Loading...
HomeMy WebLinkAbout1808 ASTON AVE; STRUCTURAL CALCS; CB003345; Structural CalculationsPRIME STRUCTURAL ENGINEERS 11858 Bernardo Plaza Court, Suite 105C San Diego, California 92128 Tel (858) 487-0311 STRUCTURAL CALCULATIONS Aston Views Plaza 2K-270 Sheets 1 thru 133 Sheets CF-1 thru CF-28 Sheets P-1 thru P-60 Sheets L-1 thru L-134 PRIME JBSTRUCTURAL OWE _ ENGINEERS «:U Aston Views Plaza Structural Calculation Index Roof framing Floor framing Column & footing design Panel design Lateral analysis Sheets 1 thru 54 Sheets 55 thru 133 Sheets CF-1 thru CF-28 Sheets P-l thru P-60 Sheets L-l thru L-134 PRIME STRUCTURAL ENGINEERS SW ASTON VIEWS - CRC LOT 69 DESIGN LOADS ROOF: DEAD LOAD TOTAL DL= LIVE LOAD ROOFING RIGID INSULATION METAL DECK JOIST @8'-0"O/C. SPRINKLERS MECH. & ELEC. SUSPENDED CLG MISC. DL= GIRDER 1.0 PSF 3.0 2.3 2.0 1.5 1.5 1.8 0.9 14.0 PSF 2.0 20.0 PSF (REDUCIBLE) 16.0 PSF 1. Add additional 1.5 psf at girder to account for future mechanical loads. 2. Joist design shall include one 1000 pound oint load at any panel point to account for future mechanical loads. 2ND FL. DEAD LOAD LIVE LOAD FINISH FLOORING 2" LT. WT. CONC. 1.5" METAL DECK SUSPENDED CLG JOIST @7'-0"O.C. MECH. & ELEC. SPRINKLERS MISC. PARTITIONS DL= GIRDER TOTAL DL= 1.0 23.2 1.9 1.8 2.8 1.5 .1.5 1.3 35.0 PSF 20.0 55.0 PSF 5.0 60.0 PSF 80.0 PSF (REDUCIBLE) PRIME STRUCTURAL OW& £ ENGINEERS SHT : _ r ftj'll U1 r PRIME STRUCTURAL 0«B ENGINEH3S SHr: .id f 9 9 f. f ? I «'l I' j »' I if I S1 ^r PRIME JOB STRUCTURAL ENGINEERS SHT .45 f v> P f p w> PRIME STRUCTURAL ENGINEBS r P ? Til *'l r STRUCIURAL cas .iaa_ c~- I""* \ r- r PRIME STRUCTURAL ENGINEERS 3HT its (** (4 W'X'W, >|07 * 7>4 ' PRIMESTRUCTURAL £NG!NEB*S ftp 14 0V - STRUCTURAL owe iflC_ ENGINEERS SHT:_&. r r PRIME STRUCTURAL DATE ENCIPHERS SHT: r 14 p^fv «5f(r 538 r s3B PRIME STRUCTURAL DATE ENGINEERS SHT : sOBOS/23/00 2K-270 5lpl2visOb41487ffiAH ANALYSIS PROSRAHsip5visOb4i4BT (6.BO)50p!O.OOhl2vOsOb3T SPAN LENGTH = 31.33 ft (Siapls Span) LOADS (k/ft & ft) vd wl X! 0,112 REACTIONS LOAD Dead Live Total 0.123 (k) o.co LEFT 1.754 2.005 3.7SO 31.33 RIGHT 1.754 2.005 3.7SO HAXIHUH FORCES V aax = 3.75 k S C.C5 ft H sex = 23,45 k?t £ 15.66 ft DEFLECTION (El = kin*2; LOAE Defl (in) X (ft) Tote! 5202778/EI 15.60 Live 2774815/EI 15,66 Dead 2427363/EI sieispan PCS,ft Brace Spacing = 1,00 ft 3ov. Beflecticn : Total = I/ISO Required I = 8£ inA4 U 14 x 22 ry = 5C ksisOB STRESSES (ksi) Fv = IS.30 fv = 1,13 £ I fb = 12.IB « Total = Live = Dead - = L / 782 31 X 0.42 r 53B r- RB-2 PRIME STRUCTURAL ENGINEERS sCBOB/23/QO 2K-270 5ipl2vlsOt)4i48T3EAM ANALYSIS ?ROGRAH5ipSvisOb4148T (5.50>50plO.OOM2vOsOb3T SPAN LEH6TH = 14.75 ft (Simple Span) UBIF3RH LOADS (It/ft i ft) we wl H - U O.U2 0.1SO REACTIONS Ck) LOAD Ssad Livs Total KAJilHUK FORCES 0,00 14.75 LEFT RISHT 0.826 0.826 * *Qf- * "Ofti.lOV I.lSU 2,00£ 2.006 V tax = 2.01 k 8 0.00 ft « sax = 7.40 kit « 7,3? ft BEFLECTIOfJS (El = kinA2) LOAD Defl (in) I (ft) Total Live Dead ;os. Jicssr.; -u = 1.00 ft 2S9&81/E! 7,38 170400/EI 7,3S 11328C/EI sldspan r-Sov. Deflection : Iota! = L/190 Rsquired I = 10 inA4 * 3 s 10 Fy = 35 ksisGB STRESSES (ksi) Fv = 14.40 fv = t.50 1C X Fb = 23,7£ fb = 11.37 48 X EEFLECTI3NS (in) Total = 0.32 = I / 54£ 33 2 Live = 0.19 = It 32S 2S I Deac = 0.13 r r-s3S PRIME .. STRUCTURAL ENGINES^ SHT: /? sQBCS/29/QO 2K-270 5lp!2visOb4i4878EAH ANALYSIS ?R06RAte!pSvisQb4i4BT (6.60)50plO.QOhi2v05Cb31 SPA8 LEN3TH = 24.OC ft (Staple Span) UNIFORM LOADS Cfc/ft & ft) «d g! XI - X2 0.112 O.ioO REACTIONS m LOAD 2222 Live Total MX IBM FORCES 0,00 LEFT 1.344 1.926 3.2S4 24.00 RI3BT 1.344 1.920 3.264 V sax = 3.2E !t § 0.00 ft H max = 19.58 kft § 12.00 ft DEFLECTIONS (El = kinA2) LOAD Dsfi (in) X (ft? Total 2030468/EI 12.00 Livs 1194394/E1 12.00 Dead 83&075/E1 sitlspan Pos. Hoaent Lu = 1,00 ft Brace Spacing = 1,00 ft 6ov, Deflection : Total = L/180 Required I = 44 inA4 s3E 12 x 14 Fy = 50 ksisGB STRESSES Us:) C\, - Jp TCr«-iS,jiJ Fb = 32,00 i it = Total = 0.79 Live = 0.4£ WtaBu ~ V t W U- = L / 3S4 4S X = L / 520 33 I graj ENGINEERS SHT RB-4 SOB03/2S/QO 2K-270 5lpl2vlsOb4148TBEAf! ANALYSIS ?ROSSAHsipSv!sOb414ST (6.60)sOpiO.CChl2vC50b3T SPAN LENGTH = 23.53 ft (Siiple Span) UNIFORM LOADS (k/ft & ft)wi! »i n - >;2 0.112 0.12E REACTIONS (k) LOAD Dead Live Total JWXIHUN FORCES 0.00 LEFT 1.514 1.345 3.4&C 28.83 RI6HT 1.614 1.845 3.4&C V sax = 3.4E k 9 0.00 ft ,1 MS = 24.94 kft g J4.41 ft DEFLECTIONS (El = kifiA2) I ^i^ na*^ '•-n> if f '"i-1Lunu ac ii \iil) °i \ i v; Total 373C544/E" Live 1?89£24/E! Dead 1740921/EI sidspar, Braes Spacing = l.CO ft Sov. Deflection : Total = L/18C Requirsti I = S7 inA4 12 x 14 Fy s 50 ksisCB STRESSES (ksi) Fv = 18.75 fv = 1.45 S I Fa = 33.00 fb = 20.03 61 I DEFLECTIONS (in) Total = !.-5 =1/233 75 I Live = 0 = 7? = 1/447 54 7. Deed = O.SS r~ £33 sOBOB/23/CC 2K-27C STRUCTURAL OMB ENGINEERS SHt: slpi2vlsOb414BT3EA« ANALYSIS PRCSRt«s!p9vi5Cb4148T t&.6e;53plO.QQfc!2vOsOb3T SPAK LENGTH = 17.OC ft (Simle Ss^) UNIFORM LOADS <k/ft & ft! •<J .-1 V )*G wi Al X2 JV V.i.V. W i > t W REACTIONS (It) LOAD DTCUTr>. i un; Dsad Live '••), C0\l 'viQoO 0.361 0.361 1.641 1.541 HAXIHUR FORCES r- V max = 1.64 k § 0.00 ft LOAD Sefl (in) X (ft) Pos. fesrt Lu = l.CO ft Brace Spacing = ).00 ft £ov, Dsflection : Total = L/180 Rsquirsc I = 1! in*4 si S x 10 Fy = 36 ksisOB. STRESSES ;k5i) Fv = 14.4G fv = :.22 S I Fi = 23.?£ fb = 10=71 45 I vs Dead - ^ /fi.' . -f i _ ft f.fv.i*i _ '. 4 T'•',ii s33 RB-S S0E05/2S/08 2K-270 PRIME JOB: STRUCTURAL OWE ENGINEERS SHT: s!pI2v:sOb4t4STBEA* ANALYSIS PR06RAHsip3vlsOb4148T £&.50)50plO.OOM2vOsGb3T SPAN LEN3TH = 21.00 ft UNI'G*?! LOADS tt/ft k -t) vt vl Xi - 52 0.166 0,240 O.OC 21,00 REACTICfr.S (k) LOAD LEFT RISHT Dead Live -.--,1 z.wu 4.284 *> ^T1 L t Ui-V 4,254 HAXIHUK FGRCES V ssx = 4. 23 k % 0,00 ft fi sax '= 22. 4S kft S 10, 5C ft (El = kir;A2) Def! an) !( (ft) 17S5236/E: 105C157/E1 73513S/EI s3B PCS, foaent Lu = 1.00 ft Srscs Spacing = l.CC ft 6ov, Deflection : Total = L/tl K 12 x I* Fv = 50 ksisOB !?HSSrs (ksi) ^ *lf ="A <n yi & v i v A DEFLECTIONS (in) = '_ / 3i3 5? I Live = 0.41 = L PRIME STRUCTURAL FNGiNEERS SHT f f LL P PCP Pa R s3B sOBOS/29/00 2K-270 A PRIME*** STRUCTURAL OWE ENGiMEERS SHT: s!pl2visOb4I48T3EA* ANALYSIS SPAN LESIETH = 5.83 ft LEFT CANT = 0.00 ft RIGHT CANT = 3.00 ft -'li'T'",'1V ' HA'!'1 f'-lti t /i^wS;rjf,n ubfii/o U/'v & ,*/ in-* ni «<WC Vl A_i___-^. 6.G63 0.090 C.OO S.S3 REACTIONS (k! LOAD Tii-.-.ii _fi -C fj? ^ 5^^i/CCiU ij, I3C J-l B'T? Has ; i_ive 0.2&2 0.S02 Total -0.426 3,4«S Teta! -0.75E 2.£45 HAXIHUM FORCES T-V -Via* - Vd max = H las = w _:_ _i; liifi - 1,75 k full span) 3EFLECTIDN5 (HI = L3AD el an s "Ai 7:~r:•hi. liC .- i. X (ft) Total -1SOS3/E: 3.41 q-^jc5 /:: o "C/^iiJO.- _ . :*•. i --. Live 233S/EI 2,51 5655/EI S,C. Deati -17023/E: lidsa -vfiil?. UOCfii. ' / 1RC iQf'P^ 5R30C;^ / iwV T*/J»^.W w.'U.'VVJ -. / 240 &54S8 ::S57 L / 360 33247 137SOO L / 3&C 1203S; ' 4gg -'tf.cii- l TW ^wVwd 50308/2S/00 2^-270 PRIME STRUCTURAL ENGINEERS SHT 5i?!2vUOb4i4ETSEAH DESIGN PM6RA*!sip9vIsOb4;48T (6.60)sO?lC.OOh:2vOsOb3i Right Cant u = £.33 ft Braced § Supports 6ov. Deflection : Cant. Total = L/190 Requirsti I = I i^A4 y 8 x 10 Fy = 3£ Itsii STRESSEH (ksi) Max, Shea? Fv = 14,40 fv = i.54 11 J ^Isi-i Span Fh = 23.76 fb = O.CO 0 I Right Cant Ft = IS,77 fb = S.4S 43 I ONS (in) - -fi '*O Live : ^£i^ Span = C.O Right Csnt = G.OS ^£i^ Span = C.OC Ri^ht Cent = C,S: y- ''C'va^ — — '' f*1^1 -riuSpdil - V-iJi Riht Cant = 0.08 = L 72333* * Iccal s3B RB-S sOSOE/29/00 2K-27C PRIME JO. STRUCTURAL OWE 3=e° ENGiNEERS SHT: 5lpl2v!sObi!i3T3cAH ANALYSIS PR06RA«s!p9v;sOb41«S7 (5,60)sOplC,COhI2vOsCb3T SPAR LENSTH = 21.S7 ft (Siapls Span) •• njnq iV'**- t *?*-wjfljw 16? : V K - if J ••! T-"i /i 0,063 C.09C O.OC- 21. S7 POINT LOADS i'< & fti Pd PI L 2.855 C.5CC 5.C 2.35C O.SOO 15,; REACTIONS (k) LOAD __LEFT RIGHT ss Live 2.533 3,533 1,575 1.575 5.1CS 5,:C3 H sa § 21. &7 ft 2?.£S fcft S 10.82 ft LOAD 9e ?cta; 2S4415S/EI 10.33 L:VS 7743&3/EI 1C,84 Dead iS6S759/E! .^i ros. rtoseaE s-ii - s.uy it Brace Spacing = I.CC ft 8ov. Deflection ; rota! = L/iSO Rsquirsd I = £3 ;nA4 STRESSES (ksi) Tctal = 1.03 L:VS = 0,30 : / ir~L / ivt- L / 363 PRIME STRUCTURAL ___. ENGINEERS SHT:_2£_ C-27C s!pl2v!sOb4!48TBEA!! ANALYSIS SPA£ IEN6TH = 23,00 ft (Siapls Span) (6.SO}sOplO.OOhl2vOsOb3T 0.022 O.OCO C,OC POINT LCADS (k 6 ft) Pd ?' If1 *J 'i A •^ O^^ A *^^f\ b Q^ 0.550 1.380 !I,SC 1 7E*1 ? ^'Jfi OA Cf-:, / D'.' i,c£v ivi av- Dead Live •? cc-o •? 7"ii-t Q.-— Lt t UT '"' 5^ 3 57'w- • >• V w iJ • iJ / ^ f-,':;)i a ^-^ 6.3; l£ 2a j»jj '.*3 > Si. ?- :fi ^ 1 £ft tiS ^ j. , Ov :• i: ft) TiU! 2742CSS/EI 11.49 Live 153S133/EI i:.43 Dssd 1203952/EI f^idsa Pas. s*o»ent LL; = 1.00 ft Scv, Deflection i T Squired I = S2 in tal = L/1SC !! i jt y --;0 r,; - ?!*! '/C.'c^PA ±-! X ii : - jv S.S;5vC STRESSES t : :.., — A -^~ - ( .'f".1!; £Ms f CflNf) SIRUCTliRAL ENGINEERS f 'fA = '/ ? 14 1 4 n.r T -' 0.18Jtx 53B 3-10 50808/23/00 2K-27G STRUCTURAL ENGINEERS SHT 5lpl2vUOb414STBEAH ANALYSIS PR06RARsip9vistt4:48T (6.60)sCp!C.CCh:2vOsCb3T SPAN LENGTH = 21.80 ft (Siapis Span; UNIFORM LOADS (k/ft k ft) ycJ vl l\ - 12 PI 3,750 3.230 0,00 21,SC i ninL'JHU RIGHT Dead Live Total i.ifcs di o/ ij 3.221 3,405 £.626 '~^',>}i rngrr" V aax = 6.94 k § O.CC ft Jf rias = TS.SC kft § 7,27 ft ea 42704G3/EI 10,33 22:750£/E: 10,23 2052S01/E! siidssr PCS. Hoiaent Lu = 1.00 ft Brae? Spacing = 1.00 ft Gov. Dsfiecticn i Total = L/ISO Required I = 1C1 inA4 14 x 22 Fy = 50 ksisOB CT?c55?:c f'js\ •<w L i-._wwUw '. r.;>A / Fv = 13.90 fv = 2.20 12 I "2 — ££• vv . u ~ ivi DJ ww A Tcta! = 0.74 Live = 0.3B Bssd = C,3£ L / 354 '• i '"» i_ .' 00 A as-1!5C308/2S/QO 2K-270 PRIME STRUCTURAL ENGINEERS SHT s!pl2vlsOb4J48TBEAH ANALYSIS PROBRAHslpSvUQMMBT (&.6C)5CplO.OOh!2v050b37 SPAN LENGTH = 42.67 ft ,Jllil JR.: - Ai K2 O.CC 42.57 C-.OC 42.57 POINT LGADS (k 5 ft) Pd PI l_ i t i. VV i.w.'V i - F i J C.730 0.900 22.20 0,340 0.400 33.30 REACTIONS a; RI3HT livs 3,171 2.S1B I,111 2,374 5.942 5.!S2 V 35X = w.511 k £ 0.00 ft V ..,.. - C~ Qrt l.-fi. g 91 OA -i- .-ps - :,;«**%\E.i - Sifi ^' Braes Specinq = Sov, Dsfisctiofi ; Required I = 264 1; '•.' >?• v re r., - c.r- i,,.:-?]^n iS X £„• i y - uv ^.-I3^J2 i • *v e »i.l- C J. i != j1? «.f.iU *t-i a DEFLECTIONS (in; Total = 1.47 = L Livs = C,6? = L Desd = 0.78 / 700 PRIME STRUCTURAL .ENGINEERS SHT \ \4 T -- 14 Lx t l4(?gpv fr. x x 50808/23/00 2K-27? PRIMESTRUCTURAL CMS ENGINEERS SHI: s!p!2vlsCb4:48T£EAH ANALYSIS PRCSRAHsip9vlsOb4:43T (6,SC)50piO.DOhi2vOsOb3T SPAK LENSTH = 30,25 ft {Simple Span) LOADS (k/ft & ft) t;1 ¥' 0.026 fl.OOG C.G40 0,045 O.OC POINT LCAD3 (k & ft) Pd PI 1.790 2.040 1.79C 2.04C : i.7?C 2,040 SEACTIDNS (k) LOAD LEFT RISHT 2,75£ 7.43S 3. BBS "! T^C•j, ; J a 7.43S v sax = 7,44 I? § 30.25 n r S5S = 70,74 kft § 15.13 ft Tctal 11174538/H: 15,13 Live 5694705/EI 15.13 D=ad 547S232/EI a;: PCS, Hcsertt La = i.OG ft Brece Spacing = l.CC ft £cy. Seflaction : Tcta! = L/1SO Required I = 191 inA4 r~ rv = 17.SC fv = :.SC '/. X r-^_ ^_ «*% ^,A j^_ _ ^^ 4 4 r7 ^ .' K ~ wiS t V V ; L' - ii I i 1 D / it DEFLECTIONS (:•' Tots; = L2S = L / 2S4 £3 " ulVS = ii,6o = u -: w^s -ti i. RB-I:50303/25/00 2K-27Q STRUCTURAL ENGINEB3S ; 2sr 5lpl2vl3Cli4148TBEAN ANALYSIS PROBRAHslpSvIsOlf4:457 (5,£0)sOp!O.OOh!2v030b3T SP& LH8TH = 3C.25 ft (Sl ails CrS'1-\w^ktt^lC w^<Bir' l!f.:*^npy ' lA^G '•.•if* « fi-\ISJii. Jsri i-LiHUO \ •-.• : •_• tt i vi - 1 V* _ V?ww v i A i A i ft flO'5 * fl^rt rt AA «n ot;y.Jii yiyyv v»uu Jw«^3 '• Ad7 ^ ^CC '• •'i?l O-"1 ^^j. y^/ v, vbo v, v*v Jt-.iO POINT LCA2S tk & ft) Pd PI X £.33 :2,5£ Dead Live Total 2.4S2 3. OSS D. v i v 49,44 kf LOAD (El = ;;i Befl (i Total E007004/EI :5.10 Live 4473235/EI J5.10 DeeC 353375S/HI a -OS ^OSSn- : ': = •' •" *t Brsce Spaci^ = !.OC f; On---.-" •.-=-i " - '77 .'«AJ«ftCJUi'Tu I — -iJ/ * i i •* if .. ««i't Si j.1 Fv = 18.30 fv = 1.8? 1C I 53B PRIME STRUCTURAL OWE ENGINEERS SW: sOBOS/29/00 slpi2v:sCM!48TBEAH ASALYSIS PR06RAHslpSv!50b4148T (6.50)sOplO.CCM2vOsQ!j3T SPAN LENGTH = 44,00 ft (SUple ORH LOADS (k/ft & ft; vd w! XI PGINT LCADS (k & ft) 1.63C 1.920 11.50 1.220 1,400 17.25 *f C*3f- fs 5£*^ Jy*^ AAi.jSV /.^Sv iO.UU 3.SCO 4,7!? 34=53 REACTIONS (k; LOAD LEFT RISHT ve 5.422 7.368 HAXIHUKTOKES V sax = 14.50 -c S 44,OC ft SEFLEC'ICNS (El = kinA2) Liv£ 3I507S55/EI 22,3S D333 3C217745/EI aidspan Pos. fosant Lu = 1.00 ft K'3.-a Cia-^^-' - * Af' ff-C!Oi.E SfiBi.*;.^ — . , J V I .- uOVv 1^2>^CL=i-J;; . l^ilfii ~ w:iU\/ A-_wtii-ClJ i ~ JUl^ A.: ^ '4 21 x 44 Fy = 50 ksisOB DEFLECTIONS T' t? - PRIME STRUCTURAL ENGINEERS ? f*M>W&- -|4 i \4 fe -7.1 *t ± 1,•f n 50BOS/2S/00 2K-27C STOJCTURALOWBsSuENGINEERS SHT : *i ANALYSIS ? SPAN LENGTH = 2S.OO ft (Sispla Sps.r.1 wi /> A/I OC AAv • vv iSiW (S.£0)50?10,OOhl2v050tST 4.320 4.1bO -' C.'J'' i !^"^ • UwV TtDiJV 4tiijO i./30 c of}'1* 4 v^g S.CC 12.75 RISH Dead Live Total S.82S 7.73S 11.577 3.552 r- v SSK = 21.:3 k § 2S.CC f: Y ssas = 1SS.2S kfi g 12.75 f T«4-^i o^^-j-xj-ir- /c- '' ^-s,'jllCi iiwIJtW/-; .-ivV Dsfd 113SSS5I/EI aidsn^r; Pas. Woaent Lu = i.OO ft B>-3C= Spacing = I.CO ft Sov. Beflscticn : Total = L/1BC v .\3iU SJiScSotJ: Us:. - T'l ft A '*- - *fi r.'f CO " ~ iJJtVV lij iJ.Wi Ow 7T L:V6 = v,c>. Dead = s3E 5CBC3/2S/00 2K-270 PRIME STRUCTURAL ESkENGLMEERS SHT s!pl2vtsO!)«4STBEAK ANALYSIS PRD6RftH5:?9v:sOb41*BT :£.50)=Opie,COM2vGsfl!;37 SPAN LENGTH = 28.00 ft (Sisple Span) UH:.r3fft LOADS (k/ft & ft) A *IJH\ '• A A A 4.32C 4.150 !1.730 10.9-0 4.130 2.73C s.sc LOA RIGHT LGAD e Live Deed 33C1500&/EI :3472002/EI 13. S6 Pos. il Sov. Ssflsction s Total = L/1SO rv = IS.Sl fv = 2,52 IS J 7b - 33.OC fb = 27,48 SS X ftrop UNE (A c^ 1-09SHI :_*&. \A ,« A) PRIME JOB; STRUCTURAL DATE EN6!.NSB3S SHT: 8 ?<V} r r (4 SC303/29/00 2K-27C $:p!2vl5fl:j4!4ST2EA« ANALYSIS PRDSRAtf5ip$vi50b4l4B" ;5.50)s3piC.3C?ii2vQsOb37 SPAK LENSTH = 47.25 ft vsitfp.iS wp£ii; C.i:2 0.128 REACTIONS (ic> 2,646 2,£4S 3.024 3.024 5.S7C 3.S7C ffAXIKLT! TORCES to _,v _ r; o" ;._•;. p ^fl £i; /+.r? i=.-i - SCtjG •; . .. £ iJ.QJ ;' DcFlcCTID^S (El * ^r-"2'- LOAD Sefi (in? )( (ft) Total 269154M/EI 23.53 Live 14354SSb/EI 23.53 Dead :25£0527/EI •idspan Pos. fSosent Lu = i.GC ft Reciiired I = 303 inA4 ^ 18 x 35 ~v = SO ksis f+ai = i a? =; otal = Live = Dead =.35 r r r r r r r r r r r r r r r r r r r JP9:2^233" STRUCTURAL DWB"" ENGINEERS SHT: mi FLANSE BEAH-CSLuKN DESI8N (3,0) 2K-270 RD-: LDF = 1,00 JNITS = INCH-KIPS U.O.N BF^-CGL Lx= 47,25 "S BEAU-COL Ly= i.CC "S ALLFIED AX^AL LOAD = 144.EOKIPS Hx» 375.00 INCH-KIPS Hy= 0.00 INCH-K!?S Fy = '2 = i.-•• i it fa = 14.04 rkv= OQ ft*\ fi-w_ C C|?;-.-i- C . u ; roy= &i nj^f fby= 0.00 1A = 0.35 4.£0 0.00 TOA .Ji ;/, w A Art;.• . ;(».) ^51 -a-v,OC pgi f fi« sprV t wLV P tf RD-2 STRUCTURAL ENGINEERS »ff 2K-270 slp:2vl3Ch414BTBEAH ANALYSIS ?ROSRAHsIp3vUOb4!4BT SPAK LENGTH = 54,OC ft (Sieple Spun 3 U«:FCRK LOADS XI O ftCQ A Art ft,VDC v.yyo 2.35C 0.000 24,SO ^ ^O^1 ^ fVi^l HJT T"S' •idV v.UW OT.Ow 0,££ft C..OOO 42.S3 0.7SG 0,000 51,08 RISHT Dssd Livs Total BHIHUK rDSCES 3. OS! £ 221irfi ^i J = 5,08 i 5 54,00 ft vd MX = S,OS ic fi 54,00 ft Md ffi3-i = U^ 47 ^t 3 V ^ -'*liU lUQ/i * i >.• i T,- h r v iZ iJ-tww j t BEFLE!;TICNS (El = kir>"2? '• n^ "ip*1 f;^v Y •^it'1 _>-wni' -e i j, \ iii / ^ \ 11..- Live "fl-.'J ?PP.:*"^£/-"•JCt-.u DCCu. wJ^/ C, 1 ' 15fi I / 24C L / 3SO iji^/DJ'r 2547S712 HIDE FLASSE BEAH-CCLOHS DE3ISN ;3,0) 2K-27C RC-2 HTTC = Tjir-u-^'pcs is rsirlili; — i'^^T. r^iTD LfllJli CAM-rni f v— ~' 1'"' Ct.n!I irUL, U,* l-T.i/V i AXIAL LOAD = 1S1.GCKIPS Ms=!721,50 ISCH-KIFS Hv= & 05 T^Luirpe'' ^1 -/^ .Kwi ' Ji.: w :y = 5C.CO KSI <--V - • Art = 1,00 r. _ Jjs K.a — i j,oJ fa = 3.50 Fbx= 30.00 fbs= II.IS Tby= 37,50 fby= C.OC 1A = 0.77 per AI3C !.S-la IB = 0.£3 psr AISC l.s-ls PETMS J33 :&>•*.»STRUCTURAL C«a V^IENGINEERS SM : 4/z? r- r r r r r r r r r r r r r r PRME J»:STRtXTTURAL OWE ENGINEERS sw: s3B RO-3 50808/29/00 2K-270 slpl2vlsOb4148TBEAN ANALYSIS PROttAHslp9vlsOb4148T (6.60)sOpiO.OOhl2vOsOb3T SPAN LENGTH = 15.25 ft (Sitple Span) UNIFORM LOADS (k/ft t ft) tfd «1 II - 12 0.022 0.000 0.00 15.25 POINT LOADS (k & ft) Pd PI X r 1.840 2.110 6.25 j 3.000 3.400 14.25 REACTIONS (k) LOAD LEFT RI6HT Dead 1.450 3.725 Live 1.468 4.042 Total 2.919 7.767 HAXIHUH FORCES . V tax = 7.77 k t 15.25 ft Ntax = 17.81 kft fi 6.25 ft DEFLECTIONS (El = kinA2) LOAD Defl (in) X (ft) Total 667871/El 7.55 Live 3419%/EI 7.55 Dead 325846/EI •idspan Pos. Hoient Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Total = L/180 Required I = 23 in"4 s3B H 10 x 12 Fy = 50 ksisOB STRESSES (ksi) Fv = 20.00 fv = 4.14 21 I Fb = 32,83 fb = 19.61 60 I DEFLECTIONS (in) Total = 0.43 = L / 428 421 Live = 0.22 = L / 835 29 Z Dead = 0.21 HIDE FLANGE BEAR-CQLUKN DESI8N (3.0) 2K-270 RD-3 LDF = 1.00 UNITS = INCH-KIPS U.O.N BEAH-COL Lx= 15.25 FTS BEAfl-CQl Ly= 1.00 FTS AXIAL LOAD = 204.10KIPS Hx= 103.70 INCH-KIPS My= 0.00 INCH-KIPS Fy = 50.00 KSI Cb =1.00 Kx,Ky = 1.00 1.00 Cix,Ciy = 0.85 0.85 max 35 Fa = 29.27 fa = 19.82 Fbx= 30.00 fbx= 1.80 Fby= 37.50 fby= 0.00 1A= 0.73 IB = 0.72 per AISC 1,6-U per AISC 1.6-lb s3B RD-4 sOBOS/29/00 2K-270 STRUCTURALENGINEERS slpl2vlsOb4148TBEAH ANALYSIS PR06RAHslp9vlsOb4148T (6.60)sOplO.OOhl2vOsOb3T SPAN LENGTH = 23.00 ft (Sitple Span) UNIFORM LOADS (k/ft & ft) yd yl LI - H2 0.022 0.000 0.00 23.00 POINT LOADS (fc & ft) Pd PI X 3.000 3.000 0.680 REACTIONS LOAD Dead Live Total 3 3 0 .400 .400 .960 (k) 8.00 16.00 18.50 LEFT 3. 3. 6. 256 440 696 Rism 3. 4. 8. 930 320 250 8AXIHUH FORCES V iax = 8.25 k g 23.00 ft «sax = 53.19kft I 13.44 ft ) DEFLECTIONS (El = kinA2) LOAD Defl (in) X (ft) Total 5236302/EI 11.64 Live 2729945/E! 11.66 Dead 2506002/EI lidspan Pos. Hoient Lu - 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Total = I/ISO Required I = 118 inA4 s3B H 14 x 22 Fy = 50 ksisOB STRESSES (ksi) Fv = 18.90 fv = 2.61 14 Z Fb = 33.00 fb = 22.01 67 X DEFLECTIONS (in) Total = 0.91 = L / 304 59 I Live = 0.47 = L / 5fl3 41 I Dead = 0.43 /PL538 RD-4/Dt OMI/fV sOBOB/29/00 PRIME A.STRUCTURAL ENGINEERS SHT slpl2vUOb4148TBEAH ANALYSIS PR06RAHslp9vlsOb4148T (6.60)sOplO.Whl2vOsOb3T SPAN LEN6TH = 23.00 ft (Siiple Span) UNIFORM LOADS (k/ft & ft) ud wl XI- X2 0.022 0.000 0.00 23.00 POINT LOADS (k & ft) Pd PI X 3.000 3.000 0.680 REACTIONS LOAD Dead Live Total 0 0 0 .000 .000 .000 (k) 3 0 3 8. 16. 18. LEFT .256 .000 .256 00 00 SO RIGHT 3. 0. 3. 930 000 930 HAXIHUH FORCES V MX = 3.93 k g 23.00 ft Vd iax = 3.93 k 8 23.00 ft Kiax = 25.48 W % 11.62 ft Nd HX = 25.48 kft 6 11.62 ft DEFLECTIONS (El = lcinA2) LOAD Defl (in) I (ft) Total 2506357/E1 11.63 Live 0/EI 0.00 Dead 2506002/EI udspan TOTAL Defl El L / 180 1634588 L / 240 2179450 L / 360 3269175 PRIME JOB STRUCTURAL OMB W HIDE FLAN6E BEAH-COLUHN DESIGN (3.0) 2K-270 RD-4 r LDF = 1.00 UNITS = INCH-KIPS U.Q.N BEAK-COL Lx= 23.00 FTS BEAH-COL Ly= 1.00 FTS ALLPIED AXIAL LOAD * 223.90KIPS Hx= 305.80 INCH-KIPS Hy= 0.00 INCH-KIPS Fy = 50.00 KSI Cb =1,00 Kx,Ky = 1.00 1.00 CixCi = 0.85 0.85 mi 35 Fa = 2S.27 fa = 21.74 Fbx= 30.00 fbx= 5.31 Fby= 37.50 fby= 0.00 1A = 0.94 16= 0.90 H2U 44 29.30 17.22 30.00 3.75 37.50 0.00 0.71 0.70 U16X 36 29.43 21.12 30.00 5.41 37.50 0.00 0.92 0.88 per AISC 1.6-1a per AISC 1.6-lb POMESTRUCTURAL s3B RD-5 sOBOB/29/00 2K-270 slpl2vUOb4148TBEAM ANALYSIS PR06RAflslp9vlsOb4148T (6,60)sOpiO.OOhl2v050b3T SPAN IEN8TH = 36.50 ft (SiipU Span) UNIFORM LOADS (k/ft fc ft) tfd id 11 - 1(2 0.035 0.000 0.00 36.50 POINT LOADS (k & ft) _Pd PI X 2.950 7.230 3.770 7.370 24.00 34.83 REACTIONS <k) LOAD Dead Live Total KAX1HUH FORCES LEFT 1.980 1.628 . 3.G08 RI6HT 9.478 9.512 18.989 ,- V ux = 18.99 k 8 36.50 ft N HX = 76.51 kft fi 24.00 ft - , DEaECTIONS (El = kinA2) j LOAD Defl (in) X (ft) Total 152454B6/EI 19.92 Livs 7576284/E! 20.06 -- 'Dead 7606131/El * id span Pos. Noaent Lu = 1.00 ft ^ Brace Spacing = 1.00 ft 6ov. Deflection : Total = 17180 Required 1 = 216 inA4 s3B H 18 x 35 Fy = 50 ksisOB STRESSES (ksi) Fv = 19.13 fv = 3.58 191 Fb = 33.00 fb = 15,94 48 I PEFIECTIOH5 (in) Total = 1.03 = L / 425 422 Live = 0.51 = L / 855 28 I Dead = 0.51 SOB08/29/00 2K-270 5lpl2vUOb4148TBEAH ANALYSIS PR06RAHslp9vlsOb4148T (6.60)sOplO.QOhi2vOsOb3T SPAN LEN6TH = 38.50 ft (SitpU Span) UNIFORH LOADS Ck/ft t ft)vd tfi xi - n 0.035 0.000 0.00 3&.50 POINT LOADS Pd 2.950 0 7.230 0 REACTIONS LOAD Dead Live Total U1 PI .000 .000 (k) ( ft) I 24.00 34.83 LEFT 1.980 0.000 1.980 R1BHT 9,478 0.000 9.478 HAXIHUH FORCES V tax = 9.48 k @ 36,50 ft Vd iax = 9.48 k t 36.50 ft H«x = 37.44 kfte 24.00ft Hdiax= 37.44 kft % 24.00ft DEFLECTIONS (El « kinA2) LOAD Pefl tin) X (ft) Total 7670325/EI 19.78 Live 0/EI 0.00 Dead 7606131/EI iidspan TOTAL Defl El L / 180 3152189 L / 240 4202918 L / 360 6304377 PRIMESTRUCTURAL DAJ£ ENGINEERS sw: HIDE FLAH6E BEAU-COLUMN DESI6N (3.0) 2K-270 R0-5 LDF = 1.00 UNITS = INCH-KIPS U.O.N BEAH-COL U= 36.50 FTS BEAH-COL Ly= 1.00 FTS ALLPIED AXIAL LOAD = I76.20KIPS flx= 449.30 INCH-KIPS Hy= 0.00 INCH-KIPS Fy = 50.00 KSI Cb =1.00 Kx.Ky = 1.00 1.00 C«,Ciy = 0.65 0.85 H18X 35 Fa = 29.27 fa = 17.11 Fbx= 30.00 fbx= 7.80 Fby= 37.50 fby= 0.00 1A= 0.98 IB = 0.83 mi 44 29.30 13.55 30.00 5.51 37.50 0.00 O.S8 0.64 U16X 40 29.45 14.93 30.00 6.S4 37.50 0.00 0.86 0.73 per AISC 1.6-la per AISC 1.6-lb r~ PgME SIRUCIURALENGINEERS s3B RD-6 sOBOB/29/00 2K-270 5lpl2vlsQb4148TBEAN ANALYSIS PRQSRA«slp9vlsOb4UBT (6.60)sOplQ.OQht2vOsOb3T SPAN LEN8TH = 32.50 ft (SUple Span) UNIFORM LOADS (k/ft & ft) yd wl 0.044 0.000 POINT LOADS (k Pd PI 0.830 1.010 10.530 9.360 1.840 2.110 REACTIONS (k) LOAD Dead Live Total XI 0.00 * ft) X 14.25 17.58 23.41 LEFT 6.563 5.454 12.018 - 12 32.50 RIGHT 8.127 7.026 15.152 MAXIMUM FORCES V lax = 15.15 k I 32.50 ft MHX = 198.15 kft « 17.58 ft DEFLECTIONS (El = kinA2) LQftD Defl (in) It (ft) Total 31445918/EI 16.72 Live 14653172/E1 16.74 Dead 16775294/EI •idspan Pos. Moient Lu = 1.00 ft Brace Spacing = 1.00 ft Gov. Deflection : Total = L/1SO Required 1 - 500 inM s3B . U 21 x 44 Fy = 50 ksisOB STRESSES (ksi) Fv = 19.03 fv« 2.10 11 Z Fb = 33.00 fb = 29.14 881 DEFLECTIONS (in) Total Live Dead = = = 1. 0. 0. 29 60 69 = L i = L t ' 303 t 651 59 37 I I s3B RD-6 / JJlJlKUU \ sOBOB/29/00 2K-270 5lpl2vlsOb4U8TBEAH ANALYSIS PR06RAHsip9vlsOb4148T .(6.60)sOplO.OOhl2vOsOb3T SPAN LENGTH = 32.50 ft (Siiple Span) UNIFORM LOADS (k/ft & ft) Hd vl XI - 12 0.044 0.000 0.00 32.50 POINT LOADS (k & ft) Pd PI X 0.890 10.530 1.840 REACTIONS LOAD Dead Live Total 0 0 0 .000 .000 .000 (k) 14. 17. 23. 25 58 41 LEFT 6. 0. 6. 563 000 563 RIGHT 8. 0. 8. 127 000 127 HAXIHUH FORCES V tax = 8.13 k £ 32.50 ft Vd MX = 8.13 k 8 32.50 ft H fax = 105.62 kft 6 17.58 ft Nd tax = 105.62 kft § 17.58 ft DEFLECTIONS (El = kinA2) LOAD Defl (in) X (ft) Total 16792819/EI 16.70 Live 0/EI 0.00 Dead 16775294/EI lidspan TOTAL Defl El L / 180 7750532 L / 240 10334042 L / 360 15501063 PRIME JOB:STRUCTURAL OWE BUSINESS sa: HIDE FLAN6E BEAM-COLUMN DESI6N (3.0) 2K-270 RD-6 LDF = 1.00 UNITS = INCH-KIPS U.O.N BEAU-COL Lx= 32.50 FTS BEAH-COL Ly= 1.00 FTS ALLPIED AXIAL LOAD = 204.1OKIPS Hx=12S7.40 INCH-KIPS Hy= 0.00 IKCH-KIPS Fy = 50.00 KSI Cb =1.00 Kx,Ky = 1.00 1.00 Cix,Ciy = 0.85 0.85 H21X 50 Fa = 29.32 fa = 13.88 Fbx= 30.00 fbx= 13.41 Fby= 37.50 fby= 0.00 1A = 0.% 1B= 0.91 U24X 55 29.34 12.60 30.00 11.12 37.50 0.00 0.80 0.79 U18X 55 29.49 12.60 30.00 12.89 37.50 0.00 0.90 0.85 per AISC 1.6-la per AISC 1.6-lb r~ PRtME JO-STRUCTURAL DAFB ENGINEERS SHT : r~ WME JOB:snojcnjRAL OMB:ENSMBRS «r: PRIMESTRUCTURAL DOE:,ENGINEERS SHJ Fff-19 09/05/00 T 2K-270 V_J 8U5lpl2vlsOb4148TBEAH ANALYSIS PR06RAHslp9vlsOb414BT {S.43)8UsOplO.OOhl2vOsOfa3T r~ \ SPAN LENGTH = 30.27 ft 1 (SUple Span) UNIFORM LOADS (k/ft & ft) ud 0.316 REACTIONS LOAD Dead Live Total ul 0.451 (k) 4 6 11 XI 0.00 LEFT .783 .826 .609 - X2 30.27 RIGHT 4.783 6.826 11.609 HAXIHUH FORCES V iax = 11.61 k « 0.00 ft Niax = 87.85 kft £ 15.14 ft KFLECTIONS (El =.kin*2) LDAO Defl (in) X (ft) Total 14488639/E! 15.14 Live 8519390/EI 15.13 Dead 5969244/EI lidspan Pos. Hoient Lu = 1.00 ft Brace Spacing = 1.00 ft fiov. Deflection t Live = L/450 Required I = 364 inA4 18 x 35 Fy - 50 ksi -> STRESSES (ksi) Fv = 19.13 fv = 2.19 11 I Fb = 33.00 fb = 18.30 55 I DEFLECTIONS (in) Total = 0.9B = L / 371 65 X Live = 0.58 = L / 631 71 I Dead = 0.40 Ei-^/ifr ?\(l$ jra^feii*ao4if? ^ El M 7 7%e>t~1&fr z&wMMjI v ~7i V~ *t$fi Kfarl v rggl^fei^9-&JO s s3B F6-9 sOBOB/28/00 2K-270 slpl2vlsOb4148TBEAH ANALYSIS PR06RAHslp9vlsOb4148T (6.60)sOplO.OOhl2vOsOb3T SPAN LEN8TH = 21.79 ft (Siiple Span) UNIFORM LMDS (k/ft & ft) tfd «1 XI - X2 0.055 0.000 0.00 21.79 POINT LOADS (k & ft) Pd PI X 14.100 14.500 12.100 12.500 REACTIONS (k) LOAD Dead Live Total 7.27 14.54 LEFT 14.021 13.821 27.842 RI6HT 13.378 13.179 26.556 HAXIHUH FORCES V tax = 27.84 k * 0.00 ft H tax = 200.96 kft £ 7.27 ft DEFLECTIONS (El = kinA2) LOAD Defl (in) X (it) Total 17155103/EI 10.82 Live 8564932/EI 10.82 Dead 8589707/EI tidspan Pos, Hoient Lu = 1.00 ft Brace Spacing - 1.00 ft 6ov. Deflection : Total = L/240 Required I = 543 inA4 s3B y 24 x 55 Fy « 50 ksisOB STRESSES (ksi) Fv = 18.81 fv = 2.99 16 I Fb = 33.00 fb = 21.15 64 I DEFLECTIONS (in) Total = 0.44 = L / 597 40 I Live = 0.22 = L 71195 30 I Dead = 0.22 s3B F6-10 50B08/28/00 2K-270 slpl2vlsOb414BTBEAN ANALYSIS PRQ6RAHslp9vlsOb414BT (6.&0)sOplO.OOhl2vOsOb3T SPAN LENGTH = 30.25 ft (Siiple Span) UNIFORM LOADS (k/ft & ft) «d yl II 0.055 0.173 0.000 0.171 0.00 0.00 - 12 30.25 30.25 POINT LOADS (k * ft) Pd PI 7.700 7.700 7.700 REACTIONS LOAD Dead Live Total 7 7 7 .600 .600 .600 (k) 14 13 28 7. 15. 22. LEFT .998 ,986 .985 56 13 69 RI6HT 14. 13. 28. 998 986 985 HAXIHUH FORCES V lax = 28.98 k 6 0.00 ft H iax = 277.05 kft « 15.13 ft DEFLECTIONS (El = kin*2) LOAD Defl (in) X (ft) Total 43727658/EI 15.13 Live 21208544/EI 15.13 Dead 22519097/E1 lidspan Pos. Hoient Lu " 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Total = L/240 Required 1 = 997 in"4 538 H 24 x 55 Fy = 50 ksisOB STRESSES (ksi) Fv = 18.81 fv = 3.11 17 Z Fb = 33.00 fb = 29.16 88 I DEFLECTIONS (in) Total = 1.12 = L / 325 74 I Live = 0.54 = L / 670 54 I Dead = 0.58 s3B FB-1 50B08/25/00 2K-270 STRUCTURAL 0«e ENSMffiS «: 5lpl2vlsOb4148TBEAH ANALYSIS PRQ6RAH5lp9vlsOb4148T (6.60>sOplO.OOhl2vOsOb3T SPAN LEN6TH = 10.00 ft (SUple Span) UNIFORH LOADS (k/ft 6 ft) vd 0.138 REACTIONS LOAD Bead Live Total wl 0.200 (k) XI 0.00 LEFT 0.690 1.000 1.690 - X2 10.00 RI6HT 0.690 1.000 1.690 HAX1HUH FORCES V tax = 1.69 k C 0.00 ft H lax = 4.23 kft « 5.00 ft DEFLECTIONS LOAD (El = kinA2) Defl (in)X (ft) Total 76050/EI 5.00 Live 45000/EI 5.00 Dead 31050/EI lidspan Pos. Mount Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Total = L/240 Required Is 5 in*4 s3B STRESSES (ksi) Fv = 14.40 Fb = 23.76 fv = fb = 1.26 6.49 DEFLECTIONS (in) 9 I 27 X Total = 0.09 = L /1409 17 I Live = 0.05 = L 72382 15 I Dead =0.03 s3B FB-2 SOB08/25/00 2K-270 PWMESTRUCTURE «t 5lpl2vUOb4148TBEAH ANALYSIS PR06RANslp9vlsOb4148T (6.60)sOplO.OObl2vOsOb3T SPAN LEN6TH = 16.25 ft (Sitple Span) POINT LOADS (k * ft) Pd PI X 2.200 2.940 6.00 2.200 2.940 13.00 REACTIONS (k) LOAD Dead Live Total LEFT 1.828 2.442 4.270 RI6NT 2.572 3.438 6.010 HAXIHUH FORCES V iax = 6.01 k 8 16.25 ft * tax = 25.62 kft £ 6.00 ft DEFLECTIONS (El = kin*2) LOAD Defl (in) X (ft) Total 117064UEI 8.13 Live 669588/EI 8.13 Dead 501053/EI lidspan Pos. Hoaent Lii = 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Total - L/240 Required I = 50 inA4 s3B W 12 x 14 Fy = 50 ksisOB STRESSES (ksi) Fv = 18,75 fv = 2.52 13 Z Fb = 33.00 fb = 20.63 63 : DEFLECTIONS (in) ^^ Total = 0,46 = L / 428 56 2 Live = 0.26 = L / 748 48 I Dead = 0.20 s3B FB-4 SOB08/28/00 2K-270 POMESIRUCIURAL sw slp!2vlsOb4148TBEAK ANALYSIS PR06RAHslp9vlsOb4148T (6.60)sOplO.OObl2vOsOb3T SPAN LENGTH * 10.25 ft (SUple Span) UNIFflR* LOADS (km * It) wd tfl XI - X2 0.014 0.000 0.00 10.25 POINT LOADS Pd 0.830 1 0.480 1 REACTIONS LOAD Dead Live Total ft & PI .200 .100 (H ft) X 3.00 5.00 LEFT 0.905 1.412 2.317 RIGHT 0.549 0.888 1.437 HAXINUH FORCES Viax = H tax = DEFLECTIONS LOAD 2.32 k 6 0.00 ft 7.35 left f 5.00 ft (El = kinA2) Defl (in)X (ft) Total 126302/EI 4.87 Live 73026/EI 4.88 Dead 470%/EI lidspan Pos. NoKnt Lu = 1.00 ft Brace Spacing = 1.00 ft Gov. Deflection : Total = L/240 Required I = 8 inA4 s3B It 8 x 10 Fy = 36 ItsisOB STRESSES (ksi) Fv = 14.40 Fb = 23.76 fv= 1.73 fb = 11.29 12 X 48 I DEFLECTIONS (in) Total = 0.14 = L / 870 281 Live = 0.09 = L /1390 26 Z Dead = 0.05 POME STRUCTURAL OWE s3B FB-5 sOBOB/28/00 - 2K-27Q sipi2vlsOb4i48TBEAN ANALYSIS PRQ6RWteip9visOb4148T tt.&Q)sOplQ.OQhl2YQsflb3T SPAN LENGTH = 22. 17 ft (Simple Span) UNIFORM LOADS (k/ft & ft) vd wl XI 0.200 0.393 0.291 0.571 0.00 16.58 - X2 16.58 22.17 POINT LOADS Ck & ft) Pd PI X 1.030 1.990 REACTIONS (k) LOAD Dead Live Total 16.58 LEFT 2.613 3.925 6.538 RI6HT 3.930 6.082 10.012 HAXIHUH FORCES V HX = 10.01 k t 22.17 ft H tax = 43.52 kft « 13.31 ft DEFLECTIONS (El = kinA2) LOAB Defl (in? X (ft) Total 3B71001/EI 11.50 Live 2348783/EI 11.52 Dead 1520126/EI lidspan Pos. Hoient Lu = 1.00 ft Brace Spacing = 1.00 ft 60v. Deflection : Total = L/240 Required I = 120 inM s3B U 14 x 22 Fy = 50 ksisOB STRESSES (ksi) Fv = 18.90 fv= 3.17 17 Z Fb = 33.00 fb = 18.01 55 I DEFLECTIONS (in) Total = 0.67 = L / 397 61 I Live = 0.41 = L / 654 55 I Dead = 0.26 s3B v F8-5A 50808/28/00 2K-270 slpl2vlsOta414STBEAN ANALYSIS PR06RAHslp9ylsOb4148T (6.60)sOplO.OOhl2vOsOb3T SPAN LEN6TH = 16.58 ft (Siiple Span) UNIFORM LOADS (it/ft & ft) tfd Hi XI U 0.110 0.160 0.00 16.58 REACTIONS (k) LOAD Dead Live Total LEFT 0.912 1.326 2.238 RIGHT 0.912 1.326 2.238 HAXIHUR FORCES V HX = H iax = DEFLECTIONS LOAD 2.24 k 9.28 ktt % (El = lcir>*2) Defl (in) 0.00 ft 8.29 ft X {ft) Total 459076/EI 8.29 Live 272045/EI 8.29 Dead 187031 /El •idspan Pos. Hwent Lu = 1.00 ft Brace Spacing = 1.00 ft 8ov. Deflection : Total = L/240 Required I = 19 inA4 s3B 1(10x12 STRESSES (ksi) Fv = 20.00 Fb = 32.83 fv = 1.19 6 I fb = 10.21 31 Z DEFLECTIONS (in) Total = 0.29 = L / 676 35 I Live = 0.17 = L /1141 321 Dead = 0.12 53B FB-3 sOBOB/25/OQ 2K-270 '. slpl2vUOb4148TBEAN ANALYSIS PR06RAHslp9vlsOb414BT <6.60)sOplO.OOhl2vOsOb3T SPAN LENGTH = 16.25 ft (Siiple Span) POINT LOADS tk i ft) Pd PI X POMESTRUCTURAL OWE ENGINEERS SHT: 2.200 2.940 7.00 2.200 2.940 14.00 REACTIONS (k) LOAD Dead Live ^ Total LEFT 1.557 2.081 3.638 RI8KT 2,843 3.799 6.642 HAIIHDH FORCES V MX = 6,64k « 16.25 ft Hiax = 25.46 kft fi 7.00 ft DEFLECTIONS (El = kin*2) LOAD Defl (in) Total 1093651/EI Live 625551/EI Dead 4680S6/EI i X (ft) 8.17 8.17 lidspan Pos. Hoient Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Total = L/240 Required I = 46 inA4 s3B U 12 x 14 Fy = 50 ksisOB STRESSES (ksi) Fv = 18.75 fv = 2.79 15 I Fb = 33.00 fb = 20.51 62 I DEFLECTIONS (in) Total = 0.43 = L / 458 52 I Live = 0.24 = L / 801 45 X Dead = 0.18 s3B FB-6 sOBOS/28/00 2K-270 slpl2vlsOb4148TBEAK ANALYSIS PR06RAHslp9vlsQb4148T (6.60)sOpiO.OOhl2vOsOb3T SPAN LEN6TH = 10.25 ft (Siiple Span) UNIFORH LOADS (k/ft & ft) ltd nl XI - X2 0.014 0.000 0.00 10.25 POINT LOADS (k 6 ft) Pd PI 1 4.720 6.860 3.00 REACTIONS <k) LOAD LEFT RIGHT Dead 3.410 1.4S3 Live 4.852 2.008 Total 8.262 3.461 HA1IHUH FORCES V MX = 8.26 k % 0.00 ft M tax = 24.72 left 8 3.00 ft DEFLECTIONS (El = kinA2) LOAD Defl (in) X (ft) Total 357167/EI 4.60 Live 209553/E1 4.59 Dead 145796/EI tidspan Pos. ffonnt Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov. Beflection : Total = L/240 Rajuired I = 24 inA4 s3B U 12 x 14 Fy = 50 ksisOB STRESSES (ksi) Fv = 18.75 fv = 3.47 19 Z Fb = 33.00 fb = 19.91 60 Z DEFLECTIONS (in) Total = 0.14 = L / 885 27 Z Live = 0.08 = L /I508 24 I Dead = 0.06 PRIME JQft: STRUCTURAL OMB ENGINEERS fiff: FB-7 05/04/00 2K-27Q •' 8ltelpl2vlsOb4148TBEAH ANALYSIS PROGRAHslp9vUOb4148T (6.43>8UsOplO.OOhl2vOsOb3T SPAN LENGTH = 46.56 ft (Siiple Span) UNIFORM LOADS tt/ft 6 ft) ud OJ44 REACTIONS LOAD Dead Live Total wl 0.444 (k) 8 10 18 XI 0.00 LEFT .012 .341 .353 - X2 46.58 RIGHT 8. 10. 18. 