Loading...
HomeMy WebLinkAbout1 LEGOLAND DR; STRUCT; PC2018-0050; Permit (4)( PC2018-0050 l..LEGOLAND, DR • STRUCTURAL CALCS 4 OF4 r (b.. 5 SE 1IfIIIII4lIEfl 2:. Dfihlet br' Rweldbr := 4D. min(Druiiet br, Dfihlet br max) (Lweld—br - 16 - J Brace Yielding: Tybr := FYbr A9br Tension Rupture of the Brace with Flange Shear Lag: Bbr2+2BbrHbr 1' Tr := Or. FUbrfAgbr - 2 (usset • 0.125). t_nmbrl.[1 - 4(Bbr+Hbr) II Lweldbr Basic Geometry Whitmore Caics Gusset Plate Limit Checks LI = 9.772 L2=6641 0= 7.061 0.65 ( Lunbraced := max (0, LI+L2+L3 usset Plate Critical Stress JVhitmore Section: Whitmore Section in Gusset: Wwhjt = 6 inches w, = 6 inches IPnc := Ic iff(Fcr = "NA" , Fygusset, Fcr) (ww tgusset) 'lI)Pflt := t• FYgusset (w. tgusset) Uniform Force Method Gusset to Column/Base Plate Weld Gusset Welds: Weld to Base Plate: ( (tl'r 0.6 FUgusset tgusset dr 0.6FUbasej tbaseJIJ) Dmax bp := ceil1.min 2. D,,, Do Dminbp := min(ceil(min(tgusset,tbase I).4 + I),5) 0req_bp := ceil(max(I .25 Dave_c_bp, 1.25 0ave_t_bp 0peak_c_bp' Dpeak_t_bp)) 0fihlet_bp := max(Dre bp, Dmin bp q Dminusebp) (Dreq_bp) 2 D, tgusset_min_bp := 4r 0.6 Fugusset Date: 11/13/2018 IRweId_br = 66- kips ITybr = 145.7 kips fTrbr = 87.2 kips 1 ICheckwhitmore Lunbraced = 7.82 inches Whitmore Section in Column: Wwhjt - w, = 0 inches F*Pnc = 65.4 kips = 73.5 kips 0max_bp = 4 /16ths in Fillet Weld Dmin bp = 3 /I6ths in Fillet Weld Dreqjp = I /I6ths in Fillet Weld IDfilIet bp = 3 I16thS in Fillet Weld tgussemin_bp = 0.11 inches HSS Bracing to Column Base Plate VBF1-I.xmcd L/0Lf Date: 11/13/2018 Weld to Column: t1 := if(Col_face = I , tf 1, tw i) (,or' 0.6. FUgusset tgusset $r 0.6Fu 0i t 01i Dmaxcoi := ceilmin 2- Dip D J) Dm,n_coi := min(ceil(min(tgusset,ti).4 + 1),5) Dreqcoi := ceil (max(1 .25 °ave_c_col' 1.25 Dave_t_coi, DpeakcI, DpeaktI)) Diiett := max(Drecoi, Dmin coI' Dmjnuse i) (Dreq_coi) 2 D* tgusset min cal 0.6 FUgusset Extension Plate J Column Web Checks Under Gusset (] Connection Checks ummary of Checks Dmaxcai = 4 /16ths in Fillet Weld Dmjncai = 3 /16ths in Fillet Weld Dreqcoi = I /l6ths in Fillet Weld tgusset..min_col = 0.11 inches Output Summary I br = 4 .I16ths Fillet Weld I (weld at brace to gusset) Itweld_br_input F 4 inches (weld lap at brace to gusset) tBase_platelength = 8.5 inchej (base plate length from centerline of column) ISetbackbr = 8.981 inches (brace offset from workpoint) IVgusset = 11.625 inches (vertical height of gusset) IDfihleLbp = 3 /16ths in Fillet Weld I(weld at gusset to base plate) lDfihlet_ãol = 3 /16ths in Fillet Weld (weld at gusset to column) HSS Bracing to Column Base Plate VBF1-1.xmcd S te i n SiE 13 If a IlEt IF. Is HSS Brace to WF Beam Chevron V-B,aöe Configuration USTBOXES FOR SHAPES AISC Code I LRFDIJ Left HSS Brace Information: Size: HSS3-1/2X3-1/2)iJ : 14 kips Grade: A500B [pi:= 14 kips Noffu 44- deg Date: 11/13/2018 AISC 14th Ed. Brace to Gusset Weld: Weld Size: Lrille I := 4 /16ths Fillet Weld i Brace Lap (Weld Length): Ed_Jjput := 4 inches Right HSS Brace Information: - Size: HSS3-1/2X3-1I2)c1J —14 kips Grade: A500B_U I!pr := 14 kips ~Ioackjr Brace to Gusset Weld: Weld Size: := 4716ths FillFWeld 1 Brace Lap (Weld Length): jLwejMjrjnput := 4incIi] Gusset Plate Information: Thickness: jt~wset := in J Grade: A36 Clearances: Vciear : 2 1Iar := Gusset Location: [ Safety Factors j Section Data Left Brace Limit Checks Brace to Gusset Weld: D1,= 1.392 WF Beam Information: Size: Grade: ( (4'r O.6FUbr t_dSbr i 'I'r O.6FUgusset tussetjJ Dflhletbrlmax : ceilI¼mint. D* 2D4, Dminbrl := min(ceil(min(tgusset,t_dsbr ,).4 + 1),5) Dfihletbrlmax = 4 Dmin_brj = 3 /16ths Fillet Weld /16ths Fillet Weld 11 HSS Chevron Bracing - VBFI-2 (Lower).xmcd 9SIS I EalI scesuii Date: 11/13/2018 LweldbrJ := max[Hbr I' 1-weld_brJinput, ceil1" max(Pteni, Pcompi) 2_DfihIet_br_I'8].!] 111 II_weld_brJ =4inches min(Dfihlet br I, Dfihletbrlmax) 16 •) ] 8] 2. Dgt I br " Rweldbrl := 4D• min(Dfihlet bri, Dfihlet brlmax) (L-eld—br—I 16 -) Brace Yielding: Tybri := 1)• FYbr i A9brl TensionRuptureof the Brace with FlangeShear Lag: II Trr i rFubrJ[[AgbrJ_ 2(tgusset + 0.125)t_dSbrJ 4.(Bbr l+Hbr l)- [1 Bbrj+2BbrIHbr m Lweldbr l RightBraceLimitChecks Braceto Gusset Weld: " 1'lir O.6FUbr r t_dSbr r 'l'r O.6FUgusset tgusset 0fihletbrrmax ceilmin( D, -, 2D1, [Rweldbr l=78kips ] ITybrj = 145.7 kips 1 ITrbr I = 94.4 kips Dfihletbrrmax = 4 /16thS Fillet Weld Dminbrr := min(ceil(min(tgusset, t_..dSbr r).4 + 1),5) °min_br_r = 3 /16ths Fillet Weld Lweld_br_r := max[Hbr , r max(Pten_r, Pcomp_r) 2 °fihlet br_r'81 ii [Lweldbrr =4 inches Lweld_br_r_input, ceilft4D min(Dfihlet br.r, Drillet_br_r_max) + 16 ) ] 8] ( 2Dfihlet br Rweldbrr := 4D.i,ç min(Dnijet br r. Dflhlet brrmax) LweId brr - 16 - Brace Yielding: Tybrr := FYbr r A9brr Tension Rupture of the Bracewith Flange Shear Lag: T rr := *rFUbrf[[A9brJ_ 2(tgusset + 0. 125) r] 4.(Bbr fl - Bbr 2+2Bbrr Hbrr l.+Hbrr)- Lweldbrr P weId_br...r =78 Pips j lTybr.j=145.7kips ITrbLr =94.4kips [El Basic Geometry GussetPlateLimitChecks Setback1 = 13.993 inches Setbackr = 13.993 inches Hgusset = 29 inches Vgusset = 8.125 inches Whitmore Section atBraces. [9 Whitmore Calcs— HSS Chevron Bracing VBF1-2 (Lower).xmcd Date: 11/13/2018 S E UéI IlILUCIi Kgusset := 1.2 Li = 4.47 inches Lu_r = 4.47 inches Gusset Critical Stress Determination IPnc_i := t if(Li = 0, FYgusset, Fcr_t) (wwg rtgusset + WwbItWbeam) Pn1 = 87 kips tI)y Fygusset (wwg i. tgusset + Wwb J twbeam) Pni = 99 kips tl)Pflc_r l,c. f(Lu_r = 0, FYgusset, Fcrr) (wwg_r tgusset + Wwb_r twbeam) 1J)PflCr = 87 kips 'tkPnt_r := tl)y FYgusset (wwg_r tgusset + Wwb_r twbeam) Ptr = 99 kips Gusset to Beam Interface: VLC PcompjcoS(OloadJ) VL C = 10.071 Kips V := P mp_r cos (0Ioad_r) Vr_c = 10.071 Kips. HL C : Pr HIHL C = 9.725 Kips Hr_c : PmprSifl(0Ioadr) Hr_c = 9.725 Kips VLI := Pten JCOS(eIoadJ) VLt = 10.071 Kips Vr_t := Pten r COS (6loadr) Vr_t = 10.071 Kips Hl—t:= Pten 1SIfl(6 oadJ) HLt = 9.725 Kips Hr—t:= Pten rsifl(Otoad r) Hr_t = 9.725 Kips dbeam Hgussett I Mpiatei := (Hi_ + Hr_t). 2 + (Vr_t - Vi_c)(Hgusset_t_ 2 Mpiatei = 133.235 in-kips s I __ MpIate2 := —(Hr_c + H1) 2 dbeam + (v1 _ Vrc) Hguset) (Hgusse~_I - 2 I MpIate2 = 133.235 in-kips Mpiate := max(Mppatei , Mpiate ) Mpiate = 133.235 in-kips Gusset Plate Vertical Shear: R9 _ := 0.6 FYgusset tgussetVgusset R95 = 65.813 kips Weld at Gusset to Beam := max(HL C + Hr t, Hr + HLt) fv = 0.671 k/in gusset Gusset to Beam Weld Determination Dreq max(Dpeak, 1.25. min(Dave, Dpeak)) ("I'r 0.6• Fugusset tgusset 'I'r 0.6 Fubeam beam Dmax := mint. 2•D, ' D, J Dmin := min(ceil(min(tgusset, ffbeam)4 + 1),5) Dfihlet := max(ceil(max(Dreq)), Dmin '4) Dreq = 0.4 /16ths Fillet Weld Dmax = 3.5 /16ths in Fillet Weld Dmin = 3 /16ths in Fillet Weld Dfihlet = 4 /16ths in Fillet Weld HSS Chevron Bracing VBF1-2 (Lower).xmcd 'SiSiE I'raEN SUt1 £EIN!tII Date: 11/13/2018 (Dreq)2 D tgussetmin := 'l'r 0.6. FUgusset tgussetmin = 0.04 inches EEl Beam Web Checks [El Connection Checks Summary of Checks Output Summary Left Brace Information: l0fllleLbrJ = 4 /16ths Fillet Weld (weld at left brace to gusset) 11-weld brlinput = 4 inches (weld lap at left brace to gusset) Isetbacki = 13.993 inches (left brace offset from workpoint) Right Brace Information: lDfillet br r = 4 /16ths Fillet Weld I (weld at right brace to gusset) I LW brrinput = 4 inches (weld lap at right brace to gusset) ISetbackr = 13.993 inches (right brace offset from workpoint) Gusset Plate Information: Hgusset = 29 inches 1 (length of gusset) [Vgusset = 8.125 inches (vertical height of gusset) IDfihlet = 4 /16ths in Fillet Weld] (weld at gusset to beam) HSS Chevron Bracing VBFI-2 (Lower).xmcd 'SiSiE Date: 11/13/2018 31t4N SUU E 96 IIIIIi HSS Brace to WF Beam Chevron V-Brace Configuration E USTBOXES FOR SHAPES AISC Code I E_1J Left HSS Brace Information: Size: Grade: [AJ AISC 14th Ed. 1PCOMpj:= 53 kips1 47.de Brace to Gusset Weld: Weld Size: etbrI: 4 /16ths Fillet Weld Brace Lap (Weld Length): [brIiflput :=4inche1 Right HSS Brace Information: Size: - HSS34/2X3-1/2)J := 53 kips _] Grade: A500B 53 kips] j r :=47deg Brace to Gusset Weld: Weld Size: jetbrr := 4 /16ths Fillet Weld 1 Brace Lap (Weld Length): db.Jnput := 4 inches Gusset Plate Information: Thickness: gusset in 1 Grade: I A31 Clearances: Vdear :=2 I1ear =2 Gusset Location: I AboveJ [El Safety Factors [El Section Data Left Brace Limit Checks Brace to Gusset Weld: 1.392 WF Beam Information: Size: W14X43 Grade:Fr~-~oL1 I' 'l)r°.6FUtr rt_dSbr I lrO.6FUgussertgusseT Dfihletbr l max := ceII(mIn( D1 -, 2D 0fihlet..brJ_max = 4 /16ths Fillet Weld DminbrJ := min(ceil(min(tgus$et,t_dsbr ,).4 + 1),5) Dmin_brJ = 3 /16ths Fillet Weld HSS Chevron Bracing VBF1-2 (Upper).xmcd 'SiSiE s3raIu 51C11 EII2LI.I Date: 11/13/2018 LweldbrJ := max[Hbr I, bri input' ceill( max(Pten J, Pcompi) 2 Dfihlet brl).8]- j] 1lweId_brJ =4 inches L4D min(Dglet br I, Dgletbr l max) 16 2 Dfihlet br I" Rweldbrl := 4D• min(Dfih,et brIe Dfihlet brlmag) (Lweld bri — 16 -) Brace Yielding: Tybri := 1)• FYbr I A9brl Tension RuDture of the Brace with Flanue Shear Lao: TrbrJ := FUbr r[[A9br i - 2(tgusset + O.125)t_dSbr11 BbrI2+2BbrJHbrJ 4(Bbr l+Hbr l) - .0 Lweldbrl Right Brace Limit Checks Braceto Gusset Weld: Dflhletbrrmax := ceil(min(*r 0.6FUbr r t_dSbrr I r_O.6Fugusset t9usset)) Dp 2D1, IRweId_brJ =78kips ITybrJ =145.7kips ITrbrj =94.4kips 1 Dfihletbrrmax = 4 I16ths Fillet Weld °min_br_r := min(ceil(min(tgusset, t_dSbr 4 + 1),5) Dminbrr = 3 /16ths Fillet Weld Lweldbrr := max[Hbr r Lweld brrinput ceil[(_max.(Ptenr,Pcomp_r) 2 °fihlet br r' ]i] I1_weld_br_r =4inches 4D• min(Dfihlet br r Dfihlet brrmax) + 16 - 2. Dfihlet br Rweldbrr := 4D min(Diiet br r' Dfihlet brrmax) (Lweld brr — 16 —J Brace Yielding: Tybrr := $• FYbr r TensionRuptureof the Brace with FlangeShear Lag: IRweIdbrr =78k[ps ] Tybrr =145.7 kips I Trr 4'r FUbrr [Agbrr — 2 (tgusset + 0.125). t_dsbrr} I - Bbr r 2+2Bbr rHbr r 4.