFMOMENTLL] A[ROOFSTEEL12]= A[REBARROOFJ x 12 inches/ ROOFSPACING) = 0.20 sq. inches per foot of roof panel 11.500 ft wide shelter d[ROOFMOMENT]= (HIROOF)) - (1 +DlA[REBARROOF] / 2) = 4.25 inches a[ROOFI2]= (A(ROOFSTEELI2] x fyIREBAR] ) / ( .85 x Ic x b[ROOF]) = 0.235 inches Mu[ROOF12]= (.9/12) x AIROOFSTEEL12] x fy[REBAR] x (d[ROOFMOMENT] - alROOF12] / 2) = 3719 ft-lbs l[ROOFSPAN]= BLDGW -.5 11.00 feet 11.500 ft wide shelter w[ROOFMOMENTLL]= ((8 x Mu[ROOF] / IIROOFSPAN1A2 ) - (1.4 x w(ROOFDL])] / 1.7 = 107 psf allowable roof live load due to bending strength. 11.500 it wide 2.1.4 Determine allowable negative live load due to moment: w[ROOFNEGMOMENTLL] d[RFNEGMOMENT]= I +DIA(REBARROOfl 12) = 1.25 inches a[RFNEG12]= (A[ROOFSTEELI2] x MREBARI )l ( .85 x fc x bEROOFI) 0.235 inches Mu[RFNEG12]= (.9/12) x A(ROOFSTE121 x MREBARI x (d(RFNEGMOMENT] - a(RFNEGI2) 12) 1019 ft-lbs l[ROOFSPAN]= BLDGW -.5 = 11.00 feet 11.500 ft wide shelter w[ROOFNEGMOMLL]= ((8 x Mu[ROOF] ) / (l[ROOFSPAN]A2 )]/1.7 = Allowable negative roof live load due to bending strength (neglecting dead load) = -39.6 psf 11.500 it wide shelter 2.1.5 CHECK SHEAR ALLOWED PARALLEL TO PLANE OF ROOF 2.1.5.1 CHECK SHEAR ALLOWED FOR ONE CURTAIN OF REINFORCEMENT Use a 4 inch panel. 4 foot length, for minimum Ac,. (ACI 318-14,18.10.2.2) 2 ACV x ?x f.Y2 = 23080 lbs [CONTROLS] 2.1.5.2 NOMINAL SHEAR FOR ROOF SECTION (per ACI 318-14, sec. 18.10.4.1, eq. 18.10.4.1) Use a 4 inch panel, 4 foot length, for minimum A. Vn ACV (c4X?XfC10+pXf,) 06 = 2.0 (for h/l>2) Ac = 192 in 2 • ) 0.85 (per ACI 318-14, Table 19.2.4.2) q=Ae /Acv= 0.0040 = 69625 lbs [DOES NOT CONTROL] 2.1.5.3 NOMINAL SHEAR FOR ROOF DIAPHRAGM per ACI 31844, sec 18312.9.1, eq. 18.12.9.1) Use a 4 inch panel, 4 foot length, for minimum Acv. V. ACV (2X?sXf0 +RXfy ) = 69625 lbs [DOES NOT CONTROL] 2.2 WALL PANEL CALCULATIONS Temperature steel required: Ats Panell thickness Is: 4 inches Ats= Aconc x 0.0018 Page 10 of 26: ROOF, WALLS AND FLOOR APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of litle 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09120/19 Expires: 12/31/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES .THIS APPROVAL IS LIMITED TO FS. FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove, WI STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 11'-6' X 26'-0" 7/11/2019 4 in. x 12 in. x 0.0018 0.0864 sq. in. per foot of width of wall panel. (ACl 318-14, sec. 11.7.2.2 & 11.7.3.2; 18" MAX) use 4x4-W4xW4 mesh: Use #4 rebar at 36 inches, longitudinal: Ats(actual)= 0.1867 sq. in. per foot OK 2.2.1 Determine allowable loads perpendicular to plane of wall 2.2.1.1 Determine shear strength perpendicular to plane of wall: (Vu) b[WALL] = 12 inches d[WALL] = 2 inches (Distance from outside face of panel to center of rebar) Vu[WALL]= .85 x .85 x 2 x (fc)A.5 x b[WALL] x d[WALL] = 2452 lbs. 2.2.1.2 Determine allowable live load due to shear: w[WALLSHEARLL] WALLSPANSHEAR= WALLH - (d[WALL] x 2 /12) = 8.92 feet 9.250 it tall wail w[WALLDL]= 38.33 psf (does not add to horizontal force) NOTE: WALL DEAD LOAD DOES NOT ACT PERPENDICULAR TO PLANE OF PANEL. w[WALLSHEARLL]= Vu[WALL] I (WALLSPANSHEARJ x 1.7) = Allowable wall load due to shear strength = 162 psf 9.250 ft tall wall 2.2.1.3 Determine allowable live load due to WINDWARD moment: w(WALLMOMENTLL) A[WALLSTEEL]= A[REBARWALL]x(12'/WALLSPACING)+A[REBARWALL2]x12'/WALLSPACING2 = 0.19 sq. inches per foot of wall panel a[WALL]= (A[WALLSTEEL] x fy[REBARJ ) / ( .85 x Ic x b[WALL]) = 0.220 inches Mu[WALL]= (.9/12) x A[WALLSTEEL] x MREBARI x (d[WALL] - a[WALL] /2) = 1588 ft-lbs wIWALLMOMENTLLJ= [(8 x Mu[WALL] / ILWALLH1A2 ) - (1.4 x w[WALLDL] ) 1 /1.7 Allowable wall live load due to bending strength. = 87.3 psf 9.250 It tall wall 2.2.1.4 Determine allowable live load due to LEEWARD moment: w(WALLMOMENTLL) d[LEEWALL] = 2 inches (Distance from inside face of panel to center of rebar) a[LEEWALL]= (A[WALLSTEEL] x fy[REBAR] ) / ( .85 x Ic x b[WALLI) = 0.220 inches Mu[LEEWALLJ= (.9/12) x A[WALLSTEEL] x fy[REBAR] x (d[WALL] - a[WALL] / 2) = 1588 ft-lbs w(LEEWALLMOMENTLLJ= [(8 x Mu[WALL] / I[WALLH]A2 ) - (1.4 x w[WALLDL] )] / 1.7 = Allowable wall live load due to bending strength. = 87.3 psf 9.250 ft tall wall Page 11 of 26: ROOF, WALLS AND FLOOR APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of 1111025 CalifornIa coda of regulations Chapter 3 aubchaplar 2 commercial Modular Date: 09120119 Expires: 12131120 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. - FPS CORPORATION- Cottage Grove, WI STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 11'-6" X 26'-0 7/11/2019 2.2.2 CHECK SHEAR ALLOWED PARALLEL TO PLANE OF WALL 2.2.2.1 CHECK SHEAR ALLOWED FOR ONE CURTAIN OF REINFORCEMENT Use a 4 inch panel. 4 foot length, for minimum ACV. (ACI 318-14,18.10.2.2) 2Arn, X M fc1G = 23080 lbs ICONTROLSI 2.2.2.2 NOMINAL SHEAR FOR WALL SECTION (per ACI 318.14, sec. 18.10.4.1, eq. 18.10.4.1) Use a 4 inch panel. 4 foot length, for minimum ACV. V ACV (xXfClG +fxfY ) ACV 192 in 2.0 (for h./ l> 2) 0.85 (per ACI 318-14, Table 19.2.4.2) 0:0066 = 99443 lbs [DOES NOT CONTROL] 2.2.2.3 NOMINAL SHEAR FOR WALL DIAPHRAGM (per ACI 318-14, sec 18312.9.1, eq. 18.12.9.1) Use a 4 inch panel, 4 foot length, for minimum Acv. V. ACV (2x?xfc1 +pxfy ) = 99443 lbs [DOES NOT CONTROL] 2.3 FLOOR PANEL CALCULATIONS 2.3.1 Determine temperature steel required for the deck: Deck temperature steel required is: ATS[DECK]= H[DECK] X 12 in. X 0018 = 2.75 in. x 12 in. x 0.0018 = 0.0594 sq. in. per foot of width of floor panel. A[DECKSTEEL]= 0. 1200 sq. in per foot of panel. OK 2.3.2 Determine floor deck strength: DECKSPAN= FLOORSPACING - B[RIB) = 16.0 inches d[DECK]= H[DECK] -1 (Assumes mesh is 1" clear from bottom of deck) = 1.75 inches a[DECK]= (A[DECKSTEEL] x FY[REBAR] )I( .85 xfc x 12 in. = 0.1412 inches Mu[DECK]= 0.9/12 x A[DECKSTEEL] x fy[REBAR] x (d[DECK] - (a[DECK] / 2)) 907 ft-lbs w[DECKTOTALMOM]= (Mu[DECK] x 8) I (DECKSPAN x 12 in. per ft.)A2 = 4.1E+03 psf w[DECKDL]= (HIDECK] /12 in. per ft. x I ft.52 x DENSITY) = 26.4 psf Page 12 of 26: ROOF, WALLS AND FLOOR APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09/20119 Expires: 12,31l20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. - PFS CORPORATION - Cottage Grove, WI STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 1V-6"X26'-0" 7/11/2019 w[DECKLLMOMI= (W(DECKTOTAL -1.4 x W[DECKDL] ) /1.7 = 2.4E+03 psf Vu[DECK]= .85 x.85 x 2 x (fcA.5) x d[DECK] x 12 in. = 2146 lbs. w[DECKTOTSHEAR]= 2 x (Vu[DECK] IL = 3.2E+03 psf w[DECKLLSHEAR]= (WjDECKTOTSHEAR1 -1.4 x WIDECKDLI ) /1.7 = 1872 psf Allowable live [bad for the floor deck is: 1872 psf (FLOOR DECK SHEAR CONTROLS) 2.3.3 Determine floor rib strength: Effective width of flange: ACI 318-14. sec. 6.3.2.1 flange width 1/4 span: = 33.0 inches Effective width of overhang: ACI 318-14, Table 6.3.2.1 (a) 8 times H[DECK] = 22 inches 50.0 inches OR (b) 1/2 clear dist. = 8.0 inches 22.0 inches <controls> bf= 22.0 inches d[FLOOR]= HIFLOORI - (.75" + DIA[REBARFLR] / 2) 4.625 inches a[FLOOR]= (A[REBARFLR) x fy[REBAR] ) / (.85 x fc x bf) = 0.565 inches Mu[FLOOR]= (.9/12) x AIREBARFLRJ x fYIREBAR) x (d[FLOOR] - a[FLOOR] / 2) = 17197 ft-lbs FLOORSPANMOM= BLDGW - 1.333 ft. = 10.17 feet 11.500 ft wide shelter w[FLOORMOMTOT]= 8 x MuIFLOORI / (FLOORSPANMOM)A2 = 1331 pIt 11.500 ft wide shelter w[FLOORDL]= ((HIDECKI If bf 1144 ) + b(RIBJ It (H[FLOOR] - H[DECK) )1144 ) x 1 ft.x DENSITY 62.7 pIt (PER RIB) = 34.2 psf w[FLOORMOMLL] [W[FLOORMOMTOT] -(1.4 x WiFLOOROL) ) 1/(1.7 If trlb) = 399 psf 11.500 ft wide shelter Page 13 of 26: ROOF, WALLS AND FLOOR APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements 011111025 Colilomle code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09120119 Expires: •12131120 Approval # PFS: 19004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO WFS FACTORY-BUILT PORTION ONLY. PFS CORPORATION. Cottage Grove WI STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 11'-6' X26'-O" 7/11/2019 2.3.4 Determine rib shear strength: Vu[FLOOR] b[RIB] = 6.00 inches A[RIBSHEAR]= (HEFLOORI - (.75" + DIA[REBARFLRJI2 ) ) x B[RIB] 27.75 sq. in. ACi 318-14, Table 22.5.5.1 X= 0.85 Vc[FLOOR] (1.9 x ix (tc)A.5 + (2500 x p, x A[REBARFLR] / (b[RIB] x dEFLOORI ) ) x b[R[B) x dIFLOORI = 5369 lbs. But not greater than: 3.5 x )x fc".5 x b(RlBJ x d[FLOOR] = 5838 lbs. USE Vc[FLOOR]= 5369 lbs. 4' = 0.73 4)Vc[FLOOR]= 3919 lbs ACI 318-14, 9.8.1.5 Vc[FLOORALLOW]= 1.1 xVc[FLOORJ = 4311 lbs. 2.3.5 Determine allowable live load due to shear: w(FLOORSHEARLLj FLOORSPANSHEAR= bldgw - ((d[FLOOR + 8.5) x 2 / 12) = 9.31 feet 11.500 ft wide shelter wlFLOORSHEARLLJ (VcjFLOORALLOWj I (.5aFL00RSPANSHEAR)-1.4 it wFLOORDLl)/ (1.7xFLOORSPACING/12) = Allowable floor live load due to shear strength = 269 psf 11.500 It wide shelter Allowable LL for the 11.500 ft wide floor rib is: 269 psf (FLOOR RIB SHEAR CONTROLS) Gross allowable floor load; LL + 40 psf 01= 309 psf 11.500 It wide 2.3.6 Determine allowable concentrated load over 2.5 sf. 2.5 square foot area is equivalent to approximately 19 inch x 19 inch, or 1.58 feet 1.58 feet. Assume one rib takes the entire concentrated load. Allowable load based on shear is: 269 psf For a 11.500 foot wide shelter with a 10.500 It span, the equivalent concentrated load is: P[shear) = 10.500 ft x 269 lbs. x 2 = 5647 lbs Maximum concentrated load (shear). Maximum live load for bending on one rib is: w[FLOORRIBLL]= w[FLOORMOMLL] x OF / 12 = 731 p11 Make uniform load moment equal to concentrated load moment and solve for P. w[FLOORRlBLL]x ( FLOORSPANMOMA2 ) /8= P x FLOORSPAN MOM / 2 P(moment) = wFLOORRlBLL) x ( FLOORSPANMOM ) /4 = 1859 LOS. Maximum load In center of floor (bending). If the load is next to the wall (as is usually the case with batteries): w[FLOORRIBLL]x.( FLOORSPANMOMA2 )18 = P x 1.5 P(moment) = w[FLOORRIBLLJ x ( FLOORSPANMOMA2 ) * (2 x 8) = 6299 LOS Maximum load next to wall (bending)-. Shear controls Shear controls when load Is next to wall. Page 140126: ROOF, WALLS AND FLOOR APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09/20/19 Expires: 12/31/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES .THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. PFS CORPORATION - cottage Grove, WI STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 11'-6" X 26'4" 7/11/2019 3.0 INSERT PLATE ANALYSIS (Analysis per ACI 318-14, Ch. 17) 1" 3.1 Material Properties to= 5000 psi (sand-lightweight) 61 ksi Aso ,= 0.196 in' 2' 0.589 STUD da = 0.5 in I4 3.2 Stud Analysis 1/2" 3.2.1 Per Eq 17.4.3.4. Pullout strength in tension shall not exceed: N = 8 Aing fc = 23,562 lbs/stud (due to crushing strength of concrete at the head of the stud. 3.2.2 Basic tension breakout strength of stud shall not exceed: Nb = k0 (r0) hot' -5 [Eq 17.4.2.2a] 1= 0.85 [T19.2.421 (sand-lightweight) k0 = 24 (for cast-in anchors) Nb = 4080 lbs/stud 3.2.3 Check ductile strength of stud. N. = Ajul, 11.98 kips/stud 1= 0.75 [See 17.3.3a)i)] = 8.98 kips/stud 3.2.3 Check shear strength of stud. V = A 0f = 11.98 kips/stud 1= 0.65 [See 17.3.3a)ii)) = 7.79 kips/stud 3.2.4 Check weld strength of stud to plate. Welds to be made with GMAW, E7XT-XX electrodes and are good for 928 lbs per inch per sixteenth inch of weld. The weld is 1/4" all around the stud. The weld capacity is then: Pw = (928 lbs/inch/sixteenth) x (1.573 inches) x (4 sixteenths) Pw = 5839 lbs/stud 3.3 INSERT PLATE "P/N 223100" ANALYSIS 1" Page 15 of 26: CONNECTIONS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09120/19 Expires: 12131120 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES .THIS APPROVAL IS LIMITED TO p5 FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove, WI PLATE, 6"x8' 1/2" x 2" STUD (TYP 3 PLCS) STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 11-6" X 26'-0" 7/11/2019 3.3.1 Tension Capacity of "PIN 223100" plate: N 9 = (Anc/Anco)'4'ec,N '1'ed'N "c.N '1'cp.N Nb (Eq 17.4.2.1b) Ai,ico = 9hJ = 36 ' Find ANC for just the two upper studs. ANC = ANon + 4(3)(h) = 60 in' 4'ec,N = 1.0 assume no eccentricity [Eq 17.4.2.4] '1'ed'N = 1.0 (Ca mm> 1.5 hat, for 2 studs)[Eq 17.4.2.5a] = 1.25 (for cast-in anchors) (17.4.2.6) '1'cp.N = 1.0 (for cast-in anchors) (17.4.2.7) Ncbg = 8500 lbs = 0.70 (Sec 17.3.3(c) condition B) = 5950 lbs TENSION CAPACITY OF "PIN 223100" PLATE 3.3.2 Shear Capacity of "PIN 223100" plate In the X-direction: This shear force is parallel to the edge of the panel. (equals two times perpendicular) V1,9 = 2(Avc/Avco)'l'ec.v "ed.v "c.v 4'hN Vb [Eq 17.5.2.1b x 2] Sec 17.5.2.1 (c) Vb = 7(IJda)°2 (d3) 4t'c)112 (Ca1)15 (Eq 17.5.2.2a) I= hat = 2 inches A= 0.85 Table 19.2.4.2 da = . 0.5 inches Cal = 7 inches Vb = 7270 lbs/stud 'l',v = 1.0 (17.5.2.8) '4'ec'V = 1.0 assume no eccentricity "ed'v = 1.0 = 1.2 (for #4 bar between anchor and edge) he = 4 inches s1 = 4 inches A 0 = 2(1.5ca1)ha = 84 in' vc =(2(1.5Cai)+51):ha 100 in' V,g = 20772 lbs = 0.70 (17.3.3 (c)(i) condition B) 4V = 14540 lbs SHEAR CAPACITY OF "P/N 223100" PLATE IN X-DIRECTION 3.3.3 Shear Capacity of "PIN 223100" plate lin the (negative) V-direction: This shear force is perpendicular to the edge of the panel. NOTE: The lower stud is ignored since it is close to the free edge. VCbg = (Avc/Avco)'1'ec,v "mlv "cv '4'h,vVb [Eq 17.5.2.1b) Vb = 7270 lbs/stud from 3.3.2 above "oc.v = 1.0 assume no eccentricity '1'ed'v = 1.0 c>1.5cai '1'h'V = 1.0 [17.5.2.8] *c,V = 1.2 (for #4 bar between anchor and edge) he = 4 inches Si = 4 inches kco = 84 in' A,,. = 100 ifl2 from 3.3.2 above VC4 = 10386 lbs 4= 0.70 117.3.3 (c)(i)condition B) 4)Vcbg = 7270 lbs SHEAR CAPACITY OF "P/N 223100" PLATE IN V-DIRECTION Page 16 of 26: CONNECTIONS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 commercial Modular Date: 09/20/19 Expires: 12131/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES. THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove, WI - STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 11'-6" X 26'-0° 7/11/2019 INSERT PLATE "PIN 223000" ANALYSIS 1 ru Dia 1/4" Plate 6")4° 1/2"x2" stud (2 plcs) 3.4.1 Tension Capacity of "PIN 223000" plate: Nci,g = (AndAnco)'l'ec.N '1'ed.N 4'c.N "cpN Nb AN. =9hj = Find Ahic for just the two upper studs. ANC = AN. + 4(3)(her) = [Eq 17.4.2.1bj 36 in 60 in 3.4 4" le of panel 3.4.2 '1'ec,N = 1.0 assume no eccentricity '1'ed.N = 1.0 (ca mm> 1.5 hat for 2 studs considered) = 1.25 (for cast-in anchors) "cp,N = 1.0 (for cast-in anchors) = 8500 lbs 4) = 0.70 [17.3.3 (c)(i) condition B] I M,bg = 5950 lbs TENSION CAPACITY OF "PIN 223000" PLATE Shear Capacity of "PIN 223000" plate. in the X-direction: This shear force is parallel to the edge of the panel. (equals two times perpendicular) V1,9 = 2(AvdAvco)'l'on,v '1'ed.V "bY Vb [Eq 17.5.2.1b x 2] Sec 17.5.2.1 (C) where: Vb = 7(ljd3)°2 (da)' (t')1 (C51)15 (Eq 17.5.2.2a] 1,= hef = 2 inches X= 0.85 Table 19.2.4.2 d8 = 0.5 inches Cal = 4 inches Page 17 of 26: CONNECTIONS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 commercial Modular Date: 09120/19 Expires: 12131/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO 45P.S FACTORY-BUILT PORTION ONLY. PFS CORPORATION. Cottage Grove, WI STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 11-6° X 26'-0° 7/11/2019 Vb = 3140 lbs/stud %.v = 1.0 [17.5.2.8] = 1.0 assume no eccentricity 'ed,v = 1.0 = 1.2 (for #4 bar between anchor and edge) he = 3.5 inches [at step-joint] s1 = 4 inches Avco = 2(1.5 Cai) he. 42 in' Ave =(2(1.5c01)+si)ha = 56 in' Vcbg = 10049 lbs 4' = 0.70 [17.3.3 (c)(i) condition B] I (OV09 = 7035 lbs SHEAR CAPACITY OF "P/N 223000° PLATE IN X-DIRECTION 3.4.3 Shear Capacity "PIN 223000" in the neg V-direction (toward free edge): This shear force is perpendicular to the edge of the panel. Vci,g = (Avc/Avco)'frec,v "ed.V '1'c.V 'I'h,VVb [Eq 17.5.2.2b] Vb = 3140 lbs/stud from 3.4.2 above '1'ec.v = 1.0 assume no eccentricity '1'ed.V = 1.0 CO2>1.5C81 "isV = 1.0 [17.5.2.81 = 1.2 (for #4 bar between anchor and edge) 42 in' A 0 = 56 in' from 3.4.2 above V = 5025 lbs 4' = 0.70 117.3.3 (c)(i) condition B] 4V,= 3517 lbs SHEAR CAPACITY OF "P/N 223000° PLATE IN V-DIRECTION 3.5 INSERT ANGLE "P/N 222000" ANALYSIS 3/4,. z 1/4° angle JTh2 1/2"x2" stud #4x24° DB 3.5.1 Tension Capacity of "P/N 222000" Insert Angle: (negative Z) Nc,g = (AJAme,)'l'ec,N "edN "c.N "cpN Nb (Eq 17.4.2.1b] AN,. = 9hJ = 36 in' Find ANC for just the two studs. 