012 341 353 HAXIHUH FORCES V iax = 18.35 fc I 0.00 ft N lax = 213.72 kft % 23.29 ft DEFLECTIONS (El = kinA2) LOAD Defl (in) Total Live Dead 834&5444/EI 47028755/EI 36436B91/EI X (ft) 23.29 23.29 •idspan Pos. Hoient Lu = 1.00 ft Brace Spacing = 1.00 ft Gov. Deflection : Live = L/450 Required 1 = 1306 inA4 U 24 x 55 Fy = 50 ksi STRESSES (ksi) Fv = 18.81 fv = 1.97 10 I Fb = 33.00 fb = 22.50 68 I DEFLECTIONS (in) Total = 2.13 = L / 262 92 Z Live = 1.20 = L / 465 97 I Dead = 0.93 PRIME STRUCTURAL ENGINEERS WIDE FLAH6E BEAM-COLUMN DESI6N (3.0) 2K-27Q FB-7 LDF = 1.00 UNITS = IHCH-K1PS U.Q.K BEAM-COL Lx= 46.58 FTS BEAM-COL Ly= 0.00 FTS ALLPIED AXIAL LOAD = 76.40KIPS Hx=2564.64 INCH-KIPS Hy= 0.00 INCH-KIPS Fy * 50.00 KSI Cb =1.00 Kx,Ky = 1.00 1.00 Cix.Ciy = 0.85 0.85 M24K 55 Fa = 22.48 fa = 4.72 Fbx= 30.00 fbx= 22,50 Fby= 37.50 fby= 0.00 1A= 0.93 IB = 0.91 U27X 84 24.00 3.08 30.00 12,04 37.50 0.00 0.49 0.50 W21X 57 21.51 4.57 30.00 23,10 37.50 0.00 0.97 0.92 per AISC 1.6-la per AISC 1.6-lb s3B FB-8 sOBOS/28/00 2K-270 sipl2vlsOb4148TBEA« ANALYSIS PRDGRAHsip9vl50b4148T (6.60)sOplO.OObi2vOsOb3T SPAN LEN6TH = 28.00 ft (Siiple Span) UNIFORH LOADS (k/ft & ft) tfd tfl XI - 12 0.084 0.000 0.00 28.00 POINT LOADS (k & ft) Pd PI 14.120 6.300 12.860 10.570 REACTIONS LOAD Dead Live Total 12 5 18 12 .320 .500 .700 .630 (k) 7. 14. 21. 12. LEFT 24.171 23.882 48.053 00 00 00 00 816HT 22. 25. 47. 031 268 299 HAXIHUH FORCES V iax = 48.05 k B 0.00 ft H ux = 438.39 kft « 12.00 ft DEFLECTIONS (El = kinA2) LOAD Defl (in) Total Live Dead 59804777/EI 30830413/E1 28908616/EI X (ft) 13.87 13.96 •idspan Pos. HoKitt Lu = 1.00 ft Brace Spacing - 1.00 ft 6ov. Deflection : Total = L/240 Required I = 1473 inA4 s3B H 27 x 84 Fy - 50 ksisOB STRESSES tksi) Fv = 19.43 fv = 3.91 20 I Fb = 33.00 fb = 24.70 75 I DEFLECTIONS (in) Total Live Dead = s s 0. 0. 0. 72 37 35 = L t = L < r 464 t 899 52 40 I I ?SMcorptjd ENGINEERS s3B FB-8A 50808/28/00 2K-270 slplMsOb4148TBEAH ANALYSIS PftOGRAHsip9visOb4I48T (6.6Q)sOplO.OOhI2vQsOb3T SPAN LEN6TH = 28.00 ft (Siiple Span) UNIFORH LOADS (k/ft & ft) vd wl 0.-076 0.000 POINT LOADS (k Pd PI 12.B60 18.700 6.300 5.500 6.210 5.420 10.570 12.630 REACTIONS (k) LOAD Dead Live Total XI 0.00 \fr ft) X 7.00 14.00 21.00 16.00 LEFT 19.941 23.543 43.484 - X2 28.00 RIGHT 18.126 18.707 36.834 HAXIHUH FORCES V iax = 43.48 k fi 0.00 ft H tax = 380.41 kft i 14.00 ft DEFLECTIONS (El = kinA2) LOAD Defl (in) K (ft) Total 51644618/EI 13.91 Live 27146483/EI 13.83 Dead 24500373/EI lidspan Pos. Hount Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Total = L/240 Required I = 1272 inA4 s3B II 24 x 68 Fy = 50 ksisQB STRESSES (ksi) Fv = 19.76 fv = 4.42 22 I Fb = 33.00 fb = 29.64 90 I DEFLECTIONS (in) Total Live Dead = = = 0. 0. 0. 97 51 46 = L = L / / 345 657 70 55 I I PWME _STRUCTURAL SHT s3B FB-9 sOBOB/28/00 2K-270 slpl2vi50b414BTBEAH ANALYSIS PM8RAH5lp9visOb4148T <6.60)sOplO.OOhl2vOsOb3T SPAN LENGTH = 42.67 ft (Siiple Span) UNIFORM LOADS (k/ft & ft) vd wl XI 0.062 0.200 0.000 0.251 0.00 0.00 - X2 42.67 42.67 Pd 4.720 3.080 1.350 REACTIONS LOAD Dead Live Total PI 5.920 3.860 1.690 (k) 10 11 22 X 11.10 22.20 33.30 LEFT ,856 .958 .814 RIGHT 9.474 10.222 19.696 KAXIffiM FORCES V HX = 22.81 k « 0.00 ft H HX = 261.95 kft «* 22.20 ft DEFLECTIONS (El = kinA2) LOAD Pefl (in) X (ft) Total 84024581/EI 20.98 Live 44177221/EI 20.96 Dead 39B35807/EI lidspan Pos. Hownt Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Total = L/240 Required I = 1358 inA4 s3B U 24 x 62 Fy = 50 ksisOB STRESSES (ksi) Fv = 20.00 fv = 2.23 11 I Fb = 33.00 fh = 24.00 73 I DEFLECTIONS (in) Total * 1.87 = L / 274 88 I Live = 0.98 = L / 521 69 I Dead = 0.89 POME STRUCTURAL&&NEB& SKT s3B FB-10 sGBQB/28/00 2K-270 slpl2vUOb4148TBEA« ANALYSIS PRQ8RAIteip9vlsOb414BT (6.60)sOpIO.OObl2vOsOb3T SPAN LEN6TH = 34.50 ft (Sliple Span) UNIFORM LOADS (It/ft & ft) yd ri XI - X2 0.062 0.000 0,00 34.50 POINT LOADS (k & ft) Pd PI 4.790 4.790 4.790 4.790 4.790 3.430 1.730 REACTIONS LOAD Dead Live Total 4.860 4.860 4.860 4.860 4.860 3.480 1.760 Oc) 5. 11. 17. 23. 28. 11. 23. LEFT 15.908 15.057 30.965 75 50 25 00 75 50 00 RIGHT 15.341 14.483 29.825 HAXIHUH FORCES V tax = 30.36 k I 0.04 ft K tax = 318.72 kft % 17.25 ft DEFLECTIONS (El = kinA2) LOAD Defl (in) X (ft) Total 67382368/EI 17.15 Live 32943179/EI 17.15 Dead 34437905/EI tidspan Pos. Hount Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Total = L/240 Required I = 1347 inA4 s3B H 24 x 62 Fy = 50 ksisOB -> C(SE STRESSES (Icsi) Fv = 20.00 fv = 3.03 15 I Fb = 33.00 fb = 29.20 88 I DEFLECTIONS (in) Total = 1.50 = L / 276 87 X Live = 0.73 = L / 565 64 I Dead = 0.77 s3B Ffi-11 sOBOS/28/00 2K-270 slpl2vlsOb4148TBEAK ANALYSIS PR06RAHsip9vl5Ob4148T (6.&0)sOplO.OOhl2vOsOb3T SPAN LENGTH = 13.00 ft (Sitple Span) UNIFORM LOADS (k/ft & ft) ttd Ml XI - K2 0.014 0.000 0.00 13.00 POINT LOADS (k i ft) Pd Pi 1 1,160 REACTIONS LOAD Dead Live Total 1.880 6. (k) LEFT 0.716 0.905 1.620 00 RIGHT 0.626 0.775 1.402 KAXIKUH FORCES V *U = H lax = 1.62 k « 3.47 left * 0.00 ft 6.00 ft DEFLECTIONS (El = kinA2) r^ LOAD Defl (in) X (ft) _,' Total 231857/EI 6.35 Live 131836/EI 6.34 Dead 99950/EI lidspan Pos. Hotent Lu = 1.00 ft Brace Spacing = 1.00 ft r—; 6ov. Deflection : Total = L/240 Required I * 12 inN r ! s3S H 8 x 10 Fy = 36 fcsisOB STRESSES (ksi) P- Fv = 14,40 fv = 1.21 8 Z ; Fb = 23.76 fb = 14.55 61 Z DEFLECTIONS (in) ~ Total = 0.26 = L / 601 40 Z I Live = 0.15 = L /1057 34 I Dead = 0.11 r s3B F6-12 sOBOB/28/00 2K-270 slpl2visOb4148TBEAH ANALYSIS PR06RAHslp9vIsOb4I4BT (6.60)sOplD.OO(il2v0sOb3T SPAK LENGTH = 19.83 ft (Siiple Span) UNIFQR* LOADS (k/tt & ft) tfd HiXI - X2 POME JOB:STRUCTURAL DUE ENGINEERS SHT: 0.014 0.000 0.00 19.83 POINT LOADS (k fc ft) Pd PI X 1.740 2.530 5.50 1.290 1.070 10.60 REACTIONS (k) LOAD Dead Live Total LEFT 1.996 2.698 4.695 RI6HT 1.311 1.702 3.013 HAXIHUH FORCES V MX = H ux = DEFLECTIONS LOAD Total Live Dead 4.69 k 8 0.00 it 27.20 kft « 10.60 ft (El = kinA2) Defl (in) X (ft) 1827912/EI 9.54 1053597/EI 9.53 773011/EI lidspan Pos. Hoaent Lu = 1.00 ft Brace Spacing = 1.00 ft Sov. Deflection : Total = L/240 Required I = 64 inA4 s3B U 12 x 14 Fy = 50 ksisOB STRESSES (ksi) Fv = 18.75 fv = 1.97 11 I Fb = 33.00 fb = 21.91 66 I DEFLECTIONS (in) Total = 0.71 = L / 334 72 I Live = 0.41 = L / 580 62 I Dead = 0.30 PRIME JOB: STRUCTURAL D«H: ENGINEERS SHT : s3B FB-13 50808/28/00 --- 2K-270 5lpl2vUOb4148TBEAN ANALYSIS PRQ6RAHslp9vUOb414BT <6.60)sOplO.OOM2vOsOb3T SPAN LENGTH = 17.25 ft (Siiple Span) UNIFORM LOADS (k/ft 6 ft) w) ul II - 12 0.193 0.280 0.00 17.25 POINT LOADS (k & ft) Pd PI X 0.720 0.910 2.00 REACTIONS U) LOAD Dead Live Total HAXIHUK V iax H iax FORCES = 5.52 = 19.26 LEFT 2.301 3.219 5.521 k e kft f RIGHT 1.748 2,521 4,269 0.00 ft B.23 ft KRECTIMIS (El = kin*2) LOAD Befl (in) ' X (ft) Total 1045432/EI 8.51 Live 615381/El 8.52 Dead 429947/EI lidspan Pos. Noient Lu = 1.00 ft Brace Spacing « 1.00 ft Gov. Deflection : Total - L/240 Required I = 42 in*4 s3B y 12 x 14 Fy = 50 ksisOB STRESSES tksi) Fv = 18.75 fv = 2.32 12 I Fb = 33,00 fb = 15,51 47 I DEFLECTIONS (in) Total = 0.41 = L / 509 47 I Live = 0.24 = L / 864 42 Z Dead = 0.17 s3B s3B PRIME JOB: STRUCTURAL DWB ENGINEERS SHT FB-14 50B08/28/00 2K-270 slpl2vlsOb4I4BTBEAH ANALYSIS PR08RAH5lp9vlsOb4148T (6.60)sOpIO.OOhl2vOsOb3T SPAN LENGTH = 12.00 ft (Sitple Span) UNIFORM LOADS tfrf vl 0.014 0.000 POINT LOADS (k Pd PI 0.500 0.720 1.310 1.700 REACTIONS (k) LOAD Dead Live Total (k/ft * ft) 11 0.00 fc ft) X 2.00 9.00 LEFT 0.828 1.025 1.853 - X2 12.00 RIGHT 1.150 1.395 2.545 HAXIHUH FORCES Vux = H iax = BEFLECTItWS LOAD 2.54 k I 12.00 ft 7.57 kft « 9.00 ft (El = kinA2) Defl (in)X (ft) Total 172561/El &.3B Live 94694/EI 6.38 Dead 77534/EI •idspan Pos. Itotent Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Total = L/240 Required I = 10 inA4 U 8 x 10 Fy = 36 ksisOB STRESSES (ksi) Fv = 14.40 Fb = 23.76 fv = 1.90 13 I fb = 11.63 49 Z DEFLECTIONS (in) Total = 0.19 = L / 745 321 Live = 0.11 = L /1358 27 I Dead = 0.09 PRIME JOt STRUCTURAL ENGJNE0B «ff FB-15 09/05/00 2K-270 BUslpl2vlsOb414BTBEA« ANALYSIS PRQ6RAHslp9visOb414BT (6.43)BUsOplO.QOhl2vOsOb3T SPAN LENGTH = 16.75 ft (Siiple Span) UHIFtJRH LOADS ()c/ft * ft) wd 0.385 REACTIONS LOAD Dead Live Total tfl 0.560 (k) XI 0.00 LEFT 3.224 4.690 7.914 - X2 16.75 RIGHT 3.224 4.690 7.914 HAX1HUM FORCES V ux = 7.91 k 6 0.00 ft N tax = 33.14 kft 8 8.38 ft DEFLECTIONS (El = kir»A2) LOAD Oefl (in) X (ft) Total 1673685/EI 8.38 Live 991813/EI 8.38 Dead 6B1872/EI lidspan Pos. Hoient lu = 1.00 ft Brace Spacing = 1.00 ft 8ov. Deflection : Live = L/450 Required I = 77 inA4 U 12 x 14 Fy = 50 ksi STRESSES (ksi) Fv = 18.75 fv = 3.32 18 I Fb = 33.00 fb = 26.69 81 I DEFLECTIONS (in) Total = 0.65 = L / 309 78 I Live = 0.39 = L / 521 86 I Dead = 0.27 FB-16 09/05/00 2K-270 PRIME JOB STRUCTURAL ENGINEB3S 8lfclpl2vUOb4I48TBEAW ANALYSIS PR06RAHslp9visQb4i4BT (6.43)8UsOplO.OOhl2vOsOb3T SPAN LEN8TH = 22.42 ft (Siiple Span) UNIFORM LOADS (k/ft & ft) wd 0.385 REACTIONS LOAD Dead Live Total wl 0.560 (k) XI 0.00 LEFT 4.316 £.278 10.593 - 12 22.42 RIGHT 4.316 6.278 10.593 HAXIHUH FORCES V iax = 10.59 k 6 0.00 ft H tax = 59.38 kft i 11.21 ft DEFLECTIONS (El = kinA2) LOAD Defl (in) X (ft) Total 5372255/E! 11.21 Live 3I83559/EI 11.21 Dead 2188697/EI eidspan Pos. Noient Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Live = L/450 Required I = 184 inA4 U 16 x 26 Fy = 50 ksi STRESSES (ksi) Fv = 17.90 fv = 2.70 15 I Fb = 33.00 fb = 18,56 56 I DEFLECTIONS (in) Total = 0.62 = L / 437 55 I Live = 0.36 « L / 738 61 Z Dead = 0.25 FB-17 09/05/00 2K-270 8Uslpl2vlsOb4148TBEAN ANALYSIS PR08RAKsip9vlsOb4I4BT (6.43)8UsOplO.OOhi2vOsOb3T SPAN LEN6TH = 15.50 ft (Siiple Span) UNIFORM LOADS (k/ft * ft) tfd Ml XI - 3(2 0.100 0.100 0.00 15.50 POINT LOADS (k tr ft) Pd Pi x 4.316 6.278 7.00 3.224 4.S90 14.00 REACTIONS (k) LOAD LEFT RI6HT Dead 3.454 5.636 Live 4.672 7.846 Total 8.125 13.483 HAXIHUH FORCES V tax = 13.48 k % 15.50 ft « tax = 51.98 left « 7.00 ft DEFLECTIONS (El = kinA2) LOAD Defl tin) X (ft) Total 1964866/EI 7.72 Live 1140334/EI 7.72 Dead 824518/EI lidspan Pos. Moient Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Live = L/450 Required I = 95 inA4 r- « 14 x 22 Fy = 50 ksi ^ STRESSES (ksi) Fv = 18.90 fv = 4.27 23 I Fb = 33.00 fb = 21.51 65 I DEFLECTIONS (in) Total = 0.34 = L / 546 44 I Live = 0.20 = L / 941 48 I Dead = 0.14 PRIME JOB:STRUCTURAL ENGINEERS sw: s3B FB-18 50B08/28/00 _^ 2K-270 v'.'J_- slp!2vUOb4148TBEAH ANALYSIS PR06RAHslp9vlsOb4I48T (6.60)sOplQ.OOhi2vOsQb3T SPAN LEN6TH = 28.00 ft (Siiple Span) «—• UHIFQRH LOADS (k/ft 4 ft) tfd Hi XI - X2 0,055 0.000 0.00 28.00 Pd 6.200 6.200 9.300 2.300 REACTIONS LOAD Dead Live Total 9 9 12 3 PI .040 .040 .770 .220 (k) X 7. 14. 21. 9. LEFT 12.406 16,678 29.083 00 00 00 00 RISHT 13. 17. 30. 134 392 527 V HX = 30.53 k « 28.00 ft « MX = 267.50 kft 8 14.00 ft DEFLECTIONS (El = kin"2> LOAD Defl (in) X (ft) Total 36702592/EI 14.03 Live 21109520/EI 14.02 Dead 15592924/EI lidspafl Pos. Hoient Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Total = L/240 Required 1 = 904 inA4 s3B U 24 x 55 Fy = 50 fcsisQB STRESSES (ksi) TV = 18.81 fv = 3.28 17 I Fb = 33.00 fb = 28.16 85 I DEFLECTIONS (in) Total = 0.94 = L / 358 67 I Live = 0.54 = L / 623 58 2 Dead - 0.40 r r r r r r r r r r r(r r POME Joe STRUCTURAL ENGfNEERS SHT s3B FB-20 sOBOS/28/00 2K-270 sipl2visOb414STBEAH AKALYSIS PRWRHlslp9vlsOb4i4BT t6.60)sOplO.OOhl2vOsOb3T S?*H LENfiTH = 26.42 ft (Siiple Span) f* I UNIFORM LOADS (k/ft & ft) 0.413 0.600 0.00 26.42 POINT LOADS (* i ft) Pd PI L_ 2.SOO 3.640 9.50 REACTIONS (k) LOAD LEFT RI6HT Dead 7.057 6.355 Live 10.257 3.235 Total 17.314 15.590 mim FORCES V iax = 17.31 k S 0.00 ft M tax = 119.96 kft 6 11.93 ft DEFLECTIONS (El = kinA2) LOAD Deft (in) X (ft) Total 14751371/EI 12,95 Live B739187/EI 12.95 Dead 6009312/EI •idspan Pos. Moient Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Total = L/240 Required I = 385 inA4rI s3B U 18 x 35 Fy = 50 ksisOB STRESSES (ksi) Fv = 19.13 fv = 3.26 17 I Fb = 33.00 fb = 24.93 76 I DEFLECTIONS (in) Total = 1.00 = 1/318 76 I Live = 0.59 = L / 537 67 I Dead = 0.41 .STRUCTURAL OWE jts»_ ENGINEERS $rt s3B FB-21 sOBOS/28/00 2K-270 5lpl2vUOb4148TBEAH ANALYSIS PR06RAHslp9vlsOb4148T (6.60)sOplO.OOhl2vOsOb3T SPAN LENGTH = 2B.OO ft (Siiple Span) UNIFORM LOADS (k/ft & ft) vd wl 0.062 0.000 POINT LOADS (k Pd PI 6.630 7.000 11.520 12.140 10.240 10.800 REACTIONS (k) LOAD Dead Live Total XI 0.00 6 ft) X 7.00 14.002i;oo LEFT 14.161 14.020 28.181 - U 28.00 RI6NT 15.965 15.920 31.885 NAXIHUH FORCES V tax = 31.89 k I 28.00 ft H iax = 293.04 kft 6 14.00 ft DEFLECTIONS (El = kinA2) LOAD Defl (in) X (ft) Total 38397986/EI 14.16 Live 19268042/EI 14.16 Dead 1S127055/E1 lidspan Pos. fount Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov, Deflection j Total = L/240 Required I = 946 inA4 535 I 24 x 55 Fy = 50 ksisOB STRESSES (ksi) Fv = 18.81 fv = 3.42 18 I Fb = 33.00 fb = 30.85 93 I DEFLECTIONS (in) Total = 0,98 = L / 343 70 Z Live = 0.49 = L / 683 53 I Dead = 0.49 POMESTRUCTURAL s3B FB-22 sOBOS/28/00 2K-270 5lpl2vlsOb414BTBEAH ANALYSIS PRQ6RA«5lp9vlsOb414BT <6.60)sOplO.OOhl2vOsOb3T SPAN LEN6TH = 16.67 ft (Siiple Span) UNIFORM wd 0.328 LOADS Ck/ft & ft) vl 0.200 XI 0.00 - X2 16.67 REACTIONS (k) LOAD Dead Live Total MAXIMUM FORCES LEFT 2.734 1.667 4.401 RIGHT 2.734 1.667 4.401 V MX = 4.40 k C 0.00 ft H ux = 18.34 kft 6 8.34 ft DEFLECTIQMS (El = kinA2) LOAD Defl (in) X (ft) — Total 917400/EI 8.34 Live 347500/EI 8.34 Dead 563900/EI lidspan ; _J Pos. Kount Lu = 1.00 ft Brace Spacing = 1.00 ft ^ 6ov. Deflection : Total = L/240 : Required I * 38 inA4 s3B H 12x14 Fy = 50k5i50B STRESSES tksi) Fv = 18.75 fv = 1.85 10 I Fb = 33.00 fb = 14.77 45 T. DEFLECTIONS (in) Total = 0.36 = L / 560 43 I Live = 0.14 = L /1479 24: Dead = 0.22 PRfcE JC*: STRUCTURAL s3B DB-1 sQBOa/28/00 • 2K-270 5lpl2vl50b4148TBEA« ANALYSIS PRQ6RAHsip9vlsOb4148T (6.60)sOplO.OOhl2vOsOb3T SPAN LEH6TH = 47.00 ft * (Siiple Span) UKIFQRH LOADS (k/ft & ft) iri «1 II - 12 0.055 0.000 0.00 47.00 POINT LMDS (k & ft) Pd PI X 8.860 11.110 7.25 8.860 11.110 41.67 REACTIONS (k) LOAD LEFT RI6HT Dead 9.791 10.514 Live 10.656 11.564 Total 20.447 22.078 HHIHUH FORCES V iax = 22.08 k * 47,00 ft K wx = 146.85 kft % 8.67 ft KFLECTIHS (El = kiriA2) LQffl Befi (in) X (U> Total 64463202/EI 23.08 Live 32505054/EI 23.03 Dead 31950175/EI lidspan Pos. Hownt Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Total = L/240 Required I = 946 inA4 s38 U 24 x 55 Fy = 50 ksisOfi STRESSES (ksi) Fv = 18.81 fv = 2.37 13 I Fb = 33.00 fb = 15.46 47 I DEFLECTIONS (in? Total = 1.65 * L / 343 70 I Live = 0.83 = L / 679 53 Z Dead = 0.82 PRIMESTRUCTURAL OH6 ENGINEERS SHI: HIDE FLANGE BEAH-COLUHN DESIGN (3.0) 2K-270 DB-1 LW = 1.00 UNITS = INCH-KIPS U.O.N BEAH-CQL Lx= 47.50 FTS BEAH-COL Ly= 0.00 FTS ALLPIED AXIAL LOAD = 240.40KIPS Mx=1762.20 INCH-KIPS Hy= 0.00 INCH-KIPS Fy = 50.00 KSI Cb =1.00 Kx.Ky = 1.00 1.00 Cix,Ciy = 0.85 0.85 J24X 68 Fa = 22.77 fa = 11,96 Fbx= 30.00 fbx= 11.44 Fby= 37.50 fby= 0.00 1A= 0.98 IB = 0.78 U27X 84 23.83 9.69 30.00 8.27 37.50 0.00 0.69 0.60 H21K 83 21.71 9.89 30.00 10.31 37.50 0.00 0.86 0.67 per AISC 1.6-la per AISC 1.6-lb PRIME J06:2k22S SmUCIURALWIB 53B DB-2 SOB08/28/00 --- 2K-27Q 5ipl2vlsOb414BTBEAH ANALYSIS PR06RA«sip9vlsOb414BT (6.60)sOplO.OOH12vOsOb3T SPAN LENGTH = 27.31 ft (Siiple Span) UNIFORM LOADS (k/ft & ft) vd 0.385 REACTIONS LOAD Dead Live Total wl 0.542 (k) XI 0.00 LEFT 5.258 7.402 12.659 - X2 27.31 RIGHT 5.258 7.402 12.659 HAXIHUH FORCES V MX = 12.66 k fi 0.00 ft H MX = 86.44 kft C 13.66 ft DEFLECTIONS (El = kin*2) LOAD Defl (in) X (ft) Total 11606682/EI 13.66 Live 6786215/EI 13.66 Dead 4B20466/EI lidspan Pos. Hoient Lu = 1.00 ft Brace Spacing = 1.00 ft 60v. Deflection : Total = L/240 Required I = 293 inA4 s3B U 18 x 35 Fy = 50 ksisOB STRESSES (ksi) Fv = 19.13 fv = 2,38 12 I Fb = 33.00 fb = 18.01 551 DEFLECTIONS (in) Total = 0,78 = L / 418 57 I Live = 0.46 = L / 714 50 I Dead = 0.33 PRIME STRUCTURAL OWE: HIDE FLANBE BEAH-CQLUHN DESIGN (3.0). 2K-270 DB-2 LBF = t.QQ UNITS * INCH-KIPS 0.0. N BEAH-COL Lx= 27.33 FTS BEAH-CQL Ly= 1.00 FTS ALLPIED AIIAL LOAD = 279.40KIPS Hx* 279.40 INCH-KIPS Hy= 0.00 IHCH-KIPS Fy = 50.00 KSI Cb =1.00 KxfKy = 1.00 1.00 Cix,Ciy = 0.85 0.85 H1BK 40 Fa = 29.30 fa = 23.68 Fbx= 30.00 fbx= 4.08 Fby= 37.50 fby= 0.00 U = 0.98 IB = 0.93 H21I 44 29.30 21.49 30.00 3.42 37.50 0.00 0.86 0.83 MieX 45 29.45 21.01 30.00 3.84 37.50 0.00 0.88 per 0.83 per A1SC 1.6- la AISC 1.6-lb PRIME •**'•STRUCTURAL HIDE FLANGE BEAH-COLUHN DESIGN (3.0) 2K-270 DB-3 LDF = 1.00 EMITS = INCH-KIPS U.O.N BEAM-COL Lx= 26.67 FTS BEAN-COL Ly= 1.00 FTS ALLPIED AXIAL LOAD = 3I7.60KIPS Hx= 317.60 INCH-KIPS My= 0.00 INCH-KIPS Fy = 50.00 KSI Cb =1.00 KxrKy = 1.00 1.00 Cix.Ciy = 0.85 0.85 W2U 44 Fa = ri.^0" fa = 24.43 Fbx= 30.00 fbx= 3.89 Fby= 37.50 fby= 0.00 1A= 0.98 IB = 0.94 U24X 55 29.34 19.60 30.00 2.79 37.50 0.00 0.76 0.75 mi 46 29.31 23.53 30.00 4.03 37.50 0.00 0.97 per 0.92 per AISC 1.6-la AISC 1.6-lb s3B r PRIME JOB: STRUCTURAL DHE: ENGINEERS SHT : DB-4 50B08/2S/00 2K-270 5ipl2vlsOb4I4BTBEAH ANALYSIS PROGRAHslp9vUOb4148T (&.60)sOplO.OOhl2vOsOb3T SPAN LENGTH = 15.25 ft (Siiple Span) UNIFORM LOADS __ wd __wl (k/ft ( ft) . II - 12 0.022 0.000 0.00 15.25 POINT LOADS Pd 0.990 1 2.480 3 7.060 10 REACTIONS LOAD Dead Live Total (k fc PI .440 .600 .260 (k) ft) X 7.42 9.42 12.17 LEFT 3.050 4.188 7.238 RIGHT 7.815 11.112 18.928 HAXIHUH FORCES V iax = 18.93 k « 15.25 ft K «x = 62.34 kft % 9.42 ft DEFLECTIONS LOAD (El = kinA2) Defl (in)K (ft) Total 2342104/EI 8.29 Live 13715G8/EI 8.30 Dead 961874/EI itdspan Pos. Hoient U = 1.00 ft Brace Spacing = 1.00 ft Gov. Deflection : Total = L/240 Required I - 106 inA4 U 16 x 26 Fy = 50 ksisOB STRESSES (ksi) Fv = 17.90 Fb = 33.00 fv = 4.83 27 I fb = 19.48 59 I DEFLECTIONS (in) Total = 0.27 = L / 682 35 I Live = 0.16 = L /I165 31 I Dead = 0.11 r ror r r r r r P r r r r r r r r HIDE FLANGE BEAU-COLUMN DESIGN (3.0) 2K-270 DB-4 Lff = 1.00 UNITS = INCH-KIPS U.O.K BEAH-CQL Lx= 15.25 FTS BEAU-COL Ly= 1.00 FTS AXIAL LOAD = 333.60KIPS Mx=748.10 INCH-KIPS Hy= 0.00 INCH-KIPS Fy = 50.00 KSI Cb =1.00 KxfKy = 1.00 1.00 Cix,Ciy = 0.85 0.85 UM1 55 Fa = 29.34 fa = 20.5S .Fbx= 30.00 fbx= 6.56 Fby= 37.50 fby= 0.00 1A = 0.90 per AISC l.fi-la IB = 0.91 per AISC 1.6-lb r r r r r r- r r r r r DB-5 509)8/28/00 2K-270 5lpl2vlsQb414BTBEAK ANALYSIS PRQ8RAHslp9vUOb4148T (6.60>sOplO.OOhl2vQsOb3T SPAN LENGTH = 23.00 ft (Siftple Span) UNIFORH LOADS (k/ft & ft) d »\ U - X2 0.044 0.000 0.00 23.00 POINT LOADS (k * ft) Pd PI X 6.200 7.870 4.17 6.200 7.B70 11,17 5.090 6.470 18.17 j REACTIONS (k) I LOAD LEFT RI8HT Dead 9.840 8.662 P Live 11.850 10.360 { Total 21.690 19.022 HAUHUH FORCES [ V tax = 21.69 k t 0.00 ft Hiax = 141.04 left fi 11.17 ft DEFLECTIONS (El = kinA2) LOAD Defl (in) X (ft) Total 12640943/EI 11.40 Live 6916738/E1 11.40 Dead 5723731/El iidspan Pds. NoKnt Lu = 1.00 ft Brace Spacing = 1.00 ft Gov. Deflection : Total = L/240 Required I = 379 inA4 r s3B ( H 21 x 44 Fy = 50 ksisOB P STRESSES (ksi) Fv = 19.03 fv = 3.00 16 1 Fb = 33.00 ffa = 20.74 63 I DEFLECTIONS (in) Total = 0.52 = L / 534 45 I Live = 0.28 = L / 976 37 X Dead = 0.23 s3B DB-6 sOBOS/28/00 2K-270 PRIME «:J£2__ slpi2vlsOb414BTBEAH ANALYSIS PRQfiRAitelp9vlsOb4i48T (B.60)sOptO.OOhi2vOsOb3T SPAN LEN6TH = 9.42 ft (Sitple Span) UNIFORH LOADS Ck/ft I ft) vd v\ II - 12 0.220 0.320 0.00 9.42 POINT LOADS (k & ft) Pd PI X 4.500 6.600 2.00 REACTIONS (k) LOAD Dead Live Total MAXIMUM Viax H iax LEFT 4.581 6.706 11.287 FORCES = 11.29 = 21.49 k ekft e RIGHT 1.992 2.908 4.900 0.00 ft 2.00 ft DEFLECTIOHS (El = kinA2) LOAD Defl (in) X (ft) _ Total 298171/EI 4.30 Live 177101/EI 4.30 Dead 120045/EI lidspan r~ Pos. HoMRt Lu = 1.00 ft Brace Spacing = 1.00 ft r- ; 6ov. Deflection : Total = L/240 Required I = 22 inA4 s3B « 12 x 14 Fy = 50 ksisOB STRESSES (ksi) Fv = 18.75 fv = 4.74 25 I Fb = 33.00 fb = 17.31 52 2 DEFLECTIONS (in) Total = 0.12 = L / 974 25 I Live = 0.07 = L /1640 22 I Dead = 0.05 PRIME JOt:STRUCTURAL wae «W: FLAN6E BEAH-COLUHN DESIGN (3.0) 2K-270 DB-6 LDF = 1.00 UNITS = INCH-KIPS U.O.N BEAH-CQL Lx= 3.42 FTS BEAM-COL Ly= 1.00 FTS AXIAL LOAD - 292.70KIPS Hx= 257,90 INCH-KIPS Hy= 0.00 INCH-KIPS Fy = 50.00 KSI Cb =1.00 Kx,Ky = 1.00 1.00 C*x,Ciy = 0.85 0.85 U18X 40 Fa = 29.30 fa = 24.81 Fbx= 30.00 fbx= 3.77 Fby= 37.50 fby= 0.00 1A = 0.96 IB = 0.95 per AISC 1.6-la per AISC 1.6-lb s3B DB-7 50B08/28/00 2K-270 5lpl2vlsOb4148TBEAN ANALYSIS PRB6RAHslp9vlsOb4148T (6.60)sOplO.OOhl2vOsOb3T SPAN LENGTH - 32.17 ft (Siiple Span) UN1FQRK LOADS tt/ft & ft) wi yi XI - 12 0.062 0.000 0.00 32.17 POINT LOADS (k & ft) Pd PI 1.150 1 0.610 0 16.110 20 1.890 2 REACTIONS LOAD Dead Live Total .400 .880 .950 .720 (k) 5. 7. 15. 24. LEFT 11.428 13. BIS 25.044 58 58 08 41 ROT 10. 12. 22. 326 335 661 mm* FORCES VMX = 25.04k I 0.00ft R UK = 335.21 kft 8 15.08 ft DEFLECTIONS (El = kinA2) LOAD Defl (in) Total Live Dead 52059713/EI 2868045&/EI 23371091/E3 I (ft) 15.83 15.83 •idspan Pos. Nount Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Total = L/240 Required I = 1116 inA4 s38 II 24 x 62 Fy = 50 ksisOB STRESSES (ksi) Fv = 20.00 fv = 2.45 12 I Fb = 33.00 fb = 30.71 93 I DEFLECTIONS (in) - Total Live Dead ™1. 0. 0. 16 = 64 = 52 L i L t ' 333 t 605 72 60 I I PRIMESIRUCMML 0Mb HIDE FLAN6E BEtfKQLlflW DESI6N (3.0) 2K-270 DB-7 LDF = 1.00 UNITS = INCH-KIPS U.D.N BEAH-CQL Lx= 32.17 FTS BEAH-CQL Ly= 1.00 FTS ALLPIED AXIAL LOAD = 339.50KIPS Hx=4022.50 INCH-KIPS Hy= 0.00 INCH-KIPS Fy = 50.00 KSI Cb =1.00 Kx.Ky = 1.00 1,00 Cix.Ciy = 0.85 0.85 Fa = fa = 12.26 Ffax= 30.00 fbx= 16.55 Fby= 37.50 fby= 0.00 1A = 0.94 IB = 0.96 H30X 99 29.60 11.67 30.00 14.95 37.50 0.00 0.86 0.89 U24X104 29.72 11.09 30.00 15.59 37.50 0.00 0.87 0.89 per AISC 1.6-la per AISC 1.6-lb s3B BB-8 50B08/28/00 2K-270 slp!2vlsOb4148TBEAH ANALYSIS PRDSRAH5lP9vUOb414BT (6.M)sOplO.OOhl2vOsOb3T SPAN LEH6TB = 23.00 ft (Siiple Span) UNIFORM LOADS (k/ft & ft) tftf vl XI - 12 0.035 0.000 0.00 23.00 POINT LOADS (k & ft) Pd PI L 5.090 6.190 2.760 REACTIONS LOAD Dead Live Total 6 8 3 .780 .240 .680 (k) 5. 12. 19. 00 00 00 LEFT 7. 9. 17. 826 887 713 RIBHT 7. 8. 15. 019 813 832 FORCES V iax = 17.71 k C 0.00 ft H tax = 126.95 kft I 12.00 ft DEFLECTIONS (El = kinA2) LOAD Defl (in) * (ft) Total 11113639/EI 11.41 Live 6221472/EI 11.41 Dead 4891784/El tidspan Pos. Hoient Lu = 1.00 ft Brace Spacing = 1.00 ft 6ov. Deflection : Total = L/240 Required I = 333 inA4 s3B U 18 x 35 Fy = 50 ksisOB STRESSES (ksi) Fv = 19.13 fv = 3.34 17 I Fb = 33.00 fb = 26.45 80 I DEFLECTIONS (in) Total = 0.75 = L / 367 65 I Live = 0.42 = L / 656 55 I Dead = 0.33 PRfME _ . STRUCTURAL ENGINEERS r HIDE FLANfiE BEAK-COLUMN DESIGN (3.0) 2K-270 DB-8 r-L8F = 1.00 UNITS = INCH-KIPS U.O.N BEAN-COL Lx= 23.00 FTS BEAH-CDL Ly= 1.00 FTS ALLPIED AXIAL LOAD = 372.30KIPS Nx=1523.40 INCH-KIPS Hy= 0.00 INCH-KIPS f~ Fy = 50.00 KSI Cb =1.00 Kx.Ky = 1.00 1.00 Cix,Ciy = 0.85 0.85 H21K 68 Fa = 23.53 fa = 18.61 Fbx= 30.00 fbx= 10.88 Fby= 37.50 fby= Q.OO 1A = 0.98 1B= 0.98 H18K 76 29.69 16.70 30.00 10.43 37.50 0.00 0.91 0.90 per AISC l.E-la per -AISC 1.6-lb COLUMN LOAD TABLi PRIME ._ STRUCTURAL OMB ENQWfflS SHT; r COLUMN TRIB AREACSF;ROOF DLCK ROOF FLOOR DUO FLOOR TOTAL T5 tfl-fi-i ftt* ##- , W-'l' 10.0 ^ jvr W* $** ^ H1/I nri*^ ffr 10-^5 COLUMN LOAD TABLE COLUMN 7RIB AREA ROOF OL« ROOF FLOCS FLOOR TOTAL TS \2B.<& lt.&- 14,1 m-fy.fr umlu VUDl-41-4 RJ-Z M/fl ffr-t- W-Z- COLUMN LOAD TABU PRIME JOB:;STRUCTURAL CMUEENGINEERS 3ff COLUMN TRIS A&EA(SF;ROOF ROOF FLOOR FLOORLUO TOTAL TS W-1 (H ^t^i*' RP Mtf- (.ei^ftp •twitu VHf K.t W.IK- --7 U8T ^^JST 15.1x7x1/4 J trrtu 81.1 H COLUMN LOAD TABLE PRIME .. JOB:&22STRUCTURAL tW&jSfcs ENGINEERS *T:.$£*t- COLUMN TRBrep;f?OOFouo ROOF LL«) FLOOR FLOOR LUIO TOTALr<;TS 11^ j».^ l^iH fftH n-v V5AI COLUMN LOAD TABLi COLUMN TRIB AREA ROOF DUO ROOF LLCK; FLOOR DUO FLOOR IUO TOTAL TS L- bit- r^~ 19.2- JfrT r COLUMN LOAD TABLE POMESTRUCTURAL ENGINES r COLUMN flfMft TR1B A&EA (&) RCOF SOCF FLOCS Ulfr- flW FLOOR LUO .0 1 TOTAL TS n>*5 Pd:i2>A V\ Pftftir §!*£1URAL owe STRUCTURAL TUBE COLUMN DESIGN (2.2) 2K-270 B-2 r LDF = 1.00 UNITS = INCH-KIPS U.Q.N COL.HTS Lx= 14.00 FTS COL.HTS ly= 14,00 FTS LOAD FROM FLOOR ABOVE = P1D, P1L, el = 32.80 P2D, P2L, B2= 23.10 P3D, P3L, e3 = 9.90 P4D, P4L-, e4 = i.50 Mx= 0.00 INCH-KIPS Hy= 0.00 INCH-KIPS G9.00KIPS 28,10 18. SO 12.00 2.20 3.00 3.00 3.00 3.00 Fy = 46.00 KSI Cb =1.00 Kx.Ky .= 1.00 1 Cix.Ciy = 0.85 0 fc = 2.50 KSI .00 .85 ALLOW. BEARIN6=1.750 KSI LOAD CASE 1 PT= 195.10\Hx= 51.90 Hy= 54.60 TS9.0X 9.0X0. H6T= 36.10 LOAD CASE= 1 Fa = 23.01 fa = 18.41 Fbx= 30.36 fbx= 1.77 Fby= 27.60 fby= 1.86 1A= 0.95 IB = 0.79 LOAD LOAD CASE 2 CASE 3 174.40 157.00 107.40 26.40 61.20 18.60 3125 TS10.0I10.0X0.3175 40.35 1 23.64 16.39 27.60 1.41 27.60 1.49 0.81 0.70 LOAD CASE 4 164.60 107.40 18.60 TS 8. OX 37,69 2 22,09 15,71 30.36 4.07 27.60 2,32 0,98 0.79 LOAD CASE 5 166.80 26.40 61.20 8.0X0.3750 per AISC 1.6-la per AISC 1.6-lb BASE PL = 1.000 X 15.000 X 15.000 1.000 X 16.000 X 16.000 1.125 X 14.000 X 14.000 FOR TS 9.0X 9.0X0.3125 FOR TS10.0X10.0X0.3125 FOR TS 8.0X 8.0X0.3750 PRIME STRUCTURAL TUBE COLUMN DESI6N (2.2) 2K-270 D-2 LW = 1.00 UNITS = INCH-KIPS U.Q.H COL.HTS Lx= 14.00 FTS COL.HTS Ly= 14.00 FTS LOAD FROM FLOOR ABOVE = P10, PR, el = 23.10 P2D, P2L, e2 = 23.10 PSD, P3L, e3 = 9.90 P4D, P4L, e4 = 5.20 Nx= 0.00 INCH-KIPS Hy= 0.00 INCH-KIPS 82.40KIPS 18.50 18.50 11.30 7.30 3.00 3.00 3.00 3.00 Fy = 46.00 KSI Cb -1.00 Kx,Ky = 1.00 1 C«,Ciy = 0.85 0 fc = 2.50 KSI .00 .85 ALLOW. BEARIN6=1.750 KSI LOAD CASE 1 PT= 199.30 Hx= 0.00 Hy= 26.10 TS 9.0X 9.0X0. «ST= 36.10 LOAD CASE= 1 Fa = 23.01 fa = 18.80 Fbx= 30.36 fbx= 0,00 Fby= 27.60 fby= 0.89 1A = 0.86 IB = 0.71 LOAD LOAD CASE 2 CASE 3 173.50 169.50 55.50 55.50 48.00 7.80 3125 TS10.0X10.0X0.3125 40.35 1 23.64 16.75 27.60 0.00 27.60 0.71 0.74 0.63 LOAD CASE 4 169.50 55.50 7.80 TS 8.0X 37.69 2 22.09 15.63 30.36 2.10 27.60 1.82 0.87 0.70 LOAD CASE 5 173.50 55.50 48.00 8.0X0.3750 per A1SC 1.6-la per AISC 1.6-lfa BASE PL = 1.125 X 15.000 X 15.000 1.000 X 16.000 X 16.000 1.125 X 14.000 X 14.000 FOR TS 9.0X 9.0X0.3125 FOR TS10.0X10.0X0.3125 FOR TS 8.OX 8.0X0.3750 PgME JOB: STRUCTURAL DWE *r: STRUCTURAL TUBE COLUMN DESIGN (2.2) 2K-270 F-2, H-9 LDF = 1.00 UNITS = INCH-KIPS U.O.N COUHTS Lx= 14.00 FTS COL.HTS Ly= 14.00 FTS LOAD FROM FLOOR ABOVE = P1D, P1L, el = 23.10 P2D, P2L, e2 = 23.10 PSD, P3L, e3 = 9.00 P4D, P4L, e4 = 5.20 Hx= 0.00 INCH-KIPS My= 0.00 INCH-KIPS 62.20KIPS 18.50 18.50 11.30 7.30 3.09 3.00 3.00 3.00 Fy = 46.00 KSI Cb =1.00 Kx,Ky = 1.00 1 Cix.Ciy = 0.85 0 fc = 2.50 KSI .00 .85 ALLOW. BEARIN6=1,750 KSI LOAD CASE 1 PT= 178.20 Hx= 0.00 fly= 23.40 TS 9.0X 9.0X0. HfiT= 2S.23 LOAD CASE* 2 Fa = 23.07 fa = 17.74 Fbx= 27.60 fbx= 2.30 Fby= 27.60 fby= 1,88 1A = 0.94 18 = 0.79 LOAD LOAD CASE 2 CASE 3 152.40 148.40 55.50 55.50 45.30 10.50 2500 TS10.0HO.OX0.3125 40.35 1 23.64^ 14.97 27.60 0.00 27.60 0.64 O.S6 0.57 LOAD CASE 4 148.40 55.50 10.50 TS 8.0X 31.B4 2 22.16 16.28 . 30.36 2.44 27.60 2.00 0.92 0.74 LOAD CASE 5 152.40 55.50 45.30 8.0X0.3125 per AISC 1.6-ia per AISC 1.6-lb BASE PL = 1.000 X 15.000 X 15.000 1.000 X 16.000 X 16,000 1.125 X 14.000 X 14.000 FOR TS 9.OX 9.0X0.2500 FOR TS10.OX10.Q3tO.3125 FOR TS 8.0X 8.0X0.3125 STRUCTURAL TUBE COLUHX DESI8H (2.2) 2K-270 6-2 LDF = 1.00 UNITS = IHCH-KIPS U.Q.K COUNTS Lx= 14.00 FTS CQL.HTS Ly= 14.00 FTS LOAD FRQR FLOOR ABOVE = P1D, P1L, el = 23.10 P2D, P2L, e2 = 19.90 P3D, P3L, e3 = 9.00 P4D, P4L, e4 = 5.20 Hx= 0,00 INCH-KIPS Hy= 0.00 INCH-KIPS 47.40KIPS 18.50 23.60 11.30 7.30 3.00 3.00 3.00 3.00 Fy = 46.00 KSI Cb =1.00 Kx.Ky = 1.00 1 Cix.Ciy = 0.85 0 fc = 2.50 KSI .00 .85 - ALLOW. BEARIN6=1.750 KSI LOAD CASE 1 PT= 165.30 Hx= 5.70 Hy= 23.40 TS 9. OX 9.0X0. «6T= 29.23 LOAD CASE" 1 Fa ' 23.07 fa = 19.24 Fbx* 27.60 fbx= 0.24 Fby= 27.60 fby= 0.97 1A = 0.89 IB = 0.74 LOAD LOAD CASE 2 CASE 3 134.40 135.50 65.10 61.20 45.30 10.50 2500 T510.0X10.0X0.3125 40.35 1 23.64 13.89 27.60 0.16 27.60 0.64 0.62 0.53 LOAD CASE 4 130.40 65.10 10.50 TS 8. OX 31.84 5 22.16 14.90 30.36 2.70 27.60 2.00 0.87 0.70 LOAD CASE 5 133.50 61.20 45.30 8.0X0.3125 per AISC 1.6-la per AISC 1.6-tb BASE PL = 1.000 X 15.000 X 15.000 0.875 I 16.000 X 16.000 1.000 X 14.000 X 14.000 FOR TS 9.0X 9.0X0.2500 FOR TS10.Ono.OXQ.3l25 FOR TS B.OX 8.0X0.3125 PRIME JOB SIRUCIURAL STRUCTURAL TUBE COLUHN DESI6N (2,2) 2K-270 H-2 LDF = 1.00 UNITS = INCH-KIPS U.O.N COL.NTS Lx= 14.00 FTS COL.HTS Ly= 14.00 FTS LOAD FRQH FLOOR ABOVE = P1D, P1L, el = 18.10 P2D, P2L, e2 = 14.00 P3D, P3Lf e3 = 3.90 P4D, P4L, e4 = 5.30 Kx= 0,00 INCtt-KIPS Hy= 0.00 INCH-KIPS 39.20KIPS 18,70 13.80 6.10 7.40 3.00 3.00 3.00 3.00 (H Fy = 46.00 KSI Cb =1.00 Kx,Ky = 1.00 1.00 CiX,Ciy = 0.85 0.85 1c = 2.50 KSI ALLOy. BEARING=1.750 KSI LOAD CASE 1 PT= 125.50 Hx= 27.00 My= 8.10 LOAD CASE 2 105.30 68.40 14.10 LOAD CASE 3 101.70 29.10 26.40 LOAD CASE 4 106.60 68.40 26.40 LOAD CASE 5 100.40 29.10 14.10 TS HfiT= LOAD CASE: Fa = fa = Fbx= fbx= Fby= fby= 1A = 18 = 8.0X 8.0X0.2500 25.82 4 22.24 14.04 27.60 3.64 27.60 1.40 0.84 0.69 TS 9.0X 9.0X0.2500 29.23 1 23.07 14.73 27.60 1.12 27.60 0.34 0.70 0.59 TS 7. OX 27.59 4 20.98 13.14 30.36 4.02 27.60 1.55 0.87 0.67 7.0X0.3125 per AISC 1.6-ia per AISC 1.6-lb BASE PL = 0.875 X 14.000 X 14.000 0.875 X 15.000 X 15.000 1.000 X 13.000 X 13.000 FOR TS 8.01 8.0X0.2500 FOR TS 9.0X 9.0X0.2500 FDR TS 7.0X 7.0X0.3125 STRUCTURAL CMCENGINEERS 8HT: HIDE FLAH6E COUM DESI6R (3.0) 2K-270 AA-2, B8-N LDF = 1.00 UNITS = INCH-KIPS U.O.N COL.HTS Lx* 14.00 FTS COL.HTS Ly= 14.00 FTS LOAD FRQH FLOOR ABOVE = P1D, P1L, el = 15.90 P2D, P2L, e2 = 6.80 P3D, P3L, e3 = 24.30 P4D, P4L, e4 = 15.00 Hx= 0.00 INCH-KIPS Hy= 0.00 INCH-KIPS 40.50KIPS 15.10 9.10 25.20 14.00 3.00 3.00 3.00 3.00 Fy = 50.00 KSI Cb =1.00 Kx,Ky = 1.00 Ctx.Ciy = 0.85 fc = 2.50 KSI ALLOW. BEARIN8=1 LOAD CASE 1 PT= 165.90 Hx= 45.30 My= 61.50 U10X 45 LOAD CASE= 2 Fa = 18.29 fa = 10.74 Fbx= 30.00 fbx= 1.48 Fby= 37.50 fby= 7.7B IA = 0.99 18 = 0.61 BASE PL = 1.625 I 1.625 X 1.375 I! t.OO 0.85 .750 KSI LOAD CASE 2 142.80 72.60 103.50 U12X 50 2 17.85 9.71 30.00 1,12 37.50 7.45 0.90 0,56 8.375 I 11. 8.125 X 12. 9.125 X 10. LOAD LOAD CASE 3 CASE 125.60 131. 0.00 72. 14.10 14. USX 48 2 18.86 10.13 30.00 1.68 37.50 6.90 0.87 per AISC 1. 0.58 per AISC 1. 