(Bbr rfHbrr) Lweld br r ITrbrj =94.4kipi j Basic Geometry GussetPlateLimitChecks Setback1 = 14.853 inches Setbackr = 14.853 inches Hgusset = 31.5 inches Vgusset = 8.125 inches WhitmoreSectionatBraces: EEl WhitmoreCaics HSS Chevron Bracing VBF1-2 (Upper).xmcd Date: 11/13/2018 Sol] [gilts I;!t £IELIi Li = 4.809 inches Lur = 4.809 inches Gusset Critical Stress Determination := 'i. if(L 1 = 0, Fygusset, Fcr_i). (wwg_i tgusset + wwb_I1Wbeam) I)Pnt_i := tl)y Fygusset ( Wwg_1 tgusset + Wwb_I tWbeam) := if(Lu_r = 0, Fygusset, Fcr r)(Wwg_rtgusset + wwb_rtwbeam) tl)Pflt_r := tly. FYgusset (wwg_r tgusset + Wwb_r tWbeam) Gusset to Beam Interface: VL C := PmpJ COS (0IoadJ). VL C = 36.146 Kips Vr — c:= P mprCOS(0Ioad r) Hl-c:= Hl—c := Pc0mpl*Sifl(0load1) HL C = 38.762 Kips Hr-c:= Hr—c:= PmprSin(0loadr) Weld at Gusset to Beam VLt := ten_r cos(010ad,) VLt = 36.146 Kips Vr_t Pten r cos(9loadr) Hit PtenrSifl(0loadl) Hit = 38.762 Kips Hr -t:= PtenrSin(010a0r) Hgusset ______ I Mpiatei := (Hi c + Hrt) 2 'beam + (Vr_t - Vi_c){Hgusset_i_ 2 )I Mpiate2 := _(Hrc + HLt) dbeam + (V1 Vrc)-(H Hgusset'i _ gusset —I 2 _ 2 J Mpiate := max(Mpiatei , Mpiate) Gusset Plate Vertical Shear: R95_ := 0.6 Fygusset tgusset, Vgusset = 85 kips 4,Pnt i = 99 kips = 85 kips Pnt r = 99 kips Vrc = 36.146 Kips Hrc = 38.762 Kips Vr t = 36.146 Kips Hr t = 38.762 Kips Mpiatei = 531.036 in-kips Mplate2 = 531.036 in-kips Mpiate = 531.036 in-kips = 65.813 kips max(HL C + Hr t, Hr _c + HLt) Hgusset EEl Gusset to Beam Weld Determination Dreq := max(Dpeak, 1.25 min(Daye, Dpeak)) Dmax := min "1r 0.6 FUgusset tgusset l'r 0.6 FUbeam tfbeamj ( 2. D ' DA, Dmjn := min(ceil(min(tgusset, ffbeam)4 + 1),5) Dfihlet := max(ceil(max(Dreq)), Dmjn '4) = 2.461 k/in Dreq = 1.3 /16ths Fillet Weld Dmax = 3.5 /16ths in Fillet Weld Dmin = 3 /16ths in Fillet Weld °fihlet = 4 /16ths in Fillet Weld HSS Chevron Bracing VBF1-2 (Upper).xmcd SiS'E IFI 5ItEL [IS INEII Date: 11/13/2018 (Drea)2 D tgusset_min := 0.6. FUgusset tgussetjflin = 0.14 inches Beam Web Checks [] Connection Checks Summary of Checks Output Summary Left Brace Information: IDr'uet..bU =i 4 /16ths Fillet Weld (weld at left brace to gusset) ILweld brlinput .4 .inches (weld lap at left brace to gusset) Setback, 14.853 inches 7 (left brace offset from workpoint) Right Brace Information: It)fihleLbLr = 4 /16ths Fillet Weld . (weld at right brace to gusset) IId_buinput = 4 inches (weld lap at right brace to gusset) ISetbackr = 14.853 iñchès ] (right brace offset from workpoint) Gusset Plate Information: fHgusset = 31.5 inches ] (length of gusset) lVgusiet = 8.125 inches 1 (vertical height of gusset) IDfihIet =4 /16ths in Fillet Weld 1 (weld at gusset to beam) HSS Chevron Bracing VBF1-2 (Upper).xmcd (O S I SIE FIItUS4I 12/17/2018 HSS Brace - WF Beam - WF Column Rev.: 0 Ref: AISC Specification for Structural Steel Buildings (ANSI/AISC 360-10) By: KLM Load and Resistance Factor Design (LRFD) Job: Legoland Connection ID: VBF1-3 Job Number: 18-214 I Design OKI Beam to Càlumn Connection Beam Size: W14x43 ASTM Designation: A992 Beam Offset = 0.5 in Clip Angle Size: L3x3x3/8 ASTM Designation: A36 Column Size: W10x33 ASTM Designation: A992 Connection to: Web (Opposing Conx at Web) Shared Rows = Bolt Size: 0.75 Bolt Rows = ASTM Designation: A325 Vertical Spacing = Connection Type: N, Snug-Tightened Vertical Edge = Hole Type: Short Slots, Transverse Loading Bolt Gage = Surface Class: Not Applicable Si = Weld, 0= Fexx= 3 3 3 in 1.5 in 4 in 3.5 in 0.1875 in 70 ksi (J2-4) Beam End Reactions Shear= 30 k Axial = 38 k (transferred to opposing beam) Forces due to Brace Tension Forces due to Brace Compression Vb = 48.8 k Vb = 11.3 k Hc = 38.0 k Hc = 38.0 k Bolt Strength/ Prying Analysis Bolt Strength / Prying Analysis V = 8.14 k/bolt V = 1.89 k/bolt T + Q = 8.06 k/bolt T + Q = 8.06 k/bolt V, cDRn = 17.89 k/bolt (J3) V, CDRn = 17.89 k/bolt (J3) T, cDRn = 25.20 k/bolt (J3) T, CDRn = 29.82 k/bolt (J3) Clip Angle >= 0.000 in Clip Angle >= 0.347 in Bolt Group Bearing Capacity Shear Rupture of Clip Angle cDRn = 76.3 k (J3-6) cDRn = 124.8 k (J4-4) Shear Yielding of Clip And Block Shear Rupture of Clip Angle Rn = 145.8 k (J4-3) øRn =.. 111.4 k (J4-5) Beam Web Shear cDRn = 125.4 k (G2-1) VBF1-3 10f4 (O SISE SUEt IIS4IE1 HSS Brace - WF Beam - WF Column Ref: AISC Specification for Structural Steel Buildings (ANSl/AISC 360-10) Load and Resistance Factor Design (LRFD) Job: Legoland Connection ID: VBFI-3 Job Number: 18-214 Bottom Brace Connection Brace to Gusset Connection Brace Size: HSS3-1/2x3-1/2x5/16 ASTM Designation: A500-B-46 12/17/2018 Rev.: 0 By: KLM Brace Offset= 14 in Welded Lap = 4 in Brace Lap = 5 in Weld, A= 0.25 in Yielding of Whitmore Section øPn = 98.6 k (132-1) Buckling of Whitmore Section cDPn = 96.0 k (E3) Block Shear Rupture of Gusset Plate øRn = 105.7 k (J4-5) Net Tension Capacity of Brace cDPn = 94.4 k (132-2) Angle with Vertical, 0 = 47 deg Brace Tension = 53 k Brace Compression = 53 k Welds at Brace to Gusset cDRn = 89.1 k (J24) Shear at Brace Tube Walls cDRn = 128.5 k (J4-3) Shear of Gusset at Brace Welds cDRn = 64.8 k (J4-3) VBF1-3 20f4 (OS f 'NsS IEti Ip,IrtcLIusIa 12/17/2018 HSS Brace - WF Beam - WF Column Rev.: 0 Ref: AISC Specification for Structural Steel Buildings (ANSI/AISC 360-10) By: KLM Load and Resistance Factor Design (LRFD) Job: Legoland Connection ID: VBF1-3 Job Number: 18-214 BottomBraceConnection(cont. Gusset to Beam Connection Gusset Thickness = 0.375 in Gusset Length = 15.25 in Gusset Height = 10 in ASTM Designation: A36 Weld, B = 0.1875 in (J2-4) ForcesduetoBraceTension Forces due to Brace Compression Hb = 38.4 k Hb = -38.4 k Vb = -18.8 k Vb = .18.8 k Mb = 109.8 k-in Mb = -109.8 k-in GussetShearStrength GussetShearStrength cDRn = 123.5 k (J4-3) DRn = 123.5 k (J4-3) Gusset Tensile Strength GussetTensileStrength øPn = 185.3 k (D2-1) øPn = 185.3 k (132-1) GussetFlexuralStrength GussetFlexuralStrength cDMnx= 706.4 k-in (F1 1) cDMnx= 706.4 k-in (F1 1) BeamWebYielding BeamWebYielding cDRn = 159.0 k (J10-3) cDRn = 159.0 k (J 10-3) Beam Web Crippling . Beam Web Crippling cDRn = 83.5 k (J 10-5) øRn = 83.5 k (J 10-5) VBFI-3 30f4 (a-$ i S i E 12/17/2018 HSS Brace - WF Beam - WF Column Rev.: 0 Ref: AISC Specification for Structural Steel Buildings (ANSl/AlSC 360-10) By: KLM Load and Resistance Factor Design (LRFD) Job: Legoland Connection ID: VBFI-3 Job Number: 18-214 Bottom Brace Connection (cont.) Gusset to Column Connection Clip Angle Size: L3x3x3/8 ASTM Designation: A36 Bolt Size: 0.75 Bolt Rows = 2 ASTM Designation: A325 Vertical Spacing = 3 - in Connection Type: N, Snug-Tightened Vertical Edge = 1.5 in Hole Type: Short Slots, Transverse Loading Bolt Gage = 4 in Surface Class: Not Applicable S3 = 9 in Weld, C = 0.1875 in (J24) Forces due to Brace Tension Forces due to Brace Compression Vc= -17.3 k Vc= 17.3 k Hc= 0.4 k Hc= -0.4 k Bolt Strength / Prying Analysis Bolt Strength / Prying Analysis V = 4.33 k/bolt V = 4.33 k/bolt T + Q = 0.10 k/bolt T + Q = 0.00 k/bolt V, øRn = 17.89 k/bolt (J3) V, (DRn = 17.89 k/bolt (J3) T, (DRn = 29.82 k/bolt (J3) T, (PRn = 29.82 k/bolt (J3) Clip Angle >= 0.043 in Clip Angle >= 0.000 in Bolt Group Bearing Capacity (Column) ØRn = 101.5 k (J3-6) Shear Yielding of Clip Angle øRn = 97.2 k (J4-3) Shear Rupture of Clip Angle cDRn = 83.2 k (J44) Block Shear Rupture of Clip Angle øRn = 76.1 k (J4-5) VBF1-3 40f4 AD SISIE I If i Of 10 511 IL 91111 IM HSS Brace to WF Column at Base Plate Design Based on Uniform Force Method 3 LISTBOXES FOR SHAPES AISC Code ILRFD Ij HSS Brace Information: Size: HSS4X4X.250 Grade: FA-500B--1— W.P. Location: Li_1J Date: 11/13/2018 AISC 14th Ed. FRAMES TO COLUMN FLANGE OR WEB [Pten:= 13 kips ] 13 kips 101oad 49.5. Brace to Gusset Weld: Weld Size: Dr,11etbr := 4 /16illet Weld 7 Brace Lap (Weld Length): dj input _:= 4 inches WF Column Information: Size: W10X33 Grade- Frames to: Web Gusset Plate Information: Thickness: [tgusset : 0.3751] Grade: A36 Clearances: [Vciear : 2 [Hciear 1] [] Safety Factors [ Beam & Support Data Brace Limit Checks Brace to Gusset Weld: D1,= 1.392 Base Plate Information: Thickness: Half Length: [Base....plate,eflgth := 8.5 inches Grade: A36 1±] Gusset Edge Angle: [0whitmore := 2Ode Note: If 9whitmore<30' a reduced whitmore section is used Gusset Clip: jp := 1 inches! ( ('I'r O.6FUbr t_dSbr 0.6FUgusset tgusset lr °fihletbrmax := cell min 2D J) Dmjnbr := min(ceil(min(tgusset, t_d5br) 4 + 1),5) Lweldbr := max[Hbr ceilfZW ~in(Drllet-br, Pten, Pcomp) 2 Diiet brj 8]. ] °fihlet br max) + 16 Dfihletbrmax = 4 /16th s Fillet Weld Dminbr = 2 /16ths Fillet Weld HSS Bracing to Column Base Plate VBF2-1 .xmcd (bS SE aIir.tI IIsslilnIn (Lweld—br 2-Dfihle br Rweldbr := 4D- min(Dfih,et br, Dfihletbrmax) - 16 - Brace 'Yielding: Tybr :=*y-FYbr-Agbr Tension Rupture of the Brace with Flange Shear Lag: Bbr2+2BbrHbr T r := rFUbr[[A9br - 2(usset + 0.I25).t_nmbr].[l - 4(Bbr+Hbr) Lweldbr Date: 11/13/2018 IRweId_br = 78 kips [Tybr = 139.5 TOT ITrI,r = 84.8 kips Basic Geometry Whitmore Caics Gusset Plate Limit Checks LI = 9.067 L2 = 6.115 I LI+L2~L3'\ Lunbced := max(0, ) usset Plate Critical Stress Nhitmore Section: Wwhjt = 6.9 inches L3 = 5.211 11 Whitmore Section in Gusset: w = 6.9 inches I = "OK" Lunbced = 6.8 inches Whitmore Section in Column: Wwhjt - Ww = —0 inches 'j)Pfl := lc if(Fcr = "NN', Fygusset, Fcr)(wwtgusset) 'I'Pflt := t)y- Fygusset (ww. tgusset) Uniform Force Method Gusset to Column/Base Plate Weld Gusset Welds: Weld to Base Plate: ( (1'r 0.6. Fugusset tgusset 'I'r O.6FUbase pI tbaseJI)) Dmax_bp := ceilmin 2-D1, ' Dminbp := min(ceil(min(tgusset,tbasej,I).4 + I),5) Dreq._bp := ceil(max(1.25. °ave_c_bp' 1.25 Dave_t_bp, Dpeak_c_bp, Dpeaiç_t_bp)) Dfihletbp := max(Dre bp, 0min_bp I Dmjnusebp) (Dreq_bp) 2 D* tgussetminbp := 'I'r 0.6 FUgusset IPnc = 76.9 kips = 84 kips Dmax bp = 4 /16thS in Fillet Weld Dminbp = 3 /16ths in Fillet Weld Dbp = I /l6ths in Fillet Weld IIet_bp = 3 /16ths in Fillet Weld tgussetminbp = 0.11 inches HSS Bracing to Column Base Plate VBF2-1.xmcd Dmin coi = 3 /16ths in Fillet Weld Dreqjoi = I /I6ths in Fillet Weld tgussetmincol = 011 inches Date: 11/13/2018 Cl~S S i K S 111611E HIS II.;itIJIfL Weld to Column: t1 := if(CoI_face = I , tf O , twcoi) 'Ir 0.6 FUgusset tgusset Ir O.6Fu 0i tcoi)) Dmax coi := ceii[mint 2. Di, Dmin_coi := min(ceil(min(tgusset,ti).4 + I),5) Dreqcop := ceil(max(1.25. Dave ccoI 1.25. Dave—t—,01,Dpeakcl, DpeaktgJI)) Dfihletcol := max(DreQI, Dmin col' Dmin use coi) (Dre i)2D tgussetmincol := 4r 0.6 FUgusset Dmaxcoi = 4 /16ths in Fillet Weld (El Extension Plate Column Web Checks Under Gusset [El Connection Checks ummary of Checks Output Summary [Dfihlet br = 4 /I6ths Fillet Weld 1 (weld at brace to gusset) IeId_br_input= 4 inches (weld lap at brace to gusset) (Base_platelength = 8.5 inches ] (base plate length from centerline of column) LSetbackbr = 8.257 inches (brace offset from workpoint) II inches (vertical height of gusset) DflhIetbp = 3 /16ths in Fillet Weld ](weld at gusset to base plate) IDfIIIeLcoI = 3 /16ths in Fillet Weld ](weld at gusset to column) HSS Bracing to Column Base Plate VBF2-1 .xmcd Date: 11/13/2018 JOSISIE I 5ILCt £SICI% HSS Brace toWF Beam Chevron AISC 14th Ed. V-Brace Configuration rL_I TCTWWC flD CWADC AISC Code V WI IASD.J Left HSS Brace Information: Size: IHSS4X4X.250 Grade: A500B dJ := 52.57de Brace to Gusset Weld: Weld Size: 4/i6th Fillet Weld 7 Brace Lap (Weld Length): jl-weld-br-Unput:= 4ihi1 Right HSS