HomeMy WebLinkAbout1040 AUTO CENTER CT; PARKING; CB023405; PermitCity of Carlsbad
1635 Faraday Av Carlsbad, CA 92008
Building Inspection Request Line (760) 602-2725
08- 14-2003 Commercial/lndustrial Permit Permit No: CB023405
Job Address:
Permit Type:
Parcel No:
Valuation:
Occupancy Group:
Project Title:
Applicant: SOLIVEN DOMINIC
STE 101
2 FARADAY 926 18
949 595-801 1
1040 AUTO CENTER CT CBAD
COMMIND Sub Type: COMM
Lot#: 0 Status: ISSUED
$2,479,329.00 Construction Type: IIN Applied: 11/12/2002
TOYOTA CARLSBAD Plan Approved: 08/14/2003
91,827 SF PARKING STRUCTURE Issued: 08/14/2003
Reference #: Entered By: MDP
Inspect Area:
Pian Check#: Owner:
1955 08/14/03 003002 01 02
Building Permit
Add'l Building Permit Fee
Plan Check
Add'l Plan Check Fee Plan Check Discount Strong Motion Fee Park Fee
LFM Fee
Bridge Fee BTD #2 Fee
BTD #3 Fee
Renewal Fee
Add'l Renewal Fee Other Building Fee
Pot. Water Con. Fee Meter Size
Add'l Pot. Water Con. Fee
Recl. Water Con. Fee
$6,059.61
$0.00
$3,938.75 $0.00
$0.00 $520.66
$0.00
$0.00
$0.00 $0.00
$0.00
$0.00
$0.00 $0.00 $0.00
$0.00
$0.00
Meter Size
Add'l Recl. Water Con. Fee
Meter Fee SDCWA Fee CFD Payoff Fee
PFF
PFF (CFD Fund)
License Tax
License Tax (CFD Fund) Traffic Impact Fee
Traffic Impact (CFD Fund)
PLUMBING TOTAL
ELECTRICAL TOTAL MECHANICAL TOTAL Master Drainage Fee
Sewer Fee
Redev Parking Fee
Additional Fees TOTAL PERMIT FEES
$0.00
$0.00
$0.00 $0.00 $45,123.79
$41,652.73
$0.00
$0.00 $0.00
$0.00
$1 32.00
$110.00 $30.50 $0.00 $0.00
$0.00
$0.00 $97,568.04
Total Fees: $97,568.04 Total Payments To Date: $4,034.00 Balance Due: $93,534.04
FINAL APPROVAL
Inspector: zzz& Date: <by. d4 Clearance:
NOTICE: Please take NOTICE that approval of your project includes the "Imposition" of fees, dedications, reservations, or other exactions hereafter collectively
referred to as 'feeslexactions." You have 90 days from the date this permit was issued to protest imposition of these feeslexactions. If you protest them, you must
follow the protest procedures set forth in Government Code Section 66020(a), and file the protest and any other required information with the City Manager for
prmssing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack,
review, set aside, void, or annul their imposition.
You are hereby FURTHER NOTIFIED that your right to protest the specified feedexactions DOES NOT APPLY to water and sewer connection fees and capacity
changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project. NOR DOES IT APPLY to any
fa
BUILDING DEPARTMENT
Ave., Carlsbad, CA 92008 1 EST. VAL. 2; yG?iiTd?*
Plan Ck. Deposit
Validated By
Date -- Total # of units
1@3mfx2/02 9002 01 02 Assessor's Parcel # Existing Use 91827 sf 2/w Basement
SQ. FT. #of Stories # of Bedrooms CGFf Bathroo#%, #
X
issuance, also requires the applicant for such permit to file a signed statement that he is licensed pursuant to the provisions of the Contractor's License Law
tate License # City Business License #
I have and will maintain a certificate of consent to self-insure for workers' compensation as provided by Section 3700 of the Labor Code, for the performance
have and will maintain workers' compensation, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is
Is unlawful, and shall subject an employer to criminal penaltiea and civil fines up to one hundred
0 I, as owner of the property or my employees with wages as their sole compensation, will do the work and the structure is not intended or offered for sale
(Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and who does
such work himself or through his own employees. provided that such improvements are not intended or offered for sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale).
0 I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The
Contractor's License Law does not apply to an owner of property who builds or improves thereon, and contracts for such projects with contractor(s) licensed
pursuant to the Contractor's License Law).
0
1.
2.
3.
I am exempt under Section
I personally plan to provide the major labor and materials for construction of the proposed property improvement. 0 YES ON0
I (have / have not) signed an application for a building permit for the proposed work.
I have contracted with the following person (firm) to provide the proposed construction (include name / address / phone number 1 contractors license number):
Business and Professions Code for this reason:
4.
number / contractors license number):
5. of work):
I plan to provide portions of the work, but I have hired the following person to coordinate, supervise and provide the major work (include name / address / phone
I will provide some of the work, but I have contracted (hired) the following persons to provide the work indicated (include name / address / phone number / type
PROPERTY OWNER SIGNATURE DATE
Is the applicant or future building occupant required to submit a business plan, acutely hazardous materials registration form or risk management and prevention
program under Sections 25505, 25533 or 25534 of the Presley-Tanner Hazardous Substance Account Act? 0 YES 0 NO
Is the applicant or future building occupant required to obtain a permit from the air pollution control district or air quality management district? 0 YES 0 NO
Is the facility to be constructed within 1,000 feet of the outer boundary of a school site? 0 YES 0 NO
IF ANY OF THE ANSWERS ARE YES. A FINAL CERTIFICATE OF OCCUPANCY MAY NOT BE ISSUED UNLESS THE APPLICANT HAS MET OR IS MEETING THE REQUIREMENTS OF THE OFFICE OF EMERGENCY SERVICES AND THE AIR POLLUTION CONTROL DISTRICT.
LENDER'S NAME LENDER'S ADDRESS
I certify that I have read the application and state that the above information is correct and that the information on the plans is accurate. I agree to comply with all City ordinances and State laws relating to building construction. I hereby authorize representatives of the City of Carlsbad to enter upon the above mentioned
property for inspection purposes. I ALSO AGREE TO SAVE, INDEMNIFY AND KEEP HARMLESS THE CITY OF CARLSBAD AGAINST ALL LIABILITIES,
JUDGMENTS, COSTS AND EXPENSES WHICH MAY IN ANY WAY ACCRUE AGAINST SAID CITY IN CONSEQUENCE OF THE GRANTING OF THIS PERMIT.
OSHA: An OSHA permit is required for excavations over 5'0" deep and demolition or construction of structures over 3 stories in height.
EXPIRATION. Every permit issued by the building Official under the provisions of this Code shall expire by limitation and become null and void if the building or wok authorized by such permit IS not corn nced within 180 days from the date of such permit or if the building or work authorized by such permit is suspended or abandoned
at any time after the work is cornm ced fora pe e ' 106 . niform Building Code).
APPLICANT'S SIGNATURE DATE // //z /@= / d428:z!!l! / File YELLOW: Applicant PINK: Finance
L
I
Clty d Carlsbad
Flnal Building lnsiectlon
4 2 Date Inspected: .$YAY Approved: Disapproved:
City of Cirlrbrd
Flnal Bulldlng lnsuectlon
Dept: Building Planning CMWD St Li
Plan Check #:
Permit #: CB023405
Project Name: TOYOTA CARLSBAD
Address: 1040 AUTO CENTER CT
91,827 SF PARKING STRUCTURE
Permit Type: COMMIND
SubType: COMM
Lot: 0
Contact Person:
Sewer Dist:
Phone:
Water Disk
c/ Date
Inspected: 6 - zz-~~ Approved: Disapproved:
Inspected Date
By: Inspected: Approved: Disapproved:
Inspected Date
By: Inspected: Approved: Disapproved:
.............................................................................................................................................................
-
City of Carlsbad Bldg Inspection Request
For:
Inspector Assignment: TP Permit# CB023405 YVv
Title: TOYOTA CARLSBAD
Description: 91,827 SF PARKING STRUCTURE
Type: COMMIND Sub Type: COMM
Job Address:
Location:
1040 AUTO CENTER CT
Suite: Lot 0
APPLICANT SOLIVEN DOMINIC
Owner: STELLAR PROPERTIES LLC
Remarks: AM PLEASE
Total Time:
Phone: 6262559591
Inspector:
Requested By: CALVIN
Entered By: CHRISTINE
CD Description
19 Final Structural
29 Final Plumbing
39 Final Electrical
I 49 Final Mechanical
Associated PC Rs/CVs
PCR03276 ISSUED TOYOTA CBAD-REVISE ELECTRIC-; PARKING STRUCTURE
Date
05/0412004
05/03/2004
05/03/2004
05/03/2004
04/05/2004
03/31/2004
03/30/2004
03/30/2004
0330/2004
03/22/2004
03/22/2004
03/22/2004
OW1 8/2004
OW1 712004
031 712004
Inspection Historv
Description
39 Final Electrical
14 FramelSteeWBoltingMIelding
34 Rough Electric
39 Final Electrical
62 SteeWBond Beam
11 FtgIFoundatiorVPiers
12 SteeWBond Beam
24 RougMopout
12 SteeWBond Beam
12 SteellBond Beam
66 Grout
66 Grout
24 RougMopout
61 Footing
24 RQUghfrOpoUt
Act lnsp Comments
PA TP
PI TP PART WALK THRU/FINAL PREP, QUES
CO TP ACCESS TO PNLS, TRANS
WC JM
AP TP 3RD LEVEL SPANDRILS
AP TP DECKDRAINS
WC TP
AP TP SPANDRIL WALLS 2 & 2RD LEVEL
AP TP DECKDRAINS
AP TP SPANDRAL WALLS 2ND LEVEL
AP TP CLMNSBRDLEVEL
AP TP ELEV. ENCL CMU TI0 & ROOF SLAB
AP TP ELEV ENCL 3RD LEVEL
WC TP
AP TP TSHENCL
SUB PNLS, TRANS, NEED ELECT A/B NEED ELEV. ELECT ON PLAN
ADD GATE CIR. *NEED ELEV. ELEC ON PLAN. - ADD GATE CIR.
City of Carlsbad Bldg Inspection
For: 05/18/2004
Request
Permit# CB023405 Inspector Assignment: TP
Title: TOYOTA CARLSBAD
Description: 91,827 SF PARKING STRUCTURE
Type: COMMIND SubType: COMM
Job Address:
Suite:
Location:
APPLICANT
Owner:
Remarks:
Total Time:
1040 AUTO CENTER CT
Lot 0
SOLIVEN DOMINIC
STELLAR PROPERTIES LLC
AM PLEASE
Phone: 6262559591
Inspector:
Requested By: CALVIN
Entered By: CHRISTINE
CD Description Act Corn m en t
19 Final Structural & A9vts Am+
t 29 Final Plumbing
39 Final Electrical
49 Final Mechanical
t I
Associated PCRs/CVs
PCRO3276 ISSUED TOYOTA CBAD-REVISE ELECTRIC-; PARKING STRUCTURE
InsDection History
Date Description
05/04/2004
05/03/2004
05/03/2004
05/03/2004
04/05/2004
03/31/2004
03/30/2004
03/30/2004
03/30/2004
03/22/2004
03/22/2004
03/22/2004
ow1 8/2004
OW1 712004
031 712004
39 Final Electrical
14 FrarnelSteeVBoltingNVelding
34 Rough Electric
39 Final Electrical
62 SteeUBond Beam
24 RoughiTopout
1 1 Ftg/Foundation/Piers
12 SteeVBond Beam
24 RougWopout
12 SteeVBond Beam
12 SteeUBond Beam
66 Grout
66 Grout
24 RougMopout
61 Footing
Act lnsp Comments
PA TP
PI TP
CO TP
WC JM
AP TP
AP TP
WC TP
AP TP
AP TP
AP TP
AP TP
AP TP
AP TP
WC TP
AP TP
SUB PNLS, TRANS, NEED ELECT NB NEED ELEV. ELECT ON PLAN
PART WALK THRUIFINAL PREP, QUES
ACCESS TO PNLS. TRANS
ADD GATE CIR. *NEED ELEV. ELEC ON PIAN. - ADD GATE CIR.
3RD LEVEL SPANDRILS
DECK DRAINS
SPANDRIL WALLS 2 & 2RD LEVEL
DECK DRAINS
SPANDRAL WALLS 2ND LEVEL
CLMNS 3RD LEVEL
ELEV. ENCL CMU T/O 81 ROOF SLAB
ELEV ENCL 3RD LEVEL
TSH ENCL
i \L i NOTICE (760) 602-2700
*
CITY OF CARLSBAD
BUILDING DEPARTMENT 1635 FARADAY AVENUE
PERMIT NO.
FOR INSPECTION CALL (760) 602-272f RE-INSPECTION FEE DUE? 0 YES
FOR FURTHER INFORMATION, CONTACT -,7 '?d;ic
PHONE
8 BUILDING INSPECTOR CODE ENFORCEMENT OFFICER
City of Carlsbad Bldg inspection Request
For: 1 0/2 1 /2003
Permit# CB023405 Inspector Assignment: TP
Title: TOYOTA CARLSBAD
Description: 91,827 SF PARKING STRUCTURE
Type: COMMIND SubType: COMM
1040 AUTO CENTER CT
Suite: Lot 0
Job Address:
Location:
APPLICANT SOLIVEN DOMINIC
Owner:
Remarks:
Phone: 6262556821
Inspector: L
Total Time: Requested By: NA
CD Description Act Comment
Entered By: CHRISTINE
11 Ftg/Foundation/Piers AP rcc r/u/on- cff , )L= UUWSd /
Associated PCRdCVs
Inspection History
Date Description Act lnsp Comments
1011 5/2003 12 SteeWBond Beam AP TP STEEL CLMNS (SEE S1 REPORT AmACH)
10/07/2003 11 FtgFoundatiordPiers AP TP LOWER LEVEL (SEE CARD)
10/07/2003 12 SteeWBond Beam AP TP
09/24/2003 11 Ftg/FoundatiordPiers AP TP 4 CAISSON PIERS SEE PLN LOC.
09/24/2003 12 SteeWBond Beam AP TP
4 SOIL & TESTING, INC z K ! (619) 280-4321
U TOLL FREE U z (877) 21 5-4321
K YI FAX I c
0
PHONE
-I
(619) 280-4717 a
VI
P.O. Box 600627
San Diego, CA 92160-0627
6280 Riverdale Street
San Diego, CA 92120
wwwscst .corn
DATE: May 26,2004
Ms. Peggy Kelcher
Steller Properties
6030 Avenida Encinas Carlsbad, California 92009
SCS&T Job No.: 9312376 Report No.: 2
Special inspection Agency1 Construction Materials Testing
Laboratory Final Report
SUBJECT: SATISFACTORY COMPLETION OF WORK REQUIRING: (PLEASE CHECK AS APPLICABLE)
[XI SPECIAL INSPECTION CONSTRUCTION MATERIALS TESTING
PERMIT NO.: CB 023405 PLAN FILE NO.: N/A PROJECT NAME: Tovota Carlsbad Parkincl Structure PHASE: N/A
PROJECT ADDRESS: 1040 Auto Court Center,
IxI The special inspection services were provided by:
SPECIAL INSPECTION AGENCY: Southern California Soil and Testincl. Inc.
ADDRESS: 6280 Riverdale Street, San Dieclo, California 921 20
SPECIAL INSPECTOR’S NAME: (TYPE OR PRINT) See sDecial inspection reDorts dated SeDtember 22.2003 throush April 15,2004. (each special inspector IS required to complete and submit this Final Report form)
SPECIAL INSPECTOR’S CERTIFICATION NUMBER: see insDection reDorts EXPIRATION DATE: see insDection reports
IxI The construction materials testing were performed by:
TESTING LABORATORY: Southern California Soil and Testina. Inc.
ADERESS: 6280 Riverdale Street. San Dieclo. California 92120
RESPONSIBLE MANAGING CIVIL ENGINEER .OF THE TESTING LABORATORY: (MR./MS.) Mr. Edward Trasoras
Carlsbad, California
I
-_
--
STATE OF CALIFORNIA REGISTRATION NUMBER: R.C.E. #44233 EXPIRATION DATE: 06/30/05 -
COMMENTS: SDecial inspection and/or material testincl of Dost tension concrete, reinforced concrete, reinforced masonrv and field
weidincl were Derformed at the above referenced Droiect as detailed in special insDection reDorts dated SeDternber 22, 2003 throuqh
April 15, 2004. *The concrete achieved a strenQth of 3,000 psi. 4,000 Dsi and 5,000 psi or Qreater. The ctrout achieved a
- strenclth of 2,000 Dsi or Qreater. The mortar achieved a strenath of 2,500 psi or ctreater. The masonry prism achieved a
strenclth of 1.500 psi or clreater.
I declare under penalty of perjury that, to the best of my knowledge, all the work requiring special inspection and/or material sampling
and testing for the structure constructed under th
amended by The City of Carlsbad.
Executed on this
mit is in conformance with the approved plans and construction docu- ble workmanship provisions of the California Building Code as
2
I CAS L E)
NOTE. Per our option this form has been store d reproduced OII our company’s letterhead
cc: (2) Addressee !
(1 j City of Carlsbad
City of Carlsbad Bldg Inspection Request
For: 1 0/15/2003
Permit# CB023405 Inspector Assignment: TP
Title: TOYOTA CARLSBAD
Description: 91,827 SF PARKING STRUCTURE
Type: COMMIND Sub Type: COMM
Job Address:
Location:
1040 AUTO CENTER CT
Suite: Lot 0
APPLICANT SOLIVEN DOMINIC
Owner:
Remarks: -
Total Time:
Phone:
Inspector: R
Requested By: TOYOTA CARLSBAD
Entered By: CHRISTINE
CD Description Act Comment
12 SteeVBond Beam
Associated PCRsKVs
InsDection History
Date Description Act lnsp Comments
10/07/2003 11 FtglFoundationPiers AP TP LOWER LEVEL (SEE CARD)
10/07/2003 12 SteeUBond Beam AP TP
09/24/2003 11 Ftg/Foundation/Piers AP TP 4 CAISSON PIERS SEE PLN LOC.
09/24/2003 12 SteeWBond Beam AP TP
EsGil CorDoration
In Partnership with Government for Building Safety
DATE: FEB. 4,2003
JURISDICTION : CARLSBAD
PLAN CHECK NO.: 02-3405 SET: I1
PROJECT ADDRESS: 1040 AUTO CENTER COURT
PROJECT NAME: TOYOTA CARLSBAD (PARKING STRUCTURE)
0 FILE
0
w
0
0
0
o
w
0
w
The plans transmitted herewith have been corrected where necessary and substantially comply
with the jurisdiction’s building codes.
The plans transmitted herewith will substantially comply with the jurisdiction’s building codes
when minor deficiencies identified below are resolved and checked by building department staff.
The plans transmitted herewith have significant deficiencies identified on the enclosed check list
and should be corrected and resubmitted for a complete recheck.
The check list transmitted herewith is for your information. The plans are being held at Esgil
Corporation until corrected plans are submitted for recheck.
The applicant‘s copy of the check list is enclosed for the jurisdiction to forward to the applicant
contact person.
The applicant’s copy of the check list has been sent to:
DOMINIC SOLIVEN 2 FARADAY, # 101, IRVINE, CA 92618
Esgil Corporation staff did not advise the applicant that the plan check has been completed.
Esgil Corporation staff did advise the applicant that the plan check has been completed.
Person contacted: DOMINIC
Date contacted: (by: 1 Fax #: -801 1
REMARKS: Please submit the name & information of the Speci &&&eam to the city for
review and approval prior to the permit being issued.
Telephone #: 949-595-8004
Mail Telephone Fax In Person
By: AliSadre Enclosures:
Esgil Corporation
[7 GA 0 MB 0 EJ [7 PC 1 /30 tmsrntl.dot
9320 Chesapeake Drive, Suite 208 + San Diego, California 92123 + (858) 560-1468 + Fax (858) 560-1576
Em Corporation
In Partnership with Government for Building Safety
DATE: NOV. 21,2002
JURISDICTION: CARLSBAD
PLAN CHECK NO.: 02-3405
g;*Sy
0 PLAN REVIEWER a FILE
SET: I
PROJECT ADDRESS: 1040 AUTO CENTER COURT
PROJECT NAME: TOYOTA CARLSBAD (PARKING STRUCTURE)
0
0
0
w
0
w
17
IXI
0
The plans transmitted herewith have been corrected where necessary and substantially comply
with the jurisdiction’s building codes.
The plans transmitted herewith will substantially comply with the jurisdiction’s building codes
when minor deficiencies identified below are resolved and checked by building department staff.
The plans transmitted herewith have significant deficiencies identified on the enclosed check list
and should be corrected and resubmitted for a complete recheck.
The check list transmitted herewith is for your information. The plans are being held at Esgil
Corporation until corrected plans are submitted for recheck.
The applicant’s copy of the check list is enclosed for the jurisdiction to forward to the applicant
contact person.
The applicant’s copy of the check list has been sent to:
DOMINIC SOLIVEN 2 FARADAY, # 101, IRVINE, CA 92618
Esgil Corporation staff did not advise the applicant that the plan check has been completed.
Esgil Corporation staff did advise the applicant that the plan check has been completed.
Person contacted: DOMINIC
Date contacted: &&-Ot (by:& )
REMARKS:
Telephone #: 949-595-8004
Fax #: -801 1
Mail Telephone J Fax/ In Person
By: AliSadre Enclosures:
0 GA 0 MB EJ PC 11/13
Esgil Corporation
tmsmtl.dot
9320 Chesapeake Drive, Suite 208 San Diego, California 92123 + (858) 560-1468 + Fax (858) 560-1576
CARLSBAD 02-3405
NOV. 21,2002
PLAN REVIEW CORRECTION LIST
COMMERCIAL
PLAN CHECK NO.: 02-3405
OCCUPANCY: S4 USE: PARKING STRUCTURE
TYPE OF CONSTRUCTION: 11-N
JURIS D I CTI 0 N: CARLSBAD
ll ACTUAL AREA: 9 1,827
ALLOWABLE FLOOR AREA: 30,00O/LEVEL STORIES: 3-LEVEL + BASEMENT
HEIGHT: 26'
SPRINKLERS?: NO OCCUPANT LOAD: 460 II
REMARKS: 8-TIES PERMITTED
DATE PLANS RECEIVED BY
JURISDICTION: 11/12 ESGIL CORPORATION: 11/13
DATE INITIAL PLAN REVIEW
COMPLETED: NOVEMBER 21,2002
DATE PLANS RECEIVED BY
PLAN REVIEWER: Ali Sadre
FOREWORD (PLEASE READ):
This plan review is limited to the technical requirements contained in the Uniform Building Code,
Uniform Plumbing Code, Uniform Mechanical Code, National Electrical Code and state laws
regulating energy conservation, noise attenuation and access for the disabled. This plan review
is based on regulations enforced by the Building Department. You may have other corrections
based on laws and ordinances enforced by the Planning Department, Engineering Department,
Fire Department or other departments. Clearance from those departments may be required
prior to the issuance of a building permit.
Code sections cited are based on the 1997 UBC.
The following items listed need clarification, modification or change. All items must be satisfied
before the plans will be in conformance with the cited codes and regulations. Per Sec. 106.4.3,
1997 Uniform Building Code, the approval of the plans does not permit the violation of any
state, county or city law.
To speed up the recheck process, please note on this list (or a COPV) where each
correction item has been addressed, Le., plan sheet number, specification section, etc.
Be sure to enclose the marked up list when vou submit the revised plans.
CARLSBAD 02-3405
NOV. 21,2002
GENERAL
1.
2.
3.
4.
0
5. -
6.
Please submit three revised, signed sets of prints, to: The Jurisdiction Building
Department.
0 PLANS
Any portion of the project shown on the site plan that is not included with the
building permit application filed should be clearly identified as "not included" on
the site plan or Title Sheet. Otherwise, provide construction details & references
on plans for site walls, gate, fences, etc. Section 106.3.3.
Include the following code information for the proposed building on Title Sheet:
+ Sarinklers: Yes or No + Stories: 3-Levels + Basement (Planning Department Regulation is different from Building
Code). Also revise the notes on sheet AI .01 accordingly. + Permitted Floor Area: 30,000 s.f. per level.
On the cover sheet of the plans, specify any items requiring special inspection, in
a format similar to that shown below.
REQUIRED SPECIAL INSPECTIONS
In addition to the regular inspections, the following checked items will also
require Special Inspection in accordance with Sec. 1701 of the Uniform Building
Code. Alternatively, make a reference to Sheet SD-1 on cover sheet of plans.
ITEM REMARKS:
SOILS COMPLIANCE PRIOR TO FOUNDATION INSPECTION
STRUCTURAL CONCRETE OVER 2500 PSI
PRESTRESSEDSTEEL
FIELD WELDING
EXPANSION/EPOXY ANCHORS
STRUCTURAL MASONRY
HIGH-STRENGTH BOLTS
When special inspection is required, the architect or engineer of record shall
prepare an inspection program which shall be submitted to the building official
for approval prior to issuance of the building permit. Please complete the
attached form. Section 106.3.5.
On the cover sheet of the plans, specify any items that will have a deferred
submittal (stairs, etc.). Additionally, provide the following note on the plans, per
Sec. 106.3.4.2: "Submittal documents for deferred items shall be submitted to
the architect or engineer of record, who shall review them and foward them to
the building official with a notation indicating that the deferred documents have
been reviewed and that they have been found to be in general conformance with
the design of the building. The deferred items shall NOT be installed until their
design and submittal documents have been approved by the building official."
CARLSBAD 02-3405
NOV. 21,2002
7.
8.
9.
IO.
11.
12.
13.
14.
15.
16.
17.
Provide a statement on the Title Sheet of the plans that this project shall comply
with the 2001 edition of the California Building Code (Title 24), which adopts the
1997 UBC, 2000 UMC, 2000 UPC and the 1999 NEC.
0 SITEPLAN
Provide a fully dimensioned site plan (A2.01) drawn to scale. Sec. 106.3.3.
Include the following:
a) Property lines/easernents.
b) Streetdalleys .
c) Existing and proposed buildings and structures.
Clearly dimension building setbacks from property lines, street centerlines, and
from all adjacent buildings and structures on the site plan.
Provide a statement on the site plan stating: "All property lines, easements and
buildings, both existing and proposed, are shown on this site plan."
Show HC spaces required and that provided. The ratio of covered to uncovered
parking spaces and HC parking spaces should be the same.
Justify having no HC accessible parking spaces for employees. See attached HC
list as well. Any appeals will need to be approved by the building official.
0 LOCATION ON PROPERTY
When a new building is to be erected on the same property as an existing
building, the location of the assumed property line with relation to the existing
building shall be such that the exterior wall and opening protection of the existing
building meets the criteria of Table 5-A and Chapter 6. Show this on site plans.
Section 503.
Show the required rating of the protected openings on site and floor plans. Also
justify unprotected openings as shown on plans by grid line D. See next two
items as well.
The exterior wall shall have protected openings (3/4 hour) when closer than 10
feet to a property line or an assumed property line. Section 503 & Table 5-A.
The exterior walls shall have no openings when closer than 5 feet to a property
line or an assumed property line. Openings include windows, doors, scuppers,
vents, etc. Section 503.
Joints installed in walls required to have protected openings shall be protected
by an approved fire-resistive joint system. Provide the UL, or equal, approval
number for all the rated joints on plans. Section 706.1.
CARLSBAD 02-3405
NOV. 21,2002
18.
19.
20.
21.
22.
23.
24.
25.
Please justify the opening to qualify for an open garage. See the next item too.
Provide calculations on plans to show how you comply with all the relevant
provisions of Section 31 1.9.2.2. Coordinate revised floor plans with elevation
plans as well as calculations on AO.O1.
If the assumed PL is located against the existing service bay building show the
floor plans of this building and indicate that the
Structural elements exposed in walls required to be fire-resistive construction
due to location on property must have the same fire-resistive rated protection as
the wall, or as required for the structural frame for the type of construction,
whichever is greater. Table 6-A, footnote 1, and Section 601.4.
FIRE-RESISTIVE CONSTRUCTION
Provide details of the fire-resistive construction as required on plans. Include wall
assemblies, column and beam assemblies, etc. Table 6-A.
Detail and reference I.C.B.O. number or other approval numbers for all rated
assemblies on plans.
Provisions in Chapter 7 require special treatment of penetrations at fire-resistive
assemblies. Provide typical details on the plans showing how the fire-resistive
integrity will be maintained at the following conditions (Include the manufacturers'
names and ICBO numbers (or equal) for any sealant):
THROUGH-PENETRATIONS (through the entire assembly): Fire-resistive walls shall have penetrations protected with through-penetration fire stops having an F-rating, T-rating or complying with UBC Standard 7-1, depending on their locations, sizes and combustibility. Fire resistive floorkeiling assemblies shall have penetrations protected with
through-penetration fire stops having and F-rating, T-rating or complying with UBC
Standard 7-1, depending on their sizes, combustibility and whether the penetrations are in walls above.
MEMBRANE-PENETRATIONS (through only one side of an assembly): Fire-resistive walls shall have penetrations protected with membrane-penetration tire stops having an F-rating or complying with UBC Standard 7-1, depending on their size
and combustibility. Limited steel electrical outlet boxes (not exceeding 16 sq. in., nor more than 100 sq. in. for any 100 sq. ft. of wall) require no protection. Fire-resistive floors or ceilings having penetrations shall comply with Section 71 0.
NOTE: The plans should indicate the various fire-stop ratings required for all penetrations.
Clearly specify minimum thickness of walls and slabs to provide the fire-resistive
rating per Table 7-9 and C. Clearly specify minimum cover for reinforcing at the
fire-rated columns & beams.
CARLSBAD 02-3405
NOV. 21,2002
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
Clearly specify min. cover for prestressed concrete tendons per Section 704.3.3.
Provide a note on plans stating: "Penetrations of rated assemblies shall be
protected as required in UBC Sections 709 and 710." See electrical room.
Detail column fire protection and specify column impact protection in garage
areas per Section 704.2.5. As a minimum, show a 22 ga. steel jacket around
each column (or angles) to a height of 3' above the ground for impact protection.
This applies to the corner columns in the path of traffic.
INTERIOR WALL AND CEILING FINISHES
Provide a note on the plans or on the finish schedule, stating, "Wall and ceiling
materials shall not exceed the flame spread classifications in UBC Table 8-B."
Show 8'-2" clear height to the bottom of beams, etc. for HC access on plans.
EXITS
Please dimension the cross hatched area outside the stairs in each case (for all
levels) to designate the pathways to and from exits not to be obstructed by
parked cars. Also indicate the clear width on plans for each pathway (that
provided versus what is required based on occupant load calculations).
Regardless of occupant load, a floor or landing not more than I" (%" if disabled
access is required) below the threshold is required on each side of an exit door.
Section 1003.3.1.6.
EXITSIGNS
Exit signs are required whenever two exits are required. Show all required exit
sign locations. Section 1003.2.8.2.
If exit signs are required, provide the following notes on the plans, per Section
1003.2.8.2:
a)
b)
Exit signs shall be located as necessary to clearly indicate the direction of egress travel.
Exit signs shall be readily visible from any direction of approach.
Show two sources of power for the lamps at exit signs. Section 1003.2.8.5.
Show separate sources of power for exit illumination. (Occupant load exceeds
99). Section 1003.2.9.2.
0 TITLE 24 DISABLED ACCESS
Provide notes and details on the plans to show compliance with the enclosed
Disabled Access Review List.
CARLSBAD 02-3405
NOV. 21,2002
0 MISCELLANEOUS ITEMS
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48 :
49.
50.
51.
52.
Please specify the base plate anchorage information on plans for the light poles.
FOUNDATION/ STRUCTURAL
Provide a letter from the soils engineer confirming that the foundation plan and
specifications have been reviewed and that it has been determined that the
recommendations in the soil report are properly incorporated into the plans.
Specify size, ICBO number and manufacturer of power driven pins, expansion
anchors, drill in or epoxy anchors. Show end distance and spacing. Section
106.3.3.
Please note where FIO is referenced on foundation plans per schedule on
s2.01.
On detail 11/S3.01, 7 bars at 12” O.C. plus clearances do not add up to 6’.
The # 7 bars in the footing of detail 12E3.01 do not match those in the wall-
foundation, per sketch 2K3.01.
Please cross reference detail 9 on sketch 3E3.01, on the left boundary elements
as well.
Please show details of all lintel elements per sketch 5/S6.01. E.g., provide a
schedule with such information related to different size openings.
Please specify the ICBO approval number for the steel decking on 4K6.01.
Please make references on the ramp to slab on grade and show its transition to
raised slab.
Show all the mild reinforcement on plans near all the diaphragm openings, such
as stairs, ramps, etc. Similarly, for chords, collectors and boundary members.
Prestressing strands are not permitted for such uses. Section 1921.6.12.
Please show all drag bars with size and number on framing plans. Section
1633.2.6. See the next item as well.
Please show chord bars in longitudinal direction on grid line A, Sheet S2.02.
The extension of chord bars as shown on grid line B (terminated at grid point B-
7) is not acceptable.
Show the extension of footing on grid line 14, beyond grid point C-14 on S2.01.
CARLSBAD 02-3405
NOV. 21,2002
53. Show drag elements, splices and their connections are designed for the load
combination per Section 1612.4. Section 1633.2.6.
ADDITIONAL
54. Please see attached for electrical & HC items. The plumbing plans are OK as
submitted.
To speed up the review process, note on this list (or a copy) where each
correction item has been addressed, Le., plan sheet, note or detail number,
calculation page, etc. If you have any questions regarding these plan review
items, please contact All Sadre at 858/560-I468 with Esgil Corporation. Thank
you.
CARLSBAD 02-3405
NOV. 21,2002
+ ELECTRICAL PLAN REVIEW + 1999NEC
+ PLAN REVIEWER: Morteza Beheshti
1. Show the available fault current (Isc) from the serving utility co. and at the
equipment where Isc exceeds 10,000 amps.
2. Show or note on the plans the method used to limit fault currents to 10,000 amps
on branch circuits.
3. Indicate the total load demand on the existing service.
4. Specify the wiring method you intend to use for this project. Indicate the type of
conduit to be used when exposed or buried underground, etc. (Le., EMT, Metal
Flex, NMC etc.). NEC 110-3(a) and (b).
5. Please provide the branch circuit breaker for the inverter system in panel “LP”
schedule.
6. Each sheet of the electrical plans must be signed by the person responsible for
their preparation. Business and Professions Code.
7. Provide a disconnect for each sign. NEC 600-6.
8. Provide GFI protected receptacle(s) within 25 feet of HVAC equipment. NEC
210-8(b)2 & 210-63.
9. Please change all references the NEC code cycle date to 1999. Also, change all
other code article references to the correct code section accordingly.
IO. If utilizing a series-rated system, note on plans: ”Overcurrent device enclosures
will be identified as series-rated and labeled in accordance with NEC 110-22”
and I’ The overcurrent devices shall be AIC rated per manufacturers. labeling of
the electrical equipment”.
Note: If you have any questions regarding this electrical plan review list please contact
Morteza Beheshti at (858) 560-1468. To speed the review process, note on this
list (or a copy) where the corrected items have been addressed on the plans.
CARLSBAD 02-3405
NOV. 21,2002
0 DISABLED ACCESS REVIEW LIST
DEPARTMENT OF STATE ARCHITECT -TITLE 24
The following disabled access items are taken from the 2001 edition of California Building Code, Title 24. Per
Section 101.17.1 1, all publicly and privately funded public accommodations and commercial facilities shall be
accessible to persons with disabilities.
NOTE: All Figures and Tables referenced in this checklist are printed in the California Building Code, Title 24.
Please reflect the following items on plans. Le., imprint these items on plans and revise the plans accordingly.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
SITE PLAN REQUIREMENTS
Clearly show that the site development and grading are designed to provide access to all entrances
and exterior ground floor exits, as well as access to normal paths of travel, per Section 1127B.1.
Where necessary to provide access, shall incorporate pedestrian ramps, curb ramps, stairways and
handrails, etc.
When more than one building or facility is located on a site, accessible routes of travel shall be
provided between buildings and accessible site facilities, per Section 1 127B.1.
The accessible route of travel shall be the most practical direct route between accessible building
entrances, accessible site facilities, and the accessible entrance to the site. Section 1127B.1.
Show, or note that at every primary public entrance, and at every major function area along, or
leading to, an accessible route of travel, there is to be a sign displaying the international symbol of
accessibility. Signs are required to indicate the direction to accessible building entrances and
facilities, per Sections 11 17B.5.7 and 1127B.3.
Show that an accessible route of travel is to be provided to all portions of the building, to accessible
building entrances and between the buildinn and the public way, per Section 11 148.1.2.
Where more than one route of travel is provided, all routes shall be accessible. Section 11 14B.1.2.
0 ACCESSIBLE PARKING
Each lot or parking structure where parking is provided for the public, as clients, guests or
employees, shall provide accessible parking as required by Section 1129B.
Note that the maximum slope of the parking surface at the accessible space, in any direction, is ?4’/ft. (2%), per Section 1129B.4.4. The maximum slope at the passenger loading zone is to be
2%. Also show 8’2” clear height.
0 CURBRAMPS
Curb ramps shall be constructed where a pedestrian way crosses a curb or at each comer of a
street intersection, per Section 11278.5.1.
Plans shall show that curb ramps are 248 wide with a slope of 1:12 (8.33%), per Sections
1127B.5.2 and 11278.5.3. The lower end of each curb ramp shall have a %” lip beveled 45O, per
Section 1127B.5.5.
Show that the landing at the top of the curb shall be level and 248” depth for the entire width of the
curb ramp. Section 1127B.5.4.
The slope of the fanned or flared sides of curb ramps shall not exceed l:lO, per Section
11278.5.4.
The words ”NO PARKING shall be painted on the ground within each 8’ loading and unloading
access aisle (in white letters no less than 12” high and located so that it is visible to traffic
enforcement officials). Section 11 298.4.2.
Ramps shall not encroach into any accessible parking space or the adjacent access aisle.
Section 1129B.4.3.
Show or note that the surface of all curb ramps and the flared sides are to be slip resistant, and
contrasting from the adjacent sidewalk finish, per Section 11278.5.6.
CARLSBAD 02-3405
NOV. 21,2002
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
Provide details or note on the plans that all curb ramps have a grooved border 12" wide at the level
surface of the sidewalk along the top and each side approximately 3/411 o.c., per Section 11278.57.
WALKS AND SIDEWALKS
If any proposed walks slope >1:20 (5%) they must comply with ramp requirements, per Section
1 133B.5.1.
Walks along an accessible route of travel are required to be 248 minimum in width and have slip
resistant surfaces, per Section 11338.7.
The maximum permitted cross slope shall be %,, per ft., per Section 11338.7.1.3.
Show or note that any abrupt level changes will be %,, along any accessible route of travel. When
changes do occur, they shall be beveled with a slope of 1 :2. Level changes of %" may be vertical.
NOTE: If level changes >%l, they must comply with the requirements of curb ramps.
Show that a 60" x 60 level area is provided at areas where a door swings toward the walk in the
accessible route of travel, per Section 11 338.75 Show that the walk extends 224" beyond the strike
edge of the strike edge of any door(or gate) that swings toward the walk.
Show or note that 280" headroom is to be provided from all walkway surfaces to obstructions, per
Section 1 1338.8.2.
Plans indicate that more than one route of travel is to be provided. Revise plans to show that all
routes are to be made accessible, per Section 1127B.1.
0 PEDESTRIAN RAMPS (if none, state so on plans & skip to the next section)
Show that any path of travel with a slope 21:20 (5%) complies with pedestrian ramp requirements,
per Section 1 1338.5.
The allowable slope for an accessible ramp is 1 :12 (8.33%), per Section 1 1338.5.3. Revise plans
to show the least possible slope is being provided for all ramps, per Section 1 1336.5.3.1.
The allowable cross slope at pedestrian ramps shall be %,, per ft (2%), per Section 1133B.5.3.1.
Show or note that ramp surfaces will be slip resistant.
Ramps shall have a minimum width of 48 inches, per Section 1133852.2. Where a ramp serves a
building having an occupant load of 300 or more, the minimum clear width shall be 60 inches.
Show required landings at the top and bottom of ramps, per Section 11338.5.4.
a)
b)
Show that the required intermediate landing is provided, per Section 11338.5.4 as follows:
a) 260" long where the elevation change is 230"; 272" long at direction changes 230O.
The bottom landing shall be 272 in the direction of travel.
The top landing shall be a 260" x 60.
Show the minimum required depth of landing where a door swings over the top landing. The
minimum depth of the landing is required to be equal to the door width, plus 42", per Section
1003.3.4.4.
Plans shall show that the strike edge distances at doors comply with the requirements of Section
11338.5.4.4, as follows:
a) 224" at exterior ramps; 218 at interior ramps.
Show handrails at each side of ramp(s) which are shown to be 21:20 (5%) in slope, per Section
11338.55
Exception: At exterior door landings, handrails are not required on ramps with a rise less than 6" (or
a length less than 72).
CARLSBAD 02-3405
NOV. 21,2002
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
Show that handrails are 21%" but 1%" in any cross sectional dimension. Additionally, show that the
handrails are placed a 21%" from any wall, per Section 11338.55
Show or note that handrails meet the following requirements, per Section 11338.5.5:
a)
b)
c)
Where the ramp surface is not bounded by a wall or fence and the ramp exceeds 10' in length, the
ramp shall comply with one of the following requirements, per Section 1 1338.5.6:
a) A guide curb a minimum of 2 in height shall be provided at each side of the ramp; or
b) A wheel guide rail shall be provided, centered 3" f 1" above the surface of the ramp.
Are continuous. Ends are to be returned.
Are to be located 234" but 38 above the ramp surface.
Extend 212" beyond both the top and bottom landings.
0 DOORS (for electricallelevator equipment room doors)
Show that every required passage door has 232" clear width, per Section 1133B.2.
Show, or note, that there is a level floor or landing on each side of all doors. The floor or landing is to
be %" lower than the doorway threshold, per Section 11 33.2.4.1.
Show or note that all hand-activated door opening hardware meets the following requirements, per
Section 1 1338.2.5.1 :
a) Latching, or locking, doors in a path of travel are operated with a single effort by lever type hardware, by panic bars, push-pull activating bars, or other hardware designed to provide
passage without requiring the ability to grasp the opening hardware.
b) Is to be centered 230 but 44" above floor.
Show or note that the maximum effort to operate doors shall not exceed 84 pounds for exterior
doors and 5 pounds for interior doors, with such pull or push effort being applied at right angles to
hinged doors and at the center plane of sliding or folding doors. Section 11338.25
Show or note that the lower lo" of all doors comply with Section 1 1338.2.6, as follows:
a)
b)
To be smooth and uninterrupted, to allow the door to be opened by a wheelchair footrest,
without creating a trap or hazardous condition.
Narrow frame doors may use a 10" high smooth panel on the push side of the door.
0 ELEVATORS
Show on the plans to show that the inside of the elevator car complies with the following, per Section
11 168.1.8. The clear distances between walls, or between the walls and the door, excluding return
panels, is:
a)
b)
c)
Show that a handrail is provided on one wall of the car, preferably the rear, per Section 11 16B.11.
The rails shall be smooth and the inside surface 11%" clear of the walls at a height of 32"fl" from
the floor.
Show, or note, that call operation buttons are to be =42" above the floor, per Section 11 16B.1 .lo.
Special access lifts may be provided as part of an accessible route onJ for the following conditions,
per Section 11 16B.2:
a)
b)
280" by 54" (at center opening doors).
268 by 54" (at side-slide opening doors).
The distance from walls to return panel is 251".
To provide an accessible route to a performing area in an assembly occupancy.
To comply with the wheelchair viewing position line-of-sight and dispersion requirements of
Section 1104B.3.5.
CARLSBAD 02-3405
NOV. 21,2002
c) To provide access to incidental occupiable spaces and rooms which are not open to the
general public and which house no more than 5 person, such as control rooms and
projection booths.
To provide access where existing site constraints or other constraints make use of a ramp
or an elevator infeasible.
For additions and alterations, lifts are not limited to the four conditions listed above.
d)
e)
STAIRWAYS AND HANDRAILS
46. Show or note that interior stair treads are marked at the upper approach and the lower tread of each
stair, by a strip of clearly contrasting color, per Section 1133B.4.4, as follows:
a)
b)
At least 2” wide. The strip shall be as slip resistant as the other treads of the stair.
Placed parallel to and not more than 1” from the nose of the step or landing.
0 SIGNAGE
47. Per Section 1003.2.8.6.1, tactile exit signs shall be required at the following locations:
a) Wherever basic UBC provisions require exit signs from an area. The tactile exit sign shall
have the words, ”EXIT ROUTE.”
Each grade-level exit door. The tactile exit sign shall have the word, “EXIT.”
Each exit door that leads directly to a grade-level exterior exit by means of a stairway or
ramp. The tactile exit sign shall have the following words as appropriate:
i) “EXIT STAIR DOWN.”
ii) ”EXIT RAMP DOWN.”
iii) “EXIT STAIR UP.”
iv) “EXIT RAMP UP.”
Each exit door that leads directly to a grade-level exterior exit by means of an exit enclosure
or an exit passageway. The tactile exit sign shall have the words, “EXIT ROUTE.”
Each exit door through a horizontal exit. The tactile exit sign shall have the words, “TO EXIT.”
b)
c)
d)
e)
48. Tactile stair level identification signs (complying with Section 1117B.5.1) shall be located at each
floor level landing in all enclosed stairways in buildings two or more stories in height to identify the
floor level. At the exit discharge level, the sign shall include a raised five-pointed star located to the
left of the identifyng floor level. Section 1003.3..3.13.1.
Where permanent identification is provided for spaces, raised letters shall also be provided and shall
be accompanied by Braille. Section 1 1 17B.5.
49.
50. - Provide a note on the plans stating that the signage requirements of Section 1 1 17B.5 will be
satisfied.
CARLSBAD 02-3405
NOV. 21,2002
- City of Carlsbad
BUILDING DEPARTMENT
NOTICE OF REOUIREMENT FOR SPECIAL INSPECTION
Do Not Remove From Plans
Plan Check No. 02-3405
Job Address or Legal Description 1040 AUTO CENTER COURT
Owner Address
You are hereby notified that in addition to the inspection of construction provided by the
Building Department, an approved Registered Special Inspector is required to provide continuous
inspection during the performance of the phases of construction indicated on the reverse side of
this sheet.
The Registered Special Inspector shall be approved by the City of Carlsbad Building
Department prior to the issuance of the building permit. Special Inspectors having a
current certification from the City of San Diego, Los Angeles, or ICBO are approved as
Special Inspectors for the type of construction for which they are certified.
The inspections by a Special Inspector do not change the requirements for inspections by
personnel of the City of Carlsbad building department. The inspections by a Special
Inspector are in addition to the inspections normally required by the County Building
Code.
The Special Inspector is not authorized to inspect and approve any work other than that for which
he/she is specifically assigned to inspect. The Special Inspector is not authorized to accept
alternate materials, structural changes, or any requests for plan changes. The Special Inspector is
required to submit written reports to the City of Carlsbad building department of all work that
he/she inspected and approved. The final inspection approval will not be given until all Special
Inspection reports have been received and approved by the City of Carlsbad building department.
Please submit the names of the inspectors who will perform the special inspections on each of the
items indicated on the reverse side of this sheet.
(over)
CARLSBAD 02-3405
NOV. 21,2002
0 SPECIAL INSPECTION PROGRAM
ADDRESS OR LEGAL DESCRIPTION:
PLAN CHECK NUMBER: OWNER'S NAME:
I, as the owner, or agent of the owner (contractors may not employ the special inspector),
certify that I, or the architectlengineer of record, will be responsible for employing the special
inspector(s) as required by Uniform Building Code (UBC) Section 1701 .I for the construction
project located at the site listed above. UBC Section 106.3.5.
Signed
I, as the engineedarchitect of record, certify that I have prepared the following special
inspection program as required by UBC Section 106.3.5 for the construction project located at
the site listed above.
Signed
I. List of work requiring special inspection:
Soils Compliance Prior to Foundation Inspection IXI Structural Concrete Over 2500 PSI
Field Welding
High Strength Bolting
Prestressed Concrete IX1 ExpansionIEpoxy Anchors
Structural Masonry Sprayed-On Fireproofing
Designer Specified Other
2. Name(s) of individual@) or firm@) responsible for the special inspections listed
above:
B.
C.
3. Duties of the special inspectors for the work listed above:
A.
B.
Special inspectors shall check in with the City and present their credentials for approval prior to beginning work on the job site.
CARLSBAD 02-3405
NOV. 21,2002
VALUATION AND PLAN CHECK FEE
JURISDICTION: CARLSBAD PLAN CHECK NO.: 02-3405
PREPARED BY: Ali Sadre
BUILDING ADDRESS: 1040 AUTO CENTER COURT
DATE: NOV. 21,2002
BUILDING OCCUPANCY: S4 TYPE OF CONSTRUCTION: 11-N
1994 UBC Building Permit Fee j v
Type of Review: El Complete Review
0 Repetitive FW IEl Repeats
0 Structural Only
0 Other
Hourly -1 Hour *
Esgil Plan Review Fee 0
I $3,938.75 I
Comments:
Sheet 1 of 1 rnacvalue.doc
- City of Carlsbad
BUILDING PLANCHECK CHECKLIST
DATE: +i43 PLANCHECK NO.: CB a 434&5
BUILDING ADDRESS: /@/o /& Tbw ct:
PROJECT DESCRIPTION: Vak;W s.3- CUL-kAW
ASSESSOR'S PARCEL NUMBER: 2 I I -% 01 EST. VALUE: wr - OW4! ENGINEERING DEPARTMENT
APPROVAL
The item you have submitted for review has been approved. The approval is based on plans, information and/or specifications provided in your submittal; therefore any changes to these items after this date, including field modifications, must be reviewed by this office to insure continued conformance with applicable codes. Please review carefully all comments attached, as failure to comply with instructions in this report can result in suspension of permit to build.
A Right-of-way permit is required prior to
'construction of the following improvements:
DENIAL
attached report of deficiencies t::f?ed i.1 ake necessary corrections to plans or specifications for compliance with applicable codes and standards. Submit corrected plans and/or specifications to this office for review.
By: Date: 4 $3 Q3
FOR OFFICIAL USE ONLY /- ENGINEERING AUTHORIZATION TO ISSUE BUILDING PERMIT
ATTACHMENTS
Dedication Application
Dedication Checklist
Improvement Application
Improvement Checklist
Future Improvement Agreement
Grading Permit Application
Grading Submittal Checklist
Right-of-way Permit Application
Right-of-way Permit Submittal Checklist and Information Sheet
Sewer Fee Information Sheet
ENGINEERING DEPT. CONTACT PERSON
Name: TANIYA BARROWS
City of Carlsbad
Address: 1635 Faraday Avenue, Carlsbad, CA 92008
Phone: (760) 602-2773
CFD INFORMATION
Parcel Map No:
Lots:
Recordation:
Carlsbad Tract:
1635 Faraday Avenue - Carlsbad, CA 92008-731 4 - (760) 602-2720 - FAX (760) 602-8562 @ Rev. 7l141UO 1 FWJILDING PLANCHECK CKLST FORM.&
.-
BUILDING PLANCHECK CHECKLIST
SITEPLAN -
1. Provide a fully dimensioned site plan drawn to scale. Show:
A. NorthArrow
B. Existing & Proposed Structures G. Driveway widths
C. Existing Street Improvements H. Existing or proposed sewer lateral
D. Property Lines I. Existing or proposed water service
E. Easements J. Existing or proposed irrigation service
2. Show on site plan:
CpddA. Drainage Patterns
F. Right-of-way Width & Adjacent Streets &
I. Building pad surface drainage must maintain a minimum slope of one
percent towards an adjoining street or an approved drainage course.
2. ADD THE FOLLOWING NOTE: “Finish grade will provide a minimum positive
drainage of 2% to swale 5’ away from building.”
B. Existing & Proposed Slopes and Topography
C. Size, type, location, alignment of existing or proposed sewer and water service (s)
dwelling units and apartment complexes are an exception.
D. Sewer and water laterals should not be located within proposed driveways, per
standards.
that serves the project. Each unit requires a separate service, however, second
3. Include on title sheet:
A. Site address
B. Assessor’s Parcel Number
C. Legal Description
For commercial/industriaI buildings and tenant improvement projects, include:
total building square footage with the square footage for each different use,
existing sewer permits showing square footage of different uses (manufacturing,
warehouse, office, etc.) previously approved.
EXISTING PERMIT NUMBER DESCRIPTION
F:\BUILDING PLANCHEW WLST FORM.doc 2 Rev. 7/1m
.’
~
BUILDING PLANCHECK CHECKLIST
5=
AA SCRETIONARY APPROVAL COMPLIANCE
@ 4a. Project do
0 0 0 4b. All conditions are in compliance. Date:
DEDICATION REQUIREMENTS
5. Dedication for all street Rights-of-way adjacent to the building site and any storm
drain or utility easements on the building site is required for all new buildings and
for remodels with a value at or exceeding $ 15,000 , pursuant to Carlsbad
Municipal Code Section 18.40.030.
Dedication required as follows:
0 0 0
Dedication required. Please have a registered Civil Engineer or Land Surveyor prepare the appropriate legal description together with an 8 %” x 11” plat map and submit with a title report. All easement documents must be approved and signed by owner(s) prior to issuance of Building Permit. Attached please find an application form and submittal checklist for the dedication process. Submit the completed application form with the required checklist items and fees to the Engineering Department in person. Applications will not be accept by mail or fax.
Dedication completed by: Date:
IMPROVEMENT REQUIREMENTS
6a. All needed public improvements upon and adjacent to the building site must be constructed at time of building construction whenever the value of the construction exceeds $ 75,000 , pursuant to Carlsbad Municipal Code Section 18.40.040.
fl@i
Public improvements required as follows:
Attached please find an application form and submittal checklist for the public
improvement requirements. A registered Civil Engineer must prepare the appropriate improvement plans and submit them together with the requirements on the attached checklist to the Engineering Department through a separate plan check process. The completed application form and the requirements on the
3 Rev. 7HUm
BUILDING PLANCHECK CHECKLIST
1ST 2ND 3RD
checklist must be submitted in person. Applications by mail or fax are not accepted. Improvement plans must be approved, appropriate securities posted and fees paid prior to issuance of building permit.
Improvement Plans signed by: Date:
.
0 0 0 6b. Construction of the public improvements may be deferred pursuant to Carlsbad
Municipal Code Section 18.40. Please submit a recent property title report or
current grant deed on the property and processing fee of $310 so we may
prepare the necessary Neighborhood Improvement Agreement. This agreement
must be signed, notarized and approved by the City prior to issuance of a
Building permit.
Future public improvements required as follows:
0 6c. Enclosed please find your Neighborhood Improvement Agreement. Please return
agreement signed and notarized to the Engineering Department.
Neighborhood Improvement
Agreement completed by:
Date: d 0 0 6d. No Public Improvements required. SPECIAL NOTE: Damaqed or defective
imrxovements found adiacent to buildincr site must be repaired to the satisfaction
of the City Inspector prior to occupancy.
GRADING PERMIT REQUIREMENTS
The conditions that invoke the need for a grading permit are found in Section
11.06.030 of the Municipal Code.
7a. Inadequate information available on Site Plan to make a determination on grading
requirements. Include accurate grading quantities (cut, fill import, export).
0 @ d 7b. Grading Permit required. A separate grading plan prepared by a registered Civil Engineer must be submitted together with the completed application form
attached. The Gradinq Permit must be issued and rouqh aradinq
amroval obtained prior to issuance of a Buildinq Permit.
0 0 +* ,3
NOTE:
Grading Inspector sign off by:
if a grading permit is not required.)
Date:
7c. Graded Pad Certification required. (Note: Pad certification may be required even @d I
F:\BUILDING PLANCHECK CKLST FORM.& 4 Rev. 7/1uoO
I ST 0
0
0
0
0
0
2ND 0
0
0
cl
3RD 0
0
0
a
BUILDING PLANCHECK CHECKLIST
7d .No Grading Permit required.
7e. If grading is not required, write “No Grading” on plot plan.
MISCELLANEOUS PERMITS
8. A RIGHT-OF-WAY PERMIT is required to do work in City Right-of-way and/or
private work adjacent to the public Right-of-way. Types of work include, but are
not limited to: street improvements, tree trimming, driveway construction, tying
into public storm drain, sewer and water utilities.
Right-of-way permit required for:
9. INDUSTRIAL WASTE PERMIT If your facility is located in the City of Carlsbad
sewer service area, you need to contact the Carlsbad Municipal Water District,
located at 5950 El Camino Real, Carlsbad, CA 92008. District personnel can
provide forms and assistance, and will check to see if your business enterprise is
on the EWA Exempt List. You may telephone (760) 438-2722, extension 7153,
for assistance.
Industrial Waste permit accepted by:
Date:
IO. NPDES PERMIT
Complies with the City’s requirements of the National Pollutant Discharge
Elimination System (NPDES) permit. The applicant shall provide best
management practices to reduce surface pollutants to an acceptable level prior to
discharge to sensitive areas. Plans for such improvements shall be approved by
the City Engineer prior to issuance of grading or building permit, whichever
occurs first.
a* Gd:y lQlans a*d
WATER METER REVIEW
12a. Domestic (potable) Use
Ensure that the meter proposed by the owner/developer is not oversized.
Oversized meters are inaccurate during low-flow conditions. If it is oversized, for
the life of the meter, the City will not accurately bill the owner for the water used.
0 All single family dwelling units received “standard” I” service with 5/8” service.
5 Rev. 7114/w
BUILDING PLANCHECK CHECKLIST
If owner/developer proposes a size other than the “standard”, then
owner/developer must provide potable water demand calculations,
which include total fixture counts and maximum water demand in gallons
per minute (gpm). A typical fixture count and water demand worksheet is
attached. Once the gpm is provided, check against the “meter sizing
schedule” to verify the anticipated meter size for the unit.
Maximum service and meter size is a 2 service with a 2” meter.
If a developer is proposing a meter greater than 2, suggest the
installation of multiple 2” services as needed to provide the anticipated
demand. (manifolds are considered on case by case basis to limit
multiple trenching into the street).