375 FOR »10X 45 375 FOR H12X 50 625 FOR H 8X 48 4 60 60 10 6-la 6-lb LOAD CASE 5 136,80 0.00 103.50 POME **STRUCTURAL DAE: STRUCTURAL TUBE COLUMN DESIGN (2.2) 2K-270 H-7 LDF = 1.00 UNITS = INCH-KIPS U.O.ti COL.NTS Lx= 14.00 FTS COL.HTS Ly= 14.00 FTS LOAD FROM FLOOR ABOVE = PID, P1L, el = 24.20 P2D, P2L, e2 = 14.00 PSD, P3L, e3 = 3.90 P40, P4L, e4 = 5.30 Mx= 0.00 INCH-KIPS Hy= 0.00 INCH-KIPS 32.00KIPS 23.90 13.80 £.10 7.40 3.00 3.00 3.00 3.00 Fy = 46.00 KSI Cb =1.00 Kx.Ky = 1.00 1.00 Cix,Ciy = 0.85 0.85 fc = 2.50 KSI ALLOW. BEARIN6=1.750 KSI LOAD LOAD CASE 1 CASE 2 PT= 130.60 109.40 Hx= 60. SO 102.30 Hy= 8.10 14.10 /* TS 8.0X 8.0X0.2500 TS UGT= 25.82 LOAD CASE= 4 Fa = 22.24 fa = 14.58 Fbx* 27.60 - fbx= 5.44 Fby= 27.60 fby= 1.40 1A = 0.95 IB = 0.78 LOAD CASE 3 100.60 10.80 26.40 9.0X 9.0X0.2500 29.23 1 23.07 15.20 27.60 2.53 27.60 0.34 0.77 0.65 LOAD CASE 4 110.70 102.30 26.40 TS 7.0X 27.59 4 20.98 13.65 30.36 6.02 27.60 1.55 0.98 0,75 LOAD CASE 5 99.30 10.80 14.10 7.0X0.3125 per AISC 1.6-la per AISC 1.6-lb BASE PL = 0.875 X 14.000 X 14.000 0.875 X 15.000 X 15.000 1.000 X 13.000 X 13.000 FOR TS 8.0X 8.0X0.2500 FOR TS 9.0X 9.0X0.2500 FOR TS 7.OX 7.0X0,3125 STRUCTURAL SreJ ENGOSEB?S SHT: STRUCTURAL TUBE COLUHN DESI6N (2.2) 2K-270 H-8 LDF = 1.00 UNITS = INCH-KIPS U.O.N CDL.HTS Lx= 14.00 FTS COL.HTS Ly= 14.00 FTS LOAD FROM FLOOR ABOVE = 41 P1D, PIL, el = 22.00 P2D, P2L, e2 = 23.10 PSD, P3L, e3 = 9.00 P4D, P4L, e4 = 5.20 Hx= 0.00 IHCH-KIPS Hy= 0.00 INCH-KIPS Fy = 46.00 KSI Cb =1.00 KxfKy = 1.00 i.OO C«,Ciy = 0.85 0.85 fc = 2.50 KSI ALLOW. BEARIN6=1.750 KSI LOAD LOAD CASE 1 CASE 2 PT= 163.10 137.30 Hx= 17.10 72.60 Hy= 23.40 43.30 .40KIPS 25.30 3.00 18.50 3.00 11.30 3.00 7.30 3.00 LOAD CASE 3 126.50 58.80 10.50 TS 9.0X 9.0X0.2500 TS10.0X10.0X0.3125 B6T= 29.23 LOAD CASE= 1 Fa = 23.07 fa = 18.99 Ffax= 27.60 fhx= 0.71 Fby= 27.60 fby= 0.97 1A = 0.90 IB = 0.75 40.35 1 23.64 13.71 27.60 0.47 27.60 0.64 0.62 0.54 LOAD CASE 4 133.30 72.60 10.50 TS 8.0X 31.84 2 22.16 14.67 30.36 3.20 27.60 2.00 0.87 0.71 LOAD CASE 5 130.50 58.80 45.30 8.0X0.3125 per AISC 1.6-la per AISC 1.6-lb EASE PL = 1.000 X 15.000 X 15.000 0.875 X 16.000 X 16.000 1.000 X 14.000 X 14.000 FOR TS 9.0X 8.0X0.2500 FOR TS1Q.OX10.0X0.3125 FOR TS 8.0X 8.03(0.3125 PRjUf STRUCTURAL ENGINSRS STRUCTURAL TUBE COLUMN DE516N (2.2) 2K-270 H-ll LDF = 1.00 UNITS = INCH-KIPS U.O.N COL.HTS Lx= 14.00 FTS COL.HTS Ly= 14.00 FTS LOAD FROM FLOOR ABOVE = 72 P1D, P1L, el = 23.10 P2D, P2L, e2 = 16.80 PSD, P3L, e3 = 9.00 P4D, P4L, e4 = 5.20 Nx= 0.00 INCH-KIPS «y= 0.00 INCH-KIPS Fy = 46.00 KSI Cb =1.00 KxfKy = i.OQ 1.00 Cix.Ciy = 0.85 0.85 fc = 2.50 KSI ALLOW, BEARIN8-1.750 KSI LOAD LOAD CASE 1 CASE 2 PT= 178.80 156.50 Hx= 29.40 74.40 Hy= 23.40 45.30 TS 8.0X 8.0X0.3125 TS UGT= 31.84 10ADCASE= 2 Fa= 22.16 fa = 16.72 Fbx= 30.36 fbx= 3.2fi Fby= 27.60 fby= 2.00 1A = 0.98 IB = 0.79 .60KIPS 18.50 3.00 15.00 3.00 11.30 3.00 7.30 3.00 LOAD CASE 3 149.00 26.10 10.50 H& 9.0X 9.0X0.3125 36.10 1 23.01 16.87 30.36 1.00 27.60 0.80 0.80 0.67 LOAD CASE 4 152.50 74.40 10.50 TS 7. OX 42.05 2 20.66 12.62 30.36 3.07 27.60 1.87 0.83 0.63 LOAD CASE 5 153.00 26.10 45.30 7.0X0.5000 per AISC 1.6-la per AISC 1.6-lb BASE PL = 1.125 X 14.000 X 14.000 1.000 X 15.000 X 15.000 1.125 X 13.000 X 13,000 FOR TS 8.0X B.OX0.3125 FOR TS 9.0X 9.0X0.3125 FOR TS 7.0X 7.0X0.5000 r r:f r r r r r r PWME J0»:STRUCTURAL Me &XSWEB& «r: r '1 r r r i— r r r STRUCTURAL TUBE CQLUHN DESIGN (2.2) 2K-270 4-AA.2 LDF = 1.00 UKITS = INCH-KIPS U.Q.K CQL.HTS Lx= 14.00 FTS COL.HTS Ly= 14.00 FTS LOAD FROM FLOOR ABOVE = 29 P1D, P1L, el = 7.00 P2D, P2L, e2 = 11.40 PSD, P3L, e3 = 0.00 P4D, P4L, e4 = 0.00 Hx= 0.00 INCH-KIPS Hy= 0.00 INCH-KIPS Fy = 46.00 KSI Cb =1.00 Kx,Ky = 1.00 1.00 Cax,Ciy = 0.85 0.85 fc = 2.50 KSI ALLOW. BEARIN6=1.750 KSI LOAD LOAD CASE 1 CASE 2 PT= 70.40 56.80 Hx= 27.60 13.20 Hy= 0.00 0.00 TS 6.0X 6.0X0.2500 TS II6T= 19.02 LOAD CASE= 3 Fa = 19.41 fa = 11.02 Tbx= 30.36 fbx= 5.35 Fby= 27.60 fby= 0.00 1A = 0.81 IB = 0.58 .60KIPS 8.80 3.00 13. SO 3.00 0.00 0.00 0.00 0.00 LOAD CASE 3 61.60 54.00 0,00 7.0X 5.0X0.5000 35.24 1 16.59 6.77 30.36 1.52 27.60 0.00 0.46 0.30 LOAD CASE 4 56.80 13.20 D.OO TS 6. OX 22.37 3 12.53 9.36 30.36 5.45 27.60 0.00 1.00 0.52 LOAD CASE 5 61.60 54.00 0.00 4.0X0.3750 per AISC 1.6-la per AISC 1.6-lb BASE PL = O.B75 I 12.000 X 12.000 0.875 X 11.000 X 13.000 0.875 X 10.000 X 12.000 FOR TS &.<H 6.0X0.2500 FOR TS 7.0X 5.0X0.5000 FOR TS 6.0X 4.0X0.3750 POME JOB:STRUCTURAL QMB V... STRUCTURAL TUBE COLUMN DESI6N (2.2) 2K-270 AA.9-K.7 LBF = i.OO UNITS = INCH-KIPS U.O.N COL.HTS Lx= 14.00 FTS COL.HTS Ly= 14.00 FTS LOAD FRQH FLOOR ABOVE = P1D, P1L, el = 4.60 P2D, P2L, e2 = 10.30 PSD, P3L, e3 = 0.00 P4D, P4L, e4 = 0.00 Hx= 0.00 INCH-KIPS «y= 0.00 INCH-KIPS 3I.10KIPS 6.70 12.30 0.00 0.00 3.00 3.00 0.00 0.00 Fy = 46.00 KSI Cb =1.00 Kx,Ky = 1.00 1.00 Cix,Ciy = 0.85 0.85 fc = 2.50 KSI ALLOW. BEARING=1.750 KSI LOAD LOAD CASE 1 CASE 2 PT= 65.00 52.70 Hx= 33.90 3.00 Hy= 0.00 0.00 st V)lt TS 6.0X 5.0X0.2500 TS W8T= 17.32 LOAD CASE= 3 Fa = 17.16 fa = 11.45 Fbx= 30.36 fbx= 6.18 Fby= 27.60 fby= 0.00 1A = 0.97 IB = 0.62 LOAD CASE 3 58.30 54.00 0.00 6.0X 5.0X0.29)0 17.32 3 17,16 11.45 30,36 6.18 27.60 0.00 0.97 0,62 LOAD CASE 4 52.70 3.00 0.00 TS 5. OX 22.37 3 16.24 8.86 30.36 5.93 27.60 0.00 0.87 0.52 LOAD CASE 5 58.30 54.00 0.00 5.0X0.3750 per AISC 1.6-la per AISC 1.6-lb BASE PL = 0.875 I 11.000 I 12.000 0.875 X 11.000 X 12.000 0.875 X 11.000 X 11.000 FOR TS 6.0X 5.0X0.2500 FOR TS 6.0X 5.0X0.2500 FOR TS 5.0X 5.0X0.3750 POME STRUCTURAL 0«fi ENGINEERS &*: STRUCTURAL TUBE COLUMN DESIGN (2.2) 2K-270 C-2, E-2, H-1Q LDF = 1.00 UNITS = INCH-KIPS U.O.N COL.HTS Lx= 14,00 FTS COL.HTS Ly= 14.00 FTS LOAD FROM FLOOR ABOVE = 116.00KIPS P1D, P1L, el = 0.00 0.00 0.00 P2D, P2L, e2 = 0.00 0.00 0.00 P3D, P3L, 63 = 0.00 0.00 0.00 P4D, P4L, e4 = 0.00 0.00 0.00 Hx= 0.00 INCH-KIPS My= 0,00 INCH-KIPS Fy = 46.00 KSI Cb =1.00 Kx,Ky = 1.00 1. 00 Cix.Ciy = 0.85 0.85 ic = 2.50 KSI ALLOy. 8EARING=I.750 KSI LOAD LOAD CASE 1 CASE 2 PT= 116.00 116.00 Hx= 0.00 0.00 Hy= 0.00 0.00 TS 7.0X 7.0X0.2500 TS H8T= 22.42 LOAD CASE= 1 Fa = 21.09 fa = 17.60 Fbx= 30.36 fbx= 0.00 Fby= 27.60 fby= 0.00 1A = 0.83 IB = 0,64 LOAD CASE 3 116.00 0.00 0.00 8.0X 8.0X0.2500 25.82 1 22.24 15.28 27.60 0.00 27.60 0.00 0.69 0.55 LOAD CASE 4 116.00 0.00 0.00 TS 6.0X 23.34 1 19.25 16.91 30.36 0.00 27.60 0.00 0.88 0.61 LOAD CASE 5 116.00 0.00 0.00 6.0X0.3125 . per AISC 1.6-la per AISC 1,6-lb BASE PL = 1.000 I 13.000 I 13.000 0.875 X 14.000 X 14.000 1.000 X 12.000 X 12.000 FOR TS 7.QX 7.0X0.2500 FOR TS 8.0X 8.0X0.2500 FOR TS 6.0X 6.0X0.3125 POME JQt;STRUCTURAL OWE ENGINEERS sw STRUCTURAL TUBE COLUMN DESIGN (2.2) 2K-270n-i2 LDF = 1.00 UNITS = INCH-KIPS U.Q.N COL.HTS Lx= 14.00 FTS COL.HTS Ly= 14.00 FTS LOAD FROM FLOOR ABOVE = PID, P1L, el = 0.00 P2B, P2L, e2 = 0.00 P3D, P3L, 83 = 0.00 P4D, P4L, B4 = 0.00 Hx= 0.00 INCH-KIPS Hy= 0.00 INCH-KIPS 81.70KIPS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fy = 46.00 KSI Cb =1,00 Kx,Ky = I.00 1.00 Cix.Ciy = 0.85 0.85 fc = 2.50 KSI ALLOW, BEARIN8=1.750 KSI LOAD LOAD CASE 1 CASE 2 PT= 81.70 81.70 «x= 0.00 0.00 «y= 0.00 0.00 TS 6.0X 6.0X0.1875 TS H6T= 14.53 LOAD CASE: 1 Fa = 19.55 fa = 19.13 Fbx= 27.60 . fbx= 0.00 Fby= 27.60 fby= 0.00 1A = 0.98 IB = 0.69 LOAD CASE 3 81.70 0.00 0.00 4* 7.0X 5.0X0.5000 35.24 1 16.53 7.86 30.36 0.00 . 27.60 0.00 0.47 0.28 LOAD CASE 4 81.70 0.00 0.00 TS 6. OX 22.37 1 12.53 12.42 30.36 0.00 27.60 0.00 0,99 0.45 LOAD CASE 5 81.70 0.00 0.00 4.0X0.3750 per AISC 1.6-la per AISC 1.6-lb BASE PL = O.B75 M2.000 It 12.000 0,875 X 11.000 X 13.000 I.000 X 10.000 X 12.000 FORTS&.QX £.0X0.1875 FOR TS 7.0X 5.0X0.5000 FOR TS 6.0X 4.0X0.3750 PRME JOB: STRUCTURAL D«B &9&NEBRS SHT: STRUCTURAL TUBE COLUHN DESIGN (2.2) 2K-270 B-3, C-3 r- LDF = 1.00 UNITS = INCH-KIPS U.O.N CQL.HTBlx= 14.00 FTS COL.HTS Ly= 14,00 FTS LOAD FRO* FLOOR ABOVE = P1D, P1L, el = 0.00 P2D, P2Lf e2 = 0.00 P3D, P3L, e3 = 0.00 P4D, P4L, e4 = 0.00 Hx= 0.00 INCH-KIPS Hy= 0.00 INCH-KIPS B9.00KIPS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fy = 46.00 KSI Cb =1.00 Kx,Ky = 1.00 1.00 C«,Ciy = 0.85 0.35 fc = 2.50 KSI ALLOW. BEARIN6=1.750 KSI LOAD LOAD CASE 1 CASE 2 PT= 89.00 89.00 Hx= 0.00 0.00 Hy= 0.00 0.00 TS 6.0X 6,0X0.2500 TS «6T= 13.02 LOAD CASE= 1 Fa = 13.41 fa = 15.32 Fbx= 30.36 -fbi» 0.00 Fby= 27.60 fbys O.-OO 1A « 0.82 IB = 0.58 BASE PL = 0.875 \ 12,000 X 12. 0.875 X 11.000 X 13. 1.000 X 10.000 X 12. LOAD CASE 3 89.00 0.00 0.00 7.0X 5.0X0.5000 35.24 1 16.59 8.56 30.36 0.00 27.60 0.00 0.52 0.31 000 FOR TS 6.QX 000 FOR TS 7. OX 000 FOR TS 6. OX LOAD CASE 4 89.00 0.00 0.00 LOAD CASE 5 89.00 0.00 0.00 TS 6.0X 4.0X0.5000 28.43 1 11.53 10.65 30.36 0.00 27.60 0.00 0.92 per 0.33 per 6.0X0.2500 5.0X0.5000 4.0X0.5000 . AISC 1,6-U AISC 1.6-lb STRUCTURALENGtNEBS Jt»! STRUCTURAL TUBE COLUMN DESIGN (2.2) 2K-270 AA-3 LDF = 1.00 UNITS = INCH-KIPS U.O.N COLHTS Lx= 14.00 FTS CQL.HTS Ly= 14.00 FTS LOAD FROM FLOOR ABOVE = P1D, P1L, el = 0.00 P2D, P2L, e2 = 0.00 P3D, P3L, e3 = 0.00 P4D( P4L, e4 = 0.00 Hx= 0.00 INCH-KIPS Hy= 0.00 INCH-KIPS 93.30KIPS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 r Fy = 46.00 KSI Cb =1.00 Kx.Ky = 1.00 1.00 Cix.Ciy = 0.85 O.B5 fc = 2.50 KSI ALLOW. BEARIN6=1.750 KSI LOAD LOAD CASE 1 CASE 2 PT= 93.30 93.30 Hx= 0.00 0.00 My= 0.00 0.00 TS 6.01 6.0X0.2500 TS «6T= 19.02 LOAD CASE; i Fa = 19.41 fa = 16.69 Fbx= 30.36 fbx= 0.00 Fby= 27.60 fby= 0.00 1A = 0.86 IB = 0.60 LOAD CASE 3 93.30 0.00 0.00 7.0X 5.0X0.5000 35.24 1 16.59 8.97 30.36 0.00 27.60 0.00 0.54 0.33 LOAD CASE 4 93.30 0.00 0.00 TS 6.0X 28.43 1 11.59 11.16 30.36 0.00 27.60 0.00 0.96 0.40 LOAD CASE 5 93.30 0.00 0.00 4.0X0.5000• per AISC 1.6-la per AISC 1.6-lb BASE PL = O.B75 X 12.000 X 12.000 0.875 X 11.000 X 13.000 1.000 X 10.000 X 12.000 FOR TS 6.0X 6.0X0.2500 FOR TS 7.OX 5.0X0.5000 FOR TS 6.OX 4.0X0.5000 PRIME JQfc'.ZL-2sr. SnaJCIURALC*e^^SW : STRUCTURAL TUBE COLUMN DESI8N (2.2) 2K-270 11-L, 12-L IDF = 1.00 UNITS = INCH-KIPS U.O.N C8L.HTS Lx= 14.00 FTS CQL.HTS Ly= H.OO FTS LOAD FROM FLOOR ABOVE = P1D, P1L, el = 0.00 P2D, P2L, e2 = 0.00 P3D, P3L, i3 = 0.00 P4D, P4L, e4 = 0.00 Hx= 0.00 INCH-KIPS Hy= 0.00 INCH-KIPS 82.00KIPS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fy = 46.00 KSI Cb =1.00 Kx,Ky = 1.00 1.00 Cix,Ciy = 0.85 0.85 ft = 2,50 KSI ALLOW. BEARING=1.750 KSI LOAD CASE 1 PT= 82.00 Nx= . 0.00 My= 0.00 LOAD CASE 2 82.00 0.00 0.00 LOAD CASE 3 82.00 0.00 0.00 LOAD CASE 4 82.00 0.00 0.00 LOAD CASE 5 82.00 0.00 0.00 TS6.0X 6.0X0.1875 TS 7.0X 5.0X0.5000 TS 6.0X 4.0X0.3750 H6T= LOAD CASE? Fa = fa = Fbx= fbx= Fby= fby= 1A = IB = 14.53 I 19.55 19.20 27.60 0.00 27.60 0.00 0.98 0.70 35.24 1 16.59 7.88 30.36 0.00 27.60 0.00 0.48 0.29 22.37 1 12.53 12.46 30.36 0.00 27.60 0.00 0.99 0.45 per AISC 1.6-la per AISC 1.6-lb BASE PL = 0.875 X 12.000 X 12.000 0.875 X 11.000 X 13.000 1.000 X 10.000 X 12.000 FORTS 6.0X 6.0X0.1875 FOR TS 7.0X 5.0X0.5000 FOR TS 6.0X 4.0X0.3750 STRUCTURAL TUBE COLUMN OESI6H (2.2) 2K-270 COLS AT STAIR OPENINGS LDF = 1.00 UNITS = INCH-KIPS U.Q.N COL.HTS Lx= 14.00 FTS COL.HTS Ly= 14.00 FTS LOAD FROH FLOOR ABOVE = 21 P1D, ML, el = 0.00 P2D, P2L, e2 = 0.00 PSD, P3L, e3 = 0.00 P4D, P4L, e4 = 0.00 Hx= 0.00 INCH-KIPS Hy= 0.00 INCH-KIPS Fy = 46.00 KSI Cb =1.00 Kx,Ky = 1.00 1.00 CixfCiy = 0.85 0.85 fc = 2,50 KSI ALLOW. BEARIN6=1.750 KSI LOAD LOAD CASE 1 CASE 2 PT= 21.70 21.70 Hx= 0.00 0.00 My= 0.00 0.00 *f IflC* TS3.5X 3.5X0.1875 TS H6T= 8.15 LOAD CASE: i Fa = 9.50 fa = 9.08 Fbx= 27.60 fbx= 0.00 Fby= 27.60 fby= 0.00 1A = 0.96 IB = 0.^3 BASE PL = 0.625 X 9.500 I 9. 0.625 X 9.000 X 10. 0.625 X 9.500 X 9. .70KIPS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 LOAD CASE 3 21.70 0.00 0.00 i 1 4.0X 3.0X0.3125 12.70 1 6.64 5.82 27.60 0.00 27.60 0.00 0.88 0.21 500 FOR TS 3.5X 000 FOR TS 4. OX 500 FOR TS 3.5X LOAD CASE 4 21.70 0.00 0.00 LOAD CASE 5 21.70 0.00 0.00 TS3.5X 3.5X0.1875 8.15 1 9.50 9.08 27.60 0.00 27.60 0.00 0.96 per 0.33 per 3.5X0,1875 3.0X0.3125 3.5X0.1875 AISC 1.6-la AI5C t.6-lb r~ PWME JQi:STRUCTURAL CWE ENSMSRS «: SPREAD F80TIN6S 08/30/00 SPREAD FOOTING PR06RAH (3.30) fc' = 2.50 ksi vc = 0.15 kef fy = 60.00 ksi stir = 0.00 ksf col * 11.00 in b (ft) 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00- 5.50 6.00 h (in) Ba (ksf) 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 — liJ!0_, 15.00^js^e- 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.25. /3.S8 J w«Tv """3T50 Pa (k) 2.35 5.51 10.20 16.56 24.75 34. SI 47.20 61.76 77.81 fcs=a- 7117.90 Pu (k) 3.64 8.54 15.81 25.67 38.36 54.11 73.16 95.73 120.61 J_EJ^^^^^•^-'•IViftn IB2.74 As (in2) •0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.30 UfiZ— • 1.98 2.33 No-Size 313* 413* 5 13 * 6 t 3 Hook 8 1 3 Hook 315 -* 4 t5 515 + — 6-t 5 715 --M-5 (Insufficient Development POME JQSSTRUCTURAL SPREAD 2 08/30/00 2K-270 r~ SPREAD FOOTING PRQBRAH (3.30) fc' = 2.50 ksi fy = 60.00 ksi col = 11.00 in we sur = 0.15 kef = 0.00 ksf fa (ft) h (in) 8a (ksf) Pa (k) Pu (k) As (in2) No-Size 5.00 5.50 15.00 15.00 3.40 340 80.31 100.20 124.48 155.31 1.62 2.05 6 7 5 *- 5 +- 188.32 2.33 8 SPREAD 3 SPREAD FOOTING PROGRAM (3.30) fc' = 2.50 ksi K =0.15 kef fy = 60.00 ksi sur = 0.00 ksf col = It.00 in 08/30/00 2K-270 b (ft) h (in) Ba (ksf) Pa (k) Pu (k) As (in2) No-Size 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 18.00 18.00 21.00 21.00 24.00 24.00 27.00 27.00 27.00 3.70 3.80 g. jjTj Too\ 4.00' 4.00 4.00 4.00 , 4.00/ 125,10 151.04 178.24 210.23 i 236,80 1267.32 1 296. 66 f 330.54 366.25 193.90 234.12 276.27 325.B6 367.04 414.35 459.83 512.34 567. 6t 2.33 3.05 3.25 4.21 4.35 5.32 5.49 6.55 7.75 815' 10* 5 11 i 5 14*5 • 151 5 18 15 1815 22 15 25 t 5 PRIMEsnw BNSWEBRS PRIME JOI STRUCTURAL DM* e*3JNEERS W SPREAD 4 08/30/00 2K-270 SPREAD FODTIN6 PR06RAH (3.30) fc' fy Qa b 7 7 8 8 9 9 10 = = = (ft) .00 .50 .00 .50 .00 .50 .00 2.50 60.00 4.00 h 21 21 24 24 27 27 27 ksi ksi ksf (in) .00 .00 .00 .00 .00 .00 .00 we sur col Pa 183. 210. 236. 267. 296. 330. 366. = = = Ck) 14 23 80 32 66 54 25 0.15 0.00 11.00 Pu 283. kef ksf in (k) 86 325.86 367. 414. 459. 512. 567. 04 35 83 34 69 As 3 4 4 5 5 & 7 (in2) .34 .21 .35 .32 .49 .55 .75 No-Si ze 11 14 15 18 18 22 25 * 5 15 15 i 5 15 t 5ts LATERAL FORCE ON ELEMENTS OF STRUCTURES. (SEC. 1632 OF 1997 U.B.C.) Seismic Zone 4 CO£ <—Roof <—2nd Fir <—1st Fir Fp= ap Ca IP Rp h1= 14.00 h2= 15.00 h3= 2.00 ap= 1.00 lp= 1.00 Rp= 3.00 Soil Profile Type = 4 (1+3*hx/hr)Wp ft Seismic source type = ft (A=1,B=2,C=3) ft Closest distance Roof elev. Total wall ht km 29.00 ft 31.00ft (SA=1, SB=2,SC=3,SD=4,SE=5) (When soil properties not known, use Type SD per section 1629.3. Exception) Near Source Factor Na= 1.0 Ca = 0.44 Fp= 0.147 Fp= 0.617 Fp= 0.587 Fp= 0.359 Fp = 0.308 Above 2nd. Floor Total Seismic Load= Roof Reaction = 2nd Floor Reaction = Maximum Moment = Maximum Moment occurs = Equivalent Uniform Seismic load = for Wall design Anchorage Force at Roof = for flexible diaphragm (if Na>1.1, check w/ section 1629,4.2 for special condition) *{1+3*hx/hr)Wp 0.7*Ca*lp= 0.308 4*Ca*lp= 1.76 *Wp at top of wall *Wp athx = hr * Wp at 2nd floor *Wpfbrhx=Oto hx= 10.61667 ftabove 1st Floor Where Wp=weight of wall psf 8.32 * Wp above 2nd floor 5.17 *Wp 3. 16 * Wp from above 2nd floor 12.74 *Wp-ft 7.65 ft above 2nd floor 0.453 *Wp weq= 8* Max. h2A2 8.36Q *Wp ap= 1.5 Below 2nd. Floor Total Seismic Load= 2nd Floor Reaction = 1st Floor Reaction = Maximum Moment = Maximum Moment occurs = Equivalent Uniform Seismic load = Anchorage Force at 2nd. Floor = 4.44 * Wp below 2nd floor 2.27 * Wp from below 2nd floor 2.16 *Wp 7.71 *Wp-ft 7.12 ft from base 0.315 *Wp 7.81 *Wp w eq= 8* Max. h1A2 ap=1.5 lYPiOU £ASf- <f LINE @ f As-rej-'ci " 0.6 in* v i ' 0,2t4,o --4-.? nM- fit A- '- , 3 *rt<t>( = 8.4-fr DESCRIPTION: PRECAST CONCRETE WALL DESIGN Considering P-Delta Effects SEAOC "Green Book" To iterate P-Delta effects to convergence using 1997 UBC Load factors. TYP PANEL EAST PIER A-2ND TO ROOF DESIGN DATA: fc= Fy= Phi= Seismic Factor= Wind Load= Reveal Depth= Reveal to Bot= 3,000 60,000 0.85 0.453 18.6 0.75 9 psi psi psf in Wall Thk .= Rebar Size # = Rebar Spacing= Depth to steel= Rebar @ Reveal= d @ Reveal= Steel @ ea. face= Clear Wall Ht = Total wall Ht = Ht/Thk Ratio= Eccentric Dead Load = Eccentric Live Load = Load Eccentricity = 6.5 4 12 3.625 12 2.875 in Min. Vert. Steel % = 0.0025 Min. Horiz. Steel % = 0.0015 Max Vet Spacing= 12.31 in Max Horiz. Spacing = 18.00 in Betal = 0.85 0.6 x Rhow Balance = 0.0128 ft Shall LL be used with laterial load combination? Y=1 ,N=0-> Additional Imposed Loads: Axiat Unform DL= 3072 plf Point Lateral Load = 0 pff X-dist to Bottom » 110.4 plf Seismic=1, Wind=2-> 9 ft 17 ft 1 Axial Uniform LL= in o.c.Unform Lateral Load = in X-dist. to Bottom = in o.c. X-dist. to top = in Seismic=1, Wind=2~> 15 ft 17 ft 27.7 374 plf 0 plf 6.25 in 0 0 # 0 ft 1 1 (1 for single layer, 2 for double layers) DE3IGN SUMMARY: Mn x Phi = Mu = OVER STRESS= Max. delection= Hts/defl.= Provide Add'l # Seismic 49,527 28,616 0.0 0.07 2,506 4 Seismic @ Reveal 38,500 in-# 31,952 in-# 0.0 % 0.16 in 1,111 @ Wind 47,430 9,131 0.0 0.03 6,084 0 O.C. at Reveal Wind@ 36.708 9,021 0.0 0.03 5,536 Reveal in# in# % in LATERAL LOADINGS OJ=1.32D + Q.55L + 1.1 EH for seismic load combination. U=0.75(1.4D+1.7L+1.7W) for Wind Load Combination. Wall wt. = 81.3 psf Wind Load x 1.275= 23.7 Seismic Service= 26.3 psf Factored Seismic = 40.5 PRECAST CONCRETE WALL DESIGN Considering P-Delta Effects SEAOC "Green Book" To iterate P-Detta effects to convergence using 1997 UBC Load factors. DESCRIPTION:TYP PANEL EAST PIER A-2ND TO ROOF SEISMIC COMBINATION VERTICAL Loading P axial = 374 P wall = 3,679 P/A= 52.00 Pu-Axial= 494 Pu-Wall= 4,857 Pu-Total= 5,350 ANALYSIS: As(eff)=[Pu:tot + (As*Fy)]/Fy = 1 a'=(As*Fy+Pu)/(0.85f c*12) = 'c^'a'/Beta = Phi =0.9 - 2*Pu/(f c*Ag)= Mn=As(eff)*fy"(d-a/2)= Mu= Phi"Mn= E=57000*(fc)A0.5= n=29000/Ec= Fr=5*(fc)A0,5= Gross section modulus^ Mcr (cracked Moment Cap.)= I gross = I cracked = ©Reveal 374 3,722 59.40 494 4,913 5,407 WIND COMBINATION VERTICAL Loading 374 3795 53.50 393 3985 4378 SEISMIC COMBINATION 0.289 0.567 0.667 0.85 57,976 49,527 3.1E+06 9.29 273.9 84.5 23,141 274.6 24.7 At Reveal 0.290 0.569 0.669 0.85 45,093 38,500 3.1E+06 9.29 273.9 66.1 18,109 247.2 22.2 ©Reveal 374 3722 59.40 393 3908 4301 plf Plf psi 0.04*fc= plf Plf plf 120.1 WIND COMBINATION 0.273 0.535 0.630 0.86 54,986 47,430 3.1E+06 9.29 273.9 84.5 23,141 274.6 23.7 At Reveal 0.272 0.533 0.627 0.86 42,523 36,708 3.1E+06 9.29 273.9 66.1 18,109 247.2 21.4 inA2/ft in in in-# in-# psi psi inA3 in-* inA4 inA4 WALL DESIGN Per sec. 1914.4 of 97 U.B.C. U»(0.9D+1.0E)*1.1 -Casel U = (1.2D + 1 .OE + 0.5Lf) * 1.1 - Case 2 U-1.4D-H.7L-Case3 ENCIPHERS SHI DESCRIPTION: TYP. 27' PANEL - LINE 4 PIEAA-1STTO2ND DESIGN DATA: fo» Seismic Coeff. - Wall Height = Wall Thk = Rebar Size= Reba Spacing = Depth to Steel= Eccentric Pd = Eccentric PI = Add'l Axial Pd = Add'! Axial PI = 3000 0.3150 14.00 9.00 4 12.00 5.3750 0.73 1.07 9.32 3.20 psi Fy=60,00 ksi k=1.00 2.70 62.22kl/r = o.c. in Steel @ ea. Face = kips e= 4.25 kipsRhowg 0.0018 <100 section 1911.1 may be used 2 in O.K (1 "single layer, 2*double layer) kips kips Add'l Lateral Load = X-dist. to Bottom = X-dist. to Top = Wall Lateral Load = 106.30 plf 9.00 ft 14.00 ft 35.44 plf Max M occurs X-dist. from = M max= 1662.34 ft-# Mu1= 23978.43 in-# Mu2= 26303.04 in-* Mu3= 12070.43 in-# Mumin= Pu*(0.6+0.03*h) Pu1= 10.49 kips Pue1= Pu2= 16.33 kips Pue2= Pu3* 22.08 kips Pue3= Bd1= 1.00 Bd2= 0.86 Bd3= 0.67 9.24 ft Wall wt.above= Mu min 9122.46 in-# 14205.52 in-# 19212.82 in-# 3.08 in-k 6.61 in-k 12.07 in-k 535.50 # ab= 2.70 in Pb= 0.85*fc*b*ab-Asfy = Pb*Phi1= 59.27 kips Pb * Phi2= 56.71 kips Pb*Phi3= 54.19 kips Rhow Bal 0.0214 0.75*Rbow Bal= 70.96 kips Pu1<Phi1*Pb, Tension Controls Pu2<Phi2*Pb, Tension Controls Pu3<Phi3*Pb, Tension Controls 0.0160 Rhow<Rhow Bal O.K. Case 1 pass 2 Case 3 As(en>[Pu:tot +(Asfy)]/Fy= 0.3711 0.4685 0.5644 inA2 a=(As*Fy+PuV(0.85*fc*12)= 0.7277 0.9186 1.1067 in C=la'/0.85= 0.8561 1.0807 1.3020 in Phi= 0.84 0.80 0.76 Mn=As<eff>fy*(d-a/2)-Pn'(d-h/2)- 100597.16 120299.54 137981.03 in-# Fr=7.5'Sqrt(fc}= 410.79 410.79 410.79 psi Mcr= 66548.29 66548.29 66548.29 in-# lg= 729.00 729.00 729.00 inA4 Ec= 3122.02 3122.02 3122.02 ksi Check Strain Limit Xmax= 2.3858 2.3858 2.3858 in if X max > c, strain o.k. O.K O.K O.K theta= 4.5784E-04 4.8179E-04 5.0797E-04 radians deflection @ Mn= 1.3461 1.4165 1.4934 in Pu * Delta* 7188.73 12164.49 18051.16 in-# Mumax- 31167.16 38467.54 37263.98 in-# Phi'Mn= 84026.21 96144.44 105373.47 in-# El= 910380.62 /BdinA2-kips Pc= 318.35 /Bdkips Design Summary Load Case Pu fkiosl Mu (m~#\ fid 1 10.49 31167.16 1.00 2 16.33 38467.54 0.86 3 22.08 37263.98 0.67 El 910380.62 1063235.28 1355842.79 EC 318.35 371.80 474.12 1 .05 1 .06 1.07 32598.78 40860. 1 1 39731.46 Wall O.K. PRIME JOB:-STSUC7USAL CATS ENGINEERS SW:~&~ |z /As.w.-.*i- 0-6 v- \ V .w.-j. * * 59. AViAu ,' As. ^ As. 1.2 fna DESCRIPTION: PRECAST CONCRETE WALL DESIGN Considering P-Detta Effects SEAOC "Green Book" To iterate P-Delta effects to convergence using 1997 UBC Load factors. TYP. PANEL @ LINE 4 PIER B - 2ND TO ROOF xYc JOS: STRL/C7JRAL 1^5EN6i.\'5ESS ShT ; gy DESIGN DATA: fc= Fy= Phi= Seismic Factor= Wind Load= Reveal Depth= Reveal to Bot= 3,000 psi 60,000 psi 0.87 0.453 18.6 psf 0.75 in 9 Wall Thk.= Rebar Size # = Rebar Spacing- Depth to steel= Rebar @ Reveal= d @ Reveal= Steel @ ea. face= Clear Wall Ht = Total wall Ht = Ht/Thk Ratio= Eccentric Dead Load = Eccentric Live Load = Load Eccentricity = 6.5 4 12 3.625 12 2.875 in Min. Vert. Steel % = 0.0025 Min. Horiz. Steel % ~ 0.0015 Max Vet. Spacing= 12.31 in Max Horiz. Spacing = 18.00 in Betat = 0.85 0.6 x Rhow Balance = 0.0128 ft Shall LL be used with laterial load combination? Y=1,N=0-> Additional Imposed Loads: Axial Unform DL= 1536 plf Point Lateral Load = 0 plf X-dist to Bottom - 55.2 plf Seismic=1, Wind=2-> 9 ft 17 ft 1 Axial Uniform LL= in o.c. Unform Lateral Load = in X-dist. to Bottom = in o.c. X-dist. to top = in Seismic=1, Wind=2-> 15 ft 17 ft 27.7 374 plf 0 plf 6.25 in 0 0 # 0 ft 1 1 (1 for single layer, 2 for double layers) DESIGN SUMMARY: MnxPhi = Mu* OVERSTRESS= Max. delection= His/defl= Provide Add*l# Seismic 45,161 21,396 0.0 0.06 3,250 4 Setemte-4 35,150 21,365 0.0 0.06 2,955 @ £ Reveal Wind iri-# 43^784 ir># 9,071 % 0,0 in 0.03 6,122 0 O.C. at Reveal Wind @ Reveal 33,943 8,956 0.0 aos 5,574 in# in# % in LATERAL LOADINGS fU=1.32D + Q.55L + 1.1E» for seismic load combination. U=0.75(1.4D+1.7L+1.7W) for Wind Load Combination. Wall wL = 81.3 psf Wind Load x 1.275= 23.7 Seismic Service^ 26.3 psf Factored Seismic = 40.5 PRECAST CONCRETE WALL DESIGN Considering P-Delta Effects SEAOC "Green Book" To iterate P-Delta effects to convergence using 1997 UBC Load factors. DESCRIPTION:TYP. PANEL @ LINE 4 PIER B - 2ND TO ROOF SEISMIC COMBINATION VERTICAL Loading P axial = 374 P Wall = 2,174 P/A= 32.70 Pu-Axial= 494 Pu-Wall= 2,869 Pu-Total= 3,363 ANALYSIS: As(eff)=[Pu:tot + (As'Fy)]/Fy = • a'=(As*Fy+Pu)/(0.85*f c*12) = 'c's'a'/Beta = Phi =0.9 - 2*Pu/{fc*Ag}= Mn=As(eff)*fy*(d-a/2)= Mu= Phi'Mn= E=57000*(fc)A0.5= n=29000/Ec= Fr=5s(fc)A0.5= Gross section modulus= Mcr {cracked Moment Cap.)= I gross = I cracked = ©Reveal 374 2,186 37.10 494 2,886 3,379 WIND COMBINATION VERTICAL Loading 374 2259 33.80 393 2372 2765 SEISMIC COMBINATION 0,256 0.502 0.591 0.87 51,835 45,161 3.1E+06 9.29 273.9 84.5 23,141 274.6 22.7 At Reveal 0.256 0.503 0.591 0.87 40,350 35,150 3.1E+06 9.29 273.9 66.1 18,109 247.2 20.5 ©Reveal 374 plf 2186 plf 37.10 psi 393 plf 2295 plf 2688 plf 0.04*fc=120; WIND COMBINATION 0.246 0.483 0.568 0.88 49,960 43,784 3.1E+06 9.29 273.9 84.5 23,141 274.6 22.1 At Reveal 0.245 0.480 0.565 0.88 38,703 33,943 3.1E-HD6 9.29 273.9 66.1 18,109 247.2 19.9 inA2/ft in in in-# in-# psi psi inA3 in-# inA4 inA4 DESCRIPTION: DESIGN DATA: PRECAST CONCRETE WALL DESIGN Considering P-Delta Effects SEAOC "Green Book" To iterate P-Delta effects to convergence using 1997 UBC Load factors. TYP. PANEL @ LINE 4 PIER B- 1ST TO 2ND fc= Fy* Phi* Seismic Factors Wind Load= Reveal Depth- Reveal to Bot= 3,000 psi 60,000 psi 0.84 0.315 18.6 psf 0.75 in 9 in Clear Wall Ht = Total wall Ht = Htmik Ratio* Eccentric Dead Load = Eccentric Live Load = Load Eccentricity = Wall Thk.= Rebar Size # = Rebar Spacing- Depth to steel= Rebar @ Reveal= d @ Reveal= Steel @ ea. face= DESIGN SUMMARY: 9 4 12 5.375 12 5.375 in Min. Vert Steel % = 0.0025 Min. Horiz. Steel % = 0.0015 Max Vet Spacing* 17.78 in Max Horiz. Spacing = 14.81 Betal = 0.85 0.6 x Rhow Balance = 0.0128 ft Shall LL be used with laterial load combination? Y=1,N=0-> Additional Imposed Loads: Axial Unform DL= 5539 plf Point Lateral Load * 1601 plf X-dist. to Bottom = 53.16 prf Sersmic=1,Wind-2~> 9 ft 14 ft 1 Axial Uniform LL= in o.c. Unform Lateral Load = in X-dist. to Bottom = in o.c. X-dist. to top = in Seismic=1, Wind=2-> 14 ft 14 ft 18.7 733 plf 1067 plf 7 in 1 0 # 0 ft 1 2 (1 for single layer, 2 for double layers) MnxPtii = Mu = OVER STRESS* Max. defection* Hts/deff* Provide Add-l # Seismic 50,265 22,644 0.0 0.02 7,019 4 Seismic® Reveal" Wind NA ir*# 50,466 NA W 16,553 N;A % 0.0 NA in 0.01 NA 13,739 @ N.A O.C. at Reveal Wind @ Reveal NA NA NA NA NA tf# , , tn# % In LATERAL LOADINGS fU=1.320 * 0.55L + 1.1E)) for seismic load combination. U=0.75(1.4D+1.7L+1.7W) for Wind Load Combination. Wallwt. = 112.5 psf Wind Load x 1.275= 23.7 Seismic Service* 25.3 psf Factored Seismic = 39.0 r PRECAST CONCRETE WALL DESIGN Considering P-Delta Effects SEAOC "Green Book" To iterate P-Delta effects to convergence using 1997 U8C Load factors. DESCRIPTION:TYP. PANEL @ LINE 4 PIER B-1ST TO 2ND SEISMIC COMBINATION VERTICAL Loading P axial = 1,800 P Wall = 7,597 P/A= 87.00 Pu-Axial= 1,554 PU-Wall= 8,795 Pu-Total= 10,349 ANALYSIS: As(eff)=[Pu:tot + (As*Fy)J/Fy = • a'=(As*Fy+Pu)/(0.85*fc*12) = 'c'='a7Beta = Phi =0.9 - 2*Pu/(f c*Ag)= Mn*As(eff)*fy*(d-a/2}= Mu= Phi*Mn= E=5700Q*<fc)A0.5= n=29000/Ec* Fr=5*(fc)A0.5= Gross section modulus* Mcr (cracked Moment Cap.)= I gross = I cracked = ©Reveal 1,800 7,703 96.00 1,554 10,167 11,722 WIND COMBINATION VERTICAL Loading 1800 7471 85.80 2130 7844 9974 SEISMIC COMBINATION 0.372 0.730 0.859 0.84 60,118 50,265 3.1E+06 9.29 273.9 162.0 44,366 729.0 73.1 At Reveai N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A @Reveal 1800 plf 7703 plf 96.00 psi 2130 plf 8088 plf 10218 plf 0.04'fc=120.1 WIND COMBINATION 0.366 0.718 0.845 0.84 60,191 50,466 3.1E+06 9.29 273.9 162.0 44,366 729.0 72.2 At Reveal N.A N.A N.A N.A (54,920) N.A N.A N.A N.A N.A N.A N.A N.A inA2/ft in in in-# in-# psi psi inA3 in-# inA4 inA4 PAM£L M-fe %- TYP- PANEL <? LINE STRUCTURAL O=.T ENGINEERS SHT : Pf/ g ro PAMEL ROOF PL s Bl^-plf x 30, FIR PL- LL = So £31. plf r 1ST TO 2N UNMFORM FROM PAM6L = 8 PIER ABOV/ PU ^ K 7.5' x 19(2 ^ fSDcf ROOF D UNIFORM AX5A ^ |06lif psr [OTH< As, As- 8S7.8 314-.0 .! plf lZrtac.£.F, FULL HT m- r (g.g fr- PAHEL M-6 fe-TTP PAMEL <? LINE © <? PIER © : TTP. PRIME STRUCTURAL 2ND TO ROOF UNIFORM AXIAL PL = 3(T12p!-f -J-= H0,4psf . pteR ® ® TTP. PANS-' UKE 1ST TO FROM A3ov ROOF C?L RGR ABOV PANEL = FLR [>L * DL AXIAL LL 1= 0, f x x 3012 314 plf 12"Q.C. E.F. FUU. HI As..2 r = &4 i PANEL Ni-6 V TYP. PAMEL ' TTP. PANEL <? UM£ TO UNIFORM \2psf PL = lB3b ptf PR*ME J05: TTP- PAM^L - 1ST TO 2.N.D UNIFORM AXIAL DL. FROM ABOVE PANEL = s us psf PIER ABOVE = ROOF PL FLR PL • 133 plf UNIFORM AXIAL LL = lO^lpl psf (2"ac.£.F. FULLH As. As. DESCRIPTION: PRECAST CONCRETE WALL DESIGN Considering P-Detta Effects SEAOC "Green Book" To iterate P-Delta effects to convergence using 1997 UBC Load factors. PANEL N-6 @ LINE K PIER A-1ST TO 2ND PRIME STRUCTURAL ENGINEERS SW DESIGN DATA: fc= Fy= Phi= Seismic Factor= Wind Load= Reveal Depth= Reveal to Bot= 3,000 psi 60,000 psi 0.85 0.315 18.6 psf 0.75 in 9 Wall Thk.= Rebar Size # = Rebar Spacing= Depth to steel= Rebar @ Reveal= d @ Reveat= Steel @ ea. face= Min. Vert Steel % = Min. Horiz. Steel % = Max Vet Spacing^ Max Horiz. Spacing = Betal = 0.6 x Rhow Balance = 10 4 12 6.375 12 6.375 in 0.0025 0.0015 16.00 in 13.33 in 0.85 0.0128 ft Shall LL be used with laterial load combination? Y=1,N=0-> Additional Imposed Loads: Axial Unform DL= 4435.1 pif Point Lateral Load = Clear Wall Ht = Total wall Ht = Ht/Thk Ratio= Eccentric Dead Load = Eccentric Live Load = Load Eccentricity = Axial Uniform LL= 873 in o.c. Unform Lateral Load = 30.1 in X-dist. to Bottom = 9 ft in o.c. X-dist to top = 14 ft in Seismic=1, Wind=2-> 1 plf X-dist. to Bottom = plf Seismic=1, Wind=2-> 14 ft 14 ft 16.8 733 plf 1067 plf 7 in 1 0 # 0 ft 1 2 (1 for single layer, 2 for double layers) DESIGN SUMMARY: '! ' ' r ' ' MnxPf*i = Mu - OVERSTRESS= Max. delection= Hfs/defl.= Provide Add! # Seismic 61,756 21,277 0.0 0.02 9,978 4 Seismic @ Reveal Wind Wind @ Reveal NA m# 62,044 NA NA M 16,493 NA NA % 0.0 N.A NA in 0.01 N.A NA 18,911 NA @ NA O.C. at Reveal in# in# % in LATERAL LOADINGS fU=1.32D + 0.55L + 1.1 Bl for seismic toad combination. U=0.75(1.4D+1.7L+1.7W) for Wind Load Combination. Wall wt. = 125.0 psf Wind Load x 1.275= 23.7 Seismic Service= 28.1 psf Factored Seismic = 43.3 r r r f,'l PRECAST CONCRETE WALL DESIGN Considering P-Delta Effects SEAOC "Green Book" To iterate P-Delta effects to convergence using 1997 UBC Load factors. DESCRIPTION:PANEL N-6 @ LINE K PIER A-1ST TO 2ND SEISMIC COMBINATION VERTICAL Loading P axial = 1,800 P Wall = 5,842 P/A= 63.70 Pu-Axial= 1,554 Pu-Wall= 7,039 Pu-Total= 8,593 ANALYSIS- As(eff)=[Pu:tot + (As*Fy)J/Fy = 1 a'={As*Fy+Pu)/(0.85tc*12) = 'c's'a'/Beta = Phi =0.9 - 2*Pu/(f c*Ag)= Mn=As{eff)*fy*(d-a/2)= Mu= Phi'Mn= E=57000'(fc)A0,5= n=29000/Ec= Fr=5*(fc)A0.5= Gross section modulus^ Mcr {cracked Moment Cap.)=* I gross = I cracked = @ Reveal 1,800 5,933 69.70 1,554 7,832 9,386 WIND COMBINATION VERTICAL Loading 1800 5676 62.30 2130 5959 8089 S&SMIC COMBINATION 0.343 0.673 0.792 0.85 72,462 61,756 3.1E+06 9.29 273.9 200.0 54,772 1000.0 101.4 At Reveal N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A ©Reveal 1800 plf 5933 plf 69.70 psi 2130 plf 6230 plf 8360 plf 0.04*fc=120J WIND COMBINATION 0.335 0.657 0.772 0.86 72,561 62.044 3.1E+06 9.29 273.9 200.0 54,772 1000.0 99.5 At Reveal N.A N.A N.A N.A (53,294) N.A N.A N.A N.A N.A N.A N.A N.A inA2/ft in in in-# in-# psi psi inA3 in-# inM JnA4 r* r r r r r r r r r r r r r r r r r r r WALL DESIGN Per sec. 1914.4 of 97 U.B.C. U*(0.9D+1.0E)*1.1 -Casel U «(1.2D + 1.0E + O.SLf) * 1.1 -Case 2 U=1.4D + 1,7L-Case3 DESCRIPTION: PANEL N-6 & TYP. PANEL @ LINE K P1EAB-1STTO2ND DESIGN DATA: STRUCTURAL ENGINEERS fc= Seismic Coeff. = Wall Height = Wall Thk * Rebar Size= Reba Spacing = Depth to Steel= Eccentric Pd = Eccentric PI = Add'l Axial Pd = Add'l Axial PI = 3000 0.3150 14.00 10.00 4 12.00 6.3750 0.73 1.07 9.60 3.20 psi Fy= 60.00 ksi ft. k= 1.00 in r= 3.00 kl/r = 56.00 o.c. in Steel @ ea. Face = 2 kips e= 4.25 in kipsRhowg 0.0016 O.K <100 section 1911.1 may be used (1 "single layer, 2*doub)e layer) kips kips Add'l Lateral Load = X-dist. to Bottom = X-dist. to Top = Wall Lateral Load = 76.80 ptf 9.00 ft 14.00 ft 39.38 plf Max M occurs X-disL from = Mmax= 1512.84 ft-# Mu1= 21912.52 m-# Mu2= 24131.47 in-# Mu3= 12070.43 in-# Mumin* Pu"(0.6+0.03*h) Pu1= 10.87 kips Pue1= Pu2= 16.84 kips Pue2= Pu3= 22.63 kips Pue3= Bd1= 1.00 Bd2= 0.86 Bd3= 0.68 8.82 ft Wall wt.above= Mumin 9781.93 in-# 15155.24 in-# 20363.08 in-# 3.08 in-k 6.61 in-k 12.07 in-k 647.50 # ab= 3.21 in Pb= 0.85"fc-b*al*Asfy - Pb*Phi1- 72.50 kips Pb' Phi2= 69.64 kips Pb - Phi3= 66.86 kips RhowBal 0.0214 075*Rhow Bal= 86.35 kips PuKPhirPb, Tension Controls Pu2<Phi2*Pb, Tension Controls Pu3<Phi3*Pb, Tension Controls 0.0160 Rhow<Rhow Bal O.K. As(eff)=[pu'tot +(As*fy)VFy= a=(As*Fy+PuX(0.85fc*1 2)= c='a'/0.85= Phi = Mn=As(eff)*fy*(d-a/2)-Pn*(d-h/2)- Fr=7.5*sqrt(fc)= Mcr= lg= Ec= Check $fra/n Limit Xmax= if X max > c, strain o.k. theta= deflection @ Mn= Pu * Delta= Mu max= Phi * Mn= Case 1 0.3775 0.7402 0.8708 0.84 118210.51 410.79 82158.38 1000.00 3122.02 2.8297 O.K 3.7589E-04 1.1051 6052.41 27964.94 99251.64 £asfi_2 0.4770 0.9353 1.1004 0.81 140358.28 410.79 82158.38 1000.00 3122.02 2.8297 O.K 3.9225E-04 1.1532 10112.96 34244.44 113191.81 Case3 0.5734 1.1244 1.3228 0.77 159820.32 410.79 82158.38 1000.00 3122.02 2.8297 O.K 4.0952E-04 1.2040 14784.51 35147.59 123749.19 in*2 in in tn-# psi in-# inA4 ksi in radians in in-# in-# in-# El= 1248807.43 /BdinA2-kips Pc= 436.69 / Bd kips Desin Load Case 1 2 3 Pu fkipsi 10.87 16.84 22.63 Mu fin-#l 27964.94 34244.44 35147.59 Bd 1.00 0.86 0.68 El EC DfittajQS Me fin-m 1248807.43 436.69 1.03 28924.81 1451091.50 507.43 1.05 35829.79 1838321.00 642.84 1.05 36878.23 Wall O.K. DESCRIPTION: PRECAST CONCRETE WALL DESIGN Considering P-Delta Effects SEAOC "Green Book" To iterate P-Delta effects to convergence using 1997 UBC Load factors. TYP PANEL SOUTH & WEST PIER A-2ND TO ROOF STRUCTURAL 0«£:ENGINEERS DESIGN DATA: fc= Fy= Phi= Seismic Factor= Wind Load= Reveal Depth= Reveal to Bot= 3,000 psi 60,000 psi 0.86 0.453 18.6 psf 0.75 in 9 Win. Vert. Steel % - 0.0025 Min. Horiz. Steel %= 0.0015 Max Vet Spacing= 12.31 in Max Horiz. Spacing = 18.00 in Betal = 0.85 0.6 x Rhow Balance = 0.0128 Clear Wall Ht = Total wall Ht = HVThk Ratio= Eccentric Dead Load = Eccentric Live Load = Load Eccentricity = Wall Thk.= Rebar Size # = Rebar Spacing= Depth to steel= Rebar @ Reveal= d @ Reveal= Steel @ ea. face= DESIGN SUMMARY: 6.5 4 12 3.625 12 2.875 in ft Shall LL be used with lateria! load combination? Y=1 ,N-0-> Additional Imposed Loads: Axial Unform DL= 2928 plf Point Lateral Load = 0 plf X-dtst. to Bottom = 110.4 plf Seismic=1, Wind=2-> 9 ft 17 ft 1 Axial Uniform LL= in o.c. Unform Lateral Load = in X-dist. to Bottom = in o.c. X-dist. to top = in Seismic=1, Wind=2-> 15 ft 17 ft 27.7 326 plf 0 plf 6.25 in 0 0 # 0 ft 1 1 (1 for single layer, 2 for double layers) Mn x Phi = Mu = OVER STRESS= Max. detection^ Hts/defl.