Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
1100 LAS FLORES DR; STRUCTURAL; PC050005; Structural Calculations
Structural Calculations (Supplemental Calculations & Details for Utility Room Relocation) for BUENA VISTA CONDOMINIUMS Prepared for Hurd Architecture Project No.: 04138 Date Issued: 01 -06-05 Revision Date: 06-22-05 ? oTcSA^T'"»>limn» Prepared By FL.ORES LUND CO N S U LTANTS 7220 Trade Street Suite 120 • San Diego California 92121 • (858) 566-0626 • FAX (858) 566 0627 Civil and Structural Engineering www floreslund com pc ESGIL DETAIL REVISION NEORMATON DETAIL NUMBER PARTIAL PLAN PARTIAL PLAN SHEET REFERENCE S3 0 S3 1 S2 1 DESCRIPTION REVISED WALL LOCATION TO TO PROVIDE FOR IN-SET DOOR AND ADDED SPAN OE OF SLAB AS UTILITY ROOM LID REVISED WALL LOCATION TO TO PROVIDE FOR IN-SET DOOR AND ADDED SPAN OF OF SLAB AS UTILITY ROOM LID SLAB OVER DOOR ENTRANCE AND TYP CMU LINTEL MODIFIED AS REQUIRED BY ESGIL NOTE CALCULATIONS ARE INCLUDED FOR ADDED P T DECK SPAN AS UTILITY ROOM LID AS SHOWN ON PARTIAL PLAN SHEETS NO 04138-4 SHEET No 04138-1 FLORES LUND CONSULTANTS PROFESSIONAL ENGINEERS 7220 TRADE STREET SUITE 120 SAN DIEGO CALIFORNIA 92121 (858) 566-0626 FAX (858) 566-0627 DATE 06-22-05 FLC PROJECT NO DESIGN BY KF DRAWN BY KF REVIEWED BY RF 4'-0"*x i • \Toic m PER PLAN SLAB RE INF PER PLAN PT TENDONS WHERE OCCUR PER PLAN, TTP SLAB THICKNESS REINF PER S -N 1 612 PER PLAN ffi aiQ LINTEL REINF PER •CMU WALL BEYOND PER PLAN UTILITY ROOM ENTRANCE SHEET No. 04138-4 FLORES LUND CONSULTANTS PROFESSIONAL ENGINEERS 7220 TRADE STREET SUITE 120 SAN DIEGO CALIFORNIA 92121 (858) 566-0626 FAX (858) 566-0627 DATE 06-22-05 FLC PROJECT NO DESIGN BY KF DRAWN BY KF REVIEWED BY RF PARTIAL PLAN 53 0 SHEET No 04138-2 FLORES LUND CONSULTANTS PROFESSIONAL ENGINEERS 7220 TRADE STREET SUITE 120 SAN DIEGO CALIFORNIA 92121 (858) 566-0626 FAX (858) 566-0627 DATE 06-22-05 FLC PROJECT NO 04138 DESIGN BY KF DRAWN BY KF REVIEWED BY RF UTILITY ROOM LID 3V CONC SLAB ui/ *S « I8"o/c EA WAT I" CLEAR OF BOTT IN ADDITION TO PO6T- TEN6IONIN6 TENDONS 4 OTHER MILD REINF SHOWN PARTIAL PLAN S3 SHEET No. 04138-3 FLORES LUND CONSULTANTS PROFESSIONAL ENGINEERS 7220 TRADE STREET SUITE 120 SAN DIEGO CALIFORNIA 92121 (858) 566-0626 FAX (858) 566-0627 DATE 06-22-05 FLC PROJECT NO 04138 DESIGN BY KF DRAWN BY KF REVIEWED BY RF ADAPT - STRUCTURAL CONCRETE SOFT ADAPT-PT Version 6 17 Date 7/18/2005 Time 12 26 55 PM 1- PROJECT TITLE Buena Vista 1 1 DESIGN STRIP UTILITY REVISE 2 - MEMBER ELEVATION ^ [ft] V- t-> I 3 - TOP REBAR 3 1 User selected 3 2 User selected 3 3 ADAPT selected 3 4 ADAPT selected ®2 4 - TENDON PROFILE 4 2 Datum Line •v WARE SYSTEM File UTILITY REVISE 2300 ^~/ 2500 S/ 2300 \/ 1400 ^-/^ ^^^I 1#6X70 ®1 1*6X170 ®11#6 ^Ajy ' •" ' VTv/ in ii l^ & di — r^tT^~-^ ®5#6X96 X120 (8)arexii(r @n#6X50 "Myv^ 4 3 CGS Distance [ml -<75 ^.7fly,. 125-125 -825 125-125 -825 125-125 7504754 5 Force XjSSTSkjpj} [357 3 kips] [357 3 kips [357 3 kips] 5 - BOTTOM REBAR T«r\tafri<>'<S£-ffc V* ?€& ?^N 5 1 User selected 5 2 User selected ~ 5 3 ADAPT selected (4)s#5xi86 ©7*5x120 @7#5xne 5 4 ADAPT selected (3>#5X206 @8#sxi70 6 - REQUIRED & PROVIDED BARS RITnpBars m?*_ "62 467 f'n2] 25required 6 2 Bottom Bars m%£ 8 - LEGEND ! illi ! I 1 i ' _J ' I ' ' 476 456 4 Stress ng End i Dead End 9 - DESIGN PARAMETERS 9 1 Code ACI fc = 4 ksi fy = 60 ksi (longitudinal) fy = 60 ksi (shear) fpu = 270 ksi 9 2 Rebar Cover Top = 1 in Bottom = 1 in Rebar Table ASTM - US Customary bars 9 3 Stressing fp,= 8fpu 9 4 Strand Area = 153 in2 @8#5X170 @15#5X120 456 456i iih n 4lij u^ i '' 456 456 (Redistributed Moments) 10 -DESIGNER'S NOTES .IOH wv*trr utt^m - mturiy t^aof\ L*lQ FL.ORES LUND CO NSULTANTS SHEET NO OF_ 7220 Trade Street, Suite 120 CALCULATED BY DATE. San Diego, California 92121-2325 (858) 566-0626 Fax (858) 566-0627 CHECKED BY DATE. SCALE FLORES LUND CONSULTANTS ADAPT CORPORATION STRUCTURAL CONCRETE SOFTWARE SYSTEM ADAPT-PT FOR POST-TENSIONED BEAM/SLAB DESIGN | Version 6 11 AMERICAN (ACI-318-99/UBC-1997) | ADAPT CORPORATION - Structural Concrete Software System 1 1733 Woodside Road, Suite 220, Redwood City, California 94061 | Phone (650)306-2400, Fax (650)364-4678 | Email Support@AdaptSoft com, Web site http //www AdaptSoft com | DATE AND TIME OF PROGRAM EXECUTION PROJECT FILE Jul 18,2005 At Time 12 23 UTILITY REVISE PROJECT Buena Vista UTILITY REVISE TITLE 1 - USER SPECIFIED GENERAL DESIGN PARAMETERS CONCRETE STRENGTH at 28 days, for BEAMS/SLABS for COLUMNS MODULUS OF ELASTICITY for BEAMS/SLABS for COLUMNS 4000 00 psi 4000 00 psi 3605 00 ksi 3605 00 ksi CREEP factor for deflections for BEAMS/SLABS CONCRETE WEIGHT 2 00 NORMAL SELF WEIGHT 150 00 pcf TENSION STRESS limits (multiple of (fc)l/2) At Top At Bottom 6 000 6 000 COMPRESSION STRESS limits (multiple of (f'c)) At all locations 450 REINFORCEMENT YIELD Strength Minimum Cover at TOP Minimum Cover at BOTTOM 60 00 ksi 1 00 in 1 00 in POST-TENSIONING SYSTEM Ultimate strength of strand Average effective stress in strand (final) Strand area Mm CGS of tendon from TOP Mm CGS of tendon from BOTTOM for INTERIOR spans UNBONDED 270 00 ksi 175 00 ksi 153 mA2 1 25 in 1 25 in Page 2 (UTILITY REVISE)ADAPT-PT V- 6 17 ACI Mm CGS of tendon from BOTTOM for EXTERIOR spans Mm average precompression Max spacing between strands (factor of slab depth) Tendon profile type and support widths 2 00 in 150 00 psi < 8 00 (see section 9) ANALYSIS OPTIONS USED Structural system ONE-WAY' Moment of Inertia over support is INCREASED Moments REDUCED to face of support YES Limited plastification allowed(moments redistributed) YES ft*. 2 - I N P U T GEOMETRY 211 PRINCIPAL SPAN DATA OF UNIFORM SPANS S F| i i TOP |BOTTOM/MIDDLE| | P O| | I FLANGE | FLANGE | REF | MULTIPLIER A R| LENGTH] WIDTH DEPTH| width thick | width thick iHEIGHT| left right N M| ft | in in | in in | in in | in | -1 3 4 5 6 7 8 9 10 11 12 13- 1 1 23 00 240 00 9 50 00 50 50 2 1 25 00 240 00 9 50 00 50 50 3 1 23 00 240 00 9 50 00 50 50 4 1 14 00 240 00 9 50 00 50 50 LEGEND 1 - SPAN C = Cantilever 3 -FORM 1 2 3 4 7 8 Rectangular section T or Inverted L section 1 section Extended T or L section Joist Waffle 11 - Top surface to reference line 22-SUPPORT WIDTH AND COLUMN DATA SUPPORT < LOWER COLUMN > < UPPER COLUMN > WIDTH LENGTH B(DIA) D CBC* LENGTH B(DIA) D CBC* JOINT in ft in in ft in in __1 2 3 4 5 6 7 8 9 10 1 12 00 10 00 240 00 12 00 (2) 00 00 00 (1) 2 14 00 10 00 14 00 00 (2) 00 00 00 (1) 3 14 00 10 00 14 00 00 (2) 00 00 00 (1) 4 12 00 10 00 240 00 12 00 (2) 00 00 00 (1) Page 3 (UTILITY REVISE) ADAPT-PT V- 6 17 ACI 5 12 00 10 00 240 00 12 00 (2) 00 00 00 (1) *THE COLUMN BOUNDARY CONDITION CODES (CBC) Fixed at both ends (STANDARD) = 1 Hinged at near end, fixed at far end = 2 Fixed at near end, hinged at far end = 3 Fixed at near end, roller with rotational fixity at far end = 4 3-INPUT APPLIED LOADING < CLASS > < TYPE > D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Ll= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Unit selfweight W = 150 0 pcf Intensity ( From To ) ( M or C At) Total on Trib SPAN CLASS TYPE k/ff"2 (ft ft ) (k-ft or k ft) k/ft _L 1 1 1 f. L D SW U U U 100 075 o 00 00 00 23 00 23 00 23 00 o -y 2 000 1 500 2 375 2 L U 100 00 25 00 2 000 2 D U 075 00 25 00 1 500 2 SW U 00 25 00 2 375 3 L U 100 00 23 00 2 000 3 D U 075 00 23 00 1 500 3 SW U 00 23 00 2 375 4 L U 100 00 14 00 2 000 4 D U 075 00 14 00 1 500 4 SW U 00 14 00 2 375 3 1 - LOADING AS APPEARS IN USER S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (k/ftA2), ( CON or PART ) (MOMENT) SPAN CLASS TYPE LINE (k/ft) ( Jc@ft or ft-ft ) ( k-ft @ ft ) -I 2 3 4 5 6 7 8 Page 4 (UTILITY REVISE)ADAPT-PT V- 6 17 ACI 1 1 2 2 3 3 4 4 L D L D L D L D U U U U U U U U 100 075 100 075 100 075 100 075 NOTE SELFWEIGHT INCLUSION REQUIRED 10 -FACTORED MOMENTS & REACTIONS Calculated as ( 1 40D + 1 70L + 1 00 secondary moment effects) 10 1 FACTORED DESIGN MOMENTS (k-ft) ^ j.ej_i_" - - — s -^ nu.uapdii - s SPAN 1 I 2 3 4 max oz 37 11 -446 69 -343 80 -266 12 mm oo 37 11 -446 69 -343 80 -266 12 max 328 39 233 04 229 11 63 01 mm 328 39 233 04 229 11 63 01 v j_j_yiiu" s max -441 16 -343 87 -260 29 18 40 mm -441 16 -343 87 -260 29 18 40 Note = face-of-support 10 2 SPANi 1 2 3 4 Note * = SECONDARY <— left* 9 46 21 28 19 40 29 90 face-of-su MOMENTS (k-ft) --> <- midspan -> 10 67 20 22 25 05 15 51 DDOrt < — right* — > 20 79 19 15 30 75 1 11 10 3 FACTORED REACTIONS (k) <- JOINT max mm _1 2 3 10 4 FACTORED COLUMN MOMENTS (k-ft) LOWER column —> <— UPPER column —> max mm max mm ___4 5 6 7 — Page 5 (UTILITY REVISE)ADAPT-PT V- 6 17 ACI 1 2 3 4 5 12 - S 79 238 211 180 39 H E A 29 33 66 96 89 R 49 146 130 110 25 D E S I 10 12 35 19 37 G N 00 00 00 00 00 FOR BEAMS 00 00 00 00 00 AND ONE-WAY 00 00 00 00 00 SLAB SYSTEMS 00 00 00 00 00 No shear reinforcement required Page 6 (UTILITY REVISE) ADAPT-PT V- 6 17 ACI Page 7 (UTILITY REVISE) ADAPT-PT V- 6 17 ACI ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM DATE Jul 18,2005 TIME 12 18 Data ID UTILITY Output File ID PTREQ DAT SUMMARY OF POST-TENSIONING REQUIRED AT 1/20TH POINTS FOR THE ENTIRE TRIBUTARY UNITS ARE ALL IN (kips) Note for LEFT CANTILEVER (if any) X/L= 0 00 is at tip of cantilever, and X/L= 1 00 is at first support SPAN = 1 LENGTH = 23 00 feet X/L X PT 00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 1 00 1 2 3 4 5 6 8 9 10 11 12 13 14 16 17 18 19 20 21 23 00 15 30 45 60 75 90 05 20 35 50 65 80 95 10 25 40 55 70 85 00 OOOOE+00 OOOOE+00 1458E+03 2588E+03 3231E+03 3564E+03 3673E+03 3598E+03 3355E+03 2939E+03 2355E+03 1551E+03 3526E+02 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 1729E+03 3264E+03 SPAN X/L 00 05 10 15 20 25 30 35 40 45 50 55 60 = 2 LENGTH = 25 00 feet X PT 1 2 3 5 6 7 8 10 11 12 13 15 00 25 50 75 00 25 50 75 00 25 50 75 00 3281E+03 1837E+03 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 5430E+01 5360E+02 7499E+02 7387E+02 4872E+02 Page 8 (UTILITY REVISE) ADAPT-PT V- 6 17 ACI 65 70 75 80 85 90 95 1 00 SPAN X/L 00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 1 00 SPAN X/L 00 05 10 15 20 25 30 35 40 45 50 55 60 16 25 17 50 18 75 20 00 21 25 22 50 23 75 25 00 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 2379E+02 1851E+03 = 3 LENGTH = 23 00 feet X 00 1 15 2 30 3 45 4 60 5 75 6 90 8 05 9 20 10 35 11 50 12 65 13 80 14 95 16 10 17 25 18 40 19 55 20 70 21 85 23 00 PT 1999E+03 5784E+02 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 1647E+01 4311E+02 6134E+02 5979E+02 3660E+02 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 8227E+02 = 4 LENGTH = 14 00 feet X 00 70 1 40 2 10 2 80 3 50 4 20 4 90 5 60 6 30 7 00 7 70 8 40 PT 1498E+03 9103E+02 1138E+02 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 I I I I I I I I I I I I I I I I I I I Page 9 (UTILITY REVISE)ADAPT-PT V- 6 17 ACI 65 70 75 80 85 90 95 00 9 10 9 80 10 50 11 20 11 90 12 60 13 30 14 00 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 SUMMARY OF POST-TENSIONING REQUIRED AT FACES OF SUPPORTS SPAN = 1 LENGTH = 23 00 feet X/L X PT face of support at left 02 50 OOOOE+00 face of support at right 97 22 42 4048E+03 SPAN = 2 LENGTH = 25 00 feet X/L X PT face of support at left 02 58 4116E+03 face of support at right 98 24 42 2684E+03 SPAN = 3 LENGTH = 23 00 feet X/L X PT face of support at left 03 58 2692E+03 face of support at right 98 22 50 1560E+03 SPAN = 4 LENGTH = 14 00 feet X/L X PT face of support at left 04 50 1672E+03 face of support at right 96 13 50 OOOOE+00 Structural Calculations for BUENA VISTA APARTMENTS Prepared for Hurd Architecture Project No.: 04138 Date Issued: 01-06-05 Revision Date: """,„ ««* Prepared By FLORES LUND CONSULTANTS 7220 Trade Street Suite 120 • San Diego, California 92121 Cnril and Structural Engineering (858) 566-0626 • FAX (858) 566-0627 www floreelund com PC0503O5' Structural Calculations for Buena Vista Apartments 04138 Table ot Contents Item Area Three Design Loads Roof Framing Floor Framing Wood Walls & Posts Post-Tensioned Slab Design Basement Wall Column Ftg Grade Bm & Pier Design Lateral Design Dl to D4 Rl to R16 Fl to F71 Wl to W8 PI to P55 Bl to B24 LI to L23 Design Criteria 1) Governing Codes 1997UBC 1999ACI 9th Edition AISC - ASD 2nd Edition AISC - LRFD 2) 3) 3) 4) Seismic Zone 4 Wind Criteria Exposure= BWS= Method= lmptce= Minimum Soil Bearing Maximum Soil Bearing Material and Design Stresses Found Cone F c = 3000 PSI Cone Deck/Col Fc= 4000 PSI Structural Steel Fy = Bolted Connections Masonry Block F m = Special Inspection Yes or No C 70 1 1 0 2000 4000 50 A325 1500 R = Na = Nv = mph (Normal psf psf KSI PSI 5 5 Soil Type = Sd 1 0 lmptce= 1 0 1 ] Force) (with increase for depth per soils report) (1 33 seismic increase per soils report) Steel Reinforcing Fy 60 KSI and 46 ksi for tube cols PROJECT Buena Vista Apartments • 04138 GRAVITY DESIGN LOADS TYPICAL ROOF DEAD LOAD ROOFING 1/2" PLYWOOD _ PRE-FAB TRUSSES INSULATION MECH+PLUM+ELEC DRYWALL MISC TOTAL = LIVE LOAD 4 _1 8 _ 35 1 2 1 2 1 145 20 PSF PSF PSF PSF PSF PSF PSF PSF PSF TURRET ROOF DEAD LOAD CEMENT TILE 5/8" PLYWOOD TRUSSES INSULATION MECH+PLUM+ELEC 2 x 5/8" GYPSUM MISC TOTAL = LIVE LOAD 16 1 8 35 1 2 1 55 1 30 16 PSF PSF PSF PSF PSF PSF PSF PSF PSF SAY 15 PSF REDUCIBLE REDUCIBLE TYPICAL FLOORS DEAD LOAD FIN & CARPET 1 1/2" LWT CONCRETE 3/4" PLY SHEATHING FRAMING - - - INSULATION - 5/8" STUCCO MECH+PLUM+ELEC MISC TOTAL = LIVE LOAD UNITS 1 138 23 3 __06 28 1 1 5 26 40 PSF PSF PSF PSF PSF PSF PSF PSF PSF PSF BALCONY DEAD LOAD WALL FIN & CARPET 2 1/2" NWT CONCRETE 3/4" PLY SHEATHING FRAMING INSULATION 5/8" STUCCO MECH+PLUM+ELEC MISC TOTAL = LIVE LOAD CORRIDORS DEAD LOAD LIVE LOAD EXTERIOR STUD WALL INTERIOR STUD WALL 12" CMU SOLID GROUTED 8" CMU SOLID GROUTED 1 17 23 3 06 7 1 1 5 334 60 34 100 15 10 124 78 PSF PSF PSF PSF PSF PSF PSF PSF PSF PSF PSF PSF PSF PSF PSF PSF REDUCIBLE SAY 34 PSF REDUCIBLE REDUCIBLE CONCRETEPT DECK DEAD LOAD 2ND FLOOR 26 PSF 3RD FLOOR 26 PSF ROOF 15 PSF TOTAL=--67- PSF -SAY --75PSF (for garage MEP & 1st floor finish) SELF WEIGHT 9 5" CONG SLAB 119 PSF LIVE LOAD 100 PSF SKIPPED BP- ILHilUa FLORES B-USMO LJUNyULIAN 1 S 7220 Trade Street, Suite 120 San Diego, California 92121 2325 (858) 566 0626 Fax (858) 566 0627 9HFFT NO OF HAP r,l II AT=H RY HATE r.HFrKFn RY DATE RHA1F i "j / 1 / \/c L . ^ » PBODUCT 2041 (Single Slims) 2051 (Padded) <r a! LU\z 21 <t LU o P. R2- ^reject Buena Vista Apartments FLC# 04138 TYPICAL HEADER SCHEDULE FLDRES LUJNJO C O N S U LTANT Uniformly Distributed Load W(Live) = W(Dead) = WfTotal) = Roof Header(R) or Floor Header(F)R Roof Load Duration Cd=1 25 344 PLF SPAN (ft) M(req d) (kip-ft) V(reqd) (kip) l(reqd) (inA4) Mm Size (in) M(min) (kip-ft) V(min) (kip) I (mm) (mA4) Governing Factor Max Stress Ratio 3 4 5 6 7 8 g 10 11 12 13 14 15 387 688 1075 1548 2107 2752 3483 4300 5203 6192 7267 8428 9675 516 688 860 1032 1204 1376 1548 1720 1892 2064 2236 2408 2580 26 62 121 209 332 495 705 968 1288 1672 2126 2655 3265 4x4 6x6 4x4'^ 6x6 i 4x4c 6x6 «4x6 6x6 4x6 6x6 ,4x8 6x6 t I4x8 6x8 4x10 6x8 ,4x10 6x8 ^4x10 -" 6x8 * 4x12 6x10 4x12 6x10 4x14 6x12 f 1116 3466 1116 ^ 3466 1116 3466 2390* 3466 2390 3466 - 4153 3466 4153 6445 - 6239 t 6445 6239 6445 ^6239 6445 8460 8609 8460 8609 10666 12613 *4970 i> 2143 "<970 2143 970 2143 1525 , 2143 1525 „ 2143 ,2010- 2143 2010 f 2920 * 2565 2920 2565 -J 2920 2565 2920 31 19*- 2453 3119 2453 3674 4483 '•s«125 „ 730 ' 125 , 730 125" 730 48 5* 730 485 730 ""-1111 730 ^111 1- 1930 2308 1930 2308 1930 2308 1930 4153, 3930 4153 3930 6785 6970 , V V « V V I V V V M M * V M M M * 'M M M M *- M M M V M V M M """ 053", 024 071'* 032 097 040 068 048 088 061 - 068 079 ^,084 „ 054 069 067 083 081 099 096 086 091 100 098 091 077 B(in) 35 35 35 35 35 35 35 B 55 55 55 55 55 55 55 D(m) 35 55 725 925 1125 1325 1525 D 55 75 95 11 5 135 155 175 M(ft-lb) 1116 2390 4153 6239 8460 10666 14135 M 3466 6445 8609 12613 23100 29991 37735 V(lbs) 970 1525 2010 2565 3119 3674 4228 V 2143 2920 2453 4483 5263 6041 6821 l(mA4) 13 49 111 231 415 678 1034 I 73 193 393 697 1128 1707 2456 4x 4x 4x MOMENT SHEAR INERTIA 0346697 0531959 0208893 0616349 0709278 0495154 0963046 0886598 0967097 0647699 0676721 0430655 088159 0789508 0683865 0662733 0684577 0445677 0838772 0770149 0634567 0689241 0670565 0419121 0833981 0737622 0557849 0992507 0804678 072424 0858983 0716954 0511843 0996217 0772104 0639279 0 907067 0 70228 0 481272 6x 0 0 0 M 111648 198485 310133 0 446592 0 0 0 0 0 0 0 0 0 607862 793942 540419 667184 807292 960745 844141 979004 767096 6x 0 0 V 24084 32112 04014 0 0 0 0 0 0 0 0 0 0 48168 56196 64224 530137 589041 647945 706849 911723 981855 575572 6x 0 0 0 0 0 0 0 0 0 0 0 0 0 I 035784 084822 165668 286274 454592 678575 365444 501295 667224 866238 540865 675527 468481 B(m) 35 35 35 35 35 35 35 B 55 55 55 55 55 55 55 D(m) 35 55 725 925 1125 1325 1525 D 55 75 95 11 5 135 155 175 1 M(ft-lb) 893 1912 3322 4991 6768 8533 11308 M 2773 5156 6887 10090 18480 23993 30188 V(lbs) 776 1220 1608 2052 2495 2939 3382 V 1714 2336 1962 3586 4210 4833 5457 l(inM) 13 49 111 231 415 678 1,034 I 73 193 393 697 1128 1707 2456 B(m) 35 35 35 35 35 35 35 B 55 55 55 55 55 D(m) 35 55 725 925 11 25 1325 1525 D 95 11 5 135 155 175 125 M(ft-lb) 1117 2390 4152 6239 8460 10667 14135 M 8609 12612 23099 29991 37735 V(lbs) 970 1525 2010 2565 3119 3674 4228 V 3703 4482 5262 6042 6821 l(mM) 13 49 111 231 415 678 1,034 I 393 697 1128 1707 2456 Rev 560100 I-I Genera? Timber Beam Page 1 I Genera! !nfo«-Tiat!on Calculations are designed to 1997 h«nq ann 1997 UBC Reomrements f* Section Nsrne 2x10 Beam Wioth Ee^m Deoih fVicmoer Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density 1 500 in 9250m Sawn 1 250 P'n Pin 35000pcf Center Span I r ft Cantilever Right Canfilever Douglas Fir Larch Fb Base Allow Fv Allow Fc Allow E 1050ft ft ft No 2 875 0 psi 95 0 psi 625 0 psi 1 600 0 ksi Lu 0 00 ft Lu 0 00 ft LJ 0 00 ft Repetitive Member II Length Uniform Loads Center Left Cantilever Right Cantilever DL DL DL 20 00 #/ft LL #/ft LL rf/ft LL 2700 #/ft #/ft #/ft . . ..,(-,. , 1 1 Summary r jjisrr.mE Span= 10 50ft Beam Width = 1 Max Stress Ratio Maximum Moment Allowable Max Positive Moment IVa* Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 389 44 psi Fb 1 383 59 psi Deflections Beam Design OK 500m x Depth = 9 25m Ends are Pin Pin 0281 | 07 k ft 25 kft 0 69 k ft at 0 00 k ft at 000 kft 000 kft 247 fv 24 47 psi Fv 118 75 psi Maximum Shear * 1 5250ft 10500 ft Reactions LeftDL Right DL Allowable Shear Camber 012 k 012k 5 @Leff @Rght ©Left @ Center @ Right Max Max 03 k 1 6 k 02bk 026k 0 000 in 0061m 0000 m 026k 026k Center Span Dead Load Deflection -0 040 in Location 5 250 ft Length/Defl 3 120 3 Camber ( using 1 5 * D L Defl) @ Center 0 061 in @ Left 0 000 in @ Right 0 000 in Total Load -0 087 in 5250ft 1 447 79 Left Cantilever Deflection Length/Defl Right Cantilever Deflection Length/Defl Dead Load 0 000 in 00 0 000 in 00 Total Load 0 000 in 00 0 000 in 00 Stress Calcs Bending Analysis Ck 31 019 Le Cf 1 100 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction 0 000 ft Sxx 0 000 Cl Max Moment 069 kft 000 kft 0 00 k-ft @ Left Support ( 034 k 2 859 m2 11875 psi 026 k 026 k 21 391 m3 0000 Sxx Reg d 6 02 m3 0 00 m3 0 00 m3 5> Right Support 034k 2 859 m2 118 75 psi Bearing Length Req d Bearing Length Req d (-1 Area 13875m2 Allowable fb 1 383 59 psi 1 383 59 psi 1 383 59 psi 0 282 in 0 282 in Rev 560100 Genera! Tsmber Beam &fcJ^sa^tiMU^r"^w5&&w>%ri. Page 2 p Query Values " M V & D @ Specified Locations @ Center Span Location = @ Right Cant Location = @ Left Cant Location = ! Sketch & Diagram 0 00 ft 0 00 ft 0 00 ft Moment 000k ft 0 00 k ft 000k ft Shear 026 k 000k 000k Deflection 0 0000 in 0 0000 in 0 0000 in o —vim? = o 7k« Dmax - 0 087in 0 101 2 07 312 * 17 5 23 6 28 7 31 8 39 9 »5 10 5 i II m.onto L^c^tion Tftl Rmax = 0 3k Vmax @ lefl 0 3k Rmax = 0 3k Vmax @ rt - 0 3k 101 207 3 i2 1 17 523 6 2S 73* 839 9 *j 105 1 01 2 07 3 12 4 17 5 23 6 28 7 34 8 39 9 IS 10 5 < tinn Location fftl Rev 560100 General Timber Beam Page \ Description B1 General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density «. - — — 5 25x14 0 5 250 in 14000m 1 250 Pin Pin 35 000 pcf • - =„»*»._ '-,..:' — _ — Center Span 1583ft Left Cantilever ft Right Cantilever ft Truss Joist MacMillan Parallam 2 OE Fo Base Allow 2 900 0 psi Fv Allow 290 0 psi Fc Allow 6500 psi E 2 000 0 ksi KUtHU :::- ~ Lu Lu Lu 000 ft 000 ft 000 ft Full Length Uniform Loads Center Left Cantilever Right Cantilever Point Loads Dead Load Live Load distance f* Si/nrimfinj DL DL DL 2 340 0 Ibs 1 248 0 Ibs 790C r ft "W ' As 15750#/ft LL 21000 #/ft LL #/ft LL Ibs Ibs 0000ft Ibs Ibs 0000ft Ibs Ibs 0000ft #/ft #/ft #/ft Ibs Ibs 0000ft Ibs Ibs 0000ft , _J Ibs Ibs 0000ft Span= 15 83ft Beam Width = 5 250m x Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 1 836 61 psi Fb 3 625 00 psi Deflections Center Span Deflection Location Length/Defl Camber ( using 15 D L @ Center @ Left @ Right 2625k 000k 000 k 000 k 51 81 fv Fv Dead Load 0 243 in 7916ft 7834 Defl) 0 364 in 0 000 in 0 000 in Depth = 14 in Ends are Pin Pin 0507 1 26 2 k ft 51 8 k ft ft at 7 ft at 15 ft ft 89 98 psi 362 50 psi Maximum Shear * Allowable 916ft Shear 833 ft Camber Reactions LeftDL 256 k Right DL 2 56 k Total Load Laft Cantilever 0440 7916 431 36 in Deflection ft Length/Defl Right Cantilever Deflection Length/Defl 1 5 ©Left @ Right @ Left @ Center @ Right Max Max Dead Load 0 000 in 00 0 000 in 00 66 k 266 k 485k 484k 0 000 in 0364m 0 000 m 4 85k 4 84k Total Load 0 000 in 00 0 000 in 00 Rev 560100 General Timber Beam Page 2 Description B1 { Stress Calcs MMmtfv^'i&i*^^. _,. '...if^ms $» ij;.., Bending Analysis Ck 1 9 049 Le Cf 1 000 Rb. @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Query Values ~"*~ "~° 0000 ft 0000 26 25 k ft 000 k ft 000 k ft @ Left Support 661 k 18245 in2 362 50 psi 485 k 484 k M V & D @ Specified Locations @ Center Span Location = @ Right Cant Location = @ Left Cant Location = 000 ft 000 ft 000 ft ** Sxx 171500m3 Cl 0 000 Sxx Req d 86 89 in3 0 00 m3 0 00 in3 @ Right Support 660k 18214m2 362 50 psi Bearing Length Bearing Length Moment 000k ft 000k ft 000k ft Area 73 500 in2 Allowable fb 3 625 00 psi 3 625 00 psi 3 625 00 psi Reqd 1 421 in Reqd 1 419 in [* MS&rai&j&v ^,0. ™s> £$&$&&£&' 'Sffift!.^ ^ 1 Shear Deflection 4 85 k 0 0000 in 0 00 k 0 0000 in 0 00 k 0 0000 in Rev 560100 Description General Timber Beam Page 1 B1 5 General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name 6x10 Beam Width Beam Depth Member Type ~ — Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density Full Length Uniform Loads f$?£$8$M$i;$£?&'^,~ & *" ™ Center DL Left Cantilever DL Right Cantilever DL 5 500 in 9500m Sawn 1 250 Pin Pin 35 000 pcf Center Span Left Cantilever Right Cantilever ^Douglas Fir Larch Fb Base Allow Fv Allow Fc Allow E •^MSW •S&J84&S? 1 t /Jt*i'-$$$$f8g?*%t i :iM$f 15800#/ft LL #/ft LL #/ft LL 1250ft Lu ft Lu ft Lu No 1 - ~ 1 000 Opsi 95 Opsi 625 Opsi 1 700 0 ksi B& -» :. 21000 #/ft #/ft #/ft 000 ft 000 ft 000 ft - — — ~~ ~~ ~~ 1 Summary IL •• J Span= 12 50ft Beam Width Max Stress Ratio Maximum MomentAllowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 1 078 54 psi Fb 1 250 00 psi = 5 500m x Depth = 9 5m 0863 1 74 k ft 86 k ft 7 44 k ft at 0 00 k ft at 000 k ft 000 k ft 862 fv 60 1 1 psi Fv 118 75 psi Ends are Pin Pin Maximum Shear * 1 6250ft 12500 ft Reactions LeftDL Right DL Allowable Shear Camber 1 07 k 1 07 k 5 @ Left @ Right @ Left @ Center @ Right Max Max Beam Design OK 3 1 k 62k 238k 2 38k 0000 in 0211 in 0 000 m i 238k 238k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center @ Left @ Right Stress Calcs — f -f ^ — s .Jjp —7— Bending Analysis Ck 29 908 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Dead Load 0 140 in 6250ft 1 0687 Defl) 0211 m 0 000 in 0 000 in . , _. 0000 ft 0000 Max Moment 744 k ft 000 k ft 000 k ft @ Left Support 314 k 26 449 m2 11875 psi 238 k 238 k Total Load Left Cantilever 0313m Deflection 6 250 ft Length/Defl 47918 Right Cantilever Deflection Length/Defl , ~— , ^^JM ^f ^"" ' '" ^tgR C! Sxx 82 729 m3 Area Cl 0 000 Dead Load Total Load 0 000 in 0 000 in 00 00 0 000 in 0 000 inoo' oo F. . ._ . , : ^~^> 1 52 250 m2 Sxx Reg d Allowable fb 71 38 m3 0 00 m3 0 00 m3 @ Right Support 314k 26 449 in2 118 75 psi Bearing Length Req d Bearing Length Req d 1 250 00 psi 1 250 00 psi 1 250 00 psi 0 692 in 0 692 in "•"*"" General T,mber~Beam Description B1 5 Query Values ~( *.<*_ -^TTT- —?•£—: ' M V & D @ Specified Locations Moment Shear Deflection @ Center Span Location = 000ft OOOkft 238k 0 0000 in @ Right Cant Location = 000ft OOOkft 000k 0 0000 in @ Left Cant Location = ~ ' — 000ft OOOkft " 000k 0 0000 in Rev 560100 General Timber Beam Page 1 Description B2 General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name 6x8 Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density MMi" "'',._ ' 5 500 in 7 500 in Sawn 1 250 Pin Pin 35 000 pcf Center Span Left Cantilever Right Cantilever Douglas F r Larch Fb Base Allow Fv Allow Fc Allow E 1366ft ft ft No 1 1 0000 psi 950 psi 6250 psi 1 7000ksi Lu Lu Lu 000 ft 000 ft 000 ft Full Length Uniform Loads Center Left Cantilever Right Cantilever DL DL DL 30 00 #/ft #/ft #/ft LL LL LL 4000 #/ft #/ft #/ft 1- <!*»»»»»«»«! *> J»* 1 Summary j Span= 13 66ft Beam Width Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 434 40 psi Fb 1 250 00 psi = 5 500m x Depth = 7 5m 0348 1 1 9 kft 54 kft 1 87 k ft at 0 00 k ft at 000 k ft 000 k ft 537 fv 18 13 psi Fv 118 75 psi Ends are Pin Pin Maximum Shear* 1 6830ft 0000 ft Reactions Left DL Right DL Allowable Shear Camber 027 k 027 k 5 @ Left @ Right @ Left @ Center @ Right Max Max Beam Design OK 07 k 49k 055k 055k 0 000m 0 143m 0 000 m 055k 055k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center @ Left @ Right Stress Calcs Bending Analysis Ck 29 908 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction ™-^SW ::. i&&&. .ifDead Load 0 095 in 6830ft 1 7184 Defl ) 0 143 in 0 000 in 0 000 in , ~- *~ vxgps. •?» 0000ft 0000 Max Moment 1 87 k ft 000 k ft 000 kft @ Left Support 075 k 6 297 m2 113 75 psi 055 k 055 k Total Load Left Cantilever 0 191 in Deflection 6 830 ft Length/Defl 859 49 Right Cantilever Deflection Length/Deri Sxx 51 563 m3 Area Cl 0 000 Dead Load Total Load 0 000 in 0 000 in 00 00 0 000 m 0 000 in 00 00 -*. ""f* ~ -t •&,-«.£->.- 41 250 m2 Sxx Req d Allowable fb 1792 m3 000 m3 0 00 m3 @ Right Support 075 k 6 297 m2 11875 psi Bearing Length Req d Bearing Length Req d 1 250 00 psi 1 250 00 psi 1 250 00 psi 0 159 in 0 159 in Rev 5601°° General Timber Beam Page ? Description B2 , Query Values M V & D @ Specified Locations Moment Shear Deflection @ Center Span Location = 000ft OOOkft 055k 0 0000 in @ Right Cant Location = 000ft OOOkft 000k 0 0000 in @ Left Cant Location = 000ft OOOkft 000k 0 0000 in Rev 560100 Description B3 General Information L — _ ^t_3S>' mgmtiZ ™ -,M&™V — ^^^^ms^^. — K^—^ Section Name 6x8 Beam Width 5 500 in Beam Depth 7 500 in — — Member Type — — Sawn — Bm Wt Added to Loads Load Dur Factor 1 250 Beam End Fixity Pin Pin Wood Density 35000pcf Full Length Uniform Loads ite "-^fa v ' ' \ »/$& ' #- Center DL Left Cantilever DL Right Cantilever DL General Timber B< Calculations Center Span Left Cantilever Right Cantilever - - Douglas Fir Larch No Fb Base Allow Fv Allow Fc Allow E 30 00 #/ft LL #/ft LL #/ft LL sam Page ! are designed to 1997 NDS and 1997 UBC Requirements 1025ft Lu 000ft ft Lu 0 00 ft ft Lu 0 00 ft1 _ 1 000 Opsi 95 Opsi 625 Opsi 1 7000ksi iSSSSSST -A™ W&&&SBS ""• 4000 #/ft #/ft #/ft t Summary Span= 1025ft Beam Width Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 244 59 psi Fb 1 250 00 psi Deflections ; : — ™ .— ...,.,.-..,.,,,..„, = 5 500m x Depth = 7 5m 0 196 1 1 1 kft 54 kft 1 05 kft at 0 00 k ft at 000 k ft 000 k ft 537 fv 13 12 psi Fv 118 75 psi Ends are Pin Pin Maximum Shear * 1 5125ft 10250 ft Reactions LeftDL Right DL Allowable Shear Camber 021 k 021 k 5 @ Left @ Right @ Left @ Center @ Right Max Max Beam Design OK 05k 49k 041 k 041 k 0 000 in 0045m 0 000m 041k 041 k Center Span Deflection Location Length/Defl Camber ( using 1 5 @ Center @ Left @ Right Dead Load 0 030 in 5 125ft 40673 DL Defl) 0 045 in 0 000 in 0 000 in ___ — ~;s^~ — — . — - — 'ijaas11" Total Load Left Cantilever 0 060 in Deflection 5125ft Length/Defl 2 034 33 Rlght cantilever Deflection Length/Defl Dead Load Total Load 0 000 in 0 000 in 00 00 0 000 in 0 000 in 00 00 Stress Calcs Bending Analysis Ck 29 908 Cf 1 000 @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction i^jaastf^Cftt ..___«»!«• Le 0 000 ft Rb 0 000 Max Moment 1 05 kft 000 kft 000 kft @ Left Support 054 k 4 559 m2 11875 psi 041 k 041 k foosmir _ ..,,<„.,....... „****„! *mm*m «s*J» Sxx 51 563 m3 Area Cl 0 000 ~~^ *~ 'ws 1*B»™S'* 41 250 in2 Sxx Reg d Allowable fb 1009m3 1 0 00 m3 1 0 00 m3 1 @ Right Support 054 k 4 559 m2 11875 psi Bearing Length Req d Bearing Length Req d 250 00 psi 250 00 psi 250 00 psi 0 119 in 0 119 in Rev 560100 General Timber Beam Page 2 Description B3 Query Values M V & D @ Specified Locations @ Center Span Location = 0 00 ft @ Right Cant Location = 0 00 ft - @ Left Cant Location = - - 0 00 ft Moment 000k ft 000k ft 000k ft Shear 041 k 000k 000k Deflection 0 0000 in 0 0000 in 0 0000 in Rev 560100 General Timber Beam Page 1 Description B4 General Information — ^^ss^x— ^.^.