Loading...
HomeMy WebLinkAbout2150 PALOMAR AIRPORT RD; BLDG 2; PCR05096; Permit06-10-2005 City of Carlsbad 1635 Faraday Av Carlsbad, CA 92008 Plan Check Revision Permit No:PCR05096 Building Inspection Request Line (760) 602-2725 Job Address: Permit Type: Parcel No: Valuation: Reference #: Project Title: 2150 PALOMAR AIRPORT RD CBAD PCR 0000000000 Lot #: 0 $0.00 Construction Type: NEW PALOMAR AIRPORT BLDG 2- REVISE Status: Applied: Entered By: Plan Approved: Issued: Inspect Area: ISSUED 05/24/2005 RMA 06/10/2005 06/10/2005 pplicant: ICHARD AND RICHARD SUITE 100 234 VENTURE ST 92078 Owner: Plan Check Revision Fee Additional Fees $180.00 $0.00 Total Fees:$180.00 Total Payments To Date:$0.00 Balance Due:$180.00 Inspector: FINAL APPROVAL Date: —Clearance: NOTICE: Please take NOTICE that approval of your project includes the Imposition" of fees, dedications, reservations, or other exactions hereafter collectively referred to as lees/exactions." You have 90 days from the date this permit was issued to protest imposition of these fees/exactions. If you protest them, you must lollow the protest procedures set forth in Government Code Section 66020(a), and file the protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their imposition. You are hereby FURTHER NOTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project. NOR DOES IT APPLY to any fees/exactions of which vou have previously been given a NOTICE similar to this, or as to which the statute of limitations has previously otherwise expired. PERMITAPPLICATION gj j , 2- CITY OF CARLSBAD BUILDING DEPARTMENT 1635 Faraday Ave., Carlsbad, CA 92008 FOR OFFICE USE PLAN CHECK NO EST. VAL. Plan Ck. Deposit Validated By_ Date Business Name (at this address)Address (include Bldg/Suite #) Legal Description Lot No.Subdivision Name/Number Unit No. Phase NoiX Total # of units CONTACT PERSON (If different trom applicant) 3; 'APPLICANT; Contractor Toposed Usefan #of Stories # of Bedrooms of Bathrooms City Owner : ErAgent fof Owner>/raK State/Zip Telephone Fax # City State/Zip Telephone # Address City State/Zip Telephone # (Sec. 7031,5 Business and Professions Code: Any City or County which requires a permit to construct, alter, improve, demolish or repair any structure, prior to its issuance, also requires the applicant for such permit to file a signed statement that he is licensed pursuant to the provisions of the Contractor's License Law [Chapter 9, commending with Section 7000 of Division 3 of the Business and Professions Code] or that he is exempt therefrom, and the basis for the alleged xemption. Any violation of Section 7031.5 by any applicant for a permit subjects thejpplicant to a civil oenalty ptnot more than five hundred dollars [$500])., fj tnt. £&+ vtnfourt yt.&tee &*\ $Urw£ CA Name State License tt Address License Class &City State/Zip City Business License # Telephone* Designer Name State License tf Address City State/Zip Telephone Workers' Compensation Declaration: I hereby affirm under penalty of perjury one of the following declarations: CD I have and will maintain a certificate of consent to self-insure for workers' compensation as provided by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. Q I have and will maintain workers' compensation, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. My worker's compensation insurance carrier and policy number are: Insurance Company Policy No. Expiration Date (THIS SECTION NEED NOT BE COMPLETED IF THE PERMIT IS FOR ONE HUNDRED DOLLARS [$100] OR LESS) 0 CERTIFICATE OF EXEMPTION: I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the Workers' Compensation Laws of California. WARNING: Failure to secure workers' compensation coverage is unlawful, and shall subject an employer to criminal penalties and civil fines up to one hundred thousand dollars (S1 QfliaOOlJn addition to the cost of compensation, damages as provided for in Section 3706 of the Labof code^intergsJ-and attorney's fees. SIGNATURE ^~~*/ // l/f/fy^/ffr^7 DATE _ 7>.- OWNER"-BU^ER DECLARATIOK* . • - •' /;.: =• - - ~ ~ ^ "~~= 1 hereby affirm that I am exempt from the Contractor's License Law for the following reason: HI I, as owner of the property or my employees with wages as their sole compensation, will do the work and the structure is not intended or offered for sale (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and who does such work himself or through his own employees, provided that such improvements are not intended or offered for sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale). n I. as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and contracts for such projects with contractor(s) licensed pursuant to the Contractor's License Law). C] I am exempt under Section Business and Professions Code for this reason: 1. I personally plan to provide the major labor and materials for construction of the proposed property improvement. Q YES fjNO 2. I (have / have not) signed an application for a building permit for the proposed work. 3. I have contracted with the following person (firm) to provide the proposed construction {include name / address / phone number / contractors license number): 4. I plan to provide portions of the work, but I have hired the following person to coordinate, supervise and provide the major work (include name / address / phone number / contractors license number): 5. I will provide some of the work, but I have contracted (hired) the following persons to provide the work indicated (include name / address / phone number / type of work): PROPERTY OWNER SIGNATURE DATE Is the applicant or future building occupant required to submit a business plan, acutely hazardous materials registration form or risk management and prevention program under Sections 25505, 25533 or 25534 of the Presley-Tanner Hazardous Substance Account Act? Q YES Q NO Is the applicant or future building occupant required to obtain a permit from the air pollution control district or air quality management district? Cl YES L~H NO Is the facility to be constructed within 1,000 feet of the outer boundary of a school site? fJ YES Q NO IF ANY OF THE ANSWERS ARE YES, A FINAL CERTIFICATE OF OCCUPANCY MAY NOT BE ISSUED UNLESS THE APPLICANT HAS MET OR IS MEETING THE REQUIREMENTS OF THE OFFICE OF EMERGENCY SERVICES AND THE AIR POLLUTION CONTROL DISTRICT. ^Vf CONSTRUCTION LENDINGAGENCV ;T I hereby affirm that there is a construction lending agency for the performance of the work for which this permit is issued (Sec. 3097(i) Civil Code). LENDER'S NAME LENDER'S ADDRESS I certify that I have read the application and state that the above information is correct and that the information on the plans is accurate. I agree to comply with all City ordinances and State laws relating to building construction. I hereby authorize representatives of the City of Carlsbad to enter upon the above mentioned property for inspection purposes. I ALSO AGREE TO SAVE, INDEMNIFY AND KEEP HARMLESS THE CITY OF CARLSBAD AGAINST ALL LIABILITIES, JUDGMENTS, COSTS AND EXPENSES WHICH MAY IN ANY WAY ACCRUE AGAINST SAID CITY IN CONSEQUENCE OF THE GRANTING OF THIS PERMIT. OSHA: An OSHA permit is required for excavations over 5'0" deep and demolition or construction of structures over 3 stories in height. EXPIRATION: Every permit issued by the building Official under the provisions of this Code shall expire by limitation and become null and void if the building or work authorized by such permit is not commenced within 180 days from the date of such permit or if the building or work authorized by such permit is suspended or abandoned at any time after the work is commented fopa period of 180 days (Section 106.4.4 Uniform Building Code). APPLICANT'S SIGNATURE DATE WHITE: File YELLOW: Applicant PINK: Finance Delta 5 Narrative NOWAK WISEMAN Palomar Airport Center May 20, 2005 BUILDING #2 2150 PALOMAR AIRPORT CENTER ROAD, CARLSBAD CA STRUCTURAL SHEET:DESCRIPTION: 2F3.0 F4.0 F4.1 Revised the location of the elevator pit and added new detail reference 12/F4.1. Removed the 6-inch curb shown in details 8 and 9. Added detail 12. REEVES ASSOCIATES Palomar Airport Center 5/20/05 Delta 5 Changes BUILDING #2 2150 Palomar Airport Road SHEET 2A2.1 SHEET 2A2.1 SHEET 2A2.4 SHEET 2A2.5 SHEET 2A6.1 SHEET 2A6.2 SHEET 2A7.2 Elevator revised and relocated Elevator revised and relocated Elevator revised and relocated do Deleted concrete curbs at demising walls do Revised elevator drawing to show new location and configuration 05-24-05 08:14AM FROM-DALAN ENGINEERING 818-772-2239 T-S57 P-01/01 F-500 PALOMAR AIRPORT BUILDING 1 OWNERS REVK IONS DELTA-5 Project Name Daian Number Date Paiomar Airport AD023 5/12/2005 Sheet 1E0.1 1E1.1 1E1.2 1E2.1 1E2.2 1E4.1 1E5.1 2EO-1 2E1.1 2E2-1 2E4.1 Revisions / Engineers response BUIU3ING1 1) Added keypads and provide power to (3) motorized gates 2) Added key note #1 1) Added 45 kva tr snsfomw and panel "1O1 A' to electrical room 2) Added pane! schedule TQ1 A" 3) Added (2) traffic rated undergound pull box's with conduit stub ups into FBQ area 4) Removed securty conduits in hangers 5) Added junction I icxes for CCTV system 6) Added "keypad s" 7} Revteed referent notes 1) Removed sacur ty conduits in hangers 2) Added junction -taxes for CCTV system 3) Revised referen ^ notes 1) Added "key pad, sr 2) Reduced numb« r of low voltage conduits to offices 1} Reduced number of low voltage conduits to offices 1} Revised Motorized Door junction box and motor locations 2) Revised circuit 1: reaker size for motorized door on panel schedules 1) Added transformer and panel "LO1 A" to single line diagram 2) Added circuits fr r morortzed gates on panel schedule "HA" r ^\IUIUMNG 2 ) 1) Revised layout t f pad mooted equipment per SDG&E Revised site plan 2) Retocate transformer at building #2 1) Removed security conduits in hangers 2) Added Junction I oxes for CCTV system 3} Added key pad ';3 main entrance 4) Revised referent % notes 1) Rmoved low voltage conduits to offices 2) Revised reference notes 1) Revised Motoriz ad Door junction box and motor locations 2) Revised circuit breaker size for motorized door on panel schedule MSN Hotmail - Message *f£ld HSme [ My MSN | Hotmail | Shopping I Money | People & Chat Page 1 o Web Search: Hotmail Home Znbox Compose Calendar Contacts Options | dsrtreevarch@msn.com JL Messenger: Online w t& Reply | i^ Reply All | & Forward | X Delete | |& Put in Folder » | 13 Print View *From : Reeves Associates Desert Office <dsrtreeva rch@msn.com > Sent: Friday, May 20, 2005 9:53 AM To: dsrtreevarch@msn.com Subject: FW: Discussion of Revised Palomar drawings Free Newsletters I MSN Featured Unb From: "Jeff Bonnet" <jbonnet@csd-eng.com> To: <reevarch@pacbell.net>, "Jim Detweiler" <dsrtreevarch@msn.com> CC: "Jules Van de Pas" <jpv@csd-eng.com> Subject: Discussion of Revised Palomar drawings Date: Fri, 20 May 2005 10:12:19 -0600 Larry, Per your request, this is a written discussion of changes to the revised Palomar drawings: BUILDING # 2 2150 PALOMAR AIRPORT ROAD, CARLSBAD, CA Sheet 232.1- Revised to show latest elevator clear opening configuration Sheet 2S2.2- Framing revised to reflect latest elevator clear opening configuration Sheet 232.3- Framing revised to reflect latest elevator clear opening configuration Sheet 233.1- Added girts and curtainwall opening framing Sheet 2S3.3- Added girts and curtainwall opening framing Sheet 2S3.5- Added elevations/details 2, 3, and 4for girts and curtainwall opening framing Sheet 34.3- Added note at detail 3 Sheet S4.7- Added connection detail 19 for field fix of framing at elevator Sheet 34.10- Added detail 10 to reinforce beams along grids 15 and 16 Jeffrey D. Bonnet Computerized Structural Design, 3.C. 5600 South Quebec Street, Suite 150-D f b c eg b ge g g MSN Hotmail - Message page 2 0 Greenwood Village, CO 80111 (303)662-0665 Main ". (303)662-0671 Direct (303)662-0667 Fax jbonnet@csd-eng.com Get the latest updates from MSN MSN Home | My MSN | Hotmail [ Search | Shopping j Money | People & Chat Feedback © 2005 Microsoft TERMS OF USE Advertise TRUSTe Approved Privacy Statement Anti-Spam Policy fb h ccgbgegg EsGil Corporation In Partners/tip witfi government for (Buibfing Safety DATE: 6/6/O5 I3APPLICANT JURISDICTION: City of Carlsbad a PLAN REVIEWER a FILE PLAN CHECK NO.: O4-4152 rev3 SET: I PROJECT ADDRESS: 2150 Palomar Airport Road PROJECT NAME: Building 2 Revisions XI The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's building codes. The plans transmitted herewith will substantially comply with the jurisdiction's building codes when minor deficiencies identified below are resolved and checked by building department staff. The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at Esgil Corporation until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to: X] Esgil Corporation staff did not advise the applicant that the plan check has been completed. Esgil Corporation staff did advise the applicant that the plan check has been completed. Person contacted: Telephone #: Date contacted:- " " (by: ) Fax #: Mail Telephone Fax In Person REMARKS: By: David Yao Enclosures: original approved plan Esgil Corporation D GA D MB D EJ D PC 5/26 trnsmtl.dot 9320 Chesapeake Drive, Suite 208 * San Diego, California 92123 + (858)560-1468 + Fax (858) 560-1576 City of Carlsbad 04-4152 rev3 6/6/05 VALUATION AND PLAN CHECK FEE JURISDICTION: City of Carlsbad PLAN CHECK NO.: 04-4152 rev3 PREPARED BY: David Yao DATE: 6/6/05 BUILDING ADDRESS: 2150 Palomar Airport Road BUILDING OCCUPANCY: TYPE OF CONSTRUCTION: BUILDING PORTION revisions Air Conditioning Fire Sprinklers TOTAL VALUE Jurisdiction Code AREA ( Sq. Ft.) cb Valuation Multiplier »_ By Ordinance Reg. Mod. VALUE ($) Plan Check Fee by Ordinance $180.00 Type of Review: Repetitive Fee Repeats D Complete Review D Other m Hourly 1.5 Structural Only Hours * Esgll Plan Review Fee $144.00 * Based on hourly rate Comments: Sheet 1 of 1 macvalue.doc PLANNING/ENGINEERING APPROVALS PERMIT NUMBER CB ADDRESS , ^DATE 6? 5 '05~ KESIDENTIAL RESIDENTIAL ADDITION MINOR « $10,000.00) TENANT IMPROVEMENT PLAZA CAMINO REAL CARLSBAD COMPANY STORES VILLAGE FAIRE COMPLETE OFFICE BUILDING OTHER PLANNER DATE ENGINEER DATE Docs/Mlsrormt/mnning Engineering Approvals COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE • DENVER 5600 S Quebec St., Ste. 150D • Greenwood Village, CO 80111 Phone (303) 662-0665 Fax (303) 662-0667 BUILDING 1 AND 2 SUPPLEMENTALS CALCULATIONS FOR REVISIONS TO DATE SINCE PERMIT SET Structural Calculations: Project: PALOMAR AIRPORT CENTER Prepared/or: NCI BUILDING SYSTEMS CSD Project No. J044170 \ May 11, 2005 COMPUTERIZED STRUCTURAL DESIGN, 5.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project Job No. Date By Page of HOIST c 4 oic COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWQOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project Job No. Date By Page of Hoivr Rer,f MOIXT Lr&r-o j 8 J y COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project. Job No. Date Page of COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLfWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project Job No. J04MI7O By Date 1/3/DS _ Page of * 10. 9*•'** .- '*,S ')•* CFS Version 4.12 Section: Section 8.sct Channel 10x3.5x0.84-12 Gage Rev. Date: 1/3/2005 2:43:00 PM Page 1 Member Check - 2001 AISI Specification - US (LRFD) Design Parameters: Lx Kx Cbx Cmx 8 1 1 1 .1000 ft .0000 .0000 .0000 Braced Flange: None Loads : Entered Applied Strength Effective Ae p (k) 0.000 0.000 35,807 Ly Ky Cby Cmy Moment MX (k-in) 150.80 150.80 165.88 section properties at 1 Interaction AISI Eq. AISI Eq. AISI Eq. AISI Eq. C5 C5 C3 C3 .7993 in 2 Equations .2.2-1 (P, .2.2-2 (P, .3.2-1 .3.2-1 Ixe Sxe(t) Sxe(b) MX, My) MX, My) (Mx, Vy) (My, Vx) 0. 1. 1. 1. 0000 0000 0000 0000 Reduction, Vy (k) 1.540 1.540 ft R: 0 13.442 Lt Kt ex ey .0000 My (k-in) 0.00 0.00 32.36 0. 1. 0. 0. 0. 0.11. 0000 0000 0000 0000 Vx (k) 000 000 128 ft in in applied loads: 27 5. 5. 0.000 0.000 .131 3847 4683 + 0, + 0, 0. 0. inA4 inA3 inA3 909 + 909 + 826 + 000 + lye Sye(l) Sye(r) 0.000 = 0.000 = 0.013 = 0.000 = 2 2. 1. 0.909 0.909 0.840 0.000 .667 8509 0400 <= 1 <= 1 <= 1 <= 1 inA4 inA3 inA3 .0 .0 .0 .0 CFS Version 4.12 Section: Section 4.sct Channel 10x3.5x0.84-12 Gage Rev. Date: 1/3/2005 2:57:40 PM Page 1 Member Check - 2001 AISI Specification - US (LRFD) Design Parameters: LX KX Cbx Cmx 8 1 1 1 .2000 ft .0000 .0000 .0000 Braced Flange: None Loads : Entered Applied Strength Effective Ae p (k) 0.000 0.000 35.784 Ly Ky Cby Gmy Moment MX (k-in) 161.00 161.00 166.04 section properties at 1 Interact ion AISI Eq. AISI Eq. AISI Eq. AISI Eq. C5 C5 C3 C3 .7932 in*2 Equations .2.2-1 (P, .2.2-2 (P, .3.2-1 .3.2-1 Ixe Sxe(t) Sxe(b) MX, My) MX, My) (Mx, Vy) (My, Vx) 0. 1. 1. 1. 0000 0000 0000 0000 Reduction, Vy (k) 1.900 1.900 ft R: 0 13.442 Lt Kt ex ey .0000 My (k-in) 0.00 0.00 32.42 0. 1. 0. 0. 0. 0. 11. 0000 0000 0000 0000 Vx (k) 000 000 178 ft in in applied loads: 27 5. 5. 0.000 0.000 .019 3438 4654 + 0. + 0. 0. 0. inA4 inA3 inA3 970 + 970 + 940 + 000 + lye Sye(l) Sye ( r) 0.000 = 0.000 = 0.020 = 0.000 = 2 2. 1. 0.970 0.970 0.960 0.000 .626 8357 0200 <= 1 <= 1 <= 1 <= 1 Aan Ain . Ain .0 .0 .0 .0 4 3 3 COMPUTERIZED STRUCTURAL DESGN, S.C. CONSULTING ENGINEERS MILUUAUKEE, ENGLEMIOOD SAFETY POST CONNECTION 1/3/2005 2kip:= 1000-lb ksi:= kip-in Evaluate connections for prying action, solve for the allowable bolt tension bolt to a plate. Refer to AISC manual LRFD 3rd edition. Bolt tension: Bolt properties: T := 2.55-kip T = 2.55 kip B := 29.8-kip allowable bolt tensile stress [Table 7-13, p.7-35] d•:=' --in bolt diameter4 Plate Dimensions & Properties: t:= .270-in plate thickness Fy:= 36.-ksi a:= 1.125m b := l,125in p';«6-in plate yeild strength CL bolt hole to edge CL bolt hole to support bolt pitch or tributary PL width 3 .hole := d 4s.—in bolt hole diameter 16 a = 0.0937ft S:= 1-hole a':= ,a) a' a' 1 ( \8-u + p; 2 = 0.125 ft rf'°Y ,1I«J \ h'- h n- t - P u ••* 1 ^ 1 T-"2 a J p-Fy b' = 0.0625ft p = 0.5 tc = 0.9098 in B- l(B il 1P •— 1 'pU ; «-5- T B j flTLUJ . a := if(a <0,0,a) 5 = 0.8438 =21.3725 a = Determine prying force, "Q1 Q:= B-6-a-p-| — = 0kip Determine the allowable tension in the bolts based on the thickness of plate provided: L allowed := if a' > l,B-f -1 -d + a),B-f - ] -(l + 5-a1)UJ UJ := if(Taallowed = allowed T+ Q = 2.55 kip Tallowed = 4.8387 kip > T = 2.55 kip OK F:\2004 Projects\J044170\170_Calcs\Building 1\Girts\prying.mcd CSD Project No. J044134 COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project. Job No. Date By Page of 8 f.88 IB i 7' ^A*J 'MM *S*c.ft<*k .13 Ol- ** l.$8 ^ l.su fe.ir .o^^M -7^ } l,5fc fc,75 ,007" ,53" 2) SKc- Mu 3) Mtfcj. H) P«.oPc».Ti€s 5} &= //?Fy PER. C.FSCT H -- COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project. Job No. Date By Page of VAKIETS 3'-l" S c* «* ' ) Jfix • t tr J' . . >/i '7^ |o" / ! ^ --^«s-«*1^^"'(l~ti~-«»-™, 7 S" t&"I ^ X / »- f <z" COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERSMILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project . Job No, Date 11/4/0*4 By Page of 5,Z2 T le-f Mo e.2-tl.S t* 12Ga. @26'-0" Design Parameters: Lx 26.000 ft Kx 1.0000 Cbx 1.0000 Cmx 1.0000 Braced Flange: Bottom Moment Reduction, R: 0.0000 Ly Ky Cby Cmy 26.000 ft 1.0000 1.0000 1.0000 Lt Kt ex ey 26.000 ft 1.0000 0.0000 in 0.0000 in Loads : Entered Applied Strength P (k) 0.000 0.000 25.834 MX (k-in) 95.28 95.28 106.41 Vy (k) 1.222 1.222 18.075 My (k-in) 0.00 0.00 277.01 Vx (k) 0.000 0.000 5.151 Effective section properties at applied loads: Ae 2.8830 inA2 Ixe 26.75 inA4 lye Sxe(t) 8.158 inA3 Sye(l) Sxe(b) 5.666 inA3 Sye(r) Interaction Equations AISI Eq. C5.2.1-1 (P, MX, My) AISI Bq. C5.2.1-2 (P, MX/ My) AISI Bq. C3.3.1-1 (Mx, Vy) AISI Bq. C3.3.1-1 (My, Vx) Hat element 2 w/t exceeds 60. Hat element 4 w/t exceeds 60. 