= Provide Add'l# Seismic 48,988 28,364 0,0 0.07 2,533 4 Seismic @ Reveal 38,097 irn# 31,249 in-# 0.0 % 0.14 in 1,277 @ 0 O.C. Wind 47,014 8,958 0.0 0.03 6,229 at Reveal Wind® 36,372 8,820 0.0 0.03 5,688 Reveal in# in# % in LATERAL LOADINGS fU=1.32D + 0.55L + 1.1EK for seismic load combination. U=0.75(1.4D+1.7L+1.7W) for Wind Load Combination. Wall wt. = 81.3 psf Wind Load x 1.275= 23.7 Seismic Service= 26.3 psf Factored Seismic = 40.5 PRECAST CONCRETE WALL DESIGN Considering P-Delta Effects SEAOC "Green Book" To iterate P-Delta effects to convergence using 1997 UBC Load factors. DESCRIPTION:TYP PANEL SOUTH & WEST PIER A-2ND TO ROOF PRtME STRUCTURAL ENQNSS3S SHI: ^ SEISMIC COMBINATION VERTICAL Loading P axiat = 326 P Wall = 3,535 P/A= 49.50 Pu-Axial= 430 Pu-Wall= 4,667 Pu-Total= 5,097 ANALYSIS: As(eff)=[Pu:tot > (As*Fy)]/Fy = 1 a'=(As*Fy+Pu)/(0.85*fc*12) = 'c1- a'/Beta = Phi =0.9 - 2*Pu/{fc*Ag)= Mn=As(eff)*fy*(d-a/2)= Mu= Phi*Mn= E=57000*(fc)A0.5= n=29000/Ec= Fr=5*(fc)A0.5= Gross section modulus= Mcr (cracked Moment Cap.)= 1 gross = 1 cracked = ©Reveal 326 3,578 56.60 430 4,723 5,153 WIND COMBINATION VERTICAL Loading 326 3663 51.10 342 3846 4189 SEISMIC COMBINATION 0.285 0.559 0.657 0.86 57,200 48,988 3.1E+06 9.29 273.9 84.5 23,141 274.6 24.4 At Reveal 0.286 0.561 0.659 0.86 44,508 38,097 3.1E+06 9.29 273.9 66-1 18,109 247.2 22.0 @ Reveal 326 plf 3578 plf 56.60 psi 342 pif 3757 plf 4099 plf 0.04*fc=120.1 WIND COMBINATION 0.270 0.529 0.622 0-86 54,402 47,014 3.1E+06 9.29 273.9 84.5 23,141 274.6 23.6 At Reveal 0.268 0.526 0.619 0.86 42,050 36,372 3.1E+06 9.29 273.9 66.1 18,109 247.2 21.2 inA2/ft in in in-# in-# psi psi inA3 in-# inA4 inA4 WALL DESIGN Per sec. 1914.4 of 97 U.B.C. U = (0.9D + 1.0E)*1.1 -Casel U = (1.2D + 1.0E + 0.5LO * 1.1 - Case 2 U=1.4D+1.7L-Case3 PRIME STRUCTURAL ENGINEERS DESCRIPTION: TYP. 27' PANEL - SOUTH & WEST PIEAA-1STTO2ND DESIGN DATA: fc= Seismic Coeff. = Wall Height = Wal!Thk = Rebar Size9 Reba Spacing = Depth to SteeN Eccentric Pd = Eccentric PI = Add'! Axial Pd = Add'l Axial PI* 3000 0.3150 14.00 9.00 4 12.00 5.3750 1.28 1.86 10.78 5.59 psi Fy=60.00 kst k=1.00 in r= 2.70 kl/r - 62.22 o.c. in Steel @ ea. Face - kips e= 4.25 kipsRhowg 0.0018 < 100 section 1911.1 may be used 2 in O.K (1«singte layer, 2*douMe layer) kips kips Add'l Lateral Load = X-dist. to Bottom = X-dist. to Top = Wall Lateral Load = 106.30 plf 9.00 ft 14.00 ft 35.44 plf Max M occurs X-dist. from = M max= 1662.34 ft-# Mu1= 25497.42 in-# Mu2= 29551.77 in-# Mu3= 21054.50 in-# Mumin= Pu*(0.6+0.03'h> Pu1= 12.46 kips Pue1= Pu2= 20.72 kips Pue2= Pu3= 30.29 kips Pue3= Bd1= 1.00 Bd2= 0.80 Bd3= 0.58 9.24 ft Waltwt.above= Mumin 10844.20 in-# 18023.76 in-# 26353.78 in-# 5.39 in-k 11.53 in-k 21.05 in-k 535.50 # ab= 2.70 in Pb= 0.85fc'b*at*Asfy = Pb*Phi1= 58.40 kips Pb * Phi2= 54.79 kips Pb * Phi3= 50.60 kips Rhow Bal 0.0214 0.75'Rhow Bal= 70.96 kips Pu1<Phi1*Pb, Tension Controls Pu2<Phi2*Pb, Tension Controls Pu3<Phi3*Pb, Tension Controls 0.0160 Rhow<Rhow Ba) O.K. As(eff)=[Pu:tot +(As*fy)]/Fy= a=(As"Fy+Pu)/(0.85"fc*1 2)= c='a'/0.85= Phi = Mn=As(eff)*fy*(d-a/2)-Pn*(d-h/2)= Fr=7.5'sqrt<fc)= Check Strain Limit ifXmax> lg= Ec= Xmax= c, strain o.k. theta= deflection @ Mn= El= Pc= Pu * Delta= Mu max= Phi * Mn= 910380.62 318.35 Casel 0.4041 0.7923 0.9322 0.82 107463.36 410.79 66548.29 729.00 3122.02 2.3858 O.K 4.6569E-04 1.3691 9037.29 34534.71 88448.58 / Bd inA2-kips / Bd kips 0.5416 1.0620 1.2494 0.77 133942.16 410.79 66548.29 729.00 3122.02 2.3858 0-K 5.0150E-04 1.4744 16751.26 46303.03 103419.09 0.7012 1.3749 1.6176 0.71 160043.75 410.79 66548.29 729-00 3122.02 2.3858 O.K 5.5063E-04 1.6189 27922.03 54275.81 114113.46 inA2 in in in-# psi in-4 inA4 ksi in radians in in-# in-# Mt Design Summary Load Case 1 2 3 Pu fkios^ 12.46 20.72 30.29 Mu fin-#> 34534.71 46303.03 54275.81 fid 1.00 0.80 0.58 £1 910380.62 1134833.43 1564500.25 318.: 396.i 547.1 Delta ns 1.06 36436.91 1.07 49767.16 1.08 58602.13 Wall O.K. ' f TVP- . 5 c. sa / s r CAs.l«.'d r r r PRIME J03: STRUCTURAL CUE ENGINEERS SHI : As. provided - 3-36 624- 2"Q.C.£.F, r r r r r r r r r r r r r ri r r r r r FRJME J08: STRUCTURAL DATS ENGINEERS PRECAST CONCRETE WALL DESIGN Considering P-Delta Effects SEAOC "Green Book" To iterate P-Detta effects to convergence using 1997 UBC Load factors. DESCRIPTION:TYP PANEL SOUTH & WEST PIER B - 2ND TO ROOF SEISMIC COMBINATION VERTICAL Loading P axial = 326 P wall = 2,102 P/A= 31.10 Pu-Axial= 430 Pu-Wall= 2,774 Pu-Total= 3,205 ANALYSIS: As(efl)=[Pu:tot + (As"Fy)]/Fy = 1 a'={As*Fy+Pu)/(0.85*fc*12) = 'c'^a'/Beta = Phi=0.9-2*Pu/(fc*Ag>= Mn=As(eff)*fy*(d-a/2}= Mu= Phi*Mn= E=57000'(fc)A0.5= n=29000/Ec= Fr=5*(fc}A0.5= Gross section modulus^ Mcr (cracked Moment Cap.)= I gross = I cracked = ©Reveal 326 2,114 35.40 430 2,790 3,221 WIND COMBINATION VERTICAL Loading 326 2199 32.40 342 2309 2652 SEISMIC COMBINATION 0.253 0.497 0.585 0.87 51,340 44,799 3.1E+06 9.29 273.9 84.5 23,141 274.6 22.6 At Reveal 0.254 0.497 0.585 0.87 39,974 34,876 3.1E+06 9.29 273.9 66.1 18,109 247.2 20.3 @ Reveal 326 plf 2114 plf 35.40 psi 342 plf 2220 plf 2562 pff 0.04*fc=120J WIND COMBINATION 0.244 0.479 0.563 0.88 49,604 43,520 3.1E+06 9.29 273.9 84.5 23,141 274.6 22.0 At Reveal 0.243 0.476 0.560 0.88 38,401 33,720 3.1E+06 9.29 273.9 66.1 18,109 247.2 19.8 inA2/ft in in in-# in-# psi psi inA3 in-# inA4 inA4 r PANEL W'[ g LIME © (SIM. E-( , KHC.E-1) PRfME DATSSff : ;s/4 i— [,3'J.fc lfe-2-' j. y ROOF PL = FLR PL = 1251 plf 2MP TO ROOF UNITORM AXIA PANEL :X 8' X RODF -- 32b plf 1ST TO AXIAL DL FROM ABOVE ROOF PANJEL FLR l5T>cf AXIAL UL =pif /As. (£§1,5 2.16.0 (-2 f WALL DESIGN Per sec. 1914.4 of 97 U.B.C. U = (0.9D+1.0E)'1.1 -Casel U * (1.2D + 1.0E + O.SLf) * 1.1 - Case 2 U=1.4D+1.7L-Case3 PRIME J09: STRUCTURAL CATS ENGINEERS ShT : DESCRIPTION: PANEL W-1 @ LINE 1 PIER A-1ST TO 2ND DESIGN DATA: 3000 psi Fy= 0.3150 14.00 ft. k= 9.00 in r= 4 12.00 5.7500 fc= Seismic Coeff. = Wall Height = Wall Thk = Rebar Size= Reba Spacing = Depth to SteeN Eccentric Pd = Eccentric PI = 60,00 ksi 1.00 2.70 62.22 Add'l Axial Pd = Add'l Axial PI = 1.28 1.86 10.76 5.03 kl/r = o.c. in Steel @ ea. Face = kips e= 4.25 kips Rhow g 0.0018 < 100 section 1911.1 may be used 2 in O.K (1 "Single layer, 2=double layer) kips kips Add'l Lateral Load = X-dist. to Bottom = X-dist. to Top = Wall Lateral Load = 95.70 ptf 9.00 ft 14.00 ft 35.44 plf Max M occurs X-dist. from = Mmax= 1577.15 ft-# Mu1= 24321.76 in-# Mu2= 28320.15 in-# Mu3= 21082.13 in^# Mumin= Pu*(0.6+0.03"h) Pu1= 12.47 kips Pue1= Pu2= 20,41 kips Pue2= Pu3= 29.35 kips Pue3* Bd1= 1.00 Bd2= 0.81 Bd3= 0.60 9.10 ft Wall wt.above= Mu min 10844.84 in-# 17758.09 in-# 25530.89 in-# 5.39 in-k 11.54 in-k 21.08 in-k 551.25 # ab= 2.89 in Pb= 0.85"fc"b*ab-Asfy = Pb"Phi1= 63.16 kips Pb * Phi2= 59.39 kips Pb*Phi3= 55.16 kips Rhow Bal 0.0214 0.75-Rtaw Bal= 76.73 kips Pu1<Phi1*Pb, Tension Controls Pu2<Phi2"Pb, Tension Controls Pu3<Phi3"Pb, Tension Controls 0.0160 Rhow<Rhow Bal O.K. As(eff)=[Pu:tot +(Asfy)]/Fy= a=s(As*Fy+Pu)/(0.85*f c*1 2)= C=-a'/0.85= Phi = Mn=As(eff)'fy"(d-a/2)-Pn*(d-h/2)= Fr=7.5*sqrt(fc)= Chock Strain Limit ifXmax> Mcr= ig« Ec= Xmax= c, strain o.k. theta= deflection @ Mn= El= Pc= Pu * Delta= Mumax= Phi * Mn= 910380.62 318.35 Casel 0.4041 0.7924 0.9322 0.82 110878.80 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.2944E-04 1.2626 8325.17 32646.93 91259.18 / Bd inA2-kips / Bd kips £as£-2 0.5365 1.0520 1.2377 0.77 135208.91 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.5852E-04 1.3480 15097.72 43417.87 104652.03 Case? 0.6854 1.3440 1.5812 0.72 157812.76 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.9630E-04 1.4591 24465.38 49996.27 113444.14 inA2 in in in-# psi in-# inM ksi in radians in in-# in-# in-# Design Summary Load Case 1 2 3 Pu fkips^ 12.47 20.41 29.35 Mu f In-*! 32646.93 43417.87 49996.27 34 1.00 0.81 0.60 £1 910380.62 1118039.82 1515558.88 EQ 318.: 390.! 529.! DeHa_ns Me (\n-4t) 1.06 34445.26 1.07 46666.36 1.08 53981.72 Wall O.K. PANEL \M-S <? LIKE (SiM, 6-6 @ STRUCTURAL CATS ENGINEERS SHT: , ROOF P FIR PL U_ p(f TO ROO UNIFORM AXIAL PANEL = ei^SS * lOpsf RCOF s 45/3' m5 plf plf UMtR>RM AX! At- PU FROM ROOF PANEL : RJR < TS'x 4%- (281 plf ^ 4-3/3- UMIFOI?M AXIAL LL = (8fe3p(f 546,5 2.65. j rpit ^ 21^4- 5 plf e IZ''O.C.£.F. FULL HT 1-2 rn2 -- 2(0,10 -f- 3.16) = £.q^ fin WALL DESIGN Per sec. 1914.4 of 97 U.B.C. U = (0.9D+1.0E)"1.1 -Casel U = (1.2D + 1.0E + O.SLf) * 1.1 - Case2 U-1.4D+1.7L-Case3 PRIME JC3!STRUCTURAL DATS ENGKSiEERS SHT : _p DESCRIPTION: PANEL W-8 @ LINE 1 PIEAA-1STT02ND DESIGN DATA: fc* Seismic Coeff. = Wall Height = Wall Thk = Rebar Size= Reba Spacing = Depth to Steel= Eccentric Pd = Eccentric Pt = Add'l Axial Pd = Add'l Axial PI = 3000 0.3150 14.00 9.00 4 12.00 5.7500 1.28 1.86 6.97 2.79 psi Fy=60.00 ksi ft. in k-1.00 2.70 62.22kl/r = o.c. in Steel @ ea. Face = kips e= 4.25 kipsRhowg 0.0018 < 100 section 1911.1 may be used 2 in O.K (1 *single layer, 2=double layer) kips kips Add'l Lateral Load = X-dist. to Bottom = X-dist. to Top = Wall Lateral Load = 53.20 plf 9.00 ft 14.00 ft 35.44 plf Max M occurs X-dist. from = M max= 1238.05 ft-# Mu1= 19576.08 in-# Mu2= 23266.90 tov* Mu3= 21082.13 in-# Mumin= Pu"(0.6+0.03*h) Pu1= 8.79 kips Pue1= Pu2= 14.29 kips Pue2= Pu3= 20.35 kips Pue3= Bd1= 1.00 Bd2= 0.82 Bd3= 0.61 8.40 ft Wallwtabove= Mu min 7650.93 in-# 12429.85 in-# 17707.94 in-# 5.39 in-k 11.54 in-k 21.08 in-k 630.00 # ab= 2.89 in Pb= 0.85*fc*b*ab-Asfy- Pb*Phi1= 64.89 kips Pb * Phi2= 62.29 kips Pb * Phi3= 59.42 kips RhowBal 0.0214 0.75-Rhcw Bal= 76.73 kips Pu1<Phi1*Pb, Tension Controls Pu2<Phi2*Pb, Tension Controls Pu3<Phi3*Pb, Tension Controls 0.0160 Rhow<Rhow Bal O.K. As<eff)=[Pu:tot +(Asfy)]/Fy= a=(As*Fy+Pu)/(0.85*f c*1 2)= c='a70.85= Phi = Mn=As(eff)*fy*(d-a/2)-Pn*(d-h/2)= Fr=7.5"sqrt(fc)= Mcr= ig= Ec= Check Strain Limit Xmax= Load Case if X max > c, strain o.k. theta= deflection @ Mn- Pu " Detta= Mu max= Phi - Mn= El= 910380.62 Pc= 318.35 Design Summary Pu (kms\ Mu fin-#) Casel 0.3429 0.6724 0.7910 0.85 98391.68 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.1722E-04 1.2266 5788.83 25364.91 8321 1 .32 / Bd inA2-kips / Bd kips 84 Case 2 0.4345 0.8519 1.0022 0.81 116789.13 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.3578E-04 1.2812 10359.11 33626.01 94810.29 Case 3 0.5356 1.0502 1.2355 0.77 135046.23 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.5829E-04 1.3474 16459.87 37541.99 104574.17 El inA2 in in in-# psi in-# inA4 ksi in radians in in-# in-# in-# EC 1 8.79 25364.91 1.00 2 14.29 33626.01 0.82 3 20.35 37541.99 0.61 Delta as Me fin-ffi 910380,62 318.35 1.04 26334.89 1109266.96 387.90 1.05 35362.67 1489992.25 521.03 1.05 39604.86 Wall O.K. PANGL S-6 C LINE PRIME STRUCTURAL I 3' I ±13^" |*4ttr| 14^2" I PIER 2NP TO RQ6F AXIAL PL PAMEL •- Spsf ' x ROOF 1ST TO 2N3D FLR AXIAL ROOF ^ 32k if FLR; C?i_ = LL ' I2S FfcOM PIER ABOVE * q/(2 x CJOpif x (T ROOF PANE FLR DL - (28! pif |f 144-.0 . g 22.8$. B pif 32.6,0 pif UNIFORM AXIAL LL - (8&3» pif * ^ = 03i5 x 112,5 sf X 6,13/a,. *ps HT. • AS-(.2 PAKEL LIKE © CO>MT) PRIME jae: STRUCTURAL owe ENGINEERS SHT : @ PIER ® 2MO TO ROOF AXIAL PL x $' x GLASS * 10 psf x a1 x f ROOF = (£36-1 1ST TO 2ND UNIFORM AXIAL DL FROM ROOF PAK1EL \28lpV-F x n, .5 AXIAL LL 1= 0315 x uespsf (2HQ.c.e.F. FULL HT. C AS- As. pro'JfdeJ -- 2 ( 0-40 * 3,16 } = T WALL DESIGN Per sec. 1914.4 of 97 U.B.C. U = (0.9D+1.0E)'1.1 -Casel U = (1.2D + 1.0E + Q.5U) M.1 - Case 2 U=1.4D+1.7L-Case3 PRIMESTRUCTURAL ow& *•*» ENGINEERS SW DESCRIPTION: PANEL S-6@ LINE 1 PIEAA-1STTO2ND DESIGN DATA: fc= 3000 psi Fy= Seismic Coeff. = 0.3150 Wall Height = 14.00 ft. k= Wall Thk = 9.00 in r= Rebar Size= 4 Reba Spacing- 12.00 Depth to Steel= 5.7500 Eccentric Pd= 1.28 Eccentric PI = 1.86 60.00 ksi 1.00 2.70 62.22ki/r = o.c. in Steel @ ea. Face = kips e= 4.25 kips Rhow g 0.0018 <100 section 1911.1 may be used 2 in O.K (1 -single layer, 2-double layer) Add'l Axial Pd = Add'l Axial PI = 9.30 4.16 kips kips Pu1= 11.02 kips Puel= Pu2= 18.01 kips Pue2= Pu3= 25.83 kips Pue3= Add'l Lateral Load = X-dist. to Bottom = X-dist. to Top = Wall Lateral Load - 79.70 plf 9.00 ft 14.00 ft 35.44 ptf Max M occurs X-dist. from = Mmax= 1443.76 ft-# Mu1= 22561.02 in-# Mu2= 26559.41 in-# Mu3= 21082.13 in-# Mumin= Pu-(0.6+0.03"h) 9.10 Bd1= Bd2= ft Wall wt.above= Mu min 9590.79 in-# 15670.59 in-# 22473.41 in-# 1.00 0.82 0.60 5.39 in-k 11.54 in-k 21.08 in-k 551,25 # ab= 2.89 in Pb= 0.85'fc'b-ab-Asfy = Pb*Phh= 63.84 kips Pb * Phi2= 60.53 kips Pb' Phi3= 56.82 kips Rhow Bal 0.0214 O-WRhow Bal= 76.73 kips Pu1<Phi1"Pb, Tension Controls Pu2<Phi2*Pb, Tension Controls Pu3<Phi3*Pb, Tension Controls 0.0160 Rhow<Rhow Bal O.K. As(eff)=[Pu:tot +(As"fy)]/Fy= a-(As"Fy+Pu)/(0.85"fc-1 2)= c='aV0.85= Phi = Mn=As(eff)*fy*(d-a/2)-Pn*{d-h/2)= Fr=7.5'sqrt(fc)= Mcr= "9= Ec= Check Strain Limit Xmax= Loaj Case 1 2 3 ifX max > c, strain o.k. theta= deflection @ Mn= Pu * Delta= Mu max= Phi - Mn= El= 910380.62 Pc= 318.35 Design Summary Pu fkins) Mu fin-#l 11.02 29891.91 18.01 39769.79 25.83 43687.32 Case_1 0.3801 0.7453 0.8768 0.83 106066.94 410.79 66548.29 729.00 3122.02 2.5523 0-K 4.2456E-04 1.2482 7330-89 29891.91 88242.52 / Bd inA2-kips / Bd kips & 1.00 0.82 0.60 Case 2 0.4966 0.9736 1.1454 0.79 128263.66 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.4933E-04 1.3210 13210.38 39769.79 101176.14 CaseS 0.6269 1.2292 1.4461 0.74 149553.66 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.8072E-04 1.4133 21213.91 43687.32 110751.40 El 910380.62 1115617.03 1508498.17 inA2 in in in-# psi in-# inA4 ksi in radians in in-# in-# m-# EC. 318.; 390. 527.! Delta ns Me fin-#) 1.05 31338.86 1.07 42378.68 1.07 46739.02 Wall O.K. WALL DESIGN Per sec. 1914.4 of 97 U.B.C. U»(0.9D + 1.0E)*1.1 -Casel U = (1.20 + 1 .OE •+• O.SLf) * 1.1 - Case 2 U=1.4D + 1.7L-Case3 PRtME JC3:STRUCTURAL DATS _ ENGINEERS SHT:_ElE DESCRIPTION: DESIGN DATA: fc* Seismic Coeff. * Wall Height = Wall Thk = Rebar Size= Reba Spacing * Depth to Steel* Eccentric Pd * Eccentric PI s Add'l Axial Pd - Add'l Axial PI * Add'l Lateral Load = X-dist. to Bottom = X-dist. to Top = Wall Lateral Load = PANEL S-6 @ LINE 1 PIEAB-1STTO2ND 3000 psi Fy= 0.3150 14.00 9.00 4 12.00 5.7500 1.28 1.86 10.50 4.88 92.80 9.00 14.00 35.44 ft. in O.C. k= r= kl/r = 60.00 1.00 2.70 62.22 in Steel @ ea. Face - kips e= kips Rhow g kips kips plf ft ft plf Max M occurs X-dist. from = Mmax* Mu1* Mu2= Mu3= Mumin= ab= Pb* Pb'Phi1 = Pb * Phi2= Pb * Phi3= Rhow Bal 1552.97 24002.63 28001.02 21082.13 ft-# in-# in-# in-# Pu1= Pu2= Pu3= 9.10 4.25 0.0018 12.21 19.99 28.73 Bd1= Bd2= Bd3= ksi <100 section 1911 2 in O.K kips kips kips .1 may be used (1 'Single layer. 2=double layer) Pue1= Pue2= Pue3= 1.00 0.81 0.60 ft Wall wt.above= Mu min 10623.92 17391.08 24994.55 in-# in-# in-# 5.39 in-k 11.54 in-k 21.08 in-k 551.25 # Pu*(0.6+0.03'h) 2.89 in 0.85*fc"b"ab-Asfy = 63.28 59.59 55.45 0.0214 kips kips kips 76.73 PuKPhil'Pb Pu2<Phi2BPb kips , Tension Controls , Tension Controls Pu3<Phi3*Pb, Tension Controls lhowBat=0.0160 Rtiow<Rhow Bal O.K. Pb'Phi1 = 63.28 Pb * Phi2= 59.59 Pb * Phi3= 55.45 Rhow Bal 0.0214 As(eff)=[Pu:tot +(As*fy)]/Fy= a=(As*Fy+Pu)/(0.85*fc*12}= c='aV0.85= Phi = Mn=As(eff)fy*(d-a/2>-Pn'<d-h/2)= Fr=7.5*sqrt<fc)= Check Strain Limit ifX max > Mcr= ig= Ec= Xmax= c, strain o.k. theta= deflection @ Mn= El= Pc= Pu * Delta= Mu max= Phi - Mn= 910380.62 318.35 kips Pu1<Phi1*Pb, Tension Controls kips Pu2<Phi2*Pb, Tension Controls kips Pu3<Phi3*Pb, Tension Controls 0.7S*RhowBal= 0.0160 RhOw<Rhow Bal O.K. Casq 1 Case 2 Case 3 0.3999 0.5295 0.6752 inA2 0.7841 0.9224 0.82 110039.74 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.2857E-04 1.2600 8148.35 32150.98 90741.08 / Bd inA2-kips / Bd kips 1.0383 1.2215 0.78 134013.70 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.5687E-04 1.3432 14760.33 42761.35 104075.91 1.3239 1.5575 0.72 156425.40 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.9349E-04 1.4509 23879.85 48874.40 113042.10 in in in-# psi in-# inA4 ksi in radians in in-# in-# in-# Design Summary Load Case 1 2 3 Pu fkips^ 12.21 19.99 28.73 Mu fin-m 32150.98 42761.35 48874.40 Wall O.K. Bd 1.00 0.81 0.60 e 910380.62 1117702.14 1514574.77 EC 318.1 390.! 529.I Delta ns Me (in-#> 1.05 33883.97 1.07 45890.77 1.08 52684.88 PANB- PRIME STRUCTURAL DATS ENGtNeESS SHT ROOF DL-- FLR PL-- tepsf *3.s' LL a ROOF GIRD6R FLR c PL= r C© SlMO 2MD TO ROOF U Nil FORM AXIAL PL PANl&L ; q/[2." i^Op ROOF - 41p|f >c - 11.^2*: x Tx 45/3, 1ST TO ZNiP AXiAL DL ABOVE ABOV ROOF PAMEL -- FLR = ©RPER - UNIFORM AXIAL U FLR U_ -~ ISOrf x plf 4234, 2.65.G 25,6 plf 4-2D £315 pif q'TH<2';Q.C.£.F. FULL HI WALL DESIGN Per sec. 1914.4 of 97 U.B.C. U«(0.9D+1.0E)*1.1 -Casel U = (1.2D * 1.0E + 0.5Lf>* 1.1 -Case2 U=1.4D+1.7L-Case3 PRfMc JOB: STRUCTURAL DATS ENGINEERS SHT : DESCRIPTION: PANEL N-3 @ LINE A PIERA-1STTO2ND DESIGN DATA: fc= 3000 psi Fy= Seismic Coeff. = 0.3150 Wall Height = 14.00 ft. k= WallThk= 9.00 in r= Rebar Size= 4 kl/r - Reba Spacing - 12.00 o.c. 60.00 1.00 2.70 62.22 Depth to Steel= 5.7500 in Steel @ ea. Face = Eccentric Pd- 0.19 kips e= Eccentric PI = 0.28 kips Rhow g Add'l Axial Pd = 15.73 kips Pu1= Add'l Axial PI = 6.80 kips Pu2= Pu3= Add'l Lateral Load - 53.20 plf X-dist to Bottom = 9.00 ft X-dist. to Top = 14.00 ft Wall Lateral Load = 35.44 pff Max M occurs X-dist. from = 8.40 Mmax= 1238.05 ft-# Mu1= 16828.16 in-# Mu2= 17382.85 in-# Mu3= 3168.38 in-# Mumin= Pu'(0.6+0.03*h) ab= 2.89 in Pb= 0.85"fct)*ab-Asfy ' Pb*Phi1= 61.30 kips Pb * Phi2* 56.87 kips Pb ' Phi3* 52.39 kips Rhow Bal 0.0214 OTFRhow Bal= Casel As(eff)=[Pu:tot +(As*fy)l/Fy= 0.4694 a={As*Fy+PuV(0.85*fc*12)= 0.9204 c='a70.85= 1.0828 Phi = 0.80 Mn=As(eff)fy"(d-a/2)-Pn*<d-h/2)= 123346.10 Fr=7.5'sqrt<fc)= 410.79 Mcr= 66548.29 lg= 729.00 Ec= 3122.02 Check Strain Limit Xmax= 2.5523 if X max > c, strain o.k. O.K theta= 4.4330E-04 deflection @ Mn= 1 .3033 Pu'Delta= 10393.48 Mumax= 27221.64 Phi * Mn= 98537.84 El= 910380.62 /BdinA2-kips Pc= 318.35 /Bdkips Design Summary Load Case Pu fldpsj Mu (\n-41 Bd 1 16.38 27221.64 1.00 2 25.73 40260.04 0.85 3 35.19 57654.89 0.66 4.25 0.0018 16.38 25.73 35.19 Bd1= Bd2= Bd3= ksi <100 section 1911.1 may be used 2 (1=slngle layer. 2=douW« layer) in O.K kips Pue1= 0.81 in-k kips Pue2= 1.73 in-k kips Pue3= 3.17 in-k 1.00 0.85 0.66 ft Wall wt.above= 630.00 # Mumin 14252.88 22389.23 30619.51 76.73 PuKPhi1*Pb Pu2<Phi2*Pb Pu3<Phi3"Pb 0.0160 CassLZ 0.6253 1.2260 1.4424 0.74 149314.38 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.8030E-04 1.4121 17870.82 40260.04 110663.39 in-# in-# in-# kips , Tension Controls , Tension Controls , Tension Controls Rhow<Rhow Bal O.K. Case3 0.7829 inA2 1.5352 in 1.8061 in 0.68 169617.28 in-# 410.79 psi 66548.29 in-# 729.00 inA4 3122.02 ksi 2.5523 in O.K 5.2459E-04 radians 1.5423 in 27035.38 in-# 57654.89 in-# 115805.84 in-# £1 PC Delta ns 910380.62 318.35 1.07 1072557.92 375.06 1.10 1383011.61 483.62 1.11 Me fin-#) 29227.05 44314.19 63850.36 Wall O.K. r~ PANEL NJ-4 6 LIKE (g> (N)-2. 31.MQ PRIME STRUCTURAL ENGJNEB3S UNIFORM AXIAL PL ROOF 4-^ plf :.spsf 1ST TO 2ND UNIFORM AXIAL DL FROM ABOVE 12.5s-f ROOF PANEL UNIFORM AXIAL FLR LL = ROOF OL = 41 plf FLR PL = LL -- FLR Opif PL = 23. 3 LL = \fr.6 14-T \- ( pit plf f . - 2 .0 pl-f §40 4-112 l-f As. As. DESCRIPTION: DESIGN DATA: fc= Fy= Phi= Seismic Factor= Wind Load= Reveal Depth= Reveal to Bot= Wall Thk.= Rebar Size # = Rebar Spacing= Depth to steel= Rebar @ Reveal= d @ Reveal= Steel @ ea. face= PRECAST CONCRETE WALL DESIGN Considering P-De!ta Effects SEAOC "Green Book" To iterate P-Delta effects to convergence using 1997 UBC Load factors. PANEL N-4@ LINE A PIER A-2ND TO ROOF PRIMS JO STRUCTURAL CA ENGINEERS Sff 3,000 psi 60,000 psi 0.87 0.453 18.6 psf 0.75 in 9 Min. Vert. Steel % - 0.0025 Min. Horiz. Steel % = 0.0015 Max Vet Spacing= 17.78 in Max Horiz. Spacing = 14.81 in Betal = 0.85 0.6 x Rhow Balance = 0.0128 Clear Wall Ht = Total wall Ht = Htn~hk Rado= Eccentric Dead Load = Eccentric Live Load = Load Eccentricity - 9 4 12 6.5 in ft Shall LL be used with laterial load combination? Y=1 ,N=0-> Additional Imposed Loads: Axial Unform DL= 2847 plf Point Lateral Load = 0 plf X-dist. to Bottom = 152.9 plf Seismic=1, Wind=2-> 9 ft 17 ft 1 Axial Uniform LL= in o.c.Unform Lateral Load = in X-dist. to Bottom = 12 in o.c. X-dist to top = 6.5 in Seismic=1, Wind=2-> 15 ft 17 ft 20.0 49 plf 0 plf 7.5 in 0 0 # 0 ft 1 2 (1 for single layer, 2 for double layers) DESIGN SUMMARY: MnxPhi = Mu = OVER STRESS* Max. delection= Hts/defl.= Provide Add'l* Seismic 64,924 37,241 0.0 o;os 5,219 4 Seismic @ Reveal Wind Wind @ Reveal NA NA N.A N.A HA @ in-# 65,425 NA in-# 7,961 NA % 0.0 N.A !n 0.01 NA 19,370 NA N.A O.C. at Reveal in# in# % in LATERAL LOADINGS OJ=1.320 + 0.55L + 1.1 EH for seismic load combination. U=0.75(1.4D+1.7L+1.7W) for Wind Load Combination. Wallwt= 112.5 psf Wind Load x 1.275= 23.7 Seismic Service^ 36.4 psf Factored Seismic = 56.1 FRJME Jo*-, STRUC7JKAL CATS ES SKT : PRECAST CONCRETE WALL DESIGN Considering P-Delta Effects SEAOC "Green Book" To iterate P-Delta effects to convergence using 1997 UBC Load factors. DESCRIPTION:PANEL N-4 @ LINE A PIER A-2ND TO ROOF SEISMIC COMBINATION VERTICAL Loading P axial = 49 P Wall = 3,705 P/A= 34.80 Pu-Axial= 65 Pu-Wall= 4,890 Pu-T0tal= 4,955 ANALYSIS: As(eff)=[Pu:tot + (As*Fy)]/Fy = 1 al=(As*Fy+Pu)/(0.85*fc*12) = 'c^'a'/Beta = Phi=0.9-2*Pu/(fc*Ag)= Mn-As(eff)*fy*(d-a/2)= Mu= Phi*Mn= E=57000*(fc)A0.5= n=29000/Ec= Fr=5*(fc)A0.5= Gross section modulus= Mcr (cracked Moment Cap.)= I gross = I cracked = ©Reveal 49 3,747 38.30 65 4,946 5,011 WIND COMBINATION VERTICAL Loading 49 3916 36.70 51 4112 4163 SEISMIC COMBINATION 0.283 0.554 0.652 0.87 74,675 64,924 3.1E+06 9.29 273.9 162.0 44,366 729.0 90.9 At Reveal N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A ©Reveal 49 plf 3747 plf 38.30 psi 51 plf 3934 plf 3986 plf 0.04*fc=120.1 WIND COMBINATION 0.269 0.528 0.621 0.87 74,831 65,425 3.1E+06 9.29 273.9 162.0 44,366 729.0 87.4 At Reveal N.A N.A N.A N.A (25,908) N.A N.A N.A N.A N.A N.A N.A N.A inA2/ft in in in-# in-# psi psi inA3 in-# inA4 inA4 WALL DESIGN Per sec. 1914.4 of 97 U.B.C. U = (0.9D+1.0E)"1.1 -Casel U * (1.2D + 1.0E + O.SLf) * 1.1 - Case 2 U-1.4D+1.7L-Case3 PRIME STRUCTURAL ENGINEERS DESCRIPTION: PANEL N-4 @ LINE A PIER A-1ST TO 2ND DESIGN DATA: fc* 3000 psi Fy*= Seismic Coeff. * 0.3150 Wall Height* 14.00 ft. k= WallThk= 11.25 in r= Rebar Size- 4 Reba Spacing = 12.00 Depth to Steel* 8.7500 Eccentric Pd = 0.19 Eccentric PI * 0.28 60.00 ksi 1.00 3.38 49.78kl/r = o.c. in Steel @ ea. Face = kips e= 6.50 kipsRhowg 0.0015 Add'l Axial Pd * Add'l Axial PI = 13.82 5.55 kips kips Pu1= Pu2= Pu3= Add'l Lateral Load = X-dist to Bottom = X-dist. to Top = Wall Lateral Load = 106.30 plf 9.00 ft 14.00 ft 44.30 plf Max M occurs X-dist. from - 9.10 M max= 1860.35 ft-# Mu1* 25361.79 in-# Mu2= 26280.84 in-# Mu3* 4845.75 in-# Mumin* Pu*(Q.6+Q.03*h) ab=s 4.40 in Pb= 0.85"fc*b'athAsfy- Pb*Phi1= 101.79 kips Pb * Phi2= 96.90 kips Pb*Pht3= 92.11 kips Rhow Bal 0.0214 0.75'Rhow Bal= 14.55 22.61 30.50 <100 section 1911.1 may be used 2 in O.K kips Pue1= kips Pue2= kips Pue3= Bd1= 1.00 Bd2= 0.86 Bd3= 0.67 ft Wall wt.above= Mumin 13644.89 in-# 21200.31 in-# 28590.55 in-# 122.91 kips Pu1<Phi1"Pb, Tension Controls Pu2<Phi2*Pb, Tension Controls Pu3<Pht3*Pb, Tension Controls 0.0160 Rhow<Rhow Bal O.K. (1 =sinflte layer, 2=douWe layer) 1.24 in-k 2.65 in-k 4.85 in-k 689.06 # As(eff)=[Pu:tot +(As*fy)]/Fy= a=(As"Fy+Pu)/(0.85fc*1 2)= c='a'A).85=! Phi = Mn=As(eff)*fy*(d-a/2)-Pn*{d-h/2)- Fr=7.5*sqrt(fc)= Mcr= lg= Ec= if X max > c, strain o.k. theta= deflection @ Mn= Pu * Delta= Mu max= Phi * Mn= Casal 0.4389 0.8606 1.0125 0.83 164180.35 410.79 103981.70 1423.83 3122.02 3.8839 O.K 2.6740E-04 0.7861 5527.73 30889.53 135961.97 Case 2 0.5732 1.1240 1.3224 0.79 191980.59 410.79 103981.70 1423.83 3122.02 3.8839 O.K 2.7855E-04 0.8189 9054.24 35335.07 151343.60 Case3 0.7046 1.3816 1.6254 0.75 213551.97 410.79 103981.70 1423.83 3122.02 3.8839 O.K 2.9040E-04 0.8538 12925.01 41515.56 160035.76 inA2 in in in-# psi inM ksi in radians in in-# in-# in-# El= 1778087.14 / Bd inA2-kips Pc= 621.78 /Bdkips Design Smnmaty Load Case Pu fkios^ Mu fln^ft fid 1 14.55 30889.53 1.00 2 22.61 35335.07 0.86 3 30.50 41515.56 0.67 El EC Delta ns Me fm^ft 1778087.14 621.78 1.03 31884.67 2071984.60 724.55 1.04 36869.36 2634588.29 921.28 1.05 43432.51 Wall O.K. PAN£ CSIM- 2ND ROOF UNIFORM AXIAL DL PANEL =?n8.Z-MO)p? 3.4-3 (12, 1ST TO 2MP UNIFORM AX;AL CX. FRoM ABOVE ROOF PEfc AK>'\/S : llS.fepsf PANEL r U2.5psf>f FLR PL r 210 plf x I UNIFORM AXIAL L [7K-7 PRIME JOS STRUCTURAL ENGINBRS ROOF DL = 53 p|f FLR PL - 210 plf LL = 305 plf ROOF eiRDER PL = (3.43K FU^ l\0 4- 5 pl-f 2llo.C.e.F. 3^164,5 431. S .l pl-F * 0315 x l|2.5psf 25 4T I pif 13.8 SEE PIES.® 'o. - 2.4 T PANEL £-*t <g LIN£ (@CQXViT,) STRUCTURAL CATS 7-eio ENGiNSERS SHT :' 2ND TO ROOF. UMIFORM AXIAL DL PANEL -- H2.Spsf ROOF - 1ST TP 2NP AXIAL &L FROM AB^VE RCOF PIER A&OVE = (I PAMEL -- U2.5psf* 7-3!x PL - AXIAL LL ---173^ ^ ^ 0,815 x Il2.5psf< ^'/3l - 106, SE£,TTP- PAtv)a_ -UMG iA)/^4-Cv)gt2"gc&F. FUU. HT = 1.2 rn* PAN£L £-8 <? LINE STRUCTURAL CA. EN-SHEERS SHT ROOF PL a 14-fsf ^ 3.8 FLR DL a tep&-f ^ 3.81 LL -- SOsf x 3.8 - 21.S3K. a 210 plf * 30^ p!f FOP PIER ® <? TTP. PANEL - 2MP TO RQQF UNIFORM AXIAL D; PAN5L = 8(.25psf ROOF OL- 53plf £'/2:"TH< isr ro AXtAL P Ff?DM ABOV ROOF ABOV PAME - [6.4- UNIFORM AXIAL LL >!-? >< 210^.0 51 PANEL £-8 <? LIME ®> g Pi£R d) - ses. CAL FOR 2ND TO ROOF AXIAL PL PANEL ROOF - SSplfx PRIME STRUCTURAL UWK _iro» ENGINEERS SKT ; PANEL - LlM£ (I plf iST TO AXIAL OL FROM ABOVE ROOF PIER A8CA/G PAHEL FLR PL r UHifORM AXIAL LL FLR \211O.C 53.0 315,0 As.rej1 •As. c - PAHGL E-8 ff LINE TO ROOF UMIFORM AXIAL PL PANEL = 8l.25pef x ROOF - BSpl-f x 4& = 0,453 x SUS psf x 45/g. = 2.T6 ps E&MESTRUC1 ENGINEERS" *fl 1ST TO 2SJD UMiFO^M AXIAL DL FROM ABW£ ROOF Pl£R A^VG = tl2.5psf PAMEL --C FLR DL = UNIFORM AXIAL LL ;4J=>J=>/& £27.3 53. o 3224-. 5 plf A ^4-CVj (g [2."O.C.£.F. FULL HT = 2.4 r^z -- 2 (a6 ^ 6 ) = (3.2 "n* PAN6L NE-I STRUCTURAL DATS ENGINSS3S SKT: ROOF PL * I4psf * 20/2 £ 140 pif PL = 1=5 ps f * LL = <SO£.f X 1ST TO ZND... UNIFORM AXiAL PL ROOF PANEL ABOVE =- 2100 pif .5.F. rua HT PRIMES^JURAL ENQffCERS PRECAST CONCRETE WALL DESIGN Considering P-Delta Effects SEAOC "Green BooK" To iterate P-Delta effects to convergence using 1997 UBC Load factors. DESCRIPTION:PANEL NE-1 1ST TO 2ND SEISMIC COMBINATION VERTICAL P axial = P wall = P/A= Pu-Axial= Pu-Wal!= Pu-Total= Loading 1,046 3,638 32.50 904 4,802 5,706 @Reveal 1,046 3,590 34.30 904 4,739 5,643 WIND COMBINATION VERTICAL Loading ©Reveal 1046 1046 plf 3439 3590 plf 31.10 34.30 psi 0.04*fc= 1238 1238 plf 3610 3770 plf 4849 5008 pff 160.00 pSJ ANALYSIS: As(eff)=[Pu:tot + (AsTy)]/Fy = 1 at=(As*Fy+Pu)/(0.65*fcM2} = 'c'-a'/Beta = Phi =0.9 - 2*Pu/(fc*Ag)= Mn=As(eff)*fy*(d-a/2)= Mu= Phi*Mn= E=57000"(fc)A0.5= n=29000/Ec= Fr=5*(fc)A0.5= Gross section modulus^ Mcr (cracked Moment Cap.)= I gross = I cracked = SEISMIC COMBINATION At Reveal 0-302 N.A 0.444 N.A 0.522 N.A 0.88 N.A 108,849 N.A 95,807 N.A 3.6E+06 N.A 8.04 N.A 316.2 N.A 288.0 N.A 91,074 N.A 1728.0 N.A 175.0 N.A WIND COMBINATION At Reveal 0.287 N.A in*2/ft 0.423 N.A in 0.497 N.A in 0.88 N.A 108,979 (45,069) in-# 96,246 N.A in-# 3.6E+06 N.A psi 8.04 N.A 316.2 N.A psi 288.0 N.A inA3 91,074 N.A in-# 1728.0 N.A inM 167.7 N.A inM PANEL SWH ® LINE TQ ROOF. UKJIFORM AXIAL PANEL = {CT^f( ROOF - 23€>plf 1ST TO 2NP. UNIFORM AXIA FROM A80VE RDOF P FUR DU = UNIFORM AXIAL LL • PRIME JOB: STRUCTURAL MS EN6INEB3S «T: ROOF PL- 14 psfx 3^1/2 = 236 FLR LL «psf CAIS FftR PAM&L 53J.Q 2264A pif 236,0 . I plf plf WALL DESIGN Per sec. 1914.4 of 97 U.B.C. U = (0.9D + 1.0E)*1.1 -Casel U = (1.2D + 1.0E + 0.5Lf)' 1.1 - Case 2 U=1.4D + 1.7L-Case3 FRfME JOB: STRUCTURAL DATE: ENGINEERS SW: DESCRIPTION: PANEL SW-1 PIER A-1ST TO 2ND DESIGN DATA: psi Fy=fc= Seismic Coeff. = Wall Height = Wall Tnk = Rebar Size= Reba Spacing = Depth to Steel= Eccentric Pd - Eccentric PI = Add'l Axial Pd = Add't Axial PI = 3000 0.3150 14.00 9.00 4 12.00 5.7500 0.93 1.35 8.40 3.03 60.00 ksi ft. in k=1.00 2.70 62.22kl/r = o.c. in Steel @ ea. Face = kips e= 4.25 kipsRhowg 0.0018 <100 section 1911.1 may be used 2 in O.K (1'Single layer, 2sdoubte layer) kips kips Add'l Lateral Load = X-dist. to Bottom - X-dist. to Top = Wall Lateral Load = 79.30 plf 9.00 ft 14.00 ft 35.44 plf Max M occurs X-dist. from = M max= 1440.43 ft-# Mu1= 21548.85 . in-# Mu2= 24442.05 in-# Mu3= 15254.95 in-# Mumin= Pu'(0-6+0.03*h) Pu1= 9.78 kips Pue1= Pu2= 15.45 kips Pue2= Pu3= 21.27 kips Pue3= Bd1= 1.00 Bd2= 0.84 Bd3= 0.65 9.10 ft Wall wt.above= Mu min 8505.64 in-# 13437.16 in-# 18507.68 in-# 3.90 in-k 8.35 in-k 15.25 in-k 551.25 # ab= 2.89 in Pb= 0.85*fc*b*ab-Asfy = Pb"Phi1= 64.43 kips Pb"Phi2= 61.74 kips Pb * Phi3= 58.98 kips Rhow Bal 0.0214 0.75'Rfiow Bal= 76.73 kips Pu1<Phi1*Pb, Tension Controls Pu2<Phi2*Pb, Tension Controls Pu3<Phi3"Pb, Tension Controls 0.0160 Rhow<Rhow Bal O.K. As(eff)=[Pu:tot +(As*fy)]/Fy= a=(As*Fy+Pu)/(0.85*fc-1 2}= c='a70.85= Phi = Mn=As(eff)*fy*(d-a/2)-Pn*<d-h/2)= Fr=7.5"sqrt(fc)= Check Strain Limit ifXmax> Mcr= IB-EC- Xmax= c, strain o.k. theta= deflection @ Mn= El= Pc= Pu " Delta* Mumax= Phi * Mn= 910380.62 318.35 Case 1 0.3593 0.7045 0.8288 0.84 101807.85 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.2042E-04 1.2360 6272.01 27820.87 85483.03 / Bd JnA2-kips / Bd kips Case 2 0.4538 0.8897 1.0468 0.80 120444.35 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.3990E-04 1.2933 10787.76 35229.81 96916.80 0.5509 1.0802 1.2708 0.77 137615.34 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.6191E-04 1.3580 16357.79 34865.46 105782.71 inA2 in in in-# psi in-# inA4 ksi in radians in in-# in-# in-# Design Summary Load Case 1 2 3 Pu ( kips^ 9.78 15.45 21.27 Mu fin-#> 27820.87 35229.81 34865.46 B4 1.00 0.84 0.65 El 910380.62 1078660.62 1400796.63 EC 318.: 377.; 489.) Delta ns Me (\n-4t) 1.04 29008.69 1.06 37264.29 1.06 37008.43 Wall O.K. DESCRIPTION: DESIGN DATA: fc= Fy= Phi= Seismic Factor= Wind Load= Reveal Depth= Reveal to Bot= Wall Thk.= Rebar Size # = Rebar Spacing* Depth to steel= Rebar @ Reveal= d @ Reveal= Steel @ ea. face= PRECAST CONCRETE WALL DESIGN Considering P-Delta Effects SEAOC "Green Book" To iterate P-Delta effects to convergence using 1997 UBC Load factors. PANEL SW-1 PIER B - 2ND TO ROOF PRJME JOBt STRUCTURAL OttS ENGINEERS SHT: Clear Wall Ht = Total wall Ht = Ht/Thk Ratio= Eccentric Dead Load = Eccentric Live Load = Load Eccentricity = 3,000 psi Min. Vert Steel % = 0.0025 60,000 psi Min. Horiz. Steel %= 0.0015 0.85 Max Vet. Spacing* 12.80 in 0.415 Max Horiz. Spacing = 18.00 in 18.6 psf Betal = 0.85 0 in 0.6 x Rhow Balance = 0.0128 9 ft Shall LL be used with laterial load combination? Y=1 ,N=0-> Additional Imposed Loads: in Axial Unform DL= 3452.5 plf Point Lateral Load = 0 plf X-dist. to Bottom = 146.5 plf Seismic=1,Wind=2-> 9 ft 16 ft 6.25 4 12 3 Axial Uniform LL= in o.c.Unfbrm Lateral Load ~ in X-dist. to Bottom = 12 in o.c. X-dist. to top = 3 in Seismic=1, Wind=2-> 1 1 (1 for single layer, 2 for double layers) 14.5 ft 16 ft 27.8 236 plf 0 plf 6 in 0 0 # 0 ft 1 DESIGN SUMMARY: MnxPW = Mu = OVERSTR€SS= Max. delection= Hts/defl = Provide Add'l* Seismic 40,489 32,352 0.0 0.07 2,360 4 Seismic 0;Reveal NA in-# NA. in-* NA % NA in NA @ N.A Wind 38,849 8,231 0.0 0.03 6,294 O.C. at Reveal Wind ©Reveal NA NA NA NA NA in# in# % in LATERAL LOADINGS fU=1.32D + 0.55L + 1.1 Ett for seismic load combination. U=0.75(1.4D+1.7L+1.7W) for Wind Load Combination. Wall wt = 78.1 psf Wind Load x 1.275= 23.7 Seismic Service= 23.2 psf Factored Seismic = 35.7 r~ v r r r r r r r r r STRUCTURAL CATS: ENGINEERS SHT : PRECAST CONCRETE WALL DESIGN Considering P-Delta Effects SEAOC "Green Book" To iterate P-Delta effects to convergence using 1997 UBC Load factors. DESCRIPTION:PANEL SW-1 PIER B - 2ND TO ROOF r r r u. r r r r SEISMIC COMBINATION VERTICAL Loading P axial = 236 P wall = 3,961 P/A= 56.00 Pu-Axial= 312 PU-Wall= 5,228 Pu-Total= 5,539 ANALYSIS: As(eff)=[Pu:tot + (As'Fy)]/Fy = 1 a'=(As*Fy+Pu)/(0.85"f c*12) = 'c'-a'/Beta = Phi =0.9 - 2*Pu/(fc*Ag)= Mn-As(eff)*fy*(d-a/2}= Mu= Phi'Mn= E=57000*(fc)A0.5= n=29000/Ec= Fr-5*(Pc)*0.5= Gross section modulus= Mcr (cracked Moment Cap.