Brace lnformatlon: Size: HSS4X4X.250 := 51 kips 7 [p_r 51 kii7 V Grade: Oload V V V Brace to Gusset Weld: .V Weld Size tb!r = 4/l6ths Fillet Weld l Brace Lap (Weld Length) jd__input = 4 inchii] Gusset Plate Information: V WF Beam Information: Thickness: I t gusset := in Size: W14X48 ' LJ Grade: A36 .j: V Grade: A992-50 [j Clearances: =dear IHcIear , V Gusset Location: IAboveI V V ( Safety Factors (Section Data ' Left Brace Limit Checks . Brace to Gusset Weld: Dm1, = 0.928 Dfihletbrlmax := cei{min( 0.6Fubr rt_dsbr 'I'r 0.6FU9ussett9usset)) DfihletbrJmax = 4 /16ths Fillet Weld Dp 2D* min(ceil(min(L...t ds.. .4+ 1L5 - D.;n . =2 I16ths Fillet Weld - VVVVVV ¶__VV '',, ''/ V - 01,11_Ia_u - HSS Chevron Bracing VBF2-2 (V-Brace).xmcd OS I SI E Date: 11/13/2018 116 Lweldbrl := max[Hbt. J Lyj brlinputs ceil1" max(Pten i, Pcompi) 2 Dfihlet_br I)-8]- .1 1leIdbrI 4inches + [4D. min(DfihIeL br I, Dflhletbrlmax) 16 2 Diiet br Rweldbrl := 4D• min(Dfihlet br,, Difhiet brImax) (LW1 ld bri - 16 Brace Yielding: RweIdbrI=52kips Tybri := 1)• FYbr r ITybrJ =92.8kips Tension Ruoture of the Brace with Flanae Shear Lan: jj Tri := r FUbr r[[A9br 1- 2 (tgusset + 0.125)t_dSbr 4(Bbr l+Hbr l) [1 - BbrJ2+2BbrJHbr_I Lweldbrl Right BraceLimitChecks BracetoGussetWeld: " '1'r O.6FUir r t_dSbr r *r'O.6Fugusset1gusset Dfihletbrrmax := ceiltmin _D - 2D [Trbr l =56.9kips °fihlet_br_r_max = 4 /16ths Fillet Weld Dmjnbrr := min(ceil(min(tgusset,t_dsbr r)4 + 1),5) Dmjnbrr = 2 I16ths Fillet Weld max(Ptenr,Pcomp_r) 2 Dfihlet br Lweld_br_r := max[Hbr_r LweId_br_r_inputceil[[4D,.min(DfihIetbrr Dfihletbrrmax) + 16 _j8].i] IlweId_br_r =4 inches ( 2DfihIet br r Rweldbrr := min(Dflhlet br r, Dfihlet brrmax) Lweld brr - 16 - Brace Yielding: Tybrr := FYbr , r TensionRuptureof the Brace with Flange Shear Lag: Tthrr := rFUbr r[[A9brJ - 2(usset + 0. 125)' r} 4.(Bbr [1 - Bbr+2BbrrHbrr rfHbrr) - Lweldbrr _[J I Rweldbrr =52kips 1 lTybrr =92.8kips ITrbLr =56.9 kips j Basic Geometry GussetPlateLimitChecks Setback1 = 17.226 inches Setbackr = 13.342 inches Hgusset = 32.25 inches Vgusset = 8.5 inches Whitmore Section atBraces. Whitmore Calcs = HSS Chevron Bracing VBF2-2 (V-Brace).xmcd 8S S I E $13 7 18 12 N I i!( E 26 IIhLIi Li = 5.892 inches Lu_r = 4.309 inches f Gusset Critical Stress Determination 4'Pni : 4'c if(Li = 0, Fygusset, Fcr i) (wwg r tgusset + Wwb_1 tWbeam) Pnt :=Oy. FYgusset (wwgi tgusset + WwbJ tWbearn) tlPncr := 1c7 if(Lu r = o, Fy959t, Fcr_r) (wwgr tgusset + Wwb_r tWbeam) IPflt_r := Fygusset (wwg_r tgusset + Wwb_r twbeam) Gusset to Beam Interface: VL C := P tjmpI COS(OIoadI) VL C = 31.047 Kips Vr — c:= PmprcOS(0Ioadr) Hl-c:= Hl—c := P mpi.sin(9Ioadi) HL c = 40.461 Kips Hr—c:= P mp rSin(OIoad r) V1 := tenr Cos(0ioacii) VLt = 31.047 Kips Vrt Ptenr cos(eioadr) Hl-t:= Pten rsin(0loadJ) HLt = 40.461 kips Hr t : Pten rSifl(010adr) dbeam _ Hgusset'll Mpiatei := (Hi_ + Hr t) 2 + (Vrt Vi_c){Hgusset_i_ 2 Date: 11/13/2018 )Pflc J = 56 kips kPntj = 70 kips = 62 kips 'ktr = 70 kips = 38.954 Kips Hrc = 32.918 Kips Vr t = 38.954 Kips Hr t = 32.918 Kips Mpiatei = 527.073 in-kips dbeam Hgusset\ Mpiate2 := _(Hr_c + H1) 2 + (v1 Vrc) (1-1gussel—I - 2 J Mpiate := max(Mpiatei , Mpiate ) Gusset Plate Vertical Shear: R99_ := 0.6 FYgusset tgusser Vgusset Weld at Gusset to Beam MpIate2 = 527.073 in-kips Mpiate = 527.073 in-kips Rgus_v = 45.9 kips max(HLc + Hr t,Hr_c + HLt Hgusset Gusset to Beam Weld Determination Dreg := max(Dpeak, 1.25. min(Dave, Dpeak)) "$r 0.6 FUgusset tgusset tl)r 0.6 FUbeam tfbeamj Dmax := minl\ 2. D, ' D, Dmin := min(ceil(min(tgusset,tfbeam).4 + 1),5) Dfihlet := max(ceil(max(Dreq)) Dmu,, '4) fv = 2.275 k/in Dreg = 2 /16ths Fillet Weld Dmax = 3.5 /16ths in Fillet Weld Dmin = 3 /16ths in Fillet Weld Dfihlet = 4 /16ths in Fillet Weld HSS Chevron Bracing VBF2-2 (V-Brace).xmcd S IS I E S1113 i It £ £11111111 Date: 11/13/2018 (Dreo 2D tgussetmin := - - lr 0.6 Fugusset tgussetmin = 0.21 inches [El Beam Web Checks [E Connection Checks Summary of Checks Output Summary Left Brace Information: IDfIIIeLbrj = 4 /16ths Fillet Weld] (weld at left brace to gusset) Ld_brJinput = 4 inches (weld lap at left brace to gusset) Isetbacki = 17.226 inches (left brace offset from workpoint) Right Brace Information: [Dfiflet brr = 4 /16ths Fillet Weld I (weld at right brace to gusset) IIweId_br_r_input = 4 inches (weld lap at right brace to gusset) ISetbackr = 13.342 inches 1 (right brace offset from workpoint) Gusset Plate Information: [Hgusset = 32.25 inches 1 (length of gusset) [Vgusset = 8.5 inches (vertical height of gusset) IDriliet = 4 /16ths in Fillet Weld (weld at gusset to beam) HSS Chevron Bracing VBF2-2 (V-Brace).xmcd (O S S '~ E 12/17/2018 HSS Brace - WF Beam - WF Column Rev.: 0 Ref: AISC Specification for Structural Steel Buildings (ANSI/AlSC 360-10) By: KLM Load and Resistance Factor Design (LRFD) Job: Legoland Connection ID: VBF2-3A Job Number: 18-214 Design OKI Beam to Column Connection Beam Size: W14x43 ASTM Designation: A992 Beam Offset = 0.5 in Clip Angle Size: L3x3x3/8 ASTM Designation: A36 Column Size: W10x33 ASTM Designation: A992 Connection to: Web (Opposing Conx at Web) Shared Rows Bolt Size: 0.75 Bolt Rows = ASTM Designation: A325 Vertical Spacing = Connection Type: N, Snug-Tightened Vertical Edge = Hole Type: Short Slots, Transverse Loading Bolt Gage = Surface Class: Not Applicable Si = Weld, D= Fexx= 3 3 3 in 1.5 in 4 in 3.5 in 0.1875 in 70 ksi (J2-4) Beam End Reactions Shear= 30 k Axial = 38 k (transferred to opposing beam) Forces due to Brace Tension Forces due to Brace Compression Vb = -46.2 k Vb = -13.8 k Hc = 38.0 k Hc = 38.0 k Bolt Strength / Prying Analysis Bolt Strength I Prying Analysis V = 7.70 k/bolt V = 2.30 k/bolt T + Q = 8.06 k/bolt T + Q = 8.06 k/bolt V, øRn = 17.89 k/bolt (J3) V, (1)Rn = 17.89 k/bolt (J3) T, cDRn = 25.94 k/bolt (J3) T, øRn = 29.82 k/bolt (J3) Clip Angle >= 0.000 in Clip Angle >= 0.347 in Bolt Group Bearing Capacity Shear Rupture of Clip An-gle cPRn = 76.3 k (J3-6) øRn = 124.8 k (J4-4) Shear Yielding of Clip Angle Block Shear Rupture of Clip Angle cDRn = 145.8 k (J4-3) cRn = 111.4 k (J4-5) Beam Web Shear øRn = 125.4 k (G2-1) VBF2-3A 10f4 SISIE(O 12/17/2018 HSS Brace - WF Beam - WF Column Rev.: 0 Ref: AISC Specification for Structural Steel Buildings (ANSl/AISC 360-10) By:KLM Load and Resistance Factor Design (LRFD) Job: Legoland Connection ID: VBF2-3A Job Number: 18-214 Bottom Brace Connection Brace to Gusset Connection Brace Size: HSS4x4x1/4 ASTM Designation: A500-B-46 Brace Offset = 16 in Angle with Vertical, 9 = 52.5 deg Welded Lap = 4 in Brace Lap = 5 in Brace Tension = 51 k Weld, A = 0.25 in Brace Compression = 51 k Yielding of Whitmore Section Welds at Brace to Gusset cDPn= 104.7 k (D2-1) øRn= 89.1 k (J2-4) Buckling of Whitmore Section Shear at Brace Tube Walls øPn = 100.9 k (E3) cDRn = 102.9 k (J4-3) Block Shear Rupture of Gusset Plate Shear of Gusset at Brace Welds cDRn = 113.9 k (J4-5) øRn 64.8 k (J4-3) Net Tension Capacity of Brace Pn = 85.3 k (D2-2) VBF2-3A 20f4 110 (8SIFI%SSIIII41E 12/17/2018 HSS Brace - WF Beam - WF Column Rev.: 0 Ref: AlSC Specification for Structural Steel Buildings (ANSI/AlSC 360-10) By: KLM Load and Resistance Factor Design (LRFD) Job: Legoland Connection ID: VBF2-3A Job Number: 18-214 Bottom Brace Connection (cont.) Gusset to Beam Connection Gusset Thickness = 0.375 in Gusset Length = 18 in Gusset Height = 10 in ASTM Designation: A36 Weld, B = 0.1875 in (J2-4) ForcesduetoBraceTension ForcesduetoBraceCompression Hb= 40.1 k Hb= -40.1 k Vb = -16.2 k Vb = 16.2 k Mb = 121.2 k-in Mb = -121.2 •k-in Gusset Shear Strength Gusset Shear Strength øRn = 145.8 k (J4-3) cDRn = 145.8 k (J4-3) GussetTensileStrength GussetTensileStrength cDPn = 218.7 k (132-1) cDPn = 218.7 k (D2-1) GussetFlexuralStrength Gusset Flexural Strength cDMnx = 984.2 k-in (Fl 1) cDMnx = 984.2 k-in (Fl 1) BeamWebYielding BeamWebYielding øRn = 179.9 k (J 10-3) cDRn = 179.9 k (J 10-3) Beam Web Crippling BeamWebCrippling cDRn = 91.2 k (J 10-5) cDRn = 91.2 k (1I0-5) VBF2-3A 3of4 (O S ',S I E $11 12/17/2018 HSS Brace - WF Beam - WF Column Rev.: 0 Ref: AISC Specification for Structural Steel Buildings (ANSI/AISC 360-10) By:KLM Load and Resistance Factor Design (LRFD) Job: Legoland Connection ID: VBF2-3A Job Number: 18-214 Bottom Brace Connection (cont Gusset to Column Connection Clip Angle Size: L3x3x3/8 ASTM Designation: A36 Bolt Size: 0.75 Bolt Rows = 2 ASTM Designation: A325 Vertical Spacing = 3 in Connection Type: N, Snug-Tightened Vertical Edge = 1.5 in Hole Type: Short Slots, Transverse Loading Bolt Gage = 4 in• Surface Class: Not Applicable S3 = 9 in Weld, C = 0.1875 in (J2-4) Forces due to Brace Tension Forces due to Brace Compression Vc= -14.9 k Vc= 14.9 k Hc= 0.3 k Hc= -0.3 k Bolt Strength / Prying Analysis Bolt Strength / Prying Analysis V = 3.72 k/bolt V = 3.72 k/bolt T + Q = 0.09 k/bolt T + Q = 0.00 k/bolt V, øRn = 17.89 k/bolt (J3) V; CDRn = 17.89 k/bolt (J3) T, øRn = 29.82 k/bolt (J3) T, C1)Rn = 29.82 k/bolt (J3) Clip Angle >= 0.040 in Clip Angle >= 0.000 in Bolt Group Bearing Capacity (Column) cDRn = 101.5 k (J3-6) Shear Yielding of Clip Angle øRn = 97.2 k (J4-3) Shear Rupture of Clip Angle cDRn = 83.2 k (J4-4) Block Shear Rupture of Clip Angle cDRn = 76.1 k (J4-5) VBF2-3A 4of4 S IF IR S S II 1 941 E 12/17/2018 HSS Brace - WF Beam - WF Column Rev.: 0 Ref: AISC Specification for Structural Steel Buildings (ANSl/AISC 360-10) By: KLM Load and Resistance Factor Design (LRFD) Job: Legoland Connection ID: VBF2-3B Job Number: 18-214 I Design OKI Beam to Column Connection Beam Size: W14x43 ASTM Designation: A992 Beam Offset = 0.5 in Clip Angle Size: L3x3x3/8 ASTM Designation': A36 Column Size: W10x33 ASTM Designation: A992 Connection to: Web (Opposing Conx at Web) Shared Rows = Bolt Size: 0.75 Bolt Rows = ASTM Designation: A325 Vertical Spacing = Connection Type: N, Snug-Tightened Vertical Edge = Hole Type: Short Slots, Transverse Loading Bolt Gage = Surface Class: Not Applicable SI = Weld, 0= Fexx = 3 3 3 in 1.5 in 4 in 3.5 in 0.1875 in 70 ksi (J2-4) Beam End Reactions Shear= 30 k Axial = 38 k (transferred to opposing beam) Forces due to Brace Tension Forces due to Brace Compression Vb = -50.3 k Vb = 12.8 k Hc = 38.0 k Hc = 38.0 k Bolt Strength / Prying Analysis Bolt Strength / Prying Analysis V = 8.38 k/bolt V = 2.13 k/bolt T + Q = 8.06 k/bolt T + Q = 8.06 k/bolt V, CDRn = 17.89 k/bolt (J3) V, (DRn = 17.89 k/bolt (J3) T, øRn = 24.80 k/bolt (J3) T, øRn = 29.82 k/bolt (J3) Clip Angle >= 0.000 in Clip Angle >= 0.347 in Bolt Group Bearing Capacity Shear Rupture of Clip Angle øRn = 76.3 k (J3-6) øRn = 124.8 k (J4-4) Shear Yielding of Clip And Block Shear Rupture of Clip