Loading...
HomeMy WebLinkAbout1914 PALOMAR OAKS WAY; STRUCT; CB972828; PermitSTRUCTURAL CALCULATIONS • °1-2tsD S11 tiW1-OtV1 U-I 1-i1lU L72- : Jq0.'2685 rn PRIME STRUCTURAL ENGINEERS 16980 Via Tazon, Suite 260 San Diego, California 92127 Tel (619) 487-0311 C1i2 PP'ME JO : m I mkJCTU,RAL DATE: 1 ENGNEERS SHT T'UC2nMJ cLtcLknotJ 4F fWiA 1NJj aW&l I Ai/lirJ Cl 13LD&i 2 fMAlNJ( 7UX2t) 1tfAMirJL1 Ew(2— CP1,ctvtJ ç ew 2 tscJ L411'& iPt/i& P2U L'kft 4k/ 4JfrV1S Q(i2-' o fl-Zdzo 19 -r4J(,ZA (i1kJ o th2d L-t L-'iThc) H-72, A PRIME Jo7-2l STRUCTURAL DATE: 1/19 ENGINEERS SHT : pisiErN LE240. I P,OOF 1E1I\J 10405 K9OFIA/ 2-,2 p /2PLY WoOP 2 X 4 . 24 0. C. 0.7 Ic-JAT(OP 0 POL1'S Q '-0 Q.C. 2.0 15 Scp. CEILING Ni C. )'.o PF 2.0 PEiW LOtP 1 9.0 r L V LOAD 20.0 pS AD I? APPITIOIV4L 2,0 IDSF PQIQ POTL)IE t'..C4j :7,OP'SF 2/VV rLOOP, LOA'S - TA PRIME JOB F STRUCTURAL DATE' AVATa ENGINEERS SlIT : _2J F1N11 LJ 'p 2 Lk9HT w1 rLOOlq COlIC. I META L E< OS '-o" o. c. SpIVkLEJ lo ?5'F 2 32 2. FA '7 FS PA)1iTlO1\JS 20.0 3.0 PF PL = 5 LL. go, 0' pcf Of PU1QLIN - /A4 2 O' TAz 2'>c=4-'(? - PRIME JOB: STRUCTURAL DATE ENGINEERS SHI : 4j 'LLII' YVP = ) ç); '= 104 PLF WL IF)z — pL T = 232 U.E 2 9 K(232/I2) = 7O TAO ' =4O LLi(ppSp w0 = 15-F ' 104 Ptf Wr =z32 ptf L1E 2F fr(z32/Iz) p4-iV= 40'—Q" T40 310 LL=!73p' 'YVD = 13 ps-f xg t 104 PLf YYL_ 17, 3 x t' 131 P L- 243 PL- WL pcfx '= )47 L- WT = 2 vv C?13ç,c-'— (°41'1—f Vve 20p'f1 4aig PLf I V SE zo j<(zqI7,47) UE 20 (z&4/ rA PRIME JOB: i.2t4 MA STRUCTURAL DATE: .2/ I AM ENGINEERS SHT : 4] T,4. 5 xg '2 = 200 . LL2 J'-( PD I7jc'x2=7,I ,1< 2 f'c.f x y 'V 124 K/Ok Tk &) = 4.O ' LL=,2fSi .P_• ).2pccx9'4&' 4Z< 10.72 F iTo'V iO.72 K/2 k T,4=4x22t4 PL 24cF x 'x5.OI< Z.I .. 4-AI T' . x - -•- I7pfx(0to)49k ?L )2Sfxx3 ' ::3< 84< 3z = 17pcf x8'2'=71K p(2S.f x22'z5f( 4; k/3,. 1< - 41A/) //oc 2CC (2&4M01 SK (264,I6C) St ICC (IA) cZ3 IA PRIME STRLICMM We allENGNEERS SHF: me] Ic I. I I I' I. I. I I I I I. r I Yj ROOF MIN PN j IGAI . ,11 RO b \34 t-PE 4 F PRIME £ STRUCTURAL L ENGINEERS SK: lA)qJ1L ± 1F + '%?F,c = I PLF ti SE \)lQ)(J1f '. LL IF ± 4PLF ag'c 3R N UE 1X5 7yir ?c O LIF =) 1 /1 t / N = 0. 1 // 1q.93F [AA PRIME JOB: STRUCTURAL DAM 7-97 ENG1NEERS 51ff: 1 LL1PF L ±4b 44 FLF 4X9 IE I STRUCTURALDAM L ENGINEERS SHT: 07/31/97 97-250 .8IJs1p12vIs0b4148TBEAN ANALYSIS PRO8RANs1p9v1sCb4l48T (6.43)8lJs0p10.00h12v0s0b3T SPAN LENGTH = 24.00 ft (Simple Span) UNIFORM LOADS (k/ft & ft) vd vi Xl - 12 0.196 0.080 0.00 24.00 REACTIONS (k) LOAD LEFT RIBHT Dead 2.352 2.352 Live 0.960 0.960 Total 3.312 3.312 MAXIMUM FORCES V max a 3.31 k 8 0.00 ft N max c 19.87 kft 8 12.00 ft DEFLECTIONS (E! kinA2) LOAD Defi (in) X (ft) Total 2060329/El 12.00 Live 597197/El 12.00 Dead 1463132/El .idspan Soy. Deflection Total = 1/180 Required 1 44 inA4 N 12 x 14 F)' a 36ksi STRESSES (ksi) Fv c 14.40 fv = 1.39 10 1 Fb = 23.76 fb = 16.00 67 1 DEFLECTIONS (in) Total = 0.80 1 /159 50 1 Live = 0.23 = 1 /1239 19 1 Dead = 0.57 RB-2 07/31/97 97-250 8Lls1p12v1s0b4148TBEAN ANALYSIS PRO8RAMs1p9v1e4148T (6.43)8Us0p10.0012v0s0b31 SPAN LENGTH : 48.00 ft (Simple Span) UNIFORM LOADS (k/ft&ft) vd vi XI - X2 0.154 0.000 0.00 48.00 POINT LOADS (k & ft) Pd P1 I 2.080 1.920 8.00 2.080 1.920 16.00 2.080 1.920 24.00 2.080 1.920 32.00 2.080 1.920 40.00 REACTIONS (k) LOAD LEFT RIGHT Dead 8.896 8.896 Live 4.800 4.800 Total 13.696 13.696 MAXIMUM FORCES Vuax : 13.70 k 8 0.00 it N sax 188.35 kft 8 24.00 ft DEFLECTIONS (El j kinA2) LOAD Defl (in) I (ft) Total 76786259/El 24.00 Live 28028449/El 24.00 Dead 48757802/El .idspan Pos. Moment Lu 8.00 ft Brace Spacing 8.00 ft Boy. Deflection : Total = 1/180 Required 1 = 827 in'4 W24x55 Fy:36ksi STRESSES (ksi) Iv = 14.40' lv = 1.47 10 X lb = 21.23 lb = 19.83 93 Z DEFLECTIONS (in) Total : 1.96 = 1 / 294 61 Live = 0.72 : I / 805 30 X Dead = 1.25 AA PRIME Joe- 37-Pi4 six)CILPAL 1E Tt - q7 ENGNEERS SHT: 40 RS-3 07/31/97 97-250 8Us1p12v1s0b4148T8EAfl ANALYSIS PR06RAMs1p9v1s0b4140T (6.43)8Us0p10.0012000T SPAN LENGTH = 4.00 ft (Simple Span) UNIFORM LOADS (k/ft & It) vd wi XI - 12 0.106 0.080 0.00 4.00. REACTIONS (k) LOAD LEFT RIGHT_ Dead 0.372 0.372 Live 0.160 0.160 Total 0.532 0.532 MAXIMUM FORCES V max = 0.532 k 0 0.00 ft N max = 0.532 kIt 0 2.00 ft DEFLECTIONS (El a k1nA2) LOAD Dell (in) I (ft) Total 1532/El 2.00 Live 461/El 2.00 Dead 1071/El midspan Gov. Deflection: Total 1/180 Required I = 0 jflA4 I13E WJ_r'1 Fyz36ksi STRESSES (ksi) Iv : 14.40 fv z 0.40 3 1 lb = 23.76 fb = 0.82 31 DEFLECTIONS (in) Total = 0.00 1 / --- I 1 Live : 0.00 = LI--- 01 Dead 0.00 RB-4 09/19/97 97-250 - JCI iG1NEERS SHT: Usiplv1sOb4148AM ANALYSIS PROGRAMs1p9v1s0b448T (6.43)8Us0p10.00h12v0s0b3T SPAN LENGTH = 26.50 ft (Simple Span) UNIFORM LOADS (k/ft & ft) wd wl Xl - 12 0.154 0.000 0.00 26.50 POINT LOADS (k & ft) Pd P1 1 1.000 1.490 4.00 0.940 1.400 12.00 0.470 0.710 20.00 REACTIONS (k) LOAD LEFT RIGHT Dead 3.519 2.972 Live 2.205 1.395 Total 5.724 4.367 MAXIMUM FORCES V max = 5.72 k @ 0.00 ft H max = 37.69 kft @ 12.00 ft DEFLECTIONS (El = kin A2) LOAD Defi (in) I (ft) Total 4525666/El 13.00 Live 1687888/El 12.86 Dead 2937659/El midspan Pos. Moment Lu = 8.00 ft Brace Spacing = 8.00 ft Gov. Deflection Total = L!180 Required 1 = 88 inA4 ri W14x22 Fy36ksi STRESSES (ksi) Fv = 14.40 fy = 1.81 13 i Fb = 19,00 fb = 15.59 82 i DEFLECTIONS (in) Total = 0.78 = L / 406 44 X Live 0.29 = L /1087 22 7. Dead = 0,49 r A rT"r 411 EGNEER SHI RB-S - 09/19/97 97-250 8Us1p12v1s0b4148TBEAM M.LYSIS PROGRAMs1p9v1s0b4)8T SPAN LENGTH = 15.50 ft (Simple Span) UNIFORM LOADS (k/ft & It) d wi Xl - X2 0.144 0.000 0.00 15.50 POINT LOADS (k & it) Pd P1 I 1.200 1.660 3.00 1.200 1.660 11.00 REACTIONS (k) LOAD LEFT RIGHT Dead 2.432 2.200 Live 1.821 1.499 4.253 3.699 MAXIMUM FORCES V max = 4.25 k @ 0.00 ft M max = 15,32 kIt € 9.67 ft DEFLECTIONS (El kinA2) LOAD Dell (in) I (It) Total 694964/El 7.80 Live 294833/El 7.82 Dead 400124/El midspan Pos. Moment Lu = 8.00 ft Brace Spacing = 8.00 ft Gov. Deflection Total = L/180 Required I = 23 inA4 W14x22 Fy=36k.i STRESSES (ksi) Fv = 14.40 fv = 1.35 9 7. Fb = 19.00 lb = 6.34 33 Z DEFLECTIONS (in) Total = 0.12 = L /1545 12 Live = 0.05 = L 13641 7 'h Dead = 0.07 (6. 43)8Usoplo. 00hi2v0s0b3T POO PULI'V 2 A PRIME J03 : STRUCTURAL DATE: 17Z 1-7 ____ ENGINEERS SKI: ______ Pkrs/ 4'-O" TYp, T4-4a'g '= ?d . LL!& p W2- ) Cfk_4 P VVT ~--2315 ucr 2' K (2-35-/13I) p4fV= 4O°v TYp. TA-4Ox3" 320 LL-,73pc-p Vt'0 =i3 psf ., -'= 4 pLf / i73pcf&'=,)39 jLf w-1-=2+PL-f F z4 j (24-3/.q ) ;p/vv= 4-o T-,1= 4f'x.'=0 LL-I(,7 pcç WD I =ioi pL-f2 wt o. 7pSfx'4 pif , WT23a pf UE 24 K(Z/l4) Sf7,4/V ?4 -0" T'442-72- VV D = 13 psf2' =.O4- pz4 VVLIFSf wT=2t pt-ç wD =I IDS 1Ko4pL1 W2OSfx,O L+ I LL= Ia cE 24 t< (24/144-) ftcF 20 K (26q-71(00) LLIZ. P-51 4E 13z I ' ST(UCTU1AL DATE: 7WI 14e ENG!NEERS SHT T4 = 4x k'x4O'= 12 20 P2= 17pcfx40'=44K PL=--Pf ?c,4o3,4 1< •• . TA= 4Xv441 /o P2c7 pq)cx44 K 12 pscxax44-43<. to3K '. LL. = 12,opl. : ri Y, 3 1<," ;- r LL=J2pc 'tJ 'o3 4 TA = ;'4' = 1(c'-O Pp=17 pç<'x4' f?_,z 7c.f.xhc4-o 394.k TA 3x'X40(o )7PXX4O54 PL= 12pS1-X8(4d34 LL Z i2p.f 244AJ q3k/a4k IA PRIME JO S TRUC1UR~Al8_ ENGiNEE H 11 — Th( nmlou It £- 4C36.134) 24K (24e44') 601/ nw -ut I ROOF FRAMING P1 - BLDG 2 1-4c APRME STRUCTURAL DATE t7 ENGINEERS 51ff : \Auc- —L1XZ I O L 4: OOF / USE T iiL - g, k1x •. + ?1V ± /54 p - 1'Fx .4 x rN )c PF ID .q?Fc 1jE 1G11O LL. OS'F 7/ -• ./ t 1' '1' 4- (nF )L t'LF — . , L - , -.. -5 ' x 73 7'F x f. ic YFc t2'c4 LA 5 t->il [A PRIME ____ I S1RLJCTURAL 1E: 7— 1 A1 ENGINEERS Sill: R211-1 07/31/97 97-250 8Us1p12v1s0b4148T8EAM ANALYSIS PRO8RAMs109v1s0f4148T (6.43)8Us0p10.00h12v050b3T SPAN LENGTH : 8.00 ft (Simple Span) UNIFORM LOADS (k/ft & ft) vd vi XI - X2 0.180 0.070 0.00 8.00 REACTIONS (k) LOAD LEFT RIGHT Dead 0.720 0.720 Live 0.280 0.280 Total 1.000 1.000 MAXIMUM FORCES V max = 1.00 k 8 0.00 ft Yd max = 0.72 k 8 0.00 ft N max 2.00 kft 8 4.00 ft Nd max z 1.44 kft 8 4.00 ft DEFLECTIONS (El = kinA2) LOAD Defi (in) X (ft) Total 23040/El 4.00 Live 6451/El 4.00 Dead 16589/El .idspan Gov. Deflection : Total = L/180 Required I I jA4 uce Wt9..(L4 WJ_4-tO Fy36ksi STRESSES (ksi) Fv = 14.40 fv z 0.75 5 2 Fb 23.76 fb = 3.07 13 2 DEFLECTIONS (in) Total = 0.03 = 1 /3722 5 2 live z 0.01 = 1/--- 22 Dead z 0.02 ZZI = peaa Z LE 99 I 1 c 1L0 : ari 2 ct 6C / 1 = 61 = 1°1 (UI) SN011331330 2 L6 G6,OZ = qi 091 qj 211 6Z = Al AJ (IS) S3SS31S IS9CJ 0X91M vUI 16C = i paiinba 081/1 : jeoj uoIpajao A09 ;J 06 : buied aei J 06 z "1 U8IO$ 50d uedsptu I3/0160t81 paa 1061 13/8016E101 OATI Z161 I3I590606Z 1°1 (U) 2 (UT) nag ovoi (Ui1 = 13) SN011331130 U 09*OZ 8 M E6711 = UU N U000 0 4 8Z1 = flU A S3303 WflWIXVW 0W6 6071 teloi C1'E L0910 &All 1809 UL pag IH919 1331 avoi (U SN0h13V3d 00.01 oi o; 0910Z OZEIZ 0CZ 0fl OZEIZ 0ZCZ 081 091 091 I Id Pd (U 1 1) SUVO1 INIOd 08E 000 0000 OG110 12 - IX IR P (U 1 U/U SUVD1 N0iINfl (Usd5 ajd115) U 08C c HIBN31 NUS jcqosoA140ooIdosn9(9) SISA1VNV 0Z-L6 • Tj 16/ IEILO M1(U3flU1S K —L eor 3V'&Jd I I I I I I I I R28-3 07/31/97 RIME 97-250 P __ A& ENGWEERS w - 20-1 8Us1p12v1s0b4148TBEAN ANALYSIS PRO6RAMs1p9vls0b4148T (6.43)8Us0p10.00h12v1suii SPAN LENGTH = 16.00 ft (Simple Span) UNIFORM LOADS (k/ft & ft) vd vi Xl - X2 0.134 0.000 0.00 16.00 POINT LOADS (k & ft) Pd P1 X 1.640 2.520 3.50 1.950 3.000 10.50 REACTIONS (k) LOAD LEFT RIGHT_ Dead 3.024 2.710 Live 3.000 2.520 Total 6.024 5.230 MAXIMUM FORCES V sax = 6.02 k I 0.00 ft N sax = 26.74 kft 8 10.50 ft DEFLECTIONS (El kin'2) LOAD 0 f (in) X (ft) Total 1208688/El 8.07 Live 612689/El 8.08. Dead 595912/El sidepan Pos. Moment Lu w 7.00 ft Brace Spacing = 7.00 ft Soy. Deflection : Total z 1/180 Required 1 = 39 in'4 us& )(9-)(l4 Wr18 Fy:36ks1 STRESSES (ksi) I Fv a 14.40 fv = 3.22 22 Fb=21.60 fb=21.11 98 I DEFLECTIONS (in) Total = 0.67 = I / 285 63 X Live 2 0.34 : L I 563 43 Z Dead 0.33 I MR22Atv'IWE FLOOR pLAI- I E JOB: 11JRAL DATE If ~, o taa:--c I S k- I I_111- -iT Joa S DATE- UCTURAL DATE.-' HT vl- - V S 5 SO,2275k1S ± tzvo (E ci4;:i: •V - 01 5V I. Vt. V JL S 5 I V V S I ( V V VVV V 5:• I 0 - (o ii2g OIi& S S •SV V V I V 5 55 5 V S V .S • - . 0,24ei •VV I I S S S S V V V S •V - •V I S S H r LOOP yo)c.r.S A PRIME JOB: f2-Af . STRUCTURAL DATE: i/q? ENGINEERS SHT 114( .cpAcI'JG PAN= 20'-O' TYP. 7A-= 201 x(,' = 120 W1) 3S- x(' 3p4T L = = 4 o pt:P 7 q9 PLf USE .i LH AN -/2 T= I2''= 72 ' L/ -20PC4 '1L0 p(;4. Po P -7 q9 PLf Ue /LH.(7/4go 7_4 )(,( 2c'3&O F2 • 3 pc•f > ,' ''Zo" 6f (< PL ? ( )Zo 1< LL-47pS 1LOO ff'tiNf - I PL pSf LL9opf • L A PRIME _____ STRUCTURAL DATE: JL41 5A ENGINEERS SHT 23,1(1-t- r P P t, •!1/ t't LL )v/ = 50 p T43 2o 3 0-0 LL=7o4pc Pp = j3p5ç x 520 K PL. 704f0X'x20'=.7/t< 'A/p40 PL-1 b-I/I Th=3x 67 1o'=)5v • LL2pSf pp =53 pSfScto K PL2P4 ,5"x(o'4( wc4O '9 I I Lt' 1' '1 Q4' vv1 x5O " w I9?S5 FLOfJ1 PRIME JOB :9?2Sl STRUCTURAL DATE: I7 I ENGINEERS 5111 : Pu 1> P P '4' 1 j' If •j. 33J- '3 , =a x20(3'+ =ro =cpf2 < 533x20 = cop'f '< '= < ppcfo'= 5'c2O=5 K w i-x7 I T/ 3xK(3'+5')4'75 I 4,7K PIL -P33'-5K I PL) =c3p-f5'(9 4-3 I LL vV Ai6so. P F p I j 273' I TA=4x '-)z 22O Fl , =-93pS-f x PIL= 76,(2f x Pp - x x 76 Pf ' ('= !< I L ofJ'Z R44 I tV — A PRIME JOB ., If STRUCTURAL DATE: ____ B-Cp ENGINEERS 2T, - 5 I?SF 6i ç ? ç 9 -5- BA / F TA xxO O4 '. L4... 7? O 7?cF2D g,oz, tc 9 X4O T = 3 5.4' '= 2I 'L= 7/ p 3pcf 'z 7 k 44 13,4 1 2-0 -7A TA 3 54 Io '= 1& z -= 3pc.f WO L .-OP{ yQ .4ci( _T2 S VI! 14x30 3 10 L L go F' 2' FPf° 31K LSGX(O4S k 'N0 4O pç VI) lroxaro LLci A L w4opf S 2' w f'y(Cj PLoOQ FA'14/ - CoIV [ 71.9 A I ENGINEERS Sill : 4j ?' = '9-0 PL W pcfx = 14, 91 K 32' 2K PL II P LLo 8cl I7'± 12x14 F TZS-I I w o = o PL H3 741 1 2Xç;XQ=/O, LL=9-op4 P P r53cf33k' =S K psc K53.O 43K - 1 )0 t91f vv 14-x EI41'145 - Co'VT PRIME JOB: 37- A STRUCTURAL DATE: ____ ENGINEERS SHT _____ -14 P Ll2PS 7/ k fZ' 1 Pz1 1- o p; ' = 300 10' PD - )5 PS - G )(44 ZT 1< t'L 1 2-PSfx9 '44=I9 l< VV 21- (G2 f P 20' Th= 24 1 x2o'4-v P C>x24X20= 72 PL +x2X2o72 K 3pfx + = 240 j ' 23' / H 2 0' V\/ (e T43X52O"30 LL7°4P F 3p k2O < 7o,4-Nc2o=7/ k P,L 3.2k \iJ4O kMNCi AA PPME JC3 A SUCRiAL DATE: /1 E;'GNEERS SHT PtA &2F1' ;t ;O.- 'D12S m. )I4y'1,V Z1YMfrW, ft• Q1L- IA PRIME STRUCTURAL DATE: ENGINEERS T: _____ 8-1 07/24/37 Usiol2v10b414E17BEAM ANALYSIS OS 3v1b41461 SPAN LENSTH 20.00 ft (Simple Span) UNIFORM LOADS wd wl Xl - X2 0.040 0,000 0,00 20.00 POINT LOADS (k & Pd P1 3ou 7, 00 3.300 7. ou 10.00 5,300 7.100 15.00 REACTIONS (k) LOAD LEFT RISNI Dead 8.350 3.350 Live 10.650 10.650 Total 19.000 19.000 MAXIMUM FORCES V max = 13.00 k 8 0,00 ft M max = 126,00 kft 8 10,00 ft DEFLECTIONS (El kinA2) LOAD Defi (in) X, Ht) Total 8625600/El 10.00 Live 4856400/E1 10.00 Dead 3763200/El cidsoan Pos. moment Lu = 5.00 ft Brace Spacing = 5.00 ft Ploy. Deflection Total Li$U Required I = 297in4 W18x40 Fy36 STRESSES tksi tv 14.40 11 3.37 231. L 23.76 th 22.n 3 7, DEFLECTIONS (in; Toti 0,43 Li 494 49 X - n - I 77 .4 ...j'YC - '..! - .. De 0.21 I A PR!ME JO I . STRUC1IJRAL D: B-IA 01)09/23/97 ENGINEERS SHT O J N 1p12v1s0b4i48TBEAM ANALYSIS PROGRAMs1p9v150b418T (6.60)s0p10.00h12v0s0b3T SPAN LENGTH = 15.50 ft (Simple Span) UNIFORM LOADS (k/ft & It) d wl —XI - X2 0.022 0.000 0.00 15.50 POINT LOADS (k & it) Pd P1 I 2.700 4.000 5.00 2.700 4,000 10.00 2.700 4.000 15.00 REACTIONS (k) LOAD L E F T RIGHT Dead 3.045 5.396 Live 4.258 7.742 Total 7.303 13.1318 MAXIMUM FORCES V max = 13.14 k 8 15,50 ft M max = 38.43 kIt 8 10.00 ft DEFLECTIONS (El kin'2) LOAD Dell (in) I (It) Total 1659667/El 7.79 Live 973789/El 7.79 Dead 685862/El midspan Pos, Moment Lu = 1.00 ft Brace Spacing = 1.00 ft Soy, Deflection Total = L/240 Required 1 = 74 in"4 N 14 x 22 Iv = 36 ksisOB STRESSES (ksi) Fv = 14.40 Iv = 4.16 29 Fb = 23.76 lb = 15.90 67 X DEFLECTIONS (in) Total = 0.29 = L / 647 37 X Live = 0.17 = L /1102 33 X Dead = 0.12 ?zA PRIME JOB: 31-1. zy'"I" ENMGINEERS SHMT 12. OWM7 E 97150 8USIOI2VIs0b4I48TBEAM ARLYSIS PRO6RA19vb448T (6. 438s0plQ.00h12vOs0b3T SPAN LENGTH = 24.00 ft (Simple Span) UNIFORM LOADS (kIlt & It) wd vi II - X2 0,050 0.000 0.00 24.00 POINT LOADS I k 6. ft) Pd P1 6.400 8.000 6.00 6.400 3,000 1200 6.'100 8,000 REACTIONS (k LOAD LEFT RIGHT Dead. 10.200 10.200 Live 12,000 12.000 Total 22,200 22. 200 MAXIMUM FORCES V ccx = 22.20 k @ 0.00 ft M max = 176,40 kit @ 12,00 ft DEFLECTIONS (El LOAD Defi (in) X (It) Total 17393356/El 12.00 Live 9455616/El 12.00 Dead 7937742/El aideoan Poe, Moment Lu = 6.00 ft Brace Spacing = 6.00 ft Soy, Deflection Total = L1240 Renuire I = 500 jnA4 W21x50 Fv36ksi STRESSES (tel 14.40 iv = 2.60 13 X Fb=22,76 2240 94 X DEFLEOTIONS (i Total '.' - - - - L / yf. L. ie= 0.33 = LI 863 41 Seed = 028 PRIME JOa: - I STRUCTURAL ti: - L ENGINEERS SHT B-2A 07/2419? 2v 1 ALiSlE. f6A9v ;)b4367 (6. 43 .L(s0n;, 0h'ic(ib3T SPAN LEN6T = 24,00 (t Siac1e Span) UNIFORM LOADS (k/ft &. (ti - 0.050 0.000 0f1 24.00 ?OIN? LOADS (k t: ft) Pd P1 0 3.220 4,800 6.00 3,220 4.800 3.220 4.800 18.00 REACT !ONS( LOAD LEVI i6HT Dead 5.430 5.430 Live 7.200 7.200 Total 12.530 12,630 MAXIMUM FORCES V T 8 24,00 ft M max : 99.84 kft 12.00 ft DEFLECTIONS (El : kin'2) LOAD Defi (in) X (ft) Total 9852503/El 12.00 Live 5673363/El 12.00 Dead 4179134/El aidapan Pos. Moment. Lu = 6.00 ft Brace Spacing =6.00 i Soy, Deflection Total Required 1 :193 i n4 W18x35 1,-y36s Fv 14.40 fv 2.38 :7 7 Ft 23.76 (b = 20.80 86 DEFLECTJO INS . 0.67 L/ 431 56 0 LiVE = 0.38 : L / 7 8 3 V3 ON24M7 Me VA 8Us1p12v1s0b4148TBEH. ANALYSIS PROGR.9v144BT (6. 43)E:USOOIO.00h12v0sfTh31 SPAN LENGTH 36.00 ft (SimpleSpan) UNIFORM LOADS UJft & it) wd W1 Xi - 12 01080 0.000 - 0.00 36.06 POINT LOADS (k & ft) Pd P1 I C rr. C j.4vU C 5.650 5.400 10.66 .jC tr\ C- J , "3 ,C r. C,c.Jj 5.00 5.000 20.99 5.300 5.000 25.99 5.300 5.000 30.99 REACTIONS (k LOAD LEFT RIGHT Dead 17.792 17.938 Live 15.Cq74 C- Total 31bb 315b4 MAX!HL{M FORCES Y max 33.56 k @ 36.00 ft H max 346.60 kit'8 15.99 ft DEFLECTIONS (El = ki nA2) LOAD Dfi (ir) I (ft) Total 80414667/El 17,99 Live 37701224/El 17.99 Dead 42713421/El midspan Pos. Moment Lu = 5.33 ft Brace 'Spacing = 5.33 It Soy, Deflection Total = 1,/240 Required 1 = 1541 iñA4 W24x76 Fy36t;i STRESSES (ks) Fv = 14.40 f 3j' 221 Fb = 23,76 lb 23.63 39 1 DEFLECTIONS (in) Total = 1.32 = L / 327 731 Livs = 162 = L / 698 52 1 Dead = 0.70 ' 111!101E: 44 OWM7 3Us1ni2v1s0b414813EAM ANALYSIS FRO9RAMs1p9v1sb443T 04 CTH 36.00 ft (Simple Soari) UNIFORM LOADS (./ft wd Xi - 0.080 0.000 0,00 36.00 POINT LOADS Pg p 1,570 5.000 5.33 4.570 5,000 O.66 4,570 :,cuo 4.300 4.600 4,300 4.600 25.93 4.300 4.600 30.99 REACTIONS k) LOAD LEFT RIGHT Dead 14.677 14.913 Live 14.396 14.405 Total 29.073 23.217 MAXIMUM FORCES V max = 29.22 k 9 36.00 ft H max = 301.62 kft 9 15.99 ft DEFLECTIONS (El = kinA2) LOAD Defi (in) X (ft) Total 69976447/El 17.39 Live 34903273/El 17.98 Ueao 31718721 midxpar Fox. Momert Lu = 5.33 ft Brace Soacnc 5.33 ft Gov. Deflection Totai = L14U mquire I 1341 in•'•4 W 24 x 68 Fy = 34 kxi STRESSE3 (ksi' 4,40 lv = 2,97 21 23,76 fb = 23,50 997. DEFLECTIONS (HI Total = 132 L / 328 737. Live = 0.66 = L 1 6H 557. Dead = 0.66 6,432dxoo1o,0o12v0s01b3T PRIME JOB: STRLICTU J7 NE sHT SUs;pI2vis0b4i48T?EAMM4.AL(SiS 36 .Msln9v1a$14E:T 6. a3)GUe0o10. 00h12v0s0b3T SPAN LENGTH = 27.30 ft (Siiiple Span) UNIFORM LOADS k/ft & ft: wd vi y - 0.060 0000 o.00 27.30 t.0P02 . ft.) t.0U -360 6. 100 i.300 6. 100 12.30 4.200 6,100 17,30 4.300 6.100 22.30 REACTIONS U) LOAD LEFT RIGHT Dead 10.826 10,312 Live 14.230 12.470 Total 25.056 T:,79j MAXIMUM FORCES ' mac = 25.06 k 0.00 it M max = 193.97 kit 12.30 ft DEFLECTIONS (El kinA2i LOAD Dcii (in X (it) Total 25554779;'El 12.67 Lve 14551496/El 13.67 Dead :10o324S/El aidaoan Poe, Moment Li 5.32 ft Brace Soadno 5.32 ft Soy. Deflection Total L/240 Reuirec I 646 24 a 55 F 36 SRESSEE: n F'.' 14.41) lv =20,42 86 If DEFLECTIIJNS (in) neal Live 0.37 L .' 881 41 Dead 0.28 PRIME Jo:.7ZT4 STRUCTURAL WE -7.-- ')7 ENGINEERS 34 __ 8-6 07/2437 97-250 SUs1020;0h4i42TBEAM ALYSi3 FROGPAiMsin9v1sTh448T (6, 43)8LtsOcti0. 00h2002T SPAN LN6TH = 1100 ft (Sole Span) UNIFORM. LOADS it/it & it) Xi - 0.040 0.000 o. 0 0 12,00 POINT LOADS Q & it) b,.bt) 9. 600 b,UO REACT IONS LOAD LEFT C:LiT Dud )f : kc -• Q, t Live 4,200 4.800 Total 8.220 8.220 MAXIMUM FORCES V 8.22 k @ 0.00 M mn 48.60 kft 8 6.00 ft DEFLECTIONS (El = kin A2) LOAD Def (in) X(ft) Total 1011502/El 6.00 We 597197/El 6.00 Dead 414305/El aidsan Poe, Moment Lu = 6.00 ft 8race Spacinq = 6.00 ft Gov. Deflection Total L/240 Required I = 58 jA4 J A LL i — •jc, -:1 STRESSES k Fv 14.40 Iv 2.60 187. 3 j C 'I DEFLECTIONS (in) TotaIC 0.8 = L/822 29:( Live z 0.10 = L /1592 26 Dead = 0.07 B-7 07/24,97 r- E E .:C1URAL INEERS SHT: 37-251) bUmIov1sOb414itA NLYSiS PROi.RA1p9v1xC41T 6. $30&bs0o0, )0h2v0s0b3T SPAN LENSTH 20.00 it (Simpi eSpan) UNIFORM LOADS (k/ft & 1t W wi Xl - X2 o. 0 5 0. 000 0.1)1) 20 1)0 POINT LOADS (k & it) Pd P1 7. 5.700 7.700 5.700 7,7)Q 940 5.700 7.700 14.80 REACTIONS (k) LOAD LEFT RISHT Dead 9.563 9.537 Live 12.243 10.857 Total 21.806 15.394 MAXIMUM FORCES V max =21.81 k 8 H max = 130.41 kit @ 9.40 ft DEFLECTIONS (El = kinA2) LOAD Dell (in) 7. (ft) Total 8950029/El 5,94 Live 5039500/El 9.94 Dead 3910378/El midspan Pos. Moment Lu = 5.40 ft Brace Spacing = 5.40 ft Gov. Deflection Total L/240 Required I 309 in4 N 18 x 40 F = 26 STRESSES (ksi) V:14,40 fy: 3.87 277. Fb =23.76 lb = 22.98 96 7. DEFLECTIONS (1n Total 0.50 = L / 476 50 7. Live : 0. 28 = L /845 Dead PRiME Jo7- smuciui- 1E:_i-1 afT: B-7A 07/24/97 A ENGINEERS 97-250 SUc1p12yic0b4143TBEM ANALYSIS PRflSRMsscb414BT 6.43)8U0piO.0Oh 12v0s0b3T SPAN LENGTH 20,00 ft (Simple Span) UNIFORM LOADS ft/ft & ft) vd wl XI - 0.050 0,000 0.00 20.00 P0-TNT LOADS ft & ft: Pd RI X 3. 100 4.600 4.00 3.100 4.900 9.40 3.100 4.800 14.80 REACTIONS (k) LOAD LEFT RIGHT Dead 5.429 4.971 Live 7,632 6.768 Total 13,061 11.639 * MAXIMUM FORCES V max = 13,06 k 8 0.00 it ii max = 77.90 kft 8 9.40 ft DEFLECTIONS (El =kinA2) LOAD Defi (in) X (ft) Total 5350388/El 9.94 Live 3141506/El 9,94 Dead 2208802/El midsoan Pos. Moment Lu = 5.40 ft Brace Spacing = 5.40 ft Soy. Deflection Total = L/240 Required 1 184 in4 WI4x30 Fy:.36ksi STRESSES (ksi) Fv = 14,40 fy = 3.50 24 X Fb :23.76 ib = 22.26 94 '/ DEFLECTIONS (in) Total = 0.63 L / 379 63 X Live : 0,37 L / 645 56 7 Dead = 26 A PRIME JOB: STRUCIURAL ENGiNEERS SHT B-S 07/24/9 37-250 6Ui12v1sb4148TBEA P LI GRAcSvlsb4ST SPAN LENGTH 20. 0) f (Simple Span) LtflFORM LOADS (k/ft & It) d L - 12 0.040 0.000 0.00 20.00 POINT LOADS ft & It) Pd P1' 1 3.100 4.800 6.00 3.100 4.800 12.00 3.100 4.800 18.00 REACTIONS It) LOAD LEFT RIcHT Dead 4.120 5.38( Live 5,760 8,640 Total 9,880 14,620 AX91UM FORCES V max 14,62 k @ 20,00 ft N rna 58.28 kf 8 12100 ft DEFLECTIONS (El kinA2) LOAD Dell (in) I (It) Total 4767736/El 10.10 Live 2809367/El 10.10 Dead 1958170/E7 aidsoan Pos. Moment Lu = 6.00 ft Brace Spacing = 6.00 ft Soy. Deflection Total = L!240 Requlrea 1 164 ir4 Wi6.26 Fyz36 k. si STRESSES (kal) Fv 14,40 lv 3.73 26 1 Tb 21,6 lb 21.34 991 DEFLECT IONS (in) Total 0,55 L /439 551 Live 0,32 L / 745 481 Dead 0.22 43) BUsOD 10, 001112v0s0b3T PRIME im., STRUCTURAL DAM _- £ £ENGiNEERS 0?'24!S7 8LJsi ct 12v1s0b4149TBEM ANALYSIS PRO AM p9v1E0b4i4BT (6.43)BU0pI0, 00hi2vCe0b3T SPAN LENGTH = 20.00 ft (Simple Span) UNIFORM LOADS (k/ft & It) vd vi Xl - (2 0.050 0.000 0.00 20.00 POINT LOADS (1 1 ft) Pd P1 X 6.360 9.040 6.00 5.360 8.040 12.00 6.360 8,040 16.00 REACTIONS Ii) LOAD LEFT RIONT Dead :I3 11.348 Live 9.648 14.472 Total 17.780 26.420 MAXIMUM FORCES V max = 26.42 k 8 20.00 ft M max = 123.36 kIt 8 12.00 ft DEFLECTIONS (El = kir,2) LOAD Dell (in) I (ft)_ Total 8608083/El 10,10 Live 4705692/El 10.10 Dead 3901974/El midspan Poe. Moment Lu 6.00 ft 8ace Spacing 6.00 ft Gov. Deflection Total = L1240 Required 1 = 297 in4 W18x40 Fy=36ksi STRESSES (ts) 14,40 Fb 23.76 lb 21.64 9 I DEFLECTIONS (in Tc'al = 0.49 L / 435 49 1 Live 0.I L/905 401 PRIME JOB: TZR DATE IJ& ES _@4S SHT B-9 O7i2/T 37-250 8U1p12v1s(jb414STBEA1! ANALYSIS PROGRA1Ms1p9v1s04148T (6, 43)8U0D 10. 00h1 2v0s0b31 SPAN LENOTH = 12.00 ft (Simple Span) UNIFORM LOADS (k/ft & ft) - 0.040 0.000 0.00 12.00 POINT LOADS (k & It. Pd P1 X 3.850 5.800 6.00 REACTIONS (k) HAD LEFT RISHT Dead '2.165 2.165 Live 2.900 2.900 Total 5.065 5.065 MAXIMUM FORCES V max = 5.07 k 8 0.00 ft N max = 29.67 kit 8 6.00 ft DEFLECTIONS (El kin2) LOAD Defi (in) X (It) Total 618970/El 6.00 Livel 360806/El 6.00 Dead: 258163/El aidspan Poe, Moment Lu = 6.00 ft Brace Spacing = E. Soy. Deflection Total L1240 Required 1 = 36 in4 Wi2x 19 Fy36ksi STRESSES (ksi) Fv = 14.40 iv =1.77 12 Z Fb = 19.61 ib = 16,72 85 DEFLECTIONS (in) Total = 0.16 = L/ 877 27 11 Live = 0,10 = L /1505 24 Dead = 0,07 1TA PRIME JCR:.j71 f4 JI; STRUCTURAL wE. L4/i 97-250 2Us1pi2v1s0b4148TBEAh ANALYSIS FRO6RAME.Ip9v1c4143i (6. 43 UsOplO. 00h12v0s0b3T SPAN LENGTH 32.00 it (Siapie Spar) UNIFORM LOADS (k/ft & it) 1- 2 0.338 0.480 0.00 3200 OINT 'U ', A 14,810 14,41) 12.00 :. •/)a(; , 1)),)))) REACTIONS (k) LOAD LEFT RIGHT Dead 16.449 13.237 Live 7.9i 14.959 Total 34.261 28,256 MAXIMUM FORCES V eax 34.26 k @ 0.00 ft N max 347.91 kit 8 12.00 ft DEFLECTIONS (El = ki nA2) LOAD Dell (in) X (It) Total 57904956/El 15.48 Live 30130427/El 15.52 Dead 27731410/El aidspan Pos. Noaent Lu = 1.00 ft Brace Spacing = 1.00 ft %nv. Dellecton Total = L/240 Reouired 1 1248 n"4 N 24 x 79-- v v =J,Th 3 X Fb 3376 lb = 23.72 100 Z DEECT;CNS (in) Total 0.95 L/ 404 59 Z Live 0.49 = L /776 467. Dead 0. 46 1 A PRIME joe-A7— £ STRUC1URAL OM 7 —7 ENGINEERS SliT: Lr) 8.-il C7/14/37 3Us1oI2vis0b4i48TBEM ANALYSIS PRDGWisp9v1sCtET 16. 43JGUs0i0 1;0h:1v00b3T SPAN LENI.jTH 17.00 ft (Simple Span) UNIFORM LOADS (Jit & It) Q W1 Xi •- X2 0.040 0,000 0.00 17,00 POiNT LOADS & It P1 X 1.00U REACTIONS (k) LOAD LEFT RIGHT Dead 0.840 0.840 bye 0,750 0.750 Total 1590 1.590 MAXIMUM FORCES V may 1.59 8 0.00 ft H max = 12.07 kit 8 8,50 f i DEFLECTIONS (El kirV2) LOAD Deli (in) X Un Total 517339/El 8,50 Live 265302/El 8.50 Dead 252037/El ;idn Pom. Moment Li 3.50 ft Sracc Spacino 8.50 it Soy. Deflection : To ta l L/240 Required 1 = 21 W12x14 36ksi Cr- -D,L i! F14.40 Iv = 067 5X 14.24 lb = 72 68 DEFLECTlONS (in) Tota 0,20 = /iO3 24 X Live = 0,10 L /1976 18 Z Dead = 0.10 PRIME JOR: Ift SENGINEERS TRUCTURAL DAM _- 07 1 241?,7 97-250 3Up12v1s0b4l48TPE;1 ANALYSIS PRO6RAs19v1sCb414BT 6. 428kOp0, 001I2v0sOh3T SPAN _ENSTH = 29.00 i iepie bean UNIFORM LOADS If T; & 0,050 0, 000 0.00 2? 91 0 DDT L3PIDS & Tt) Pu P. - 2.000 3.000 7.25 2.000 3.000 :4.50 2.000 3.000 REACTIONS (k. LOAD LEFT RISHI. Dead 3.725 3.725 Live 4.500 4,500 Total 8.225 8.225 MAXIMUM FORCES V fnax = 8.23 k 8 0.00 ft M max = 77.76 kft 8 14,50 ft- DEFLECTIONS "El kirA2: LOAD Defi (in) x (ft: Total 11221988/El 14,50 6255779/51 14.50 Dead 4966210/El niusoan Poe, Moment Lu = 7.25 ft Brace Spacing = 7,25 ft ;3ov. Dfiection Total L/240 Required I 267 in-4 WI6x31 Fy:35si STRESSES (ksi: Fv 14,40 f V = ,86 13 Fb zi 1 fb z 77 34 I DEFLECTIONS (in Total 1.03 L / 337 7: Live 0.58 Li 605 60 Dead 0.46 F PRIME JOB:___ [ALENONEERS S11UC'TUR.A1. DM SHT: L 97-250 3Us1.p12v1sOb4I48TBEM ANALYSIS PRU6RAMs1e9vls0b4146T 6. 43:8U0:C. 00h2ob3T SPAN LENST, 10 V (Simple Span) UNIFORM LOADS (i/ft & ft vd 1 (1 - 0,040 0,000 (,,.Oo 16.00 r.ur LUrb. Pd P1 ., .' L. ,(' j 2.810 4,2.00 10,66 REACTIONS Ct) LOAD LEFT RI13HT Dead 3.132 3.128 Live 4,302: 4.297 Total 7.43.4 7.426 MAXIMUM FORCES V max = 7.43 k 8 0.00 ft H max = 39.21 kft 8 8,11 ft DEFLECTIONS (El = fri) LOAD Defi (in) X (ft) Total 1845523/El 8.00 Live 11)80471/El :3,00 Dead 76505S/E nidspan Pos. Moment Lu = 5.33 ft Erace Spacina, = 3.32 ft Soy. Deflection. Total L1240 Reoured I 80 n4 W14x22 Fv=36s: STRESSES (k52 Fy = 14,40 iv 2.35 16 1 F = 21.60 fb 16,23 75 1 DEFLECT!ONS (ir Total 0.32= L / 600 40 ( Live = 0.19 =L /1026 35'!, D?ad 0,13 PRIME JOB: 19 ____ STRUCTURAL WE -7 1,A ENGNEERS SHT :44) 07124197 97-250 3U;1oi2v1s0b4148TBEAM ANALYSIS PRO8RANs1p3ix41 487 (S. 43)3Us0i0. 00hi2v00b3T SPAN LEN6TH = 20.00 ft (Simple Span) UNIFORM LOADS (k/ft & It) d wr Xi - X 2 0,380 0,300 0.0(1 20.00 POINT LOADS ft & It) 0, r 1. 'I 23,760 000 12.00 REACTIONS (N) LOAD LEFT RIGHT Dead 13,304 18,056 Live 10.606 14,400 23.904 32,456 MAXIMUM FORCES V max = 32.46 k 8 20.00 ft M max = 237.89 kIt 8 12,00 ft DEFLECTIONS (El kinA2) LOAD Defl (in) X (It) Total 14117027/El 10.49 Live 6265046/El 10.43 Dead 7827679/El aidspan Pos, Moment Lu = 1.00 ft Brace Spacing = 1.00 ft Gov. Deflection : Total = L11240 Required I = 487 in4 W24x62 Fy36ksi STRESSES (hi) Fv = 14,40 Iv = 3.18 22 X Fb23.76 tb21.79 92): DEFLECTIONS (in) Tctai 0,31 = L/764 31X Live = 0.14 = L /1722 21 X Dead = 0.17 oz•o 2 pa X SZ DI/ 1 c LPO : aAll 1 LE 69 I 1 = LEO (U!) 5N011331330 1 9S ELEI a ql 9L*EZ = qj 1 EC IL : AJ '•$P AJ (;S)) S3SS31S !Sl9C=ki 9X9IN ,UI in = I paiinba O/1 : Mol uoi;3a11aa A09 ;i 001 OupedS a,eig ;i 001 ni ;uauow sod uedspiu I3I8OLI paa II"6 I3/9ILCBI aAI1 96 I3/IZ62C IEo1 (U) I (UI) IIaU UVO1 13) SN011331330 U OL 1 UI ZVEt = xeu U U 000 8 'I 681 a xeg A S33OJ RflWIXVU 089 0681 i 01 011E 0888 aAr) OWE 0196 pa 1H91 1i31 oval (1) SNOI13V3 007 OOZL OOZL X Id Pd (U1 '$) SUVO1 INIOd 001 0Z 0010 OHIO CWO ZX - IX TA P UI i U/E SUVO1 ROJ1Nfl (Usd5 alduS) U 00,0Z c HIBN31 NUS jcqosoAzI40oodosfl8(cr9) i8PiOSIA6d1SNV9Ddd SISA1VNV O2-L6 L&/IEILO I-8 SN19N Gor V ____i 1vJnLznws Qff: ) i A PRIME JOB:____ STRUCTURAL DAM J7 I ENGINEERS SHT: 37 U1oi:visub414STPEM H.AL16!S ?RO6RANs'3vi;31a3T 16,425 :;0.;.2r - r SPAN OU it (Siapie Span) U1FURM LOADS "'k/ft & it: wd Xi - 42 0.050 0000 ),00 20.00 P3iiT LOADS; uk ft. Pu 4,000 .3.200 2.00 C it t1t. C V ! • V -J . 5.300 7.100 5.300 7,100 REACTIONS (k) L3AD LEFT RSHT Dead 12.050 8,850 Live 13.530 10,370 Total 25.580 19,820 M:UMUM FORCES V eat = 25,58 k 8 0.00 ft N max = 133,70 kft 8 10.00 ft DEFLECTIONS (El :in'2) LOAD DefI (in) X (It) Total 3276246/El 3,31 Live 5129498/El 9,33: Dead 4146192/El aidepan Pos. Mocent Lu = 5.00 ft Brace Spacino. = 5.;30 It Soy. Deflection : Total = L/240 Required i = 3.20 ;.j4 W 8 40 Fy = .36 3T -E9SE5 ks.i 14.40 Iv 4,54 2-2 Ft = 23.76 fi 23.46 -33 / 41 Live (23 L 1830 43 Dead = B-16 s0B09/2197 97-190 E NLLR SU _fh1J s1012vis0b4148TBEAH ANALYSIS PROGRAMs1p9v1s0b4143T (6.60)s0plo.00h12v0s0b3T SPAN LENGTH = 20.00 ft (Simple Span) UNIFORMLOADS (k/ft & ft) wd wi Xl - X2 0.022 0.000 0.00 20.00 POINT LOADS 1k & ft: Pd P1 1 1.300 1 2.000 5.00 1.300 2.000 10.00 1.300 2.000 15.00 0.530 0.800 16.50 REACTIONS (k) LOAD LEFT RIGHT Dead 2,263 2.607 Live 3.140 3.660 Total, 5.403 6.267 MAXIMUM FORCES V max = 6.27 k @ 20.00 ft N max = 36.43 kft 8 '10.00 ft DEFLECTIONS (El' kinA2) LOAD Defi (in) X (ft) Total 2529560/El 10.09 Live 1484190/El 10;10 Dead 1045264/El midspan Pos. Moment Lu = 1.00 ft Brace Spacing = 1.00 ft Gov. 'Deflection Total = L/240 Required I = 87 in'4 ' W 14 x 22 Fy = 36 ksis0B STRESSES (ksi) Fv = 14,40 fv = 1.98 14 X lb = 23.76 lb = 15.07 63 X DEFLECTIONS (in) Total = 0.44 = L / 548 44 X Live = , 0.26 = L / 933 39 X Dead = 0.18 PR'ME ci1-21 B-17 sOB09/23/97 r/j 75') s1p12v1s0b4148TBEAM ANALYSIS PROGRAMs1p9v1s0b414ET (6.60)s0p10.0012y0s0b3T SPAN LENGTH = 20.00 ft (Simple Span) 'UN IFORM LOADS (k/ft & It) 'd wl Xl - 12 0.022 0.000 0.00 20.00 POINT LOADS (k &. ft) Pd P1 X 2.610 3,670 10,00 REACTIONS (t) LOAD LEFT RIGHT Dead 1.525 1.525 Live 1.835 1.835 Total 3.360 3,360 MAXIMUM FORCES V max = 3.36 k 8 0.00 ft N max = 32.50 ktt 8 10.00 ft DEFLECTIONS (El kin A2) LOAD Defi (in) X (ft) Total 1887840/El 10.00 Live 1056960/El 10.00 Dead 830880/El midspan Pc's, Moment Lu = 1,00 ft Brace Spacing = 1.00 ft Soy. Deflection Total = L/240 Required 1 = 65 jflA4 W 14 x 22 Fy = 36 ksis0B STRESSES (ksi) Fv = 14.40 Iv = 1.06 7 X Fb = 23,76 fb = 13.45 57 % DEFLECTIONS (r Total = 0.33 = L / 734 33 X Live= 0.18 = L /1310 27 Dead = 0.14 PRIME JOB :&'7-M 0 I T'4EA)E lui'3&r - uhph%* STRUCTURAL WE ENGINEERS 99 Fo1 Joici - £ A PRIME JOB 7 -.kr0J STRUCTURAL DATE: 17 ENGINEERS SHI: Mk sp,4-c.t'v& '_O OC. SPA-N 24 -O" TY. TI4 = 24'x 04 wo 51 3v, 7(Q cE t2 LI-! (72é/4 ::: LL- O 73F I [ PRIME JOB :7- £ SI1UCTURAL DAIE 7- 7 I a, ENGINEERS SIT: 9 J rl I Li T-. = LL Pp 7.6 tc G ?F iO p Li I )( ( '21 - LL I r0. ep -= I1b ft-F ?)' i2s8'- \k • V) L91440 9 T. y 4 G pI "p r 9,7 7 - L1 ? c CD t - AIAH PRIME _ I STRUCTURAL DATE: 7— 7 ENGINEERS $HT : 19 P TA. 37c( 4 -4 V 7 24 . I tAè \&)'iCLLt TA. :. 86 pep. A. • (Ac•-"v) 14 x3b pf & I Y 3 J0' TA3,G'x I 1 = b Pt-?- 9 - S3 F c •? :. Z L V 2 1—. LL 1? ?IF 7't S f PL_ 7 •)( =. 14?c 52 '?.F-i 8J',c )'F,c u 4-)(.. PRIME ___ S1iUC1URAL DATE 7— 7 ENGINEERS SIlT 28-1 07/28/97 97-250 8Uslp12v1s0b4148TBEAM ANALYSIS PRO6RANs1p9v1s4148T (6.43)BUs0pI0.00hl2vos0b3l SPAN LENGTH : 24.00 It (Simple Span) UNIFORM LOADS (k/ft & ft) vd wi XI - X2 0.050 0.000 0.00 24.00 POINT LOADS (k & ft) Pd P1 I 7.600 9.000 6.00 7.600 9.000 12.00 7.600 9.000 18.00 REACTIONS (k) LOAD LEFT RIGHT Dead 12.000 12.000 Live 13.500 13.500 Total 25.500 25.500 MAXIMUM FORCES sax = 25.50 k 8 0.00 It N sax = 202.80 kft 8 12.00 It DEFLECTIONS (El a kin A2) LOAD Defl (in) I (It) Total 19993649/El 12.00 Live 10637568/El 12.00 Dead. 9356082/El sidspan Pos. Moment Lu = 6.00 It Brace Spacing 6.00 ft Soy. Deflection s Total c 1/240 * Required 1 = 575 inA4 W24x55 Fy=36ksi STRESSES (ksi) Iv = 14.40 lv = 2.74 19 X Fb = 23.76 lb = 21.35 90 1 DEFLECTIONS (in) Total = 0.51 = L / 564 43! Live z 0.27 : 1 /1060 34 1 Dead = 0.24 PRIME JOB: e) I'm LDAT 2B-IA 07/28/97 97-250 8Uslp12v1s0b4148T8EAN ANALYSIS PRfl8RANslp9v1s0I4l48T (6.43)8Us0pl0.00h12v0s0b31 SPAN LENGTH 24.00 ft (Simple Span) UNIFORM LOADS (k/ft & (t) yd vi XI - 12 0.040 0.000 0.00 24.00 POINT LOADS (k & ft) Pd P1 I 3.800 5.500 6.00 3.800 5.500 12.00 3.800 5.500 18.00 REACTIONS (k) LOAD LEFT RIGHT - Dead 6.180 6.180 Live 8.250 8.250 Total 14.430 14.430 NAXHWN FORCES V lax : 14.43 k 8 0.00 ft N lax a 114.48 kft 8 12.00 ft DEFLECTIONS (El a kinA2) LOAD Dell (in) I (it) Total 11290752/El 12.00 Live 6500736/El 12.00 Dead 4790015/El •idspan Pos. Moment Lu = 6.00 ft Brace Spacing = 6.00 ft Gov. Deflection Total = 1/240 Required 1 324 mM W18x40 Fy:36ks1 STRESSES (ksi) Fv z 14.40 fv : 2.56 18 X Fb = 23.76 lb 20.08 85 Z DEFLECTIONS (in) Total z 0.64 1 / 453 53 Z Live z 0.31 c I / 786 46 Z Dead = 0.27 PR!ME jOg: - LA STPUCflJRAL DATE: ENGINEERS SF11 : - _____ 28-1Aj sOBOS /24/97 97-250 slp12v1s0b4148TBEAM ANALYSIS PROGRAM10v1s0b414BT (6. 60) sOp 10. 00h12v0s0b3T SPAN LENGTH = 13.50 ft (Simple Span) UNIFORM LOADS (k/ft & ft) wd wi Ii - X2 0.040 0.000 0.00 13.50 POINT. LOADS ft & ft) Pd P1 X 3.800 5.800 6.00 3.800 5.800 12.0(1 REACTIONS (k) LOAD LEFT RIGHT Dead 2.803 5,337 Live 3.867 7.733 Total 6.670 13.070 MAXIMUM FORCES V max = 13.07 k 8 13.50 ft N max = 39.30 kft 8 6.00 ft DEFLECTIONS (El = kinA2) LOAD Defi (in) X (ft) Total 1143824/El 6.77 Live 673000/El 6.78 Dead 470817/El midspan Pos. Moment Lu = 1,00 ft Brace Spacing , = 1.00 ft Gov. Deflection Total = L/240 Required I = 58 inA4 N 14 x 22 Fy = 36 kss0B STRESSES (ksi) Fv = 14.40 fv = 4,14 29 X 23.76 fb = 16.26 68 11 DEFLECTIONS (in) Total = 0,20 =L / 817 29 L Live = 0.12 = L /1389 26 X Dead = 0,09 28-18 01/29/97 - 97-250 8Us1pI2vie0b4t48TBEAN ANALYSIS PR06RANs1p9v1s0b4l48T (6.43)8Ue0p10.00h12v0s0b3T SPAN LENGTH 24.00 ft (Simple Span) UNIFORM LOADS (k/ft & ft) yd vi Xl - X2 0.050 0.000 0.00 24.00 POINT LOADS (k & It) Pd P1 I 6.800 8.700 6.00 5.700 7.500 12.00 4.800 6.200 18.00 REACTIONS (k) LOAD. LEFT RIGHT Dead 9.750 8.750 Live 11.825 10.575 Total 21.575 19.325 MAXIMUM FORCES V sax = 21.58 k 8 0.00 ft N sax a 162.30 kIt 8 12.00 ft DEFLECTIONS (El n kln'2) LOAD Dell (In) I (ft) Total 16011412/El 11.87 Live 8831646/El 11.87 Dead 7178803/El •idspan Poe. Nosent Lu a 6.00 It Brace Spacing = 6.00 ft Gov. Deflection i Total a L/240 Required 1 u 460 jA4 W21x50 Fy36ksi STRESSES (kel) Fv n 14.40 Iv a 2.73 19 lb a 23.76 fb = 20.61 87 1 DEFLECTIONS (in) Total z 0.56 = L I 513 47 1 Live : 0.31 a I / 931 39 1 Dead a 0.25 PRIME JOB:.51-1 STRUCTURALDATE: 7-17 2B-2 07/28/97 ENGINEERS SUIT: 97-250 8Us1p12vls0b4148TBEAN ANALYSIS PRfl8RANs1p9v1s0b414BT (6.43)8Us0p10.0012000T SPAN LENGTH S 20.00 ft (Simple Span) UNWORN LOADS (k/ft & It) vd vi Xl - U 0.040 0.000 0.00 20.00 POINT LOADS (k&ft) Pd P1 1 6.400 8.100 5.00 6.400 8.100 10.00 6.400 8.100 15.00 REACTIONS (k) LOAD LEFT RIGHT Dead 10.000 10.000 Live 12.150 12.150 Total 22.150 22.150 MAXIMUM FORCES V lax = 22.15 k 8 20.00 ft N lax a 147.00 kft 8 10.00 ft DEFLECTIONS (El a kinA2) LOAD Deft (in) X (ft) Total 10062000/El 10.00 Live 5540400/El 10.00 Dead 4521600/El aidspan Pos. Moment Lu 5.00 ft Brace Spacing : 5.00 ft Boy. Deflection : Total = 1/240 Required I a 347 toM W21x44 Fy36ksi STRESSES (ksi) Iv 2 14.40 Iv = 3.06 21 1 lb a 23.76 fb = 21.62 91 1 DEFLECTIONS (in) Total z 0.41 1 I 583 41 1 Live 0.23 = 1 /1059 34 1 Dead 0.18 PRIME JOB: 47-9 SIRUC1URAL DATE -Z--7 28-21. 07/28/97 ENGINEERS 51ff : JDt) 97-250 8Us1p12v1s0b4148T8EAfl ANALYSIS PRO8RANs1p9v1s0t4148T SPAN LENGTH = 20.00 It (Simple Span) UNIFORM LOADS (k/ft & ft) vd vi XI - X2 0.040 0.000 0.00 20.00 POINT LOADS (k & ft) Pd P1 X 3.200 4.800 5.00 3.200 4.800 10.00 3.200 4.800 15.00 REACTIONS (k) LOAD LEFT RIGHT Dead 5.200 5.200 Live 7.200 7.200 Total 12.400 12.400 MAXIMUM FORCES V max a 12.40 k 8 0.00 It N max 82.00 kft 8 10.00 It DEFLECTIONS (El = k1nA2) LOAD Defl (in) X (ft) Total 5615999/El 10.00 Live 3283201/El 10.00 Dead 2332800/El •idspan Pos. Moment Lu 5.00 It Brace Spacing 5.00 It Boy. Deflection : Total = L/240 Required I 194 inA4 W14x30 Fya36ksi STRESSES (ksi) Fv a 14.40 fv 3.32 23 Z Fb = 23.76 fh = 23.43 99 Z DEFLECTIONS (in) Total z 0.67 = 1 / 361 67 Z Live = 0.39 = 1 / 617 58 Dead z 0.28 (6.43)8Us0pl0.00h12v0s0b3T 6O PO X BE 96 I 1 = Z 90 ac I 1 = EI'O a !Oj (UI) 5N011331i30 Z98 Et,OZ c qj 9LC = qj 1 BZ 80 AJ OH Aj (!) S3SS3iS 15 9C:Ai GEX8IN UI ZEZ = J pLI!flba OI'lIl c IE;o! I u0113e1ja A09 ;J 009 c §U!)PdS O)PAB 1 OO'9 '1 ;Uaio 'SOJ utdspi. 