Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
2501 EL CAMINO REAL; ; PCR14147; Permit
City of Carlsbad 1635 Faraday Av Carlsbad, CA 92008 09-11-2014 Plan Check Revision Permit No:PCR14147 Job Address: Permit Type: Parcel No: Valuation: Reference #: PC#: Project Title: Applicant: SEAMEN TIM Building Inspection Request Line (760) 602-2725 2501 EL CAMINO REAL CBAD PCR 1563020800 $0.00 Lot#: 0 Construction Type: NEW WESTFIELD -DEFFERED GLAZING CURTAIN WALL & DOORS AT EDWARDS THEAT!¥R, Owner: CMi= PCR L LC Status: Applied: Entered By: Plan Approved: Issued: Inspect Area: ISSUED 08/01/2014 SKS 09/11/2014 09/11/2014 PO BOX9599 CHULA VISTA CA 91912-5955 619-993-8846 C/0 WESTFIELD PROPERTY TAX DEPT PO BOX 130940 DEPT WFLD CARLSBAD, CA 92013 Plan Check Revision Fee Fire Expedited Plan Review Additional Fees Total Fees: $405.00 Inspector: $290.00 $115.00 $0.00 Total Payments To Date: $405.00 Balance Due: FINAL APPROVAL Date: Clearance: ------ $0.00 NOTICE: Please take NOTICE that approval of your project includes the "Imposition" of fees, dedications, reservations, or other exactions hereafter collectively referred to as "fees/exactions." You have 90 days from the date this permit was issued to protest imposition of these fees/exactions. If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the protest and any other required information with the City Manager for processing in accordan_ce with Carlsbad Municipal Code Section 3:32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their imposition. You are hereby FURTHER ~OTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project. NOR DOES IT APPLY to any fees/exactions of which vou have oreviouslv been oiven a NOTICE similar to this or as to which the statute of limitations has nreviouslv otherwise exnired. & ¥ CITY OF CARLSBAD PLAN CHECK REVISION APPLICATION 8-15 Development Services Building Division 1635 Faraday Avenue 760-602-2719 www.carlsbadca.gov Plan Check Revision No. ~ I Y -} l( 7 . Original Plan Check No. G(:) l '"S -z,{ t \ ~ --z..6b l ~ 3ff I cm q1-ooct. o> l / ProjectAddress 1?i,S;;9 e,,\ (.aMt'A\o .\?-a,\ &flsboc,\ C&: Date a----Y ·contact l\fu Sc0-..me.5A. Ph(b l1) 9't3 <&2,~6. Fax ______ _ -Email :r:,m@B\-\PS Q(\\~V)e .(O(Y\ Contact Address . Po . ~oy: S q55 · General Scope of Work __________________________ _ Original plans prepared by an archite(:t or engineer, revisions must be signed & stamped by that person. 1 . Elements revised: -;SJ Plans ~ Calculations D Soils D Energy D Other ___________ _ 2. 3. 4. Describe revisions in detail List page(s) where List revised sheets d~e.r-e_d each revision is that replace (' r J f\-~rr\ IJU11t,l/ hi~ ? .. 'yta shown existinq sheets ~L( -(-,! <2-. r:t~~s 1-W~, 11-tf ;f\'fl:XZ-Skf ~LC--,. 5. 6. Does this revision, in any way, alter the exterior of the project? ~Yes Does this revision add ANY n~w floor area(s)? D Yes C[2J(No 7. Does this revision affect any fire related issues? 8. Is this a complete set? D Yes (QI No pes D No D No ,£S'SignatlJre-~~~~~-~-~-------------------- 1635 Faraday Avenue, Carlsbad, CA 92008 fb.: 760-602-2719 Fax: 760-602-8558 Email: building@carlsbadca.gov www.carlsbadca.gov EsGil Corporation In <Partnersliip witli fjo'Vernment for (J3ui{aing Safety DATE: AUG. 12,2014 CJ APPLICANT CJ JURIS. JURISDICTION: CARLSBAD CJ PLAN REVIEWER CJ FILE PLAN CHECK NO.: 13-2181 (REV. #5) -NEW PCR #14-147 _ SET: I PROJECT ADDRESS: 2501 EL CAMINO REAL PROJECT NAME: 3 STORY MALL ADD & REMODEL) D The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's building codes. [8J The plans transmitted herewith will substantially comply with the jurisdiction's building codes when minor deficiencies identified below are resolved and checked by building department staff. D The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. D The check list transmitted herewith is for your information. The plans are being held at Esgil Corporation until corrected plans are submitted for recheck. D The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. D The applicant's copy of the check list has been sent to: Michael Sheller 2049 Century Park East 41 st floor, Century City, CA 90067 ~ EsGil Corporation staff did not advise the applicant that the plan check has been completed. D EsGil Corporation staff did advise the applicant that the plan check has been completed. Person contacted: Mike Telephone#: 310-575-5909 Date contacted: (by: ) Email: msheller@westfield.com Fax #: Mail Telephone Fax In Person [8J REMARKS: The engineer-of-record to review & stamp the enclosed glazing (deferred) package prepared by others (& provide a "review" stamp on plans & calc's. or a letter) indicating they have been reviewed & no exceptions are taken. CBC, Sec. 107.3.4.1."~ : '\.) ~ *[Curtain Wall (Glazing Deferred Submittal Package) is under this plan revision]. By: ALI SADRE, S.E. EsGil Corp·oration [J GA O EJ O PC Enclosures: 8/1 9320 Chesapeake Drive, Suite 208 + San Diego, California 92123 + (858) 560-1468 + Fax (858) 560-1576 I [DO NOT PAY-THIS IS NOT AN INVOICE] VALUATION AND PLAN CHECK FEE JURISDICTION: CARLSBAD (REV. #5) -NEW PCR #14-147 PREPARED BY: ALI SADRE, S.E. PLAN CHECK NO.: 13-2181 DATE: AUG. 12,2014 BUILDING ADDRESS: 2501 EL CAMINO REAL BUILDING OCCUPANCY: M/ A2/B TYPE OF CONSTRUCTION: 11-B/SPR. BUILDING AREA Valuation Reg. VALUE ($) PORTION ( Sq. Ft.) Multiplier Mod. Curtain Wall Deferred Package Air Conditioning Fire Sprinklers TOTAL VALUE Jurisdiction Code · cb By Ordinance Bldg. Permit Fee by Ordinance -,.. , . I Plan Check Fee by Ordinance ·'Ill!"· I $290.001 Type of Review: 0 Repetitive Fee -... , Repeats * Based on hourly rate Comments: D Complete Review D Other 0 Hourly EsGil Fee D Structural Only 21 Hrs.@* =====$=11=6=.o:o $232.001 Sheet 1 of 1 · 9320 Chesapeake Drive, Suite 208 + San Diego, California 92123 + (858) 560-1468 + Fax (858) 560-1576 «t~ PLANNING DIVISION BUILDING PLAN CHECK APPROVAL Development Services . ~ CITY OF CARLSBAD P-29 Planning Division 1635 Faraday Avenue (760} 602-4610 www .carlsbadca.rmv > . l ' I i ' ; DATE: 08/06/2014 PROJECT NAME: Westfield Carlsbad PROJECT ID: EIR 09-02/SDP 09-04· ·1 PLAN CHECK NO: PCR14147 SET#: 1 ADDRESS: 2501 El Camino Real APN: 156-302-08 !ZI This plan check review is complete and has been APPROVED by the Planning Division. By: Jason Goff CJ~ A Final Inspection by the Planning Division is required D Yes fZl No ' J . I i f • ,--..,-,;v,'h••1 ·'J J: : i You may also have corrections from one or more of the divisions listed below. Approval _r i from these divisions may be required prior to the issuance of a building permit. : ·. Resubmitted plans should include corrections from all divisions. , . D This plan check review is NOT COMPLETE. Items missing or incorrect are listed ~t on the attached checklist. Please resubmit amended plans as required. ·-, ..... . 1 Plan Check APPROVAL has been sent to: Tim Seamens (tim@bhpsonline.com) For questions or clarifications on the attached checklist please contact the following revie~er as marked: PLANNING:. ~ ' ' '. , ' -:, ,: ; ,,,!,',, --~~ .-.':-• ,:, :., '•. ,_,·,:'',fl,'' .' , '/,'',,:· H:,,,,, ;,, "s:-'' ,,:·~· 760:-602-4610 ·l;N~I_N;l;~Ql~(t; .. '.. '\' :;/· ··,::f:l~~:f->~EY~.N;f:IQ;~:-.. ··· . · -.· 760:-602-~750 . ' . ' ,. : ,, . < "• . . · ,-:76()-60~~466!:;i · . . , .... ' ,' ' •, t ' ' ' ,, s, '~ ' ' ' ' < ' • ' ,, ,. ' 't. ·' D Chris Sexton 760-602-4624 : Chris.Sexton@carlsbadca.gov D GinaRuiz 760-602-4675 Gina.Ruiz@carlsbadca.gov { ~ Jason Goff 760-602-4643 Jason.goff@carlsbadca.gov Remarks: None ,, ,,, ,', ,, ,•., ,'.,: ,,,,;,'.,.'•,.:·:,.:'. ·.:,.,_,,:,;',,,:,~ •• ;.,;,,,.~\,,/,,:'. •' ·1 ,,',;s>,•"' D Kathleen Lawrence D Greg Ryan 760-602-27 41 760-602-4663 Kathleen.Lawrence@carlsbadca.gov Gregory.Ryan@carlsbadca.gov D Linda Ontiveros D Cindy Wong D 760-602-2773 760-602-4662 Linda.Ontiveros@carlsbadca.gov Cynthia.Wong@carlsbadca.gov D Dominic Fieri 760-602-4664 Dominic.Fieri@carlsbadca.gov 1 i' '. '> ' ... :': f, / ~ «--'~ ~ CITY OF CARLSBAD DATE: 08.25.2014 PLAN CHECK NO: 3 SET#: 1 PLAN CHECK REVIEW TRANSMITTAL Co~Q~i{& Economic Development Department 1635 Faraday Avenue Carlsbad CA 92008 www.carlsbadca.gov PROJECT NAME: WESTFIELD PROJECT ID: PCR14147 ADDRESS: 2501 EL CAMINO REAL STE 100 APN: 1:8J This plan check review is complete and has been APPROVED by the FIRE Division. By: G. RYAN A Final Inspection by the FIRE Division is required ~ Yes D No D This plan check review is NOT COMPLETE. Items missing or incorrect are listed on the attached checklist. Please resubmit amended plans as required. Plan Check Comments have been sent to: You may also have corrections from one or more of the divisions listed below. Approval from these divisions may be required prior to the issuance of a building permit. Resubmitted plans should include corrections from all divisions. For questiQns or clarifications on the attached checklist please contact the following reviewer as marked: D Chris Sexton 760-602-4624 Chris.Sexton@carlsbadca;gov D Gina Ruiz 760-602-4675 Gina.Ruiz@carlsbadca.gov D Remarks: See Attached D Kathleen Lawrence cg] Greg Ryan 760-602-27 41 760-602-4663 Kathleen.Lawrence@carlsbadca.gov D D Linda Ontiveros 760-602-2773 Linda.Ontiveros@carlsbadca.gov Gregory.Ryan@carlsbadca.gov D CindyWong 760-602-4662 Cynthia.Wong@carlsbadca.gov D Dominic Fieri 760-602-4664 Dominic.Fieri@carlsbadca.gov . m Carl&bad Fire Department ·-!