Angle cDRn = 145.8 k (J4-3) cDRn = 111.4 k (J4-5) Beam Web Shear cDRn = 125.4 k (G2-1) VBF2-36 10f4 (O SISIE !III IUSII 12/17/2018 HSS Brace - WF Beam - WF Column Rev.: 0 Ref: AISC Specification for Structural Steel Buildings (ANSI/AISC 360-10) By: KLM Load and Resistance Factor Design (LRFD) Job: Legolafld Connection ID: VBF2-3B Job Number: 18-214 BottomBraceConnection Brace to Gusset Connection Brace Size: HSS4x4x1/4 ASTM Designation: A500-B-46 Brace Offset= 12 in Welded Lap = 4 in Brace Lap = 5 in Weld, A= 0.25 in Yieldingof WhitmoreSection cDPn = 104.7 k (D2-1) Buckling of WhitmoreSection cDPn = 102.0 k (E3) Block Shear Ruptureof GussetPlate cDRn = 113.9 k (J4-5) Net TensionCapacity of Brace øPn = 85.3 k (02-2) Angle with Vertical, 8 = 40.2 deg Brace Tension= 51 k Brace Compression = 51 k WeldsatBrace toGusset clRn = 89.1 k (J2-4) Shear atBraceTubeWalls Rn = 102.9 k (J4-3) Shear of Gusset atBraceWelds cDRn = 64.8 k (J4-3) VBF2-3B 20f4 (OS I S M i E 12/17/2018 z,Ie,si HSS Brace - WF Beam - WF Column Rev.: 0 Ref: AlSC Specification for Structural Steel Buildings (ANSI/AISC 360-10) By: KLM Load and Resistance Factor Design (LRFD) Job: Legoland Connection ID: VBF2-3B Job Number: 18-214 Bottom Brace Connection (cont . Gusset to Beam Connection Gusset Thickness = 0.375 in Gusset Length = 12.75 in Gusset Height = 10 in ASTM Designation: A36 Weld, B= 0.1875 in ForcesduetoBraceTension Hb= 32.5 k Vb -20.3 k Mb = 83.0 k-in GussetShearStrength ØRn= 103.3 k Gusset Tensile Strength øPn= 154.9 k GussetFlexuralStrength cDMnx = 493.8 k-in BeamWebYielding cDRn= 139.9 k Beam Web Crippling øRn = 76.4 k (J2-4) ForcesduetoBraceCompression Hb= -32.5 k Vb= 20.3 k Mb = -83.0 k-in GussetShear Strength (J4-3) cDRn = 103.3 k (J4-3) GussetTensileStrength (D2-1) 4)Pn = 154.9 k (132-1) GussetFlexuralStrenath (F1 1) cDMnx= 493.8 k-in (Fil) BeamWebYielding (J10-3) 4)Rn = 139.9 k (J10-3) BeamWebCrippling (J10-5) cDRn = 76.4 k (J 10-5) VBF2-36 30f4 (a$, S E 12/17/2018 S ML II II I tIS HSS Brace - WF Beam - WF Column Rev.: 0 Ref: AISC Specification for Structural Steel Buildings (ANSI/AISC 360-10) By: KLM Load and Resistance Factor Design (LRFD) Job: Legoland Connection ID: VBF2-3B Job Number: 18-214 BottomBraceConnection(cont.) Gusset toColumnConnection Clip Angle Size: L3x3x3/8 ASTM Designation: A36 Bolt Size: 0.75 Bolt Rows = 2 ASTM Designation: A325 Vertical Spacing = 3 in Connection Type: N, Snug-Tightened Vertical Edge = 1.5 in Hole Type: Short Slots, Transverse Loading Bolt Gage = 4 in Surface Class: Not Applicable S3 = 9 in Weld, C = 0.1875 in (J2-4) ForcesduetoBrace Tension ForcesduetoBraceCompression Vc= -18.7 k Vc = 18.7 k Hc= 0.4 k Hc= -0.4 k Bolt 5trenth/Prying_Analysis Bolt Strength/PryingAnalysis V = 4.67 k/bolt V = 4.67 k/bolt T + Q = 0.11 k/bolt T + Q = 0.00 k/bolt V, øRn = 17.89 k/bolt (J3) V, CDRn = 17.89 k/bolt (J3) T, c1Rn = 29.82 k/bolt (43) T, CDRn = 29.82 k/bolt (J3) Clip Angle >= 0.045 in Clip Angle >= 0.000 in Bolt Group Bearing Capacity _(Column) cDRn = 101.5 k (J3-6) Shear Yieldingof Clip And cDRn = 97.2 k (J4-3) ShearRuptureof Clip Angle øRn = 83.2 k (J4-4) BlockShearRuptureofClipAngle øRn = 76.1 k (J4-5) ( yBF2-3B 4of4 STRUCTURAL \p 5Y5TM5 VNGIN.RING METAL ROOF DECK DIAPHRAGM CALCULATIONS STRUCTURAL SYSTEMS ENGINEERING, LLC 613 Heritage Road Easley, SC 29640 864.505.9776 1= MM OI www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 1/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Project Details Company: Contact: Address: Phone/Fax: e-Mail: Project Number: Project Title: Contract Number: Structural Plan Sheet Number: Prepared by: Checked by: Date: 10/23/2018 Comments: Design Settings Design Method: LRFD Relevant Loads: Seismic Resistance Factors: 0Se1sm1c,Mech.,Stee1 = 0.65 0Se1sm1c.1ftch..Concrete = 0.50 upmt.recti = 0.50 °PB,Bucktlng = 0.80 0SeIsmlc.Weld,Steel = 0.55 0Se1smIc,We1d.Concrete = 0.50 0Uplllt,Weld = 0.50 Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 1 0 2008-2014 Hilti Corp.. FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan III -.I www.hilti.us PROFIS DF Diaphragm 2.7.0 Company: Page: 2/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Area A Length L: 154.00 ft Zone Orientation: X - Direction Width B: 28.00 ft Deck Type: Steel Roof Deck Support Construction: Bar Joists No. Sidelap Connectors from: I Joist! Beam Spacing: 5.70 ft No. Sidelap Connectors to: 10 Joist! Beam Thickness: 0.2500 in. No. Sidelap Connectors incr.: I Deck Panel: 1-1/2" B-Deck - Fy = 80 ksi - Panel Moment of Inertia (16 ga): 0.355 in.41ft Wide Rib or WR Panel Moment of Inertia (18 ga): 4 0284 Ifl. u ! fy 45 ksi / 33 ksi Panel Moment of Inertia (20 ga): 0.198 in.41ft Panel Type: Nestable Panel Moment of Inertia (22 ga): 0.152 in.4/ft Panel Width: 36.000 in. Lateral Load UIift Load I I i IX I I. i IX L1 La L3 L1 La 5 Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS OF Diaphragm 2.7.0 1 0 2008-2014 Hilti Corp.. FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan www.hilti.us PROFIS DF Diaphragm 2.7.0 Company: Page: 3/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Zone A - I Length L: 18ft Required Input Loads Diaphragm Shear Q: 3740 pif Net Uplift T: 0 psf Proposed Diaphragm System Deck Thickness: 16 ga (0.0598 in.) Pattern: 36/li Frame Fastener: Hilti X-ENP-19-1-15 Sidelap Connector: S-SLC 02 M HWH Sidelap Connector No. Sidelap Connectors: 10 Proposed System Diaphragm Shear and Stiffneès!Flexibilitv Design Shear: 3831 pit Shear Stiffness G: 214.4 kip/in. Design Uplift: 742 psf Flexibility Factor F: 4.7 micro-in./lb Design Checks Design Shear = 3831 plf >= 0 = 3740 plf => OK Design Uplift = 742 psf >= T = 0 psf => OK Shear & Tension interaction: No interaction Check Needed! => OK I Design OK I Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 10 2008-2014 Hilt! Corp.. FL-9494 Schaan I Hilti is a registered trademark of Hilt! Corp., Schaan III -. mi I www.hilti.us PROFIS DF Diaphragm 2.7.0 Company: Page: 4/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone A - I Frame Fastener Strength: Reference: QF = Hi/ti PTG Hilti 2014 PIG Supplement, Section 1.1, Table 8 OF =3.577 kip =35771b Sidelap Connector Strength: Q= Hi/ii PTG Qs = 2.343 kip = 2343 lb Shear Strenath Calculation: as —Qs F as = 0.655 Sne =(2.a1+np.a2+ne).L 1 ne = fl = 3 * (No. of Sidelaps per Span) GI = 3.667 flp =2 02 = 3.667 fle = 3 * 10.000 = 30.000 I = 3*570ft1710ft Sne = 9344 Of Hilti 2014 PIG Supplement, Section 1.1, Table 8 SDI DDM, Third Edition (Eq. 2.2-2) Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 10 2008-2014 HiIi Corp., FL-9494 Schaan J Hilti is a registered trademark of Hilti Corp.. Schaan = 0.854 B = 31.651 Sn1 = 6499 plf I_N2 .B2 SflC =QF \//2N2+B2 SDI 0DM, Third Edition (Eq. 2.2-5) III -.I www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 5/40 Address: Project Number: Phone I. Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone A -1 Reference: S,,1 = (2. A .(A -1) + B). - SDI DDM, Third Edition (Eq. 2.2-4) =1- ~0.7 240 B=ns.as+[2.nP.(?'P) +4.k)2] w 2 A =2 D =1.5001n. Iv 5.70 ft fl8 = 3 * 10.000 = 30.000 W = 36.000 in. = 1.5000 W1 (x )2 = w 2 1.5000 N =3.000ft" Snc = 5635 Of Input data and results must be checked for agreement with the existing conditions and for plausibility PROMS DF Diaphragm 2.7.0 1 0 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan — — www.hilti.us PROFIS DF Diaphragm 2.7.0 Company: Page: 6/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone A - I Reference: Sn = Min(S; S; Snc) Sn = 5635 plf c = 1.046 Sn =5n *C5894plf Design Shear Strength: 5n.d = 5894 Of * 0.65 = 3831 plf Check for Buckling: 1.106 j2 'V Hilti 2014 P I (i Supplement, Section 1.1. Table 8 Hilti 2014 PTG Supplement, Section 1.1, Table 12 = 0.355 in.4/ft Iv =5.70ft 5nb.d = 10926 plf* 0.80 = 8741 plf Governing: = Min(S; Snb) = 3831 pIt >= Q = 3740 pIt Frame Fastener Flexibility: SF = Hi/ti PTG Hilti 2014 PTG Supplement, Section 1. 1, Table 9 S, = 0.0031 in./kip Input data and results must be checked for agreement with the existing conditions and for plausibility PROMS OF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan T1L www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 7/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone A -1 Sidelap Connector Flexibility: -. Reference: S - Hilti PTG Hilti 2014 PTG Supplement, Section S 1.1, Table 9 Ss = 0.0123 in./kip Shear Stiffness I Flexibility Factor Calculation: F 1000 G'= E•t 2.6•+pD +C G' - E•l 2.6-+0.91+K1•l d / K1=Et• SF • 2 W SF 2'a1 +n.a2 +2.n8 .j E = 29500 ksi = 0.0598 in. / .3*570ft1710ft20520in. W = 36.000 in. KI = 0.0101 in-1 s / d = 8.760 in. / 6.000 in. = 1.460 D = 536.56 in. C' = 214.4 kip/in. F = 4.7 micro-in./lb SDI DDM, Third Edition (Eq. 3.3-3) SDI DDM, Third Edition, Simplified Eqüation(Appendix IV) Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan www.hilti.us -. PROMS OF Diaphragm 2.7.0 Company: Page: 8/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Uplift Calculation for Zone A -1 Nominal Uplift Resistance: Reference: K•7, T = Roof Deck Construction Handbook c.1v 5.70 ft C =3.00ft K =9.00 = Hi/ti PTG TflF = 2820 lb Tn =1484psf Hilti 2014 PTG Supplement, Section 1.2.3 and 1.3.3 Design Uplift Resistance: Tn.d = 1484 psf * 0.50 = 742 psf >= T = 0 psf Shear -Uplift Interaction Check: T = 0! ==> No Interaction Check Needed! SDI DDM, Third Edition, section 4.10 Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is registered trademark of Hilt! Corp., Schaan Iz II-. www.hilti.us PROFIS DF Diaphragm 2.7.0 Company: Page: 9/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Zone A -2 Length L: 18ft Required Input Loads Diaphragm Shear Q: 1095 pIt Net Uplift T: 0 psf Proposed Diaphragm System Deck Thickness: 20 ga (0.0358 in.) Pattern: 36/5 Frame Fastener: Hilti X-ENP-19-Li 5 Sidelap Connector: S-SLC 01 M HWH 1fTh4\flJTh_r\4r Sidelap Connector 1-1!2'• No. Sidelap Connectors: 4 Proposed System Diaphragm Shear and Stiffness/Flexibility Design Shear: 1097 plf Design Uplift: 265 psf Shear Stiffness G: 28.2 kip/in. Flexibility Factor F: 35.4 micro-in./lb Design Checks Design Shear 7 1097 plf >= Q = 1095 plf => OK Design Uplift = 265 psf >= T = 0 psf => OK Shear & Tension Interaction: No Interaction Check Needed! => OK I Design OK I Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS OF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan III-.l www.hiltlus PROMS DF Diaphragm 2.7.0 Company: Page: 10/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone A .2 Frame Fastener Strength: Reference: QF = Hilti PTG Hilti 2014 PTG Supplement, Section 1.1, Table 8 OF =2.165 kip =21651b Sidelap Connector Strength: Q5 = Hilli PTG as = 1.341 kip = 1341 lb Shear Strenath Calculation: as -Qs F as = 0.619 ,e =(2 1p2+fle ) 1 Hilti 2014 PTG Supplement, Section 1.1, Table 8 SDI DDM, Third Edition (Eq. 2.2-2) ne = fl5 = 3 * (No. of Sidelaps per Span) a1 = 1.667 n =2 a2 = 1.667 e = 3*400012000 I = 3*570ft ...11.10 ft Sne = 2364 Of Input data and results must be checked for agreement with the existing conditions and for plausibility PROMS OF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan III.