Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
225 HEMLOCK AVE; ; CB161168; Permit
City of Carls-bad 1635 Faraday Av Carlsbad, CA 92008 08-24-2016 Residential Permit Permit No: CB161168 Building Inspection Request Line (760) 602-2725 225 HEMLOCK AV CBAD RESDNTL Job Address: Permit Type: Parcel No: Valuation: Occupancy Group, # Dwelling Units: Bedrooms: 2042700401 $441, 12Q.OO 1 0 Sub Type: CONDO Lot#: 0 Constuction Type: 5B Reference #: MS 150011 Structure Type: SFD Bathrooms: 0 Orig PC#: Status: ISSUED Applied: 03/25/2016 Entered By: LSM Plan Approvec;I: 08/24/2016 Issued: 08/24/2016 Inspect Area: Plan Check #: Project Title: SPEC HOME-BUILD NEW 2,771 SF LIVING// 517 SF GARAGE// (3) DECKS= 467 SF. THERE WILL BE A DEMO OF AN EXISTING HOME ON A SEPARATE PERMIT Applicant: KEVIN DUNN 3005 S EL CAMINO REAL SAN CLEMENTE CA 92672 949-438-5494 Building Permit Add'! Building Permit Fee Plan Check Add'! Plan Check Fee Plan Check Discount Strong Motion Fee Park in Lieu Fee Park fee LFM Fee Bridge Fee Other Bridge Fee BTD#2 Fee BTD #3 Fee Renewal Fee Add'! Renewal Fee Other Building Fee HMP Fee Pot. Water Con. Fee Meter Size Add'! Pot. Water Con. Fee Reel. Water Con. Fee Green Bldg Stands (SB1473) Fee Green Bldg Stands Plan Chk Fee Total Fees: $1,840.16 $0.00 $1,288.11 $0.00 $0.00 FS1 $57.35 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $18.00 $163.00 Total Payments to Date: Owner: RREG INVESTMENTS, LLC SERIES 1019 3005 SEL CAMINO REAL SAN CLEMENTE CA 92672 949-438-5494 Meter Size Add'! Reel. Water Con. Fee Meter Fee SDCWAFee CFO Payoff Fee PFF (3105540) PFF (4305540) License Tax (3104193) License Tax (4304193) Traffic Impact Fee (3105541) Traffic Impact Fee (4305541) Sidewalk Fee PLUMBING TOTAL ELECTRICAL TOTAL MECHANICAL TOTAL Housing Impact Fee Housing lnLieu Fee Housing Credit Fee Master Drainage Fee Sewer Fee Additional Fees Fire Sprinkler Fees TOTAL PERMIT FEES $23,832.90 Balance Due: FINAL APPROVAL FS1 $0.00 $356.00 $0.00 $0.00 $8,028.38 $7,410.82 $0.00 $0.00 $0.00 $0.00 $0.00 $221.00 $89.00 $118.08 $0.00 $4,515.00 $0.00 $0.00 $0.00 ($272.00) $0.00 $23,832.90 $0.00 Inspector: Date: Clearance: -------- NOTICE: Please take NOTICE that apiro.tal c:i yrur prtjed irx::ludes the "ln,:n,ltion'' ci fees, da:fications, · reservations, or other exactions hereafter collectively referred to as ''fees/exactions." You have 00 days frcrn the date this ~t 'Ni!JS issued to protest irrp'.)Sitim ci these fees/exactions. lfyw protest them, yw ITTJSt follo.vthe protest proorllres set forth in G:1ve!rmrt Cooe Sectim 60020(a), and file the protest and any other reqtired infarratim wth the aty ~ fa p-cx:essirg in accadcrre wth Cafsboo M.ridpal Cede Sectim 3.32.030. Faih.re to tirrely fpllo.vthat proretlLre wll bar any su~ legal a::tion to attack, review, set aside, vcid, a anrut their irrp'.)Sition. You ere herel:1/ FlRll-ER NOTIFIED that yar rigit to p-ctest the specified fees/exactions CXJES NOT APA.. Y to water and Sf!N8r cmnedim fees and ~ty changes, na planrirg, zcrirg, gadrg or other sinilar appicatia, p-cx;essirg a seivire fees in cmnedim wth tns prtject. NOR DCES IT APA.. Y to any i · i wi · · 'rril hi o W1i the stat e !irritations has 'ousi otherwse e 'red. J THE FOLLOWING APPROVALS REQUIRED PRIOR TO PERMIT ISSUANCE: D PLANNING D ENGINEERING {"atyof C-arlsbad- Building Permit Application 1635 Faraday Ave., Carlsbad, CA 92008 Ph: 760-602-2719 Fax: 760-602-8558 email: building@carlsbadca.gov www.carlsbadca.gov OBUILDING OFJRE OHEALTH D HAZMAT/AP.CD Plan Check No. Qi:> t l ~cg- Est. Value Y-4 f tG-0 . Plan Ck. Deposit / ;;t 8"8'. I I Date .3 ;;is I SWPPP ' <j ~~~ ...... ~---...-;;~ ...................... ~ ...... ~ioiiiaai,;;;;;;.;;;:;~----....::..w......:;;;;~.;,i...~'--iiiii,j ~ ~ ADDRESS CIJY STATE ZIP PHONE FAX EMAIL STATELIC.# CLAS.S CITY BUS. LIC.# Workers' Compensation Declaration: I hereby affirm under penalty of pe,jury one of the following declarations: · D I have and will maintain a certificate of consent to self.Insure for workers' compensation as provided by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. D I have and will maintain w9r!!~rs' compensation, as reaulred by Section _3709 of the Ll!bor Code, for the perfomi?nce of lt]e work,for whi9h \hi~ permit js issue(!. My workers' compensation insurance carrier and policy number are: Insurance Co. Policy No.-'------"-------'----Expiration Date~-------- This section need not be completed if the permit Is for one hundred dollars ($100) or less. 0 Certificate of Exemption: I certify thatin the performance of the work for which this permitis issued, I shall not employ any person in any manner so as to become subject to the Workers' Compensation Laws of California. WARNING: Failure to secure workers' compensation coverage Is unlawful, and shall subject an employer to criminal penalties and civil fines up to one hundred thousand dollars (&100,000), In addition to the c9~t of compensation, damages as provided for In Section 3706 of the Labor code, Interest and attorney's fees • .A!5 CONTRACTOR SIGNATURE 111111111 OAGENT DATE I hereby affinn that I am exempt from Contractor's Ucense Law for the following reason: o· I, as owner of the property or my employees with wages as their sole compensation, will·do the work and the structure is not intended or offered for sale (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an·owner of property who builds or improves thereon, and who does such work himself or through his own employees, provided that such improvements are not intended or offered for • ~ , sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not-build or improve for the purpose of sale). I _ ·. i, as owner of the property, am exclusively contracting with licensed contractors to constructthe project (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and contracts for such projects with contractor(s) licensed pursuant to the Contractor's License Law). D -I am exempt under Section -Business and Professions Code for this reason: 1. I personally plan to provige the major labor and materials for construction of the proposed property improvement. OYes 0No 2. I (have I have not) signed an application for a building permit for the proposed work. 3. I have contracted with the following person (firm) to provide the proposed construction (include name address/ phone/ contractors' license number): 4. I plan to provide portions of the work, but I have hired the following person to coordinate, supervise and provide the major work (include name I address I phone/ contractors' license number): 5. I will provide some of the work, but I have contracted (hired) the following pers9ns to provide the work indicated (include name I address / phone / type of work): ...@S'. PROPERTY OWNER SIGNATURE Is the applicant or future building occupant required to submit a business plan, acutely.hazardous materials registration form or risk management and prevention program under Sections 25505, 25533 or 25534 of the Presley-Tanner Hazardous Substance Account Act? Cl Yes Cl No ' Is the applicant or future building occupant required to obtain a permit from the air polfution control district or air quality management district? CJ Yes Cl No Is the facility to be constructed within 1,000 feet of the outer boundary of a school site? Cl Yes Cl No IF ANY OF THE ANSWERS ARE YES, A FINAL CERTIFICATE OF OCCUPANCY MAY NOT BE ISSUED UNLESS THE APPLICANT HAS MET OR IS MEETING THE REQUIREMENTS OF THE-OFFICE OF EMERGENCY SERVICES AND THE AIR POLLUTION CONTROL DISTRICT. I certify th a ti have read the application and state that the aboYe lnfonnation is correct and that the lnfonnation on the plans is accurate. I agree to comply with all Cityorclin.ances and Slate lav.s relating to building construction. I hereby authorize representative of the City of Carlsbad to enter upon the above mentioned property ilr inspection purposes. I ALSO AGREE TO SAVE, INDEMNIFY AND KEEP HARMLESS THE CITY OF CARLSBAD AGAINSTALL LIABILITIES, JUDGMENTS, COSTS AND EXPENSES WHICH MAY IN ANY WAY ACCRUE AGAINST SAID CITY IN CONSEQUENCE OF THE GRANTING OF THIS PERMIT. OSHA: An OSHA permit is required for excavations over 5'0' deep and demolltion or construction of structures over 3 stories in h~ight. EXPIRATION: Every permit issued by the Building Offi:;ial urider the · bns of this Code shall expire by limitation and berome null and void if the building or mik authorized by such permit is not commenced within 180 days from the date of such permit or if the · · or by uch permit is suspended or abandoned at"any time after the mik is commenced for a period of 180 days (Section 106.4.4 Uniform Building Code) . ....@S' APPLICANT' DATE • ··· .,, · · STOP: THIS SECTION NOT REQUIRED FOR BUILDING PERMIT ISSUANCE. Complete the following ONLY if a Certificate of Occupancy will be requested at final inspection. . ,. , c J ,~ I flroJC-CZS 0 n I,, j Fax (760) 602-8560, Email building@carlsbadca.gov or Mail the completed form to City of Carlsbad, Building Division 1635 Faraday Avenue, Carlsbad, California 92008. I CO#: (Office Use Only) CONTACT NAME OCCUPANT NAME ADDRESS BUILDING ADDRESS CITY STATE ZIP CITY STATE ZIP Carlsbad CA PHONE I FAX ,• ·EMAIL OCCUPANT'S BUS. LIC. No. DELIVERY-OPTIONS Cl PICK UP: o CONTACT (Listed above) o OCCUPANT (Listed above) o CONTRACTOR (On Pg. 1) Cl MAIL TO: o CONTACT (Listed above) o OCCUPANT (Listed above) . · o ASSOCIATED CB# o CONTRACTOR (On Pg. 1) o N.O CHANGE IN USE/ NO CONSTRUCTION - Cl MAIL/ FAX TO OTHER: o CHANGE OF USE/ NO CONSTRUCTION A5 APPLICANT'S SIGNATURE DATE \ City of Carlsbad 1635 Faraday Av Carlsbad, CA 92008 08-24-2016 Storm Water Pollution Prevention Plan (SWPPP) Permit Permit No:SW160298 Job Address: Permit Type: Parcel No: Reference #: CB#: Project Title: Applicant: 225 HEMLOCK AV CBAD SWPPP 2042700401 CB161168 SPEC HOME PREGINVE$TMENTS,LLC Emergency Contact: KEVIN DUNN 949 637-3254 SWPPP Plan Check SWPPP Inspections Additional Fees TOTAL PERMIT FEES Status: Lot#: 0 Applied: Entered By: Issued: Inspect Area: Tier: Priority: Own·er: PREGINVESTMENTS,LLC ISSUED 06/28/2016 RMA 08/24/2016 1 L $0.00 $59.00 $0.00 $59.00 Total Fees: $59.00 Total Payments To Date: $59.00 Balance Due: FINAL APPROVAL DATEjb~:_~-- SIGNATUR~ .. $0.00 Permit Type: BLDG-Residential Application Date: 03/25/2016 Owner: Work Class: Condo Issue Date: 08/24/2016 Subdivision: Status: Closed -Finaled Expiration Date: 04/10/2018 Address: !VR Number: 713354 Actual S~heduled Date Start Date Inspection Type lnsp(!ction No. 05/16/2017 05716/2017 09/25/2017 09/25/2017 10/12/2017 10/12/2017 10/13/2017 10/13/2017 10/26/2017 10/26/2017 , October 26, 2017 Checklist Item BLDG-Building Deficiency BLDG-17 Interior 023406-2017 Lath/Drywall Checklist Item BLDG-Building Qeficiency BLDG-32 Const. 035616-2017 Service/Agricultural( Temp) Checklist Item BLDG-Building Deficiency BLDG-23 037364-2017 Gas/TesURepairs Checklist Item BLDG-Building Deficiency BLDG-Fire Final 036914-2017 BLDG-Final Inspection Checklist Item FIRE-Building Final 038656-2017 Checklist Item .. BLDG-Building Deficiency BLDG-Plumbing Final BLDG-Mechanical Final BLDG-Structural Final BLDG-Electrical Final Inspection Status Primary Inspector COMMENTS Passed Paul Burnette COMMENTS Passed Michael Collins COMMENTS EMR emailed to SDGE Passed Paul Burnette COMMENTS Passed Daniel Stowe COMMEN"T:S Passed Paul Burnette COl\llMEN:rs RREG INVESTMENT SERIES LLC SERIES 1019 225 Hemlock Av Carlsbad, CA Reinspection Complete Passed Yes Complete Passed No Complete Passed Yes Complete Passed Yes Complete Passed Yes Complete Passed Yes Yes Yes Yes Yes Page 2 of 2 .:•,' Permit Type: BLDG-Residential Application Date: 03/25/2016 Owner: Work Class: Condo Issue Date: 08/24/2016 Subdivision: Status: Closed -Finaied Expiration Date: 04/10/2018 Address: Scheduled Actual Date Start Date 04/19/2017 11/02/2016 1'1102/2016 02/21/2017 02/21/2017 03/1'/'./2017 03/-17/2017 03/21/2017 03/21/2017 04/11/2017 04/1.1/2017 04/19/2017 04/19/2017 October 26, 2017 IVR Number: 713354 Inspection Type Inspection No. BLDG-18 Exterior 020761-2017 Lath/Drywall Ctwckli_st Item BLDG-Building Deficiency BLDG-11 002200-2016 Foundatlon/Ftg/Pier s (Rebar) Checklist I.tern BLDG-Building Deficiency BLDG-15 014149-2017 Roof/ReRoof (Patio) Checklist Item BLDG-Building Deficiency BLDG-13 Shear Panels/HD (ok to wrap) 016882-2017 Checklist Item BLDG-Building Deficiency BLDG-13 Shear Panels/HD (ok to wrap) 017089-2017 Checklist Item . BLDG-Building Deficiency BLDG-84 Rough Combo(14,24,34,44) 019559-2017 Checklist Item BLDG-Building Deficiency BLDG-14 Frame-Steel-Bolting-Welding (Decks) BLDG-24 Rough-Topout BLDG-34 Rough Electrical BLDG-44 Rough-Ducts-Dampers BLDG-17 Interior Lath/Drywall 020424-2017 Checkli_st lterp BLDG-Building Deficiency BLDG-23 Gas/Test/Repairs 020423-2017 Inspection Status Primary Inspector Passed Paul Burnette COMIVi.ENTS Passed Paul Burnette COMMENTS Passed Jonathan West . COMMENTS Received height certification Failed Paul Burnette COMMENTS Passed Paul Burnette COMMENTS Passed Paul Burnette COMMENTS Passed . Paul Burnette COMMEl'JTS Passed Paul Burnette RREG INVESTMENT SERIES LLC SERIES 1019 225 Hemlock Av Carlsbad, CA Reinspection Complete Complete Passed No Complete Passed No Complete Passed Yes Reinspection Complete Passed No Complete Passed Yes Complete Passed Yes Yes Yes Yes Yes Complete Passed Yes Complete Page 1 of 2 Inspection History: 10/25/2016: 21-BLDG--Underground/Under Floor Approval Completed By PB ... PACIFIC CONSTRUCTION INSPECTIONS, INC. 12308FronsacStreet TeL (619} 7784219 San Diego, CA 92131 Email. padfidnsp20@yahoo.com I JOB NO. 1~ 3/14./11· CERTIFIED INSPECTOR'S WEEKLY REPORT , COVERING WORK PERFORMED D REINFORCED CONCRETE D STRUCT STEEi. ASSEMBLY 0 5PA.AY-Al'PLIEO FIREPROOFING WHICH REQUIRED APPROVAL BY D PRE-STRESSED CONCRETE D REINFORCED GYPSUM @OTHER Wood THE SPECIAL INSPECTOR OF D REINFORCED MASONRY . D DEEP FOUNDATtON .IOl!'.AOORESS B(Jfl.OIHGPERMITHUMBat I PI.ANFliENUMllER 225/235 Hemlock Ave, Carlsbad OWNe!ORP!lOJECfNAMf ARCfltm:r Garfield Custom Beach Homes Shackelton Design ~NSlltMAlL~GRAO!,.ETC) IIJESIGH stRENGTfl SOUIICEOFMFGR fHGIIEEll HTK Structural Ennineers OfSCR!BEMATI.(MIXOESIGN,R&BARGl!AOl:&MfGII.WEID-IIOO,Elt:) GENSW.CONTRAC!OR Rincon COHIR.00/ffGREPORTEOWORIC Accel Framing LU. RECEMHG&iE5llNGCONS!ltMATI.SAMP!.ES INSP£Cl10N AIIRIVAL ttME. OEllll.EDRB'ORT DATE OEPAAnJREllME. OFWORKfNSPECTED =:-~=-~:=i.~':"'wa:~:=::o:~~moo: QlfflECIJof<s(WllDS.IWlE.lttJ<llJStOltl!/8:CIEOm;E!"C Arrived on site to provide periodic special inspection of shear wall nailing at 4" on-center or less at Building #1 and Building #2, levels 1, 2 and 3: Referenced sheet S0.3 Shearwall Schedule and Notes. Inspection included nail spacing, penetration and edge distance. Holdowns, anchor bolts, straps and A35/LTP4's. Sheathing type and thickness ~re per contract documents . . . . ~-.. -.. .. - ,, INSPEaOR(PRINT ORTYPE) ·Michael Vidovich SIGNATURE: '/JJjA ~t.,,,A < • DATE SIGNED: 3 I 14'17 CERTIF(CATENO, 8292Zj4 . CERTIFICATION OF COMPUANCE:tothe bestofourknowlecfge, afl of the reported work, unless otherwise noted,substantiallycomplfes with approved pfans. specfficatlons and applicable sections of the building codes. This report covers the locations of the work inspected only and does not constitute engineering pin Ion or project control. · CIVIL ENGINEERING .,. LAND PLANNING+ LAND SURVEYING January 27, 2017 City of Carlsbad Building Dept. 1635 Faraday Avenue Carlsbad, CA Re:. Height Certification for: 225 Hemlock St. Permit No. CB161168 (WEST) 235 Hemlock St. Permit No. CB161170 (EAST) To Whom It May Concern: PLSA2319 Please be advised that in January 25, 2017 this office field surveyed the height of the structu_res on the above referenced project:Based on the lower of existing or natural grade and factoring in the roofing materials, we have found the building heights to l?e as follows: Location West Building East Building Height 29.85' 29.95' If.you should have any questions in reference to the info~ation listed above, please do not hesitate to contact this office. Sincerely, 0.fd Joseph Yuhas, PLS 5211 . Principal Land Surveying Pasco Laret Suiter & Associates, Inc. (Cityof Carlsbad SPECIAL INSPECTION AGREEMENT 8-45 Development Services Building Division 1635 Faraday Avenue 760-602-2719 www.carlsbadca.gov In accordance with Chapter 17 ofthe California Building Code the followjng must be completed when work being performed requires special inspection, structural observation and construction material testing. Project/PermitU..AJ.f(UO l U~ Project Address: (l_~S \.\E:W~ b.iE;.. ~ tt0~e, \-'\Ot--tc;e. ~ \ A. THIS SECTION MUST BE COMPLETED BY THE PROPERTY OWNER/AUTHORIZED AGENT. Please check if you are Owner-Builder CJ. (If you checked as owner-builder you must also complete Section B of this agreement.) ... Name: (Please print)1--8...;,;;;>-.~H,,,,<<"'f--{M..L\=>o.f..=~=\.___ ___ 4{=-+ _____ Q\A:L_l-.l!-'~!..e:..1B---:J....;==-i1'~N __ (First) (M.I.) (Last) MaJlingAddress: \1()(() 2,.~ ~, '*\ltM~, ~ 4?CJ'2-1:" Email· ~ ~ ~~c-tUrG .?Dlt1 Phone16:c • £21'1 · ~ I am: CJProperty Owner CJProperty Owner's Agent of Record State of California Registration NumbecC, ,~+"O~ ~rchitect of Record DEngineer of Record Expiration Date: (;('i:?l $a/ t7 AGREEMENT: I, the' undersigned, declare under penalty of perjury under the laws of the State of California, that I have read, understand, acknowledge and promise to comply with the City of Carlsbad requirements for special inspections, structural observations, construction materials testing and off-site fabrication of building components, as prescribed in the statement of special inspectio ted on the proved plans a , as re ir d b the California Building Code. Signatur....._· --.-~7':A~f-::,:,,,,-..,.__-FPJl#-#~~1----:r---Date: ~ /z-f l l 6 C)l..r-fJ'Cl!--- 8. C6N'fPt-Ae'fOR'&-STATEMENT OF RESPONSIBILITY (07 CBC, Ch 17, Section 1706). This section must be completed by the contractor I builder / owner-builder. Contractor's Company Name: ~~?btf 'kl/.el.{J ~ Please check if you are Owner-Builder CJ Name: (Please print) . f{,::v:,;:-...J . . A,,p,J' (First) (M.I.) · (~as!) Mailing Address: 3D::)6: ¢ ck ~ ~ t "4d Ct-e;.~ c#t-'JZJr-Z 'L Email: {:>vllfl@j)..r:z.Ja,Jq_f/,(;.ck"-'-Phone: qt{'l 031 '7ll~lj State of California Contractor's I.license Number:. _________ Expiration Date: ______ _ • I acknowledge and, am aware, of special requirements contained in the statement of special inspections noted on the approved plans; • I acknowledge that control will be exercised to obtain conformance with the construction documents approved by the building official; • I will have in-place procedures for exercising control within our (the contractor's) organization, for the method and frequency of reporting and the distribution of the reports; and • I certify that I will have a qualified person within our (the contractor's) organization to exercise such control. • I will rovide a final r in coin liance with CBC Section 1704.1.2 rior to re uestin final inspection. I J Signature· Date: -=~C-J/Clio<...z=1__,ll""'cu"--------r 7 B-45 Page 1 of 1 Rev. 08/11 DATE: June 2, 2016 JURISDICTION: Carlsbad PLAN CHECK NO.: 16-1168 EsGil Corporation In (J!artnersfiip witfi government for (}3ui(aing Safety SET: ii PROJECT ADDRESS: 225 Hemlock Avenue D APPLICANT D JURIS. D PLAN REVIEWER D FILE PROJECT NAME: SFD/Garage/Decks for Rincon Real Estate Group ~ The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's building codes. D The plans transmitted herewith will substantially comply with the jurisdiction's building codes when minor deficiencies identified below are resolved and checked by building department staff. D The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. D The check list transmitted herewith is for your information. The plans are being held at Esgil Corporation until corrected plans are submitted for recheck. D 1he applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. D The applicant's copy of the check list has been sent to: ~ EsGil Corporation staff did not advise the applicant that the plan check has been completed. D EsGil Corporation staff did advise the applicant that the plan check has been completed. Person contacted: Date contacted: (by: ) Mail Telephone Fax In Person D REMARKS: By: Abe Doliente (for R.F.) EsGil Corporation D GA D EJ D MB D PC Telephone #: Email: Enclosures: 5/26/16 9320 Chesape~e Drive, Suite 208 + San Diego, California 92123 + (858) 560-1468 + Fax (858) 560-1576 EsGU Corporation In <Partnersliip witli qo11ernment for (}Jui(aina Safety PLICANT RIS. DATE: 04/06/16 JURISDICTION: Carlsbad PLAN CHECK NO.: 16-1168 CJ PLAN REVIEWER CJ FILE SET: I PROJECT ADDRESS: 225 Hemlock Avenue PROJECT NAME: SFD/Garage/Decks for Rincon Real Estate Group D Th_e plans transmitted herewith have been corrected where necessary and· substantially comply with the jurisdiction's building codes. D The plans transmitted herewith will substantially comply with the jurisdiction's building codes when minor deficiencies identified below are resolved and checked by building department staff. D The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. [8J The check list transmitted herewith is for your information. The plans are being held at Esgil Corporation until corrected plans are submitted for re.check. D The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. [8J The applicant's copy of the check list has been sent to: Kevin Dunn E Mail D EsGil Corporation staff did not advise the applicant that the plan check has been completed. IZJ EsGil Corporation staff did advise the applicant that the plan check has been completed. Person contacted: Kevin Dunn Telephone#: (949) 637-3254 Pate contacted: 4-l, {b;'>i Email: kdunn@rincongrp.com t.l -sto1o<e@sF1ace reh iteetm e. co, ~ ~ n.CMl btt.v~) ..e_Mail )( Telephone y_ Fax In Person D REMARKS: By: Ray Fuller EsGil Corporation 0 GA O EJ O MB O PC Enclosures: 03/29/16 9320 Chesapeake Drive, Suite 208 + San Diego, California 92123 + (858) 560-1468 + Fax (858) 560-1576 C~lsbad 16-1168 04/06/16 PLAN REVIEW CORRECTION LIST SINGLE FAMILY DWELLINGS AND DUPLEXES PLAN CHECK NO.: 16-1168 JURISDICTION: Carlsbad PROJECT ADDRESS: 225 Hemlock Aven11e FLOOR AREA: Dwelling 2771 Garage 517 Decks 467 REMARKS: DATE PLANS RECEIVED BY JURISDICTION: 03/25/16 DATE INITIAL PLAN REVIEW COMPLETED: 04/06/ 16 FOREWORD (PLEASE READ): STORIES: 3 HEIGHT: 27 ft per CRC DATE PLANS RECEIVED BY ESGIL CORPORATION: 03/29/16 PLAN REVIEWER: Ray Fuller This plan review is limited to the technical requirements contained in the California version of the International Residential Code, International Building Code, Uniform Plumbing Code, Uniform Mechanical Code, National Electrical Code and state laws regulating energy consel"'iation, noise attenuation and access for the disabled. This plan review is based on regulations enforced by the Building Department. You may have other corrections based on laws and ordinance by the Planning Department, Engineering Department, Fire Department or other departments. Clearance from those departments may be required prior to the issuance of a building permit. Present California law mandates that construction comply with the 2013 edition of the California Code of Regulations (Title 24), which adopts the following model codes: 2012 IRC, 2012 IBC, 2012 UPC, 2012 UMC and 2011 NEC. The above regulations apply, regardless of the code editions adopted by ordinance. The following items listed need clarification, modification or change. All items must be satisfied before the plans will be in conformance with the cited codes and regulations. Per Sec. 105.4 of the 2012 International Building Code, the approval of the plans does not permit the violation of any state, county or city law. To speed up the recheck process, please note on this list {or a copy) where each correction item has been addressed, i.e., plan sheet number, specification section, etc. Be sure to enclose the marked up list when you submit the revised plans. ~ Carlsbad 16-1168 04/06/16 1. Please make all corrections, as requested in the correction list. Submit THREE new complete sets of plans for residential projects). For expeditious processing, corrected sets can be submitted in one of two ways: 1. Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad Building Department, 1635 Faraday Ave., C~rlsbad, CA 92008, (760) 602-2700. The City will route the plans to EsGil Corporation and the Carlsbad Planning, Engineering and Fire Departments. 2. Bring one corrected set of plans and calculations/reports to EsGil Corporation, 9320 Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of plans and calculations/reports directly to the City of Carlsbad Building Department for routing to their Planning, Engineering and Fire Departments. NOTE: Plans that are submitted directly to EsGil Corporation only will not be reviewed by the City Planning, Engineering and Fire Departments until review by EsGil Corporation is complete. 2. Verify final sets of plans and any new calculations will again be stamped and signed by engineer and /or architect of record also. 3. The note "Not For Construction" must be removed before final sets can be send back to the City. 4. Energy calculations are noting the sq footage is noted to be 2816 and cover sheet/permit application state 2771? Please clarify. 5. Cross sections and keynotes are reflecting R-13 for floor and energy requires R-19? 6. The gas line calculations are using 40,000 BTU FAU to heat a 2771 sq ft house. The energy calculations are reflecting 56,000 output which would be 60,000 input and gas line isometrics to reflect 60,000 instead of 40,000. 7. Plans to reflect garage floor to sloping towards main vehicle entry doorways or towards a approved drainage system. R309.1 Structural states to see architectural and could not locate where architectural addressed this? 8. The service panel is shown at a shear wall location. Note if panel is flush or surface mounted. If flush mounted then detail opening in shear wall and engineer-of-record to address opening as well as top plate/ and or bottom plates where conduit and wiring will past thru. 9. Could not determine why noting 208/240 40 amp service on A 1-2.8 thru 2.10 as should be 120/240/ 200 amp instead? Appears this note should apply to EVSE instead? 10. All hot water piping sized ¾" or larger is required to be insulated as follows: 1" pipe size or less: 1" thick insulation; larger pipe sizes require 1 ½" thick insulation. Could not locate this note on A1.2.8 i _J Carlsbad 16-1168 04/06/16 11. Windows for bedroom 3 (3046 SH's) on A1-2.1 not appear to provide required egress as generally only p[provide 22 1/2" clear vertical and need 24". Either revise window or provide manufacturer's cut sheets that reflect how it complies and note this on the plans 12. For bedroom 2 please provide the manufacturer's cut sheets that will reflect this window providing window 5.95 sq ft of clear openable as hoted on window schedule on A1-5.1. Generally this window provides less than the 5.7 sq ft required and cannot use exception of 5.0 sq ft due to exterior grade exceeding 44" to clear openable part of window). 13. Please recheck door and window schedule to verify correct. See for example where noting door 1-22 at flex space on A 1-2.3 to be a 30 barn door At master bathroom on A 1-5.1 Recheck all locations. 14. No window designator given for bath 2 on A1-2.1 (1-7?). 15. Show or note on plans that a 100 sq inches of make up air is required in laundry room (to make up of exhaust air being vented out by dryer and for the whole house fan shown on A 1.2.8). 16. Show on the plans that countertop receptacle outlets comply with CEC Article 210.52(C): In kitchens a receptacle outlet shall be installed at each counter space 12 inches or wider; Receptacles shall be installed so that no point along the wall line is more than 24 inches; Island and peninsular countertops 12 inches by 24" long (or greater) shall have at least one receptacle. (Counter top spaces separated by range tops, refrigerators, or sinks shall be considered as separate counter top spaces). Outlet spacing exceed along left wall on A1-2.9. 17. Show on the plans a wall receptacle within 36" of each lavatory in the bathroom. CEC 210.52(0) & E3801.6. See master bath on A1-2.9. 18. A1-2.9 is reflecting a outlet in shower which is not allowed. 19. Recheck outlet spacing. Must show outlets within 6 ft of any opening and not to exceed 12 apart. Any isolated wall 2 ft or wider to have outlets . See for example on A1-2.9 the 6 ft wall between master bedroom door and bathroom door. Recheck all locations. 20. Could not locate where sone level was noted for some of the exhaust fans. See kitchen note on A1-2.9 (maximum 3?) and could not locate for bath exhaust fans. 21. Could not locate smoke detector/carbon monoxide alarm in hallway leading to bedrooms for 1st floor and/or outside of bedroom 4 on third floor? Carlsbad 16-1168 04/06/16 22. Please update ICC listings for deck anc;I low pitched roof as noted on A 1-2.2 and 2.3 as ICBO 4804 is not a valid listing for either. Recheck all locations. 23. Could not locate where floor plan notes and/or A 1-0.3 noted sone levels for exhaust fans. Appears using bath exhaust fans as whole house ventilation and would need to note 1 sone or less. 24. Show or note dryer vent to the exterior with termination to be a minimum of 3 ft from any opening . 25. Note on the plans that for new residential construction where landscape irrigation water is planned a water budget shall be developed that conforms to local landscape ordinance or the California Department of Water Resources Model Water Efficient Landscape Ordinance (MWELO), which ever is more stringent. To view the MWELO: http://www. water. ca.gov/wateruseefficiency/docs/MWELO Tb Content Law.pdf For the local landscape ordinance check with City/County Planning Department. CGC 4.304.1. 26. The cover sheet of the soils report on was whited out and changed from 3806 Garfield Street to Hemlock Ave. Assume this is same lot ? 27. The soils engineer recommended that he/she review the foundation excavations. Note on the foundation plan that "Prior to the contractor requesting a Building Department foundation inspection, the soils engineer shall advise the building official in writing that: The building pad was prepared in accordance with the soils report, The utility trenches have been properly backfilled and compacted, and The foundation excavations, the soils expansive characteristics and bearing capacity conform to the soils report." 28. Provide a letter from the soils engineer confirming that the foundation plan, and specifications have been reviewed and that it has been determined that the recommendations in the soils report are properly incorporated into the construction (per page 38 ). 29. Foundation plan to reflect 15 mil visqueen required as soils report may not be on jobsite and or inspector is not excepted to go thru report to find it. 30. Could not determine how obtaining R-30 in ceiling with 2 x 8 roof framing members as generally requires 2 x1 O's allow for the 8 1 /4" insulation and required 1 inch airspace above? 31. Could not determine why noting 3000 psi concrete on cover sheet of calculations as special inspection list notes NIA for concrete? Please clarify. Carlsbad 16-1168 04/06/16 32. Is detail 9/SD3.0 correct as referenced to lines 1.A and 1.E (as does not appear to be lower roof ) . 33. Referencing detail 7/SD2.0 to line 1.4 on S3 and detail states shear per plan? There is no shear shown and if not required then how are roof loads transferred from upper diaphragm to lower? 34. Lateral could not be checked as House 2 lateral calculations were attached to house 1 calculations with no House 1 calculations provided? • CITY of CARLSBAD REQUIREMl:NTS 35. When special inspection is required, the designer shall complete the city's "Special Inspection Agreement". Contractor to fill out portion of special inspection report provided prior to pulling permit. • All new residential units shall include plumbing specifically designed to allow the later installation of a system which utilizes solar energy as the primary means of heating domestic potable water. Should add the part in bold to note on A 1.2.4. • Note on this list (or a copy) where each correction item has been addressed, i.e., plan sheet, note or detail number, calculation page, etc. • Please indicate here if any changes have been made to the plans that are not a result of corrections from this list. If there are other changes, please briefly describe them and where they are located in the plans. • Have changes been made to the plans not resulting from this correction list? Please indicate: Yes ( ) No ( ) • The jurisdiction has contracted with Esgil Corporation located at 9320 Chesapeake Drive, Suite 208, San Diego, California 92123; telephone number of 858/560-1468, to perform the plan review for your project. If you have any questions regarding these plan review items, please contact Ray Fuller at Esgil Corporation. Thank you. I\ ·~ " Carlsbad 16-1168 04/06/16 [DO NOT PAY -THIS IS NOT AN INVOICE] VALUATION AND PLAN CHECK FEE JURISDICTION: Carlsbad PREPARED BY: Ray Fuller PLAN CHECK NO.: 16-1168 DATE: 04/06/16 BUILDING ADDRESS: 225 Hemlock Avenue BUILDING OCCUPANCY: R3 U TYPE OF CONSTRUCTION VB BUILDING AREA Valuation PORTION ( Sq. Ft,) Multiplier Dwelling 2771 139.52 Garage 517 36.40 Decks 467 19.71 Air Conditioning Fire Sprinklers 3288 3.94 TOTAL VALUE Jurisdiction Code cb By Ordinance Bldg. Permit Fee by Ordinance 2 Plan Check Fee by Ordinance Type of Review: 0 Complete Review D Repetitive Fee 3Repeats D Other D Hourly EsGil Fee Reg. VALUE Mod. D Structural Only ($) 386,610 18,819 9,205 12,955 427,588 $1,790.461 $1,163.801 $1,002.661 Comments: fn ·addition."to :the~aboVe fe~/"ar{aclditlona(f~e:,oi.$86 hf (Jue;{f hour@ js616·r.)J~i tb:e c~-IGr~en tevievr -·--... . ---. _.. ---. . - Sheet 1 of 1 macvalue.doc + C9-!Yof Carlsbad' PLAN CHECK REVIEW TRANSMITTAL Community & Economic · Development Department 1635 Faraday Avenue Carlsbad CA 92008 www.carlsbadca.gov DATE: 08-17-2016 PROJECT NAME: GARFIELD CUSTOM BEACH HOMES #1 PROJECT ID: MS 15-11 APN: 2042700401 PLAN CHECK NO: CBlG-1168 SET#: 3 ADDRESS: 225 HEMLOCK AVE. VALUATION: $441,120 SCOPE OF WORK: CONSTRUCT NEW 2,771 SQ. FT. CONDO l This plan check review is complete and has been APPROVED by: LAND DEVELOPMENT ENGINEERING DIVISION Final lnspectio~ by Construction Management & Inspection Division is required: Yes !Xi No D D This plan check review is NOT COMPLETE. Items mJssing or incorrect are listed on the attached checklist. Please resubmit amended plans as requfred. Plan Check Comments have been sent to: KDUNN@RINCONGRP.COM To determine status by one of the divisions listed below, please contact 760-602-2719. . -' ~i~~'-OPMEN'F . ; 1. ·.~50 j ... '' ~,,, .,,,~~---,,,..,,_ Chris Sexton 760-602-4624 Chris.Sexton@carlsbadca.gov . I I Gina Ruiz 1 760-602-4675 Gina.Ruiz@carlsbadca.goiv =>+ -~· '"---~-,,. ,, -,]~ ,:..,µ ~~-... -- Chris Glassen 760-602-2784 · Christopher.Glassen@carlsbadca.gov D Linda Ontiveros 760-602-2773 Linda.Ontiveros@carlsbadca.gov D ValRay Nelson 760-602-27 41 ValRay.Marshall@carlsbadca.gov Remarks: PAD CERT RECEIVED 8/17/16 Gregory.Ryan@carlsbadca.gov Cindy Wong 760-602-4662 Cynthia.Wong@carlsbadca.gov Dominic Fieri 760-602-4664 Dominic.Fieri@carlsbadca.gov CITY OF CARLSBAD GRADING INSPECTION CHECKLIST FOR PARTIAL SliE RELEASE · RECEIVED CITY OF CARLSBAD AUG 1 7 2016 PROJECT !NSPEcfoR: l 1.ulw . DATE: i} 11/l \'2 CM&1 ·01v1s10N PROJECT 1D MS \S: · \ \ GRADING PERMIT No. l t.o oc) l Lf LOTS REQUESTED FOR RELEASE:.~lilXA ........ """~ .... f~~---'--'-\---'-; _:z. ___ __;_ __ _ N/A;:: NOT APP.LI CABLE --./=COMPLETE O = Incomplete or unacceptable 1st 2nd. .-- ~ ~ .....--- .,,,,.- ----v- "l"' ~ "l°'- "I~ v- / 1. Site access to requested lots adequate and logically grouped . 2: Site erosion control measures adequate including basins and lined ditches installed. 3. Overall site adequate for health, safety and welfare of public. 4. Letter from Owner/Dev. requesting· partial release-of specific lots, pads or bldg . 5. 8½" x 11" site plan ( attachment) showing requested lots submitted. 6. Compaction report from soils engineer s.ubmitted. 7. EOW certification of work done with finish pad elevations of specific lots to be released. · · 8. Geologic engineer's letter if unusual geologic or subsurface conditions exist. 9. Fully functional fire ~ydrants within 350 feet of building combustibles and an all weather roads access to site is required. 10. Retaining walls installed .. 11. Adequate progress on installation of slope irrigation and landscape. 12. Minimum 20' wide all weather road. 13. Sewer installed and available for use. Partial release of grading for the above stated lots is approved for the purpose of building permit issuance. Issuance of building permits is still subject to all normal City requirements required pursuant to the building permit process. Partial release of the site is denied for t~e following reasons: Dab~ " Partial Site Rel Checklist-UPDATED 11/2015 Catyof Carlsbad PLAN CHECK REVIEW TRANSMITTAL Community & Economic Development Department 1635 Faraday Avenue Carlsbad CA 92008 www.carlsbadca.gov DATE: 05/31/2016 PROJECT NAME: GARFIELD CUSTOM BEACH HOMES #1 PROJECT ID: MS 15-11 PLAN CHECK NO: CB16-1168 SET#: 2 ADDRESS: 225 HEMLOCK AVE. APN:· 2042700401 VALUATION: $441,120 SCOPE OF WORK: CONSTRUCT NEW 2,771 SQ. FT. CONDO D This plan check review is complete an~ has been APPROVED by: LAND DEVELOPMENT ENGINEERING DIVISION Final Inspection by Construction Management & Inspection Division is required: Yes NoO This plan check review is NOT COMPLETE. Items missing or incorrect are listed on the attached checklist. Please resubmit amended plans as required. Plan Check Comments have. been sent to: KDUNN@RINCONGRP.COM To determine status by one of the divisions listed below, please contact 760-602-2719 . . ~1@ ·-~~~!) Chris Sexton 760-602-4624 Chris.Sexton@carlsbadca.gov Chris Glassen 760-602-2784 Christop_her.Glassen@carlsbadca.gov Gregory.Ryan@carlsbadca.gov Gina Ruiz 7. 60-602-467 5_ Gina.Ruiz@carlsbadca.gov D Remarks: D Linda Ontiveros 760-602-2773 Linda.Ontiveros@carlsbadca.gov D ValRay Nelson 760-602-27 41 ValRay.Marshall@carlsbadca.gov Cindy Wong 760-602-4662 Cynthia.Wong@carlsbadca.gov Dominic Fieri 760-602-4664 Dominic.Fieri@carlsbadca.gov GARFIELD CUSTOM BEACH HOMES #1 PLAN CHECK NO# CB16-1168 Please Read Instructions: Outstanding issues are marked with iXI . Items that conform to permit requirements are marked with ClJ or have intentionally been left blank. 1 .. SITE PLAN PLEASE SLIP Provide a fully dimensioned site plan drawn to scale. Show: SHEET SIGNED D D North arrow D CJ Driveway widths APPROVED D D Existing & proposed structures D GRADING D D Existing street improvements D D Existing or proposed sewer lateral CJ Existing or proposed water service CJ Submit on signed approved plans: PLANS INTO D D Property lines (show all dimensions) I)< ! BUILDING SETS D D Easements DWG No. 491-SA D D Right-of-way width & adjacent streets Show on site plan: D D Drainage patterns and proposed site elevations. Show all high points. D 0Building pad surface drainage must maintain a minimum slope of one percent towards an adjoining street or an approved drainage course. D DADD THE FOLLOWING NOTE: "Finish grade will provide a minimum positive drainage of 2% to swale 5' away from building". D D Existing & proposed slopes and topography D Osiz~. location, alignment of existing or proposed sewer and water service(s) that serves the project. Each unit requires a separate service; however, second dwelling units and apartment complexes are an exception. · D D Sewer and water laterals should not be located within proposed driveways, per standards. Include on title sheet: D m Site address D [Z] Assessor's parcel number D [ZJ Legal description/lot number D D For commercial/industrial buildings and tenant improvement projects, include: total building square footage with the square footage for each different use, existing sewer permits showing square footage of different uses (manufacturing, warehouse, office, etc.) previously approved. D D Show all existing use of SF and ne~ proposed use of SF. Example: -· Tenant improvement for 3500 SF of warehouse to 3500 SF of office. Lot/Map No.:pM 15-11 Subdivision/Tract: Reference No(s): E-36 Page2 of6 REV 6/01/12 GARFIELD CUSTOM BEACH HOMES fl PLAN CHECK NO# CB16-1168 2. DISCRETIONARY APPROVAL COMPLIANCE CJ D Project does not comply with the following engineering conditions of approval for project no.: RES. NO. 7411 3. DEDICATION REQUIREMENTS D D Dedication for all street rights-of-way adjacent to the building site and any storm drain or TO BE SHOWN utility easements on the building site is required for all new buildings and for remodels with a ON MAP value at or exceeding $ 24,000,00 , pursuant to Carlsbad Municipal Code Section 18.40.030. (CONDITION #39) PM 15-11 D D Dedication required as follows: 4. IMPROVEMENT REQUIREMENTS . D ,DAIi needed public improvements upon and adjacent to the building site must be constructed TO BE SHOWN at time of building construction Whenever the value of the construction exceeds ON GRADING $120,000.00, pursuant to Carlsbad Municipal Code Section 18.40.040. PLANS E-36 D · D Public improvements required as follows: D D Construction of the public improvements must be deferred pursuant to Carlsbad Municipal Code Section 18.40. Please submit a recent property title report or current grant deed on the property and proces~ing fee, so we may prepare the necessary Neighborhood Improvement Agreement. This agreement must be signed, notarized and approved by the city prior to issuance of a building permit. D D Future public improvements required as follows: Page3 of 6 REVS/01/12 GARFIELD CUSTOM BEACH HOMES #1 PLAN CHECK NO# CB16-1168 GR 16-14 5. GRADING PERMIT REQUIREMENTS The conditions that require a grading permit are found in Section 15.16 of the Municipal Code. D Olnadequate information available on site plan to make a determination on grading requirements. Include accurate grading quantities in cubic yards (cut, fill, import, export and remedial). This information must be included on the plans. If no grading is proposed write: "NO GRADING" 00 D Grading Permit required. NOTE: The grading permit must be issued and rough grading approval obtained prior to issuance of a building permit. 00 D Graded Pad Certification required. (Note: Pad certification may be .required even if a grading permit is not required.) All required documentation must be provided to your Engineering Construction Inspector The inspector will then provide the engineering counter with a release for the building permit. D D No grading permit required. D D Minor Grading Permit required. See additional comments for project-specific requirements. 6. MISCELLANEOUS PERMITS D D RIGHT -OF-WAY PERMIT is required to do work in city right-of-way and/or private work TO BE APPLIED adjacent to the public right-of-way. Types of work include, but are not limited to: street FOR improvements, tree trimming, driveway construction, tying into public storm drain, sewer and SEPERATELY water utilities. D [Z] Right-of-way permit required for: DRIVEWAY APPROACH E-36 Page 4 of 6 REV 6/01/12 GARFIELD CUSTOM BEACH HOMES #1 PLAN CHECK NO# CB16-1168 SW 16-13 E-36 7. STORM WATER Construction Compliance D D Project Threat Assessment Form complete. D D Enclosed Project Threat Assessment Form incomplete. D D Requires Tier 1 Storm Water Pollution Prevention Plan (E-29). Please complete attached form and return (SW ) D D Requires Tier 2 Storm Water Pollution Prevention Plan. Requires submittal of Tier 2 SWPPP, payment of processing fee and review by city. Post-Development BMP Design Manual Compliance D [ZJ Storm Water Standards Questionnaire. D D Project is subject to Standard Storm Water Requirements. See city Best Management Practices (BMP) Design Manual for reference. D ·o Indicate areas of impervious surfaces (patios.walkway, etc.) and pervious areas (landscaping). D D Project needs to incorporate low impact development strategies throughout in one or mor~ of the following ways: D Rainwater harvesting (rain barrels or cistern) D Vegetated Roof D Bio-retentions cell/rain garden D Pervious pavement/pavers D Flow-through planter/vegetated or rock drip line D Vegetated swales or rock infiltration swales D Downspouts disconnect and discharge over landscape D Other: Page 5 of6 REV 6/01/12 GARFIELD CUSTOM BEACH HOMES #1 PLAN CHECK NO'# CBlG-1168 8. WATER METER REVIEW FSl" {CREDIT FOR EXISTING S/811 METER GIVEN) Domestic (potable) Use D [Z] What size meter is required? D lfiI] Where a residential unit is required to have an automatic fire extinguishing system, the minimum meter size shall be a 1" meter. NOTE: the connection fee, SDCWA system capacity charge and the water treatment capacity charge will be based on the size of the meter necessary to meet the water use requirements. D !FYI I For residential units the minimum size meter shall be 5/8", except where the residential unit is larger than 3,500 square feet or on a lot larger than one quarter (1/4) acre where the meter size shall be¾". 9. FEES ow DD Required fees have been entered in building permit Drainage fee applicable DD D Added square feet Added square footage in last two years? Dyes D no · Permit No. Permit No. Project built after 1980 Dyes Ono Impervious surface > 50% O yes Ono Impact unconstructed facility O yes D no Fire sprinklers required (Z]yes Ono (is addition over 150' from center line) Upgrade Dyes Ono No fees required 10. ADDITIONAL COMMENTS Attachments: I I Engineering Application [J Storm Water Form D Right-of-Way Application/Info. I I Reference Documents E-36 Page 6 of 6 REV 6/01/12 *** Fee Calculation Worksheet *** ENGINEERING 0·1v1s10N 204-270-04-01 Prepared by: CG Date: 4/5/16 GEO DATA: LFMZ: / B&T: Address: 225 HEMLOCK AVE. Fees Update by: Date: Fees Update by: Bldg. Permit#: CB16-1170 Date: EDU CALCULATIONS: List types and square footages for all uses. Types of Use: CONDO Sq.Ft./Units 1 Types of Use: SFD (CREDIT) Sq.Ft./Units 1 Types of Use: Types of Use: Sq.Ft.JU nits Sq.Ft./Units ADT CALCULATIONS: List types and square footages for all uses. Types of Use: CONDO (DETACHED) Sq.Ft/Units 1 Types of Use: SFD (CREDIT) Types of Use: Types of Use: FEES REQUIRED: . Sq.Ft/Units 1 Sq.Ft/Units Sq.Ft/Units EDU's: 1 EDU's: -1 EDU's: EDU's: ADT's: 10 ADT's: -10 ADT's: ADT's: Within CFO: DYES (no bridge & thoroughfare fee in District #1, reduces Traffic Impact Fee) IZI NO 1. PARK-IN-LIEU FEE:[ZJNW QUADRANT ONE QUADRANT OSE QUADRANT OW QUADRANT ADT'S/UNITS: I X FEE/ADT: I =$ CREDIT 2.TRAFFIC IMPACT FEE: ADT'S/UNITS: 10 IX FEE/ADT: I=$ CREDIT 3. BRIDGE & THOROUGHFARE FEE: ODIST.#1 DDIST.#2 ODIST.#3 (USE SANDAG)ADT'S/UNITS I X · 4. FACILITIES MANAGEMENT FEE ADT'S/UNITS: I X 5. SEWER FEE EDU's 1 IX BENEFIT AREA: EDU's 6. DRAINAGE FEES: ACRES: 7. POTABLE WATER FEES: 1x PLDA: 1x FEE/ADT: I =s ZONE: FEE/SQ. FT.JUN IT: I=$ FEE/EDU: $881 I=$ CREDIT FEE/EDU: I=$ OHIGH 0MEDIUM DL0W FEE/AC: I =$ PAID ON MAP UNITS 1 CODE FS1 CONN. F~E METER FEE SDCWAFEE N/A $84 N/A ***This may not represent a comprehensive list of fees due for this project. TOTAL $84 Please contact the Building division at (760) 602·2719 for a complete listing of fees*** ~) ,..,. Catyof Carlsbad PLAN CHECK REVIEW TRANSMITTAL Community & Economic Development Department 1635 Faraday Avenue Carlsbad CA 92008 www.carlsbadca.gov DATE: 04-05-2016 PROJECT NAME: GARFIELD CUSTOM BEACH HOMES #1 PROJECT ID: MS 15-11 PLAN CHECK NO: CBlG-1168 SET#: 1 ADDRESS: 225 HEMLOCK AVE. APN: 2042700401 VALUATION: $441,120 SCOPE OF WORK: CONSTRUCT NEW 2,771 SQ. FT. CONDO D This plan check review is complete and has been APPROVED by: LAND DEVELOPMENT ENGINEERING DIVISION .Final Inspection by Construction Management & Inspection Division is required: Yes No~ This plan check review is NOT COMPLETE. Items missing or incorrect are listed on the attached checklist. Please resubmit amended plans as required. Plan Check Comments have been sent to: KDUNN@RINCONGRP.COM To determine status by one of the divisions listed below, please contact 760-602-2719. Chris Sexton 760-602-4624 ·.LANDDEVILOPMENT ') · · ~21so.·· V' ~· ,-n ~ V ,:..; "~ ~ ' ,,-,\, " ,= ' D Greg Ryan 760-602-4663 Chris.Sexton@carlsbadca.gov Chris Glassen 760-602-2784 Christopher.Glassen@carlsbadca.gov Gregory.Ryan@carlsbadca.gov Gina Ruiz 760-602-4675 Gina.Ruiz@carlsbadca.gov Remarks: Linda Ontiveros 760-602-2773 Linda.Ontiveros@carlsbadca.gov D. . ValRay Nelson 760-602-2741 ValRay.Marshall@carlsbadca.gov D Cindy Wong 760-602-4662 Cynthia.Wong@carlsbadca.gov Dominic Fieri 760-602-4664 Dominic.Fieri@carlsbadca.gov .,, " i.GARFIELD CUSTOM BEACH HOMES #1 PLAN CHECK NO# CB16-1168 Please Read Instructions: Outstanding issues are marked with iXl . Items that conform to permit requirements are marked with Li] or have intentionally been left blank. 1. SITE PLAN PLEASE SLIP Provide a fully dimensioned site plan drawn to scale. Show: SHEET SIGNED D D North arrow D CJ Driveway widths APPROVED D LJ Existing & proposed structures 0 GRADING D D Existing street improvements D D E?(isting or proposed sewer lateral CJ Existing or proposed water service CJ Submit on signed approved plans: PLANS INTO D D Property lines (show all dimensions) 00 BUILDING SETS D · D Easements D:VVG No. 491-SA D D Right-of-way width & adjacent streets Show on site plan: D D Drainage patterns and proposed site elevations. Show all high points. D D Building pad surface drainage must maintain a minimum slope of one percent towards an adjoining street or an approved drainage· course. DADD THE FOLLOWING NOTE: "Finish grade will provide a minimum positive drainage of 2% to swale 5' away from building". D D Existing & proposed slopes and topography D C]size, location, alignment of existing or proposed sewer and water service(s) that serves the project. Each unit requires a separate service; however, second dwelling units and apartment complexes are an exception. CJ D Sewer and water laterals should not be located within proposed driveways, per standards. Include on title sheet: D [Z] Site address [l] Assessor's parcel number D W Legal description/lot number D D For commercial/industrial buildings and tenant improvement projects, include: total building square footage with the square footage for each different use, existing sewer permits showing square footage of different uses (manufacturing, warehouse, office, etc.) previously approved. D · D Show all existing use of SF and new proposed use of SF. Example: · Tenant improvement for 3500 SF of warehouse to 3500 SF of office. LoUMap No.: Subdivision/Tract: Reference No(s): E-36 Page 2 of6 REV 6/01/12 L GARFIELD CUSTOM BEACH HOMES j PLAN CHECK NO# CBlG-1168 2. DISCRETIONARY APPROVAL COMPLIANCE [=i D 'Project does not comply with the following engineering conditions of approval for project no.: RES. NO. 7411 3. DEDICATION REQUIREMENTS I J D Dedication for all street rights-of-way adjacent to the building site and any storm drain or TO BE SHOWN utility easements on the building site is required for all new buildings and for remodels with a ON MAP value at or exceeding$ 24 000 00 , pursuant to Carlsbad Municipal Code Section 18.40.030. {CONDITION #39} D D Dedication required as· followsi 4. IMPROVEMENT REQUIREMENTS D DAIi needed public improvements upon and adjacent to the building site must be constructed TO BE SHOWN at time of building construction whenever the value of the construction exceeds ON GRADING $120,000.00, pursuant to Carlsbad Municipal Code Section 18.40.040. PLANS E-36 D D Public improvements required as follows: D D Construction of the public improvements must be deferred pursuant to Carlsbad Municipal Code Section 18.40. Please submit a recent property title report or current grant deed on the property and processing fee, so we may prepare the necessary Neighborhood Improvement Agreement. This agreement must be signed, notarized and approved by the city prior to issuance of a building permit. D D Future public improvements required as follows: Page 3 of 6 REV6/01/12 GARFIELD CUSTOM BEACH HOMES #1 PLAN CHECK NO# CBlG-1168 5. GRADING PERMIT REQUIREMENTS The conditions that require a grading permit are found in Seption 15.16 of the Municipal Code. D Olnadequate information available on site plan to make a determination on grading requirements. Include accurate grading quantities in cubic yards (cut, fill, import, export and remedial). This information must be included on the plans. If no grading is proposed write: "NO GRADING" [X] D Grading Permit required. NOTE: The grading permit must be issued and rouah arading approval obtained prior to issuance of a building permit. [X] D Graded Pad Certification required. (Note: Pad certification may be required ~ven if a grading permit is not required.) All required documentation must be provided to your Engineering Construction Inspector The inspector will then provide the engineering counter with a release for the building permit. D D No grading permit required. D D Minor Grading Permit required. See additional comments for project-specific requirements. 6. MISCELLANEOUS PERMITS D D RIGHT -OF-WAY PERMIT is required to do work in city right-of-way and/or private work TO BE APPLIED adjacent to the public right-of-way. Types of work include, but are not limited to: street FOR improvements, tree trimming, driveway construction, tying into public storm drain, sewer and SEPERATEL Y water utilities. D [Z] Right-of-way permit required for: DRIVEWAY APPROACH E-36 Page 4 of 6 REV 6/01/12 ,. " GARFIELD CUSTOM BEACH HOMES #1 PLAN CHECK NO# CBlG-1168 SW 16-13 E-36 7. STORM WATER Construction Compliance D D Project Threat Assessment Form complete .. D D Enclosed Project Threat Assessment Form incomplete. D D Requires Tier 1 Storm Water Pollution Prevention Plan (E-29). Please complete attached form and return (SW ) D D Requires Tier 2 Storm Water Pollution Prevention Plan. Requires submittal of Tier 2 SWPPP, payment of processing fee and review by city. Post-Development BMP Design Manual Compliance D m Storm Water Standards Questionnaire. D D Project is subject to Standard Storm Water Requirements. See city Best Management Practices (BMP) Design Manual for reference. D D Indicate areas of impervious surfaces (patios,walkway, etc. ) and pervious areas (landscaping). D D Project needs to incorporate low impact development strategies throughout in one or more of the following ways: D Rainwater harvesting (rain barrels or cistern) D Vegetated Roof 0 Bio-retentions cell/rain garden D Petvious pavement/pavers D Flow-through planter/vegetated or rock drip line D Vegetated swales or rock infiltration swales D Downspouts disconnect and discharge over landscape D Other: Page 5 of 6 REV 6/01/12 GARFIELD CUSTOM BEACH HOMES #1 PLAN CHECK NO# CBlG-1168 8. WATER METER REVIEW FSl" {CREDIT FOR EXISTING -5/8" METER GIVEN} Domestic (potable) Use D m What size meter is required? D [j:yj] Where a residential unit is required to have an automatic fire extinguishing system, the minimum meter size shall be a 1" meter. NOTE: the connection fee, SDCWA system capacity charge and the water treatment capacity charge will be based on the size of the meter necessary to meet the water use requirements. CJ [FY!] For residential units the minimum size meter shall be 5/8", except where the residential unit is larger than 3,500 square feet or on a lot larger than one quarter (1/4) acre where the meter size shall be¾". 9. FEES om DD Required fees have been entered in 'building permit. Drainage fee applicable Added square feet Added square footage in last two years? Dyes D no Permit No. Permit No. Project built after 1980 Dyes D no Impervious surface > 50% Dyes D no Impact unconstructed facility Dyes D no DD Fire sprinklers required [Z]yes D no (is addition over 150' from center line) Upgrade D yes Ono DD No fees required 10. ADDITIONAL COMMENTS Attachments: L J Engineering Appllcatlon CJ Storm Water Form D Right-of-Way Application/Info, L_J Reference Documents E-36 Page6of6 REV 6/01/12 ,!*** Fee Calculation Worksheet *** ENGINEERING DIVISION 204-270-04-01 Prepared by: CG Date: 4/5/16 GEO DATA: LFMZ: / B& T: Address: 225 HEMLOCK AVE. Fees Update by: Date: Fees Update by: Bldg. Permit#: CB16-1170 Date: EDU CALCULATIONS: List types and square footages for all use& Types of Use: CONDO Sq.Ft./Units 1 . Types of Use: SFD (CREDIT) Sq.Ft/Units 1 · Types of Use: · Sq.Ft/Units Types of Use: Sq.Ft./Units ADT CALCULATIONS: List types and square footages for all uses. Types of Use: CONDO (DETACHED) Sq.Ft./Units 1 · Types of Use: SFD (CREDIT) Types of Use: Types of Use: FEES REQUIRED: Sq.Ft/Units 1 · Sq.Ft./Units Sq.Ft/Units EDU's: 1 EDU's: -1 EDU's: EDU's: ADT's: 10 ADT's: -10 ADT's: ADT's: Within CFO: DYES (no bridge & thoroughfare fee in District #1, reduces Traffic Impact Fee) 0 NO 1.-PARK-IN-LIEU FEE:IZ]NW QUADRANT ONE QUADRANT OSE QUADRANT OW QUADRANT ADT'S/UNITS: I X FEE/ADT; I =$ CREDIT . 2.TRAFFIC IMPACT FEE: ADT'S/UNITS: 10 I X FEE/ADT: I=$ CREDIT 3. BRIDGE & THOROUGHFARE FEE: ODIST.#1 ODIST.#2 ODIST.#3 (USE SANDAG)ADT'S/UNITS I X 4. FACILITIES MANAGEMENT FEE ADT'S/UNITS: I X 5. SEWER FEE EDU's 1 BENEFIT AREA: EDU's 6. DRAINAGE FEES: ACRES: 7. POTABLE WATER FEES: 1x 1x PLDA: 1x FEE/ADT: I =s ZONE: FEE/SQ.FT.JUN IT: I=$ FEE/EDU: $881 I=$ CREDIT FEE/EDU: DHIGH FEE/AC: I=$ D·MEDIUM 0LOW I =$ PAID ON MAP UNITS CODE CONN. FEE METER FEE SDCWA FEE 1 FS1 N/A $84 N/A ***This may not represent a comprehensive list off ees due for this project. TOTAL $84 Please contact the Building division at (760) 602-2719 for a complete listing of fees*** ./, ,- DETERMINATION OF PROJECT'S SWPPP TIER LEVEL AND CONSTRUCTION THREAT LEVEL E-32 Development Services Land Development Engineering 1635 Faraday Avenue 760-602-2750 www.carlsbadca.gov I'm applying for: Ill Grading Permit Ill Building Permit D Right--of-way permit D Other Project Name: Garfield Beach Custom Homes Project ID: MS 15-11 DWG #/CB# 491-SA Address:~ -: :. .L \u · ,i 1-:Z.., ):l"M J..Dt:.)'-t»J&• APN 2Cl4-270-04 ... 4 J Disturbed Area: 0.15 Ac C,A,C.L.