/---------------------~------ Plan Review Date of Report: Na:tne: Address: Permit#: Job Name: Job Address: Requirements Category: PCR , 08-25-2014 SEAMEN TIM POBOX9599 CHULA VISTA CA 91912-5955 PCR14147 WESTFIELD -DEFFERED GLAZING 2501 EL CAMINO REAL CBAD Please review carefully all comments attached. Conditions: CITY OF CARLSBAD FIRE DEPARTMENT -APPROVED: Reviewed by: ~ ~cV( THIS PROJECT HAS BEEN REVIEWED AND APPROVED FOR THE PURPOSES OF ISSUANCE OF BUILDING PERMIT. THIS APPROVAL IS SUBJECT TO FIELD INSPECTION AND REQUIRED TEST, NOTATIONS HEREON, CONDITIONS IN CORRESPONDENCE AND CONFORMANCE WITH ALL APPLICABLE REGULATIONS. THIS APPROVAL SHALL NOT BE HELD TO PERMIT OR APPROVE THE VIOLATION OF ANY LAW. Entry: 08/25/2014 By: GR Action: AP .t'age 1 or 1 _ --BLDG.DEPT COPY RECOMMENDATION FOR APPROVAL Daryl K. James & AssQciates, Inc. 205 Colina Terrace Vista, CA 92084 Checked by: . Daryl Kit James Date: 8/12/2014 T. (760) 724-7001 Email: kitfire@sbcglobal.net APPLICANT: Tim Seamen PROJECT NAME: Mall Curtain wall glazing PROJECT DESCRIPTION: PCR14-14_-147 wall glazing. JURISDICTION: Carlsbad Fire Department PROJECT ADDRESS: 2501 ECR Ste 100 · 24-hr Fitness & Edwrads Theatre Shell differed curtain U lPRA ARCHltECTS plaii~{VB; 11rcfi~9.ture 1/it~flcils e11vif9l1~nfa/graph/~ Sepfemb~r 10/20l4 REFER.ENCl:: PROJECT NO: ToiWhonl It May Concerrn Westttela Carfsbad P.nasid ~;r-~faY: sii1idihg Repurp.ose GURTAINWALL:OEFl=RRED:SCJBMITTAL .cirrlsba(t OA . --.·· , . . . t789· JPRA lias revieWetUor-general, de:sittn\compliar1cMh~ teferericea: deferre:d submittal -torthe curtainwall and storefr9ntsystems:prep~ted:by,.O(i!nte~:G1~tin.gl9r-We~~ieJd GP.nstwction. 1he,des\g11 'i$: ih c(mforman(:~ with tn§ .. dtawi!'.i~$: rep~r~~ by this ... offi® antlWEHake:·tto e:xc_eptiotts. 39300 wei;t JWelve Mi!e0R9ad. suite 180 Fa,rmington Hills r,,,1 4!!331 phone 248.7.37.0180 fax 248.737,9161 ww.w;jpra.com ! STRUCTURAL CALCULATIONS FOR &Qik WESTFIELD CARLSBAD -1--% -~~)iR, 24 HOUR FITNESS & RETAIL EXPANSION ,(9, ~°t-~ ~),g~AIN WALL FRAMING & ANCHORAGE <.S'~ ~ ~ '9 <). ~O CARLSBAD, CA ~ o>.h o>~ ./'./' "J.;..~. <$)CV ~ Vo-? JOB NO. 14157 FOR: CENTEX GLAZING . WESSEL DATE : 6/19/2014 CONTENTS CRITERIA 1 -2 MEMBER ANALYSIS 3-42 CONNECTIONS 43-57 IN-PLANE ORIFT ANALYSIS 58-59 APPENDIX APPENDIX "A"-SCREW & BOLT DATA A1 APPENDIX 11811 -ESR-2236 (SIMPSON SOS SCREWS) B1 -B5 APPENDIX "C" -ESR-3332 (ELCO DRIL-FLEX) APPENDIX "D" -ESR-3027 (HIL Tl KWIK HUS-EZ) APPENDIX "E" -WELDED ANGLE INFO. RECEIVED AUG O 1 2014 CITY OF CARLSBAD BUILDING DIVISION C1 -C6 01 -09 E1 JUL . 3 0 Zf).14,--- NO. DATE BY DESCRIPTION REVISIONS w r--IO C\I E ..J r--r--("') 0 <( C\I ID N 0 Cl (1) (l) 10 . z Cl) I I= -st -st Ill w <( (1) (1) E I-() r--r--Cl i~ s m@ 10 10 Q) e !£. ~ tn ~ ~ ~ ~> LL. 0 .c Cl 'SI" 'ffi r--(1) E N w en 0::: w w z a z w ..J ~ ::J I-() :::> 0::: I-en · Z/41 BY? D.W.W. DATE: 6/17/14 SUBJECT WESTFIELD THEATER SHEET NO. 1 CHKD; BY: ____ DATE: CENTEX GLAZING WIND CRITERIA: PER CODE 2010 C.B.C. & ASCE 7-05: V35 PER FIGURE 1609 = MAX. MEAN ROOF HEIGHT= EXPOSURE·= HEIGHT & EXPOSURE ADJUSTMENT FACTOR= lw= FROM ASCE 7 FIGURE 6-3, PG. 42 ZON!= EFF. WIND V3s = 85 AREA PRESS.: SUCTION: 4 10 13.0 -14.1 4 20 12.4 -13.5 4 50 11.6 -12.7 4 100 11.1 -12.2 5 10 13.0 -17.4 5 20 12.4 -16.2 5 50 11.6 -14.7 5 100 11.1 -13.5 SEISMIC CRITERIA: . PER CODE 2010 C.B.C. & ASCE 7-05 : 85 57 C 1.602 1.15 USE WORST CASE: 14.1 13.5 12.7 12.2 17.4 16.2 14.7 13.5 JOB NO. 14157 mph from ASCE 7-05 FIG. 6-3, PG. 44@ Bottom from ASCE 7-05TABLE 6-1, PG. 77 CORRECTED PRESS.: 26.0 24.9 23.4 22.5 32.1 29.8 27.1 24.9 SEISMIC DESIGN CATEGORY: D Ss = 1.500 ] S1 = 0.600 PtR <£Hf, SI, l Of i~ ~ooi f\1Ne'f>5 Bl-\)Cj, \)~rJC,5v SM1 = 0.600 OCCUPANCY CAREGORY: Ill SEISMIC SITE CLASS: D Fa= Fv= SMs= FaXSs= Sos = 2/3(SMs) = FOR EXTERIOR WAL,L ELEMENTS AND BODY OF WALL PANEL CONNECTIONS (4a & 4b) FORFASTENERS OF THE CONNECTING SYSTEM (4c) IE= WORST CASE: (z/h) = ENTER 1.0 FOR STRENGTH DESIGN (S.D.) OR 1.4 FOR WORKING STRESS (W.S.): 1.0 from TABLE 1615.1.2(1) 1.0 from TABLE 1615.1.2(2) 1.500 1.000 1.00 from TABLE 13.5-1 ASCE 7-05 2.50 from TABLE 13.5-1 ASCE 7-05 1.25 from TABLE 13.5-1 ASCE 7-05 1.00 from TABLE 13.5-1 ASCE 7-05 1.25 from TABLE 11.5-1 (ASCE 7-05) 1.0 @ROOF 1.4 GERARD HOMER AND ASSOCIATES 2374 W. WHITENDALE, VISALIA, CA. 93277 • PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com ., t BY:) D.W.W. DATE: 6/18/14 SUBJECT WESTFIELD THEATER CHKD. BY: ____ DATE: CENTEX GLAZING FOR FASTENERS OF THE CONNECTING SYSTEM Fp = 0.4(ap)(Sos)(Wp) [1 + 2(z/h)J = · [(Rpflp) x S.D.orW.S.] Fp = 0.4(ap)(So5)(Wp) [1 + 2(z/h)J = [(Rpflp) x S.D.orW,S.] Fp SHALL NOT EXCEED: Fp = 1.6(S05)(Ip)(Wp) = Fp SHALL NOT BE LESS THAN: Fp = 0.3(S05)(1p)(Wp) = USEFp= 0.429 Wp = SHEET NO. 2 JOB NO. 14157 0.429 Wp @ W.S. LEVEL 1.339 WP@ W.S. LEVEL 2.000 WP PER EON. 16-68 0.375 WP PER EON. 16-69 8 P.S.F. 3.429 P.S.F. FOR FASTENERS OF THE CONNl;CTING SYSTEM USE Fp= 1.339 WP = 10.714 P.S.F. DEFLECTION CRITERIA: Allowable Deflection U Allowable Deflection U ALLOWABLE BENDING STRESSES: 175 PER 2403.3 FOR INDIVIDUAL GLASS LITES OR 3/4" WHICHEVER IS LESS 360 FOR IN-PLANE DEAD LOAD OF HORIZONTALS OR 1/8" MAX. ALUMINUM (6063 T-6 ALLOY) Fy= 25,000 FbWIND = 25,000 / 1.65 = 15152 psi STEEL (ASTM A36 MIN.) Fy= 36,000 FASTENER TABLES: FbWIND = 36,000 I 1.67 = 21557 psi See pages(s)· ___________ _ GERARD HOMER AND ASSOCIATES 2374 W. WHITENDALE, VISALIA, CA 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com " BY: D.W.W. DATE: 6/17/14 SUBJECT WJ:STFIELD THEATER SHEET NO. 3 CHKD. BY: DATE: CENTEX GLAZING JOB NO. 14157 ------ DEADLOAD ANALYSIS FOR TUBULAR DOOR HEADERS ~ 'ELEVS.: A/E.1 DETAILS: 1/D.7 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 PER SPEC. 3.4.14 -L8 ( Sc) I ly = 75.0· < 130, Thus Fb = 15152 psi PER SPEC. 3.4.16 -b /t = 20.5 < 23, Thus Fb = 15152 psi HORIZONTAL WIDTH= b = 2.05 IN. TYPICAL WALL THICKNESS = t = 0.100 IN. UNBRACED LENGTH = L8 = 41.5 IN. UNIT (GLASS) HEIGHT = 36.75 IN. HORIZONTAL SPAN= 41.5 IN. GLASS WEIGHT= 7.5 PSF ALLOWABLE DEFLECTION = 0.0625 IN. ALLOWABLE F8 PER SPEC. 3.4.14 = 15152 PSI ALLOWABLE F8 PER SPEC. 3.4.16 = 15152 PSi SETTING BLOCKS ARE AT 1/4 POINTS (ENTER Y FOR YES OR DISTANCE a) a= 10.375 Pol a . REACTION= 39;717 LBS. lREACTION MAXIMUM MOMENT= 412 IN. -LBS. ACTUAL DEFLECTION = 0.0058 IN. I REQUIRED TO MEET DEFLECTION LIMIT= 0.1302 IN4 < ~I ACTUAL OK S REQUIRED TO MEET STRESS LIMIT= 0.0272 IN3 < ~s ACTUAL OK WIND LOAD ANALYSIS -SIMPLE SPAN W/ UNIFORM LOADING : SPAN LENGTH =,...I __ 41_.5 _ __.IIN. ACTUAL lxx =! 8.398 l1NA4 WIND LOAD =I 25.73 !PSF. TRIB. WIDTH =I 43.375 !IN. ALLOWABLE BENDING STRESS (F8) =L 15152 !PSI. (MIN. OF ABOVE) REACTION= 160.82 LBS. DEFLECTION LIMIT = L / 175 MAXIMUM MOMENT= 1668.5 IN. -LBS. ACTUAL DEFLECTION = 0.0036 IN. . I REQUIRED TO MEET DEFLECTION LIMIT= S REQUIRED TO MEET STRESS LIMIT = 0.127 IN4 < ~I ACTUAL OK 0.111 IN3 < ~SACTUAL OK COMBINED STRESS CHECK= ( SoLREQ'D/ SoLAcruAJ + (SWLREa·o/ SwLAcruAU 0 .. 021 + 0.111 = -~-'---_.....;;_;;_;...;_;__ = 0.06 . 1.24 2.522 OPG -1910 DOOR HEADERS w/ SETTING BLOCKS @ 1/4 POINTS OK y > BY: D.W.W. . DATE: 6/17/14 SUBJECT WESTFIELD THEATER SHEET NO. 'j CHKD. BY: ____ DATE: CENTEX GLAZING JOB NO. 14157 DEADLOAD ANALYSIS FOR TUBULAR DOOR HEADERS : ELEVS.: A/E.1 DETAILS: 1/D.7 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 PER SPEC. 3.4.14 -Le ( Sc) fly= 155.5 < 2400, Thus Fb = 16. 7 -0.140 ( Lb (Sc)/ ly )A0.5 PER SPEC. 3.4.16-b /t = 20.5 < 23, Thus Fb = 15152 psi HORIZONTAL WIDTH = b = 2.05 IN. TYPICAL WALL THICKNESS = t = 0.100 IN. UNBRACED LENGTH = L8 = 86 IN. UNIT (GLASS) HEIGHT= 36.75 IN. HORIZONTAL SPAN= 86 IN. GLASS WEIGHT= 7.5 PSF ALLOWABLE DEFLECTION = 0.0625 IN. ALLOWABLE Fe PER SPEC. 3.4.14 = 14954 PSI ALLOWABLE Fe PER SPEC. 3.4.16 =-15152 PSI SETTING BLOCKS ARE AT 1/4 POINTS (ENTER Y FOR YES OR DISTANCE a) a= 11 Pol a REACTION= 82.305 LBS. jREAC170N MAXIMUM MOMENT= 905 IN. -LBS. ACTUAL DEFLECTION = 0.0587 IN. I REQUIRED TO MEET DEFLECTION LIMIT= 1.31 IN4 < ~I ACTUAL OK < ~S ACTUAL OK S REQUIRED TO MEET STRESS LIMIT= 0.0605 IN3 WIND LOAD ANALYSIS -SIMPLE SPAN W/ UNIFORM LOADING : SPAN LEN~TH = ..... I __ 8_6 ___ .... !IN. ACTUAL lxx =I 8.398 l1N"4 WIND LOAD =I 23;94 IPSF. TRIB. WIDTH =I 65.625 lfN. ALLOWABLE BENDING STRESS (F8) =l 14954 !PSI. (MIN. OF ABOVE) REACTION= 469 .. 14 LBS. MAXIMUM MOMENT= 10086.5 IN. -LBS. ACTUAL DEFLECTION = 0.0925 IN. I REQUIRED TO MEET DEFLECTION LIMIT= S REQUIRED TO MEET STRESS LIMIT = 1.582 0.675 DEFLECTION LIMIT = L / 175 IN4 < ~!ACTUAL OK IN3 < ~SACTUAL OK COMBINED STRESS CHECK= ( SoLREQ'D/ SoLACTUAU + (SwLREQ'D/ SwLACTUAU 0.061 _ + 0.675 = 0.30 1.24 2.522 OPG -1910 DOOR HEADERS w/ SETTING BLOCKS@11" MAX. FROM ENDS OK 11 , BY: D.W.W. DATE: 6/17/14 SUBJECT .WESTFIELD THEATER SHEET NO. 5 CHKD. BY: DATE: CENTEX GLAZING JOB NO. 14157 ---- DEADLOAD ANALYSIS FOR TUBULAR HORIZONTALS : ELEVS.: C/E.2, D/E.3 (TOP ROW OF HORIZONTALS) DETAILS: 2/D.1 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 PER SPEC. 3.4.14-L8 ( Sc) fly= 278.9 < 2400, Thus Fb = 16.7-0.140 ( Lb (Sc)/ ly )A0.5 PER SPEC. 3.4.16 -b /t = 20.5 < 23, Thus Fb = 15152 psi HORIZONTAL WIDTH = b = 2.05 IN. TYPICAL WALL THICKNESS= t = 0.100 IN. UNBRACED LENGTH = L8 = 79.1875 IN. UNIT (GLASS) HEIGHT = 28.625 IN. HORIZONTAL SPAN= 79.1875 IN. GLASS WEIGHT= 7.5 PSF ALLOWABLE DEFLECTION= 0.125 IN. ALLOWABLE F8 PER SPEC. 3.4.14 = 14362 PSI ALLOWABLE F9 PER SPEC. 3.4.16 = 15152 PSI SETTING BLOCKS ARE AT 1/4 POINTS (ENTER Y'FOR YES OR DISTANCE a) a= 19.796875 a REACTION = 59.03 LBS. MAXIMUM MOMENT = 1169 IN. -LBS. ACTUAL DEFLECTION= 0.1093 IN. I REQUIRED TO MEET DEFLECTION LIMIT= 0.6718 IN4 S REQUIRED TO MEET STRESS LIMIT= 0.0814 IN3 < ~!ACTUAL OK < ~S ACTUAL OK WIND LOAD ANALYSIS -SIMPLE SPAN W/ UNIFORM LOADING : SPAN LENGTH =I 79.1875 IIN. ACTUAL lxx =I 8.617 l1N"4 WIND LOAD =I 28.82 !PSF. TRIB. WIDTH =i 56.15625 !IN. ALLOWABLE BENDING STRESS (F8) =! 