}= 1 gross = 1 cracked = ©Reveal N.A 3,453 N.A N.A N.A N.A WIND COMBINATION VERTICAL Loading 236 4108 57.90 248 4313 4561 SEISMIC COMBINATION 0.292 0.573 0.674 0.85 47,592 40,489 3.1E+06 9.29 273.9 78.1 21,395 244.1 15.9 At Reveal N.A N.A N.A N.A 0 0 N.A N.A N.A N.A N.A N.A N.A ©Reveal N.A plf 3453 plf N.A psi N.A plf N.A plf N.A plf 0.04'fc=120.1 WIND COMBINATION 0.276 0.541 0.637 0.86 45,201 38.849 3.1E+06 9.29 273.9 78.1 21,395 244.1 15.4 At Reveal N.A N.A N.A N.A 0 0 N.A N.A N.A N.A N.A N,A N.A inA2/ft in in in-# in-# psi psi inA3 in-# inA4 inA4 WALL DESIGN Per sec. 1914.4 of 97 U.B.C. U = (0.9D+1.0E)*1.1 -Casel U - (1.2D + 1.0E + O.SLf) * 1.1 - Case 2 U=1.4D+1.7L-Case3 PRfME STRUCTURAL OWE- ENGiNcERS DESCRIPTION: PANEL SW-2 PIERB-1STTO2ND DESIGN DATA: Fy=fc= Seismic Coeff. = Wall Height = WallThk = Rebar Size= Reba Spacing = Depth to Steel= Eccentric Pd = Eccentric PI = 3000 0.3150 14.00 9.00 4 12.00 5.7500 0.93 1.35 pa ft. in O.l in ki| kii 60.00 ksi k=1.00 2.70 62.22kl/r = Steel @ ea. Face = s e= 4.25 kipsRhowg 0.0018 <100 section 1911.1 may be used 2 in O.K (1 ^single layer, 2=<iouWe layer) Add'l Axial Pd = Add'l Axial PI = 11.74 4.94 kips kips Add'l Lateral Load = X-dist. to Bottom = X-dist. to Top = Wall Lateral Load = 123.00 plf 9.00 ft 14.00 ft 35.44 plf Max M occurs X-dist. from = Mmax= 1802.87 ft-# Mu1= 26372.11 in-# Mu2= 29309.81 in-# Mu3= 15254.95 in-# Mumin= Pu-{0.6+0.03'h) Pu1= 13.07 kips Pue1= Pu2= 20.89 kips Pue2= Pu3- 29.18 kips Pue3= Bd1= 1.00 Bd2= 0.83 Bd3= 0.63 9.24 ft Wall wt.above= Mu min 11372.17 in-# 18173.00 in-# 25385.81 in-# 3.90 in-k 8.35 in-k 15.25 in-k 535.50 # ab= 2.89 in Pb= 0.85"fc*b*ab-Asfy = Pb*Phi1= 62.87 kips Pb * Pht2= 59.17 kips Pb" Phi3= 55.24 kips Rhow Bal 0.0214 0.75*Rhow BaN 76.73 kips PuKPhi1"Pb, Tension Controls. Pu2<Phi2"Pb, Tension Controls Pu3<Phi3*Pb, Tension Controls 0.0160 Rhow<Rhow Bal O.K. As(eff)=[Pu:tot -t-(Asfy)]/Fy= a=(AsTy+Pu)/<0.85*fc*1 2)= c='a'/0.85= Phi = Mn*As(eff)*fy'(d-a/2)-Pn'(d-h/2)= Fr=7.5*sqrt(fc>= Mcr= ig- Ec= Check Strain Limit Xmax= |,,0ad Case 1 2 3 if X max > c, strain o.k. theta= deflection @ Mn- Pu * Delta* Mu max= Phi * Mn= El= 910380.62 PC* 318.35 Design Summary Pu fkips) Mu (Jn-#) 13.07 34909.82 20.89 44298.02 29.18 48709.45 Casel 0.4142 0.8122 0.9555 0.82 112866.55 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.3153E-04 1.2687 8537.71 34909.82 92472.91 / Bd inA2-kips / Bd kips Bd 1.00 0.83 0.63 0.5445 1.0676 1.2560 0.77 136546.68 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.6039E-04 1.3535 14988.21 44298.02 105285.50 Case3 0.6827 1.3386 1.5748 0.72 157440.09 410.79 66548.29 729.00 3122.02 2.5523 O.K 4.9553E-04 1.4569 23323.64 48709.45 113338.31 El 910380.62 1091107.05 1437069.07 inA2 in in in-# psi in-# inA4 ksi in radians in in-# in-# in-# EQ 318.1 381 J 502.! Delta ns Me fin-#l 1.06 36931.71 1.08 47786.21 1.08 52796.97 Wall O.K. PRIMESTRUCTURAL OWE ENGINEERS SHI: n WI.O y V r p r r r r r r r r r r r TYP. FT8 GRADE BEAH ANALYSIS PRD6RAH (4.02)r r r r r Footing LEN6TN = Footing WIDTH = Footing DEPTH = Cone Height = Surcharge = Footing + Surch. = POINT LOADS (k t I 2 1.34 1.77 HDHENT LOADS (kft 1 2 2.85 4.21 RESULTANTS (k, ft CASE 1 4.00 ft 1.00 ft 1.00 ft 0.15 kef 0.00 ksf 0.15 klf ft) X 2.00 t ft) X 2.00 & ksf) 2 Pt 1.94 2.37 X 0.53 0.22 6 ux 2.44 7.07 Q iin 0.00 0.00 HAXINUK FORCES <k, kft) CASE 1 2 V MX 1.71 2.27 H ux 2.55 3.S1 H iin -0.30 -0.30 09/06/00 2K-270 InwcwRAL PRIMESTRUCTURAL .3> ENGINEERS I iU- fl a STRUCTURAL D«E ENGINEERS SHI O r AftPNl X/IEUJS FEME STRUCTURAL ENGINEERS SHf r SDH- P&>Fll<? ; Sp - R t/4" r i r 1 r f f r1 r -I r r r r r r TV RT 00 - /A) _ 0.^2 tt)" \AJ N/MIM- ANALYSIS. - WORTH/SOUTH Pi SECT! ON. PL = 4Opsf PARTI Tl OK ^ lOpsf y MISC, 0.244- FLR PANE PART1T!C>M * MiSC. LOO'x s x too' x 0,244- WEST Q! ReCTi = SAME. AS PL PANE PARTi Misc. y a 244. ,&' X ^24 STRUCTURALENGINEERS SHT 2.116.1 -O 2 4-12.0.0 plf 2.44.O [|. O X 0.14-1 =p|f BGOplf 24-3B.4- . O q. 3 .o p\. 0.121 - 2^19 NORTH / SOUTH DIRECTION STRUCTURAL DM& ENGINEERS SHT: TOT. TOT. X (00')* (Oflwf X 14&5' ) " r VROOF TOT, VFLF TOT. hr = hf - 85 5-15.25 EAST/WEST DIReCTlOM TOT. = V FLR.TOT, -100')B IO4-&.O7 K ROOF TCT. * Hr T TOT. X hf '- 332, OB t x 2T FLR a 04-5.O1 = ..14-* !. 45 qq82.^i , G^ k-~* 131.02 1.545 CENTER. OF MASS STRUCTURAL safe ENGINEERS SW: EN6WSERS Sff : "7? RIGID DIAPHRAGM ANALYSIS @ FLOOR CENTER OF MASS FLOOR FLOOR FLOOR FLOOR 1 4 X 13 14 A K L9 N PSF 60 60 60 60 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 FT 100 53.25 172.25 15 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 FT 223.25 47.5 100 50 223.25 165.25 95 50 50 100 129.25 15 172.25 W(KIPS) 1339.50 151.76 1033.50 45.00 263.02 194.69 111.92 58.91 58.91 117.81 152.27 17.67 202.93 X<FT) 68.08 94,17 204.83 298.5 22.5 114.58 81.92 291 306 49 241,33 298.5 204.83 Y(FT) 178.75 45 50 75 169.33 218 30 25 75 288.75 100 50 0 W*X 91193.16 14291.47 211691.81 13432.50 5917.87 22307.03 9168.64 17141.72 18025.31 5772.81 36747.96 5275.05 41566.57 W*Y 239435.63 6829.31 51675.00 3375.00 44536.57 42441.36 3357.66 1472.66 4417.97 34018.36 15227.27 883.59 0.00 SUM =3747.89 492531.90 447670.37 Xcm = Ycm = 131.4 FT 119.4 FT RIGID DIAPHRAGM ANALYSIS CENTER OF MASS ROOF ROOF ROOF ROOF ROOF 1 4 X 13 14 A K L9 N PSF 16 16 16 16 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 FT 100 53.25 172.25 15 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 FT 223.25 47.5 100 50 223.25 165.25 95 50 50 100 129.25 15 172.25 W(KIPS) 357.20 40.47 275.60 12.00 172.32 127.55 73.33 38.59 38.59 77.19 99.76 11.58 132.96 X(FT) 68.08 94.17 204.83 298.5 22.5 114.58 81.92 291 306 49 241.33 298.5 204.83 Y(FT) 178.75 45 50 75 169.33 218 30 25 75 288.75 100 50 0 W*X 24318.18 3811.06 56451.15 3582.00 3877.22 14614.95 6007.04 11230.78 11809.69 3782.19 24076.25 3456.07 27233.27 W*Y 63849.50 1821.15 13780.00 900.00 29179.13 27806.41 2199.84 964.84 2894.53 22287.89 9976.48 578.91 0.00 SUM =1457.15 194249.84 176238.69 r Xcm = Ycm = 133.3 FT 120.9 FT r RELATIVE PR!ME STRUCTURAL D«EENGINEERS SHT : V - .- •- A r? '..-li ' : • ~' -/_-~-^y—< f'}.'.•• „. ' . •- RELATIVE RIGIDITY ANALYSIS DESCRIPTION : TYPICAL PANEL ADD PIERS @ STRIP1 PIER A: H3/L6= 2.167 PIERB: H3/L8= 2.167 PIERC: H3/L10 2.167 ADD STRIP 2 & 3 Rf= 0.600 Rf= 0.600 Rf= 0.600 ZRf= 1.800 (H1+H2)/L= 0.611 Af= 0.556 Af= 0.206 Atop= 1.262 PRIME STRUCTURAL ENGINEERS SHT fa H1 = H2 = H3 = H4 =i_i _ L1 = L2 = L3 = L4 = L5 = 1 ... WHOLE: 9 7 6 6 29 3 9 3 9 3 27 00 50 50 00 00 00 00 00 00 00 00 DEDUCT STRIP ft ft ft STRIP1 ft ft STRIP2 ft L6 = 3.00 ft ft L7 - 9.00 ft ft L8= 3.00ft STRIPS ft L9 = 9.00 ft ft L10= 3.00ft A L6 L7 B L8 L9 C L10 D L1 L2 £ L3 L4 F L5 ft H/L= 1.074 Ac= 0.818 1, 2, & 3 (H1+H2+H3J/L = 0.852 Af = -0.317 COX eg X WHOLE: DEDUCT STRIP 3 ADD PIERS ©STRIPS PIERD: H1/L1 PIER E: H1/L3 PIER F: H1/L5 3.00 3.00 3.00 H/L= 1.074 H1/L = 0.333 Rf = 0.278 Rf= 0.278 Rf= 0.278 2Rf= 0.833 Ac= 0.818 Af=-0.104 Af= 1.200 Abot= 1.914 Atop+Abot 3.177 Re = 0.3*5 PRIME JOB!&-270 RELATIVE RIGIDITY ANALYSIS DESCRIPTION : PANEL E-6 H1 H2 H3 H4 9.00ft 7.50ft 6.50ft 6.00ft 29.00 ft L1 = L2 = L3 = L4 = L5 = L6 = L7 = L = 3.00ft 9.00ft 3.00ft 9.00ft 3.00ft 9.00ft 5.00ft 41.00ft L8 = L9 = L10 = L11 = L12 = L13 = L14 = 3.00ft 9.00ft 3.00ft 9.00ft 3.00ft 9.00ft 5.00ft STRIP1 STRIP2 STRIPS L1 WHOLE: DEDUCT STRIP 1, 2, & 3 ADD PIERS @ STRIP1 PIER A: H3/L8= 2.17 PIERB: H3/L10 2.17 PIERC: H3/L12 2.17 PIERD: H3/L14 1.3 ADD STRIP 2 & 3 H/L = 0.707 {H1+H2+H3)/L= 0.561 Rf= 0.600 Rf= 0.600 Rf= 0.600 Rf= 1.640 £Rf= 3.440 (HHH2)/L= 0.402 L2 L3 L4 L5 Ac = 0.354 Af= -0.186 Af= 0.291 Af= 0.127 Atop = 0.586 L6 H 17 COI CM X WHOLE: DEDUCT STRIP 3 ADD PIERS ©STRIPS PIER E: H1/L1 PIER F: H1/L3 PIERG: H1/L5 PIER H: H1/L7 3.00 3.00 3.00 1.80 H/L = 0.707 H1/L = 0.220 Rf= 0.278 Rf = 0.278 Rf= 0.278 Rf= 0.890 SRf= 1.724 SA= Atop AC = 0.354 Af=-0.067 Af= 0.580 Abot ' 0.867 Abot = 1.453 Rc= 0.688 TYP. FT6 09/06/00 2K-270 PWMESTRUCTl^AL ENG1NEHS W 6RADE BEAK DESIGN PRDGRAH (4.02) DESIGN DATA f'c = 2.50 ksi fy = 60.00 ksi Load Factor = 1.00 b = 12.00 in h = 12.00 in d = 8.00 in r SHEAR DESIGN Viax = 2.3 k Vn = 2.7 k Vc = 9.6 k Vs = 0.0 k Av = 0.12 si/ft Sux = 4.00 in Vs = 0, stirrups are optional 1 t 3 Stirrup % 4.0' 1 i 4 Stirrup « 4.01 FLEXURAL DESIGN Beta 1 = 0.85 As lin = 0.32 si As ux = 1.28 si Ht tax = 3.9 kft Hn+ = 4.3 kft Asstr = 0.11 si As = 0.15 si H- lin = -0.3 kft Hn- = -0.3 kft As str = 0.01 si As = 0.01 si Bar t 4 t 5 Bottot Steel No. Space 0.7 - 0.5 - Top Steel No. Space O.I - 0,0 - PRIME JOB STRUCTURAL ENGINEERS til (Mr 0.%! f [00 pa?1) -' „ PRIME JO*«i STRUCTURAL OWE. ^yg-^j f& ENGINEERS SW : 7^1.1 / A u r x . r PRIMESTRUCTURAL OMB ENGINEERS sw : RELATIVE RIGIDITY ANALYSIS DESCRIPTION : PANEL E-8 Abot= 1.106 2A=Atop+Abot 1.957 RC= 0.511 H1 = 9.00 ft H2 = 7.50 ft H3 = 6.50 ft H4 = 6.00 ft H = 29.00 ft L1 = 3.00 ft L6 = L2 = 9.00 ft L7 = L3 = 3.00 ft L8 = L4 = 9.00 ft L9 = L5= 6.00ft L10 = L = 30.00 ft WHOLE: DEDUCT STRIP 1, 2, & 3 ADD PIERS @ STRIP1 PIER A: H3/L6 = PIERB: H3/L8 = PIERC: H3/L10 ADD STRIP 2 & 3 WHOLE: DEDUCT STRIP 3 ADD PIERS ©STRIPS PIERD: H1/L1 = PIERE: H1/L3 = PIERF: H1/L5 = STRIP1 STRIP2 3.00ft 9.00ft 3.00 ft STRIPS 9.00ft 6.00ft H/L = (H1+H2+H3)/L = 2.167 Rf = 2.167 Rf = 1.083 Rf = SRf = (H1+H2)/L = H/L = H1/L = 3.00 Rf = 3.00 Rf = 1.50 Rf = SRf = A L L6 L7 L D t L1 L2 L 0.967 0.767 0.600 0.600 2.212 3.411 0.550 0.967 0.300 0.278 0.278 1.270 1.825 3 C 8 L9 L10 -. F 3 L4 L5 Ac = 0.651 Af= -0.275 Af = 0.293 Af= 0.182 Atop = 0.851 Ac = 0.651 Af= -0.093 Af= 0.548 COX CM X r RELATIVE RIGIDITY ANALYSIS DESCRIPTION : PANEL E-9 H1 = H2 = H3 = H4 = H 9.00 n 7.50ft 6.50ft 6.00ft 29.00 ft L1 = L2 = L3 = L4 = L5 = L = 6.00ft 9.00ft 3.00ft 9.00ft 6.00 ft 33.00 ft L6 = L7 = L8 = L9 = L10 = 6.00ft 9.00ft 3.00ft 9.00ft 6.00ft STRIP1 STR1P2 STRIPS WHOLE: DEDUCT STRIP 1, 2, & 3 ADD PIERS @STRIP1 PIER A: H3/L6= 1.083 PIERB: H3/L8= 2.167 PIERC: H3/L10 1.083 ADDSTR1P2&3 H/L = 0.879 (H1+H2+H3)/L= 0.697 Rf= 2.212 Rf= 0.600 Rf= 2.212 IRf= 5.023 (H1+H2)/L = 0.500 Ac = 0.535 Af=-0.243 * 0.199 Af= 0.163 Atop = 0.654 PRIME STRUCTURAL ENGINEERS A L6 D L1 L7 L2 B L8 E L3 L9 L4 C L10 F L5 COX CM WHOLE: DEDUCT STRIP 3 ADD PIERS @ STRIPS PIER D: H1/L1 PIER E: H1/L3 PIER F: H1/L5 1.50 3.00 1.50 H/L = 0.879 H1/L = 0.273 Rf= 1.270 Rf= 0.278 Rf= 1.270 = 2.817 Ac = 0.535 Af = -0.084 Af= 0.355 Abot = 0.806 Atop+Abot 1.460 Rc= 0.685 PRIME JQJS STRUCTURAL PME RELATIVE RIGIDITY ANALYSIS DESCRIPTION : PANEL W-8 H1 H2 H3 I I _ 9.00ft 7.50ft 6.50ft 6.00ft 29.00 ft L1 L2 L3 L4 L5 L6 L7 L = = = = = = = = 3. 9. 3. 9, 3 9. 3. 39, .00 ,00 ,00 .00 .00 .00 .00 .00 ft ft ft ft ft ft ft ft L8 L9 L10 L11 L12 L13 L14 = = = s. = = ss 3. 9. 3. 9 3. 9. 3. .00 ,00 ,00 ,00 .00 00 ,00 ft ft ft ft ft ft ft STRIP1 STRIP2 STRIPS A L8 E L1 L9 L2 8 L10 F L3 L11 L4 C L12 G L5 L13 L6 D L14 H L7 WHOLE: DEDUCT STRIP 1, 2, & 3 ADD PIERS @ STRIP1 PIER A: H3/L8= 2.17 PIERB: H3/L10 2.17 PIERC: H3/L12 2.17 PIERD: H3/L14 2.17 ADDSTRIP2&3 H/L = 0.744 (H1+H2+H3)/L= 0.590 Rf = 0.600 Rf = 0.600 Rf = 0.600 Rf= 0.600 SRf= 2.399 (H1+H2)/L= 0.423 Ac = 0.388 Af=-0.197 Af= 0.417 Af= 0.134 Atop = 0.741 COX 0-J X r-WHOLE: DEDUCT STRIP 3 ADD PIERS @ STRIPS PIER E: H1/L1 PIERF: H1/L3 PIER G: H1/L5 PIER H: H1/L7 3.00 3.00 3.00 3.00 H/L = 0.744 H1/L= 0.231 Rf= 0.278 Rf= 0.278 Rf= 0.278 Rf= 0.278 £Rf= 1.111 AC = 0.388 Af=-0.070 SA= Atop Af= 0.900 Abot= 1.217 AbOt= 1.958 Rc= 0.511 L - $.00 ft T.Rfj ft H- L2 = Ci »>. S,CO ft 29,000 ii^^^R— - TenW.'tOiS- ;,75S 2. £89 0.:24 Sf= 0,600 P-- * •"}£'C-. : - i I JO i H/D whole= 1.758 deduct bo', opening -:-.3^.; 1.-2; PRIMESTRUCTURAL ENGtNEB^S Relative Riidit Analsis 2ss:ription:PfiNEI. 8-3 V N- top of vail fixed (V=L N=0) hi = 0,00 ft ft? = 9, *s3 = ?, '•A - 6- t5 = bt H= 2S,G L.' = Sf Jl = 9, i> — ? L= SS. -.1 pz ' C cos ossnirc CO 50 ?t>wV 00 GC 00 C'C- 00 A/, qq rj. . V ft H ft ft ft ft ^i. •• -r h4/L= h5 i h4 ; : i fi3 i h2 1 hi : . - f- : *-• — - ^.A. — W DELTER -: - Or432 3.471 ;;.:ss h4/Ll= 2,167 wiole=' R'= O.SOC PRIME JOB:,STRUCTURAL DftJE «?^ o ENGINEERS 5HT :| RELATIVE RIGIDITY ANALYSIS DESCRIPTION : PANEL N-6 H1 = 9.00 ft H2 = 7.50 ft H3= 6.50ft STRIP1 H4 = 6.00 ft H = 29.00 ft STRIP2 L1 = 5.50ft L6= 5.50ft L2 = 9.00 ft L7 = 9.00 ft L3 = 3.00 ft L8 = 3.00 ft STRIPS L4 = 9.00 ft L9 = 9.00 ft L5= 3.00ft L10= 3.00ft L = 29.50 ft A L6 D L1 WHOLE : H/L = 0.983 DEDUCT STRIP 1, 2, & 3 (H1+H2+H3)/L = 0.780 ADD PIERS @STRIP1 PIER A: H3/L6= 1.182 Rf= 1.925 PIERB: H3/L8= 2.167 Rf= 0.600 PIER C : H3/L10 2.167 Rf = 0.600 2Rf=3.124 L7 L2 B L8 E L3 A PRME JOB; *k-3fr> STRUCTURAL OtfB _2=£2» ENGINEERS Sff:_Ui2_ L9 C L10 L4 F L5 •<TX COX <N X AC = 0.675 Af= -0.281 Af= 0.320 ADD STRIP 2 & 3 WHOLE : DEDUCT STRIP 3 ADD PIERS ©STRIPS PIER D : H1/L1 PIER E: H1/L3 PIER F: H1/L5 1.64 3.00 3.00 (H1+H2)/L= 0.559 H/L = 0.983 H1/L= 0.305 Rf= 1.076 Rf= 0.278 Rf= 0.278 SRf= 1.632 Af= 0.185 Atop = 0.899 AC = 0.675. Af=-0.094 Af= 0.613 Abot= 1.193 2 A = Atop +AbOt 2.092 Rc = 0.478 r~ <*> <*> <*> Analysis of Rigid Diaphrams (1.1) Description: ASTON VIEWS ROOF DIAPHRAGM Job Number: 2K-270 Center of Mass in feet (Xcm=133.30, Ycm=120.90) Seismic Forces in Kips (Vx=501.90, Vy-492.90) Length of Diaphram (Lx=248.50', Ly-284.50 Line, X(ft.), Y(ft.), RR, Angle(deg) (1), 22.50, 169.33, 2.40, 102.00 <*> <*> <*> PRIME STRUCTURALENGINEB3S SHI: L ) (4), (13) (14) (A), (K) , (N) , 114.58, , 291.00, , 306.00, 49.00, 241.33, 204.83, 218.00, 25.00, 75.00, 288.75, 100.00, 0.00, 1.95, 0.69, 0.51, 0.85, 1.26, 1.73, 102-00 90.00 90.00 12.00 o.oo 0.00 OUTPUT: Center of Rigidity: Xcr = 125.95', Ycr - 88.96' Xcm-Xcr= 7.35', Ycm-Ycr= 31.94', Jp= 104779 ftA2 -=-=-=-=-=<*<, v-ase ti ) : Fx = 501.90 kips, Fy = Line, Vx, Vy, (1), 13.05, 0.00, (4), 10.60, 0.00, (A), 102.27, 0.00, (K) , 158.44, 0.00, (N), 217.55, 0.00, Fx = 501.90 kips, Fy * Line, Vx, Vy, (1), 13.05, 0.00, (4), 10.60, 0.00, (A), 102.27, 0.00, (K) , 158.44, 0.00, (N), 217.55, 0.00, — — *-™— 3_— ^ — ^"**1 Pa e^ f "^ ^ •——*-=—=— —^ — ^^ WO.5W \ 3 } Fx = 0.00 kips, Fy = Line, Vx, Vy, (1), 0.00, 209.65, {4}, 0.00, 170.34, (13), 0.00, 63.00, (14), 0.00, 46.56, (A), 0.00, 3.35, Fx = 0.00 kips, Fy = Line, Vx, Vy, (1), 0-00, 209.65, (4), 0.00, 170.34, (13), 0.00, 63.00, (14), 0.00, 46.56, (A), 0.00, 3.35, A loaaing f 0.00 kips Tx, -17.29, -5.07, 44.27, 6.89, -28.79, X loading ~ 0.00 kips Tx, -11.55, -5.94, 20.31, 5.00, -7.82, Y loading •+ 492.90 kips Tx, -39.98, -36.27, 0.00, 0.00, 13.37, Y loading — 492.90 kips Tx, -44.91, -35.52, 0.00, 0.00, 33.92, at accidental eccentricity. >?=-* 8 (133. 30', 135. 13'), Tp = 23169 Ty 19.99 -26.02 31.15 0.00 0.00 8 (133.30',106.68'), Tp = 8890 Ty -7.04 -21.93 26.05 0.00 0.00 8 (145. 73', 120. 90'), Tp = -9748 Ty -21.54 0.28 12.11 9.66 -0.51 Q (120.88',120.90'), Tp = 2500 Ty 1.64 -3.23 -1.20 -1.07 3.85 kip-ft kip-ft kip-ft kip-ft Summary - Note: contrib. of torsion that reduces mag of design shears is ignored. Line, Direct Shear, Max Wall Shear, (4), (A), (K), (N), (1), (4), (13), (14), (A), 10.60, 102.27, 158.44, 217.55, 209.65, 170.34, 63.00, 46.56, 3.35, 10.60, 146.53, 165.33,'' 217.55," 211.29, 170.62, 75.11,' 56.23,^ 7.21, Case Case (1) Case (1) X Case (1) Case (2) Case (4)X Case (3) y Case (3) Case (3) Case (4) End of Run ROOF PiAPHRAGM DESUrN. (5(M. <? UMc ME •t> ^- C 13^2 ic 100 T oo U4- i/oesr or loo PRIME ., STRUCTURAL ENGINEERS SHT TSW C? 12"O.C 20 6A TSW <£ 12"O.C. 2.0 C5A- W/ - PUDPLE WELDS rsvo ei2"ac. ROOF DIAPHRAGM DESIGN (CQMT)vX STRUCTURAL £^=A ENGINEERS Pi RECTiQN : UERCO HSB-3& ,1IX = 100 <£ LINE 1.4 LIME - (13^1 x 22,3') -Ci-3^1 x (iBOplf too' ,4.< §60 pi- . W/ 1- RJPDLE WELDS V- . w/ 1- PUPCXE TSW C 12"O.C. .0 It 112,25' ME (R>SIDE) 532.plf < "lODplf 1-4 J6-0" 3QUTH OF L1N£ - 0.331 X g . LA)/ 1 TSW e 12"O.C 12 (1ac <"700 !f WELDS -PUDDLE VAJELPS PRIME JOB: STRUCTURAL CWB SHT : ttf 7 ROOF SUB- DIAPHRAGM ANALYSIS . NORTH /SOUTH PIR&CTION . PRIMESTRUC1URAL ENGINEERS SHT JOiST SEAT. (MAX.) ROOF PL * 14 psf * ****/* * §-4' = 3.14 < ROOF LL * 2.0 psf ^ S3**% ^ ^4' = 4-4^ ie S£ISM[C = 671.29 pifx §.4-' =• &.7| ^ SEE COMPUTER ^ A.3/S 3.4' x 53.42' ROOF PL = 0,244* 14 psf x £,4' '< 5&4-21 r PAKEL - 5,7 1.24 T- 7,24x -!^- / • , ay „As. re?id = - - = OZB^ * —? OK w x 2 ~ = [|.I4^ >1.24t . .\ 0(C r PRIMESTRUCTURAL OWE ENGINEERS SHT; ANGLE LEDGER DESIGN (PER SEC.1923 1997 UBC) DESCRIPTION: ROOF JOIST SEAT LEDGER CONFIGURATION: ANGLE SIZE: L 6.00 X BOLT #& SIZE = 3.00 BOLTS SPACING = 6.00 INCHES EMBEDMENT = 5.00 INCHES WALL THICKNESS = 6.50 INCHES ANGLE LENGTH = 15.00 INCHES SP INSP REQ = 1 (1:YES,0:NO) TENSION ZONE = 1 (1:YES,0:NO) LOAD FACTOR = 2.0 BOLT HOOKED AROUND HOR. REINF. = PHI FACTOR = 0.85 4.00 X 0.75 "DIAMETER 0.625 LLV 1 (1:YES,0:NO) UNFACTQRED LOADS: VDEAD = V LIVE = T SEISMIC = T SEISMIC = MATERIAL PROPERTIES: 3.14 KIPS fc= 3.00 KSI 4.49 KIPS fut= 60.00 KSI 5.71 KIPS Fy= 36 KSI FOR ANGLE 7.99 KIPS FOR STEEL ELEMENTS LIVE LOAD TO BE INCL. WITH COMB. LOADING (1:YES, 0:NO) = CAPACITIES: Pss = Pc = 71.57 KIPS 48.20 KIPS Vss= Vc = 59.64 KIPS 58.07 KIPS DESIGN SUMMARY LOAD CASE 1 (DEAD + LIVE> ANCHOR CHECK 1/PHI*t(Pu/Pc)5/3+(Vu/Vc)5/3]= (Pu/Pss)2 + (Vu/Vss)2 = 1/PHI*(Pu/Pc) = 1/PHI*(Vu/Vc) = ANGLE CHECK HORIZ. LEG fb = VERT. LEGfb = LOAD CASE 2 fDEAD + LIVE ANCHOR CHECK 1/PHI*[(Pu/Pc)5/3+(Vu/Vc)5/3]= (Pu/Pss)2 + (Vu/Vss)2 = 1/PHI*(Pu/Pc) = 1/PHI*(Vu/Vc) = ANGLE CHECK HORIZ. LEG fb = VERT. LEGfb = 0.443 0.208 0.371 0.487 9.35 16.82 + SEISMIC^ 0.704 0.245 0.830 0.168 3.54 19.87 <1.0 OK <1.0 OK <1.0 OK <1.0 OK KSI <.9XFy KSI OK KSI <.9XFy KSI OK <1.0 OK <1.0 OK <1.0 OK <1.0 OK KSI <.9XFy KSI OK KSI <.9XFy KSI OK ANGLE LEDGER DESIGN (PER SEC.1923 1997 UBC) DESCRIPTION: ROOF JOIST SEAT 0.00 ANCHOR DESIGN ANALYSIS {STRENGTH DESIGN METHOD) LOAD CASE 1 fDEAD + LIVE^ DEAD LOAD FACTOR = 1.40 LIVE LOAD FACTOR = 1.70 V ->T Vu = Tu = C = a = Pu = V MOM ARM= T MOM ARM= LOAD CASE 2 (DEAD + LIVE + SEISMIC^ DEAD LOAD FACTOR = 1.32 LIVE LOAD FACTOR = 0.55 SEISMIC LOAD FACTOR = 1.10 -> T Vu Tu C a Pu V MOM ARM= T MOM ARM= ANGLE DESIGN ANALYSIS fLRFD METHOD) LOAD CASE 1 (DEAD + LIVE* DEAD LOAD FACTOR = 1.20 LIVE LOAD FACTOR = 1.60 I V ->T p< c— •> Vu = Tu = C = a = C = M = V MOM ARM= T MOM ARM= Sreg= treg= LOAD CASE 2 fDEAD + LIVE + SEISMS DEAD LOAD FACTOR = 1.32 LIVE LOAD FACTOR = 0.55 SEISMIC LOAD FACTOR = 1.10 I V ->T p< Vu = Tu = C = a = C = M = V MOM ARM= T MOM ARM= Sreg= treg= STRUC7URAL ENGINEERS SHT 24.06 KIPS 0.00 KIPS 26.78 a KIPS 0.57 INCHES 15.20 KIPS 2.25 in 2.25 in 8.29 KIPS 17.59 KIPS 26.78 a KIPS 0.61 INCHES 34.01 KIPS 2.25 in 2.25 in 10.95 KIPS 0.00 KIPS 26.78 a KIPS 0.25 INCHES 6.72 KIPS 24.64 KIP-INCHES 2.25 in 2.25 in 0.76 HnA3 0.45 in 4.14 KIPS 8.79 KIPS 26.78 a KIPS 0.30 INCHES 7.97 KIPS 29.11 KIP-INCHES 2.25 in 2.25 in 0.90 UnA3 0.49 in r l_ <y MSI X" ROOF SUB-cXAPHRAGrVS ANALYSIS ! A PRIME j£BT& ENGINEERS SHT EAST/\N£Sr DIRECTION. SEAT <? LINE as CMAXJ = 14.81« P K /"> y? ; !,") ,'"\ ,_[_= y^7^_ ~ \(J^^ fc S61SM1C' L6PGER ANJGL.Q SEISMIC = G1&.25 plf DL= I4ps-f ^ 4,2' « LL= 20 ps^ x4,2' = S-4. Op|f SEE COMPOITER OUTPUT. LSX&)C^" ^ L(y£^ 4^34_> A-B'S CROSS T16 ROOF PL = A 244* Kpsfx42' - (43.4-7 PAH&L pif (Q) x SO-' = 411 (? LIME © f( 0,2.44 y [4-csfx 5T25')f 6lB 25 "I ^5o' = 40.i i * ANGLE LEDGER DESIGN (PER SEC.1923 1997 UBC) DESCRIPTION:ROOF GIRDER SEAT LEDGER CONFIGURATION: ANGLE SIZE: L BOLT # & SIZE: SPACING: EMBEDMENT: WALL THICKNESS: ANGLE LENGTH: SP INSP REQ? (1:YES,0:NO) TENSION ZONE? (1:YES, 0:NO) LOAD FACTOR: 8.00 X 4.00 BOLTS 9.00 INCHES 5.00 INCHES 6.50 INCHES 30.00 INCHES 1 2.0 BOLT HOOKED AROUND HOR. REINF.? PHI FACTOR: 0.85 6.00 X 0.75 "DIAMETER 0.750 LLV width = thk = 1.50 0.25 1.00 (1:YES, 0:NO) UNFACTORED LOADS: VDEAD = V LIVE = T SEISMIC = T SEISMIC = MATERIAL PROPERTIES: 14.80 KIPS fc= 3.00 KSI 10.00 KIPS fut= 60.00 KSIFORA.B'S 2.70 KIPS Fy= 36.00 KSI FOR ANGLE 3.78 KIPS FOR STEEL ELEMENTS LIVE LOAD TO BE INCL. WITH COMB. LOADING (1:YES, 0:NO) = CAPACITIES: Pss PC 95.43 KIPS 68.14 KIPS Vss=79.52 KIPS 77.43 KIPS DESIGN SUMMARY LOAD CASE 1 (DEAD + LIVR ANCHOR CHECK 1/PHI*[(Pu/Pc)5/3+(Vu/Vc)5/3]= (Pu/Pss)2 + (Vu/Vss)2 = 1/PHl*(Pu/Pc) = ANGLE CHECK HORIZ. LEG fb = VERT. LEGfb = I OAD CASE 2 (DEAD + LIVE + SEISMIO ANCHOR CHECK 1/PHI*[(Pu/Pc)5/3+(Vu/Vc)5/3] = (Pu/Pss)2 + (VuWss)2= 1/PHI*(Pu/Pc) = ANGLE CHECK HORIZ. LEG fb = VERT. LEGfb = 0.462 0.166 0.672 20.01 25.93 0.270 0.171 0.486 23.15 29.99 <1.0 OK <1.0 OK <1.0 OK KSI < 0.9XFy OK KSI < 0.9XFy OK <1.0 OK <1.0 OK <1.0 OK KSI < 0.9XFy OK KSI<0.9XFy OK (T r IT1! (T IT r ANGLE LEDGER DESIGN (PER SEC.1923 1997 UBC) DESCRIPTION:ROOF GIRDER SEAT ANCHOR DESIGN ANALYSIS (STRENGTH DESIGN METHOD) LOAD CASE 1 (DEAD + LIVE) DEAD LOAD FACTOR = 1.40 Vu = LIVE LOAD FACTOR = 1.70 Tu = I C = V ->T a = Pu = a -> C—> V MOM ARM=4.00 BEARING= WIDTH= THK REQUIRE = LOAD CASE 2 (DEAD + LIVE + SEISMIC) DEAD LOAD FACTOR: LIVE LOAD FACTOR: SEtS LOAD FACTOR: 1.32 Vu 0.55 Tu 1.10 C = a = Pu a -> C—> V MOM ARM=4.00 in ANGLE DESIGN ANALYSIS (LRFD METHOD) LOAD CASE 1 (DEAD + LIVE) STRUCTURAL ENGINEERS Sff 75.44 KIPS 0.00 KIPS 53.55 a KIPS 0.73 INCHES 38.90 KIPS 35.92 inA2 1.5 in 0.25 in 39.07 KIPS 8.32 KIPS 53.55 a KIPS 0.37 INCHES 28.16 KIPS D FACTOR: 1.20 Vu = FACTOR: 1.60 Tu = i r =( L. V ~>T a = p< — -> a -> c—> C = M @vert = V MOM ARM= 4.00 33.76 o.oo 53.55 0.32 17.11 135.04 KIPS KIPS a KIPS INCHES KIPS KIP-INCHES IT r LOAD CASE 2 (DEAD * LIVE + SEISMIC) D FACTOR: 1.32 Vu = 39.07 KIPS FACTOR: 0.55 Tu= 4.16 KIPS FACTOR: 1.10 C = 53.55 a KIPS I a = 0.37 INCHES V ->T C = 19.84 KIPS p< -> a -> C— > M @vert = 156.29 KIP-INCHES V MOM ARM= 4.00 r ANGLE LEDGER DESIGN (PER SEC.1923 1997 UBC) DESCRIPTION: ROOF LEDGER 0.00 ANCHOR DESIGN ANALYSIS fSTRENGTH DESIGN METHOD) PRtMS STRUCTURAL OMB ENGINEERS SMT: /- LOAD CASE 1 fDEAD + LIVE^ DEAD LOAD FACTOR = 1.40 LIVE LOAD FACTOR = 1.70 ~>T Vu = Tu = C = a = p< V MOM ARM= T MOM ARM= LOAD CASE 2 /DEAD + LIVE + SEISMIC) DEAD LOAD FACTOR = 1.32 LIVE LOAD FACTOR = 0.55 SEISMIC LOAD FACTOR = 1.10 V --> T P<- ANGLE DESIGN ANALYSIS fLRFD METHOD) LOAD CASE 1 (DEAD + LIVE^ DEAD LOAD FACTOR = 1.20 Vu = LIVE LOAD FACTOR = 1.60 Tu = I C = V ->T a = C = P< M = V MOM ARM= T MOM ARM= Sreg= treg= LOAD CASE 2 IDEAD + LIVE + SEISMIC! DEAD LOAD FACTOR = 1.32 Vu = LIVE LOAD FACTOR = 0.55 Tu = SEISMIC LOAD FACTOR = 1.10 C = V ->T P<- c— > C = M = V MOM ARM= T MOM ARM= Sreg= treg= 0.90 KIPS 0.00 KIPS 42.84 a KIPS 0.03 INCHES 1.45 KIPS 2.00 in 2.25 in Vu = Tu = C = a = Pu = iRM— iRM= 0.31 4.16 42.84 0.20 12.58 2.00 2.25 KIPS KIPS a KIPS INCHES KIPS in in 0.41 KIPS 0.00 KIPS 42.84 a KIPS 0.02 INCHES 0.66 KIPS 0.82 KIP-INCHES 2.00 in 2.25 in 0.03 linA3 0.06 in 0.16 KIPS 2.08 KIPS 42.84 a KIPS 0.10 INCHES 4.09 KIPS 4.99 KIP-INCHES 2.00 in 2.25 in 0.15 linA3 0.16 in <*> <*> <*> Analysis of Rigid Diaphrams (1.1) <*> <*> <*> Description: ASTON VIEWS FLOOR DIAPHRAGM - DIAPHRAGM Job Number: 2K-270 Center of Mass in feet (Xcm-131.40, Ycm=119.40) Seismic Forces in Kips (Vx=697.70, Vy=689.70) Length of Diaphram (Lx=248.50'/ Ly=284.50') Line, X(ft.), Y(ft.), RR, Angle(deg) (1), 22.50, 169.33, 2.40, 102.00 1.95, 0.69, 0.51, 0.85, 1.26, 1.73, KJME STRUCTURAL EWE ENGINEERS SHT (4), (13) (14) (A), (K), 114.58, 291.00, 306.00,. 49.00, 241.33, (N), 204.83, 218.00, 25.00, 75.00, 288.75, 100.00, 0.00, 102.00 90.00 90.00 12.00 0.00 0.00 OUTPUT: Center of Rigidity: Xcr = 125.95', Ycr - 88.96' Xcm-Xcr= 5.45', Ycm-Ycr= 30.44', Jp= 104779 ftA2 =_=-=-_ _^<, uase \±) : Fx = 697.70 kips, Fy = Line, Vx, Vy, (1) , 18.14, 0.00, (4), 14.73, 0.00, (A), 142.16, 0.00, (K) , 220.25, 0.00, {N), 302.41, 0.00, —=i—=—z— z «'«' Paeo l")\= =*- — *••*•. waoe \ £. i Fx = 697.70 kips, Fy = Line, Vx, Vy, (1), 18.14, 0.00, (4), 14.73, 0.00, (A), 142.16, 0.00, (K), 220.25, 0.00, (N), 302.41, 0.00, — =-^-= — —^^ Pa c A t "^\ •™ *-** Uase \ o } Fx = 0.00 kips, Fy = Line, Vx, Vy, (1), 0.00, 293.35, (4), 0.00, 238.35, (13), 0.00, 88.15, (14), 0.00, 65.15, (A), 0.00, 4.69, Fx = 0.00 kips, Fy = Line, Vx, Vy, (1), 0.00, 293.35, (4), 0.00, 238.35, (13), 0.00, 88.15, (14), 0.00, 65.15, (A), 0.00, 4.69, Summary - A .Loaaing + 0.00 kips Tx, -23.62, -7.11, 59.78, 9.44, -38.49, X loading — 0.00 kips Tx, -15.63, -8.32, 26.48, 6.80, -9.33, Y loading + 689.70 kips Tx, -56.47, -50.67, 0.00, 0.00, 20.90, Y loading — 689.70 kips Tx, -63.37, -49.62, 0.00, 0.00, 49.66, o* accidental eccentricity. »=-= @ (131. 40', 133. 63 M, Tp = 31161 Ty 25.80 -35.87 42.92 0.00 0.00 @ (131. 40', 105. 18'), Tp = 11312 Ty -11.77 -30.19 35.85 0.00 0.00 6 (143.82M19.40M/ Tp = -12330 Ty -27.66 0.01 15.52 12.38 -0.25 5% accidental eccentricity. »=— —— @ (118.97M19.401), Tp = 4809 Ty 4.78 -4.89 -3.10 -2.65 5.86 kip-ft kip-ft kip-ft kip-ft Note: contrib. of torsion that reduces mag of design shears is ignored. Line, Direct Shear, Max (4), 14.73, (A), 142.16, {K}, 220.25, (N), 302.41, (1), 293.35, (4), 238.35, (13), 88.15, (14), 65.15, (A), 4.69, Wall Shear, 14.73, 201.94, 229.69,>'' 302. 41, \s> 298.13, 238.36, 103.67,^ 77.53,^ 10.55, Case Case (!) Case (1) >:i,c22- 2o6-^ ^ Case (1) Case (2) Case (4)x'.o?- : So^vfii " " Case (3) y. iiC7? . ^, s. .-• t ,, -, Case (3) Case (3) Case (4) End of Run 2ND FLR P1APHRA6M . C-;EC< • -PLAN iRRESULARiTr TYPE 2. PRIMESTRUCTURAL OWE SHT : 2Mt> FLR DIAPHRAGM. CKeC< (1653.2^*7, - PLAN i RR££UuARITr TYPE 2 UBC PRfMESTRUCTURAL OWEENGiNEERS SHr; Vx -'• b (c ^;^ x (33- = 412 ; PRiME STRUCTURAL ENGINEERS :.£3*» 2ND FLOOR DIAPHRAGM CHECK DUE TO PLAN IRREGULARITY CENTER OF MASS - DIAPHRAGM 1 FLOOR 1 4 A K PSF 60 81.25 81.25 81.25 81.25 FT 100 14.5 14.5 14.5 14.5 FT 223.25 223.25 165.25 100 129.25 W(KIPS) 1339.50 263.02 194.69 117.81 152.27 X(FT) - 71.5 22.5 114.58 49 241.33 Y(FT) 179.42 169.33 218 288.75 100 W*X 95774.25 5917.87 22307.03 5772.81 36747.96 W*Y 240333.09 44536.57 42441.36 34018.36 15227.27 SUM =2067.29 166519.92 376556.65 rr Xcm = Ycm = 80.5 FT 182.2 FT CENTER OF MASS - DIAPHRAGM 2 FLOOR FLOOR 4 13 14 K L9 N PSF 60 60 81.25 81.25 81.25 81.25 81.25 81.25 FT 172.25 15 14.5 14.5 14.5 14.5 14.5 14.5 FT 100 50 165.25 50 50 129.25 15 172.25 W(KIPS) 1033.50 45.00 194.69 58.91 58.91 152.27 17.67 202.93 XfFT) 204.83 298.5 114.58 291 306 241.33 298.5 204.83 Y(FT) 50 75 218 25 75 100 50 0 W*X 211691.81 13432.50 22307.03 17141.72 18025.31 36747.96 5275.05 41566.57 W*Y 51675.00 3375.00 42441.36 1472.66 4417.97 15227.27 883.59 0.00 SUM =1763.87 366187.94 119492.85 Xcm = Ycm = 207.6 FT 67.7 FT STRUCTURALENGINEB3S <*> <*> <*> Analysis of Rigid Diaphrams (1.1] <*> <*> <*> Description: ASTON VIEWS FLOOR DIAPHRAGM DUE TO PLAN IRREGULARITY- DIAPH.2 Job Number: 2K-270 Center of Mass in feet (Xcm=207.60, Ycm= 67.70) Seismic Forces in Kips (Vx=360.10, Vy=277.70) Length of Diaphram (Lx-187.251, Ly=100.00') Line, X(ft.), Y{ft.}, RR, Angle(deg) (4), 114.58, 218.00, 1.95, 102.00 25.00, 0.69, 90.00 75.00, 0.51, 90.00 100.00, 1.26, 0.00 0.00, 1.73, 0.00 (13), 291.00, (14), 306.00, (K), 241.33, (N), 204.83, OUTPUT: Center of Rigidity: Xcr = 209.85', Ycr = 34.67' Xcm-Xcr= -2.25', Ycm-Ycr= 33.03', Jp= 22630 ftA2 -=-=-=-=-=« Case (1} : Fx = 360.10 kips, Fy = Line, Vx, Vy, (4), 9.87, 0.00, (K), 147.59, 0.00, (N), 202.64, 0.00, -=-=-=_=_=« case (2) ; Fx = 360.10 kips, Fy = Line, Vx, Vy, (4), 9.87, 0.00, (K), 147.59, 0.00, (N), 202.64, 0.00, X loading + 5% accidental eccentricity. »= 0.00 kips Tx, -19.45, 52.31, -32.86, @ {207.60', 72.70' Ty 45.07 0.00 0.00 Tp = 13693 kip-ft X loading - 5% accidental eccentricity. »=-=-=-=-=- Q.OO kips @ {207.60', 62.70'), Tp = 10092 kip-ft Tx, Ty -15.90, 28.35 39.21, 0.00 -23.31,0.00 Fx = Line, (4), (13), (14), •=-=« Case (3) : Y loading + 5% accidental eccentricity. »=-=-=-=-=- 0.00 kips, Fy = 277.70 kips @ {216.96', 67.70'), Tp = -1976 kip-ft Vx, Vy, Tx, Ty 0.00, 169.00, -33.58, -11.02 0.00, 62.50, 0.00, 5.95 0.00, 46.20, 0.00, 5.07 Fx = Line, (4), (13), (14), •=-=«: Case (4) : Y loading - 5% accidental eccentricity. »=-=-=-=-=- 0.00 kips, Fy = 211.10 kips @ (198.24', 67.70'), Tp = 3223 kip-ft Vx, Vy, Tx, Ty 0.00, 169.00, -38.71, 13.12 0.00, 0.00, 62.50, 46.20, 0.00, 0.00, -6.92 -6.20 Summary - Note: contrib. of torsion that reduces mag of design shears is ignored. Line, Direct Shear, Max Wall Shear, Case : U)HoL£ t?APH AN ALTS, i (K), (N), (4), (13), (14), 147.59, 202.64, 169.00, 62.50, 46.20, 199.90, 202.64,^ 182.12, 68.45,'' 51.26,^ Case CD Case (2) Case (4} Case (3) Case (3) End of Run •o '<f <*> <*> <*> Analysis of Rigid Diaphrams (1.1) <*> <*> <*> Description: ASTON VIEWS FLOOR DIAPHRAGM CHECK DUE TO PLAN IRREGULARITY DIAPH. 1 Job Number: 2K-270 Center of Mass in feet (Xcm= 80.50, Ycm=182.20) Seismic Forces in Kips {Vx=337.60, Vy=412.00) Length of Diaphram {Lx=100.00', Ly=223.25') Line/ X(ft.) (1), (4), (A), (K), 22.50, 114.58, 49.00, 241.33, , Yfft.), 169.33, 218.00, 288.75, 100.00, RR, Angle (deg) 2-40, 1.95, 0.85, 1.26, 102.00 102.00 12.00 0.00 OUTPUT: Center of Rigidity: Xcr = 62.00', Ycr = 177.15' Xcm-Xcr= 18,50', Ycm-Ycr= 5.05', Jp= 29029 ftA2 -=-=-=-=-=<i^ ^ase 11; : Fx = 337.60 kips, Fy = Line, Vx, Vy, (1), 15.49, 0.00, (4), 12.58, 0.00, (A), 121.42, 0.00, (K) , 188.11, 0.00, Fx = 337.60 kips, Fy = Line, Vx, Vy, (1), 15.49, 0.00, £4), 12.58, 0.00, (A), 121.42, 0.00, (K) , 188.11, 0.00, Fx = 0.00 kips, Fy = Line, Vx, Vy, (1), 0.00, 225.32, {4}, 0.00, 183.07, (A) , 0.00, 3.61, Fx = 0.00 kips, Fy = Line, Vx, Vy, (1), 0.00, 225.32, (4), 0.00, 183.07, (A) , 0.00, 3.61, A loaaing t- 0.00 kips Tx, -15.96, -5.31, 29.00, -7.72, X ") /"*i a i"l T ri rt —-LtJdUUly 0.00 kips Tx, -10.75, -11.62, 4.85, 17.51, V I ^*i a ffl T TI »**r -4--LUaLiJ-Ily ' 412.00 kips Tx, -40.51, -46.46, 13.44, Y ~l /"\ a /•? T T~I ^ — -J-UdU.-LIly 412.00 kips Tx, -43.36, -43.01, 26.64, D$ accidental eccentricity @ ( 80. 50', 193. 36'), Tp = Ty 2.24 -34.21 31.97 0.00 5% accidental eccentricity. @ { 80. 50', 171. 04'}, Tp = Ty -22.30 -4.54 26.84 0.00 5% accidental eccentricity, @ .( 85.50M82.20'), Tp = Ty -34.75 35.50 -0.75 5% accidental eccentricity. @ ( 75.50M82.20')/ Tp = Ty -21.33 19.28 2.06 . »=-=-=-=_=_ 5473 kip-ft -2064 kip-ft »=—=—=—=—=— -9681 kip-ft -5561 kip-ft Summary - Note: contrib. of torsion that reduces mag of design shears is ignored. Line, Direct Shear, Max Wall Shear,Case (4), (A), (K), (1), (4), (A), 12.58, 121.42, 188.11, 225.32, 183.07, 3.61, 12.58, 150.42, 205. $3,' 225.32, 218.57, 5.66, Case (1) Case (1) Case (2) Case {4} Case (3) Case (4) rr 2ND FLR #.SH»\R FORGES FROM 'AJHoLE PRIME SmUCENGINEKS ANALYSIS THOSE rr Y-Y DIRECTION- TV =223,2.5'i:4> pa POLS I6B.2&r x 053p|f < 1430 pif 100' <(400pif 141 lf <(4<90plf PI APH RA6-H D£Si£tH, (CONI) X-X 00'- 14-14 plf <IB70plf 2BATS LINE too1 PRIME STRUCTURAL OWE: _ia£_ PUPPLG 'i PUPDL£ WELpS. £ WELPS 302,4- j I12.2S' HQQR SUB-PIAPHRAfrM ANALYSIS NORTH /SOUTH P1R6CTJON . Fp * T&llAfp - TS1 x [OOps-f a 16* plf JOIST SEAT <? Ll^E©cMAX. FOR 46 -T' JOISTS; FLR DL = FLR U. = SEiSHiC = ISi'pl-f PRIME STRUCTURALENGINEERS SHT E COMPUTER A.B/'S JOIST SEAT (? LINE <g) (MAX. FOR 2&Lg" JOISTS) FLR PL * feSpsf ^ 2fe.fcy2 x FLR LL - 8-0 ps^ * Zb.