13fl6EL8i paa S6 I3I09E9GC aAfl 6 13IUEOO9 190I (lfl X (UI) flao avoi (,Ui = 13) SNO11331i3 ;J 00L 8 1JI 8086 a xfl W Ii 000 8 4 WIZ a IN A S33Di HflW1XVN LO8L M * lz I°i £916 LE6H OAIJ DO'S LOL6 peaa IH911 1331 UVOl () SNO113V3 OOt'I 0006 0001 00L 008L 0009 001 0061 008C X Id Pd (1 ' 'I) SØVO1 INIOd 0061 000 0000 OOO zx - ix [A P (i1 41/4) savoi WOJINR (uvdS alduS) 1 0061 = H19N31 NUS IcqosoAj400odosfl9(g9) J8ojtjoSjA6dTsWV4901dSISA1VNV NV39I8flqOSIAIdsfl8 O2-L6 • - ---- ____ II6 Sd33N)SN3' MINIM I Z& Z- :31Yo 1YWtL3flllS 'W or 3I4l1d V i • •- L PRIME : STRUCTURAL DATE E : 2B-4 07/29/91 NGINEERS SHT 97-250 8Us1p12v1s0b4148TBEAM ANALYSIS PRO6RANsIp9v1s0i4148T (6.43)8Us0p10.00k12v0s0b3T SPAN LENGTH a 17.00 ft (Simple Span) UNIFORM LOADS (k/ft & It) wd vi XI - 12 0.030 0.000 0.00 17.00 POINT LOADS (k & ft) Pd P1 I 4.050 6.120 8.50 REACTIONS (k) LOAD LEFT RIGHT Dead 2.280 2.280 Live 3.060 3.060 Total 5.340 5.340 MAXIMUM FORCES V max a 534 k 8 0.00 ft N max z 44.31 Ut 8 8.50 ft DEFLECTIONS (El kin"?) LOAD Dell (in) I (It) Total 1855124/El 8.50 Live 1082432/El 8.50 Dead 772692/El sidspan Pos. Moment Lu = 8.50 ft Brace Spacing 2 8.50 It Soy. Deflection i Total = 1/240 Required I = 75 mM N14x22 Fy36ksl STRESSES (ksi) Fv 14.40 lv = 1.69 12 T Fb = 18.36 fb = 18.33 100 2 DEFLECTIONS (In) Total . 0.32 1 / 635 38 2 Live 0.19 = 1/1088 332 Dead 0.13 I] ~ 1, 11. 28-5 IAPRIME JO8: STRUCTURAL DATE: 7— .97 07/29/97 ENGINEERS S(T : ______ 97-250 BI1s1p12v1s0b4l4BTBEAM ANALYSIS PRO6RANs1p9v1s0L4148T (6.43)8lJsOplO.012400T SPAN LENGTH n 17.00 ft (Simple Span) UNIFORM LOADS (k/ft & It) vd vi XI - 12 0.030 0.000 0.00 17.00 POINT LOADS (k & It) Pd Pt X 1.350 2.040 8.50 REACTIONS (k) LOAD LEFT RISHT Dead 0.930 0.930 Live 1.020 1.020 Total 1.950 1.950 MAXIMUM FORCES V lax 1.95 k B 0.00'ft N sax a 15.49 kft 8 8.50 ft DEFLECTIONS (El kin'2) LOAD Defi (in) I (It) Total 655959/El 8.50 Live 360811/El 8.50 Dead 295148/El aidspan Pos. Moment Lu 8.50 ft Brace Spacing s 8.50 ft Boy. Deflection Total : 1/240 Required I = 27 in 014x22 Fyz36ksi STRESSES (ksi) lv z 14.40 fy = 0.62 41 lb : 18.36 lb = 6.41 35 1 DEFLECTIONS (in) Total = 0.11 = L /1795 13 1 Live = 0.06 = 1 /3263 11 1 Dead = 0.05 - CoLu/'-i,V LO*D T4-&E —d; / r Am PRIME J013: __STRUCTURAL DA1 : ENGINEERS SHT : iLOt9i' DJ- PL=/5f'S LL 9-o [99F LL = 20 ?t LL;/2 T3 4'A frOF RovF Poo R PLeiR TT42- - LON (SF) 02- (/<) LL(k) PL(K) LL(K) ...o = 24 374 30 xy4 f5T-/.8 g247% 4 7?(7XV4 (,Ig'-4. ?4=3 5,5 ,I 2. XV ____ 14 -1.8 469)c 44720 304 24-3 55 7x7x V4 C-4 /F- - i.t35 444 7,5 115.7 5 iz 1.133G44l4 24 -" C- -1 - I.E 24'2o'=4o 7.a 7.2 14-4 3'4( C-,., F-a. 14 - . 4.42l 33 P, 3 p- 4.3 P7. 95 ô)(V4. C-7/F...-4 p3 27 fa f 644z2o2T 3O4. 23 P=43 / P2' t'7 33.2 x(2'x'4 _______ _______ 3 2.7 1, 115 - JA57 __________ .-_-- 9. =1 P2L1, 4L / (.-5/ F- - ' ll~ 27.3 / - 4 3 O P O,% Ax =' 7 GXX) CB/- Pi..7. 16 ,- p '3 7' p4 =-36 1.1I'7 - 3 P2. 224 3.5-9 (_-/Q I - )73 27 ; 4172 j'I5.Ca _- Pi PP-1- =M7 55 5 X x / P4 0 "' " 1-4 pz = 7,2 30 1± _ _ •1 • _ _ .; •• .. : 1 I .•.:---- 'X2 51 (>1777 ç>I)7d (j) ,V/-jul7o7 I U,07z1 th:w2' d a- ~' vV /1L I. 77 i5ld 06. )--d i = 77 •= -o Lq 77 d.!q 77 -• I dtd/76 z/Q-8 t007' - 379,L C7 ,h/7707 Ear '• 3Vd _q PRIME JOB:____ STRUCIURAL DAm_7-7 I £ ENGINEERS SHT: ____ STRUCTURAL TUBE COLUMN OESi8M LOF 1.00 UNITS I NCH-KIPS U.LLN COL.HTS Li.: 27.50 FTS CCL,RTS L 27,50 T8 LOAD FO!4 FLOOR- ABOVE 68, OOKIPS P22, 7?zL, e P30, 3L e3 0.00 0.00 P40, P4L, e4 0.00 0,00 0.00 iNCX - }PS My 0.00 iNt.- XIPS Fy 46.00 KSI C •I.00 Kxv = 1.00 LOU Cax,Cy = 1.00 1.00 ft = 2.50 KSI ALLOW. BEARlNG:1..750 1(51 LOAD LOAD LOAD LOAD LOAD CASE I CASE 2 CASE 3 CASE $ CASE 5 ?T = 68.00 68.00 68,00 68.00 62.00 Mx 0.00 0,00 0,00- 0.00 0.00 M 0.00 0.00 0.00 0.00 - IS 8.0L 8,OX01.2500 TS 9.OX 9. 0X0.2500 TS 7.0X 7.00. 3125 I.ST 25,82 23.23 27.59 10 1O.UI fa 8,36 7.92 3.36 17,60 27.60 0,00 0.00 0.00 - - Fby = 27.60 27.60 2760 fby: 0.00 . 0,00 0.00 IA 0.67 0.50 0.83 ier AlSO 1,6-Ia 18 0.32 0.29 0.30 3ey AISC 1.6-lb BASE PL 0.750 X 14.000 X 14.000 FOR. T5 8.0x '16'. 25`10 15. 000 15. 000 FOR 789. OX 9. OXO. 20O 0.750 X 3,0O0 x i3.00u 73 7.0X 7.0 Xi 0. 3125 1 ' A PRIME JOB , STRUCTURAL DATE 1 AL ENGINEERS I STRUCTURAL TUBE COLUMN DESIGN (2.0) 1 97-250 I 1.5-1.8 'I LDF : 1.00 UNITS = jNCN-K!PS U.O.N L I COL.HTSL;: LOAD FROm.F3OR ABOVE 49, 0OKiFS • PlO, PIL. ci 0f.0 0.0( 0.00 I P20. P2L, e2: 0.00 0.00 0.00 3D, P3L. e3 0.00 0.00 0.00 P40, P4L, e4 0.00 0.00 I Mx: 0,00 INCH-KIPS My: 0.00 INCH- iPS I Fy ,00 Ks I • Kx,Ky = 1.00 1.00 I 0ax,Cey = 1.00 1.00 f : 2,50 KS! ALLOW, BEARING:1.750.Kgj it. LOAD LOAD LOAD LOAD LOAD I CASE CASE2 CASES CASE 4 CASES CT 4 45 )I) d Mx: o.00 000 0.00 I My: 0.00 0.00 0.00 0.00 0.00 I IS 7.01 7.010.2500 TS 8.00 8.000.2500 196.01. 6.000.3125 GT: 22.42 25,82 23.34 • LOADOASE: 1 1 I 10.30 13.4 71 .35 7.28 6.2 7.00 - Fx 27.60 27.60 27.60 1 lb.;: 0.00 0.00 0.00 Fby: 27.60 27,E.0 27.60 thy: 0.00 0,00 0.00 Ii IA: 0.71 0.47 0.96 per AlSO 1,6-la • 18 0.26 0.23 0.25. per AlSO 1.6-lb EASE PL 0. 62 .13, 000 0 13.000 FOR S 7.00 7;000.500 0.625 0 14.000 1 14.000 raP 138.01 s.0o.:soo i-/I I. 0.625. 0 000 0 12.000 FOR 78 6.00. 6.00.0.5125 PRIME STRL)CIURAL DAM STRUCTURAL TUBE COLUMN DESIGN (2.0) 97-250 1.18-1.0 LOF = 1.00 UNITS = INCH-KIPS U.O.N COL.HTS Lx: 21.50 FTS COL.HTS ly: 27.50 FTS LOAD FROM FLOOR ABOVE = 8.60KIPS P10, P11, el = 0.00. 0.00 000 P20, P21, e2 = 0.00 0.00 000 P30, P31, e3 = 0.00 0.00 0.00 P40, P41, e4 = .0.00 0.00 0.00 Mx: 0.00 INCH-KIPS NYC 0.00 INCH-KIPS Fy: 46.00 KS! Cb =1.00 Kx,Ky 1.00 1.00 Cmx,Cuy z 1.00 1.00 Ic c 2.50 KS! ALLOW. BEARINS=1.750 KSI LOAD LOAD LOAD LOAD LOAD CASE .1 CASE 2 CASE 3 CASE 4 CASE 5 P1= 8.60 8.60 8.60 8.60 8.60 Mx: 0.00 0.00 0.00 0.00 0.00 Ny: 0.00 0.00 0.00 0.00 0.00 TS 4.5! 4.510.1875 IS 5.0! 5.010. 187 IS 4.5! 4.510. 1875 WST 10.70 11.97-'10.70 LOAD CASE- 1 1 I Fa a 4.20 5.21 4.20 fa = 2.74 2.44 2.74 Fbx: 27.60 27.60 27.60 fbx: 0.00 0.00 0.00 Fbyz 27.60 27.60 27.60 fby: 0.00 0.00 0.00 lA: 0.65 0.47 0.65 per AISC 1.6-la 18 = 0.10 0.09 0.10 per AISC 1.6-lb BASE P1 : 0.375 1 10.500 1 10.500 FOR TS 4.5! 4.510.1*75 0.375 I 11.000 I 11.000 FOR IS 5.01 5.010.1175 0.375 110.500! 10.500 FOR IS 4.51 4.510.1075 =RIME JOB: ASE NEW STRUCTURAL TUBE COLUMN DESIGN' (2, WHO 1.4-1.8 LOF = 1.00 UNITS = INCH-NIPS U.D.N COWS Lx. 27.50 FTS COL.HTS Ly= 27.50 FIS LOAD FROM FLOOR ABOVE 55. OOKIPS PH, P1L, el = 0.00 0.00 0.00 F12D, PzL, a L = 0.0U P30, P3L. e3 = 0.00 0,00 0.00 P40, P4L, a4 = 0.00 0.00 0.00 Mx 0.00 INCH-NIPS Mv 0.00 INCH-KIPS Fy = 46.00 KSI Cb Q.00 Nx,Ky = 1.00 1.00 Cax,Cy = 1.00 110 Ic = 2.50 V.51. ALLOW. BEARINS:1.750 KS! LOAD LOAD LOAD LOAD LOAD CASE I CASE 2 CASE 3 CASE 4 CASE 5 PT 55.00 55.00 55.00 53.00 17 10 No 0,00 0,00 0.00 0.00 too yz 0.00 0.00 0.00 0.00 0,00 IS 7.01 7.010.2500 is 8.01 8.010,2500 TS 6.01 LOXM330 WGT 22.42 25.82 27.48 LOAD CASE= 1 1 - Fa - i,.,, ')•._,c .,.'.., F-, fa 8.35 7.25 6.81 Fbx 27.60 27.60 27,60 fbx 0.00 000 0.00 Fby 27,60 27.60 2760 fby 0.00 0.00 000 IA 0.81 154 0.36 er AMC 1.6-la 18 = 0,30 0,26 0.25 per AISC 1,6-lb BASE FL = 0.625 x 13.000 X WN FOR: IS 7.!1 0.625 X 14,000 I 14,000 FN TS 3.01 3,0X0,25a0 0.750112.000 112. 00 FOR TO, 6. 0 6. 010. 3750 F PRIME JOB: E1 'IA MME DATE ____ L ENGINEERS SHT: __ STRUCTURAL TUBE COLUMN DES !N (2.0) 97-250 1-1 . 55 LDF = 1.00 UNITS = INCH-KIPS U.U.N COL.HTS Lx: 27.50 FTS COL,riiS Lv= 2j() LOAD FROM FLOOR ABOVE 15.710KIPS P10! P1L ci : P21), P2L, e2 P30, P3L, e3 : 0.00 0.00 P41), P4L, e4 =0,00 0.00 Mx: 0.00 INCH-KIPS My: 0.00 JNCH-KIPS Fy : 46.00 KS! Cb :1.00 Kx,Ky = 1.00 1.00 Cax,Cmy = 1.00 1.00 Ic 2.50 KS! ALLOW. BEARINS:1,750 KS! LOAD LOAD LOAD LOAD LOAD CASE I CASE 2 CASE 3 CASE 4 CASE S PT: 15.70 15. 70 15.70 15.70 15.70 Mx: 0.00 0.00 0.00 0.00 0.00 My= 0.00 0.00 0.00 0.00 0,00 IS 5,0X 5.0XO.1875 IS 6.0X 6.00,1875 1S.4.5X 4.X0.2500 WGT: 11.97 14.53 13.91 LOAD CASE: 1 1 1 5.21 7.64 4.06 fa 4.46 3.6B Fbx: 27.60 27.60 27.60 fbx: 0.00 0.00 0.00 Fbv: 27.60 27.60 27,60 thy: 0,00 0.00 0.00 IA 0.86 0.48 0.95 per AlSO 1.6-Ia 0116 0,14 ocr AISC 1.6-lb 6A66 FL 0.500 : li.300 111,000 FO 5,0) 010, 1875 0.37.5 I 12.000 1 12.000 FOR TS 6,0:( 6.010, 1875 0.500 I 10, 500 1 10.500 FOR 79 4. '. 510. 2500 PRIME JOB:15 S1RUC1URAL DA1 _7-7 1AMEW-4NEERS STRUCTURAL TUBE COLUMN DES;GN 97-250 9 LOF 1.00 UNITS : INCH-KIPS U.O. COL.HTS Lx: 27,50 FIB COL.HTS Ly: 27.50 -TS LOAD FROM FLOOR ABOVE 43.00KIPS P10, PIL, ell = 0.00 0.00 0,00 P20, P21-, 2= 0.00 300 0.00 P30, PH, e3 : c.00 u.00 0,00 P40, F'4L e4 : 0.00 0.00 0.00 Mx 0.00 INCH-KIPS My: 0.00 INCH-KIPS FY : 46.00 1(91 Cb :1.00 1.00 1.00 CMx,Cy : 1.00 1.00 2.50 1(91 ALLOW. BEARJNS1.750 1(91 LOAD LOAD LOAD LOAD LOAD CASE I CASE 2 CASE CASE 4 CASE PT: 43.00 43,00 43.00 43.00 43.00 lix: 0.00 0.00 0.00 0,00 0.00 1y: 0.00 0.00 0.00 0.00 0.00 IS 7.OX 7.010.2500 TS 8.01 8.010.2500 TB 6.01 6.)(C.3125 WGT: 22.42 25.82 23.34 LOADCASE: I Pa: 10.30 13.43 7,25 fa 6.53 5,67 6,27 5: 27.60 27.30 27.60 fbx: 0.00 3.00 0,00 y: 27.60 27.40 27.60 fty: 0.00 0.00 0,00 IA 0.63 0.42 0.96 x MSC 1.6-112 19 C24 3.21 0.23 pez AISC 1.6-lb BASE FL 3.625 13.000 X. 13.300 FOR. TB: 7,0) 0.625 I 14.000 X 14.000 OR TB; 8.OX 8.0102500 0.625 1 12.000 1 12.000 T3 6,01. 6.010,3.125 — : — — — — — — — oil— — — — — — — rJ m _ —. c' "Z Ct' '' - C C ...4 Cu ii 72M zx ii it It If ii ii It it ii ii ii ri it ii Co It ii It . t Ct '-'C -t' - .A. -zc (4) ii — CA i—. I— • W Lii .> c - C> C' r .44. 04 '- r- r.....r- Cu 0) (CI Ii . It;' - .. - .--.. ,_ () f) ri-i C II II C . . - - .- r C - - C. ..._J C,-. 4 I-.4 0;'. -. '• - C> '. - __ i. C' r Lii I-..) On C_ri C' .4...... ...J Ct,. C. 4.., ..44.. - - - - - - - - ..p -----.> "> 'C. . .. - 0) - . .— .4;. ; I..., r- Ii Ii . .p. C4I ci-' C> 0;4 p,: Co 4) Lii . ---I ,_• (' C.4i it C. II .) : ;iC' Q•, Ci-' .-.-. 01 C- CA 'C. r....) 0:. 7' .44.4$.......... . CO - lm Cu - co171 ? ... - 'C. .) Co ..--...... - - x -1 i> C: —4 Lii .' - - - '.44., ,a, ....• - - - '..,'• PC... - ..... "-'4 ' -. Cr) Ct,' ci Ct,. C i. 'C....".4 •t,c.".4 'C '"- C.'.) 0') tic" ri.i c CC) .> CI......... Cr1 4.4,.......- - - co Ci :4." (4') 0') .t,. LII .P 0') it i-i-I C)' C...) 0'. It" C' CI" 44' PRIME JOB :i-9s I SIRUC1URAI. DATE l,t7 L ENGINEERS SIT: 'ry STRUCTURAL TUBE COLUMN DESIGN (2. 0. 97-250 LDF = 1.00 UNITS = INCH-KIPS U.O,N COL.HTS Lx: 16.00 FIB COL.HTS Ly: 16.00 FIB LOAD FROM FLOOR ABOVE 14,40K1P9 PlO, ;IL. el P2D, P2E, 2 0.00 F'3D P3L, e3 : 0,00 0.00 P40, P, 4L 24 = 0.00 0.00 Mx: 0.00 INI::H-KIPS My: 0.00 INCH-SIPS Fy = 46,00 KS! Cb :1.00 Kx,Ky = 1,00 1.00 Cinx,Cx,y = 1.00 1.00 Ic = 2.50 KS! ALLOW, BEAR!N8:1,750 KS! LOAD LOAD LOAD LOAD LOAD CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 PT: 14.40 14.40 14.40 14.40 14.40 Mx: 0.00 0.00 0.00 0.00 0.00 My: 0.00 0.00 0.00 0.00 0.00 733.513.5(0,1875 TB 4.01 3.010.2500 193.01 3.010.3125 WST: 8.15 10.51 10,58 LOAD CASE: 1 1 1 r - fa 6.03 4.66 4.63 lbx: 27.60 27.60 27.60 f.5: coo 0,0' Fby= 7.60 27.60 27.60 thy: 0,00 0.00 0.00 1A z 0.83 0.87 1.00 per AlEC 1.6-la 18 : .22 0.17 0.17 oer .!SC 1.6-lb BASE PL:0.5001 s.soox .soo FDRTS$,3.3.o.975 0.5001 9.0001 10.030 OR 154.013.010.2500 0.500 1 9.000 1 9.000 FOR TB 2.OX 2.010 2125 00 00 0.00 I • - A IME PR I S1RUCIUR.AL DAM 7-7 ENGINEERS '64N STRUCTURAL TUBE 0.ULUMN DES (2,0) I 97-250 1 I LDF,: - UNITS = INCH-KIPS U,0.N COL.HTS L 13.00 ETS COL. PITS Ly: 13.00 ETS LOAD FRON FLOOR ABOVE 60. COKIPS PIL el : 300 4.30 3.30 I LU, P2 L, e2 6.30- 7.20 6.00 P30, PH, 23 2,70 3.00 P40! P4L, e41 0.00 0.00 0.00 I M. 0. 00 INCH-KIPS My 3.00 INCH- KiPS Fy :46.00 KS! Cb 1.00 • Kx,Ky = 1.00 1.00 I Cex1 Cey = 1.00 1.00 Ic = 2.50 KS! ALLOW. BEARJNG:1.750 KS! I. LOAD LOAD LOAD LOAD LOAD I CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 PT: 85.50 78.30 78.20 75.30 81.20 - Mx: 15.60 6.00 28.50 6.00 25.50 1 Mr 17.10 17.10 9.0 8,10 17.10 IS 6,01 6.011O.2500 IS 7.OX 5.010.5000 IS 6,0! 5.DXO.2750 WST: 19.02 25.24 24.92. • LOAD CASE: ç 5 5 I Fa 7 20.23 17,72 17,79 Ia= 14,53 7.31 11.08 - Fbx: 30.66 60.36 20.36 Iluk=2.82 1.57 2.33 Fby: 27.60 27.60 27.60 thy: 1.69 1.15 1.60 I IA 0,99 0,57 0.86 pe AISC 1.6-la • lB 0.68 0.38 0.64 p AlSO 1.6-lb I BASE PL : 3,975 ;2.300 12.000 FOR TB 6.01 6. OXO. 2500 0,875 I 11.000 I 13.300 OR IS 7,0! 3.010.5000 0.875 2.000 FOP IS 6.01 5.010.2753 I. ! PRIME JOB ENGINEERS SHT &_:: 1. syRur-TURAL. DAM 37 STRUCTURAL TUBE COLUMN DESIGN (2.0) 97-250 1.4-1,D LOF 1.00 UNITS INCH-KIPS U.O. (.OLHTS Lx: 13.00 T COL,HTS L 12.00 T3 LOAD FRUc4 FLOOR ASOVE - 55.00KIPS PlO PIL 4.30 6,00 P2D.P2L.2: 5.30 7.20 P30. P3L, e3 = 270 3.00 P401 P 4 L e4 = 0.00 0.00 Mx: 0.00 INCH-NIPS My: 0.00 INCH-KiPS Fy = 45.00 KSI Cb :1,00 KxKy : 1.00 1.00 Cx,Cmy = 1.00 1,00 Ic 2.50 KSI ALLOW. BEARJNI3:1,750 KSI LOAD LOAD LOAD LOAD LOAD CASE I CASE 2 CASE 3 CASE 4 CASE 5 83,50 76.30 74,50 73,30 77.50 Mx: 6.60 15.00 24,60 15,00 2460 My: 17.10 17, O 8.10 3.10 TS 601 6.00.2500 TS 7.0l 5.0X0.5000 IS 6.01 5.(XO,3125 :T: 19.02 35.24 21.21 LOAD CASE: 5 5 5 20.23 17.72 IT 13.01 - 1) - I, Fbx: 30.36 3:0,36 30.36 f: 2.44 1.36 2.37 F - 21 Ov ib/ .,,u'.' L. .uv thy: 1.69 1.15 1.82 IA 0,3 0.54 0.95 per AISC 1.6-1 8 18 : 0.64 0.36 0.59 ocr AISC 1.6-lb BASE 01 0.675 V 12. 000 y 12. 0 ft. T3. 6. 0 B, :0, 2500 0.875 1 11.0Cc 13.000 FOR IS 1, (1V 5.0105000 A. I 12.00 13 T3 5X 5J1(,3125. - PRIME JOB: 1z:2266 STRUCTURAL DATE'Z STRUCTURAL. TUBE COLUMN DESIGN (2.0) 97-250 LDF: 1.00 UNITS INCH-KIPS U.O.N COL.HTS Lx: 13.00 FTS COI.HTS Ly= 13.00 FTS LOAD FROM FLOOR ABOVE c 49.00KIPS P10, P11, el = 0.00 0.00 0.00 P20, P21, e2 0.00 0.00 0.00 P30, P31., e3 a 0.00 0.00 0.00 P40, P41, e4 = 0.00 0.00 0.00 Mx: 0.00 INCH-KIPS My: 0.00 INCH-KIPS Fy z 46.00 KSI Cb :1.00 Kx,Ky : 1.00 1.00 Cmx,C.y a 1.00 1.00 fc:2.50KSI ALLOW. BEARIN6:1.750 KSI LOAD LOAD LOAD LOAD LOAD CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 PT: 49.00 49.00 49.00 49.00 49.00 Mx2 0.00 0.00 0.00 0.00 0.00 NY= 0.00 0.00 0.00 0.00 0.00 TS 4.51 4.510.1875 TS 5.01 5.010.1 IS 4.01 4.iXO.2500 96T: 10.70 11.97 12.21 LOAD CASE- I. 1 I Fa m 16.46 18.08 13.72 fa : 15.61 13.92 13.65 Fix: 30.36 30.36 30.36 fbx: 0.00 0.00 0.00 Fby: 27.60 27.60 27.60 fby: 0.00 0.00 0.00 IA c 0.95 0.77 0.99 per AISC 1.6-la 18 a 0.57 0.50 0.49 per AISC 1.6-lb BASE P1 = 0.750 I 10.500 I 10.500 FOR IS 4.51 4.510.1875 0.7501 11.000 I 11.000 FOR IS 5.01 5.0X0.1875 0.750 I 10.000 I 10.000 FOR IS 4.01 4.010.2500 ALENGNEERS PRIME .ios STRUC1URAL DATE: 9ff: STRUCTURAL TUBE COLUMN DESIGN (2.0) 97-250 1.4-1.C5, 1.4-1.115 LDF z 1.00 UNITS INCH-KIPS U.O.N COL.HTS Lx: 13.00 FTS COLHTS Lyn. 13.00 FTS LOAD FROM FLOOR ABOVE c .30.00KIPS PID, P11, el = 0.00 0.00 0.00 P21), P21, e2 0.00 0.00 0.00 P3D, P31, e3 c 0.00 0.00 0.00 - P4D, P41, e4 z 0.00 0.00 0.00 Mx: 0.00 INCH-KIPS My: 0.00 INCH-KIPS Fy:46.00 KS! Cb :1.00 Kx,Ky a 1.00 1.00 C.x,C.y a 1.00 1.00 Ic a 2.50 KSI ALLON. BEARINS=1.750 KS! LOAD LOAD LOAD LOAD LOAD CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 PT: 30.00 30.00 30.00 30.00 30.00 Mx: 0.00 0.00 0.00 0.00 0.00 My: 0.00 0.00 0.00 0.00 0.00 TS 4.01 4.010.1875 TS 5.0! 5.010.1875 IS 3.5! 35X0.2500 MGI: 9.42 11.97 10.51 LOAD CASE: 1 1 Fa = 14.13 18.08 10.53 fa = 10.83 8.52 9.71 Fbx 30.36 30.36 27.60 fbx: 0.00 0.00 0.00 Fby: 27.60 27.60 27.60 fby: 0.00 0.00 0.00 IA = 0.77 0.47 0.92 per AISC 1.6-la lB : 0.39 0.31 0.35 per A!SC 1.6-lb BASE P1 = 0.625 I 10.000 I 10.000 FOR TS 4.0! 4.010.1875 0.625 I 11.000 I 11.000 FOR TS 5.01 5.010.1875 0.625 I 9.500 I 9.500 FOR IS 3.51 3.20.250 ADI PRIME JoB:57I STRUCTURAL DATE _7- GINEERS SHT:'\ STRUCTURAL TUBE COLUMN DESIGN (2.0) 97-250 1.15-1.85 1.-'15, 4.-4_ LDF z 1.00 UNITS = INCH-KIPS U.O.N COL.HTS Lxv 13.00 FTS COL.HTS Lyn 13.00 FTS LOAD FROM FLOOR ABOVE = 72.00KIPS PID, P11, el v 0.00 0.00 P2D, P21, e2 = 0.00 0.00 P311, P31, e3 m 0.00 0.00 P40, P4L, e4 : 0.00 0.00 Mx: 0.00 INCH-KIPS NYC 0.00 INCH-KIPS Fy: 46.00 KSI Cb =1.00 Kx,Ky c 1.00 1.00 Cax,C.y 1.00 1.00 ft a 2.50 KSI ALLOW. BEARINS=1.750 KS! LOAD LOAD LOAD LOAD LOAD CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 PT: 72.00 72.00 72.00 72.00 72.00 Mx: 0.00 0.00 0.00 0.00 0.00 NYC 0.00 0.00 0.00 0.00 0.00 IS 6.01 6.010.1875 TS 7.01 5.010.5000 IS 6.01 4.010.3125 W6T: 14.53 35.24 19.08 LOAD CASE: 1 1 1 Fa c 20.36 17.72 14.51 fa C 16.86 6.92 12.83 Fbx: 27.60 30.36 30.36 fbx: 0.00 0.00 0.00 Fby: 21.60 27.60 27.60 fby: 0.00 0.00 0.00 1A = 0.83 0.39 0.88 per AISC 1.6-la 18 ' 0.61 0.25 0.47 per AISC 1.6-lb BASE P1 0.750 I 12.000 1 12.000 FOR IS 6.01 6.00.175 0.750 I 11.000 I 13.000 FOR IS 7.01 5.00.500 0.875 I 10.000 I 12.000 FOR 15 6.01 4.010.3125 0.00 0.00 0.00 0.00 FA r PRIME SIRUCiURAL IE - ff7 [ ENGINEERS alT: STRUCTURAL TUBE COLUMN DESIGN (2.0) 97-250 1.4-1.88 LDF c 1.00 UNITS c INCH-KIPS U.O.N COL.HTS Lx: 13.00 FIS COI.HTS Ly: 13.00 FTS LOAD FROM FLOOR ABOVE = 22.40KIPS PID, P11, el 0.00 0.00 0.00 P20, P21, e2 : 0.00 0.00 0.00 P30, P31, e3 a 0.00 0.00 0.00 P411, P41, e4 = 0.00 0.00 0.00 Mx: 0.00 INCH-KIPS My: 0.00 INCH-KIPS Fy = 46.00 KSI Cb =1.00 Kx,Ky = 1.00 1.00 Csx,C.y 1.00 1.00 fc2.50KS1. ALLOW. BEARING-1.750 KSI LOAD LOAD LOAD LOAD LOAD CASE I CASE 2 CASE 3 CASE 4 CASE 5 PT: 22.40 22.40 22.40 22.40 22.40 Mx: 0.00 0.00 0.00 0.00 0.00 My: 0.00 0.00 0.00 0.00 0.00 IS 3.51 3.510.1875 TB 4.01 3.010.2500 IS 3.51 3.510.1875 W6T: 8.15 - 10.51 8.15 LOAD CASE: 1 1 1 Fa = 11.02 8.12 11.02 la = 9.37 7.25 9.37 Fbxm 27.60 27.60 27.60 fbx: 0.00 0.00 0.00 -Fby: 27.60 27.60 27.60 fby: 0.00 0.00 0.00 1A = 0.85 0.89 0.85 mer AISC 1.6-la 18 : 0.34 0.26 0.34 3er AISC 1.6-lb BASE P1 : 0.625 I 9.500 1 9.500 FOR IS 3.51 3.510. 1815 0.625 I 9.000 110.000 FOR IS 4.01 3.0X0.20 0.625 1 9.500 I 9.500 FOR IS 3.51 3.510.1875 PRIME JOB: fl7-iit STRUC1URAL DATE: 2 IA '7 I ENGINEERS SHT : STRUCTURAL TUBE COLUMN DESIGN (2.0) 97-250 1.35-1.C5, 1.35-1.D, 1.35-1.D5 IJ5 I. IDF a 1.00 UNITS INCH-KIPS U.O.N CQLHTS Lx: 13.00 FTS COL.HTS Lys 13.00 flS LOAD FROM FLOOR ABOVE = 55.00KIPS P1D, P11, el 0.00 0.00 P21), P21, e2 : 0.00 0.00 P3D, P31, e3 = 0.00 0.00 P40, P41, e4 : 0.00 0.00 Mx: 0.00 INCH-KIPS My= 0.00 INCH-KIPS Fy: 46.00 KS! Cb :1. 00 Kx,Ky a 1.00 1.00 C.x,Csy a 1.00 1.00 fc z 2.50 KSI ALLOW. BEARIN6:1.750 KS! U LOAD LOAD LOAD LOAD LOAD CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 PT: 55.00 55.00 55.00 55.00 . 55.00 Mx: 0.00 0.00 0.00 0.00 0.00 My: 0.00 0.00 0.00 0.00 0.00 TS 5.0! 5.010.1875 TS 6.0! 6.010.1975 TS 4.5! 4.510.2500 1161: 11.97 14.53 13.91 LOAD CASE= 1 1 1 Fa = 18.08 20.36 16.17 fa : 15.63 12.88 13.45 Fbx: 30.36 27.60 30.36 Ibx: 0.00 0.00 0.00 Fby: 27.60 27.60 27.60 fby 000 0.00 0.00 IA: 0.86 0.63 0.83 per AISC 1.6-la 18 : 0.57 0.47 0.49 per A!SC 1.6-lb BASE P1 = 0.750 111.000 111.000 FORTS 5.01 5.010. 1875 0.750 I 12.000 I 12.000 FOR IS 6.0! 6.010.1875 0.750 I 10.500 I 10.500 FOR TS 4.5! 4.510.2500 0.00 0.00 0.00 0.00 I FOOTING PR!ME o, 09/15/97 97-250 RS J4 SPREAD FOOTING PROGRAM (3.30) ft 2.50 ksi wc = 0.15 kcf fy 60.00 ksi sur = 0.00 ksf Qa 2.90 ksf col = 6.00 in b (ft) h (in) Pa (k) Pu (k) As (in2) 4o-Size 2.50 12.00 17.19 26.64 0.65 4ff 4 Hook 3.00 12.00 24.75 38.36 0.78 3 * 5 F2 3.50 12.00 33.69 52.22 0.91 3 * 5 F -3 4.00 12.00 44.00 68.20 1.04 4ff 5 F4 4.50 18.00 54.17 83.96 1.75 6* 5 F -5 5.00 18.00 66.88 103.66 1.94 7ff 5 5.50 18.00 80.92 125.42 2.14 7*5 6.00 18.00 96.30 149.26 2.33 8*5 6.50 18.00 113.02 175.18 2.62 9*5 7.00 18.00 131.07 203.17 3.33 11ff 5 7.50 24.00 146.25 226.69 3.89 13ff 5 8.00 24.00 166.40 257.92 4.15 14ff 5 8.50 24.00 187.85 291.17 4.41 15 *5 9.00 24.00 210.60 326.43 4.96 16ff 5 9.50 24.00 234.65 363.71 5.94 14ff 6 10.00 30.00 252.50 391.38 6.48 15ff 6 10.50 30.00 278.38 431.49 6.80 16ff 6 11.00 30.00 305.53 473.56 7.13 17ff 6 11.50 30.00 333.93 517.59 7.98 19 * 6 12.00 30.00 363.60 563.58 9.13 21ff 6 12.50 36.00 382.81 593.36 9.72 23ff 6 13.00 36.00 414.05 641.78 10.11 23 * 6 13.50 36.00 446.51 692.09 10.50 24 *.6 14.00 36.00 480.20 744.31 11.52 27*6' 14.50 36.00 515.11 798.42 12.86 30*6 15.00 36.00 551.25 854,44 14.29 33*6 [] I I R I I, I I I PR ME JOB: IA STRUCTURAL DAM 7-471 ENG1NE8Sr:'__ t: "! LL,17) TiB IP.E ROOF R(>OF L LoOP. t-c LL TOTAL- TS 3I- LCATiON () QK . . / 37 77 7Gb = / \ 4 ' ",. 7x7 77 16 36- . . ••.. • K=LXi4 7.LL ? . 4 • ..: v.75 LO. 'F__ .f 7 ;=t07Q - .• • -. AAF • . . . . ?-o25 :- 5x5 ' • - ... . V, .?S7C •• • .-. 7 -;i • GCi ? - 347 • : C7 _________ _________ - • ________ Vft 7 P, _________ __________ 2t--P q. 5X5x 43 • 5x5x. . . .... K CcLLft*3 1-°'¼V TikLe t sw 1fl F ?YF L I. LL ?& ?ir .1 - ...: .. H I COL. T. AFa 160r)L ROOF LL FLoO LJ1. LL TOTAL- TS 5i LOCATi () (jc 5.76 I / g. '... .-.:. .. .: •• - \•. . _/ ••.. I • :. .1 \ /. !2-—,;;;7Th C / \\ P .ôt I / \ • • .•/• \ 3 g • • I) /1 3,C7 • S I S. S.... I .. S. . I. • S . .. . H : I .. .. . . ST.. • I .. II I I . 1 . STRUCTURAL TUBE COLUMN DESIGN (2.u) I 91-250 2.3-2.8, 2.4-2.8, 2.5-2.8 I . 11W = 1.00 LIMITS = INCH-KIPS U.O.N COL.HTS Lx: 27.50 ITS I COL.HTS Lys 27.50 ITS LOAD FROM FLOOR ABOVE = 51.57K1PS PlO, P11, el = 0.00 0.00 0.00 I P20, P21., e2 = 0.00 0.00 0.00 P3D, P31., e3 c 0.00 0.00 0.00 P40, P41, e4 0.00 0.00 0.00 I Mx: 0.00 INCH-KIPS My= 0.00 INCH-KIPS Fy:46.00KSI Cb :1.00 Kx,Ky c 1.00 1.00 I C.x,C.y 2 1.00 1.00 fc :2.50 KS! ALLOW. 8EAR1N61.750 KS! I' LOAD LOAD LOAD LOAD LOAD I CASE I CASE 2 CASE 3 CASE 4 CASE 5 PT: 51.57 51.57 51.57 51.57 51.57 Mx: 0.00 0.00 0.00 0.00 0.00 I Ny: 0.00 0.00 0.00 0.00 0.00 TS 7.01 7.010.2500 IS 8.01 8.010.2500 IS 6.01 6.010.3750 WST: 22.42 25.82 27.48 LOAD CASE= 1 1 1 I Fa v 10.30 13.43 7.07 fa : 7.83 6.79 6.38 I Fbx: 27.60 fbiz 0.00 27.60 0.00 27.60 0.00 - Fby: 27.60 27.60 2760 fbyz 0.00 0.00 0.00 1A 0.76 0.51 0.90 per AISC 1.6-la 18 c 0.28 0.25 0.23 per AISC 1.6-lb BASE Pt. = 0.625 I 13.000 1 13.000 FOR TS 7.01 7.010.2500 0.625 114.000 114.000 FOR TS 8.01 8.010.2500 0.750 I 12.000 I 12.000 FOR IS 6.01 6.010.3750 I PRIME JOB: I.. STRUCTURAL TUBE COLUMN DESIGN (2.0) I.97-250 S 2.3-2.C, 2.4-2.0 I UNITS u INCH-KIPS U.0.N COL.HTSLx: 27.50 ITS I COL.HTSLy: 27.50 ITS LOAD FROM FLOOR ABOVE = 60.87KIPS . PlO, P11, el = 0.00 0.00 0.00 I P211, P21, e2 = 0.00 0.00 0.00 P30, P31, e3 r 0.00 0.00 0.00 P40, P41, e4 = 0.00 0.00 0.00 I Mx: 0.00 INCH-KIPS My: 0.00 INCH-KIPS Fy:46.00KSI Cb uI.00 j Kx,Ky : 1.00 1.00 I C.x,C.y : 1.00 1.00 Ic:2.50K91 ALLOW. BEARIN6=1.750 KS! LOAD LOAD LOAD LOAD LOAD I CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 PT: 60.07. 60.87 60.87 60.87 60.87 Kim 0.00 0.00 0.00 0.00 0.00 I NY= 0.00 0.00 0.00 0.00 0.00 TS LOX 7.010.2500 TS 8.01 8.010.2500 TS 6.OX 6.0*0.5000 WOT: 22.42 25.82 35.24 IOADCASE: 1 1 1 Fa 10.30 13.43 6.70 fa 9.24 8.02 5.85 Vbx: 27.60 27.60 27.60 I fbx: 0.00 0.00 0.00 Fby: 27.60 27.60 27.60 fby: 0.00 0.00 0.00 I - IA = 0.90 0.60 0.87 per AISC 1.6-la lB : 0.33 0.29 0.21 per AISC 1.6-lb BASE Pt. : 0.150 1 13.000 I 13.000 FOR IS 7.OX 7.0*0.2500 0.625 I 14.000 I 14.000 FOR TS 8.01 8.0*0.2500 0.750 I 12.000 I 12.000 FOR TS 6.01 6.010.5000 -. S S TUAL DATE: L ENGINEERS SHT & PRIME JOB: hA STRUCTURAL DATE ENGINEERS 11 STRUCTURAL TUBE COLUMN DESIGN (2.0) 97-250 2.5-2.0 101 = 1.00 UNITS a INCH-KIPS U.O.N COI.HTS Lx: 27.50 ITS COL.HTS Ly: 27.50 ITS LOAD FROM FLOOR ABOVE = 46.92K1P8 P10, P11, el = 0.00 0.00 0.00 P20, P21, e2 : 0.00 0.00 0.00 P311, P31, e3 = 0.00 0.00 0.00 P40, P41, e4 = 0.00 0.00 0.00 Nxm 0.00 INCH-KIPS r 0.00 INCH-KIPS Fy = 46.00 KS! Cb :1.00 Kx,Ky 1'.00 1.00 Cax,Cay 1.00 1.00 fc a 2.50 KS! ALLOM. BEARINS:1.750 KS! LOAD IDA!) LOAD LOAD LOAD CASE 1 CASE 2 CASE 3 CASE 4 CASE S PT: 46.92 46.92 46.92 46.92 46.92 Mx' 0.00 0.00 0.00 0.00 0.00 my= 0.00 0.00 0.00 0.00 0.00 TS 7.0! 7.010.2500 TS 8.0! 8.010.2500 18 6.01 6.010.3125 W8T 22.42 25.82 23.34 LOAD CASE: 1 1 1 Fa : 10.30 13.43 7.25 la : 7.12 6.18 6.84 Fbic 27.60 27.60 27.60 Ibxm 0.00 0.00 0.00 Fby: 27.60 27.60 21.60 fby: 0.00 0.00 0.00 IA : 0.69 0.46 0.94 per AISC 1.6-la lB c. 0.26 0.22 0.25 per A!SC 1.6-lb BASE P1 : 0.625 I 13.000 I 13.000 FOR TS 7.0! 7.010.2500 0.625 I 14.000 I 14.000 FOR IS 8.0! 8.010.2509 0.625 I 12.000 I 12.000 FOR TB 6.0! 6.010.3125 PRIME JOB: ______ STRUCTURAL TE -7W- 411 ENGINEERS SHT : STRUCTURAL TUBE COLUMN DESI8N (2.0) 97-250 2.2-2.8 LDF = 1.00 UNITS a INCH-KIPS U.O.N CDL. HTS Lxc 13.00 ITS COL.NTS Ly= 13.00 FTS - LOAD FROM FLOOR ABOVE = 56.85KIPS P10, P11, el : 5.20 7.20 3.00 P21), P21, e2 c 6.18 8.25 3.00 P30, P31, e3 = 3.67 5.76 3.00 P40, P41, e4 c 0.00 0.00 0.00 Mx: 0.00 INCH-KIPS My: 0.00 INCH-KIPS Fy = 46.00 KS! Cb :1.00 Kx,Ky a 1.00 1.00 C.x,C.y:1.00 1.00 Ic = 2.50 KS! *11011. BEARING-1.750 KS! LOAD LOAD LOAD LOAD LOAD CASE 1 CASE 2 CASE 3 CASE 4 CASE 5. PT: 93.11 84.86 80.15 79.10 85.91 NX2 6.09 18.66 27.69 18.66 27.69 My: 28.29 28.29 11.01 11.01 28.29 TS 7.01 7.010.2500 IS 8.01 8.010.2500 TS 6.01 6.CI0.3125 WGTr 22.42 25.82 23.34 LOAD CASES 5 5 5 Fa =. 21.73 22.76 20.09 fa : 13.04 11.32 12.52 Fbxa 30.36 27.60 30.36 fbx 1.96 1.47 2.29 Fbyn 27.60 27.60 27.60 fbyz 2.01 1.50 2.34 IA = 0.79 0.63 0.88 per AISC 1.6-la 18 : 0.61 0.52 0.61 per AISC 1.6-lb BASE PL = 0.875 I 13.000113.000 FOR IS 7.01 7.010.2500 0.750 I 14.000 I 14.000 FOR TS 8.0! 8.010.2500 0.875 I 12.000 I 12.000 FOR IS 6.0! 6.010.3125 A PRIME JOB:7 STRUCTURAL DM 7- q7 ENGINEERS 99 41 STRUCTURAL TUBE COLUMN DESIBN (2.0) 97-250 2.2-2.0 11W = 1.00 UNITS : INCH-KIPS U.O.N COL.HTS ix: 13.00 ITS 0LHTS Ly: 13.00 ITS LOAD FROM FLOOR ABOVE = 62.00KIPS PlO, PIL,el = 6.18 8.25 3.00 P2D, P21, e2 z 8.75 10.60 3.00 P30, P3!., e3 a 3.67 5.76 3.00 P40, P41, e4 c 0.93 1.02 3.00 Mx: 0.00 INCH-KIPS My- 0.00 INCH-KIPS Fy = 46.00 KS! Cb :100 Kx,Ky a 1.00 1.00 C.x,C.y 2 1.00 1.00 Ic = 2.50 KS! ALLOW. BEARINS=1.750 KS! L LOAD LOAD LOAD LOAD LOAD CASE 1 CASE 2 - CASE 3 CASE 4 CASE 5 PT: 107.16 95.54 93.15 90.80 97.89 Mx: 14.76 17.04 39.51 17.04 39.51 My- 22.44 25.50 5.16 5.16 25.50 IS 7.01 7.010.2500 TS 8.01 8.010.2500 TS 6.01 6.010.3750 WST= 22.42 25.82 27.48 LOAD CASE' 5 5 5 Fa z 21.73 22.76 19.95 (a v 14.85 12.90 12.12 Vbx: 30.36 27.60 30.36 (bx 2.80 2.10 2.84 Fby: 27.60 27.60 27.60 fbyz 1.81 1.36 1.83 IA = 0.92 0.73 0.87 per AISC 1.6-la 18 ' 0.70 0.59 0.60 per AISC 1.6-lb BASE PL = 0.875 I 13.000 I 13.000 FOR TS 7.01 7.0XO.250 0.875 I 14.000 I 14.000 FOR TS 8.01 8.010.2500 1.000 I 12.000 I 12.000 FOR TS 6.01 6.010.3750 rA PRIME JOB: SIRUCTURAL DA - ENGINEERS STRUCTURAL TUBE COLUMN DESIGN (2.0) 97-250 2.15-2.85, 2.15-2.C, 2.2-2.C5 LOT . 1.00 UNITS a INCH-KIPS U.O.N COLHTS lx: 13.00 FTS COL.HTS Ly: 13.00 FTS LOAD FRON FLOOR ABOVE z 69.86KIPS P11), P11, el a 0.00 0.00 0.00 P20, P21, e2 : 0.00 0.00 0.00 P3D, P31., e3 c 0.00 0.00 0.00 P40, P41., e4 : 0.00 0.00 0.00 Mx: 0.00 INCH-KIPS Ny: 0.00 INCH-KIPS Fy m 46.00 KI Cb :1.00 Kx,Ky = 1.00 1.00 C.x,Csy a 1.00 1.00 fc = 2.50 KSI ALLOW. BEARINS:l.750 KS! LOAD LOAD LOAD LOAD LOAD CASE I CASE 2 CASE 3 CASE 4 CASE 5 PT: 69.86 69.86 69.86 69.86 69.86 Mx: 0.00 0.00 0.00 0.00 0.00 My: 0.00 0.00 0.00 0.00 0.00 T - TS 6.01 5.010.1875 TS 6.01 5.010.1875 TS 4.01 4.010.5000 WGT: 13.25 13.25 21.63 LOAD CASE: 1 1 1 Fa 18.43 18.43 11.86 fa = 17.96 17.96 10.98 Fbx: 30.36 30.36 30.36 tbx: 0.00 0.00 0.00 Fbyz 27.60 27.60 27.60 ftp 0.00 0.00 0.00 IA : 0.97 0.97 0.93 pe AISC 1.6-la lB : 0.65 0.65 0.40 per AISC 1.6-lb BASE P1 : 0.815 I 11.000 1 12.000 FOR IS 6.01 5.010.1875 0.875 I 11.000 I 12.000 FOR TS 6.01 5.010.1875 1.000 1 10.000 I 10.000 FOR IS 4.01 4.0X0.5000 STRUCTURAL TUBE COLUMN DESIGN (2.0) 97-250 2.15-2.A5, 2.15-2.C5 LDF : 1.00 UNITS : INCH-KIPS U.O.N COL.HTS Lx: 13.00 FTS COL.HTS Ly: 13.00 FTS LOAD FROM FLOOR ABOVE : 63.16KIPS P1D, P11, el: 0.00 0.00 P21), P21, e2 0.00 0.00 P30, P3L, e3 m 0.00 0.00 P411, P41, e4 0.00 0.00 MX: 0.00 INCH-KIPS My: 0.00 INCH-KIPS' Fy = 46.00 KSI Cb :1.00 Kx,Ky 1.00 1.00 C.x,C.y a 1.00 1.00 Ic : 2.50 KSI ALLOW. BEARIN6:1.750 KSI LOAD LOAD LOAD LOAD LOAD CASE I CASE 2 CASE 3 CASE 4 CASE S PT: 63.16 63.16 63.16 63.16 63.16 Mx2 0.00 0.00 0.00 0.00 0.00 My: 0.00 0.00 0.00 0.00 0.00 IS 5.01 5.010.1875 TS 6.01 6.010.1875 TS 4.51 4.510.2500 UGT: 11.97 14.53 13.91 LOAD CASE: 1 1 1 Fa = 18.08 20.36 16.17 fa : 17.94 14.79 15.44 Fbx= 30.36 27.60 30.36 fbxz 0.00 0.00 0.00 Fby: 27.60 27.60 27.60 fby: 0.00 0.00 0.00 IA : 0.99 0.73 0.95 per AISC 1.6-la LB z 0.65 0.54 0.56 per aISC 1.6-lb BASE P1 : 0.8751 11.000 111.000 FOR IS 5.01 5.010.1875 0.750 I 12.000 I 12.000 FOR IS 6.01 6.0X0.1875 0.875 I 10.500 I 10.500 FOR IS 4.51 4.510.2500 0.00 0.00 0.00 0.00 STRUCTURAL TUBE COLUMN DESIGN (2.0) 97-250 2.15-2.0, 2.1-2.C5 11W z 1.00 UNITS = INCH-KIPS U.O.N COL.HTS Lx= 27.50 ITS COI..HTS Ly: 27.50 ITS LOAD FROM FLOOR ABOVE = 13.20KIPS P10, P11, el = 0.00 0.00 P20, P21, e2 = 0.00 0.00 P30, P31, e3 = 0.00 0.00 P411, P41, e4 = 0.00 0.00 Mx: 0.00 INCH-KIPS My- 0.00 INCH-KIPS 0.00 0.00 0.00 0.00 Fy = 46.00 KS! Cb =1.00 Kx,Ky = 1.00 1.00 Cax,Cay = 1.00 1.00 fc = 2.50 KS! ALLOW. BEARIN6:1.750 KS! LOAD LOAD CASE 1 CASE 2 P1= 13.20 13.20 Mx: 0.00 0.00 My: 0.00 0.00 LOAD . LOAD LOAD CASE 3 CASE 4 CASE 5 13.20 13.20 13.20 0.00 0.00 0.00 0.00 0.00 0.00 IS 5.01 5.010.1875 TS 6.01 6.010.1875 TS 4.51 4.510.2500 WBT: 11.97 14.53 13.91 LQADCASE= 1 1 I Fa = 5.21 7.64 .4.06 fa = 3.75 3.09 3.23 Vbx: 27.60 27.60 27.60 fbx= 0.00 0.00 0.00 Iby: 27.60 27.60 27.60 fby 0.00 0.00 0.00 IA = 0.72 0.40 0.80 per AISC 1.6-la lB = 0.14 0.11 0.12 per AISC 1.6-lb BASE P1 z 0.375 1 11.000 I 11.000 FOR TS 5.01 5.010.1875 0.375 I 12.000 I 12.000 FOR IS 6.01 6.010.1875 0.375 I 10.500 I 10.500 FOR TS 4.51 4.510.2500 r_A_ PRIME- STRUCTURAL. TUBE COLUMN DESIGN (2.0' 97-250 2.2-2.A5 TYP. COLUMN _J1- LDF a 1.00 UNITS = INCH-KIPS U.O.N COL.HTS Lxc 13.00 ITS COLHTS Lp 13.00 ITS LOAD FROM FLOOR ABOVE = 34.23K1P5 PID, P11, el = 0.00 0.00 P2111 P21, e2 0.00 0.00 P211, P31, e3 a 0.00 0.00 P01 P41, e4 a 0.00 0.00 Mx: 0.00 INCH-KIPS My= 0.00 INCH-KIPS Fy 2 46.00 KS! Cb i.00 Kx,Ky 1.00 1.00 C.x,C.y 2 1.00 1.00 Ic 2.50 KSI ALLOW. BEARIN6:1.750 KS! LOAD LOAD LOAD LOAD LOAD CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 PTm 34.23 34.23 34.23 34.23 34.23 Mxz 0.00 0.00 0.00 0.00 0.00 My: 0.00 0.00 0.00 0.00 0.00 TS 4.01 4.010.1875 IS 5.01 5.010.1875 TS 3.51 3.510.3125 WST: 9.42 11.97 12.70 LOAD CASE- 1 1 1 Fa = 14.13 18.08 10.05 fa = 12.36 9.72 9.18 Fbxz 30.36 30.36 27.60 fbit 0.00 0.00 0.00 lby 27.60 27.60 27.60 fbya 0.00 0.00 0.00 IA = 0.87 0.54 0.91 pey AISC 1.6-la 18 0.45 0.35 0.33 per AISC 1.6-lb BASE PL = 0.750 I 10.000 I 10.000 FOR IS 4.01 4.010.1875 0.625 I 11.000 I 11.000 FOR IS 5.01 5.010.1875 0.750 I 9.500 I 9.500 FOR IS 3.51 3.510.3125: 0.00 0.00 0.00 0.00 A PRIME Joe tZM* fl. SIRUCTUR4I- DTL _7-p ENGINEERS SIlT: ____ STRUCTURAL TUBE COUNVI DESIGN (2.0) 91-250 2.23-2.C25 LDF z 1.00 UNITS n INCH-KIPS U.O.N COL.HIS Lx: 13.00 FTS COL.HTSLy: 13.00 ITS LOAD FROM FLOOR ABOVE = 12.0IKIPS PLO, P11, el = 0.00 0.00 0.00 P2111 P21, e2 = 0.00 0.00 0.00 P30, P31, e3 z 0.00 0.00 0.00 P4D, P41, e4 = 0.00 0.00 0.00 MX: 0.00 INCH-KIPS Ny: 0.00 INCH-KIPS Fy46.00KSI Cb =1.00 Kx,Ky z 1.00 1.00 Cu,C.y 1.00 1.00 Ic • 2.50 KS! ALLOW. BEAR!N6:1.750 KS! LOAD LOAD LOAD LOAD LOAD CASE I CASE 2 CASE 3 CASE 4 CASE 5 PT: 12.01 12.01 12.01 12.01 12.01 Mx: 0.00 0.00 0.00 0.00 0.00 NY= 0.00 0.00 0.00 0.00 0.00 t€ 7-S 57x.W (-T TS 3.01 3.010.1875 TS 3.51 2.510.2500 IS 2.51 2.510.3125 WBT= 6.87 8.81 10.58 LOAD CASE= 1 1 I F-: 7.84 5.51 7.03 fa = 5.95 4.64 3.86 Fbxm 27.60 27.60 27.60 fbx: 0.00 0.00 0.00 Fby: 27.60 27.60 27.60 fby: 0.00 0.00 0.00 IA = 0.76 0.84 0.55 pe AISC 1.6-la 18 : 0.22 0.17 0.14 pe AISC 1.6-lb BASE P1 = 0.500 I 9.000 I 9.000 FOR IS 3.01 3.00.1875 0.500 I 8.500 I 9.500 FOR IS 3.51 2.5X0.250 0.500 1 8.500 1 8.500 FOR IS 2.51 2.510.3125 I I. IT 1 I I I I I ii I I I I I I I. I I p44'EL /11- &/PEZ TYP. 4NLSt6AJ — &tf Ul I A P)tv PAW &j TYP. im P IQ! ME _____ £4 S1UCTURAL DATE: A bl 2L] ENGiNEERS /5x25z 3 2PLf Sb1 vOf x O3 = 29,I2 pc-f i: C;(j I 2(p;I22x2O4 p 2w of 7 J'2 'rHk p14'vEL. w/-v. c.(z?o.c_. = 15 pfx(x zo bFF WIDTH 4 14 i -€- 69tp. Put out V,,''rti w/5(v)Q io"o.c, ,cep— comp, 0 CIt evt I A PRIME JOB gi-21 I J STRUCTURAL DATE:____ ENGINEERS SHT: - 0 PRE-CAST CONCRETE WALL PANEL DESIGN I Considering P-Delta Effects SEAOC Green Books To iterate P-Delta effects,to cowerqence DESCRIPTION :FULL HIS PANEL BLDG A AT ROOF GIRDER ALLOWABLE STRESSES ------------------ > f'c : Concrete = 3,000 psi > Min Vert Steel X 0.0025 > Fy : Reinf. : 60,000 psi > Min Horiz Steel X: 0.0015 > Phi: : 0.90 Max. Vert. Spacing 16.53 in > Seismic Factor 0.3 Max. Horiz.Spacing 18.00 in > Wind Load 20.6 psf Beta 1 0.85 > Reveal Depth : 0 in 0.6 x Rhow-Balanced: 0.0128 > Reveal to Bottom 16 ft Shall Uniform LL Be Used With Wind/Seismic Lciadirqs ? Y:L N:0 --) 0 DESIGN DATA ' (Enter All Loads UN-FACTORED > Clear Wall Ht. 28 ft > Eccentric Dead Load 1055 plf ) Total Wall Nt. 31 ft . > Eccentric Live Load 0 plf Ht I Thk Ratio : 44.8 > Load Eccentricity 6.75 in (default : t/2 + 3) > Wall Thickness ' 7.5 in >" Rebar Size 'U' : 5 ) Uniform Lateral Load: 0'plf -: >Rebar Spacing 10. in ) X-Dist. to Bottom .--.. 0 'ft X-gist. to Top 7. 0 ft > Depth To Steel .3.375 in. . > Seismic:1, Wind:2 --> 1<-- (defaulI t/2) -. > Rebar Spacung@Reveal: 12 in ) Point Lateral Load = Ci U > Axial Uniform DL = 0 plf > X-Dist. from Bottom = 0 ft > Axial Uniform LL = 0 plf > Seismic:1, Wind2 --> 1< Steel at each face: - 1 0 for single layer, 2 for doible layers) I DESIGN SUMMARY SEISMIC WIND M-n * Phi : MOMENT CAPACITY = 67,011 in-U 67,011 un* Mn * Phi > Hcr O.K. M-u : APPLIED MOMENTS = '62,385 in-U . 37,194 mE OVERSTRESS , . = 0.0 X . 0.0 X HEIGHT I SERVICE DEFLECTION = 208 1,351 1: 1 SERVICE LOAD DEFL.@CONVERGENCE 1.62 in . 0.25 in P/A <0.04 1 f'c, O.K. I DESIGN SUMMARY at REVEAL , -------------Provide additional U 5 8 -61 o.ci M-n * Phi : MOMENT CAPACITY : NA in-U N mE M-u . APPLIED MOMENTS : N.A. in-U 33,720 mE OVERSTRESS : N.A . N'.A . . HEIGHT I SERVICE DEFLECTION : N.A 1,385 I SERVICE LOAD DEFL.@CONVERGENCE = N.A in 0.243 P/A <0.04 * Pc, O.K. I. I • LATERAL LOADINGS ---------------- Wall Wt@ 150 pcf = 93.8 psf Wind Load * 1.275 26.3 psf I Lateral Wall Wt = 28.1 psf Lateral Wt * 1.403 39.4 psf VERTICAL LOADINGS At revel I P-Axial 225 pif 0 pif P-Wall 1,607 0 B 0.04*f1c ' P/A : 20.4 psi 0 psi 120 psi Pu-Axial: 236 pif 0 pif Pu-Wall : 1,687 ° 0 I Pu-Total: 1,923 pif 0 plf ANALYSIS VALUES AT REVEAL I As(eff) = I Pu:tot + (As*Fy) J / Fy 0.342 in2/ft N.A inA2 'a' (As*Fy + Pu) /(.85*f'c*12) 0.671 in 0.000 in 'c': 'a' / .85 0.789 in 0.000 in • Phi : Capacity Reduction Factor 0.9 0.9 Mn: As(eff) * Fy * ( d - a/2 ) 62,384 in-* 0in-t i • Mu : Mn Phi 56,146 in-F 0in-* • E : 57000 * (f cA.5) 3.IE+06 psi 3.1E+06 psi n : 29,000 I Ec 9.29 9.29 Fr : Mod. of Rupture : 5*(., f1cA.5) 273.9 psi • •. 