0 12b. Irrigation Use (where recycled water is not available)
All irrigation meters must be sized via irrigation calculations (in gpm) prior
to approval. The developer must provide these calculations. Please follow
these guidelines:
F?8ULDING PIANCHECKCKLST FORM.doc
1. If the project is a newer development (newer than 1998), check the recent
improvement plans and observe if the new irrigation service is reflected on
the improvement sheets. If so, at the water meter station, the demand in
gpm may be listed there. Irrigation services are listed with a circled “I”,
and potable water is typically a circled “W“. The irrigation service should
look like:
STA 1 +00 Install 2” service and - 1.5: meter (estimated 100 gpm) 17
2. If the improvement plans do not list the irrigation meter and the
service/meter will be installed via another instrument such as the building
plans or grading plans (w/ a right of way permit of course), then the
applicant must provide irrigation calculations for estimated worst-case
irrigation demand (largest zone with the farthest reach). Typically, Larry
Black has already reviewed this if landscape plans have been prepared,
but the applicant must provide the calculations to you for your use. Once
you have received a good example of irrigation calculations, keep a set for
your reference. In general .the calculations will include:
Hydraulic grade line
0 Elevation at point of connection (POC)
Pressure at POC in pounds per square inch (PSI)
Worse case zone (largest, farthest away from valve
Total Sprinkler heads listed (with gprn use per head)
0 Include a 10% residual pressure at point of connection
3. In general, all major sloped areas of a subdivision/project are to be
irrigated via separate irrigation meters (unless the project is only SFD with
no HOA). As long as the project is located within the City recycled water
6 Rev. 7lluoO
BUILDING PLANCHECK CHECKLIST
3RD IST 2ND
service boundary, the City intends on switching these irrigation
services/meters to a new recycled water line in the future.
0 c] 12c. Irrigation Use (where recycled water is available)
1. Recycled water meters are sized the same as the irrigation meter above.
2. If a project fronts a street with recycled water, then they should be
connecting to this line to irrigate slopes within the development. For
subdivisions, this should have been identified, and implemented on the
improvement plans. Installing recycled water meters is a benefit for the
applicant since they are exempt from paying the San Diego County Water
Capacity fees. However, if they front a street which the recycled water is
there, but is not live (sometimes they are charged with potable water until
recycled water is available), then the applicant must pay the San Diego
Water Capacity Charge. If within three years, the recycled water line is
charged with recycled water by CMWD, then the applicant can apply for a
refund to the San Diego County Water Authority (SDCWA) for a refund.
However, let the applicant know that we cannot guarantee the refund, and
they must deal with the SDCWA for this.
FWLWNG PLANMCK CKLST FORM.doc 7 Rev. 7HuOO
From: Jeremy Riddle
To: Taniya Barrows
Date: 7/29/03 12:09PM
Subject: Re: Toyota of Carlsbad Parking Stucture
This project involves the excavation to support a below grade (and mulit level) parking garage. The pad
cannot be certified for this structure without the retaining walls being constructed concurrently with the
development. In order to prevent the applicant from caught in allcatch 22", please release the building
permit for engineering. Let me know if there are further questions related to this. Please send a copy of
this email to the building file. Thanks.
>>> Taniya Barrows 07/29/03 1 1 :46AM >>>
Jeremy,
I am in need of direction regarding the building permit for the parking structure at Toyota of Carlsbad (CB
02-3405). Currently I have two outstanding issues I need resolved before engineering can sign off on the
building permit. The first is a minor site plan issue that can be taken care of over the counter at the time
the permit is pulled, and the second is the Pad Cert.
As we discussed, the grading of this site must take place concurrently with the building of the structure.
Therefore, I won't be able to get pad certs prior to issuing the building permit. Can you please help direct
me as to what I need in order to issue this permit?
Thanks,
Taniya
cc: Don Moore
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
PLANNING COMMISSION RESOLUTION NO. 5395
A RESOLUTION OF THE PLANNING COMMISSION OF THE
CITY OF CARLSBAD, CALIFORNIA, APPROVING SITE
ALLOW THE ADDITION OF A PARKING STRUCTURE FOR
AN EXISTING CAR DEALERSHIP AND SERVICE CENTER
ON PROPERTY GENERALLY LOCATED AT 5124 CANNON
ROAD IN LOCAL FACILITIES MANAGEMENT ZONE 3.
CASE NAME: TOYOTA CARLSBAD PARKING STRUCTURE
DEVELOPMENT PLAN AMENDMENT, SDP 95-08(A) TO
CASE, NO.: SDP 95-08(A)
WHEREAS, Stellar Properties, LLC, “DevelopeiT‘Owner,” has filed a verified
application with the City of Carlsbad regarding property described as
Lot 1 of Carlsbad Tract No. 87-3, in the City of Carlsbad,
County of San Diego, State of California, According to Map
thereof No. 12242, filed in the office of the County Recorder of
San Diego County, October 28,1988; together with
Lot 4 of Carlsbad Tract No. 72-3, in the City of Carlsbad,
County of San Diego, State of California, According to Map
thereof No. 7492, filed in the office of the County Recorder of
San Diego County, November 30,1972
(“the Property”); and
WHEREAS, said verified application constitutes a request for a Site Development
Plan Amendment as shown on Exhibits “An - “K” dated April 2,2003, on file in the Planning
Department, TOYOTA CARLSBAD PARKING STRUCTURE - SDP 95-08(A) as provided
by Chapter 21 -06 of the Carlsbad Municipal Code; and
WHEREAS, the Planning Commission did, on the 2nd day of April, 2003, hold a
duly noticed public hearing as prescribed by law to consider said request; and
WHEREAS, at said public hearing, upon hearing and considering all testimony
and arguments, if any, of all persons desiring to be heard, said Commission considered all factors
relating to the Site Development Plan Amendment.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
WHEREAS, on March 23,1983, the Planning Commission approved PCD-42,
as described and conditioned in Planning Commission Resolution No. 2097, and;
WHEREAS, on May 1,1996, the Planning Commission approved, SDP 95-08;
as described and conditioned in Planning Commission Resolution No. 3928.
NOW, THEREFORE, BE IT HEREBY RESOLVED by the Planning
Commission of the City of Carlsbad as follows:
A) That the foregoing recitations are true and correct.
B) That based on the evidence presented at the public hearing, the Planning
Commission APPROVES TOYOTA CARLSBAD PARKING STRUCTURE - SDP 95-08(A) based on the following findings and subject to the following
conditions:
Findings:
1. That the requested use is properly related to the site, surroundings and environmental
settings, is consistent with the various elements and objectives of the General Plan, will
not be detrimental to existing uses or to uses specifically permitted in the area in which
the proposed use is to be located and will not adversely impact the site, surroundings or
traffic circulation, in that the proposed parking structure will be designed with a
similar architectural style as the existing service building. The site is surrounded by
other car dealerships in the area and the addition of the parking structure will
provide additional parking for employees and for new and used vehicles and will
have no negative impacts on the surrounding uses.
2. That the site for the intended use is adequate in size and shape to accommodate the use, in
that the proposed addition is 23,809 square feet in area and the total lot coverage is
19.9%, which is less than the allowable lot coverage of 25% for properties within
the Car Country Specific Plan Area.
3. That all yards, setbacks, walls, fences, landscaping and other features necessary to adjust
the requested use to existing or permitted future uses in the neighborhood will be
provided and maintained, in that the proposed addition is located behind the existing
service building, the existing landscaping will be supplemented to screen the
parking structure and the proposed structure is consistent with all development
standards contained in the Speciffc Plan - SP-l9(C).
4. That the street systems serving the proposed use is adequate to properly handle all trac
generated by the proposed use, in that the addition of the parking structure will not
impact the street system. a
PC RES0 NO. 5395 -2-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
5. That the Planning Director has determined that the project belongs to a class of projects
that the State Secretary for Resources has found do not have a significant impact on the
environment, and it is therefore categorically exempt fkom the requirement for the
preparation of environmental documents pursuant to Section 15332 - in-fill
development of the state CEQA Guidelines. In making this determination, the Planning
Director has found that the exceptions listed in Section 15300.2 of the state CEQA
Guidelines do not apply to this project.
6. The project is consistent with the City-Wide Facilities and Improvements Plan, the Local
Facilities Management Plan for Zone 3 and all City public facility policies and
ordinances. The project includes elements or has been conditioned to construct or
provide funding to ensure that all facilities and improvements regarding: sewer collection
and treatment; water; drainage; circulation; fire; schools; parks and other recreational
facilities; libraries; government administrative facilities; and open space, related to the
project will be installed to serve new development prior to or concurrent with need.
7. The Planning Commission has reviewed each of the exactions imposed on the Developer
contained in this resolution, and hereby finds, in this case, that the exactions are imposed
to mitigate impacts caused by or reasonably related to the project, and the extent and the
degree of the exaction is in rough proportionality to the impact caused by the project.
Conditions:
Note:
1.
2.
3.
4.
Unless otherwise specified herein, all conditions shall be satisfied prior to issuance of
building permits.
If any of the following conditions fail to occur; or if they are, by their terms, to be
implemented and maintained over time, if any of such conditions fail to be so
implemented and maintained according to their terms, the City shall have the right to
revoke or modify all approvals herein granted, deny or mer condition issuance of all
future building permits; deny, revoke or mer condition all certificates of occupancy
issued under the authority of approvals herein granted; institute and prosecute litigation to
compel their compliance with said conditions or seek damages for their violation. No
vested rights are gained by Developer or a successor in interest by the City’s approval of
this Site Development Plan Amendment.
Staff is authorized and directed to make, or require the Developer to make, all conections
and modifications to the Site Development Plan Amendment documents, as necessary
to make them internally consistent and in conformity with the final action on the project.
Development shall occur substantially as shown on the approved Exhibits. Any proposed
development different fiom this approval shall require an amendment to this approval.
Developer shall comply with all applicable provisions of federal, state and local laws and
regulations in effect at the time of building permit issuance.
If any condition for construction of any public improvements or facilities, or the payment
of any fees in-lieu thereof, imposed by this approval or imposed by law on this Project are
challenged, this approval shall be suspended as provided in Government Code Section
PC RES0 NO. 5395 -3-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
5.
6.
7.
8.
9.
10.
11.
12.
66020. If any such condition is determined to be invalid this approval shall be invalid
unless the City Council determines that the project without the condition complies with
all requirements of law.
Developer/Operator shall and does hereby agree to indemnify, protect, defend and hold
harmless the City of Carlsbad, its Council members, officers, employees, agents, and
representatives, from and against any and all liabilities, losses, damages, demands, claims
and costs, including court costs and attorney’s fees incurred by the City arising, directly
or indirectly, fiom (a) City’s approval and issuance of this Site Development Plan
Amendment, and (b) City’s approval or issuance of any permit or action, whether
discretionary or non-discretionary, in connection with the use contemplated herein. This
obligation survives until all legal proceedings have been concluded and continues even if
the City’s approval is not validated.
Developer shall submit to the Planning Department a reproducible 24” x 36,” mylar
copy of the Site Plan Amendment reflecting the conditions approved by the final
decision making body.
Prior to the issuance of a building permit, the Developer shall provide proof to the
Director from the Carlsbad Unified School District that this project has satisfied its
obligation to provide school facilities.
This project shall comply with all conditions and mitigation measures which are required
as part of the Zone 3 Local Facilities Management Plan and any amendments made to that
Plan prior to the issuance of building permits.
Prior to issuance of building permit, Developer shall submit to the City a Notice of
Restriction to be filed in the office of the County Recorder, subject to the satisfaction of
the Planning Director, notifjhg all interested parties and successors in interest that the
City of Carlsbad has issued a Site Development Plan Amendment and Coastal
Development Permit by Resolutions No. 5395 and 5396 on the red property owned by
the Developer. Said Notice of Restriction shall note the property description, location of
the file containing complete project details and all conditions of approval as well as any
conditions or restrictions specified for inclusion in the Notice of Restriction. The
Planning Director has the authority to execute and record an amendment to the notice
which modifies or terminates said notice upon a showing of good cause by the Developer
or successor in interest.
This approval is subject to all conditions contained in Planning Commission Resolutions
No. 2097 for PCD-42 and No. 3928 for SDP 95-08 incorporated by reference herein.
This approval is granted subject to the approval of CDP 02-29 and is subject to all
conditions contained in Resolution No. 5396 for that other approval incorporated by
reference herein.
Up to 10 additional 24” box trees may be required to provide additional screening of
the west side of the parking structure, The species, quantity and location of the
trees to be sited within the slope area shall be subject to Planning Director approval.
PC RES0 NO. 5395 -4-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
13. Developer shall submit and obtain Planning Director approval of an exterior lighting plan
for the parking structure. All lighting shall be designed to reflect downward and avoid
any impacts on adjacent homes or property. The pole height shall not exceed a
maximum of 20'. The number of poles shall be kept to a minimum where possible
by combining several luminaries on a single pole. To reduce off-site impacts, fifty
(50) percent of all outdoor lights shall be turned off after 10 p.n
Engineering
General
4-d prior to hauling dirt or construction materials to or fiom any proposed construction site
within this project, Developer shall apply for and obtain approval fiom, the City Engineer
for the proposed haul route.
44. Prior to issuance of any building pet, Developer shall comply with the requirements of
the City's anti-graffiti program for wall treatments if and when such a program is
formally established by the City.
FeedAgreements
Prior to approval of any grading or building permits for this project, Developer shall
cause Owner to give written consent to the City Engineer to the annexation of the area
shown within the boundaries of the subdivision into the existing City of Carlsbad Street
Lighting and Landscaping District No. 1, on a fonn provided by the City Engineer.
Gradin
No grading for private improvements shall occur outside the limits of this approval unless
slope easement or agreement from the ownm of the affected properties. If Developer is
unable to obtain the grading or slope easement, or agreement, no grading permit will be
issued. In that case Developer must either apply for and obtain an amendment of this
approval or modi@ the plans so grading will not OCCUT outside the project and apply for
and obtain a finding of substantial conformance from both the City Engineer and
Planning Director.
Based upon a review of the proposed grading and the grading quantities shown on the site
plan, a grading permit for this project is required. Developer shall apply for and obtain a
grading permit fiom the City Engineer prior to issuance of a building permit for the
project.
d Developer obtains, records and submits a recorded copy to the City Engineer a grading or
K All grading activities shall be planned in units it can be completed by October 1st.
Grading activities shall be limited to the "dry season", April 1st to October 1st of each
year. Grading activities may be extended to November 15th and beyond upon written
approval of the City Engineer, obtained in advance, and only if all erosion control
measures are in place by October 1st.
PC RES0 NO. 5395 -5-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
evel lo per shall have the entire drainage system designed, submitted to and approved by
the City Engineer, to ensure that runoff resulting from 10-year frequency storms of 6
hours and 24 hours duration under developed conditions, are equal to or less than the
runoff from a storm of the same frequency and duration under existing developed
conditions. Both 6 hour and 24 hour storm durations shall be analyzed to determine the
jetention basin capacities necessary to accomplish the desired results.
Developer shall comply with the City's requirements of the National Pollutant Discharge
Elimination System (NPDES) pennit, latest version. Developer shall provide
improvements constructed pursuant to best management practices as referenced in the
"California Storm Water Best Management Practices Handbook" to reduce surface
pollutants to an acceptable level prior to discharge to sensitive areas. Plans for such
improvements shall be submitted to and subject to the approval of the City Engineer.
Said plans shall include but not be limited to notifjing prospective owners and tenants of
the following:
A.
B.
C.
All owners and tenants shall coordinate efforts to establish or work with
established disposal programs to remove and properly dispose of toxic and
hazardous waste products.
Toxic chemicals or hydrocarbon compounds such as gasoline, motor oil,
antifreeze, solvents, paints, paint thinners, wood preservatives and other such
fluids shall not be discharged into any street, public or private, or into storm drain
or stom water conveyance systems. Use and disposal of pesticides, fimgicides,
herbicides, insecticides, fertilizers and other such chemical treatments shall meet
Federal, State, County and City requirements as prescribed in their respective
containers.
Best Management Practices shall be used to eliminate or reduce surface pollutants
when planning any changes to the landscaping and surface improvements.
Prior to the issuance of grading permit or building permit, whichever occurs first,
The SWMP shall be in compliance with current requirements and provisions established
by the San Diego Region of the California Regional Water Quality Control Board and
City of Carlsbad Requirements. The SWMP shall address measures to reduce, to the
maximum extent possible, storm water pollutant runoff at both construction and post-
construction stages of the project. The SWMP shall:
@if Developer shall submit for City approval a "Storm Water Management Plan (SWMP)".
A. Identify existing and post-development on-site pollutants.
B. Recommend structural and non-structural measures to be implemented to avoid
pollution or treat pollutants from storm water before being discharged from the
site.
C. Establish specific procedures for handling spills and routine clean up. Special
considerations and effort shall be applied to employee, customer or resident
PC RES0 NO. 5395 -6-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
education on the proper procedures for handling clean up and disposal of
pollutants.
D. Ensure long-term maintenance of all post construct BMPs in perpetuity.
- Fire:
23.
Code Reminders:
The project is subject to all applicable provisions of local ordinances, including but not limited to
the following:
Sprinklers and standpipes shall be required for the proposal.
24.
25.
26.
27.
28.
Developer shall exercise special care during the construction phase of this project to
prevent offsite siltation. Planting and erosion control shall be provided in accordance
with Carlsbad Municipal Code Chapter 15.16 (the Grading Ordinance) to the satisfaction
of the City Engineer.
Approval of this request shall not excuse compliance with all applicable sections of the
Zoning Ordinance and all other applicable City ordinances in effect at time of building
pennit issuance, except as otherwise specifically provided herein.
The project shall comply with the latest non-residential disabled access requirements
pursuant to Title 24 of the State Building Code.
Premise identification (addresses) shall be provided consistent with Carlsbad Municipal
Code Section 18.04.320.
Any signs proposed for this development shall at a minimum be designed in confomance
with the City’s Sign Ordinance and shall require review and approval of the Planning
Director prior to installation of such signs.
NOTICE
Please take NOTICE that approval of your project includes the “imposition” of fees, dedications,
reservations, or other exactions hereafter collectively referred to for convenience as
“fees/exactions.”
You have 90 days fiom date of final approval to protest imposition of these feedexactions. If
you protest them, you must follow the protest procedure set forth in Government Code Section
66020(a), and file the protest and any other required information with the City Manager for
processing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely
follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or
annul their imposition.
You are hereby FURT€3ER NOTIFIED that your right to protest the specified feedexactions
DOES NOT APPLY to water and sewer connection fees and capacity charges, nor planning,
PC RES0 NO. 5395 -7-
. .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
zoning, grading or other similar application processing or service fees in connection with this
project; NOR DOES IT APPLY to any feedexactions of which you have previously been given a
NOTICE similar to this, or as to which the statute of limitations has previously otherwise
expired,
PASSED, APPROVED AND ADOPTED at a regular meeting of the planning
Commission of the City of Carlsbad, California, held on the 2nd day of April, 2003, by the
following vote, to wit:
AYES: Chairperson Baker, Commissioners Dominguez, Heineman,
Montgomery, Segall, White, and Whitton
NOES: None
ABSENT: None
ABSTAIN: None
C-P-G COMMISSION
ATTEST
Planning Director
PC RES0 NO. 5395 -8-
c c.
PLANNING DEPARTMENT
BUILDING PLAN CHECK REVIEW CHECKLIST '$1 *+-& crJ\ab&dG"J SlWAcC Q
u99 mmm 000
Plan Check NO. CB Odl - 3ct OS
Planner Barbara Kennedy Phone j760) 602- 4626
/ I
Type of Project & Use: @cU'Lnl 6b-f Net Project Density:- DU A
Zoning: C-d - (3, Genkral Pdn: E Facilities Management Zone: 3
CFD (in/out) # Date of participation: Remaining net dev acres:
Address 14" %b &VL+ &&
APN: 211 -os/- /v
Circle One
(For non-residential development: Type of land used created by
this permit: 1
Leaend: Item Complete 0 Item Incomplete - Needs your action
Environmental Review Required: YES NO TYPE f2af-t- ais 32
DATE OF COMPLETION:
Cornplianc'e with conditions of approval? If not, state conditions which require action.
Conditions of Approval:
Discretionary Action Required: YES >( NO -TYPE SDU /&DP
APPROVAL/RESO. NO. 539s ts39 b DATE (c!z!O3
PROJECT NO. SDP woF;(Wmma-iWmf OZ-J-?
OTHER RELATED CASES: SB P9S -08(_AJ &bP a2- r9
Conditions of Approval: see &&&A &% 04
Compliance with conditions or approval? If not, state conditions which require action.
Coastal Zone Assessment/Compliance
Project site located in Coastal Zone? YES)( NO
CA Coastal Commission Authority? YES NO)(
If California Coastal Commission Authority: Contact them at - 3111 Camino Del Rio North, Suite
200, San Diego CA 92108-1725; (619) 521-8036
Coastal Permit Determination YES NO
If NO, complete Coastal Permit Determination Form now.
Coastal Permit Determination Log #:
Determine status (Coastal Per r Exempt): oa- 29
Follow-Up Actions:
1) Stamp Building Plans as "Exempt" or "Coastal Permit Required" (at minimum
Floor Plans).
2) Completes Coastal Permit Determination Log as needed.
H:\ADMiN\COUNTER\BldgPlnchkRevChklst
lnclusionary Housing Fee required: YES NO & [Effective date of lnclusionary Housing Ordinance - May 21, 1993.)
Data Entry Completed? YES NO i"
(A/P/Ds, Activity Maintenance, enter CB#, toolbar, Screens, Housing Fees, Construct Housing Y/N, Enter Fee, UPDATE!)
Site Plan:
1. Provide a fully dimensional site plan drawn to scale. Show: North arrow,
property lines, easements, existing and proposed structures, streets, , existing
street improvements, right-of-way width, dimensional setbacks and. existing
topographical lines.
2. Provide legal description of property and assessor's parcel number.
Zoning:
1.
2.
3.
4.
5.
Setbacks:
Front: Required 2 5' Shown 25'
Interior Side: Required Shown
Street Side: Required 0'
Rear: Required Shown
Shown Io'
Shown
Shown
Accessory structure setbacks:
Front: Required
Interior Side: Required
Street Side: Required Shown
Rear: Required ' Shown
Structure separation: Required Shown
Lot Coverage: Required 25% y~ &sf Shown \q .4 %
Height:
Par king : Spaces Required 29s Shown 531
Guest Spaces Required Shown
OK TO ISSUE AND ENTERED APPROVAL INTO COMPUTER p *&kb) DATE ?I23/03
H:\ADMIN\COUNTER\BldgPlnchkRevChklst
Carlsbad Fire Department 023405
1635 Faraday Ave. Fire Prevention
Carlsbad, CA 92008 (760) 602-4660
Plan Review Requirements Category: Building Plan -
Date of Report: 12/06/2002 Reviewed by: e. &&&- -
Name: Frame Design Group
2 Faraday Avenue Suite 101 Address:
City, State: lrvine CA 92618
Job #: 023405 Plan Checker:
Job Name: Toyota Carlsbad Bldg #: CB023405
Job Address: 1040 Auto Center Ct. Ste. or Bldg. No.
Approved The item you have submitted for review has been approved. The approval is
based on plans, information and / or specifications provided in your submittal;
therefore any changes to these items after this date, including field
modifications, must be reviewed by this office to insure continued conformance
with applicable codes and standards. Please review carefully all comments
attached as failure to comply with instructions in this report can result in
suspension of permit to construct or install improvements.
IXI
Approved
Subject to
The item you have submitted for review has been approved subject to the
attached conditions. The approval is based on plans, information and/or
specifications provided in your submittal. Please review carefully all comments
attached, as failure to comply with instructions in this report can result in
suspension of permit to construct or install improvements. Please resubmit to
this office the necessary plans and / or specifications required to indicate
compliance with applicable codes and standards.
Incomplete The item you have submitted for review is incomplete. At this time, this office
cannot adequately conduct a review to determine compliance with the
applicable codes and / or standards. Please review carefully all comments
attached. Please resubmit the necessary plans and / or specifications to this
office for review and approval.
Review 1 st 2nd 3rd Other Agency ID
FD Job # 023405 FD File #
TOYOTA CARLSBAD PARKING
STRUCTURE
ND 2 SUBMITTAL
Plan Check Number:02-3405
January 22,2003
Attn: Mr. Ali Sadre
4
C .*h,
U ~
Frame Design Group
"p P-4 pe
rl P =48
Frame Design Group
Proiect : Page: e
Frame Design Group
t 1021 'I
t 6 Project: lo ,y 0 fa Cacllsb~ . Page :
V
Frame Design Group
Frame Design Group
8’
r Project: JoqoCa C o 3 i<bd Page:
U
Frame Design Group
0'
Proiect: Page: e
Frame Design Group
8
Frame Design Group
Frame Design Group
Frame Design Group
I2 Sheet No.
. 1 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.2 LL FACTOR=l. CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi -. 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f’c=424psi BOT 7.5 SQRT f’c=530psi %SUP. OL@TRANSFER=O . 0
TENDON COVER: INTERIOR SPANS TOP 2.00 in EXTERIOR SPANS TOP 2.00 in UNBONDED, LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELDdO. OOksi
TENDON DIAM=0.50in MAX LONG BAR SIZE46 STIRRUP SIZE44 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.2/1./1.7/1.3/1.2/.75/1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.00 in BOTTOM 2.00 in
0.004A @ TOP & BOT DL + LL/4 RATIO=1.00
< - - - - - - - TENDON PROF I LE- - - - - - -> CONC <------ SUPERIMPOSED LOADS- - - - - ->
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) r 2 12.00 12.00 0.00 0.00 0.00 1.267 1 U 0.002 0.030 0.00 39.17
<-------------------- COLUMNS-------------------->
<--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES
H C2 C1 Far H C2 C1 Far A Yt St Sb
JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31
1 10.83 20.00 24.00 Fix 9.67 20.00 24.00 Fix 1 836.20 28.45 6931.36 9597.33
2 10.83 20.00 24.00 Fix 9.67 20.00 24.00 Fix
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <------BALANCED LOAD- - - -> BEAM SECONDARY
SPAN L M(X-ft) R L M(X-ft) R L R
1 -87.27 i34.94(19.6) -87.27 87.46 -111.07 (19.6) 87.46 82.47 82.47
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS(FACT0RED)
1 0.00 25.11(19.6) 0.00 -26.70 O.OO( 8.4) -26.70 1 33.47 56.11
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
2 -33.47 -56.11
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.276 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 132.35 13.24 5.0 28.00 46.00 0.00 28.00 0.158 0.158
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) O+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.40 0.00 1.59 0.00 1 0.00 0.00 0.00 0.61 0.00 1.75
2 0.00 0.00 0.40 0.00 1.59 0.00 Rebar Weight=l ,273 psf
ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) D+L/4(%R=10.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.37 0.00 1.59 0.00 1 0.00 0.00 0.00 0.65 0.00 1.75
2 0.00 0.00 0.37 0.00 1.59 0.00 Rebar Weight=1.273 psf
-.
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0 1 D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.37 0.00 1.59 0.00 1 0.00 0.00 0.00 0.67 0.00 1.75
2 0.00 0.00 0.37 0.00 1.59 0.00 Rebar Weight=1.273 psf
Section5-BEAM SHEAR DESIGN
Span 1 L49.17ft
X Left Vu Mu Vcn vcw Vci Av #4@ (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@24.OOin o/c max. for Span 1
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS
<-----------------------Stresses (ksi)-----------------------> <-----Deflections (in) -- --->
SPAN Tension (XI Compression (XI Tension (XI Compression (XI SPAN Delta L/Delta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T -0.112 ( 1.00) -0.243 ( 19.59) -0.190 ( 19.59) -0.213 ( 38.17) 1 0.008 61340 0.006 76256
'B -0.097 ( 19.59) -0.191 ( 1.00) -0.164 ( 38.17) -0.181 ( 19.59)
Section7-FACTORED COLUMN LOADS
Maximum Axial Load Maximum Moment
Axial Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 36.11 33.47 56.11 36.11 33.47 56.11
2 36.11 -33.47 -56.11 36.11 -33.47 -56.11
Frame Design Group
Frame Design Group
Frame Design Group
c
Project: J0,ota cas I&& Page: I 7 4
V
Frame Design Group
Frame Design Group
Frame Design Group
dl It$
T
Frame Design Group Title : Toyota Carlsbad Page:
lrvine Description.. . .
CA92618
2 Faraday Job# : 01-196. Dsgnr: Shamhi, Date: DEC
This Wall in File: c:\project\r7\retaining wall.rp5
Cantilevered Retaining Wall Design RetainPro Version 6.0
Build Date : 10-SEP-2001, (c) 1989-2001
/-Criteria [Soil Data 1 Footing Dimensions & Strengths
Retained Height = 8.00 ft
Wall height above soil = 0.00 ft
Slope Behind Wall = 0.00 : 1
Height of Soil over Toe = 0.00 in Passive Pressure = 345.0 psf/ft
- Allow Soil Bearing = 5,000.0 psf Toe Width - 2.04 ft - - 2.46 - 4.50
= 24.00 in - 0.00 in
Key Distance from Toe = 0.00 ft
-. ___ - Equivalent Fluid Pressure Method Heel Active Pressure = 40.0 psf/ft Total Footing Width
Toe Active Pressure = 30.0 Psflft Footing Thickness
Water height over heel = 0.0 ft
FootingllSoil Frictior = 0.400
Heel Width
- Key Width
Key Depth - . Soil Density = 120.00 pcf - 0.00 in
Wind on Stem = 0.0 psf Soil height to ignore for passive pressure = 12.00 in Pc = 3,OOOpsi Fy = 60,000 psi Footing Concrete Density = 150.00 pcf
Min. As % = 0.0018- Cover@ Top = 2.00in Q Btm.= 3.00 in -. -
LDesign Summary Stem Construction lop Stem
Stem OK Total Bearing Load = 3,694 Ibs Design height ft= - 0.00 ... resultant ecc. = 13.71 in Wall Material Above "Ht" = Masonrv
Soil Pressure Q Toe = 2,223 psf OK Soil Pressure Q Heel = 0 psf OK
Soil Pressure Less Than Allowable Allowable = 5.000 psf
ACI Factored Q Heel = 0 psf
ACI Factored Q Toe = 3,112 psf
Footing Shear Q Toe = 14.4 psi OK
Footing Shear Q Heel = 11.6 psi OK - Allowable - 93.1 psi
- - 1.62 OK Wall Stability Ratios Overturning
Sliding Calcs Slab Resists All Sliding !
- Slidin% - 1.03 Ratio c 1.5!
Lateral Sliding Force = 1,940.0 Ibs
LFooting Design Results h
Factored Pressure Mu' : Upward Mu' : Downward
Mu: Design
Actual 1-Way Shear Allow 1-Way Shear
Toe Reinforcing
Heel Reinforcing
Key Reinforcing
Toe Heel = 3.112 0 psf = 5,908 75 R# = 1,024 3.383 ft-# = 4.884 3,308 ft# = 14.41 11.56 psi = 93.11 93.11 psi
= NoneSpec'd = NoneSpec'd = NoneSpec'd
Thickness = 8.00 Rebar Size = #a
Rebar Spacing = 8.00
Rebar Placed at = Edge
fblFB + fdFa = 0.984
Total Force Q Section Ibs = 1,280.0
Moment. .. .Actual ft#= 3,413.3
Moment ..... Allowable = 3,469.6
Shear ..... Actual psi = 24.7
Shear ..... Allowable psi = 38.7
Lap Splice if Above in= 48.00
Lap Splice if Below in= 15.34
Wall Weight = 78.0
Rebar Depth 'd' in= 5.38
Pm psi= 1.500
Fs psi= 24,000 Solid Grouting - Yes
Special Inspection - Yes
Modular Ratio 'n' = 25.78
Short Term Factor = 1.000
Equiv. Solid Thick. in= 7.60 Masonry Block Type = Medium Weight
Pc psi =
FY psi =
Other Acceptable Sizes EL Spacings Toe: Not req'd. Mu .e S Fr Heel: Not req'd, Mu e S Fr Key: No key defined
Design Data
Masonry Data
- -
Concrete Data
-.
C 8.=.Mas~ - Lateral Restrain
426.7 #
8'-0" 8'-0" 8." Masonry wW@ d."
L 8. Jsonrywl#8
Sliding Restraint
I
-4
2'-0"
t -f #0@18.in
@Toe
#0@18.in
Q Heel J 4-6"
c
c
c
c
c
International
Design, Inc. im Parking
Architecture . Engineering . Conauitlng Frame Design Group
2 Famd Suite 101 hj C4 92618 Phone 9835 8015 Focsim3e 94 !i95 8018
TOYOTA CARLSBAD
PARKING STRUCTURE
CARLSBAD, CA
STRUCTURAL CALCULATIONS
CALC
GENERAL BUILDING DESCRIPTION / DESIGN CRITERIA
SEISMIC ANALYSIS, SHEAR WALL DESIGN
SHEAR WALL FOUNDATIONS
DIAPHRAGM DESIGN
PT SLABS
PT BEAMS
PT GIRDERS
COLUMNS & FOOTINGS
CMU RETAINING WALLS
SH T
0
1
26
42
49
66
116
1 40
171
JOB NO. 01-196 Yizy??z%
c
c
c
TOYOTA CARLSBAD
PARKING STRUCTURE
3 DECKS, 4 LEVELS
TYPE 1 CONST occ s2
1997 UBC ACI 318 95
SEISMIC ZONE 4
PARKING LL = 50 PSF REDUCIBLE TO BMS COLS FTGS
STAIR LL = 100 PSF
LACBD TASK FORCE REQUIREMENTS FOR CONCRETE STRUCTURES*
MEMBER
TG COLUMNS EXTERIOR COLUMNS INTERIOR COLUMNS TYPICAL BEAMS TYPICAL GIRDERS TYP ONE WAY SLABS CONCREETE SPANDRELS SLAB ON GRADE
FOUNDATIONS
MEMBER LOADS
5" SLABS 14x30 BEAMS @ 18'-0" OC 24x30 GIRDERS 24x28 COLUMNS x 10.25' 24x20 COLUMNS x 10.25' 6" CONC SPANDRELS
SIZE
24"x24" 20"x24" 24"x24" 14"x30" 24"x30", 20"x30" 5" t
6" 5"
SEE PLANS
F'c psi
5000 5000 5000 5000 5000
5000 4000 3000 4000
1.0 D.L.
63 PSF 26 PSF 775 PLF 8K EA LIFT
6K EA LIFT 270 PLF
SHEAR WALL IN BOTH DIRECTION. R=5.5
1. CONCRETE: F'c FOR ALL STRUCTURAL COLUMNS, BEAMS AND SLABS SHALL NOT BE LESS THAN 5000 PSI.
2. TRANSVERSE REINFORCEMENT BEAMS
TRANSVERSE REINFORCEMENT FOR ALL FRAME BEAMS & NON FRAME BEAMS,
SHALL COMPLY WITH UBC 1921.3.3.
3. TRANSVERSE REINFORCEMENT COLUMNS
TRANSVERSE REINFORCEMENT FOR ALL FRAME COLUMNS, NON FRAME COLUMNS, AND SHEARWALL JAMBS SHALL COMPLY WTH UBC 1921.4.4.
4. DIAPHRAGMS ALL DIAPHRAGMS SHALL HAVE A MINIMUM THICKNESS OF 5".
5. DRIFT cwpneiLin, NON SEISMIC ELEMENTS ALL NON SEISMIC RESISTING STRUCTURAL ELEMENTS SHALL BE DESIGNED TO SURWE SEISMIC DRIFT = TO ELASTIC DRIFT (DELTA-M).
P
r-
P
P
r-
Frame Design Group
L
.
rc 4
I h *
't- f.7
Frame Design Group
Frame Design Group
e
CY
c
c
Project Title = Toyota Carlsbad
Project Number =
Seismic Zone Factor (Z) = 0.4
Importance Factor (I) = 1.0
Structural System Coefficient (R) = 5.5
Soil Profile Type = Sc
Near-Source Factor (Na) = 1.00
Near-Source Factor (Nv) = 1.20
Seismic Coefficient (Ca) = 0.40
Seismic Coefficient (Cv) = 0.67
Coefficient (Ct) = 0.020
Ultimate Concrete Strength (f c) = 5000
s f z
From Table 16-1
From Table 16-K
From Tables 16-N
From Table 16-S
From Table 16-T
Seismic Source me = B
From Table 164
From Table 16-Q
From Table 16-R
Ca*Na = 0.400
Cv*Nv = 0.804
0.035 for steel moment-resisting frames
0.030 for concrete moment-resisting frames or EBF's
0.020 for all other buildings
psi
Structure Geometry (8 levels max)
Level
0
0
0
0
0
4
3
2
Base
0.00
0.00
0.00
0.00
9.67
9.67
10.83
0.00
Bldg Height (ft) I 30.17
20.50
10.83
0.00
Story Mass (kips)
0
0
0
0
0
2422
2422
1992
0
Base Level Foot Print
Length = 228.00 Ft
Width= 120.00 Ft
Area = 23517 Ft'
Width
Center of Mass at Base
cx = 107.70 Ft
cy= 58.30 Ft
5
sw1 1
sw2 14
sw3
sw4
Lwi B
LW~ D
LW3
Wall Definition
42.0 20.0 0.8
35.7 20.0 227.2
54.0 20.0
54.0 20.0
....
c
c
F-
c-
sw1
x=o
Y=O
LW1 LW1
sw3
LW4
0
L LW3
dY sw4
LW2
r
sw2
Initial Size Selections
"rib Floor Area
L (ft) t (in) dx (ft) dy (ft) To Wall (ft') DL (psf, Levels
I LW4
c
c
119.2
0.8
630.0 65 3
360.0 65 3
1512.0 85 3.0
972.0 85 3
G
Level
I
P-
c
e
hi wi wi*hi Fi Vi Story Moment
OTMi Diagram
Toyota Carlsbad
1997 UBC Seismic Force Analysis
Z- 0.4 I= 1 R= 5.5 Soil Profile Type= Sc
Seismic Coefficients
Ca*Na= 0.40
Cv*Nv= 0.80
NearSource Factors
Na= 1.00
Nv= 1.20
For Calculation of T: Ct= 0.020 hn= 30.17
c Method A: T = Ct(hn)*.75 = 0.257 Method B: Tmax = 1.3T = 0.335
UBC (30-5) UBC (30-4)
Max.Base Shear Coef,2.5*Ca*I/R = 0.182 Base Shear Coeff, Cv*I/R*T = 0.568
c
c-
c-
c
c
c
c
c
c
-
c
c
UBC (30-7)
Min.Base Shear Coeff, OB*Z*Nv*I/R = 0.070
(Seismic Zone 4 Only)
UBC (30-6)
Min.Base Shear Coeff, O.ll*Ca*I = 0.044
(All other Zones)
UBC (30-14)
Concentrated force at top Ft = 0
Value Used for Base Shear = 0.182
Base Shear, V = 1,242.9 Kips
Base
Sum
ft. kip ft:kips kip kips
0 0.00 0.00
0 0.00 0.00
0 0.00 0.00
0 0.00 0.00
0 0.00 0.00
30.17 2422 73072 629.41 629.41
20.50 2422 49651 427.67 1,057.08
10.83 1992 21573 185.82 1,242.91
0.00 0 0 0.00 1,242.91
6836 144296 1242.91
ft.'kiPS
0
0
0
0
0
18,989
8,767
2,012
0
29,769
ft.'kiPS
0
0
0
0
0
6086
16308
29769
29769
Omega =
Force Distribution to Each Diaphragm: Phi= 0.85 2.8
Level wi Fi FPX FPX Fpx DesignFpx Vn
i I kips kips kips Max Min I kips I kips kips
01 0 0.00 I I I
0
0
0
0
4
3
2
Base
0
0
0
0
2422
2422
1992
0
0.00
0.00
0.00
0.00
629.41 629.41 968.80 484.40
427.67 528.54 968.80 484.40
185.82 362.18 796.80 398.40
0.00 0.00 0.00 0.00
629.41 740.48 1762.3
528.54 621.81 1479.9
398.40 468.71 1115.5
0.00 I o.ol 0.0
P
P
c
c
c
c
c
Toyota Carlsbad
Rotational Rigidity Analysis
N/S Direction
v= 100
el = 22.37
e2 = -0.43
Xcr = 96.73
Xcm = 107.70
Width = 228.00
Xcm+5% = 119.10
Xcm-5% = 96.30
Ycr = 60.00
x- WALLS h L t E
1 30.17 42.00 20.00 4031
14 30.17 35.70 20.00 4031
Y- WALLS h L t E
B 30.17 54.00 20.00 4031
D 30.17 54.00 20.00 4031
R = (1/{[4(h/L)"3+30ln)]/(E*t)}
Total
Design
WALL R WSWII-R X dx Rdx Rdx"2 Fv Ft+ Ft- Force
1 22160.0 0.58 0.8333 -95.89 HHHHmm 2.OE+08 57.64 -6.61 0.13 57.76
14 16286.4 0.42 227.2 130.47 2124964 2.83+08 42.36 6.61 -0.13 48.98
0.0 0.00 0.00 0 0.00 0.00 0.00
0.0 0.00 0.00 0 0.00 0.00 0.00
38446 4.83+08 100 0.00 0.00
WALL R Y dv Rdv Rdv"2 Ft+ Ft-
B 33960 119.167 59.17 2009276 1.2E+08 6.25 -0.12
D 33960 0.8333 -59.17 #MYMY# 1.2E+O8 -6.25 0.12
0 0 0 0.00 0.00
0 0 0 0.00 0.00
67919 2.43+08 0.00 0.00
7
8 r
P-
r-
I
r
c
Toyota Carlsbad
Rotational Rigidity Analysis
EN Direction
v= 100
el = 4.3001
e2 = -7.7
Xcr = 60
Xcm = 58.30
Width = 120.00
Xcm+5% = 64.3
Xcm-5% = 52.3
Ycr = 96.73
x- WALLS h L t E
B 30.17 54.00 20.00 4031
D 30.17 54.00 20.00 4031
Y- WALLS h L t E
1 30.17 42.00 20.00 4031
14 30.17 35.70 20.00 4031
R = (1/([4(h/L)"3+3(h/L)]/(E*t)}
Total
Design
WALL R WSUXU-R X dx Rdx Rdx"2 Fv Ft+ Ft- Force
B 33960 0.50 119.17 59.17 2009276 1.2E+08 50.00 1.20 -2.15 51.20
D 33960 0.50 0.8333 -59.17 #W#HW# 1.2E+08 50.00 -1.20 2.15 52.15
0 0.00 0 0 0.00 0.00 0.00
0 0.00 0 0 0.00 0.00 0.00
L 67919 2.43+08 100 2E-16 0 r i WALL R Y dv Rdv Rdv"2 Ft+ Ft- r
r
1 22160 0.8333 -95.89 ###WH 2.OE+08 -1.27 2.28
14 16286 227.2 130.47 2124964 2.83+08 1.27 -2.28
0 0 0 0.00 0.00
0 0 0 0.00 0.00
38446 4.83+08 0.00 0.00
Toyota Carlsbad
Load Distribution to Individual Shearwalls:
N/S Direction
fc= 5000 psi
LINE 1 %LOAD= 57.8
Level hi Fi Mi Ri
i ft. kips ft.*kips
0
0
0
0
0
4 30.17 363.58 3,516 0.138
3 20.50 247.04 9,420 0.138
2 10.83 107.34 17,196 0.138
Base 0.00 0.00 17,196
At Base ho*Mu = 18,086
rho*Vu = 755.10
Vu= 717.96 0.138
EIW Direction
LINE 14 %LOAD= 49.0
Level hi Fi Mi Ri
i ft. kips ft.*kips
0
0
0
0
0
4 30.17 308.26 2,981 0.137
3 20.50 209.46 7,987 0.137
2 10.83 91.01 14,580 0.137
Base 0.00 0.00 14,580
At Base ho*Mu = 15,334
rho*Vu = 640.22
Vu = 608.73 0.137
LINE B %LOAD= 51.2 LINE D %LOAD= 52.2
Level hi Fi Mi Ri
i ft. kips ft.*kips
0
0
0
0
0
4 30.17 322.27 3116 0.095
3 20.50 218.98 8350 0.095
2 10.83 95.15 15242 0.095
Base 0.00 0.00 15242
At Base ho*Mu = 15,242
rho*Vu = 636.39
Vu= 636.39 0.095
Level hi Fi Mi Ri
i ft. ki~s ft.*kiDs
0
0
0
0
0
4 30.17 328.25 3174 0.097
3 20.50 223.04 8505 0.097
2 10.83 96.91 15525 0.097
Base 0.00 0.00 15525
At Base ho*Mu = 15,525
rho*Vu = 648.21
Vu= 648.21 0.097
Redundency Factors
N/S Direction: Rmax = 0.138 Rho = 1.052 Use Rho = 1.05
E/W Direction: Rmax = 0.097 Rho = 0.650 1.00
Ab = 23517.0 ft'
,-
lo 1997 UBC CONCRETE SHEARWALL ANALYSIS AND DESIGN
RCWALLPRO by STRUCTECH
Frame Design Group Project : Toyota Carlsbad
2 Faraday, Irvine, CA Building : Shear Wall
(949) 595-8015 / (949) 595-8018 Wall ID : WALL # B
LUE SHADING
INPUT
Concrete Strength, f'c:
Rebar Yield Strength, fy:
Total Wall Length, Ltot:
End 1 Length, L-1:
End 2 Length, 42:
Wall Thickness, T-0:
End 1 Thickness, T-1:
End 2 Thickness, T-2:
Wall Vert. Steel, As-0:
Wall Horiz. Steel, As-h:
End 1 Rebar, As-1:
End 2 Rebar, As-2:
Wall Dead Load, P-DL:
Wall Live Load, P-LL:
Wall Seismic Load, P-EQ:
R Factor, UBC Chapter 16
Shear Distribution Coefficient,
Shear Strength Reduction Factor,
5
60
672
24
24
20
45
45
2
2
10
10
386
136
162
wv
Phi-v
ksi Conc E, Econc: 4031 ksi
ks i Steel E, Es: 29000 ksi
in c includes end sections >
in c length of left end section
in c length of right end section
in c thickness between end sects >
in c thickness @ left end section
in c thickness @ right end section >
layers - # 5@ 12 in, O.C.
layers - # 5@ 12 in, O.C.
-# 10 c total x pieces #y bar >
-# 10 c total x pieces #y bar >
kips c NOT including wall self wt >
kips
kips c Seismic axial load @ wall center >
5.5 ndim
1.33 ndim
0.6 ndim
STORY HEIGHTS & UNFACTORED FORCES
story
No.
10
9
8
7
6
5
4
3
2
1
Total :
5/8/2002
Story
Height
feet
9.67
9.67
10.83
30.17
Story story Height Story Dist Story Moment
EQ EQ Above EQ From Moment Diagram
Force Shear Base OTM TOP
kips kips feet k-ft feet k-ft k-ft
0.0
0.0
0.0
0.0
0.0
0.0
0.0
387.0 (3223) 387.0
263.0 3-flpD) 650.0
139.0 (q5.2) 789.0
30.17
30.17
30.17
30.17
30.17
30.17
30.17
30.17
20.50
10.83
0
0
0
0
0
0
0
11674
5391
1506
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
9.67 3741
19.33 6283.3
30.17 8547.5
0
0
0
0
0
0
0
3740.97
10024.3
18571.7
789.0 18571.738/: A =
RCWALLPRO EXAMPLE 1 '[,e; 1 of 4
P
c
-
c
c
c
c
Int. Wall Length c wall length betw end sects 5, L-0:
Total Gross Area, ATOT:
Centroid Distance to End 1, NAXIS
Gross Moment of Inertia, I-GROSS:
Elastic Bending Deflection, d-eb:
Elastic Shear Deflection : d-v
Comb. Bending and Shear Defl. at Top of Wall, d-e tot :
624 in
14640 1nA2
336 in
631803 X 10A3 inA4
0.003 in
0.013 in
0.017 in
Wall Geometry
wall Self Weight, P-SW:
Wall Axial Load, P'u:
Factored Shear, Vu:
Factored EQ Moment, Mu:
Factored Axial Force
Compressive Strength, Po
Ratio of Pu /Po =
Mu/(VULW) =
VU/ (Acv*df 'c) 1 =
SYMMETRIC
460 kips
789 kips
18572 kip-ft
0.02 Ag.fc'
52347 kips
1245 kips e P'u = 1.2D + 0.5L + E
0.024 OK, CAN BE USED AS SHEARWALL
0.42
0.83
BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.4
5/8/2002 - RCWALLPRO EXAMPLE 1 2 of 4
c
c
r-
c
CALCULATE NOMINAL FLEXURAL CAPACITY Mln @ P'u =1.2D+0.5L+E
Wall Vert Steel, Rhov: 0.00258 ndim
Wall Horiz Steel, Rhoh: 0.00258 ndim
End 1 Steel, As-1: 12.70 inA2
End 2 Steel, As-2: 12.70 inA2
Beta1 : 0.80 ndim
Sum of Forces, ftot: 0 kips OK M'n: 127848 k-f t
Strength Red. Factor, Phi 0.87 ndim
Phi M'n: 110713 kip-ft OK 5 Mu at P'u
ESTIMATE INELASTIC BEHAVIOR
Elast.Bending Defl.,d-eb: 0.00 inches
Yield Deflection, d-y: 0.02 inches
Total Deflection, d-t: 0.03 inches
Inelast. Deflect., d-i: 0.00 inches
Yield Curvature, phi-y: 4.463-06 rad/in
Total Curvature, phi-t: 4.51E-06 rad/in
Maximum Comp. Strain, ee-t: 0.00010 ndim
Max Allow Strain, ee-m: 0.01500 ndim
c
BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.5
c
c
c.
"&%B@NSI%NS, €@OPS ~ AEJD "VERTICAL BaRs PER 1921.6.6.6
Minimum Length, L-BZ : 0.00 in
Maximum Height Above The Base, H-BZ : 0.00 in
Thickness, T-BZ in
Hoops Vertical Spacing, S-v in
Dist. from Face of Concrete to Center of Hoops, D-c in
Req. Area of Hoops in Longitudinal Dir., Ash-x: 0.00 inA2
Req. Area of Hoops in Transverse Dir., Ash-y: 0.00 inA2
Minimum Area of Vertical Bars, A-bv 0.00 inA2
c
5/8/2002 - RCWALLPRO EXAMPLE 1 3 of 4
c
P-
c
c
c
c
Wall's Height to Length Ratio
Coefficient ALFA-C
Shear Capacity, Phi-v Vn:
Code Shear Demand/Capacity, Vu/(Phi-v Vn)
0.5
3.0
2961 kips
0.27 ndim
SEE BELOW FOR RFQTJXREED VALUE OF PHI-v
Overstrength Flexural Capacity, Mo
Mo/Mu Ratio
Plastic Shear Demand, Vp
Plastic Shear Demand/Capacity, Vp/(Phi-v Vn)
15 98 10 kip- f t
8.60 ndim
9030 kips
3.05 ndim
PER SEC. 18139.3.4, USE PHI-v = 0.60 FOR SHEAR STRENGTH
RECHECK YOUR INPUT FOR CORRECT PHI-V
# END OF CALCULATIONS
To report any 'bug' in the spreadsheet, please contact structech@juno.com.
I
c
c
c
c
5/8/2002 + RCWALLPRO EXAMPLE 1 4 of 4
1997 UBC CONCRETE SHEARWALL ANALYSIS AND DESIGN
RCWALLPRO by STRUCTECH
Frame Design Group Project : Toyota Carlsbad
2 Faraday, Imine, CA Building : Shear Wall
(949) 595-8015 / (949) 595-8018 Wall ID : WALL # D
REQUIReD INPUT ARE IJSDECATEZ) BY BMJE COLOR NUMBERS OR WITH BLUE SHADING
INPUT
Concrete Strength, f'c:
Rebar Yield Strength, fy:
Total Wall Length, Ltot:
End 1 Length, 41:
End 2 Length, L-2:
Wall Thickness, T-0:
End 1 Thickness, T-1:
End 2 Thickness, T-2:
Wall Vert. Steel, As-0:
Wall Horiz. Steel, As-h:
End 1 Rebar, As-1:
End 2 Rebar, As-2:
Wall Dead Load, P-DL:
Wall Live Load, P-LL:
Wall Seismic Load, P-EQ:
R Factor, UBC Chapter 16
Shear Distribution Coefficient,
Shear Strength Reduction Factor,
5
60
672
24
24
20
20
20
2
2
8
8
526.2
188
203.2
WV
Phi-v
ks i Conc E, Econc: 4031 ksi
ks i Steel E, Es: 29000 ksi
in e includes end sections =.
in c length of left end section >
in e length of right end section
in e thickness between end sects
in e thickness @ left end section >
in e thickness @ right end section >
layers - # 5@ 12 in, O.C.
layers - # 5@ 12 in, O.C.
-# 10 c total x pieces #y bar
-# 10 < total x pieces #y bar >
kips e NOT including wall self wt >
kips
kips e Seismic axial load @ wall center >
5.5 ndim
1.33 ndim
0.6 ndim
STORY HEIGHTS & UEJFACTORED FORCES
Story
No
10
9
8
7
6
5
4
3
2
1
Total :
5/8/2002
Story Story Story
Height EQ EQ
Force Shear
feet kips kips
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9.67 395.0 (?2S8%) 395.0
9.67 268.0[@3.0) 663.0
10.83 142.0 (q7.b) 805.0
30.17 805.0
Height Story Dist Story Moment
Above EQ From Moment Diagram
Base OTM TOP
feet k-ft feet k-ft k-ft
30.17
30.17
30.17
30.17
30.17
30.17
30.17
30.17
20.50
10.83
0
0
0
0
0
0
0
11916
5494
1538
0.00 0 0
0.00 0 0
0.00 0 0
0.00 0 0
0.00 0 0
0.00 0 0
0.00 0 0
9.67 3818.3 3818.31
19.33 6409 10227.3
30.17 8720.8 18948.1
18948.069 /(.+ 13S3Sr"
RCWALLPRO EXAMPLE 1 (k525/,.4= \Q~Oj 1 of 4
c
v-.
c
Int. Wall Length e wall length betw end sects >, L-0:
Total Gross Area, ATOT:
Centroid Distance to End 1, NAXIS
Gross Moment of Inertia, I-GROSS:
Elastic Bending Deflection, d-eb:
Elastic Shear Deflection : d-v
Comb. Bending and Shear Defl. at Top of Wall, d-e tot :
624 in
13440 inA2
336 in
505774 x 10A3 in^4
0.004 in
0.015 in
0.019 in
Wall Geometry
Wall Self Weight, P-SW:
Wall Axial Load, P'u:
Factored Shear, Vu:
Factored EQ Moment, Mu:
Factored Axial Force
Compressive Strength, Po
Ratio of Pu /Po =
MU/ (VULW) =
VU/ (Acv*df 'c) ) =
SYMMETRIC
422 kips
805 kips
18948 kip-ft
0.02 Ag.fc'
48040 kips
0.030 OK, CAN BE USED AS SHEARWALL
1435 kips c P'u = 1.2D + 0.5L + E >
0.42
0.85
BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.4
5/8/2002 - RCWALLPRO EXAMPLE 1 2 of 4
fb c
*_--
CALCULATE NOMINAL FLEXURAL CAPACITY M’n @ P’u =1.2D+0.5L+E
e wall Vert Steel, Rhov: 0.00258 ndim
Wall Horiz Steel, Rhoh: 0.00258 ndim
End 1 Steel, As-1: 10.16 inA2
c End 2 Steel, As-2: 10.16 inA2
Beta1 : 0.80 ndim
c Strain, eesy:
OK M’n: 121665 k-ft
Strength Red. Factor, Phi 0.86 ndim
Phi M’n: 104 3 0 1 kip- f t c OK Mu at P’u
ESTIMATE INELASTIC BEHAVIOR
c
Elast.Bending Defl.,d-eb: 0.00 inches
Yield Deflection, d-y: 0.03 inches
Total Deflection, d-t: 0.03 inches
Inelast. Deflect., d-i: 0.01 inches
Yield Curvature, phi-y: 4.463-06 rad/in
Total Curvature, phi-t: 4.553-06 rad/in
Maximum Comp. Strain, ee-t: 0.00021 ndim
Max Allow Strain, ee-m: 0.01500 ndim
c
L
BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.5
Minimum Length, L-BZ : 0.00 in
c Maximum Height Above The Base, H-BZ : 0.00 in
Thickness, T-BZ in
Hoops Vertical Spacing, S-v in
c Dist. from Face of Concrete to Center of Hoops, D-c in
Req. Area of Hoops in Longitudinal Dir., Ash-x: 0.00 inA2
Req. Area of Hoops in Transverse Dir., Ash-y: 0.00 inA2
Minimum Area of Vertical Bars, A-bv 0.00 inA2 c
c
5/8/2002 c RCWALLPRO EXAMPLE 1 3 of 4
/7
Wall's Height to Length Ratio
Coefficient ALFA-C
Shear Capacity, Phi-v Vn:
Code Shear Demand/Capacity, Vu/(Phi-v Vn)
0.5
3.0
2961 kips
0.27 ndim
SEE BELOW FOR REQUIRED VMJJE OF PHI-v
Overstrength Flexural Capacity, Mo 152082 kip-ft
Mo/Mu Ratio 8.03 ndim
Plastic Shear Demand, Vp 8593 kips
Plastic Shear Demand/Capacity, Vp/(Phi-v Vn) 2.90 ndim
END OF CALCULATIONS
To report any 'bug' in the spreadsheet, please contact structech@juno.com.
5/8/2002 RCWALLPRO EXAMPLE 1 4 of 4
1997 UBC CONCRETE SHEARWALL ANALYSIS AND DESIGN
RCWALLPRO by STRUCTECH
Frame Design Group Project : Toyota Carlsbad
2 Faraday, Imine, CA Building : Parking Structure
(949) 595-8015 / (949) 595-8018 Wall ID : WALL # 1
' INPUT
Concrete Strength, f'c:
Rebar Yield Strength, fy:
Total Wall Length, Ltot:
End 1 Length, 41:
End 2 Length, 42:
Wall Thickness, T-0:
End 1 Thickness, T-1:
End 2 Thickness, T-2:
Wall Vert. Steel, As-0:
Wall Horiz. Steel, As-h:
End 1 Rebar, As-1:
End 2 Rebar, As-2:
Wall Dead Load, P-DL:
Wall Live Load, P-LL:
Wall Seismic Load, P-EQ:
R Factor, UBC Chapter 16
Shear Distribution Coefficient,
Shear Strength Reduction Factor,
5
60
504
24
24
20
20
20
2
2
8
8
288
80
145
WV
Phi-v
ks i
ks i
in
in
in
in
in
in
layers
layers
-#
-#
kips
kips
kips
Conc E, Econc: 4031 ksi
Steel E, Es: 29000 ksi
c includes end sections
c length of left end section >
c length of right end section >
c thickness between end sects =.
c thickness @ left end section >
c thickness @ right end section >
-# 5@ 12 in, O.C.