^^^^^ffmmmm^^. j^f^f. Section Name 6x10 Beam Width Beam Depth _ Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density Vi «" "~ 5 500 in 9 500 in -Sawn - 1 250 Pin Pin 35000pcf Trapezoidal Loadsi —0v&$$£8&&SS'itif' -a 'f?fl$8& #1 DL @ Left DL @ Right *lf%'?" ^^£SXS^»i«»? • #/ft 32250 #/ft Calculations are designed to 1997 NDS and 1997 UBC Requirements [j ...t,%f!&* . '< ^^^^ ^ Center Span Left Cantilever Right Cantilever Douglas Fir Larch No Fb Base Allow Fv Allow Fc Allow E LL @ Left LL@ Right 17200 ^.^.^.......,^,,'%&%&&~&i,,. 1525ft ft ft 1 1 000 0 psi 95 0 psi 6250psi 1 700 0 ksi ., „. i'Tul #/ft Start #/ft End _ —ftX""-^ Lu Lu Lu sssi «.•••_ Loc Loc ^SSSS*^ ^ ™. ^.mm 000 ft 000 ft 000 ft 0000 ft 0000 ft - — r •3BP Summary Span= 1525ft Beam Width Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 1 122 39 psi Fb 1 250 00 psi = 5 500m x Depth = 9 5m Ends are Pin Pin Beam Design OK 0898 1 774k ft 000k ft 000 k ft 000 kft 862 fv Fv 77 kft 86 kft at at 64 53 psi 118 75 psi Maximum Shear * 1 8784ft 15250 ft Reactions LeftDL Right DL Allowable Shear Camber 092 k 1 74 k 5 ©Left @ Right ©Left @ Center @ Right Max Max 34 k 62 k 1 35k 261k 0 000 in 0476m 0 000 m 1 35k 261 k Deflections ! Mz.?Center Span Deflection Location Length/Defl Camber ( using 1 5 @ Center @ Left @ Right Stress Calcs Bending Analysis Ck 29 908 Cf 1 000 @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction -— '-^j - "(gg 'S^"""Z ^"^"""^ulu. " Dead Load 0317m 7869ft 5767 D L Defl ) 0 476 in 0 000 in 0 000 in t/fxm*?** \ Le 0 000 ft Rb 0 000 Max Moment 774 k ft 000 k ft 000 kft @ Left Support 200 k 16872 in2 11875 psi 1 35 k 261 k ; \ ^"^ II I I ... Total Load Left Cantilever 0 474 in Deflection 7 930 ft Length/Defl 385 85 Rlgnt cantilever Deflection Length/Defl "™~ '" *-—-«*-" Sxx 82 729 m3 Area Cl 0 000 Sxx Rea d 74 28 m3 0 00 m3 0 00 m3 @ Right Support 337k 28 395 m2 118 75 psi Bearing Length Req d Bearing Length Req d • -^-^-^- ; ; Dead Load Total Load 0 000 in 0 000 in 00 00 0 000 m 0 000 in 00 00 "~" 52 250 m2 Allowable fb 1 250 00 psi 1 250 00 psi 1 250 00 psi 0 394 in 0 759 in Rev 560100 General Timber Beam Page 2 Description B4 Query Values M V & D @ Specified Locations @ Center Span Location = @ Right Cant Location = - @ Left Cant Location = 000 ft 000 ft 000 ft Moment 000k ft 000k ft 000k ft Shear 1 35k 000k 000 k Deflection 0 0000 in 0 0000 in 0 0000 in 70 O r^ O 70 O O oarn1> Am ~0 I 0 \ g I /p.) I I I I Project Buena Vista Apartments FLC# 04138 TYPICAL HEADER SCHEDULE FUCRESLLJ1MD C D N S U LTAN" Uniformly Distributed Load 180W(Live) = W(Dead)= T64PLF Roof Header(R) or Floor Header(F) Floor Load Duration Cd=1 00 W(Total) =344 PLF SPAN (ft) M(reqd) (kip-ft) V(reqd) (tap) l(reqd) (inM) Mm Size (in) M(mm) (kip-ft) V(min) (kip) I (mm) (mA4) Governing Factor Max Stress Ratio 3 4 5 6 7 8 g 10 11 12 13 14 15 387 688 1075 1548 2107 2752 3483 4300 5203 6192 7267 8428 9675 516 688 860 1032 1204 1376 1548 1720 1892 2064 2236 2408 2580 26 62 121 209 332 495 705 968 1288 1672 2126 2655 3265 ^4x4,i 6x6 "4x4 6x6 4x6 * 6x6 4x6 " 6x6 '4x8 6x6 "4x8 6x6 4x10 6x8 4x10^ 6x8 •4x12 :; 6x10 \4x12.i 6x12 4x14 ^ 6x12 4x14 , 6x12 4x16 6x12 «, 893 2773 893 2773 1912 2773 1912 2773 3322 2773 '- 3322 2773 4991 5156 «i4991 — 5156 -^6768 6887 6768 10090 - , 8533 10090 8533 10090 11308 10090 ,776 i 1714 * 5-776 1714 ""/I220 -•" 1714 ,1220 ,- 1714 J1608 Jf 1714 1608 „, 1714 2052 , 2336 » 2052 *J 2336 - 2495 - 1962 2495 3586 2939 3586 2939 3586 3382 3586 125^ 730 125- 730 485 730 485 730 111 1 730 111 1 730 2308" 1930 2308 1930 4153 3930 4153 6970 6785 6970 6785 6970 10344 6970 V V ,. v V - 'V V _ V V i , V M 1" V M V M f'^M M M V M M ^M M M M M M ! 0 66 J 030 < 089 040 070 050 ^085 060 075 076 086 099 075 068 f§0<*86t*<i 083 077 096 091 061 085 072 099 084 086 096 FHr B(m) 35 35 35 35 35 35 35 B 55 55 55 55 55 55 55 D(m) 35 55 725 925 1125 1325 1525 D 55 75 95 11 5 135 155 175 M(ft-lb) 893 1912 3322 4991 6768 8533 11308 M 2773 5156 6887 10090 18480 23993 30188 V(lbs) 776 1220 1608 2052 2495 2939 3382 V 1714 2336 1962 3586 4210 4833 5457 l(inA4) 13 49 111 231 415 678 1034 I 73 193 393 697 1128 1707 2456 4x MOMENT 0 433371 0 770437 0 562238 0 809623 0 634256 0 828417 0 697856 0861551 0 768765 0 914894 0 851635 0 987695 0 855589 4x SHEAR 0 664948 0 886598 0704918 0 845902 0 748756 0 855721 0 754386 0 838207 0758317 0 827255 0 760803 0819326 0 762862 4x INERTIA 0 208893 0495154 0 249222 0 430655 0 298569 0 445677 0 305539 0419121 0310088 0 402578 031329 0391292 0315666 6x M 013956 0248107 0 387667 0 55824 0 759827 0 992427 0 675524 0 83398 0 755481 0613677 0720218 0 835282 0 95887 6x V .0301 05_ 04014 050175 06021 0 70245 08028 0 662671 0 736301 0 964322 0 575572 0 623536 06715 0 719465 6x I 0 035784_ 0 084822 0 165668 0 286274 0 454592 0 678575 0 365444 0 501295 0 32767 0 239862 0 304964 0 380892 0 468481 B(m) 35 35 35 35 35 35 35 B 55 55 55 55 55 55 55 D(m) 35 55 725 925 11 25 1325 1525 D 55 75 95 11 5 135 155 175 1 M(ft-lb) 893 1912 3322 4991 6768 8533 11308 M 2773 5156 6887 10090 18480 23993 30188 V(lbs) 776 1220 1608 2052 2495 2939 3382 V 1714 2336 1962 3586 4210 4833 5457 l(mA4) 13 49 111 231 415 678 1,034 I 73 193 393 697 1128 1707 2456 B(m) 35 35 35 35 35 35 35 B 55 55 55 55 55_ D(m) 35 55 725 925 1125 1325 1525 D 95 11 5 135 155 175 1 25 M(ft-lb) 1117 2390 4152 6239 8460 10667 14135 M 8609 12612 23099 29991 37735 V(lbs) 970 1525 2010 2565 3119 3674 4228 V 3703 4482 5262 6042 6821 l(inM) 13 49 111 231 415 678 1 034 I 393 697 1128 1707 2456 *-j i - typical floor Jcist page i "ersifn'11?3 THIS PRODUCT WEEJS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED E -20 Product DIKJI ii si !& roiic«|rtu tl LOADS Analysis is for u Joist Member Primary Load Group - Residential - Living Areas (psf) 40 0 Live at 100 % duration 26 0 Dead SUPPORTS 1 Stud wall 2 Stud wall Input Bearing Vertical Reactions (Ibs) Width Length Live/Dead/Uplift/Total 3 50 2 25 533 / 347 / 0 / 880 3 50 2 25 533 / 347 / 0 / 880 Detail Other A3 Rim Board 1 Ply 1 1/4 x 14 0 8E TJ-Strand Rim Board® A3 Rim Board 1 Ply 1 1/4 x 14 0 8E TJ-Strand Rim Board® Shear (Ibs) Vertical Reac*ion (Ibs) Moment (Ft LLo, Live Load Defl (in) Total Load Defl (in) TJPro Maximum 862 862 4219 Design 854 862 4219 0359 0592 38 Control 1945 1157 4755 0490 0979 30 Control Passed (44%) Passed (74%) Passed (39%) Passed (L/655) Passed (L/397) Passed See TJ SPECIFIERS/BUILDERS GUIDE for detail(s) A3 Rim Board DESIGN CONTROLS Location Rt end Span 1 under Floor loading Bearing 2 under Floor loading MID Span 1 under Floor loading MID Span 1 under Floor loading MID Span 1 under Floor loading Span 1 Deflection Criteria STANDARD(LL L/480 TL L/240) Deflection analysis is based on composite action with single layer of 19/32 Panels (20 Span Rating) GLUED & NAILED wood decking Bracmg(Lu) All compression edges (top and bottom) must be braced at 2 8 o/c unless detailed otherwise Proper attachment and positioning of lateral bracing is required to achieve member stability TJ Pro RATING SYSTEM -The TJ Pro Rating System value provides additional floor performance information and is based on a GLUED & NAILED 19/32 Panels (20 Span Rating) decking The controlling span is supported by walls Additional considerations for this rating include Ceiling None A structural analysis of the deck has not been performed by the program Comparison Value 1 53 ADDITIONAL NOTES IMPORTANT' The analysis presented is output from software developed by Trus Joist (TJ) TJ warrants the sizing of its products by this software will be accomplished in accordance with TJ product design criteria and code accepted design values The specific product application input design loads and stated dimensions have been provided by the software user This output has not been reviewed by a TJ Associate -Not all products are readily available Check with your supplier or TJ technical representative for product availability THIS ANALYSIS FOR TRUS JOIST PRODUCTS ONLY' PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS -Allowable Stress Design methodology was used for Building Code UBC analyzing the TJ Distribution product listed above PROJECT INFORMATION Buena Vista 04138 OPERATOR INFORMATION Copyright O 2003 by Trus Joist a Weyerhaeuser Business TJI^ and TJ-Beamih) are registered trademarks of Trus Joist e I Joist™ Pro1** and TJ-Pro™ are trademarks of Trus Joist FJ-1 Typical Floor Joist ?v <jrpi! ->f > T~ 3 THIS PRODUCT SHEETS OR EXCEEDS THE SET CO^ROLS FOR THE APPLICATION AND LOADS LISTED Load Group Primary Load Group " 19 7 00 Max Vertical Reaction Total (Ibs) 880 880 Max Vertical Reaction Live (Ibs) 533 533 Selected Bearing Length (in) 2 25(W) 2 25 (W) Max Unbraced Length (in) 32 Loading on all spans LDF = 0 90 10 Dead Design Shear (Ibs) 337 -337 - -- Max Shear (Ibs) 339 -339 Member Reaction (Ibs) 339 339 Support Reaction (Ibs) 347 347 Moment (Ft-Lbs) 1662 Loading on all spans LDF = I 00 10 Dead +10 Floor Design Shear (Ibs) 854 -854 Max Shear (Ibs) 862 -862 Member Reaction (Ibs) 862 862 Support Reaction (Ibs) 880 880 Moment (Ft-Lbs) 4219 Live Deflection (in) 0 359 Total Deflection (in) 0 592 PROJECT INFORMATION OPERATOR INFORMATION Buena Vista 04138 o TJI© >* f)h j j -1 ypicdl 1 i 7/6 1 ei i dee 11 7/8" TJE© SCO @ "2" e/cvuhaLUSU Rusin A TJ Beam(TM) 6 10 Serial Number 7002115381 tO.! wJiS 'f,™ THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AMD LOADS LISTED Piocluc* Bi yi im :s Conieptutl LOADS Analysis is for a Joist Member Primary Load Group - Residential Exterior Balconies (psf) 60 0 Live at 100 % duration 34 0 Dead SUPPORTS 1 Stud wall 2 Stud wall Input Bearing Vertical Reactions (Ibs) Width Length Live/Dead/Uplift/Total 3 50 2 25 624 / 354 / 0 / 978 3 50 2 25 624 / 354 / 0 / 978 Detail Other A3 Rim Board 1 Ply 11/4 x 11 7/8 0 BE TJ Strand Rim Board® A3 Rim Board 1 Ply 11/4 x 11 7/8 0 8E TJ Strand Rim Board® Shear (Ibs) Vertical Reaction (Ibs) Moment (Ft Lbs) Live Load Defl (in) Total Load Defl (in) TJPro Maximum 958 958 4882 Design 950 958 4882 0380 0595 46 Control 2050 1396 9500 0510 1 019 30 Control Passed (46%) Passed (69%) Passed (51%) Passed (L/644) Passed (L/411) Passed See TJ SPECIFIERS /BUILDERS GUIDE for detail(s) A3 Rim Board DESIGN CONTROLS Location Rt end Span 1 under Floor loading Bearing 2 under F'oor loading MID Span 1 under Floor loading MID Span 1 under Floor loading MID Span 1 under Floor loading Span 1 Deflection Criteria STANDARD(LL L/480 TL L/240) Deflection analysis is based on composite action with single layer of 19/32 Panels (20 Span Rating) GLUED & NAILED wood decking Bracmg(Lu) All compression edges (top and bottom) must be braced at 2 8 o/c unless detailed otherwise Proper attachment and positioning of lateral bracing is required to achieve member stability TJ-Pro RATING SYSTEM The TJ-Pro Rating System value provides additional floor performance information and is based on a GLUED & NAILED 19/32 Panels (20 Span Rating) decking The controlling span is supported by walls Additional considerations for this rating include Ceiling None A structural analysis of the deck has not been performed by the program Comparison Value 2 76 ADDITIONAL NOTES IMPORTANT! The analysis presented is output from software developed by Trus Joist (TJ) TJ warrants the sizing of its products by this software will be accomplished in accordance with TJ product design criteria and code accepted design values The specific product application input design loads and stated dimensions have been provided by the software user This output has not been reviewed by a TJ Associate Not all products are readily available Check with your supplier or TJ technical representative for product availability THIS ANALYSIS FOR TRUS JOIST PRODUCTS ONLY! PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS Allowable Stress Design methodology was used for Building Code UBC analyzing the TJ Distribution product listed above PROJECT INFORMATION Buena Vista-04138 OPERATOR INFORMATION Copyright © 2003 by Trus Joist a Weyerhaeuser Business TJICD and TJ-BeanKS are registered trademarks of Trus Joist e I Joist™ Pro™ and TJ Pro™ are trademarks of Trus Joist C \Documents and Settings\kfagan\Desktop\BUENA VISTA\CALCS\CALCS\FJ-1 sms hj 3 Typlcal 1 1 7/8 1 e'race Joist 1 1 7/8" TJS® _5f?0 @ 1 2" o'c THSS PRODUCT SHEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED Load Group Primary Load Group " 20 4 60 Max Vertical Reaction Total (Ibs) 978 978 Max Vertical Reaction Live (Ibs) 624 694 Selected Bearing Length (in) 2 25(W) ? 25 (W) Max Unbraced Length (in) 32 Loading on all spans LDF = 0 90 10 Dead -Design Shear (las) ~ _ __ - _ 344 _344 - Max Shear (Ibs) 347 -347 Member Reaction (Ibs) 347 347 Support Reaction (Ibs) 354 354 Moment (Ft-Lbs) 1766 Loading on all spans LDF = 1 00 10 Dead +10 Floor Design Shear (Ibs) 950 -950 Max Shear (Ibs) 958 -958 Member Reaction (Ibs) 958 958 Support Reaction (Ibs) 978 978 Moment (Ft-Lbs) 4882 Live Deflection (in) 0 380 Total Deflection (in) 0 595 PROJECT INFORMATION OPERATOR INFORMATION Buena Vista-04138 Copyright O 2003 by Trus Joist a Weyerhaeuser Business TJI© and TJ-Beam® are registered trademarks of Trus Joist e-I Joist™ Pro™ and TJ-Pro™ are trademarks of Trus Joist C \Documents and SettingsVkfagan\Desktop\BUENA VISTA\CALCS\CALCS\FJ-1 sms #tfe&r ^\^ y rha user Bu in ss »3 $TJ Beam(W) " 0 "on i Nu nbc 700211^381 u,er 1 1/9/2005n 03ISAM TH!S pRODUCT jyjEETS QR EXCEEDS THE SET DESIGN Typical 14 Terrace Joist J'®360@12"ofc Eers,oniio3 CONTROLS FOR THE APPLICATION AND LOADS LISTED -:o oss PP oditct !>i <Conceptml LOADS Analysis is for a Joist Member Primary Load Group - Residential - Exterior Balconies (psf) 60 0 Live at 100 % duration 34 0 Dead SUPPORTS 1 Stud wall 2 Stud wall Input Bearing Vertical Reactions (Ibs) Width Length Live/Dead/Uphft/Total 3 50 2 25 624 / 354 / 0 / 978 3 50 225 624 / 354 / 0 / 978 Detail Other A3 Rim Board 1 Ply 1 1/4 x 14 0 8E TJ-Strand Rim Board® A3 Rim Board 1 Ply 1 1/4 x 14 0 8E TJ-Strand Rim Board® Shear (Ibs) Vertical Reaction (Ibs) Moment (Ft Lbs) Live Load Defl (in) Total Load Defl (in) TJPro Maximum 958 958 4882 Design 950 958 4882 0382 0598 46 Control 1955 1202 7335 0510 1 019 30 Control Passed (49%) Passed (80%) Passed (67%) Passed (L/640) Passed (L/409) Passed See TJ SPECIFIERS/BUILDERS GUIDE for detail(s) A3 Rim Board DESIGN CONTROLS Location Rt end Span 1 under Floor loading Bearing 2 under Floor loading MID Span 1 under floor loading MID Span 1 under Floor loading MID Span 1 under Floor loading Span 1 -Deflection Criteria STANDARD(LL L/480 TL L/240) -Deflection analysis is based on composite action with single layer of 19/32 Panels (20 Span Rating) GLUED & NAILED wood decking -Bracing(Lu) All compression edges (top and bottom) must be braced at 2 8 o/c unless detailed otherwise Proper attachment arid positioning of lateral bracing is required to achieve member stability TJ-Pro RATING SYSTEM -The TJ-Pro Rating System value provides additional floor performance information and is based on a GLUED & NAILED 19/32 Panels (20 Span Rating) decking The controlling span is supported by walls Additional considerations for this rating include Ceiling None A structural analysis of the deck has not been performed by the program Comparison Value 219 ADDITIONAL NOTES -IMPORTANT^ The analysis presented is output from software developed by Trus Joist (TJ) TJ warrants the sizing of its products by this software will be accomplished in accordance with TJ product design criteria and code accepted design values The specific product application input design loads and stated dimensions have been provided by the software user This output has not been reviewed by a TJ Associate Not all products are readily available Check with your supplier or TJ technical representative for product availability THIS ANALYSIS FOR TRUS JOIST PRODUCTS ONLY' PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS -Allowable Stress Design methodology was used for Building Code UBC analyzing the TJ Distribution product listed above PROJECT INFORMATION Buena Vista-04138 OPERATOR INFORMATION Copyright © 2003 by Trus Joist a Weyerhaeuser Business TJI© and TJ-Beam® are registered trademarks of Trus Joist e-I Joist™ Pro™ and TJ-Pro"1 ace trademarks of Trus Joist C \Documents and Settings\kfagan\Desktop\BU£NA VISTA\CALCS\CALCS\FJ-2 sms TJ 2 Typoal14 Terrace Joist _- iu.r BUMI v. 4 an -g- Jl/p, *»£fj /5=v ,1911 _l_ t \\ ™ » . 4 an -g- Jl/p, *»£fj /5=v ,1911 _l_ TJBeam(TM) 6 10 Serial Number 7002115381 '* ! «" ™ •* IS I A CTC P^2 "vellonVrs THJS PRODUCT MEETS OR EXCEEDS THE SET DES5GN CONTROLS FOR THE APPLICATION AND LOADS LISTED Load Group Primary Load Group A 20 4 60 Max Vertical Reaction Total (Ibs) 978 978 Max Vertical Reaction Live (Ibs) 624 624 Selected Bearing Length (in) 2 2S'U) 2 25(W) Max Unbraced Length (in) 32 Loading on all spans LDF = 0 90 10 Dead Design Shear (Ibs) -- 44- -344 - - Max Shear (Ibs) ji7 -347 Member Reaction (Ibs) 347 347 Support Reaction (Ibs) 35" 354 Moment (Ft-Lbs) 1766 Loading on all spans LDF = 1 00 10 Dead +10 Floor Design Shear (Ibs) 950 -950 Max Shear (Ibs) 958 -958 Member Reaction (Ibs) 958 958 Support Reaction (Ibs) 978 978 Moment (Ft-Lbs) 4882 Live Deflection (in) 0 382 Total Deflection (in) 0 598 PROJECT INFORMATION OPERATOR INFORMATION Buena Vista 04138 Copyright © 2003 by Trus Joist a Weyerhaeuser Business TJIft) and TJ-Beam® are registered trademarks of Trus Joist e-I Joist™ Pro" and TJ-Pro™ are trademarks of Trus Joist C \Docuroents and Settings\kfagan\Desktop\BUENA VISTA\CALCS\CALCS\FJ-2 sms Rev 560100 General Timber Beam Page 1 Descr ption B5 General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density 35x95 3 500 in 9 500 in Sawn 1 000 Pin Pin 35 000 pcf Center Span Left Cantilever Right Cantilever Truss Joist MacMillan Fb Base Allow Fv Allow Fc Allow E 16 20ft ft ft Parallam 2 OE 2 9000 psi 290 0 psi 650 Opsi 2 000 0 ksi Lu Lu Lu 000 ft 000 ft 000 ft 1 Full Length Uniform Loads1 •— — ^ " Center Left Cantilever Right Cantilever #1 DL @ Left DL @ Right DL DL DL """ ^^ #/ft #/ft 10400#/ft #/ft #/ft LL @ Left LL @ Right LL LL LL 18600 #/ft 1200 #/ft #/ft #/ft #/ft Start End ^ "^\&8*&,* Loc Loc &$ 0 0 000 000 """ "^ *• ftft Deflections Summary Span= 16 20ft Bearr Max Stress Ratic i Width = 3 500m ) X Depth = 9 5in 0784 1 Maximum Moment Max Max Max Max Max fb Fb Allowable Positive Moment 9 98 k Negative Moment 0 00 k @ Left Support @ Right Support M allow 000 000 1272 k k ft ft ft ft 2 273 77 psi fv 2 900 00 psi Fv 100 k ft 127 k ft at at 100 98 psi 290 00 psi Ends are Pin Pin Beam Design OK Maximum Shear * 8 100ft 16200 ft Reactions LeftDL Right DL Allowable Shear Camber 091 K 091 k 1 5 @ Left @ Right @ Left @ Center @ Right Max Max 34 k 96 k 245k (248k 0000 in 0521m 0 000 m 245k 248k Center Span Deflection Location Length/Defl Camber ( using 1 5 @ Center @ Left @ Right Dead Load 0 347 in 8100ft 5598 D L Defl ) 0 521 in 0 000 in 0 000 in Total Load Left Cantilever 0 942 in Deflection 8100ft Length/Defl 206 33 R|ght cantilever Deflection Length/Defi Dead Load Total Load 0 000 in 0 000 in 00 00 0 000 in 0 000 in 00 00 Stress Calcs [ Bending Analysis Ck 21 298 Cf 1 000 @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Le 0 000 ft Rb 0 000 Max Moment 998 k ft 000 k ft 000 k ft @ Left Support 3 32 k 1 1 456 m2 290 00 psi 245 k 248 k """"""*" Sxx 52 646 in3 Area 33 250 in2 Cl 0 000 Sxx Rea d 41 28 in3 0 00 in3 0 00 m3 @ Right Support 336k 11 578 in2 290 00 psi Bearing Length Reqd Bearing Length Req d Allowable fb 2 900 00 psi 2 900 00 psi 2 900 00 psi 1 076 in 1 090 m FI3 Rev 560100 General Timber Beam Page 2 Description B5 Query Values Nl V & D @ Specified Locations @ Center Span Location = @ Right Cant Location = @ Left Cant Location = 000 ft 000 ft 000 ft - Moment 000k ft 000k ft 000k ft Shear 245k 000 k - 000 k Deflection 0 0000 in 0 0000 in - 0 0000 in Flf Rev 560100 General Timber Beam Page 1 Description B6 General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density 525x11 875 5250m 11 875 in Sawn 1 000 Pin Pin 35 000 pcf Center Span Left Cantilever Right Cantilever Truss Joist MacMillan Fb Base Allow Fv Allow Fc Allow E 1250ft Lu 000ft ft Lu 0 00 ft ft Lu 0 00 ft Parallam 2 OE ' 2 900 Opsi 2900 psi 650 0 psi 20000ksi Full Length Uniform Loads I Center Left Cantilever Right Cantilever 'f *?"%$£&•* m*^ DL DL DL 260 00 #/ft LL #/ft LL #/ft LL 400 00 #/ft #/ft #/ft Point Loads Dead Load 2 943 0 Ibs Live Load 575 0 Ibs distance 6250ft ? ^ <^a ^liiilik™ /^ | ij Summary \ •txg ^, *•»"" -™K- ".-ssffi ~s } Span= 12 50ft Beam Width = 5 Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 2 351 63 psi Fb 2 900 00 psi **™«* " ^ ^ ' , , „ ss^ff , Ibs Ibs Ibs Ibs 0000ft 0000ft Ibs Ibs Ibs Ibs Ibs Ibs Ibs Ibs0000ft 0000ft 0000ft 0000ft Beampesign OK 250m x Depth = 11 875m Ends are Pin Pin 0811 1 242 k ft 298 k ft 24 18k ft at 6250 0 00 k ft at 0 000 000 k ft 000 kft Maximum Shear Allowable ft Shear ft Camber 29 82 Reactions fv 128 42 psi Fv 290 00 psi Left DL 319k Right DL 319k *1 5 ©Left @ Right @ Left @ Center @ Right Max Max 80k 18 1 k 598k 598k 0000m 0367m 0 000 m 5 98k 598K Deflections Center Span Dead Deflection 0 Location 6 Load Total Load 244 in 0 422 in 250 ft 6 250 ft Length/Defl 6138 35552 Camber ( using 1 5 * D L Defl ) @ Center 0 @ Left 0 @ Right 0 367 in 000 in 000 in Left Cantilever Deflection Length/Defl Right Cantilever Deflection Length/Defl Dead Load 0 000 in 00 0 000 in 00 Total Load 0 000 in 00 1 0 000 in 00 Rev 560100 Description B6 General Timber Beam mim^&&&*~~~~« ^. .-*«,«.*• -~ ' „,, Page 2 ll ' Stress Calcs | Bending Analysis Ck 21 298 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Query Values 0000 ft 0000 Max Moment 24 18 k ft 000 k ft 000 k ft @ Left Support 801 k 27 607 m2 290 00 psi 598 k 598 k M V & D @ Specified Locations @ Center Span Location = 0 00 @ Right Cant Location = 0 00 @ Left Cant Location = 0 00 Sxx 123389in3 Cl 0 000 Sxx Req d 10006 m3 000m3 0 00 m3 @ Right Support 801 k 27 607 m2 290 00 psi Bearing Length Req d Bearing Length Req d Moment ft 000k ft ft 0 00 k ft ft 000k ft Area 62 344 m2 Allowable fb 2 900 00 psi 2 900 00 psi 2 900 00 psi 1 752 in 1 752 in Shear 598k 000 k 000 k 1 I rDeflectioni0 0000 in 0 0000 in 0 0000 in " Rev 560100 General Timber Beam Page 1 Description B7g General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density 35x140 3500m 14000m Sawn 1 000 Pin Pin 35000pcf Center Span 1500ft Left Cantilever ft Right Cantilever ft Truss Joist MacMillan Parallam 2 OE Fb Base Allow 2 9000 psi Fv Allow 290 0 psi Fc Allow 6500 psi E 20000ksi Lu Lu Lu 000 ft 000 ft 000 ft t Full Length Uniform Loads Center Left Cantilever Right Cantilever Trapezoidal Loads #1 DL @ Left DL @ Right DL DL DL 150 150 12400#/ft #/ft #/ft 00 #/ft LL @ Left 00 #/ft LL @ Right %$&£,. LL LL LL -«*•, 22000 #/ft #/ft #/ft #/ft #/ft Start Loc 0 000 ft End Loc 15000 ft Summary Span= 15 00ft Beam Width = Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 1 493 39 psi Fb 2 900 00 psi 3 500m x Depth = 14 in 0515 1 142 k ft 276 kft 14 23k ft at 000 kft at 000 kft 000 k ft 2763 fv 98 50 psi Fv 290 00 psi Ends are Pin Pin Maximum Shear * 1 Allowable 7500ft 15000 ft Reactions Left DL Right DL Shear Camber 2 14 k 2 14 k 5 @ Left @ Right @ Left @ Center @ Right Max Max Beam Design OK 48k 142 k 379k 379k b 000 in 0305m 0 000 m 379k 379k Deflections Center Span Deflection Location Length/Defl Camber ( using 15 D L @ Center ©Left @ Right Stress Calcs Bending Analysis Ck 21 298 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Dead Load 0 203 in 7500ft 8847 Defl ) 0 305 in 0 000 in 0 000 in 0000ft 0000 Max Moment 1423 k ft 000 kft 000 k ft @ Left Support 483 k 16643 m2 290 00 psi 379 k 379 k Total Load Left Cantilever Dead Load Total Load 0 360 in Deflection 0 000 m 0 000 in 7 500 ft Length/Defl 00 00 499 99 R|ght cantilever Deflection 0 000 m 0 000 in Length/Defl 00 00 Sxx 114333m3 Area 49 000 m2 Cl 0 000 Sxx Req d Allowable fb 58 88 m3 2 900 00 psi , 0 00 m3 2 900 00 psi 0 00 m3 2 900 00 psi @ Right Support 483k 16643m2 290 00 psi ' Bearing Length Reqd 1 668 in Bearing Length Reqd 1 668 m Rev 560100 ' pGeneral Timber Beam Page I Description B7g _ Query Values M V & D @ Specified Locations Moment Shear Deflection @ Center Span Location = 000ft OOOkft 379k 0 0000 in @ Right Cant Location = 000ft OOOkft 000k 0 0000 in @ Left Cant Location = 000ft OOOkft 000k 0 0000 in r Rev 560 00 General Timber Beam Page 1 Description B7e General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density •JMWfr^MiiJX.^ ~.~~ 5 25x14 0 5250m 14000m _ Sawn 1 330 Pin Pin 35000pcf Center Span 1500ft Left Cantilever ft Right Cantilever ft Truss Joist MacMillan Parallam 2 OE Fb Base Allow 29000psi Fv Allow 2900psi Fc Allow 650 0 psi E 20000ksi Lu Lu Lu 000 ft 000 ft 000 ft i Full Length Uniform Loads i v ' *•*• Center Left Cantilever Right Cantilever i Trapezoidal Loads #1 DL @ Left DL @ Right ! Point Loads Dead Load 4 620 0 Live Load distance 6 250 | -gp* - - - ~|ij|f5, 2JS1SS DL DL DL 150 150 Ibs Ibs ft 12400#/ft LL #/ft LL #/ft LL 00 #/ft LL @ Left 00 #/ft LL @ Right Ibs Ibs Ibs Ibs 0 000 ft 0 000 ft 22000 #/ft #/ft Ibs Ibs 0000ft #/ft #/ft #/ft Start Loc End Loc Ibs Ibs 0000ft 0000 ft 0000 ft Ibs Ibs Ibs Ibs 0000ft 0000ft i j | Beam Design OK Span= 15 00ft Beam Width = 5 250m x Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 2 155 57 psi FD 3 857 00 psi 3081 k 000k 000 k 000 k 5512 fv Fv Depth = 14 in Ends are Pin Pin 0559 1 308 k ft 55 1 kft ft at 6 ft at 0 ft ft 121 44 psi 385 70 psi Maximum Shear * Allowable 240 ft Shear 000 ft Camber Reactions Left DL 4 88 k Right DL 411k 1 5 @ Left @ Right ©Left @ Center @ Right Max Max 89ki 283 k 653k 576k 0 000 in 0545m 0 000m 6 53k 576k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center ©Left @ Right Dead Load 0 364 in 7260ft 4952 Defl ) 0 545 in 0 000 in 0 000 in Total Loac 0468 7320 38479 Left Cantilever in Deflection ft Length/Defl Right Cantilever Deflection Length/Defl Dead Load 0 000 in 00 0 000 in 00 Total Load 0 000 in 00 0 000 in I 00 Rev 560100 General Timber Beam Page 2 Description B7e ] Stress Calcs m$m**~ *. *&Mx~*x, ,~-^M&^ ™ xmg&s: Bending Analysis Ck 18468 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Query Values 0000ft 0000 Max Moment 30 81 k ft 000 k ft 000 k ft @ Left Support 893 k 23 142 m2 385 70 psi 653 k 576 k i. -iijj?*.™ ^ ' # ,7*% •*%&> 6' i&r**£ M V & D @ Specified Locations @ Center Span Location = @ Right Cant Location = @ Left Cant Location = 000 ft 000 ft 000 ft Sxx 171 500 m3 Cl 0 000 Sxx Req d 95 85 in3 0 00 m3 0 00 m3 @ Right Support 777 k 20 147 m2 385 70 psi Bearing Length Bearing Length Moment 000k ft 000k ft 000k ft Area 73 500 m2 Allowable fb 3 857 00 psi 3 857 00 psi 3 857 00 psi ii Reqd 1 915 in Reqd 1 689 in -UM&S*^ ~- rff&ifrWt' vi "NX. -mSifew ' -^ ' i <v, ''M' Shear Deflection 6 53 k 0 0000 in 0 00 k 0 0000 in 0 00 k 0 0000 in P F Rev 560100 General Timber Beam Page 1 Description B8g | General Information Section Name Beam Width Beam Depth Member Type Bm Wt Added to Load Dur Factor Beam End Fixity Wood Density Prllm Loads 5 25x9 5 5 250 in 9 500 in Sawn 1 000 Pin Pin 35 000 pcf Calculations Center Span Left Cantilever Right Cantilever Truss Joist MacMillan Fb Base Allow Fv Allow Fc Allow E are designed 950ft ft ft Parallam 2 OE 2 900 0 psi 290 Opsi 6500 psi 2 000 0 ksi to 1997 NDS and Lu Lu Lu 1997 UBC 0 0 0 00 00 00 ft ft ft Requirements I Full Length Uniform Loads Center Left Cantilever Right Cantilever DL DL DL 70 00 #/ft #/ft #/ft LL LL LL 121 00 #/ft #/ft #/ft Trapezoidal Loads #1 DL@ Left 150 DL@ Right 150 ^^^ * -i^ -*"* & ~^> ]Summary I] Span- 9 50ft Beam Width = 5 Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 458 47 psi Fb 2 900 00 psi ;~< "*«"" 00 #/ft 00 #/ft 1 :****•* . LL @ Left LL @ Right #/ft Start #/ft End Loc 0 Loc 4 250m x Depth = 9 5m Ends are Pin Pin 302k 000k 000 k 000 k 1908 fv Fv 0158 1 30 k ft 19 1 k ft ft at 4 ft at 0 ft ft 35 83 psi 290 00 psi Maximum Shear * 1 5 142ft 000 ft Reactions LeftDL Right DL Allowable Shear Camber 088 k 053k @ Left @ Right @ Left @ Center @ Right Max Max 000 ft 250 ft Beam Design OK 1 8 k 145 k 1 46k1 1 11 k 0 000 in 0053m 0000 m 1 46k i1 11 k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 @ Center ©Left @ Right Stress Calcs Bending Analysis Ck 21 298 Cf 1 000 @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Dead Load 0 035 in 4 560ft 3221 6 D L Defl ) 0 053 in 0 000 in 0 000 in Le 0 000 ft Rb 0 000 Max Moment 302 k ft 000 k ft 000 k ft @ Left Support 1 79 k 6162 m2 290 00 psi 1 46 k 1 11 k f otal Load Left Cantilever 0 065 in Deflection 4 636 ft Length/Defl 175626 Right Cantilever Deflection Length/Defl Sxx 78 969 m3 Are Cl 0 000 Sxx Reg d 1248 m3 0 00 m3 0 00 m3 @ Right Support 1 43 k 4 930 m2 290 00 psi Bearing Length Req d Bearing Length Req d Dead Load Total Load 0 000 in 0 000 in 00 00 i 0 000 in 0 000 in 00 00 , i a 49 875 m2 Allowable fb 2 900 00 psi 2 900 00 psi 2 900 00 psi 0 428 in 0 325 in Rev D60100 General Timber Beam Page 2 Description B8g Query Values M V 8. D @ Specified Locations Moment @ Center Span Location = 000ft 000k ft @ Right Cant Location = 000ft 000k ft @ Left Cant Location = 0 00 ft 0 00 k ft Shear 1 46 k 000k 000 k Defection 0 0000 in 0 0000 in 0 0000 in Rev 560100 General Timber Beam Page 1 Description B8e General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements K8&u,.v. Fulli ,.. — jji^m, jusasiamni* Section Name Prllm 3 5x9 5 Beam Width 3 500 in Beam Depth 9 500 in Member Type Sawn Bm Wt Added to Loads Load Dur Factor 1 330 Beam End Fixity Pin Pin Wood Density 35 000 pcf Length Uniform Loads # **&Mv '%tf« s Center DL Left Cantilever DL Right Cantilever DL ,..,....,..,....tiiat,. .