273.9 psi Section Modulus : (Gross) = 112.5 jA3 112.5 jA3 Moment Capacity 8 Cracking :9 * Fr : 30,809 in-s 30,809 in-i of Inertia : (Gross) 421.9 inA4 421.9 in"4 • I Moment Moment of Inertia : (Cracked) : 23.2 inA4 0.0 in4 Unfactored seismic wind Reaction at support level = 482.64 pIt 33.51 If . I Reaction at Base = 389.22 pit 285.09 pit Mmax at 13.86 ft 13.84 ft. from: base PRIME J0, STRUCTURAL oAm_ ENGINEERS PRIME JOB: - I J STRUCfljppj DATE: j& ENGINEERS SHT: PRE-CAST CONCRETE WALL PANEL DESIGN Considering P-Delta Effects SEAOC Green Book' To iterate P-Delta effects to convergence DESCRIPTION :FULL HTS PANEL BLDG A AT ROOF GIRDER ALLOWABLE STRESSES ------------------ > f'c : Concrete = 3,000 psi > Min Vert Steel X : 0.0025 ) Fy : Reinf. = 60,000 psi > Min Horiz Steel X : 0.0015 > Phi: : 0.90 Max. Vert. Spacing 16.53 in > Seismic Factor : 0.3 Max. Horiz.Spacing : 18.00 in ) Wind Load 20.6 psf Beta 1 0.85 > Reveal Depth = 0 in 0,6 x Rhow-Balanced: 0.0128 > Reveal to Bottom 16 ft Shall Uniform LL Be Used With Wind/Seismic Loadings ? Y. N:0 --> 0 DESIGN DATA (Enter All Loads UN-FACTORED > Clear Wall Ht. 28 ft > Eccentric Dead Load : 1055 Of > Total Wall Ht. 31 ft .> Eccentric Live Load 0 plf Ht / Thk Ratio 44.8 > Load Eccentricity 6.75 in (default t/2 + 3: > Wall Thickness : 7.5 in > Rebar Size 'V : 5 > Uniform Lateral Load: 0 plf > Rebar Spacing : 10 in > X-Dist. to Bottom 0 ft ) X-Dist. to lop 0 ft ) Depth To Steel : 3.375 in > Seismic:!, Wind:2 -- 1 <-- (default = t/2) > Rebar Spcing@Reveal: 12 in > Point Lateral Load = 0 Axial Uniform DL : 0 p) f > X-Dist. from Bottom Oft > Axial Uniform LL : 0 plf > Seismic:1, Wind:2 --) I (-- Steel at each face: 1 0 for single layer, 2 for double layers) DESIGN SUMMARY SEISMIC WIND N-n iPhi : MOMENT CAPACITY : 67011 in* 67,011 in Mn * Phi > Ncr O.K. N-u APPLIED MOMENTS 62,385 in-# 37,194 mU OVERSTRESS = 0.0 X 0.0 % HEIGHT / SERVICE DEFLECTION = 208 1,351 SERVICE LOAD DEFL.CONVER6ENCE : 1.62 in 0.25 in P/A <0.04 I f'c, O.K.. DESIGN SUMMARY at REVEAL ------Provide additional # 5 8 -61 o.c N-n * Phi MOMENT CAPACITY NA ml NA mE N-u APPLIED MOMENTS : N.A. ml 33,720 mE I OVERSTRESS = N.A X N.A I 1 HEIGHT I SERVICE DEFLECTION = N.A 1,385 1 SERVICE LOAD DEFL.@CONVERGENCE = N.A in 0.243 1 P/A <0.04 * f'c, O.K. A& PRIME JOE: STRUCTURAL DATE: ENGINEERS SHT: LATERAL LOADINGS Wall Wt fi 150 pcf 93,8 pf Wind Load f 1.275 26.3 psf I Lateral Wall Wt = 28.1 psf Lateral Wt * 1.403 39.4 psf VERTICAL LOADINGS At:revel I P-Axial : 11055 pit 0 pIt P-Wall : .. .1,607 0 0.04*f'c 29.6 psi 0 psi 120 psi I F/A Pu-Axial: 11 108 pit 0 pIt Pu-Wall : 1,687 0 I Pu-Total: 2,795 pIt 0 plf ANALYSIS VALUES AT REVEAL I . As(eff) C Pu:tot + (As*Fy) I / Fy 0.419 iWA2/fi N.A inA2 'a' (AsiFy + Pu) /(.85*f'c*12) (1.821 in 0.000 in • 'c': 'a' / .85 0.966 in 0.000 in 1 Phi.: Capacity Reduction Factor... . 0.9 0.9 Mn = A(etf) *Fy* ( d.-a/2 ) 74,456 in-fl 0 in-fl 1 . Mu. = Mn * Phi. 67,011 in-fl 0 in - fl . E : 57,000 * (f cA.5) 3.1E+06 psi 3.1E+06 psi n : 29,000 / Ec 9.29 9.29 Fr : Mod, of Rupture 5*( ticA.5) 273.9 psi 273.9 psi I Section Modulus : (Gross) 112.5 inA3 112.5 j1A3 Moment Capacity 8 Cracking = S *Fr 30,809 in-fl 30,809 i- Moaent of Inertia : (Gross) . 421.9 inA4 421.9 jA4 Moeent of Inertia : (Cracked) . . = - 26.2 inA4 0.0 jA4 Unfactored seismic wind Reaction at support level = 482.64 pif 353.51 plf I Reaction at Base = 389.22 Of 285.09 pif Mixax at 13.86 ft .13.84 ft. from- base I I I I -I ___ 1 72 O.3 x -7---c)Ox if 7,4 T Vr Y C_ -of PAM-lei,11h 1,6 I jo I y E :ucTuAL DATE: ' E6NEER3 SHT: _____ I . PRE-CAST CONCRETE WALL PANEL DESIGN Considering -------------------------------------------- P-Delta Effects I SEAOC 'Green Books To iterate P-Delta effects to convergence DESCRIPTION PANEL E-2 BET. LINE 1.5 & 1.6 I ALLOWABLE STRESSES ------------------ > f'c : Concrete : 3,000 psi > Min Vert Steel Z : 0.0025 Fy : Reinf. = 60,000 psi > Mix Horiz Steel X : 0.0015 I ) > Phi: : 0.90 Max. Vert. Spacing 16.53 in > Seismic Factor 0.3 Max. Horiz.Spacing 18.00 in Wind Load : 12.4 psf Beta 1 0.85 I ) > Reveal Depth 0.75 in 0.6 x Rhow-Balanced= 0.0128 ) Reveal to Bottom 10.5 ft Shall Uniform LL Be Used With Wind/Seismic Loadings ? :j N:0 --> 0 I DESIGN DATA (Enter All Loads UN-FACTORED Clear Wall Ht. 27 ft > Eccentric Dead Load = 328 p11 I .> > Total Wall Ht. 29 ft > Eccentric Live Load = 0 p11 Ht I Thk Ratio 43.2 > Load Eccentricity = 6.75 in (default = t/2 + 3') > Wall Thickness : 7.5 in ) Rebar Size '*' 5 > Uniform Lateral Load 18.8 p11 > Rebar Spacing 10 in > 1-Dist. to Bottom 7 ft I ) X-Dist. to lop 29 ft > Depth To Steel 4.94 in > Seismic:!, Wind:2 --> 1< -- (default = t/2) Rebar Spacing*Reveal: 10 in > Point Lateral Load 0* I ) > Axial Uniform DL = 1604 plf > X-Dist. from Bottom 0 ft > Axial Uniform,LL 0 pIt > Seismic:!, Wind:2 --> 1 <-- ' Steel at each face: 2 0 for single layer, 2 for double layers) DESIGN SUMMARY SEISMIC WIND M-n * Phi : MOMENT CAPACITY : 90,748 in-# . 90,748 mE I Mn * Phi ) Mcr'O.K. M-u : APPLIED MOMENTS 78,337 in-# 12,725 mE OVERSTRESS HEIGHT / SERVICE DEFLECTION 0.0 < 217 0.0 3,837 X SERVICE LOAD DEFL.@CONVERGENCE : 1.49 in 0.08 in P/A <0.04 * f'c, O.K. I DESIGN SUMMARY at REVEAL I -----------------------Provide additional * 5 8 N.A o.c M-n * Phi MOMENT CAPACITY : N.A in-* N.A mE • Mn * Phi > Ncr O.K. Mn * Pl:i > Ncr O.K. I N-u : APPLIED MOMEU N.A. in-* N.A. mE OVERSTRESS : N.A N.A HEIGHT / SERVICE DEFLECTION : N.A ERR SERVICE LOAD DEFL.@CONVERGENCE : N.A in ERR Deflection Exceed!!! P/A <0.04 * f'c, O.1. I I ---------------------------------------------------------------------- ME 9W i £ STrUCTlJ?AL DATE;EEIGI 7l LATERAL LOADINGS Wall Wt @ 150 pcf 93.8 psi Wind Load * 1.275 15.8 psI Lateral Wall Wt 28.1 psI Lateral Wt * 1.403 39.4 psf VERTICAL LOADINGS At revel ----------------- P-Axial : 1,942 plf 1,942 p11 P-Wall : 1,426 U 1,734 0.04*flc P/A 37.4 psi 45.4 psi 120 psi Pu-Axial: 2,039 p11 2,039 p11 Pu-Wall 1,497 1,821 Pu-Total: 3,536 p11 3,860 p11 ANALYSIS VALUES AT REVEAL As(eff) = ( Pu:tot + (As*Fy) ] / Fy 0.431 inA2/ft N.A inA2 'a' (As*Fy + Pu) I(.85*f1 c*12) 0.845 in N.A in 'C': 'a' / .85 0.994 in N.A in Phi : Capacity Reduction, Factor 0.9 0.9 Mn = As(eff) * Fy * ( d- a/2 I : 100,831 in-i N.A in-i Mu = Mn * Phi 90,748 in-i N.A in-# E : 57,000 * (fcA.5) 3.IE+06 psi 3.IE+06 psi n : 29,000 / Ec 9.29 9.29 Fr : Mod. of Rupture : 5*( f1 c.5) 273.9 psi 273.9 psi Section Modulus : (Gross) 112.5 in-3 91.1 in"3 Moment Capacity 8 Cracking = S * Fr 30,809 in-i N.A in# Moment of Inertia : (Gross) 421.9 inA4 N.A i nA4 Moment of Inertia : (Cracked) 66.3 in'4 N.A in'4 Unfactored seismic wind Reaction at support level = 713.75 p11 193.12 plf Reaction at Base = 515.47 plf 166.48 p11 Mmax at 13.79 ft 13.43 ft. Inc base A PRIME Jo8frJ-b STRUC1UR.A1. DAlE: 1J9q ENGINEERS SM fO ( Ack)(& T - -- A ?Sf AAL Lk' L \3 'I, % 507 vu = 1Oi 1L 'LF ?1 - .F. 3.7F p • AAL- ?LF I.T LF c-i?. T?rr T-flc VIEL- .i -= 7? t)cL. Lek 1 ptF x x • • Cfr(?. OkT j vle- to I. A PP'V JOB: - JCTUJ.J DATE: A E1'G1NEERS SHT if, PRE-CAST CONCRETE WALL PANEL DESIGN -------------------------------------------- Consideri P-Delta Effects SEAOC "Green Book" To iterate P-Delta effects to con:vergence DESCRIPTION :PANEL E-3 PIER A ALLOWABLE STRESSES ------------------ ) Pc Concrete = 3,000 psi > Min Vert Steel X : 0.0025 Fy : Reinf. = 60,000 psi ) Min Horiz Steel 7 0,0015 > Phi: : 0.90 Max. Vert. Spacing 16.53 in > Seismic Factor 0.3 Max. Huriz.Spacinq 18.00 in > Wind Load 12.4 psf Beta 1 0.85 > Reveal Depth = 0.75 in 0.6,x Rhoj-Balanced= 0 0128 > Reveal to Bottom 13.5 ft Shall Uniform LL Be Used With Wind/Seismic Loadings ? Y1 N:0 DESIGN DATA (Enter All Loads UN-FACTORED > Clear Wall Nt. 27 ft ) Eccentric Dead Load = 338 pif > Total Wall Ht. 29 ft > Eccentric Live Load : 0 plf, Mt I Thk Ratio 43.2 > Load Eccentricity = 6.75 in (default = t/2 + 3D) > Wail Thickness 7.5 in > Rebar Size '*' 5 >_Uriform Lateral Load: 42.2 pif > Rebar Spacing Sir > X-Dist. to Bottom : 14 ft > X-Dist. to Top : 2% ft > Depth To Steel Sin Seismic:!, Wind:2 (-- (default = t/2) ) Rebar Spacing@Reveal: 0 in > Point Lateral Load = 0 * > Axial Uniform DL : 2616 Of > X-Dist. from Bottom : Oft > Axial Uniform LL = 0 pIt > Seismic=!, Wind:2 --> 1 Steel at each face: 2 (1 for single layer, 2 for douIe layers) I DESIGN SUMMARY SEISMIC WIND I Mn* Phi : MOMENT CAPACITY 112,291 in-# 112,291 mE Mn * Phi ) Ncr O.K. N-u : APPLIED MOMENTS : 88,187 iñ* :8,985 ifl#I OVERSTRESS 0.0 h 0.0 HEIGHT / SERVICE DEFLECTION 200 2,58% SERVICE LOAD DEFL.BCONVERGENCE 1.62 in 0.13 in I P/A 0,04 * f'c, O.K. I DESIGN SUMMARY at REVEAL -----------Provide additional * 5 8 N.A o.cl N-n * Phi : MOMENT CAPACITY N,A in* N.A mE Mn *Phi )Mcr O;K, Mn*Phi :-Mcr O.K. N-u : APPLIED MOMENTS : N, A. in-# NA. ;I n; OVERSTRESS N.A :1 N.A X HEIGHT I SERVICE DEFLECTION N.A ERR SERVICE LOAD DEFL.@CONVERGENCE 2.007 in ERR Deflection Exceed! ---------------------------------------------------------------------- P/A <0.04 * Pc, O.K. LI I LATERAL LOADIN3S Wall Wt @150 pcf 93,8 psf Wind Load * 1.275 15.8 psf Lateral Wall Nt i8,1 st Lateral Wt * 1,403 39.4 psf VERTICAL LOADINGS At revel P-Axial 21954 pit 2,954 pit P-Wall 1,251 ' 1,453 P/A 46.7 psi 54.4 psi 120 ps Pu-Axial: 3,102 pit 3,102 pf Pu-Wall 1,313 1,526 U Pu-Totah 4,415 pIt 4,627 pif ANALYSIS VALUES Al REVEAL As(eff) I Pu:tot + (As*Fy) ] I Fy 0.539 inA2/ft N.A in2 'a' (As*Fy + Pu) /(.850'012) 1.056 in N.A in 'c' 'a' / .85 1,242 in N.A in Phi Capacity Reduction Factor 0.9 0.9 Mn = As(eff) * Fy * (d - a/2 ) 124,768 in-ft N.A in-ft Mu = Mr. * Phi 112,291 in-ft N.A in-ft E 57,000 * (fcA.5) 3.1E+06 psi .1E+06 psi n 29,000 / Ec 9.29 9.29 Fr Mod, of Rupture : 5*( f!c A.5) 273,3 psi 273.9 psi. Section Modulus (Gross) 112.5 111A3 91,1 ir3 Moment Capacity 8 cracking S * Fr 30,309 in-ft N.A in-ft Moment of Inertia (Gross) 421.9 in4 N,A inA4 Moment of Inertia (Cracked) 78.3 irr4 N.A jA4 Urfactored seismic wind Reaction at support level = 942,07 pIt 193.12 Of Reaction at 3a5e = 506,54 Of 166.48 pit Meax at 15.66 ft 13.43 ft. from base I Ic TA PR'ME SffiUC11JAL DATE: ENGINEERS SHI: PRE-CAST CONCRETE WALL PANEL DESIGN -------------------------------------------- Considernq P-Delta Effects SEAOC "Green Book" To iterate P-Delta effects to coirvergence DESCRIPTION :PANEL E-3 PIERS ALLOWABLE STRESSES ------------------ >1': Con':rete = 3,000 psi > Min Vert Steel X 0.0025 > Fy Reinf. = 50,000 psi Mm Horiz Steel 0.0015 > Phi 0.30 Max. Vert, Sparing 16,53 in > Seismic Factor 0,3 Max, Horiz.Spacinq 18.00 in > Wind Load 12.4 psf Beta 1 0.85 > Reveal Depth : 0.75 in 0.6 x Rhow-Balanced: 0.0128 > Reveal to Bottom 13.5 ft Shall Uniform LL Be Used With Wind/Seismic Loadings ? Y1 N:0 --> 0 DESIGN DATA (Enter All Load; UN-FACTORED Clear Wall Nt. 27 ft > Eccentric Dead Load = 338 p11 > Total Wall Nt. = 29 ft Eccentric Live Load = 0 p11 Ht / Thk Ratio 43.2 > Load Eccentricity 6.75 in (default t12 + 3") > Wall Thickness 7.5 in > Rebar Size 'U 5 > Uniform Lateral Load: 52.7 pit > Rebar Spacing 6 in > X-Dist. to Bottom 10.5 ft > X - Dist. to Top 29 ft I > Depth T' S1 5 in > Seismic:1, Wind2 --> 1< -- (default t/2) > Rebar Spazinq@Reveai= 0 in ) Point Lateral Load : 0 Ii YAxial Uniform DL 3517 Of > X-Dist. from Bottom: Oft > Axial Uniform LL 0 pit Seismc1, Wind:2 (-- 5tee1 at each face: 2 (1 for single layer, 2 for dorbie layers) DESIGN SUMMARY SEISMIC WIND -------------- N-n * Phi MOMENT CAPACITY : 144,013 in-# :44,073 mE Mn * Phi Mcr O.K. M-L, APPLIED MOMENTS 120,202 in-v 15,533 mE OVERSTRESS 0.0 0.0 HEIGHT / SERVICE DEFLECTION 143 3,155 SERVICE LOAD DEFL.@CDNVERSENCE 2.27 in 0,10 in P/A <0.04 * f'c, OK. DESIGN SUMMARY at REVEAL -----------Provide additional * 5 8 N.A o.:! M-n * Phi MOMENT CAPACITY N.A in-# N.A mE Mn * Ph >M':r O.K. Mn * Phi > 11cr U.K. N-u APPLIED MOMENTS N.A, in - # N-. A. mE OVERSTRESS N.A X hA HEIGHT / SERVICE DEFLECTION = N.A ERR SERVICE LOAD DEFL.@CONVERIIENCE 3,868 in ERR Deflection Exceed!!! P/A <0,04 * Pc, O.K. ----------------------------------------------------------------------- r PM E R It& SiTUCT1JRAL ENGINEERS sii LATERAL LOADINGS ---------------- Wall Wt @ 150 pci = 93.8 psf Wind Load * 1.275 15.8 psf Lateral Wall Wt = 28.1 psf Lateral Wt * 1.403 39.4 psf VERTICAL LOADINGS At revel P-Axial : 3,855 pit 3,855 pIt P-Wail : 1,327 1453 0.0401c P/A 57.6 psi 65.5 psi 120 psi Pu-Axial: 4,048 pit 4,048 pit Pu-Wall : 1,393 1,525 Pu-Total: 51 441 pit 5,574 p11 ANALYSIS VALUES AT REVEAL As(eff) = ( Pu:tot + (As*Fy) ) / Fy 0.711 inA2/ft N.A inA2 'a' (As*Fy + Pu) /(,35*f'c*12) 1.393 in N.A in 'a' / .85 : 1,639 in N.A in Phi : Capacity Reduction Factor 0.9 0.9 Mn: As(eff) *Fy* ( d -a/2) 160,081 in-# N.A in-# Mu Mn * Phi 144,073 in# N.A in-# 57,000 * (f'c.5) : 3.1E+06 psi .lE+06 psi r : 29,000 / Ec : 9.29 9.29 Fr : Mod, of Rupture : 5*( f'c.5) 273.9 psi 273.9 psi Section Modulus : (Gross) 112.5 jA3 91.1 in3 Moment Ce:.y 4t ng : 5 * Fr 30,809 in-i N.A in-v Moment of Inertia : (Gross) : 421.9 inA4 N.A inA4 Moment of inertia : (Cracked) 92.2 inA4 N.A in4 Urfactored seismic wind Reaction at support level : 1151,1 plf 193.12 PH Reaction at Base : 639.39 Of 166,48 Of Mmax at 14.85 ft 13,43 ft. from base A PPME JC3 s1TucTu?;J o.A:,; ENGINEERS SlIT PRE-CAST CONCRETE WALL PANEL DESIGN, -------------------------------------------- Uonsderinq PDelta Effects. SEAOC "Green Book" To iterate P-Delta effects't':' corvernence DESCRIPTION :PANEL E-3 PIER C ALLOWABLE STRESSES ------------------ > t'c : Concrete 3,000 psi > Hir, Vert Steel Z 0,0025 Fy Reint. 60,000 psi > MinHoriz Steel X : 0.0015 > Phi: : 0.90 Max. Vert. St aci it.53 in > Seismic Factor U.S Max, Horiz.Spac:rig 1.0 111 > Wind Load 12.4 psf Beta I 0.85 > Reveal Depth 0.75 in 0.6 x Rhow-Balarced: 0.0128 > Reveal to Bottom 13.5 ft Shall Uniform LL Be Used With Wind/Seismic Loadings ? Y:1 N0 --> 0 DESIGN DATA (Enter All Loads UN-FACTORED > Clear Wall Nt. 27 ft > Eccentric Dead Load 338 pIt ) Total Wall Nt. 29 ft > Eccentric Live Load 0 pit Ht I Thk Ratio = 43.2 Load Eccentricity 6.75 in (default = t/2 + 3") 1 Wall Thickness = 7.5 in ) Rebar Size '' : 5 > Uniform Lateral Load:. 3;25 pl.f > Rebar Spacing 10 in > X-Dist. to Bottom 7 ft X-Dist. to Top 29 ft : Depth To Steel 3.75 in > Sei;mic:i, Windz2 --> (default = t/2) > Rebar SpacingReveal: 10 in Point Lateral Load = 0 > Axial Uniform DL = 277 Of > X-Dist. from Bottom = 0 ft > Axial Uniform LL = 0 pit Seismic1, Wind:2 --: Steel at each face: 1 (1 for ---------------------------------------------------------------------- single layer, 2 for dobie layer;) DESIGN SUMMARY' SEISMIC WIND N-n * Phi : MOMENT CAPACITY 73,803 In-a 73.803 in1 Mn * Phi > Ncr O.K. N-u : APPLIED MOMENTS 53,816 in-# 17,578 mE OVERSTRESS HEIGHT / SERVICE DEFLECTION 383. 2,792 SERVICE LOAD DEFL.SCONVERSENCE 0,84 in 0.12 in P/A <0.04 * Pc, O.K. DESIGN SUMMARY at REVEAL ----------Provide additional # 5 8 0 o.c N-n * Phi MOMENT CAPACITY 57,306 in-4 57,31,16 :nE Mn * Phi > Ncr U.K. . Mn * Phi Mcr U.K. APPLED MOMENTS : 57,000 in-i 17,583 in#1 OVERSTRESS N.A X 0.0 HEIGHT SERVICE DEFLECTION 191 2,024 SERVICE LOAD DEFL.GCONVERI3ENCE 1.732 in 0. 160 A. 0.04 * Pc, 11, :V PR'ME - 1A SmUCTURAL DATE; ENG1NEERS SHT: LATERAL LOADINGS Wall Wt 8150 pcI = 93.8 psf Wind Load * 1.275 15.8 psf Lateral Wall Wt = 28,1 psf Lateral Wt * 1,403 39.4 psf VERTICAL LOADINGS At revel P-Axial : 615 pIt 615 pit P-Wall 1,440 U 1,453 0.04*f'c P/A 22.8 psi 25.5 psi 120 psi Pu-Axial; 646 Of 646 pit Pu-Wall : 1 1512 1,526 U Pu-Total; 2,158 pit 2,172 p1t ANALYSIS VALUES AT REVEAL As(eft) = ( Pu:tot + (AsfFy) 31 Fy 0.408 inA2/tt 0.408 inA2 'a' (As*Fy + Pu) 1(.85*f1 c*12) 0,800 in 0.800 in 'C': 'a' / .85 0,941 in 0,942 in Phi : Capacity Reduction Factor 0.9 0.9 Mn = As(eff) * Fy * ( d - a/2 ) 82,003 in-8 63,673 in-# Mu = Mn * Phi 73,803 in-# 57,306 in-i E : 57,000 (f'5) = 3.IE#06 psi .1E+06 psi n : 29,000 I Ec 9.29 9.29 Fr Mod. of Rupture: 5*( f cA.5) 273.9 psi 273.9 psi Section Modulus : (Gross) 112.5 inA3 91.1 in3 Moment Capacity 8 Cracking : S * Fr 30,809 in-# 24,956 in-# Moment of Inertia : (Gross) 421.9 jA4 307.5 i nA4 Moment of Inertia : (Cracked) 33.2 jA4 19.4 jA4 Unfactored seismic wind Reaction at support level = 485.68 pit 192.12 pit Reaction at Base = 401.43 plf 166.48 Of Mmax at 13.63 ft 13.43 ft. from Dase LDr 4 S'-A 10e E- e 11\E ) Ptre SUME TkK OF TT')€L Is A H = F LF 4) NI = qe '7&'1LF PA VIE-4- 11PFx / g?g Cc-t?. ouTt.kT 7'4 Tf)S ?7)OEL v)@. 1• ?L- c LOAM- x 7G7 IL-F I i IA JCTUAL L;.J: '1Ji1 ENG1NEE1S SHT PRE-CAST CONCRETE WALL PANEL DESIGN, -------------------------------------------- Considering P-Delta Effects SEAOC 'Green Book' To iterate P-Delta effects to convergence DESCRIPTION :PANEL E-6 B LINE 1.6 PIERA -BIDGI I ALLOWABLE STRESSES ------------------ > f'c : Concrete = 3,000 psi > "in Vert Steel X : 0.0025 I > Fy : Reinf. = 60,000 psi > Min Horiz Steel X 0.0015 > Phi: : 0.90 Max. Vert. Spacing 16.53 in > Seismic Factor = 0.3 Max. Horiz.Spacing 18.00 in Wind Load = 12.4 psf Beta 1 0.85 I > > Reveal Depth 0.75 in 0.6 x Rhov-8alanced= 0.0128 > Reveal to Bottom = 13.5 ft I . Shall Uniform LL Be Used With Wind/Seismic Loadings ? Y:1 N=0 --> I DESIGN DATA ( Enter All Loads UN-FACTORED ----------- ) Clear Wall Ht. = 27 ft > Eccentric Dead Load = 338 plf > Total Wall Nt. . 29 ft > Eccentric live load = 0 plf Ht I Thk Ratio = 43.2 . > Load Eccentricity = 6.75 in (default = t/2 + 3') I > Wall Thickness 7.5 in > Rebar Size 'I' : 5 > Uniform Lateral Loac. 14.9 plf I > Rebar Spacing = 10 in > X-Dist. to Bottom > X-Dist. to Top 0 . 27 ft ft 3 Depth To Steel 4.94 in > Seis.ic:1, Wind2 --> 1< -- (default = t/2) Rebar SpacingBReveal= 10 in > Point Lateral Load 0 5 I > > Axial Uniform DL = 1838 plf > X-Dist. from Bottom 0 ft > Axial Uniform LL z 0 plf > Seis.icl, Wind:2 --3 1 <-- 1 for single layer, 2 for double -------- layers) I 1 DESIGN SUMMARY SEISMIC WIND I . I H-n I Phi : MOMENT CAPACITY = 90,656 in* 90,656 intl Mn * Phi > Mcr O.K. N-u : APPLIED MOMENTS 76,901 in-I 2,330 ins: I 1 OVERSTRESS = 0.0 1 0.0 I HEI6HT I SERVICE DEFLECTION = 228 24,118 I SERVICE LOAD DEFL.BCONVERGENCE 1.42 in 0.01 in 1 * . P/A <0.04 * f'c, O.K. • I DESIGN SUMMARY at REVEAL -----------------------Provide additional * 5 B N.A o.c H-n * Phi : MOMENT CAPACITY = N.A in-I N.A in*! I : Mn * Phi > Mcr O.K. Mn * Phi > Ncr O.K. N-u : APPLIED MOMENTS = N.A. in-S N.A. intl 1 OVERSTRESS = N.A Z N.A X HEIGHT / SERVICE DEFLECTION = N.A ERR F l I SERVICE LOAD DEFI.BCONVER6ENCE N.A in ERR Deflection Exceed!!! P/A <0.04 * f'c, O.K. I:-------------------------------------------------------- • [IA PR!ME Jo :-2 I STRUC11JRAL DATE: • L ENGINEERS SHT: LATERAL LOADINGS ---------------- Wall Wt I 150 pcI = 93.8 psf Wind Load * 1.275 15.8 psf Lateral Wall Wt = 28.1 psf Lateral Wt * 1.403 = 39.4 psf VERTICAL LOADINGS At revel P-Axial : 2,176 plf 2,176 pH P-Wall : 1,458 ' 1,453 ' 0.04*f1c P/A 40.4 psi 44.8 psi 120 psi Pu-Axial: 2,285 plf 2,285 pit Pu-Wall : 1,531 • 1,526 Pu-Total: 3,815 plf 3,811 plf ANALYSIS VALUES AT REVEAL As(etf) = ( Pu:tot + (As*Fy) I / Fy 0.436 in'21t; N.A inA2 'a' z (As*Fy + Pu) I(.85*f'c*12) = 0.854 in N.A in 'C': 'a' I .85 = 1.005 in N.A in 'Phi : Capacity Reduction Factor = 0.9 0.9 Mn : As(eff) * Fy * C d - a/2 = 100,729 in-I N.A in-I Muc Mn * Phi 90,656 in-I N.A in-I E : 57,000 * (flcA.5) = 3.IE+06 psi 3.IE+06 psi n : 29,000 I Ec = 9.29 9.29 Fr : Mod. of Rupture : 5*( f?cA.5) = 273.9 psi 273.9 psi Section Modulus : (Gross) = 112.5 in*3 91.1 inA3 Moment Capacity I Cracking : s * Fr = 30,809 in-I N.A in-I Moment of Inertia : (Gross) = 421.9 jA4 N.A in'4 Moment of Inertia : (Cracked) 66.7 jA4 N.A jA4 Unfactored seismic wind Reaction at support level = 639.17 plf 193.12 p11 • Reaction at Base :578.75 plf 166.48 plf Hoax at 13.45 ft 13.43 It. frua base 13 r PR!ME J08: 01M I £ STRUCTURAL DATE: La ENGINEERS SHT: PRE-CAST CONCRETE WALL PANEL DESIGN -------------------------------------------- Considering P-Delta Effects SEAOC 'Green Book' To iterate P-Delta effects to convergence DESCRIPTION :PANEL E-6 B LINE 1.6 PIERS -BLDG 1 ALLOWABLE STRESSES ------------------ > Pc : Concrete = 3,000 psi > Min Vert Steel Z 0.0025 > Fy : Reinl. 60,000 psi > kin Horiz Steel X: 0.0015 > Phi: : 0.90 Max. Vert. Spacing 16.53 in > Seismic Factor 0.3 Max. Horiz.Spacing : 18.00 in > Wind Load = 12.4 psf Beta 1 = 0.85 > Reveal Depth = 0.75 in 0.6 x Rhow-Balanced: 0.0128 > Reveal to Bottom 13.5 ft Shall Uniform LL Be Used With Wind/Seismic Loadings ? Yrl N0 --> DESIGN DATA (Enter All loads UN-FACTORED > Clear Wall Ht. = 27 ft > Eccentric Dead Load = 338 pit > Total Wall Ht. = 29 ft > Eccentric Live Load = 0 plf Ht I Thk Ratio = 43.2 > Load Eccentricity = 6.75 in (default = t/2 + 31) > Wall Thickness = 7.5 in > Rebar Size 'I' : 5 > Uniform Lateral Loac= 29.8 plf > Rebar Spacing 7 in > X-Dist. to Bottom = Oft > X-Dist. to Top Z 27 ft > Depth To Steel = 4.94 in > Seis.ic=1, Wind=2 <-- (default = t/2) > Rebar SpacingtReveal= 1 in > Point Lateral Load = 0 1 > Axial Uniform DL = 3676 plf > X-Dist. from Bottom 0 ft > Axial Uniform II = 0 -- plf > Seismic:I, Wind:2 --) 1 <-- Steel at each face= 2 Q for single layer, 2 for 6ouble lay~rs) DESIGN SUMMARY SEISMIC WIND It N-n * Phi : MOMENT CAPACITY 124,119 in-I 124,119 intl Mn * Phi ) Her O.K. N-u : APPLIED MOMENTS = 110,161 in-I 23,942 ins: OVERSTRESS = Afl t (LA ? I HEIGHT / SERVICE DEFLECTION 150 2,107 1 SERVICE LOAD DEFL.BCONVERGENCE = 2.15 in 0.15 in P/A < 0.04 * f'c, O.K. DESIGN SUMMARY at REVEAL It --------Provide additional * 5 5 N.A o.cl I N-n * Phi : MOMENT CAPACITY = N.A in-I N.A intl Mn * Phi > Ncr O.K. Mn * PM > Ncr O.K. N-u APPLIED MOMENTS = N.A in-I P1A ml! 1 OVERSTRESS = N.A X N.A Z 1 HEIGHT I SERVICE DEFLECTION = N.A ERR to I SERVICE LOAD DEFL.@CONVERGENCE N.A in ERR Deflection Exeppd!!! P/A ( (L04 * f's- flV I ---------------------------------------------------------- fl& PRME JOB 1-191 I STRUCTURAL DATE: _____ ENGNEERS SHT ____ LATERAL LOADINGS Wall Mt I 150 pcf = 93.8 psf Wind Load * 1.275 15.8 psf Lateral Wall Mt = 28.1 psf Lateral Wt * 1.403 39.4 psf VERTICAL LOADINGS At revel P-Axial : 4,014 pH 4,014 plf P-Wall : 1,456 • 1,453 ' 0.04*f'c P/A = 60.8 psi 67.5 psi 120 psi Pu-Axial: 4,215 p11 4,215 p11 Pu-Wall : 1,529 ' 1,526 Pu-Total: 5,744 plf 5,740 p11 ANALYSIS VALUES AT REVEAL As(eff) = C Pu:tot + (As*Fy) I / Fy 0.627 inA2/f; N.A inA2 'a' : (AsiFy + Pu) I(.85*f'c*12) = 1.230 in N.A in 'C': 'a' / .85 : 1.447 in N.A in Phi : Capacity Reduction Factor 0.9 0.9 Mn As(eff) * Fy * ( d - a/2 ) = 137,910 in-I N.A in-I Mu = Mn * Phi 124,119 in-I N.A in-I E : 57,000 * (fcA.5) = 3.1E+06 psi 3.IE+06 psi n : 29,000 / Ec = 9.29 9.29 Fr : Nod. of Rupture : 5*( ftcA.5) 273.9 psi 273.9 psi Section Modulus : (Gross) 112.5 jA3 91.1 inA3 Moment Capacity I Cracking = S * Fr 30,809 in-I N.A in-I Moment of Inertia : (Gross) 421.9 in'4 N.A inA4 Moment of Inertia : (Cracked) = 83.2 in'4 N.A inA4 Unfactored seismic wind. Reaction at support level = 840.32 p11 193.12 plf Reaction at Base = 779.90 p11 166.48 plf Hoax at 13.46 ft 13.43 ft. from base I Y1€V' r A PRIME JOB ____ I STRUCTURAL DATE: LEINEE SHT: ____ T/\ Li -A,~ Oe ~- C-) C e L H6) T4 F, vkweL k)j ?L1 --)) (---) A6t CAC,' - IOJ1 EL-F ,c PL- LOAD 1 ?. c 1' ?L-- 00P-?. i II 9 ALf 74' T FULL W1 . L ,ç59,?LF L I I I I sAc'4E A' ¶i€ I I I I / '. aum LL_ ?AL eI-xi r - 1 LAP 33. 1C ?LF ?iF CM . OUT UT I U') L_ to 2- 1 t&'v I ?L AE - I ?)eL Lo . o I EL 3, I.. IAL U 1 CgM. (5tTT - 7 Tç ¶',JeL / - ( I I I LI PP'ME JOB: -PANEL 5-6 8 LINE I.E 09/17197 EUCT1JRAL Alan DATE: 97-250 EGNEERS SHT 8Us1p12v1s0b4148T8EAM ANALYSIS PRO6RAM51p9v1s0b418T (6.43)8Us0pl0.00hI2v0s0b3T SPAN LENGTH = 28.00 ft LEFT CANT = 0.00 ft RIGHT CANT = 3.00 ft UNIFORM LOADS (k/ft & ft) wd vi XI - 12 0.056 0.000 0.00 3.00 0.056 0.000 9.00 16.00 0.056 0.000 22.00 31.00 REACTIONS (k) LOAD LEFT RIGHT Dead 0.404 0.661 Live 0.000 0.000 Total 0.404 0.661 MAXIMUM FORCES V max = 0.493 k 8 28.00-ft Vd max = 0.493 k 8 28.00-ft M max = 2.861 kft 8 13.20 ft Md max = 2.861 kft 8 13.20 ft H min = -0.252 kft 8 28.00 ft Md mm.: -0.252 kft 8 28.00 ft M 0 kft @ 27.47 ft DEFLECTIONS (El = kinA2) LOAD. Defi (in) I (ft) Total 378797/El 13.86 -124865/El R.C. Live 0/El 0.00 0/El R.C. Dead 378750/El midspan -124865/El R.C. Main Span Cant.(local) TOTAL Defi El El L / 180 202927 2449 L / 240 270569 3266 L / 360 405854 4899 PP'ME JOB. - ii r- PRE-CAST CONCRETE WALL PANEL DESIGN -------------------------------------------- Considering P-Delta Effects SEAOC 'Green Books To iterate P-Delta effects to convergence DESCRIPTION :PANEL S-6 B LINE i.E PIER B (FULL HT. PANEL) ALLOWABLE STRESSES ------------------ > f'c : Concrete = 3,000 psi > Min Vert Steel 7.: 0.0025 > Fy : Reinf. = 60,000 psi > Min Horiz Steel 7. : 0.0015 > Phi: : 0.90 Max, Vert. Spacing 15.50 in ) Seismic Factor = 0.3 Max. Horiz.Spacing 18.00'in > Wind Load 12.4 psf Beta 1 0.85 > Reveal Depth 0.75 in 0.6 x Rhow-Balanced: 0.0128 > Reveal to Bottom 14 ft Shall Uniform LL Be Used With Wind/Seismic Loadings ? y:1 N:0 --> 0 DESIGN DATA (Enter All Loads UN-FACTORED > Clear Wall Ht. 28 ft > Eccentric Dead Load = 52 plf ) Total Wall Ht. : 31 ft >Eccentric Live Load = 0 plf Ht I Thk Ratio 42.0 > Load Eccentricity = 7 in (default = t/2 + 3) ) Wall Thickness 8 in > Rebar Size 'V : 5 > Uniform Lateral Load: 29.9 plf > Rebar Spacing 7 in > X-Dist. to Bottom Oft > X-Dist. to Top 28 ft ) Depth To Steel : 5.44 in > Seismic=1, Wind:2 -_> 1< -- (default : >Rebar Spacing@Reveal: 7 in > Point Lateral Load = 0 B > Axial Uniform DL = 6554 plf > X-Dist. from Bottom = 0 ft > Axial Uniform LL = 0 plf > Seismic=1, Wind=2 --> I (-- Steel at each face: 2 (1 for single layer, 2 for dotble layers) DESIGN SUMMARY SEISMIC WIND 1-n Phi : MOMENT CAPACITY = 137,068 in# 07,068 in# Mn * Phi > Ncr O.K. M-u : APPLIED MOMENTS = 127,836 in-B 27,198 inBi OVERSTRESS = 0.0 7. 0.0 7. HEIGHT / SERVICE DEFLECTION : 166 2,151 SERVICE LOAD DEFL.@CONVERGENCE : 2.03 in 0.16 in P/A 0.04 * f'c, O.K. DESIGN SUMMARY at REVEAL -----------Provide additional B 5 8 N.A o.c M-n * Phi : MOMENT CAPACITY : N.A in-B N.A mE Mn *Phi >Mcr O.K. Mn *P}j )Mcr O.K. M-u APPLIED MOMENTS : N.A. in-B LA. mE OVERSTRESS = N.A 7. N.A HEIGHT / SERVICE DEFLECTION = N.A ERR I SERVICE LOAD DEFL.@CONVERGENCE : N.A in ERR Deflection Exceed!!! P/A <0.04 * f'c, O.K. TA PP'ME I I .C11JRAL DATE: LOML EG1NEERS Sl'ff LATERAL LOADINGS Wall Wt @150 pcI = 100.0 psf Wind Load a 1.275 15.8 psf Lateral Wall Wt = 30.0 psf Lateral Wt a 1,403 42,1 psf VERTICAL LOADINGS At revel P-Axial 6,606. p11 6,606 p11 P-Wall : 1,708 1,700 0,0401c P/A 86.6 psi 95.5 psi 120 psi Pu-Axial: 6,936 plf 6,936 p11 Pu-Wall : 1,793 1,785 U Pu-Total: 8,730 p11 8,721 p11 ANALYSIS VALUES AT REVEAL As(eff) ( Pu:tot + (AsaFy) I I Fy 0.677 inA2/ft N.A i nA2 'a' (AsaFy + Pu) I(.85*f'c*12) 1.327 in N.A in 'C': 'a' / .85 1.562 in N.A in Phi : Capacity Reduction Factor 0.9 0.9 Mn As(eff) a Fy a ( d - a/2 ) 1521 297 in-# N.A in-# Mu = Mn a Phi 137,068 in-@ N.A in* E : 57,000 * (f'c'.5) 3.!E+06 psi .1E+06 psi n : 29,000 / Ec 9.29 9.29 Fr : Mod. of Rupture 5*( fJA,5) 273.9 psi '273,9 psi Section Modulus (Gross) 128.0 i nA3 105.1 in Moment Capacity B Cracking = S a Fr 35,054 in-@ N.A in-@ Moment of Inertia (Gross) : 512.0 inA4 N.A jA4 Moment of Inertia (Cracked) 109.8 i nA4 N.A in4 Unfactored seismic wind Reaction at support level = 933.42 p11 212.79 p11 Reaction at Base = 833.77 p11 171.61 p11 Mmnax at 13.92 It 13.84 It. from )ase JA E: PR'ME JOB: GUCT1JRAL DATE: NEE(S SF{T : jI ] PRE-CAST CONCRETE WALL PANEL DESIGN -------------------------------------------- Considering P-Delta Effects SEAOC Green Book To iterate P-Delta effects to conVergence DESCRIPTION :PANEL S-6 B LINE i.E PIER C (ABOVE MEZL) ALLOWABLE STRESSES ------------- > f'c : Concrete = 3,000 psi ) Min Vert Steel Y. 0.0025 > Fy : Reinf. = 60,000 psi > Min Horiz Steel X : .0015 > Phi: : 0.30 Max, Vert. Spacing 16.53 in > Seismic Factor, 0.3 Max. Horiz.Spacing 18.00 in > Wind Load 12.4 psf Beta 1 0.85 > Reveal Depth = 0.75 in 0.6 x Rhow-Balanced= ).028 > Reveal to Bottom 7.5 ft Shall Uniform LL Be Used With Wind/Seismic Lrbadings ? Y:1 40 --> 0 DESIGN DATA (Enter All Loads UN-FACTORED > Clear Wall Ht. 15 ft > Eccentric Dead Load = 52 pIt > Total Wall Nt. 18 ft > Eccentric Live Load = 0 pIt Ht I Thk Ratio = 24.0 ) Load Eccentricity 6.75 in (default = t/2 + 3) > Wall Thickness 7.5 in > Rebar Size 'P : 5 > Uniform Lateral Load= 21,8 plf .> Rebar Spacing = 16 in > X-Dist. to Bottom 0 ft > X-Dist. to Top 15 ft > Depth To Steel = 3.75 in > Seismic=1, Wind:2 --> 1 <-- (default = t12) > Rebar Spacing@Reveal= 16 in ) Point Lateral Load 0 B > Axial Uniform DL = 1792 pIt ) X-Dist. from Bottom Oft > Axial Uniform LL = 0 pIt > Seismici, Wind:2 --> I <-- Steel at each face= 1 (1 for single layer, 2 for double layers) ------------------------------------------------------------------------ DESIGN SUMMARY SEISMIC JIND N-n m Phi : MOMENT CAPACITY 52,942 in-B 5,942 inBI Mn * Phi ) Ncr O.K. N-u : APPLIED MOMENTS 22,934 in# 1578 in#I OVERSTRESS 0.0 X 0.0 X HEIGHT I SERVICE DEFLECTION, 4,286 25,309 SERVICE LOAD DEFL.BCONVERGENCE 0.04 in 0.01 in P/A (0.04 * f'c, O.K. DESIGN SUMMARY at REVEAL ----------Provide additional B 5 8 0 o,ci N-n * Phi MOMENT CAPACITY 41,473 in-B 4,473 in*l Mn * Phi > Ncr O.K. Mr, * Phi >Mcr O.K. N-u : APPLIED MOMENTS 22,943 in-B 4333 inBI OVERSTRESS 0.0 7. 0.0 I HEIGHT / SERVICE DEFLECTION 3,117 152i7 I SERVICE LOAD DEFL.@CONVERGENCE 0.058 in 0.012 I P/A <0.04 * f'c, O.K. AF- PRIME J03: I A& STRUCTURAL DATE: I ENGINEERS SHT: LATERAL LOADINGS Wall Wt @150 pcI = 93.8 psI Wind Load * 1.275 15.8 psf Lateral Wall Wt = 28.1 psI Lateral Wt * 1.403 39.4 psI VERTICAL LOADINGS At revel P-Axial 1,844 plf 1,844plf P-Wall : 1,000 984 0,04*f'c PIA = 31,6 psi 34.9 psi 120 psi Pu-Axial: 1,936 p11 1,936 plf Pu-Wall t 1,050 H 1,034 Pu-Total: 2,986 p11 2,970 p11 ANALYSIS VALUES AT REVEAL As(eff) = C Pu:tot + (As*Fy)' ) / Fy 0.282 inA2/ft 0.282 i nA2 'a' = (As*Fy + Pu) /(.85*f'c*12) 0.553 in 0.553 in 'C': 'a' I .85 0.651 in 0.651 in Phi : Capacity Reduction Factor 0,9 0.9 Mn As(eff) * Fy * ( d - a/2 ) 58,825 in-# 46,082 in-* Mu Mn * Phi 52,942 in-n 41,473 in-* E : 57,000 * (f'c'5) 3.IE+06 psi 2IE+06 psi n : 29,000 / Ec 9.29 9.29 Fr : Mod. of Rupture 5*( f cA.5) 273.9psi 273.9 psi Section Modulus : (Gross) 112.5 inA3 91.1 inA3 Moment Capacity 8 Cracking = S * Fr 30,809 in-@ 24,956 in-# Moment of Inertia : (Gross) 421.9 inA4 307.5 inA4 Moment of Inertia : (Cracked) 26.3 in4 15.6 inA4 Unfactored seismic wind Reaction at support level 467.25 p11 133.92 plf Reaction at Base 366 p11 89.28 plf. Meax at 7.33 ft 7.20 ft. from base I PRE-CAST CONCRETE WALL PANEL DESIGN -------------------------------------------- Considering P-Delta Effects SEAOC Green Book' To iterate P-Delta effects to conerence DESCRIPTION PIER C PANEL 5-6 AT LINE I.E BELOW NElL, ALLOWABLE STRESSES ------------------ > f'c Concrete = 3,000 psi , Nip Vert Steel i 0.0025 Fy : Reint. . 60000 psi >Min Horiz Steel X 0.0015 > Phi: 0.90 Max. Vert. Spacing 16.53 in > Seismic Factor' 0.3 Max. Horz,Soacing 18.00 in Wind Load 20.6 psf .Beta 1 0.85 > Reveal Depth 0.75 :n 0.6 a Rhov-Baianced 0.0128 > Reveal to Bottom 9 ft Shall Uniform LL Be Used With Wind/Seismic Loadings ? Yl N0 --> I DESIGN DATA Enter Alt Loads UN-FACTORED I > Clear Wall-Ht, = 13 ft > Eccentric Dead Load = 159 plf > Total Wail Ht. = 13 ft Eccentric Live Load = 240 pit Ht / Thk Ratio = 20,8 > Load Eccentricity = 7 in (default = t/2 + 3fl) > Wall Thickness 7.5 in > Rebar Size 'V 5 > Uniform Lateral Load= 18.5 pif ) Rebar Spacing 16 in > X-Dist. to Bottom 0 ft ) X-Dist. to Top 12 ft ) Depth To Steel 3.75 in > Seismic1, Wind:2 --> 1 (default = t/2) Rebar Spacing@Reveai 16 in > Point Lateral Load = 0 * > Axial Uniform DL = 6616 Of ) X-Dist. from Bottom = Oft > Axial Uniform LL = 2171 pIt > Seismic1, Wind2 --> Steel at' at each facet 1 (1 for single layer, ---------------------------------------------------------------------- 2 for doile layers) DESIGN SUMMARY SEISMIC WIND N-n a Phi : MOMENT CAPACITY 74,596 in-# 74596 in# Mr. * Phi > Ncr O.K. N-u APPLIED MOMENTS 17,417 in-* 2,384 mV OVERSTRESS 0.0 Ih 0.0 1 HEIGHT / SERVICE DEFLECTION 6,455 41,229 SERVICE LOAD DEFL.@CONVERSENCE 0.02 in 0.00 in P/A 0.04 * f':, O.K. DESIGN SUMMARY at REVEAL. --------Provide additional * 5 8 0o.d N-n * Phi MOMENT CAPACITY 57,385 in-* 57,385 mE Mn * Phi Ncr O.K. Mn * Phi : Ncr O.K. N-u : APPLIED MOMENTS 15136 in-* 3,599 mE OVERSTRESS - 0.0 0.0 'h HEIGHT / SERVICE DEFLECTION 5,350 12,086 SERVICE LOAD DEFL.@CONVERGENCE 0.029 in 0.007 * f'c, 0. V% I It 1 I I7-2 PRIME JOBSTRUCTURAL DATE. AL ~ ~~D*IN~EERS SHT LATERAL LOADINGS Wa1iWt@150pcf: 93.8 Psi Wind Load * 1,275.: 1.6.2 PSI Lateral Wall Wt = 28.1 psf Lateral Wt * 1.403 33.4 psi VERTICAL LOADINGS At revel P-Axial : 9,186 pif 3,186 pit P-Wall : 609 375 a 0,04*f'c P/A' 108.8 psi 113 psi 120 psi Pu-Axial: 10,189 pIt 10,188 pit Pu-Wall : 640 354 1 Pu-Total: 10,828 pIt 10,582 pit ANALYSIS VALUES AT REVEAL As(eff) = ( Pu:tot + (As*Fy) I / Fy 0.413 inA2/ft 0.409 i nA2 'a' (As*Fy + Pu) /(.85*f'c*12) 0.810 in 0.802 in. 'c' 'a'! .85 0.953 in 0.943 in Phi : Capacity Reduction Factor 0.9 0.9 Mn: As(eff) *Fy.* (d-a/2 ) 82,885 in-It 63,761 in-It Mu = Mn * Phi 74,596 in-It 57,385 in# E : 57,000* (fcA,5) 3.1E+06 psi 2.1E+06 psi n : 29,000'/ Ec 9.29 9.29 Fr Mod. Of Rupture : 5*( fA5) 273.9 psi 273.9 psi Section Modulus (Gross) 112,5 in", 91.1 inA3 Moment Capacity 9 Cracking :9 * Fr 30,803 in-It 24,955 in-It Moment of Inertia : (Grass) 421.9 jA4 307.5 inA4 Moment of inertia : (Cracked) : 33.5 i nA4 19.4 jA4 Unfactored seismic wind Reaction at support level 285.27 pIt 133.90 pit Reaction at Base 302.35 pit 133,90 pit .Maax at 6.50 it 6.50 ft. from base ?At')€L E1IO -- - Lt1\)E 3LAHE OF i- - .15 ?C ')C&2 )( Lj.L ?1j ?jA Li' k = - - ( K, (o > LL ,c A/11 TH AEL )/ •() ( i) IA PRIME joe :'1-Z1 NGIRUCIURALm] ENEERS SHY 4)-. = fUU gco 'VL ;r --- (1Ptr - = AAL Cop-(R. bl( V21 p_f\ (:— L.L -goo VLr- -?c 7 7 L Ths ?EL I'a V) (Z' kCA L 4'i/ F Lf LL COL(?. TH ?7'3Et -z/O C-. e 7 rW,Q PRIME J03: 4S PRE-CAST CONCRETE WALL PANEL DESIGN -------------------------------------------- Considerinq P-Delta Effects SEAOC Green Book' To iterate P-Delta effects to con vergence DESCRIPTION :PIER A PANEL W-i ALLOWABLE STRESSES > f'c Concrete = 3,000 psi > Min Vert Steel I. : 0.0025 > Fy : Reinf. = 60,000 psi > Min Hoyiz Steel X 0.0015 > Phi: 0.90 Max. Vert. Spacinq 12.31 in > Seismic Factor 0.3 Max,. Horiz.Spacinq : :13.00 in > Wind Load 20.6 psf Beta 1 0.85 > Reveal Depth 0.75 in 0.6 x Rhov-Balanced: 0.0128 > Reveal to Bottom 9 ft Shall Uniform LL Be Used With Wind/Seismic LoadinQs ' Y:1 N:0 --> DESIGN DATA (Enter All Loads UN-FACTORED > Clear Wall Nt. 13 ft > Eccentric Dead Load = 530 plf > Total Wall Mt. : 13 It > Eccentric Live Load = 800 plf Mt / Thk Ratio : 24.0 > Load Eccentricity = 6.25 in (default = t/2 + 3 > Wall Thickness = 6.5 in > Rebar Size 'if' : 4 ) Uniform Lateral Load= 5.35 Of > Rebar Spacing 12 in > X-Dist. to Bottom 0 ft ) X-Dist. to lop 13 ft > Depth To Steel 3.25 in > Seismic:1, Wind:2 --> 1 <-- (default t/2) > Rebar Spacing@Reveal: 12 in > Point Lateral Load = 0 8 > Axial Uniform DL = 1424 plf > X-Dist. from Bottom = Oft > Axial Uniform U. = 800 Of > Seismic:1, Windz2 --> 1 (-- Steel at.eac}- face: 1 0 for single layer, 2 for double layers), ---------------------------------------------------------------------- DESIGN SUMMARY SEISMIC WIND M-n * Phi.: MOMENT CAPACITY : 44,602 in-if 41 602 miff Mn * Phi > Mcr O.K. M-u APPLIED MOMENTS 12,476 in-if 9,993 miff OVERSTRESS 0.0 010 X HEIGHT / SERVICE DEFLECTION 5,661 6,498 SERVICE LOAD DEFL.BCONVERGEN:E : 0.03 in 0.02 in P/A (0.04 * f'c, O.K. DESIGN SUMMARY at REVEAL -----------Provide additional 8 4 8 U o.c M-n * Phi MOMENT CAPACITY 33,003 in-if 3,003 mE Mn * Phi ) Mcr O.K. Mn * Phi Mcr O.K. N-u : APPLIED MOMENTS 11,563 in '3,357 mE OVERSTRESS 0.0 X 0.0 7. HEIGHT / SERVICE DEFLECTION 4.122 4,724 SERVICE LOAD DEFL.