-# 5@ 12 in, O.C.
10 c total x pieces #y bar >
10 c total x pieces #y bar >
c NOT including wall self wt >
c Seismic axial load 0 wall center >
5.5 ndim
1.33 ndim
0.6 ndim
STORY HEIGHTS & UNFACTORED FORCES
Story
No.
10
9
8
7
6
5
4
3
2
1
Total :
5/7/2002
Story
Height
feet
9.67
9.67
10.83
30.17
story story
EQ EQ
Force Shear
kips kips
0.0
0.0
0.0 Icb;,os 0.0 9: 0.0
0.0 I 0.0
458.9 [3SIA) 458.9
311.9 (/Lsq.4)770.8
164.9 (112.1) 935.7
Height
Above
Base
feet
30.17
30.17
30.17
30.17
30.17
30.17
30.17
30,17
20.50
10.83
story
EQ
OTM
k-ft
0
0
0
0
0
0
0
13843
6394
1786
Dist
From
TOP
feet
0.00
0.00
0.00
0.00
0.00
0.00
0.00
9.67
19.33
30.17
Story Moment
Moment Diagram
k-ft k-ft
0
0
0
0
0
0
0
4436
7451
10137
0
0
0
0
0
0
0
4436
11887
22023.7
935.7 22023.737
RCWALLPRO EXAMPLE 1 [l$obLA,+ : \ zsI4) of
h
c f9
Int. Wall Length e wall length betw end sects >, L-0:
Total Gross Area, ATOT:
h Centroid Distance to End 1, NAXIS
Gross Moment of Inertia, I-GROSS:
- Elastic Bending Deflection, d-eb:
Elastic Shear Deflection : d-v
Comb. Bending and Shear Defl. at Top of Wall, d-e tot :
c
456 in
10080 inA2
252 in
213373 X 10*3 inA4
0.012 in
0.023 in
0,035 in
-
c
c
Wall Geometry
Wall Self Weight, P-SW:
Wall Axial Load, P'u:
Factored Shear, Vu:
Factored EQ Moment, Mu:
Factored Axial Force
Compressive Strength, Po
Ratio of Pu /Po =
Mu/ (V~LW) =
Vu/ (Acv*df IC) ) =
SYMMETRIC
317 kips
93 6 kips
22024 kip-ft
0.02 Ag.fc'
36229 kips
0.025 OK, CAN BE USED AS SHEARWALL
911 kips < P'u = 1.2D + 0.5L + E >
0.56
1.31
BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.4
5/7/2002 - RCWALLPRO EXAMPLE 1 2 of 4
7
CALCULATE NOMINAL FLEXURAL CAPACITY M'n @ P'u =1.2D+0.5L+E
Wall Vert Steel, Rhov: 0.00258 ndim r Wall Horiz Steel, Rhoh: 0.00258 ndim
10.16 inA2 End 1 Steel, As-1:
End 2 Steel, As-2: 10.16 inA2
Beta1 : 0.80 ndim
I r
Steel Yld Strain, eesy: 0.002069 ndim
Sum of Forces, ftot: 0 kips OK M'n: 70447 k- f t
Strength Red. Factor, Phi 0.86 ndim r Phi M'n: 60857 kip-ft OK > MU at P'u I
ESTIMATE INELASTIC BEHAVIOR
c I I Elast.Bending Defl.,d-eb: 0.01 inches
Yield Deflection, d-y: 0.04 inches 7 Total Deflection, d-t: 0.09 inches
Yield Curvature, phi-y: 5.95E- 06 rad/ in
Total Curvature, phi-t: 6.863-06 rad/in
Maximum Comp. Strain, ee-t: 0.00023 ndim
Max Allow Strain, ee-m: 0.01500 ndim
b Inelast. Deflect., d-i: 0.05 inches
r4 1 r BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.5
c B0U"DMZY' ZONE PIFfENSIONS, HOOPS ANDYERT~CAL BARS PER 1921.6.6.6
Minimum Length, L-BZ : 0.00 in
Maximum Height Above The Base, H-BZ : 0.00 in
Thickness, T-BZ in
Hoops Vertical Spacing, S-v in
fh Dist. from Face of Concrete to Center of Hoops, D-c in
Req. Area of Hoops in Longitudinal Dir., Ash-x: 0.00 inA2
Req. Area of Hoops in Transverse Dir., Ash-y: 0.00 inA2
Minimum Area of Vertical Bars, A-bv 0.00 inA2
I r
r
5/7/2002 r I
RCWALLPRO EXAMPLE 1 3 of 4
Wall's Height to Length Ratio
Coefficient ALFA-C
Shear Capacity, Phi-v Vn:
Code Shear Demand/Capacity, Vu/(Phi-v Vn)
0.7
3.0
2220 kips
0.42 ndim
- SEE: BELOW FOR REWIKED VaLuE OF PHI-v
Overstrength Flexural Capacity, Mo
Plastic Shear Demand, Vp
Plastic Shear Demand/Capacity, Vp/(Phi-v Vn)
I Mo/Mu Ratio
8 8 059 kip- f t
4.00 ndim
4976 kips
2 .24 ndim - PER SEC. 1909.3.4, Us16 PHI-v = 0.60 FOR SHEAR STRENGTH
REQIECK YOUR INPUT FOR CORRECT PHI-v
c END OF CALCULATIONS
To report any 'bug' in the spreadsheet, please contact structech@juno.com.
."-
r. A
c
5/7/2002
-1
RCWALLPRO EXAMPLE 1 4 of 4
c-
1997 UBC CONCRETE SHEARWALL ANALYSIS AND DESIGN
RCWALLPRO by STRUCTECH
22
L- Frame Design Group
2 Faraday, Imine, CA
(949) 595-8015 / (949) 595-8018
c
Project : Toyota Carlsbad
Building : Shear Wall
Wall ID : WALL #14
REQUIRED INPUT ARE rmcATED BY BLUE COLOR NUMBERS OR WITH BLUE SHADING
Concrete Strength, f'c:
Rebar Yield Strength, fy:
Total Wall Length, Ltot:
End 1 Length, L-1:
End 2 Length, L-2:
Wall Thickness, T-0:
End 1 Thickness, T-1:
End 2 Thickness, T-2:
Wall Vert. Steel, AS-0:
Wall Horiz. Steel, As-h:
End 1 Rebar, As-1:
End 2 Rebar, As-2 :
Wall Dead Load, P-DL:
Wall Live Load, P-LL:
Wall Seismic Load, P-EQ:
R Factor, UBC Chapter 16
Shear Distribution Coefficient,
Shear Strength Reduction Factor,
5
60
430
24
24
20
20
20
2
2
8
8
92
33
74
wv
Phi-v
ksi Conc E, Econc: 4031 ksi
ks i Steel E, Es: 29000 ksi
in e includes end sections
in c length of left end section >
in c length of right end section >
in e thickness between end sects >
in e thickness @ left end section >
in e thickness @ right end section
layers - # 5@ 12 in, O.C.
layers - # 5@ 12 in, O.C.
-# 10 c total x pieces #y bar >
-# 10 e total x pieces #y bar
kips e NOT including wall self wt >
kips
kips e Seismic axial load @ wall center >
5.5 ndim
1.33 ndim
0.6 ndim
I STORY HEIGHTS & UNPACTORED FORCES
story
CL
No. c
10
9
8
7
6
5
4
3
2
P
- c
0.-
rc Total :
Story Story story Height Story Dist Story Moment
Height EQ EQ Above EQ From Moment Diagram
Force Shear Base OTM TOP
feet kips kips feet k-ft feet k-ft k-ft
0.0
0.0
0.0
0.0
I de+ "I..S P',
0.0
0.0
0.0
9.67 388.5 (%?'5+88.5
9.67 264.6 ($loa) 653.1
10.83 139.7 (4 j.G) 792.8
30.17 792.8
30.17
30.17
30.17
30.17
30.17
30.17
30.17
30.17
20.50
10.83
0
0
0'
0
0
0
0
11720
5424
1513
18656.829
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
9.67 3755.5
19.33 6313.3
30.17 8588.1
0
0
0
0
0
0
0
3755.47
10068.7
18656.8
4/15/2002 + RCWALLPRO EXAMPLE 1 1 of 4
r i
r
r
L
t r
c I i
i
r t
f
L
f
Int. Wall Length e wall length betw end sects >, L-0:
Total Gross Area, ATOT:
Centroid Distance to End 1, NAXIS
Gross Moment of Inertia, I-GROSS:
Elastic Bending Deflection, d-eb:
Elastic Shear Deflection : d-v
Comb. Bending and Shear Defl. at Top of Wall, d-e tot :
382 in
8600 in^2
215 in
132512 X 10^3 in^4
0.016 in
0.023 in
0.039 in
Wall Geometry
Wall Self Weight, P-SW:
Wall Axial Load, P'u:
Factored Shear, Vu:
Factored EQ Moment, Mu:
Factored Axial Force
Compressive Strength, Po
Ratio of Pu /Po =
Mu/ (VULW) =
Vu/ (Acv*df 'c) ) =
SYMMETRIC
270 kips
793 kips
18657 kip-f t
0.01 Ag.fc*
31027 kips
0.017 OK, CAN BE USED AS SHEARWALL
525 kips c P'u = 1.2D + 0.5L + E >
0.66
1.30
BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.4
4/15/2002 RCWALLPRO EXAMPLE 1 2 of 4
CALCULATE NOMINAL FLEXURAL CAPACITY M'n @ P'u =1.2D+0.5L+E
Wall Vert Steel, Rhov: 0.00258 ndim
Wall Horiz Steel, Rhoh: 0.00258 ndim
End 1 Steel, As-1: 10.16 inA2
End 2 Steel, As-2: 10.16 inA2
Beta1 : 0.80 ndim
Conc Yld Strain, eecy: o.vo3oo nafm
Steel Yld Strain, eesy: 0.002069 ndim
Compr Zone Length, c: 26.43 in
Sum of Forces, ftot: 0 kips OK M'n: 49696 k-ft
Strength Red. Factor, Phi 0.88 ndim
Phi M'n: 43512 kip-ft OK > Mu at P'u
ESTIMATE INELASTIC BEHAVIOR
Elast.Bending Defl.,d-eb: 0.02 inches
Yield Deflection, d-y: 0.04 inches
Total Deflection, d-t: 0.13 inches
Inelast. Deflect., d-i: 0.08 inches
Yield Curvature, phi-y: 6.983-06 rad/in
Total Curvature, phi-t: 8.493-06 rad/in
Maximum Comp. Strain, ee-t: 0.00022 ndim
Max Allow Strain, ee-m: 0.01500 ndim
BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.5
BouMlaR Y 2- ~WWSIONS,~ %IWPS AND VISRTIC& BARS PER 1921.6.6.6
Minimum Length, L-BZ :
Maximum Height Above The Base, H-BZ :
Thickness , T-BZ
Hoops Vertical Spacing, S-v
Dist. from Face of Concrete to Center of Hoops, D-c
Req. Area of Hoops in Longitudinal Dir., Ash-x:
Req. Area of Hoops in Transverse Dir., Ash-y:
Minimum Area of Vertical Bars, A-bv
0.00 in
0.00 in
in
in
in
0.00 inA2
0.00 inA2
0.00 inA2
i
d 4/15/2002 RCWALLPRO EXAMPLE 1 3 of 4
Wall's Height to Length Ratio
Coefficient ALFA-C
Code Shear Demand/Capacity, Vu/(Phi-v Vn)
L Shear Capacity, Phi-v Vn:
0.8
3.0
18 94 kips
0.42 ndim
..- 6EE BELOW FOR REQUIRBD VALlfE OF PHI-v
Overstrength Flexural Capacity, Mo
Plastic Shear Demand, Vp
- Mo/Mu Ratio
.J Plastic Shear Demand/Capacity, Vp/(Phi-v Vn)
62 119 kip- f t
3.33 ndim
3511 kips
1.85 ndim
+ PER SEC. 1909.3.4, USE PHI-v = 0.60 FOR SHEAR STRENGTH
RECHECK YOUR IIWT FOR CORRECT PHI-v
END OF CALCULATIONS
To report any 'bug' in the spreadsheet, please contact structech@juno.com.
-.I 4/15/2002 RCWALLPRO EXAMPLE 1 4 of 4
n' Project: /AWL I Page: Ycp
Frame Design Group
Dd ': c
c
h - e/- -- c .- - - - - r
GV 145' c
e
c
r
r
ci !
r
I
r-
Frame Design Group
Proiect: Page: w
F
c I
L
c.
c
. c-
c
Project: Page: ZB
Frame Design Group
X = 46.82'
I 2
a
Project: Page: ri9 c.
c
-
Frame Design Group
5
Project: Page: 90
c
c c
Frame Design Group
- L
Company : Frame Design Group
Designer : JEH
Job Number : 01-196 Shear Wall Q Line 14
1 -
April 16, 2002
Checked By: 4 I
EL 53
3.5 ft
B 430 in
I 13326 - (Reverse EL)
D dyx U
58 ft z
Geometry and Materials
Allowable Soil Bearing : 5000 psf Steel fj~ :60 ksi Length :58ft eX :Oin
Width :loft eZ :91 in Concrete Weight : 145 pcf Minimum Steel : .0018
Thickness :66 in pX :20 in Concrete fc :3 ksi Rebar CL :3 in
Height :O in pZ :430 in
DL+LL DL+LL
._ DL+LL+WI- DL+LL+WL
- DL+mGWL -__ j DL+LL-WL
DL+LL+EL ~ DL+LL+EL
DL+LL+EL DL+LL-EL
- DL+EL DL+EL
5000 1 2094.42(A) i NA _!!!A- -
NA 6665 , 2094.42(A) NA
6665 2094.42 (A) NA ____ NA
6665 3443.01 (B) ' 2.346 ~ NA
NA 6665 5455.28 (A) 1.673
NA
-_
- -. 6665 3442.64 (B) 2.256 -_
AD DC BA AD c'p
Service Corn bina tion Results
R BR BR BR BR B
DL+LL DL+LL+WL DL+LL-WL DL+ LL+EL DL+LL-EL
QA: 2094.42 psf QA: 2094.42 psf QA: 2094.42 psf QA: 0 psf QA: 5455.28 psf
QB: 1042.06 psf QB: 1042.06 psf QB: 1042.06 psf QB: 3443.01 psf QB: 0 psf
QC: 1042.06 psf QC: 1042.06 psf QC: 1042.06 psf QC: 3443.01 psf QC: 0 psf
QD: 2094.42 psf QD: 2094.42 psf QD: 2094.42 psf QD: 0 psf QD: 5455.28 psf
BPI B
QA: 0 psf QA: 5474.55 psf
QB: 3442.64 psf QB: 0 psf
QC: 3442.64 psf QC: 0 psf
QD: Opsf QD: 5474.55 psf
DL+EL DL-EL
RlSAFoot Version 1.03 [Untitled.rft] Page 1
c
P
c
,D 1.4DL
1 1.2D+L+E 1.2DL+1 LL+1.4EL
D+L 1.4DL+1.7LL
Company : Frame Design Group
Designer : JEH
Job Number : 01-196 Shear Wall Q Line 14
NA NA 214.353 .305 .614
NA NA 219.504 .312 .642
NA NA 545.944 , .776--- .58
April 16, 2002 32 Checked By:
1.2D+L+E ' 0.9E+E
Flexure Design Results
Description Load Sets and Factors MU-XX (k-ft) Z Dir As (in2) Mu-ZZ (k-ft) X ___ Dir As (in2 )
D 1 1.4DL 2763.79 ] 14.256 1065.29 - -~ 82,685 I 1.4DL+1.7LL 2828.47 1 14.256 I1 13.98 82.685
1.2DL+1 LL-1.4EL NA NA I 2.554 .004 SO5
.9DL+1.4EL NA NA , 564.81 .802 .432 ___-
71 70.46
51 2.398
7472.28
2298.25
D -- - -- ~~
D+L 1.4DL+1.7LL
1.2D+L+E 1.2DL+1 LL+1.4EL
1.2D+L+E-- ___ 1.2DL+1 LL-1.4EL
0.9E+E ~~ .9DL+1.4EL
1.4nL
O.xE+E 1 .9DL-1.4EL
7
j 14.256 1 27.537
~ 14.256
1227.21 .04
1283.31 .042
I 1159.09 .038
1010.69 I .033 I
863.12 .028
714.72 I .023
I
f
Note: Overburden and footing self weight are included in the DL load case.
Controlling X direction steel requires
Region 1 (starts at A): 197 in
Region 2 (middle): 120 in
Region 3 (ends at B): 379 in
the following placement:
Steel: 19.962 in:
Steel: 24.319 in2
Steel: 38.404 in
1006.16~~
877.338 ~
749.236
620.41 7 ____
~~ ~
~__ 82.685
82.685
82.685
82.685
.. .
Shear Check Results
Two Way (Punching) Vc: NA One Way (X Dir. Cut) Vc 828.157 k One Way (2 Dir. Cut) Vc: 4803.31 k
Punchina X Dir. Cut Z Dir. Cut
vu/ -vc
0
0
0
0
0
0 ._
Note: Overburden and footing self weight are included in the DL load case.
RlSAFoot Version 1.03 [Untitled.rft] Page 2
Project: LIJCC- \+ Page: $3
c Frame Design Group
c
c
c
c
Proiect : Page: zd.
c Frame Design Group
P
c
c
c
f-
c
c
c
Frame Design Group
LL ** 0.03 x - i
18
Project: LWE I3 Page: %<
35.0 3
c W+Lt&
c
c
r .. 799.6
11 0.4
160 I
c
I I
I I 1 100
, 13266 1 (Reverse EL)
Company : Frame Design Group
Designer : JEH
Job Number : 01-196 Toyota Carlsbad -Wall B
~- DL+LL
DL+LL+EL
DL+LL+EL
DL+EL
DL+EL
I
36 May 8,2002
~- ~~~ NA - DL+LL 5000 ; 2880.49(A) NA
DL+LL+EL 6665 6535.92 (B) ' 3.054 *~ NA
DL+LL-EL 6665 ! 5847.21 (A) I 2.282 ____
DL-EL 6665 i 5758.17(A) 2.016 - - NA - _-
NA
DL+EL 6665 i 6257.49(B) j 2.7E-__- ~ NA- -
Checked By:
Geometry and Materials
Length :64ft ex :Oin Allowable Soil Bearing : 5000 psf Steel fj : 60 ksi
Width :6 ft e2 :Oin Concrete Weight : 145 pcf Minimum Steel : .0018
Thickness :36 in pX :20 in Concrete fc :4 ksi Rebar CL : 3.5 in
Height : 0 in pZ :672 in
F
c
- Loads
DL - LL
EL -
AD DC BA AD
c
c
P
c
e
P
W-E W-E S-E W-fi 1-6
DL+LL D L+ LL+ E L DL+LL-EL DL+EL DL-EL
QA: 2880.49 psf QA: 58.383 psf QA: 5847.21 psf QA: 0 psf QA: 5758.17 psf QB: 2880.49 psf QB: 6535.92 psf QB: 0 psf QB: 6257.49 psf QB: 0 psf
QC: 2880.49 psf QC: 6535.92 psf QC: 0 psf QC: 6257.49 psf QC: 0 psf
QD: 2880.49 psf QD: 58.383 psf QD: 5847.21 psf QD: 0 psf QD: 5758.17 psf
RlSAFoot Version 1.03 [Untitled.rft] Page 1
Company : Frame Design Group
Designer : JEH
Job Number : 01-196
1.4D
1.4D+1.7L
1.2D+1 .OL+1.4E
May 8,2002
Checked By: $1 Toyota Carlsbad -Wall B
I
I 49.766. 1.4DL 174.249 j 4.666 545.334
1.4DL+1.4LL 193.569 I 4.666 ~ 605.798 ~~ 49.766
1.4DL+1 LL+1.4EL 424.631 1 4.666 ! 676.152 49.766
c Flexure Design Results
I 1.4D I 1.4D+1.7L ' 1.2D+1 .OL+1.4E
c
c
1.4DL NA NA 28.134 .112 .697 0 1.4DL+1.4LL NA NA 31.253 .124 .774 0 ,~~ __ 1.4DL+1 LL+1.4EL NA NA 69.315 , .276 -864 ~ ~ 0 - 1.2D+1 .OL+1.4E , 1.4DL+1 LL-1.4EL ! NA NA
Note: Overburden and footing self weight are included in the DL load case. 1 ?+a
62.247 .247 -~f~ .64 ~~ 0
Controlling X direction steel requires the following placement:
Region 1 (starts at A): 348 in
Region 2 (middle): 72 in Steel: 8.531 in
Region 3 (ends at B): 348 in Steel: 20.618 in
Steel: 20.618 if2
1.4D __ - __ 1.4DL
1.2D+1 OL+K4E 1.4DL+1 LL-1.4EL
0.9D+1.4E i .9DL-1.4EL
c 1.4D+1.7L 1.4DL+1.4LL
1.2D+1 .OL+14ETDL+l LL+1.4EL
0.9D+l.4E I .9DL+1.4EL -
A
D
1393.99 .022
1548.55 .025
1728.39 .027
1120.14 .018 4 I
672.136 .Oil
1280.39 ! .02 I
Shear Check Resulfs
Two Way (Punching) Vc: NA One Way (X Dir. Cut) Vc 295.989 k One Way (Z Dir. Cut) Vc: 3157.22 k c
IC-
-
c
RlSAFoot Version 1.03 [Untitled.rft] Page 2
Frame Design Group
Company : Frame Design Group
Designer : JEH
Job Number : 01-196 Toyota Carlsbad - Wall W D
DL 101 6.2
LL ' 188
EL 1 203.2
May 8,2002 VI Checked By:
I
I I
I
~ 100 ~-
13535 , 1 (Reverse EL)
672 in +, 7.5 ft
I B ..
- -_ DL+LL+EL , DL+LL+EL
__ DL+LL+EL ~ DL+LL-EL
_-- DL+EL ~ DL+EL
DL+EL I DL-EL
D
6665 i 6646.83(B) 4.427 - ._ - NA
NA 6665 5692.84(A) 1 3.361
6665 6205.52(B) I 3.934 NA _- ~
6665 5254.32(A) ~ 2.868 NA-
c
CI";
71 ft
Geometry and Materials
Length :71 ft eX :Oin Allowable Soil Bearing : 5000 psf Steel fy : 60 ksi
Width :6ft eZ :Oin Concrete Weight : 145 pcf Minimum Steel : .0018
Thickness :48 in pX :20 in Concrete f c :4 ksi Rebar CL : 3.5 in
Height : 0 in pZ :672 in
AD DC BA AD
Service Combination Results
z-z
~~
s-6 s-6 E-6 s-6 s-6
DL-EL DL+LL DL+LL+EL DL+LL-EL DL+EL
QA: 3484.85 psf QA: 1276.86 psf QA: 5692.84 psf QA: 835.549 psf QA: 5254.32 psf
QB: 3484.85 psf QB: 6646.83 psf QB: 322.873 psf QB: 6205.52 psf QB: 0 psf
QC: 3484.85 psf QC: 6646.83 psf QC: 322.873 psf QC: 6205.52 psf QC: 0 psf
QD: 3484.85 psf QD: 1276.86 psf QD: 5692.84 psf QD: 835.549 psf QD: 5254.32 psf
RlSAFoot Version 1.03 [Untitled.rft] Page 1
Company : Frame Design Group
Designer : JEH
Job Number : 01-196
1.4D 1.4DL 71 9.036 I 6.221
May 8,2002
Checked By: Qo Toyota Carlsbad - Wall t 0
710.099 i 73.613
c
1.4D+lX : 1.4DL+1.4LL
1.2D+1 .OL+1.4E 1.4DL+1 LL+l.4EL
1.2D+l .OL+1.4E 1.4DL+1 LL-1.4EL
0.9D+1.4E .9DL-1.4EL
' 0.9D+1.4E .9DL+1.4EL
c 823.296 6.221 813.064 1 73.613
1495.85 0.63) 894.935 I 73.61 3
1270.47 6.459 ) 672.356 73.6 13-
567.782 ~ 73.613
11 09.53 6.221 345.203 - 73.61 __ 3
1 167.47 6.221 I __ ~
Flexure Design Results
1.40 1.4DL
1.4D+1.7L ~ 1.4DL+1.4LL
I~+l.OL+1.4E ' 1.4DL+1 LL+1.4EL
1.2D+1 .OL+1.4E 1.4DL+1 LL-1.4EL
0.9D+l.4E .9DL+1.4EL 1 0.9D+1.4E .9DL-1.4EL
NA NA , 96.937 ~ .281 j .908 0
NA NA ' 110.993 i .322 j 1.039 0
NA NA 203.119 ~ .59 1.144 0 NA NA 172.734 , .SO1 ~ .859 ~~ 0
NA j NA 158.859 .461 .726 - 0
NA I NA 151.865 ' .441 I .441 0
Note: Overburden and footing self weight are included in the DL load
Controlling X direction steel requires the following placement:
Region 1 (starts at A): 390 in Steel: 31.07 in'
Region 2 (middle): 72 in Steel: 11.472 '2"'
Region 3 (ends at B): 390 in Steel: 31.07 in
- 1.4D j 1.4DL ! 1815.17
-~ 1.4D21.7L ~ 1.4DL+1.4LL ' 2078.37
2287.65
1.2D+1 .OL+1.4E 1.4DL+1 LL-1.4EL 1718.69
0.9D+1.4E .9DL+1.4EL 1451.37
- ___ 0.9D+1.4E ~ .9DL-1.4EL 882.41 2
_- 1.2D+l .OL+1.4E 1 1.4DL+1 LL+1.4EL
Shear Check Results
Two Way (Punching) Vc: NA One Way (X Dir. Cut) Vc 405.278 k One Way (Z Dir. Cut) Vc: 4795.78 k
Punchins X Dir. Cut 2 Dir. Cut
.029
.033 1
.036 I
.027
.023
.014 I
Concrete Bearing Check Results (Only Vertical Loads Consideredl)
Bearing Bc : 89994.1 k
Note: Overburden and footing self weight are included in the DL load case.
c
c
RlSAFoot Version 1.03 [Untitled.rft] Page 2
Project: 1 oy ota ha Ls 136L04 Page: d/
Frame Design Group
4
c
c
Project: Page: tr2
c Frame Design Group
c
c
c
c
P
rc
c
e I
c
c
e 32”
c-
c
c
c
c-
c
c
L
63 Frame Design Group, Inc. Sheet No.
2 Faraday, Suite 101
Imine, CA 92618
94 9/595 - 8015 ======================================PTData for Windows {v2.000-0229)========~==============================
POST TENSIONED ONE-WAY SLAB DESIGN
03-21-2002
PROJECT : Toyota Calrsbad
MEMBER ID: Diaphragm Slab at the florr
STORAGE ID: C:\PTPLUS32\PTRUNS\TOYOTA-l\DIAPHR-l.PTD
------------------------------------Copyright .................................... 2000 Structural Data Inc ._______________----------------- ________________________________=====
13 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.2 LL FACTOR=l. CONCRETE: BEAM 5OOOpsi 150pCf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi l5Opcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f1c=424psi BOT 6.0 SQRT f'c=424psi %SUP.DLBTRANSFER=O.O
TENDON COVER: INTERIOR SPANS TOP 0.75 in EXTERIOR SPANS TOP 0.75 in UNBONDED, LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A B TOP & BOT DL + LL/4 RATIO=l.OO REBAR YIELD=60.00ksi
LOAD FACTORS 1.2/1./1.7/1.3/.9/.75/1.2/1. fse=173.0ksi COl Ie/Ig=l.OO NO Top COlUtllnS @ Stressing
====================================Copyright 2000 Structural Data Inc.=====================================
BOTTOM 0.75 in BOTTOM 1.00 in
TENDON DIAM=O.50in MAX LONG BAR SIZE=#4 REBAR COVER: 1.00in TOP 1.00in BOT
Sectionl-ONE-WAY SLAB INPUT DATA <---
L
SPAN (ft) 1 12.00
2 18.00 3 18.00
4 18.00
5 18.00
6 18.00
7 18.00
8 18.00
9 18.00
10 18.00
11 18.00
12 18.00
13 16.00
----_ GEOMETRY-----
t TribL TribR
(in) (ft) (ft)
5.00 0.50 0.50
5.00 0.50 0.50
5.00 0.50 0.50
5.00 0.50 0.50
5.00 0.50 0.50
5.00 0.50 0.50
5.00 0.50 0.50
5.00 0.50 0.50
5.00 0.50 0.50
5.00 0.50 0.50
5.00 0.50 0.50
5.00 0.50 0.50
5.00 0.50 0.50
---- > < -------- TENDON PROFILE------
Yref CL cR A B
(in) TYPE (in) (in) (ft) (ft)
0.00 3 0.00 0.00 1.20 1.20
0.00 3 0.00 0.00 1.80 1.80
0.00 3 0.00 0.00 1.80 1.80
0.00 3 0.00 0.00 1.80 1.80
0.00 3 0.00 0.00 1.80 1.80
0.00 3 0.00 0.00 1.80 1.80
0.00 3 0.00 0.00 1.80 1.80
0.00 3 0.00 0.00 1.80 1.80
0.00 3 0.00 0.00 1.80 1.80
0.00 3 0.00 0.00 1.80 1.80
0.00 3 0.00 0.00 1.80 1.80
0.00 3 0.00 0.00 1.80 1.80
0.00 3 0.00 0.00 1.60 1.60
->
C
(ft)
6.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
8.00
~ ~ ~~ <----- SUPERIMPOSED LOADS---->
LOAD DL
SPAN TYPE (k,ft)
1
2
3
4
5
6
7
8
9
10
11
12
13
U
U
U
U
U
U
U
U
U
U
U
U
U
0.002
0.002 0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
LL
(k. ft) 0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
JOINT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
s PAN
1
2
3 4
5
6
7
8
9
10
11
12
13
<--------------------coLUMNs-------------------->
H c2 Cl Far H c2 C1 Far
(ft) (in) (in) End (ft) (in) (in) End
0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
<--------Bottom------> <--------Top--------->
Section2 - SLAB AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored < - - - - - - -
L
0.15
-1.28
-1.56
-1.47
-1.50
-1.49
-1.49
-1.49
-1.49
-1.49
-1.51
-1.43 -1.68
.DEAD LOAD- - - - - -
M(x-ft)
0.48( 3.9)
0.82( 9.0)
0.72( 9.0)
0.75( 9.0)
0.74( 9.0)
0.75( 9.0)
0.75( 9.0)
0.75( 9.0) 0.75( 9.0)
0.74( 9.0)
0.77( 9.0)
0.67( 9.0)
1.14( 9.5)
-->
R
-1.31
-1.55
-1.48
-1.50
-1.49
-1.49
-1.49
-1.49
-1.49
-1.51
-1.43
-1.72
0.24
<-----
L .o. 01
0.55
0.63
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.63
-BALANCED LOAD- - -
M(x-ft) -0.15 ( 6.0)
-0.37( 9.0)
-0.34( 9.0) -0.35( 9.0)
-0.35( 9.0)
-0.35( 9.0)
-0.35( 9.0) -0.35( 9.0)
-0.35( 9.0)
-0.35( 9.0)
-0.35( 9.0)
-0.34( 9.0)
-0.33( 8.0)
->
R
0.53
0.63
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.61
0.60
0.64
-0.01
BEAM SECONDARY L R
0.00 0.07
0.08 0.16
0.16 0.14
0.14 0.15
0.15 0.14
0.14 0.15
0.15 0.15
0.15 0.15
0.15 0.14
0.14 0.15
0.15 0.14
0.14 0.17
0.16 0.01
A B
(ft) (ft) 0.00 12.00
0.00 18.00
0.00 18.00
0.00 18.00
0.00 18.00
0.00 18.00
0.00 18.00
0.00 18.00
0.00 18.00
0.00 18.00
0.00 18.00
0.00 18.00
0.00 16.00
e
L
.-
c
c
c
<-----
SPAN L
1 0.18
2 0.31
3 0.40
4 0.53
5 0.55
6 0.56
7 0.56
8 0.56
9 0.56
10 0.56
11 0.54
12 0.53
13 0.29
,-MOST POS LL-----
M (X-ft)
0.85( 6.0)
1.14( 9.0)
1.24( 9.0)
1.29( 9.0)
1.30( 9.0)
1.30( 9.0)
1.30( 9.0)
1.30( 9.0)
1.30( 9.0)
1.29( 9.0)
1.29( 9.0)
1.20( 9.0)
1.29( 9.5)
.->
R
0.34
0.42
0.53
0.55
0.56
0.56
0.56
0.56
0.56
0.54
0.53
0.26 0.23
<------ MOST NEG LL----
L M(x-ft)
-0.07 -0.07( 0.7)
-1.30 -0.33( 4.0)
-1.61 -0.64( 5.7)
-1.67 -0.69( 5.7)
-1.71 -0.72( 5.7)
-1.72 -0.72( 5.7)
-1.72 -0.72( 5.7)
-1.72 -0.72 (12.3)
-1.72 -0.72 (12.3)
-1.71 -0.72 (12.3)
-1.71 -0.67 (12 -3)
-1.65 -0.66 (14 .O)
-1.60 -0.04(15.3)
-->
R
-1.35
-1.62 -1.67
-1.71
-1.72
-1.72
-1.72
-1.72
-1.71
-1.71
-1.64
-1.59
-0.04
Section3-EFFECTIVE FORCES AND PROFILES
Eff Force No. CGS Dim. (in. from datum) F/A (ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1
2
3
4
5
6
7
8
9
10
11
12
13
JOINT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
3.95 3.95
3.95 3.95
3.95 3.95
3.95 3.95
3.95 3.95
3.95 3.95
3.95 3.95
3.95 3.95
3.95 3.95
3.95 3.95
3.95 3.95
3.95 3.95
3.95 3.95
ULT(%R= 0.0)
TOP BOT
0.00 0.00
0.09 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.13 0.00 0.13 0.00
0.13 0.00
0.12 0.00
0.13 0.00
0.12 0.00
0.13 0.00
0.00 0.00
JOINT TOP
0.1 2.50 3.08
0.1 1.00 4.00
0.1 1.00 4.00
0.1 1.00 4.00
0.1 1.00 4.00
0.1 1.00 4.00
0.1 1.00 4.00
0.1 1.00 4.00
0.1 1.00 4.00
0.1 1.00 4.00
0.1 1.00 4.00
0.1 1.00 4.00
0.1 1.00 3.75
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Section 4 - R E B A R
TOP BOT TOP BOT
0.00 0.00 0.12 0.00
0.09 0.00 0.12 0.00
0.11 0.00 0.12 0.00
0.10 0.00 0.12 0.00
0.10 0.00 0.12 0.00
0.10 0.00 0.12 0.00
0.10 0.00 0.12 0.00
0.10 0.00 0.12 0.00
0.10 0.00 0.12 0.00
0.10 0.00 0.12 0.00
0.11 0.00 0.12 0.00
0.10 0.00 0.12 0.00
0.11 0.00 0.12 0.00
D+L/I(%R= 0.0) MIN
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
2.50
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0,066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
REQUI
SPAN
1
2
3 4
5
6
7
8
9
10
11
12
13
REMENTS
ULT(%R= 0.0)
TOP BOT
0.00 0.01
0.00 0.05
0.00 0.05
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.05
0.00 0.09
COLUMN MOMENTS (FACTORED)
JOINT TOP BOT
1 0.00 0.00
2 0.00 0.00
3 0.00 0.00
4 0.00 0.00
5 0.00 0.00
6 0.00 0.00
7 0.00 0.00
8 0.00 0.00
9 0.00 0.00
10 0.00 0.00
11 0.00 0.00
12 0.00 0.00
13 0.00 0.00
14 0.00 0.00
Tendon Weight=O.OlO psf
(in2 )
D+L/4 (%R= 0.0)
TOP BOT
0.00 0.04
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.05
0.00 0.08
0.00 0.00 0.00 0.00 Rebar Weight=O.612 psf
Controlling Rebar For This Redistribution Case
BOT SPAN BOT
1 #4x 3.0'69 20.0in o/c
2 #4x 7.5'8 20.0in o/c
3 #4x 9.0'8 19.7in o/c
4 #4x 9.0'8 19.8in o/c
5 #4x 9.0'8 19.2in o/c
6 #4x 9.0'8 19.2in o/c
7 #4x 9.0'8 19.2in o/c
8 #4x 9.0'8 19.2in o/c
9 #4x 9.0'8 19.lin o/c
10 #4x 9.0'8 19.3in o/c
11 #4x 9.0'8 19.0in o/c
12 #4x 9.0'8 20.0in o/c
13 #4x 8.5'8 18.2in o/c
14 #4x 4.0'8 O.Oin o/c
#4x 2.0'69
#4x 5.0'8
#4x 6.0'8
#4x 6.0'8
#4x 6.0'8
#4x 6.0'8
#4x 6.0'0
#4x 6.0'0
#4x 6.0'8
#4x 6.0'0
#4x 6.0'8
#4x 6.0'8
#4x 5.7'8
#4x 2.7'8
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.oin o/c
O.Oin o/c
1 #4x 9.0'69 20.0in o/c
2 #4x 13.5'69 20.0in o/c
3 #4x 13.5'8 20.0in o/c
4 #4x.13.5'69 20.0in o/c
5 #4x 13.5'8 20.0in o/c
6 #4x 13.5'8 20.0in o/c
7 #4x 13.5'8 20.0in o/c
8 #4x 13.5'8 20.0in o/c
9 #4x 13.5'0 20.0in o/c
10 #4x 13.5'8 20.0in o/c
11 #4x 13.5'8 20.0in o/c
12 #4x 13.5'8 20.0in o/c
13 #4x 12.0'8 20.0in o/c
MIN
TOP BOT
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
TOP
#4x 6.0'8
#4x 9.0'69
#4x 9.0'69
#4x 9.0'8
#4x 9.0'69
#4x 9.0'8
#4x 9.0'8
#4x 9.0'8
#4x 9.0'8
#4x 9.0'8
#4x 9.0'9
#4x 9.0'8
#4x 8.0'8
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
Frame Design Group, Inc.
2 Faradav. Suite 101
Sheet No. 45
Tovota Calrsbad
c
c
ULT(%R= 6.7)
TOP BOT
0.00 0.00
0.08 0.00
0.11 0.00
0.11 0.00
0.11 0.00
0.11 0.00
0.11 0.00
0.11 0.00
0.11 0.00
0.11 0.00
0.11 0.00
0.10 0.00
0.12 0.00
0.00 0.00
D+L/4 (%R=lO .O)
TOP BOT
0.00 0.00
0.09 0.00
0.10 0.00
0.09 0.00
0.10 0.00
0.10 0.00
0.10 0.00
0.10 0.00
0.10 0.00
0.10 0.00
0.10 0.00
0.09 0.00
0.11 0.00
0.00 0.00
MIN
TOP BOT
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00 0.12 0.00
0.12 0.00
0.12 0.00
0.00 0.00
ULT(%R= 6.7)
SPAN TOP BOT
1 0.00 0.01
2 0.00 0.05
3 0.00 0.05
4 0.00 0.05
5 0.00 0.05
6 0.00 0.05
7 0.00 0.05
8 0.00 0.05
9 0.00 0.05
10 0.00 0.05
11 0.00 0.05
12 0.00 0.04
13 0.00 0.09
Rebar Weight=O.605
D+L/4 (%R=10.0)
TOP BOT
0.00 0.03
0.00 0.06
0.00 0.05
0.00 0.05
0.00 0.05
0.00 0.05
0.00 0.05
0.00 0.05
0.00 0.05
0.00 0.05
0.00 0.05
0.00 0.05
0.00 0.08
PSf
MIN
TOP BOT
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
JOINT
1
2
3
4
5
6 7
8
9 10
11 12
13 14
c
c
Controllinu Rebar For This Redistribution Case - JOINT TOP BOT
1 #4x 3.0'8 20.0in o/c #4x 2.0'63
2 #4x 7.5'8 20.0in o/c #4x 5.0'63
3 #4x 9.0'8 20.0in o/c #4x 6.0'63
4 #4x 9.0'63 20.0in o/c #4x 6.0'@
5 #4x 9.0'63 20.0in o/c #4x 6.0'63
6 #4x 9.0'8 20.0in o/c #4x 6.0'@
7 #4x 9.0'63 20.0in o/c #4x 6.0'63
8 #4x 9.0'8 20.0in o/c #4x 6.0'63
9 #4x 9.0'63 20.0in o/c #4x 6.0'8
10 #4x 9.0'63 20.0in o/c #4x 6.0'63
11 #4x 9.0'63 20.0in o/c #4x 6.0'8
O.Oin o/c
O.Oin o/c
O.Oin o/c O.Oin o/c O.Oin o/c
0 .Oin o/c O.Oin o/c
O.Oin o/c
0 .Oin o/c
O.Oin o/c
O.Oin o/c
SPAN BOT
1 #4x 9.0'63 20.0in o/c #4x
2 #4x 13.5'63 20.0in o/c #4x
3 #4x 13.5'63 20.0in o/c #4x
4 #4x 13.5'63 20.0in o/c #4x
5 #4x 13.5'63 20.0in o/c #4x
6 #4x 13.5'63 20.0in o/c #4x
7 #4x 13.5'63 20.0in o/c #4x
8 #4x 13.5'63 20.0in o/c #4x
9 #4x 13.5'63 20.0in o/c #4x
10 #4x 13.5'8 20.0in o/c #4x
11 #4x 13.5'63 20.0in o/c #4x
12 #4x 13.5'63 20. Oin o/c #4x
13 #4x 12.0'63 20.0in o/c #4x
TOP
6.0'63
9.0'8
9.0'8
9.0'63
9.0'63
9.0'@
9.0'63
9.0'63
9.0'63
9.0'63 9.0'8
9.0'9
8.0'63
O.Oin o/c
O.Oin o/c O.oin o/c O.Oin o/c
O.Oin o/c
0 .Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c O.Oin o/c - O.Oin o/c
O.Oin o/c 12 #4x 9.0163 20 13 #4x 8.5'63 20
14 #4X 4.0'@ 0
Oin o/c #4x 6.0'8 O.Oin o/c
Oin o/c #4x 5.7'8 O.Oin o/c Oin o/c #4x 2.7'63 O.Oin o/c
ULT(%R=15.0)
TOP BOT
0.00 0.01
0.00 0.05
0.00 0.04
0.00 0.04
0.00 0.04
0.00 0.04
0.00 0.04
0.00 0.04
0.00 0.04
0.00 0.04
0.00 0.04
0.00 0.04
0.00 0.08
D+L/4 (%R=15.0)
TOP BOT
0.00 0.03 0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.06
0.00 0.05
0.00 0.08
MIN
BOT
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
JOIN
1
2
3
4
5
6
7
8
9
10
11
12 13
14
'T
ULT(%R=15.0)
TOP BOT
0.00 0.00
0.07 0.00
0.09 0.00
0.09 0.00
0.09 0.00
0.09 0.00
0.09 0.00
0.09 0.00
0.09 0.00
0.09 0.00
0.09 0.00
0.09 0.00
0.10 0.00
0.00 0.00
D+L/4 (%R=15.0)
TOP BOT
0.00 0.00
0.09 0.00 0.10 0.00
0.09 0.00
0.10 0.00
0.10 0.00
0.10 0.00
0.10 0.00
0.10 0.00 0.10 0.00
0.10 0.00
0.09 0.00
0.11 0.00
0.00 0.00
MIN
TOP BOT
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.00 0.00
SPAN
1
2
3
4
5
6
7
8
9
10
11
12
13
TOP 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Rebar Weight=0.605 psf
c
L
c
Controlling Rebar For This Redistribution Case
Oin o/c #4x 2.0'8 O.oin o/c 1 #4x 9.0'8 20.0in o/c BOT SPAN BOT JOINT TOP
1 #4x 3.0'63 20
TOP
#4x 6.0'8
#4x 9.0'8
#4x 9.0'8
#4x 9.0'8
#4x 9.0'63
#4x 9.0'63
#4x 9.0'63
#4x 9.0'63
#4x 9.0'63
#4x 9.0'8
#4x 9.0'63
#4x 9.0'63
#4x 8.0'@
O.oin o/c
0.oin o/c O.Oin o/c
O.oin o/c O.Oin o/c
O.Oin o/c
0.Oin o/c
o.0in o/c
O.Oin o/c
O.oin o/c
O.Oin o/c
0.Oi.n o/c
O.Oin o/c
2
3
4
5
6
7
8
9
10
11 12
13
14
#4x
#4x
#4x
#4x
#4x
#4x
#4x
#4x
#4x
#4x
#4x
#4x
#4x
#4x 5.0'8
#4x 6.0'63
#4x 6.0'63
#4x 6.0'63
#4x 6.0'8
#4x 6.0'63
#4x 6.0'63
#4x 6.O'Q
#4x 6.0'@
#4x 6.0'63
#4x 6.0'@
#4x 5.7'63
#4x 2.7'63
0 .Oin o/c
O.Oin o/c
O.Oin o/c
O.oin o/c
O.Oin o/c O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
O.Oin o/c
2 #4x 13.5'63 20.0in o/c
3 #4x 13.5'8 20.0in o/c
4 #4x 13.5'63 2O.Oin o/c
5 #4x,13.5'8 20.0in o/c
6 #4x 13.5'63 20.0in o/c
7 #4x 13.5'63 20.0in o/c
8 #4x 13.5'63 20.0in o/c
9 #4x 13.5'8 20.0in o/c
10 #4x 13.5'8 20.0in o/c
11 #4x 13.5'63 20.0in o/c
12 #4x 13.5'8 20.0in o/c
13 #4x 12.0'63 20.Oin o/c c
L
c
c
c
L
c
c
Service Loads
SPAN Tension (XI Compression (x)
1T
B
2T
B
3T
B
4T
B
5T
B
6T
B 7T
B
8T
B
9T B
10 T
B
11 T
B
12 T
B
13 T
B
JOINT
1
2
3
4
5 6
7
8
9 10
11
12
13
14
0.448
0.205
0.544
0.317
0.545
0.322
0.557 0.340
0.557 0.340
0.559 0.342
0.559 0.342
0.559
0.342
0.559
0.342
0.561
0.338
0.561
0.345
0.574
0.301
0.571
0.440
( 11.33)
( 4.93)
( 17.33)
( 9.00)
( 17.33)
( 9.00)
( 17.33)
( 9.00)
( 17.33)
( 9.00)
( 17.33)
( 9.00)
( 0.67)
( 9.00)
( 17.33)
( 9.00)
( 0.67)
( 9.00)
( 17.33)
( 9.00)
( 0.67)
( 9.00)
( 17.33)
( 9.00)
( 0.67)
( 9.47)
-0.337 ( 4.93)
-0.579 ( 11.33)
-0.448 ( 9.00)
-0.675 ( 17.33)
-0.454 ( 9.00)
-0.676 ( 17.33)
-0.471 ( 9.00)
-0.689 ( 17.33)
-0.472 ( 9.00)
-0.689 ( 17.33) -0.474 ( 9.00)
-0.690 ( 17.33)
-0.474 ( 9.00)
-0.690 ( 0.67)
-0.473 ( 9.00)
-0.691 ( 17.33)
-0.474 ( 9.00)
-0.691 ( 0.67)
-0.470 ( 9.00)
-0.693 ( 17.33)
-0.476 ( 9.00)
-0.692 ( 0.67)
-0.432 ( 9.00)
-0.706 ( 17.33)
-0.572 ( 9.47)
-0.703 ( 0.67)
Section 6 - F A C T 0 R E D
Maximum Axial Load
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
0.59 0.00 0.00
2.26 0.00 0.00
2.48 0.00 0.00
2.46 0.00 0.00
2.49 0.00 0.00
2.49 0.00 0.00
2.49 0.00 0.00
2.49 0.00 0.00
2.49 0.00 0.00
2.48 0.00 0.00
2.49 0.00 0.00
2.43 0.00 0.00
2.56 0.00 0.00
0.81 0.00 0.00
Transfer of Prestress
Tension (x) Compression (x)
0.081 ( 11.33)
-0.002 ( 3.87)
0.107 ( 17.33)
0.011 ( 9.00)
0.108 ( 0.671
0.100 ( 17.33)
0.000 ( 9.00)
0.100 ( 0.67)
-0.001 ( 9.00)
0.099 ( 17.33)
-0.001 ( 9.00)
0.099 ( 0.67)
-0.001 ( 9.00)
0.099 ( 17.33)
-0.001 ( 9.00)
0.099 ( 0.67)
0.000 ( 9.00)
0.103 ( 17.33)
-0.002 ( 9.00)
0.103 ( 0.67)
0.004 ( 9.00)
0.144 ( 17.33)
-0.017 ( 9.00)
0.139 ( 0.67)
0.103 ( 10.93)
-0.004 ( 9.00)
-0.151 ( 3.87)
-0.234 ( 11.33)
-0.164 ( 9.00)
-0.261 ( 17.33)
-0.149 ( 9.00)
-0.262 ( 0.67)
-0.154 ( 9-00)
-0.253 ( 17.33)
-0.153 ( 9-00)
-0.254 ( 0.67)
-0.153 ( 9.00)
-0.253 ( 17.33)
-0.153 ( 9.00)
-0.253 ( 0.67)
-0.153 ( 9.00)
-0.253 ( 17.33)
-0.153 ( 9.00)
-0.253 ( 0.67)
-0.151 ( 9.00)
-0.257 ( 17.33)
-0.158 ( 9-00)
-0.256 ( 0.67)
-0.136 ( 9.00)
-0.298 ( 17.33)
-0.257 ( 10.93)
-0.293 ( 0.67)
COLUMN LOADS
Maximum Moment
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
0.59 0.00 0.00
1.89 0.00 0.00
1.93 0.00 0.00
1.85 0.00 0.00
1.85 0.00 0.00
1.84 0.00 0.00
1.84 0.00 0.00
1.84 0.00 0.00
1.84 0.00 0.00
1.84 0.00 0.00
1.86 0.00 0.00
1.82 0.00 0.00
2.04 0.00 0.00
0.81 0.00 0.00
DEFLECTIONS
SPAN
1
2
3
4
5
6
7
8
9
10
11
12
13
<----- Deflections (in) ----->
Delta L/Delta Delta L/Delta
DL + Bal LL
0.008
0.030
0.021
0.023 0.023
0.023
0.023
0.023
0.023
0.022
0.026
0.013
0.053
19193
7232
10404
9193
9534
9433
9452
9486 9347
9829 8394
16114
3636
0.041
0.106
0.118
0.125
0.126
0.127
0.127
0.127
0.127
0.126
0.126
0.114
0.107
3524
2031
1824
1726
1711
1702
1701
1702
1702
1716
1720
1894
1803
c
L
Page: #7 Project :
Frame Design Group
c
h
c
c
c
c
t /=
60
c
c
c
c
c
c
c
c
c
Project: Page: (cs
Frame Design Group
c
Frame Design Group. Inc. Sheet No. Y9
2 Faraday, Suite 101
Irvine. CA 92618
949/ 595 - 8015
...................................... PTData for Windows {V2,000-0229)=====-==================~=============
POST TENSIONED ONE-WAY SLAB DESIGN
05-09-2002
PROJECT : Toyota Carl sbad
MEMBER ID: Typical 18' Span Slabs
STORAGE ID: C: \PTPLUS32\PTRUNS\\TOYOTA-SLAB. PTD
8 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0
TENDON COVER: INTERIOR SPANS TOP 1.00 in EXTERIOR SPANS TOP 1.00 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi
TENDON DIAM=0.50in MAX LONG BAR SIZE=#4 REBAR COVER: 1. OOi n TOP 1, OOi n BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns (b Stressing
BOTTOM 0.75 in BOTTOM 0.75 in
0.004A @ TOP & BOT DL + LL/4 RATIO=l .67
<---
L
SPAN (ft)
1 12.00
2 18.00
3 18.00
4 18.00
5 18.00
6 18.00
7 18.00
8 15.50
Sectionl-ONE-WAY SLAB INPUT DATA
GEOMETRY---------> <--------TENDON PROFILE-------> < - - - - -SUPERIMPOSED LOADS- - - ->
CL cR A B C LOAD DL LL AB t TribL TribR Yref
(in) (ft) (ft) (in) TYPE (in) (in) (ft) (ft) (ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
5.00 0.50 0.50 0.00 2 7.00 8.00 0.00 0.00 0.00 1 U 0.002 0.050 0.00 12.00
5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 2 U 0.002 0.050 0.00 18.00
5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 3 U 0.002 0.050 0.00 18.00
5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 4 U 0.002 0.050 0.00 18.00
5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 5 U 0.002 0.050 0.00 18.00
5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 6 U 0.002 0.050 0.00 18.00
5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 7 U 0.002 0.050 0.00 18.00
5.00 0.50 0.50 0.00 2 8.00 7.00 0.00 0.00 0.00 8 U 0.002 0.050 0.00 15.50
<--------------------COLUMNS-------------------->
<--------Bottom------> <--------Top--------->
H C2 C1 Far H C2 C1 Far
JOINT (ft) (in) (in) End (ft) (in) (in) End
1 0.00 0.00 14.00 Pin 0.00 0.00 0.00 Pin
2 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
3 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
4 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
5 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
6 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
7 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
8 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
9 0.00 0.00 14.00 Pin 0.00 0.00 0.00 Pin
Section2 - SLAB AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
< - - - - - - - DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
SPAN L M(X-ft) R L M(X-ft) R L R
1 0.13 0.48( 3.8) -1.31 0.01 -0.35( 3.8) 1.12 0.01 0.20
2 -1.28 0.82( 9.0) -1.55 1.14 -0.75( 9.0) 1.40 0.22 0.48
3 -1.56 0.72( 9.0) -1.48 1.41 -0.65( 9.0) 1.33 0.49 0.41
4 -1.47 0.76( 9.0) -1.49 1.33 -0.68( 9.0) 1.35 0.41 0.43
5 -1.50 0.74( 9.0) -1.51 1.35 -0.67( 9.0) 1.35 0.43 0.43
6 -1.50 0.76( 9.0) -1.45 1.35 -0.68( 9.0) 1.34 0.43 0.42
7 -1.45 0.69( 9.0) -1.65 1.34 -0.66( 9.0) 1.38 0.42 0.46
8 -1.62 1.05( 9.2) 0.20 1.36 -0.77( 9.2) 0.02 0.44 0.02
c
<-----
SPAN L
1 0.16
2 0.31
3 0.40
4 0.52
5 0.54
6 0.54
7 0.52
8 0.30
-MOST POS LL------>
M(X-ft) R
0.85( 6.0) 0.34
1.14( 9.0) 0.42
1.23( 9.0) 0.53
1.29( 9.0) 0.54
1.29( 9.0) 0.53
1.28( 9.0) 0.51
1.19( 9.0) 0.26
1.23( 7.8) 0.20
<-----
L
-0.06
-1.30
-1.61
-1.67
-1.70
-1.70
-1.64
-1.56
-MOST NEG LL-----
M(X-ft)
-0.06( 0.6)
-0.33( 4.0)
-0.64( 5.7)
-0.69( 5.7)
-0.71( 12.3)
-0.67( 12.3)
-0.61( 14.0)
-0.04( 14.9)
, ->
R
-1.35
-1.62
-1.67
-1.70
-1.70
-1.63
-1.54
-0.04
COLUMN MOMENTS( FACTORED)
JOINT TOP BOT
1 0.00 0.00
2 0.00 0.00
3 0.00 0.00
4 0.00 0.00
5 0.00 0.00
6 0.00 0.00
7 0.00 0.00
8 0.00 0.00
9 0.00 0.00
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.180 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 8.83 8.83 0.3 2.50 3.00 0.00 1.25 0.147 0.147
2 8.83 8.83 0.3 1.25 4.00 0.00 1.25 0.147 0.147
3 8.83 8.83 0.3 1.25 4.00 0.00 1.25 0.147 0.147
4 8.83 8.83 0.3 1.25 4.00 0.00 1.25 0.147 0.147
5 8.83 8.83 0.3 1.25 4.00 0.00 1.25 0.147 0.147
6 8.83 8.83 0.3 1.25 4.00 0.00 1.25 0.147 0.147
7 8.83 8.83 0.3 1.25 4.00 0.00 1.25 0.147 0.147
8 8.83 8.83 0.3 1.25 3.75 0.00 2.50 0.147 0.147 -L (/Z'Lp @ GF Section 4 - R E B A R R E Q U I R E M E N T S (in21
JOINT
1
2
3
4
5
6
7
8
9
ULT(%R= 0.0)
TOP BOT
0.00 0.00
0.06 0.00
0.11 0.00
0.11 0.00
0.11 0.00
0.12 0.00
0.10 0.00
0.11 0.00
0.00 0.00
D+L/4(%R= 0.0) MIN
TOP BOT TOP BOT
0.00 0.00 0.12 0.00
0.10 0.00 0.12 0.00
0.12 0.00 0.12 0.00
0.12 0.00 0.12 0.00
0.12 0.00 0.12 0.00
0.12 0.00 0.12 0.00
0.12 0.00 0.12 0.00
0.12 0.00 0.12 0.00
0.00 0.00 0.00 0.00
ULT(%R= 0.0)
SPAN TOP BOT
1 0.00 0.00
2 0.00 0.03
3 0.00 0.04
4 0.00 0.04
5 0.00 0.04
6 0.00 0.04
7 0.00 0.03
8 0.00 0.06
Rebar Weight=0.602
Control 1 i ng Rebar For This Redistribution Case
JOINT TOP BOT SPAN BOT
1 #4x 3.0'8 20.0in o/c #4x 2.0'8 O.Oin o/c 1 #4x 9.0'8 20.0in
2 #4x 7.5'8 20.0in o/c #4x 5.0'8 O.Oin o/c 2 #4x 13.5'8 20.0in
3 #4x -9.0'8 19.8in o/c #4x 6.0'8 O.Oin o/c 3 #4x 13.5'@ 20.0in
4 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 4 #4x 13.5'@ 20.0in
5 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 5 #4x 13.5'8 20.0in
6 #4x 9.0'8 19.9in o/c #4x 6.0'8 O.Oin o/c 6 #4x 13.5'8 20.0in
7 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 7 #4x 13.5'8 20.0in
8 #4x 8.4'8 19.2in o/c #4x 5.6'8 O.Oin o/c 8 #4x 11.6'8 20.0in
9 #4x 3.9'8 O.Oin o/c #4x 2.6'@ O.Oin o/c
D+L/I(%R= 0.0)
TOP BOT
0.00 0.04
0.00 0.07
0.00 0.07
0.00 0.07
0.00 0.07
0.00 0.07
0.00 0.06
0.00 0.08
PSf
MIN
TOP BOT
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
0.00 0.12
TOP
o/c #4x 6.0'8 O.Oin o/c
o/c #4x 9.0'8 O.Oin o/c
o/c #4x 9.0'8 O.Oin o/c
o/c #4x 9.0'8 O.Oin o/c
o/c #4x 9.0'8 O.Oin o/c
o/c #4x 9.0'8 O.Oin o/c
o/c #4x 9.0'8 O.Oin o/c
o/c #4x 7.8'8 O.Oin o/c
ULT(%R= 6.7)
JOINT TOP BOT
1 0.00 0.00
2 0.05 0.00
3 0.09 0.00
4 0.09 0.00
5 0.09 0.00
6 0.10 0.00
7 0.09 0.00
8 0.09 0.00
9 0.00 0.00
D+L/4(%R=10 .O) MIN
TOP BOT TOP BOT
0:OO 0.00 0.12 0.00
0.10 0.00 0.12 0.00
0.11 0.00 0.12 0.00
0.11 0.00 0.12 0.00
0.11 0.00 0.12 0.00
0.11 0.00 0.12 0.00
0.10 0.00 0.12 0.00
0.11 0.00 0.12 0.00
0.00 0.00 0.00 0.00
ULT( %R= 6.7 ) O+L/4( %R=10.0 1 MIN
SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.04 0.00 0.12
2 0.00 0.02 0.00 0.07 0.00 0.12
3 0.00 0.03 0.00 0.06 0.00 0.12
4 0.00 0.03 0.00 0.06 0.00 0.12
5 0.00 0.03 0.00 0.06 0.00 0.12
6 0.00 0.03 0.00 0.06 0.00 0.12
7 0.00 0.02 0.00 0.06 0.00 0.12
8 0.00 0.06 0.00 0.08 0.00 0.12
Rebar Weight=0.600 psf
Controlling Rebar For This Redistribution Case
JOINT TOP BOT
1 #4x 3.0'8 20.0in o/c #4x 2.0'8 O.Oin o/c
2 #4x 7.5'0 20.0in o/c #4x 5.0'8 O.Oin o/c
3 #4x 9.0'0 20.0in o/c #4x 6.0'8 O.Oin o/c
4 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c
5 #4x 9.0'0 20.0in o/c #4x 6.0'0 O.Oin o/c
6 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c
7 #4x 9.0'0 20.0in o/c #4x 6.0'8 O.Oin o/c
8 #4x 8.4'8 20.0in o/c #4x 5.6'8 O.Oin o/c
9 #4x 3.9'8 O.Oin o/c #4x 2.6'8 O.Oin o/c
ULT( %R=15.0
JOINT TOP BOT
1 0.00 0.00
2 0.03 0.00
3 0.06 0.00
4 0.07 0.00
5 0.07 0.00
6 0.07 0.00
7 0.06 0.00
8 0.07 0.00
9 0.00 0.00
D+L/4(%R=15.0
TOP BOT
0.00 0.00
0.10 0.00
0.11 0.00
0.10 0.00
0.10 0.00
0.11 0.00
0.10 0.00
0.11 0.00
0.00 0.00
MIN
TOP BOT
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.12 0.00
0.00 0.00
SPAN BOT TOP
1 #4x 9.0'8 20.0in o/c #4x 6.0'0 O.Oin o/c
2 #4x 13.5'8 20.0in o/c #4x 9.0'0 O.Oin o/c
3 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c
4 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c
5 #4x 13.5'8 20.0in o/c #4x 9.0'0 O.Oin o/c
6 #4x 13.5'0 20.0in o/c #4x 9.0'8 O.Oin o/c
7 #4x 13.5'@ 20.0in o/c #4x 9.0'8 O.Oin o/c
8 #4x 11.6'0 20.0in o/c #4x 7.8'0 O.Oin o/c
ULT ( %R=15.0 ) D+L 14 ( %R=l5.0 1 MIN
SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.04 0.00 0.12
2 0.00 0.02 0.00 0.07 0.00 0.12
3 0.00 0.01 0.00 0.06 0.00 0.12
4 0.00 0.02 0.00 0.06 0.00 0.12
5 0.00 0.02 0.00 0.06 0.00 0.12
6 0.00 0.02 0.00 0.06 0.00 0.12
7 0.00 0.01 0.00 0.06 0.00 0.12
8 0.00 0.05 0.00 0.08 0.00 0.12
Rebar Weight=0.600 psf
Control 1 i ng Rebar For This Redi stri buti on Case
JOINT TOP BOT SPAN BOT
1 #4x 3.0'0 20.0in o/c #4x 2.0'8 O.Oin o/c 1 #4x 9.0'0 20.0in o/c
2 #4x 7.5'8 20.0in o/c #4x 5.0'8 O.Oin o/c 2 #4x 13.5'0 20.0in o/c
3 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 3 #4x 13.5'8 20.0in o/c
4 #4x -9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 4 #4x 13.5'0 20.0in o/c
5 #4x 9.0'0 20.0in o/c #4x 6.0'8 O.Oin o/c 5 #4x 13.5'0 20.0in o/c
6 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 6 #4x 13.5'0 20.0in o/c
7 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 7 #4x 13.5'8 20.0in o/c
8 #4x 8.4'8 20.0in o/c #4x 5.6'8 O.Oin o/c 8 #4x 11.6'8 20.0in o/c
9 #4x 3.9'8 O.Oin o/c #4x 2.6'0 O.Oin o/c
TOP
#4x 6.0'0 O.Oin o/c
#4x 9.0'8 O.Oin o/c
#4x 9.0'8 O.Oin o/c
#4x 9.0'0 O.Oin o/c
#4x 9.0'0 O.Oin o/c
#4x 9.0'0 O.Oin o/c
#4x 9.0'0 O.Oin o/c
#4x 7.8'0 O.Oin o/c
c
Frame Design Group, Inc. Sheet No. sz
c
r6
Section 5 - C 0 N C R ET E F L E X U R A L S T R E S S E S AN D <-----------------------Stresses (ksi)----------------------->
Service Loads Transfer of Prestress
SPAN Tension (XI Compression (XI Tension (XI Compression (XI
1 T 0.223 ( 11.33) -0.373 ( 4.88) -0.176 ( 8.11) -0.206 ( 0.58)
B 0.079 ( 4.88) -0.518 ( 11.33) -0.137 ( 0.58) -0.168 ( 8.11)
2 T 0.276 ( 17.33) -0.439 ( 9.00) -0.153 ( 9.00) -0.205 ( 17.33)
B 0.145 ( 9.00) -0.570 ( 17.33) -0.139 ( 17.33) -0.190 ( 9.00)
3 T 0.289 ( 17.33) -0.461 ( 9.00) -0.157 ( 9.00) -0.205 ( 0.67)
B 0.166 ( 9.00) -0.583 ( 17.33) -0.138 ( 0.67) -0.186 ( 9.00)
4 T 0.295 ( 17.33) -0.473 ( 9.001 -0.156 ( 9.00) -0.203 ( 17.33)
B 0.179 ( 9.00) -0.590 ( 17.33) -0.140 ( 17.33) -0.187 ( 9.00)
5 T 0.298 ( 17.33) -0.472 ( 9.00) -0.156 ( 9.00) -0.203 ( 0.67)
B 0.178 ( 9.00) -0.593 ( 17.33) -0.140 ( 0.67) -0.188 ( 9.00)
6 T 0.298 ( 0.67) -0.475 ( 9.00) -0.159 ( 9.00) -0.210 ( 17.33)
B 0.181 ( 9.00) -0.593 ( 0.67) -0.133 ( 17.33) -0.184 ( 9.00)
7 T 0.286 ( 17.33) -0.441 ( 9.00) -0.145 ( 10.67) -0.209 ( 0.67)
B 0.146 ( 9.00) -0.580 ( 17.33) -0.134 ( 0.67) -0.198 ( 10.67)
8 T 0.288 ( 0.67) -0.508 ( 9.22) -0.176 ( 0.67) -0.224 ( 14.92)
B 0.214 ( 9.22) -0,582 ( 0.67) -0.119 ( 14.92) -0.167 ( 0.67) 7 &/ Section 6 -
JOINT
1
2
3 4
5
6
7
8
9
FACTORED COLUMN LOADS
Maximum Axial Load
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
0.83 0.00 0.00
3.14 0.00 0.00
3.47 0.00 0.00
3.44 0.00 0.00
3.48 0.00 0.00
3.48 0.00 0.00
3.41 0.00 0.00
3.52 0.00 0.00
1.09 0.00 0.00
Maxi mum Moment
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
0.83 0.00 0.00
2.52 0.00 0.00
2.54 0.00 0.00
2.40 0.00 0.00
2.40 0.00 0.00
2.41 0.00 0.00
2.39 0.00 0.00
2.66 0.00 0.00
1.09 0.00 0.00
DEFLECTIONS
e----- Deflections (in) ----->
DL + Bal LL
SPAN Delta L/Delta Delta L/Delta
1 0.004 36212 0.041 3523
2 0.004 49981 0.106 2031 3 0.004 53606 0.118 1825
4 0.004 50141 0.125 1728
5 0.004 60042 0.125 1727 6 0.006 36754 0.124 1735
8 0.019 9801 0.095 1949
7 -0.004 59407 0.113 1908
h
c
Frame Design Group, Inc Sheet No. 53
i
P-
8 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 175psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O. 0
TENDON COVER: INTERIOR SPANS TOP 1.25 in EXTERIOR SPANS TOP 1.25 in UNBONDED, LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi
TENDON DIAM=O.SOin MAX LONG BAR SIZE=#4 REBAR COVER: 1, OOi n TOP 1, OOi n BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 0.75 in BOTTOM 0.75 in
0.004A @ TOP & BOT DL + LL/4 RATIO=l .67
<---.