0.000 + 0.895 + 0.000 0.000 + 0.895 + 0.000 0.802 + 0.005 0.000 + 0.000 207.18 in*4 19.010 in*3 19.010 inA3 0.895 <= 1.0 0.895 <= 1.0 0.806 <= 1.0 0.000 <=* 1.0 18Ga. @13'-0" Member Check -1996 AISI Specification-Supplement 1 (ASD) Design Parameters: Lx 13.000 ft Ly Kx 1.0000 Ky Cbx 1.0000 Cby Cmx 1.0000 Cmy 13.000 ft 1.0000 1.0000 1.0000 Lt Kt ex ey Braced Flange: Bottom Moment Reduction, R: 0.0000 Effective section properties at applied loads: Ae 1.10208 inA2 Ixe 9.847 inA4 lye Sxe(t) 2.5463 inA3 Sye(l) Sxe(b) 2.3826 inA3 Sye(r) Interaction Equations AISI Eq. C5.2.1-1 (P, MX, My) AISI Bq. C5.2.1-2 (P, MX, My) AISI Bq. C3.3.1-1 (Mx, Vy) AISI Eq. C3.3.1-1 (My, Vx) Hat element 2 w/t exceeds 60. Hat element 3 w/t exceeds 200. Hat element 4 w/t exceeds 60. 13.000 ft 1.0000 0.0000 in 0.0000 in Loads : Entered Applied Strength P (k) 0.0000 0.0000 7.2746 MX (k-in) 23.880 23.880 36.671 vy (k) 0.6110 0.6110 2.0255 My (k-in) 0.000 0.000 68.380 Vx (k) 0.0000 0.0000 0.4413 0.000 + 0.651 + 0.000 0.000 + 0.651 + 0.000 0.424 •)• 0.091 0.000 + 0.000 88.020 inA4 8.0348 inA3 8.0348 inA3 0.651 <= 1.0 0.651 <« 1.0 0.515 <= 1.0 0.000 <= 1.0 •fc 22 Ga. <® 7'-0" Member Check -1996 AISI Specification-Supplement 1 (ASD) Design Parameters: Lx 7.0000 ft Kx 1.0000 Cbx 1.0000 Cxnx 1.0000 Braced Flange: Bottom Loads : P (k) Entered 0.0000 Applied 0.0000 Strength 3.2015 Ly Ky Cby Cay Moment MX (k-in) 6.910 6.910 14.482 Effective section properties at Ae 0.68135 inA2 Ixe Sxe(t) Sxe (b) 7.0000 ft 1.0000 1.0000 1.0000 Reduction, R: Vy (k) 0.3290 0.3290 0.4983 applied loads 6.043 in*4 1.5344 inA3 1.4876 inA3 Lt Kt ex ey 0.0000 My (k-in) 0.000 0.000 28.892 . lye Sye(l) Sye(r) 7.0000 ft 1.0000 0.0000 in 0.0000 in VX (k) 0.0000 0.0000 0.1088 54.962 inA4 5.0094 in^3 5,0094 inA3 Interaction Equations AISI Eq. C5.2.1-1 (P, MX, My) AISI Eq. C5.2.1-2 (P, MX, My) AISI Eq. C3.3.1-1 (Mx, Vy) AISI Eq. C3.3.1-1 (My, Vx) 0.000 + 0.477 + 0.000 0.000 + 0.477 + 0.000 0.228 + 0.436 0.000 + 0.000 0.477 <:= 1.0 0.477 <= 1.0 0.664 <= 1.0 0.000 <* 1.0 *• 4V».8t* Member Check -1996 AISI Specification-Supplement 1 (ASD) Design Parameters: lac 5.0000 ft Ly Kx 1.0000 Ky Cbx 1.0000 Cby Cmx 1.0000 Cmy Braced Flange: Bottom Moment Loads : F MX (k) (k-in) Entered 0 . 0000 3 . 890 Applied 0.0000 3.890 Strength 3.2342 14.482 Effective section properties at Ae 0.73032 inA2 Ixe Sxe(t) Sxe (b) interaction Equations AISI Eq. C5.2.1-1 (F, MX, My) AISI E<J. C5.2.1-2 (P, Mxf My) AISI Eq. C3.3.1-1 (Mx, Vy) AISI Eq. C3.3.1-1 (My, Vx) 5.0000 ft 1.0000 1.0000 1.0000 Reduction, R: 0 Vy (k) 0.2350 0.2350 0.4983 applied loads: 6.746 inA4 1.8357 inA3 1.5597 in*3 0.000 + 0.269 + 0.000 + 0.269 + 0.072 + 0.000 +• Lt Kt ex ey .0000 My (k-in) 0.000 0.000 28.892 lye Sye(l) Sye (r) 0.000 = 0.000 * 0.222 = 0.000 = 5.0000 ft 1.0000 0.0000 in 0.0000 in VX (k) 0.0000 0.0000 0.1088 56.958 inA4 5.1913 in*3 5.1913 inA3 0.269 <= 1.0 0.269 <== 1.0 0.295 <= 1.0 0.000 <= 1.0 Hat element 1 w/t exceeds 60. Hat element 2 w/t exceeds 60. Hat element 3 w/t exceeds 200. Hat element 4 w/t exceeds 60. Hat element 5 w/t exceeds 60. zs Braced Flange: Bottom Moment Reduction, R: 0.0000 Loads : Entered Applied Strength P (k) 0.0000 0.0000 1.5133 MX (k-in) 3.890 3.890 6.740 vy (k) 0.2350 0.2350 0.1457 My (k-in) 0.000 0.000 13.651 Vx (k) 0.0000 0.0000 0.0319 Effective section properties at applied loads: Ae 0.428125 inA2 Ixe 3.619 inA4 lye Sxe(t) 0.8677 in*3 Sye(l) Sxe(b) 0.9451 inA3 Sye(r) Interaction Equations AISI Bq. C5.2.1-1 (P, MX, My) AISI Bq. C5.2.1-2 (P, MX, My) AISI Eq. C3.3.1-1 (MX, Vy) AISI Bq. C3.3.1-1 (My, Vx) Hat element 1 w/t exceeds 60. Hat element 2 w/t exceeds 60. Hat element 3 w/t exceeds 200 Hat element 4 w/t exceeds 60. Hat element 5 w/t exceeds 60. 0.000 + 0.577 + 0.000 0.000 + 0.577 + 0.000 0.333 + 2.601 0.000 + 0.000 35.323 in 4 3.2167 inA3 3.2167 inA3 0.577 <= 1.0 0.577 <= 1.0 2.934 > 1.0 0.000 <= 1.0 w-b* COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERSMILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project _ Job No. Date H/tfo*f By Page of / - I Kl X 4-P 1 X, X ; u L u ; ( 3" r i'A - 7° * 2.61 9.7 b -^ '(^.2. n = 2 C- i^o OK- COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE. ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project. Job No, Date By Page of i* %L 4 A v JocsrS : 5t> L\S€" JOIST COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGUWOOO 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project Job No, Date By Page _ of Jt Mfc* I _-. memo IX7S .1 ^ 44..If* 5O*&F uc* SOpsir/tiooy* cou~=- Z-S MI* ex CizV TO fs£*ftQXtMm^ ov€o. fuu. TRte ^ LOBBY BEAM DEFLECTIONS DL COLL LL E psf psf psf ksi LOAD DEFLECTION LTX" BEAM SIZE LENGTH Ix WDL WLL 'DL 'COL 'LL TOTAL DL COL LL TOTAL [ft] [in"][k/ft] [k/ft] [k/ft][in] [in] [in][in] 0.84 1.21 1.42 1.42 1.97 1.76 1.02 0.69 0.75 0.75 0.42 0.6 0.71 0.71 0.98 0.88 0.51 0.35 0.38 0.38 0.84 1.21 1.42 3.22 3.02 1.76 1.02 0.69 1.5 1.5 0.30 0.43 0.51 0.51 0.41 0.80 0.99 1.18 0.38 0.38 0.15 0.22 0.25 0.25 0.20 0.40 0.50 0.59 0.19 0.19 0.30 0.43 0.51 1.16 0.63 0.80 0.99 1.18 0.76 0.76 0.76 1.09 1.27 1.92 1.24 2.01 2.48 2.94 1.33 1.33 1660 1159 989 989 1231 836 677 571 1585 1585 3320 2319 1978 1978 2463 1673 1354 1141 3170 3170 1660 1159 989 434 803 836 677 571 792 792 664 464 396 262 406 335 271 228 453 453 {9235} > LIST DISPLACEMENTS JOINTS EXISTING 4314 4317 •RESULTS OF LATEST ANALYSES* PROBLEM - NONE TITLE - NONE GIVEN ACTIVE UNITS INCH KIP DEG DEGF SEC RESULTANT JOINT DISPLACEMENTS SUPPORTS JOINT LOADING /- DISPLACEMENT- It- -ROTATION- XDISP. YDISP. ZDISP. XROT. YROT. ZROT. RESULTANT JOINT DISPLACEMENTS FREE JOINTS JVJ1PI 1 JJJrt-L*l_L"HJ 1 —•" L/J.J.r.ljrtV/.LJ.T.lLJ1* L -—- -~ ». ,, —« — IWlrt HW11- XDISP. YDISP. ZDISP. XROT. YROT. ZROT. 4314 GLOBAL OL i to*-*- 2 tU- 3 U. 4 11 12 13 14 15 21 22 23 24 25 26 27 28 4317 GLOBAL DL 1£.t»cc 2 CW 3 fc*- 4 11 12 13 14 15 21 22 23 24 25 26 27 28 0.008 0.004 0.001 0.005 -0.001 0.019 -0.021 -0.002 0.000 0.095 -0.095 -0.003 0.003 -0.001 0.001 0.011 -0.011 0.007 0.004 0.000 0.005 0.000 0.026 -0.025 -0.006 -0.005 0.100 -0.100 -0.003 0.003 0.000 0.000 -0.013 0.013 -0.283 -0.160 -0.060 -0.237 0.054 0.017 -0.017 -0.006 -0.001 0.061 -0.061 -0.008 0.008 0.001 -0.001 -0.003 0.003 -0.331 -0.181 -0.053 -0.278 0.049 0.007 -0.008 0.001 -0.013 0.058 -0.058 0.011 -0.011 0.000 0.000 0.005 -0.005 0.001 0.000 0.001 0.000 -0.001 0.010 0.001 0.023 -0.029 0.003 -0.003 0.196 -0.196 -0.004 0.004 -0.029 0.029 0.004 0.002 0.002 0.002 -0.002 0.010 0.001 0.022 -0.029 0.003 -0.003 0.194 -0.194 -0.004 0.004 -0.034 0.034 -0.002 0.000 0.005 -0.005 -0.005 0.022 0.032 0.056 -0.045 -0.007 0.007 0.078 -0.078 0.000 0.000 0.004 -0.004 -0.003 -0.001 0.005 -0.006 -0.005 -0.080 -0.071 0.073 -0.105 -0.007 0.007 0.078 -0.078 0.001 -0.001 0.006 -0.006 0.000 0.000 0.000 0.000 0.000 -0.012 -0.014 -0.015 0.009 0.001 -0.001 0.000 0.000 0.000 0.000 -0.003 0.003 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.000 -0.001 0.000 0.000 0.001 -0.001 0.000 0.000 -0.005 0.005 0.050 0.027 0.009 0.041 -0.008 -0.005 0.005 0.003 0.001 -0.013 0.013 0.002 -0.002 0.000 0.000 0.001 -0.001 0.064 0.035 0.010 0.052 -0.010 -0.003 0.003 0.001 0.004 -0.012 0.012 -0.002 0.002 0.000 0.000 -0.001 0.001 COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project __ Job No. 4O4MI*70 By Date II /£«j /l>4 Page of RAMP ' 29,5 * M/S*Qifc. •/ COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project Job No. Date Page of v»cvo '» 1* oeuEtoPS pou,OIL ok. I-U '. 2,2 O£~ Allowable axial capacity of a single angle with the load applied to one leg through long, welds or bolts. The angle must have equal legs. The design is per the AISC specification for Allowable Stress Design of Singie-Angte Members E:= 29000-ksi kip:= 1000-lb ksi:=. _ kip . 2in Fy := 36-ksi L := 3.5-ft Cb := 1.0 Cm := I.p Load is assumed to be applied on the face of Angle size 3X3 X 3/8 the angle ORIGIN := 1 Q:= READPRN("J:/EngmeeringData/PRNDOC/Snglangl_2.pni") i:= 101 A:= Qii3-in2 Ix:= Qij4-in4 rx:= Qj,6-in y:= Q^r'm rz:= Qj,i6-in b := Qi)23-m t:= Qi^s'"1 A = 2.11 in2 Ix = 1.75 in4 rx = 0.91 in y = 0.884 in rz = 0.581 in b = 3 in t = 0.375 in Fa:=if U 76V£i 0041- fbl Pt ^/F~ ^;Vk - 't^ ^VO ri n*^2 "~ /*"*-o^ ^min * — i ( a2 } 1 - 2 -Q-Fy 2 . ,^ V 2'Cc y 12-Ti -E Z^ CV 3V 2[5 3-az az3 23-a,2 3 ' 8-Cc g.c3 1 , L V c / J „ .Jb 155-Vksi 15500-ksi 1(^ . a ^ — , ••• , {j y i 1' * "(T) J /- 2C - -f( <- \ r • 2>* 'E * AA i <*7 "^ "tnin ? **mfn ' **7* ^f • IV z -min»-ram»-z/ c V V ry 85900-ksi 1 ^fL-tVOB'^ w bw '""U2J . := if ( Fob) [FVFob < Fy J .55 - .1-— -Fob> .95 - .5- M- I Fy ) \ ^Fob. Fb:=if(Fb>Fbl,Fbl,Fb) = 23.76ksi 11/24/2004 Ramp 1-S4.10 Angle single bending.mcd COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project Job No. _ Date li/2tt/0«f By Page of 4 s/w.io * s 57.U so) SO COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERSMILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project, Job No. Date By Page ot / Sr A C^t1 A COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project ^ Job No. Date By Page of 4 %* 2* ' tttt* J-il-M^.^.J**!""*1^™ - hi Rev; 560100 User: KW-0603269. Ver 5.6.1 , 25-Ocl-2002(c)1983-2002 ENERCALC Engineering Software Title : Dsgnr: Description : Scope : Single Span Beam Analysis Description Palomar Airport Center Angle Girt @G.L. 29.1 General Information Center Span 8.00 ft Left Cantilever 0.75 ft Right Cantilever 1.08ft Uniform Loads On Center Span... #1 0.166 k/ft Query Values Center Location Moment Shear Deflection Moment of Inertia Elastic Modulus Beam End Fixity On Left Cantilever... #1 0. 0.000 ft Left Cant -0.05 k-ft 0.66k 0.00000 in 0.476 in4 29,000 ksi Pin-Pin 166 k/ft 0.000 ft 0.00 k-ft 0.00k 0.00000 in Job# Date: 5:12PM, 4 NOV 04 Page 1 I 1 1 On Right Cantilever... # 1 0.166 k/ft 1 Right Cant 8.000 ft -0.10 k-ft -0.67 k 0.00000 in 1 Summary Moments... Max + @ Center Max - @ Center @ Left Cant @ Right Cant Maximum = m 1 .26 k-ft at -0.10 k-ft at -0.05 k-ft -0.10 k-ft 1.26 k-ft Shears... 3.96 ft @ Left 8.00 ft @ R'9nt Maximum Deflections... @ Center @ Left Cant. @ Right Cant 0.66k 0.67k 0.67 k -1 .036 in at 0.307 in at 0.434 in at Reactions... @Left @ Right 3.98ft -0.75 ft 9.08ft 0.78k 0.85k \ Title : Job # Dsgnr: Date: 5:22PM, 4 NOV 04 Description : Scope : Rev: 560100 User: K W -060 3269, Ver 5.6,1, 25-Ocl-2002 (c)1 983-2002 ENERCALC Engineering Software Description Palomar Airport Angle Girt @ G Single Span Beam Center L 29.1 Analysis Pase 1 j General Information | Center Span 8.00 ft Left Cantilever 0.75 ft Right Cantilever 1.08 ft Moment of Inertia Elastic Modulus 0.972 in4 29,000 ksi Beam End Fixity Pin-Pin Uniform Loads | On Center Span... #1 0.166 k/ft Query Values Center Location Moment Shear On Left Cantilever... #1 0.166 0.000ft Left Cant -0.05 k-ft 0.66k Deflection 0.00000 in On Right Cantilever... k/ft #1 0.166 k/ft 1 0.000 ft Right Cant 8.000 ft 0.00 k-ft -0.10 k-ft 0.00 k -0.67 k 0.00000 in 0.00000 in 1 Summary Moments- Max + @ Center Max - @ Center @ Left Cant @ Right Cant Maximum = m 1.26 k-ft at -0.10 k-ft at -0.05 k-ft -0.10 k-ft 1.26 k-ft Shears... 3.96 ft @ Left 8.00 ft @ R'9ht Maximum Deflections... @ Center @ Left Cant. @ Right Cant 0.66 k 0.67 k 0,67k -0.507 in at 0.150 in at 0.213 in at Reactions... ©Left @ Right 3.98ft -0.75 ft 9.08ft 0.78k 0.85k COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project. Job No. Date t By Page of 5 COMPUTERIZED STRUCTURAL DESGN, S.C. CONSULTING ENGINEERS MILIflJAUKEE, ENGLEllHOOD BASE PLATE DESIGN (LRFD) Palomar Airport Center Girt Post kip^lOOO-lb ksi = kip-in 2 plf = lb-ft ' psi = lb-in 2 ORIGIN:= 1 Q := READPRN(hssprop) Column: HSS8x2x3/16 j ;= 194 wt:=Qi>rplf => wt=11.97plf H:= Qii2-in => H = 8 in B ;= Qj^-in => B=2in Design Force: Ru := 10-kip BasePlate: M := 8-in N := 7-in Fy := 36-ksi (fic:= 0.60 Concrete Strength: fc ;= 4000-psi Required Area: A] :=R,, AI= 4.902 in2 (7-in)-N O.K. m:= 0.5-(M - 0.95-H) => m = 0.2in n := . R.,4-H-B = n => X = 0.056 1 := raaxUm n X-n')) -> l = 2.55in 2-R., n:= 0.5-(N-0.95-B) => n = 2.55 in c-P = 114.24 kipPp := 0.85.fc-M-N => := min 1.0 => 0.9-Fy-M-N 0.268 in - - - > Use 1/2" plate hssprop = "j:\EngineeringData\ExcellTemplate\WFTables\hssprop.prn" 11/5/2004 7:35 AM baseplt_girt_post.rricd Page 1 of 1 CSD Project No. J044170 Hilti AG FL-9494 Schaan HAP v3.3b Customer No. Phone: Resp.: jhp Anchor fastening design Location: Page:1of2 Quotation: Project: List No.: Date: Project name: Palomar Airport Center J044170 2004-11-05 jhp Anchor fastening design for HIT-HAS + RE500-3/8 As per Hilti USA method Positioning Anchoring plate: lx=7.00 in ly=7.00 in s1 =5.00 in s2=5.00in c4=1.00 in + Anchor O Anchor in slotted hole . s + + H s1 - - / * \ ( \ s2 / )c4 Loads + 1 + 7' + I + Vy Concrete Shear Load: Vy=-1000Lbf Compressive strength: 4000 PSl Thickness of base material: 5.50 in ' Hilti AG FL-9494 Schaan HAP v3.3b Customer No.: Phone: Resp.: jhp Anchor fastening design Location: Results for HIT-HAS + RE500-3/8 Anchor N [Lbf] Vx [Lbf] Vy [Lbf] VrBS [Lbf] Res [Lbf] a 'RN TRV f*N fAV N,- fLbfl 1 0 0 -250 250 250 90 1.00 1.00 1.00 1.00 1095 2 0 0 -250 250 250 90 1.00 0.35 1.00 1.00 1095 Page: 2 of 2 Quotation: Project: Palomar Airport Cen List No.: J044170 Date: 2004-11-05 Project name', jhp 3 0 0 -250 250 250 90 1.00 0.35 1.00 1.00 mQ5 4 0 0 -250 250 250 90 1.00 1.00 1.00 1.00 1flQ5 COMPUTERIZED STRUCTURAL DESGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOQD BASE PLATE DESIGN (LRFD) Palomar Airport Center Girt Column kips 1000-lb ksi = kip-in 2 plf=lb-ft l psi = lb-in 2 ORIGIN:= 1 Q := READPRNfhssprop) Column: HSS8x2xl/4 i := 193 wt:=Qj>rplf => wt=15.62plf H:=Qii2-in => H=8in B := Qj|3-in => B^2in Design Force: RU:= 10-kip Base Plate: M := 9-in N := 7-in Fy := 36-ksi <|.c := 0.60 Concrete Strength: fc := 3000-psi Required Area: 4>c-(o.85-fc) m:= 0.5-(M - 0.95-H) => m = 0.7in n1 := 0.25-JllB ^> n1 = 1 in R,4-H-B => X = 0.066 = 6.536 in2 < M-N = 63 in2 O.K. n := 0.5-(N - 0.95-B) => n = 2.55 in Pp:=0.85-fc.M-N => t))c-Pp = 96.39kip 2->/X l:=max((m n A.-n')) => l = 2.55i 2-R 0.9-Fy.M-N n tren = 0.252 inreq '.= mn 1.0 => K = 0.262 Use 1/2" plate hssprop s "j:\Engineering Data\Excell Template\WF TablesXhssprop.pm" 11/5/2004 7:35 AM baseplt_hss_conc.mcd Page 1 of 1 CSD Project No. J044170 Hilti AG FL-9494 Schaan HAP v3.3b Customer No. Phone: Resp,: jph Anchor fastening design Location: Page:1 of 2 Quotation: Project: List No.: Date: Project name: Palomar Airport Center J044170 2004-1 1-03 jhp Anchor fastening design for HIT-HAS + RE500-1/2 As per Hilti USA method Positioning + + s1 Loads A \/ s2 \/ Anchoring plate: lx=8.00 in ly=9.00 in s1 =5.00 in s2=6.00in c2=3.00 in c4=3.00 in -f- Anchor O Anchor in slotted hole Concrete Shear Load: Vy=6000 Lbf Compressive strength: 3000 PSI Thickness of base material: 12.00 in I^^B jjjjj^^iMMM • ~M ^^^B Hilti AG FL-9494 Schaan HAP v3.3b Customer No.; Phone: Resp.ijph Anchor fastening design Location: Page: 2 of 2 Quotation: Project: Palomar Airport Center List No.: J044170 Date: 2004-11-03 Project name: jhp Results for HIT-HAS + RE500-1/2 Anchor N [Lbf] Vx [Lbf] Vy [Lbf] Vres [Lbf] Res [Lbf] a *RN TRV TAN vw Nrec [Lbfl Vrec [Lbf] IN Iv 'Res had [in] 1 0 0 1500 1500 1500 90 1.00 0.88 1.00 1.00 1548 1888 - 0.79 0.68 21/4 2 0 0 1500 1500 1500 90 1.00 0.93 1.00 1.00 1548 1995 0.00 0.78 0.65 21/4 3 0 0 1500 1500 1500 90 1.00 0.93 1.00 1.00 1548 1995 0.00 0.78 0.65 21/4 4 0 0 1500 1500 1500 90 1.00 0.88 1.00 1.00 1548 1888 - 0.79 0.68 21/4 COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project Job No. JQ4H3CL Dote 1/27/05 By Page i_of . floor : Deflection of .- (y'Witi -- 252 .- 0,7 T '' U 6. 2) A -- LU • ^- ISO} > 40* ... (Js* 4?* - /50) COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project Job No. Date By Page Of 1 1/LL /OK o^ ^ful L -Aehoee^ go'ut )^tl5.2!) 2,3?* Floor Ooi5"hs; /• /' ' '- 7') - 35£ 3 ) -~ /OC^f /H1- 3') - %25/f COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGIEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project. Job No. Date By Page floor J COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project. Job No. Date By Page of «-KX>F ID'-Q" 21 376- <ft62" /OK COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project. Job No. Date By Page 5 • M»pt-k KJ1 1012 COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, DENVER 5600 S. Quebec St., Ste. 150-D Greenwood Village, CO 80111 303-662-0665 FAX 303-662-0667 Project Job No. Date By Page of CoNMGCTlC** CAPACITY 3D CAMTIu'ft, AOHt*J. 'A' H iS 2.5,»' in O V A* * COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, DENVER 5600 S. Quebec St., Ste. 150-D Greenwood Village, CO 80111 303-662-0665 FAX 303-662-0667 Project. Job No.By Date *|/IU/CP.5 Page of *_* r IZ"ar <X=ZS t^^ SC Vv/E"t-o OK- UNIFORM FORCE METHOD (AISC Volume II - Connections) Project Uniform Force Method Title AISC LRFD Volume II Connections Job No. By JOB J044170 Date 4/17/2005 B' Connection at Grids 'O-14' and O-171 SPECIAL CASE 2 C.L column Minimizing Shear in the Beam-to-Column \ connection for Compressive brace force. ! ec a V 1 ^' P Gusset plate is RIGIDLY attached to beam. Gusset Plate Free-Body Diagram He w.p.Lx T Loading Information Compressive Diagonal Brace Force ( ' + ' Compression) Angle of diagonal brace with vertical Geometric Parameters Beam Eccentricity (Distance from work point to face of beam) Column Eccentricity (Distance from work point to face of column) " eb Vb - AVb P e eb ec Actual Distance from face of column to centroid of gusset-to-beam connection a bar Actual Distance from face of beam to centroid of gusset-to-column connection p bar Brace Force Components Horizontal Component of Brace Force Vertical Component of Brace Force UNIFORM FORCE METHOD K = eb tan 6 - ec K' = a bar ( tan 9 + a bar / p ^ ) D = tan 6 + (abar/pbar) Ideal Distance to Centroid of Gusset-to-Beam Connection Ideal Distance to Centroid of Gusset-to-Column Connection r = [ ( a + ec f + ( p + eb )2 ]1/2 CONNECTION INTERFACE FORCES * General Case Axial Force Vc = ( p / r ) P H 112.616 V 76.247 K 17.7239 K1 N/A D N/A a 39.8788 3 15.0000 r 48.1593 Vc 42.359 Shear Force Vb = (eb/r)P Vb 33.888 Soec/a/ Case 2 Reduction in Vertical Force AVb [ 33.888 | Gusset-to-Column Connection Vertical Force Vc + AVb Vc + AVb 76.247 Horizontal Force He = ( ec / r ) P He 0.000 Moment at Gusset Me = He ( p - p bar ) Me 0.000 Gusset-to-Beam Connection Horizontal Force Hb = ( a / r ) P Hb 112.616 Vertical Force Vb - AVb Vb - AVb 0.000 Moment at Gusset Mb = Vb ( a - a bar ) + AVb a bar 1 12.61 7 C.L. Beam \ 136.00 55.900 12.0000 0.0000 25.0000 15.0000 kips kips in. in. in. kips kips Kips kips kips kip-ft. kips kips kip-ft. kips degrees in. in. in. in. * Sign convention is positive for forces as shown in free-body diagram above, counterclockwise is positive for moments. ©COPYRIGKT 2001 COMPUTERIZED STRUCTURAL DESIGN, S.C. DOUBLE-ANGLE SHEAR CONNECTION (AISC 3rd Edition LRFD) Project Palomar Title 'B' Connection (LRFD) at 'O-14' and 'O-1 7' Gusset End Connection BEAM Designation Yield Stress Fy Tensile Strength Fu End Reaction on Plans R Adjustment Factor Design Shear Force Ru ANGLES Angle Thickness t Angle Leg - Welded to Beam Web Yield Stress Fy Tensile Strength Fu Vert. Edge Distance Lv Hor. Edge Dist. @ OSL Lho OSL Hole Type (STD or SSL) Min. Weld Metal Strength Fexx BOLTS Bolt Specification (A325 or A490) Bolt type (N,X or SC) SC Classification (A, B or C) Bolt Diameter d bolt Bolt Spacing (Typ.) s No. of ROWS of Bolts n Is bolt Deformation a design considerati SUMMARY: Bolted-Welded Double-A W36X135 50.0 ksi 65.0 ksi 83.0 kips 1.00 83.0 kips 0.3750 in. 3.5 in. 36.0 ksi 58.0 ksi 1.250 in. 1.250 in. STD 70 ksi A325 SC A 3/4 in. 3.0 in. 9 on? Y ngle Shear Connection Job No. By JDB SUPPORTING MEMBER Designation Attachment to Flange or Web Yield Stress Fy Tensile Strength FU BEAM COPE N (N-No.Y-1 T {T-Cope Top c 6.500 in. dctop 1.750 in. 0.000 Beam Setback dimension Hole Height h hole Min. Bolt Spacing s Bolt Single Shear <frrn Use bearing EON J3-2a Connection Design Strength "tiRn 187.9 kips O.K. Check Assembling Clearances (See Manual, Part 7, Table 'Entering and Tightening Clearances') RESULTS: Beam Web Side Supporting Member J044170 Date 