- ™aa „, „ . Center Span Left Cantilever Right Cantilever Truss Joist MacMillan Fb Base Allow Fv Allow Fc Allow E h^ f'' ?Z' i& „, 70 00 #/ft LL #/ft LL #/ft LL i950ft Lu 000ft ft Lu 0 00 ft ft Lu 0 00 ft Parallam 2 OE 2 900 0 psi 290 Opsi 650 Opsi 2 000 0 ksi •S^l*^ »,"£'%& 121 00 #/ft #/ft #/ft j Trapezoidal Loads #1 DL@Left 15000 #/ft LL DL@ Right 15000 #/ft LL ( Point Loads ""Dead Load Live Load distance 46200lbs Ibs 4250ft Ibs Ibs 0000ft @Left 5) Right Ibs Ibs 0000ft #/ft #/ft Ibs Ibs 0 000 ft Start Loc End Loc ,__ Ibs 0000ft 0000 ft 4250 ft Ibs Ibs 0000ft Ibs Ibs 0000ft Summary Span= 9 50ft Beam Width = Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 3 147 35 psi Fb 3 857 00 psi Beam Design OK 3 500m x Depth = 9 5m 0816 1 138kft 169 kft 13 81 kft at 0 00 k ft at 000 kft 000 kft 1692 fv 168 20 psi Fv 385 70 psi Ends are Pin Pin Maximum Shear * 1 4256ft 0000 ft Reactions LeftDL Right DL Allowable Shear Camber 342 k 2 58 k 5 @ Left @ Right @ Left @ Center @ Right Max Max 56 k 128 k 3 99k 316k 0000 in 0499m 0 000m 399k 3 16k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5* D L @ Center @ Left @ Right Dead Load 0 333 in 4 598ft 342 8 Defl ) 0 499 in 0 000 in 0 000 in Total Load 0 377 in 4598 ft 30252 Left Cantilever Deflection Length/Defl Right Cantilever Deflection Length/Defl Dead Load 0 000 in 00 0 000 in 00 Total Load 0 000 in 00 ' 0 000 in 00 Rev 560100 General Timber Beam Page 2 Description B8e Stress Calcs < Bending Analysis Ck 18468 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Query Values 0000ft 0000 Max Moment 1381 kft 000 kft 000 kft @ Left Support 559 k 14500 m2 385 70 psi 399 k 316 k M V & D @ Specified Locations @ Center Span Location = 0 00 ft @ Right Cant Location = 0 00 ft @ Left Cant Location = 0 00 ft Sxx 52 646 m3 Cl 0 000 Sxx Req d 42 96 m3 0 00 in3 0 00 m3 @ Right Support 451 k 11 682 m2 385 70 psi Bearing Length Bearing Length Moment 000 kft 000 kft 000 kft Area 33 250 m2 Allowable fb 3 857 00 psi 3 857 00 psi 3 857 00 psi i Req d 1 755 in Reqd 1 387 in [ Shear Deflection 3 99 k 0 0000 in 0 00 k 0 0000 in 0 00 k 0 0000 in [ Rev 1 560100 General Timber Beam Pase 1, Description B9 | General Information Section Name Prllm Beam Width Beam Depth Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density 525x140 5 250 in 14 000 in 1 000 Pin Pin 35 000 pcf Calculations Center Span Left Cantilever Right Cantilever Truss Joist MacMillan Fb Base Allow Fv Allow Fc Allow E are designed to 1997 NDS and 1997 UBC Requirements 2330ft Lu 000ft ft Lu 0 00 ft ft Lu 0 00 ft Parallam 2 OE - 2 900 0 psi 290 Opsi 650 0 psi 20000ksi Full Length Uniform Loads Center Left Cantilever Right Cantilever DL DL DL 200 00 #/ft #/ft #/ft LL LL LL 36000 #/ft #/ft #/ft Summary j,^g, „ ™»,»Spr» ^^ipg! Span= 23 30ft Beam Width = Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 2 743 88 psi Fb 2 900 00 psi Beam Design OK 5250m x Depth = 14 in 0946 1 392 k ft 41 4 kft 39 21k ft at 0 00 k ft at 000 k ft 000 kft 41 45 fv 124 20 psi Fv 290 00 psi Ends are Pin Pin Maximum Shear* 1 11 650ft 23 300 ft Reactions Left DL Right DL Allowable Shear Camber 254 k 2 54 k 5 @ Left @ Right @ Left @ Center @ Right Max Max 9 1 k 21 3 k 673k 673k 0 000 in 0903m 0 000 m 673k 673k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center ©Left @ Right Dead Coad 0 602 m 11 650ft 4647 Defl) 0 903 m 0 000 m 0 000 in Total Load Left Cantilever 1 596 in Deflection 1 1 650 ft Length/Defl 17519 Right Cantilever Deflection Length/Defl Dead Load Total Load 0 000 in 0 000 in 00 00 0 000 in 0 000 in 00 00 Stress Calcs | Bending Analysis Ck 21 298 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction t^aiw .. * , 0000 ft 0000 Max Moment 39 21 k ft 000 kft 000 kft @ Left Support 913 k 31 478 m2 290 00 psi 673 k 673 k ™s>w "**»m*m*-« -j *s#imm Sxx 171 500 in3 Area Cl 0 000 ""•.•"^. '-•"--•«• -- -M <f- <&%&&*& W .«• ** 73 500 in2 Sxx Req d Allowable fb 16227 ir>3 000 in3 0 00 in3 @ Right Support 913k 31 478 m2 290 00 psi Bearing Length Req d Bearing Length Req d 2 900 00 psi 2 900 00 psi 2 900 00 psi 1 973 in 1 973 in Rev 560100 General Timber Beam Page 2 ocr *.-5£a ™-^^ssi.— Description B9 J3uery Values maj M V & D @ Specified Locations @ Center Span Location = @ Right Cant Location = @ Left Cant Location = — Moment 000 ft 000k ft 000 ft 000k ft 000 ft -000k ft Deflection 0 0000 in 0 0000 in -00000 in Rev 560100 General Timber Beam Page 1 Description B9A General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements^ Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density 70x14 0 7 000 in 14000m Sawn 1 000 Pin Pin 35000pcf Center Span 2600ft Left Cantilever ft Right Cantilever ft Truss Joist MacMillan Parallam 2 OE Fb Base Allow 2 900 0 psi Fv Allow 2900 psi Fc Allow 6500 psi E 2 000 0 ksi Lu Lu Lu 000 ft 000 ft 000 ft Full Length Uniform Loads Center Left Cantilever Right Cantilever DL DL DL 200 00 #/ft #/ft #/ft LL LL LL 360 00 #/ft #/ft #/ft Summary Beam Design OK Span= 26 00ft Beam Width = 7 000m x Depth = 14 in Ends are Pin Pin Max Stress Ratio Maximum MomentAllowable i Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 2 588 89 psi Fb 2 900 00 psi 0893 1 493 k ft 553 k ft 49 33k ft at 13 0 00 k ft at 0 000 k ft 000 k ft 5526 fv 105 95 psi Fv 290 00 psi Maximum Shear Allowable 000 ft Shear 000 ft Camber Reactions LeftDL 291 k Right DL 2 91 k * 1 5 104 k 284 k @ Left 7 59 k ©Right 759k @ Left 0000 in @ Center 1 078 in @ Right 0000m Max 7 59 k Max 7 59 k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center @ Left @ Right Stress Gales Bending Analysis Ck 21 298 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Dead Load Total Loac 0719m 1875 13000ft 13000 4340 16640 Defl) 1 078 in 0 000 in 0 000 in „ 0 000 ft Sxx 0 000 Cl Max Moment 49 33 k ft 000 k ft 000 k ft @ Left Support <£ 1038 k 35 802 m2 290 00 psi 759 k 759 k Left Cantilever in Deflection ft Length/Defl Right Cantilever Deflection Length/Defl " 228 667 m3 Area 0000 Dead Load Total Load 0 000 in 0 000 in 00 00 0 000 in 0 000 in 00 00 „ 98 000 m2 Sxx Reg d Allowable fb 204 14 m3 2 0 00 m3 2 0 00 m3 2 § Right Support 1038 k 35 802 m2 290 00 psi Bearing Length Req d Bearing Length Reqd 900 00 psi 900 00 psi 900 00 psi 1 668 in 1 668 in Rev 560100 General Timber Beam Panspage Description B9A | Query Values I M V & D @ Specified Locations @ Center Span Location = 000ft @ Right Cant Location = 000ft I _ _ _ ----- @ Left Cant Location =- - -000ft- Moment OOOkft OOOkft OOOkft Shear 759k 000k 000k Deflection 0 0000 in 0 0000 in 0 0000 in Rev 560100 General Timber Beam Page 1 Description B10 General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements ^&®jg*~* -. ^'z^^:,, ^.;..^^^~-^ ~~£&mL" Section Name Prllm Beam Width Beam Depth _Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density 5 25x14 0 5 250 in 14 000 in Sawn 1 000 Pin Pin 35 000 pcf Center Span 1525ft Left Cantilever ft Right Cantilever ft Truss Joist MacMillan Parallam 2 OE Fb Base Allow 2 900 0 psi Fv Allow 2900psi Fc Allow 6500 psi E 2 000 0 ksi Lu Lu Lu 000 ft 000 ft 000 ft Full Length Uniform LoadsI Center Left Cantilever Right Cantilever xm DL DL DL '&%$&**" xtttMfs?'' 461 50 #/ft #/ft #/ft p "• LL LL LL 1 - Jf v " ' fmrnsma « «*»«•' i 71000 #/ft #/ft #/ft j Summary IH^K- .-"sjww^ »~ fw — ..-*• / Span=1525ft Beam Width Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 241926psi Fb 2 900 00 psi = 5250m x Depth = 14 in 0834 1 346 k ft 41 4 k ft 34 58 k ft at 0 00 k ft at 000 k ft 000 kft 41 45 fv 156 95 psi Fv 290 00 psi Ends are Pin Pin Maximum Shear* 1 7625ft 15250 ft Reactions LeftDL Right DL Allowable Shear Camber 366 k 366k 5 @ Left @ Right @ Left @ Center @ Right Max Max Beam Design OK 115k 21 3 k 9 07k 907k 0 000 in 0 364 in 0 000 m 907k 907k i Deflections "P"- '__ ^ / ^3$ ' Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center @ Left @ Right wij&i '""'JS ^SsiilV" Dead Load 0 243 in 7625ft 7532 Defl) 0 364 in 0 000 in 0 000 in ""'•'-" '^W^ISK: Total Load 0 603 in 7625 ft 30358 j ^g$g!ffl ^r" ~ Left Cantilever Deflection Length/Defi Right Cantilever Deflection Length/Defl MHjjSjsjs —Dead Load 0 000 in 00 0 000 m 00 Total Load 0 000 in 00 0 000 in 00 Stress Calcs Bending Analysis Ck 21 298 Cf 1 000 @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Le 0000ft Sxx 171500m3 Area Rb 0 000 Cl 0 000 Max Moment Sxx Reg d 34 58 kft 14307m3 0 00 k ft 0 00 m3 0 00 k ft 0 00 m3 @ Left Support @ Right Support 11 54 k 11 54 k 39 778 m2 39 778 m2 290 00 psi 290 00 psi 9 07 k Bearing Length Req d 9 07 k Bearing Length Req d 73 500 in2 Allowable fb 2 900 00 psi 2 900 00 psi 2 900 00 psi 2 658 in 2658 in 'Rev 560100 .General Timber Beam Description B10 Query Values I M V & D @ Specified Locations Moment Shear Deflection @ Center Span Location = 000ft OOOkft 907k 0 0000 in @ Right Cant Location = 000ft OOOkft 000k 0 0000 in @ Left Cant Location = 000ft OOOkft 000k 0 0000 in F30 Rev 560100 General Timber Beam Page 1 Description B11 General Information Trapi • " Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density lezoidal Loads #1 DL @ Left DL @ Right 3 5x1 1 875 3 500 in 11 875 in Sawn 1 000 Pin Pin 35000pcf 6800 #/ft 20400 #/ft Calculations are designed to 1997 NDS Center Span Left Cantilever Right Cantilever Truss Joist MacMillan Fb Base Allow Fv Allow Fc Allow E LL@Left 12000 LL @ Right 360 00 1525ft Lu ft ft Parallam 2 OE 2 9000 psi 290 0 psi 650 Opsi 2 000 0 ksi #/ft Start #/ft End Lu Lu •^ Loc Loc and 1997 UBC Requirements | 000 ft 000 ft 000 ft ] 0000 ft 0000 ft Summary Span= 15 25ft Beam Width = 3 500in x Depth = 11 875m Ends are Pin Pin Beam Design OK Max Stress Ratio o 568 1 Maximum Moment 1 1 3 k n Maximum Shear * 1 Allowable 199 kft Max Positive Moment 1 1 30 k ft at 8 235 ft Allowable Shear Max Negative Moment 0 00 k ft at 15250ft Max @ Left Support Max © Right Support Max M allow 000 kft 000 kft 1988 Reactions fb 1 648 01 psi fv 103 70 psi Left DL Fb 2 900 00 ps Fv 290 00 psi Right DL Camber 094 k 1 29k 5 ©Left @ Right @ Left © Center @ Right Max Max 43k 12 1 k 247k 342k 0 000 in 0273m 0 000 m 247k 342k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center ©Left © Right Stress Calcs Bending Analysis Ck 21 298 Le Cf 1 000 Rb @ Center © Left Support © Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Dead Load Total Load Left Cantilever 0 182 in 7747ft 1 0051 Defl) 0 273 in 0 000 in 0 000 in ™" ^a*r '*" 0000ft 0000 Max Moment 1 1 30 k ft 000 kft 000 kft © Left Support 339 k 11 695 m2 290 00 psi 247 k 342 k 0481 in Deflection 7 747 ft Length/Defl 38031 Right Cantilever Deflection Length/Defl '* " "~ """ Sxx 82 259 in3 Area Cl 0 000 Sxx Rea d 46 75 m3 0 00 m3 0 00 m3 © Right Support 431 k 14 862 ir\2 290 00 psi Bearing Length Req d Bearing Length Req d D_e_ad Load Total Load 0 000 in 0 000 in 00 00 0 000 in 0 000 in 00 00 I 41 563 m2 Allowable fb 2 900 00 psi 2 900 00 psi 2 900 00 psi 1 084 in 1 504 in F3I Rev 560100 General Timber Beam Page 2 Description B11 Query Values M V & D @ Specified Locations @ Center Span Location = @ Right Cant Location = @ Left Cant Location = 000 ft 000 ft 000 ft Moment 000k ft 000k ft 000k ft Shear 247 k 000 k 000 k Deflection 0 0000 in 0 0000 in 0 0000 in Rev 060100 General Timber Beam Page 1 Description B12 General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density 7 0x14 0 7000m ' 14 000 m Sawn 1 000 Pin Pin 35 000 pcf Center Span 2000ft Left Cantilever ft Right Cantilever ft Truss Joist 'MacMillan Parallam 2 OE Fb Base Allow 2 900 0 psi Fv Allow 2900 psi Fc Allow 6500 psi E 20000ksi Lu Lu Lu 000 ft 000 ft 000 ft Full Length Uniform Loads Center Left Cantilever Right Cantilever DL DL DL 290 00 #/ft #/ft #/ft LL LL LL 51000 #/ft #/ft #/ff Summary m " "W Span= 20 00ft Beam Width Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 216162psi Fb 2 900 00 psi Beam Design OK = 7 000m x Depth = 14 in 0745 1 41 2 kft 553 k ft 41 19kft at 0 00 k ft at 000 kft 000 kft 5526 fv 1 1 1 97 psi Fv 290 00 psi Ends are Pin Pin Maximum Shear * 1 10000ft 20 000 ft Reactions LeftDL Right DL Allowable Shear Camber 3 14 k 3 14 k 5 @ Left@ Right @ Left @ Center @ Right Max Max 110k 284 k 824k 824k 0000 in 0529m 0 000 m 824k 824k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center @ Left @ Right Stress Calcs Bending Analysis Ck 21 298 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis _ Design Shear Area Required Fv Allowable Bearing"® Supports Max Left Reaction Max Right Reaction Dead Load 0 353 in 10000ft 680 1 Defl ) 0 529 in 0 000 m 0 000 in -MtU1-'^ '' 0000 ft 0000 Max Moment 41 19 k ft 000 kft 000 kft @ Left Support 1097 k 37 839 in2 290 00 psi 824 k 824 k ''*'$%M£&, " j&S&glSra ' ""$i5L ™ ^"^ rmm.....-., m Total Load Left Cantilever 0 926 in Deflection 10000ft Length/Defl 25907 Right Cantilever Deflection Length/Defl -. „ — : *ifW^ = "' [ J'3?§8E Sxx 228 667 m3 Area Cl 0 000 J Dead Load Total Load 0 000 in 0 000 in 00 00 0 000 in 0 000 in 00 00 |' K^W^^, •*-'?%&& ^:. ' ' '-¥3'" ^ i 98 000 in2 Sxx Reg d Allowable fb 17045m3 2 0 00 m3 2 0 00 m3 2 @ Right Support 1097 k 37 839 m2 290 00 psi Bearing Length Reqd Bearing Length Req d 900 00 psi 900 00 psi 900 00 psi 1 811 in 1 811 in F33 Rev 560100 — _General Timber Beam Page i Description B12 Query Values M V & D @ Specified Locations Moment Shear Deflection @ Center Span Location = 000ft OOOkft 824k 0 0000 in @ Right Cant Location = 000ft OOOkft 000k 0 0000 in @ Left Cant Location = 000ft OOOkft 000k 0 0000 in Rev 560100 General Timber Beam Page 1 Description B12A General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name Beam Width Beam Depth Member Type Bm Wt Added to Load Dur Factor Beam End Fixity Wood Density Prlim 7 0x14 0 7000m 14000m Sawn Loads 1 000 Pin Pin 35000pcf ..££3Z£SZZ°*~~ '2X ** ^K- *«a*^>^ ™ ^ Center Span Left Cantilever Right Cantilever Truss Joist MacMillan Fb Base Allow Fv Allow Fc Allow E 21 50ft ft ft Parallam 2 OE 2 9000psi 2900psi 650 0 psi 2 000 0 ksi Lu Lu Lu 000 ft 000 ft 000 ft Full Length Uniform Loads Center Left Cantilever Right Cantilever Trapezoidal Loads #1 DL @ Left DL @ Right DL DL DL 374 00 #/ft 11900 #/ft 75 00 #/ft #/ft #/ft LL @ Left LL @ Right | LL #/ft LL #/ft LL #/ft . , I 660 00 #/ft Start Loc 0 000 ft 21000 #/ft End Loc 0000 ft ! Summary || *"•- ,~~f ~°^"~?£; — T" $8&*~>M — r~ ~~~~ ~%Beam Design OK Span= 21 50ft Beam Width = 7 000m x Max Stress Ratio Maximum MomentAllowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 2 379 39 psi Fb 2 900 00 psi 45 34k 000k 000 k 000 k 5526 fv Fv Depth = 14 in 0820 1 453 kft 553 kft ft at ft at ft ft 128 66 psi 290 00 psi Ends are Pin Pin Maximum Shear * 1 9976ft 0000 ft Reactions LeftDL Right DL Allowable Shear Camber 4 17 k 326k 5 @ Left @ Right @ Left @ Center @ Right Max Max 126 k 284 k 965k 7 13k 0 000 in 0778m 0 000m 965k 713k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 @ Center @ Left @ Right Stress Calcs Bending Analysis Ck 21 298 Cf 1 000 @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Dead Load 0 519 in 10578ft 4974 D L Defl ) 0 778 in 0 000 in 0 000 in Le 0 000 ft Rb 0 000 Max Moment 45 34 k ft 000 k ft 000 k ft @ Left Support 1261 k 43 477 in2 290 00 psi 965 k 7 13 !• Total Load Left Cantilever 1 172 in Deflection 10578ft Length/Defl 220 09 Rignt Cantilever Deflection Length/Defl Sxx 228 667 in3 Area Cl 0 000 Sxx Reg d 18762 in3 0 00 m3 0 00 in3 @ Right Support 994 k 34 275 m2 290 00 psi Bearing Length Req d Bearing Length Reqd Dead Load Total Load 0 000 in 0 000 in 00 00 0 000 in 0 000 in 00 00 98 000 in2 Allowable fb 2 900 00 psi 2 900 00 psi 2 900 00 psi 2 121 in 1 566 in F3ST Rev 560100 General Timber Beam Page 2 Description B12A Query Values M V & D @ Specified Locations @ Center Span Location = @ Right Cant Location = @ Left Cant Location = 000 ft 000 ft 000 ft Moment 0 00 k ft 000k ft 000k ft Shear 965 k 000k 000k Deflection 0 0000 in 0 0000 in 0 0000 in Rev 560100 General Timber Beam Page 1 Description B13g General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Prllm 105x140 10500m 14 000 in Section Name Beam Width Beam Depth Member Type Sawn Bm Wt Added to Loads Load Dur Factor 1 000 Beam End Fixity Pin Pin Wood Density 35 000 pcf Center Span 1900ft Left Cantilever ft Right Cantilever ft Truss Joist MacMillan Parallam 2 OE Fb Base Allow 29000psi Fv Allow 2900psi Fc Allow 650 0 psi E 20000ksi Lu Lu Lu 000 ft 000 ft 000 ft Length Uniform LoadsI »• Center Left Cantilever Right Cantilever DL DL DL 384 00 #/ft #/ft #/ft LL LL LL ^^H?*"^1 SS -.to M. '""""'" •"" '" 36000 #/ft #/ft #/ft Trapezoidal Loads t , #1 DL(c DL(E D Left D Right 15000 15000 #/ft #/ft LLtf LL<2 5 Left § Right #/ft #/ft Start Loc End Loc 0 11 000 000 ft ft Summary Beam Design OK Span= 19 00ft Beam Width = 10 500m x Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 1 385 00 psi Fb 2 900 00 psi 3959k 000k 000 k 000 k 8289 fv Fv Depth = 14 in Ends are Pin Pin 0478 1 396k ft 829 kft ft at ft at ft ft 76 73 psi 290 00 psi Maximum Shear* 1 9196ft 0000 ft Reactions Left DL Right DL Allowable Shear Camber 516 k 447 k 5 @ Left @ Right ©Left @ Center @ Right Max Max 113k 426 k 858k 789k 0 000 in 0470m 0000m 8 58k 7 89k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center ©Left @ Right Stress Calcs Bending Analysis Ck 21 298 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Rigru Reaction Dead Load 0314m 9424ft 727 1 Defl ) 0 470 in 0 000 in 0 000 in 0000ft 0000 Max Moment 39 59 k ft 000 k ft 000 k ft @ Left Support 11 28 k 38 896 m2 290 00 psi 8 58 k 789 k iQjaLLoad Left Cantilever 0 533 in Deflection 9 424 ft Length/Defl 427 48 Right Cantilever Deflection Length/Defl Sxx 343 000 m3 Area Cl 0 000 Dead Load Total Load 0 000 m 0 000 m 00 00 0 000 m 0 000 m 00 00 147000 m2 Sxx Rea d Allowable fb 163 81 m3 0 00 m3 000 m3 @ Right Support 1049 k 36187m2 290 00 psi Bearing Length Reqd Bearing Length Reqd 2 900 00 psi 2 900 00 psi 2 900 00 psi 1 257 m i 155 m Rev 350100 Pane 9General Timber Beam Page 2 Description B13g Query Values M V & D @ Specified Locations Moment Shear Deflection @ Center Span Location = 000ft OOOkft 858k 0 0000 in @ Right Cant Location = 000ft OOOkft 000k 0 0000 in @ Left Cant Location = 000ft OOOkft 000k 0 0000 in Rev 050100 General Timber Beam Page 1 ram „ r" Description B13e General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density 525x140 5250m 1 4 000 in Sawn 1 330 Pin Pin 35000pcf Center Span 1900ft Left Cantilever ft Right Cantilever ft Truss Joist MacMilian Parallam 2 OE Fb Base Allow 2 9000 psi Fv Allow 2900 psi Fc Allow 6500 psi E 20000ksi Lu Lu Lu 000 ft 000 ft 000ft J Full Length Uniform Loads Center Left Cantilever Right Cantilever Trapezoidal Loads #1 DL @ Left DL @ Right Point Loads Dead Load 4 620 0 Ibs Live Load Ibs distance 11 000ft DL 220 00 #/ft LL DL #/ft LL DL #/ft LL 1 50 00 #/ft LL @ Left 15000 #/ft LL@ Right Ibs Ibs Ibs Ibs 0 000 ft 0 000 ft 10700 #/ft #/ft Ibs Ibs 0 000 ft #/ft #/ft #/ft Start Loc End Loc Ibs Ibs 0000ft 0000 ft 11 000 ft Ibs Ibs 0000ft f 1 Ibs Ibs 0000ft 1 Summary " j Span= 19 00ft Beam Width = 5 250m x Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 2 822 55 psi Fb 3 857 00 psi 4034k 000k 000 k 000 k 55 12 fv Fv Depth = 14 in 0732 1 403 kft 55 1 kft ft at ft at ft ft 123 17 psi 385 70 psi Ends are Pin Pin Beam Design OK Maximum Shear * 1 10944ft 0000 ft Reactions Left DL Right DL Allowable Shear Camber 538 k 541 k 5 @ Left @ Right @ Left @ Center @ Right Max Max 9 1 k 283 k 639k 643k 0000 in 1 295 in 0 000 m 639k 643k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center ©Left @ Right Dead Load 0 864 in 9652ft 2640 Defl) 1 295 in 0 000 in 0 000 in Total Load 0 994 in 9652ft 22932 Left Cantilever Deflection Length/Defl Right Cantilever Deflection Length/Defl Dead Load 0 000 in 00 0 000 in 00 | Total Load 0 000 in 00 0 000 in 00 I Rev 560100 Description B13e Stress Calcs Bending Analysis Ck 18468 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction [Query Values General Timber Beam 0000ft 0000 Max Moment 40 34 k ft 000 k ft 000 k ft @ Left Support 874 k 22 672 in2 385 70 psi 639 k 643 k M V & D @ Specified Locations @ Center Span Location = 0 00 @ Right Cant Location = 0 00 @ Left Cant Location = 0 00 Sxx 171500in3 Cl 0 000 Sxx Reg d 12550 m3 0 00 m3 0 00 in3 @ Right Support 905k 23 472 in2 385 70 psi Bearing Length Req d Bearing Length Req d Moment ft 0 00 k ft ft 0 00 k ft ft 0 00 k ft Area 73 500 m2 Allowable fb 3 857 00 psi 3 857 00 psi 3 857 00 psi 1 874 in 1 884 in Shear 639 k 000k 000k Page 2 6 I Li_^_: ;.,i^_jat_-_ JzL^aia^,' ixw J5 Deflection 0 0000 in 0 0000 in 0 0000 in Rev 360100 General Timber Beam Page 1 Description B14g General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density 105x140 10500m 14000m Sawn 1 000 Pin Pin 35000pcf ^cssajSH™ ~~g? ' ™ ,™_..™. ^:,. _m,,_™^™_,,™,_ „, Center Span 1900ft Left Cantilever ft Right Cantilever ft Truss Joist MacMillan Parallam 2 OE Fb Base Allow 29000psi Fv Allow 290 0 psi Fc Allow 6500 psi E 2 000 0 ksi Lu Lu Lu 000 ft 000 ft 000 ft Full Length Uniform Loads Center Left Cantilever Right Cantilever Trapezoidal Loads #1 DL @ Left DL @ Right Point Loads Dead Load Ibs Live Load Ibs distance 0 000 ft ~r*®» DL DL DL 150 150 36900 00 #/ft LL 00 #/ft LL ^_o__ _ 2 1120 Ibs 9500ft #/ft LL #/ft LL #/ft LL @ Left@ Right Ibs Ibs 0 000 ft 10600 #/ft #/ft Ibs Ibs 0 000 ft #/ft#/ft#m Start Loc End Loc Ibs Ibs 0000ft - 0000 ft 19000 ft „....: _ „ Ibs 0 000 ft - " Ibs Ibs 0000ft Summary , /- -spr- Span= 19 00ft Beam Width = Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 1 633 38 psi Fb 2 900 00 psi Beam Design OK 10500m x Depth = 14 0563 1 467 kft 82 9 k ft 46 69 k ft at 0 00 k ft at 000 kft 000 kft 8289 fv 74 49 psi Fv 290 00 psi in Ends are Pin Pin Maximum Shear* 1 9500ft 19000 ft Reactions LeftDL Right DL Allowable Shear Camber 599 k 5 99k 5 @ Left @ Right ©Left @ Center @ Right Max Max 109 k 426 k 805k 805k Q 000 in 0619m 0 000 m 805K 8 05k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5* D @ Center ©Left @ Right ~ ~ s»iS«i_ _ _ Dead Load 0413m 9500ft 5524 L Defl ) 0619 in 0 000 in 0 000 in Total Load 0 586 in 9 500ft 38902 Left Cantilever Deflection Length/Defl Right Cantilever Deflection Length/Defl Dead Load 0 000 in 00 0 000 in 00 Total Load 0 000 in 00 0 000 in 00 FVI I Rev 560100 iI Description B14g , Stress Calcs &>.x$&A.~ .#,**&iJLj££^ ^,.,.*,. £'JW£2:%~. &*. ^.i~&.3.'fg&&i&£ Bending Analysis Ck 21 298 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Query Values 1 L ' 'SS*Wli™ **• "S. 0000ft 0000 Max Moment 46 69 k ft 000 k ft 000 k ft @ Left Support 1095 k 37 757 in2 290 00 psi 805 k 805 k *''-$&&?K^' ^ .v. ™ ^*ii M V & D @ Specified Locations @ Center Span Location = @ Right Cant Location = @ Left Cant Location = 000 000 000 General Timber Beam Sxx 343 000 in3 Cl 0 000 Sxx Red d 19319m3 0 00 in3 0 00 m3 @ Right Support 1095k 37 757 m2 290 00 psi Bearing Length Req d Bearing Length Req d Moment ft 0 00 k ft ft 0 00 k ft ft 0 00 k ft Page 2 p r Area 147000m2 Allowable fb 2 900 00 psi 2 900 00 psi 2 900 00 psi 1 180 in 1 180 in f Shear Deflection 8 05 k 0 0000 in 0 00 k 0 0000 in 0 00 k 0 0000 in Rev D60100 Description General Timber Beam Page 1 B14e General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density ™~- j ^&"^;E 105x140 10 500m 14000m Sawn 1 330 Pin Pin 35000pcf Center Span 1900ft Left Cantilever ft Right Cantilever ft Truss Joist MacMillan Parallam 2 OE Fb Base Allow 2 900 0 psi Fv Allow 290 0 psi Fc Allow 6500 psi E 20000ksi Lu Lu Lu 000 ft 000 ft 000 ft Full Length Uniform Loads 8 ~* •M&tfM'Z Center Left Cantilever Right Cantilever «* DL DL DL 369 00 #/ft #/ft #/ft LL LL LL ,«!•$¥/*- " I 10600 #/ft #/ft #/ft Trapezoidal Loads c •• • - ^~ #1 DL@ DL@ Point Loads Dead Load Live Load distance Left Right 9 240 0 Ibs Ibs 4000ft 15000 #/ft 1 50 00 #/ft 1 440 0 Ibs 2 1120 Ibs 9500ft LL @ Left LL @ Right Ibs Ibs 0000ft #/ft #/ft Ibs Ibs 0000ft Start Loc End Loc Ibs Ibs 0000ft 0000 ft 1 9 000 ft Ibs Ibs 0000ft Ibs Ibs 0000ft | i.Summary "if-— ls|! Span= 19 00ft Beam Width = 10 500m x Depth = 14 in Ends are Pin Pin Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 2 280 66 psi Fb 3 857 00 psi Beam Design OK 0591 1 65 2 k ft Maximum Shear* 1 1102 kft 65 19kft 000 kft 000 kft 000 kft 11025 fv Fv at at 148 92 psi 385 70 psi 9272ft 19000 ft Reactions LeftDL Right DL Allowable Shear Camber 1328 k 794k 5 @ Left @ Right @ Left @ Center @ Right Max Max 21 9 k 567 k 1535k 1000k 0 000 in 1 046 in 0000 m 1535k 1000k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center ©Left @ Right Dead Load 0 697 m 9044ft 3270 Defl) 1 046 in 0 000 m 0 000 in Total Load 0 870 in 9 120ft 26206 Left Cantilever Deflection Length/Defl Right Cantilever Deflection Length/Defl Dead Load 0 000 in 00 - 0 000 in 00 Total Load 0 000 in 00 0 000 in 00 I Rev 560100 General Timber Beam Page 2 G, r Description B14e Stress Calcs p Bending Analysis Ck 18468 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Query Values L *&" / jij"°ir fSt/8S8ftfff<<ia' . 0000ft 0000 Max Moment 65 19 k ft 000 k ft 000 k ft @ Left Support 21 89 k 56 758 m2 385 70 psi 1535 k 1000 k *&? ^WS&!£&»^ M V & D @ Specified Locations @ Center Span Location @ Right Cant Location = @ Left Cant Location = 000 000 000 Sxx 343 000 m3 Cl 0 000 Sxx Req d 202 82 m3 0 00 in3 0 00 m3 @ Right Support 1387 k 35 954 m2 385 70 psi Bearing Length Reqd Bearing Length Req d v' { a.f -L. "W*" * JM&4 -SfftSsfc,,?- Moment ft 0 00 k ft ft 0 00 k ft ft 0 00 k ft _~™™~. juWssafe.™»« - — -~*~- ~*-^~. Area 147000 m2 Allowable fb 3 857 00 psi 3 857 00 psi 3 857 00 psi 2 249 in 1 465 in ._, -HJiii Shear 1535 k 000 k 000k [ Deflection 0 0000 in 0 0000 in 0 0000 in \ Rev 360100 Description B15 General Information General Timber Beam Section Name Prllm 7 0x14 0 Beam Width 7 000 in Beam Depth 14000m Member Type Sawn Bm Wt Added to Loads Load Dur Factor 1 000 Beam End Fixity Pin Pin Wood Density 35000pcf Full Length Uniform Loads Center DL Left Cantilever DL Right Cantilever DL Page 1 Is Calculations Center Span Left Cantilever Right Cantilever Truss Joist MacMillan Fb Base Allow Fv Allow Fc Allow E are designed to 1997 NDS and 1750ft Lu ft Lu ft Lu Parallam 2 OE 2 900 0 psi 290 Opsi 650 0 psi 20000ksi 374 00 #/ft LL 660 00 #/ft #/ft LL #/ft #/ft LL #/ft i1997 UBC Requirements EJ 000 ft 000 ft 000 ft F Summary '4>• ~™l|fp» ,., ™~-^^pr- Span= 1750ft Beam Width Max Stress Ratio Maximum MomentAllowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 2 125 08 psi Fb 2 900 00 psi = 7 OOOin x Depth = 14 in 0733 1 405 kft 553 k ft 40 49 k ft at 0 00 k ft at 000 k ft 000 kft 5526 fv 123 54 psi Fv 290 00 psi Ends are Pin Pin Maximum Shear* 1 8750ft 0000 ft Reactions LeftDL Right DL Allowable Shear Camber 348 k 348k 5 @Left @ Right ©Left @ Center @ Right Max Max Beam Design OK 12 1 k 284 k 926k 926k 0 000 in 0393m 0 000 m 926k 926k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center ©Left @ Right Dead Load Total Load 0 262 in 0 697 8 750 ft 8 750 8008 301 17 Defl) 0 393 in 0 000 in 0 000 in Left Cantilever in Deflection ft Length/Defl Right Cantilever Deflection Length/Defl J Dead Load Total Load 0 000 m 0 000 in 00 00 0 000 in 0 000 in 00 00 Stress Calcs L Bending Analysis Ck 21 298 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction -~~«U^ ^m^*.—. *A <- w™*v^£fefSfc 0 000 ft Sxx 0 000 Cl Max Moment 40 49 k ft 000 kft 000 k ft @ Left Support d 12 11 k 41 747 m2 290 00 psi 926 k 926 k .w^ffljssiSfK-H. -^MOJJ. i.i toM»^8$&t a. ,* &f,jipm&fr&t /„ 228 667 m3 Area 0000 Sxx Red d ft 16756 m3 0 00 m3 0 00 m3 g Right Support 12 11 k 41 747 m2 290 00 psi Bearing Length Reqd Bearing Length Req d «„**• ^.^^. M*~.«* ^ .*&* ^ * .