L
SPAN (ft)
1 12.00
2 18.00
3 18.00
4 18.00
5 18.00
6 18.00
7 18.00
8 15.50
Section 1 - 0 N E - W A Y S L A B I N P U T D A T A
GEOMETRY---------> <--------TENDON PROFILE-------> <-----SUPERIMPOSED LOADS---->
t TribL TribR Yref CL cR A B C LOAD DL LL AB
(in) (ft) (ft) (in) TYPE (in) (in) (ft) (ft) (ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
5.00 0.50 0.50 0.00 2 7.00 8.00 0.00 0.00 0.00 1 U 0.002 0.050 0.00 12.00
5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 2 U 0.002 0.050 0.00 18.00
5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 3 U 0.002 0.050 0.00 18.00
5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 4 U 0.002 0.050 0.00 18.00
5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 5 U 0.002 0.050 0.00 18.00
5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 6 U 0.002 0.050 0.00 18.00
5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 7 U 0.002 0.050 0.00 18.00
5.00 0.50 0.50 0.00 2 8.00 7.00 0.00 0.00 0.00 8 U 0.002 0.050 0.00 15.50
<--------------------COLuMNS-------------------->
< - - - - - - - - Bottom------> <--------Top--------->
H C2 C1 Far H C2 C1 Far
JOINT (ft) (in) (in) End (ft) (in) (in) End
1 0.00 0.00 14.00 Pin 0.00 0.00 0.00 Pin
2 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
3 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
4 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
5 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
6 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
7 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
8 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin
9 0.00 0.00 14.00 Pin 0.00 0.00 0.00 Pin
Section2 - SLAB AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <- - ----BALANCED LOAD- - - -> BEAM SECONDARY
SPAN L M(X-ft) R L M(X-ft) R L R
1 0.13 0.48( 3.8) -1.31 0.02 -0.37( 3.8) 1.21 0.02 0.33
2 -1.28 0.82( 9.0) -1.55 1.24 -0.82( 9.0) 1.53 0.36 0.65
3 -1.56 0.72( 9.0) -1.48 1.54 -0.71( 9.0) 1.45 0.66 0.57
4 -1.47 0.76( 9.0) -1.49 1.45 -0.74( 9.0) 1.48 0.57 0.59
5 -1.50 0.74( 9.0) -1.51 1.48 -0.73( 9.0) 1.48 0.59 0.59
6 -1.50 0.76( 9.0) -1.45 1.47 -0.74( 9.0) 1.46 0.59 0.57
7 -1.45 0.69( 9.0) -1.65 1.46 -0.71( 9.0) 1.53 0.57 0.65
8 -1.62 1.05( 9.2) 0.20 1.50 -0.87( 9.2) 0.02 0.62 0.02
c
c1
<--
SPAN L
1 0.16
2 0.31
3 0.40
4 0.52
5 0.54
6 0.54
7 0.52
8 0.30
-MOST POS LL------>
M(X-ft) R
0.85( 6.0) 0.34
1.14( 9.0) 0.42
1.23( 9.0) 0.53
1.29( 9.0) 0.54
1.29( 9.0) 0.53
1.28( 9.0) 0.51
1.19( 9.0) 0.26
1.23( 7.8) 0.20
<-----
L
-0.06
-1.30
-1.61
-1.67
-1.70
-1.70
-1.64
-1.56
-MOST NEG LL------>
M(X-ft) R
-0.06( 0.6) -1.35
-0.33( 4.0) -1.62
-0.64( 5.7) -1.67
-0.69( 5.7) -1.70
-0.71(12.3) -1.70
-0.67( 12.3) -1.63
-0.61(14.0) -1.54
-0.04( 14.9 ) - 0.04
COLUMN MOMENTS( FACTORED 1
JOINT TOP BOT
1 0.00 0.00
2 0.00 0.00
3 0.00 0.00
4 0.00 0.00
5 0.00 0.00
6 0.00 0.00
7 0.00 0.00
8 0.00 0.00
9 0.00 0.00
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.216 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 10.60 10.60 0.4 2.50 3.00 0.00 1.50 0.177 0.177
2 10.60 10.60 0.4 1.50 4.00 0.00 1.50 0.177 0.177
3 10.60 10.60 0.4 1.50 4.00 0.00 1.50 0.177 0.177
4 10.60 10.60 0.4 1.50 4.00 0.00 1.50 0.177 0.177
5 10.60 10.60 0.4 1.50 4.00 0.00 1.50 0.177 0.177
6 10.60 10.60 0.4 1.50 4.00 0.00 1.50 0.177 0.177
7 10.60 10.60 0.4 1.50 4.00 0.00 1.50 0.177 0.177
8 10.60 10.60 0.4 1.50 3.75 0.00 2.50 0.177 0.177 .L/Q"9 @ 3QY (j 42% i- 4QisOu) Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0)
JOINT TOP BOT
1 0.00 0.00
2 0.04 0.00
3 0.08 0.00
4 0.08 0.00
5 0.09 0.00
6 0.09 0.00
7 0.08 0.00
8 0.08 0.00
9 0.00 0.00
D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
0.00 0.00 0.12 0.00 1 0.00 0.00 0.00 0.04 0.00 0.12
0.10 0.00 0.12 0.00 2 0.00 0.01 0.00 0.07 0.00 0.12
0.12 0.00 0.12 0.00 3 0.00 0.01 0.00 0.07 0.00 0.12
0.12 0.00 0.12 0.00 4 0.00 0.02 0.00 0.07 0.00 0.12
0.12 0.00 0.12 0.00 5 0.00 0.02 0.00 0.07 0.00 0.12
0.12 0.00 0.12 0.00 6 0.00 0.02 0.00 0.07 0.00 0.12
0.12 0.00 0.12 0.00 7 0.00 0.01 0.00 0.06 0.00 0.12
0.12 0.00 0.12 0.00 8 0.00 0.03 0.00 0.08 0.00 0.12
0.00 0.00 0.00 0.00 Rebar Weight=O .602 psf
Controlling Rebar For This Redistribution Case
JOINT TOP BOT SPAN BOT TOP
1 #4x 3.0'8 20.0in o/c #4x 2.0'0 O.Oin o/c 1 #4x 9.0'8 20.0in o/c #4x 6.0'13 O.Oin o/c
2 #4x 7.5'8 20.0in o/c #4x 5.0'0 O.Oin o/c 2 #4x 13.5'8 20.0in o/c #4x 9.0'@ O.Oin o/c
3 #4x '9.0'0 19.8in o/c #4x 6.0'0 O.Oin o/c 3 #4x 13.5'@ 20.0in o/c #4x 9.0'@ O.Oin o/c
4 #4x 9.0'0 20.0in o/c #4x 6.0'8 O.Oin o/c 4 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c
5 #4x 9.0'0 20.0in o/c #4x 6.0'8 O.Oin o/c 5 #4x 13.5'0 20.0in o/c #4x 9.0'@ O.Oin o/c
6 #4x 9.0'@ 19.9in o/c #4x 6.0'8 O.Oin o/c 6 #4x 13.5'0 20.Gin o/c #4x 9.0'0 O.Oin o/c
7 #4x 9.0'8 20.0in o/c #4x 6.0'0 O.Oin o/c 7 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c
8 #4x 8.4'@ 19.2in o/c #4x 5.6'0 O.Oin o/c 8 #4x 11.6'0 20.0in o/c #4x 7.8'0 O.Oin o/c
9 #4x 3.9'0 0,Oin o/c #4x 2.6'8 O.Oin o/c
t
ULT(%R= 6.7) PcL/4(%R=lO.O) MIN
JOINT TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0:OO 0.00 0.12 0.00
2 0.02 0.00 0.10 0.00 0.12 0.00
3 0.06 0.00 0.11 0.00 0.12 0.00
4 0.07 0.00 0.11 0.00 0.12 0.00
5 0.07 0.00 0.11 0.00 0.12 0.00
6 0.07 0.00 0.11 0.00 0.12 0.00
7 0.06 0.00 0.10 0.00 0.12 0.00
8 0.06 0.00 0.11 0.00 0.12 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00
ULT( %R- 6.7 D+L/4 ( %R=10.0 MIN
SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.04 0.00 0.12
2 0.00 0.00 0.00 0.07 0.00 0.12
3 0.00 0.00 0.00 0.06 0.00 0.12
4 0.00 0.01 0.00 0.06 0.00 0.12
5 0.00 0.01 0.00 0.06 0.00 0.12
6 0.00 0.01 0.00 0.06 0.00 0.12
7 0.00 0.00 0.00 0.06 0.00 0.12
8 0.00 0.03 0.00 0.08 0.00 0.12
Rebar Wei ght=O. 600 psf
Controlling Rebar For This Redistribution Case
JOINT TOP
1 #4x 3.0'6 20.0in o/c #4x
2 #4x 7.5'8 20.0in o/c #4x
3 #4x 9.0'8 20.0in o/c #4x
4 #4x 9.0'8 20.0in o/c #4x
5 #4x 9.0'8 20.0in o/c #4x
6 #4x 9.0'@ 20.0in o/c #4x
7 #4x 9.0'8 20.0in o/c #4x
8 #4x 8.4'8 20.0in o/c #4x
9 #4x 3.9'8 O.Oin o/c #4x
BOT
2.0'8 O.Oin o/c
5.0'8 O.Oin o/c
6.0'8 O.Oin o/c
6.0'8 O.Oin o/c
6.0'8 O.Oin o/c
6.0'8 O.Oin o/c
6.0'8 O.Oin o/c
5.6'8 O.Oin o/c
2.6'8 O.Oin o/c
JOINT
1
2
3
4
5
6
7
8
9
ULT( %R=15.0 1
TOP BOT
0.00 0.00
0.01 0.00
0.04 0.00
0.04 0.00
0.05 0.00
0.05 0.00
0.04 0.00
0.04 0.00
0.00 0.00
D+L/4(%R=15.0) MIN
TOP BOT TOP BOT
0.00 0.00 0.12 0.00
0.10 0.00 0.12 0.00
0.11 0.00 0.12 0.00
0.10 0.00 0.12 0.00
0.10 0.00 0.12 0.00
0.11 0.00 0.12 0.00
0.10 0.00 0.12 0.00
0.11 0.00 0.12 0.00
0.00 0.00 0.00 0.00
JOINT
1 #4x
2 #4x
3 #4x
4 #4x
5 #4x
6 #4x
7 #4x
8 #4x
9 #4x
SPAN BOT TOP
1 #4x 9.0'6 20.0in o/c #4x 6.0'8 O.Oin o/c
2 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c
3 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c
4 #4x 13.5'@ 20.0in o/c #4x 9.0'8 O.Oin o/c
5 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c
6 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c
7 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c
8 #4x 11.6'8 20.0in o/c #4x 7.8'8 O.Oin o/c
ULT ( %R=15,0 ) D+L/4 ( %R=15.0 1 MIN
SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.04 0.00 0.12
2 0.00 0.00 0.00 0.07 0.00 0.12
3 0.00 0.00 0.00 0.06 0.00 0.12
4 0.00 0.00 0.00 0.06 0.00 0.12
5 0.00 0.00 0.00 0.06 0.00 0.12
6 0.00 0.00 0.00 0.06 0.00 0.12
7 0.00 0.00 0.00 0.06 0.00 0.12
8 0.00 0.03 0.00 0.08 0.00 0.12
Rebar Wei ght=O. 600 psf
Controlling Rebar For This Redistribution Case
TOP BOT SPAN BOT TOP
3.0'@ 20.0in o/c #4x 2.0'8 O.Oin o/c 1 #4x 9.0'8 20.0in o/c #4x 6.0'@ O.Oin o/c
7.5'8 20.0in o/c #4x 5.0'8 O.Oin o/c 2 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c
9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 3 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c
'9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 4 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c
9.0'8 20.0in o/c #4x 6.0'@ O.Oin o/c 5 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c
9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 6 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c
9.0'8 20.0in o/c #4x 6.0'6 O.Oin o/c 7 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c
8.4'8 20.0in o/c #4x 5.6'8 O.Oin o/c 8 #4x 11.6'8 20.0in o/c #4x 7.8'8 O.Oin o/c
3.9'8 O.Oin o/c #4x 2.6'8 O.Oin o/c
c
SPAN
1T
B
2T
B
3T
B
4T
B
5T
B
6T
B
7T
B
8T
B
JOINT
1
2
3
4
5
6
7
8
9
<-----------------------Stresses (ksi)----------------------->
Service Loads Transfer of Prestress
Tension (XI Compression (XI Tension (x) Compression (XI SPAN
0.173 ( 11.33) -0.399 ( 4.88) -0.210 ( 5.96) -0.242 ( 0.58) 1
0.046 ( 4.88) -0.526 ( 11.33) -0.170 ( 0.58) -0.202 ( 5.96) 2
0.215 ( 17.33) -0.451 ( 9.00) -0.168 ( 9.00) -0.275 ( 17.33) 3
0.098 ( 9.00) -0,569 ( 17.33) -0.137 ( 17.33) -0.245 ( 9.00) 4
0.230 ( 17.33) -0.476 ( 9.00) -0.175 ( 9.00) -0.276 ( 0.67) 5
0.123 ( 9.00) -0.584 ( 17.33) -0.136 ( 0.67) -0.237 ( 9.00) 6
0.236 ( 17.33) -0.488 ( 9.00) -0.173 ( 9.00) -0.272 ( 17.33) 7
0.134 ( 9.00) -0.590 ( 17.33) -0.140 ( 17.33) -0.239 ( 9.00) 8
9.00) -0.272 ( 0.67)
0.67) -0.239 ( 9.00)
9.00) -0.277 ( 17.33)
7.33) -0.236 9.00)
9.00) -0.276 ( 0.67)
0.67) -0.246 ( 9.00)
7.79) -0.260 ( 14.92)
4.92) -0.209 ( 7.79)
0.239 ( 17.33) -0.487 ( 9.00) -0.173 (
0.134 ( 9.00) -0.592 ( 17.33) -0.140 (
0.239 ( 0.67) -0.489 ( 9.00) -0.176 (
0.136 ( 9.00) -0.592 ( 0.67) -0.135 (
0.221 ( 17.33) -0.457 ( 9.00) -0.166 (
0.104 ( 9.00) -0.574 ( 17.33) -0.136 (
0.225 ( 0.67) -0.514 ( 9.22) -0.203 (
0.161 ( 9.22) -0.578 ( 0.67) -0.152 (
Section6- FACTORED COLUMN
Maximum Axial Load
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
0.82 0.00 0.00
3.15 0.00 0.00
3.48 0.00 0.00
3.44 0.00 0.00
3.48 0.00 0.00
3.48 0.00 0.00
3.41 0.00 0.00
3.53 0.00 0.00
1.07 0.00 0.00
LOADS
Maximum Moment
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
0.82 0.00 0.00
2.52 0.00 0.00
2.54 0.00 0.00
2.40 0.00 0.00
2.40 0.00 0.00
2.41 0.00 0.00
2.39 0.00 0.00
2.67 0.00 0.00
1.07 0.00 0.00
<-----Deflections (in)----->
Delta L/Oel ta
DL + Bal LL
Delta L/Oel ta
0.004 36250 0.041 3521
0.001 99999 0.118 1824
0.001 99999 0.125 1728
0.000 99999 0.125 1727
0.002 99999 0.125 1735
0.013 14269 0.095 1948
-0.001 99999 0.106 2030
-0.004 48641 0.113 1908
h
c
.-J
c
I-
2 SPANS 0 CANTILEVERS SKIP LL DL FACTDR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP, OL@TRANSFER=O. 0
TENDON COVER: INTERIOR SPANS TOP 1.00 in EXTERIOR SPANS TOP 1.00 in UNBONDED, LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi
TENDON DIAM=0.50in MAX LONG BAR SIZE=#4 REBAR COVER: 1.00in TOP 1.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 0.75 in BOTTOM 0.75 in
0.004A @ TOP & BOT DL + LL/4 RATIO=l, 67
Section 1 - 0 N E - W A Y S L A 8 I N P UT 0 AT A
<--------GEOMETRY---------> <--------TENDON PROFILE-------> <-----SUPERIMPOSED LOADS---->
L t TribL TribR Yref CL cR A 8 C LOAD DL LL AB
SPAN (ft) (in) (ft) (ft) (in) TYPE (in) (in) (ft) (ft) (ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 18.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 1 U 0.002 0.050 0.00 18.00
2 18.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 2 U 0.002 0.050 0.00 18.00
Section2 - SLAB AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
SPAN L M(X-ft R L M(x-ft) R L R
1 0.27 1.34( 7.3) -2.42 0.04 -1.28( 7.3) 2.37 0.04 0.99
2 -2.42 1.34(10.7) 0.27 2.37 -1.28(10.7) 0.04 0.99 0.04
<------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
SPAN L' M( X- ft 1 R L M(x-ft) R JOINT TOP BOT
1 0.25 1.50( 7.3) 0.00 -0.04 -0.04( 0.7) -1.88 1 0.00 0.00
2 0.00 1.50(10.7) 0.25 -1.88 -0.04(17.3) -0.04 2 0.00 0.00
3 0.00 0.00
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.292 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 13.25 13.25 0.5 2.50 4.00 0.00 1.25 0.221 0.221
2 13.25 13.25 0.5 1.25 4.00 0.00 2.50 0.221 0.221
c
Section 4 -
ULT(%R= 0.0) D+L/4(%R= 0.0)
JOINT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.00
2 0.10 0.00 0.18 0.00
3 0.00 0.00 0.00 0.00
Control 1 ing
REBAR REQUIREMENTS (in21
MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
TOP BOT SPAN TOP BOT TOP BOT TOP BOT
0.00 0.00 1 0.00 0.03 0.00 0.11 0.00 0.12
0.12 0.00 2 0.00 0.03 0.00 0.11 0.00 0.12
0.00 0.00 Rebar Weight=0.558 psf
Rebar For This Redistribution Case
JOINT TOP BOT SPAN BOT TOP
1 #4x 4.5'6 O.Oin o/c #4x 3.0'6 O.Oin o/c 1 #4x 13.5'6 20.0in o/c #4x 9.0'6 O.Oin o/c
2 #4x 9.0'6 13.6in o/c #4x 6.0'13 O.Oin o/c 2 #4x 13.5'6 20.0in o/c #4x 9.0'6 O.Oin o/c
3 #4x 4.5'@ O.Oin o/c #4x 3.0'@ O.Oin o/c
ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) D+L/4(%R=10.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.03 0.00 0.10 0.00 0.12
2 0.08 0.00 0.16 0.00 0.12 0.00 2 0.00 0.03 0.00 0.10 0.00 0.12
3 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=0.542 psf
Controlling Rebar For This Redistribution Case
JOINT TOP BOT SPAN BOT TOP
1 #4x 4.5'6 O.Oin o/c #4x 3.0'@ O.Oin o/c 1 #4x 13.5'6 20.0in o/c #4x 9.O'B O.Oin o/c
2 #4x 9.0'6 15.2in o/c #4x 6.0'6 O.Oin o/c 2 #4x 13.5'6 20.0in o/c #4x 9.0'6 O.Oin o/c
3 #4x 4.5'6 O.Oin o/c #4x 3.0'6 O.Oin o/c
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT( %R=15.0) O+L/4( %R=15.0 MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.00 0.00 0.00 3 0.00 0.02 0.00 0.11 0.00 0.12
2 0.06 0.03 0.16 0.00 0.12 0.00 2 0.00 0.02 0.00 0.11 0.00 0.12
3 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=0.562 psf
Controlling Rebar For This Redistribution Case
JOINT TOP BOT SPAN BOT TOP
1 #4x 4.5'6 O.Oin o/c #4x 3.0'6 O.Oin o/c 1 #4x 13.5'6 20.0in o/c #4x 9.0'6 O.Oin o/c
2 #4x 9.0'6 15.2in o/c #4x 6.0'6 69.2in o/c 2 #4x 13.5'6 20.0in o/c #4x 9.0'6 O.Oin o/c
3 #4x 4.5'6 O.Oin o/c #4x 3.0'6 O.Oin o/c
Section5-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in - - - - ->
SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T 0.242 ( 17.33) -0.594 ( 7.33) -0.208 ( 9.00) -0.358 ( '17.33) 1 0.007 29519 0.148 1459
B 0.153 ( 7.33) -0.684 ( 17.33) -0.157 ( 17.33) -0.307 ( 9.00) 2 0.007 29526 0.148 1459
2 T 0.242 ( 0.67) -0.594 ( 10.67) -0.208 ( 9.00) -0.358 ( 0.67)
B 0.153 ( 10.67) -0.684 ( 0.67) -0.157 ( 0.67) -0.307 ( 9.00)
.-
c- Section 6 - F A C T 0 R E D
Maximum Axial Load
Axial Column Moment
Load Top Bottom
JOINT (kips) (k-ft) (k-ft)
1 1.19 0.00 0.00
2 4.15 0.00 0.00
3 1.19 0.00 0.00
c
COLUMN LOADS
Maxi mum Moment
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
1.19 0.00 0.00
3.17 0.00 0.00
1.19 0.00 0.00
c ./
1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. DL@TRANSFER=O . 0
TENDON COVER: INTERIOR SPANS TOP 0.75 in EXTERIOR SPANS TOP 0.75 in UNBONOEO. LOW RELAXATION
BOTTOM 0.75 in BOTTOM 1.50 in PERP F/A=125psi
MIN REBAR REQUIREMENTS: 0.075% @ TOP, Nc/O.Sfy @ BOT WHEN ft>2 SQRT f'c=14lpsi REBAR Y IELD=60. OOksi
TENDON DIAM=0.50in MAX LONG BAR SIZE=#4 REBAR COVER: 1. OOi n TOP 1. OOi n BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
Sectionl-EQUIVALENT FRAME INPUT DATA
L t TribL TribR Yref CL cR A B C LOAD DL LL AB
< - - - - - - - - GEOMETRY---------> <-------- TENDON PROFILE- - --- - -> <-----SUPERIMPOSED LOADS---->
SPAN (ft) (in) (ft) (ft) (in) TYPE (in) (in) (ft) (ft) (ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 34.00 8.00 15.00 15.00 0.00 2 12.00 12.00 0.00 0.00 0.00 1 U 0.002 0.030 0.00 30.00
Section2 - SLAB AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <------ BALANCED LOAD- - - -> BEAM SECONDARY
SPAN L M(X-ft) R L M(x-ft 1 R L R
1 -107.07 284.44(13.8) 0.00 58.10 -114.97(13.8) 0.00 58.10 0.00
<------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS ( FACTORED 1
1 -45.89 67.11(13.8) 0.00 -45.89 67.11(13.8) 0.00 1 99.08 187.26
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
2 -96.78 -185.12
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.646 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 923.07 30.77 34.9 4.00 6.25 0.00 4.00 0.321 0.321
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.00 2.45 0.00 1 0.00 3.68 0.00 0.00 0.00 5.69
2 0.00 0.00 0.00 0.00 2.45 0.00 Rebar Weight=0.784 psf
Control 1 i ng Rebar For This Redistribution Case
JOINT TOP BOT SPAN BOT TOP
1 13-# 4~ 6.8' '0-# 4~ 5.7' 1 29-# 4x 17.0'@ 12.4in o/c 0-# 4x 11.3'@ O.Oin o/c
2 13-# 4~ 6.8' 0-# 4~ 5.7'
ULT(%R= 6.7) D+L/4(%R=lO.O) MIN ULT(%R= 6.7) D+L/4(%R=lO.O) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.00 2.45 0.00 1 0.00 4.15 0.00 0.00 0.00 5.69
2 0.00 0.00 0.00 0.00 2.45 0.00 Rebar Wei ght=O. 784 psf
Control 1 i ng Rebar For This Redistribution Case
JOINT TOP BOT SPAN BOT TOP
1 13-# 4~ 6.8' 0-# 4~ 5.7' 1 29-# 4x 17.0'@ 12.4in o/c 0-# 4x 11.3'@ O.Oin o/c
2 13-# 4~ 6.8' 0-# 4~ 5.7'
ULT(%R=15.0) D+L/4(%R-15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 1.06 0.00 0.00 2.45 0.00 1 8.98 5.58 0.00 0.00 0.00 5.69
2 0.00 1.11 0.00 0.00 2.45 0.00 Rebar Weight=l ,334 psf
Controlling Rebar For This Redistribution Case
JOINT TOP BOT SPAN BOT TOP
1 13-# 4~ 6.8' 6-# 4~ 5.7' 1 29-# 4x 17.0'@ 12.4in o/c 45-# 4x 11.3'@ 8.0in o/c
2 13-# 4~ 6.8' 6-# 4~ 5.7'
Section 5 - P U N C H I N G S H E A R AN A L Y S I S
Factored Jt. Shears & Moments
Critical Section #1 Maximum Shear Maximum Moment
Ac Jc Ex XL xR fL fR Allow d/Bo Gamma Shear Moment Shear Moment
JOINT (in21 (in41 (in) (in) (in) (ksi) (ksi) (ksi) (in/in) (kips) (k-ft) (kips) (k-ft)
1 0.00 0.0 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.00 98.59 286.34 98.59 286.34
2 0.00 0.0 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.00 92.63 -281.89 92.63 -281.90
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in) -- - - ->
SPAN Tension (x) Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Oelta Service Loads Transfer of Prestress DL + Bal LL
1 T 0.000 ( 32.67) -1.060 ( 13.80) 0.000 ( 32.67) -0.827 ( 13.80) 1 0.491 831 0.175 2333
B 0.419 ( 13.80) -0.618 ( 32.67) 0.079 ( 13.80) -0.490 ( 1.00)
Section7-FACTORED COLUMN LOADS
* Maximum Axial Load Maximum Moment
Axi a1 Col umn Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 98.59 99.08 187.26 98.59 99.08 187.26
2 92.63 -96.78 -185.12 92.63 -96.78 -185.12
c
c
c
c
Frame Design Group. Inc. Sheet No. 6%
2 Faraday. Suite 101
Irvine. CA 92618
949/595-8015
................................. PTData for Windows {V2,000-0229}======================================
POST TENSIONED TWO-WAY SLAB DESIGN
05- 09-2002
PROJECT: Toyota Carl sbad
MEMBER ID: Ramp Slab-T
STORAGE ID: C: \PTPLUS32\PTRUNS\TOYOTA-2WAY -T. PTD
1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. DL@TRANSFER=O . 0
TENDON COVER: INTERIOR SPANS TOP 0.75 in EXTERIOR SPANS TOP 0.75 in UNBONDED. LOW RELAXATION
BOTTOM 0.75 in BOTTOM 1.50 in PERP F/A=125psi
MIN REBAR REQUIREMENTS: 0.075% 13 TOP, Nc/0.5fy @ BOT WHEN ft>2 SQRT f'c=14lpsi REBAR YIELD=60. OOksi
TENDON DIAM=0.50in MAX LONG BAR SIZE=#4 REBAR COVER: 1. OOi n TOP 1. OOi n BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
Sectionl-EQUIVALENT FRAME INPUT DATA
L t TribL TribR Yref CL cR A B C LOAD DL LL AB
<--------GEOMETRY---------> <--------TENDON PROFILE-------> <-----SUPERIMPOSED LOADS---->
SPAN (ft) (in) (ft) (ft) (in) TYPE (in) (in) (ft) (ft) (ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 30.00 8.00 17.00 17.00 0.00 2 12.00 12.00 0.00 0.00 0.00 1 U 0.002 0.030 0.00 30.00
Section2 - SLAB AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <- - - - - -BALANCED LOAD- - - -> BEAM SECONDARY
SPAN L M(X-ft) R L M( X-ft) R L R
1 -63.41 276.46(12.2) 0.00 39.66 -106.05(12.2) 0.00 39.66 0.00
<------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 -32.98 66.98(12.2) 0.00 -32.98 66.98(12.2) 0.00 1 77.49 142.71
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
2 -77.49 -142.71
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.483 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 777.14 22.86 29.4 4.00 6.25 0.00 4.00 0.238 0.238
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.00 2.45 0.00 1 0.00 4.76 0.00 0.00 0.00 7.21
2 0.00 0.00 0.00 0.00 2.45 0.00 Rebar Weight=0.843 psf
Controlling Rebar For This Redistribution Case
JOINT TOP BOT SPAN BOT TOP
1 13-# 4~ 6.0' .O-# 4~ 5.0' 1 37-# 4x 15.0'@ 1l.Oin o/c 0-# 4x 10.0'@ O.Oin o/c
2 13-# 4~ 6.0' 0-# 4~ 5.0'
ULT(%R= 6.7 1 D+L/4(%R=10.0 ) MI N ULT(%R= 6.7) D+L/4(%R=10.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.00 2.45 0.00 1 0.00 5.06 0.00 0.00 0.00 7.21
2 0.00 0.00 0.00 0.00 2.45 0.00 Rebar Weight=0.843 psf
Controlling Rebar For This Redistribution Case
JOINT TOP BOT SPAN BOT TOP
1 13-# 4~ 6.0' 0-# 4~ 5.0' 1 37-# 4x 15.0'@ 1l.Oin o/c 0-# 4x 10.0'@ O.Oin o/c
2 13-# 4~ 6.0' 0-# 4~ 5.0'
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.00 2.45 0.00 1 5.08 5.97 0.00 0.00 0.00 7.21
2 0.00 0.00 0.00 0.00 2.45 0.00 Rebar Weight=l. 097 psf
Control 1 i ng Rebar For This Redistribution Case \
JOINT TOP BOT SPAN BOT TOP
1 13-# 4~ 6.0' 0-# 4~ 5.0' 1 37-# 4x 15.0'@ 1l.Oin o/c 26-# 4x 10.0'@ 15.7in o/c
2 13-# 4~ 6.0' 0-# 4~ 5.0'
Section 5 - P U N C H I N G S H E A R AN A L Y S I S
Factored Jt. Shears & Moments
Critical Section #1 Maximum Shear Maximum Moment
Ac Jc Ex XL xR fL fR Allow d/Bo Gamma Shear Moment Shear Moment
JOINT (in21 (in41 (in) (in) (in) (ksi) (ksi) (ksi) (in/in) (kips) (k-ft) (kips) (k-ft)
1 0.00 0.0 0.00 0.00 0.00 0,000 0.000 0,000 0.000 0.00 98.84 220.21 98.84 220.21
2 0.00 0.0 0.00 0.00 0.00 0,000 0.000 0,000 0.000 0.00 98.84 -220.21 98.84 -220.21
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <- - ---Deflections (in) - - - - ->
SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T 0,000 ( 28.67) -0.893 ( 12.20) 0.000 ( 28.67) -0.684 ( 12.20) 1 0.349 1030 0.126 2855
B 0.416 ( 12.20) -0.395 ( 1.00) 0.128 ( 12.20) -0.322 ( 1.00)
Section7-FACTORED COLUMN LOADS
Maximum Axial Load Maximum Moment
Axial Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 98.84 77.49 142.71 98.84 77.49 142.71
2 98.84 -77.49 -142.71 98.84 -77.49 -142.71
c
c
1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR-1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0
TENDON COVER: INTERIOR SPANS TOP 1.00 in EXTERIOR SPANS TOP 1.00 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y I ELD-60. OOksi
TENDON DIAM=0.50in MAX LONG BAR SIZE45 REBAR COVER: 1.00in TOP 1.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1,2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 0.75 in BOTTOM 0.75 in
0.004A @ TOP ti BOT DL + LL/4 RATIO=1.00
Sectionl-ONE-WAY SLAB INPUT DATA
<--------GEOMETRY---------> <--------TENDON PROFILE-------> <-----SUPERIMPOSED LOADS-- - ->
L t TribL TribR Yref CL cR A B C LOAD DL LL AB
SPAN (ft) (in) (ft) (ft) (in) TYPE (in) (in) (ft) (ft) (ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 30.00 8.00 0.50 0.50 0.00 2 0.00 0.00 0.00 0.00 0.00 1 U 0.002 0.050 0.00 30.00
Section2 - SLAB AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <------BALANCED LOAO- - - -> BEAM SECONDARY
SPAN L M(X-ft 1 R L M(X-ft) R L R
1 0.00 11.48(15.0) 0.00 0.00 -7.95(15.0) 0.00 0.00 0.00
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS ( FACTORED
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
1 0.00 5.63(15.0) 0.00 0.00 5.63(15.0) 0.00 1 0.00 0.00
2 0.00 0.00
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.673 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 31.80 31.80 1.2 4.00 7.00 0.00 4.00 0.331 0.331
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.00 0.19 0.00 1 0.00 0.31 0.00 0.40 0.00 0.19
2 0.00 0.00 0.00 0.00 0.19 0.00 Rebar Weight=1.690 psf
c
c
ic
Controlling Rebar For This
JOINT TOP BOT
1 #5x 7.5'8 19.4in o/c #5x 5.0'8 O.Oin o/c
2 #5x 7.5'@ 19.4in o/c #5x 5.0'8 O.Oin o/c
ULT(%R- 6.7 ) D+L/4( %R=10.0 1 MIN
JOINT TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.00 0.19 0.00
2 0.00 0.00 0.00 0.00 0.19 0.00
Controlling Rebar For This
JOINT TOP BOT
1 #5x 7.5'@ 19.4in o/c #5x 5.0'@ O.Oin o/c
2 #5x 7.5'@ 19.4in o/c #5x 5.0'@ O.Oin o/c
ULT(%R=15.0) D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.00 0.19 0.00
2 0.00 0.00 0.00 0.00 0.19 0.00
Controlling Rebar For This
JOINT TOP BOT
1 #5x 7.5'@ 19.4in o/c #5x 5.0'8 O.Oin o/c
2 #5x 7.5'8 19.4in o/c #5x 5.0'8 O.Oin o/c
Section 5 - C 0 N C R E T E F L E X U R A L S T
Redi s t ri buti on Case
SPAN BOT TOP
1 #5x 22.5'@ 9.3in o/c #5x 15.0'@ O.Oin o/c
ULT(%R= 6.7) D+L/4(%R=lO.O) MIN
SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.31 0.00 0.40 0.00 0.19
Rebar Wei ght=l ,690 psf
Redistribution Case
SPAN BOT TOP
1 #5x 22.5'8 9.3in o/c #5x 15.0'@ O.Oin o/c
ULT(%R=15.0) D+L/4(%R=15.0) MI N
SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.31 0.00 0.40 0.00 0.19
Rebar Weight=l.690 psf
Redistribution Case
SPAN BOT TOP
1 #5x 22.5'8 9.3in o/c #5x 15.0'8 O.Oin o/c
RESSES AND DEFLECTIONS <----------------------- Stresses (ksi)-----------------------> c- - - - -Defl ecti ons (in) - - - - ->
SPAN Tension (XI Comoression (XI Tension (x) ComDression (XI SPAN Delta L/Delta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T -0.331 ( 0.00) -1.189 ( 15.00) -0.386 ( 0.00) -0.572
B 0.527 ( 15.00) -0.331 ( 0.00) -0.201 ( 15.00) -0.386
Section6-FACTORED COLUMN LOADS
Maximum Axial Load Maximum Moment
Axial Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 3.42 0.00 0.00 3.42 0.00 0.00
2 3.42 0.00 0.00 3.42 0.00 0.00
( 15.00) 1 0.272 1326 0.433 831
( 0.00)
1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. DL@TRANSFER=O. 0
TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=l. 67 REBAR YIELD=60,00ksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#9 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------>
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 10.00 0.00 0.00 0.00 1.516 1 U 0.002 0.040 0.00 30.00
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
SPAN L M( X-ft R L M(X-ft R L R
1 -51.13 76.00(15.0) -108.28 53.65 -64.16(15.0) 95.96 51.82 94.13
<------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 -32.98 30.39(15.0) -50.73 -32.98 30.39( 15.0) -50.73 1 57.41 65.89
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
2 -76.87 -110.30
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.124 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 105.88 5.88 4.0 8.75 24.50 0.00 8.75 0.124 0.124
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.48 0.00 2.17 0.00 1 0.00 0.00 0.00 0.65 0.00 1.25
2 0.00 0.00 0.96 0.00 2.17 0.00 Rebar Weight=0.567 psf
ULT(%R= 6.7) D+L/4(%R=lO.O) MIN ULT( %R= 6.7 D+L/4( %R=10.0 1 MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.43 0.00 2.17 0.00 1 0.00 0.00 0.00 0.72 0.00 1.25
2 0.00 0.00 0.86 0.00 2.17 0.00 Rebar Weight=0.567 psf
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.41 0.00 2.17 0.00 1 0.00 0.00 0.00 0.75 0.00 1.25
2 0.00 0.00 0.82 0.00 2.17 0.00 Rebar Wei ght=O. 567 psf
Section5-BEAM SHEAR DESIGN
X Left Vu Mu Vcn vcw Vci Av #4@
Span 1 L=30.00ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c max. for Span 1
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <- - - - -Defl ecti ons ( i n - - - - ->
SPAN Tension (XI Compression (XI Tension (x) Compression (XI SPAN Delta L/Oelta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T -0.021 ( 29.17) -0.192 ( 15.00) -0.143 ( 17.83) -0.165 ( 0.83) 1 0.006 59551 0.012 30520
B 0.037 ( 15.00) -0.365 ( 29.17) -0.096 ( 0.83) -0.148 ( 17.83)
Section7-FACTORED COLUMN LOADS
Maximum Axial Load Maximum Moment
Axial Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 45.83 57.41 65.89 45.83 57.41 65.89
2 56.06 -76.87 -110.30 56.06 -76.87 -110.30
c
c
e
c
c
c
c
c
c
c
c
c
IC-
-
I
c
c
1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. DL@TRANSFER=O . 0
TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#9 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
0.004A @ TOP & BOT DL + LL/4 RATIO=1.67
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOAOS------>
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 12.00 0.00 0.00 0.00 1.328 1 U 0.002 0.030 0.00 57.83
SPAN
1
SPAN
1
Sect
SPAN
1
Section 2 - B E A M A N D C 0 L
SPAN
1
IN
BEAM CROSS-SECTION PROPERTIES
A Yt St Sb
(in21 (in) (in31 (in31
855.00 9.08 7478.80 3245.52
0 M E N T S (k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <------ BALANCED LOAD- - - -> BEAM SECONDARY
L M( X-ft) R L M( X- ft 1 R L R
390.21 373.65(34.4) 31.18 344.52 -314.72(34.4) 8.10 342.43 6.01
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS ( FACTORED 1
L M(X-ft) R L M(X-ft) R JOINT TOP BOT
154.04 113.64(34.41 9.90 -154.04 113.64(34.4) 9.90 1 264.25 302.86
2 0.00 0.00
on 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
(k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
317.63 21.18 12.0 9.00 27.00 0.00 9.00 0.371 0.371
Tendon Weight=0.434 psf
c
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.15 0.00 3.55 0.00 2.16 0.00 1 0.00 0.16 0.00 3.10 0.00 1.26
2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=1.067 psf
ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) D+L/4(%R=lO.O) MI N
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.48 3.17 0.00 2.16 0.00 1 0.00 0.24 0.00 3.22 0.00 1.26
2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=1.091 psf
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 3.02 2.99 0.00 2.16 0.00 1 0.00 0.36 0.00 3.28 0.00 1.26
2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=l. 190 psf - I
Section 5 - B E A M S H E A R D E S I G N
X Left Vu Mu Vcn vcw Vci AV #4@
Span 1 L=57.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in olc max. for Span 1
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in)--- -->
SPAN Tension (XI Compression (XI Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T -0.051 ( 0.83) -0.648 ( 34.43) -0.424 ( 23.23) -0.497 ( 56.83) 1 0.109 6382 0.187 3717
8 0.267 ( 34.43) -1.110 ( 0.83) -0.286 ( 56.83) -0.454 ( 23.23)
Section7-FACTORED COLUMN LOADS
Maximum Axial Load Maximum Moment
Axi a1 Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 98.92 264.25 302.86 98.92 264.25 302.86
2 55.28 0.00 0.00 55.28 0.00 0.00
c
2 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0
TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60.00ksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy-------------------------------------------->
L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref
SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in)
1 3 33.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS- - - - - ->
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 12.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 33.83
2 2 12.00 10.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 57.83
<--------------------COLUMNS-------------------->
<--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES
H C2 C1 Far H C2 C1 Far A Yt St Sb
JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31
1 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix 1 855.00 8.96 7383.25 3142.75
2 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 2 855.00 8.96 7383.25 3142.75
3 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored <:------DEAD LOAD-------> < - - - - - -BALANCED LOAD- - 1 -> BEAM SECONDARY
SPAN L M(X-ft) R L M(X-ft) R L R
1 -35.42 67.52(13.6) -254.62 10.74 -18.56(10.4) 141.64 8.91 36.53
2 -430.01 254.42(29.0) -277.48 259.37 -153.95(29.0) 178.26 154.25 174.61
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED 1
1 10.87 29.80(16.8) 0.00 -34.82 O.OO( 7.2) -71.34 1 57.62 91.07
2 167.01 213.47
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
2 0.00 82.03(29.0) 2.58 -145.61 O.OO(40.2) -119.55
3 -202.92 -307.25
Frame Design Group. Inc. Sheet No. 7/
2 Faraday, Suite 101
Irvine. CA 92618 820
949/595-8015 Page 2
Toyota Carl sbad
_____ _____=r=__________ ---______~~==~~~~~~=====~==~~~~~~~a for Windows {V2 OOO-O229}======================================
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.205 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 105.88 5.88 4.0 8.75 13.00 0.00 3.00 0.124 0.248
2 211.75 11.76 8.0 3.00 27.00 0.00 8.75 0.248 0.248
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.37 0.00 2.17 0.00
2 2.38 0.00 3.91 0.00 2.17 0.00
3 0.93 0.00 2.53 0.00 2.17 0.00
JOINT
1
2
3
JOINT
1
2
3
ULT( %R= 6.7 D+L/4( %R=10.0 1 MIN
TOP BOT TOP BOT TOP BOT
0.00 0.00 0.33 0.00 2.17 0.00
1.90 0.00 3.49 0.00 2.17 0.00
0.64 0.00 qO.00 2.17 0.00
ULTI %R=15.0 1 O+L/4 (%R=15.0 1 MIN
TOP BOT TOP BOT TOP BOT
0.00 0.00 0.31 0.00 2.17 0.00
1.16 2.94 3.39 0.51 2.17 0.00
0.25 2.45 2.13 0.00 2.17 0.00
‘Lq+p4’i/n~~~, 2W f2*hSa
ULT(%R= 0.0) D+L/4(%R= 0.0)
SPAN TOP BOT TOP BOT
1 0.00 0.18 0.00 0.58
2 0.00 0.68 0.00 2.13
Rebar Weight=O. 770 psf
ULT( %R= 6.7 D+L/4(%R=10.0)
SPAN TOP BOT TOP BOT
1 0.00 0.18 0.00 0.65
2 0.00 0.95 0.00 2.42
Rebar Wei ght=O. 777 psf
ULT(%R=15.0) D+L/4(%R=15.0)
SPAN TOP BOT TOP BOT
1 0.00 0.32 0.00 0.71
2 0.00 1.35 0.00 2.58
MIN
TOP BOT
0.00 1.25
0.00 1.25
MIN
TOP BOT
0.00 1.25
0.00 1.25
MI N
TOP BOT
zicys Rebar Wei ght=O. 929 psf
0.00 1.25 .-?%
0.00 1.25
Section 5 - B E A M S H E A R D E S I G N
X Left Vu Mu Vcn vcw Vci Av #4@
Span 1 L=33.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22,50in o/c max. for Span 1
Span 2 L=57.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c rnax. for Span 2
X Left Vu Mu Vcn vcw Vci AV #4@
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <- - - - -Def 1 ecti ons (in 1 - - - - ->
SPAN Tension (XI Compression (x) Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Delta
1 T 0.052 ( 32.83) -0.249 ( 13.63) -0.075 ( 26.43) -0.217 ( 13.63) 1 0.018 23198 0.015 27066’
Service Loads Transfer of Prestress DL + Bal LL
8 0.191 ( 13.63) -0,951 ( 32.83) 0.026 ( 13.63) -0.608 ( 32.83) 2 0.153 4547 0.116 5976
2 T 0.266 ( 1.00) -0.544 ( 29.00) -0.098 ( 1.00) -0.401 ( 29.00)
B 0.449 ( 29.00) -1.455 ( 1.00) -0.026 ( 29.00) -0.737 ( 1.00)
P- Section 7 - F A C T 0 R E D
Maxi mum Axi al Load
Axial Column Moment
Load Top Bottom
JOINT (kips) (k-ft) (k-ft)
1 42.12 57.62 91.07
2 157.89 123.63 177.09
c
3 85.54 -202.92 -307.25
COLUMN LOADS
Maximum Moment
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
42.12 57.62 91.07
142.17 167.01 213.47
85.54 -202.92 -307.25
2 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES %SUP. DL@TRANSFER=O . 0
TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONOED. LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELDdO . OOksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#ll STIRRUP SIZE=#4 REBAR COVER: 2. OOi n TOP 2. OOi n BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
TOP 6.0 SQRT f' c=424psi BOT 7.5 SQRT f c-53Opsi
BOTTOM 2.50 in BOTTOM 2.50 in
0.004A @ TOP & BOT DL + LL/4 RATIO=1.67
Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy-------------------------------------------->
L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref
SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in)
1 3 33.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
<-------TENDON PROFILE-------> CONC <------ SUPERIMPOSED LOADS- - - - - ->
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 12.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 33.83
2 2 12.00 10.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 57.83
<--------------------COLuMNS-------------------->
<--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES
H C2 C1 Far H C2 C1 Far A Yt St Sb
JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31
1 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix 1 855.00 8.96 7383.25 3142.75
2 0.00 0.00 24.00 Fix 0.00 0.00 0.00 Fix 2 855.00 8.96 7383.25 3142.75
3 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<' - - - - - - DEAD LOAD-------> <------ BALANCED LOAD- - 1 -> BEAM SECONDARY
SPAN L M( X- ft 1 R L M(X-ft) R L R
1 -0.40 55.49(10.4) -370.10 -10.75 -16.84( 7.2) 212.49 -12.57 107.38
2 -361.98 275.88(29.0) -302.59 217.63 -167.12(29.0) 193.67 112.51 190.01
<------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 41.38 41.38( 0.8) 0.00 -46.11 O.OO( 7.2) -120.02 1 55.91 74.59
2 0.00 94.69(29.0) 9.82 -117.35 O.OO(40.2) -139.11 2 0.00 0.00
3 -229.96 -340.17
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
Frame Design Group, Inc.
2 Faraday, Suite 101
Sheet No.
Toyota Carl sbad
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.205 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 105.88 5.88 4.0 8.75 13.00 0.00 3.00 0.124 0.248
2 211.75 11.76 8.0 3.00 27.00 0.00 8.75 0.248 0.248
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.14 0.00 2.17 0.00 1 0.00 0.09 0.00 0.47 0.00 1.25
2 1.49 0.00 3.30 0.00 2.17 0.00 2 0.00 1.00 0.00 2.33 0.00 1.25
3 1.51 0.00 2.80 0.00 2.17 0.00 Rebar Weight=O. 774 psf
ULT(%R= 6.7) D+L/4(%R=lO.O) MIN ULT(%R= 6.7) D+L/4(%R=10.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.13 0.00 2.17 0.00 1 0.00 0.05 0.00 0.56 0.00 1.25
2 1.22 0.00 3.25 0.00 2.17 0.00 2 0.00 1.15 0.00 2.58 0.00 1.25
3 1.14 0.36 2.51 0.00 2.17 0.00 Rebar Weight=O ,800 psf
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
2 0.00 1.52 0.00 2.72 0.00 1.25
1 0.00 0.00 0.12 0.00 2.17 0.00 1 0.00 0.16 0.00 0.60 0.00 i.25--4%
2 1.09 2.87 3. 24y-3;*(1 :: i: b: Cl; 3 0.69 2.89 Rebar Weight-0.952 psf
~%~~~S~C~\~~ 5 - B E AM S H EAR DE S I G N
Span 1 L=33.83ft
X Left Vu Mu Vcn vcw Vci Av #4@
2@
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c max. for Span 1
Span 2 L=57.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c max. for Span 2
X Left Vu Mu Vcn vcw Vci Av #4@
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------stresses (ksi)-----------------------> <-----Deflections (in) - - - - ->
SPAN Tension (XI Compression (XI Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL
1 T 0.204 ( 32.83) -0.241 ( 13.63) -0.038 ( 26.43) -0.209 ( 10.43) 1 -0.015 27860 0.023 17975
B 0.152 ( 13.63) -1.308 ( 32.83) 0.007 ( 10.43) -0.723 ( '32.83) 2 0.179 3870 0.153 4526
2 T 0.178 ( 1.00) -0.578 ( 29.00) -0.127 ( 1.00) -0.410 ( 29.00)
B 0.529 ( 29.00) -1.247 ( 1.00) -0.004 ( 29.00) -0.670 ( 1.00)
Frame Design Group. Inc.