@CONVERGENCE 0.028 in 0.033 P/A (0.04 * Pc, ac:. PRIME JOBYl5)I I A& STFUC11JRAL DATE: Jj ENG.i\1 7 ER3 SHT LATERAL LOADINGS ---------------- Wall Wt @150 pcI = 81.3 psi Lateral Wail Wt = 24.4 psI Wind Load * 1.275 26.3 psI Lateral Wt * 1,403 34.2 psI VERTICAL LOADINGS At revel P-Axial 3,554 pif 31554 pIt P-Wall : 523 325 0,04*f'c P/A 52.3 psi 56.2 psi 120 psi Pu-Axial: 4,092 011 4,092 p11 Pu-Wail : 549 341 H Pu-Total: 4,641 pH 4,433 p11 ANALYSIS VALUES AT REVEAL As(eff) = ( Pu:tot + (As*Fy) 1 / Fy 0.277 i nA2/ft 0.274 i nA2 'a' (As*Fy + Pu) /(.85*f'c*12) 0.544 in 0.537 in 'c' 'a' / .85 0.640 in 0.632 in Phi : Capacity Reduction Factor 0.9 0.9 Mn = As(eff) * Fy * ( d - a/2 ) 49,558 in-il 36,670 in-il Mu = Mn * Phi 44,602 in-il 33,003 in-il E : 57,000 * (f'c.5) 3.1E+06 psi 3,1E+06 psi n : 29,000:! Ec 9.29 9.29 Fr : Mod. of Rupture : 5*( f1c.5) 273.9 psi 273.9 psi Section Modulus : (Gross) 84.5 in A3 66.1 inA3 Moment Capacity 8 Cracking = S * Fr 23,141 in-il 18,109 in-il Moment of Inertia : (Gross) 274.6 in -4 190.1 i nA4 Moment of inertia : (Cracked) 18.6 jA4 9,9 jA4 Unfactored seismic wind Reaction at support level = 193.21 Of 133,90 p11 Reaction at Base = 193.21 Of 123.90 Of Mmax at 6.57 ft 6.50 ft. from base I I I I I I) IH PRIME J03 i1-7) I STRL!CTIJRAL OAT: 'ifri I ENGINEERS SHT: PRE-CAST CONCRETE WALL PANEL DESIGN -------------------------------------------- Considering P-Delta Effects SEAOC'Green Book" To iterate P-Delta effects to convergence DESCRIPTION :PIER B PANEL W-1 ALLOWABLE STRESSES > f'c : Concrete. : 3,000 psi > Min Vert Steel X 0.0025 > Fv : Reinf, = 60,000 psi > Min Horiz Steel X : 0.0015 > Phi: : 0.90 Max. Vert. Spacino. 12.31 in > Seismic Factor 0.3 Max. Horiz,Soacinq : 18.00 in > Wind Load 20.6 psf Beta 1 0.85 ) Reveal Depth 0.75 in 0.6 x Rhow-Balanced: 0.0128 > Reveal to Bottom 9 ft Shall Uniform LL Be Used With Wind/Seismic Loadings ? Yi N:0 --> I DESIGN DATA (Enter All Loads UN-FACTORED > Clear Wall Ht. 13 ft > Eccentric Dead Load 530 plf > Total Wall Ht. 13 ft > Eccentric Live Load = 800 p1 Ht./ Thk Ratio 24.0 ) Load Eccentricity 6.25 in (default = t/2 + 3!) > Wall Thickness 6.5 in > Rebar Size '*' 4 > Uniform Lateral Load: 10.7 pi > Rebar Spacing 12 in > X-Dist. to Bottom Oft > X-Dist. to Top 13 ft > Depth To Steel 3.25 in > Seismic:1, Wind=,) --> 1<-- (default = t/2) > Rebar Spacinq@Reveal: 12 in > Point Lateral Load = 0 fi > Axial Uniform DL = 2848 plf > XDist. from Bottom = Oft > Axial Uniform LL = 1600 Of > Seismic=1, Wind:2 --) I (-- Steel at each face: 1 (1 for single layer, 2 for 4ouble. layers) ---------------------------------------------------------------------- DESIGN SUMMARY SEISMIC WIND M-n * Phi : MOMENT CAPACITY 50,635 in-fl 50,635 in#1 Mn it Phi > Ncr O.K. N-u : APPLIED MOMENTS 14,510 in-fl 8,302 mU OVERSTRESS : 0.0 X 0.0. X HEIGHT / SERVICE DEFLECTION = 4,902 7,768 SERVICE LOAD DEFL.@CONVERGENCE 0.03 in 0.02 in P/A <0.04 * f'c, O.K. 1 DESIGN SUMMARY at REVEAL -----------Provide additional fi 4 8 0 o.c N-n * Phi : MOMENT CAPACITY : 37,353 in-fl 37,353 mU Mn * Phi. > Ncr O.K. Mn * Phi >. Mcr O.K. N-u : APPLIED MOMENTS 13,312 in-fl 6,044 infil OVERSTRESS 01 0 1 0.0 h HEIGHT / SERVICE DEFLECTION 3,604 1 7,109 SERVICE LOAD DEFL.@CONVER1jENCE : 0.043 in 0.022 P/A <0.04 * f'c, 0.K. A PRIME ____ STRUCTURAL DATE:____ ENGINEERS SHT: LATERAL LOADINGS Wall Wt @150 pcf = 81.3 psf Wind Load * 1.275 26.3 psf Lateral Wall Wt = 24.4 psf Lateral Wt * 1.403 34.2 psf VERTICAL LOADINGS At revel P-Axial 5,778 pit 5,778 Of F-Wall 523 325 P/A 80.3 usi 88.4 psi 120 psi Pu-Axial: 6,607 pit 6,607 pit Pu-Wall : 549 341 U Pu-Total: 7,156 pit 6,948 pit ANALYSIS VALUES AT REVEAL As(eff) = { Pu:tot + (As*Fy) I I Fy 0.319 iriA2/ft 0,316 in2 'a' (As*Fy + Pu) I(.85*t1c*12) 0,626 in 0.619 in 'c' 'a' I .85 0.736 in 0,728 in Phi Capacity Reduction Factor 0.9 0.9 Mn = As(eff) * Fy * ( d - a/2 ) 56,261 in-fl 41,504 in-fl Mu = Mn * Phi 50,635 in-fl 37,353 in-fl E : 57,000 * (f c A,5) 3.1E+06 psi .1E+06 psi n : 29,000 / Ec 9.29 9,29 Fr : Mod. of Rupture : 5*1 f'c.5) 273.3 273.9 psi Section Modulus : (Gross) 84.5 in A3 66.1 inA3 Moment Capacity 8 Cracking = S * Fr 23,141 jr-fl 18,109 in# Moment of inertia : (Gross) 274.6 jA4 190.1 in -4 Moment of Inertia : (Cracked) 20.3 jrA4 10.8 jA4 Unfactored seismic wind Reaction at support level = 227.93 plf 133.90 Of Reaction at Base = 227.98 pif 133.90 p11 Mmax at 6.57 ft 6.50 ft. from base Li PRIME JOB :cflZ) STRUCTURAL DATE: J'1 ENGINEERS SHT : ____ i PRE-CAST CONCRETE WALL PANEL DESI6N -------------------------------------------- Considering P-Delta Effects I SEAOC Green Books To iterate P-Delta effects to corwergence I DESCRIPTION :PIER C PANEL 1-1 ALLOWABLE STRESSES ------------------ > f'c Concrete = 3,000 psi >Min Vert Steel 0.0025 • > Fy Reinf. = 60,000 psi > Min Horiz Steel X 0.0015 > Phi: 0.90 Max. Vert. Spacing 12.31 in Seismic Factor 0,3 Max. Horiz.Spacing 18.00 in I ,> > Wind Load 20.6 psi Beta I 0.85 > Reveal Depth 0,75 in 0.6 x Rhc'w-Balanced 0.0128 > Reveal to Bottom 9 ft Shall Uniform LL Be Used With Wind/Seismic Loadings 7 Y1 N0 --> 1 DESIGN DATA (Enter All Loads UN-FACTORED ) Clear Wall Ht. = 13 ft > Eccentric Dead Load :: 530 plf > Total Wall Ht. 13 ft > Eccentric Live Load 800 plf Ht I Thk Ratio = 24.0 > Load Eccentricity :: 6.25 in I. (default = t/2 + 3U - > Wall Thickness = 6.5 in > Rebar Size '#' : 4 > Uniform Lateral Load:: 16.05 Of > Rebar Spacing 12 in X-Dist. to Bottom Oft • > X-Dist. to Top 13 ft > Depth To Steel 3.25 in > Seismic:!, Wind=", -- 1 • (default = t/2) > Rebar Spacing@Reyeal= 12 in > Point Lateral Load 0 * ) Axial Uniform DL = 4272 plf > 1-Dist, from Bottom : 0 ft > Axial Uniform LL = 2400 plf Steel at each face: 1 (1 > Seismic:!, Wind="<-- for single layer, 2 for dubie layers) DESIGN SUMMARY ---------------------------------------------------------------------- SEISMIC - WIND I H-n * Phi : MOMENT CAPACITY : 56,482 in-!! 56,482 mE Mn * Phi > Mcr O.K. • H-u t APPLIED MOMENTS 16,575 in-!! 6,585 in#1 I OVERSTRESS : 010 7. 0.0 7. HEIGHT / SERVICE DEFLECTION 4,315 9,687 SERVICE LOAD DEFL.8CONVERGENCE 0.04 in 0.02 in I P/A <0.04 f f'c, O.K. DESIGN SUMMARY at REVEAL -------'rovide additional II 4 @ 0 o.cl J H-n * Phi : MOMENT CAPACITY 41,518 in-!! 41,518 in#1 i Mn * Phi ) Mcr O.K. Mn + P!i ' Mcr O.K. N-u APPLIED MOMENTS = 15,087 in-!! 2,656 in!!; OVERSTRESS 0.0 7. 0.0 7. Il l HEIGHT / SERVICE DEFLECTION = 31195 14,653 SERVICE LOAD DEFL.@CCNVERGENCE 0.049 in 0.011 - PIA (0.04 * f'c, OJ. I ------------------------------------------------------------ PRIME JOE: '\141 IA&ENGINEERS STRUCTURAL DATE: t'1 SHT LATERAL LOADINGS Wall Wt @ 150 pci = 81.3 psf Wind Load* 1.275 26.3 psi Lateral Wall Wt = 24.4 psf Lateral Wt * 1.403 34.2 psi VERTICAL LOADINGS At revel P-Axial : 8,002 pit 8,002 pH P-Wall : 523 325 0, 04*f'c P/A 109.3 psi 120,7 psi 120 psi 0.6 Pu-Axial: 9,122 pIt 9,122 pit overstress! Pu-Wall : 549 341 Pu-Total: 9,671 pif 9,463 Of ANALYSIS VALUES AT REVEAL As(eft) = [ Pu:tot + (As*Fy) ) I Fy 0.361 iflA2/ft 0,358 i nA2 'a' (As*Fy + Pu) /(.85*f'c*12) 0.708 in 0.701 in 'c': 'a' / .85 0.832 in 0.825 in Phi : Capacity Reduction Factor 0.9 0.9 Mn = As(eff) * Fy f ( d - a/2 ) 62,757 ml 46,131 ml Mu = Mn * Phi 561 482 in-* 41,518 in-# E : 57,000 * (f1cA.5) 3.1E+06 psi 3.IE+06 psi n : 29,000 / Ec 9.29 9.29 Fr Mod. of Rupture 5*( f0.5) 273,9 ps 273.9 psi Section Modulus : (Gross) 84.5 jA3 £6.1 1nA3 Moment Capacity 8 Cracking = S + Fr 23,141 ml 18,109 in* Moment of Inertia : (Gross) 274.6 in4 190.1 inA4 Moment of Inertia : (Cracked) 21.9 jA4 11.6 i nA4 Linfactored seismic wind Reaction at support level 262.76 pit 133.90 pif Reaction at ease 262.76 pit 133.90 pit Mmax at 6.57 ft 6.50 ft. from base 19 r A PRIME JOB STflUC11JRAL DATE: ENGINEERS SHT: PRECAST CONCRETE WALL PANEL DESIGN \ ------------------------------------------- Considering P-Delta Effects SEAOC Green Book' To iterate P-Delta effects to corvergence DESCRIPTION :PIER B AT PANEL W-2 ABOVE MEZZ. ALLOWABLE STRESSES ------------------ > f'c : Concrete = 3,000 psi > Min Vert Steel 0.0025 > Iv Reinf. = 60,000 psi > Min Horiz Steel 'h : 0001.5 > Phi: : 0.90 Max. Vert. Spacing 12.31 in ).Seismic Factor 0.3 Max. Horiz.Spacinq 18.00 in > Wind Load 20.6 psf Beta 1 0.85 > Reveal Depth 0.75 in 0.6 x Rhow-Balanced 0.0128 > veal 8otoe 9 ft Shall Uniform LL Be Used With Wind/Seismic Loadings ? Y:1 N0 --) DESIGN DATA (Enter All Loads UN-FACTORED > Clear Wall Nt. 14 ft > Eccentric Dead Load = 260 plf > Total Wall Ht. 16 ft .> Eccentric Live Load = 0 plf Ht I Thk Ratio 25.8 > Load Eccentricity 6.25 in (default = t/2 + 3') > Wall Thickness 6.5 in - ) Rebar Size '#' : 4 ) Uniform Lateral Load= 10.7 plf > Rebar Spacing 12 in > X-Dist. to Bottom 0 ft X-Dist. to lop 13 ft > Depth To Steel 3.25 in > Seismici, Wind2 --> I <-- (default = t/2) > Rebar, Spacing@Reveal: 12 in > Point Lateral Load = 0 # > Axial Uniform DL z 1658 plf > X-Dist, from Bottom = 0 ft > Axial Uniform LL = Opli > Seismic:1, Wind:2 --> I Steel at each face= 1 0 for single layer, 2 for doub le layers) DESIGN SUMMARY SEISMIC WIND M-n * Phi MOMENT CAPACITY 40,038 in-# 80,038 in Mn * Phi > Ncr O.K. M-u : APPLIED MOMENTS 14,973 in-8 4,439 mE OVERSTRESS 0,0 0.0 h HEIGHT / SERVICE DEFLECTION 4,498 13,527 SERVICE LOAD DEFL.&:ONVERGENCE 0.04 in 0.01 in i. P/A <0.04 * f'c, OK. DESIGN SUMMARY at REVEAL -----------Provide additional 4 8 0 o.c H-n * Phi : MOMENT CAPACITY 29,735 in-i 29,735 mE Mn * Phi > Ncr O.K. Mn * Phi Mcr O.K. H-u APPLIED MOMENTS 131 908 in-# .1,168 mE OVERSTRESS 0.0 X 0.0 7. HEIGHT / SERVICE DEFLECTION 3,317 170,771 SERVICE LOAD DEFL.@CONVERGENCE 0.051 in 0.005 P/A <0.04 * Pc, O.K. PRIME JOB — S11UCTURAJ,, ckATE. ENGINEERS i LATERAL LOADINGS ---------------- Wall Wt@150 pci = 81.3 psI Lateral Wall Wt = 24.4 psf Wind Load * 1.275 26,3 psf Lateral Wt *1.403 34.2 psI VERTICAL LOADINGS At revel P-Axial : 1,918 pif 1,918 pit P-Wall 737 ' 569 0.04*f'c P/A 34 psi 36 psi 120 psi Pu-Axial: 2,014 p11 2,014 Of Pu-Wall : 774 a 597 a Pu-Total: 2,788 pIt 2,611 pIt ANALYSIS V1J AT REVEAL As(eff) = C Pu:tot + (As*Fy) ] / Fy 0.246 irA2flt 0.244 in2 'a' (As*Fy + Pu) I(.85*f'c*12) 0.483 in 0.477 in 'a' / .85 . 0.569 in 0.562 in Phi : Capacity Reduction Factor 0.9 0.9 Mn As(ef I) * Fy * Cd - a/2 ) 44,487 in-# 33,039 in-# Mu Mn * Phi 40,038 in-* 29,735 in* E : 57,000 * (flcA.5) 3.1E+06 psi 3.IE+06 psi n : 29,000 / Ec ' 9.29 9,29 Fr : Mod. of Rupture : 5*( f i:A,5) 273.9 psi 273.9 psi Section Modulus : (Gross) 84.5 in3 66.1 i nA3 Moment Capacity 8 Cracking = S * Fr 23,141 in* 18,109 in-B Moment of Inertia : (Gross) 274,6 i nA4 190.1 i nA4 Moment of Inertia (Cracked) = 17,2 in4 9.2 jA4 Unfactored seismic wind Reaction at support level = 287.43 pif 188,34 pit Reaction at Base = 241.66 Of 141,26 pit Meax at 6.93 ft 6.86 ft. from base A PRIME STflUC1UR14L ENGINEERS PRE-CAST CONCRETE WALL PANEL DESIGN --------------------------------------------- Considerino ','-Delta Effects SEAOC Green Book,' To iterate P-Delta effects to cowerqence DESCRIPTION :PIER 2 AT PANEL W-2 BELOW MEZL. ALLOWABLE STRESSES ------------------ > f! : Concrete = 1 3,000 psi > Min Vert Steel : 0.0025 > Fy Reinf. = 60,000 psi > Nip Horiz Steel Z : 0,0015 > Phi: : 0.90 Max. Vert. Spacing 12.31 in > Seismic Factor = 0.3 Max. Horiz.Spacino, 18.00 in > Wind Load = 20.6 psf Beta 1 0.85 ) Reveal Depth 0,75 in 0.6 x Rhow-Balanced 0.0128 > Reveal to Bottom 9 ft Shall Uniform LL Be Used With Wind/Seismic Loadings 2 YI N0 --> DESIGN DATA (Enter All Loads UN-FACTORED > Clear Wall Nt. 13 ft Eccentric Dead Load 530 pIt > Total Wall Nt. 13 ft > Eccentric Live Load : 800 pit Ht / Thk Ratio = 24.0 > Load Eccentricity 6.25 in (default t12 + > Wall Thickness = 6.5 in > Rebar Size 1 4' : 4 > Uniform Lateral Load 26.7 plf > Rebar Spacina 12 in > I-Disk. to Bottom 9 ft > X-Dist. to Top 13 ft > Depth To Steel 3,25 in > Seismic=!, Wind2 (-- (default = t/2) > Rebar Spacinq@Revea] 12 in > Point Lateral Load 0 4 > Axial Uniform DL = 3537 al i-Diet. from Bottom Oft > Axial Uniform LL = if Seismic1, Wind2 --' 1 <-- Steel at each fare= ' 1 for 'single layer, 2 for dub1e layers) DESIGN SUMMARY SEISMIC WIND. M-n * Phi : MOMENT CAPACITY 31,764 in-* 31,764 in#1 Mn * Phi > Mcr O.K. M-u : APPLIED MOMENTS 10,695 in-# 11,828 in*: OVERSTRESS 0.0 II HEIGHT / SERVICE DEFLECTION 6,521 5,523 I SERVICE LOAD DEFL.CONVERGENCE 0.02 in 0.03 in P/A <0.04 * f'c, 0.11— DESIGN SUMMARY at REVEAL -----------Provide additional 4 4 8 N.A o.c M-n * Phi : MOMENT CAPJTY N.A in-* N.A iri41 Mr. *Phi )McrO.K. Mir *Pii )Ncr O.K. N-u : APPLIED MOMENTS = N.A. in-4 .A. mE OVERSTRESS ERR yN.A 7. HEIGHT / SERVICE DEFLECTION N,A ERR SERVICE LOAD DEFL.@CONVERIIENCE 0.464 in ERR P/A ( 0.04 1 Pc, O.K. PRIME J08:_- I £ STRUCTURAL D4TE ENGINEEpS SHT: LATERAL LOADINGS Wall Wt@i5Opcf = 81.3pst Wind Load. *1.275 26.3 psf Lateral Wall Wt = 24.4 pst Lateral Wt * 1.403 34.2 esf VERTICAL LOADINGS At revel P-Axial 5, 744 pIt 5,744 pit 'P-Wall : 470 325 0 0.04*f'c P/A 79,7 psi 88 psi 120 psi Pu-Axial: 6,409 pit 6,409 pif il1 C Cl '344 1 . - rUw i Pu-Total: 6,902 pit 6,750 pIt ANALYSIS VALUES Al REVEAL As(eff) = [ Pu:tot + (As*Fy) ) / Fy 0,315 inA2/tt N.A in2 'a' (As*Fy +Pu) I(.85*f'c*12) 0.618 in N.A in 'c 'a' / .85 0.727 in N.A in Phi : Capacity Reduction Factor 0.9 0.9 Mn = As(eff) * Fy * Cd - a/2 ) 35,294 in-# N.A 'in-# Mu = Mn -* Phi 31,764 in-i N.A in-# E : 57,000 * (f cA.5) 3,IE+06 psi .lE+06 psi n 29,000 I Ec = 9.29 9.29 Fr : Mod. of Rupture : 5*( f cA.5 273.9 psi 273.9 psi Section Modulus .: (Gross) 84.5 j'31 66,1 inA3 Moment Capacity @ Cracking = S * Fr 23,141 ml N.A in-4 Moment of Inertia : (Gross) = 274.6 A4 N.A jA4 Moment of Inertia : (Cracked) 20.2 i nA4 N.A jA4 Unfactored seismic wind Reaction at support level = 248.80 pit 133,90 p11 Reaction at Base = 174.86 pIt 133.30 plf Mrnax at 7.22 ft 6.50 ft. froth :ase boo 44- 4 15- Lii —i J - Lci-; IK ç(3t oTIQ ;7 0 10 r ( d1kL 10 V (LCI AAftr 2 J' ENGINEERS SIlT: PCACOL V2.3 15514. I9/23/97 PCACOL(tm)V2.30 Proprietary Software of PORTLAND CEMENT ASSN. Page 2 9:58:34 Licensed to: Licensee name not yet specified. I General Information: I . File Name: tJNTITLED.COL Project: Column: 1 Engineer: Run Option: Investigation '. Run Axis: X-axis Material Properties: I f'c =3ksi Ec = 3320.56 ksi fc = 2.55 ksi ' eu = 0.003 in/in Stress Profile: Block PRIME jos:i21 STRUCTURAL DATE: C1 IA JA ENGINEERS SHT: ____ Code: ACI 318-89 Units: US in-lbs Date: 09/23/97 Time: 09:54:34 Short (nonslender) column Column Type: Structural fy =60ksi Es = 29000 ksi erup = 0 in/in Betal = 0.85 I Geometry: Circular: Diameter = 30 in I Gross section area, Ag = 706.85:8 inA2 Ix = 39760.8 in A4 ' ly = 39760.8 inA4 Xo = 0 in Yo = 0 in I Reinforcement: Rebar Database: ASTM Size Diam Area Size Diam Area Size Diam Area 3 0.38 0.11 4 -------------------------------------------------------------------- 10.50 0.20 5 0.63 0.31 6 0.75 0.44 7 10.88 0.60 8 1.00 0.79 9 1.13 1.00 10 1.27 1.27 11 1.41 1.56 14 1.69 2.25 18 2.26 4.00 Confinement: Tied; phi(c) = 0.7, phi(b) = 0.9, a = 0.8 #3 ties with #10 bars, #4 with larger bars. Layout: Circular Pattern: All Sides Equal [Cover to transverse reinforcement (ties)] Total steel area, As = 7.20 in'2 at 1.02 12-#7 Cover = 2 in Li Li I I I9/23/97 PCACOL(tm)V2.30 Proprietary Software of PORTLAND CEMENT ASSN. Page 3 9:58:34 Licensed to: Licensee name not yet specified. Bending Load, P X-Mom. Y-Mom. N.A. depth about (kips) (ft-k) (ft -k) (in) I -----------O X Pure Comp. 1551 0 87.60 Balanced 575 488 -0 16.09 Pure Bend. 0 358 -0 6.55 I Program completed as requested! I PRIME JO31- I STRUCTURAL DATE: [_£ ENGINEERS SHT: I I H I I I' 1 I 1 I. I. PRIME Joe 11 IAENGINEERS S11UC1URAL DAIE JT SHT FTG @ 300 DIA. CONC. COL 09/23/97 - GRADE BEAM ANALYSIS PROGRAM Footing LENGTH = 6,00 ft Footing WIDTH = 6.00 ft Footing DEPTH 1.50 ft Conc Weight = 0,15 kcf Surcharge = 0.00 ksf Footing + Surch. = 1,35 kIt POINT LOADS ft tit). 1 2 X 32.44 42.04 3.00 MOMENT LOADS (kft & it) 1 2 I 63,40 63.40 3.00 RESULTANTS (t, ft & ksf) CASE 1 2 Pt 40.54 50,14 1 1.44 1.74 1 Qaax 3.14 3.21 < Q min 0.00 0.00 MAXIMUM FORCES (k, kit) CASE 1 2 V max 32.75 37fl: M max 58.96 63.95 M mm 74.44 -1.62 I rA - PRIME RJ STRUCRAL &TE.____ ENGNEERS T: I FIG 8 303 DIA. CONC. COL 09/23/97 97-250 GRADE BEAM DESIGN PROGRAM (4.02) DESIGN DATA I . t'c = 2.50 ksi b = 72.00 in fy = 60.00 ksi h = 18.00 in Load Factor 1.40 d = 14.00 in SHEAF: DESIGN • Veax = Vc = 100.8 k I Vn = 61.1 k Vs 0.0 k I Av = 0.72 si/ft S sax = Vs = 0, stirrups are optional 7.00 in I #3 Stirrup 8 3.7" 2*3 Stirrups 8 7,0" 1 1 #4 Stirrup 8 6.7' $ 2 * 4 Stirrups 8 7.0 I FLEXURAL DESIGN Beta 1 = 0,85 As sin = 3.36 si As sax = 13.47 si M+ sax = 63,9 kIt H- sin = -4.4 kit I Mn+ = 99.5 kit Mn- = -6.9 kIt I As str = 1.45 si As str = 0.10 si As 1.93 si As 0.13 si 1 Bottom Steel Tap Steel Bar No. Space No. Space * 4 9.7 6.41 .0.7 - 1 *5 6.2 9.1 0.4 - #6 4.4 12.8 0.3 - #7 3.2 1610u 0.2 - #8 2.4 21.3 0.2 - I . I.. I. . 1 , I ?AL ü - 'iA k FAPRME I STRUCTURAL 1E L ENGiNEERS SHT: )'EP I 9 Aie frt%%. 27 V710 iot t (2LI2 flF( ?- 4%AL- LøAC 1'L - - ?SIF 10 LL -x tO 'C) PL t) 'I.5 V - O. ,< L • L PL A%AL. 1,6A-PS / -- 'vc') LF 'F LL kiALL bO?L- = ((J• '((C W6' (L1 (v iia oocr QL' QQ. IV)L-V —11±1 k (L€ 3Q - x. II )L )L A ( 4VQ1 41J. 'Q Q1 - u - hQQ2 =L1aQ( = - QQt - -\ OQL .X Q03 -= -1. - 1OL - - 1YX x Sd t2 - :u QQ2 11 d = \c'1a 14 •l - - 1( Q1 - 7 = rAPRIME JO8:t11 lb - I STRUCTURAL WE' ___ ?,iL ( L)E ( ENGINEERSSK: -142F—1 O FL F ,AL LOPS rP)bi€ rLi 7c Ox3- - 7q 5_ g 9 IT pz-F LL = g'& L- =IAOO FO= TW ?AJ&L tV PRIME JOB I ! r PRE-CAST CONCRETE WALL PANEL DESIGN I Considering P-Delta Effects SEAOC "Green Book To iterate P-Delta effects to corverqenre DESCRIPTION :PIER A AT PANEL W-4 I BELOW MEZI ALLOWABLE STRESSES ------------------ > Pc : Concrete = 3,000 psi > Min Vert Steel y: 0.0025 >Fy : Reirif. 60,000 psi >Min For iz Steel 7.: 0.0015 > Phi: : 0.90 Max. Vert. Spacing 12.31 in 1 ) Seismic Factor 0.3 Max, Horiz,Saacing 18.00 in > Wind Load 20.6 pet Beta 1 0.85 > Reveal Depth = 0.75 in 0,6 a Rhow-Balanced= 0.0128 Reveal to Bottom 9 ft I > Shall Uniform LL Be Used With Wind/Seismic Loadings ? Y=l N:0 --> UN-FACTORED DESIGN DATA (Enter All Loads > Clear Wall Nt.. 13 ft > Eccentric Dead Load 530 pit > Total Wall Ht. 13 ft > Eccentric Live Load = 800 plf Ht / Thk Ratio = 24.0 > Load Eccentricity = 6.25 in (default = t/2 + 3B) -. > Wall Thickness = 6.5 in > Rebar Size 'A' : 4 > Uniform Lateral Load: 24.4 pit > Rebar Spacing 12 in > X-Dist. to Bottom 9 ft )X-Dist. to Top 13 ft ) Depth To Steel 3.25 in (default t/2) d:2 --> 1< -- > Rebar Spaci ng@Reveal= 12 in > Point Lateral Load = 0 A > Axial Uniform DL = 3501 pIt > X-Dist, from-Bottom = Oft > Seismic:1, Wind2 --> 1 <-- > Axial Uniform LL = 88 pif Steel at each face: 1 (1 for single layer, 2 for double layers) DESIGN SUMMARY SEISMIC WIND I H-n * Phi MOMENT CAPACITY 47,559 in-A 47,559 inAl Mn * Phi > Mcr O.K. H-u : APPLIED MOMENTS 10,662 in-A :11,789 inAl • OVERSTRESS 010 0,O 7. I HEIGHT / SERVICE DEFLECTION 6,540 5,536 I SERVICE LOAD DEFL.@CONVERGENCE 0.02 in 0.03 in I 1 P/A (0.04 * f'c,.O,K, I DESIGN SUMMARY at REVEAL I-------------------- Provide additional *4 8 I H-n * Phi : MOMENT CAPACITY 35,228 in-A 0 35,228 o.c I in* Mn * Phi > Mcr O.K. Mn * Phi ) Mcr O.K. H-u :APPLIED MOMENTS 9,962 in-A 12,807 inAl I OVERSTRESS : 0,0 . 0.0X I HEIGHT / SERVICE DEFLECTION 41 724 .3,499 I SERVICE LOAD DEFL.@CONVER1iENCE 0.033 :n 0.045 P/A <. 0.04 * Pc, O.K. - I PRlME 1A1 M& STRUCTURAL DATE:_____ ENGINEERS S1T: LATERAL LOADINGS ---------------- Wall Wt @ 150 pci = 61.3 psi Wind Lca * 1.275 26.3 psi Lateral Wall Wt = 24.4 p;f Lateral Wt * 1.403 34.2 Psi VERTICAL LOADINGS At revel P-Axial : 4,919 pIt 41919, p1t P-Wall : 475 6 325 ' 0,04*1'c P/A 69..2 psi 76 psi 120 psi Pu-Axial: 5,365 Of 51 365 pit Pu-Wail : 499 0 341 Pu-Total: 5,864 Of 5,706 plf ANALYSIS VALUES AT REVEAL As(eff) ( Pu:tot + (As*Fy) I / Fy 0.298 inA2/ft 0.295 i nA2 'a' (As*Fy + Pu) /(.85*f'c*12) 0.584 in 0.579 in 'c' 'a' / .85 0,687 in 0.681 in Phi : Capacity Reduction Fctcr 0.9 0.9 Mn = As(eff) * Fy + ( d - a/2 ) 52,843 in-i 39,142 in-u Mu = Mn * Phi 47,559 in-# 35,228 ml E : 57,0OO * (f cA,5) 3.1E+06 psi Z1E+06 psi n : 29,000 / Ec 9.29 9.29 Fr : Mod, of Rupture : 5*( f cA.5) 273.9 psi 273.9 psi. Section Modulus : (Gross) 84.5 i n A3 £6.1 in3 Moment Cap:iv 3 Cxking = S * Fr 23,141 in-# 18,109 in-# Moment of Inertia : (Gross) 274.6 i nA4 190.1 in4 Moment of Inertia : (Cracked) 19,5 in4 0.3 in4 Unfactored seismic wind Reaction at support level = 241.02 pit 133.90 Of Reaction at Base = 173.45 PH 133.90 pit Mmax at 7.15 it 6.50 ft. from base I IJ& PRIME JOB: - STRUCTURAl.. OATE ENGINEERS SHT: _____ PRE-CAST CONCRETE WALL PANEL DESIGN I Considering P-Delta Effects SEAOC "Green Books To iterate P-Delta effects to convergence AT PANEL W-4 DESCRIPTION :PIER B BELOW NEll ALLOWABLE STRESSES ------------------ > Vt : Concrete 3,000 psi > Min Vert Steel X: 0.0025 >Fy : Rein'. 60,000 psi >MinHoriz Steel 0.0015 > Phi: 0.90 Max. Vert. Spacing 10,67 in > Seismic Factor 0.3 Max. Horiz.Spacinq 17.78 in > Wind Load 20.6 psf Beta 1 0.85 > Reveal Depth 0.75 in 0.6 x Rhcw-Balanced: 0.0128 >Revealto Bottom: 9 f Shall Uniform LL Be Used With Wind/Seismic Loadings ? Y:l N:0 --> DESIGN DATA (Enter All Loads UN-FACTORED > Clear Wall Ht. 13 ft )' Eccentric Dead Load : 530 pfl > Total Wall Ht. : 13 it > Eccentric Live Load : 800 pif = 20.8 > Load Eccentricity : 6.25 in Ht / Thk Ratio (default : t/2 + 39L > Wall Thickness = 7.5 in > Rebar Size '#' : 4 > Uniform Lateral Load: 48.6 plf ) Rebar Spacing : 10 in ) X-Dist. to Bottom : 9 ft > X-Dist. to lop : 13 ft > Depth To Steel •: 3.25 in > Seismic:1, Wind:2 --> (default = t/2) > Rebar Spacing@Reveal: 10 in .> Point Lateral Load : 0 # > Axial Uniform DL = 7002 pit > X-Dist. from Bottom : 0 ft > Axhl Uniform LL = 1600 pit > Seismic:!, Wind:2 (-- Steel at each face: 1 (1 for single layer, 2 for doule layers) ---------------------------------------------------------------------- I DESIGN SUMMARY SEISMIC WIND M-n * Phi : MOMENT CAPACITY 65,892 ml 5,892 in Mn * Phi > Ncr O.K. N-u APPLIED MOMENTS 11,993 in# i1 1847 mE I OVERSTRESS 0.0 X 0.0 X HEIGHT / SERVICE DEFLECTION 8,963 8,469 SERVICE LOAD DEFL.@CONVERGENCE : 0.02 in 0.02 in P/A (0.04 * f'c, O.K. I DESIGN SUMMARY at REVEAL ----------Provide additional # 4 8 0 o.cl N-n * Phi : MOMENT CAPACITY : 48,205 ml .8,205 in#I Mn*Phi ticrO.Y.. N-u APPLIED MOMENTS 11,178 in- :2,881 in#I I OVERSTRESS : 0.0 0.0 I HEIGHT / SERVICE DEFLECTION 6,869 5,633 I SERVICE LOAD DEFL.8CONVERGENCE 0.023 in 0.028 ---------------------------------------------------------------------- F/A >0.04 * Pc, NO GOOD '4 LATERAL LOADINGS ------------- lall .4t @ 150 pc.' = 93.8 psf Wino Load 1,275 26.S psi Lateral Wall Wt = 28,1 psf Lateral Wt * 1.403 39.4 psf VERTICAL LOADINGS At revel P-Axial 9,932 pIt 9,932 pit P-Wall 506 375 P/A lib psi 12T2 psi 10 psi 6 L Pu-Axial: 101969 pif 101969 pit overstress!! " Pu-hail : 531 394 Pu-Total: 11,500 pIt 11,362 pit ANALYSIS VALUES AT REVEAL As(eff) = ( Pu:tot + (As*Fy) ] I Fy 0.432 inA2/ft 0.429 inA2 'a' (As*Fy + Pu) /(.85*f'c*12) 0.846 in 0.842 in Pc': 'a' / .85 0.996 in 0.990 in Phi : Capacity Reduction Factor 0.9 0,9 Mn: As(eff) *Fy* (d-a/2) = 73,213 ml 53,561 in-# Mu = Mn * Phi 65,892 in-If 48,205 in-If E : 57,000 * (f cA.5) = 3.IE+06 psi :3.IE+06 psi n 29,000 I Ec = 9.29 9.29 Fr : Mod. of Rupture : 5*( f cA.5) 273.9 psi 273.9 psi Section Modulus : (Gross) 112.5 jnA3 91.1 i nA3 Moment Capacity 8 Cracking = S * Fr 30,809 in-If 24,956 in-* Moment of Inertia : (Gross) 421.9 1RA4 307,5 inA4 Moment of Inertia : (Cracked) 24.3 i nA4 13.0 i nA4 Unfactored seismic wind Reaction at support level = 347.98 p11 133.90 p1! Reaction at Base = 212.84 p11 133.90 pIt Meax at 7.61 ft 6.50 ft. from base '3 [A&PRIME Jo: *1 SflUC1URAL I: 1J!)1J ENGINEERS SIlT : 4J PRE-CAST CONCRETE WALL PANEL DESIGN -------------------------------------------- I Considerinq P-Delta Effects SEAOC 'Green Book' To iterate P-Delta effects to ccrverqencm DESCRIPTION :PIER C AT PANEL W-4 J BELOW MEU ALLOWABLE STRESSES > f'c : Concrete 3,000 psi > Min Vert Steel Z 0.0025 > Fy : Reinf. 60,000 psi' Min Horiz Steel Z 0.00i3 > Phi: : 0.90 Max. Vert. Spacing 12.31 in 'I > Seismic Factor 0.3 Max. Horiz.Spacng 18.00 in > Wind Load 20.6 psi Beta 1 0.85 > Reveal Depth 0,75 in 0.6 x Rhov_Baianced: 0.0128 > Reveal to Bottom 9 ft Shall Uniform LL Be Used With Wind/Seismic Loadings ? Y:1 N:0 --> 1 DESIGN DATA (Enter All Loads UN-FACTORED > Clear 'Jail Ht. 13 ft > Eccentric Dead Load 530 pit > Total Wall Mt. : 13 ft ) Eccentric Live Load 800 plf Ht /Thk Ratio = 24.0 > Load Eccentriity 6.25 in (default = t/2 + 3fl) > Wall Thickness = 6.5 in >Rebar Size '' : 4 > Uniform Lateral Load: 60.94 pit > Rebar Spacing 12 in > X-Dist. to Bottom 9 ft > X-Dist. to Top 13 ft > Depth To Steel 3.25 in > Seismic:1, Wind:2 4-- (default = t/2) • > Rebar Spacing@Rveal: 12 in Point Lateral Load > Axial Uniform DL = 5150 PI > X-Dist. from Bottom = Ott > Axial Uniform LL = 2000 pit Seismic:I, Wind:2 -->, i<__ Steel at each face: 1 (1 for single layer 1 2 for doUble layers) DESIGN SUMMARY SEISMIC WIND M-n * Phi : MOMENT CAPACITY 57,131 in-a 57,13i in#I Mn * Phi > Mcr O.K. N-u : APPLIED MOMENTS 10,621 in-t 11,936 ir OVERSTRESS 0.0 % 0.0 Ili HEIGHT / SERVICE DEFLECTION 6,523 5,478 • SERVICE LOAD DEFL.@CONVEPJIENCE 0.02 in 0.03 in • P/A <0.04 * f'c, O.K. DESIGN SUMMARY at REVEAL ------------------------Provide additional # 4 113 N-n * Phi MOMENT CAPACITY : 42,182 in-i 42,182 o,c mE Mn * Phi > Mcr O.K. Mn * Phi ) Ncr O.K. M-u : APPLIED MOMENTS :' 10,095 in* 13,044 in*I OVERSTRESS : 0.0 'h 0.0 HEIGHT / SERVICE DEFLECTION 4, 65 1 3,445 SERVICE LOAD DEFL.@CONVERGENCE 0.034 in 0.045 P/A >0.04 * f'c, NO 60)0 I I LATERAL LOADINGS Wall Wt8150pc f 81.3 psf Wind Load * 1.275 26.3 psI Lateral Wall Wt 24.4 psI Lateral Wt * 1.403 34.2 psI AJAM;N!~', RE E JOB STRUCTURAL OAIE INEERS SIlT: _____ D I VERTICAL LOADINGS ----------------- At revel P-Axial : 8,480 plf P-Wall : 401 8,480 p11 325 0.04*11 : P/A 113.9 psi 127.6 psi 120 psi 6.3X Pu-Axial: 9,534 p11 9,534 plf 3verstr2ss..& I . Pu-Wall 421 341 Pu-Total: 9,955 plf 9,875 plf ANALYSIS VALUES AT REVEAL As(eff) = [ Pu:tot + (As*Fy) ) I Fy O.-H. nA2I1t 0.365 in', 'a' (As*Fy + Pu) /(.85*f'c*12) 0.717 in 0.715 in • 'c' 'a' / .85 0.844 in 0.841 in Phi : Capacity Reduction Factor 0.9 0.9 Mn = As(eff) * Fy * ( d - a/2 ) 63,479 ml 46,869 in-i I Mu = Mn * Phi 57,131 in-It 42,182 in-It E : 57,000 * (f!^5) 3.1E+06 psi .1E+06 Pj n : 29,000 / Ec 9.29 9.29 Mod. of Rupture : 5*( f cA.5) 273.9 psi 273.9 psi Section Modulus : (Gross) 84.5 inA3 66.1 jA3 ,I Moment Capacity 8 Cracking = S * Fr 23,141 in-It 18,109 in* Moment of Inertia : (Gross) 274.6 jA4 130.1 in"4 Moment of Inertia : (Cracked) 22.1 inA4 11.7 jA4 - Unfactored . seismic wind Reaction at support level = 364.69 p11 133.90 PH Reaction at Base = 195.93 p11 133.90 pit - . Maa: at 8.06 ft 6.50 ft. from base 1 I 1A3E(.- eIqJ - '1 1'A) A PRME JOB :'tl-?J) I STRUCTURAL DATE: 1J47 ABML ENGINEERS SHT : _____ ?9 ° Tt / rl?-) 7?'L..F Uf = .7!WS It ?LF #qIF (v) 'o . ______ JOR: - DATE: PRE-CAST CONCRETE WALL PANEL DESIGN -------------------------------------------- Considerinq P-Delta Effects SEAOC Green Book' To iterate P-Deia effects to corveraence DESCRIPTION :PANEL E-i ALLOWABLE STRESSES > Pc : Concrete = 30O0 psi > Mill Vert Steel : 0.0025 : F', : Reint. 60,000 psi Mm Horiz Steel 0.0015 Phi: : 0.0 Max. Vert. Sapaacijlg. 16.53 in > Seismic Factor 0.3 Max, Horz.Spacina 18.00 in > Wind Load 12.4 psi Beta 1 0;85 > Reveal Depth 0.75 in 0.5 x Rhoi-Balanced 0.0128 Reveal to Bottom 16 ft Shall Uniform LL Be Used With Wind/Seismic Loadinqs 2 Y1 N0 --> 0 DESIGN DATA (Enter All Loads UN-FACTORED > Clear Wall Ht. 27 ft ) Eccentric Dead Load = 273 plf > Total Wall Ht. = ft > Eccentric Live Load = 0 p11 .Ht / Thk Ratio 43.2 ) Load Eccentricity 6.75 in (default = t12 + 3") > Wall Thickness = 7.5 in > Rebar Size 'it' : 5 > Uniform Lateral Load 51.9 pit > Rebar Spacing 6 in ) X-Dist, to Bottom 10.5 ft > X-Dist. to Top 29 ft ) Depth To Steel 5 in > Seismic:!, Wind:2 --) 1 <-- (default = t/2) > Rebar SpacingReveai: 6 in > Point Lateral Load : 0 it > Axial Uniform DL = 3715 Of ) X-Dist. from Bottom = Oft Axial Uniform LL = Opif )' Seismic=!, Wind:2 --> 1 Steel at each face: 2 (1 for sinqie layer, 2 for doLbie layers) 1 DESIGN SUMMARY SEISMIC WIND M-n * Phi : MOMENT CAPACITY 143,997 in-it 143.937 initl Mn * Phi > Mcr O.K. M-u : APPLIED MOMENTS : 11,381 in-it 15,3,3 mE OVERSTRESS 0.0 0.0 HEIGHT I SERVICE DEFLECTION. 145 3,199 1 SERVICE LOADDEFL.@CONVER6EWCE 2.24 in P/A <0.04 * f'c, O.K. DESIGN SUMMARY at REVEAL -----------Provide additional it 5 8 N.A o.r ll M-n * Phi MOMENT CAPACITY N.A in-it N,A initl Mn *Pi >Mcr O.K. Mn* Phi > Mcr O.K. M-u : APPLIED MOMENTS N.A. in-it LA. in*: OVERSTRESS N.A Z h.m X I HEIGHT / SERVICE DEFLECTION N.A ERR I I SERVICE LOAD DEFL.@CONVERGENCE 3.802 in ERR I Deflection Exceeu! P/A <0.04 * Pc, O.K. F PRIME STrUC11JRAL o o011,1Y1 L £ EJ"LGINEERS SHT 42 LATERAL LOADINGS Wall Wt 8150 cc1 '33.8 a i Wi ad Load * 1.275 15:5 psi Lateral Wall Wt 28.1 psf Lateral Wt * 1.403 39.4 psf VERTICAL LOADINGS At revel P-Axial 3,988 plf 3,988 p'1 P-Wall : 1,327 1,219 0,04*f'c P/A 59.1 D s 64.3 psi 0 si Pu-Axial: 4,187 Of 4,187 Of Pu-Wall 1 a 1,280 Pu-Total: 5,580 pit 5,467 Of ANALYSIS VALUES AT REVEAL As(eff) I Pu:tot + (As'*Fy) ) / Fy 0,713 in'2/ft N.A i nA2 'a' (As*Fy + Pull I(.85*f.'c*12) 1.398 in W.A in 'a' / .85 1.645 in NA in Phi Capacity Reduction Factor = 0.9 0.9 Mn: As(eff) * Iv * Cd - a12 ) 159,996 ir-# N.A in-# Mu Mn * Phi : 143,997 in-i N.A in-# E 57,000 * (f0.5) 3.1E+06 psi 3.IE+06 psi ii :. 29,000 I Ec 9.29 ' 9.29 Fr Mod. of Rupture : 50f? CA. 5) 273,9 psi 273.9 psi Section Modulus : (Gross) 112.5 in3 Ojj inA3 Moment Capacity 8 Cracking : S. * Fr 30,809 in-8 NA in-* Moment of Inertia : (Gross) 421.9 in4 N.A in4 Moment of Inertia': (Cracked) 92.4 inA4 N.A inA4 Unfactored seismic wind Reaction at support level = 1140,3 plC 193.12 oIl Reaction at Base = 635.42 Of 166.48 Of Mmax at 14.85 ft 13.43 ft. from base PP!ME JOG: - STRUCTURAL DATE: AMIS ENGINEERS SHT PAu p& N'4 r611}z 1'b ?Pofi (2ktEL -tP ?-- /c 'x2t/ FtLAMIR- " iiW- pIE12- r-5 )?J"LOL. D TAPR'ME 1 S1PUCTURAL DATE: 'Ir1I L ENGINEERS SHI: i5c'j PRE-CAST CONCRETE WALL PANEL DESIGN -------------------------------------------- Considerinq P-Delta Effets SEAUC Green Book' To iterate P-Delta effects to conerqence DESCRIPTION :PANEL N-4 ALLOWABLE. STRESSES ) f'c : Concrete = 3,000 psi > Min Vert Steel 0.0025 Fy : Reinf. = 60,000 psi > Min Horiz Steel X : 0.0015 > Phi: : 0.90 Max. Vert. Spacine 12.40 in > Seismic Factor 0,3 Max. Horiz.Spacinq 18.00 in > Wind Load 12.4 psf Beta 1 0.85 > Reveal Depth 0.75 in 0.6 x Rhow-Ba1anced 0.0128 > Reveal to Bottom 16 ft Shall Uniform LL Be Used With Wind/Seismic Loadings 2 Y1 N:0 --> 0 DESIGN DATA (Enter All Loads UN-FACTORED > Clear Wall Ht. 26.5 ft > Eccentric Dead Load 52 pif > Total Wall Ht. 29 ft > Eccentric Live Load = 0 plf Ht I Thk Ratio 31.8 > Load Eccentricity 6.75 in (default = t/2 + 3") > Wall Thickness = 10 in > Rebar Size '#' 5 > Uniform Lateral Load 112.5 Of > Rebar Spacing 8 in > I-fist, to Bottom 16 ft ) X-Dist. to Top 29 ft > Depth To Steel 7.5 in > Seismic:1, Wind:2 --> 1 <-- (default = t/2) > Rebar Spacing@Reveal= 4.5 in > Point Lateral Load 0 > Axial Uniform DL = 4375 p11 >1-Dist. from Bottom Oft > Axial Uniform LL = 0 pU > Seismic:1, Wind2 --> Steel at each face= 2 01 for single layer, 2 for doule layers) ---------------------------------------------------------------------- DESIGN SUMMARY SEISMIC WIND N-n Phi : MOMENT CAPACITY 174,315 in-# 1?4,315 mE Mn * Phi ) 11cr O.K. N-u : APPLIED MOMENTS 119,628 in-# 11 6,897 mE OVERSTRESS 0.0 1 0.0 1 HEIGHT I SERVICE DEFLECTION 489 7,102 SERVICE LOAD DEFL.BCONVERGENCE 0.65 in 0.04 in P/A <0.04 * f'c, O.K. DESIGN SUMMARY at REVEAL -------Provide additional * 5 8 N.A o.cl 11-n * Phi : MOMENT CAPACITY N.A in-* N.A mE Mn * Phi > 11cr O.K. Mn * Phi •• Ncr O.K. N-u : APPLIED MOMENTS N.A. in-* N.A. mE OVERSTRESS N.A 1 N.A 7. HEIGHT / SERVICE DEFLECTION N.A ERR SERVICE LOAD DEFL.@CONVERGENCE 0.738 in ERR Deflection Exceed!! P/A <0.04 * Pc, O.K. E PRIME J08 :.qT-2657 SUCThRAJ., DATE: ENGINEERS SHT : LATERAL LOADINGS Wall Wt @150 pct = 125.0 psf Wind Load * 1.275 15.8 psf Lateral Wall Wt = 37.5 psI Lateral Wt * 1.403 52.6 ost VERTICAL LOADINGS At revel P-Axial : 41 427 pit 4427 pit P-Wall : 1,522 0 1,625 0.0401 c PtA 43.6 psi 54.5 psi 120 psi Pu-Axial: 4,648 pit 4,648 pIt Pu-Wall 1 1598 1,706 0 Pu-Total: 6,245 Of 6,355 pit ANALYSIS VALUES AT REVEAL As(eff) = I Pu:tot + (As*Fy) 3,/ Fy, 0.569 inA2/ft N.A inA2 'a' (As*Fy + Pu) !(.85*f'c*12) 1.116 in NA in 'c' 'a' I .85 1,313 in N.A in Phi : Capacity Reduction Factor 0.9 019 Mn = As(etf) * Fy * ( d - a/2 ) 193,683 in-a N.A in-s Mu = Mn * Phi 174,315 in-# N.A in-* E : 57,000 * (f1c.5) 3.!E+06 psi 3.1E+06 psi n 29,000 / Er 9.25 9.29 Fr : Mod. of Rupture : 5*( f?CA.5) 213.9 psi 273.9 psi Section Modulus : (Gross) 200.0 jA3 171.1 inA3 Moment Capacity 8 Cracking = S * Fr 54,772 in-# N.A in-i Moment of Inertia : (Gross) 1000.0 in4 N.A i nA4 Moment of Inertia : (Cracked) 211,4 A4 N.A inA4 Unfactored seismic wind Reaction at support level = 1836.7 Of 196,76 Olf Reaction at Base = 713,210 pit 162,84 pit Maax at 16.83 ft 13.13 ft. from base 9- A PRIME JOB: ME L STRUCTURAL DATE. ENGINEERS SKI : L LJr3E A A - A C,O\jE 2aL NA IcA ~41 I I $1 l ?\ 2 CUE ?ItT3L - - ()0. * Of Th ' ?A• o VkL - LV I 1 E) ô•. ?rL \-') -i e-223- cke A c2 ?A3EL L\ u EL \- ________- tO'i - TH (I) ELO liY -1?. Tfc L:/ 4(v) tDt- / A5SuM T41 Cf MrL s A) b?L j3L1 V\J 9 tnt T 73EL 5GrN). BL% PRIME JOB: 7-2./ STRUCTURAL DAM - ENGINEERS 51ff: ____ 1vMEL10 -7 & Li-3Ecij ,b IFLF • 4e PL 37TYF G S ?L 7 v)efcc.e 91.6t Fur- /-2.1'LF 590 ?LF L- 7p:x UF oul'?Vj T i)7 "o ej P)6 . A') PRE-CAST CONCRETE WALL PANEL DESIGN -------------------------------------------- Considering P-Delta Effects SEAOC 'Green Book' To iterate P-Delta effects to convergence DESCRIPTION :PANEL N-7B LINE 2.A PIER A - FULL HT. PANEL ALLOWABLE STRESSES ------------------ > Pc : Concrete = 3,000 psi > Min Vert Steel X : 0.0025 > Fy : Reinf. 