>1> ivt11,a>r-7_~QIJ ~ Section 1: Determination of Project's SWPPP Tier Level (Check applicable criteria and check the corresponding SWPPP Tier Level, then go to section 2) Exempt -No Threat Project Assessment Criteria My project is in a category of permit types exempt from City Construction SWPPP requirements. Provided no significant grading proposed, pursuant to Table1, section 3.2.2 of Storm Water Standards, the following permits SWPPP Tier Level are exempt from SWPPP requirements: D Exempt D Electrical D Patio D Mobile Home D Plumbing D Spa (Factory-Made) D Fire Sprinkler D Mechanical D Re-Roofing OSign D Roof-Mounted Solar Array Tier 3-Significant Threat Assessment Criteria -(See Construction General Permit (CGP) Section 1.8)* o My project includes construction or demolition activity that results in a land disturbance of equal to or greater than one acre including but not limited to clearing, grading, grubbing or excavation; or, D My project includes construction activity that results in land disturbance of less than one acre but the construction activity is part of a larger common plan of development or the sale of one or more acres of disturbed land surface; or, D My Project is associated with construction activity related to residential, commercial, or industrial O Tier 3 development on lands currently used for agriculture; or D My project is associated with construction activity associated with Linear Underground/Overhead Projects (LUP) including but not limited to those activities necessary for installation of underground and overhead linear facilities (e.g. conduits, substructures, pipelines, towers, poles, cables, wire, towers, poles, cables, wires, connectors, switching, regulating and transforming equipment and associated ancillary facilities) and include but not limited to underground utility mark out, potholing, concrete and asphalt cutting and removal, trenching, excavation, boring and drilling, access road, tower footings/foundation, pavement repair or replacement, stockpile/borrow locations. D Other per CGP ______________________ _ Tier 2 -Moderate Threat Assessment Criteria: My project does not meet any of the Significant Threat Assessment Criteria described above and meets one or more of the following criteria: Ill Project requires a grading plan pursuant to the Carlsbad Grading Ordinance (Chapter 15.16 of the Carlsbad Municipal Code); or, D Project will result in 2,500 sq. ft. or more of soils disturbance including any associated construction staging, stockpiling, pavement removal, equipment storage, refueling and maintenance areas and project meets one or more of the additional following criteria: 121 Tier 2 • located within 200 ft. of an environmentally sensitive area or the Pacific Ocean; and/or, • disturbed area is located on a slope with a grade at or exceeding 5 horizontal to 1 vertical; and/or • disturbed area is located along or within 30 ft. of a storm drain inlet, an open drainage channel or watercourse; and/or · • construction will be initiated during the rainy season or will extend into the rainy season (Oct. 1 -Apr, 30) Tier 1 -Low Threat Assessment Criteria D My project does not meet any of the Significant or Moderate Threat criteria above, is not an exempt permit type per above and the project meets one or more of the following criteria: • results in some soil disturbance; and/or • includes outdoor construction activities (such as roof framing, saw cutting, equipment washing, material stockpiling, vehicle fueling, waste stockpiling) D Tier 1 * Items listed are excerpt from CGP. CGP governs cntena for triggers for Tier 3 SWPPP. Developer/owner shall confirm coverage under the current CGP and any amendments, revisions and reissuance thereof. E-32 Page 1 of 2 REV. 02/16 ! ~;J1' J,. SWPPP Section 2: Determination of Project's Construction Threat Level Construction Tier (Check applicable criteria under the Tier Level as determined in section 1, check the Threat Level corresponding Construction Threat Level, then complete the emergency contact and Level signature block below) Exempt -Not Applicable -Exempt Tier 3 -High Construction Threat Assessment Criteria: M}! Project meets one or more of the followirTg: D Project site is 50 acres or more and grading will occur during the rainy season D Project site i~ located within the Buena Vista or Agua Hedionda Lagoon watershed, inside or within 200 feet of an environmentally sensitive area (ESA) or discharges directly to an ESA D High D Soil at site is moderately to highly erosive (defined as having a predominance of soils with Tier3 USDA-NRCS Erosion factors kfgreater than or equal to 0.4) D Site slope is 5 to 1 or steeper D Construction is initiated during the rainy season or will extend into the rainy season (Oct. 1 -April 30) D Owner/contractor received a Storm Water Notice of Violation within past two years Tier 3 -Medium Construction Threat Assessment Criteria D Medium D All projects not meeting Tier 3 High Construction Threat Assessment Criteria Tier 2 -High Construction Threat Assessment Criteria: M}! Project meets one or more of the following: · 121 Project is located within the Buena Vista or Agua Hedionda Lagoon watershed, inside or within 200 feet of an environmentally sensitive area (ESA) or discharges directly to an ESA D Soil at site is moderately to highly erosive (defined as having a predominance of soils with Ill High USDA-NRCS Erosion factors kf greater than or equal to 0.4) Tier2 D Site slope is 5 to 1 or steeper tJ Construction is initiated during the rainy season or will extend into the rainy season (Oct. 1 -Apr. 30) D Owner/contractor received a Storm Water Notice of Violation within past two years D Site results in 10,000 sq. ft. or more of soil disturbance Tier 2 -Medium Construction Threat Assessment Criteria D Medium D My project does not meet Tier 2 High Threat Assessment Criteria listed above Tier 1 -Medium Construction Threat Assessment Criteria: M:i Project meets one or more of the following: D Owner/contractor received a Storm Water Notice of Violation within past two years D Medium D Site results in 500 sq. ft. or more of soil disturbance Tier 1 D Construction will be initiated during the rl;liny season or will extend into the rainy season (Oct.1 -Apri,I 30) Tier 1 -Low Construction Threat Assessment .Criteria O Low p My project does not meet Tier 1 Medium Threat Assessment Criteria listed above I certify to the best of my knowledge that the above statements are true and correct. I will prepare and submit an appropriate tier level SWPPP as determined above prepared in accordance with the City SWPPP Manual. I understand and acknowledge that I must adhere to and comply with the storm water best management practices pursuant to Title 15 of the Cartsbad Municipal Code and to City Standards at all times during construction activities for the permit type(s) checked above. The City Engineer/Building Official may authorize minor variances from,the Construction Threat Assessment Criteria in special circumstances where it can be shown that a lesser or higher SWPPP Tier Level is warranted. Emergency Contact Name: Telephone No: Kevin Dunn 204-270~04 Owner/Owner's Authorized Agent Name: Title: Kevin Dunn For Rincon Real Estate Group, Inc. Manager Owner/Owner's Authorized Agent Signature: Date: 3/24/16 FOR CITY USE ONLY Yes No City Concurrence: By: Date: E-32 Page 2 of2 REV. 02/16 «t~ ~ CITY OF CARLSBAD PLANNING DIVISION BUILDING PLAN CHECK REVIEW CHECKLIST P-28 Development Services Planning Division 1635 Faraday Avenue (760) 602-4610 www.carlsbadca.2ov DATE: 5/25/2016 PROJECT NAME: Garfield CustomTownhomes PROJECT ID: PUD 15-17 PLAN CHECK NO: CB161168 SET#: 2 ADDRESS: 225 Hemlock Ave. APN: 204-270-04-01 D This plan check review is complete and has been APPROVED by the Division. By: A Final Inspection by the Division is required D Yes D No You may also have corrections from one or more of the divisions listed below. Approval from these divisions may be required prior to the issuance of a building permit. Resubmitted plans should include corrections from all divisions. ~ This plan check review is NOT COMPLETE. Items missing or incorrect are listed on the attached checklist. Please resubmit amended plans as required. Plan Check Comments have been sent to: kdunn@rincongrp.com For questions or clarifications on the attached checklist please contact the following reviewer as marked: • • -6 • ,-' r •. ~-. , ---66 <' . ' -~ ¥ • " -' . PLANNING ENGINE,ERINfl ,, FlliE ·PREVENTION. ,, '. 76().602-4610 760:-602-2750 · · 76~024f:,65 ., ' ,· . . ' . ,· ' < ._ ~-" D Chris Sexton D Chris Glassen D Greg Ryan 760-602-4624 760-602-2784 760-602-4663 Chris.Sexton@carlsbadQa.gov Christo~her.Glassen@carlsbadca.gov Gregory.Ryan@carlsbadca.gov D Gina Ruiz D ValRay Marshall D Cindy Wong 760-602-4675 760-602-27 41 760-602-4662 Gina.Ruiz@carlsbadca.gov Val Ray.Marshall@carlsbadca.gov Cynthia.Wong@carlsbadca.gov ~ Austin Silva D Linda Ontiveros D Dominic Fieri 760-602-2773 760-602-4664 Linda.Ontiveros@carlsbadca.gov Dominic.Fieri@carlsbadca.gov Remarks: REVIEW#: 1 2 3 ~DD ~DD ~DD DOD ~DD Plan Check No. CB161168 Address 225 Hemlock Avenue Date 3/30/2016 Review# 1 Planner Austin Sliva Phone (760) 602-4631 APN: 204-270-04-01 Type of Project & Use: Residential Net Project Density:13.8 DU/AC Zoning: R-3 General Plan: R-23 Facilities Management Zone: 1 CFD (in/out) #_Date of participation: __ Remaining net dev acres: __ (For non-residential development: Type of land use created by this permit __ ) Legend: -~ Item Complete D Item Incomplete -Needs your action Environmental Review Required: YES O NO·~ TYPE DATE OF COMPLETION: Compliance with conditions of approval? If not, state conditions which require action. Conditions of Approval: Discretionary Action Required: YES~ NO O TYPE PUD 15-17/SDP 15-16 APPROVAURESO. NO. 7144 DATE 1/6/2016 PROJECT NO. PUD 15-17/SDP 15-16/CDP 15-34/MS 15-11 OTHER RELATED CASES: Compliance with conditions or approval? If not, state conditions which require action. Conditions of Approval: __ Coastal Zone Assessment/Compliance Project site located in Coastal Zone? YES ~ NO D CA Coastal Commission Authority? YES D NO ~ If California Coastal Commission Authority: Contact them at -7575 Metropolitan Drive, Suite 103, San Diego, CA 92108-4402; (619) 767-2370 Determine status (Coastal Permit Required or Exempt): Habitat Management Plan Data Entry Completed? YES D NO ~ If property has Habitat Type identified in Table 11 of HMP, complet~ HMP Permit application and assess fees in Permits Plus (A/P/Ds, Activity Maintenance, enter CB#, toolbar, Screens, HMP Fees, Enter Acres of Habitat Type impacted/taken, UPDATE!) lnclusionary Housing Fee required: YES ~ NO D (Effective date of lnclusionary Housing Ordinance -May·21, 1993.) Data Entry Completed? YES D NO D (A/P/Ds, Activity Maintenance, enter CB#, toolbar, Screens, Housing Fees, Construct Housing Y/N, Enter Fee, UPDATE!) D D D Housing Tracking Form (form P-20) completed: YES D NO ~ N/A D P-28 Page 2 of 4 07/11 i:. ., ' • Site Plan: ~DD igi D D igi D D igi o ·o DOD igi D D igi D D igi D D igi D D igi D D Provide a fully dimensional site plan drawn to scale. Show: North arrow, property lines, easements, existing and proposed structures, streets, existing street improvements, right-of- way width, dimensional setbacks and existing topographical lines (including, all side and rear yard slopes). Provide legal description of property and assessor's parcel number. City Council Policy 44 -Neighborhood Architectural Design Guideiines 1. Applicability: YES igj NO 0 2. Project complies: YES igj NOD Zoning: 1. Setbacks: Front: Interior Side: Street Side: Rear: Top of slope: Required .1Q__ Shown 10 Required .1Q__ Shown 10 Required .1Q__ Shown 10 Required .1Q__ Shown 10 · Required ___ Shown __ 2. Accessory structure setbacks: Front: Interior Side: Street Side: Rear: Structure separation: Required __ Shown __ Required_-_ Shown __ Required __ Shown __ Required __ Shown __ Required __ Shown __ 3. Lot Coverage: Required 60% Shown 51 % 4. Height: Required 30 Shown 29'6 ½" 5. Parking: Spaces Required g Shown g (breakdown by uses for commercial and industrial projects required) Residential Guest Spaces Required 1 Shown 1 6. Floor Area Ratio: NIA Required __ Shown __ Additional Comments See attached page. -OK TO ISSUE AND ENTERED APPROVAL INTO COMPUTER No DATE 5/25/16 P-28 Page 3.of 4 07/11 1. 2nd request. Per condition no. 15 of Planning Commission Reso #7144, please provide a copy of the official CC&R's that have been approved by the Department of Real Estate and the City Planner. 2. 2nd request. Per condition no. 16 of Planning Commission Reso #7144, please pay the affordable housing in-lieu fee ($4,515). The fee has been added to this building permit. 3. 2nd request. Per condition no. 17 of Planning Commission Reso #7144, submit a recorded copy of the condominium plan filed with the Bureau of Real Estate. 4. 2nd request. Per condition no. 25 of Planning Commission Reso #7144, please include a statement signed by the acoustical analyst certifying that required features have been incorporated to demonstrate that the structure meets a 45dB(a) CNEL interior noise level. P-28 Page 4 of4 07/11 .34 t;;f?[All.-fl~ ~G-N 4-/IE.C.-1C-/3b ~~ tz1E:-VJ~ ~A''-Yso'2 ~ o Sf:f-e C+Lc • FA~ Gr G of- lfo US'e 1 0/JL r A7T~Cffek:;;, (Ult:::..; _;::=t:::>/2-/I~ z· WAS /2...i;;p./OVG F/2-0~ _TH.l.S Sf?T RECEIVED MAY 2 4 2016 CITY OF CARLSBA.0 BUILDING DIVISION 225 HEMLOCK AV 2042700401 MS150011 RESDNTL 05-24-2016 CB161168 ~ )- }-- c) '----------~------------------------ STRUCTURAL CALCULATIONS PROJECT: ----=~=---A ....... Jt:2~El....,_IE,_l--"""'D _____ --frf-' f-"O___.l""'-J....,,:;:,c..E:----· _:ft:._1_· __ _ DESIGN ASSUMPTIONS: CONCRETE STRENGTH AT TWENTY EIGHT DAYS: MASONRY: GRADE "W CONCRETE BLOCK F I M = TYPE S 1,800 PSI ____ ..,,...._ PSI MORTAR: GROUT: 2000 PSI . - REINFORCING STEEL: A-615 STRUCTURAL STEEL: A-36 LUMBER: DOUGLAS FIR-LARCH JOISTS BEAMS AND ·POSTS STUDS SEISMICFORCE:5os = .. Boo WIND FORCE: /IO NPI-I ~Xf1-D DESIGN LOADS: ROOF DEAD.LOAD SLOPING ROOFING PLYWOOD JOISTS INSUL. & CLG. MISC: FLAT GRADE 40: GRADE 60: #4 AND LESS (U.O.N.) #5 AND LARGER #2 #2. STUD OR BETTER REPORT NO.: J 5 -I 0/oC, ( FLOOR DEAD LOAD INT. FLOORING PLYWOOD JOISTS INSUL. & CLG. MISC. TOTAL= \ ~ p1;,,r-¾~F TOT.(\L = 14rsr: ROOF LIVE LOAD FLOOR LIVE LOAD INTERIOR 40 PSF EXT. d7HTK STRUCTURAL ENG!NEERS,LLP WALL DEAD LOAD INTERIOR 10 PSF EXTERIOR 16 PSF SLOPING"' 'Z-Of-6F FLAT= ,Z.o f 4-p BALCONY 60 PSF (U.O.N.) EXIT WALKWAY 100 PSF These calculations are limited only to the items includ~d herein, selected by the client and do not imply approval of any other portion of the structure by this office. These calculations are not valid if altered in any way, or not accompanied by a wet stamp and signature of the Engin~er of Record. I I. De~igned· Sy.- r D-r 5an Dio,gq -14288 Dantelsan Street, Suite# 200, Poway, CA 9Z064, (858) 679·8989, fa:x {858) 679-8959 Las Vegas (702) 505-8225 • Bay Area (510) 759.9399 • Los Angeles (424) 703•54B5 i ;-1 -:r. '2o6F f¥fr:?!=: J. LmAX-= lt' ~~.AC1t--l~ == :z4u 2.. jz.t. ' . L = It;:,' Cw/ ~1 UNi 1L) ~P>ctt-J"7' = II, 11 0 / c P,JP Y4-'1/1 I ~~~ fq')n~·evtPf \J == e ze:lt: d.-= OL:::. IC, 1 ll = ~o / TL": :JC:;pSF Woi, = /4; ( Jtp1z) .s::-:2l~B ~ ~lw... i:: t>Zo(lb/f z) = f2UJ~-, ~ -t "2-lo (ot.) 2.it,O (t.-1..,) 410 t:s (ct;;) M = ,z.c:::,04 *-YT X -= 14-~ ,~4 ~=~ZS* I' 2. X B;; /(ou 11:. = /'-/3'?; \/~ ::-ah I X =4 1 f Jaa (o<..,) I~ o ( '-L.) ~~o ~ > r .. 4 21-l+ to) lCo" o/c.. Ot2,.. \~4 >t-\lV4 i--~L o) lG:>" 9 1: I ~--~-1 J Ir----.:,-----·:::: T 11 1, l 11 1, lj J lj ~-=--::.-=--:] I II f II !l ~ f II m. II lL I ~::J i::----- l II II ll I H II ~---~ r I 1 Ii fl II II I ,1 II H 1-1 l II II If II II II u II H II ~----rI=----------------- II H II ii II ll .1'!. II H JI 11 ~--- 11 ,1 -11 1L.c= ~f&I ~---I 181 -.:::C:-----71 II II H ll II II II II JI II H II II --------{ ,r------- II II r ~ ,1 n '1 II '1 iL IJ '1 JL dJ II II ~ ,1 ~ 1, 11 11 11 ,, ,, : ._ ! ..... LL-, -7-i II II H I I 11 =,P qi JI 1' 11 ,, I 11 1, ,, 1, L1... ___ ...J...J 9f9 I j ~-- ~-- I 1 I 9 r I I I ~ ,, 1) ~ N ~ -_'.. ...... f -.• -- I ~--] '9 -. t . ,· +..t. t ' I 9 U') . - f Sliii!IW _-:_{,liliii.i;,!!!~F~~dl(l;H!'18~ ,,.,,~.J -l ...... ~'"" ,:,f lfc:IC!lf -·1 OMC/ff I I :it~ FLootz JOJ-6T }:;;)/:!;-SJ§r'J, ( House # 1) ( _ Fqe.. ,rr --FLo0Je ~OI S7 1 S 6-5 ..:ro I '!G, r :::: qfI:3,t?U 1£. .Pr::-5/G[N a~ NEi-c7" e~. -z -.::r 1 L -== 1,' ~ w/ 1-' CANT 't) ~ u~e. : I J 7/a v :Jc)/~ \ e,t <;;) /~ V { [!Je,;r I, ooo) ~~ IJ!,e-..:C C/ALL:--$fir .. .l:>-~~ 1-• :. );!, I (wj 2/ ~'L) 1 'f.:: -1W j / I l, U~/:=.:. I 17/e,u :::ro/91 ',t.. I -"i) /Cf. 2-l1 ( ~-:C: S:coo) . i ,z,:, ! ,ZI ., 't ~ f5e-~c,;1 CALe,.. Sf-ff. ~ e, -:t.,.. ,::LootZ :TDl~ ~ I~ ( 1-foL[~f= -*1) ~ -33 L J:./6'' (w/ 11 ~NT' 1.-) . 4 U4>~ • I 11/s'' ::r01~r '13' "o) /to u · (~GI booQL_. $~E-J:pc.,.;c CA/_,6; 4-.:,-4- L --J::,, (w/ a' r»-NT1L) , (i)ao11e Cucade Slngle 11-7/8" BCI® 6000--1.8 OF Dry 12 spans I Right cantilever I 0/12 slope BC CALC® Design Report ..................... Build 4516 16 OCS I Non-Repetitive I Glued & nailed construction Job Name: Address: City, State, Zip: , Customer. Code reports: ESR-1336 .:r 1 -{-l-ot1'$ ta JO/~, Oe-S/Gj-N IYYYYYYYYY:Y"I:: BO Reaction Summary (Down I Uplift) ( Iba J Bearing Live BO, 2-1/2" 311 / 5 81 I 3-1/2" 632 / 0 1 File Name: ac CALC Project Description: Oesigns\J01 Specifier: Designer: Company: Misc: 1 ' y y y • y ~ • • • y y y .. ,, . ,·-,: 11-00.00 Total Horizontal Product Length= 13-00..00 Dead 107 /0 301 / 0 Snow Wind y ... 7 Joist\J01 April 20, 2016 21:32:43 ...... ~ .... 1 ........ 2 ....... ] ,: 02-00-00 81 Roof Live Live Dead Snow Wind Roof Live ocs Load Summary Tag Descrlmton LoadTtl!! Ref. Start End 100% 90% 1 1W Unf. Area {lblftA2) L 00-00-00 11-00-00 40 2 2W Unf. Area (lb/ft"2) L 11-00-00 13-00-00 20 3 p Cone. Pt. (lbs) L 10-06-00 10-06-00 298 Controls Summarr: Value % Allowable Duration case Pos. Moment 1,155 ft-lbs 28.5% 100% 2 Neg. Moment -96ft-lbs 2.4% 100% 1 Neg. Moment -96ft~lbs 2.4% 100% 1 End Reaction 418Ibs 32.2% 100% 2 Int. Reaction 9331bs 37.3% 100% 1 End Shear 4031bs 24.1% 100% 2 Cont. Shear 8261bs 49.3% 100% 1 Total Load Def!. l/999 {0.08") n/a nla 2 Live Load Defl. l/999 (0.08") n/a n/a 5 Total Neg. Defl. 2xl/1,998 (-0.038") n/a n/a 2 Max:Oefl. 0.08" Cant. Max Oefl. -0.03811 Vibration 10' 7-3/4" Span/Depth 11 Bearing Supports Dlm.(LxWJ BO Wall/Plate 2-1/2" X 2-5/16" B1 Beam 3-1/2" X 2-5/16" Vibration Summal)' Subfloor: 23/32" OSB, Glue + Nail Strapping: None Cautions n/a n/a n/a n/a 52.1% n/a Value 4181bs 933lbs n/a n/a %AHow %Allow Sue~rt Member n/a 32.2% 15.4% 37.3% Gypsum Ceiling: 5/8" Bracing: None Design assumes Top and Bottom flanges to be restrained. Notes Page 1 of2 2 2 0 14 16 160 Location 05-09-10 11-00-00 11-00-00 00-00-00 11-00-00 00-02-08 10-10-04 05-08-00 05-08-00 13-00-00 05-08-00 13-00-00 00-00-00 00-00-00 Material Unspecified Versa-Lam 1. 7 115% 160% 125% 16 16 n/a . (i)ao11e Cascade BC CALC® Design Report -~[fl Build4516 Job Name: Address: City, State, Zip: , Customer: Code reports: ESR-1336 Single 11-7/8" BCI® 5000-1.7 OF Ory 12 spans .I Right cantilever I 0/12 slope 19.2 OCS I Non-Repetitive I Glued & nailed construction File Name: BC CALC Project Description: Designs\101 Spec;ifier: O~igner: Company: Misc: '6 Joist\J01 April 20, 2016 22:24:44 l.,,...,YYYTYYY'.'I". .., ... ::,: y y T Y' i Y Y Y Y Y Y Y • Y Y • 9 ,.. Y • : .., I Y .... 2 ~ .,.. ...-I 11-00.00 BO Total Horizontal Product Length =.13-00-00 Reaction Summary (Down I Uplift) < lbs ) Beartnq Live . BO, 2-1/2" 357 /6 81, 3-1/2" 417 / 0 Load Summary Tag Descrtmlon Load~e• 1 1W Unf. Area (fb/ftA2) 2 Unf. Area (lb/ftA2) Controls Summaa Value Pos. Moment 1,247 ft-lbs Neg. Moment -115 ft-lbs Neg. Moment -115 ft-lbs End Reaction 4771bs Int. Reaction 5951bs End Shear 459 lbs Cont. Shear 4671bs Total Load Deft. L/999 (0.095") Live Load Defl. L/999 (0.072") Total Neg. Defl. 2xl/1,998 (-0.043") MaxDefl. 0.095" Cant. Max Defl. -0.043" Vibration 10' 7-3/4" Span/Depth 11 Bearing Sueeorts Dlm.(LxW} Value Dead 120/ 0 177 /0 Ref. Start L 00,,00-00 L 11-00-00 Snow Live End 100% 11-00-00 40 13-00-00 20 % Allowable Duration Case 39.6% 100% 2 3.7% 100% 1 3.7% 100% 1 40.2% 100% 2 26.4% 100% 1 28.2% 100% 2 28.7% 100% 1 nla nla 2 n/a n/a 5 n/a n/a 2 nta n/a 2 n/a n/a 2 56.5% nfa nta n/a 0 %Allow %Allow SU(?l!!!rl Member BO Wall/Plate 2-1/2" x2" 4771bs n/a 40.2% B1 Beam 3-1/2" x2" Vibration Summary Subffoor: 23/32" OSB, Glue + Nail Strapping: None Cautions 595fbs 11.3% 26.4% Gypsum Ceiling: 5/8" Bracing: None Design assumes Top and Bottom flanges to be restrained. Notes Page 1 of2 Wind Dead 90% 14 16 Location 05-06-06 11-00-00 11-0()..00 00-00-00 11-00-00 00-02-08 10-10-04 05-06-08 05-06-06 13-00-00 05-()6..06 13-00-00 00-00-00 00-00-00 Material Unspecified Versa-Lam 1. 7 Roof Live Snow Wind Roof Live ocs 115% 160% 125% 19.2 19.2 . (l)eo1sacaacade BC CALC® Design Report II Build 4516 Job Name: Address: City, State, Zip: I Customer: Code reports: ESR-1336 Single 11--7/8" SCI® 6000--1.8 OF Dry f 2 spans I Right cantilever I 0/12 slope 16 OCS I Non-Repetitive I Glued & nailed construction File Name: BC CALC Project Description: Designs\J01 Specifier: Designer: Company: Misc: Joist\J01 April 21, 2016 08:25:43 I ... y y y y ... y y y ... .... . .. Y.'.Y<T 'Y Y X Y l :x _ ... y * y y ... y y y y y y y y y y y y ~ ...• i·,· . 14-00..00 BO Total Horizontal Product Length = 15-00-00 Reaction Summary (Down / Uplift) ( lbs) Bearing Live BO, 2-112" 377 / 22 B1, 3-1/2" 722 I 0 Load Summary Dead 124/0 262/0 Snow Wind Live Dead Tag Descrietion LoadTYs,e Ref. Start End 100% 90% 1 w Unf. Area Oblft"2) L 00-00-00 15-00-00 40 2 p Cone. Pt. (lbs) L 15-00-00 15-00-00 277 Controls Summary Yalu• % Allowable Duration Case Pos. Moment 1,670 ft-lbs 41.1% 100% 2 Neg. Moment -419 ft-lbs 10.3% 100% 1 Neg. Moment -419ft.albs 10.3% 100% 1 End Reaction 501 lbs 38.5% 100% 2 Int. Reaction 9841bs 39.4% 100% 1 End Shear 486lbs 29% 100% 2 Cont. Shear 5181bs 31% 100% 1 Total Load Defl. L/976 (0.17") 24.6% n/a 2 Live Load Oefl. L/1,273 (0.131") 37.7% n/a 5 Total Neg. Defl. 2xU1 ,988 (-0.03") n/a nla 2 MaxDefl. 0.17" 17% nla 2 Cant. Max Defl. -0.03" n/a nta 2 Vibration 13' 7-3/4" 66.8% n/a Span/ Depth 14 n/a n/a 0 %Allow %Allow Bearing Sueeorts Dim.{Lx~ Value Sueeort Member BO Wall/Plate 2-1/2" X 2-5/16" 81 Beam 3-1/2" X 2-5/16" Vibration Summary Subfloor: 23/32" OSB, Glue + Nail Strapping: None Cautions 501 lbs 9841bs n/a 38.5% 16.2% 39.4% Gypsum Ceiling: 5/8" Bracing: None Design assumes Top and Bottom flanges to be restrained. Notes Page 1 of 2 14 106 Location 07-00-06 14-00-00 14-00-00 00-00-00 14-00-00 00-02-08 13-10-04 07-00-06 07-00-06 15-00-00 07-00-06 15-00-00 00-00-00 00-00-00 Material Unspecified Versa-Lam 1. 7 ,' .. •' . ' ~ '.. ,, -.. , , -;, •. _ , ff -~1-~~! 81 Roof Live Snow Wind Roof Live ocs 115% 160% 125% 16 nla _l)Bolla~lcade BC CALC® Design Report =·==== Build 4516 Job Name: Address: City, State, Zip: , Customer: Code reports: ESR-1336 Single 11·7/8" BCI® 6000-1.8 OF Ory 12 spans I Right cantilever I 0/12.slope 16 OCS I Non-Repetitive I Glued & nailed construction f File Name: BC CALC Project Description: Designs\J02 Specifier: Designer: Company: Misc: /o Joist\J02 April 21, 2016 08:28:19 f y .., .. .... .... y y : y .,, y ;, :t: C- T Y Y T ·Y Y ! Y Y Y Y Y ~ T T Y T Y ~ Y Y T T T T Y J ........ . ::::~ ... · :· ~ ?.15,l.(.1 ~-.... BO 11-00-00 :. 02-00-00 Total Horizontal Product Length = 13-00-00 Reaction Summary (Down / Uplift) ( 11,s} Bearing Uve BO, 2·1/211 297 / 61 B1, 3-1/2" 734 / 0 Dead 81 /0 268/0 Snow Wind Live Dead Load Summary Ty Description Load Type Ref. Start End 100% 90% 1 W 2 p Unf. Area (1blftA2) Cone. Pl. (lbs) L 00-00-00 · 1 a-00-00 40 L 13-00-00 13-00-00 277 Controls Summary Value % Allowable Duration Case Pos. Moment Neg. Moment Neg. Moment End Reaction Int. Reaction End Shear Cont. Shear Total Load Deft. Live Load Detl. Total Neg. Deft. MaxDefl. Cant. Max Deft. Vibration Span/Depth Bearing Supports BO Wall/Plate B1 Beam Vibration Summary 939 fl.·lbs ·910 ft-lbs -910ft-lbs 3781bs 1,002 lbs 3631bs 5171bs U999 (0.065") L/999 (0.054") 2xU1,998 (-0.02") 0.065" 0.041" 10' 7-3/4" 11 Dim. (L X W) Value 23.1% 22.4% 22.4% 29.1% 40.1% 21.7% 30.8% n/a n/a nta n/a n/a 52.1% n/a 2-1/2" X 2-5/16" 378 lbs 3-1/2" X 2-5/1611 1,002 lbs · 100% 100% 100% 100% 100% 100% 100% %Allow Supeort nla nla n/a nla n/a n/a n/a nla 16.5% %Allow Member 29.1% 40.1% Subfloor: 23/32" OSB, Glue + Nail Strapping: None Gypsum Ceiling: 5/8" Bracing: None Cautions Design assumes Top and Bottom flanges to be restrained. Notes Page 1 of2 2 1 1 2 1 2 1 2 5 2 2 3 0 14 106 Location 05-03-02 11-00-00 11-00-00 00-00-00 11-00-00 00-02-08 11-01-12 05-06-06 05-06-06 13-00-00 05-06-06 13-00-00 00-00-00 00-00-00 Material Unspecified Versa-Lam 1. 7 B1 RoofUve Snow Wind Roof Live ocs 115% 160% 125% 16 n/a f ~ IZB1 -L = ,z;, (wf 4--s' CN-rrt) l lA•e : 4-x IZ ( ~G-t:; SHT .. #-z 4) ·---:~ 3.v~-;:·14 P~L (se-e-s-H;-#z ~) ~ .. f2J?;3 _ .L = 3' W Of,; lkl ( 8) = t/ e, ~ p:1PL. :; /t/ Bo Jt . "" .. PLL. -:. t7eo 1t _[-.. ~--5~1t x q !lz ~·i_--r-- {~ SHT-~z~) _,,Pot,= 6Go • .,, Pu.,_ -=--e 2o -:tt: £ PPL~ //'-f o =# ep,_L = Jifoo ::#: 4 8Yzx..41/2-PSL... orJ- /( w !4 4 i A, 'Is h t 1/. 2 '· ~ I/. '5 J J/./30 (01,.) 1eeo (b1.,) i f -(,5o (01.) I I e,o {t.1.,) :2.;35o { u....) 8'2.a(u,,) 2>£lo=P 42.SO~ )J../10 ~ E ~ ftf' I IJ-/o ( o~) 11-/30 (t...L) ~570:1#: w t cr,o{ot-) Bqo {1.,1-J /soo-#- A 4' \ 1 410 {o L--) 1:;:2o(u.J q:50:lt. {" " "T f " ..4P l ... " 4/ l 'f l * t //'-Io ( oc-) J J--/ 3o (LL) 2-570 ~ t °t 10(01..,) ~qo(u,) l~oo# ,zp l~ . G' 'i;Q_.., .. t /3e,o {oL) /780 {u.,,J ?110 #:- 4-)(tO (s~ >*'-Jt-z7) /2. w~L = Jc..o (e,.s) + 1e:, ( evz) + t4 ( 1412.) + IG:.. ( 1,2J/2.) = J./c,z..~ Wu...-= '20(8 /:z) + 4o ( 14--/~) + 20 (e12)= 440 ~ 4,, 7 X IJ9'e, p,st....;. ,~~--11!-,;;;s_ . .;;;..s_' ___ ~_ ( se-e-StfT ~ .ft 2?::,) .+-+ ~1.zo (p1.,) 31'2.-0(1-:::n_) 'o .if-lo (LL) 34-J O ( Lt.) -~t;:;eo #: l,SBo ~ ~-Fl:3:Z L ;. 1-6, 1. ( w/ 11 CANT'L) W0 L = l ~ ( e .. s) + l ~ C, ) t--J " ( ~~) = I f.p s ~ \J-.1~ -1..o l ,) + 20( :Z/,z) --4o ~ f't;;t..-=-1140 # Pt..-t. =-JJ./o o ~ 7 ... F83 Ls li' L aYJ' xt(1/e, IP-=-L.- ( ~e~ S!ff, '!#3~ ' . . \ I ~ t .· 7 I . '} / I 4.·· ~ 9120 ( 01-) 1·04-o lu_) ~°}(eJo¾ t 1, f 1"74-i:J ( bL) °IC/ o(LL) 2,a.041' w --;---~-~~-~----~ -'. -t t B4o Cot-) 54-o ( o i) 3?jo( Lt.) 3'10 (LL) I, 2 'o C, ~ I I 28 0 ~ 5 .. f-~4 L .. -:;;.10 1• l aY~"-J/1/B P$L F----i'0-,--_,....i ~ . C5E1:_-5ffr. 4f ;3 /) --t --'k t /fi/O { t::JJ,,,) . 2/5'Q ( u .. 2 }'5/0 {b~) __ "t I "5"0 { L.L L. 3~'-o :lb 3h00-:it: w OL. -: };./ ( '"1.e) =-1 fb,. , ~ . L. -::::.;to' Wu ... = ;./o(16/1z) .i. 53 .. 8 ~ _ .. -------. --i PoL. ~-84-o.+ l$/o ___ =!! __ 2_~':70-#_ {_f.1.&..L=.8q9_+ ~/6'0 = ~~.,to* __ _ _. ______ _gfe;i1,..::::_1iq.-z1¥ ________ _ _ ~---~ __ _ __t_e i.L = __ ci o ~t _ . -1 ~ ~ Ii~><. I/ Ys P"?L _ __ (5_'!_e __ s+tr~ +Bz.) ~ -r;;74)( '1 7/a y;,r;L ~--' ---~ --.. ( ~ E:-e-.Sflr. JI: 3 '!;) { A · i" w : ! K ,?' ... ~ ~ 'k 55-?o(t>I.! ·-ta3o (Pi,J ,z;-2-0(~1:..) . -33(:..0 (1-0~ 1_ ?>,o(ol-) S3o(LL.) ; I~, ~o # ·-6,~tqo '# t!foo=#s '---~----. Ip p I . -·~~. ... f! w r:;: ~-5'2> .. ,,------=-14..:...-' ---'!~<-·~ t ' + _ 2'2.oo_( ot) I 4-,o { OL) I 14o ( t...L.-),. I I ~ o ( L-i.,,) _ .. ___ ?q4-o-dj: ,Z(;;, Bo~ . ll.. p12;7 L ::.: '2o ~- ~ .1 ~)(_'14 LSL. (s-ee .SfM-#34-) w 'i .. Fl3 8-. ---,,.. -W~t.. ::_ '" (3!i2 ?'._i.4 fH--F . L -:. I~~ W '-'-_-: '2o ( e,/z) =-3o p--t-,P {wf ,;' CM}f !L) . Pt)k = __ ! ~ 0 . ~------------.... - 17 1 6 ··=1 IO ( Ot.,) Io { '-L) "'2-o~ ___ ·--_ _ ____________________ J:71,..L-:. f4D :ti; --.,:e __ --W . . . ----. -·----•· ---------~ i. :: -·-! ~ I~ x.'IJ-.t J.:iiL-. .. ----·-·-· 'J> ~, t Io' (sre-e-. Sffr.. -=f. 3 S) -~·Io ( r;;,~ 390 ( 1-t..) 700-::l:t- " t \ to (oi-) 14o ( LL J -~60.6',. }4 /4 .. J==/310 L = 4-1 JG .. F8~1 L ~ II I Jb. Fl:3J~ \Al= 3~ (t!y-~)+ /fp { t.JS) .:z. ~l~p-vP M = e, :3 G, *.., FT ----:... 'B Y,;z )I. j\ '1 to p:::$(_ I = ~ tw+ f2-, -= SBG:=>~ j ' _ _J f:._ = ~IJ!.o+ /0OG = 1-j/,z.5+ OL 'VF P1-t.. = B4lo+ I/ oo = 1/5/0 { L. 3¥2 >< 1(1/e P'GL (;~e SH-(--4t 37) 6 I' 101 1 'tx 3'750 {l:)t.,) 4 I oo { l-i,;) 7850-://:- 6. h· t 3€;,0 ( OL-) L/ lo (1-L} 7 C/b 4- L == fo.s' . · 1- M = l5tf B #-rr I.:. '56 IN4- p-. = 566' 11:- l ~ Y 12 ~ ql,,4-. P-SL ( '?Ee" Sfrr. # 3eo) ____ ____..,_---t---~ w 1.-==--· :: "k 10 .. s' t /~6 (oL) J./-'2o (u.) > Sse,-4#= ::: ! ·k f I& 'b { 01.-) t-f-z.o { L.';: ),_ 5ee,:IF { ~,---.-. ---~ .. -! ~--..... ~,-3-,-~-r _4_'_1- _! 'Wi;,'-= 14-( t24/~) + lo ( tOf ~ ~)-= '2~5 ~ wLt-~ '40(-2.4/~) --4eo ~ · 1 I° oJ = 1 I o -.tt: "" Pt.~= '3oo'"* Z-Pr.>l: "37So# ~ P,L -: 4-1 oo # 3PDL -= ftq.z.o-il: BPw_-= l e,4-o #;: G, ~x/e PSL ../P 2to I\P 3t-::, z±;3'± ± {p I f' ALL -::: lrsqz 1 w i 6.TL.::. ~~o 1 1- (se-~ StfT-*°4-o) S1 So ( t::>f...) '5370 ( ~L) e, '3 '7 0 ( L..I.., 2 ~0,7o { LL,) f ~, 34-o =t--<!:)(2... JL/, /50 :ti:' p 1: !:·::I::' ··:: 2 4 8Y£ ~ I (p f't;;L {s G-G' >'#T-ii=+ 1) 17 l ,;;J,,4-x I (o p,;;; L ( o) (s&.;: $HT-,#:4-~ t /./ 1-/~o (01 .. .) :3c,o~ ( l-L) t 3770 {ot_) P~t.. .::: 5e,e, ~---· p L.L.. = ~~20 # L, s;t,4", Ws P!>L- (5€-17 StfT. ,#:4-3) 83~o'::12f: t ~~50(01...) 31~o{LL) 1oe,odl= ._......__,_. . . ..! . . 1Wo1-= /J./ (aY2) ;:= 1-11 ~ -1 Wu...:= Jfo ( 3 v:z) = {p -z.o ~ ~ WoL-= It./ ('4/z) .=i. °}e, ~ ..zw,.,1..~ )to ( 1o/-z) .'$. ~ e,o ~ Pr,L = 25'2.o ~ p LL .: '2. i~ 0 #' ::: 8 to D ( l-L) ~&3o=#:: t ~52o(oL) Q7Cfo (LL} 63/o:ib t t :ZS 30 ( r:n) i S4-o ( DL) 44 80 ( u...) ,ze,oo (Lt.,,) (oC,G,o* J../ 5t./o-#- ~ W a,L-• l6J ('"' '?/z) .:s: <po p-vF /8 l-:::.;-,,, ( w( t.. L8' U*JT' L) 1 W 1.t:= Ho C 7 "' o/.z) ~ l Go ~ 2Wt.:1t.:= l& (t./z,) $ I (p ~ ZW1..L~ 4'°(Z/~) S 4_o~ l /¾,.,. ~),,: /..SL ?s IE:IE Sftf. -14=+5) I' t ~40(~,) Cto{i-L-) f /10(01..,) '2. "7 0 { /,,1,.,) 6 tE,o.at: 8eoJi::- ~4-r8'2.o L -= 7.,? 1 ~ w( 2 1 utJf '1-) Pt:>L::: -i...+o* Pu_:::: "to* /> l ..._1.._' ...... .5-_-!3_1 _S-_1 ---,h. 2 tfS .. rJSiz i J_ :::. l. i 1 l \ 3/4 x "I Y+ l--5 L (.S,:!6 Sff7 -# 4-{.e,) * 1-: 1-t t ;3-SD [o~) -q o {OL) 8'5o( LL) -Z"Zo ( I..L} -1M - lltoo":t:t:--·3to,#, ( w l '2. -'5 I CA NT I 0 1WoL -= /ft, { 0 /.z) ::~G-~ -'t\lJ u.. = t.fc, ( 61-z).= /(f!C? ~ '2Wot. -:= I &i ( J>,-/) + /u; (rt-4-/2) + /;.,/ ( h/2.) = t/~B ~ WLL = .Z.o (24/-z) + J-to(t;:,/z..) = 3foo p--1--F 94-x \ \'l'B pSL { 56,;; SH1 -*41) . P r.,L. :-CJ 6 0 ti;. I I p /"' LL "" ( q O bj, ~ \N' l·--' ~i _______ ~"j-__ 7 4-$ ~ J:t..l ~+6 ~ 1 ??~Gto (vt.-) 46'2>0 C oL) 8 'l..."?O ( LL-) 3 15 0 C l-L-) (pq,zo .1;p 1-itoc:> ~ ::z ~ -re 2. 12.. L == /~' (w/ ~' CAN1'''-') 4Wot.-= Jt,p{c,) + IJ/ (16/a) = 1.10 p--vP fw t.L-= ;./o (1 'o/~) -=-3/oo p--t-F . ~Wi:n-= l'-/ c~Z/$)-=-~~4 ~ 2W~-=-~o ( 3 1/-:1-) ,::. l'e>4o ~ ~P01--= 2:2.00 -4- ~Pu.-~ i74o'* 2.Pot.. ~ /~Jo =IF 2 p L.L -: ~ /::S" o--#- '3 P,:)L ~ I to "' L BP,...,-=--2:ro ,Jf,. BY2 ~ \I 71a PSL (:SG-G SJ-IT .. -#4e,) ;q t. 4-1012-f L = t.o' W = /~{5)+ J/7D :::: 550 ~ M = t4,s --Hr-,::r i :r :;. 3~ 11.J 4 ~ 4 )( e, ---,··· ~ A -:: /C,~o -" M-= = 3tc4 I \/ 2-: t[o I~ I ~ l I l w = /6? tio) + s4 (1o/-z)+ 8'7 {7/2) = ~q I ~ M = £-f 'S'q # -Fr T~ ~,t,.J4--:... 4-)(~ ~: 1,z.-, ~ --'IW= G,ctf pvF -----~w,:: 10 c ~) + -s~ C ,) -= e4-~ p =:. '2.,t:5 0 -ti=' M ~ /f:>qB *-PT X ;:s; /0 ~ fo IN 4- ~ = g :t. sc(*- 1-4 x e, w z=: /(p{ -t.) -l-sqq (1¾(b) ~ ~o~ ~ M =5bl/b+-F, I= /of 11J4- ~ -= t.e:2..1-# ----' 4x1'2 Ma.,:= ,4-2. I \/ C, == (;~34-:r: -:. 4-1 -5 p 20 7 -1-J t:?IZ 7 J_ = S' I - I °M'cl> ::::: l ,;zj 11 / 5 "'\J d.:::: fo, ~~ 0 :::C = 2 So - w-= /G.o ~ M = /2.oo =IF-PT -----4-x 5 r .:.-t21 Jtv+ y2., -:;-Ct:, 0 C? 4J= vJc 1~(-2.)-1-5Co {4/-i+ ,z)= 2.'fSIPp-,vt== M = io~+ ... n ~ 4)(.~ X = :BG> tf.J4- P... = Jo~J../ # w = /(p ( s )-,.. e,4-(1Y~ + --2.) = 1/e,s ~ M=~/f:>'2.~-FT I = tq 11v 4-~ 4x Io ,::Z....::: /t/55 ~ -Z( r -· _., __ Io .. HCfZ..10 1-::::: 5' L ::: g.6 1 . ::;· == /(p { rq) + 5 4 ( 1v2.) -t-51-(½)+ 0~ (1Y:e) ::./obCJ ~ M. = B:35#. ,=:--r T=l-f .. 711v 4 A-/~~to#= __ ..,_ 4x-~ Ma -=-IG,11 Va = -U3e ::r: =-4--8 v,..l .;;::.; / ii; ( 4o) +-f?& ( 'Yz+ ~) = 54-4· p~>tR M -= 1100~-p-,-:r =-'2-o lN4 ~ 4-x e, (2, "" I 3, o * M~-= 2'113 Ve.t-'.:!~21.+ :t '.:... JI f w = 1ro{-i) + ilP (7) = '-1-zJ/ ~ M ::= ICf oB .Jb-ff"T ~ 4-YB :r_ s "2~.J~4-- ~-= l-272* l4~-lfPl2:--l4 t.-.:::_ 4_!__ , ~ ~~-~---~----------- 14288. Danielson Street Suite200 Powa CA 92064. Project Title: Engineer: Pro1ect Descr: Project ID: Printed: 25 JAN 2016, 9:03AM Wood Beam Fila = F·¼Jariield.ecS ENERCALC. INC. 1983-2015, Build:6.15.12.9, Ver.6.15,12.9 I .t I Description : RB1 _ . CODE REFERENCES _ ----· . Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb-Tension Load Combination :ASCE 7-1 O Fb -Compr Fc-Pril Wood Species : Douglas Fir -Larch Fe -Perp Wood Grade : No.2 Fv . Fl Beam Bracing : Beam is Fully Braced against lateral-torsion buckling i ;0.14lL{0.1il i i D(0.14il(0.18! i i I ~ ~ 4X12 4x12 Span= 4.50 ft Span= 11.50 ft 900.0psi 900.0psi 1,350.0psi 625.0psi 180.0psi 575.0psi i .. E: Modulus of Elasticity Ebend-xx 1,600.0ksi Eminbend-xx 580.0ksi Density 32.210pcf D(0.14iL(0.18l i ,. 4x12 ~ Span= 11.50 ft ___ Applied _Loads. ______ _ Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load: D = 0.1440, L = 0.180, Tributary Width= 1.0 ft Load for Span Number 2 Uniform Load: D = 0.1440, L = 0.180, Tributary Width= 1.0ft Load for Span Number 3 Uniform Load : D = 0.1440, L = 0.180 , Tributary Width = 1.0 ft DESIGN SUMMARY . 'Maximum Bending Stress Ratio Section used for this span fb :Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum_ Deflections Load Combination . ·-···-· +O+l +O+l +O+L Vertical Reactions ·-i.aaicoriibinaficin · Overall MAXimum Overall MINimum Span 1 2 3 Support 1 Max."-' Defl 0.0521 0.0241 0.0967 Support2 3.212 0.856 ------------·----··· ... 0.7461 4x12 737.28psi 990.00psi +D+l Maximum Shear Stress Ratio Section used for this span fv: Actual 11.500ft Span #2 0.054 in Ratio= -0.002 in Ratio = 0.097 In Ratio = -0.003 in Ratio = Location in Span 0.000 5.412 6.475 Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 2567 76222 1426 42345 Load Combination +0-+l Support notation : Far left is #1 Support3 Support4 4.230 1.469 1.128 0,392 ::: Max. '+"Deft 0.0000 -0.0033 0.0000 Values in KIPS 0.418: 1 4x12 75.26psi 180.00 psi +D+L 11.500ft Span#2 Location in Span 0.000 10.727 10.727 14288 Danielson Street Suite200 Powa CA 92064 Project Title; Engineer: Project Descr: Project ID: Printed: 25JAN 2016. 9:03AM Wood Beam Rle = F:'Qarfiekl.ec6 ENERCALC, ING 1983-2015, Build:6.15.12.9, Ver:6.15.129 .... Description : RB2 CODE ~gfEREJt.C~S __ Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood G~de : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling f + D(0.12f /0.15) 3.5x14.0 Span= 19.0ft 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54ksi Density 32.210pcf • ~~P.I~~~ Load~ Service loads entered. Load Factors will be applied for calculations. Unifonnload: D:=0.120, L=0.150, TrtbutarvWidth=1.0ft , DESIGN SUMMARY 1Maximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflecllon Max Upward Total Deflection Overall Maximum Deflections Load Combination +D+l Vertical Reactions Load Combination Overall MAXimum · Overall MINimum DOnly +D+l +D+lr +D-+S +D-t0.750Lr-t0.750L +D-t0.750L-t0.750S +D-t0.60W --- Span Support 1 2.565 0.684 1.140 2.565 1.140 1.140 2.209 2.209 1.140 = := = = = 0.441: 1 3.5x14.0 1,278.76psi 2,900.00psi Maximum Shear Stress Ratio Section used for this span fv :Actual +D+L 9.500ft Span# 1 0.276 In Ratio = 0.000 in Ratio = 0.497 In Ratio = 0.000 in Ratio = Fv : Allowable Load Combination Location of maximum on span Span# where maximum occurs 824 0 <360 458 0 <240 ;: = = 0.239: 1 3.5x14.0 69.35psi 290.00 psi +D+L 17.891 ft Span# 1 ···-·---·---·-------~----------------------Max.·-· Defl Location in Span Load Combination Max."+" Defl Location in Span 0.4975 9.569 Support2 2.565 0.684 1.140 2.565 1.140 1.140 2.209 2.209 1.140 Support notation : Far left is #1 --....,.o-=-.oo=o-c--o-0.000 Values in KIPS 14288 Danielson Street Suite200 Powa CA 92064 Project Tille: Engineer: Project Descr: Project ID: Printed: 25 JAN 2016. 9:03AM Wood Beam File= F·\ga!lield.ec6 ENERCALC, INC. 1983-2015, Burld:6.15.12.9, Ver:615.12.9 I ,II Description : RB3 CODE REFERENCES ·----· ··-·-·· -..... _,,_ -" - Calculations per NOS 2012, ·IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Materi~I Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : ilevel Truss Joist Wood Grade : Parallam PSL2.0E Fb-Tension Fb-Compr Fe-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi ------··------- 0(1.43)L(1.7B) 00. ~ 3.5l<9.5 Span=8.0ft ___ .,H_H O O O . E: Modulus of Elasticity Ebend-xx 2,000.0ksi Emlnbend -xx 1,016.54ksi Density 32.210pcf Applied Lo.~~~ . .. . ___ . _ . SeNice loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.0480 , Tributary Width = 1.0 ft Point Load: D = 1.430, L = 1.780 k ~ 4.0 ft " DESIGN SUMMARY --·-______ ..... -···. 'Maximum Bending Stress Ratio ;;;: 0.535: 1 Maximum Shear Stress Ratio Section used for this span 3,5x9.5 Section used for this span fb : Actual = 1,550.89psi fv : Actual FB, Allowable = 2,900.00psi Fv: Allowable Load Combination +D+L Load Combination Location of maximum on span ~ 4.000ft Location of maximum on span Span# where maximum occurs ~ Span# 1 Span# wh,ere maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections -. . ...... --....... ···-. Load Combination Span -+D+L 1 Vertical Reactions Load Combination Support 1 Overall MAXimum 1.797 Overall MINimum 0.544 DOnly 0.907 +D+L 1.797 -+O+Lr 0.907 -+O+S 0.907 -+D-t0.750Lr-t-0.750L 1.575 -+O-t0.750L -+0.750S 1.575 Max.•-• Dell 0.1278 Support2 1.797 0.544 0.907 1.797 0.907 0.907 1.575 1.575 0.066 in Ratio = 0.000 in Ratio = 0.128 in Ratio= 0.000 in Ratio = Locaiion in Span 4.029 1455 0 <360 750 0 <240 Load Combination Support notation : Far left is #1 = . Design:;,Ol( 0.274: 1 3.5x9.5 79.36 psi 290.00psi +D+L 7.212ft Span# 1 Max. "+" Dell Location in Span 0.0000 0.000--- Values in KIPS 14288 Danielson Street Suite200 Powa CA 92064 Project Title: Engineer: Project Descr: Project ID: Printed: 25 JAN 2016, 9:03AM Wood Beam File= F:~aslield.ec6 ENERO\LC, INC 1983-2015, Bui!d:6.15.12.9, Ver:6.15.12.9 I.ti Description : RB4 CODE REFERENCES ··-·-··--··--------------·-----·-----------------------------Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : Douglas Fir-Larch Wood Grade : No.2 Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0.65) L(0,82) 4x10 t..,~~t ~ S.fO tt ------------ 900.0psi 900.0psi 1,350.0psi 625.0psi 180.0psi 575.0psi E: Modulus of Elasticity Ebend-xx 1,600.0ksi Eminbend -xx 580.0ksi Density 32.210pcf .. D(1.14) L(1.43) ___ Appli~~ _b~_!d~ . Service loads entered. Load Factors will be applied for calculations. Point Load : D = 0.650, L = 0.820 k (@, 4.0 ft Point Load: Q;:: 1.140, L= 1.430 k (@, 8.0 ft r.J)_ESIGN §UMMARY.._ _____________ .. __________ -·--__ ,Maximum Bending Stress Ratio -0.827: 1 Maximum Shear Stress Ratio Section used for this span 4x10 Section used for this span 1b : Actual .ai 893.58psi fv : Actual FB : Allowable = 1,080.00psi Fv: Allowable Load Combination +D+L Load Combination Location of maximum on span ,;. 4.002ft Location of maximum on span Span # where maximum occurs ;; Span # 1 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection 0.064 In Ratio= Max Upward Transient Deflection 0.000 In Ratio = Max Downward Total Deflection 0.115 In Ratio;:: Max Upward Total Deflection 0.000 In Ratio= Overall Maximum Deflections ---· .... --···-----··" Load Combination Span Max.•-• Dell Location in Span -+D-tl 1 0.1152 4.312 1587 0 <360 885 0 <240 Load Combination Vertical Reactions Support notation : Far left is #1 Load Combination Support 1 Support2 Overall MAXimum 0.929 3.111 Overall MINimum 0.247 0.827 DOnly 0.411 1.379 -+D-il 0.929 3.111 -+D-ilr 0.411 1.379 -+D+S 0.411 1.379 -t0-+0.750Lr-+0.750L 0.800 2,678 -t0-+0.750L-+0.750S 0.800 2.678 = Design OK ,J " 0.239: 1 4x10 43.06 psi 180.00 psi +D+L 0.000ft Span#1 Max.'+" Defl Location in Span o.oaco o.coo Values in KIPS 14288 Danielson Street Sulte200 Project Title: Engineer: Pro1ect Descr: Project ID: 2-8 Powa CA 92064 Printed: 25 JAN 2016. 9:03AM Wood Beam File = F:~arfield.ec6 ENERCALC, INC.1983-2015, Build:6.15.12.9, Ver.615.12.9 Description : FB1 CODE REFERENCES ·-· ---= -------· .... --------·· . ----· . ----------------------------------Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : ilevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling t ; 7x11.875 Span = 15.50 ft 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54ksi Density 32.210pcf • J _ ~pplied L.~ad_s. ..... _ . __ .. _ _ _____ .. _ . ____ _ Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.4020, L = 0.440 , Tributary Width= 1.0 ft DESIGN SUMMAR ······--------·--.. -······--···· ··-------Maximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Defleqtion Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection = = = 0.636: 1 Maximum Shear Stress Ratio 7x11.875 Section used for this span 1,844.39psi fv: Actual 2,900.00 psi Fv : Allowable +D+L Load Combination 7.750ft Location of maximum on span Span # 1 Span # where maximum occurs 0.294 in Ratio = 0.000 In Ratio = 0.563 in Ratio = 0.000 in Ratio = 632 0 <360 330 0 <240 Overall Maximum Defle~~~~~--_ . ···--__ ___ ________ _ ____ _ = = = "' = 0.356: 1 7x11.875 103.14 psi 290.00psi +D+L 14.538ft Span# 1 Load Combination Span Max.•.• Dell Location in Span Load Combination Max. '+" Defl Location in Span -+0-=--+L-:-------------,1----=-o."""55=3-=--o -----1.-=-ao=-1-----------------0.-00_0_0_ 0.000 Vertical Reactions Support notation : Far left is #1 Values in KIPS Load Combination overall MAXimum overall MINimum DOnly +D-fl +D+Lr +D+S +D+0.750Lr+0.750L +0+0.750L+0.750S +D+0.60W ---Support 1 6,526 1.869 3.116 6.526 3.116 3.116 5.673 5.673 3.116 Support2 6.526 1.869 3.116 6.526 3,116 3.116 5.673 5.673 3.116 14288 Danielson Street Suite200 Powa CA 92064, Project Title: En9ineer: Pl'O]ecl Descr: Project ID: z 1 Printed: 25 JAN 2016, 9:03AM Wood Beam File= F:~arfie!d.ec6 ENERCALC, INC. 1~2015, Build:6.15.12.9, Ver:6,15.12.9 1,11 I Description·; FB2'. CODE REFERENCES . ····--·· .... --------------------------- Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species ~ iLevel Truss Joist Wood Grade ±Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Fl Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 3.5x11.875 Span= 1.0ft D(1.14) L(1.43) D 0.168 L 0.04 3.5x11.875 Span = 14.0 ft 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54ksi Density 32.210pcf . ~pplie~ .~oad~.. ...... _ Load for Span Number 1 Service loads entered. Load Factors will be applied for calculations . Uniform Load: D=0.1680, L=0.040, TributarvWidth=1.0ft Load for Span Number 2 Uniform Load: D = 0.1680, L = 0.040, Tributary Width= 1.0 ft Pointload: 0=1.140, L=1.430k(iil7.0ft ~ DESIGN SUMMARY :Maximum Bending Stress Ratio ' Section used for this span fb: Actual = = 0.704: 1 3.5x11.875 2,040.70psi 2,900.00 psi +D+L 7.039ft Span#2 Maximum Shear Stress Ratio Section used for this span fv: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection overall Maximum Deflections = = _______ ,. __ , ~------. ------·---· Load Combination Span Max.·-· Defl 1 0.0000 +D+L 2 0.4455 Vertical Reactions Load Combination Overall MAXimum overall MINimum DOnly +D+L Support1 Support2 2.956 1.036 1.920 2.956 0.181 in Ratio= -0.039 In Ratio = 0.445 in Ratio = -0.097 in Ratio = Location in Span 0.000 7.039 Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 927 616 377 246 Load Combination Support notation : Far left is #1 Support3 2.734 0.994 1.740 2.734 = = Max.•+• Dell -0.0969 0.0000 Values in KIPS Design OK 0.318: 1 3.5x11.875 92.15 psi 290.00 psi +D+L 1.000ft Span# 1 Location in Span 0.000 0.000 Project Tille: EnQineer: ProJect Descr: 14288 Danielson Street Sulte200 Powa CA 92064 Wood Beam 1,11 Description : FB3 CODE REFERENCES .. -·-----·--·~---~-------··--------·--------- Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties _ Analysis Method : Allowable Stress Design Load Combination A.SCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tenslon Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling -----· .. ··-·-·--·-· • + D(0.15~ L(0.07) 3.5X11.875 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi Project ID: Printed: 25 JAN 2016. 9:03AM File= F:\garfield.ec6 ENERCALC, INC.1983-2015, Bulld:615.12.9, Ver:615.12.9 . E: Modulus of Elasticity Ebend-xx 2,000.Dksi Eminbend-xx 1,016.54ksi Density 32.210pcf .. t r ___ . __ !:rpd1"' 'f1.fift ________ -----·--- .. .Al?.P.li.~~ ~o~~s _ .. ____ . . . _______ s_erv_ic_e_lo_ad_s_e_n_te_re_d_. _Lo_a_d_F_ac_t_or_s_w_ill_b_e_a_pp_l_ie_d_fo_r_ca_lc_u_la_ti_on_s_. Uniform Load : D = 0.1520, L = 0.070 , Tributary Width = 1.0 ft ,-"--D~E=Sl~G=N~S~U=M=M=\4~R=Y~-----------·--·· ,_,. ___ .. ---· -----·---. ·---·-·----___ __11i1D1.a!i·~•!il·iill·iliii4.,a.i~·l~·«--·il,IUWIW11:iM:l!J!.:ri.aa. Maximum Bending Stress Ratio = 0.169: 1 Maximum Shear Stress Ratio 1-0.125: 1 Section used for this span 3.5x11.875 Section used for this span 3.5x11.875 fb: Actual = 489.83psi fv: Actual ; 36.35 psi FB : Allowable = 2,900.00psi Fv: Allowable "' 290.00 psi Load Combination +D+L Load Combination +D+L Location of maxfmum on span = 5.500ft Location of maximum on span :,,. 10.036ft Span# where maximum occurs =-Span# 1 Span# where maximum occurs "' Span# 1 Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections . ----·--·-----. Load Combination Span ---·-------·· Max.•.• Defl 0.024 in 0.000 in 0.075 in 0.000 in Ratio= Ratio= Ratio= Ratio= . -----------Location in Span 5559 0<360 1752 0 <240 Load Combination Max. •+• Dell Location in Span -+O+L 0.0753 5.540 ~---------~---~~-------------------0.0000 0.000 Vertical Reactions Support notation : Far left is #1 Values ln KIPS ·-----~--------Load Combination Support1 Support2 overall MAXimum 1.221 1.221 overall MINimum 0.385 0.385 DOnly 0.836 0.836 -tO+L 1.221 1.221 iO+Lr 0.836 0.836 -tO+S 0.836 0.836 -t0-+0.750Lr-+0.750L 1.125 1.125 -tO-+O. 750L-+O. 750S 1.125 1.125 -t0-+0.60W 0.836 0.836 14288 Danielson Street Suite 200 Powa CA 92064 Project Title: Engineer: Project Descr: Project ID: ?/ Printed: 25 JAN 2016, 9:03AM Wood Beam· File= F·\gartield.ec6 ENERCALC, INC. 1983-2015, Bmld:615.12.9, Ver:6.1512.9 J, I I Description : FB4 CODE REFERENCES _ ·-·-·-- Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination A.SCE 7-10 Wood Species : ilevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling • ... D(0.30i L{0.43} l 3.5x11.875 Span= 10.0ft ·--------·~ ~ --~ . --·--- 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi ·2,025.0 psi ... . . E; Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54ksi Density 32.210pcf --~J?.!1.ed L~.~-~s .. ______ ...... .. _,,_ _ _ _ . . __________ S_e_,_.rv_ice_lo_a_d_s_e_nt_er_ed_._L_o_ad_Fa_c_to_rs_w_i_ll _be_a_p_p_lie_d_fo_r_c_a_lc_ul_at_io_n_s._ Uniform Load: D = 0.3020, L = 0.430, Tributary Width::: 1.0 ft DESIGN SUMMARY~--------______ ...... ·-·-.. .. __ _ Jina'ximum Bending.Stress Ratio "" 0.460 1 Maximum Shear Stress Ratio · Design OK,. Section used for this span 3.5x11.875 Section used for this span fb : Actual = 1,334.81 psi fv: Actual FB: Allowable .a: 2,900.00psi Fv: Allowable Load Combination +D+L Load Combination Location of maximum on span --' 5.000ft Location of maximum on span Span # where maximum occurs = Span # 1 Span# where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections 0.100 in Ratio= 0.000 In Ratio = 0.170 in Ratlo = 0.000 in Ratio .. 1204 0 <360 707 0 <240 Load Combination· . -· . --------S-pa-n. -M-ax. -.~~ Defl .. _ Locationin Span Load Combination +0-tl 0.1696 5.036 Vertical Reactions Support notation : Far left is #1 = = = Max.•+• Defl 0.0000 Values in KIPS 0.366: 1 3.5x11.875 106.06psi 290.00psi +D+L 0.000ft Span# 1 Location in Span 0.000 -·----·----·----" -·---.. ,, _________ ,,_ ·------------------------------Load Combination Support 1 Support 2 Overall MAXimum 3.660 3.660 Overall MINimum 0.906 0.906 D Only 1.510 1.510 +D+l 3.660 3.660 +D+lr 1.510 1.510 +D+S 1.510 1.510 -t0+0.750Lr+0.750L 3.123 3.123 -t0+0.750L+0.750S 3.123 3.123 -t0+0.60W 1.510 1.510 14288 Danielson Street Suite200 Powa · CA 92064 Project Title: Engineer: Project Descr: Project ID: e<inted: 25 JAN 2016, 9.03AM FIie = f:14lartield.ec6 ENERCALC, INC . .1983-2015, Build:6..15.12.9, Ver:6.15.12.9 1,11 Descrlplion ~ CODE REFERENCES ·-···-' ...... --------.. ·---·--·--·-. ---------------- Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fe-Prll Fe-Perp Fv Ft 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi Beam Bracing ; Beam is Fully Braced against lateral-torsion buckling 5.25X11.875 Span=4.0ft 5.25x11.875 Span =3.0 ft D 0.0186 L 0.0533 5.25x11.875 Span= 11.0 ft .. E: Modulus of Elasticity Ebend-xx 2,000.0 ksi Eminbend-xx 1,016.54ksi Density 32.210pcf 5.25x11.875 Span= 2.0 ft _!!PP.li~d Loa_~~-. _ Load for Span Number 1 Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.01860, L = 0.05330 , Tributarv Width = 1.0 ft Point Load : D = 2.350, L = 2.540 k (@. o,o ft Load for Span Number 2 Uniform Load : D = 0.01860, L = 0.05330 , Tributary Width = 1.0 ft Load for Span Number 3 Uniform Load : D = 0.01860, L = 0.05330 , Tributary Width= 1.0 ft Polntload: D=0.1920, L=0.090k~9.50ft Load for Span Number 4 Uniform Load: D = 0.01860. L = 0.05330, Tributary Width= 1,0 ft ~DES/GNWMMARY __________ , ____ ~---- jMaximum Bending Stress Ratio Section used for this span fb: Actual = 0.675: 1 5.25x11.875 1,958.22 psi 2,900.00psi +D+L 4.000ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection overall Maximum Deflections --...... ···--· ''' Load Combination Span +D+L 1 2 +D+L 3 4 ;;:: = Max.•.• Deft 0.2187 0.0000 0.0299 0.0000 0.115 in Ratio= -0.007 in Ratio= 0.219 in Ratio= -0.013 in Ratio= Location in Span 0.000 0.000 5.291 5.291 Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 834 5082 438 2698 Load Combination -tO-tL +D+L = 0.59~: 1 5.25x11.875 171.83 psi 290.00 psi +D+L 4.000ft Span# 1 Max. "+"Defl Location in Span 0.0000 0.000 -0.0133 1.253 0.0000 1.253 -0.0160 2.000 14288 Danielson Street Suite200 Powa CA 92064 Project Title: Engineer: Project Descr: Project ID: Printed: 25 JAN 2016, 9:04AM Wood Beam File= F'.\gatfield.ec6 ENERCALC, INC. 1983-2015, Build:6.15.12.9, Ver.6.15.12.9 ,.,, Description : FBS CODE REFERENCES Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species ~ iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fe-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psl D(0.715 L(().89} D(0.715 L(0.89) D 0.16 L 0.08 5.25x11.875 Span" 17.50 ft E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend-xx 1,016.54ksi Density 32.210pcf Applied_ ~o~~s .. __ _ Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load: D= 0.160, L= 0.080 k/ft, Extent= 0.0-» 14.0ft, Trlbutarv Width= 1.0ft PointLoad: D=0.7150, L=0.890k@,3.0ft Point Load : D = 0.7150, L = 0.890 k @, 11.0 ft ... DE~/GN SUMMARY --~---·--· _,. ··---Maximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Span# where maximum occurs Maximum beflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections -·-···-·--··· ...... ----··-. Load Combination Span +D+L 1 Vertical Reactions -· ---· -.. -----Load Combination Support 1 Overall MAXimum 3.942 Overall MINimum 1.321 DOnly 2.202 +D+L 3.942 -iO+Lr 2.202 -iO+S 2:202 0.543: 1 5.25x11.875 1,574.84psi 2,900.00psi -tO+L 9.708ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual Max. "-'Dell 0.6136 Support2 2.628 0;881 1.468 2.628 1.468 1.468 0.271 ln Ratio = 0.000 in Ratio = 0.614 in Ratio = 0.000 In Ratio= Location in Span 8.750 Fv: Allowable Load Combination Location of maximum on span Span # where maximum occurs 776 0 <360 342 0 <240 Load Combination Support notation : Far left is #1 = 0.308: 1 5.25x11.875 = 89.31 psi = 290.00psi +D+l = 0.000ft = Span# 1 Max. • +" Defl Location in Span 0.0000 0.000. ·-- Values in KIPS 14288 Danielson Street Suite200 Powa CA 92064 Wood Beam Description : FB7 CODE REFERENCES Project Title: Enijineer: ProJect Descr: Proiect ID: Printed: 25 JAN 2016, 9:04AM FIia = F:lgarfield ec6 _ENERCALC, INC.1983-2015, Bui!d:615.12.9. Ver.6.15.12.9 .. Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination i'\SCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : TimberStrand LSL 1.55E Fb-Tension Fb-Compr Fc-P~I Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0.04f L(0.051 + i • 1.75x9.25 Span =20.0ft 2,325.0psi 2,325.0psi 2,050.0psi 800.0psi 310.0 psi 1,070.0psi E: Modulus of Elasticity Ebend-xx 1,550.0ksi Eminbend -xx 787 .82 ksi Density 32.210pcf ] _Apell!Jd L~~~ __ . . . . Load for Span Number 1 Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.040, L = 0.050.k/ft, Extent= 0.0 -» 3.0 ft, Tributarv Width = 1.0 ft DESIGN SUMMARY i Maximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Span# where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection overall Maximum Deflections = = = = = 0.072 1 1.75x9.25 166.63psi 2,325.00psi +D+L 2.774ft Span# 1 Maximum Shear Stress Ratio Section used for this span fv: Actual 0.055 In Ratio = 0.000 In Ratio= 0.100 In Ratio= 0.000 In Ratio = Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 4341 0 <360 2411 0 <240 ,:.. __ ·--.Des11 rf.PK"i ,._.· . = 0,055: 1 1.75x9.25 = 17.06 psi = 310.00 psi +D+L = 0.000ft = Span #1 ------------------------------Load Combination Span Max.•-• Dell Location In Span Load Combina1ion Max.•+• Deft Location in Span _-+0_+l __________ 1 ___ 0-.o-9-95 ____ a_.5_4o---~-----------o-.oo_o_o_ 0.000 Vertical Reactions Load Combination Overall MAXimum Overall MlNimum DOnly -+O+l -+O+Lr -+O+S -t0-l{),750Lr+0.750L -tO-l{),750L-+0.750S ·-. support 1 0.250 0.067 0.111 0,250 0.111 0.111 0.215 0.215 Support2 0.020 0.005 0.009 0.020 0.009 0.009 0.017 0.017 Support nolation : Far left is #1 Values in KIPS 14288 Danielson Street Suite200 Powa CA92064 Project Title: Engineer: Proiect Descr: Project ID: Printed: 25 JAN 2016. 9:04AM Wood Beam File= F:lgarfield.ec6 ENERCALC, INC. 1983-2015, Build:6.15.12.9, Ver:6,15.12.9 1,11 Description : f88 CODE R_EFERENCE~ ____ .. ______ .. ·------·-· ··-·--·---------------Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : ilevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb -Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing 'i Beam is Fully Braced against lateral-torsion buckling ' + ~ 1.75x9.25 Span=5.0ft 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi D{0,024~L(0.03) 1.75x9.25 Span= 13.0fl . . . E: Modulus of Elasticity Ebend-xx 2,000.0 ksi Eminbend-xx 1,016.54ksi Density 32.210pcf + ' ~ Applie~ ~~-~~~-. Load for Span Number 1 Service loads entered. Load Factors will be applied for calculations. Point Load: D = 0.110, L = 0.140 k (ii} 0.0 ft Load for Span Number 2 Un,lform Load : D = 0.0240, L = 0.030 , Tributary Width = 1.0 ft ~DESIGN SUMMARY ... __ . ____ _ : Maximum Bending Stress Ratio Section used for this span fb :Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections = = -- ··-.. ----·-· ----·---· . ·----··--·-----Load Combination Span +D+L 1 +D+L 2 Vertical Reactions --· -----Load Combination Support1 Overall MAXimum Overall MINimum DOnly +D+L +D+Lr 0.201. 1 1.75x9.25 601.06psi 2,900.00 psi +D+L 5.000ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.055 in Ratio= 2198 0.000 In Ratio = 0 <360 0.096 In Ratio = 1248 -0.001 ln Ratio = 185987 -------------Max.•.• Dell Location in Span Load Combination 0.0960 0.000 0.0545 7.771 +D+L Support notation : Far left is #1 .. --. ~ -,_ ~ Support2 Support3 0.697 0.255 0.185 0.068 0.308 0.114 0.697 0.255 0.308 0.114 = = 0.130 : 1 1.75x9.25 37.80psi 290.00 psi +D+L 5.000ft Span# 1 Max. '+" Defl Location in Span 0.0000 0.000 -0.0008 0.436 Values in KIPS 14288 Danielson Street Suite200 Powa CA 92064 Wood Beam Description : FB9 Project TIUe: Engineer: Project Descr: Project ID: Printed: 25 JAN 2016, 9:04M1 Fil!) = F:\garfiekl ec6 ENERCALC, INC. 1983-2015, Build:6.1512.9, Ver:6.15.12.9 .. ___ CODE REFERENCES~--------·---~----·------·-·--____________________________ _ Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist WoQd Grade : Parallam PSL 2_.0E Fb-Tension Fb-Compr Fe-Pm Fc-Perp Fv Ft 2,900.0psi 2,900.0psi 2,900.0psi E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend-xx 1,016.54ksi Beam Bracing : Beam is Fully Braced against la~eral-torsion buckling 750.0psi 290.0psi 2,025.0psi Density 32.210pcf • 3.5x9.25 Span=3.0fl . Applied. Loads .. _____ .. _ Load for Span Number 1 Uniform Load : D = 0.040, L = 0.050 , Tributary Width = 1.0 ft Point Load: D = 0.310, L = 0.390 k (@, 0.0 ft Load for Span Number 2 Uniform Load : D = 0.0560, L = 0.020 , Tributary Width = 1.0 ft DESIGN SUMMARY + 3.5x9.25 Span= 16.50 fl Service loads entered. Load Factors will be applied for calculations. ·-------------t~~-Maximum Bending Stress Ratio Section used for this span = 0.2081 3.5x9.25 602.27psi 2,900.00psi +O+L 3.000ft Span# 1 Maximum Shear Stress Ratio = 0.144 : 1 fb: Actual FB : Allowable Load Combination Location of maximum on span Span #where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections ---------~---•"--" . ----------·------Load Combination .Span LOnly · 1 DOnly 2 Vertical Reactions Load Combination Support 1 Overall MAXimum Overall MINimum DOnly +D+l ,,_ Max.•-• Defl 0.0592 0.1332 ------··--Support2 1.749 0.576 0.959 1.749 0.059 in -0.027 in 0.133 in -0.037 in Ratio= Ratio= Ratio= Ratio= Location in Span 0.000 8.849 Section used for this span 3.5x9.25 fv : Actual = 41.80 psi Fv : Allowable = 290.00 psi Load Combination +D+L Location of maximum on span = 2.246 ft Span # where maximum occurs = Span # 1 1214 7344 1487 1938 Load Combination DOnly Max."+" Defl Location in Span --0.0055 2.648 0.0000 2.648 Support notation : Far left is #1 Values in KIPS Support3 0.475 0.080 0.395 0.475 14288 Danielson Street Suite200 Powa CA-92064 Project Title: Engineer: Project Descr: Project ID: Prinled: 25 JAN 2016, 9:04AM ·Wood Beam Fife= F~lgarfield,ec6 ENERCALC, INC. 1983-2015, Bulld:6,15.12.9, Ver.6.15.12.9 Description : CODEREFERENCES ____ ... --------------·· _ Calculations per NOS 2012, IBC 2012, CBC 2013, /..r.SC..E 1'~1()) Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 0(4.125 L{4.51) 3.5x11.875 Span =11.0 ft 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0 ksi Eminbend -xx 1,016.54ksi Density 32.210pcf __ APP)_i~~-!:~~d~. _ ..... . . Service loads entered. Load Factors will be applied for calculations. Point Load: D = 4.125, L = 4.510k(a11.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span 1b :Actual = FB : Allowable = Load Combination Location of maximum on span = Span# where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections Load Combination Span {-J};-1, Vertical Reactions 0.395: 1 3.5x11.875 1,144.74psi 2,900.00psi +D+L 1.004ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual 0.062 In Ratio = 0.000 in Ratio = 0.118 in Ratio= 0.000 in Ratio = Max. "-· Defl Location In Span Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 2140 0 <360 1117 0 <240 Load Combination Support notation : Far left is #1 = 0.977: 1 3.5x11.875 283.31 psi 290.00psi -+0-il 0,000ft Span# 1 Max. '+" Dell Location in Span Values in KIPS ---.... ···-·---· -. ----------------------------Load Combination Overall MAXirnum Overall MINimum DOnly -tO+L -tO+Lr +D+S +Oof{),750Lr+0.750L +D+0.750L +O. 750S +D+O.B0W Support 1 7.850 2.250 3.750 7.850 3.750 3.750 6.825 6.825 3.750 Support2 0.785 0.225 0.375 0.785 0.375 0.375 0,683 0.683 0.375 14288 Danielson Street Suile200 Powa CA 92064 Project Title: En9ineer: Pro1ect Descr: Project ID: Printed: 25 JAN2016, 9:04AM Wood Beam File = F:\garlield.ec6 ENERCALC, INC. 1983-2015, Buik!:615.12.9, Ver.6.1512.9 loll Description : FB12 CODE REFERENCES ------------------------------·· Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material ProJJerties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling .. f 3.5119.25 __ Span= 10.50 ft 2,900.0psl 2,900.0psi 2,900.0psi 750.0psi 290.0psl 2,025.0psl f E: Modulus of Elasticity Ebend-xx 2,000.0 ksi Eminbend-xx 1,016.54ksi Density 32.210pcf ~ppli~-~ ~~ads .. . . . . . . ___ ....... Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.0320, L = 0.080 , Tributary Width = 1.0-ft DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection -------· .. -----------·· ·--- overall Maximum Deflections .::r 0.12a 1 3.5x9.25 371.10psi 2,900.00 psi +D+L 5.250ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual 0.048 in Ratio = 0.000 in Ratio = 0.067 in Ratio = 0.000 in Ratio = Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 26.43 0 <360 1888 0 <240 = = = = = 0.080: 1 3.5x9.25 23.27psi 290.00 psi +D+l 0.000ft Span# 1 ........ _________ ,. ___ .. -------------·-..... ·-·------------------------Load Combination Span +D+L Vertical Reactions Max. "· • Defl Location in Span Load Combination 0.0667 5.288 Support notation : Far left is #1 Max.