2 Faraday. Suite 101
Sheet No. 7s’
Toyota Carlsbad
Section 7 - F A C T 0 R E D
Maximum Axi a1 Load
Axial Column Moment
Load Top Bottom
JOINT (kips) (k-ft) (k-ft)
1 34.21 55.91 74.59
2 166.78 0.00 0.00
3 91.01 -229.96 -340.17
COLUMN LOADS
Maxi mum Moment
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
34.21 55.91 74.59
152.15 0.00 0.00
91.01 -229.96 -340.17
2 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O. 0
TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE411 STIRRUP SIZE=W REBAR COVER: 2. OOin TOP 2. OOi n BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
0.004A @ TOP & BOT DL + LL/4 RATIO=l. 67
Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy-------------------------------------------->
L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref
SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in)
1 2 33.83 15.00 30.00 5.00 0.00 9.00 9.00 4.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS- - - - - ->
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 12.00 0.00 0.00 0.00 0.992 1 U 0.002 0.030 0.00 33.83
2 2 12.00 10.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 57.83
<--------------------COLuMNS-------------------->
<--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES
H C2 C1 Far H C2 C1 Far A Yt St Sb
JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in2) (in) (in3) (in31
1 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix 1 652.50 11.12 5035.03 2965.84
2 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 2 855.00 8.96 7383.25 3142.75
3 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<<------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
SPAN L M(X-ft) R L M(X-ft) R L R
1 -14.77 39.55(10.4) -202.15 1.99 -9.85(10.4) 140.09 1.19 -3.21
2 -417.07 258.50(29.0) -282.26 250.88 -156.63(29.0) 181.40 145.76 177.74
<------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 9.90 28.89(16.8) 0.00 -36.13 O.OO( 7.2) -68.44 1 51.22 65.61
2 0.00 82.14(29.0) 2.60 -145.27 O.OO(40.2) -119.73 2 181.58 242.50
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
3 -203.76 -309.69
e
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.171 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 79.41 4.41 3.0 11.00 11.75 0.00 3.00 0.122 0.325
2 211.75 11.76 8.0 3.00 27.00 0.00 8.75 0.248 0.248
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MI N
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.22 0.00 1.48 0.00 1 0.00 0.05 0.00 0.35 0.00 1.13
2 2.30 0.00 3.80 0.00 2.17 0.00 2 0.00 0.70 0.00 2.16 0.00 1.25
3 0.97 0.00 2.57 0.00 2.17 0.00 Rebar Weight=0.750 psf
ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) D+L/4(%R=10.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.20 0.00 1.48 0.00 1 0.00 0.06 0.00 0.40 0.00 1.13
2 1.82 0.00 3.39 0.00 2.17 0.00 2 0.00 0.97 0.00 2.45 0.00 1.25
3 0.67 0.00 2.30 0.00 2.17 0.00 Rebar Wei ght=O. 757 psf
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.19 0.00 1.48 0.00 1 0.00 0.18 0.00 0.44 0.00 1.13
2 1.10 2.88 3.28 0.40 2.17 0.00 2 0.00 1.36 0.00 2.60 0.00 1.25
3 0.27 2.47 2.17 0.00 2.17 0.00 Rebar Weight=0.906 psf
Section5-BEAM SHEAR DESIGN
X Left Vu Mu Vcn vcw Vc i Av #4@
Span 1 L=33.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c max. for Span 1
Span 2 L=57.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50i n o/c max. for Span 2
X Left Vu Mu Vcn vcw Vci Av #4@
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksj)-----------------------> <-----Oeflecti ons (in) ----->
SPAN Tension (XI Compression (x) Tension (XI Compression (x) SPAN Delta L/Oelta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T 0.062 ( 26.43) -0.252 ( 13.63) -0.012 ( 26.43) -0.330 ( 29.63) 1 -0.009 46624 0.017 24185
B 0.180 ( 13.63) -0.853 ( 32.83) -0.035 ( 10.43) -0.512 ( 32.83) 2 0.156 4436 0.117 5953
2 T 0.259 ( 1.00) -0.547 ( 29.00) -0.103 ( 1.00) -0.402 ( 29.00)
B 0.455 ( 29.00) -1.437 ( 1.00) -0.022 ( 29.00) -0.726 ( 1.00)
c
Frame Design Group, Inc.
2 Faraday, Suite 101
Irvine. CA 92618
Sheet No. 75
Toyota Carlsbad
822
/L Section 7 - F A C T 0 R E D
Maximum Axial Load
Axial Column Moment
Load Top Bottom
JOINT (kips) (k-ft) (k-ft)
1 32.11 51.22 65.61
2 142.27 137.81 205.79
c
3 86.15 -203.76 -309.69
.-
c
P
f
h
COLUMN LOADS
Maximum Moment
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
32.11 51.22 65.61
126.57 181.58 242.50
86.15 -203.76 -309.69
r
k
r
1
I
P
P
r
\
c
I
r
,
r'
2 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O. 0
TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT OL + LL/4 RATIO=1.67 REBAR YIELD=60.00ksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy-------------------------------------------->
L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref
SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in)
1 2 33.83 15.00 30.00 5.00 0.00 9.00 15.00 4.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------>
CL cR A B C DL LOAD OL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 12.00 0.00 0.00 0.00 0.992 1 U 0.100 0.030 0.00 33.83
2 2 12.00 10.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 57.83
<--------------------COLUMNS-------------------->
<--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES
H C2 C1 Far H C2 C1 Far A Yt St Sb
JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31
1 5.00 24.00 20.00 Fix 5.00 24.00 20.00 Fix 1 652.50 11.12 5035.03 2965.84
2 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 2 855.00 8.96 7383.25 3142.75
3 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix
Section2 - BEAM AND COLUMN MOMENTSck-ft)
Column Moments are Factored, All Other Moments are Unfactored
<--------DEAD LOAD-------> <------BALANCED LOAD- -> BEAM SECONDARY
SPAN L M(X-ft) R L M(X-ft) R L R
1 -220.59 146.83(16.8) -353.97 65.07 -43.43(13.6) 198.99 64.00 55.69
2 -456.47 246.07(29.0) -267.72 263.12 -152.77(29.0) 176.88 158.01 173.22
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 12.29 35.03(16.8) 0.00 -60.97 O.OO(10.4) -78.48 1 119.66 318.96
2 0.00 82.11(29.0) 3.16 -146.68 O.OO(40.2) -119.67 2 140.66 105.65
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
3 -201.40 -297.13
c
c
c-
.-
c
/
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.183 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 105.88 4.41 4.0 11.00 22.75 0.00 3.00 0.162 0.325
2 211.75 11.76 8.0 3.00 27.00 0.00 8.75 0.248 0.248
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MI N
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 1.73 0.00 1.87 0.00 1.48 0.00 1 0.00 0.85 0.00 1.19 0.00 1.13
2 2.72 0.00 4.15 0.00 2.17 0.00 2 0.00 0.60 0.00 2.07 0.00 1.25
3 0.82 0.00 2.45 0.00 2.17 0.00 Rebar Weight=O ,680 psf
ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) D+L/4(%R=lO.O) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 1.50 0.00 1.68 0.00 1.48 0.00 1 0.00 0.93 0.00 1.39 0.00 1.13
2 2.17 0.17 3.69 0.00 2.17 0.00 2 0.00 0.87 0.00 2.37 0.00 1.25
3 0.54 0.00 2.19 0.00 2.17 0.00 Rebar Weight=0.700 psf
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BDT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 1.25 1.64 1.67 0.00 1.48 0.00 1 1.61 1.28 0.00 1.50 0.00 1.13
2 1.40 3.18 3.61 0.73 2.17 0.00 2 0.00 1.27 0.00 2.52 0.00 1.25
3 0.17 2.36 2.07 0.00 2.17 0.00 Rebar Weight=0.913 psf
Section5-BEAM SHEAR DESIGN
X Left Vu Mu Vcn vcw Vci Av #4@
Span 1 L=33.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c max. for Span 1
Span 2 L=57.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c max. for Span 2
X Left Vu Mu Vcn vcw Vci Av #4@
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <- - - - -Defl ecti ons (i n) - - - - ->
SPAN Tension (XI Compression (XI Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T 0.354 ( 0.83) -0.494 ( 16.83) -0.077 ( 26.43) -0.473 ( 32.83) 1 0.053 7640 0.019 21568
B 0.401 ( 16.83) -1.269 ( 32.83) 0.021 ( 0.83) -0.500 ( 29.63) 2 0.133 5202 0.116 6004
2 T 0.305 ( 1.00) -0.533 ( 29.00) -0.128 ( 1.00) -0.410 ( 29.00)
B 0.422 ( 29.00) -1.546 ( 1.00) -0.004 ( 29.00) -0.668 ( 1.00)
c
c. Section 7 - F A C T 0 R E D
Maximum Axi a1 Load
Axial Column Moment
Load Top Bottom
JOINT (kips) (k-ft) (k-ft)
1 96.14 119.66 318.96
2 202.30 87.53 61.09
c
- 3 84.64 -201.40 -297.13
t-
COLUMN LOADS
Maximum Moment
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
96.14 119.66 318.96
181.97 140.66 105.65
84.64 -201.40 -297.13
r
,
P-
r
r
c
I
F-
r
c
t-
P
L
Frame Design Group, Inc
2 Faraday, Suite 101
Sheet No. 'ISZ
3 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=l.4 LL FACTOR=l.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0
TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
0.004A @ TOP & BOT DL + LL/4 RATIO=1.67
Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy-------------------------------------------->
L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref
SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in)
1 3 16.00 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
2 3 33.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
3 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
< - - - - - - - TENDON PROFILE- - - --- -> CONC <------SUPERIMPOSED LOADS------>
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 10.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 16.00
2 2 10.00 12.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 33.83
3 2 12.00 10.00 0.00 0.00 0.00 1.516 3 U 0.002 0.030 0.00 57.83
c--------------------COLUMNS-------------------->
<--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES
H C2 C1 Far H C2 C1 Far A Yt St Sb
JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in3) (in31
1 0.00 0.00 20.00 Fix 0.00 0.00 0.00 Fix 1 855.00 8.96 7383.25 3142.75
2 0.00 0.00 20.00 Fix 0.00 0.00 0.00 Fix 2 855.00 8.96 7383.25 3142.75
3 0.00 0.00 24.00 Fix 0.00 0.00 0.00 Fix 3 855.00 8.96 7383.25 3142.75
4 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <- - - - - -BALANCED LOAD- - - -> BEAM SECONDARY
SPAN L M(X-ft) R L M(X-ft) R L R
1 8.09 34.52( 6.6) -21.46 2.03 -14.12( 5.1) 56.27 0.20 3.71
2 -20.76 42.42(10.4) -366.14 60.33 -47.72(13.6) 274.12 7.77 155.07
3 -357.37 277.34(29.0) -304.29 279.46 -177.09(29.0) 205.10 161.20 200.98
f
c
<------MOST POS LL------>
SPAN L M(X-ft) R
1 5.18 38.42(15.2) 38.42
2 36.87 40.63(16.8) 1.29
3 1.49 95.40(29.0) 10.37
<------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
L M( X-ft 1 R JOINT TOP BOT
-2.54 -2.54( 0.8) -49.04 1 0.00 0.00
-47.11 -4.88( 7.2) -120.20 2 0.00 0.00
117.57 -0.01(40.2) -140.22 3 0.00 0.00
4 -231.40 -332.77
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.210 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 105.88 5.88 4.0 8.75 10.25 0.00 3.00 0.124 0.124
2 105.88 5.88 4.0 3.00 22.75 0.00 3.00 0.124 0.279
3 238.22 13.23 9.0 3.00 27.00 0.00 8.75 0.279 0.279
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.07 0.00 0.35 0.00 1.25
2 0.00 0.00 0.31 0.00 2.17 0.00 2 0.00 0.09 0.00 0.39 0.00 1.25
3 1.00 0.00 3.27 0.00 2.17 0.00 3 0.00 0.69 0.00 2.34 0.00 1.25
4 1.10 0.00 2.82 0.00 .2.17 0.00 Rebar Weight=0.728 psf
ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) D+L/4(%R=lO.O) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.07 0.00 0.35 0.00 1.25
2 0.00 0.00 0.30 0.00 2.17 0.00 2 0.00 0.09 0.00 0.45 0.00 1.25
3 1.00 0.12 3.21 0.00 2.17 0.00 3 0.00 0.80 0.00 2.59 0.00 1.25
4 0.73 0.42 2.52 0.00 2.17 0.00 Rebar Wei ght=O. 753 psf
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.09 0.00 0.34 0.00 1.25
2 0.00 0.00 0.30 0.00 2.17 0.00 2 0.00 0.09 0.00 0.49 0.00 1.25
3 1.00 2.86 3.20 0.32 2.17 0.00 3 0.00 1.26 0.00 2.73 0.00 1.25
4 0.29 2.95 2.38 0.00 2.17 0.00 Rebar Weight=O. 880 psf
Section5-BEAM SHEAR DESIGN
X Left Vu Mu Vcn vcw Vc i AV #4@
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in)
Span 1 L=16.00ft
Use #4@24.00in o/c max. for Span 1
Span 2 L=33.83ft
X Left Vu Mu Vcn vcw Vci AV #4@ (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in)
Use #4@22.50in o/c max. for Span 2
Span 3 L=57.83ft
X Left Vu Mu Vcn vcw Vci Av #4@
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in)
Use #4@22.50in o/c max. for Span 3
CODE
CODE
CODE
IC. Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in) - - -- ->
SPAN Tension (XI Compression (XI Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta
LL DL + Bal Service Loads Transfer of Prestress
1 T -0.101 ( 15.17) -0.243 ( 15.17) -0.161 ( 0.83) -0.217 ( 15.17) 1 0.005 42381 0.006 31559
B 0.156 ( 15.17) -0.178 ( 15.17) 0.026 ( 15.17) -0.105 ( 0.83) 2 -0.040 10211 0.024 16597
2 T 0.167 ( 26.43) -0.248 ( 0.83) -0.002 ( 26.43) -0.264 ( 32.83) 3 0.174 3993 0.151 4585
c
c B 0.168 ( 0.83) -1.164 ( 29.63) 0.047 ( 0.83) -0.769 ( 29.63)
3 T 0.111 ( 57.00) -0.597 ( 29.00) -0.231 ( 57.00) -0.430 ( 29.00)
B 0.468 ( 29.00) -1.193 ( 57.00) -0.080 ( 29.00) -0.546 ( 57.00)
c
rc
c
r"
c
c-
c
Section 7 - F A C T 0 R E D -
Maximum Axial Load
Axial Column Moment
c Load Top Bottom
JOINT (kips) (k-ft) (k-ft)
1 24.96 0.00 0.00
2 68.37 0.00 0.00
3 167.25 0.00 0.00
4 90.60 -231.40 -332.77
COLUMN LOADS
Maxi mum Moment
Axi a1 Col umn Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
24.96 0.00 0.00
59.67 0.00 0.00
151.44 0.00 0.00
90.60 -231.40 -332.77
L
P
c
*
#-
3 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=l .4 LL FACTOR=l. 7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES %SUP. DL@TRANSFER=O .O
TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
TOP 6.0 SQRT f 'c=424psi BOT 7.5 SQRT f ' c=53Opsi
BOTTOM 2.50 in BOTTOM 2.50 in
0.004A @ TOP & BOT DL + LL/4 RATIO=l. 67
Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy-------------------------------------..----->
L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref
SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in)
1 3 30.00 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
2 2 33.83 15.00 30.00 5.00 0.00 9.00 9.00 4.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------>
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 10.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 30.00
2 2 10.00 12.00 0.00 0.00 0.00 0.992 2 U 0.033 0.030 0.00 33.83
3 2 12.00 10.00 0.00 0.00 0.00 1.516 3 U 0.002 0.030 0.00 57.83
<-------------------- COLUMNS-------------------->
<--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES
H C2 C1 Far H C2 C1 Far A Yt St Sb
JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in2) (in) (in3) (in31
1 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix 1 855.00 8.96 7383.25 3142.75
2 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix 2 652.50 11.12 5035.03 2965.84
3 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 3 855.00 8.96 7383.25 3142.75
4 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <- - - - - -BALANCED LOAD- - - -> BEAM SECONDARY
SPAN L M( X-ft 1 R L M(X-ft) R L R
1 -48.37 73.24(12.2) -118.03 47.50 -58.58( 12.2) 113.19 45.67 60.63
2 -100.52 45.39(13.6) -222.92 131.01 -64.77( 16.8) 234.61 59.36 91.31
3 -422.89 256.66(29.0) -280.11 270.81 -150.34(29.0) 174.04 165.69 170.39
c
rc
c
<- ___ __ MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 5.20 25.97(15.0) 3.41 -28.63 -0.35( 6.5) -44.91 1 50.89 62.63
3 0.52 82.28(29.0) 2.52 -145.12 O.OO(40.2) -119.93 3 177.70 292.51
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
2 10.77 27.94(16.8) 4.22 -48.92 -5.24(10.4) -67.25 2 -35.50 -47.15
4 -203.53 -314.99
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.183 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 105.88 5.88 4.0 8.75 21.50 0.00 3.00 0.124 0.124
2 105.88 5.88 4.0 3.00 27.00 0.00 3.00 0.162 0.325
3 211.75 11.76 8.0 3.00 27.00 0.00 8.75 0.248 0.248
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.45 0.00 2.17 0.00 1 0.00 0.00 0.00 0.61 0.00 1.25
2 0.00 0.00 1.02 0.00 2.17 0.00 2 0.00 0.00 0.00 0.41 0.00 1.13
3 2.17 0.00 3.85 0.00 2.17 0.00 3 0.00 0.73 0.00 2.15 0.00 1.25
4 1.01 0.00 2.55 0.00 2.17 0.00 Rebar Wei ght=O. 714 psf
ULT(%R= 6.7) D+L/4(%R=10.0) MI N ULT(%R= 6.7) D+L/4(%R=10.0) MI N
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.40 0.00 2.17 0.00 1 0.00 0.00 0.00 0.66 0.00 1.25
2 0.00 0.00 0.92 0.00 2.17 0.00 2 0.00 0.00 0.00 0.49 0.00 1.13
3 1.70 0.00 3.43 0.00 2.17 0.00 3 0.00 1.00 0.00 2.44 0.00 1.25
4 0.72 0.00 2.28 0.00 2.17 0.00 Rebar Weight=0.719 psf
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
TOP BOT
1 0.00 0.00 0.38 0.00 2.17 0.00 1 0.00 0.00 0.00 0.69 0.00 1.25
2 0.00 0.00 0.92 0.00 2.17 0.00 2 0.00 0.00 0.00 0.56 0.00 1.13
3 1.00 2.79 3.33 0.45 2.17 0.00 3 0.00 1.39 0.00 2.59 0.00 1.25
4 0.31 2.51 2.15 0.00 2.17 0.00 Rebar Weight=0.830 Dsf
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT
Section5-BEAM SHEAR DESIGN
Span 1 L=30.00ft
X Left Vu Mu Vcn vcw Vci Av #4@
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in)
Use #4@24.OOin o/c max. for Span 1
Span 2 L=33.83ft
Left Vu Mu Vcn vcw Vci Av #4@
ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in)
Use #4@22.50in o/c max. for Span 2
Span 3 L=57.83ft
Left Vu Mu Vcn vcw Vc i Av #4@
ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in)
Use #4@22.50in o/c max. for Span 3
CODE
CODE
CODE
c
Frame Design Group, Inc.
2 Faraday, Suite 101
Sheet No. %7
Toyota Carl sbad
e Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> e- - - - -Deflecti ons (in 1 - - - - ->
SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL
1 T -0.043 ( 29.17) -0.190 ( 15.00) -0.148 ( 0.83) -0.206 ( 29.17) 1 0.008 44863 0.011 32672
B 0.033 ( 15.00) -0.314 ( 29.17) -0.001 ( 29.17) -0.136 ( 0.83) 2 -0.024 16773 0.016 25671
2 T -0.007 ( 26.43) -0.362 ( 32.83) -0.021 ( 20.03) -0.607 ( 32.83) 3 0.169 4114 0.118 5903
c
c- B 0.005 ( 0.83) -0.718 ( 29.63) 0.186 ( 0.83) -0.493 ( 29.63)
3 T 0.235 ( 1.00) -0.554 ( 29.00) -0.148 ( 1.00) -0.417 ( 29.00)
B 0.472 ( 29.00) -1.382 ( 1.00) 0.011 ( 29.00) -0.621 ( 1.00) - Section7- FACTORED
Maximum Axial Load
Axial Column Moment
Load Top Bottom
JOINT (kips) (k-ft) (k-ft)
1 42.67 50.89 62.63
3 154.60 131.56 253.81
c
2 99.12 2.23 -15.49
4 85.50 -203.53 -314.99
COLUMN LOADS
Maxi mum Moment
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
42.67 50.89 62.63
137.84 177.70 292.51
80.54 -35.50 -47.15
85.50 -203.53 -314.99
..--
I
c
4 c
c
rcc
c’
c
c
c
I-
-
1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTDR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. DL@TRANSFER=O. 0
TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#9 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns 8 Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
0.004A 8 TOP & BOT DL + LL/4 RATIO=1.67
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS- - - - - ->
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k,ft) (k.ft) (ft) (ft)
1 2 10.00 10.00 0.00 0.00 0.00 1.516 1 U 0.002 0.040 0.00 30.00
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
SPAN L M(X-ft) R L M( X-ft 1 R L R
1 -56.86 74.38(15.0) -105.78 57.89 -62.97(15.0) 94.11 56.06 92.28
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS ( FACTORED 1
1 -26.38 34.51(15.0) -49.09 -26.38 34.51(15.0) -49.09 1 0.00 107.59
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
2 0.00 -182.61
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.124 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 105.88 5.88 4.0 8.75 24.50 0.00 8.75 0.124 0.124
c
c-
c
ULT(%R= 0.0)
JOINT TOP BOT
1 0.00 0.00
2 0.00 0.00
ULT(%R= 6.7)
JOINT TOP BOT
1 0.00 0.00
2 0.00 0.00
ULT(%R=15.0)
JOINT TOP BOT
1 0.00 0.00
2 0.00 0.00
Section 4 - R E B A R R E Q U I R E M E N T S (in21
D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0)
TOP BOT TOP BOT SPAN TOP BOT TOP BOT
0.50 0.00 2.17 0.00 1 0.00 0.00 0.00 0.65
0.94 0.00 2.17 0.00 Rebar Wei ght=O. 567 psf
D+L/4(%R=lO.O) MIN ULT(%R= 6.7) D+L/4(%R=lO.O)
TOP BOT TOP BOT SPAN TOP BOT TOP BOT
0.45 0.00 2.17 0.00 1 0.00 0.00 0.00 0.72
0.84 0.00 2.17 0.00 Rebar Weight=O. 567 psf
D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0)
TOP BOT TOP BOT SPAN TOP BOT TOP BOT
0.42 0.00 2.17 0.00 1 0.00 0.00 0.00 0.76
0.80 0.00 2.17 0.00 Rebar Weight=0.567 psf
MIN
TOP BOT
0.00 1.25
MIN
TOP BOT
0.00 1.25
MI N
TOP BOT
0.00 1.25
Section 5 - B E A M S H E A R D E S I G N
X Left Vu Mu Vcn vcw Vci Av #4@
Span 1 L=30.00ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c max. for Span 1
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <- - - - - Def 1 ecti ons (in) - - - - ->
SPAN Tension (XI Compression (XI Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta
Service Loads Transfer of Prestress DL + Ea1 LL
1 T -0.025 ( 29.17) -0,198 ( 15.00) -0.143 ( 17.83) -0.164 ( 0.83) 1 0.006 62916 0.015 24637
B 0.052 ( 15.00) -0.356 ( 29.17) -0.099 ( 0.83) -0.148 ( 17.83)
Section7-FACTORED COLUMN LOADS
Maximum Axi a1 Load Maximum Moment
Axial Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 45.89 0.00 107.59 45.89 0.00 107.59
2 56.00 0.00 -182.61 56.00 0.00 -182.61
c
c
e'
.-
e
P
1 SPANS 0 CANTILEVERS UNIF LL DL FACTORfl.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP, OL@TRANSFER=O . 0
TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED, LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE+ STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
0.004A (3 TOP & BOT DL + LL/4 RATIG1.67
c
h
L c
P-
#-
h
.C
<-------TENDON PROFILE-------> CONC C- - - - - -SUPERIMPOSED LOADS- - - - - ->
CL cR A B C DL LOAD OL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 12.00 0.00 0.00 0.00 1.328 1 U 0.002 0.030 0.00 57.83
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
SPAN L M(X-ft) R L M( X-ft) R L R
1 -409.90 365.57(34.4) 30.83 360.48 -308.17(34.4) 8.38 358.39 6.29
<------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 -135.82 121.13(34.4) 10.22 -135.82 121.13(34.4) 10.22 1 0.00 517.13
2 0.00 0.00
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.434 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 317.63 21.18 12.0 9.00 27.00 0.00 9.00 0.371 0.371
Section 4 - R E B A R R E Q U I R E M E N T S (in2)
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 3.66 0.00 2.16 0.00 1 0.00 0.33 0.00 3.06 0.00 1.26
2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Wei ght=l ,065 psf
ULT(%R= 6.7) D+L/4(XR=10.0) MIN ULT(%R= 6.7) D+L/4(%R=lO.O) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 3.26 0.00 2.16 0.00 1 0.00 0.40 0.00 3.18 0.00 1.26
2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=1.071 psf
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 2.51 3.07 0.00 2.16 0.00 1 0.00 0.50 0.00 3.25 0.00 1.26
2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=l. 168 psf
Section5-BEAM SHEAR DESIGN
Span 1 L=57.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2lft) (in) CODE
Use #4@22.50in o/c max. for Span 1
X Left Vu Mu Vcn vcw Vci Av #4@
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in) -- - -->
SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Oelta
Service Loads Transfer of Prestress DL + Bal LL
1 T -0.074 ( 0.83) -0.658 ( 34.43) -0.424 ( 23.23) -0.497 ( 56.83) 1 0.105 6640 0.207 3347
B 0.289 ( 34.43) -1.056 ( 0.83) -0.286 ( 56.83) -0.456 ( 23.23)
Section7-FACTORED COLUMN LOADS
Maximum Axial Load Maxi mum Moment
Axi a1 Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 98.62 0.00 517.13 98.62 0.00 517.13
2 55.58 0.00 0.00 55.58 0.00 0.00
P
2 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 500Opsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O. 0
TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60.00ksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE411 STIRRUP SIZE44 REBAR COVER: 2.00in TOP 2.00in BOT
LOA0 FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy-------------------------------------------->
L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref
SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in)
1 3 33.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS- -- - - ->
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 12.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 33.83
2 2 12.00 10.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 57.83
<--------------------COLuMNS-------------------->
<--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES
H C2 C1 Far H C2 C1 Far A Yt St Sb
JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31
1 9.67 24.00 20.00 Fix 0.00 0.00 0.00 Fix 1 855.00 8.96 7383.25 3142.75
2 9.67 24.00 24.00 Fix 0.00 0.00 0.00 Fix 2 855.00 8.96 7383.25 3142.75
3 9.67 24.00 20.00 Fix 0.00 0.00 0.00 Fix
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<?------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
SPAN L M(X-ft) R L M(X-ft) R L R
1 -42.88 68.00(13.6) -242.24 17.84 -24.53(13.6) 153.06 15.56 34.80
2 -427.02 248.26(29.0) -292.78 290.58 - 169.11(29.0) 209.94 172.32 205.82
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS ( FACTORED)
1 13.84 33.81(16.8) 0.00 -28.76 O.OO( 7.2) -84.30 1 0.00 128.29
2 0.00 89.27(29.0) 3.61 -148.61 O.OO(45.8) -105.51 2 0.00 331.84
SPAN L M(x-ft) R L M(X-ft 1 R JOINT TOP BOT
3 0.00 -452.46
.-
c
c
Frame Design Group, Inc. Sheet No. 43
2 Faraday. Suite 101 Toyota Carl sbad
Irvine. CA 92618 620
949/595-8015 Page 2 _________- ...................................... PTData for Windows {V2,OOO-O229}====-================================
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.235 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 132.35 7.35 5.0 8.75 13.00 0.00 3.00 0.155 0.279
2 238.22 13.23 9.0 3.00 27.00 0.00 8.75 0.279 0.279
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0)
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP, BOT TOP BOT
1 0.00 0.00 0.41 0.00 2.17 0.00 1 0.00 0.00 0.00 0.60
2 1.79 0.00 3.90 0.00 2.17 0.00 2 0.00 0.40 0.00 2.11
3 0.03 0.00 2.61 0.00 2.17 0.00 Rebar Weight=0.769 psf
ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) D+L/4(%R=10.0)
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT
1 0.00 0.00 0.36 0.00 2.17 0.00 1 0.00 0.00 0.00 0.65
2 1.32 0.00 3.47 0.00 2.17 0.00 2 0.00 0.64 0.00 2.40
3 0.00 0.00 2.33 0.00 2.17 0.00 Rebar Weight=O. 776 psf
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0)
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT
1 0.00 0.00 0.34 0.00 2.17 0.00 1 0.00 0.04 0.00 0.71
2 0.60 2.85 3.38 0.49 2.17 0.00 2 0.00 1.01 0.00 2.55
3 0.00 1.95 2.25 0.00 2.17 0.00 Rebar Weight=0.916 psf
Section 5 - B E A M S H E A R D E S I G N
X Left Vu Mu Vcn vcw Vci Av #4@
Span 1 L=33.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c max. for Span 1
Span 2 L=57.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c max. for Span 2
X Left Vu Mu Vcn vcw Vci Av #4@
MIN
TOP BOT
0.00 1.25
0.00 1.25
MIN
TOP BOT
0.00 1.25
0.00 1.25
MIN
TOP BOT
0.00 1.25
0.00 1.25
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS
<-----------------------Stresses (ksi)-----------------------> <-----Deflections (in 1 - - - - ->
SPAN Tension (x) Compression (XI Tension (XI Compression (x) SPAN Delta L/Delta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T 0.003 ( 32.83) -0.278 ( 13.63) -0.125 ( 26.43) -0.254 ( 29.63) 1 0.016 25397 0.018 21969 B 0.135 ( 13.63) -0.941 ( 32.83) -0.036 ( 13.63) -0.547 ( 32.83) 2 0.118 5877 0.134 5188
2 T 0.185 ( 1.00) -0.552 ( 29.00) -0.198 ( 1.00) -0.399 ( 29.00)
B 0.364 ( 29.00) -1.367 ( 1.00) -0.152 ( 29.00) -0.623 ( 1.00)
c
Frame Design Group, Inc.
2 Faraday. Suite 101
Sheet No. w
Toyota Carl sbad
c Section7 - FACTORED
Maximum Axial Load
Axial Column Moment
Load Top Bottom
JOINT (kips) (k-ft) (k-ft)
1 42.00 0.00 128.29
2 159.33 0.00 261.16
P
c 3 85.31 0.00 -452.46
COLUMN LOADS
Maximum Moment
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
42.00 0.00 128.29
142.64 0.00 331.84
85.31 0.00 -452.46
c
2 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0
TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi
TENDON DIAM51.00in MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
0.004A @ TOP & BOT DL + LL/4 RATIO=1.67
Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy-------------------------------------------->
L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref
SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in)
1 3 33.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
<-------TENDON PROFILE-------> CONC <- - - - - -SUPERIMPOSED LOADS- - - - - ->
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 12.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 33.83
2 2 12.00 10.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 57.83
<--------------------COLUMNS-------------------->
<--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES
H C2 C1 Far H C2 C1 Far A Yt St Sb
JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31
1 9.67 24.00 20.00 Fix 0.00 0.00 0.00 Fix 1 855.00 8.96 7383.25 3142.75
2 0.00 0.00 24.00 Fix 0.00 0.00 0.00 Fix 2 855.00 8.96 7383.25 3142.75
3 9.67 24.00 20.00 Fix 0.00 0.00 0.00 Fix
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<:------DEAD LOAD-------> <- - - ---BALANCED LOAD- - -> BEAM SECONDARY
SPAN L M( X- f t ) R L M(X-ft) R L R
1 -3.30 55.38( 10.4) -363.68 -9.19 -20.96( 7.2) 236.01 -11.48 117.75
2 -355.69 270.14(29.0) -320.37 241.86 - 184.05(29.0) 228.78 123.60 224.67
<------ MOST POS LL------> <------ MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 35.86 42.33(16.8) 0.00 -37.01 O.OO( 7.21 -126.57 1 0.00 112.41
2 0.00 101.44(29.0) 9.36 -123.79 O.OO(45.8) -120.85 2 0.00 0.00
3 0.00 -500.77
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
c
c
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.235 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 132.35 7.35 5.0 8.75 13.00 0.00 3.00 0.155 0.279
2 238.22 13.23 9.0 3.00 27.00 0.00 8.75 0.279 0.279
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) O+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.14 0.00 2.17 0.00 1 0.00 0.00 0.00 0.49 0.00 1.25
2 1.04 0.00 3.27 0.00 2.17 0.00 2 0.00 0.71 0.00 2.31 0.00 1.25
3 0.48 0.00 2.89 0.00 2.17 0.00 Rebar Wei ght=O. 772 psf
ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) O+L/4(%R=10.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.12 0.00 2.17 0.00 1 0.00 0.00 0.00 0.56 0.00 1.25
2 0.76 0.00 3.21 0.00 2.17 0.00 2 0.00 0.82 0.00 2.56 0.00 1.25
3 0.20 0.00 2.58 0.00 2.17 0.00 Rebar Weight=0.791 psf
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.12 0.00 2.17 0.00 1 0.00 0.00 0.00 0.60 0.00 1.25
2 0.62 2.87 3.20 0.32 2.17 0.00 2 0.00 1.18 0.00 2.70 0.00 1.25
3 0.00 2.41 2.47 0.00 2.17 0.00 Rebar Weight=0.942 psf
Section 5 - B E A M S H E A R D E S I G N
X Left Vu Mu Vcn vcw Vc i Av #4@
Span 1 L=33.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c max. for Span 1
Span 2 L=57.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c max. for Span 2
X Left Vu Mu Vcn vcw Vci Av #4@
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS
<-----------------------Stresses (ksi)-----------------------> <-----Deflections (i n) - - - - ->
SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Oelta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T 0.135 ( 32.83) -0.274 ( 13.63) -0,099 ( 26.43) -0.236 ( 10.43) 1 -0.011 36055 0.026 15652
B 0.124 ( 13.63) -1.249 ( 32.83) -0.052 ( 10.43) -0.630 ( 32.83) 2 0.136 5095 0.165 4197
2 T 0.108 ( 1.00) -0.583 ( 29.00) -0.219 ( 1.00) -0.405 ( 29.00)
B 0.437 ( 29.00) -1.186 ( 1.00) -0.137 ( 29.00) -0.574 ( 1.00)
c
Frame Design Group, Inc
2 Faraday, Suite 101
Sheet No. 9 7
Tovota Carl sbad
Section 7 - F A C T 0 R E D
Maximum Axial Load
Axial Column Moment
Load Top Bottom
JOINT (kips) (k-ft) (k-ft)
1 33.30 0.00 112.41
2 168.06 0.00 0.00
3 90.67 0.00 -500.77 c
c-
c
c
c
c
c
c
c
c
C OLUMN LOADS
Maxi mum Moment
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
33.30 0.00 112.41
152.53 0.00 0.00
90.67 0.00 -500.77
P
c
c
c
2 SPANS 0 CANTILEVERS SKIP LL DL FACTDR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SORT f'c=530psi %SUP.DL@TRANSFER=O.O
TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60. OOksi
TENDON DIAM=l ,001 n MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy--------------------------------.----------->
L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref
SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in)
1 2 33.83 15.00 30.00 5.00 0.00 9.00 9.00 4.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
<-------TENDON PROFILE-------> CONC <- - - - - -SUPERIMPOSE0 LOADS- - - - - ->
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 12.00 0.00 0.00 0.00 0.992 1 U 0.002 0.030 0.00 33.83
2 2 12.00 10.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 57.83
<--------------------COLUMNS-------------------->
<.-------Bottom------> <--------Top---------> BEAM CROSS- SECTION PROPERTIES
H C2 C1 Far H C2 C1 Far A Yt St Sb
JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in3)
1 9.67 24.00 20.00 Fix 0.00 0.00 0.00 Fix 1 652.50 11.12 5035.03 2965.84
2 9.67 24.00 24.00 Fix 0.00 0.00 0.00 Fix 2 855.00 8.96 7383.25 3142.75
3 9.67 24.00 20.00 Fix 0.00 0.00 0.00 Fix
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<:------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
SPAN L M(X-ft) R L M(X-ft) R L R
1 -20.46 39.24( 10.4) -189.87 6.43 -13.12(10.4) 148.15 5.37 -13.06
2 -415.71 251.73(29.0) -297.16 281.63 -171.85(29.0) 213.40 163.37 209.29
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 13.07 32.48(16.8) 0.00 -30.47 O.OO( 7.2) -80.51 1 0.00 100.13
2 0.00 89.54(29.0) 3.68 -147.88 O.OO(45.8) -105.85 2 0.00 369.26
SPAN L M(x-ft) R L M(X-ft) R JOINT TOP BOT
3 0.00 -455.88
c
c
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.226 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 105.88 5.88 4.0 11.00 11.75 0.00 3.00 0.162 0.365
2 238.22 13.23 9.0 3.00 27.00 0.00 8.75 0.279 0.279
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.24 0.00 1.48 0.00 1 0.00 0.00 0.00 0.37 0.00 1.13
2 1.70 0.00 3.79 0.00 2.17 0.00 2 0.00 0.43 0.00 2.13 0.00 1.25
3 0.06 0.00 2.65 0.00 2.17 0.00 Rebar Weight=0.749 psf
ULT ( %R= 6 .7 ) D+L / 4 ( %R= 1 0 . 0 ) MIN ULT(%R= 6.7) D+L/4(%R=10.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.22 0.00 1.48 0.00 1 0.00 0.00 0.00 0.41 0.00 1.13
2 1.24 0.00 3.38 0.00 2.17 0.00 2 0.00 0.66 0.00 2.42 0.00 1.25
3 0.00 0.00 2.37 0.00 2.17 0.00 Rebar Wei ght=O. 756 psf
ULT(%R=15.0) D+L/4(%R=l5.0 1 MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.21 0.00 1.48 0.00 1 0.00 0.00 0.00 0.45 0.00 1.13
2 0.54 2.79 3.29 0.40 2.17 0.00 2 0.00 1.03 0.00 2.57 0.00 1.25
3 0.00 1.98 2.28 0.00 2.17 0.00 Rebar Weight=0.894 psf
Section5-BEAM SHEAR DESIGN
X Left Vu Mu Vcn vcw Vci AV #4@
Span 1 L=33.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c max. for Span 1
Span 2 L=57.83ft
X Left Vu Mu Vcn vcw Vci Av #4@
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in olc max. for Span 2
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in)--- -->
SPAN Tension (x) Compression (XI Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T 0.024 ( 26.43) -0.305 ( 29.63) -0.081 ( 26.43) -0.413 ( 29.63) 1 0.008 53977 0.020 19834
B 0.065 ( 13.63) -0,860 ( 32.83) -0.098 ( 10.43) -0.473 ( 32.83) 2 0.120 5787 0.134 5160
2 T 0.180 ( 1.00) -0.554 ( 29.00) -0.199 ( 1.00) -0.399 ( 29.00)
B 0.368 ( 29.00) -1.355 ( 1.00) -0.151 ( 29.00) -0.620 ( 1.00)
JOINT
1
2
3
c
c-
Section7-FACTORED COLUMN LOADS
Maxi mum Axi a1 Load Maximum Moment
Axi a1 Col umn Moment Axial Column Moment
Load Top Bottom Load Top Bottom
kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
32.19 0.00 100.13 32.19 0.00 100.13
43.41 0.00 297.31 126.75 0.00 369.26
85.97 0.00 -455.88 85.97 0.00 -455.88
P
2 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0
TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=l. 67 REBAR YIELD=60.00ksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE411 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy------------------------------------------.->
L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref
SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in)
1 2 33.83 15.00 30.00 5.00 0.00 9.00 15.00 4.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------>
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 12.00 0.00 0.00 0.00 0.992 1 U 0.002 0.030 0.00 33.83
2 2 12.00 10.00 0.00 0.00 0.00 1.516 1 P 11.500 4.000 19.17 0.00
2 U 0.002 0.030 0.00 57.83
c--------------------COLUMNS-------------------->
<--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES
H C2 C1 Far H C2 C1 Far A Yt St Sb
JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in2) (in) (in31 (in31
1 5.00 24.00 20.00 Fix 0.00 0.00 0.00 Fix 1 652.50 11.12 5035.03 2965.84
2 10.83 24.00 24.00 Fix 0.00 0.00 0.00 Fix 2 855.00 8.96 7383.25 3142.75
3 0.00 0.00 20.00 Fix 0.00 0.00 0.00 Fix
SPAN
1
2
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored. All Other Moments are Unfactored
<--.----DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
L M(X-ft) R L M(X-ft) R L R
-46.38 50.78( 13.6) -280.08 3.05 -19.94(10.4) 267.36 1.99 52.42
561.34 376.09(34.6) 27.97 495.60 -332.29( 34.6) 10.44 337.92 4.96
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 27.51 52.53(16.8) 0.00 -73.32 O.OO(10.4) -120.80 1 0.00 225.77
2 0.00 134.13(34.6) 9.85 -200.45 -0.19(57.0) -0.19 2 0.00 380.73
3 0.00 0.00
SPAN L M(X-ft) R L M(x-ft 1 R JOINT TOP BOT
c
Frame Design Group, Inc. Sheet No. /e%
2 Faraday. Suite 101
Irvine. CA 92618 B24R
949/595 - 80 15 Page 2
Toyota Carlsbad
........................................ PTData for Windows {V2,000-0229}======================================
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.257 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 105.88 4.41 4.0 11.00 15.00 0.00 3.00 0.162 0.487
2 317.63 17.65 12.0 3.00 27.00 0.00 8.75 0.371 0.371
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0)
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT
1 0.15 0.00 0.57 0.00 1.48 0.00 1 0.00 0.33 0.00 0.52
2 1.62 0.00 5.30 0.00 2.17 0.00 2 0.00 0.44 0.00 3.20
3 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=0.773 psf
ULT( %R= 6.7) D+L/4(%R=10.0 MIN ULT(%R= 6.7) D+L/4(%R=10.0)
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT
1 0.04 0.00 0.51 0.00 1.48 0.00 1 0.00 0.25 0.00 0.57
2 0.89 0.76 4.71 0.00 2.17 0.00 2 0.00 0.54 0.00 3.37
3 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=O. 788 psf
ULT( %R=15.0 D+L/4( %R=15.0) MIN ULT ( %R= 15.0 O+L /4 ( %R=15.0
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT
1 0.00 0.27 0.48 0.00 1.48 0.00 1 1.20 0.64 0.00 0.65
2 0.07 3.72 4.48 1.60 2.17 0.00 2 0.00 0.77 0.00 3.47
3 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=0.912 psf
Section5-BEAM SHEAR DESIGN
X Left Vu Mu Vcn vcw Vci Av #4@
Span 1 L=33.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c max. for Span 1
Span 2 L=57.83ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
X Left Vu Mu Vcn vcw Vci Av #4@
Use #4@22.50in o/c max. for Span 2
MIN
TOP BOT
0.00 1.13
0.00 1.25
MIN
TOP BOT
0.00 1.13
0.00 1.25
MIN
TOP BOT
0.00 1.13
0.00 1.25
Section6-CONCRETE FLEXURAL STRESSES AN0 DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <- - - - -Def 1 ecti ons ( i n) - - - - ->
SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Oelta Delta L/Oelta
Service Loads Transfer of Prestress DL + Bal LL
1 T 0.116 ( 0.83) -0.456 ( 32.83) -0.087 ( 26.43) -0.754 ( 32.83) 1 0.015 27610 0.030 13753
B 0.218 ( 16.83) -1,027 ( 32.83) -0.150 ( 10.43) -0.458 ( 29.63) 2 0.073 9482 0.223 3109
2 T 0.061 ( 1.00) -0.661 ( 34.60) -0.402 ( 29.00) -0.498 ( 57.00)
B 0.308 ( 34.60) -1.388 ( 1.00) -0.282 ( 57.00) -0.508 ( 29.00)
c
c Section 7 - F A C T 0 R E D
Maximum Axial Load
Axial Column Moment
Load Top Bottom
JOINT (kips) (k-ft) (k-ft)
1 43.77 0.00 225.77
2 191.14 0.00 276.93
?-- 3 62.43 0.00 0.00
c
c
c
c
COLUMN LOADS
Maximum Moment
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
43.77 0.00 225.77
166.72 0.00 380.73
62.43 0.00 0.00
c-
3 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0
TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
0.004A @ TOP & BOT DL + LL/4 RATIO=1.67
Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy-------------------------------------------->
L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref
SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in)
1 3 16.00 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
2 3 33.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
3 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------>
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 10.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 16.00
2 2 10.00 12.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 33.83
3 2 12.00 10.00 0.00 0.00 0.00 1.516 3 U 0.002 0.030 0.00 57.83
<--------------------COLUMNS-------------------->
<--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES
H C2 C1 Far H C2 C1 Far A Yt St Sb
JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31
1 0.00 0.00 20.00 Fix 0.00 0.00 0.00 Fix 1 855.00 8.96 7383.25 3142.75
2 0.00 0.00 20.00 Fix 0.00 0.00 0.00 Fix 2 855.00 8.96 7383.25 3142.75
3 0.00 0.00 24.00 Fix 0.00 0.00 0.00 Fix 3 855.00 8.96 7383.25 3142.75
4 9.67 24.00 20.00 Fix 0.00 0.00 0.00 Fix
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
SPAN L M(X-ft) R L M( x-ft) R L R
1 7.96 33.51( 6.6) -23.80 2.11 -13.65( 5.1) 57.66 0.28 5.10
2 -23.00 42.75(10.4) -359.81 61.67 -48.42( 13.6) 270.37 9.10 152.12
3 -351.20 271.52(29.0) -322.10 275.81 -173.64(29.0) 215.65 157.55 211.54
P
<------MOST pOS LL------>
SPAN L M(X-ft) R
1 5.32 40.92(15.2) 40.92
2 39.26 40.79(16.8) 1.26
3 1.46 101.65(29.0) 9.02
<------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
L M(X-ft) R JOINT TOP BOT
-2.55 -2.55( 0.8) -49.20 1 0.00 0.00
-47.27 -4.87( 7.2) -126.48 2 0.00 0.00
123.68 -0.16(45.8) - 121.12 3 0.00 0.00
4 0.00 -517.64
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.210 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksil
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 105.88 5.88
2 105.88 5.88
3 238.22 13.23
ULT(%R= 0.0)
JOINT TOP BOT
1 0.00 0.00
2 0.00 0.00
3 1.11 0.00
4 0.64 0.00
ULT(%R= 6.7)
JOINT TOP BOT
1 0.00 0.00
2 0.00 0.00
3 1.11 0.24
4 0.34 0.03
ULT(%R=15.0)
JOINT TOP BOT
1 0.00 0.00
2 0.00 0.00
3 1.11 2.98
4 0.00 2.58
4.0 8.75 10.25 0.00 3.00 0.124 0.124
4.0 3.00 22.75 0.00 3.00 0.124 0.279
9.0 3.00 27.00 0.00 8.75 0.279 0.279
Section 4 - R E B A R R E Q U I R E M E N T S (in21
D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0)
TOP BOT TOP BOT SPAN TOP BOT TOP BOT
0.00 0.00 0.00 0.00 1 0.00 0.12 0.00 0.34
0.33 0.00 2.17 0.00 2 0.00 0.14 0.00 0.39
3.24 0.00 2.17 0.00 3 0.00 0.82 0.00 2.32
2.90 0.00 -2.17 0.00 Rebar Wei ght=O. 726 psf
D+L/4(%R=lO.O) MI N ULT(%R= 6.7) D+L/4(%R=10.0)
TOP BOT TOP BOT SPAN TOP BOT TOP BOT
0.00 0.00 0.00 0.00 1 0.00 0.12 0.00 0.34
0.32 0.00 2.17 0.00 2 0.00 0.14 0.00 0.45
3.18 0.00 2.17 0.00 3 0.00 0.92 0.00 2.57
2.60 0.00 2.17 0.00 Rebar Weight=0.748 psf
Span 1 L=16.00ft
X Left Vu Mu
(ft) (k) (k-ft)
Use #4@24. OOi n o/c rnax
Span 2 L=33.83ft
X Left Vu Mu
(ft) (k) (k-ft)
Use #4@22.50in o/c rnax
D+L/4( %R=15.0) MI N ULT(%R=15.0) D+L/4(%R=15.0)
TOP BOT TOP BOT SPAN TOP BOT TOP BOT
0.00 0.00 0.00 0.00 1 0.00 0.14 0.00 0.34
0.32 0.00 2.17 0.00 2 0.00 0.14 0.00 0.49
3.17 0.29 2.17 0.00 3 0.00 1.27 0.00 2.71
2.49 0.00 2.17 0.00 Rebar Weight=0.876 psf
Span 3 L=57.83ft
X Left Vu Mu
(ft) (k) (k-ft)
Section5-BEAM SHEAR DESIGN
Vcn vcw Vci Av #4@
(k) (k) (k) (in2/ft) (in)
for Span 1
Vcn vcw Vci AV #4@
(k) (k) (k) (in2/ft) (in)
for Span 2
Vcn vcw Vci Av #4@
(k) (k) (k) (in2/ft) (in) Use #4@22.50in o/c rnax. for Span 3
CODE
CODE
CODE
MIN
TOP BOT
0.00 1.25
0.00 1.25
0.00 1.25
MIN
TOP BOT
0.00 1.25
0.00 1.25
0.00 1.25
MIN
TOP BOT
0.00 1.25
0.00 1.25
0.00 1.25
P-
A
c Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in)- - - -->
SPAN Tension (x) Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL
1 T -0.099 ( 15.17) -0,245 ( 15.17) -0.161 ( 0.83) -0.216 ( 15.17) 1 0.004 43332 0.006 30288
B 0.162 ( 15.17) -0.182 ( 15.17) 0.024 ( 15.17) -0.105 ( 0.83) 2 -0.039 10421 0.025 16505
2 T 0.172 ( 26.43) -0.250 ( 0.83) -0.004 ( 26.43) -0.267 ( 32.83) 3 0.169 4118 0.168 4128
c
c 6 0.174 ( 0.83) -1.178 ( 29.63) 0.044 ( 0.83) -0.763 ( 29.63)
3 T 0.091 ( 57.00) -0.603 ( 29.00) -0.223 ( 57.00) -0.427 ( 29.00)
B 0.483 ( 29.00) -1.148 ( 57.00) -0.086 ( 29.00) -0.566 ( 57.00)
Section 7 - F A C T 0 R E D -
Maximum Axial Load
Axi a1 Column Moment -- Load Top Bottom
JOINT (kips) (k-ft) (k-ft)
1 25.17 0.00 0.00
2 68.61 0.00 0.00
3 168.12 0.00 0.00
4 90.01 0.00 -517.64
COLUMN LOADS
Maximum Moment
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
25.17 0.00 0.00
60.15 0.00 0.00
152.39 0.00 0.00
90.01 0.00 -517.64
c
Frame Design Group, Inc. Sheet No. lo?
2 Faraday, Suite 101
Irvine. CA 92618
949/595- 8015 ==============--------------==========PToata for Windows {v2,oOo-o229}======================================
POST TENSIONED BEAM DESIGN
05 - 13 - 2002
PROJECT: Toyota Carl sbad
MEMBER ID: B31R
STORAGE ID: C : \PTPLUS32\PTRUNS\T0YOTA-1\\B31RI PTD
3 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f’c=424psi BOT 7.5 SQRT f’c=530psi %SUP. DL@TRANSFER=O . 0
TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONOEO. LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60.00ksi
TENDON DIAM=l. OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy-------------------------------------------->
L Bbot H tL tR TribL TribR FL FR Btop 8web Y1 Y2 Y3 Y4 Yref
SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in)
1 3 30.00 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
2 2 33.83 15.00 30.00 5.00 0.00 9.00 9.00 4.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS- - - - - ->
CL cR A B C DL LOAD DL LL A 8
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 10.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 30.00
2 2 10.00 12.00 0.00 0.00 0.00 0.992 2 U 0.033 0.030 0.00 33.83
3 2 12.00 10.00 0.00 0.00 0.00 1.516 3 U 0.002 0.030 0.00 57.83
<--------------------COLUMNS-------------------->
<--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES
H C2 C1 Far H C2 C1 Far A Yt St Sb
JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31
1 10.83 24.00 20.00 Fix 0.00 0.00 0.00 Fix 1 855.00 8.96 7383.25 3142.75
2 10.83 24.00 20.00 Fix 0.00 0.00 0.00 Fix 2 652.50 11.12 5035.03 2965.84
3 10.83 24.00 24.00 Fix 0.00 0.00 0.00 Fix 3 855.00 8.96 7383.25 3142.75
4 10.83 24.00 20.00 Fix 0.00 0.00 0.00 Fix
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored. All Other Moments are Unfactored
<-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
SPAN L M( X- ft 1 R L M(X-ft) R L R
1 -48.37 73.24(12.2) -118.03 47.50 -58.58( 12.2) 113.19 45.67 60.63
2 -100.52 45.39(13.6) -222.92 131.01 -64.77( 16.8) 234.61 59.36 91.31
3 -422.89 256.66(29.0) -280.11 270.81 -150.34(29.0) 174.04 165.69 170.39
P
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 5.75 32.64(15.0) 8.66 -22.71 -0.24( 6.5) -49.29 1 0.00 95.89
2 17.41 31.22(16.8) 5.89 -51.57 -9.38(10.4) -82.61 2 0.00 -77.75
3 1.36 92.53(29.0) 3.67 -148.31 -0.13(45.8) -101.23 3 0.00 423.58
4 0.00 -463.09
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.183 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 105.88 5.88 4.0 8.75 21.50 0.00 3.00 0.124 0.124
2 105.88 5.88 4.0 3.00 27.00 0.00 3.00 0.162 0.325
3 211.75 11.76 8.0 3.00 27.00 0.00 8.75 0.248 0.248
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MI N ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.43 0.00 2.17 0.00 1 0.00 0.00 0.00 0.63 0.00 1.25
2 0.00 0.00 1.04 0.00 2.17 0.00 2 0.00 0.00 0.00 0.42 0.00 1.13
3 2.25 0.00 3.86 0.00 2.17 0.00 3 0.00 0.96 0.00 2.18 0.00 1.25
4 0.47 0.00 2.49 0.00 2.17 0.00 Rebar Weight=0.716 psf
ULT(%R= 6.7) D+L/4(%R=10.0) MI N ULT(%R= 6.7) D+L/4(%R=10.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.38 0.00 2.17 0.00 1 0.00 0.00 0.00 0.66 0.00 1.25
2 0.00 0.00 0.95 0.00 2.17 0.00 2 0.00 0.00 0.00 0.47 0.00 1.13
3 1.78 0.00 3.44 0.00 2.17 0.00 3 0.00 1.18 0.00 2.46 0.00 1.25
4 0.22 0.00 2.23 0.00 2.17 0.00 Rebar Wei ght=0 ,721 psf
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.36 0.00 2.17 0.00 1 0.00 0.00 0.00 0.70 0.00 1.25
2 0.00 0.00 0.95 0.00 2.17 0.00 2 0.00 0.00 0.00 0.54 0.00 1.13
3 1.07 2.85 3.35 0.46 2.17 0.00 3 0.00 1.56 0.00 2.61 0.00 1.25
4 0.00 2.05 2.15 0.00 2.17 0.00 Rebar Wei ght=0 ,828 psf
Section5-BEAM SHEAR DESIGN
Span 1 L=30.00ft
X Left Vu Mu
(ft) (k) (k-ft)
Use #4@24.00in o/c max.
Span 2 L=33.83ft
X Left Vu Mu
(ft) (k) (k-ft)
Use #4@22.50in o/c max.
Span 3 L=57.83ft
X Left Vu Mu
(ft) (k) (k-ft)
Use #4@22.50in o/c rnax.