11 Page 18 of 26: CONNECTIONS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 CommercIal Modular Date: 09/20/19 Expires: 12/31/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove, WI STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 11'-6" X 26'-0" 7/11/2019 ANC = AN + (4.5)(3)(h 1) = 60 in' ANC ' T JTJJ r< panel edge '1'ec,N = 1.0 assume no eccentricity '1'ed.N = 1.0 (Ca mm> 1.5 hei for 2 studs considered) = 1.25 (for cast-in anchors) 4'cp.N = 1.0 (for cast-in anchors) NcW = 8500 lbs = 0.70 LI 7.3.3 (c)(i) condition B) cONcbg = 5950 lbs TENSION CAPACITY OF "P/N 2220001 INSERT 3.5.2 Shear Capacity of "PIN 222000" Insert Angle In X direction: This shear force is parallel to the edge of the panel. (equals two times perpendicular) Vcg = 2(A0/A00)4'0,v "ed'v 'I'C.V*h.V Vb [Eq I7.5.2.1b x 2] Sec 17.5.2.1 (c) where: Vb = 7(Ie1da)°2 (d0) (fc)u2 (c01)15 [Eq I7.5.2.2a] 1= h01 = 2 inches l 0.85 Table 19.2.4.2 da = 0.5 inches c01 = 3 inches Vb = 2040 lbs/stud 'I',v = 1.0 [17.5.2.8) '1'ec.v = 1.0 assume.no eccentricity '1'.v = 1.0 '1'c'V = 1.2 (for #4 bar between anchor and edge) he = 4 inches [at step-joint] Si = 4.5 inches kco = 2(1.5 C01) he = 36 in' Av. =(2(1.5C0i)+Si)h0 = 541112 V = 7343 lbs 4' 0.70 [17.3.3 (c)(1) condition B) 4V,= 5140 lbs SHEAR CAPACITY OF "P/N 222000" INSERT, X-DIRECTION 3.5.3 Shear Capacity of "PIN 222000" Insert Angle In V direction: This is for uplift forces from the roof panel. Vcg = (Avc/Avco)'I'ec,v '4'ed'v 'kc,v 'kh,vVb [Eq 17.5.2.1b] Vb = 2040 lbs/stud from 3.5.2 above "ec.V = 1.0 assume no eccentricity '1'ed'V = 1.0 CO2>1.5Cai 'h,v = 1.0 [17.5.2.8] Page 19 of 26: CONNECTIONS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of 1111025 California code of regulations Chapter 3 subcheplor 2 Commercial Modular Date: 09/20/19 Expires: 12i31120 Approval # PFS: 19004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove, WI - STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 1 i'-6" X 26'-0" 7/11/2019 = 1.2 (for #4 bar between anchor and edge) Avon = 36 Ifl4 from 3.5.2 above kc = 54 ln2 from 3.5.2 above VcN = 3672 lbs 4 0.70 (17.3.3 (c)(i) condition BI 4)VcN = 2570 lbs SHEAR CAPACITY OF "P/N 222000" INSERT, V-DIRECTION 3.6 WALL CORNER INSERT ANALYSIS 1/2"x2" stud (7 places) Threaded coupling Y 1/4" endplate I 6"x4"x5/16" angle —\ FULL WALL HEIGHT I I r. This insert is used on the vertical sides of the endwalls. The 4" leg forms the outside edge of the endwalls, and the 6" leg is abutted to the side walls and is used for the welded connection to the side wall, the roof, and the floor. The primary loads on this insert are those from wind and seismic forces as they are transferred to/from the floor/roof panel by using the endwall as a shearwall against the forces as they are applied to the side walls. The shearwall forces are applied in the X-direction as applied to the end view on the right side of the picture above. Of the 7 studs (minimum) that are on the insert, three of them would be analyzed for tension and the other four would be in shear. Depending on the direction of shear, (+X or -x direction), the free edge will come into play. This analysis will only consider the free edge allowable loads with the assumption that the insert will exceed that capacity when loaded in the opposite direction. 3.6.1 Capacity of Wall Corner Inserts in X-direction Check capacity of individual studs on the 6" leg of the angle. These studs would be in shear toward the free edge. Vcb = (AvdAvco)4'ed,v ''cv'l'h,vVb [Eq 17.5.2.1 a] where: Vb = 7(le/da)°2 (da) 417) (Cai)15 (Eq 17.5.2.2a] 10= hei = 2 inches ? 0.85 Table 19.2.4.2 d0 = 0.5 inches C51 = 5 inches Vb = 4389 lbs/Stud '4'ed'V = 1.0 '1'h'V = 1.0 (17.5.2.81 = 1.2 (for #4 bar between anchor and edge) he = 4 inches [at step-joint] si 24 inches A 50 = 4.5 Cai2 112.5 in2 Avc 2(1.5 cal) ha 60 in' Page 20 of 26: CONNECTIONS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 commercial Modular Date: 09120/19 Expires: 12131120 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES .THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. PFS CORPORATIONS Cottage Grove, WI STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 11'-6" X 26'-0" 7/11/2019 Vch = 5618 lbs 4' 0.70 (17.3.3 (c)(i)condition BJ = 3932 lbs Shear capacity of studs on 6" leg, X direction. To this, add the tension load from the studs on the 4" leg. Ncb = (AndAnco) '1'ed.N C,N 4'cp.N Nb (Eq 17.4.2.1a J AN. = 9hJ = 36 in' Find ANC c01 = 2 inches het = 2 inches - ANC = 2(Cai)X2(1.5he ) 24 in' /ANC 2" )Panel edges '1'ed'N = 1.0 (c0 mm> 1.5 het for 2 studs considered) = 1.25 (for cast-in anchors) = 1.0 (for cast-in anchors) NCb = 3400 lbs = 0.70 (17.3.3 (c)(i) condition B] 4Nch.= 2380 lbs Shear capacity of studs on 6" leg, X direction. These two were analyzed as individual studs since they are spaced 12 inches apart, far enough to act alone, not as a group. In this direction, there would be a minimum of 4 studs in shear, and three studs in tension. The total allowable load is: PX 4(4Vch)+3(4Nch )= 228701b5 SHEAR CAPACITY OF WALL INSERT. +1- X-direction 3.7 FLOOR LIFTING INSERT ANALYSIS The floor lifting inserts are made from 54"4/16" angle with a 5"x5/16" plate welded on the open top, to form a channel, and extend across the entire width of the floor panel at each end of the shelter. The inserts are similar to the wall corner inserts in design as they have no less than 6 studs, 1/2"x4" long, on 12" centers and two studs, 1/2"x2" long. These inserts provide three connection points for the endwall, and the two outer connections also double as side wall connections. The floor panel side inserts are made from a 5"x5"x5/16" angle with one side up and one side out, and extend the entireIength of the shelter. They are also similar to the wall corner inserts in design by having a minimum of 6 studs, 112"x4" long, on 12" centers and four #6 x 30" rebar splices. These inserts provide three or more connection points for the sidewall. By inspection these inserts are highly integrated into the floor structure. A failure would require much more than the shear cone failures as provided by the stud design manual. Therefore, the connections will be considered as equivalent to the analysis of the wall corner insert (Sec 3.6.1). Page 21 of 26: CONNECTIONS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09/20/19 Expires: 12/31/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. FPS CORPORATIONS Cottage Grove, 10111 STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 11'-6'X26'-0° 7/11/2019 3.8 CAPACITY OF WELDS AT CONNECTION PLATES Welds to be made with FCAW. E7XT-XX electrodes. All standard connection plates will have a 3/16' weld. 3 inches long. E7XT-XX welds are good for .928 kips per inch per sixteenth inch of weld. Weld capacity is than: Pw = (0.928 k/inch/sixteenth) x (3 inches) x (3 sixteenths) I Pw = R2 kinE CAPACITY CONNECTION PLATE WELDS 3.9 CAPACITY OF TIE-DOWN CONNECTION PLATES Three failure modes are noted: A: Failure of the connection plate. BI: Failure of the bolts connecting the plate to the shelter. 132: Failure of welded connection between plate and shelter. C: Failure of the expansion anchor connecting the plate to the foundation. = 0.25 "(plate thickness) Fy= 36 its! Fu = 58ksi Bolt DIA = 1.00" 1.25" anchor DIA = 0.75" 0.875" A: Shear through edge of plate at one hole is: HoleArea(bolt)= D(top) x t = 0.3125 in2 HoleArea(anchor)= D(bot) x t = 0.21875 Ina PL-Area =tx(2"-(.5x1.25")) = 0.34375 in' cannot exceed t x 4t = 0.25 in CONTROLS OK [exceeds 2/3 hole area, AISC, LRFD, (1999), D3.2] Bearing on hole area: Apl(bolt) 0.25 in Apl(anchor)= 0.1875 in Fp(hole) = 1.0 Fu = 58 ksi PL-bearing = 14.50 kips/ bolt hole PL-bearing = 10.88 kips/ anchor hole Transient load factor: 0.750 Capacity of connection plate is: 16.31 kips (using 2 bolt and 2 anchors) 16313 lbs per connection BI: 1" bolt capacity: Use A307 bolts or better Fys = 130.0 ksi A(bolt) = 0.785 in Transient load factor: 0.750 P(bolt) = 76.58 kips / bolt = 153153 lbs per connection APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of lute 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09120119 Expires: 12/31/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FS FACTORY.BUILT PORTION ONLY. FPS CORPORATION - Collage Grove, WI Page 22 of 26: CONNECTIONS STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 11-6" X 26-0' 7/11/2019 132: Weld capacity: Use .3/16" weld 3" horizontally & vertically from top corners. E7XT-XX welds are good for .928 kips per inch per sixteenth inch of weld. Lw 12.000 in Pw = (0.928 k/inch/sixteenth) x Lw (in) x (3 sixteenths) Pw = 33408 lbs per connection C: Expansion anchor capacity from Simpson charts: Reference ICC report #ESR-3037, Tables I B 213. & 3B Simpson Strong-Bolt 2 Stainless Steel Concrete Anchor d8: 0.75 in Length: 7000 in hut: 5:000 in ASeN. 0:270 in2 f: 95 ksi N: 10 ea (Number of tie-down connections) Steel strength of anchor in tension (17.4.1): n: 2 ea 0: 0.75 Nse: 511.300 kips (Per tie-down plate) 4)N08: 38.475 kips Nse: 11.117 kips Steel strength of anchor In shear (17.5.1): n: .2 ea 0: 0.65 Vsa: 27.240 kips Was: 17.706 kips Vu': 0.00 kips (Max. shear from uplift) Vse: 1.17 kips (Max. shear from sliding) Concrete breakout strength of anchor group in tension (17.4.2): lc: 17 0: 0:65 Nb: 10.41 kips cai: 8:00 in Si: 8:00 in e. 10 in AN,: 352.50 inA2 ANco: 225.00 in2 eC.N. 0.4 (eq. 17.4.2.4) 41ed.N 1.0 (eq. 17.4.2.5a) 'cN: 1.0 17.4.2.6 91Cp.N: 0.4 (eq. 17.4.2.7b) N: 2:80 kips 0N: 1.82 kips Nse: 1.17 kips Page 23 of 26: CONNECTIONS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09/20/19 Expires: 12131/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO VPFS - FACTORY-BUILT PORTION ONLY. P1'S CORPORATION. Cottage Grove. WI AI STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 1V-6" X 26-0 7/11/2019 Concrete breakout strength of anchor group In shear (17.5.2): he: 12 in : 0.7 1e 5.00 in Uplift C01: 8.00 in ev: 0.00 in Vb: 10.98 kips A 0: 384.00 In Avon: 288.00 ifl 9ec,V: 1.0 (eq. 17.5.2.5) 9ad,V 1.0 (eq. 17.5.2.68) '4'c,v: 1.0 17.5.2.7 4'h.V: 1.0 (eq. 17.5.2.8) V: 14.64 kips V: 10.25 kips Vse: 0.00 kips Sliding C011: 14.00 in C512: 22.00 in ev: 10.00 in Vb: 25.42 kips A5 : 504.00 in' Avon: 882.00 4'ec.V 0.7 (eq. 17.5.2.5) 4'.: 1.0 (eq. 17.5.2.6a) 4'c.v: 1.0 17.5.2.7 'l'h,v: 1.3 (eq. 17.5.2.8) V: 13.02 kips øV: 9.11 kips Vse: 1.17 kips Page 24 of 26: CONNECTIONS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements 01(111025 California code of regulations Chapter 3 subchapter 2 CommercIal Modular Date: 09120/19 Expires: 12131/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES. THIS APPROVAL IS LIMITED TO FACTORY-BUILT PORTION ONLY. PFS CORPORATION. College Grove. WI STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 11-6" X 26.0" 7/11/2019 Pullout strength of anchor In tension (17.4.3): 0: 0.65 N: 8.23 kips 41c,p: I N 5: 8.23 kips 0N 5: 5.35 kips N: 1.17 kips Concrete piyout strength of anchor in shear (17.5.3): k: 2 0: 0.7 N: 2.80 kips Vceg: 5.59 kips OVceg: 1914 kips Vco: 1.17 kips Controlling loads for tie-down connections: Tension Pullout: 1817 lbs Horizontal Shear: 3914 lbs Vertical Shear: 3914 lbs Page 25 of 26: CONNECTIONS APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 CommercIal Modular Date: 09/20119 Expires: 12131120 Approval # PFS: 19.004189 THIS APPROVAL DOES-NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FS. FACTORY-BUILT PORTION ONLY. FPS CORPORATION - Cottage Grove, WI STRUCTURAL CALCULATIONS: SCRC08 Last Revision Date: 2016 CBC; CONCRETE 1l'-6" X 26'-0" 7/11/2019 4 CONCRETE BUILDING WEIGHT CALCULATOR Concrete Density = 115 pcf Concrete Required = 15.8 yards 4.1 Shelter Dimensions: shelter d Width: I Length: 2 Height: Material 4.2 ROOF CONCRETE 2.25" INSULATION 107 7/16" OSB PANELING 403 3/8" OSB W/FINISH 343 ESTIMATED EQUIPMENT 650 Total Roof Wt. 15329 Avg. Dead Load, psf 48.2 4.3 WALLS CONCRETE 24069 1.75" INSULATION 190 7/16-6S13 PANELING 634 3/8" OSB W/FINISH 545 ESTIMATED EQUIPMENT 1950 Total Wall Wt. 25438 Avg. Dead Load, psf 37.3 4.4 FLOOR CONCRETE 10547 L5x5x5/16 PERIMETER BEAM 773 STYROFOAM (2 PCF DENSITY) 157 TILE, 1/8" 365 ESTIMATED EQUIPMENT 3900 Total Floor Wt. 11842 Avg. Dead Load, psf 39.6 4.5 WEIGHT SUMMARY: Building Width x Length x Height Total Shelter Weight Only: lbs 52610 11.500 26.000 9.250 Total Weight w/Estimated Equipment: lbs 59110 APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of We 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09/20/19 Expires: 12/31/20 I Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR I APPLICABLE LOCAL ORDINANCES THIS APPROVAL IS LIMITED TO Page 26 of 26: WEIGHT CALCULATION FS. FACTORY-BUILT PORTION ONLY. I PFS CORPORATION. Collage Grove. WI Project Name: Concrete Shelter SCRC08 NRçC-PRF-01-E Page 1 of 17 Project Address: Carlsbad 92008 Calculation Date/Time: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 A. PROJECT GENERAL INFORMATION 1. Project Location (city) Carlsbad 8. Standards Version CompIiance2016 2. CA Zip Code 92008 9. Compliance Software (version) CBECC-Com 2016.3.0 SP2 3. Climate Zone 7 10. Weather File CARLSBAD_722927_CZ201O.epw 4. Total Conditioned Floor Area in Scope 229 ft2 Building Orientation (deg) (N) 0 deg S. Total Unconditioned Floor Area 0ft2 Permitted Scope of Work NewComplete 6. Total # of Stories (Habitable Above Grade) 1 13 Building Type(s) . Nonresidential 7. Total # of dwelling units 0 14 Gas Type NaturalGas B. COMPLIANCE RESULTS FOR PERFORMANCE COMPONENTS (Annual TDV Energy Use, kBtu/ft 2-yr) § 140.1 BUILDING COMPLIES 1. Energy Component 2. Standard Design (TDV) 3. Proposed Design (TDV) 4. Compliance Margin (TDV) S. Percent Better than Standard Space Heating -- -- - -- Space Cooling 1,050.55 1,212.69 -162.14 -15.4% Indoor Fans 716.79 144.10 572.69 79.9% Heat Rejection -- -- - -- Pumps & Misc. -- -- - -- Domestic Hot Water 0.35 0.35 - 0.0% Indoor Lighting 23.29 65.10 -41.81 -179.5% COMPLIANCE TOTAL 1,790.98 1,422.24 368.74 20.6% Receptacle 190.64 190.64 0.0 0.0% Process 5,465.82 5,465.82 -- 0.0% Other Ltg -- -- - -- Process Motors -- -- -- APPROVED: STATE OF CA - CERTIFIED DAA 5.0% nn thn ,nn,,in.nfln%.I t-11 fl$• TOTAL 7,447.44 7,078.70 Chapter 3 subchapter 2 Cominerdal Mo&IM Date: 09120119 Expires: 12131120 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO VVP FACTORY-BUILT PORTION ONLY. PES CORPORATION. Cottage Grove, WI CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: IeporL Ueneratea at: £u.L,-uA-O6 15:36:40 Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 2 of 17 Project Address: Carlsbad 92008 Calculation Date/lime: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 C. PRIORITY PLAN CHECK! INSPECTION ITEMS (in order of highest to lowest TDV energy savings) 1st Indoor Fans: Check envelope and mechanical Compliance Margin By Energy Component (from Table B column 4) 3rd Heat Rejection: Check envelope and mechanical 4th Pumps & Misc.: Check mechanical 5th Domestic Hot Water: Check mechanical 6th Indoor Lighting: Check lighting 7th I Space Cooling: Check envelope and mechanical EXCEPTIONAL CONDITIONS the building does not include service water heating. Verify that service water heating is not required and is not included in the design. Fhe proposed building includes HVAC components that do not meet the mandatory efficiency requirements. HERS VERIFICATION rhis Section boes Not Apply ADDITIONAL REMARKS Jone Provided APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of litle 25 California coda of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09120/19 Expires: 12131120 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FS. FACTORY-BUILT PORTION ONLY. PFS CORPORATION. Cottage Grove, WI CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: NRCC-PRF-01-E-06262019-5583 Report Generated at: 2019-08-06 15:36:40 2nd Space Heating: Check envelope and mechanical Indoor Fans Space Heating Heat Rejection Pumps & Misc. Domestic Hot Water Indoor Lighting — Space Cooling Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 3 of 17 Project Address: Carlsbad 92008 Calculation Date/Time: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 G. COMPLIANCE PATH & CERTIFICATE OF COMPLIANCE SUMMARY Identify which building components use the performance or prescriptive path for compliance. "NA"= not in project For components that utilize the performance path, indicate the sheet number that includes mandatory notes on plans. Building Component Compliance Path Compliance Forms (required for submittal) Location of Mandatory Notes on Plans Envelope Z Performance NRCC-PRF-ENV-DETAILS (section of the NRCC-PRF-01-E) 0 Prescriptive NRCC-ENV-01 / 02 / 03 / 04 / 05 / 06-E DNA Mechanical Performance NRCC-PRF-MCH-DETAILS (section of the NRCC-PRF-01-E) 0 Prescriptive NRCC-MCH-01 / 02/03/04 / 05/06 / 07-E DNA Domestic Hot Water D Performance NRCC-PRF-PLB-DETAILS (section of the NRCC-PRF-01-E) 0 Prescriptive NRCC-PLB-01-E ZNA Lighting (Indoor Conditioned) 19 Performance NRCC-PRF-LTI-DETAILS (Section of the NRCC-PRF-01-E) D Prescriptive NRCC-LTI-01 / 02 / 03 / 04 / 05-E DNA Covered Process: 0 Performance S2 (section of the NRCC-PRF-01-E) D Prescriptive Commercial Kitchens NRCC-PRC-01/ 03-E ZNA Covered Process: D Performance 53 (section of the NRCC-PRF-01-E) O INA Prescriptive Computer Rooms NRCC-PRC-01/ 04-E Covered Process: Laboratory Exhaust O 0 - Performance Prescriptive _____________ S4 (section of the NRCC-PRF-01-E) NRCCPRC01/ 09E __________________________________________________ APPROVED: STATE OF CA - CERTIFIED DAA Based on the requementh of 6 425 Cahfomth code of regulations 1 ________________ Chapter Calnmerdal Modular ________________ . Z NA - IJaL. F4IIUC. Approval # PFS: 19.004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES. THIS APPROVAL IS UNITED TO FS. FACTORY-BUILT PORTION ONLY. PFS CORPORATION- Cottage Grove, WI CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: NRCC-PRF-01-E-06262019-5583 Report Generated at: 2019-08-06 15:36:40 Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 4 of 17 Project Address: Carlsbad 92008 Calculation Date/rime: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 G. COMPLIANCE PATH & CERTIFICATE OF COMPLIANCE SUMMARY The following building components are only eligible for prescriptive compliance. indicate which are The following building components may have mandatory requirements per Part 6. indicate relevant to the project. which are relevant to the project. Yes NA Prescriptive Requirement Compliance Forms Yes NA Mandatory Requirement Compliance Forms Lighting (Indoor Commissioning: §120.8 o Unconditioned) §140.6 NRCC-LTl-01 / 02 / 03 / 04 / 05-E 0 Simple Systems NRCC-CXR-01 / 02 / 03/ 05-E 0 Complex Systems NRCC-CXR-01 / 02 / 04 / 05-E 0 Lighting (Outdoor) §140.7 NRCC-LTO-01 / 02/ 03-E 0 Electrical: §130.5 NRCC-ELC-01-E 0 Lighting (Sign) §140.8 NRCC-LTS-01-E 0 Solar Ready: §110.10 NRCC-SRA-01 / 02-E Covered Process: §120.6 NRCC-PRC-01-E o Parking Garage NRCC-PRC-02-E o Solar Thermal Water NRCC-STH-01-E 0 0 Commercial Refrigeration NRCC-PRC-05-E Heating: §140.5 0 0 Warehouse Refrigeration NRCC-PRC-06/07/08-E o Compressed Air NRCC-PRC-10-E o Process Boilers NRCC-PRC-11-E APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09120119 Expires: 12131120 Approval # PFS: 19-004189 This APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED To FS FACTORY-BUILT PORTION ONLY. PFS CORPORATIONS Cottage Grove, WI CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: NRCC-PRF-01-E-06262019-5583 Report Generated at: 2019-08-06 15:36:40 Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 5 of 17 Project Address: Carlsbad 92008 Calculation Date/Time: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 H. CERTIFICATE OF INSTALLATION, CERTIFICATE OF ACCEPTANCE & CERTIFICATE OF VERIFICATION SUMMARY (NRCl/NRCA/NRCV) - Documentation Author to indicate which Certificates must be submitted for the features to be recognized for compliance (Retain copies and verify forms are completed and signed to post in field for Field Inspector to verify), See Tables G. and H. in MCH and LTI Details Sections for Acceptance Tests and forms by equipment. on d Confirmed Building Component Compliance Forms (required for submittal) Pass Fail Envelope NRCI-ENV-01-E - For all buildings 0 0 NRCA-ENV-02-F- NFRC label verification for fenestration 0 0 Mechanical Z NRCl-MCH-01-E - For all buildings with Mechanical Systems 0 0 09 NRCA-MCH-02-A- Outdoor Air 0 0 Z NRCA-MCH-03-A - Constant Volume Single Zone HVAC 0 0 NRCA-MCH-04-H- Air Distribution Duct Leakage 0 0 19 NRCA-MCH-05-A- Air Economizer Controls 0 0 NRCA-MCH-06-A- Demand Control Ventilation 0 0 NRCA-MCH-07-A - Supply Fan Variable Flow Controls 0 0 NRCA-MCH-08-A- Valve Leakage Test 0 0 NRCA-MCH-09-A - Supply Water Temp Reset Controls 0 0 0 NRCA-MCH-10-A- Hydronic System Variable Flow Controls 0 0 09 NRCA-MCH-11-A -Auto Demand Shed Controls 0 0 NRCA-MCH-12-A- Packaged Direct Expansion Units 0 0 NRCA-MCH-13-A- Air Handling Units and Zone Terminal Units 0 0 NRCA-MCH-14-A- Distributed Energy Storage 0 0 NRCA-MCH-15-A -Thermal Energy Storage 0 0 Z NRCA-MCH-16-A- Supply Air Temp Reset Controls - 0 D APPROVED: STATE OF CA - CERTIFIED DAA NRCA-MCH-17-A - Condensate Water Temp Reset Controls - ree',reMc of I,tPp 25 •'on' ondo of_uiAo4s 1 0 NRCA-MCH-18-A- Energy Management Controls Systems I0 Chapter 3 subchapter 2 Commercial Modular Date: 09/20119 Expires: 12/31/20 0 0 NRCV-MCH-04-H- Duct Leakage Test CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance This APPROVAL DOES NOT AUTHOR OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAl. ORDINANCES . ThiS APPROVAL IS LIMITED TO 5F_ - FACTORY-BUILT PORTION ONLY. PFS CORPORATION- Collage Grove. WI Report Version: NRCC-PRF-01-E-06262019-5583 Report Generated at: 2019-08-06 15:36:40 Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 6 of 17 Project Address: Carlsbad 92008 Calculation Date/Time: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 H. CERTIFICATE OF INSTALLATION, CERTIFICATE OF ACCEPTANCE & CERTIFICATE OF VERIFICATION SUMMARY (NRCl/NRCA/NRcV) - Documentation Author to indicate which Certificates must be submitted for the features to be recognized for compliance (Retain copies and verify forms are completed and signed to post in field for Field Inspector to verify). See Tables G. and H. in MCH and ITI Details Sections for Acceptance Tests and forms by equipment. Building Component I Compliance Forms (required for submittal) Confirmed Plumbing Indoor Lighting NRCI-PLB-01-E - For all buildings with Plumbing Systems NRCI-PLB-02-E - required on central systems in high-rise residential, hotel/motel application. NRCI-PLB-03-E - Single dwelling unit systems in high-rise residential, hotel/motel application. NRCI-PLB-21-E - HERS verified central systems in high-rise residential, hotel/motel application. NRCI-PLB-22-E - HERS verified single dwelling unit systems in high-rise residential, hotel/motel application. NRCV-PLB-21-H- HERS verified central systems in high-rise residential, hotel/motel application. NRCV-PLB-22-H - HERS verified single dwelling unit systems in high-rise residential, hotel/motel application. NRCI-STH-01-E - Any solar water heating Z NRCI-LTI-01-E - For all buildings I NRCI-LTI-02-E - Lighting control system, or for an Energy Management Control System (EMCS) NRCl-LTI-03-E - Line-voltage track lighting integral current limiter, or for a supplementary overcurrent protection panel used to energize only line-voltage track lighting NRCI-LTI-04-E - Two interlocked systems serving an auditorium, a convention center, a conference room, or a theater 0 NRCI-LTI-05-E - Lighting Control Credit Power Adjustment Factor (PAF) 0 NRCI-LTI-06-E - Additional wattage installed in a video conferencing studio NRCA-LTI-02-A - Occupancy sensors and automatic time switch controls. 129 NRCA-LTI-03-A - Automatic daylighting controls 0 NRCA-LTI-04-A - Demand responsive lighting controls Z NRCI-LTO-01-E -Outdoor Lighting Outdoor Lighting Z NRCI-LTO-02-E- EMCS Lighting Control System Z NRCA-LTO-02-A - Outdoor Lighting Control Sign Lighting 0 NRCI-LTS-01-E -Sign Lighting Electrical 0 NRCI-ELC-01-E - Electrical Power Distribution Photovoltaic 0 NRCI-SPV-01-E Photovoltaic Systems APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulaliols Chapter 3 subchapter 2 Commercial Modular Date: 09120119 Expires: 17i31120 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMI SION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPUCABLE LOCAL ORDINANCES. THIS APPROVAL IS LIMITED TO FACTORY-BUILT PORTION ONLY. F - . FPS CORPORATION . Cottage Grove, WI CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: NRCC-PRF-01-E-06262019-5583 Report Generated at: 2019-08-06 15:36:40 Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 7 of 17 Project Address: Carlsbad 92008 Calculation Date/Time: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 H. CERTIFICATE OF INSTALLATION, CERTIFICATE OF ACCEPTANCE & CERTIFICATE OF VERIFICATION SUMMARY (NRCl/NRCA/NRcV) - Documentation Author to indicate which Certificates must be submitted for the features to be recognized for compliance (Retain copies and verify forms are completed and signed to post in field for Field Inspector to verify). See Tables G. and H. in MCH and LTI Details Sections for Acceptance Tests and forms by equipment. Building Component I Compliance Forms (required for submittal) II NRCI-PRC-01-E Covered Processes El NRCA-PRC-01-F- Compressed Air Systems NRCA-PRC-02-F- Kitchen Exhaust NRCA-PRC-03-F- Garage Exhaust Covered Process 0 NRCA-PRC-04-F- Refrigerated Warehouse- Evaporator Fan Motor Controls NRCA-PRC-05-F- Refrigerated Warehouse- Evaporative Condenser Controls NRCA-PRC-06-F- Refrigerated Warehouse- Air Cooled Condenser Controls NRCA-PRC-07F- Refrigerated Warehouse- Variable Speed Compressor NRCA-PRC-08-F- Electrical Resistance Underslab Heating System Confirmed Pass 0 1 APPROVED: STATE OF CA - CERTIFIED DAA DdS4J Mu U Ib44SMIMuOMuI4b UI MMM tj 1.WII WIJU UI Chapter 3 subchapter 2 Commercial Mod.ar Date: 09/20/19 Expires: 12131120 Approval # PFS: 19-004189 I 11115 MPVIIUVSL uus flu. AuuI1UlU1 VII M}PKUVC Ally 4.11asuull OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS This APPROVAL IS LIUrTED TO FACTORY-BUILT PORTION ONLY. - — — PFS CORPORATION. Cottage Grove, WI 95F, I. ENVELOPE GENERAL INFORMATION (See NRCC-PRF-ENV-DETAILS for more information) Total Conditioned Floor Area 229 ft2 S. Number of Floors Above Grade 1 Confirmed Total Unconditioned Floor Area 0ft2 6. Number of Floors Below Grade 0 01 01 = Addition Conditioned Floor Area 0 ft2 Addition Unconditioned Floor Area 0 ft2 7. Opaque Surfaces & Orientation 8. Total Gross Surface Area 9. Total Fenestration Area 10. Window to Wall Ratio North Wall 240 ft2 0ft2 00.0% 0 0 East Wall 106 ft2 0ft2 00.0% 0 0 South Wall 240 ft2 0ft2 00.0% 0 0 West Wall 105 ft2 0ft2 00.0% 0 0 Total 692 ft2 0ft2 00.0% 0 0 Roof 299 ft2 0 ft2 00.0% 0 , 0 :d CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: NRCC-PRF-01-E-06262019-5583 Report Generated at: 2019-08-06 15:36:40 Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 8 of 17 Project Address: Carlsbad 92008 . Calculation Date/Time: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 FENESTRATION SUMMARY § 110.6 This Section Does Not Apply OPAQUE SURFACE ASSEMBLY SUMMARY § 120.7/ § 140.3 Confirmed 1. 2. 3. 4. S. 6. 7. S. Surface Name Surface Type Area (ft?) Framing Type Cavity R-Value Continuous R-Value U-Factor! F-Factor I C-Factor '-W- Ila C = Cellxion 4in Concrete Walls ExteriorWall 692 NA 0 13 U-Factor: 0.067 - N - 0 0 Cell ion 4.5in Concrete Roof Roof 299 NA 0 15 U-Factor: 0.059 N 0 0 SlabOnOrBelowGradeF073 UndergroundFloor 227 NA 0 NA F-Factor: 0.730 N 0 0 I Status: N - New, A - Altered. E - Existing ROOFING PRODUCT SUMMARY § 140.3 Confirmed 1. 2. 3. 4. S. 6. 7. Product Type Product Density Aged Solar Thermal SRI Cool Roof Roofing Product .55 (lb/ft2) Reflectance Emittance Credit Description Cellxion 4.5in Concrete Roof 36.090 0.08 0.75 NA No NA 0 0 HVAC SYSTEM SUMMARY (see NRCC-PRF-MCH-DETAILS for more information) I § 110.1 / § 110.2 Dry System Equipment '(Fan & Economizer info included below in Table N) Confirmed 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11 System Type Total Heating Supp Heat Supp Heat Total Cooling Efficiency Acceptance Testing 01 FIR Equip Name Equip Type (Simple Qty Output Source (V/N) Output Output ____________________ _____________________ Required? (V/N) Complex 3) (kBtu/h) (kBtuh) (kBtu/h) Cooling Heating SPVACHVAC#1 (PackagediPhase) Simple 1 0 No 0 55 EER-9.25 NA No N MOP Dry System Equipment includes furnaces, air handling units, hear pumps, etc. 2 Simple Systems must complete NRCC-CXR-03-E commissioning design review farm 3 Complex Systems must complete NRCC-CXR-04-E commissioning design review form summary of which acceptance tests are applicable is provided in NRCC-PRF-MCH-DETAILS S Status: N - New, A -Altered, E - Existing Wet System Equipment Section Does Not Apply APPROVED: STATE OF CA - CERTIFIED DAA Based an the requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commerdal Modular Date: 09120/19 Expires: 12/31/20 Approval # PFS: 19-004189 This APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSIOC OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FACTORY-BUILT PORTION ONLY. CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: NRCC-PRF-01-E-06262i1 '' PFS CORPORATION . Cottage Grove, wl 119-08-06 15:36:40 Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 9 of 17 Project Address: Carlsbad 92008 Calculation Date/Time: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 Discrepancy between modeled and designed equipment sizing? (if 'Yes", see Table F. "Additional Remarks" for an explanation) No N. ECONOMIZER & FAN SYSTEMS SUMMARY' § 140.4 Confirmed 1. 2. 3. 4. S. Outside Supply Fan Return Fan Equip Name Air Economizer Type TSP TSP (if present) CFM CFM HP BHP (inch Control CFM HP BHP (inch Control WC) WC) HVAC#1 34 1850 0.750 0.146 0.25 ConstantVolume 3100 0.333 0.204 0.25 ConstantVolume DifferentialDryBulb o 1 0 1 AndEnthalpy Mechanical ventilation calculations and exhaust fans are included in the NRCC-PRF-MCH-DUAILS section 0. EQUIPMENT CONTROLS § 120.2 Confirmed 1. 3. Equip Name Equip Type Controls No DCV Controls Differential Enthalpy and Drybulb Economizer HVAC#1 SPVAC Supply Air Temp. Fixed at 55 o o No Optimum Start Evaporative Cooler (Indirect) No Heat Recovery P. SYSTEM DISTRIBUTION SUMMARY I § 120.4/ § 140.4(I) Dry System Distribution Confirmed 1. 2. S. 6. Equip Name Equip Type Duct Leakage and Sealing Required per 140.4(1) Duct Leakage will be verified per NA1 and NAZ Ducts Status' Insulation R-Value I Location HVAC #1 SPVAC No No NA Ductless N 0 0 N - New, E - Existing APPROVED: STATE OF CA - CERTIFIED DAA Does the Project Include Zonal Systems? (if "Yes", see NRCC-PRF-MCH-DETAILS for system information) -ft wft No - C M Does the Project Include a Solar Hot Water System? (if "Yes", see NRCC-PRF-MCH-DETAILS for system information) No (19120119 PVp rR. 12131120 - Multifamily or Hotel/ Motel Occupancy? (if "Yes", see NRCC-PRF-MCH-DETAILS for DHW system information) Approval # PFS: 19.004189 No THIS APPROVAL DOES NOT AUTMORME OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES .11(15 APPROVAL IS LIMITED TO CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: NRCC-PRF-01-E-062620 9 - FACTORY-SUILT PORTION ONLY. at: 2019-08-06 15:36:40 PFS QURPORA11ON -CtUI9.G,on.WI Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 10 of 17 Project Address: Carlsbad 92008 Calculation Date/Time: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 INDOOR CONDITIONED LIGHTING GENERAL INFO (see NRCC-PRF-LTI-DETAILS for more info)3 § 140.6 Confirmed 1. 2. 3. 4. S. - Occupancy Type 1 Conditioned Floor Area 2 Installed Lighting Power Lighting Control Credits Additional (Custom) Allowance ul (ft2) (Watts) (Watts) Area Category Footnotes Tailored Method (Watts) 0 0 (Watts) Electrical, Mechanical, 229 352 0 0 0 0 0 Telephone Rooms Building Totals: 229 352 0 0 0 See Table 140.6-C 25ee NRCC-L77-01-E for unconditioned spaces 3Ught1ng information for existing spaces modeled is not included in the table INDOOR CONDITIONED LIGHTING SCHEDULE (Adapted from NRCC-LTI-01-E)1 § 130.0 Luminaire Schedule (includes all permanent installed lighting in conditioned space, and portable lighting over 0.3 w/ft2 in Installed Watts (Conditioned) Confirmed offices) Complete Luminaire Description (i.e., I How Wattage is Determined I I I Name or Item Tag 3-lamp fluorescent troffer, F32T8, Watts per luminaire Total Number I Luminaires Installed Watts Pass Fail I CEC Default I According to one dimmable electronic ballast) I from NAB I §130.0(c) I I I Interior Lights FIXTURE,4F12 BULB LED 44W 44 No Yes 8 352 0 I 0 'if lighting power densities were used in the compliance model Building Departments will need to check prescriptive forms for Luminaire Schedule details. CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: NRCC-PRF-01-E-06262019-5583 APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09120/19 12/31/20 This APPROVAL DOES NOT AUTHORISE OR APPROVE ANY OMISSION APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED 10 FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove. WI § 140.9 § 140.9 § 140.9 Report Generated at: 2019-08-06 15:36:40 51. COVERED PROCESS SUMMARY - ENCLOSED PARKING GARAGES This Section Does Not Apply S2. COVERED PROCESS SUMMARY - COMMERCIAL KITCHENS This Section Does Not Apply 53. COVERED PROCESS SUMMARY - COMPUTER ROOMS This Section Does Not Apply Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 11 of 17 Project Address: Carlsbad 92008 Calculation Date/Time: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 S4. COVERED PROCESS SUMMARY - LABORATORY EXHAUSTS § 140.9 This Section Does Not Apply UNMET LOAD HOURS This Section Does Not Apply ENERGY USE SUMMARY Energy Component E Standard Design Site (MWh) Proposed Design Site (MWh) Margin (MWh) Standard Design Site (MBtu) Proposed Design Site (MBtu) Margin (MBtu) Space Heating - -- -- -- -- -- Space Cooling 10.5 11.8 -1.3 -- -- -- Indoor Fans 7.6 1.5 6.1 -- -- -- Heat Rejection - -- -- -- -- -- Pumps & Misc. -- -- -- -- -- -- Domestic Hot Water - -- -- 0.1 0.1 0.0 Indoor Lighting 0.2 0.6 -0.4 -- -- -- COMPLIANCE TOTAL 18.3 13.9 4.4 0.1 0.1 0.0 Receptacle 1.7 1.7 0.0 - -- -- Process 59.7 59.7 0.0 -- -- -- Other Ltg - -- - -- -- -- Process Motors - -- -- -- -- -- TOTAL 79.7 75.3 4.4 0.1 0.1 0.0 APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of Iit1e 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09/20119 Expires: 12131/20 Approval # PFS: 19-004189 This APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES. THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove. WI CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: NRCC-PRF-01-E-06262019-5583 Report Generated at: 2019-08-06 15:36:40 Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 12 of 17 Project Address: Carlsbad 92008 Calculation Date/Time: 17:35, Tue, Aug 06, 2019 Compliance Scope: Newcomplete Input File Name: SCRC08-CA.cibd16 § 10-103 APPROVED: STATE OF CA - CERTIFIED DAA Based an the requirements cItric 25 Caifeinia code of regrialians Chapter 3 subchapter 2 Commercial Modular Date: 09120/19 Expires: 12,31120 Approval # PFS: 19-004189 T"" ,.rrnuys.. uutb Nul AOT1IUKICCON AYflwVt ANT UMse..U1I OR. EVIATION FROM THE REQUIREMENTS OF STATE LAWS OR i.uns wwaasu.e . THIS APPROVAL IS LIMITED TO FACTORY-BUILT PORTION ONLY. - - I certify the following under penalty of per;ury, under the laws of the State of California: FPS CORPORATION- Cottage Grove, WI I hereby affirm that I am eligible under the provisions of Division 3 of the Business and Professions Code to sign this document as the person responsible for its preparation; and that I am licensed in the State of California as a civil engineer, mechanical engineer, electrical engineer, or I am a licensed architect. 