•+• Defl 0.0000 Values in KIPS Location in Span 0.000 ---------.... __ ,. _____ .,. ---... --------·------------------------------Load Combination Support 1 Overall MAXimum 0.588 Overall MINimum 0.101 DOnly 0.168 +D+L 0.588 +D-fl.r 0.168 +D+S 0.168 +D-t-0.750Lr-t0.750L 0.483 +D+O. 750L +0. 750S 0.483 ..O-t0.60W 0.168 Support2 0.588 0.101 0.168 0.588 0.168 0.168 0.483 0.483 0.168 14288 Danielson Street Suite200 Powa CA 92064 Project Title: Engineer: Project Descr: Project ID: Prlnted: 25 JAN 2016, 9:04AM Wood Seam Fire= F:\gariield.ec6 ENERCALC, INC.1983-2015, Buikl:6.15.12.9, Ver:6.15.12.9 'I' I -' Description: FB13 CODE REFERgNCES Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : ilevel Truss Joist Wood Gracie : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Fl Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D 0.0224 L 0.064 3.5x11.875 Span,. 11.0ft 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi 3.5x11.875 Span =3.0ft E: Modulus of Elasticity Ebend-xx 2,000.0 ksi Eminbend -xx 1,o16.54ksi Density 32.210pcf 3.5x11.875 Span =4.0ft ... Appffed Loads_ Loac! for Span Number 1 Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.02240, L = 0.0640, Tributary Width = 1.0 ft Load for Span Number 2 Unlfonn Load : D = 0.02240, L = 0.0640 , Tributary Width = 1.0 ft Load for Span Number 3 Uniform Load: D = 0.02240, .L = 0.0640 , Tributary Width= 1.0 ft Point Load : D :: 0.1680, L = 0;420 k ~ 4.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span fb :Actual = = 0.15l 1 3.5x11.875 443.94psi 2,900.00psi +0-tl 3.000ft Span#2 Maximum Shear Stress Ratio Section used for this span fv: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection = = ·-------· ··---· ·-·------------- overall Maximum Deflections 0.036 in Ratio = -0.003 in Ratio = 0.050 in Ratio = -0.004 in Ratio = Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 2646 13515 1908 9799 e11;.,~,11:J1 0.106:1 l 3.5x11.875 30.65psi 290.00 psi +D+l 3.000ft Span#2 . ·------·--------· ·-·-----··. --·-·-···-· ·-·---·-·---·-·-------· .. -------------------------Load Combination +0-+l -+O+L Vertical Reactions Load Combination overall MAXimum Span 1 2 3 Support 1 0.410 Max.•-• Dell 0.0199 0.0000 0.0503 Support2 -0.103 Location in Span Load Combination 5,176 5,176 4.000 Support notation: Far left is#1 Support3 Support4 1.837 Max."+' Defl 0.0000 -0.0037 0.0000 Values in KIPS Location in Span 0.000 1.664 1.664 Project Title: Engineer: Project Descr: 14288 Danielson Street Suile200 Powa CA 92064 Wood Beam I ,II Description : FB14 COPEREF~B_~f!~~$. _____ . ________ ... __ . . Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb-Tension Load Combination ASCE 7-1 O Fb -Compr Fe-Pm Wood Species : iLevel Truss Joist Fe -Perp Wood Grade : Parallam PSL 2.0E Fv Ft Beam Bracing ~ Beam is Fully Braced against lateral-torsion buckling D(0.11 L(0.3) D(3.75 L(4.1) D<0.2631 L(0.481 t ,, t h, 7x18 Span=20.0ft D(O.11 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi L(0.3) Project ID: E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54 ksi Density 32.210pcf 0(1.92) L(1.04) t ... 6 .. _Applied. Loads ···-_____ _ _ . . . ---·· . Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.2630, L = 0.480 , Tributarv Width= 1.0 ft Point Load: D=0.110, L=0.30k@2.0ft Point Load: D::: 3.750, L = 4.10 k@ 5.0 ft Point Load: D::: 0.110, L = 0.30 k (al 12.0 ft Point Load: D = 1.920, L = 1.040 k@ 18.0 ft DESIGN SUMMARY )Maximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max UpwardTotal Deflection = 0.694: 1 7x18 2,012.31 psi 2,900.00psi +D+L Maximum Shear Stress Ratio 7.956ft Span# 1 0.405 In Ratio = 0.000 In Ratio = 0.685 In Ratio = 0.000 In Ratio = Section used for this span fv: Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 592 0 <360 350 0 <240 = 0.536: 1 7x18 = 155.50 psi = 290.00psi -+O+L ;;:; 0.000ft ~ Span# 1 . ------------------------------Overall Maximum Deflections Load Combination Span Max.·~· Defl Location in Span Load Combination Max. '+" Defl Location in Span -tl).;L 0.6852 9,708 0.0000 (l.,'.;00 Vertical Reactions Support notation : Far left is #1 Values in KIPS -------· h_ ... ---· ·-· ·-Load Combination -Support 1 Support2 overall MAXimum 14.147 12.344 overall MINimum 3.467 3.224 DOnly 5.778 5.373 -tO.;L 14.147 12.344 -tO.;tr 5.778 5.373 14288 Danielson Street Suite200 Powa CA 92064 Project Title: Engineer: Project Descr: Project ID: 4-1 Printed: 25 JAN 2016. 9.04AM Wood Beam File= F:'!Jarfield ec6 . ENERCALC, INC.1983-2015, Build:6.15.12.9, Ver.6.15.12.9 loll . Description : FB15 CODE REF~RENCES _ . -··--·· -·----------------------------Calculations perNDS 2012, IBC2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Pr11 Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0.38) L(0.41} D10.13\ LI0.281 • • 3.5x16.0 Spar, = 16.0 ft 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psl 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend-xx 1,016.54ksi Density 32.210pcf • X _. Applie~ .L.~~~s , . . . . . . . .. ... _ Service loads entered. Load Factors will be applied for calculations. Unlfonn Load : D = 0.130, L = 0.280, Tributary Width = 1.0 ft Point Load: D = 0.380, L = 0.410 k ~ 2.0 ft _ DESIGN SUMMA.B=Y ________ _ 'Maximum Bending Stress Ratio .:: 0.386: 1 Section used for thi!,l span 3.5x16.0 fb: Actual ~ -1,118.72psi Maximum Shear Stress Ratio Section used for this span fv: Actual FB : Allowable "' 2,900.00 psi Load Combination +D+L Location of maximum on span = 7.766ft Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections -·· .. --·----····"· Load Combination Span Max. "·"Dell 0.183 in Ratio= 0.000 in Ratio = 0.273 in Ratio = 0.000 in Ratio= Location in Span Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 1048 0 <360 704 0 <240 Load Combination = = ::: Design OK 0.318 : 1 3.5x16.0 92.26psi 290.00 psi +D+L 0.000ft Span#1 Max. "+" Dell Location in Span --O+L 1 o.:m& 7.942 ,----~==-----=-c-=------------------:::0~.0C:-c){)Q G.000 Vertical Reactions Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support2 Overall MAXimum 3.971 3.379 Overall M!Nlmum 0.824 0.653 DOnly 1.373 1.088 -+D+L 3.971 3.379 -+D+Lr 1.373 1.088 -+D+S 1.373 1.088 +D+0.750Lr+0.750L 3:322 2.806 -+0+0.750L+0.750S 3.322 2.806 14288 Danielson Street Suite200 Powa CA 92064 Project Tille: Engineer: ProJect Descr: Project ID: Prinre<I: 25 JAN 2016, 9:04AM Wood Beam File= P1'Jariield.ec6 ENERCALC,INC.1983-2015, Buikf:6.15.12.9, Ver:6.1512.9 I ,II Description : FB16 CODE REFERENCES . ··-· ---~---.. . · ..... ~ ...... -·-· ----... - Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Materia.l Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : ilevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fe-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D 0.471 L 0.4 5.25x16.0 Span = 19.0 ft 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi .. E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54ksi Density 32.210pcf .... ~P~.!!~ ~~i!d~ SeNice loads entered. Load Factors will be applied for calculations . Load for Span Number 1 Uniform Load·: D = 0.4710, L = 0.40 k/ft, Extent= 0.0-» 11.0 ft, Tributary Width= 1.0 ft Uniform Load: D = 0.3120, L = 0.130 k/ft, Extent= 11.0 -» 19.0 ft, TributaryWidth = 1.0ft Point Load : D = 0.510, L = 1.320 k (@, 11.0 ft DESIGN SUMMARY.__ _______ _ ___ . _ . .. . _____ _J51'1&~~-·,l!!:i ... •t .. Mlii6Ht•111il.• .. 1 ... ~lrnE!l!'J·J-, jMaximum Bending Stress Ratio = 0.73S 1 Section used for this span 5.25x16.0 fb: Actual = 2, 130.06psi Maximum Shear Stress Ratio Section used for this span fv: Actual FB: Allowable = 2,900.00psi Load Combination +0-+l Location of maximum on span = 9.569ft Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections . . . .. -..... -. -·-·-·-···---~--···---···-·-"-....... Load Combination Span Max. '-'Defl +D-:-1. 0.7Q$3 0.334 in Ratio = 0.000 in Ratio = 0.707 in Ratio= 0.000 in Ratio= Location in Span ~.431 Fv : Allowable Load Combination Loc.ation of maximum on span Span # where maximum occurs 682 0 <360 322 0 <240 Load Combination Vertical Reactions Support notation : Far left is #1 Load Combination Support 1 Support2 overall MAXimum 8.323 6.625 overall MINimum 2.653 2.259 DOnly 4.421 3.766 +D-tL 8.323 6.625 +D-tLr 4.421 3.766 +D-tS 4.421 3.766 = 0.442: 1 5.25x16.0 128.12 psi 290.00 psi +0-+l 0.000ft Span#1 Max. "+' Deft Location in Span o.o:.ico :i.,;::f/- varues in KIPS 14288 Danielson Street Suite200 Powa CA 92064 Project Title: En9ineer: ProJect Descr: Project ID: Printed: 25 JAN 2016, 9:04AM Wood Beam File" F:l,gll'lield.ec6 ENERCALC, INC. 1982.-2015, Build:6.15.12 9, Ver:6.15,12.9 1,11 -. Description : FB17 CODEREFEfigNCES ___________ .. _____ ·------····-··· ________________________ _ Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 0(5.87) L(6.52) 5.25x11.875 2,900.0psi 2,900.0psl 2,900.0psi 750.0psl 290.0psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54ksi Density 32.210pcf __ App)ied Loads ... ·----·· _________ _ _ .... _ . ___________ s_e_rv_ic_e_lo_a_ds_e_n_te_red_. _Lo_a_d_F_a_ct_ors_w_il_l b_e_a_p_pl_ie_d_fo_r_ca_l_cu_la_ti_on_s_. Point Load : D = 5.870, L = 6.520 k @l 3,0 ft DESIGN SUMMARY jMaximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable Load.Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection -· --------·· Overall Maximum Deflections Load Combination Span +D-+L 1 Vertical Reactions ------·· ... ·---.. --· Load Combination Support1 overall MAXimum 7.080 · overall MINimum 2.013 DOnly 3.354 -tO-tL 7.080 -+D-+Lr 3.354 -+D+S 3.354 -t0+0.750Lr-t0.750L 6,149 -t0..0.750L-t0.750S 6,149 -t0..0.60W 3.354 :: ... 0.710: 1 5.25x11.875 2,058.13psi 2,900.00psi +D-tl 2.989ft Span#1 Maxlm1,1m Shear Stress Ratio Section used for this span fv: Actual Max.·~· Defl 0.1022 Support2 5.310 1.509 2.516 5.310 2.516 2.516 4.611 4.611 2.516 0.054 in Ratio = 0.000 In Ratio = 0.102 in Ratio= 0.000 in Ratio = --·---- location in Span 3.372 Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 1561 0 <360 821 0 <240 Load Combination Support notation : Far left is #1 = = = = = : ,. '.Design O~ 0.587: 1 5.25x11.875 170.35 psi 290.00psi +D+L 0.000ft Span# 1 Max."+" Deft Location in Span 0.0000 0.000 Values in KIPS 14288 Danielson Street Suite200 Powa CA 92064 Project TiVe: EnQineer: ProJect Descr: Project ID: 44 Printed: 25 JAN 2016. 9:04M! WooctB~am File= F·\garfield ec6 ENERCALC, INC. 1983-2015, Build:6, 1512 9, Ver.6.15.12.9 1,11 Description : FB18 CODE REFERENCES ...... ····----. -. ·-'·---·--------·-·--·-... Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination :ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Pril Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 5.25x11.875 2,900.0psi 2,900.0psi 2,900.0psl 750.0psi 290.0psi 2,025.0psi D 0.098 L 0.28 E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54 ksi Density 32.210pcf Appl_\~ Lo~~s _. ----~- Load for Span Number 1 Service loads entered. Load Factors will be applied for calculations. Uniform Load: D = 0.2170, L = 0.620 k/ft, Extent= 0.0 -» 4.0 ft, Tributary Width= 1.0 ft Uniform Load : D = 0.0980, L = 0.280 k/ft, Extent= 4.0 -->> 11.0 ft, Tributary Width = 1.0 ft Point Load : D = 2.520, L = 2.790 k@4.0 ft ,_DESIGNSUM=M~!A=RY~-~------__ ___ _ ________________ _ it_. Design OK f 'Maximum Bending Stress Ratio = 0. 708 1 Maximum Shear Stress Ratio Section used for this span 5.25x11.875 Section used for thls span fb: Actual :.: 2,054.02psi fv: Actual FB : Allowable : 2,900.00psi Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections Load Combination Span = Max.·-· Defl -i-O+L 4.015ft Span#1 0.169 in 0.000 in 0.274 in 0.000 in Ratio= Ratio= Ratio= Ratio= Location in Span Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 782 0 <360 482 0 <240 Load Combination :,c 0.511 : 1 5.25x11.875 = 148.06 psi = 290.00 psi -tO-tl = 0.000ft = Span# 1 Max. "+' Defl Locatlon in Span +D-+L 0.2736 5.219 ·----·----· 0.0000·-.... -iiooo-- Vertical Reactions Load Combination Overall MAXimum Overall MINimum DOnly -tO-+L -+0-+Lr -tD+S Support notation : Far left is #1 va,ues in KIPS 6.960 4,344 1.519 0.925 2.532 1.542 6.960 4.344 2.532 1.542 2.532 1.542 14288 Danielson Street Suite200 Powa CA 92064 Description: FB19 CODE REFERENCES Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Metfiod : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : TimberStrand LSL 1.55E Project Title: Enijineer: ProJect Descr: Project ID: # Printed: 25 JAN 2016, 9:04/>JI! FIie = F:¼Jarlle!d.ec6 ENERCALC, INC. 1983-2015, Bmld:6.15.129, Ver:6.15.12.9 .. ---------·--·----------------- Fb-Tension Fb-Compr Fc-Pril Fc-Perp Fv Ft 2,325.0psi 2,325.0psi 2,050.0psi 800.0psi 310.0psl 1,070.0psl E: Modulus of Elasticity Ebend-xx 1,550.0 ksi Eminbend -xx 787 .82 ksi Beam Bracing : Beam is Fully Braced against lateral-torsion buckling Density 32.210pcf i .. D/0,01~L(0.04) • • 1.75x9.5 1.75x9.5 Span= 2.0ft Span = 14.50 ft __ Applie~_Loads ________ _ Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load: D = 0.060, L = 0.150, Tributary Width= 1.0 ft Load for Span Number 2 Uniform Load: D = 0.0160, L = 0.040, Tributary Width= 1.0 ft ,.....,D=E=S=IG=N~S=UM=MA=R~Y ________________________ . JMaximum Bending Stress Ratio Section used for this span = 0.249: 1 1.75x9.5 578.62psi 2,325.00 psi +D+L 7.777ft Span#2 Maximum Shear Stress Ratio fb: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections Load Combination Span Max. "-• Deft +D-tl Vertical Reactions Load Combination Overall MAXimum Overall MINimum DOnly +D-tl -+D-+Lr 1 2 Support 1 0.0000 0.2403 Support2 0.855 0.147 0,244 0.855 0.244 0.172 In Ratio = -0.062 In Ratio = 0.240 In Ratio= -0.087 In Ratio = Location in Span 0.000 7.453 Section used for this span fv: Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 1013 772 724 552 Load Combination Support notation : Far left is #1 Support3 0.377 0.065 0,108 0.377 0,108 = = = = = Max. '+'Defl -0.0869 0.0000 Values in KIPS O~l n._OK: 0:115:1 1.75x9.5 35.56 psi 310.00 psi +D-+l 2.000ft Span#1 Location in Span 0.000 0.000 14288 Danielson Street Sulte200 Powa CA 92064 Project Tille: Engineer: Project Descr. Project ID: Prinll!d: 25 JAN 2016, 9:04AM Woo~Beam Fife= F-'~arfield.ec6 ENERCALC, INC 1983-2015, Bmld:6.15.12.9, Ver:d.15.12.9 Description : FB20 CODE REFERENCES Calculations per ND$ 2012, IBC 2012, CBC 2013, ASCE 7·10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Load Combination A.SCE 7·10 Wood Species : ilevel Truss Joist Wood Grade : TimberStrand LSL 1.55E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0.24) L{0.61} T ! 1.75x9.25 1.75x9.25 2,325.0psi 2,325.Opsi 2,050.0psi 800.0psi 310.0psi 1,070.0psi $@11,.1~1! Span = 5.50 ft ---------·-----· . E: Modulus of Elasticity Ebend-xx 1,550.0ksi Emlnbend-xx 787.82ksi Density 32.210pcf A~p!i~ hoad~ _ .. ·-· Load for Span Number 1 Service loads entered. Load Factors wilf be applied for calculations. Polnt Load: D = 0.240, L = 0.610 k@ 0.0 ft ,....,D=E=Sl=G=N=SU=M='.MA~R,_,_Y,__ ____________ . .. . ···-----·---·· .. ----·- Maximum Bending Stress Ratio :: Section used for this span fb :Actual ~ FB : Allowable = Load Combination Location of maximum on span = Span # where maximum occurs = I Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflectlon Max Upward Total Deflection Overall Maximum Deflections 0.3521 1.75:x9.25 817.45psi 2,325.00psi +D+L 2.000ft. Span# 1 Maximum Shear Stress Ratio Section used for this span fv: Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.059 in Ratio= 812 .Q.023 in Ratio = 2844 0.082 in Ratio = 582 -0.032 in Ratio = 2041 = , . . . Design OK · 0.254: 1 1.75x9.25 78.76psi 310.00 psi ..O+l 0.000ft. Span# 1 --·--·--·-.. ·---· -·· ·---· .. -----··-·------·--·. ·--·------------------------Load Combination +D-tl Vertical Reactions Load Combination Overall MAXimum Overall MINimum DOnly +D-tl +D-tlr +D-<6 +0-t0.750Lr-+0.750L Span 1 2 Support 1 Max.•-• Def! Location in Span Load Combination ' 0.0822 0.000 0.0000 0.000 +0-tl Support notation : Far left is #1 Support2 1.159 0.196 0.327 1.159 0.327 0.327 0.951 Support3 -0.309 -0.052 -0.087 -0.309 -0.087 -0.087 -0.254 Max. •+• Defl Location in Span 0.0000 0.000 -0.0323 2.335 Values in KIPS 14288 Danielson Street Suite200 Powa CA 92064 · Project Tme: Engineer: Project Descr: Project ID: 4 7 Printed: 25 JAN 2016, 9:04AM Wood Beam File = F·¼)ariiekl.ec6 ENERCALC, INC.1983-2015, Bulld:6.15.12.9, Vet.6.15.12.9 I.ti Description: FB21 CODE REFERENCES _, .. -· -~. ' --·---~ Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination :ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tenslon Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0.96) l(0.79) D 0.458 L 0.36 5.25x11.875 5.25x11.875 Span = 2.50 ft Span= 12.0ft 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend-xx 1,016.54ksi Density 32.210pcf 5.25x11.875 Span = 2.50 ft __ ,~ppl~~~-~~~~~---... Service loads entered, Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load : D = 0.0640, L = 0.160 , Tributary Width = 1.0 ft Load for Span Number 2 Uniform Load : D = 0.4580, L"" 0.360 , Tributary Width= 1.0 ft Point Load: D = 0.960, L = 0.790 k@ 1.0 ft Load for Span Number 3 Uniform Load : D = 0.4580, L = 0.360 , Tributary Width = 1.0 ft _ DESIGN SUMMARY Maximum Bending Stress 'Ratio Section used for this span fb: Actual = ::: 0.4701 5.25x11.875 1,364.0Bpsi 2,900.00psi +0-tl 5.647ft Span#2 Maximum Shear Stress Ratio Section used for this span fv: Actual FB : Allowable Load Combination Location of maximum on span Span# where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections = 0.107 In Ratio= -0.071 ln Ratio = 0.248 in Ratio = -0.167 in Ratio= Load Combination Span Max.·-· Dell Locafion in Span 1 0.0000 0.000 -+D+l 2 0.2479 5.950 3 0.0000 5,950 Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 1343 842 580 358 Load Combination -+D-tl -+D-tl Vertical Reactions Load Combination Support notation : Far left is #1 Support 1 Support2 Support 3 Support 4 Overall MAXimum 6.917 7.254 = Design OK 0.466: 1 5.25x11.875 135.10 psi 290.00 psi +0-tl 2.500ft Span#1 Max. '+"Deft Location in Span --0.1671 0.0000 -0.1449 Values in KIPS 0.000 0.000 2.500 14288 Danielson Street Suite200 Powa CA 92064 Wood Beam •••• Descriplion: FB22 Project Title: En9ineer: ProJect Descr: Project ID: 4-e, Printed. 25 JAN 2016, 9:04AM File= F·~arfiekl.ec6 ENERCALC, INC, 1983-2015, Bulld:6 15.12.9, Ver:6, 15.12.9 fl .:11 _ CODE REFERENCES _ -----------------------------Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi D(0.11 )I L(0,27) 0(2.2) (1.74) 0(1.51r2.15) 3.5x11.875 3.5x11.875 E; Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54 ksi Density 32.210pcf 3.5x11.875 ~-----Spah = 2.0 fl _ Span=5.0ft Span= 6.0 ft -------·· --------·------------~ AppJied Loads --· .. ·- Load for Span Number 1 Service loads entered. Load Factors will be applied for calculations. Point Load; D = 0.110, L = 0.270k@O.O ft Load for Span Number 2 Uniform Load : D = 0.270, L = 0.360, Tributary Width = 1.0 ft Point Load: D=2.20, L= 1.740 k@4.0ft Load for Span Number 3 Uniform Load : D = 0.2240, L = 0.640 , Tributary Width = 1.0 ft Point Load : D = 1.510, L = 2.150 k (@, 0;50 ft DESIGNSUMMA/lf ·---------: Maximum Bending Stress Ratio == 0.252 1 Section used for this span 3.5x11.875 fb: Actual "' 730.75psi FB : Allowable = 2,900.00psi Load Combination +D+L Location of maximum on span ,. 5.000ft Span # where maximum occurs -Span # 2 Maximum Deflection Maximum Shear Stress Ratio Section used for this span fv: Actual Fv : Allowable Load Combination Location of maximum on span Span# where maximum occurs Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.011 in Ratio = 6307 0.000 in Ratio = 0 <360 0.013 in Ratio= 5388 -0.004 in Ratio = 1337 4 ---------------·-----·-····------- overall Maximum Deflections --. --··-. ·-·--0 n o••••••••M•- Load Combination Span Max.•.• Defl Location in Span Load Combination 1 0.0000 0,000 DOnly DOnly 2 0.0036 2.563 LOnly -tO-tl 3 0.0134 3.378 l; = = = : Max."+' Dell -0.0036 -0.0007 0.0000 0;518 ! 1 3.5x11.875 179.30psi 290.00 psi +D+l 4.034ft Span#2 Location in Span 0.000 4.622 4.622 9 l i ~-----1 (:)---- -:--:c:=----11 II H 11 ll II II ll II II H II II ~----{ 1...------------,.,-------- Cf rrr I I I 9 I I ~~~~~~ ~--~ (~) ...._,, CT)--- '~~~~~,~~~~~:~~! _fe)-' . , '-, '-.._, \:~ ~~~~ . :<Y,.Xx< .,· ;.; -:-.,:,-:') v'\t,., ,. ..... ' 'C 'X.X '-~x.'-·· ';-:.x':y<)<'.::<..,,'~.>. ·.:<,':-·y .\}. i ~'.~~:. g:.,._')(~-~X~,·g'l<~. ·§·'·§·"~-~-~~---~~,~~:··,~'. ~-~--~--fj, ==11 kx.x<:~'?g\~~~\?~{2P~I l I I I ~~ ~s-.x·x~~ ·'\~,~'""~-~~...,_-· , c1 ® ~-- " I! ii 11 ii I' ,I r-------f Design Maps Swnmary Rq>ort llllllil Design Maps Summary Report User-Specified Input Report Title Garfield Homes Tue December 8, 2015 02:59:01 UTC Building Code Reference Document ASCE 7-10 Standard (which utllfzes USGS hazard data available in 2008) Site Coordinates 33.14969°N, 117.34466°W Site Soil Classification Site Class D -"Stiff Soil" Risk Category I/II/III USGS-Provided Output Ss = 1.158 g S1 = 0.444 g SMs = 1.201 g SHt = 0.691 g Sos= 0.800 g S01 = 0.460 g For information on how the SS and S1 values above have been calculated from probabilistic (risk~targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document. -a -4 MCEa Response Spectrum -Us 1.30 l.17 '.Ult O.!U o.,a 0.55 11.52 l),~ 13.~ 0.1:a U0 4---+--+--+--f-~1---1--....... -+--+---t o.cm 0.20 o.,o o.,o O.lllJ-1J.10 1.20 1.-t" u;o 1.ao 2.00 ~T(sec) 'ii -ct For PGAM, TL, Cits, and C~1 values, please view the detailed report, "-'~ Design Response Spectrum O.al 0.12 O.H 0,54 !US o.u 0.27 O.llil o.o, o.ca +--+--+----1--+----,i---+--+--+---1---1 o.oo 0.20 cuo l).Ql Q.lliD 1.00 1.20 1.40 u:;o UlO 2.DO Periocl. T (Sl!C) Page 1 of2 http:/ /ehpl-earthquake.cr.usgs.gov/designmaps/us/suroroary .php?template--minimal&latitude=33.14... 12/7/201 S MWFRS Wind Loads Job No: ~HIK ASCE7-10 Designer: ~ l!R~1--s. CCFI Endosed & Partially Enclosed Low Rise Buildings Checker: Notes: Date: 12/30/2015 Basic Parammm Risk Category II Tablel.5-1 Basic Wind Speed, V 110mph Figure 26.5-lA Wind Dlrec:tlonality Factor, K.t 0.85 Table 26.6-1 Exposure Category D Section 26.7 Topographic Factor, K.t 1.00 Section 26.8 Enclosure Classification Enclosed Section 26.10 Internal Pressure Coefficient, GCp; +/~0.18 Table 26.11-1 Pressure Coeffldents Roof Slope 4 /12 18.4 degrees Wall External Pressure Coefficient, GC!lf 0.516 Table 28.4-1, Surface 1 Roof External Pressure Coefficient, G(i,r -0.69 Table 28.4-1, Surface 2 Roof External Pressure Coefficient, G(i,r -0.468 Table 28.4-1, Surface 3 Wall External Pressure coefficient, G<i,, -0.415 Table 28.4-1, Surface 4 Structure f!!!!sure Symmaty; [Add lnte!!!!l f!.ms!!,!!! g.G~ or g11GCp1 as Neceseoo Walls Roofs Comp & Cladding Height,z 1(% q% Windward Leeward Total*0.6 Windward Leeward Total*0.6 A. Pnet*0.6 15ft 1.03 27.lpsf 18.9psf -16.1 tJsf 21.0psf -23.6psf -16.lDSl -1Apsf 1.47 21.0psf 20ft 1.08 28.4psf 19.8psf -16.9psf 22.0psf -24.7psf -16.9 psf -1.Spsf 1.55 22.lpsf 25ft 1.12 29.Spsf 20.5 psf -17.5 mt 22.Bpsf -2S.7 psf -17.S DSf -1.Spsf 1.61 23.0psf 30ft 1.16. 3Cl.Spsf 21.3psf -18.2 psf 23.7,sf -26.6psf -18.2 os1 .1,&psf 1.66 23.7psf 40ft 1.22 32.1 psf 22.4psf -19.1 os1 24,!l!psf -27.9psf -19.1 psl •1.7psf 1.74 24.8 psf 50ft 1.27 33.4psf 23.3psf -19.9psf 25.9psf · -29.lpsf -19.9psf -1.7psf 1.81 25.8 psf 60ft 1.31 34.S psf 24.0psf -20.5 psf 26.7psf -30.0psf -20.Spsf -1.Bpsf 1.87 26.7 psf (Roof area can be ignored if total pressure is negative) Pagel of 1 -· . V-= WicGs. _______ _ . C ~ = 9c:,s /4 ~ . • ?os =:.'." e 0 0 -r=-1..0 ·/2..-=-~ .. s .. --------- .. C 5 = . e~-: o.f23 /J.5 Le>AO. c...ot---u:a,_. ( o .. q-o~ e S,:;,s) l-G~4- ..... " ··----· ---·--= -14-D + ycs:!f, WH~ f = /.,,3 1 .. 4 --....----------------~--...,__,,..__ -., 'r --_____ ..,,.... __ ~ ------~ --··----_,,, __ --··------____ . ~ .. -,4 o + . ll+ Wp ______ t_ror'"-e~ctA-1~~ ---· ·---· --· · .. ----------· --------------·----·~1$,,.J.1~ ~I\O"Yv1~ ~6-M.~~-/-0,'<0/h/q" ~~ ~L . ~r>,.:Z-;/;[[_ OL- t,zoop I~ + ... G +_5 __ -~~ _ _ __ ~ ;~-t:~---f7?-_,. ______ . 14: ___ . + _)O f-_IO_ _ -3 4 Z,VI FL... t=r,z.. -14 + .I o + I _o -5 4- -------------------.. -....... -°14 pe~ X .-I I 4- ·- ~v a . !,-f W ·u X W 0/4 ---------'=-~Of' 1.~~-? .. --~b ------74 I -. -~1-2 .. _______ ·-B~-__ t. 0 ... ---~4____ _ . __ C;.e, o. _ · ?~ ~--· . -...... °! .. '5_ . .:54 ' -~~3 • 1/..0 ·-· .. _____ ......... -------........ ----··-· ... _l 1 .. 44 _ Y(f'~F) 4-4. 4 ... 0 :i .. ~ .::: Io~-, p~P ·--~-~------·----"-·v•-----,-~~ ••---.-... ·-• ·-··--·--s·•,. ,._.. __ ---~-----.,I,. -~-----,. . . . -=-:3,J./ 3 #=- _fp ==4_._C)(-zoX-~~/2+/.-s)-/t.1/o -1-1¾s {(pz7) == /675' 41= · Ile~ fer -~·4 __ -;;_ ( ~_i,) ($_i/2) -~ 1, (p if + IJ//~1 ( /o .e. q) = /E:>So "#: f2A ~ ~ =-,4-_,_ o J.J; 2 (~Zz)~ --._.--,/ ;.JH_~--½; £f-2Ct) = 11 e 7 ~ . ·-. ----___ jl...,A ___ . - .......... ·-. . . . ·-.. ·-. --··. ,=::-,_ __ ~. --· -----------. L, = t .. :!> ( 3,z) ( .z~~) := C/5(&, + ~71-/ 5 = 370 I~ Le.= '2 ... a (tog) (:Z.0 /z) = ,~o + ~fSto. __ =_ l~.N ~ + 4 5 -;,z = &Z I B if= F:t J l 5 =-6q o f 182-J =-'251-J -1.f? ~ f.3 __j' . fJ :y ___ L~ ~ ~--~-(z_G)(-1~. )_+ 2_._~ ( ~) (~~(?) = _ qe,c, +-371-f 3 ~ q7Bz ~ I.,~ . =-i.>i { 'Z(;) ( ,;_-z,~) ~ -~_e,_7 + I '-1-E:> 7 +_t .. s ( 't;) ( 3 o/ --L) + I s-75 AS' F;:. .....:=J---· -. .. .. . . .. .. . .. -F- -= J-J 11 o ~r=if. LG ~ 2· .. a{z(Q) ( ~~1) ~ Cf'?tp +:.-.l5~o -= 2. 7e~ # .~---------·----'----------------------~~ -----+------. -11"" -= II~ = ~ 52! p--vF ~ [±] 4 T .-. ?.bt {,)-. (a'1 [ ( /~ x 7 ;;c. z.) + (it:p x_ 1-x '2.)] ~ /Bo~ *, . --------. ,_ L: M-,rre4e>( v); L1~e 12:z --Fw,_-=-,t.3~~ (7·5'1!)(~) = /q/~ _:1r ~ / '3 I½----=--'2._q/ 4 ~ ~ [±) ,.s WALL- Tz:a ~qf(1),--~(pr-t [c,,;-;-,-;--a-.,2.s) +_f!~;-i ',{8 .. :Z&S)]' --/8BS L.epr =-Je,315 -_(t;ry [(Sao+ 1aeo)J :& 475#'· __ /2./ ~H, -= _ /8~ --_ {;r; '7 ( t{~ £'.,) -t., fJ~LA€:r I !el,F-. = /5'31-/ No Ho's . ~ HST_~,4-o( v) lriJ WALL ~ J-+t?U 2 ,,;) pr>N. ' ' ' 1("-= ~ ¾--,=:. ,e, -p-tR ~ @] I ~ C; e ( e,) _-~ t;, 7 [ (i ~x , -c;; x J./. 7 s) + ( / ~ x. I x I-/~ 7 5) + J./ e o J = -Z/o '-/JO HO 's --,,., ,~ -• -----------... ---~-............ --------------.....----- f~/o2% _,=/OB~~@] '5+)/,.G -r~ Joe (7 .. 5)-,..74-[(i~x7-5x 2 .. 2s)+(/b)(Z~~sxYz.) -t-/t.:,ie.,J · = B q t li= ____ _ _ _ _ _ t_ AJ~U~//e;U!!: -/..IO J./o.!s' I I::;.. 8-J-(7 .. 5) 7 ... ~ry [( l6x ,~~ x a)+ ( I~ x. ~/zy BJ+ /~o J --------------------»----_= . I z.~ _ --------··----__ ,. ______________ ,,_1;._t-)r:;_~WtE;-181£ / ___ ___ tvo 1-1 o ts ----------6" -----_______ * ___ ------------· ----. L 1t--1e 1~0 f r-1 == ~s z --==~=----,v-;_ c.Gz (-r. ~-6) ... r,,"';{+ 3. 5 + 3. s =-tei ~ -r = (,~~-('-.;_'? ) . .:-: ~ & 7 _[ Llk_~_7,~x / .. 1s)+ "(1~x~1/~x /. 7s)-1-/Bo] -:::: !#':?-------------- --------·------------,c,. ILE?GrL-tt;-/lbt...,e/ ---N (;) _ W p I? -- ---( =----~ fe_5) -. ---------_/l_>t_ .. _J/ "\ /(;; ; '2-x / 2. e ~----------!{ C;_,__. ___ -. ,---· ~ <t, 7 _[ (J& i / 4) + _ _.:--.J-- ___ ___ __ __ . ==-s 2 q 2 t-1 e,o e. =·., --= ~oC,4---- t.. 1M~ ?.-(pt:i ( V )? WAU- ~ Hl?U5 0rtJN . • • ------· ~oe. ---·----------• ---• ~ • -------··. ----------~ ·-----.. - 5B Lf t-JE. F-~ --~ -f~ ~ 1.~ ( CJ ) (.Z¾_ :1:-2 o/J =l./5s+ + I Cf 57 -= tos 11 1f .-v-= ,si 1/ = 74-4-~ ___.::. ~ . ~7~' ~- -rs 1#{e.~) -. {;;7 [(loxs,.s·x..J-f,.-3 )-1-re~+ (t<ox7~15x t{ .. 3 )J ---. := ':5 / t!5·#-r__ M~c~a:.( v) LttJE? F.s ~ Pw ~ 22 { '7 ) (~0 (~) =:. lCieo J-B:Z.~ ~ zroorc ti= , 11' = 2 eo ¾ .:: ~,(1 P;"F ~ @]_ , J M"1"C-+a ( ~ I"" ~II (8. s) -.t;,, 1 C (i1,, x e. s x 4.'=> }+ (u.,"-1 ,4.,;,) J "' :i I e, G 4 ~o~N. 'ti:) ~H ., .:::. 2-1 e, G -.. to 1 ( 24-~ fo +-:3> :Z o ) , -------------------------------~_:__,.3,'76 ___________________ , --------,t ·. 1.5 I . . _ -N&~L-fGf.\-~-tE, ~Jo -I-lo I __ Je> -:·-" /7,4 ( 6~5 )-~ -: ' 7 [ (f fJ,-'!( 8~-5-; J.J) + (!u,y.$.61-LJ) + (J ~ i< 7. 5 X l-J) + J./ 4 Z 1 = ~3...-i ---------------------------------,c1-Ne-;Ll Gr; ,s:~, --~9-Ho's Ltf-JE--Fe -Fw_= it. to; _J(U/4) ~ '2-178 +--P':z1 ( ,e3) =-12+0'9 JI:: 4 == 24-?e, $. 504 (2--vF ---[±J I= ~4 __ (e, .. $) ~---&7 [_ (1_1p 1-__9_._fix .. Y) __ +_ (1~ x _r;._ ~ 4) J -~-'?_0:7.Q..~ ~ M~c~e3{v) '-;) t3M .. _____ ___ _ ~ Hou 2. :;:, PotJ . , L 11Je ,=:; ·_ Pw-; 22. ( °I ) (,z. '11,z) = '2 t,,.t ~ + 1¾ B ( ro-s.z) 5'2f . . . . . . _-.Sc::,_,i!. z #= -1[" = 8o2~ = '?-o£·f2--vF __,. [±] /10 T =-~o.f.(6.'i; )-_ fo 1 [ {it;;, x l?n< LS) 1-(lb "f. /¾ x 5) + 5o4-] = I tta!3 ~ ___ _ 1_ fvf ~C-4-o ( V) ~ };;)f2.0 P 8 fvf • . <f H.t>U ,z ';;) PPN .. rw·-&:J ___ tt. ( , ·,) ( U.1z) = 3/(p'?;;,. -t 1¾1 ( &5~) = 3602.* ---·-=r~~--E-_ii~[e_ .. §_J~-:-~--~ 7 C {/a_x ff!;x_.8-~--_ )+ (111')( !rt~>< _3.-s )+3so] ----·-----+-------------~ -9 4-q S' <ii= .. --.. - ----· ------------4 M-$riC.S~ ( V) LINE=-L, -r'v--1 = it(q~-5) (i-G,/g) =-i.El13-+· 87C?S = 0ZC,6,~ --· ----.. ---_____ ,,__ --------~----------,------------..-------------.. ,v-= t ~4 ~ .:: ~4,~,z ~_,,p:= ---b [j] ... ---.. --,._ -.. . .. ~----. q" ?. . . I -::. /phz: (_~_~)-=--.&-~ 7 _t (1ro y. _,zipJJ.. x tf .. 715) l-(f(f) )( J-/~ 7S >< Y) J . _ _ _-==: -Aw4 - t Hou 4- T,o I ----~6z-(a ,.,~)--fti 7 [ (!OJ( ·ao~ s)'J -s J/B7Z + 51 IS = qCj e,; .... &,7 (1qz0 ·-=~q~..&--4x?o w/Ht,~11 1 1 1 .:: ~'?Z ( S,, S) ---~7 [ ( lO,< lo x.3 .. ?)J ::: 5 307 + /~34->= ~84-( -~ .. $· w/ -Houe . F~ -~ 1 e;q~ +-zeo6 = # &~ *' ~:=1bo%· ;·ioo~-~ f+1 ' ,~.. .... . LZJ T:: io.;(0 ... 5) -:·~7 [(fb;<..Z-01-... 'o -J.+ /f?Coo+ e,4oJ . -· . ---. . . . ·-= -i-, 2. - --·--t_ I.JO Ht> '..s Lt/'Je --[;;,· --_ Fw 7;:: __ ,z1_(4.s.)(1-4-/:z) _;~_·:~'Z'9'14 + 3<c-ETC/ =: ft;,oG3 ~ ---~~:-(po~,% . --= 1"16' ~--> [fil ... . ---. . . . z3+ 2-:a ¼,=-=-11-?f~~_1:1) -. , 7T (l(p x11 xJJ r.;.(I;;,,_,; t "I)+ ( 1.i, J.J )( q) J -···---_ ________ . ___ ___ == ;r, 1----.tvE76f'l-t~1,e:it,J51 No Ho "s -LJ/Je ---·i-;,.-.~~~. =--P::w ~ ~ ,-(<t;;)~~-3~iz)_.::: .. ~--,4·2 + o~o z =-CJJ 1 q 4-'* ·-·-------~ ----~ .. ~, ---~------~--,, . 1r == ~-r-J'13/ -·--= ·"8Z.~ -@J /JO. 7£5 J ~6 82 · (~:is-y·-~.6 1 [ (t'a ·><·Cf·: 6 ·x 5. s) + (14 x s. s ~ 1Yz) J . ------.. ------== '173~ +' .lfp_4.J_-:-(o 879 --· · ~-·--·----···-· -t J.foue, t1i..1~ _J .. e __ ~w = u ( ~.t.)_( 2 ~).~~:~~'2-1, e-+ z .+~ 9 . -= 4 {p ,-, -... Tc i~&(8~1G5·_·~_-i1-[(!hx B-~)(_Ji~s)'+ (J~,< J/~-5.x 1)-f /Bt-J5:) _ ·-----· .. . .... ·-··--= 'Z .. !L!tZ. -!I=: .. . t__. l-+1./IA2 STRUCTURAL CALCULATIONS ~HTK STRUCTURAL ENGINEERS,LLP ~A#lfBS~°--~H=o~M~e~5,_._ ______ _ :' DESIGN ASsUMPTIONS: CONCRETE STRENGTH ATTWENTY EIGHT DAYS; MASONRY: MORTAR: GROUT: -. GRADE 11N" CONCRETE BLOCK F I M = TYPE S 1,800 PSI 2000PSI REINFORCING ST~EL: A-615 GRADE 40: STRUCTURALSTEEL: A-36 LUMBER: DOUGLAS FIR-LARCH JOISTS GRADE 60: #2 #2 2'.$.oc, p$; ~ Sl,A8r- 3ooo PSI -~!!...14 ______ PSI #4AND LESS (U.O.N.) #5 AND LARGER BEAMS ANO POSTS STUDS STUD OR BETTER REPORT BY: . ersOTS t-..l tt::.AL,. SEISMIC FORCE:£~ '= .. Boo WJND FORCE: /IO NPH 15-xp .. P DESIGN LOADS: REPORT NO.: I 5 -10(e,':f ( SOIL PRESSURE::-=~:.::0::0~~'2.Et: ROOF DEAD LOAD FLOOR DEAD LOAD WALL DEAD LOAD SLOPING FLAT INT. fil ROOFING FLOORING INTERIOR 10 PSF PLYWOOD PLYWOOD EXTERIOR 16 PSF JOIST~ JOISTS INSUL. & CLG. INSUL. & CLG. MISC: MISC. TOTAL~ \ I, p~r-~~F TOT~L = l+r~, ROOF LIVE LOAD FLOOR LIVE LOAD SLOPING= '$of'4f-INTERIOR 40 PSF FLAT= '2.0 f'"ll,f BALCONY 60 PSF (U.O.N.) EXIT WALKWAY 100 PSF These calculations are limited only to the items included herein, selected by the client and do not imply approval of any other portion of the structure by this office. These calculations are not valid if altered in any way, or not accompanied by a wet stamp and slgn~ture of the Engineer of Record. _ Designed· Sy o-r S~n Diego· 14281 Oaniefoon Straet, suite M 200, Poway, CA 920&4, (858) G79·69B9, Fax (858) 57S,8B9 Las Vegas (10lj 505-6225 " say Ar•a (510) 759,9399 - . L :Lm~-= ((,_ .. ~P~.c~u--t~ -: .24 __ ~ t. t . L =/~1 Cw/ 'a' UN1'11..) ~Pk,,ft-J~ = /ti, Ito/ e;,. b,. k fl/ f n~ . -~ .r I __ _ . . . M 11 ~ / oe>q * ~ FT __..=, ..Z )(l_O ';) .-2~,. · c:,{l.., 1: ~ U 1~4 M~ = il f.. ~ ,qG:» 4-. Va-=. t~e, -r._ ~ .qs, OL = It:. 1 ll = Zo .. ., Tl. ~ .3(o p:5F .. W,n .. =. /~(1 ... ~) k2,J .. B~ Wu_~ ez-o(lh#'fz.) ~ r;.& ... 1 ~vF .:Zteo:> u ~:: JJ./35 v~ ::-·eh 1 . :J: :r1 41 l :2 ,d'1.. . ;; 1 <.:," o / c.--. . 1 II .\elP -~ /t' M~X "'·~ ~ 1 ·r . . . . ...... ~o{ot,) . 2,'1,0 (1:1..-J ... · ... .~'1 ~. t . . I 2,o ( Ot.,) t 1, ei { J..i-2 ..Z.t:Jo ~ ®h w ~ Ce, er~;,~·) ~4e~ M ~ .. i~~+•=~ X .= l4--~ tN4 -~ =~ze ~ 4. f )( l 4 . 'o) l G, M O/ C . Ofa. \ )f.. HY4 ~L ti:> !t/' 9 ({if\_ l ~ -----------l' i r,::-=--rr----~-= f 11 11 I 11 11 11 11 \ ~=--=--=--:] f II f II II ~ f II II .tJ.. i fb~ i::--------- [ u II II ; r H II fo\ __ _ ~- ~ -r II t 11 II II II 11 II H H ! II ll II ll II II u II H I II f--------____ ,..__...:..._ -II H II --ll 11\ II ll II H jl ' 11 0----11 11 -,, r~ ---- ~S;il I ® -=----....:~ II II H II II II II II II II H II II --------{ 7.r------- r ,1 i' II ,,_L - !I II ~ n ,, '1 II '1 JL .::IJ II II ~ ,1 ·I ~ ,1 ,1 ,1 il l1 = LL..::--_, H II ii H !I II II 11 II ii ii II II .:::tj"P qi 11 1' 11 1' ti II i! 11 t!:-::---....1~ ! l ~ t l · I r ~-- (C\_ .. ~·-----------------.-~ (»--·--l l cb~ , ·---------~r--·- I [ d) t-~ ~ :t ~ V 9TT It 9 ~ l , .~ ...... j i. '! ,9--,~ ~ T .e·,1e I I tt ''~ ..,g t J~ J'3: ~ . ___ ,, t. ~ t ·-------~~~ .. · rr9J .... . . ~. (0\ J &---·l- ~ ,.,,=---~·w ~-~~-- ' ~ ! l 1 OMC/ff l l ' ~~ .. J.t". , .M;S, .... L /z.81 . ' L IZ' I, .:i;: ,, .. ,.,,., ' .i .. {w/ 4--s'· e>t-JT't.) .. . 12. ... Ft3.t . . .... . ... L =It!?~. 3 .. ~~Zi. ,., L -~-~, - ' ,_ ~. . \;J DI., -= / '7 ( e,) : J/ e, ~ _ • PPL .:: /J.jao • · PlJ.. : / 7eo 1t ~ -es~_x q Y: PtG>L_ . +~~+ ~-·L ;~zs*,;, -1 Pot.,. ,;:: i,Go • .., P L.L ~ ea.a~ £. P"1t.. $ //J{O-#' !!Pu~ ;;: !1~ ':# 4 8~ ~ 'l 1/.z PSt- orL 4)( 10 -·W. t /liiJo (oi) 1860(;,1«) ,~·o (01,.,) S~a { w.. 1 I '1 fbO : :2;35p (u..,. b::i:1 1er,:i.~--· s.~lo~ .. -~~a Jt.110 .~ w ~-' '!:. .. 1 NJ.Jo. ( oLt) lt/io ,:t:. e, jo + ·w * '-1-IJ~o(ot-) Jfi-/:3o { LL} . !2570~ .. ~ t ' Cf IO (t;Jt,,,) tp~a(t..~ leoo'::lf: -~P ...zp -l ~~-~----'4"-,-~~G' !~Sb (01-) / 7 ao ( £.,.!.) ~--~uo Jb: \.. ; ,.sL ::t;;_t .. . . w.,. = 1U> ( e.SJ ~ I<.. (etz) + 14 ('¾)'" i& ( 1-¥~) = </oz~ \t-l~-: >20(6 /2) + 4o (l4--/a) + 2o_(el:.!)= #o ~ 4 7x 1/~e, PS'- f& .... r~z L ~ 16. '-( w/ I I CANT 1L) ,W A. ~/'30 (Qt)" - °B .f lo \:L) · -~-~eo~- w I ' -I . ' ' ~~__,_,..Jl: .... __ ..,...,. _....,..,~ t t 840 C r.:n) e4-o ( D l) S~o( t..t:-~L..... :34o (LL) I, t 6 o ~ I I Z~ o ~ ..... /.£. to, --: .. ·-·-"i,z ·-=-· ----~~. "" t· . -. .. . t · /'S'lO (~t.) /15/C ( tn.)., , : 3}6:Q ( t.t2 ~t 1$6,( t...t.. l, . ! .. 34tpo,,:#!. , 3b(oO '* - N ,> ,, ,-.... " """"' '""'"'" -~· V y-...., ~-..,,,' ,, ,_ ... , -.::I........~ .L, __ HI ... 4-,.¾L ..... =-........ """." .... --,.. ·-~"-F. .. ~-----. ~$-to{~J-~-~t~.,~ ('\,) ;;:~:f · ... ,.. ·---.----·---&,r;;.zo( L:,,t.) ·-~3~ --. . . .. I~, ~o""'. _. c;,,.-,,., P *"' -~-"'o ,.,. -,,,,, __ ,, .,,, , , \ ' h;>~ F64,. -L '.= f,7,..1,:,;., . ' q V ...,.,,._,_, _.......,V.....,, ... - ' . ·_: .. _ .. __ .. _,,~-· · "L/ ;;~-){ H 7/e ~L .. +.----~ .,,,f, .. 2 '2.00. ( D1/ 1. (~;_ _ .. .'t,~4Q -~ ,, '> ~ .. . .... , _J ~~q { ot..) . . . I I~ _q_i!:.~L i~e.o~ I '' ! .... ' .. ' ' ~ ·~ ' . .' l L; ... F~ 1 .. . . . --. . . .. , . L :: '2e>' .. ' .... :,w . , -. , ., " ,....,, .'ta'; .. f-88 • , < • • • •< • ., ::--• ~ < :;, ' •.• --,~ . L ..... ·Ja...' :i ,:I ::~L~ I "\, · ·'l;·W v .. ~--1--L_J' · · · -.. ' ... ' ,. ,., ,,_ --·-··------ _ JG .. FB./1 L ~--It 1 , lb. Fll:!.I~ --L ::p:_tQ~.s' M ~ &.3~ ~ ... p,T I = t'P tu+ ~.:: ea~+ ~L ':3ito+ Joos.= :_J.//.z5:* _PL L = B4 JO + I/ OJ::.> .. ; ,i-/5-L O 't/F l ' 3'1'S_o (J:)t...) J..f i oo{. t' . .S€:>o Cot-) ~ M = 1es1s ~ -rr I .: ~, Ji.)4,- ~ ..::-55e, ~ 4 :,!It)( q¼ P-sL . '185o~ .._ ~ + . , i-10 t , uo(p,.) Sot?(t..L) J.f fo _# ,w ~ ,y ;:; ~ v_ ~ , .. ~.{t,t:>f!'~ l 1Z.ft.... 3 ... <S ( q .. eis) ~ ii~si ~ eqo I (o~) ,.t\;.JPt-~ 14-(~,}~Jq(~-$~)-~ ~/,5~~ ~ C -:z.,4../:i) -. ..tc..o ~.-. W Lt.... = .,.o -~ .,.. "'fc;;;.ft. ~ 1 f'pt...= .1 ta-4F "" Pw.... = 'oQO. -e. Pi:n .. -.: 137-Sa ~ '2 Pik #:' 4100#. 3Prn. ~ Jcq,z~~ . BPu._.-: lO~-~--- 3r,;, ' t ALL ~ ¼qe b 1...-TL~ ½G""O -~ Jtq,. ~~15. ./-:;rt/~/ 51eo (;;,t..) 8 "i! i o ( Lt,, ) I¥, J5o 4f" . ?3t0 ( i?t..) ~t:)10 ( I ~1 :}4o WoL = /ft, ( a)+ It/ (!1.(-z_) -=/Bo~ w,._t..~ _4o ( 1+1t') = _2eo..~ PPL--~ _ 860 #: p t..l.. ':t:' 4-1 o-# ZI.. P&l1. l---"71 --1Woi= 1~(1~)+ t..Ja +--ti(#/~)-+ J#/(giz):-:::::·17/ ~ 1 wl..l. := 2~0 + 4o ( 4/:i .,J-_ ,4-o (~/a.}= 400 p..A.Ar ~ Wo L-"" Jt, ( Is) +-I& ( . = ::!,J 1.. p,~ a Wt..1.,. : ·Z:o ( ':~/a) JJ:!t Jao ~ = 5/c; #t p1...,L, =:: / 82o ~ ',' ' ' t ' t{ J.it:,r:::; lot-) :,Sq O'O ( ;_i_) _,____...·-~ t ,"'' 'EJ,5o ( OL) .s 1 '5o(t.1.) ·1oeo * 2W 770 {OL) ,-z 8 (b D ( f-L) GcP o:#> t £s20(0L) '2,7Cfo (LL) '53fo :# "jt ~---1' t 2S3o(o0 44-Bo(w.-) t l-s½( DL) -3!!:_oo { i...t.. J (o.q~odt 4 !54 0 .:J4:-' l, \ : 2 $ ,,, Fee , ·.. . :::... J"'1:l. ' (w ( ~-~' ut-.Jr 1t.J . t . ~4¢(¥:;fd -~ ! 0 (l-l-} ··a~o·ir j.!}, ' . 1,b{t;:)t..,) t2.."1o{ i:1"") ~eo• 1Woi... -» I~ (9 /~)·~(py ~ .. 1t~ u.. ::: J.Ji::; ( 61.-z) = ltpo ~ ,z \,Ji;,(.. ~ J ea ( 1 >-J) ·_+· / t;; ( fZ. ~('2.) + ls.I ( h 4) f$, 1/ 6'"6 ~ w~L ~ 'Z9 {~4~). f"" itO(~/z) = 5G;,D f-¥4= . . p K,i!.. . l4" Cf t? 0 Ii::; i 1 ~ · f° w.. ~ 7 q ,,_';:, . 1* ,r w t-·-------~':!:L..,._ ~-··""7 ~ .. ~~-~ ! f!.I -1-¾~Q(t:n .. ) ·::-12 "~/. ,~-~ t _"40"60 (bL) 5£ :!$,o ( Lt..,) :3160 (L-t..-) ; &;C,:Zo ~ , -s, _ Z-1~ :".---F82£. , , -L c= I ?:, I ' C ~'-c-AN-f''-) 6001~.._;..I loto(t-t.) - ~ l ~ oo -it:: t SI "'10 (QL) i } q O ( w_) -l ,z, I '?::-~ C ~ t 4""10 ( t7t.-) (15 Cf o (LL..) "2. ot;; ~ 7'f""~H ; J:'L.. . neA,Ol;Pz'=? f,. H~-L ' - ~~ HL?~~ ... L ~ .z .. ~.'. M r:: t4-,5 * ... Fr. ., .. · .:r::,. a:5 ,w+ ~ 4~e~ . A~ /t;5o ~ . ,. ... l~~.~ .. 3eo4 l -. . .. . . \/ ~ -:: . t/ 0 l'& -:& I l t ..itv,(~ 4,'-1. f ~ . . t-w "1/! uc c ~) + -e,~ (1). e4-~~ p .=-t:1So #' -" , -.. M. ~ I e;;,qe, -=If= -ff ' ., 'X ::i:. /p .. C, IN+ ~ -:: ... :g~ '!Sq'* L 4 xei 562. '' ''b7 !G::iSo ,z. '2-349 w = ;ro_(-t) +-sqq ('¾(;;) :;Jr •. "-J.01.p ~ · M -= 5ld4€:?+-: FT" I= /al n.,1+ fl...~ te:2.4-jt -~. 4xl-'2 . Ma. ~ "'142 I ~ &e.,34-:r: ':Iii, +I~ t l~ e.,~ lioo -'i$!$W 818, i$AiSAA~ I .:!.¼ :t. G. M ~ '7 O<o7-# ~ F's ::C ~ J G-q I ;._;,4 ~ ".=' J/,3/Z-.. ·,3y~ ~ 4~ ~L M~ ~ i21 ~l'E?l ',/ e = C:,1 Z.'1, o ::C = 2 'Bo · &J , H~& L = e 1 .... .. W '7. /43>.o ~ M=/:lood#:.,,IT ~ +xe, I .z:-,,z I 11v + . ~ ;;:;-G,~o _,. 7.,. Ut:J/21 . L-· = e 1. .w • ·1ltPt-2) +-5~ (>l/1.+_ -i) =-~;;;tp ~ M im 20~+~;:,,:r :c: = ~ t t,J 4,. . ~= /a~;,/#- B~ ½tWo. ( i .) L :::: t I W = /'1 ( s) 1" 5"4 1Y11 +: '2 = 1/55 ~~ M-= ..z1eez. ~-FT I = tq f!V 4--~·· 4,< 1 ~- ~ ; I ti 5 'ES -~ ,,.,,_, ""'"=•, __ .,,__,..,..,._,__,, ~,.,~..,, ,, ~-, .~~v, • ,, __ J,;Z_e,,14·:Pt?:JZ. , ,,,_ : L. "'~' ~ : ,. ' , M~ := :2.Gt l 5 . v,t!; ? , zt+ .. , :-;,. J ·t f M -,~, 0 ~-~--! ' 4 ,1,::, -:-1 0~ . J.. . ~ ":I¢ :c s;. '2~ 1 ~)_4--' , ' '" ' . p; ,-~ 1-:z 7.,~--~---,,,., _ ,., ,_ . < ,-"'' "''' ""'). ,..,_,~ .. ---~ .J&,!P~ t-tOP..):.p .. i~ .a' --------·-------·-- -..... "' ...,..,.......,,.......,,,,.,,,. h"' "'.,,,._..,_.,.,~,,_ ,,,.... ---~ .,._...,, ,, .......... .....,.,.,~' ' ' )- 14288 Danielson Street Suite200 Pg_Vt_fJY, CA 92064 Project Title: Engineer: Project Descr: Profect ID: !Wood Beam ENERCAI.C, INC 1003-20 Descrtption : RB1 CODE REFERENCES --•• • _,. 0 --·--·•-• • -••• •••" Y'•• ·------· Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 toad Combination Set: ASCE 7-10 Material ~r(}perties Analysis Method: Allowable Stress Design Fb-Tension Load Combination ASCE 7-1 O Fb -Compr Fc-Prll Wood Species : Douglas Fir -Larch Fe· Perp Wood Grade : No.2 Fv Ft Beam Br~lng : Beam is Fully Braced against lateral-torsion buckling 900.0psi 900.0 psi 1,350.0psi 625.0psi 18O.Opsi 575.0psi E: Modulus of Elasticity Ebend-xx 1,600.0ksi Eminbend -xx 580.0 ksi Denslty 32.210pcf ... ···1 j ,. .•. l l .,.---'f:;,.0;;.:..1.:..44;;,jJ.;;L<i.:.0-..:.1ii:.t.1-,....------,+,----=D.::{0..:-1.._44++L..,f0_.1_.a,_} --....----..,....-----.,.,......--=D-a{o=.1"'-44-+-+·L(-0.1""'s .. l --• .-------., ! I '"' ~ '"' ~ ,,,, ~ Span = 4.50 ft $pan = 11.50 ft Span = 11.50 ft . A.PP.!!~ L~~~-··----. ... . ... Service loads entered. Load Factors wm be applied for calculations • Load for Span Number 1 Uniform Load : D = 0.1440, L::: 0.180 , Tributary Width = 1.0 ft Load for Span Number 2 Uniform Load : D = 0.1440, L = 0.180 , Tributary Width = 1.0 ft Load for Span Number 3 Uniform Load: D = 0.1440, L = 0;180, Tributary Width= 1.0 ft DESIGN SUMMARY .. ---·-·-·-· ·-----.. ------· '. Maximum Bending Stress Ratio Section used for this span tb :Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient DeflecHon Max Downward Total Deflection Max Upward Total -Deflection Overall Maximum Deflections Loa ii coinbiriaiftin--· ----... --- --io-tl. +D+L +D-tl. Vertical Reactions Span 1 2 3 Load Combination Overall MAXimum OveraB MINimum support1 = = = = Max.·-· Dell 0.0521 0.0241 0.0967 Support2 3.212 0.856 0.74! 1 4x12 737.28psi 990.00psi +O+L 11.500ft Span#2 Maximum Shear Stress Ratio Section used for this span fv: Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.054 in Ratio = 2567 -0.002 in Ratio = 76222 0.097 in Ratio = 1426 -0.003 in Ratio = 42345 ---.......... Location in Span Load Comblnalion 0.000 5.412 +D+L 6.475 Support notation : Far left is #1 Support3 Support4 4.230 --1.469 1.128 0.392 Max. •+•Dell 0.0000 -0.0033 0.0000 Values ln KlPS 0.418: 1 4x12 75.26psi 180.00 psi -i-O+L 11.500ft Span#2 Location !n Span 0.000 10.727 10.727 -·-·-··---- )· Project Tille: En9ineer: Projecl Descr: 14288 Dantelson Street Suite200 Powa tA ·9208=4---.... ___ ,.......... , .woc>d Beam· , , ~f ,' '_,: , I ti CODE REFERENCES •-·· .~, ,~ '"••-~'-•-" ,•-•' ,, ~• ... , •--·.,•••• Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination-Set: ASCE 7-10 Material Pr,~,Lp..;.e __ rt_ios ____ -------------~ t Analysis Method : Allowable Stress Design Load Combination :A.SCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Corriix Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam Is Fully Braced against lateral-torsion buckling 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psl Project ID: E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54ksl Density 32.210pcf I ~~~ ! ...... ---------.... ,.----------:=.:.:.:a·r,==--------,----------+ ! l-------------------l 3.5x14.0 Span = 19.0 ft r . . AP.Pli~t~oads.... , ............. ____ .. _______ ....... . Service loads entered. Load Factors wm be applied for calculations . Uniform Load : D = 0.120, L = 0, 150 , Tributary Width = 1.0 ft DESIGN SUMMARY !Maximum Bending Stress Ratio Section used for this span -·-----··-·-···. ' .. --·-· -. ·---· ' .... -----, .. • Design OK· ' fb :Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections = 0.441: 1 Maximum Shear Stress Ratio 3.5x14.0 1,278.76psi 2;900.00psi -+O+L 9.500ft Span#1 0276 In Ratio = 0.000 In Ratio = 0.497 in Ratio= 0.000 in Ratio = Section used for this.span fv :Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 824 0 <360 458 0 <240 Load Combination _______ Span Max.•-• Dell Location In Span Load Combination ..{};{. 0.4975 9.500 Vertical Reactions Load Combination Overall MAXimum CNeral MINlmum DOnly +Dil +D+lr -tO+S +D-t0.750Lr-t0.750L +D-t0.750L-+0.750S -t0-t0.60W Support notation : Far left is #1 -----Support 1 Support 2 ---.2""",5=55,-----2:s6ii·------------- 0.684 0.684 1.140 1.140 2.565 2.565 1.140 1.140 1.140 1.140 2.209 2.209 2.209 2.209 1.140 1.140 :: 0.239: 1 3.5x14.0 = 69.35psi = 290.00 psi +D+L "' 17.891 ft = Span#1 Max. •+• Dell Location in Spa"n .. __ D.00!.l(l ()J)(J{l Values In KIPS 14288 Danielson Street $:uite.200 Project Title: Engineer; Project Descr: P,owgyJ~-... ,~-----------...,..,...-------------~--, wQod)le.am Ill ProlectlD: CODE_ REFEfliN_CE$ _ ___ . ···----··· -~ -----------------·· --··---- Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 ______ Material Properties Analysis Method : Allowable Stress Design Fb -Tension Load Combination ASCE 7-10 Fb-Compr Fc-Prll Wood Species. : iLevel Truss Joist Fe -Perp Wood Grade : Parallam PSL 2.0E Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling ......,....,._," ........ N.,.., ... .,.,.._,,,, ..... ,,.. .... ,_ ,,.,,,..,,_,.. D(1~:~;78J f ' I : 3.5'<9.5 Span=8.0fl 2,900.0psi 2,900.0psi 2,900.0psl 750.0psi 290.0psi 2,025.0psi i E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54ksl Density 32.210pcf ~ J AP~!led _L~.a~~ .. ... ... . ___ _ .. .. _ Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.0480, Tributary Width= 1.0 ft Point Load·: D = 1.430, L = 1. 780 k @ 4.0 ft !~~!~% s::~!~tress RatJo---=----~o.sis-1··-Maiiimum-Shear.stress Ratio ' Section used for this span 3.5x9.5 Section used for this span fb : Actual = 1,550.89psi fv : Actual FB: Allowable = 2,900.00psi Fv.: Allowable Load Combtnation +D+L Load Combination Location of maximum on span = 4.000ft Location of maximum on span Span # where maximum occurs "" Span # 1 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection _ gv~~n.M.~lmum Deflections Load Combination Span -tOtL i 0.066 in Ratio = 0.000 in Ratio = 0.128 in Ratio= 0.000 in Ratio = Max,•.• Deff Location in Span 'ifma 4.020 1455 0 <360 750 0<240 Load Combination Support now.lion : Far left is #1 = ;::;: = = = ·o:ir,: 1- 3.5x9.5 79.36psi 290.00psl +D+L 7.212ft Span#1 Max. •+• Defl Location in Span --·---· --· o'.0000 · 0.1.mo - Values in KIPS Vertie~! ~e!_~rons Load Combination · · Support 1 Support 2 ---------------. -·---· ... ------ Overa·~!! ~MAXi~'m_u_m _____ l797 ·-----1.797 OVeral MINfmum 0.544 0.544 D Only 0.907 0.907 -tO+L 1.797 1.797 -tO+Lr 0.907 0:907 +0-18 0.907 0.907 -t0+0.750Lr+0.750L 1.575 1.575 +0+0.750L +0.750S 1.575 1.575 \. 14288 Danielson Street Suite200 . El!Jlfft .cA ·S2Q...$.4 f:.Wood .. Beam. ldl . 'Qescrlpf!pn i J~B4 CODE REFERENCES .. -···--·--··--·---· , .. _ . ---·-·------~-- Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Pl!)p,_e_rt"--. i_es ___ _ Analysis.Method: Allowable Stress Design Load CombinatlonASCE 7-10 Wood Species : Douglas Fir -Larch Wood Grade : No.2 Project Title: En8ineer: ProJect Descr: Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Fl Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 900.0psi 900.0psi 1,350.0psi 625.0psi 180.0psi 575.0psi ProlectlD: Pr:nted:.2SJA!-12lll6, 9:~3AM ' F1Je=ftl(Ji!r!iokl~"$-· Build:6.15,12..il;Ver.lJ.15::12.lJ E: Modulus of Elasticity Ebend-xx 1,600.0ksi Eminbend -xx 580.0ksi Density 32210pcf '-=-···-········_···--··· --------_· ____ .. _ -_-·-···--·-·-_-------=--·---------·--- 1 -~·r~ m,T,~~ J .. J 4x10 Span • 8.50 ft . ~P..l!~J.9~~--·· -· . _ Service loads entered. Load Factors wi!! be appl!ed for calcu!a!:1ons • Point Load : D = 0.650, L = 0.820 k @ 4.0 ft Point load: D= 1.140, L= 1.430 k@8.0ft .. ............. _____ _ ._DESJ.GNSUMMARY ______ --·--. ______ .. _ ·---· ............. ---···--·- Maximum Bending Stress Ratio L Section used for this span fb :Actual FB : Allowable Load Combination Location of maximum on span Span# where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection = = = = 0.821. 1 4x10 893.58psi 1,080.00psi -tO+L 4.002ft Span#1 Maximum Shear Stress Ratio Section used for this span fv :Actual 0.064 in Ratio = 0.000 in Ratio = ·o.115 in Ratio= 0.000 in Ratio = Fv: Allowable Load Combination Location of maximum on span Span # where maximum occurs 1587 0 <360 885 0 <240 overall Maximum Defl~IC?~.... ------··-- Load Combination Span Max,•.• Defl Location in Span Load Combination "4}4. Vertical Reactions Overall MAXimum OveraN MINl!OOm DOnly +D+L +D+Lr -I{)~ -tD-!{). 750Lr-!{). 750L +0-!{).750L-!{).750S Support c· 0.929 0.247 0.411 0.929 0.411 0.411 0.800 0.800 U.1i5~ Support2 3.111 0.827 1.379 3.111 1.379 1.379 2.678 2.678 ··-4«~·12 Support notation : Far left 1s #1 --·-itlllMBll!t1 i Ii · e.. 0.239: 1 4x10 = 43.06psi ,;;: 180.00 psi -tO+L 1.: 0,000ft = Span# 1 Max. •-;-• Def! Location in Span Values in KIPS • 14288 Danielson Street Sulte.200 Project Title: Engineer: Project Descr. ProiectlD: 'Cfa.·92064 Plintea:,25 ;JAN 2016, 9:0SMl ,-··~, «,""--'---,,-,--------,------------.-------,--,----,--~-. -, .;.,c;.;.;;"=F.l!e~ .. p~:¼J"""m7e""'ld"".ee6,;;;;._-, · Wooct Beam 'EN~LC,!NC.]983-2015,'Btiild:6:15-129, Ver:815,12.9 CODE REFERENCES ···-' --·· ___ ,, ....... ,---·-... , -· Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Mmaria! frop,"""e'-rt_ies'-'---------------------------------- Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tenslon Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing ;: Beam is Fully Braced against lateral-torsion buckling f + 7x11.875 2,900.0psi 2,900.0psl 2,900.0psi 750.0psi 290.0psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54 ksi Density 32.21 Opet + + t Span= 15.50 ft -·· AJ'PJ!!!~!?~d_s_ .. __ .. . . __ . . _ .. ___ ..... _ .. ____ -----------~·S_e_rv_lc_e_lo_a.;...ds_e_n_te_re_d_. L_o_a_d _Fa_c_to_rs_w_i_ll b_e_a-'-p-'-p_lied_fo_r_ca_rc_u_la_tlo_n_s._ Uniform Load : D = 0.4020, L = 0.440 , Tributary Width = 1.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection = = = ··-· "~ -·-----· ........ , __ ,.,_ ,, , .. ,,,,,,,,, __ _J 0.6361 7x11.875 1,B44.39psi 2,900.00psi +D+L 7.750ft Span#1 Maximum Shear Stress Ratio Section used for this span fv :Actual 0.294 in Ratio = 0.000 in Ratio = 0.563 in Ratio = 0.000 in Ratio = Fv : Allowable Load Combination Location of maximum on span Span #where maximum occurs 632 0 <360 330 0 <240 = = = :::: = ~~_rall Maximum Deflections ___ .. -·----------------------Load Combination Span Max. • .! Defl Location in Span Load Combination Max, •+• Defl Location in Span +D+L .... _ .. __________ 1 o.ss30 1.ao1 ------·--o.~ooo:i · 0.000 Vertical Reactions Support notation : far left is #1 Values in KIPS ---------------------------Lo ad Comblnalion Support 1 Support 2 Overall MAXimum 6.5°26 e:°526 --------------------------- 011erall M!Nimum 1.869 1.869 DOnly 3.116 3.116 +Oil 6.526 6.526 +O+Lr 3,116 3.116 +0+$ 3,116 3.116 +D-t0.750Lr+0.750L 5.673 5.673 -t0-t0.750L-t0.750S 5.673 5.673 +O-t0.60W 3.116 3.116 Project Title: Engineer: Project Descr: 14288 Danielson Street Sulte200 e_~;.,C~ 920'-"64-'--,-,-----,.------,--,---,.-·····---..,-· --~ Woo(t:Beam . Description.: CODE REFERENCES .. , ,_ •' ~ _:,. __ ; -~' ---·y ··-- f ! 1· ! I Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Prop~rties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Ptll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling ,f : ., : 3.5x11.875 Span= 1.0ft t 0(1.14) L(1.43} 0(0.16~L{0.04} 3.5x11.875 Span = 14.0 ft 2,900.0psl 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psl ProlectlD: E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54 ksi Density 32.21 o pct f t -~~e11~ ~o.~~~-... Load for Span Number 1 Service loads entered. Load Factors wm be apptied for calculations. ----------- Uniform Load : D = 0.1680, L = 0.040 , Tributary Width= 1.0 ft Load for Span Number 2 Unifonn Load: D = 0.1680, L = 0.040, Tributary Width= 1.0 ft Point Load: D = 1.140, L = 1.430 k ~ 7.0 ft DESIGN SUMMARY r-Maximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Spc1n # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.704 1 3.5x11.875 2,040.70psi 2,900.00psi +D+L 7.039ft Spoo#2 Maximum Shear Stress Ratio Section used for this span fv: Actual 0.181 in Ratio= -0.039 In Ratio = 0.445 in Ratio = -0.097 in Ratio = Fv : Allowable Load ComblnaUon Location of maximum on span Span # where maximum occurs 927 616 377 246 = :::: = = 0.318; 1 3.SxH.875 92.15psi 290.00psi +D+L 1.000ft Span#1 _ Overall Maximum Deflections ____________________ .............. _ Load Combination Span --Max.'•]<beij"· "i.ocationinspan 1 0.0000 0,000 -tO+L 2 0.4455 7.039 Load Combination 40+L Max. •+• Def! Location in Span -0.0009 0.000 OJlOOO 0.000 Vertical Reacticms Support notation : far !efl IS #1 Values in KIPS ............. ·--·------------Load Combination Support 1 Support 2 Support 3 · O\ieran MAXlmu_m _________ ""2=.oi:=s,-----2.734 Overall M!Nfmum 1.036 0.994 D Only t920 1.740 -tO+L 2;956 2.734 14288 Danielson Street SUl!e200 _poway, CA g2054 . -Wood '-Beam FB3 Project TIiie: Engineer: ProJeCtDescr: Project ID: Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 .. Jj~~'.fi~t P~jrit.. ·······---···-·-------·--·· ··-·-----~-. ~-n--____,--,---,-:-,-.. ----. ___ . ___ -··-· .. , .• , .. _" Analysis Method : Allowable Stress Design Fb-Tension 2,900.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb-Compr 2,900.0 psi Ebend-xx 2,000.0ksi Fe-Prll 2,900.0 psi Eminbend -xx 1,016.54ksi Fe-Perp 750.0 psi Fv 290.0psi . Ft 2,025.0 psi Wood Species : ilevel Truss Joist Wood Grade : Parallam PSL 2.0E Beam Bracing : Be_am is Fully Braced against lateral-torsion buckling Density 32.210pcf i I: ' tt·· ·y-·, T 1 3.5x11.875 $g~t1'="'tW_:lt·: q "',"!. S , -;:-y ,, .~ ',s ~~ --~' 0 '>,......,,..,A,""~ ,, ' , '" ~ _ App~!~J~~ds ,_ ... . __ Service loads entered. Load Factors wm be applied for calculations. Uniform Load: D = 0.1520, L = 0.070, Tributary Width= 1.0 ft DESIGN SUMMARY )Maximum Bending Stress Ratio Section used for this span fb: Actual l· ' FB : Allowable Load Combination ' · Location of maximum on span Span# where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection MaxDownward Total Deflection Max Upward Total Deflection Overall Maximum Deflections Load Combination Span ·-4M. i Vertical Reactions :: = :: __ ,, ____ ·-------·-··----·------· ____ ,, __ . Load Combination overall MAXimum Overall MINlmum DOnly +D+L +D+Lr +DiS +D-t0.750Lr.;0.750L +D-tO. 750L ..0. 750S -t0-t0.60W Support 1 1.221 0.385 0.836 1.221 0.836 0.836 1.125 1.125 0.836 ----,,·--., .. --· ... , ·---··-------·-... ------0.169: 1 Maximum Shear Stress Ratlo = 3.5x11.875 489.83psi 2,900.00psl +D+L 5.500ft Span#1 0.024 In Ratio = 0.000 In Ratio = 0.075 in Ratio = Q.000 in Ratio = Section used for this span fv: Actual = Fv : Allowable = Load Combination- Location of maximum on span = Span# where maximum occurs = 5559 0 <360 1752 0 <240 -·----·-· ---·····--·.,,.----:--::-::--:---:---------::----.,.---c-------Max. •.• Dell Location In Span Load Combination Max.•+• Defl Local!on in Span 0.0753 5.540 0.0000 0.000· . Support2 1.221 0.385 0.836 1.221 0.836 0.836 1.125 1.125 0.836 Support notation : Far left is #1 Values in KIPS 14288 Danielson Street Suite200 Poway, CA 92004 I Wood-Beam l . • • • . Lie.#; KMf·OS00135S ,J Description : FE!4 COD~ REFEREflcCES .... -------... __ Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 --~'4i!tt~r,;PrpReftt~ Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Speqies : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Project TIUe: Engineer: ProJect Descr: Fb-Tensioo Fb-Compr Fc-Prll Fc-Perp Fv Ft 2,9()0.0 psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi Beam Bracing : Beam is Fully Braced against lateral.torsion buckling Project ID: E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54 ksi Density 32.210pcf ,,----,..---....,,.--, _f ____ ·,...-_-·_-_·-_-_--_-_,t"""li0._..,'i,..~:..l:,;,::'ffi~1,,,.,,i"_-~---_-____ ..,,_...,_ ·.-'-r,""" ... ----,--...,... ... ·_ .. _· _··....,,·-~ ""' -. ---.---1 3.SX11.1175 _ ,Apelje~ -~-~~d.s. . _ _ __ ----_ . _ ··-·----. Service loads entered. Load Factors will be applied for calcufations. Uniform Load ; D = 0.3020. L = 0.430 , Tributary Width = 1.0 ft DESIGN SUMMARY ---'' ---·· .. --· , . --------' ----· _______ ,, ____ _ · Design OK . • ;Maximum Bending Stress Ratio Section used for this span fb: Actual = = 0.460: 1 3.5x11.875 1,334.81 psi 2,900.00psi +D+L 5.000ft Span# 1 Maximum Shear Stress Ratio Section used for this span fv: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Tota[ Deflection Max Upward Total Deflection Overall Maximum Deflections ::: = :::: Load Combination Span Max.•.• Oefl ..0-tl. 1 0.1696 Vertical Reactions ..... -----..--· ·---··--··' .............. _, ___ _ Load Combination Support 1 Support 2 0.100 in Ratio = 0.000 In Ratio = 0.170 in Ratio= 0.000 in Ratio= Location in Span -5.0::'.16 Fv : Allowable Load Combination Location of maximum on span Span# where maximum occurs 1204 0 <360 707 0 <240 load Combination Support notation : Far left is #1 Overall MAXimum Overal MINlmum DOnly 3~50.----=3.=as=o---------~--- -!0-+L -!0-+Lr -!O+S -!0+0.750Lr-t-0.750l +0+0.750L-i0.750S -+D-t-0.BOW o.sos 0.906 1.510 1.510 3.660 3.660 1.510 1.510 1.510 1.510 3.123 3.123 3.123 3.123 1.510 1.510 .;,,,. Max. •+•Defl 0.0000 Values in KlPS 0.366: 1 3.5x11.875 106.06 psi 290.00psi +D+L 0.000ft Span# 1 Location in Span 0.000 ! \. 14288 Danielson Street Sufte200 Powa CA-92004 WoodBe~m CODE REFERENCES -~--• .:-·-· -'" ,' l ···--·-• ' Project TiUe: Engineer: Project Descr: Project ID: ------------------------Calculations per NOS 2012, IBC 2012, CBC :2013, ASCE 7-10 Load Combination Set: ASCE 7-10 ______ l!hiterial_P_r_o_,_p_e-'rt_ies-'---------------------- Analysis Method : Allowable Stress Design Fb -Tension 2,900.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb-Compr 2,900.0psi Ebend-xx 2,000.0ksi Fc-Prll 2,900.0psi Emlnbend-xx 1,016.54ksi Wood Species : iLevel Truss Joist Fe -Perp 750.0 psi Wood Grade : Parallam PSL 2.0E Fv 290.0 psi . Ft 2,025.0 psi Beam Bracing : Beam is Fully Bra~ against lateral-torsion buckling 5.25x11.875 Span "'4.0 ft 5.25xt1.875 Span =3.0ft D 0.0186 L 0.0533 5.25x11.875 Span= 11.0 ft Density 32.210pcf 5.25x11.875 Span= 2.0 ft ! ',v,v,,..,_...,_,..,,,,,_........,,,.~ ,.., _ _,,, "\ ~P.P.l!~d Lo~-~~ _ . ... Load for Span Number 1 Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.01860, L = 0.05330, Tributary Width = 1.0 ft Point Load : D = 2.350, L = 2.540 k@ 0.0 ft Load for Span Number 2 Unifonn Load : D = 0.01860, L = 0.05330 , Tributary Width= 1.0 ft load for Span Number 3 Uniform Load : D = 0.01860, L = 0.05330 , Tributll'/ Width = 1.0 ft Point Load : D = 0.1920, L = 0.090 k@ 9.50 ft Load for Span Number 4 Uniform Load : D = 0.01860, L = 0.05330 , Tributary Width= 1.0 ft DE$IGNSUMMA8,Y _______ _ · Maximum Bending Stress Ratio = 0.675: 1 Section used for this span 5.25x11.875 fb : Actual = 1,958.22 psi Maximum Shear Stress Ratio Section used for this span fv: Actual FB: Allowable = 2,900.00psi Load Combination +D+L location of maximum on spa, = 4.000ft Span# where maximum occurs c;. Span# 1 Maximum Deflection Max,Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections i.oaci coriiti1nii11ori-· Span -+0-il 1 2 -+D+L 3 4 Max.•.• Defl 0.2187 0.0000 0.0299 0.0000 0.115 in Ratio= -0.007 in Ratio= 0.219 In Ratio= -0.013 in Ratlo = Location in Span 0.000 0.000 5.291 5.291 Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 834 5082 438 2698 Load Combination -+O+L +D-+l 0.593: 1 5.25x11.875 171.83 psi 290.00 psi +O+l. 4.000ft Span#1 ----Max. •+•Def! Location in Span 0.0000 --------0.000 ----- -0.0133 1.253 0.0000 1.253 -O.Oi60 2.000 ).· 14288 Danielson street Suile200 Powa CAS2064 f. l t Descrip!1011 ; FBS .CODE REFERENCES Project Title: En9lneer: ProJect Descr. Project ID: . ·---·-··----· ....... , -·----·------ Calculations pet NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set : ASCE 7-10 Mat~ri~I Properties -------· --···-·----------- Analysis Method: Allowable Stress Design Fb-Tension Load Combination ASCE 7 -1 O Fb -Compr Fc-Prll Wood Species : !Level Truss Joist Fe -Perp Wood Grade : Parallam PSL 2.0E Fv Ft Beam Bracing ; .. Beam is Fully Braced against latera(..torslon buckling 2,900,0psi 2,900.0psi 2,900.0psi 750.0psi 29O.0psf 2,025.0psl 0(0.715 l{0.89} D(0,715 L(0.89) Dt0.16) U0.08i . • .. .. 