Vcn vcw Vci Av #4@
(k) (k) (k) (in2/ft) (in) CODE
for Span 1
Vcn vcw Vc i Av #4@
(k) (k) (k) (in2/ft) (in) CODE
for Span 2
Vcn vcw Vc i AV #4@
(k) (k) (k) (in2/ft) (in) CODE
for Span 3
c Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in 1 - - - - ->
SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL
1 T -0.036 ( 29.17) -0.201 ( 15.00) -0.148 ( 0.83) -0.206 ( 29.17) 1 0.008 44863 0.016 23116
B 0.058 ( 15.00) -0.331 ( 29.17) -0.001 ( 29.17) -0.136 ( 0.83) 2 -0.024 16773 0.019 21154
2 T 0.026 ( 26.43) -0,366 ( 32.83) -0.021 ( 20.03) -0.607 ( 32.83) 3 0.172 4043 0.146 4741
c
- B 0.032 ( 0.83) -0.770 ( 29.63) 0.186 ( 0.83) -0.493 ( 29.63)
3 T 0.241 ( 1.00) -0.571 ( 29.00) -0.148 ( 1.00) -0.417 ( 29.00)
B 0.512 ( 29.00) -1.395 ( 1.00) 0.011 ( 29.00) -0.621 ( 1.00)
Section 7 - F A C T 0 R E D c
Maxi mum Ax; a1 Load
Ax; a1 Column Moment
c Load Top Bottom
1 42.52 0.00 95.89
3 157.71 0.00 351.08
JOINT (kips) (k-ft) (k-ft)
2 99.88 0.00 -20.96
4 84.53 0.00 -463.09
COLUMN LOADS
Maximum Moment
Axial Column Moment
Load Top Bottom
42.52 0.00 95.89
140.46 0.00 423.58
(kips) (k-ft) (k-ft)
79.04 0.00 -77.75
84.53 0.00 -463.09
1c
c
c
c
c
c
e
c-
Frame Design Group, Inc. Sheet No. l/o 2 Faraday, Suite 101
Imine, CA 92618
949/595-8015 ======================================PTData for Windows (V2.000-OZ29}======================================
POST TENSIONED BEAM DESIGN
03-25-2002
PROJECT : Toyota Carlsbad MEMBER ID: rn or10
STORAGE ID: C:\PTPLUS32\PTRUNS\TOYOTA-l\\WTll.PTD
.................................... .................................... Copyright 2000 Structural Data Inc.============================P==========
1 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT fVc=530psi %SUP.DLBTRANSFER=O.O TENDON COVER: INTERIOR SPANS TOP 2.00 in EXTERIOR SPANS TOP 2.00 in UNBONDED, LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A B TOP & BOT DL + LL/4 RATIO=l.OO REBAR YIELD=60.00ksi
TENDON DIAM=O.SOin MAX LONG BAR SIZE=#5 STIRRUP SIZE44 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1.7/1.3/1.4/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=l.OO No Top Columns B Stressing
BOTTOM 2.00 in BOTTOM 2.00 in
.................................... .................................... Copyright 2000 Structural Data Inc.============r========================
Sectionl-BEAM INPUT DATA c----------------------------------------GEOMETRy-------------------------------------------->
L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref
SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in)
1 4 30.00 0.00 49.00 5.00 5.00 3.50 3.50 3.67 3.67 14.00 0.00 0.00 0.00 0.00 0.00 0.00
< - - - - - - - TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------>
CL CR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k,ft) (k,ftl (ft) (ft) 1 2 10.00 12.00 0.00 0.00 0.00 1.079 1u 0.002 0.030 0.00 30.00
<--------------------COLUMNS-------------------->
< - - - - - - - - Bottom- - -- - -> <--------Top--------->
H c2 C1 Far H c2 C1 Far A Yt St Sb
BEAM CROSS-SECTION PROPERTIES
JOINT (ft) (in) (in) End (ft) (in) (in) End s PAN (in21 (in) (in3 ) (in3)
1 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix 1 836.20 28.45 6931.36 9597.33
2 10.83 20.00 24.00 Fix 9.67 20.00 24.00 Fix
Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored
BEAM SECONDARY <-------DEAD LOAD-------> <------ BALANCED LOAD----> s PAN L M(x-ft) R L M(x-ft) R L R
1 -27.44 76.17(14.9) -37.04 44.31 -82.52(14.9) 55.35 39.33 50.37
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS (FACTORED )
1 0.00 11.55 (14.9) 0.00 -8.28 O.OO( 6.5) -10.26 1 22.62 19.45
s PAN L M(x-ft) R L M(x-ft) R JOINT TOP BOT
2 -28.15 -25.08
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weiqht=0.400 psf
SPAN
1 c
JOINT
c. 1
2
JOINT
c- 1
2
c JOINT
1
2
Ef f Force
(k) (k/ft) 132.35 18.91
ULT(%R= 0.0) TOP BOT
0.00 0.00 0.00 0.00
ULT(%R= 6.7)
TOP BOT
0.00 0.00
0.00 0.00
ULT (%R=15.0)
TOP BOT
0.00 0.00
0.00 0.00
No. CGS Dim. (in. from datum) F/A(ksi)
Strands HiL Lo1 Lo2 HiR Min Max
5.0 28.00 40.00 0.00 28.00 0.158 0.158
Section 4 - R E B A R R E Q U I R E M E N T S (in2) D+L/4 (%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0)
TOP BOT TOP BOT SPAN TOP BOT TOP BOT 0.13 0.00 1.59 0.00 1 0.00 0.00 0.00 0.34
0.17 0.00 1.59 0.00 Rebar Weight=1.813 psf
D+L/4 (%R=10.0) MIN ULT (%R= 6.7) D+L/4 (%R=10.0)
TOP BOT TOP BOT SPAN TOP BOT TOP BOT 0.12 0.00 1.59 0.00 1 0.00 0.00 0.00 0.36
0.16 0.00 1.59 0.00 Rebar Weight=1.813 psf
D+L/4 (%R=15.0) MIN ULT(%R=15.0) D+L/4 (%R=15.0) TOP BOT TOP BOT SPAN TOP BOT TOP BOT
0.12 0.00 1.59 0.00 1 0.00 0.00 0.00 0.36 0.16 0.00 1.59 0.00 Rebar Weight=1.813 psf
MIN
TOP BOT
0.00 1.75
MIN
TOP BOT
0.00 1.75
MIN TOP BOT
0.00 1.75
c
L-
F-
c
Section5-BEAM SHEAR DESIGN Span 1 L=30.00ft
X Left Vu Mu Vcn vcw Vc i Av #4@ (ft) (k) (k-ft) (k) (k) (k) (inz/ft) (in) Use #4024.00in o/c max. for Span 1
Section6-CONCRETE FLEXURAL STRESSES AND c-----------------------Stresses (ksi)----------------------->
Service Loads Transfer of Prestress
SPAN Tension (x) Compression (x) Tension (x) Compression (x) 1 T -0.147 ( 14.92) -0.190 ( 29.00) -0.148 ( 14.92) -0.233 ( 29.00)
B -0.135 ( 29.00) -0.166 ( 14.92) -0.150 ( 29.00) -0.211 ( 14.92)
Section7-FACTORED COLUMN LOADS Maximum Axial Load Maximum Moment
Axial Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 27.16 22.62 19.45 27.16 22.62 19.45
2 29.47 -28.15 -25.08 29.47 -28.15 -25.08
CODE
DEFLECTIONS
e----- Deflections (in) ----->
DL + Bal LL SPAN Delta L/Delta Delta L/Delta
1 0.000 99999 0.002 99999
r” Frame Design Group, Inc.
2 Faradav. Suite 101
Sheet No. /%
c-
ic-
c
c
L
c
Imine, ti 92618
949/595-8015 ...................................... --------------------------------------PTData for Windows (V2.000-OZ29}======================================
POST TENSIONED BEAM DESIGN 03-18-2002
PROJECT : Toyota Carlsbad
MEMBER ID: PT BM/ G/L l/c-c.8-Upturn I STORAGE ID: C:\PTPLUS32\PTRUNS\TOYOTA-l\\B-C-C8.PTD
====================================Copyright 2000 StNctur-1 Data Inc.=====================================
1 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f1c=424psi BOT 7.5 SQRT f1c=530psi %SUP.DL@TRANSFER=O.O
TENDON COVER: INTERIOR SPANS TOP 2.00 in EXTERIOR SPANS TOP 2.00 in UNBONDED, LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.00 REBAR YIELD=CO.OOksi
TENDON DIAM=O.SOin MAX LONG BAR SIZE=#5 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1.7/1.3/1.4/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=l.OO No Top Columns @ Stressing
BOTTOM 2.00 in BOTTOM 2.00 in
copyright 2000 Structural Data Inc.=====================================
Section1 - BEAM INPUT DATA <----------------------------------------GEOMETRY-------------------------------------------->
L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref
SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in)
1 4 39.17 0.00 49.00 5.00 5.00 3.00 3.00 3.67 3.67 14.00 0.00 0.00 0.00 0.00 0.00 0.00
< - - - - - - - TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------>
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k,ft) (k,ftl (ftl (ft)
1 2 12.00 12.00 0.00 0.00 0.00 1.017 1u 0.002 0.030 0.00 39.17
<--------------------COLUMNS-------------------->
<--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES
H c2 C1 Far H c2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End s PAN (in21 (in) (in3 ) (in31
1 10.83 20.00 24.00 Fix 9.67 20.00 24.00 Fix 1 836.20 28.45 6931.36 9597.33
2 10.83 20.00 24.00 Fix 9.67 20.00 24.00 Fix
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <------ BALANCED LOAD----> BEAM SECONDARY SPAN L M(X-ft) R L M(x-ft) R L R
1 -69.77 107.88119.6) -69.77 87.46 -111.07 (19.6) 87.46 82.47 82.47
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS (FACTORED)
1 0.00 15.07 (19.6) 0.00 -16.02 O.OO( 8.4) -16.02 1 43.09 41.38 SPAN L M(X-ft) R L M(x-ft) R JOINT TOP BOT
2 -43.09 -41.38
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=O.460 psf
Eff Force No. CGS Dim. (in. from datum) F/A (ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 132.35 22.06 5.0 28.00 46.00 0.00 28.00 0.158 0.158 c
Section 4 - R E B A R R E Q U I R E M E N T S (in2) ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0)
JOINT TOP BOT
!.e 1 0.00 0.00 2 0.00 0.00
ULT(%R= 6.7) JOINT TOP BOT - 1 0.00 0.00 2 0.00 0.00
ULT (%R=15.0)
JOINT TOP BOT
1 0.00 0.00
2 0.00 0.00
TOP
0.32 0.32
D+L/4
TOP 0.30
0.30
D+L/4
TOP
0.30
0.30
BOT
0.00
0.00
%R=10.0)
BOT
0.00
0.00
%R=15.0)
BOT
0.00
0.00
TOP BOT 1.59 0.00
1.59 0.00
MIN
TOP BOT 1.59 0.00
1.59 0.00
MIN TOP BOT
1.59 0.00 1.59 0.00
SPAN TOP BOT TOP BOT
1 0.00 0.00 0.00 0.48
Rebar Weight=2.122 psf
ULT (%R= 6 .7) D+L/4 (%R=10.0)
SPAN TOP BOT TOP BOT
1 0.00 0.00 0.00 0.51
Rebar Weight=2.122 psf
ULT (%R=15.0) D+L/4 (%R=15.0) SPAN TOP BOT TOP BOT
1 0.00 0.00 0.00 0.53
Rebar Weight=2.122 psf
MIN TOP BOT
0.00 1.75
MIN
TOP BOT
0.00 1.75
MIN
TOP BOT
0.00 1.75
rrs
c-
1
c
Sections-BEAM SHEAR DESIGN
X Left Vu Mu Vcn vcw Vci Av #4@
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in)
Use #4@24.00in o/c max. for Span 1
Section 6 - C 0 N C RE T E F L E X U R A L S T R E S S E S AND
Span 1 L=39.17ft
<-----------------------Stresses (ksi)-----------------------,
Service Loads Transfer of Prestress
SPAN Tension (x) Compression (x) Tension (x) Compression (x)
1 T -0.153 ( 19.59) -0.189 ( 38.17) -0.145 ( 19.59) -0.242 ( 38.17)
B -0.136 ( 38.17) -0.162 ( 19.59) -0.143 ( 38.17) -0.213 ( 19.59)
Section7-FACTORED COLUMN LOADS
Maximum Axial Load Maximum Moment
Axial Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 34.20 43.09 41.38 34.20 43.09 41.38
2 34.20 -43.09 -41.38 34.20 -43.09 -41.38
CODE
DEFLECTIONS
<----- Deflections (in) ----->
DL + Bal LL
SPAN Delta L/Delta Delta L/Delta
1 0.000 99999 0.004 99999
c
P
1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. DL@TRANSFER=O. 0
TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATID=1.67 REBAR YIELDdO. OOksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE411 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1, fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
<-------TENDON PROFILE-------> CDNC <- - - - --SUPERIMPOSED LOADS- - - - - ->
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 2 10.00 8.00 0.00 0.00 0.00 0.942 1 U 0.002 0.050 0.00 30.00
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
SPAN L M(X-ft R L M(X-ft) R L R
1 -79.27 66.21(17.9) 7.30 29.81 -23.19(17.9) 1.48 29.00 0.66
<------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 -37.17 31.05(17.9) 3.43 -37.17 31.05(17.9) 3.43 1 0.00 175.68
2 0.00 0.00
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.249 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 105.88 11.76 4.0 18.75 23.00 0.00 18.75 0.181 0.181
,-..
c
Frame Design Group, Inc
2 Faraday. Suite 101
Sheet No. Id
Toyota Carlsbad
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+LI4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.17 0.00 0.67 0.00 1.06 0.00 1 0.00 0.00 0.00 0.57 0.00 1.28
2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=O. 932 psf
ULT(%R= 6.7) D+L/4(%R=lO.O) MIN ULT(%R= 6.7) D+L/4(%R=10.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.09 0.00 0.61 0.00 1.06 0.00 1 0.00 0.00 0.00 0.59 0.00 1.28
2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Wei ght=O. 932 psf
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT( %R=15.0 1 D+L/4 (%R=15.0 1 MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.57 0.00 1.06 0.00 1 0.00 0.00 0.00 0.60 0.00 1.28
2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Wei ght=O. 932 psf
Section 5 - B E AM S H E A R D E S I G N
X Left Vu Mu Vcn vcw Vci Av #4@
Span 1 L=30.00ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@23.25in o/c max. for Span 1
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <----- Deflections (in) - - - - ->
SPAN Tension (XI Compression (XI Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T 0.182 ( 0.83) -0.492 ( 17.93) -0.031 ( 0.83) -0.370 ( 17.93) 1 0.024 14745 0.017 20679
B 0.019 ( 17.93) -0.416 ( 0.83) -0.109 ( 17.93) -0.328 ( 0.83)
Section7-FACTORED COLUMN LOADS
Maximum Axial Load Maxi mum Moment
Axial Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 39.47 0.00 175.68 39.47 0.00 175.68 2 23.78 0.00 0.00 23.78 0.00 0.00 c
c
1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O. 0
TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED, LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60. OOksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1.7/1.3/ .9/ .75/1.4/1.7 fse=173.0ksi Col Ie/Ig=l. 00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
< - - - - - - - TENOON PROFILE- - - - - - -> CONC <------SUPERIMPOSED LOAOS------>
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 5 12.00 12.00 23.00 0.00 0.00 1.646 1 U 0.002 0.030 0.00 46.00
1 P 16.100 5.600 23.00 0.00
Section2 - BEAM AN0 COLUMN MOMENTS(k-ft)
Column Moments are Factored. All Other Moments are Unfactored
<-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
SPAN L M(X-ft) R L M(X-ft) R L R
1 -294:87 289.23(23.0) -294.87 125.96 -174.02(23.0) 125.96 125.96 125.96
<------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 -106.35 85.93(23.0) -106.35 -106.35 85.93(23.0) -106.35 1 177.19 391.99
SPAN L M(X-ft) R L M( X- ft ) R JOINT TOP BOT
2 -177.19 -391.99
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.243 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 211.75 11.76 8.0 10.00 27.00 0.00 10.00 0.212 0.212
c-
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0)
JOINT TOP BOT
1 1.30 0.00
2 1.30 0.00
ULT(%R= 6.7)
JOINT TOP BOT
1 1.00 0.00
2 1.00 0.00
ULT(%R=15.0)
JOINT TOP BOT
1 0.64 2.31
2 0.64 2.31
D+L/4(%R= 0.0) MIN ULT(%R= 0.0)
TOP BOT TOP BOT SPAN TOP BOT
2.58 0.00 2.40 0.00 1 0.00 0.79
2.58 0.00 2.40 0.00 Rebar Wei ght=0 ,838
D+L/4(%R=10 .O) MIN ULT(%R= 6.7)
TOP BOT TOP BOT SPAN TOP BOT
2.31 0.00 2.40 0.00 1 0.00 1.06
2.31 0.00 2.40 0.00 Rebar Weight=O .86B
D+L/4(%R=15.0) MIN ULT(%R=15.03
TOP BOT TOP BOT SPAN TOP BOT
2.18 0.00 2.40 0.00 1 0.00 1.40
2.18 0.00 2.40 0.00 Rebar Weight=l.O37
O+L/4( %R= 0.0 1
TOP BOT
0.00 2.40
DSf
O+L/4(%R=10.0)
TOP BOT
0.00 2.65
Psf
D+L/4(%R=15.0)
TOP BOT
0.00 2.78
PSf
MIN
TOP BOT
0.00 1.60
MI N
TOP BOT
0.00 1.60
MIN
TOP BOT
0.00 1.60
Section 5 - B E A M S H E A R 0 E S I G N
X Left Vu Mu Vcn vcw Vc i Av #4@
Span 1 L=46.00ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c max. for Span 1
Section6-CONCRETE FLEXURAL STRESSES AN0 DEFLECTIONS '-----------------------Stresses (ksi)-----------------------> <- - - - -0efl ecti ons (in) - - - - ->
SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Oelta Delta L/Oelta
Service Loads Transfer of Prestress OL + Bal LL
1 T 0.185 ( 1.00) -0.501 ( 23.00) -0.146 ( 1.00) -0.325 ( 14.20) 1 0.108 5127 0.054 10291
B 0.368 ( 23.00) -1.005 ( 1.00) -0.090 ( 14.20) -0.449 ( 1.00)
Section7-FACTORED COLUMN LOADS
Maxi mum Axi a1 Load Maximum Moment
Axi a1 Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 91.30 177.19 391.99 91.30 177.19 391.99
2 91.30 -177.19 -391.99 91.30 -177.19 -391.99
IL-
L-
/-
e
P
.5
/-
+-
e
1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f’c=424psi BOT 7.5 SQRT f’c=530psi %SUP. DLOTRANSFER=O . 0
TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELO=60.00ksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns O Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------>
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft.1 (ft) (ft)
1 5 12.00 12.00 18.00 0.00 0.00 0.625 1 U 0.002 0.030 0.00 36.00
1 P 30.000 10.500 18.00 0.00
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
SPAN L M(X-ft) R L M( X-ft) R L R
1 -139:36 206.44(18.0) -139.36 86.91 -138.07( 18.0) 86.91 86.91 86.91
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 -42.86 53.61(18.0) -42.86 -42.86 53.61(18.0) -42.86 1 86.34 150.86
SPAN L M(X-ft) R L M(x-ft) R JOINT TOP BOT
2 -86.34 -150.86
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=1.994 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 158.81 95.29 6.0 10.00 27.00 0.00 10.00 0.159 0.159
ULT(%R= 0.0)
JOINT TOP BOT
1 0.00 0.00
2 0.00 0.00
ULT(%R= 6.7)
JOINT TOP BOT
1 0.00 0.00
2 0.00 0.00
ULT(%R=15.0)
JOINT TOP BOT
1 0.00 0.00
2 0.00 0.00
D+L/4(%R= 0.0)
TOP BOT
1.17 0.00
1.17 0.00
D+L/4(%R=10.0)
TOP BOT
1.05 0.00
1.05 0.00
D+L/4(%R=15.0)
TOP BOT
0.99 0.00
0.99 0.00
MIN
TOP BOT
2.40 0.00
2.40 0.00
MIN
TOP BOT
2.40 0.00
2.40 0.00
MIN
TOP BOT
2.40 0.00
2.40 0.00
ULT(%R= 0.0)
SPAN TOP BOT
1 0.00 0.24
Rebar Weight=7.337
ULT(%R= 6.7)
SPAN TOP BOT
1 0.00 0.34
Rebar Weight=7.574
ULT(%R=15.0)
SPAN TOP BOT
1 0.00 0.48
Rebar Weight=7.693
Section5-BEAM SHEAR DESIGN
Span 1 L=36.00ft
X Left Vu Mu Vcn vcw Vci AV #4@
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in)
Use #4@24.00in o/c max. for Span 1
Section 6 - C 0 N C R E T E F L E X U R A L S T R E S S E S AN D <-----------------------Stresses (ksi)----------------------->
Service Loads Transfer of Prestress
SPAN Tension (XI Compression (XI Tension (x) Compression (XI
1 T -0.022 ( 35.00) -0.334 ( 18.00) -0.020 ( 18.00) -0.268 ( 1.00)
B 0.192 ( 18.00) -0.433 ( 1.00) -0.020 ( 1.00) -0.516 ( 18.00)
Section7-FACTORED COLUMN LOADS
Maximum Axial Load Maximum Moment
Axial Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 47.29 86.34 150.86 47.29 86.34 150.86
2 47.29 -86.34 -150.86 47.29 -86.34 -150.86
D+L/4(%R= 0.0)
TOP BOT
0.00 1.69
PSf
D+L/4(%R=lO.O)
TOP BOT
0.00 1.80
Psf
D+L/4(%R=15.0)
TOP BOT
0.00 1.86
PSf
CODE
MIN
TOP BOT
0.00 1.60
MIN
TOP BOT
0.00 1.60
MIN
TOP BOT
0.00 1.60
DEFLECTIONS
<-----Deflections (in) - - - - ->
DL + Bal LL
SPAN Delta L/Del ta Delta L/Del ta
1 0.033 13280 0.017 25252
c
Y
c !
i
c I i
r-
i
c
c
c
r
t-
I
c
F
i
1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0
TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A (3 TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60.00ksi
TENDON DIAM=l .OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
<-------TENDON PROFILE-------> CONC <- - - ---SUPERIMPOSED LOADS- - - - - ->
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 5 12.00 12.00 18.00 0.00 0.00 0.625 1 P 16.600 5.800 18.00 0.00
1 U 0.002 0.030 0.00 30.00
<--------------------COLUMNS-------------------->
<--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES
H C2 C1 Far H C2 C1 Far A Yt St Sb
JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31
1 10.83 20.00 24.00 Fix 9.67 20.00 24.00 Fix 1 999.80 10.00 8330.92 4166.40
2 10.83 20.00 24.00 Fix 9.67 20.00 24.00 Fix
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
SPAN L M(X-ft) R L M(X-ft) R L R
1 -58r50 105.62(17.8) -66.11 57.83 -118.75( 17.8) ' 74.15 57.81 74.13
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 -16.10 24.20(17.8) -20.59 -16.10 24.20(17.8) -20.59 1 36.35 47.10
SPAN L M(X-ft) R L M(x-ft) R JOINT TOP BOT
2 -45.72 -49.19
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=2.011 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 158.81 95.10 6.0 10.00 24.25 0.00 10.00 0.159 0.159
c
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0)
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT
1 0.00 0.00 0.48 0.00 2.40 0.00 1 0.00 0.00 0.00 0.85
2 0.00 0.00 0.55 0.00 2.40 0.00 Rebar Weight=7.131 psf
ULT(%R= 6.7) D+L/4(%R=lO.O) MIN ULT(%R= 6.7) D+L/4(%R=lO.O)
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT
1 0.00 0.00 0.43 0.00 2.40 0.00 1 0.00 0.00 0.00 0.90
2 0.00 0.00 0.50 0.00 2.40 0.00 Rebar Weight=7.131 psf
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0)
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT
1 0.00 0.00 0.41 0.00 2.40 0.00 1 0.00 0.00 0.00 0.93
2 0.00 0.00 0.47 0.00 2.40 0.00 Rebar Wei ght=7.131 psf
MI N
TOP BOT
0.00 1.60
MIN
TOP BOT
0.00 1.60
MIN
TOP BOT
0.00 1.60
Section 5 - B E A M S H E A R D E S I G N
Span 1 L=30. OOft
X Left Vu Mu Vcn vcw Vc i Av #4@
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@24.OOin o/c max. for Span 1
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS
<-----------------------Stresses (ksi)-----------------------> <----- Deflections (in)-- - -->
SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Oelta
Service Loads Transfer of Prestress DL + Bal LL
1 T -0.135 ( 1.00) -0.192 ( 12.20) -0.033 ( 17.80) -0.273 ( 29.00) 1 0.003 99999 0.006 63440
8 -0.092 ( 12.20) -0.207 ( 1.00) -0.011 ( 29.00) -0.489 ( 17.80)
Section7-FACTORED COLUMN LOADS
Maximum Axial Load Maxi mum Moment
Axi a1 Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 26.17 36.35 47.10 26.17 36.35 47.10
2 35.88 -45.72 -49.19 35.88 -45.72 -49.19
Frame Design Group. Inc. Sheet No. 12%
*-
e.
c
+
c
1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O. 0
TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60. OOksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#!11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns (b Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS- - - - - ->
cL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 5 12.00 12.00 16.00 0.00 0.00 0.625 1 U 0.002 0.030 0.00 36.00
1 P 42.500 14.800 '18.00 0.00
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored. All Other Moments are Unfactored
<-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
SPAN L M(X-ft) R L M(X-ft) R L R
1 -179.'39 272.66(18.0) -179.39 78.49 - 123.33( 18.0) 78.49 76.83 76.83
<------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 -58.79 74.24(18.0) -58.79 -58.79 74.24( 18.0) -58.79 1 114.49 230.83
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
2 -114.49 -230.83
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=1.994 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 158.81 95.29 6.0 11.75 27.00 0.00 11.75 0.199 0.199
ULT(%R= 0.0)
JOINT TOP BOT
1 0.41 0.00
2 0.41 0.00
tlLT(%R= 6.7)
JOINT TOP BOT
1 0.24 0.00
2 0.24 0.00
ULT(%R=15.0)
JOINT TOP BOT
1 0.06 0.98
2 0.06 0.98
Section 4 - R E B A R R E Q U I R E M E N T S (in21
D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0)
TOP BOT TOP BOT SPAN TOP BOT TOP BOT
1.53 0.00 1.75 0.00 1 0.00 1.47 0.00 2.25
1.53 0.00 1.75 0.00 Rebar Wei ght=7.848 psf
D+L/4(%R=lO.O) MIN ULT(%R= 6.7) D+L/4(%R=lO.O)
TOP BOT TOP BOT SPAN TOP BOT TOP BOT
1.37 0.00 1.75 0.00 1 0.00 1.65 0.00 2.40
1.37 0.00 1.75 0.00 Rebar Wei ght=8.160 psf
D+L/4(%R=15.0) MIN ULT(%R-15.0) D+L/4(%R=15.0)
TOP BOT TOP BOT SPAN TOP BOT TOP BOT
1.29 0.00 1.75 0.00 1 2.16 1.84 0.00 2.48
1.29 0.00 1.75 0.00 Rebar Weight=11.186 psf
MIN
TOP BOT
0.00 1.45
MIN
TOP BOT
0.00 1.45
MIN
TOP BOT
0.00 1.45
Section 5 - B E A M S H E A R D E S I G N
X Left Vu Mu Vcn vcw Vc i AV #4@
Span 1 L=36.00ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@22.50in o/c max. for Span 1
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS
<-----------------------Stresses (ksi)-----------------------> <-----Deflections (in) - -- - ->
SPAN Tension (XI Compression (x) Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T 0.132 ( 1.00) -0,661 ( 18.00) -0.029 ( 18.00) -0.330 ( 1.00) 1 0.076 5691 0.029 14760
B 0.508 ( 18.00) -0.703 ( 1.00) -0.082 ( 35.00) -0.540 ( 18.00)
Section7-FACTORED COLUMN LOADS
Maximum Axial Load Maxi mum Moment
Axial Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 59.69 114.49 230.83 59.69 114.49 230.83
2 59.69 -114.49 -230.83 59.69 -114.49 -230.83
c
Frame Design Group. Inc
2 Faraday, Suite 101
Sheet No. 12+
6 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 EN0 SPANS LEFT 2 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. OL@TRANSFER=O. 0
TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi
TENDON DIAM=l. OOi n MAX LONG BAR SIZE=#11 STIRRUP SIZE=#3 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
0.004A (3 TOP & BOT DL + LL/4 RATIO=l .67
SPAN TYPE (ft) (in) (in) (in) (in)
1 1 30.00 24.00 30.00 5.00 5.00
2 1 36.00 24.00 30.00 5.00 5.00
3 1 36.00 24.00 30.00 5.00 5.00
4 1 36.00 24.00 30.00 5.00 5.00
5 1 36.00 24.00 30.00 5.00 5.00
6 1 36.00 24.00 30.00 5.00 5.00
<-------TENDON PROFILE------->
CL cR A B C
SPAN TYPE (in) (in) (ft) (ft) (ft)
1 5 12.00 12.00 12.00 0.00 0.00
2 5 12.00 12.00 18.00 0.00 0.00
3 5 12.00 12.00 18.00 0.00 0.00
5 5 12.00 12.00 18.00 0.00 0.00
6 5 12.00 12.00 18.00 0.00 0.00
4 5 12.00 12.00 18.00 0.00 0.00
1.00 1.00 4.33 4.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 1.00 4.33 4.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 1.00 4.33 4.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 1.00 4.33 4.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 1.00 4.33 4.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 1.00 4.33 4.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CONC
DL
(k/ft) SPAN
0.750 1
0.750 1
0.750 2
0.750 2
0.750 3
0.750 3
4
4
5
5
6
6
<------SUPERIMPOSED LOADS- - - - - ->
LOAD
TYPE
U
P
U
P
U
P
U
P
U
P
U
P
DL
(k.ft)
0.002
28.100
0.002
83.900
0.002
83.900
0,002
83.900
0.002
83 900
0.002
83.900
LL
(k.ft)
0.030
9.800
0.030
29.200
0.030
29.200
0.030
29.200
0.030
29.200
0.030
29.200
A
(ft)
0.00
12.00
0.00
18.00
0.00
18.00
0.00
18.00
0.00
18.00
0.00
18.00
B
(ft)
30.00
0.00
36.00
0.00
36.00
0.00
36.00
0.00
36.00
0.00
36.00
0.00
c
<--------------------COLUMNS-------------------->
<--------Bottom------> <--------Top--------->
H C2 C1 Far H C2 C1 Far
JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN
1 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 1
2 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 2
3 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 3
4 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 4
5 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 5
6 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 6
7 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix
BEAM CROSS-SECTION PROPERTIES
A Yt St Sb
(in21 (in) (in31 (in31
1120.00 10.54 9018.03 4881.34
1120.00 10.54 9018.03 4881.34
1120.00 10.54 9018.03 4881.34
1120.00 10.54 9018.03 4881.34
1120.00 10.54 9018.03 4881.34
1120.00 10.54 9018.03 4881.34
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
<---
SPAN L
1 -49.41
2 -353.08
3 -441.48
4 -429.11
5 -417.57
6 -501.62
<----
SPAN L
1 13.81
2 13.32
3 14.03
4 16.32
5 16.68
6 3.28
- -DEAD LOAD- - -
M(X-ft)
124.05( 12.2)
416.20( 18.0)
388.79( 18.0)
395.08 ( 18.0)
383.39( 18.0)
449.74( 18.0)
R
-256.75
-458.73
-425.15
-424.93
-459.85
-243.10
-MOST POS LL------>
M(X-ft) R
39.84( 12.2) 3.81
142.80( 18.0) 6.60
143.33( 18.0 16.27
144.05( 18.0 16.45
143.13(18.0) 13.19
145.15( 18.0) 12.41
<----
L
44.79
262.06
326.79
316.27
316.86
369.84
<----- -
L
-34.59
-124.76
- 145.92
-146.15
- 144.98
-147.72
--BALANCED LOAD-
M(X-ft)
-104.27( 12.2)
-334.60( 18.0)
-314.80(18.0)
-318.22(18.0)
-317.35(18.0)
-346.84( 18.0
.MOST NEG LL--
M(X-ft)
-0.45( 6.6)
-4.29(11.2)
-16.85( 14.6)
-16.87( 21.4)
-17.11( 14.6)
-0.29(24.8)
___
R
175.43
339.26
314.12
317.80
352.21
187.16
R
-62.82
-144.52
-145.31
-146.03
-146.72
-108.91
Section3-EFFECTIVE FORCES AND PROFILES
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 317.63 158.82 12.0 10.50 15.25 0.00 3.00 0.284 0.284
2 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.284
3 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.284
4 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.284
5 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.331
6 370:57 185.29 14.0 3.00 27.00 0.00 10.50 0.331 0.331
BEAM SECONDARY
L R
43.85 -24.03
62.59 139.79
127.33 114.66
116.81 118.34
117.40 119.50
137.13 186.05
COLUMN MOMENTS( FACTORED)
JOINT TOP BOT
1 61.87 75.62
2 129.26 140.63
4 103.44 88.85
6 113.13 126.90
3 -105.90 -94.35
5 -104.15 -94.80
7 -195.18 -266.87
Tendon Weight=3.319 psf
c T
JOINT
1
2
3
4
5
6
7
ULT(%R= 0.0)
TOP BOT
0.00 0.00
0.00 0.00
0.47 0.00
0.34 0.00
0.28 0.00
0.13 0.00
0.00 0.00
JOIN
1
2
3
4
5
6
7
ULT(%R= 6.7)
T TOP BOT
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
ULT(%R=15.0)
JOINT TOP BOT
1 0.00 0.00
2 0.00 0.93
3 0.00 1.66
4 0.00 1.56
5 0.00 1.51
6 0.00 2.13
7 0.00 1.03
Section 4 -
D+L/4(%R= 0.0)
TOP BOT
0.47 0.00
3.08 0.00
4.00 0.00
3.76 0.00
3.73 0.00
4.36 0.00
2.17 0.00
D+L/4(%R=10.0)
TOP BOT
0.42 0.00
2.76 0.00
3.61 0.00
3.38 0.00
3.34 0.00
3.95 0.00
1.95 0.00
D+L/4(%R=15.0)
TOP BOT
0.40 0.00
2.70 0.00
3.61' 0.00
3.38 0.00
3.34 0.00
3.95- 0.00
1.84 0.00
Span 1 L=30.00ft
X Left Vu Mu Vcn
(ft) (k) (k-ft) (k)
Use #3@24.00in o/c max. for Span 1
Span 2 L=36.00ft
X Left Vu Mu Vcn
(ft) (k) (k-ft) (k)
Use #3@22.50in o/c max. for Span 2
Span 3 L=36.00ft
X Left Vu Mu Vcn
(ft) (k) (k-ft) (k)
Use #3@22.50in o/c max. for Span 3
Span 4 L=36.00ft
X Left Vu Mu Vcn
(ft) (k) (k-ft) (k)
Use #3@22.50in o/c max. for Span 4
REBAR REQUIREMENTS (in21
MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
TOP BOT SPAN TOP BOT TOP BOT TOP BOT
2.61 0.00 1 0.00 0.00 0.00 1.03 0.00 1.87
2.61 0.00 2 0.00 0.62 0.00 3.52 0.00 1.87
2.61 0.00 3 0.00 0.50 0.00 3.32 0.00 1.87
2.61 0.00 4 0.00 0.54 0.00 3.37 0.00 1.87
2.61 0.00 5 0.00 0.43 0.00 3.28 0.00 1.87
2.61 0.00 6 0.00 0.33 0.00 3.78 0.00 1.87
2.61 0.00 Rebar Weight=9.302 psf
MIN
TOP BOT
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
ULT(%R= 6.7) D+L/4(%R=10.0) MIN
SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.00 1.10 0.00 1.87
2 0.00 0.72 0.00 3.80 0.00 1.87
3 0.00 0.45 0.00 3.59 0.00 1.87
4 0.00 0.48 0.00 3.63 0.00 1.87
5 0.00 0.38 0.00 3.55 0.00 1.87
6 0.00 0.42 0.00 4.05 0.00 1.87
Rebar Weight=9.427 psf
MI N ULT (%R=15.0 1 D+L/4 (%R=15.0 1 MIN
TOP BOT SPAN TOP BOT TOP BOT TOP BOT
2.61 0.00 1 0.00 0.00 0.00 1.15 0.00 1.87
2.61 0.00 2 0.00 1.21 0.00 3.98 0.00 1.87
2.61 0.00 3 0.00 0.97 0.00 3.77 0.00 1.87
2.61 0.00 4 0.00 0.99 0.00 3.81 0.00 1.87
2.61 0.00 5 0.00 0.90 0.00 3.74 0.00 1.87
2.61 0.00 6 0.00 0.84 0.00 4.21 0.00 1.87
2.61 0.00 culs Rebar Weight=10.477 psf
BEAM SHEAR DESIGN
vcw Vci AV #3@
(k) (k) (in2/ft) (in) CODE
(t4w5 -c 2w *4+w*
bob \*c*rs 5 Pd
vcw Vci Av #3@
(k) (k) (in2/ft) (in) CODE
vcw Vci Av #3@
(k) (k) (in2/ft) (in) CODE
vcw Vc i Av #3@
(k) (k) (inZ/ft) (in) CODE
c
frame Design Group, Inc.
2 faraday. Suite 101
Sheet No. /z?
Toyota Carl sbad
Span 5 L=36.00ft
(ft) (k) (k-ft) . (k) (k) (k) (in2/ft) (in) CODE
Use #3@22.50in olc max. for Span 5
X Left Vu Mu Vcn vcw Vc i Av #3@
Span 6 L=36.00ft
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #3@22.50in o/c max. for Span 6
X Left ’ Vu Mu Vcn vcw Vci AV #3@
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in)- - --->
SPAN Tension (XI Compression (x) Tension (XI Compression (XI SPAN Delta L/Delta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T -0.092 ( 29.00) -0.363 ( 12.20) -0.211 ( 12.20) -0.515 ( 29.00) 1 0.004 87578 0.008 43901
B -0.137 ( 12.20) -0.638 ( 29.00) 0.010 ( 29.00) -0.553 ( 12.20) 2 0.024 17879 0.039 11123
2T
B
3T
B
4T
8
5T
B
6T
B
JOINT
1
2
3
4
5
6
7
0.068 ( 35.00)
0.268 ( 18.00)
0.063 ( 1.00)
0.251 ( 18.00)
0.061 ( 1.00)
0.259 ( 18.00)
0.043 ( 1.00)
0.231 ( 18.00)
0.041 ( 1.00)
0.279 ( 18.00)
-0,582 ( 18.00) 0.139 ( 18.00) -0.760 ( 35.00) 3 0.019 22797 0.039 11020
-0,933 ( 35.00) 0.462 ( 35.00) -1.200 ( 18.00) 4 0.021 20651 0.040 10884
-0.573 ( 18.00) 0.110 ( 18.00) -0.742 ( 1.00) 5 0.014 30699 0.039 11059
-0.924 ( 1.00) 0.428 ( 1.00) -1.145 ( 18.00) 6 0.036 11853 0.040 10680
-0.578 ( 18.00) 0.115 ( 18.00) -0.729 ( 35.00)
-0.920 ( 1.00) 0.405 ( 35.00) -1.154 ( 18.00)
-0.562 ( 18.00) 0.116 ( 18.00) -0.829 ( 35.00)
-0.956 ( 35.00) 0.433 ( 35.00) -1.156 ( 18.00)
-0.661 ( 18.00) 0.091 ( 18.00) -0.847 ( 1.001
-1.018 ( 1.00) 0.466 ( 1.00) -1.267 ( 18.00)
Section 7 - F A C T 0 R E D
Maximum Axi a1 Load
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
45.10 61.87 75.62
147.82 106.27 121.35
212.54 1.45 3.30
223.39 9.84 40.26
220.52 -2.95 -8.00
211.73 -2.09 -9.19
96.06 -195.18 -266.87
C OLUMN LOADS
Maximum Moment
Axial Column Moment
Load Top Bottom
(kips) (k-ft) (k-ft)
45.10 61.87 75.62
140.08 129.26 140.63
181.28 103.44 88.85
192.20 113.13 126.90
189.10 -105.90 -94.35
180.44 -104.15 -94.80
96.06 - 195.18 -266.87
c
c
Frame Design Group. Inc. Sheet No. 1zV
2 Faraday. Suite 101
Irvine. CA 92618
949/595-8015 --------==.;=====;.=pTData for Windows {V2,000-0229}======================================
POST TENSIONED BEAM DESIGN
05-13-2002
PROJECT : Toyota Carl sbad
MEMBER ID: .G10
STORAGE ID: C: \PTPLUS32\PTRUNS\TOYOTA-l\\GlOR. PTD
1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f’c=424psi BOT 7.5 SQRT f’c=530psi %SUP. DL@TRANSFER=O. 0
TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60. OOksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#ll STIRRUP SIZE=#/4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1,7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------>
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 5 12.00 12.00 23.00 0.00 0.00 1.646 1 U 0.002 0.030 0.00 46.00
1 P 16.100 5.600 23.00 0.00
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored. All Other Moments are Unfactored
<-------DEAD LOAD-------> <------BALANCED LOAD- - - -> BEAM SECONDARY
SPAN L M( x- ft ) R L M( X- ft 1 R L R
1 -294: 87 289.23(23.0) -294.87 125.96 -174.02(23.0) 125.96 125.96 125.96
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
1 -96.63 95.65(23.0) -96.63 -96.63 95.65(23.0) -96.63 1 0.00 540.79
SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT
2 0.00 -540.79
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.243 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 211.75 11.76 8.0 10.00 27.00 0.00 10.00 0.212 0.212
c
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) O+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 1.03 0.00 2.55 0.00 2.40 0.00 1 0.00 1.03 0.00 2.43 0.00 1.60
2 1.03 0.00 2.55 0.00 2.40 0.00 Rebar Weight=0.842 psf
ULT ( %R= 6.7 ) O+L/4( %R=10.0 ) MIN ULT(%R= 6.7 1 O+L/4(%R=10.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.75 0.00 2.29 0.00 2.40 0.00 1 0.00 1.28 0.00 2.68 0.00 1.60
2 0.75 0.00 2.29 0.00 2.40 0.00 Rebar Weight=0.875 psf
ULT(%R=15.0) O+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.42 2.09 2.15 0.00 2.40 0.00 1 0.00 1.60 0.00 2.80 0.00 1.60
2 0.42 2.09 2 15 0.00 2.40 0.00 Rebar Weight=1.030 psf - -
Span 1 L=46.00ft
X Left Vu Mu
(ft) (k) (k-ft)
Use #4@22.50in o/c max
Section 6 - C 0 N C R E
Section 5 - B E A M S H E A R 0 E S I G N
Vcn vcw Vci Av #4@
(k) (k) (k) (in2/ft) (in)
for Span 1
TE FLEXURAL STRESSES AN0 <-----------------------Stresses (ksi)----------------------->
Service Loads Transfer of Prestress
SPAN Tension (XI Compression (x) Tension (XI Compression (XI
1 T 0.171 ( 1.00) -0.515 ( 23.00) -0.146 ( 1.00) -0.325 ( 14.20)
B 0.396 ( 23.00) -0.977 ( 1.00) -0.090 ( 14.20) -0.449 ( 1.00)
Section7- FACTORED COLUMN LOADS
Maximum Axial Load Maxi mum Moment
Axial Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 91.30 0.00 540.79 91.30 0.00 540.79
2 91.30 0.00 -540.79 91.30 0.00 -540.79
CODE
DEFLECTIONS
<- - - - -0efl ecti ons (in I - - - - ->
DL + Bal LL
SPAN Delta L/Delta Delta L/Delta
1 0.108 5127 0.066 8357
c
Frame Design Group, Inc.
2 Faraday. Suite 101
Sheet No. 1.30
1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. OL@TRANSFER=O. 0
TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED, LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns 13 Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
0.004A @ TOP & BOT DL + LL/4 RATIO=1.67
Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy-------------------------------------------->
L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref
SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in)
1 1 36.00 20.00 30.00 5.00 5.00 0.83 0.83 4.17 4.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------>
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 5 12.00 12.00 18.00 0.00 0.00 0.625 1 U 0.002 0.030 0.00 36.00
1 P 30.000 10.500 18.00 0.00
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <- - - - - -BALANCED LOAD- - - -> BEAM SECONDARY
SPAN L M(X-ft) R L M(X-ft) R L R
1 -145:65 200.14(18.0) -145.65 90.21 -134.77( 18.0) '90.21 90.21 90.21
<------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS ( FACTORED)
1 -38.44 58.04(18.0) -38.44 -38.44 58.04(18.0) -38.44 1 0.00 225.84
SPAN L M(X-ft) R L M(x-ft) R JOINT TOP BOT
2 0.00 -225.84
Section 3 - E F F E C T I V E F D R C E S A N D P R 0 F I L E S Tendon Weight=1.994 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 158.81 95.29 6.0 10.00 27.00 0.00 10.00 0.159 0.159
c
Frame Design Group, Inc
2 Faraday, Suite 101
Sheet No. l3 I
Toyota Carl sbad
c
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 1.21 0.00 2.40 0.00 1 0.00 0.33 0.00 1.65 0.00 1.60
2 0.00 0.00 1.21 0.00 2.40 0.00 Rebar Weight=7.270 psf
ULT(%R= 6.7) D+L/4(%R=lO.O) MIN ULT(%R= 6.7) D+L/4(%R=10.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 1.08 0.00 2.40 0.00 1 0.00 0.43 0.00 1.77 0.00 1.60
2 0.00 0.00 1.08 0.00 2.40 0.00 Rebar Weight=7.514 psf
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 1.02 0.00 2.40 0.00 1 0.00 0.56 0.00 1.83 0.00 1.60
2 0.00 0.00 1.02 0.00 2.40 0.00 Rebar Weight=7.636 psf
Section 5 - B E A M S H E A R D E S I G N
Span 1 L=36.00ft
X Left Vu Mu Vcn vcw Vci Av #4@
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE
Use #4@24.00in o/c max. for Span 1
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS
<-----------------------Stresses (ksi)-----------------------> <- - - --Deflections ( i n) - - - - ->
SPAN Tension (x) Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T -0.024 ( 1.00) -0.337 ( 18.00) -0.023 ( 18.00) -0.270 ( 1.00) 1 0.030 14306 0.021 21007
B 0.197 ( 18.00) -0.429 ( 1.00) -0.015 ( 35.00) -0.511 ( 18.00)
Section7-FACTORED COLUMN LOADS
Maxi mum Axi a1 Load Maxi mum Moment
Axial Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 47.29 0.00 225.84 47.29 0.00 225.84
2 47.29 0.00 -225.84 47.29 0.00 -225.84
P
Frame Design Group, Inc.
2 Faradar. Suite 101
Sheet No. 13L
1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0
TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED, LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse-173.0ksi Col Ie/Ig=1.00 No Top Columns 8 Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
0.004A (3 TOP & BOT DL + LL/4 RATIO=1.67
<-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS- --- - ->
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1 5 12.00 12.00 18.00 0.00 0.00 0.625 1 P 16.600 5.800 18.00 0.00
1 U 0.002 0.030 0.00 30.00
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
< - - - - - - - DEAD LOAD- - - - - - -> <- - - - - -BALANCED LOAD- - - -> BEAM SECONDARY
SPAN L M(X-ft) R L M(X-ft) R L R
1 -61r97 101.45(17.8) -70.75 60.32 -115.22( 17.8) ' 78.37 60.30 78.35
<------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS ( FACTORED 1
1 -14.16 27.00(17.8) -17.22 -14.16 27.00( 17.8) -17.22 1 0.00 77.53
2 0.00 -84.02
SPAN L M( X- ft R L M(x-ft 1 R JOINT TOP BOT
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=2.011 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 158.81 95.10 6.0 10.00 24.25 0.00 10.00 0.159 0.159
L
Frame Design Group, Inc.
2 Faraday, Suite 101
Sheet No. 3
Toyota Carlsbad
c
c
c
c
c
c
Section 4 - R E B A R R E Q U I R E M E N T S (in21
ULT(%R= 0.0) D+L/4(%R- 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.50 0.00 2.40 0.00 1 0.00 0.00 0.00 0.83 0.00 1.60
2 0.00 0.00 0.58 0.00 2.40 0.00 Rebar Wei ght=7.131 psf
ULT(%R= 6.7) D+L/4(%R=lO.O) MI N ULT(%R= 6.7) D+L/4(%R=10.0) MI N
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 0.45 0.00 2.40 0.00 1 0.00 0.00 0.00 0.88 0.00 1.60
2 0.00 0.00 0.52 0.00 2.40 0.00 Rebar Weight=7.131 psf
ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN
TOP BOT
1 0.00 0.00 0.43 0.00 2.40 0.00 1 0.00 0.00 0.00 0.91 0.00 1.60
2 0.00 0.00 0.49 0.00 2.40 0.00 Rebar Weight=7.131 psf
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT
Section 5 - B E A M S H E A R D E S I G N
X Left Vu Mu Vcn vcw Vci Av #4@
Span 1 L=30.00ft
(ft) (k) (k-ft) (k) (k) (k) (inillft) (in) CODE
Use #4@24.OOin o/c max. for Span 1
Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in) - - - - ->
SPAN Tension (XI Compression (XI Tension (XI Compression (x) SPAN Delta L/Delta Delta L/Delta
Service Loads Transfer of Prestress DL + Bal LL
1 T -0.136 ( 1.00) -0.195 ( 12.20) -0.037 ( 17.80) -0.277 ( 29.00) 1 0.003 99999 0.007 50624
B -0.087 ( 12.20) -0.204 ( 1.00) -0.002 ( 29.00) -0.483 ( 17.80)
Section7-FACTORED COLUMN LOADS
Maximum Axial Load Maxi mum Moment
Axial Column Moment Axial Column Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 26.21 0.00 77.53 26.21 0.00 77.53
2 35.84 0.00 -84.02 35.84 0.00 -84.02
IC-
c
1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SORT f'c=424psi BOT 7.5 SORT f'c=530psi %SUP. DL@TRANSFER=O. 0
TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi
TENDON DIAM=l.OOin MAX LONG BAR SIZE=#/11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns I3 Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
0.004A @ TOP & BOT DL + LL/4 RATIO=1.67
< - - - - - - - TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------>
CL cR A B C DL LOAD DL LL A B
SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft)
1
JOINT
1
2
SPAN
1
SPAN
1
5 12.00 12.00 18.00 0.00 0.00 0.625 1 U 0.002 0.030 0.00 36.00
1 P 42.500 14.800 18.00 0.00
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored. All Other Moments are Unfactored
<-------DEAD LOAD-------> <- -----BALANCED LOAD- - - -> BEAM SECONDARY
L M(x-ft) R L M(x-ft) R L R
- 187 :38 264.66( 18.0) -187.38 108.52 -160.58(18.0) 108.52 106.32 106.32
<------MOST pOS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED)
L M( x- ft R L M( X- ft R JOINT TOP BOT
-52.77 80.25(18.0) -52.77 -52.77 80.25(18.0) -52.77 1 0.00 304.95
2 0.00 -304.95
Section 3 - E F F E C T I V E F 0 R C E S A N 0 P R 0 F I L E S Tendon Weight=2.659 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 211.75 127.06 8.0 11.75 27.00 0.00 11.75 0.265 0.265
c
Section 4 - R E B A R R E Q U I R E M E N T S (in2)
ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 1.57 0.00 1.75 0.00 1 0.00 0.68 0.00 2.21 0.00 1.45
2 0.00 0.00 1.57 0.00 1.75 0.00 Rebar Weight=7.784 psf
ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT( %R= 6.7 D+L/4(%R=10.0 ) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.00 1.41 0.00 1.75 0.00 1 0.00 0.83 0.00 2.37 0.00 1.45
2 0.00 0.00 1.41 0.00 1.75 0.00 Rebar Wei ght=8.104 psf
ULT ( %R=15.0) D+L/4(%R=15.0) MIN ULT (%R=15.0 1 D+L/4 (%R=15.0) MIN
JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT
1 0.00 0.52 1.33 0.00 1.75 0.00 1 2.49 0.97 0.00 2.44 0.00 1.45
2 0.00 0.52 1.33 0.00 1.75 0.00 Rebar Weights11 .157 psf
Section5-BEAM SHEAR DESIGN
Span 1 L=36.00ft
X Left Vu Mu Vcn vcw Vc i Av #4@
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in)
Use #4@22.50in o/c max. for Span 1
Section6-CONCRETE FLEXURAL STRESSES AND <-----------------------Stresses (ksi)----------------------->
Service Loads Transfer of Prestress
SPAN Tension (x) Compression (x) Tension (XI Compression (XI
1 T 0.008 ( 1.00) -0.646 ( 18.00) -0.012 ( 18.00) -0.475 ( 35.00)
B 0.318 ( 18.00) -0.681 ( 1.00) -0.055 ( 35.00) -0.761 ( 18.00)
Section7-FACTORED COLUMN LOADS
Maximum Axial Load Maxi mum Moment
Axial Column Moment Axi a1 Col umn Moment
Load Top Bottom Load Top Bottom
JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
1 59.69 0.00 304.95 59.69 0.00 304.95
2 59.69 0.00 -304.95 59.69 0.00 -304.95
CODE
DEFLECTIONS
<-----Deflections (in) - - --->
DL + Bal LL
SPAN Delta L/Delta Delta L/Delta
1 0.053 8131 0.034 12660
c
6 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi
1 END SPANS LEFT 2 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi
ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. DL@TRANSFER=O . 0
TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION
MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60.00ksi
TENDON DIAN=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#3 REBAR COVER: 2.00in TOP 2.00in BOT
LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing
BOTTOM 2.50 in BOTTOM 2.50 in
<----------
L Bbot
SPAN TYPE (ft) (in)
1 1 30.00 24.00
2 1 36.00 24.00
3 1 36.00 24.00
4 1 36.00 24.00
5 1 36.00 24.00
6 1 36.00 24.00
Section 1 - B E A M I N P U T
GEOMETRY - - -
H tL tR TribL TribR FL FR
(in) (in) (in) (ft) (ft) (ft) (ft)
30.00 5.00 5.00 1.00 1.00 4.33 4.33
30.00 5.00 5.00 1.00 1.00 4.33 4.33
30.00 5.00 5.00 1.00 1.00 4.33 4.33
30.00 5.00 5.00 1.00 1.00 4.33 4.33
30.00 5.00 5.00 1.00 1.00 4.33 4.33
30.00 5.00 5.00 1.00 1.00 4.33 4.33
DATA ________________________
Btop Bweb Y1 Y2
(in) (in) (in) (in)
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
________________
Y3 Y4 Yref
(in) (in) (in)
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
<-------TENDON PROFILE------->
CL cR A B C
SPAN TYPE (in) (in) (ft) (ft) (ft)
1 5 12.00 12.00 12.00 0.00 0.00
2 5 12.00 12.00 18.00 0.00 0.00
3 5 12.00 12.00 18.00 0.00 0.00
4 5 12.00 12.00 18.00 0.00 0.00
5 5 12.00 12.00 18.00 0.00 0.00
6 5 12.00 12.00 18.00 0.00 0.00
CONC
OL
(k/ft)
0.750
0.750
0.750
0.750
0.750
0.750
SPAN
1
1
2
2
3
3
4
4
5
5
6
6
<------SUPERIMPOSED LOADS------>
LOAD
TYPE
U
P
U
P
U
P
U
P
U
P
U
P
DL
(k.ft)
0.002
28.100
0.002
83.900
0.002
83.900
0.002
83.900
0.002
83 .'900
0.002
83.900
LL
(k.ft)
0.030
9.800
0.030
29.200
0.030
29.200
0.030
29.200
0.030
29.200
0.030
29.200
A
(ft)
0.00
12.00
0.00
18.00
0.00
18.00
0.00
18.00
0.00
18.00
0.00
18.00
B
(ft)
30.00
0.00
36.00
0.00
36.00
0.00
36.00
0.00
36.00
0.00
36.00
0.00
c
Frame Design Group, Inc.
2 Faraday. Suite 101
Sheet No. 133
Toyota Carl sbad
c
c-
c
c
<---
<---
H
JOINT (ft)
1 9.67
2 9.67
3 9.67
4 9.67
5 9.67
6 9.67
7 9.67
___________-_____ COLUMNS- - - - ----- Bottom------> <----
C2 C1. Far H
(in) (in) End (ft)
24.00 24.00 Fix 0.00
24.00 24.00 Fix 0.00
24.00 24.00 Fix 0.00
24.00 24.00 Fix 0.00
24.00 24.00 Fix 0.00
24.00 24.00 Fix 0.00
24.00 24.00 Fix 0.00
---------------->
----Top--------->
C2 C1 Far
(in) (in) End SPAN
0.00 0.00 Fix 1
0.00 0.00 Fix 2
0.00 0.00 Fix 3
0.00 0.00 Fix 4
0.00 0.00 Fix 5
0.00 0.00 Fix 6
0.00 0.00 Fix
BEAM CROSS-SECTION PROPERTIES
A Yt St Sb
(in21 (in) (in31 (in31
1120.00 10.54 9018.03 4881.34
1120.00 10.54 9018.03 4881.34
1120.00 10.54 9018.03 4881.34
1120.00 10.54 9018.03 4881.34
1120.00 10.54 9018.03 4881.34
1120.00 10.54 9018.03 4881.34
<-----
SPAN L
1 -56.81
2 -357.44
3 -439.94
4 -429.10
5 -419.22
6 -496.26
<-----
SPAN L
1 16.03
2 17.77
3 19.22
4 23.58
5 24.58
6 6.52
Section2 - BEAM AND COLUMN MOMENTS(k-ft)
Column Moments are Factored, All Other Moments are Unfactored
--DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY
M(X-ft) R L M(X-ft) R L R
123.07(12.2) -248.10 49.83 - 103.71 (12.2) 169.26 48.89 -30.20
414.45( 18.0) -457.86 265.30 -333.32( 18.0) 338.57 65.84 139.11
389,42( 18.0) -425.42 325.63 -315.23( 18.0) 314.43 126.16 114.96
394.57(18.0) -425.97 316.40 -317.99(18.0) 318.14 116.94 118.68
385.14(18.0) -454.72 317.84 -318.19(18.0) 349.55 118.38 116.84
443.18(18.0) -261.59 365.64 -342.84(18.0) 199.35 132.93 198.24
.-MOST POS LL-----
M(X-ft)
44.56U2.2)
150.63( 18.0)
151.65(18.0)
153.21( 18.0)
151.27( 18.0)
155.92( 18.0)
.-> <- ___ - -
R L
7.44 -29.52
11.17 -123.44
23.50 -152.73
24.06 -153.37
17.42 -151.47
15.08 -156.55
.MOST NEG LL--
M(X-ft)
-0.47( 6.6)
-7.18( 11.2)
-25.45( 11.2 1
-25.64( 24.8 1
-26.22( 11.2) - 0.54( 28.2 1
---->
R
-76.27
-150.72
-152.08
-152.99
- 154.96
-94.59
COLUMN MOMENTS( FACTORED)
JOINT TOP BOT
1 0.00 119.79
2 0.00 220.43
4 0.00 161.39
6 0.00 214.77
3 0.00 -168.02
5 0.00 -169.33
7 0.00 -420.38
Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=3.319 psf
Eff Force No. CGS Dim. (in. from datum) F/A(ksi)
SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max
1 317.63 158.82 12.0 10.50 15.25 0.00 3.00 0.284 0.284
2 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.284
3 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.284
4 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.284
5 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.331
6 370:57 185.29 14.0 3.00 27.00 0.00 10.50 0.331 0.331
Section 4 - R E B A R R E Q U I R E M E N T S (in21
JOINT
1
2
3
4
5
6
7
JOINT
1
2
3
4
5
6
7
JOINT
1
2
3
4
5
6
7
ULT(%R= 0.0)
TOP BOT
0.00 0.00
0.00 0.00
0.59 0.00
0.46 0.00
0.39 0.00
0.34 0.00
0.00 0.00
ULT(%R= 6.7)
TOP BOT
0.00 0.00
0.00 0.00
0.11 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
ULT(%R=15.0)
TOP BOT
0.00 0.00
0.00 0.87
0.00 1.76
0.00 1.65
0.00 1.60
0.00 2.30
0.00 0.58
D+L/4(%R= 0.0)
TOP BOT
0.51 0.00
3.11 0.00
4.01 0.00
3.79 0.00
3.76 0.00
4.34 0.00
2.27 0.00
D+L/4(%R=lO.O)
TOP BOT
0.46 0.00
2.79 0.00
3.65 0.00
3.42 0.00
3.40 0.00
3.95 0.00
2.04 0.00
D+L/4(%R=15.0)
TOP BOT
0.43 0.00
2.75 0.00
3.65 0.00
3.42 0.00
3.40 0.00
3.95 0.00
1.97 0.00
Span 1 L=30.00ft
X Left Vu Mu
(ft) (k) (k-ft)
Use #3@24.00in o/c max.