2 affirm that I am eligible under the provisions of Division 3 of the Business and Professions Code by section 5537.2 or 6737.3 to sign this document as the person responsible for its preparation; and that I am a licensed contractor performing this work. I affirm that I am eligible under Division 3 of the Business and Professions Code to sign this document because it pertains to a structure or type of work described as exempt pursuant to Business and Professions Code Sections 5537,5538 and 6737.1. - Company: AA J Responsible Envelope Designer Name: rJe.11€j itMj t'LuiKk1OUS4' Signature: Address: tjJ LJJQ4( Date Signed: Declaration Statement Type: / City/State/Zip: fjj(Je. f d12Vi<—O 7a11 Title: I A I License U: ti Phone: Responsible Lighting Designer Name: Company: 7eFt7% 3y f,41,jiice' 9ignaturey" Address: ../2O 11) /,i Date Signed: City/State/Zip: Ppf ifJy,1e_(( Declaration Statement Type: f Phone:Title: Jicense U: va Responsible Mechanical Designer Name: - specify - Signature: \If/ Company: Address: ;ti 2.O ti) (Jo./14t // Date Signed: g/1 7/fLy [Phone: ity/State/Zip: 61 rf t.c,)OM(e Declaration Statement Type: / tuo 5 7 Title4oC(i,ij )iit'C I License U: (79 75 '/ CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: NRCC-PRF-01-E-06262019-5583 Report Generated at: 2019-08-06 15:36:40 DOCUMENTATION AUTHOR'S DECLARATION STATEMENT I certify that this Certificate of Compliance documentation is accurate and complete. ia— Documentation Author Name: Corey Mitchel Company: Sabre Industries Building Systems by Cellxion Address: 5031 Hazel Jones Rd. City/State/Zip: Bossier City LA 71111 Phone: 318-213-2900 RESPONSIBLE PERSON'S DECLARATION STATEMENT -z5-- eu- Signature: CL 1tJ5L )UJJ Signature Date: 8/20/2019 CEA Identification (If applicable): Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 13 of 17 Project Address: Carlsbad 92008 Calculation Date/Time: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 NRCC-PRF-EN V-DETAILS -SECTION START- OPAQUE SURFACE ASSEMBLY DETAILS Confirmed 1. 2. 3. 4. Surface Name Surface Type Description of Assembly Layers Notes Concrete - 100 lb/ft3 -4 in. Cellxion 41n Concrete Walls ExteriorWall Compliance Insulation R12.55 0 0 OSB - Oriented Strand Board - 3/4 in. Cellxion 4.5,n Concrete Concrete - 100 lb/ft3 -4 in. Roof Roof Compliance Insulation R14.60 0 0 OSB - Oriented Strand Board - 3/4 in. Slab Type = UnheatedSlabOnGrade SIabOnOrBeIowGradeF073 UndergroundFloor Insulation Orientation = None 0 0 Insulation R-Value = RO OVERHANG DETAILS (Adapted from NRCC-ENV-02-E) This Section Does Not Apply OPAQUE DOOR SUMMARY Confirmed 1. 2. 3. 4. S. 6. 7. Opaque Door Assembly Name / Tag or I.D. Door Type Certification Method Operation Area Overall U-factor Status' Pass Fail Main Door MetallnsulatedSwingingOoor DefaultPerformance Swinging 42 0.500 N 0 0 Status: N - New, A - Altered, E - Existing APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09/20119 Expires: 12131120 Approval # PFS: 19.004189 This APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES. THIS APPROVAL IS LIUTfED TO L 95F FACTORY-BUILT PORTION ONLY. , PFS CORPORATION -Cottage Grove. WI CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: NRCC-PRF-01-E-06262019-5583 Report Generated at: 2019-08-06 15:36:40 Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 14 of 17 Project Address: Carlsbad 92008 Calculation Date/rime: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 NRCC-PRF-MCH-DETAILS -SECTION START- A. MECHANICAL VENTILATION AND REHEAT (Adapted from 2016-NRCC-MCH-03-E) Confirmed 1. DESIGN AIR FLOWS 2. VENTILATION (§ 120.1 a a 8 Ill 0 is Z Z >2 x >0 m 2 'C 0 Z Cr o 0 2 -I on 'C z fD CONDITIONED 0 6 10 z z > iZ > o. Ion = ZONE NAME 60 -VI> E fll't x >m -' • 2 -C TI> fl> —s—I 0 I— m > m - 0 'I VI ? 3Z -> <G 6 ZG - "I > • sr,' M 0 o WI 0 c_V . 2 n 3 pr tO' lhermalZone 1 HVAC #1 1,850 NA 0.00 NA NA N HVAC #1 229 0.15 0.34 100.01 34 34 NA N N 0 0 1 TOTAL 229 .34 34 34 NA 0 0 ZONAL SYSTEM AND TERMINAL UNIT SUMMARY § 140.4 1. 2. 3. 4. S. 6. 7. S. Confirmed Rated Capacity (kBtuh) Airflow (dm) Fan System ID System Type Qty Economizer Zone Name Heating I Cooling Design I . I Mm. I I Min. BHP I I Cycles I ' ECM = I Ratio I i Motor TerminalUnit 1 Uncontrolled 1 NA NA NA ThermalZone 1 1850 NA 0.00 NA NA 0 1 0 1 0 EXHAUST FAN SUMMARY This Section Does Not Apply APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements at liii. 25 California code of regulations Chapter 3 subchapter 2 CommercIal Modular DHW EQUIPMENT SUMMARY- (Adapted from NRCC-PLB-01) Date: 09/20119 Expires: 12/31/20 This Section Does Not Apply Approval # PFS: 19.004189 OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FS. FACTORY-BUILT PORTION ONLY. V~_ PFS CORPORATION- Cottage Grove. Will CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: NRCC-PRF-01-E-06262019-5583 Report Generated at: 2019-08-06 15:36:40 Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 15 of 17 Project Address: Carlsbad 92008 Calculation Date/Time: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 'APPROVED: STATE OF CA - CERTIFIED DAA I E. MULTI-FAMILY CENTRAL DHW SYSTEM DETAILS This Section Does Not Apply Chapter 3subthaPter2 Commercial Modular Date: 09/20/19 Expires: 12131/20 F. SOLAR HOT WATER HEATING SUMMARY (Adapted from NRCCSTH01) Approval # PFS: 19-004189 This Section Does Not Apply THIS APPROVAL DOES NOT AUTHORI OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS UMITED TO - - FACTORY-BUILT PORTION ONLY. G. MECHANICAL HVAC ACCEPTANCE TESTS & FORMS (Adapted from 2016NRCCMCH.01.E) PFS CORPORATION - Collage Grove, WI § RA4 Declaration of Required Acceptance Certificates (NRCA) - Acceptance Certificates that may be submitted. (Retain copies and verify forms are completed and signed to-post in field for Field Inspector to verify). Test Description A 1711 ewt = n n n z n M n = A n n n n Confirmed o PJ W a In a Oi 00 ID a Pi W UT .I 08 3. 30 30 In m 8 In C C 0 In Equipment o 00 - 0 In DI 0. -, 0 o FIT —I Ill rD IQ,. Requiring # of 2. < ID - In In ~ ID ID m 'V Testing or units g CD ID -' -ri DI DI CD = o 3 - OD X . ID 0 Verification C D n 0 j < . n4 9 . 0= 180 CD 3 In -s - 00 CD -n '1 a CD 0.20 09 CD ID -p HVAC#1 1 X X -- X -- -- -- -- -- X -- -- -- -- X -- -- DO H. EVAPORATIVE COOLER SUMMARY 1. 2. 3. 4. S. 6. 7. S. 9. Confirmed System ID Type Qty Effectiveness Pump Power Secondary Fan Secondary Fan Secondary Fan Static Pressure Secondary Air I Pass I Fail (Watts) Flow Rate (cfm) Total Efficiency (in H20) Source EvaporativeCooler 1 Indirect 1 0.9 5014 3100 0.50 0.25 Outdoor 0 I 0 NRCC-PRF-LTI-DETAILS -SECTION START- A. INDOOR CONDITIONED LIGHTING CONTROL CREDITS (Adapted from NRCC-LTI-02-E) § 140.6 This Section Does Not Apply CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: NRçC-PRF-01-E-06262019-5583 Report Generated at: 2019-08-06 15:36:40 Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 16 of 17 Project Address: Carlsbad 92008 Calculation Date/Time: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 INDOOR CONDITIONED LIGHTING MANDATORY LIGHTING CONTROLS (Adapted from NRCC-LTI-02-E) § 130.1 This Section Does Not Apply 130.2(a) = Manual area controls; §130.0(b) = Multi Level; §130.1(c) =Auto Shut-Oft §130.1(d) = Mandatory Daylight; 41301(e) = Demand Responsive TAILORED METHOD CONDITIONED LIGHTING POWER ALLOWANCE SUMMARY AND CHECKLIST (Adapted from NRCC-LTI-04-E) § 140.6 General lighting power (see Table D) 0 General lighting power from special function areas (see Table E) NA Additional "use it or lose it" (See Table G) 0 Total watts 0 GENERAL LIGHTING POWER (Adapted from NRCC-LTl-04-E) 140.6.0 This Section Does Not Apply GENERAL LIGHTING FROM SPECIAL FUNCTION AREAS (Adapted from NRCC-LTI-04-E) § 140.6(c) 3H Room Number I I Primary Function Area Illuminance Value (LUX) I Room Cavity Ratio I (Table G) I Allowed LPD I Floor Area (ft') I I Allowed Watts I Confirmed Pass I Fail NA NA NA NA NA NA NA olo ,vore: iauorea swernoa jorpecsoi I-unction Areas is nor currently impiemenrea ROOM CAVITY RATIO (Adapted from NRCC-LTI-04-E) Rectangular Spaces Room Number Task/Activity Description Room Length (ft) Room Width (ft) Room Cavity Height (ft) RCR Confirmed Pass Fail NA NA NA NA NA NA 0 0 Non-Rectangular Spaces APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations nn,nr,I Mnth,I, ____________________ This Section Does Not Apply _::1 Note: All applicable spaces ore listed under thC Non-KeCtangUlar spaces table Date: 09/20119 Expires: 12/31/20 Approval # PFS: 19-0o4189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FS. FACTORY-BUILT PORTION ONLY. PFS CORPORATION- Cottage Groves WI CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: NRCC-PRF-01-E-06262019-5583 Report Generated at: 2019-08-06 15:36:40 Project Name: Concrete Shelter SCRC08 NRCC-PRF-01-E Page 17 of 17 Project Address: Carlsbad 92008 Calculation Date/Time: 17:35, Tue, Aug 06, 2019 Compliance Scope: NewComplete Input File Name: SCRC08-CA.cibd16 G. ADDITIONAL "USE IT OR LOSE IT" (Adapted from NRCC-LTI-04-E) 1. I 2. 3. 4, Allowed Watts Cànfirmed Wall Display I Combined Floor Display and Task Lighting Combined Ornamental and Special Effects Lighting Very Valuable Merchandise . i in I I ., I !. 0 0 0 0 0 olo. S. Wall Display 1 This Section Does Not Apply APPROVED: STATE OF CA - CERTIFIED DAA Based n the requirements oi tide 25 California code olregulations Floor Display and Task Lighting 1 I6 Chanter 3 a,bch,ater 2 Commercial Modular Section Does Not Apply 1This I Date: 09120119 Expires- 12131120 Applvvdl It P19.004189 Combined Ornamental and Special Effects Lighting 1 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION This Section Does Not Apply OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR 1 APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FACTORY.BUILT PORTION ONLY. - Very Valuable Merchandise . - — PFS CORPORATION -Cottage Grove, WI ____________________________________ This Section Does Not Apply H. INDOOR & OUTDOOR LIGHTING ACCEPTANCE TESTS & FORMS (Adapted from NRCC-LTI-01-E and NRCC-LTO.01.E) I § 130.4 Declaration of Required Acceptance Certificates (NRCA) —Acceptance Certificates that must be verified in the field. (Retain copies and verify forms are completed and signed to post in field for Field Inspector to verify). Test Description Indoor Outdoor Confirmed NRCA-LTl-02-A NRCA-LTI-03-A NRCA-LTi-04-A NRCA-LTO-02-A Equipment Requiring Testing or Verification # of units 0cc Sensors / Auto Time Switch Auto Daylight Demand Responsive Outdoor Controls Occupant Sensors 0 0 0 0 0 0 Automatic Time Switch 0 0 0 0 0 0 Automatic Daylighting 0 CK 0 0 0 0 Demand Responsive 0 0 0 0 0 0 Outdoor Controls 1 0 0 0 0 1 0 0 CA Building Energy Efficiency Standards- 2016 Nonresidential Compliance Report Version: NRCC-PRF-01-E-06262019-5583 Report Generated at: 2019-08-06 15:36:40 STATE OF CALIFORNIA APPROVED: STATE OF CA - CERTIFIED DAA OUTDOOR LIGHTING Based on the requirements of hue 25 California code of regulations it CEC-NNCC-LTO-01-E (Revised 04/16) Chapter 3 subchapter 2 Commercial Modular Date: 09/20/19 Expires: 12131/20 CALIFORNIA ENERGY COMMISSION CERTIFICATE OF COMPLIANCE NRCC-LTO-01-E Outdoor Lighting Approval # PFS: 19-004189 (Page 1 of 4) Project Name: Concrete Shelter SCR08 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION Date Prepared: 8/6/2019 APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO A. General Information - F - FACTORY-BUILT PORTION ONLY. PFS CORPORATION - College Grove, WI Project Address: - - Total Illuminated Hardscape Area: Carlsbad, CA 920008 481 Phase of Construction: Z1 New Construction 0 Addition 0 Alteration Outdoor Lighting Zone (1.2) 012-1 0 12-2 [] 12-3 012-4 I have confirmed with the AHJ which 12 applies to this site. For default lighting zone designations, see Title 24 Part 6, §10-114 B. Lighting Compliance Documents (check box for each document included) For detailed instructions on the use of this and all Energy Efficiency Standards compliance documents, refer to the Nonresidential Manual published by the California Energy Commission. J NRCC-LTO-01-E Certificate of Compliance NRCC-LTO-02-E Outdoor Lighting Controls Certificate of Compliance NRCC-LTO-03-E Outdoor Lighting Power Allowance Certificate of Compliance 0 NRCC-LTO-04-E Outdoor Lighting Existing Conditions Certificate of Compliance C. Summary of Allowed Outdoor Lighting Power Watts Sum Total ALLOWED Outdoor Lighting Wattage from NRCC-LTO-03-E, page 1 01 Alterations with NO increase of connected lighting load may instead use the 591.24 allowed from page _wattage _NRCC-LTO-04,_ _2. 1 Complies ONLY if Installed (Box 02) :5 Allowed (Box 01) 02 1 Sum Total INSTALLED Outdoor Lighting Wattage from NRCC-LTO-01-E, page 3. 1 52 D. Declaration of Required Installation Certificates Declare by checking all Installation Certificates that will be submitted. (Retain copies and verify compliance documents are completed and signed.) IZI NRCI-LTO-01-E - Must be submitted for all buildings 0 Field Inspector NRCI-LTO-02-E - Must be submitted for a lighting control system, or for an Energy Management Control 0 Field Inspector System (EMCS), to be recognized for compliance. E. Declaration of Required Certificates of Acceptance Declare by checking all of the Certificates of Acceptance that will be submitted. (Retain copies and verify compliance documents are completed and signed.) fZI NRCA-LTO-02-A - Must be submitted for outdoor lighting controls. 