-^ „*£*;' 98 000 m2 vllowable fb 2 900 00 psi 2 900 00 psi 2 900 00 psi 2 034 in 2 034 in Rev 560100 General Timber Beam Page 2 Description B15 Query Values M V & D @ Specified Locations Moment @ Center Span Location = 0 00 ft 0 00 k ft @ Right Cant Location = 000ft 000k ft @ Left Cant Location = 0 00 ft 0 00 k ft Shear 926k 000 k 000 k Deflection 0 0000 in 0 0000 in 0 0000 in Rev DS0100 General Timber Beam Page 1 Description B15A General information Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density 7 0x14 0 7 000 in 14 000 in Sawn 1 000 Pin Pin 35000pcf Calculations are designed to Center Span 1540ft Left Cantilever ft Right Cantilever ft Truss Joist MacMillan Parallam 2 OE Fb Base Allow 29000psi Fv Allow 290 0 psi Fc Allow 6500psi E 2 000 0 ksi 1997 Lu Lu Lu NDSand 1997UBC 000 ft 000 ft 000 ft Requirements f Full Length Uniform Loads Center Left Cantilever Right Cantilever DL DL DL 578 00 #/ft #/ft #/ft LL LL LL 1 020 00 #/ft #/ft #/ft Summary ! t* "«mfiir i Span= 15 40ft Beam Width = Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 2 523 09 psi Fb 2 900 00 psi Beam Design OK 7 OOOin x Depth = 14 in 0870 1 48 1 k ft 553 k ft 48 08 k ft at 0 00 k ft at 000 k ft 000 k ft 5526 fv 163 62 psi Fv 290 00 psi Ends are Pin Pin Maximum Shear * 1 7700ft 0000 ft Reactions LeftDL Right DL Allowable Shear Camber 463 k 463 k 5 @ Left @ Right ©Left @ Center @ Right Max Max 160 k 284 k 1249k 1249k 0 000 in 0 357 in 0 000 m 1249k 1249k , Deflections— P-,— . — __ „ __ Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center @ Left @ Right ?gfi" ^xsasu^™f ~~ * Dead Load 0 238 in 7700ft 7768 Defl) 0 357 in 0 000 in 0 000 in Total Load Left Cantilever 0 641 in Deflection 7 700 ft Length/Defl 28825 Right Cantilever Deflection Length/Defl Dead Load Total Load 0 000 in 0 000 in 00 00 0 000 in 0 000 in 00 00 Stress Calcs [ Bending Analysis Ck 21 298 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction 1 ' 0000 ft 0000 Max Moment 48 08 k ft 000 k ft 000 k ft @ Left Support 1603 k 55 292 m2 290 00 psi 1249 k 1249 k -, _ , _***_ ,,* Sxx 228 667 in3 Area Cl 0 000 Sxx Reg d 19895 in3 0 00 m3 0 00 m3 @ Right Support 1603 k 55 292 m2 290 00 psi Bearing Length Req d Bearing Length Req d -'"»-*-* 98 000 in2 Allowable fb 2 900 00 psi 2 900 00 psi 2 900 00 psi 2 745 in 2 745 in | Rev 560100 Description B15A f Query Values M V & D @ Specified Locations @ Center Span Location = @ Right Cant Location = @ Left Cant Location = General Timber Beam Moment 0 00 ft 0 00 k ft 000 ft 000k ft 000 ft 000k ft Shear 1249 k 000 k 000 k Page 2 | | Deflection 0 0000 in 0 0000 in 0 0000 in Rev 560100 General Timber Beam Page 1 Description B15B General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density 7 0x140 7000m 14000m Sawn 1 000 Pin Pin 35000pcf Center Span 1600ft Left Cantilever ft Right Cantilever ft Truss Joist MacMillan Parallam 2 OE Fb Base Allow 2 900 0 psi Fv Allow 290 0 psi Fc Allow 6500 psi E 2 000 0 ksi Lu Lu Lu 000 ft 000 ft 000 ft Full Length Uniform Loads Center Left Cantilever Right Cantilever DL DL DL 476 00 #/ft #/ft #/ft LL LL LL 84000 #/ft #/ft #/ft ^j~m Summary * w*~ ^^ 'f- j Span= 16 00ft Beam Width = 7 000m x Depth = 14 in Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 2 249 96 psi Fb 2 900 00 psi 0776 1 42 9 kft 553 k ft 42 87 k ft at 0 00 k ft at 000 kft 000 kft 5526 fv 140 43 psi Fv 290 00 psi Ends are Pin Pin • • — Beam Design OK Maximum Shear* 1 8000ft 0000 ft Reactions LeftDL Right DL Allowable Shear Camber 400 k 400k 5 @ Left @ Right @ Left @ Center @ Right Max Max 138 k 264 k 1072k 1072k 0 000 in 0345m 0000 in 1072k 1072k Deflections Center Span Deflection Location Length/Defl Camber ( using 15* @ Center ©Left @ Right Dead Load 0 230 in 8000ft 8340 D L Defl ) 0 345 in 0 000 in 0 000 in Total Load 0617m 8000ft 311 12 Left Cantilever Deflection Length/Defl Right Cantilever Deflection Length/Defl Dead Load 0 000 in 00 0 000 in 00 Total Load 0 000 in 00 0 000 in 00 Stress Calcs Bending Analysis Ck 21 298 Cf 1 000 @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Le 0 000 ft Sxx 228 667 m3 Area Rb 0 000 Cl 0 000 Max Moment _ _ - - Sxx Reg d 4287 kft 17741 m3 0 00 k ft 0 00 m3 0 00 k ft 0 00 m3 @ Left Support @ Right Support 1376k 1376k 47457 m2 47457 m2 290 00 psi 290 00 psi 10 72 k Bearing Length Reqd 10 72 k Bearing Length Req d 98 000 m2 Allowable fb - 2 900 00 psi 2 900 00 psi 2 900 00 psi 2 356 in 2 356 in Rev 560100 General Timber Beam Page 2 Description B15B | Query Values M V & D @ Specified Locations @ Center Span Location = @ Right Cant Location = <5> Left Cant Location = 000 ft 000 ft 000 ft Moment 000k ft 000k ft 000k ft Shear 1072 k 000 k 000 k Deflection 0 0000 in 0 0000 in 0 0000 in Rev 560100 General Timber Beam Page 11, Description B16 General Information Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density Calculations are designed to 1997 NDS and 5 25x9 5 5 250 in 9 500 in Sawn 1 000 Pin Pin 35000pcf Center Span Left Cantilever Right Cantilever Truss Joist MacMillan Fb Base Allow Fv Allow Fc Allow E 9 00 ft Lu ft Lu ft Lu Parallam 2 OE 2 900 0 psi 290 0 psi 650 0 psi 20000ksi 1997 UBC Requirements [f 000 ft 000 ft 000 ft Full Length Uniform Loads Center Left Cantilever Right Cantilever DL DL DL 442 00 #/ft #/ft #/ft LL LL LL 68000 #/ft #/ft #/ft Summary ^»'r"~- '''{/jjgggwg&'t't ^ Span= 9 00ft Beam Width Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 1 744 94 psi Fb 2 900 00 psi Beam Design OK = 5 250in x Depth = 9 5in 0602 1 11 5 kft 191 kft 1 1 48 k ft at 0 00 k ft at 000 kft 000 k ft 1908 fv 127 70 psi Fv 290 00 psi Ends are Pin Pin Maximum Shear* 1 4500ft 0000 ft Reactions LeftDL Right DL Allowable Shear Camber 204 k 204 k 5 ©Left @ Right @ Left @ Center @ Right Max Max 64 k 145 k 5 10k 5 10k 0000 in 0 134 in 0000 m 5 10k 5 10k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center @ Left @ Right Dead Load 0 089 in 4500ft 1 2086 Defl) 0 134 in 0 000 in 0 000 in Total Load 0 223 in 4500ft 48395 Left Cantilever Deflection Length/Defl Right Cantilever Deflection Length/Defl Dead Load 0 000 in 00 0 000 in 00 Total Load 0 000 in 00 0 000 in 00 i Stress Gales Bending Analysis Ck 21 298 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction 0000 ft 0000 Max Moment 11 48 kft 000 kft 000 kft @ Left Support 637 k 21 963 m2 290 00 psi 510 k 510 k Sxx 78 969 m3 Area Cl 0 000 Sxx Reg d - 47 52 m3 0 00 m3 0 00 m3 @ Right Support 637k 21 963 m2 290 00 psi Bearing Length Req d Bearing Length Req d 49 875 m2 Allowable fb 2 900 00 psi 2 900 00 psi 2 900 00 psi 1 496 in 1 496 in Rev 560100 FS7 General Timber Beam Page 2 Description B16 Query Values _,____________^^ M V & D @ Specified Locations Moment Shear Deflection @ Center Span Location = 000ft OOOkft 510k 0 0000 in @ Right Cant Location = OOQft QOOkft 000k 0 0000 in @ Lett Cant Location = 000ft OOOkft 000k 0 0000 in Rev 560100 General Timber Beam Page 1 Description B17 Seneral Information Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density 525x11 875 5250m 11 875m Sawn 1 000 Pin Pin 35 000 pcf Calculations are designed Center Span 11 50ft Left Cantilever ft Right Cantilever ft Truss Joist MacMillan Parallam 2 OE Fb Base Allow 2 900 0 psi Fv Allow 2900 psi Fc Allow 6500 psi E 20000ksi to 1997 NDS and Lu Lu Lu 1997UBC 000 ft 000 ft 000 ft Requirements Full Length Uniform Loads Center Left Cantilever Right Cantilever DL DL DL 722 00 #/ft #/ft #/ft LL LL LL 880 00 #/ft #/ft #/ft Summary i Span= 1 1 50ft Beam Width = 5 250m x Max Stress Ratio Depth = 11 875m Ends are Pin Pin 0897 Maximum Moment Max Max Max Max Max fb Fb Allowable Positive Moment Negative Moment @ Left Support @ Right Support M allow 2 599 94 psi 2 900 00 psi 2673k 000k 000 k 000 k 2982 fv Fv ft ft ft ft 1 267 kft 298 186 290 kft at at 14 psi OOpsi Maximum Shear * 1 5750ft 0000 ft Reactions LeftDL Right DL Allowable Shear Camber 424 k 424 k Beam Design OK 5 ©Left@ Right @ Left @ Center @ Right Max Max 116k 18 1 k 9 9 30k 30k 0000 in 0297m 0 000m 9 9 30k 30k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 @ Center ©Left @ Right Dead Load 0 198m 5750ft 697 1 DL Defl) 0 297 in 0 000 in 0 000 in Total Load Left Cantilever 0 434 in Deflection 5 750 ft Length/Defl 31774 Right Cantilever Deflection Length/Defl Dead Load Total Load 0 000 in 0 000 in 00 00 0 000 in 0 000 in 00 00 Stress Calcs | t ^- _ -"• Bending Analysis Ck 21 298 Cf 1 000 @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction 1 Max Right Reaction "•i'-MB Le 0 000 ft Rb 0 000 Max Moment 26 73 k ft 000 kft 000 kft @ Left Support 11 60 k 40016 m2 290 00 psi 930 k 930 k ^ ^ ~3~ ^™~ **. Sxx 123389m3 Area Cl 0 000 Sxx Rea d 11062 m3 0 00 m3 0 00 m3 @ Right Support 11 60 k 40016 m2 290 00 psi Bearing Length Req d Bearing Length Req d J*"-* / ^-WiMW „> — J 62 344 m2 Allowable fb 2 900 00 psi 2 900 00 psi 2 900 00 psi 2 725 in 2 725 in Tlfriber Description B17 Query Values * *«Rara_ Wl V & D @ Specified Locations @ Center Span Location = 000ft @ Right Cant Location = 000ft @ Left Cant Location = 000ft _ Moment OOOkft OOOkft OOOkft Shear 930k 000k 000k Deflection 0 0000 in 0 0000 in 0 0000 in Rev 5S0100 General Timber Beam Page 1 Description B18 General Information Section Name Beam Width Beam Depth Member Type Bm Wt Added to Load Dur Factor Beam End Fixity Wood Density Prllm 525x11 875 5250m 1 1 875 in Sawn Loads 1 000 Pin Pin 35000pcf Calculations are designed to 1997 NDS and 1997 UBC Requirements ] Center Span Left Cantilever Right Cantilever Truss Joist MacMillan Fb Base Allow Fv Allow Fc Allow E 11 50ft Lu ft Lu ft Lu Parallam 2 OE 2 900 Opsi 290 Opsi 650 Opsi 2 000 0 ksi 000 ft 000 ft 000 ft Full Length Uniform Loads• Center Left Cantilever Right Cantilever *ijift!*!£xr ~ DL DL DL ] 746 00 #/ft #/ft#m LL LL LL 530 00 #/ft #/ft #/ft Beam Design OK Span= 11 50ft Beam Width = 5 250in x Depth = 11 875m Ends are Pin Pin 1 Max Stress RatioiMaximum Moment Allowable Max Positive Moment Max Negative Moment | Max @ Left Support Max @ Right Support Max M allow fb 2 075 82 psi Fb 2 900 00 psi 0716 1 21 3 kft 298 kft 21 34k ft at 5 0 00 k ft at 0 000 kft 000 kft 2982 fv 148 62 psi Fv 290 00 psi Maximum Shear Allowable 750 ft Shear 000 ft Camber Reactions LeftDL 438 k Right DL 4 38 k *1 5 @ Left @ Right @ Left @ Center @ Right Max Max 93k 181 k 742k 742k 0 000 in 0 307 in 0 000 m 742k 742k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5*D L @ Center ©Left @ Right 1 Stress Calcs Bending Analysis Ck 21 298 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction 1 Max Right Reaction Dead Load Total Loac 0 204 in 0 347 5750ft 5750 675 1 397 97 Defl) 0 307 in 0 000 in 0 000 in -» --ax 0 000 ft Sxx 0 000 Cl Max Moment 21 34 k ft 000 kft 000 kft @ Left Support (c 927 k 3 i 949 m2 290 00 psi 742 k 742 k Left Cantilever in Deflection ft Length/Defl Right Cantilever Deflection Length/Defl ™~ " ""*"""" """" "*" 123389m3 Area 0000 Dead Load 0 000 in 00 0 000 in 00 *"" «,. „ 62 344 in2 Total Load 0 000 in 00 0 000 in 00 *" "****»»* Sxx Reg d Allowable fb 88 32 m3 2 0 00 m3 2 0 00 m3 2 j> Right Support 927k 31 949 in2 290 00 psi Bearing Length Req d Bearing Length Reqd 900 00 psi 900 00 psi 900 00 psi 2176 in 2 176 in Rev 560100 General Timber Beam Page 2 Description B18 Query Values M V & D @ Specified Locations (Moment @ Center Span Location = 000ft 000k ft @ Right Cant Location = 000ft 000k ft @ Left Cant Location = 0 00 ft 0 00 k ft Shear 742 k 000 k 000k Deflection 0 0000 in 0 0000 in 0 0000 in Rev 5S0100 General Timber Beam Page 1 Description B19 General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements " Full ! Section Name 6x8 Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density JIM* ^ -!„ ~ 5 500 in 7 500m Sawn 1 000 Pin Pin 35 000 pcf Center Span Left Cantilever Right Cantilever Douglas Fir Larch Fb Base Allow Fv Allow Fc Allow E 600ft Lu 000ft ft Lu 0 00 ft ft Lu 0 00 ft No 1 1 000 Opsi 95 Opsi 625 0 psi 1 700 0 ksi Length Uniform Loads | '•" „>, '"" Center Left Cantilever Right Cantilever -*1*51 ,ffi DL 306 DL DL M •w'8kft$&*"f~ 'oo #m LL #/ft LL #/ft LL '*" v ' £**" ,x»,/., I 240 00 #/ft #/ft #/ft Summary ., Jr^juf. jgp «• W*gg#?«. |iW^] De Span= 6 00ft Beam Width = Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 582 31 psi Fb 1 000 00 psi flections 5 500m x Depth = 7 5m 0582 1 25 kft 4 3 kft 2 50 k ft at 0 00 k ft at 000 kft 000 kft 430 fv 48 04 psi Fv 95 00 psi Ends are Pin Pin Maximum Shear * 1 Allowable 3000ft 0000 ft Reactions LeftDL Right DL Shear Camber 095 k 095k 5 ©Left @ Right @ Left @ Center @ Right Max Max Beam Design OK 20k 39k 1 67k 1 67k 0 000 in 0 042 in 0000m 1 67k 1 67k Center Span Deflection Location Length/Def] Camber ( using 1 5 @ Center @ Left @ Right Stress Calcs I ^ /& Bending Analysis Ck 33 438 Cf 1 000 @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Dead Load 0 028 in 3000ft 25683 DL Defl) 0 042 in 0 000 in 0 000 in ^imx' „,. mmt Le 0 000 ft Rb 0 000 Max Moment 250 k ft 000 kft 000 kft @ Left Support 1 98 k 20 860 m2 95 00 psi 1 67 k 1 67 k Total Load Left Cantilever 0 049 in Deflection 3 000 ft Length/Defl 1 459 74 P|gn{ Cantl|ever Deflection Length/Defl •j* Wr ^W ^ „# <?.M „ .viiWv,, Dead Load Total Load 0 000 in 0 000 in 00 00 0 000 in 0 000 in 00 00 r Sxx 51 563 m3 Area 41 250 m2 Cl 0 000 Sxx Red d 30 03 m3 0 00 m3 0 00 m3 @ Right Support 1 98k 20 860 m2 95 00 psi Bearing Length Req d Bearing Length Req d Allowable fb 1 000 00 psi 1 000 00 psi 1 000 00 psi 0 485 in 0 485 in Rev 560100 D _General Timber Beam page i Description B19 Query Values M V & D @ Specified Locations Moment Shear Deflection @ Center Span Location = 000ft 000k ft 167k 0 0000 in @ Right Cant Location = 0 00 ft 000k ft 000k 0 0000 in @ Left Cant Location = 000ft OOOkft 000k 0 0000 in Rev 560100 General Timber Beam Page 1 Description B20 General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density 35x95 3 500 in 9 500 in Sawn 1 000 Pin Pin 35 000 pcf Center Span 11 00ft Left Cantilever ft Right Cantilever ft Truss Joist MacMillan Parallam 2 OE Fb Base Allow 2 900 Opsi Fv Allow 290 Opsi Fc Allow 650 Opsi E 20000ksi Lu Lu Lu 000 ft 000 ft 000 ft Full Length Uniform Loads Center DL Left Cantilever DL Right Cantilever DL O^^ :& ISummary >J Span= 11 00ft Beam Width = Max Stress Ratio Maximum Moment I Allowable Max Positive Moment Max Negative MomentiMax @ Left Support Max @ Right Support Max M allow fb 191 023 psi Fb 2 900 00 psi Deflections 3 500m x 838k 000k 000 k 000 k 1272 fv Fv Center Span Dead Load Deflection Location Length/Defl Camber ( using 1 5 * D L Defl @ Center ©Left 0 207 in 5500ft 6381 ) 0 310 in 0 000 in 306 00 #/ft #/ft #/ft Depth = 9 5m Ends 0659 1 84 kft 127 kft LL 24000 #/ft LL #/ft LL #/ft are Pin Pin Maximum Shear* Allowable ft at 5 500 ft Shear ft at 0 000 ft ft ft 118 78 psi 290 00 psi Total Load 0 365 in 5500ft 361 70 Camber Reactions Left DL 1 73 k Right DL 1 73 k Left Cantilever Deflection Length/Defl Right Cantilever Deflection Length/Defl ™ \J ^,ff Sffl^. 1 5 @ Left @ Right ©Left @ Center @ Right Max Max Dead Load 0 000 in 00 0 000 in 00 1 — ~*^ ^ ~* "* ~~ '*v ^f^"l Beam Design OK 39k 96 k 305k 305k 0000m l 0 310m 0 000 m 305k 305k f_ — ^-^^ ^^ &&%'•>" "~~^s l Total Load 0 000 in 00 0 000 in 00 @ Right 0 000 in Stress Calcs Bending Analysis Ck 21 298 Cf 1 000 © Center © Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Le 0 000 ft Sxx 52 646 m3 Area Rb 0 000 Cl 0 000 Max Moment Sxx Reg d 8 38 k ft 34 68 m3 0 00 k ft 0 00 m3 0 00 k ft 0 00 m3 © Left Support @ Right Support 3 95 k 3 95 k 13619 m2 13619 m2 290 00 psi 290 00 psi 3 05 k Bearing Length Req d 3 05 k Bearing Length Reqd 33 250 m2 Allowable fb 2 900 00 psi 2 900 00 psi 2 900 00 psi 1 340 in 1 340 m Rev 560100 General Timber Beam Page 2 Description B20 ! Query Values M V & D @ Specified Locations @ Center Span Location = 0 00 ft @ Right Cant Location = 0 00 ft @ Left Cant Location = 0 00 ft Moment 000k ft 000k ft 000k ft Shear 305 k 000 k 000 k Deflection 0 0000 in 0 0000 in 0 0000 in I Rev 560100 General Timber Beam Page 1 Description B21g General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name Beam Width Beam Depth Member Type Bm Wt Added to Load Dur Factor Beam End Fixity Wood Density Prllm 7 0x140 7 000 in 14 000 in Sawn Loads 1 000 Pin Pin 35000pcf Center Span Left Cantilever Right Cantilever Truss Joist MacMillan Fb Base Allow Fv Allow Fc Allow E 1200ft ft ft Parallam 2 OE 2 900 0 psi 2900 psi 650 0 psi 20000ksi Lu Lu Lu 000 ft 000 ft 000 ft Full Length Uniform Loads t ^ *ff?W#<^~ Center Left Cantilever Right Cantilever Point Loads Dead Load Live Load distance !*! DL DL DL Ibs Ibs 0000ft 306 3 191 Olbs 2 788 0 Ibs 7000ft 00#/ft #/ft #/ft 840 0 Ibs 448 0 Ibs 10000ft LL LL LL 24000 6 900 0 Ibs 3 500 0 Ibs 5000ft #/ft #/ft #/ft Ibs Ibs 0000ft Ji£. ** W iffi &>/%%; !r Ibs Ibs 0000ft ™£™. J Ibs Ibs 0000ft L Summary \\ Span= 12 00ft Beam Width = 7 000m x Max Stress Ratio Depth = 14 in Ends are Pin Pin Beam Design OK 0973 1 Maximum Moment Max Max Max Max Max fb Fb Allowable Positive Moment Negative Moment @ Left Support @ Right Support M allow 2 822 90 psi 2 900 00 psi 53 79k 000k 000 k 000 k 5526 fv Fv ft ft ft ft 538 k ft 553 k ft at at 178 42 psi 290 00 psi Maximum Shear* 1 5 040 ft 0000 ft Reactions Left DL Right DL Allowable Shear Camber 747 k 742 k 5 @ Left @ Right ©Left @ Center @ Right Max Max 175 k 284 k 12 19k 1231 k 0 000 in 0 366m 0 000 m 12 19k 12 31 k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 @ Center @ Left @ Right Dead Load 0 244 in 5952ft 5894 * D L Defl ) 0 366 in 0 000 in 0 000 in Total Load 0401 in 5952 ft 35923 Left Cantilever Deflection Length/Defl Right Cantilever Deflection Length/Defl Dead Load 0 000 in 00 0 000 in 00 Total Load 0 000 in 00 0 000 in 00 Rev 560100 General Timber Beam Page 2 J Description B21g Stress Caics Bending Analysis Ck 21 298 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Query Values 0000ft 0000 Max Moment 53 79 k ft 000 k ft 000 k ft @ Left Support 17 30 k 59 664 m2 290 00 psi 12 19 k 1231 k M V & D @ Specified Locations @ Center Span Location = @ Right Cant Location = @ Left Cant Location = 000 ft 000 ft 000 ft Sxx 228 667 m3 Cl 0 000 Sxx Req d 222 59 m3 0 00 m3 0 00 m3 @ Right Support 1749 k 60 294 m2 290 00 psi Bearing Length Req d Bearing Length Req d Moment 000k ft 000k ft 000k ft Area 98 000 m2 Allowable fb 2 900 00 psi 2 900 00 psi 2 900 00 psi 2 679 in 2 706 in | Shear Deflection 1219k 00000 in 0 00 k 0 0000 in 0 00 k 0 0000 in Rev 560100 General Timber Beam Page 1 Description B21e General Informationi. ^ Section Name Beam Width Beam Depth Member Type Bm Wt Added to Load Dur Factor Beam End Fixity Wood Density Prllm 10 Loads 5x140 10500m 14000m Sawn 1 330 Pin Pin 35000pcf Calculations Center Span Left Cantilever Right Cantilever Truss Joist MacMillan Fb Base Allow Fv Allow Fc Allow E are designed 12 00ft ft ft Parallam 2 OE 2 900 Opsi 290 Opsi 650 Opsi 2 000 0 ksi to1997NDSand Lu Lu Lu 1997 UBC 000 000 000 ftftft Requirements [ Full Length Uniform Loads 1 *" w ft i.&v xv .viiW&SiS Center Left Cantilever Right Cantilever DL DL DL ¥'M&1 A ^ 306 00 #/ft #/ft #/ft sjj&s- A^ffi .* ~-. LL LL LL i>. fjw v ~^. ' 'm>,v i *jft* ^ /* rtsf m~ 'ass" rr-^i^ss^i.] 240 00 #/ft #/ft #/ft Point Loads Dead Load 5 880 0 Ibs Live Load Ibs distance 8000ft «aiii;iz-,jiiiL^, ,j£y \ y Summary fe| Span= 12 00ft Beam Width = Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 2 258 72 psi Fb 3 857 00 psi 3 1 91 0 Ibs 840 0 Ibs 6 900 0 Ibs Ibs 2 788 0 Ibs 448 0 Ibs 3 500 0 Ibs Ibs 7000ft 10000ft 5000ft 0000ft 0 10 500m x Depth = 14 in Ends are Pin Pm 0586 1 64 6 k ft Maximum Shear 110 2k ft Allowable 64 56k ft at 6576ft Shear 0 00 k ft at 0 000 ft 0 00 k ft Camber 000 k ft 11025 Reactions fv 1 59 54 psi Left DL 9 50 k Fv 385 70 psi Right DL 11 41 k *1 5 @ Left @ Right @ Left @ Center @ Right Max Max .,< <J»*s. v*£ _ XttW Ibs Ibs Ibs Ibs 000ft 0000ft Beam Design OK 235 k 567 k 1422k 1630k 0000 in 0 343 in 0 000 in 1422k 1630k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center ©Left @ Right ™™JE 'V'11-", :Dead Load 0 229 in 6096ft 6289 Defl ) 0 343 in 0 000 in 0 000 in Total Load 0 333 in 6048ft 43202 Left Cantilever Deflection Length/Defl Right Cantilever Deflection Length/Defl Dead Load 0 000 in 00 0 000 in 00 Total Load 0 000 in 00 0 000 in 00 Rev 550 100 Description B21e General Timber Beam Page 2 I Stress Caics | Bending Analysis Ck 18468 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction Query Values 0000ft 0000 Max Moment 64 56 k ft 000 k ft 000 k ft @ Left Support 2033 k 52 707 m2 385 70 psi 1422 k 1630 k M V & D @ Specified Locations @ Center Span Location = @ Right Cant Location = @ Left Cant Location = 000 000 000 Sxx 343 000 in3 Cl 0 000 Sxx.Regd 200 87 m3 0 00 m3 0 00 m3 @ Right Support 2345 k 60 804 m2 385 70 psi Bearing Length Req d Bearing Length Reqd Moment ft 000k ft ft 0 00 k ft ft 0 00 k ft Area 147000m2 Allowable fb 3 857 00 psi 3 857 00 psi 3 857 00 psi 2 084 in 2 389 in Shear Deflection 1422k 00000 in 0 00 k 0 0000 in 0 00 k 0 0000 in Rev 560100 General Timber Beam Page 1 i Description B22g General Information Section Name Beam Width Beam Depth Member Type Bm Wt Added to Load Dur Factor Beam End Fixity Wood Density Prllm Loads 3 5x14 0 3 500 in 14000m Sawn 1 000 Pin Pin 35 000 pcf Calculations Center Span Left Cantilever Right Cantilever Truss Joist MacMillan Fb Base Allow Fv Allow Fc Allow E are designed 1300ft ft ft Parallam 2 OE 2 900 0 psi 2900 psi 6500 psi 2 000 0 ksi to 1997 NDS and Lu Lu Lu 1997 UBC Requirements 0 0 0 00 00 00 ftftft f ! Full Length Uniform Loads t - „ _. ^V ™-*2 Center Left Cantilever Right Cantilever !*>» ~?°-*i DL DL DL ^ «$. v^ ' !M 436 00 #/ft #/ft #/a ™ ww K- LL LL LL =!"' 1 *«' %• „.. 44000 #/ft #/ft rr/tt i Summary j -^^^ * "Bea OK Span= 13 00ft Beam Width = 3 500m x Depth = 14 in Ends are Pin Pin Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max IVI allow fb 1 968 67 psi Fb 2 900 00 psi Deflections Center Span Deflection Location Length/Def! Camber ( using 1 5 * D L @ Center © Left © Right Stress Calcs Bending Analysis Ck 21 298 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction 0679 1 188 kft 276 kft 1 8 76 k ft at 6 000 kft at 13 000 k ft 000 k ft 2763 fv 145 58 psi Fv 290 00 psi Dead Load Total Load 0180 in 0356 6 500 ft 6 500 867 5 437 63 Defl ) 0 270 in 0 000 in 0 000 in ,...m—,. ,..v^. -_^_ „«* «._« 0 000 ft Sxx 0 000 Cl Max Moment 1 8 76 k ft 000 kft 000 kft @ Left Support (5 7 13 k 24 598 m2 290 00 psi 577 k 577 k Maximum Shear Allowable 500 ft Shear 000 ft Camber Reactions Left DL 2 91 k Right DL 291 k Left Cantilever in Deflection ft Length/Defl Right Cantilever Deflection Length/Defl *, ~i*~~ V .~~iiu& ~™>*r ~&vmam,^Hum« 114333m3 Area 0000 * 1 5 71k 142 k @ Left 5 77 k ©Right 577k ©Left 0000 in ©Center 0270m ©Right 0000 in Max 577k Max 5 77 k fDead Load Total Load 0 000 in 0 000 in 00 00 0 000 in 0 000 in 00 00 F 49 000 m2 Sxx Reg d Allowable fb 77 62 m3 2 0 00 m3 2 0 00 in3 2 3 Right Support 7 13 k 24 598 m2 290 00 psi Bearing Length Reqd Bearing Length Reqd 900 00 psi 900 00 psi 900 00 psi 2 537 in 2 537 in I I I j Query Values I ffeS General Timber Beam Page 2 =13 I Description B22g M V & D @ Specified Locations Moment Shear Deflection @ Center Span Location = 000ft OOOkft 577k 0 0000 in @ Right Cant Location = 000ft OOOkft 000k 0 0000 in @ Lett Cant Location = 000ft OOOkft 000k 0 0000 in Rev 560100 General Timber Beam Page 1 Description B22e General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements 1 Section Name Prllm 35x140 Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density 3 500 in 14000m Sawn 1 330 Pin Pin 35 000 pcf Center Span Left Cantilever Right Cantilever 1300ft Lu 000ft ft Lu 0 00 ft ft Lu 0 00 ft Truss Joist MacMillan Parallam 2 OE Fb Base Allow Fv Allow Fc Allow E 2 900 0 psi 2900 psi 650 0 psi 20000ksi I Full Length Uniform Loads [> I A -. ,&'" ™ mi~~ fKiS. "'" "" '"'£- Wff. Center DL Left Cantilever DL Right Cantilever DL Sifsffi a ™ w K&SS 436 *• »„ '"• =£ — f**fl;?,. 00 #/ft LL #/ft LL #/ft LL SSSff ft™*1" ™ «$£*f ... „$&£&&:£• $, „„* •'" Iv-^SSS^™™. W^ST'nSv^, ^*™-v^S.~Kfc^, ™l/fl 440 00 #/ft #/ft #/ft i Point Loads Jj Dead Load 5 880 0 Ibs Live Load Ibs distance 1 000ft Ibs Ibs 0000ft Ibs Ibs 0000ft Ibs Ibs Ibs Ibs Ibs Ibs Ibs Ibs 0000ft 0000ft 0000ft 0000ft I Summary J*j Beam Design OK Span= 13 00ft Beam Width = 3 500in x Depth = 14 in Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 2 289 33 psi Fb 3 857 00 psi 0594 -| 21 8k ft 367 k ft 21 81k ft at 000k ft at 000 k ft 000 kft 3675 fv 159 43 psi Fv 385 70 psi Ends are Pin Pin Maximum Shear* 1 5980ft 0000 ft Reactions LeftDL Right DL Allowable Shear Camber 834 k 336k 5 @ Left @ Right @ Left @ Center @ Right Max Max 78k 189 k 11 20k 622k 0000 in 0370m 0 000 m 11 20k 622k j Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center @ Left @ Right Dead Load 0 247 in 6240ft 6322 Defl) 0 370 in 0 000 in 0 000 in Total Load 0 423 in 6344ft 36860 Left Cantilever Deflection Length/Defl Right Cantilever Deflection Length/Defl Dead Load 0 000 in 00 0 000 in 00 _«_^JTotal Load 0 000 in 00 0 000 in 00 1 Rev 560100 I , „ „, , ..^ . Description B22e , Stress Calcs Bending Analysis Ck 18468 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction [Query Values " 0000ft 0000 Max Moment 21 81 k ft 000 k ft 000 k ft @ Left Support 646 k 16736 m2 385 70 psi 11 20 k 622 k M V & D @ Specified Locations @ Center Span Location = @ Right Cant Location = @ Left Cant Location = 000 000 000 General Timber Beam Sxx 114333in3 Cl 0 000 Sxx Req d 67 86 in3 0 00 m3 0 00 m3 @ Right Support 781 k 20 254 m2 385 70 psi Bearing Length Reqd Bearing Length Reqd Moment ft 0 00 k ft ft 0 00 k ft ft 0 00 k ft Page 2 I. . „, - „ ..,_ - rf .„. ^, ,._„.. |= [ Area 49 000 m2 Allowable fb 3 857 00 psi 3 857 00 psi 3 857 00 psi 4 923 in 2 736 in [ Shear Deflection 1 1 20 k 0 0000 in 0 00 k 0 0000 in 0 00 k 0 0000 in Rev DS0100 General Timber Beam Page 1 Description „ __ B23 General Information Section Name Prllm 5 25x9 5 Beam Width 5 250 in Beam Depth 9 500 in Member Type Sawn Bm Wt Added to Loads Load Dur Factor 1 000 Beam End Fixity Pin Pin Wood Density 35000pcf Full Length Uniform Loads Center DL Left Cantilever DL Right Cantilever DL Calculation Center Span Left Cantilever Right Cantilever Truss Joist MacMillan Fb Base Allow Fv Allow Fc Allow E 260 00 #/ft LL #/ft LL #/ft LL 3 are designed to 1997 NDS and 1997 UBC Requirements 1200ft Lu 000ft ft Lu 0 00 ft ft Lu 0 00 ft Parallam 2 OE 2 9000 psi 290 0 psi 650 0 psi 2 000 0 ksi 48600 #/ft #/ft#m J iprr Summary ^^ Span= 12 00ft Beam Width = 5 250m x Max Stress Ratio Maximum MomentAllowable Max Positive Moment Max Negative Moment Max @ Left Support Max @ Right Support Max M allow fb 2 073 66 psi Fb 2 900 00 psi 1365k 000k 000 k 000 k 1908 fv Fv Depth = 9 5m 0715 1 136kft 19 1 k ft ft atft at ft ft 119 29 psi 290 00 psi Ends are Pin Pin Beam Design OK Maximum Shear* 1 6000ft 0000 ft Reactions Left DL Right DL Allowable Shear Camber 1 63 k 1 63k 5 @ Left @ Right ©Left @ Center @ Right Max Max 59k 14 5 k 455k 455k 0000 in 0254m 0 000 in 455k 455k Deflections Center Span Deflection Location Length/Defl Camber ( using 1 5 * D L @ Center @ Left @ Right Dead Load 0 169 in 6000ft 8509 Defl) 0 254 in 0 000 in 0 000 in Total Load Left Cantilever 0 471 in Deflection 6 000 ft Length/Defl 305 43 R,gnt cantilever Deflection Length/Defl rDead Load Total Load 0 000 in 0 000 in 00 00 0 000 in 0 000 in 00 00 Stress Calcs [1 Bending Analysis Ck 21 298 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction i&.rf-Sft J- ^ .iiS&V;*^ 0000ft 0000 Max Moment 1365 k ft 000 k ft 000 k ft @ Left Support 595 k 20516 in2 290 00 psi 455 k 455 k ""*" " * "™" Sxx 78 969 m3 Area Cl 0 000 Sxx Req d 56 47 m3 0 00 m3 0 00 m3 @ Right Support 595 k 20516 m2 290 00 psi Bearing Length Req d Bearing Length Reqd """"*" ~~ *""' """""" '""^ 49 875 m2 Allowable fb 2 900 00 psi 2 900 00 psi 2 900 00 psi 1 333 in 1 333 in Rev 560100 . _ , _ D=^= •>General Timber Beam Page 2 Description B23 Query Values M V & D @ Specified Locations Moment Shear Deflection @ Center Span Location = 000ft 000k ft 455k 0 0000 in @ Right Cant Location = 000ft OOOkft 000k 0 0000 in @ Left Cant Location = 000ft OOOkft 000k 0 0000 in pq-o Rev 3o0100 General Timber Beam Page 1 Descnption B24e General Information Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name Prllm Beam Width Beam Depth Member Type Bm Wt Added to Loads Load Dur Factor Beam End Fixity Wood Density _____ — ~ — ^^ _ 70x140 7 000 in 14000m Sawn 1 330 Pin Pin 35000pcf Center Span 1200ft Left Cantilever ft Right Cantilever ft Truss Joist MacMillan Parallam 2 OE Fb Base Allow 29000psi Fv Allow 2900psi Fc Allow 6500 psi E 2 000 0 ksi Lu Lu Lu 000 ft 000 ft 000 ft Full Length Uniform Loads —-,—_ SZ, mii.iM.vtiM..... .i Center Left Cantilever "&^m%3¥',t Right Cantilever Point Loads Dead Load Live Load distance 6 900 0 Ibs 3 500 0 Ibs 9000ft DL DL DL •• • ^ 350 Ibs Ibs 0000ft 00#/ft #/ft #/ft 0 Ibs Ibs 000ft LL LL LL 6 3 *• &, 500 900 0 Ibs 500 0 Ibs 3 000 ft 00 #/ft #/ft #/ft 0 •^^•M. Ibs Ibs 000ft ftf Ibs Ibs 0000ft —*» • • t j Ibs Ibs 0000ft 'Summary j i**. ai^^-SJ Span= 12 00ft Beam Width = 7 000m x Max Stress Ratio Maximum Moment Allowable Max Positive Moment Max Negative Moment Max @ Left Support Max@ Right Support Max M allow fb 2 462 73 psi Fb 385700psi 46 93k 000k 000 k 000 k 7350 fv Fv Depth = 14 in 0639 1 469 kft 735 kft ft at ft at ft ft 224 02 psi 385 70 psi Ends are Pin Pin Beam Design OK Maximum Shear * 1 6 000 ft 0000 ft Reactions LeftDL Right DL Allowable Shear Camber 914k 9 14 k 5 @ Left @ Right @ Left @ Center @ Right Max Max 220 k 378 k 1564k 1564k 0000 in 0358m 0 000 in 1564k 1564k Deflections Center Span Deflection Location Length/Defl Camber ( using 15* @ Center @ Left @ Right Dead Load 0 239 in 6000ft 6029 D L Defl ) 0 358 in 0 000 in 0 000 in Total Load 0 405 in 6000 ft 35537 Left Cantilever Deflection Length/Defl Right Cantilever Deflection Length/Defl Dead Load 0 000 in 00 0 000 in 00 Total Load 0 000 in 00 0 000 in 00 , Rev 560100 Description B24e ' Stress Calcs Bending Analysis Ck 18468 Le Cf 1 000 Rb @ Center @ Left Support @ Right Support Shear Analysis Design Shear Area Required Fv Allowable Bearing @ Supports Max Left Reaction Max Right Reaction ! Query Values •"MSSKt" ~ ** ~ " 0000ft 0000 Max Moment 46 93 k ft 000 k ft 000 k ft @ Left Support 21 95 k 56921 m2 385 70 psi 1564 k 1564 k M V & D @ Specified Locations @ Center Span Location @ Right Cant Location = @ Left Cant Location = 000 000 000 General Timber Beam ^^^^^^^^^^^^^^^^^m^,^. ^j~tm&£&&»,», *-, Sxx 228 667 m3 Cl 0 000 Sxx Req d 14601 m3 0 00 m3 0 00 in3 @ Right Support 21 95 k 56 921 m2 385 70 psi Bearing Length Reqd Bearing Length Req d • •<* V x, "W ' ?"' Moment ft 0 00 k ft ft 000k ft ft 0 00 k ft »**Jm~** „„.