Span 2 L=36.00ft
X Left Vu Mu
(ft) (k) (k-ft)
Use #3@22.50in o/c rnax.
Span 3 L=36.00ft
X Left Vu Mu
(ft) (k) (k-ft)
Use #3@22.50in o/c max.
Span 4 L=36.00ft
X Left Vu Mu
(ft) (k) (k-ft)
Use #3@22.50in o/c rnax.
MIN
TOP BOT
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
MIN
TOP BOT
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
MIN
TOP BOT
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
2.61 0.00
ULT(%R= 0.0) D+L/4(%R= 0.0)
SPAN TOP BOT TOP BOT
1 0.00 0.00 0.00 1.04
2 0.00 0.75 0.00 3.53
3 0.00 0.62 0.00 3.35
4 0.00 0.68 0.00 3.39
5 0.00 0.54 0.00 3.32
6 0.00 0.52 0.00 3.76
Rebar Weight=9.341 psf
ULT(%R= 6.71 D+L/4(%R=10.0)
SPAN TOP BOT TOP BOT
1 0.00 0.00 0.00 1.09
2 0.00 0.70 0.00 3.78
3 0.00 0.46 0.00 3.57
4 0.00 0.50 0.00 3.60
5 0.00 0.39 0.00 3.54
6 0.00 0.50 0.00 4.01
Rebar Wei ght=9.422 psf
ULT(%R=15.0) D+L/4(%R=15.0)
SPAN TOP BOT TOP BOT
1 0.00 0.00 0.00 1.14
2 0.00 1.19 0.00 3.96
3 0.00 0.88 0.00 3.76
4 0.00 0.91 0.00 3.79
5 0.00 0.81 0.00 3.73
6 0.00 0.91 0.00 4.17
Rebar Wei ght=lO. 492 psf
Section 5 - B E A M S H E A R D E S I G N
Vcn
(k)
for Span 1
Vcn
(k)
for Span 2
Vcn
(k)
for Span 3
Vcn
(k)
for Span 4
vcw Vci Av #3@
(k) (k) (in2/ft) (in)
vcw Vc i Av #3@
(k) (k) (in2/ft) (in)
vcw Vci Av #3@
(k) (k) (inZ/ft) (in)
vcw Vci Av #3@
(k) (k) (in2/ft) (in)
MIN
TOP BOT
0.00 1.87
0.00 1.87
0.00 1.87
0.00 1.87
0.00 1.87
0.00 1.87
MIN
TOP BOT
0.00 1.87
0.00 1.87
0.00 1.87
0.00 1.87
0.00 1.87
0.00 1.87
MIN
TOP BOT
0.00 1.87
0.00 1.87
0.00 1.87
0.00 1.87
0.00 1.87
0.00 1.87
CODE
CODE
CODE
CODE
Frame Design Group, Inc.
2 Faraday. Suite 101
Sheet No. 13 9
Toyota Carl sbad
Span 5 L=36.00ft
X Left Vu Mu Vcn vcw Vci Av #3@
(ft) (k) (k-ft). (k) (k) (k) (in2/ft) (in)
Use #3@22.50in o/c max. for Span 5
Span 6 L=36.00ft
X Left ' Vu Mu Vcn vcw Vci Av #3@
(ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in)
Use #3@22.50in o/c max. for Span 6
Section6-CONCRETE FLEXURAL STRESSES AND <-----------------------Stresses (ksi)----------------------->
Service Loads Transfer of Prestress
SPAN Tension (XI Compression (XI Tension (XI Compression (XI
1 T -0.077 ( 29.00) -0.369 ( 12.20) -0.210 ( 12.20) -0.507 ( 29.00)
B -0.126 ( 12.20) -0.665 ( 29.00) -0.005 ( 29.00) -0.553 ( 12.20)
2T
B
3T
B
4T
B
5T
B
6T
B
JOINT
1
2
3
4
5
6
7
0.076 ( 35.00)
0.286 ( 18.00)
0.072 ( 1.00)
0.272 ( 18.00)
0.070 ( 1.00)
0.281 ( 18.00)
0.053 ( 1.00)
0.253 ( 18.00)
0.051 ( 1.00)
0.299 ( 18.00)
-0.592 ( 18.00)
-0.947 ( 35.00)
-0.584 ( 18.00)
-0.940 ( 1.00)
-0.589 ( 18.00)
-0.938 ( 1.00)
-0.574 ( 18.00)
-0.970 ( 35.00)
-0.672 ( 18.00)
-1.037 ( 1.00)
0.137 ( 18.00)
0.460 ( 35.00)
0.111 ( 18.00)
0.425 ( 1.00)
0.114 ( 18.00)
0.406 ( 35.00)
0.117 ( 18.00)
0.428 ( 35.00)
0.086 ( 18.00)
0.456 ( 1.00)
-0.759 ( 35.00)
-1.196 ( 18.00)
-0.740 ( 1.00)
-1.147 ( 18.00)
-0.730 ( 35.00)
-1.154 ( 18.00)
-0.827 ( 35.00)
-1.158 ( 18.00)
-0.842 ( 1.00)
-1.259 ( 18.00)
Section7-FACTORED COLUMN LOADS
Maximum Axial Load Maxi mum Moment
Axial Column Moment Axi a1 Col umn Moment
Load Top Bottom Load Top Bottom
(kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft)
45.19 0.00 119.79 45.19 0.00 119.79
149.55 0.00 185.30 140.66 0.00 220.43
214.59 0.00 6.13 181.39 0.00 161.39
225.49 0.00 55.23 192.01 0.00 214.77
222.37 0.00 -9.96 188.64 0.00 -168.02
213.80 0.00 -13.44 180.50 0.00 -169.33
96.01 0.00 -420.38 96.01 0.00 -420.38
CODE
CODE
DEFLECTIONS
<- - - - -Def 1 ecti ons ( i n) - - - - ->
OL + Bal LL
SPAN Delta L/Delta Delta L/Delta
1 0.004 89920 0.010 34606
2 0.024 18117 0.044 9773
3 0.019 22630 0.045 9620
4 0.021 20843 0.046 9398
5 0.015 29404 0.045 9676
6 0.035 12455 0.048 9032
Toyota Carlsbad New Parking Structure
August 24,2001
Our Job NO. 01-44
Page 14
To reduce the potential for erosion, the slopes shall be planted as soon as possible after grading.
Slope erosion, including sloughing, ding, and slumping of surface soils may be anticipated if the
slopes are left unplanted for a long period of time, especially during rainy seasons. Swales or earth
berms are recommended at the top of all permanent slopes to prevent surface water runoff fiom
overtopping the slopes. Animal burrows should be controlled or eliminated since they can serve to
collect normal sheet flow on slopes, resulting in rapid and destructive erosion. Erosion control and
drainage devices must be installed in compliance with the requirements of the controlling agencies.
Foundation Recommendations
Seismic Site Categorization: The following seismic site categorization parameters may be used
for foundation design. These design parameters are based on the information provided in Chapter
16 of the 1997 Uniform Building Code.
Soil Profile Type = sc
Near Source Factor Na = 1.0
Near Source Factor N, = 1.2 'b
Seismic Source Type =B
Footings: The on-site overburden soil is not considered suitable for foundation or floor slab support.
To provide more uniform support, we recommend that the proposed structure be supported by
foundations that are entirely embedded into dense formational sediments. Footings shall be designed
with the minimum dimensions and allowable dead plus live load soil bearing values given in the
following table:
WESTERN
Toyota Carlsbad New Parking Structure
August 24,2001
OW Job NO. 01-44
Page 15
Footinm Established on Bedrock
Minimum Minimum Allowable
Footing Depth Width Soil Bearing
Type (inches) (inches) Value (p.s.f.)
Continuous 30 30 5,000
Square 30 48 6,000
Square 30 60 6,400
Square 30 72 6,800
The minimum depth given shall be below lowest adjacent finish subgrade. If foundations
are proposed adjacent to the top of any slope, we recommend that the footings be deepened to provide a
horizontal distance of 10 feet between the outer edge of the footing and the adjacent slope face.
The soil load bearing values presented above may be increased by one-third for short term
loads, including wind or seismic. The soil load bearing values of square pad footings may be increased
800 psf for each additional foot of depth below 30 inches.
All foundations shall be reinforced in accordance with recommendations provided by a
Structural Engineer.
Settlements under building loads are expected to be within tolerable limits for the proposed
structure.
Drilled Piers: Foundations may consist of end-bearing, reinforced cast-in-place concrete drilled piers
carried through the overburden soils, and established no less than 5 feet into the firm undisturbed
formational materials. Drilled piers should extend at least 10 feet below proposed top of slab-on-
grade. Deeper embedment depths may be required by the Structural Engineer.
Toyota Carlsbad New Parking Structure
August 24,2001
OW Job NO. 01-44
Page 19
Lateral Resistance: Resistance to lateral loads may be provided by friction at the base of the
footings and floor slabs and by the passive resistance of the supporting soils. Allowable values of
frictional and passive resistance are presented for the fill soils in the table below. The frictional
resistance and the passive resistance of the materials may be combined without reduction in
determining the total lateral resistance.
Lateral Resistance Values
Allowable
Coefficient Passive Pressure
Soil Type of Friction (psflfl of depth)
Compacted Fill 0.35 250
Formational Sandstone 0.39 350
Footing Observations: Prior to the placement of reinforcing steel and concrete all foundation
excavations should be observed by the Soil Engineer, Engineering Geologist or their representative.
Footing excavations shall be cleaned of any loosened soil and debris before placing steel or concrete.
Footing excavations should be observed and probed for soft areas. Any soft or disturbed soils shall
be over-excavated prior to placement of steel and concrete. Over-excavation of soils should not be
performed in locations that were undercut for transition areas. This would compromise the thickness
of the soil supporting the footings. In undercut transition areas loose soils should be recompacted.
c
c c
CL
f r R I B- I
Toyota Carlsbad New Parking Structure
August 24,2001
OW Job NO. 01-44
Page 20
Retaining Walls
Lateral Pressures: Retaininglrestrainhg walls are proposed for development on this site. Specific
wall heights and design have not been provided to us. Our analysis anticipated that retaining walls
up to 20 feet in height may be constructed. These recommendations should be reviewed and
updated if walls greater than 20 feet in height are to be installed. For the design of cantilevered
retaining walls where the backfill is well drained, the equivalent fluid pressures for both active and
at-rest conditions are presented below.
Backfill Active Pressure At-Rest Pressure
Inclination (p.c.f.) (p.c.f.)
Level 42 60
2:l slope 60 78
Wherever walls are subject to surcharge loads, they should be designed for an additional
uniform lateral pressure equal to one-third the anticipated surcharge pressure, in case of unrestrained
walls, and one-half the anticipated surcharge, in case of restraining walls.
Drainage and Waterproofing: Ifthe backfill is placed and compacted as recommended herein and
good surface drainage is provided, the infiltration of water into the wall backfill may be reduced.
Adequate drainage of adjacent planters should likewise be provided to reduce water infiltration into
wall backfills.
WfSTERN
SOlL AND FOUNDATION €NGINEERlNG INC
Frame Design Group
c
e
Y
c
c
c
c
c
c
P--
Proiect: Page: I#$
Frame Design Group
c
ri
Frame Design Group
%%ZO
Proiect: Page: 1+7
c Frame Design Group
c
c
c
0 0 0
Y
0 +x 0
0 0 0
24 x 20 in
;ode: ACI 318-95
Jnits: English
iun axis: About X-axis
iun option: investigation
Slenderness: Not considered
'olumn type: Structural
J Bars: ASTM A615
! Date: 05/13/02 A Time: 09:33:02
, fs=O ,' -
I
I / /"
/ fs=O. 5fy ~ + / "'i ,,/ i2t, 12s 1
I CI
-600 -
1 PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA
d
File: untitled.col
c 1 Project: Toyota Carlsbad
J fc=5 ksi fy = 60 ksi
Engineer:
Ag = 480 inA2 8 #9 bars , Ec= 4031 ksi Es = 29000 ksi As = 8.00 inA2 Rho = 1.67% .
e fc = 4.25 ksi e-rup = Infinity Xo = 0.00 in Ix = 16000 inY
. e-u = 0.003 in/in Yo = 0.00 in ly = 23040 inY
c Beta1 = 0.8 Clear spacing = 6.43 in Clear cover = 1.88 in
1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7
c
cc I
8 8 8
0 +x 0
Y
8 8 8
24 x 20 in
Code: ACI 318-95
Units: English 1 Run axis: About X-axis
-; Run option: Investigation I
Slenderness: Not considered
'olumn type: Structural
Bars: ASTM A61 5
Date: 05/13/02
] Time: 10:30:31
CL
I
'i ,-l
2500
41'
-1 000
-_
13-v
I
, 2=0.5fy
I , -.
Vi +
600
MX (k-ft) /'
I PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Imine, CA
J
File: untitled.co1 A Project: Toyota Carlsbad
A fc = 5 ksi
Column: C\ (TOP CVL) L~~JC D Engineer:
fL = 60 ksi Ag = 480 inA2
\
14 bars & -k 6+( 0 l Ec= 4031 ksi Es = 29000 ksi As = 15.35 in"2 Rho = 3.20%
fc =4.25 ksi e-rup = Infinity Xo = 0.00 in Ix = 16000 inA4
e-u = 0.003 in/in
Beta1 = 0.8
Yo = 0.00 in
Clear spacing = -0.06 in
ly = 23040 inY
Clear cover = 1.80 in c
1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7
i
0 0 0
Y I
0 +x Oi
0 0 0
24 x 20 in
Code: ACI 318-95
Units: English
Run axis: Biaxial
Run option: Investigation
Slenderness: Not considered
'olumn type: Structural
I
c
i Bars: ASTM A61 5
Date: 05/13/02
Time: 13:34:40
d
I c
/ / i I
700 T My(k-ft)
-I
f
/ i I t MX (k-ft)
\ -700 \ 700
-700 - P = 453 kip
j PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, lrvine, CA
J
File: C:\PROGRA-l\PCACOL\DATA\EXT2024.COL
I 1 Project: Toyota Carlsbad c
Column: C2
-1 f'c= 5 ksi
Ec = 4287 ksi I
A fc =4.25 ksi
fy = 60 ksi
Es = 29000 ksi
e-rup = Infinity
Engineer: JEH
Ag = 480 in"2 8 #I 1 bars
As = 12.48 inA2 Rho =2.60%
Xo = 0.00 in Ix = 16000 in"4
I e-u = 0.003 in/in Yo = 0.00 in ly = 23040 in"4
c Beta1 = 0.8 Clear spacing = 5.89 in Clear cover = 2.00 in
1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7
i
0 0 0
Y
0 +x 0
0 0 0
24 x 20 in
Code: ACI 31 8-95
Units: English
Run axis: Biaxial
Run option: Investigation *I '1 Slenderness: Not considered
-I
olurnn type: Structural I Bars: ASTM A615
Date: 031 3/02
I
1 Time: 13:29:32
r
--i
7;
\ \
I I , I I I , I
,' 500
-800 -
l PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA
c
File: C:\PROGRA-l\PCACOL\DATA\EXT2024,COL
Project: Toyota Carlsbad
Column: C2 Engineer: JEH I
l Fc= 4287 ksi I
fc = 4.25 ksi
' P-u = 0.003 in/in
I I- Beta1 = 0.8
fy = 60 ksi
Es = 29000 ksi
e-rup = Infinity
Ag = 480 in"2
As = 12.48 inA2
Xo = 0.00 in
Yo = 0.00 in
Clear spacing = 5.89 in
8 #11 bars
Rho = 2.60%
Ix = 16000 inA4
ly = 23040 inA4
Clear cover = 2.00 in
i Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7
rli
8 8
i'
24 x 20 in
Code: ACI 318-95
Units: English
Run axis: Biaxial
Run option: Investigation
Slenderness: Not considered
'olumn type: Structural 1 Bars: ASTM A615
I Date: 05/13/02
F- ' I -1 Time: 13:35:45
900 T My(k-ft)
I
/ 4 1 i I
/i I
,' I
t
-900 P = 151 kip
MX (k-ft)
900
1 PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA -.
File: C:\PROGRA-l\PCACOL\DATA\EXT242OT.COL
Project: Toyota Carlsbad i
Column: C2 Top Engineer: I -1 fc= 5 ksi
I
I Ec= 4031 ksi
--' fc = 4.25 ksi 1
I e-u = 0.003 idin
= 60 ksi
Es = 29000 ksi
e-rup = Infinity
Ag = 480 in"2 14 bars 8011 6 '(0
As = 20.10 in"2 Rho =4.19%
Xo = 0.00 in Ix = 16000 in"4
Yo = 0.00 in ly = 23040 in"4
t- Beta1 = 0.8 Clear spacing = -0.20 in Clear cover = 1.73 in A Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7
c 7
I
n &I1 8 8 ~8 8 8
Y
-0 0
-I/ 8 8 8
24 x 20 in
I , Code: ACI 318-95
Units: English I Run axis: Biaxial
1 Run option: Investigation
-\
Slenderness: Not considered
'olumn type: Structural
Bars: ASTM A615
Date: 05/13/02 1 Time: 13:36:26
J
i
d
t
I I I , 1,'' 700 , I
,"M (31 ") (k-fl)
I I I , 1,'' 700 , I
i I ,"M (31 ") (k-fl) ! /' I I
I -1'
-1500
j PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Iwine, CA
L-i
File: C:\PROGRA-I\PCACOL\DATA\EXT2420T.COL 1 Project: Toyota Carlsbad
, Column: C2 Top I r' Pc = 5 ksi
, Ec= 4031 ksi
fc = 4.25 ksi
I e-u = 0.003 in/in
h Beta1 = 0.8
fy = 60 ksi
Es = 29000 ksi
e-rup = Infinity
Engineer:
Ag = 480 inA2 14 bars
As = 20.10 inA2 Rho =4.19%
Xo = 0.00 in Ix = 16000 inA4
Yo = 0.00 in
Clear spacing = -0.20 in
ly = 23040 in"4
Clear cover = 1.73 in
1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7
c '2.
c
0 0 0
0 0
\. 0
24 x 42 in ,*-.I 1 Code: ACI 318-95
-1 Units: English
Run axis: Biaxial
Run option: Investigation
Slenderness: Not considered
'olumn type: Structural
r.r I
c-
I j Bars: ASTM A615
Date: 05/13/02 1 Time: 11 :06:42
<d
I c
2ooo T My (k-fi)
/' ,,,:;\\ I
I MX (k-ft)
1 I I
I t 11 I - ..- ~ , -2000 i 2000
I I '\
-2000 P = 536 kip
I PCACOL V3.00 (PCA 1999) - Licensed to: Frame Desian Grouo. Irvine. CA
File: C:\PROGRA-I\PCACOL\DATA\TOYOTAC3.COL
fy = 60 ksi
Es = 29000 ksi
e-rup = Infinity
c j Project: Toyota Carlsbad
Column: C3 Engineer:
f'c= 5 ksi
Ec= 4031 ksi As = 12.70 inA2
fc = 4.25 ksi Xo = 0.84 in
' e-u = 0.003 in/in Yo = -7.35 in
Ag = 912 in"2
!
c Beta1 = 0.8 Clear spacing = 5.73 in
1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7
r-lr
10 #IO bars
Rho = 1.39%
-
Ix = 120768 in"4
ly = 40825.3 in"4
Clear cover = N/A
Code: ACI 318-95
Units: English
J Run axis: Biaxial
i Run option: Investigation P
Slenderness: Not considered
'olumn type: Structural
Bars: ASTM A615
J
Date: 05/13/02
I Time: 11 :05:14
I
2000 T My (k-ft)
I
I MX (k-ft)
~ 2000
I
I
-2000
I/ I ! I
I ' (\
/\ \
I
-2000 P = 225 kip
I PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Imine, CA
File: C:\PROGRA-1 \PCACOL\DATA\TOYOTAC3.COL
1 Project: Toyota Carlsbad
Column: ~3 ~e-1
f'c= 5 ksi
-p.
I Ec= 4031 ksi fc = 4.25 ksi
fy = 60 ksi
Es = 29000 ksi
e-rup = Infinity
Engineer:
Ag = 912 inA2
As = 15.60 inA2
Xo = 0.84 in
e-u = 0.003 in/in
Beta1 = 0.8
Yo = -7.35 in
Clear spacing = 5.59 in -
10 #I 1 bars
Rho = 1.71%
-
Ix = 120768 in"4
ly = 40825.3 in"4
Clear cover = N/A
I Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7
:A
'0 0 0
Y
0 +x 0
0 0 0
24 x 20 in
Code: ACI 318-95
Units: English
Run axis: Biaxial
Run option: Investigation
Slenderness: Not considered
rc-
c olumn type: Structural 1 Bars: ASTM A615
-( Date: 05/13/02 I Time: 10:57:01
-1 I
600
/
/'
I ! MX (k-ft)
I
I I 1 I I I I 1
-600 600
1
+ \
I
\
-600
P = 439 kip
PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA
1
I File: C:\PROGRA-l\PCACOL\DATA\EXT2024,COL
I
I' J Project: Toyota Carlsbad
Column: 24x20 - C4 Engineer: J E H 1 I --/ f'c= 5 ksi
I 1 Ec= 4287ksi
I
fy = 60 ksi
Es = 29000 ksi
e-rup = Infinity
Ag = 480 inA2
As = 8.00 inA2
4i fc = 4.25 ksi Xo = 0.00 in I I e-u = 0.003 in/in Yo = 0.00 in
c i Beta1 = 0.8 Clear spacing = 6.31 in
8 #9 bars
Rho = 1.67%
Ix = 16000 inA4
ly = 23040 inA4
Clear cover = 2.00 in
J Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7
0 0 0
I I i
c
Y
0 +x 0
P = 146 kip
0 0 0
24 x 20 in
Code: ACI 318-95
Units: English
Run axis: Biaxial
Run option: Investigation
Slenderness: Not considered
olumn type: Structural
I Bars: ASTM A61 5
\ Date: 05/13/02
-1
1 Time: 10:57:30 1
i
,i
/
600 T My(k-ft)
+ 1-2
MX (k-ft)
i
-600
I
\
I 1 jl , I 1 I 1
I 600
1, - \
\\ 1
- ',, \
1
-600 -
i PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA
c
File: C : \P ROG RA- 1 \PCACO L\DATA\EXT2024. CO L
Project: Toyota Carlsbad
Column: 24x20 - C4 Tbg L@& Engineer: JEH
fy = 60 ksi Ag = 480 in"2
Es = 29000 ksi As = 8.00 in"2
1 -I fc=5 ksi
\, i Ec= 4287ksi - fc = 4.25 ksi e-rup = Infinity Xo = 0.00 in
I e-u = 0.003 in/in
c Beta1 = 0.8
Yo = 0.00 in
Clear spacing = 6.31 in
8 #9 bars
Rho = 1.67%
Ix = 16000 in"4
ly = 23040 in"4
Clear cover = 2.00 in
1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7
i
I 40 x 20 in
Code: ACI 318-95
Units: English 1 Run axis: Biaxial
Run option: Investigation
Slenderness: Not considered
'olumn type: Structural 1
I Bars: ASTM A61 5
Date: 05/13/02 1 Time: 12:56:46
1
3000
i
t ,'
7
I 1 1
800
M (39") (k-ft)
/' -
/
-1000
I PCACOL V3.00 (PCA 1999) - Licensed to: Frame Desian GrOUD. Irvine. CA
File. untitled. col
I 1 Project: Toyota Carlsbad
Column: C5 Engineer: 1 fc= 5 ksi Ag = 702 inA2
! Ec= 4031 ksi fc = 4.25 ksi
' e-u = 0.003 in/in
c Beta1 = 0.8
fy = 60 ksi
Es = 29000 ksi
e-rup = Infinity
As = 11.43 in"2
Xo = 5.86 in
Yo = -0.74 in
Clear spacing = 5.73 in
9 #I 0 bars
Rho = 1.63%
Ix = 22422.9 in"4
ly = 79342.1 in"4
Clear cover = N/A i Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7
c
8 8 8
Y
0 +x 0
8 8 8
24 x 20 in
Code: ACI 318-95
Units: English
Run axis: About X-axis
Run option: Investigation
Slenderness: Not considered
'olumn type: Structural
Bars: ASTM A61 5
Date: 05/1 3/02
Time: 12:04:35 4'' -800
I PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Imine, CA
?
L-
File: C:\PROGRA-1 \PCACOL\DATA\EXT2420T.COL
Project: Toyota Carlsbad
Column:- ~7 TOP Engineer:
fc = 5 ksi fy = 60 ksi Ag = 480 inA2 14 bars -k 6*7
Ec= 4031 ksi Es = 29000 ksi As = 13.76 inY Rho =2.87%
fc = 4.25 ksi e-rup = Infinity Xo = 0.00 in Ix = 16000 in"4
e-u = 0.003 in/in ly = 23040 inA4
Beta1 = 0.8 Clear cover = 1.80 in
Confinement: Tied
Yo = 0.00 in
Clear spacing = 0.07 in
phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7
-I
Y
0 +x 0
0 0 0
24 x 20 in
Code: ACI 318-95 i
Units: English
Run axis: About X-axis - Run option: Investigation
I Slenderness: Not considered
olumn type: Structural J
~ Bars: ASTM A615 I
Date: 05/13/02
J Time: 09:33:13
c
,/
+ fs=O /, I ,’
I
~ /’
fs=OSfy
~
I/ ! ,;, 4a”
/ 500
MX (k-ft) -, 3fi,
- /”
-600 1
~ PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Imine, CA i
File: untitled.col 1 Project: Toyota Carlsbad
Column: ~31. C7 Engineer: , i
-1 fc = 5 ksi
Ec= 4031 ksi
fc =4.25 ksi
fy = 60 ksi
Es = 29000 ksi
e-rup = Infinity
Ag = 480 inA2
As = 10.16 inY
Xo = 0.00 in
’ 9-u = 0.003 in/in Yo = 0.00 in
P Beta1 = 0.8 Clear spacing = 6.22 in
8 #10 bars
Rho = 2.12%
Ix = 16000 inA4
ly = 23040 inA4
Clear cover = 1.88 in
1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7
0 0 0
Y
0 +x 0
0 0
20 x 20 in
Code: ACI 31 8-95
Units: English
Run axis: About X-axis
Run option: Investigation
Slenderness: Not considered
'olumn type: Structural A Bars: ASTM A615
I Date: 05/13/02
1 Time: 09:35:38 i -400
1 PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA
A
I
File: untitled.col
c I Project: Toyota Carlsbad
, Column:& ~a 4 ~4
I -1 fc=5ksi
-1 fc = 4.25 ksi
I I I Ec= 4031 ksi
I e-u = 0.003 in/in
c- 1 Beta1 = 0.8
fy = 60 ksi
Es = 29000 ksi
e-rup = Infinity
Engineer:
Ag = 400 inA2 8 #8 bars
As = 6.32 inA2 Rho = 1.58%
Xo = 0.00 in
Yo = 0.00 in
Ix = 13333.3 inA4
ly = 13333.3 inA4
Clear spacing = 6.63 in Clear cover = 1.88 in -1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7
c
c
L
r.-
c
c
L
Y
0 +x 0
0 OI 0
0 0
/
I I 1 1 I I
MX (k-ft) I
I I 1
Code: ACI 318-95
Units: English
Run axis: Biaxial
Run option: Investigation ' Slenderness: Not considered I
800 T My(k-ft)
,\ i t
i
4 olumn type: Structural
Bars: ASTM A615
Date: 05/13/02
1
~ Time: 12:45:48 i
I I P = 1151 kip
rc
t I
f I
i
-800
~~
1 PCACOL V3.00 (PCA 1999) - Licensed to. Frame Design Group, Imine, CA
A
File: C : \P ROG RA- 1 \PCACO L\DATA\I NT2424. CO L 1 Project: Toyota Carlsbad
A f'c= 5 ksi
Column: W CIO Engineer: JEH
Ag = 576 inA2 8 #11 bars
, Ec= 4287 ksi As = 12.48 inA2 Rho = 2.17%
fc = 4.25 ksi ,.A
I e-u = 0.003 in/in
c Beta1 = 0.8
fy = 60 ksi
Es = 29000 ksi
e-rup = Infinity Xo = 0.00 in Ix = 27648 inY
Yo = 0.00 in
Clear spacing = 7.89 in
ly = 27648 inA4
Clear cover = 2.00 in
J Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7
0 0 0
-
Y
0 +x 0
Ec = 4287 ksi Es = 29000 ksi As = 12.48 in"2 Rho = 2.17%
fc = 4.25 ksi e-rup = Infinity Xo = 0.00 in Ix = 27648 in"4
0 0 0
24 x 24 in
Code: ACI 318-95
Units: English
Run axis: Biaxial
Run option: Investigation
Slenderness: Not considered
'olumn type: Structural
Bars: ASTM A61 5
Date: 05/13/02
Time: 12:45:56
800 T My (k-ft)
+
t
1 I MX (k-ft)
I I I I /I 1 I I 1 I I I
800 I -800 \
\ -
i
i
-800
P = 384 kip
1 PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA
~ File: C:\PROGRA-l\PCACOL\DATA\lNT2424.COL
c I Beta1 = 0.8 Clear spacing = 7.89 in Clear cover = 2.00 in
c
c
c
L
c
c-
c
2-
c
c
e
F
c
c
c
c
0 0
U TA
0 0 0
24 x 24 in
Code: ACI 318-95
Units: English
Run axis: Biaxial
Run option: Investigation
Slenderness: Not considered
olumn type: Structural
Bars: ASTM A61 5
Date: 05/13/02
Time: 12:46:03
1 i /
/ I
lee
800 - My(k-ft)
I
J
i i t
MX (k-ft)
t
I
-800
P = 254 kip
PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA
File: C:\PROGRA-l\PCACOL\DATA\lNT2424.COL
Project: Toyota Carlsbad
Column: C 10 6/13 Lvc) Engineer: JEH
f'c = 5 ksi fy = 60 ksi Ag = 576 in"2
Ec = 4287 ksi Es = 29000 ksi As = 12.48 inA2 Rho =2.17%
fc = 4.25 ksi e-rup = Infinity Xo = 0.00 in Ix = 27648 inA4
e-u = 0.003 in/in ly = 27648 in"4
8 #I 1 bars
Yo = 0.00 in
P I Beta1 = 0.8 Clear spacing = 7.89 in Clear cover = 2.00 in
I I Confinement: Tied phi(a) = 0.8, phi(b) = 0.9. phi(c) = 0.7 I
c
c
c
Frame Design Group
6-6
P
c
./ Project: Page: i; 3
I
300.6
5 -
C-13
e Frame Design Group
c
L
Project: Page: 14 G
P
c
c Project: Page: fG7
c Frame Design Group
8-4
P
c
5
c
f= 122.3 f(37 361% = 266.3
c
%2 26 - F”7 -! P
c
c
gr4 5 Pa
p.
3-
-9 c 1 53. s - 5
c
Project: Page: IG8
Frame Design Group
c
c
c
CI
A -1
b
I c
c- L
e
A B
I 23.6
Toyota Carlsbad -Wall B 1 bc/
I I ~ 100
*- &I
r ID ID
d-4-
C
Allowable Soil Bearing : 5000 psf
Concrete Weight : 145 pcf Concrete fc :4 ksi Steel fy : 60 ksi
Service Soil Bearing
Maximum Bearing 4938.42 psf DL+LL
Max/Allowable Ratio ,988
4938.42 psf A B
0 psf
Uplift
D C
Flexure Design
Maximum MuXX /’ 5.908 k-ft
Maximum MuZZ /@ 16.451 k-ft
$$X Dir. Steel:
8 z Dir. Steel:
1.555 in2 (min)
1.944 in2 (min)
Z direction steel requires the following placement:
Region 1 (starts at A): 6 in Steel: .I08 in2
Region 2 (middle): 48 in Steel: 1.728 in2
Region 3 (ends at D): 6 in Steel: .I08 in2
Maximum Shear Check Ratios (Vu /@ Vc)
Two Way (Punching) Shear ,089 1.4D+1.7L
One Way Shear, X dir. cut .006 1.4D
One Way Shear, Z dir. cut .065 1.4D+1.7L
Overturning Moment Safety Factors (OTM SF) OTM SF About X-X Axis NA DL+LL
OTM SF About Z-Z Axis NA DL+LL
Concrete Bearing (For Vertical Loads Only!)
Maximum Bu /@ 76.144 k 1.4D+1.7L
Allowable Bc 1360 k
AD DC BA AD
c
c-
c
In0 EJO
ON sx
22 c9'9
* m 2 . EJ
c
c
c
c
c-
Frame Design Group
Project: 704 tn Cas IS bd Page: 131
1
Frame Design Group Title : Toyota Carlsbad Page: (7% 2 Faraday Job# : 01-196 Dsgnr: JEH Date: MAY 14,2002 Irvine, CA Desctiption.. .. 949-595-801 5 1O'WaIl
This Wall in File: C:\PROGRAM FILES\RPG\WORK FILES.RI F~x 949-595-8018
Cantilevered Retaining Wall Design RetainPro Version 6.0 Build Date : 10-SEP-2001, (c) 1989-2001
Criteria [Soil Data ' Footing Dimensions & Strengths I
Retained Height = 9.50ft Allow Soil Bearing = 5,000.0 psf Toe Width Heel Width Wall height above soil = 0.50 ft
Height of Soil over Toe = 12.00 in Passive Pressure = 250.0psflft
3.00 ft 2.50 - 5.50
- - - - ____ - Equivalent Fluid Pressure Method Heel Active Pressure = 40.0 psf/ft Total Footing Widtt
Toe Active Pressure = 30.0 Psflft Footing Thickness = 20.00in - 0.00 in - 0.00 in Water height over heel = 0.0 ft Key Width Key Depth
Key Distance from Toe = 0.00 ft FootingllSoil Frictior = 0.400
Slope Behind Wal = 0.00: 1
Soil Density = 110.00pcf
Wind on Stem - - 0.0 psf Soil height to ignore
- -
for passive pressure = 12.00 in fc = 2,OOOpsi Fy = 60,OOOpsi Footing Concrete Density = 150.00 pcf Min. As YO = 0.0018
Cover Q Top = 2.00in @ Btm.= 3.00 in
~ Design Summary Stem Construction TopStem 2nd 3rd Stern OK Stem OK Stem OK
... resultant ecc. = 15.15 in Wall Material Above "Ht" = Masonry Masonry Masonry
Total Bearing Load = 4.438 lbs Design height ft= 10.00 4.00 0.00
Soil Pressure Q Toe = 1,989 psf OK
Soil Pressure Q Heel = 0 psf OK
Soil Pressure Less Than Allowable Allowable = 5.000 psf
ACI Factored Q Toe = 2,658 psf
Footing Shear Q Toe = 19.1 psi OK
Footing Shear Q Heel = 12.6 psi OK Allowable -
Overturning -
Sliding -
ACI Factored Q Heel = 0 psf
76.0 psi
1.72 OK 1.06 Ratio 1.5!
-
- Wall Stability Ratios
-
Sliding Calcs Slab Resists All Sliding !
Lateral Sliding Force = 2,387.2 Ibs
Footing Design Results c
Factored Pressure Mu' : Upward Mu' : Downward Mu: Design
Actual 1-Way Shear
Allow 1-Way Shear
Toe Reinforcing Heel Reinforcing Key Reinforcing
TOe Heel
= 10,629 36 ft-# = 2,662 2,776 ft# = 7,968 2,74Oft#
= 19.10 12.65 psi = 76.03 76.03 psi = NoneSpec'd = NoneSpec'd = NoneSpec'd
-- = 2.658 0 psf
Thickness - - 8.00 8.00 12.00 Rebar Size = #6 #5 #7
Rebar Spacing = 16.00 16.00 16.00
Rebar Placed at = Edge Edge Edge
fblFB + fa/Fa - 0.000 0.524 0.882
Total Force Q Section Ibs = 0.0 605.0 1.790.0
Moment.. . .Actual ft# 0.0 1,109.2 5,710.8
Moment ..... Allowable ft#= 2,374.3 2,115.9 6,477.9
Shear ..... Actual psi = 0.0 10.8 18.8
Shear ..... Allowable psi = 38.7 38.7 38.7
Lap Splice if Above in= 36.00 30.00 42.00
Lap Splice if Below in = 36.00 30.00 16.44
Wall Weight psf= 78.0 78.0 124.0
___________~_ Design Data -
Rebar Depth 'd' in = 5.25 5.25 9.00 Masonry Data ~-
fm psi= 1,500 1,500 1,500
Fs psi= 24,000 24,000 24,000
Solid Grouting - Yes Yes Yes
Special Inspection - Yes Yes Yes
Modular Ratio 'n' = 25.78 25.78 25.78
Short Term Factor = 1.000 1.000 1 .ooo
Equiv. Solid Thick. in = 7.60 7.60 11.60 Masonry Block Type = Medium Weight
Pc psi =
FY psi =
Other Acceptable Sizes & Spacings Toe: #4Q 6.75 in, #5@ 10.50 in, #6@ 15.00 in, #7@ 20.25 in. #8@ 26.75 in, #9@ 33 Heel: Not req'd, Mu < S Fr Key: No key defined
- -
Concrete Data ~
Frame Design Group Title : Toyota Carlsbad Page: VI 3
2 Faraday Job# : 01-196 Dsgnr: JEH Date: MAY 14,2002
Inrine, CA 949-5958015 10' Wall Description. ...
This Wall in File: C:\PROGRAM FILES\RPG\WORK FILES.Rf F~x 949-595-8018
Retainpro Version 6.0 Cantilevered Retaining Wall Design Build Date : 1OSEP-2001, (c) 1989-2001
Summary of Overturning & Resisting Forces & Moments I ..... RESISTING ..... ..... OVERTURNING ..... Force Distance Moment Force Distance Moment ft-# -~ ~
Item Ibs ft ft# Ibs ft
Heel Active Pressure = 2,493.9 3.72 9,282.8 Soil Over Heel = 1.567.5 4.75 7,445.6
Toe Active Pressure = -106.7 0.89 -94.8 Sloped Soil Over Heel =
Surcharge Over Toe = Surcharge Over Heel =
Adjacent Footing Load = Adjacent Footing Load =
Added Lateral Load = Axial Dead Load on Stem = 0.00
Load Q Stem Above Soil = Soil Over Toe - - 330.0 1.50 495.0
Stem Weight(s) - 964.0 3.42 3,296.0
ResistinglOverturning Ratio = 1.72 Footing Weigh1 = 1,375.0 2.75 3,781.3
Surcharge Over Toe =
Total = 2,387.2 O.T.M. = 9,188.0 Earth Q Stem Transitions =
Key Weight - -
-
201.7 3.83 773.1
- Vert. Component - Vertical Loads used for Soil Pressure = 4,438.2 Ibs
Vertical component of active pressure NOT used for soil pressure Total = 4,438.2 Ibs R.M.= 15,790.9
c
c
I /a *I
c
- 3" f
e
c
Sliding Restraint
..-.
8.in Mas wl #t6 Q 16.in olc
Solid Grout, Spc lnsp
I
I
6-0" ~
12.in Mas wl#7 Q 16.in olc
Solid Grout, Spc lnsp
I 4-0"
WQ18.in
t I I
c
@Toe
Designer select
#0@18.in all horiz. reinf. I
3-0" 2'-6" M t
7
10'-0" 9-6"
I
c
5-6"
c
c
c
Frame Design Group Title : Toyota Carlsbad Page: /79 2 Faraday Job# : 01-196 Dsgnr: JEH Date: MAY 14,2002 Irvine, CA Description.. .. 6'Wall
This Wall in File: C:\PROGRAM FILES\RPG\WORK FILES.Rf I I F& &9-JS5-8018
Cantilevered Retaining Wall Design RetainPro Version 6.0 Build Date : 1OSEP-2001, (c) 1989-2001
Criteria
Retained Height = 6.00ft Allow Soil Bearing = 5,000.0 psf Toe Width Heel Width Wall height above soil = 0.50 ft
Height of Soil over Toe = 12.00 in Passive Pressure = 250.0 psflft
- - - 3.33 ft - 0.67 - 4.00
- - Equivalent Fluid Pressure Method Heel Active Pressure = 40.0 psf/ft Total Footing Widtt - Slope Behind Wal = 0.00 : 1 Toe Active Pressure = 30.0 PSfM Footing Thickness - 16.00 in
Soil Density = 11o.oopcf Key Width - - - - 0.00 in
0.00 in Water height over heel = 0.0 ft
FootinglISoil Frictior = 0.400 Key Depth
Key Distance from Toe = 0.00 ft Wind on Stem - 0.0 psf Soil height to ignore -
for passive pressure = 12.00 in fc = 2,OOOpsi Fy = 60,OOOpsi Footina Concrete Densitv = 150.00 DCf
Min. AS % - = 0.0018' Cover Q Top = 2.00in Q Btm.= 3.00 in
,Design Summary j Stem Construction Topstem -~
Stem OK
... resultant ecc. = 13.21 in Wall Material Above "Ht" = Masonry
Total Bearing Load = 1,674 Ibs Design height ft= 0.00
Soil Pressure Q Toe = 1,241 psf OK
Soil Pressure Q Heel = 0 psf OK
Soil Pressure Less Than Allowable Allowable = 5,000 psf
ACI Factored Q Toe = 1,737 psf
Footing Shear Q Toe = 6.0 psi OK
Footing Shear Q Heel = 0.0 psi OK Allowable -
Overturning -
Sliding - 1.23 Ratio 1.51
Sliding Calcs Slab Resists All Sliding I
Lateral Sliding Force = 993.9 Ibs
ACI Factored Q Heel = 0 psf
76.0 psi
1.59 OK
-
- Wall Stability Ratios -
Footing Design Results 1 -- Toe Heel
Factored Pressure = 1.737 0 DSf
Mu' : Upward
Mu' : Downward
Mu: Design
Actual 1-Way Shear Allow 1-Way Shear
Toe Reinforcing Heel Reinforcing Key Reinforcing
- - 0 0 it#
= 2,440 17 ft-# - - 5.98 0.00 psi
= 76.03 76.03 psi = NoneSpec'd = NoneSpec'd = NoneSpec'd
0 17 ft-# - -
- - 8.00 Thickness Rebar Size = #5
Rebar Spacing = 16.00
Rebar Placed at = Edge
fbIFB + fa/Fa - 0.678
Total Force Q Section Ibs = 705.0
Moment.. . .Actual ft-#= 1,435.0
Moment.. . ..Allowable = 2,115.9
Shear ..... Actual psi= 12.6
Shear ..... Allowable psi = 38.7
Lap Splice if Above in= 30.00
Lap Splice if Below in= 11.74 - - 78.0 Wall Weight
Rebar Depth 'd in = 5.25 Masonry Data Pm psi= 1,500
Fs psi= 24.000 Solid Grouting - Yes
Special Inspection - Yes
Modular Ratio 'n' = 25.78
Short Term Factor = 1.000
Equiv. Solid Thick. in = 7.60 Masonry Block Type = Medium Weight
fc psi =
FY psi =
Other Acceptable Sizes 8 Spacings Toe: Not req'd, Mu < S Fr
Heel: Not req'd, Mu < S Fr
Key: No key defined
Design Data __ -
___ -
- -
Concrete Data ~~~- - ~~ - .. .
Page: 17L Frame Design Group Title : Toyota Carlsbad 2 Faraday Job# : 01-196 Dsgnr: JEH Date: MAY 14,2002 Irvine, CA Description ....
949495801 5 6'Wall
Fax 949695801 8
c
This Wall in File: C:\PROGRAM FIlES\RPG\WORK FILES.RI
c
Cantilevered Retaining Wall Design RetainPro Version 6.0 Build Date : IO-SEP-2001, IC) 1989-2001 - Summary of Overturning & Resisting Forces & Moments I ..... OVERTURNING ..... ..... RESISTING ..... Force Distance Moment Force Distance Moment Item Ibs ft ft-# Ibs ft ft-#
Heel Active Pressure = 1,075.6 2.44 2,629.1 Soil Over Heel - 0.2 4.00 0.9
Toe Active Pressure = -81.7 0.78 -63.5 Sloped Soil Over Heel =
Surcharge Over Toe = Surcharge Over Heel =
K- Adjacent Footing Load = Adjacent Footing Load =
Added Lateral Load = Axial Dead Load on Stem = 0.00
e -
Load @ Stem Above Soil = - Soil Over Toe - 366.6 1.67 61 1 .O Surcharge Over Toe = - - - 1,858.8 507.0 3.67 c Stem Weight(@
993.9 O.T.M. = 2,565.6 Earth Q Stem Transitions = - Total -
Resisting/Ovetturnlng Ratio = 1.59
.GG Vertical Loads used for Soil Pressure = 1,673.9 Ibs
Vertical component of active pressure NOT used for soil pressure
~ - Footing Weighi - 800.0 2.00 1,600.0 Key Weight - -
Vert. Component - ~ - - Total = 1,673.9 Ibs R.M.= 4,070.7
P
c-
c
c
3'4 i8
c
I77
c
c
_. - ~
Sliding Restraint
8.in Mas w1#5 @ 16.in olc
Solid Grout, Spc lnsp
-1
1'-0" f ,
8.in Mas w1#5 @ 16.in olc
Solid Grout, Spc lnsp
-1
h
+
#O@18.in
@Toe
Designer select
c
t e
@ ,,&ee Appendix A
9 4'-0"
)i
2 314"
2" ,
6"
6-6"
6-0" ,
4
1'4" ~
December 1 I, 2002
Mr. Bob Wolf
Toyata Carlsbad
5424 PaserJ Pci Nme
Cerlsbd, CA 92008
mjcct:
Subject:
Job YO. 01-44
New Parking Structure
Tcyota CarIsbad
1040 Auto Center Court
Carlshad, California
Addendum Numb& @ne of our
Report of Geotcchnical Investigation Dared August 24,2001
Dear Mr. WolE
for the refmnced projecr. Irs purpose is fo provide resised recommmdations wMch address the
sapport of the proposed concrete s:ab-on-pde.
To accomplish this. a supplemental investigation was performed to cvaiuatt the density and
chckneis of the fd. Subsurface conditions were exptdrd by excavating four sr.aiI diameter bo&@
on December 4.2032. The exp;o:mry bonnss were 8 ixhes in diameter and cxtmded to depths
racgng frcm 1 S io 21 feet. Nc: ca\<ng occtxtd h iht excavation walls. Groundwatl;r *.vas not
obseved in any cxplomion. The locritiors of the exploratm-y excavations are depicted on the Sire
Plan Plate Xo. 1. in the back of this addendum.
-_
.
The swt'act reccnnaisaict and subbrmrf'c exploratiim were conducted by O?U; aokgy md soil
mgjne~riog pcrS9,nnel. The soils iifc described in accodmce with the Urdtd Soif Classification System
as illustrated on the attached sixnplif;.ed cbaH (Plate No. 2). In addition, a verb31 zxturd description,
the we color. the i:plpparent moisture and the denaty at coonSisrency are presented. The density of granular
material is givzn as either very hose, loose, rne&um dense, dense or very dcnsc. The con5istency of
silte or clays is given as sither vcry so& soft, medium stiff, stiff, very stiff or hard. The sampb and
lo&& of our explorstx>ry . sxcavntions were perfmned llsing standard geotecbicd mcthods. The logs
are FrwcQttd on Plate No. 3 through Plate No. 6- Szimptes of typical and reprcsentetive soils were
.. . .
obtained and ra~rnd to our laboratory for observation and testing.
Laboratory tests were psrfonncci in accordance with the American Society for Testing and
Materials (ASTAM) test methods or suggested proccdurcs. Test results are shown on Plate No. 7.
5
Findings: Anificial fill mnging hm ? to 15 fzet in vertical thickness was encountered in each of
the suppkmental borings (B-5 through B-5). These soils were similar in composXon and color as
described in our original referenced report. Stratigaphic descriptions arc presented in the attached
boring logs.
The estimated consistency ad ddty of The fill rnatcrial was based on Visual obsavation, the
notdon of blow counts during sampling and the perfomarm of moiSuru'dtnsiri detnminattions on
relntively und:sr:rrbed Mg samples In accordance with MT-M DtS50. The resdts of our !aboratory
testing indicate :hot the existing fill at the locations expl3red exhibit a relative compaction that varies
hm 90 to 99 pcrcmt of its maximum dry density tia dskrmined by D155 7-9 I.
WSTERN
SOIL AND FOUNDATION ENGINEWVG, :NC.
Toyota Carlsbad New Parking Structure
December 1 1,2003
Our Job No. 01 -44
Page 3
Conclusions: Based on the findings of our supp:ernenrd exphdon and rcI3teii laboratory work.
it appears thar the existing fill cx~oseri at die locations explorci may be suitable for the support of
the proposed slab-on-sade. Ln lieu of the removal depth presented on page 9 ad Table I of &e
origirrai report, the existing fill' may be prcpad as rccomrnsnded below.
Fkummcndations: Based on ow m<ieW of the foundation plans, the proposed slab-on-grade
wiU be construater! '4 to 10 fect below ex;Ag grade. It is expected that a significant portion of
the exi- Ell will be removed to attain finish ribgrade elevation. Afk the excav2tion has been
cut to finish subgrade, the exposed soil materials shdd be obszrvcd and evaluated by the
. Gestcchicd Consultant. Existing fill mztcrid &at exhibks a relative compaction of at least 95
percent of its maximum dry deasity (ASTM D1557-91) may be left in place. Disturbed soil, fill
material with a relative compaction at 1666 than 95 parcent, or any otherwise unsuitable soil should
be remalieted in accordace with the recommendations presented in tho referenced Report of
,
Geotechical Investigation.
To elbcinate &e cut-fill transition line and to provide Uniform soil conditions directly
benee.& the proposed slab, we recommend tht 'hs natura!ly occurring soil be rmovod and
ncornpactzd to a depth of at least 2 ~CCK below the bottom of the slab. This over-excavating
procedure should extcnd into the fill side ofthe triiition he so that dl areas of the slabsn-grade
will be underlair! by no less than 2 feet of propsriy compacted fill. %'it11 the excqptior. of removal
depth. all recornpactior- procedures should 5c perfomled in accordance rvith the recommmdaticns
provided in our refcrcrctd report.
W€STERN
SOIL AND FOUNDATION ENGMERING, INC.
Toyota Car!sbd Nr~v Parkicg Snuctue
December 1 1,1002
Ocr Job No. 01-41
Page 4
If ycu have any questions, plcaso do mi hesitate to contact this 0fEc.e. This opportunity
to be of professional senice is sincerely appreciated.
Respcc t fu il y submi ttcd,
WESTZRV SOIL .WD FOUNDATION EhGN%RXG, IYC.
Vincent W. Goby. CEG 1755, Expires 7/31/03 Engintcring Geologist
%
Dads E. Zimmmnan, C 25676, GE 928, Expires 3/3 1/04
Gmtcchnical Engineer
Distribution: (6) Acidresses
VWG:DEWErmg
W€STEUN
SO11 AND FOUNDATION fNGINfERING, INC.
SITE PLGW
(Plat0 NO. 1)
(In Back Pocket)
I-
\
WSTERN
SOIL AND FOUNOATlON €NG1N€€RING, INC.
LABORATORY TEST RESULTS
Maximum Den sih./Ou- Moisture
llriaximum Optimum
Moisture Sample Density Content
bation Description (PCf) (percent)
Dry
B-1 @ 4' Orangish-Brown. Fine Grained S& 120.0 13.0
B-4 @ 5' Dark Brown, Siity. Fine to Medim- Grained Sand i31.0 16.0
B-7 @ 10' Dark Or;mgi&-Br~~n, SSghtlY Chw, Silty, Fine G?d& Sand i28.0 9.7
In-Sita Moistare and Densk
Dry MoiW
Sample Density couttnt
Location (pcfj (%>
B-5 Q 3' 119.3 5.0
E-5 @ 5' 120.3 8.2
B-5 @ 7' 1 17.3 10.5
B-5 @ 13' 121.8 8.5
B-5 @ 16' 118.5 6.3
3-6 @ 5' 128.8 9.3
B-6 @ 7' 127.1 7.5
B-6 @ 3' 121.9 6.7
Moisture
Cantent rn Sample Density
Location 0. (%) s
B-6 @ 13' 106.5 4.1
B-6 @ 11' 113.8 . 7.2
B-7 a 3' i22.8 6.6
B-7 @ 6' 127.8 8.9
B-7 @ 7' 126.8 9.3
B-7 @ 10' 129.2 8.2
B-8 @ 3' 113.7 6.3
B-8 @ 6' 120.0 7.5
WESTERN
SO11 AND FOL'NDATION ENGNEERING. INC.
c
I
IU I e g 1 BORlNGNO.
F A ELEVATION f 95 ' 3 3 I METHOD a-IINCH CONTINUOUS FLIGHT AUGER 1 SAMPLINQ
Gndes To
.
\
aA'/ POINT FORMATION - Dark Orange, SQhW St&, Flno Gralned Sandstone, Poorly cemented
Omngish-Yellow, Fine Gmined Sandrmne, Very Poerty ComonM
BOTTOM Of BORlMO d) 15 FEET
I I I I
-mP To
YOlSt
bmP To Moist
Moist
mmP To Moist
bmP To Mdat
Mediwn uenoe
Ocnse
I 113*7
Oenso
1 to.0
Dense
DATE LOGGED
12-0402 JOB NUMBER TOYOTA CARLSBAP
01 -44 PARKING STRUCTURE
SURFACE EXPLORATORY LOGS
6.3
7.5 -
1-1
LOOGEO BY vwo
.- .~
Plate No. 6
-, I
SAVPLINQ METHOD 8-IINCH CONTINUOUS FUGHT AUGEF
DESCRIPTION
With Lenses of Pale Gray, Ftni Orrlned Sand
.
Onnglsh.Brawn, Slightly Clayey to SI@,
Fine dralned Sand, Sight Otganic Odor
BAY PdtNT FORMATION - Dark Orang., SIighUy Silty, Flne Onined Stndedom
GmUoa fa
I BOTTOM OF WRING @ 16 FEET
JOBNUMBEP 1 TOYOTA CARLSBAD
OlmO To Moist
wit
Moitt
- Mdrt
Damp
OATE LOGGED
12-04-01 01-44 1 PARKING STRUCTURE
SURFACE EXPLORATORY LOGS
6.6
8.9
9.3
8.2
-
LOCGEO BY VWG
PI& No. 6
-T NO * B-6 93
ELEVATION diu i , $!
SAMPLINQ .
METHOD I-ItNCH CONTINUOUS FLiGHT AUGER-
OESCRIPTlON
3
I
\3% INCHES ASPHALT PAVEMENT/ \ 4 IffCHCS AGGREGATE BA3E/ DarR OranQithBrown. Silty, Fine 1 To
1
8
Damp
Dark Onn~lsh-8rown. Silty, Ftne Grained Sand
. ,
Dark Orange, $rightly Silty, Fine Gninod Sand
F:SP < 1 .. . , . . . L'
k..- sp Faint Gray Mottling
..a ... ~ . ... *t , ,<I I, I BOTTOM OF 80R1N6 8 16 FEET
Denam
Dense
DATE LOGGED
12=04-c2 JOB NUMBER TOYOTA CARCSBAD i Of4 PARKJNG STRUCTURE I
SURFACE EXPLORATORY LOGS
6.7
9.3
7.5
-
7s
4.1
-
-
LOQQEO BY VWG
Plate No. 4
..
a-
-
*-
- v-
8-c
c t SI
SAMPLINO
METHOD 1-IINCH CONTINUOUS TLiGHT AUGEI
VJi I 21 DESCRIPTION
.'IS INCHES ASPHALT PAV
p*v FILL - Bmwnlsh~30nncre. SJitv. Fine Grained Sand. with Irol&i Cibblo
Dark Orange, Slightly Silty, Fine Gralnsd Sand
Black. Slightly Organic, StXy Sand Layer at 9 Feet
Grid- To
!hk Orange. fine Grained Sandstone, Poofty Cemented
BOTTOM OF BORING 21 FEET 11
TOYOTA CARLSBAD PARKING STRUCTURE
JOB NL'UBER
Of44
Darn p
To
Moist
Moist
Moist
Damp To
Molst
Damp
I
I
-i
Dtnw i' 12f.8
.
i I
I
i
DATE LOGG€D 72-04-02 1
SURFACE EXPLORATORY LOGS
LOGGED BY
VWG
Plate No. 3
SUBSURFACE EXPLORATION
LEGEND
UNFED SOIL CLASSIFICATION CHART
Group
Soil Description Symbol TypicaI Sames ..
L COARSE GRAINED: More 'hua half of muaial h lpcgst thrn No. 200 siwe rim.
Cravdrr More thsur hclf of warsc Won h iarger dw No. 4 3ime si;a but ma1lcr than 5'.
CLEANGXAVELS . GW Well gd:d grad, gmx! sld mixtures. tiale or 110 Ana
GRAVEL W/FMES
\
Sands: More than half of coarse Itactioa is smaller thm No. 4 rim sfie.
CLLCJ SANDS SW
SP
U. FINE CRIINEDi Mom than hdf3imatmd ir e than No. 200 rim size.
Si& & Clnym Licuid limit than SO ML
CL
SUts 6 Clays Liquid 1i.nir than 50
Well gradcd sun& gnvc:ly mdr, liar or IK) JIM.
P6o:Iy grid& sands, pvelly om&, !Me or no fines.
Silty sands, poorly gritd~ sand and silt mixrurec.
Clayey sands. poorly graded sand and clay mixtures. s
Inorgru?ic ~lts and very 5ne sziids. mck flour, sandy silt 01 clayey-silt-md m:xrircs with slight plasticiry.
hmpnic days of low to incdium pMcity. gravtlty c!qs
OrpMic sitIy and oapnic silty :L?yr of low plasticity.
lncrganlc s!lu micaceous or d!;uonucmus fine mndy or silty
wik, clastic sib.
cmdy clay& dlly clay& Im cloys
CH h0wi1C Ckp of high plasticity, fJ!.
OH
PT
Organic ;!sp of dium to high piamcity.
Pert and orher highly org~nic $oils.
Plate No. 2 .-
c W€STER#
SOIL AND FOUNDATION fNGIN€€RING, iNC.
42AM P2
/ FROM : WESTERN SOIL & FOUI4DFITIGN ENG. PHOdE Nfl. : 760 746 4912 Jan. 27 a83 12:48PM PI
.