- .I www.hilti.us - PROMS DF Diaphragm 2.7.0 Company: Page: 11/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear! Stiffness Calculation for Zone A -2 Reference: OF SDI DDM, Third Edition (Eq. 2.2-4) ,%=1— D 1,~O.7 24O.J B=n •a + 2n (xp)2 (x)2 S p jf 2 W2 A =1 D 1.500 in. = 5.70 ft ns = 3 * 4.000 = 12.000 W = 36.000 in. (x )2 = 0.7222 w 2 (Xe )2 0.7222 - = . =0.812 B = 13.210 Sni =1625p1f SCQF \I N 2•B2 - 12 N2 +B 2 SDI 0DM, Third Edition (Eq. 2.2-5) N =1.333ft" Snc =1447p1f Input data and results must be checked for agreement withthe existing conditions and for plausibility PROFIS OF Diaphragm 2.7.0 1 © 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan Sn = MIfl(Sne S; S) Sn 1447 plf c = 1.166 Sr' =S*c =1687plf Design Shear Strength: Sn.d = 1687 Of * 0.65 = 1097 plf Check for Buckling: I-101 Sflb= 2 Hilti 2014.P I (i Supplement, Section 1.1. Table 8 Hilti 2014 PTG Supplement, Section 1.1. Table 12 www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 12/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone A-. 2 Reference: = 0.198 in.4/ft , i Iv 5.70 ft Snb,d = 6094 plf * 0.80 = 4875 plf Governing: Sn.gov = Min(S; Sflb) = 1097 plf >= 0 = 1095 plf Frame Fastener Flexibility: SF = Hilti PTG Hilti 2014 PTG Supplement, Section 1.1, Table 9 St = 0.0040 in./kip Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan II I -II www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 13/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone A -2 Sidelap Connector Flexibility: Reference: S = Hi Iii PTG Hilti 2014 PTG Supplement, Section S 1.1, Table 9 Ss = 0.0159 in./kip Shear Stiffness I Flexibility Factor Calculation: F 1000 G' E•t 2.6.+pD,1 +C G' E•z - 2.6-+0.9+K1•l d I K1=E.t.. 2 W SF 2.a1'+n.a2+2.n8 .--- Os E =29500ksi t = 0.0358 in. I ...3*570ft1710ft20520in. W = 36.000 in. KI = 0.0184 in-' s/ d = 8.760 in. /6.000 in. = 1.460 D = 6801.27 in. = 28.2 kip/in. F = 35.4 micro-iniib SDI DDM, Third Edition (Eq. 3.3-3) SDI 0DM, Third Edition, Simplified Equation (Appendix IV) Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan www.hilti.us PROMS DF Diaphragm 2.7.0 Company: - Page: 14/40 Address: i Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Uplift Calculation for Zone A 2 Nominal Uplift Resistance: Reference: K•T T = ui,1 Roof Deck Construction Handbook C.!.., Iv 5.70 ft C =3.oOft K =4.00 'n,F = Hilli PTG Hilti 2014 PIG Supplement, Section 1.2.3 and 1.3.3 ii TOF = 2265 lb T = 530 psf Design Uplift Resistance: Tfl.d = 530 psf * 0.50 = 265 psf >= I = 0 psf Shear -Unlift Interaction Check: T = 0! ==> No Interaction Check Needed! SDI DDM, Third Edition, section 4.10 Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS OF Diaphragm 2.7.0 10 2008-2014 Hilti Corp.. FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan • • M71111 NJ www.hilti.us -- PROMS DF Diaphragm 2.7.0 Company: Page: 15/40 Address: Project Number: Phone I Fax: . Project Title: e-Mail: Contact: Date: 10/23/2018 Zone A -3 Length L: 118ft RequiredInputLoads Diaphragm Shear Q: 761 plf Net Uplift T: 0 psf Proposed DiaphragmSystem Deck Thickness: 22 ga (0.0295 in.) Pattern: 36/4 Frame Fastener: Hilti X-ENP-1 9-1-15 3GM Sidelap Connector: S-SLC 01 M HWH T Sidelap Connector 35.. 1-I12" No. Sidelap Connectors: 4 ProposedSystemDiaphragmShear andStiffness!Flexibilitv Design Shear: 787 plf Design Uplift: 175 psf Shear Stiffness G: 13.6 kip/in. Flexibility Factor F: 73.6 micro-in./lb DesignChecks Design Shear =787p1f'=Q=761 pif => OK Design Uplift =175 psf >=T0 psf >OK Shear & Tension Interaction: No Interaction Check Needed! => OK I : Design OK I Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 1 © 2008-2014 Hilti Corp.. FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan III -.l www.hilti.us PROM DF Diaphragm 2.7.0 Company: Page: 16/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone A -3 Frame Fastener Strength: Reference: () = Hi/ti PTG Hilti 2014 PTG Supplement, Section 1.1, Table 8 Or = 1.964 kip = 1964 lb Sidelap Connector Strength: QS = Hi/ti PTG 0s = 0.954 kip = 954 lb Hilti 2014 PTG Supplement, Section 1.1, Table 8 Shear Strenath Calculation: _.Q5 F as = 0.486 S =(2.a1 +n,, •a2 1 SDI 0DM, Third Edition (Eq. 2.2-2) ne = n = 3 * (No. of Sidelaps per Span) a1 = 1.333 r1 =2 a2 = 1.333 ne = 3*400012000 1 = 3*570ft1710ft Sne = 1991 Of Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 10 2008-2014 Hilti Corp.. FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan III•i Ed I www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 17/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone A -3 Reference: Sid =(2'A.(%-1)+B).f- A=I— >O.7 240 B=nS aS + 2n LI,.Xp) _____ A =1 D =1.5001n. Ir 5.70 it fl5 = 3 * 4.000 = 12.000 W = 36.000 in. (x p )2 - 0.5556 w 2 - - 0.5556 w2 - = 0.793 B = 10.274 SflI = 1132p1f N.B2 Sm - 12 .N2 +B2 SDI 0DM, Third Edition (Eq. 2.2-4) ) SDI 0DM, Third Edition (Eq. 2.2-5) N =1.000ft, Snc =1011plf Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 102008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan III.-.I www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 18/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone A -3 Reference: Sn = Min(S; S,; S) S1 =1011plf c = 1.197 Hilti 2014 1J1(j Supplement, Section 1.1. Table 8 S. =S*c =1211plf Design Shear Strength: 5nd = 1211 plf*0.65787p1f Check for Bucklina: 1.106 Hilti 2014 PIG Supplement, Section Sflb= 1.1, Table 12 = 0.152 in.4/ft / 5.70 It Snb,d = 4678 plf * 0.80 = 3743 plf Governing: = Min(S; Sflb) = 787 plf >= Q = 761 plf Frame Fastener Flexibility: SF = Hilti PTG Hilti 2014 PIG Supplement, Section 1.1, Table 9 St = 0.0044 in./kip Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS OF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan = www.hiltius PROMS OF Diaphragm 2.7.0 Company: Page: 19/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone A -3 Sidelan Connector Flexibility: - Reference: &Js _ l•&I - Hi" PTG Hilti 2014 PTG Supplement Section 1.1, Table 9 Ss = 0.0175 in./kip Shear Stiffness I Flexibility Factor Calculation: F-'°0° G'= E.t S SDI 0DM, Third Edition (Eq. 3.3-3) 2.6.1+pD+C E'l G'=' s D SDI DDM, Third Edition, Simplified 2.6.— + 0.9.— + K!.! Equation (Appendix IV) d / K1=E.1,_L. W SF -. SS E = 29500 ksi t = 0.0295 in. I _3*570ft_1710ft_20520in. W = 36.000 in. K1 = 0.0186 in' s / d = 8.760 in. I 6.000 in. = 1.460 D =12864.40 in. = 13.6 kip/in. F = 73.6 micro-in./lb Input data and results must be checked for agreement with the existing conditions and for plausibility PRO FIS DF Diaphragm 2.7.0 I © 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan =5.7oft C =3.00ft K =3.00 = Hilli PTG Hilti 2014 PTG Supplement, Section 1.2.3 and 1.3.3 www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 20/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 I Design Uplift Calculation for Zone A -3 Nominal Uplift Resistance: Reference: K•7 T = ' Roof Deck Construction Handbook c.iv _ TflF = 19951b T 350psf Design Uplift Resistance: Tfl,d = 350 psf* 0.50 = 175 psf>= T = 0 psf Shear -UDlift Interaction Check: T = 0! ==> No Interaction Check Needed! SDI DDM, Third Edition, section 4.10 Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 1 0 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan III.-. Ed I www.hilti.us PROFIS DF Diaphragm 2.7.0 Company: Page: 21/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Area Area B Length L: 75.00 ft Zone Orientation: X - Direction Width B: 154.00 ft Deck Type: Steel Roof Deck Support Construction: Bar Joists No. Sidelap Connectors from: 1 Joist! Beam Spacing: 4.00 ft No. Sidelap Connectors to: 10 Joist! Beam Thickness: 0.2500 in. No. Sidelap Connectors incr.: I Deck Panel: 1-1/2" B-Deck - Fy = 33 ksi - Panel Moment of Inertia (16 ga): 0.355 in.4/ft Wide Rib or WR Panel Moment of Inertia (18 ga): 0.284 in.4/ft fu I fy 45 ksi / 33 ksi Panel Moment of Inertia (20 ga): 0.198 in.4/ft Panel Type: Nestable Panel Moment of Inertia (22 ga): 0.152 in.4/ft Panel Width: 36.000 in. / Lateral Load Uplift Load I i I 11xi i i Ix L1 12 13 L L2 13 Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 1 © 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan 1= II -. Ed I www.hilti.us PROMS DF Diaphragm 2.1.0 Company: Page: 22/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Zone Area B -1 Length L: 12ft Required Input Loads Diaphragm Shear Q: 894 plf Net Uplift T: 0 psf Proposed Diaphragm System Deck Thickness: 20 ga (0.0358 in.) Pattern: 36/7 Frame Fastener: Hilti X-HM 24 3C R Sidelap Connector: S..SLC 01 M HWH Sidelap Connector No. Sidelap Connectors: 4 Proposed System Diaphragm Shear and Stiffness/Flexibility Design Shear: 1471 plf Design Uplift: 420 psf Shear Stiffness G': 74.7 kip/irt. Flexibility Factor F: 13.4 micro-in./lb Design Checks Design Shear 1471 plf >= Q = 894 plf => OK Design Uplift = 420 psf >= T = 0 psf => OK Shear & Tension lnteractiàn: No Interaction Check Needed! => OK I Design OK 'I Input data and results must be checked for agreement with the existing conditions and for plausibility PROMS OF Diaphragm 2.7.0 I © 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan r 1= II -.I www.hilti.us PROFIS DF Diaphragm 2.7.0 Company: Page:• 23/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone Area B - I Frame Fastener Strength: Reference: - - () - Huh PTG Hilti. 2014 PTG Supplement, Section -1.1, Table 8 OF =2.107 kip 21071b Sidelap Connector Strength: QS = Hi iii PTG Qs = 1.260 kip = 1260 lb Shear Strength Calculation: , — Qs F as = 0.598 S =(2.a1 +n •a2 1 Hilti 2014 PTG Supplement, Section 1.1, Table 8 SDI DDM, Third Edition (Eq. 2.2-2) ne = fl = 3 * (No. of Sidelaps per Span) a1 = 2.000 flp =2 a2 = 2.000 ne = 3 * 4.000 = 12.000 I = 3*400ft1200ft Sne = 3512 pIt Input data and results must be checked for agreementwith the existing conditions and for plausibility PROMS DF Diaphragm 2.7.0 1 0 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan III.-.I www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 24/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone Area B - I Reference: S,,1 (2 A'(2_1)+B)- SDI DDM, Third Edition (Eq. 2.2-4) D1,, ~0.7 240' - A =1 D 1.500 in. Iv 4.00 ft ns = 3*4000.12000 W = 36.000 in. = 0.7778 - w 2 X. = 0.7778 .. - = 0.868 B = 13.398 SflI = 2306 plf I_N 2 •B2 SflC =QF \112 N2 +B2 N =2.000 fl-1 Snc = 2054 pIt SDI DOM, Third Edition (Eq. 2.2-5) Input data and results must be checked for agreement with the existing conditions and for plausibility PROMS DF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan III.