14362 jPSI. (MIN. OF ABOVE) REACTION = 445.00 LBS. MAXIMUM MOMENT = 8809.6 IN. -LBS. ACTUAL DEFLECTION = 0.0668 IN. I REQUIRED TO MEET DEFLECTION LIMIT = S REQUIRED TO MEET STRESS LIMIT = 1.272 0.614 DEFLECTION LIMIT = L / 175 IN4 < ~!ACTUAL OK IN3 < ~S ACTUAL OK COMBINED STRESS CHECK= ( SoLREa·o/ SoLACTUAJ + (SwLREa·o/ SwLACTUAJ = 0.081 + 0.614 = 0.34 0.554 2.705 OPG -1900 HORIZONTALS w/ SETTING BLOCKS@1/4 POINTS OK (T~r ~OW Of *DF.l!oN'tAL.&) y ) BY: D.W.W. DATE: 6/17/14 SUBJECT WESTF.IELD THEATER SHEET NO. 6 CHKD. BY: DATE: CENTEX GLAZING JOB NO. 14157 ---- DEADLOAD ANALYSIS FOR TUBULAR HORIZONTALS : ELEVS.: C/E.2 (HORIZONTALS WI 48 1/4" D.L.O.) DETAILS: 2/D.1 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 PER SPEC. 3.4.14 -Le (Sc)/ ly = 278.9 < 2400, Thus Fb = 16.7 -0.140 ( Lb (Sc)/ ly )A0.5 PER SPEC. 3.4.16 -b /t = 20.5 < 23, Thus Fb = 15152 psi HORIZONTAL WIDTH = b = 2.05 IN. TYPICAL WALL THICKNESS = t = 0.100 IN. UNBRACED LENGTH = L8 = 79.1875 IN. UNIT (GLASS) HEIGHT = 48.125 IN. HORIZONTAL SPAN= 79.1875 IN. GLASS WEIGHT= 7.5 PSF ALLOWABLE DEFLECTION = 0.125 IN. ALLOWABLE Fe PER SPEC. 3.4.14 = 14362 PSI ALLOWABLE Fe PER SPEC. 3.4.16 = 15152 PSI SETTING BLOCKS ARE AT 1/4 POINTS (ENTER Y FOR YES OR DISTANCE a) a= 12 Pol a REACTION= 99.243 LBS. iREAC170N MAXIMUM MOMENT= 1191 IN. -LBS. ACTUAL DEFl.,ECTION = 0.1178 IN. I REQUIRED TO MEET DEFLECTION LIMIT= 0.724 IN4 < ~ I ACTUAL OK S REQUIRED TO MEET STRESS LIMIT= 0.0829 IN3 < ~s ACTUAL OK WIND LOAD ANALYSIS -SIMPLE SPAN W/ UNIFORM LOADING : SPAN LENGTH =1 · 79.1875 j1N. ACTUAL lxx=I 8.617 l1NA4 WIND LOAD =I 28.34 !PSF. TRIB. WIDTH =I 65.9375 !IN. ALLOWA8LE BENDING STRESS (Fe) =I 14362 !PSI. (MIN. OF ABOVE) REACTION = 513.80 LBS. MAXIMUM MOMENT= 10171.7 IN. -LBS. ACTUAL DEFLECTION = 0.0771 iN. I REQUIRED TO MEET DEFLECTION LIMIT= S REQUIRED TO MEET STRESS LIMIT = 1.469 0.709 DEFLECTION LIMIT = L / 175 IN4 < ~!ACTUAL OK IN3 < ~SACTUAL OK COMBINED STRESS CHECK= ( SoLREQ'D/ SoLACTUAJ + (SwLREQ'D/ SwLACTUAJ 0.083 0.709 = ---+ ---= 0.37 0.554 2. 705 . OPG ,-1900 HORIZONTALS w/ SETTING BLOCKS@ 12" MAX. FROM ENDS OK (Hr>Rl)bf,l\"A~ w/ l{i 11,/ ti, i., o,) 12 J BY: D.W.W. DATE: 6/17/14 SUBJECT WESTFIELD THEATER SHEET NO. 7 CHKD. BY: DATE: CENTEX GLAZING JOB NO. 14157 ---- DEADLOAD ANALYSIS FOR TUBULAR HORIZONTALS : ELEVS.: C/E.2, D/E.3 (HORIZONTALS WI 79 1/8" D.L.O.J DETAILS: 2/D.1 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 PER SPEC. 3.4.14 -L8 ( Sc) I ly = 278.9 < 2400, Thus Fb = 16.7 -0.140 ( Lb (Sc)/ ly )110.5 PER SPEC. 3.4.16 -b /t = 20.5 < 23, Thus Fb = 15152 psi HORIZONTAL WIDTH = b = 2.05 IN. TYPICAL WALL THICKNESS = t = 0.100 IN. UNBRACED LENGTH = L8 = 79.1875 IN. UNIT (GLASS) HEIGHT = 79.125 IN. HORIZONTAL SPAN= 79.1875 IN. GLASS WEIGHT= 7.5 PSF ALLOWABLE DEFLECTION = 0.125 IN. ALLOWABLE F8 PER SPEC. 3.4.14 = 14362 PSI ALLOWABLE F8 PER SPEC. 3.4.16 = 15152 PSI SETTING BLOCKS ARE AT 1/4 POINTS (ENTER Y FOR YES OR DISTANCE a) a= 7 a REACTION= 163.17 · LBS. MAXIMUM MOMENT= 1142 IN. -LBS. ACTUAL DEFLECTION= 0.1154 IN. I REQUIRED TO MEET DEFLECTION LIMIT= 0.7088 IN4 < ~ I ACTUAL OK S REQUIRED TO MEET STRESS LIMIT= 0.0795 IN3 < ~S ACTUAL OK WIND LOAD ANALYSIS -SIMPLE SPAN W/ UNIFORM LOADING : SPAN LENGTH =I 79.1875 j1N. ACTUAL lxx =I 8.617 jlN"4 WIND LOAD =I 28.34 !PSF. TRIB. WIDTH =I 65.9375 !IN. ALLOWABLE BENDING STRESS (F8) =! 14362 IPSI. (MIN. OF ABOVE) REACTION = 513.80 LBS. MAXIMUM MOMENT= 10171. 7 IN. -LBS. ACTUAL DEFLECTION = 0.0771 IN. I REQUIRED TO MEET DEFLECTION LIMIT= S REQUIRED TO MEET STRESS LIMIT= 1.469 0.709 DEFLECTION LIMIT= L / 175 IN4 < ~!ACTUAL OK IN3 ,::: ~SACTUAL OK COMBINED STRESS CHECK= ( SoLREQ'D/ SoLACTUAU + (SwLREQ'o/ SwLACTUAU 0.080 0.709 = 0.554 + 2. 705 = 0·37 OPG -1900 HORIZONTALS w/ SETTING BLOCKS@ 7" MAX. FROM ENDS OK (-lto~\zoNif\L-6 w/ ~ !r,/ l),1,.,0,) 7 ) BY: D.W.W .. DATE: 6/17/14 SUBJECT WESTFIELD THEATER SHEET NO. 8 CHKD. BY: DATE: CENTEX Gl,..AZING JOB NO. 14157 ---- DEADLOAD ANALYSIS FOR TUBULAR HORIZONTALS:, ELEVS.: C/E.2 (HORIZONTALS WI 107.75" D.L.O.J DETAILS: 6/D.1 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 PER SPEC. 3.4.14-L8 ( Sc) I ly = 143.2 < 2400, Thus Fb = 16.7 -0.140 ( Lb (Sc)/ ly )"0.5 PER SPEC. 3.4.16 -b /t = 20.5 < 23, Thus Fb = 15152 psi HORIZONTAL WIDTH = b = 2.05 IN. TYPICAL WALL THICKNESS = t = 0.100 IN. UNBRACED L.E_NGTH = L8 = 79.1875 IN. UNIT (GLASS) HEIGHT= 107.75 IN. HORIZONTAL SPAN= 79.1875 IN. GLASS WEIGHT= 7.5 PSF ALLOWABLE DEFLECTION = 0.125 IN. ALLOWABLE F8 PER SPEC. 3.4.14 = 15025 PSI ALLOWABLE F8 PER SPEC. 3.4.16 = 15152 PSI SETTING BLOCKS ARE AT 1/4 POINTS (ENTER Y FOR YES OR DISTANCE a) a= 10 NOT< 811 OR 1/8 PTS = 9.9 PoL a a REACTION= 222.2 LBS. jREACT/ON MAXIMUM MOMENT= 2222 IN. -LBS. ACTUAL DEFLECTION = 0.1222 IN. I REQUIRED TO MEET DEFLECTION LIMIT= 1.3638 IN4 S REQUIRED TO MEET STRESS LIMIT= 0.1479 IN3 < ~ I ACTUAL OK < ~SACTUAL OK WIND LOAD ANALYSIS -SIMPLE SPAN W/ UNIFORM LOADING : SPAN LENGTH =I 79.1875 j1N. ACTUAL lxx =I 8.398 l1NA4 WIND LOAD =I 28.47 !PSF. TRIS. WIDTH =I 63.34375 IIN. ALLOWABLE BENDING STRESS (F8) =I . 15025 !PSI. (MIN. OF ABOVE) REACTION = 495.86 LBS. MAXIMUM MOMENT= 9816.4 IN. -LBS. ACTUAL DEFLECTION = 0.0764 IN. I REQUIRED TO MEET DEFLECTION LIMIT = S REQUIRED TO MEET STRESS LIMIT = 1.418 0.654 DEFLECTION LIMIT= L / 175 IN4 < ~!ACTUAL OK IN3 < ~S ACTUAL OK COMBINED STRESS CHECK= ( SoLREQ'ofSoLACTUAU + (SwLREQ'o/ SwLACTUAU 0.1_48 + 0.654 = 0.35 1.24 2.522 OPG -1910 HORIZONTALS w/ SETTING BLOCKS @ 10" MAX. FROM ENDS OK (J-IOflJ~tJ1N,S w/ to'r ¾11 D,L,O~ 10 BY: D.W.W. DATE: 6/17/14 SUBJECT WESTFIELD Tl:iEATER SHEET NO. 9 CHKD. BY: DATE: CENTEX GLAZING JOB NO. 14157 ---- DEADLOAD ANALYSIS FOR TUBULAR HORIZONTALS ; ELEVS.: D/.E.3 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 DETAILS: 2/D.1 PER SPEC. 3.4.14-L8 ( Sc) fly= 191.5 < 2400, Thus Fb = 16.7 -0.140 ( Lb (Sc)/ ly )"0.5 PER SPEC. 3A16 -b /t = 20.5 < 23, Thus Fb = 15152 psi HORIZONTAL WIDTH= b = 2.05 IN. TYPICAL WALL THICKNESS = t = 0.100 IN. UNBRACED LENGTH = L8 = 54.375 IN. UNIT (GLASS) HEIGHT = 107.75 IN. HORIZONTAL SPAN = 54.375 IN. GLASS WEIGHT= 7.5 PSF ALLOWABLE DEFLECTION = 0.125 IN. ALLOWABLE F8 PER SPEC. 3.4.14 = 14763 PSI ALLOWABLE F8 PER SPEC. 3.4.16 = 15152 PSI SETTING BLOCKS ARE AT 1/4 POINTS (ENTER Y FOR YES OR DISTANCE a) a= 13.59375 PoL a REACTION = 152.576 LBS. MAXIMUM MOMENT= 2074 IN. -LBS. ACTUAL DEFLECTION= 0.0915 IN. I REQUIRED TO MEET DEFLECTION LIMJT = 0.5622 IN4 S REQUIRED TO MEET STR!=SS LIMIT= 0.1405 IN3 < ~I ACTUAL OK < ~S ACTUAL OK WIND LOAD ANALYSIS -SIMPLE SPAN W/ UNIFORM.LOADING : SPAN LENGTH =I 54.375 /IN. ACTUAL lxx =I 8.617 l1N"4 WIND LOAD =I 29.78 JPSF. TRIS. WIDTH =I 53.5625 !IN. ALLOWABLE BENDING STRESS (F8) =I 14763 !PSI. (MIN. OF ABOVE) REACTION = 301.16 LBS. MAXIMUM MOMENT= 4093.9 IN. -LBS. ACTUAL DEFLECTION= 0.0146 IN. I REQUIRED TO MEET DEFLECTION LIMIT= S REQUIRED TO MEET STRESS LIMIT= 0.406 0.278 DEFLECTION LIMIT = L / 175 IN4 < ~!ACTUAL OK IN3 < ~S ACTUAL OK COMBINED STRESS CHECK= ( SoLREQ'o/ SoLACTUAU + (SwLREo'D/ SwLACTUAU 0.140 + 0.278 = 0.29 0.554 2.705 OPG -1900 HORIZONTALS w/ SETTING BLOCKS@ 1/4 POINTS OK y BY: D.W.W. DATE: 6/17/14 SUBJECT WESTFIELD THEATER SHEET NO. 10 CHKD. BY: DATE: CENTEX GLAZING JOB NO. 14157 ---- DEADLOAD ANALYSIS FOR TUBULAR HORIZONTALS ~ ELEVS.: H/E.6, 1/E.6, KIE.(>, UE.6, M/E.7, M,1/E,r 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 DETAILS: 2/D.1 PER SPEC. 3.4.14-L8 ( Sc) I ly = 240.8 < 2400, Thus Fb = 16.7 -0.140 ( Lb (Sc)/ ly )A0.5 PER SPEC. 3.4.16 -b / t = 20.5 < 23, Thus Fb = 15152 psi HORIZONTAL WIDTH = b = 2.05 IN. TYPICAL WALL THICKNESS = t = 0.100 IN. UNBRACED LENGTH = L8 = 68.375 IN. UNIT (GLASS) HEIGHT = 58 IN. HORIZONTAL SPAN = 68.375 IN. GLASS WEIGHT= 7.5 PSF ALLOWABLE DEFLECTION = 0.125 IN. ALLOWABLE F8 PER SPEC. 3.4.14 = 14527 PS~ ALLOWABLE F8 PER SPEC. 3.4.16 = 15152 PSI SETTING BLOCKS ARE AT 1/4 POINTS (ENTER Y FOR YES OR DISTANCE a) a= 17.09375 Pol a a REACTION= 103.275 LBS. jREAC110N MAXIMUM MOMENT= 1765 IN. -LBS. ACTUAL DEFLECTION = 0.1231 IN. I REQUIRED TO MEET DEFLECTION LIMIT = 0.7566 IN4 S REQUIRED TO MEET STRESS LIMIT= 0.1215 IN3 < ~IACTUAL OK < ~SACTUAL OK WIND LOAD ANALYSIS -SIMPLE SPAN W/ UNIFORM LOADING : SPAN LENGTH =I 68.375 IIN. ACTUAL lxx =I 8.617 l1NA4 WIND LOAD =I 24.74 !PSF. TRIS. WIDTH =I 48.75 !IN. ALLOWABLE BENDING STRESS (F8) =I 14527 !PSI. (MIN. OF ABOVE) REACTION = 286.34 LBS. MAXIMUM MOMENT = 4894.6 IN. -LBS. ACTUAL DEFLECTION = 0.0277 IN. I REQUIRED TO MEET 'DEFLECTION LIMIT= S REQUIRED TO MEET STRESS LIMIT= 0.611 0.337 DEFLECTION LIMIT = L / 175 IN4 < ~I ACTUAL OK IN3 < ~SACTUAL OK COMBINED STRESS CHECK= ( SoLREQ'D/ SoLACTUAJ + (SwLREQ'D/ SwLACTUAL) 0.122 + 0.337 = ---------= 0.29 0.554 2.705 OPG -1900 HORIZONTALS w/ SETTING BLOCKS@ 1/4 POINTS OK y BY: D.W.W. DATE: 6/17/14 SUBJECT WESTFIELD THEATER SHEET NO. 11 ---CHKD. BY: DATE: CENTEX GLAZING JOB NO. 14157 DEADLOAD ANALYSIS FOR TUBULAR HORIZONTALS : ELEVS.: M/E.7, M.1/E.7 DETAILS: 2/D.1 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 PER SPEC. 3.4.14 -Ls ( Sc) I ly = 287.9 < 2400, Thus Fb = 16.7 -0.140 ( Lb (Sc)/ ly yo.5 PER SPEC. 3.4.16 -b /t = 20.5 < 23, Thus Fb = 15152 psi HORIZONTAL WIDTH = b = 2.05 IN. TYPICAL WALL THICKNESS = t = 0.100 IN. UNBRACED LENGTH = L8 = 81.15 IN. UNIT (GLASS) HEIGHT= 58 IN. HORIZONTAL SPAN = 81.75 IN. GLASS WEIGHT= 7.5 PSF ALLOWABLE DEFLECTION = 0.125 IN. ALLOWABLE F8 PER SPEC. 3.4.14 = 14324 PSI ALLOWABLE F8 PER SPEC. 3.4.16 = 15152 PSI SETTING BLOCKS ARE AT 1/4 POINTS (ENTER Y FOR YES OR DISTANCE a) a= 9 a REACTION= 123.477 LBS. MAXIMUM MOMENT= 1111 IN. -LBS. ACTUAL DEFLECTION = 0.1189 IN. I REQUIRED TO MEET DEFLECTION LIMIT= 0.7307 IN4 S REQUIRED TO MEET STRESS LIMIT= 0.0776 IN3 < ~!ACTUAL OK < ~S ACTUAL OK WIND LOAD ANALYSIS -SIMPLE SPAN W/ .UNIFORM LOADING : SPAN LENGTH=! 