4/17/05 W14x61 W (ForW) 50.0 ksi 65.0 ksi fes) or B-Cope Both) 0.75 in. 0.8125 in. 2.000 in. 10.44 kips Web Shear Strength Angle to Support Connection Angle Length L Beam web depth or T dimension Max. Angle Length Lmax Gross Shear Area Ag Gross Shear Strength 4>Rn Angle to Beam Web Weld - WELD A Weld Shear Strength <)>Fw AISC Table XXIII a = Req'd. Fillet Weld w req'd. Min. Web Thickness t min BEAM COPED SECTION Block Shear Rupture Strength Shear Area Av Tension Area At Block Shear Rupture <|>Rn © COPYRIGHT 2003 COMPUTERIZED STRUCTURAL DESIGN, S.C. 576.7 kips Bolt Shear Strength <(>Rn 187.9 kips Bolt Bearing Strength <t>Rn 592.3 kips (Bolt Shear and Bearing is for beam on ONE Side only) 26.500 32.520 31.770 19.88 386.4 31.50 0.125 0.0582 0.096 N/A 0.00 0.00 0.0 in. in. in. in.2 kips ksi k = in. in. Optional in.2 in.2 kips Bolt Shear Strength Bearing Strength @ OSL Block Shear Str. @ OSL Net Shear Area Net Shear Strength Min. Fillet Weld <|>Rn <tRn <|>Rn An <f)Rn wmin 0.094 Coefficient C Fillet Weld Designed Weld Shear Strength Input: Larger Fillet Weld w to Flexural Strength Eccentricity Coped Section Modulus Controlling stress w Vw be used e Sn $Fn Bending Strength (jiRn 187.9 286.3 374.0 13.97 364.6 0.2500 1.682 1/4 356.7 0.000 N/A 0.00 0.00 0.00 0.0 kips kips kips in.2 kips in. in. kips in. in. in.3 ksi kips DOUBLE-ANGLE SHEAR CONNECTION (AISC 3rd Edition LRFD) Project Palomar Title 'B' Connection (LRFD) at 'O-14'and 'Q-17' Job No. By JOB J044170 Date 4/17/05 W24x55 Beam End Connection BEAM Designation Yield Stress Tensile Strength End Reaction on Plans Adjustment Factor Design Shear Force Fy Fu R W24x55 50.0 65.0 22.0 1.00 ksi ksi kips SUPPORTING MEMBER Designation Attachment to Flange or Web Yield Stress Fy Tensile Strength Fu Ru 22.0 kips ANGLES Angle Thickness t Angle Leg - Welded to Beam Web Yield Stress Fy Tensile Strength Fu Vert. Edge Distance Lv Hor. Edge Dist. @ OSL Lho OSL Hole Type (STD or SSL) Win. Weld Metal Strength Fexx BOLTS Bolt Specification (A325 or A490) Bolt type (N, X or SC) SC Classification (A, B or C) Bolt Diameter d bolt Bolt Spacing (Typ.) s No. of ROWS of Bolts n Is bolt Deformation a design consideration? SUMMARY: Bolted-Welded Double-Angle Shear Connection BEAM COPE c dctop N T 6.500 1.750 0.000 (N (T- in. in. { N - No, Y - Yes) (T-Cope Top, or B-Cope Both) A325 SC A 3/4 3.0 6 on? in. in. Y Beam Setback dimension | 0.75 \'m, Hole Height h hole 0.8125 in. Min. Bolt Spacing s 2.000 in. Bolt Single Shear <|>r n 10.44 kips Use bearing EQN J3-2a Connection Design Strength <(iRn Check Assembling Clearances (See Manual. Part 7, 125.3 kips O.K. Table 'Entering and Tightening Clearances') RESULTS: Beam Web Side Web Shear Strength «|>Vn Angle to Support Connection Angle Length L Beam web depth or T dimension Max. Angle Length Lmax Gross Shear Area Ag Gross Shear Strength <|>Rn Angle to Beam Web Weld - WELD A Weld Shear Strength <t>Fw AISC Table XXIII a = Req'd. Fillet Weld wreq'd. Min. Web Thickness t min BEAM COPED SECTION Block Shear Rupture Strength Shear Area Av Tension Area At Block Shear Rupture <|>Rn © COPYRIGHT 2003 COMPUTERIZED STRUCTURAL DESIGN, S.C. Supporting Member 251.7 kips Bolt Shear Strength <t»Rn 125.3 kips Bolt Bearing Strength <j>Rn 394.9 kips (Bolt Shear and Bearing is for beam on ONE Side only) 17.500 21 .380 20.755 13.13 255.2 31.50 0.184 0.0218 0.036 N/A 0.00 0.00 0.0 in. in. in. in.2 kips ksi k = in. in. Optional in.2 in.2 kips Bolt Shear Strength Bearing Strength @ OSL Block Shear Str. @ OSL Net Shear Area Net Shear Strength Min. Fillet Weld <(iRn <|>Rn it»Rn An ijiRn wmin 0.143 Coefficient C Fillet Weld Designed Weld Shear Strength Input: Larger Fillet Weld w to Flexural Strength Eccentricity Coped Section Modulus Controlling stress Bending Strength w Vw be used e Sn 4-Fn (frRn 125.3 190.9 249.2 9.19 239.8 0.1875 1.800 3/16 189.0 0.000 N/A 0.00 0.00 0.00 0.0 kips kips kips in.2 kips in. in. kips in. in. in.3 ksi kips COMPUTERIZED STRUCTURAL DESGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEKUQOD BOLT PRYING DESIGN (LRFD) PALOMAR 2L Prying- '0-14' and 'O-17'.mcd This Mathcad template evaluate connections for prying action, solve for the allowable bolt tension for bolt to plate: ( Per AISC LRFD 3rd Edition, page 9-10) kip := 1000-lb ksi:= kip-in"2 113Actual tension per bolt: rut := • kip rut = 9.417kip12 => dh= 1.063 in 1. Input: Bolt diameter: d^it :=* 0.75-in Yield strength of plate material: Fy := 36-ksi Bolt pitch parallel to stem: p := 3-in Bolt gage in plate: gage := 5.5-in Allowable tension per Table 7-14: 4>rn := 29;8-kip 2L Properties: Plate width perpendicular to stem: Bpl ;= 7in Plate thickness: -t Bolt hole diameter: dh := d^ + —in 16 Tb := 28kip Stem thickness: —in4; := lin R:= 1-'ut 1-13-Tb 1 R = 0.702 R = 1.424 2. Analysis: b := 0.5(gage - tstem) => b = 2.25 i b1 := b - O.Sd™, => b1 = 1.875 in n a := leg - 0.5gage => a = 0.75 in p :==> leg := 0.5Bpl => leg = 3.5 in 5 := i _ _^ => 5 = o.646 P al:=minL + — ,1.25-b + — => a'=1.281 in\ 2 2j 4.44-<K-b' - - -P-FV => t=1.516in ^ nr1 -(X .— "^ V . \21 (l + p) c 1LUJ l\=> a' = 1.938 3. Determine the allowable tension in the bolts based on the thickness of plate provided: a' <0,(|>rn,if => <J>Rn = 12 kip > rut = 9.417 kip O.K. Case-l: Case-ll: Case-Ill: If 0 < a' < 1, Then bolt failure controls. If a1 > 1, Then material thickness control. If a' < 0 Then bolt capacity is not reduced for prying. 4/17/2005 11:28 AM Page 1 of 1 CSD Project No. J044170 NOWAK+WISEMAN STRUCTURAL ENGINEERS MAY 2 3 BY:. STRUCTURAL CALCULATIONS FOR Palomar Airport Center Bldg. 2 NWSE Job #: 03-098 May 2005 N s) 9888 Carroll Centre Road 92126 TEL (858) 536-5166 Suite 228 NWENGINEERS.COM San Diego, CA FAX. (958) 536-516 TABLE OF CONTENTS Project: PALOMAR AIRPORT CENTER Job #: 03-098 Date: 05/18/05 BLDG2 Design Criteria Misc. Criteria M1 NOWAK+WISEMAN STRUCTURAL ENGINEERS - M42 Footing Design Footing Capacities Bldg.2 Footings Anchorage Samp. Calc. Anchor bolt load summ. Bldg. 2 grade beams F1 F2 A1 A2 G1 G166 - F1 - F3 - A1 - A3 - G19 - G228 9888 Carroll Centre Road, Suite 228 Phone; (858) 536-5166 San Diego, California 92126 BSPEER @ NWENGfNEERS . COM Fax: (858) 536-5163 URS April 20, 2004 Mr. Richard Sax, Esq. c/o Mr. Joe Pate Palomar Airport Center LLC 2192 Palomar Airport Road, Second Floor Carlsbad, CA 92008 Subject:Addendum No. 1 to Geotechnical Investigation Proposed Palomar Airport Redevelopment McCl el Ian -Palomar Airport Carlsbad, California URS Project No. 27662028.04000 Dear Mr. Pate: This addendum provides recommendations regarding the design of concrete floor slabs and pavements for the subject project. URS Corporation (URS) previously performed geotechnical investigations for the site. The results of the geotechnical investigations are presented in our report titled "Geotechnical Investigation, Proposed Palomar Airport Redevelopment. McClellan-Palomar Airport, Carlsbad. California," dated February 11.2004. The project structural engineer, Nowak Wiseman, has requested a modulus of subgrade reaction for use in design of rigid floor slabs and pavements. The shallow subgrade soils encountered below the project site consist of sandy clays and clayey sands. These materials will be scarified and recompacted. or where needed, additional fill soils will be imported. Recommendations for the characteristics of imported fills were provided in Section 4.3.3 of our report. The slabs and pavements should be designed for the condition of the recompacted clays. A subgrade modulus of 150 pounds per square inch/inch may be used for design of the floor slabs and rigid pavements. If you have any questions regarding this letter, please contact us. Please bind this addendum with the February 11, 2004 report. Sincerely, URS CORPORATION 'Leo D. Handfelt, RJ&.E. 373 Principal Geotechnical Engineer LDH:afs cc: Jim Wiseman. Nowak Wiseman URS Corporation 1615 Murray Canyon Road Sune1000 San Diego. CA 9210S Tel: 619.294.9400 Fax,: 619.293.7920 l aoc\20-Apt-W\SDG HANGAR - AIRCRAFT TYPE LIST The front ramp should be made to accommodate a Boeing 737 BBJ2. 174,200 Ibs. All hangar floors should be made to accommodate aircraft at their maximum weights. All aircraft listed below represent the largest and heaviest aircraft that specified hangars can accommodate. WIDTH LENGTH HEIGHT DOOR Aircraft Types Weight Max Hangar 1 125'-0" 121 '-0" 27'-6" 110'-O" Bombardier BD-700 Global Express 96,000 Ibs. Gulfstream Aerospace G-V Gulfstream V 89,000 Ibs. Hangar2 125'-0" 12T-0" 27'-6" 110'-0" Bombardier BD-700 Global Express 96,000 Ibs. Gulfstream Aerospace G-V Gulfstream V 89,000 Ibs. Hangar 3 125'-0" 121 XT 27'-6" 110'-Q" Bombardier BD-700 Global Express 96,000 Ibs. Gulfstream Aerospace G-V Gulfstream V 89,000 Ibs. Hangar4 125'-0" 121'-0" 27-6" 110'-0" Bombardier BD-700 Global Express 96,000 Ibs. Gulfstream Aerospace G-V Gulfstream V 89,000 Ibs. HangarS 125'-0" 12T-0" 27'-6" 110'-0" Bombardier BD-700 Global Express 96,000 Ibs. _^______ Gulfstream Aerospace G-V Gulfstream V 89,000 Ibs. Hangar 6 62'-0" 49-0" 18-0" 50'-0" Hangar 7 60'-0" 55'-0" 18'-0" 48'-0" HangarS 60'-0" 55'-0" 18'-0" 48'-0" Hangar 9 60'-0" 55'~0" 18'-0" 48'-0' Raytheon Beechcraft King Air 90 & 100 11,000 Ibs. Dassault Falcon 100 19,300 Ibs. Raytheon Beechcraft King Air 90 & 100 11,000 Ibs. Bombardier Learjet 31,35,36 17.000 Ibs. Raytheon Beechcraft King Air 90 & 100 11,000 ibs. Bombardier Learjet 31,35,36 17,000 Ibs. Raytheon Beechcraft King Air 90 & 100 11,000 Ibs. Bombardier Learjet 31,35,36 17,000 Ibs. Hangar 10 60'-0" 62'-4" 18'-0" 48'-0" Hangar 11 72-0" 62'-4" 18'-0" 60'-0" Hangar 12 72'-0" 62'-4" 18'-0" 60'-0' Hangar 13 72'-0" 62'-4" 18-0" 60'-0" Bombardier Learjet 55 & 60 Dassault Falcon 100 Raytheon Hawker 1000 Dassault Falcon 200 Raytheon Hawker 1000 Dassault Falcon 200 Raytheon Hawker 1000 Dassault Falcon 200 23,500 Ibs. 19,300 Ibs. 31,000 Ibs. 29.000 Ibs. 31.000 Ibs. 29,000 Ibs. 31,000 Ibs. 29,000 Ibs. Hangar 14 Hangar 15 Hangar 16 Hangar 17 Hangar 18 (J^i Hangar 1 9 72'-0" 72'-0" 72'-0" 72'-0" 72'-0" 96'-0" 56'-4" 53'-2" 53'-2" 53'~2" 43'-2" 68'-2" 1 8'-0" 60'-0" 18'-0" 60'-0" 1 8'-0" 60'-0" 18-0" 60'-0" 1 8'-0" 60'-0" 1 8'-0" 60'-0" Raytheon Hawker 1000 Dassault Falcon 200 Raytheon Beechcraft King Air 90 & 100 Dassault Falcon 100 Raytheon Beechcraft King Air 90 & 100 Dassault Falcon 100 Raytheon Beechcraft King Air 90 & 100 Dassault Falcon 100 Raytheon Beechcraft King Air 90 & 100 Dassault Falcon 100 Raytheon Hawker 1000 Dassault Falcon 200 31, 000 Ibs. 29,000 Ibs. 11, 000 Ibs. 19,300 Ibs. 11, 000 Ibs. 19,300 Ibs. 11, 000 Ibs. 19, 300 Ibs. 11, 000 Ibs. 19,300 Ibs. 31, 000 Ibs. 29,000 Ibs. o ^^ B » «ojo is r> i*i •* ? tniw « *«;» c- 01)» R flino alcriei oT6 %RU?S:S |O:*~j«Bo eW 70 3D* G0£ NOWAK + WISEMAN STRUCTURAL ENGINEERS BY vlltJ DATE &/0H PROJECT AlffOE- ^ SHEET NO. \V) OF<5 JOB NO. 03-0?6 •6- |St/" <>-- 11" IP $ I \** (<> .-n = ^0. H = 1C .^H\ C T. T°f OF PTi APPENDIX A.3 - PORTLAND CEMENT ASSOC, WIRE REINFORCEMENT INSTITUTE, AND CORPS OF ENGINEERS CHARTS 161 4A*H fc*A 0.50 Figure A.9 Reduction factor used with PCA charrs when designing for dual-wheel loads. APPENDIX A3 - PORTLAND CEMENT ASSOC., WIRE REINFORCEMENT INSTITUTE, AND CORPS OF ENGINEERS CHARTS 159 A. 3 — Portland Cement Association, Wire Reinforcement Institute, and Corps of Engineers Charts 3- Figure A.7 Use of a PCA design chart to select slab thickness for single axle loading. Airliners.net: Raytheon Beechcraft King Air 90 & 100 Page 1 of3 •y Please support our sponsor that helps make this site possible: Ad info Change your cursor! Click here - get over 1,000 free cursors I The Raytheon Beechcraft King Air 90 & 100 Country of origin United States of America Photos Click for targe version Photo © Terry Shepherd More photos of Raytheon Beechcraft King Air 90 & 100 Click for large version. Photo © David Carrizo More cockpit photos... Powerplants 90 - Two 373kW (SOOshp) PT6A6 turboprops driving three blade constant speed Hartzell propellers. B100 - Two Type Twin turboprop corporate and utility transport History The Model 90 King Air family is the basis for the largest and most successful family of corporate turboprop twins yet built. The King Air began life as a turboprop development of the Queen Air designed to meet a US Army requirement for a staff/utility transport. A prototype PT6 powered Queen Air Model 65-80 (later 65-90T) began test flying in 1963 and the type was subsequently ordered by the US Army as the U-21A. The civil equivalent, the model 90 King Air, introduced pressurisation and first flew on January 20 1964. Deliveries of production civil aircraft began in late 1964. Development resulted in several civil variants, including the A90 and B90 with PT6A20 engines; the C90 with PT6A21s; the E90 with more powerful PT6A34Bs; and the F90 which introduced the Ttail of the 200 (described separately), four blade props and other mods. The less expensive 90SE Special Edition was http://www.air liners, net/info/stats.main?id=3 2 7 4/9/2004 Airliners.net: Raytheon Beechcraft King Air 90 & 100 Page 2 of3 533kW (715shp) Garrett TPE3316252Bs driving three blade props. C90B - Two 410kW(550shp) PT6A21s driving four blade props. Performance 90 - Max speed 450km/h (243kt), max cruising speed 435km/h (235kt). Initial rate of climb 1900ft/min. Range with reserves 2520km (1360nm). B100 - Max speed 491km/h (265kt). Initial rate of climb 2140ft/min. Range at max cruising speed 2343km (1264nm), at economical cruising speed 2455km (1325nm). C90B - Max cruising speed 457km/h (247kt). Range at economical cruising speed at 24.000ft 2375km (1282nm). Weights 90 - Empty equipped 2412kg (5318lb). max takeoff 4218kg (9300lb). B100 - Empty equipped 3212kg (7092lb), max takeoff 5352kg (11,800lb). C90B - Empty 3040kg (6702lb), max takeoff 4580kg (10,100lb). Dimensions 90 - Wing span 13.98m (45ft 11 in), length 10.82m (35ft 6in), height 4.47m (14ft Sin). Wing area 25.9m2 (279.7sq ft). B100-Wing span 14.00m (45ft 11in), length 12.17m (39ft 11 in), height 4.70m (15ft Sin). Wing area 26.0m2 (279.7sq ft). C90B - Wing span 15.32m (50ft Sin), length 10.82m (35ft 6in), height 4.34m (14ft Sin). Wing area 27.3m2 (293.9sq ft). Capacity 90 - Typical seating for six. max seating for eight. 100 - Six to eight in corporate configuration, or max seating for 13. Production Approx 1750 of all variants of the King Air 90 family built (including 226 military orders). Approx 350 King Air 100s built. Back to Aircraft Data & History section. released during 1994, and remains in production alongside the C90B, which was introduced in 1991. The latest variant is the C90B Jaguar Special Edition. Announced in January 1998 it features the Jaguar car company's green and gold corporate colours including the famous leaping cat on the tail and a Connolly leather interior with walnut and boxwood cabinets. The King Air 100 series was announced in May 1969. Compared with the 90 series it was 1.27m (4ft 2in) longer, allowing greater seating capacity, and featured a reduced wing span and larger rudder. The A100 is a military version, while the B100 is powered by 535kW (715shp) Garrett TFE331s. Production of the 100 ceased in 1984. Copyright© Aerospace Publications Related links Back to Aircraft Data & History section. Back to frontpage ofAirliners.net AIRLINE ARTK Read articlt submi your YOU car a differer 2002 Flying th Mighty Lockhee Constelli The Lucl Fleet In" World Connie's Comeba In Pursu Happine: Against Capitulat bin Lade "Little Ar Marshall Islands' I Landing Tak The Nati Oldest P Aviation Mechani School - http://www.airliners.net/info/stats.main?id=327 4/9/2004 Airliners.net: Raytheon Beechcraft King Air 90 & 100 Page 3 of 3 . (\iO 70 The backbone of this section is from the The International Directory of Civil Aircraft jwo ynL by Gerard Frawley and used with permission. To get your own copy of the book Concord click here.Alaska: I the Big F [Home] [New Search] [Add Your Photos!] [Aircraft Data & History] [Photo Index] [Aviation News!] [Aviation Forums] [Register!] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us!] [About Airliners.net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcards] [First Class Login] The information on this page is copyright protected and may not be copied or used in any way without proper permission. http://www.airliners.net/info/stats.main?id=327 4/9/2004 Airliners.net: Learjet 35, 36 & 31 Page 1 of3 Please support our sponsor that helps make this site possible: Ad info •*• CANON9 PEMTAK lOLYHPUSl SONY ^ Spc Messs Country of origin United States of Am Photos The Learjet 35, 36 & 31 Type rica Light corporate jets History Click for large ^si:"1. Photo© Mario Fis;e More photos of Learjet 35, 36 & 31 Click foi large version Photo© Marie Plate More passenger cabin photos... The Learjet 35 and 36 are larger, turbofan powered developments of the initial Learjet models, the 23, 24 and 25. The availability of the Garrett AiResearch TFE731 turbofan in the late 1960s led to a development of the Learjet 25 that was initially known as the 25BGF (Garrett Fan). A testbed Lear 25 with a TFE731 on its left side flew in May 1971, while the definitive Learjet 35 prototype first flew on August 22 1973. Aside from turbofans, the 35 and longer range 36 differ from the earlier Learjet 25 in having a 0.33m (1ft 1in) fuselage stretch and five windows (instead of four) on the right side of the fuselage. The Learjet 35 has seating for up to eight, but has less fuel than the longer range 36, which can only seat up to six, as both types share the same maximum takeoff weight. The 35 and 36 were certificated in July 1974. Improvements to the two models led to the 35A and 36A from 1976, with higher standard max takeoff weights. Both van AREYI GETT1NI THEMC FOR YOUR DDL ven http: //www. airliners. net/info/stats .main?id=2 65 4/9/2004 Airliners.net: Learjet 35, 36 & 31 Page 2 of3 Click for large version. Photo ©Mario Plate More cockpit photos... Powerplants Two 15.6kN (3500I6) Garrett (now AlliedSignal) TFE73122B turbofans. Performance 35A & 36A - Max speed 872km/h (470kt), max cruising speed 852km/h (460kt). economical cruising speed 774km/h (418kt). Service ceiling 45.000ft. Range with four passengers, max fuel and reserves 4070km (2195nm) for 35A. 4673km (2522nm) for 36A. 31A - Max cruising speed 891km/h (481 kt), typical cruising speed at 45,000ft 832km/h (450kt). Max certificated altitude 51,000ft. Range with two crew, four passengers and IFR reserves 2344km (1266nm). or 2752km (1486nm) forSWER. Weights 35A and 36A - Empty equipped 4590kg (10.120lb). max takeoff 8300kg 31 A- Empty 4651 kg operating empty 5035kg max takeoff 7030kg or optionally 7711kg 31A/ER - Max takeoff 7711kg (18.300lb) (10.253lb) (15.500lb) (17.000lb) (17.000lb) Dimensions Wing span {over tip tanks) 12.04m (39ft 6in). length 14.83m (48ft Sin), height 3.73m (12ft Sin). Wing area 23.5m2 (253.3sq ft). 