&'/2 * SEISMIC - 1^1 pl-f * 1625' w/ SEE COMPUTED OUTPUT. A.B.'S. r FLR PL = 0.244 PANEL - 0.35 r COWT. PL - PANEL l^ic = T. X2" CONiT ft PRiME JOBs STRUCTURAL OWE ENGINEERS SHT: ANGLE LEDGER DESIGN (PER SEC. 19231997 UBC) DESCRIPTION:FLOOR JOIST AT LINE LEDGER CONFIGURATION: ANGLE SIZE: L BOLT #& SIZE: SPACING: EMBEDMENT: WALL THICKNESS: ANGLE LENGTH: SP INSP REQ? (1:YES,0:NO) TENSION ZONE? (1:YES,0:NO) LOAD FACTOR: X BOLTS INCHES INCHES INCHES 21.00 INCHES 1 6.00 3.00 9.00 5.00 6.50 1 2.0 BOLT HOOKED AROUND HOR. REINF.? PHI FACTOR: 0.85 4.00 X 0.75 "DIAMETER 0.750 LLV width = thk = 1.71 0.25 1.00 (1:YES,0:NO) UNFACTORED LOADS: VDEAD = V LIVE = T SEISMIC = T SEISMIC = MATERIAL PROPERTIES: 9.71 KIPS fc= 3.00 KSI 14.12 KIPS fut= 60.00 KSIFORA.B'S 5.92 KIPS Fy= 36.00 KSI FOR ANGLE 8.29 KIPS FOR STEEL ELEMENTS LIVE LOAD TO BE INCL. WITH COMB. LOADING (1 :YES, 0:NO) = CAPACITIES: Pss PC 71.57 KIPS 51.10 KIPS Vss= Vc = 59.64 KIPS 58.07 KIPS DESIGN SUMMARY LOAD CASE 1 CDFAD + LIVE^ ANCHOR CHECK 1/PHI*[(Pu/Pc)5/3+(VuA/c)5/3]= (Pu/Pss)2 •»- (Vu/Vss)2 = 1/PHI*(Pu/Pc) = ANGLE CHECK HORIZ. LEG fb = VERT. LEGfb = LOAD CASE 2 (DEAD + LIVE + SEISMIC! ANCHOR CHECK 1/PHI*[(Pu/Pc)5/3+(Vu/Vc)5/3] = (Pu/Pss)2 + (Vu/Vss)2= 1/PHl*(Pu/Pc) = ANGLE CHECK HORIZ. LEG fb = VERT. LEGfb = 0.830 <1.0 OK 0.336 <1.0 OK 0.955 <1.0 OK 17.39 KSK0.9XFy OK 25.46 KSI < 0.9XFy OK 0.790 <1.0 OK 0.620 <1.0 OK 0.927 <1.0 OK 20.91 KSI < 0.9XFy OK 30.53 KSI < 0.9XFy OK ANGLE LEDGER DESIGN (PER SEC. 19231997 UBC) JOB k STRUCTURAL ENGINEERS DESCRIPTION:FLOOR JOIST AT LINE ANCHOR DESIGN ANALYSIS (STRENGTH DESIGN METHOD) LOAD CASE 1 (DEAD + LIVE) DEAD LOAD FACTOR = 1 .40 Vu = LIVE LOAD FACTOR = 1 .70 Tu = >T a -> C—> a = Pu = V MOM ARM=3.11 BEARING* WlDTH= THK REQUIRE = LOAD CASE 2 (DEAD + LIVE + SEISMIC) DEAD LOAD FACTOR: LIVE LOAD FACTOR: SEIS LOAD FACTOR: V 1.32 Vu 0.55 Tu 1.10 C - a = Pu p< a -> C— > V MOM ARM=3.11 in ANGLE DESIGN ANALYSIS (LRFD METHOD) LOAD CASE 1 (DEAD + LIVE) 75.20 KIPS 0.00 KIPS 37.49 a KIPS 1.11 INCHES 41.46 KIPS 35.81 inA2 1.7 in 0.25 in 41.17 KIPS 18.23 KIPS 37.49 a KIPS 0.59 INCHES 40.26 KIPS I) FACTOR: 1.20 Vu = FACTOR: 1.60 Tu = I f\L, - V ->T a = p< -> a -> c— > C = M @vert = VMOMARM= 3.11 34.24 0.00 37.49 0.49 18.21 106.33 KIPS KIPS a KIPS INCHES KIPS KIP-INCHES r LOAD CASE 2 (DEAD + LIVE + SEISMIC) DEAD LOAD FACTOR: LIVE LOAD FACTOR: SEIS LOAD FACTOR: p< a -> C— > V MOM ARM= 1.32 Vu = 0.55 Tu = 1.10 C = a = r c = M@vert 3.11 41.17 9.12 37.49 0.59 22.02 127.82 KIPS KIPS a KIPS INCHES KIPS KIP-INCHES IT PRIMESTRUCTURAL EWE ENGINEERS SW ANGLE LEDGER DESIGN (PER SEC.1923 1997 UBC) DESCRIPTION: FLOOR JOIST SEAT @ LINE K 26'-8" JOISTS LEDGER CONFIGURATION: ANGLE SIZE: L BOLT #& SIZE = SPACING = EMBEDMENT = WALL THICKNESS = ANGLE LENGTH = SP INSP REQ = (1:YES,0:NO) TENSION ZONE = (1:YES,0:NO) LOAD FACTOR = 6.00 4.00 6.00 5.00 6.50 X BOLTS INCHES INCHES INCHES 21.00 INCHES 1 1 2.0 BOLT HOOKED AROUND HOR. REINF. = PHI FACTOR = 0.85 4.00 0.75 X " DIAMETER 0.750 LLV 1 (1:YES,0:NO) UNFACTORED LOADS: VDEAD = VLIVE = T SEISMIC = T SEISMIC = MATERIAL PROPERTIES: 5.59 KIPS fc= 3.00 KSI 8.13 KIPS fut= 60.00 KSI 5.96 KtPS Fy= 36 KSI FOR ANGLE 8.34 KIPS FOR STEEL ELEMENTS LIVE LOAD TO BE INCL. WITH COMB. LOADING (1:YES, 0:NO) = CAPACITIES: Pss = Pc = 95.43 KIPS 61.34 KIPS Vss= Vc = 79.52 KIPS 77.43 KIPS DESIGN SUMMARY LOAD CASE 1 (DEAD + LIVE1 ANCHOR CHECK 1/PHl*[(Pu/Pc)5/3+(Vu/Vc)5/3]= (Pu/Pss)2 •*• (VuA/ss)2 = 1/PHl*(Pu/Pc) = 1/PHI*(VuA/c) = ANGLE CHECK HORIZ. LEG ft) - VERT. LEGfb = LOAD CASE 2 (DEAD + LIVE ANCHOR CHECK 1 /PHI*[(Pu/Pc)5/3+(VuA/c)5/3]= (Pu/Pss)2 + (Vu/Vss)2 = 1/PHI*(Pu/Pc) = 1/PHI*(Vu/Vc) = ^A/GLE CHgCK HORIZ. LEG fb = VERT. LEGfb = 0.761 0.381 0.533 0.658 7.51 15.02 + SEISMIC^ 0.874 0.314 0.869 0.360 4.51 16.02 <1 .0 OK <1.0 OK <1.0 OK <1.0 OK KSI <.9XFy KSI OK KSI <.9XFy KSI OK <1.0 OK <1.0 OK <1.0 OK <1.0 OK KSI <.9XFy KSI OK KSI <.9XFy KSI OK ANGLE LEDGER DESIGN (PER SEC.1923 1997 UBC) STRUCTURAL £hSG^££RS DESCRIPTION: FLOOR JOIST SEAT @ LINE K 26'-8" JOISTS ANCHOR DESIGN ANALYSIS (STRENGTH DESIGN METHOD] LOAD CASF 1 (DEAD + LIVE} DEAD LOAD FACTOR = 1 .40 Vu = LIVE LOAD FACTOR = 1.70 Tu = I c = V ->T a = _> _> Pu = V MOM ARM= a T MOM ARM= 43.29 KIPS 0.00 KIPS 37.49 a KIPS 0.74 INCHES 27.81 KIPS 2.25 in 2.25 in LOAD CASF 2 (DEAD + LIVE + SEISMIC^ DEAD LOAD FACTOR = 1.32 LIVE LOAD FACTOR = 0.55 SEISMIC LOAD FACTOR = 1.10 I V ->T Vu Tu C a Pu P<- C— > V MOM ARM T MOM ARM ANGLE DESIGN ANALYSIS fLRFD METHOD} LOAD CASE 1 (DEAD + LIVE) DEAD LOAD FACTOR = 1.20 LIVE LOAD FACTOR = 1.60 ->T P<- Vu = Tu = C = a = C = M = V MOM ARM= T MOM ARM= Sreg= treg= LOAD CASF 2 (DEAD + LIVE + SEISMIC} DEAD LOAD FACTOR * 1.32 LIVE LOAD FACTOR = 0.55 SEISMIC LOAD FACTOR = 1.10 _>T Vu Tu C a C M V MOM ARM T MOM ARM Sreg treg 23.70 KIPS 18.36 KIPS 37.49 a KIPS 0.72 INCHES 45.31 KIPS 2.25 in 2.25 in 19.72 KIPS 0.00 KIPS 37.49 a KIPS 0.32 INCHES 12.18 KIPS 44.36 KIP-INCHES 2.25 in 2.25 in 1.37 linA3 0.51 in 11.85 KIPS 9.18 KIPS 37.49 a KIPS 0.35 INCHES 13.02 KIPS 47.31 KIP-INCHES 2.25 in 2.25 in 1.46 linA3 0.53 in FLg ^ NQRTO / SgiTH M. (CDMT ) r GIRDER SEAT FLR PL * ~LR uL s SEISMIC * N£ SEAT ® UK£ (j) FLR DL = FLR LL -- o."8 \K FLR DL PANSL 18! Lime- SBSM!C DL= 181 pit x 3,2' 53.42/2 = " <j> AB'S ANGLE LEDGER DESIGN (PER SEC.19231997 UBC) DESCRIPTION:FLOOR GIRDER AT LINE 3 LEDGER CONFIGURATION: ANGLE SIZE: L BOLT #& SIZE: SPACING: EMBEDMENT: WALL THICKNESS: ANGLE LENGTH: SP INSP REQ? (1:YES,0:NO) TENSION ZONE? (1:YES,0:NO) LOAD FACTOR: 8.00 X 5.00 BOLTS 7.50 INCHES 5.00 INCHES 6.50 INCHES 33.00 INCHES 1 1 2.0 BOLT HOOKED AROUND HOR. REINF.? PHI FACTOR: 0.85 " 6.00 X 0.75 "DIAMETER 1.000 LLV width = thk = 1.85 0.25 1.00 (1:YES.O:NO) UNFACTORED LOADS: VDEAD = V LIVE = T SEISMIC = T SEISMIC = MATERIAL PROPERTIES: 23,30 KIPS fcs 3,00 KSl 18.60 KIPS fut= 60.00 KSIFORA.B'S 0.78 KIPS Fy= 36.00 KS! FOR ANGLE 1.09 KIPS FOR STEEL ELEMENTS LIVE LOAD TO BE INCL. WITH COMB. LOADING (1:YES, 0:NO) = CAPACITIES: Pss = PC DESIGN SUMMARY 119.28 KIPS 85.17 KIPS Vss= Vc = 1 99.40 KIPS 96.79 KIPS LOAD CASE 1 fDEAD + LIVE! ANCHOR CHECK 1 /PH1*[(Pu/Pc)5y3+(Vu/Vc)5/3]= (Pu/Pss)2 + (Vu/Vss)2 = 1/PHI*(Pu/Pc) = ANGLE CHECK HORIZ. LEG fb = VERT. LEGfb = LOAD CASE 2 (DEAD + LIVE + SEISMIC^ ANCHOR CHECK 1/PHI*[(Pu/Pc)5/3+(Vu/Vc)5/3] = (Pu/Pss)2 + (Vu/Vss)2= 1/PHI*(Pu/Pc) = ANGLE CHECK HORIZ. LEG fb = VERT. LEGfb = 0.860 0.350 0.975 15.74 22.30 0.430 0.299 0.643 22.36 31.58 <1.0 OK <1.0 OK <1.0 OK KSl < 0.9XFy OK KSl < 0.9XFy OK <1 .0 OK <1.0 OK <1.0 OK KSl < 0.9XFy OK KSl < 0.9XFy OK ANGLE LEDGER DESIGN (PER SEC.1923 1997 UBC) STRUCTURALENGINEERS SKT DESCRIPTION:FLOOR GIRDER AT LINE 3 ANCHOR DESIGN ANALYSIS (STRENGTH DESIGN METHOD) LOAD CASE 1 (DEAD + LIVE) DEAD LOAD FACTOR ~ 1.40 Vu = LIVE LOAD FACTOR = 1.70 Tu = I C = V ->T a = P<- VMOMARM=4.18 BEARING* WIDTH* THK REQUIRE = LOAD CASE 2 (DEAD + LIVE + SEISMIC) DEAD LOAD FACTOR: 1.32 Vu = LIVE LOAD FACTOR: 0.55 Tu = SEIS LOAD FACTOR: 1.10 C = V ->T p< a -> C—> VMOMARM=4.18 in ANGLE DESIGN ANALYSIS (LRFD METHOD) LOAD CASE 1 (DEAD + LIVE) DEAD LOAD FACTOR: LIVE LOAD FACTOR: p< VMOMARM=4.18 LOAD CASE 2 (DEAD + LIVE + SEISMIC) DEAD LOAD FACTOR LIVE LOAD FACTOR: SEIS LOAD FACTOR: p< a -> C—> DR: R: R: I V 1.32 0.55 1.10 ->T Vu = Tu = C = a = C = M @vert V MOM ARM=4.18 128.48 KIPS 0.00 KIPS 58.91 a KIPS 1.20 INCHES 70.57 KIPS 61.18 inA2 1.9 in 0.25 in 81.97 KIPS 2.41 KIPS 58.91 a KIPS 0.75 INCHES 46.56 KIPS DR: R: I V 1.20 Vu = 1.60 Tu = C = ->T a = C = M @vert = 57.72 0.00 58.91 0.52 30.79 240.98 KIPS KIPS & KIPS INCHES KIPS KIP-INCHES 81.97 KIPS 1.20 KIPS 58.91 a KIPS 0.75 INCHES 44.16 KIPS 342.23 KIP-INCHES POME JOBSSTRUCTURAL 0«B ANGLE LEDGER DESIGN (PER SEC.1923 1997 UBC) DESCRIPTION: FLOOR LEDGER LEDGER CONFIGURATION: ANGLE SIZE: L 3.50 X BOLT #& SIZE = 1.00 BOLTS SPACING = 18.00 INCHES EMBEDMENT = 5.00 INCHES WALL THICKNESS = 6.50 INCHES ANGLE LENGTH = 18.00 INCHES SP INSP REQ = 1 (1:YES,0:NO) TENSION ZONE = 1 (1:YES,0:NO) LOAD FACTOR = 2.0 BOLT HOOKED AROUND HOR. REINF. = PHI FACTOR = 0.85 3.50 X 0.75 "DIAMETER 0.250 LLV 1 (1:YES,0:NO) UNFACTORED LOADS: VDEAD = V LIVE = T SEISMIC = T SEISMIC = MATERIAL PROPERTIES: 0.31 KIPS fc= 3.00 KSI 0.46 KIPS fut= 60.00 KSI 1.17 KIPS Fy= 36 KSI FOR ANGLE 1.64 KIPS FOR STEEL ELEMENTS LIVE LOAD TO BE INCL. WITH COMB. LOADING (1:YES, 0:NO) = CAPACITIES: Pss = Pc = 23.86 KIPS 17.03 KIPS Vss= Vc = 19.88 KIPS 19.36 KIPS DESIGN SUMMARY LOAD CASE 1 fDEAD + L1VE1 ANCHOR CHECK 1/PHI*[(Pu/Pc)5/3+(Vu/Vc)5/3]= (Pu/Pss)2 + (Vu/Vss)2 = 1/PHI*(Pu/Pc) = 1/PHI*(Vu/Vc) = ANGLE CHECK HORIZ. LEG fb = VERT. LEGfb = LOAD CASE 2 fDEAD + LIVE + ANCHOR CHECK 1/PHI*[(Pu/Pc)5/3+(VuA/c)5/3]= (Pu/Pss)2 + (Vu/Vss)2 = 1/PHI*(Pu/Pc) = 1/PHI*(Vu/Vc) = ANGLE CHECK HORIZ. LEG fb = VERT. LEGfb = 0.143 0.043 0.278 0.148 5.41 7.86 SEISMIC! 0.759 0.299 0.895 0.081 3.25 19.16 <1.0 OK <1.0 OK <1.0 OK <1.0 OK KSI <.9XFy KSI OK KSI <.9XFy KSI OK <1.0 OK <1.0 OK <1.0 OK <1.0 OK KSI <.9XFy KSI OK KSI <.9XFy KSI OK ANGLE LEDGER DESIGN (PER SEC.1923 1997 UBC) DESCRIPTION: FLOOR LEDGER 0.00 ANCHOR DESIGN ANALYSIS (STRENGTH DESIGN METHOD} LOAD CASF 1 (DEAD + LIVE^ DEAD LOAD FACTOR = 1.40 LIVE LOAD FACTOR = 1.70 ->T P<- Vu = Tu = C = a = Pu = V MOM ARM= T MOM ARM= _QAD CASE ? (DEAD + LIVE + SEISMIC^ DEAD LOAD FACTOR = 1.32 LIVE LOAD FACTOR = 0.55 SEISMIC LOAD FACTOR = 1.10 I V ->T Vu Tu C a Pu V MOM ARM= T MOM ARM= ANGLE DESIGN ANALYSIS (LRFP METHOD! LOAD CASF 1 (DEAD + LIVF1 DEAD LOAD FACTOR = 1.20 LIVE LOAD FACTOR = 1.60 I V «>T p< Vu = Tu = C = a = C = M = V MOM ARM= T MOM ARM= Sreg= treg= LOAD CASE 2 (DEAD + LIVE + SEISMIC^ DEAD LOAD FACTOR = 1.32 LIVE LOAD FACTOR = 0.55 SEISMIC LOAD FACTOR = 1.10 ~>T p< c— > Vu = Tu = C = a : C = M -• V MOM ARM= T MOM ARM= Sreg= treg= aiKl^*IUK«L "~K i»5=—.ENGINEERS SHT;J2E! 2.43 KIPS 0.00 KIPS 32.13 a KIPS 0.13 INCHES 4.02 KIPS 2.00 in 2.25 in 1.33 KIPS 3.61 KIPS 32.13 a KiPS 0.29 INCHES 12.95 KIPS 2.00 in 2.25 in 1.11 KIPS 0.00 KIPS 32.13 a KIPS 0.06 INCHES 1.80 KIPS 2.21 KIP-INCHES 2.00 in 2.25 in 0.07 linA3 0.12 in 0.66 KIPS 1.80 KIPS 32.13 a KIPS 0.14 INCHES 4.48 KIPS 5.39 KIP-INCHES 2.00 in 2.25 in 0.17 linA3 0.19 in STRUCTURAL ENGINEERS EAST /WEST DIRECTION G1ROSR 81 (? LIKE = 181 DL_= LL -- SEISMIC = "/a. -_ pif OUTPUT -W A.B'S CROSS TIE 244 X PANE - l|02p!f IS | 02. pif FLR PL = 0,2.44 * ©BtlO)psf x (4.25' = PAMEL - IB1 pif ANGLE LEDGER DESIGN (PER SEC.1923 1997 UBC) DESCRIPTION: FLOOR GIRDER SEAT AT LINE M LEDGER CONFIGURATION: ANGLE SIZE: L 8.00 X BOLT #& SIZE = 4.00 BOLTS SPACING = 7.00 INCHES EMBEDMENT- 5.00 INCHES WALL THICKNESS = 6.50 INCHES ANGLE LENGTH = 24.00 INCHES SP INSP REQ = 1 (1:YES,0:NO) TENSION ZONE = 1 (1:YES,0:NO) LOAD FACTOR = 2.0 BOLT HOOKED AROUND HOR. REINF. = PHI FACTOR = 0.85 6.00 X 0.75 "DIAMETER 0.750 LLV (1:YES,0:NO) UNFACTORED LOADS: VDEAD = V LIVE = T SEISMIC = T SEISMIC = MATERIAL PROPERTIES: 7.70 KIPS fc= 3,00 KSI 9.40 KIPS fut= 60.00 KSI 0.78 KIPS Fy= 36 KSI FOR ANGLE 1.09 KIPS FOR STEEL ELEMENTS LIVE LOAD TO BE INCL. WITH COMB. LOADING (1 :YES, 0:NO) = CAPACITIES: Pc = 95.43 KIPS 67.92 KIPS Vss= Vc = 79.52 KIPS 77,43 KIPS DESIGN SUMMARY LOAD CASE 1 (DEAD + LIVE} ANCHOR CHECK 1/PHI*[(Pu/Pc)5/3+{VuA/c)5/3]= (Pu/Pss)2 + (Vu/Vss)2 = 1/PHI*(Pu/Pc) = 1/PHI*(VuA/c) = ANGLE CHECK HORIZ. LEG fb = VERT. LEGfb = LOAD CASE 2 (DEAD + LIVE ANCHOR CHECK 1/PHI*[(Pu/Pc)5/3+(Vu/Vc}5/3l= (Pu/Pss)2 + (Vu/Vss)2 = 1/PHI*(Pu/Pc) = 1/PHI*(VuA/c) = ANGLE CHECK HORIZ. LEG fb = VERT. LEGfb = 0.964 <1.0 OK 0.563 <1.0 OK 0.547 <1.0 OK 0.813 <1.0 OK 15^9 KSI <.9XFy KSI OK 23.38 KSI <.9XFy KSI OK + SEISMIC* 0.420 <1.0 OK 0.198 <1.0 OK 0.366 <10 OK 0.466 <1.0 OK 9.65 KSK.9XFy KSI OK 15.57 KSI <.9XFy KSI OK r ANGLE LEDGER DESIGN (PER SEC.1923 1997 UBC) DESCRIPTION: FLOOR GIRDER SEAT AT LINE M 0.00 ANCHOR DESIGN ANALYSIS fSTRENGTH DESIGN METHOD) IT LOAD CASE 1 (DEAD + LIVE* DEAD LOAD FACTOR = LIVE LOAD FACTOR = I V p< -> — > c— > a I OAD CASE 2 (DEAD + LIVE + DEAD LOAD FACTOR = LIVE LOAD FACTOR = SEISMIC LOAD FACTOR * I V p< -> > C— > a 1.40 Vu = 1.70 Tu = C = ->T a = Pu = V MOM ARM= T MOM ARM= SEISMIC! 1,32 Vu = 0.55 Tu = 1.10 C = a = -> T Pu = V MOM ARM= T MOM ARM= ANGLE DESIGN ANALYSIS (LRFD METHOD) LOAD CASE 1 (DEAD + L1VE1 DEAD LOAD FACTOR = LIVE LOAD FACTOR = 1 V p< -> — > C— > a LOAD CASE 2 (DEAD + LIVE + DEAD LOAD FACTOR = LIVE LOAD FACTOR = SEISMIC LOAD FACTOR = 1 V p< -> — > c— > a 1.20 Vu = 1.60 Tu = C = ->T a = C = M = V MOM ARM= T MOM ARM= Sreg= treg= SEISMIC! 1.32 Vu = 0.55 Tu - 1.10 C = a = ->T C = M = V MOM ARM= T MOM ARM= Sreg= treg= 53.52 KIPS 0.00 KIPS 42.84 a KIPS 0.74 INCHES 31.60 KIPS 3.25 in 2.25 in 30.67 KIPS 2.41 KIPS 42.84 a KIPS 0.44 INCHES 21.16 KIPS 3.25 in 2.25 in 24.28 KIPS 0.00 KIPS 42.84 a KIPS 0.33 INCHES 13.99 KIPS 78.91 KIP-INCHES 3.25 in 2.25 in 2.44 UnA3 0.64 in 15.33 KIPS 1.20 KIPS 42.84 a KIPS 0.22 INCHES 9.25 KIPS 52.54 KIP-INCHES 3.25 in 2.25 in 1.62 linA3 0.52 in r 6AR5 g ROOF. STRUCTURAL WRTX /SOUTH a R£CTlOKi Ml . FORCe =21.64-K rr ' ! CHORD FDRC£ = LINE uM4--2.56 , ,3206,^ CHORD , o i-'<S~ , 52 - CHORp FLR NORTH /SOUTH O CHORD PRIME JOB STRUCTURAL owe «*-o& ENGAcERS SHT : L<~Z LSHE EAST/ vossr loo' CHORp FORCE == 40. <*> <*> <*> Analysis of Rigid Diaphrams {1.1) <*> <*> <*> Description: ASTON VIEWS FLOOR DIAPHRAGM - SHEAR WALL Job Number: 2K-270 Center of Mass in feet (Xcm=131.40, Ycm=119.40) Seismic Forces in Kips (Vx=507.20, Vy=515.20) Length of Diaphram (Lx-248.501, Ly=284.50') Line, X(ft.), Ytft.), RR, Angle(deg) (1), 22.50, 169.33, 2.40, 102.00 1.95, 0.69, 0.51, 0.85, 1.26, 1.73, PftfME (4), (13) (14) (A), (K), 114.58, 291.00, 306.00, 49.00, 241.33, (N), 204.83, 218.00, 25.00, 75.00, 288.75, 100.00, 0.00, 102.00 90.00 90.00 12.00 0.00 0.00 OUTPUT: Center of Rigidity: Xcr - 125.95', Ycr - 88.96' Xcm-Xcr= 5.45', Ycm-Ycr= 30.44', Jp= 104779 ft~2 -=-=-=-=-=<,<. uase ii) : Fx - 507.20 kips, Fy = Line, Vx, Vy, (1), 13.18, 0.00, (4), 10.71, 0.00, (A), 103.35, 0.00, (K), 160.12, 0.00, (N), 219.84, 0.00, Fx = 507.20 kips, Fy = Line, Vx, Vy, (1), 13.18, 0.00, (4), 10.71, 0.00, T- (A), 103.35, 0.00, (K), 160.12, 0.00, (N), 219.84, 0.00, Fx - 0.00 kips, Fy = Line, Vx, Vy, (1), 0.00, 219.13, (4), 0.00, 178.04, (13), 0.00, 65.85, '< (14), 0.00, 48.67, (A), 0.00, 3.51, T Fx = 0.00 kips, Fy = Line, Vx, Vy, (1), 0.00, 219.13, (4), 0.00, 178.04, (13), 0.00, 65.85, (14), 0.00, ' 48.67, T (A), 0.00, 3.51, x. loading + 0.00 kips Tx, -17.17, -5.17, 43.46, 6.86, -27.98, 0.00 kips Tx, -11.37, -6.05, 19.25, 4,95, -6,79, 515.20 kips Tx, -42.19, -37.85, 0.00, 0.00, 15.62, 515.20 kips Tx, -47.34, -37.07, 0.00, 0.00, 37.09, D=S accidental eccentricity @ (131.40M33.63M/ Tp = Ty 18.76 -26.07 31.20 0.00 0.00 5% accidental eccentricity. @ (131.40M05.18M , Tp = Ty -8.55 -21.95 26.06 0.00 0.00 5% accidental eccentricity. @ (143.82M19.40M , Tp - Ty -20.66 0.01 11.60 9.24 -0.19 -5% accidental eccentricity. 6 (118.97M19.40M/ Tp = Ty 3.57 -3.65 -2.32 -1.98 4.38 . »=-.=_=_=_=_ 22653 kip-ft *>"S — — — _— _ — 8223 kip-ft -9211 kip-ft 3592 kip-ft Summary - Note: contrib. of torsion that reduces mag of design shears is ignored. Line, Direct Shear, Max Wall Shear, (4), (A), (K), (N), (1), (4), (13), (14), (A), 10.71, 103.35, 160.12, 219.84, 219.13, 178.04, 65.85, 48.67, 3.51, 10.71, 146.80, 166,98," 219, 84, J- 222,70, 178.05, 77.44,'' 57.91, ' 7.88, Case Case (1) Case (1) -t Case (1) Case (2) Case (4) X Case (3) y. Case (3) Case (3) Case (4) End of Run T LATERAL ANACTSiS FOR R^NlEL E = P&, + Ey. bin r V P1APH. STRUCTURAL EWE ENGasigRS SW : Y-T © ROOF PL FLR DL ( 55 sfx23.3'y 223.75') x <?.5 'x223.2^''>- 24b. ; i ^f l4.S'x 223.25')= 573. 4 K Ereo-f = C 1^X253.0X5.25:2^ 1) - 3 8 f. n~©LINE @ •—*","?'oor 2.0^ ^ 0,244-f43')U€S.2&' } -- 234.S . < v ^ , ' ' RCOF PL = ( FLR DL - C5 (^a^psf X [4;(65,2^'}= 337 v =403,0 T LATERAL ANALYSIS R9R PANEL.. r-T" ' ! &BL STRUCTURAL CWE Y-TWR^TIOSLCCOMT) ^ENG^ERS «:^ 0.244 OL -- C(4ps-f JC4V5D')-*- CSI-^Sp&f * qa'xfco'} * 4L4 t FLR OL - C55psfx: SS' x So'}-*- (qa3ps< r K=' v SO') = 15 J K LINE . t£o. .L /»o^/'0.9C^-Xq%&.)(5D-;.. gS,6ii, ^?a4-.&'X50';= ->ao- / 13^i&lt ROOF FLR DL = C55Sf ^ 3.S|'x5o')+ W0,3s-f ^14,5' v SO') - P -- [,i^ +E\/= C(.2^X£5,6;^ (0.2 )«.[)= e T"LATERAL AM ALTS IS FOR X-X DIRECTION STRUCTURALENGINEERS Ms+jfa iT a /50.0k > ROOF DL = C(4pf x 33V 100')82.1 LR PL '- P = = 245. LINE h-^-T « (2x ROOF FLR D f x(33' x fa ^ 263-8 •' Ercxrf - CL 36X2^6-(0^X147.^)- ) = 336 IT LATERAL ANALYSIS FOR X-X ptRECTlQN (COMT) PRIME JOB:£^2£ STRUCTURAL OWEENGINEERS SHT: r LfNE (R 0,244. (Si.sSps-fX^ 'X na.251 fe &K ROOF PL-- (H-ps-f FLR O * 446. -- Eroo-f LATERAL ANALYSIS FOR PANEL IT TOTAL AREA (ft2): 42079.4 .1 Y-Y-ROOF PRIMESTRUCTURAL r Vi=SVwi=691.20 © LINE 1 PANEL W-2-W-7 W-8 2 RIGIDITY (R) R/(IR) 0.315 0.511 2.401 0.131 0.213 1.000 ©PIER Vwi=Eh Lw(ft) 11.28 3 13.73 3 r = (Vwi/Vi)*{10/Lw) 0.054 0.066 258.00 E=pEh+Ev 44.3 71.9 337.7 ©LINE 4 PANEL E-2 ~ E-5 E-6 Z RIGIDITY (R) R/(ZR) 0.315 0.688 1.948 0.162 0.353 1.000 Vwi=Eh Lw(ft) 15.26 3 47.69 5 r=(Vwi/Vi)*(10/Lw) 0.074 0.138 283.10 E=pEh+Ev 65.2 142.3 403 ©LINE 13 PANEL E-9 Z RIGIDITY (R) 0.685 0.685 R/(ZR) 1.000 1.000 Vwi=Eh 37.18 Lw(ft) 6 r = (Vwi/Vi)*(10/Lw) 0.090 84.50 E=pEh+Ev 117.3 117.3 @ LINE 14 PANEL E-8 I RIGIDITY (R) 0.511 0.511 R/(ZR) 1.000 1.000 Vwi=Eh 42.51 Lw(ft) 6 r = (Vwi/Vi)*00/Lw) 0.103 65.60 E=pEh+Ev 92.8 92.8 Y-Y-2NDFLR Vi=IVwi=1392.20 © LINE 1 0~ PANEL W-2-W-7 W-8 RIGIDITY (R) 0.315 0.511 2.401 R/(ZR) 0.131 0.213 1.000 ©PIER Vwi=Eh Lw(ft) 24.35 3 29.63 3 r = (Vwi/Vi)*(10/Lw) 0.058 0.071 556.90 E=pEh+Ev 65.8 106.7 501.3 ©LINE 4 PANEL E-2 - E-5 E-6 I RIGIDITY (R) 0.315 0.688 1.948 R/{IR) 0.162 0.353 1.000 Vwi=Eh Lw(ft) 27.92 3 94.38 5 r = (Vwi/Vi)*(10/Lw) 0.067 0.136 517.90 E=pEh+Ev 59.9 130.8 370.3 ©LINE 13 PANEL E-9 Z RIGIDITY (R) 0.685 0.685 R/(ZR) 1.000 1.000 Vwi=Eh 80.23 Lw(ft) 6 r = (VwiA/i)*{10/Lw) 0.096 177.90 E=pEh+Ev 135.5 135.5 rr ©LINE 14 PANEL E-8 I. RIGIDITY (R) 0.511 0.511 R/(ZR) 1.000 1.000 Vwi=Eh Lw(ft) 97.09 6 r = (Vwi/Vi)*(10/Lw) 0.116 139.50 E=pEh+Ev 110.5 110.5 P = 0,138 2 - 20/(rmax *SQRT(AREA)) =1.29 •'! LATERAL ANALYSIS FOR PANEL T TOTAL AREA (ft2): 42079.4 ! X-X-ROOF IT Vi=LVwi=705.00 fc * @UNEA PANEL N-2 & N-4 N-3 & N-i 2 RIGIDITY (R) R/(IR) 0.315 0.108 0.846 0.372 0.128 1.000 @PIER Vwi=Eh 20.91 10.76 Lw(ft) 3 3 r = (Vwi/Vi)*(10/Lw) 0.099 0.051 168.50 E=pEh+Ev 91.4 31.4 245.6 @ LINE K PANEL N-6 N-7 ~ N-9 2 RIGIDITY (R) 0.478 0.315 1.423 R/(2R) 0.336 0.221 1.000 Vwi=Eh 59.28 21.14 Lw(ft) 5.5 3 r=(Vwi/Vi)*(10/Lw) 0.153 0.100 286.50 E=pEh+Ev 140.8 92.8 419.2 @ LINEN PANEL S-1 ~ S-5 S-6 £ RIGIDITY (R) 0.315 0.151 1.726 R/(2R) 0.183 0.087 1.000 Vwi=Eh 15.21 15.18 Lw(ft) 3 4.5 r=(VWi/\rt)*(10/Lw) 0.072 0.048 250.00 E-pEh+Ev 68.9 33.1 377.8 X-X-2NDFLR Vi=LVwi=1370.10 ©LINE A PANEL N-2 & N-4 N-3 & N-i 2 RIGIDITY (R) 0.315 0.108 0.846 R/(2R) 0.372 0.128 1.000 @PIER Vwi=Eh 43.50 22.37 Lw(ft) 3 3 r = (Vwi/Vi)*(10/Lw) 0.106 0.054 350.50 E=pEh+Ev 103.4 35.4 277.6 ©LINEK PANEL N-6 N-7 - N-9 2 RIGIDITY (R) 0.478 0.315 1.423 R/(SR) 0.336 0.221 1.000 Vwi=Eh 109.53 36.51 Lw(tt) 5.5 3 r = (Vwi/Vi)*(10/Lw) 0.145 0.089 494.80 E=pEh+Ev 112.9 74.4 336.1 @ LINE N PANEL S-1 ~ S-5 S-6 2 RIGIDITY (R) 0.315 0.151 1.726 R/(2R) 0.183 0.087 1.000 Vwi=Eh 31.93 33.06 Lw(ft) 3 4.5 r = (Vwi/Vi)*(10/Lw) 0.078 0.054 524.80 E=pEh+Ev 84.5 40.5 463 P = 0.153 2 - 20/(rmax *SQRT(AREA)) =1.36 u I s :: > 9 I X X X zoft m1>(P m O Zmr irtrm O _z t- Zm m>o> TJ Zmr mrm > nzm NORTH I(P— 1 mZ H -ift-< >_, m• %\ l )JL, CSQ I^Q i IM- C f !!* DESCRIPTION- CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1997 UBC) U=1.32D+1.1E+0.5Lf U=0.99Dtt.1E TYPICAL PANEL - EAST PANEL E-2 THRU E-5 uniform toatte(w1) PRIME STRUCTURAL eweENGINETO <~Vroof=65.20 kips <— Vfloor =59.90 kips wall thk =6.50 in W1= P1 = P2 = P3 = P4 = P5 = P6 = Wall Thickenss= Seismic Load factor= 0.37 k/R 0.00 kips 0.00 kips 0.00 kips 0.00 kips 0.00 kips 0.00 kips 6.50 in 1.10 W2d= W2L= Vroof* Vfloor = fc= fy* fffiff" OFT AtPtor*! AtPtortt wall pie r= thk= eff. thk= h/L= Rf= V= Av = Vn = Vc = Vu = Vs = 8"Acv-SQRT(f c) = Phi*Vn = 0.60"Vn = Phi'Vc * 0.60-VC = HOOK HRIZ. REINF. Vu>Q.6"Vc Two curtain shear reinf. Vu<Phi*Vc/2 shear reinf.req'd= #4© #5@ #6@ #7@ #4 dowels at slab Avf req'd=Vu/{0.6-Phify) #4 dowels at 2 6.50 5.75 2.17 3.45 21.73 207.00 57.23 9.58 23.91 >8.16 104.73 34.34 5.75 YES YES NO NO 0.20 7.00 7.00 7.00 7.00 0.78 9 2 6.50 5.75 2.17 3.45 21.73 207.00 57.23 9.58 23.91 18.16 104.73 34.34 5.75 YES YES NO NO 0.20 7.00 7.00 7.00 7.00 0.78 9 0.73 k/ft 1.07 Wft 65.20 kips 59.90 kips 4.00 ksi 60.00 ksi L1= L2= L3= L4= L5= L= AtPi«r« At Pier «4 2 6.50 5.75 2.17 3.45 21.73 207.00 57.23 9.58 23.91 18.16 104.73 34.34 5.75 YES YES NO NO 0.20 7.00 7.00 7.00 7.00 0.78 9 1 9.00 8.25 3.00 2.29 41.70 297.00 82.12 14.09 45.87 37.42 150.27 49.27 8.45 YES YES YES NO 0.27 6.00 6.00 6.00 6.00 1.50 5 3.00ft 9.00ft 3.00ft 9.00ft 3.00ft 27.00ft AtPtertfi 1 9.00 8.25 3.00 2.29 41.70 297.00 82.12 14.09 45.87 37.42 150.27 49.27 8.45 YES YES YES NO 0.27 6.00 6.00 6.00 6.00 1.50 5 h1= 2.00ft h2= 15.00ft (13= 14.00 ft h4= 6.50 n'; h5= 9.00 ft h6= 0.00 ft h7= 7.50 ft h8= 8.00 ft AtPlartfi 1 (yes=1 , no=*2) */ 9.00 in 8.25 in 3.00 2.29 41 .70 kips 297.00 in*2 82.12 kips 14.09 kips 45.87 kips 37.42 kips 150.27 kips 49.27 kips 8.45 kips YES Vu>Acv*SQRT(fc)? YES tf yes, shear reinf. require. YES Vu>Acv*2'SQRT(fc) NO 0.27 m"2/ft /uVA-* 6.00 in o.c. * Jjf O , 6.00 in o.c. \JC» t u* Q." ' 6.00 in o.c. 0 ^ vx^ 6.00 in o.c. P" 1.50 inA2 % "ifrtf P(^t-S 5 "o.c. DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1997 UBC) TYPICAL PANEL - EAST PANEL E-2 THRU E-5 PRIMESTRUG! ._ ENGINES^ CHECK HQLDOWN U =«1.1Et0.99*DL Pter1&4 Pter2&5 Pler346 Uniform W1 - from PI .2.3- Wallwt= Pter 1,2,3= Uniform W2d= from P4,5,6= Wallwt= Pter 4,5,6= SumP = OTM= 2.81 0.00 3.41 3.66 5.50 0.00 2.74 4.73 22.84 2729.40 ft-kips 4.49 0.00 6.34 3.66 8.80 0.00 5.48 4.73 33.49 2.81 kips 0.00 kips 3.41 kips 3.66 kips 5.50 kips 0.00 kips 2.74 kips 4.73 kips 22.84 kips Mr= Mr@a 136.32 0.00 177.69 148.08 267.18 0.00 148.08 191.36 1068.71 Mr@b 136.32 0.00 177.69 148.08 267.18 0,00 148.08 191.36 1068.71 ft-kips HokJown at left end = HokJown at right end* Holdown Bars #5 re-bars = #6 re-bars = #7 re-bars = 73.37 kips As= 1 .36 inchA2 73.37 kips As= 1.36inchA2 left end right end 5.00 5.00 #8 re-bars = Check Boundarv Member Reauirement E: At Pier *4 30.84 34.15 1051.83 4.00 3.00 2.00 At Pter «S At Pter K 46.29 30.84 Kips 50.61 34.15 Kips 1051.83 1051,83 Kips 4.00 3.00 2.00 0,1*Ag*fc = Mu/(Vu"lw> = 3"tw*h*SQRT(fc) = Boundary Member = Pu<0.35*Po Pu<0.35"Po Pu<0.35'Po Geometrically Symmetrical Wall 118.80 118.80 118.80 Kips 3.00 3.00 3.00 56.35 56.35 56.35 Kips No No No , Flaxural Deafan Mu = Asreq'd = Asmin = As max = Beta = Rhowbal = #4 re-bar = #5 re-bar = *6 re-bar = #7 re-bar = #8 re-bar = #9 re-bar = At Pier #4 412.83 3.18 0.96 6.16 0.85 O.D3 At Pier #4 16 11 8 6 5 4.X At Pier #5 412.83 3.18 0.96 6.16 412.83 ft-kips 3.18 sq.in 0.96 sqJn (200/fy * b * d) 6.16 sq.in {Rhow bal * 0.75 * b * d) At Pier #5 16 11 8 6 At Pier #6 16 11 8 6 5 r 6 CONCRETE SHEAR WALL DESIGN (PERSEC.1921 1997 UBC) U=1.32D+1.1E U=0.99DM.1E PRIME STRUCTURALENG!N£B3S SHT DESCRIPTION:PANEL E-6 uniform Ioads(w1) Vroof =121.10 kips <— Vfloor =110.60 kips wall thk =6.50 in W1 = P1 = P2 = P3 = P4 = P5 = P6 = Wall ThicKenss= Seismic Load factor* «inn» rmtrif wall pier= thk= eff. thk= h/L= R^ v= Av = Vn = Vc = Vu = Vs = 8*Acv-SQRT(f c) = Phi-Vn = 0.60*Vn = Phi-Vc = 0.60*Vc = HOOK HRIZ. REINF. Vu>0.6*Vc Two curtain shear reinf. Vu<Phi*Vc/2 shear reinf.req'd= #4@ #5@ *6@ #7@ #4 dowels at slab Avf req'dsVu/tO.e-Phify) #4 dowels at 0.37 k/ft 0.00 kips 0.00 kips 0.00 kips 0.00 kips 0.00 kips 0.00 kips 6.50 in 1.10 W2d= W2L= Vroof = Vfloor = fc= fy= 0.73 k/ft 1.07 k/ft 121.10 kips 11 0.60 kips 4.00 ksi 60.00 ksi L1= L2= L3= L4= L5= L= At Pier «1 At Pier *2 At Pier *3 At Pier « 1 9.00 8.25 2.17 4.95 31.69 297.00 82.12 13.74 34.86 26.62 150.27 49.27 8.24 YES YES NO NO 0.27 6.00 j£ 6. 00^.13 - - 6.00 ^\S 6.00^- 1.14 6 2 6.25 5.50 2.17 3.30 21.13 198.00 54.75 9.16 23.24 17.75 100.18 32.85 5.50 YES YES NO. NO 0.19 > 7.00 I/' .V 7.00r7.00 7.00 0.76 9 2 7.25 6.50 1.30 10.66 68.28 390.00 132.50 24.42 75.11 60.45 197.33 79.50 14.65 YES YES YES NO 0.38 qfl 12.00 & * 12.00O 12.00 12.00 2.45 5 1 9.00 8.25 3.00 2.29 41.42 297.00 82.12 14.09 45.56 37.11 150.27 49.27 8.45 YES YES YES NO & ,0.27 6.00 jW 3.00 9.00 ft h1= 1.00ft ft H2= 15.00 ft 3.00 ft h3= 14.00 ft 9.00 5.00 29.00 At Pier *5 1 9.00 8.25 3.00 2.29 41.42 297.00 82.12 14.09 45.56 37.11 150.27 49.27 8.45 YES YES YES NO 0.27 s$> 6.00 i / 3-W?A» (s- \\ S-OO^U11" 6.00 6.00 0, rt^ 1.49 5 6.00 CHHO *"1.49 5 ft h4= 6.50 ft ft h5= 9.00 ft ft h6= 0.00 ft h7= 7.50 ft h8= 8.00 ft At Pier *6 2 (yes=1 , no»2) 10.00 in 9.25 in 1.80 8.24 148.86 kips 555.00 in*2 174.51 kips 36.12 kips 163.74 kips 142.07 kips 280.81 kips 104.71 kips 21 .67 kips YES Vu>Acv*SQRT(fc)? YES If yes, shear reinf. require. YES Vu>AcV2*SQRT(fc) NO 1 . 0.51 10*2^ • ^ <*AM/ 9.00 in o.c. . A^v- (i.iv*\)iV k(rl\AA Vlif* 12.00 in o.&4S5u^*' v 12.00 in o.c. (y 12.00 in o.c. P iS-^Kb5.35 in*2 2 "o.c. DESCRIPTION.' CONCRETE SHEAR WALL DESIGN (PERSEC.1921 1997 UBC) PANEL E-6 PRIME STRUCTURAL ENGINES^ CHECK HOLDOWN U = 1.1E 10.99* DL Fieri &4 Pter2&5 Pfer3&6 Uniform W1= 2.81 4.49 3.55 kips from P1,2,3= 0.00 0.00 0.00 kips Wallwt= 3.17 6.09 3.33 kips Pier 1,2.3= 5.06 3.52 6.80 kips Uniform W2d= 5.50 8.80 6.96 kips from P4,5,6= 0.00 0.00 0.00 kips Wall wt= 2.74 5.48 2.74 kips Pier 4,5,6= 4.73 4.73 8.75 kips SumP= 24.00 33.10 32.14 kips OTM= 5060.30 ft-kips Mr= Mr@a 157.27 0.00 175.30 235.17 308.23 0.00 150.82 302.75 1329.53 Mr@b 157.27 0.00 189.92 210.70 308.23 0.00 167.27 225.05 1258.44 ft-kips Holdown at left end = Holdown at right end= Holdown Bars #5 re-bars = #6 re-bars = #7 re-bars = #8re-ba As=151.60 kips 149.13 kips tetter 10.00 7.00 5.00 4.00 pheek Boundary Member Requirement At Pier *4 Pv = 32.00 Pu = 35.68 Po= 1051.83 At Pier *5 45.91 50.10 1051,83 AtPtertS 42.27 Kips 47.49 Kips 1965.53 Kips Pu<Q.35*Po Pu<Q.35BPo Pu<0.35wPo 0.05-Agfc* Mu/(Vu1w) = 3Tw*h*SQRT(f c) = Boundary Member= Geometrically Unsymmetrical Wall 59.40 59.40 111.00 Kips 3.00 3.00 1.80 56.35 56.35 1050 Kips No No COLUMN Flexural Peafcm Mu = Asreq'd = Asmin = As max = Beta = Rhow bal = #4 re-bar = #5 re-bar = *6 re-bar = #7 re-bar = #8 re-bar = *9 re-bar = At Pier #4 410.08 3.15 0.96 6.16 0.85 0.03 At Pier #4 16 11 8 6 4i/ 4 At Pier #5 410.08 3.15 0.96 6.16 At Pier *6 1473.67 ft-kips 6.52 sq.in 1.87sq.in(200/fy-b'd) 11.97 sq.in (Rhow bal * 0.75 • b * d) At Pier #5 16 11 8 At Pier #6 33 22 15 11 9 7 PANEL E~fc CCQMT) HOLDDOWJN PA e C0314 Mf PRIMEsmucENGINEERS «: 12' t C = 0,M = .M, C MA*. 3105.51 fl )- CSS. IK r J O O O 0 o o o o o o o o o o o o J 63 x 10 in J J Code: ACI 318-95 Units: English Run axis: About Y-axis Run option: Investigation Slenderness: Not considered Column type: Structural bars:ASTMA615 Date: 09/01/00 Time: 17:34:06 J J P(kip) 2500T 2500 My (k-ft) -1000 x PCACOL V3.00 (PCA 1999) - Licensed to: Licensee name not yet specified. 1 Column: PIER C @ E-6 File: C:\PRIME4\PROGS\PCACQL\2K270E6.COL Project ASTON VIEWS Engineer: fy =60ksi Ag = 630inA2 Es = 29000 ksi As = 16.40 inA2 e_rup = Infinity Xo = 0.00 in Yo =0.00 in Clear spacing = 2.87 in phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 f c = 4 ksi Ec= 3605 ksi J. fc = 3.4ksi e_u = 0.003 in/in ^ -.etal = 0.85 Confinement: Tied 1 18 bars Rho = 2.60% Ix = 5250 inA4 ly = 208373 inA4 Clear cover = 1.56 in —09/01/00 PCACOL V3.00 - PORTLAND CEMENT ASSOCIATION - 17:33:29 Licensed to: Licensee name not yet specified. General Information: File Name: C:\PRIME4\PROGS\PCACOL\2K27010.COL Project: ASTON VIEWS __ Column: PIER C @ E-6 Engineer: Code: ACI 318-95 Units: English Page 2 2K27010 PRIMSSTRUCTURALENGINEERS SHT Run Option: Investigation Run Axis: Y-axis Material Properties: f'c =4 ksi EC = 3605 ksi fc =3.4 ksi Ultimate strain = 0.003 in/in Betal =0.85 Section: Rectangular: Width = 63 in Gross section area, Ag = 630 inA2 Ix = 5250 inA4 Xo = 0 in Reinforcement: Slenderness: Not considered Column Type: Structural fy = 60 ksi Es = 29000 ksi Rupture strain = Infinity Depth * 10 in ly = 208373 inA4 Yo = 0 in Rebar Database: ASTM A615 Size Diam (in) Area (inA2)Size Diam (in) Area (inA2) Size Diam (in) Area (inA2) # 3 # 6 # 9 # 14 0.38 0.75 1.13 1.69 0.11 0.44 1.00 2.25 # 4 # 7 # 10 * 18 0.50 0.88 1.27 2.26 0.20 0.60 1.27 4.00 # 5 # 8 # 11 0.63 1.00 1.41 0.31 0.79 1.56 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a} = 0.8, phi(b) - 0.9, phi(c) = 0.7 r— Pattern: Irregulari ' Total steel area, As = 16.40 inA2 at 2.60% !~ Area inA2 X (in) Y {in} Area inA2 X (in) Y (in) Area inA2 X (in)Y (in) Control 1.00 -29.4 1.00 -17.4 1.00 21.4 1.00 -29.4 1.00 -17.4 1.00 21.4 Points: 2.9 2.9 2.9 -1.9 -1.9 -1.9 Axial Bending about Y @ 9 @ @ @ @ @ Pure compression Max compression fs = 0.0 fs = 0.5*fy Balanced point Pure bending Pure tension 1 0 1 1 0 1 Load P kip 2149.2 1719.3 1593.0 1135.5 783.1 0.0 -885.6 .00 .20 .00 .00 .20 .00 -25.4 0.0 25.4 -25.4 0.0 25.4 X-Moment k-ft -27 -16 -15 -9 -2 13 37 2 2 2 -1 -1 -1 .9 .9 .9 .9 .9 .9 Y-Moment k-ft 0 906 1140 1772 2105 1882 0 1. 1. 1. 1. 1. 1. N.A 00 00 00 00 00 00 -21.4 17.4 29.4 -21.4 17.4 29.4 2.9 2.9 2.9 -1.9 -1.9 -1.9 . depth 196. 65. 60. 45. 36. 11. 0. in 15 71 88 27 03 64 00 *** Program completed as requested! CONCRETE SHEAR WALL DESIGN (PERSEC.1921 1997 UBC) LN1.32D+1.1E U=0.99Dt1.1E STRUCTURAL DATS: ENGi.%£ERS SHI ; DESCRIPTION:PANEL N-6 uniform loads(wl) Vroof =140.80 kips Vfloor =112.90 kips wall thk 6.50 in W1= P1 = P2 = P3 = P4 = P5 = P$ = Wall Thickenss= Seismic Load factor= 0.37km 0.00 kips 0.00 kips 0.00 kips 0.00 kips 0.00 kips 0.00 kips 6.50 in 1.10 W2ds W2L= Vroofs Vfloor* fc= fy* wall pier= thk= eff. thk= h/L= Rf= V= Av = Vn = Vc = Vu = Vs = 8*AcVSQRT(f c) = Phi*Vn = 0.60*Vn » Phi"Vc = 0.60*Vc = HOOK HRIZ. REINF. Vu>0.6-Vc Two curtain shear reinf. Vu<Phi*Vc/2 shear reinf.req'd= #4@ #5@ #6@ #7@ #4 dowels at slab Avf req'd=Vu/(0.6*Phify) #4 dowels at 2 10.00 9.25 0.79 32.43 104.90 915.75 311.11 84.24 115.39 64.85 463.34 186.67 50.54 YES YES NO NO 0.30 8.00^77^ 12.00 Q£'Q 18.00" 18.00 3.77 5 /?) 10.W 9.25 2.17 5.55 17.95 333.00 92.07 15.41 19.74 10.50 168.49 55.24 9.24 NO YES NO NO A 0.30 r 6.00 L^' 6.00 , 6.00 6.00 0.65 9 0.73km 1.07km 140.80 kips 112.90 kips 4.00 ksi 60.00 Ksi L1= L2= L3= L4= L5= L= At Pier *3 At Pier « Q)10.00 9.25 2.17 5.55 17.95 333.00 92.07 15.41 19.74 10.50 168.49 55.24 9.24 NO YES NO NO 0.30 ly> 6.00 \flr tjs.oo jLjQ' 6.00 ^ 6.00 0.65 9 2 10.00 9.25 1.09 20.24 202.32 915.75 311.11 89.46 222.55 168.88 463.34 186.67 53.68 YES YES YES NO 0.3$ 14.00 ft. 18.00^ 18.00$, 18.00 ^JH^ 3 8.25ft 9.00ft 3.00ft 9.00ft 3.00ft 32.25 ft At Pier 45 1 10.00 9.25 3.00 2.57 25.69 333.00 92.07 15.80 28.26 18.78 168.49 55.24 9.48 YES YES NO NO 0.30 jsP 6.00 L.°' 6-00^ ^ 6.00 6.00 t 0.92 7 h1« h2* h3= h4* h5= h6= h7= h8= At Pier *6 1 (yes=1. 10.00 in 9.25 in 3.00 2.57 25.69 kips 333.00 in*2 92.07 kips 15.80 kips 28.26 kips 18.78 kips 168.49 kips 55.24 kips 9.48 kips 2.00 ft 15.00ft 14.00ft 6.50 n 9.00ft 0.00ft 7.50 n 8.00ft no=2) YES Vu>AcVSQRT(fc)? YES If yes, shear reinf. require. NO Vu>AcV2'SQRT(fc) NO 0.30in*2m -Mjf> 6.00 in o.c. ^Y*jfebo in o.c. ^ 6.00 in o.c. 6.00 in o.c. '<tW 0.92 in"2 7 "o.c. r r r r r r r r t r r r r r r r r r DESCRIPTION: CHECK HOLDOWN Uniform W1* from P1, 2,3= Wallwt= Pier 1,2,3= Unifonn W2d» from P4,5,6= Wallwt= Pier 4,5,6= SumP = OTM= Holdown at left end = Holdown at right end= Holdown Bars #5 re-bare- ge re-bars = #7 re-bare - £8 re-bars = «TCG& ENGINEERS SHf*i ^t CONCRETE SHEAR WALL DESIGN — (PER SEC.1921 1997 UBC) PANEL N-6 UBl.1EtO.9TDL Pier1»4 Pter2&6 4.72 4.44 0.00 0.00 4.27 6.34 15.47 5.63 9.31 8.76 0.00 0.00 2.74 5.48 14.44 5.25 50.94 35.90 5663.80 ft-kips 135.67 144.04 left end 9.00 6.00 5.00 4.00 Pier 3 & 6 Mr ® a 2.78 kips 192.41 0.00 kips 0.00 3.41 kips 241.36 5.63 kips 342.25 5.48 kipS 379.62 0.00 kips 0.00 2.74 kips 198.47 5.25 kips 319.43 25.28 kips Mr= 1673.53 kips As= 2.51 rnchA2 kips As= 2.67 heh*2 1 jA^ right end ^ \ & g.oo 4^r^ 7.00 * 5.00 4.00 Mr®b 192.41 0.00 210.65 519.43 379.62 0.00 155.28 484.80 1942.19 fl-kips vi^r r/i/xv^rvVO Y * \( Vfv (j Chack Boundary Hepjper R^qplmmant. Pv = Pu = Po = AtPter«4 AtPtertS 64.58 48.74 74.06 53.80 3243.13 . 