60,000 psi > Min Horiz Steel X : 0.0015 ) Phi: : 0.90 Max. Vert. Spacing = 16.53 in > Seismic Factor 0.3 Max. Horiz.Spacing : 18.00 in > Wind. Load = 12.4 psf Beta 1 0.85 > Reveal Depth 0.75 in 0.6 x Rhow-Balancels 0.0128 > Reveal to Bottom 13.5 ft Shall Uniform IL Be Used With Wind/Seismic loadings ? f1 N:0 --) DESIGN DATA (Enter All Loads UN-FACTORED > Clear Wall Nt. = 27 ft > Eccentric Dead Loa-1 = 260 plf ) Total Wall Ht. = 29 ft > Eccentric Live Load = 0 pit Ht / Thk Ratio = 43.2 > Load Eccentricity = 6.75 in (default t/2 + 31) > Wall Thickness 2 7.5 in > Rebar Size 'I' : 5 > Uniform Lateral Load: 21.08 pif > Rebar Spacing : 10 in > X-Dist. to Bottom : 0 ft > X-Dist. to Top Z 27 ft ) Depth. To Steel : 4.94 in > Seismic=1, Wind:2 --> 1< -- (default t/2) > Rebar SpacinglReveal: 10 in > Point Lateral Load c 01 > Axial Uniform DL : 916 pIt ) X-Dist. from Bottom = . Oft > Axial Uniform LL 0 pIt > Seismic=1, Wind-2 --> 1 <-- ------------------------------------------------------ DESIGN SUMMARY SEISMIC WIND --- Is fl-n * Phi : MOMENT CAPACITY = 91,001 in-I 91,001 in#11 Mn * Phi > Ncr O.K. 10 fl-u APPLIED MOMENTS = 84,610 in-I 11,313 mE OVERSTRESS . = 0.0 X 0.01 Is HEIGHT / SERVICE DEFLECTION : 182 4,483 SERVICE LOAD DEFL.ICONVER6ENCE 1.78 in 0.07 in 1 P/A ( 0.04 * f'c, O.K. I DESIGN SUMMARY at REVEAL ---------Provide additional * 5 I' LA o.c fl-n * Phi : MOMENT CAPACITY N.A in-I N.A mE Mn * Phi > Mcr O.K. Mn *-Phi > Ncr O.K. H-u : APPLIED MOMENTS N.A. in-I N.A. mu OVERSTRESS : N.A X N.A X HEI6HT / SERVICE DEFLECTION = N.A ERR I SERVICE LOAD DEFL.€CONVER6ENCE = N.A in ERR 1Deflection Excd--- PIA <0.04*f'c,).K. A MEW LATERAL LOADINGS ---------------- Wall Mt I 150 pcf = 93.8 psf Wind Load 1.275 15.8 psf Lateral Wall Mt = 28.1 psf Lateral Vt * 1.403 : 39•4 psf VERTICAL LOADINGS At revel P-Axial : 1,176 p11 1,176 p11 P-Wall 1,457 ' 1,453 • 0.04*f1c P/A 29.3 psi 32.5 Psi 120 psi Pu-Axial: 1,235 p11 1,235 plf Pu-Wall 1,530 1,526 Pu-Total: 2,765 plf 2,761 plf ANALYSIS VALUES AT REVEAL As(eff) a ( Pu:tot + (AsaFy) I / Fy 0.418 inA2/It N.A in'2 'a' (AsaFy + Pu) I(.8501012) 0.820 in N.A in 'C': 'a' / .85 0.964 in N.A in Phi : Capacity Reduction Factor 0.9 0.9 On a As(eff) a Fy a Cd - a/2 ) 101,112 in-I N.A in-1 Mu Mn a Phi = 91,001 in-I N.A in-I .E : 57,000 a (f'c'.5) : 3.IE+06 psi 3.IE+06 psi n : 29,000 / Ec = 9.29 9.29 Fr : Nod, of Rupture : 5a( fcA.5) : 273.9 psi 273.9 psi Section Modulus : (Gross) 112.5 jA3 91.1 jflA3 Moment Capacity I Cracking = S afr 30,809 in-I N.A in-I Mount of Inertia : (Gross) = 421.9 mM N.A inA4 Mount of Inertia : (Cracked) : 65.0 jA4 N.A in'4 Unfactored seismic wind Reaction at support level = 722.60 p11 193.12 plf Reaction at Base s 662.18 p11 166.48 p11 Hoax at 13.46 ft 13.43 ft. from base I I I I I I I I I I mr M__111f1i PRE-CAST CONCRETE WALL PANEL DESI61 -------------------------------------------- Considering P-Delta Effects SEAOC 'Green Book' To iterate P-Delta effects to convergence DESCRIPTION :PANEL N-@ LINE 2.A PIER B - FULL NT. PANEL ALLOWABLE STRESSES ------------------ > Pc : Concrete : 3,000 psi > Min Vert Steel Xi 0.0025 > Fy : Reinf. 60,000 psi > Min Horiz Steel Z : 0.0015 > Phi: : 0.90 Max. Vert. Spacing: 16.53 in > Seismic Factor 0.3 Max. Horiz.Spacing: 18.00 in > Wind Load = 12.4 psf Beta 1 0.85 > Reveal Depth 0.75 in 0.6 x Rhov-Balanced= 0.0128 > Reveal to Bottom 13.5 ft Shall Uniform IL Be Used With Wind/Seisaic Loadings ? 7=1 N=0 --> DESIGN DATA ( Enter All loads UN-FACTORED > Clear Wall Ht. = 27 ft > Eccentric Dead Load = 260 plf > Total Wall Nt. 5 29 ft > Eccentric Live Load : 0 plf Ht / Thk Ratio 43.2 > Load Eccentricity = 6.75 in (default = t/2 + 31) > Wall Thickness = 7.5 in > Rebar Size 'V :. 5 ) Uniform Lateral Load= 42.2 plf > Rebar Spacing : 6 in > X-Dist. to Bottom : 0 ft > X-Dist. to lop : 27 ft > Depth To Steel = 4.94 in > Seisiic=1, Wind=2 --> 1 (-- (default : t/2) > Rebar SpacingtReveal= 6 in > Point Lateral Load : .o a > Axial Uniform DL : 1832 plf > X-Dist. from Bottom : 0 ft > Axial Uniform LL = 0 pit > Seis.ic=1, Wind:2 --> 1 (-- Steel at each faces 2 (1 for single layer, 2 for double layers) -------------------------------------------------------- I DESIGN SUMMARY SEISMIC WIND 1 I I I --------- 1 .1 M-n * Phi : MOMENT CAPACITY 143,003 in-t 143,003 intl Mn I Phi > Ncr O.K. 1 N-u : APPLIED MOMENTS = 122,971 in-1 42,932 intl OVERSTRESS s 0.0 1 0.0 1 1 HEIGHT I SERVICE DEFLECTION = 131 1,001 It SERVICE LOAD DEFL.8CONVERGENCE = .2.48 in 0.32 in Deflection Exceed!!! P/A ( 0.04 * f'c, O.K. I DESIGN SUMMARY at REVEAL ----------Provide additional $ 5 8 N.A o.d I M-n * Phi : MOMENT CAPACITY = N.A in-$ N.A intl Mn ' Phi > Ncr O.K. Mn' 'hi > Ncr O.K. N-u : APPLIED MOMENTS : N.A. in-t H.A. intl I OVERSTRESS N.A 1 N.A 1 1 I HEIGHT / SERVICE DEFLECTION = N.A ERR SERVICE LOAD DEFL.QCONYERGENCE = N.A in ERR I I Deflection Exceed!!! P/A (0.04 * f'c, O.K. --------------------------------------------------------I 4 I F If'S1)4 I' - 15P&-x O (Z.O'- I P1ME JOB IJ-) i snucmrt DATE: £2 ENG;NEERs SHT I I I. I I I I I I.. I I I (i 6 I41 t3' - (v3 Elf 1.k1 Is vV <I ~57D 5,)e 2t) + (C ,y IC-0 '19 Y4! 36 V' 1 via-@ )C (0/4- ?AL 7S7\cLc Pk .sziF I I IL I I I I I ~ u I I 11 I I PRE-CAST C:LNCRETE LL rANEL LESI -------------------------------------------- Consider i nq PDeI t za fecte, SEAOC. Green Bock To iterate P-elt; nfis to cnoenca TESCR!FTICN :PANEL W-6 PIER B ALLC'A8LE STRESSES --------------- > f'c Concrete ,000 i > M:th Vert Steel X > Fy : 'Re inf. 60,000 psi. > IM Horiz tee1 1 0,0015 > Phi: : 0.90 Max. Vert. Spacing 16.53 in > Seisaic Factor 0.3 Max. Horiz.Scacino : j- > Wind Load 12,4 pet Beta 1 0.85 .' Peei C r} '5 r, x R v w - 3 Reveal to 3rUOM 16 ft '\ Shall Un! lore LL .. Loadino.s DESIGN OATh ( Enter All Loads UN-FACTORED > Clear We, 26 ft 7 Eccentric DEad Loa.d 52 ft : Ecceqtrc Live Load 0 Mt / Thk rat!o 41.6 > Load Eccertrcjt' 6.75 > Wii Ti,iness 7,5 in sz s . Urfcrr Lateral Loa 52,7 21t Rebar Span no. 6 in > X-Di et, to ?.ottos 7 .... ,. 1-Diet, to Trr It > Depth To Steal : Sin > Seiseic:l, Wind:2 - 1 (-- (default = t12) 7 ebar.Spec:ng@evea: 0 :n 7 roint Lateral Lc:ao = U : Axial Uni fore DL : 4981 p1 f > I-Dint. frc'a Bottoc = 0 ft > Axial Uniforn LL = 0 pit > ismic:1, Wind:2 --> 1< -- Steel at each face: 2 (1 for sinpie layer, 2 for. icuble layers) ---------------------------------------------------------------------- DESIGN SUMMARY SEISMIC WIND li-n * Phi : MOMENT CAPACiTY 143,325 i 11 143,325 in# Mn * Phi > Ncr O.K. N-u APPLIED MOMENTS 124,853 in-t 2217 ir OVER STP.ESS . : 0.0 1 0.0 1 HEIGHT / SERVICE DEFLECTION . 1,115 22345 SERVICE LOAD DEFL.&:ONVERGENc:E 2.15 in 0.01 in P/A 0.04 * f'c, O.K. DESIGN SUMMARY at REVEAL ----------Pro'ide additional #5 @ N.A o.cl N-n * Phi : MOMENT CAPACITY N.A in-v NA in#I Mn * Phi > Mr o.r: , Mn * Ni > Ncr O.K. N-u APPLIED MONENTS : N.h. in* N. A, ir 'OVERSTRESS : N.A I N.A 7. HEIGhT I SERVICE DEFLECTION N.A ERR 1 SERVICE LOAD DEFL.GCONVERGENCE : 3.436 in ERR Deflection ExceeoH! F/A <0.04 * I':, O.K. ------------- wMiEw LATERAL LOADi13S ------------ Wall Wt 9150 pci = 93,9psf Wind Load 1,275 15.8 psf I _I.,- -. - - ,. .. - - - :.,... - .1 VERflCAL LEADINGS At ravel ---------- a! 5, 5,33 pit 5,033 p1t P-Wail : 1.451 i,213 0,04x1'c F/A 72 psi 77.2 psi 120 psi Pu-Axial: 5,285 pit 51 285 pIt Pu-Wall : 1,524 U 1,280 U Pu-Total: 6,808 p1 6,564 pit ANALYSIS VALUE\s AT REVEAL .As(eff) [ Fu:tot + (APy) I /Fy E. .4 n2 'a' = (AsFy + kt) I.85*t'c*12) !,a35: i N.A in 'c' 'a' 1.692 in N.,A in Phi : Capaci It. y.Reuuctioñ Factor 0.3 0.9 'As (aff) *Fy * Cd - a/2 ) 159,250 r-k NA Mu Mn Ph :n - 13, 325 n-* LA in- E 57,000 * tf'c.5) !+O oi 3.1E06 osi 00 / c Fr of Ruouce : .5*( f'c 5. 272, 17:3.3 p Seceon 14.oduius (ilrcss) 112.5 91.1 ir'3 ticIr/ant Capacity S Cractir:q S * Fr 30,803 in- NA in- A V;o g. ent ci Inertia (Gross) 421.3 inA4 N,A jA.4 Nosent of inertia : (Cracked) = 93.9 ir;A4 N.A irM tirfactored saia wind Reaction at support level 1257.5 p 200.55 pIt Reaction at Base 71749 p1t 159.05 pIt Near t 13.52 ft 12.63 ft. froa case [J G~'ENN-A PR'JOB 1TUPAL DATE: ENEERS SHT: _____ PRE-CAST CONCRETE WALL PANEL DESIGN -------------------------------------------- Considerino. P-Delta Effects SEAOC 'Greer, Book To iterate P-Delta effects to covergence DESCRIPTION :PANEL N-6 PIER C ALLOWABLE STRESSES > f'c Concrete 3,000 psi > Mm Vert Steel 0.0025 > Fy Reinf, = 60,000 psi Min Horiz Steel i 0. 00 15 > Phi 0.90 Max. Vert, Spacing = 16,53 in > Seismic Factor 0.3 Max. Horiz.Spacinq = 18,00 in Wind Load i psf Beta I : 0.85 > Reveal Depth : 0.75 in 0.6 x Rhow-Balanced: 0.0128 > Reveal to Bottom 16 ft Shall Uniform LL Be Used With Wind/Seismic Loadings ? Yi N:0 --> 0 DESIGN DATA (Enter All Loads UN-FACTORED > Clear Wall Mt. = 26 ft ) Eccentric Dead Load = 52 plf > Total Wall Mt. : 29 ft > Eccentric Live Load = plf Ht I Thk Ratio = 41.6 > Load Eccentricity = 6.75 in (default = t/2 + 3fl) > Wall Thickness = 7.5 in > Rebar Size 'V 5 > Uniform Lateral Load 42.2 plf > Rebar Spacing lOin ) 1-Dist. to Bottom = 14 ft ) X-Dist. to Icip 29 ft > Depth To Steel 5 in Seismic:!, Wind:2 --i SI (default = t/2) > Rebar SpacingReveai: 0 in > Point Lateral Load - 0 : Axial Uniform DL = 3187 p11 > I-Diet. from Bottom.: Oft > Axial Uniform LL = 0 pill > Seismic:!, Wind=2 --> 1 (-- Steel at each face: 2 (1 for single layer, 2 for couble layers) ---------------------------------------------------------------------- DESIGN SUMMARY SEISMIC WIND M-n * Phi MOMENT CAPACITY 91,552 ml 91,552 in H-u APPLIED MOMENTS 761 353 in-# 16,389 mE OVERSTRESS : 0.0 ( O.O.Y. HEIGHT / SERVICE DEFLECTION : 255 31 151 SERVICE LOAD DEFL.@CONVERGENCE 1.23 in 0.10 in PIA (0.04 * fl,, 0. DESIGN SUMMARY at REVEAL ----------Provide additional # 5 8 N.A o.c H-n * Phi MOMENT CAPACITY N.A in# N.A mE Nn*Phi >Mcr 0K. . Mn*Pii>Mcr O.K. N-u MPPL!D MOMENTS N.A in-* N.A. 1n#! OVERSTRESS h.A ,. N.A h HEIGHT / SERVICE DEFLECTION N.A ERR SERVICE LOAD DEFL.@CONVER1iENCE 2.085 in ERR Deflection Exceed!H P/A <0,04 * f'c, O.<. I A PP'ME JOB. —. I A c— 'CllJRAL DATE: 1 Mki ENGINEERS SHT: LATERAL CIAfl LUflhJIIUuC Wall Wt @150pcf: 93,3 psI Wind Load * 1.275 15.8 psI Lateral Wail Wt =23.1 pst Latea1 Wt * 1.403 = 39.4 psf VERTICAL LOADINGS At revel xiai . j,j p P-Wall : 1,293 1,219 0.04*f'c P/A 50.4 osi 55 psi 120 osi u-Axial: 3,401 pit 4,401 plf Pu-'wall : 1,357 1,280 Pu-Total: 4,758 p1t 4,681 pit ANALYSIS VALUES AT REVEAL As(ef I) = ( Pu:tct + (As*Fy) ) / Fy 0.451 inA2!ft N.A i nA2 'a' (As*Fy +Pu) H* f c * 129 0.885 in N.A in 'a' / .85 1.041 in N.A in Phi : Capacity Reduction Factor 0.3 0.9 Mn As(eff) * Fy * Cd - a/2 ) 101,724 in-v N.A in-# Mu Mn * Phi 91,552 in# N.A ml E : 57,000 * (fcA.5). 3.1E+06 psi 2.1E+06 psi n : 29,000 / Ec 9.29 9.29 Fr : Mod. of Rupture: 5*( fA5 273.9 psi 273.9 psi Section Modulus : (Gross) 112.5 i nAS 31.1 in A3, Moment Capacity 9 Crackinq = S * Fr : 30,809 ml N.A in# Moment of Inertia : (Gross) 421.9 jA4 N.A in4 Moment of Inertia : (Cracked) 70.2 ir4 N.A i nA4 Unfactored seismic wind Reaction at support level = 978.31 plf 200.55 Of Reaction at Base 470.31 pit 159.05 Of Msax at 15.21 ft 12.83 ft, from base / A FVE JOB t1-i5b1 I I S1T66TURAL DATE: ZjJ-fl ENGINEERS SlIT : _____ 'u1 12- (11 -4 - - - - - - Il I II ,.. II II I c)Ji 510 1441< 1K 3.I K 471'5K - - l'L-FxlS PRIME J IA OB STRUCTURAL CAM Z - 7 ENGINEERS iT LATEML k_ -1S - WF LEV L € TT / oi wro &F L + 1SF ULR)E cuD := - 19-V 7.15 j- -(- e, 1p ± ML . Lth)-E ?c o.x 'kL Y - &13 , &3 )\g rLF = L;F FL 1Lt' ?L G75.OpFx I.Q 876 Pu b PI)eL El, woolt 3.7YF xlt VWY A& -3 - 3L PLF 1(9 17b ?LFt2 fl, I ' A PRIME JOB: I STRUCTURAL DATE 7-47 I [ ENGINEERS 51ff : I P-Wfl7) - ( 'F c 7) I e -ie (G =- ~K I I c3A) 5F c 7,ø)g' MC. I I a PU x c x 2- I . tO.9 - PL1 L74 Ii) 1'63 6 ?u= L7 0PL L&74 117 0 7Uf / El - 2L751 F(O3 . - 7I.I 11.4 - 090.0 f Z-r- - 1 - El IA PRIME 7-0446 STRUCTURAL DAlE. 7- ENGINEERS SifT I k%T / m1O I LX PF I 1&) c O 7.k I 5e5.Q I )nri ecnOP - I I P4 L )ô ?F 76 15 1L4 I kir3 13 = 67T S'F ' &)% '3 ?'f- .2 • I I; WA I FLoV)' i7L pSf b7q.7 [??42 pAov6l_ CD (3 = 3-7p5ex,1E/x OI3 =2316 I MTTOA/ to fse ri,sc I I PRiME JOB: AJAV (CDT) - IA URALEW--4NEESTRUCT T I1 LOAD PPiU{Ots.) /evr C1oA) 67 T P IF + 5O f 770 'ip Pu O17!c 11.'t is) x 3J K 'O3 u( ;,( •) )ô JoT\.f/coTH ct\crj (C,EN.') '"RbF 4'5S7LF PF ?Lr 4'+ BOp COL' Jtcç V.4-x V,F - ( O. L74) 0. LOAD LEFT RIGHT Dead 83.453 79.463 Live 0.000 0.000 Total 83.453 79.463 MAXIMUM FORCES s3B i ROOF PHRAGM BLDG 1 (1v) s1p12v1s0b4148TBEAM ANALYSIS PROGRAMs1p9v1s0b4148-T SPAN LENGTH 156,00 ft (Simple Span) UNIFORM LOADS (k/ft & It) wd wi Xi - X2 1.103 0.000 0.00 68.00 0.999 0.000 68.00 156.00 REACTIONS (k) (6. 60) sOp 10. 0oh 12v Os Ob 3T V max = 83,45 k 8 0.00 ft Yd max = 83.45 k 8 0.00 ft N max = 3160.37 kIt 8 76.45 ft Md max = 3160.37 kIt 8 76.46 ft DEFLECTIONS (El =kinA2) LOAD Dell (in) X (It) Total 13864270176/El 77.69 Live 0/El 0.00 Dead 13864011354/El midspan TOTAL Defi El L / 180 1333102848 L 0/240 1777470464 L / 360 2666205696 tC) t57w12 I s0B09/17/97 97-250 I I I I I ROOF N/S b La I SPAN LENGTH 104.00 ft (Simple Span) UNIFORM LOADS (k/ft & ft) wd wl XI - 12 1.178 0.000 0.00 42.00 1.121 0.000 42.00 104.00 REACTIONS (k) LOAD LEFT RIGHT Dead 60.203 58.775 Live 0.000 0.000 Total 60.203 58.775 MAXIMUM FORCES V max = 60.20 k 8 0.00 ft Vd max 60.20 k 8 0.00 ft H max = 1540.83 kft 8 51.57 ft Nd max = 1540.83 ktt 8 51.57 ft DEFLECTIONS (El = kinA2) LOAD Defi (in) I (ft) Total 3003028992/El 51.90 Live 0/El 0.00 Dead 3003017490/El midspan TOTAL Defi El L / 180 433129184 L / 240 577505600 L I 360 866258368 E IME Jo L'CT1JRAL DATE: jf GINEERS SHT±J s1p12v1s0b4148TBEAM ANALYSIS PROGRAMs1p9v1s0b4148T (6.60)s0pl0.00h12v0s0b3T MAY CHORD = 7(p 14 Y9,7157 A ç ftcreA= e2)((Oo 0,227 utSe i - 0191W 66P, I I I F PRIME J03:____ ij, STRUCTURAL kTE ENGINEERS SIfT : AT~Tlt~ Itt- or\ ? If 665?LF - Q I IIi Nf I ItL 1H - cr 23.2k1 22K (io7,, 10 I I, 1ID !H1M 4 .. 1c-Icrr?' (LO) rA2 ITA PRIME jo - I RUC11JRALOATE: ENGINEERS SHT (CCD-MZZ) Ll hjE PJEL r,3 -1 I H___JV------r-------i . A 1zc_= :'2- & 10 7'; "7I+1c I .r±-___3 f~c - ZJ82 I I L i. ç I s- I L-ia , ji= J3_ I' tF-DUCT _1_ I 2x41E I J L I tME 'm I . AA,i6=c <S - - LNJ'E- )) PAN-EL k _ H _ 7'fl.. —r cOL1t DEDUCT- 44 AD 1) - .1 0 I x lio2 - 7/ T7-fl( E I d - 1, 2-72 6.1 c L1AJ I¼YL 1Aj5. 13 - 117 L , 2. L k)l Oo3 Ab r)= 12-7 x 41er =0 00 =o.•17 = PA- r1EL L 2 = c- L I NYTE 1cL F If71JL / 4168 kip-ft I ave. thk (in) dist. ht. (ft) length (ft) wi * Li (k) Xi (ft) Wi * Li * Xi (k-ft) line 1.1 6.5 12.75 44 8.34136875 0 0 line 1.12 6.5 12.75 11.7 2.218045781 4 8.872183125 line 1.2 6.5 9.5 48 6.78015 32 216.9648 line 1.3 6.5 6.5 10 0.96646875 40 38.65875 line 1.4 7.5 13.75 24 5.6615625 72 407.6325 1 sum = 95 kips Panel A ' pP'M JOB:Cj7_ ST JCTU?AL DATE: L ENGINEERS SHI : ______ Dist. load Wi NO Li (ft) Wi • Li Xi (ft) Wi • Li * Xi (k-fl) 0.9 32 28.8 16 460.8 1.655 40 66.2 56 3707.2 1° ex Ry I Dist. East - West direction load I SUM= .1 SUM = 23.96759578 kiP9 672.1282331 i-F1 40.684425 ft 3.6 ft 104.72 kips 9215.36 kip-ft Wi (kif) Li (ft) Wi * Li Xi (ft) Wi ' Li * Xi (k- 595 176 104.72 881 9215.36 Panel line 1.A line 1.A.3 line 1.0 line 11 ave. thk dist. ht. (ft) length (ft) wi • Li (k) $ (ft) Wi • Li * (k-ft) 7 13 -0 8.3265 176 1465.464 6.5 6.5 6 1.54635 166 256.6941 7.5 6.5 2 1.3381875 88 117.7605 6.5 13.5 E.2 . 10.4378625 0 0 SUM = 21.6489 kips 1839.9186 87.4841721 ft 8.8 ft TWL V Io.7z;.r V kjfS. I DATE . ENGINEERS sHT I RIGID DIAPHRAGM ANALYSIS - 2nd Floor Diaphragm ---------------------------------------------------------- LOT 41 BLDG 1 ,I V 126.4 KIPS C.G I 40.68 ft Case I Ty 513 Ibft ex 3.6 ft V 87.48 ft Tx -1270 ibft ey 8.8 ft C.R 1 40.22 ft Case 2 Ty -397 Ibft Y 106.3L! 'it Ix - -34 lbft I ----------------------------------------------------- -------------+- Centroid - Stiffne iorsionl I Direction V Direction -----------+---------------------+------------------------------------+----------------------------------- 1 WALL I V Rx Ry Rx*V Ry*X Rd"2 R/R V Vtorl Vtor2 Vt R/Rt V Vtorl Vtor2 Vt -----------------------------------------------------------+---------------+-------------+------+-------------+-------------+------ I n I 4 ) 4') ''n4 I 4 I t I IC'I 14 I 21.1 Lii 1.1 I L.aQ,J i ,).J,)1 I I h.0 10!. .i I 0 V I Lii 1.121 4 1.134 5 438 1 1.2 9% 11 -0 0 11.0 Lii 1.2 32 4.032 1 129 272 13 0 1 1.0 30'!. 38 -0 0 3816 1Ln1.3141) 0.7881 32 0 0 0 0.06X 8 -0 0 7.5 Lii 1.4 72 5.103 367 5154 -2 -5 4.9 39'!. 49 1 1 -1 49.4 Ln1.A 176I7.06 1243 342741437. 55 -5 -15154.81 12 -212.2 - 1Ln1.A.31 166 12.182 1 362 7770 1 137. 17 -1 -4 16.9 1 -0 0.6 I Ln 1.0 88 1.457 128 489 31 9 Ii 0 1 1 12.1 1 i -0 0 0.1 liii i.E 1 5,6 63308 347. 43 7 18 1 61.3 1 -3 2 2.6 I I I I n I I J I I I I I I +-------+-------------+-------------+---------------------+---------------+-------------+------+-------------+----------:_+ ------ Sue 16,299 13.24 1733 532 116286 16X 126 -0 -0 1007. 126 0 -0 II +-------+---------------------------+---------------------+------------------------------------+------------------------------------ I, 1 0 i 1 I JOR: - STL:Tj DATE: ENGiNEERS SI-fl LDCi— I Lfr2l @ LI (J) Pi GrW. - = FLEX. = lv4. ftFX. LiMe l/2 (k5) IIO-2,zz - FLEc. N/Pc S L1AxE 12 (Ja) FLEx. Cwv-ra'u (2 7 (Ii) 4cj4 43, 7K = 33j R—il T PR'ME JOB: - £ ST1aJCUJRAL DATE: L E;'GNEERS SIlT Li '.14 FL E( 46 -4.7 =3/c L\3 JA-. VJI) (T -) /2/:L = 4q4k I ZL>(. FLEX 6-1 D aDvEI2,vs [I PRME jo919 '-\ TJCT1JAL DATE: ±iJTJ E:'GNEERS SHT PM- P<tJPct1c I tJO- kML VpL I LAW 'J %2.W.+ x24--1,Vb. L5 I VM - 4?? o)JscLzq )9,75' xO.t'3 46 (/ klarffl~~ ii (oYO p4 w Mw.tJkLL Ip'z2'+ F'L 1i' ?V2- pfr- + V izfr& OLS52- L - e;bu-PUT I.LA W I7Mi:1 -1) I 5VA- iPtiT I i.. I CONCRETE SHEAR WALL DESIGN (PER StL.1! 14 UBU) DESCRIPTION: LINE 1.4 • W.: .0.60 tips/ft uniform loads(w) P1 8.60 tips P2 1.50 tips hi V-------> I P1 P2 I Li = 0.00 ft - I- - LL 5.0 a ft I I L = 24.00 ft H LI L2 V I V hi 22.20 ft I L I I V = 134.70 tips Wall THK = 7.50 in Pc: 3.00 ksi Load factor: 1.40 Elf, THK = 7.50 in fy: 60.00 ksi H/L : 0.92 I Acv*SQRT(f'c : 118.31 ups Av 2160.00 in' 8*Acv*SQRT(f'c) 946.46 ips Vn 678.92 tips Phi*Vn = 0.60*Vn 407.35 tips I Vc = 236.62 tips Phi*Vc = 0.60+Vc 141.97 lips I Vu: 198.58 Lips Vu>Acv*SQRT(t'c),HOOKHORIZ.REINF. Vs = 0.00 tips Vu <0.60 * Vn O.K. F shear reini. As req'd:0.23 inA2/FT . #48 11,00 in o.c. I SHEAR REINF. *58 17.00 in o.c. #68 18.00 in o.c • #78 18.00 in o.c. I CHECK HOLDOWN REQUIREMENTS. U : 1.4E t 0.9* DL t Uniform load 14.40 tips Wall wt 61.87 tips Point loads 10.10 tips . Sum P : 86.39 tips Holdown at left end 134.10 tips As: 2.48 i nchA2 I Holdown at right end: 142.81 tips As: 2.64 inchA2 Holdown Bars . left end riqht end #5 re-bars : 9.00 3.00 *6 re-bars : 6,00 7.00 *7 re-bars : 5.00 5.00 *8 re-bars : 4.00 4.00 I . JOB I TThlO1U?AL DATE ENGINEERS SHT: E JOB: CflJRAL DATE: 1NEERS CONCRETE SHEAR WALL DESIGN (PER SEC,1921 1994 uBc) DESCRIFTION: LINE 1.4 Check Boundary Member Requiresent, PV = 43.19 Kips Pu = 60.46 Kips 0.1*Aq*f'c = 648.00 Mu/(Vu*iw) 0,92 35492 Kips Vu 188.58 Kps 3*lw*h*sqrt(f'c) Boundary Member not required Flexural Design Mu = 4186.48 ft-kips As reqd = 3.36 sq.in As sin = 7.05 sq.in (200/fy * b * d) As sax = 33.91 sq.in (Rhow bal * 0.75 * b * d) Beta = 0.85 Rhow bal = 0.02 As req'd * 4/3 provided As #4 re-bar req'd 23.00 4.60 sq.in *5 re-bar req'd 15.00 4.65 sq.in *6 re-bar re&d 11.00 4.84 sq.in *7 re-bar reqtd: 8.00 4.80 so.in #8 re-bar reqld: 6.00 4.74 sq.in *9 re-bar req'd: 5.00 5.00 sq.in #4 dowels at slab on grade Avf req Jd:Vu/(0,6*Phi*fy) 6.16 inA2 #4 dowels at 9 o.c. Check sir. Vertical reinforcements As req'd: 0.23 inA2/ft for *5 and scalier As req'd: 0.23 in2/ft for #6 and larger *4 8. 10.00 in o.c #58 16.00 in o.c. *6 8 18.00 in o.c, 478 18.00 in o.c. I I I, I I I I I I I I I I I I, I) I W PIM JOE: TCTUAL DATE: NGNE(3 SHT: ____ CONCRETE SHEAR WALL DESIGN (PER SEC.121 1994 UBC) r-2 DESCRIPTION: SHEAR WALL I-8 BLOt W = 0.53 tips/ft uniform loads w) P1 = 0.00 tips P2 = 0.00 kips hl II I ri Li = 0.00 ft L2: 0.00 ft L = 10.00 ft H 1 LI 1 L2 v v hi = 010n f H = 13.001t L V = 18.40 tips Wall THK 6.50 in fc 3.00 ksi Load factor 1.40 Eff. THK 650 in fy= 60.00 ksi H/L 1.30 Acv*SQRT(f'c) 42.72 tips Av 780.00 inA2 8*Acv*SQRT(f'c) 341,78 kips Vn = 245.17 kips Phi}Vn = 0.60*Vn 147.10 tips Vc = 85.44 kips Phi*Vc = 0.60*Vc 51.27 kips Vu = 25.76 tips Vs = 0.00 tips Vu <0.60 * Vn O.K. shear reinf. As req'd 0.20 inA2/FT #48: 12.00 in o.c.i SHEAR REINE. #58 18.00 in o.c. #6 8 18.00 in o.c. #7 8 18.00 in o.c. CHECK HOLDOWN REQUIREMENTS. U = i.4E t 0.9* DL Uniform load = 5.20 kips Wall wt = 10.56 tips Point loads = 0.00 tips Sum p = 15.86 tips Holdown at left end = 27.74 tips As 0.51 inchA2 Holdown at right end= 27.74 tips As 0.51 i nchA2 Holdown Bars left end right end #5 re-bars = 2.00 2.00 #6 re-bars = 2.00 2.00 #7 re-bars = 1.00 1.00 #8 re-bars = 1.00 1.00 JOB F PR'ME . - I S1TUCTJ2AL DATE: / EGNETS ST CONCRETE SHEAR WALL DESIGN (PER SEC. 192! 1394 UBC) DESCRIPTION: SHEAR WALL .4 BLG1 ]T -2 Check Boundary Member Requirement. Pv = 7.93 Kips Pu = 11.10 Kips 0.1Ag*f'c = 234.00 Kips Mu/(Vu*lw) = 1.30 3*lw*h*sqrt(f'c) = 128.17 Kips Vu 25.76 Kips Boundary Member not required Flexural Desiqn Mu = 334.88 ft-kips As req'd = 0.66 sq.in As mm 2.47 sq.in (200/fy * b * d) As max = 11.88 sq.in (Rhow bal * 0.75 * b * d) Beta = 0.85 Rhow bal = 0.02 As req'd * 4/3 provided As #4 re-bar req'd: 5.00 1.00 sq.in #5 re-bar req'd: 3.00 0.93 sq.in #6 re-bar reg'd= 2.00 0.88 sq.in * *7 re-bar req'd 2.00 1.20 sq.in *8 re-bar req'd: 2.00 1.58 sq.in *9 re-bar req'd: 1.00 1.00 sq.in #4 dowels at slab on grade Avf req'd:Vu/(0.6*Phi*fy) 0.84 in2 *4 dowels at 24 Check aim; Vertical reinforcements As req'd= 0.20 inA2Ift for #5 and smaller As req'd: 0.20 in2/ft for #6 and larger #4 8 12.00 in o.c. #5 8 18.00 in o.c. *6 8 18.00 in o.c. #7 8 18.00 in o.c. L E. C TUT) L:9J CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1394 UBC) DESCRIPTION: SHEAR WALL tO BLGI r-3 W 0.32 kips/ft uniform loads w) 0.00 tips P2 0.00 tips hi V-------> P1 P2 LI: 0.00 ft L2: 0.00 ft L = 16.00 ft H 1 LI L2 V V hi = 0.00 ft H: 13.00 ft L V = 29.00 tips Wall THK = 6.50 in (Pc: 3.00 ksi Load factor; 1.40 Eff. THK = 6.50 in fy: 60.00 ksi H/L = 0.81 Acv*SQRT(f'c) 68.36 tips Av = 1248;00 in2 8*AcvfSQRT(f'c) 546.85 tips Vn: 392.27 tips Phi*Vn = 0.60*Vn: 235.36 kps Vc = 136.71 tips Phi*Vc = 0.60*Vc 82.03 tips Vu = 40.60 tips Vs = 0.00 tips Vu <0.60 * Vn O.K. shear reinf. As req'd: 0.09 inA2/FT *4 @ 18.00 in o.c. SHEAR REINI. #58 18.00 in o.c. #68 18.00 in o.c. *7 8 18.00 in o.c. CHECK HOLDOWN REQUIREMENTS. U = 1.4E t 0.91 DL Uniform load = 5.12 tips Wall wt = 16.90 tips Point loads = 0.00 tips Sum P = 22.02 kips Holdown at left end 23.82 tips As: 0.44 inch A2 Holdown at right end: 23.82 tips As: 0.44 inch A2 Holdown Bars left end right end #5 re-bars = 2.00 2.00 *6 re-bars : 2.00 2.00 #7 re-bars : 1.00 1.00 #8 re-bars = 1.00 1.00 CONCRETE SHEAR WALL DESIGN, (PER SEC.1921 1994 UBC) DESCRIPTION: SHEAR WALL 1\4 8L131 Check Boundary Member Requirement. Pv = 11.01 Kips I Pu = 15.41 Kips O.1*Ag*f'c = 374.40 Kips - Mu/(Vu*lw) = 0.81 I 3f1w*h*sqrt(Vc) = 205.07 Kips Vu 40.60 Kips I Boundary Member not required Flexural Design I Mu = 527.80 ft,-kips As req'd = 0.63 sq.in I As sin = 4.03 sq.in (200/fy * b * d) As max = 19.39 sq.in (Rhow bal * 0.75 * b f d) Beta = 0.85 - Rhow bal = 0.02 As req'd * 4/3 provided As *4 re-bar req'd: 5.00 1.00 sq.in I #5 re-bar req'd: 3.00 0.93 sq.in #6 re-bar req'd 2.00 0,88 sq.in #7 re-bar req'd 2.00 1.20 sq.in #8 re-bar req'd: 2.00 1.58 sq.in I #9 re-bar req'd: 1.00 1.00 sq.in I 14 dowels at slab on grade Avi req'dVu/(0.6*Phi*fy) 1.33 inA2 14 dowels at 27 I Check Vertical sin. reinforcements • As req'd: 0.16 in2/ft for *5 and smaller As req'd 0.20 in-2/ft for *6 and larger *4 8 15.00 in o.c, I £1 A' - - 1O,I_t! #6 8 18.00 in o.c. #7 8 18.00 in o.c. i) 1 iA p rI-1': .K: L Sfl(.fCUTA' r;::: ENGNEERS s-ir CONCRETE SHEAR WALL DESIGN (PER SEC. 1321 1994 UBC) DESCRIPTION: SHEAR WALL t5 BLGI 1-4 W= 0.34 tips/ft unifora loads :) P1 = 0.00 tips P2 = 0.00 tips Pt P2 Li = 0.00 ft L2: 0.001t L = 12.00 ft H 1 Li L2 I ii I V ii V hi = 0.00 ft H: 13.00 ft L 51 tips Wall THK = '7.5 n Pc: 3.00 ksi Load factor: 1.40 Eff. THK : 6.75 in fy= 60.00 ksi H/L 1.08 Acv*SQRT(f'c) : 53.24 i:ips Av = 972.00 inA2 8*Acv*SQRT(f'c) 425.91 cips Vn : 305.52 tips Phi*Vn = 0.60*Vn : 183.31 .ips VC = 106.48 tips Phi*Vc = 0..60*Vc : 63,89 cips Vu : 71.82 tips Vu>Acv*SORT(f'c),HOOP( HORIZ. REINF. Vs : 0.00 tips Vu <0.60 * Vn O.K. shear reinf. As req'd: 0.23 inA2/FT *4 8 11.00 in o.c. SHEAR REINF. *5 8 17.00 in o.c. *6 8 18.00 in o.c. *78 18.00 in o.c. CHECK HOLDOWN REQUIREMENTS. U : 1.4E t 0,9* DL Uniform load : 4.08 tips Wall wt : 14.63 tips Point loads = 0.00 tips Sue P = 18.71 tips Holdown at left end : 72.40 kips As 1.34inchA2 Holdown at right end: 72.40 tips As: 1.34 inch 1'2 Holdown Bars left end right end #5 re-bars = 5.00 5.00 #6 re-bars : 4.00 4,00 *7 re-bars : 3,00 3.00 #8 re-bars = 2.00 2,00. A PRtME jom C . - STRUCTh'AL AVE: ENG1NEE13 SHT CONCRETE SHEAR WALL DESIGN I (PER SEC. 1921 1994 UBC) DESCRIPTION: SHEAR WALLBLG1 1-4 Check Boundary Member Requirement. I Pv = 9.35 Kips I Pu = 13.03 Kips 1 0.1fAg*Vc = 291.60 Kips Mu/(Vu*lw) = 1.08 I 3*lw*h*sqrt(f'c) = 159.72 Kips Vu 71.82 Kips I Boundary Member not required Flexural Design I Mu = 933.66 ft-kips As req'd = 1.53 sq.in As mm 3.45 sq.in (200lfy * b *d) • As max: 16.60 sq.in (Rhow, bal * 0.75 * b * d) Beta = 0.85 Rhow bal = 0.02 Asreq'd*4/3provided As 14 re-bar req'd: 11.00 2,20 sq.in #5 re-bar req'd: 7.00 2.17 sq.in * #6 re-bar req'd: 5.00 2.20 sq.in #7 re-bar req'd: 4.00 2.40 sq.in #8 re-bar req'd: 3.00 2.37 sq.in I #9 re-bar req'd: 3.00 3.00 sq.in 14 dowels at Avf req'd:Vu/(0.6*Phi*fy) slab on grade : 2.35 in"2 #4 dowels at 12 0 O.C. I Check mm. Vertical reinforcements As Yeq'd: 0.23 in2/tt for *5 and smaller I As req'd: 0.23 inA2/ft for #6 and larger #4 8 10.00 in o.c. I . #5 8 *6 8 16.00 in 18.00 in o.c. o.c. #78 18.00 in o.c. I' 1 UCTUiAL CZE: LL GNEIRS SHT Lt KIC (i A- ry L,t- t) -qII WIOE( (Cc —48TOP I?OTTV!A Fv,k' ti.-+- 41. 3' .. U 'Opublovtf - 72Z 44* 1tt 1i)c F7L I'1— LINE 1.4 ppr -10 03123/37 T! 1-') DIJE: 7-250 ENGNEERS SHT GRADE REAM ANALYSIS PROGRAM (4.02) Footing LENGTH = 52,0 ft Footing WIDTH = 6.00 ft Footing DEPTH =3.50 ft Conc Weight = 0,15 k. ,cf Surcharge = 0,00 .f Footing + Surch, = 3.15 hif UNIFORM LOADS (k/ft & It) 1 2 3 4 5 Xi - 12 3.200 3,200 3.200 3.200 3.200 3.00 27.00 POINT LOADS (k & It) 16.30 8.60 8,60 16.30 15.30 27.00 3.30 1.50 1.50 3.30 3,30 22.00 5 8 .. f;C-,- d 4.00 58,50 58.50 42,00 0.00 129.80 -129.80 129.80 -129.80 3.50 0.00 -129.80 129.80 -129.80 129.80 26.50 RESULTANTS (k, ft & ksf) CASE 1 2 3 4 5 Pt 318.70 294.70 294.70 318.70 318.70 X 26.30 15.40 35.66 16.93 35,66 Q max 1.06 2.13 2.00 2.09 2.17 Q min 0.99 0.00 0.00 0.00 0.00 MAXIMUM FORCES (k, kIt) ASE 1 2 3 4 5 V max 31.48 99.47 117.21 100.01 117.21 M max 158.06 56.47 1520.71 55.41 1555,62 M min 0.00-1358.89 -19.69-1349.49 -19.69 V max = 117.21 k M max = 1555.62 kIt N mm :-135839 kft 03/23/97 F AL: 97-250 ENG'NaE3 ST : LINE 1.4 GRADE BEAM DESIGN PROGRAM (4.02) DESIGN DATA 3.00 ksi b = 72,00 in fy = 60.00 ksi 1h = 42.00 in Load Factor = 1.50 d = 38,00 in SHEAR DESIGN Vsax = 117,2 k VC = 293.7 k Vn = 206.8 c Vs = 0,0 k Av = 0.72 si/ft S sax = 19.00 in Vs 0 stirrups are optional 1 #3 Stirrup @ 3,71 2 # 3 Stirrups @ 11.3, 1 #4 Stirrup @ 6.7 2 #4 Stirrups B 13.3 FLEXURAL DESIGN Beta 1 = 0.85 As sin = 9.12 si As max = 43.87 si M+ sax = 1556 kft N- sin = -1359 kft Mn+ = 2593 kft Mn- = -2265 kft As str = 14.56 si As str = 12.60 si As = 14.56 si As = 12.60 si Bottom Steel Top Steel Bar No. Space No, Space * 6 33.1 1.9' 28.6 2.2B *7 24.3 2.6' 21.0 3,Qfl *8 184 34U 160 40 *9 146 43 126 490 #10 115 5.3' 3.9 6.4' #11 9.3 6.4 8.1 7.1 dpME 13M Q LINE 1-2 I - PIC- - I . All .ij__ I V IrE - L3/ I 4p 41F3 Flom" I - c1f Sett PLtt I eOELt'1/E3 U I FE L) IS .5 t . 0 - ' uit x I = I K Lf 2. 4E T31' JOB LINE 1.3 - 09/23/97 - 97-250 GRADE BEAM ANALYSIS PROGRAM (4,02) Footing LENGTH = 30.00 ft Footing WIDTH = 3.00 ft Footing DEPTH = 2.00 ft Conc Weight = 0.15 kcf Surcharge = 0.00 ksf Footing + Surch. = 0.90 kit UNIFORM LOADS (k/ft & ft) 1 2 3 4 5 Xl - X2 1,460 1.160 1.160 1.460 1.460 0.00 i0.00 POINT LOADS ft 1 ft) 1 2 3 4 5 X 0.00 25.60 -25.60 25.60 -25.60 0.50 0.00 -25.60 25.60 -25.60 25.60 9,50 27.30 11.10 11.10 27.30 27.30 20.00 RESULTANTS (k, ft & ksf) CASE 1 2 3 4 5 Pt 68.90 49.70 49.70 68.90 68.90 X 14.86 9.15 18.42 11.52 18.21 8 max 0.79 1.21 0,93 1.30 1.26 8 min 0.74 0.00 0,23 0.27 MAXIMUM FORCES ft, kit) CASE 1 2 3 4 5 V max 13.76 24.84 24.84 24.85 24.84 H max 67.3/ 0.19 171.88 7.64 175.12 M mm -0.72 -178.76 -0.19 -176.32 -0.19 V max = 24.85 k N max = 175.12 kit M mm -178.76 kft LINE 1.3 09/23/97 97-250 GRADE BEAM DESIGN PROGRAM (4.02) ESIGN DATA Pc = 3.00 ksi b = 36.00 in fy = 60.00 ksi h = 24.00 in Load Factor = 1.50 d = 20,00 in SHEAR DESIGN Veax = 24.8 Vc = 78.9 k Vn = 43.8 k Vs = 0.0 k Av = 0.36 si/ft S max = 10.00 in Vs = 0, stirrups are optional 1 #3 Stirrup @ 7.3" 2 #3 Stirrups @10.0" i# 4 Stirrup @10.0" EXURAL DESIGN Beta I = 0.85 As mm 2.40 si As max = 11.55 si M+ max = 175 kft M- mm -179 kft MM = 292 kft Mn- = -298 kft As str = 3.07 si As str = 3.14 si As = 3.07 si As = 3.14 si Bottom Steel Top Steel Bar No. Space No. Space * 4 15.4 1.8" 15.7 1.8" #5 9.9 2.8", 10.1 2.5" #6 7.0 4.0" 7.1 3.5" * 7 5.1 4.7' 5.2 4.7" #8 3.9 7.0" 4.0 7.0" #9 3.1 7.0" 3.1 7.0" #10 2.4 9.3" 2.5 9.3" #11 2.0 14.0" 2.0 14.0" PRIV.7 JOB TI GRADE BEAM ANALYSIS PROGRAM (4.02) Footing LENGTH = 20.00 it Footing WIDTH = 4.00 it Footing DEPTH = 2.00 it Conc Weight = .0.15 kct Surcharge = 0.00 ksf Footing + Surch. = 1.20 klf UNIFORM LOADS (k/ft & ft) 4 . C '14 '1 '1 ?) 4. 1.860 1,380 1.380 1.860 1.860 2.00 E8.00 POINT LOADS (k & ft) 1 2 3 4 5 0.00 24.60 -24.60 24.60 -24.60 2.50 0.00 -24.60 24.60 -24.60 24.60 17.50 RESULTANTS (k, it & ksf) CASE 1 2 3 4 5 Pt 53.76 46.08 46.98 53.76 53.76 X 10.00 1.99 18.01 3.14 16.86 O max 0.67 3.86 3.86 2.86 2.86 O min 0.67 0,00 0.00 0.00 0.00 MAXIMUM FORCES (k, kIt) CASE 1 2 3 4 5 V max 2.98 26.80 26.80 20.84 20.84 N max 14.88 80.81 80.81 65.83 65.83 N min 0.00 -3.92 -3.92 -3.98 -3.98 V max = 26.80 k N max = 80.81 kit H min = -3.98 kit PP'M.E JOR -?5I S1TUCTURAL DATE: ' l/Yf- ENGINEERS SIT : 1,f:2a LENt l.Aj 97-250 GRADE BEAMDESiGN PROGRAM. (4.02) DESIGN DATA 3.00 ksi 6 48.00 in. ty = 60.00 ksi h = 24.00 in Load Factor = 1.50 d = 20,00 in SHEAR DESIGN Vaax = 26.8 k Vc = 105.2 k Va = 47.3 If. Vs = 0.0 k Av = 0.48 si/ft S sax = 10.00 in Vs = 0, stirrups are optional I * 3 Stirrup 8 5.5" 2 113 Stirrups 8 10.0 I * 4 Stirrup 11 10.0" FLEXURAL DESIGN Beta I = 0.85 As sin = 3.20 si As sax = 15.39 si P1+ sax = 80.8 kft P1- sin = -4.0 kIt Mn+ = 134.7 kIt Mn- = -6.6 kIt As str = 1.37 si As str = 0.07 si As = 1.83 si As = 0.09 si Bottom Steel Top Steel Bar No. Space No. Space *4 9.1 4.Ou 0.4 - * 5 5.9 6,7 03 - 116 4.2 8.0' 0.2 - U •7 It - • • - V. *8 2.3 13.3 0.1 - #9 1.8 20.00 0.1 - S tU1U1 (Aè if w uN z J/ '47 rp7 [TA PR I jcy £ E,G:N:ERS £HT - b1RAp ei , (PAtJEL iE-4) 115?S xI?' 5?S4 t4. t1 t&)1- ?cC—C cL 1-3 ' 1.s ft— I I: I I I. I JAr PPtME jq Tm ST1RUCTURAL DATE: ENGINEERS SHT LINE l.CA 09/23/97 97-250 6RADE BEAM ANALYSIS PROGRAM 4,02) Footing LENGTH 24.00 ft Footing WIDTH 5.50 it Foot ing DEPTH 2.50 ft Ccnc Wmiqht 0.15 kcf 3urhaiqe 0.00 ks Fcotirq + Srch, 2,06 Hf UNIFORM LOADS (k/it & ft) 2.02.0 .1.540 1.540 2.020 2.020 6.00 18.00 POINT LOADS (k & ft) 1 2_ 3 4 5 I 0.00 60.63 -60.63 60.63 -60.63 6.50 0.00 -60.63 .60.63 -60.63 60.63 17.50 6.10 4.30 4.30 6,10 6.10 6,00 RESULTANTS (k, ft CASE 1 2 3 4 5 Pt 79.84 72.28 72.28 79.84 79.84 11.54 2.42 20.87 3.19 19.89 0.max 0.67 2.63 2.80 3.04 2.36 Q min 0.54 0.00 0.00 0.00 0.00 MAXIMUM FORCES 1k, kIt) CASE 1 2 3 4 5 V max 9.30 57.76 51.26 56.37 47.62 M max 36.75 249.47 206,42 225.91 181.90 M rdin 0.00 -43.76 -45.91 -43.82 -46.87 V max = 57.76 k M max = 249.47 kit - - if si M Ii - .oJ k ft L i,CA GRADE BEAM DESIGH PRDGAM (4.02) DESIGN DATA f'c 3.00 ks. b 66.00 in f = 50.00 ksi ii 30.00 in Load Factor 1.50 d 16.00 SHEAR DESIG yeas 57.8 k Vc =188.0 k Vn 101.9 k Vs = k 0,66 si/ft S sax. =13.00 in Vs 0, stirrups aa re optina 1 * 3 Stirrup 6 4,0i 2#3Strrps@ 8.0° I #4 Strup 5 7,3' 2 * 4 Stirrups S i3,0 FLEXU:(IL DESIGN Beta I = 0.35 As ijI - - £ As sax = 27.52 M+ sax = 249.5 k f t M- sin = -46.9 kit Mn+ = 415.8 kit tin- = -78.1 kIt As str = 3.27 si As str: 0.60 si As = 4.36 si As = 0.80 si Bottom Steel Top Steel Bar No. Space N:'. Space * 4 21.8 2.6 4.0 14.5H #5 141 39° 26 138 *6 99 5.80 1.8 290° *7 7.3 7.3° 1.3 29.0° #8 5.5 9,70 1.0 - #9 4.4 11,6° 0.8 - 910 3.4 14.5° 0.6 - #11 2.8 19.30 0.5 - I A PR'ME jq O(17 j IA SiTIUCflJRi'L DATE: ZVT ENGINEERS SHT: _____ LATE Z4L fiN4LY51 -tkcr -.I- RUE £ STRUC1UAL DtTE: ENGINEERS SHT: P p V:Z = o. t<' vrj = \/vrl w-j w-2 c L (Ivt- a = x24 )< oi3 = 11? = 144 aIzcpf x 44 "Y, 13,5"O3 PAN IL Y k v#tl W-4 11:?! 2325 <-3 L2-) Aic N 0 4% 55O(p 0,17 --/7 -Z. -7 =oc, 4 = 1,75 35 Oi7 (4 L4TE4L 4'V4LyJ 6 &t6 I (E3 E) V 9,4 K+ /19 5 i43 = I1 K w IiiEw, rl E -3 I22 2,045 34 32 203 723 jI DIi 6)TtiI.4 x 447 = i(,&3..2fr 1Qt'1 =01 xq3.7x(32 ?J37YjtZ)d4?2G.) -fQxc9s?3&Y.3c, 2 13k6 /<t I329O77 U I—'5H.D FL.X( ceoiupic L,4rE4L 4'14LYtS e,L -, A Pf?ME tfl g) Si1UC1URAL DATE: _____ ENGINEERS SHT: 27 4=40 =Q(Q4L Oi5 CI-fEC 1fOLDOW/V M K 2Tt-1< p .IVO H.D. NEF L = 36.00 ft I H/D whole: 0.750 DEDUCT B, C, D & E Add pier B, C AND D ) hi/Db: deduct C, D h2/Db: add C and D h2/13: - h3/L5: t•. Add pier E hi/Li: I I I I I 1' I DELTER c : 0. 394 h1/D: 0.191 0.059 .335 0.350 deta: 0.109 0.700 0.244 0.135 3.500 Rf: 0.187 3.500 .0.187° Sum Rf: 0.375 2.669 Sum delta: 2.534 Rb,c & d: 0.395 0.551 Rf: 5.492 Sum Rf: 5.886 (.170 Sum Delta: (.505 Rc : 1.982 LI I, Relative Rigidity Analysis .: Description:PANEL E-3,5 I) top of wall fixed (:j, N:0) 0 H 27.00 ft hi- h2 : "00 't 14:00 ft A H • LI 12.70 ft ---- B L2 : 3.30 ft L3 4.00 ft E hi C h2 h2 D • L4 12.00 ft N L5 4.00 ft Li L2 L3 L4 L5 11*~TLJML DATE. PR'ME L STRUCTURAL DATE: ENGiNEERS SHT ____ CONCRETE SHEAR WALL DESIGN (PER SEC,i921 1994 USC) DESCRIPTION: PANEL E-3 8L61 & BLG2 PIER A W = 0.34 tips/ft uniform loads ) P1 = 0.00 tips P2 = 0.00 tips hi V-------> P1 P2 Li = 12.70 ft 12 = 3.30 ft Al A2 L3: 12.70 ft H V V L = 28.70 ft hi = 2.00 ft Al = 0.00 ft h2 h2 = 7.00 ft A2 = 0.00 ft H = 27.00 FT U L2 1 L3 V = 82.60 tips Wall THK = 7.50 in f'c: 3.00 ksi Load factor 1.40 Elf. THK = 6.75 in fr 60.00 tsi h2/LI 0.55 Rfi 5.49 VI= 41.30 tips h2/L3 0.55 Rf2 5,49 Q=41.30 tips At Pier #1 WALL PIER (YES=l, NO=O)= 0 Av = 1028.70 inA2 8*Acv*S9RT(f'd 450.75 kips Vn = 323.34 tips PhifVn = 0.60*Vn 194.00 tips Vc = 112.69 tips Phi'Vc = 0.60*Vc 67.61 kips Vu = 57.82 tips Vu>Acv*SQRT(f'c), HOOK HORI. REINF. Vs = 0.00 tips Vu <0.60 * Vt O.K. shear reinf. As req'd 0.23 inA2!FT #48 11.00 in o.c. SHEAR REINF. #58 17.00 in o.c. #68 18.00 in o.c. *78 18.00 in o.c. At Pier #2 WALL PIER (VES:1, NO=O)= 0 Av 1028.70 inA2 8*Acv*SQRT(f'c) 450.75 tips Vn = 323.34 tips Phi*Vn = 0.60*Vn 194.00 tips Vt = 112.69 tips Phi*Vc = 0.60*Vc 67.61 kips Vu = 57.82 tips !Vu>Acv*SQRT(f'c), HOOK HOFIZ. REINF Vs = 0.00 tips Vu <0.60 * Vt O.K. shear reinf. As req'd 0.23 irr2/FT *48 11.00 in o.c. SHEAR REINF. 