81.75 IIN. ACTUAL lxx =I 8.617 jlNA4 WIND LOAD =I 24.52 !PSF. TRIS. WIDTH =I 48.75 !(N. ALLOWABLE BENDING STRESS (F8) =! 14324 !PSI. (MIN. OF ABOVE) REACTION = 339.31 LBS. MAXIMUM MOMENT= 6934.6 IN. -LBS. ACTUAL DEFLECTION = 0.0560 IN. I REQUIRED TO MEET DEFLECTION LIMIT= S REQUIRED TO MEET STRESS LIMIT= 1.034 0.485 DEFLECTION LIMIT= L / 175 IN4 < ~!ACTUAL OK IN3 < ~SACTUAL OK COMBINED STRESS CHECK= ( SoLREQ'D/ SoLACTUAU + (SwLREQ'o/ SwLACTUAU 0.078 + 0.485 = 0.554 2. 705 = 0·28 OPG -1900 HORIZONTALS w/ SETTING BLOCKS @9" MAX. FROM ENDS OK 9 BY: 0.W.W. DATE: 6/17/14 SUBJECT WESTFIELD THEATER SHEET NO. 12 ---CHKD. BY: DATE: CENTEX GLAZING JOB NO. 14157 ---- DEADLOAD ANALYSIS FOR TUBULAR HORIZONTALS.: ELEVS.: J/E.6 DETAILS: 2/D.1 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 PER SPEC. 3.4.14-L8 ( Sc) fly= 230.7 < 2400, Thus Fb = 16.7 -0.140 ( Lb (Sc)/ ly )A0.5 PER SPEC. 3.4.16 -b / t = 20.5 < 23, Thus Fb = 15152 psi HORIZONTAL WIDTH= b = 2.05 IN. TYPICAL WALL THICKNESS = t = 0.100 IN. UNBRACED LENGTH= L8 = 65.5 IN. UNIT (GLASS) HEIGHT = 77 IN. HORIZONTAL SPAN= 65.5 IN. GLASS WEIGHT= 7.5 PSF ALLOWABLE DEFLECTION = 0.125 IN. ALLOWABLE F8 PER SPEC. 3.4.14 = 14574 PSI ALLOWABLE F8 PER SPEC. 3.4.16 = 15152 PSI SETTING BLOCKS ARE AT 1/4 POINTS (ENTER Y FOR YES OR DISTANCE a) a= 14 Pol a REACTION= 131.342 LBS. jREAC110N MAXIMUM MOMENT= 1839 IN. -LBS. ACTUAL DEFLECTION = 0.1206 IN. I REQUIRED TO MEET DEFLECTION LIMIT= 0.7409 IN4 S REQUIRED TO MEET $TRESS LIMIT= 0.1262 IN3 < ~!ACTUAL OK < ~S ACTUAL OK WIND LOAD ANALYSIS -SIMPLE SPAN W/ UNIFORM LOADING : SPAN LENGTH=· ..... , _6_5 ___ .5 _ __,/IN. ACTUAL lxx =I 8.617 l1NA4 WIND LOAD =I 24.71 !PSF. TRIB. WIDTH =I 52.5 !IN. ALLOWABLE BENDING STRESS (FB) =I 14574 !PSI. (MIN. OF ABOVE) REACTION = 295.04 LBS. MAXIMUM MOMENT= 4831.3 IN. -LBS. ACTUAL DEFLECTION = 0.0251 IN. I I REQUIRED TO MEET DEFLECTION LIMIT = S REQUIRED TO MEET STRESS LIMIT = 0.577 0.332 DEFLECTION LIMIT = L / 175 IN4 < ~I ACTUAL · OK IN3 < ~SACTUAL OK COMBINED STRESS CHECK= ( SoLREQ'D/ SoLACTUAJ + (SwLREQ'o/ SwLACTUAU 0.126 0.332 = ----+ ---= 0.29 0.554 2.705 OPG -1900 HORIZONTALS w/ SETTING BLOCKS@ 14" MAX. FROM ENDS OK 14 J BY: D,W.W. DATE: 6/17/14 SUBJECT WESTFIELD THEATER SHEET NO. 13A CHKD. BY: DATE: CENTEX GLAZING JOB NO. 14157 ------ DEADLOAD ANALYSIS FOR TUBULAR DOOR HEADERS : ELEVS.: 1/E.6, J/E.6, M/E.7, M.1/E.7 DETAILS: 1/D.7 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 PERSPEC. 3.4.14-L8 (Sc}lly= 133.8 <2400,ThusFb=16.7-0.140(Lb(Sc)/ly)A0.5 PER SPEC. 3.4.16 -b / t = 20.5 < 23, Thus Fb = 15152 psi HORIZONTAL WIDTH = b = TYPICAL WALL THICKNESS = t = UNBRACED LENGTH = L8 = UNIT (GLASS) HEIGHT= HORIZONTAL SPAN = GLASS WEIGHT = ALLOWABLE DEFLECTION = ALLOWABLE F8 PER SPEC. 3.4.14 = ALLOWABLE F8 PER SPEC. 3.4.16 = 2.05 0.100 74 46.25 74 7.5 0.0625 15081 15152 IN. IN. IN. IN. IN. PSF IN. PSI PSI SETTING BLOCKS ARE AT 1/4 POINTS (ENTER Y FOR YES OR DISTANCE a) a= 15 NOT< 8" OR 1/8 PTS = 9.3 a PoL REACTION= 89.128 LBS. jREACTION MAXIMUM MOMENT= 1337 IN.-LBS. ACTUAL DEFLECTION = 0.0620 IN. I REQUIRED TO MEET DEFLECTION LIMIT= 1.384 IN4 < ~!ACTUAL S REQUIRED TO MEET STRESS LIMIT= 0.0887 IN3 < SACTUAL WIND LOAD ANALYSIS -SIMPLE SPAN W/ UNIFORM LOADING : SPAN LENGTH =I ...... __ 7_4 _ __.IIN. ACTUALlxx =I 8.398 l1NA4 WIND LOAD =I 44.25 !PSF. TRIB. WIDTH =I 64.375 IIN. ALLOWABLE BENDING STRESS (FB) =I 15081 !PSI. (MIN. OF ABOVE) OK OK REACTION= 401.11 LBS. DEFLECTION LIMIT = L / 175 MAXIMUM MOMENT= 7420.7 IN. -LBS. ACTUAL DEFLECTION = 0.0504 IN. I REQUIRED TO MEET DEFLECTION LIMIT= S REQUIRED TO MEET STRESS LIMIT= 1.002 IN4 < 0.493 IN3 < ~!ACTUAL OK ~SACTUAL OK COMBINED STRESS CHECK= ( SoLREQ'o/ SoLACTUAU + (SwLREQ'D/ SwLACTUAL) 0.089 + 0.493 = ----------= 0.25 1.24 2.522 OPG -1910 DOOR HEADERS w/ SETTING BLOCKS@ 15" MAX. FROM ENDS @ELEVATIONS M/E.7 & M.1/E.7 OK OPG -1910 DOOR HEADERS w/ SETTING BLOCKS @ 1/4 POINTS @ ELEVATIONS 1/E.6 & J/E.6 OK 15 BY: D.W.W. DATE: 6/18/14 SUBJECT WESTFIELD THEATER SHEET NO. 13B CHKD.BY: DATE: CENTEX GLAZING JOB NO. 14157 ---- DEADLOAD ANALYSIS FOR TUBULAR HORIZONTALS : ELEVS.: M/E.7, M.1/E.7 DETAILS: 2/D.1 2005 ALUMINUM DESIGN MANUAi,. -TABLE 2-24 PER SPEC. 3.4.14-L8 ( Sc} I ly = . 260.6 < 2400, Thus Fb = 16.7 -0.140 ( Lb (Sc)/ ly )A0.5 PER SPEC. 3.4.16 -b / t = 20.5 < 23, Thus Fb = 15152 psi HORIZONTAL WIDTH= b = 2.05 IN. TYPICAL WALL THICKNESS = t = 0.100 IN. UNBRACED LENGTH= L8 = 74 IN. UNIT (GLASS) HEIGHT= 46.25 IN. HORIZONTAL SPAN= 74 IN. GLASS WEIGHT= 7.5 PSF ALLOWABLE DEFLECTION = 0.125 IN. ALLOWABLE F8 PER SPEC. 3.4.14 = 14440 PSI ALLOWABLE F8 PER SPEC. 3.4.16 = 15152 PSI SETTING BLOCKS ARE AT 1/4 POINTS (ENTER Y FOR YES OR DISTANCE a) a= 16 Pol a a REACTION= 89.128 LBS. lREAC110N MAXIMUM MOMENT= 1426 IN. -LBS. ACTUAL OEFLECTION = 0.1192 IN. I REQUIRED TO MEET DEFLECTION LIMIT= 0.7323 IN4 S REQUIRED TO MEET STRESS LIMIT= 0.0988 IN3 < ~ I ACTUAL OK < ~S ACTUAL OK WIND LOAD ANALYSIS -SIMPLE SPAN W/ UNIFORM LOADING : SPAN LENGTH=/ · 74 /IN. ACTUAL lxx =I 8.617 l1NA4 WIND LOAD =I 24_5·5 jPsF. TRIS. WIDTH =I 48.5 !IN. ALLOWABLE BENDING sTREss (Fs) =I _ 14440 IPsr. (MtN. oF AaovEJ REACTION= 307.18 LBS. MAXIMUM MOMENT= 5682.9 IN. -LBS. ACTUAL DEFLECTION = 0.0376 IN. I REQUIRED TO MEET DEFLECTION LIMIT = S REQUIRED TO MEET STRESS LIMIT= 0.767 0.394 DEFLECTION LIMIT= L / 175 IN4 < ~!ACTUAL OK IN3 < ~SACTUAL OK · COMBINED STRESS CHECK= ( SoLREQ'o/ SoLACTUAU + (SwLREQ'o/ SwLACTUAU 0.099 0.394 = ---+ ---= 0.28 0.554 2.705 OPG -1900 HORIZONTALS w/ SETTING BLOCKS@ 16" MAX. FROM ENDS OK 16 1 BY: D.W.W. DATE: 6/17/14 SUBJECT WESTFIELD THEATER SHEET NO. 14 CHKD. BY: ___ DATE: CENTEX GLAZING JOB NO. 14157 TUBULAR TYPE DOOR JAMBS -WIND LOAD ANALYSIS : ELEVS.: A/E.1 DETAILS: 1/D.8, 1A/D.8, 2/D.8 2005 ALUMINUM DESIGN MANUAL -TABJ.E 2-24 PER SPEC. 3.4.14-L8 Sc/ ly= 242.3 < 2400, Thus Fb = 16.7 -0.140 x ( Lb Sc/ ly )A0.5 ALLOWABLE F8 PER SPEC. 3.4.14 = 14521 PSI PERSPEC.3.4.16-b/t= 20.5 <23,ThusFb=15152psi ALLOWABLE F8 PER SPEC. 3.4.16 = 15152 PSI 163.25 SPAN LENGTH = IN. UNBRACED LENGTH = L8 = IN. 120 0.1 TYPICAL WALL THICKNESS = t = IN. MULLION WIDTH = b = IN. 2.050 MOMENT OF INERTIA (WEAK AXIS)= ly = IN.4 1.395 2.817 I SECTION MODULUS (MAXIMUM) = Sc= N.3 TRIBUTARY AREA= 163.3 x 45.250 / 144. = 51.30 SQ. FT. MIN. WIND LOAD PER SPEC'S= N/A PSF (ENTER 'NIA' IF NOT APPLICABLE) WIND LOAD =I 23.38 !PSF. TRIB. WIDTH =I 45.25 !IN. ALLOWABLE BENDING STRESS (Fb) =I 14521 _ !PSI. (MIN. FROM ABOVE) REACTION = 599.69 LBS MAX. POSTIVE MOMENT= 24474.7 IN-LB$ { PER C.'©c., iA-UJ£ l,o~1~1 NOTcf REQUIRED Sxx = 1.686 IN::s MAX. SPAN DEFLECTION= 0:81 IN:;:=> X O,r .. ::: e,15'1··:t /V 'I-vi\ (j 9.; 1;,z.~ &; PIECE MATERIAL NO. ALU=1 STL=2 1 1 PIECE NO. 1 DIE lxx NO. IN.4 OPG -1910 8.398 OPG -1910 O.K. Sxx IN. 2.522 I TOTAL= lxx IN ALU. 8.398 8.398 9704 PSI. < 14521 ,. BY: D.W.W. DATE: 6/17/14 SUBJECT WESTFIELD THEATER SHEET NO. 15 CHKD. BY: ___ DATE: CENTEX GLAZING JOB NO. 14157 TUBULAR TYPE JAMBS -WIND LOAD ANALYSIS : ELEVS.: B/E.1, D/E.3, E/E.4, F/E.4, G/E.5 DETAILS: 1/D.5, 3/D.6, 5/D.6 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 PER SPEC. 3.4.14 -L8 Sc fly= 139.8 < 2400, Thus Fb = 16.7 -0.140 x ( Lb Sc/ ly )A0.5 ALLOWABLE F8 PER SPEC. 3.4.14 = 15044 PSI PER SPEC. 3.4.16 -b / t = 20.5 < 23, Thus Fb = 15152 psi ALLOWABLE F8 PER SPEC. 3.4.16 = 15152 PSI SPAN LENGTH :::: UNBRACED Ll=NGTH = L8 = TYPICAL WALL THICKNESS = t = MULLION WIDTH = b = MOMENT OF INERTIA (WEAK AXIS) = ly = SECTION MODULUS (MAXIMUM) = Sc = 73.75 69.25 0.1 2.050 1.395 2.817 IN. IN. IN. IN. IN.4 IN.3 TRIBUTARY AREA= 73.8 x 31.211 / 144. = 15.98 SQ. FT. MIN. WIND LOAD PER SPEC'S= N/A PSF (ENTER 'NIA' IF NOT APPLICABLE) WIND LOAD =I 30.72 !PSF. TRIS. WIDTH =I 31.211 IIN. ALLOWABLE BENDING STRESS (Fb) =I 15044 !PSI. (MIN. FROM ABOVE) REACTION = 245.53 LBS MAX. POSTIVE MOMENT= 4526.9 IN-LBS REQUIRED Sxx = 0.301 IN;j MAX. SPAN DEFLECTION = 0.031 IN ==> L / 2379.0 PIECE MATERIAL NQ ... ALU=1 STL=2 1 1 PIECE NO. DIE. lxx NO. IN.4 OPG -1910 8.398 1 Fb = (M x IAw) / (Sxx x I TOTAL) = OPG -1910 O.K. Sxx IN. 2.522 I TOTAL= lxxlN ALU. 8.398 8.398 1795 PSI. < 15044 ' BY: D.W.W. DATE: 6/18/14 SUBJECT WESTFIELD THEATER SHEET NO. 16 CHKD. BY: ___ DATE: CENTEX GLAZING JOB NO. 14157 TUBULAR TYPE MULLIONS -WIND LOAD ANALYSIS ~ ELEVS.: B/E.1, D/E.3, E/E.4; F/E.4, G/E.5 DETAILS: 2/D.5 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 PER SPEC. 3.4.14 -La Sclly = 140.7 < 2400, Thus Fb = 16.7 -0.140 x ( Lb Sc/ ly )A0.5 ALLOWABLE Fa PER SPEC. 3.4.14 = 15039 PSI PER SPEC. 3.4.16 -b /t = 20.5 < 23, Thus Fb = 15152 psi ALLOWABLE Fa PER SPEC. 3.4.16 = 15152 PSI SPAN LENGTH = UNBRACED LENGTH = LB= TYPICAL WALL THICKNESS = t = MULLION WIDTH = b = MOMENT OF INERTIA (WEAK AXIS) = ly = SECTION MODULUS (MAXIMUM) =Sc::= 73.75. 