5.25x11.875 Span= 17.50 ft E: Modulus of Elasticity Ebend-xx 2,000.0ksl Eminbend -xx 1,016.54 ksi Density 32.210pcf . _ Ap_p~i~~ Loa~~ service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load : D = 0.160, L = 0.080 k/ft, Extent= 0.0 -» 14.0 ft, Tributary Width = 1.0 ft Point Load : D = 0.7150, L = 0.890 k@3.0 ff. Point Load : D = 0.7150, L = 0.890 k@ 11.0 ft DE~{i!J.j,=UM=MA=R.:...Y ______ ~--.... ,--· __ Maximum Bending Stress Ratio Section used for this span fb :.Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Totaf Deflection overall Maximum Deflections · Toad Combination -- --fl)+{. -·---- "' = o.s4a 1 5,25x11.875 1,574.84psi 2,900.00psi +D+L 9.708ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual ' Max.·-· Defi - 0.6136 0.271 In Ratio = 0.000 in Ratio = 0.614 In Ratio= 0.000 in Ratio= Location in Span 8.750 Fv : Allowable Load Combination Location of maximum on span Span# where maximum occurs 776 0 <360 342 0 <240 Load Combination Support notation : far left Is #1 = tl.;,tlff :J 5.25x11.875 89.31 psi 290.00psi +D+L 0.000ft Span#1 Ma)( ...... Defi' """ "Location in Span 0.0000 0.000 Values In KIPS Ve~i~I ~~8:d.i~ns Load Combination ' ' ·--·--------------·····---·----"" Overall M.AXlmum Overall M!Nimum DOnly +D+l -tD+lr -tD+S Support 1 3.942 1.321 2.202 3.942 2.202 2.202 Support2 .. -·-·2.a2=s------~-------------------·----- o.as1 1.468 2.628. 1.468 1.468 .,_ Project Title: En~ineer: Project Descr: 14288 Danielson Street Suite200 PoWpy:, CA 92064 !_wood Beam J .11 Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Prop6rties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : !Level Truss Joist Wood Grade : TlmberStrand LSL 1.55E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam Is Fully Braced against lateral-torsion buckling D(0.04-i'L/0.05) .. .... . 1.7&9.25 Span,.20.0ft 2,325.0psl 2,3~5.0psi 2,050.0psi 800.0psi 310.0psi 1,070.0psi Project ID: E: Modulus of Elasticity Ebend-xx 1,550.0ksl Eminbend -xx 787 .82 ksi Density 32.210pcf . ApplJ~ ~·~--. Load for Span Number 1 Service loads entered. Load Factors will be applied for catculatlons. Uniform Load : D = 0.040, L = 0.050 klft, Extent= 0.0 -» 3.0 ft, Tributary Width = 1.0 ft _DESIGN SUMMARY ·-· .. -----··-·-· --·· ····--·-· Maximum Bending Stress Ratio = 0.072 1 Maximum Shear Stress Ratio Secti~m used for this span 1.75x9.25 Section used for this span fb : Actual = 166.63 psi fv : Actual FB: Allowable "" 2,325.00psi Fv: Allowable Load Combination +O+L Load Combination Location of maximum on span "' 2.774ft Location of maximum on span Span# where maximum occurs ;;; Span# 1 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection overall Maximum Deflections 0.055 in Ratio = 0.000 In Ratio = 0.100 in Ratio= 0.000 In Ratio = 4341 0 <360 2411 0 <240 «>-·-I li1mtffllil1H "' 0.0~5: 1 1.75x9.25 "" 17.06 psi "' 310.00 psi -!{)+L :::: 0.000ft "' Span#1 ---· -··-· __ ,,,,,_ ---------------------Load Combination Span Max. •-• Deft Location in Span Load Combination Max.•+• Dell Location in Span +0-i-L -------1 ---U.-09-95 ____ 8.54j. 0.0000 O.OOC Support notation: Far !aft is #1 Values in KIPS Vertie~! Reactions Loaci"Combination· Support 1 ···-··support2 Overan·MA=xi,_m_um _____ __,,o..,.._25=0,---_,,..o.0=2=0--"-------- 0verall MlNimum 0.067 0.005 D Ollly 0.111 0.009 +O+L 0.250 0.020 +D+Lr 0.111 0.009 +O+S 0.111 0.009 -t0-t0.750f..rof{).750L 0.215 0.017 +Dt0.750Lof{).750S 0.215 0.017 l I 1 ,. 14288 Danielson Street Suite200 Project Tille: Engineer: P":'Ject Descr: Project ID: Pow 1,CA ~2,,..06,,.,,_4.____._ ______________ ......... __,,..,___,., __ . :-., ---:----'--------=-::-::-:::-:-:-:--:::--:-,,~ · ·wd~d se•m I .l I CODE REFERENCES , .. -... • _.,_,._ '"., "·--·--··" .. ·-·--·-· __ ,. ___ ,._ ..... -·------ Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material ~r_o"-p~_rt_i_e_s ___________ _ Analysis Method: Allowable Stress Design Fb. Tension Load Combination ASCE 7-10 Fb-Compr Fc-Prll Wood SpecieS : ilevel Truss Joist Fe-Perp Wood Grade : Parallam PSL 2.0E Fv Ft Beam Bracing r Beam is Fully Braced against lateral-torsion buckling + 1.75x9.25 Span •5.0 ft 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psl 2,025.0psi 1.75x9.25 Span• 13.0ft E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend-xx 1,016.54ksi Density 32.210pcf f + -~p,.led ~~ds _ Load for Span Number 1 Service loads entered. Load Factors will be applied for calculations. Point Load: D = 0.110, L = 0.140 k «i! 0.0ft Load for Span Number 2 Uniform Load : D = 0.0240, L = 0.030 , Tributav Width = 1.0 ft DESIGN SUMMARY !Maximum Bending Stress Ratio ' Section used for this span fb :Actual FB : Allowable load Combination Location of maximum on span Span# where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection OvtrJII Maximum Deflections ----. -----. ... ·-,, ___ ~~---- Load Combination Span -1-D+L 1 -tD+L 2 Vertical Reactions --¥ , •• .. -.. Load Combination Support 1 overall MAXimum overall MINimum DOOiy -tD+L +D+Lr "' 0.207: 1 1,75x9.25 601.06psi 2,900.00psi +D-+l 5.000ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual Fv : Allowable Load Comblnatfon Location of maximum on span Span # where maximum occurs 0.055 in Ratio= 2198 0.000 in Ratio = O <360 0.096 in Ratio= 1248 -0.001 in Ratio"' 185987 Max.•.• Dell Location in Span Load Combination 0.0960 0.000 0.0545 7.771 -tO+L Support notation : Far left is #1 Support2 Support3 0.697 0.255 0.185 0.068 0.308 0.114 0.697 0.255 0.308 0.114 = = 0.130: 1 1.75x9.25 37.SOpsi 290.00 psi +O+L 5.000ft Span#1 Max.•+• Dell Locallon in Span 0.0000 0,000 -0.0008 0.436 Values in KIPS .), 14288 Danielson Street Suite200 Project Title: Engineer: ProJect Descr: Project ID: ,_Poway,C..~ 9-;;z2064""-'-----------J-Wood· Beam Printed: 25 JAN 2016. 9:04AM . . . 'RJe"' F'.lg-..rfiek!.ec\l -ENERCALC, INC.1983-2015, Build:6.15.12.9, Ver.6.15.129 I l ' f l l Description : CODE REFERENCES , _ _:_,._. -·· ·--, ·~'----·· ·---·-·---""·"···---~-_....,. Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material -~_r_o_,,_p_e_rt_ie_s ___________ ~----------------- Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : !Level Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Cornpr Fc-Prll Fc-Perp Fv Fl 2,900.0psi 2,900.0psi 2,900.0psi Beam Bracing ;' Beam is Fully Braced against lateral-torsion buckling 750.0psi 290.0psi 2,025.0psi 3.5x9.25 Span:3.0ft t ~ I I + D{0.0562 L(0.02} .., 3.5x9.25 Span = 16.50 ft I=: Modulus of Efesticity Ebend-xx 2,000.0 ksi Eminbend -xx 1,016.54 ksl Density 32.210pcf y + i . App1ie~_L9ads ___ .. ___ .... --··---·. Service loads entered. Load Factors will be apprled for calculations. ------Load for Span Number 1 Uniform Load : D = 0.040, L = 0.050 , Tributary Width = 1.0 ft PolntLoad: D=0.310, L=0.390k@O.Oft Load for Span Number 2 Unifonn Load : D = 0.0560, L = 0.020 , Ttlbutarv Width = 1.0 ft DESIGN SUMMARY ----··-· ·-·---~---.... ---,... _____ ........ -,_ -----Maximum Bending Stress Ratio Section· used for this span 0.20a 1 3.5x9.25 602.27psi 2,900.00 psi +D+L 3.000ft Span#1 Maximum Shear Stress Ratio fb :Actuar FB : Allowable Load Combination Location of maximum on span Span # where maximum oocurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections = = 0.059 in Ratio = -0.027 in Ratio = 0.133 in Ratio= -0.037 in Ratio = Section used for this span fv: Actual Fv: Allowable Load Combination Location of maximum on span Span # where maximum occurs 1214 7344 1487 1938 ____ ,i nna*za: J& ::;;; 0.144: 1 3.5x9.25 = 41.80 psi = 290.00psi +D+L ;;; 2.246ft = Span# 1 ·-------------· ·----·-« ·-·------------------------Load Combination lOnly OOnfy Vertical Reactions Span Max.•.• Deft location in Span Load Combination Max.•+• Defl Location in Span 1 0.0592 O-.O-OO ___ D_O_n_fy ____________ 0.-00-55-2.648 2 0.1332 8.849 0.0000 2.648 Supportno!alion: Far!e!Us#i Values In KIPS ----------------load Combination Support 1 Support 2 Support 3 ·~Olte-ra~!l~MA=x=im_u_m __________ 1-.7=49---o.475~-----~--~------·----------· · --· overall MlNimum 0.576 o,oao D Only 0.959 0.395 ..O+L 1.749 0.475 ' i t· Project Title: ~ineer: Pl'Oject Descr: 14288 Danielson Street Sulte200 P~P.,..,~20B.:l ... _~"<'""'C'",.,..... ____ ~,.,...,..-----,----,---r Wood 8$an1 , ... Oescrlptlon ,: :Frm CODE REFERENCES Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 M~teriail Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Prlf Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 0(4, 1251 L(4,51) ! 3.5x11.875 2,900.0psi 2,900.0psi 2;900.0psi 750.0psi 290.0psi 2,025.0psi Project ID: E: Modulus of Elasticity Ebend-xx 2,000.0 ksi Emlnbend -xx 1,016.54ksi Density 32.210pcf . ~p_pJ,I~~-~~~~s-....... ---.. Servlce loads entered. Load factors will be applied for calcufat!ons • Point Load : D = 4.125, L = 4.510 k Cal 1.0 ft __,D=S=S=IG=N-=S=UM=MAR=.::...Y ___________ ... ,. .. _ ,. , ...... -.... _ ··-·· ....... -...... " ; Maximum Bending Stress Ratio = Section used for this span fb: Actual = FB· : Allowable = Load Combination Location of maximum on span = Span # where maximum occurs 1: Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections 0.395: 1 3.5x11.875 1,144.74psi 2,900.00psi +D+L 1.004ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual 0.062 In Ratio = 0.000 In Ratio = 0.118 in Ratio= 0.000 in Ratio = Fv :.Allowable Load Combination Location of maximum on span Span# where maximum occurs 2140 0 <360 1117 0 <240 = = 0.977.: 1 3.5x11.875 28$.31 psl 290;00psi +D+L 0.000ft Span#1 -. ------------···. ·-----·· --------·--------·-·----· -------,--.....,----,--------------------Load Combination Span Max.·-• Defl Location In Span Load Combination Localion in Span Max.•+• Dell -!041. 1 o.11ar·-· ,tt§i --~-•MY 0.0000 0.000 ..... vertical ~eaci:ions. Support notation : Far lefl is#1 Values in KIPS -.. ·---·. load Combination Support1 Support2 Overall MAXimum 7.850 0.785 Overall MINimum 2.250 0.225 DOnly 3.750 0.375 -!041. 7.850 0.785 -!0-+Lr 3.750 0.375 -+0-+S 3.750 0.375 -t0+0.750Lr+0.750L 6.825 0.683 -t0+0.750L+0.750S 6.825 0.683 -t0+0.60W 3.750 0.375 , .. Project Titte: Engineer: Project Oescr: 14288 Danielson Street Suite200 Powa CA92064,.___, _______ __,_ ____ ~~--,--------,-,,.....,.... 'WoodBeatn 1,11 Description : FB12 CODE REFERENCES cai~~i~tkl~~-·petNos 2012, IBC 2012, .. CBC 2013: ASCE 7-10 Load Combination Set: ASCE 7-10 MatEtrial Pro~~~_ie_s __________________ _ Analysis Method : Allowable Stress Design Fb-Tension Load Combination ASCE 7-10 Fb-Compr Fc-P~I Wood Species : ilevel Truss Joist Fe· Perp Wood Grade : Parallam PSL 2.0E Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling f f 3.Sll9.25 _Span= 10.50 ft_ , ,., .• , • , 2,900.0psl 2,900.0psi 2,900.0psi 750.Opsi 290.0psl 2,025.0psi • Project ID: E: Modulus of Elasticity Ebend-xx 2,000.0ksl Eminbend-xx 1,016.54ksl Density 32.210pcf f • _ Appl_!~J!!.~~~-... . . .. Service loads entered. load Factors will be app!!ed for calculations. Uniform Load : D = 0.0320, L = 0.080, Tributary Width = 1.fHt '"'-'D=E.=S=IG=N=S=UM=MA=R=Y _________ ·-····-······ _ ! Maximum Bending Stress Ratio = 0.128' 1 Maximum Shear Stress Ratio · Section used for this span 3.5x9.25 Section used for thls span fb: Actual = 371.10psi fv: Actual FB : Allowable = 2,900.00psi Fv: Allowable Load Combination -tO+L Load Combination Location of maximum on span = 5.250ft Location of maximum on span i • Span# where maximum occurs "' Span # 1 Span# where maximum occurs l fie 1: Maximum De ction ;. Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Tot.al Deflection Max Upward Total Deflection overall Maximum Deflections Load Combination Span 0.048 In Ratio= 0.000 In Ratio = 0.067 In Ratio = 0.000 in Ratio= Max.•.• Dell Location in Span 2643 0 <360 1888 0 <240 Load Combination ::: = = 0.080: 1 3.5x9.25 23.27psi 290.00psi +D+L 0,000ft Span#1 Max. "+" Def! Location in Span --;0...,,._1:L--------------o~_o'""s=s1-u,2as -----~ooo_oo__ ·-··o.ooo-- Vertical Reactions Supportnota!ion: Farleftis#1 vaiues in KIPS Load Combination ----support 1 . ---. Support i Overall MAXimum 0,588 0.688 Overall MINimum 0.101 0.101 D Only 0.168 0;168 -+0-t-L 0.588 0.688 -+D+lr 0.168 0.168 +O+S 0.168 0.168 -+0+0.750Lr-t-0.750L 0.483 0,483 -+D-+0.750L-+0.750S 0.483 0.483 -+D+0.60W 0.168 0.168 14288 Danielson Street Suite200 Powa -CA 92004 I.ti F81~ CODE REFERENCES Project Title: Engineer: Project Descr: Project ID: -"~ ~ -·--. ·---~.,, .. ,.., ·-.. --·--------. --------------·---····· ---·-····--···-----------Calculatlons per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Prt)~erties Analysis Method : Allowable Stress Design Fb-Tension Load Combination ASCE 7-10 Fb-Compr Fc-Prll Wood Species : ]Level Truss Joist Fe -Perp Wood Grade : Parallam PSL 2.0E Fv Fl Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 2,900.0psl 2,900.0psl 2,900.0psi 750.0psi 290.0psi 2,025.0psi E: Modulus of Elasticity Ebend· xx 2,000.0ksl Eminbend -xx 1,016.54 ksl Density 32.210pcf 0(0.168} L(0.42} I; f y Q{0.0221L(0.064} + f{0.022,L(0.06+ t ! -------------------------io--_____ ..,. _______ __ f Dl.022+L{0.064l + +· i 3.5x11.875 3.5x11.875 3.5x11.875 Span•11.0lt Span =3.0ft Span =4.0ft ... ~P!~ect~o.~~! ....... . .. __ .. _ ...... ____ ,,_ ....... . __ ·-.. __ S_t:_ry!~e loads entered .. Load Factors will be applied for calculations. Load for Span Number 1 Unifonn Load : D = 0.02240, L = 0.0640, Tributary Width= 1.0 ft Load for Spoo Number 2 Unifonn Load : D = 0.02240, L = 0.0640 , Tributary Width= 1.0 ft Load for Span Number 3 Uniform Load : D = 0.02240, L = 0.0640 , Tributary Width = 1.0 ft Point Load: D = 0.1680, L = 0.420 k@4.0ft DESIGN SUMMARY · Maximum Bending Stress Ratio . ~ Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Span 1 where maximum occurs Maximum Deflection = = = 0.153: 1 3.5x11.875 443.94psi 2,900.00psi +D-tl 3.000ft Span#2 Maximum Shear Stress Ratio Section used for this span fv: Actual Fv : Allowable Load Combination Location of maximum on span· Span # where maximum occurs Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max UpwardTotal Deflection 0.036 in Ratio= 2646 ~0.003 in Ratio= 13515 0.050 in Ratio = 1908 -0.004 in Ratio = 9799 _Overall Maximum Deflections ___________ .. --· __ .... __ .. Load Combination Span Max.·-· Defl Location in Span Load ComhinaUon -+D+L 1 0.0199 5.176 2 0.0000 5.176 -+Oil -+D-+L 3 0.0503 4.000 Vertical Reactions Support notation: Far !eft is#i = Max.•+• Defl 0.0000 --0.0037 0.0000 Values ln KIPS -·· Loa<f ccimliination .... ·· _._.v•--·•v----Support 1 Support2 Support3 . Support4 Overall MAX1mum 114'!0 .. ..... _ -0.1!J:f" --...... ·1.337' .......... ,_, --··-------- 0.106: 1 3.5:x:11.875 30.65psi 290.00psi +D+L 3.000ft Span#2 Location ln Span 0.000 1.664 1.664 ). 14288 Dantelson Street Suite200 Project Title: Engineer: Project Descr: Project ID; .,..:.P.,;:;owa='-"'C"---A"""92=06::;..:4 _______________ -----~-~.,..,._ ,.,,.. __ ..., __ ........ -----,---...,,,,,_-.,...-'---,--, . Wood Beam I, It Descriplion : FB14: Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Pr~p .... e_rt_i_es ________________ _ Analysfs Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Prtl Fc-Perp Fv Ft Beam Bracing : Beam Is Fully Braced against lateraHorsion buckling 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psl D(0.11 L(0.3) 0(3.75 L{4.1) 0(0.11 f L(0.3) Df0.263\ Lt0.481 - E; Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54ksl Density 32.210pcf 0(1.92) L(1.04) I • ,, 'f i 'f " LS'. 7x18 Span= 20.0 ft - T ; J z AppJ!e~ ~~ad~ . . . . _ --·-· __ _ Service loads entered. Load Factors will be applled for calculations. Uniform Load : D = 0.2630, L = 0.480 , Trtbutarv Width = 1.0 ft Point load: D = 0.110, L = 0.30 k@2,0 ft Point Load : D = 3.750, L = 4.10 k @ 5.0 ft PointLoad: D=0.110, L=0:30k@12.0ft Point Load : D = 1.920, L = 1.040 k @ 18.0 ft .--'ll=S=S=1G=N-=-S=UM=lfA=R"""Y __________ ···----·· ____ -·--· -··-----_______ ., Maximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections Load Combinallon 4D+L Span = = = = 0.694: 1 7x18 2,012.31 psi 2,900.00psl -+D+L Maximum Shear Stress Ratio Section used for this span fv: Actual 7.956ft Span#1 0.405 In Ratio = 0.000 In Ratio= 0.685 ln Ratio = 0.000 in-~atio = Max. • -• Defl Location In Span 0.6852 9.708 Fv: Allowable Load Combination Location of maximum ori span Span # where maximum occurs 592 0 <360 350 0<240 Load Combination Support notation : Far left ls #1 _Vertical Reactions. __ _ Load Comblnation · Support 1 ·--... · Support'f. ----- OverallMAXlmum 14.147 12.3 Overall MINlmum 3.467 3.224 D Orily 5.778 5,373 -+O+L 14.147 12.344 -+O+Lr 5.778 5.373 = = = 0.536: 1 1x18 155.SOpsl 290.00psl +D+L 0.000ft Span#1 Max. •+• Dell Location in Span 0.0000 ·o:oo'a-- va1ues in Kl PS 14288 Danielson Street Suite200 Poway, CA 92064 Project Title: Engineer: Project Descr: Prolect ID: [,Wood. Seam -'Flla:-f1Jatlleldecli' · ENERCALC INC. 1983-Blllld:S 15J2.9, Vet.!l.i512.9 hil Description : Fl315 Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Analysis Metho~ : Allowable Stress Design Load Comblnation ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Braci~g : Beam is Fully Braced against lateral-torsion buckling 2,900.0psl 2,900.0psl 2,900.0psi 750.0psi 290.0psl 2,025.0psi ---... -··y···-··-y -··--~---· -------······----.... ····-----------0(0.38)_ L(0.41} DW.13\ LI0.28) 3.5x16.0 ··----·-__ ... ·---..... ·-Span= 16.0 fl E: Modulus of Elasticity Ebend-xx 2,000.0ksl Eminbend-xx 1,016.54ksl Density 32.210pcf App.Ii~~ .':.~a~~, ... . _ .. " ____ ... . ________ S_e_rv_ic_e_lo_a_ds_e_n_te_red_. L_o_a_d_Fa_c_to_rs_w_i_ll _be_a_p_p_lie_d_fo_r_ca_lc_u_la_tio_n_s._ Uniform Load: D = 0.130, L = 0.280, Tributary Width= 1.0 ft Point Load : D = 0.380, L = 0.410 k @2.0 ft DESIGN SUMMARY ; Maximum Bending Stress Ratio ' Section used for this span = fb: Actual ·= FB : Allowable Load Combination Location-of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections = = i:.oac1 ciimbiiiai1oii ...... .. · ---· -.. · span·.--- ,'{,,-IL Vertical Reactions Load combination . -overan MAXfmum Overall MINimum DOnly +D-tl +D+Lr +D+S +D-+0.750Lr-J().750L +D-+0.750L-t-0,750S Support1 3.971 0.824 1.373 3.971 1.373 1.373 3.322 3.322 ·---·-'" "' . _ _ _ 1111 0.3861 3.5x16.0 1,118.72psi 2,900.00psi Maximum Shear Stress Ratio Section used for this span fv: Actual -O+l 7,766ft Span#1 0.183 In Ratio= 0.000 In Ratio= 0.273 In Ratio= 0.000 In Ratio = Fv: Allowable Load Combination Location of maximum on span Span #where maximum occurs 1048 0 <360 704 0 <240 Max.•-• Defl Location in Span Load Combination 0:2120 ·support2 3.379 0.653 1.088 3.379 1.088 1.068 2:806 2.806 ?.942 Support notation : Far left is #1 = 't Max. "+"Defl Q,Oil(JO Values in KIPS 0.318: 1 3.5x16.0 92.26psi 290.00psl +D+L 0.000ft Span# 1 _,_J Location in Span 14288 Danielson Street Suite200 . __ poway,CA 920'64 I , + f ... _CODE REFERENCES _____ , . Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7~10 Load Combination Set: ASCE 7-10 ProjectTltle: ~ngineer: Project Descr: ProiectlD: -------------------· _M_~_t_Ei_ri_al_P __ r_o_,__p_e_rt_iu ______________________________________ _ Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : !Level Truss Joist Wood Grade : Parallam PSL 2.01= Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling S.25x16.0 Span = 19.0 ft 2,900.0psi 2,900.0psl 2,900.0psi 750.0psi 290.0psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0 ksi Eminbend -xx 1,016.54ksi Density 32.210pcf + APP~!!~ h9-a~s . ____ _ Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load: D= 0.4710, L = 0.40 k/ft, Extent= 0.0 ->> 11.0ft, Tributary Width= 1.0ft Uniform Load: D= 0.3120, L = 0.130 k/ft, Extent= 11.0-» 19.0 ft, Tributary Width= 1.0ft Point Load : D = 0.51 o, L = 1.320 k ~ 11.0 ft DESIGN SUMMARY . Maximum-Bending Stress Ratio Section used for this-span fb: Actual FB : Allowable .. )$. Load Combination Location of maximum on sp111 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections = = _ ... ,~, •' .:. _._ ~N----··. V ·--••• 00 '-· --Load Combination Span 0.73S 1 5.25x16.0 2,130.06psl 2,900.00psi +D+L 9.569ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual 0.334 in Ratio= 0.000 In Ratio = 0.707 in Ratio= 0.000 in Ratio = • •H __ , H-- Fv: Allowable Load Combination Location of maximum on span Span# where maximum occurs 682 0 <360 322 0<240 Max. '-"Deft Location in Span Load Combination = 0.442: 1 5.25x18.0 "" 128.12psi --=-· 290.00psi -+{)-1-{_ ~A 0.000ft '\.· Span#1 Max. •+• Detl Location ln Span --tD+l._, ___ ,_, ____ , ____ __ -o~.r-ooo___ 9.431 ----·---·------0.0000 -----· 0.000 _yerti~!. R~~C!io~~ Load Combination OveralfMAXi""·m-u_m ___ _ Overall M!Nlmum DOnly +D+L +D+Lr +0-t-$ Support 1 8.323 2.653 4.421 8.323 4.421 4.421 siipport i' --· 6.625 2.259 3.766 6.625 3.766 3.766 Support notation : Far left is #1 Values In KIPS ------ ! I l 14288 Danielson Street $ulte200 Poway, CA92004 !, .. . ' ···wood Beam Description~ FB11 CODE REFERENCES Project Title: Engineer: Project Descr: ProlectlD: ~ w-'' •--••'• ,_,. ,-.___, • H--·-· .---····--··· ·············---------------- Calculations per NDS 2012, rec 2012, CBC 2013, ASCE 7~10 LQad Combination Set: ASCE 7-10 Material Properties Analysts Method: Allowable Stress Design Fb-Tension Load Combination :A.SCE 7-10 Fb -Compr Fc-Pl11 Wood Species : !Level Truss Joist Fe-Perp Wood Grade : Parallam PSL 2.0E Fv Ft Beam Bracing : Beam Is Fully Braced against lateral-torsion buckling -------··-. ---·· ·-------· 0(6.87) L(6.52) 5.25x11.875 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psl 2,025.0psl E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54 ksi Density 32.210 pcf __ APP!ied -~~~gs .... _ ... Service loads entered. Load Factors will be applied for calculations. Point Load : D = 5.870, L = 6.520 k @ 3.0 ft DESIGN SUMMARY NN"O ••-,-~-•W A •-•--•u ---} ••-----, ·DesignOK I Maximum Bending Stress Ratio Section used for 1his span fb: Actual = -, 0.71Q 1 5.25x11.875 2,058.13psi 2,900.00psl +D+l 2.989ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual FB : Allowable ·'!;' Load Combination Location of maximum on span :.. Span # where maximum occurs --= · Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections 0.054 in Ratio= 0.000 in Ratio = 0.102 In Ratio= 0.000 in Ratio = Fv: Allowable Load Combination Location of maximum on span Span #where maximum occurs 1561 0 <360 821 0 <240 ·----·--. ----·---··" ·--··----·-·-._ _____ . ------~ Load Combination Span Max.•.• Deft Localion lh Span Load Combination -+04{.. 1 0.1022 3.372 _ ~ Y'~~ica! Reactions .......... __ , ___ . Support notation : Far left is #1 Load Combination Support 1 Support 2 OVerallMAXlmum · 7.080____ 5.310,-------------------- 0verall MINimum 2.013 1.509 D Only 3.354 2.516 -tD+L 7.080 5,310 -tO+Lr 3.354 2.516 -tO-tS 3.354 2.516 -t0-l{).750Lr+0.750L 6.149 4.611 -+0+0.750L+0.750S 6.149 4.611 -t0-t0.60W 3.354 2.516 ::: :::: = :::: = 0.587: 1 5.25x11.875 170.35 psi 290.00psi +D+L 0.000ft Span#1 Max. "+" Detl l.LOJOO Values in KIPS Location in Span 0.000 __ _ 14288 Danielson Street Suite200 CODE REFERENCES II Project Title: Engineer; PIOJElcf Descr: Project ID: l'rlntml;.25 JAN 2016. 9:04AM. . . · . · · -,,. ,,,_ : F'da ;i F;\gi;ifie/d,006 ENERCAf:C INC. 198$-2015 .Build:6.:15 ~2.9; Ver,6.15.1 9 ,. __ . -----------· -··· ·----···--· -·-·-·-··--··--------------------------Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Ma1.t@rial Properties Analysis Method : Allowable Stress Design Load Combination :ASCE 7-10 Wood Species ; !Level Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fe· Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0 psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0ksi Emlnbend-xx 1,016.54ksi Density 32.210pcf i. l I- D(2.52¥{27ffi 0{0.21ill0.62l +-f D{0.09,J,!0.28) t • t 5.25x11.875 Span•11.0ft -~~P!.!~~J.C?~~s -..... .. ·--·--~--Se_rv_i~! loads entered. Load Factors wm be applied for cal.~u!ations. Load for Span Number 1 Uniform Load : D = 0.2170, L = 0,620 k/ft, Extent= 0.0 ->> 4.0 ft, Tributary Width= 1.0 ff Uniform Load : D = 0.0980, L = 0.280 klft, ertent = 4.0 -» 11.0 ft, Tributary Width= 1.0 ft Point Load : D = 2.520, L = 2. 790 k @ 4.0 ft - DESIG~ SUMMA,=R,.,,.Y__________ _ ., ..... --·--··· .... -· ·Maximum Bending Stress Ratio = D.70a 1 Maximum Shear Stress Ratio = 0.511: 1 Section used for !his span 5.25x11.875 Section used for this span fb: Actual = 2,054.02psi fv: Actual FB: Allowable = 2,900.00psi Fv: Allowable Load Combination -+0-tl Load Combination Location of maximum on span = 4.015ft Location of maxfmum on span Span # where maximum occurs = Span # 1 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection overall Maximum Deflections ·Toad Combiiiiiiion . ... -.. Span 0.169 in Ratio= 0.000 in Ratio = 0.274 in Ratio= 0.000 in Ratio= 782 0 <360 482 0 <240 Load Combination 5.25x11.875 = 148.06psi ;. 290.00psi -+0-tl . ::;--0.000ft -. Span#1 Max.•+• Defl Locafion inS~ -+!)4{.. -· - °Max, ·-·oeii' 0.2736 Location !n Span 5.219 -----------o""'.o'""oo-=-, -0.000 ... ·· ...... Vertical Reactions Load Combination Ovara!!MAXimum O\.lera!! MINimum DOnly +D+I. -+D+l.r -+D+S Support 1 6.900 1.519 2.532 6.960 2.532 2.532 Supporl2 4,344 0.925 1.542 4.344 1.542 1.542 Support notation : Far lefl is #1 Values in KIPS ...... __ ........ ___ _ -------------···· ·-· ----- 14288 Danielson Street Sulte200 Project Title: EnQlneer. ProJect Descr: ProiectlD: f:o~ CA 92004 fw~Qd Beam . : .. . .. 'rile" F~atiiel(!.ooll. · • ENERCALC, INC. i983-2015,;Bui!d:6:15;12.R Ver;6.'!5.12.li . NMMtfilililtXHH ••• Descrlp!ion: FEi:19 ... CODE REFERENCES . -----------·-···--------............. ------ ;. Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 M~teriaf Properties Analysis Method : Allowable Stress Design Fb -Tension Load Combination :ASCE 7-10 Fb-Compr Fc-PrH Wood Species : iLevel Truss Joist Fe -Perp Wood Grade : TimberStrand LSL 1.55E Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling • 1.75x9.5 1.75x9.5' Span=2.0fl Span = 14.50 ft 2,325.0psl 2,325.0psi 2,050.0psi 800.0psl 310.0psl 1,070.0psi E: Modulus of Elasticity Ebend-xx 1,550.0ksi Eminbend-xx 787.82ksl Density 32.210pcf __ Applied Loads Service loads entered, Loa9 Factors will be applied fur calculations. ----------.. Load for Span Number 1 Uniform Load : D = 0.060, L = 0.150 , Tributary Width= 1.0 ft Load for Span Number 2 Uniform Load: D = 0.0160, L = 0.040, Tributary Width= 1.0 ft DESIGN SUMMARY 'Maximum Bending Stress Ratio Section used for this span fb: Actual = 0.2481 1.75x9.5 578.62psi 2,325.00psi -+O+L 1.mtt Span#2 Maximum Shear Stress Ratio Section used for this span fv: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Down~rd Total Deflection Max Upward Total Deflection = 0.172 in Ratio= -0.062 rn Ratio= 0.240 in Ratio= -0.087 In Ratio = Fv: Allowable Load Combination Location of maximum on span Span # where maximum occurs 1013 772 724 552 . overall Maximum Deflections Load Combination Span Max,·~· Dell Location In Span Load Combination -----------.. ·r-o.oo&f ___ 0,,....,()~()~0---+f)-I{_------· ------ -t{),tj_ 2 0.2403 7.453 Vertical Reactions Support notation : Far left is #1 Load Combination ,_., Suppcrd Suppmt2 Support3 -o=-11-era~U~M~AX=i-m-um __________ o.855~----;0--.37=7--------- 0veral MINlnium 0.147 0.065 DOnly D.244 0.108 -tOtL 0.855 -0.377 -+D-ilr 0.244 0.108 = = = = Max. •+•oefl --0.0869 0.0000 Values in KIPS 0.115: 1 1.75x9.5 35.56psi 310.00 psi +D.f!. 2.000ft Span#1 Location In Span 0.003 0.000 14288 Danielson Street Suite200 f~CA92064 Woodaeain ldt Description: FB20 Project TiUe: Engineer: ProJect Descr: Project ID: ·-cpDE ~EFERENCES _ -----· ---·· ----------------------------Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properti~ Analysis Method : Allowable stress Design Load Combination ASCE 7-10 Wood Species : ILevel Truss Joist Wood Grade : TimberStrand LSL 1.55E Fb-Tension Fb-Compr Fe-Prtl Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 2,325.0psi 2,325.0psl 2,050.0psl 800.0psi 310.0psl 1,070.0psi E: Modulus of Elasticity Ebend-xx 1,550.0 ksi Emlnbend -xx 787 .82 ksl Density 32.210pcf ,, ________ ,,_, _____ ......... ----·-------........ ,_ .......... ,_, ____________________ ,_.,, ____ ___, D{0.24} L(l'-61} 1.7Sx9.25 1.75x9.25 Span = 5.50 ft ---· --.--------···---- ApplledLoads__ -----· __________ . Service loads entered. load Factors will be applied for calculations. Load for Span Number 1 Point Load: D = 0.240, L = 0.610 k@O.Oft DESIGN SUMMARY 1 Maximum Bending Stress Ratio = Section used for this span fb : Actual --"t . FB : Allowable = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward·Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections ... ,H------• ••------·-- 0.3521 1.75x9.25 817.45psl 2,325.00psi +D-+l 2.000ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual 0.059 in Ratfo = -0.023 in Ratio= 0.082 in Ratio = -0.032 in Ratio = Fv : Allowable Load Combination L~Hon of maximum on span Span # where maximum occurs 812 2844 582 2041 Load Combination Span Max. • -· Defl Location in Span Load Combination -tO+L _ Yer!ical .. ~~a~io~~ _ 1 2 0.0822 0.0000 0.000 0,000 Support notation : Far left is #1 = = = Max. • +• Dell 0.0000 -0.0323 Values in KIPS 0.254: 1 1.75x9.25 78.76psi 310.00 psi +D+L 0.000ft Span# 1 Location in Span 0,000 2.335 Load Combination Support 1 Support 2 Support 3 OverallMAXimum -----'----...,1--.1=59,----,._30=9----------------------- 0verall MINlmum 0.196 -0.052 D Only 0.327 --0.087 +D+L 1.159 --0.309 +D+Lr 0.327 -0.087 -tO-tS 0.327 -0.087 -t0-t-0.750Lr-t-0.750L 0.951 -0.254 ! 14288 Danielson Street Suite200' ,!9yvay, CA.~~ [. W:ood :Beam •It Description : FB21 CODE REFERENCES y ... _.. ,-,~----~y -........ -, ·-. --·· ,. --··-·-·-···-·---·· Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Project Title: Engineer: Project Descr. Material Properti~s '-----------·······--.. ----------Analysis Method: Allowable Stress Design Fb-Tension 2,900.0 psi Load Combioatlon ASCE 7-1 o · Fb -Compr 2,900.0 psi Fe-Prll 2,900.0 psi Fe -Perp 750.0 psi Fv 290.0psi Ft 2,025.0 psi Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0.96) L(0.79} D 0.458 L 0.36 Project ID: ENERCAf.C, INC. 1003-2015 E: Modulus of Elasticity Ebend-xx 2,000.0ksl Eminbend-xx 1,016.54ksi Density 32.210pcf l· 5.25x11.875 5.25x11.875 5.25x11.875 I < r Span = 2.50 ft Span"' 12.0 ft Span = 2.50 fl f. .... ____ .... _.,. ·.· .... ~P)led. L~id~ ...... . Service loads entered. Load Factors will be applied for calculations. -------Load for Span Number 1 Uniform Load : D = 0.0640, L = 0.160 , Tributary Width = 1.0 ft Load for Span Number 2 Uniform Load : D = 0.4580, L = 0.360 , T ributarv Width = 1.0 ft Point Load: D = 0.960, L = 0.790 k@ 1.0 ft load for Span Number 3 Uniform Load : D = 0.4580, L = 0.360 , Tributary Width = 1.0 ft DESIGN SUMMARY 'Maximum Bending Stress Ratio Section used for this span 1b: Actual = 0.47Q 1 5.25x11.875 1,364.08psi 2,900.00psi +0-il 5.647ft Span#2 Maximum Shear Stress Ratio Section used for this span fv: Actual FB : Allowable Load Combination Location of maximum on span Span·# where maximum occurs Maximum Deffection Max Downward Transient Deflectfon Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections = = = 0.107 in Ratio= -0.071 in Ratio = 0.248 in Ratio = -0.167 in Ratio = Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 1343 842 580 358 = = = = Design ©K 0.466: 1 5.25x11.875 135.10 psi 290.00psi -!{)-t(_ 2.500ft Span# 1 Load Combination · Span Max.•.• Defl Location in Span Load Combination Max.•+• Deft Location in Span 1 0.0000 o""".oo=o=-----+D-tl-=-=_~---------· ....,,--0""".15=7,.,..1---..,,.0.=oo,.,..o- -+0+1.. 2 0.2479 5.950 0.0000 0.000 3 0.0006 5.950 -tD+l. --0.1449 2.500 Vertical Reactions Support notation : Far !elt is #1 Values in KlPS Load Combination Support1 Support 2 Support 3 ·-·----... ------------·--··--Support4 -Overall MAX~im-um ___ _ .......,,,6_..,.91=7--~7=,2=5~4---""--·-----------. ---·-·-· .. ··-- Project Title: Engineer: Project Descr; Project ID: 14288 Danielson Street Suite200 Pcy;~LCAJ),;:;20""6'-'-4--,--------,-----------------,---~~-----,-..,-.,..,....--,---,-,,-'-,-,--. fwoodBeam • 1!adtiJ11•tit•l•IS{ • Description : FB22 .. CODERgFERENCES .. -····-- Calct.Jlations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Mm@rfail Propertie~ Analysis Method : Allowable Stress Design Fb-Tension Load Combination ASCE 7-10 Fb -Compr Fc-Prll Wood Species : iLevel Truss Joist Fe -Perp Wood Grade : Parallam PSL 2.0E Fv Ft Beam Bracing : Beam Is Fully Braced against lateral-torsion buckling 2,900.0psi 2,900.0psi 2,900.0psf 750.0psi 290.0psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0 ks! Eminbend-xx 1,016.54ksl Density 32.210pcf ' .... --____ . _____ ............. _-----··-__ ·-•-, ....... -...... -t,t,-,,1--·--"··--········ _____ -·--·--=--=---'IIC·-1 ·) 0(0.11) t.(0.27) 0(2.2} (1.74) j r ! r 3.5x11.875 3.5x11.875 3.5x11.875 --.. -----·= Span= 2.0 ft ___ _ ___ ...... 8;,i'.:~~.if:C?: .. _______________ ~~f.= ~:.~.~ ________ __, Applied Loads·-..... _ Load for Span Number 1 Service roads entered. Load Factors will be applied for ca!cula!ions. Point Load: D =0.110, L = 0.270 k@} 0,0 ft Load for Span Number 2 Uniform Load : D = 0.270, L = 0.360, TributaryWklth = 1.0 ft Point Load: D = 2.20, L = 1.740 k ft 4.0 ft Load for Span Number 3 Uniform Load : D = 0.2240, L = 0.640 , Tribotarv Width = 1.0 ft Point Load : D = 1.510, L = 2.150 k ~ 0.50 ft DESIGN SUMMARY _________ .... , --·-.-......... __ --·--------. ___ . .. .. )Maximum Bending Stress Ratio -0.252 1 Maximum Shear Stress Ratio j, Section used for this span 3.5x11.875 Section used for this span fb: Actual = 730.75psi fv: Actual FB : Allowable = 2,900.00psi Fv: Allc;iwable Load Combination +O+L Load Combination .location of maximum on span = 5.000ft Location of maximum on span Span # where maximum occurs = Span# 2 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max DownwardTotal Deflection Max Upward Total Deflection Overall Maximum Deflections .. ,., ,,,,,., ""' ' ··-· --.. ' -·-... __ ... Load Comblnalion Span -·-·-·-----1 DOnly 2 -tD+L 3 0.011 In Ratio = · 6307 0.000 In Ratio= 0 <360 0.013 in Ratio= 5388 -0.004 In Ratio= 13374 . ·----~¥---~~-'" Max,"·" Defi"·-· Location in Span Load Combination 0:0000 o:Ooo DOnfy 0.0036 2.663 LOn!y 0.0134 3.378 = = = Max. •+• Detl -0,0036 -0.0007 0.0000 0.618: 1 3.5x11.875 179.30 psi 290.00psi +O+l 4.034ft Span#2 Location in Span 0.000 4.622 4.622 Design Maps Summary hport )--........ . 1-IIIJIGI Design Maps Summary Report User-Specified Input Report Title Garfield Homes Tue December 8, 2015 02:59:01 UTC Building Code Reference Document ASCE 7-10 Standard {which utilizes USGS hazard data available in 2008) Site Coordinates 33.14969°N, 117.344659W Site Soil Classification Site Class D -"Stiff Soil" Risk Category I/II/III USGS-Provided output Ss = 1.158 9 S1 = 0.444 g S11s = 1.201 g S111 = 0.691 g SI.$ = 0.800 g Sm= 0.460 g For Information on how the SS and S1 values above have been calculated from probabi!istlc (risk-targeted} and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document. 'I -I l,&,t MCE.. Response Spettrum UlO U'l U!.t n,.31 @.'$$: 1.Mi5 O.!TZ O.B q,:Zi !U'.a o.•-+-"""'*""""'"'f-~-+-----i--+--+-+-.,..,.,.-1 ~-ll-tl it.~ ,.,a l)..t.a e.,go 1.01} i.20 1-,rn a.a u,o 2.0tt .... o4Tts!Hl For PGA,,,, Tt, CR$, and Cu values, please yts:w th~ detailed rt}QQ!:t. @.{ii'.! .. "' ! ! '2½' 1 = { fr.N a::w ~~ ,um o.oo 1.n 1.2u 1.-tn t.f.ili uw 2.l:ln PMni41fuc) Page 1 of2 http://ehpI-earthquake.er.usgs.gov/designmaps/us/summa.ry.php?template---:rninimal&latitude=33.l 4... 12/7/2015 MWFRS Wind Loads Job No: ASCE 7-10 Designer: .._ _____ E._nc_fos ... ed_&_Partla _ __.ll.._.E._n_d_'ased ........ -£0_w_R_ise ___ B_uild_ings.,,_ _____ checker:: B@sk Param&te!J Risk Categoty Basic Wind Speed, V Wind Directionality Factor, K,, Exposure Category Topograpnic Factor, Kzt Enclosure Classfficatlon Internal Pressure Coefficient. GCp1 Preswm Coefficients Roof Slope Wall External Pressure Coefficient G(i,r Roof External Pressure Coefficient, 6CpF Roof External Pressure Coefficient, G(i,r Wall External Pressure coefficient, GCfll" Height,z K, 15ft 1.03 2.0ft 1.08 25ft 30ft 40ft 50ft II 110mph 0.85 I'.) 1.00 Enclosed +/-0.18 4/12 0.516 -0.69 -0.468 -D.415 Walls 18,4 degrees Pagel of1 Date: :12/30/2015 Tablel,5-1 Figure 26.5-lA Table 26.fi..1 Section 2f.i7 Section 26.8 Section 26.10 Table26.11-:t Tab.le 28.4--1, Surface 1 Table 28.4-1, Surface 2 Table 28.4-1, Surface 3 Table 28.4-1, Surface 4 l..81 25.8 psf 1.81 26.7psf I ~--~~-' @'-,II-r--~-=--=-=----~i: lj 1-J l I If J 1,1 : : I ff::.--=.. -=.-!J : : 11 l I 1 ll 11 · fl H ·i ) I ll fl II JI I tb.:::i c-= = =-=-.;:;.:::.:::.::: .. :::: .. ·:::.:::.. --=--{ I If I I 11 ll II H H P, 1 ' IJ 11 n :r µ, I l r I f I Ir, ..... 1 i : · ~--)"-::dl II 1 1 u I: , JI fJ ii H I 11 n II l 11 r: . II I ~ II Ll I t I II l l I H I l'11 If l : ~ -----~==i======' t~ H II 11 II 11 H . ll , :: II ! I l H II jl I n I I . ll tl j' II (!)-·-----H :: 1'==""-----~-----===r 1! ,1 ,, I Jl 11 :12 ,1-~.,....--!.: ··~-- .,. T (i' 'f 999 I J I l I ~~~-. ..,.._ ~~~ ~-~.~ / :\ '. -1)} ,.._.,,..,... il ~ ~--' It q~ ~~-m zzJ ·r-:·fr.:':':: (6\_ __ \:cl- ~--· ~' .... , .,.". '"'· ... ,.,, ...... ,.,."·· ... , .. ,. ·<(·I ~?if 0-.""' '"', '\\"' "'-~ Z-<. ~. ~ """~"<r~f~-~~4.) i "0,. "\ '-,'-.. 0-, "-....: 0-."-"'(:-_ '\ ". ,,'., 'I ~~-· .--..,<..X · ~"Q-,;~;-(>)y-V,. x , '};,(),'>!; ~ \.. ' '\ '-.. '-.': '· '· · .. '... : O< >:<x ·XX'x.,,:,,\~ .. ,f,: ~<\~~ , x_.Y>i i .. , . : ,_.: N. ·~x';._ ":~."::~Y·-Y ::-::\.Y...,. -x,. I I J I ct)~ _ _.x_. . .., .. ·/ ·. , .. "·". ·'·, ";,: ··x .. X->~; ~vx~,x" , >-<~-c<>c.,.;-: -_,_:-:, . .>~, "~><."x '. '·. '532xz: . --"~ . ~{.---·,'-., .. ;::~--------. ~- l ct) _Ji) I I ~ }-9 r--·--"---I,--! i il 'l i I i; 'I 1 ). ••-•; , _ _., ,,..,..._. t ,~,_...,,,.,-,,~•:nh,,.,,A,_,_ ,n--.> • -,.,__.,,..,~,, ,,\e, _,.,,._ V •:<" • , ~ ~ ---.: ... ),,p.,.1~1-, ... :~N.A.t...Y$1=;. ; .. -J./.ot/"!;f;E: J.. ... . .. . , i ·: . ___ ( eM .. 1v~~ .. -~--; ~~At--~ -~ie~M1c ... ~A4-'r'G1 ... . ~....,.L /.-r--:-·r=~- , -~ .. -..... ,.,.,,,.,, ' ' =v , • -,, •-.,_ , • , " • -, ·-.-·----• Sp,s ___ ~.., E,O 0 • o1> .r~t..o .... -,. ~-,:t. · ~ );::,·~ . -· •• ' , ~-·-"• ----,v ' • ' -~-... 'f'ftj~ t·,•n ~ D l 6Tff.J 6,k!I.' oN.; ~. ,., .. : ...... ·---'-= ·-• , • -· H X v-.l 0 /o '14f .... " <,'. ~~o ... ~e 5-Z.:3 .... ~o · l 7 4 4 _ .... " . '_ii (i~~) .. · 4-~.4 . .4 .. 0. t .. :? ' -~-• u u > "' --,, ' --_,_ -----·-•v• , •~--~n"> n,_,,_,_ .,_.,_.,.,,,,,-,,. • , -.. ,,. •:--~ "'"" ..,, , • •,>••<A_,,•',..,_ • ,, ·-.. ; ·--'"SJftAlZWALL L-a:>W~J, ... ' ' -N ~ -'0 >, ff -, , "'"" ·--- , ..... ,.., -. -,, ., ; . ' ! -:: .. T~-~tq~4(;=) ~ -~~~-[/t_e2"' .. 1x 2L:2~)·+ ___ @(4?~-~· t3.~-~~)j_ =ff; ·--~-_ _. ____ ,. L.e.rr :=.)e,~s ~--~ 7 :?PHQ_+,1~,e.,a}J. KE:_ 475 #:-. _ . __________ _ ... .. ., . .. . 1'2l<§rH7 =: . ./8~ ~--~-':1.(.t-/ite) ....... -.... <:~-~~16;/~~ . .. -·· .... ___ . . = /5"'3/i_ ... _ --~-~Y _ . ___ : Ho s_-,:_ _____ __ . , .. ,., ... ---· ....... ,, . '" . ,. _ _ .. •== ~~ ---~ .HS7t::;:4::e,,( \(LliJ WALL. ~_JJou :2_ t;J potJ ~ : --·«-,y; ,.,._ ..... •-•-'-, .,_, . - • ' > ~ .. T .. ; ·eJ-_·c,·~_s;. ;,,_...~~-t(16;c,~ $ ,e.-~).iZ.11.x~~tz.; .BJ:.:+::·/~ ;_-j ·-· -w·,,_,.,:_;,._, ___ ,~.:,"'M>M • _, » • · • ;/$':;, · 1,.t."7 >> ,.~---·--~•,•:-:»S>-~---•>,' ' '•'• > ---~' -·· '; ... .,. . -. ;._ .. v. "' . , > 'L ' . .. --·-·· ..... -· __ .. ___ ,_· .. _ .. lvG t:c:W<5rl8le._,,,,. ' . ;_ . . · . . tvo-_1;:1_,.0_!_5; __ ,-,--·" . . . _ . _ . p-.. • ...... " :··'e"/2 > ->» '•"··::·-·»·-··»·*'""'-""· ·»·~----~~-,··""•·--·· » > '" > ». »» __ ..... Ll~ __ , ____ Q ... "' ,._ f y-J .. -:, ~-5_f2 ·,·:·:·: . .. . , .. -· "--. , .. :. ... ~--· . .. -: .. , .:,.,: ... c ·.·:_.· .• :. • ... >» • 7. .. .... ,,,, , ....... ~ .. :: ..... ,· ... :·,. > •• , • ,,;_, ___ =··--»--····-"·, · • -· ·· ----· ··· ··--.:'le? · r,, 6 z. { · ,z • 5) .'!'--~ 1-~+-3_-,e; + 3. s· =-" 8 p,,,F -~-., >, -:'· . : .,.· ·,, •. ' '. ' » .... --·. ----·-··-· '< ,._ .... , •• .,,, •• , ••••• "'" ',. • • __ ,,,,_, ~ .. .... ~: :"·~ 6~-~r~:---·-·_ ~ (c; 7 .[,Ll~_;~7~~~i 7~)i,.ui·~·.,;~·;--,~ 7£5)-f /So]_,._,,, ,. > --·------·--»>>, :r: lt/f!!i ... •' .· »,' ···---.. -·--·--·"" ,.,, > .,, ......... ,.. . ... . . . .~C,1l~t-:1~1t!?t..e7 .,_ ..... . . . ;_ N¢ 1/t:?'5' ·-._...,,_,_.,.,...._,... ... .......,.,,_....,...d ---~ .. _,,...._, '" , , ' ' • ,, '. ,, • ' ' • ,_,_ ,, , , •• • ',, <· •" -·· ..... ' , . -·-.. ;,.., , .,. ' .... '. • » • • ... , ...................... j ... , •• ,: ••"'-"' -~~.': • -· . ., ,. , ' -----------' L · , t=::. t: rJ'Z' ( a ') ( ~6~ ) . . .L. I 1 8-t '4p _ __; .. UJ.E;.. .. r ( ... ~. Lw.-= -... ,~.i ....... _;t: -= a~:-74_-,;;-. 1 .. 8 / ~ ..... -t¢S . . .. . . :-»--,.· ,.1 .. :; 1./G> ~ (e-~f!f) ---~·i·;,-·c (J6n< /Ix q)-_·i (fr;; X ~.K :4) + ii r;?.J~< . ' . . -~ -a~q ~ ~.lex:.. e ·--~.., .. .._ 1?o.ci4 ---,. . . . . ,1j'\ . · L-. M~ ~-(r;t,; ( v) ,,..;;; WA·lA-.. - ~. ~-"lilt> U5 ... ~ ,:-£JAi ... .. , ," ~=i;;~J1/ ... :::'14+.~"'"-~: '" ·---· . ' -, " ' -~~ 7~'.-,., ------· ... ,, ·-r -;;_ '~£#ie(t;;.) ~~ t;; 7. [ {19x~s ... :"s.::; ii~ -3 )-.J~~-·-~Fe"i: _;_:(lCox 7P ~ '"!./ w ~ · "" ___ : ... -----: .... · .. · --· ~ _?_/lo·.!~· ~tefrfc~c;,{v) · • · --· · ,, ' -'Li N&-' :F 3' . _· :~, .. P:w -= t ~ C, 1: ~ ,J (~'01~) .=-,, Cfeo ~--s ~(~ =. z e?Q<b £1= :·w. , . . ... "'"" ,-1.r;;;;;;, :260~/ _ ~ H, ~-~ . . . . . :· .. " '\ ' ' /if --,--~-H' rr', ' ' ~-:.,;-· . ,. M~·fa( V)" .. -y ... in: ra: s} ;,i1f (j<,, ~ e.:s t 4. $ Y~-(1/l,t-i ;4_;)T, .. :iC . et i~ti. _.,r ·-·-.•. . _ •.. t;;;>. B,-;M ,I. -= ZI e, S? . ..=, ... _, :r":'.' (Z,~4d2. ~ .. ;.i... .... ·st£ o ) .... . _ __ _ __ -r::, ' ' ' ' -----.---·,-,,,_ ---" .0 •"'' ,.,, :. '"•• . ·~-. .,,,' -----, ___ ,._ :. ,, --'" .. " ... r-J t;.-~t.J Grl ~-, -No ,H·;;:{S :1_ • . ' , I ~-.L.IN~ ·-' _·_ ~-· __ -_'i=:.:~~-~-2"( G] .... )(' ~~)~_:·_--_~57_-;:_;:_-7~;-:~··:,~S~l +-1 '_(~~i? .. ". , -" . ' -'. ,. : ,, ; ' -::~ ·-' ' ' ' ' . ' ' , , .: , ' ' , --•, ---·-· ' , ' ' " ;-' ·-··--... , _,='. __ 9-_,{e~-'1-' i ; /]f'" -:·371/3 : ,' ' ~ . . ·:-· ·-·r#-·~---···---·---··, ............. ~"-· ·-.. -. . .. ~+.-----..:r&-114 .. -~ ... · ....... -· ... -.. . --.......... ----- ... -·--.. ---~-.. ---·----_/._ _!'.),.5",,' ,., '" ..... -·. -·----,,--' . ::re·,--:.,, ,; 4 ( 6, ':i) ~~--t,_7_[(Lf, ,: e,:-;;·; J.ir;.r 1/,,;$,s i ,;)+(,..; ;<_j, =?" If)+ ti 4 2 '] . . • , -----· __ , " ", , ' ., ' -= '!? 8:-1-, .. ,_., ___ -____ ,,,_,_,,, ' " , . ·" ' '"' ' '•" -«~---------~--. --· ,,_,,_,__ .. __ ~ ... "-·:· ---t., Ne~Li(¼t te~, . · . ... · """ ·.. · · --- _ ... --,·---.. . ...... .. . . . :. . ' . ..-N~ . f4t:;{s. -.... : .. -t.,~ ~ Fe .:. -F ,.r "' it ("I.) ( ·)~;~ ~ 1. :1.e· r · I (-u,a,.:, J--$ + ?>"'f J/. ' --, , ..... ,,_' ' --..... ·-, ' ' , ,,. .,,_~,, -"" . ', .,,,,....,,,,.,,._' . . --. - ' ""' "" ...... ' , 4 .= ~~-~ i304 -~~--~~ e . . -___ ,_·~~-~ .. ~ .. :Ce~_$)-; &1 E ~(,;·;·;q·,G)< 4)_::;_-(,~.; ·2 x 4) J ::. · --· . ... .. . _ . . " . . . =--i o 9. o *" ~ _t::'J. ~c. "'f~e 3 ( v ) ~ e\\-h ..... :wi .l-·h? u Z ---~ Fr~N. ~ . ' " -,_ •.., , ,..,,,,, V -. i.J;.,e,~ ,·-r,.. -..:, -r::-= :z 2 (. "!:) (~ Y-2:J.: i61 ~-' + J§ e ( i, 5'2) .. . .. . . . .. '" ' ... ,,; . ,.. -. ; . ".'" ..Sc;>_,lt,.t!,. . -I# : . " . ' . < • ~.. ... ..... ' 1(' = SoZV = Sp,2·~ ~~ l±J .. _,,, . /10 T.~ J~£.(6~5')-_ft>1[{jr;. ¥ /3)(.'s) 1--(,, ~.~¾.x ~)+.5;~ ] · = I te.!3 ffe · · .... ~ .. :~~... · .. 1-.·.;;,~~·c;) ... P:·~p .~·M.~ ~ ' . . ., ~-:. . ~ ....... ... . .. . . . t:f : 1-fr>U Z.. .";:J PPN ~.. . . -· .. L·,~.e ·-· .... :· ... ~, r~. -~. 'iz ( ·~.t_Y(?~~~):~ ~,~_;;;': -t fl½, (&.ts~) :'. ... : .· .~... .... . ... ·.='.S~o .. :2-~ ... · ... . ' v~ '., -~-~ ?,~"!1 :-~-~,+~--~ --- ~-.:":"i .. = .. , :ii;··.;4~c2);sJ" --~ ~-1..C.(1" "le .. :B~.··~ .; .. --·: .. ··c1J.J:x .... 1 :z/2·}{ .3._~--~s . : ........ , .... . ·-·-----·-.. -· . ~ .:3 4C/ S .. ~ --" ... ___ ......... . ... . ...... _,_"_ .. ·· ... . . 4 .. ~~c. e ( v ). .. . . .. , ,,, .. .. . .. . . . . . . . ·------~ "" ' it."! ~-s -= j,,~t_ f"A"' _..,, l ....... --·--:·"",·'' •'""""'"'' ____ ,. __ t,_ .. _ '' ,.,,,,. · .. ···-··· ... · -~--·:·· ·bbt (ii:i) .· .. ----.. ~ 1 [ (ltp·y: .. '1.b x .. f~;-$). f-··(ftp~ hl~.75 x4) J · , ... ,, ...... ""'. . . .. . --. .. ' ..:::: . J:4-ci4 ~ "' ' ~.. : ... ,· . •, . . . . ,,, . -"·---· '. -.. . · t Hou-+· .... LtN~ Lz - "-• . ' ' ~ . .,, • . .. . '" " / 7:2. + 5 I I ':::> "" q 'l fl I -.&. '.7 6 qt~ i ....... ---= ~qb~ 4x" . 1 ......... "· .. . .. _w/ Htt~11 3o7 !SS4-= C:,e4'·f ' ~' w/ Houe ' ' """" ..... ,---.--,-----·.;_,,,:. '" "'". " ' ' "' ' ,,,._ ·---· -·· ""'," ', '< ,.,.,.,,,"'_"' -· . _,_ .. ,Ltt:Js-: J.; :a :.· -. f w .:=: l 'IC/!i"' +-tao~ ~·,,H.~o .- •• ' ; ' A ' ' ...... > 0 S ·~·-"-=f ;_:-·"i,e'.9 (ef?j" ~ ~ ·~ z..[,(i~6-~"£__q ~ ">i/~J ,;~ __ :·,;;_c;_; + e ~,J --... " • ·------·-·-----.. -·--.. --"" • ,. '""' '", ,, ,, --->, = ,,:"'::", ~7 2 .. -... . _ . _ . "' . . . --------·"'"""-..,,-.... ,, ... ,, . _ ... ~ A.Jo ... HD 1.S. -_ -. -·--·--. , ' ,.,,:, .Lr~e ,,.·L~·, .. -:~. "' f w ~ ,z:J (&}_-;.5c:~+;z) ;_ ~-~"~_4_,i_at;;:i;~"-~----~;:;i:i' ~ -_,,::_:1g.1·.:;_i~:{i.Z:e·~-~-~ .. ,7 c (,f?;,1,-;_iJJ~ .ui~)/~~,J-+.-·t1tJ ,c&1 ~ e:,J::_J--.. ~~ _ ·· ~ ...... ,-..... ... . .. _, -... ~ .. l~.:1~~ .. M,;;tfitLf1'f:llf!;I-P..1 NO HP-1S ' ' ' ·::.:=L'lM/e,_~:i;_·.:~¼:.~·-·.-~~-~~· .. ·~w-;·i1(q~,s~f(.~~?:e)~~~~~~~U1~a~···-.·~: .~~a·z_·; ~J~9~~-... --,, ----~---·-11""" ~"7~-1~48.2 ·FM"' ' '''' ',, ' ' ' ,-,.,,,.,,~ ,'A>A: '• ••< ' "' ,, .... ,._,-_,,-,--,--w,~, ................ ,A...,..~--•• ~---" , '' "•' -· <> ~,-...,_.....,...........,....,..,_.,,.....,,,_,,,,.,. .,_ ,,,,_, , .... '•' : " "' -".' ' t -~-/I S&l { fj,, tG )--'1"·Cr,~_x,~-8~? ~ JJ., s) ~· :(/4 ,e"' J/.,'.t;;~ 1)1 fj e 't-/5~_ ' . . = z /./ H z ~ ___ ... , . x~ tfl:;~ _.1300,: PArn:::~ L;,.,A~~~--:=/o ,-'"""""'" PL~ 1,, LL,:: "'.Zo _1 Tl =BC,~ F SPAC/N~ = 2+1~. L t2 L =-f4-1 . !?PAC-4 N Gr,= .;!,4-IJ w # G C u/2 e-) = 1 ;:z.. ~= Ms G(oo #:: ~p:-7* ... :c. :1:2 :to. i ;J 4- ~.: ~6t:? ~ w = a~ ( ·-z.tt/1 ~) -::;. .7 z ~ t-1 .. ~. /7/t;J/ !4;, ~ Pr. :J: £1;_~ 1M 4 A~ §04-_"*. M~ .--. ~l ~'O "! ~--I. !OOt"B :r: ~ q V 'J<l.tt";;JJC:,µ r1.-= -Z S-e»4- y ~ ~ Jo°ls :t_ ~ 11, ) l I, I I J I ·1 I ' t,, ] I I ! i I I r--------- ! ~ l l I f I ! l I 1 1 f" :, ---------------~---··--· ,., ___ ;_,. I I I \ ' ~ cb ). =~r---·--·----·- (_':, -l" j ·----· !'\ !. ,.,_., \ a t. i Q'Lf O #&JP.. q ~~=======~-HP~~~,~~~~-1~~=r=:J1---© l ; ! b ~~ -; ,,.., -~--· -)...-'-,·--' ,_ _,iJZ: ·<·· ~;; .'f: . ' ./~. JZ:/!> ;{~-:· . . . WoL -= 16 ( l_1/.;i) __ ~-~-Ji~ ~- L --::: J..tf. ~-~ ···---... __ Wu..~ ~ (1.7/z): .s. t,o ... ~ .. .. ,,_, _________ ' '"' . -. w .. . ·. .·· . . -·" ~ -. L..-e)1/~ ,< ,~-~;e_ .... ---"'" ;......-·::.-.:..-::.-::.-::...-:...-_-_--:_-_-_-At-r- _ Jd_' ... .... . . I,., '' . . _, ' .... "''""-"""""----~" N _,,,,Y ~-~ J .. tzc,o'{ JX.) .. ,, ... - . . . ·-... : .. 1"1 ft_efl> ( µ,.} l -,.,.., -~ --.... ,, ,<"' ' I ,6,&Q . 12~!0 -~ .......... . ;'3.&f I 0. -:ti:'· .,,,, ... ,. ..,,.,,,.,, ..,...,,.,, ,.,. v, ·' '"·W ,,_., ... t--"""""' . .. 2.i&o lDt..} · (0-2-o (LL.) .. I.Bk ~ ~ """' .M "= q :t.q -+. ~ P::.T w • •• ~ 41t ~ -· ....... I~ I~ .. !:r.1 µ '!: . . .. . ..... .. ..... ... w Ma. :-eE~ .. + I . . ~ ~ lii'7:t,_:IF(i;>~.,r; 31z..; Li ~ .. ~4a) V ~ ~ ~o-1' . .1: -.ix. JJ I --------.... ·W .Ji-4-1 ~-·--~ ..... ···-. . .. . . ~-!-~.........:.!-.--~ _,Ji;~ 0 ( ~~) .. .. ?It? {1,.,L) . . ... . ,, _ //OD tfo .. , ...... t .. '.'416 (&1L) ·a.Js;o (u .. ) * ,~' 8'~ 4'7c,,0,~ .. ___ ~. ~ea ., :. :L. ~ /,(pl,. , ' _ _,,_, --, ,,. ~' -,. ' ' ,. .,,-,~ .... -,,, ~--~,,.,,.~-~,., '"'-"¥"'' -----~,_.,,,.,,. -~ .. "-~. "~~- ' J __ ~.IP' -~ ~ ----,. , ,, -' _ IP~" l7~¾:. _ : . . . L ~ ,Q_;___ w~ /,_~_ (4/z),, ;= __ S,2. ~~---',,,, ------~-----,----------~t..~--~ ,4,o (~?~-z,.) := 80,,~ : L, -~-IP'- t '2.I~ (t,(...) "2 '2. Go ( L.~) t/i/oo .& z.p ·-3~~--)t l'\7/e, "psi_ -,,: ,_, -"''' ------· '';: -·-, ---' _ f.J..-.~ F~~ : L ~ e' -·woL = lb (~)'.ts+ /(c; (:2-/~)--.u ~ .. ~p-t.,,F -- _W 41,,.. ~ e.o (Ya_)__-:--~~---:-_ M = 6J1'2.. ~ .. FT ... _.-4-xlo _ -4~ 1 -I Z ii-J _ _ _ _ ., -- _ ~ .:: ,Be; ~ (ot ~ z.~~, LL~ e, o )_ ____ ,~,.,,,,. ,_ .. ~-=,\-,.,,.,,~, -·~ ·~ : I ""''"'~-~---~ , ... ,.,..,..,,.,,.,,,..,_, ,, ,, "'' ,,,,..,., ,, .,, ,, .,., . J7 .... ~~-ti '"",, .: -· --., ... · -· --.T::~e;i_ <~. ------_____ . _ _ W.ol,.. ~ Jt.,( tJ) + IG (1) ~~-1 ~-{1)_ = ~o fU-F Lw/'J:-:.4M~:r11-) ---·. __ .. \tJ \4:? /lo ( 1),f-J./.o ( i) _.:: (.r;o -~. ___ . _ _ .. ·.·· . ~ ~)(·Io ·.···. . .. . ... -.. ~ .&as •• s"'.v>M,, Jf_·::,1.t -- {w-1 4 I ~IL-) ,, '-,~, " -· -~ ll ~ ,. ' ,., ~, • ~ -' ' : l&f __ ~ --~e,;1 £.~ A _ . --- . ' . -----••• ·----V --·---~ t: -,~ (~1,,.) . -~.o(~) Jc,:~ : ' , f ~ ~~ ' - __ -~-a:-: :f ~15., ... ., .. __ .. , .. ___ . . _ \pl ot.. ~--.I~ ( '-~ti 2-) ._;-· .. iJ~ .. ~ ~ ·-... __ __ .... L:~-,4~ . . . . w 1.-t. :=. :Zo ( 1~Ji.-ZJ:: '.2~ .. 7 ~F : [wf .. .Z.1 . ~NT1-0 Pbt..=: 112o+ · P .Pu...=l~a* ___ ....... '==== Wt:>L ~ 2t~:3 ~ Wl..t. ~ ?!(:, ~i S~ L : \iO .½.F . .Pl,...L. ::: .:ttoit + lrdO (oL.) i 5 0 { 1..1,,.2,, f ~,G O ~ -/ '1.i:i' -J!;i-Z:, :-"1-1~• 14fl if+ ...., /!>70 { Pt..) ·-.lf b O ( t..L.) -eao~ (J;tff'i F+). .., __ ,, :i.-.. --.. · ·---,,.~ __ ;,, .. ··--·-----·« ........... . , ' ,.,~_, __ ,._,, __ ,, ______ ,. "",. _,,,.,.,,,.,,_-,,/' •,,_. \ -..,,,,_,.,,-t--""" ..,._......,,,... ", "'·"«'""'· • ,, ,...,,,, ,.., " ,, ",_,. .,,.' ,._ ... : 2 ;!, ... F:e? ,.~ , . .... .. . .. . . .. :. L -~.l4-' ... . Woi. =. /t; ( ;:) .=./Ip~ . ... _ -~--. !.. : .... '... . . v,.J w... .. ~ <:lo ( Y21!) . .c Jj.._o~. ' ' ,. ,,, ..... , , ... ,_ ... .,.,,,.." ,o( --,~., ...... ,....,.. ·~-, __ ,. ... «--~"' ,, ,,, .... y ~ ,,_ •• "' -··~ "-' < ', .... , .............. , .... , ........ .. .,,.---~. -·~' . .,,,.,,,-,,,, _.,,....,....,,....,.,,"_~ .... ~-· . ' .1.e: ... ?e.17 ".'"" A L-~ It.' • > "" ",',,,,.... ---,,, :-_, ., "" ''" -,eo (~..) ~?l.i (i...L.J -/ 7'6o #" t 1.P10{ ot..) J ~ ~=. (_u .. 2 .. :2~~0 # ., """< ', ,, ~~ .. ,_ .Wo1-~ I~ (I~)+ /tf {. ; -;_,~--{----~ ·--, g 1/~ci ~~--- w l...l... ~ J/tJ (( + (~o/~J--~ --~ ~-----.. -... ; ' 'fto -4 __ _ "·· ·-...................... --·" ···" --~·JP" ,;z.p--: ____ . £3.~ ...... Wr:n. .. ;;: ~$4-pi,,P . . . --.. --... . Wu.-~ -zeo ~---.. ·:·------. -----··:Jti-~-'.-fk""::!' ...:JJ~-~ ..... fr~.i-= ,~.et:.:::l __ . _____ ----------------·-------~~-~~~- -~ ~~=--_!;lo+c,~ .. . .. .. . _. .. . .. -. t ..... ----- 2 PPt. = i:!,2.o + I £,.qo_ ~-~)i O -~ .. '31.15.o lo1,,,.) :2 P k.L_ = I 02-o" + L" _$:.~. ~ ~)fo ~-__ .. _J../ e '7 o l::!-2_ /,.'5 I . B.~~t = .I ~o _-::1# __ ... . ... __ .. ~ 1 D ~o -a $.PL-4,..: e-a~ #_ ----- ..,. '_ :t.'1.A, pf?; l 1 ,_ ! . L-:ff;, 1 ·s/, - ,,,,,..,, •";' ~ -, ~--,« ' - _j( W/ J~f:t'. .. CANT' .. - ' ' :5o.. Fl:3'2-o -' L : ~-i.14 I . .. .·:( W/.~-'--CANT 1 1-). ' --~--""'"'._, ...... _,-' ....... -...,..,,,,, .....,,_,,,,,,..,,,., '" .,,.._ .. , ---"' ~-... --~ ,, ' .. ' H.?' ',.,,' • ' •• • " .. ¼* · .. + ~"~2.Ce,,!.:) .•. 571;) { l..l,) -~co* t .. :Zl!l.~ . .( ~1;,,J . ., ~o C t..i.,,) . 'l'w-''•' --... ,:~ -I:,~,~' iozo ~ . ½lt,.l. ~--,1~·c~~i)-=:~Lti~,-. ..... :·-----~· :~.·--.... -__ _-· · -tu... '!_.fo_rl3!'.'?.):-i=;~o ~--------..... -- OL.: '.Z°IO , . . ___ . _ ...... . . . .. , . .J~#l-l,.j:,_,::730,~----·"'·· ·----;·--·~-----··-, ---·~·--·--..... -p· . .. "" -. ..:. ... : ····:" ..... -.. ,._ ·:··W ..... , --......... ···" . ,. ' ........ ' , ' . ' ~ ' . ' . BY~ .. :.~.-.j l~~s-·~PsL ....................... , ........ -. ~' 15 1 -- .. ,_ ...... ·~-·---' .... , ..... , , ... , .. ,~ ' --· ,t ·--· -~ -~ -¼,. ..,,.,-· ;·-_·_,__: --.--,~~,.;;,.;.¼,·....__..;_,t...;__· ·-·. ---t-·-..... ' . ,, ....... . .... -·-"'""' ... . : .... ,.......... , ............. ~-l~,f){!?_lJ ..... ,. , _ ,~:,,0 (p~) ~,.. .... ,,__, Y YA·-,...,. Y< < W. "y" < , "' .... ' ' _ ~:2":ps.~2 -.· ... L -~.a/,_ ... -------~· ·--~· m~ ! ! 0 £~). .. , ,-e ~~,£?.._~L..} • • ·-·. '< ,, ~~-~9~ . ll~ ~(') • ~-' . ,., , . : i ,');., ~·· ""'"' ' . -<' ' ,,, ' .t~:.\_f e.e e ...... ,., " ·: ~. / ,_L ... -s.J~. . .. [Wj 5 1 Cl<N-r'L) w· · ... . .. . . ,._ .. , __ . -, , -·:·· ... -. : .. j;~-Cf>~) ; ,, ,,,....,,,=~--,~--"""' ~--, • " , bt:;;.t:> (Dt..) . . . ....... _·-~~e>:(i.i:) . · a ~J.~~~1 ........ · ·· 410 # "t--4' lo :.l.t . . . -~· ' ~ -,_ ' -~-,_ ,., ,., ' ' . -~- ~-4 .. Fe,.~4.. . . . -· -·----·· ..................... . -L--. --Jq 1. T ......... ' ..... 1.Wa...: ?10 p.~F. . ...... . ... . ... .. . i . , .... _ ..... 1.WL.L.,: 4-&10, .. _ ___ . . .. ___ .. ---"-· . . . _;~W __ pi,.~ I 4i. (L l#-cx~;).· = '.24~ I :~ .. ·.. .. _ __; __ ~ .. ., .. ~-~~ ~-4o ( Vz). I. .. _ ·'"·-·--· .-.......... --·-------... .. . .. : . . . ...... Po 1.. 11r: .t U O. r 7 b::,_..;r:_jB.4:f O ~" ···;:f·· --. · · · · i?.. ... · · · ...... '>· •• _ ..... ,_ • .. •• . .. .... Pt..L = 1 ,z,. 70:+-cr1P .. ~ .'tiz.4:o .... u .. -·· ---.... -......... w .. ,. .. -, ' . lN . 1t. . :.J · .................... ,., .. .. ., ....... "'l"" ,,.,_'it "4 6l ~-~.::?; ~ ........ ,-""'"' _____ .. , ···=·-".·., •, ,' ......... . .... , ___ ,,,.'f4 .. . '. _· . • . !i l e,2.J~!::-) ____ . __ ... hf /'SD( .of:J . .. .................... ,., t.. .-= ~a, Cb. _o . .. . Pt...t... -~ ~a~. ~ ?i JI~ x·· 14··· ;;;i., · .. ' ' ' -' ,_ -· ,,,: h¥ 4l'"~i s --·· , P, t,;;iL. -J.J ,So 'IF PLt. ~.:3to'* t.f Z'"? 0 ( LL)_ __ . .. '2 7 i o { r,,.~L,, )., ........ _ ...... 8.~ .. 0.~---..... ----. td:,49 ,a. 0 1* . -- ... ltJo( DtJ. t· '3,~c(ot.) . ;?...Zci Cu...) ,.,,,., ......,_,,.,.._,,, __ ,,..._.,.._,,,._, (!ti t;_,P.o *' ' ). 8~~ 1:FJ;~1 -J_ '.;:s:; £,o I e ' -' 1-~, q : " " ., ,_, ( w/ '2 1 CANT It) .,- P~c. = Jte;o «:- Pt.t.. .:-: q 4o '* , If PL. = eeo-"f -I Pu .. :: '1 ~o • .Z. Pm .. :::: 1 2::i o '*- , J "I + ' "'Z..$0( ~L} l q b (, 1-'t-)' 'fz,;_#_ ' 2 Pu...':; e 1,o #-,_ t w~t.-= tlP ( to)+ ,~ (12/z) __ ,~10(~) = ':2 5 (p ~ , »-1'1.0 (t.L,2 W~v~ 2.o( I ) = / t.o .~c '3hbo # t , Cfz.o {01,,) "1S O { L-L}._ ll.o7o ~ l. &!o (aj +3o~w...L {'2 +o ~ , ... ··5. ··-···---·· ---~--; .. -: ,.. u ,, ;:"'' > '". ~-- --.:111_~ .. HtrAJ:;)~S . ) ,, .. Hv~.:J ... -... --- -. L---~-~:/ ....... _ .,,_, v-" .......... ,.,,.. + • . . . . t'~f s_ 't1~o ~~~ . :L:, .= t/.1 JN-4-.i ~ _.. I ~~o • _ ... · .. ,t ..... Jit,~4:. ·-' ---... , - .. L-. .::::. 5'*6"'.. Wt:1t.,,::. 11ots)+1t:.t,( __ . .. ..·w~L-: = ao( 1lt,)-+ J.fo { _____ _.. .... .. .... .. Pr,i,..-= J 180 -'#- Pu_ ;:;; I Jf ,z o& ' ---""' 4:x_t.o .. ~ ... _; ..... _ Ma. = . .+a.Gtt, _ , y,'g;, ~ bQ~O + .11 (8/.rt.) . .;ey_ 11 G? ~~ _ )=. f2,QO. ~ p ' -31 ,,,;;,, ' =;,---""iltti ' ' ·;t~},. ~~-·.: .. + ': ... , ..... , ' f. - »-. _, ~-..... j/lQO_(p~) . lt2_~_0 ( '01-) loSO (t-'-) '2,'5tp;~ ' .. ~·--1--ir:?fl-~· L ::::;;:~I -, __ ~ Hot21 L..=-.B' . . . . ~~ +t.P~S -·L· =. &· t .. W ;t:./'4 (16) +?4 (t2%) ~·-0~ (lt./:z) :. q~;{ ~ . M ~ fO~·~i=T . . :C-=7 ... &ut·1· ~ 4x~ ~-= \tt'-l "°~-. Ma~ Jt.o77 M = ,t5ca+ 4f; ,.~ .I;;;, '527 1t-. •. A· ~ = J'bt:; G». i'7 .. -Va· ~. t4t,o. . I.=. 4e, --1ll,, 5¼.t'e( \ . . ~L_ 11~ ~ \"J. a.goo 'J' ,a, .=-CO; 03!5 :c =-44 0 w -, ~ r 1,;z) + '!5t;; r~~J + 5 (; < '½) = lP40 ~ M~t~O ... FT . ' I.='5°11.14 .~·4x~_ f. :::.7z..o• w -= ,~ ( Jq) + SG:, (10/a)+ 64( lcP/2) = 'lt~ F4~ M ~ 75 t. B *~Ff' ~ 3Y.t ~ Cf Jt 4 FSL I• /~e1w+ ~ ~ :3~~4-# M~ ·~ IZr+·H~ V .:a: :;;;; '1 z G:,. I!;) I w,t '2..~o ,. /o~.c. H-PJZfl . L • '2. .. t:i' lld HPIZ Je> L·:::: 5 1 v~ ~ ,,;. W w -·,re ( 1q) ~-54 (lfl/£) M-= &r1 ~M ~ · r -= s. 4-, t,.)4 __:i,.. ~ ~ '1f:>1 • ,.,. =.7Cfo ,~ )(" ~= l~"J'.1 \/ a : '2..4-o o . .:r. = ..+o . W =/(,,(!~)+ 54-(I&/$) -f 8"1 (10/a):. qi~~ M ~ 2&G,,2 * .. FT ~ 4><~ I= -e,;z_u~4 t2.i.-· ~~qo~.: .. ___ ·-.... '· Project Title: Enijineer: Project Descr: 14288 Danielson Street Suite200 POW!i1},CA920$4 fwood Seam,_: ' .. ' RB1 CODE.REFERENCES -•·-'r•~-• "'' ,.,_,,.,H,,.,_ ....... ,, __ , -n~r Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb-Tension Load Combination ASCE 7-1 o Fb-Compr Fc-Prll Wood Species : iLevet Truss Joist Fe-Perp Wood Grade : Parallam PSL 2.0E Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 2,900.0psl 2,900.0psl 2,900.0psi 750.0psi 290.0 psi 2,025.0psi ProiectlD: E: Modulus of Elasticity Ebend-xx 2,000.0ksl Eminbend-xx 1,016.54ksl Density 32.210pcf • • _ D(0.13~L(0.17l f 5.25x11.875 Span= 19.0 ft App!Ied Loads ..... ___ ... .. _ . _ . __ ..... _ _ __. ________ . ________ s_e_w_ic_e_lo_a_ds_e_n_te_re_d_. _Lo_a_d_F_ac_to_rs_w_i_ll _be_a...;.p...;.p_lie_d_fo_r_ca_l_cu_la_ti_on_s_. Uniform Load: D = 0.1360, L=0.170, Tributary Width= 1.0ft ....,D=E.=Sl=-G=N=SU=M='MAR~Y ____________ .. ' _,_ __ , .. _,.. --··-..... ____________ ----- / Maximum Bending Stress Ratio .,. 0.463: 1 Section used for this span 5.25x11.875 fb: Actual = 1,342.90psi Maximum Shear Stress Ratio SectiOn used for this span fv: Ac:tlJal FB : Allowable = 2,900.00 psi Load Combination +D+L Location of maximum on span = 9.500ft Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections 0.342 in Ratio = 0.000 in Ratio = 0.616 iil Ratio= 0.000 in Ratio = Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 666 0 <360 370 0 <240 0.217: 1 5.25x11.875 62,80psi 290.00psi +D+L 18.029ft Span#1 -----------------·----------------~-----------------Load Combination Vertical Reactions .... -----··-·-------· ... ,~ ... Load Combination Overall MAXlmum Overall MINlmum DOnly +D+L +D+Lr +D+S +D-+0.750Lr-+0.750L +D-+0.750L-t0.750S +D-+0.60W Span Support 1 2.907 0.775 1.292 2.907 1.292 1.292 2.503 2.503 1.292 Max. • ·" Dell Location in Span Load Combination Support2 2.907 0.775 1.292 2.907 1.292 1.292 2,503 2.503 1.292 Support notation : Far left is #1 Max. •+• Dell Location in Span Values in KIPS 14288 Danielson Street Sulte200 Project Tille: En9ineer: Pro.,ect Descr: Project ID: ,e~,i;.GAif-,;:;,;()6""4_,....,..,... ___ ...,.....,.,... ___________ ..,,,.....,. ______ ··. ·--·------.,.,......-P..,,,1i:lted:"-,:21>,,.,JAN='2:::-::016::'-'' 7-::!l;l=~"',---,J : "w_..,,.;d: Bri~_ m· ' ' : flle,lio f:\2GARfh·1.EC6 ' . ..,.,.,. . """' 1003-201!i. !:?v1kiv-.11>:' -12.9 ' I.II Description : R82 .CODE REFEREf!CES __ _ -----, ______ ----_,_, ___ " ___ , _________ _ Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 ___ )~aterial Pr()pertiu Analysis Method : Allowable Stress Design Load ComblnatiQn ASCE 7-10 Wood Species } Wood Grade Fb-Tension Fb-Compr Fc-Prtl Fc-Perp Fv Beam Bracing Ft : Beam is Fully Braced against lateral-torsion buckling 1,000.0psl 1,OOO.Opsi 1,00O.Opsi 1,000.0psl 65.0psl 65.0psi E: Modulus of Elasticity Ebend-xx 1,300.0 ksf Eminbend-xx 1,300.0ksi Density 34.0pcf 010.1siLro.m l t ... • • 1 I.....-:: ---------------1 3.5x11.875 Span., 12.0 ft • ____ , >> ··--·------ __ ApJlllim~!>~~!l. . _,. __ , ---, ___ ,. _______ S_e_rv_ic_e_lo_a_ds_e_n_te_red_. L_oa_d_Fa_c_to __ rs_w_i_ll _be_a""'"p-'-pl_ie_d_fo_r_ca_lc_u_la_tio_n_s_. Uniform Load : D = 0.1360, L = 0.170 , Tributary Width = 1.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span lb: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upwartl Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections = = = 0.804: 1 3.5x11.875 803.51psi 1,000.00psi +D+L 6.000ft Span#1 · Maximum Shear Stress Ratio Section used for this span fv: Actual 0.126 In Ratio= 0.000 In Ratio = 0.226 in Ratio = 0.000 In Ratio = Fv : Allowable Load Combination Location of maximum on span Span# where maximum occurs 1146 0 <360 636 0 <240 Load Combination Span Max.·~· Deft Location in Span Load Combinafion +04L --------01262 6.044 -· -----· ------- Vertical Reactions Support notation : Far teft is #1 = = = 0.856: 1 l.5x11.S75 55.62 psi 65.00psi +D+L 0.000ft Span# 1 Max. • +" Dell Location in Span 0.0000 -0.000- vaiues in KIPS --------------------------Load Combination Support 1 Support 2 OveraifMA=x"""im-um _____ __,1..,.8""36.