0 Field Inspector I F. Schedule of Luminaires Exempt from the Outdoor Lighting Power Requirements in §140.7 I 01 1 02 Name or Symbol I Description of exempt luminaire in accordance with the exemptions CA Building Energy Efficiency Standards - 2016 Nonresidential Compliance April 2016 STATE OF CALIFORNIA OUTDOOR LIGHTING "in EC-NRCC-LTO-01-E (Revised 04/16) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF COMPLIANCE NRCC-LTO-01-E Outdoor Lighting (Page 2 of 4) Project Name: Concrete Shelter SCRC08 Date Prepared: 8/6/2019 Schedule of Luminaires Exempt from the Cutoff Requirements in §130.2(b) 01 02 Name or Symbol Description of exempt luminaire in accordance with the exemptions Schedule of Luminaires Exempt from the Outdoor Lighting Control Requirements in §130.2(c) 01 02 Name or Symbol Description of exempt luminaire in accordance with the exemptions APPROVED: STATE OF CA - CERTIFIED DAA Based an the requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09/20/19 Expires: 1231/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO 7w- S FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove, WI CA Building Energy Efficiency Standards - 2016 Nonresidential Compliance April 2016 11 STATE OF CALIFORNIA OUTDOOR LIGHTING CEC-NRCC-LTO-01-E (Revised 04/16) CALIFORNIA ENERGY COMMISSION ' CERTIFICATE OF COMPLIANCE NRCC-LTO-01-E Outdoor Lighting (Page 3 of 4) Project Name: Concrete Shelter SCRC08 Date Prepared: 8/6/2019 I. Outdoor Lighting Schedule and Field Inspection Energy Checklist Field Luminaire Schedule Installed Watts Location Cutoff Inspector 01 02 03 04 05 06 07 08 09 How wattage was Name or Item Tag Complete Luminaire Description E determined 'lI ow . to E • - Z.i Co (5 . .0 x - tom Primary Function area in which these luminaires are installed (Outdoor Lighting Zone) BUG Rating us 0 - -J on Z E 9 - . urn u-i 124 FIXTURE,EXTERIOR,WALLPACK,LED,26W MAIN ENTRANCE UH: _ UL: 26 0 2 52 00 FVH: BVH: FH: BH: UH: - APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of title 25 California code of regulations UL: FVH: Chapter 3 subchapter 2 Commercial Modular Date: 09/20/19 Expires: 12131/20 El o 0 0 0 BVH: Approval # PFS: 19-004189 FH: BH: THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSI N OM ThC RORCMCNTC or ATC WD OR APPLICABLE LOCAL ORDINANCES . ThIS APPROVAL IS LIMITED TO U H: FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove, WI UI: FVH: 0 0 0 00 BVH: FH: BH: Enter sum total of all pages (Sum Total INSTALLED WATTS PAGE TOTAL: 52 INSTALLED Outdoor lighting wattage) into 52 NRCC-LTO-01-E; Page 1 CA Building Energy Efficiency Standards -2016 Nonresidential Compliance April 2016 STATE OF CALIFORNIA --OUTDOOR -OUTDOOR LIGHTING "01 1 - CEC.NRCC-LTO.01-E (Revised 04116) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF COMPLIANCE NRCC-LTO.01-E Outdoor Lighting (Page 4 of 4) Project Name: Concrete Shelter SCRCO8 Date Prepared: 8/6/2019 DOCUMENTATION AUTHOR'S DECLARATION STATEMENT 1. I certify that this Certificate of Compliance documentation is accurate and complete. Documentation Author Name: Corey Mitchel Documentation Author Signature: it1 ,j Company: C 11W LIC. Signature Date: 8/20/2019 Address: 5031Hazel Jones Rd. CEA Certification identification (it applicable): City/State/Zip: Bossier City, LA 71111 Phone: 312132900 RESPONSIBLE PERSONS DECLARATION STATEMENT I certify the following under penalty of perjury, under the laws of the State of California: The information provided on this Certificate of Compliance is true and correct. I am eligible under Division 3 of the Business and Professions Code to accept responsibility for the building design or system design identified on this Certificate of Compliance (responsible designer). The energy features and performance specifications, materials, components, and manufactured devices for the building design or system design identified on this Certificate of Compliance conform to the requirements of Title 24, Part 1 and Part 6 of the California Code of Regulations. The building design features or system design features identified on this Certificate of Compliance are consistent with the information provided on other applicable compliance documents, worksheets, calculations, plans and specifications submitted to the enforcement agency for approval with this building permit application. S. I will ensure that a completed signed copy of this Certificate of Compliance shall be made available with the building permit(s) issued for the building, and made available to the enforcement agency for all applicable inspections. I understand that a completed signed copy of this Certificate of Co pliance is requir to be included with the documentation the Responsible Designer Name Responsible Designer Signature &AfJ A X Address: 2 J Ucense: d787541 rty/S tate/Zlp -,:-,e Wo.'.jeil'I Phone:(Z) z- o idi' 1 APPROVED: STATE OF CA - CERTIFIED DAA Basd on the requirements of SIte 25 California code of regulaltena Chapter 3 subchapter 2 Commercial Moaz Date: 09/20/19 Expires: 12/31/20 Approval # PFS: 19.004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS UNITED TO F FACTORY-BUILT PORTION ONLY. PFS CORPORATION. Cottage Grove, Wi CA Building Energy Efficiency Standards - 2026 Nonresidential Compliance April 2016 STATE OF CALIFORNIA OUTDOOR LIGHTING CONTROLS Wlftv CEC-NRCC-LTO-02-E (Revised 08/16) CALIFORNIA ENERGY COMMISSION ' CERTIFICATE OF COMPLIANCE NRCC-LTO-02-E Outdoor Lighting Controls (Page 1 of 3) Project Name: Concrete Shelter SCRC08 Date Prepared: 8/6/2019 A. Mandatory Outdoor Lighting Control Declaration Statements Check all that apply: j Lighting shall be controlled by self-contained lighting control devices which are certified to the Energy Commission according to the Title 20 Appliance Efficiency Regulations in accordance with §110.9(a). Lighting shall be controlled by a lighting control system or energy management control system in accordance with §110.9. An Installation Certificate shall be submitted in accordance with §130.4(b). All lighting controls and equipment shall comply with the applicable requirements in §110.9 and shall be installed in accordance with the manufacturer's instructions in accordance with §130.0(d). J Part-Night Outdoor Lighting Controls, as defined in Section 100.1(b), shall meet the requirements in Section 110.9(b)5. All outdoor incandescent luminaires rated over 100 watts, determined in accordance with Section 130.0(c), shall be controlled by a motion sensor. All outdoor luminaires rated for use with lamps greater than 150 lamp watts, determined in accordance with Section 130.0(c), shall comply with Uplight and Glare requirements in accordance with Section 130.2(b) J All installed outdoor lighting shall be controlled by a photocontrol or outdoor astronomical time-switch control, or other control capable of automatically switching OFF in accordance with Section 130.2(c)1. IZI All installed outdoor lighting shall be circuited and independently controlled from other electrical loads by an automatic scheduling control in accordance with Section 130.2(c)2. 2J All installed outdoor lighting, where the bottom of the luminaire is mounted 24 feet or less above the ground, shall be controlled with automatic lighting controls in accordance with Section 130.2(c)3. 0 For Outdoor Sales Frontage, an automatic lighting control shall be installed in accordance with Section 130.2(c)4. EZI For Building Facade, Ornamental Hardscape and Outdoor Dining lighting, an automatic lighting control shall be installed in accordance with Section 130.2(c)5 j Before an occupancy permit is granted for the newly constructed building or for the addition, or for any altered outdoor lighting controls, shall be certified as meeting the Acceptance Requirements for Code Compliance in accordance with §130.4.(a). Outdoor lighting controls shall comply with the applicable requirements of Section 130.2(c) and Reference Nonresidential Appendix NA7.8. APPROVED: STATE OF CA - CERTIFIED DAA Based on the requirements of tale 25 California code of regulations Chapter 3 subchapter 2 Comnteroal Modular Date: 09/20/19 Expires: 12/31/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS UNITED TO 5P-0 S FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove. WI CA Building Energy Efficiency Standards - 2016 Nonresidential Compliance August 2016 STATE OF CALIFORNIA OUTDOOR LIGHTING CONTROLS CEC-NRCC-LTO-02-E (Revised 08116) CALIFORNIA ENERGY COMMISSION '" CERTIFICATE OF COMPLIANCE NRCC-LTO-02-E Outdoor Lighting Controls (Page 2 of 3) Project Name: Concrete Shelter SCRC08 Date Prepared: 816/2019 B. Mandatory Outdoor Lighting Control Schedule and Field Inspection Checklist lc. Standards Complying With 0 - Outdoor Lighting Control Schedule 2 (1 all that apply, or leave empty if Exempted) Ro m 0 CL 0 01 02 03 04 05 06 07 08 09 10 11 Type/ Description of Lighting Control (i.e. outdoor motion sensor, outdoor !a Location m and Application of photocontrol, outdoor astronomical time- of 0 Luminaires Being switch control, automatic scheduling Units m 0 m 0 m d m m i-I m In - Controlled to' to, control, part-night outdoor lighting control) Main Entry I Building Area Photocontrol 2 IZI 0 0 o 0 ooii 000 000 0 0 Q 000 APPROVED: STATE OF CA - CERTIFIED DAA 0 0 0 0 0 - iBased on the reqtirements or title 4s California co'e of regutaao4 - El a ö - 4Chapter 3 subcrfter2 Commercial Modular 0 0 0 D4t.99120/19 xpirAs- 12/31/20 - - _______ _______ __________ __________ ________ 0 0 0 19-004189 000 THIAPPROVAL DOS NOT AUTHORIZE OR APP R4 VE ANY OMIS ION voN FRO I ThE REQUIREMEN OF STAR WS OR - 0 0 0 APPLICABLE LOCAL IORDINANCES . THIS APPROVAL IS LIMITED FACTORY-BUILT PORTION ONLY. - ________ ________ 0 0 0 - - PFS CORPORATION - Cottage Grove. WI _ _ D0ii CA Building Energy Efficiency Standards - 2016 Nonresidential Compliance August 2016 STATE OF CAUFORNIA OUTDOOR LIGHTING CONTROLS CEC.NRCC-LTO-02-E (Revised 08116) CERTIFICATE OF COMPLIANCE Outdoor Lighting Controls Project Name: Concrete Shelter SCRC08 8/6/2019 NRCC-LTO-02-E (Page 3 of 3) DOCUMENTATION AUTHOR'S DECLARATION STATEMENT 1. I certify that this Certificate of Compliance documentation is accurate and complete. Documentation Author Name: Corey Mitchel Documentation Author Signature: Company: CeliXion, Signature Date: 8/20/2019 Address. S031Hazel Jones Rd. CEA Certification identification (ii applicable): City/State/Zip: Bossier City, LA 71111 Phone: 318.213-2900 RESPONSIBLE PERSONS DECLARATION STATEMENT - I certify the following under penalty of perjury, under the laws of the State of California: The information provided on this Certificate of Compliance Is true and correct. I am eligible under Division 3 of the Business and Professions Code to accept responsibility for the building design or system design identified on this Certificate of Compliance (responsible designer). The energy features and performance specifications, materials, components, and manufactured devices for the building design or system design identified on this Certificate of Compliance conform to the requirements of Title 24, Part land Part 6 of the California Code of Regulations. The building design features or system design features identified on this Certificate of Compliance are consistent with the information provided on other applicable compliance documents, worksheets, calculations, plans and specifications submitted to the enforcement agency for approval with this building permit application. S. I will ensure that a completed signed copy of this Certificate of Compliance shall be made available with the building permit(s) issued for the building, and made available to the enforcement agency for all applicable inspections. I understand that a completed signed copy of this Certificate of Compliance 15 re uired to be included with the documentation the - builder provides to the building owner at occupancy. Responsible Designer Namer 7' /'4, Responsible Designer Signature: UA Company: J Date Signed: W (i ? Address: J ),á License: (797 Coy/State/Zip: /cn'-wauA e-CuJ q-jg7g phone: Of 076' -I - APPROVED: STATE OF CA - CERTIFIED DAA Based an the requSements of title 2$ California code of regulations Ctiapter3subchapter2 Cammerdal Modular Date: 09/20/19 Expires: 12131/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES . THIS APPROVAL IS LIMITED TO FS FACTORY-BUILT PORTION ONLY. Vf FPS CORPORATION. Cottage Grove, WI CA Building Energy Efficiency. Standards -2016 Nonresidential Compliance August 2016 STATE OF CALIFORNIA OUTDOOR LIGHTING POWER ALLOWANCES (hiprrI TflflL 1P.,ior,4 flh11R -- ---------------------- -' CALIFORNIA ENERGY COMMISSION CERTIFICATE OF COMPLIANCE NRCC-LTO-03-E Outdoor Lighting Power Allowances (Page 1 of 4) Project Name: Concrete Shelter SCRC08 Date Prepared: 8/6/2019 A. OUTDOOR LIGHTING POWER ALLOWANCE SUMMARY General Hardscape Lighting Power Allowance (Site Total from Section B of NRCC-LTO-03-E) I 1. 539.24 Additional Specific "use it or lose it" Lighting Power Allowances listed in each of these cells shall be identical to total allowed watts determined in Section C-i to C-4 of NRCC-LTO-03-E. PER APPLICATION PER UNIT LENGTH PER HAROSCAPE AREA PER SPECIFIC AREA from Section C-i (SALES FRONTAGE) (ORNAMENTAL LIGHTING) from Section C-4. from Section C-2 from Section C3 52 + 0 + 0 + 0 = 2. 52 Sum Total ALLOWED Outdoor Lighting Wattage (add rows 1 and 2) 13. 591.24 B. GENERAL HARDSCAPE LIGHTING POWER ALLOWANCE FROM TABLE 140.7-A Area Wattage Allowance (AWA) Linear Wattage Allowance (LWA) Initial Wattage Allowance (IWA) Total General Hardscape - Lighting Allowance - 01 02 03 04 05 06 07 08 09 Name of Area Illuminated Hardscape Area 481 OF CA - CERTIFIED eatiro in . AWA Per Square Foot AWA (802 x B03) 19.24 0 0 0 0 0 0 0 0 0 0 0 _________ _____________ Perimeter Length of General Hardscape - LPA per Linear Foot 3 ______________ _____________ - LWA (B05 x B06) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - IWA (Watts) - B04 + B07 + BOB "A" WALL 0.040 520 539.24 0 0 0 - 0 APPROVED: STATE DAA ail 0 0 _______ - -0 - tee e5 ....J raidadal Chapter 3 subchapter 2 Commercial Modular D___ _____ Date! 09/20119 Expirco: 12 131 Approval # PFS: 19-004189 /20 - - 0 - 0 0 = 0 _____________ THIS APPROVAL DOES NOT A JJHORE fly nmnp nflumu aol OR APPROVE Ilon, no ep OMISSION 0 APPUCABLE LOCAL ORDINA,èES . THIS APPROVAL IS LIMITED TO - FACTORY-BUILT PORTION ONLY. PFS CORPORATION- Coflege Grove, WI 0 - - TOTAL 539.24 CA Building Energy Efficiency Standards - 2016 Nonresidential Compliance January 2016 . STATE OF CALIFORNIA OUTDOOR LIGHTING POWER ALLOWANCES ArrKuvw: uAuturIA-(jtnhIruw UMA 8.ds1tMWSk.n.W.R1,25 callan4a cod. eWdotlons Ql3.Adco2 COMIM.dN MoAda, Expires: 12,31120 royal # PFS: 19.004189 ThIS RPPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUSIEMEHYS OF STATE LAWS OR APPLICABLE LOCAL OIWINAIICES .TEIS APPROVAL IS UNITED TO F FACTORY.BISLT PORTION ONLY. - - pfs CORPORATION -CR11.9. 0,0... Wi CERTIFICATE OF COMPLIANCE Outdoor Lighting Power Allowances Project Name: Concrete Shelter SCRC08 N RCC-LTO-03-E (Page 2 of 4) Date Prepared: 8/6/2019 I C. ADDITIONAL "USE IT OR LOSE IT" OUTDOOR LIGHTING POWER ALLOWANCES FOR SPECIFIC APPLICATIONS The additional specific outdoor lighting power allowance shall be the smaller of the allowed lighting power or the actual lighting power used. Use Outdoor Lighting Zone (OLZ) that is documented on page 1 of NRCC-LTO-01-E to calculate the specific wattage allowances. C-i. WATTAGE ALLOWANCE PER APPLICATION — Table 140.7-13 Available only for qualifying locations, which include Building Entrances or Exits; Primary Entrances to Senior Care Facilities, Police Stations, Hospitals, Fire Stations, and Emergency Vehicle Facilities; Drive Up Windows; Vehicle Service Station Uncovered Fuel Dispenser, ATM Machine Lighting If more than one luminaire type is used per location, use multiple rows for that location 01 02 03 04 05 06 07 ( 08 09 10 ALLOTTED WATTS DESIGN WATTS Wattage Name of Location Number of Allowance per Allotted Luminaire Allowed Watts for Which Allowance Qualifying Qualifying Watts Code or Luminaire Watts per Design Watts (smaller of 04 or is Claimed Locations Location (02 x 03) Symbol Luminaire Description Quantity Luminaire (07 x 08) 09) Building Entrance 2 35 70 124 FIXTURE,EXTERIOR,WALLPACK,LED,261 2 26 52 52 0 0 0 o 0 Sum total allowance per application on this site: 52 C-2. WATTAGE ALLOWANCE PER UNIT LENGTH (Sales Frontage) from Table 140.7-13 a If more than one luminaire type is used per location, use multiple rows for that location 01 02 03 04 05 06 07 08 09 10 Name of Location for Which Allowance is Claimed ALLOTTED WATTS DESIGN WATTS Linear Feet of Sales Frontage Wattage Allowance per Linear Foot Allotted Watts (02 x 03) Luminaire Code or Symbol Luminaire Description Luminaire Quantity Watts per Luminaire Design Watts (07 x 08) Allowed Watts (smaller of 04 or 09) 0 0 0 0 0 0 o 0 - - Sum total allowance for sales frontage on the site:. 0 CA Building Energy Efficiency Standards - 2016 Nonresidential Compliance January 2016 STATE OF CALIFORNIA OUTDOOR LIGHTING POWER ALLOWANCES CEC-NRCC-LTO-03-E (Revised 01/16) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF COMPLIANCE NRCC-LTO-03-E Outdoor Lighting Power Allowances (Page 3 of 4) Project Name: Concrete Shelter SCRC08 Date Prepared: 8/6/2019 C-3. WATTAGE ALLOWANCE PER SQUARE FOOT OF HARDSCAPE AREA (Ornamental Lighting) - Table 140.7-B - Allowance for the total site illuminated hardscape area. Luminaires qualifying for this allowance shall be rated for 100 watts or less as determined in accordance with Section 130.0(c), and shall be post-top luminaires, lanterns, pendant luminaires, or chandeliers. - If more than one luminaire type is used per location, use multiple rows for that location 01 02 1 03 04 05 06 07 08 09 10 Name of area for which ornamental allowance is claimed ALLOTTED WATTS DESIGN WATTS Square Feet of Hardscape Wattage Allowance per Square Foot Allotted Watts (02 x 03) Luminaire Code or Symbol Luminaire Description Luminaire Quantity Watts per Luminaire Design Watts (07 x 08) Allowed Watts (smaller of 04 or 09) 0 0 0 0 0 0 0 0 Sum total allowance for ornamental lighting on the site:. 