*», ^^^^^^. Area 98 000 m2 Allowable fb 3 857 00 psi 3 857 00 psi 3 857 00 psi 3 438 in 3438 in Shear 1564 k 000 k 000 k Page 2 I' 1 f Deflection 0 0000 in 0 0000 in 0 0000 in I vJl 1 1 1 • I •1 1 1 1 1 1 Floras Lund Consultants 7220 Trade St Suite 120 San Diego, CA 92121 (858) 566-0626 (858) 566-0627 (FAX) Height= 195 Loads Size of Stud E= Fc= Fb= Vertical Pd= Pl= Lateral Mw= Load Duration Cd= Repetitive Cr= Compression Cf= Bending Cf= Fire Treatment Cft= Fc*= 2153 F'b= 2153 Project Buena Vista Job # 04138 Designer Kevin Fagan g^.., .-^ fr-!L.t& PLOREB LUND EXTERIOR BALLOON FRAMED STUD CALCULATION ft Size 2x6 DFL-1 Spacing 12 in oc Vertical Wdl= 305 plf WIN 164 plf Lateral Wwmd= 20 psf Width 1 5 in Area= 8 25 in 2 Depth 5 5 in Sx= 7 56 in 3 lx= 20 80 in 4 1700 ksi 1500 psi 1000 psi 305 0 Ibs 1640 Ibs Ptotal= 4690 Ibs 950 6 Ib-ft 1 6 1 15 1 15 1 5 078 psi psi c= 0 8 Fcex= 281 7499 psi Cp= 013 Fc= Cp*Fc*= 274 Fee / Fc*= 0 1 31 (1 +Fce / Fc*) / 2c= 0 71 psi fc=P/A= fb=M/S= 56 8 psi 15084 psi Dead + Live + Wind (fc / Fc) 2+ (1/ (1-fc / Fee ) x fb / Fb < 1 0 CF= 0921 <10OK Dead + Live fc/F'c < 1 0 CF =0208 <10OK 1 1 1 • 1 •1 1 1 1 1 1 Floras Lund Consultants 7220 Trade St Suite 120 San Diego, CA 92121 (858) 566-0626 (858) 566-0627 (FAX) Height= 9 1 Loads Size of Stud E= Fc= Fb= Vertical Pd= P!= Lateral Mw= Load Duration Cd= Repetitive Cr= Compression Cf= Bending Cf= Fire Treatment Cft= Fc*= 1292 F'b= 1507 [ EXTERI ft Vertical Lateral Width Depth 1400 900 700 10933 13333 2346 1 6 1 15 1 15 1 5 078 psi psi Project Buena Vista Job # 04138 Designer Kevin Fagan — H ,«•,. &-|U,lk5 FLOREB LUND OR STUD CALCULATION Size 2x6 DFL - S Spacing 16 in o c Wdl= 820 plf Wll= 1000 plf Wwmd= 17 psf 1 5 in Area= 8 25 in 2 5 5 in Sx= 7 56 in 3 lx= 20 80 in 4 ksi psi psi Ibs Ibs Ptotal= 24267 Ibs Ib-ft c= 08 Fcex= 1065441 psi Cp= 0 62 F'c= Cp*Fc*= 802 Fee / Fc*= 0 825 (1+Fce/Fc*)/2c= 1 14 psi fc=P/A= fb=M/S= 294 1 psi 372 3 psi Dead + Live + Wind (fc / F'c) 2+ (1/ (1-fc / Fee ) x fb / F'b < 1 0 CF= 0476 <10OK Dead + Live fc/F'c < 1 0 CF =0367 <fOOK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Flores Lund Consultants 7220 Trade St Suite 120 San Diego, CA 92121 (858) 566-0626 (858) 566-0627 (FAX) Height= 9 1 Loads Size of Stud E= Fc= Fb= Vertical Pd= Pl= Lateral Mw= Load Duration Cd= Repetitive Cr= Compression Cf= Bending Cf= Fire Treatment Cft= Fc*= 1292 F'b= 1507 Fcex= 1065441 Cp= 0 62 Fc= Cp*Fc*= fc=p/A= 294 1 fb=M/S= 1095 Dead + Live + Wind (fc/Fc)2+(1/(1-fc/Fce CF= 0 235 Dead + Live fc/F'c < 1 0 CF = 0 367 <J3 Project Buena Vista Job # 04138 Designer Kevin hagan PLC FLOBEB LUND • '_==L^^_^_ UUMEiULIAM T t5 INTERIOR STUD CALCULATION ft Size 2x6 DFL-S Spacing 16 in o c Vertical Wdl= 820 plf Wll= 1000 plf Lateral Wseismic= 5 psf Width 1 5 in Area= 8 25 in 2 Depth 5 5 in Sx= 7 56 in 3 lx= 20 80 in 4 1400 I'si 900 psi 700 psi 10933 Ibs 1333 3 Ibs Ptotal= 24267 Ibs 69 0 Ib-ft 1 6 1 15 1 15 1 5 078 psi psi c= 0 8 psi Fee / Fc*= 0 825 (1 +Fce / Fc*) / 2c= 1 14 802 psi psi psi ) x fb / F'b < 1 0 <1 OOK <1 OOK PROJECT Buena Vista Apartments Post Calculations only with Vertical Load 4x4 P total = Fc= FC(perp)= 4990 Ibs 1700 psi 1500 psi 625 psi Area : Sx= lxx= Sy= iyy= Lumber Size B x D (inches) 35 35 12 25 inA2 7 1458 inA3 12505 mA4 71458 mA3 12505 mA4 Height = Adjustment Factors Load Duration(Cd) = Size Factor(Cf) = Stability Factor(Cp) = 9ft 1 1 15 0 28734 Fc' = P total = P allow = Fc' x A 496 psi 4990 Ibs 6072 Ibs P allow > P total OK c=08 Fc*= 1725 Fcex= 535 6224 Fcex/Fc*= 0310506 (1+Fcex/Fc)/(2*c)= 0819066 Bearing Compression P tota l= 4990 Ibs P allow = Fc(perp) x A 7656 25 Ibs PtotaKFallow OK PROJECT Buena Vista Apartments Post Calci lations only with Vertical Load 6x4 P total = 7460 Ibs E= 1700 psi Fc= 1500 psi Fc(perp)= 625 psi Lumber Size B x D (inches) 55 35 Area= 1925mA2 Sx= 11229mA3 lxx= 19651 mM Sy= 17646mA3 lyy= 48 526 mM Height = 9 ft Admstment Factors c= 08 Load Duration(Cd) = Size Factor(Cf) = Stability Factor(Cp) = 1 1 15 0 28734 Fc*= 1725 Fcex= 535 6224 Fcex/Fc*= 0310506 (1+Fcex/Fc)/(2*c)= 0819066 Fc1 = 496 psi Bearing Compression P total = 7460 Ibs P tota 1= 7460 Ibs P allow = Fc1 x A P allow = Fc(perp) x A 9541 Ibs = 12031 25 Ibs P allow > P total OK P total < Fallow OK PROJECT Buena Vista Apartments Post Calculations only with Vertical Load (jjfff 8x4 P total = E = Fc= FC(perp)= 9640 Ibs 1700 psi 1500 psi 625 psi Area Sx= lxx= Sy= lyy= Lumber Size B x D (inches) 35 75 26 25 inA2 32813 inA3 123 05 mM 15313 mA3 26 797 mM Height = Adiustment Factors Load Duration(Cd) = Size Factor(Cf) = Stability Factor(Cp) = 9ft 1 1 15 0 79752 Fc' = P total = P allow = Fc1 x A 1376 psi 9640 Ibs 36113 Ibs P allow>P total OK c=08 Fc*= 1725 Fcex= 2459 491 Fcex/Fc*= 1 425792 (1+Fcex/Fc)/(2*c)= 1 51612 Bearing Compression P tota l= 9640 Ibs P allow = Fc(perp) x A = 1640625 Ibs P total < P allow OK PROJECT Buena Vista Apartments Post Calculations only with Vertical Load 6x6 P total = E = Fc= FC(perp)= 17810 Ibs 1700 psi 1500 psi 625 psi Area : Sx= lxx= Sy= lyy= Lumber Size B x D (inches) 55 55 30 25 mA2 27 729 mA3 76 255 mM 27 729 mA3 76 255 mM Height = Adjustment Factors Load Duration(Cd) = Size Factor(Cf) = Stability Factor(Cp) = 9ft 1 1 15 0 59348 Fc' = P total = P allow = Fc1 x A 1024 psi 17810 Ibs 30968 Ibs P allow > P total OK c=08 Fc*= 1725 Fcex= 1322659 Fcex/Fc*= 0 766759 (1+Fcex/Fc)/(2*c)= 1 104224 Bearing Compression Ptotal= 17810 Ibs P allow = Fc(perp) x A = 1890625 Ibs P total < Fallow OK PROJECT Buena Vista Apartments Post Calculations only with Vertical Load 8x6 P total = E = Fc= FC(perp)= 20075 Ibs 1700 psi 1500 psi 625 psi Area: Sx= ixx= Sy= lyy= Lumber Size B x D (inches) 55 75 41 25 mA2 51 563 mA3 19336 mM 37813 mA3 103 98 mM Height = Adiustment Factors Load Duration(Cd) = Size Factor(Cf) = Stability Factor(Cp) = 9ft 1 1 15 0 79752 Fc' = P total = P allow = Fc' x A 1376 psi 20075 Ibs 56749 Ibs P allow > P total OK c=08 Fc*= 1725 Fcex= 2459 491 Fcex/Fc*= 1 425792 (1+Fcex/Fc)/(2*c)= 1 51612 Bearing Compression P tota l= 20075 Ibs P allow = Fc(perp) x A = 2578125 Ibs PtotaKFallow OK FLORESLUND JOB. C O N S U LTANTS SHEET NO . 7220 Trade Street, Suite 120 San Diego, California 92121 2325 (858) 566 0626 Fax (858) 566 0627 CALCULATED BY_ CHECKED BY SCALE OF_ DATE. DATE. ri JD .03 CO •o CO > 03 0 _Q ^ ODQ -D o CMr^ •*o o ^ o>o o E•ara CD au ~| 6 au - 8 3u - Support L ne 7 Support L ne 6 CO 0)c -coQ. Q.3 CO CO CO> 03 O C 0 =3 O DQ -> 10 r^o m p: -*o o ?= O)o o ET3CD ^ t RUrT! 5R&S CnwrRRTF £ /I t i Hi wusion 6 i/ Date /H/ ULo 11111° 11 -"b ib rtM l-ile Suppjrt l me -i -1- PROJECT TITLE Buens \ sts 2 - MEMBER ELe tfti j y /-* r - r~ r f \ " i b^_ .,_ u. ^ 3 2 Us i —^ - ' ' AD^Pl <•«! t° i 0 4 AD i I ' 4 - TENDON1 PROFi' t 2 Caivim Liiiu -1 3 CGS O titc-rioe i n]4 5 Fo ce 1 5 - BOTTOM REBAR ' 5 1 Userselertcci 5 2 User sslecteci j 5 3 ADAPT -el „' d | 5 A ADADT selccied , 6 - REQUIRED & PROVIDE! BARS "X OS H/3XZ6 / i 00 8 258 f 1 25 8 258 25 1 25 S 258 25 1 25 8 2j8 25 1 25 8 258 25 1 25 8 258 25 1 25 8 258 25 1 25 8 258 25 1 25 4 75B75 [ ~S kip ] [536 kips] [536 kips) [536 kips] (536 kips] [536 kips] [536 kips] [536 kips] 6 1 Top Bars ?l I in2! 2. irequired — —I III 07IIJ I j H 6 2 Bottom Bars m°ay 7 PI IMPWIMC; QWFAP OK=Acceptable NG=No Good „ *=not applicable or not performed 7 1 Stress Ratio i 7 2 Status 8 - LEGEND /• 12 000 f i I I ][ 2 07 2 01 i N I 0 00 0 00 u I 72 65 'l I!'I I] I OK OK 1 1 95 1 91 II [ ] 0 00 0 00 I j I 66 63 OK OK < Stressing End ^ Dead End i, | | 1 i i i 1 86 1 90 0 00 0 00 U 61 61 1 OK OK 200 ,|| IfI l Jjlll 000 I I I I 61 OK I I I"1 1 ' 111 2 33 2 07 ' 0 00 0 00 1 I I i LT 68 63 OK ok 9 - DESIGN PARAMETERS 9 1 Code ACI f c = 3 9999 ksi fy = ' 0 Ksi (longitudinal) fy = 60 ksi (shear) fpu = 269 99 ksi 9 2 Rebar Cover Top = 1 m Bottom = 1 m Rebar Table ASTWI US Customary bars (Kon redistributed Moments) 9 3 Stressing fpj = 8 fpu 9 4 Strand Area = 153 in2 10-DESIGNER'S NOTES FLORES LUND CONSULTANTS ADAPT CORPORATION STRUCTURAL CONCRETE SOFTWARE SYSTEM ADAPT-PT FOR POST-TENSIONED BEAM/SLAB DESIGN I Version 6 17 AMERICAN (ACI-318-99/UBC-1997) | ADAPT CORPORATION - Structural Concrete Software System | 1733 Woodside Road, Suite 220, Redwood City, California 94061 | Phone (650)306-2400, Fax (650)364-4678 | Email Support@AdaptSoft com, Web site http //www AdaptSoft com | DATE AND TIME OF PROGRAM EXECUTION PROJECT FILE Jan 9,2005 At Time 11 35 Support Line 3 PROJECT Buena Vista Suppoit Line 3 TITLE 1 - USER SPECIFIED GENERAL DESIGN PARAMETERS CONCRETE STRENGTH at 28 days, for BEAMS/SLABS for COLUMNS MODULUS OF ELASTICITY for BEAMS/SLABS for COLUMNS CREEP factor for deflections for BEAMS/SLABS CONCRETE WEIGHT SELF WEIGHT 3999 90 psi 3999 90 psi 3604 90 ksi 3604 90 ksi 2 00 NORMAL 150 00 pcf TENSION STRESS limits (multiple of (f'c)l/2) At Top At Bottom COMPRESSION STRESS limits (multiple of (f'c)) At all locations REINFORCEMENT YIELD Strength Minimum Cover at TOP Minimum Cover at BOTTOM POST-TENSIONING - - — SYSTEM Ultimate strength of strand Average effective stress in strand (final) Strand area Mm CGS of tendon from TOP Mm CGS of tendon from BOTTOM for INTERIOR spans 6 000 6 000 450 60 00 ksi 1 00 in I 00 in UNBONDED 269 99 ksi 175 00 ksi 153 mA2 1 25 in 1 25 in Page (Support Line 3)ADAPT-PT V- 6 17 ACT Mm CGS of tendon from BOTTOM for EXTERIOR spans 2 00 in Mm average precompression 150 00 psi Max spacing between strands (factor of slab depth) 8 00 Tendon profile type and support widths (see section 9) ANALYSIS OPTIONS USED Structural system (using EQUIVALENT FRAME) TWO-WAY Moments REDUCED to face of support YES Limited plastification allowed(moments redistributed) NO 2 - I N P U T GEOMETRY 211 PRINCIPAL SPAN DATA OF UNIFORM SPANS s P A N F| 01 R| LENGTH M| ft -1 3 4 1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1 21 20 20 20 20 20 20 20 21 4 06 79 79 79 79 79 79 79 55 90 WIDTH in | TOP | BOTTOM/MIDDLE! I FLANGE | FLANGE | REF DEPTH | width thick | width thick | HEIGHT in | in m | in in | in 5 6 7 8 9 10 11—- 297 285 278 271 264 257 259 274 288 291 01 20 32 48 65 81 87 03 75 02 9 9 9 9 9 9 9 9 9 9 50 50 50 50 50 50 50 50 50 50 9 50 9 50 9 50 9 50 9 50 9 50 9 50 9 50 9 50 9 50 MULTIPLIER left right — -12 n 47 45 44 43 41 41 44 47 48 13- 51 53 55 56 57 59 59 56 53 52 LEGEND 1 - SPAN C = Cantilever 3 - FORM 1 = 2 = 3 = 4 = —i 8 = Rectangular section T or Inverted L I section Extended T or L Joist Waffle section section 11 - Top surface to reference line 215-D R 0 P CAP AND DROP PANEL DATA CAPT CAPB CAPDL CAPDR DROPTL DROPTR DROPB DROPL DROPR JOINT in in in in in in in in in __! 2 3 4 5 6 7 8 9 10- 1 26 00 297 01 00 6 00 00 00 00 00 00 Page (Support Line 3}ADAPT-PT V- 6 17 ACI 2 3 4 5 6 7 8 9 10 11 15 15 15 15 15 15 15 15 15 50 50 50 50 50 50 50 50 50 00 60 60 60 60 60 60 60 60 60 00 00 00 00 00 00 00 00 00 00 30 30 30 30 30 30 30 30 30 00 00 00 00 00 00 00 00 00 00 30 30 30 30 30 30 30 30 30 00 00 00 00 00 cP'-> 0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 LEGEND DROP CAP DIMENSIONS CAPT = Total depth of cap CAPS = Transverse Width CAPDL = Extension left of joint CAPDR = Extension right of joint DROP PANEL DIMENSIONS DROPTL = Total depth left of joint DROPTR = Total depth right of joint DROPS = Transverse Width DROPL = Extension left of joint DROPR = Extension right of joint 2 2 SUPPORT WIDTH AND COLUMN DATA aurrur*.! v. WIDTH LENGTH JOINT in ft 1O -3J. 1 2 3 4 5 6 7 8 9 10 11 12 14 14 14 14 14 14 14 14 14 12 *THE COLUMN Fixed at Hinged at Fixed at Fixed at 00 00 00 00 00 00 00 00 00 00 00 -J 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 j_iuwc,i\ uwojurj B(DIA) D in in/ R 144 14 14 14 14 14 14 14 14 14 291 90 12 00 00 00 00 00 00 00 00 00 02 12 BOUNDARY CONDITION CODES both ends near end, near end, near end, LN s CBC* c. 00 00 00 00 00 00 00 00 00 00 00 (CBC) u (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) ^ uxrriljnL I^WIJUIXILN / LENGTH B(DIA) D CBC* ft in in 7 p _ n i r\ 00 00 00 00 00 00 00 00 00 00 00 (STANDARD) fixed hinged roller at at- far end far end - with rotational fixity — - at far end 00 00 00 00 00 00 00 00 00 00 00 = 1 = 2 _ "3 = 4 _, 00 00 00 00 00 00 00 00 00 00 00 x w (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) - page 4 (Support Line 3} ADAPT-PT V- 6 17 ACI 3 - D = Li INPUT DEAD LOAD LIVE LOAD APPLIED U C LOADING = UNIFORM = CONCENTRATED P = PARTIAL UNIFORM M = APPLIED MOMENT Ll = LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Unit selfweight W = 150 0 pcf Intensity ( From To ) ( M or C At) Total on Trib SPAN CLASS TYPE k/ftA2 (ft ft ) (k-ft or k ft) k/ft _!_ I I 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4-- - 4 4 4 4 4 4 -^ L L D D SW SW SW SW L L D D SW SW SW SW SW L L D D SW SW SW SW SW L L D D SW SW SW SW • — J Ll Li Ll Li P P P P Ll Li Li Ll P P P P P Li Ll Li Li P P P P P Li Li-- ~ - Li Li P P P P 4 18 20 2 18 20 2 18 20 _ _ _ 2 18 J "*"" 00 00 00 00 00 50 56 54 00 00 00 00 00 52 50 29 27 00 00 00 00 00 52 50 29 27 00oo— 00 00 00 52 50 29 ,, 21 21 21 21 18 20 21 20 20 20 20 2 18 20 20 20 20 20 20 2 18 20 20 20 -20 20 20 2 18 20 J 1 O 06 06 06 06 50 56 54 06 79 79 79 79 52 50 29 27 79 79 79 79 79 52 50 29 27 79 7979 __ _ _ _ 79 79 52 50 29 27 y ii 8 2 3 3 1 1 3 3 2 3 3 1 1 3 3 2 3 3 1 3 3 2 3 152 232 864 924 044 939 314 314 086 260 814 945 197 197 822 197 197 023 268 767 951 129 129 754 129 129 966 268 725 951 062 062 687 062 Page 5 (Support Line 3)ADAPT-PT V- 6 11 ACI h 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 SW L L D D SW SW SW SW SW L L D D SW SW SW SW SW L L D D SW SW SW SW SW L L D D SW SW SW SW SW L L D D SW SW SW SW SW p Li Li Li Li P P P P P Ll Ll Li Li P P P P P Ll Ll Ll Li P P P P P Ll Li Ll Ll P P P P P Ll Li Ll Ll P P P P p 20 2 18 20 2 18 20 2 18 20 2 18 20 2 19 21 21 00 00 00 00 00 52 50 29 27 00 00 00 00 00 52 50 29 27 00 00 00 00 00 52 50 29 27 00 00 00 00 00 52 50 29 27 00 00 00 00 00 52 50 05 03 20 20 20 20 20 2 18 20 20 20 20 20 20 2 18 20 20 20 20 20 20 2 18 20 20 20 20 20 20 2 18 20 20 21 21 21 21 2 19 21 21 79 79 79 79 79 52 50 29 27 79 79 79 79 79 52 50 29 27 79 79 79 79 79 52 50 29 27 79 79 79 79 79 52 50 29 27 79 55 55 55 55 52 50 05 03 55 3 ] 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 3 3 2 3 3 1 1 3 3 2 3 3 Ub2 909 268 682 951 994 994 619 994 994 852 268 639 951 926 926 551 926 926 848 268 636 951 947 947 572 947 947 957 268 718 951 087 087 712 087 087 079 260 809 945 232 232 857 232 232 e10 Page 6 (Support Line 3)ADAPT-PT V- 6 17 ACT 10 10 10 10 10 10 10 10 L L D D SW SW SW SW Ll Li Ll Ll P P P P 00 00 00 00 00 52 2 45 4 40 4 4 4 4 2 4 4 90 90 90 90 52 45 40 90 1 1 3 3 2 2 145 262 859 946 255 255 880 880 NOTE LIVE LOADING is SKIPPED with a skip factor of 1 00 3 1 - LOADING AS APPEARS IN USFR S INPUT SCREEN PRIOR TO PROCESSING SPAN -1J_ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 — 7 7 7 7 8 8 UNIFORM (k/ft"2), CLASS TYPE LINE(k/ft) O , Q ^1z. L L D D L L D D L L D D L L D D L L D D L L D D- L L D D L L J L L L L L L L L L L L L L L L L L L L L L L L -- L - L L L L L L ^ — 1 152 1 232 864 924 1 086 1 260 814 945 1 023 1 268 767 951 966 1 268 725 951 909 1 268 682 951 852 1 268 639 951 - 848 1 268 636 951 957 1 268 ( CON or PART ) (MOMENT) ( k@ft or ft-ft } ( k-ft @ ft ) C. C. "7 O_! 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 21 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 - 20 20 20 20 20 20 20 U I U 06 06 06 06 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79_79 __ 79 79 79 79 79 79 It Page 7 (Support Lxne 3)ADAPT-PT V- 6 17 ACI 8 8 9 9 g 9 10 10 10 10 D D L L D D L L D D L L L L L I 1 L L L 1 1 1 1 718 951 079 260 809 945 145 262 859 946 00 00 00 00 00 00 00 00 00 00 20 20 21 2] 21 21 4 4 4 4 79 79 55 55 55 55 90 90 90 90 NOTE SELFWEIGHT INCLUSION REQUIRED LIVE LOADING is SKIPPED with a skip factor of 1 00 4 -CALCULATED SECTION PROPERTIES 4 2 - Computed Section Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross-sectional geometry Yt= centrondal distance to top fiber 1= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN (SEGMENT) SPPN I 1 2 3 4 5 SPAN 2 1 2 3 4 5 SPAN 3 1 2 3 4 5 SPAN 4 1 2 3 4 5 AREA in"2 0Z 7722 7722 2821 3181 3181 3069 3069 2709 3069 3069 3004 3004 2644 3004 3004 2939 2939 2579 2939 2939 26 26 60 59 59 40 40 40 40 40 04 04 04 04 04 06 06 06 06 06 I inA4 OJ 1659E+07 4350E+06 2122E+05 4148E+05 4517E+05 4432E+05 4054E+05 2038E+05 4054E+05 4432E+05 4382E+05 4000E+05 1989E+05 4000E+05 4382E+05 4332E+05 3945E+05 1940E+05 3945E+05 4332E+05 Yt ii - 13 13 4 9 9 9 9 4 9 9 9 9 4 9 9 9 9 4 9 9 3 I 00 00 75 87 87 84 84 75 84 84 82 82 75 82 82 80 80 75 80 80 Y1 iic 13 13 4 5 5 5 5 4 5 5 5 5 4 5 5 5 5 4 5 5 i 00 00 75 63 63 66 66 75 66 66 68 68 75 68 68 70 70 75 70 70 Page 8 (Support Line 3)ADAET-PT V- 6 17 ACI SPAN 5 1 2 3 4 5 SPAN 6 1 2 3 4 5 SPAN 7 1 2 3 4 5 SPAN 8 1 2 3 4 5 SPAN 9 1 2 3 4 5 SPAN 10 1 2 3 4 7 - M SPAN 1 1 2 3 4 5 6 2874 2874 2514 2874 2874 2809 2809 2449 2809 2809 2828 2828 2468 2828 2828 2963 2963 2603 2963 2963 3103 3103 2743 3103 3103 3124 3124 2764 2764 O M E N T 71 RE 18 18 18 18 18 20 20 20 20 20 77 77 76 77 77 29 29 28 29 29 13 13 13 13 13 69 69 69 69 S D U <- left* -91 -179 -144 -150 -144 -140 75 83 58 33 33 83 4282E+05 3890E+05 1891E+05 3890E+05 4282E+05 4233E+05 3835E+05 1842E+05 3835E+05 4233E+05 4248E+05 3852E+05 1857E+05 3852E+05 4248E+05 4350E+05 3965E+05 1958E+05 3965E+05 4350E+05 4457E+05 4082E+05 2063E+05 4082E+05 4457E+05 4474E+05 4100E+05 2079E+05 5198E+06 9 9 4 9 9 9 9 4 9 9 9 9 4 9 9 9 9 4 9 9 9 9 4 9 9 9 9 4 4 78 78 75 78 78 76 76 75 76 76 76 76 75 76 76 81 81 75 81 81 85 85 75 85 85 86 86 75 75 5 5 4 5 5 5 5 4 5 5 5 5 4 5 5 5 5 4 5 5 5 5 4 5 5 5 5 4 4 72 72 75 72 72 74 74 75 74 74 74 74 75 74 74 69 69 75 69 69 65 65 75 65 65 64 64 75 75 REDUCED TO FACE-OF-SUPPORT C E D DEAD LOAD -> <- midspan -> o 99 92 59 30 68 58 63 48 62 88 59 91 MOMENTS ( <- right -180 33 -144 00 -150 17 -144 08 -140 58 -139 42 k-ft) * -> Page (Support Line 3) f>i3 ADAPT-PT V- 6 11 ACI 7 8 9 10 Note * = ff -139 -138 -163 -141 jr.R-of-snnt 42 50 75 75 10 rt. 61 60 84 -56 52 34 83 42 -139 -163 -147 14 25 92 00 57 72 REDUCED LIVE LOAD MOMENTS (k-ft) <x SPAN T 1 2 3 4 5 6 7 8 9 10 Note* = J.fciJ_L" S <• max mm O T -66 -107 -105 -107 -103 -101 -100 -98 -98 -99 face-c 50 25 50 67 92 42 42 25 42 92 Df-SUI 20 -32 -16 -20 -19 -19 -19 -20 -22 28 snort j 34 77 26 22 85 33 32 67 95 35 max ^70 69 73 71 69 67 66 64 58 17 41 31 06 12 54 03 33 88 73 36 nun c. -20 -38 -38 -38 -37 -36 -35 -34 -15 -45 j 27 68 03 62 41 31 11 24 78 92 ^ .LJ-LjilL" S max mm F T -107 -105 -107 -103 -101 -100 -98 -99 -102 -3 00 25 67 83 33 42 67 08 58 09 -30 -20 -20 -19 -18 -18 -16 -27 28 10 68 76 84 15 94 26 88 19 31 47 10 -FACTORED MOMENTS REACTIONS Calculated a£ 10 1 FACTOI SPAN -\ 1 2 3 4 5 6 7 8 9 me 3 ( 1 *ED DI left" *x •> -183 07 -402 -330 -348 -331 -322 -319 -310 -360 86 74 01 42 39 61 94 61 40D + 1 70L + 1 0( JSIGN MOMENTS (k-f1 mm -34 -269 - -178 -195 -183 -177 -176 -171 -232 3 88 06 45-- 21 42 93 07 17 24 lUc 3 secondary :) nidspan ix m:i 305 25 243 - - 269 257 254 245 248 239 288 48 87—- 60 86 92 38 33 30 [ moment in 151 09 59 - 81 71 73 70 75 70 161 89 00 05 04 25 94 81 65 ef fee ma__ ( -404 -329 -347 -330 -321 -319 -312 -361 -279 :ts) rig \x 91 36 77 - 81 94 47 66 59 85 Vi+- * mm-7 -271 89 -177 -- -194 -182 -177 -175 -172 -236 -56 48 79 55 31 93 54 30 81 Page 10 (Support Line 3)ADAPT-PT V- 6 17 ACT 10 -282 55 -64 54 -11 85 -119 43 2 51 25 61 Note * = face-of-si.pport 10 2 SECONDARY MOMEN1S (k-ft) SPAN < — left — > <- midspan -> 11 OJ-1 2 3 4 5 6 7 8 9 10 Note * = fc z. 60 32 52 46 48 48 47 51 37 85 ice-of 40 71 42 94 71 52 65 45 65 75 -SUDDOrt 45 42 49 47 48 48 49 44 69 37 64 64 64 83 60 11 49 54 75 63 < — right* — > 31 52 46 48 48 47 51 37 101 -12 01 58 87 "3 ' 9 70 33 63 83 63 10 JOINT 1 2 3 4 5 6 7 8 9 10 11 11 - M Support Span Top Bottom 3 FACTORED REACTIONS (k) max mm O 0 110 247 225 227 220 214 212 213 234 221 8 I L D 93 84 69 98 27 75 67 42 39 39 35 58 189 160 164 159 154 153 153 177 104 -64 S T E E .J 48 63 89 52 00 96 53 22 75 39 68 L 10 4 FACTORED COLUMN MOMENTS (k-ft) < — LOWER column — > < — UPPER column — > max mm max mm fl C £ ~l -61 22 14 17 17 17 16 16 8 5 cut-off length for minimum cut-off length for minimum bar extension beyond where bar extension beyond where 03 06 11 87 12 76 62 68 01 60 33 -234 -6 -18 -15 -17 -16 -17 -15 -18 -58 38 00 17 29 90 13 68 39 25 16 28 72 steel (length/span) steel (length/span) required required 00 00 00 00 00 00 00 00 00 00 17 33 12 00 in 12 00 in / 00 00 00 00 00 00 00 00 00 00 00 Page 11 (Support Line 3)ADAPT-PT V- 6 17 ACI REINFORCEMENT based on NO REDISTRIBUTION of factored moments AVERAGE = 2 psf11 1 TOTAL WEIGHT OF REBAR = TOTAL AREA COVERED 918 5 Ib 4435 41 ftA2 11 21 STEEL MID-SPANA T TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA srAiN 1 2 3 4 5 6 7 8 9 10 VJ.U ^; v 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( -UJ-il 00 00 00 00 00 00 00 00 00 00 ICANi A 00 00 00 00 00 00 00 00 00 00 00} 00) 00} 00) 00) 00) 00) 00) 00) 00) ^ j-ii ^ ; v 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( -7 00 00 00 00 00 00 00 00 00 00 lEjlNO D 00 00 00 00 00 00 00 00 00 00 9 00) 00) 00) 00) 00) 00) 00) 00) 00) 00) 11 31 STEEI AT SUPPORTS TOP BOTTOM JOINT 1 1 2 3 4 5 6 7 8 9 10 11 12 - P LEGEND As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA (inA2) < ULT MIN > (m/v2) < ULT MIN >o -3/ic c ~! a a£- 2 12 ( 2 07 ( 2 01 ( 1 96 ( 1 91 ( 1 86 ( 1 84 ( 1 90 ( 2 00 ( 2 33 ( 2 07 ( U N C H CONDITION - 1 = 2 = •3 4 = 5 = 00 2 12 65 2 07 00 2 01 00 1 96 00 1 91 00 1 86 00 1 84 00 1 90 00 2 00 2 33 2 07 00 2 07 ING SHEAR INTERIOR COLUMN END COLUMN CORNER COLUMN 00) 00) 00) 00) 00) 00) 00) 00) 00} 00) 00) C H - EDGE COLUMN (PARALLEL EDGE BEAM, WALL, 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( E C K _ — TO SPAN) OR OTHER NON-CONFORMING 00 00 00 00 00 00 00 00 00 00 00 — GEOMETRY 00 00 00 00 00 00 00 00 00 00 00 -- 00) 00) 00) 00) 00) 00) 00) 00) 00} 00) 00) — PERFORM SHEAR CHECK MANUALLY 6 = STRIP TOO NARROW TO DEVELOP PUNCHING SHEAR Page 12 (Support Line 3)ADAPT-PT V- 6 17 ACI CASE 1 = STRESS WITHIN SECTION #1 GOVERNS (COL CAP OR SLAB) 2 = STRESS WITHIN SECTION #2 GOVERNS (DROP PANEL OR SLAB) FACTOPED ACTIONS shear moment JNT COND k 1 -ft <- PUNCHING SHEPR STRESSES IN psi-> due to due to allow- STRESS shear moment TOTAL able RATIO CASE _L 1i 2 3 4 S 6 7 8 9 10 i i cO 1 1 1 1 1 1 1 1 1 R 247 225 227 220 214 212 213 234 221 84 69 98 27 75 67 42 39 39 y — - 22 18 17 17 17 17 16 18 5 06 29 87 13 76 39 68 16 60 ^J~ 165 150 152 146 143 141 142 156 147 33 56 08 94 26 87 37 36 69 ^ 7 6 6 5 6 5 5 6 1 3 46 18 04 79 00 88 64 14 89 / 172 156 158 152 149 147 148 162 149 79 74 12 73 26 75 01 50 58 o- 238 239 241 242 243 243 243 240 237 60 85 15 52 96 96 52 66 98 - — y 72 65 66 63 61 61 61 68 63 -- 1 1 1 1 1 1 1 1 1 1 PUNCHING SHEAR CHECK NOT CARRIED OUT FOR SUPPORT WITH CONDITIONS 5 OR 6 13 - MAXIMUM SPAN DEFLECTIONS Concrete s modulus of elasticity Creep factor leffective/Igross (due to cracking) EC = 3604 90 K = 2 00 K = 1 00 si Where stresses exceed 6(fc ) Al/2 cracking of section is allowed for Values in parentheses are (span/max deflection) ratios SPAN J- 1 2 3 4 5 6 7 8 9 10 DL 9 07 03 04 04 04 04 04 03 06 00 DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 3 A c r 03 - 06 - 03 - 04 - 04 - 05 - 04 - 05 01 00 09 - 17 - 10 - 13 - 13 - 14 - 13 - 15 02 00 ( 2757) ( 1505) ( 2378) ( 1859) ( 1870) ( 1744) ( 1886) ( 1621) (10915) (37166) 04 01 02 02 02 02 02 02 03 00 -J ( 6947) (17486) (12124) (13487) (13050) (13612) (13191) (15658) ( 8821) (47993) 13 - 15 - 08 - 12 - 11 - 12 - 11 - 14 05 00 o ( 1973) ( 1647) ( 2958) ( 2156) ( 2183) ( 2000) ( 2201) ( 1808) ( 4878) (*****) I \. ercion b 1 / 1- PROJECT TITLE Buena Vista I I ucoioh olUir oUppOHLIIlB I <- OhJCRETF SOFTWARE SYSTEM i a;^UUb lime ll/iblOAwi Hie bupport Line 1 B^sit>(?t5 c 2 MEMBER ELEVATION [ft]C0"l 603 5 i u aa 3 2 User selected "S/11^ " -alected 3 4 ADAPT selected 4 - TENDON PROFILE 42DatU Line 4 3 CGS Distance [in]4 5 Force 1 5 - BOTTOM REBAR j 5 1 User selected 5 2 User selected [ 5 3 ADADT selected 5 4 ADAPT selected -, 3X4l3i4#6X76 (?14#6X76 (5)4#6X4(6SM#6X86 ('?)4#G>86 8 008 08 08 008 08 08 008 00[268 kips] [268 kips] 4 76 08 OOi 08 08 008 00 [268 kips] f38 kips] 9 - DESIGN PARAMETERS 9 1 Code ACl fc = 3 9999 ksi fy = 60 ksi (longitudinal) f» = 60 ksi (shear) fpll = 269 99 t-si 9 2 Rebar Cover Top = 1 in Bottom = 1 in Rebar Table ASTM US Customary bars (Non red stnbuted Moments) 9 3 Stressing fp, = 8 fpu 9 4 Strand Area = 153 in2 8 008 08 OB 008 83130[268 klpspSS kips] 6 - REQUIRED & PROVIDED By .1 -•- r^ max i os6 1 Top Bars 20 [ in2} 1 5- provided 1 ° j 054 If 6 2 Bottom Bars maxo 7 PI IMPI-MMCS ^HFAR OK=Acceptable NG=No Good *=not applicable ' or not performed i i 7 1 Stress Ratio | 7 2 Status - ! ' 8 - LEGEND i \F 1 T~ I i! t r>\s 12 ] 00 000 I ! I ~ I 23 1 12 000 1 12 1 30 I j| 0 00 0 00 6 OK OK -< Stressing End H 74 14 1 30 000 1 30 1 01 i '! It 0 00 0 00 76 OK ' OK OK Dead End 89 23 OK OK 10-DESIGNER'S NOTES I FLORES LUND CONSULTANTS I I ADAPT CORPORATION I I STRUCTURAL CONCRCTE SOFTWARE SYSTEM I | ADAPT-PT FOR POST-TEHSIONED BEAM/SLAB DESIGN I | Version 6 11 AMERICAN (ACI-318-99/UBC-I997) I I ADAPT CORPORATION - Structural Concrete Software System I I 1733 Woodbide Road Suite 220 Redwood City Califon 9^061 I | Phone (650)306-2400, Fax (650)364-4678 I I Email Support@AdaptSoft com Web site http //www Adap ^oft com I DATE AND TIME OF PROGRAM EXECUTION Jan 9,2005 At Time 11 24 PROJECT FILE Support Line 1 PROJECT TITLE Buena Vista Support Line 1 1 - USER SPECIFIED GENERAL DESIGN PARAMETERS CONCRETE STRENGTH at days for BCAMS/SLABS for COLUMNS MODULUS OF ELASTICITY for BEAMS/SLABS for COLUMNS CREEP factor for deflections for BEAMS/SLABS CONCRETE WEIGHT SELF WEIGHT 3999 90 psi 3999 90 osi 3604 90 ksi 3604 90 ksi 2 00 NORMAL 150 00 pcf TENSION STRESS limits (multiple of (f c)l/2) At Top At Bottom 000 000 COMPRESSION STRESS limits (multiple of {f c)) At all locations 450 REINFORCEMENT YIELD Strength 60 00 ksi Minimum Cover at TOP 1 00 in Minimum Cover at BOTTOM 1 00 in POST-TENSIONING SYSTEM UNBONDED Ultimate strength of strand 269 99 ksi Average effective stress in strand (final) 175 00 ksi Strand area 153 in"2 Min CGS of tendon from TOP 1 25 in Mm CGS of tendon from BOTTOM for INTERIOR spans I 25 in Page (Suppor- Line 1)ADAPT-PT V- 6 17 ACI Mm CGS of tendon from BOTTOM for EXTERIOR spans 2 00 in Mm average precompression 125 00 psi Max spacing between strands (factor of slab depth) 8 00 Tendon profile type and ^upport widths (see section 9) ANALYSIS OPTIONS USED Structural system (u-ing EQUIVALENT FRAME) 1WO-WAY Moments REDUCED to face ^ support YES Limited plastification allowed(moments redistributed) NO 2 - I N P U T GEOMFTRY 211 PRINCIPAL SPAN DATA OF UNIFORM SPANS S F| P O| A R| N M| •1 3— 1 1 2 3 4 5 6 7 8 1 2 I I 2 I I ! 1 LENGTH | ft | - — 4 6 00 6 20 6 6 24 6 6 00 27 00 00 34 00 00 I WIDTH in 5 145 02 139 12 139 139 12 140 141 95 00 95 95 00 04 97 I TOP |B01 TOM/MIDDLE | | I FLANGE | FLANGE | REF | DEPTH | width thick | width thick | HEIGHT | in | in in | in in | in | 6 7 8 9 10 11 9 50 9 50 9 26 9 9 26 9 9 50 00 139 95 9 50 50 50 00 139 95 9 50 50 50 9 9 9 9 9 9 9 50 50 50 50 50 50 50 MULTIPLIER left right — 12 13- 1 00 00 1 1 1 1 1 1 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 LEGEND 1 - SPAN C = Cantilever 3 -FORM 1 2 3 4 7 8 Rectangular section T or Inverted L section 1 section Extended T or L section Joist Waffle 11 - Top surface to reference line --22-S-UPPORT W-I DTK- A N D-C 0 L U M-N— D A-T-A SUPPORT < LOWER COLUMN > WIDTH LENGTH B(DIA) D CBC* JOINT in ft in in __1 2 3 4 5 6 7 8 9 10 — 1 12 00 10 00 145 02 12 00 (3) 00 00 00 (1) < UPPER COLUMN > LENGTH B(DIA) D CBC* ft in in Dage (Support Line 1)ADAPT-PT V- 6 17 ACI „ 3 4 5 6 7 8 9 00 00 00 00 00 00 00 12 00 10 10 10 10 10 10 10 10 00 00 00 00 00 00 00 00 12 1? 