-.I www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 25/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone Area B - I Reference: Sn = Min(S,; S; S) Sn = 2054 plf c = 1.102 Sn =S*c=2264plf Design Shear Strength: Sn.d = 2264 Of * 0.65 = 1471 plf Check for Buckling: 1 1 6 Sflb= 2 Hilti 21)14 P I (a Supplement, Section 1.1. Table 8 Hilti 2014 PTG Supplement, Section 1.1, Table 12 I =0.198in.4!ft Iv 4.00 ft Sflb,d = 12375 plf * 0.80 = 9900 Of Governing: Sn.gov = Min(S; Sflb) = 1471 plf >= Q = 894 plf Frame Fastener Flexibility: SF = Hilti PTG Hilti 2014 PTG Supplement, Section 1.1, Table 9 Sf = 0.0066 in./kip Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 10 2008-2014 Hilti Corp.. FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan III.-. Ed I www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 26/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear! Stiffness Calculation for Zone Area B - I SidelaD Connector Flexibility: Reference: S - Huh PTG Hilti 2014 PTG Supplement, Section S 1.1, Table 9 Ss = 0.0159 in./kip Shear Stiffness I Flexibility Factor Calculation: F'°0° G' G' E•t 2.6.+pD+C G' - Et 2.6-+O.9+K1l d 1 KI=E.t. SF 2 W S, 2a1+n'a2 +2•n3 -1 -- E = 29500 ksi t = 0.0358 in. / _3*400ft.12OOft_14400in. W = 36.000 in. KI = 0.0215 in-' si d = 8.760 in. I 6.000 in. = 1.460 D =1158.37in. = 74.7 kip/in. F = 13.4 micro-in./lb SDI DDM, Third Edition (Eq. 3.3-3) SDI DDM, Third Edition, Simplified Equation (Appendix IV) Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS OF Diaphragm 2.7.0 1 0 2008-2014 Hilti Corp.. FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan 1= II•-. www.hilti.us PROFIS OF Diaphragm 2.7.0 Company: Page: 27/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Uplift Calculation for Zone Area B - I Nominal Uplift Resistance: Reference: K•7,F T = ' Roof Deck Construction Handbook c.iv Iv =4.00ft C =3.oOft K =6.00 'n,F = Hilli PTG Tfl,F =16801b = 840 psf Hilti 2014 PIG Supplement, Section 1.2.3 and 1.3.3 Design Uplift Resistance: Tn.d = 840 psf * 0.50 = 420 psf >= I = 0 psf Shear -Uplift Interaction Check: I = 01 ==> No Interaction Check Needed! SDI DDM, Third Edition, section 4.10 Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS OF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan 1= www.hilti.us PROFISDF Diaphragm 2.7.0 Company: . Page: 28/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: . . . Date: 10/23/2018 Zone Area B-2 Length L: 51 ft Required Input Loads Diaphragm Shear Q: 608 plf Net Uplift T: 0 psf Proposed Diaphragm System Deck Thickness:. 22 ga (0.0295 in.) Pattern: 36/4 Frame Fastener: Hilti X-ENP-19-1-15 - 3914 Sidelap Connector: S-SLC 01 M HWH t_/-\r\!r\_r.\ Sidelap Connector No. Sidelap Connectors: 3 Proposed System Diaphragm Shear and Stiffness/Flexibility Design Shear: 794 plf Design Uplift: 249 psf Shear Stiffness G: 10.0 kip/in. Flexibility Factor F: 100.3 micro-in./lb Design Checks Design Shear =794p1f>=0=608p1f --> OK Design Uplift = 249 psf > T = 0 psf => OK Shear & Tension Interaction: No Interaction Check Needed! => OK I . Design OK I Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 I © 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 29/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone Area B -2 Frame Fastener Strength: Reference: QF - Hilti PTC Hilti 2014 PIG Supplement. Section - 1.1, Table 8 OF = 1.597 kip = 1597 lb SidelapConnector Strength: QS = Hi iii PTG Qs = 0.844 kip = 844 lb Hilti 2014 PIG Supplement, Section 1.1, Table 8 Shear Strength Calculation: QS as = 0.528 'lie =(2.a1 +n •a2 +fle )•L SDI DDM, Third Edition (Eq. 2.2-2) ne = n = 3 * (No. of Sidelaps per Span) a1 =1.333 flp =2 a2 = 1.333 ne =3*3.000=9.000 1 =3*400ft=l200ft Sne =1907p1f Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 1 0 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan • I — www.hilti.us PROFISDF Diaphragm 2.7.0 Company: Page: 30/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone Area B -2 Reference: S,7 , = (2. A .(.Z —i)+ B).QF SDI DDM, Third Edition (Eq. 2.2-4) %=1—_D•, 2!O.7 - 24O .J B=n as-I- 2•n .>JXxP)2+4.>(x)2 - S ) A =1 D 1.500 in. lv 4.00 ft ns =3*3.000=9.000 W = 36.000 in. = 0.5556 W 2 EN ), = 0.5556 = 0.854 B =9.201 S, =1186p1f I_N 2 •B2 Sn,= . N2 + B2 SDI 0DM, Third Edition (Eq. 2.2-5) N =1.000ft, Sne =972p1f Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS OF Diaphragm 2.7.0 I © 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan Sn = Mifl(Sne S; S,) Sn = 972 pIt c = 1.257 S = Sr, *c =1221pIf Hilti 2U14 P I G Supplement, Section 1.1. Table 8 Design Shear Strength: Sfl,d = 1221 plf* 0.65 = 794 pIt Check for Buckling: I -101 Sflb= j2 Hilti 2014 PTG Supplement, Section 1.1, Table 12 III -.I www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 31/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone Area B -2 Reference: = 0.152 in.4/ft Iv =4.00ft Sflb,d = 9500 Of * 0.80= 7600 pIt Governing: = Min(S; Sob) = 794 pIt >= 0 = 608 pIt Frame Fastener Flexibility: SF = Hi/ti PTG Hilti 2014 PTG Supplement, Section 1.1, Table 9 Sr = 0.0044 in./kip Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS OF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan www.hilti.us .) PROMS DF Diaphragm 2.7.0 Company: Page: 32/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone Area B -2 Sidelap Connector Flexibility: Reference: - S = Hi/ti PTG Hilti 2014 PTG Supplement Section S 1.1, Table 9 Ss = 0.0175 in./kip Shear Stiffness I Flexibility Factor Calculation: F 1000 G' G= Et 2.6.1+pD +C Et - 2.6 + 0.9 + K1 .1 d SDI DDM, Third Edition (Eq. 3.3-3) SDI 0DM, Third Edition, Simplified Equation (Appendix IV) K1=E.t .SL. 2 W 2.a1 -i-n.a2 SF +2n Sc I'S E = 29500 ksi t = 0.0295 in. _3*40Oft._120Oft_14400in. W = 36.000 in. KI = 0.0215 1n1 s / d = 8.760 in. I 6.000 in. = 1.460 D =12864.40 in. G' = 10.0 kip/in. F = 100.3 micro-in./lb Input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 1 0 2008-2014 Huh Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan III-.l www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 33/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Uplift Calculation for Zone Area B -2 Nominal Uplift Resistance: - Reference: K•7 T = ' Roof Deck Construction Handbook C•i, 'V =4.00 ft C =3.Ooft K =3.00 711,F.= Hi/ti PTG Tn,F =19951b Tn = 499 psf Hilti 2014 PTG Supplement, Section 1.2.3 and 1.3.3 Design Uplift Resistance: Tn d = 499 psf * 0.50 = 249 psf >= I = 0 psf Shear -Uplift Interaction Check: T = 01 ==> No Interaction Check Needed! SDI DDM, Third Edition, section 4.10 Li Input data and results must be checked for agreement with the existing conditions and for plausibility PROMS DF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan S. • — www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 34/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Zone Area B -3 Length L: Required Input Loads Diaphragm Shear Q: Proposed Diaphragm System Deck Thickness: Frame Fastener: l2ft 894 plf Net Uplift T: 0 psf 20 ga (0.0358 in.) Pattern: 36/4 Hilti X-HSN 24 Sidelap Connector: S-SL.0 01 M HWH Sidelap Connector No. Sidelap Connectors: 4 Proposed System Diaphragm Shear and Stiffness/Flexibility Design Shear: 1050 pIt Design Uplift: 210 psf Shear Stiffness G: 15.6 kip/in. Flexibility Factor F: 64.0 micro-in./lb Design Checks Design Shear =lo5oplf>=Q=894p1f => OK - Design Uplift =2lo psf >=T = 0 psf => OK Shear & Tension Interaction: No Interaction Check Needed! => OK I Design OK I Input data and results must be checked for agreementwith the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan 1= II-. 1W I www.hilti.us -- PROFIS DF Diaphragm 2.7.0 Company: Page: 35/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone Area B -3 FrameFastener Strength: - Reference: 1) = Hu h PTG Hilti 2014 PTG Supplement, Section 1.1, Table 8 OF =2.lo7 kip =21071b SidelapConnector Strength: Q8 = Hilli PTG Qs = 1.260 kip = 1260 lb Shear StrengthCalculation: as _Q Qr CXs = 0.598 s =(2.a1 +n •a2 +fle )L / ne = n = 3 * (No. of Sidelaps per Span) Hilti 2014 PTG Supplement, Section 1. 1, Table 8 SDI 0DM, Third Edition (Eq. 2.2-2) a1 = 1.333 flp =2 02 = 1.333 ne = 3 * 4.000 = 12.000 I = 3*400ft1200ft Sne = 3043 Of input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is registered trademark of Hilti Corp., Schaan III -.I www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 36/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone Area B -3 Reference: S,,1 = (2. A (A. —i)+ B).QF SDI DOM, Third Edition (Eq. 2.2-4) ~ 0.7 24O B=n 2•n .(xp)2+4.(;)2 S p w 2 w2 A =1 D 1.500 in. lv 4.00 It ns = 3 * 4.000 = 12.000 W = 36.000 in. (x )2 = 0.5556 w 2 = 0.5556 = 0.868 B = 11.621 S111 1994plf I N2.B2 S. =QF J12.N2-i-B2 N =1.000ft1 Snc =1466p1f SDI DDM, Third Edition (Eq. 2.2-5) Input data and results must be checked for agreement with the existing conditions and for plausibility PRO RS DF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp.. Schaan www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 37/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone Area B -3 Reference: Sn = Min(S,; S,; S) S. =1466p1f c = 1.102 Hilti 2014 Pl(i Supplement, Section 1.1. Table 8 Sn =Sc=1615plf Design Shear Strength: Sfl,d = 1615 plf* 0.65 = 1050 plf Check for Buckling: 1.106 Hilti 2014 PTG Supplement, Section Sflb= 1.1, Table 12 =0.198in.4/ft A 4.00 ft Sflb,d = 12375 plf * 0.80 = 9900 plf Governing: = Min(S; Sflb) = 1050 plf >= 0 = 894 plf Frame Fastener Flexibility: SF = Huh PTG Hilti 2014 PTG Supplement, Section 1.1, Table 9 St = 0.0066 in./kip Input data and results must be checked for agreement with the existing conditions and for plausibility PROMS DF Diaphragm 2.7.010 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan III -. Ed I www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 38/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Shear I Stiffness Calculation for Zone Area B -3 Sidelap Connector Flexibility: - - - Reference: - S - Hilti PTG Hilti 2014 PTG Supplement, Section S 1.1, Table 9 S = 0.0159 in./kip Shear Stiffness I Flexibility Factor Calculation: F 1000 G' E•t 2.6+pD+C G' - E•t 2.6--+0.9+K1•l d / K1=E.t.