0 C-4. WATTAGE ALLOWANCE PER SQUARE FOOT OF SPECIFIC AREA - Table 140.7-13 - Allowances for Building Facades; Outdoor Sales Lots; Vehicle Service Station Hardscape; Vehicle Service Station Canopies; Sales Canopies; Non-sales Canopies; Tunnels; Guard Stations; Student Pick-up/Drop-off zone: Outdoor Dining; Special Security Lighting for Retail Parking and Pedestrian Hardscape. - If more than one luminaire type is used per location, use multiple rows for that location 01 02 03 04 05 06 07 08 09 10 ALLOTTED WATTS DESIGN WATTS Name of Location for Which Allowance is Claimed Illuminated Area of Application Wattage Allowance per Square Foot Allotted Watts (02 x 03) Luminaire Code or Symbol Luminaire Description Luminaire Quantity Watts per Luminaire Design Watts (07 x 08) Allowed Watts (smaller of 04 or 09) 0 0 - 0 0 STATE OF CA - CERTIFIED DAA EAPPROVED: on the requirements of lae 25 California code of re.j!ations nnt Commeraal Modular 0 0 - ____________ _________________________________ ____ 9/20/19 I Expires: 12/31/20 - Sum total allowance for specific area on the site: 0 Approval ri-a: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES. THIS APPROVAL IS LIMITED TO FS. FACTORY-BUILT PORTION ONLY. V~_ PFS CORPORATiON. Cottage Grove. Wi CA Building Energy Efficiency Standards - 2016 Nonresidential Compliance January 2016 STATE OF CAUFORNIA OUTDOOR LIGHTING POWER ALLOWANCES CEC-NRCC-LT0403-E (Revised 01116) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF COMPLIANCE NRCC-LTO-03-E Outdoor Lighting Power Allowances (Page 4 of 4) te Prepared: Pm" Na'"** Concrete Shelter SCRCOB I ° 8/6!2019 DOCUMENTATION AUTHOR'S DECLARATION STATEMENT 1. I certify that this Certificate of Compliance documentation is accurate and complete. Documentation Author Name: Corey Mitchel Documentation Author Signature: CdU 11.LtJtet.e'3' 'J)1[J.,i Company: CeliXion, LIC Signature Date: 8/20/2019 Address. 5031Hazel Jones Rd. CEA Certification identification (ir applicable): City/State/Zip: Bossier City, LA 71111 Phone: 318-213-2900 RESPONSIBLE PERSON'S DECLARATION STATEMENT I certify the following under penalty of perjury, under the laws of the State of California: The information provided on this Certificate of Compliance is true and correct. lam eligible under Division 3 of the Business and Professions Code to accept responsibility for the building design or system design identified on this Certificate of Compliance (responsible designer). The energy features and performance specifications, materials, components, and manufactured devices for the building design or system design identified on this Certificate of Compliance conform to the requirements of Title 24, Part 1 and Part 6 of the California Code of Regulations. The building design features or system design features identified on this Certificate of Compliance are consistent with the information provided on other applicable compliance documents, worksheets, calculations, plans and specifications submitted to the enforcement agency for approval with this building permit application. S. I will ensure that a completed signed copy of this Certificate of Compliance shall be made available with the building permit(s) issued for the building, and made available to the enforcement agency for all applicable inspections. I understand that a completed signed copy of this Certificate of Compliance is required to be inclu d with the documentation the builder provides to the building owner at occupancy. - Responsible Designer Name: k4o Responsible Designer Signature: 7'4ou rUA aser Company: ....J Date Signed: / t/ License: C 78751 Aity/st-t p: Ff (iiwAe rii *'1f8 Phone: f) 2((:-O 7W APPROVED: STATE OF CA - CERTIFIED DAA Based on On requirements of title 25 California code of regulations Chapter 3 subchapter 2 Commercial Modular Date: 09120/19 Expires: 12/31/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES. THIS APPROVAL IS LIMITED TO F - FACTORY.BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove WI Ir CA Building Energy Efficiency Standards - 2016 Nonresidential Compliance January 2016 SCRC08-IR (8-20-19) PANEL NAME: PANEL I 812012019 - Project: SCRC08 VOLTAGE: 120 I 240 MAIN BREAKER: Y PHASE: 1 LUGS ONLY:_______________ LOADING WIRE: 3 SURFACE:V NORMAL OPERATION BUS AMPS: 200 200 :MAIN CB AMPS FLUSH:_______________ SUPPLY AMPS: 200 GROUND BUS: V — MIN. SHORT CIRCUIT RATING: lOkAIC ISOLATED GROUND BUS:_______________ to INCLUDE SPARE CAP. - YIN: N NEUTRAL BUS: Y HVAC/HEAT HVAC/HEAT SERVES LTG RCPT PWR VENT/EXIST PANEL CB • CKT PH ICKT CB LTG [RCPT PWR VENTIEXIST PANEL _SERVES HVAC #1 3960 50 1 A 2 50 3960 HVAC #2 3960 _J_ 3 B 4 J_ - 3960 LIGHTS 424 - 20 5 A 6 15 10 SMOKE DETECTOR DUPLEX RECEPTACLES 360 20 7 B 8 30 - 2000 RECTIFIER #1 DUPLEX RECEPTACLES - 540 20 9 A 1 10 J_ 2000 2000 DUPLEX RECEPTACLES 360 20 11 B 12 30 RECTIFIER #2 DUPLEX RECEPTACLES 180 20 13 A I 2000 QUAD RECEPTACLES 720 20 15 B 30 2000 RECTIFIER #3 QUAD RECEPTACLES - 720 20 17 A J_ QUAD RECEPTACLES 720 20 19 B d22 - QUAD RECEPTACLES 720 20 21 A 23 B 25 A 27 B 29 A 30 31 B 32 33 A 34 35 B Jim 36 37 A 38 B 180 40 GFCIRECEPTACLE 20 41 A 42 _________ COru1ECT6., VA A: 1 16,694 B:16.080 1 AMPS KVA CONNECTED KVA: • D.F. DEMAND 10/A: 200.0 48.0 DESIGN (BASED ON SUPPLY) LIGHTING LOAD: 0.4 1.25 0.5 136.6 32.8 CONNECTED RECEPT. LOAD - FIRST 10 KVA: 10.0 1.25 12.5 RECEPT. LOAD - REMAINDER: 6.5 1.00 6.5 147:4_354'DEMAND 526_12SPARE POWER LOAD: 0.0 1.25 0.0 AVG HVACIHEATNENT/EXIST PANEL 15.8 1.00 15.8 KVA AMPS KVACONNECTED 1.25 0.0 16.4 139 16.7 PHASE A 20% SPARE CAPACITY: 0.0 1.00 0.0 134 16.1 PHASE B TOTAL CONNECTED LOAD: 32.8 TOTAL DEMAND LOAD: 35.4 INSTRUCTIONS: PHASE -ALL BRANCH CIRCUIT BREAKERS ARE 1P20 UNLESS OTHERWISE SHOWN LOAD PHASE BALANCE DAA 1DENOTES ADDITIONAL POLES OF MLLOL_CIRC:rT BREAKERS NOTES: APPROVED: STATE OF CA - CERTIFIED I -- ____ 70% 51% PHASE A : Based on the requirements of title 25 California code of regulations - Chapter 3 subehaptor 2 CommercIal Modular Date: 09/20/19 Expires: 12/31/20 Approval # PFS: 19-004189 THIS APPROVAL DOES NOT AUTHORIZE OR APPROVE ANY OMISSION OR DEVIATION FROM THE REQUIREMENTS OF STATE LAWS OR APPLICABLE LOCAL ORDINANCES .THIS APPROVAL IS LIMITED TO 120V Single Phase FS FACTORY-BUILT PORTION ONLY. PFS CORPORATION - Cottage Grove, WI SAN DIEGO REGIONif E CE I\1 cD OFFICE USE ONLY HAZARDOUS MATERIAJ03 ____ ID # 2NCHECK #__________________ + QUESTIONNAIRE BP DATE I I Business Nam Busi • rCnf CARLSBAD (h-sDE .Lct.j'1 14DlVISiQ Telephone# ( 41) .3 5q _e__ç Project Address City I LeLoLAD DVZw te ca APN# Zip Code 1zco I I '2. I -OO- °j - OO Mailing Address City I10 DxTI2 JV6 r co(mv State WAC Zip Code dib lool I I Plan File# Project Contact Applicant E-mail Ju(ZoL VJ A,, 9. ,\ Telephone # tCHcLL,(Jvn Ce56) o 3130 The following questions represent the facility's activities, NOT the specific project description. PART I: FIRE DEPARTMENT -HAZARDOUS MATERIALS DIVISION: OCCUPANCY CLASSIFICATION: (not required for projects within the City of Sai Diego): Indicate by circling the item, whether your business will use, process, or store any of the follow' hazardous materials If any of the items are circlec applicant must contact the Fire Protection Agency with jurisdiction prior to plan submittal. ow,,. ç,t,7gt4I.L4 Iv1 £i$W4.). / y •-J ub14(a,- Occupancy Rating: Facility's Square Footage (including proposed project): D rr" Explosive or Blasting Agents 5. Organic Peroxides 9. Water Reactives T5None orrosives Compressed Gases 6. Oxidizers 10. Cryogenics ther Health Hazards Flammable/Combustible Liquids 7. Pyrophorics 11. Highly Toxic or Toxic Materials of These. Flammable Solids 8. Unstable Reactives 12. Radioactives questions is yes, applicant must contact the County of San Diego Hazardous Materials Division, 5500 Overland Avenue, Suite 110 Call (858) 505-6700 prior to the issuance of a building permit. FEES ARE REQUIRED Project Completion Date: Expected Date of Occupancy: YES NO (for new construction or remodeling projects) 0 IB', Is your business listed on the reverse side of this form? (check all that apply). 0 u" Will your business dispose of Hazardous Substances or Medical Waste in any amount? 0 Will your business store or handle Hazardous Substances in quantities greater than or equal to 55 gallons. 500 0 pounds and/or 200 cubic feet? ' Will your business store or handle carcinogens/reproductive toxins in any quantity? 0 8" Will your business use an existing or install an underground storage tank? 0 9"' Will your business store or handle Regulated Substances (CalARP)? 0 9' Will your business use or install a Hazardous Waste Tank System (Title 22, Article 10)? 0 9/ Will your business store petroleum in tanks or containers at your facility with a total facility storage capacity equal or greater than 1,320 gallons? (California's Aboveground Petroleum Storage Act). f the answer to any Diego, CA 92123. 0 CalARP Exempt Date Initials CalARP Required Date Initials CalARP Complete Date Initials ( ft 1 PART Ill: SAN DIEGO COUNTY AIR POLLUTION CONTROL DISTRICT (APCD): Any YES* answer requires a stamp from APCD 10124 Old Grove Road, San Diego, CA 92131 apcdcomp(äsdcounty.ca.gov (858) 586-2650). [*No stamp required if Qi Yes and Q3 Yes and 04-06 No]. The following questions are intended to identify the majority of air pollution issues at the planning stage Projects may require additional measures n entified by these questions For comprehensive requirements contact APCD. Residences are typically exempt, except - those with more than one building n thë?öe f8't5ildIWIthiere4Jian four dwelling units; townhomes; condos; mixed-commercial use; deliberate burns; residences forming part of a larger outbilldings.] YES NO PAID 0 B' Will the project disturb 160 square feet or more of existing building materials? 0 9' Will any load supporting structural members be removed? Notification may be required 10 Jorking days prior to commencing demolition 0 9' (ANSWER ONLY IF QUESTION 1 or 2 IS YES) Has an asbestos survey been performed Q a Certified A o'lCnsifltagt or Site Su eillance Technician? 0 91 (ANSWER ONLY IF QUESTION 3 IS YES) Based on the survey results, will the project di , may b required 10 working days prior to commencing asbestos removal. 0 9' Will the project or associated construction equipment emit air contaminants? See the reve (www.sdapcd.orp/info/facts/ermits.pdf) for typical equipment requiring an APCD permit. 1'IJI i 0 El (ANSWER ONLY IF QUESTION 5 IS YES) Will the project or associated construction equipment be located within 1,000 fid-LiT or a school boundary Briefly describe business activities: Briefly describe proposed project: CI) f-fAi5 S.WILterL tot .bAfll1SO4 A I3)P5 .:t 34 3 (jkES Otj QStø. acc I declare under penalty of perjury that to the best of my knowledge and belief tile in are true and correct. SMtJUL / Name of Owner or Authorized Agent Siqnaturf rorthohdAaent Date FIRE DEPARTMENT OCCUPANCY CLASSIFICATION: FOR OFFICAL USE ONLY: BY: DATE: I I EXEMPT OR NO FURTHER INFORMATION REQUIRED RELEASED FOR BUILDING PERMIT BUT NOT FOR OCCUPANCY RELEASED FOR OCCUPANCY APCD COUNTY-HMD APCD COUNTY-HMD APCD REVEWED SGt4ATURE RE EIVED WDA -i E 0004 2019 exempts businesses from completing or updating a Hazardous Materials Business Plan. Other permiftig f yir5rn}a Al A t%B BUILDING DIVISLON HM-9171 (08/15) County of San Diego - DEH - Hazardous Materials Division u c.uij containing material? or APCD factsheet ENCINA WASTEWATER AUTHORITY INDUSTRIAL WASTEWATER DISCHARGE PERMIT SCREENING SURVEY 6200 Avenida Encinas, Carlsbad, CA 92011 Phone: 760438-3941 Fax: 760-476-9852 SourceControl@encinajpa.com Date:_________ Business Name: CROWN CASTLE Street Address: 1100 DEXTER AVE, SEATTLE, WA, 98109 Email Address: Iizandro.gil©crowncastle.com PLEASE CHECK HERE IF YOUR BUSINESS IS EXEMPT: (ON REVERSE SIDE CHECK TYPE OF BUSINESS) U Check all below that are present at your facility: 10- Acid Cleaning o Assembly o Automotive Repair o Battery Manufacturing o Biofuel Manufacturing o Biotech Laboratory o Bulk Chemical Storage o Car Wash o Chemical Manufacturing o Chemical Purification o Dental Offices Dental Schools Dental Clinics o Dry Cleaning o Electrical Component Manufacturing o Fertilizer Manufacturing o Film/X-ray Processing Food Processing Glass Manufacturing Industrial Laundry Ink Manufacturing Laboratory Machining/Milling Membrane manufacturing (i.e. water filter membranes) Metal Casting/Forming Metal Fabrication Metal Finishing Electroplating Electroless Plating Anodizing Coating (i.e. phosphating) Chemical Etching/Milling Printed Circuit Board Manufacturing Metal Powders Forming Nutritional Supplement/Vitamin Manufacturing Painting/Finishing Paint Manufacturing Personal Care Products Manufacturing Pesticide Manufacturing/ Packaging Pharmaceutical Manufacturing (including precursors) Porcelain Enameling Power Generation Print Shop Research and Development Rubber Manufacturing Semiconductor Manufacturing Soap/Detergent Manufacturing Waste Treatment/Storage New Business? Yes J No J SIC Code(s) if known: Date operation began/will begin:__________________ Tenant Improvement? Yes [I No[] If yes, briefly describe improvement:_________________________________________ Description of operations generating wastewater (discharged to sewer, hauled or evaporated): Estimated volume of industrial wastewater to be discharged (gal/ day): List hazardous wastes generated (type/volume): Have you applied for a Wastewater Discharge Permit from the Encina Wastewater Authority? Yes 0 Date: No 11 Page 1 of 2 ENCINA WASTEWATER AUTHORITY INDUSTRIAL WASTEWATER DISCHARGE PERMIT MUM SCREENING SURVEY 6200 Avenida Encinas, Carlsbad, CA 92011 Phone: 760-438-3941 Fax: 760-476-9852 SourceControt@encinajpa.com The commercial enterprises listed below are a partial listing of businesses that are exempt from industrial wastewater discharge permitting under normal operating conditions. They are exempt because (a) they discharge no process wastewater (i.e., they only discharge sanitary wastewater with no pollutants exceeding any local limits), and (b) they have no potential to negatively impact the EWPCF or other wastewater treatment plants in the ESS. Any questions regarding exemptions should be referred to EWA Source Control staff. Automobile Detailers Barber/Beauty Shops Business/Sales Offices Cleaning Services Carpet/Upholstery Childcare Facilities Churches Community Centers Consulting Services Contractors Counseling Services Educational Services (no auto repair/film developing) Financial Institutions/Services Fitness Centers Gas Stations (no car wash/auto repair) Grocery Stores (no film developing) Residential based Businesses Hotels/Motels (no laundry) Laundromats Libraries Medical Offices (no x-ray developing) Mortuaries Museums Nail Salons Nursing Homes Office Buildings (no process flow) Optical Services Pest Control Services (no pesticide repackaging for sale) Pet Boarding/Grooming Facilities Postal Services (no car wash/auto repair) Public Storage Facilities Restaurants/Bars Retail/Wholesale Stores (no auto repair/film developing) Theaters (Movie/Live) CERTIFICATION STATEMENT I certify that the information above is true and correct to the best of my knowledge. Signature:YaLLUX q Print Name:i'fl tCJ) fJ) C_1t1 4 fP11A.f1 DATE: Facility Contact:___ Title: ENCINA WASTEWATER AUTHORITY 6200 AVENIDA ENCINAS, CARLSBAD, CA Phone: 760-438-3941 Fax: 760-476-9852 Sou rceControlcencinaipa.com Page 2 of 2 (city of Carlsbad CLIMATE ACTION PLAN CONSISTENCY CHECKLIST B-50 Development Services Building Division 1635 Faraday Avenue (760) 602-2719 www.carlsbadca.gov PURPOSE This checklist is intended to assist building permit applicants identify which Climate Action Plan (CAP) ordinance requirements apply to their projects. Unless none of the requirements apply, the completed checklist must be included in the building permit application. It may be necessary to supplement the completed checklist with supporting materials, calculations or certifications, to demonstrate full compliance with CAP ordinance requirements. For example, projects that propose or require a performance approach to comply with energy- related measures will need to attach to this checklist separate calculations and documentation as specified by the ordinances. 4 If an item in the checklist is deemed to be not applicable to a project, or is less than the minimum required by ordinance, an explanation must be provided to the satisfaction of the Building Official. 