45 8 17.00 in o.c. #68 18.00 in o.c. #78 18.00 in o.c. #4 dowels at slab on grade At left At Reight Avf req'd=1v'u/(0.6*Phi*fy) 1.89 1.89 in"2 #4 dowels at 15 o.c. 15 o.c. CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 UBC) DESCRIPTION: PANEL E-3 BUll & 8L132 PIER A CHK HOLDOWN REQUIRTS. U i.4\t 0.9+ DL at Pier #1 L'4 at Pier *2 form load: \4.88 88 kips Wall wt 3\93 37. tips Poi loads O.b 0.0O\kips \Sum P 42.81\\ 42,81 Holdown at left en : 71.51 kips As= 1.32 inch Holdown at right en\ 71.51 tips 1.32 inchA2 Holdown Bars "\ft end ri ht end #5 re-bars: \5.00 500 #6 re-bars = .00 4 *7 re-bars: 30 3.00\ #8. re-bars =2.0'L 2.00 Check Boundar'Member Requirement. [ r PR!ME JOG : A STRUCTURAL DATE: ASPEL ENGINEERS SHT: Check mm, vertical reinforcements in piers at Pier #1 at Pier *2 pier #1 pier #2 \ As req'd: 0.23 0.23 inA2/ft for *5 & smaller Ny 42.81 Kips \ 42.81 Kips As req'd: 0.23 0,23 inA2/ft for #6 & larger Pu\ 59.93 Kips \59.93 Kips #4* 10.00 10.00 in o.c. GeometricaNy Symmetrical Wall \ #58 16.0(1 16.00 in o.c. O.1*Ag*f'c "8.61 Kips 308.'4 Kips #6 8 18.00 18.00 in o.c. 3*Iw SQR(f'c) = 16'9. ips 169. 03'\Kips *78 18.00 18.00 in o.c. Bound Member Not requir Flexural Design At left At right Mu : 404.74 404.74 ft-tips As req'd 0.61 0.61 sq.in As min 3.71 3.71 sq.in (2001fy*b mel) As max 17.85 17.85 sq.in (Rhcw'bal * 0.5 * b * di Beta : 0.85 0.85 Rhow ball = 0.02 0.02 At Left At Right As req'd * 4/3 provided As As req'd * 4/3 provied *4 re-bar : 5 1.00 5 1.00 *5 re-bar : 3 0.93 / 3 0.93 #6 re-bar = 2 0.88 * 2 0.88 4 #7 re-bar : 2 1.20 2 1.20 #8 re-bar : 2 1.58 2 1.58 #9 re-bar = 11 1.00 1 1.00 I [A PR!ME jo1iGt) N 1 STRUCTUR LNH~T E: ____ CONCRETE SHEAR WALL DESIGN [ ENGINEE (PER SEC. 1921 1934 'JBC) DESCRIPTION: PANEL E-3 BLGI & BLG2 PIER B & C I N : 0,34 kips/ft uniform loads w) P1 = 0.00 tips P2 = 0.00 tips hi R V-------> P1 P2 Li 4.00 ft L2: 12.00ft A2 I L3 = 4.00 ft H V V U L = 20.00 ft hi : 2.00 ft Al = 0,00 ft h2 h2 = 14.00 ft A2 = 0.00 ft H = 27,00 FT 1 Li L2 1 L3 V = 7.70 kips Wall THK = 7.50 in f'c: 3,00 ksi Load factor: 1.40 Eff, THX = 6.75 in fy= 60.00 ksi h2/L1: 3.50 Rf1: 0.19 Vi: .3.85 kips I 112/L3: 3.50 Rf2: 0.19 V2: 3.85 kips At Pier #1 WALL PIER (YESzI, NO:0): 0 Av = 324.00 inA2 8*Acv*SQRT(ftc) 141.97 tips Vi 84.09 tips Phi*Vn = 0.60*Vn 50.46 ips Vc = 15.79 tips Phi*Vc : 0.60*Vc 9.47 gips Vu = 5.39 tips Vs = 0.00 tips Vu (0.60 * Vc O.K. shear reinf. As req'd 0.23 in2/FT I *48 9.00 in o.c. SHEAR REINF. *5 @ 9.00 in O.C.1kO ::: . \'I At Pier *2 WALL PIER (YES:1, NO:(,,): . 0 I Av: 324.00 inA2 8*Acv*SQRT(f'c) 141.97 kips Vn : 84.09 tips Phi*Vn : 0.60*Vn 50.46 hips Vc = 15.79 tips Phi*Vc = 0.60*Vc 9.47 kips I Vu: 5.39 tips Vs = 0.00 tips Vu <0.60 * Vc O.K. shear reinf. As req'd 0.23 inA2/FT #48 9.00 in' o.c. SHEAR REINF. #58 9.00 in G.C. 1 *6 8 9.00 in o.c. $ *78 9.00 in o.c. *4 dowels at slab on grade At left At ReiQht Avf req'd=Vu/(0.6*Phi*fy) 0.18 0.18 ii2 *4 dowels at 48 o.c. 48 ' o.c. I CONCRETE SHEAR WALL DESIGN (PER SEC.I921 1934 USC) DESCRIPTION PAN E-3 BLGI & 8L62 PIERS C CHECK HOLDOWN REQUIREMEN . U - 1.4E 0.9* DL Load. Pier #1 Load Pier #2 Uniform load 3. 3.4 kips Wall wt: 19.31 19.31s Point loads = 0.00 0.00 kip\ Sun P = 22.71 22.71 kips\ Holdown at IC end 0.00 ups As: 0.00 inu:V2 Holdown at right d: 0.00 tips As: 1.00 inch2 NO Holdown requ red. Holdown Bars left end riqht Cflu #5 re-bars = 0.00 0.00 #6 re-bars 0.00 0.00 #7 re-bars : . 0 0.00 #8 re-bars 0.0 0.00 \ at Pier#1 at Pier *2 Ch k Boundary Member Requirement. Pv 22.71 Kips .71 Kips Pu 31.80 Kips 31. 0 Kips metrically Symmetrical Wall 0.1*Ag 'c 97.20 Kips 97.20 .ips Mu/(Vu*lw : 1.35 w*h*SORT(f'c) : 53.24 Kips 53.24 Kips AN W PRE Jo:'1-) S11UC1URAL DATE: ENGINEERS SHT: _____ Che''tmin. vertical reinforcements in piers pier #1 pier #2 req'd: p.23 0,23 inA2/ft for #5 & smaller As\eqtd 0.23 0.23 inA2/ft for #6 & larger 4€ 10.00 10.00 in o.c. 16.00 16.00 in o.c. #6@\16.00 16.00 in o.c. #7@ 00 16.00 in o.c. Member Not enuired Flexural Design At left At right Mu = 75.46 75.46 ft-tips As req'd = 0.39 0.33 sq.in As mm 1.10 1.10 sq.in (200/ly * b * di As max: 5.29 5.29 sq.in (Show bal * 035 * b * d) Beta = 0.85 0.85 Rhow bal = 0.02 0.02 At Left At Right As req'd * 4/3 provided As As req'd * 4/3 provided #4 re-bar = 3 0.60 3 0.60 #5 re-bar = 0.62 / 2 0.62 / #6 re-bar : 2 0.88 2 0.88 #7 re-bar = 1 0.60 * 1 0.60 * #8 re-bar = 1 0.79 1 0.79 #9 re-bar = 1 1.00 1 1.00 • JOR E&INGINEERS :X • SHT CONCRETE SHEAR WALL DESIGN I (PER SEC. 1921 1994 UBC DESCRIPTION: PANEL E-4 BLOt W = 0.34 tips/ft uniform loads w) I P1 = 0.00 tips • P2 = 0.00 tips hi V-------> F! P2 • Li = 0.00 L2 = 0.00 ft ft L = 32.00 ft H 1 Li 1 L2 I hi: 2.00 ft H = 27.00 ft V 34.00 tips Wall THK 7.50 in f'c: 3.00 ksi Load factor: 1.40 Eff. THK 6.75 in fy= 60.00 ksi H/L = 0.84 I Ay 2592.00 in 2 Acv*SQRT(f'c) 8*Acv*SQRT(fc) 141.97 1135.76 ki ps tips - Vn = 814.71 kips Phi*Vn :0.60*Vn 488.83 kips Vc 283.94 tips Phi*Vc 0.60*Vc 170.36 kips Vu : 47.60 Vs = 0.00 tips kips Vu <0.60 * Vn O.K. I shear reinf. As req'd: 0.11 i nA2/FT I SHEAR REINI. *4 B *5 B *6 8 18.00 in o.c. 18.00 in 18.00 in o.c. *7 8 18.00 in o.c. CHECK HOLDOWN REQUIREMENTS. U = 1.4E t 0.9* DL I Uniform load Wall wt : 10,88 87.00 tips tips Point loads : 0.00 tips I Sum P : Holdown at left end : 97.88 0.00 kips tips As: 0.00 inchA2 Holdown at right end: 0.00 tips As: 0.00 inch2 - Holdown Bars left-end right end #5 re-bars = 0.00 0.00 - I #6 re-bars : *7 re-bar : 0.00 0.00 0.00 0.06 #8 re-bars = 0.00 0.00 I - I WPR!ME Jon TRUCTURAL DATE: NGINEERS Si-if: _____ CONCRETE SHEAR WALL DESIGN (PER SEC, 1921 1994 UBC) DESCRIPTION PANEL E-4 BLGI Check Boundary Member Requirement. Pv = 48.94 Kips Pu = £8.52 Kips 0.1*Ag*f'c = 777.60. Kips Mu/(Vu*Iw) = 0.84 311w*h*sqrt(f'c) = 425.91 Kips Vu 47.60 Kips Boundary Member not required Flexural Design Mu = 1285.20 ft-kips As req'd.: 0.76 sq.in As mm 9.45 sq.in (200/fy * b * d) As max = 45.46 sq.in (Rhow bal 10.75* b * d) Beta = 0.85 Rhow bal = 0.02 As req'd * 4/3 provided As #4 re-bar req'd: 6.00 1.20 sq.in *5 re-bar req'd 4.00 1.24 sq.in #6 re-bar req'd: 3.00 1.32 sq.in 117 re-bar req'd 2.00 1.20 sq.in * *8 re-bar req'd 2.00 1.58 sq.in 119 re-bar reqid: 2.00 2.00 sq.in #4 dowels at slab on grade Avf req'd:Vu/(0.6*Phi*fy) 1.56 inA2 #4 dowels at 48 Il o.c. Check mm. Vertical reinforcements As reqld: 018 in2/ft for *5 and smaller As req'd: 0.20 in'2/ft for 116 and larger 1148 13.00 in o.c, #5 8 18.00 in o.c. *68 18.00 in O.C. *78 18.00 in o.c. PRIME JO I SUUCTURAL DATALi CONCRETE SHEAR WALL DESIGN ENGINEERS SHT (PER SEC. 19111 1994 UBC) DESCRIPTION: PANEL E-6, 8-2 8L81 PIER A,B,C,D W = 0.4 bps/ft uniform loads w) Fl = 0.00 tips P2 = 0.00 tips hi V-------> P1 P2 Li = 4.00 ft L2 = 8.00 ft Al A2 L2 = 4.00 ft H 1 V V L 16,00 it hi 2.00 ft Al = 00 ft h2 h2 = 6.00 ft A2 = 0.00 ft H 27.00 FT Li L2 4i 1.3 18.50 tips Wall THK = 7.50 in Pc: _-i.00 tsi Load factor: 1.40 Eff. THK = 6.75 in fy 60.00 tsi h2/Llz 1,50 Rf1= 1.27 VI: 9.25 dps h2/L3: 1.50 R12= 1.27 V2: 9.25 tips At Pier U WALL PIER (YES:!, NO:0): 0 Av 324.00 inA2 8*Acv*SQRT(1'c) : 141.97 dps Vn 90.75 bps Phi*Vn = 0.60*Vn 54.45 tips Vc 28.73 tips PhiVc = 0.60*Vc 17.24 rips Vu 12.95 tips Vs 0.00 tips Vu <0.60 1 Vc O.K. shear reinf. As req'd: 0.23 in2/FT #4 8 9.00 in o.c. SHEAR REINF. *5 @ 9.00 in o.c. - n *68 9.00 in o.c. 1 QI A vi *78 9.00 in o.c. '031V ( At Pier #2 WALL PIER (YES:!, NO:0)= 0 Av = 324.00 i nA2 8*Acv*SORT(f'c) 141.97 kips Vn = 90.75 kips Phi*Vn = 0.60*Vn = 54.45 hips Vc = 28.73 bps Phi*Vc = 0.60*Vc 17.24 kips Vu = 12.95 tips Vs = 0.00 tips Vu <0.60 * Vc O.K. shear reinf. As req'd: 0.23 iri2/FT SHEAR REINI. #5 8 90 in o.c. #78 9.00 in o.c. *4 dowels at slab on grade At left At Reiqht Avf req1d:Vu/(0.61Phi*fy) 0.42 0.42 i2 #4 dowels at 16 O;C. 16 1, o.c. I I I I I I I' Ii I I I I I I r I CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1994 UBC) DESCRIPTION: PANEL E-6, S-2 BLGI PIER A,B,C,D CHECK HOLDOWN REQUIREMENTS. U \0.45 DL Load at Pie Pier #2 Unifori\oad 2,72 72 tips Wakt: 19.50 0 tips Point load 0.00 oo tips Su* 22.22 tips Holdown at left end 24.47 t 0.45 ch'2 Holdown at right end: 4.47 t 45 i2 Holdown Bars left en end #5 re-bars 2.00 2.00 ,6 re-bars = 2.00 2.00 i\re-bars 1.00 1.00 #8 'bars 1.00 1.00 Check Bound>\Member Requirement. at Pier #1 at er #2 22.22 Kips 22.2.. Kips Pu\ 31.11 Kips 31.11 Kips Geometricay Symmetrical Wall 0.1*Ag*f'c \97.20 Kips 97.20 Ki Mu/(Vu*Iw) \69 3*lw*h QRT(f'c) 53.4 Kips 52.24 Kips Boundaj1eber Not required Flexural Design At left Mu = 77.70 As req'd 0.40 As min : 1.10 As max 5.29 Beta : 0.85 Rhow bal 0.02 At Left As req'd * 4/2 provided #4 re-bar 3 5 re-bar 2 #6 re-bar : 2 #7 re-bar 1 #8 re-bar 1 #9 re-bar wzimJoR PRIME STRUCTU%-AL DATE: Check mm. vertical reinforceeents in piers pier #1 pier #2 As req'd 0.23 0.23 inA2/ft for #5 & smaller As req'd: 0.23 0.23 inA2/ft for #6 & larger #4 @ 10.00 10.00 in o.c. #5 8 16.00 16.00 in o.c. #68 16.00 16.00 in o.c. #78 16.00 16.00 in o.c. At right 77.70 ft-tips 0.40 sq.in 1.10 sq.in (200/fy * b * d) 5.29 sq.in (Rhow bal * 075 * b * d) 0.85 0.02 At Right As As req'd * 4/3 provided 0.60 3 0.60 0.62 2 0.62 0.88 2 0.88 0.60 * 1 0.60 * 0.79 1 0.79 1.00 1 1.00 6 KIAPE ENGINEERS SHT: (E-3 '--) x k vp (( Jt) _ 1 40' 144 1- -;1'-• WYoF PAL w /2 ee 347 Ot (2Le-ce,r1,c) OT('1 =' 27 - /74 357 37qt.+ q3 o = P 3,57x 44 O' I74 541 I( 15 34-, -=2.Z4( Z iL C±)= ' L1Iz -k4E bM e Lv/&( PR'ME JOB ____ I A STRUC1URAL DATE: 1. ENGINEERS SHI M= 20 - L L ) 4 ) - C (t S = ( Oi4) zI M VV 2i4 2 = 422 V= 42Yr= 2J4 1< 4 x.(4 _ 5 i-2 4PIT(o'V,4L - nec 2 it" ITA PR!ME STRUCTURAL DATE: ENGINEERS SHT: CONCRETE BEAM DESIGN (tension steel only) -------------------- DESCRIPTION: OPENING 12 f'c = 3ksi Va 25.68 tip b = 24 in fy = 60ksi Ma 56k-ft h = 24in Ultlallow 1.4 d = h - Sin d = 19 in Vu = 92.76 psi Vc = 109.54 psi Vs = 0.00 psi Vc/2 = 54.77 psi - Mm, shear reinf. req'd spacing of #3 tie required = 11.00 in o.c. Mu = 78.40 k-ft As req'd: 0.94 sq.in As nun = 1.52 sq.in (2001fy x b x d As ma 7.31 sq.in (Rhow Bal .x 0.75 x x d Beta = 0.85 Rhow Bal = 0,02 As req'd * 4/3 provided As *4 re-bar req'd 7 1.40 sq.in #5 re-bar reg'd: 5 1.55 sa.in * #6 re-bar req'd 3 1.32 sq.in *7 re-bar reqtd: 3 1.80 sq.in #8 re-bar reqId: 2 1.58 sq.in #9 re-bar req'd 2 2.00 sq.in 1A PR!ME JOR STRUCTURAL DATE: ENG1NEERS CONCRETE BEAM DESIGN (tension steel only) -------------------- DESCRIPTION: OPENING 12 f'c = 3 ksi Va = 25.68 kip b = 24 in' fy = 60 ksi Ma = 39k-ft h = 24 in Ultfallow = 1.4 d = h - Sin d = 19 in Vu = 92.76 psi Vc = 109.54 psi Vs = 0.00 psi Vc/2 = 54.77 psi Mm. shear reinf, req'.d spacing of *3 tie required = 11.00 in oc. Mu = 54.60 k-ft As req'd 0.65 sq.in As mm 1.52 sq.in (200/fy x b x d As max = 7.31 sq.in (Rhow Ba! x 0.75 x b x di Beta = 0.85 Rhow Dal = 0.02 As req'd * 4/3 provided As #4 re-bar req'd 5 1.00 sq.in *5 re-bar req'd 3 0.93 sq.in * #6 re-bar req'd 2 0.88 sq.in #7 re-bar req ' Id= 2 1.20 sq.in #8 re-bar req'd 2 1.58 sq.in *9 re-bar req'd 1 1.00 sq.in ri I I I I I I I I I 1 I 1 r A PP'ME I r•J\ .JCThIAL CATE: s -J _____ L41A'L' kJAtí1 ' (ci i) 7Ab t\O 0 P OF 51Q - t,t1bi11l. 5 1 O(S - 1A*w 'r b t& '2M+ I4l 'Z,11f71f2 1- (242t I L4 Ftk12- -- OvW OLVOT- 430 iTM $T1z:1i I A RA1 DATE: RS SHT CONCRETE SHEAR WALL DESIGN (PER SEC. 192! 1994 USC) DESCRIPTION: AT LINE 1,A5 251-3'PANELS W = 0.05 hips/ft uniform loads 'M RI - 000 kips P2 = 0.00 hips hi V-------> P1 P2 Li: 0.00 ft L2: 0.00 ft I - 'I 44. U I L - Lj,L,j I U LL V V hi = 3.50 ft H: 25.501t L V = 53.20 hips Wall THK = 7,50 in Pc: 3.00 ksi Load factor: 1.40 Eff. IHK = 6.75 in fy: 60,00 ksi H/L = 1.01 Acv*SQRT(f'c) 112.02 kps Av = 2045.25 jA2 9*Acv*SQRT(f'c) 896.18 tips Vn : 642.86 hips Phi*Vn : 0.60*Vn : 385.71 hips Vc : 224.05 hips Phi*Vc = 0.60*Vc : 134.43 hips Vu : 74.48 hips Vs : 0.00 hips Vu (0.60 * Vn O.K. shear reinf. As req'd: 0.23 inA2/FT *48 11.00 in o.c. SHEAR REINF. *58 17,00 in o.c,V' *68 18.00 in o.c. #75 18.00 in o.c. CHECK HOLDOWNREQUIREMENi. U : I.4E t 0.9* DL Uniform load : 1.26 hips Wall wt : 68.65 hips Point loads : 0.00 kips Sum P : 69.91 hips Holdown at left end 44.64 tips As: 0.83 inch2 Holdown at right end: 44.64 hips As: 0,83 inch"2 Holdown Bars left end right end *5 re-bars 3.00 3.00 *6 re-bars : 2.00 2.00 *7 re-bars : 2.00 2.00 #8 re-bars : 2.00 2.00 I 1 I . I 1 I I' I Ii I I I I I I 4 I F PR'ME I s STRUCT1JAL DATE: ENGINEERS SHT:4j. CONCRETE SHEAR WALL 0E516N (PER 960.1921 1904 U80 DESCRIPTION AT LINE 1.A5 25'-30 PANELS Check Boundary Member Requirement. Pv = 34.96 Kips Pu = 48.94 Kips O.i*Aq*f'c = 613.58 Kips Mu/(Vufiw) = 1.01 3*iw*h*sqrt(f'c) = 336.07 Kips Vu 74.48 Kips Boundary Member not required Flexural Design Mu = 1899.24 ft-kips As reqd = 1.43 sq.in As sin = 7.43 sq.in (2001fy * b * d) As max: 35.72 sq.in (Rhow bal * 0.75 * b * d) Beta = 0.85 Rhow bal = 0.02 As req'd + 4/3 provided As #4 re-bar req'd: 10.00 2.00 sq.in * #5 re-bar req'd: 7.00 2.17 sq.in #6 re-bar req'd 5.00 2.20 sq.in #7 re-bar req'd= 4.00 2.40 sq.in #8 re-bar req'd: 3.00 2.37 sq.in #9 re-bar req'd 2.00 2.00 sq.in * #4 dowels at slab on grade Avf req'dVu/(0,6*Phi*fy) 2.43 in #4 dowels at 23 o.c. Check sin. Vertical reinforcements As reg'd: 0.23 inA2/ft for *5 and smaller As req'd 0.23 inA2/ft for #6 and larger *48 10,00 in o.c. .1600 in o.c. 46 8 18.0 in o.c. #7 8 18.00 in o.c. F A PR!ME JOR:- I I S1TUCfl.!7A(. DATE: /1 1 ENGNERS SHT : 09/24/97 97-250 - LINE 1.A5 GRADE BEAM ANALYSIS PROGRAM (4.02) Footing LENGTH = 3.50 ft Footing WIDTH = 3.50 ft Footing DEPTH = 3.00 ft Conc Weight = 0.15 kcf Surchrqe = 0.00 ksf Footina + Surh. 1.53 kIt UNIFORM LOADS (k/ft & ft) 2.770 2.770 2.770 3.00 53.50 POINT LOADS (k & It) 1 2 3 X 0.00 55.90 -55.90 3.50 0.00 -55.90 55.90 27.75 0.00 55,90 -55.30 28.75 0.00 -55.90 55.90 53.00 17.50 17.50 17.50 13.00 RESULTANTS (k, It & ksf) CASE 1 2 3 Pt 241.65 241.65 241.65 X 26.62 15.40 37.84 0 max 1.31 2.99 2.94 O min 1.27 (1.00 0.00 MAXIMUM FORCES ft, kft) CASE 1 2 3 V max 11.18 73.32 80.43 M max 114.65 340.24 26.37 N min 0.00 -25.39 -278.01- V max 80.43 k H max = 340.24 kIt H mm -278.01 kIt PR'ME JON: - A STRUC11JAL DATE: L ENGINEERS SHT: LINE i.A5 09/24/97 97-250 GRADE BEAM DESIGN PROGRAM (4.02) DESIGN DATA Vc = 3.00 ksi b = 42.00 in fy = 60,00 ksi h = 26.00 in Load Factor, = 1.50 d = 32.00 in SHEAR DESIGN Vmax = 80.4 k Vc = 147.2 k 141.9 k V s = 0.0 k Av = 0.42 si/ft S sax = 16.00 in Vs = 0, stirrups are optional I 43 Stirrup @ 6.3' 2 #3 Stirrups G 12.6' 1 44 Stirrup 8 11.4° 2 44 Stirrups 8 16.0° FLEXURAL DESIGN Beta I = 0.85 As sin = 4.48 si As max = 21.55 Si M+ max = 340 kft M- sin = -278 Mn+ = 567 ktt Mn- = -462 k't As str = 3.66 si As str = 2.37 si As = 4.48 si As = 3.96 si Bottom Steel Top Steel Bar No. Space No. Space 44 22.4 - 19.8 1.7° 45 14.5 2.3° 12.8 2.6" #6 10.2 3.1° 9.0 3.8' #7 7.5 4.3° 6.6 43° *8 5,7 5.7' 5.0 6.8' 4 C 'fl A f Cfl it i 'hi O.i 'h' C.J #10 2.5 8.5' 3.1 8.5° ,C ii Itil i.. ,., £...J i.i LI4TEI4L ,',4Ly Ldr I PR!ME JOB I I STRUCTURAL DATE: 1/TI ENGINEERS SHT 1PLf4i = + x x 2'1) i3 I224 \/= /22I 37 0,349 10 171;75 34 27,23 S-5 izzJ 37 4O3(i See- C- S-4- - .. Iz3 T A PrME oa _____ I fC\ TL'CTURAL DATE: ____ E.3:N ___ Ers SHT : ___ CONCRETE SHEAR WALL DESIGN (PER SEC. if! 1394 USC) DESCRIPTION: PANEL 5-3 BL'31 W = 0.05 tips/It uniform loads :w) P1 15.60 tips P2 = 0.00 tips hi V-------) P1 P2 LI = 12.00 ft L2: 0.001t L = 15.00 ft H Li L2 Ii II Y V hi = 2.00 ft H 27,00 ft L V 11.00 tips Wall THK = 7.50 in Pc: 3.00 ksi Load factor: 1.40 Elf. IHK 6.75 in fy: 60.00 ksi H/L = 1.80 Ac.v*SORT(f'c) 66.55 kips Av = 1215.00 iW'2 8*Acv*SQRT(f'c) 532.39 lips Vn = 355,28 tips Phi*Vn = 0,60*Vn 213.11 kips Vc = 100.45 tips Phi*Vc = 0.60*Vc 50.27 lips Vu = 15.40 tips Vs = 0.00 kips Vu <0.60 * Vn O.K. shear reinf. As reqld: 0.11 in2/FT #4 @ 18.00 in o.c. / SHEAR REINF. #5 8 18.00 in o.c. *68 18.00 in O.C. #7 8 18.00 in o.c. CHECK HOLDOWN REQUIREMENTS. U = 1.4E t 0.3* DL Uniform load = 0.75 tips Wall wt = 40.78 tips Point loads 15.60 tips Sum P = 57.13 tips Holdown at left end 6.44 tips As: 0.12 incfr2 Holdown at right end: 0.00 tips As: 0.00 inch2 Holdown Bars left end right end #5 re-bars = 1.00 0.00 #6 re-bars = 1.00 0.00 #7 re-bars = 1.00 0.00 *8 re-bars = 0.00 ITA PP!ME 0,J-75i L S1RLJCTU2AL DP: ENG:NERssHTJ CONCRETE SHEAR WALL DESIGN (PER SEC.1921 14UBc: DESCRIPTION: PANEL 9-3 8LI31 I. Check Boundary Member Requirement. I Pv = 28.57 Kips I Pu: 39.99 Kips 0.1fAg*f'c = 364.50 Kips Mu/(Vu*lw) = 1.80 3*lw*h*sqrt(f'c) : 13364 Kips Vu 15,40 Kips B - Boundary Member not required I Flexural Design Mu = 415.80 ft-kips As req'd = 0.53 sq.in I As mm 4.35 sq.in (200/fy * b * d) As max: 20.93 sq.in (Rhow bal * 0.75 * b * d) Beta = 0.85 Rhow bal = 0.02 As req'd * 4/3 provided As I #4 re-bar req'd: #5 re-bar req'd 4.00 0.80 3.00 0.93 sq.in sq.in - *6 re-bar req'd: 1.00 0.88 sq.in #7 re-bar req'd 2.00 1.20 sq.in I #8 re-bar req'd: 1.00 0.79 sq.in #9 rebar req'd: 1.00 1.00 sq.in #4 dowels at slab on grade I Avi req-/(0.6*Phi*fy) = 0.50 i nA2 *4 dowels at' 480.c./ I Check mm. Vertical reinforcements I As reqtd: 0.18 inA2ltt for *5 and smaller As reqld: 0.20 in'2/ft for #6 and larger *48 13.00 in o.c. *5 8 18.00 in o.c. I . #6 8 18.00 in D.C. 17 8 18.00 in D.C. I I I I I. I I I I 1 CONCRETE SHEAR WALL DESIGN I (PER SEC. 1921 1994 USC) DESCRIPTION: PANEL 5-4 BLG I - W = 0.05 tips/ft uniform loads () P1 = 0.00 tips I P2 = 0.00 tips hi V P1 P2 LI: 0.00 ft L2: 0.00 ft I L = 22.00 ft H Li L2 V hi = 2,00 It I H = 27.00 ft V = 28.00 tips L Wall THK : 7.50 in f'c: 3.00 ksi Load factor: 1.40 ff1. THK = 6.75 in fy: 60.00 ksi H/L: 1.23 PRIME jon S11UCT1PAL OATS: , &ZIA j 7MAI --- ENGINEEIRS SHT Acv*SQRT(f'c) = 91.60 'r ips ' Av = 1782.00 inA2 8*Acv*SQRT(f'c) 780.83 tips Vn = 560.11 tips Phi*Vn = 0.60*Vn 336.07 hips Vc = 195.21 tips Phi*Vc = 0.60*Vc 117.12 fUps Vu : 39.20 tips Vs = 0.00 tips Vu <0.60 * Vn O.K. #4 8 18.00 in o.c. *58 18.00 in o.c. #68 18.00 in O.C. *7 8 18.00 in o.c, shear reinf. As reqid: 0.11 in'2/FT SHEAR REINF. CHECK HOLDWN REQUIREMENTS. Uniform load Wall wt Point loads Sum P Holdown at left end Hoidowr, at'right end: Hoidown Bars #5 re-bars *6 re-bars #7 re-bars #8 re-bars left end right end - 2.00 2.00/ 1.00 1.00 1.00 1,00 1.00 1.00 U = 1.4E t 0.9* DL 1.10 tips 59.81 tips 0.00 tips 60.91 tips 21.18 tips As: 0.39 inch A2 21,18 tips As: 0.39 i nchA2 PR!ME 1 F'4 STR'JCTUAL DATE: CONCRETE SHEAR WALL DESIGN ENGNEERS I (PER SEC. 1921 1934 UBC) DESCRIPTION: PANEL S-4 BLS I Check Boundary Member Requirement. I Pv = 30.46 Kips I Pu = 42.64 Kips 0.1fAg*f'c 534.60 Kips I 3*lw*h*sqrt(f'c) MuI(Vu*lw) 1.23 = ?92,81 Kips Vu 39.0 Kips Boundary Member not reauireo I. Flexural Design Mu = 1058.40 ft-kips As req'd = 0.92 sq.in As mm 6.45 sq.in (2001fy * b * d) As max = 31.03 sq.in (Rhow bal * 0.75 * b * d) Beta = 0.85 Rhowbal = 0.02 As req'd * 4/3 provided As #4 re-bar req'd: 7,00 1.40 *5 re-bar reqfd: 4.00 1.24 sq.in sq.in * #6 re-bar req'd 3.00 1.32 sq.in *7 re-bar req'd 3.00 1.80 sq.in I #8 re-bar req'd: 2.00 1.58 sq.in #9 re-bar req'd: 2.00 2.00 sq.in *4 dowels at slab on grade Of req'd:Vu/(0.6*Phi*fy) 1.28 i nA2 I Chk #4 dowels at 38 B o.c. mm. Vertical reinforcements As req'd 0.18 in2Ift for *5 ano smaller Asreq'd 0.20in2/ft for #6 and larger #4 8 13,00 in o.c. #5 8 18.00 in o.c. *6 8 18.00 in O.C. *7 8 18.00 in o.c. tJ HI - PP!ME J0't172 STRUCPJRAL DATh Jr' BENGINEERS sHTj42..'f CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 USC) DESCRIPTION: PANEL S-S BLGI W = 0.05 kips/ft uniform loads i) P1 = 0.00 kips P2 = 0.00 kips hi V-------> Pt P2 LI = 0,00 ft L2 = 0,00 ft L = 15.00 ft H LI 11 L2 V V hi = 2.00 ft H = 27.00 ft V 11.00 tips -- - Wall INK = 7.50 in f1c= 3.00 ksi Load factor 1.40 Eff. THK = 6.75 in fy: 60,00 ksi H/L : 1.80 Acv*SDRT(f'c) 66.55 tips Av = 1215.00 inA2 8*Acv*SQRT(f'c) 532.39 kips Vn = 355.28 kips Phi*Vn = 0.60*Vn 213.17 tips Vc = 100.45 tips Phi*Vc = 0.60*Yc 60.27 tips Vu = 15.40 tips Vs = 0.00 tips Vu <0.60 * Vn O.K. shear reinf. As req'd: 0.11 in'2/FT @ 18.00 in SHEAR REINI. #5 @ 18.00 in o.c. #6 8 18.00 in o.c. #78 18.00 in o.c. CHECK HOLDOWN REQUIREMENTS. U = 1.4E t 0.9* DL Uniform load = 0.75 tips Wall wt = 40.78 tips Point loads = 0.00 tips Sum P = 41.53 tips Holdown at left end 9.34 tips As: 0.17 inch A2 Holdown at right end: 9.34 tips As: 0.17 i nchA2 Holdown Bars left end right end #5 re-bars 1.00 1.00 #6 re-bars 1.00 1.00 #7 re-bars : 1.00 1.00 #8 re-bars 1.00 1.00 CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1994 UBC) DESCRIPTION: PANEL S-S 8L131 PRIME Jon £ smUCflJ7A DATE: E;'GNE13 SHT Check Boundary Member Requirement. Pv = 20.77 Kips Pu = 29.07 Kips 0.1+AQ*f'c = 364.50 Kips Mu/(Vu*lw) = 1.80 3*lw*h*sqrt(f'c) = 199.64 Kips Vu = 15.40 Kips Boundary Member not required Flexural Design Mu = 415.80 ft-kips As req'd = 0.53 sq.in As mm 4.35 sq.in (200/fy * b * d) As max = 20.93 sq.in (Rhow bal * 0.75 * b * d) Beta = 0.85 Rhow bal = 0.02 As req'd * 4/3 provided As 94 re-bar re- 4.00 0.80 sq.in 95 re-bar req'd 3.00 0.93 sq.in #6 re-bar req'd 2.00 0.88 sq.in *7 re-bar req'd 2.00 1,20 sq.in #8 re-bar reqPd: 1.00 0.79 sq.in #9 re-bar reqd: 1.00 1.00 sq.in #4 dowels at slab on grade Avf req'dVu/(0.'6*Phi*fy) 0.50 inA2 #4 dowels at 48 ° o.c. Check mm. Vertical reinforcements As req'd: 0.18 inA2/ft for #5 and smaller As req'd: 0.20 in2/ft for 96 and larger 94 8 13.00 in o.c. *5 8 13.00 in o.c. - *68 18.00 in o.c. 978 18.00 in o.c. cJftici< HOLJOWAJ I: I I I. I. I 4re MIIJ. I I LATERAL AN/LYIS I I I AAENGNEERS PRIME JOB: STRUCTURAL DATE: SHT: D /pSx4' 2 WFL = = I%11$x - 441kft kt NMN _ MBM&Mv1 = -h p 4o cm sP4au) 37x27+jxi - I I I I .1 I I 1 I I I I I F A PP'M JO Al I $TLIC11J7AL DATE: 1j'7 E:G:NEEis SKY CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 USC) DESCRIPTION: PANELS-6 BLDG TYP. PIER W = 0.21 tips/it uniform loads P1 = 0.00 kips P2 = 0.00 tips h '1------- P1 P2 L 4.00 ft L2: 8.001t Al L3 4.00ft H V V L 16.00 ft hi 10.80 ft Al = 0,00 ft h2 h2 6.00 ft A2 = 0.00 ft U- - IU.Lt' I LI I) Li L V = 49.90 tips Wall THK = 7.50 in f!c: 3.00 ksi Load factor 1.40 Eff. THI( = 6.75 in fy: 60.00 ksi h2/L1: 1.50 Rf1 1.27 Vl= 24.95 tips h2/L3 1.50 Rf2: 1.27 V2 24.95 tips At Pier *1 WALL PIER (YESi, ND=O)= 0 Ay = 324.00 inA2 8+Acv*SQRT(f'c) 141,97 tips Yn = 101.84 tips Phi*Vn = 0.60*Vn 61.10 tips Vc = 28.73 tips Phi*Vc = 0.60*Vc 17.24 tips Vu = 34.93 tips Vu>Acv*SORT(t'c), HOOK H0R12. REINF. Vs = 17.69 tips Vu EXCEED 0,60 * Vc provide shear rei shear reinf. As.reqJd: 0.23 in"2/FT #4 @ 9.00 in o.c. SHEAR REINF. 45 8 9.00 in o.c. #6 8 9.00 in o.:, - *7 8 9.00 in o.c, At Pier #2 WALL PIER (YES1, N0:0): Av = 324.00 in2 8*Acv*SORTU'c) 141.37 tips Vn = 101.84 tips Phi*Vn = 0,600n = 61.10 kips Vc = 28.73 tips P h i * V c = 0,60*Vc 17,24 bps Vu = 34.93 bps Vu>Acv*SORT(ftc), HOOK H0'IZ. REINF Vs = 17.69 kips Vu EXCEED 0.60 + Vc provide shear rei 0.23 in2JFT 44* 3.00 in o.c. *5 8 9.00 in c',c. *65 9.00 in o.c. #78 9.00 in o.c. *4 dowels at slab CO. arade At left At Reioht Avf req'd=Vu/(O.G*Phi*fy) 1.14 1.14 inA2 *4 dowels at 8 o.c. 8 shear reinf, As req'd SHEAR REIN. right end 4.00 3.00 00 -00z left ,ii1d ,Z4.00 3.00 2.00 2.00 IJCTljAL DATE: E:GNEERs SHT CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 USC) DESCRIPTION: PANEL S-6 BLDG 1 Z TYP. PIER CHECK HOLDOWN REQUIREMENTS. 1.4E t 0,9* DL at Pier #1 Load at Pier #2 Holdor at right end: Hoidöwnat left end Uniform B Y Point V SumP W 0.00 21.18 62.35 k 2 62.35 hi 2 19.50 19 ZAs=l 1.68 1.68 hips 50 kn Holdown Bars *5 re-bars #6 re-bars #7 re-bars #8 re-bari.' Check mm. vertical reinforcements in piers at Pi er #2 pier #1 pier *2 Check Kundary Member RequireX ~ips As reqid: 0.23 0.23 in2/ft for *5 & smaller Py 2.18 Nips As req'd: 0.23 0.23 in,A2/ft for #6 & larger Pu 2.65 Nips #4* 10.00 10.00 in D.C. Geometricallymmetrical Wail #5 8 16.00 16.00 in D.C. 0.1*Aq*f'c :/ 97.20 Nips 97.20 Nips *6 8 16.00 16.00 in D.C. Mu/(Vu*lY: 1.14 #7 8 16.00 16.00 in D.C. 3*lw*h*SQRTjfc) 53.24 Nips 53.24 Nips Boundary Member Not required Flexural Design At left Mu = 209.58 As req'd = 1.10 As min = 1.10 As max = 5.29 Beta = 0.85 Rhow bal = 0.02 At Left At right 209.58 ft-hips 1.10 sq.in 1.10 sq. in (200/fy * b * d) 5.29 sq.in (Rhow bal *005 * b * d) 0.85 0.02 At Right As #4 re-bar 6 1,20 6 1.20 #5 re-bar = 4 1.24 4 1.24 #6 re-bar = 3 1.32 3 1.32 #7 re-bar = * 2 1.20 * 48 re-bar 2 1.58 2 1.58 *9 re-bar 2 2.00 2 2.00 , PP'M' cr - E1.M'E 24'-i e LV' 22 c1o52 V VM 1 I 40 -- I - 2 ' WT Or PL 2R I - ' tt .-e_ 2 v 2 I I J )< =L?,(.) =0,052 r& OTt1= ;224c27+ Ul g.c 3 z MA I) 3II + P= - a4 = 344— .,4124 : = e.= 5-44 5-44 13L C - jZ X144 144-f = ei4. 7& <b i9 ft± o1) I C -1 t.. PR'ME I STRUCTURAL DATE: tJ'1 ENGNEE1S SHT: LATE 14L M)ALYt — I I. w-I = x tO".= 30 ?L1 z 1< ;-------- -1 a 40' = -O -F o = 9-t-2 ptf P= fcf 'x1'=44 K OTM2KxI3xI4 - (I4 1 2-)=O,q)61,25-A 20 (4-0 K l6p - 3 --40"X? x 053 x 4-0 72,4* 032 = 72- - I52 < 4Sre = Q2I tv 40 0. L.i-ftA MUJ. fee Q(Lt. put [PR'ME JaR J AE'.-'-4'G- ST1tCTJ2AL DAT: 1JiNEE(3 SHT _____ CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 USC) DESCRIPTION: PANEL W-1 BLGi PIER A, D W = 1.33 tips/ft uniform loacs w) P1 = 4.60 kips P2 = 0.00 tips hi Li --------I 01 0 ) V ,i ii r. LI = 4.00 ft L2 = 8.00 ft Al A2 L3 = 4.00 ft H V V L = 16.00 ft hi = 3.00 ft Al = 16.00 ft Ii2 h2 = 6.00 ft A2 = 0,00 ft H = 13.00 FT Li L2 L3 V = 33.00 tips Wall THK = 7.50 in f1cz 3.00 ksi Load factor: 1.40 Eff. THK = 6.75 in fy= 60.00 ksi h2/Li 1.50 Rf1 1.27 V1= 16.50 tips h2/L3 1.50 Rf2 1.27 V2 16.50 tips At Pier 41 WALL PIER (YESi, NO=O)= 0 Av = 324.00 inA2 8*Acv*SQRT(f'c) 141.7 tips Vn = 101.84 tips Phi*Yn = 0,60*Vn 61.10 kips Vc = 28.73 tips PhifVc = 0.60IVc 17.4 tips Vu = 23.10 tips Vu>Acv*SQRT(f'c), HOOK HOFJZ. REINI, Vs = 5.86 tips Vu EXCEED 0.60 * Vc provide shear rei shear reinf. As req'd 0.23 inA2IFT #4 @ 9.00ino.. / SHEAR REINF. #5 V 9.00 in o.c. #6 4 9.00 in o.c. / #78 9.00 in o.c. At Pier #2 WALL PIER (YESl, NO0) Av = 324.00 inA2 8*Acv*SQRT(f'c) 141.9' tips Vn = 101.84 tips Phi*Vn = 0.60*Vn 61.11 tips Vc = 28.73 tips Phi*Vc = 0.60*Vc 17.2 tips Vu = 23.10 tips !Vu>Acv*SQRT(f'c), HOOK HIIRU, REINF Vs = 5.86 tips Vu EXCEED 0.60 * Vc provide shear rei shear reinf. As req'd: 0.23 in2/FT 44 4 9.00 in o.c. / SHEAR REINF. #58 9.00 in o.c. 864 9.00 in o.c. 478 9.00 in o.c. *4 dowels at slab on nrade At left At Reigh.t Avf req'dVu!(0.6*Phi*fy) 0.75 0.7 in"2 I dowels - - - - ti. uuweis a i. o.c. i U.L. I SPUC11)?AL D.T: L ENGINEERS SHT CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 UBC) DESCRIPTION: PANEL W-1 BLG1 PIER A, 0 CHECK HOLDOWN REQUIREMENTS. U = .4E t 0,9* DL Load at Pier *1 "\ad at Pier #7 10.64 "{0.64 tips Wall wt 9.75 9">1 tips Point loads 0.00 4.6ips Sum P: '3 24.99k\ Holdown at left end 19.81.s As: 0.37 inchAZ Holdown at right end: 15.53 ki\,AS= 0.29 i c hA2 Holdown Bars left end \ght end #5 re-bars: 2.00 .00 #6reb: 1,00 1Q *7 re-bars 1.00 1.00'\ #8 re-bars :'\ 1.00 1.00 N.. F' '..nec Boundary Member Neq rement. min. vertical in piers at r*1 atPier#1 pier #1 pier #2 As req'd 0.2 a 0 j,a in2/ft for #5 & smaller Kips 24.99 Kips s req'd: 0.23 0.23 inA2/ft for #6 & larger Pu \ 28.55 s 3499 Vip #4 # 10.00 10.00 in o.c. Geometrically Symmetrical 11 8 16.00 16.00 in o.c. *Ag*f'c 97.20 s 97.20 Kips #6 16.00 16.00 in o.c. Mu! *1w) 0.81 #7 8 16.00 16.00 in o.c. - iw*h*SQRT( -) - ' .24 Kips . 5''k. Kip; Boundary Member Rbk required Flexural Design At left Mu = 138.60 As req'd = 0.72 As min = 1.10 As max = 5.29 Beta : 0.85 Rhow hal : P0.02 At Left As req'd * 4/3 provided #4 re-bar = 5 *5 re-bar : 4 #6 re-bar = 3 #7 re-bar =2 #8 re-bar =2 *9 re-bay =1 At right 138.60 ft-kips 0.72 sq.in 1.10 sq.in (200/fy * b * d) 5.23 sq.in (Rhow bal * 0.75 * b * d) 0.85 U, At Right As As req'd * 4/3 provided 1.00 * 5 1.00 * 1.24 4 124 132 3 1." 1.20 2 120/ j L Ir 58 L,a 1.00 * 1 1100 * LATEIAL I4'YALY5 tfr PRIME JOR:1-71 I ' SiTa.JCTUPAL DAn L ENGI NEERS SHT:IJ1 - x 20 = 20 ?Z1 Wp, 3 LO = 3c PLf. 3(4< WPL o PS- f x (0 / = Pe-D pt CI-EC-1( .50LL/VD4ty MHbER 2JQ A IA/ALL WT, 85 2Z- 12 x?) I 1 00 19 X4 x * Z3C. Z4 :- FLA)I(PL. 53 ox2o 530 )< 15.7 t 04 !QO-OE 191 2(90 x 20 = 2. K S7, :2 S iC,K 40, il (' i3cNvi' o,01 Cl2 > PU > P4 No - 4Zt- N = ox 20 (3 tO2.7l4.= 1247 13(02 — 2.41i 1 2, Os7 K Go tt•e '-f. c'. AttJ I M, M. I S:IJCT1JRAL DATE: L ENGINEPS GHT ____ CONCRETE SHEAR WALL DESIGN' (PER SEC.1921 1994 USC) DESCRIPTION: PANEL W-2 BLU! PIER AB W= 0.26 k:pslft uniform loads w) P1 = 0.00 kips P2 = 0.00 tips hI (I---------i V /1 D1 01 rL LI: 4,00 ft I L2 = 32.00 ft Al A2 L3 = 3.70 ft H V V L = 39.70 ft hl = 4,00 ft Al = 0.00 ft h2 h2 = 9.00 ft A2 = 0.00 ft H = 27.00 FT LI I L2 L2 V = 36,00 tips Wall THK = 8.50 in f'cV 3,i() ......i factor 1.40 Eff. THK = 7,25 in fy: 60.00 ksi h2/LI: 2.25 0.55 VI: 19.6C tips h2/1.3: 2,43 0,46 V2: 16.40 tips At Pier *1 WALL PIER (YES:1, NO:0): AV = 348.00 i nA2 8*AcvfSQRT(f'c) 152.49 tips Yn = 90.32 kips Phi*Vn = 0.60*Vn 54.19 tips Vc = 21.92 tips Phi*Vc = 0.60*Vc 13.15 tips REINF. Vu = 27.45 tips Vu>Acv*SQRT(f'c), HOOK HoR:z. Vs = 14.29 tips Vu EXCEED 0.60 * Vc provide shear rei shear reinf. As req'd: 0.26 in2/FT *4 8 6.00 in SHEAR REINF. #5 8 6.00 in o.c. *6 8 6.00 in o.c. #78 6.00 in 'o.c. At Pier *2 WALL PIER (YES:!, NO:0): Av = 321.90 inA2 8*Acv*SORT(fc) 141.5 tips Vn = 83.55 tips Phi*Vn = 0.60*Vn 50.#2 tips Vc = 19.01 tips Phi*Vc = 0.60*Vc 11.11 tips Vu = 22.95 kips HVu>Acv*SQRT(f'c), HOOK !0R12. REINF Vs = 11.55 tips Vu EXCEED 0.60 * Vc provice shear rei shear reinf. As req'd: 0.26 iri2/FT #4 8 6.00 in o.c. SHEAR REINF. #5 8 6.00 in o.c. #6 8 6.00 in o,c. #78 6.00 in '3.C. *4 dowels at slab on grade At left At Reig.t AvI req'dzVu/(0.6*Phi*fy) 0.90 0,75 in"2 - *4 dowels at 10 V II CONCRETE EAR WALL DESIGN (PER SE C.1 (994 URC) DESCRIPTION: PANEL W-2 BLG1 PIERA1 B CHECK HOLDOWQUIREMENTS. U 1.4E t DL Load at Pier *1 Load a4nr #2 Uniform load 5,20 5.l2s Wail wt\ 50.57 49.59 kip Point loads \\ 0.00 0.00 kips Sue P \.7S 54.71 kips Holdown at left end 0' tips As: 0.00 inch'2 Holdown at right end: 0.00ps As: 0.00 inch'2 N\ oldown required. Holdown Bars left end right end #5 re-b2rs X # Te-bars 0 \0 i OB Pn- I L TI.!C1'JlAL DATE: / ENGiNEERS SHT: L/41/ 4LC9 mm. vertical rnforcements in piers at Pier #1 at Pier #21 Check Bounda Member Requirement. Check pier'1 pier #2 As req'd: 0.2\ 026 inA2/ft for #5 & scalier \78,0'9 Kips 76.59 Kips #48 9.00 .00 in o.c. 55.78 Kips 54.71 KiP\As req'd: 0.26 inA2/ft for #6 & larger \.\Geomet mmetrical Wail #5 8 14.00 14. 0 in o..c. #6 8 16.00 14.0 in o.c. 0.05Agei 0 Kips 48.29 Kips Mu/(Vu*iw 8 i*SQRT(f'c 8 Kips 52.89 Kips #7 8 16.00 14.00 in o.c. Member Required \ 1. Flexural Design At left Mu : 247.01 As req'd : 1.30 As mm 1.25 As max : 6.00 Beta : 0.85 Rhow hal : 0.02 At Left #4 re-bar : 7 #5 re-bar = 5 #6 re-bar.= 3 #7 re-bar : 3 #8 re-bar : 2 #9 re-bar = 2 At right 206.59 ft-tips 1.18 sq.ir 1.14 sq.in (200/fy * b f d) 5.51 sq.in (Rhow hal * 0.75 * b * d) 0.85 0.02 At Right As 1.40 6 120 1.55 4 1.24 1.32 * 3 1.32 1.80 2 1.20 * 1.58 2. 2.00 2 2.00 lA !ME fT RUCT1JTQ DATE: PRIME $141 CONCRETE SHEAR WALL DESIGN (PER SEC,1921 1994 UBC) DESCRIPTION: PANEL W-2 BLOI ABOVE PIER W = 0.26 tips/ft uniform loads. (w) P1 = 0.00 tips P2 = 0.00 tips hi V------- P1 P2 LI = 4.00 ft L2 = 8.00 ft Al A2 L3 = 4.00 ft H V V L = 1600 ft I-------- hi = 4.00 It 41 = 0.00 ft Ih2 h2 = 3.00 ft A2 = 0.00 ft H = 14,00 FT LI L2 1 L3 V = 18.00 tips Wall 111K = 6.50 in f!c: 3.00 ksi Load factor 1.40 Eff. 111K = 5.75 in fy: 60.00 ksi h2ILI 2.25 Rf1 0.55 V1 9.0 tips h2/L3 2.25 Rf2: 0.55 V2 9.0 tips At Pier #1 WALL PIER (YESi, NOU): 0 Ay = 276,0(., 2 8!Acv*SQRT(f'c) 120.14 tips Vn = 71.63 kips Phi*Vn = 0.60*Vn 42.8 tips Vc = 17.38 tips Phi*Vc = 0.60*Vc 10.3 tips Vu = 12.60 tips Vs = 2.17 tips Vu EXCEED 0.60 * Vc provice shear rei shear reint. As req'd: 0.20 in A2/Fi @ 9.00 in o.c. SHEAR REINF. #58 9.00 in o.c. #6 8 9.00 in o.c, *78 9,00 in o.c. At Pier #2 WALL PIER (VES1 N1G=0)= 0 Ay = 276.00 i nA2 8*Acv*SQRT(f'c) 120.34 tips Vn = 71.63 tips Phi*Vn = 0.60*Vn 42.18 tips Vc = 17.38 tips Phi*Vc = 0.60*Vc = 10.13 tips Vu z 12.60 tips Vs = 2.17 tips Vu EXCEED 0.60 * Vc proviie shear rei shear reinf. As req'd: 0.20 in A2/FT_ #4 8 9.00 in SHEAR REINF. #58 9.00 in o.c. #68 9.00 in o.c. *78 9.00 in o.c. *4 dowels at slab on qrade At left At Reig.it Avf req1dVuR0.6*Phi*fy) 0.41 0.41 in'2 *4 dowels at 16 o.c. 16 CONCRETE SHEAR WALL DESISN. (PER SEC. 1921 1994 UBC) DESCRIPTION: PANEL W-2 BLGI ABOVE PIER CHECK HOLDOWN REQU1REMS. U : 1.4E 0.9* DL Lo at Pier *1 Lo \t Pier #2 Uniform load: 08 2.'kips Wall wt: S.Q 8.78kips Point loads 0.00\ 0.00 kIs Sum P = 10.86 10.86 kiPs'\ Holdown at left e: 12,68 kips\: 0.23 i nchA2 Holdown at right end'\ 12.68 tips As-\ 0.23 i nchA2 Holdown Bars 'I 'Wt end right end *5 re-bars = \1.00 1. *6 re-bars : 1\0 1.00 *7 re-bars: 1.0k 1.00 *8 re-bars: 1.00\ 1.00 Check Boundary Member Requirement. at Pier #1 t Pier #2 Pv = 10.86 Kips 86 Kips Pu = 15.20 Kips 15.2 Kips Geometrically Symmetrical Wall 0.1*f1c : 82.80 Kips 82.80 \ips Mu/(Vu): 0.88 3*lw*h*SORT(f'c'X,= 45.35 Kips 45.35 Kips .1 PR'ME Joe. - I £ STRUCTURAL DATE: ENGINEERS SHT k mm. vertical reinforcements in piers pier *1 pier *2 \ As req'd= 0.20 0.20 in2/ft for #5 & smaller A. req'd: 0.20 0.20 in2/ft for #6 & larger \ *48 12.i0 12.00 in o.c. \#s 8 16.00 16.00 in o.c. #68 16.00 16.00 in o.c. #78 16.00 16.00 in o.c. Boundary Member \required Flexural Design At right 113.40 ft-tips 0.59 sq. in 0.95 2)0ly I b * dl 4.59 sq.iri (Rhow bal * .75 * b * d) 0.85 0.02 At Right As req'd * 4/3 provided As As req'd * 4/3 provided *4 re-bar : 4 0.80 4 0.80 *5 re-bar : 3 0.93 3 0.93 #6 re-bar = 0.88 2 0.88 - #7 re-bar 2 1.20 2 1.20 #8 re-bar = 1 0.79 * 1 0.79 * #9 re-bar = 1 1.00 1 1.00 - At left Mu : 113.40 As-req'd : 0.59 As mm : 0.95 As max 4.59 Beta 0.85 Rhc'w hal 0.02 At Left J227-f-24X3 = Z24 = (7&7 ' t12 j4 L4TA-L 4I\/ALY(S W-4 (5 (ri. sAl -2 1L -2) WS RcME JO 11UCflJRAL DATE:NGINEERS SHY PS-c x i/= 2..0ptc VVFDPSf)(424 vVL OT"( z(4 )( , ,c(747 q .( qt M X (25-d4 (2x3J-4Yfr?)+ (zO44Z4)2O,e1 223 = iQ574 1t O(— 9i9?4- 2,4 2 45 4 244 &c2 0s04 O ? IW !~eq- Olj,t pjct- 2) > -40 bq i) I i\ PP\ I L! Ej\ CT SI:.!URIL .4j1: CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1934 UBC) DESCRIPTION: PANEL W-4 BL61 PIER A,B,C ,,I11K N = 0.63 tips/ft uniform loads.- () P1 = 0.00 tips P2 = 0.00 tips hi V-------> P1 P2 Li = 4.00 ft L2 = 8.00 ft Al A2 L3= 4.00 ft H V V L = 16.00 ft hi = 13.33 ft Al = 0.00 ft h2 h2 = 9.00 ft A2 = 0.00 ft H = 17.67 FT LI L2 L3 V = 24.00 tips Wall THK = 6.50 in f'c= 3.00 ksi Load factor: 1.40 Eff. THK = 5.75 in fy: 60.00 ksi h2/1.1 2.25 Rf1 0.55 Vl= 12.0 tips h2/L3= 2.25 Rf2 0.55 Y2= 12.0 tips At Pier #1 WALL PIER YES=1, N00): 0 Av = 276.00 inA2 8*AcvfSQRT(f'c). 120.4 tips Vn = 71.63 kips Phi*Vn = 0.60*Vn 42.8 tips Yc = 17.38 tips Phi*Vc = 0.60*Vc = 10.c.3 tips Vu = 16.80 tips Vu>AcvfSQRT(f'c), HOOK HOFII. REINF. Vs 6.37 tips Vu EXCEED 0.60 Vc provioe shear rei shear reinf. As req'd 0.20 inA2/FT / #4 8 9.00 in o.c. SHEAR REINF. *58 9.00 in o.c. #68 3.00 in o.c. #78 9.00 in o.c. At Pier #2 WALL PIER (YES:1, NO=0): 0 Av = 276.00 jA2 8*Acv*SORT(f'c) 120.4 tips Vn = 71.63 tips Phi*Vn = 0.60*Vn 42.98 tips 17.38 tips Phi*Vc = 0.60*Vc 10.e3 tips Vu : 16.80 tips !!Vu>AcvfSQRT(f'c), HOOK 8ORIZ. REINF Vs = 6.37 tips Vu EXCEED 0.60 + Uc prcivice shear rei shear reinf. As req'd 0.20 ir2/FT #4 8 9.00 in SHEAR REINF. #5 V 9.00 in o.c. *68 9,00 in o.c. *78 9.00 in o.c. #4 dowels at slab on grade At left At Reiqht Avf req'd:Vu/(0.6*Phi*fy) 0.55 0. 