& 2 W SF 2•a1 +n'a2 +2'n•---- SS E = 29500 ksi t = 0.0358 in. I = 3*400ft..1200ft.14400in. W = 36.000 in. KI = 00253 in-' s / d = 8.760 in. / 6.000 in. = 1.460 D = 9622.72 in. G' = 15.6 kip/in. F = 64.0 micro-in Jib SDI DDM, Third Edition (Eq. 3.3-3) - SDI DOM, Third Edition, Simplified Equation (Appendix IV) input data and results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan www.hilti.us PROMS DF Diaphragm 2.7.0 Company: Page: 39/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Design Uplift Calculation for Zone Area B -3 Nominal Uplift Resistance: - - Reference: K•l F T = ' Roof Deck Construction Handbook =4.oOft C =3.Ooft K =3.00 = HI/ti PTG TflF =1680 lb Tn = 420 psf Hilti 2014 PTG Supplement, Section 1.2.3 and 1.3.3 Design Uplift Resistance: Tn.d = 420 psf * 0.50 = 210 psf >= T = 0 psf Shear- Uplift Interaction Check: T = 0! ==> No Interaction Check Needed! SDI DDM, Third Edition, section 4.10 Input data and' results must be checked for agreement with the existing conditions and for plausibility PROFIS DF Diaphragm 2.7.0 1 0 2008-2014 HiltiCorp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan www.hilti.us PROMS OF Diaphragm 2.7.0 Company: Page: 40/40 Address: Project Number: Phone I Fax: Project Title: e-Mail: Contact: Date: 10/23/2018 Remarks; Your Cooperation Duties Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you. Input data and] results must be checked for agreement with the existing conditions and for plausibility PROFIS OF Diaphragmi 2.7.0 10 2008-2014 Hilti Corp., FL-9494 Schaan I Hilti is a registered trademark of Hilti Corp., Schaan 5TRJCTLIRAL <# 5Y5T1.M5 LNGINLRING CMU WALL CALCULATIONS STRUCTURAL SYSTEMS ENGINEERING, LLC 613 Heritage Road Easley, SC 29640 864.505.9776 CMU WALL NUMBER I () Level I 8 #8 © 481n Hor.Strip, 'I All 19 [28.67 Va \(1)22#516 Irk E.P. 30.4.2 ft - :LevelO Mleentleys Current Date: 12/17/2018 12:00 PM Units system: English File name: C:tUsersbnanStructural Systems Engineering\SSE - SSE Projects\18-029 Legoland CaliforniaAnalysis\East-West Walls with no Flanges LRFD Load Combinations.msw\ Design Results Masonry wall Number I GENERAL INFORMATION: Global status : OK Design code : TMS 402-11 SD Geometry: Total height : 30.42 [ft] Total length : 28.67 [ft] Base support type : Continuous Wall bottom restraint : Fixed Column bottom restraint : Pinned Rigidity elements : None Materials: Material : CMU 1.5-60 Mortar type : Port/Mort - M/S Grouting type : Partial grouting Mortar bed type : Full bed Masonry compression strength (Fm) : 1.5 [Kip/1n2] Steel tension strength (fy) : 60 (Kip/in2J Steel allowable tension strength (Fs) : 24 [Kipfun2] Steel elasticity modulus (Es) : 29000 [Kiplin2] Masonry elasticity modulus (Em) : 1350 [Kiplin2] Masonry unit weight : 0.135 [Kip/ft3] Seismic data: Seismic design category : SDC D Response modification factor : 5.00 Shear wall type : Special Number of stories: I Story Story height Wall thickness Effective unit weight (ftj (in] (kiplft3j 1 30.42 11.63 0.09 Load conditions: ID Comb. Category Description DL No DL Dead Load LL No LLR Live Load Wi No WIND Wind 1 W2 No WIND Wind 2 E No EQ Seismic Dl Yes 1.4DL D2 Yes 1.2DL+0.5LL D3 Yes 1.2DL+1.6LL D4 Yes 1.2DL+0.5W1 Pagel D5 Yes 1.2DL+0.5W2 06 Yes 1.2DL+i .6LL+0.5W1 D7 Yes 1.20L+1.6LL+0.5W2 D8 Yes 1.2131-4I D9 Yes - I .20L+W2 DIO Yes 1.20L+0.5LL+W1 Dii Yes 1.2DL+0.5LL+W2 D12 Yes 1.3580L+1.3E D13 Yes 0.9DL+WI D14 Yes 0.9DL+W2 015 Yes 0.7420L+1.3E 016 Yes DL Distributed loads: Consider self weight : DL Story Condition Direction Magnitude Eccentricity [Kip/ft] (ft] 1 DL Vertical 0.38 0.00 1 LL Vertical 0.25 0.00 1 Wi Vertical 0.32 0.00 W2 Vertical 0.32 0.00 1 W2 Horizontal 1.15 0.00 1 E Horizontal 3.74 0.00 Out-of-Diane loads: Story Condition Magnitude (Kip/ft2J I Wi 0.02 1 W2 0.02 Parapet Wi 0.02 Parapet W2 0.02 BEARING WALL DESIGN: Status : OK Page2 Geometry: Segment X Coordinate V Coordinate Width Height Efti ftJ Efti (if] 1 .000 0.00 28.67 30.42 Vertical reinforcement: Segment Bars Spacing Ld [in] [in] 1 2245 16.00 39.33 Results: Combined axial flexure Page3 Segment Condition Pu Mua Mu 4Mri Ratio [Kip]. (Kip*ftj [Kip*ft] [Kip*ft] 1 D13(Bottom) 87.92 76.45 79.93 303.00 0.26 Results: Flexural reinforcement area Segment Condition Pu As Asmax Ratio [Kip] [in2] [in2 1 D4(Max) u.uu 1j.13j zo.oz U.3U - Intermediate results for axial-bending Segment Condition c d Mcr (in) . [in] [Kip*ft] 1 D13(Bottom) 2.04 9.32 2.02 Inertias Segment Condition Ig Icr [in4] [in4] Interaction diagrams, P vs. M: P vs. U (Sen-=t I) E a IIW In as R mu Mug 1NliL] tLI1ILIJ U IBM as 124 long me *asago 1111 I Now 104 as I a me .n. *11 USS 1 UIU IU II IlU USU 5* UU IUM II III U. Results: Axial compression Segment Condition Pu $Pn Ratio [Kip] [Kip] 1 Dl(Bottom) 122.38 1129.37 0.11 El Page4 Axial stress Segment Condition Pu PuIAg Fn Ratio [Kip] [Kip/in2] [Kip/1n2] I D1(Bottom) 122.38 0.05 0.07 0.62 '' • Results: Shear Segment Condition Vu $Vn Ratio [Kip] [Kip] I D13(Bottom) 0.43 8.41 0.05 ' Deflection Segment Condition as 6max 8s18max [in] [in] I D16(Top) 0.00 2.56 0.00 I I SHEAR WALL DESIGN: Status : OK Page5 Geometry: Segment X Coordinate Y Coordinate Width Height Efti IN Efti [ft] 1 0.00 0.00 28.67 30.42 Reinforcement: Vertical reinforcement Horizontal reinforcement Segment Bars Spacing Ld Bars Spacing Ld [in] [in] (in] [in] I 2245 16.00 0.00 848 48.00 151.05 Results: Combined axial flexure Page6 Segment Condition Pu Mu 4Mn Ratio p [Kip] [Kipft] [Kipft] D15(Bottom) 64.86 -4351.41 8838.65 0.49 Results: Flexural reinforcement area Segment Condition Pu As Asmax Ratio [Kip] [1n2] [in2] 1 D5(Bottom) 0.00 13.64 36.42 0.37 — Interaction diagrams, P vs. M: P vs. U (Sen-a-rd I) \71 MD. A_ 1- ••f LJ H' I 1i HHff -t - -1 • a S= IC= 1 Results: Axial compression Segment Condition Pu 4Pn Ratio [Kip] [Kip] I D1(Bottom) 122.38 1135.07 0.11 • Results: Shear Segment Condition Vu Vn Ratio [Kip] [Kip] 1 015(Bottom) 310.39 322.98 0.96 MONEL3 Page7 Notes: Pu = Factored axial load * Pn = Nominal compression strength * 6= Moment magnification factor * Mu = Factored total flexural moment * Mua = Factored flexural moment from analysis * Mn = Nominal moment strength * Mcr = Nominal cracking moment ft = Stress due to flexural tension * fc = Stress due to flexural compression * Fn = Nominal stress Vu = Factored shear force * Vn = Nominal shear strength * 6s = Calculated deflection * 6max = Maximum allowable deflection * Id = Embedment length * Ag = Gross cross sectional area of a member * As = Effective cross sectional area of reinforcement * c = Distance from the fiber of maximum compressive strain to the neutral axis * d = Distance from the extreme compression fiber to centroid of tension reinforcement Page8 (1)7#5@48inE.F. CMU WALL NUMBER 2 El Level t _ 8#7@48 In Hor;Strip I 36.42 ft Level 0 Benfte Current Date: 12/17/2018 1:28 PM Units system: English File name: C:\UsersbrianStnfctural' Systems Engineenng\SSE - SSE Projects18-029 Legoland California\AnalysisNorth and South Theater Walls LRFD L p1 oad Combinations. Design Results Masonry wall Number 2 GENERAL INFORMATION: Global status : OK Design code : TMS 402-13 SD Geometry: Total height : 30.42 [ft] Total length : 25.00 (ft] Base support type : Continuous Wall bottom restraint : Pinned Column bottom restraint : Pinned Rigidity elements : Columns Materials: Material : CMU 1.5-60 Mortar type : Port/Mort - M/S Grouting type : Partial grouting Mortar bed type : Full bed Masonry compression strength (Fm) : 1.5 [Kip/in2] Steel tension strength (fy) : 60 [Kip/in2] Steel allowable tension strength (Fs) : 24 [Kip/in2] Steel elasticity modulus (Es) : 29000 [Kip/in2] Masonry elasticity modulus (Em) : 1350 [Kip/in2] Masonry unit weight : 0.135 [Kip/ft3] Seismic data: Seismic design category : SDC D Response modification factor : 5.00 Shear wall type : Special Number of stories: I Story Story height Wall thickness Effective unit weight (ftj [in] [Kip!ft3] 1 30.42 11.63 0.09 Load conditions: ID Comb. Category Description DL No DL Dead Load LL No LLR Live Load Wi No WIND Wind I W2 No WIND Wind 2 E No EQ Seismic Di Yes 1.4DL D2 Yes 1.2DL+0.5LL D3 Yes 1.2DL+1.6LL D4 Yes 1.2DL+0.5W1 Pagel D5 Yes 1.2DL+0.5W2 D6 Yes 1.2DL+1.6LL+0.5W1 D7 Yes 1.2DL+1.6LL+0.5W2 D8 Yes 1.2DL+Wi D9 Yes 1.2DL+W2 DIO Yes I.2DL+0.5LL+WI Dli Yes 1.2DL+0.5LL+W2 D12 Yes 1.358DL+1.3E D13 Yes 0.90L4I D14 Yes 0.9DL+W2 D15 Yes 0.742DL+1.3E D16 Yes LL Distributed loads: Consider self weight : No Story Condition Direction Magnitude Eccentricity [Kip/ft] [ft] 1 DL Vertical 0.05 0.00 LL Vertical 0.06 0.00 WI Vertical 0.08 0.00 I W2 Vertical 0.08 0.00 I W2 Horizontal 0.10 0.00 1 E Horizontal 0.89 0.00 Out-of-plane loads: Story Condition Magnitude [Kiplft2] 1 Wi 0.02 1 W2 0.02 Parapet WI 0.02 Parapet W2 0.02 BEARING WALL DESIGN: Status : OK Page2 Geometry: Segment X Coordinate Y Coordinate Width Height (ft) (ft] (ft] IN 0.00 000 25.00 30.42 Vertical reinforcement: Segment Bars Spacing Ld [in] [in] 1 745 48.00 39.33 Results: Combined axial flexure Page3 13. IM 2CO 250 0 Results: Axial compression - Segment Condition Pu 4Pn Ratio [Kip] [Kip] IUa titI .i:11 gp ixJNç4T tilt thr ti r a 1Ill U tf fi i atrt. i'M 9I if+ tlj-1 .14th 1T HF I 3CC ,.+1 !t Segment Condition Pu Mua Mu $Mn Ratio [Kip] tKip*ft] [Kipft] [Kipft] 1 D13(Max) 3.12 66.48 66.81 97.07 0.69 Results: Flexural reinforcement area Segment Condition Pu As Asmax Ratio [Kip] [1n2] (in2) 1 D15(Max) 0.00 3.87 14.37 0.27 • Intermediate results for axial-bending - Segment Condition c d Mcr 1 D13(Max) 0.82 9.32 1.44 Inertias Segment Condition Ig Icr [1n4] I D13(Max) 1028.02 134.76 Interaction diagrams, P vs. M: PvM(Sit 1 D7(Max) 4.87 784.59 0.01 ' I Page4 Axial stress Segment Condition Pu Pu/Ag Fn Ratio [Kip] [Kip/1n2] [Kip/1n2] 1 D6(Max) 4.87 0.00 0.07 0.04 ' Results: Shear Segment Condition Vu 4Vn Ratio [Kip] [Kip] 1 D13(Max) 0.22 7.82 0.03 I I Deflection Segment Condition as ömax 8s18max [in) [in) I D2(Top) 0.00 2.56 0.00 I I SHEAR WALL DESIGN: Status : OK PageS I Geometry: Segment X Coordinate V Coordinate Width Height [ft) [ft] ft] [ft] 1 0.00 0.00 25.00 30.42 Reinforcement: Vertical reinforcement Horizontal reinforcement Segment Bars Spacing Ld Bars Spacing Id [in] [in] [in] [in] I 745 48.00 0.00 847 48.00 100.23 Results: Combined axial flexure Page6 Segment Condition Pu Mu Mn Ratio [Kip] [Kipft] [Kipft 1 D15(Bottom) 0.98 -1050.61 2689.69 0.39 ' I Results: Flexural reinforcement area - Segment Condition Pu As Asmax Ratio [Kip] [in2] - [in2] - 1 D5(Max) 0.00 4.34 •25.42 0.17 Interaction diagrams, P vs. M: . I:tt-t-t-I i-t-t-• I±tttfflI1 rt jjtJ: :Ji 2±i F. t- g. (3XO 2 0 Zc 4000 EO Results: Axial compression Segment Condition Pu 4Pn Ratio [Kip) [Kip] 1 06(Max) 4.88 - 798.80 0.01 Results: Shear Segment Condition Vu $Vn Ratio [Kip] [Kip] 1 D15(Bottom) 84.81 145.89 0.58 ' Notes: Page7 Pu = Factored axial load * Pn = Nominal compression