31A - Same except for wing span 13.35m (43ft 10in). Wing area models remained in production until 1994. Development of the 35 and 36 range was taken one step further with the Learjet 31, which combines the 35/36's fuselage and powerplants with the more modern wing of the 55 (now also on the 60) and delta fins under the tail. A 31 development aircraft first flew in May 1987 and certification was awarded in August 1988. The improved 31A and 31A/ER are the current production models, the 31A/ER being an extended range variant with a higher maximum takeoff weight and more fuel. A new interior with increased headroom was introduced in 1995. Copyright ©Aerospace Publications Related links Back to Aircraft Data & History section. Back to frontpage ofAirliners.net j; Airliner*, r Click http: //www. airliners. net/info/stats. main?id=265 4/9/2004 Airliners.net: Learjet 35, 36 & 31 Page 3 of 3 24.6m2 (264.4sq ft). Capacity Ffightcrew of two. Seating for up to eight in main cabin in 35 and 31, or up to six in 36A. Some aircraft configured as package freighters. Production 676 Learjet 35s and 36s delivered. US Air Force and Air National Guard ordered 84 35AsasC21s. More than 16031s built. At late 1998 637 Learjet 35s, 55 36s and 159 31s were in service. Back to Aircraft Data & History section. The backbone of this section is from the The International Directory of Civil Aircraft by Gerard Frawley and used with permission. To get your own copy of the book click here. [Home] [New Search] [Add Your Photos!] [Aircraft Data & History] [Photo Index] [Aviation News!] [Aviation Forums] [Register'] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us!] [AboutAiriiners.net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcards] [First Class Login] The information on this page is copyright protected and may not be copied or used in any way without proper permission. http://www.airliners.net/info/stats.main?id=265 4/9/2004 Airliners.net: Dassault Mystere/Falcon 10 & 100 Page 1 of2 -w Please support our sponsor that helps make this site possible: Ad info y Messs The Dassault Mystere/Falcon 10 & 100 Country of origin Type Light corporate jetFrance Photos More photos of Dassault Mystere/Faicon 10 & 100 Powerplants 10 & 100 -Two 14.4KN TFE7312turbofans. S230lb) Garrett Performance 10 - Max cruising speed 912km/h (492kt). Range with four passengers and reserves 3550km (1920nm). 100 - Max cruising speed same. Range with four passengers and reserves 3480km t1880nnv Weights History The baby of Dassault's corporate jet lineup, the Falcon 10 and Falcon 100 series (Mystere 10 and Mystere 100 in France) sold in good numbers during a production run that lasted almost two decades. In concept a scaled down Falcon/Mystere 20. the Falcon 10/100 was an all new design except for similar wing high lift devices. Conceived in the late 1960s, the Falcon 10 was the second member of the Dassault Falcon family to be developed. Dassault originally intended the Falcon 10 be powered by two General Electric CJ610 turbojets. and a CJ610 powered prototype first flew on December 1 1970. Flight testing was delayed until May 1971 while changes were made to the wing design, including increasing the wing sweepback angle. The second prototype was the first to be powered by Garrett TFE731 turbofans, and it completed its first flight on October 15 http://www.airliners.net/info/stats.main?id=172 4/9/2004 APPENDIX A.3 - PORTLAND CEMENT ASSOC., WIRE REINFORCEMENT INSTITUTE, AND CORPS OF ENGINEERS CHARTS 159 A.3—Portland Cement Association, Wire Reinforcement Institute, and Corps of Engineers Charts 40-_ / Effective Contact Area, sq. in. Figure A.7 Use of a PCA design chart to select slab thickness for single axle loading. o- APPENDIX A.3 - PORTLAND CEMENT ASSOC., WIRE REINFORCEMENT INSTITUTE, AND CORPS OF ENGINEERS CHARTS 161 0.90 Figure A.9 Reduction factor used with PCA charts when designing for dual-wheel loads. 10- Airliners.net: Bombardier Learjet 55 & 60 Page 1 of3 ^i^^ -"•—' •v Please support our sponsor-that helps make this site possible: Ad info^^MBM^H..^^^^^^^^^^^^_^^^^_B..I_M._IHI.BI_^^^^^^^^^^^^^^HMHHHHH^^^^^^^^^^^^^^^^^^^^^^^^^H daan'mg house Click here i ', .,')'.' *>r ''•- i. 52.93 a week Messa The Bombardier Learjet 55 & 60 Country of origin Type United States of America Mid size corporate jets Photos Click foi large v'ersior. Photo <& Pauic Carvaihc More photos of Bombardier Learjet 55 £60 Click for large version Photo € Marie Plate More passenger cabin photos. History The Learjet 55 and its followon successor, the Learjet 60, are the largest members of the Learjet family, and date back to development work undertaken in the late 1970s. In designing the 55. Learjet (or Gates Learjet as the company was then known as) took the wing of the earlier Longhorn 28/29 series and married it to an all new larger 10 seat fuselage. The original Model 55 Longhorn prototype first flew on November 15 1979. The first production aircraft meanwhile flew on August 11 1980, with the first delivered in late April 1981 (after FAA certification was granted in March that year). Development of the 55 led to a number of sub variants, including the 55B which introduced a digital flightdeck, modified wings, improved interior, and most importantly, the previous optional higher takeoff weights becoming standard. The 55C introduced 'Delta Fins' which gave a number of performance and handling advantages, the 55C/ER is an extended range version with additional fuel in the http://www.airliners.net/info/stats,main?id-128 4/9/2004 Airliners.net: Bombardier Learjet 55 & 60 Page 2 of3 Click for large version. Photo ©Mario Plate More cockpit photos... Powerplants 55 - Two 16.5kN (3700lb) Garrett TFE7313A2B turbofans. 60 - Two 20.5kN (4600Ib) Pratt & Whitney Canada PW305A turbofans. Performance 55C - Max speed 884km/h (477kt). max cruising speed 843km/h (455kt), economical cruising speed 778km/h (420kt). Service ceiling 51000ft- Range with two crew, four passengers and reserves 4442km (2397nm) for 55C/LR. 50 - High cruising speed 839km/h (453kt), normal cruising speed 828km/h (447kt), long range cruising speed 778km/h (420kt). Max certificated altitude 51,000ft. Range with two crew, four passengers and IFR reserves 4461km (2409nm). Weights 55C - Empty 5832kg (12,858lb), operating empty 6013kg (13.258lb). max takeoff 9525-9752kg (21.000-21,500lb). 60 - Empty 6282kg (13.850lb), basic operating empty 6641kg (14.640lb). max takeoff 10.659kg (23.500lb). Dimensions 55 & 60-Wing span 13.34m (43ft 9in), length 16.79m (55ft 1in), height 4.47m (14ft Sin). Wing area 24.6m2 (264.5sq ft). Capacity 55 - Flightcrew of two. Six different main tail cone (the additional tank can be retrofitted to earlier aircraft), while the 55C/LR introduced more fuel capacity. The improved Learjet 60 first flew in its basic definitive form in June 1991 (the modified Learjet 55 prototype earlier served as a proof of concept aircraft for the 60 with Garrett engines). It differs from the 55 in having a 1.09m (43in) fuselage stretch and new Pratt & Whitney Canada PW305 turbofans. Certification of the 60 was awarded in January 1993, with first deliveries following shortly afterwards. international Directory of Civil Aircraft Copyright © Aerospace Publications Related links Back to Aircraft Data & History section. Back to frontpage ofAirliners.net Send a our pho an eleci postc Surpris frien " fnvorite A free *e Airline Click http://www.airliners.net/info/stats.main7id-128 4/9/2004 Airliners.net: Bombardier Learjet 55 & 60 Page 3 of 3 cabin arrangements offered with seating ranging from four to eight. 60 - Fiightcrew of two. Optional seating arrangements for six to nine passengers. Production Production of the Model 55 ceased in 1990 after 147 had been built. 141 55s in service at late 1998. Deliveries of Model 60 began in January 1993, with more than 130 delivered by late 1998. Back to Aircraft Data & History section. The backbone of this section is from the The International Directory of Civil Aircraft by Gerard Frawiey and used with permission. To get your own copy of the book click here. [Home] [New Search] [Add Your Photos'] [Aircraft Data & History] [Photo Index] [Aviation News!] [Aviation Forums] [Register!] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us!] [About Airiiners.net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcards] [First Class Login] The information on this page is copyright protected and may not be copied or used in any way without proper permission. http;//www.airliners.net/info/stats.main?id=128 4/9/2004 Airliners.net: Dassault Mystere/Falcon 20 & 200 Page 1 of2 rte •y Please support our sponsor that helps make this site possible: Ad Message Alert HEIE3 You have 1 message waiting for you. Messa The Dassault Mystere/Falcon 20 & 200 Country of origin France Photos Click for large version. Photo & Rob Simmons More photos of Dassault Mystere/Falcon 20 & 200 Powerpfants 20 - Two 20.0RN (4500lb) General Electric CF7002D2 turbofans. 200 - Two 23.1kN (5200lb) Garrett ATF 36A4Cs. In Falcon 20F-5 Retrofit Two Garret TFE731-5BR-2AC 21.1RN (4750lb) Performance 20 - Max cruising speed 863km/h (466kt). economical cruising speed 750km/h (405kt). Service ceiling 42,000ft. Range with max fuel and reserves 3300km (1780nm). 200 - Max cruising speed 870km/h (470kt), economical cruising speed 780km/h (420kt). Service ceiling 45.000ft. Range http://www.airliners.net/info/stats.main?id=173 Type Mid size corporate jet and multirole utility transport History The Mystere or Falcon 20 and 200 family remains Dassault's most successful business jet program thus far, with more than 500 built. Development of the original Mystere 20 traces back to a joint collaboration between Sud Aviation (which later merged into Aerospatiale) and Dassault in the late 1950s. Prototype construction began in January 1962, leading to a first flight on May 4 1963. This first prototype shared the production aircraft's overall configuration, but differed in the powerplant. The prototype was initially powered by 14.7kN (3300lb) Pratt & Whitney JT12A8 turbojets, whereas production Mystere 20s (or Falcon 20s outside France) were powered with General Electric CF700s. The first GE powered 20 flew on New Year's Day 1965. Throughout the type's production life Aerospatiale remained responsible for building the tail and rear fuselage. The Falcon 200 is a re-engined development of the 20 which Dassault W!R STAF 4/9/2004 Hrj AC 150/5300-13 ^-Appendix 12 9/29/S9 no no n f •» ft O » O O» Q * 0> 91 — * •»- • » ^ *r« . n - »-• n — o •• » M « W *) O n . n - « • M c« n O <H -i *» S « a n -av » : w -• -« -r* • r* *^w. r»- <s- w_! P»- n. r-. no et a no » S o • ow 3 *• 8 Q Q *f* P w«• a — • o • a i_3 n" •• •» a « o -i o33 - So «'<a rfc n n n < A12-52. Gates Leaijet fllft9/29/89 AC 150/5300-13Appendix 12ll .«**• — rt 3 •g a- -a »- *5 ?i* l?^ r* £? r« 3*•"* -« 35- -» s* ^ * ^ •«• <• )•* • ^ -^^ *^g . « . g - «| . j . M ** * m *« « « • • * 9••9 t« i — r- 44 ag 9•« -O - n -• -Jn • H g 52 S 3- -S S j 5 -53 23 S3 33 S3 | Gt +* ** "3 ^*? O**is ?i 3i 8s I S*2 8*21 S3 SkS St- 53 S3 33 33 33 3 ^ il II §i 33 ! I— 3- 0 gi5S <« a s i i Figure A12-13. AT^ODS Marcd Dassault M>3t4re 20 (Fan Jet Facon) 179 NOWAK + WISEMAN STRUCTURAL ENGINEERS BY DATE b/64- PROJECT &A LQ MA^ A I ]& f o g-f /.,£ fsJl"£-£•SHEET NO. ' It! OF JOB NO. -14 11 i |i n ii 6= lio1 J 0 0 0 * u 2- ( . ( \ oo\ i 4-O1! \ Airliners.net: Dassault Mystere/Falcon 10 & 100 Page 2 of2 1971. Flight testing was completed with the aid of a third prototype, and French and US certification was awarded in September 1973. Deliveries of production aircraft began that November. While almost all Falcon 10 production was for civil customers, the French navy ordered seven, designated the Mystere 10 MER, as multi purpose pilot trainers. Missions include simulation of targets for Super Etendard pilots and instrument training. The improved Falcon 100 replaced the Falcon 10 in production in the mid 1980s. Certificated in December 1986, changes include an optional early EFIS glass cockpit, a higher maximum takeoff weight, a fourth cabin window on the right side and a larger unpressurised rear baggage compartment. Production of the Falcon 100 ceased in 1990 with the last delivered that September. Copyright © Aerospace Publications Related links Back to Aircraft Data & History section, Back to frontpage ofAirliners.net Back to Aircraft Data & History section. The backbone of this section is from the The International Directory of Civil Aircraft by Gerard Frawley and used with permission. To get your own copy of the book click here. 10 - Empty equipped 4880kg (10,76015), max takeoff 8500kg (18,740lb). 100- Empty equipped 5055kg (11,14515), max takeoff 8755kg (19,300lb). Dimensions Wing span 13.08m (42ft 11 in), length 13.86m (45ft 6in). height 4.61m (15ft 2in). Wing area 24.1m2 (259sq ft). Capacity Ffightcrew of two on flightdeck. Main cabin is typically configured to seat four in an executive club seating arrangement. Main cabin can seat up to seven in Falcon 10 or eight in Falcon 100 in a high density layout. Can be configured for air ambulance, aerial photography and navaid calibration missions. Production In addition to three prototypes, 226 Falcon 10s and Falcon 100s (including seven military MERs & 31 Falcon 100s), were built between 1973 and 1990, of which 208 were in civil service in late 1998. AIRLINI PHOTO Seled photos by oui Airport Terminal This is rr favorites for Term Overviev MyFlight Planes I1 on. Special \ GRZ Special \ airlines v not servi anymore Classic V Coast None My Favo AF&IR The Bes* Airliners. My selec the 5est this site [Home] [New Search] [Add Your Photos'] [Aircraft Data & History] [Photo Index] [Aviation News'] [Aviation Forums] [Register!] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us!] [About Airliners.net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcards] [First Class Login] The information on this page is copyright protected and may not be copied or used in any way without proper permission. http://www.airliners.net/info/stats.main?id=172 4/9/2004 AC 15(V5300-13 Appendix 12 9/29/S9 BAUMTAKEOFF VC10KT MUGBT SCATS KAOIUS *-*>9ttSa U 4.900 L* 90'3* 4 3#J KO 4 323 «•»*«• 4.471 A-100 lO.tQOLt 10 MO U 4S'U- »'U* 4 «33 KC 4 77* KB 14.00* U.UB 4. AM 13- o» • 10 figure A12-2a Begchqjft King Air 1S6 Airliners.net: Dassault Mystere/Falcon 20 & 200 Page 2 of2 with max fuel, eight passengers and reserves 4650km (251 Onm). Falcon 20F-5 High Speed Cruise M.80 Max M.82 Range 2300nm Weights 20 - Empty equipped 7530kg (16,600!b), max takeoff 13,000kg (28,660lb). 200 - Empty equipped 8250kg (18.290lb), max takeoff 14,515kg (32,000lb). Falcon 20F- 5 MTOW 13.800kg (30350lb) Dimensions Wing span 16.32m (53ft 7in), length 17.15m (56ft 3in), height 5.32m (17ft 6in). Wing area 41 .Om2 (441.33sq ft). Capacity Flightcrew of two. Typical main cabin seating for between eight and 10 passengers, optionally for as many as 14 in a high density configuration. Production Production ended in 1988 when the last Falcon 200 was delivered, by which time 38 200s and 476 20s (including HU-2Js) had been delivered. The last 20 was completed in late 1983. first publicly announced at the 1979 Paris Airshow. A converted Falcon 20 served as the prototype, and first flew with the new Garrett ATF 3-6A-4C engines on April 30 1980. French DGAC certification was awarded in June 1981. Apart from the Garrett engines, the Falcon 200 (initially the 20H) introduced greater fuel tankage and much longer range, redesigned wing root fairings and some systems and equipment changes. The 200 remained in production until 1988. The Guardian is a maritime surveillance variant of the Falcon 200 sold the French navy (as the Gardian) and the US Coast Guard (HU-2J). AlliedSignal offers a Falcon 20 re-engine program with its TFE731 turbofan. More than 100 Falcon 20s have now been re- engined with 21.1RN (4750lb) TFE731- 5ARs or-5BRs. Copyright © Aerospace Publications Related links Back to Aircraft Data & History section. Back to frontpage ofAirliners.net Back to Aircraft Data & History section. The backbone of this section is from the The International Directory of Civil Aircraft by Gerard Frawley and used with permission. To get your own copy of the book click here. Checl these POLLS over the on 1 Airline frontp View My favor three en; j'et airline My favor of aircrat Type of | I like the Weirdesi looking £ Importar aircraft s factor: My nr. 1 for fly ing Best Ove Major Nc Airline: I'd Rathe Piloting > When fly long hau Favorite Europea [Home] [New Search] [Add Your Photos!] [Aircraft Data & History] [Photo Index] [Aviation News!] [Aviation Forums] [Register!] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us!] [About Airiiners.net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcards] [First Class Login] The information on this page is copyright protected and may not be copied or used in any way without proper permission. http://www.airUners.net/info/stats.main?id=173 4/9/2004 Airliners.net: Raytheon Hawker 1000 Page 1 of3 T- Please support our sponsor that helps make this site possible: Ad info y •vSpc Messa Country of origin United Kingdom and USA Photos The Raytheon Hawker 1000 Type Mid size corporate jet History Click for large version. Photo© Lindsay Hockey More photos of Raytheon Hawker 1000 Powerplants Two 23.1KN (5200lb) Pratt & Whitney Canada PW-305 turbofans. Performance Max cruising speed 867km/h (468kt), economical cruising speed 745km/h (402kt). Service ceiling 43.000ft. Range with max payload 5750km (3105nm). range with max fuel and NBAA VFR reserves 6205km (3350nm). Weights The Hawker 1000 was the largest member of the DH/HS/BAe-125/Hawker 800 series of corporate jets. The Hawker 1000 was based on the smaller Hawker 800, and until 1997 the two types were in production side by side in the famous de Havilland plant in Hatfield. The 1000 differs from the 800 in a number of respects however and features a stretched fuselage. The 1000 is identifiable via its seven main cabin windows per side, whereas the 800 has six, and the 0.84m (2ft 9in) stretch (achieved by small fuselage plugs in front of and behind the wing) allowing an increase in max seating to 15. However as it is optimised for long range intercontinental work, the typical Hawker 1000 configuration seats one less than the smaller Hawker 800. Other important changes include Pratt & Whitney Canada PW-305 turbofans (in place of the AlliedSignal TFE-731 on the Hawker 800). extra fuel in the extended http://www.airliners.net/info/stats.main?id=332 4/9/2004 Airliners.net: Raytheon Hawker 1000 Page 3 of 3 [Home] [New Search] [Add Your Photos!] [Aircraft Data & History] [Photo Index] [Aviation News!] [Aviation Forums] [Register!] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us!] [About Airliners.net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcards] [First Class Login] The information on this page is copyright protected and may not be copied or used in any way without proper permission. http://www.airliners.net/info/stats.main?id=±332 4/9/2004 Airliners.net: Raytheon Hawker 1000 Empty 7810kg (17,22015), max takeoff 14,060kg (31,000lb). Dimensions Wing span 15.66m (51ft 4in), length 16.42m (53ft 10in), height 5.21m (17ft 1in). Wing area 34.8m2 (374.0sq ft). Capacity Flightcrew of two. Standard main cabin seating for eight comprising cfub seating for four at the front of the cabin, a three seat couch and a single seat. Max seating for 15. Production Production ceased after 52 built. Page 2 of3 forward wing fairing, new lightweight systems, revised and more efficient cabin interior with increased headroom, EFIS cockpit and certification to the latest US FAR and European JAR requirements. British Aerospace launched the BAe- 125-1000 program in October 1989. The first BAe-125-1000 development aircraft first flew on June 16 1990, with a second following on November 26 that year. These two were followed by the first production aircraft which participated in an 800 hour flight test development program, culminating in UK certification being granted on October 21 1991 (FAA certification followed on October 31 1991). The first production aircraft was delivered in December 1991. As is the case with the BAe-125-800, the BAe-125-1000 became the Hawker 1000 from mid 1993 when Raytheon purchased British Aerospace's Corporate Jets division. However, the 1000 never enjoyed the popularity of the 800 and production ceased in 1997 with the delivery of the 52nd aircraft. The 1000's largest customer is Executive Jet Aviation (including the NetJets fractional ownership program), which early 2002 has 27 in service (including 13 of the last 14 built). Copyright ©Aerospace Publications Related links Back to Aircraft Data & History section. Back to frontpage ofAirIiners.net Back to Aircraft Data & History section. The i Airliners Heavy tu in flight: Fun. fui Doesn't Makes Really < Vote V Sugge: aviatior poll More The backbone of this section is from the The International Directory of Civil Aircraft by Gerard Frawley and used with permission. To get your own copy of the book click here. http://www.airUners.net/info/stats.main?id=332 4/9/2004 AC 150/5300-13"""Appendix 12 9/29/893 «•- -* no n«snd ?i is v; - * - P4n . » .