12 12 12 12 12 141 00 00 00 00 00 00 00 97 60 60 60 60 60 60 60 60 00 00 00 00 00 00 00 00 (3) (3) (3) (3) (3) (3) (3) (3) 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 U)(1)(1)(1)(1)(1) (] ) '!) COLUMN BOUNDARY CONDITION CODES (CBC) Fixed at both ends (STANDARD) Hinged at near end, fixed at far end Fixed at near end, hinged dt far end Fixeo at near end, roller with rotational fixity at far end = 1 = 2 ~ ^ = 4 3-1 N PUT APPLIED LOADING < CLASS >-TYPE- D = DFAD IOAD L = LIVE LOAD P = PARTIAL UNIFORM M = APPLIED MOMENT U = UNIFORM C = CONCENTRATED Ll = LINE LOAD SW= SELF HEIGHT Computed from geometry input and treated as dead loading Unit selfweight W = 150 0 pcf Intensity ( From SPAN CLASS TYPE k/ft"2 ( ft To ) ( M or C At) Total ^ Trib ft ) (k-ft or k ft) k/rt •I- 1II I1 2 2 2 2 2 3 3 3 3 3 L D SW SW SW L D SW SW SW L D SW SW SW •j i Ll Ll P P P Li Li P P P Li Li P P p i ; 3 2 3 2 17 -, 00 00 00 50 50 00 00 00 50 50 00 00 00 50 77 1 I I 3 6 I 1 2 3 6 20 20 2 17 20 05 05 50 50 00 01 01 50 50 00 27 27 50 77 27 1 1 1 1 I 1 1 1 1 1 1 1 187 891 435 435 435 166 875 385 385 385 166 875 591 591 591 Page 4 (Support Line 1) ADAPT-PT V- 6 17 ACI 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 L D SW sw SW L D SW SW SW L D SW SW SW L D SW SW SW L D SW SW SW Ll Ll P P P Ll Li P P P Ll Ll P P P Ll Ll P P P Ll Li P P P 2 3 2 3 2 21 2 3 2 3 00 00 00 50 50 00 00 00 50 50 00 00 00 50 84 00 00 00 50 50 00 00 00 50 50 1 1 2 3 6 1 1 2 3 6 24 24 2 21 24 1 1 2 3 6 1 1 2 3 6 01 01 50 50 00 22 22 50 50 00 34 34 50 84 34 00 00 50 50 00 00 00 50 50 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1G6 875 385 385 385 1G6 8/5 385 385 385 166 875 591 591 591 166 875 386 386 386 175 881 405 405 405 NOTE LIVE LOADING is SKIPPED with a skip factor of 1 00 31- LOADING AS APPEARS IN USER S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (k/ftA2), ( SPAN -i 1 1 2 2 3 3 4 4 5 CLASS L D L- - D L D L D L TYPE •3 L L L -- L L L L L L LINE 1 1 1 1 1 (k/ft) (* 187 891 166 875 166 875 166 875 166 CON k@ft 00 00 00 00 00 00 00 00 00 or PART ) (MOMENT) or ft 1 1 1 1 20 20 1 1 1 -ft ) ( k-ft @ ft ) 6 1 Q 05 05m — — ~ —\J _L 01 27 27 01 01 22 p Page 5 (Support Line 1)ADAPT-PT V- 6 17 ACI 5 6 6 7 7 8 8 D L D L D L D L L L L L L I 1 1 1 875 166 875 166 875 175 881 UO 00 00 00 00 00 00 1 24 24 1 1 1 1 12. 34 34 00 00 00 00 NOTE SELFWEIGHT INCLUSION REQUIRED LIVE LOADING is SKIPPED wilh a slop factor of 1 00 4-CALCULATED SECTION PROPERTIES 4 2 - Computed Section Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross-sectional geometry Yt= centroxdal distance to top fiber 1= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN (SEGMENT) SPAN 1 1 2 3 SPAN 2 1 2 3 SPAN 3 1 2 3 SPAN 4 1 2 3 SPAN 5 1 2 3 SPAN - 6 1 2 3 SPAN 7 1 2 AREA in~2 9 1377 1377 1377 1329 1329 1329 1527 1527 1527 1329 1329 1329 1329 1329 1329 „ 1527 1527 1527 1330 1330 69 69 69 53 53 53 52 52 52 53 53 53 53 53 53 _ _ 52 52 52 38 38 I inA4 O 2590L+06 1036E405 1232E+05 1196E+05 9999E+04 1196E+05 5218E+05 4362E+05 5218E+05 1196E+05 9999E+04 1196E+05 1196E+05 9999E+04 1196E+05_ _ _ _ 5218E+05 4362E+05 5218E+05 1197E+05 1001E+05 Yb in — 4 4 4 4 4 4 19 19 19 4 4 4 4 4 4_ 19 19 19 4 4 1 75 75 75 75 75 75 56 56 56 75 75 75 75 75 75 — 56 56 56 75 75 Yt in IT-— O — 4 4 4 4 4 4 6 6 6 4 4 4 4 4 4 — 6 6 6 4 4 75 75 75 75 75 75 44 44 44 75 75 75 75 75 75 44 44 44 75 75 Page 6 (Support Line 1)ADAPT-PT V- 6 17 ACI 3 SPAN 8 1 2 3 u;o -so ]348 71 1348 71 1348 71 11' 71 --05 1210E-I05 1014E+05 2536E+06 4 75 4 75 4 75 4 75 4 75 4 75 4 75 4 75 7 -MOMENTS REDUCED TO FACE-OF-SUPPORT 71 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN nJ. 1 2 3 4 5 6 7 8 Note * = f; <- left* -> 1£. 5 -59 -25 15 -90 -30 1 J(-Q — nf — <5iinr 01 14 17 89 25 50 57 54 101-1- <- midspdn -> <- right* ->i rt 5 -7 54 -1 -11 76 -6 2 J 31 70 51 07 50 28 13 46 - -33 -85 10 -51 -122 5 -6 i 33 46 17 84 37 25 40 79 72 REDUCED LIVE LOAD MOMENTS (k-ft) SPAN i I 2 3 4 r5 6 7 8 -— _LtiJ. L max 9 - 21 - 41 -27 53 -11 03 - 48 -42 29 -13 15 - 31 mm 0 27 5 06 14 - 29 9 68 - 05 - 31 2 80 UL-LUS{Jd max 1 25 13 26 28 1 31 68 36 48 08 22 mm C. - 07 -4 82 - 20 -2 87 -7 21 - 14 -4 07 00 v. L J-yilL " • max f, _ — - 34 -14 75 -40 26 - 31 -23 19 -57 85 - 22 -2 24 mm-7 2 50 00 - 05 7 45 - 12 09 4 66 04 Note face-of-support— Page 7 (Support Line 1)ADAPT-PT V- 6 17 ACI iO -FACTORED M 0 M E N 1 S REACTIONS Calculated as ( 1 40D + 1 70L + 1 00 secondary moment effects) 10 1 FACTORED DESIGN MOMENTS (k-ft) SPAN 1 2 3 4 5 6 7 8 ^ xt;j_ i_ - max 9 -4 -77 -125 -97 -79 -151 -100 -74 62 47 16 77 71 01 77 79 mm T -3 -68 -78 - /9 -62 -79 -78 -69 82 18 12 50 44 19 94 50 <•» niiuspaii max A -26 -68 142 -67 -68 239 -68 -26 35 29 75 58 60 50 36 06 mm c3 -28 61 -76 70 97 72 -74 70 -82 01 177 25 -75 41 -26 44 v ij-yi maxc. -74 -103 -148 -79 -118 -175 -77 -4 97 39 62 22 40 65 02 44 1 L S mm—t -70 -78 -80 -66 -79 -77 -68 - 14 31 27 03 18 14 72 58 Note * = face-of-support 10 2 SPAN -1~ 1 1 2 3 4 5 6 7 8 SECONDARY MOMFNTS <-- left* — > < 0 -4 24 -84 00 4 50 -42 77 -100 25 47 56 -35 61 -76 42 (k-ft) - midspan -> o -35 92 -57 73 21 76 -68 32 -53 65 70 68 -59 91 -29 89 < — right* — > -73 92 -31 48 39 02 -93 83 -7 06 93 83 -84 25 8 88 Note = face-of-support 10 3 FACTORED REACTIONS (k) <- JOINT max mm 10 4 FACTORED COLUMN MOMENTS (k-ft) LOWER column —> <— UPPER column —> max mm max mm _L 1 2 3 — - 4 5 6 7 8 9 -2 27 65 70 15 80 81 27 -5 13 19 82 37 42 57 26 54 21 -5 18 41 43 -1 48 51 19 -6 -, 01 71 10- - 96 36 23 02 18 91 q -1 1 53 6 75 2 1 30 96 20 - 95 04 46 62 44 58 3 -2 -2 -21 -1 -2 -33 -1 -1 -3 45 67 86 85 99 19 83 05 14 O 00 00 -00- - 00 00 00 00 00 00 / 00 00 00 00 00 00 00 00 00 e9-5 Page 8 (Support Line 1)ADAPT-PT V- 6 17 ACI 11 -MILD STEEL Support cut-off length for minimum steel (lei ^tn/span) 17 Span cut-off length for minimum steel (lei •> h/span) 33 Top bar extension beyond where required 12 00 in Bottom bar extension beyond where required 12 00 in RE1NEORCEMENT based on NO REDIS1R1BU1ION of factored moments AVERAGE = 3 psf11 1 TOTAL WEIGHT OF REBAR = TOTAL AREA COVERED 322 9 Ib 943 70 ftA2 11 21 STEEL AT MID-SPAN TOP As DIFFERENT REBAR CRITERIA As SPAN (inA2) < ULT TENS > (inA2! BOTTOM DIFFERENT REBAR CRITERIA < ULT TENS -> 1 2 3 4 5 6 7 8 £- 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( -~J 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 — J 00) 00) 00) 00) 00) 00) 00) 00) t> 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( — / 00 00 00 00 00 00 00 00 o 00 00 00 00 00 00 00 00 -J 00) 00) 00) 00) 00) 00) 00) 00) 11 31 SUPPORTSSTEEL AT TOP As DIFFERENT REBAR CRITERIA JOINT (inA2) < --- ULT ----- MIN --------- > BOTTOM AS DIFFERENT REBAR CRITERIA LnA2) < ULT MIN > — 1-1 2 3 4 5 6 7 8- 9 1 1 1 1 1 1 1 - 1 1 03 ( 02 ( 12 ( 12 ( 00 ( 30 ( 30 ( 00 ( 01 ( j 00 00 00 00 00 00 00oo- 00 <1 11111111 j ; 03 02 12 12 00 30 30 00 01 5 f 00) 00) 00) 00) 00) 00) 00) 00) 00) 3 00 ( 00 ( 00 ( 00 ( 00 ( 00 { 00 ( 00 ( 00 ( 00 00 00 00 00 00 00oo — 00 j 5 00 00 00 00 00 00 00oo - 00 .) 00) 00) 00) 00) 00) 00) 00) 00) 00) 12- PUNCHING SHEAR CHECK Paae (Support Line 1)ADAPT-PT V- 6 17 ACI LEGEND CONDITION CASE 1 = INTERIOR COLUMN 2 = END COLLMN 3 = CORNER COIUMN 4 = EDGE COLUMN (PARAILEL TO SPAN) 5 = EDGE PEAK, WALL, OR OTHER NON-CONFORMING GEOMETR1 PERFORM SHEAR CHECK MANUALLY 6 = STRIP TOO NARROW 1O DEVELOP PUNCHING SHEAR 1 = STRESS WITHIN SECTION #1 GOVERNS (COL CAP OR SLAB) 2 = STRESS WITHIN SECTION i\2 GOVERNS (DROP PANEL OR SLAB) FACTORED ACTIONS shear moment JNT COND k ! -ft <- PUNCHING SHEAR STRESSES IN psi~> due to due to allow- STRESS shear moment TOTAL able RATIO CASE J. 2 3 4 5 6 7 8 Q £ cD 4 4 4 & 4 4 4 c, 3 21 65 70 15 80 81 21 19 Q2 37 42 57 26 54 2 21 53 6 33 75 2 61 86 95 04 19 62 44 — j- 33 80 86 18 98 99 33 38 81 39 93 91 76 82 1 9 24 2 15 34 1 -> 21 94 54 75 10 39 11 34 90 110 21 114 134 34 59 75 93 68 01 15 93 o- 150 150 150 150 150 150 150 52 52 52 52 52 52 52 23 60 74 14 76 89 23 - j_ 1 1 1 1 1 1 1 PUNCHING SHEAR CHECK NOT CARRIED OUT FOR SUPPORT WITH CONDITIONS 5 OR 6 13 - MAXIMUM SPAN DEFLECTIONS Concrete s modulus of elasticity Creep factor leffective/Igross (due to cracking) EC = 3604 90 ksi K = 2 00 K = 1 00 Where stresses exceed 6(fc )Al/2 cracking of section is allowed for Values in parentheses are (span/max deflection) ratios SPAN1 1 2 3 4 5 6 7 8 < DL 0 00 00 02 00 00 04 00 00 DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP _3 A c; c 00 00 - 03 00 00 - 05 00 00 00(39497) 01(11027) - 08 ( 3138) 00(26443) 01( 8644) - 15( 1959) 01(12683) 00(47963) *J 00 (*****) 00(73744) 01(26705) OQ(*****) 00(51265) 02(16289) 00(87674) OQ(*****) u 00(45218) 01(12967) - 07 ( 3556) 00(31188) 01(10397) - 13( 2227) 00(14828) 00(52495) Page 10 (Support Line 1) ADAPT-PT V- 6 17 ACI ADAPT - STRUCTURAL CONORFTE SOFTWARE SYSTEM ADAPT PI Version 6 i7 Uate 1/9/20UO lime 12 1j 14 KM File support Line o 1-PROJECT TITLE Buena Vista _,, SI RIP Support Line 6 T^P^AL- 1 3-TQPREB/6R I 3 i User seiectea 3 2 User selected 3 3 ADAPT selected 3 4 ADAPT selected 4-TENDON PROFILE 4 2 Datum Line 4 3 CGS Distance [in]4 5 Force 5 - BOTTOM REBAR 5 1 User selected 5 2 User selected 5 3 ADAPT selected 5 4 ADAPT selected (24*6X36 '1 585X70 f6)B#SX120 475 1 25 [363 65 kips) ©8#5X80 (?)2#5X46 R1TnnR=.r« mc3* 626 [m*l 511 provirfpd 1 7 1 | 0 0 • • ' ' 1 1 ' ' I I ris- rnrr 6 2 Bottom Bars maj 2 22 _J 1 i 631 ' ' 121 6 2 27 26 I |— I I ' I ll 6 - REQUIRED & PROVIDED BARS 7 - PUNCHING SHEAR OK=Acceptable NG=No Good *=not applicable or not performed 7 1 Stress Ratio 7 2 Status 76 76 OK OK 2 00 4 75(363 65 kips] (12)8*5X80 8 - LEGEND Stressing End Dead End 9 - DESIGN PARAMETERS 9 1 Code ACI f c = 3 9999 ksi fy = 60 ksi (longitudinal) fy = 60 ksi (shear) fpu = 269 99 ksi 9 2 Rebar Cover Top = 1 in Bottom = 1 in Rebar Tanle ASTM US Customary bars (Non redist ibuted Moments) 9 3 Stressing fp) = 8 fpu 9 4 Strand Area = 153 in2 10-DESIGNER'S NOTES e FLORES LUND CONSULTANTS ADAPT CORPORATION STRUCTURAL CONCRETE SOFTWARE SYSTEM ADAPT-PT FOR POST-TENSIONED BEAM/SLAB DESIGN | Version 6 17 AMERICAN (ACI-318-99/UBC-1997) | ADAPT CORPORATION - Structural Concrete Software System | 1733 Woodside Road, Suite 220, Redwood City, California 94061 | Phone (650)306-2400, Fax (650)364-4678 | Email Support@AdaptSoft com, Web site http //www AdaptSoft com | DATE AND TIME OF PROGRAM EXECUTION PROJECT FILE Jan 9,2005 At Time 12 13 Support Line 6 PROJECT Buena Vista Support Line 6 TITLE 1 - USER SPECIFIED GENERAL DESIGN PARAMETERS CONCRETE STRENGTH at 28 days, for BEAMS/SLABS for COLUMNS MODULUS OF ELASTICITY for BEAMS/SLABS for COLUMNS 3999 90 psi 3999 90 psi 3604 90 ksi 3604 90 ksi CREEP factor for deflections for BEAMS/SLABS CONCRETE WEIGHT 2 00 NORMAL SELF WEIGHT 150 00 pcf TENSION STRESS limits (multiple of (fc)l/2] At Top At Bottom 6 000 6 000 COMPRESSION STRESS limits (multiple of (f'c)) At all locations 450 REINFORCEMENT YIELD Strength Minimum Cover at TOP Minimum Cover at BOTTOM 60 00 ksi 1 00 in 1 00 in POST-TENSIONING SYSTEM Ultimate strength of strand Average effective stress in strand (final) Strand area Mm CGS of tendon from TOP Mm CGS of tendon from BOTTOM for INTERIOR spans UNBONDED 269 99 ksi 175 00 ksi 153 m~ 1 25 in 1 25 in D Page 2 (Support Line 6)ADAPT-PT V- 6 17 ACT Mm CGS of tendon from BOTTOM for EXTERIOR spans 2 00 in Mm average precompression 150 00 psi Max spacing between strands (factor of slab depth) 8 00 Tendon profile type and support widths (see section 9) ANALYSIS OPTIONS USED Structural system (using EQUIVALENT FRAME) TWO-WAY Moments REDUCED to face of support YES Limited plastification allowed(moments redistributed) NO 2 - I N P U T GEOMETRY 211 PRINCIPAL SPAN DATA OF UNIFORM SPANS S P A N _]_ 1 2 3 F| | I TOP |BOTTOM/MIDDLE| | O| | | FLANGE | FLANGE | REF | MULTIPLIER R| LENGTH| WIDTH DEPTH] width thick | width thick |HEIGHT] left right M| ft | in in | in in | in in | in | - — 3 4 5 6 7 8 9 10 11 12 13- 1 23 32 253 46 9 50 9 50 50 50 1 25 35 253 52 9 50 9 50 50 50 1 23 33 255 16 9 50 9 50 50 50 LEGEND I - SPAN C = Cantilever 3 -FORM 1 2 3 4 7 8 Rectangular section T or Inverted L section 1 section Extended T or L section Joist Waffle 11 - Top surface to reference line 215-D R 0 P CAP AND DROP PANEL DATA CAPT JOINT in --1 1 2 3 4 2 00 15 50 15 50 00 CAPB in 3— 00 60 00 60 00 00 CAPDL in 4 — 00 30 00 30 00 00 CAPDR DROPTL DROPTR DROPS in 5 00 30 00 30 00 00 in in in 6 7 8 00oo_ 00 00 00 00 _ . 00 00 00 00 00 00 DROPL in DROPR in — 9 10- 00 _ 00 _ 00 00 00 00 00 00 LEGEND DROP CAP DIMENSIONS CAPT = Total depth of cap DROP PANEL DIMENSIONS DROPTL = Total depth left of joint Page 3 (Support Line 6)ADAPT-PT V- 6 17 ACI CAPB = Transverse Width CAPDL = Extension left of joint CAPDR = Extension right of 3oint DROPTR = Total depth right of joint DROPB = Transverse Width DROPL = Extension left of joint DROPR = Extension right of joint 22-SUPPORT WIDTH AND COLUMN DATA SUPPORT WIDTH JOINT in __! 2 1 12 00 2 14 00 3 14 00 4 12 00 < LOWLR COLUMN > LENGTH B(PTA) D CBC* ft in in 3 4 5 6 10 00 253 46 12 00 (3) 10 00 14 00 00 (3) 10 00 14 00 00 (3) 10 00 255 16 12 00 (3) < UPPER COLUMN > LENGTH B(DIA) D CBC* ft in in 7 8 9 10 — 00 00 00 (2) 00 00 00 (2) 00 00 00 (2) 00 00 00 (2) *THE COLUMN BOUNDARY CONDITION CODES (CBC) Fixed at both ends (STANDARD) = 1 Hinged at near end, fixed at far end = 2 Fixed at near end, hinged at far end = 3 Fixed at near end, roller with rotational fixity at far end = 4 3-INPUT APPLIED LOADING < CLASS >-TYPE- D = DEAD LOAD L = LIVE LOAD P = PARTIAL UNIFORM M = APPLIED MOMENT U = UNIFORM C = CONCENTRATED Ll= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Unit selfweight W = 150 0 pcf Intensity ( From SPAN CLASS TYPE k/ft"2 ( ft To ) ( M or C At) Total on Trib ft ) (k-ft or k ft) k/ft i 1 1 1111 ^ — L L D D SW SW Li Li Ll Ll P P 00 00 00 00 00 50 ( 23 23 23 23 20 32 32 32 32 50 82 1 1 2 2 054 053 790 790 508 508 I I I Page 4 (Support Line 6)ADAPT-PT V- 6 17 ACT j_ i 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 SW sw L L D D SW SW sw SW SW L L D D SW SW SW SW p p Li Li Li Li P P P P P Li Li Li Li P P P P 20 22 2 22 24 2 22 82 80 00 00 00 00 00 52 50 85 83 00 00 00 00 00 52 50 83 22 23 25 25 25 25 2 22 24 25 23 23 23 23 2 22 23 80 32 35 35 35 35 52 50 85 83 35 33 33 33 33 52 50 83 33 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 883 883 057 054 793 790 884 884 509 884 884 050 058 787 793 900 900 525 525 NOTE LIVE LOADING is SKIPPED with a skip factor of 1 00 31- LOADING AS APPEARS IN USER S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (k/ftA2), SPAN _ 1 — 1 1 1 1 2 2 2 2 3 3 3 3 CLASS — 0 L L D D L L D D L L D D TYPE OO L L L L L L L L L L L L LINE(kXft) — /] 1 1 1 1 1 1 054 053 790 790 057 054 793 790 050 058 787 793 ( CON or PART ) (MOMENT) ( k@ft or ft-ft ) ( k-ft @ ft ) 00 00 00 00 00 00 00 00 00 00 00 00 (.\ 23 23 23 23 25 25 25 25 23 23 23 23 ; 7 R 32 32 32 32 35 35 35 35 33 33 33 33 NOTE SELFWEIGHT INCLUSION REQUIRED LIVE LOADING is SKIPPED with a skip factor of 1 00 Page 5 (Support Line 6)ADAPT-PT V- 6 17 ACI 4 -CALCULATED SECTION PROPERTIES 42- Computed Section Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross-sectional geometry Yt= centroidal distance to top fiber 1= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN (SEGMENT) SPAN 1 1 2 3 4 SPAN 2 1 2 3 4 5 SPAN 3 I 2 3 4 AREA in"1 2 9 2407 2407 2767 2767 2768 2768 2408 2768 2768 2784 2784 2424 2424 87 87 87 87 44 44 44 44 44 02 02 02 02 I inA4 0 4527E+06 1811E+05 3800E+05 4201E+05 4202E+05 3800E+05 1811E+05 3800E+05 4202E+05 4214E+05 3814E+05 1823E+05 4558E+06 Yl ii 4 _ 4 4 9 9 9 9 4 9 9 9 9 4 4 3 1 75 75 74 74 74 74 75 74 74 75 75 75 75 Yt irc _D 4 4 5 5 5 5 4 5 5 5 5 4 4 i 75 75 76 76 76 76 75 76 76 75 75 75 75 7 -MOMENTS REDUCED TO FACE-OF-SUPPORT SPAN -1 1 2 3 71 REDUCED DEAD LOAD MOMENTS (k-ft) <- left* -> <- midspan -> <- right* ->20 A -117 50 -208 83 -209 50 89 67 90 67 90 25 -209 00 -209 42 -118 25 Note = face-of-support 72 REDUCED LIVE LOAD MOMENTS (k-ft) < left* > < midspan > <—nghtj Page 6 (Support Line 6)ADAPT-PT V- 6 11 \CI SPANi— ii 2 3 Note * = max 9Z -91 00 -124 50 -123 25 f ace-of-snr mm 30 -33 -33 )nort D5 52 84 03 max — Aq 68 80 68 21 60 39 mm -22 -33 -22 C 07 76 14 max -123 -124 -91 f, 08 58 25 mm -33 -33 30 7 25 67 63 Calculated as ( 1 40D + 1 70L + 10 1 < SPAN -1J. 1 2 3 Note * = 10 2 SPANi 1 2 3 Note * _ 10 JOINT i 1 2 3 4 FACTORED DESIGN MOMENTS *le n L s \ max mm 0 T<£ O -271 96 -64 77 -481 74 -326 97 -482 28 -328 97 face-of-support SECONDARY MOMENTS (k-ft) 1 00 secondary moment (k-ft) mid max 276 86 288 20 278 02 < — left* — > <- midspan -> 9 "3 48 77 35 24 23 24 22 21 35 face-of-support 3 FACTORED REACTIONS (k) <- max - mm 2 0 _ 105 61 51 57 246 48 186 56 246 95 186 94 106 01 51 87 42 24 42 10 4 - LOWER — max A -88 88 23 23 17 02 323 73 span > < mm n*J 123 40 93 79 124 12 < — right* - 22 18 24 25 48 74 FACTORED COLUMN column --> < — mm c -321 99 -17 15 -23 24 89 99 effects) right > max mm 6 -t— — — — — / — — — — -481 32 -328 59 -482 73 -327 45 -273 45 -65 69 -> MOMENTS (k-ft) — UPPER column — > max - nun ~ 6 1 00 00 00 00 00 00 00 00 Page 7 (Support Line 6) ADAPT-PT V- 6 11 ACI 11 -MILD STEEL Support cut-off length for minimum steel(length/span) 17 Span cut-off length for minimum steel(length/span) 33 Top bar extension beyond where required 12 00 in Bottom bar extension beyond where required 12 00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11 1 TOTA-, WEIGHT OF REBAR = 1076 2 Ib AVERAGE = 7 psf TOTAL AREA COVERED = 1524 19 ftA2 11 21 STEEL AT MID-SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) < ULT TENS > (inA2) < ULT TENS > 1 O O A C _ /T T Q _Q-L Z. O fi -J \J / O " ;? 1 00 ( 00 00 00) 2 22 ( 79 2 22 00) 2 00 ( 00 00 00) 1 21 ( 24 1 21 00) 3 00 ( 00 00 00) 2 26 ( 81 2 26 00) 11 31 STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) < ULT MIN > (inA2) < ULT MIN > --1 2 3 4 5 6 7 8 9 1 3 80 ( 3 80 1 81 00) 00 ( 00 00 00) 2 6 28 ( 6 28 2 08 00) 00 ( 00 00 00) 3 6 31 ( 6 31 2 08 00) 00 ( 00 00 00) 4 3 84 ( 3 84 1 82 00) 00 ( 00 00 00) 12- PUNCHING SHEAR CHECK LEGEND CONDITION 1 = INTERIOR COLUMN 2 = END COLUMN 3 = CORNER COLUMN __4_ = EDGE COLUMN _(PARALLEL TO SPAN) 5 = EDGE BEAM, WALL, OR OTHER NON-CONFORMING GEOMETRY PERFORM SHEAR CHECK MANUALLY 6 = STRIP TOO NARROW TO DEVELOP PUNCHING SHEAR CASE 1 = STRESS WITHIN SECTION #1 GOVERNS (COL CAP OR SLAB) 2 = STRESS WITHIN SECTION #2 GOVERNS (DROP PANEL OR SLAB) Page (Support Line 6)ADAPT-PT V- 6 17 ACI JNT COND -1 2 — 1 5 FACTORED ACTIONS shear moment k k-ft 3 4 <- PUNCHING SHEAR STRESSES IN psi~> due to due to allow- STRESS shear moment TOTAL able RATIO CASE 5 6 7 8 9 10- 246 48 246 95 23 23 23 24 164 42 164 73 7 85 7 86 172 28 172 59 226 66 226 66 76 76 PUNCHING SHEAR CHECK NOT CARRIED OUT FOR SUPPORT WITH CONDITIONS 5 OR 6 13 - MAXIMUM SPAN DEFLECTIONS Concrete s modulus of elasticity Creep factor leffective/Igross (due to cracking) EC = 3604 90 ksi K = 2 00 K = 1 00 Where stresses exceed 6(fc )Al/2 cracking of section is allowed for Values in parentheses are (span/max deflection) ratios SPAN -1 — - 1 2 3 DL — 2 — 08 08 08 DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE DL+PT DL+PT+CREEP - — 3 4 05 14( 2031) 00 - 01(30177) 05 14( 2025) LL — 5 04( 6614) 04( 7361) 04( 6542) DL+PT+LL+CREEP 6 18( 1553) 03( 9735) 18 ( 1546) ADAPT - STRUCTURAL CONCRETE SOFTWARE SYSTEM ADAPT HI Version b 17 Date 1/9/<dOut> lime 1.> 4537 PM File Support Line 11 1- PROJECT TITLE Buena Vista . 1 1 DESIGN STRIP Support Line 1 1 Of4\ f"« A?A 2 - MEMBER ELEVATION [ft]2300 2535 1658 679 3-TOPREB\R 3 i User selected 3 2 User selected 3 3 ADAPT selected 3 4 ADAPT selected 4 - TENDON PROFILE 4 2 Datum Line 4 3 CGS Distance [in] 4 5 Force 5 - BOTTOM REBAR 5 1 User selected 5 2 User selected 5 3 ADAPT selected 5 4 ADAPT selected (2)6#6X120 (?) 6*6X250 (6)5#6X40 1 25[337 96 kips]8 258 25 1 25[337 96 kips]8258258315 I[337 96 kips] (5)8#5X86 6 - REQUIRED & PROVIDED BARS 6 1 Top Bars mf a required o o ' '— ^ I 19- I ! |_ 6 2 Bottom Bars mix 2 I I I 3 47 31 III 2 2 30 30 I I Mil i 247 U i l| 000 inn 181 1 J~ | 000 7 - PUNCHING SHEAROK=Acceptable NG=No Good *=not applicable or not performed 7 1 Stress Ratio 7 2 Status 79 68 OK OK 8 - LEGEND -* Stressing End -j Dead End 9 - DESIGN PARAMETERS 9 1 Code ACI fc = 3 9999 ksi f, = 60 ksi (longitudinal) fy = 60 ksi (shear) fpu = 269 99 ksi 9 2 Rebar Cover Top = 1 in Bottom = 1 in Rebar Table ASTM US Customary ba s (Non redistributed Moments) 9 3 Stressing fp, = 8 fpu 9 4 Strand Area = 153 in2 10-DESIGNER'S NOTES FLORES LUND CONSULTANTS ADAPT CORPORATION STRUCTURAL CONCRETE SOFTWARE SYSTEM ADAPT-PT FOR POST-TENSIONED BEAM/SLAB DESIGN Version 6 17 AMERICAN (ACI-318-99/UBC-1997) ADAPT CORPORATION - Structural Concrete Software System | 1733 Woodside Road, Suite 220, Redwood City, California 94061 | Phone (650)306-2400, Fax (650)364-4678 | Email Support@AdaptSoft com, Web site http //www AdaptSoft com | DATE AND TIME OF PROGRAM EXECUTION PROJECT FILE Jan 9,2005 At Time 12 45 Support Line 11 PROJECT Buena Vista Support Line 11 TITLE 1 - USER SPECIFIED GENERAL DESIGN PARAMETERS CONCRETE STRENGTH at 28 days, for BEAMS/SLABS for COLUMNS MODULUS OF ELASTICITY for BEAMS/SLABS for COLUMNS 3999 90 psi 3999 90 psi 3604 90 ksi 3604 90 ksi CREEP factor for deflections for BEAMS/SLABS CONCRETE WEIGHT 2 00 NORMAL SELF WEIGHT 150 00 pcf TENSION STRESS limits (multiple of (f'c)l/2) At Top At Bottom 000 000 COMPRESSION STRESS limits (multiple of (f'c)) At all locations 450 REINFORCEMENT YIELD Strength Minimum Cover at TOP Minimum Cover at BOTTOM 60 00 ksi I 00 in 1 00 in POST-TENSIONING " " " ~ ~~ SYSTEM Ultimate strength of strand Average effective stress in strand (final) Strand area Mm CGS of tendon from TOP Mm CGS of tendon from BOTTOM for INTERIOR spans UNBONDED 269 99 ksi 175 00 ksi 153 mA2 1 25 in 1 25 in Page 2 (Support Line II)ADAPT-PT V- 6 11 ACI Mm CGS of tendon from BOTTOM for EXTERIOR spans 2 00 in Mm average precompression 125 00 psi Max spacing between strands (factor of slab depth) 8 00 Tendon profile type and support widths (see section 9) ANALYSIS OPTIONS USED Structural system (using EQUIVALENT FRAME) TWO-WAY Moments REDUCED to face of support YES Limited plastification allowed(moments redistributed) NO 2 - I N P U T GEOMETRY 211 PRINCIPAL SPAN DATA OF UNIFORM SPANS S T F| I P Y O| I A P R| LENGTH! WIDTH N E M| ft 1 in -1 — 2 — 3 4 5 1 N 1 23 00 284 56 2 N 1 25 35 249 60 3 N 1 16 58 256 41 4 N 1 6 79 250 87 TOP |BOTTOM/MIDDLE| | FLANGE | FLANGE | REF | MULTIPLIER DEPTH] width thick 1 width thick 1 HEIGHT 1 left right in | in in | in in | in | 6 7 8 9 10 11 12 13- 9 50 9 50 44 56 9 50 9 50 50 50 9 50 9 50 49 51 9 50 9 50 46 54 LEGEND 1 2 - SPAN - TYPE U = N = Cantilever Uniform, prismatic Nonuniform section 3 - FORM 1 = 2 = 2 = 4 = ~-t 8 = Rectangular section T or Inverted L section I section Extended T or Joist Waffle L section 11 - Top surface to reference line 212 DETAILED DATA FOR NONUNIFORM SPANS The following are geometry of nonuniform spans and/or cantilevers Left distance is from left support centerlme to start of a span segment F I I S 0 | LEFT | E R |DISTANCE| WIDTH G M | ft | in -1—2 4 5 I TOP |BOTTOM/MIDDLE| | | FLANGE | FLANGE | REF | MULTIPLIER DEPTH| width thick | width thick |HEIGHT| left right in | in in | in in | in | 6 7 8 9 10 11 12 13- Page 3 (Support Line 11)ADAPT-PT V- 6 17 ACI SPAN 1 1 2 1 3 2 4 2 SPAN 1 2 2 2 3 1 4 2 5 2 SPAN 1 2 2 2 3 1 4 1 SPAN 1 1 2 1 3 1 4 1 5 1 6 1 1 21 22 2 2 22 24 3 2 16 4 3 6 6 00 50 29 48 00 52 50 85 83 00 52 50 25 00 33 33 60 29 29 284 284 60 60 60 60 249 60 60 60 60 256 256 250 250 250 120 120 120 56 56 00 00 00 00 60 00 00 00 00 41 41 87 87 87 63 63 63 9 9 15 15 15 15 9 15 15 15 15 9 9 9 9 9 9 9 9 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 284 284 249 249 249 249 256 256 56 56 60 60 60 60 41 41 9 9 9 9 9 9 9 9 50 50 50 50 50 50 50 50 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 44 44 &A 44 50 50 50 50 50 49 49 49 49 46 46 46 97 97 97 56 56 56 56 50 50 50 50 50 51 51 51 51 54 54 54 03 03 03 22-SUPPORT WIDTH AND COLUMN DATA SUPPORT WIDTH JOINT in __]_ 2 1 12 00 2 14 00 3 14 < LOWER COLUMN > LENGTH B(DIA) D CBC* ft in in 3 4 5 6 00 8 00 12 00 10 10 10 10 10 00 00 00 00 00 158 14 14 4 116 07 00 00 00 63 12 8 12 00 00 00 00 00 (3) (3) (3) (3) (3) < ------ UPPER COLUMN ------ > LENGTH B(DIA) D CBC* ft in in ----- 7 ------- a ------- 9 ---- 10 — 00 00 00 (1) 00 00 00 (1) 00 00 00 (1) 00 00 00 (1) 00 00 00 (1) *THE COLUMN BOUNDARY CONDITION CODES (CBC) Fixed at both ends (STANDARD) = 1 Hinged at near end, fixed at far end = 2 Fixed at near end, hinged at far end = 3 Fixed at near end, roller with rotational fixity at far end = 4 Page 4 (Support Line II) ADAPT-PT V- 6 11 ACI 3-INPUT APPLIED LOADING < CLASS > < TYPE > D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C - CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from ocometry input and treated as dead loading Unit selfweight W = 150 0 pcf Intensity ( From To ) ( M or C At) Total on Trib SPAN CLASS TYPE k/ftA2 (ft ft ) (k-ft or k ft) k/ft -_L 1 1 1 1 1 I I I I 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 ^ L L D D SW SW SW SW SW L L D D SW SW SW SW SW SW SW L L D D SW SW SW SW SW L L L D D D j y- Ll Ll Ll Ll P P P P P Ll Ll Ll Ll P P P P P P P Ll Ll Ll Li P P P P P Ll Ll Ll Ll Ll Ll D 00 00 00 00 00 50 21 29 21 29 22 48 00 00 00 00 00 52 2 50 2 50 22 85 22 85 24 83 00 00 00 00 00 52 2 50 2 50 16 25 00 00 10 00 00 10 , 23 23 23 23 21 21 22 23 25 25 25 25 2 2 22 22 24 25 16 16 16 16 2 2 16 16 6 6 3 6 6 3 00 00 00 00 50 29 29 48 00 35 35 35 35 52 50 50 85 85 83 35 58 58 58 58 52 50 50 25 58 79 79 60 79 79 60 1 2 2 3 3 3 1 1 2 2 2 2 2 2 2 1 2 2 2 2 2 I 935 155 701 866 816 816 191 191 191 Oil 068 758 801 845 845 845 470 845 845 845 997 061 748 796 912 912 912 537 537 017 003 144 012 752 108 Page 5 (Support Line 11)ADAPT-PT V- 6 17 ACI 4 4 4 4 4 4 SW SW SW SW SW SW P P P P P P 3 6 6 00 33 33 60 29 29 3 6 6 6 33 33 60 29 29 79 2 2 2 1 1 1 483 483 483 194 194 194 NOTE LIVE LOADING is SKIPPED with a skip factor of 1 00 3 1 - LOADING AS APPLARS IN USER S INPUT SCREEN PRIOR TO PROCESSING SPAN -] 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 4 NOTE UNIFORM (k/ftA2) , ( CON or CLASS TYPE LINE (k/ ft) ( k@ft or L L D D L L D D L L D D L L L D D D L L L L L L L L L L L L L L L L L L 935 1 155 701 866 1 Oil 1 068 758 801 997 1 061 748 796 017 1 003 144 012 752 108 00 00 00 00 00 00 00 00 00 00 00 00 00 00 10 00 00 10 PART ) (MOMENT) ft-ft ) ( k-ft @ ft ) 6 1 Q 23 00 23 00 23 00 23 00 25 35 25 35 25 35 25 35 16 58 16 58 16 58 16 58 6 79 6 79 3 60 6 79 6 79 3 60 SELFWEIGHT INCLUSION REQUIRED LIVE LOADING is 4 - C 42- A L C U Computed LATE Section SKIPPED with a D S E C T I 0 Properties for skip N factor of 1 00 PROPERTIES Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross-sectional geometry Yt= centroidal distance to top fiber 1= gross moment of inertia Yb= centroidal distance to bottom fiber Page 6 (Support Line 11)ADAPT-PT V- 6 17 AC! SPAN AREA (SEGMENT) m~2o SPAN 1 1 2 3 4 SPAN 2 1 2 3 4 5 SPAN 3 1 2 3 4 SPAN 4 1 2 3 4 5 6 7 - M SPAN1 1 2 3 4 Note * = f? ^ 2703 2703 3063 3063 2731 2731 2371 2731 2731 2795 2795 2435 2435 2383 2383 2383 1146 1146 1146 O M E N T 71 RE 32 32 35 35 23 23 20 23 23 92 92 90 90 29 29 26 00 00 00 S D U <- left* —2 -89 -226 -164 -33 ice-of-suoD 83 67 42 91 ort I inA4 O 1029E+06 2033E+05 4049E+05 4427E+05 4173E+05 3769E+05 1783E+05 3769E+05 4173E+05 4223E+05 3824E+05 1832E+05 1891E+05 1851E+05 1792E+05 1792E+05 8619E+04 8619E+04 2155E+06 Yb in A 4 4 9 9 9 9 4 9 9 9 9 4 4 4 4 4 4 4 4 75 75 84 84 73 73 75 73 73 75 75 75 75 75 75 75 75 75 75 Yt in c 4 4 5 5 5 5 4 5 5 5 5 4 4 4 4 4 4 4 4 75 75 66 66 77 77 75 77 77 75 75 75 75 75 75 75 75 75 75 REDUCED TO FACE-OF-SUPPORT C E D DEAD LOAD -> <- midspan ->•5 105 58 98 25 26 60 -3 11 MOMENTS (k-ft) <- right A —q—. -225 08 -167 17 -31 24 2 13 * -> 72 REDUCED SPAN — left* max LIVE LOAD MOMENTS (k-ft) mm < midspan > <- max mm — right* > max mm Page 7 (Support Line 11) ADAPT-PT V- 6 17 ACI -1 1 2 3 4 Note * 10 - Calcu 10 1 SPAN "I 1 2 3 4 Note * 10 2 SPAN 1 1 2 3 4 Note* JOINT -1 1 2 3 9 O -64 08 22 79 -120 33 -43 55 -ID* 33 29 -45 44 28 73 = face-of-support FACTORED HOME j_ated as ( 1 40D + 1 70L + FACTORED DESIGN MOMENTS / H a -F-t- * ~s s max mm 9 o -198 81 -50 57 -507 14 -375 96 -363 65 -185 82 -139 12 -13 04 = face-of-support SECONDARY MOMENTS (k-ft) A 72 64 75 41 42 59 15 74 NTS C £ -23 93 -119 00 -23 32 -106 92 -30 01 -43 36 -17 96 -6 04 & REACTIONS n -43 69 -2 66 27 29 7 30 1 00 secondary moment effects) (k-ft) mid max* 297 70 296 31 125 84 10 37 < — left* — > <- midspan -> *~1 •"> 37 47 26 16 69 30 44 55 16 -14 38 -12 = face-of-support 10 3 FACTORED REACTIONS (k) <- max mm 9 — — ^ —103 13 53 46 254 72 200 92 213 86 147 58 41 52 19 04 10 4 - LOWER max Aq -75 56 18 67 26 72 span > < ric mm max 133 52 -503 61 128 47 -373 45 2 42 -131 28 -46 93 -17 18 < — right* — > y| 15 44 44 34 -13 07 -9 82 FACTORED COLUMN MOMENTS column — > < — UPPER mm max c _ cO D -247 61 00 -17 59 00 - 34 00 mm-j -372 23 -195 44 -10 89 5 53 (k-ft) column — > mm -y 00 00 00 Page 8 (Support Line 11}ADAPT-PT V- 6 17 AC I 4 5 116 47 18 22 46 30 -12 78 34 25 67 - 50 -12 31 00 00 00 00 11 -MILD STEEL Support cut-off length for minimum steel(length/span) 17 Span cut-off length for minimum steel(length/span) 33 Top bar extension beyond where required 12 00 in Bottom bar extension beyond where required 12 00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments AVERAGE = 4 psf11 1 TOTAL WEIGHT OF REBAR = TOTAL AREA COVERED 678 1 Ib 1534 32 ftA2 MID-SPAN11 21 STEEL AT TOP As DIFFERENT REBAR CRITERIA SPAN (inA2) < ULT TENS > BOTTOM As DIFFERENT REBAR CRITERIA (in~2) < ULT TENS > 1 2 3 4 00 00 00 00 00 00 00 00 00 00 00 00 00) 00) 00) 00) 61 30 00 00 76 97 00 00 61 30 00 00 00) 00) 00) 00) 11 31 SUPPORTSSTEEL AT TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) < ULT MIN > (in^2) < ULT MIN > I 2 3 4 5 £ 2 2 2 1 I 03 ( 47 ( 47 ( 81 ( 79 ( I 2 I ^77 47 39 00 00 2 2 2 1 I I ; 03 07 47 81 79 3 ( 00) 00) 00) 00) 00) 00 ( 00 ( 00 ( 00 ( 00 ( 00 00 00 00 00 00 00 00 00 00 j 00) 00) 00) 00) 00) 12- PUNCHING SHEAR CHECK LEGEND CONDITION 1 = INTERIOR COLUMN 2 = END COLUMN 3 = CORNER COLUMN 4 = EDGE COLUMN (PARALLEL TO SPAN) 5 = EDGE BEAM, iflALL, OR OTHER NON-CONFORMING GEOMETRY Page 9 (Support Line 11)ADAPT-PT V- 6 17 ACI CASE PERFORM SHEAR CHECK MANUALLY 6 = STRIP TOO NARROW TO DEVELOP PUNCHING SHEAR 1 = STRESS WITHIN SECTION #1 GOVERNS (COL C£P OR SL»B) 2 = STRESS WITHIN SECTION #2 GOVERNS (DROP PANEL OR SLAB) FACTORED ACTIONS <- PUNCHING SHEAR STRESSES IN psi-> shear moment due to due to allow- STRESS JNT COND k k-ft shear moment TOTAL able RATIO CASE X -1 2 3 A iz c 11 c; c; 254 72 213 86 18 67 26 72 j- 169 142 92 67 6 31 9 03 176 24 151 70 224 224 50 50 - y 79 68 - i 1 1 PUNCHING SHEAR CHECK NOT CARRIED OUT FOR SUPPORT WITH CONDITIONS 5 OR 6 13 - MAXIMUM SPAN DEFLECTIONS Concrete s modulus of elasticity Creep factor leffective/Igross (due to cracking) EC = 3604 90 ksi K = 2 00 K = 1 00 Where stresses exceed 6(fc )"1/2 cracking of section is allowed for Values in parentheses are (span/max deflection) ratios SPAN -1 — 1 2 3 4 DL —2 — 09 10 01 00 DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE DL+PT DL+PT+CREEP — 3 4 05 16( 1734) 04 13( 2361) -04 - 11( 1876) 00 01(11515) LL DL+PT+LL+CREEP — 5 04( 6652) 05( 5606) 00(44929) 00(*****) 6 20( 1375) 18( 1661) - 10( 1958) 01 (12584) ADAPT -STRUCTIIRAI CONORETF SOFTWARE ADAPT p i Version b i / uate 1/9/2UUO lime i/: 01 52 Ph/i rile bupport Lines 1- PROJECT TITLE Buena Vista . 