69.25 0.1 2.050 1.454 2.955 IN. IN. IN. IN. IN.4 N.3 I TRIBUTARY AREA= 73.8 x 60.172 / 144. = 30.82 SQ. FT. MIN. WIND LOAD PER SPEC'S= NIA PSF (ENTER 'NIA' IF NOT APPLICABLE) WIND LOAD =I 28.83 IPSF. TRIB. WIDTH =I 60.172 !IN. ALLOWABLE BENDING STRESS (Fb) =I 15039 !PSI. (MIN. FROM ABOVE) REACTION = 444.23 LBS MAX. POSTIVE MOMENT = 8190.6 IN-LBS REQUIRED Sxx = 0.545 IN;-s MAX.SPAN DEFLECTION= 0.064 IN==> L/ 1152.3 PIECE MATERIAL DIE lxx Sxx NO. ALU=1 STL=2 1 1 PIECE NO. NO. IN.4 IN. OPG -1926 7.362 2.863 I TOTAL= lxx IN ALU. 7.362 7.362 1 Fb = (M x IAw) / (Sxx x I TOTAL)= 2861 PSI. < 15039 OPG -1926 O.K. WESTFIELD THEATER Cbeam 2002 6/18/2014 10:53 Fi1e: JAMB A DETAIL-1 /D. 5 1 I~ /Q/j 1.._~~: ELEV.-C/E.2 7'By. D.W.W. f)1::~ c~c, Tl\al: lf!dlt"?, NotG: f Beam Results Max. Span Deflection = Max. Positive Moment(l) = Max. Negative Moment(!)= Max. Positive Moment(2) = Max. Negative Moment(2) = -0.7757 11 (Span 16915":f (Span -2600511# (Span · 3738911# (Span -321811# (Spart Member Information 2, @ 1,@ 5,@ 2, @ 2, @ 81.0011) 26.25"} 0 .0011) 76 .5011) 180 .0011) Span L(in) I(in"4) S (in"3) E(psi) Reinf-I Reinf-E 1 26.250 8.398 2.522 1.0e+007 2 180.000 8.398 2.522 1.0e+007 5.681 2.9e+007 3 14.250 8.398 2.522 1.0e+007 4 12.000 9·_390 2.522 1.0e+007 5 138.250 8.398 2.522 1.0e+007 Distributed Load Information Span Wl(#/in) W2(#/in) Xl(in) X2 (in) 1 7.333 7.333 0-.000 26.250 2 7.333 7.333 0.000 180.000 3 . T.333 7.333 0.000 14.250 4 7.333 7.333 0.000 12.000 5 7.333 7.333 0.000 138.250 .Joints Free to Displace Free Joints -2 3 4 Support Reactions Joint Pounds 1 5 6 741 1659 319 T.f\t::: 11°,%''('i'Z,t/06i~y,,,,4= lotl,t,s ft'l.. ,', lNL. ::1 Z~fl pl y,z.,g i< ,.,, 'Ii} ~ 1-----.-. ""'i u_ - (J>iL, 5eARINCi) ~ Ww,? 2.4,ci p-of(42,'-to6z.b"}1i.ir.i::::: ~,1~~-#-/in Maximwn distributed load value ~ shown only, see distributed loa~ table for detailed information. \16 WESTFIELD THEATER Cbeam 2002 6/18/2014 10:53 File: JAMB A ~ ~'f~el.--A-Df>e1> ~VB"" fo f)~fiec,1101-l'S Span No. 1 O.OOL O.lOL 0.20L 0.30L 0.40L 0.501 0.601 0.701 0.80L 0.90L 1.00L Location 0.00 2.63 5.25 7.88 10.50 13.13 15.75 18.38 21.00 23.63 26.25 Shear 740.61 721.36 702.11 682.86 663.62 644.37 625.12 605.87 586.62 567.37 548.12 Moment 0.0 1918.8 3787.2 5604.9 7372.2 9088.9 10755.1 12370.8 13935.9 15450.5 16914.6 Defl. 0.0000 -0.0340 -0.0679 -0.1014 -'0.1345 -0.1670 -0.1987 -0.2296 -0.2594 -0.2881 -0.3155 Stress 0.0 760.8 1501.6 2222.4 2923.2 3603.9 4264.5 4905.2 5525.7 6126.3 6706.8 Span No. 2 < S-ree1-) 0.201 O.OOL 0.101 0.301 0.401 0.501 0.60L 0.70L 0.801 0.90L 1.00L Location 0.00 18.00 36.00 54.00 72.00 90.00 108.00 126.00 144.00 162.00 180.00 Shear '548.12 416.13 284.13 152.14 20.15 -111.85 -243.84 -375.84 -507.83 -639.82 -771.82 Moment 16914.6 25592.9 31895.2 35821.6 37372.2 36546.9 33345.6 27768.5 19815.5 9486.6 -3218.2 Defl. -0.3155 -0.4860 -0.6233 -0.7194 -0.7690 -0.7703 -0.7242 -0.6349 -0.5097 -0.3589 -0.1960 Stress 6706.8 10147.8 12646.8 14203.7 14818.5 14491.2 13221.9 11010.5 7857.1 3761.5 -1276.0 Span No. 3 O.OOL O.lOL 0.20L 0.30L 0.40L 0.501 0.60L 0.701 · 0.801 0.901 1.001 Location 0.00 1.43 2.85 4.27 5.70 7.13 8.55 9.97 11.40 12.83 14.25 Shear -771.82 -782.27 -792.72 -803.17 -813.62 -824.07 -834.52 -844.97 -855.42 -865.86 -876.31 Moment -3218.2 -4325.5 -5447.7 -6584.7 -7736. 7 -8903.5 -10085.3 -11281.9 -12493.4 -13719.8 -14961.1 Defl. -0.1960 -0.1831 -0.1703 -0.1576 -0.1451 -0.1328 -0.1207 -0.1088 -0.0972 -0.0859 -0.0749 Stress -1276.0 -1715.1 -2160.1 -2610.9 -3067.7 -3530.3 -3998.9 -4473.4 -4953.8 -5440.1 -5932.3 Span No. 4 ( 'f> ~l,.lG-~) O.OOL O.lOL 0.20L 0.301 0.40L 0.501 0.601 0.701 0.80L 0.901 1.00L Location 0.00 1.20 2.40 3.60 4.80 6.00 7.20 8.40 9.60 10.80 12.00 Shear -876.31 -885.11 -893.91 -902.71 -911.51 -920.31 -929.11 -937.91 -946.71 -955.51 -964 .31 Moment -14961.1 -16018.0 -17085.4 -18163.4 -19251.9 -20351.0 -21460.7 -22580.9 -23711. 7 -24853.0 -26004.9 Defl. -0.0749 -0.0660 -0.0573 -0.0489 -0.0408 -0.0331 -0.0257 -0.0187 -0.0120 -0.0058 0.0000 Stress -5932.3 -6351.3 -6774.6 -7202.0 -7633.6 -8069.4 -8509.4 -8953.6 -9401.9 -9854.5 -10311.2 Span No. 5 O.OOL O.lOL 0.201 0.30L 0.40L 0.501 0.60L 0.701 0.80L 0.90L 1.001 Location 0.00 13.83 27.65 41.48 55.30 69.13 82.95 96.77 110.60 124.43 138.25 Shear 694.99 593.62 492.24 390.86 289.48 188.10 86.72 -14.66 -116.04 -217 .41 -318.79 Moment -26004.9 -17097.4 -9591.4 -3487.0 1215.8 4517 .1 6416.8 6914.9 6011.5 3706.5 0.0 Defl. 0.0000 0.0383 0.0374 0.0144 -0.0168 -0.0454 -0.0641 -0.0684 -0.0573 -0.0327 0.0000 Stress -10311.2 -6779.3 -3803.1 -1382.6 482.1 1791.1 2544.3 2741.8 2383.6 1469.7 0,0 l -< I 4b'Zo ri• C \¾fls) ;,o'f./ For questions on Cbeam, a Windows-based program, contact: Architectural Wall Systems, Inc. at Ph-(972) 552-9336 Fax-(972) 552-9608 E:!nail: software@arcwallsys.com BY: -' D.W.W. DATE: 6/17/14 SUBJECT WESTJ=IELD THEATER SHEET NO. 18 CHKD. BY: ___ DATE: CENTEX GLAZING JOB NO. 14157 --------------- TUBULAR TYPE JAMBS w/ REINFORCING STEEL -STRESS CHECK WHERE STEEL OCCURS : ALUMINUM DESIGN MANUAL-TABLE 2-23 PER SPEC. 3.4.14 -La Sc I ly = ALLOWABLE Fa PER SPEC. 3.4.11 = 217.6 14620 20.5 15152 < 2380, Thus Fb = 16.7 -0.141 x ( Lb Sc/ ly)A0.5 PSI PER SPEC. 3.4.16 -b It= 107.75 0.1 -- 2.05 1.395 2.817 · < 24, Thus Fb = 15152 psi PSI IN. IN. IN. IN.4 IN.3 ALLOWABLE Fa PER SPEC. 3.4.11 = UNBRACED LENGTH = La = TYPICAL WALL THICKNESS = t = MULLION WIDTH = b = MOMENT OF !NERITA (WEAK AXIS) = ly = SECTION MODULUS (WEAK AXIS) = Sc = MODULE= ALLOWABLE BENDiNG STRESS (Fb) = 42.40625 IN. WIND LOAD = 24.9 PSF 14620 PSI. STEEL (Fb) = 21557 PSI MAXIMUM POSTIVE MOMENT= 37389.0 IN-LBS (PG. 17A) PIECE MATERIAL DIE I s IIN NO. ALU=1 STL=2 NO. IN.4 IN.3 ALU. 1 1 OPG"'1910 8.398 2.522 8.398 2 2 1 7/8x4 5/8x1/4 A36 CHNL 5.681 2.457 16.475 3 2 (fC,1~1') 0.000 0.000 0.000 4 2 0.000 0.000 0.000 5 2 0.000 0.000 0.000 6 2 0.000 0.000 0.000 I TOTAL= 24.873 PIECE NO. 1 Fb= (M x IALu)/(S x I TOTAU = 5006 _ PSI. < 14620 2 Fb= 10079 PSI. < 21557 3 Fb= 0 PSI. < 21557 4 Fb= 0 PSI. < 21557 5 Fb= 0 PSI. < 21557 6 fb= 0 PSI. < 21557 OPG-1910 & 1 7/8x4 5/8x1/4 A36 CHNL SCREWS TO STEEL REINFORCING: T/ SCREW FOR# 10 SCREWS @ 12 II O.C, = 24.9 (1 I) (3,5 I) (16.4749) = 58# 24:873 PG. A1: TALLOW·= 518 ( 0:0943·3 ) 518 # -(TO 1/4" STL) 0.09433 518# > 58# O.K. ==)> OPG-1910 JAMBS W/ 17/8"x45/8"x 1/4" A36 STEEL CHANNEL REINFORCING AS SHOWN ON PG.17A W/ (2)-#10 SCREW 3" FROM ENDS OF STEEL & (1)@12" O,C. IN BETWEEN@ LOCATIONS_ LISTED@ THE TOP OF PG. 17A-O.K. --s-eE p4~t9 Fc./Z.-~'feet.. C.Hf\NNBL-f{.G/Nf'ok.lNCt -Dit,. ___. OK OK OK OK OK OK OK \ ~,, .X 'i 3/,t X 1/i_/1 /\ob '61BtL. Ct\AiNN~L 12-~INfoRC.lN~ Area: Perimeter: · Bounding box: Centroid: Moments of inertia: Product of inertia: Radii of gyration: REGIONS Principal moments (sq in sq in) and X-Y directions about centroid: ---------- 1.91510 sq in 15.82080 in X: -0.52458 --1.35042 in Y: -2.31250 --2.31250 in X: 0.00000 in Y: 0.00000 in 3 X: 5.68090 sq in sq in ~.x= '2,~51111 Y: 0.59291 sq in sq in XY: 0.00000 sq in sq in X: 1.72232 in Y: 0.55642 in I: 5.68090 along [1.00000 0.00000) J: 0.59291 along [0.00000 1.00000] ,. WESTFIELD THEATER Cbeam 2002 6/18/2014 10:21 File: MULLION AA +MULLION: ELEV.-C/E.2 By: D.W.W. DETAIL-2/D.5) ~/Dr6l ?..c/rt;,5 Per,.. csc iAlU:. iboq,~, r-wre:f Beam Results Max. Span Deflection = -1.147911 (Span 2r @ 85.5011) Max. Positive Moment(!)= 25283"# (Span 1, @ 20.2511) Max. Negative Moment(l) = -33642 11# (Span 7, @ 0 .0011) Max. Positive Moment(2) == 69287n# (Span 2, @ 81.00 11) Max. Negative Moment(2) = -105411# (Span 2r @ 180.0011 ) Max. Negative Moment(3) = -5345211§ (Span Sr @ 12.0011 ) Member Information Span L(in) I (in"4) s (in:'3) E(psi) Reinf-I Reinf-E 1 20.250 7.362 2.863 1.0e+007 2 180.000 7.362 2.863 1.0e+007 8.000 2.9e+007 3 12.250 7.362 2.863 1.0e+007 4 8.000 7.362 2.863 1.0e+007 3.355 2.9e+007 5 12.000 7.362 2.863 1.0e+007 3.355 2.9e+007 6 16.000 7.362 2.863 1.0e+007 3.355 2.9e+001 7 122.250 7.362 2.863 1.0e+007 Distributed Load Information Span Wl(#/in) W2(#/in) Xl(in) X2 (in) 1 13.931 13.931 0.000 20.250 2 13.931 13.931 0.000 180.000 3 13.931 13.931 0.000 12.250 4 13.931 13.931 0.000 8.000 5 13.931 13.931 0.000 12.000 6 13.931' 13.931 0.000 16.000 7 13.931 13.931 0.000 122.250 Joints Free to Displace Free Joints -2 3 4 5 7 Support Reactions Joint Pounds T,f\,= n1o,¾'1(10,%i15'~fi4q .:::. 1-01,'-ti.ft t. ~ =Si ""'11------g:: et)4-Jciu. Mt1Lt..lON ::: ~ ~ ~ ~· ~ ~ 1 1390 :, IA) L= 1-q, 'l P"-\ 6 3199 ~..___---~8~-S=/-'=:'---1-~ (t>,I.., BEARIN4) ~ Maximum distributed load value ;; 8 576 Ww1..::: iq,c, (-so,~6tt){4q :: \"3,~~, -#Im shown only, see distributed load-1 table for detailed information.~ '20B WESTFIELD THEATER Cheam 2002 6/18/2014 10:21 File: MULLION A2\. * s1ea At>o~I) l)VE' To S'W,t%$ i f)5f1.,.afiot-l Span No. 1 O.OOL 0.lOL 0.20L 0.301 0.401 0.501 0.601 0.701 0.801 0.901 1.001 Location o.oo 2.02 4.05 6.08 8.10 10.13 12.15 14.17 16.20 18.23 20.25 Shear 1389.58 1361.37 1333.16 1304 •. 