— c> _> « « « « « n . n . n n or* -1 V5 i * n -. • E • Z • » • X •• • X * Kn* ** 9 f* 9 *» Q • " <• « •• *-— <ii - fl . Jl •« *• - t* no no no -*n • O. • 3 * 9KO ^ J«-_iai ^ * K— a g » Q n a * — a — *« Sn 5 —MX w «n no f» M §3 li 15 3 3S 23 2 * 4-* 9^ O3 I? 33 1 J. S •i. 2 Gates Leazjet 9/29/89 AC 15Q/53OM3Appendix 12S3 :.= 13 15 a« * 5 a 3 I ?.! 3 J 3353 5 ' J* -* * -> 3 33— 3- a -• a «* n a gt* o — ~=33 2s as sS 13 §8 * 5«J tT« r^ft «<« —rt ft* 3^ rv^ ** ^ Pi ^ ^^ •* 33 33 33 33 33 | S O OO O^ 49 94 '5 49 99 no art _i» A 33 93 «# 3 <• e s a s | | Figur; A13-13. Arioos Marcd Dassault Mj3t4r« 20 (Fan Jet Jacon) 179 9/29/89 AC 1505300-13Appendix 12 I! S.* Si* «X 13 nS-v -ft i.^ •*r» . Q. Q • •• •ww **» AM MM ™ 3 -3 2 35 3 33 23 33 » OQ o ^ on<f 5 * 9"* 5 «rt 3n S » *» a ^ •*1 s Ia p. 9 rs HS-125 227 NOWAK + WISEMAN STRUCTURAL ENGINEERS BY DATE PROJECT SHEET NO. ' P9 OF JOB NO. - ON - - S s 1C/, f * Of ^ ISO pi X e fr *^B--I ££.^TIc>N - . fe ^ 00 3" ffoM APPENDIX A.3 - PORTLAND CEMENT ASSOC., WIRE REINFORCEMENT INSTITUTE, AND CORPS OF ENGINEERS CHARTS 161 JO Figure A.9 Reduction factor used with PCA charts when designing for dual-wheel loads. APPENDIX A3 - PORTLAND CEMENT ASSOC., WIRE REINFORCEMENT INSTITUTE, AND CORPS OF ENGINEERS CHARTS 159 A. 3 — Portland Cement Association, Wire Reinforcement Institute, and Corps of Engineers Charts 40~ Figure A.7 Use of a PCA design chart to select slab thickness for single axle loading. Airliners.net: Gulfstream Aerospace G-V Gulfstream V Page 1 of3 ** Please support our sponsor that helps make this site possible: Ad info T-Spc Messa he Gulfstream Aerospace G-V Gulfstream V Country of origin United States o- A me; Photos Click for iarce ,;e"s :-H Photo ©Clisries Fs •>- More photos of Gulfstream Aerospace G-V Gulfstream V Click for large vers'Ci Photo ^ Mir^ss: k'~''-- ' More passenger cabin photos... Type Ultra long range large corporate transport History The Gulfstream V is the largest and latest development of the Gulfstream line of corporate transports, designed to fly intercontinental distances. It competes with Bombardier's Global Express, the Boeing Business Jet and Airbus A319CJ. Gulfstream Aerospace first announced it was studying a stretched ultra long range corporate transport based on the Gulfstream IV at the annual NBAA convention in October 1989, while the program was officially launched at the 1992 Farnborough Airshow. First flight was on November 28 1995, with certification and first deliveries planned for late 1996. Provisional FAA certification was awarded in December 1996, full certification was granted in April 1997. The first customer delivery was on July 1 1997. Underscoring its high speed, long range abilities, by September 1997 the G-V had set no less than 36 world city pair Add expi tn youri for F http://www.airliners.net/info/stats.main?id=239 4/9/2004 Airliners.net: Gulfstream Aerospace G-V Gulfstream V Page 2 of3 Click for large version. Photo ©Steve Hall More cockpit photos... Powerplants Two 65.3kN (14,680lb) BMW Rolls- Royce BR-710turbofans. Performance Max cruising speed 930km/h (501 kt), design long range cruising speed 851km/h (459kt) or Mach 0.80 at 41.000ft. Initial rate of climb 4188ft/min. Initial cruise altitude 41,000ft. max certificated altitude 51,000ft. Max range with four crew and eight passengers and reserves at design cruising speed 12.045km (6500nm): flight time for which would be approximately 14hr 28min. Weights Basic operating with four crew 21,228kg (46.800lb), max takeoff 40.370kg (89.000lb). Dimensions Wing span 28.50m (93ft 4in). length 29.39m (96ft Sin), height 7.87m (25ft 10in). Wing area 105.6m2 (1137.Osq ft). Capacity Flightcrew of two. Typical passenger load of eight but seats 15 to 19. Typically equipped with a crew rest room, a business work station with Satcom. computer and fax, a dining/conference area with seating for four, a three seat couch that converts into a bed, five other reclining seats, two galleys and a restroom fitted with a toilet and shower. http://www.airliners.net/info/stats.main?id=239 class time to climb and altitude records. The Gulfstream V is based on the Gulfstream IV, but features a number of substantial changes to suit its different design objectives. The most obvious change is the stretched fuselage, the G- V is 2.49m (8ft 2in) longer overall than the G-IV. Perhaps the most important changes though are the advanced new wing design and new BMW Rolls-Royce BR- 710 turbofans (the G-V is the first application for the new BR-710 engine). The all new wing is being built by Northrop Grumman, and is optimised for high speed flight. It was developed using Computer Aided Design and NASA developed computational fluid dynamics. The flightdeck is built around a six screen Honeywell EFIS avionics suite Wing manufacturer Vought Aircraft Industries and Japan's ShinMaywa are also risk sharing partners in the GV program. Copyright © Aerospace Publications Related links Welconr memt Joi Airline you 1 ddbonf United Kin mtkinf United Sta dc1030g United Sta HAVIK7' United Sta Back to Aircraft Data & History section. Denmark Back to frontpage of Airliners.net AUAE United Sta ATLGU\ United Sta N901FR' United Sta jasonma Australia pjricketts Australia BritPilot? United Kin DavidEI United Sta CapitolS: United Sta 4/9/2004 Airliners.net: Gulfstream Aerospace G-V Gulfstream V Page 3 of 3 Production More than 75 G-V orders held, including two ordered by the US Air Force as C- 37s. Over 35 delivered by late 1998. A Gulfstream V delivered in September 1997 was the 1000th Gulfstream built. Back to Aircraft Data & History section. The backbone of this section is from the The International Directory of Civil Aircraft by Gerard Frawley and used with permission. To get your own copy of the book click here. [Home] [New Search] [Add Your Photos!] [Aircraft Data & History] [Photo Index] [Aviation News!] [Aviation Forums] [Register!] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us!] [About Airliners.net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcards] [First Class Login] The information on this page is copyright protected and may not be copied or used in any way without proper permission. http://www.airliners.net/info/stats.main?id=239 4/9/2004 Airliners.net: Bombardier BD-700 Global Express Page 1 of3 •»• Please support our sponsor that helps make this site possible: Ad infogp^^ phone THE FLEXIBLE WIRELESS SERVICE THAT PUTS YOU IN CONTROL. NO ANNUAL CONTRACT An Wire RESTRICTIONS flPPLY. Messa The Bombardier BD-700 Global Express Country of origin Canada Photos Click for large version Photo © Henry Jr Godding More photos of Bombardier BD-700 Global Express Click for large version Photo© Briar Sklarski More passenger cabin photos... Type Ultra long range, high speed, high capacity corporate jet History The Global Express is one of a new class of ultra long range corporate jets, and competes against the Gulfstream V, Boeing 737 BBJ and Airbus A319CJ (all described separately). Designed to fly long distances at high speed, the Global Express' range is such that it can fly between any two points on the globe and need only one refuelling stop, while it can fly nonstop between intercontinental destinations such as Sydney/Los Angeles, New York/Tokyo and Taipei/Chicago. Bombardier's Canadair division announced development of the Global Express in October 1991 at the annual NBAA conference in the USA. Officially launched on December 20 1993, it ffew for the first time on October 13 1996, with Canadian certification awarded on July 31 1998 and US certification following in November that year. First customer deliveries are planned for first Click o favo screen Click Click Click Click http://www.airliners.net/info/stats.main?id=124 4/9/2004 Airliners.net: Bombardier BD-700 Global Express Page 2 of3 Click for large version. Photo ©Steve Muller More cockpit photos... quarter of 1999. The Global Express shares the Canadair Regional Jet's fuselage cross section and is similar in length, but despite the size similarities the two aircraft are very different due to the nature of their roles. The Global Express features an advanced all new supercritical wing with a 35° sweep and winglets, plus a new Ttail. The engines are BMW RoltsRoyce BR-710s with FADEC. The advanced flightdeck features a six screenPowerplants Two 66.1KN (14,750lb) BMW RolIsRoyce Honeywell Primus 2000 XP EFIS suite BR-710A-220 turbofans and ts offered Wlth °Ptlonal displays. Performance High speed cruise 935km/h (505kt) or Mach 0.88. normal cruising speed 904km/h (488kt) or Mach 0.85. long range cruising speed 850km/h (459kt) or Mach 0.80. Range with eight passengers, four crew and reserves at long range cruising speed 12,400km (6700nm), at normal cruising speed 12.040km (6500nm). Range with max payload at normal cruising speed 9860km (5325nm). at long range cruise speed 10,160km (5485km). Weights Operating empty 22,135kg (48.800lb), max takeoff 43,091 kg (95,000lb), optional 43r544kg (96,000lb). Dimensions Span over winglets 28.50m (93ft 6in)r length 30.30m (99ft Sin), height 7.57m (24ft 10in). Wing area 94.9m2 (1022sq ft). Capacity Flightcrew of two plus one or two flight attendants. Typical arrangements seat from eight to 18 passengers. Can be fitted with a galley, crew rest station, work stations, a conference/lounge/dining area, a Three Bombardier divisions are involved with the Global Express - Canadair is the Global Express1 design leader and manufactures the nose; Shorts is responsible for the design and manufacture of the engine nacelles, horizontal stabiliser and forward fuselage: and de Havilland at Downsview is responsible for final assembly and builds the rear fuselage and vertical tail. In addition, Japan's Mitsubishi Heavy Industries builds the wing and centre fuselage sections in Nagoya. Copyright © Aerospace Publications Related links Back to Aircraft Data & History section. Back to frontpage of Airliners.net Checl these POLLS over the on 1 Airline frontp View My favor three en; jet airline My favor of aircral Type of | I like the Weirdesl looking z Importer aircraft s factor; My nr. 1 for flying Best Ovf Major Nc Airline: I'd Rathe Piloting / When fly long hau Favorite Europea http://www.airliners.net/info/stats.main?id=124 4/9/2004 Airliners.net: Bombardier BD-700 Global Express Page 3 of 3 stateroom with a fold out bed, toilet, shower and wardrobe. High density 30 seat corporate shuttle configuration offered. Production Over 80 firm orders held at late '98. By May 2002, 64 had been delivered to customers. Back to Aircraft Data & History section. The backbone of this section is from the The Internationa! Directory of Civil Aircraft by Gerard Frawley and used with permission. To get your own copy of the book click here. [Home] [New Search] [Add Your Photos!] [Aircraft Data & History] [Photo Index] [Aviation News!] [Aviation Forums] [Register!] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us!] [About Airliners.net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcards] [First Class Login] The information on this page is copyright protected and may not be copied or used in any way without proper permission. http://www.airliners.net/info/stats.main7id-124 4/9/2004 9/29yS9 AC 15CV5300-13Appends 12*3 r! o5 15 &S %i•« -•* -» —r* -«i *-•" 3 3 3333 3 O ft a *t a M•* S r* Q g 3 oM « «i n o A *i n £^ VI rv n t^ th£ 33 33 33 33 II |§ £3 82 3^ A12-55- Gnuazaan Golfsrream I ^en —.C CMCD *~Q.X LUt:o ?^- iSsp jn o m to coQ. O o o IIII LU-JOQ £2I *.E O??LU UJ 5 S P |§i»s =III^ ft. o5 IS & m T- O T-i-; CM COO O O O CO Oto r- oo *- T-. oo00 O) ^0 n _ O OOOOOOOOOOOOOOOOOOOOO g E=f 03 * Jt — "55 IT« -1 0" ™ CO > + .. *? zi 5° I Ii 8 « S * •E -ft « ^~ W^CMCMCMCMCMCMCMCMCMCMCMCMCMO)CT>O)O3COCOfOT-i-Q-S — ll >- liCOcorocooocococococorococo^^-^-^-cpcpcooQ "O ^- 0) ,= < >O O) ** ^ fc.. — c » « & w c -o *5 a? o S" 0 S c ^ S "~"* -5 w .2 w H S 1 ° g 8 < > S " S g 5It 1 50 UJ ^ ui 2*Z "- O "** ™"E >0) Q. "?s-n-u_P ._._ c>O.T^T;'T;''^T~T"'r~'l~'r"'T;'r;'T;'T;''f~T~'f~T~c^cil'CMCN'Cv'« W O ^ CO « QQ. Q. Q. 5) Q. JC U en ^~o o 2? o x vOO—jQ. OO EJC =!«S? O) S^0 Q.-' •^^'••'l''>'u'kk't"-^t-T-T-t--^CMCMCNCMfOCOCO IA -c inK PI ii ii °? -c ii ii v-w d> ^ ^*_L.O-CD^^ ra^s-*- oT~ £P « £"^ |E^,^^'r-'^'-^T"'-'r*lr~T-^^CMC\iCMCNCMCMCMfOrO O) X "03 2 CO t~ I fT 5 » ? I —: HI o- ™ o 'C _N *0 n; <u £ S —*5 « jo «ew ra5 LLLLLLLL LL PALOMAR AIRPORT BLDG. 2 FOOTING LOAD COMBINATION SUMMARY n LC1 (12-12) LC2 (12-13) DL+RLL+FLL DL+FLL+W (COLL is counted as DL) Y(down) BLDG 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 JOI 9014 9010.9 9011.1 9013.9 4014 3001 900B.1 1001 2001 4001 13.S 13 4007.9 14 4004.9 4005.1 SOU 3002 4002.1 5010 5013.2 4006.1 7010 6013.2 6010 7013.2 3005 3006 3011 GRID A.5-14 A.5-10.9 A. 5-11.1 A.5-13.9 F-14 A.5-1.1 A.5-8.2 D-1.1 C-1.1 E.3-1.1 E. 3-13.2 E.3-13 E.3-7.9 E.3-14 E.3-4.9 E.3-5.1 B-14 A 5-2 E.3-2.1 F-10 F-13.2 H.3-8.1 H-10 G-13.2 G-10 H-13.2 A.5-5 B-8 B-11 1 DL X Y Z 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 5 11 13 13 13 14 0 0 0 0 0 0 0 0 0 0 19 0 16 0 0 24 0 0 25 0 0 28 0 0 28 0 0 3D 0 0 34 0 0 31 0 0 35 0 0 40 0 0 36 0 0 41 0 0 45 , 0 0 i 46 0 0 i 42 : 0 0 ! 47 0 0 49 0 0 i 58 0 2 COLL X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Y Z 0 0 0 0 3 6 6 6 8 9 0 0 0 0 0 0 0 0 0 0 10 0 17 13 0 0 14 0 17 0 17 0 20 0 19 0 18 0 19 0 21 0 22 0 27 0 23 , 0 25 0 29 0 25 0 31 0 39 0 3 ROOFLL X Y Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 o ; o o io 2 ; 0 0 \ 0 4 ! 0 4 0 4 • 0 0 0 15 , 0 6 0 3 ; 0 6 0 8 0 11 0 4 0 6 0 4 0 3 0 9 0 12 0 2 0 5 . 0 15 0 4 0 0 13 0 0 19 0 4 FLOOR X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • Y Z 0 0 0 0 0 0 0 0 5 0 10 0 10 ! 0 11 , 0 11 0 16 ' 0 22 0 14 0 23 0 26 D 30 0 30 0 24 0 32 0 32 0 34 0 38 0 43 0 34 0 44 0 44 0 34 0 46 0 43 0 47 0 LC1 X Y Z - 13 - - 29 - - 29 - 36 - - 36 - - 43i - - 5l!- - 64, - . 66; - - 68: - - 83, - - 83 - - 85, . - 89i - - 89 - - 102 - - 110 - - . 114 - - 114 - 120 - 120 - ' 122 - 136 - 163 - - - - - - LC2 W/UPLIFT X Y Z - 13 - 25 - 29 - 29 - 29 36 - 51 - 35 - 55 - 63 - 66 - - - - - - - . - - . - 66 - - 65 1 - - 82 - 74 - - 97 - - 93 - 91 . . 110 - - 112' - - 92 - - 115 - - 112 - - 127 - LC2 W (S-N) X Y - - . . - - - - - - - - - 13 27 4 \ - 29 - 32 - 32 - 39 - 51 : - 49 • sa; - 65' - 75' - 75. - 74 - 85 - .81 - - 101 - - 103 - - 102. - - 112 - - 115 - 105; - - 118' - - 123 - . 144 - LC2 W(N-S) X Y Z - - - - - - - - - - - . . - - - 13 27 29 32 32 39 51 49 62 - - - - - - - - 65 - 75 - 75 74 - - 65 - 81 99 - - 100 - -102 - 112 - - 115 - - 105 - - 118' - - 123 - - 144! - LC2 W(W-E) X Y Z - - - - - - ^ ^. ^ 13 27 29 32 32 39 - 51 49 62 65 - 75 75 - 74 - 85 - 81 - 99 - I 99 - 102 - 112 . 115 - ! 105 - ; 116 - , 123 - i 145 - - - - - . - - . - - - - - - - - - - - - - - - LC2 W(E-W) X Y Z 4\ 13 - -27 - - | 29 - - 321 - Tj 32 . - : 39 - - . 51 - 49 - 62 • 65 - 75 - 75 - - - 74 85 81 - 97 - 99 - 102 - - . - - 112 115 105 118 123 , - - . - - - - - - - - - - - 144 - UPLIFT (k) - - - - - - - - - - - - - - - - - - - - - - - - MAX Grav.(k) 0 i 4 4 13 29 29 36 36 43 51 64 66 68 83 83 85 89 89 92 102 110 114 114 120 120 122 136 163 f7 Page 1 of 1 NOWAK + WISEMAN STRUCTURAL ENGINEERS BY DATE 1^4 PROJECT SHEET NO.OF JOB NO. T V 7* . 11 n /I **A * 6 /) 4 A -174 Ap PALOMAR AIRPORT ANCHOR BOLT LOAD COMBINATION SUMMARY Ap =(3.1415926*e*2)+(64'e)-M92 bfooting 36 48 55 e 14 20 26 Ap 1704 2729 3980 Tcap 297.2 475.9 694.1 Vcap 27.4 k/boltx8 = 219.0631 JOI GRID 10 E.3-10 11 E.3-11 12 E.3-12 13 E.3-13 14 E.3-14 1001 D-1.1 1002 D-2 1005 D-5 1008 D-8 1011 D-11 1014 D-14 13.2 E.3-13. 2001 C-1.1 2002 C-2 2005 C-5 2008 C-8 2011 C-11 2014 C-14 3001 A.5-1.1 3002 A.5-2 3003 A.5-3 3004 A.5-4 3005 A.5-5 3006 A.5-6 3007 A.5-7 3006 B-8 3011 B-11 3014 B-14 4001 E.3-1.1 4014 F-14 5010 F-10 6010 G-10 7010 H-10 8010 K-10 8013 K-13 9014 A.5-14 4002.1 E.3-2.1 4004.9 E.3-4.9 4005.1 E.3-5.1 4007.9 E.3-7.9 4008.1 E.3-8.1 5013.2 F-13.2 6013.2 G-13.2 7013.2 H-13.2 8010.5 K-10.5 8013.2 K-13.2 9006.1 A.5-8.2 9010.9 A.5-10.9 9011.1 A.5-11.1 9013.9 A.5-13.9 WIN. COL LOAD X Y -3.9 | -128 -99 0 ! 36 -18 0 0 '-196 -11 13.3 0 0 32.5 -2.6 0 15 -3.9 -66 -142; 0 -68 -84 0 -75 -145 0 -67 -1471 0 -63 -130 -3.9 0 21.7 0 0 15 -3.9 -95 -174 0 -114. -69 . 0 -1101-150 -105 -166 -83 -131 -2.6 12.7 0 0 -2.6 -2.6 -3.9 43.8 0 -3.9 -168 -90 -3.9-156' -95 -3.9 60.9 0 -3.9 -169 -93 -5.2 0 0 0 -2.6 -151 -105 57.7 65.2 33.3 0 0 -2.6 16.8 -2.6 0 '• 7.2 0 0 44.2 -2.6 0 0 0 0 0 -2.6 60 -3.9 46.9 -78 -75 0 35 -2.6 -8.8 -13 0 0 0 31.4 0 0 ;31.4: 0 0 3.9 0 0 0 0 26.7 0 41.8 46.1 58.6 47 -62 0 -2.6 -3.9 -2.6 -8.8 0 . -88 -13 2.6 0 1.3 2.6 17.1 3.6 3.6 3.6 0 0 0 0 MAX. COL LOAD X Y 3.9 0 0 0 0 0 109 97.1 112 105 298 134 188 190 288 88. 73 0 89.9 2.6 ; 44.8 3.9 379 0 367 0 413 0 441 0 82.5 266 3.9 0 0 77.3 58.5 74.5 67.9 63.2 2.6 3.9 3.9 3.9 3.9 3.9 5.2 0 0 0 2.6 0 0 0 0 0 0 0 2.6 0 0 0 3.9 0 0 0 0 0 2.6 0 1.3 2.6 70 0 44.8 3.9 333 0 385 0 417 0 407 0 262 2.6 37.4 2.6 117 0 205 90.2 223 86.6 162 0 203 92.4 231 84.3 171 0 201 0 1~104 2.6 55.2 2.6 17.6. 0 121 2.6 158 3.9 142 2.6 65 8.8 91.3 13.2 0 0 114 ' 0 106 i 0 106 0 84.2 0 143 0 136; 2.6 153 , 3.9 147 ; 2.6 81.2; 8.8 77.8 . 13.2 38.8 . 0 4.8 0 4.8 0 4.8 . 0 MAX TENS 127.5 0 195.9 0 0 0 141.9 83.9 145.2 146.7 130 0 0 173.8 69.1 150 166.1 130.9 0 0 168.2 155.6 0 169.1 151.1 0 0 0 0 0 0 0 0 77.6 75.1 0 0 0 0 0 0 0 0 0 62.3 87.7 0 0 0 0 MAX SHEAR 134.2 189.6 110.6 0 2.6 3.9 109 97.1 111.5 105.1 82.5 0 3.9 94.5 113.8 110 104.9 82.5 2.6 3.9 90.2 95 3.9 93.4 105.2 0 0 2.6 2.6 0 2.6 3.9 2.6 8.8 13.2 0 2.6 0 0 0 3.9 2.6 3.9 2.6 8.8 13.2 2.6 0 1.3 2.6 COMBINED STRESS 3' WIDE FOOTING T V Total 0.24 : 0.44 ; 0.69 0.00 0.79 0.79 0.50 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.29 0.31 0.60 0.12 , 0.26 ; 0.38 0.30 0.32 0.63 0.31 0.29 0.60 0.25 0.20 , 0.45 0.00 0.00 0.00 0.00 0.00 0.41 0.25 0.00 0.66 0.09 0.34 0.42 0.32 0.32 0.64 0.38 0.29 0.67 0.26 0.20 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.23 0.62 0.34 0.25 0.59 0.00 0.00 0.00 0.39 0.24 0.63 0.32 0.29 0.62 0.00 : 0.00 0.00 0.00 0.00 0.00 o.oo . o.oo o.oo 0.00 i 0.00o.oo ; o.oo 0.00 i 0.00 0.00 ! 0.00 0.00 0.00 0.11 i 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.10 j 0.01 0.11 0.00 I 0.00 0.00 0.00 i 0.00 0.00 I 0.00 0.00 ! 0.00 0.00 0.00 0.00 0.00 0.00 : 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.13 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.14 0.00 0.00 0.00 0.00 COMBINED STRESS 4* WIDE FOOTING T V 0.00 0.44 0.00 0.79 0.23 0.32 0.00 0.00o.oo , o.oo 0.00 0.00 0.13 0.31 0.06 0.26 0.14 0.32 0.14 0.29 0.11 0.20 0.00 0.00 0.00 0.00 0.19 0.25 0.04 0.34 0.15 0.32 0.17 0.29 0.12 0.20 0.00 0.00 0.00 0.00 0.18 0.23 0.16 0.25 0.00 ! 0.00 0.18 . 0.24 0.15 : 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo ; o.oo 0.05 0.00 0.05 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.06 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 : 0.00 Total 0.44 0.79 0.55 0.00 i 0.00 0.00 0.45 0.31 0.46 0.43 . 0.31 i 0.00 0.00 0.43 i 0.38 ! 0.46 . 0.47 0.31 0.00 0.00 0.40 0.40 0.00 0.42 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.07 0.00 0.00 0.00 0.00 COMBINED STRESS 5' WIDE FOOTING T V Total 0.06 , 0.44 0.50 0.00 0.79 0.79 0.12 0.32 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 |_ 0.00 . 0.00 0.07 0.31 0.38 0.03 0.26 : 0.29 0.07 0.32 ' 0.40 0.07 0.29 ' 0.37 0.06 0.20 0.26 0.00 0.00 i 0.00 0.00 0.00 0.00 0.10 . 