1 1 DtbluN b I rilP Support Line 5 ^VJlfC1^ £M}> 2 MEMBER ELEVATION [ft]600 23 65 o ^ y 600 3 - TO0 PEBAR 3 i Usei seiectea 3 2 User selected 3 3 ADAPT selected 3 4 ADAPT selected 4 - TENDON PROFILE ^ 2 DatuTi Lne 4 3 CGS Distance [in]4 5 Force 5 - BOTTOM REBAR 5 1 User selected 5 2 User selected 5 3 ADAPT selected 5 4 ADAPT selected X46 (3)4*6X80 C? 4#6X46 (6)4#SX36 r — 1 ~" '"""—•— „ ,— •— * "~ I "~ "~"~P"- 4 75 6 00 8 008 00 8 00 8 008 00 2 00 8 008 00 8 00 8 008 00 6 0675[215kipsJ [215 kips] [215 kips] [215 kips] [215 kips] max o go 20 — 6 - REQUIRED & PROVIDED BARS 6 1 Top Bars 1 5 ~ 1 o- 05 I [ I 6 2 Bottom Bars 127 1 27 127 [in*!required provided 7 PUNCHING ^HFAR OK=Acceptable NR=Mn Rnnrj ' *=not applicable or not performed i 7 1 Stress Ratio , 7 2 Status ' * 91 OK l i i i i i i i i 115 , KIO ' iNG 8 - LEGEND -* Stressing End | Dead End 9 - DESIGN PARAMETERS 9 1 Code ACI f c = 3 9999 ksi fy = 60 ksi (longitudinal) fy = 60 ksi (shear) fpu = 269 99 ksi 9 2 Rebar Cover Top = 1 in Bottom = 1 in Rebar Table ASTM US Customary bars (Non redistributed Moments) 9 3 Stressing fp) = 8fpu 9 4 Strand Area = 153 in2 ' 10-DESIGNERS NOTES FLORES LUND CONSULTANTS ADAPT CORPORATION STRUCTURAL CONCRETE SOFTWARE SYSTEM ADAPT-PT FOR POST-TENSIONED BEAM/SLAB DESIGN | Version 6 11 AMERICAN (ACI-318-99/UBC-1997) | ADAPT CORPORATION - Structural Concrete Software System | 1733 Woodside Road, Suite °0, Redwood City, California 94061 | Phone (650}306-?'OU, Fax (650)364-4678 | Email SupportSAdaptSoft con T»7eb site http //www AdaptSoft com | DATE AND TIME OF PROGRAM EXECUTION PROJECT FILE Jan 9,2005 At Time 12 1 Support Line 5 PROJECT Buena Vista Sjpport Line 5 TITLE 1 - USER SPECIFIED GENERAL DESIGN PARAMETERS CONCRETE STRENGTH at 28 days, for BEAMS/SLABS for COLUMNS MODULUS OF ELASTICITY for BEAMS/SLABS for COLUMNS 3999 90 psi 3999 90 psi 3604 90 ksi 3604 90 ksi CREEP factor for deflections for BEAMS/SLABS CONCRETE WEIGHT 2 00 NORMAL SELF WEIGHT 150 00 pcf TENSION STRESS limits (multiple of (f'c)l/2! At Top At Bottom 6 000 6 000 COMPRESSION STRESS limits (multiple of (f'c)) At all locations 450 REINFORCEMENT YIELD Strength Minimum Cover at TOP Minimum Cover at BOTTOM 60 00 ksi 1 00 in I 00 in POST-TENSIONING -- SYSTEM Ultimate strength of strand Average effective stress in strand (final) Strand area Mm CGS of tendon from TOP Mm CGS of tendon from BOTTOM for INTERIOR spans UNBONDED 269 99 ksi 175 00 ksi 153 mA 1 25 in I 25 in Page 2 (Support Line 5}ADAPT-PT V- 6 17 ACI Mm CGS of tendon from BOTTOM for EXTERIOR spans 2 00 in Mm average precompression 150 00 psi Max spacing between strands (factor of slab depth) 8 00 Tendon profile type and support widths (see section 9) ANALYSIS OPTIONS USED Structural system (using EQUIVALENT FRAME) TWO-WAY Moments REDUCED to face of support YES Limited plastification allowed(moments redistributed) NO 2-1 N PUT GEOMETRY 211 PRINCIPAL SPAN DATA OF UNIFORM SPANS s p A N 1 — 1 2 3 4 5 F| 1 01 IRI LENGTH: M| ft ---3 4i i 2 I 1 6 6 23 6 6 00 00 66 00 00 | WIDTH 5 126 126 12 127 127 56 40 00 05 91 I TOP | BOTTOM/MIDDLE | | | FLANGE | FLANGE | REF | DEPTH | width thick | width thick | HEIGHT | in | in in | in in | in | 6 7 8 9. 9 9 26 9 9 50 50 00 126 26 50 50 9 50 10 11 — 9 50 9 50 9 50 9 50 9 50 MULTIPLIER left right i - — 12 13- 00 1 00 1 00 1 00 1 00 1 00 00 00 00 00 LEGEND 1 -SPAN C = Cantilever 3 - FORM 1 2 =3 = 4 = 7 = p Rectangular section T or Inverted L I section Extended T or L Joist Waffle section section 11 - Top surface to reference line 22-SUPPORT WIDTH AND COLUMN DATA UPPER COLUMN - B(DIA)— - D- in in CBC*~ SUPPORT < LOWER COLUMN > < UPPER COLUMN > WIDTH LENGTH B(DIA) D CBC* LENGTH JOINT in ft in in ft __! 2 3 4 5 6 7 8 9 10 1 12 00 10 00 126 56 12 00 (3) 00 00 00 (2) 2 00 10 00 12 00 72 00 (3) 00 00 00 (2) 3 00 10 00 12 00 60 00 (3) 00 00 00 (2) 4 00 10 00 12 00 60 00 (3) 00 00 00 (2) Page 3 (Support Line 5)ADAPT-PT V- 6 17 ACI 5 00 6 12 00 10 10 00 00 12 127 00 91 72 12 00 00 (3) (3) 00 00 00 00 00 00 (2) (2) *TriE COLUMN BOUNDARY CONDITION CODES (CBC) Fi-ed at both erias (STANDARD) = 1 Hinged at neai end, fi> ed at fai end = 2 Fi ed at near end, hinged at far end = 3 Fi>ed at near end, roller with rotational faxity at far end - <J 3-INPUT APPLIED LOADING < CLASS > D = DEAD LOAD L = LIVE LOAD -TYPE > P = PARTIAL UNIFORM M = APPLIED MOMENT U = UNIFORM C = CONCENTRATED Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Unit selfweight W = 150 0 pcf Intensity ( From To ) { M or C At) SPAN CLASS TYPE k/ftA2 (ft ft ) (k-ft or k ft) -1 2 3 4 5 6 7 8 — Total on Trib k/ft9 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 L D SW SW SW L D SW SW SW L D SW SW SW L D SW SW SW Li Li P P P Li Li P P P Ll Li P P P Ll Ll P P P 00 00 00 50 3 00 00 00 00 3 00 3 50 00 00 00 2 50 21 16 00 00 00 2 50 3 00 6 00 6 00 50 3 00 6 00 6 6 2 3 6 00 00 00 50 00 23 66 23 66 2 50 21 16 23 66 00 00 50 00 00 1 054 791 1 252 1 252 1 252 1 053 790 1 251 1 251 1 251 052 789 456 456 456 1 055 792 1 257 1 257 1 257 Page 4 (Support Line 5)ADAPT-PT V- 6 17 ACI 0 5 5 5 5 L D SW SW SlAf Li Li P P P 00 00 00 3 00 5 50 6 00 6 00 3 00 5 50 6 00 I 062 797 1 266 1 266 1 266 NOTE LIVE LOADING is SKIPPED with a skip factor of 1 00 3 1 - LOADING PS APPEARS IN USER S INPUT SCREEN PRIOR TO PROCESSING SPANi CLASS TYPE 9 _ ^ UNIFORM (k/ft"2) , LINE(k/ft)/ ( CON or ( k@ft or C PART ) ft-ft ) (T (MOM ( k-ft 7 E @ N T ft — R — ) } 1 1 2 2 3 3 4 4 5 5 L D L D L D L D L D L L L L L L L I L L 1 054 791 1 053 790 1 052 789 1 055 792 1 062 797 00 00 00 00 00 00 00 00 00 00 6 6 6 6 23 23 6 6 6 6 00 00 00 00 66 66 00 00 00 00 NOTE SELFWEIGHT INCLUSION REQUIRED LIVE LOADING is SKIPPED with a skip factor of 1 00 4-CALCULATED SECTION PROPERTIES 4 2 - Computed Section Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross-sectional geometry Yt= centroidal distance to top fiber 1= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN (SEGMENT) SPAN 1 1 2 3 SPAN 2 AREA in "2 0 1202 1202 1202 32 32 32 I in "4 ^ _ 2261E+06 9042E+04 1104E+05 Yl 11 A -q 4 4 4 3 1 75 75 75 Y1 ir _ c.O 4 4 4 i 75 75 75 Page 5 7 - (Support Line 5)ADAPT-PT V- 6 17 *CI 1 2 3 SPAN 3 I 2 3 SPAN 4 1 2 3 SPAN 5 1 2 3 1200 1200 1200 1397 1397 1397 1206 1206 1206 1215 1215 1215 80 80 80 47 47 47 97 97 97 15 15 15 1103E+05 9031E+04 1103E+05 5157E+05 4223E+05 5157E+05 1107E+05 9077E+04 1107E+05 1113E+05 9139E+04 2285E+06 4 4 4 19 19 19 4 4 4 4 4 4 75 75 75 41 41 41 75 75 75 75 75 75 4 4 4 6 6 6 4 4 4 4 4 4 75 75 75 59 59 59 75 75 75 75 75 75 MOMENTS REDUCED TO FACE-OF-SUPPORT 71 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <- left* -> <- midspan -> <- right* -> 1 2 3 4 5 ^- 31 6 27 -78 23 -25 63 -4 88 j 6 38 -8 40 64 78 -3 41 5 48 -2 45 -41 44 -106 33 35 - 07 Note = face-of-support 72 REDUCED LIVE LOAD MOMENTS (k-ft) SPAN1 1 2 3 4 5 max — _ o -3 -37 -12 -4 24 96 23 97 " 16 mzn-3 5 -2 12 17 86 40 54 max$ 3 2 30 ~~ 2 3 61 23 88 06 16 11 s mmc -6 -3 43 01 56 51~ 40 <s. jixyi max -4 21 -20 22 -50 55 -3 81 - 11 1L~ S mm-i 1 -1 "2 63 93 04 21 12 Note * = face-of-support Page 6 (Support Line 5)ADAPT-PT V- 6 17 ACI 10 -FACTORED MOMENTS REACTIONS Calculated as ( 1 40D + 1 70L + 1 00 secondary moment effects! 10 1 FACTORED DESIGN MOMENTS (k-ft) SPAN 1 1 2 3 4 5 max 9 -4 83 -58 58 -207 00 -109 45 -67 91 *r mm 0o -3 78 -43 05 -145 16 -91 49 -59 92 may -11 87 -61 43 113 67 -56 39 -13 60 mm ~ -18 74 -75 44 60 21 -65 85 -19 64 max -65 34 -138 69 -259 72 -64 65 -4 38 mm "7 -55 41 -107 61 -173 85 -54 43 -3 52 Note * = face-of-support 10 2 SPAN -1^ x 1 2 3 4 5 Note * = SECONDARY MOMENTS <-- left* — > 9 -3 76 -60 63 -34 17 -51 53 -53 99 face-of-suDDort (k-ft) <- midspan ->-i— j -26 94 -53 47 -29 53 -55 11 -26 63 < — right* — > 4 __ -54 76 -46 30 -24 90 -58 67 -3 84 10 3 FACTORED REACTIONS 10 4 FACTORED COLUMN MOMENTS (k-ft) (k) <— LOWER column —> <— UPPER column —> JOINT max mm max mm max mm _L 1 2 3 4 5- - 6 ^5 23 29 72 85 76 83 60 34 09 4 42 - 88 15 47 58 08 56 85 23 18 -1 29 ^-3 23 15 93 -37 08 155 32 - 27 - 5 75 O -6 63 3 73 -70 78 81 36 -9-25 - 2 77 O 00 00 00 00oo - 00 — / 00 00 00 00 00 00 11 -MILD STEEL Page 7 (Support Line 5)ADAPT-PT V- 6 17 ACI Support cut-off length for minimum steel(length/span) 17 Span cut-off length for minimum steel(length/span) 33 Top bar extension beyond where required 12 00 in Bottom bar extension beyond where required 12 00 in REINFORCEMENT based on NO REDISTRIBUTION OL -Factored moments AVERAGE = 4 psf11 1 TOTAL WEIGHT OF REBAR = TOTAL AREA COVERED 216 3 Ib 502 90 ft"2 II 2 I STEEL AT MID-SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) < ULT TENS > (mA2) < ULT TENS > X1 2 3 4 5 00 ( 00 ( 00 ( 00 ( 00 ( 00 00 00 00 00 — ij 00 00 00 00 00 00) 00) 00) 00) 00) O 00 ( 00 ( 00 ( 00 ( 00 ( ; 00 00 00 00 00 O 00 00 00 00 00 00) 00) 00) 00) 00) 11 31 STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) < ULT MIN > (mA2) < ULT MIN > 1 2 3 4 5 6 ^ 1 1 90 ( 90 ( 27 ( 27 ( 91 ( 91 ( __ j 00 00 00 00 00 00 1 1 i 90 90 27 27 91 91 — -_, 00) 00) 00) 00) 00) 00) D 00 ( 00 ( 00 ( 00 ( 00 ( 00 ( 00 00 00 00 00 00 O 00 00 00 00 00 00 00) 00) 00) 00) 00) 00) 12- PUNCHING SHEAR CHECK LEGEND CONDITION CASE 1 = INTERIOR COLUMN 2 = END COLUMN 3 = CORNER COLUMN 4 =_EDGE__COLUMN (PARALLEL TO SPAN) _ 5~ = EDGE BEAM, WALL, OR OTHER NON-CONFORMING GEOMETRY PERFORM SHEAR CHECK MANUALLY 6 = STRIP TOO NARROW TO DEVELOP PUNCHING SHEAR 1 = STRESS WITHIN SECTION #1 GOVERNS (COL CAP OR SLAB) 2 = STRESS WITHIN SECTION #2 GOVERNS (DROP PANEL OR SLAB) f55 Page 8 (Support Line 5)ADAPT-PT V- 6 17 ACI FACTORED ACTIONS <- PUNCHING SHEAR STRESSES IN psi-> JNT .1 1 2 3 4 5c COND 5 5 4 4 5 c, shear k OJ 85 76 83 60 moment k-ft /] 70 79 155 32 due to shear •j 105 29 102 63 due to moment rD 32 20 70 64 TOTAL T 137 173 48 28 allow- able 0 150 150 52 52 STRESS RATIO ny 91 1 15 CASE i n ii PUNCHING SHEAR STRESS IN ONE OR MORE LOCATIONS CXr-EDS THE PERMISSIBLE VALUE PROVIDE SHEAR REINFORCEMENT, OR ENLARGE THE SECTION RESISTING THE PUNCHING SHEAR PUNCHING SHEAR CHECK NOT CARRIED OUT FOR SUPPORT WITH CONDITIONS 5 OR 6 13 - MAXIMUM SPAN DEFLECTIONS Concrete s modulus of elasticity Creep factor leffective/Igross (due to cracking) EC = 3604 90 ksi K = 2 00 K = 1 00 Where stresses exceed 6(fc ) Al/2 cracking of section is allowed for Values in parentheses are (span/max deflection) ratios SPAN -1 — 1 2 3 4 5 DL DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > DL+PT -D 00 00 01 00 00 DL+PT+CREEP ^00(96209) 00(19277) 04( 7620) 00(49639) LL DL+PT+LL+CREEP 00 00 03 00 00 OQ(*****) 00(69014) 01(19708) 00 (*****) 00(*****) 00(56235) 00(15068) 05( 5495) 00(36382) 00(97642) KL 4 CONC SOG ON 4 CLEAN SAND IB/ "4 « 18 o/c EA WAT fCENTERED IN SLABJ TTP I Rev 560100 Restrained Retaining Wall Design Page 1 Description Typ Basement Walls Criteria Retained Height = Wall height abov- soil = Total Wall Heigh = i£ 900ft 000ft 900ft Soil Data Allow Soil Bearing = 2 000 0 psf Equivalent Fluid Pressure Method t Footing Strengths & Dimensions Top Support Height = 9 00 ft Slope Behind Wan = 0 00 1 Height of Soil over Toe = 0 00 in Soil Density = HOOOpcf Wind on Stem = 0 0 psf Surcharge Loads Heel Active Pressure Toe Active Pressure Passive Pressure Water height over heel Footmg||Soil Friction Soil height to ignore for passive pressure 500 00 = 2500 00 ft = 0300 = 0 00 in f c = 3 000 psi Mm As% Toe Width Heel Width Total Footing Width ' Footing Thickness •• Key Width key Depth : Key Distance from Toe : Cover @ Top = 3 00 in Fy = 60 000 psi 00014 1 50ft = 3~0(T 1200m = 0 00 in = 0 00 m 000ft ! Btm = 3 00 m Uniform Lateral Logo Applied to Stem p Surcharge Over Heel = 75 0 psf »>NOT Used To Resist Sliding & Overturn Surcharge Over Toe = 00 psf NOT Used for Sliding & Overturning i Adjacent Footing Load L Lateral Load Height to Top Height to Bottom 00#/ft 000ft 000ft < Axial Load Applied to Stem CCA.-.^L-S1 T: Axial Dead Load = 900 0 Ibs Axial Live Load = 1 200 0 Ibs Axial Load Eccentricity = 2 0 in D Adjacent Footing Load = Footing Width = Eccentricity = Wall to Ftg CL Dist Footing Type Base Above/Below Soil at Back of Wall 00 Ibs 000ft 000 in 000ft Line Load 00ft Design Summary [ Masonry Stem Construction Total Bearing Load = 4 227 Ibs T resultant ecc = 1 94 m v Soil Pressure @ Toe = 1 864 psf OK j> Soil Pressure @ Heel = 954 psf OK B Allowable = 2 000 psf S Soil Pressure Less Than Allowable AC! Factored @ Toe = 2 769 psf ACI Factored @ Heel = 1 416 psf Footing Shear @ Toe = 32 7 psi OK Footing Shear @ Heel = 8 4 psi OK Allowable = 93 1 psi Reaction at Top = 578 4 Ibs Reaction at Bottom = 2 262 5 Ibs Sliding Calcs Slab Resists All Sliding 'Lateral Sliding Force = 2 262 5 Ibs _^ojmgjtesipn Results _Jj Factored Pressure = Mu Upward = Mu Downward = Mu Design = Actual 1 Way Shear = Allow 1 Way Shear = Toe Heel 2 769 1 416 psf 2 861 0 ft-# 236 213ft-# 2625 213ft-# 32 66 8 45 psi 9311 9311 psi r hickness = 1200m fm = 1 500 psi Short Term Factor = 1000 Vail Weight = 1330pcf Fs = 24 000 psi Equiv Solid Thick = 11620m tem is FIXED to top of footing n Ratio (Es/Em) = 25 778 lock Type = Normal Weight Use Special Inspection olid Grouted Mmax Between @ Top Support Top & Base @ Base of Wall Design height = Rebar Size Rebar Spacing = Rebar Placed at = Rebar Depth d fb/FB + fa/Fa = Moment Actual = Moment Allowable = Shear Force @ this height = Shear Actual = Shear Allowable = Rebar Lap Required = Rebar embedment into footing Other Acceptable Sizes & Spat Toe None Spec d Heel None Speed Key No key defined Stem OK 900ft # 5 16 00 in Center 575m 0148 350 0 ft-# 2 371 7 ft-# 00 Ibs 0 00 psi 38 73 psi 25 00 m Stem OK 481ft # 6 1600m Center 5 75 m 0420 1 1612ft-# 2 766 5 ft-# 30 00 in :mgs or- #4@ 17 00 in #5@ 26 25 in #6 or Not req d Mu < S * Fr or No key defined Stem OK 000ft # 6 1600m Center 575m 0940 26002ft-* 1 753 4 Ibs 28 97 psi 38 73 psi 6 00 in @ 37 00 in #7@ 48 Rev 5601°°Restrained Retaining Wall Design Page 2 Description Typ Basement Walls Forces acting on footing for soil pressure Load & Moment Summary For Footing For Soil Pressure Calcs >» sliding Forces are restrained by the adjacent slab Moment @ Top of Footing Applied from Stem Surcharge Over Heel = Ibs Axial Dead Load on Stem = 2 100 0 Ibs Soil Over Toe Surcharge Over Toe Stem Weight Soil Over Heel Footing Weight Total Vertical Force Ibs Ibs 11970 Ibs 495 0 Ibs 435 0 Ibs 4 227 0 Ibs ft 1 83ft ft ft 200ft 275f 1 50ft Base Moment = 2 600 2 ft-# n-# 3 850 0 ft-* ft-* ft-* 2 394 0 ft-# 1 361 3 ft-* 652 5 ft-# 5 657 5 ft-# Soil Pressure Resulting Moment =683 Oft* I I I I I I I I I I I I I I I I I I I 12 OQQ5 Masonry w/ #5 @ l£_ Lateral Restraint 5784* 120005 Mason^Q»#6@l6 120005 Masonry w/#6 @ 16 Sliding Restraint #0@0 in @Toe #0@0 in @Heel 1 6 1 6 3 0 9 0 9 0 1 0 Rev 560100 Concrete Rectangular & Tee Beam Design Page 1 Description Basement Beam B1 General Information Calculations are designed to ACI 318 95 and 1997 UBC Requirements Span 23 50 ft Depth 26 000 in Width 12 000 in Beam Weight Added Internally f c 4 000 psi y 60 000 psi Concrete Wt 1 45 0 pcf <- smicZone 4 End Fixity Pinned Pinned Live Load acts with Short Term Reinforcing Rebar @ Center of Beam Count Size d from Top #158 1500m #2 2 5 300m Rebar @ Left End of Beam Count S«_e d from Top #1 in #2 in Rebar @ Right End of Beam Count Size d fiomTop #1 in #2 in Uniform Loads i — ^aLe*Jo*feu*j*>UjU.,i)»- - t™. »^.A«^U_^_ T£^s^^&»£Si3iSi3jiM8»«&&^^ Dead Load Live Load #1 0 750 k 0 840 k i-^^s&s&ii fc^kMSfU^ ,a^'.. ,-" ».a .if r^si*±.... j™,-^ |Summary \ "&Iv^Sr^^'*kF^^~r~" T Tn'SEST'S: *r » jp-yjj-' Span = 23 50ft Width= 12 00m Depth = 26 00m Maximum Moment Mu 201 42 k ft Allowable Moment Mn'phi 21 9 65k ft Maximum Shear Vu 30 72 k Allowable Shear Vn'phi 6423k Shear Stirrups Stirrup Area @ Section 0 440 m2 Region 0000 3917 Max Spacing 7 500 7 500 MaxVu 30719 23039 Bending & Shear Force Summary Bending Mn*Phi ©Center 21 9 65k ft @ Left End 0 00 k ft @ Right End 0 00 k-ft Shear Vn*Phi @ Left End 64 23 k @ Right End 64 23 k Short Term k Maximum Deflection Max Reaction @ Left Max Reaction @ Right 7833 11750 15667 7 500 7 500 7 500 11520 11245 11245 Mu, Eq 9 1 Mu Eq 9 2 201 42k ft 184 03k ft 0 00 k ft 0 00 k ft 0 00 k-ft 0 00 k-ft Vu, Eq 9 1 Vu Eq 9 2 30 72 k 28 07 k 30 44 k 27 82 k Start End 0 000 ft 23 500 ft Beam Design OK 0 8229 in 2237k 2237k 19583 23500ft 7 500 7 500 in 22 765 30 445 k Mu Eq 9 3 66 1 1 k ft 000k ft 0 00 k-ft Vu, Eq 9 3 1008k 999k Deflection | Deflections Upward DL + [Bm Wt] 0 0000 in DL + LL + [Bm Wt] 0 0000 in DL + LL + ST + [Bm Wt] 0 0000 in Reactions (S> Left DL + [BmWt]] 12504k DL + LL + [Bm Wt] 22 374 k DL + LL + ST + [Bm Wt] 22 374 k at 23 5000 ft at 23 5000 ft at 23 5000 ft <S> Riant 12504 22374 22374 02278 -0 8229 08229 k k k Downward in at 11 7500ft in at 11 7500ft in at 11 7500ft Concrete Rectangular & Tee Beam Design Page 2 | Description Basement Beam 1 Section Analysis E\ nluate Moment Capacity A Neutral Axis s = beta * Xneutral f oppression in Concrete Sum [Steel comp forces] Tension in Reinforcing Find Max As for Ductile Failure X Balanced Xmax = Xbal * 0 75 a max = beta * Xbal Compression in Concrete Sum [Steel Comp Forces] Total Compressive Force AS Max = Tot Force / Fy Actual Tension As Additional Deflection Calcs B1 Center 6 100 in 5 185 in 21 1 548 k 25 304 k 237 000 k 8 878 in 6 658 in 7 546 in 230 905 k 27 528 k 258 433 k 4 307 m2 3 950 OK Left End Riant End 0 000 in 0 000 in 0000k 0000 k 0000k 0 000 in 0 000 in 0 000 in 0000 k 0000k 0000k 0 000 m2 0 000 OK 0 000 in 0 000 in 0000k 0000 k 0000k 0 0000 in 0 000 in 0 000 in 0000k 0000k 0000k 0 000 m2 0 000 OK F Neutral Axis 6 495 in Igross 1757600 in4 Icracked 3 455 36 m4 Elastic Modulus 3 605 0 ksi Fr = 7 5 * f c* 5 474 342 psi Z Cracking 391 744 ksi Z cracking > 175 No Good ' Eff Flange Width 1200 in ACI Factors (Per ACI applied internally to entered loads) ACI 9 1 & 9 2 DL 1 400 ACI 9 1 & 9 2 LL 1 700 ACI 9 1 & 9 2 ST 1 700 seismic = ST* 1 100 Mcr 53 44 k ft MsMaxDL + LL 131 45k ft R1 = (Ms DL+LL)/Mcr 0 407 Ms Max DL+LL+ST 131 45k ft R2 = (Ms DL+LL+ST)/Mcr 0 407 I eff Ms(DL+LL) 4 404 353 m4 I eff Ms(DL+LL+ST) 4 404 353 in4 ACI 9 2 Group Factor 0 750 UBC ACI 9 3 Dead Load Factor 0 900 UBC ACI 9 3 Short Term Factor 1 300 _ - * 1921 27 14 Factor 1400 192127 09 Factor 0900 Rev 560100 Concrete Rectangular & Tee Beam Design Page 3 Description Basement Beam B1 Sketch & Diagram J426 235 470 705 940 1175 1410 1645 1880 2115 2350J132 235 470 705 940 1175 1410 1645 1880 2116 2350 2743 ; 2506 MST| 'I I (It 167°159k/ft "71 VffiaiJ 12 S3 | W1|,y|l,'j.l|l, v 23.5R Mu Max - 201 42k fl Omax = 0 8229m Rmax = 22 374kVu-Max= 30719k 600 1360 2041 2721 ifHiiwiiiijlLiJiiiilili i, j,i|jiii.i 1243 1864 2486 Rmax - VuMax (k) Location Along Member (fl) Shear Load (k) Location Along Member (ft) I2235 470 705 940 11751410164518802115235018403235 470 705 940 117514101645188021152350 Beam Sketch 181 28 161 14 141 00 12085 10071 8057 6043 4028 2014 3 Moment (k R) Location Along Member (R) Stresses for ACI 9 1 Combination 16562 14722 12882 11042 B201 7361 5521 3681 1840 Moment (k fl) Location Along Member (R) Stresses for ACI 9 2 Combination 11J25 235 470 705 940 1175 1410 1645 1880 2115 235022.37 235 470 705 940 1175 1410 1645 1880 2115 235a I *™ I 'gffls'n.ITDi:!;' in 2.25 0"S6^ 235 470 705 940 1175 1410 1645 1880 2115 2350 * ,ll -447 -670 893 5289 46.28 Itlllfl";hear Load (k) Location Along Member (ft) Shear Load K) Location Along Member (R)13145235 470 705 940 1175 1410 1645 1880 2115 235013145235 470 705 940 1175 1410 1645 1880 2115 2350 11630 11830 105 16 105 16 92 01 92 01 Shear Load (k) Location Along Member (R) Is 72 If 72 6811 235 470 705 940 117514101645 880211523505258 5258 5950 3'43 3943Z629 2629 1314 1314 __ __ _ M67 W^^frfHoTT^ w-^'Wt^^^x* 3306 -*10 016 ^ . -025 0252645 033 033 1983 -°«1 041 ,,« -049 -04913-22 JO 58 0 56 R 61 -0 66 -0 66ll! 4)74 .074 BeftSffc Moment (k fl) Location Along Member (fl) Local V Deflection On) Location Along Member (ft) Local y" Deflection (in) Location Along Member (R) Stresses for ACI 9-3 Combination Stresses for Service Dead + Live Loads Stresses for Dead+Live+Short Term Loads Rev 560100 Circular Concrete Column C1 - Typ Basement Column Page 1 Description ' General Information Calculations are designed to ACI 318 95 and 1997 UBC Requirements Diameter Number of Bars Bar Size Total Rebar Area Rebar Percent Bar Cover Loads Axial Loads SsaSSSSSSSSS'S**ffflBSSSaSf: 14000m f 8 F 7 £ 4 800 m2 L 3118% J 2 500 in Dead Load 96 500 k ss^s^^^sass^^s'i^'S^^TK'^'T^sS^S^^K^^^ssiSS^, 40000psi 60 000 0 psi Seismic Zone 4 LL & ST Loads Act Together Spiral Ties Used Total Height Unbraced Length Eff Length Factor Column is BRACED 10000 ft 10 000 ft 1 000 Live Load 35 400 k -T-* rCSOTSE'KF''' Short Term k iiS™S?S££S&SiS £, 5 Eccentricity 2 000 in Summary F .fs ..?..,. .Jir. tn,,_,,^.33Sf"l, ..**;!? 1 Column is OK Column Diameter= 14 00m with 8 #7 Bars Applied Pu Max Factored Allowable Pn * Phi @ Design Ecc M critical Combined Eccentricity Magnification Factor Design Eccentricity Magnified Design Moment Po* 80 P Balanced Ecc Balanced ACIS 1 195 28 k 377 89 k 32 55 k ft 2 0000 in 1 00 2 0000 in 32 55 k ft 675 81 k 18615k 7 2077 in ACI 9 2 184 66 k 377 89 k 30 78 k ft 2 0000 in 1 00 2 0000 in 30 78 k ft 675 81 k 18615k 7 2077 in ACI 9 3 8685k 377 89 k 14 47k ft 2 0000 in 1 00 2 0000 in 14 47k ft 675 81 k 186 15k 7 2077 in ! Slenderness per ACI 3-is 95 section w 12 & 1013 Actual k Lu / r 34286 Elastic Modulus 3 605 0 ksi Beta 0850 ACI Ea 91 ACI Ea 9 2 Neutral Axis Distance Phi Max Limit kl/r Beta = M sustamed/M max Cm El/ 1000 PC piA2 E 1 / (k Lu)A2 alpha MaxPu/(75Pc) Delta Ecc Ecc Loads + Moments Design Ecc = Ecc * Delta ACI Factors (per ACI applied internally to ACI 9 1 & 9 2 DL 1 400 ACI 9 1 & 9 2 LL 1 700 AC! 9 1 & 9 2 ST 1 700 seismic = ST* 1 100 109870m 07500 34 0000 06918 06000 1 636 70 1 121 78 02321 1 0000 20000 00000 entered loads) 109870 in 07500 34 0000 07316 06000 1 599 10 1 096 00 02246 1 0000 20000 00000 ACI 9 2 Group Factor 0750 UBC 1921 ACI 9 3 Dead Load Factor 0 900 UBC 1921 ACI 9 3 Short Term Factor 1 300 Spiral Tie Requirements per 97 UBC 1910 9 3 Spiral Tie Bar Size # 3 Mm Spiral Reinforcement Ratio 0 043 Gross Area of Column 1 53 94 in2 Core Area Within Spira's 63 62 m2 Max Spral Tie Spacing 13 774 in ACI Ea 9 3 109870m 07500 34 0000 10000 06000 1 384 51 94893 01220 1 0000 2 0000 in 0 0000 in 2714 Factor 1 400 2709 Factor 0900 Rev 560100 Circular Concrete Column 'o Page 2 i^^Description C1 - Typ Basement Column Sketch & Diagram Ax al Pn phi (k) D -965 LL=354s ST 00k o —• -o \/ PuMu(Eq9-1) 3779k 32 5k ft Pu Mil (Eq 9 2) 377 9k 30 8k ft PuMu(Eq9-3) 3779k 14 5k ft 86 172 257 343 429 515 600 686 772 858 Moment Mn pni (k ft) Description Typ Footing i General Information Dead Load Live Load Short Term Load Seismic Zone Overburden Weight Concrete Weight LL & ST Loads Combine Load Duration Factor Column Dimensicn Reinforcing Rebar Requirement Actual Rebar d depth used 200/Fy As Req d by Analysis Mm Remf % to Req d Square 98100k 35 400 k 0000k 4 100 000 psf 15000pcf 1 330 14 00 in 14 250 in 00033 0 0021 m2 0 0028 % Footing Design Calculations are designed to ACI Footing Dimension Thickness # of Bars Bar Size Rebar Cover fc Fy Allowable Soil Bearing As to USE per foot of Width Total As Req d Mm Allow % Remf Page 1 C 318 95 and 1997 UBC Requirements [, 9000ft 1800 in 8 8 3250 3 000 0 psi 60 000 0 psi 2 000 00 psf f 0 472 m2 4 246 m2 00014 Summary | 9 00ft square x 18 Oin thick with Max Static Soil Pressure Allow Static Soil Pressure Max Short Term Soil Pressure Allow Short Term Soil Pressure Mu Actual Mn * Phi Capacity 8- #8 bars 1 973 15 psf 2 000 00 psf 1 97315 psf 2 660 00 psf 2219kft/ft 42 85 k ft / ft Vu Actual One Way Vn*Phi Allow One Way Vu Actual Two Way Vn*Phi Allow Two Way Alternate Rebar Selections 22 #4s 14 #5s 8 #7s 6 #8s Footing 46 18 psi 93 1 1 psi 1 35 59 psi 186 23 psi OK 10 #6s 5 #9s 4 #10s Rev 560100 Description Small Footing General Information Dead Load Live Load Short Term Load Seismic Zone Overburden Weight Concrete Weight LL & ST Loads Combine Load Duration Factor Column Dimension Reinforcing Rebar Requirement Actual Rebar d depth used 200/Fy As Req d by Analysis Mm Remf % to Req d Square 63 000 k 27100k OOOQk 4 100 000 psf 15000pcf 1 330 14 00 in MtffMM&^^J&rfeU&l!*^^ 12250 in 00033 00017 m2 0 0023 % Footing Design Calculations are designed to ACI 318 Footing Dimension Thickness # of Bars Bar Sire Rebar Cover fc Fy Allowable Soil Bearing &£3&3y&jy&^«<(3&j^&i&dO&i&^^ As to USE per foot of Width Total As Req d Mm Allow % Remf Page 1 95 and 1997 UBC Requirements 7000ft 1600m 5 8 3250 3 000 0 psi 60 000 0 psi 2 250 00 psf 0 331 m2 2316m2 00014 j Summary (, 7 00ft square x 16 Om thick with Max Static Soil Pressure Allow Static Soil Pressure Max Short Term Soil Pressure Allow Short Term Soil Pressure Mu Actual Mn * Phi Capacity 5- #8 bars 2 13878 psf 2 250 00 psf 2 138 78 psf 2 992 50 psf 1344 k ft /ft 29 70 k ft / ft Vu Actual One Way Vn'Phi Allow One Way Vu Actual Two Way Vn'Phi Allow Two Way Alternate Rebar Selections 12 #4s 8 #5s 4 #7s 3 #8s Footing 40 76 psi 93 1 1 psi 108 63 psi 18623 psi OK 6 #6s 3 #9s 2 #10s FLORES i-UNO JOB. V.T.I ,..'. "'I' "• CONSULTANTS 7220 Trade Street, Suite 120 San Diego, California 92121-2325 (858)566-0626 Fax (858) 566-0627 SHEET NO. CALCULATED BY- CHECKED BY SCALE _____ OF DATE. DATE. t?1 f--> 4 R' t1 t Rev DS0100 Concrete Rectangular & Tee Beam Design Page Description GB-1 General Information Span Depth Width Calculations are designed to ACI 318 95 and 1997 UBC Requirements 1900 ft 18000 in 18000 in fc Fy Concrete Wt Seismic Zone End Fixity 3 000 psi 60 000 psi 1450pcf 4 Pinned Pinned Beam Weight Added Internally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam Count Size #1 5 8 Uniform Loads Rebar @ Left End of Beam d from Top Count Size d from Top 15 00 in #1 in Rebar @ Right End of Beam Count Size d from Top #1 in Dead Loa #1 1 860 Summary d Live Load k 0 500 k Short Term k Start End 0000ft 19000ft Beam Design OK Span = 19 00ft Width= 18 00m Depth = 18 00m Maximum Moment Mu 176 47k ft Allowable Moment Mn phi 220 68 k ft Maximum Shear Vu Allowable Shear Vn Shear Stirrups Stirrup Area @ Section Region Max Spacing MaxVu 3240k *phi 70 02 k 0440 m2 0000 3167 7 500 7 500 32 397 24 966 Maximum Deflection Max Reaction Max Reaction 6 333 9 500 Not Req d Not Req d 12483 12186 @ Left @ Right 12667 Not Req d 12186 0 5786 in 2552 k 2552 k 15833 19000ft 7 500 7 500 in 24 669 32 099 k Bending & Shear Force Summary S 1 v «te» ™ » Bending @ Center @ Left End @ Right End Shear @ Left End @ Right End ^Sr>^*.? ^ :sm,m™r*<& ~ Mn*Phi 220 68 k ft 000k ft 000k ft Vn*Phi 7002k 7002k V^SK J&. &&.# Mu Eq 9 1 17647kn 000k ft 000k ft Vu Eq 9 1 3240 k 32 10 k vS- ^M^ ^8SSfeS!9*t SKM&SS: ^^EJv?