5 in2 16 U o.c. .6 U PPM JOB: suC11J2AL DAM CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1994 uBc) DESCRIPTION PANEL W-4 8L81 PIER A,B,C \ CHECK HOLDOWN REQUIREMENTS. U 1.4E t 0.3* DL Load at Pier *1 Loa>\t Pier *2 Uniform load : 504 tips Wall wt i7.23 17.23"(çips Point loads: '.00 0.00ks Sum P: 22 22.27 kiP\ Holdown at left end 17,62\ps As: 0.32 inch"2 Holdown at right end: 17.62 ki\As: 0.33 inch2 Holdown Bars left end \right end #5 re bars : 2.00 \ 2.00 *6 re-bars: 1.00 \i.00 #7-re-bars : \ 1.00 00 #8 re-bars : \\1.00 1. Check Boundary Member Require nt. pier #1 pier *2 As r eq!d 0.20 0.20 in 2/ft for *5 & smaller Pv \ at Pier 1 at Pier #,41 Check sin. verbical reinforcements in piers \ : 22.27 'ps 22.27 Kips As req'd: 0,20 0.20 in2/ft for *6 & larger 31.17 Ki 31,117 Kips #4 8 12.00 12,00 in o.c. metricaLly Symmetrical 11 *5* 16.00 16.00 in o.c. 0.10 11 c - 82.80 Kips \80 Kips #6816.00 16.00 in o.c. Mu/•(Vu+: 1.10 3*lw*h*SQRTWc : 45•35 Kips 4 35 Kips 16.00 16.00 in o.c. Boundary MesbeNNot required Flexural Design At left At right Mu : 151.2(1 151.20 ft-tips As req'd : 0.73 0.79 sq.in As sin = 0.35 0.35 sq.in (200/fy * i dl As sax: 4.59 4.53 sq.in (Rhow bal 0.75 * b * d) Beta : 0.85 0.85 Rhow bal = 0.02 0.02 At Left At Right As sin provided As As sin provided #4 re-bar = 5 1.00 * 5 1.e0 * #5 re-bar = 4 1.24 4 1.4 #6 re-bar : 3 1.32 3 1.22 *7 re-bar = 1.20 2 1.0 *8 re-bar = 2 1.58 2 *9 re-bar : 1 1.1:3 * 1 i3O * Wmim-111 CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1994 UBC) DESCRIPTION: PANEL W-4 BLG1,, PIER AB,C 7.5 THK W = 0.63 kips/ft uniform 1oad (w) P1 = 0.00 kips P2 = 0.00 tips hi V-------> P1 P2 Li = 4,00 ft ;.00 ft Al A2 L3 = 4.00 ft H V V L = 16.00 ft hi : 13.33 ft Al = 0.00 ft h2 h2 = 9.00 ft A2 = 0.00 It H z 17.67 FT LI L2 L3 V = 24.00 tips Wall THK = 7.50 in ('C: 3.00 ksi Load factor= 1.40 Eff. THK = 6.75 in fy: 60.00 ksi h2/L1: 2.25 Rf1: 0.55 Vi: 142.0D tips h2/L3= 2.25 Rf2: 0.55 V2: I2.00 tips At Pier #1 WALL PIER (YES:1, NO:0) Ay = 324.00 in Al 8*Acv*SQRT(f'c) 141.37 tips Vn = 84.09 tips Phi*Vn = 0.60*Vn 50.43 kips Vc : 20.41 tips Phi*Vc = 0.60*Vc 12.24 tips Vu = 16.80 tips Vs = 4.56 tips Vu EXCEED 0.60 * Vc provide shear rei shear reinf. As req'd 0.23 inA2/FT *48 9.00 in SHEAR REINF. #58 9.00 in o.c. *6 8 9.00 in o.c. *78 9.00 in o.c. At Pier *2 WALL PIER (YES=!, NO:0): ) Av = 324.00 inA2 8fAcv*SQRT(f'c) = 141.97 tips Vn: 84.09 tips Phi*Vn = 0.60*Vn 50.4-5 tips Vc = 20.41 tips Phi*Vc = 0.60*Vc 12.24 tips Vu = 16.80 tips Vs = 4.56 tips Vu EXCEED 0.60 * Vc provide shear rei shear reinf. As req'd: 0.23 in"21F1 *48 9.00 in SHEAR REINF. #5 8 3.00 in o.c. #68 9.00 in o.c. #78 9.00 in o.c. 84 dowels at slab on grade At left At ReigM Avf req'd:Vu/(O.G*Phi*fy) 0.55 0.5 in"! #4 dowels at 16 ' o.c. 1.6 c.c, / 9 CONCRETE SHEAR WALL DESIGN (PER SEC. 192! 1994 USC) DESCRIPTION; PANEL W-4.BLGI PIER A,B,C 7.5 THK CHEeK HOLDOWN REQUIREMENTS. U - 1\aPier at Pier *1 Uniform load 5.04 Load Wall wt 19.88 Point loads P 0.00 Sum .p 24.9L Holdown at left end 15.16 kip As- 0.28 inch2 Holdown at right end 15,16 kips' 0.28 inch') Holdown Bars left end \ht end # re-bars 1.00 00 *6 re-bars 100 *7 re-bars = .00 1.00\ *8 re-bars = 1, 1.00 Check Boundary Member Requirement. Pier #1 at Pier #2 24.92 Kips 24.92 Kips Pu 34.88 Kips 88 Kips N at Geometr ically Symmetrical Wall g*f'c 97.20 Kips 97.20 Kips Mu/( 1w) 1.10 wfh*SDRT(f 53.24 Kips 53.24 Ki IA PR!ME ___ I STPUC1WAL DATE: LL ENGINEERS SI-fl : LJtI Check mm. vertical reinforcements in piers \'Asreq, \d pier *1 pier #2 0.23 0.23 inA2/ft for #5 & smaller As req'd: 0.23 0.23 inA2/ft for #6 & lar;s *4* 10.00 10.00 in o.c. *5 @ 16.00 16.00 in o.c. 6 @ 16.00 16.00 in o.c. * 16.00 16.00 in o.c. Boundary Membei\Not required Flexural Design At left At right Mu z 151.20 151.20 ft-kips As req'd = 0.79 0.79 sq.in As min = 1.10 1.10 sq.in (200/fy * bid) As max = 5.29 5.29 sq.in (Rhow bal * (.75 * b * d) Beta = 0.85 0.85 Rhow hal = 0.02 0.02 At Left At Right As req'd * 4/3 provided As As req'd * 4/3 provided *4 re-bar = 6 1.20 #5 re-bar = 4 1.24 4 1.24 #6 re-bar = 2 1.32 3 1,32 *7 re-bar = 2- 1.20 * .2 1.20 * #8 re-bar 2 1.58 2 1.58 *9 re-bar 2 2.00 2 2.00 z. 1 Lf (Al FL 2°0Ptf jo( - ...':JC7u:AL DC~ ENGINEERS SMT : ______ LATE4L mALys(S &Et -P4DE BE4tj @ L/'\/E P 13P -F < (w —I, w -2) 13 pf zo' 260 pt E 7t 1*v 0 -,, /TOf w'&L - 8I5ic'o.7=o.?I I W- 2 I 31zc'x43X410 4x,3Oi - - Gt32 0 2/<. PIL = )< gQo psf =o &'4 1< ZP, T = zR. -33 k -1- 13 )) -+ 1z'x (2&04 30 ) P2L — )2X9 /=33,4 KL1 wL_= 0 -. PE65,zx2-7/ 45 1< U! LY66E- UW W E98L01 W lj 0YL XW A L662-- 0n'0 uiw w 00'! 3'8L0i t?'9U !'06E 6'I0 W 19'9C 0L O'! 0t'9Z. X A 67 T I 38V3 UJIl ) S330J WIIW!XVW 9'0 0LC LVO LYQ LE. '0 U!W 0 06! 8'! 6!'! 60'1 10'! XPW 6 9r 1'I' A 1 92 L8'2t' 2'6 SP'6Z1' L9'E U'9E LZ'92 L L 9 Id I 3S3 (J 1i I J 'i) S!NVi1fl83 0'58 00't' 00't'- 00t 00'- 0010 o'oc oo ti - oo'911 oo'- oo' 000 0'5 00'QI 00,01- 00'O! 00'01- 00'0 oc cif) 0I 00'0I 00'O1- 0(;'O! 0010 00 'S 0v 'CC 0 08 C 08 'CZ. o4,'CE 00t'8' ot ot'. 08'EZ o8.z orc 3 7 " 't7. 66'IZ EE8 OOZE: CE8Z. 66'Z. 251?. C'87 000 ?8 Z9 ç (U U SU01 i1Qd. 00'OE 00?. 01'?'?. 01'?'?. 01'!''! 01'!''! 01'7.'? 7'i r - SG0 1 WJ0JJNfl 60'?. 'pAnS + bUtxDJ i 00 '0 EFO = ;qa )UO U 00'E = Hid3C 6uicoj U 0E'P = HI8IM §UTOOJ U 00'86 = H19N31 5ui;oj Wi90d SISAWNV WV38 389 OE?- L6 L6/EZ/60 1s 32N13vi IL a 1v'1uDrus !1L1 EJVdd CC' r I — r"p I rn, , Cr, rrl C.') Cr) CD a. ):• :, :x V. . 4. .4- rr, A' ._ C:' •..C, CX) .4 0' CM .91 - U) X) — A' -C UC Ii ii II It — P. P... 0.) •• I-..:. C:. :-' •' :-'• ' C, -J co CM a C.C' C_fl Co 'C' Cr, U) 33 U) ..C•. 0.) P...) ._) CI) CU) ..-. .--. -- .._._ :o C" C_fl ,..C' p..) PC If ii .)> X- : tiC U) 1$' r, I Cr' Cr1 -., CII __.I P-C' Cit ..iC.. 0r1 - C) n V. of If II II -. — C.') ••) CC' Ci) X) Pt C_fl - I C_fl NC' .4 ,-' C_fl .0.. C'• i-•. C,) C cr CC' ..J NC' Cr' ii) Cx, C_ri ui:' C,- Cr, r 40. II II C:. II ii II Cr) rr, 0., Q, a Co 0) (.0 C.') Cl, - C:' C_fl ,_ U).. - - -•1 U) •• U).. IA C. ———a Cr1 C_ri 1 -: —ç ' c it Cr C p -. rr Cr C) C' •Cs Cr' -o -_ if in '1' _ -. C> C> rID i,ç) -. (I) Cr) fl) 0. II II II II II II CCI C'.) CII C" C'> P..,) Cr. .0.. 1=1 CO in I r \ i1Ji?AL 1?1 IA E:GNEERs SriT : (QAV M 0 UQ5 10) I Fl I I .w. iz)j, LP1 jfl'z'& d'L?) P4y 1 tvu 171 I I I I s cx( '' ' ''i optcxz --i- I I RL & I t 1 PRIME I I.JCTUrV\L DATE: :-ir :U( LINE 1.1 09/ 23 /97 97-250 GRADE BEAM ANALYSIS PROGRAM (4.02) Footing LENGTH = 48,00 ft Footing WIDTH = 3.00 ft Footing DEPTH = 2.50 ft Conc Weight = 0,15 kcf Surcharge 0.00 ksf Footing + Surch. 1.13 kit POINT LOADS (k & ft) 1 2 3 4 5 X 17.25 10.85 10.85 17.25 17.25 2.00 35.50 26.50 26.50 35.50 .35.50 18.00 33.80 26.10 26.10 33.80 33.80 30.00 24.52 19.40 19.40 24.52 24.52 42.00 0.00 27.10 -27.10 27.10 -27.10 16.50 0.00 -27.10 27.10 -27.10 27.10 43.50 RESULTANTS (k, ft & ksf) CASE 1 2 3 4 5 Pt 165.07 136.85 136.85 165.07 165.07 X 24.31 19.44 30.14 19.88 28.75 0 max 1.19 1.49 1.68 1.74 1.83 0 min 1.10 0.41 0.22 0.56 0.47 MAXIMUM FORCES (k, kft) CASE 1 2 3 4 5 V max 22,89 35.21 24.66 40.11 29.55 M max 96.97 262.68 38.24 273.38 42.79 H mm -33.31 -0.00 -151.85 -2.91 -149.19 V max = 40.11 k M max = 27338 Ut M nm -151.85 kft LA P'M -71 D.J: -tL. £ ENGINEERS SHT LINE LI GRADE BEAM DESIGN PROGRAM (4.02) DESIGN DATA f'c = 3.00 ksi b = 36.00 in fy = 60.00 ksi Ii = 30.00 in Load Factor = 1.50 d = 26.00 in Vmax 40.1 k Vc = 102.5 k Vn 70.8 k Vs = 0.0 k Av 0.36 si/ft S max = 13,00 in Vs = 0, stirrups are optional 1 # 3 Stirrup 0 7.3° 2 # 3 Stirrups @13.0° 1 #4 Stirrup 013.0° FLEXURAL DESIGN Beta 1 = 0.85 As mm 3.12 si As max = 15.01 si M+ max = 273 k f t N- mm -152 ktt Mn+ = 456 kft Mn- = -253 k f t As sty = 3.67 si As str = 2.00 si As = 3.67 si As = 2.66 si Bottom Steel iop Steel Bar No. Space No, Space * 4 18.4 #5 11.9 2.3 8.6 3.1° #6 8.4 3.1° 6.1 4.0' * 7 6.1 4.0' 4.4 5.6- # 8 4.7 5.6° 3.4 71.0- # 9 3.7 7.00 2.7 9.3' 410 2.9 9.3° 2.1 3,3° 811 2.4 3.3° 1.7 14.° 37-250 K 1t5(oot( PFME JOB A _____ I STRUCTURAL OTE: A ____I ENGINEERS SHI: _____ + V 4 -w 15 x' bL— S(.o— iec — 1S'o tk0 Y. 2. = ?tg-c - cw (AiVUT WP4L ptsJ WME Jo UCTURAL DATE: GINEERS SHT CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 UBC) DESCRIPTION: PANEL N-I BLDG I 0.18 kps/ft uniform loads () P1 = 10.60 kips P2 = 10.80 tips hi V-------?I P1 P2 LI = 20.00 it L2= 8.00 ft L 40.00 ft H I Li I L2 V V hi = 12.00 ft H 15.00 ft --------------- V 65.20 tips Wall THK = 7.50 in f'c= 3.00 ksi Load factor 1.40 El T. THK 6.75 in fy: 60.00 ksi NiL = 0.38 Acv*SQRT(f'c) = 177.4E tips Av = 3240.00 inA2 8*AcvfSORT(f'c) 1419.7C tips Vn = 1018,39 Lips Phi*Vn = 0.60*Vn 611.03 tips 578.30 kips Phi*Vc = 0.60*Vc = 346,95 tips Vu = 91.28 tips Vs = 0.00 kips Vu '(0.60 * Vn O.K. shear reinf. As req'dz 0.11 inA2IFT *48 18.00 in 'o.c. SHEAR REINI. #58 18.00 in O.C. #68 18.00 in o.c. *78 18.00 in 0.1, CHECK HOLDOWN REQUIREMENTS, U = 1.4E t 0,9* DL Uniform load = 7.20 tips Wall wt = 101.25 tips Point loads 21.40 tips Sum P = 129.95 tips Holdown at left mad 0.00 tips As: 0.00 i nchA2 Hldown at right end: 0.00 tips As: 0.00 inch"2 Hoidown Bar; 12ft and right end *5 ra tars : 0.00 0.00 #6 re-bars : 0.00 0.00 #7 re-bar; = 0.00 0.00 *8 re-bars = 0.00 0.00 7-2k I AM Li ST1UCTUTL o.::: 1j'1'7 ENG1NEE1S &lT: _____ CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 UBC) DESCRIPTION: PANEL N-I BLDG 1 Check Boundary Member Requirement. PV = 64.93. Kips Pu = 90.90 Kips 0.1*Ag*f 972.00 Kips Mu!(Vu*lw) = 0.38 2*1.w*h*sqrt(f'c) = 532.39 Kips Vu 91.28 Kips Boundary Member not required Flexural Design Mu 1369.20 ft-tips As req'd = 0.64 sq.in As sin = 11.85 sq.in (200/fy * b * di As sax = 57.00 sq.in (Rhowbal *0,75* b *d) Beta = 0.85 Rhow bal = 0.02 As req'd * 4/3 provided As *4 re-bar req'd 5.00 1.00 sa.in #5 re-bar req'd 3.00 0.93 sq.in *6 re-bar req!d 2.00 0,88 sq.in * #7 re-bar req'd 2.00 1.20 sq,in #8 re-bar reqd 2.00 1.58 sq.in #9 re-bar req'd: 1.00 1.00 sq.in *4 dowels at slab on grade Avf req'd:Vu/(O.GfPhi*fy) 2.98 in2 a .J uowei at Check sin. Vertical reinforcements As req'd 0.18 inA2/ft for *5 and smaller As req'd 0.20 n2/ft for #6 and larger 14 3 .O0, i r U.L, #58 18.00 n o.c. *6 8 18.00 in o.c. #78 18.00 in o.c. r A PR'ME JOB: - I \ T!dJC11JRAL DATE: [L ENGNEE13 SRI: (.AE Iz- awti L. q ld't@ I 1A 'Iz' srx1t. Li31 )0acZ(I24I2_ I. O.4V 11.6- 'A1y) I' I -iitc a4 I 1. - 7Tk1 o4@ 1--U--12- 24-o" jytV1 (~D 1u- (i z,tt STNCT t- 7io 4-to-12- A- i PRIME J03,1740 \ 71JCT1JRAL CATS: 'ENG;NEEr<S Mk&iJ1 pccr4 iLD92QlL9-mT0 ug€,- Izll g)(f :i: UI 'Iz'WiX.it vY ioci4-lZ L&IT 'j)- I PPME J03 7s4 L5cp iWS? .c52,( o;g7 14 :? PU I (7iZ4 m A.vutg-uJ I kU.QA rcd (1I2. . I I, 4-fr7 I va 0_1(..cc'k211zt' (AS 19 i21Wf IJ (,izio) Noi-f,tm P-Li1ot4 V'J)&L (' y 4. t2 t4&uo-c . Oaf —pa Z(4 O) , e/t1-ow S7A 0) (ptl v lNJcgEA 1'JML4,J1. -w Z'lZ-14-12- 1k1At- ,tHP<1)c — VF LEVEL- 1\ PRIME jo STRUCflJp,&j DATE ENG;NEEIS SHT VI U) U U- OM IA PRIME JOB: STRUCTURAL DATE 6ENGNEERS SK: ATAL A1/5 - 'fe '-c / Y-e -T 1) tCfl C I ')OF L \S GC L,)E PF .. c 1JY'3E -7T ?f 5?x 48' 16 3 rdlc_. -S3O ?LF,< L7C \QL c'Lf LJj, SI.s1F sD.x ?AA)EL.. . Lt'oe .75 IV&F ' - ) LOPLr / = 7 ,20 k -PLF = 47. 5.0FLf5( 7,O1J PRiME Joa STRUCTURAL DATE 7-7 ENGINEERS A SHT : 4& OT• / SouTh -TiO) I ?DOF 73 SI.?Sf x O.f? I I 745F 5L P— I \)ç POOF DL 7O fl-r st.+ i. L 'F -K 13c C7J? P,J6L & = t37 ,5 MScL. SO = 3F ) t3 = 7'.bPLF t'/'JE-e LU'E c>.= 375?sF.3Lx )7. -ñsc. 75 g7, v..i= TA PRME JOB: ' S1TUCTUPA1. TE 7-97 ENGINEERS SF0: 1-fVE-- • /eT crIor3 \J. IF -ec -, ?A)3 --J1OE o To /.O4 FL&S L - •., O ,: 1tJe F -x ?( - O...L3 i 03, g L1 ft'J9!L-F o,&07 Not /SUT -T&3 41'L EkoF\ L PS 3Ct PLF PA N3L LiIiEc9 \ie2 ';- LJE _-7 c::x lt -'. o;3 ,pAMOk) o OVLFc O57 = x Z1 PL PTIot) N)C. LATF.A llmAF PRIME J0814r6 la SflUCLJE7-7 ENGINEERS SHT : ____ E,1/eST i€Cf 3K) tAkK)P 4LTô? 1 CCcL - 33 g' + 5oL G *PLF(4 6. Lt K < erovap - , N3OM4 / SOufl-\ DCTtO /ACe ô ç (rviC 1euu) 7JPFxI'+ 750V1-1',c 44 ~5 30?1-fx7475Lr2'z C33 tc VM : I PLf X )i )c R M Igo 3 -. - OOF .' x C ) FIR ME s0B09/22/7 I ' SiiucnJ:7AL L ENGINEERS $111: I (6.6 O's 0pi0.00hi2vOs0b3T R0F DIAPHRAGM E/w --------------- ;Ip12v1s0b4148TBEAM ANALYSIS PROGRAs1p9v1s0b4143T SPAN LENGTH 116.00 ft (Simple UNIFORM LOADS (k/ft & ft) id wi (1 - x2 1.224 0.000 0.00 88100 1.24 0.000 88.00 116.00 REACTIONS (k) LOAD LEFT RIGHT Dead . 71.050 71,484 Live 0.000 0.000 Total 71,060 71.484 MAXIMUM FORCES Vmax = 71.48k @116,00 ft z,&1 Vd max = 71.48 k @116.00 ft N max - 2062.69 kIt 8 58.06 ft Md max = 2062.69 kft 8 58.06 it M 4Z5 DEFLECTIONS E1 = kin) LOAD Dell (in) X (it) Total 4997452464/El 58.02 Live 0/El 0.00 Dead 4997452977/El midspan TOTAL Defi El L / 180 646222272 L / 240 861629696 L / 360 1292444544 11t (Ao.h) 0U068109 09 / 1 86C6Z10 0Z / I 09C96NOK 081 I 1 13 uau iviol • udsptw I3I800EL8UU' PU vii 000 1310 8At1 811'OI I3/0C8688ZL9 IFIOI c NO #9 Lff - (U) U L'01 8 M EY6LC9 = XPW PW • U £L01 8 UC6LE X N XPW U 0080?. 8 A 6LZ.01 = PA 17 I'ij IY' U 0080Z 8 I 6L01 = xew A 633O3 WflWIXVW 6LZ.01 6C001 1°1 > = - 01 WWI peac IF.918 IJ31 UVOl (U SNOI!V3 0080Z. 0091 0000 CL60 001 0017,t 0000 6Z01 00U 008k 000'0 OCE.0 008t 000 00010 0610 - TX JA P (U 1 Ui;1) SUV01 WOJ1NR • (uds aiws: U 00 '80(7= H19N31 NUS 1QfS0A1t000id0S(099) JBH tqoSjA6djsWVd90Sd S1SA1VN L6/9116080 <z 97q>SOIN J008 as 0 0 0 0 ( ) UT1ON MIN m > n I I 1'7K 1964 - - - - I-.- -. L( / AO / PRIME Joe. ____ [th STUCTUAL: frJD__PJft ±LL± BLt& 2 RJ én c ny (ELD 3 M 2. a ? OO4S IZ74pER.S LIN 2.I?tS P,JE— * kLi- 10 oqoq. 'C- A1\L -• = • (') AM ST: L-f LiAJE 2J V)2 ID 2- ucr. L- 4 PPJEL k)15 - bOur 4 O111 F OoS7 ZRF4lO lI2 21F —O / EPRIMP jcq at'; I r. LJE 2L2- It 10 2- Li 2 , z,!;-. Q78S 410 I I x= ex = East - West direction 1 Wi NO I Li (ft) Wi • Li Xi (ft) Wi • Li • Xi (k ft) 0.765 48 36.72 24 921 881.28 0.665 88 58.52 . 5383.84 sum = 22.95735 123.11325 24.4842399 ft 3.6 ft Dist. load Wi (kif) Li (ft) Wi * Li Jxi (ft) Wi • Li • Xi (k-ft) 1.65 48 79.2 24 1900.8 0.56 24 13.44 6.0 806.4 I SUM I Panel 92.64 kips 2707.2 kip-ft - ave. thk (in) dist. ht. (ft) length (ft) wi * Li (k) Xi (ft) Wi • Li • Xi (k-ft) line 2.1 6.5 13 18 20.875725 0 0 line 2.2 7.5 6.5 0 1.11515625 48 53.5275 line 2.25 . 6.5 6.5 0 0.96646875 72 69.58575 II SUM = 95.24 kips I Panel line 2.A line 2.13.5 6265.12 kip-ft ave. thk dist. ht. (ft) length (ft) wi * Li (k) Xi (ft) Wi • Li • Xi (k-ft) 6.5 13 40 7.73175 136 1051.518 7.5 6.5 10 1.11515625 72 80.29125 line 2.D 7.51 13 36 8.0291251 0 - 0 SUM = 16.87603125 kips - 1131.80925 65.9756608 ft 8.8 ft IL TbL V -. r PPME - JO g1a3 , I E. I I'. RIGID DIAPHRAGM ANALYSIS - 2nd Floor Diphraqe 97-120 --------------------------------------------------------- LOT 41 BLDG 2 V 115.6 KIPS C,G X 24.84 ft Cese I Ty 1678 ibft cx 3.6 ft V 65.96 ft Ix 2413 lbft ev .9.8 ft C 7. 13.93 ft C352 2 Tv 845 lbft V 53.88 It Ix 379 loft +------+-------------+-------------+---------------------+-------------------------------------+----------------------------------- I Centroid Stiffne Torsion 7. Direction V Direction WALL 7. V Rx Ry RxV Ry*X R R/t V Vtorl Vtcrl Vt R/Rt V Vtorl Vtorl Vt +------+-------------+-------------+---------------------+----------------+-------------+------1•-------------+-------------+------- Ln. 2. 5.214 1011 -4 -1 3.6 777. 89 -3 -i 88.8 Ln 2.21 48 0.788 38 915 1 0 1.3 127. .13 14.3 'Ln 2.2 71 0788 57 2659 23 1A 13 0 : Ln. 2.,* 136 3.802 517 25638 35 41 16 2 :56.3 11 5 10,9 I Ln.2.B5 72 0.909 65 298 8 10 1 0 10.51 1 0 '0.6 - Le. 2. D :6.1 1 17710 : 56 65 1 -16 -3 :65.2: -ii -6 : 11.4 1 I I I 3 +------+-------------+-------------+---------------------+------------------------------+------+-------------+ ------------+------ Bud1 10.811 6.79 :583 95 48230 10dZ 116 0 0 1007. 116 o o I +------+---------------------------+---------------------+-------------------------------------+----------------------------------- I . I I I ' 1 I I. A PR'ME joq STRUCflj7, DI: ENG:NEp ;-r PrPHP-PciV1 LOAi: PIRLT1Dt\\ 2- LIAXE 2-.)- 671 R)COP CIWEPWs LAYE 22- RxiP,L A-r'mi_ys'c D d/Z.&)S piA-pgJrciv'i LOrD 2! L-iAsE 2Zc: 767A1_ Lt'7 = ?A-AJL WAi PRIME Amim, - D lEc7lcAJ. L/ILJE 77L O*D - -= ?73t. = 6 > 2/ LO -P gJcrH) ZtjS. c Lit 2' PJGriJ 1Ob- —ill 7'3 Ic —FLx. iyi-)c. )lPsfHA&1A c2- L1Aj- 2i) ThVL 57.2... K. •.> 27/ 1c D1ZJ5 tAPpME LATEMA-L 4'V,4Ly5i &L Z I STRUCTURAL L ENGINEERS SHT : tAIj V 83 + ± 10 5')O '3k \ljLj =45K -- 13.76 X 40xI35-xO,23 E5l7k Pc'v&L 2Z/ tv-2 0772 iii -3 254 342 /V -4 0.41 2.045 275- AI-7 017 See ea E-/ L.,4TE.A-L 44'ALYStS 1314 a W&A DAE: jcq : G:NaEf3 S)-{T 1iDiTy /y—I = A/-3 o4j = 2,7/ 0,75 iV-5 2,o5 - = 1z Se-Q -3 /3Q/ (&-( U&2) = = o2, 0 oo (04 O22 z =3I = 057 0 , c7Tf'1> R f -1 -Il-52 ,c 1t7 21' A ~,rt, t — 0 15 V .~5 =- 634 0 q -/Oo I LATE4L ,4'f4LySlc &L2 V (tM. £—,~-2 iJ I) I (??L4 1> V7K V 3 I (1 I A PP1ME i•7 —7J5jST--,U"--' S.AI DA - IV1 ENGINEERS SH( ILciit CA)p =;3p5f4 W0 3pcfx = l Lf V\/FL rSf 240 P* MMM . 4 h o. eV 40' 14 oiM - 1 4 x 12 .4+At= \(p"(4 2t I QK(12X2O (40 )09 Z I 2.5Z I I I I I. I I PR'ME jon._- I . STLJ(2flPAL C":POT I E:'GlN:E3 CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1994 USC) DESCRIPTION: LINE 2.A, PANEL N-I, BLDG 2 BELOW NEll, 14 0.45 tips/ft unifora loads •(w) P1 0.00 kips P2 0,00 tips hI V---------P1 P2 Li 4,00 ft L2 8.00 ft Al A 21 L3 4.00 ft H V V L = 16.00 ft hi --------- = 12.82 ft Al = 0.00 ft h2 h2 = 6.00 ft A2 = 0.00 ft H = 16.18 FT 1 2 11 L3 V = 37.40 kips Wail THK = 6.50 in f'c= 3.00 ksi Load factor Eff. INK = 5.75 in fy= 60.00 ksi h2/Ll: 1.50 Rf1= 1,27 VI: 18. TO tins h2/L3: 1.50 Rf2: 1.27 V2: i8,0 tips At Pier *1 WALL PIER (YES:l, NO:0): 0 Av = 276,00 inA2 8*Acv*SQRT(f'c) 120.4 tips Vn = 86.75 tips Phi*Vn = 0.60*Vn 52.C5 tips Vc = 24.47 kips Phi*Vc = 0.600c 14.8 tips Vu = 26.18 tips Vu>Acv*SDRT(f'c), HOOK HORI2. REINE, Vs = 11.50 tips Vu EXCEED 0.60 * Vc provife shear rel shear reinf. As reqld: 0.20 ir2/FT '04 co *48 9.00 in U.C. SHEAR REINF. *5 8 9.00 in O.C. (1 V *68 9.00 in o.c,vi *78 9.00 in o.c. 1' At Pier *2 WALL PIER VES:1, 140:0): 0 Av = 276.00 inA2 8*Acv*SQRT(f'c) 120.94 tips Vn = 96.75 tips Phi*Vn = 0.500n : 5205 tips 24.47 tips Phi*Vc = 0.60*Vc 14,68 tips Vu = 26.18 tips !!Vu>Acv*SQRT(Vc), HOOK HORIZ. REINF Vs 11.50 tips Vu EXCEED 0.60 * Vc provde shear rei shear reinf. As req'd: 0.20 in'2/FI *49 9.00 in o.c. SHEAR REINF. #59 9.00 in o.c. *68 3.00 in o.c. #78 9.00 :n 0. 44 dowels at slab on grade At left At Reoht Avf reu1d:Vu/(0.6*Phi*fy) = 0.86 .E6 in"2 *4 dowels at 10 C'. C. 10 o,c, FA PR' M CY i' S1T''-JCRflAL D',T: 01 _ £t Si-il ______ CONCRETE SHEAR WALL DESIGN (PER SEC. 1321 1394 UBC) / DESC:RWTION; LINE 2.A, PANEL N-it BLDG 2 BELOW MEZZ. / CHECK HOLDOWN REDUIREMENTS. U l , 5< 0.9* DL / Load at Pie 41 Loa%'Pier #2 uniform load 3.6/ 3.60 kips Wail wt 16/0 ,/ 16.90 kips Point loads ,A,00 / 0.00 kips Sum P ://20.50// 20.50 tips Hoidowin at left end/" 35A1 ki05 AS= nch2 Holdovn at riqht , yf'd: 2S.61 tips As: 0.66 inchA2 Hciidown,%s ,A'tt end ripiit end #5 re ars: / 3.00 3,00 #6/'e-bars / 2.00 2.00 °re-bar/: 2.00 2.00 / #8 re-is = 1.00 1.00 / t Pier / atr #2 Kips/20.50 Check Bound/q~uirement, K Kip /28.70 28.70 Kip; Iy Symmeti Wall 82.8" Kips 82.80 Kip; Vt 3*l*h ,/.35 Kips 45.35 Kip Check mm, vertical reinforcements in piers pier #1 pier #2 As req'd: 0.20 0.20 in2/ft for #5 & smaller As req'd: 0.20 0.20 in2/ft for #6 & larger *48 12.00 12.00 in o.c. #58 16.00 16.00 in o.c. #68 16.00 n o,c. #78 16.00 16.00 in 0.7, Boundary Member Not required Flexural Desiqn At left At riaht Mu = 157.08 157,08 ft -tins As reqd = 0.82 0.82 sa.in As sin = 0.35 0.95 sq.in (200lfy b * d) As sax : 4,59 4,59 sq,in (Rhciw 0.75 * * d Beta = 0,85 0.85 R cw hal : 0.02 All At Left At Right As sin provided As As sin provided *4 re-bar : 1.00 5 5 1.00 5 #5 re-bar 4 1.24 4 1.24 #6 re-bar : 3 1,32 3 j,32 #7 re-bar #8 re-bar : 2 1.58 2 1.58 *9 re-bar PRIME JOR: Si:UCTJ7AL DAM ___ CONCRETE SHEAR WALL DESIGN (PER SEC, 1321 1994 USC) DESCRIPTION LINE 2.A, PANEL NI, BLDG 2 ABOVE MEZZ. W 0.05 tips/ft uniform loads :) P1 0.00 tips P2 0.00 tips hi 'H V-------> P1 P2 Li 4.00 ft L2 = 8.00 ft Ai. A2 L3.: 4.00 ft H V 16.00 it h1 = 2.00 ft Al h2 = 6.00 ft A2 = 0.00 ft H 11.00 FT Li L2 LD V = 8.50 tips Wall IRK = 6.50 in f'c: 3.00 ksi Load factor 1.40 Elf. IRK = 5,75 in fy: 60.00 ksi h2/1-1= 1.50 RI!: 1.27 VI: 4.25 tips h2/0: 1.50 Rf2: 1.27 V2: 4,25 tips At Pier #1 WALL PIER (YES:!, WO:0): 'Ay = 276.00 in-2 8*Acv*SQRT(f'c) 120.91 tips Vn = 86.75 tips Phi*Vn : 0.60*Vn 52.05 tips Vc = 24.47 tips Phi*Vc = 0.60*Vc 14,63 tips Vu = 5.95 tips Vs = 0.00 tips Vu <0.60 * Vc O.K. shear reinf. As req'd: 0.09 JnA2/FT Vu<Phi*t:/2 #4 8 18.00 in o.c. SHEAR REINF. #5 8 18.00 in o.c. #68 18.00 in o.c. #75 18.00 in o.c. At Pier *2 WALL PIER YES:1, NO:0:: 0 Av = 276.00 in2 8*Acv*SQRT(f1 c) 120.54 k i ps Vn = 86.75 tips Phi*Vn = 0,60*Vn 52..15 tips 24.47 tips Ph*Vc =0.60*Vc 14.8 tips Vu :, 5.95 tips Vs 0.00 tips Vu <0.60 * Vc O.K. shear reinf. As req'd: 0.09 i nA2/FT Vu<Phi*V02 *45 18.00 in o.c. SHEAR REiNE, *58 16.00 in 0,:. *6 5 18.00 in o.c. 117 8 18.00 in o.c. *4 dowels at slab on crade At left At Reicht Avf req1 d:Vu/(0.5*Ph1;*ty) 0.13 019 n'2 114 dowels at 48 11 0.c. 48 o,c. I PR!M.S S TRUCTURAL J ENGINEERS SHT CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 UBC) DESCRIPTION: LINE 2.A, PANEL Ni, BLD6 ABOVE MEZ1. CHECK HOLDOWN REQUIREMENT U = 1.4E t 1oad at Pier * Load at Pier *2 Uniform 14 0.42 0.42 tips All wt = 6,c 6.50 tips P loads .00 0.00 tips / Sum = 6.92 6.92 tips Idown at left en - 2.02 tips As 0 chA2 Holdown at righ end 2.02 hips As= .04 inc hA2 ,Röld n Bars left end right end * re-bars = 1.00 1.00 6 re-bars = 1 1.00 *7 re-bars = 1.00 1.00 #8 re-bars = 1.00 00 Check at Pier at Pier #2 Py 6.92 kips 2 Kips ck rim, vertical reinforcements in piers pier #1 pier *2 As req'd 0.16 0.16 in/ft for #5 & smaller As req'd: 0.20 0.20 inA2/ft for *6 & larger #4 @ 15.00 15.00 in o.c. *5* 16.00 16.00 in o.c. #68 16.00 16.00 in o.c. *7 8 16.00 16.00 in o.c. Boundary Member Not required Flexural Design At left At right Mu = 35.70 35.70 ft-hips As req'd = 0.18 0.18 sq.in As mm 0.95 0.95 sq.in (200/fy f b * d) As max = 4.59 4.59 sq.mn (Rhow bal * 0.75* b * d) Beta = 0.85 0.85 Rhow bal = 0.02 0.02 At Left At Right As req'd * 4/3 provided As As req'd * 4/3 provided *4 re-bar =2 0.40 2 .40 *5 re-bar = I 0.31 * 1 (.21 * *6 re-bar 1 0.44 1 .44 *7 re-bar = 1 0.60 1 6.0 *8 re-bar = 0.79 1 4.79 *9 re-bar =1 1.00 1 .00 F~mk A PP!ME S1TUCIIJAL DATE: 4T11 ENG1NEEIS SHT : _____ CONCRETE SHEAR WALL DESIGN (PER SEC.1921 '1994 UBC) DESCRIPTION: PANEL N-2 8L62 W = 0.05 tips/ft unifora loads Kw) 2! = 13.20 tips 0.00 tips hi V-------> Pt P2 Li = 8.00 ft L2 = 0.00 ft L = 20.00 ft H LI L2 V V hi = 0 ft H: 27.00 ft V : 10.00 tips Wall THK = 7.50 in f'c: 3.00 ksi Load factor: 1.40 Eff. THK 6.75 in 'fy: 60.00 ksi H/L = 1.35 Acv*SQRT(f'c) : 88.73 tips Av 1620.00 in'2 8*Av*SQRT(f'c) : 709.85 kips Vn 509.19 kips Phi*Vn : 0,60*Vn : 305.52 tips VC 177.46 tips Phi*Vc : 0.60*Yc': 106.48 tips Vu : 14.00 kips Vs : 0.00 tips Vu <0.60 * Vn 0.1<. shear reinf. As req'd: 0.11 i nA2/FT #48 18.00 in o.c. SHEAR REINF. *5 8 18.00 in o.c. #6 8 18,00 in o.c. #7* 18.00 in o.c. CHECK HOLDOWN REQUIREMENTS. U : 1.4E t 0.9* DL Uniform load : 1.00 tips Wall wt = 54.38 tips Point loads : 13.20 tips Sum P = 68.58 tips Holdown at left end = 0.00 tips As: 0.00 inch'2 Hoidown at right end: 0,00 tips As: 0.00 inchA2 Holdown Bars left end right end / *5 re-bars': 0.00 0.00 *6 re-bars : 0.00 0.00 *7 re-bars = 0.00 0.00 #8 re-bars = 0.00 0.00 PRIME JO• SiiUCTURA1- DATE: ENGNEERS SHI CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 UBC) DESCRIPTION: PANEL N-2 8L62 Check Boundary Member Requirement. Pv = 34.29 Kips Pu = 48.00 Kips 0.1*Aq*ftc = 486.00 Kips Mu/(Vu*lw) = 1,35 3*iw*h*sqrt(f'c) = 266.19 Kips Vu 14.0c Kips Boundary Member not required Flexural Design Mu = 378.00 ft-kips As req'd = 0.36 sq.in As mm 5.85 sq.in (200/fy * b * di As max = 28.14 sq.in (Rhow bal * 0.75 * b * di Beta = 0.85 Rhow bal = 0.02 As req'd * 4/3 provided As #4 re-bar req'd 3.00 0.60 sq.in #5 re-bar req'd 2.00 0.62 sq.in #6 re-bar req'd 2.00 0.88 sq.in #7 re-bar req'd 1.00 0.60 sq.in * #8 re-bar req'd: 1.00 079 sq.in #9 re-bar req'd 1.00 1.00 sq.in #4 dowels at slab on grade Avf req'd:Vu/(0.6*Phi*fy) 0.46 in-21 *4 dowels at 48 Check mm. Vertical reinforcements As req'd 0.18 inA2fft for *5 and smaller As req'd 0.20 inA2/ft fcir *6 and larger *4 8 13.00 in o.c. # t r o.c. *6 8 18.00 in o.c. #78 18.00 in o.c. Fi#: JoR UAL DAIt: ENGNERS S)-fT : ______ CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 UBC) DESCRIPTION: PANEL N-3 8L62 W = 0.05 tips/ft uniform loads (w) P1 = 13,20 tips P2 = 0.00 kips hi V------- P1 P2 ..O.A.IVA . - - I Li fl l I L2: 0.00 ft L = 36.00 ft H Li L2 V V hi = 2.00 ft H: 27.00 ft L V = 35,00 tips Wall THK : 7.50 in Pc: 3.00 ksi Load factor: 1.40 Eff. THK : 6.75 in fy: 60.00 ksi H/L = 0,75 Acv*SQRT(f'c) : 159.72 tips Ay : 2916.00 i nA2 8*AcvfSQRT(f'c) 1277.73 tips Vn = 916.55 tips PhiVn = 0.60*Vn 549.93 tips Vc : 319.43 tips Phi*Vc = 0.60*Vc : 191.66. tips Vu : 49.00 kips Vs = 0.00 tips Vu <0.60 * Yn O.K. shear reinf. As req'd 0.11 inA2/FT *4 8 18.00 in o.c. SHEAR REINF. *5 8 18.00 in o.c. #68 18.00 in o.c. *7* 18.00 in o.c. CHECK HOLDOWN REQUIREMENTS. U = t.4E t 0.9* DL Uniform load : 1.80 tips Wall wt = 97.88 tips Point loads : 13,20 tips Sum P = 112.88 tips Holdown at left end : 0.00 kips As: 0.00 inchA2 Holdown at right end: 0,00 tips As: 0.00 inch2 Holdown Bars left end right end #5 re-bars = 0.00 0.00 *6 re-bars = 0.00 0.00 #7 re-bars : 0.00 000 *8 re-bars : 0.00 0.00 A& PP!ME Jo1T?51 Jt 7TIJCT1J?Q DATE: TJ1 SHT CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 USC) DESCRIPTION: PANEL N-3 8L62 Check Boundary Member Requirement. Pv = - 56.44 Kips Pu = 79.01 Kips O.1*Ag*f'c = 874.80 Kips Mu/(Vu*lw) = 0.75 3*lw*h*sqrt(f'c) = 479,15 Kips Vu 49.00 Kips Boundary Member not required Flexural Design Mu = 1323.00 ft-kips As req'd = 0.69 sq.in As min = 10.65 sq.in (200/fy * b * d) As max = 51.23 sq.in (Rhow ha! *0.75*b Id) Beta = 0.85 Rhow bal = 0.02 As req'd * 4/3 provided As #4 re-bar req'd= 5.00 1.00 sq.in #5 re-bar req'd 3.00 0.93 sq.in * V #6 re-bar req'd 3.00 1.32 sq.in #7 re-bar req'd= 2.00 1.20 sq.in #8 re-bar re 2100 1.58 sq.in #9 re-bar req'd= 1.00 1.00 sq.in #4 dowels at slab on grade Avf req'dVu/(0.6*Phi*fy) 1.60 inA2 #4 dowels at 48 Check mm. Vertical reinforcements As req'd 0.18 inA2/ft for #5 and smaller. As req'd: 0.20 inA2/ft for *6 and larger #49 13.00 in o.c, #5 9 18.00 in c.c. #68 18.00 in o.c. #78 18.00 in o,c. CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1994 USC) DESCRIPTION: PANEL N-4 BLG2 w ME JOBUCTU?AL DATE: _____ W = p.05 tips/ft uniform loads (w) P1 = 0.00 kips P2 = 0.00 tips hi V-------> P1 P2 Li = 0.00 it L2: 0.00 it L : 16.00 it H 1 Li 1L2 V V hi = 2.00 it H: 27.00 it ------------L V = 6.00 tips Wall INK = 7,50 in f'c: 3,00 ksi Load factor: 1.40 EU. INK = 6.75 in fy= 60.00 ksi N/L = 1.69 Acv*SQRT(f'c) 70.98 kips Av = 1296.00 in2 8*Acv*SQRT(f'c) 567.88 tips Vrt = 362.99 kips PhifYn = 0.60*Vn 217.79 tips Vc = 113.65 kips Phi*Vc = 0.60*Vc 68.19 tips Vu: 8.40 tips Vs = 0.00 kips Vu < 0.60 * Yn O.K. shear reinf. As req'd: SHEAR REINF. 0.11 inA2/FT #48 18.00 in *5 8 18.00 in o.c. #6 8 18.00 in o.c. *7 8 18.00 in o.c. CHECK HOLDOWN REQUIREMENTS. U : 1.4E t 0.9* DL Uniform load 0.80 tips Wall wt 43.50 tips Point loads 0.00 kips Sum P 44.30 kips Holdown at left end Hoidowr at right end: Hoidown Bars #5 re-bars *6 re-bars #7 re-bars *8 re-bars 0.00 tips As: 0.00 inch2 0.00 tips As: 01.80 inchA2 left end right end 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1994 080) DESCRIPTION: PANEL N-4 8L62 I Check Boundary Member Requirement iOS Pu 31.01 Kips I 0.1*Ag*f'c = 388.80 Kips / Mu/(Vu*lw) = 1.69 3f1w*h*sqrt(fc) = 212.95 Kips Vu I I Boundary Member not required Flexural Design I Mu = 226.80 ft-kips As req'd = 0.27 sq.in As mm 4.65 sq.in (200/iy * b * d) I As max = 22.37 sq.in (Rhow bal * 0.75 * bid) Beta = 0.85 Rhow bal = 0.02 1i5 STrUCflJT?AL DATE: 4T' ENGINEERS Si-if 8.40 Kips As req'd * 4/3 provided As *4 re-bar req'd 2.00 0.40 sq.in * I #5 #6 re-bar req'd re-bar req'd: 2.00 1.00 0.62 0.44 sq.in " sq.in #7 re-bar req'd 1.00 0.60 sq.in *8 re-bar req'd: 1.00 0.79 sq.in *9 re-bar req'd: 1.00 1,00 sq.in #4 dowels at slab on grade I Avf req'dVu/(0.6*Phi*ty) 0.27 inA2 #4. dowels at 48 .o.c. '.'o. c. 1 Check sin. Vertical reinforcements As reqd: 0.18 inA2/ft for #5 and smaller As req'd: 0.20 inA2/ft for #6 and larger • #4 8 13.00 in o.c. *58 18.00 in o.c. J *78 *68 18.00 in 18.00 in O.C. o.c. I. I I ATUALDAT CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1994 UBC) DESCRIPTION: PANEL N-S 0L62 N = 0.05 tips/ft uniform loads : P1 = 13.20 ki ps P2 0.00 tips hi V-------) P1 P2 Li = 16.00 ft L2: 0.00 ft '•i At Ii 114 L - - .1Ji it ii I LL V V hi = 2.00 ft H: 27.00 ft L V = 28.00 tips Wall THK = 7.50 in f'c: 3.00 ksi bad factor: 1.40 Eff. THK = 6.75 in fy: 60.00 ksi H!L = 0.84 Acv*SORT(f'c) 141.97 tips Ay 2592.00 in-2 8*Acv*SQRT(flc) : 1135.76 ips Vn : 814.71 tips F'hi*Vn = 0.60*Vn 488.83 tips Vc = 283.94 tips PhifVc = 0.60*Vc 170.36 tips Vu : 39.20 tips Vs = 0.00 tips Vu 0.60 * Vn O.K. shear reirif. As req'd= 0.11 in2/FT #48 18.00 in O.C, SHEAR REINF. #58 18.00 in o.c. #6 8 18.00 in o.c. #78 18.00 in o.c. CHECK HOLDOWN REQUIREMENTS. U : 1.4E t 0.9* DL Uniform load = 1.60 tips Wall wt = 87.00 tips Point loads = 13.20 kips Sus P = 101.90 tips Holdown at lef t end = 0.00 tips As: 0.00 inchA2 Holdown at right end:. 0.00 tips As: 0.00 inchA2 Holdown Brs left end right end #5 re-bars = 0.00 0.00 #6 re-bars : 0.00 0.00 #7 re-bars = 0.00 0.00 #8 re-bars : 0.00 '0.00 CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 UBC) DESCRIPTION: PANEL N-S BL62 I Check Boundary Member Requirement. * Pv = 50.90 Kips Pu: 71.26 Kip-, I 0.I*Ag*f'i: = 777.60 Kips W Mu/(Vu*lw) = 0.84 3*lwfh*sqrt(f'c) : 425.91 Kips Vu 39.20 Kips I Boundary Member not required Flexural Design Mu : 1058.40 ft-kips -- As req'd : 0.62 sq.in As mm 9.45 sq.in (200/fy * b * d) As max = 45.46 sq.in (Rhow hal * 0.75 * b * d) Beta : 0.85 Rhow bal :' 0.02 As req'd * 4/3 provided As #4 re-bar req'd: 5.00 1.00 sq.in #5 re-bar reqtd: 3.00 0.93 *6 re-bar req'd: 2.00 '0.88 sq.in sq.in * #7 re-bar req'd= 2.00 1.20 sq.in #8 re-bar req'd: , 2.00 1.58 sq.in *9 re-bar req'd= 1.00 1.00 sq.in #4 dowels at slab on grade , Avf req'd:Vu/(0.6*Phi*fy) : 1.28 in'2 #4 dowels at 48 U o.c. I- Check mm. Vertical reinforcements As req'd: 0.18 inA2/ft for *5 and smaller As req'd: 0.20 inA2/ft for *6 and larger #4 @ 13.00 in o.c, #5 @ 18.00 in o.c, #6 8 18.00 in O.C. #7 8 18.00 in o.c. I ,Q! STT-,UCTURAL DATE: AJA~ S.' VQ 64DE P4 is PfME V S1UCT1JAL DATE: 31'I p I 40 I I 40 P1p5fx20x40104 ZO 53 Lo& pLf 2v 240 Pw 53x24XtO=!22 p2_1 V x24ii "f OF A'V&-L )t1 .2x2 (H) ,All Z TP/ /272+ I F, 2- 3.371 2-0 S = K o -r ,'-1= 13327 -0 3=3c 9 NA= ATM qf.v ' %L1 < ((± 5) ) I5i(1o5c) "jTh4AIi3C/ EAPE Am tvie@3 Co/VT A PP'ME ST1UCTJAL c..eT : EG:NEERS SHT: Ai-1 ev tv-7 M 4 x 37 0 g + 31Z x i4 (1,44 IO 24O - 72f123zc = 27 N-OTM e-:— —io3,~=O,&7 < CJ = Q' 72- c N I f ~ i-- ( (t - J - H2—O O1t4fl i_VV L= 7Z 7 ti TJL 43 get- Out- ftr6 A !N LDA - ENGEERS SHI Ffi CONCRETE BEAN DESIGN (tension steel only) -------------------- DESCRIPTION: OPENING 12 Pc = 3 ksi Va = 28.73 kip b = 24 in fy = 60.ksi Ma = 63k-ft h = 24 in Uit/allow: 1.4 d = h - S in d = 19 in Vu = 103.77 psi Vt = 103.54 psi Vs = 0.00 psi Vc/2 = 54.77 psi Mm, shear reinf, req'd spacing of #3 tie required = 11.00 in e.c. Mu = 88.20 k-ft As req'd 1.06 sq.in As sin = 1.52 sq.in (200/fy x b x d As sax = 7.31 sq.in (Rhow Ba! x 0.75 x b x Beta = 0.85 Rhow Ba! = 0.02 As req'd * 4/3 provided As #4 re-bar req'd= 8 1.60 sq.in * *5 re-bar req'd: 5 1.55 sq.in #6 re-bar req'd= 4 1.76 sq.in 47 re-bar req'd 3 1.90 sq.in #8 ye-bar req'd 2 1.58 sq.in 49 re-bar req'd= 2 2.00 sq.in ROOF DIAPHRAGALVSIS s0B09/19/97 97-90 sip 12v b4148TBEAM ANALY'NfOGRAMs1p9v1s0b414-3T (6.60) sOp 10. 00h12v0s0b3T SPAN LENGTH z 00 ft RIGHT CANT 14.00 ft URM LOADS (k/ft & ft) wl 11-12 1.077 (00 0.00 24.00 1.104 0.0( 24.00 72.00 R TIONS (ki LOAD LEFT IGHT Dead 23.637 49. Live 0.000 0.000 Total :r, 637 49.203 N MUM FORCES V max 33.75 k @ 58. -tt Yd sax 33.75 k 58.00- N sax 4( 61 kft 8 27.43 ft Nd sax 407.6 ' ft 8 27.43 ft N sin z -108.13k t 8 58.00 ft - PRIME I 1. CONCRETE BEAM DESIGN I (tension -------------------- steel only) I DESCRIPTION: OPENING 12 f'c = 3ksi Va = 28.73 kip b = 24 in . fy60 ksi Ma = 43.1 k-ft h = 24 in I Ult/allow = 1.4 d = h - 5 in d = 19 in Vu = 103.77 psi Vc = 109.54 psi Vs = 0.00 psi Vc/2 = 54.77 psi Mm. shear reinf. req'd spacing of *3 tie required = 11.00 in o.c. Mu = 60.34 k-ft As req'd 0.72 sq.in As min = 1.52 sq.in (2001fy x b x d As max = 7.31 sq.in (Rhow Bal x 0,75 x b x d Beta = 0.85 Rhow Bal = 0.02 As req'd * 4/3 provided As *4 re-bar req'd= 5 1.00 sq.in *5 re-bar req'd= 4 1.24 sq.in #6 re-bar req'd= 3 1.32 sq.in *7 re-bar req'd: 2 1,20 sq.in *8 re-bar req'd= 2 1.58 sq.in *9 re-bar req'd= 1 1.00 sq.in LI I A PRIME JOB :1 153) I I SiTUCThPJJ DATE: ENGINEERS' SHI: LATE.1Q4L ,4'V4L9 S 2 @ V= tOK -- 130.69< A'vtL vi oq7 21,2 (SA ME ii -7) - -Z 3 032 Co6,2 433 /I( OITY -I £ = 047 &2. L-2 = 27 714 X40 =z 19 ___ See E-3L1 /= ),2 A PRFME JOfl: 1 STRtJC11JrAL DATE: ENGNEER3 SHT L4TE4L mALygS UJ=?3f2O2éO pf V=2ZK - _4t 2 OTt1j27x223I kt - = g4çt7 37I t OTt'1PJ1. IVO ft PRIME - CONCRETE SHEAR WALL DESIGN Ln 11 Ili STTJCflJ7AL SHT k t it u' DESCRIPTION; PANEL E-I, N-7 8L62 PIER A & C 0.26 tips/ft uniform loads (w) P1 = 0.00 kips P2 = 0.00 tips h V-------> P1 P2 Li: 4.Oott L2 : 8.00 ft Al A2 L3 : 4.00 ft H V V L = 16.00. ft hi : 2.00 ft Al = 0.00 ft h2 h2 : 6.00 ft A2 = 0.00 ft H: 2 7 . 1 Li L2 L3 (V = 15.00 tips Wall THK = 7.50 in f': 3.00 ksi Lad factor: 1.40 EU. THK : 6.75 in fy: 60.00 hsi h2/L1: 1.50 Rf1z 1.27 Vi: MC1 hips h2/L3: 1.50 RU: 1.27 V2: 7.5§ hips At Pier #1 WALL PIER (VES:1, NO:0): 0 Av = 324.00 inA2 8*Acv*SQRT(f'c) 141.9 hips Yn = 90.75 tips Phi*Vn = 0.60*Vn : 5445 tips Vc 28.73 tips Phi*Vc z 0.60*Vc 17.24 tips Vu : 10.50 hips Vs 0.00 hips Vu ( 0.60 * Vc O.K. shear reinf. As req'd: 0.23 inA2/FT SHEAR REINI. #5 @ 9.00 in O.C. Lr D *6 8 9.00 in o.c. #78 9.00 in o.c. AsO' At Pier #2 WALL PIER (YES:1, NO:0): ) / 324.00 jA7 8*Acv*SDRT(ftc) 141.9 hips Vn = 90.75 tips Phi*Vn = 0.60*Vn 54.45 tips Vc = 28.73 hips Phi*Vc : 0,60*Vc = 17.21 tips Vu : 10.50 hips Vs : 0.00 tips Vu (0.60 * Vc O.K. shear reinf. As req'd: 0.23 in2/FT *4 8 9.00 in o.c. SHEAR REINF. *58 9.00 in o.c. #68 9.00 in o.c. #78 9.00 in o.c. *4 dowels at slab on grade At left At R:e1g1't Avf reqdVu/(0.6*Phi*fy) : Q,34 0,4 *4 dowels at 24 cj.c, 4 ' PR!ME STRUCTURAL DATE: CONCRETE SHEAR WALL DESIGN ENGINEERS SHT (PER SEC.1921 1994 UBC) - DESCRIPTION: PANEL E-1, N-7 BL62 PIER A &C 7 CHECK HOLDOWN REQUIREMENTS. U = 1.4E t 0,9* DL Load at Pier #1 Lcad_)k'r #2 Uniform load 2.08 2. 