----.1.-,;;83""'6 ________ _ ________ ,_, __ --------- overall M!Nimum 0.490 0.490 D Only 0.816 0.816 +D-i-l 1.836 1.836 +D+Lr 0.816 0.816 +D+S 0.816 0.816 +D-t0,750Lr-t0.750L 1.581 1.581 +D-t0.750L-i{).750S 1.581 1.581 +D-t0.60W 0,816 0.816 14288 Danielson Street Sulte200 Flowa CA92064. Project Title: Engineer: Project Descr. Project ID: ·· W()od Beam. Prir.bld: 25 JAN 2016. 9:14AM · File;= F:12GARfr - ENERCALC, INC. 1003-201 .Build$,15.12.9 Ver.a. ! j ' Description : RB5 Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : Douglas Fir -Larch Wood Grade : No.2 Al-Tension Fb-Compr Fc-P~I Fc-Perp Fv Ft 900.0psl 900.0psi 1,350.0psi 625.0psi 180.0psf 575.0psi E: Modulus of Elasticity Ebend-xx 1,600.0ksi Eminbend-xx 580.0ksi Beam Bracing : Beam is Fully Braced against lateral-torsion buckling Density 32.210pcf • + '---~--~ _h ______ , ~ -....... .. 0(0.396} l.{0.495) 0(0.084*L(0.08) : 4x10 : t ,,. ... , .......... ,.,,_J· I . ·---~··--.:'~.'.'...'.'!.!:.-~ --------·· ___ i App~i~~ ~~~~! .. ___ .... Uniform Load : D = 0.0840, L = 0.080 , Tributary Wfdth = 1.0 ft Point Load : D = 0.3960, L = 0.4950 k@4.0 ft Service loads entered. Load Factors will be applied for calculations. !r:=a6=1=!6=uN=m=8s=u~=n=:''-"-!=y~S-tre-· s_s_R_a-ti_o ________ o_.688 -f-Maximum ShearStressRatio = 0.251: 1 ,b:10 45.27psi Section used for this span 4x1 O Section used for this span 1b : Actual = 7 43.88 psi fv : Actual FB: Allowable ,,= 1,080.00psi Fv: Allowable Load Combination +D+L Load Combination Location of maximum on span , .t . 4.000ft Location of maximum on span Span # where maximum occurs = Span # 1 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection _ -~~~-11.M~m!lm Deflectl~ns Load Combination . -t6~1. Vertical Reactions Span 0.045 In Ratio = 0.000 in Ratio = 0.086 In Ratio= 0.000 in Ratio = -•~M,MM ·-M•o~M-· Max.•.• Dell Location in Span 0.0859 4.029 2137 0 <360 1117 0 <240 Load Combination Support noflltion: Far !eft !s #1 = = = Max. •+•Dell -----o-:Oooo Values in KlPS 180.00 psi +D+L 7.241 ft Span# 1 Location in Span 0.000- Load Combination Support 1 Support 2 --------------------- -·011era!IMAX~!m-um-----~1~.102~--~1.=10=2-------··· ......... -------------- Overafl M!Nimum 0.320 0.320 D Only 0.534 0.534 -tO-tl 1.102 1.102 -tO+Lr 0.534 0.534 -tO+S 0.534 0,534 -+0+0.750Lr+0.750L 0.960 0.960 -t0+0.750L-!{).750S 0.960 0,960 1- 14288 Danielson Street Sulte200 Project rrtle: Engineer: Project Descr: ProjectlD: PlJ~,.,,CJ,92064 __ -,--,,,__ __ ...__-,--__ -,-__________ ....,.. ___________ .;.;?J,;;;;inta:;;;d.:;;;;25;.;;;Jf<.;.:.t<l;;;;;;Zl1,;;;.:,"•.;.:.9:;:..;141~,\l...., w, "bo,,d B·,eam , , -, ', , ,f,lte*' P\2GARFM.EC1! ENERCAt:C. lNC.1983-2015, Bw1d:6.1q.12,!l, Ver:e.15;1~ I.It Descnp'l)oii'.: · FB2 -----------,. ,.,, ,.,.,. ,,. ,,_,_,_,_, __ ------. ------,..,..,. Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 M•®ria!J:'~perties ·-------------------------------------Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : ilevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc--Prli Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 2,900.0psi 2,900.0psi 2,900.0psi 750.0psl 290.0psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54 ksi Density 32.210pcf D(0.396) L(0.495) 0(1,21) L(1182) 0111,2121 LI0.19' • • ' • ,. l..,s? ls'. . 3.5x11.875 :~pt11\11.'iii.o~ ,,.. '.-.., , ..... " ..... ' , , ~-'" ,, "' ~.-' .. Applled Lo~ds, _ , , ...... __ -~--... ~ _ .. , , , , __ SeIVlce loads entered. Load Factors will be applied for calculations. Uniform Load: D= 0.2720, L = 0.190, Tributary Width= 1.0ft Point Load : D = 0.3960, L = 0.4950 k ~ 4.0 ft Point Load : D = 1.210, L = 1.182 k ~ 8.50 ft DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable load Combination Location of maximum on span Span# where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection = 0.470 1 3.5x11.875 1,364.13psl 2,900.00psi +D+L 5.000ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual 0.080 In Ratio = 0.000 in Ratio = 0.177 in Ratio= 0.000 in Ratio = Fv : Allowable Load Combination Location of maximum on span Span# where maximum occurs 1491 0 <360 678 0 <240 Overall Maximum Deflections Load Combina1lon 'siian -, Max. ·-· Defl --, Location in Span Load Combination ,;{}tl A ' ____ ,, __ --...... , .. "'"". = = = = Max. "+"Defl 0,Cit(l~l Support nrunt!on : Far !eft !s #1 Vafues In KIPS 0.528: 1 3.5x11.875 153.18psi 290.00psi +D+L 9.015ft Span#1 Location in Span (;,1()0 Vertical Reactions Load Combination , 0 ,Y>' -~ • _," ,.,,_.,_,__ "" .,,,,_ ' --·------____ , ______ --------- Oiieral! MAX!mum Overall MINimum DOnly +D-tl -tD-it.r +D+S -t0+0'.750Lr+0.750l Support1 3.203 1.067 1.779 3.203 1.779 1.779 2.847 Support2 4.700 1.528 2.547 4.700 2.547 2.547 4.161 ,. 14288 Danielson Street Sulte200 Project Title: Engineer: Project Descr: Project ID: . Poway. C.A920~--..................... ------------------.,------,-.,----, ______ P~=~=-~-=:=::"""~=20=~~....,;==~~=AM_, I Wood.Be,m · · · . ENERCA!.C; 1NC.1983-2015;Bui!d:8.15.12.9, Ver:lWi.12.9 I It Description : F62-A CODE REFERENCES . __ .. ___ -·---···--···--·-· ............ -... -......... --.............. __________ _ ------·-· ,_ ... ,,. .. ,.,, __ Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 ...... Jt4~terial Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : TimberStrand LSL 1.55E Fb-Tenslbn Ft>-i;;ompr Fc-Prtl Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 2,325.0psi 2,325.0psi 2,050.0psi 800.0psi 310.0 psi 1,070.0psl E: Modulus of Elasticity Ebend-xx 1,550.0 ksi Eminbend-xx 787.82ksl Density 32.210pcf 0(1.74) L(1. 762) 1 .. 7&11.876 Sp&n = 10.0ft Appll~~ ~o~df .. . . Load for Span Number 1 Service loads entered. Load Factors wm be applied for calculations. Unifonn Load: D = 0.1920, L = 0.080 klft, Extent= 8.50->> 10.0 ft, Trlbutarv Width= 1.0 ft Point Load: D=d.740, L= 1.752k@8.50ft DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward·Translent Deflection Max Downward Total Deflection Max Upward Total Deflection = = = = 0.59Q 1 1.75x11.875 1,371.77psi 2,325.OOpsi .+D+L 8.504ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual 0.077 in Ratio= 0.000 in Ratio = 0.158 in Ratio= 0.000 in Ratio = Fv: Allowable Load CombinaUon Location of maximum on span Span #where maximum occurs 1551 0 <360 760 0 <240 __ Overall_Maximum Deflections -·-_____ ........... -... --................. -----------------------Load Combination Span Max.•.• Defl Location in Span Load Comb!nation Max. •..,.• Daft Location in Span ~tJ~-L ·{ 0~15?~ -----5-.7-3_tl_______________________ ttr.t1t,o V.OOJ . V.~!i!~~I ,~~a~i«?llS Load Combinaffon Overall MAXlmum Overal MINlmum DOnly +D+L +D-tlr +0+$ +0-+0.750Lr-+0.750L Support notation : Far left is #1 Values in KIPS -------~-.... -............. ----------------------------Support 1 Support 2 0.564 3.346 0.170 1.047 0.283 1.745 0.554 3.346 0.283 1.745 0.283 1.745 0.486 2.946 t ' I 14288 Danielson Street Sulte200 Powa OA 92064 :wood Beam tdl Descrlptioo.: FB3 CODE REFERENCES Project Title: Engineer: ProJect Descr: ProlectlD: .. -· --.-.. --.. ··., .. · --·------·· . -----·---------------------------Calculations per ND$ 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 --~~teri~I Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Cornpr Fc-Pril Fc-Perp Fv Ft Beam Bracing ;: Beam is Fully Braced against lateral-torsion buckling D(0.82) L(1.02} D/0.236\ L/0.27\ ... ... ... 5.25x11.875 Span= 16.0 ft 2,900.0psi 2,900.0psl 2,900.0psi 750.0psl 290.0psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend-xx 1,016.54ksi Density 32.210pcf "1 i Ape~~~ Lo~~--·---... .. ... ··-__ ., .... --·-·-·--. _.. _ ...... _______ S_e_rv_ice_lo~a_ds_e_n_te~re_d_. L_o_a_d _Fa_c_to_rs_w_i_ll _be_a_p_pl_ie_d_fo_r_ca_lc_u_la_tio_n_s._ Uniform Load : D = 0.2360, L = 0.270 , Tributary Width = 1.0 ft Point Load : D = 0.820, L = 1.020 k@ t.o ft .--'D=E=S/=G=N_,,,S=UM=MA=R"""Y _________ ,--·----·--· .. Maximum Bending Stress Ratio . :::ic, Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Span# where maxfmum occurs Maximum Deflection -~ = Max Downward Transient Deflection Max Upward Transient Defleclio.n Max Downward Total Deflection Max Upward Total Deflection 0.777:.1 5.25x11.875 2,254.52psi 2,900.00psi +D+l 7.007ft Span#1 Maximum Shear Stress Ratio Section used for 1his span fv: Actual 0.374 in Ratio= 0.000 in Ratio = 0.694 in Ratio = 0.000 In Ratio = Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 512 0 <360 276 0 <240 . ··--·---·---·-"· . ------------ Overall Maximum Deflections Load Combination ·--· -" . -. .... . ' Span" --Max. ·-· Deft Location In Span Load Combination ..O+L 1 -----·o.a=s""'!!4,-----,7'"".94"'"'2c------- Vertical Reactions Support nolation : Far left is #1 load Combination Support 1 Support 2 ::: = = = = 0.382: 1 5.25x11.875 110.92 psi 290.00psi +D+l 0.000ft Span#1 _____ J Max. •+• Defl . · 0.0000 Location in Span 0.000 ·-- Values in KIPS --------- Overall MAXlmum Overall MINlmum DOnfy 5.083---4-.8-53 ___ _ ---------------------·------ 1.410 1.348 2.349 2.247 -+Oil 5.083 4.853 -+Dilr 2.349 2.247 -+D-15 2.349 2.247 -+D-t0.750Lrt0.750l 4.400 4.201 +D-t0.750L t0.750S 4.400 4.201 J 14288 Danielson Street Suite200 Project Title: Engineer: PrOject Descr: Project ID: }'.Q~Yi CA$20µ4 __ _,..,.---~ ___ ~--· _ ·----------------------Pri..;.;ntR<t_:2.;;.;;5_.fAN __ .20_·1-'-6, -"-9.l'-'-4/J\.;..l~ 1 w · ·d ·e · , ·flfu = F:\2GARFJ-1:EC6 L' .. o~ . e~m-ENERCAl.t,,1NC.1003-20fl:l;Builtf:5.1S.119,)fm;6,15129 I ,I! CODE REFERENCES ---. ····-·--··"· .. -· _,_.,____ ----··---·-----· . -··-·-·--·--------------------------Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Mat~riel Pre>J?e_rt_i~_s __________ .. _, .............. _________________________ _ Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Prll Fc-Perp- Fv Ft Beam Bracing : Beam Is Fully Braced against lateral-torsion buckling D .37L04 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54ksi Density 32.21 Opet 0(0.312 L(0.26) j. .l ! 3.&11.875 ' ! I Span= 1lWft .. . AJ,P,fi~ Lf?a~-~ . . . .. ............... _ .. . . .. .. ... , . .. ... _______ s_e_rv_lce_lo_a_ds_e_n_te_re_d_. L_o_a_d _Fa_c_to_rs_wi_'_II b_e_a_p_p_lie_d_fo_r_ca_lcu_la_tio_n_s._ Uniform Load : D = 0.370, L = 0.40, Tributary Width= 1.0 ft Polnt Load: D = 0,3120, L = 0.260 k ~ 9.60 ft ,....,D=E=S=IG=N=SU=M=MA=R~Y---------............. _. -· ........ , _,, __ ·-· ... _ ---·--· .. Design OK &t:?, Maximum Bending Stress Ratio = 0.491: 1 Maximum Shear Stress Ratio = (l.388: 1 3.5x11.875 112.60 psi 290.00psi +D+L 0.000ft Span#1 Secti9n used for this span 3.5x11.875 Section used for this span fb : Actual = 1,425.04psi fv : Actual FB : Allowable = 2,900.00psi Fv : Allowable Load Combination +D+L Load Combination Location of maximum on span = 5.036ft Location of maximum on span Span # where maximum oocurs = Span # 1 Span# where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflectlon1 i:.oac1 cforiii>1~alion· ..• Span --.:;ns1_ ' ' Vertical Reactions Load.Comb[natfon· -Support 1 -·~·· .. . ,,., Max,·-· oe11 CJ816 Support.2 0;094 In Ratio = 0.000 in Ratio = 0.182 In Ratio= 0.000 In Ratio= Location in Span 1275 0<360 660 0 <240 Load Comb,nallon 5.ros . ,,_,, __ --,., ____ ·--- Support notation : Far left ls #i ............... ·-·---- = = Max. •+• Deli Lot:ation in Span C.OCGO 0.GOO ... Values in KIPS OveraifMAXimum 3.879 4.393 -------..... -.......... ·-------- Overall MINimum 1.119 1.288 DOnly 1.866 2.146 +0-tl 3.879 4,393 +D-tlr 1.866 2,146 +O+S 1.866 2.146 +D-t0.760lr-+0.750L 3.375 3.832 +D-t0.760l-t0.750S 3.375 3.832 14288 Danielson Street Suite200 ProJect Trtle: Engineer: PIOJecl Descr: Project ID: ..,-,P...;::d=W""a~CA.:..9;;;.:;2'"'"06""'4'---------------·-·-·-·----~--~-·--__ . ~,--------__;P.::;;rime:=d:::=·2o::;.;:J;;.;;.AN;.;:20;:.::·1s:,,..;, s::.:.,1'IAI.::::::....,~ Wood· Beam· Flfe=F:i2GARFH.ECil ENERCALC, !NC:.,1003,21115. Bu!ld:G.15.t2.!! Vet.!!.16:12.9 Description : FB6 co,;,E REfERENCES ---·---·---·-----·--------b··-··-.,, ___ _ Calculations per NDS-2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : llevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft 2,900.0psl 2,900.0psl 2,900,0psi 750.0psi 290.0psl 2,025.0psl Beam Bracing : Beam is Fully Braced against lateral-torsion buckling t 0(0.16 L(0.4) {· t i-. 3.5x11.875 Span=4.0ft + + D(2.15)1L(2.2S} ! 3.5x11.875 Span"' 12.0ft E: Modulus of Elasticity Ebend-xx 2,000.0ksl Eminbend-xx 1,016.54ksi Density 32.21 Opet ~PP.I.I~ ~o~~ ..... Service loads entered. Loa?_Factors wm be applied for calculations. · Load for Span Number 1 PolntLoad: D=0.160, L=0.40k@O.Oft Load for Span Number 2 Uniform Load: D = 0.1840, L= 0.0701</ft, Extent= 0.0->> 7.0ft, Tributary Width= 1.0ft. Point load: D = 2.150, L= 2.250 k@7.0ft DESIGN SUMMARY r Maximum Bending Stress Ratio _';ft Section used for this span fb :Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection = = = 0.727.1 3.5x11.875 2,108.10psi 2,900.00psi +D+L 6.972ft Span#2 Maximum Shear Stress Ratio Section used for this span fv: Actual 0.135 In Ratio= -0.095 ln Ratio= 0.313 in Ratio= -0.261 in Ratio = Fv : Allowable Load Comblnatfon Location of maximum on span Span # where maximum occurs 1066 1004 459 366 Overall Maximum Deflections Load Combination Span · Max. '-" Def! Location in Span Load Combination ----------~1---o~,0=000-,,.----0,-00_0_ · +0-tL +O-tL 2 0:3133 6.302 Vertical Reactions Support notation : Far left is #1 = .,,, "" "" :::: Max. •+• Dell .0.2610 0.0000 Values In KIPS 0.378: 1 3.5x11.875 109.75 psi 290.00psi +D+L 4.000ft Span#1 Location in Span 0.000 0.000 Loat!Combinalion' ... ------Support 1 ................ -------------------------- -llverall MAXJmum Overall MIN!mum DOn!y +O-t{. Support: 2 Support 3 3.839 2.899 __ _ 1.213 0.946 2.022 um 3.839 2.899 '\ 14288 Danielson Street Sulte200 Project Title: Engineer: Project Descr: Project ID: f'linred, 25 JAN 2016, &141\/A . . . . . 'Flli,."'.F:\2,l~ARfh1£C6 ENERCALC, -~c. ,1983-2015, Build.13,1'5. S:12,'i! CODEREF~RENCES Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Pro~~!t_ie_s __ Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam Is Fully Braced against lateral-torsion buckling 2,900.0psi 2,900.0psi 2,900.0psl 750.0 psi 290.0psl 2,025.0psi ·-·--·------· ----- E: Modulus of Bast/city Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54ksi Density 32.210pcf I ----···-·----..... ----· '"--------0(1,74} 1.72 D 0-224 0.64 'f 3.5x11.875 Span " 8,50 ft _______ ...,, __ ------ V ~~i~_Lo~s .... Service loads entered. Load Factors will be applied for ca!cu!ations. -· -Load for Span Number 1 Uniform Load : D = 0.0420, L = 0.120 k/11., Extent = 0.0 ->> 4.0 ft, Tributary Width = 1.0 ft Uniform Load : D = 0.2240, L = 0.640 k/ft, Extent= 4.0 -->> 8.50 ft, Tributary Width = 1.0 ft Point Load: D= 1.740, L= 1.720k@4.0ft DESIGN SUMMARY I , ------------·--• < ·--·. -··-·· '-·---... . ! Maximum Bending Stress Ratio \ Section used for this span i fb :Actual 1 FB : Allowable Load Combination Location of maxfmum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maxlmu~.Deflections Load Combination Span = 0.610 1 3.5x11.875 1,769.31 psi 2,900.00psi +D-+l 4.002ft span#1 Maximum Shear Stress Ratio $ection used for this span fv:Actual Max. •-•Dell 0,088 in Ratio = 0.000 In Ratio= 0.144 in Ratio= 0.000 In Ratio = Location in Span Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 1160 0 <360 706 0 <240 Load Combination ~~ -------~1----,,.0.~1M~4 4.31.2 Vertical Reactions Support notation : Far left is #1 .. Load comtiinatfon·· . . --· Support 1 support ~I --· = = = = :::; Max. "+'Dell o.oooc Values in KIPS 0.474: 1 3.5x11.875 137.45psi 290.00 psi +D-+l 7.538ft Span# 1 Location in Span o]ll1Y- -Ove-ra=11MAX~~lm-um------3~_35=5~--u4·=0-------------------·--·------ 0verall MINlmum 0.790 0.960 O Only 1.316 1.600 +O~ 3.356 4.640 +O+Lr 1.316 1.600 +O+S 1.316 1.600 14288 Danielson Street Suite200 Powa CA 92064. Project Title: Engineer: Project Descr: Project ID: ENERCALC iNC. 1 . i •It Description : FB9 .. CODERE'7~~ENCES·-·····. -----························--·------··-·· ........ --------· -· !· Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Mamri2:I Propiairti~ Analysis Method : Allowable Stress Design Fb -Tension Load Combination ASCE 7-10 Fb-Compr Fc-Prll Wood Species : !Level Truss Joist Fe -Perp Wood Grade : Parallam PSL 2.0E Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling i 0{0.16/ 1.(0.4} i I 0(0.256 L(0.08) i , I 8.5x11.875 !.. .... -'• '"• Span =4.0ft 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psl 0(1.87 {2.01) 3.5x11.875 Span•12.0fl E: Modulus of Elasticity Ebend-xx 2,000.0ksl Eminbend -xx 1,016.54 ksi Density 32.210pcf ... ~P!i!l.~-~~!dl.,. ··-··-. Service loads entered. Load Factors will be applied for calculations. ···-·········-··-----------········---· ·-Load for Span Number 1 Point Load : D = 0.160, L::: 0.40 k@O,O ft Load for Span Number 2 Unlfonn Load.: D = 0.080, L = 0.160 k/ft, Extent= 2.0-» 6.50 ft, Tributary Width= 1.0ft Uniform Load : D = 0.1840, L = 0.160 k/ft, Extent= 6.50 ~> 12.0 ft, Tributary Width= 1.0 ft Point Load : D = 0.2560, L = 0.080 k@2.0 ft Point Load : D = 1.870, L = 2.010 k @ 6.50 ft DESIGN SUMMARY !Maximum Bending Stress Ratio --_-_ -----o:iei 1 ........ M~mum Shear Stress Ratio Section used for this span 3.5x11.875 Section used for this span fb : Actual . . 2,298.66psi fv : Actual FB: Allowable = 2,900.00psi Fv: Allowable Load Combination +D+L Load Combination Location of maximum on span = 6.503ft Location of maximum on span Span # where maximum occurs = Span # 2 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflectlon Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections 0.177 in Ratio= 814 -0.141 in Ratio= 682 0.351 In Ratio= 410 -0.299 in Ratio = 320 Loiiif Combination Span Max.·,] Defl . Location in Span Load Combination -+O+L -----,1--·--0.0000 ..... 0.000 +D+I. 2 0,3512 6.235 Vertical Reacirons Support notation : Far left is #1 -_,.. ~ -~ . -----··--··-Load Combination Support 1 Support 2 Support 3 "' 0.434: 1 3.5x11.875 = 125.92 psi "' 290.00psi +D+L = 11.061ft = Span#2 Max. •+• Def! Location in Span -0.2992 0.000 0.0000 0.000 Values in KIPS · OviralrMAXimum · ···--------=s.=93=5--...,s""'.a=12,;----------···-·-···· ·------······-· ·--·· ··· ····---- Overall MINimum 1.049 1.146 14288 Danielson Street Suite200 Poway, CA 92064 1,11 Description: F.810 Project Titie: Engineer: Project Descr: Project ID: Primed: 2ffe JAN 2016, 9:14AM . -. . . File,, FKiGARFF-1.ECfi . ENERCAI.C, !NC .1933-2015, Suild;6:15. . . CODE REFERENCES __ ------------·-·---------Caiculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Prop~rties ---------·-- Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : !Level Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tenslon Fb-Compr Fe-Prll Fc-Perp Fv Fl 2,900.0psl 2,900.0psi 2,soo.opsr 750.0psl 290.0 psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0ksl Eminbend -xx 1,016.54 ksl Beam Bracing : Beam is Fully Braced against lateral-torsion buckling Density 32.210pcf eYs<.,,W.,.-AAa,,yv,y.--~-,.,,,,,,_,,,,.,,, ''""¥' D(0.256) L(0.08) D(0.208¥(0.28) • t ; i ...... :. _______________ _ ~·~!uo,~ : : i 5.25x9.25 ' l 5.25x9.25 I Span= 13.o ft Spah =3.0fl L --.. ---·. -.. .... -,-,_,h ~~-' "' i -AP~!!~L~~! ···----' __ Load for Span Number 1 Service loads entered. Load Factors will be applied for ca!cu!ations. Point Load : D = 0.2560, L = 0.080 k @ 2.0 ft Uniform Load : D = 0.2080, L = 0.280 k/ft, Extent = 2.0 -» 13.0 ft, Tributary Width = 1.0 ft Load for Span Number 2 Uniform Load : D = 0.2080, L = 0.280 , Tributary Width = 1.0 ft DESIGN SUMMARY l Maximum Bending Stress Ratio Section used for this span 0.502 i 5.25x9.25 1,455.46psi 2,900.00psi Maximum Shear Stress Ratio Section used for this span fv: Actual L fb: Actual FB ; Allowable Load Combination Location of maximum on span Span# where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection +D-t-l 6.173ft Span#1 0.218 in Ratio= -0.138 In Ratio= 0.390 in Ratio = -0.246 in Ratio= Fv : Allowable Load Combination Location of maximum on span Span# where maximum occurs 715 522 399 292 "" 0.316: 1 5.25x9,25 = 91.53psi ·,., 290.00psi -+D+L •Z, 12.274ft = Span#1 . I l i ; i .J Overall_Maximum Deflections __ ·--· .. -·· ___ ___ --~---------_________________ _ Load Combination Span Max.·-· Deli Location in Span Load Combination Max.•+• Deff Location In Span ---t-0..,,.....,+1..---------1,----0:::-:_3=904· s.3sr---· -------------..,,.0."""'"'oooo-0.000 2 0.0000 6.391 <tD+L --0.2459 3.000 Vertical Reactions Support notation : Far left ts #1 Values in KIPS -laid CombinatiOii · ··-~ ~ Support 1 SUppori 2 · -·~.. Support 3 ""'ov_e_ra=n~MA~X~im_u_m ______ 2"".38=s,..._--,..,4.782 OVerall MINimum 0.668 1.233 D Only 1.113 2.055 -+D+L 2,386 4.782 ). 14288 Danielson Street Sulte.200 Pow CA92064 Description : ·FB'!1 -.P.~D~ ~~fERENCES, -----·-·-·--··· Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set : ASCE 7 -10 Project Title: Engineer: Project Descr: Project ID: Prlnted:25JAN 2016, 9:14AM ---. ' . . . fi!&= f:\2GARFJ-1·ECS ENERCAL !N'C.1983-2015, Build:6.15. . .. Maten~1·ptq~rti~" --~ ....... _,,.,..,,.,_....., .. y.,. .. .,.,,,,,,., .. ·-····-·-~-·-... -i-........... ,,.., __ ,w-.._ -----~-~-=-~-------·--· ...... , .. __ , ----.. ,., ______ """''" ~----. I ' J i !: i I ;, I· Analysis Method : Allowable Stress· Design Load Combination ASCE 7-10 Wood Species : Douglas Fir -Larch Wood Grade : No.2 Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft 900.0psi 900.0psi . E:'i-MtililliJs ·dl,:Ef~ai/1 '. -Ebend~i<x .. " 1,aoo.Oksi Eminbend-xx 580.0ksi Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 1,350.0psi 625.0psi 180.0psi 575.0psi Density 32.210pcf -~----.,,,--· '" .,,_,.-,,,~---- . Iiift:oi'nd~ .f· I J AP,el!~t~!>~d.! ........ --- Load for Span Number 1 Uniform Load : D = 0.080, L = 0.060 , Tributary Width = 1.0 ft Load for Span Number 2 Uniform Load : D = 0.080, L = 0.060, Tributary Width = 1.0 ft l' 4x10 Service loads entered. Load Factors will be applied for calculat!ons. i .... M="!=f=!=~=~~SB=~=~=~~in~:-~-tr,-ess_R_a-ti-o--=-----0. i11:· f-M~m~m-Shear Stress-·Ratio ' Section used for 1his span 4x1 O Section used for this span = 0.094; 'I fb: Actual ~ 119.67psi fv: Actual FB : Allowable = 1,080.00psl Fv: Allowable Load Combination +D+L Load Combl11atlon Location of maximum on span -;:,, 3.318ft Location of maximum on span Span # where maximum occurs Si: Span# 2 Span# where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection overall Maximum Deflections 0.004 in Ratio = 20527 -0.002 in Ratio= 21392 0.008 In Ratio= 8797 -0.005 In Ratio = 9168 4x10 = 1~.84psi = 180.00 psi +D+L = 2.000ft = Span# 1 Load Combination Span Max. •-·Def! Location in Span Load Combination Max. •+• Defl Location in Span ------------1 0.0000--·-·-·· --0.-00_0 ___ -.o_+L __________ -0:oos.2 o.ooo-- -t-0-il 2 o.oos2 3.151 0.0000 0.000 Vertical Reactions Support notation : Far left is #1 Values in KIPS ~--' .... ----~--•••~ ~ ~ N •• Load Combination Support 1 Support 2 Support 3 -Ov,,,---era"""ll...,.MAXl==·,_mu_m __________ 0.747 -·-·-----·-o-.3=7=3-------------------------- 0Verall MINlmum 0.256 0.128 D Only 0.427 0.213 -tO+L 0.747 0.373 -tO-ilr 0.427 0.213 14288 Danielson Street Sulte200 , 'P01N~Y. CA-92064 Wqod-Beam- Description: FB12 CODE REFERENCES Project Title: ;ngineer: Project Descr: Prolect ID: Printed: is JAll/'2015. 9:14AM . , Filai:o-F:l2GARFl--tEC6 , Bmk!:6. 15 12,0, Ver:6.15.12.9 •, ·---"""''• L ->,.·:,,, __ o ~--· "•••'• --~~-•N > ••••••-,,_,. __ ¥ -.. -, --.. N·---------------, -------Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Analysis-Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : Douglas Fir -larch Wood Gracie : No.2 Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling ... -· -~ _,.,.,.-.,.,,,-·---"""· ,,~,..--~-" -,,_,, y ' ........ ---·-----~--- 900.0psi 900.0psi 1,350.0psi 625.0psi 180.0 psi 575.0psi E: Modulus of Elasticity Ebend-xx 1,600.0ksi Eminbend -xx 580 .0 ksi Density 32.210pcf + t 0(0.016) L(0.02) • • D(0.01fL(0.02} . • • l' + ; 1 I : ~: ' f !· I 4x10 -4x1D ' l j L " ___ s~~ =:.::~-~ , . , .... , , , . .l-Pf>l.i,t ~9-~~ .. -. . Seru!ce loads entered, Load Factors will !:>e applied for calcufa!lons • Load for Span Number 1 Uniform Load : D = 0.0160, L = 0.020 , Tributary Width = 1.0 ft Load for Span Number 2 Unffonn Load : D = 0.0160, L = 0.020 , Tributary Width= 1.0 ft DESIGN SUMMARY : Maximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum oocurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections = = = 0.064: 1 4x10 69.24psi 1,080.00psi +M 5.000ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.006 in Ratio = 15934 0.000 fn Ratio= 0 <360 0.011 in Ratio = 8852 -0.001 in Ratio= 67113 .. Load combination ..... " ....... Span Max.·-· Def! "' "' = 0.031 ; 1 4x10 5.58psi 180.00 psi +D+L 4.246ft Span#1 Max. •+• Defl Location !n Span -----------1 0.0000 Locatton In Span 0.000 4.000 Load Combination +D+L ------,-0-.0-000___ 3.464 ,. __ _ +D+L 2 0.0100 0.0000 3.464 Vertical Reactions Load Combination Support 1 Support 2 Support3 Support notation~ F_a_r l_eft_ls_#_1 ______ va_lu_es_in_KI_P_S __ _ -,OV...--era,_,ll,.,,.MAXl==-mu_m ______ o·:os2.,..----.,0""'.2=92,-------------__________ ,. ____ '""-· 0VeraB MlNlmum 0.009 0.078 D Only 0.014 0.130 +D+L 0.032 0.292 -tD+Lr 0.014 0.130 ·, l ! t j Project Title: En9ineer: Project Descr: Project ID: 14288 Danielson Street Suite200 ficwfil'.&A~;;:.,0;;;.64.....,_ __________ .,.._..__,,..._ _______ _,_,.-'--'--~-..,,,,,,,,,,,......,,,~-~-,---.....,.---;,-:,oi~~~--,,,::- -:\N(?odSiiam . 1,IJ CODE REFERENCES -••-• -• Sn •••' '-•->.----..-.," -"·'-'"' .~ .._,..,. •• ___ ,.,,,.,~---·----•••• Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Materiat~ro,perties __,, __________ _ Analysis Method : Allowable Stress Design Fb -Tension Load Combination ASCE 7-10 Fb-Compr Fe-Prll Wood Species : iLevel Truss Joist Fe -Perp Wood Grade : limberStrand LSL 1.55E Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling + 1.75"9.25 1.75x9.26 Span =2.0ft Span= 10.50 ft t 2,325.0psi 2,325.0psi 2,050.0psi 800.0psi 310.0psi 1,070.0psi E: Moduf/JS of Elasticity Ebend-xx 1,550.0 ksf Eminbend-xx 787.82ksl Density 32.210pcf t t D(0.01il/0.02) t ~· 1.75x9.25 Span ., 4.50 ft .<•<w<n ____ .," t ! .. ~PPli~~~~I!.~ .... ··--· Load for Span Number 1 Service loads entered. Load Factors will be applied for calculations . Uniform Load : D = Q.0160, L = 0.020 , Tributary Width= 1.0 ft Point Load : D = 0.010, L = 0.020 k @ 0.0 ft Load for Span Nurri>er 2 Uniform Load : D = 0.0160, L = 0.020 , Tributary Width= 1.0 ft Load for Span Number 3 Uniform Load : D = 0.0160, L = 0.0.20 , Tributary Width= 1.0 ft DESIGN SUMMARY : Maximum Bending Stress Ratio Section used for this span = 0.01a 1 1.75x9.25 175.27psi 2,325.00psi +D-+l 10.500ft Span#2 Maximum Shear Stress Ratio Section used for this span fv: Actual 0.056: 1 1.75x9.25 17.21 psi 310.00 psi fb: Actual FB : Altowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections = :::: Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.012 in Ratio= 10486 -0.005 in Ratio= 8768 0.022 in Ratio = 5609 -0.011 in Ratio = 4436 Load Combination Span Max.•.• Defl Location in Span Load Combination . +Dit. 1 0.0000 0.000 +D-+L 2 0.0225 4.853 +D+l 3 0.0077 4.500 ..0-!l. Vertical Reactions Load. combination --. Support notation : Far left is #1 Support 1 Ol/erall MAXimum Support2 ...... 0.269 ----.. -.... Support 3 Support 4 0.373 = = Max.•+• Defi -0.0108 0.0000 -0.0008 Values in KIPS -tO+L 9.794ft Span#2 _J Localion in $pa-;-.... o.ooo ........ .. 0,000 0.756 I i l l \, 14288 Danielson Street Suite200 Project TiHe: En9ineer: Project Descr: ProiectlD: Printed: 25 JAN 2016, 9:14AM Poway, CA 92004 FIie? F:\2GARFl~fEC6 ENERCAtC, lNC.19fi3:.2015 ·arn!d:li.1512iVer.S.15.12.9 I• I I Description: FS13 . __ COD~REFEREN<;ES -· __ Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set : ASCE 7-1 O M~t~rial Properties -~---~--------------.... ,_,_., ______________ _ Analysis Method : Allowable Stress Design Fb -Tension 900.0 psi E: Modulus of Elasticity LoadComblnationASCE7-10 Fb-Compr 900.0psi Ebend-xx 1,600.0ksi Fc-Prll 1,350.0psl Eminbend-xx 580.0ksi Fe -Perp 625.0 psi Fv 180.0psi Ft 575.0psi : Beam is Fully Braced against lateraJ..torsion buckling Wood Species : Douglas Fir -Larch Wood Grade : No.2 Beam Bracing Density 32.210pcf ~ . " " 0(0.12) L(O.15) I Di.0213+(0.0267) D(0.0213~L(0.0267) ' . . 2x10 2x1O _ Applled Lo_!ldi_. ·-· ___ . ·--·-....... ____________ se_rv_ic_e_lo_a_d_s_en_te_r_ed_._Lo_a_d_F_ac_to_r_s_w_ill_b_e_ap_p_lle_d_fi_or_ca_l_cu_la_ti_on_s_. Load for Span Number 1 Unifonn Load : D = 0.02130, L = 0.02670 , Trlbutary Width= 1.0 ft Point Load: D = 0.120, L = 0.150 k ~ 0.0 ft Load for Span Number 2 Uniform Load : D = 0.02130, L = 0.02670, Tributary Width = 1.0 ft .-'D=E=S=1G='N=.S=UM=M=l.c\=Rc,._Y _________ ... ,,. ·--···---........ , -·----·-· ____ .. . Maximum Bending Stress Ratio ::: 0.36(t 1 Maximum Shear Stress Ratio Section used for this span 2x10 Section used for this span fb: Actual ::: 356.79psi fv: Actual FB ; Allowable = 990.00psi Fv : Allowable Load Combination +D-+l Load Combination Location of maximum on span = 2.000ft Location of maximum on span Span # where maximum occurs = Span#1 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection 0.010 in Ratio= 4838 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.018 in Ratio= 2688 Max Upward Total Deflection -0.002 In Ratio= 14111 Overall Maximum Deflections ----·-··---··---·-···-··-· ... , __ ,,,_ ·-·----Load Combination Span Max.•.• Defl Location In Span Load Combination ::: 0.198: 1 2x10 ~ 35.62psi =· 180.00 psi -+D+L ::: 2.000ft = Span #1 ... .,,_,_ -----·-·---' Max. •+• Def! Location in Span +D-tl 1 0,0179 ----,o'"".00=0,,....--------------.,,.o.=oo=oo,,.._---0.000 Vertical Reactions Load Combination Overall MAXimum Overall MINimllTl DOnly +D+l 2 0.0000 0.000 ... 'support 1 Support 2· -· 0.732 0.195 0.325 0.732 Support notation : Far !efUs #1 Support3 -0.270 -0.072 -0.120 -0.270 -0.0017 0.83!l Values in KlPS 14288 Danielson Street Sulte200 I, fl Descriptkm .; fB14- CODE REFERENCES Project Title: Engineer: Project Descr: -----,,,,...--,•, ___ ,,_ , • -~ ·-'-o"'"'·-•-•-.. • -------···-··. ----- Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Materi1I Prop~rties Analysis Method ; Allowable Stress Design Fb-Tension Load Combination ASCE 7-1 O Fb -Compr Fe-Prll Wood Species : Douglas Fir -Larch Fe -Perp Wood Grade : No.2 Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling -------,·--------···-----··· ., 2x10 Span=2.0ft 2x10 900.0psi 900.0psi 1,350.0psl 625.0psi 180.0psi 575.0psi Project ID: E: Modulus of Elasticity Ebend-xx 1,600.0ksi Eminbend -xx 580.0ksi Density 32.210pcf . Applied. Loads ... A ••• _ • Load for Span Number 1 SeNice loads entered. Lood Factors will be applied for calculations. -------------,-- Uniform Load : D = 0.02130, L = 0.02670, Tributary Width= 1.0 ft PointLoad: D=0.170, L=0.210k~O.Oft Load for Span Number 2 Uniform Load : D = 0.02130, L = 0.02670 , Tributary Width= 1.0 ft DESIGN SUMMARY · Maximum Bending Stress Ratio Section used for this span .. --···--·-·----------.... _, ..... ---- fb: Actual FB ; Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections :;: 0.48S 1 2x10 480.21psi 990.00psi -1{)-+l 2.000ft Span#1 Maximum Shear Stress Ratio Section used for this span fv :Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.010 in Ratio= 4730 0.000 in Ratio = O <360 0.018 in Ratio= 2616 -0.001 in Ratio= 19950 Load Combination Span Max.•.• Defl Location in Span Load Combination ,iO+L 1 o.orns ············--··o.o=oo,__------ 2 0.0000 0.000 Vertlc:ai Reactions Support notation ; Far !ell: Is #1 . Load.Combination··· ··-··suppord -Support2 ·suppoifs" ··-··· = ::: 0.506: 1 2x10 91.16 psi 180.00 psi +D+L 2.000ft Span#1 Max."+" Dell Location In Span 0.0000 0.000 -0.000S 0.425 Values in KIPS -0ve~ra-u=MA-Xi-mu_m __________ 1.,....J=5"""6-~-0.832 ·····--·---·--··· -------------- Overall MINimum 0.364 -0.223 D Only 0.606 -0.372 -+D+L 1.356 -0.832 \ 14288 Danielson Street Suite200 Project Title: Engineer: Project Descr: Project ID: ,1POV@y,-CA92064 .. -.· . __ .-------·--··-·""'·----.-· .-.-. ~-____ . -~~,,,_._,,.,.,.-----~....,..,..,..,,,==-~~ 1WoodSeam ENERCA!.C, !NC, 1,9 IH _ .. COPE:&l;Rl:NCES ---·-==w_-V_>(w' ... ,ff......,........~---'"""-·<-,-_,. __ ,,M "''<A(" Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties -------------· ·----·-·---·---·-··------·-·-.. -·-· . . ............. ·--·-- Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tenslon Fb-Compr Fc-Pril Fc-Perp Fv Ft 2,900.0psi 2,900.0psl 2,900.0psi 750.0psl 290.0psl 2,025.0psi Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D 0.13 0.16 3.5x9.25 3.5x9.25 Span=2.0ft Span= 12.50ft E: Modulus of Elasticity Ebend-xx 2,000.0ksl Eminbend -xx 1,016.54ksi Density 32.210pcf ... AppJled L~ads. Service loads entered. Load Factors will be App!!ed for r-..a!cuiations, Load for Span Number 1 Uniform Load : D = 0.0640, L = 0.020 , Tributary Width = 1.0 ft Point Load: D =0.130, L= 0.160k@O.Oft Load for Span Number 2 Uniform Load : D = 0.130, L = 0.160, Tributary Width = 1.0 ft DESIGN SUMMARY .. . -···-...... , ... ·-----------···-------Design OK Maximum Bending Stress Ratio Section used for this span fb :Actual FB : Allowable Load Combination Location of maximum on span Span# where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections Load Combination -tD+L Span 1 2 = 0.439: 1 3.5x9.25 1,273.32psi 2,900.00psi Maximum Shear Stress Ratio Section used for this span fv:Actual Max.·-· Dell +D+L 6.425ft Span#2 0.179 ln Ratio= -0.084 in Ratio = 0.320 in Ratio = -0.150 in Ratio= Location in Span Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 839 568 468 320 Load Combinafion ::; -. = 0.264 : 1 3.5x9,25 76.43psi 290.00 psi +D+L 2.000ft Span#1 Max, "+" Deft Location in Span 0.0000 0.3204 0;000 6,355 -------0-.1-495--· .. --· -u.ooo·_ .. ___ 0,0:JOO 0.000 Vertical Reactions Support notation : Far left is #1 Values in KIPS i.oact combination ... .. . -----·-·---··Support r--support 2° --·-· support 3 . · overall MAXimum ---·-2,33=0--....,1'"".7~53,,.......------------·-··--·----··-·-............ ···- overall MINimum 0.661 0.469 DOnly 1.102 0.781 -tO-+L 2.330 1.753 '\ ' Project Title: Engineer: Project Descr: 14288 Danielson Street Sulte200 Powa ·CA 92064 t It Description 1 FS16 ___ CODE-REFERENCES _______ __ Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Fb -Tension Load Combination ASCE 7-10 Fb-Compr Fc-Pril Wood Species : !Level Truss Joist Fe -Perp Wood Grade : TimberStrand LSL 1.55E Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling t .,, < I • t I ' i • + • + I 1.75x11.875 1.75x11.875 1:. I Span= 3.0 ft Span = 9.50 ft 2,325.0psi 2,325.0psl 2,050.0psi 800.0psi 310.0psl 1,070.0psi Project ID: E: Modulus of Elasticity Ebend-xx 1,550.0ksl Emlnbend -xx 787 .82 ksi Density 32210pcf • ti t T I ] 1.75x11.875 Span = 1.50 ft _ j\pplled Loads... . .. _ . ________ _ Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load : D = 0.0160, L = 0.020 , Tributary Width = 1.0 ft Load for Span Number 2 Uniform Load : D = 0.0160, L = 0.020 , Tributary Width = 1.0 ft Load for Span Number 3 Uniform Load: D = 0.0160, L = 0.020, Tributary Width= 1.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection .. .. = 0.03Q 1 1.75x11.875 89.61psi 2,325.00psi +D+L 5.109ft Span#2 Maximum Shear Stress Ratio Section used for this span fv :Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs Max Downward Transient Deflection .Max Upwaro Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.007 in Ratio = 16598 -0.003 in Ratio = 10678 0.012 in Ratio= 9221 -0.006 In Ratio= 5932 Overall Maximum Deflections . :; ' = = = = 0.035: 1 1.75x11.875 10.78psi 310.00psi +D+L 3.000ft Span#1 ··Load cciinb1iiaikiii.. · · -··· · -··· ••-N --· ____ ,. Span Max •• _. Deft Loca!ion In Span Load Combinallon Location in Span +O+L Vertical Reactions ·Loa<i"combination ____ .. Overall MAXimum Overall MINimum 1 2 3 Support1 0.0000 0.000 -+l),j,(_ 0.0124 4,950 0.0000 4.950 -+O+L -0.0080 0.0000 -0.0061 0.000 0.000 1.500 Support notalion : Far left is #1 Values In KIPS -------------------. --........ __ _ Support 2 Support 3 Support 4 0.292 o.=21-2------------... ,,,, ___ ,, ___ , ____ _ o.01a o.os1 14288 Danielson Street Sul!e200 Project Title: Engineer: Project Descr: Project ID: ·powa CA 92004 Prin'.ed,2sJAN201e. n:14AM ,,,.,_w'--"· =o=o-'-"'d=-.. ,"""e=e=a.:...m----·--____ , ___ _. _______________ ,._,........'---'----'"'---,-+-'-"-'-------,------Fil-e.-=F--,12=GARr~~1N.,..,,f=.e cs·- . . , JNC 19lls-201S, Budd:6.1SJ2.9,Ver.$.j5J2.9 I ti Descripiioo : FB17 __ CODE8EFEReNCES ... _, ____ --··--·-· ····-··· . . ---------------------------Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 load Combination Set: ASCE 7-10 Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : TlmberStrand LSL 1.55E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam Is Fully Braced against lateral-torsion buckling --~~ .. .,,,.,,,,,,.,.,.,,__ ..,..,,.._,.,, -~·""' ... .....,,.,,. ,,.,,,. ' , ~-- 1. • 1.75x11.875 Span-" 10.0ft 2,325.0psl 2,325.0psi 2,050.0psi 800.0psi 310.0psl 1,070.0psi E: Modulus of Elasticity Ebend-xx 1,550.0ksi Eminbend -xx 787.82ksi Density 32.210pcf I 1.75Jl11.875 Span=2.0ft . .&el~-~ .IA.~~--' Service loads entered. Load Factors will be applied for calculations . -----· __ ,, __ ,, - Load for Span Number 2 Uniform Load : D = 0.0320, L = 0.040 , Trlbutary Width = 1.0 ft Point Load: 0 =0.130, L= 0.160 k@2.0ft DESIGN SUMMARY , Maximum Bending Stress Ratio Section used for this span fb; Actual FB : Allowable Load Combination = Location of maximum on span Span# where maximum occurs '~-. Maximum Deflection Max Downward Transient Defleotlon Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections 0.091: 1 1.75x11.875 211.23psi 2,325.00psi -t-O+L 10.000ft Span#1 Maximum Shear Stress Ratio Section used for this span fv :Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.014 in Ratio= 3314 -0.012 In Ratio= 10170 0.026 in Ratio= 1830 -0.021 In Ratio= 5618 = = = 0.085: 1 1.75x11.875 26.22psi 310.00psi -t-O+L 10.000ft Span#1 Load Combination Span Max.;._. Dell ... iocatfon in Span Load Combination Max,•+• Deff Location in Span +D+l __ .Y:~~!~I ~eactions Load Combination Overall MAXimum Overal MINimum DOnly +D+l +D+Lr +D+S 1 0.0000 O.oo-=-o -----,+0=-,.-=-L-----------:-0""'.0c::c21-:-:4----5:::-:.8:-:10::- 2 0.0262 2.000 0.0000 5.610 ..... ... .. .... support 1 -0.072 -0.019 -0.032 -0.072 --0.032 -0.032 Support2 0.506 0.136 0.226 0.506 0.226 0.226 Support3 Support notation ; Far left is #1 Values In KIPS 14288 Danierson Street Sulte200 Project ntte: En9ineer: ProJect Descr: Project ID: Powa ·cA:92004 Prlnled:25JAN2016, 9:14AM ...:,.;::;.;.:.;;;._ ~"F'. =, ~.---,-,-------,-----,---------------. --. -,-------'---Fil-e=--P-\2~A~tEC6 , Wood Be'am . •, . __ , , . . ENERCALC, INC. 1983-2015, Build:8.15.12.9 Ver.6.:15.12.9 I• f Description : FS17-'A CODE REFERENCES --·. ·> _____ ,_,. __ , .•.•. ··---. ·--·· ·--·-----·-··-· •• --------------------------- ! J. i. Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 M~~~fi~I Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Fb-Tension Fb-Compr Fc-Pril Wood Species Wood Grade Beam Bracing l : iLevel Truss Joist Fe -Perp : Parallam PSL 2.0E Fv Ft : Beam is Fully Braced against lateral-torsion buckling + 3.5x11.875 + ,. ---· 2,900.0psi 2,900.0psi 2,900.0psi 750.0psl 290.0psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend-xx 1,016.54ksl Density 32.210pcf + 0(0,09).t(0.12) Df'03+L(O .• ) I f 3.5x11.875 Span=2.0ft _ Applied Loads, ....... _ ------~-_Service loads entered. Load Factors will he applied fur calculations. Load for Span Number 1 Uniform Load : D = 0.0980, L = 0.280 , Tributary Width = 1.0 ft Load for Span Nu• 2 Uniform Load : D = 0.0320, L = 0.040, Tributary Width= 1.0 ft Point Load : D = 0.090, L = 0.120 k ~ 2.0 ft ~SIGN SUMMARY _ ;Maximum Bending Stress Ratio Section used for this span fb: Actual = = 0.224: 1 3.5x11.875 648.76psi 2,900.00psi Maximum Shear Stress Ratio Section used for this span fv: Actual FB : Allowable Load Combination Location of maximum on span Span# where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Oeflectlon Max Downward Total Deflection Max Upward Total Deflection = +D+L 4.860ft Span#1 0.062 In Ratio = -0.037 In Ratio = 0.082 In Ratio = -0.048 In Ratio = Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 1950 1304 1470 1002 0.198: 1 3.5x11.875 57.29psi 290.00 psi +D-tL 9.050ft Span#1 .. Qv~r~l!_Maximu~_peflections -·-· .... _____ -----····-----'-~------------------ Load Combination Span Max."-" Def! Location in Span Load Combination Max. • +" Dell Location in Span ..o+L 1 0.0816 4.972 -------------,-0.""'oo,.,..,..oo ·~oo-- 2 0.0000 4.972 -0.0478 2.000 Vertical Reactions Support notation : Far left is #1 Values In KIPS Load Combination "support 1 Support 2 Support 3 ...,o"""v-era~ll=MA=xi-mu_m ______ t.83,,_4--=2.a=oo· -------------- Overall M!Nimum 0.279 0.401 D On!y 0.466 0.668 ..O+L 1.834 2.300 Project Title: Engineer: Prcaject Descr: ProlectlD: 14288 Danielson Street Suite200 . ·Poway, CA92064 l,,,.,_,_w,.;:;.:;: ·o""'"';o:'-"'! ... d=. · B,;.=.. e=a.,_m.,,....•• ---.....,-----..,, _ ___,_ _____ _ P1i1ilat!: 25 J/1.N li0~6. S:14/iM . . . . . !'llli= P-'2GA . - . ENERCALC, !l\'C 100S.:2015, Bmid:6,15: . • It CODE REFERENCES ___ .,..,.....,........,_,.,.,_u~· •-••• ''" '••----..,_, ------------·-·-··--·------Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : !Level Truss Joist Wood Grade : TlmberStrand LSL 1.55E Fb-Tenslon Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 2,325.0psi 2,325.0psi 2,050.0psl 800.0 psl 310.0psi 1,010.opsr E : Modulus of Elasticity Ebend-xx 1,550.0ksi Eminbend -xx 787.82ksf Density 32.210pcf 1,1 D(1.01CL¥4Li. 2+ I D(0.0224.lL(0.064) _ j ,..,..., ---------,. .. ------==,.+->-"-"'-....._ _____ ...,.----------1 I J-· --------------'--~ 1.75x11.875 Span = 16.50 ft Applled l:g~ds ___ ,., __________ . ----··· Service loads entered. Load Factors wlll be applied for calculations. Load for Span Number 1 Unifonn Load : D = 0.02240, L = 0,0640 kif!, Extent = 0.0 ->> 15.0 fl, Tributary Width = 1.0 fl Unifonn Load: D = 0.3540, L = 0,280 kif!, Extent= 15.0->> 16.50 ft, Tributary Width= 1.0 ft Point Load : D = 1.050, L = 0.850 k @ 15.0 ft ,.....,D=S=Sl=G,.,,.N=SU='M=MA=R=Y _____________________ --·-.. ____ ,. -··· _ 'Maximum Bending Stress Ratio Section used for this span fb: Actual = FB : Allowable --:=:.. Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection ----·--·-·· ......... . Overall Maximum Deflections = 0.61ft 1 1.75x11.875 1,437.99psi 2,325.00psi Maximum Shear Stress Ratio Section usec! for this span fv: Actual +D+L 10.659ft Span# 1 0.402 In Ratio= 0.000 In Ratio = 0.653 in Ratio = 0.000 in Ratio = Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 492 O <360 303 0<240 = 0.608: 1 1.75x11.875 = 188.63 psi = 310.00 psi +D+L = 15.536ft = Span #1 . .J . ·Loa1fo:iirih'rnai10n. . . ··-·. . ..... Span ····-····--·· ··-=----:----:-::---:-:---:-----------------Max.•.• Dell Location In Span Load Combination Max.•+• Dell +D+L 1 .Y~!~ -~~ons Load Combination Overa!!MAXlmum Overall MINimum DOnly +D+L +D+Lr +D+S ---· ·-Support1 0.923 0.182 0.303 0.923 0.303 0.303 V.6533 -a.,...._1=s..,...2_________ o.oom:: Support notation: Far!efi!s#1 Values in KIPS . suppoiti·-·· 3,224 ---- 0.968 1.614 3.224 1.614 1.614 Location in Span 0.000 ' ' Project Title: EnQineer: Project Descr: 14288 Danielson Street Suite200 Powa CA 92064 · Wood-Beam I II Description: FBi8 _ .. CODE REFERENC~S . Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Matari~I Properii~~-.. - Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : ilevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tension Fb-Compr Fe-Pru Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi r-· ----------.... , .. _ ... ---· ---... ·---~ ---·-. __ ,..,..,. I 0(1.6} !.(3.04) 0(2.11} L{2.64) I I 3.5x11.875 _ Span "'_13.0 ft Project ID: PJi11ted: 25JAN 2016, 9:1¼'>' . Flili= F·\2GARFH·EC6 INC.1983-2015, Buiki:6.15.12.9, Ver.6.15.12.9 E: Modulus of Elastlcity Ebend-xx 2,000.0ksi Emlnbend -xx 1,016.54 ksi Density 32.210pcf . .. 0(1.05} L(0.85) . ~P.~-~-~~~-~-...... ·-----· .. -Service loads entered. Load Factors will be applied fur calculations . Load for Span Number 1 Uniform Load : D = 0.3540, L = 0.280 k/ft, Extent = 11.50 ->> 13.0 ft, T ributarv Width = 1.0 ft Point Load : D = 1.60, L = 3.040 k @ 0.50 ft Point Load : D = 2.110, L = 2.640 k@ 4.0 ft Point Load : D = 1.050, L = 0.850 k @ 11.50 ft ,....,D='E.=Sl..,,,G=N-=SU=M=MA=R_._Y _________ .. .. ........ __ Maximum Bending Stress Ratio -i-.. 0.79! 1 Maximum Shear Stress Ratio Section used for this span 3.5x11.875 Section used for this span fb : Actual _..,,, 2,306.59psi fv : Actual FB: Allowable !'~ 2,900.00psi Load Combination +D+l Location of maximum on span = 4.033ft Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.233 In Ratio = 0.000 in Ratio= 0.424 In Ratio = 0.000 Jn Ratio= OV~~~ll-~~~um l;)!flectlons Load Combina1lon Span Max. • -· Defl · ---Location in Span Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 669 0 <360 367 0<240 Load Combination = 0.450: 1 3.5xf1.875 = 130.48psi = 290.00psi +D+L = ·12.051 ft ~ Span#1 Max. "+" Dell Location in Span --¼l)--=-4.:--·---------,i,-----0-=--_t.'""_2'77'41 6.073 ---------=-o.-=-o:i=o"'"o-o,coo Vertical Reactions Support notation: Farlefi ls#1 Values in KIPS . .. • o•--. • --Load Combination Support 1 Support2 OllerallMA~~~m-um _____ __,,8~~2=4---.-4,2=1=7--------------- 011eral! MINimum 1.891 1.284 D Only 3.151 2.140 +D+L 8.024 4.217 +D+Lr 3.151 2.140 14288 Danielson Street Suite200 Poway, CA 92064 Project TiUe: Engineer: PrQJect Descr: ProlectlD: l'linted:25JAN2016. 9:14AM l:wo~d :seam,. . -File =-F:\WARFl:-1.EC/i ENERCALC INC. 1983-2-015, !'lwld:G.15,12.9,Var;G.-1512.9 I.· ... ,.... . . Id! Description : FE19 _,.COP~ RE~RENCES Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : TlmberStrand LSL 1.55E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 2,325.0psi 2,325.0psi 2,050.0psi 800.0psi 310.0psi 1,070.0psi E: Modulus of Elasticity Ebend-xx 1,550.0 ksl Emlnbend -xx 787 .82 ksi Density 32.210pcf I 0(0.04JLC0.1) DJO.OftL(0.1) t f • • + •• t • 'J_: --------l ____ r 1.75x9.5 1.75x9.5 Span= 11.501\ Span = 1.50 ft Service loads entered. Load Factors will be applied for calculations. ,., . ~pp!i_~. ~o~~~ ., ....... .. ., . -· -.. -----,----------------------Load for Span Number 1 Uniform Load : D = 0.040, L = 0.10 , Tributary Width = 1.0 ft Load for Span Number 2 Uniform Load: 0 = 0.040, L = 0.10, Tributary Width= 1.0 ft DESIGN SUMMARY 1Maximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Span# where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection overall Maximum Deflections L~d Combination .. ·-·· ... Span +D+L 1 Vertical Reactions Load Combination -. Overall MAXimum 0\/eraU M!Nimum DOnly -IO-ti. -+Q-ti.r 2 0.791 0.136 0.226 0.791 0.226 = = = = = 0.438: 1 1.75x9.5 1,019.47psl 2,325.00psi Maximum Shear Stress Ratio Section used for this span fv: Actual +D+L 5.654ft Span#1 0.197 in Ratio = -0.078 in Ratio= 0.275 In Ratio = -0.110 In Ratio= Max. ·~ • Defl Location in Span 0,2751 5J'18 0.0000 5.718 Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 702 458 501 326 Load Combination --0+1. Support notation : Far left is #1 . --·· ---·-Support 2 Support 3 1.029 0.176 0.294 1.029 0.294 = = = 0.207: 1 1.75x9.5 64.13 psi 310.00 psi +D+L 10.729ft Span# 1 ·---. J Max. •+• Deft Location in Span 0.0000 o.ooc --0.1098 UiOO Values in KIPS 'I Project Title: Engineer: ProJecl Descr: Project ID: 1,1 De$criplton,: CODE REFERENCES _____ ,. __ -···· -·------·--··--· ·------···· ,. _________________________ _ ' ' l I l L ' Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Materiail P~perties ·------Analysis Method : Allowable Stress Design Fb -Tension LoadCombinatton ;ASCE 7-10 Fb-Compr Fe-Prll Wood Species : iLevel Truss Joist Fe -Perp Wood Grade : Parallam PSL 2.0E Fv Ft Beam Bracing : Beam ls Fully Braced against lateral-torsion buckling • D(0.19+ L(0.56) 3.5x11.875 Span=9.0ft + 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi E: Modulus of Elasticity Ebend-xx 2,000.0ksl Eminbend-xx 1,016.54ksl Density 32.21 0pcf D(0.29) L(0.73) 3.5x11.875 Span =5.0ft ... lfP~-~~-~~,~--. ···--Service loads entered. Load Factors wilf be applied for calculations . Load for Span Number 1 Unffonn Load: D = 0,1960, L = 0.560, Tributary Width= 1.0 ft Load for Span Number 2 Point Load : D = 0.290, L = 0.730 k ta! 5.0 ft ,......,D=S=Sl=G..._N=SU=M=MA"-"R=Y,___ ___________ ·---· . ---·· _________ , _____ --· ...... __ .. ·=I . 0.267. 1 Maximum Shear Stress Ratio Maximum Bending Stress Ratio Section used for this span 3.5x11.875 Section used for this span fb :Actual = 775.61psl fv : Actual FB : Allowable = 2,900.00psi Fv: Allowable Load Combination Location of maximum.on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection = = Overall.Maximum DeflectiC?~~-----___ .. Load Combination Span Max. • -• Defl -!{)-+!., 1 0.0699 D Only 2 0.0071 Vertical Reactions +D+L Load Combination 3.771ft Location of maximum on span Span # 1 Span # where maximum occurs 0.053 in Ratio = 2042 -0.010 in Ratio= 11518 0.070 In Ratio = 1545 -0.012 in Ratio= 10224 Locatioo.iri Span 4.173 5.000 Load Combination Support nolafion : Far left is #1 = 0.404: 1 3.5x11.875 = 117.17 psi = 290.00psi +D+L = 8.045ft = Span#1 J ·-----------. .I Max. •+• Deft Location in Span 0.0000 0.000 -0.0117 i.844 Values in KIPS Loaifcomiiinatton ····--Support1 Support2 Support_3 _______ , .......... ______________ _ ·-·overa!IMAXim_u_m _____ _,2"'"'.8=35=----,-4=,913=9------- 0veraU MINimum 0.433 0.800 D Only 0.721 1.333 +D-it 2.835 4.989 -+0-tlr 0.721 1.333 '\ Project Title: Project ID: Engineer: ProJect Oescr: Description : f.B23 CODE REFERENCES ••~ --"¥''·-----~ .--,..,,,,.,.,,,,.,.,, •H~--•H-- Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Materiaf Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Fb-Tenslon Fb-Compr Fc-Prll Wood Species : ilevel Truss Joist Fe -Perp Wood Grade : Parallam PSL 2.0E Fv ' Fl Beam Bracing ~ Beam is Fully Braced against lateral--torslon buckling + t + Mx11.875 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psi l'rinl!ld: 25 J4N2016. 9:14AM . . . .File= F:\2GARFHEC!i ENERCAl,; INC.1~2015,Buttll:8,15,12.9, Vaci!.1512.9 E: Modulus of easticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54ksi Density 32.210pcf 0{0.23} L(0.57) 3.5x11.675 i 1· ' _____ ! Applied Loads ____ --· _____ ... _ _ ·-· _ ... _______ , ,,,,service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load : D = 0.0770, L = 0,220 , Tributary Width= 1.0 ft Load for Span Number 2 Point Load : D = 0.230, L = 0.570 k @ 5.0 ft ,_,D=E='SJ=G=N=SU=M=M=~=R~Y __________ ,,,. ..... ,,. v----·-.. _,, __ _ · Maximum Bending Stress Ratio = 0.201: 1 Maximum Shear Stress Ratio Section used for this span 3.5x11.875 Section used for this span lb: Actual 4 .583 .. 52psi fv: Actual FB : Allowable = 2,900.00psi Fv: Allowable Load Combination +D+L Load Combination Location of maximum on span = 7.000ft Location of maximum on span Span# where maximum occu~ = Span # 1 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall, Maximum Deflections Load Combination -+0-tl. Vertical Reactions Span 1 2 ---·-·--Max.•-• Den .. " 0.0000 0.1037 0.073 in Ratio= 1646 -0.005 In Ratio= 17286 0.104in Ratio= 1156 -0.007 in Ratio= 11475 Location in Span load Combinalion 0.000 -+O+!.. 5.000 Support notation ; Far left rs #1 . Load Combliiaiion Support 1 Support2 Support 3 -o=-11-era""""!,.,.IM.,.,.AX"""i-mu_m _______ o-=.468 ........... 2.""'41=1--~------------- 0veran MINimum 0.063 0.398 D Only 0.105 0.664 -+0-tl. 0.468 2.411 -+0-tl.r 0.105 0.664 = = = ',,.. 0.164: 1 3.5x11.875 47.66psi 290.00psi +D+L 6.022ft Span#1 Max. •+• Dell Loca!ion in Span -0.0073 5.084 0.0000 5.084 Values in KIPS -------- ' 14288 Danielson Street Suite200 j ~oway, _ _G~:~2064 .. _ f, 11 Description ; FB24 CODE REFERENCES ciicLiiatio~s-per NDS 2012, IBC 2012, CBC 201S: ASCE 7-10 Load Combination Set: ASCE 7-10 Mat~rial PrCiperties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 WQOd Species : iLevel Truss Joist Wood Grade : Parallam PSL 2.0E ProJect Title: En9ineer: ProJectDescr: Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft 2,900.0psi 2,900.0psi 2,900.0psi Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 750.0psi 290.0psi 2,025.0psi D(f'.l Project ID: Plilil!Xl: 2/i JAN 2016. 9:14AM ~~F:\2GARFl•1f.EC6 BulkJ:lk15, 12.!i,Ner.a 15.12.9' E: Modulus of Elasticity Ebend-xx 2,000.0ksi Emlnbend -xx 1,016.54ksi Density 32.21 o pct D£0.24~L(0.14) t f I i--:--~-·-' ---D{-0.3_9+L_(0._49) ___ • ____ t.._, ----------l 5.25x16.0 Span = 19.0 ft ~P.~~:L~~~-..... Service loads entered. Load Factors wm be applied for calcu!etions. Load for Span.Number 1 . Uniform Load: D=0.390, L = 0.490 k/ft, Extent= 0.0->> 12.50ft, Tributary Width= 1.0ft Uniform Load: D =0.2410, L = 0.140 k/ft, Extent= 12.50-» 19.0 ft, Tributary Width= 1.0 ft Point Load : D = 1.890 k@ 12.50 ft DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span fb: Actual FB : Allowable Load Combination Location of maxiroom on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection . ~e~! ~~~l!'!l.m .~ltflectlons Load Combination Span = = = ---· o> .,..,., 0 M-0-) -,(<,v,,, o•• - 0.7501 5.25x16.0 2,174.25psl 2,900.00psi +D-+L 9.639ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual 0.329 In Ratio = 0.000 In Ratio = 0.731 in Ratio= 0.000 in Ratio = Max. • -• Deli --·· Locatton in Span Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 693 0 <360 311 0 <240 Load Combination ::: 0.449: 1 5.25x16.0 = 130.22 psi ,:;, 290.00psi +D-+L J;• 0.000ft t' Span#1 Max.'+" Dell Location in S~- 0.731 j' . -lMOO --------·------+Otl. i 0,0000 i>.OGO Vertical Reactions SQpport notallon ; Far left ls #1 Values In KIPS ·ioad·comblnation·. Support1 "supporti ___ ,,_ ------------------'' .,,,.' ·-···----·· ·-- 011eralrM'~AX~im-um-----~a'""'.4""52.-----,,6=,91=5---- 0veral! MIN!murn 2.512 2.487 D Onty 4.186 4.146 +Doi\. 8.452 6.915 +0-1\.r 4.186 4.146 -tO+S 4.186 4.146 14288 Danielsoo Street Sulte200 Project Tille: Engineer: Project Descr. Project ID: PQ_~y.CA~?=06~4~---------.,-,-~-----~ ----,-----;---..,....,..,..,.....,....,..------,-,.-,-~---,------Pri __ tllild_:2_5 __ JflN_2--01_,__~..;.;.~1;....,4Ni;....,I~ 'Wt>od Beam. Fi!e=F:'2GARFHEC6 ENERCALC. INC. 1968-2015, Bul!d:6:15.12,9, V,er.6.16.129 DescrlpUori ; CODE REFERENCES ---·-___ _..•,~.., .. W> -~· ---M-<...., W•• •-•-••·-·-------,...., Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Fb -Tension Load Combination ASCE 7-1 O Fb-Compr Fc-Prll Wood Species : ilevel Truss Joist Fe -Perp Wood Grade : Parallam PSL 2.0E Fv Ft Beam Bracing ; Beam is Fully Braced against lateral-torsion buckling 2,900.0psi 2,900.0psi 2,90Q.Opsi 750.0psi 290.0psi 2,025.0psi 0(2.06)_ L(2.73} i 3.Sx.14.0 Span = 20.0 ft I t E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend-xx 1,016.54ksl Density 32.210pcf l A l\lfecf Loads . ·-Pt'•.. ..-.. ,. .,·,-···-.. --.• -........ ~-· ......... . Service loads entered. Load Factors wif! be applied for calculations . Point Load : D = 2.060, L = 2.730 k ~ 12.0 ft OESIGN_W..MM=~=R'""'"Y _______________ ··-··-·· . ·---·--_____ ... ····------·-------·------···· ·, • Design OK , 'Maximum Bending Stress Ratio "" Section used for this span fb: Achlal = FB : Allowable == Load Cornbinatlon Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections 0.830: 1 3.5x14.0 2,407.28psl 2,900.00psi Maximum Shear Stress Ratio Section used for this span fv: Actual +D-tl.. 11.971.ft Span# 1 0.468 in Ratio = 0.000 in Ratio = 0.821 in Ratio= 0.000 in Ratio = Fv : Allowable Load Combination Location of maximum on span Span # where maxfmum occurs 512 0 <360 292 0<240 = = = = = 0.303: 1 3.5x14.0 87.98psi 290.00psi +0-tl.. 12.044ft Span#1 Load Combination Span Max. •.• Dell Location in Span Load Combination Max. •+• Def! Location in Span -__ _; -tD+L 1 D.8215 f0.584 -0.0000 G.000-- .... Y.~!!t~J_ Re_a_ct~~~~ ·---_____ --~ ___ s_up_po_rt._n_ota_li_on_:_Fa_r_left_is_#_1 ______ va_lu_es_i_n K_IP_s _______ _ Load Combination Support 1 Support 2 ·-·Overall MAXimum 1.916 2:874 OveraU MJNimum 0.494 0.742 D Only 0.824 1.236 +D+L 1.916 2.874 +D+Lr 0.824 1.236 +D+S 0.824 1.236 +0-l().750Lr-+0.750L 1.643 2.465 +0i().750L-t-0.750S 1.643 2.465 +D-+0.60W 0.824 1.236 14288 Danielson Street Suite200 Project Title: Engineer: ProJect Descr: Project ID: f~;;_QPJ_;.,;;9'2=0"""64.,___~ __ ,,__........, ____ ...,._ ___ ~--~-~,......,...,..,,..~-"-:-----'-+-· . .._,.,,,._,..,.,,,,_---l'o_·me_d:_25_JA,,...,lll2tl=1,,,,..G • ..,..,9:1"""4Ali.,,...~-, r·w. d. ·s -. ... . File,,F:i2GAnFr-1·EC6 • -00 8~ffl . .. . . _ .. . . Buikl:a 15 12.9/ifer.6.Jii:12J) 1,11 Description : 'FB26 _ CP~~:R~FJ~~£~_§__ . _ ··-· __ _ Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Mat~i~l-~roperties -----······-···-------- Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : iLevel Truss Joist Wood Grade : TimberStrand LSL 1.55E Fb-Tension Fb-Compr Fc-Prll Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 1.75x11.875 Span "' 20.0 ft 2,325.0psi 2,325.0psi 2,050.0psi 800.0psi 310.0psi 1,070.0psi D(0.43) L(0.32} E: Modulus of Elasticity Ebend-xx 1,550.0ksi Eminbend -xx 787.82 ksi Density 32.210pcf __ ,_.~ef?l!~L_oads ___ ..... .. ............. , Service loads entered. Load Factors will be applied for calculations. Point Load: D = 0.430, L:::: 0.320 k@ 14.0 ft ,....,D=f=Sl=GN=-=SU=lf.=MA:..::R,_._,Y,.__ ______________ .. __ _ --------..... ------·-. ------Design OK !Maximum Bending Stress Ratio ·~ ' Section used for this span fb :Actual = FB : Allowable = Load Combination Location of maximum on span = Span# where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections ---·--·- 0.394: 1 1.75x11.875 916.81psi 2,325.00psi -tO+L 14.015ft Span#1 Maximum Shear Stress Ratio Section used for this span fv: Actual 0.196 in Ratio= 0.000 in Ratio = 0.460 in Ratio = 0.000 in Ratio = Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 1223 0 <360 521 0 <240 Load Combination Span Max.•.• Dell Location in Span Load Combination .. -!{)-ti, ... ---·------i 0.4599 11.022 ---- Vertical Reactions Support notatton : Far left is #1 = = 0.122: 1 1.75x11.875 37.89psi 310.00psi +D+L 14.015ft Span#1 Max. •+• Def! Location in Span 0.0000 1100(1 Values In KIPS -M--M-•<M•O ··M-L -·-·--"' ---------------------Load Combination Support1 Support2 Overall MAXlmum 0.225 0.525 Overall MINimum 0.077 0.181 DOnly 0.129 0.301 -tO-tL 0.225 0.525 -tD-+Lr 0.129 0.301 -tO-tS 0.129 0.301 -!0+0.750Lr+0.750L 0.201 0.469 -I0+0.750L +0.750S 0.201 0.469 -I0+0.60W 0.129 0.301 14288 Danielson Street Suite200 Project Title: Engineer: Pl'Oj8Ct Descr: Project ID: 92064 ·wood.Beam Ptinw.l: 25 JAN 201&. 9:14ftM . File= F:OOARFl-tEC-0 ENERCAlC, ifllC. 191J3:.201i'i, Build:$15.12.9; Ver.6.15,12.9 Id Pescrlptioo : FB27 CODE REFERENCES ~-..~ ---·-·· ~-M~----,.-, ... ,. ~ -S 0< ....... _, ........ _ --- Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Matelria%1 Properti~ Analysis Method: Allowable Stress Design Load Combination 1\SCE 7-10 Fb-Tension Fb-Compr Fc-Prll Wood Species Wood Grade : iLevel Truss Joist Fe-Perp Beam Brat:fng : TimberStrand LSL 1.55E Fv Ft : Beam is Fully Braced against lateral-torsion buckling 3.5x11.875 Span•,20.0 ft 2,325.0psl 2,325.0psl 2,050.0psi 800.0psl 310.0psl 1,070.0psl E: Modulus of Elasticity Ebend-xx 1,550.0ksi Ernlnbend-xx 787.82ksi Density 32.210pcf D{1.15)1 L(0.94) i t -~ __ A,P.pliet~~~~~-... ... . .... . .. ···-· ___ .... _ . ., Service loads entered. Load Factors will be applied for calculatlons. PointLoad: D=1.150, L=0.940k@16.0ft DESIGN SUMMARY ;Maximum Bending Stress Ratio ·::a: Section used for this span tb; Actual = FB : Allowable = Load Combination Location of maximum on span = Span # where maximum occurs "' Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections Load Combination Span 0.419: 1 3.5x11.875 974.76psi 2,325.00psi Maximum Shear Stress Ratio Section used for this span fv: Actual -+O+l 15.985ft Span#1 0.208 in Ratio= 0.000 In Ratio = 0.463 in Ratio = 0.000 in Ratio = Max.•.• Def! Location in Span Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 1153 0 <360 518 0<240 Load Combination = ::: = = 0.195:1 3.5x11.875 60.34psi 310.00 psi +O+L 16.058ft Span#1 Max. •+• Oefl Location In Span +D+l ........ --------i.,-----=-o.-::<JG::-:::2""8 ----,-1.,,...ta:;c-;1-,-4 _____ _ ------o.ocfiti O.GOO Vertical Reactions Support notation : Far left is #1 Values In KIPS Load Combfnation ---Support 1 Support 2 OveraliMAXlmum 0.418 1.672 ------------- Overall M!Nimum 0.138 0.552 D Only 0.230 0.920 +D-tl 0.418 1.672 +D-tlr 0.230 ' 0.920 +D+S 0.230 0.920 +D-t0.750l.r-+0.750L 0.371 1,484 +D-t0.750!.-+0.750S 0.371 1.484 +D-+0.60W 0.230 0.920 14288 Danielson Street Sulte200 Project Title: E09ineer: Project Descr: Project ID: Powa c&P,-92064 ....,..,..,.........,._ Plfnlec:25 JAfl 2018, !l;W\11 . ·WQOd.$eam. -.~·~ ,,-,~----~~_,..,.....,......,.... __________________ ..;.;f'll;;,;;.e;.,;;;.·.,.=.f':\2.;;;.;;.GARFFLEC6'- ·--·----.. Buik!;6:l!if2j,Ver:61!5:12.1l · Oescr1pflc1Q ~ ·· ... · FB28 · · CODE REFERENCES -~ .. , N•• ··~-• -•• ~ •~ •• ~---,-~--.. ~. Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 __ Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : ilevel Truss Joist Wood Grade : Parallam PSL 2.0E Fb-Tenslon Fb-Compr Fc-Pril Fc-Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling I D(0.88) 1 L{0.92) ! I D(0.78} L{0.82} 3.5x11.B75 Spa11=7.0lt 2,900.0psi 2,900.0psi 2,900.0psi 750.0psl 290.0psi 2,025;0psl E: Modulus of Elasticity Ebend-xx 2,000.0ksl Eminbend-xx 1,016.54ksl Density 32.210pcf -· ................... _________ _ L _____ :~:~. . ---. ··'·---~--------------~ _ .. Appli~ LQads· ....... Service loads entered. Load Factors will be applied for calculations. ---------Load for Span Number: 1 Point Load : D = 0.880, L = 0.920 k ~ 0.0 ft Load for Span Number 2 Point Load : D = 0.780, L = 0.820 k @3.0 ft Uniform Load: D = 0.2560, L = 0.120 k/ft, Extent =3.0-» 7,0ft, Tributary Width= 1.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span fb :Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection .... Q~~ratrMaxlf!t~m ~fl9C!!on~ Load Combination Span -tO+L 1 -+D+L 2 Vertical Reactions = = = = ---· ·-·--·-____________ ... 0.181: 1 Maximum Shear Stress Ratio 3.5x11.875 Section used for this span 525.17psi fv: Actual 2,900.00psi +O+L 2.000ft Span#1 Fv : Allowable load Combination Location of maximum on span Span # where maximum occurs 0.007 in Ratio= 6746 0.000 in Ratio= 0 <360 0.010 in Ratio= 4768 -0.000 in Ratio= ~24570 Max.·-· Deil-·· Location in Span Load Combination 0.0101 0.000 0.0133 3.989 LOnly Support no!afion : Far left ls #1 Design OK = Cl.231 : 1 3.5x11.875 = 67.07psi = 290.00psi +O+L . .,.. 2.000ft ~~ Span# 1 Max. •+• Def! LocaHon in Span 0.0000 0.000 -0.0003 0.274 Values in KIPS ·-· Load ·combination ---~ --·------~~---------------· _ ............ --...... ·---------- Overall MAXimum Overall M!Nimum DOnly -O+L Support 1 Support 2 3.658 1.122 1.870 3.658 Support3 1.246 0.431 0.814 1.246 14288 Danielson Street Su!te200 Project TIiie: Engineer: Project Descr: Project ID: Poway, CA 92004 -l"rinlad: 25 JAN20t6, 9;14A\! j'· . . ------"'-'-~----,--,---,---,.._--------,,---,--,_,,.....---,,-,,..,---'_ .:;F!;;:;::le,;.::=·F;:;.,;:\2,,.;;GAAF.:;;.,:,.;,l,c.."'1::,:.E.;;;Cll;;;....., ·.Wood Bea_ m · . . ., -.. . . .. . . . . E .. ERCALC. INC. Buitd:6. 15' 1VJ, 1/er.6 15.tW _ I, II Description·, HDR3 -CQDE ~FER~!ICES -------·--------·---,a-------~ ------------....... , _________ _ Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material ·Properties ____ .... _____ ---------------...,...,.-~~------------___ .......... .. Analysis Method : Allowable Stress Design Load Combination :ASCE 7-10 Wood Species : Douglas Fir -Larch Wood Grade : No.2 Fb-Tension Fb-Compr Fe-Prll Fc~Perp Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 4x10 900.0psl 900.0psi 1,350.0 psi 625.0psi 180;0psi 575.0psl E: Modulus of Elasticity Ebend-xx 1,600.0ksl Eminbend-xx 580.0ksi Density 32.210pcf i ____ __l . Al)pJl_ed ~~~------"'·-. . .. _____ .... _ . Service loads entered. load Factors wm be applled for calculatkms . -------" --·--·---·-------Load for Span Number 1 Uniform Load : D = 0.05330, L = 0.02670 klft, Extent= 0.0 -» 2,0 ft, Tributary Width = 1.0 ft Uniform Load : D = 0.1520, L = 0.150 .k/ft, Extent= 2.0 -» 5.0 ft, Tributary Width = 1.0 ft Point Load : D = 1.10, L = 1.230 k@ 2.0 ft '"'"'D=S,.S==1G=N_.,.,S.,._,UM=MAR=,Y,_ _____ ~---_ ·---··--.. ._ .. __ -·---· _ .... , w·,. ___ ..... __ _ Maximum Bending Stress Ratio Section used for this span fb :Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections = .. ~ --. -~~~~---. 0.764: 1 4x10 824.79psi 1,080.00psi +O+l 2.007ft. Maximum Shear Stress Ratio Section used for this span fv:Actual Span#1 0.018 in Ratio= 0.000 In Ratio = 0.036 in Ratio = 0.000 in Ratio= Fv : Allowable Load Combination locationof maximum on span Span # where maximum occurs 3263 0 <360 1682 0 <240 :::: = = = "' 0.447: 1 4x10 80.45psi 180.00 psi +D+L 0.000ft Span# 1 --i:.oaii combination .... -... Max.•.• Dell Loc-a1ion in Span Load Combination Max.•+• Def! Location in Span --I-CM. Vertical Reactions Load Combination overall MAXlmum OVerall MINiinum DOnly tO+l -1-0+lr +O~ Support1 1.798 0.529 0.882 1.798 0.882 0.882 Cl.0357 2.409 ____ -----------------=-o.=oo=:io=----O-tlOO Support.notation: Far left is #1 Values ln KIPS -----Support2 1.598 ---------------.. ____ .... , ...... 0.468 0.781 1.598 0.781 0.781 j Project rrtle: Project ID: Engineer: ProJect Descr: 14288 Danielson Street Suite200 Poway, CA 92064 ... , . description : HDR4 Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Mawria! Pr()perti~$ Analysis Method : Allowable Stress Design Fb-Tension Load Combination ASCE 7-10 Fb-Compr Fc-Prll Wood Species : ilevel Truss Joist Fe -Perp Wood Grade : Parallam PSL 2,0E Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling Primea: 25 JAN 2016, 9:14AM . . Flki;:F'.\2GARFH.EC6 . ENERCALC, INC. 1983-2015, fluikl:6:15.12.9, Ver:6:15.12.9 2,900.0psi 2,900.0psi 2,900.0psi 750.0psi 290.0psi 2,025.0psl .. E: Modulus of Elasticity Ebend-xx 2,000.0ksi Eminbend -xx 1,016.54 ksi Density 32.210pcf f . -0{1.78} L{i.42} ----'----------·-------------- ) \ > 3.5x9.5 . __ APJ!!ied Loads. Service loads entered. Load Factors will be applied for calculations . Load for Span Number 1 Uniform Load : D = 0.2160, L = 0.20 k/ft, Extent = 2.50 -» 5.50 fl, Tributary Width·= 1.0 ft Point Load : D = 1.780, L = 1.420 k (a} 2.50 ft DESIGN SUMMARY Maximum Bending Stress Ratio · '1:, .. Section used for this span fb: Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum cx::curs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection overall Maximum Deflections . -··. ~---.. . .. ' . 0.409: 1 3.5x9.5 1, 186.27psi 2,900.00psi +D+L 2.509ft Span#1 Maximum Sfiear Stress Ratio Section used for this span fv: Actual 0.022 In Ratio = 0.000 in Ratio= 0.048 in Ratio= 0.000 in Ratio = Fv : Allowable Load Combination Location of maximum on span Span# where maximum occurs 3050 0 <360 1376 0 <240 Load Combination Span Max.•.• Dell Location in Span Load Combination . Vertical Reactions Load Combination Support 1 Overall MAX!mum 2.086 overall MINlmum 0.689 DOnly 1.148 +D+L 2.086 +D+Lr 1.148 +D+S 1.148 +0..0.750Lr+0.750L 1.851 Support2 2.362 0.768 1.280 2.362 1.280 1.280 2.092 Support notation : Far left is #1 = 0.324: 1 3.5x9.5 "" 94.10 psi "' 290.00psi +D+L = 0.000ft :::; Span#1 _____ J Max.•+• Defl Location in Span Values In KIPS· I.:: i-: illJ~I i. .1 I ·~ 'i i; {' ~ I! ., . ~ . i' ii ,, a ! i !~ ·~ I• _, "' L @ r~ ~ I I I I I I I I , I AL LA. r , . ANA ,, IJ Lt,,_.,,:,, II II II d\, r:::-.,-::--:--::--:-:,1 L;,;_-_-,.,-,:,::-.;'~ 6/~ -I r !I I I I II I I I I ~W:, / .. '~ ~--"'. \' ~-.,..I" 'l ® I I f ©---n=' ==I =~=r==n=~======.J ., __ --·-...... ~ , '", I -·{, • ---··--, "" , ----"' ; -· "". , • , , • • """' ,, ·•-:. = ,: ; . , , ··•-;", ---;·--, ' • .:.,, -----:--·. -,., ..... ~1:\m~-ANA t. ye, IS:::::: ...... GrA·PE:1~-. /JaUGs« _ ~ 2 _____ _ ' - '. ''•'' --'~,. Y,::>-v ... ,-,,, .. Y,,..,_,_,,......,...,.,,_-, • -~ sM•m~--~ "-~·"'"' ~ ·--~~--""·M-•• ····· .... ·, . ..,._.,_ :y ~ ~J~ .. --~""••=' ; • -~ •'<•~----· ,, , .. .,. • ",,,-~, -·• ~ , ,,........,,_,.,_A......,.,_,,.,,,,. n • < ~ -· -, ~-~ --__ ___,_.: .. .. -, . ~-':. -~?e/ -s. --~-? ~--.=---. ---·----.. -. /$ . ,, -T;.:_~-~6*_1'~2-~~ ,11 t (1~,; e ;--;;)~-;_(1lt;1 _;-~ )J ;;.:_>2~1 _ -· -· -...... · ----.. --· ,_ · -· -----· ---· ··.. . · · , __ f: N~--GrU Grl /P'l.E..;.,-· • ._," ___ ------·--___ __ • _ ________ >, • , • .. _ .. __ ,,,___ , •• :_ : •• __ • •• ____ No .J..f r:i ',S... __ __ _ ___ .. : : ~-tN~ ec -Fs_; '1~'1 { ~ /i('¾) + ~: 1 (8J{iJ; 2 q_ ~ = .U,t; ~. -. .. . .. -·· - . ----· fw--=.23"' ,z. (:8/:2.)(11.,(z)_;:: ~~-z =J.Z~.!d:·-~ .. _ _ --·-· _ _ . --··-.. ... . /Jr. =. I tt, !%~-~-~ _ io .. 4:~ .. ~~~ . .. . . . ___________ . ___ ·/1.~:i~(i~S~~-i.;1 i:f(i,,;'t. ~" £)-+lii:~=-2. xiJ+ s~o ] .. ·· . ··-··--·-----··----. ----~t:40-J. -.,, .. :; : . ---·----... __ ,, ". '' .t_ -· -~-~~-~~ ---------,, -------· --· .... -,.,, ______ ,, ,,, :--_-__ -.: Pl~~( __ ~]: ___ , ____ , .. ----·---,. --~-:-)J1e/.+ ~ ,11q_~-~ .1 ~_qq_(,.*s)-~:,.G,7 [(1'=>~e)(~)+/1eo_X.~><.-~)·+G1-~ J :, ~as ... ""'' 't. \Je.Grl4Gtl~t-e..l' "' ,"lo HP ts ' ' l l i i -, .I I ., ______ ._ .. " .,..._. =0,: .,.,_,w,_ .. ,._._., V •, ,~ "' '; ' t: =,'v "' .. ._, ' > • , , '"' _, '' ' "·-·,, , ,. , .. ,, ·-, ,, ... :, , > .Ai = ~ ~-~ J / --'= .. -:70 ~ ~~:, ~: .r.;:;i ;_, ,,_ "· -, --: : . _ ~ r~· W .:-r·~ ?Pi?s~-~j -.-G>7.[()wx1~~~'1~-~):·c,a~ .. S -~ l-/~es)+(1c;-~:_ -=51~~ ,·' V A, -; '' =, , ,. • " -0 • • ""' • -• • ''"' > ""-'-,. • <, , .............. ,..,,,.. .......... , ~"-"'' • - · ----~ · --· {: M6-rc·ai'-(V) · · ----· -·-· , , ,_, .-,_ "'•; , • , , __ ," ' ••,,.,. , .,,,..,vv..._. .._,.,,._w.,...,_,...,,,,.,,,,, .,,,..., • - ,,_, -· . ' . , ---"'. -... ' • .,., ' , ' , ,w , ' " ' • .,, ·-·-"., " • , -•• • ''" y ,. _,,,,., ,.....,, ........ svw, ........ w ., --~ _,,.,. -' __ ,, -_ ... ;----~~-__ ... ,, ..... ·-· .. ,. 1r 7 ~eo~ ___ ·" =---Lqa-~----~{~] , .. · __ _ . .-12+e . • ·.:~~~ ,,,,, > ·:/_qQ (a; j'" ~~-fr;~ [ _{/6..11 · 1e x· J/ ). __ ;. '(JJi ~:.~~-;_-~)-~ __ .f£7.~ 1, ,, .... -------·---------> ,.,, ,,,, ,, , ... ,,, , , ·-·---"" , -__ , ,., " ""', .,.,,_ ,., '" .-1,e:r . --~ ----·----·------· -.. --·. -----------~ Ml?fil/ ~/ !8_t,,tE, ,, , ·----·----------' A)(J lf_J:J ~ . ___ .. "' .. .' .......... .-Y-= I pte, o/,'"i2. _~ .. la.~-~-~. " --· ' . -, -··---" ' . . . ' . '" .. __ .-.-.. . . .. . ~ t~~~-aJ 1 NO.. /4~',s _ . . ..... _ . ~ , , ~ ~~ I.I~ IS:, . "_, ... f's ... #~ o (8%){ ~ ,,.j + Jf .-«/;~ )((i.%+ 4) "' t-~ :Jt :Zt!, + ~-ri) , ' • , , ,· , -----~.,,,, .. , ¼, __ ,, = l/l{S/f Jb _ _ .Pw#-a~le:;)(t2_¾) ... :rttt rz11e+ J:J,,q_12.+ 1_£~:te {tt,J..Jet) =-JfoJ~~ -~--, ·: __ , .. :~-', ¥ -~--~.i~ , z. J;:!;Jq_~----·:";_--.. ·---·: __ --,, ·-·=r~~ ~67.t:J .. (e~~) -.. _,1 [ (tb;/1·;· ~) + (!4~ IX J.i) + /S~o 1 ~ ~?01 -it: M~#( v)*-~j' , , , --. --" ·--..... _, -----------_..,,,_,.,.,.,_ -----'" __ ,.,_ --· -·-----· ·-· _.,. -·· -----· --------..... --, ........... . ... . ·-·---------·-·.,---~-~-~-IJ.~~ ... :::::._./1~.~---~-, . : . , ~j~ . , .... ·--·-•----_,.,,._. , _ _,.,....,...,,.,,._.,. ,..,--. ,.,.,.., ,., w•'-·•" ,_..,, -~ • "•" ·--, .,,, "" ..,,,..,~,..,,--= ._ .,,__,.,.,-..~ .. .,.,.......,.._._,,_,, ...... -.,,.,. . ..,,,_.,.,., ,...,., "'""'" ,,, "'' . . . ,, ... :-r--.~-·,~-~-4_···ce.s)',~-~ 7+ [,( ,~,,-)(el ~ . .Ci1,; -"~;&:~.8 )j ~ -.,. ,, __ · . . .,~ . '" • • . ' "··-= 'C .,·, -"""". . -· -· .. ,, ,. -,,,., ,,., --• ·-•--~"' .. ~.-,_.~ ,. -+• . " . .. ••' ; •" t }-Je~L-( G(·l et.e · _ . . . , _ .... ~ .. . . . .. : HO /rt r:, ';s »¼>'.. -• •• '". • -.. ~--·' .. -" -" • , " ,_,' ,,.,, • • •• ---"· :· ·12·· ,, .: .. ,. . ....... ·-·· j-2. "' ..... -...... "" " " . ,... . . . ,,,. , ' .. . LtNe .. c..---___ ..... ) .. c...~ __ :P;~--. _____ · _ . . .. : fis ; Jf ,. I? { P 4") ( e-4::h "'-J7(,, B +. ':/.7. q + >z :f!-lc:Z 7:, )_ ':'c: t.a ~4,_41' .... . Pw· :i: "2:t (q) (5 ~-a) ~ ~~~~ + lo 20 + Y£~ ( '4-4!) .... _ . --------·· ¼. --·--··-.. • • • •• ,. " , •• , • • • , , • '"* J./"5 ,. z . ,.. ..... ., " .,. .. . ".. . . . -~ . . • I . . _ :·_ . . _:__ .:· .-. . . ~ "' I!?~ (,,.., ii ~-~ii.~ -~{jl . ... . . . . . ... --.: •• ¼ ... -................. :. , •• -,...... • ..... :-t.~+-~: .... S_ ... ----~--, .. . . -..... , ......... -.. _ ' ' . ~----:1~ ~~~=Jt,i?i:;:J :. j #0 f ~ ~~ !,-;; ;__y_;_i:Ji I.Ji~~~ .S; /9)1___ . . ... -... · ..... ........ . ·-,,_;.-·· .. '. ---'-+";J>l~"a-~.-,-~1&Jf!>'-·-:·,-, .. ·. -· · · ·· : · J ·• · ;r:,. 4-x '-w( HPJA--1 -1 ' -. ,~ " : ' ' ' " ~-' . ~ ' , ' ' ,. " I ~ -~ ~#7 (S~5 '-~ (; 1.[( fO X 8 .. S.x ~: 2s) + ( JJ/xl; ){ -.!5~ ~ s)] ' ~ y , j -JI:; . ~ 5-. . . . . _ . . . . '=' $ o·bc, . . .. .. ._ . . . . . . . ,t,HDUS ,,;. :: 't e;-q 182 "7:1..A~ ~ ~r.2. -~ , -· : V /2 = , ,_-"'" --, l!.:::'.J --~,_ .... , -;~-~e,a-· ca~-G)·.--~·i·,[c /&',c'/a K # .. 2-_s)f .. (!l/>.c~.'i_$._~ /tp/-;t)] =-. 5.1 Ir t lfoll5 - l/JJ8 l-,r ----. r F, _ f: ::. 2 .. 3 (120/-2) { 84) ~ 7 ~ '2 + lt. eo -:=; to~~ # f'w =i: t.t ( q) ( -~cv~) ... -:-: /$,qg_ + j/_po --~'. 'l,._q '10 _ N:- , ' ' ' ,, ~= t!.t:f~<?/ ;:;:;21-/Cf~~ -~ -~ I ~a r-·: -~ ---·.-r -~4q { 8~ 5) ~ ~·'c,7 [ (t~x I 'i?;>; i) f-(/tt, J< l$/z ){ -~) f (14·)( ~% YG,)] =-,ez. .,,. -C N' O i/0 l_r . . . . . . 1i = J./ I 'f.'t::: .= . e 2: S ~ ~ IT±J-5' I= B~e-(B""-'5)-___ (i;7 [(n;(J~--/Sx ·2·:__G) + {lt;;,~/-sx 2-~) + loo J ~ (J:i;./J./e, ~ .. -tL HP U-~ - l/lJ e. /,.. IP -fs. "' iz.s (I/(,,) (1'Yz) = 5:~ DI I "'I = Bibi,./ e, It 1't # e1 { 41) {1~) = qt/6 + 2eee = s:es5 * -- ~ = .~8'3¾e·-r~o = /IC?f ~ ~ IIJ ~e., ~ llq (8~ 5) -.. ~ 1 [ (I~~ t;:; ~ e .. '.t5) ~-/£;a J ~ 36 4 .. _ .. . . . . t NG ct:jU C,_:'r I 13 l-e .e NO ,/t#o j" --· · Fe · · , ; ,_ ~. , " ~ .. , "' , , , ·-, , , ,:;;;;;..L~:;..:...N..;:.,,.S.,......· _l __ c""""" -f; = 2 .. ~ ( J./ 6;) ( i!~J-= I 1/P, ~ + 1. a at;; =-!JJ./.bir:t .. • ..... · ~ ;; ,al ( ~ ),(1---Z/~) -= ;z..074t: + 4 e;q z ~ C,_(p 71 ~ ' . ,y.: V,t,7}/,,, = 7/.//,,......,. ~ Bl J -= .. 1J.J1,,,(S~lfi) ~~ /c7 [ (10,rl3 .. fii;xJ/ .. .e;)_+ (ii x 5~ J./.,5) + &oo J , , ~ ?~q«s +-11-50.i, = Cj~t::, #,, ·· · · ··· --··--............ :t..4)(~ w( .. . HDU ·f1 .. 1;-:;; 2..:3~% ;.,)'!&,~_,--:, T, ~ ,.,~ (s. r;) --/.1)"1 [ ( lot. f3~5x.4>) + ( JJ.J ,-.1 >! ~) + I /?'t J ' -=. d,t; f_ , f-(--1,,.,, < y "A -t. , . MeetL.I. C, I 61..S 1 /.JO b{t:) 's Geotechnical Exploration, Inc. SOIL AND ~OUNDATION ENGINEERING e GROUNDWATER • ENGINEERING GEOLOGY 27 April 2016 Mr. Kevin Dunn Rincon .Real Estate Group 1520 N. El Camino Real, Unit 5 San Clemente, CA 92672 Subject: Foundation Plan Review Garfield Custom Beach Homes (Homes 1 and 2) 225 & 235 Hemlock Avenue Carlsbad, California Dear Mr. Dunn: Job No. 15-10691 RECEIVED MAY 2 4 2016 CITY OF CARLSBAD BUILDING D!ViSION As requested by Mr. Serhat Sergin with HTK Structural Engineers, LLP, and as required by the City of Carlsbad. reviewer, we confirm that we have reviewed the foundation structural plans {S01, S0.1A, 50.2, S0.3, S1-54, SD1-SD3, SO2.1, SO2.2, and SO3.1) prepared by them, undated, for the proposed residences (Homes 1 and 2) at the subject address. The plans were reviewed from a geotechnical engineering viewpoint. After suggested corrections were made; we found the plans to· be in general accordance with the recommendations presented in our "Report of Preliminary Geotechnical Investigation" dated March 12, 2015. A copy of the soil report and this letter should be provided to all pertinent contractors involved with soil preparation and foundation construction: Any soil compaction should be as required by the City of Carlsbad. If you have any questions regarding this letter, please contact our office. Reference to our Job No. 15-10691 will help expedite a response to your inquiry. Respectfully submitted, Jaime A. Cerros, P.E. R.C.E. 34422/G.E. 2007 Senior Geotechnical Engineer cc: HTK Structural Engineers, LLP Shackelton Design Group 7420 TRADE STREET• SAN DIEGO, CA, 92121 • (858) 549-7222 e FAX: (858) 549-1604 e EMAIL: geotech@gel-sd.com ....:..\ REPORT OF PRELIMINARY GEOTECHNICAL INVESTIGATION Rincon Residential Project ~2:o::i'---i., =f S,:,·~~;:.,,~p.. },N/!J. Carlsbad, California JOB NO. 15-10691 12 March 2015 Prepared for: Mr. Kevin Dunn Rincon Real Estate Group, Inc. t ~ I \tg tlf:16 Geotechnical Exploration, Inc. SOIL AND FOUNDATION ENGINEERING • GROUNDWATER ., ENGINEERING GEOLOGY 12 March 2015 Mr. Kevin Dunn RINCON REAL ESTATE GROUP, INC. 1520 N. El Camino Real, Unit 5 San Clemente, CA 92672 lob No. 15-10691 Subject: Report of Preliminary Geotechnical Investigation Rincon Residential Project 3806 Garfield Street Carlsbad, California Dear Mr. Dunn: In accordance with your request and our proposal dated February 2, 2015, Geotechnical Exploration, Inc. has performed an investigation of the geotechnical and general geologic conditions at the subject site. The field work was performed on February 11, 2015. In our opinion, if the conclusions and recommendations presented in this report are implemented during site preparation, the site will be suited for the proposed residential project consisting of two, two-story residential structures with attached garages and associated improvements. This opportunity to be of service is sincerely appreciated. Should you have any questions concerning the following report, please do not hesitate to contact us. Reference to our Job No. 15-10691 will expedite a response to your inquiries. Respectfully submitted, GEOTECHNICAL EXPLORATION, INC. L ie D. Reed, resident C.E.G. 999/P.G. 3391 7420 1RADE STREET., SAN DIEGO, CA. 92121 ' (858) 549-7222 ~ FAX: (858) 549-1604 e EMAIL: geotech@gel-sd.com '-• TABLE OF CONTENTS I. PROJECT SUMMARY 1 II. SCOPE OF WORK 1 III. SUMMARY OF GEOT~CHNICAL AND GEOLOGIC FINDINGS 2 IV. SITE DESCRIPTION 3 V. FIELD INVESTIGATION 4 VI. LABORATORY TESTS AND SOIL INFORMATION 4 VII. SOIL & GENERAL GEOLOGIC DESCRIPTION 6 VIII. GEOLOGIC HAZARDS IX. GROUNDWATER X. RECOMMENDATIONS XI. GRADING NOTES XII. LIMITATIONS FIGURES I. II. Uia-e. IV. V. VI. Vicinity Map Site Plan Exploratory Handpit Logs Laboratory Soil Test Results Geology Map and Legend Retaining Wall Drainage Schematic APPENDICES A. Unified Soil Classification System B. Seismic Data .,.. EQ Fault Table C. Modified Mercalli Index D. USGS Design Maps Summary Report 8 16 17 37 37 \. '-- J"I ... REPORT OF PRELIMINARY GEOTECHNICAL INVESTIGATION Rincon Residential Project 3806 Garfield Street Carlsbad, California JOB NO. 15-10691 The following report presents the findings and recommendations of Geotechnical Exploration, Inc. for the subject project. L PRQJECTSUMMARY It is our understanding, based on conversations with the property owner, Mr. Kevin Dunn of Rincon Real Estate Group and review of a conceptual site plan prepared by Shackelton Design Group, that the existing residence, detached garage and improvements are to be removed, and the property is being developed to receive two 2-story residential structures with attached garages, driveways, and associated improvements. The new structures are to be constructed of standard-type building materials utilizing conventional foundations with concrete slab on-grade floors. Final construction plans for development have not been provided to us during the preparation of this report, however, when completed they should be made available for our review. 11. SCOPE OF WORK The scope of work performed for this investigation included a review of available published information pertaining to the site geology, a site geologic reconnaissance and subsurface exploration program, laboratory testing, geotechnical engineering analysis of the research, field and laboratory data, and the preparation of this report. The data obtained and the analyses performed were for the purpose of Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 2 providing geotechni-cal design and construction criteria and recommendations for the project earthwork, building foundations, and slab on-grade floors. III. SUMMARY OF GEOTECHNICAL & GEOLOGIC FINDINGS Our subsurface geotechnical investigation revealed that the lot is underlain at relatively shallow depth by medium dense, silty sand of the Quaternary-age Old Paralic Deposits (QOPs-7) overlain by approximately 1 to 3 feet of variable density weathered terrace materials and minor wall backfill soils. In their present condition, the surficial soils (fill soils and weathered natural soils) will not provide a stable base for the proposed residences and associated improvements. As such, we recommend that, after demolition of existing structures and debris removal, the upper 3 feet be removed and recompacted as part of site preparation prior to the addition of any new fill or structural improvements. The formational terrace materials have good bearing strength characteristics, are of low expansion potential, and are suitable for support of the proposed recompacted fill soil and structural loads. In our opinion, the site is suited for the proposed residential construction provided our recommendations are implemented during site development. No geologic hazards exist on or near the site that would prohibit the construction of the new residential improvements. Conventional construction techniques and materials can be utilized. Detailed construction plans have not been provided to us for the preparation of this report, however, when completed they should be made available for our review for new or modified recommendations. I Rincon Residential Project Carlsbad, California IV. SITE DESCRIPTION Job No. 15-10691 Page 3 The property is known as Assessor's Parcel No. 204-270-04-00, Lot 1 in Block "M" of the Palisades, according to Recorded Map 1747, in the City of Carlsbad, County of San Diego, State of California. For the location of the site, refer to the Vicinity Map, Figure No. I. For purposes of this report, the front of the property is considered to face west. The rectangular-shaped site, consisting of approximately 6,300 square feet, is located at 3806 Garfield Street. The property consists of a two relatively level building pads separated by a short masonry retaining wall constructed on a gentle easterly-sloping lot. The western upper pad is at an approximate elevation of 64 feet (residence pad) ·and the lower, eastern pad is at an approximate elevation of 61 feet (detached garage pad) above Mean Sea Level (MSL). Elevations across the lot range from a high of 65 feet MSL along the west property line to a low of 59 feet MSL along the eastern property line. Information concerning approximate site elevations was obtained from a topographic survey map prepared by Pasco Laret Suiter, dated February 23, 2015. The property is a corner lot bordered on the north by the easterly descending Hemlock Avenue; on the south by a similar easterly sloping residential property at the approximate same elevations; on the west by Garfield Street; and on the east by a similar residential property at a slightly lower elevation (for Site Plan, refer to Figure No. II). Existing structures include a single-story, single-family residence with a detached garage, a concrete driveway, concrete walkways and a concrete patio area, short ' masonry retaining walls, and associated improvements. Vegetation consists Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 4 primarily of ornamental landscaping including mature trees, decorative shrubbery and some lawn grass. V. FIELD INVESTIGATION A. Exgloratory Excavations Five exploratory excavations were placed on the site in areas near where the proposed residential structures and improvements are to be located and where access and soil conditions allowed {for expl9ratory handpit locations, refer to Figure No. II). The handpits were excavated to depths ranging to 6 feet in order to obtain representative soil samples and to define a soil profile across the lot. The soils encountered in the exploratory handpits were observed and logged by our field representative and samples were taken of the predominant soils. Excavation logs have been prepared on the basis of our observations and laboratory testing. The results have been summarized on Figure Nos. III and IV. The predominant soils have been classified in general conformance with the Unified Soil Classification System (refer to Appendix A). VI. LABORATORY TESTS AND SOIL INFORMATION Laboratory tests ·were performed on retrieved soil samples in order to evaluate their physical and mechanical properties and their ability to support the proposed residential structures and improvements. Test results are presented on Figure Nos. III and IV. The following tests were conducted on the sampled soils: Rincon Residential Project Carlsbad, California 1. Moisture Content (ASTM D2216-10) Job No. 15-10691 Page 5 2. Standard Test Method for Density of Soil In-place by the Drive- Cylinder Method (ASTM D2937-10) 3. Laboratory Compaction Characteristics (ASTM D1557-09) 4. Determination of Percentage of Particles Smaller than #200 Sieve (ASTM D1140-06) Moisture content measurements were performed to establish the in situ moisture of samples retrieved from the exploratory excavations. Moisture content and density measurements were performed by ASTM methods D2216 and D2937. These density tests help to establish the in situ moisture and density of samples retrieved from the exploratory excavations. Laboratory compaction values (ASTM D1557) establish the Optimum Moisture content and the laboratory Maximum Dry Density of the tested soils. The relationship between the moisture and density of remolded soil samples gives qualitative information regarding existing fill conditions and soil compaction conditions to be anticipated during any future grading operation. The passing -200 sieve size analysis (ASTM D1140) aids in classification of the tested soils based on their fine material content and provides qualitative information related to engineering characteristics such as expansion potential, permeability, and shear strength. The expansion potential of soils is determined, when necessary, utilizing the Standard Test Method for Expansion Index of Soils (ASTM D4829). In accordance with the Standard (Table 5.3), potentially expansive soils are classified as follows: Rincon Residential Project Carlsbad, California EXPANSION INDEX o to 20 21 to .So 51 to 90 91 to 130 Above 130 Job No. 15-10691 Page 6 POTENTIAL EXPANSION Verv low Low Medium High Very high Based on our particle-size test results, our visual classification, and our experience with similar soils, it is our opinion that the majority of the on-site silty sand formational terrace materials have a very low expansion potential {EI less than 20). Based on the laboratory test data, our observations of the primary soil types, and our previous experience with laboratory testing of similar soils, our Geotechnical Engineer has assigned values for friction angle, coefficient of friction, and cohesion for those soils which-will have significant lateral support or load bearing functions on the project. These values have been utilized in determining the recommended bearing value as well as active and passive earth pressure design criteria. VII. SOIL AND GENERAL GEOLOGIC DESCRIPTION A. Stratigra,phy Our investigation an~ review of pertinent geologic maps and reports indicate that formational terrace silty sands identified as Quaternary-age Old Paralic Deposits (Qop6•7) underlie the entire site. The encountered soil profile includes minor wall backfill soils/fill soils overlying the formational terrace soils. I Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 7 Wall Backfill/Fill Soils (Qaf): Wall backfill soils were encountered in the central portion of the lot adjacent to the north-south retaining wall that separates the upper pad from the lower pad at the location of excavation HP-3. Minor fill soils were also encountered along the eastern edge of the lot at the location of excavation HP-5. The backfill/fill soils consist of red-brown, silty, fine-to medium- grained sand with some roots. These soils are generally of variable density, damp, and of very low expansion potential. They are not suitable in their current condition for support of loads from structures or additional fill. Refer to Figure Nos. III and IV for details. Old Paralic Deposits {QopHl;,_ Old Paralic Deposits formational terrace materials were encountered at shallow depths at all excavation locations and consist of generally loose to medium dense, red-brown to light red-tan-brown, silty, fine-to medium-grained sand. The formational terrace soils are of very low expansion potential and have good bearing strength characteristics. The terrace materials are underlain at depth by the Eocene Santiago Formation. The upper 3 feet of the terrace soils are in a relatively loose weathered condition and are not suitable in their current condition for support of loads from structures or additional fill. Refer to Figure Nos. III and IV for details. B. Structure Quaternary-age Old Paralic Deposits underlie the entire site at shallow depth and are underlain at depth by the Eocene-age Santiago Formation (Tsa). The Old Paralic Deposits are relatively flat-lying as depicted on the geologic map (Kennedy and Tan, 2008; Figure No. V). Although not encountered in our shallow excavations, the Santiago Formation strikes approximately east-west and dips 8 to ' 10 degrees to the north-northeast as depicted on the geologic map. No faults are Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 8 indicated on or nearby the site on the geologic map. The geologic structure and relatively flat topography presents no adverse soil stability conditions for the property. VIII. GEOLOGIC HAZARDS The following is a discussion of the geologic conditions and hazards common to the Encinitas area, as well as project-specific geologic information relating to development of the subject property, A. Local and Regional Faults Reference to the geologic map of the area, Figure No. V (Kennedy and Tan, 2008), indicates that no faults are mapped on the site. In our explicit professional opinion, neither an active fault nor a potentially active fault underlies the site. Rose Canyon Fault: The Rose Canyon Fault Zone (Mount Soledad and Rose Canyon Faults) is mapped approximately 4.7 miles west of the subject site. The Rose Canyon Fault is mapped trending .north-south from Oceanside to downtown San Diego, from where it appears to head southward into San Diego Bay, through Coronado and offshore. The Rose Canyon Fault Zone is considered to be a complex zone of onshore and offshore, en echelon strike slip, oblique reverse, and oblique normal faults. The Rose Canyon Fault is considered to be capable of generating an M7.2 earthquake and is considered microseismically active, although no significant recent earthquakes are known to have occurred on the fault. Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 9 Investigative work on faults that are part of the Rose Canyon Fault Zone at the Police Administration and Technical Center in downtown San Diego, at the SDG&E facility in Rose Canyon, and within San Diego Bay and elsewhere within downtown San Diego, has encountered offsets in Holocene (geologically recent) sediments. These findings confirm Holocene displacement on the Rose Canyon Fault, which was designated an "active" fault in November 1991 (Hart E.W. and W.A. Bryant, 2007, Fault-Rupture Hazard Zones in California, California Geological Survey Special Publication 42). In a report compiled by Rockwell et al. (2012) for Southern California Edison, it is suggested that the recurrence interval for earthquakes on the RCFZ is in the range of 400 to 500 years, with the most recent earthquake (MRE) nearly 500 years ago. The report indicates the slip rate on tlie RCFZ is not well constrained but a compilation of the latest research implies a long-term slip rate of approximately 2 mm/year. Newport-Inglewood Fault: The offshore portion of the Newport-Inglewood Fault Zone is located approximately 5.2 miles west and northwest of the site. A significant earthquake (M6.4) occurred along this fault on March 10, 1933. Since then no additional significant events helve occurred. The fault is believed to have a slip rate of approximately 0.6-mm/yr with an unknown recurrence interval. This fault is believed capable of producing an earthquake of M6.0 to M7.4 (SCEC, 2004). Coronado Bank Fault: The Coronado Bank Fault is located approximately 20.6 miles southwest of the site. Evidence for this fault is based upon geophysical data (acoustic profiles) and the general alignment of epicenters of recorded seismic activity (Greene, 1979). The Oceanside earthquake of MS.3 recorded July 13, 1986, is known to have been centered on the fault or within the Coronado Bank Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 10 Fault Zone. Although this fault is considered active, due to the seismicity within the fault zone, it is significantly less active seismically than the Elsinore Fault (Hileman, 1973). It is postulated that the Coronado Bank Fault is capable of generating a M7.6 earthquake and is of great interest due to its close proximity to the greater San Diego metropolitan area. Elsinore Fault: The Elsinore Fault is located approximately 25 to 59 miles east and northeast of the site. The fault extends approximately 200 km (125 miles) from the Mexican border to the northern end of the Santa Ana Mountains. The Elsinore Fault zone is a 1-to 4-mile-wide, northwest-southeast-trending zone of discontinuous and en echelon faults extending through portions of Orange, Riverside, San Diego, and Imperial Counties. Individual faults within the Elsinore Fault Zone range from less than 1 mile to 16 miles in length. The trend, length and geomorphic expression of the Elsinore Fault Zone identify it as being a part of the highly active San Andreas Fault system. Like the other faults in the San Andreas system, the Elsinore Fault is a transverse faul_t showing predominantly right-lateral movement. According to Hart, et al. (1979), this movement averages less than 1 centimeter per year. Along most of its length, the Elsinore Fault Zone is marked by a bold topographic expression consisting of linearly aligned ridges, swales and hallows. Faulted Holocene alluvial deposits (believed to be less than 11,000 years old) found along several segments of the fault zone suggest that at least part of the zone is currently active. Although the Elsinore Fault Zone belongs to the San Andreas set of active, northwest-trending, right-slip faults in the southern California area (Crowell, 1962), it has not been the site of a major earthquake in historic time, other than a M6.0 • C earthquake near the town of Elsinore in 1910 (Richter, 1958; Toppozada and Parke, Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 11 1982). However, based on length and evidence of late-Pleistocene or Holocene displacement, Greensfelder (1974) has estimated that the Elsinore Fault Zone is reasonably capable of generating an earthquake with a magnitude as large as M7.5. Study and logging of exposures in trenches placed in Glen Ivy Marsh across the Glen Ivy North Fault (a strand of the Elsinore Fault Zone between Corona and Lake Elsinore), suggest a maximum earthquake recurrence interval of 300 years, and when combined with previous estimates of the long-term horizontal slip rate of 0.8 to 7 .0 mm/year, suggest typical earthquake magnitudes of M6.0 to M7 .0 (Rockwell, 1985). More recently, the California Geologic Survey (2002) considers the Elsinore Fault capable of producing an earthquake of M6.8 to M7.1. San Jacinto Fault: The San Jacinto Fault is located approximately 47 to 60 miles to the northeast of the site. The San Jacinto Fault Zone consists of a series of closely spaced faults, including the Coyote Creek Fault, that form the western margin of the San Jacinto Mountains. The fault zone extends from its junction with the San Andreas Fault in San Bernardino, southeasterly toward the Brawley area, where it continues south of the international border as the Imperial Transform Fault (Earth Consultants International [ECI], 2009). The San Jacinto Fault zone has a high level of historical seismic activity, with at least 10 damaging earthquakes (M6.0 to M7.0) having occurred on this fault zone between 1890 and 1986. Earthquakes on the San Jacinto Fault in 1899 and 1918 caused fatalities in the Riverside County area. Offset across this fault is predominantly right-lateral, similar to the San Andreas Fault, although some investigators have suggested that dip-slip motion contributes up to 10% of the net slip (ECI, 2009). I Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 12 The segments of the San Jacinto Fault that are of most concern to major metropolitan areas are the San Bernardino, San Jacinto Valley and Anza segments. Fault slip rates on the various segments of the San Jacinto are less well constrained than for the San Andreas Fault, but the available data suggest slip rates of 12 ±6 mm/yr for the northern segments of the fault, and slip rates of 4 ±2 mm/yr for the southern segments. For large ground-rupturing earthquakes on the San Jacinto fault, various investigators have suggested a recurrence interval of 150 to 300 years. The Working Group on California Earthquake Probabilities (WGCEP, 2008) has estimated th-at there is a 31 percent probability that an earthquake of M6. 7 or greater will occur within 30 years on this fault. Maximum credible earthquakes of M6.7, M6.9 and M7.2 are expected on the San Bernardino, San Jacinto Valley and Anza segments, respectively, capable of generating peak horizontal ground accelerations of 0.48g to 0.53g in the County of Riverside, (ECI, 2009). A MS.4 earthquake occurred on the San Jacinto Fault on July 7, 2010. The United States Geological Survey has issued the following statements with respect to the recent seismic activity on southern California faults: The San Jacinto fault, along with the Elsinore, San Andreas, and other faults, is part of the plate boundary that accommodates about 2 inches/year of motion as the Pacific plate moves northwest relative to the North American plate. The largest recent earthquake on the San Jacinto fault, near this location, the M6.5 1968 Borrego Mountain earthquake April 8, 1968, occurred about 25 miles southeast of the July 7, 2010, MS.4 earthquake. This MS.4 earthquake follows the 4th of April 2010, Easter Sunday, M7.2 earthquake, located about 125 miles to the south, well south of the US Mexico international border. A M4.9 earthquake occurred in the same area on June 12th at 8:08 pm (Pacific Time). Thus this section of the San Jacinto fault remains active. Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 13 Seismologists are watching two major earthquake faults in southern California. The San Jacinto fault, the most active earthquake fault in southern California, extends for more than 100 miles from the international border into 5cm Bernardino and Riverside, a major metropolitan area often called the Inland Empire. The Elsinore fault is more than 110 miles .long, and extends into the Orange County and Los Angeles area as the Whittier fault. The Elsinore fault is capable of a major earthquake that would significantly affect the large metropolitan areas of southern California. The Elsinore fault has not hosted a major earthquake in more than 100 years. The occurrence of these earthquakes along the San Ji:lcinto fault and continued aftershocks demonstrates that the earthquake activity in the region remains at an elevated level. The San Jacinto fault is known as the most active earthquake fault in southern California. Caltech and USGS seismologist continue to monitor the ongoing earthquake activity using the Caltech/USGS Southern California Seismic Network and a GPS network of more than 100 stations. B. Other Geologic Hazards Ground Rupture: Ground rupture is characterized by bedrock slippage along an established fault and may result in displacement of the ground surface. For ground rupture to occur along a fault, an earthquake usually exceeds MS.a. If a MS.a earthquake were to take place on a local fault, an estimated surface-rupture length 1 mile long could be expected (Greensfelder, 1974). Our investigation indicates that the subject site is not directly on a known active fault trace and, therefore, the risk of ground rupture is remote. Ground Shaking: Structural damage cau~ed by seismically induced ground shaking is a detrimental effect directly related to faulting and earthquake activity. Ground shaking is considered to be the greatest seismic hazard in San Diego County. The intensity of ground shaking is dependent on the magnitude of the earthquake, the distance from the earthquake, and the seismic response characteristics of Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 14 underlying soils and geologic units. Earthquakes of MS.O or greater are generally associated with significant damage. It is our opinion that the most serious damage to the site would be caused by a large earthquake originating on a nearby strand of the Rose Canyon or Newport-Inglewood Faults. Although the chance of such an event is remote, it could occur within the useful life of the structure. Landslides: Based upon our geotechnical investigation and review of the geologic map (Kennedy and Tan, 2005 and 2008), there are no known or suspected ancient landslides located on the site. Liquefaction: The liquefaction of saturated sands during earthquakes can be a major cause of damage to buildings. Liquefaction is the process by which soils are transformed into a viscous fluid that will flow as a liquid when unconfined. It occurs primarily in loose, saturated sands and silts when they are sufficiently shaken by an earthquake. On this .site, the risk of liquefaction of foundation materials due to seismic shaking is also considered to be remote due .to the medium dense nature of the natural- ground material, the anticipated high density of the proposed recompacted fill, and the lack of a shallow static groundwater surface under the site. No soil liquefaction or soil strength loss is anticipated to occur due to a seismic event. Tsunami: A tsunami is a series of long waves generated in the ocean by a sudden displacement of a large volume of water. Underwater earthquakes, landslides, volcanic eruptions, meteoric impacts, or onshore slope failures can cause this displacement. Tsunami waves can travel at speeds averaging 450 to 600 miles per hour. As a tsunami nears the coastline, its speed diminishes, its wave length . . decreases, and its height increases greatly. After a major earthquake or other f I Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 15 tsunami-inducing activity occurs, a tsunami could reach the shore within a few minutes. One coastal community may experience no damaging waves while another may experience very destructive waves. Some low-lying areas could experience severe inland inundation of water and deposition of debris more than 3,000 feet inland. The site is located less than 0.15-mile from the Pacific Ocean strand line at an elevation of 61 to 70 feet above MSL. It is unlikely that a tsunami would affect the lot. Geologic Hazards Summary: It is our opinion, based upon a review of the available geologic maps, our research, and _our site investigation, that the site is underlain by relatively stable formationa! materials (and shallow slopewash and weathered terrace materials to be recompacted), and is suited for the proposed residential structures and associated improvements provided the recommendations herein are implemented. No significant geologic hazards are known to exist on the site that would prevent the proposed construction. In our professional opinion, no "active" or "potentially active" faults underlie the project site. The most significant geologic hazard at the site is anticipated ground shaking from earthquakes on active Southern Califqrnia and Baja California faults. The United States Geologic Survey has issued statements indicating that seismic activity in Southern California may continue at elevated levels with increased risk to major metropolitan areas near the Elsinore and San Jacinto faults. These faults are too far from the subject property to present a seismic risk. To date, the nearest known "active" faults to the subject site are the northwest-trending Rose Canyon Fault, Newport-Inglewood Fault and the Coronado Bank Fault. Rincon Residential Project Carlsbad, California. Job No. 15-10691 Page 16 No significant geologic hazards are known to exist on or near the site that would prevent the proposed construction. IX. GROUNDWATER Groundwater and/or perched water conditions were not encountered at the explored excavation locations and we do not expect significant groundwater problems to develop in the future if proper drainage is maintained on the property. It should be kept in mind that construction operations will change surface drainage patterns and/or reduce surface permeabilities due to the densification of compacted soils. Such changes of surface and subsurface hydrologic conditions, plus irrigation of landscaping or significant increases in rainfall, may result in the appearance of surface or near-surface water at locations where none existed previously. The appearance of such water is expected to be localized and cosmetic in nature, if good positive drainage is implemented, as recommended in this report, during and at the completion of construction. Based on our site observations and laboratory testing, it is our opinion that the silty .. sand formational terrace soils are relatively permeable and well-suited for the use of permeable pavers. Shallow perching conditions were not encountered on this lot and are not characteristic of the sandy soil conditions comprising this area of Carlsbad. It must be understood that unless discovered during initial site exploration or encountered during site grading operations, it is extremely difficult to predict if or where perched or true groundwater conditions may appear in the future. Water conditions, where suspected or encountered during grading and/or construction, Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 17 should be evaluated and remedied by the project civil and geotechnical consultants. The project developer and property owner, however, must realize that post- construction appearances of groundwater may have to be dealt with on a site- specific basis. X. RECOMMENDATIONS The following recommendations are based upon the practical field investigation conducted by our firm, and resulting laboratory tests, in conjunction with our knowledge and experience with similar soils in the Carlsbad area. The opinions, conclusions, and recommendations presented in this report are contingent upon Geotechnica/ Exploration, Inc. being retained to review the final plans and specifications as they are developed and to observe the site earthwork and installation of foundations. Recommendations presented herein are based on undated preliminary conceptual plans provided by our client. A. Seismic Design Criteria 1. Seismic Data Bases: An estimation of the peak ground acceleration and the repeatable high ground acceleration (RHGA) likely to occur at the project site is based on the known significant local and regional faults within 100 miles of the site. In addition, we have reviewed a listing of the known historic seismic events that have occurred within 100 miles of the site at an MS.0 or greater since the year 1800, and the probability of exceeding the experienced ground accelerations in the future based upon the historical record. Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 18 2. The RHGA and seismic events within 100 miles are derived from tables generated from computer programs EQSearch and EQFault by Thomas F. Blake (2000) utilizing a file listing of recorded earthquakes (EQSearch) and a digitized file of late-Quaternary California faults (EQFault). The EQSearch tables are retained in our files for future reference, and we have included the EQFault Table as Appendix B. Estimations of site intensity are also provided in these listings as Modified Mercalli Index values. The Modified Mercalli Intensity Index is provided as Appendix C. Seismic Design Criteria: The proposed structure should be designed in accordance with the 2013 CBC, which incorporates by reference the ASCE 7- 10 for seismic design. We recommend the following parameters be utilized. We have determined the mapped spectral acceleration values for the site based on a latitude of 33.1497 degrees and longitude of 117.3447 degrees, utilizing a program titled "U.S_. Seismic Design Maps and Tools," provided by the USGS, which provides a solution for ASCE 7-10 (2013 CBC) utilizing digitized files for the Spectral Acceleration maps. In addition, we have assigned a Site Classification of So, The response The design parameters for design are presented in the following table. Spectral Acceleration (SA) vs. Period (T) is shown on Appendix D. TABLE I Mapped Spectral Acceleration Values and Design Parameters 1.158 0.444 1.037 1.556 . 1.201 0.691 0.800 0.461 Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 19 B. 3. 4,, Preparation of Soils for Site Development Clearing and Stripping: The existing structures, improvements, and vegetation on the site should be removed prior to the preparation of the building pads and areas of associated improvements. This includes root systems of the existing trees. Holes resulting fro,:n the removal of root systems or other buried foundations, piping, debris or obstructions that extend below the planned grades should be cleared and backfilled with properly compacted fill. Treatment of Existing loose Fill and Surficia/ Soils: In order to provide suitable foundation support for the proposep residential structures and associated improvements, we recommend that the existing fill soils and loose surficial soils that remain after the necessary site excavations have been made be removed and recompacted. The anticipated depth of removal is approximately 3 feet. The recompaction work should consist of (a) removing the existing fill soils and loose surficial soils down to native medium dense to dense formational terrace materials; (b) scarifying, moisture conditioning, and compacting the exposed subgrade soils; and (c) replacing the excavated material as compacted structural fill. The areal extent and depth required to remove the fill soils and loose surficial soils should be confirmed by our representatives during the excavation work based on their examination of the soils being exposed. The lateral extent of the ex~av:ation and recompaction should be at least 5 feet beyond the edge of the perimeter foundations and any areas to receive exterior improvements Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 20 or a lateral distance equal to the depth of soil removed at any specific location, whichever is larger. Any unsuitable materials (such as oversize rubble or rocks, and/or organic matter) should be selectively removed as directed by our representative and disposed of off-site. Any rigid improvements founded on existing loose or soft surface soils can be expected to undergo movement and possible damage. Geotechnical Exploration, Inc. takes no responsibility for the performance of any improvements built on loose natural soils or inadequately compacted fills. 5. Subgrade Preparation: After the site has been cleared, stripped, and the required excavations made, the exposed subgrade soils in the areas to receive fill and/or building improvements should be scarified to a depth of 12 inches, moisture conditioned, and compacted to the requirements for structural fill. The near-surface moisture content of fine-grained soils should be maintained by periodic sprinkling until within 48 hours prior to concrete placement. 6. Expansive Soil Conditions: We do not anticipate that significant quantities of medium or highly expansive clay soils will be encountered during grading. Should such soils be encountered and used as fill, however, they should be moisture conditioned or dried to no greater than 5 percent above Optimum Moisture content, compacted to 88 to 92 percent, and placed outside building areas. Soils of medium or gr-eater expansion potential should not be used as retaining wall backfill soils .• l Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 21 7. Material for Fill: Existing on-site soils with an organic content of less than 3 percent by volume are, in general, suitable for use as fill. Any required, imported fill material (such as for retaining wall backfill) should be a low- expansion potential (Expansion Index of SO or less per ASTM D4829-11). In addition, both imported and existing on-site materials for use as fill should not contain rocks or lumps more than 6 inches in greatest dimension. All materials for use as fill should be approved by our firm prior to filling. Retaining wall and trench backfill material should not contain material larger than 3 inches in greatest dimension. 8. 9. Fill Compaction: All structural fill should be compacted to a minimum degree of compaction of 90 percent based upon ASTM D1557-09. Fill material should be spread and compacted in uniform horizontal lifts not exceeding 8 inches in uncompacted thickness. Before compaction begins, the fill should be brought to a water content that will permit proper compaction by either: (1) aerating and drying the fill if it is too wet, or (2) moistening the fill with water if it is too dry. Each lift should be thoroughly mixed before compaction to ensure a uniform distribution of moisture. For low expansive soils, the moisture content should be within 2 percent of optimum. No uncontrolled fill soils should remain after completion of the site work. In the event that temporary ramps or pads are constructed of uncontrolled fill soils, the loose fill soils should be removed and/or recompacted prior to completion of the grading operation. Trench and Retaining Wall Backfill: Utility trenches and retaining walls should preferably be backfilled with on-site, low-expansive or i~ported, low- expansive compacted fill; gravel is also a suitable backfill material but should Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 22 c. be used only if space constraints will not allow the use of compaction equipment. Gravel can also be used as backfill around perforated subdrains protected with geofabric. All backfill material should be placed in lift thicknesses appropriate to the type of compaction equipment utilized and compacted to a minimum de~ree of compaction of 90 percent by mechanical means. Our experience has shown that even shallow, narrow trenches (such as for irrigation and electrical lines) that are not properly compacted, can result in problems, particularly with respect to shallow groundwater accumulation and migration. Backfill soils placed behind retaining walls and/or crawl space retaining walls should be installed as early as the retaining walls are capable of supporting lateral loads. Backfill soils behind retaining walls should be low expansive, with an Expansion Index equal to or lower than SO. All areas backfilled with gravel should be capped with a minimum 12-inch-thick layer of properly compacted on-site soils overlying Mirafi 140N filter fabric to reduce the potential for fines loss into the gravel. Design Parameters for Proposed Foundations In order to support the proposed structures on conventional continuous concrete foundations the following recommendations should be followed. Footings should extend into formational soils or properly compacted fill soils to a depth of 18 inches. Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 23 10. Footings: Footings for the new residential structures should bear on undisturbed formational materials or properly compacted till soils. The footings for the proposed structures should be founded at least 18 inches below the lowest adjacent finished soil grade and have a minimum width of 12 inches. The footings should contain top and bottom reinforcement to provide structural continuity and to permit spanning of local irregularities. Footings located adjacent to utility trenches should have their bearing surfaces situated below an imaginary 1.0:1.0 plane projected upward from the bottom edge of the adjacent utility trench. Otherwise, the trenches should be excavated farther from the footing locations. 11. Bearing Values: At the recommended depths, footings on native, medium dense formational soil or properly compacted fill soil may be designed for an allowable soil bearing pressure of 2,000 pounds per square foot (psf) for combined dead and live loads and may be increased one-third if including wind or seismic loads. The footings should have a minimum width of 12 inches. 12. Footing Reinforcement: All continuous footings should contain top and bottom reinforcement to provide structural continuity and to permit spanning of local irregularities. We recommend that a minimum of two No. 5 top and two No. 5 bottom reinforcing bars be provided in the footings. A minimum clearance of 3 inches should be maintained between steel reinforcement and the bottom or sides of the footing. Isolated square footings should contain, as a minimum, a grid of three No. 4 steel bars Of) 12-inch centers, both ways. In order for us to offer an opinion as to. whether the footings are founded on soils of sufficient load bearing capacity, it is essential that our I Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 24 representative inspect the footing excavations prior to the placement of reinforcing ste~I or· concrete. NOTE: The project Civil/Structural Engineer should review all reinforcing schedules. The reinforcing minimums recommended herein are not to be construed as structural designs, but merely as minimum reinforcement to reduce the potential for cracking and separations. 13. Lateral Loads: Lateral load resistance for the structure supported on footing foundations may be developed in friction between the foundation bottoms and the supporting subgrade. An allowable friction coefficient of 0.40 is considered applicable. An additional allowable passive resistance equal to an equivalent fluid weight of 300 pounds per cubic foot (pcf) acting against the foundations may be used in design provided the footings are poured neat against the adjacent undisturbed formational materials and/or properly compacted fill materials. These lateral resistance values assume a level surface in front of the footing for a minimum distance of three times the embedment depth of the footing. 