95 1276.73 1248.52 1220.31 1192.10 1163.89 1135.68 1107.47 Moment -0.0 2785.3 5513.5 8184.6 10798.6 i3355.4 15855.1 18297.7 20683.1 23011.4 25282.6 Defl. 0.0000 ,-0.0394 -0.0787 -0.1176 -0.1561 -0.1940 -0.2312 -0.2674 -0.3027 -0.3368 -0.3696 Stress -0.0 972.9 1925.8 2858.8 3771.8 4664·.8 5537.9 6391.1 7224.3 8037.5 8830.8 Span No. 2 ( 'o!i~Y 0. OL 0.101 0.201 0.301 0.40L 0.501 0.60L 0.70L 0.801 0.901 1.00L Location 0.00 18.00 36.00 54.00 72.00 90.00 108.00 126.00 144.00 162.00 180.00 Shear 1107.47 856.72 605.96 355.20 104.44 -146.32 -397.07 -647.83 -898.59 -1149.35 -1400.11 Moment 25282.6 42960.3 56124.4 64774.8 68911.5 68534.7 63644.1 54240.0 40322.2 21890.7 -1054.4 Defl. -0.3696 -0.6385 -0.8622 -1.0269 -1.1233 -1.1470 -1.0984 -0.9828 -0.8101 -0.5951 -0.3572 Stress 8830.8 15005.4 19603.3 22624.8 24069.7 23938.1 22229.9 18945.2 14083.9 7646.1 -368.3 Span No. 3 0.001 O.lOL 0.201 0.30L 0.40L 0.50L 0.601 0.701 0.801 0.901 1.001 Location 0.00 1.23 2.45 3.67 4.90 6.13 7.35 8.57 9.80 11.03 12.25 Shear -1400.11 -1417.17 -1434.24 -1451.30 -1468.37 -1485.43 -1502.50 -1519.57 -1536.63 -1553.70 -1570.76 Moment -1054.4 -2780.0 -4526.5 -6293.9 -8082.1 -9891.4 -11721.5 -13572.5 -15444.4 -17337.2 -19251.0 Defl. -0.3572 -0.3408 -0.3244 -0.3081 -0.2920 -0.2760 -0.2602 -0.2447 -0.2294 -0.2145 -0.1999 St~ess -368.3 -971.0 -1581.0 -2198.3 -2823.0 -3454.9 -4094.1 -4740.6 -5394.5 -6055.6 -6724.0 Span No. 4 ( ire~L-) 0.00L O.lOL 0.201 0.301 0.40L 0.501 0.601 0.701 0.801 0.901 1.001 Location 0.00 0.80 1.60 2.40 3.20 4.00 4.80 5.60 6.40 7.20 8.00 Shear -1570.76 -1581. 91 -1593.05 -1604.20 -1615.34 -1626.49 -1637.63 -1648.78 -1659.92 -1671.06 -1682.21 Moment -19251.0 -20512.0 -21782.0 -23060.9 -24348.7 -25645.4 -26951.1 -28265. 7 -29589.1 -30921.5 -32262.8 Defl. -0.1999 ..:0.1905 -0.1812 -0.1720 -0.1629 -0.1538 -0.1449 -0.1361 -0.1273 -0.1187 -0.1102 Stress -6724.0 -7164.5 -7608.1 -8054.8 -8504.6 -8957.5 -9413.6 -9872.7 -10335.0 -10800.4 -11268.9 Span No. 5 ('5-rea) (~Pl,\c6) O.OOL 0.101 0.201 0.301 0.40L 0.50L 0.601 0.701 0.801 0.901 1.001 Location 0.00 1.20 2.40 3.60 4.80 6.00 7.20 8.40 9.60 10.80 12.00 Shear -1682.21 -1698.93 -1715.64 -1732.36 -1749.08 -1765.80 -1782.51 -1799.23 -1815.95 -1832.66 -1849.38 Moment -32262.8 -34291.5 -36340.3 -38409.1 -40497.9 -42606.9 -44735.8 -46884.9 -49054.0 -51243.2 -53452.4 Defl. -0.1102 -0.0977 -0.0854 -0.0735 -0.0619 -0.0506 -0.0397 -0.0292 -0.0190 -0.0093 0.0000 Stress -11268.9 -11977.5 -12693.1 -13415.7 -14145.3 -14881.9 -15625.5 -16376.1 -17133.8 -17898.4 -18670.1 Span No. 6 ( M'8£L-) O.OOL 0.101 0.20L 0.30L 0.40L 0.501 0.601 0.701 0.801 0.901 1.00L Location 0.00 1.60 3.20 4.80 6.40 8.00 9.60 11.20 12.80 14.40 16.00 Shear 1349.62 1327.33 1305.04 1282.75 1260.46 1238.17 1215.88 1193.59 1171.30 1149.01 1126.72 Moment -53452.4 -51310.8 -49204.9 -47134.7 -45100.1 -43101.2 -41138.0 -39210.4 -37318.5 -35462.3 -33641.7 Defl. 0.0000 0.0117 0.0226 0.0328 0.0423 0.0511 0.0593 0.0669 0.0738 0.0802 0.0861 Stress -18670.1 -17922.0 -17186.5 -16463.4 -15752.8 -15054.6 -14368.8 -13695.6 -13034.8 -12386.4 -11750.5 Span No. 7 0.001 0.101 0.201 0.301 0.401 0.501 0.601 0.701 0.801 0.901 1.001 Location 0.00 12.23 24.45 36.67 48.90 61.13 73.35 85.57 97.80 110.03 122.25 Shear 1126.72 956.41 786.11 615.80 445.49 275.19 104.88 -65.43 -235.73 -406.04 -576.34 Moment -33641. 7 -20908.5 -10257 .4 -1688.2 4798.9 9204.1 11527 .3 11768.5 9927.6 6004.8 0.0 Defl. 0.0861 0.0994 0.0698 0.0191 -0.0353 -0.0804 -0.1072 -0.1109 -0.0911 -0.0515 0,0000 Stress -11750.5 -7303.0 -3582.7 -589.7 1676.2 3214.8 4026.3 4110.5 3467.6 2097.4 0.0 l c. v-tbtoyi, © ....... 09"11\tJUE.t o N N ex-r ~ Aae (~Ci.,-zl) BY: l D.W.W. DATE: 6/18/14 CHKD. BY: __ ...,.DATE: SUBJECT WESTFIELD THEATER SHEET NO. CENTEX GLAZING JOB NO. ---------------- 21A 14157 TUBULAR TYPE MULLIONS w/ REINFORCING STEEL -STRESS CHECK WHERE-STEEL OCCURS : ALUMINUM DESIGN MANUAL -TABLE 2-23 PER SPEC. 3.4.14 -Ls Sc I ly = ALLOWABLE F8 PER SPEC. 3.4.11 = 219.0 14613 20.5 15152 < 2380, Thus Fb = 16.7 -0.141 x ( Lb Sc/ ly)"0.5 PSI PER SPEC. 3.4.16-· bit= ALLOWABLE F8 PER SPEC. 3.4.11 = UNBRACED LENGTH = Ls = TYPICAL WALL THICKNESS = t = MULLION WIDTH = b = MOMENT OF I NERITA (WEAK AXIS)= ly = 107.75 0.1 2.05 ' ' 1,454 2.955 < 24, Thus Fb = 15152 psi PSI IN. IN. IN. IN.4 IN.3 SECTION MODULUS (MAXIMUM) = Sc = MODULE= ALLOWABLE BENDING STRESS (Fb) = 80.5625 IN. WIND LOAD = 24.9 PSF 14613 PSI. STEEL (Fb) = 21557 PSI MAXIMUM POSTIVE MOMENT= 69287.0 IN-LBS (PG. 20A) PIECE MATERIAL DIE I s I IN NO. ALU=1 STL=2 NO. IN.4 IN.3 ALU. 1 1 OPG-1926 7.362 2.863 7.362 2 2 1 1/2"x 4" A36 STL BAR 8.000 4.000 23.200 3 2 0.000 0.000 0.000 4 2 0.000 0.000 0.000 5 2 0.000 0.000 0.000 6 2 0.000 0.000 0.000 I TOTAL= 30.562 PIECE NO. 1 Fb= (M x IAw)/(S x I TOTAU = 5830 PSI. < 14613 2 Fb= 13149 PSI. < 21557 3 Fb= 0 PSI. < 21557 4 Fb= 0 PSI. < 21557 5 Fb= 0 PSI. < 21557 6 Fb= 0 PSI. < 21557 OPG-1926 & 1 1/2"x 4" A36 STL BAR SCREWS TO STEEL REINFORCING: T/ SCREW FOR# 10 SCREWS @ 12 II 0.C.: 24.9 (1 ') (6.7 ') (23.2) = 127# 30.562 PG. A1: TALLOW·= 518 ( 0.09433 ) 518 # = (TO 114" STL) 0.09433 518# > 127# O.K. ==)> OPG-1926 MULLIONS W/ 11/2"x 4" A36 STEEL BAR REINFORCING AS SHOWN ON PG. 20A W/ (2) -#10 SCREW 3" F-ROM ENDS OF STEEL & (1)@ 12" O.C. IN · BETWEEN @ LOCATIONS LISTED @ THE TOP OF PG. 20A -O.K. OK OK OK OK OK OK OK BY: 1 D.W.W. DATE: 6/18/14 CHKD. BY: ___ DATE: SUBJECT WESTFIELD THEATER CENTEX GLAZING SHEET NO. JOB NO. 21B 14157 TUBULAR TYPE MULLIONS w/ REINFORCING STEEL -STRESS CHECK WHERE STEEL OCCURS : ALUMINUM DESI.GN MANUAL -TABLE 2-23 PE~ SPEC. 3.4.14 -Ls Sc I ly = ALLOWABLE F8 PER SPEC. 3.4.11 = 219.0 14613 20.5 15152 < 2380, Thus Fb = 16.7 -0.141 x ( Lb Sc/ ly)AO.t PSI PER SPEC. 3.4.16 -b / t = 107.75 0.1 2.05 1.454 2.955 < 24, Thus Fb = 15152 psi PSI IN. IN. IN. IN.4 IN.3 ALLOWABLE F8 PER SPEC. 3.4.11 = UNBRACED LENGTH = Ls = TYPICAL WALL THICKNESS = t = MULLION WIDTH = b = MOME_NT OF !NERITA (WEAK AXIS)= ly = SECTION MODULUS (MAXIMUM) = Sc= MODULE= ALLOWABLE BENDING STRESS (Fb) = 80.5625 IN. WIND LOAD = 24.9 PSF 14613 PSI. STEEL (Fb) ·= 21557 PSI MAXIMUM POSTIVE MOMENT= 53452.4 IN-LBS (PG. 20B) PIECE MATERIAL DIE I s NO. ALU=1 STL=2 NO. IN.4 IN.3 1 1 OPG-1926 7.362 2.863 2 2 2-15/16"x 41/4"X10GA. 3.355 1.579 3 2 SPLICE 0.000 0.000 4 2 Cv4.-u-) 0.000 0.000 5 2 0.000 0.000 6 2 0.000 0.000 I TOTAL= PIECE NO. 1 Fb= (M x IALu)/(S x I TOTAU = 8042 PSI. < 2 Fb= 19271 PSI. < 3 Fb= 0 PSI. < 4 Fb= 0 PSI. < 5 Fb= 0 PSI. < 6 Fb= 0 PSI. < OPG-1926 & 2-15/16"x 41/4"X10GA. SCREWS TO STEEL REINFORCING: T/ SCREW-FOR# 10 SCREWS @ 12 "O.C. = 24.9 (1 ') (6.7 ') (9.7295) = PG. A1: TALLOW-= (TO 1/4" STL) 518 ( 0.09433 ) 0.09433. 17.092 = 518 # IIN ALU. 7.362 9.730 0.000 0.000 0.000 0.000 17.092 14613 21557 21557 21557 21557 21557 95# 518 # > 95# O.K. ==)• OPG-1926 MULLIONS W/ (2)-15/16"x 41/4"x 10GA. A36 STEEL CHANNEL SPLICE SLEEVE REINFORCING AS SHOWN ON PG. 20A W/ (2) -#10 SCREW 3" FROM ENDS OF STEEL & (1)@12" O.C. IN BETWEEN@LOCATIONS LISTED@THE TOP OF PG. 20A -O.K. OK OK OK OK OK OK OK ~ Pi-.ia c\,\/\f\JNEL-2 (ot-1~ ~\~(;;) ---------REGIONS Area: Perimeter: Bounding box: Centroid: Moments of inertia: Product of inertia: Radii of gyration: Principal moments (sq in sq in) and, X-Y directions about centroid: 0.76544 sq in 11.65094 in X: -0.20072 --0. 73678 in Y: -2.12500 --2.12500 in X: 0.00000 in Y: 0.00000 in X: 1.67766 sq in sq in Sx == ~, 'H C\ ill' Y: 0.04629 sq in sq in XY: 0.00000 sq in sq in X: 1.48046 in Y: 0.24592 in I: 0.04629 along [0.00000 -1.00000] J: 1.67766 along [ 1.00000 0.00000] WESTFIELD THEATER Cbeam 2002 6/18/2014 11.: 02 FiJ.e: MULLION B ~ CORNER MULLION: ELEV.-C/E.2, D/E.3 By: D.W.W. DETAIL-3 /D. 5 1 2MP,S ~1;12,_ C.0e, TA-it£ iwtt,; NC1fcf 1 ,----,-~---------------'--~ ~or., ::: {),f."=t-1·11 ~'ZY-\°? @ Beam Results Max. Span Deflection = Max. Positive Moment(l) = Max. Negative Moment(l) = Max. Positive Momant(2) = Max. Negative Moment(2) = -0.9672n (Span 2,@ 21090nf (Span 1,@ -32424 11# (Span 5, @ 46617i1# (Span 2, @ -401311# (Span 2, @ 81.00 11) 26,25H) 0 .0011) 76.5011) 180,00R) Member Information Span L(in) I(in,..4) S (in,..3) E(psi) Reinf,..I Reinf-E 1 ' 26.250 8.398 2.522 1.0e+007 2 180.000 8.398 2.522 1.0e+007 5.681 2.9e+007 3 14.250 8.398 2.522 1.0e+007 4 12.000 8.398 2.522 1.0e+007 5 138.250 8.398 2.522 1.0e+007 Distributed Load Information Span Wl(~/in) W2(#/in) Xl(in) X2(in) 1 9.143 9.143 0.000 26.250 2 9.143 9.143 0.000 180.000 3 9.143 9.143 0.000 14.250 4 9.143 9.143 0.000 12.000 5 9.143 9.143 0.000 138.250 Joints Free to Displace . Free Joip.ts -2 3 4 Support Reactions Joint Pounds 1 923 5 2069 6 397 T,1\.-= 'r>to,%lt(q~~111i.i~ e.0 ~~~0/il-ll{:: rnG,l'1 +t1,. ;,, NL.? 1~,C\ f6¾ wt\)L-= 'lYl'if~f-(1i.ta·ilZ.\S1~ lDS'f'6°fi~q = q, Pt o -fl:AVI ""'I ~ LL _ (b,Li BEfrWtJ4) ~ Maximum distributed load value !':I shown only, see distributed loa~ table for detailed information. ., WESTFIELD THEATER 1-~6 Cbeam 2002 6/18/2014 11:02 File: MULLION B ~ '51e5L. l\t)OBD DV6 TD S-rflt'o~ & Ol;.fi.e-c-noJ Span No. 1 O.OOL O.lOL 0.20L 0.30L 0.40L 0.50L 0.60L 0.701 0.801 0.90L 1.00L Location 0.00 2.63 5.25 7.88 10.50 13.13 15.75 18.38 21.00 23.63 26.25 Shear 923.42 899.42 875.42 851.42 827.42 803.42 779.41 755.41 731.41 707.41 683.41 Moment -0.0 2392.5 4721.9 6988.4 9191.9 11332.3 13409.8 15424.3 17375. 7 19264.2 21089.7 Defl. 0.0000 -0.0424 -0.0846 -0.1264 -0.1677 -0.2082 -0.2478 -0.2862 -0.3234 -0 .3592 -0.3934 Stress -0.0 948.6 1872.3 2771.0 3644.7 4493.4 5317.1 6115.9 6889.7 7638.5 8362.3 Span No. 2 ( S-reeL) O.OOL O.lOL 0.201 0.30L 0.40L 0.50L 0.60L 0.70L 0.80L 0.90L 1.00L Location 0.00 18.00 36.00 54.00 72.00 90.00 108.00 126.00 144.00 162 .00 180.00 Shear 683.41 518.84 354.27 189.69 25.12 · -139.46 -304.03 -468.60 -633.18 -797.75 -962.33 Moment 21089.7 31909.9 39767.9 44663.5 46596.8 45567.7 41576.3 34622.6 24706.6 11828.2 -4012.5 Defl. -0.3934 -0.6059 -0.7772 -0.8969 -0.9589. -0.9604 -0.9029 -0.7916 -0.6354 -0.4475 -0.2444 Stress 8362.3 12652.6 15768.4 17709.5 18476.1 18068.1 16485.5 13728.2 9796.4 4690.0 -1591.0 Span No. 3 O.OOL O.lOL 0.20L 0.30L 0.40L 0.50L 0.60L 0.70L 0.80L 0.90L 1.00L Location 0.00 1.43 2.85 4·.27 5.70 7.13 8.55 9.97 11.40 12.83 14.25 Shear -962.33 -975.36 -988.38 -1001.41 -1014.44 -1027.47 -1040.50 -1053.53 -1066.56 -1079.59 -1092.61 Moment -4012.5 -5393.1 -6792.3 -8210.0 -9646.3 -11101.2 -12574.6 -14066.6 -15577.2 -17106.3 -18654.0 Defl. .;0.2444 -0.2283 -0.2123 -0.1965 -0.1809 -0.1656 -0.1505 -0.1357 -0.1212 -0.1071 -0.0934 Stress -1591.0 -2138.4 -2693.2 -3255.4 -3824.9 -4401. 