& t^f^mm Mu Eq 9 2 169 70k ft 000 k ft 0 00 k ft Vu Eq 9 2 31 15k 3087k K££<«£ 7 v^«* KSdfe^ *sWfiv s; i«S?SS?HSv.nta5y^ Mu Eq 9 3 88 79 k ft 0 00 k ft 000 k ft Vu Eq 9 3 1630 k 16 15k Deflection Deflections DL + [Bm Wt] DL + LL + [Bm Wt] DL + LL + ST + [Bm Wt] Reactions DL + [Bm Wt]] DL + LL + [Bm Wt] DL + LL + ST + [Bm Wt] Upward 0 0000 m 0 0000 in 0 0000 in & Left 20 769 k 25519 k 25519k at at at 0 0000 ft 0 0000 ft 0 0000 ft Downward 0 4625 in 0 5786 in 0 5786 in at at at 9 5000ft 9 5000ft 9 5000ft Right 20 769 k 25519k 25 519 k Rev =60100 Concrete Rectangular & Tee Beam Design Page Description GB-1 1 Section Analysis Evaluate Moment Capacity X Neutral Axis a = beta Xneutral Compression in Concrete Sum [Steel comp forces] Tension in Reinforcing Find Max As for Ductile Failure X Balanced Xmax = Xbal 075 a max = beta Xbal Compression in Concrete Sum [Steel Comp Forces] Total Compressive Force AS Max = Tot Force / Fy Actual Tension As I Additional Deflection Calcs Neutral Axis Igross Icracked Elastic Modulus Fr = 7 5 f CA 5 Z Cracking Z cracking > 145 Interior Only ' Eff Flange Width Center 6 070 in 5 159 in 236 821 k 0000 k 237 000 k 8 878 in 6 658 in 7 545 in 259 768 k 0000 k 259 768 k 4 329 m2 3 950 OK 6 045 in 8 748 00 m4 4 267 71 m4 31220 ksi 410792 psi 165 173 ksi 1800 in 1 ACI Factors (per ACI applied internally to entered loads) ACI 9 1 & 9 2 DL 1 400 ACI 9 1 & 9 2 LL 1 700 ACI 9 1 & 9 2 ST 1 700 seismic = ST* 1 100 Left End 0 000 in 0 000 in 0000k 0000 k 0000k 0 000 in 0 000 in 0 000 in 0000 k 0000k 0000 k 0 000 m2 0 000 OK Mcr Ms Max DL + LL R1 = (Ms DL+LL)/Mcr Ms Max DL+LL+ST R2 = (Ms DL+LL+ST)/Mcr I eff Ms(DL+LL) I eff Ms(DL+LL+ST) ACI 9 2 Group Factor 0 750 UBC ACI 9 3 Dead Load ACI 9 3 Short Term Factor 0 900 UBC Factor 1 300 Right End 0 000 in 0 000 in 0000k 0000 k 0000 k 0 0000 in 0 000 in 0 000 in 0000 k 0000 k 0000 k 0 000 in2 0 000 OK 33 27 k ft 121 22 kft 0275 121 22 kft 0275 4 360 375 m4 4 360 375 m4 1921 27 14 Factor 1 400 1921 27 09 Factor 0900 F y3*>*sj.rf P Rev 560100 Concrete Rectangular & Tee Beam Design Page 3 Description GB-1 , Sketch & Diagram I? 86 tip 1i 4 nslo~ii£anT710 19007*0 Bid Hi 46 nJJo jiSlOTiB n900 Beam Sketch "190 380 570 780 «50 1f 40"13 3b~ri520 1710 1900 I (kft) Location Along Member (H) Stresses for ACI 9 1 Combination Stresses for ACI 9-2 Combination 7 JO 1900 19.00 Location Along Member (H) Local V Deflection (in) Location Along Member (fl) Local f Deflection (In) Stresses for ACI 9 3 Combination Stresses for Service Dead + Live Loads Stresses for Dead+Live+Short Term Loads I I 1 Rev D60100 Concrete Rectangular & Tee Beam Design Page 1 Description GB-2 I I I I I I I General Information Span 2000ft Depth 24 000 in Width 18 000 in Beam Weight Added Internally Reinforcing Rebar @ Center of Beam Count Size d from Top #1 5 8 2000m Uniform Loads t ^~A ... ,J •<%%; <*"%. iSSl ' Dead Load Live #1 1 860 k 0 i Concentrated Loads Dead Load #1 k Calculations are designed to ACI 318 95 and 1997 UBC Requirements fc SOOOpsi Fy eOOOOpsi Concrete Wt 1450pcf Seismic Zone 4 End Fixity Pinned Pinned Live Load acts with Short Term I"L I Rebar @ Left End of Beam Rebar @ Right End of Beam Count Size d from Top Count Size d from Top #1 in #1 m I Load Short Term 500 k k Live Load k Start End 0 000 ft 20 000 ft Short Term Location 13400k 0000ft •J f,:tf i Summary Beam Design OK Span = 20 00ft Width= 18 00m Depth = 24 00m Maximum Moment Mu Allowable Moment Mn*phi Maximum Shear Vu Allowable Shear Vn phi Shear Stirrups Stirrup Area @ Section Region 0 Max Spacing 10 MaxVu 51 0440 000 000 629 203 15 kft 309 52 k ft 51 63 k 7840k in2 3 333 6 667 10000 Not Req d 27303 13652 Maximum Deflection Max Reaction Max Reaction 10000 Not Req d 13327 ©Left @ Right 13333 Not Req d 13327 03504 41 35 2795 16667 10000 26978 in k k 20 000 ft 10000 in 33 804 k Bending & Shear Force Summary Bending Mn'Phi Mu @ Center 309 52 k ft @ Left End 0 00 k ft ©Right End 0 00 k ft Shear Vn*Phi Vu @ Left End 78 40 k @ Right End 78 40 k Deflection Deflections DL + [Bm Wt] DL + LL + [Bm Wt] DL + LL + ST + [Bm Wt] Reactions DL + [Bm Wt]] DL + LL + [Bm Wt] DL -^ LL + ST + [Bm WJ Upward 0 0000 in at 0 0000 in at 0 0000 in at @> Left 22 950 k 27 950 k 41 350 k Eq 9 1 Mu Eq 9 2 Mu Eq 9 3 203 15 kft 195 65 kft 103 27 kft OOOkft OOOkft OOOkft OOOkft OOOkft OOOkft Eq 9 1 Vu Eq 9 2 Vu Eq 9 3 3413k 51 63k 36 11 k 3380k 3256k 1718k 0 0000 ft 0 0000 ft 0 0000 ft (5) Riant 22 950 k 27 950 k 27 950 k I Downward 02657m at 100000ft 03504m at 100000ft 03504m at 100000ft I Rev 360100 Concrete Rectangular & Tee Beam Design Page 2 Description GB-2 Section Analysis Evaluate Moment Capacity X Neutral Axis a = beta Xneutral Compression in Concrete Sum [Steel comp forces] Tension in Reinforcing Find Max As for Ductile Failure X Balanced Xmax = Xbal * 0 75 a max = beta Xbal Compression in Concrete Sum [Steel Comp Forces] Total Compressive Force AS Max = Tot Force / Fy Actual Tension As Additional Deflection Calcs Neutral Axis Igross Icracked Elastic Modulus Fr = 7 5 f CA 5 Z Cracking Z cracking > 145 Interior Only ' Eff Flange Width Center 6 070 in 5 159 in 236821 k 0000 k 237 000 k 11 837 in 8 878 in 10 061 in 346 358 k 0000 k 346 358 k 5 773 m2 3 950 OK Left End 0 000 in 0 000 in 0000 k 0000k 0000 k 0 000 in 0 000 in 0 000 in 0000k 0000k 0000k 0 000 m2 0 000 OK 7 220 in Mcr 20 736 00 in4 8 250 89 m4 3 1220 ksi 410792 psi 161 643 ksi 1800 in Ms Max DL + LL R1 = (Ms DL+LL)/Mcr Ms Max DL+LL+ST R2 = (Ms DL+LL+ST)/Mcr I eff Ms(DL+LL) I eff Ms(DL+LL+ST) ACI Factors (perACI applied internally to entered loads) ACI 9 1 & 9 2 DL 1 400 ACI 9 1 & 9 2 LL 1 700 ACI 9 1 & 9 2 ST 1 700 seismic = ST 1 100 ACI 9 2 Group Factor 0 750 ACI 9 3 Dead Load ACI 9 3 Short Term Factor 0 900 Factor 1 300 Right End 0 000 in 0 000 in 0000k 0000 k 0000k 0 0000 in 0 000 in 0 000 in 0000 k 0000k 0000k 0 000 in2 0 000 OK r 59 15k ft 139 75k ft 0423 139 75k ft 0423 9 197756 m4 9 197756 in4 j UBC 1921 2714 Factor 1 400 UBC1921 2709 Factor 0900 Rev 560100 Concrete Rectangular & Tee Beam Design Page 3 Description GB-2 Sketch & Diagram j 4063 286 UM 600 BM l600l{2~00 1406 1800 1800 2000iM|BOO 400 600 BOO TlSOOiSFlUWllBOO 1800 2000 Mu Max-20315k fl Dmax « 0 3504m Rmax»41 350k i Akmg Member (II) 00 D400 (1800 1600 2000 I (k-n) location Along Member (ft) Beam Sketch Stresses for ACI 9-1 Combination 2M5 TOO" TOO~TOO 800 it>~00~1200 1400 1800 rl«00 70 nn 2SjjrTOO |400 600 » 00 HO 00 pOO 1400 11600 !lf50~20 Stresses for ACI 9-2 Combination __.. toI (fc-TO Location Along Member (ft) Locrt V DeftoeUon («) Location Along Member (ft) Local V Deflection (in) Stresses for ACI 9 3 Combination Stresses for Service Dead + Live Loads Stresses for Dead+Live+Short Term Loads Rev 560100 Concrete Rectangular & Tee Beam Design Page 1 ~l TfS^.. J, 3 Description GB-3 General Information Span Depth Width Calculations are designed to ACI 318 95 and 1997 UBC Requirements I 1900 ft 24 000 in 16 000 in fc Fy Concrete Wt Seismic Zone End Fixity 3 000 psi 60 000 psi 145 Opcf 4 Pinned Pinned Beam Weight Added Internally Reinforcing Live Load acts with Short Term Rebar @ Center of Beam Count Size #1 5 8 Uniform Loads Rebar @ Left End of Beam d from Top Count Size d from Top 2000m #1 in Rebar @ Right End of Beam Count Size d from Top #1 in Dead Load #1 2 200 k S? Summary i Live Load 1 000 k Short Term k Start 0000 ft End 19000 ft Beam Design OK Span = 19 00ft Width= 16 00m Depth = 24 00m Maximum Moment Mu Allowable Moment Mn Maximum Shear Vu Allowable Shear Vn ph Shear Stirrups Stirrup Area @ Section Region Max Spacing MaxVu 240 12 kft phi 30381 kft 4206k 7468k 0 440 m2 0000 3167 10000 10000 42 060 33 971 Maximum Deflection Max Reaction (J Max Reaction (c 6 333 9 500 10000 10000 16986 16581 § Left § Right 12667 10000 16581 04039 3407 3407 15833 10000 33567 in k k 19000 ft 10 000 in41 655 k Bending & Shear Force Summary I** ffl. W-r- ™B8»' Bending @ Center @ Left End @ Right End Shear @ Left End @ Right End •.„.•*%- •- Mn Phi 303 81 k ft 000 kft 000 kft Vn Phi 7468k 7468k •A ' ft ' S^¥ ''*'' Mu Eq 9 1 240 12 kft 000 k ft 000 kft Vu Eq 9 1 42 06 k 41 66k "fr* AT ... iv.~; $r?.?&Xf}t»'3$8& Mu Eq 9 2 226 59 k ft 000 kft 000 kft Vu Eq 9 2 3969k 3931 k BSftoW £ ._ •*-,,. Av&lstoi S3"! Mu Eq 9 3 10505 kft 000k ft 000 kft Vu Eq 9 3 1840 k 1822k Deflection Deflections DL + [Bm Wt] DL + LL + [Bm Wt] DL + LL + ST + [Bm Wt] Reactions DL + [Bm Wt]] DL + LL + [Bm Wt] DL + LL + ST + [Bm Wt] Upward ,Downward 0 0000 m 0 0000 in 0 0000 in @ Left 24 573 k 34 073 k 34 073 k at at at 0 0000 ft 0 0000 ft 00000ft 02718 in 0 4039 in 0 4039 in at at at 9 5000ft 9 5000ft 9 5000ft <3) Rioht 24 573 k 34 073 k 34 073 k Rev D60100 Concrete Rectangular & Tee Beam Design Page 2 Description GB-3 Section Analysis Evaluate Moment Capacity X Neutral Axis a = beta Xneutral Compression in Concrete Sum [Steel comp forces] Tension in Reinforcing Find Max As for Ductile Failure X Balanced Xmax = Xbal 075 a max = beta Xbal Compression in Concrete Sum [Steel Comp Forces] Total Compressive Force AS Max = Tot Force / Fy Actual Tension As Additional Deflection Gales Neutral Axis Igross Icracked Elastic Modulus Fr = 7 5 f CA 5 Z Cracking Z cracking > 175 No Good1 Eff Flange Width Center 6 830 in 5 805 in 236 864 k 0000 k 237 000 k 11 837 in 8 878 in 10061 in 307 873 k 0000 k 307 873 k 5 131 m2 3 950 OK 7 555 in 1843200 m4 7 982 49 m4 31220 ksi 410792 psi 184841 ksi 16 00 in Left End 0 000 in 0 000 in 0000 k 0000k 0000 k 0 000 in 0 000 in 0 000 in 0000 k 0000k 0000k 0 000 m2 0 000 OK Mcr Ms Max DL + LL R1 = (Ms DL+LL)/Mcr Ms Max DL+LL+ST R2 = (Ms DL+LL+ST)/Mcr I eff Ms(DL+LL) f I eff Ms(DL+LL+ST) i Right End 0 000 in 0 000 in 0000 k 0000k 0000k 0 0000 in 0 000 in 0 000 in 0000 k 0000 k 0000k 0 000 m2 0 000 OK 52 58 k ft 161 85k ft 0325 161 85 kft 0325 3 340 81 1 m4 3340811 in4 ACI Factors (per ACI applied internally to entered loads) ACI 9 1 & 9 2 DL 1 ACI 9 1 & 9 2 LL 1 ACI 9 1 & 9 2 ST 1 seismic = ST 1 400 ACI 9 2 Group Factor 0750 UBC 1921 700 ACI 9 3 Dead Load 700 ACI 9 3 Short Term 100 Factor 0900 UBC 1921 Factor 1 300 2714 Factor 1 400 2709 Factor 0 900 Rev 560100 Concrete Rectangular & Tee Beam Design Page 3 Description GB-3 i Sketch & Ptoflram 1 4B |13UO [15JO H71lT|1»00pRTSTO j760 B50 pi 40 jlaaO pfl.20 Beam Sketch Jjf 1 »0~ gBTtW fto »50 11140 |!33gp'20~|i7"iO~1»00 Loci«» Along M«mo»r (ft) Stresses for ACI 9-1 Combination Stresses for ACl 9-2 Combination Lo<atie« Along M«mber (fl) Stresses for ACI 9-3 Combination LMMkM Atong MMIMr (fl> Stresses for Service Dead + Live Loads Stresses for Dead+Live+Short Term Loads 63-3 Rev 350100 Circular Concrete Column Page 1 Description Pier (unsupported 5) 33fc& 34FyperUBC General Information Calculations are designed to ACI 318 95 and 1997 UBC Requirements Diameter Number of Bars Bar Size Total Rebar Area Rebar Percent Bar Cover 24 000 in 6 8 4 740 m2 1 048 % 3 000 in f c 1 000 Opsi Fy 20 400 0 psi Seismic Zone 4 LL & ST Loads Act Separate Spiral Ties NOT Used Total Height Unbraced Length Eff Length Factor Column is UNBRACED Delta S 15000ft 5000 ft 1 000 1 00 Loads Dead Load Axial Loads k I Summary JT •s?~?g*xf ~ii*?'- #" "SSSSiW^^W ^S^ Column Diameter= 24 00m with 6 #8 Applied Pu Max Factored Allowable Pn Phi @ Design Ecc M critical Combined Eccentricity Magnification Factor Design Eccentricity Magnified Design Moment Po 80 P Balanced Ecc Balanced Live Load 33 900 k Bars ACI 9 1 5763k 267 23 k 6 34 k ft 1 3200 in 1 00 1 3200 in 6 34k ft 381 76 k 254 95 k 5 6648 in Short Term k ACI 9 2 0 00 k 267 23 k 000k ft 0 0000 in 1 00 0 0000 in 000k ft 381 76k 254 95 k 5 6648 in Eccentncity_ in Column is OK ACI S3 000 k 267 23 k 000k ft 0 0000 in 1 00 0 0000 in 000k ft 381 76 k 254 95 k 5 6648 in Slenderness per ACI 318 95 section 10 12 & 10 13 Actual k Lu / r 10000 Neutral Axis Distance Phi Max Limit kl/r Beta = M sustamed/M max Cm El/ 1000 PC pi"2 E I / (k Lu)A2 alpha MaxPu / ( 75 PC) Delta Ecc Ecc Loads + Moments Design Ecc = Ecc Delta Elastic Modulus ACI Eg 9 1 23 0920 in 07000 22 0000 00000 1 0000 000 000 00000 1 0000 1 3200 00000 1 802 5 ksi ACI Eg 9 2 28 0320 in 07000 22 0000 00000 1 0000 000 000 00000 00000 00000 00000 Beta ACI Eg 9 3 28 0320 in 07000 22 0000 00000 1 0000 000 000 00000 00000 0 0000 in 0 0000 in 0850 i ACI Factors (per ACI applied internally to entered loads) ACI 9 ACI 9 ACI 9 1 &92 DL 1 & 9 2 LL 1 & 9 2 ST seismic = ST 1 400 1 700 1 700 1 100 ACI 9 ACI 9 ACI 9 2^3roup Factor 3 Dead Load Factor 3 Short Term Factor 0750 0900 1 300 a8fW&*wv^t a^s*. UBC UBC 1921 1921 ™™-i^., 27 27 1 4 09 Factor Factor 1 400 0900 Spiral Tie Requirements per97 UBC 191093 Spiral Tie Bar Size # 3 Gross Area of Column 452 39 m2 Core Area Within Spirals 254 47 in2 Mm Spiral Reinforcement Ratio 0017 Max Spiral Tie Spacing 17 097 in Rev 550100 Circular Concrete Column Page 2 Description Pier (unsupported 5) 33fc& 34FyperUBC Sketch & Diagram IZ3 DL 00 LL 339s ST 00k •M. I W 6 #8 \ • e Axial Pn phi (k) 180 27 1 361 451 54 1 632 Moment Mn pni (k fl) 72 2 81 2 90 2 Ll Buena Vista - 04138 LATERAL DESIGN SOUTHS 2 STORYBLDGS DESIGN CRITERIA V=2 SxCaxlx WdL / R Ca= R= V= V/1 4= SEISMIC DEAD LOADS 04 Zone 4 (Per EDG Soils Report 9-10-03) 5 5 Plywood Shear Panels 0 182 xWdl 0 130 xWdl Fp=1 00 xWp ROOF LEVEL Turret Roof Roof Ext Walls Area = w dl = 400 sq feet 30 psf Roof Total = Area x w dl =12000 Ib Area = w dl = 3140 sq feet 15 psf Roof Total = Area x w dl=47100 Ib Area = wdl = 2880 sq feet 15 psf Ext Walls Total = Area x w dl=43200 Ib Int Walls Area =1440 sq feet 10 psfw dl = Int Walls Total = Area x w dl= 14400 Ib Total Roof Level= 104700 Ib SECOND LEVEL Terrace Floor Ext Walls Area = 830 sq feet w dl = 34 psf Floor Total = Area x w dl = Area = 3050 sq feet w dl = 14 psf Floor Total = Area x w dl = Area = 2880 sq feet w dl = 15 psf Ext Walls Total = Area x w dl= Int Walls Area at 1st Level= 1440 sq feet wdl = 10 psf Int Walls Total = Area x w dl= 28220 Ib 42700 Ib 43200 Ib 14400 Ib Total Floor Level= 128520 Ib Total Seismic Dead Load Wdl = 2332ZO Ib VERTICAL DISTRIBUTION VERTICAL DISTRIBUTION Seismic Wdl= 23322000 Ib V= 0 130 x Wdl= 30288 Ib LEVEL Roof 2nd Total W(lb) 104700 128520 233220 h(ft) 20 10 Wxh (Ib-ft) 2094000 1285200 3379200 fx (%) 62% 38% fx(lb) 18769 11519 30288 Buena Vista - 04138 FxRoof= 18769 Fx Floor = 11519 Ib v roof =fx roof / roof area v floor=fx floor / floor area 56 psf 30 psf L3 Buena Vista- 04138 LATERAL DESIGN MIDDLE 3 - 3 STORYBLDGS DESIGN CRITERIA V=2 SxCaxlx WdL / R Ca= R= V= V/1 4= SEISMIC DEAD LOADS 04 Zone 4 (Per EDG Soils Report 9-10-03) 5 5 Plywood Shear Panels 0 182 xWdl 0 130 xWdl Fp=1 00 x Wp ROOF LEVEL Turret Roof Roof Ext Walls Area = w dl = 270 sq feet 30 psf Roof Total = Area x w dl =8100 Ib Area = w dl = 2500 sq feet 15 psf Roof Total = Area x w dl=37500 Ib Area = w dl = 2800 sq feet 15 psf Ext Walls Total = Area x w dl=42000 Ib Int Walls Area =1400 sq feet 10 psfw dl = Int Walls Total = Area x w dl= 14000 Ib Total Roof Level= 93500 Ib re THIRD LEVEL Terrace Floor Ext Walls Area = 1590 sq feet w dl = 34 psf Floor Total = Area x w dl = Area = 2200 sq feet w dl = 14 psf Floor Total = Area x w dl = Area = 2800 sq feet w dl = 15 psf Ext Walls Total = Area x w dl= 54060 Ib 30800 Ib 42000 Ib Int Walls Area at 1st Level= 1400 sq feet w dl = 10 psf Int Walls Total = Area x w dl=14000 Ib Total Floor Level= 140860 Ib j o LU ai ai_j D CM ®D ®! @ O m TJ <5ti) <>M5 70 O O m 70 Am Buena Vista -04138 SECOND LEVEL Terrace Area = 1830 sq feet w dl = 34 psf Floor Total = Area x w dl = 62220 Ib Floor Area = 2840 sq feet w dl = 14 psf Floor Total = Area x w dl = 39760 Ib Ext Walls Area = 3800 sq feet w dl = 15 psf Ext Walls Total = Area x w dl= 57000 Ib Int Walls Area at 1st Le\ 1900 sq feet wdl = 10 psf Int Walls Total = Area xwdl=19000 Ib Total Floor Level= 177980 Ib Total Seismic Dead Load Well = 41P340 Ih VERTICAL DISTRIBUTION VERTICAL DISTRIBUTION Seismic Wdl= 412 340 00 Ib V= 0 130 x Wdl= 53551 Ib LEVEL Roof 3rd 2nd Total W(lb) 93500 140860 177980 271480 h(ft) 30 20 10 Wxh (Ib-ft) 2805000 2817200 1779800 4584800 fx (%) 61% 61% 39% fx(lb) 32763 32905 20788 53551 v roof =fx roof / roof area = 124 psf v 3rd floor =fx floor / floor area = 110 psf v 2nd floor =fx floor / floor area = 55 psf L-S W12X22 CDCMXT 5 toCMX•q- g toCNXTJ- 5 77S Solution Envelope Floras Lund Consultants, 1 Kevin Fagan Buena Vista -041 38 N7 CDCMX g W12X22 l\>5 toCNX g W12X22 N3 CDC\J X g FJ1 ^ OMRF-3 i NS k4 P72 Jan 11 2005 at 7 29 AM OMRF 3 r2d t 051 If 2^1 /ft M9- M8 M3 N3 N8 \I6 N4 Loads DL Dead Load i Solution Envelops j Floras Lund Consultants, I OMRF-3 Kevin Pagan BuenaVtsta-04138 Jan 11 2005 at 7 31 AM OWiRF 3 r2d .Y M9 N5 N3 M8 M3 N8 ! Lpads BLC 1 LL Flores Lund Consultants, Kevin Pagan Buena Vista-0^138 OMRF-3 Jan 11 2005 at 7 22 AM OMRF 3 r2d Ul Y 47k CD X g 42k ^ CDCM X g 21k IDCNX i i 7? W12X22 N7 CDCM X g W12X22 CDCMX 5 W12X22 M3 CDCM X § _ — - NS MS I - - Loads EL Earthquake Load ^olution Envelope Flores Lund Consultants I . Kevin Pagan Buena Vista -041 38 OMRF-3 Jan 1 1 2005 at 7 30 AM OMRF 3 r2d LI -R I :t±, rn M9 MS feS 4 174 , . i 1 T Lri i j • 336 Solution Envelope I Member Bending Moments (k ft) Floras Lund Consultants I OMRF-3 Kevin Pagan Buena Vista - 041 38 Jan 11 2005 at 7 41 AM OMRF 3 r2d Global Display Sections for Member Gales Max Internal Sections for Member Gales ! 97 Include Shear Deformation iMerge Tolerance (in) P-Delta Analysis Tolerance i Yes 12 0 50% , Hot Rolled Steel Code ' AISC ASD 9th I Cold Formed Steel Code ' AISI 99 ASD NDS Wood Code NDS91 ASD 'NDS Temperature <100F Concrete Code ACI1999 Number of Shear Regions i Region Spacing Increment (in) Concrete Stress Block i Rectangular I Use Cracked Sections I Yes Bad Framing Warnings No I Unused Force Warnings Yes Basic Load Cases BLC Description Category 1 i LL i LL 2 I DL i DL 3 E , EL X Gravity Y Gravity Joint 3 Point Distributed 3 3 Hot Rolled Steel Section Sets Label Shape Design List Material Design Rules A [m2] I (90.270) [i I (0.180) [m4]1 2 COLUMNS BEAM W14X26 W12X22 1 WF 14 ! Wide Flanqel Column Beam 'HR COLUMNS' IHR BEAMS I Typical ! Typical I 769 648 8 91 I 245 466 156 Hot Rolled Steel Design Parameters Label Shape Lengthfft] Lb outfftl Lb-in[ffl Lcomp top[ft]Lcomp bot[ft] K out Km Cm Cb Out s In sway1 2 3 4 5 6 7 8 9 M1 M2 M3 M4 M5 M6 M7 M8 M9 COLUMNS COLUMNS BEAM COLUMNS COLUMNS COLUMNS COLUMNS BEAM BEAM 10 10 11 6 10 10 10 10 11 6 11 6 1 1 Joint Loads and Enforced Displacements (BLC 3 E) Joint Label L.D.M Direction Maanitudefk.k ft in 1 ' N3 2 N5 3 N7 L L L X X X rad k*sA2/ftl 21 42 47 Member Distributed 1 2 ! 3 I Member Label M3 M8 M9 Loads fBLC 1 Direction I Y ! Y i Y LL) Start Maanituderk/ft.d End Maanitudefk/ft.d Start Locationfft.%1 End Locationrft.%1 -41 -41 -06 -41 -41 -06 0 0 0 0 . 0 I 0 i Member Distributed Loads (BLC 2 DL) Mpmhar I Dirpntinn Start Manniturlorif/ft ri Fnrl Manmturterk/ft rl Startl nratinnrft %1 Fnd I ncatmnfft %1 P'SA-2D Version 60 FC \ \ \Desktoo\BUENA VISTA\CALCS\C"LCS\Moment Frames\QMPF-3 r2dl Pane Member Distributed Loads (BLC 2 PL) (Continued) i 1 I 2 ' < 3 Member Label Direction M3 M9 Y Y M8 Y Start Maanitude[k/ft.d -24 -05 -24 End Maamtude[k/ftd ~ -24 -05 -24 Start Locationfft.%1 0 0 0 End Locationrft,%l 0 0 0 Load Combinations Description Solve PD 1 DL+LL 'Yesi 2 i DL+E/1 4 I Yes I SR BLC 1 Factor BLC 1 2 I 2 Factor 1 1 BLC 3 Factor 1 BLC Factorii ! BLC Factor BLC Factor BLC Factor BLC Factor i I 312D+5L+E I Yes'i 1 2 I 1 2 ' 3 I 1 Load Combination Design 1 2 3 Description ASIF CD Service Hot Rolled DL+LL DL+E/1 4 I 1 2D+ 5L+E ' Yes Yes Yes Cold Formed Yes i ! Yes ! i Yes NDS Wood Concrete Yes Yes Yes Yes Yes Yes Envelope Joint Displacements Joint 1 i N1 2 3 N2 4 5 N3 6 7 N4 8 9 N5 10 11 N6 12 13 N7 14 15 N8 16 max mm max mm max mm max mm I max mm max mm max mm max mm Xfml 0 0 0 0 28 0 279 0 669 0 667 0 935 0 933 0 Ic 2 1 3 1 2 1 3 1 3 1 2 1 3 1 2 1 YFml 0 0 0 0 006 -004 -004 -011 01 -007 -007 -017 011 -007 -007 -019 Ic 2 1 1 3 f~\ 1 1 3 2 1 1 3 2 1 1 3 Rotation [rad] 0 0 0 0 -1 501e-4 -2 626e-3 1 501 e-4 -2 449e-3 -1 505e-4 -2 34e-3 1 505e-4 -2 169e-3 -2261e-6 -1 293e-3 2261e-6 -1 282e-3 Ic 1 2 1 3 1 3 1 2 1 3 1 2 1 2 1 3 Envelope Member Section Deflections 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Member M1 M2 Sec•i 2 3 4 5 1 2 3 4 max mm max mm max mm max mm max mm max mm max mm max mm max mm xfinl 0 0 002 -001 003 -002 005 -003 006 -004 0 0 -001 -003 -002 -006 -003 -008 Ic1 1 2 1 2 1 2 1 2 1 1 1 1 3 1 3 1 3 vFml 0 0 0 -031 002 -101 003 -191 0 -28 0 0 0 -032 -002 -104 -003 -193 Ic 1 1 1 2 1 2 1 2 _j 1 2 1 1 1 3 1 3 1 3 L/v Ratio NC NC NC 3886 864 NC 1183608 NC 627 759 NC 428 866 NC NC NC 3761 952 NC 1156872 NC 620187 Ic 1 ' 1 1 2 1 2 1 2 1 21 1 1 3 >t 3 1 •5•^ RISA-2D Version 6 0 FC \ \ \DesktoD\BUENAVISTA\CALCS\CALCS\MomentFrames\OMRF-3r2dl Paae 2 Envelope Member Section Deflections (Continued) 19 Member I 20 . 21 M3 Sec 5 V max mm 1 I max x [in] Ic -004 -011 r i 3 ! 28 2 ! y f|r|l 0 -279 006 Ic ' 1 3 ii ' 2 I L/v Ratio NC 429 822 NC Ic I 1 f 3 i 2 22 mm 0 1 - 004 I 1 NC 1 23 , 2 max 28 2 -015 1 < NC 1 24 25 26 mm 0 1 -036 i 3 3766853 3 3 max 279 2 -008 2 NC 2 mm 0 1 -021 1 8222316 1 27 4 max 279 ,3 019 2 5588 193 2 28 mm 0 29 5 , max 279 30 mm 0 31 M4 1 max 006 32 ' 33 34 35 36 37 38 39 40 41 M5 42 43 44 45 46 mm - 004 1 ! -015 I 1 NC 1 3 -004 1 NC 1 1 -011 3 NC 3 2 I 0 1 NC 1 1 -28 2 2 max 007 2 -001 1 mm -005 1 -373 3 3 max 4 5 1 mm 008 2 -006 1 max 009 2 mm -006 1 0 i 1 -479 2 001 1 -583 2 max 01 2 0 1 mm - 007 1 max 01 mm -007 2 1 -669 3 0 i 1 -669 3 2 max 01 2 -003 1 3 mm -007 1 -743 3 max 01 2 mm - 007 1 - 002 i 1 -817 3 47 4 max 011 2 -001 1 48 49 50 ' 51 M6 52 53 54 55 56 mm - 007 1 I -884 3 5 max 011 2 0 1 mm -007 1 -935 i 3 1 2 3 max - 004 mm -011 1 0 1 3 - 279 3 max -005 1 001 I 1 mm -013 max - 006 mm -014 3 I -37 2 1 ! 0 1 3 57 4 max -006 1 58 59 5 60 61 M7 62 ' 63 64 1 2 65 3 66 mm -016 3 - 477 I 3 -001 1 - 583 I 3 max -007 1 ! 0 1 mm max mm max mm max mm -017 -007 -017 -007 -018 3 I -667 I 2 1 3 1 0 1 -667 2 003 I 1 3 -739 I 2 -007 1 I 002 1 -018 3 -813 2 67 4 max -007 68 I 69 70 71 M8 5 1 mm max mm max 72 ' mm 73 2 74 75 3 76 i 77 ' 4 78 79 max mm max mm -019 -007 -019 669 0 668 0 668 0 max 667 mm 0 5 max 667 1 001 1 3 -881 2 1 i 0 I 1 3 3 - 933 ! 2 01 ! 2 1 I ' -007 1 3 1 3 1 2 1 2 -017 ! 1 -032 3 -009 2 -024 1 012 2 -017 I 1 -007 1 NC 2 NC NC NC NC NC NC NC NC NC NC NC NC NC 7636 999 NC 7657 057 NC NC NC NC NC NC NC NC NC 9445 763 NC NC NC NC NC NC NC 9014258 NC 8138773 NC NC NC NC NC 4254 992 NC 8215606 6688 79 NC NC 1 3 1 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 2 1 3 1 3 1 2 1 2 1 2 1 2 1 2 1 2 2 1 1 '3 2 1 2 1 1 RISA-2D Version 6 0 re \ \ \DesHoD\3UENAVISTA\CALCS\CALCS\MomentFra-nes\OMRF-3r2dl Paae 3 Envelope Member Section Deflections (Continued)Lib Member 80 ' 81 M9 82 83 84 85 86 87 88 89 90 Sec 1 2 3 4 5 mm max mm max mm max mm max mm max mm x Finl Ic 0 I T 935 3 0 1 934 3 0 1 934 i 2 0 I 1 933 2 0 ! 1 933 2 0 1 vfml -017 011 -007 -008 -013 -004 -009 003 -008 -007 -019 Ic L/v Ratio 3 I NC 2 NC 1 ! NC 1 NC 3 I 9798 62 2 NC 1 i NC 2 NC 1 I NC 1 NC 3 ! NC Ic . 3 2 1 1 3 2 1 2 1 1 3 Envelope Joint Reactions Joint 1 N1 2 3 N2 4 5 Totals 6 max mm max mm max mm X[k] 39 -5363 -39 -5789 0 -11 Ic 1 2 1 3 1 3 Y [k] Ic 8178 1 -1 1 257 2 20 572 3 8178 1 16 356 1 6 148 2 Moment [k ft] ! 39 484 -1 209 40742 1 209 Ic 2 1 3 1 Envelope Drift Report Story Joint X Drift [in] _Ic Ht [%] No Data to Print Envelope Member Section Forces Member 1 M1 2 34 5 ' 6 7 8 9 10 11 M2 12 . 13 14 15 16 17 18 - 19 20 21 M3 22 23 24 25 26 27 28 29 30 Sec 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 max mm max mm max mm max mm max mm max mm max mm max mm max mm max mm max mm max mm max mm max mm max mm Axial[k] 8178 -11 257 8178 -11 257 8178 -11 257 8178 -1 1 257 8178 -11 257 20572 8 178 20572 8178 20572 8 178 20572 8178 20572 8178 912 -368 912 -368 912 -368 912 -368 912 -368 Ic •1 2 •) 21 2 1 2•j 2 3 •) 3 1 3 1 3 1 3 1 2 1 2 1 2 1 2 1 2 1 Shearfkl 5363 -39 5363 -39 5363 -39 5363 -39 5 363 -39 5789 39 5789 39 5789 39 5789 39 5789 39 377 -481 1 885 -5506 0 -6202 -1 885 -7632 -377 -9062 Ic 2 1 n 1 2 •j 2 1 2 1 3 1 3 1 3 1 3 1 3 1 1 2 1 2 1 2 1 3 1 3 Moment[k ft] 39484 -1 209 26077 -234 12958 741 1 715 -736 269 -14143 40742 1209 2627 234 12085 -741 -1 715 -2675 -269 -17 148 6476 -33 602 -1 724 -19315 -1667 -4457 17329 -1 724 40863 6476 Ic 2 1 SJ 1 2 1 1 2 1 2 3 1 , 3 1 2 1 1 3 1 3 1 2 1 3 2 1 2 1 3 1 RISA-2D Version 60 FC \ \ \DesktoD\8LJENA VISTA\CALCS\CALCS\Momsnt Frames\OMRF-3 r2dl Envelope Member Section Forces (Continued) Member Sec Axialjkl Ic Shear[k] Ic 31 M4 1 max 4408 11 4175 2 32 I mm -6447 2 - 758 1 33 2 max 4408 1 ' 4175 2 34 ' mm -6447 2 -758 1 35 3 max 4408 1 4175 2 36 37 4 mm -6447 2 -758 1 max 4408 1 4175 2 38 mm -6447 I 2 -758 1 39 5 max 4408 1 4175 2 40 I mm -6447 2 -758 1 41 M5 1 max 638 42 mm 43 2 44 ' max mm -2534 638 -2534 45 3 max 638 46 mm 47 I 4 max 48 ' I mm 49 50 51 M6 52 I 53 54 55 56 57 58 59 60 I 1 2195 2 2 -391 1 1 2195 2 2 -391 1 1 2195 2 -2534 I 2 -391 I 1 638 1 2 195 2 -2534 5 max 638 I mm -2 534 1 2 3 max 11511 mm 4 408 max 11511 mm 4 408 2 -391 1 1 2195 I 2 2 -391 I 1 3 5021 I 3 1 758 3 5021 1 758 max 11511 I 3 5021 1 3 1 3 mm 4408 1 758 1 4 max 11 511 mm 4 408 5 max 11511 61 M7 1 62 63 64 65 66 67 I 68 i 69 ! 70 I 71 ' M8 72 I 73 ' 74 75 I 76 I 77 ' 78 79 i 80 81 M9 82 2 mm 4 408 max 3 346 mm 638 max mm 3 5 021 3 1 758 1 3 5 021 3 1 758 1 3 2 654 3 1 391 1 3346 I 3 2654 3 638 1 391 1 3 max 3 346 mm 4 max mm 5 max mm 1 2 3 4 5 1 max mm 638 3 2 654 3 1 391 3346 I 3 2654 638 I 1 391 1 3 1 3346 I 3 2654 3 638 1 391 2366 367 max 2 366 mm max mm max mm max mm 367 2366 3 377 1 -3 914 3 1 885 1 -461 3 0 367 I 1 ! -5306 2366 367 2366 367 max 2 654 mm 83 2 max 84 I mm '' 85 3 max 86 I I mm 87 88 I 89 90 4 max 5 mm 391 2654 3 -1 885 1 -6 735 3 -377 1 -8 165 1 1 2 1 2 1 2•i 3 1 3 3 638 1 1 -2 534 3 319 391 I 1 -2679 2654 391 2654 391 max 2 654 mm 391 3 0 1 -2 824 2 1 2 1 2 3 -319 1 1 -3 085 3 3 -638 1 -3 346 1 3 MomentFk ft] Ic 19459 ! 2 -3 786 1 9022 ' 2 ! -1 892 1 002 1 -1 414 2 1 896 1 -11851 2 379 1 -22 288 I 2 6099 2 -2684 612 -1 708 1 2 1 -731 11 -5 169 3 245 -10362 1 221 -15849 23716 3786 1 2 1 2 3 1 11 164 ! 3 1 892 I 1 - 002 \ 1 -1 388 I 3 -1 896 ! 1 -1394 I 3 -3 79 11 -26 491 3 9 186 3 2684 1 255 I 3 1 708 1 731 -4379 -245 -10721 -1 221 -17357 6474 -28 387 -1 726 -16 702 -1 651 -4459 14745 -1 726 1 2 1 3 1 3 1 2 1 3 2 1 2 1 35 677 I 3 6474 1 1 221 11 -15849 I 2 -166 11 -8344 -313 -629 3 2 1 8 086 i 2 -166 I 1 17357 ! 3 1 221 1 RISA-2D Version 6 0 fC \ \ \DesktoD\BUENAVISTA\CALCS\CALCS\MomentFrames\OMPF-3r2dl Paae 5 Envelope ASP Steel Code Checks LIZ Member Shape Code Ch Locfft] Ic Shear Ch Locfftl Ic Fa Fksil Ft [ksil Fb [ksi] Cb Cm ASP Ean1 o 3 4 5 6 7 8 9 M1 M2 M3 M4 M5 M6 M7 M8 M9 W14X26 W14X26 W12X22 W14X26 W14X26 W14X26 W14X26 W12X22 W12X22 497 552 590 281 191 351 212 678 372 0 0 11 6 10 10 10 10 11 6 116 2 3 3 2 2 3 3 3 3 076 082 142 059 031 071 037 128 052 0 0 116 0 0 0 0 11 6 11 6 2 3 3 2 2 3 3 3 3 12015 12015 5542 12015 12015 12015 12015 5542 5542 30 30 30 30 30 30 30 30 30 30 .2 30 -2 33 ,23 30 I23 30 12 30 '23 30 23 27587 I23 27587 23 457 432 85 251 446 242 388 85 85 H2-1 H1-2 H1-2 H2-1 H2-1 H1-2 H1-2 H1-3 H1-3 RISA-2D Version 6 0 FC \ \ \DesktOD\BUENAVISTA\CALCS\CALCS\MomentFrames\OMRF-3r2dl Paas 6 253k tefc_ tfjs j °3 *gp* I j JJ j i Loads EL Earthquake Load Solution Envelope Member Bending Moments (k ft) Flores Lund Consultants 1 J Kevin Pagan Buena Vista -041 38 M9 ,- ii I,''! TT ft-' I U, i- I | I I J_i T"r; | i n i i »P "• »a , 1 ' ' 'J° *• M8 , i i ! j_!_i_ i M ' ' i ji^.1 d) pi H '• ' ' CD • i 1 1 1 1 1 1 i54 MS , 1 1 1 1 ! i ! ! 1 1 i -U inr_;>- ., -irj.-p-'T i i ' • ' 1 ;• 1958 eJK P: ^ ™^ OMRF-3 91 2 I TJ ~ j- - I 174 3 iiis 202 3 ' 6 4s 3 I JKJ Jan 11, 2005 at 7 50 AM OMRF 3 R 1 r2d ORDINARY MOMENT FRAME CONNCECTION - OMRF3 FLOOR PROJECT BUENA VISTA 33 ft) 3 Beam W12x22 Sesmic Load x5 5 Fema R=1 Special Seismic Load Combanition 12D + 05I + 10E F^ tin T M =202 k-ft d(m)= 1231 f(m)= 4 03 tf(m)= 0 425 tw(m)= 0 26 k(m)= 0 875 tweld= 0 375 MK 1 2 3 4 5 SUM Elastic Section Modoles 'Sc' AREA (ir>2) y (in) 2 52 0 00 1 71 5 94 1 71 5 94 1 51 6 34 1 51 6 34 Ic = SUM Ay2+lo = Sc = lc/((d+tweld*2)/2) = A(y)2 0 60 60 61 61 243 262 40 lo (m4) 20 0 0 0 0 20 m4 m3 Cover Plate Design Complete Penetration Weld fweld=M/Sc= 60 ksi tc thickness= fw all= 50 ksi -NG- USE COVER PL 075 in we' Width=7 in lc=lc+2xtcxwcx(d/2)*2 = 660 m4 Sc = lc/((d+(tweld+tc)x2)/2) = 91 m3 _ _ _ _ fweld=M/Sc= 87 ksi Cover Plate Capacity T pi = tc x we x 50 ksi = 5/16 fillet Capacity q =1 7x 707x 313 x21 = Required Length = lw= T pi / q = 33 in Length of Plate = P I = (Iw-wc ) 12 = 13 1 in 263 kips 8 kips/in Weld= 0313m Use 14 MIN ORDINARY MOMENT FRAME CONNCECTION - OMRF3 ROOF PROJECT Buena Vista Apartments Beam W12x22 Sesmic Load x 5 5 Fema R=1 Special Seismic Load Combamtion 12D + 05I + 10E 92 k-ft d(m)= 1231 f(m)= 4 03 tf(m)= 0 425 tw(m)= 0 26 k(m)= 0 875 tweld= 0 375 MK 1 2 3 4 5 SUM Elastic Section Modoles 'Sc AREA (in2) 252 1 71 1 71 1 51 1 51 y(m) 000 594 594 634 634 Ic = SUM Ay2+lo = Sc = lc/((d+tweld*2)/2) = A(y)2 0 60 60 61 61 243 lo (m4) 20 0 0 0 0 20 262 m4 40 in3 Complete Penetration Weld fweld=M/Sc= 27 ksi < 50 ksi OK BASE PLATE DESIGN* - Buena Vista Moment Frames This is ultimate design all loads entered are factored ultimate loads PARAMETERS Maxium Axial Load (k) P= 206 Cone Comp Strength (psi) fc= 3000 Column Dimensions (in) d= 14 bf= 5 CHOOSE plate dims (in) B= 13 N= 24 RESULTS Mm Reqd A1 (m2) A1=P/(06*085*2*fc)= Mm Design B N A1 (in m2) B=bf+(4*2)= N=d+(6*2)= A1 = 673 13 24 31200 PARAMETERS Minimum P / Maximum M Combo (k k ft) P= -113 M= 407 Steel Yield Stress (ksi) Fy= 50 RESULTS Conti oiling Lever Arm (in) (see Figure 2) n/a w/stiff pi > m= 0 00 n= 450 n= 209 Bearing Stress (ksi) Fp=2*tf>c*0 85*fc= Thickness due to bearing bending (in) Bolt to Col Distance (in) xb= 25 CHOOSE Bearing Width (in) kd= 0 43 Bearing Width (in) OR t \ JL J I a -2 k Equiv Bearing Reaction (k) R=kd*Fp*B= R= Total Tension Reaction (k) T= (Tmar=(M+P*(B-xb*0 Thickness due to bolt bending (in) t=sqrt((6*T*xb)/(0 9*B*Fy))= Controlling Plate Thickness (m) t= Fiaure 1 Design Summary B= N= t= 13 in 24 m 1 66 in 450 306 1 SS 045 4255 17 1 95 )) 049 166 BOLT & WASHER PLATE DESIGN* - Frame 6 Tnis is ultimate design all loads entered are factored ultimate loads PARAMETERS Bolt Fu = Bolts Per Side = Washer Plate Width= Plate Fy= T3 60 k 2 bolts 3 in 36 ksi n 6bP B Figure 2 RESULTS 95kTu= Bolt Area Req'd A=Tu/( 75* 75*Fu*Bolt#)= 0 14 in2 Bolt Diameter Req'd 0 4239 in Washer Plate Thickness Req'd t=sqrt(8M/pFb)= 024 in