1179.32 Pu<0.35*Po Pu<0.35*Po AlPlarte 33.30 Kips 37.38 Kips 1179.32 Kips Pu<0.35*Po Geometrically Unsymmetrical Wall 0.05'Agf c » Mu/(Vu1w) = 3*lw*h*SQRT(f c> = Boundary Member = 183.15 66.60 1.09 3.00 173.75 63.18 Yes No 66.60 Kips 3.00 63.18 Kips No ;>» see COLUMN CALS. Fiaxural Design MU = Asreq'd = Asmin = As max = Beta = Rhow bal = #4 re-bar = #5 re-bar = *6 re-bar = #7 re-bar = #8 re-bar = #9 re-bar = At Pier #4 At Pier *5 2002.98 254.32 4.91 1.86 3.17 1.07 20.31 6.84 0.85 0.03 At Pier #4 25 16 12 9 / 7/ 5 At Pier «6 254.32 fl-kips 1.86 sq.in 1.07 sq.in (200/fyb'd) 6.84 sq.in (Rhow bal * 0.75 * b • d) At Pier #5 At Pier #6 10 10 7 7 5 5 4 4 3 , 3 2V 2l/ / 09/01/00 PCACOL V3.00 - PORTLAND CEMENT ASSOCIATION - 17:20:28 Licensed to: Licensee name not yet specified. General Information: File Name: C:\PRIME4\PROGS\PCACOL\2K2709.COL Project: ASTON VIEWS Column: PIER A @ N-6 Engineer: Code: ACI 318-95 Units: English Page 2 2K2709 STRUCTURALENGINEERS Run Option: Investigation Run Axis: Y-axis Material Properties: f'c = 4 ksi EC - 3605 ksi fc =3.4 ksi Ultimate strain = 0.003 in/in Betal =0.85 Section: Rectangular: Width = 99 in Gross section area, Ag = 990 Ix = 8250 inA4 Xo = 0 in Reinforcement: Slenderness: Not considered Column Type: Structural fy = 60 ksi Es = 29000 ksi Rupture strain = Infinity Depth = 10 in ly = 808583 Yo = 0 in Rebar Database: ASTM A615 Size Diam (in) Area (inA2) # 3 # 6 # 9 # 14 0. 0. 1. 1. 38 75 13 69 0.11 0.44 1.00 2.25 Size Diam (in) Area (inA2) # # # # 4 7 10 18 0 01 2 .50 .88 .27 .26 0.20 0.60 1.27 4.00 Size Diam (in) Area (inA2) # 5 # 8 # 11 0. 1. 1. 63 00 41 0.31 0.79 1.56 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a} = 0.8, phi(b) - 0.9, phi(c) = 0.7 Pattern: Irregular Total steel area. As = 14.64 inA2 at 1.48% Area inA2 X (in) Y (in) Area inA2 X (in) Y {in} Area inA2 X (in) Y (in) 0.79 0.79 0.20 0.79 0.79 0.79 0.20 0.20 0.79 -47.4 -35.4 23.6 35.4 47.4 -39.4 0.0 11.8 43.4 1.4 1.4 1.4 1.4 1.4 -3.6 -3.6 -3.6 -3.6 0.79 0.20 0.20 0.79 0.79 0.79 0.20 0,79 0,79 -43.4 -11.8 0.0 39.4 -47.4 -35.4 23.6 35.4 47.4 1.4 1.4 1.4 1.4 -3.6 -3.6 -3.6 -3.6 -3.6 0.79 0.20 0.20 0.79 0.79 0.20 0.20 0.79 -39.4 -23.6 11.8 43.4 -43.4 -11.8 -23-6 39.4 1.4 1.4 1.4 1.4 -3.6 -3.6 -3.6 -3.6 .09/01/00 PCACOL V3.00 - PORTLAND CEMENT 17:20:28 Licensed to: Licensee name not - Control Points: Axial Bending about Y @ Pure compression @ Max compression @ fs = 0.0 @ fs - 0.5*fy @ Balanced point @ Pure bending @ Pure tension Load F kip 2936.2 2349.0 2276.5 1641.3 1198.9 0.0 -790.6 ASSOCIATION - yet specified. ^& PRIME ' JOB : TTnaii,i/& STRUCTURAL BAtel^g JKfi> ENGINEERS Sff : *-7y 3 K2709 X-Moment Y-Moment N . A . depth k-ft k-ft in 53 30 29 17 4 -29 -72 0 312.15 2006 100.00 2212 96.88 3550 72.04 4127 57.33 2861 12.16 -0 0.00 *** Program completed as requested! *** DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1997 UBC) U=1.32D+1.1E + 0.5Lf U-O.WDM.1E TYPICAL PANEL - NORTH PANEL N-7, N-8, N-9 uniform toads(w1) FRWE .STRUCTURAL ENGINEERS Vroof'92.80 kips Vfloor =74.40 kips wall thk =6.50 in r- W1* P1 - P2 = P3 = P4 = P5 = P6 = Wall Thickenss* Seismic Load factor9 0.37 k/ft 0.00 kips 0.00 kips 0.00 kjps 0.00 kips 0.00 kips 0.00 kips 6.50 in 1.10 W2d= W2L= Vroof - Vfloor = fc= fy= SffSfiR GfflKTT At Pier *1 At Pier #2 wall pier= thk= eff.thk" h/L= Rf= V= Av = Vn = Vc = Vu = Vs = 8*AcVSQRT(f c) = Phi"Vn = 0.60"Vn = Phi*Vc = 0.60*Vc = HOOK HRIZ. REINF. Vu>0.6-Vc Two curtain shear reinf. Vu<Phi*Vc/2 shear reinf.req'd= #4@ *5@ #6@ #7@ #4 dowels at slab Avfreq'dWu/tO.e-Phify) #4 dowels at 1 10.00 9.25 2.17 5.55 30.93 333.00 92.07 15.41 34.03 24.78 168.49 55.24 9.24 YES YES NO NO 0.30 6.00 6.00 6.00 6.00 1.11 6 1 10.00 9.25 2.17 5.55 30.93 333.00 92.07 15.41 34.03 24.78 168.49 55.24 9.24 YES YES NO NO 0.30 6-00 6.00 6.00 6.00 1.11 6 0.73 kffl 1.07km 92.80 kips 74.40 kips 4.00 ksi 60.00 ksi L1= L2= L3= L4= L5= L= At Pier *3 fa Pier *4 1 10.00 9.25 2.17 5.55 30.93 333.00 92.07 15.41 34.03 24.78 168.49 55.24 9.24 YES YES NO NO 0.30 6.00 6.00 6.00 6.00 1.11 6 1 10.00 9.25 3.00 2.57 55.73 333.00 92.07 15.80 61.31 51.83 168.49 55.24 9.48 YES YES YES NO 0.32 6.00 6.00 6.00 6.00 2.00 3 3.00ft 9.00ft 3.00ft 9.00ft 3.00ft 27.00 ft At Pier «5 1 10.00 9,25 3.00 2.57 55.73 333.00 92.07 15.80 61.31 51.83 168.49 55.24 9.48 YES YES YES NO 0.32 6.00 6.00 6.00 6.00 v*^\ **2.00 3 h1= h2= h3= h4= H5= h6= h7= h&= At Pier #6 1 (yes=1. 2.00ft 15.00ft 14.00ft 6.50ft 9.00ft 0.00ft 7.50ft 8.00ft no=2) ,,/ 10.00 in 9.25 3.00 2.57 in 55.73 kips 333.00 92.07 inA2 kips 15.80 kips 61.31 51.83 168.49 55.24 9.48 YES YES YES NO 0.32 6.00 6.00 6.00 6.00 !1«K*> 2.00 3 kips kips kips kips kips Vu>Acv-SQRT{fc)7 If yes, shear reinf. require. Vu>Acv"2*SQRT(fc) inA2/ft in o.c. in o.c. in o.c. in o.c. inA2 "o.c. 1 I t \*£\ >N° v^_y .^A*b* tso ^ DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PERSEC.1921 1997UBC) TYPICAL PANEL - NORTH PANEL N-7, N-8, N-9 PRIMESTRUCTURAL ENC3NEB& CHECK HOLDOWN U == 1.1Et0.99'DL Pier 1 & 4 Pier 2 & 5 Pier 3 & 6 Uniform W1= from P1, 2,3= Wallwf= Pier 1,2.3= Uniform W2d= from P4,5.6= Wallwt= Pier 4,5,6= SumP = OTM= 2.81 0.00 3.41 5.63 5.50 0.00 2.74 5.25 25.33 3732.80 ft-kips 4.49 0.00 6.34 5.63 8.80 0.00 5.48 5.25 35.98 2.81 kips 0.00 kips 3.41 kips 5.63 kips 5.50 kips 0.00 kips 2.74 kips 5.25 kips 25.33 kips Mr= Mr@a 136.32 0.00 177.69 227.81 267.18 0.00 148.08 212.63 1169.71 Mr@b 136.32 0.00 177.69 227.81 267.18 0.00 148.08 212.63 1169.71 ft-kips Holdcwn at left end ~ Holdown at right end* Holdown Bars #5 re-bars * #6 re-bars = #7 re-bars * #8 re-bars = 111.25 kips 11 1.25 kips loft end 7.00 5.00 4.00 3.00 As= As= 2.06 inch*2 2.06 incrt*2 right end 7.00 5.00 4.00 3.00 iX Chock Boundary Member RAautramenL Pv = Pu = Po* AtPlftf** 33.33 37.44 1179.32 At Pier «5 AtPiar«6 48.78 53.90 1179.32 33.33 Kips 37.44 Kips 1179.32 Kips Pu<0.35*Po Pu<0.35*Po 0.1'AgTc= Mu/(Vu'lw) = 3*lw*h*SQRT(fc) = Boundary Member * Geometrically Symmetrical Wai! 133.20 133.20 133.20 Kips 3.00 3.00 3.00 63.18 63.18 63.18 Kips/ No No No ,/ Ftexurml Desin Mu = Asreq'd* Asmin = As max* Beta* Rhow bal * #4 re-bar = #5 re-bar = #6 re-bar = #7 re-bar = #8 re-bar = #9 re-bar = At Pier #4 551.76 4.36 1.07 6.84 0.85 0.03 At Pier *4 22 15 10 8 6 5 At Pier #5 551.76 4.36 1.07 6.84 At Pier #6 551.76 ft-kips 4.36 sq.in 1.07 sq.in (200/fy*b*d) 6-84 sq.in (Rhow bal * 0.75 • b ' d) At Pier #5 22 15 10 8 6 5 At Pier #6 22 15 10 8 r LOAQ CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1997 UBC) U=1.32D+1.1E + U-0.99Dt1.1E PRIME JOB:£k2S. STRUCTURALENGINEB3S DESCRIPTION:PANEL E-8 unifonn loads(wl) <— Vroof = <— Vfloor = 92.80 kips 110.50 kips W1= P1 = P2 = P3 = P4 = P5 = P6 = Wall Thickenss= Seismic Load factor= |flmup rRCTr wall piet= thk= eff. thk= h/L= Kt= V= Av = Vn = Vc = Vu = Vs = 8"AcVSQRT(fc) = PhfVn = 0.60"Vn = Phi-Vc * 0.60*Vc = A g 0.05 k/ft 0.00 kips 0.00 kips 0.00 kips 22.66 kips 15.57 kips 0.00 kips 6.50 in 1.10 W2d= W2L= Vroof = Vfloor = fc= fy= 0.23 k/ft 0.31 k/ft 92.80 kips 11 0.50 kips 4.00 ksi 60.00 ksi L1 = L2= L3= L4= L5= L= At Pier #1 At Pier « At Pier *3 At Pier « 2 6.50 5.75 2.17 3.45 12-73 207.00 57.23 9.58 14.00 8.26 104.73 34.34 5.75 HOOK HRIZ. REINF. YES Vu>0.6*Vc Two curtain shear reinf. Vu<Phf*Vc/2 shear reinf .req'd- #4@ #5@ #6@ #7@ #4 dowels at stab freq'd=Vu/(0.6*Phify) #4 dowels at YES NO NO 0,20 , 7.00 */ 7.00 7.00 7.00 0.46 12 2 6.50 5.75 2.17 3.45 12.73 207.00 57.23 9.58 14.00 8.26 104.73 34.34 5.75 YES YES NO NO 0.20 / 7.00t/ 7.00 7.00 7.00 0.46 12 2 9.00 8.25 1.08 18.25 67.34 594.00 201.80 42.19 74.08 48.76 300.54 121.08 25.31 YES YES NO NO 0.30 14.00 ,Jfc 14.00 J (£ i4.oo (y 14.00 2.42 6 1 9.00 8.25 3.00 2.29 30.94 297.00 82.12 14.09 34.03 25.58 150.27 49.27 8.45 YES YES NO NO r 0.27i>r 6.00 v 6.00 6.00 6.00 (a&L 1.11 6 B 3.00 wall thk = 6.50 in ft h1= 2.00 ft 9.00ft h2= 15.00ft 3.00 ft h3= 14.00 ft 9.00 ft h4= 6.50 ft 6.00 30.00 At Pier *5 1 9.00 8.25 3.00 2.29 30.94 297.00 82.12 14.09 34.03 25.58 150.27 49.27 8.45 YES YES NO NO 0.27 6.00 6.00 6.00 6.00 ^ ($44 1.11 6 ft h5= 9.00 ft ft h6= 0.00 ft h7= 7.50 ft h8= 8.00 ft At Pier #6 2 (yes=1 . no=2) 9.00 in 8.25 in 1.50 10.48 141 .43 kips 594.00 h*2 201.80 kips 44.14 kips 155.57 kips 129.06 kips 300.54 kips 121 .08 kips 26.49 kips YES Vu>Acv*SQRT<fc)? YES If yes, shear reinf. require. YES Vu>AcV2'SQRT(fc) NO °-38lnfc2m AtoljS» 13.00 in o-c.'-P* *&.^ 14.00 in o.c. ^ ^ 14.00 in o.c. 14.00 in o.c. ' n^te5.08 in"2 3 "o.c. DESCRIPTION: CONCRETE SHEAR VJALL DESIGN (PER SEC.1921 1997 UBC) PANEL E-8 CHECK HOLDOWN Uniform W1= from P1,2,3= Wallwt= Pier 1,2,3= Uniform W2d= from P4,5,6= Wall wt= Pier 4,5,6= SumP = OTM= Holdown at left end = Holdown at right end= Holdown Bars l)S5 re-bars = #6 re-bars = #7 re-bars = #8 re-bars * U = 1.1Et0.99'DL Pier1&4 0.40 0.00 3.41 3.66 1.72 22.66 2.74 4.73 39.31 Pler2&5 Pler3&6 Mr@a 0.64 0.00 6.34 3.66 2.75 15.57 5.48 4.73 39.16 0.56 kips 23.85 0.00 kips 0.00 3.90 kips 195.98 10.13 kips 328.22 2.40 kips 103.05 0.00 kips 244.19 2.74 kips 152.19 9.45 kips 326.03 29.18 kips Mt= 1373.50 MrQb 23.85 0.00 213.53 194.91 103.05 902.72 176.87 240.98 1655.89 ft-kips 4238.20 ft-kips 95.75 kips 111. 94 kips left end 6.00 5.00 . 3.001/ 3.00 As= 1.77 inch*2 As= 2.07inchA2 1,J$r\- right end 7.00 5.00 4.00 3.00 ' Ar-? Check Boundary Member RaaulnmenL Pv = Pu = Po = At Pier *A 41.60 53.03 1051.83 Pti<0.35*Po At Pier *S At Pier *6 42.82 53.52 1051.83 32.38 Kips 40.12 Kips 2103.65 Kips Pu<0.35*Po PlK0.35*Po Geometrically Unsymmetrical Wall 0.05'AgTc * Mu/(Vu"tw) = S-lw-h'SQRTtf c) = 59.40 3.00 56.35 59.40 3.00 56.35 11 8.80 Kips 1.50 1 *-»^ ^ t _ t 1 — Boundary Member CAL EiextiaLQ&&iaii Mu = Asreq'd = Asmin = As max = Beta = Rhow bal = #4 re-bar = #5 re-bar = #6 re-bar = #7 re-bar * #8 re-bar = #9 re-bar = At Pier *4 306.28 2.29 0.96 6.16 0.85 0.03 At Pier #4 12 8 6 4\. 3 3 At Pier #5 At Pier #6 306.28 1400.12 ft-kips 2.29 4.93 sq.in 0.96 2.04 sq.in (200/fy • b * d) 6.16 13.08 sq.in (Rhow bal * 0.75 * b * d) AtPter#5 12 8 6 4t 3 3 At Pier #6 25 16 12 9 7 X ' 72 x 9 in j j Code: ACI 318-95 Units: English Run axis: About Y-axis Run option: Investigation Slenderness: Not considered Column type: Structural bars:ASTMA615 Date: 09/01/00 Time: 16:49:49 j EIM&iNEERS SHI: 2500 My (k-ft) -1000 PCACOL V3.00 (PCA1999) - Licensed to: Licensee name not yet specified. J File: C:\PRIME4\PROGS\PCACOL\2K2709.COL J Project: ASTON VIEWS Column: PIER C @ E-8 f c = 4 ksi Ec= 3605 ksi fc = 3.4 ksi e_u = 0.003 in/in _,eta1 = 0.85 Confinement: Tied J Engineer: Ag = 648 inA2 As = 13.86 inA2 Xo =0.00 in Yo = 0.00 in Clear spacing = 2.81 in phi{a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 fy = 60 ksi Es = 29000 ksi e_rup = Infinity 18 bars Rho =2.14% Ix = 4374 inA4 ly = 279936 inA4 Clear cover = 0.87 in .09/01/00 PCACOL V3.00 - PORTLAND CEMENT ASSOCIATION - 16:49:08 Licensed to: Licensee name not yet specified. General Information: Page 2 2K2709 r File Name: C:\PRIME4\PROGS\PCACOL\2K2709.COL Project: ASTON VIEWS Column: PIER C @ E-8 Engineer: Code: ACI 318-95 Units: English Run Option: Investigation Run Axis: Y-axis Material Properties: f'c « 4 ksi EC = 3605 ksi fc =3.4 ksi Ultimate strain = 0.003 in/in Betal =0.85 Slenderness: Not considered Column Type: Structural fy = 60 ksi Es = 29000 ksi Rupture strain = Infinity Section: *- Rectangular: Width - 12 in Gross section area, Ag = 648 i Ix = 4374 inA4 r- Xo = 0 in Reinforcement: Depth = 9 in ly = 279936 Yo = 0 in Rebar Database: ASTM A615 Size Diam ( # # # f 3 6 9 14 0 0 1 1 in) Area (in"2) .38 .75 .13 .69 0.11 0.44 1.00 2.25 Size Diam (in) Area (inA2) # 4 # 7 # 10 # 18 0 0 1 2 .50 .88 .27 .26 . 0.20 0.60 1.27 4.00 Size Diam (in) Area (inA2) # # # 5 8 11 0 1 1 .63 .00 .41 0.31 0.79 1.56 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars, phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 Pattern: Irregular Total steel area. As = 13.86 in"2 at 2.14% 'Area inA2 X (in) Y (in) Area inA2 X (in) Y (in) Area inA2 X (in} Y (in) Control 1.00 -33.8 0.31 -12.9 1.00 25.8 1.00 -33.8 0.31 -12.9 1.00 25.8 Points: 0.9 0.9 0.9 -3.1 -3.1 -3.1 Axial Bending about Y @e@@@@e Pure compression Max compression fs » 0.0 fs = 0.5*fy Balanced point Pure bending Pure tension 1 0 1 1 0 1 Load P kip 2091.4 1673.1 1570.6 1115.3 785.0 0.0 -748.4 .00 .31 .00 .00 .31 .00 -29.8 0.0 29.8 -29.8 0.0 29.8 X-Moment k-ft 50 29 27 16 3 -23 -68 0. 0. 0. -3. -3. -3. 9 9 9 1 1 1 Y-Moment k-ft 0 1037 1251 1958 2316 1925 0 1. 0. 1. 1. 0. 1. N.A 00 31 00 00 31 00 -25.8 12.9 33.8 -25.8 12.9 33.8 0.9 0.9 0.9 -3.1 -3.1 -3.1 . depth 224. 74. 69. 51. 41. 10. 0. in 95 35 81 91 32 94 00 *** Program completed as requested! * /0.2.-7/C. CONCRETE SHEAR WALL DESIGN (PERSEC.1921 1997 UBC) U»1.32D+1.lE U-0.99DM.1E PRIMEJOBSTRUCIURAL r DESCRIPTION:PANEL E-9 uniform Ioads(w1) —Vroof =117.30 kips Vfloor =135.50 kips wall thk =9.00 in W1 = P1 = P2 = P3 = P4 = P5 = P6 = Wall Thickenss= Seismic Load factor= flfflP *•»" wall pier= thk= eff. thk= h/L= Rf= V= Av = Vn = Vc = Vu = Vs = 8*AcVSQRT(f c) = Phi-Vn = 0.60'Vn « Phi*Vc = 0.60*Vc = HOOK HRI2. REINF. VuX).6"Vc Two curtain shear reinf. Vu*Phi*Vc/2 shear reinf.req'd= #4@ #5@ #6© #7@ #4 dowels at slab Avf req'd=Vu/<0.6*Phify) #4 dowels at 0.05 k/ft 17.81 kips 0.00 kips 4.92 kips 24.27 kips 0.00 kips 7.09 kips 9.00 in 1.10 W2d= W2L= Vroof = Vfloor = fc= fy= AtPtorfl _AlPI«r*i^ 2 9.00 8.25 1.08 18.25 51.65 594.00 201.80 42.19 56.81 31-50 300.54 121.08 25.31 (fj&_ YES NO NO 0-27 „/$ 9"°^fi^14.00®^ 14.00 14.00 1.86 7 (l)9.mr 8.25 2.17 4.95 14.01 297.00 82.12 13.74 15.41 7.16 150.27 49.27 8.24 <© YES NO NO !i 0 27f • &? 6.00* 6.00 6.00 0.50 12 0.23 k/ft 0.31 k/ft 117.30 kips 135.50 kips 4.00 ksi 60.00 ksi L1= L2= L3= L4= L5= L= At Pier *3 At Pier *4 i 2 9.00 8.25 1.08 18.25 51.65 594.00 201.80 42.19 56.81 31.50 300.54 121.08 ^-25.31 'OffiS^ YES NO eNO '. ^>^ 0.27 x|jV P JV* 9.00 G$* ™ 14.00^ 14.00 14.00 1.86 7 2 10.00 9.25 1.50 11.75 115.17 666.00 226.26 49.49 •126.68 V96-99 336.97 135.76 29.70 YES YES YES NO <f 0.30 V* 14.00 14.00 14.00 14.00 nA-4(v\ T4.14 3 6.00ft 9.00ft 3.00ft 9.00ft 6.00ft 33.00ft h1= 2.00 ft h2= 15.00 ft h3= 14.00 ft M= 6.50 ft h5= 9.00 ft H6= 0.00 ft h7= 7.50 ft H8= 8.00 ft • At Pier #5 At Pier *6 G)9.00 8.25 3.00 2.29 22.47 297.00 82.12 14.09 24.72 16.26 150.27 49.27 8.45 YES YES NO NO XV& °'27 JWit/ 6.00^^7 IS?8' 6.00 (/* 6.00 6.00 •J, f)s$rti ^ 6.81 Y 7 2 (yes=1 , no=2) 10.00 in 9.25 in 1.50 11.75 115.17 kips 666.00 inA2 226.26 kips 49.49kipS j'fze.esjkips 96799 kips 336.97 kips 135.76 kips 29.70 kips YES Vu>AcVSQRT(fc)? YES If yes, shear reinf. require. YES Vu>Acv*2*SQRT(fc) NO J$3> 0.30inA2/ft • 14.00 in o.c. Ji/h'W 3' 14.00 in o.c. Q £*f I 14.00 in o.c. 14.00 in o.c. ' 24-^f 4.14 in*2 3 "o.c. i r Q.t" DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1997 UBC) PANEL E-9 Uniform W1= from PI A3" WallwtF Pier 1,2,3= Uniform W2d= from P4,5.6= Wallwt= Pier 4,5,6= SumP = OTM= Holdown at left end = Holdown at right end- Holdown Bars #5 re-bars = #8 re-bars = #7 re-bars = #8 re-bars ~ Pier 1 & 4 0.56 17.81 5.40 10.13 2.40 24.27 3.80 10.50 74.86 Pier2&6 0.64 0.00 8.78 5.06 2.75 0.00 7.59 4.73 29.54 PierS&S Mr@a 0.56 kips 28.86 4.92 kips 201.03 5.40 kips 322.99 10.13 kips 417.66 2.40 kips 124.69 7.09 kips 285.51 3.80 kips 250.59 10.50 kips 424.46 44.79 kips Mr= 2055.79 Mr@b 28.86 549.06 322.99 417.66 124.69 749.37 250.59 424.46 2867.68 ft-kips 5298.70 ft-kips 91 .99 kips As= 1.70Inch*2 V%*\ 116.72 kips As= 2.16hch*2 fofy left end 6.00 4.00 3.00 3.00 right end I 7.00 5.00 4.00 3.00 W Check Boundary Member ReaulremerrL Pv = Pu = Po.= At Pier «4 78.07 100.42 2358.64 Pu<0.35*Po At Pier *S 33.20 40.82 1051.83 Pu<0.35*Po AtPlartfi 48.00 Kips 60.73 Kips 2358.64 Kips Pu<0.35*Po Geometrically Symmetrical Wall 0.1"Agf c = Mu/(Vu"lw) = 3-lw*h-SQRT(f c) = 266.40 JL5Q^ ^28^6' 118.80 3.00 * 56.35 266.40 Kips 1.50 126.36 Kips VlA.*" 1 2^ 'I/O K-fi l*£k &v.Piyp V1 Boundary Member Ftexural Pas/on No *» Mu = As req'd = Asmin = As max - Beta = Rhow bal = #4 re-bar = #5 re-bar = #6 re-bar = #7 re-bar = #8 re-bar = #9 re-bar = AtPter#4 1140.14 3.93 2.27 14.54 0.85 0.03 At Pier #4 20 13 9 7 5 41 At Pier #5 At Pier #6 222.44 1140.14 ft-kips 1 .63 3.93 sq.in 0.96 2.27 sq.in (200/fy * b * d) 6.16 14.54 sq.in (Rhow bal * 0.75 * b d) At Pier #5 At Pier #6 20 13 9 7 r PRIME STRUCTURAL OMB ENGINEB3S SHT: J 4 J J 99 x 10 in J Code: ACI 318-95 Units: English Run axis: About Y-axis Run option: Investigation Slenderness: Not considered Column type: Structural Dars:ASTMA615 Date: 09/01/00 Time: 17:21:49 J P(WP) 3000 T 4500 My (k-ft) -1000 PCACOL V3.00 (PCA1999) - Licensed to: Licensee name not yet specified. J File: C:\PRIME4\PROGS\PCACOL\2K2709.COL Project ASTON VIEWS Column: PIER A @ N-6 f c = 4 ksi Ec= 3605 ksi fc = 3.4 ksi e_u = 0.003 in/in ,eta1 = 0.85 Confinement: Tied Engineer: Ag = 990 inA2 As = 14.64 inA2 Xo =0.00 in Yo = 0.00 in Clear spacing = 3.00 in phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 fy = 60 ksi Es = 29000 ksi e_rup = Infinity 26 bars Rho =1.48% Ix = 8250 inM ly = 808583 inM Clear cover = 0.87 in DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PERSEC.1921 1997 UBC) U=1.32D+1.1E + 0.5Lf U*0.99Dt1.1E PANEL S-1 PWME.SJRUCl _ENGINES uniform toads(wl) <—Vroof=103.40 kips •Vfloor 126.80 kips W1- P1 = P2 = P3 = P4 = P5 = P6 = Wall Thickenss= Seismic Load factor* SHSAR CHECK wall pier= tt>k= eff. thk= h/L= Rf= V= Av = Vn = Vc = Vu = Vs = 8*Acv*SQRT(f c) = Phi-Vn = 0.60*Vn = Phi*Vc = 0.60-Vc = A « 0.33km 7.86 kips 0.00 kips 0.00 kips 35.90 kips 0.00 kips 0.00 kips 6.50 in 1.10 At Pier #1 A 2 9.00 8.25 1.08 18.25 75.03 594.00 201.80 42.19 82.54 57.23 300.54 121.08 25.31 HOOK HRIZ. REINF. YES Vu>0.6*Vc Two curtain shear reinf. Vu<Phi-Vc/2 shear reinf.req'd= #4@ #6@ #7@ #4 dowels at slab f req'd*=Vu/(0.6"Phify) #4 dowels at YES YES NO 0.27 . 14.00 \ V. 14.00 Gx 14.00 "' 14.00 2.70 5 W2d= W2L= Vroof = Vfloor = fc= fy= 1.28km 1.86km 103.40 kips 126.80 kips 4.00 ksi 60.00 ksi L1= L2= L3= L4= L5= L= t Pier #2 At Pier *3 AtPlarM 2 6.50 5.75 2.17 3.45 14.18 207.00 57.23 9.58 15.60 9.86 104.73 34.34 5.75 YES YES NO NO ._ ',t 0.20 Ml 7'°° l ! 7.00 X' 7.00 7.00 0.51 12 2 6.50 5.75 2.17 3.45 14.18 207.00 57.23 9.58 15.60 9.86 104.73 34.34 5.75 YES YES NO NO 0.20 / 7.00^ 7.00 7.00 7.00 0.51 12 2 9.00 8.25 1.50 10.48 160.14 594.00 201.80 44.14 176.15 149.67 300.54 121.08 26.49 YES YES YES NO 0.44 11.00 14.00 14.00 14.00 144<LI" 5.76 2 B wall thk = 6.50 in 6.00 ft h1= 2.00 ft 9.00 ft h2= 15.00ft 3.00ft h3= 14.00ft 9.00 ft H4= 6.50 ft 3.00 ft h5= 9.00 ft 30.00 ft h6= 0.00 ft At Pier *5 G. 9.00 8.25 3.00 2.29 35.03 297.00 82.12 14.09 38.53 30.08 150.27 49.27 8.45 YES YES YES NO • * 0.27 L#l^ 6.00'yf\ 6-00 C- 6.00 6.00 9 04f » •1.26 5 h7= 7.50 ft h8= 8.00 ft AtPtorW i (P(yes=1 , no=2) 9.00 in 8.25 in 3.00 2.29 35.03 kips 297.00 in*2 82.12 kips 14.09 kips 38.53 kips 30.08 kips 150.27 kips 49.27 kips 8.45 kips YES Vu>AcVSQRT(fc)? YES If yes, shear reinf. require. YES Vu>Acv*2'SQRT(fc) NO 0.27 in"2/ft 6.00 in o.c. ^1^6.00 in o.c. &lff 6.00 in o.c. OM' 6.00 in o.c. J -1 -^fur 1.26^2 5 "O.C. DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1997 UBC) PANEL S-1 CHECK HOLDOWN U * 1.1E 10.99* DL PIW1&4 Pier2&5 Ptor3&6 Uniform W1= from PI. 2,3= Wallwt= Pier 1,2,3= Uniform W2d= from P4,5,6= Wallwt= Pier 4,5,6= SumP = OTM= 3.42 7.86 3.90 10.13 13.45 35.90 2.74 9.45 86.65 4773.80 ft-kips 3.91 0.00 6.34 3.66 15.37 0.00 5.48 4.73 39.49 2.45 kips 0.00 kips 3.41 kips 3.66 kips 9.61 kips 0.00 kips 2.74 kips 4.73 kips 26.59 kips 146.70 23.58 213.53 194.91 576.45 107.70 176.87 240.98 1680.71 Mr@b 146.70 212.22 195.98 328.22 576.45 969.30 152.19 326.03 2907.08 ft-kips Hotoown at left end = HokJown at right end= Holdown Bars #5 re-bars = #6 re-bars = #7 re-bars - #8 re-bars = 80.45 kips As- 121 .60 kips As= left end 5.00 4.00 3.00 2.00 1.49 inchA2 2.25 inchA2 right end 8.00 6.00 4.00 3.00 Cactc Boundary Member Requirement Pv = pu = Po = 0.05'Ag*f c = Mu/(Vu*lw) = 3"lw*h-SQRT(fc) = Boundary Member = SB6 CoL-UMW DGS Fltotural Design Mu = Asreq'd = Asmin = As max = Beta = Rhow bal = #4 re-bar = #5 re-bar = #6 re-bar = #7 re-bar = #8 re-bar = *9 re-bar = At Pter *A At Pier *5 106.41 s*4^ 124.42 (63.30^ 2103.65 TO&rSs Pu<0.35*Po Pu<0.35"Po Geometrically Unsymmetricat^ 118.80 /59.40 1.50 Lietf 112.70 56.35 Yes J«fe kWO CAL it ^\ At Pier #4 At Pier #5 1585.38 346.80 5.64 2.62 2.04 0.96 13.08 6.16 0.85 0.03 At Pier #4 29 19 13 10 "/6 I/ At Pier*e 40.56 Kips ^_42.08 Kips l55t*3J$ips Pu<0.35*Po ^~^ /all ^______ \^, — -^40Kips 3.00 , 56.35 Kips No 5 At Pier #6 346.80 ft-kip 2.62 sq.in 0.96 sq.in 6.16 sq.in At Pier #5 14 9 6 5 , 3 At Pier *6 14 9 6 J 72 x 9 in J 1 I Code: AC! 318-95 Units: English Run axis: About Y-axis Run option: Investigation Slenderness: Not considered Column type: Structural oars:ASTMA615 Date: 09/01/00 Time: 17:03:01 P(kip) 2500 T JC3: 2500 My (k-ft) -1000- I PCACOL V3.00 (PCA 1999) - Licensed to: Licensee name not yet specified. File: C:\PRIME4\PROGS\PCACOL\2K2709.COL Project: ASTON VIEWS Column: PIERA@S-1 J_ f c = 4 ksi Ec= 3605 ksi fc = 3.4 ksi e_u = 0.003 in/in >eta1 = 0.85 Confinement: Tied Engineer Ag = 648 inA2 As = 13.86 inA2 Xo = 0.00 in Yo = 0.00 in Clear spacing = 2.62 in phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 fy = 60 ksi Es = 29000 ksi e_rup = Infinity 18 bars Rho =2.14% |X = 4374 inM ly = 279936 inM Clear cover = 1.56 in .09/01/00 PCACOL V3.00 - PORTLAND CEMENT ASSOCIATION - 17:01:47 Licensed to: Licensee name not yet specified. General Information: File Name: C:\PRIME4\PROGS\PCACOL\2K2709.COL Project: ASTON VIEWS Column: PIER A @ S-l Engineer: Code: ACI 318-95 Units: English Page 2 2K2709 r~ PR!ME JOB! ENCASES SHT : T«go Run Option: Investigation Run Axis: Y-axis Material Properties: f'c = 4 ksi EC = 3605 ksi fc =3.4 ksi Ultimate strain = 0.003 in/in Betal =0.85 Section: Rectangular: Width = 72 in Gross section area, Ag = 648 inA2 Ix = 4374 in*4 Xo = 0 in Reinforcement: Slenderness: Not considered Column Type: Structural fy = 60 ksi Es - 29000 ksi Rupture strain = Infinity Depth = 9 in ly - 279936 inA4 Yo = 0 in Rebar Database: ASTM A615 Size Diam (in) Area (in"2;Size Diam (in) Area (inA2) Size Diam (in) Area # 3 # 6 # 9 # 14 0.38 0.75 1.13 1.69 0.11 0.44 1.00 2.25 # 4 # 7 # 10 # 18 0.50 0.88 1.27 2.26 0.20 0.60 1.27 4.00 # 5 # 8 # 11 0.63 1.00 1.41 0.31 0.79 1.56 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars, phi(a) = 0.8, phi{b) = 0.9, phi(c) - 0.7 Pattern: Irregular Total steel area, As » 13.86 inA2 at 2.14% Area in^2 X (in) Y (in) Area inA2 X (in)Y (in) Area inA2 X (in) Y (in) Control 1.00 -33.8 0.31 -12.9 1.00 25.8 1.00 -33.8 0.31 -12.9 1.00 25.8 Points: Bending about Y @e @ @ @ @ @ Pure compression Max compression fs = 0.0 fs = 0.5*fy Balanced point Pure bending Pure tension 2.4 1 2.4 0 2.4 1 -1.4 1 -1.4 0 -1.4 1 Axial Load P kip 2091.4 1673.1 1570.6 1115.3 785.0 0.0 -748.4 .00 .31 .00 .00 .31 .00 -29.8 0.0 29.8 -29.8 0.0 29.8 X -Moment k-ft -23 -13 -12 -7 -1 11 31 2.4 2.4 2.4 -1.4 -1.4 -1.4 Y -Moment k-ft 0 1037 1251 1958 2316 1925 0 1.00 -25.8 0.31 12.9 1.00 33.8 1.00 -25.8 0.31 12.9 1.00 33.8 N.A. depth in 224.95 74.35 69.81 51.91 41.32 10.94 0.00 2.4 2.4 2.4 -1.4 -1.4 -1.4 *** Program completed as requested! *** CONCRETE SHEAR WALL DESIGN (PERSEC.1921 1997 UBC) U=1.32D+1.1E + 0.5Lf U-0.9QDt1.1E PRIME JOB:STRUCTURAL OWB DESCRIP710N:TYPICAL PANEL - SOUTH PANELS S4-THRU S-5 uniform Ioads(w1) 68.90 kips 84.50 kips 6.50 in r~ W1= P1 = P2 = P3 = P4 = P5 = P6 = Wall Thickenss= Seismic Load factor* 0.33km 0.00 kips 0.00 kips 0.00 kips 0.00 kips 0.00 kips 0.00 kips 6.50 in 1.10 W2d= W2L= Vroof = Vfloor = fc= fy= 1.28km 1.86km 68.90 kips 84.50 kips 4.00 ksi 60.00 ksi L1 = L2= L3= L4= L5= L* icfMR fffCr AtPler*1 AtPiertt At Pier *3 At Pier « wall pier= thk= eff.thk= h/L= Rf= V= Av = Vn = Vc = Vu = Vs = 8*AcVSQRT(f c) = Phi*Vn = 0.60*Vn = Phi"Vc=0.60-Vc = HOOK HRIZ. REINF. Vu>0.6-Vc Two curtain shear reinf. Vu<Phi*Vc/2 shear reinf.req'd= #4@ #5@ #6@ #7@ #4 dowels at slab Avf req'd=Vu/(0.6*Phi*fy) #4 dowels at 2 6.50 5.75 2.17 3-45 22.97 207.00 57.23 9.58 25.26 19.52 104.73 34.34 5.75 YESl^ YES NO NO 0.20 7.orX 7.00 7.00 7.00 0.83 7 2 6.50 5.75 2.17 3.45 22.97 207.00 57.23 9.58 25.26 19.52 104.73 34.34 5.75 YES-^ YES NO NO 0.20 7.00^ 7.00 7.00 7.00 0.83 7 2 6.50 5.75 2.17 3.45 22.97 207.00 57.23 9.58 25.26 19.52 104.73 34.34 5.75 YES^ YES NO NO 0.20 7.00*/ 7.00 7.00 7.00 0.83 7 1 9.00 8.25 3.00 2.29 51.13 297.00 82.12 14.09 sejs' 47.79- 150.27 49.27 8.45 YES YES YES NO 0.30 6.00 6.00 6.00 6.00 10 1.84 4 3.00ft 9.00ft 3.00ft 9.00ft 3.00ft 27.00 ft At Pier «5 1 9.00 8.25 3.00 2.29 51.13 297.00 82.12 J&99 ^56.25> Sff79 150.27 49.27 8.45 YES YES YES NO 0.30 6.00 6.00 6.00 6.00 &k PV&VS 1.84 4 h1= h2= h3= h4= h5= h6= h7= fl8= At Pier *6 1 (yes=1, 9.00 in 8.25 in 3.00 2.29 51.13 kips 297.00 in*2 82.12 kips 14.09 kips 56.25 ktps 47.79 kips 150.27 kips 49.27 kips 8.45 kips 2.00ft 15.00ft 14.00 ft 6.50ft 9.00ft 0.00ft 7.50ft 8.00ft no=2) YES Vu>Acv*SQRT{fc)? YES If yes, shear reinf. require. YES Vu>Acv«2*SQRT(fc) NO 0.30 inA2/ft 6.00 in o.c. 6.00 in o.c. 6.00 in o.c. 6.00 in o.c. > 1.84 in*2 4 "o.c. *9)K&(PJ/*0*t" DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1997 UBC) TYPICAL PANEL - SOUTH PANELS S-1 THRU S-5 PRIMESTRUCTURAL OMBSHT: CHECK HQLDQWN U = 1.1E 1 0.99* DL Pier 18, 4 Ptor2&5 Pier 3 S. 6 Urea Unifonn W1= from P1,2,3= Wallwi= Pter 1,2,3= Uniform W2d= from P4,5,6= Wallwt= Pier 4,5,6= SumP = OTM= Holdown at left end = Holdown at right end* Holdown Bars t5 re-bars = *6 re-bars = #7 re-bars = #8 re-bars = 2.45 0.00 3.41 3.66 9.61 0.00 2.74 4.73 26.59 31 81 .10 ft-kips 3.91 0.00 6.34 3.66 15.37 0.00 5.48 4.73 39.49 85.31 kips 85.31 kips left end 6.00 4.00 3.00 X 2.orx 2.45 kips 118.83 0.00 kips 0.00 3.41 kips 177.69 3.66 kips 148.08 9.61 kips 466.92 0.00 kips 0.00 2.74 kips 148.08 4.73 kips 191.36 26.59 kips Mr= 1250.96 As= 1.58 hch*2 As= 1.58 incn*2 right end 6.00 4.00 3.00 / 2.QQ* Mr@b 118.83 0.00 177.69 148.08 466.92 0.00 148.08 191.36 1250.96 ft-kips Cheek Boundary Member Requirement. At Pter « At Pfer IK At Pter « Pv* Pu = Po = 40.56 42.08 1051.83 61.84 63.30 1051.83 "40.56 Kips 42.08 Kips 1051.83 Kips Pu<0.35'Po Pu<0.35*Po PU<0.35'PO 0.1*Ag*Pc = Mu/(Vu*lw) = 3'fw*h*SQRT(fc) = Boundary Member = Geometrically Symmetrical Walt 118.80 118.80 J)0 3.00 No 118.80 Kips 3.00 r~ Mu = As req'd = Asmin = As max = Beta = Rhow bal = #4 re-bar = #5 re-bar = #6 re-bar = #7 re-bar = #8 re-bar = #9 re-bar = At Pier #4 506.22 4.01 0.96 6.16 0.85 0.03 At Pier #4 21 13 10 7 , a/ 5 At Pier #5 506.22 4.01 0.96 6.16 506.22 ft-kips 4.01 sq.in 0.96 sq.in (200/fy • b * d) 6.16 sq.in (Rhow bal' 0.75 * b " d) At Pier #5 21 13 10 ec/ 5 At Pier «6 21 13 10 I/AWH, /MKA/&IS - PAMPL.PRIMESTRUCTURAL WE _iB43MSS SW: - )2S I fu 67.2*57,3. PRIME J0ft: STRUCTURAL ENGINEERS SW: CONCRETE SHEAR WALL DESIGN (PERSEC.1921 1997 UBC) U=1.32D + 1.1E+0.5Lf U=0.99Dt1.1E DESCRIPTION:PANEL S-6 uniform Ioads(w1) W1= P1 = P2 = P3 = P4 = L1 = L2 = L3 = L = wall thk= Vroof= Vftoor= fc= fys Seismic Load factor^ SHEAR mBTft wall piers thk= eff. thk= h/L= Rf= V= Av = Vn = Vc = Vu = Vs = 8*Acv"SQRT(f c) = Phi-Vn = 0.60*Vn » Phi*Vc = 0.60*Vc = HOOK HRIZ. REINF. Vu>0.6*Vc Two curtain shear reinf. Vu<Phi*Vc/2 shear retnf.req'd= #4@ #5@ #6@ #7@ #4 dowels at slab on grade Avf req'd=Vu/(Q.6*Phi*fy) #4 dowels at 0.326 k/ft W2d* 3.93 kips W2L= 0.00 kips a1= 1.74 kips a2= 17.95 kips a3= 3.00 ft a4- 13.50 ft M= 4.17 ft h2= 20.67 ft h3= h4= 6.25 in h5= 33.10 kips h6= 40.50 kips h7= 4.00 ksi h8= 60.00 ksi 1.10 At Pier #1 At Pier #2 1.00 0.00 9.00 6.25 in 8.25 6.25 in 2.17 1.56 4.95 7.38 13.28 19.82 kips 297.00 312.75 inA2 100.90 106.25 kips 21.13 31.00 kips 14.61 21.80 kips 1.93 3.20 kips 150.27 158.24 kips 60.54 63.75 kips 12.68 18.60, kips NO YES/ YES YES NO NO NO NO 0.27 0.19 - 6-00 _]j> 10.00 1/ e.OOAJU^QV 10.00 6.00 ^U 10.00 6.00 10.00 0.48 0.71 12 13 1.28 k/ft 1.86 k/ft 20.67 ft 0.00 ft 3.00 ft 17.67 ft 1.00 ft 15.00 ft 14.00 ft 6.50 ft 9.00 ft 0.00 ft 7.50 ft 7.00 ft At Pier #3 1.00 9.00 8.25 3.00 2.29 21.80 297.00 82.12 17.22 23.98 13.65 150.27 49.27 10.33 YES YES NO NO 0.27 6.00 %> 6.001 P1 P2 a1 | a2 | h8 V V pier 1 •* pier 2 uniform Ioads(w2) P3 h7 P4 a3 | a4 | V « V L1 L2 L3 pier 3 pier 4 A (0 M -C At Pier #4 1.00 (yes=1,no=0) 9.00 in 9.00 in 2.16 5.45 51.80 kips 450.36 in*2 124.52 kips 33.94 kips 56.98 kips 36.62 kips 227.87 kips 74.71 kips 20.36 kips YES Vu>Acv*SQRT(fc)? YES If yes, shear reinf. require. YES Vu>Acv-2*SQRT(fc) NO 0.27 inA2/ft A 6.00 in o.c. jAfllti- » 6.00 hoa *'*«•" 6.00^v^y 6.00 in o.c. O " 6.00^ 6.00 in o.c. A"*^U78 9 iO'W' 1.86 inAZ 5 "o.c. hi < Vroof h2 <---Vfloo h3 PRIMESTRUCTURAL ENGINEERS SW DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PERSEC.1921 1997 UBC) PANEL S-6 rffBriT fffftPPrW ll»i-*F*n-99*DL Uniform W1 = from P1= frpm P2= Wal)wt= Pier1= Uniform W2d= fromP3= from P4= Wallwt= Pier 3= Sum PS OTM= Holdown at left end = Holdown at right end= Holdown Bars #5 re-bars = #6 re-bars = #7 re-bars = #8 re-bars = Left end 3.18 0.00 0.00 3.69 5.30 12.49 1.59 0.00 3.96 4.73 34.92 1526.90 Right end W1= fromP1 = fromP2= Wallwt= Pier 2= W2= fromP3= from P4= Wallwt= Pier 4= kips ft-kips 46.19 kips 25.05 kips feftend 3.00 >- 2.00\/ 2.00 2.00 3.56 kips 3.93 kips 0.00 kips 3.69 kips 5.21 kips 13.99 kips 0.15 kips 17.95 kips 3.96 kips 6.57 kips 59.01 kips As= As= Si 0.86 inchA2 0.46 inchA2 right end 2.00 2.00 1.00 ^ 1.00 */ Mr@a 69.64 81.23 0.00 71.98 104.82 273.65 5.22 371.03 79.44 129.15 1186.16 Mr@b 69.64 0.00 0.00 80.62 112.41 273.65 30.75 0.00 84.07 104.27 755.41 ft-kips Check Soundarv Msmber Raauiremant. At Pier #3 Pv = 53.09 Pu = 55.18 Po= 1051.83 Pu<0.35*Po At Pier #4 79.35 Kips 88.06 Kips 1594.95 Kips=0.85fc(Ag^Ast)+fyAst Pu<0.35*Po 0.05*Ag*f c = Mu/(Vu*lw) = 3*lw"h*SQRT(fc) = Boundary Member Flexural Design Geometrically Unsymmetrical Wall 59.40 90.07 Kips 3.00 2.16 56.35 85.45 Kips Mu = Asreq'd = As min = As max - Beta = Rhow bal « #4 re-bar = #5 re-bar = #6 re-bar - #7 re-bar = #8 re-bar = #9 re-bar - At Pier #3 215.82 1.58 0.88 5.64 0.85 0.03 At Pier #3 8 6 4 3 3 2 No As 1.60 * 1.86 1.76V/ 1.80 2.37 2.00 At Pier #4 512.82 ft-kips 2.62 sq.in 1.38 sq.in (200/fy * b * d) 8.86 sq.in (Rhow bat * 0.75 * b * d) 0.85 0.03 At Pier #4 As 14 2.80 9 2.79 6 2.64 5 3.00 4 3.16 3 3.00 CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1997 UBC) O1.32D-H.1E-i-0.5Lf UNO.99Dt1.1E PRIMESTRUCTURAL DATE ENGINEERS SHT: DESCRIPTION:TYPICAL PANEL - WEST PANEL W-2 THRU W-7 uniform Ioads(w1) 44.30 kips 65.80 kips wall thk =6.50 in W1 = P1 = P2 = P3 = P4 = P5 = P6 = Wall Thickenss= Seismic Load factor= 0.33 k/ft 0.00 kips 0.00 kips 0.00 kips 0.00 kips 0.00 Kips 0.00 kips 6.50 in 1.10 W2d= W2L= Vroof = Vfloor = fc= fy= ffFW fflr^TT At Pier* At Pier «2 wall pier* thk= eff. thk= h/L= Rf= V= Av = Vn = Vc = Vu = Vs = 8*AcVSQRT(f c) = Phi*Vn = 0.60*Vn = Phi*Vc = 0.60"Vc = HOOK HRIZ. REINF. Vu>0.6*Vc Two curtain shear reinf. Vu<Phi*Vc/2 shear reinf.req'd= #4@ #5@ #6@ #7@ « dowels at slab Avf req'd=Vu/(0.6-Phify) #4 dowels at 2 6.50 5.75 2.17 3.45 14.77 207.00 57.23 9.58 16.24 10.50 104.73 34.34 5.75 YES YES NO NO 0.20 7.00^ 7.00 7.00 7.00 0.53 12 2 6.50 5.75 2.17 3.45 14.77 207.00 57.23 9.58 16.24 10.50 104.73 34.34 5.75 YES YES NO NO 0.20 7.00 7.00 7.00 7.00 0.53 12 1,28 k/ft 1.86km 44.30 kips 65.80 kips 4.00 ksi 60.00 ksi L1= L2= L3= L4= L5= L= At Pier «3 At Pier « 2 6.50 5.75 2.17 3.45 14.77 207.00 57.23 9.58 16.24 10.50 104.73 34.34 5.75 YES YES NO NO 0.20 / V 7.00 ^ 7.00 7.00 7.00 0.53 12 1 9.00 8.25 3.00 2.29 36.70 297.00 82.12 14.09 40.37 31.92 150.27 49.27 8.45 YES YES YES NO 0.27 6.00 6.00 6.00 6.00 A/fa'f \*T* 1.32 5 3.00ft 9.00ft 3.00ft 9.00ft 3.00ft 27.00ft At Pier #5 1 9.00 8.25 3.00 2.29 36.70 297.00 82.12 14.09 40.37 31.92 150.27 49.27 8.45 YES YES YES NO 0.27 6.00 6.00 6.00 6.00 1.32 5 h1= h2= h3= h4= h5= h6= h7= h8= At Pier *6 1 (yes=1 9.00 in 8.25 in 3.00 2.29 36.70 kips 297.00 W2 82.12 kips 14.09 kips 40.37 kips 31.92 kips 150.27 kips 49.27 kips 8.45 kips 2.00ft 15.00ft 14.00 ft 6.50ft 9.00ft 0.00ft 7.50ft 8.00ft , no=2) YES Vu>Acv-SQRT(fc)? YES If yes,shear reinf. require. YES Vu>Acv"2*SQRT(fc) NO 0.27 inA2/ft 6.00 in o.c 6.00 in o.c -s 6.00 in o.c. "% [$**'" 6.00 in o.c \ A^k^ 1.32 in*2 5 "o.c. ^ r DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PERSEC.1921 1997 UBC) TYPICAL PANEL - WEST PANEL W-2 THRU W-7 CHECK HOLDOWN U = 1.1E 1 0.99* DL Pler1&4 Pier2&5 Uniform W1= from P1,2,3= Wallwt= Pier 1,2,3= Uniform W2d= from P4,5,6= Wallwt= Pier 4,5,6= SumP = OTM= Holdown at left end = Holdown at right end= Holdown Ban #5 re-bars = #6 re-bars = #7 re-bars = #8 re-bare = 2.45 0.00 3.41 3.66 9.61 0.00 2.74 4.73 26.59 2205.90 ft-kips 3.91 0.00 6.34 3.66 15.37 0.00 5.48 4.73 39.49 44.83 44.83 toft end 3.00 2.00 2.00 2.00 Pier3 & 6 2.45 kips 0.00 Kips 3.41 kips 3.66 kips 9.61 kips 0.00 kips 2.74 kips 4.73 kips 26.59 Kips Kips As= kips As= ft Mr= 1 0.83 inchA2 0.83 inch*2 right end L/ 3.00 2.00 2.00 / 2.0CK Check Boundarv Member Requirement At Pier *4 At Pier «5 Pv = Pu = Po = 40.56 42.08 1051.83 61.84 63.30 1051.83 At Pier «6 40.56 Kips 42.08 Kips 1051.83 Kips Mr@a 118.83 0.00 177.69 148.08 466.92 0.00 148.08 191.36 1250.96 Mr@b 118.83 0.00 177.69 148.08 466.92 0.00 148.08 191.36 1250.96 ft-kips 0.1'Ag*fc = Mu/(Vu*lw) = 3'tw*h*SQRTtf c) = Boundary Member = pu<0.35*Po Pu<0.35"Po Pu<0.35*Po Geometrically Symmetrical Wall 118.80 118.80 118.80 Kips 3.00 3.00 3.00 56.35 56.35 56.35 No No No Flexurml Oeaion Mu = Asreq'd = Asmin = Asmax = Beta = Rhow bal = At Pier #4 363.33 2.76 0.96 6.16 0.85 0.03 At Pier *4 *4 re-bar = #5 re-bar = #6 re-bar = #7 re-bar = #8 re-bar = #9 re-bar = 14 9 7 AtPfer#5 At Pier #6 363.33 363.33 ft-kips 2.76 2.76 sq.in 0.96 0.96 sq.in (200/fy " b * d) 6.16 6.16 sq.in (Rhow bal * 0.75 * b ' d) At Pier #5 14 9 7 5 At Pier *6 14 9 7 /4t/ PfflME JOS: STRUCTURAL C«BENGINEERS SHT: (L • 4.1*5 DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1997 UBC) U=1.32D+1.1E LK>.MDt1.1E PANEL W-8 ENGINEERS SW uniform Ioads(w1) 56.00 kips 77.95 kips 6.50 in W1= P1 = P2 = P3 = P4 = P5 = P6 = Wall Thickenss= Seismic Load factor* wall pier= thk= eff.thk= h/L= Rf= V= Av = Vn = Vc = Vu = Vs = 8*Acv"SQRT(f c) = Phi*Vn = 0.60"Vn = Phi"Vc = 0.60*Vc = HOOK HRIZ. REINF. Vu>0.6*Vc Two curtain shear reinf . Vu<Phi*Vc/2 shear reinf.req'd= #4@ #5® #6@ #7@ #4 dowels at slab Avf req'd=Vu/(0.6*Phi*fy) #4 dowels at 0.33 k/ft 0.00 kips 0.00 kips 0.00 kips 0.00 kips 0.00 kips 0.00 kips 6.50 in W2d= W2L* Vroof = Vfloor* fc= 1.28 k/ft 1.86 k/ft 56.00 kips 77.95 kips 4.00 ksi L1= L2= L3= L4= L5= L= 1.10 fy= 60.00 ksi At Pier *1 At Pfer «2 At Piar #3 At Ptor M 9.00 8.25 2.17 4.95 24.00 297.00 82.12 13.74 26.40 18.16 150.27 49.27 8.24 YES YES NO NO 0.27 6.00 6.00 6.00 6.00 0.86 7 2 6.25 5.50 2.17 3.30 16.00 198.00 54.75 9.16 17.60 12.10 100.18 32.85 5.50 YES/ YES NO NO 0.19 7.00 X 7.00 7.00 7.00 0.58 12 2 6.25 5.50 2.17 3.30 16.00 198.00 54.75 9.16 17.60 12.10 100.18 32.85 5.50 YES/ YES' NO NO 0.19 7.00*/ 7.00 7.00 7.00 0.58 12 90lT 8.25 3.00 2.29 44.65 297.00 82.12 14.09 49.12 40.66 150.27 49.27 8.45 YES YES YES NO 0.27 6.00 6.00 6.00 6.00 &*A 1.61 4 3.00ft 9.00ft 3.00ft 9.00ft 3.00ft 27.00ft At Pter #5 9$ 8.25 3.00 2.29 44.65 297.00 82.12 14.09 49.12 40.66 150.27 49.27 8.45 YES YES YES NO 0.27 6.00 6.00 6.00 6.00 ft**1.61 4 h1= r>2= h3= h4= h5= h6= h?