7 -4986.0 -5577.6 -6176.5 -6782.8 -7396.5 Span No. 4 (1iPL-lc~) O.OOL O.lOL 0.201 0.301 0.401 0.501 0.60L 0.701 0.80L 0.90L 1.00L Location 0.00 1.20 2.40 3.60 4.80 6.00 7.20 8.40 9.60 10.80 12.00 Shear -1092.61 -1103.59 -1114.56 -1125.53 -1136.50 -1147.47 -1158.44 -1169.42 -1180.39 -1191.36 -1202.33 Moment -18654.0 -19971. 7 -21302.6 -22646. 7 -24003.9 -25374.3 -26757.8 -28154.5 -29564.4 -30987.5 -32423.7 Defl. -0.0934 -0.0823 -0.0715 -0.0610 -0.0509 -0.0413 -0.0321 -0.0233 -0.0150 -0.0072 0.0000 Stress -7396.5 -7919.0 -8446.7 -8979.6 -9517.8 -10061.2 -10609.8 -11163.6 -11722.6 -12286.9 -12856.3 Span No. 5 O.OOL O.lOL 0.201 0.30L 0 •. 40L 0.50L 0.60L 0.70L 0.80L 0.90L 1.00L Location 0.00 13.83 27.65 41.48 55.30 69.13 82.95 96.77 110.60 124.43 138.25 Shear 866.54 740 j4 613.74 487.33 360.93 234.53 108.13 -18.27 -144.68 -271.08 -397.48 Moment -32423.7 -21317 .5 -11958.9 -4347.7 1515.9 5632.0 8000.6 8621. 7 7495.3 4621.4 0.0 Defl. 0.0000 0.0477 0.0466 0.0180 -0.0209 -0.0567 -0.0799 -0.0853 -0.0714 -0.0408 0.0000 Stress -12856.3 -8452.6 -4741.8 -1723.9 601.1 2233.2 3172.3 3418.6 2972.0 1832.4 0.0 L ~ it.tG>zo rs\ I\U,Or»A~t.E (-p4.1-l-f) /,ov,.I For questions on Cbeam, a Windows-based program, contact: Architectural Wall Systems, Inc. at Ph-(972) 552-9336 Fax-(972) 552-9608 Email: software@arcwallsys.com BY:, D.W.W. DATE: 6/18/14 SUBJECT WESTFIELD THEATER SHEET NO. 24 CHKD. BY: . DATE: CENTEX GLAZING JOB NO. ------------14157 TUBULAR TYPE MULLIONS w/ REINFORCING STEEL -STRESS CHECK WHERE STEEL OCCURS : ALUMINUM DESIGN MANUAL -TABLE 2-23 PER SPEC. 3.4.14 -La Sc fly= ALLOWABLE F6 PER SPEC. 3.4.11 = 217.6 14620 20.5 15152 < 2380, Thus Fb = 16.7 -0.141 x ( Lb Sc/ ly)A0.5 PSI PER SPEC. 3.4.16 -b / t = ALLOWABLE F8 PER SPEC. 3.4.11 = UNBRACED LENGTH = La = TYPICAL WALL THICKNESS = t = MULLION WIDTH = b = MOMENT OF !NERITA (WEAK AXIS)= ly = 107.75 0.1 2.05 1.395 2.817 < 24, Thus Fb = 15152 psi PSI IN. IN. IN. IN.4 IN.3 SECTION MODULUS (MAXIMUM) = Sc = MODULE= ALLOWABLE BENDING STRESS (Fb) = 52.88 IN. WIND LOAD= 24.9 PSF 14620 PSI. STEEL (Fb) = 21557 PSI MAXIMUM POSTIVE MOMENT= 46617.0 IN-LBS (PG. 23A) PIECE MATERIAL DIE I s NO. ALU=1 STL=2 NO. IN.4 IN.3 1 1 OPG-1910 8.398 2.522 2 2 1 7/8x4 5/8x1/4 A36 CHNL 5.681 2.457 3 2 l~1\'=I) 0.000 0.000 4 2 0.000 0.000 5 2 0.000 0.000 6 2 0.000 0.000 I TOTAL= PIECE NO. 1 Fb= (M x IALu)/(S x I TOTAU = 6241 PSI. < 2 Fb= 12567 PSI. < 3 Fb= 0 PSI. < 4 Fb= 0 PSI. < 5 Fb= 0 PSI. < 6 Fb= 0 PSI. < OPG-1910 & 1 7/8x4 5/8x114 A36· CHNL SCREWS TO STEEL REINFORCING: Tl SCREW FOR# 10 SCREWS @ 12 11 O.C. = 24.9 (1 ') (4.4 ') (16.4749) = PG. A1: TALLOW·= (TO 1/4" STL) 518 ( 0.09433 ) 0.09433 24.873 = 518 # I IN ALU. 8.398 16.475 0.000 0.000 0.000 0.000 24.873 14620 21557 21557 21557 21557 21557 73# 518 # > 73# O.K. ==)> OPG-1910 CORNER MULLIONS W/ 17/S"x45/S"x 1/4" A36 STEEL CHANNEL REINF. AS SHOWN ON PG. 23A W/ (2) -#10 SCREW 3" FROM ENDS OF STEEL & (1)@ 12" O.C. IN BETWEEN@ LOCATIONS LISTED@ THE TOP OF PG. 23A -O.K. --u~ pq, I~ tofl. ~-reel,. C.1-11\NfJel.. ~}tvf, -t>~ OK OK OK OK OK OK OK ,,, WESTFIELD THEATER Cbeam 2002 6/18/2014 11:38 Fi1e: MULLION C cj(MOLLION: ELEV.-D/E.3 DETAIL-2/D.5 l 2.A./TJ,'j By: D.W.W. ~e~ c&c iA6U:-IGotf,v N0'\'6' I Beam Results Xorr :::: Dr%rt6'1 . J./%S 6iJ Max. Span Deflection = -1.2537 11 (Span 2, @ 72.00 1i) Max. Positive Moment(l) = 28402"# (Sp~ 1,@ 36.00 11) Max. Negative Moment(!)= -35796 11# (Span 5,@ 0.00 11) Max. Positive Moment(2) = 4818311# (Span 2, @ 64.8011) Member Infonnation Span L(in) I(inA4) S(inA3) E(psi) Reinf-I Reinf-E 7.362 2.863 ·1.0e+007 1 36.000 2 144.000 3 40.500 7.362 2.863 1.0e+007 4.625 2.9e+007 7 .362 2.863 1.0e+007 4 12.000 7.362 2.863 1.0e+007 5 138.250 7.362 2.863 1.0e+007 Distributed Load Infonnation Span Wl(#/in) W2(#/in) Xl(in) X2 (in) 1 9.597 9.597 0.000 36.000 2 9.597 9.597 0,000 144.000 3 9.597 9.597 0.000 40.500 4 9.597 9.597 0.000 12.000 5 9.597 9.597 0.000 138.250 Joints Free to Displace Free Joints -2 3 4 Support Reactions Joint Pounds 1 962 5 2192 6 404 Ttl\ "::: '310:t6't( t5S,'S'~ //~4,= iLtz, '8'1.fi-1. 1, WL== iih1pif. t>--\,i: Z.~tC, 9~f ()S,~11}1~4-== 'itS11'o/M 1-----~ ~I------ == t--.... ~1------ 0\ ""i LL.. (lJiL, BeAt<.l NC0 Maximum distributed load value shown only, see distributed load table for detailed infonnation. WESTFIELD THEATER 2.0B Cbeam 2002 6/18/2014 11:38 Fil.e: MULLION C Y;; ~@€1-/Ve() Et) ~ tJS 1o S~16 ~ O~fLGC-1tOtJ Span No. 1 0.00L 0.101 0.201 0.301 0.401 0.501 0.601 0.701 0.801 0.901 1.00L Location 0.00 3.60 7.20 10.80 14.40 18.00 21.60 25.20 28.80 32.40 36.00 Shear 961.69 927.14 892.59 858.04 823.49 788.95 754.40 719.85 685.30 650.75 616.20 Moment -0.0 3399.9 6675.4 9826.6 12853.3 15755.7 18533.8 21187.4 23716.7 26121.5 28402.0 Defl. 0.0000 -0.0789 -0.1572 -0.2343 -0.3097 -0.3828 -0.4532 -0.5203 -0.5837 -0 .6429 -0.6975 .Stress -0.0 1187.5 2331.6 3432.3 4489.5 5503.2 6473.5 7400.4 8283.8 9123.8 9920.4 Span No. 2 ~~,reet,) .OOL O.lOL 0.201 0.301 0.40L 0.501 0.601 0.701 0.80L 0.901 1.00L Location 0.00 14.40 28.80 43.20 57.60 72.00 86.40 100.80 115.20 129. 60 144.00 Shear 616.20 478.00 339.81 201.61 63.41 -74.78 -212.98 -351.18 -489.37 -627.57 -765.77 Moment 28402.0 36280.3 42168.5 46066.7 41914.9 47893.0 45821.1 41759.1 35707.1 27665.1 17633.1 Defl. -0.6975 -0.8906 -1.0476 -1.1628 -1.2321 -1.2537 -1.2277 -1.1561 -1.0429 -0.8943 -0.7183 Stress 9920.4 12672.1 14728.8 16090.4 16756.9 16728.3 16004.6 14585.8 12471.9 9663.0 6159.0 Span No. 3 O.OOL 0.lOL 0.20L 0.301 0.401 0.501 0.601 0.701 0.801 0.901 1.00L Location 0.00 4:05 8.10 12.15 16.20 20.25 24.30 28.35 32.40 36.45 40.50 Shear -765.77 -804.64 -843.50 -882.37 -921.24 -960.11 -998.98 -1037.84 -1076. 71 -1115.58 -1154.45 Moment 17633.1 14453.0 11115.5 7620.6 3968.3 158.6 -3808.6 -7933.1 -12215.1 -16654.5 -21251.3 Defl. -0.7183 -0.6639 -0.6064 -0.5464 -0.4847 -0.4221 -0.3594 -0.2977 -0.2377 -0.1804 -0 .1268 Stress 6159.0 5048.2 3882.5 2661.8 1386.1 55.4 -1330.3 -2770.9 -4266.5 -5817.1 -7422.7 Span No. 4 O.OOL 0.101 0.201 0.301 0.401 0.50L 0.601 0.70L 0.80L 0.90L 1.00L Location 0.00 1.20 2.40 3.60 4.80 6.00 7.20 8.40 9.60 10.80 12.00 Shear -1154.45 -1165.96 -1177 .48 -1189.00 -1200.51 -1212.03 -1223.55 -1235.06 -1246.58 -1258.09 -1269.61 Moment -21251.3 -22643.5 -24049.6 -25469.5 -26903.2 -28350.7 -29812.0 -31287.2 -32776.2 -34279.0 -35795.6 Defl. -0.1268 -0.1118 -0.0972 -0.0831 -0.0695 -0.0565 -0.0439 -0.0320 -0.0207 -0.0100 0.0000 Stress -7422.7 -7909.0 -8400.1 -8896.1 -9396.8 -9902.4 -10412.9 -10928.1 -11448.2 -11973.1 -12502.8 Span No. 5 O.OOL O.lOL 0.20L 0.301 0.401 0.501 0.601 0.70L 0.80L 0.901 1.00L Location 0.00 13.83 27.65 41.48 55.30 69.13 82.95 96.77 110.60 124.43 138.25 Shear 922.31 789.63 656.96 524.28 391.60 258.92 126.24 -6.44 -139.12 -271. 79 -404.47 Moment -35795.6 -23961.8 -1396~.3 -5797.0 534.0 5030.7 7693.1 8521.3 7515.1 4674.7 0.0 Defl. 0.0000 0.0702 0.0778 0.0488 0.0043 -0.0392 -0.0701 -0.0813 -0.0709 -0.0413 0.0000 Stress -12502.8 -8369.5 -4876.8 -2024.8 186.5 ,.1 2687.1 2976.3 2624.9 1632.8 0.0 \._ <. \Li'7\'?l r;'i A-t,1,Ml'i-'iQL-E. (f>et,U) t,ol'< For questions on Cheam, a Windows-based program, contact: Architectural Wall Systems, Inc. at Ph-(972) 552-9336 Fax-(972} 552-9608 Email: software@arcwallsys.com BY:' D.W.W. DATE: 6/18/14 CHKD. BY: ___ DATE: SUBJECT WESTFIELD THEATER CENTEX GLAZING SHEET NO. JOB NO. 26 14157 TUBULAR TYPE MULLIONS w/ REINFORCING STEEL -STRESS CHECK WHERE STEEL OCCURS : ALUMINUM DESIGN MANUAL -TABLE 2-23 PER SPEC. 3.4.14 -Ls Sc I ly = ALLOWABLE F8 PER SPEC. 3.4.11 = 219.0 14613 20.5 15152 < 2380, Thus Fb = 16.7 -0.141 x ( Lb Sc/ ly)A0.5 PSI PER SPEC. 3.4.16 -b / t = ALLOWABLE F8 PER SPEC. 3.4.11 = UNBRACED LENGTH = Ls = TYPICAL WALL THICKNESS = t = MULLION WIDTH = b = MOMENT OF I NERITA (WEAK AXIS)= ly = 107.75 0.1 2.05 1.454 2.955 < 24, Thus Fb = 15152 psi PSI IN. IN. IN. IN.4 IN.3 SECTION MODULUS (MAXIMUM) = Sc = MODULE= ALLOWABLE BENDING STRESS (Fb) = 55.5 IN. WIND LOAD = 24.9 PSF 14613 PSI. STEEL (Fb) = 21557 PSI MAXIMUM POSTIVE MOMENT= 48183.0 IN-LBS (PG. 25A) PIECE MATERIAL DIE I s NO. ALU=1 STL=2 NO. IN.4 IN.3 1 1 OPG-1926 7.362 2.863 2 2 1 7/8"x 4 1/4"x 1/4"CHNL 4.625 2.176 3 2 (?4,t,) 0.000 0.000 4 2 0.000 0.000 5 2 0.000 0.000 6 2 0.000 0.000 I TOTAL= PIECE NO. 1 Fb= (M x IALu)/(S x I TOTAU = 5964 PSI. < 2 Fb= 14296 PSI. < 3 Fb= () PSI.. < 4 Fb= 0 PSI. < 5 Fb= 0 PSI. < 6 Fb= 0 PSI. < OPG-1926 & 1 7/S"x 4 1/4"x 1/4"CHNL SCREWS TO STEEL REINFORCING: Tl SCREW FOR# 10 SCREWS @ 12 II O,C, = 24.9 (1 I) (4.6 I) (13.4125) = PG. A1: TALLOW·= (TO 1/4" STL) 518 ( 0.09433 ) 0.09433 20.775 = 518 # IIN ALU. 7.362 13.413 0.000 0.000 0.000 0.000 20.775 14613 21557 21557 21557 21557 21557 74# 518 # > 74# O.K. ==)> OPG-1926 MULLIONS W/ 1 7/S"x 41/4"x 1/4" A36 STEEL CHANNEL REINFORCING AS SHOWN ON PG. 25A W/ (2) -#10 SCREW 3" FROM ENDS OF STEEL & (1)@ 12" O.C. IN BETWEEN @ LC>CATIONS LISTED @ THE TOP OF PG. 25A -O.K. OK OK OK OK OK OK OK f'1!./ X '"' y~II X 'lv,11 ~'?,(; ~1tl;l. C~~NfJ~L ~i;:Jf'l'fof.clJ\ki REGIONS Area: Perimeter: Bounding box: Centroid: Moments of inertia: Product of inertia: Radii of .gyration: Principal moments (sq in sq in) and X-Y directions about centroid: 1.82135 sq in 15.07080 in X: -0.54515 --1.32985 in Y: -2.12500 --2.12500 in X: 0.00000 in Y: 0.00000 in X: 4.62462 sq in sq in Sx = 1t 11, in3 Y: 0.57669 sq in sq in XY: 0.00000 sq in sq in X: 1.59346 in Y: 0.56270 in I: 0.57669 along [0.00000 -1.00000] J: 4.62462 along [1.00000 0.00000] WESTFIELD THEATER Cheam 2002 6/18/2014 11:56 Fi1e: MULLION D 'J-f!rtWSI ~MULL:fON: ELEV.