14. Settlement: Settlements under building loads are expected to be within tolerable limits for the proposed residences. For footings designed in accordance with the recommendations presented in the preceding paragraphs, we anticipate that total settlements should not exceed 1 inch and that post-construction differential angular rotation should be less than 1/240. Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 25 D. Concrete Slab-on-grade Criteria Slabs on-grade may only be used on new, properly compacted fill or when bearing on dense natural soils. 15. Minimum Floor Slab Reinforcement: Based on our experience, we have found that, for various reasons, floor slabs occasionally crack. Therefore, we recommend that all slabs-on-grade contain at least a minimum amount of reinforcing steel to reduce the separation of cracks, should they occur. Interior floor slabs should be a minimum of 4 inches actual thickness and be reinforced with No. 3 bars on 18-inch centers, both ways, placed at midheight in the slab. Slab subgrade soil moisture should be verified by a Geotechnica/ Exploration, Inc. representative to have the proper moisture content within 48 hours prior to placement of the vapor barrier and pouring of concrete. Shrinkage control joints should be placed no farther than 20 feet apart and at re-entrant corners. The joints should penetrate at least 1 inch into the slab. Following placement of any concrete floor slabs, sufficient drying time must be allowed prior to placement of floor coverings. Premature placement of floor coverings may result in degradation of adhesive materials and loosening of the finish floor materials. 16. Slab Moisture Protection and Vapor Barrier Membrane: Although it is not the responsibility of geotechnical engineering firms to provide moisture protection recommendations, as a _service to our clients we provide the following discussion and suggested minimum protection criteria. Actual Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 26 recommendations should be provided by the architect and waterproofing consultants or product manufacturer. Soil moisture vapor can result in damage to moisture-sensitive floors, some floor sealers, or sensitive equipment in direct contact with the floor,. in addition to mold and staining on slabs, walls, and carpets. The common practice in Southern California is to place vapor retarders made of PVC, or of polyethylene. PVC retarders are made in thickness ranging from 10-to 60- mil. Polyethylene retarders, called visqueen, range from 5-to 10-mil in thickness. These products are no longer considered adequate for moisture protection and can actually deteriorate over time. Specialty vapor retarding products possess higher tensile strength and are more specifically designed for and intended to retard moisture transmission into and through concrete slabs. The use of such products is highly recommended for reduction of floor slab moisture emission. The following American Society for Testing and Materials (ASTM) and American Concrete Institute (ACI) sections address the issue of moisture transmission into and through concrete slabs: ASTM E1745-97 (2009) Standard Specification for Plastic Water Vapor Retarders Used in Contact Concrete Slabs; ASTM E154-88 (2005) Standard Test Methods for Water Vapor Retarders Used in Contact with Earth; ASTM E96-95 Standard Test Methods for Water Vapor Transmission of Materials; ASTM E1643-98 (2009) Standard Practice for Installation of Water Vapor Retarders Used in Contact Under Concrete Slabs; and ACI 302.2R-06 Guide for Concrete Slabs that Receive Moisture-Sensitive Flo_oring Materials. Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 27 16.1 Based on the above, we recommend that the vapor barrier consist of a minimum 15-mil extru_ded polyolefin plastic (no recycled content or woven materials permitted). Permeance as tested before and after mandatory conditioning (ASTM E1745 Section 7.1 and sub-paragraphs 7.1.1-7.1.5) should be less than 0.01 perms (grains/square foot/hour in Hg) and comply with the ASTM E1745 Class A requirements. Installation of vapor barriers should be in accordance with ASTM E1643. The basis of design is 15-mil StegoWrap vapor barrier placed per the manufacturer's guidelines. Reef Industries Vapor Guard membrane has also been shown to achieve a permeance of less than 0.01 perms. Our suggested acceptable moisture retardant membranes are based on a report entitled "Report of Water Vapor Permeation Testing of Construction Vapor Barrier Materials" by Dr. Kay Cooksey, Ph.D., Clemson University, Dept. of Packaging Science, 2009-10. The membrane may be placed directly on properly compacted subgrade soils and directly underneath the slab. Proper slab curing is required to help prevent slab curling. 16.2 Common to all ·acceptable products, vapor retarder/barrier joints must be lapped and sealed with mastic or the manufacturer's recommended tape or sealing products. In actual practice, stakes are often driven through the retarder material, equipment is dragged or rolled across the retarder, overlapping or jointing is not properly implemented, etc. All these construction deficiencies reduce the retarder's effectiveness. In no case should retarder/Qarrier products be punctured or gaps be allowed to form prior to or during concrete placement. Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 28 16.3 As previously stated, following placement of concrete floor slabs, sufficient drying time must be allowed prior to placement of any floor coverings. Premature placement of floor coverings may result in degradation of adhesive materials and loosening of the finish floor materials. 17. Concrete Isolation Joints: We recommend the project Civil/Structural Engineer incorporate isolation joints and control joints (sawcuts) to at least one-fourth the thickness of the slab in any floor designs. The joints and cuts, if properly placed, should reduce the potential for and help control floor slab cracking. We recommend that concrete shrinkage joints be spaced no farther than approximately 20 feet apart, and also at re-entrant corners. However, due to a number of reasons (such as base prepar<:1tion, construction techniques, curing procedures, and normal shrinkage of concrete), some cracking of slabs can be expected. 18. Exterior Slab Reinforcement: Exterior concrete slabs should be at least 4 inches thick. As a minimum for protection of on-site improvements, we recommend that all nonstructural concrete slabs (such as patios, sidewalks, etc.), be founded on properly compacted and tested fill or dense native formation and be underlain by 2 inches (and no more than 3 inches) of compacted clean leveling sand, with No. 3 bars at 18-inch centers, both ways, at the center of the slab. Exterior slabs should contain adequate isolation and control joints as noted in the following paragraphs. The performance of on-site improvements can be greatly affected by soil base preparatio~ and the quality of construction. It is therefore important that all improvements are properly designed and constructed for the existing Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 29 soil conditions. The improvements should not be built on loose soils or fills placed without our observation and testing. The subgrade of exterior improvements should be verified· as properly prepared within 48 hours prior to concrete placement. A minimum thickness of 2 feet of properly recompacted soils should underlie exterior slabs on-grade for secondary improvements. 19. Exterior Slab Control Joints.: For exterior slabs with the minimum shrinkage reinforcement, control joints should be placed at spaces no farther than 12 feet apart or the width of the slab, whichever is less, and also at re-entrant corners. Control joints in exterior slabs should be sealed with elastomeric joint sealant. The sealant should be inspected every 6 months and be properly maintained. Concrete slab joints should be dowelled or continuous steel reinforcement should be provided to help reduce any potential differential movement. 20. Concrete Pavement: New concrete driveway and parking slabs should be at least 5½ inches thick and rest on properly prepared and compacted subgrade soils. Subgrade soil for driveway and parking areas should be dense or, if fill, be compacted to at least 95 percent of Maximum Dry Density. The driveway and parking slabs should be provided with reinforcing consisting of No. 4 bars spaced no farther than 15 inches apart in two perpendicular directions. The concrete should be at least 3,500 psi compressive strength, with control joints no farther than 12 feet apart and also at re-entrant corners. Pavement joints should be properly sealed with permanent joint sealant, as required in sections 201.3.6 through 201.3.8 of the Standard Specificat~ons for Public Work Construction, 2012 Edition. Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 30 Control joints should be placed within 12 hours after concrete placement or as soon as the concrete ·allows sawcutting without aggregate raveling. The saw<:uts should penetrate at least one-quarter the thickness of the slab. 21. Permeable Driveway Pavers: · If permeable pavers are considered, it is our opinion based on our site observations and laboratory testing, that the on- site silty sand fill soils and underlying medium dense silty sand formational soils are well-suited for the use of permeable pavers. It is recomm~nded that a minimum 6-inch thick base layer of crushed miscellaneous rock material, compacted to at least 95 percent relative compaction, be placed below a 1-inch thick leveling sand layer under the pavers. The subgrade soils supporting the base layer should also be compacted to 95 percent relative compaction. E. Slopes It is our understanding that no permanent slopes are proposed at this time. Should portions of the site be modified to include new slopes, our office should be contacted for additional· recommendations. 22. Temporary Slopes: Temporary slopes needed for retaining wall construction and/or removal and recompaction during site grading should be stable for a maximum slope ratio of 0.75:1.0 (horizontal to vertical) to a maximum height of 12 feet. No soil stockpiles, improvements or other surcharges may exist or be placed within a horizontal distance of 10 feet from the excavation. Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 31 The stability of temporary construction slopes will depend largely on the contractor's activities and safety precautions (storage and equipment loadings near the tops of cut slopes, surface drainage provisions, etc.), it should be the contractor's responsibility to establish and maintain all temporary construction slopes at a safe inclination appropriate to his methods of operation. If these recommendations are not feasible due to space constraints, temporary shoring may be required for safety and to protect adjacent property improvements. This office should be contacted for additional recommendations if shoring or steep temporary slopes are required. 23. Cal-OSHA: Where not superseded by specific recommendations presented in this report, trenches, excavations, and temporary slopes at the subject site should be constructed in accordance with Title 8, Construction Safety Orders, issued by Cal-OSHA. F. Retaining Wall Design Criteria It is our understanding that no retaining walls are currently proposed. The following retaining wall design criteria are provided based on the encountered soil conditions. 24. Static Design Parameters: Retaining walls must be designed to resist lateral earth pressures and any additional lateral pressures caused by surcharge loads on the adjoining retained surface. We recommend that restrained retaining walls with level backfill be designed for an equivalent fluid pressure of 56 pcf for low expansive import or on-site soils. Wherever restrained walls Rincon Residential-Project Carlsbad, California Job No. 15-10691 Page 32 will· be subjected to surcharge loads, they should also be designed for an additional uniform lateral pressure equal to 0.47 times the anticipated surcharge pressure. Backfill placed behind the walls should be compacted to a minimum degree of compaction of 90 percent using light compaction equipment. If heavy equipment is used, the walls should be appropriately temporarily braced. 25. Seismic Earth Pressures: If seismic loading is to be considered for retaining walls more than 6 feet in height, they should be designed for seismic earth pressures in addition to the normal static pressures. The soil seismic increment is an equivalent fluid weight of 14 pcf. A Kh value of 0.18 may be used is a computer program such as "Retaining Wall Pro" or a similar program is used for wall design. The soil pressures described above may be used for the design of shoring structures. 26. Design Parameters -Unrestrained: The active earth pressure to be utilized in the design of any cantilever retaining walls (utilizing on-site or imported very low-to low-expansive soils [EI less than 50] as backfill) should be based on an Equivalent Fluid Weight of 38 pounds per cubic foot (for level backfill only). In the event that cm unrestrained retaining wall is surcharged by sloping backfill, the design active earth pressure should be based on the appropriate Equivalent Fluid Weight presented in the following table. I Rincon ResJdential Project Carlsbad, California Job No. 15-10691 Page 33 *To determine design active earth pressures for ratios intermediate to those presented, interpolate between the stated values. Backfill soils should consist of low-expansive soils with EI less than 50, and should be placed from the heel of the foundation to the ground surface within the wedge formed by a plane at 30° from vertical, and passing by the heel of the foundation and the back face of the retaining wall. 27. Surcharge Loads: Any surcharge loads placed on the active wedge behind a cantilever wall should be included in the design by multiplying the vertical load by a factor of 0.31. This factor converts the vertical load to a horizontal load. 28. Wall Drainage: Proper subdrains and free-draining backwall material or board drains (such as J-drain or Miradrain) should be installed behind all retaining walls (in addition to proper waterproofing) on the subject project (see Figure No. VI for Retaining Wall Backdrain and Waterproofing Schematic). Geotechnical Exploration, Inc. will assume no liability for damage to structures or improvements that is attributable to poor drainage . . Architectural plans should clearly indicate that subdrains for any lower-level walls be placed at an elevation at least 1 foot below the top of the outer face of the footing, not on top of the footing. At least 0.5-percent gradient should be provided to the subdrain. Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 34 The subdrain should be placed in an envelope of crushed rock gravel up to 1 inch in maximum diameter, and be wrapped with Mirafi 140N filter fabric or equivalent. The subdrain should consist of Amerdrain, QuickDrain (rectangular section boards), or equivalent products. A sump pump may be required if project elevations and discharge points do not allow for outlet via gravity flow. The collected water should be taken to an approved drainage facility. Open head joint subdrain discharge is not considered acceptable for retainin·g walls. All subdrain systems should be provided with access risers for periodic cleanout. 29., Drainage Quality Control: It must be understood that it is not within the scope of our services to provide quality control oversight for surface or subsurface drainage construction or retaining wall sealing and base of wall drain construction. It is the responsibility of the contractor to verify proper wall sealing, geofabric installation, protection board (if needed), drain depth below interior floor or yard surface, pipe percent slope to the outlet, etc. G. Site Drainage Considerations 30. Erosion Control: Appropriate erosion control measures should be taken at all times during and after construction to prevent surface runoff waters from entering footing excavations, ponding on finished building pad areas or causing erosion on soil surfaces. 31. Surface Drainage: Adequate measures should be taken to properly finish- grade the lot after the residential structures and other improvements are in place. Drainage waters from this site and adjacent properties should be directed away from the footings, floor slabs, and slopes, onto the natural Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 35 drainage direction for this area or into properly designed and approved drainage facilities provided by the project civil engineer in the grading plans. Roof gutters and downspouts should be installed on the residences, with the runoff directed away from the foundations via closed drainage lines. Proper subsurface and surface drainage will help minimize the potential for waters to seek the level of the bearing soils under the footings and floor slabs. Failure to observe this recommendation could result in undermining and possible differential settlement of the structures or other improvements or cause other moisture_-related problems. Currently, the California Building Code requires a minimum 1-percent surface gradient for proper drainage of building ~ads unless waived by the building official. Concrete pavement may have a minimum gradient of 0.5-percent. 32. Planter Drainage: Planter areas, flower beds and planter boxes should be sloped to drain away from the footings and floor slabs at a gradient of at least 5 percent within 5 feet from the perimeter walls. Any planter areas adjacent to the residences or surrounded by concrete improvements should be provided with sufficient area drains to help with rapid runoff disposal. No water should b~ allowed to pond adjacent to the residence or other improvements or anywhere on the site. H. General &:commendations 33. Proiect Start Up Notification: In order to reduce any work delays during site development, this firm should be contacted at least 48 hours prior to any need for observation of footing excavations or field density testing of compacted fill soils. If possible, placement of formwork and steel Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 36 rei"nforcement in footing excavations should not occur prior to observing the excavations; in the event that our observations reveal the need for deepening or redesigning foundation structures at any locations, any formwork or steel reinforcement in the affected footing excavation areas would have to be removed prior to correction of the observed problem (i.e., deepening the footing excavation, recompacting soil in the bottom of the excavation, etc.). 34. Construction Best Mana_gement Practices (BMPs): Construction BMPs must be implemented in accordance with the requirements of the controlling jurisdiction. At the very least, sufficient BMPs must be installed to prevent silt, mud or other construction debris from being tracked into the adjacent street(s) or storm water conveyance systems due to construction vehicles or any other construction activity. The contractor is responsible for cleaning any· such debris that may be in the streets at the end of each work day or after a storm event that causes breach in the installed construction BMPs. All stockpiles of uncompacted soil and/or building materials that are intended to be left unprotected for a period greater than 7 days are to be provided with erosion and sediment controls. Such soil must be protected each day when the probability of rain is 40% or greater. A concrete washout should be provided on all projects that propose the construction of any concrete improvements that are to be poured in place. All erosion/sediment control devices should be maintained in working order at all times. All slopes that are created or disturbed by construction activity must be protected against erosion and sediment transport at all times. The storage of all construction materials and equipment must be protected against any potential release of pollutants into the environment. Rincon Residential Project Carlsbad, California XI,, GRADING NOTES Job No. 15-10691 Page 37 Geotechnical Exploration, Inc. recommends that we be retained to verify the actual soil conditions revealed during site grading work and footing excavation to be as anticipated in this "Report of Preliminary Geotechnica/ Investigation" for the project. In addition, the compaction of any fill soils placed during site grading work must be observed and tested by the soil engineer. It is the responsibility of the grading contractor to comply with the requirements on the grading plans and the local grading ordinance. All retaining wall and trench backfill should be properly compacteq. Geotechnical Exploration, Inc. will assume no liability for damage occurring due to improperly or uncompacted backfill placed without our observations and testing. XII. LIMITATIONS Our conclusions and recommendations have been based on available data obtained from our field investigation and laboratory analysis, as well as our experience with similar soils and formational materials located in this area of Carlsbad. Of necessity, we must assume a certain degree of continuity between exploratory excavations and/or natural exposures. It is, therefore, necessary that all observations, conclusions, and recommendations be verified at the time grading operations begin or when footing excavations are placed. In the event discrepancies are noted, additional recommendations may be issued, if required. The work performed and recommendations presented herein are the result of an investigation and analysis that meet the contemporary standard of care in our profession within the County of San Diego. No warranty is provided. This report should be considered valid for a period of two (2) years, and is subject to review by Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 38 our firm following that time. If signifiqmt modifications are made to the building plans, especially with respect to the height and location of any proposed structures, this report must be presented to us for immediate review and possible revision. It is the responsibility of the owner and/or developer to ensure that the recommendations summarized in this report are carried out in the field operations and that our recommendations for design of this project are incorporated in the structural plans. We should be retained to review the project plans once they are available, to see that our recommendations are adequately incorporated in the plans. As stated previously, it is not within the scope of our services to provide quality control oversight for surface or subsurface drainage construction or retaining wall · sealing and base of wall drain construction. It is the responsibility of the contractor and/or their retained construction inspection service provider to verify proper wall sealing, geofabric installation, protection board installation (if needed), drain depth below interior floor or yard surface, pipe percent slope to the outlet, etc. This firm does not practice or consult in the field of safety engineering. We do not direct the contractor's operations, and we cannot be responsible for the safety of personnel other than our own; the safety of others is the responsibility of the contractor. The contractor should notify the owner if he considered any of the recommended actions presented herein to be unsafe. The firm of Geotechnica/ Exploration, Inc. shall not be held responsible for changes to the physical condition of the property, such as addition of fill soils or changing drainage patterns, which occur subsequent to issuance of this report and . the changes are made without our observations, testing, and approval. al I I Rincon Residential Project Carlsbad, California Job No. 15-10691 Page 39 Once again, should any questions arise concerning this report, please feel free to contact the undersigned. Reference to our Job No. 15-10691 will expedite a reply to your inquiries. Respectfully submitted, GEOTECHNICAL EXPLORATION, INC. Cath'a~~ Senior Project Geologist //Mtp£ C.E.G. 999/P.G. 3391 R.C.E. 34422/G.E. 2007 Senior Geotechnical Engineer REFERENCES JOB NO. 14-10691 March 2015 Association of Engineering Geologists, 1973, Geology and Earthquake Hazards, Planners Guide to the Seismic Safety Element, Southern California Section, Association of Engineering Geologists, Special Publication, p. 44. Berger & Schug, 1991, Probabilistic Evaluation of Seismic Hazard in the San Diego-Tijuana Metropolitan Region, Environmental Perils, San Diego Region, San Diego Association of Geologists. Blake, T., 2002, EQFault and EQSearch Computer Programs for Deterministic Prediction and Estimation of Peak Horizontal Acceleration from Digitized California Faults and Historical Earthquake Catalogs. California Geological Survey 2009 Tsunami Inundation Map for Emergency Planning, La Jolla Quadrangle, San Diego County. Cooksley, K., 2009-10, Report of Water Vapor Permeation Testing of Construction Vapor Barrier Materials, Clemson University, Department of Packaging Science. Crowell, J.C., 1962, Displacement Along the San Andreas Fault, California; Geologic Society of America Special Paper 71, 61 p. Demere, T.A., 2003, Geology of San Diego County, California, BRCC San Diego Natural History Museum. Greene, H.G., 1979, Implication of Fault Patterns In the Inner California Continental Borderland between San Pedro and San Diego, in "Earthquakes and Other Perils, San Diego Region," P.L. Abbott and W.J. Elliott, editors. Greensfelder, R.W., 1974, Maximum Credible Rock Acceleration from Earthquakes In California; Calif. Div. of Mines and Geology, Map Sheet 23. Hart, E.W., D.P. Smith, and R.B. Saul, 1979, Summary Report: Fault Evaluation Program, 1978 Area (Peninsular Ranges-Salton Trough Region), Calif. Div. of Mines and Geology, OFR 79-10 SF, 10. Hart E.W. and W.A. Bryant, 1997, Fault-Rupture Hazard Zones in California, California Geological Survey, Special Publication 42, Supplements 1 and 2 added 1999. Hauksson, E. and L. Jones, 1988, The July 1988 Oceanside (ML =5.3) Earthquake Sequence in the Continental Borderland, Southern California Bulletin of the Seismological Society of America, v. 78, p. 1885-1906. Hileman, J.A., C.R. Allen and J.M. Nordquist, 1973, Seismicity of the Southern California Region, January 1, 1932 to December 31, 1972; Seismological Laboratory, Cal-Tech, Pasadena, Calif. Kennedy, M.P., 1975, Geology of the San Diego Metropolitan Area, California; Bulletin 200, Calif. Div. of Mines and Geology. . Kennedy, M.P., S.H. Clarke, H.G. Greene, R.C. Jachens, V.E. Langenheim, J.J. Moore and D. M. Burns, 1994, A digital (GIS) Geological/Geophysical/Seismological Data Base for the San Diego 30x60 Quadrangle, California-A New Generation, Geological Society of America Abstracts with Programs, v. 26, p. 63. REFERENCES/Page 2 Kennedy, M.P. and S.H. Clarke, 1997A, Analysis of Late Quaternary Faulting in San Diego Bay and Hazard to the Coron~do Bridge, Calif. Div. of Mines and Geology Open-file Report 97-lOA. Kennedy, M.P. and S.H. Clarke, 1997B, Age of Faulting in San Diego Bay in the Vicinity of the Coronado Bridge, an addendum to Analysis of Late Quaternary Faulting In San Diego Bay and Hazard to the Coronado Bridge, Calif. Div. of Mines and Geology Open-file Report 97-10B. Kennedy, M.P. and S.H. Clarke, 2001, Late Quaternary Faulting in San Diego Bay and Hazard to the Coronado Bridge, California Geology. Kennedy, M.P., S.S. Tan, R.H. Chapman, and G.W. Chase, 1975; Character and Recency of Faulting, San Diego Metropolitan Area, California, Special Report 123, Calif. Div. of Mines and Geology. Kennedy, M.P. and S.S. Tan, 2005 and 2008, Geologic Map of San Diego 30'x60' Quadrangle, California, California Geological Survey, Dept. of Conservation. Kennedy, M.P. and E.E. Welday, 1980, Character and Recency of Faulting Offshore, Metropolitan San Diego California, Calif. Div. of Mines and Geology Map Sheet 40, 1:50,000. Kem, J.P. and T.K. Rockwell, 1992, Chronology and Deformation of Quaternary Marine Shorelines, San Diego County, California in Heath, E. and L. Lewis (editors), The Regressive Pleistocene Shoreline, Coastal Southern California, pp. 1-8. Kern, P., 1983, Earthquakes and Faults in San Diego, Pickle Press, San Diego, California. McEuen, R.B. and C.J. Pinckney, 1972, Seismic Risk in San Diego; Transactions of the San Diego Society of Natural History, v. 17, No. 4. Richter, C.G., 1958, Elementary Seismology, W.H. Freeman and Company, San Francisco, Calif. Rockwell, T.K., D.E. Millman, R.S. McElwaln, and D.L. Lamar, 1985, Study of Seismic Activity by Trenching Along the Glen Ivy North Fault, Elsinore Fault Zone, Southern California: Lamar-Meritield Technical Report 85-1, U.S.G.S. Contract 14-08-0001-21376, 19 p. Simons, R.S., 1977, Seismicity of San Diego, 1934-1974, Seismological Society of America Bulletin, v. 67, p, 809-826. Southern California San Onofre Nuclear Generating Station Seismic Source Characterization Research Project, 2012, Paleoseismic Assessment of the Lat«:1 Holocene Rupture History of the Rose Canyon Fault in San Diego. Tan, S.S., 1995, Landslide Hazards In Southern Part of San Diego Metropolitan Area, San Diego County, Calif. Div. of Mines and Geology Open-file Report 95-03. Toppozada, T.R. and D.L. Parke, 1982, Areas Damaged by California Earthquakes, 1900-1949; Calif. Div. of Mines and Geology, Open-file Report 82-17, Sacramento, Calif. Treiman, J.A., 1993, The Rose Canyon Fault Zone, Southern California, Calif. Div. of Mines and Geology Open-file Report 93-02, 45 pp, 3 plates. URS Project No. 27653042.00500 (2010), San Diego County Multi-Jurisdiction Hazard Mitigation Plan San Diego County, California. U.S.G.S. Earthquake Hazards Program, 2010, http://earthguake.usgs.gov/. f VICINITY MAP ____ ,_......,.. _ _;~~-+----~....,_---+--U· ounty pg 1106-~7° Rincon Residential Lot 3806 Garfield Street Carlsbad, CA. Figure N,o. I Job No. 15-10691 15-10691-po! SHEET 1 OF 1 SHEET --~/1 ·1,~>-'-===~~ ;, ,. l LOT2,Bt.OCKU, MAP17.ft 'l I' ,, ----.,. --I: I" .1! ,,~ ·" ••I r, ii 5 f I ij I ·-.------------------------------.-II il ' I t I ~~~~ PORTIONOI' LOT111,BLOCKM, M-'?17~1 SCALE: 1 " = 20' _____ _,.,. .. ------___ _..,,UC' -------- PASCO LARET sumR J ~~.;!!,~~ TOPOGRAPHIC SURVEY fli!AP -3806 GARFIELD ST. ""'n"'"' "'""'"'--=L=EG=E'-'N-"D=---~------------------REFERENcE: This Plot Plan was prepamd from an nl existingSITEPLANbyShsokeflonDeslgnGroup I[] HP-5 Approximate Location D Proposed Structure dated 2/8/2015end from• Topogrophlc Su,vey Msp of Explorato,y Handpll by Pasco Laret Sulrer~tf/(J 2/23/2015 and from on-site field reconnaissance ~tformed byGEJ. Qop 6-7 Old Paralic Deposits PLOT PLAN Rincon Residant,af Lot 8806 Garlield Street Carlsbad, CA Figure No. II Job No 15-10691 Geotechnical Exploration, Inc. Merch2015 I l:i i ~ i EQUIPMENT DIMENSION & TYPE OF EXCAVATION Hand Tools 2' X 2' X 4.5' Handpit SURFACE ELEVATION GROUNDWATER/ SEEPAGE DEPTH :t 65.5' Mean Sea Level Not Encountered FIELD DESCRIPTION AND ~ ~'ti 1--------C-~_~_IF_IC_A_T_IO_N _____ _,_,.~w~ ~$ ~ ~ DESCRIPTION AND REMARKS t. 5 j: =5 ~ :::;; ~ n ~ a.z ~ C:S (Grain size, Density, Moisture, Color) ~ ~ §! t gf - ---. -1----- - 2- - - - SIL TY SAND, fine-to mea1um-gramed. Loose to ~M medium dense. Damp. Red-brown. WEATHERED OLD PARALIC DEPOSITS (Qop 6-7) · I -@ 2' -probes easily to 9•.12". 1 ~ M --18% passing #200 sieve. 11\i transitions to ... 5.0 96.6 5.1 3 -..... ( ~ ........ +--'1-s =1L TY SAND, fine-to medium-grained. Medium .... 1--SM- -•I ~l':-!. dense. Damp. Light red-brown. 2.3 102.5 r· _ · 1 ·,tr _ t,:; 3 -iii/'-• r,." .. , ' 4-H-:-.· 4 --~: _;·~ ·~t;.tll\ -5- - -- - OLD PARALIC DEPOSITS (Qopi.-7) 1.9 102.7 --17% passing #200 sieve. 1.9 104.2 Bottom @ 4.5' DATE LOGGED 2-11-15 LOGGED BY CKG + I ...J fi lij 8 77 8.3 125.3 84 84 86 8.5 121.7 ~ ..... _.i,_.-1,,_.i.. _____________________ ....,_.__.__..i.. _ _,__...., _ _.___....L,._..L..--J I ii: j , § i!i ~ ~ ~ PERCHED WATER TABLE . JOB NAME Rincon Residential Project 181 BULK BAG SAMPLE SITE LOCATION m IN-PLACE SAMPLE 3806 Garfield Street, Carlsbad, CA .i JOB NUMBER REVIEWED BY LDR/JAC LOG No. MODIFIED CALIFORNIA SAMPLE III NUCLEAR FIELD DENSITY TEST 15-10691 at==-HP-1 FIGURE NUMBER ~ STANDARD PENETRATION TEST Illa ~ ~ "' i b (!) ~ ~ ii: (!) 'EQUIPMENT DIMENSION & TYPE OF EXCAVATION Hand Tools 2' X2' X 6' Handpit SURFACE ELEVATION GROUNDWATER/ SEEPAGE DEPTH :I: 65' Mean Sea Level Not Encountered 'if ,:!g. i5 ~ ~ I I !!l f'i, . --. -. 1 -. -. . -. --2--- - - 3---. --l - 4- - - - 5--. - . .},I,', . • -• !fl, • •It 6-~l ---- 7- - FIELD DESCRIPTION AND CLASSIFICATION DESCRIPTION AND REMARKS (I) d (Grain size, Density, Moisture, Color) (I) ::i SIL TY SAND, fine-to medium-grained, with SM extensive roots. Loose to medium dense. Damp. Red-brown. WEATHERED OLD PARALIC DEPOSITS (Qop 6-7) -becomes medium dense. h :~~~:~~-: fine-To-medium-grainecCMedTum _ .1 -s°M dense. Damp. Light red-brown. ~1....c...-.....:O:.:L==D:...P::....:A~RA=L=l-=C...,,De..=E:::.P-=Oc.:S:.:..IT:...::S;...CL:;Q~o:.cD'.Ji: ., ... u.,_l _ __,J/ 1-- Bottom@6' DATE LOGGED -.... 2-11-15 LOGGED BY CKG ~ g ~I ~ i;:: 'a d ::I c:i ~~ ::.~ C.e, + ' o_ ~~ ~ ~ ~d ·6 ~~ ~H~ ~ffi ::s-U)::i! ~ ~ ii n.:;c Dr ffi Ii: 0 c5'o o:::i :;o zo ~8 _,o ie _;:!: iil:c 0 :. cc mo 5.2 104.4 83 ~IL.,---'----'--'------------------_.__...,._1....-_..i.._..i,_ _ _,1._~..._-1-_ _,__,. I i g z I g ~ \.._ ~ ~ m • [!] ~ PERCHED WATER TABLE BULK BAG SAMPLE IN-PLACE SAMPLE MODIFIED CALIFORNIA SAMPLE NUCLEAR FIELD DENSITY TEST STANDARD PENETRATION TEST JOB NAME Rincon Residential Project SITE LOCATION 3806 Garfield Street, Carlsbad, CA JOB NUMBER REVIEWED BY LDR/JAC LOG No. 15-10691 ;,-~ HP-2 FIGURE NUMBER Ellplordon, Inc. lllb ¾::3. , rEQUIPMENT DIMENSION & TYPE OF EXCAVATION DATE LOGGED Hand Tools 2' X 2' X 4.5' Handplt 2-11-15 SURFACE ELEVATION GROUNDWATER/SEEPAGE DEPTH LOGGED BY ± 63' Mean Sea Level Not Encountered CKG FIELD DESCRIPTION i AND l Ei:'5" ~ £i: 'E ! CLASSIFICATION 2 ti c:i wl:l:! o.s, :d~ 0 12. + • 0 ~~ :. -~'-i 6 i (/) :si= ~~ ~~ -~ ~fa j!: a:, DESCRIPTION AND REMARKS 0 ~~ Cl):::il z UJ a. :::!: (Grain size, Density, Moisture, Color) (/) a. !:!2 li:6 i~ zo ~8 ~5 Ii ~ fii zo z:W ~c :::i _:i; _o o::. a)C., 8 SIL TY SAND, fine-to medium-grained, with ~M -roots. Loose to medium dense. Damp. ><; Red-brown. -~ . FILU -WALL BACKFILL (Qaf) 1 -' ' . =~~~ -~ 2-~ -0 g ' --@ north-south perforated corrugated subdrain -with some gravel. --:~g~ 3-SIL TY $AND, fine-to medium-grained. Medium SM . dense. Damp. Red-brown. -. . -OLD PARALIC DEPOSITS (Qop6.7) . - ' 4-' . ~ . '-SILTY SAND, fine-to medium-grained. Medium ---srvf ' ' . -'· . ' dense. Damp. Light red-tan-brown. . ,-. ; -~ I"\ OLD PARALIC DEPOSITS tQon •. ~l i - - 5-Bottom @ 4.5' - - - .Y. PERCHED WATER TABLE • JOB NAME Rincon Residential Project [81 BULK BAG SAMPLE SITE LOCATION ill IN-PLACE SAMPLE 3806 Garfield Street, Carlsbad, CA • JOB NUMBER REVIEWED BY LDR/JAC LOG No . MODIFIED CALIFORNIA SAMPLE 0 NUCLEAR FIELD DENSITY TEST 15-10691 Di-HP-3 FIGURE NUMBER Exploration, Inc. ~ STANDARD PENETRATION TEST Ille , '" "' i 15 '.:l ~ 0 w (!I rEQUIPMENT DIMENSION & TYPE OF EXCAVATION DATE LOGGED \.. Hand Tools 2' X 2' X 4.5' Handplt SURFACE ELEVATION GROUNDWATER/ SEEPAGE DEPTH :t 61' Mean Sea Level Not Encountered ! _, i ~ i lb ~ C . -. -. -. 1-. . . ----- 2-. - -l ---3- - - - 4-<' .. ;. -' it"-1 i I ' -.D - 5- - - -. FIELD DESCRIPTION AND CLASSIFICATION (I) DESCRIPTION AND REl'MRKS (.) (Grain size, Density, Moisture, Color) cr.i ::i SIL TY SAND, fine-to medium-grained, with some tree roots. Loose to medium dense. Damp. ISM Red-brown. WEATHERED OLD PARALIC DEPOSITS (Qop 6-7) --@2' -probes to 6"-12" . , --becomes medium dense. '""SIL TY SAND, fine-to medium-grained. Medium ~S1vf dense to dense. Damp. Light red-tan-brown. h.'---_....:O~LD!!.!.P~A:!.:!RA~U~C:...!D::.:E::P..:O~S~IT.!..::S~i.:!C1Q~o:,:•nui,, -.u... _, _ __,/ ,__ Bottom @ 4.5' JOB NAME 2-11-15 LOGGED BY CKG ~ ~E ~ ~I ~~ :dl:! ii i~ ~i!: ii :. l15 ~; I~ zW __ ::::i; -C I 5.6 100.0 .Y PERCHED WATER TABLE Rincon Residential Project 181 BULK BAG SAMPLE SITE LOCATION m IN-PLACE SAMPLE 3806 Garfield Street, Carlsbad, CA •• JOB NUMBER REVIEWED BY LDR/JAC MODIFIED CALIFORNIA SAMPLE III NUCLEAR FIELD DENSITY TEST 15-10691 ~--FIGURE NUMBER Exploration. Inc, ~ STANOARD PENETRATION TEST Hid ~ ... ~ --:-I;; d C + ' o_ ~~ -~ ~~ Wr/.1 I~ i~ z'ls ::i;u Wa' a!8 c7j~ 0- 80 ' LOG No. HP-4 . i l5 3 Q. 1/i Iii (!) rEQUIPMENT DIMENSION & TYPE OF EXCAVATION Hand Tools 2' X 2' X 4' Handpit SURFACE ELEVATION GROUNDWATER/ SEEPAGE DEPTH :f:: 60' Mean Sea Level Not Encountered FIELD DESCRIPTION AND CLASSIFICATION g ~ DESCRIPTION AND REMARKS ! ! (Grain size, Density, Moisture, Color) -. ::, 2-'Si _, - -. SIL TY SAND, fine-to medium-grained, with roots to 6" in diameter (large rubber tree). Loose. Damp. Red-brown. FILL (Qaf) SIL TY SAND, fine-to medium-grained. Medium dense. Damp. Red-brown. OLD PARALIC DEPOSITS (Qops-7) (I) ~ ::l SM SM 3-t' ,::, ', . > ,. -:l ! '"""SIL TY SAND, fine-to medium-grained. Medium · -'sl;,f dense. Damp. Light red-tan-brown. -! t•,_1' -f,,,'' -; : .;' OLD PARALIC DEPOSITS (Qop6•7) -.f 'ti - -l 4-.:...=.:.:.· -- -Bottom@4' -- 5--- - ~ - DATE LOGGED "I 2-11-15 LOGGED BY CKG ~ ~I ~ ~E ~ a ti; c wl!:! :::di:! + ' o_ ~~ ~~ ~d .J ;rn ~i: ig f2 ~ffi 50 :::!:-i: ~z a. ::i::: i= U) ;; ~; ~ffi &; ~ is 95 :::!:O _c ~~ w (.) ID(.) <3$ -i..__...___._ ______________________ __. ____ _.__....._ ___ ..__ ___ _,___, I I § ~ i g Q. ~ \.. '_y rgJ ill • ~ ~ PERCHED WATER TABLE BULK BAG SAMPLE IN-PLACE SAMPLE MODIFIED CALIFORNIA SAMPLE NUCLEAR FIELD DENSITY TEST STANDARD PENETRATION TEST JOB NAME Ri11con Resldentlal Project SITE LOCATION 3806 Garfield Street, Carlsbad, CA JOB NUMBER REVIEWED BY LDR/JAC LOG No. 15-10691 ;;&--HP-5 FIGURE NUMBER Exploration, me. Ille ~ ~ 135 I\ \ l ' I\ 130 \ ' 1 \ i\ \ \ ~ \ , 125 L, ' 1 . \ \ • 1 \ Source of Material HP-1 @2.5' \ ~ ,. \ SIL TY SAND {SM)i Red-brown J , \ ' Description of Material 120 \ \ ~ ' " I\ \ Test Method ASTM D1557 Method A 1 I\ \ \ 115 \ I\ \ \ I\ TEST RESULTS I\ \ \ Maximum Dry Density 125.3 PCF !\ , 110 \ I\ Optimum Water Content ~ % '13 \ Cl. \ \. ~ I\ \ Expansion Index (El) -- ii.i 105 ' I\ \ z w I\ ' II.. 0 ~ \ ' \ fl.. 0 I\ I\ • I'\ 100 I\ " I\. Curves of 100% Saturation I\. ~ for Specific Gravity Equal to: '\ :\. ' 2.80 I\ ' 95 '\ I\. 2.70 I\ " II,. I\ I\. ' 2.60 \ r--.1'- '\ I\. 90 I'-I\. "' l:i I\ \ ... ~ \ i' l:i " 1, Cl rg 85 ,'\ '\. ~ '\ ' Ill. iii "' " ,.,. Cl l'I\ '\ ' 2 Cl ' I'\ ... 9 [',. I" ... ._. w 80 ii: I I\. ""'" II\. " ... r,._ ' '"' 8 z 1'. "'I ii: r-:;:-J j 75 0 5 10 15 20 25 30 35 40 45 I 8 0 Cl WATER CONTENT,% ~ Geotechnlcal MOISTURE-DENSITY RELATIONSHIP + Exploration, Inc. Figure Number: IVa Job Name: Rincon Residential Project Site Location: 3806 Garfield Street, Carlsbad, CA Job Number: 15-10691 135 \ , ., \ -\ \ ' 130 \ l \ ' \ \ \ \ ' 125 \ I \ \ S(?urce of Material HP-1 @4.3' \ \ SIL TY SAND {SM}i Light -..... \ ' Description of Material 120 • \ \ red-tan-brown .. " \ Test Method ASTM D1557 Method A \ \ \ Ir ' ' \ \ '\ 115 \ I \ \ \ \ TEST RESULTS \ ' \ \ Maximum Dry Density 121.7 PCF 110 \ Optimum Water Content _H o/o \ \ l \ ' \ \ ~ \ \ Expansion Index (El) -- ~ 105 \ I. ' w \ \ Q i>i f\ \ \ \ 0 \ ' ' 100 i\ \ \. Curves of 1 00% Saturation \. ' , for Specific Gravity Equal to: \ \ \. 2.80 '' 95 \ '\. 2.70 \ \ ,._ '\ 'I 2.60 \ \ '\. '\. I\. 90 '\ ' ~ " \ " ~ '' l:i ' ' ·r.:J I 85 '\. I\. I\. ... "\ \. [lj I"-."' -.-II,. Cl \. '\. -.. ~ ! ' ' "- li: 80 " ' -.. ,, 11,,. Is. a: i ' ' "''- § ' " \ '-f ii< I 75 " 0 5 10 15 20 25 30 35 40 45 WATER CONTENT,% -~~ Geotechnlcal MOISTURE-DENSITY RELATIONSHIP Exploration, Inc. Figure Number: !Vb ~ Job Name: Rincon Residential Project Site Location: 3806 Garfield Street, Carlsbad, CA Job Number: 15-10691 ~~~-= ===~--I ::::.-==--==:::.-1 _. ... _ ..... __ ..... Rincon Residenlial lat 3806 Garfield Street Carlsbad, CA. EXCERT FROM GEOLOGIC MAP OF THE OCEANSIDE 30' X 60' QUADRANGLE, CALIFORNIA -,:::::;.;-s.,.. """'--":::::=:-.::/6o, ... J.-· ,,........, __ . ____ ..,. __ DESCRIPTION OF MAP UNITS oi. pu.il.e dl-poslll PclM.S.d a,w tu ii:slddh: F,.__.)--MM!ly Jloody """'4, m:,~tdy ~\le, NMl""'-",fn~~tac&.o:atimbload colhm.&ldcpos!tlcmr,poi,,d,:,r,nt,tone,OQllh~IM t0!!$lom::hlc. 'IhN9~1SMt@ilwlll>l','emngffl- Clllalnuloll p1atfOffllf~ l,y rejpO!W 11p1ll\. Vr'b::rc ID01'111'IIIIOI\Ollll:llberialllw"1l(o.g.,~-4'tbD1,:,~tt at11Wldlvlded{Fl,-3). IDct.ides- Old pralk llsp,,.tu., UD.11 7 (late io •ldilb Plddocelle)-Modypcorly,oit:d,m;,doralol)'p,rniWM, ~lmtwll, ictmlo,-d 11nl!dl!M, bcKb, ntmrlrle mlll.rolllmal&por111rolllJ"*(lof1illllaM,"""'1slnhllmid ,;:m,ii~ Tb.., dcpc,libR11l<111 tholl-11 ~BJ:d Ro,;k tcmcc:{Flg.3) Old pa.Nik de.Dlllb, Unll 6 (la19 to mlddk-Pldt111csm}-Mo1tly poorly..»1ed,modc:Qbly~Jo, tod.iltb-lm:nnl.iDwmll;=d~liu.lload!,e1111mD!! ll!ldcolhmaldep.,dfJ~or.U.-,aiub:011eeffl:1 DOll(lknneratc.n.-dq,cWn:ot011.lbcll-2lmNc11er imaco(r~3) Sa,11lapJ'onn1don {mlddltEor:eM)-NmJ,,dby'WoodnnJ -1p.,,_., (19-4$) fwBoeella <k;,c,11ttof~.m, S1111a Am Molmtmlt. Tbmo .,.. 11:ne d,lbnctt,,. p.m. A b,W IIM::tlbtt lbl,I, conal.m or bafl' .1"4 brol,,ulllb-sn,, llUliYc,~poor\y.c,rtldarlrmia ~imd -~~c=aJIYpKG:11:llh:atci).Jneomr GU1:t!it~lmom!mlro-mlaitabypyod~py (wt ....i: pep;«) emual momb« \bl.l comltt,, or ..,ft. uicdlum-pinld, umdt:ia!cb'-...iJhnto:!.~ u.ii&tom,. M. "1f'IC' Clll'll!,btr ""11WII of It*)', oo~ arkotl<: ~ecdgrlt.'Tbrol,~1bfarmlbcll,bal!,vcrt,;;:ally ud '*'-lly, lhc:1,WJt, jPIIClllh,,1,;t,Jm,--,: ~ hitm>ecb.lcn>&U<Wmtl=#lofoflaltouti(ffllllt,J,.gooul cls)'IIOM md rilblt>tlC-Tho lo,i,er part of lh• SanM&o Fof!11L11onitil!rlinpn:1nlhU.DclmuFormsbol>andTocrcr ~mt1te&mi~~81e ONSHORE MAP SYMBOLS eaua-Ciw1<:1-~11,m,...,d......,--. _Lu F•~-aOU!-"'-=nltqlo:. ... ol.~wt .. -"?f-~la.'1_..,,0olnd...i,.,.CCl"ICINIM.U•~ -+ . l>lo<k,O•_,.__ Nr:1111~-hlqls --~ol~olflolltpl .... Mtdhl:•&CJll4-,-aec:..,.alylOCli.d,dHt,e(l- lppro,tnl.d)'lociltddo,Ma""'-111-tlocl. - lndbCH~l-ll<SOndiUltli:u'90- S}Tdn•-$old-oain""1IO<lll""'-_ _,,,w,a,d,d Am,,,nf_d_<J .... li,li,!'11" ,-,.;::-lot'Oll"6--~~dncionol--:,:..1' o-,~,.i, .... --.-,~ Figure No. V Job No. 15-10691 ffi~~~-~ March2015 SCHEMATIC RETAINING WALL SUBDRAIN 3-FootHigh Frel3-Standing ---.; Masonry Wall Retaining Wall Yard Area Soils \ .. .. . ""' ' ~ ' ,, . t. .. . . . .~ . . . " A . . . . H I ... , JI ' ! JI" ; . ~ . Asphalt Parking Lot ( Adjacent Property) Miradrain 6000 Waterproofing Perforated PVC (SOR 35) 4" pipe with 0.25% min • slope, with bottom of pipe located 1 'Z' below yard elevation, with 1.5 (cu.ft.) of gravel 1" diameter max. wrapped with filter cloth such as Miradrain 6000. For yard area conditions in front of retaining wall, the subdrain may be placed on top of foundation. Ameridrain, Quickdrain or equivalent products may be used os on alternative. Miradrain Cloth NOTTO SCALE NOTE: As an option to Mlradrain 6000, grovel or crushed rock, 3/4" maximum diameter may be used with a minimum 12" thickness olong the Interior face of the wall and 2.0 cu.ft./ft of pipe gravel envelope. 15-10891-VI Figure No. VI Job No. 15-10691 ~;i~ad ,ii'" Exploration, Inc. ~ Msrch2015 APPENDIX A UNIFIED SOIL CLASSIFICATION CHART SOIL DESCRIPTION Coarse-grained (More than half of material is larger than a No. 200 sieve) GRAVELS, CLEAN GRAVELS GW Well-graded gravels, gravel and sand mixtures, little (More than half of coarse fraction or no fines. is larger than No. 4 sieve size, but smaller than 3") GP Poorly graded gravels, gravel and sand mixtures, little or no fines. GRAVELS WITH FINES GC Clay gravels, poorly graded gravel-sand-silt mixtures (Appreciable amount) SANDS, CLEAN SANDS SW Well-graded sand, gravelly sands, little or no fines (More than half of coarse fraction is smaller than a No. 4 sieve) SP Poorly graded sands, gravelly sands, little or no fines. SANDS WITH FINES SM Silty sands, poorly graded sand and silty mixtures. (Appreciable amount) SC Clayey sands, poorly graded sand and clay mixtures. Fine-grained (More than half of material is smaller than a No. 200 sieve) SILTS AND CLAYS Liquid Limit Less than 50 Liquid Limit Greater than 50 HIGHLY ORGANIC SOILS (rev. 6/05) ML Inorganic silts and very fine sands, rock flour, sandy silt and clayey-silt sand mixtures with a slight plasticity CL Inorganic clays of low to medium plasticity, gravelly clays, silty clays, clean clays. OL Organic silts and organic silty clays of low plasticity. MH Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts. CH Inorganic clays of high plasticity, fat clays. OH Organic clays of medium to high plasticity. PT Peat and other highly organic soils APPENDIX B SElSMIC DATA EQ FAULT TABLES Rincon Garf eqf peak TEST.OUT *********************** * * * * * EQFAULT version 3.00 * * * * * *********************** DETERMINISTIC ESTIMATION OF PEAK ACCELERATION FROM DIGITIZED FAULTS JOB NUMBER: 15-10691 JOB NAME: Rincon Garfield eqf Test Run CALCULATION NAME: Rincon Garf eqfTest Run Analysis FAULT-DATA-FILE NAME: CDMGFLTE.DAT SITE COORDINATES: SITE LATITUDE: 33,1497 SITE LONGITUDE: 117.3447 SEARCH RADIUS: 100 mi DATE: 03-02-2015 ATTENUATION RELATION: 8) Bozorgnia Campbell Niazi (1999) Hor.-Soft Rock-uncor. UNCERTAINTY (M=Median, S=Sigma): M Number of sigmas: 0.0 DISTANCE MEASURE: cdist SCOND: 0 Basement Depth: 5.00 km campbell ssR: 1 campbell SHR: O COMPUTE PEAK HORIZONTAL ACCELERATION FAULT-DATA FILE USED: CDMGFL TE. DAT MINIMUM DEPTH VALUE (km): 3.0 Page 1 Rincon Garf eqf peak TEST.OUT EQFAULT SUMMARY -----------------------------DETERMINISTIC SITE PARAMETERS ----------------------------- Page 1 -------------------------------------------------------------------------------ESTIMATED MAX. EARTHQUAKE EVENT ABBREVIATED FAULT NAME ROSE CANYON . NEWPQRT-INGLEWOOD (Offshore) CORONADO BANK ELSINORE-TEMECULA ELSINORE-JULIAN ELSINORE-GLEN IVY PALOS VERDES EARTHQUAKE VALLEY NEWPORT-INGLEWOOD (L.A.Basin) SAN JACINTO-ANZA SAN JACINTO-SAN JACINTO VALLEY· CHINO-CENTRAL AVE. (Elsinore) WHITTIER SAN JACINTO-COYOTE CREEK COMPTON THRUST ELSINORE-COYOTE MOUNTAIN ELYSIAN PARK THRUST SAN JACINTO-SAN BERNARDINO SAN ANDREAS -San Bernardino SAN ANDREAS -southern SAN JACINTO -BORREGO SAN JOSE PINTO MOUNTAIN SIERRA MADRE CUCAMONGA SAN ANDREAS -Coachella NORTH FRONTAL FAULT ZONE (West) CLEGHORN BURNT MTN. RAYMOND NORTH FRONTAL FAULT ZONE (East) SAN ANDREAS -Mo~ave SAN ANDREAS -18 7 Rupture EUREKA PEAK CLAMSHELL-SAWPIT . SUPERSTITION MTN, (San Jacinto) VERDUGO I HOLLYWOOD ELMORE RANCH I SUPERSTITION HILLS (San Jacinto) APPROXIMATE DISTANCE mi (km) 4.7( 7 ,6) 5.2( 8.4) 20.6( 33.2) 24.7( 39.7) 24.9( 40.0) 34.1( 54.9) 35.6( 57.3) 44.2( 71.2) 46.1( 74.2l 47.2~ 76.0 47.7 76.8 48.0( 77.3 51.6~ 83.0) 52.9 85.l~ 55.8 89.8 58.3( 93.8) 58.8( 94.6) 60.2( 96.9~ 65.4( 105.3 65.4( 105. 3) 66.7( 107.3) 68.9f 110.9~ 72.4 116. 5 72.5( 116.7) 72.8( 117.2)1 73.6( 118.4)1 76.2( 122.6~ I 77.9( 125.4 78.5( 126.3 80.5( 129.6~ 80.7( 129.9 81.0( 130.3) 81.0( 130.3) 81.3( 130.8) 82.3( 132.5) 83.0( 133.6) 83.1( 133.8) 84.9( 136.7) 86.6( 139.4) 87.7( 141.1) Page 2 -------------------------------MAXIMUM PEAK EST. SITE EARTHQUAKE SITE INTENSITY MAG.(MW) ACCEL. g MOD.MERC. ·~.,,,,,....,-=== =---== 6.9 0.402 X 6.9 0.384 X 7.4 0.162 VIII 6.8 0.085 VII 7.1 0.105 VII 6.8 0.057 VI 7.1 0.068 VI 6.5 0.032 V 6.9 0.042 VI 7.2 0.051 VI 6.9 0.040 V 6.7 0.040 V 6.8 0.033 V 6.8 0.032 V 6.8 0.041 V 6.8 0.028 V 6.7 0.035 V 6.7 0.025 V 7.3 0.036 V 7.4 0.039 V 6.6 0.020 IV 6.5 0.021 IV 7.0 0.025 V 7.0 0.030 V 7.0 0.030 V 7.1 0.027 V 7.0 0.028 V 6.5 0.015 IV 6.4 0.014 IV 6.5 0.017 IV 6.7 0.020 IV 7.1 0.024 IV 7.8 0.041 V 6.4 0.013 III 6.5 0.017 IV 6.6 0.015 IV 6.7 0.020 IV 6.4 0.015 IV 6.6 0.014 IV 6.6 0.014 IV Rincon Garf eqf peak TEST.OUT DETERMINISTIC SITE PARAMETERS Page 2 -------------------------------------------------------------------------------ESTIMATED MAX. EARTHQUAKE EVENT ABBREVIATED FAULT NAME APPROXIMATE DISTANCE mi (km) MAXIMUM EARTHQUAKE MAG. (Mw) PEAK EST. SITE SITE INTENSITY ACCEL. g MOD.MERC. -=---=--=====-==-= ====== =====--.---------------=----LANDERS 88.2( 142.0) 7.3 0.025 V HELENDALE -S. LOCKHARDT 88.7( 142.8) 7.1 0.021 IV SANTA MONICA 89.5( 144.1) 6.6 0.016 IV LAGUNA SALADA 89.6( 144.2) 7.0 0.019 IV MALIBU COAST 92.1( 148.2) 6.7 0.017 IV LENWOOD-LOCKHART-OLD WOMAN SPRGS 92.8( 149.3) 7.3 0.023 IV BRAWLEY SEISMIC ZONE 95.8( 154.1) 6.4 0.011 III JOHNSON VALLEY (Northern) 96.0( 154.S~ 6.7 0.014 III NORTHRIDGE (E. oak Ridge) 96.3( 155.0· 6.9 0.022 IV EMERSON So. -COPPER MTN. 96.5( 155.3 6.9 0.016 IV SIERRA MADRE (San Fernando) 96.9( 156.0) 6.7 0.016 IV SAN GABRIEL 97.2( 156.4) 7.0 0.017 IV ANACAPA-DUME 98.7( 158.8) 7.3 I 0.026 V ********************************************************************* ********* -END OF SEARCH-53 FAULTS FOUND WITHIN THE SPECIFIED SEARCH RADIUS. THE ROSE CANYON FAULT IS CLOSEST TO THE SITE. IT IS ABOUT 4.7 MILES (7.6 km) AWAY. LARGEST MAXIMUM-EARTHQUAKE SITE ACCELERATION: 0.4016 g Page 3 Rincon Garf eqf rhga TEST.OUT *********************** * * * * * EQFAULT version 3.00 * * * * * *********************** DETERMINISTIC ESTIMATION OF PEAK ACCELERATION FROM DIGITIZED FAULTS JOB NUMBER: 15-i0691 JOB NAME: Rincon Garfield eqf Test Run CALCULATION NAME: Rincon Garf eqfrest Run Analysis FAULT-DATA-FILE NAME: CDMGFLTE.DAT SITE COORDINATES: SITE LATITUDE: 33.1497 SITE LONGITUDE: 117.3447 SEARCH RADIUS: 100 mi DATE: 03-02-2015 ATTENUATION RELATION: 8) Bozorgnia Campbell Niazi (1999) Hor.-soft Rock-uncor. UNCERTAINTY (M=Median, S=Sigma): M Number pf Sigmas: 0.0 DISTANCE MEASURE: cdist SCOND: 0 Basement Depth: 5.00 km Campbell SSR: 1 Campbell SHR: O COMPUTE RHGA HORIZ. ACCEL. (FACTOR: 0.65 DISTANCE: 20 miles) FAULT-DATA FILE USED: CDMGFLTE.DAT MINIMUM DEPTH VALUE (km): 3,0 Pagel Rincon Garf eqf rhga TEST~oUT ---------------EQFAULT SUMMARY --------------- -----------------------------DETERMINISTIC·SITE PARAMETERS ----------------------------- Page 1 -------------------------------------------------------------------------------!ESTIMATED MAX. EARTHQUAKE EVENT ABBREVIATED FAULT NAME APPROXIMATE DISTANCE mi (km) -------------------------------MAXIMUM RHGA EST. SITE EARTHQUAKE SITE INTENSITY MAG.(MW) ACCEL. g MOD.MERC. =:-==------------=--------------==---== ~==== ROSE CANYON 4.7( 7 .6) 6.9 0.261 IX NEWPORT-INGLEWOOD (Offshore) 5.2( 8.4) 6.9 0.250 IX CORONADO BANK 20.6( 33.2) 7.4 0.162 VIII ELSINORE-TEMECULA 24.7( 39.7) 6.8 0.085 VII ELSINORE-JULIAN 24.9( 40.0) 7.1 0.105 VII ELSINORE-GLEN IVY 34.1( 54.9~ 6.8 0.057 VI PALOS VERDES 35.6( 57.3 7.1 0.068 VI EARTHQUAKE VALLEY 44.2( 71.2)1 6.5 0.032 V NEWPORT-INGLEWOOD (L.A.Basin) 46.1( 74.2) 6.9 0.042 VI SAN JACINTO-ANZA 47.2~ 76.0~ 7.2 0.051 VI SAN JACINTO-SAN JACINTO VALLEY 47.7 76.8 6.9 0.040 V CHINO-CENTRAL AVE. (Elsinore) 48.0~ 77.3) 6.7 0.040 V WHITTIER 51.6 83.0~ 6.8 0.033 V SAN JACINTO-COYOTE CREEK 52.9( 85.1 6.8 0.032 V COMPTON THRUST 55.8( 89.8) 6.8 0.041 V ELSINORE-COYOTE MOUNTAIN 58.3~ 93.8~ 6.8 0.028 V ELYSIAN PARK THRUST 58.8 94.6 6.7 0.035 V SAN JACINTO-SAN BERNARDINO 60.2( 96.9) 6.7 0.025 V SAN ANDREAS -San Bernardino 65.4( 105.3) 7.3 0.036 V SAN ANDREAS -southern 65;4( 105.3) 7.4 0.039 V SAN JACINTO -BORREGO 66.7( 107.3~ 6.6 0.020 IV SAN JOSE 68.9( 110.9 6.5 0.021 IV PINTO MOUNTAIN 72.4( 116.5) 7.0 0.025 V SIERRA MADRE 72.5( 116.7) 7.0 0.030 V CUCAMONGA 72.8( 117.2) 7.0 0.030 V SAN ANDREAS -Coachella 73.6( 118.4)1 7.1 0.027 V NORTH FRONTAL FAULT ZONE (West) 76.2( 122.6) 7.0 0.028 V CLEGHORN 77 .9~ 125.4~ 6.5 0.015 IV BURNT MTN. 78.5 126.3 6.4 0.014 IV RAYMOND 80. 5 ( 129. 6) 6.5 0.017 IV NORTH FRONTAL FAULT ZONE (East) 80.7( 129.9) 6.7 0.020 IV SAN ANDREAS -Moiave 81. 0( 130. 3) 7.1 0.024 IV SAN ANDREAS -18 7 Rupture 81.0( 130.3) 7.8 0.041 V EUREKA PEAK 81. 3( 130. 8) 6.4 0.013 III , CLAMSHELL-SAWPIT 82. 3( 132. 5) 6.5 0 .. 011 IV SUPERSTITION MTN. (San Jacinto) 83,0( 133.6~ 6.6 0.015 IV VERDUGO 83.1( 133.8 6.7 0.020 IV HOLLYWOOD 84.9( 136.7) 6.4 0.015 IV ELMORE RANCH 86.6( 139.4~ 6.6 0.014 IV SUPERSTITION HILLS (San Jacinto) 87.7( 141.1 6.6 0.014 IV Page 2 Rincon Garf eqf rhga TEST.OUT DETERMINISTIC SITE PARAMETERS Page 2 ------------------------------------------------------------------------------- ABBREVIATED FAULT NAME APPROXIMATE DISTANCE mi (km) !ESTIMATED MAX. EARTHQUAKE EVENT -------------------------------MAXIMUM RHGA EST. SITE EARTHQUAKE SITE INTENSITY MAG.(Mw) ACCEL. g MOO.MER(, :===--== ===-===-===== ==== ===== ===== LANDERS 88.2( 142.0) 7.3 0.025 V HELENDALE -S. LOCKHARDT 88.7( 142.8) 7.1 0.021 IV SANTA MONICA 89.5( 144.1) 6.6 0.016 IV LAGUNA SALADA 89.6( 144.2) 7.0 0.019 IV MALIBU COAST 92.1( 148.2) 6.7 0.017 IV LENWOOD-LOCKHART-OLD WOMAN SPRGS 92.8( 149.3) 7.3 0.023 IV BRAWLEY SEISMIC ZONE 95.8( 154.1) 6.4 0.011 III JOHNSON VALLEY (Northern) 96.0( 154.5) 6.7 0.014 III NORTHR~DGE (E. oak Ridge) 96.3( 155.0) 6.9 0.022 IV EMERSON So. -COPPER MTN. 96~5( 155.3) 6.9 0.016 IV SIERRA MADRE (San Fernando) 96.9( 156.0) 6.7 0.016 IV SAN GABRIEL 97.2( 156.4) 7.0 0.017 IV ANACAPA-DUME 98.7( 158.8) 7.3 0.026 V ******************************** ********************************************** -END OF SEARCH-53 FAULTS FOUND WITHIN THE SPECIFIED SEARCH RADIUS. THE ROSE CANYON FAULT IS CLOSEST TO THE SITE, IT IS ABOUT 4.7 MILES (7.6 km) AWAY. LARGEST MAXIMUM-EARTHQUAKE SITE ACCELERATION: 0.2610 g Page 3 CALIFORNIA FAULT MAP Rincon Garfield eqfTcst Run 1100----------------------------, 900 800 700 600 500 400 300 200 100 0 -100 4..J-L..:L.-L.,l-l-, ......... ...l...-l-'-L.-L..L...I-J...I.....L..l--l-............... ...,,..;a....JL.-L.4-'-.............. ....__L.IL..L-1-..s...l....L.l'-1-I.-L-.L..L..I -400 -300 -200 -100 0 100 200 300 400 500 600 APPENDIXC MODIFIED MERCALLI INTENSITY SCALE OF 1931 (Excerpted from the Ca/Horn/a Division of Conservation Division of Mines and Geology DMG Note 32) The first scale to reflect earthquake intensities was developed by deRossi of Italy, and Forel of Switzerland, in the 1880s, and is known as the Rossi-Fore! Scale. This scale, with values from I to X, was used for about two decades. A need for a more refined scale increased with the advancement of the science of seismology, and in 1902, the Italian seismologist Mercalli devised a new scale on a I to XII range. The Mercalli Scale was modified in 1931 by American seismologists Hany 0. Wood and Frank Neumann to take into account modem structural features. The Modified Mercalli Intensity Scale measures the intensity of an earthquake's effects in a given locality, and is perhaps much more meaningful to the layman because it is based on actual observations of earthquake effects at specific places. It should be noted that because the damage used for assigning intensities can be obtained only from direct firsthand reports, considerable time --weeks or months --is sometimes needed before an intensity map can be assembled for a particular earthquake. On the Modified Mercalli Intensity Scale, values range from I to XII. The most commonly used adaptation covers the range of intensity from the conditions of "/ -not felt except by ve,y few, favorably situated," to "XII -damage total, lines of sight disturbed, objects thrown into the air." While an earthquake has only one magnitude, it can have many intensities, which decrease with distance from the epicenter. It is difficult to compare magnitude and intensity because intensity is linked with the particular ground and structural conditions of a given area, as well as distance from the earthquake epicenter, while magnitude depends on the energy released at the focus of the earthquake. I Not felt except by·a very few under especially favorable circumstances. II Felt-only bv a few persons at rest, -cially on upper floors of buildings. Delicately suspended objects may swing. Ill Felt quite noticeably Indoors, especlally on upper floors of buildings, but many people do not recognize it as an earthquake. Standine: motor cars mav rock sllJ!htly. Vibration like passing of truck. Duration estimated. IV During the day felt indoors by many, outdoors by few. At night some awakened. Dishes, windows, doors disturbed; walls make crackine:sound. Sensation like heavvtruck striking building. Standing motor cars rocked noticeably. V Felt by nearly everyone, many awakened. Some dishes, windows, etc., broken; a few instances of cracked plaster; unstable objects overturned. Disturbances of trees, ooles, and other tall objec:ts sometimes noticed. Pendulum clocks may stop. VI Felt by all, many frightened and run outdoors. Some heavy furniture moved; a few Instances of fallen plaster or damaged chimneys, Damage sllghl:, VII Everybody runs outdoors. Damage negligible in building of good design and construction; slight to moderate in well-built ordinary structures; considerable in poorly built or badly designed structures; some chimneys broken. Noticed by persons driving motor c:ars. VIII Damage slight In speclally designed structures; considerable in ordinary substantial buildings, with partial collapse; great In poorly built structures. Panel walls thrown out of frame structures. Fall of chimneys, factory stacks, columns, monuments, walls. Heavy furniture overturned. Sand and mud ejected In small amounts. Changes in well water. Persons driving motor cars disturbed. IX Damage considerable in specially designed struc:tures; well-designed frame structures thrown out of plumb; great in substantial buildings with partial collapse. Buildinl!s shifted off foundations. Ground cracked conspicuously, Underground pipes broken. X Some well-built wooden structures destroyed; most masonry and frame structures destroyed with foundations; ground badly cracked. Ralls bent. Landslides considerable from riv!!rbanksand steep slopes. Shifted sand and mud. Water splashed (slopped) over banks. XI Few, if any, masonry structures remain standing. Bridges destroyed, Broad fissures In ground. Underground pipelines completely out of service. Earth slumps and land slips in soft ground. Ralls bent greatly. XII Damage total. Practically all works of construction are damaged greatly or destroyed. Waves seen on ground surface. Lines of sight and level are distorted. Objects thrown upward into the air. APPENDIX D USGS DESIGN MAPS SUMMARY REPORT • i IIIJSGS Design Maps Summary Report User-Specified Input Report Title 3806 Garfield Street, Carlsbad, CA Tue March 10, 2015 17:25:27 UTC Building Code Reference Document ASCE 7-10 Standard {which utilizes USGS hazard data available in 2008} Site Coordinates 33.1497°N, 117.3447°W Site Soil Classification Site Class D -"Stiff Soil" Risk Category I/II/III l ; - USGS-Provided Output S5 = 1.158 g S1 = 0.444 g SMs = 1,201 g SMl = 0.691 g S0s = 0.800 g S01 = 0.461 g For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document. 'ii -~ MCEA Response Spectrum l.Q 1.30 1.17 1.0, 0.,1 0.711 o.,s 0.52 0.:il, 0.2, 0.1:a 0.00+----+----+--+--______ _ 0.00 0.20 0.-'0 O.GO 0.80 1.00. 1.20 1.-40 1.,0 1.110 2.00 Period,. T (sec) -a -• ~ o.,o Design Response Spectrum 0.111 0.72 0.g o.s, 0.45 O.:.IG 0.27 0.18 o.o, 0.00 +----+--+--.t---+--+----+--+----.f----+---1 0.00 0.20 0.40 0.60 O.BO 1.00 1.20 1.40 1,GO l.RO 2.00 Period, T (sec) For PGAM, TL, CRsr and CR1 values, please view the detailed report. Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge. !mUSGS Design Maps Detailed Report ASCE 7-10 Standard (33,1497°N, 117.3447°W) Site Class D .,. "Stiff Soil", Risk Category I/II/III Section 11.4.1 -Mapped Acceleration Parameters Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S5) and 1.3 (to obtain S1). Maps in the 2010 ASCE-7 Stan{:lard are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3. From Figure 22-1 fll 55 = 1.158 g From Figure 22-2 [21 S1 = 0.444 g Section 11.4.2 -Site Class The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the·site soil properties in accordance with Chapter 20. Table 20.3-1 Site Classification Site Class A. Hard Rock >5,000 ft/s N/A N/A B. ·Rock 2,500 to 5,000 ft/s N/A N/A ·-. ---~ .. ,..--_ -------------c. Very dense soil and soft rock 1,200 to 2,500 ft/s >50 >2,000 psf ><.•--·----------------------·--------=r.-_...,_ __ _.~""""'-".__.._ D. Stiff Soil 600 to 1,200 ft/s 15 to 50 1,000 to 2,000 psf -----~-----~------~-_,_ ___ _ E. Soft clay soil <600 ft/s <15 <1,000 psf F. Soils requiring site response analysis in accordance with Section 21.1 Any profile with more than 10 ft of soil having the characteristics: • Plasticity index PI> 20, • Moisture content w ~ 40%, and • Undrained shear strength Su < 500 psf ------~------------·-.. ------See Section 20.3.1 For SI: lft/s = 0.3048 m/s llb/ft:2 = 0.0479 kN/m 2 Section 11.4.3 -Site Coefficients and Risk-Targeted Maximum Considered Earthquake (MCE11J Spectral Response Acceleration Parameters Site Class A B C D E F Site Class A B C D E F Table 11.4-1: Site Coefficient Fa Mapped MCE R Spectral Response Acceleration Parameter at Short Period 55 :s; 0.25 S5-= 0.50 S5 = 0.75 S5 = 1.00 0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.2 1.2 1.1 1.0 1.6 1.4 1.2 1.1 2.5 1.7 1.2 0.9 See Section 11.4. 7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of S5 For Site Class= D and S5 = 1.158 g, F,. = 1.037 Table 11.4-2: Site Coefficient Fv 55 2: 1.25 0.8 1.0 1.0 1.0 0.9 Mapped MCE R Spectral Response Acceleration Parameter at 1-s Period S1 :S 0.10 S1 = 0.20 S1 = 0.30 51 = 0.40 S1 2: 0.50 0.8 0.8 o;a 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.7 1.6 1.5 1.4 1.3 2.4 2.0 1.8 I 1.6 1.5 3.5 3.2 2.8 2.4 2.4 See Section 11.4. 7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of S1 · For Site Class= D and S1 = 0.444 g, Fv = 1.556 Equation {11.4-1): SMs = FaSs = 1.037 X 1.158 = 1.201 g Equation (11.4-2): SMl = FvSl = 1.556 X 0.444 = 0.691 g Section 11.4.4 -Design Spectral Acceleration Parameters Equation (11.4-3): Sos=¾ SMs = ¾ X 1.201 = 0.800 g Equation (11.4-4): S01 = ½ SMl = ¾ X 0.691 = 0.461 g Section 11.4.5 -Design Response Spectrum From Figure 22-12 c31 TL = 8 seconds 'a -ii r! 0 i 1 • i I. l Figure 11.4-1: Design Response Spectrum S:i. = 0.800 Sm= 0.461. ' I t I I I ' I· I I· I I I I •--... --.-,•••••••••- I I ' I I I I J I I I I I l I I•, I j I l I f, T< T0 : s. = SD&( 0.-4 + 0.6T /T11 ) T, :!iTST8 : S1 =S115 Tl <TS TL: s. =S01/T T>TL: s.-Sc,TLJTi T;:,"" 0.115 T,.•0.576 1.000 Period, T (sec) Section 11.4.6 -Risk-Targeted Maximum Considered Earthquake (MCER) Response Spectrum The MCER Response Spectrum is determined by multiplying the design response spectrum above by 1.5. SW!.= 1.201 S~1 = 0.691 I I I I I I I I I I I I I I --~----------.--w-------1 ., I I I I I I I I I I I I I I I I I I I Ta= 0.115 Ts"' 0.575 l.000 Period, T ( sec:) Section 11.8.3 -Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F From Figure 22-7 [4J PGA = 0.462 Equation (11.8-1): PGAM = FPGAPGA = 1.038 x 0.462 = 0.479 g Table 11.8-1: Site Coefficient FPGA Site Mapped MCE Geometric Mean Peak Ground Acceleration, PGA Class PGA S 0.10 PGA = 0.20 PGA = 0.30 PGA = 0.40 PGA ~ 0.50 A 0.8 0.8 0.8 0,8 0.8 B 1.0 1.0 1.0 1.0 1.0 C 1.2 1.2 1.1 1.0 1.0 D 1.6 1.4 1.2 1.1 1.0 E 2.5 1.7 1.2 0.9 0.9 F See Section 11.4. 7 of ASCE 7 Note: Use straight-line interpolation for intermediate values of PGA For Site Class = D and PGA = 0.462 g, FPGA = 1.038 Section 21.2.1.1 -Method 1 (from Chapter 21 -Site-Specific Ground Motion Procedures for Seismic Design) From Figure 22-17 csJ CRS = 0.935 From Figure 22,-18 [&l CR1 = 0.988 Section 11.6 -Seismic Design Category Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration Parameter RISK CATEGORY VALUE OF S0s I or II III IV S 05 < 0,167g A A A 0,167g S S0 s < 0.33g B B C 0,33g S S05 < 0.50g C C D O.SOg S S0s D D D For Risk Category = I and S05 = 0.800 g, Seismic Design Category = D Table 11.6-2 Seismic Design Category Based on 1-S Period Response Acceleration P arameter RISK CATEGORY VALUE OF S01 III I or II IV S01 < 0.067g A A A 0,067g S S01 < 0.133g B B C 0,133g S S01 < 0,20g C C D 0.20g :S S01 D D D For Risk Category = I and S01 = 0,461 g, Seismic Design Category = D Note: When S1 is greater than or equal to 0.75g, the Seismic Design Category is E for buildings in Risk Categories I, II, and lII, and F for those in Risk Category IV, irrespective of the above. Seismic Design Category = "the more severe design category in accordance with Table 11.6-1 or 11.6-2" = D Note: See Section 11.6 for altE;!rnative approaches to calculating Seismic Design Category. References 1, Figure 22-1: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_A5CE-7 _Figure_22-1.pdf 2. Figure 22-2: http://earthquake.usgs.gov/hazards/de"signmaps/downloads/pdfs/201 O_ASCE-7 _Figure_22-2.pdf 3. Figure 22-12: http://earthquake.usgs.gov/hazards/designmaps/!iownloads/pdfs/2010_ASCE-7 _Figure_22- 12.pdf 4. Figure 22-7: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7 _Figure_22-7 .pdf 5. Figure 22-17: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7 _Figure_22- 17 .pdf 6. Figure 22-18: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7 _Figure_22- l8.pdf .. . .: .BUILDING ENERGY ANALYSIS RE.PORi .. PROJECT: GARFIELD HOUSE #1 225 HEMLOCK AVENUE CARLSBAD, CA 92008 ·Project Designer: SHACKELTON DESIGN GROUP 1106 SECOND STREET -#359 .ENCINITAS, CA 92024 (760) 889-2600 -Report Prepared by: David A. McClain R13-14-10053/NR08-07-3586 Title 24 Data Corporation 633 Monterey Trail {P.O. Box 2199) Frazier Park, CA 93225-2199 (800) 237-8824 Job Number: 127319 Date: i 3/4/2016 · The EnergyPro computer program has been u~ to perform the calpulations summarize~ in this compliance report. This program has approval and is authofized by the California Energy Commission for use with both the Residential and Nonresidential.2013 Building Energy Efficiency Standards . . . . . EnergyPro.6.7 bv EneravSoft User Number; 1348 ID: 127319 , :· ... :. ,,:. " .Cover Page Table of Contents TABLE OF CONTENTS af=orm CF-1 R-PRF-01-E Certificate of Compliance Form RMS-1 Residential Measures Summary -Form MF-1 R Mandatory Measures Summary HVAC System Heating and Cooling Loads Summary -Room Heating Peak Loads -Room Cooling Peak Loads EnergyPro 6.7 by EnergySoft · · Job Number: ID: 12.7319 User Number: 1348 1 2 3 11 12 '16 17 20 ..::. '1 'RESiDENTIAL MEASURE$ SUMMARY RMS-1 Project Name Building Type li1 Single Family D Addition Alone I Date GARFIELD HOUSE #1 D Multi Family D Existing+ Addition/Alteration 3/4/2016 , Project Address California Energy Climate Zone·J Total Cond. Floor Area I Addition I #of~n~s 24,5 HF;MJ,..OCK A VEN(.//;. CARLSBAD CA Climate Zone 07 ·1 . 2,816 nla I INSULATION Area Construction Tvpe Cavity (ff) Special .F~atures Status .. Slab ·Unheated Slab-on-Grade -n9 insulation 832 Peffm = 96' New .. ' . Waif Wood Framed R13 2,773 New Derhisfng Wood Framed Rafter R 11 1,386 New Roof Wood Framed Attic R30 1,431 New Floor Wood Framed wlo Crawl Space F? 19 598 New .. FENESTRATION I Total Area: 6731 Glazina Pe;centaae: . · 23.9 % I New/Altered Averaae lJ-Factor: 0.32 Orientaticm Area(ff) U-Fac .SHGC . Overhana Sidefins Exterior Shades Status Right(SW) '251.4 0.320 0.25 none nbn(t :Bug Scree,n Ne"'( Re?r(SEJ 145.5 0.320 0.25 none none Bug Screen New Front(NW) 234.6 0,320 0.25 none none Bug Screen Ne"Y .. . . Left(NE) 41.0 0.320 0.25 none none Bug Screen New .. . . . . . . HVAC SYSTEMS Qty. Heating Min .. Eff Cooling Min. Eff thermostat Status 1 Central Furnace -93%A_FUE No Cooling 13.0SEER Setback New '.' HVAC DiSTRl8UTION Duct Location Heating Cooling ·ou.ct Location R-Value s~tus ResHVAC Ducted Ducted Attic 6.0 New . WATER HEATIN(; Qty. Type Gallons Mi.n. Eff Distribµtion Status 1 Small Instantaneous Gas 0 0.85 All Pipes Ins New .. EneravPro 6. 7 bv EnerovSoft User Number: 1348 RunCode: 2016-03-04T09:37:35 ID: 127319 Paae 11 of22 " . 2013L R· ow-ISe R "d es1 t" IM an en ~a d t a o:ry M easures s ummary §J50.0G)2C: · Pipe for cooling sysiem'Jines shall be insulated as specified in §150.0G)2A. Piping insulation for steam and hydronic heating svstems or hot water svstems with pressure> 15 psiR: shall meet .the reauirements in TABLE 120.3-A. §150.00)3: Insull!,tion is protected from damage, 'including that due to sunlight, moisture, equipment maintenan~, and wind. Insulation exposed to weather shall either be rated for O\ltdoor µse or installed with a· cover suitable for outdoor service. For §150.0G)3A: example, protected by ~lulllinum, sheet metal, painted canvas, or plastic cover. Cellular foam Insulation protected as specified or painted with coating that is water retardant and provides shielding from solar radiation that degrades the material. §150.0G)3B: Insulation covering chilled water piping and refrigerant.suction piping 'located mitside the conditioned space shall have a Class I or Class II vapor retarding facing, or the insulatio11, shall be installed at the thickness that qualifies as a Class I or Class II vapor retarder. ~ .. ' Systems using gas or propane water heaters to serve individual dwelling units shall include: a 120V electrical receptacle within 3 §150.0(n)l: feet of the water heater; a Category III or IV vent, or a Type B vent with strai$ht pipe between the outside termination arid the -~ace where the water heat~r is ins4tlled; a condensate drain that is no more than 2 inches 'higher than the base of the installed -water heater, and allows natural draining without pump as~ist~ce; and a gas supply line with a capacity of at least 200,000 Btu/hr. ' § 150.0(n)i: Recircµlating loops serving multiple dwelling units shall meet the requirements of §l 10.3(c)5: §150.Q(n)3: Solar water-heating systems and collectors shall be certi~ed 011d rated by the Solar Rating and Certification Corporation (SRCC) br by a testing agency approved by the Executive Director. Du~ts and Fans ~easures: . '' All air-distrib11tion system ducts and plenums installed are sealed and insulated to meet the requirements ofCMC §601.0, §602.0, §603.0, §604.0, §605.0 and ANSI/SMACNA-006-2006 HV Ac Duct Construction Standards Metal and Flexible 3rd Edition. Supply-air and return-air ducts anc:l plenums are insulated to a minimum installed level ofR-6.0 (or higher if required by CMC §605.0) ot enclo~d entirely in directly conditioned space as confirmed through field verification and diagnostic testing (RA3. 1.4.3.8). Connections of metal ducts and inner core of flexible du~ts are mechanically fastened. Openings shall be sealed § I 50.0(m) 1: with mastic, tape, or other duct-closure system that meets the applicable requirements of UL 181, UL 181A, or UL 181B or aerosol sealant that meets ~e requirements of UL 743. If mastic or tape is used to seal openings greater than ¼ inch, the combination of mastic !llld either mesh or tape shall be used. Building cavities, support platforms for air handlers, and plenums defined or constructed with mater{als other than sealed sheet metal, duct board or flexible duct shall not be used for conveying .conditio_ned air. Building cavities and sqpport platforms may contain ducts. Ducts jnstalled in cavities and support platforms shall not be compressed to cause reductions in the cross-sectionai area of the ducts • . Factory-Fabricated Duct Systems spall coniply with specified re·quirements for duct construction, connections, and closures; joints §150.0(m)2: and seams of_duct systems and their components shall not'be sealed with cloth back rubber adhesive duct tapes unless sucl). tape is . used in. combination with mastic and draw bands. § l 50.0(m)3-6: Field-Fabricated Duct Systems sh~l comply with requirements for: pressure-sensitive tapes, mastics, sealants, and other xeauirements soecified for duct construction; duct insulation R-value ratings; duct insulation thickness; and. duct labeling. §150.0(m)7: All fan systems that exchange air between the conditioned spaqe and the outside of the building must have backdraft or automatic dampers. . . §150.0(m)8: -Gravity ventilating systems serving conditioned space have either automatic or readily accessible, manually operated dampers except combustion inlet and-outlet air openings and elevator shaft vents. Insulation shall be protected from damage, \ncluding that due to sunlight, moisture, equipment maintenance, and wind !;mt not §150.0(m)9: limited to the following: insulation exposed to wea,ther shall be suitable for outdoor service. For example, protected by aluminum, sheet metal, painted canv~, or plastic cover. Cellular foam insulation sh~ll be protected as above or painted with a coating that is water retardant and provides shielding from solar radiation. §150.o(m)IO: Flexible ducts cannot have porous inner co~. When space conditioning systems use forced air duct systems to supply conditioned air to an occµpiable space, the ducts shall be §150.0(m)ll: sealed and duct leakage tested, as confirmed through field verification and diagnostic testing, in accordance with Reference Residential Anoendix RA3. Mechanical systems that supply air to an occupiable space through ductwork exceed_ing IO feet in length and through a thennal §15Q.0(m)12: conditioning component, except evaporative cool~, sh!!}! pe provided with air filter devjces that meet the requirements of §150.0(m)l2. &pace conditioning systems that utilize forced air ducts to supply cooling to an 0C9upiable spa<;e shall have a hole for the placement of a static pressure ptobe (HSPP), or a permanently installed static pressµre probe (PSPP) in the supply plenum. The § 150.Q(m)l3: space conditioning system must also demonstrate airflow 2:: 350 CFM per ton of nominal cooling capacity through the return grilles, and an air-handling unit fan efficacy S 0.58 W/CFM as confirmed ~Y field verification and 4iagnostic;: testing, in accordance with Reference Residential Annendix RA3. Zonally controlled central forced air cooling systems l>hal{ be capabl,e of s4nult?i!eously delivering, in every zonal control mode, §150;0(m)l~: an airflow from the dwelling, throµgh the air handler fan and delivered to the dwelling; of2:: 350 CFM per ton of nominal cooling capacity, and 9perating at an air-handling unit fan efficacy of s. 0.58 W/CFM as confirmed by field vedfication and diagnostic testing, in accordance with Reference Residential Annendix, RA3. · All dwelling units shall meet the requirements of ASHRAE Stiindard 62.2. Neither window operation nor continqous operation of §150.0(o): central forced air system air handlers useg in central fan integrated ventilation systems are permissible methods of providing the Whole Buildini:Nentilation. . ' §150.0(o)lA: Whole Building Ventilation airflow $hall be confirn;ied throu~h field verification.and diagnostic testing, in accordance with -Reference Res1dential APoendix RA3. Pooland Spa Heating Syste~s aqd Equipme~t M~asures: kly pool or spa heating system shall be certified to have: it therm~ efficiency that complies with the Appliance Efficiency §110.4(a): Regulations; art on-off switch mounted ot1tside of the heater that allows shutting off the heater without adjusting the thermostat setting; a permanent weatherproof plate or card with operating instructions; and shall not use electric resistance heating. , . 2013 Low-Rise Residential Mandatory Measures Summary f!OTE: Low-rise residential buildings subject to the Standards must comply With all applicable mandatory measures list(ld, regardless of the compliance aooroach used. Exceptions may aoolv. Review the respective code section for more information. Ruilding Envelope Measures: §110.6(a)i: ·boors and ·windows between conditioned and unconditioned spaces_are manufactured to lilnfr air leakage. §110,6(a)5: Fenestration products (except field-fabricated windows) have a label li_sting the certified U-Factor, certified Solar Heat Gain Coefficient (SHGC), and infiltration that meets the reauirements of§ I 0-1 I I (a). §110.7: Exierior doqr~ and windows are weatherstripped; all joints and penetrations are caulked and sealed. §II0.8(a): l_nsulation specified or installed meets Stancjards for In$ulating Material·. Indicate type and include on tqe CF2R. §110.S(i): The therm~ emittance and aged solar reflectance values of the cool. roofmg material meets the requirements of§ 1 l 0.8(i) when the installation of a cool roof is soecified on the CFlR. ! §110.80): A radiant barrier shali have an. emittance of 0.05 or less when the ins'ti,llatiop. ol' a radiant barrier is specified on the CFlR. .. Minimum R-30 insulation in wood-frame ceiling; or the weighted aver!).ge U-factor shall p.ot exceed 0.031, Minimu111 R-19 in a §150.0(a): rafter roof alteration. Attic access doors shall have pennanentiy attached insulation using adhesive or mechanical fasteners. The attic access-shall be gasketed to prevent air leakage. §150.0(b): Loose fill insulation shail conf<;>rm with manu{a~turer' s installed design labeled R-value. §150.0(c): Minimum R-13 insulation in2x4 inch wood fri,niing wall Qr have a U-fact9r of0.102 or Jess (R-19 in 2x6 or0.074 maximum U- factor). §150.0_(d): Minimum R-19 insulatiop. in raise:d wood-frame floor (,)r 0.037 maximum U-factor. .. In Climate Zone~ 141:llld 16 a Class II vapor retarder shall be installed on the conditioned space ·side of all insulation in all exterior . § 150.0(g) l: . walls, vented attics and unvented attics with air-permeable insulation. §150.0(g)2: In qiinate Zones 1-16 with unvented crawl spaces the earth floor of the crawl space shall be covered wit.ha Class I or Class If vaoor retarder. In a builc!ing having a controlled ventilation cra\vl space, a Class I or qass It vapor retarder shall be placed over the earth floor of § 150.0(g)3: the crawl space to reduce moisture·entry and protect insulation fro.m cqn<lensa~ion, as specified in the exception to Section -. 150.0(d). §150.0(l): Slab edge insulation ~hall: have a water absorption rate1 for the insulation material alone without facings, no greater than 0.3%; have water vapor permeance.rate is no greater than 2.0 perin/inch, be protecte<;l from physical damage and UV light deterioration; and when installed as Part of a heated slab floor meets the reauirements of §l 10.8(g). §150.0(q): Fenestration, including skylights, separl\-fing conditioned space from unconditioned space or outdoors shall have a maximum U- factor e>f 0.58; or the weil!hted average U-factor of all fenestration shall not exceed 0.58. Fireplaces, Decorative Gas Appliances aitd Gas Log Measures: §150.0(e)IA: Masonry or factory-built firepla~s have a closable metlll or glass door covering the entire opening of the frrebox. §150.0(e)IB: Masonry or factory-built fireplaces have a combustion outside air intake, which is at least six square inches in area and is equiooed with a readily accessible, ooerable, and til!ht-fitting damper or a combustion-air control device. §150:0(e)IC: Masonry or factory-built fireplaces have a flue damper with a readily accessiple control. §150.0(e)i: Continuous burning pilot lights and ~e use of indoor air for coo1ing a firebox jacket, wheQ that indoor air is vented to the outside of the building, are orohibited. Space Conditioning, Water Heating and Plumbing System Measures: . . . . §110.0-§110.3: HV AC equipment, water heaters; showerheads1 faucets and all other re~lated appliances are certified to the Energy Commission. -· . . . §110.3(c)5: Water heating recirculation loops serving multi.Pie dwelling units mee~ the air reiea_se valve, backflow prevention, pump isolation valve, and recirculation loop connection requirements of§ 110.3( c )5. ·Continuously burning pilot lights ?fe prohibited for natural gas: fan-type central :furnaces, household cooking appliances (appli- §110.5: ances without an ·electrical supply voltage connection with pilot lights that conSUille less than 150 Btu/hr are exempt), and pool and soa heaters. §150.0(h)l: "Heating and/or cooling loads are calculated in a~rdance with AS;HRAE, SMACNA or ACCA using design conditions specified in ~150.0(h)2. . §150.0(h)3A: Installed air conditioner and heat pu~p outdoor condensing units shall have ·a cleanince of at least five feet from the outlet of any dryer veqt._ §150.0(i): Heating systems are equipped with thermostats that meet the setback requirements 9f § 110.2( c ). .. -- § 150.0(j) lA: Storage gas water heaters with an ~nergy factor equal to odess than the federal miniin1,1tn standards shall /)e externally wrapped _ with insulation having an installed thermal resistance ofR-i2 or mater. · §150.0(j)IB: Unfrred hot water tanks, such as storage tanks ~d backup storage tanks for solar water-heatll!g systems, have R-12 external insulation or R-16 internal insulation where the internal insulation R-yalue is indicated on the exterior of the tank. For domestic hot water system piping, whether buried or unburied: the first 5 feetofh9t and cold water pipes from the storage tank, all piping with a nominal diameter of 3/4 inch or larger, all piping associated with a domestic hot water recirculaiion system §150.0G)2A: regardless of the pipe diameter, piping from the h~ating s01,1rce to storage tank or between tanks, piping buried below grade, and all hot water pipes from the heating source to kitchen fixtwes must be insulated according to the requirements ofT ABLE 120.3- A. §150.00)2B: All domestic hot water pipes that are buried below .grade must be installed in a wi:rter proof and non-crushable casing or sleeve that allows for installation, removal, and replacement of the enclosed pipe and insulation. _ t 013L. . OW'~ R .d 1se . _es1 . IM ent1a an d t a ory M easures s ummary . . .. a Photo control not having an override or bypass switch that disables the photocontrol; or . ~ ·b, Astroqomicai time clock not having an override or bypass switch that disables the astronomical time clock, and which is programmed to automatically tl,lm the outdoor lighting OFF during daylight hours; or _ c. Energy management control system which meets all of the following requirements:. At a minimum provides the functionality of an astronomical time clock in accorqance with §110.9; meets the Installation Certification requirements in §130.4; meets the requirements for an EMCS in §130.5; does not have an override or bypass S\\~tch that allows the lurninaire to be always ON; and, ·-is orograinmed to automatically tum the outdoor lightin11: OFF during daylight hours. '.For low-rise multifamily residc:;ntial buildings, outdoor lighting for private patios, entrances, balconies, and porches; and outdoor lighting for residential parking lots and residential carports with less than eight vehicles pet site shall comply with one of the § 150.0(k)9Bi following requirements: . i. Shall comply with § 150.0(k)9A; or . . _ ii. Shall comply with the aonlicable requirements in §110.9, §130.0, §130.2, §130.4, §140.7 and §141.0. §150.0(k)9C: For low-rise residential buildings with four or more dwelling units, outdoor lighting not regulated by § l 50.0(k)9B or 150. O(k)9D shall comolv .with the applicable requirements in §110.9, §130.0, §130.2, §[30.4 §140.7 arid §141.0. §150.0(k)9D: Outdoor lighting for residential parking 1ots and residential carports with a total of eight or more veh~cles per site shall comply :with the applicable requirements in ~110.9, §130.0, § 130.2, §130.4, §140.7 and §141.0. · §150.0(k)IO: Internally illuminated address signs shall comply with §140.8; or shall <::onsume no more than 5 watts of power as determined according to §130:o(c). . §150.0(k)il: Lighting for residential parking garages for eight or more vehicles shall comply with the ~pplicable requirements for ,. nonresidential garages'in §llo:9, §130.0, §130.1, §130.4, §140.6, and §141.0. .. In {I low-rise multifamily residential building where the total interior common area in a single building equals 20 percent or less of §150.0(k)l2A: the floor area, permanently installe.d lighting for the interior common areas in that building shall be high efficacy luminaires or . controlled by an t>ccuoant sensor. In a low-rise multif~ily residential building where the total interior common area·in a single building equals more 'than 20 :§ 150.0(k) 12B: percent of the floor area, permanently im;talled lighting in that building sl\!µl: i Comply \\1th the applicable requirements in §110.9, §130.0, §130.1, §140.6 and §141,0; and ·ii. Lighting installed 1n corridors and stairwells shall be controlled by occupant sensor? that reduce th~ lighting power in each sp~e by at least 50 percent. The occupant sensors shall be capable of turning the Hght fully On and Off from all !iesigned paths of ingress and egress. . . , Solar Reat;ly BuU(lings: i S(ngle family residences located in subdivisions with ten or more single family residences and where the application for a §110.l0(a)l: tentative subdivision map for the residences has been deemed_complete, by the enforcement agency, on or after January 1, 2014, ·shall complv with the requirements of§ 110.1 0(b) through 6110.10( e ). "§ II0.l0(a)2: Low-rise multi-family buildings shall comply with the requirements of§ 110. lO(b) through § 110.10( d). Th~ solar zone shall have a minimum total area as described below. The solar zone shall comply wifti access, pathway, smoke ventilati9n, atid spacing requirements as specified in Title 24, Part 9 or other Parts of Title 24 or in any requirements adopted by a loca}jurisdiction. The solaJ zone total area shall be comprised of areas that have no dimension less than 5 feet and are no less than 80 square feet each for buildings with roof areas less than or equiµ to 10,000 square feet or no less than 160 square feet each for gl 10.l0(b)l: buildings with roof areas greater than 10,000 square feet. For single family residences the solar zone shall be located on the roof or overhang of the building and have a total area no less 1han 25·0 square feet. For low-rise multi-family buildings the solar zone shall be located on the roof or overhang of the building or on t)le roof or overbang of another ~tructure located within 250 feet of the "uilding or on covered _parking insta1led with the buildin2: oroiect and have a total area no less than 15 percent of the total roof area of the building excluding any skylight area §l 10.10(b)2: _All ~tions of the solar zone located on steep-sloped roofs shall be oriented betweenH0 degrees and 270 degrees of true north. § ll0.i0(b)3A: No obstructions, including but not limited to, vents, chimneys, architectural features, and roof mounted equipment, shl:111 be located in the solar zone. §I 10.10(b)3B: Any obstru.ction. located on the roof or any other part of the building that_projects above a solar zone shall be locat!'}d at least twice the distance, measured in the horizontal plane~ of the height difference between the highest point of the obstruction and the horizontal projection of the nearest point of the so1ar zone, measured in the vertical plane. §110.10(b)4: For areas of the roof designated. as solar zone, the structural design loads for roof dead loac\ and rooflive load shall be clearly indicated on the construction documents. The construction d99uments shall indicate: a location for inverters and metering equipment and a pathway for routing of conduit §110.lO~c): from the solar zone to the point ofintercorµ1eptio1_1 with the e~ectrical service (for single fru1tlly residences the point of mterconnection will be the main service panel); a pathway for routi1_1g of plumbing from the solar zone to the water-heating system. . . §110.l0(d): A copy of the c;onstruction documents or a comparable c!Qci;iment indicating the information from §110.I0(b) through §110. I0(c) shall be provided to the occupant. §110.l0(e)l: The mriin elc:;ctrical service panel shall have a minimum busbar rating of20~ amps._ The main electrical service panel shall have a reserved space tQ allow for the installation of a d9uble pole circuit breaker for a §I I0.IQ(e)2: future solar electric installation. The reserved space shall be: positioned at the opposite (load) end from th~ input feeder location or main circuit location. and permanently marked as ''For Future ·solar Electric". . 2013L ... .. ow-e es1 ent1a an a ory easures ummary Ris R .d . IM d t M s §.J.10.4(b)i: Any pool or spa hel:?,ting equipment shall be in~tailed with at least 36 inche~ of pipe j)etween filter and heater or dedicated suction and retum lines, or built-up connections for future solar heating, §110.4~b)2: .. Outdoor pools or spas that have _a heat pump or gas heater shallhav'? a cover. §110.4(b)3: Pools shall have directional inlets that adequately 11Jix the pool water. and a time swit¢h that will allow all pumps to be set or pro- grammed to run only during off-oeak electric demand oeriods. §110.5: Natural_ gas pool and spa heaters shall not have a continuous burning pilot light §150:0(p): Residential pool systems or.equipment shall meet specified pump sizing, flow rate; piping, filters, and valve requirements. Lighting Measures: §llQ.9: All lighting control devices and systems1 ballasts, and luminaires shall meet the applicable requirements of§ 110.9. § 150.0(k) lA: Installed luminaires shall be classified as high-efficacy or low-efficacy for compliance with § 150.0(k) in accor_dance with TABLE :150.0-A or TABLE 150.0-B, as annlicable. §150.0(k)iB: When a: high efficacy and low efficacy lighting system are combined in a single lurninaire, each system shall separately comply ,vith the applicable provisions of§ 150.0(k). . The wattage ana. classification of permanently installed ltiminaires in residential kitchens shall be determined in accordance with §150.0(k)lC: § 130.0( c)'. In residential kitchens, the wattage of electriyal ·boxes finished with a blank cover or where no eiectrical equipment has been installed, and where the electrical box can be used for a lumin~ire or a surface mountecj ceiling fa,n, shall be calculated as 180 watts oflow efficacy lighting per electrical box. §150.0(k)lD: Ballast_s for fluorescent lamps rated 13 watts or greater shall be electronic ~d shall have an output frequency no less than 20 kHz. Permanent1y installed night lights and night lights integral to installed juminaire~ or exhaust fans shall be rated !O consume no §150.0(k)lE: morethan 5 watts of power.per luminaire or exhaust fan as determined in accordance with §130.0(c). Night lights do 116t n~ed to be controlled by vacancy sensors. § 150.0(k) lF: Lighting integral to exhaust fans (except when 'installed by the manufactui"er in kitchen exhaust hoods) shall meet the applicable reauirements of§ 150.0(k). § I50.0(k)2A: High efficacy luminaires must be switched separ~tely from low efficacy iuminaire~: §150.0(k)2B: Exhaust fans shall be switchec! separately from lighting systems. §15~.0(k)2C: Lurn:inaires shall be switched with readiiy accessible controls that permit the lunilnaire$ to be manually switched ON and '9FF. . ' § l 50.0(k)2D: Controls and equipment are installed in accorc!ance with manufacturer•s instructions. §l50.0(k)2E: No control shall bypass a dunmet or vacancy sensor function if the control is installed to comply with §159,0(k). § 150.0(k)2F: Lighting controis compiy with applicable requirements of§ 11 ().,9. An Energy Management Control System (£MCS) may be used to comply with dimmer requirements if: it ftmctions as a dimmer § 15(>.0(k)2G: according to § 110.9; meets Installation Certificate requirements o'f § 130.4; the EMCS requirements of§ 130.5; and all other :reciuirements in §150.0(k)2. § l 50.0(k)2H: An Energy Management Control System (EMCS) may be used to comply with vacancy sensor requirements of§ 150.0(k) if: it f4nctions as a vacancy sensor according to §110.9; meets Installation Certificate requirements of §130.4; the EMCS requirements of§ 130.5; and ail other reauirements in §i50.0(k)2. §150.0(k)2I: A multiscene programmable controll~r may be used to comply with dimm~r requirements of this section ifit provides the functionalitv of a dimmer according to § 110.9, and complies with aU other annlicable requirements ln § l 50.0(k)2. § 1so:o(k)3A: A minimum of 50 percent of the total rated wattage of_pennanently installed lighting in kitchefl$ shall be high efficacy. Kitchen lighting 'inc1u<;les all permanently installe<;l lighting in the kitchen except internal lighting in cabinets that illuminate only §150.0(k)3B: the inside of the i;:abinets. Lighting in areas adjacent to the kitchen, including but not limited to dining and nook areas, are . . considered kitchen Jjcllting if they are. not separately switched from kitchen lighting. § 150.0(k)4: iPerqianently inst:alled lighting that is internal to ~itbinets shall use no more than 20 watts of power per linear foot of illuminated cabinet. §150.0(k)S: A minimum of one high efficacy lumin~ire shall be ipstalled in each bathroom; ap.d all other lighting installed in each bathroom shall be hicll efficacy or controlled by vacancy sensors. . _ . §150.0(k)6: Li~ting installed in attached and detached garages, laundry rooms, and utility rooms shall be high efficaqy luminaires and controlled by vacancy sensors. § I.50.0(k)7: Lighting installed in rooms or areas other than in kitchens, bathrooms, garages, laundry rooms, and utility rooms shall be high efficacy, or shall be controlled by either dimmers or vacancv sensors. I,,uminaire~ recessed into ceilings shall: be listed for zerq clearance insuliition contact (IC) by Underwrite~s Laboratories or other pationally recognized testing/rating laboratory; have a label that certifies that the luminaire is airtight with air leakage less than 2.0 CFM at 75 P!!S~S when tested in accordance with AS1M E283; be sealed with a gasket or caulk between the luminaire housing §150.Q(k)8: and ceiling, and shall have all air leak paths between conditioned and unconditioned spaces sealed with a gasket or caulk; and allow.b~llast maintenance and replacement w_ithout requiring cqtting holi.s in the ceiling. For recess~d compact fluorescent luminaries with ·ballasts to qualify as high efficacy for compliance with § 150.0(k), the ballasts shall be certified to the Energy Commission to comply with the applicable requirements in § 110.9. For single-family residential buildings, outdoor lighting perinl!llently mounted to a resi(lential building or other buildings on the ·same lot shall be high efficacy, or mii.y be low efficacy if it meets all of the following requirements: i. Controlled by a manual ON and OFF switch that does not override to ON the automatic actions ofltems ii or iii below; and §150.0(k)9A: ii. Controlled by a motion sensor liot having an override or bypass switch that disables the motion sensor, or controlled by a motion sensor having atemporary override switch which temporarily bypasses the motipn sensing function and automatically reactivates the motion sensor within 6 hours; aild Hi. Controlled bv one of the following methods: ; -.. ~VAC SYSTEM HEATING AND COOLING LOADS SUMMARY Project Name Date GARFIE_LD HOUSE #1 3/4/2016 System Name Floor Area ResHVAC 2,816 ENGINEERING CHECKS. SYSTEM LOAD .. Number of _Systems 1 COIL COOLING PEAK COIL HTG. PEAK Heatim:1 Svstem CFM Sensible Latent CFM Sensible Output oer ·system 56,000 Totar Room Loads 1,22_2 i9_.365 1,595 676 24,910 Total Output (Btuh) 56,000 Return Vented Lighting 0 Cutout {Btuh/saft) 19.9 Return Air Ducts 1,078 1,223 Cooling System ·Return Fan 0 0 Output per System 0 Ventilation b 0 0 0 0 Total Outnut (Btuh) 0 Supply Fan 'I 0 0 Total Output (Tons) 0.0 Supply Air Due~ 1,078 1,223 Total Oumut (Btuh/saft\ o.o total Outnut (saWTon} 0.0 TOTAL SYSTEM LOAD 31,521 1,595 27,356 AirSvstel'n .. CFM per System ·1,010 HVAC EQUIPMENT SELECTION Airflow (cfml 1,010 CARRIER 58MTB060-12 q 0 56,000 .. Airflow (cfm/saft\ 0.36 Airflow (cfm/Ton) 0.0 .. .. Outside Air f%} 0.0% Total Adjusted System Output 0 0 56,000 Outside Air (cfmlsaft} 0.00 (Adjusted for Peak Design conditions) Note: values above aiven at ARI conditions TIME OF SYSTEM PEAK Aug3 PM I Jan 1 AM HEATING SYSTEM PSYCf:fROMETRICS /Alrstr~m TemMi'atures at Tinie of Heatina Peak} 34°F 69°F 105°F 105°F ·I @ :~ [_LJ_,L .. ,.~ -~ ' i Outside Air Ocfm ---~ Heating Coil Supply Fan 1,010 cfm 104 °F ·~ !ROOM 69°F 70°F . ~-1.~J .... J-~ .. "C · I -.- .. COOLING SYSTEM PSYCHROMETRICS Airstream Temoeratures-at Time of Coofina Peak) 83/68°F 79/p2°F 55/ 54°F -/i5/ 54 °F ll @ ~ ~~J __ J ___ L ___ ~ Outside.Air -! .., i = .o cfm CoolinEJ Qoil Supply Fan 56/54°F ·' 1,010 cfm 41.5% t ROOM 79/ 63 °F 78/62 °F . . . -~--1 .. J ... ~J ___ ] ~ I ~ -~ EnergyPro 6. 7 QY EnergySoft UserNumber: 1348 ,Rf!i1Cod~: 201~03.fJ4T09:37:35 JD: 127319 Page 16of22 .. ROOM HEATING PEAK LOADS Project N$me I Date GARFl~LD HOUSE #1 3/4120.16 ROOM INFORMATION DESIGN CONDITIONS Room Name Fir$tFfoor Time of Peak Jan 1 AM Floor Area '832.2 ft2 Outdoor Dr.y Bulb Temperature 34°F Indoor Orv Bulb Temperature 70°F Condu.ction Area U~Value AT°F Btu/hr Sl1:1b-On-Grade perim =95.5 X 0.7300 X 36 = 2,510 R-13Wal/ 639.2 X 0.1020 X 36 = 2,347 New Windows/D09rs 172.6 X 0.3200 X 36 = 1,988 *R-13 Wall 278.4 X 0.1(!20 X o_ = 0 *R~11 Roof Rafter 757.5 X 0.0840 X ·O = 0 R-30 Roof Attic 74.8 X -0.0320 X 36 = 86 X X = X X = X X = X X = X X = X X = -- X X = X X = X X = X X = X X = X X = X X = X X = ; X X = X X = X X = X X = X X = X X = -- X X = X X = X X = X X = X X = Items shown with an asterisk (*) denote conduction through an interior surfac::e to another rqom Page Total 6,931 s32I xi -- Infiltration:[ I 1.001 xi -1.0781 XI a.sol xi 0.2401 /60} xi ssj = I 1,097 .Schedule Air Sensible Area Ceiling Height ACH Lff Fraction TOTAL HOURLY HEAT LOSS FOR ROOM 8,029 EnergyPro 6. 7 by EnergySoft User Num,,.r: 1348 RunCode: 2016-03.Q4T09:37:35 '/D:127319 Page 17of22 . ·---, ROOM HEATING PEAK i.OADS Project Nar,ne .. I Date GARFIELD HOUSE #1 3/4/2016 ROOM INFORMATION .. DESIGN CONDITIONS Room Name Second Floor Time of Peak Jan 1 AM Floor Area 1,355.7 ft2 Outdoor Pr.y Bulb Temperat1,1re 34°F Indoor Dry Bulb Temoerature 70°F Con.duction Area U-Value ~T°F Btu/hr R-19 Floor No CraWlspace 73,7 X 0.0490 X 36 = 130 R-13 Wall 1,066.4 X .0.1020 X _36 = 3,916 New Windows/Doors 304.3 X 0.3200 X 36 = .3,506 *R-19 Flopr No Crawlspace 524.5 · X 0.0490 X 0 = 0 *R-11 Roof Rafter 628.4 X 0.0840 X 0 = 0 R-30 Rqof A(tic 727.3 X b.0320 X 39 = 838 X .. X = X X = X X = X X = .... X X = .. X X = X X = X X = X X = .. .. X X = X X = X X = X X = X X = X X = X X = X X = X X = X X = X X = X X = X X = X X = X X = .. X X = Items l!hown with an asterisk (*) denote conduction through an interior surface to another room Page Total 8,_389 1.ooj xi 1,3561 XI Infiltration:[ I ·1.0781 xi B.5ol xi 0.2401 /601 x! 361 = I 1,788 Schedule Air Sensible Area Ceiling Height ACH i.\T ·Fraction TOTAL HOURLY HEAT LOSS FOR ROOM 10,177 EnergyPro 6. 7 by Eneravsoft User Numb&r: 134.8. RunCode: 20t6-03--04T09:37:35 · ID: 127319 Page 18of22 -., ROOM HEATING PEAK LOADS Project Name I Date GARFIELD HOUSE #1 3/4/2016 ROOM INFORMATION DESIGN CONDITIONS Room Name Third Floor Time of Peak Jan 1 AM Floor Area 628.4 ft2 OutdoQr Qry Bulb Te.mperature 34°F Indoor Dry Bulb Temperature 70°F Conduction Area LI-Value LI.T°F Btu/hr R-13Wali ' 789.2 X ·0.1020 X 36 = 2,898 New Windows/Doors 195.6 X 0.3200 X 36 = 2,253 R-30 Roof Attic 628.4 X :0.0320 X 36 = 724 X X = X X = X X = X X = X X = X X = X X = X X = X X = X X = X X = X X = X X = .. X X = .. X X = X X = X X = X X = ' X X = . X X = X X = X X = X X = X X = X X = X X = X X = X X = lte[\'ls shpwn with an !).Sterisk (*) denote conl'.luction through an interior surface to another room Page Total 5,875 Infiltration:[ I 1.ooj xi 6;81 xi 1:0781 XI . 8.001 XI 0.25~1 /60] xi 361 = I 829 .Schedule Air Sensible Area · Ceiling Height ACH t.T Fraction TOTAL H.OURLV HEAT LOSS FOR ROOM 6,704 EnergyPro 6. 7 by EnergySoft User Num~r: 134B RunCode: 2016-03-<J4T09:37:35 . ID: 127;319 Page 19of22 " - · 'RESIDENTIAL ROOM COOLING LOAD SUMMARY .. Project Name I Date GARFIELD HOUSE #1 3/412016 ROOM INFORMATION DESIGN CONDITIONS RoomN?me First Floor Outdoor Dry Bulb Temperature 83°F Floor Area 832.2 ft2: Outdoor Wet Bulb Temperature 68°F Indoor Dry Bulb Temoerature 78°F Outdoor Dailv Ranae: 10°F Opaque Surfaces Orientation Area U-Factor CLTD1 Btu/hr R-13.Wafl -(NE) 65.9 X 0.1020 X 14.0 = 94 R-13Wa/l (Sv\1 212.B X 0.1020 X 1M = 347 R-13 Wall (SE} 184.B X 0.1020 X 16.,0 = 3Q2 R-13Wal[ ,{NWj 175.7 X 0.1020 X 15.2 = 273 *R-13 Waif 278.4 X 0.1020 X 0.0 = 0 *R-11 Roof Rafter 757,.5 X ,0.0840 X 0.0 = 0 , R-30 Roof Attic fN) 74.B X 0.0320 X 42.0 = 101 X X = X X = Items shown with an asterisk (*) denote conduction through an interior surface to another room. Page Total 1,116 1. Cooling Load Temperature Difference (CLTD) Shaded !Jnshaded Fenestration Orientation Area GLF Area :GLF Btu/hr Glass poors (SW) 0.0 X 9.8 + 42.0 X 16.5 = 694 Windows .. (SW) 0.0 X 9.8 + 30.0 X 16.5 = 496 Wind9ws (SE) 0.0 X .9.8 + 38.3 X 16.5 = -633 Glass Doors (NW) o.o X 9.8 + 20.0 X '17.9 = 357 Window~ (NW) 0.0 X '9.1$ + 42.3 X 17.9 = 756 X + X = .. X + X = X + X = . X + X = Page Total 2,936 Internal Gain Btu/hr ~ Occuoants Ocpupants ~, .2451 Btuh/occ. = 612 . Eouioment 2 Floor Area = 2,840 1.00 w/sqft lnfilt,;ation: I . 1.07?1 X I 0.551 X !. :31.991 X I . sJ = 94 Air Sensible CFM -ELA -LIT TOTAL HOURLY SENSIBLE HEAT GAIN FOR ROOM 7,599 Latent Gain · Btu/hr Occupants. 12.5 I Occupants xi 1551 Btuh/occ. = 387 Infiltration: ·I 4,8341 XI o.ssl xi 31.991 X I 0:00100.I = 84 .Air Sensible CFM ELA AW TOTAL HOURLY LATENT HEAT GAIN FOR ROOM 624 EneravPro 6.7 bv EneravSoft -User Number: 1348 . RunCode: 20f6-03..()4T09:37:35 ID: 127319 Paae20of22 _ _j RESIDE,NTIAL ROOM COOLING_ LOAD SUMMARY Project N?me I Date GARFIELD HOUSE #1 3/4/2016 .. ROOM INFORMATION OESfGN CONDITIONS Second i=ioor .. 83°F RoomN;;ime Outdoor Dry Bulb Temperature Floor Area 1,355.7ft2 Outdoor Wet Bulb Temperature 68°F Indoor Dry Bulb Temoerature 78°F Outdoor bailv Range: 10°F Opaque Surfaces Orientation Area -0-Factor CLTD1 Btu/hr R-19 Floor No Crawtspace 73.7 X 0.0490 X ,9.0 ""' 33 R-13 Wall (NE) 251.8 X 0.f020 X 14.0 = 360 R-13 Wall (Sit\? 199.8 X 0.1020 X 16.0 = 326 . R-13 Wall (SE) 33,3.5 X 0.1020 X 16.0 = 544 R-13 Wall .(Nit\? 281.3 X 0.1020 X 15.2 = 437 *R-19 Floor_No_ Craw/space 524.5 X b.0490 X 0.0 = 0 ... *R-11 Ropf Rafter 628.4 X 0.0840 X 0.0 = 0 R-30 Roof Attic (N) 727.3 X 0.0:320 X 42.0 = 977 X X = Page Total 2,677 Items shown with an asterisk (*) denote con~uction through an interior surface to another room. 1. Cooling Load Temperature Difference (CL TD) Sha_ded Unshaded Fenestration Orientation Area GLF Area .GLF Btu/hr Windows (NE) 0.0 X 9.8 + 16.0 X 17.9 = 286 Glass Doors (SW,) 0.0 X 9.8 + 70.0 X 16.5 = 1,157 Windows (SW,) Q.O X ,9.8 + 32.0 X 16.5 = 529 Windows (SE) ·o.o X 9.8 + 66.0 X 16.5 = 1,091 Glass Doors (NW) p.o X 9.8 + fl-2.0 X 17.9 = 751 Windows (NW) 0.0 X 9.8 + 78.3 X 17.9 = 1,400 . ' X + X = X + X = X + X = Pag~Total 5,213 Internal Gain Btu/hr Occubants ~ Occupants ;I 2451 Btuh/occ. = 996 Eouioment Flc;>or Area ,: 4,627 1.00 w/sqft ' Infiltration: .I 1.Q781 X I '0.551 XI 52.121 XI ~I= 153 Air Sensible CFM ELA bT TOTAL HOURLY SENSIBLE HEAT GAIN FOR ROOM 13,666 Latent Galn Btu/hr Occuoants ,4.1 _ I Occupants xi 155 I Btuh/occ. = 630 Infiltration: I 4,8341 XI 0.551 XI 52._121 XI ·0.001001 = 138 Air S_ensible CFM ELA 'bW TOTAL HOURLY LATENT HEAT GAIN FOR ROOM 1,016 EneravPro 6.7 bv EneravSoft UserNumber: 1348 'RunCode: 2016-03-04T09:37:35 ID: 127319 .Paae 21 of 22 . ' ReSIDENTIAL ROQNI COOLING LOAD SUMI\IIARY Project Name I Date · GARFIELP HOl,J_SE #1 . 3/4/2016 ROOM INFORMATION DESIGN_ CONDITIONS Room Nallie Third Floor .. 83 Of Outdoor Dry Bulb Temperature Floor Area 628.4 ft2 Outdoor Wet Bulb Temperature 68°F Indoor Orv Buib Temberature 78°F . Outdoor Dailv Ranae: 10°F Opaque Surfaces Orientation Area 0-Factor CLTD1 ·stu/hr · R-13 Wall (NE) 121.3 X 0.1020 X 14.0 = 173 R-13Wal/ (SW) 89.9 X 0.1020 X 16.0 = 147 R-13Wal/ (SE) :294,4 X 0.1020 X 16.0 = 480 R-13 Wall (NW) ~83.6 X 0.1020 X 15.2 = 441 R-30 Roof Attic (NJ .628.4 X 0.0320 X .42.0 845 X X = X X = X : X = X X = Page Total 2,086 · _ !terns shown with an asterisk (*) denote conduction through an interior surf a~ to another room. 1. Cooling Load Temperature Difference (CLTD) Shaded !Jnshaded Fenestration Orientation .Area GLF Area GLF Btu/hr Windows (NIE) 0.0 X .9_.8 + 25.0 X 17.9 = 447 Glass Doors (SW) ·o.o X 9.8 + 53.4 X 16.5 = 883 Windows (Sv\? 0.0 X 9.8 + 24.0 X 16.5 = 397 Windows (SIE) 0.0 X 9.8 + 41.2 X 16.5 = 681 Windows (NW) :0.0 X 9.8 + 52.!) X 17.9 = 929 X + X = ,x + X = X + X = X ·+ X = Page Total 3,336 Internal Gain .. Btu/hr' Occuoants ~ Occupants ;I 2451 Btuh/occ. = 462 Eauioment Floor Area = 2,145 . 1.00 wlsqft Infiltration: I 1.0781 X I 0.551 XI 24.161 X J 51= 71 .Air Sensible 9FM !:;LA :.c,T TOTAL HOURLY SENSIBLE HEAT GAIN FOR ROOM 8,100 Latent Gain Btu/hr .Occupants 11.9 I Occupants X l 155J Btuh/occ. = 292 Infiltration: I 4,8341 XI 0.551 XI ,24.161 X I o._001001 = 64 Air.Sensible CFM ELA .t.W TOTAL HOURLY LATENT HEAT GAIN FOR ROOM .. 460 EneravPro 6.7 bv EnemvSoft User Number: 1348 RunCode: 2016-03-04T09:37:35 .ID:127319 Paae22of22 Print Date: 10/31/2017 Job Address: Permit Type: · Parcel No: Valuation: Oqcupancy Gro_up-: # Dwelling Units: Bedrooms: 2'25 Hemlock Av BLDG-Permit Revision 2042700401 $ 0.00 City of Carlsbad 1635 Faraday Av Carlsbad, CA 92008 Permit Permit No: PREV2016-0006 ·"'www.carlsbadca.gov Work Class: Lot#: Reference#: Construction Type: Bathrooms: Orig. Plan Check#: Plan Check#: Residential Permit Revisi Status: Applied: DEV15014 Issued: CB161168 Finaled: lnspec:tor: Completed 11/16/2016 12/02/2016 P.Burn Project Title: GARFIELD .CUSTOM BEACH HOMES Description: CB16-1168 -REVISION, SLIDING GLASS DOOR TO Bl FOLD & RELATED CONSTRUCTION Applicant: SHACKELTON DESIGN GROUP '1106 2Nd St, Suite 359 ENCINITAS, CA 92024 BUILDING PLAN CHECK REVISION FEE Total Fees: Total Payments To Date : $ 125.00 Balance Due: $ 0.00 $125.00 If (_ Cicyof Carlsbad PLAN CHECK REVISION APPLICATION B-15 Development Services Building Division 1635 Faraday Avenue 760-602-2719 www.carlsb~dca.gov Plan Check Revision No. f Qfv 2d. /t,..()DO/o Original Plan Check No: 16-1168 Project Address 225 HEMLOCK AVENUE. Contact STEVE SHACKELTON Ph 760-889-2600 Date 11/10/2016· Fax Email STEVE@SHACARCHITECTURE,COM Contact Address. 1106 SECOND ST. #359 Gen.e.ral Scope of Work City ENCINITAS Zip 92024 Original plans prepared by an architect or engineer, revisions must be signed & stamped by that person. 1 . Elements revi$ed: [Z] Plans D Calculations D Soils D Energy D Other 2 .. 3. 4. Describe revisions in detail List page(s) where List revised sheets each revision is that replace ' " shown existing sheets SLIDING GLASS DOOR 1-27 REVISED TO 4 PANEL BIFOLD A1-2.3 A1-2.3 WINDOW 1-.28 & 1-27 REMOVED A1-3.1 A1-2.4 A1-2.10 SWITCH MOVED TO OTHERSIDE OF DOOR A1-2.10 A1-3.1 ROOF OVERHANG CHANGED A1-2.4 5. Does this· revision, in any way, alter the exterior of the project? 0 Yes D No 6. boes this revision .;tdd ANY new floor area(s)? D Yes [ZJ No 7. Does this revision affect any fire related· issues? O Yes 0 No 8. _,s !bis a complete se~ ~NO-c0 --;---, ZS1gnature ~ ~~ 1635 Faraday Avenue, Carlsbad, CA 92008 fll: 760-602-2719 flt2s: 760-602-8558 EDJait buil<;ling@carlsbadca.gov www.carl~badca.gov 4 EsGil Corporation In a!artnersli.ip witli. government for (JJui{aing Safety DATE: November 23, 2016 D APPLICANT lJ JURIS. JURISDICTION: Carlsbad D PLAN REVIEWER Q FILE PLAN CHECK NO.: 16-1168 rev (Prev 2016-0006) _____ SET: I PROJECT ADDRESS: 225 Hemlock ave 1PROJECT NAME: AFD/Garage/Deck for Rincon Real Estate Group l:g] The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's building codes. D The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. D The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. D The check list transmitted herewith is for your information. The plans are being held at EsGil Corporation until corrected plans are submitted for recheck. D The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. D The applicant's copy of the check list has been sent to: l:g] EsGil Corporation staff did not advise the applicant that the plan check has been completed. D EsGil Corporation staff did advise the applicant that the plan check has been completed. Person contacted: Date contacted: (by: Telephone#: ) Email: Mail Telephone Fax In Person l:g] REMARKS: Minor Revisions. By: Abe Doliente E:sGil Corporation D GA D EJ D MB D PC Enclosures: Original set of approved plans. 11/21/16 9320 Chesapeake Drive, Suite 208 + San Diego, California 92123 + (858) 560-1468 + Fax (858) 560-1576 ,.., ,. Carlsbad 16-1168 rev (Prev 2016-0006) November 23, 2016 [DO NOT PAY -THIS IS NOT AN INVOICE] VALUATION AND PLAN CHECK FEE JURISDICTION: Carlsbad 2016-0006) PLAN CHECK NO.: 16-1168 rev (Prev PREPARED BY: Abe Doliente BUILDING ADDRESS: 225 Hemlock ave BUILDING OCCUPANCY: BUILDING AREA Valuation PORTION ( Sq. Ft.) Multiplier Revision Air Conditioning Fire Sprinklers TOTAL VALUE Jurisdiction Code cb By Ordinance Bldg. Permit Fee by Ordinance j ..... j ~ Plan Check Fee by Ordinance Type of Review: D Complete Review D Repetitive Fee ~ Repeats * Based on hourly rate Comments: D Other 0 Hourly EsGil Fee DATE: November 23, 2016 Reg. VALUE Mod. D Structural Only 1,Ht.@* :~~~--$_-1_0-=o=.o:o ($) $125.ool "- $100.00,~ Sheet 1 of 1 macvalue.doc + STRUCTURAL CALCULATIONS PROJECT: .c;;. j_ DESIGN ASSUMPTIONS: CONCRETE STRENGTH AT TWENTY EIGHT DAYS: ______ PSI ______ PSI MASONRY: GRADE 11N11 CONCRETE BLOCK FI M = MORTAR: TYPE S 1,800 PSI GROUT: 2000PSI REINFORCING STEEL: A-615 STRUCTURAL STEEL: A-36 LUMBER: SEISMIC FORCE: WIND FORCE: DESIGN LOADS: DOUGLAS FIR-LARCH JOISTS BEAMS ANO POSTS STUDS ---- ROOF DEAD LOAD SLOPING ROOFING PLYWOOD JOISTS INSUL&CLG. MISC. TOTAL= ROOF LIVE LOAD SLOPING= FLAT= GRADE 40: ·#4 AND LESS (U.O.N.) GRADE 60: #5 AND LARGER #2 #2 STUD OR BETTER REPORT BY: ___________________ _ REPORT NO.: ______ _ SOIL PRESSURE: _____ _ FLOOR DEAD LOAD INT. FLOORING PLYWOOD JOISTS INSUL. & CLG. MISC. TOTAL=_ .......... _---" FLOOR LIVE LOAD INTERIOR BALCONY EXIT WALKWAY 40 PSF 60 PSF (U.O.N.) 100 PSF WALL DEAD LOAD INTERIOR EXTERIOR lOPSF 16PSF These calculations are limited only to the items included herein, selected by the client and do not imply approval of any other portion of the structure by this office. These calculations are not valid-if altered in any way, or not accompanied by a wet stamp and signature of the Engineer of Record. Job No. Designed By Date or If /to/1,o1t, I ( San Diego • 14188 Danlelson Strut, Suite # 200, Poway, CA 92064, (858) 679-8989, Fax (8581 679-8959 ! .. tz~VJ+pp JZe,__~ L =, VJ.. i 2!-d,ecJ~ re~ L !I:. 11,.q;I rt)l.. SA JJ./~o * PLL ~ )-, f;O t; W~,_ --I l<P ( :J ) ~ J..} fb ~ W t:,t.. -c:. I&., o ~ w u... =-eo ~ Pat..;:, i 000 ~ PLL..= s~0 ~ ~ £= :i .::!:= := ::.;i h' &;,l ~ ~. ~---· .... 'l;· + t fobO (OL-) / oo o ( Ol-) Seto(L.-L} ~CJo (1-1-j le~o~· le~o* t 2 -54--0 (ot..-) I '14-o ( LL-) 4~f!7o4 14288 Danielson Street • ' Suite200 Powa CA 92064 fjojectTiHe: gngineer: Project Descr: Project ID: Prlnmd: 7NOV2016, 12:01PM File= C'.\llsers\HTK\DOCUME"'1\ENERCAN1~arfield.ee6 ENERCALC,.INC.1983-2016, Build:6:16.4.15, Ver:6. 16.4.15 t,11 • .. II, .. Description : House 1 • RB3 Arch1 change CODE REFERENCES -·--·---·-., . ',.',_, _____ -----·--.. -·-------,--------------------- Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Deslgn Load Combination ASCE 7-10 Fb-Tenslon Fb-Compr Fc-Prll 2900psi 2900psi 2900psl E: Modulus of Efssticlly Wood Species Wood Grade Beam Bracing : Trus Joist Fe -Perp : Parallam PSL 2.0E Fv Ft : Beam Is Fully Braced against lateral-torsional buckling 0(1.43) !,.1(1.78) 625psi 290psl 2025psi Ebend-xx 2000ksl Emlnbend-xx 1016.535ksi Density 45.05pcf ~PJ~~: ~-~~ .. _ .. _ .. .. _ ... _ ..... -· _________ s_e_rvf_c_e_lo_ad_s_e_nt_er_ed_._Loa_d_F_ac_to_rs_w_il_l b_e_a_pp_lie_d_fo_r_ca_lc_u_la_tio_n_s. Uniform Load: D = 0.0480, Tribufalv Width= 1.0ft Point Load: D = 1.430, Lr= 1.780 k ~ 5;250 ft __ DESIGN SUMMARY ;Maximum Bending Strass Ratio Section used for this span fb: Actual FB : Allowable Load Comblnalfon Location of maximum on span Span# where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient D~n Max Downward Total Deflection Max Upward Total Deflection = = = = = 0.463: 1 Maximum Shear Stress Ratio 3.5x11.25 Section used for this span 1,677.82psl fv: Actual 3,625.00psi Fv: Allowable +O+l..r+H Load Comblnatlon 5.255ft Location of maximum on span Span# 1 Span # where maximum occurs O.131 in Ratio= 0.000 Jn Ratio = 0.264 In Ratio = 0.000 In Ratio = 1096>=360 0<360 545>=240. 0<240.0 Maximum Forces & Stresses for Load Combinations L~d &i~bin;tio~ . ... . ... MaxSiress Raiki° . "' ... .. ... .. ·-.. . ...... ··-Moment Values Segment length Span# M V Cd CFN Ct Cr Cm Ct CL --iO-ttl Length = 12.0 ft +O+l+H leilglh = 12.0 ft -tO+i..r+H Length= 12.0 ft +O+S+H Length= 12.0 ft +0+0.750!.rt0.750L-tH Length = 12.0 ft +0+0.750L +0.750S+H 1 1 1 1 0.316 0.284 0.463 0.247 0.404 0.153 0.90 1.000 1.000 1.000 1.000 1.000 1.000 0.138 1.00 0.215 1.25 0.120 1.15 1.000 1.000 1.000 1.000 0.189 1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 f.00 1.00 1.00 1.00 M lb 5.07 824.12 5.07 824.12 10.32 1,677.82 5J1'/ 824.12 9.01 1,464.40 = = = = Pb 0.00 2610.00 0.00 2900.00 0.00 3625.00 0.00 3335.00 0.00 3625.00 0.00 Design _OK " , 0.215: 1 3.5x11.25 78.08psi 362.50psi +D-ilr+H 0.000ft Span# 1 V 0.00 1.05 0.00 1.05 0.00 2.05 0.00 1.05 0.00 1.80 0.00 Shear Values fv F'v 0.00 0.00 39.93 261.00 0.00 0.00 . 39,93 290.00 0.00 0.00 78.08 362.50 0.00 0.00 39.93 333.50 0.00 O.OQ 68.54 362.50 0.00 0.00 14288 Danielson Street • 1 Sulle200 Project TIiie: Engineer: Project Desct: Project ID: Powa . CA 92064 Wood Bearn . PJfnted: 7NOY.·2016, 12:10PM File= C:\UserslfiTK\DOCUME-1'ENERCA·1\garl!eki.ec6 ENERCALC. INC.1983-20t6,l:iu1kl:6.1M.15, 'fer.6.16.4.15 I II . . Desciipfion: House#1-f86 arch'l cl)ange. CODE REFERENCES ---· .· ·-··-.. ·-· ..... ---·-_ ..... -·-, .... -... -------------------------Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysls Method : Allowable Stress Design load Combination ASCE 7-10 Fb-Tension Fb-Compr Fc-Prll Wood Species Wood Grade : Trus Joist Fe-Peep : Pamllam PSL 2.0E Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 2900psi 2900psi 2900psi 625psl 290psl 2025psl E: Modulus of Elasticity Ebend-xx 2000ksi Eminbend-xx 1016.535ksi Density 45.05pcf 0(1) (0.89) 0(1} L(0.89} D 0.16 L 0.08 5,25x11.875 _ Applfed. Lo•d• .. ____________ _ Service loads entered. Load Factors will be applied for calculations. Load fer Span Number 1 Unifonn Load: D = 0.160, L = 0.080 k/ft, Extent= 0.0->> 14.0 ft, Tributary Width= 1.0 ft Point Load : D = 1,0, L = 0.890 k@ 1.0 ft Point load : D ::o 1.0, L = 0.890 k ~ 13.0 ft =DE.=S=1G=N~S=U.=MMA=...._R_,__Y ________ -··· --·-··-.·-···· ·-.... _ .. _ iMaximum Bending Stress Ratio = 0.464 1 Maximum Shear Stress Ratio · Section used for this span 5.25x11.875 Section used for this span fb : Actual ~ 11345.02 psi fv : Actual FB : Allowable = 2,900.00psi Fv: Allowable Load Combination -tO+l-tH load Combination Location of maximum on span = 9.964ft Location ct maximum on span Span# where maximum occurs = Span # 1 Span# where maximum occurs Maximum Deflection Max Downward Transient Oeflectlon Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.208 In Ratio= 0.000 in Ratio = 0.534 In Ratio = 0.000 in Ratio = Maximum Forces & Stresses for Load Combinations 1008>=360 0<360 393>=240. 0<240.0 Pesign OK! . = 0.336: 1 5,25x11.875 = 97.54psi = 290.00psl +D+L-tH ~ 0.000ft = Span#1 LoadCombl"*n -·-· ·· •· .. MaxS!ressRatlos --· · · · · -· ·· .. · --------M-om-e-nt-Va-lu-es ______ S_h_ea-rV_a_lues-- SegmenfLength Span# M V Cd C FN C; Cr Cm C t CL M lb F'b V fv F'v +0#1 0.00 0.00 0.00 0.00 Lenglh = 17.50 fl 1 0.315 0.220 0.90 1.000 1.00 1.00 1.00 1.00 1.00 8.45 821.77 2610.00 2.39 57.52 261.00 +0-tL.ffl 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=17.5011 1 0.464 0.336 1.00 1.000 1.00 1.00 1.00 1.00 1.00 13.83 1,345.02 2900.00 4,05 97.54 290.00 -tO-t\.ritl 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0,00 0.00 0.00 Length= 17.50ft 1 0.227 0.159 1.25 1.000 1.00 1.00 1.00 1.00 1.00 8.45 821.77 3625,00 2.39 57,52 362.50 ..o+S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length-= 11;sott 1 0.245 0.112 1.1s 1.000 1.00 1.00 1.00 1.00 1.00 8.45 821.77 3335.oo 2.39 57.52 333.50 +0+0.7501.rt0.750!.+H 1.000 f.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 14288 Danielson Street • ' Sulte200 Powa CA 92064 Efoject TIiie: ;ngineer: Project Oescr: ProlectlD: Printed: 7 NOV 2016, 12.00PM Wood·Beam· F.lle = C:\lJsera\HTKIDOCUME~1\~ERC1H'(Jarfield oo6 . ENERCALC, INC. 1983-2016; Builcl.il.16.4,15, Ver:6:16.4.J5 f • t I • ._ DescrlpUon : House 1 -RB3 Aroh'I change CODE.REFERENCES ·-----· ______ .. __ ·------· __ ..... -· ·--- Calculations per NOS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properti~s Analysls Method : Allowable Stress Deaign load Combination ASCE 7-10 Fb-Tenslon Fb-Compr Fc-Prll Fc-Perp 2900psi 2900psi 2900psl E: Modulus of Elasticity Ebend-xx 2000 ksl Emlnbend -xx 1016.535ksi Woocf'Specles : Trus Joist Fv Wood Grade : Parallam PSL 2.0E Ft Beam.Bracing : Beam Is Fully Braced against lateral-torsional buckling 625psi 290psi 2025psi Density 45,05pcf D(1.43) Lr{1.78) 0£0.048\ " 3.5x9.5 .__ _________________ -~~an•E·~~ • ~p~,~-~ -·· .. ·--·· -·· ..... .. Service loads entered. Load Factors wlll be applied for calculations. Uniform Load : D = 0.0480 , Tributary Width = 1.0 ft Polntload : D = 1.430, Lr= 1.780 k @ 5.250 ft DESIGN SUMMARY f-'M"-'axl=m~-""um'-'-=-Be'?. =nd=lng=-... s=tre~ss_R_a_ti_o __ = _____ 0.649: -1-Maxim.um ShearStress' Ratio· Section used for this span 3,5x9,5 Section used for this span fb : Actual .. 2,352.90psi fv : Actual FB: Allowable = 3,625.00psi Fv: Allowable Lolli Combination -+O+lr+H Load Combination Locatton cl maximum on span -= 5.255ft location of maximum on spai Span# where maximum occurs = Span# 1 Span# where maximum occurs Maximum Deflection Max Downward Transient Oeflect[on Max Upward Transient-Deflection Max Downward Total Deflection Max Upward Total Deflection 0.218 in Ratio = 0.000 In Ratio = 0.438 In Ratio = 0.000 In Ratio= Maximum Forces & Stresses for Load Combinations Load.Combl~atkl~· -·-· -MaxSfress~Ratlos .... ··-· ... .. -........ ·-·-· 660>---360 0<360 328>=240. 0<240.0 Moment Values = = = = = Segmentlengfh Span# M V Cd CFN Cj Cr Cm Ct CL M fb F'b -+D+H length = 12.0 ft -+D-t!.+H Leng1h = 12.0 ft +D-ilr-tH Length= 12.0ft ~ Length = 12.0 ft -+D-t0.750Lr1();750l.-•H length= 12.0 ft +D..0.750L ..0.750S-+ff 1 1 1 0.443 0.399 0.649 0.347 0.567 0.182 0.90 0.164 1.00 0.256 1.25 0.143 1.15 0.225 1.25 1.000 1.000 1.00() 1.000 1,000 1,000 1.000 1.000 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 · 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0D 5.07 1,155.70 2610.00 0.00 5.07 1,155.70 2900.00 0.00 10.32 2,352.90 3625,00 0.00 5.07 1,155.70 3335,00 0.00 9.01 2,053.60 3625.00 0.00 •fflt•hi•UW 0.256: 1 3.5x9.5 92.74psi 362.50psi +D+Lr+H 0.000ft Span#1 Shear Values V fv F'11 0.0D 0.00 0.00 1.05 47.57 261.00 0,00 0.00 0.00 1.05 47.fjf 290.00 0.00 0.00 0.00 2.06 92.74 362.50 0.00 0.00 0.00 1.05 47.o/ 333.50 0,00 0.00 0.00 1.81 81.45 362.50 0.00 0.00 0.00