= h8= At Pier #6 j£(yes=1, 9.00 in 8.25 in 3.00 2.29 44.65 kips 297.00 in*2 82.12 kips 14.09 kips 49.12 kips 40.66 kips 150.27 kips 49.27 kips 1.00ft 15.00ft 14.00ft 6.50ft 9.00ft 0.00ft 7.50ft 7.00ft no=2) 8.45 kips YES Vu>AcVSQRT(fc)? YES If yes, shear reinf. require. YES Vu>Acv*2*SQRT(fc) NO 0.27 irV^ 6.00 in o.c. 6.00 in o.c. 6.00 in o.c. 6.00 in o.c.\ %^V 1.61 iiW 4 "O.C. \*JtOf^Cgh\jl t DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PERSEC.1921 1997 UBC) PANEL W-S PRIME JQJ5ak.-730 STRUCTURAL CMS _iiO2_ ENGINEERS SW:IZ5lI CHECK HOLPOWH Ua1.1EtO.9S* DL Pter1&4 Pier2&5 2.45 3.91 0.00 0.00 2.80 5.36 5.06 3.52 9.61 15.37 0.00 0.00 5.48 4.73 Uniform W1= from P1,2,3= Wa»vrt= Pier 1,2,3= Uniform W2d= from P4,5,6= Wallwt* Pier 4,5,6= SumP = OTM= Pter3&6 2.45 kips 0.00 kips 2.80 kips 3.52 kips 9.61 kips 0.00 2.7-Htips .73 kips 25.64 kips HoWown at left end = Hokfown at right end= Hoidown Bars #5 re-bars = *6 re-bars 5- *7re-l -bars = Check Boundary Member Requirement At Pier «4 Pv= 41.36 Pu = 43.13 Po= 1051.83 65.82 kips 67.21 kips left end 4.00 3.00 3.00 2.00 As= As= Mr= 1.22inch"2 1.24 toch*2 right end 5.00 3.00 3.00 2.00 At Pier *S 60.73 61.83 1051.83 At Pier «6 39.81 Kips 41.09 Kips 1051.83 Kips Pu<0.35"Po Pu<0.35*Po Pu<0.35*Po 0.1'Agfc = Mu/(Vu'lw) = 3*IWh-SQRT(f c) = Boundary Member = Geometrically Symmetrical Wall 118.60 118.80 118.80 Kips 3.00 3.00 3.00 56.35 56.35 56.35 Kips No No No Flexun Mu = Asreq'd = Asmin = As max = Beta = Rhow bal = #4 re-bar = f5 re-bar = #6 re-bar = #7 re-bar = #8 re-bar - #9 re-bar = At Pier #4 442.04 3.43 0.96 6.16 0.85 0.03 At Pier #4 18 12 8 6 5 4\/ At Pier *5 442.04 3.43 0.96 6.16 442.04 ft-kips 3.43 sq.in 0.96 sq.in (200/fy * b ' d) 6.16 sq.in (Rhow bal * 0.75 * b * d) At Pier #5 18 12 8 6 5 At Pier #6 18 12 8 6 W-8 x T51 -t-ll2Spsf PRIME STRUCTURAL ENGWBffiS C326+ l^Uplf x |2J •*• ll^Spsf x (1^X12* -t 112.8 ps-f p|f x , (-2.8,43 MAX. HOLDDOWN FORCE-CUiXB3l8.q )- DO 31. AlslAlA/SlS KM PRIME JOB STRUCTURAL . r STRUCTURAL OWE ENGINEERS SHT CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1997 UBC) U=1.32D + 1.1E U=0.99Dt1.1E DESCRIPTION:PANEL N-1 uniform Ioads(w1) W1=P1 = P2 = P3- P4 = L1 = L2 = L3 = L = wall thk= Vroof= V floor* fc= fy= Seismic Load factor* SHEAR CntfffCff wall pier= thk= eff. thk= h/L= Rf= V= Av = Vn = Vc* Vu = Vs = 8*Acv*SQRT(f c) = Phi-Vn = 0.60*Vn = Phi*Vc = 0.60"Vc - HOOK HRIZ. REINF. Vu>0.6*Vc Two curtain shear reinf. Vu<Phi*Vc/2 shear reinf. req'd= #4@ #5@ #6@ #7@ #4 dowels at slab on grade Avf req'd*Vu/(0.6*Phi*fy) #4 dowels at 0.053 k/ft W2d= 0.00 kips W2L= 0.00 kips a1= 0.00 kips a2= 0.00 kips a3= 3.00 ft a4= 9.00 ft h1= 3.00 ft h2= 15.00 ft h3= h4= 9.00 in h5= 31.40 kips h6= 35.40 kips h7= 4.00 ksi h8= 60.00 ksi 1.10 At Pier #1 At Pier #2 x — ^ / ^/f. 001 iOP'f ^ *" 625 9.00 5.50 8.25 2.17 2.17 3.30 4.95 12.56 18.84 198.00 297.00 65.60 98.40 14.09 21.13 13.82 20.72 5.36 8.04 100.18 150.27 39.36 59.04 8.45 12.68 YES1/ YES YES YES NO NO NO NO 0,19 0.27 6.00 6.00 6.00 6-00 6.00 6.00 6.00 6.00 0.45 0.68 12 9 0.23 k/ft 0.31 k/ft 0.00 ft 0.00 ft 0.00 ft 0.00 ft 1.00 ft 15.00 ft 14.00 ft 6.50 ft 9.00 ft 0.00 ft 7.50 ft 7.00 ft At Pier S3 COG) in 9.00 in 8.25 3.00 2.29 kips 33.40 inA2 297.00 kips 82.12 kips 17.22 kips 36.74 kips 26.41 kips 150.27 kips 49.27 kips 10.33 YES YES NO NO -A 0-27 vo^O^ 6.00 %Jfa\$ 6.00 ^ 6.00 6.00 l£)^1.20 5 P1 P2 a1 | a2 | h8 V V pier 1 ^ pier I uniform toads(w2) P3 h7 P4 a3 1 a4 1 V u) u ^^L1 L2 L3 pier 3 pier 4 A *o At Pier #4 <b5.^yes-1,no=0) 9.00 in 8.25 in 3.00 2.29 33.40 kips 297.00 inA2 82.12 kips 17.22 kips 36.74 kips 26.41 kips 150.27 kips 49.27 kips 10.33 kips YES Vu>Acv*SQRT(fc}? YES If yes, shear reinf. require. NO Vu>Acv*2*SQRT(fc) NO 0.27 inA2/ft 6.00 in o.c.v ^5 6.00 in o.c. to'fy\ t\ g),^" 6.00 in o.c. fflJJ 6.00 in o.c. V)^V1.20 mA2 5 "o.c. hi < Vroof h2 <-—Vfloo h3 PRIMESTRUCTURAL ENGINEERS DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PERSEC.1921 1997 UBC) PANEL N-1 r r- CHECK HOLDOSOT U « 1.1E 1 0.99* DL Uniform W1= fromP1= frpmP2= Watlwt= Pier1= Uniform W2d* from P3S from P4= Wallwt* Pier 3= SumP = OTM= Holdown at left end - Holdown at right end- Holdown Bars #5 re-bars = #6 re-bars = #7 re-bars = #8 re-bars = Ch*ffc fioiuwfjifv W.mh.^ Pv = Pu* Pos Left end 0.40 0.00 0.00 3.54 3.85 1.72 0.00 o.oo 3.80 4.73 18.03 1406.20 Reauire At Pier #3 20.32 24.95 1051.83 W1= from P1= from P2a Wallwt* Pier 2- W2= from P3= fromP4= Wallwt= Pier 4= kips ft-kips 88.05 86.78 left end 6.00 4.00 3.00 3.00 tmmnt At Pier #4 21.87 26.99 1051.83 Right end 0.40 0.00 0.00 3.54 5.40 1.72 0.00 0.00 3.80 4.73 19.58 kips As= kips As= Kips Kips kips kips kips kips kips kips kips kips kips kips kips Su 1.63 inchA2 1.61 inchA2 right end 6.00 4.00 3.00 3.00 Kips =0.85*f cfAgrAst) + fyAst Mr@a 5.96 0.00 0.00 53.16 78.68 25.76 0.00 0.00 56.95 70.88 291.39 5.96 0.00 0.00 53.16 60.12 25.76 0.00 0.00 56.95 70.88 272.83 ft-kips 0.1*Ag*fc = Mu/(Vu*tw) = 3*hv*h-SQRT(f c) = Boundary Member Flexural Peaion Pu<0.35*Po Pu<0.35*Po Geometrically Symmetrical Wall 118.80 118.80 Kips 3.00 3.00 56.35 56.35 Kips No No Mu = Asreq'd- As min = As max » Beta- Rhow bat = #4 re-bar = #5 re-bar = #6 re-bar = #7 re-bar = #8 re-bar = #9 re-bar = At Pier #3 330.66 2.51 0.88 5.64 0.85 0.03 At Pier #3 13 9 6 5 4 3 At Pier #4 As 2.60 " 2.79 2.64 3.00 , 3.16 / 3.00 330.66 2.51 0.88 5.64 0.85 0.03 ft-kips sq.in sq.in(200/fy*b*d) sq.in (Rhow bal * 0.75 At Pier #4 13 9 6 5 4 3 "b'd) As 2.60 ' 2.79 2.64 3.00 , 3.16 1/ 3.00 DESCRIPT10N: CONCRETE SHEAR WALL DESIGN (PERSEC.1921 1997 UBC) U-1.32D+1.1 U=0.99Dt1.1E PANEL N-2 PRIMESTRUCTURAL ENGINffiRS uniform toads<w1) —Vroof =91.40 kips <— Vfloor:103.40 kips wan thk =9.00 in W1= P1 = P2 = P3 = P4 = P5 = P6 = Wall Thickenss= Seismic Load factor= SSXAR CBBCK wail pier= thk= eff.thk= h/L= Rf= V= Av = Vn = Vc = Vu = Vs = 8*Acv*SQRT<fc) = Phi*Vn = 0.60*Vn = Phi*Vc • 0.60*Vc = HOOK HRIZ. REINF. VuX>.Wc Two curtain shear reinf. Vu<Phi*Vc/2 shear reinf.req'(J= #4@ #5@ #6@ #7@ #4 dowels at slab Avf req'd=Vu/(0.6'Phify) #4 dowels at O.OSWft 0.00 kips 0.00 kips 0.00 kips 0.00 kips 0.00 kips 0.00 kips 9.00 in 1.10 At Pier #1 A 1 9.00 8.25 2.17 4.95 30.47 297.00 82.12 13.74 33.51 25.27 150.27 49.27 8.24 YES YES NO NO 0.27 6.00 6.00 6.00 6.00 1.10 6 W2d* W2L* Vroof = Vfloor = fc= fy= 0.23 k/ft 0.31 k/ft 91.40 Kips 103.40 kips 4.00 ksi 60.00 ksi L1= L2= L3= L4= L5= L= ,t Pier «2 At Pier *3 At Pier *4 1 9.00 8.25 2.17 4.95 30.47 297.00 82.12 13.74 33.51 25.27 150.27 49.27 8.24 YES YES NO NO 0.27 6.00 6.00 6.00 6.00 1.10 6 1 9.00 8.25 2.17 4.95 30.47 297.00 82.12 13.74 33.51 25.27 150.27 49.27 8.24 YES YES NO NO 0.27 6.00 6.00 6.00 6.00 1.10 6 1 11.25 10.50 3.00 2.92 64.93 378.00 104.51 17.93 71.43 60.67 191.25 62.71 10.76 YES YES YES NO 0.38 6.00 6.00 6.00 6.00 2.33 3 3.00ft 9.00ft 3.00ft 9.00ft 3.00ft 27.00 ft At Pier SS 1 11.25 10.50 3.00 2.92 64.93 378.00 104.51 17.93 71,43 60.67 191.25 62.71 10.76 YES YES YES NO 0.38 6.00 6.00 6.00 6.00 2.33 3 M= 2.00 ft h2= 15.00ft h3» 14.00 ft MS 6.50 ft h5= 9.00 ft h6s 0.00 ft h7= 7.50 ft H8= 8.00 ft At Pier #6 1 (yes=1 , no=2) 11, 25 in 10,50 in 3.00 2.92 64.93 kips 378.00 in*2 104.51 kips 17.93 kips 71.43 kips 60.67 kips 191.25 kips 62.71 kips 10.76 kips YES Vu>Acv"SQRT(fc>? YES If yes, shear retnf . require. YES Vu>ACv*2-SQRT(fc) NO (j 0.38 in*2ffi tfi-O^- 6.00 in o.c. C0 ^ 6.00 in o.c. '^'/Cjtf' 6.00 in o.c. « 6.00 in o.c. . $$& 2.33 in*2 ^L 3 ."o.c. DESCRIPTION: CHECK HQLDQWN Uniform W1= from Pi. 2,3= Wallwt= Pier 1,2,3= Uniform W2d= from P4,5,6= Wallwt= Pier 4,5,6= Sum P = OTM= Holdown at left end = Holdown at right end= Holdown Bars *5 re-bars » #6 re-bars = #7 re-bars * #8 re-bars = A STRUCTURAL B^SSlENGINEB8 SHT:JJazL CONCRETE SHEAR WALL DESIGN — - (PERSEC.1921 1997 UBC) PANEL N-2 U = 1.lEt0.99'DL Pl»r1&4 0.40 0.00 4.73 5.06 1.72 0.00 3.80 5.91 21.61 P1er2&5 0.64 0.00 8.78 5.06 2.75 0.00 7.59 5.91 30.72 Pter3&6 Mr© a Mr@b 0.40 kips 19.32 0.00 kips 0.00 4.73 kips 246.04 5.06 kips 205.03 1.72 kips 83.47 0.00 kips 0.00 3.80 kips 205.03 5.91 kips 239.20 21.61 kips Mr= 998.09 19.32 0.00 246.04 205.03 83.47 o.oo- 205.03 239.20 998.09 ft-kips 4098.20 ft-kips 132.83 kips As= 2.46 inch*2 t, A ^ W/ 132.83 kips As= 2.46 inchA2 °\ ^ toft end 8.00 6.00 5.00 4.00 right end 8.00 6.00 5.00 4.00 Check Bojindary Member Requlramant Pv = Pu = Po = AtPterf4 23.89 29.66 1338.69 Pu<0.35*Po AtPiar«S 34.38 42.38 1338.69 Pu<0.35*Po At Pier 46 23.89 Kips 29.66 Kips 1338.69 Kips Pu<0.35*Po Geometrically Symmetrical Wall 0.1*Ag*fc = Mu/{Vu"lw) = 3*twm*SQRT(f c) = Boundary Member = Plarural Design Mu* Asreq'd = Asmin« As max = Betas Rhow bal » #4 re-bar = #5 re-bar = #6 re-bar = #7 re-bar = #8 re-bar = #9 re-bar = 151.20 3.00 71.72 No At Pier #4 642.84 5.10 1,20 7.70 0.85 0.03 At Pier #4 26 17 12 9 7 6 151.20 3.00 71.72 No At Pier *5 642.84 5.10 1.20 7.70 (/ 151 .20 Kips 3.00 71 .72 Kips No At Pier *6 642.84 ft-kips 5.10 sq.in 1.20 sq.in (200/ry*b'd) 7.70 sq.in {Rhow bal * 0.75 * b ' d) At Pier #5 At Pier #6 26 26 17 17 12 12 9 9 7 7 6 ^ 6t/ r SXa ENGINEERS SHT ; Ubu \iO PRIME JOB: STRUCTURAL ENGINEERS CONCRETE SHEAR WALL DESIGN (PERSEC.1921 1997 UBC) U=1.32D + U=0.99Dt1.1E DESCRIPTION:PANEL N-3 uniform loads(wl) W1- P1 - P2 = P3- P4 = U = 12 = L3 = L = wall thk= V roof= Vfloor= fc= fy= Seismic Load factor= SHEAR CHff^T- wall pier= thk= eff. thk= h/L= Rf= V= AV- Vn = Vc = Vu = Vs = 8*Acv*SQRT(f c) = Phi*Vn = 0.60*Vn = Phi*Vc = 0.60*Vc = HOOK HRIZ. REINF. Vu>0.6*Vc Two curtain shear reinf. Vu<Phi*Vc/2 shear reinf.req'd* #4@ #5@ #6@ #7@ #4 dowels at slab on grade Avf req'd=Vu/(0.6*Phify) #4 dowels at 0.053 km W2d= 11.92 kips W2L= 0.00 kips a1= 76.50 kips a2= 0.00 kips a3= 3.00 ft a4= 9.00 ft h1= 3.00 ft h2= 15.00 ft h3= h4= 9.00 in h5= 31.40 kips h6= 35.40 kips h7= 4.00 ksi h8= 60.00 ksi 1.10 At Pier #1 At Pier #2 1.00 1.00 9.00 9.00 in 8.25 8.25 in 2.17 2.17 4.95 4.95 15.70 15.70 kips 297.00 297.00 inA2 98.40 98.40 kips 21.13 21.13 kips 17.27 17.27 kips 4.59 4.59 kips 150.27 150.27 kips 59.04 59.04 kips 12.68 12.68 kips NO NO YES YES NO NO NO NO 0.27 0.27 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 0.56 0.56 12 12 0.23 k/ft 0.31 k/ft 4.58 ft 0.00 ft 4.58 ft 0.00 ft 1.00 ft 15.00 ft 14.00 ft 6.50 ft 9.00 ft 0.00 ft 7.50 ft 7.00 ft At Pier #3 1.00 9.00 8.25 3.00 2.29 33.40 297.00 82.12 17.22 36.74 26.41 150.27 49.27 10.33 YES YES NO NO 0.27 6.00 6.00 6.00 6.00 1.20 5 P1 P2 al | a2 | h8 V V pier 1 * pier 2 uniform Ioads(w2) P3 h7 P4 a3 | a4 | V « V L1 l_2 L3 pier 3 pier 4 A £ At Pier #4 1.00 (yes=1.no=0) 9.00 in 8.25 in 3.00 2.29 33.40 kips 297.00 inA2 82.12 kips 17.22 kips 36.74 kips 26.41 kips 150.27 kips 49.27 kips 10.33 kips YES Vu>Acv*SQRT(fc)? YES If yes, shear reinf. require. NO Vu>Acv-2*SQRT{fc) NO 0.27 inA2/ft 6.00 in o.c. -XVV1 t/ 6.00 in o.c. k')/!^ $' 6.00 in o.c. ^y 6.00 in o.c. i 1.20 inA2 r AJJSOr 5 " O.C. ^ -/*|L\^"^ hi < —Vroof h2 <—vfloo h3 PRIME J06: STRUCTURAL att» ENG1NEB3S SHT i Lit* DESCRIPT1ON: CONCRETE SHEAR WALL DESIGN (PERSEC.1921 1997 UBC) PANEL N-3 rT&'mK fffffiPffWr ii = i-iF*0-M* ni Uniform W1= from P1= frpmP2= Wallwt= Pier1= Uniform W2d= from P3= from P4= Wallwt= Pier 3= SumP = OTM= Holdown at left end = Holdown at right end= Holdown Bars #5 re-bars = #6 re-bars = #7 re-bars = #8 re-bars • CbAcJc Boimdairv IfftlflhftT" Pv = Pu = Po = Left end 0.40 8.86 0.00 3.54 5.40 1.72 56.87 0.00 3.80 4.73 85.31 1406.20 Reauirt At Pier #3 87.59 113.75 1051.83 Right end W1= 0.40 kips fromP1= 3.06 kips fromP2= 0.00 kips Wallwt= 3.54 kips Pier 2- 5.40 kips W2= 1.72 kips from P3= 19.64 kips from P4= 0.00 kips Wallwt= 3.80 kips Pier 4= 4.73 kips kips 42.28 kips Su ft-kips 23.72 kips As= 0.44 inchA2 58.97 kips As= 1.09 JnchA2 left end right end 2.00 4.00 1.00 3.00 1.00 / 2.00 / 1.00/ 2.00 1/ .___t At Pier #4 44.56 Kips 56.95 Kips 1 051 .83 Kips =0.85f c(Ag-Ast) + fyAst Mr @ a Mr @ b 5.96 5.96 54.59 124.21 0.00 0.00 53.16 53.16 81.00 81.00 25.76 25.76 350.37 797.13 0.00 0.00 56.95 56.95 70.88 70.88 698.67 1215.05 ft-kips Pu<0.35*Po Pu<0.35*Po 0.1*Ag*fc = Mu/(Vu*lw) = 3*lw*h'SQRT(f c) = Boundary Member: Pleacur-al Design Geometrically Symmetrical Wall 118.80 118.80 Kips 3.00 3.00 56.35 56.35 Kips No Mu = Asreq'd- Asmin = As max = Beta = Rhow bal = #4 re-bar = #5 re-bar - #6 re-bar = #7 re-bar - #8 re-bar = #9 re-bar = At Pier #3 330.66 2.51 0.88 5.64 0.85 0.03 At Pier #3 13 9 6 - 5 4 3 No As 2.60 2.79 2.64 3.00 3.16 - 3.00 At Pier #4 330.66 ft-kips 2.51 sq.in 0.88 sq.in(200/fy*b*d) 5.64 sq.in (Rhowbal"0.75*b*d) 0.85 0.03 At Pier #4 As 13 2.60 9 2.79 6 2.64 ^ 5 3.00 4 3.16 • 3 3.00 VkKZ&L, AhU^SlS --4 PRIME JOBSTRUCTURAL OWE: ENGINEERS «: r ftf.U>AO DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1997 UBC) U=1.32D+1.1E U=0.99Dt1.1E PANEL N-4 uniform ioads(w1) <—Vroof'91.40 kips •Vfioor*103.40 kips wall thk •9.00 in wi= P1 = P2« P3« P4 = P5* P6 = Wall Thickenss= Seismic Load factor5 0.05 k/ft 0.00 kips 0.00 kips 0.00 kips 0.00 kips 55.73 kips 0.00 kips 9.00 in 1.10 W2d= W2L= Vroof = Vfloor = fc= fy= ffKBAR GBBGK AtPtortl At Pier f2 wall pier= thk* eff. thk= h/L= Rf* V* Av = vn = Vc» Vu = Vs* 8*AcVSQRT(f c) = Phi*Vn = O-eo-Vn = Phi"Vc = 0.60-Vc = HOOK HRIZ. REINF. Vu>0.6*Vc Two curtain shear reinf. Vu<Phi-Vc/2 shear reinf .req'd= *4@ #5© #6@ #7@ *4 dowels at slab Avfreq'd-Vu/{0.6'Phi*fy) #4 dowels at 1 9.00 8.25 2.17 4.95 30.47 297.00 82.12 13.74 33.51 25.27 150.27 49.27 8.24 YES YES NO NO 0.27 6.00 6.00 6.00 6.00 1.10 6 1 9.00 8.25 2.17 4.95 30.47 297.00 82.12 13.74 33.51 25.27 150.27 49.27 8.24 YES YES NO NO 0.27 6.00 6.00 6.00 6.00 1.10 6 0.23 0.31 91.40 103.40 4.00 60.00 At Pier *3 1 9.00 8.25 2.17 4.95 30.47 297.00 82.12 13.74 33.51 25.27 150.27 49.27 8.24 YES YES NO NO 0.27 6.00 6.00 6.00 6.00 1.10 6 k/ft L1= k/ft L2= kips L3= kips L4= L5= L= ksi ksi AtPlartt 1 11.25 10.50 3.00 2.92 64.93 378.00 104.51 17.93 71.43 60.67 191.25 62.71 10.76 YES YES YES NO 0.38 6.00 6.00 6.00 6.00 2.33 3 3.00ft 9.00ft 3.00ft 9.00ft 3.00ft 27.00ft At Pier tS 1 11.25 10.50 3.00 2.92 64.93 378.00 104.51 17.93 71.43 60.67 191.25 62.71 10.76 YES YES YES NO 0.38 6.00 6.00 6.00 6.00 2.33 3 h1= 2.00 ft h2= 15.00 ft n3= 14.00 ft h4= 6.50 ft h5= 9.00 ft h6= 0.00ft h7* 7.50 ft h8= 8.00 ft At Pier «6 1 (yes=1 . no=2) 11.25 in 10. SO in 3.00 2.92 64.93 kips 378.00 in*2 104.51 kips 17.93 kips 71 .43 kips 60.67 kips 191.25 kips 62.71 kips 10.76 kips YES Vu>Acv*SQRT(fc)? YES If yes, shear reinf. require. YES Vu>AcV2*SQRT(fc) NO 0.38 10*2/0 6.00 in o.c. 6.00 in o.c. 6.00 in o.c. 6.00 in o.c. 2.33 in*2 3 "o.c. DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1997 UBC) PANEL N-4 _ JOS" STRUCTURAL '[x-sa ENGINEERS sw ; ~~ETi7 CHECK HOLDOWN U == 1.1Et0.99*DL Pler1&4 Ptor2&S Pier 3 46 Uniform W1= from P1,2,3= Wall**" Pier 1,2,3= Uniform W2d= from P4,5,6= Wallwt= Pier 4,5,6= SumP = OTM= 0.40 0.00 4.73 5.06 1.72 0.00 3.80 5.91 21.61 4098.20 ft-kips 0.64 0.00 8.78 5.06 2.75 55.73 7.59 5.91 86.45 0.40 kips 0.00 kips 4.73 kips 5.06 kips 1.72 kips 0.00 kips 3.80 kips 5.91 kips 21.61 Kips Mr= MrQa 19.32 0.00 246.04 205.03 83.47 752.36 205.03 239.20 1750.45 Mr@b 19.32 0.00 246.04 205.03 83.47 752.36 205.03 239.20 1750.45 ft-WpS Holdown at left end = Holdown at right end= Holdown Bare #5 re-bars = *6 re-bars = #7 re-bars = 104.72 kips As= 1.94 inch*2 104.72 kips As= 1.94inchA2 toft end right end 7.00 7.00 #8 re-bars = Chack Boundary Mambar Raauiremant. Pv = Pu = P0 = At Pier «4 23.89 29.66 1338.69 5.00 4.00 3.00 At Pier IK At Pier «6 90.11 23.89 Kips 115.95 29.66 Kips 1338.69 1336.69 Kips 5.00 4.00 3.00 * r ^ Pu<0.35*Po Pu<0.35*Po Pu<0.35'Po 0.1*Agtc • Mu/(Vu"tw) = 3*tWh"SQRT(fc) = Boundary Member = Geometrically Symmetrical Wall 151.20 151.20 151.20 Kips 3.00 3.00 3.00 71.72 , 71.72 71.72 Kipt No No No Flexural Desloo Mu = Asreq'd = Asmin = As max = Beta = Rhow bal = #4 re-bar = #5 re-bar = #6 re-bar = #7 re-bar = #8 re-bar = #9 re-bar = At Pier #4 642.84 5.10 1.20 7.70 0.85 0.03 At Pier #4 26 17 12 9 7 6 At Pier #5 At Pier #6 642.84 642.84 ft-kips 5.10 5.10 sq.in 1.20 1.20 sq.in (200/fy'b"d) 7.70 7.70 sq.in (Rhow bal * 0.75 * b • d) At Pier #5 26 17 12 9 7 At Pier *6 26 17 12 9 V 8. CN x Oc? ra rl •* x g- * L- ^ ^f - s CN ^°" V ° V c Io -i -i Oi Oi CO! & GO ro inr~ c Oo" cr <N UJa UJa Sr > PR'ME Joe: STRUCTURAL DAIS ENgfiNiSERS SH lcrkir. Stress fcll Foctir. Sssifi Cvl.3) F^J'T-llCl IT l Till* i,~i iriS Hi Li fit JN: 2K-27C r 080E Seisnc JStS INFOT; >b >h >d-h d= >LK XHIIST >GKAX NiALL VT. >RDL M--L >FDL >FLL >'.': >H1 >V2 \i;^ >£ >f-'c >fy /we 30, 24, 20 204. s! 2,? V i li 0,1 1-2 00 AA tfw 4 ,0 00 ft Aw 00 IS I.D £? S2 1,8£4 237. 23, 275, 14, 3, AV. 70 VV i£; A?*yy • A V £0 *ir INr IN, M, TV "l TT! :f FT, KLF, KLF; KLF. KLF, KLFt K!P, FT KI?, ^f i/«^ -M-»J i j/CTPvWi "R* t'^ri\V: MIDTH HEI6KT CLEAR LENSTh OF nj cc nu flexi:ral stssl FTS 6,3 -*5 F FTS 4.5 -*6 VER 3.3 -S7 2.5 -ic r iiiALL 2,0 -S9 dist to WAX fa ^Hu S Top & Soctos SAX GPENIK6 PNL k RG3F •jGQr F^OOR •-! rsi5: i.u us SEIS^ DIST F 3EISF nTf T i-i/13! r SOIL T 3? 1.1 2 L- *!^ 1 *r H EE^ FT stirrups *hsrs rsq'ci AD L04D n -Q? @ 0,0 n. ;JC ' "i"i *t" ''Ft 5 A A ^V£ !_«!••.„ Bf ' u- 5 Vi^ fi. EAD LOAD Ssas= 1C r,. IVE LOAD ROG" .GAD, (r^c)Eh/l=4 T:"- f'T r~-" ~^ !M FLGQR LGAB, (rhoJEh/1.4 iQP OF FTS TC v'i i r- ijl U ?! f*<J. I/ W f v BcARI^S PRESURE fc= 1.35 ks: ts= 2^,00 ss: n= S.?Q ES/F!- OUTPUT: « vnc n~ ^nwr im TTK^ lliS (ji wuisL-, in flU, f> "T5 :'V 7 fi "5A VQJ1 S'D = 27,7 IN, < b =«===> O.K. D - L T H/1.4; C2-13i £.7 ^LF (iiALL K'.+FT3 KT.TRBL+F 1775.1 KIP-FT, 4023S.7 K-F';C,5^*LA2)= AT .f=witC?!A?A2/!l, V=ul*OSA)E/2r ¥C=!.i*£Qrt(:'c)! ¥= «I=b*q/.95 S.37 i(LF, VA.UE OF q AT OPEKIKS PER i32£,2,3 -v -w^ wv j jij r v= 55, £4 ps: vs= ? s: is."'.- TV , i^C;Li-=5*' u Z <I z 111 111 -I111 <Q_ PRIMESTRUCTURAL tWB EhJGlNEERS SW: qr1 vc (N •ofO UJ IL/ Z -J o CD O O Q V-•z= C/lv- a. o a/ x (/) ex r- ^o o -^!w V- Q j j a 3 3 PRIMESTRUCTURAL ENGINEERS r Leads Consts :r,g Stress Stal! Footing Design (vl,3; LINE K JNi 2 >MLL >RDL MH >FLL >V2 >H2 >S "A i*iA TH fiesural steel 12,5 -15 8.8 -*6 6,5 -17 4.S -IS 3.? -H -S Tec 6 Bot 24,GC IN, HEISNT OF FT8 4 IN, CLEAR COVER 'ift fl 7 Hii\J.v iHi fCO Sfl 77 ' JTfJpTj; pr y*j j*wu,vV 1 J , i«k.i1U it Ut »n^^ 4,10 FT, iist io OffA? fa q,?l£x 13.50 FT, NAX OPENINS WT. 2.51S KLF, PNL i^T PER FT stirrups «her= C,22£ KLF, ROOF DEAD LOAy §3 FC! § ! 0.4S7 KLF, ROOF LIVE L3AD H4 'U? % * 1.S64 KLF, FLOOR LIVE LOAD 247.3C HP, 3EI3HIO ROOF LOAD, (rho)Efc/l = 4 70 rtg TT ?)Tcr rn TH? ^r TTC- TH W'i j f -.CV i if */AUJ . . P : fc.-i wt j - \t i U V. ^7 A* I/TC cCT5*fTrt T: fS^3 ' "AS ,'»B«^Cfc f* >io-1V.- PI*r, 5tiDiiiv rbUwrt LwH^; trriG^£'i;.,>* d^l^Vtif JJ 1*J • n!. )«Jj Ur riCf >w y^ 3.10 KSF, SOIL BEARDS PRESURE 3 KSi fc= 1,35 ksi SO K3I fs= 24.GO ksi C-.15 KCF n= 9.2S Es/Ec : 1.33 =q!d vGiyiiE= FT6 «'. D+L+Lr= = 8= 25.35 :a:c YDS OF CONC. IN FTG. G.75 ^LF 0,30 i(SF} wc*b*h/l44, S.46 KLFj (RDL+RLL^FDL-fFLL+WLL MT) [D ^ L ^ LR3 (12-123 cniT\ s 77 7 ?y .-• s, ====-=> n ^ f^j.;l-Oi iJ ™ i; 1 f i:i , V LJ --- — -- / i.-. , , li. i. - CD + L * E/1,4^ (12-13; S.7 KL7F ;^LL wT.rFTS ^.^LLrFBL-rFLL) 11956.9 KIP-FT, <Vlt(Hl+h)+V2*£H2*h)> S4S58.2 K-FT(C,5*^*LA2)= 7.1 ?QT" PENING PER 1S2S.2. (N OD cr (N N X J: UJ Q.UN CN 00. 40 O" OJ y ft- O O m cr\" Ci_ocso 2! H V i O!zi CD!M -i I CM X 00 1 Leads 7GG7-N6 A INPUT: >b >* >d-h,j= >LK >ODIST XJXAX dag Stress « 28. OC IN, 2^,00 *N, 4 :s, *V. fl » lr£viv i;V, US? .-V-) C-TiU^ i •_'•.' i r | w'l v'\; " i j 0 f-.fi 7T Jl 'JV : i | A STRUCTURAL DBB^OP j,. ENGINEERS SHT : LH; flexural steel XIDTH OF rre e.o -*s HEISHT OF FTS 4,2 -*5 CLEAR COVER 2.: -?7 2.4 -18 LENGTH OF &LL 1.5 -*S ulEii "5 iiuA;, iffi Cjj:iSX S 1 Cp a' ^C"2" HAS OPENINS KLF, ?NL WT PHR FT Kir, £ODF DEAD LOAD KLfs RQGF LIVE L^B fCLF, FL3DR 3EAO LOAD stirrups where rsq'-J ^3 fD' § 0,0 i". ". f> f> - - fr'-.' i ^ - ::. u i 'A ir: '"!iV it:, j. SSISEI;2S0.5C KIP, 3EISHIC ROOF LOAD, (rhc?£h/!.4 2 >H2 "' fiHP t Hi!' £C FT, DIST FK TOP OF FTS TO V2 ;\SF SOIL £EA^rN? PRCSUR- 24, OC ks; S.2S Es/Ec VOLONE=^o.i; r^ll;:'i'-- ';iO Jf i.-i.Nl,i ,;'* / :o. CD + L ^ L83 (12-122 SE2'D = 22.4 IK, < b ====> C.K. (DvLtLr3/(i-FT3 #1 [D T L i E/1,4] (12-13) 11550.2 K:P-FT, ;vi*;Hirh}tV2*(H2^;) RH= c-818.7 KIPS, £w*L) 51 q rr '?W - f!TM\J3w., J ! . j \-.-,, '.:,l,J: *i ' 7~ •"• /^_-i^! ,'i —-. — v n Vi4-! i ,. >._-•_ ±^ \b..- uj -~-/ ytK. 3,53 KSF, < Qs=4/3*S ===========> 3.K. T "^ Av/s= Shea? v= i£,23 psi •s= 0 ?s: &H PRIMS JOB: STRUCTURAL D«e ENGINEERS SHT : In*1" PANEL ELEVATION AT LINE r i r r Vfw r (elf \33' = U064- Kl 0.36X286.5; 1-4- 1.4- osos Loads itorfcing Stress Ua?l Footing Design (vl.35 FOOTING AT LINE K JK: 2! i-onsts INPUT; >b >h >d~fc d = )_'« >SDIST >a«AXmi «T. >RDL >RLL f~ J '- >rlL >V1 >H1 >V2 >K2 >£i. i i - >fv '!•* ^,A Owl VV 9-i ^1/T, VV 4 V; {•iv» <j • •? ^0* *ij, v^ •J T u: V 3 rtn, vv G.372 0,532 C.722 1,064 278,30 23, CO 202.30 i-,00 3, 1C r^ U Cft•JV IN, IN; IKj IN, FT, FT! FT, IF! KLF. Vi r ftL.* j KIP, ^T \~~t 77 KSF, KSI KSI WIDTH HH'eH CLEAR 1SNST dist GF FT£r nr ~T^ COVER H OF WALL to C^AX it q,Mas fissure! stesl 7,7 -35 5,5 -»6 4.C -*7 3.0 -S3 2,4 -39 ? Tff- S. TJ^i-i..,.5 : wj* « suit ii-C! HAX OPEHIKS PSL ROOF FLOO "LOO 3E:S DIET HEIS -i-^T SOIL ;VT prg PT ICiR ; flifiJtnu LuMi; LIVE L:AD P 'irir- f n;7 f% _ i_Tl ' '-Oi -if P ' T U*1 ' HAn KIC RCOF L2AD, (r F3 TCP C7 rT£ TC lf.lt FLOOR LOftD, ( ?M TCP CF rT:; TO SEAR INS PRESURE fc= 1,35 fs= 24, OC stirrups «Ksre raq'd *3 !Sj? § 0.0 I:F J*/ J ;;f ^ ^ ^ ; -~ ~! \J i '-J . V 1 ; , Ssax= 10 1« fc3)Eh/1.4 VI rh3)Eh/I.4 V2 ks: k^i ' C'•VI = 6= 0.90 £LF 5.22 £LF YDS OF C2NC:, IN 'T£, 0,30 K£F, wc*b*h/14«, w; 22.4 :N, < c "====> O.K. (DTU: /;.<: C2-I3) 35S79.5 £-FTj(C, 5 534,0 KIPS, C«* 3B.O FT, (RM - ;c 7 r- ft /•;•_4«, / r : , \--l S. iJ, / ij i\D.~ f ^ tG~ C.S2 K3FJ ?f^ ,4 , - 1.52 KIP-FT 132£.2,3 cessnt Ction PRIMESTRUCTURAL DME: ENGir^EERS SKT: r r SRUCTURALENGINEERS SHT PANEL ELEVATION! AT LINE A PB fa Pw.t n n iOpsf x 3,5' 80sf x 5.5' ftt .5') ' 2.16 r 2-4=4 r <?RADE BM & LINE 3DIL B6^RlK(j PRESSURE CASE) ,oor PGI r N4 p£h H • I !• !• U4-= ITS CAS£ I I ^ I IV fc- V 14' Ci 63.1 y 230+ Q + L t (j. D t ± PRIMESTRUCTURAL DA1E ENGINEERS «T:_i BH (5|.4 * :Iti - p^. ^"1-4^ 29')t- (3B.4- ^ (4 14' -••• - \ AA /LlUOv *•*- ^^ r ffcn A CASE I ' UiD f (XfcLr + 1.6 L I %- I ' 1-520 + 0,fe5L ± ME IV <b- \/ • Ov*WD t ME. INE A -So\L 2S-27C STRUCTURAL ENGINEERS SW SRASE BEAH ANALYSIS PSOSRA?! I4.C2) Footing 1.EN6TH = 3C.CO ft Footing HI3TH = 3,75 ft Footi"r DEPTH = 3.CO ft Csr.t iieight Surcharge footing + Surcn A <=: y.iw> iu fitt 0.00 ksf w v* 3A 2.434 1.00 E8.00 3 79, / v 72 Qfi \00. W "•US -i*fA V O 1 J Vr -££.00 44.72 40.25 00 QA ""^ ^ ^^ "&0> v J OS, vO' S&.O'J ~S£.00 ,25 ,51 47, 73. -55.00 SS.OO 65.00 -5S.OO -103.30 103.30 103, -55. uu i .n »-A '.11 "7 FA;/ itlv =.f.: kV ,50 RE3ULTAKTS CASE Pt 521,4S 450'. £2 460,62 42?. 75 425,74 X 47.S4 30,7? £2.13 23.51 53.2! 2,05 2.& 2.34 4 "•£ A A-: A -1A i.w3 yi*J: V,vV • ; r« "t J > A ei *1R C^i 'in "7 J *vt i S.V (Sax D3i3J ;-•-.'.?£ I«.bO ;i(S.o/ i^.i-J •- ».v i 7 A;'\ -i"1! 3R7 f« 74'^ ~-^ !^^e' f'4 '^'••4 "^ li ni n _("'. •''..'' ."CT E- -""^ -*— -"'" "." -^S" "'' V IBSX H iESV SRADE BEAU ANALYSIS PR3SRAK (4.023 08/29/CO PRIME JOB: STRUCTURALENGINEERS SHT : Footing LENGTH Footing KIDTH "ootinc DEPTH 9G.CC ft 3.75 n 3.00 ft Corse Weight Surcharge "ooting T Surer 0.00 ksf 1.&9 xif US1F3RH LOADS (k/tt & ft) 1 2 3 n •} CM " OA« •; 3^"> 'j 7"5A ^ 71:-'v,DW iSiw.'V C.WVV i.,Mf i,i!-^, POINT LOADS (k & ft) 33,07 S3.07 44.2? 44.27 47,58 ,00 110,44 -110.44 110,44 -1:0,44 1,50 .00 -MO,44 HC.44 -HO.44 110,44 15,50 M -173-35 173;3S -i73.36 173,36 42.50 .00 110.44 -110,44 110.44 -110.44 43.50 .00-HO.44 -1C.44 -1:0.44 110.44 57.50 '•(f! 'T5 "5& -J-T5 If ^7*5 ^'c -'"il ^S, ^ ^f,1.!'.' i / J, ^D i /C, JO i/J.Ou i/u. JC wO.iiV ftft _i7^ "£ '-7^ <i ~*"9'$ OC IT1! "r: Bii ^A.vj ~ji/iis-ju i/O.OD ~*/i3iuS I/w,i-j C'f.Du J.57 234.50 [.51 2194.07 ; f-7 -i;3 vi V \&t, $ fflfis ¥ .win 240.77 k 2134,07 kft -499.13 kft BM 08/29/00 PRIME STRUCTURALENG1NEB3S SHT; iw 3R4DE SEAM DESISK (4.C2) DESZ6N DATA fy = 50,00 k5i Load Factor = i.OC b = 45.-00 in h = 3ft.00 in d = 30,CO in v'asx = 24C.B k Vn = 283.3 k Vc = 147.9 k Vs = 135,4 k Av sin = 0,45 si/ft S sax = 15,00 if Av sir = 0,30 si/ft Av = O.SO si/ft 2 $ 3 Stirrups § 5,SS I I 4 Stirrup @ 5.3". 21 4 Stirriias 6 iO.S" 8eU I = O.S5 •' - " " '' ~ = / ff ^ 5 T As sax = 21.55 si 8+ aax = 2134 kft H- iin = -4S3 kfi hrn- = 2435 kf: fin- = -555 kft As sir = IS,50 si As sir = 3.83 si As = 19,60 si As = 4,50 si 3 3O Ti. / 24.3 ^,b ae •4,5 , 3.0!h 4.1" fi.fi' 2.' BM >k STRUCTURAL JOB r r r B I * 14-86 \.4-U ap r x 3-o"TH< 20- 4-- ft 6 c ToP> STiRR'^?S s? (G-fe) BH g LINE SOIL SCARING PRESSURE CASP) 1-4. 1.4 U4 CASE: i • D^-Lt £ U 1 ; D i e/>4 IV H- V : 03 D ±51. 86 BH (1113 CASE I ^ UP t o. Ifc- I > iv <y- v > r 165- ± ME r QpAPC SiTi1* AW4: YC'S B&r>p94M -i £?*.crin-1— -n_"ui ni*^-^^JiiJ i iiuLiinii *T>Vfc^ STRUCTURALENGINEERS restin T Surch, = C.15 kef C.OC ksf El. 9! 74, 8£ 74,38 57.?* £7,3? :2,00 34,!! 23, 5* 23,54 25,53 2S,5? 25.50 5i,3^ 4^,7? 44,75 4C.3! 4C,^: 3S.OO J AO ••?*( _*ftO •";*> ' .^C r1;71 _-f>2 '-•!" C ^^• ft Af. ."VS r;f\ *f;O Oifi -'.'•C O'V '<*$ ^^ i* ^i"-Vl VV itfOiiV iWO t iV iV3l 6V iUO.iJi. Tl 1 3*.' ^ i"1! ?0- , i teU 4,13 l.OC V ffiax 50.^2 !!O.OS S3.Sc 11C.54 32,32 K r=x 2:0.25 5?:,22 £74,15 537,70 £72,27 3 siin -C.OO-!53.77 -75.3S -:53.77 -76.15 r .INE 1 06/29/00 2K-270 SRADE BEAH ANALYSIS PROSRAH Footing LENGTH Footing ^iDTH Footing DEPTH , 3.75 ft 3,00 Cone Weight 0.15 kef 0.00 ksf Footing + Surch, = 1.63 kit (K & ft) 4 93.55 101,32 101.92 74.li 74.11 12.00 41,75 41.01 41,0! 23,24 23.24 25.50 &3.4S 52.22 52,22 44.34 44.34 33.00 0,00 182.15 -182,15 182.16 -162.15 S.50 0-182,16 182.16-182.15 182.16 4i,50 P" SESOLTAN1 ft & ksf) 2 S din 237,51 257,35 237,95 240.50 24.43 4,7£ 43,83 0,35 1.92 11.13 4,77 117.62 0,37 0,00 C,00 0.00 240.50 4S.S4 0.00 HAXlttH FORCES CASE 1 V sax 51.37 24B.52 1£?.5S 23B.57 200,2; K ffiax 377,53 1535,84 1255.25 2221.71 153S.2: K sin -C.j', -I5S.7V -7 v MX = 243.52 it f! iasx = 2221.71 kft H Kin = -153.77 dt LIKE 13 SRABE BEAK DESIGN PSOSRA8 DESIGN DATA f!; = 3.00 ksi fy = SC.OO ksi Load Factor = 1,00 b = 43.OC in h - 3E.OO lr, d = 30.GO in SHEAR DE3I8N Vaax = 248.5 k Vn = 232.4 k Av atin = 0,45 si/ft S Av str = 0.36 si/ft Av = G,S6 si/ft II, - id" Q v»!. - i *•.' . 3 S vs = 144.5 k 2*3 Stirrups £ 5,5B 1 4 4 Stirrup g 3,0" 2 I 4 Stirruss g JS.CB As alii = 4.SO si As sax = 21.55 si &* sax = 2222 kft N- air. = -154 fa* = 24£S kft Hn- = -171 A* str = !9r91 si As str = 1.15 As = 12.3! si As = 1.53 left kft r T iJ § £ I 7 * S. Bottci Stes! Top Sts2: Nc, Spies No, Space 7.7 4.1" 4,3 5.6" PRIME STRUCTURAL ENGINEERS 08/23/00 2K-270 BM e LINE PRIME JOB:STRUCTURAL OWE: ENGINEERS SHT; I i Pa Rp = P4P-- -oor-- 3.91 'X (G-l) e Xfc' * 3.2.*: BM ft LIM SOIL CASD) L4 U- (.4- 1.4- PWME JOB:Lfe£2C>STRUCTURAL DUBENGINEERS SHT : CASE I I <^ IV U Lr GRADE BM C>£St<sN p£- CASE I (.2P t IV <^ V ; 0,^P t LIE PRIME JOB: STRUCTURAL DAIS _a-p0 ENQNEB5S SHT: 3RADE SEA? ANALYSIS PRQS3A?! r Footing LENS7B = 50,00 ft Co^^jrtsvr^ — f' AA i, - JCiiTvilSi 5C ~ vivV K5~ ~,.t.'-'- ™* 4. ?—! -L- - * iC r,' -"- L-i,i-*i:y - Sw. i,.:i - i.c- »,*- If- ^t 2 SAiViOC 5.3U Tjll-J -JJltJ. uJlWi 43 ~" 1$ -fi ?° •?-TW l r w J rf * *Q iJx • , » RESULTASTS £k, rt I fcsf? CASE 1234^ ?t 223,5: 2i4.S5 214,5S 201.52 20;.£2 ;;_,,. OS Q-r Ci 1- ;i- C-v' »'=>-, ^»;,3C ^'r-i: Oii-ji y nj;; = i*,/: K K fit* = 5?3.S£ kft r LIME 14 :08/23/00 2K-27C SRADE 2E.4S ANALYSIS PRDfiRAH (4,02) Footing LEH6TK = 50.M ft Footing HID7H = 3.75 ft Footinq DEPTH = 3.00 ft r~ Surcd-srge Footing * 3urch, PCIJT L3A3S (fc & ft) 1 2 3 0.00 ksf 1.6S klf 31.SS 31.37 31.37 22,39 22.33 38,92 33.92 8,50 53,31 S3.70 53.70 *C.54 40.2S 40.2S O.OG -161.04 161,04 SESULTAKTS (k, ft i its' CASE 1 2 33.77 38.77 28,85 2S.8S 151.04 -16;.04 -161.C4 161.C4 23.5Q Pt 2&I.23 2S2.3S 21,30 4.07 sax S iir. O.SS e.OC HAXIH'JH FORCES (k. kft) r}^2 S9 2^ ^^ 35.SO 0.27 4,45 141,62 A AA A r\fi\-t _ • .\\ \* ~ f>»v 213.35 44.05 S.37 0.00 V osx 43.77 224.31 M ESS 253.44 1537.14 H rain 0.00 -32,02 129,44 211.93 731, 65 2C5&.54 -155.76 -S3. 02 15S.42 334.03 -137.8C y isas = 224,31 k K sax = 205S.54 kft ?! sin = -155.76 k?t L:N£ 14 : s-PApe BM PRIME STRUCTURAL ENGINEERS SHt 2K-270 ir*^ f"i'**^ADi BcftH (4.02; DESIGN DATA :'c = 3,00 ksi fy = 60.00 fcsi -oa2 Fsctor =1.0 b = 45,00 in h = 36.00 in d = 30.00 in SHEAR DESISN Vnax = 224.3 k Vfi = 2£3,9 k Vc = 147.9 fc Vs = U6.C k Av sin = 0.45 si/ft Av str = 0.77 si/ft Av = G.77 si/f* 1 * 3 Stirrup § 2.4* 2 I 3 Stirrups 9 £.8' I £ 4 Stirrup §' 6.2B 214 Stirrups Beta 1 = 0,35 As itiax' = 21,55 si H+ aas = 2G57 Kft H- air, = -!5£ kft Hn* = 2235 kft Jtn- = -173 kft As sir = IS. 03 si A; str = 1.17 si As = 1S.08 si As = 1,55 si I S Boitofl Steel So. Epaca 50.4 - 58. 3 - 41.1 Top Steel So, Sps:s 7.S 4.1- r r