0.25 0.35 0.02 0.34 0.36 0.08 0.32 0.40 0.09 0.29 0.39 0.06 0.00 0.00 0.09 0.08 0.00 0.10 0.08 Q.20 0.26 0.00 0.00 0.00 ; 0.00 0.23 0.32 0.25 0.33 0.00 : 0.00 0.24 , 0.34 0.29 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 : 0.00 0.00 0.00 0.00 0.00 o.oo : o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.03 0.02 0.01 0.03 0.00 0.00 0.00 0.00 i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.00 : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.04 0.00 0.00 0.00 0.00 i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 AIL Page 1 of 1 NOWAK + WISEMAN STRUCTURAL ENGINEERS BY DATE PROJECT SHEET NO. (jil- OF JOB NO. © 6/KJ 4/N K/S S/M M/6 CuJ -20 113 ai -21 201 NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) __ PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 5 JOB NO: 03-098 inittttHtltltt 14:28:45 ,-ASE3:DL+FLL+Seismic (S-N cw) -OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 8.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor? TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 35.5 3.64 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 303 99.9 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING —LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 96 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= 532.12 K 384.00 FT.K 7566.46 FT.K 4.25 FT. 5.92 FT. REINFORCING CAPACITY OVERALL STABILITY* 19.70 SOIL PRESSURE= 3.96 KSF O.K. Maximum Shear= 226.55 kip Moment, Mu= fi Vc= 284.64 kip fc= (Assumes d=Thick. - 4") fy= # bot. bars 17 Abar 0.31 dbar 0.625 Asm in 5.05 Asbot 5.27 a 1.06 OMn 762.62 724.87 k-ft 4500 psi 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) __ PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 5 JOB NO: 03-098 ttllilttlHIHit 14:28:26 .-^SE3:DL+FLL+Seismic (S-Nccw) .OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 8 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 34.5 3.64 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 290 113 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^JLOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 Q 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 82 0 0 0 0 HT.A.F.F.(FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 528.58 K 328.00 FT.K 7480.76 FT.K 3.72 FT. 5.75 FT. REINFORCING CAPACITY OVERALL STABILITY* 22.81 SOIL PRESSURE* 3.88 KSF O.K. Maximum Shear= 209.02 kip fi Vc= 284.64 kip (Assumes d=Thick. - 4") # bot. bars 17 Abar 0.31 dbar 0.625 Asmin 5.05 Asbot 5.27 a 1.06 OMn 762.62 Moment, Mu= 628.41 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+W1SEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 5 JOB NO: 03-098 tlltitHHtltlll 14:28:15 _JVSE3:DL+FLL+Seismic (N-S cw) OWABLE SOIL PRESSURE: UidTANCE BWN. F.F. & T.O.GB.= GRAPE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 8 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 34.5 3.64 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 271 134 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 46.2 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 530.58 K 184.80 FT.K 7885.26 FT.K 2.74 FT. 5.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 42.67 SOIL PRESSURE= 3.49 KSF O.K. Maximum Shear= 183.98 kip fi Vc= 284.64 kip (Assumes d=Thick. - 4") # bot. bars 17 Abar 0.31 dbar 0.625 Asm in 5.05 Asbot 5.27 a 1.06 OMn 762.62 Moment, Mu= 553.74 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 5 JOB NO: 03-098 It II till till Hit 14:28:05 -~*SE3:DL+FLL+Seismic (N-S ccw) ,OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 8 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor^ LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL <KLF)= {INCL. SOIL ABOVE G.B. 1.00 1.00 34.5 3.64 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 284 121 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING *-*• OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 59.17 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 530.58 K 236.68 FT.K 7644.76 FT.K 3.29 FT. 5.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 32.30 SOIL PRESSURE= 3.72 KSF O.K. Maximum Shear= 198.58 kip fi Vc= 284.64 kip (Assumes d=Thick. - 4") # bot. bars 17 Abar 0.31 dbar 0.625 Asm in 5.05 Asbot 5.27 a 1.06 OMn 762.62 Moment, Mu= 597.26 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 5 JOB NO: 03-098 HflittilfHl!H 14:29:48, .-ASE4:0.9DL+Seismic (S-Ncw) .OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 8 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor^ LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 34.5 3.64 18.5 FT. BF. COL # 1 2 3 4 5 LC React. (K) 209 13.2 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 87 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 347.78 K 348.00 FT.K 4188.06 FT.K 6.21 FT. 5.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 12.03 SOIL PRESSURE= 3.23 KSF O.K. Maximum Shear= 166.01 kip fi Vc= 284.64 kip (Assumes d=Thick. - 4") # bot. bars 17 Abar 0.31 dbar 0.625 Asmin 5.05 Asbot 5.27 a 1.06 OMn 762.62 Moment, Mu= 501.37 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. " Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 5 JOB NO: 03-098 tilt II tilt IIIIII 14:29:32 <XSE4:0.9DL+Seismic (S-N ccw) "LOWABLE SOIL PRESSURE: . JTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 8 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 34.5 3.64 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 196 26 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LOAD NO. "~ 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 74 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= 347.58 MOT= 296.00 MR= 4423.26 e= 5.38 L/6= 5.75 K FT.K FT.K FT. OVERALL STABILITY= 14.94 SOIL PRESSURE= FT. Maximum Shear= fiVc= 152.25 kip 284.64 kip (Assumes d=Thick. - 4") REINFORCING CAPACITY -~# bot. bars At 17 >ar dbar 0.31 0.625 Asm in As 5.05 3.00 KSF Moment, Mu= fc= fy= bot a 5.27 1.06 '- O.K. 459.11 4500 60 OMn 762.62 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 5 JOB NO: 03-098 14:29:23 ,~ASE4:0.9DL+Seismic (N-S cw) .OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 8 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 34.5 3.64 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 185 39.7 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^-LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 54.3 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 350.28 K 217.20 FT.K 4698.31 FT.K 4.46 FT. 5.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 21.63 SOIL PRESSURE= 2.77 KSF Maximum Shear= 137.69 kip Moment, Mu= fi Vc= 284.64 kip fc= (Assumes d=Thick. - 4") fy= O.K. 415.68 k-ft 4500 psi 60 ksi # bot. bars 17 Abar 0.31 dbar 0.625 Asmin 5.05 Asbot 5.27 3 1.06 OMn 762.62 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: BIdg. 2 along G.L. 5 JOB NO: 03-098 II Hit It II Hit It 14:28:58 6\\0 — 'VSE4:0.9DL+Seisniic (N-S ccw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 8 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 34.5 3.64 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 197 26.8 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 67.3 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 349.38 K 269.20 FT.K 4452.46 FT.K 5.28 FT. 5.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 16.54 SOIL PRESSURE= 2.99 KSF O.K. Maximum Shear= 151.52 kip fi Vc= 284.64 kip (Assumes d=Thick. - 4") Moment, Mu= 456.93 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 17 Abar 0.31 dbar 0.625 Asmtn 5.05 Asbot 5.27 a 1.06 OMn 762.62 O.K. NOWAK + WISEMAN STRUCTURAL ENGINEERS BY DATE PROJECT AlPf SHEET NO. IflVI OF JOB NO. C-^g i g? W/5 K/5 M/S © -11 -Jr 5.f!< Jf -iO .4 NOWAK+WISEMAN Structural Engineers « BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 8 JOB NO: 03-098 15:00:58 -"5E3:DL+FLL+Seismic (S-N cw) .OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)* GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 37 3.64 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 298 64.1 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ,-LOAD NO. 1 2 3 •4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD* 1 2 3 4 5 LAT. FORCE 83 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= 496.78 K 332.00 FT.K 7026.86 FT.K 5.02 FT. OVERALL STABILITY= 21.17 SOIL PRESSURE= 3.75 KSF O.K. L/6= 6.17 FT.Maximum Shear= fiVc= 228.94 kip 284.64 kip (Assumes d=Thick. - 4") REINFORCING CAPACITY *~~ # bot. bars 2C Abar dbar 0.31 0.625 Asm in As 5.05 Moment, Mu= fc= fy= bot a 6.2 1.25 799.74 4500 60 OMn 894.59 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. « ^Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L.8 JOB NO: 03-098 15:01:19 — ^SE3:DL+FLL+Seismic (S-Nccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY {FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS^ DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 37 3.64 18.5 FT. BF. COL # 1 2 3 4 5 LC React. (K) 307 55.5 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING _ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOADS 1 2 3 4 5 LAT. FORCE 91 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= rt™ L/6= 497.18 K 364.00 FT.K 6871.46 FT.K 5.41 FT. 6.17 FT. REINFORCING CAPACITY OVERALL STABILITY= 18.88 SOIL PRESSURE= 3.88'KSF O.K. Maximum Shear* 238.73 kip fi Vc= 284.64 kip (Assumes d=Thick. - 4") # bot. bars 20 Abar 0.31 dbar 0.625 Asmin 5.05 Asbot 6.2 a 1.25 OMn 894.59 Moment, Mu= 833.64 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 8 JOB NO: 03-098 15:01:33 \SE3:DL+FLL+Seismic (N-S cw) ~~_LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T,O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF {INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor* LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL <KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 37 3.64 18.5 FT. BF. COL # 1 2 3 4 5 LC React. (K) 310 45.3 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 97.2 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 t\.n LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 Q.t>\ PTOT= MOT= MR= e= L/6= 489.98 K 388.80 FT.K 6616.16 FT.K 5.79 FT. 6.17 FT. REINFORCING CAPACITY OVERALL STABILITY= 17.02 SOIL PRESSURE= 3.95 KSF O.K. Maximum Shear= 243.82 kip fiVc= 284.64 kip (Assumes d=Thick. - 4") # bot. bars 20 Abar 0.31 dbar 0.625 Asmin 5.05 Asbot 6.2 a 1.25 OMn 894.59 Moment, Mu= 851.26 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. » Version1.3 (12/99) ___ PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 8 JOB NO: 03-098 tlHIIHiltllftl 15:01:44 ,-&SE3:DL+FLL+Seismic (N-S ccw) .OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 37 3.64 18.5 FT. BF. COL # 1 2 3 4 5 LC React. (K) 302 53.9 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ,-LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 88.8 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= 490.58 MOT= 355.20 MR= 6780.81 e= 5.40 L/6= 6.17 K FT.K FT.K FT. OVERALL STABILITY= 19.09 SOIL PRESSURE= FT. Maximum Shear= fiVc= 234.71 284.64 3.83 KSF O.K. kip Moment, Mu= 819.73 kip (Assumes d=Thick. - 4") REINFORCING CAPACITY # bot. bars At 20 >ar dbar 0.31 0.625 Asm in 5.05 Asbot < 6.2 fc= 4500 fy= 60 a OMn 1.25 894.59 k-ft psi ksi O.H NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 8 JOB NO: 03-098 15:00:20 ~ASE4:0.9DL+Seismic (S-Ncw) -OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 37 3.64 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 223 -20 0 0 0 LC React. {K} 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^J_OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 85 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 337.68 K 340.00 FT.K 3999.33 FT.K 7.66 FT. 6.17 FT. REINFORCING CAPACITY OVERALL STABILITY= 11.76 SOIL PRESSURE= 3.20 KSF O.K. Maximum Shear= 183.61 kip fi Vc= 284.64 kip (Assumes d=Thick. - 4") # bot. bars 20 Abar 0.31 dbar 0.625 Asmin 5.05 Asbot 6.2 a 1.25 OMn 894.59 Moment, Mu= 648.72 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers «= BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 8 JOB NO: 03-098 tttHfttllintll 15:00:04 - \SE4;0.9DL+Seismic (S-N ccw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 37 3.64 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 232 -28 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 UL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 95 0 0 0 0 HT. A. F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 338.68 K 380.00 FT.K 3860.58 FT.K 8.22 FT. 6.17 FT. REINFORCING CAPACITY OVERALL STABILITY= 10.16 SOIL PRESSURE= 3.38 KSF O.K. Maximum Shear= 194.70 kip fi Vc= 284.64 kip (Assumes d=Thick. - 4") # hot. bars 20 Abar 0.31 dbar 0.625 Asm in 5.05 Asbot 6.2 a 1.25 OMn 894.59 Moment, Mu= 690.19 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 8 JOB NO: 03-098 Itmttltitllltl 15:00:33, ~ \SE4:0.9DL+Seismic (N-S cw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 37 3.64 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 226 -30 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 94.2 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 330.68 K 376.80 FT.K 3749.58 FT.K 8.30 FT. 6.17 FT. REINFORCING CAPACITY OVERALL STABILITY* 9.95 SOIL PRESSURE= 3.33 KSF O.K. Maximum Shear= 190.46 kip fi Vc= 284.64 kip (Assumes d=Thick. - 4") # bot. bars 20 Abar 0.31 dbar 0.625 Asm in 5.05 Asbot 6.2 a 1.25 OMn 894.59 Moment, Mu= 675.78 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 8 JOB NO: 03-098 IIItIIfillIItilt 14:59:27 "^SE4:0.9DL+Seismic (N-S ccw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 37 3.64 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 218 -21 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ~~ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 85.8 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 331.68 K 343.20 FT.K 3925.33 FT.K 7.70 FT. 6.17 FT. DEINFORCING CAPACITY OVERALL STABILITY= 11.44 SOIL PRESSURE= 3.15 KSF O.K. Maximum Shear= 180.15 kip fi Vc= 284.64 kip (Assumes d=Thick. - 4") # bot. bars 20 Abar 0.31 dbar 0.625 Asmin 5.05 Asbot 6.2 a 1.25 OMn 894.59 Moment, Mu= 636.83 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 11 JOB NO: 03-098 10/9/04 22:00:21 - rSE3:DL+FLL+Seismic(S-Ncw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factors LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 35 3.88 18,5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 259 96.6 0 0 0 Add. React.{K) 0 0 0 0 0 Add. React.(K 0 0 0 0 0 ADDITIONAL LOADING ^- LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 61.3 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 491.53 K 260.53 FT.K 7099.60 FT.K 3.59 FT. 5.83 FT. REINFORCING CAPACITY OVERALL STABILITY^ 27.25 SOIL PRESSURE= 3.49 KSF O.K. Maximum Shear= 186.20 kip fiVc= 311.33 kip (Assumes d=Thtck. - 4") # hot. bars 11 Abar 0.6 dbar 0.875 Asmin 5.48 Asbot 6.6 a 1.33 QMn 1036,50 Moment, Mu= 810.51 k-ft f c= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Verslon1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 11 JOB NO: 03-098 10/9/04 22:00:09; "~ SE3:DL+FLL+Seismic (S-Nccw) _L.OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT, EA, END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factors LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF}= (INCL SOIL ABOVE G.B. 1.00 1.00 35 3.88 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 274 82.3 0 0 0 Add. React.(K) 0 0 0 0 0 Add, React(K 0 0 0 0 0 ADDITIONAL LOADING """.OADNO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 73 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 492.23 K 310.25 FT.K 6840.82 FT.K 4.23 FT. 5.83 FT. REINFORCING CAPACITY OVERALL STABILITY= 22.05 SOIL PRESSURE= 3.73 KSF O.K. Maximum Shear= 202.41 kip fi Vc= 311.33 kip (Assumes d=Thick. - 4") # bot. bars 11 Abar 0.6 dbar 0.875 Asm in 0.04 Asbot 6.6 a 1.33 OMn 1036.50 Moment, Mu= 880.36 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 11 JOB NO: 03-098 10/9/04 21:59:57 — \SE3:DL+FLL+Seismic (N-Scw) ^LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS^ DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 35 3.88 18.5 FT. BF. COL. # 1 2 3 4 5 LC React (K) 294 62.3 0 0 0 LC React (K) 0 0 0 0 0 LC React (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOADS 1 2 3 4 5 LAT. FORCE 67 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 492.23 K 284.75 FT.K 6470.82 FT.K 4.93 FT. 5.83 FT. REINFORCING CAPACITY OVERALL STABILITY* 22.72 SOIL PRESSURE* 3.99 KSF O.K. Maximum Shear= 219.60 kip fiVc= 311.33 kip (Assumes d=Thick. - 4") # bot. bars 11 Abar 0.6 dbar 0.875 Asmin 5.48 Asbot 6.6 a 1.33 OMn 1036.50 Moment, Mu= 954.43 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 11 JOB NO: 03-098 10/9/04 22:21:10. — <\SE3:DL+FLL+Seismic (N-Sccw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 35 3.88 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 279 76.6 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ,— LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 55.57 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 4, PTOT= MOT= MR= e= U6= 491.53 K 236.17 FT.K 6729.60 FT.K 4.29 FT. 5.83 FT. REINFORCING CAPACITY OVERALL STABILITY* 28.49 SOIL PRESSURE= 3.75 KSF O.K. Maximum Shear= 203.45 kip fiVc= 311.33 kip (Assumes d=Thick. - 4") # bot. bars 11 Abar 0.6 dbar 0.875 Asmin 0.04 Asbot 6.6 a 1.33 OMn 1036.50 Moment, Mu= 884.83 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. « Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 11 JOB NO: 03-098 10/9/04 22:01:26 ~\SE4:0.9DL+Seismic (S-Ncw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.' GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor? LL Reduction Factor^ TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 35 3.88 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 183 13.9 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING -~'.OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 61 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= 332.83 MOT= 259.25 MR= 4260.37 e= 5.48 L/6= 5.83 K FT.K FT.K FT. OVERALL STABILITY= 1 6.43 SOIL PRESSURE= FT. Maximum Shear= fiVc= 143.03 kip 311.33 kip (Assumes d=Thick. - 4") REINFORCING CAPACITY # bot. bars At 11 >ar dbar 0.6 0.875 Asm in As 5.48 2.84 KSF Moment, Mu= fc= fy= bot a 6.6 1.33 O.K. 624.51 4500 60 OMn 1036.50 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 11 JOB NO: 03-098 10/9/04 22:01:12 — 'VSE4:0.9DL+Seismic (S-Nccw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F, & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL <KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 35 3.88 18.5 FT. BF.COL.# 1 2 3 4 5 LC React._(K) 197 -0.4 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 71 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 332.53 K 301.75 FT.K 3993.35 FT.K 6.40 FT. 5.83 FT. REINFORCING CAPACITY OVERALL STABILITY= 13.23 SOIL PRESSURE= 3.07 KSF O.K. Maximum Shear= 157.22 kip fiVc= 311.33 kip (Assumes d=Thick. - 4") # hot. bars 11 Abar 0.6 dbar 0.875 Asmin 5.48 Asbot 6.6 a 1.33 OMn 1036.50 Moment, Mu= 687.81 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers « BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 11 JOB NO: 03-098 10/9/04 22:01:00 ^SE4:0.9DL+Seismic (N-Scw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRAPE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor3 LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 35 3.88 18.5 FT. BF. COL # 1 2 3 4 5 LC React (K) 211 19.7 0 0 0 LC React (K) 0 0 0 0 0 LC React (K) 0 0 0 0 0 ADDITIONAL LOADING ^~ LOAD NO, 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 68.2 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 366.63 K 289.85 FT.K 4646.52 FT.K 5.62 FT. 5.83 FT. REINFORCING CAPACITY OVERALL STABILITY* 16.03 SOIL PRESSURE= 3.16 KSF O.K. Maximum Shear= 164.64 kip fiVc= 311.33 kip (Assumes d=Thick. - 4") # bot. bars 11 Abar 0.6 dbar 0.875 Asm in 5.48 Asbot 6.6 a 1.33 OMn 1036.50 Moment, Mu= 717.64 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. 