strength * 8 = Moment magnification factor * Mu = Factored total flexural moment * Mua = Factored flexural moment from analysis Mn = Nominal moment strength * Mcr = Nominal cracking moment * ft Stress due to flexural tension * fc = Stress due to flexural compression * Fn = Nominal stress * Vu = Factored shear force * Vn = Nominal shear strength * 6s = Calculated deflection * 6max = Maximum allowable deflection Id = Embedment length * Ag = Gross cross sectional area of a member * As = Effective cross sectional area of reinforcement * c = Distance from the fiber of maximum compressive strain to the neutral axis * d = Distance from the extreme compression fiber to centroid of tension reinforcement Page8 CMU WALL NUMBER 3 (Above Level 3) Strip I Hor.Strip I c Level 1 I)5O4Bm I9.l5ft Level 0 I I I %,;LE. entLe Current Date: 12/17/2018 1:35 PM Units system: English File name: C:Usersbrian\Structural Systems EngineeringSSE - SSE Projects18-029 Legoland CaliforniaAnalysisNorth and South Upper Mezz WalI.msw\ Design Results Masonry wall Number 3 (Above Level 3) GENERAL INFORMATION: Global status : 01< Design code : TMS 402-13 SD Geometry: Total height : 19.75 [ft] Total length : 71.33 [ft] Base support type : Continuous Wall bottom restraint : Pinned Column bottom restraint : Pinned Rigidity elements : Columns Materials: Material : CMU 1.5-60 Mortar type : Port/Mort - M/S Grouting type : Partial grouting Mortar bed type : Full bed Masonry compression strength (Fm) : 1.5 [Kiplin2] Steel tension strength (fy) : 60 [Kip/in2] Steel allowable tension strength (Fs) : 24 [Kip/1n2] Steel elasticity modulus (Es) : 29000 [Kip/in2] Masonry elasticity modulus (Em) : 1350 [Kip/in2] Masonry unit weight : 0.135 [Kiplft3] Seismic data: Seismic design category : SDC D Response modification factor : 5.00 Shear wall type : Special Number of stories: I Story Story height Wall thickness Effective unit weight (ftj [m] (Kiplft3j 1 19.75 11.63 0.09 Load conditions: ID Comb. Category Description DL No DL Dead Load LL No LLR Live Load Wi No WIND Wind 1 W2 No WIND Wind 2 E No EQ Seismic Dl Yes 1.4131- D2 Yes 1.2DL+0.5LL D3 Yes 1.2DL+1.6LL D4 Yes 1.2DL+0.5W1 Pagel D5 Yes 1.2DL+0.5W2 D6 Yes '- 1.2DL+1.6LL+05W1 07 Yes 1.2DL+1.6LL+0.5W2 D8 Yes 1.2DL+W1 D9 Yes 1.2DL+W2 D10 Yes 1.2DL+0.5LL+W1 Dli Yes 1.2DL+0.5LL+W2 D12 Yes - 1.358DL+1.3E 013 Yes O.9DL+W1 D14 Yes 0.9DL+W2 015 -Yes 0.742DL+1.3E 016 Yes . DL Distributed loads: Consider self weight No Story Condition DireCtion Magnitude Eccentricity [Kip/ft] [ft] 1 DL. Vertical 0.05 0.00 1 LL - Vertical 0.06 • 0.00 1 WI Vertical 0.08 0.00 - - I W2 Vertical 0.08 0.00 I W2 Horizontal 0.10 0.00 1 E Horizontal 0.89 0.00 Out-of-Diane loads: Story Condition Magnitude - - [Kiplft2] 1 WI. 0.02 1 W2 0.62 Parapet . WI 0.02 Parapet - - W2 0.02 BEARING WALL DESIGN: Status OK WIN IN a ME — WINUMON0~0=00 man OWN ME NOWNINUMMUMMUMMUM ME WOUNMENE MAN NEW NOWNEEIVENE NOWNWEREW ME Geometry: Page2 Segment X Coordinate [ft] V Coordinate [ft] Width (ft] Height (ft] 1 0.00 0.00 71.33 19.75 Vertical reinforcement: Segment Bars Spacing Ld [in] [in] 1 1844 48.00 25.17 Results: Combined axial flexure Segment Condition Pu Mua Mu 4Mn Ratio [Kip] (Kip*ft] [Kip*ft] (Kip*ft] I D13(Max) 8.91 79.88 79.92 183.90 0.43 • Results: Flexural reinforcement area Segment Condition Pu As Asmax Ratio [Kip] [in2] (in2) I D15(Max) 0.00 7.13 40.99 0.17 ' I Intermediate results for axial-bending Segment Condition c d Mcr [in] (in] [Kip*ft] I D13(Max) 0.53 9.38 1.44 Inertias Segment Condition Ig Icr [in4]. [1n4] 1 013(Max) 1028.02 91.83 Interaction diagrams, P vs. M: Page3 P vs. M (5erneit 1) j.t.;Is it J.i tI.Firi F. 3rX d!t tJ.! -. *4 Tt L 41 100 7x ;4ti ttf 41fl',Tr:rt1 ll. 1 zo 0 M '200 am so Results: Axial compression Segment Condition Pu 4Pn Ratio [Kip] [Kip] 1 D7(Max) 13.92 3119.15 0.00 I Axial stress Segment Condition Pu PuIAg Fn Ratio [Kip] [Kiplin2] [Kip/in2] I D7(Max) 13.92 0.00 0.30 0.01 I Results: Shear Segment Condition Vu 4Nn Ratio [Kip] [Kip] I D13(Max) 0.11 7.87 0.01 ' Deflection Segment Condition 6s 8max 85!6max [in] [in] 1 D16(Top) 0.00 1.66 0.00 I I SHEAR WALL DESIGN: Status : OK Page4 ------------------- MM MMOMMIUM --------- -MMM u ------------ -------------------------- ------------------------- ----U- ____ MM Geometry: Segment X Coordinate Y Coordinate Width Height Efti Eft Efti [ft] 1 0.00 0.00 71.33 19.75 Reinforcement: Vertical reinforcement Horizontal reinforcement Segment Bars Spacing Ld :Bars Spacing Ld [in] [in] [in] [in] ------------- 1844 48.00 0.00 546 48.00 73.64 Results: Càmbined axial flexure Segment Condition Pu Mu •Mn Ratip [Kip] [Kip*ft] [Kipft] I D15(Bottom) 2.,80 -1693.02 13467.47 0.13 ' Results: flexural reinforcement area Segment Condition Pu As Asmax Ratio [Kip] n2] [in2] I 013(Top) 0.00 7.20 59.57 0.12 I!I • I Interaction diagrams, P vs. M: Pages P vs. U (Segment 1) UmWepwil Results: Axial compression Segment Condition Pu 4)Pn Ratio [Kip] [Kip] I D6(Max) 13.93 3122.49 0.00 ' Results: Shear Segment Condition Vu 4Vn Ratio [Kip] [Kip] 1 D15(Bottom) 211.42 504.54 0.42 Notes: * Pu = Factored axial load * Pn = Nominal compression strength * 8 = Moment magnification factor * Mu = Factored total flexural moment * Mua = Factored flexural moment from analysis * Mn = Nominal moment strength * Mcr = Nominal cracking moment * It = Stress due to flexural tension fc = Stress due to flexural compression * Fn = Nominal stress * Vu = Factored shear force * Vn = Nominal shear strength * 8s = Calculated deflection * 6max = Maximum allowable deflection Id = Embedment length * Ag = Gross cross sectional area of a member * As = Effective cross sectional area of reinforcement * c = Distance from the fiber of maximum compressive strain to the neutral axis d = Distance from the extreme compression fiber to centroid of tension reinforcement Page6 IF1FIE] WULIIThL______ tBentter Current Date: 12/17/2018 1:40 PM Units system: English File name: C:\Users\brianStructural Systems EngineeringSSE - SSE Projects18-029 Legoland Califomia\Analysis\North and South Lower Mezz Wall LRFD Load Combinations.msw\ Design Results Masonry wall Number 3 (Below Level 3) GENERAL INFORMATION: Global status : OK Design code : TMS 402-13 SD Geometry: Total height : 19.75 [ft] Total length : 71.33 [ft] Base support type : Continuous Wall bottom restraint : Pinned Column bottom restraint : Pinned Rigidity elements : Columns Materials: Material : CMU 1.5-60 Mortar type : Port/Mort - M/S Grouting type : Partial grouting Mortar bed type : Full bed Masonry compression strength (Fm) : 1.5 [Kip/in2] Steel tension strength (fy) : 60 [Kip/in2] Steel allowable tension strength (Fs) : 24 [KiIin2] Steel elasticity modulus (Es) : 29000 [Kip/in2] Masonry elasticity modulus (Em) : 1350 [Kip/in2] Masonry unit weight : 0.135 (Kip/ft3] Seismic data: Seismic design category : SDC D Response modification factor : 5.00 Shear wall type : Special Number of stories: I Story Story height Wall thickness Effective unit weight (ft] [in] (Kip!ft3J 1 19.75 11.63 0.09 Load conditions: ID Comb. Category Description DL No DL Dead Load LL No LLR Live Load Wi No WIND Wind I W2 No WIND Wind 2 E No EQ Seismic Di Yes 1ADL D2 Yes 1.2DL+0.5LL D3 Yes 1.2DL+1.6LL D4 Yes 1.2DL+0.5W1 Pagel D5 Yes 1.2DL+0.5W2 06 Yes -. I.20L+1.6LL+0.5W1 07 Yes : 1.20L+1.6LL+0.5W2 08 Yes 1.2DLW1 D9 Yes i.201-+W2 010 Yes 1.20L+0.5LL+W1 011 Yes 1.2DL+0.5LL+W2 012 Yes 1.358DL+1.3E 013 Yes O.9DL+WI 014 Yes O.9DL+W2 D15 Yes * 0.7420L+1.3E D16 Yes DL Distributed loads: Consider self weight : No Story Condition . Direction Magnitude Eccentricity [Kip/ft] [ftj 1 DL Vertical 0.80 0.00 1 LL Vertical 1.22 0.00 1 Wi Vertial 0.08 0.00 W2 - Vertical 0.08 0.00 1 W2 Horizontal 0.23 0.00 E Horizontal 1.08 0.00 Out-of-plane loads: Story Condition Magnitude [Kip/ft2) 1 Wi 0.02 1 W2 0.62 Parapet WI 0.02 Parapet W2 0.02 BEARING WALL DESIGN: - Status : OK AIR MINIM MINIM INIMA Geometry: * Page2 Segment X Coordinate V Coordinate Width Height [ft] [ft] [ft] [ft] 1 0.00 0.00 71.33 19.75. Vertical reinforcement: Segment Bars Spacing Ld [in] [in] 1 3644 24.00 25.17 Results: Combined axial flexure Segment Condition Pu Mua Mu •Mn Ratio [Kip] [Kip*ft] [Kip*ft] [Kip*ft] I D13(Max) 57.05 79.88 80.13 369.93 0.22 '' • Results: Flexural reinforcement area Segment Condition Pu As Asmax Ratio (Kip] [in2] [in2 I 04(Max) 0.00 14.27 54.00 0.26 ' Intermediate results for axial-bending Segment Condition c d Mcr [in] [in] [Kip*ft] 1 D13(Max) 1.12 9.38 1.92 Inertias Segment Condition lg Icr [1n4] [1n4] I 013(Max) 1137.02 172.67 Interaction diagrams, P vs. M: Page3 .P vM(Sejnierti) tLt tt IUD 000. 2oo U 200 '00 ECO 000 10 Results: Axial compression Segment Condition Pu Pn Ratio [Kip] [Kip] 1 06(Max) 210.42 3806.83 0.06 U -I Axial stress - Segment Condition Pu Pu!Ag Fn Ratio [Kip] [Kip/1n2] [Kip/in2] 1 D7(Max) 210.42 0.04 0.30 0.13 LI • I Results: Shear Segment Condition Vu 4Vn Ratio [Kip] [Kip] 1 D13(Max) 0.11 8.01 0.01 I Deflection Segment Condition 6s 6max sI6max [in] [in] 1 D16(Top) 0.00 1.66 0.00 I • I SHEAR WALL DESIGN: Status : OK Page4 Geometry: Segment X Coordinate Y Coordinate Width Height [ft] [ft] [ft] (ft] 1 0.00 0.00 71.33 19.75 Reinforcement: Vertical reinforcement Horizontal reinforcement Segment Bars Spacing Id Bars Spacing Id [in] [in] [in] [in] 3644 24.00 0.00 546 48.00 73.64 Results: Combined axial flexure Segment Condition Pu Mu •Mn Ratio [Kip] (Kipft] [Kip*ft] 1 D15(Bottom) 42.36 -2010.64 25861.74 0.08 U I Results: Flexural reinforcement area Segment Condition Pu As Asrnáx Ratio [Kip] [in2] (in2] I D13(Top) 0.00 14.40 76.32 0.19 Li I Interaction diagrams, P vs. M: Pages B-iL4 - --- - - - - -. rrr ---- L loco -x oco. 0 200 1O NO P et Results: Axial compression Segment Condition Pu Pn Ratio [Kip] [Kip] D6(Max) 21065 381636 006 • Results: Shear 5egment Condition Vu $Vn : Ratio [Kip] (Kip] I D15(Bottom) 246.72 - 604.20 0.41 Notes: * Pu = Factored axial load Pn = Nomiral compression strength * 6 = Moment magnification factor * Mu = Factored total flexural moment - * Mua = Factored flexural moment from analysis * Mn = Nominal moment strength * Mcr = Nominal cracking moment * ft = Stress due to flexural tension * fc = Stress due to flexural compression * Fn = Nominal stress * Vu = Factored shear force * Vn = Nominal shear strength * 6s = Calculated deflection * 6max = Maximum allowable deflection * Id = Embedment length * Ag = Gross cross sectional area of a member As = Effective cross sectional area of reinforcement * c = Distance from the fiber of maximum compressive strain to the neutral axis * d = Distance from the extreme compression fiber to centroid of tension reinforäàment Page6