08 tips Wall wt = 19.50 ,, 19.50 kips Point loads 0.00 V 0.00 tips Sum P 27 21.58 tips Holdon at left end /6.53 tips As: 0.31 inchA2 Holdown at right end= 1.53 tips As 0.31 inch A2 Holdown B4" left end right end #5 re-br's : 1.00 1.00 #6 r,4ar5 : 1.00 1.00 #frfe-bars : 1.00 1.00 /8 re-bars: 1.00 1.0 Check Boundary Member Requirement. Check mm. vertical reinforcements in piers at Pier #1 at Pier#2 pier #1 pier *2 As req'd: 0.23 0.23 inA2/ft for #5 & smaller Pv = 21. Kips 21.58 Kips As req'd= 0.23 0.23 inA2/ft for #6 & larger Pu = .21 Kips 30.21 Kips #4 # 10.00 10.00 in o.c. Geometrica y Symmetrical Wall #5 8 16.00 16.00 in o.c. 0.1*Ag*f'c 97.20 Kips 97.20 Kips : *6 8 16.00 16.00 in o.c. Mu/(Vu* = 1.69 #7 8 16.00 16.00 3*lwfh*SQR 'c) 53.24 Kips 53.24 Kips Boundary Member Not required Flexural Design At left At right Mu = 63.00 63.00 ft-tips As re-'d = 0.32 0.32 sq.in As mm 1.10 . 1.10 sq.in (200/fy * b * di As max = 5.29 5.29 sq.in (Rhow bal * 0.75 * b * d) Beta = 0.85 0.85 Rhow bal = 0.02 8,02 At Left At Right As reqd * 4/3 provided As As req'd * 413 prvided *4 re-bar : 3 0.60 / 3 0.60 0.6Z/' #5 re-bar = 2 0.62 2 *6 re-bar = 1 0.44 * 1 0.4 * *7 re-bar : 1 0.60 1 0.60 #8 re-bar = 1 0.79 1 0.75 #9 re-bar : 1 1.00 1 1.00 PRIME JC) :• - ST1WCT1JAL CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1994 USC) DESCRIPTION: PANEL E-2 8L132 W = 0.26 tips/ft uniform loads (w) P1 = 0.00 tips P2 = 0.00 kips hi N P2 Li = 0.00 ft L2 = 0.00 ft L = 40.00 ft H LI IL2 V V hi: 2.00 'ft H = 27.00 It L V = 67.00 tips Wall THK = 7.50 in f'c: 3.00 ksi Load factor 1.40 Eff. THK = 6.75 in fy: 60.00 ksi H/L 0.68 Acv*SORT(f'c) : 177.4E tips Av = 3240.00 in2 8*Acv*SQRT(f'c) 1419.7C tips Vn = 1018.39 tips Phi*Vn = 0.60fVn 611.02 tips Vc = 354.92 tips Phi*Vc = 0.60Vc 2121.9t tips Vu = 93.80 tips Vs : 0.00 tips Vu <0.60 * Va O.K. shear reinf. As req!d: 0.11 in2/FT #48 18.00 in o.c. SHEAR REINE. #5 8 18.00 in o.c. #68 18.00 in o.c. #78 18.00 in o.c. CHECK HOLDOWN REQUIREMENTS. U = 1.4E t 0.9* DL Uniform load : 10.40 tips Wall wt = 108.75 tip; Point loads = 0.00 tips Sum P = 119.15 tips Holdown at left end 9.82 tips As: 0.18 inch A2 Holdown at right end: 9,82 tips As: 0,18 inchA2 Holdown Bars left end right end #5 re-bars = 1.00 1.00 *6 re-bars : 1.00 1.00 #7 re-bars: 1.00 1.00 #8 re-bars : 1.00 1.00 PPM ion WIN! iRUCflJ DAM ENGINEERS SHT:11 CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 UBC) DESCRIPTION: PANEL E-2 8L62 Check Boundary Member Requirement. Pv = 59.58 Kips Pu = 83.41 Kips 0.1*Aq*f'c = 972.00 Kips Mu/(Vu*iw) = 0.68 3*lw*h*sqrt(f'c) = 532.39 Kips Vu 93.80 Kips Boundary Member not required Flexural Design Mu = 2532.60 ft-tips As req'd = 1.19 sq.in As sin = 11.85 sq.in (200/fy * b * d) As sax = 57.00' sq.in (Rhow ba! * 0.75 * b * d) Beta = 0.85 Rhow bal = 0.02 As req'd *4/3 provided As #4 re-bar req'd 8.00' 1.60 sq.in *5 re-bir reqd 6.00 1.86 sq.in #6 re-bar req'd: 4,00 1.76 sq.in *7 re-bar req'd 3.00 1.90 sq.in #8 re-bar req'd 3.00 2.37 sq.in #9 re-bar req'd 2,00 2.00 sq.in #4 dowels at slab on grade Avf req'dVu/(0.6fPhi*fy) 3.07 inA2 #4 dowels at 30 B Check sin. Vertical reinforcements As reafd: 0.18 i nA2/ft for #5 and scalier As req'd 0.20 inA2/ft for *6 and large- #4 @ 13.00 in o.c. #58 18.00 in o. c. *6 8 18.00 in o,c. #79 18.00 in o.. ADE '1 Q LvJEi3 JA PRIME WA SflJCTLAL : ENGINEERS SHT: Wr o A'V1?L 1C4 PLf 27I/ 2.x2 X ioo4 074 ( 1(ce. 2)(a vv/2 OT rTh=2Y 131 = 337 MA 714L 13575_ 311,yt°4 = 37 !< - 42 a- 37z - ze (1.)= :7 4 (1 17 (1±) L Z77 k 94 iW L7 'I2'- O" oFi1&/& 141 = 2i77x 2 v = 33z4 3ee 0(tt pitt HwL-125 4 DO AM TI O'tiArL T TIS PRIME JOB CONCRETE BEAM DESIGN (tension steel only) -------------------- DESCRIPTION: OPENING 12 f'c = 3 ksi Va = 33.24 kip b = 24 in fy = 60 ksi Ma = 73k-ft h = 240 Ult/allow = 1.4 d = Ii - Sin d = 19 in Vu 120.06 psi Vc = 109.54 psi Vs 10.52 osi Vc/2 = 54.77 psi spacing of #3 tie required 11.00 in .c. Mu 102,20 k-ft As req'd: 1.23 sq.in As mm 1.52 sq.in (200/tv x b x di As sax = 7.31 sq.in (Rhow Sal x 0.75 x b x di) Beta = 0.85 Rhow Sal = 0.02 As sin provided As #4 re-bar req'd: 8 1.60 sq.in * #5 re-bar req'd: 5 1.55 sq.in #6 re-bar req'd 4 1.76 sq.in #7 re-bar reqld: 3 1.80 sq.in #8 re-bar req'd 2 1.58 sq.in *9 re-bar req'd 2 2.00 sq.in 1 PR'ME joq L STRUCT1J?AL DA"i: .fJJJJ ENGNEErS CONCRETE BEAM DESIGN (tension steel only) -------------------- DESCRIPTION: OPENING 12 f'c = 3 ksi Va = 33.24 kip b = 24 in fy = 60 ksi Ma = 50 k-ft h 24 in U1t/aIIow 1.4 dh - 5in d = 19 in Vu = 120.06 psi Vc = 109.54 psi Vs = 10.52 psi) VcI2 = 54.77 psi spacing of #3 tie required = 11,00 in o.c. Mu = 70.00 k-ft As req'd 0.84 sq.in As em 1.52 sq.in (200/fy x b x d As max = 7.31 sq.in (Rhow Bal x 0.75 x b x d Beta = 0.85 Rhow Bal = 0.02 As req'd * 4/3 provided As #4 re-bar req'd: 6 1.20 sq.in #5 re-bar req'd: 4 1.24 sq.in #6 re-bar req'd: 3 1.32 sq.in * #7 re-bar req'd 2 1.20 sq.in #8 re-bar req'd: 2 1.58 sq.in #9 re-bar req'd: 2 2.00 sq.in fr\ PrV /t t'CilJR\L D [J E;'GNEERS SHT krakL, PtJAuIlc B1ai2- uiJ: CG. 1 14.1 4(o.1I- cbMg &PVV F- 6IkE- FAtEL- )E.J cW;M 7I61)J - If?x 4' 217171f Ct¼14P QVUVLJI QI, 11 (o-4 ebiTVtA I 1 1 I I I I I I I 1 I I I I I I IA PR'ME joR AFA STRUCTURAL DATE: D ENGINEERS L CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1934 URO) DESCRIPTION: LINE 2.C5 BLDG 2 = 0.05 tips/ft uniform loads () P1 = 0.00 kips P2 = 0.00 tips hi V-------> P1 P2 LI = 0.00 ft - . 'iii - V l fl b I I - ') ) U U 'i' I) L - i .L It 1 LI V Li V hi = 3.50 ft H = 25.50 ft L V = 46.90 kips Wall THK = 7.50 in f'c: 3.00 ksi Load factor: 1.40 Eff. THK = 6.75 in fy: 60.00 ksi H/L = 1.01 Acv*SQRT(f'c) 112.02 tips Av = 2045.25 inA2 8*Acy*SQRT(f'c)896,18 tips Vn = 642.86 tips Phi*Vn = 0.60*Vn = 385.71 tips Vc = 224.05 tips Phi*Vc = 0,600c 134.43 tips Vu = 65.66 tips Vs = 0.00 tips Vu (0.60 * Vn O.K. shear reinf. As reqd 0.11 in"2IFT *4 @ 18.00 in O.C. SHEAR REINF. #5 8 18.00 in C, c. / *6 9 18,00 in o.c. #7 8 19.00 in O.C. CHECK HOLDOWN REQUIREMENTS. U = 1.4E t 0.9* DL Uniform load = 1.26 tips Wall wt = 68.65 tips Point loads = 0.00 tips Sue P = 69.91 tips Holdown at left end 35.55 tips AS: 0.66 inch-'2' Holdown at right end: 35.55 tips As: 0.66 iach2 Holdown Pars left end right and #5 re-bars = 3.00 3.00 #6 re-bars 2.00 2.00 #7 re-bars 2.00 2.00 *8 re-bars : 1.00 1.00 A PRME joc :ct1-75 Si UCTU .(. DATE: (1Jd17 E\SiNER SHT : L 1 CONCRETE SHEAR WALL DESIGN (PER SEC. 1321 1994 USC) DESCRIPTION: LINE 2.C5 BLDG 2 Check Boundary Member Requirement. Pv = 34.96 Kips Pu = 48.94 Kips 0.1*AQ*f!c = 613.58 Kips Mu/(Vu*lw) 1.01 3*lwfh*sqrt(f'c) 336.07 Kips = 65.6E Kips Boundary Member, not required Flexural Design Mu = 1674.33 ft-kips As req'd = 1.26 sq.in As mm 7.43 sq.in (200/fy * b * d) As max = 35.72 sq.in (Rhow bal * 0.75 * b * d) Beta = 0.85 Rhow bal = 0.02 As req'd * 4/3 provided As #4 re-bar req'd= 9.00 1.80 sq.in #5 re-bar req'd 6.00 1.86 sq.in #6 re-bar req'd: 4.00 1.76 sq.in * #7 re-bar req'd= 3.00 1.80 sq.in #8 re-bar req'd= 3.00 2.37 sq,in *9 re-bar req'd 2.00 2.00 sq.in *4 dowels at slab on grade Avf req'dVu/(0.6*Phi*fy) 2.15 inA2 *4 dowels at 28 o,c. Check mm. Vertical reinforcements As req'd 0,18 in'2Ift for *5 and smaller As req'd: 0.20 in'2/tt for #6 and iarQer *4 @ 13.00 in o.c. *58 18.00 in c.c. *6 8 18.00 in o,c. #78 18.00 in o.c. lLA PR1ME STiIJcr r'j - ENG;N3 clT; LINE 2.C5 09/23/97 97-250 GRADE BEAM ANALYSIS PROGRAM (4.02) Footing LENGTH = 50.50 ft Footing WIDTH 3.50 ft Footing DEPTH = 3.00 ft eonc Weight = 0.15 kcf Surcharge = 0.00 ksf Footing + Surch. = 1,58 kIt UNIFORM LOADS (k/ft & ft) 2 3 Xi - X2 2.770 2.770 2.770 0.00 50.50 POINT LOADS (k & it) 1 2 3 X 0.00 49.30 -49.30 0.50 0.00 -49.30 49.30 24.75 0.00 49.30 -49.30 25.75 0.00 -49.30 49.30 50.50 7.10 7.10 7.10 28.00 RESULTANTS (k, ft & ksi) CASE 1 2 3 Pt 226.52 226.52 226.52 X 25.34 14.67 36.00 0 max 1.29 2.94 2.98 O min 1.27 0.00 0.00 MAXIMUM FORCES (k, kft) ('A'C 3 - V max 3.74 75,64 69.34 M max 43.76 285.38 259.10 N min 0.00 -210.25 -229.44 V max = 75,64 k N max = 285.38 Ut M mm -229.44 kit LINE 2.C5 09/23/97 97-250 MAN,,, PR'M km .STTUC ENG1 GRADE BEAN DESIGN PROGRAM i4,02: DESIGN DATA f'c = 3.00 ksi b 42.00 in fy = 60.00 kqi h 36.00 in Load Factor = 1.50 d 32.00 in SHEAR DES I'GN Veax = 75.6 k Vc : 147,2 k Vn :133.5k Vs Av = 0.42 si/ft S sax = 16.00 in Vs = 0, stirrups are optional I * 3 Stirrup @ 6.3' 2 * 3 Stirrups 8 12.6- 1 * 4 Stirrup 8 11.4" 2 * 4 Stirrups 8 16,0" FLEXURAL DESIGN Beta 1 = 0.85 As sin : 4.48 si As sax : 21.55 si 11+ sax : 285 kft N- sin : -229 kIt Mn+ = 476 kIt Mn- = -382 kIt As sty = 3.05 si As str : 2.44 si As. = 4.07 si As = 3.26 si Bottom Steel Top Steel Bar No. Space No. Space *4 204 16" 163 2.V * 5 131 24" 105 3.1n * 6 9.3 3.4' 7,4 4,3" * 7 6.8 4.9" 5.4 5.7' * 8 5.2 5.7" 4.1 6.8" *9 41 63" 3.3 85" "') O. *1 ,). ç,, ,j I L H .UC I" #11 2.6 11.3" 2.1 11.3' \A1 -2 ( SU"f..v-4øL4I) LjT4L ANLYI' b4-2 :Ea ME i UCT1JAL DATE: & ~ INEERS SHI c LllvE (9 lot i5O 10gx = (f K k '-44 Yv —2- 3 0,272- 4 91932. zza4 Y:&IDtTY _27,/g PC- o% 0,432 ,n r 0\772- 0, 14 16 = 0042 0 7?2 tØt 2: z J Orfr1-?ft1 1* Arec = O2,l ttce - h-f. D.Ju 'cc'o62 = r 69 PRI ME JOI I L'TEAcL A/VLy$J$ I : G'LIAJeç I lr(PITY I w-3 I . I 4SK I _ ,k 2— oq c8 42 025 - 0 21 Z=01o7 = +427 I OT(i — 14C1x 2D1.=9yOIJ Kft I N - O/ x&j 25X 14),(22 x2.4 yYc,)+Q(j ?4x2 I (333415_ i<f& 0 T N - NP -i IT' I )= ;3xZ43i2 v/ =53f2=,3 q4 j7f! as e- 2-f H. D. or-H Al 1-117 MI1Jr _'7(p_ - —o,o . 1kv ¶ 0/O CONCRETE SHEAR WALL DESIGN STiUCTJAL (PER SEC. bzl L4 UBC) E:'NERS DESCRIPTION: PANEL W-2 P I ER 7 5 W = 0.35 tips/ft uniform loads () P1 = 0.00 tips P2 = 0.00 tips hi - ---------- : t Li = 4.00 ft IL. 0.vAi i - ' Al u ( I. I L3 = 4.00 ft H V V L = 16,00 ft hi = 10.70 ft Al = 0.00 ft h2 h2: 9.001t A2 = 0.001t H 20.30T Li I L2 L3 V = 33.10 tips Wall THK = 7.50 in f'c: 3.00 ksi Loan factor 1.40 EU. THK = 6.75 in. fy= 60.00 ksi h2/Li 2,25 Rf1= 0.55 Vi: 16.5 tips h2/L3: 2.25 R12: 0.55 V2: 16.55 tjpc At Pier #1 WALL PIER (VES:1, NO:0): 0 Av = 324.00 inA2 8*Acv*SQRT(f'c) 141.37 tips Yn = 84.09 tips Phi*Vn = 0.60*Vn 50.6 hips Vc :. 20.41 tips Phi*Vc = 0.60*Vc 12.24 tips Vu 23.17 tips Vu>Acv*SORT(f'c), HOOK HOI2. REINF.-" Vs 10.93 tips Vu EXCEED 0.60 * Vc proviJe shear rei shear reint. As req'd 0.23 inA2IFT #48 9.00 in o.c. SHEAR REINF. *58 9.00 in o.c./ #68 9.00 in o.c. #7 8 9.00 in o.c. At Pier #2 WALL PIER (YES:i, NO=0): 0 Av = 324.00 inA2 8*Acv*SQRT(f'c) 141.,37 tips Vn = 84.09 tips Phi*Vn = 0.60*Vn 50.46 kps Vc = 20.41 kips Phi*Vc = 0.60*Vc 1224 tips Vu = 23.17 tips HVu>Acv*SQRTU'c), HOOK HORU. REINF V Vs 10.93 tips Vu EXCEED 0.60 * Vc provide shear rei shear reinf. As req'd 0.23 in2/FT - #4* 9.00 in o.c. SHEAR REINE. *58 9.00 in o.c. #6 8 9.00 in o.c. #78 9.00 in o.c. *4 dowels at slab on grade At left At Reiht Avf req'd:Vu/(0.6*Phi*fy) 0.76 (E.76 in - . • U - II - . * we: 12 o.c. L c:ON:RETE SHEAR WALL DESIGN (PER SEC. 1921 1994 UBC) DESCRIPTION PANEL W-2 PIER 7.5 CHECK HOLDOWN REQUIREMENTS, U 1,0.3* DL Load at Pie 4( Load at Pier *2 Uniform load 7.6 7.60 tips Wall wt = 18 19.88 tips Point loads = 0.00 0.00 tips Sue P)/ 27.48 27.48 tips Holdown at left e9i< 35.17 tips As 0.65 i nchA2 Holdown at riYend 35.17 tips As 0.65 inch2 Hold pBars left end right end *e-bars = 3.00 2.00 ,46 re-bars = 2.00 2.00 #7 re-bars = 2.00 2.00- #8 re-bars = 1.00 0 Check Boundary Member Requirement. at Pier #1 at Pier *2 Pv = 1 .48 Kips 27.48 Kips Pu = 38.46 Kips 38.46 Kips Geometri ally Symmetrical Wail 0.1*Ag* c z 97,20 Kips 97.20 Kips Mu/( *1w) = 1.27 3*lw*h* 'T(f'c) = 53.24 Kips 53.24 Kips Check am, vertical reinforcements in piers pier *1 pier *2 As req'd 0.23 0.23 inA2/it for #5 & smaller As req'd 0.23 0.23 inA2/ft for #6 & larger #4 # 10.00 10.00 in o.c. *5 8 16.00 16.00 in o.c. *6 8 16.00 16.00 in o.c. *78 16.00 16.00 in o.c. Boundary Member Not required Flexural Design At left At right Mu = 208.53 208.53 ft-tips As req'd = 1.10 1.10 sq.in As mm . 1.10 1,10 sq.in (200/fy * b * d) As Cdx: 5.29 5.29 sq.in (Rhc'wbai z 0.75*b*d) Beta = 0.85 0.85 Rhow bal. = 0.02 0.02 At Left At Right As min provided As As min provided *4 re-bar = 6 1.20 6 1. 0 *5 re-bar = 4 1.24 4 1.24 16 re-bar =3 1.32 3 1.32 *7 re-bar i.0 * #8 re-bar 2 158 2 1.58 *9 re-bar 2 2.00 2 2.)0 :ONCRETE SHEAR WALL DESISN (PER SEC. 921 1934 USC) 10 Lk"' SE ~~, G-' ' Ct' ICRIPTION: PANEL W-2 PIER 6.5' THK W = 0.95 hips/ft uniform loads: P1 = 0,00 tips P2= 0.00 tips h \' Di L C") I Li = 4.00 ft L2 : 8.00 ft. A2 L3 •: 4.00 ft H V V L 16.00 ft hi = 10.70 ft Al = 0.00 ft Mi h2 = 9.00 ft A2 = 0.00 ft H: 20.3OFT Li L2 L3 V = 33.10 tips Wall THK : 6.50 in f't: 3.00 ksi Load factor: 1.40 Elf. THK : 5.75 in fy: 60.00 ksi h2/1-1: 2.25 Rf1 0.55 Vi: 16.55 hips h2/01: 2.25 R112: 0.55 Y2= 16.5 hips At Pier #1 WALL PIER (YES:!, NO:0): 0 Ay : 276.00 inA2 8*Acv*SQRT(f'c) : 120.34 hips Vn : 71.63 hips Phi*Yn = 0.60*Vn 42.B tips Vt = 17.38 hips PhifVc: 0.60fVc 10.43 hips Vu : 23.17 hips Vu>Acv*SQRT(f'c), HOOK HOIZ. REIWF. Vs = 12.74 hips Vu EXCEED 0.60 * Vt provide shear rel ear reini. As req'd: 0.20 inA2/FT #48 9,00 in c'.c. SHEAR REiNF. #5 8 9.00 in O.C. at f 9.00 I/1 fl - -, #7 8 9.00 in o.c. At Pier #2 WALL PIER (YES:!, NO:0): 0 276,00 inA2 8*Acv*S9RT(f1 c) 120..34 tips Vn = 71.63 hips Phi*Vr = 0.60*Vn 42.38 tips Vt = 17.38 hips Phi*Vc : 0.600c 10.43 hips Vu = 23,17 tips !Vu>Acv*SORT(f'c), HOOK HORIZ. REINE Vs = 12.74 kips Vu EXCEED 0,60 * Vt ortvide shear rei war reinf. As reqid: u.ui n A 11 /FT #4 8 9.00 in o.c, SHEAR REINF. #58 9.00 in cc. #6 8 9,00 in #78 9.00 in o. c. #4 dowels at slab on grade At left At Reiht Avf req'd:Vu/(O.S*Phitfy) = 0.76 t76 #4dcweisat CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1934 UBC) DESCRIPTION: PANEL W-2 PIER 6.50 THK CHECK HOLDOWN REQUIREMENTS. U : 1 .4E t 0,9* DL 7 Load at Pier #1 Load at 4i2 Uniform load = 7.60 7kips Wall wt = 17.22 1.22 kips Point loads = 0.00 / 0.00 tips Sum P= 24.83 24;83kips Holdown at left and 37ips As: 0.70 inch"2 Holdown at right end: .63 kips As: 0.70 inch A2 Holdown Bars ,left end right end *5 re-bars =/ 3.00 3.00 #6 re-bars/ 2,00 2,00 #7 re-bay': 2.00 2.00 #8rs: 1.00 1,00 Check B undary Member Requirement. at Pier #1 at. Pier #2.. - Pv = 24.83 Kips ,A183 Kips Pu : 3475 Kips" 34.75 Kips Geometrically Symmetric Wall 0.1*Ag*f'c = 82.80 ips 82.80 Kips Mu/(Vu*lw) = 1 3*lwfh*SQRT(f'c) : 35 Kips 45.35 Kips A PR'MT jo''l_J571 I't STRUCTURAL JJj ENGINEERS SHT Check mm, vertical reinforcements in piers pier #1 pier *2 As req'd 0.20 0,20 inA2/ft for *5 & smaller rG 0.20 0.20 in,?/ft for #6 & larger *4* 12.00 12.00 in o.c. #5 8 16,00 16.00 in O.C. *6 @ 16.00 16.00 in o.c. *70 16.00 16.00 in o.c. ry Member Not required Flexural De'sign At left At right Mu : 208.53 208.53 It-kips As req'd = 1.10 1.10 sq.in As mm 0.95 0.35 sq.in (200/fy * b * d) As max = 4.59 4.53 sq.in (Rhow bal '0.75 * b * d) Beta = 0.85 0.85 Rhow hal = 0.02 0.02 At Left At Right As #4 re-bar = 6 1.20 6 1.20 #5 re-bar = 4 1.24 ' 4 1.24 *6 re-bar = 3 1.32 3 1.32 #7 re-bar = 2 1.20 * 2 1.20 * #8 re-bar : 2 1.58 2 1.58 *9 re-bar.: 2 2.00 2 2.00 CONCRETE SHEAR WALL DESIGN (PER SEC. '32i 1994 UBC) DESCRlPTI0N PANEL t4-3 W-4 t PIER 7.5' TH 0.35 tips/ft unitors loads () = 0.00 tips P2: 0.00 kips hi V-------> i RI P2 Li = 4.00 It L2: 3.00 fl, Ali I A2 L3 = 4.00 ft H V V - - L - o.O( hi 7.93 ft Al = 0100 ft h2 I h2 = 6.00 It Q. = 0.00 ft H: 21.O7 FT LI L2 I L3 V = 52.00 tips Wall THK = 7.50 in Pc: 3,00 ksi Load factor: 1.40 Elf, THK = 6.75 in fy= 60.00 ksi h2/L1= 1.50 RfI= 1.27 Vi= 26.0( tips h2/L3 1.50 Rf2 1.27 V2: 26.00 tips At Pier #1 WALL PIER (YES:1, NO:0): C Ay = 324.00 inA2 8*Acv*SQRT(f'c) 141.9 tips Vn = 101.84 tips Phi*Vn = 0.60*Vn 61.IC tips Vc : 28.73 tips Phi*Vc = 0.600c : 17.24 tips Vu : 36.40 hips Vu>Acv*SORT(Pc), HOOK H0RZ. REJNF. Vs : 19.16 tips Vu EXCEED 0.60 * Vc providE shear rei Two curtain shear reinf. req'd.!! shear reinf. As reqd: 0.23 in2/FT #48 9.00 in o.c.8ea. face SHEAR REINF. #58 9.00 in o.c.8 ea. face ::: :: A021 wi'T At Pier #2 WALL PIER (VES1 NO0): Ay : 324.00 iA2 8*Acv*SQRT(f1 c) 141.9: tips 101.84 hips Phi*Vn = 0.60*Vn 61.1C hips Vc = 28.73 tips Phi*Vc = 0,60*Vc 17.24 hips Vu = 36.40 tips !vu:Acv*sDRT(f!c), HOOK HCRJZ. REJNF Vs = 19.16 tips Vu EXCEED 0.60 * Vc provide shear rei Two curtain shear reinf. req!d. shear reinf. As req'd 0.23 ir'2/FT #46 3.00 in o.c.# ea. face SHEAR REINE. 458 9.00 in o.c.8 ea, fa:e #68 9,00 in Ci.C.# ea. face #78 9.00 in o.c.8 ea. fa:e #4 dowels at slab on grade At left At Reigh; Avf req1 dVu/(0.6Phi*!y) itS 1.13 ir2 #4doweisat CONCRETE SHEAR WALL 95316W (PER SEC.1921 1934 UBc) DESCRIPTION: PANEL W-3, W-4 PIER 7,5u THK CHECK HULDOWN REQUIREMENTS. U = 1.4E t 0.9m DL -- load at Pier #1 Loa%Ier *2 Uniform load 7.60 7,60 tips Wall wt 1.50 I.5U kips Point loads 0.00 0,00 ips Sum P '27.10 27.10 tips Holdown at left end .3.78 tips As= 1.37 inc! Holdown at right end 73.78 tips As 1,37 inchA2 Holdown Bar- left end Fight end #5 Te-ba = 5.00 5.00 *6 re- are = 4.00 4.00 #7 -bars = 3.00 3.00 re-bars = 2.00 2,00 Check Boundary Member Requirement. at Pier #1 Pier #2 Pv 27.10 Sips 27.10 Kips PL 37 Kips 37.94 Kips t3eometricail ymmetrical Wall 0.1*Ag*f'c - 97.20 Kips 97.20 Kips Nu/(Vu* - 1.32 3*Iw*h*S Pc) 53.24 Kips 53.24 Kips rm : I Is SThUCTh/'-L DA1i: EG:NER3 SH Check sin, vertical reinforcements in piers pier #1 pier #2 As req'd 0.23 0.23 inA2/ft for #5 & smaller As req'd: 0.23 0.23 inA2/ft for #6 & large, #4 B 10.00 10.00 in o.c. #58 16.00 16.00 in o.c. #68 16.00 16.00 in o.c. *7 8 16.00 16.00 in o.c. Boundary Member Not required S Flexural Design At left At right Mu = 218.40 218.40 ft-tips As req'd = 1.15 1.15 •sq.in As sin = 1.10 1.10 sq.in (200/fy * b I d) Asmax: 5.29 5.29 sq.in (Rhowbal *0.75*b *d) Beta = 0.85 0.85 Rhow bal = 0.02 0.02 At Left At Right As #4 re-bar = 6 1.20 #5 re-bar = 4 1.24 4 1.24 #6 re-bar = 3 1.32 3 1.20 1.32 #7 re-bar = #8 re-bar = 2 1.52 2 1.58 #9 re-bar = 2 2.00 2 2.00 flA pp!M .joq I I SJCJ?iL C.: ENG1NE(S SHT CONc:RETE SHEAR WALL DESIGN (PER SEC. 1921 19,34, UBC) DESCRIPTION: PANEL W-3, W-4 PIER 6.53 INK W = 0.95 tins /ft uniform loads (w) P1 = 0.00 kips P2 = 0.00 Lips hi V------->1 P1 P2 LI = 4,00 ft I L2 = 8.00 ft I Al I A2 L3: 4.00 ft H IJ L 16.00 ft hi 7.93 ft Al = 0.00 ft ;h2 112 6.00 ft A2 = 0.00 ft H: 21.07F1 L11--i L 11 L3 52,00 Lips Wall INK : 6.50 in f'c: 3.00 ksi Load factor: 1.40 Ef. 1. 1W : 5.75 in fy: 60.00 ksi hI/Li: 1.50 Rf1: 1.27 Vi: 26,C0 tips h2/L3: 1,50 Rf2: 1.27 V2: 26.0 Lips At Pier *1 WALL PIER (YES:i, NO:0): 0 Av : 276.00 inA2 8fAcv*SQRT(f'c) = 120Y14 tips Vn : 86.75 tips Phi*Vn = 0.60*Vn 52.05 kips Vc = 24.47 tips PhifVc = 0.60*Yc 14.8 Lips Vu = 36.40 kips Vu>Acv*SORT(f'c), HOOK HO.JZ. REINF. Vs = 21.72 tips Vu EXCEED 0.60 * Vc provile shear rei Two curtain shear reinf. eq'd.!! shear reint. As req'd: 0.20 inA2/FT #48 9.00 in o.c.@ em. face SHEAR REINF. 458 9.00 in o.c.@ em. face #6 8 9.00 in o.c.@ em. face #78 9.00 in o.c.@ ma. f(e At Pier #2 WALL PIER (YES1 ND=O)= 0 Av Av 276.00 in2 8*A:v*SQRT(f'c) i20.4 tips Vn = 86.75 Lips Phi*Vn = 0.600n : 52.05 Lips Vc = 24.47 tips Phi*Vc = 0.60*Vc 14.68 tips Vu = 36.40 tips Vu>Acv*SDRTWc), HOOK IIORIZ. REINF Vs : 21.72 tips Vu EXCEED 0,60 * Vc provide shear rei Two curtain shear reinf, reqld.111 shear reinf. As req!dz 0.20 in2/FT #4 8 9.00 in o.c.@ ma.-ac e SHEAR REINF, #58 9.00 in o.c.@ ma. face #6 8 5.00 in o.c.@ ma. race #78 9.00 in o.c.@ ma. race #4 dowels at slab on grade At left At Re: ht Avf req!dVu/11j,6*PhI*fy) = n 2 #4 dowels at 8 o.c. 8 u -c CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1934 UBC) DESCRIPTION: PANEL W-3, W-4 PIER 6.5° THK CHECK HOLDOWN REQUIREMENTS. U = i.4E t 0.3m DL Loo at Pier #1 Load? Yier #2 Uniform load 760 60 tips Wall wt = 16.30 16,90 tips Point loads = 0.00 0.00 tips Sum P = 24.50 24.50 tips Holdovn at left end .20 tips As: 1.41 inchA2 Hoidown at right end: 76.20 tips As: 1.41 irich2 Holdown Bars left end right end *5 re-bars - 5.00 5.00 #6 re-b : 4.00 4.00 #7 r ars : 3.00 3.00 #8 e-bars 2.00 2.00 Check Boundary Member Requirement. at Pier #1 at y: 24.50 Kips 24.50 Kips Pu: 34.30 $ 34.30 Kips Geometrically Symmeyal Wall 0.1*Ag*f'c: 822 Kips 82.80 Kips Mu/(Vu*lw): /.32 3*lwh*SORT(f'c) z/' 45.35 Kips 45.35 Kips PR o1Thi 1. TJCTJAL DATE: Ball ENGNEERS SHT ______ Check mm. vertical reinforcements in piers pier #1 pier #2 As req'd: 0.20 0.20 in-2/ft for #5 & smaller As req'd: 020 0.20 inA2/ft for #6 & larger *43 12.00 12.00 in o.c. #53 16.00 16.00 in o.c. #68 16.00 16r00 in o.c. #78 16.00 16.00 in o.c. Boundary Member Not required Flexural Design At left At right Mu : 218.40 218.40 ft-tips As req'd = 1.16 1.16 sq.in As min : *0,35 0.95 sq.in (20011y * * d). As max : 4.59 4.59 sq.in (Rhowbal 1 0,75*bId) Beta = 0.85 0.85 Rhow bal : 0.02 0.02 At Left At Right As #4 re-bar = 1.20 6 1:20 *5 re-bar = 4 1.24 4 1.24 #6 re-bar : 3 1.32 3 l.22 #7 re-bar = 1.20 * 2 1.20 * #8 re-bar = 1.58 2 158 *9 re-bar 2 2.00 2 200 I I AJ0 l2)f7/ 4I tj. rr I H I . I I J f(?D~2i' 2ipiP c711 -i1'+ i3 I PP'ME JC: , J ST,,uCTUt.J. DATE: II. E.',IGNEERS SF41 47 otofJfr- I 4z1 e 12,1 - ! tccc I 1 p3.CX I 1 • I I: II I 1 I I I I I. I.. Fl x 27 he t4- - o oI i ic,<P: . . O.O5iSf 2- 2- :4 0' , • . ). k-.. •• 2_- - rA PRIME J01:03- I I ST( lCj \I DAIC ENG;NERs CHI: latA JO :11t51 I /& STIJC 1.J'L E:'G,N:1j S-T_: - CONCRETE SHEAR WALL DES1N (PER SEC. 1921 1934 UBC DESCRIPTION: PANEL S6 W = 0.22 tips/ft uniform loads 1w) P1 = 1.50 tips P2 = 30.60 tips hi V-------> i P1 P2 I'- I LI - D,f'J ;. L2: "G.06 ft L 28,00 ft H Li L2 I V V hi 14.70 ft 14.30 ft V : 70.20 tips Wall THK 6.50 in fIt: 3.00 ksi Load factor: 1.40 Elf. INK 5.75 in fy: 60.00 ksi N/L 0,51 Acv*SORT(f'c) 105.8 tips Av = 1932.00 inA2 8iAcv*SORT(f'c) z 346.56 tips Yn = 607.26 tips Phi*Vn = 0.60*Yn = 364.36 tips Vc = 211,64 tips PhifVc = 0,60*Vc = 126.99, tips Vu: 98.28 tips Vs = 0.00 tips Vu <0.60 * Va O.K. shear reinf. As req'd 0.20 in"2/FT *48 12.00 in O.C. SHEAR REINF. *5 8 18.00 in o.c./. #68 18.00 in U,C. *7 8 18.00 in o. c. CHECK HOLDOWN REQUIREMENTS, U = 1,4E t0.9* DL Uniform load : 6.16 tips Wall wt 65.98 tips Point loads : 32.10 tips Sum P 104.24 tips Holdown at left end 13.80 tips As: 0.26 inch-2 Holdown at right end: 0.00 tips As: 0.00 i nchA2 Holdown Bars left end right end *5 re-bars : 1.00 0.00 #6 re-bars = 1,00 0.00 #7 re-bars = 1.00 0,00 #8 re-bars = 0.00 DESCRIPTION: PANEL S6 CONCRETE SHEAR ifALL DE3SN (PER SEC. 1921 1994 UBC) rA STrt!CflJ1. E\ Check Boundary Member Requirement. Pv = 52,12 Kips Pu = 72.96 gipc 0.1fAgft'c = 519.60 Kips - Mu/(Vu*lw) = 0.51 :3*lw*h*sqrt(f'c) = 317.46 Kis Vu 38.2# Kips Boundary Member not required Flexural Desiqn Mu = 1405.40 ft-kips As req'd = 0.95 sq.in As sin = 7.15 sq.in (200/fy * b * d) As max = 34.40 sq.in (Rhow bal * 0.75 * b * di Beta = 0.85 Rhow bal = 0.02 As req'd * 4/3 provided As #4 re-bar req'd: 7.00 1.40 sq.in #5 re-bar req'd 5.00 1.55 sq.in *6 re-bar req'd 3.00 1.32 sq.in * 7' #7 re-bar req'd: 3.00 1.80 sq.in #8 re-bar req'd: 2.00 1.58 sq.in #9 re-bar req'd: 2.00 2.00 sq.in #4 dowels at slab on grade Avf req'dVu/(0.6*Phi*fy) 3.21 in'2 #4 dowels at 20 o.c. Check sin, Vertical reinforcement; As req'd 0.20 inA2/ft for #5 and smaller As req'd 0,20 inA2/ft for H. and larger #4 B 12.00 in o.c. #5 B 18.00 in o.c, *6 B 18.00 in o.c. #7 B 18.00 in o.c. M (Ymu, t-) 'dOLt7 silIt 44'v1T ,ttd& *t- th - rli All \.221c-t1- 3fl(iib1 6Awp.M (kt.t -) P. 14ASIL", ENGNEERS SHT CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 UBC) DESCRIPTION: SHEAR WALL I-i 8L62 N = 0.64 h;/ft uniform loads (w) P1 = 4.70 hips P2 = 0.00 hips hi I V------->1 P1 P2 Li = 0.00 ft L2: 0.001t L = 10.00 ft H LI L2 I V V II hi = 0.00 ft H: 13.00 ft I L V = 47.30 hips Wall THK = 7.50 in f'c 3.00 ksi Load factor: 1.40 Eff. THK = 7.50 in fy: 60.00 ksi H/L = 1.30 Acv*SQRT(f'c) 49.30 hips Av = 900.00 inA2 8*Acv*SQRI(f'c) 394.36 hips Vn = 282.89 hips Phi*Vn = 0.60*Vn 169.73 hips Vc : 98.59 kips Phi*Vc = 0.60*Vc 59.15 hips Vu = 66.22 hips V>Acv*SQRT(f'c),HOOK HORIZ. REINF. Vs = 0.00 hips Vu (0.60 * Vn O.K. shear reinf. As req'd: 0.23 inA2/FT #4 8 11.00 in .c.,/ SHEAR REINF. #5 8 17.00 in o.c. #6 8 18.00 in o.c. #7 8 18.00 in o.c. CHECK HOLDOWN REQUIREMENTS. U = 1.4E t 0.9* DL Uniform load = 6.40 hips Wall wt = 12.19 hips Point loads = 4.70 hips Sum P = 23.29 kips Hoidown at left end 77.36 hips As: 1.43 inchA2 Holdown at right end: 81.81 hips As: 1.52 inchA2 Holdo Bars left end right end *5 re-bars : 5.00 5.00 *6 re-bars : 4.00 4.00 #7 re-bars : 3.00 3.00 #8 re-bars : 2.00 2.00 r A PP!ME .IOR - STRUCfl)'?AL DA 7: 5 ENGNEES SHT ____ CONCRETE SHEAR WALL DESIGN (PER SEC. 1921 1994 UBC) DESCRIPTION: SHEAR WALL I-i BLG2 Check Boundary Member Requirement. Pv = 11.64 Kips Pu = 16.30 Kips 0,1*Ag*f'c = 270.00 Kips Mu/(Vu*lw) = 1.30 3f1w*h*sqrt(f1 c) = 147.39 Kips Vu 66.22 Kips Boundary Member not required Flexural Design Mu = 860.86 ft-tips As req'd = 1.72 sq.in As mm 2.85 sq.in (200/fy * b * d) As max = 13.71 sq.in (Rhow bal * 0.75 * b * d) Beta = 0.85 Rhow bal = 0.02 As req'd * 4/3 provided As #4 re-bar req'd 12.00 2.40 sq.in #5 re-bar req'd 8.00 2.48 sq.in #6 re-bar reqld: 6.00 2.64 sq.in #7 re-bar req'd= 4.00 2.40 sq.in #8 re-bar req'd: 3.00 2.37 sq.in * / #9 re-bar req'd: 3.00 3.00 sq.in #4 dowels at slab on grade Avf req'd:Vu/(0.6*Phi*fy) 2.16 in2 #4 dowels at 11 o.c. Check mm. Vertical reinforcements As red )13in2/ft for #5 and smaller As reqd: 0.23 inA2/ft for #6 and larger #4 8 10.00 in o.c. #5 8 16.00 in o.c. #6 8 18,00 in o.c. #7 8 18.00 in o.c. A PR!ME ____ _STRUCTURAL DATE: ____ . _ ENGINEERS SHT: ____ CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1994 UBC) DESCRIPTION: PANEL 1-2 W = 0.64 kips/ft uniform lcadn (w) P1 = 4.70 1p P2 0.00 tips ht I V------->1 P1 P2 LI = 0.00 ft L2 = 0.00 ft L = 10.00 ft H LI 1.2 V V III = 0.00 ft H: 13.00 ft V = 15.00 tips Wall THK = 6.50 in f'c: 3.00 ksi Load factor 1.40 Eff. THK = 6.50 in fy: 60.00 ksi H/L = 1.30 Acv*SQRT(f!c) 42.2 tips Av = 780.00 inA2 8*Acv*SQRT(f'c) 341.8 tips Va = 245.17 kp Phi*Vn = 0.600n 147.10 tips Vc z 85.44 tips Phi*Vc = 0.60*Vc 51.27 tips Vu = 21.00 tips Vs = 0.00 tips Vu <0.60 * Va O.K. shear reinf. As reqd: 0.09 inA2/FT *4 @ 18.00 in U.C. / SHEAR REINE. #5 # 18.00 in o.c. #6 @ 18.00 in o.c. #78 18.00 in o.c. CHECK HOLDOWN REQUIREMENTS. U = 1.4E t 0.9* DL Uniform load 6.40 tips Wall wt : 10.56 tips Point loads = 4,70 tips Sum P = 21.66 tips Holdown at left end 16.25 tips As: 0.30 inc hA2 Holdown at riqht end: 20.70 tips As: 0.38 inch"? Holdown Bars left end riat end *5 re-bars : 1,00 2.00 #6 re-bars = 1.00 1.00 *7 re-bars : (.00 *8 re-bars : 1.08 1.00 A Jon 114)1 STRUCTURAL DATE: 5& ENGNEERS SHT I :: CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1994 UBC) DESCRIPTION: PANEL 1-2 Check Boundary Member Requirement. Py = 10.83 Kips Pu = 15.16 Kips 0.1*Ag*f'c = 234.00 Kips Mu/(Vu*lw) = 1.30 3*lw*h*sqrt(f?c) = 12.8.17 Kips Vu 21.0) Kips Boundary Member not required Flexural Design Mu = 273.00 ft-kips As req'd = 0.54 sq.in As mm '2.47 sq.in (200/fy * b * di As max = 11.88 sq.in (Rhow bal * 0.75 * b * d) Beta = 0.85 Rhow bal = 0.02 As req'd 1 4/3 provided As #4 re-bar reqd 4.00 0.80 sq.in #5 re-bar req'd 3.00 0.93 sq.in #6 re-bar req'd. 2.00 0.88 sq.in *7 re-bar req'd 2.00 1.20 sq.in #8 re-bar req'd= 1.00 0.79 sq.in *9 re-bar req'd 1.00 1.00 sq.in #4 dowels at slab on grade Avf req'd=Vu/(0.6*Phi*fy) 0.69 inA2 *4 dowels at. 30 HO.C, Check mi n. Vertical reinforcements As req'd 0.16 inA2/ft for #5 and smaller As req'd 0.20 inA2/ft for *6 and larger *4 8 15.00 in O.C. #5 8 18.00 in o.c. #68 18,00 in o.c. *78 18.00 in o.c, PPM LAI'& STrJCU7,L ___ CONCRETE SHEAR WALL DESIGN (PER SEC.1921 1994 UBC) DESCRIPTION: SHEAR WALL 1-3 BLG2 W = 0.32 kips/ft uniform loads () P1 = 0.00 lips P2 =0.00 lips hi V 04 -I I 1I 0 Li = 0.00 ft L2: 0.00 ft L 10.00 ft H Li L2 II V V hi = 0.00 ft H: 13.001t L V = 48.00 kips Wall THK = 7.50 in f': 3.00 ksi Load factor: 1.40 EU. THK = 7.50 in fy: 60.00 ksi H/L = 1130 AcvfSQRT(f'c) 49.30 lips Av 900.00 inA2 8*Acv*SQRT(f'c) 394.36 kips Vn = 282.89 kips Phi*Vn = 0.60*Vn 169.73 lips Vc = 98.59 lips Phi*Vc : 0.60+Vc : 59.15 lips Vu = 67.20 kips Vu>Acv*SQRT(f'c),HOOK HORIZ. REINF. Vs = 0.00 lips Vu ( 0.60 * Vn O.K. shear reinf. As req'd: 0.23 in'2/FT 11.00ino,c./ *48 SHEAR REINF. #58 17.00 in o.c. *6 8 18.00 in o.c. *7* 18.00 in o.c. CHECK HOLDOWN REQUIREMENTS. U = 1,4E t 0,9* DL Uniform load = 3.20 lips Wall wt = 12.19 lips Point loads = 0.00 lips Sum P = 15.39 lips Holdownat left end 84.67 lips As: 1.57 inc hA2 Holdown at right end: 84.67 lips As: 1,57 inc hA2 Holdown Bars left end right end #5 re-bars : 6.00 6.00 #6 re-bars = 4.00 4.00 *7 re-bars = 3.00 3.00 *8 re-bars = 2.00 2,00 A pc.yr F\ E<G:.N:E3HT: CONCRETE SHEAR WALL DESIGN (PER SEC.121 1994 UBC) DESCRIPTION: SHEAR WALL 1-3 BLG2 Check Boundary Member Requirement. Pv = 7.69 Kips Pu = 10.77 Kips 0.1*Ag*f'c 270.00 Kips Mu/(Vu*lw): 1.30 3*lw*h*sqrt(f'c) 147.89 Kips Vu 67.20 Kips Boundary Member not required Flexural Design Mu = 873.60 it-kips As req'd = 1.74 sq.in As mm 2.85 sq.in (200/ty * b * d) As max = 13.71 sq.in (Rhow bal* 0.75 * b * di Beta = 0.85 Rhow bal = 0.02 As req'd * 4/3 provided As #4 re-bar req'd 12.00 2.40 sq.in #5 re-bar req'd 8.00 2.48 sq.in *6 re-bar req'd: 6.00 2.64 sq.in #7 re-bar req'd 4.00 2.40 sq.in #8 re-bar req'd: 3.00 2.37 sq.in *9 re-bar req'd: 3.00 3.00 sq.in #4 dowels at slab on grade Avf req'd:Vu/(0.6*Phi*fy) 2.20 in&2 #4 dowels at 11 U o.c. / Check mm, Vertical reinforcements As reqd: 0.23 in2/ft for *5 and smaller As req'd 0.23 inA2/ft for *6 and larger #4 8 10.00 in o.c. *5 8 16.00 in o.c. #6 8 18.00 in o.c. #7 8 18.00 in o.c. I PANEL I1 BLDG 2 09/24/97 ----------------- 97-250 GRADE BEAM ANALYSIS PROGRAM (4.02.) Footing LENGTH = 34.00 ft Footing WIDTH = 4.00 ft Footing DEPTH = 2.00 ft Conc Weight = 0.15 kcf Surcharge = 0.00 ksf. Footing + Surch. = 1.20 klf UNIFORM LOADS (k/ft & ft) 1 2 3 4 5 Xl - 12 a, 1.220 1.220 1.220 1.220 1.220 2.00 12.00 POINT LOADS (k & ft) 1 1 2 3 4 5 • 6.00 2.50 250 6.00 6.00 12.00 0.00 68.30 -68.30 68.30 -68.30 2.50 0.00 -68.30 68.30 -68.30 68.30 11.50 1 27.90 11.40 11.40 27.90 27.90 23.00 RESULTANTS (k, ft &ksf) Pt 86.90 66.90 66.90 86.90 86.90 I I 17.18 6.82 25.20 10.10 24.25 I Omax 0.66 1.63 1.27 1.43 1.49 0 min 0.62 0.00 0.00 0.00 0.00 MAXIMUM FORCES (k, kft) CASE 1 2 V max 15.51 56.57 3 4 5 64.69 64.69 58.17 H max 85.82 15.69 482.19 13.52 49(:7) H mm o,00 -397.83 -3.90 -417.90 -3.90 Vmax = 64,69k H max = 490.70 kft N mm -417.90 kft I .• I I A PR!ME JOR I SRUC11J7At- DAT'i: 1,NG1NEERS SHT: ____ PANEL I-I BLDG 2 ---------------- GRADE BEAM DESIGN PROGRAM (4.02) DESIGN DATA 1'c 3.00 ksi b = 48.00 in fy = 60,00 ksi h = 2COO in Load Factor = 1,50 d = 20.00 in SHEAR DESIGN Veax = 64.7 k '/c = 102 k Vn = 114.2 k Vs = 9.0 k Av mm 0.48 si/ft S max = 10.00 in Av str = 0,09 si/ft Av = 0.48 si/ft 1 # 3 Stirrup 2 #3 Stirrups 8 10.0° 1 #4 Stirrup @10.0' LEXURAL DESIGN Beta I = 0.85 As mm 3.20 si As max = 15.39 si M+ max = 491 kft M- mm -418 Itt Mn+ = 818 Itt Mn- = -696 Itt As str = 9.22 si As str = 7.69 si As = 9,22 si As = 7.69 si Bottom Steel lop Steel Bar No. Space No. Space #6 21.0 1.90 17.5 2.2° * 7 15.4 2.5° 12.8 3.1° * 8 11.7 3.3° 9.7 4.0° *9 9.2 4.0° 7.7 5.C° *10 7.3 5.0° 6.1 5.7° #11 5.9 6.7° 4.9 8.0' 09/24/97 97-250 PP'V! - /A F, TJC1UAL DATE: 11 Al ENGINEERS SHT : U PANEL 1-2 09/24/97 97-250 GRADE BEAM ANALYSIS PROGRAM (4,02) Footing LENGTH = 18.00 ft Footing WIDTH = 3.00 ft Footing DEPTH = 2.00 ft Conc Weight = 0.15 kcf Surcharge = 0.00 ksf Footing + Surch. = 0.90 kIt UNIFORM LOADS (k/ft & ft) 3 4 5 Xi - X2 1.850 1.370 1.370 1,850 1.850 4.00 14.00 POINT LOADS (k & It) 1 2 3 4 5 X 0.00 21.70 -21.70 21.70 -21.70 4.50 0.00 -21.70 21.70 -21.70 21.70 13.50 RESULTANTS (k, ft & ksf) CASE 1 2 3 4 5 Pt 34.70 29.90 29.90 34.70 34.70 9.00 2.47 15.53 3.37 14.63 Q max 0.64 2.69 2.69 2.29 2.29 0 min 0.64 0.00 0.00 0.00 0.00 MAXIMUM FORCES ft. kft) CASE 1 2 3 4 5 V max 4.11 20,56 20.56 19.03 19.03 M may 18.50 55.92 55.92 49.82 49.82 N min- 0.00 -9.28 -9,28 -9,34 -9,34 V max = 20.56 k H max = 55.92 kft N min = -9.34 kft PANEL 1-2 03/24/97 97-250 rAc. PPtME Jon A STRUCflJRAj DATE: ATM ENGINEERS SI-fr: GRADE BEAM DESISH PROGRAM (4.02) DESIGN DATA f'c = 3.00 ksi b = 36.00 in fy = 60.00 ksi h = 24.00 in Load Factor = 1.50 d = 20.00 in SHEAR DESIGN Vsax: 20.6k Vc =75.9k Vn. = 36.3 k Vs =0.0 k Av = 0.35 si/ft S sax = 10.00 in Vs = 0, stirrups are optional 1 #3 Stirrup @ 7.3 2 #3 Stirrups @10.0" 1 #4 Stirrup @ 10.0 FLEXURAL DESIGN Beta 1 0.85 As sin = 2.40 si As sax = 11.55 si 11+ sax = 55.9 kft H- sin = -9.3 kft Mn+ = 93.2 kft Mn- = -15.6 kft As sty = 0.95 si As sty = 0.16 si As = 1.26 si As = 0.21 si Bottom Steel Top Steel Bar No. Space No. Space #4 6.3 41)0 1.0 - #5 4.1 550 07 - #6 2.9 9,30 0.5 - 107 ). 1 I1 O. ' - I £.Q '..J #8 1.6 14.05 0,3 - #9 1.3 14,0" 0.2 - *0 1.0 - 0.2 - PANEL i-' BLDG 2 ---------------- 09/24/97 97-250 PRIME JO': Lr4 STRUCTU2AL ENGNaE1S SpiT : - GRADE BEAM ANALYSIS PROGRAM (4.02) Footing LENGTH = 30.00 ft Footing WIDTH = 4.00 ft Footing DEPTH = 2.50 ft Conc Weight = 0.15 kcf Surcharge = 0.00 ksf Footing + Surch. = 1.50 klf UNIFORM LOADS (k/ft & ft) 1 2 3 4 5 Xi - X2 1.220 1.220 1,220 1.220 1.220 0.00 10.00 POINT LOADS ft & ft) 1 2 3 4 5 X 13.00 5.30 5.30 13.00 13.00 10,00 0.00 69.30 -69.30 69.30 -69.30 0.50 0.00 -69.30 69.30 -69.30 69.30 9.50 21.60 8.80 8.80 21.60 21.60 24.00 RESULTANTS (k, ft & ksf) CASE 1 2 3 4 5 Pt 91.80' 71.30 71.30 91.80 91.80 X 15.08 5.28 22.78 8.29 21,87 0 max 0.78 2.25 1.64 1.85 1.88 0 min 0.75 0.00 0.00 0.00 0.00 MAXIMUM FORCES (k, kft) CASE 1 2 3 4 5 V max 12.00 66.23 67.94 67.00 67.94 N max 28;85 0.77 501.04 0.58 503.96 H mix -16,71-421,44 -0.34 -455.62 -0.34 V max = 67.94 k H max z 503.96 kft N min = -455.62 kft (19/24197 97-251) PANEL I- BLDG 2 ---------------- GRADE BEAM DESIGN PROGRAM (4,02:) DESIGN DATA f'c = 3,00 Lk-si b = 48,00 in fy = 60.00 ksi h = 30.00 in Load Factor = 1.50 d = 26.00 in SHEAR DESIGN Veax = 67.9 k Vc = 136,7 k V = 119.9 1 Vs = 0.0 1 Av = 0.48 si/ft S sax = 13.00 in Vs = 0, stirrups are optional I B 3 Stirrup @ 555 2 B 3 Stirrups 8 11.0U I B 4 Stirrup 8 10.0" 2 #4 Stirrups @13.0' FLEXURAL DESIGN Beta 1 = 0.85 As sin = 4,16 si As max = 20.01 si M+ max = 504 kft M- sin = -456 kit Mn+ = 840 kIt Mn- = -759 kIt As str = 6.91 si As str = 6.20 si As = 6.91 si As = 6.20 si Bottom Steel Top Steel Bar No. Space No. Space B 5 22.3 1.7 20.0 2,OR #6 157 2.59 141 21.7- # 7 115 3.3" 10 3.V #8 87 44" 79 50" 49 6.3 5.7" 6.2 5.7' #10 5.4 6.7" 4.9 8.0" *11 4.4 9.0' 4.0 10.0 A PP'ME JOB i\ 1UCT1JAL Ct'E: ____ dA EG;NEE1S sx ______ -I, 91b*.A (7v'.) 'j) 111 t- L 4-Z pc tjJ7IDCt e 4(i2- ,ic 4z pi) ricr IiY/ ioctc 4-Lc-2-- . LA WV t)2 1'r-LZ) 1W' ((2 ST1kLT I 41 IOc1 4-u'-iz oc p1z Lk(t.*) 'i) ic?iu 'otorE ZO 612) i1 of 2-77-1 (MW 19ZkMt) ?44tt cOThja L 11 c*c#F jo4. 2-'-2- MIL3xWm il"J61 (:7. 0120 - 012 V) i iocr L i 1 pIP47 gtM (N/s) 2:1) xw, DF 1A02 (2x WPcM). O,1 o, A ENGIN-Ef-~S PRM _-11 DATE:____ ______ I 'VIv--I-i2, Dck€, -o" 2c4 W.At1 c? 11 1?'1 44-1Z' &k2 OI -O.246) lie S 4gL( oM cgoç 3O4 Ioc £ lI2-2,12-- M' " 12,tMitd1 I - '--Z F1?kMI1 c izJ- F4 kT Df ( Z1Mgk1) IT' iixT) \oa ZK FP AM INA c I S •, p E Jc 721 STUCT1JAL c;: ENGNEERS SHT: 1v'i VW&11oIJ i: NJ& QIWTIQ,~ \WPct- p 41 7 g4 -g QE PAI Z@ 4-9$ .,c , £k 2-tot> 1'12 - 142-1Zt 14p4 : 'k -o1 9L (5P4-'( f/J x 0(5' 'QpLF 2PLF >4 2kwIWAY OD - 1cso4t- -1( ii G) (C9IoviL w11z-4) C2oT1; '3L- x 4o' 2 4 Ui UWF 11ObPDL 1p 7-7F1& PA14 a- c -IV141D i)• zpi1z ,rteAJVA1U