11 JOB NO: 03-098 10/9/04 22:00:47 -~'VSE4:0.9DL+Seismic (N-Sccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 18.5 GB. EXT. EA. END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW, BF. COLUMNS= DL Reduction Factor* LL Reduction Factor^ TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 35 3.88 18.5 FT. BF. COL. # 1 2 3 4 5 LC React (K) 197 0.41 0 0 0 LC React (K) 0 0 0 0 0 LC React (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K> 0 0 0 0 0 LL(K> 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 56.8 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= 333.34 K 241.40 FT.K 4015.01 FT.K 6.18 FT. OVERALL STABILITY^ 16.63 SOIL PRESSURE= 3.02 KSF O.K. U6= 5.83 FT. Maximum Shear= 154.34 kip fi Vc= 311.33 kip (Assumes d=Thick. - 4" REINFORCING CAPACITY s~ # bot. bars Abar dbar Asmin 11 0.6 0.875 5.48 Asbot 6.6 Moment, Mu= fc= fy* a 1.33 674.50 4500 60 OMn 1036.50 k-ft psi ksi O.K NOWAK + WISEMAN STRUCTURAL ENGINEERS BY DATE PROJECT SHEET NO. ^(14 OF JOB NO. A t aw au tk «_* "' -j -2? -4 "' -V* — I NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. A JOB NO: 03-098 10/9/04 22:35:42i — \SE3:DL+FLL+Seismic (W-Ecw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 24 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factors LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 36 2.24 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 78.1 -19 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 51 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= 139.74 MOT= 204.00 MR= 1350.12 e= 9.80 L/6= 6.00 K FT.K FT.K FT. OVERALL STABILITY= SOIL PRESSURE= FT. Maximum Shear= fiVc= 64.96 kip 175.16 kip (Assumes d=Thick. - 4") REINFORCING CAPACITY/• "• # bot. bars At 6 ar dbar 0.44 0.75 Asmin As 3.11 6.62 2.84 KSF Moment, Mu= fc= fy= bot a 2.64 0.86 O.K. 206.52 4500 60 OMn 382.46 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Btdg. 2 along G.L. A JOB NO: 03-098 10/9/04 22:35:31 - \SE3:DL+FLL+Setsmic (W-Eccw) ..LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 24 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factors LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF}= (INCL SOIL ABOVE G.B.) 1.00 1.00 36 2.24 24 FT. BF. COL # 1 2 3 4 5 LC React. (K) 73.8 -15 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 45 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= 139.44 MOT= 180.00 MR= 1444.32 e= 8.93 L/6= 6.00 K FT.K FT.K FT. OVERALL STABILITY= SOIL PRESSURE* FT. Maximum Shear= fiVc= 57.81 kip 175.16 kip (Assumes d=Thick. - 4") REINFORCING CAPACITY # bot. bars At 6 >ar dbar 0.44 0.75 Asm in As 3.11 8.02 2.56 KSF Moment, Mu= fc= fy= bot a 2.64 0.86 O.K. 182.92 4500 60 OMn 382.46 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT; Palomar Airport Center LOCATION; Bldg. 2 along G.L. A JOB NO: 03-098 10/9/04 22:35:20 - ^SE3:DL+FLL+Seismic (E-Wcw) ...LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 24 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF, COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH <FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 36 2.24 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 80.8 -22 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 61.5 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 U-(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= 139.44 MOT= 246.00 MR= 1276.32 e= 10.61 U6= 6.00 K FT.K FT.K FT. OVERALL STABIL!TY= SOIL PRESSURE= FT. Maximum Shear= fi Vc= 72.56 kip 175.16 kip (Assumes d=Thick. - 4") REINFORCING CAPACITY # hot, bars At 6 iar dbar 0.44 0.75 Asmin As 3.11 5.19 3.15 KSF Moment, Mu= fc= fy= bot a 2.64 0.86 O.K. 231.99 4500 60 OMn 382.46 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. A JOB NO: 03-098 10/9/04 22:35:07 — <VSE3:DL+FLL+Seismic (E-Wccw) ^LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 24 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B, LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 36 2.24 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 85.1 -26 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 67.3 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 I h O 0 rf**4- \\.ll t PTOT= MOT= MR= PI™ L/6= 139.74 K 269.20 FT.K 1182.12 FT.K 11.47 FT. 6.00 FT. REINFORCING CAPACITY OVERALL STABILITY= 4.39 SOIL PRESSURE= 3.56 KSF O.K. Maximum Shear= 82.63 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 6 Abar 0.44 dbar 0.75 Asmin 3.11 Asbot 2.64 a 0.86 OMn 382.46 Moment, Mu= 266.23 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers «= BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. A JOB NO: 03-098 10/9/04 22:44:43. *SE4:DL+FLL+Seismic (W-Ecw) ^LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.s GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 24 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 36 2.24 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 70.1 -31 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 54 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 119.74 K 216.00 FT.K 942.12 FT.K 11.94 FT. 6,00 FT. REINFORCING CAPACITY OVERALL STABILITY= 4.36 SOIL PRESSURE= 3.29 KSF O.K. Maximum Shear= 73.53 kip fi Vc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 6 Abar 0.44 dbar 0.75 Asm in 3.11 Asbot 2.64 a 0.86 OMn 382.46 Moment, Mu= 238.81 k-ft f c= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. A JOB NO: 03-098 10/9/04 22:44:28 ~^SE4:DL+FLL+Seismic (W-Eccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 24 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= {INCL. SOIL ABOVE G.B.) 1.00 1.00 36 2.24 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 65.8 -26 0 0 0 LC React. (K) 0 0 0 0 0 LC. React. (K) 0 0 0 0 0 ADDITIONAL LOADING -~ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 88.8 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 120.44 K 355.20 FT.K 1066.32 FT.K 12.10 FT. 6.00 FT. REINFORCING CAPACITY OVERALL STABILITY= 3.00 SOIL PRESSURE= 3.40 KSF O.K. Maximum Shear= 76.07 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 6 Abar 0.44 dbar 0.75 Asm in 3.11 Asbot 2.64 a 0.86 OMn 382.46 Moment, Mu= 247.55 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers « BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. A JOB NO: 03-098 10/9/04 22:44:15 —ASE4:DL+FLL+Seismic (E-Wcw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 24 GB. EXT. EA. END Q VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 36 2.24 24 FT. BF. COL. # 1 2 3 4 5 LC React. (KJi 69.4 -30 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING -— LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOADS 1 2 3 4 5 LAT. FORCE 58 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= 6= L/6= 120.04 K 232.00 FT.K 967.92 FT.K 11.87 FT. 6.00 FT. REINFORCING CAPACITY OVERALL STABILITY= 4.17 SOIL PRESSURE= 3.26 KSF O.K. Maximum Shear= 72.95 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 6 Abar 0.44 dbar 0.75 Asmin 3.11 Asbot 2.64 a 0.86 OMn 382.46 Moment, Mu= 236.73 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. A JOB NO: 03-098 10/9/04 22:43:57 \SE4:DL+FLL+Seismic (E-Wccw) ^LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT . THICKNESS 3 WIDTH 4 LENGTH OF FRAME 24 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor* LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 36 2.24 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 73.7 -34 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING •— LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 63.8 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 120.34 K 255.20 FT.K 873.72 FT.K 12.86 FT. 6.00 FT. REINFORCING CAPACITY OVERALL STABILITY= 3.42 SOIL PRESSURE= 3.90 KSF O.K. Maximum Shear= 86.79 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 6 Abar 0.44 dbar 0.75 Asm in 3.11 Asbot 2.64 a 0.86 OMn 382.46 Moment, Mu= 285.88 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK + WISEMAN STRUCTURAL ENGINEERS BY DATE 6/04 PROJECT 2 6, WE, f^ SHEET NO. JOB NO. OF t w 452 -gt w ^ NOWAK+WISEMAN Structural Engineers « BRACED FRAME G.B. ~= Version 1.3 (12/99) PROJECT; Palomar Airport Center LOCATION: Bldg. 2 along G.L. E.3 JOB NO: 03-098 It HI! tilt till II 13:04:27 —SE3:DL+FLL+Seismic (LC3 W-E cw) .OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FRAME 48 GB. EXT. EA. END 7 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 62 2.80 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 172 115 19.8 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING -K)AD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 180 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 480.40 K 720.00 FT.K 11239.60 FT.K 9.10 FT. 10.33 FT. REINFORCING CAPACITY OVERALL STABILITY 15.61 SOIL PRESSURE= 2.91 KSF O.K. Maximum Shear= 107.32 kip fiVc= 218.96 kip (Assumes d=Thick. - 4") # bot. bars 9 Abar 0.44 dbar 0.75 Asmin 3.89 Asbot 3.96 a 1.04 OMn 572.15 Moment, Mu- 385.03 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. E.3 JOB NO: 03-098 13:04:44 -— SE3:DL+FLL+Seismic (LC3 W-E ccw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FRAME 48 GB. EXT. EA. END 7 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1,00 62 2.80 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 168 115 24.1 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 180 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 480.70 K 720.00 FT.K 11448.10 FT.K 8.68 FT. 10.33 FT. °EINFORCING CAPACITY OVERALL STABILITY= 15.90 SOIL PRESSURE* 2.85 KSF O.K. Maximum Shear= 104.49 kip fiVc= 218.96 kip (Assumes d=Thick. - 4") # bot. bars 9 Abar 0.44 dbar 0.75 Asmin 3.89 Asbot 3.96 a 1.04 OMn 572.15 Moment, Mu= 374.92 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Btdg. 2 along G.L. E.3 JOB NO: 03-098 IItillIIIt IItill 13:04:59 •^SE3:DL+FLL+Seismic(LC3 E-W cw) _OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FRAME 48 GB. EXT. EA. END 7 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor* LL Reduction Factor^ TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF}= (INCL. SOIL ABOVE G.B.} 1.00 1.00 62 2.80 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 202 153 -48 0 0 LC React. (K) 0 0 0 0 0 LC React. {K) 0 0 0 0 0 ADDITIONAL LOADING .-^OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOADS 1 2 3 4 5 LAT. FORCE 203.7 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 480.60 K 814.80 FT.K 8898.60 FT.K 14.18 FT. 10.33 FT. REINFORCING CAPACITY OVERALL STABILITY= 10.92 SOIL PRESSURE= 3.81 KSF O.K. Maximum Shear= 146.29 kip fi Vc= 218.96 kip (Assumes d=Thick. - 4") # bot. bars 9 Abar 0.44 dbar 0.75 Asmin 3.89 Asbot 3.96 a 1.04 OMn 572.15 Moment, Mu= 527.11 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) SE3:DL+FLL+Seismic (LC3 E-W ccw) , ._.^OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. E.3 JOB NO: 03-098 It flit tilt tilt ti 13:08:36 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FRAME 48 GB. EXT. EA. END 7 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 62 2.80 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 206 153 -52 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^"OADNO. 1 2 3 4 5 DIST, FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 203.7 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= 480.60 MOT= 814.80 MR= 8706.60 e= 14.58 U6= 10.33 K FT.K FT.K FT. OVERALL STABILITY= 10.69 SOIL PRESSURE= FT. Maximum Shear= fiVc= 150.19 kip 218.96 kip (Assumes d=Thick. - 4") REINFORCING CAPACITY # bot. bars At 9 >ar dbar 0.44 0.75 Asm in As 3.89 3.90 KSF •- Moment, Mu= fc= fy= bot a 3.96 1.04 O.K. 541.52 4500 60 OMn 572.15 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L E.3 JOB NO: 03-098 13:08:47, — SE4:0.9DL+Seismic(LC4W-Ecw} .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FRAME 48 GB. EXT. EA. END 7 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 62 2.80 24 FT. BF. COL. # 1 2 3 4 5 LC React. <K) 148 56.3 -29 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ,— VOADNO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 l_ ° 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 182 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MR* e- 348.90 K 728.00 FT.K 6567.90 FT.K 14.26 FT. 10.33 FT. DEINFORCING CAPACITY OVERALL STABIL)TY= 9.02 SOIL PRESSURE= 2.78 KSF O.K. Maximum Shear* 99.25 kip fiVc= 218.96 kip (Assumes d=Thick. - 4") # bot. bars 9 Abar 0.44 dbar 0.75 Asmin 3.89 Asbot 3.96 a 1.04 OMn 572.15 Moment, Mu= 358.46 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. E.3 JOB NO: 03-098 13:08:58: — SE4:0.9DL+Seismic (LC4 W-E ccw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FRAME 48 GB. EXT. EA. END 7 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL <KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 62 2.80 24 FT. BF. COL # 1 2 3 4 5 LC React. (K) 143 56.3 -25 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ,— LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 182 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 347.90 K 728.00 FT.K 6752.90 FT.K 13.68 FT. 10.33 FT. REINFORCING CAPACITY OVERALL STABILITY= 9.28 SOIL PRESSURE= 2.68 KSF O.K. Maximum Shear= 94.97 kip fiVc= 218.96 kip (Assumes d=Thick. - 4") # bot. bars 9 Abar 0.44 dbar 0,75 Asmin 3.89 Asbot 3.96 a 1.04 OMn 572.15 Moment, Mu= 342.70 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L E.3 JOB NO: 03-098 tilt tilt It tilt II 13:09:07 -^SE4:0.9DL+Seismic (LC4 E-W cw) _OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FRAME 48 GB. EXT. EA. END 7 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 62 2.80 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 153 94.9 -73 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING x-J.OAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K> 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 200.7 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR* e= L/6= 348.50 K 802.80 FT.K 5379.50 FT.K 17.87 FT. 10.33 FT. REINFORCING CAPACITY OVERALL STABILITY* 6.70 SOIL PRESSURE= 3.54 KSF O.K. Maximum Shear= 130.53 kip fiVc= 218.96 kip (Assumes d=Thick. - 4") # bot. bars 9 Abar 0.44 dbar 0.75 Asm in 3.89 Asbot 3.96 a 1.04 OMn 572.15 Moment, Mu= 474.84 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. E.3 JOB NO: 03-098 Htllttlitlttitl 13:09:17 ~ \SE4:0.9DL+Seismic (LC4 E-W cw) i-LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FRAME 48 GB. EXT. EA. END 7 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 62 2.80 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 157 94.9 -77 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ,— LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 200.7 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 348.50 K 802.80 FT.K 5187.50 FT.K 18.42 FT. 10.33 FT. REINFORCING CAPACITY OVERALL STABILITY= 6.46 SOIL PRESSURE= 3.69 KSF O.K. Maximum Shear= 136.75 kip fiVc= 218.96 kip (Assumes d=Thick. - 4") # bot. bars 9 Abar 0.44 dbar 0.75 Asmin 3.89 Asbot 3.96 a 1.04 OMn 572.15 Moment, Mu= 498.19 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK + WISEMAN STRUCTURAL ENGINEERS BY DATE PROJECT A\tfwr SHEET NO. ll<F- OF JOB NO. U K f 'M «2 J 2 Cw 4 NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. K JOB NO: 03-098 10/9/04 23:17:01 - \SE3:DL+FLL+Seismic (W-Ecw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 8.7 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 20.7 1.68 8.7 FT. BF. COL # 1 2 3 4 5 LC React. (K) 18.6 -15 0 0 0 LC React. (K) 0 0 0 0 0 LC React. {K) 0 0 0 0 0 ADDITIONAL LOADING ^~ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 2.8 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 38.38 K 11.20 FT.K 251.03 FT.K 4.10 FT. 3.45 FT. REINFORCING CAPACITY OVERALL STABILITY* 22.41 SOIL PRESSURE= 1.36 KSF O.K. Maximum Shear= 14.77 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asm in 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 35.59 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. K JOB NO: 03-098 10/9/04 23:16:48 — \SE3:DL+FLL+Seismic (W-Eccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 8.7 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 20.7 1.68 1.7 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 34.3 -30 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 8.6 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 -—LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 (fAh irr PTOT= MOT= MR= e= U6= 39.08 K 34.40 FT.K 124.73 FT.K 8.04 FT. 3.45 FT. REINFORCING CAPACITY OVERALL STABILITY^ 3.63 SOIL PRESSURE= 3.76 KSF O.K. Maximum Shear= 39.60 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asm in 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 114.11 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. K JOB NO: 03-098 10/9/04 23:16:351 - \SE3:DL+FLL+Seismic (E-Wcw) ^LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 8.7 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)* GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 20.7 1.68 J.7 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 18.3 -14 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING f— LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOADS 1 2 3 4 5 LAT. FORCE 8.56 0 0 0 0 HT. A.F.F. (FT,) 0 0 0 0 Q PTOT= MOT= MR= e= L/6= 39.08 K 34.24 FT.K 263.93 FT.K 4.47 FT. 3.45 FT. REINFORCING CAPACITY OVERALL STABILITY= 7.71 SOIL PRESSURE= 1,48 KSF O.K. Maximum Shear= 16.78 kip fiVc= 131.37 kip {Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 40.49 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. K JOB NO: 03-098 10/9/04 23:16:21 — \SE3:DL+FLL+Seismic (E-Wccw) LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FFiAME 8.7 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 20.7 1.68 8.7 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 2.57 1.43 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW {K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 2.86 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 38.78 K 11.44 FT.K 396.37 FT.K 0.42 FT. 3.45 FT. REINFORCING CAPACITY OVERALL STABILITY* 34.65 SOIL PRESSURE* 0.70 KSF O.K. Maximum Shear= 0.99 kip fiVc= 131.37 kip (Assumes d^Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 3.95 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers =- BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. K JOB NO: 03-098 10/9/04 23:17-.55i - \SE4:0.9DL+Seismic (W-Ecw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 8.7 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 20.7 1.68 !.7 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 17.6 -14 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING --LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 2.8 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= ft™ L/6= 38.38 K 11.20 FT.K 259.73 FT.K 3.87 FT. 3.45 FT. REINFORCING CAPACITY OVERALL STABILITY* 23.19 SOIL PRESSURE= 1.32 KSF O.K. Maximum Shear= 13.95 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asm in 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 33.55 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. " Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. K JOB NO: 03-098 10/9/04 23:17:42 - \SE4:0.9DL+Seismic (W-Eccw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 8.7 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor^ TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF}= (INCL SOIL ABOVE G.B. 1.00 1.00 20.7 1.68 1.7 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 33.3 -30 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING -— LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 8.6 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= 38.08 MOT= 34.40 MR= 118.73 e= 8.14 U6= 3.45 K FT.K FT.K FT. OVERALL STABILITY= SOIL PRESSURE= FT. Maximum Shear= fiVc= 38.69 kip 131.37 kip (Assumes d=Thick. - 4") REINFORCING CAPACITY # bot. bars At 4 >ar dbar 0.31 0.625 Asmin As 2.33 3.45 3.82 KSF Moment, Mu= fc= fy= bot a 1.24 0.54 O.K. 113.96 k-ft 4500 psi 60 ksi OMn 180.89 O.K NOWAK+WISEMAN Structural Engineers «* BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. K JOB NO: 03-098 10/9/04 23:17:27 - \SE4:0.9DL+Seismic (E-Wcw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 8.7 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL <KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 20.7 1.68 i.7 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 18.9 -15 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 2.86 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= j-h*"» L/6= 38.68 K 11.44 FT.K 252.83 FT.K 4.11 FT. 3.45 FT. REINFORCING CAPACITY OVERALL STABILlTY= 22.10 SOIL PRESSURE= 1.38 KSF O.K. Maximum Shear= 15.03 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 36.18 k-ft f c= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 2 along G.L. K JOB NO: 03-098 10/9/04 23:17:13 - \SE4:0.9DL+Seismic (E-Wccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 8.7 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 20.7 1.68 5.7 FT. BF. COL # 1 2 3 4 5 LC React. (K) 6.17 0.43 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOADS 1 2 3 4 5 LAT. FORCE 2.86 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= 41.38 K 11.44 FT.K 403.27 FT.K 0.88 FT. 3.45 FT. REINFORCING CAPACITY OVERALL STABILITY= 35.25 SOIL PRESSURED 0.84 KSF O.K. Maximum Shear= 3.91 kip Moment, Mu= fiVc= 131.37 kip fc= (Assumes d=Thick. - 4") fy= # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 10.55 k-ft 4500 psi 60 ksi O.K. oooooooooos° > O o o CO|COcoCOCMN-coi—co " COCOCM1^-co,— h-N-CMO><D m r^i^CMO>(D IIIh- I Oo>CMCM $ CO T—CM 0|i-O)CMCN S CO T—CM CMCOmr-.inr-- CM CM »-CM in inCMCOiCOini^CMCO^ ^imicoi^-ico CM COco T— T—T — • r-CMICO co ..oooooooooo T3 liIVO "GJS 5c_D_ .5*'o cre -5 COCO O)in CM•<t -a- dCO COCM CM•V CM OCO "»• dCO $ds •fl- edCOco IOin rroCO CO in 2 •w oSCOCO inms(O 1090.04CO S CMr^ COCOOJ °q Tfs olo •Vs":CM'CMO)'O»O'O 001^o>COo> 1^ CMo>CO oCO COCOo «?COCMr^ 1^ in CDJTf-r^|O^id^iCOCO O CDS1"«!CMCO , CM'toiinO l^|CO iriicdidO O CMCO CO O •5o 5oo CN O CN CO COCO 00 CMICM O'COmr~- CM <- o>in CM o CM •|CM -r-. ••>- 1-ico co; r- CO CO!'