W€fl€RN /
January 27,2003
Mr. Bob Wolf
Toyoh Carlsbad
5424 Paseo Del Norte
Cadhd, CA 92008-4496
Project: Job No. 01-44
New Paking Structure
Toyota Carkbad
1040 Auto Cater Court
Carlsbad, California
Subject: Foundation Plan - Second Review
Dear Mr. Wolf
In accordance with your request, we have reviewed the Foundation Plans (Sheet numbers
SI .01 th~ough S6.01.11 sheets, Bated 11-12-02], prepared by lntmational Design, ztic., Architect
and Frame Design Group, Stnictural Engineer for the refacnccd project.
Specifically, we reviewed the corrections that were recornended our Foundation Plan
Review letter dated January 22,2003, It is our opinion thst these plans are in genua1 compliance
with our Report of Gmtechnical Inv~Stigati~n, titled Toyota CarIsbad New Parking Structure, dated
August 24,2001.
*
A FEOM : WESTERN SOIL g, FDUMQTION ENG. PHONE pa. : 76~3 746 4912 Jan. 27 BO3 12: 49PM P2
c
c
I
Foundation Plan - Second Rtvicw
January 27,2003
Job NO. 0 1-44
Page 2
We appreciate this ~pporrnnity toqmvide you with our profwsional services. You are
encouraged to call the undersigned with any questions or comments.
Respectfully submitted,
WESTERN SOIL AM) FOUNDATION ENGlNEIERING,
L
Dennis E. Zimmman, C 26676, GE 928, Expires 313 1/04
Geotechnical Engin-
Vincent W. Gaby, CEG 1755, Expires 7/31/03
Engheuing Geologist
Distribution: (2) Addressee
{ 1) Frame Design Group
(I) Frame Petign Group via fax: (949) 595-80l8
VWG:DEukmg
W€ST€RN
SOIL AND FOUNDATION ENGIN €€RING, iff C.
. + WESTERN
January 22,2003 ,.
I- M. Bob Wolf
Toyota Carlsbad
5124 Pasto Del None
Carlsbad, CA 920084496
Project: Job No. 01-44 New Parking Structure
Toyota Carlsbad
1040 Auto Center Court
Carlsbad, California
a Subject: Foundation Plan Review
DearMr. Wolf
In accordance with your request, we have reviewed the Foundadon Plm (Sheet numbers
SI .Or thmugh S6.01, I 1 sheets, dated 11 -12-92), prepared by International Design, Inc., Architect
and Frame Design Croup, Structural Engineer for the referd project. It is our opinion that these
plans are in general compliance with our Report of Geatechnid investigation, titled Toyota
Carlsbad New Parking Structure, dated August 24,2001, With the following corrtctions:
1. Sheet $2.01: Referring to the Footing Schedule, change the depths in thz depth
column to show 30 inches &or footing numbcrs F4, FS, F6, F6.5, F7, F8
and EF5 per the table on page 15 of our referenced report.
..
e.
. .
Building Plan Review
January 22,2003
Job No. 0144
Page 2
2. Sbcct SJ.01: For detail 8, show pier depth to be embedded 5 fb% miniinurn into firm,
undisturbed soil per page 15 of our referenced report.
3. Sheet S4.01: Referring to the column reinfc?rcing schedule, it appears that section 2.6
for C6 and section 2.3 for C11 do not agree with the foundation plan.
4. Sheet $5.03; For sections I, 2,3 and 8, show at least 30 inch depth frum top of
subgrade to bottom of retaining wall footing.
Final plans should be reviewed by our h for compliance to this letter.
We encourage you to calt the undersigned with any qumtions or comments. We appreciate
the opportunity to Frovide you with our professional SeTYices.
Respectfully submitted,
WESW SOIL AND FO~ATIC"NG~ERJKG INC. a
#- e@- -A
Dennis E. Zhmerman, C 26676, GE 928, Expires 3/3 1/04
Wtechical Engineer g&!--&/)&
Vincent W. Gaby, CEG 1755, Expires 7/31/03
Engineering Geologist
Distribution: (2) Addrwsee
(1) Frame Design Group
(1) Frame Dcsign Group via fa: (949) 595-801 S
WG:DEZ/kmg
. .-
W€STERN
SOIL AND FOUNDATION ENGINERING, INC.
'FRUtlh WESTERN SOIL R FOUNMTION ENG. PHONE NO. : 760 746 4912
WESERN
Soil AND FOUNDATION ENGINE €RING, INC.
Dec. 17 2062 la:5:RM Fl
Decemba 17,2002
423 HALE AVENUE
EScoNDlDO, CALIFORNIA 92025
Mr. Bob Wolf
Toyota Carlsbad
5424 Paseo Del Norte
Carlsbad, CA 92008
Project: lob No. 01-44
New Parking Structure Toyota Catlsbad
1040 Auto Center Court
Carlsbad, California
Subject: Differential Settlement
Dear Mr. Wolf:
The behavior of soil material, both naturally Occurring or artificially placed, is difficult to
predict, It would be below the recognized standard of care to recclmmenrf supparting a foundation
~ystem on both compacted fill and naturally occurring materials. There is a high probability that
differential settlmmt between the compacted fill and dense formational soil could range fiom one
to two inches. Greater settlements would be expected ifsoft or poorly consolidated soils were
present mder foundation loads. Foundations should be completely supported by dense formational
soils or completely supported by properly compacted and documented fill. Good engineering
practice would limit the allowable soiI beaxing value for properly compacted fill to 3,000 pounds
per square foot.
.'
’ FROF?~: WESTERN SOIL & FOUI.IDFITION ENG. PHONE NO. : 760 746 4912 Dec. 17 2002 LB:51FIM P2
d
Toyota Carlsbad Differential Settlement
December 17,2002 Our Job No. 01 -44
Page. 2
*’ If you have any questions, please do not hesitate to contact this office. This opportunity
to be of professional service is sincerely appretiattd
Reepectfblly submitted,
WESTERN SOL AND FOUNDATION ENGINEERING, INC. K&&&$-
Vincent W. Gaby, CEG 1755, Expires 7/31/03
Engineering Geologist
Dennis E. Zimmeman, C 26676, G.E 928, Expires 3131104
Geotechnical Enpincer
Distribution: (1) Adhssee
(1) Mr. Jack Howard Frame Design via fax: (949) 595-8018
VWG:DEWkmg
WE$t€/?N
Soil AND f OUNDAflON €NGINE€UiNG, INC.
..........
. .,,
....... I_. ........
6 a3 0-
n
....
WESTERN
Soli AND FOUNDATION ENGINEERING, INC.
423 HALE AVENUE
ESCDNDICO. CLIFORNLP 92029
Mr. Bob Wolf
Toyota Carlsbad
5424 Pasw, Del Norte
Cmlsbad, CA 92008-4496
Project: Job NO. 01-44
Ncw Parking Structure
Toyota CarIsbad
1040 Auto Center Court * Carlsbad, California
Subject: Foundation Plan - Second Review
Dear Mr. Wolf:
In accordance with jour request, we have reviewed the Foundation Phs (Sheet numbers
Sl.01 though S6.01,ll sheets, dated 11-12-02), prepared by International Design, Inc., Architect
and Frame Design Group, Stnictural Engineer for the rcfmced project.
Spectfically, we reviewed the corrections that were recornended in our Foundation Plan
Review tetter dated January 22,2003. It is our opinion that these plans are in gencral compliance
with our Rqort af Geotechnical Investigation, titled Toyota Carisbad New Parking Structurc, dated
August 24,2001.
FPON : WESTERN SOIL Z FOUbICQTION ZNG. FHOUE NCi. : 760 746 4312 ;at-. 27 2063 12: 45PM P2
e” .
.c
Foundation Plan - Second Rdcw
January 27,2003
Job NO. 01 -44
Page 2
We appreciate this ~pp~rrmnity to provide you with our professional services. You are
encouraged to call the undersigned with any questions or comments.
Respecthlly submitted,
Dennis E. Zimmerman, C 26676, GE 928, Expires 3/3 1/04
Geotcchnid Engineer
Vincent W. Gaby, CEC 1755, Expires 713 1/03
Enginwring Gaoloast
Distribution: (2) Addressee
(1) Frame Design Group
{I) Frame Design Group via fax: (949) 595-801 8
’CWG:DEZ/kTllg
L .-
L - WESTERN
SO11 AND FOUNDATION ENGINEERING, INC.
GEOTECHNICAL INVESTIGATION
NEW PARKING STRUCTURE
TOYOTA CAIUSBAD
1040 AUTO CENTER COURT
CARLSBAD, CALIFORNIA
JOB NO. 01-44
AUGUST 24,2001
P
WESTERN
SOIL AND FOUNDATION
ENGINEERING INC.
GEOTECHNICAL INVESTIGATION
NEW PARKING STRUCTURE
TOYOTA CARLSBAD
1040 AUTO CENTER COURT
CARLSBAD, CALIFORNIA
JOB NO. 01-44
AUGUST 24,2001
WESTERN
SOIL AND FOUNDA7lON €NGIN€€RING, INC.
WESTERN
SOIL AND FOUNDATION ENGINEERING, INC.
r
PHONE: I7601 746-3553
FAX: (760) 746-4912
August 24,2001
Mr. Bob Wolf
Toyota Carlsbad
5424 Paseo Del Norte
Carlsbad, CA 92008
Project: Job No. 01-44
New Parking Structure
Toyota Carlsbad
1040 Auto Center Court
Carlsbad, California
423 HALE AVENUE
ESCONDIOO. CALIFORNIA 92029
Subject: Report of Geotechnical Investigation
DearMr. Wolf:
In accordance with your request, we have completed a geotechnical investigation for the
proposed project. We are presenting to you, herewith, our findings and recommendations for the
development of this site.
The findings of this study indicate that the site is suitable for development if the recommendations
provided in the attached report are incorporated into the design and construction of this project.
Toyota Carlsbad New Parbg Structure
August 24,2001
Our Job No. 01-44
Page 2
If you have any questions after reviewing the findings and recommendations contained in
the attached report, please do not hesitate to contact this office. . .. This opportunity to be of
professional service is sincerely appreciated.
Respectfdly submitted,
WESTERN SOIL AND FOUNDATION ENGINEERING, INC.
Vincent W. Gaby, CEG 1755, Expires 7/31/03
Engineering Geologist
Dennis E. Zimmerman, C 26676, GE 928, Expires 3/3 1/04
Geotechnical Engineer
Distribution: (8) Addressee
VWG:DEUkmg
W€ST€RN
SOIL AND FOUNDAnON ENGINEERING, INC.
GEOTECHNICAL INVESTIGATION
NEW PARKING STRUCTURE
TOYOTA CARLSBAD
1040 AUTO CENTER COURT
CARLSBAD, CALIFORNIA
Prepared For:
Mr. Bob Wolf
Toyota Carlsbad
5424 Paseo Del Norte
Carlsbad, CA 92008
JOB NO. 0 1-44
AUGUST 24,2001
WESTERN
SOIL AND FOUNDATION ENGINEERING, INC.
TABLE OF CONTENTS
Page
Introduction and Project Description ............................................................................................. 1
Findings .......................................................................................................................................... 3
Project Scope ................................................................................................................................. 2
..
.. Site Descnption .................................................................................................................. 3
Subsurface Conditions ....................................................................................................... 4
Santiago Formation ............................................................................................................ 4
Bay Point Formation .......................................................................................................... 4
Rippability .......................................................................................................................... 5
Groundwater ...................................................................................................................... 6
Artificial Fill ...................................................................................................................... 5 ..
Geologic Hazards ........................................................................................................................... 6
Faults and Seismic Hazards ............................................................................................... 6
Liquefaction ....................................................................................................................... 7
Landslides and Slope Stability ........................................................................................... 8
Recommendations and Conclusions .............................................................................................. 8
Site Preparation .................................................................................................................. 8
Existing Structures ............................................................................................................. 8
Existmg Soil ....................................................................................................................... 9
Excavation and Shoring ....................................................................................... 10
Seismicity of Major Faults ................................................................................................. 7
..
Expansive Soil ..................................................................................................... 10
Imported Fill ........................................................................................................ 11
Earthwork ............................................................................................................. 11
Slopes ................................................................................................................... 12
Surface Drainage .................................................................................................. 13
W€STERN
SOIL AND FOUNDATION ENGINEERING. INC .
TABLE OF CONTENTS . Cont .
Page
/--
Foundation Recommendations ......................................................................................... 14
Seismic Site Categorization ................................................................................. 14
Footings ................................................................................................................ 14
Drilled Piers ......................................................................................................... 15
Concrete Placement ............................................................................................. 16
Structural Slabs .................................................................................................... 17
Concrete Slabs-On-Grade .................................................................................... 17
Transition Areas ................................................................................................... 18
Lateral Resistance ............................................................................................... -19
Lateral Resistance Values .................................................................................... 19
Footing Observations ........................................................................................... 19
Retaimng Walls ................................................................................................................ 20
Drainage and Waterproofmg ................................................................................ 20
..
Lateral Pressures .................................................................................................. 20
Backfill ................................................................................................................. 21
Field Explorations ........................................................................................................................ 22
Laboratory Testing ....................................................................................................................... 22
Plan Review ................................................................................................................................. 23
Limitations .................................................................................................................................. -23
W€ST€RN
SOIL AND FOUNDATION ENGINEERING. INC .
ATTACHMENTS
PlateNo. 1
Plate No. 2
Plate No. 3 through Plate No. 6
Plate No. 7 and Plate No. 8
Plate No. 9
Plate No. 10
APPENDIX I
APPENDIX II
Site Plan (In back pocket)
Unified Soil Classification Chart
Exploratory Excavation Logs
Laboratory Test Results
Table I: Removal Depths
Fill Slope Key
Specifications for Construction
of Controlled Fills
References
WESTERN
SOIL AND FOUNDATION €NG/N€€RING, INC.
GEOTECHNICAL INVESTIGATION
NEW PARKING STRUCTURE
TOYOTA CARLSBAD
1040 AUTO CENTER COURT
CARLSBAD, CALIFORNIA
Introduction and Project Description
This report presents the results of our geotechnical investigation performed on the above
referenced site. The purpose of this investigation was to evaluate the existing surface and subsurface
conditions &om a geotechnical perspective and to provide recommendations for grading, foundation
design, floor slab support and retaining wall design.
The proposed project will be the development of a three-level parkhg structure. As of this
date, building pians have not been prepared. However, our client has indicated that the building will 7
be a cast-in-place, concrete structure. Foundations are expected to consist of continuous and pad
spread footings with concrete slab-on-grade floors.
The earthwork wili consist primarily of excavation for the below grade portion of the structure,
and backfill for retaining walls and utility trenches. Based on discussion with Mr. Bob Wolf,
maximum cuts may be on the order of 10 feet, if two levels are constructed above grade, or 20 feet if
one level is constructed above grade. Retaining walls will be used to support the excavation.
The site configuration and the approximate locations of our subsurface explorations are
shown on the enclosed Site Plan, Plate No 1.
WESTERN
SOIL AND FOUNDATION ENGINEERING, INC.
Toyota Carlsbad New Parking Structure
August 24,2001
Project Scope
OW Job NO. 01 -44
Page 2
This investigation consisted of a surface reconnaissance coupled with a subsurface exploration.
Representative samples of soil material were obtained fiom the site and returned to our laboratory
for observation and testing. The results of the field and laboratory data collected are presented in
this report.
Specifically, the intent of this investigation was to:
Explore the subsurface conditions to the depths that could be influenced by the proposed
construction;
Evaluate, by laboratory tests, the pertinent static physical properties of the various soil
and rock stratigraphic units which could influence the development of this project;
Describe the site geology, including potential geologic hazards and their effect upon
the proposed development;
Provide recommendations for site preparation and grading;
Present recommendations for foundation design, including bearing capacity, estimated
settlements, lateral pressures, and expansion potential of the on-site soils; and
Furnish soil parameters for retaining wall construction.
WESTERN
SOIL AND FOUNDATION ENGINEERING, INC.
Toyota Carlsbad New Parking Structure
August 24,2001
OW Job NO. 01-44
Page 3
This report has been prepared for Mr. Bob Wolf, Toyota Carlsbad and their consultants to be
used in the evaluation of the referenced site. This report has not been prepared for use by other parties,
and may not contain sufficient information for purposes of other parties or other uses. The information
in this report represents professional opinions that have been developed using that degree of care and
skill ordinarily exercised, under similar circumstances, by reputable geotechnicaf consultants practicing
in this or similar localities. No other warranty, express or implied, is made as to the professional
advice included in this report.
Fin dings
Site Descrip 7 ion: The project site is located at the west end of Auto Center Court, on the south sir le
of Cannon Road and the east side of Paseo Del Norte, in the city of Carlsbad, California. It is
bounded to the east, west and south by commercial property. Approximately 535 feet fiont Cannon
Road along the north property line. Auto Center Court provides access to the properly from the
southeast. The site vicinity can be found in the northeast quarter of grid G-2 and the northwest
quarter of grid H-2, page 1 126, of the Thomas Brothers Guide for San Diego County, 1999 edition.
The footprint of the proposed structure is irregular in configuration and encompasses
approximately 26,432 square feet. It will be situated on a pre-existing graded pad. The terrain
varies fiom gently inclined to moderately steep. Elevations range fiom 97 feet above mean sea
level (m-s.1.) at the southeast portion of the property to 90 feet (m.s.1.) near the proposed northwest
corner of the parking structure.
/I
WESTERN
SOIL AND FOUNDATION ENGINEERING, iNC.
Toyota Carlsbad New Parking Structure
August 24,2001
Our Job No. 01-44
Page 4
Improvements on the site at the time of our investigation consisted of service bays, miscellaneous
offices and a car wash. The proposed location of the parking structure was covered with asphalt
pavement.
Subsurface Conditions: The subject site is located at the western edge of the second of a series of
wave-cut terraces. It is underlain by Quatemary age marine terrace sediments that have been deposited
upon Eocene age siltstone. These stratigraphic units have been mapped by Tan and Kennedy
(1996), and Weber (1 982) as the Bay Point Formation and the Santiago Formation, respectively.
At three of the locations explored, the formational deposits are covered with a variably thick
sequence of artificial fill. Each stratigraphic unit is described below fiom oldest to youngest.
r
Santiago Formation: The Santiago Formation occurs in the vicinity of borings B-2, B-3 and B-4
at depths of 28,29 and 25 feet, respectively; and extends beyond the vertical limits of our
explorations. It can be characterized as gray, very sandy siltstone, interbedded with pale gray to
pale brownish-gray, very silty, very fine to fine grained sandstone. It is thinly bedded, moderately
cemented and well indurated. It should provide adequate support for foundations or new fill.
Bay Point Formation: The Bay Point Formation is represented in our exploratory excavations by
a slightly silty, fine and fine to medium grained sandstone. Within the sequence occur isolated
lenses of pebbles to cobbles and sandy silt. The Bay Point Formation appears to be horizontally
bedded, moderately well indurated and poorly to moderately cemented. Its color ranges fiom dark
orange to orangish-brown to grayish-yellow. The Bay Point Formation is considered suitable for
the support of foundations and fill materials. /c
WESTERN
SOIL AND FOUNDATION ENGINEERING, INC.
Toyota Carlsbad New Parking Structure
August 24,2001
Our Job No. 01-44
Page 5
The Bay Point Formation was encountered at depths of 1 to 14 feet, and extended below
existing grade 25 to more than 32 feet.
Artificial Fill: Artificial fill, approximately 4 feet, 7 feet and 14 feet in thickness, was encountered
in borings B-2, B-3 and B-4, respectively. The fill soils consisted of dark brown, silty sand, inter-
layered with dark brownish-orange, silty, fine grained sand and black, clayey sand. Minor amounts
of debris were present in the form of asphalt and concrete. The black soils exhibited a slight odor
of decomposing vegetation. Laboratory test results indicate that the fill soils are moist to very moist
and not uniformly compacted. Their apparent consistency varies Erom medium dense to dense.
Although the fill materials may be suitable for lightly loaded, wood-framed structures, they should
not be relied upon to support the new parking structure. P
Recommendations for the removal and recompaction of existing soils are presented within
this report. Thicker or poorer quality fill materials may be encountered at locations that were not
explored.
- Rippability: The exploratory borings were excavated with little to moderate difficulty by a truck-
mounted drilling ng. These borings ranged fi-om 3 1 to 41 feet in depth. Based on our field observations,
it appears that the majority of the materials to be exposed during grading may be excavated with
conventional earthmoving equipment. It is possible, but not likely, that resistant, cemented sediments
andor boulders that require blasting or pneumatic chipping may be encountered at locations that
were not explored.
WESTERN
SOIL AND FOUNDATfON ENGINEERlNG, INC.
Toyota Carlsbad New Parking Structure
August 24,2001
Our Job No. 01-44
Page 6
Groundwater: Free groundwater was not observed in any of our subsurface explorations. The
underlying sediments appear to be fiee-draining, and there were no indications of perched water in
the form of caliche precipitates or soil mottling.
It should be noted that fluctuations of subsurface water will be affected by variations in annual
precipitation and local irrigation. This will have an influence on runoff derived from sources located
up-slope fkom the project location. Moreover, it has been our experience that periodic events of
seepage will occur in areas of significant "cut" or any %elow-grade" structures. Therefore, consideration
must be given to appropriate surface and subsurface drainage systems such as wall drains, underdrains
and swales as recommended further in this report.
Geologic Hazards
Faults and Seismic Hazards: The numerous fault zones in southern California include active,
potentially active, and inactive faults. Active faults are those which display evidence of movement
within Holocene time (fiom the present to approximately 1 1 thousand years). Faults that have ruptured
geologic units of Pleistocene age (1 1 thousand to 2 million years) but not Holocene age materials
are considered potentially active. Inactive faults are those which exhibit movement that is older
than 2 million years. According to available published information, there are no known active or
potentially active faults which intercept the project site. The site is not located within an Alquist-
Priolo Special Studies Zone. Therefore, the potential for ground rupture at this site is considered
low. There are, however, several faults located in close proximity that movement associated with
them could cause significant ground motion at the site. -
WESTERN
SOIL AND fOUNDA7iON ENGINERING, INC.
f- Toyota Carlsbad New Parking Structure
August 24,2001
OW Job NO. 01-44
Page 7
The table below presents the maximum credible earthquake magnitudes and estimated peak
accelerations anticipated at the site. These accelerations are based on the assumption that the maximum
credible earthquake occurs on specific faults at the closest point on that particular fault to the site.
The maximum credible earthquake is dehed as the maximum earthquake that appears to be reasonably
capable of occurring under the conditions of the presently known geologic fiamework. The probability
of such an earthquake occurring during the lifetime of this project is considered low. The seventy of
ground motion is not anticipated to be any greater at this location than in other areas of San Diego County.
Seismicity of Major Faults
Maximum Estimated
Credible Bedrock
Distance Magnitude Acceleration (1)
Fault (Miles) Nchter) (g)
Coronado Banks
Elsinore
Rose Canyon
San Andreas
San Jacinto
L = Local Magnitude
22 7.6 L(2) 0.25
24 7-5 L(3) 0.24
6 7.0 L(2) 0.47
75 8.3 L(3) 0.07
49 7-8 L(3) 0.12
(1) Seed and Idriss, 1982
(2) Slemrnons, 1979
(3) Greensfelder, C.D.M.G. Map Sheet 23,1994
Liquefaction: The potential for seismically induced liquefaction is greatest where shallow ground-
water and poorly consolidated, well sorted, fine grained sands and silts are present. Liquefaction
potential decreases with increasing density, grain size, clay content and gravel content. Conversely,
liquefaction potential increases as the ground acceleration and duration of seismic shaking increase. F
WfSTERN
SOIL AND FOUNDATION ENGINEERING, INC.
Toyota Carlsbad New Parking Structure
August 24,2001
Our Job No. 01-44
Page 8
Groundwater was not observed within our explorations, and the site is underlain by welldrained,
moderately indurated sediments with isolated cobble lenses. N-Values recorded using standard
penetration tests ranged from 23 to 86. Based on the consistency of the underlying materials and the
lack of shallow groundwater, the potential for generalized liquefaction in the event of a strong to moderate
earthquake on nearby faults is considered low.
Landslides and Slope Stability: No evidence indicating the presence of deep-seated landslides was
observed on or in the immediate vicinity of the site. The formational materials observed in our
exploratory excavations consisted primarily of moderately well indurated sandstones. Clay seams or
fracture zones were not exposed in the samplers. It is therefore our opinion that the potential for deep-
seated slope failure is low. However, during the grading procedures, isolated fracture zones may be
exposed that could result in minor rock wedge "pull outs". The Engineering Geologist should
observe the excavations during and after the earth moving operations.
/I
It is our understanding that un-retained, permanent, constructed embankments are not proposed
for this project. Therefore, the potential for slope failure on this project is considered low.
Recommendations and Conclusions
Site Preparation
Existing Structures: After demolition of any existing pavement or structures and prior to backfilling,
all concrete, reinforcing steel, plumbing materials and any other debris or organic matter shall be
removed and legally disposed of off-site. Any fill, colluvium or otherwise incompetent (highly
expansive, soft or wet) soil material existing upon the formational soils shall also be removed and
replaced as recommended below under the heading "Existing Soil". r
WESTERN
SOIL AND FOUNDATION ENGINEERING, INC.
/c Toyota Carlsbad New Parking Structure
August 24,2001
Our Job No. 01-44
Page 9
Existing Soil: At the locations explored, formational materials were encountered at depths ranging
from 1 to 14 feet beneath the existing ground surface. The dense formational sediments may be used
for foundation support. The fill soils encountered at the boring locations are not uniformly compacted
and are not considered suitable for foundation and floor slab support.
To provide more uniform support for the proposed improvements, we recommend that the
foundations for the parking structure be extended through the existing fill material and embedded at
least 2% feet into competent undisturbed formational soil. Any existing fill, colluvium, low density or
otherwise unsuitable soil material that occurs beneath the proposed slabs-on-grade should be removed to
firm undisturbed natural ground. The slabs-on-grade may be entirely supported on compacted, non-
expansive fill soils or undisturbed natural ground. Xthe proposed structur5 is constructed one *-
complete floor below grade, a significant portion of the existing fill will be removed.
To reduce the potential for differential settlement between the slab-on-grade supported by
fill and the foundations embedded into natural ground, we recommend that the soil material placed
under the slab be compacted to no less than 95% relative compaction (ASTM 01557-91).
The on-site soils minus any debris, oversized rock, detrimentally expansive soil or organic
material may be used as controlled fill. All fill shall be compacted to at least 95% of its maximum
dry density as determined by ASTM Dl557-91. All debris, organic matter or oversized materials
(greater than 6 inches in maximum dimension) encountered must be removed and legally disposed
of at a licensed disposal site.
WESTERN
SOIL AND FOUNDATION ENGINEERING, INC.
*I Toyota Carlsbad New Parking Structure
August 24,2001
Our Job No. 01-44
Page 10
If groundwater is encountered during the removal and recompaction of the soil, or if difficulty
is experienced in achieving the minimum of 95% relative compaction (MTM D1557-91), then this
office shall be consulted for further recommendations.
As an alternative to recompacting existing soil materials, the first level floor may be designed
as a structural slab supported by the deeper foundations.
Expansive Soil: Detrimentally expansive soils (Expansion Index of 21 or greater) were not observed
in our subsurface explorations. These materials generally consisted of silty sands. The geotechnical
consultant should be notified if suspected expansive soils are encountered during earthwork or
construction. Potentially expansive material should not be placed within 4 feet of finish grade for any
building pad or slab-on-grade. Expansive soils should not be used as wall backfill, within 4 feet of
finish subgrade beneath concrete pavements, or within 15 feet (horizontally) of the face of any
constructed slope that is greater than 5 feet in height.
F
Excavation and Shoring: Temporary cuts slopes shall meet minimum OSHA requirements.
Maximum slope gradients shall be 1 : 1 (horizonta1:vertical) for fill soil and %:l (horizonta1:vertical)
for formational soils to a maximum height of 20 feet, including foundation excavations. Slopes
greater than 20 feet high shall be re-evaluated by the Soil Engineer. If the above requirements are
exceeded, then shoring may be required. The toe of the temporary cuts sloes may be cut vertical to a
maximum height of 3'-6".
W€ST€RN
SOIL AND FOUNDATION ENGINEERING, INC.
.- Toyota Carlsbad New Parking Structure
August 24,2001
Our Job NO. 01-44
Page 11
As currently proposed, improvements may occur within 5 feet of existing on-site
structures. Removal depths adjacent to existing off site structures should be evaluated during
construction by the Soil Engineer or Engineering Geologist. Depending on the soil conditions
encountered, shoring of the removal excavation may be required.
Imported Fill: Imported fill, if required at this site, shall be approved by our office prior to importing.
The Soils Engineer should be provided ample notification so that sampling and testing of potential
soils may be performed prior to importing. Approximately 3 to 5 working days may be necessary
to sample and evaluate potential import soils. Imported fill material shall have an Expansion Index
of 20 or less with not more than 25 percent passing the No. 200 U.S. standard sieve.
r Earthwork: All earthwork performed on-site must be accomplished in accordance with the attached
Specifications for Construction of Controlled Fills (Appendix 1). All special site preparation
recommendations presented in the sections above will supersede those in the Standard Specifications
for Construction of Controlled Fills. All embankments, structural fill, and utility trench backfill
shall be compacted to no less than 95% of its maximum dry density. The moisture content of the
granular fill soils should be within 2% of optimum moisture content at the time of compaction. The
moisture content of the clayey soil materials should be maintained between 2% and 4% over optimum
moisture content. The maximum dry density of each soil type shall be determined in accordance
with ASTM Test Method D1557-91.
WESTERN
SON AND FOUNDATION ENGINEERING, INC.
cc Toyota Carlsbad New Parking Structure
August 24,2001
OW Job NO. 01-44
Page 12
Prior to commencement of the brushing operation, a pre-gradmg meeting shall be held at the
site. The Developer, Surveyor, Grading Contractor, and Soil Engineer should attend. Our fm
should be given at least 3 days notice of the meeting the and date.
Slopes: It is our understanding that significant slopes are not proposed for this project. If slopes
greater than 3 feet in vertical height are intended for this project, we should be consulted for additional
recommendations.
Proposed cut slopes that occur in fill, alluvium, adversely fiactured bedrock materials, or
any proposed slopes cut into incompetent soil material shall be evaluated by the Soils Engineer or
Engineering Geologist.
Fill slopes shall be keyed into dense natural ground. The key shall extend through all /c
incompetent soil and be established at least 2 feet into dense competent material. The key shall be
a minimurn of 2 feet deep at the toe of slope and fall with 5% grade toward the interior of the proposed
fill areas. The bottom of the key shall have a width of at least 15 feet (Plate No. 10).
All keys must be inspected by the Soil Engineer, Engineering Geologist or their representative
in the field.
If feasible, soil material placed within the outer 15 feet of any fill slope, as measured inward
horizontally fiom the face of the slope, shall consist of on-site or imported granular, non-expansive
soil material (Expansion Index of 20 or less). Fill slopes constructed with clayey or expansive soils
may experience creep andlor surficial failure.
W€ST€RN
SOIL AND FOUNDATlON €NG/NEH?/NG, INC.
F Toyota Carlsbad New Parkhg Structure
August 24,2001
OW Job NO. 01-44
Page 13
We recommend that slopes be compacted by backrolling with a loaded sheepsfoot roller at
vertical intervals not to exceed 4 feet and should be track walked at the completion of each slope. The
face of the slopes should be compacted to no less than 95 % relative compaction (MTM D1557-91).
This can best be accomplished by over building the slope at least 4 feet and trimming to design finish
slope grade.
Surface Drainage: Surface drainage shall be directed away from structures and paved areas. The
ponding of water or saturation of soils should not be allowed adjacent to any of the foundations. We
recommend that planters be provided with drains and low flow irrigation systems. Gutter, roof
drains and other drainage devices shall discharge water away from the structure into surface drains
and storm sewers.
c
Surface water must not be allowed to drain in an uncontrolled manner over the top of any
slope or excavation.
The exterior grades should be sloped to drain away from the structures to minimize ponding
of water adjacent to the foundations. Minimum site gradients of at least 2% in the landscaped areas
and of 1 % in the hardscaped areas are recommended in the areas surrounding buildings. These
gradients should extend at least 10 feet from the edge of the structure.
WESTERN
SOlf AND FOUNDATION ENGINEERING, INC.
/c Toyota Carlsbad New Parking Structure
August 24,2001
OW Job NO. 01-44
Page 14
To reduce the potential for erosion, the slopes shall be planted as soon as possible after grading.
Slope erosion, including sloughing, rilling, and slumping of surface soils may be anticipated if the
slopes are left unplanted for a long period of time, especially during rainy seasons. Swales or earth
berms are recommended at the top of all permanent slopes to prevent surface water runoff fiom
overtopping the slopes. Animal burrows should be controlled or eliminated since they can serve to
collect normal sheet flow on slopes, resulting in rapid and destructive erosion. Erosion controI and
drainage devices must be installed in compliance with the requirements of the controlling agencies.
Foundation Recommendations
Seismic Site Categorization: The following seismic site categorization parameters may be used
for foundation design. These design parameters are based on the information provided in Chapter
16 of the 1997 Uniform Building Code.
/I
Soil Profile Type = sc
Near Source Factor Na = 1.0
Near Source Factor N, = 1.2
Seismic Source Type =B
Footings: The on-site overburden soil is not considered suitable for foundation or floor slab support.
To provide more uniform support, we recommend that the proposed structure be supported by
foundations that are entirely embedded into dense formational sediments. Footings shall be designed
with the minimum dimensions and allowable dead plus live load soil bearing values given in the
following table: /"
WESTERN
SOIL AND FOUNDATION ENGINEERING, INC.
/--
Toyota Carlsbad New Parking Structure
August 24,2001
Our Job No. 01-44
Page 15
Footinm Established on Bedrock
Minimum MinimUIIl Allowable
Footing Depth Width Soil Bearing
Type (inches) (inches) Value (p.s.f.)
Continuous 30 30 5,000
Square 30 48 6,000
Square 30 60 6,400
Square 30 72 6,800
The minimum depth given shall be below lowest adjacent finish subgrade. If foundations
are proposed adjacent to the top of any slope, we recommend that the footings be deepened to provide a
horizontal distance of 10 feet between the outer edge of the footing and the adjacent slope face.
The soil load bearing values presented above may be increased by one-third for short term
loads, including wind or seismic. The soil load bearing values of square pad footings may be increased
800 psf for each additional foot of depth below 30 inches.
All foundations shall be reinforced in accordance with recommendations provided by a
Structural Engineer.
Settlements under building loads are expected to be within tolerable limits for the proposed
structure.
Drilled Piers: Foundations may consist of end-bearing, reinforced cast-in-place concrete drilled piers
carried through the overburden soils, and established no less than 5 feet into the firm undisturbed
formational materials. Drilled piers should extend at least 10 feet below proposed top of slab-on-
grade. Deeper embedment depths may be required by the Structural Engineer.
WESTEUN
SOIL AND FOUNDATION ENGINEERING, INC.
Toyota Carlsbad New Parking Structure
August 24,2001
Om Job NO. 01-44
Page 16
Excavation of drilled piers should be continuously observed by a representative of Western
Soil and Foundation Engineering, Inc. to determine that soil conditions are as anticipated.
A bearing value of 12,000 pounds per square foot may be used for drilled piers extending
into the dense to very dense formational materials. This bearing may be increased by 800 psf for
each additional foot of depth below the recommended minimum embedment up to a maximum
value of 14,400 psf. Drilled piers should have a minimum diameter of 30 inches.
The recommended bearing values are net values. Therefore, the weight of the concrete in the
piers may be assumed to be 50 pounds per cubic foot. The weight of the soil backfill over footings may
be neglected when determining the downward load on the footings. A one-third increase in the
bearing values may be used for short term wind or seismic loads.
All continuous footings shall be rhforced in accordance with recommendations provided r
by a Structural Engineer.
Concrete Placement: The concrete used in drilled piers should have a slump ranging hm five to six
inches to permit the filling of voids in the shaft wall. Therefore, the mix should be designed using a
slump of 5 to 6 inches for the specified 28day compressive strength. Unless the shafts are wide
enough that falling concrete will not hit the walls or the reinforcing steel, free falls of concrete should
not exceed six feet. Any casing required for drilling should be pulled back as the concrete is being
placed. At least a five-foot head of concrete should be maintained in the casing while it is being
pulled out.
WESTERN
SOIL AND FOUNDAT/ON €NG/N€fRING, INC.
Toyota Carlsbad New Parking Structure
August 24,2001
Our Job NO. 01 -44
Page 17
Structural Slabs: If the existing soil materials are not removed.and recompacted in accordance
with pages 8 through 10 of this report, then the first leveyon-grade floors should be designed and
constructed as structural slabs. The structural slabs should be supported on foundations that are
embedded into dense formational materials. These slabs should be designed by a Structural
Engineer registered in the State of California.
Concrete Slabs-On-Grade: Ifthe soils are prepared as recommended in this report, concrete slabs-
on-grade may be supported entirely on compacted fill. Soil material placed within 4 feet of finish
floor should have an expansion index of 20 or less. No cutlfill transitions should be allowed to occur
beneath the structure.
r
To provide protection against vapor or water transmission through the building and floor slabs,
we recommend that the slabs-on-grade be underlain by a 4-inch layer of Caltrans Class 2 permeable
material or gravel. A suggested gradation for the gravel layer is as follows:
Sieve Size Percent Passing
314" 90- 100
No. 4 0-1 0
No. 100 0-3
If the slab-on-grade is underlain by at least 3 feet of granular compacted fill, the gravel layer
may be replaced by 4 inches of clean sand. An impermeable membrane as described below should
be placed at the midpoint of the sand layer.
WESTERN
SOIL AND FOUNDATION ENGINEERING, INC.
Toyota Carlsbad New Parking Structure
August 24,2001
Our Job No. 01-44
Page 18
In areas where vinyl or other moisture-sensitive floor coverings are planned or where moisture
may be detrimental to the structure's contents, we recommend that the 4-inch-thick gravel layer be
overlain by a 10-mil-thick impermeable plastic membrane to provide additional protection against
water vapor transmission through the slab. The vapor barrier should be installed in accordance with
the manufactureis instructions. We recommend that the edges be sealed.
To protect the membrane during later concrete work, to facilitate curing of the concrete, and
to reduce slab curling, a 2-inch-thick layer of clean sand shall be placed over the membrane. If sand
bedding is used, care should be taken during concrete placement to prevent displacement of the sand.
A low-slump concrete (4-inch maximum slump) should be used to further minimize possible curling
of the slabs. The concrete slabs should be allowed to cure properly before placing vinyl or other
moisture-sensitive floor covering.
F Slab reinforcing and thickness shall be designed in accordance with the anticipated use and
loadings on the slab and as recommended by the Structural Engineer. Construction and weakened
plane joint spacing and placement shall be provided by the Structural Engineer.
Transition Areas: Any proposed structures should not be allowed to straddle a cut-fill transition line.
Footings and floor slabs should be entirely supported on cut or entirely on fill. Ethe foundation system
consists of one where footings are embedded into naturally occurring materid and the slab is supported
on fill, the fill should then be compacted to no less than 95% relative compaction. The tendency of cut
and fill soils to compress differently can fiequently result in differential settlement, cracking to portions
of the structure and in severe cases structural damage. To reduce the potential for damage due to
differential settlement in transition areas, we recommend that cut areas beneath slabs-on-grade be over-
excavated to a depth of at least 4 feet below the bottom of the slab and replaced with non-expansive soil
material compacted to at least 95% of its maximum dry density (ASTM D1557-91 Reapproved 1998). -
W€ST€UN
SOIL AND FOUNDATION ENGINEERING, INC.
Toyota Carlsbad New Parking Structure
August 24,2001 r OW Job NO. 01-44
Page 19
Lateral Resistance: Resistance to lateral loads may be provided by friction at the base of the
footings and floor slabs and by the passive resistance of the supporting soils. Allowable values of
frictional and passive resistance are presented for the fill soils in the table below. The fiictional
resistance and the passive resistance of the materials may be combined without reduction in
determining the total lateral resistance.
Lateral Resistance Values
Allowable
Coefficient Passive Pressure
Soil Type of Friction (psflft of depth)
r Compacted Fill 0.35 250
Formational Sandstone 0.39 350
Footing Observations: Prior to the placement of reinforcing steel and concrete all foundation
excavations should be observed by the Soil Engineer, Engineering Geologist or their representative.
Footing excavations shall be cleaned of any loosened soil and debris before placing steel or concrete.
Footing excavations should be observed and probed for soft areas. Any soft or disturbed soils shall
be over-excavated prior to placement of steel and concrete. Over-excavation of soils should not be
performed in locations that were undercut for transition areas. This would compromise the thickness
of the soil supporting the footings. In undercut transition areas loose soils should be recompacted.
WESTERN
SOIL AND FOUNDATION ENGINEERING, INC.
r
Toyota Carlsbad New Parking Structure
August 24,2001
Our Job No. 01-44
Page 20
Retaining Walls
Lateral Pressures: Retaining/restrahhg walls are proposed for development on this site. Specific
wall heights and design have not been provided to us. Our analysis anticipated that retaining walls
up to 20 feet in height may be constructed. These recommendations should be reviewed and
updated if walls greater than 20 feet in height are to be installed. For the design of cantilevered
retaining walls where the backfill is well drained, the equivalent fluid pressures for both active and
at-rest conditions are presented below.
Backfill Active Pressure At-Rest Pressure
Inclination (p.c.f.) (p.c.f.)
Level 42 60
2:l slope 60 78
Wherever walls are subject to surcharge loads, they should be designed for an additional
uniform lateral pressure equal to one-third the anticipated surcharge pressure, in case of unrestrained
walls, and one-half the anticipated surcharge, in case of restraining walls.
Drainage and Waterproofing: Ifthe backfill is placed and compacted as recommended herein and
good surface drainage is provided, the infiltration of water into the wall backfill may be reduced.
Adequate drainage of adjacent planters should likewise be provided to reduce water infiltration into
wall backfills,
WESTRN
SOIL AND FOUNDAT/ON ENGINEERING, INC.
Toyota Carlsbad New Parking Structure
August 24,2001
OW Job NO. 01-44
Page 21
To limit the entrapment of water in the backfill behind the proposed walls, backdrains or other
drainage measures should be installed. Drainage should consist of vertical gravel drains approximately
18 inches wide connected to a 4-inch-diameter perforated pipe. The pipe shall be ABS schedule 40
(ASTM-D1527) or SDR 23.5 (ASTM-D2751) or approved equal.
The perforated pipe should be placed with the perforations down and should be surrounded
by at least 1 !4 feet of filter gravel or uniformly graded gravel or CaItrans Class 2 permeable material
wrapped in a non-woven filter fabric, such as Mirafi 140N, Amoco 4547 or an approved equivalent.
Care should be taken to select a filter fabric compatible with the backfill materials as clogging of the
filter material may occur.
The drainpipe should be located near the base of the wall and should discharge into a storm
drain or onto a surface draining away fiom the structure. As an alternative to the vertical gravel drains,
a drainage geocomposite such as Miradrain, or an approved equivalent, may be used with a 4-inch
in diameter, perforated pipe collector drain.
Backfill: The exterior grades should be sloped to drain away from the structures to minimize ponding
of water adjacent to the foundations and retaining walls. Compaction of the backfill as recommended
herein will be necessary to reduce settlement of the backfill and associated settlement of the overlying
walks, paving, and utilities. Soil material used for wall backfil1 should have an expansion index of
20 or less. All backfill should be compacted to at least 95% of the maximum dry density (ASTM
D1557-9 1, reapproved 1998). Some settlement of the backfill should be anticipated; and any utilities
supported therein should be designed to accept differential settlement, particularly at points of entry
into buildings. ,r
SOIL AND FOUNDATION ENGINEERING, INC.
c
Toyota Carlsbad New Parking Structure
August 24,2001 ,- OW Job NO. 01-44
Page 22
Field Explorations
Subsurface conditions were explored by excavating four small diameter borings on July 24,
2001. The exploratory borings were 8 inches in diameter and extended to depths ranging hm 3 1 to
41 feet. No caving occurred in the excavafion walls. Groundwater was not observed in any exploration.
The locations of the exploratory excavations are depicted on the Site Plan, Plate No. 1, in the back of
this report.
The surface reconnaissance and subsurface exploration were conducted by our geology and
soil engineering personnel. The soils are described in accordance with the Unified Soil Classification
System as illustrated on the attached simplified chart (Plate No. 2). In addition, a verbal textural
description, the wet color, the apparent moisture and the density or consistency are presented. The
density of granular material is given as either very loose, loose, medim dense, dense or very dense. The
consistency of silts or clays is given as either very soft, soft, medium stiff, stiff, very stiff or hard. The
sampling and logging of our exploratory excavations were performed using standard geotechnical
methods. The logs are presented on Plate No. 3 through Plate No. 6. Samples of typical and
representative soils were obtained and returned to our laboratory for observation and testing.
/c
Laboratory Testing
Laboratory tests were performed in accordance with the American Society for Testing and
Materials (ASTM) test methods or suggested procedures. Test results are shown on Piate No. 7
and Plate No. 8.
,I'
WESTERN
SOIL AND FOUNDATION ENGINEERING, INC.
Toyota Carlsbad New Parking Structure
August 24,2001
OW Job No. 01-44
Page 23
Plan Review
Western Soil and Foundation Engineering, Inc. should review the final grading and building
plans for this project.
Limitations
The recommendations and opinions expressed in this report reflect our best estimate of the
project requirements based on an evaluation of the subsurface soil conditions encountered at the
subsurface exploration locations and the assumption that the soil conditions do not deviate appreciably
fbm those encountered. It should be recognized that the performance of the foundations, pavements
and constructed slopes may be influenced by undisclosed or unforeseen variations in the soil
conditions that may occur in the intermediate and unexplored areas. Any unusual conditions not
covered in this report that are encountered during site development should be brought to the attention
of the geotechnical consultant so that modifications can be made, if necessary.
.c
It is recommended that western Soil and Foundation Engineering, Inc. be retained to provide
continuous geotechnical engineering services during the earthwork operations. This is to observe
compliance with the design concepts, specifications or recommendations and to allow design changes
in the event that subsurface conditions differ fiom those anticipated prior to start of construction,
Western Soil and Foundation Engineering, Inc. andor our consultants, will not be held responsible
for earthwork of any kind performed without our observation, inspection and testing.
W€ST€i?N
SOIL AND FOUNDATION ENGINEERING, INC.
rc
Toyota Carlsbad New Parking Structure
August 24,2001
Our Job NO. 01-44
Page 24
This office should be advised of any changes in the project scope so that it may be determined
if the recommendations contained herein are appropriate. This should be verified in writing or modified
by a written addendum.
The findings of this report are valid as of this date. Changes in the condition of a property
can, however, occur with the passage of time, whether they be due to natural processes or the work
of man on this or adjacent properties. In addition, changes in the State-of-the-Art andor Government
Codes may occur. Due to such changes, the findings of the report may be invalidated wholly or in
part by changes beyond our control. Therefore, this report should not be relied upon after a period
of one year without a review by us verifying the suitability of the conclusions and recommendations.
We will be responsible for our data, interpretations, and recommendations, but shall not be
responsible for the interpretations by others of the information developed. Our services consist of
professional consultation and observation only, and no warranty of any kind whatsoever, express or
implied, is made or intended in connection with the work performed or to be performed by us, or by
our proposal for consulting or other services, or by our furnishing of oral or written reports or findings.
P
WESTERN
SOIL AND fOUNDAT/ON ENGINERING, INC.
ATTACHMENTS
W€ST€RN
SOIL AND FOUNDATION ENGINEERING, INC.
SITE PLAN
(PlateNo. 1)
In Back Pocket
W€ST€RN
SOIL AND FOUNDATION ENGINE€RING, INC.
SUBSURFACE EXPLORATION
LEGEND
UNIFIED SOIL CLASSIFICATION CHART
Group
Soil Description Symbol Typical Names
I. COARSE GRAINED More than half of material
ish than No. 200 sieve size.
Gravels: More than half of coarse fraction is larger
than No. 4 sieve size but smaller than 3".
CLEAN GRAVELS GW
GP
GRAVEL W/FINEiS GM
GC
Sands: More than half of coarse fraction is smaller than No. 4 sieve size.
CLEAN SANDS sw
SP
SM
sc
SANDS WFINES
11. FINE GRAINED: More than half of material is
smaller than No. 200 sieve size.
Silts & Clays: Liquid limit less than 50
Silts & Clays: Liquid limit greater than 50
HIGHLY ORGANIC SOILS
ML
CL
OL
MH
CH
OH
PT
Plate No. 2
Well graded gravels, gravel sand mixtures, little or no fines.
Poorly graded gravels, gravel sand mixtures, little or no
fines.
Silty gravels, poorly graded gravel-sand-silt mixtures.
Clayey gravels, poorly graded gravel-sand, clay mixtures.
Well graded sand, gravelly sands, little or no fines.
Poorly graded sands, gravelly sands, little or no fines.
Silty sands, poorly graded sand and silt mixtures.
Clayey sands, poorly graded sand and clay mixtures.
Inorganic silts and very fin? sands, rock flour, sandy silt or clayey-silt-sand mixtures with slight plasticity.
Inorganic clays of low to medium plasticity, gravelly clays,
sandy clays, silty clays, lean clays.
Organic silty and organic silty clays of low plasticity.
Inorganic silts, micaceous or diatomaceous fine sandy or silty
soils, elastic silts.
Inorganic clays of high plasticity, fat.
Organic clays of medium to high plasticity.
Peat and other highly organic soils.
WESTERN
SOIL AND FOUNDATION ENGINEERING, INC.
JOB NUMBER
01 -44
TOYOTA CARLSBAD
PARKING STRUCTURE
Medium
Dense
Moist
Moist
Moist
Damp
Medium Dense To
Dense
Dense
Dense
Sandstone, Poorly Cemented
.- ._. ~
C.. . -_ -. -. .. ._ . -_* . . ... . . ._. . .. . __ -. .- _.. .--
-. ..-
. . . ,. -.
~ . ._-. -. . - . ... _- . * . . . ..
I-. SP : -- _. 1:: _. . * _..
- -. .. -_ -. . . -. . . _- -. .
Grades To
105.6
108.6
4.0
3.3
Yellowish-Orange, Very Fine To
Fine Grained Sandstone, Very
Poorly Cemented
- .. -. ~ . * ._ .. : - _. -
~ .. .. . . . .. . -. .. :. ._: -.- . ' .. . -. - -- * ~ ... ... . , . .-. . .-.-- -. .. ~
-.. -- ~ . . .- .. .. .I - .. --. SP . . - .- * ~ .. - - . .. -- ... -. . . -.- ._-. e.
. . .. -- ..
Grayisharange, Fine Grained
Sandstone, Very Poorly
Cemented
Pebble to Cobble Lense Q 24 to 25 Feet B
-
R
- SPT
4416
-
- CAL
5013
SPT
5015 -
SANTIAGO FORMATION - Gray, Very Sandy
Siltstone, Thinly Bedded, Moderately Cemented Moist
Moist
very Stiff
very Dense
101.8 11.7
Grades To
Pale Gray, Very Silty, Very Fine
Grained Sandstone
BOTTOM OF BORING Q 41 FEET - I1 I
DATE LOGGED
07-24-0 1
LOGGED B'L
V.G.
~ ~~~
Plate No. 4 SURFACE EXPLORATORY LOGS
LABORATORY TEST RESULTS - Cont,
Mechanical Sieve Analvsis
Sample
Location #4 #10 ##IO #lo0 #200
Percent Passing U.S. Standard Sieve
B-1 @4' 100 99.9 77.6 23.9 18.2
B-1 @ 15' 1 00 100 94.7 45.9 22.5
B-l@20' 100 100 95.8 68.3 43.2
B-3 @ 13' 100 100 89.1 22.0 19.4
B-4 @ 30' 100 100 98.0 70.8 33.4
In-Situ Moisture and Density
Moisture Dry Sample Density Content
Location 0 (YO)
B-1 @ 5' 108.4 3.1
B-1 @ 15' 107.8 13.0
B-2 @ 10' 105.6 4.0
B-2 @ 20' 108.6 3.3
B-2 @ 30' 101.8 11.7
B-3 @ 7' 119.2 8.7
B-3 @ 15' 109.2 5.8
B-4 @ 4' 127.9 8.7
B-4 @ 11' 129.2 9.3
B-4 @ 16' 113.1 6.5
B-4 @ 25' 105.1 12.4
Plate No. 8
WSTERN
SOIL AND FOUNDATION ENGlNEERlNG, INC.
TABLE 1
Depth of Soil
Trench Removal Below
Number Existing Grade (fi.)
B- 1 4
B-2 4
B-3 7
B-4 14
NOTE: It should be recognized that variations in
soil conditions may occur between
exploratory excavations that will require
additional removal. In areas where fill
slope toe keys are proposed, add a
minimum of 2 feet to removal depths
presented above.
ExpIoratory excavations encountered in the
removal process should be recompacted an
additional 2 feet below the depths shown
in the above table.
Plate No. 9
W€ST€RN
SOIL AND FOUNDATION ENGINEERING, INC.
FILL SLOPE KEY
ee e)
8' MINIMUM BENCH
/T
TOYOTA CARLSBAD I NEW PARKING STRUCTURE I I JOBNO.: 01-44 I DATE: 08-24-01
Plate No. 10
WESTERN
SO11 AND FOUNDATION ENGINEERING, INC.
APPENDIX I
W€ST€RN
SOIL AND FOUNDATION ENGINEERING, INC.
f-
(8) Expansive soils may require special compaction specifications as directed in the report of
geotechnical investigation by the soil engineer.
(9) The cut portions of building pads may require excavation and recompaction for density
compatibility with the fill as directed by the soil engineer.
Materials: The fill soils shall consist of select materials graded so that at least 40 percent of the
material passes the No. 4 sieve. The material may be obtained from the excavation, a borrow pit, or by
mixing soils fiom one or more sources. The material used shall be fiee from vegetable matter, and
other deleterious substances, and shall not contain rocks or lumps greater than 6 inches in diameter. If
excessive vegetation, rocks, or soils with unacceptable physical characteristics are encountered, these
materials shall be disposed of in waste areas designated on the plans or as directed by the soil
engineer. If soils are encountered during the grading operation which were not reported in the report
of geotechnical investigation, further testing will be required to ascertain their engineering properties.
Any special treatment recommended in the preliminary or subsequent soil reports not covered herein
shall become an addendum to these specifications.
No material of perishable, spongy, or otherwise unstable nature shall be used in the fills.
Placing, Spreading And Compacting Fill Material:
The selected fill material shall be placed in layers which shall not exceed six inches (6") when
compacted. Each layer shall be spread evenly and shall be thoroughly blade-mixed during the
spreading to insure uniformity of material and moisture in each layer.
When the moisture content of the fill material is below that specified by the soil engineer, water
shall be added until the moisture content is near optimum as determined by the soil engineer to
assure thorough bonding during the compacting process.
When the moisture content of the fill material is above that specified by the soil engineer, the
fill material shall be aerated by blading and scarifjmg, or other satisfactory methods until the
moisture content is near optimum as determined by the soils engineer.
WESTERN
SOIL AND FOUNDATION fNGIN€€RING, INC.
Mer each layer has been placed, mixed and spread evenly, it shall be thoroughly compacted to
not less than the specified maximum density in accordance with ASTM D1557-91. Compaction
shall be by means of tamping or sheepsfoot rollers, multiple-wheel pneumatic-tired rollers, or
other types of rollers. Rollers shall be of such design that they will be able to compact the fill to
the specified density. Rolling of each layer shall be continuous over its entire area and the roller
shall make sufficient passes to obtain the desired density. The entire area to be filled shall be
compacted to the specified density.
Fill slopes shall be compacted by means of sheepsfoot rollers or other suitable equipment.
Compacting operations shall be continued until the slopes are stable and until there is no
appreciable amount of loose soil on the slopes. Compacting of the slopes shall be accomplished
by backrolling the slopes in increments of 3 to 5 feet in elevation gain or by other methods
producing satisfactory results.
Field density tests shall be made by the soil engineer for approximately each foot in elevation
gain after compaction, but not to exceed two feet in vertical height between tests. The location
of the tests in plan shall be spaced to give the best possible coverage and shall be taken no farther
than 100 feet apart. Tests shall be taken on comer and terrace lots for each two feet in elevation
again. The soil engineer may take additional tests as considered necessary to check on the
uniformity of compaction. Where sheepsfoot rollers are used, the tests shall be taken in the
compacted material below the disturbed surface. No additional layers of fill shall be spread until
the field density tests indicate that the specified density has been obtained.
The fill operation shall be continued in six inch (6") compacted layers, as specified above, mtil
the fill has been brought to the finshed slopes and grades as shown on the accepted plans.
Supervision: Supervision by the soil engineer shall be made during the filling and compacting
operations so that he/she can certify that the fill was made in accordance with accepted specifications.
The specifications and soil testing of subgrade, subbase, and base materials for roads, or other public
property shall be done in accordance with specifications of the governing agency.
Seasonal Limits: No fill material shall be placed, spread, or rolled during unfavorable weather
conditions. When the work is interrupted by heavy rain, grading shall not be resumed until field tests
by the soil engineer indicate that the moisture content and density of he fill are as previously
specified. In the event that, in the opinion of the engineer, soils unsatisfactory as foundation material
are encountered, they shall not be incorporated in the grading, and disposition will be made at the
engineer's discretion.
W€ST€UN
SOIL AND FOUNDATION ENGINEERING, INC.
APPENDIX I1
WESTERN
SOIL AND FOUNDATION ENGINEERING, INC.
REFERENCES CITED
Greensfelder, R.W., 1974, Maximum Credible Rock Accelerations from Earthquakes
in California: CDMG Map Sheet 23.
Kennedy, M. P., 1975 Geology of The San Diego Metropolitan Area, California:
California Division of Mines and Geology, Bulletin 200.
Seed, H.B. and Idriss, I.M., 1982, Ground Motions and Soil Liquefaction During
Earthquakes, EERI Monograph Series.
Slemmons, D.B., 1979, "Evaluation of Geomorphic Features of Active Faults for
Engineering Design and Siting Studies", Association of Engineering
Geologists Short Course.
Tan, S. and Kennedy, M.P., 1996, Geologic Maps of the Northwestern Part of San
Diego County, California: CDMG Open-File Report 96-02.
Vaughn, P. and Rockwell, T., 1986, Alluvial Stratigraphy and Neotectonics of the
Elsinore Fault Zone at Agua Tibia Mountain, southern California.
Weber, Harold F. Jr., 1982, Recent Slope Failures, Ancient Landslides, and Related
Geology of The North-Central Coastal Area, San Diego County, California:
CDMG Report 82-12,
W€ST€RN
SOIL AND FOUNDATION ENGINEERING, INC.