4 Details on CAP ordinance requirements are available on the city's website. Application Information Project Name/Building Permit No.: BP No.: 3(2oIg 03Lj CROWN _CASTLE _LEGOLAND CALIFORNIA Property Address/APN: 1 LEGOLAND DRIVE, CARLSBAD, CA, 92008 Applicant Name/Co.: MICHELLE THURMAN - MITCHELL J ARCHITECTURE Applicant Address: 4883 RONSON CT, SUTE N, SAN DIEGO, CA 92111 Contact Phone: 858-650-3130 Contact Email: michelle.thurman@mitchellj.com Contact information of person completing this checklist (if different than above): Name: Contact Phone: Company name/address: Contact Email: Applicant Signature: Date: 7i Z/9 B-50 Page 1 of 3 Revised 04/19 City of Carlsbad Climate Action Plan Consistency Checklist Use the table below to determine which sections of the Ordinance Compliance checklist are applicable to your project. For residential alterations and additions to existing buildings, contact the building counter for the building permit valuation. Building Permit Valuation (BPV) $ ?TO, eiQO Construction Type El Residential New construction O Alterations: BPV 2:$60,000 Cl Electrical service BPV 2:$200,000 El Nonresidential 1Y, New construction O Alterations Complete Section(s) I Notes: 1A 0 exempt 1A 1A 1-2 family dwellings and townhouses with attached garages only 1A Multi-family dwellings only where interior finishes are removed and significant site work and upgrades to structural and mechanical, electrical, and/or plumbing systems are proposed 1113 and 2 2 1. Electric Vehicle Charging El Residential New construction and major alterations (or electric panel upgrade)* Please refer to Carlsbad Ordinance CS-349 when completing this section. 0 One and two-family residential dwelling or townhouse with attached garage: 0 One EVSE ready parking space required 0 Exception: 0 Multi-family residential: 0 Exception: Total Parking Spaces Proposed EVSE Spaces Capable Ready Installed Total Calculations: Total EVSE spaces =10 x Total parking (rounded up to nearest whole number) EVSE Installed= Total EVSE Spaces x.50 (rounded up to nearest whole number) EVSE other= Total EVSE spaces - EVSE Installed (EVSE other may be "Capable," "Ready" or "Installed.") *Major alterations are: (1) for one and two-family dwellings and townhouses with attached garages, alterations have a building permit valuation ~: $60,000 or include an electrical service panel upgrade; (2) for multifamily dwellings (three units or more without attached garages), alterations have a building permit valuation ~ $200,000, interior finishes are removed and significant site work and upgrades to structural and mechanical, electrical, and/or plumbing systems are proposed. E Nonresidential new construction (includes hotelsimotels) cException Total Parking Spaces Proposed I EVSE Spaces Capable Ready Installed Total Calculation: Refer to the table below: Total Number of Parking Spaces provided Number of required EV Spaces Number of required EVSE Installed Spaces 0-9 1 1 10-25 2 1 26-50 4 2 51-75 6 3 76-100 9 5 101-150 12 6 151-200 17 9 201 and over 10 percent of total 50 percent of Required EV Spaces Updated 4/12/2019 2 City of Carlsbad Climate Action Plan Consistency Checklist 2kJ Transportation Demand Management (TDM) A List each proposed nonresidential use and gross floor area (GFA) allocated to each use. B. Employee ADTI1,000 square feet is selected from the table below. Use GFA Employee ADT for first 1,000 S.F. Employee ADT for each subsequent 1,000 S.F. Total Employee ADT T91ecommunications N/A N/A N/A F LI Total If total employee ADT is greater than or equal to 110 employee ADT, a 1DM plan is required. 1DM plan required: Yes 0 No Employee ADT Estimation for Various Commercial Uses mpADTI 000 rDTfort -- 1000 Use __ii1, Office (!!!)2 20 20 Restaurant 11 11 Retai13 8 4.5 Industrial 4 3.5 Manufacturing 4 3 4 1 Warehousing i Unless otherwise noted, rates estimated from ITE Trip Generation Manual, lOthEdition 2 For all office uses, use SANDAG rate of 20 ADTI1 ,000 sf to calculate employee ADT Retail uses include shopping center, variety store, supermarket, gyms, pharmacy, etc. Other commercial uses may be subject to special consideration Sample calculations: Office: 20,450 sf 1: 20,450 sf/ 1000 x 20 = 409 Employee ADT Retail: 9,334 sf First 1,000 sf= 8ADT 9,334 sf - 1,000 sf = 8,334 sf (8,334 sf / 1,000 x 4.5) + 8 = 46 Employee ADT Updated 4/12/2019 3 STORM WATER COMPLIANCE FORM TIER I CONSTRUCTION SWPPP E-29 CB C2oIi.-03I' SW___ BEST MANAGEMENT PRACTICES (BMP) SELECTION TABLE Erosion Control Sediment Control BMPs Tracking Non-Storm Water Waste Management and Materials BMPs Control BMPs Management BMPs Pollution Control BMPs .2 g .... .2 Cn .II . L-1 I . -2 Best Management Practice* 0. E . . . (BMP) Description - - e u . . . - - o > E Ei .2 o -o 0 .c 0. - . . Q) Q a, U € C 0 5tj . - 3E — 0 3 - = C °° = C ° N C C C w 0 a Li 0 .9 Cl) -= Cl) a, CtJ .c C) . iZ .. 0 .b 0 U)> U) C/) 0. ..... U) .E ..- 0 Cl) 0 Q 0 C 0.0 0 0. ai .i > 0 0 . U) 0 ..-. U) 0.0 U) C) 0 0 C/) 0 0 :c 00 0 CASQA Designation —3 N Go 0 .- N - In CC N CC Cl N') I N I CC I I I N') I I If) I CO I CC .1 o W o 0 0 I Li I Li I Li I Li I Li I Li I Li I Li I I I Cl) U) (n U) Construction Activity Li Li W Cl) Cl) Cl) (I) U) Cl) U) Cl) - Grading/Soil Disturbance - - - - - - - - - - - - - - Trenching/Excavation — — - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - Stockpiling --- - - - - - - - - Drilling/Boring - - - - - - - - - - Concrete/Asphalt Sawcutting Concrete Flatwork Paving Conduit/Pipe Installation Stucco/Mortar Work - Waste Disposal - - - — Staging/Lay Down Area - - - - - - - - - - - - - - Maintenance and Fueling _Equipment Hazardous Substance Use/Storage -- Dewatering Site Access Across Dirt Other (list): Instructions: Check the box to the left of all applicable construction activity (first column) expected to occur during construction. Located along the top of the BMP Table is a list of BMP's with it's corresponding California Stormwater Quality Association (CASQA) designation number. Choose one or more BMPs you intend to use during construction from the list. Check the box where the chosen activity row intersects with the BMP column. Refer to the CASQA construction handbook for information and details of the chosen BMPs and how to apply them to the project. SHOW THE LOCATIONS OF ALL CHOSEN BMPs ABOVE ON THE PROJECTS SITE PLAN/EROSION CONTROL PLAN. SEE THE REVERSE SIDE OF THIS SHEET FOR A SAMPLE EROSION CONTROL PLAN. -BMP's are subject to field inspection- PROJECT INFORMATION Assessor's Parcel Number: 2.1 _1.o0 _0 -00 Emergency Contact: Name: (j..iL.. 24 Hour Phone: Cot 9) 'SzS Construction Threat to Storm Water Quality (Check Box) El MEDIUM 'LOW czcoB Page 1 of 1 REV02/16 STORM WATER POLLUTION PREVENTION NOTES ALL NECESSARY EQUIPMENT AND MATERIALS SHALL BE AVAILABLE ON SITE TO FACILITATE RAPID INSTALLATION OF EROSION AND SEDIMENT CONTROL BMPs WHEN RAIN IS EMINENT. THE OWNER/CONTRACTOR SHALL RESTORE ALL EROSION CONTROL DEVICES TO WORKING ORDER TO THE SATISFACTION OF THE CITY INSPECTOR AFTER EACH RUN—OFF PRODUCING RAINFALL. THE OWNER/CONTRACTOR SHALL INSTALL ADDITIONAL EROSION CONTROL MEASURES AS MAY BE REQUIRED BY THE CITY INSPECTOR DUE TO INCOMPLETE GRADING OPERATIONS OR UNFORESEEN CIRCUMSTANCES WHICH MAY ARISE. ALL REMOVABLE PROTECTIVE DEVICES SHALL BE IN PLACE AT THE END OF EACH WORKING DAY WHEN THE FIVE (5) DAY RAIN PROBABILITY FORECAST EXCEEDS FORTY PECENT (407.). SILT AND OTHER DEBRIS SHALL BE REMOVED AFTER EACH RAINFALL ALL GRAVEL BAGS SHALL CONTAIN 3/4 INCH MINIMUM AGGREGATE. ADEQUATE EROSION AND SEDIMENT CONTROL AND PERIMETER PROTECTION BEST MANAGEMENT PRACTICE MEASURES MUST BE INSTALLED AND MAINTAINED. THE CITY INSPECTOR SHALL HAVE THE AUTHORITY TO ALTER THIS PLAN DURING OR BEFORE CONSTRUCTION AS NEEDED TO ENSURE COMPLIANCE WITH CITY STORM WATER QUALITY REGULATIONS. OWNER'S CERTIFICATE: I UNDERSTAND AND ACKNOWLEDGE THAT I MUST: (1) IMPLEMENT BEST MANAGEMENT PRACTICES (BMPs) DURING CONSTRUCTION ACTIVITIES TO THE MAXIMUM EXTENT PRACTICABLE TO AVOID THE MOBILIZATION OF POLLUTANTS SUCH AS SEDIMENT AND TO AVOID THE EXPOSURE OF STORM WATER TO CONSTRUCTION RELATED POLLUTANTS; AND (2) ADHERE TO, AND AT ALL TIMES, COMPLY NTH THIS CITY APPROVED TIER 1 CONSTRUCTION SWPPP THROUGHOUT THE DURATION OF THE CONSTRUCTION ACTIVITIES UNTIL THE CONSTRUCTION WORK IS COMPLETE AND APPROVED BY THE CITY OF CARLSBAD. N\Au-• maitAxivo OWNER(S)/OWNER'S AG15NT NAME (PRINT) OWNER(S)OWNES...AE:'NT NAMr(NATURE) (D E-29 tbtyof PERMIT REPORT Carlsbad Revision iLiermi t Print Date: 05/28/2020 Permit No: PREV2019-0237 Job Address: 1 Legoland Dr Permit Type: BLDG-Permit Revision Work Class: Commercial Permit Revi5 Status: Closed - Finaled Parcel No: 2111000900 Applied: 11/08/2019 Valuation: $ 0.00 Lot #: - Issued: 12/05/2019 Occupancy Group: Project U: PermitFinal U Dwelling Units: Construction Type Close Out: 05/28/2020 Bedrooms: Inspector: Bathrooms: Orig. Plan Check #: CBC2019-0348 Final Plan Check #: Inspection: Project Title: Description: LEGOLAND (CROWN CASTLE): SHELTER ROTATED // PAD WAS RAISED//STRUCTURE SUPPORTED ON CMU WALL//. EXTERIOR STAIRS ADDED Applicant: Owner: MITCHELL ARCHITECTURE LEGOLAND CALIFORNIA LLC MICHELLE THURMAN 4883 Ronson Ct, N P0 Box 543185 C/O Property Tax Service Co San Diego, CA 92111-1812 DALLAS, TX 75354 858-650-3130 FEE AMOUNT BUILDING PLAN CHECK REVISION ADMIN FEE $35.00 MANUAL BLDG PLAN CHECK FEE . - $168.75 Total Fees: $ 203.75 Total Payments To Date: $ 203.75 Balance Due: $0.00 ) Building Division 1635 Faraday Avenue, Carlsbad CA 92008-7314 1 760-602-2700 1 760-602-8560 f I www.carlsbadca.gov Page 1 of 1 PLAN CHECK REVISION OR Development Services ('city of DEFERRED SUBMITTAL Building Division Carlsbad APPLICATION 1635 Faraday Avenue 760-602-2719 B-I 5 www.carlsbadca.gov Original Plan Check Number 0-13 C-2019 03 '-j P5 Plan Revision Number ??Vzo ej. 07_ Project Address - General Scope of Revision/Deferred Submittal: O()SC1 Oqf )nP,r .4iotr(. fk'kej. CONTACT INFORMATION: Name Auxar% I menez, Phone 858 - (oSD 330 Fax Address 93 1ôncôr c.. ce. r4 atySr DT eon Zip _9 7-11 I i1lL!.Thi*tII IM&I iii ra!ALr Original plans prepared by an architect or engineer, revisions must be signed & stamped by that person. 1. Elements revised: PS Plans DR Calculations El Soils El Energy El Other Describe revisions indetail IList page(s) where J is shown I M, MINN revision - Does this revision, in any way, alter the exterior of the project? . Yes El No Does this revision add ANY new floor area(s)? El Yes No Does this revision affect any fire related issues? El Yes N No Is this a complete set? El Yes No Signature Date 1635 Faraday Avenue, Carlsbad, CA 920l8 Ph: 760-602-2719 Fax: 760-602-8558 Email: building@carlsbadca.gov www.carlsbadca.gov EsGil A SAFEbuitttornpany DATE: 11-21-19 JURISDICTION: Citfrlibad 'I PLAN CHECK #.: CBC2019-0348 PREV-0237 SET: I c/APPLICANT fl PROJECT ADDRESS: One Legoland Dr. PROJECT NAME: PREV-2019-0237 proposed equipment shelter relocated to raised pad. The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's building codes. The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. Li The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. EJ The applicant's copy of the check list has been sent to: EsGil staff did advise the applicant that the plan check has been completed. Person contacted: Telephone #: Date contacted:1I1II6f (byT) Email: Mail Telephone Fax In Person LII REMARKS: By: Scott Humphrey Enclosures: EsGil 11-8-19 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858) 560-1576 [DO NOT PAY- THIS IS NOT ANINVOICE] VALUATION AND PLAN CHECK FEE JURISDICTION: City of Carlsbad PLAN CHECK #.: CBC2019-0348 PREV-0237 PREPARED BY: Scott Humphrey DATE: 11-21-19 BUILDING ADDRESS: One Legoland Dr. BUILDING OCCUPANCY: U BUILDING PORTION AREA (Sq. Ft.) Valuation Multiplier Reg. Mod. VALUE ($) Air Conditioning Fire Sprinklers TOTAL VALUE j 90 Jurisdiction Code 1cb JBy Ordinance Bldg. Permit Fee by Ordinance Plan Check Fee by Ordinance Type of Review: fl :omplete Review r E Repetitive Fee Other epeats Hourly F v . EsGil Fee r r r * •Based on hourly rate r--Structural Only I 1.51Hrs.I@* $90.0 0 I I $135.001 Comments: . Sheet of IVIL+ST TUL Direct Line: 619,370.9515 / Fax: 619.764.4079 / Email: llabrada@lamareng.com I STRUCTURAL CALCULATIONS PROJECT: o'IO s 209 BAD LEGOLAND CALIFORNIA RESOR 1r oF c,RLS BUt NODE HUB LEGOLAND DR. CARLSBAD SAN DIEGO, CA 92008 October 30, 2019 ri ft www.lamareng.com ToiPage 1 of (1? 217 Landis Avenue, Chula Vista, CA. 91910 '' Luis Labrada Project: Node HUB • 217 Landis Avenue LAMAR Date: 10/30/19 Chula Vista, CA 91910 INENGINEERING Engineer: M.R fl flflflnn P: 619-370-9515 www.lamareng.com Contents APPENDIX I. DESIGN RETAINING WALL ..........................................................................................................................3 APPENDIXII. GUADRAIL......................................................................................................................................................16 Page 2of17 Luis Labrada Project: Node HUB 217 Landis Avenue LAMAR Date: 10/30/19 Chula Vista, CA 91910 NUENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX I. DESIGN RETAINING WALL Page 3 of 17 Load Factors - Building Code Dead Load Live Load Earth, H Wind, W Seismic, E CBC 2016,ACl 1.200 1.600 1.600 1.000 1.000 Luis Labrada Title HUB RETAINING WALL I (H=6.3) Page: 1 LA MAR 217 Landis Avenue Job #: Dsgnr: M.R Date: 29 OCT 2019 IENGINEERING Chula Vista, CA 91910 Description.... Phone: (619) 370-9515 www.lamareng.com This Wall in File: K:Projects\20191LUlS LABRADALL-19-009 LegolandCalcst0-HUBrw.RPX Retainpro (C) 1987-2018, Build 11.18.07.31 License: KW-06057443 License To: GED Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14,ACl 530-13 Criteria Soil Data Retained Height = 6.30 It Allow Soil Bearing = 3,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Active Heel Pressure = 35.0 psf/ft Slope Behind Wall = 0.00 F . Height of Soil over Toe = 0.00 in = Water height over heel = 0.0 ft Passive Pressure = 350.0 psf/ft Soil Density, Heel = 110.00 pcf Soil Density, Toe = 110.00 pcf FootingilSoil Friction = 0.350 I Soil height to ignore I I for passive pressure = 0.00 in I I I Surcharge Loads I I Lateral Load Applied to Stem I lAdiacent I Footing Load Surcharge Over Heel = 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 Used for Sliding & Overturning I Axial Load Applied to Stem I Axial Dead Load = 0.0 lbs Axial Live Load = 0.0 lbs Axial Load Eccentricity = 0.0 in I Design Summary I Wall Stability Ratios Overturning = 1.97 OK Sliding = 1.51 OK Total Bearing Load = 3,209 lbs ...resultant ecc. = 9.96 in Lateral Load = 0.0 #/ft ...Height to Top = 0.00 It ...Height to Bottom = . 0.00 It Load Type = Wind (W) (Service Level) Wind on Exposed Stem = 0.0 psf (Service Level) Stem Construction • - Design Height Above Ftg ft= Wall Material Above "Ht" = Design Method = Thickness = Reber Size = Reber Spacing = Reber Placed at = Design Data fb/FB + fa/Fa = Total Force @ Section Service Level lbs = Strength Level lbs = Moment .... Actual Service Level ft-# = Strength Level ft-# Moment ..... Allowable Shear ..... Actual Service Level psi = Strength Level psi = Shear.....Allowable psi Anet (Masonry) in2 = Reber Depth 'd' in = Masonry Data Soil Pressure @ Toe = 2,129 psf OK Soil Pressure @ Heel = 0 psf OK Allowable = 3,500 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,980 psf ACI Factored @ Heel = 0 psf Footing Shear © Toe = 5.8 psi OK Footing Shear @ Heel = 5.3 psi OK Allowable = 75.0 psi Sliding Calcs Lateral Sliding Force = 1,205.6 lbs less 100% Passive Force = - 700.0 lbs less 100% Friction Force = - 1,123.3 lbs Added Force Reqd = 0.0 lbs OK ....for 1.5 Stability = 0.0 lbs OK #0jacent l-ooting LOaa = U.0 ID Footing Width = 0.00 ft Eccentricity = 0.00 in Wall to Fig CL Dist = 0.00 It Footing Type Line Load Base Above/Below Soil - at Back of Wall - 0.0 ft Poisson's Ratio = 0.300 Bottom Stem OK 0.00 Masonry ASD 8.00 #4 8.00 Center 0.901 694.6 1,458.6 1,618.2 7.6 45.2 91.50 3.75 I'm psi= 1,500 Fs psi = 20,000 Solid Grouting = Yes Vertical component of active lateral soil pressure IS Modular Ratio 'n' = 21.48 considered in the calculation of soil bearing pressures. lAlII INk* ..f 70 A v.a., vvcII It - r U.,J - Short Term Factor = 1.000 Equiv. Solid Thick. in = 7.60 Masonry Block Type = Medium Weight Masonry Design Method = ASD Concrete Data t'c psi= Fy psi Page 4of17 Page: 1 Luis Labrada Title HUB RETAINING WALL I (H6.3') Page: 2 L tk IV1I't R 217 Landis Avenue Job #: Dsgnr: M.R Date: 29 OCT 2019 ENGINEERING Chula Vista, CA 91910 Description.... Phone: (619) 370-9515 www.lamareng.com This Wall in File: K:Projects\2019\LUIS LABRADALL-19-009 LegoIand1Calcs10-HUBrw.RPX RetainPro (c) 1987-2018, Build 11.18.07.31 License: KW-06057443 Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14,ACI 530-13 License To: GED Footing Dimensions & Strengths Toe Width = 0.67 ft Heel Width = 3.00 Total Footing Width = 3.67 Footing Thickness = 24.00 in Key Width = 0.00 in Key Depth = 0.00 in Key Distance from Toe = 0.00 ft fc = 2,500 psi Fy = 40,000 psi Footing Concrete Density = 150.00 pd Min. As% = 0.0018 Cover @ Top 2.00 © Btm. 3.00 in I Footing Design Results • Toe Heel Factored Pressure = 2,980 0 psf Mu': Upward = 619 779 ft-# Mu': Downward = 121 3,707 ft-# Mu: Design = 498 2,928 ft-# Actual 1-Way Shear = 5.81 5.26 psi Allow 1-Way Shear = 40.00 40.00 psi Toe Reinforcing = None Specd Heel Reinforcing = None Specd Key Reinforcing = None Specd Other Acceptable Sizes & Spacings Toe: Not req'd: Mu <phi*5*lambda*sqrt(fc)*Sm Heel: Not req'd: Mu <phi5*lambda*sqrt(fc)*Sm Key: No key defined Min footing T&S reinf Area 1.90 1n2 Min footing T&S reinf Area per foot 0.52 in2 itt If one layer of horizontal bars: If two layers of horizontal bars: #4@ 4.63 in #4@ 9.26 in #5@ 7.18 in . #5@ 14.35 in #6@ 10.19 in #6@ 20.37 in I Summary of Overturning & Resisting Forces & Moments I OVERTURNING RESISTING..... Force Distance Moment Force Distance Moment Item lbs ft ft-# lbs ft ft-# Heel Active Pressure = 1,205.6 2.77 3,335.4 Soil Over Heel = 1,617.0 2.50 4,047.9 Surcharge over Heel = Sloped Soil Over Heel = Surcharge Over Toe = Surcharge Over Heel = Adjacent Footing Load = Adjacent Footing Load = Added Lateral Load = Axial Dead Load on Stem = Load @ Stem Above Soil = * Axial Live Load on Stem = = Soil Over Toe = Surcharge Over Toe = Total 1,205.6 O.T.M. 3,335.4 Stem Weight(s) = 491.4 1.00 493.0 Earth © Stem Transitions = = = Footing Weight = 1,101.0 1.84 2,020.3 Resisting/Overturning Ratio = 1.97 Key Weight = Vertical Loads used for Soil Pressure = 3,209.4 lbs Vert. Component = 3.67 Total = 3209.4 lbs R.M.0 6,561.3 * Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation. Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance. Vertical component of active lateral soil prqssure IS considered in the calculation of Overturning Resistance. Tilt I Horizontal Deflection at Ton of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Defi © Top of Wall (approximate only) 0.102 in The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil. Page 5of17 Page: 2 Luis Labrada Title HUB RETAINING WALL I (H=6.3') Page: 3 L 1k fV1Ik R 217 Landis Avenue Job #: Dsgnr: M.R Date: 29 OCT 2019 ENGINEERING Chula Vista, CA 91910 Description.... Phone: (619) 370-9515 www.lamareng.com This Wall in File: K:Projects2019\LUIS LABRADA\LL-19-009 Retalnpro(c) 1987-2018, Build 11.18.07.31 License : KW-06057443 Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14,ACI 530-13 8" wI 94t 8" Solid Grôüt y0ur I Page 6of17 Page: 3 A A A Luis Labrada Title HUB RETAINING WALL I (H=6.3) Page: 4 LA MAR i ic 217 Landis Avenue Job #: Dsgnr: M.R Date: 29 OCT 2019 INENCINEERING Chula Vista, CA 91910 Description.... Phone: (619) 370-9515 www.lamareng.com This Wall in File: K:Projects\2019\LUlS LABRADALL-19-009 LegolandCalcs\0-HUBrw.RPX Ketalnrro c) 1937-Z018. uuud 11.18.07.31 License: KW-06057443 Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14ACI 530-13 License To: GED 1206# Ce CL cc ('1 c.1 Page 7of17 Page: 4 Load Factors - Building Code Dead Load Live Load Earth, H Wind, W Seismic, E CBC 2016,ACI 1.200 1.600 1.600 1.000 1.000 1 L Iv1AR Luis Labrada 217 Landis Avenue INENGINEERING Chula Vista, CA 91910 Phone: (619) 370-9515 www.tamareng.com This Wall in File: K:\Projects2019\LUlS LABRADA11--19-009 Title HUB RETAINING WALL 2 (H2.83') Page: 1 Job #: Dsgnr: M.R Date: 29 OCT 2019 Description.... Criteria Retained Height = 4.20 It Wall height above soil = 0.00 ft Slope Behind Wall = 0.00 Height of Soil over Toe = 0.00 in Water height over heel = 0.0 ft I Surcharge Loads Surcharge Over Heel = 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 Used for Sliding & Overturning I Axial Load Applied to Stem I Axial Dead Load = 0.0 lbs Axial Live Load = 0.0 lbs Axial Load Eccentricity = 0.0 in [Design Summary Wall Stability Ratios Overturning = 1.61 OK Sliding = 1.84 OK Total Bearing Load = 1,532 lbs ...resultant ecc. = 8.36 in Cantilevered Retaining Wall ISoil Data Allow Soil Bearing = 3,500.0 psf Equivalent Fluid Pressure Method Active Heel Pressure = 35.0 psf/ft Passive Pressure = 350.0 psf/ft Soil Density, Heel = 110.00 pcf Soil Density, Toe = 110.00 pcf FootingilSoil Friction = 0.350 Soil height to ignore for passive pressure = 0.00 in Lateral Load Applied to Stem • Lateral Load = 0.0 #/ft ...Height to Top = 0.00 ft ...Height to Bottom = 0.00 ft Load Type = Wind (W) (Service Level) Wind on Exposed Stem = 0.0 psf (Service Level) Stem Construction I - Design Height Above Ftg ft = Wall Material Above 'HI" = Design Method = Thickness = Rebar Size = Rebar Spacing = Rebar Placed at = Design Data fb/FB + fa/Fa = Total Force @ Section Service Level lbs = Strength Level lbs = Moment. ...Actual Service Level ft-# = Strength Level ft-# Moment ..... Allowable = Shear ..... Actual Service Level psi = Strength Level psi = Shear.....Allowable psi = Anet (Masonry) in2 = Rebar Depth 'd' in = Masonry Data Code: CBC 2016,ACI 318-14,ACI 530-13 ajacent i-ooting Loaa = u.0 lo Footing Width = 0.00 ft Eccentricity = 0.00 in Wall to Ftg CL Dist = 0.00 ft Footing Type Line Load Base Above/Below Soil - at Back of Wall - 0.0 ft Poisson's Ratio = 0.300 Bottom Stem OK 0.00 Masonry ASD 8.00 #4 16.00 Center 0.515 308.7 432.2 839.5 3.4 44.6 91.50 3.75 Soil Pressure @ Toe = 1,846 psf OK Soil Pressure @ Heel = 0 psf OK Allowable = 3,500 psf Soil Pressure Less Than Allowable ACl Factored @ Toe = 2,585 psf ACI Factored @ Heel = 0 psf Footing Shear @ Toe = 5.0 psi OK Footing Shear @ Heel = 3.3 psi OK Allowable = 75.0 psi Sliding Calcs Lateral Sliding Force = 672.7 lbs less 100% Passive Force = - 700.0 lbs less 100% Friction Force = - 536.2 lbs Added Force Req'd = 0.0 lbs OK ....for 1.5 Stability = 0.0 lbs OK I'm psi = 1,500 Fs psi = 20,000 Solid Grouting = Yes Vertical component of active lateral soil pressure IS Modular Ratio 'n' = 21.48 considered in the calculation of soil bearing pressures. IN 11 - 70 A no . g p - Short Term Factor = 1.000 Equiv. Solid Thick. in= 7.60 Masonry Block Type = Medium Weight Masonry Design Method = ASD Concrete Data fc psi= Fy psi Page 8of17 Page: 1 10 Luis Labrada Title HUB RETAINING WALL 2 (H=2.83') Page: 2 Llk Nil R 217 Landis Avenue Job #: Dsgnr: M.R Date: 29 OCT 2019 INENGINEERING Chula Vista, CA 91910 Description.... Phone: (619) 370-9515 www.lamareng.com This Wall in File: K:\Projects\20191LLJIS LABRAOA\LL-19-009 LegolandCalcs\0-HUBrw.RPX RetalnPro (c) 1987-2018, Build 11.18.07.31 License: KW-06057443 Cañtilevered Retaining Wall : .. -- . nfl Code: CBC 2016,ACI 318-14,ACI 530-13 I Footing Dimensions & Strengths I Toe Width = 0.85 ft Heel Width = 1.65 Total Footing Width = 2.50 Footing Thickness = 24.00 in Key Width = 0.00 in Key Depth = 0.00 in Key Distance from Toe = 0.00 ft f'c = 2,500 psi Fy = 40,000 psi Footing Concrete Density = 150.00 pcf Min. As% = 0.0018 Cover @ Top 2.00 @ Btm. 3.00 in I Footing Design Results • Toe Heel Factored Pressure = 2,585 0 psf Mu': Upward = 774 1 ft-# Mu': Downward = 181 592 ft-# Mu: Design = 593 591 ft-# Actual 1-Way Shear = 5.03 3.35 psi Allow 1-Way Shear = 40.00 40.00 psi Toe Reinforcing = None Spec'd Heel Reinforcing = None Spec'd Key Reinforcing = None Spec'd Other Acceptable Sizes & Spacings Toe: Not req'd: Mu cphi*5*lambda*sqrt(Ic)*Sm Heel: Not req'd: Mu <phi*5*lambda*sqrt(fc)*Sm Key: No key defined Min footing T&S reinf Area 1.30 1n2 Min footing T&S reinf Area per foot 0.52 in2 itt If one layer of horizontal bars: If two layers of horizontal bars: #4@ 4.63 in #4@ 9.26 in #5@ 7.18 in #5@ 14.35 in #6@ 10.19 in #6@ 20.37 in Summary of Overturning & Resisting Forces & Moments Total 672.7 O.T.M. 1,390.2 Resisting/Overturning Ratio = 1.61 Vertical Loads used for Soil Pressure = 1,531.9 lbs Force Distance Moment lbs ft ft-# Soil Over Heel = 4543 2.01 912.4 Sloped Soil Over Heel = Surcharge Over Heel = Adjacent Footing Load Axial Dead Load on Stem = * Axial Live Load on Stem = Soil Over Toe = Surcharge Over Toe = Stem .Weight(s) = 327.6 1.18 387.7 Earth @ Stem Transitions = Footing Weight = 750.0 1.25 937.5 Key Weight = Vert. Component 2.50 Total = 1,531.9 lbs R.M. 2,237.5 * Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation. Item - Heel Active Pressure = Surcharge over Heel = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = Force Distance Moment lbs ft ft-# 672.7 2.07 1,390.2 Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance. Tilt Horizontal Deflection at Top of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Defi @ Top of Wall (approximate only) 0.086 in The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil. Page 9of17 Page: 2 Luis Labrada Title HUB RETAINING WALL 2 (H=2.83) Page: 3 1. i IV1/k R 217 Landis Avenue Job #: Dsgnr: M.R Date: 29 OCT 2019 dENGINEERING Chula Vista, CA 91910 Description.... Phone: (619) 370-9515 www.lamareng.com This Wallin File: K:\Proiects2019\LUlS LABRADALL-19-009 LeaoIandCaIcs0-HUBrwRPX RetalnPro (c) 1987-2018, Build License: KW-06057"3 11.18.07.31 -- Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14,ACI 530-13 License To: GED 8'w/#4@16" Solid Grout Page 10 of 17 Page: 3 Luis Labrada Title HUB RETAINING WALL 2 (H=2.83') Page: 4 L/k FI1 R 217 Landis Avenue Job #: Dsgnr: M.R Date: 29 OCT 2019 IENGINEERING Chula Vista, CA 91910 Description.... Phone: (619) 370-9515 www.lamareng.com This Wall in File: K:\Projects\2019\LUIS LABRADA\LL-19-009 Legoland\Catcs0-HUB1rw.RPX RetainPro (c) 1987-2018, Build 11.18.07.31 License: KW.06057443 Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14,ACI 530-13 License To: GED Pp= 7000#/. 673# Page 11 of 17 Page: 4 Load Factors - Building Code Dead Load Live Load Earth, H Wind, W Seismic, E CBC 2016,ACl 1.200 1.600 1.600 1.000 1.000 Luis Labrada Title HUB RETAINING WALL 2 (H=2.83') Page: 1 k LA 1V1/k R 217 Landis Avenue Job #: Dsgnr: M.R Date: 29 OCT 2019 ENGINEERING Chula Vista, CA 91910 Description.... Phone: (619) 370-9515 www.lamareng.com This Wall in File: Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14,ACI 530-13 (Criteria Retained Height = 2.92 ft Wall height above soil = 0.00 ft Slope Behind Wall = 0.00 Height of Soil over Toe = 0.00 in Water height over heel = 0.0 ft Surcharge Loads Surcharge Over Heel = 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 Used for Sliding & Overturning [Axial Load Applied to Stem j Axial Dead Load = 0.0 lbs Axial Live Load = 0.0 lbs Axial Load Eccentricity = 0.0 in I Design Summary I Wall Stability Ratios Overturning = 1.71 OK Sliding = 2.52 OK Total Bearing Load = 1,047 lbs ...resultant ecc. = 6.35 in ISoil Data I Allow Soil Bearing = 3,500.0 psf Equivalent Fluid Pressure Method Active Heel Pressure = 35.0 osf/ft Passive Pressure Soil Density, Heel Soil Density, Toe FootingISoil Friction Soil height to ignore for passive pressure Lateral Load Applied to Stem • Lateral Load = 0.0 #Ift ...Height to Top = 0.00 ft ...Height to Bottom = 0.00 ft Load Type = Wind (W) (Service Level) Wind on Exposed Stem = 0.0 psf (Service Level) Stem Construction • - Design Height Above Ftg ft= Wall Material Above "Ht" = Design Method = Thickness = Rebar Size = Rebar Spacing = Rebar Placed at = Design Data fb/FB + fa/Fa = Total Force @ Section Service Level lbs = Strength Level lbs = Moment .... Actual Service Level ft-# = Strength Level ft-# = Moment ..... Allowable = Shear ..... Actual Service Level psi = Strength Level psi = Shear.....Allowable psi = Anet (Masonry) in2 = Rebar Depth 'd' in = Masonry Data Soil Pressure @ Toe = 1,482 psf OK Soil Pressure @ Heel = 0 psf OK Allowable = 3,500 psf Soil Pressure Less Than Allowable ACl Factored @ Toe = 2,075 psf ACl Factored @ Heel = 0 psf Footing Shear © Toe = 3.0 psi OK Footing Shear@ Heel = 1.9 psi OK Allowable = 75.0 psi Sliding Caics Lateral Sliding Force = 423.6 lbs less 100% Passive Force = - 700.0 lbs less 100% Friction Force = - 366.5 lbs Added Force Reqd = 0.0 lbs OK ....for 1.5 Stability = 0.0 lbs OK I Adjacent Footing Load Adjacent Footing Load = 0.0 lbs Footing Width = 0.00 ft Eccentricity = 0.00 in Wall to Fig CL Dist = 0.00 it Footing Type Line Load Base Above/Below Soil - at Back of Wall - 0.0 ft Poisson's Ratio = 0.300 Bottom Stem OK 0.00 Masonry ASD 8.00 #4 16.00 Center 0.173 149.2 145.2 839.5 1.6 44.3 91.50 3.75 fm psi = 1,500 Fs psi = 20,000 Solid Grouting = Yes Vertical component of active lateral soil pressure IS Modular Ratio 'n' = 21.48 considered in the calculation of soil bearing pressures. 70 fl II JI - I U.IJ - Short Term Factor = 1.000 Equiv. Solid Thick, in = 7.60 Masonry Block Type = Medium Weight Masonry Design Method = ASD Concrete Data fc psi= Fy psi Page 12 of 17 Page: 1 LAMAR IMENGINEERING This Wall in File: Luis Labrada Title HUB RETAINING WALL 2 (H=2.83) 217 Landis Avenue Job #: Dsgnr: M.R Chula Vista, CA 91910 Description.... Phone: (619) 370-9515 www.lamareng.com 20191UIS LABRADALL-19-009 LeqoIand1Calcs0-HUB\rw.RPX Page: 2 Date: 29 OCT 2019 Cantilevered Retaining Wall Code: CBC 2016,ACl 318-14,ACl 530-13 Footing Dimensions & Strengths Toe Width = 0.65 ft Heel Width = 1.35 Total Footing Width = 2.00 Footing Thickness = 24.00 in Key Width = 0.00 in Key Depth = 0.00 in Key Distance from Toe = 0.00 ft ft = 2,500 psi Fy = 40,000 psi Footing Concrete Density = 150.00 pcf Mm. As % = 0.0018 Cover @ Top 2.00 @ Btm.= 3.00 in Footing Design Results IQ? Factored Pressure = 2,075 0 psI Mu': Upward = 371 0 ft-# Mu': Downward = 115 259 ft-# Mu: Design = 256 259 ft-# Actual 1-Way Shear = 3.05 1.90 psi Allow 1-Way Shear = 40.00 40.00 psi Toe Reinforcing = None Spec'd Heel Reinforcing = None Spec'd Key Reinforcing = None Spec'd Other Acceptable Sizes & Spacings Toe: Not req'd: Mu <phi*5*lambda*sqrt(fc)*Sm Heel: Not req'd: Mu <phi*5*lambda*sqrt(fc)*Sm Key: No key defined Min footing T&S reinf Area 1.04 in2 Min footing T&S reinf Area per foot 0.52 in2 itt If one layer of horizontal bars: If two layers of horizontal bars: #4@ 4.63 in #4@ 9.26 in #5@ 7.18 in #5@ 14.35 in #6@ 10.19 in #6@ 20.37 in I Summary of Overturning & Resisting Forces & Moments I OVERTURNING..... Force Distance Moment Item - lbs ft ft-# Heel Active Pressure = 423.6 1.64 694.7 Surcharge over Heel = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = Total 423.6 O.T.M. 694.7 Resisting/Overturning Ratio = 1.71 Vertical Loads used for Soil Pressure = 1,047.2 lbs Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance. Force Distance Moment lbs ft ft-# Soil Over Heel = 219.5 1.66 3640 Sloped Soil Over Heel = Surcharge Over Heel = Adjacent Footing Load = Axial Dead Load on Stem = * Axial Live Load on Stem = Soil Over Toe = Surcharge Over Toe = Stem Weight(s) = 227.8 0.98 224.0 Earth @ Stem Transitions = Footing Weight = 600.0 1.00 600.0 Key Weight = Vert. Component = 2.00 Total= 1,047.2 lbs R.M.0 1,187.9 * Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation. ITilt Horizontal Deflection at Ton of Wall due to settlement of soil (Deflection due to wall bending, not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Dell @ Top of Wall (approximate only) 0.060 in The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe. because the wall would then tend to rotate into the retained soil. Page 13 of 17 Page: 2 Luis Labrada Title HUB RETAINING WALL 2 (H2.83') Page: 3 LA MAR I' 217 Landis Avenue Job #: Dsgnr: M.R Date: 29 OCT 2019 INENGINEERING Chula Vista, CA 91910 Description.... Phone: (619) 370-9515 www.lamareng.com This Wall in File: K:\Projects\2019\1.1.1IS LABRADALL-19-009 Leqoland\Calcs\O-HUBrw.RPX c) 1557-zulS build 11.18.0731 License: KW.06057443 Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14,ACI 530-13 License To: GED 8"w/#4@ 16 Sbid Grout Page 14 of 17 Page: 3 'LAMAR IENGINEERING This Wall in File: Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 Phone: (619) 370-9515 www.lamareng.com 2019\LIJIS LABRADALL-19-009 Title HUB RETAINING WALL 2 (H:2.83') Page: 4 Job #: Dsgnr: M.R Date: 29 OCT 2019 Description.... Retalnpro(c) 1987-2018, Build 11.18.07.31 License: KW-06057443 Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14,ACI 530-13 License To: GED Pp= 700.00 424# CL N CD Page 15 of 17 Page: 4 Luis Labrada 217 Landis Avenue Li V1Ik R Project: Node HUB Date: 10/30/19 Chula Vista, CA 91910 INENGINEERING Engineer: M.R P: 619-370-9515 www.lamareng.com APPENDIX II. GUADRAIL Page 16 of 17 Luis Labrada 217 Landis Avenue Chula Vista, CA 91910 P: 619.370-9515 www.lamareng.com LAMAR IENGINEERING Project: HUB Date: 10/31/2019 Engineer: M.R Guard Post Spacing =) 3 lFt P P= 200 ILbs. Height =L42 jln. H Moment = M = 200 Lbs. * 42 In. = 8400 In.-Lbs. -- I Use = I 2" x 2" x 1/8" Thk. Tube (36ksi) Section Modulus (S) = ( 21n.*2In.*2In./6)(1.75In.* 1.75 ln.*1.75 In./6) = 0.44 In? Bending Stress = M/S = 8400 In.-Lbs. I 0.4411 In.3 = 19043 Psi. Allowable Bending Stress = 0.66 Lbs.*36000 Psi. = 23760 Psi. I 19043 Psi. (Calc.) 23760 Psi. Allowable OK SIZE FILLET WELD @ BASE I Use = I 118 I" fillet I Area Aw = 0.707 * 0.125 In. = 0.09 In./in. Weld Section Modulus = (b*d) + (d2/3) = 5.33 In.' f = 8400 In.-Lbs. I 5.33 In2. = 1576 On. Shear Stress = f/Aw = 1576 On. /0.09 In/In. = 17833 Psi. Allowable Tension Stress = Base Metal = 30000 Psi. I 17833 Psi. (Caic.) < 30000 Psi. Allowable I OK CONCRETE ATTACHMENT Bolt Uplift = M / (d*N) = .-Lbs. I ( 3 In. *2 ) = 1400 d = dist. between bolts = [3.00 ] In. N = number of bolts = In. Use = [112" Dia. SUM PPAB4 ANCHOR BOLT1 Capacity Capacity = L 4270 ] Lbs 1400 Uplift (calc) 4270 Uplift Allowable L OK ] Page 17 of 17