—'1—lOl CT'f^•F n.'n. i *~:' *". i "^' °P 'P C CM|CNi|CO'icO|fOiCO!'T i in in'CMiCMCOlCO Ididid old O'OiOlO O!O'OlO,O O o tn O (D E 5 O) NOWAK + WISEMAN STRUCTURAL ENGINEERS BY DATE \Q\Qt\PROJECT SHEET NO. JOB NO. 2,, tl Company Designer Job Number Nowak-Meulmester & Associates Barry Speer 02-085 Bldg. 1 G.B. Along G.L. L (19-21) October 9, 2004 8:13 PM Checked By: Basic Load Case Data BLC NO.Basic Load Case Description Category Code Category Description Gravity Load Type Totals X Y Joint Point Direct Dist.1 2 3 4 5 6 7 8 9 3WEcw SWEccw 3EWcw SEWccw 4WEcw 4WEccw 4EWcw 4EWccw GBDL None None None None None None None None None 8 8 8 8 8 8 8 8 3 3 4 4 3 3 3 4 4 Boundary Conditions Joint Label X Translation Y Translation Rotation (k/in) (k/in) (k-ft/rad) N1 N5 Reaction Reaction Reaction Steel Design/NDS Parameters Member Section Length Lb out Lb in L_comp Cb Sway Label Set le out le in le bend K out K in CH Cm B out in R (ft) (ft) (ft) (ft) M1 M2 M3 M4 SEC1 SEC1 SEC1 SEC1 9.25 20 20 9.25 1. 1. 1. 1. 1. 1. 1. A 0. 0. 0. 0. Member Direct Distributed Loads, Category: None. BLC 1: 3WEcw Member Label Direction Start Magnitude End Magnitude Start Location End Location (k/ft.F) (kffi.F) (ftor%) (ftor%) M2 M3 M4 r Y Y Y 0 6.68 18.16 6.68 18.16 23.47 8.36 0 0 0 0 0 Member Direct Distributed Loads. Category: None. BLC 2 : 3WEccw Member Label Direction Start Magnitude End Magnitude Start Location End Location (k/ft, F) (Wft. F) (ft or %} (ft or %) M2 M3 M4 Y Y Y 0 5.62 19.29 5.62 19.29 25.61 11.78 0 0 0 0 0 Member Direct Distributed Loads. Category: None. BLC 3 : 3EWcw Member Label Direction Start Magnitude End Magnitude Start Location End Location (km. F) (k/ft, F) (ft or %) (ft or %) M1 M2 M3 M4 Y w Y Y 15.99 13.53 8.22 2.9 13.53 8.22 2.9 .45 0 0 0 0 0 0 0 0 Member Direct Distributed Loads. Category: None. BLC 4 : 3EWccw Member Label Direction Start Magnitude End Magnitude Start Location End Location (k/ft, F) (k/ft, F) (ft or %) (ft or %) M1 M2 M3 M4 Y Y Y Y 15.02 12.86 8.2 3.54 12.86 8.2 3.54 1.38 0 0 0 0 0 0 0 o RISA-2D Version 5.5b [E:\PROJECTS\03-098-1\BLDG1G~1\FRAMEL~1\FRAMEL~1.R2D]Page 1 Company Designer Job Number Nowak-Meulmester & Associates Barry Speer 02-085 Bldg. 1 G.B. Along G.L. L (19-21) October 9, 2004 8:13 PM Checked By: Member Direct Distributed Loads. Category: None. BLC 5: 4WEcw Member Label Direction Start Magnitude End Magnitude Start Location End Location (k/ft, F) (k/ft, F) (ft or %) (ft or %) M2 M3 M4 Y Y Y 0 4.09 16.05 4.09 16.05 21.58 13.16 0 0 0 0 0 Member Direct Distributed Loads. Category: None. BLC 6: 4WEccw Member Label Direction Start Magnitude End Magnitude Start Location End Location (km, F) (k/ft, F) (ft or %) (ft or %) M2 M3 M4 Y Y Y 0 2.04 17.36 2.04 17.36 24.44 17.33 0 0 0 0 0 Member Direct Distributed Loads. Category: None. BLC 7: 4EWcw Member Label Direction Start Magnitude End Magnitude Start Location End Location (k/ft, F) (k/ft, F) (ft or %) (ft or %) M1 M2 M3 Y Y Y 16.38 13.2 6.34 13.2 6.34 0 0 0 0 0 0 18.45 Member Direct Distributed Loads. Category: None. BLC 8 : 4EWccw Member Label Direction Start Magnitude End Magnitude Start Location End Location (k/ft, F) (k/ft, F) (ft or %) (ft or %) M1 M2 M3 M4 Y Y w Y 15.15 12.43 6.55 .64 12.43 6.55 .64 0 0 0 0 0 0 0 0 2.29 Member Direct Distributed Loads. Category : None. BLC 9 : GB PL Member Label Direction Start Magnitude End Magnitude Start Location End Location (k/ft, F) (km, F) (ft or %) (ft or %) M1 M2 M3 M4 Y Y Y Y -3.88 -3.88 -3.88 -3.88 -3.88 -3.88 -3.88 -3.88 0 0 0 0 0 0 0 0 Global Steel Code Allowable Stress Increase Factor (AS1F) Include Shear Deformation Display Sections for Member Calcs Max Internal Sections for Member Calcs Redesiqn Sections P-Detta Analysis Tolerance Merge Tolerance (in) ASD: AISC 9th, AISI99 1.333 Yes 5 97 Yes 0.50% .12 Joint Coordinates Joint Label X Coordinate (ft) N1 N2 N3 N4 N5 0 9.25 29.25 49.25 58.5 Y Coordinate Joint Temperature (ft) (F) 0 0 0 0 0 0 0 0 0 0 RISA-2D Version 5.5b [E:\PROJECTS\03-098~1\BLDG1G~1\FRAMEL~1\FRAMEL~1.R2D]Page 2 Company : Nowak-Meulmester & Associates Designer : Barry Speer Job Number: 02-085 Bldg. 1 G.B. Along G.L. L (19-21) October 9, 2004 8:13PM Checked By: Joint Loads/Enforced Displacements. Category: None. BLC 1: 3WEcw Joint Label [L]oad,[M]ass,or, [Displacement Direction Magnitude (k. k-tt. in, rad, k*sA2/m N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y 76 -65.9 -263 41 71 57 17.96 -17.96 Joint Loads/Enforced Displacements, Category: None. BLC 2 : 3WEccw Joint Label [L]oad,[M]ass,or, JDJispjagernent Direction Magnitude fk. k-ft. in. rad, k'sA2/ft) N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y 87 -65.9 -274 48 82 64 20.61 -20.61 Joint Loads/Enforced Displacements. Category: None. BLC 3: 3EWcw Joint Label [L]oad,[M]ass,or, [D]is placement Direction Magnitude fk. k-ft, in, rad, k*s*2/ft) N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y -181 -70.1 -1.93 -61.6 -93.9 -43.6 -21.15 21.15 Joint Loads/Enforced Displacements. Category: None. BLC 4 : 3EWccw Joint Label [L]oad,[M]ass,or, [Displacement Direction Magnitude fK. k-ft. in. rad. k'sA2/ft) N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y -170 -70.1 -12.6 -55.2 -83.1 -37.1 -18.64 18.64 Joint Loads/Enforced Displacements. Category: None, BLC 5: 4WEcw Joint Label [L]oad,[M]ass,or, IPJjs placement Direction Magnitude (k. k-ft, in. rad, k'sA2/ft) N2 N3 L L N4 L N2 N3 N4 N2 L LI L Y Y Y X X X Y 90 -43.8 -209 44 75 54 18.38 RISA-2D Version 5.5b [E:\PROJECTS\03-098-1\BLDG1G~1\FRAMEL-1\FRAMEL~1.R2D]PageS Company : Nowak-Metrimester & Associates Designer : Barry Speer Job Number: 02-085 Bldg. 1 G.B. Along G.L. L (19-21) October 9, 2004 ' 8:13PM Checked By: Joint Loads/Enforced Displacements. Category: None, BLC 5 (continued) Joint Label [L]oad,[M]ass,or, [Displacement Direction Magnitude (k. k-ft. in. rad. k*sA2/ft) N4 Y -18,38 Joint Loads/Enforced Displacements. Category: None. BLC 6: 4WEccw Joint Label [LJoad,[M]ass,or, [Displacement Direction Magnitude fk. k-ft, in. rad, k'sA2/ft) N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y 101 -43.8 -220 50 86 61 20.93 -20.93 Joint Loads/Enforced Displacements. Category: None. BLC 7: 4EWcw Joint Label [L]oad,[M]ass,or. [Displacement Direction Magnitude (k, K-n, in. rad, k*sA2/ft) N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y -167 -48 52 -59.1 -89.7 -46.4 -20.74 20.74 Joint Loads/Enforced Displacements. Category: None. BLC 8 : 4EWccw Joint Label [L]oad,[M]ass,or, [Displacement Direction Magnitude {k. k-ft, in. rad, k'sA2/m N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y -157 -48 42 -52.7 -78.9 -39.9 -18.22 18.22 Load Combinations Num Description Env WS PD SPSS CD BLC Factor BLC Factor BLC Factor BLC Factor13WEcwY1 2 SWEccw V 1 3 3EWcw V 1 4 | SEWccw Y I i 1 5 4WEcw y 1 6 4WEccw Y I 1 7 4EWcw Y 1 8 4EWccw Y 1 1 2 3 4 5 6 7 8 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 1 1 1 1 1 1 1 9 1 RISA-2D Version 5.5b [E:\PROJECTS\03-098~1\BLDG1G~1\FRAMEL~1\FRAMEL~1.R2D]Page 4 Company : Nowak-Meulmester & Associates Designer : Barry Speer Job Number: 02-085 Bldg. 1 G.B. Along G.L. L (19-21) October 9, 2004 8:13 PM Checked By: Load Combinations (continued} Mum Description Env WS PD SPSS CD BLC Factor BLC Factor BLC Factor BLC Factor 9 1 Envelope Member Section Forces Member Label Section Axial Lc Shear Lc Moment Lc (k) (k) (k) M1 M2 M3 M4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 max mm max mm max mm max mm max mm max mm max mm max mm max mm max min max mm max mm max mm max mm max mm max mm max mm max mm max mm max mm 199.1 -197 199.1 -197 199.1 -197 199.1 -197 199.1 -197 137.5 -147 137.5 -147 137.5 -147 137.5 -147 137.5 -147 46.4 -64 46.4 -64 46.4 -64 46.4 -64 46.4 -64 0 0 0 0 0 0 0 0 0 0 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 7 2 7 2 7 2 7 2 7 2 1 1 1 1 1 1 1 1 1 1 .079 -.45 27.546 -9.07 53.694 -18.042 78.004 -27.015 4 3 7 6 7 6 7 6 100.476 I 7 -35.987 85.943 -101.96 66.543 -57.029 47.143 -18.735 27.743 11.472 37.94 8.896 -17.464 -48.711 -9.459 6 6 3 6 3 6 3 6 8 3 5 7 2 7 -32.359 6 10.12 -12.834 59.995 -19.222 124.22 -36.577 36.163 -171.821 27.19 -134.358 18.218 -93.242 9.245 -48.472 .273 -.336 1 6 1 7 1 7 7 2 7 2 7 2 7 2 7 5 0 0 10.6 -31.694 41.948 -125.982 94.046 -278.613 166.892 -485.335 166.892 -485.335 -75.472 -214.321 102.516 -498.534 114.286 -685.747 -15.632 -778.384 -15.632 -778.384 96.461 1 1 6 7 6 7 6 7 6 7 6 7 1 6 3 6 3 6 3 6 O 6 3 -607.672 6 133.304 -486.71 128.147 -511.249 168.513 -839.959 168.513 -839.959 95.262 -485.235 42.759 -221.368 11.005 -56.806 0 3 6 3 6 7 2 7 2 7 2 7 2 7 2 1 0 1 RISA-2D Version 5.5b [E:\PROJECTS\03-098-1\BLDG1G-1\FRAMEL-1\FRAMEL-1.R2D]Page 5 1124.2 -48.7 -102 Solution. Envelope -Member Shear Forces (k) Nowak-Meulmester & Ass.Bfdg. 1 G.B. Along G.L.L (19-21) Barry Speer 02-085 October 9, 2004 8:13 PM FRAME L-1.R2D -465.3 -776.4 -840 Solution- Envelope Bending Moments (k-ft) iviowak-Meulmester & Ass..Bldg. 1 G.B. Along G.L. L (19-21) Barry Speer 02-085 October 9, 2004 8:14 PM FRAMEL-1.R2D Company Designer Job Number Nowak-Meulmester & Associates Barry Speer 02-085 October 7, 2004 ' 5:01 PM Checked By: Envelope Member Section Forces Member Label Section Axial Lc Shear Lc Moment Lc (k) (k) (k) M1 M2 M3 M4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 max mm max min max min max min max min max min max min max min max min max min max min max mm max mm max min max min max mm max mm max mm max mm max mm 184.6 -170 184.6 -170 184.6 -170 184.6 -170 184.6 -170 127.2 -124 127.2 -124 127.2 -124 127.2 -124 127.2 -124 39.9 -57 39.9 -57 39.9 -57 39.9 -57 39.9 -57 0 0 0 0 0 0 0 0 0 0 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 7 1 7 1 7 1 7 1 7 1 1 1 1 1 1 1 1 1 1 1 .195 -52.545 27.822 -61.275 53.823 -70.005 78.109 -78.657 100.68 -86.014 79.016 -93.963 61.071 -51.505 43.126 -15.338 25.21 14.296 44.467 13.152 -7.455 -45.684 1 1 .802 -29.167 38.309 -23.067 72.066 -25.559 122.873 -35.3 33.44 -165.247 26.082 -129.227 17.509 -89.568 8.779 -46.269 .668 -17.879 8 6 7 6 7 6 7 6 7 6 5 3 5 3 5 3 7 1 7 5 6 2 6 2 6 7 6 7 1 7 7 2 7 2 8 2 8 2 2 6 0 0 128.047 -31 .739 275.737 -123.911 443.051 -272.657 628.627 -474.116 628.627 -474.116 503.578 -219.959 406.818 -406.565 304.817 -564.526 164.046 -647.32 164.046 -647.32 156.787 -505.069 77.532 -417.739 100.124 -459.502 155.453 -784.274 155.453 -784.274 88.474 -452.309 39.508 -205.483 9.933 -71.732 0 0 1 1 6 7 6 7 6 7 6 7 6 7 6 7 6 5 6 5 6 5 6 5 6 5 3 5 3 5 7 2 7 2 8 2 8 2 8 6 1 1 RISA-2D Version 5.5b [E:\...\...\Bldg 1 GRADE BEAMSIFRAME K91FRAME K9.r2d]Page 1 <Sj 1\0 -MS" -45.7 122.9 -165.2 Solution: Envelope Member Shear Forces (k) Nowak-Meulmester & Ass. Barry Speer 02-085 October?, 2004 5:04 PM FRAME K9.r2d -474.1 -647.3 -784.3 : Envetope "lember Bending Moments (k-ft) Nowak-Meulmester & Ass. Barry Speer 02-085 October 7, 2004 5:04 PM FRAME K9.r2d -291.77k -63.83k 20.5k/ft 1563k/ft Loads: LC 4, SNSccw Results for LC 4. 3NSccw Nowak-Meulmester & Ass.Bldg.2 GB along 11 (D-C) Barry Speer 02-085 October 9, 2004 10:31 PM FRAME 11.R2D '"1148.8 ~45.2 -142.9 ^Results for LC 4. 3NSccw ~" Member Shear Forces (k) iMowak-Meulmester & Ass.Bldg.2GB along 11 (D-C) Barry Speer 02-085 October 9, 2004 10:32PM FRAME 11.R2D -640.8 ..Results for LC 4, SNSccw 'ember Bending Moments (k-fl) Nowak-Meufmester & Ass... Barry Speer 02-085 Bldg.2 GB along 11 (D-C)October 9, 2004 10:32PM FRAME11.R2D Company : Nowak-Meu I master & Associates Designer : Barry Speer Job Number: 02-085 Bldg. 1 G.B. Along G.L. L (25-27) October 8, 2004 10:03 PM Checked By:_ Basic Load Case Data BLC No.Basic Load Case Description Category Code Category Description Gravity Load Type Totals X Y Joint Point Direct Dist. 1 2 3 4 5 6 7 8 9 SWEcw SWEccw 3EWcw SEWccw 4WEcw 4WEccw 4EWcw 4EWccw GBDL None None None None None None None None None 8 8 8 8 8 8 8 8 4 4 3 3 4 3 3 3 4 Boundary Conditions Joint Label X Translation Y Translation Rotation (k/in) (k/in) fk-ft/rad) N1 N5 Reaction Reaction Reaction Steel Design/NDS Parameters Member Section Length Lbout Lbin L comp Cb Sway Label Set le out le in le bend Kout Kin CH Cm B out in R (ft) . (ft) (ft) (ft) M1 M2 M3 M4 SEC1 SEC1 SEC1 SEC1 7.5 24 24 7.5 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. Joint Coordinates Joint Label X Coordinate Y Coordinate Joint Temperature (ft) (ft) (H N1 N2 N3 N4 N5 0 7.5 31.5 55.5 63 0 0 0 0 0 0 0 0 0 0 Joint Loads/Enforced Displacements. Category: None. BLC 1: 3WEcw Joint Label [L]oad,[M]ass,or, [Displacement Direction Magnitude (k, k-ft, in, rad. k*sA2/ft) N2 N3 N4 N2 N3 N4 N2 L L L L L L L N4 | L Y Y Y X X X Y Y -42.4 -79.2 -172 42 99 60 16.75 -16.75 Joint Loads/Enforced Displacements. Category: None_^ BLC 2: 3WEccw Joint Label [L]oad,[M]ass,or, Direction Magnitude [Displacement (k, k-ft, in, rad, k'sA2/ft) N2 N3 N4 N2 L L L L N3 L N4 L Y Y Y X X X -36 -79.2 -179 47 105 65 RISA-2D Version 5.5b [E:\PROJECTS\03-098~1\BLDG1G~1\FRAMEL~2\FRAMEL25.R2D]Page 2 Company Designer Job Number Nowak-Meulm ester & Associates Barry Speer 02-085 Bldg. 1 G.B. Along G.L. L (25-27) October 8, 2004 10:03PM Checked By: Joint Loads/Enforced Displacements, Cateaorv: None. BLC 2 (continued) Joint Label [Ljoad,[M]ass,or, Direction Magnitude FDl is placement (k, k-ft, in, red, k*sA2/ft) N2 N4 L L Y Y F 18.08 -18.08 Joint Loads/Enforced Displacements, Cateaorv: None, BLC 3 : 3EWcw Joint Label [L]oad,[M]ass,or, [Displacement Direction Magnitude (k. k-ft. in, rad. k's"2/ft) N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y -276 -72.8 57 -66.8 -87.4 -46.7 -16.74 16.74 Joint Loads/Enforced Displacements. Cateaorv: None. BLC 4 : SEWccw Joint Label [L]oad,[M]ass,or, [Displacement Direction Magnitude (k, k-ft. in. rad, k'sA2/m N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y -270 -72.8 50 -62.5 -81 -42.4 -15.49 15.49 JointLoads/EnforcedDispJacements, Cateaorv: None. BLC 5 : 4WEcw Joint Label [L]oad,[M]ass,or, JDJispJacement Direction Magnitude (k. k-ft, in, rad. k*sA2fft) N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y 18 -55.4 -156 45 94 58 16.42 -16.42 Joint Loads/Enforced Displacements. Cateaorv: None. BLC 6: 4WEccw Joint Label [L]oad,[M)ass,or, [Dlispla cement Direction Magnitude fk, k-ft. in, rad, k'sfl2/ft) N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y 25 -55.4 -162 50 101 62 17.75 -17.75 Joint Loads/Enforced Displacements. Cateaorv: None, BLC 7: 4EWcw Joint Label N2 N3 [L]oad,[M]ass,or, Direction Magnitude [Displacement fk, k-ft, in, rad, k*sA2/ft) LI Y Y -215 -49 RISA-2D Version 5.5b [E:\PROJECTS\03-098~1\BLDG1G~1\FRAMEL~2\FRAMEL25.R2D]PageS Company Designer Job Number Nowak-Meulmester & Associates Barry Speer 02-085 Bidg. 1 G.B. Along G.L. L (25-27) October 8, 2004 10:03PM Checked By: Joint Loads/Enforced Displacements. Category: None. BLC 7 (continued) Joint Label [L]oad,[M]ass,or, [Displacement Direction Magnitude (k, k-ft, in, rad. k*sA2/ft) N4 N2 N3 N4 N2 N4 L L L L L L Y X X X Y Y 74 -64 -91.9 -49.4 -17.11 17.11 Joint Loads/Enforced Displacements. Category: None. BLC 8: 4EWccw Joint Label [L]oad,[M]ass,or, [Displacement Direction Magnitude (k. k-ft. in, rad. k'sA2/ft) N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y -209 -49 67 -59.7 -85.5 -45.1 -15.86 15.86 Load Combinations Num Description Env WS PD SRSS CD BLC Factor BLC Factor BLC Factor BLC Factor1SWEcwy1 2 SWEccw Y 1 3 SEWcw Y 1 4 SEWccw y 1 5 4WEcw Y 1 6 4WEccw | y 1 7 4EWcw V 1 8 4EWccw Y 1 9 1 1 2 3 4 5 6 7 8 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 RISA-2D Version 5.5b [E:\PROJECTS\03-098~1\BLDG1GH\FRAMEL~2\FRAMEL25.R2D]Page 4 Company Designer Job Number Nowak-Meulmester & Associates Barry Speer 02-085 Bldg. 1 G.B. Along G.L. L (25-27) October 8, 2004 10:OOPM Checked By: Envelope Member Section Forces Member Label Section Axial Lc Shear Lc Moment Lc (K) (k) (k) M1 M2 M3 M4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 max mm max mm max mm max mm max min max min max mm max min max min max min max min max min max min max min max min max min max min max min max min max min 205.3 -217 205.3 -217 205.3 -217 205.3 -217 205.3 -217 141.3 -170 141.3 -170 141.3 -170 141.3 -170 141.3 -170 49.4 -65 49.4 -65 49.4 -65 49.4 -65 49.4 -65 0 0 0 0 0 0 0 0 0 0 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 1 1 1 1 1 1 1 1 1 1 .22 -.334 37.405 -6.449 72.991 -12.749 106.574 -19.032 138.156 -25.328 17.422 -154.874 1.098 -70.852 16.575 -14.292 47.1 -2.607 73.056 10.07 1 4 3 5 3 5 3 5 3 6 6 4 6 4 7 1 7 6 3 0 0 6.186 -35.21 24.184 -139.019 53.993 -307.674 95.46 -537.422 95.46 -537.422 188.671 -57.823 380.532 -1 1 .626 346.678 -213.469 259.363 6 -533.571 6.995 7 259.363 -52.347 2 ; -533.571 8.083 -22.965 4 482.14 6 : -548.278 18.423 2 492.607 -25.618 7 -455.049 64.946 2 246.213 -45.778 7 -240.86 118.893 2 95.178 -65.938 7 -301.59 25.29 -78.187 18.99 -59.805 12.69 -40.696 6.39 -20.861 .445 -.43 4 2 4 2 4 2 4 2 6 1 95.178 -301 .59 53.665 -172.109 23.964 -77.775 6.076 -19.952 0 0 1 1 5 3 5 3 5 3 6 3 6 3 1 7 4 7 1 7 2 7 2 7 2 7 2 7 2 7 4 2 4 2 4 2 4 2 4 2 1 1 RISA-2D Version 5.5b [E:\PROJECTS\03-098~1\BLDG1G~1\FRAMEL~2\FRAMEL25.R2D]Page 1 "118.9 -T12-25.3 -154.9 Solution; Envelope Member Shear Forces (k) Nowak-Meulmester & Ass.Bldg. 1 G.B. Along G.L L (25-27) Barry Speer 02-085 October 8, 2004 10:01 PM FRAMEL25.R2D ""382"51T" r15 -301.6 •537.4 -552.7 Solution: Envelope Member Bending Moments (k-ft) Nowak-Meulmester & Ass.Bldg. 1 G.B. Along G.L. L (25-27) Barry Speer 02-085 October 8, 2004 10:01 PM FRAMEL25.R2D -95.35k 12k/ft Loads: LC4.3EWccw Jesuits for LC 4. SEWccw Nowak-Meulmester & Ass. Barry Speer 02-085 Bldg.2GBalongA(6-7)October 9, 2004 11:OOPM frameA.r2d IzLx '!585 -36.9 Results for LC 4, SEWccw Member Shear Forces (k) Nowak-Meulmester & Ass. Barry Speer 02-085 Bldg.2 GB along A (6-7)October 9. 2004 11:OOPM frameA.r2d -187.1 Results for LC 4, 3EWccw "'Member Bending Moments (k-ft) Nowak-Meulmester & Ass. Barry Speer 02-085 Bldg.2 GB along A (6-7)October 9, 2004 11:00 PM frameA.r2d -38.25k -1.68k/ft 68k/ft 9.6k/ft 33.95k Loads: LC2, 3WEccw ^Results for LC 2, 3WEccw Nowak-Meulmester & Ass.Bldg.2GB along K (10-10.5) Barry Speer 02-085 October 9, 2004 11:28PM frameK.r2d -10.1 -28.3 Results for LC 2, 3WEccw Member Shear Forces (k) Nowak-Meulmester & Ass. Barry Speer 02-085 Bldg.2 GB along K (10-10.5)October 9. 2004 11:28PM frameK.r2d |N3 -114.2 Resufts for LC 2. 3WEccw Member Bending Moments (k-ft) Nowak-Meulmester & Ass. Barry Speer 02-085 Bldg.2GB along K (10-10.5)October 9, 2004 11:28PM frameK.r2d EL, Nowak & Wiseman Barry Speer 02-085 Bldg.2 GB along 8 (D-C) Dec 16, 2004 at 4:59 PM frameK.r2d EL. *»LCi JK$0- Nowak & Wiseman Barry Speer 02-085 Bldg.2 GB along 8 (D-C) Dec 16, 2004 at 5:00 PM frameK.r2d