-D/E.3 DETAIL-2/D.f:t 11/f;Ji{,,, B-y: o.w.w. Beam Resui ts Max. Span Deflection = Max. ·Positive Moment(l) = Max. Negative Moment(l) = Max. Positive Moment(2) = ·Max. Positive Moment(3) = Max. Negative Moment(3) = -0.5142" (Span 2, @ 17570"! (Span 1,@ -7289"# (Span 3,@ 23413u# (Span 2,@ 1626311# (Span 6, @ -26425tt# (Span 5,@ 51.00 11 ) 48.0011 ) 37.7511 ) 48 .00") 86.41 ") 12.0011) Member Information Span L(in) I(in"4) S(in"3) E(psi) Reinf-I Reinf-E 1 48.000 8.398 2.522 1.0et007 2 120.000 8.398 2.522 1.0e+007 5.681 2·.9e+007 3 37.750 8.398 2.522 1.0e+007 4 14.750 6.016 2.124 1.0e+007 5 12.000 6.016 2.124 1.0e+007 6 138.250 6.016 2.124 1.0e+007 Distributed Load Information Span Wl(#/in) W2(#/in) Xl(in) X2(in) 1 5.090 5.090 0.000 48.000 2 5.090 5.090 0.000 120.000 ·3 5.090 5.090 0.000 37.750 4 11.685 11.685 0.000 14.750 5 11.685 11.685 0.000 12.000 6 11.685 11.685 0.000 138.250 Joints Free to Displace Free Joints -2 3 4 5 ~ ::91-----t::. ~1---..-.iri \Q ~1...--,.....-..~ Support Reactions Joint Pounds Tv4V= 1-o?, r5( -1ci,~'5%~t1~~(618r~1isi~ ,~~ 1 488 = H1.~{l 6 1870 7 617 .', Wt..== 1l-l ,<l f* (:)Pl"d91o J/.\-tvi0/ ~UU,.\,'ON --.;-------- 1>.)WL,= 1-<,t.,9(1,q,'-1~15~J~Lf =S',o,o./}/~imwn distributed :oad value Ww1-i= 1~.9 (&'7,'o1~i~ij)li~~ ~~: 1~~Y de~:1:s1~~=t~~~d ,:: II, €.%<i> 11/,,, Of4.-¥i/o fJJ I TIJIJ4'£, ~t;:IW)l/Gl) WESTFIELD THEATER 2~6 Cbeam 2002 6/18/2014 11:56 File: MULLION D f ~1e£L A-'olJe~ Dv5 TD t)1:;fL£c.1lV NS Span No. 1 0.40L O.OOL O.lOL 0.20L 0.30L 0.50L 0.601 0.701 0.801 0.901 1.00L Location 0.00 4.80 9.60 14.40 19.20 24.00 28.80 33.60 38.40 43.20 48.00 Shear 488.21 463.77 439.34 414.91 390.48 366.05 341.61 317.18 292.75 268.32 243.89 Moment 0.0 2284.8 4452.2 6502.4 8435.4 10251.0 11949.4 13530.5 14994.4 16340.9 17570.2 Defl. 0.0000 -0.0484 -0.0962 -0.1427 -0.1875 -0.2299 -0.2696 -0.3059 -0.3386 -0.3672 -0.3912 Stress 0.0 905.9 1765.4 2578.3 3344.7 4064.6 4738.1 5365.0 5945.4 6479.4 6966.8 Span No. 2 ( ~1'6a} O.OOL O.lOL 0.20L 0.30L 0.401 0.501 0.60L 0.70L 0.801 0.901 1.00L Location 0.00 12.00 24.00 36.00 48.00 60.00 72.00 84.00 96.00 108.00 120.00 Shear 243.89 182.81 121.73 60.65 -0.43 -61.51 -122.59 -183.67 -244.75 -305.83 -366.91 Moment 17570.2 20130.4 21957.6 23051.8 23413.1 23041.4 21936. 7 20099.1 17528.6 14225.0 10188.6 Defl. -0.3912 -0.4402 -0.4775 -0.5021 -0.5134 -0.5113 -0.4958 -0.4676 -0.4278 -0.3780 -0.3199 Stress 6966.8 7981.9 8706.4 9140.3 9283.5 9136.2 8698.2 7969.5 6950.3 5640.4 4039.9 Span No. 3 O.OOL O.lOL 0.20L 0.30L 0.401 0.50L 0.60L 0.70L 0.80L 0.901 1.00L Location 0.00 3.78 7.55 11.32 15.10 18.88 22.65 26.42 30.20 33.98 37.75 Shear -366.91 -386.13 -405.34 -424.56 -443.77 -462.99 -482.20 -501.42 -520.63 -539.85 -559.06 Moment 10188.6 8767.2 7273.3 5706.8 4067.9 2356.4 572.3 -1284.3 -3213.4 -5215.0 -7289.2 Defl. .:.o.3199 -0.2997 -0.2781 -0.2552 -0.2314 -0.2069 -0.1819 -0.1569 -0 .1321 -0.1079 -0.0845 Stress 4039.9 3476.3 2883.9 2262.8 1613.0 934.3 226.9 -509.2 -1274.1 -2067 .8 -2890.3 Span No. 4 O.OOL O.lOL 0.201 0.301 0.40L 0.50L 0.601 0.701 0.80L 0.90L 1.00L Location 0.00 1.48 2.95 4.42 5.90 7.38 8.85 10.32 11.80 13.28 14.75 Shear -559.06 -576.30 -593.53 -610.77 -628.00 -645.24 -662.47 -679.71 -696.94 -714.18 -731.42 Moment -7289.2 -8126.6 -8989.3 -9877.5 --10791.1 -11730.1 -12694.5 -13684.4 -14699.7 -15740.4 -16806.5 Defl. -0.0845 -0.0757 -0.0672 -0.0591 -0.0513 -0.0439 -0.0369 -0.0304 -0.0243 -0.0188 -0.0139 Stress -3431.8 -3826.1 -4232.3 -4650.4 -5080.5 -5522.6 -5976.7 -6442.7 -6920.7 -7410.7 -7912.7 Span No. 5 O.OOL 0.101 0.201 0.301 0.401 0.50L 0.60L 0.70L 0.80L 0.901 1.00L Location 0.00 1.20 2.40 3.60 4.80 6.00 7.20 8.40 9.60 10.80 12.00 Shear -731.42 -745.44 -759.46 -773.48 -787.50 -801.53 -815.55 -829.57 -843.59 -857.61 -871. 64 Moment -16806.5 -17692.6 -18595.5 -19515.3 -20451.9 -21405.3 -22375.6 -23362.6 -24366.5 -25387.2 -26424.8 Defl. -0.0139 -0.0103 -0.0072 -0.0045 -0.0023 -0.0005 0.0007 0.0014 0.0015 0.0011 0.0000 Stress -7912.7 -8329 .. 8 -8755.0 -9188.0 -9629.0 -10077.8 -10534.6 -10999.4 -11472.0 -11952.6 -12441.1 Span No. 6 O.OOL O.lOL 0.201 0.301 0.401 0.501 0.60L 0.701 0.801 0.90L 1.00L Location 0.00 13.83 27.65 41.48 55.30 69.13 82.95 96.77 110.60 124.43 138.25 Shear 998.86 837.32 675.77 514.23 352.68 191.14 29.59 -131.95 -293.50 -455.04 -616.59 Moment -26424.8 -,13732.2 -3272.9 4952.9 10945.5 14704.6 16230.4 15522.9 12581.9 7407.6 0.0 Defl. 0.0000 -0.0508 -0.1457 -0.2517 -0.3425 -0.3992 -0.4097 -0.3692 -0.2801 -0.1515 0.0000 Stress -12441.1 -6465.2 -1540.9 2331.9 5153.2 6923.1 7641.4 7308.3 5923.7 3487.6 0.0 l.< 1%1Dr,i For questions on Cheam, a Windows-based program, contact: -C.ON1'1t.JtJe.i!) DN t\f,L.OWlt\ol,~ V Architectural Wall Systems, Inc. at i'Jexr ~ACt6 C~,Ztt) t,t>t Ph~ (972) 552-9336 Fax-(972) 552-9608 Email: software@arcwallsys.com BY: ' D.W.W. DATE: 6/18/14 SUBJECT WESTFIELD THEATER SHEET NO. 29 CHKD. BY: ___ DATE: CENTEX GJ_AZING JOB NO. 14157 -------------- TUBULAR TYPE JAMBS w/ REINFORCING STEEL -STRESS CHECK WHERE STEEL OCCURS : ALUMINUM DESIGN MANUAL -TABLE 2-23 PER ·SPEC. 3.4.14 -L8 Sc / ly = ALLOWABLE F8 PER SPEC. 3.4.11 = 217.6 14620 20.5 15152 < 2380, Thus Fb = 16.7 -0.141 x ( Lb Sc/ ly)A0.5 PSI PER SPEC. 3.4.16 -b /t = ALLOWABLE Fe PER SPEC. 3.4.11 = UNBRACED LENGTH = Ls = TYPICAL WALL THICKNESS = t = MULLION WIDTH = b = MOMENT OF !NERITA (WEAK AXIS) = ly = - 107.75 0.1 2.05 1.395 2.817 < 24, Thus Fb = 15152 psi PSI IN. IN. IN. IN.4 IN.3 SECTION MODULUS (WEAK AXIS) = Sc= MODULE= ALLOWABLE BENDING STRESS (Fb) = 2~.4375 IN. WIND LOAD=· 24.9 PSF 14620 PSI. STEEL (Fb) = 21557 PSI MAXIMUM POSTIVE MOMENT= 23413.0 IN-LBS (PG. 28A) PIECE MATERIAL DIE I s IIN NO. ALU=1 STL=2 NO. IN.4 IN.3 ALU. 1 1 OPG-1910 8.398 2.522 8.398 2 2 1 7/8x4 5/8x1/4 A36 CHNL 5.681 2.457 16.475 3 2 (P41!ct) 0.000 0.000 0.000 4 2 0.000 0.000 0.000 5 2 0.000 0.000 0.000 6 2 0.000 0.000 0.000 I TOTAL= 24.873 PIECE NO. 1 Fb= (M x IAw)/(S x I TOTAJ = 3134 PSI. < 14620 2 Fb= 6312 PSI. < 21557 3 Fb= 0 PSI. < 21557 4 Fb= 0 PSI. < 21557 5 Fb= 0 PSI. < 21557 6 Fb= 0 PSI. < 21557 OPG-1910 & 1 7/8x4-5/8x1/4 A36 CHNL SCREWS TO STEEL REINFORCING: T/ SCREW FOR# 10 SCREWS @ 12 "O.C. = 24.9 (1 ') (2.5 ') (16.4749) = 40# 24.873 PG. A1: TALLOW·= 518 ( 0.09433 ) 518 # 0.09433 = (TO 114" STL) 518# > 40# O.K. ==)._ OPG-1910 JAMBS W/ 1 7/S"x 4 5/S"x 1/4" A36 STEEL CHANNEL REINFORCING AS SHOWN ON PG. 28A W/ (2) -#10 SCREW 3" FROM ENDS OF STEEL & (1)@ 12" O.C. IN BETWEEN@ LOCATIONS LISTED@ THE TOP OF PG. 28A -O.K. OK OK OK OK OK OK OK BY: D.W.W. DATE: 6/18/14 CHKD. BY: ___ DATE: SUBJECT WESTFIELD THEATER CENTEX GLAZING ------------ TUBULAR TYPE MULLIONS -WIND LOAD ANALYSIS : SHEET NO. JOB NO. ELEVS.: D/E.3 DETAILS: 2/0.5, 1.l\fT)/5 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 30 14157 PER SPEC. 3.4.14 -Ls Sc I ly = ALLOWABLE Fa PER SPEC. 3.4.11 = 160.8 14925 20.5 15152 < 2400, Thus Fb = 16.7 -0.140 x ( Lb Sc/ ly)"0.5 PSI PER SPEC. 3.4.16 -b /t = ALLOWABLE Fa PER SPEC. 3.4.11 = SPAN LENGTH = UNBRACED LENGTH = Ls = TYPICAL WALL THICKNESS = t = MULLION WIDTH = b = MOMENT OF I NERITA (WEAK AXIS)= ly = SECTION MODULUS (MAXIMUM) = Sc = 162.75 79.125 0.1 2.050 1.454 2.955 < 23, Thus Fb = 15152 psi PSI IN. IN. IN. IN. IN.4 IN.3 TRIBUTARY AREA= 162.75 x 79.656 I 144. = 90.03 SQ. FT. MIN. WIND LOAD PER SPEC'S= N/A PSF (ENTER 'NIA' IF NOT APPLICABLE) WIND LOAD =I . 22.68 jPSF. .....----TR__,IB. WIDTH =I 79.65625 !IN. ALLOWABLE BENDING STRESS (Fb) =I 14925 . IPSI. STEEL (Fb) = 21557 REACTION= 1020.92 LBS MAXIMUM POSTIVE MOMENT= 41538.7 IN-LBS DEFLECTION LIMIT= L / 175 Estl/ Ealu = 29x106/10x106=2.9 I IN ALU = I OF STL x 2.9 REQUIRED Sxx = 2.784 IN113 MAXIMUM SPAN DEFLECTION= 0.552 IN = L / 294.8 OK PIECE MATERIAL DIE NO. ALU=1 STL=2 NO. 1 1 . OPG -1926 2 2 1 7/8"x4 1/4"x1/4" CHNL 3 2 4 2 5 2 6 2 I IN.4 7.362 4.625 0.000 0.000 0.000 0.000 · CONTINUED ON NEXT PAGE s IN.3 2.863 2.176 0.000 0.000 0.000 0.000 I TOTAL= GERARD HOMER AND ASSOCIATES 2374 W. WHITENDALE, VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com IIN ALU. 7.362 13.413 0.000 0.000 0.000 0.000 20.775 PSI SY: D.W.W. DATE: 6/18/14 SUBJECT WESTFIELD THEATER SHEET NO. 31 CHKD. BY: DATE: CENTEX GLAZING JOB NO. 14157 PIECE NO. 1 Fb= (M x IALu)/(S x I TOTAJ: = 5142 PSI. < 14925 OK 2 Fb= 12325 PSI. < 21557 OK 3 Fb= 0 PSI. < 21557 OK 4 i=b= 0 PSI. < 21557 OK 5 Fb= 0 PSI. < 21557 OK 6 Fb= 0 PSI. < 21557 OK OPG -1926 & 1 7/8"x4 1/4"x1/4" CHNL OK SCREWS TO STEEL REINFORCING: T/SCREWFOR# 10SCREWS @ 12 "O.C.= 22.7(1 ')(6.6')(13.4125) = 97# 20.775 PG. A1: TALLOW·= 518 ( -~-) = 518# 518 # > 97# O.K. REACTION@ ENDS OF STEEL= (97 / 12) x 162.8 / 2 = 659 # ADDITIONAL SCREWS @ ENDS REQUIRED TOTAL NUMBER OF SCREWS REQUIRED@ ENDS= 2 SCREWS ==):> OPG-1926 MULLIONS W/ 1 7/S"x 41/4"x 1/4" A36 STEEL CHANNEL REINFORCING CUT 12" SHORT OF MULLION LENGTH CENTERED IN MULLIONS W/ (2) -#10 SCREWS 3" FROM ENDS OF STEEL & (1)@12" O.C. IN BETWEEN@LOCATIONS LISTED ON THE PREVIOUS PAGE -O.K. GERARD HOMER AND ASSOCIATES 2374 W. WHITENDALE, VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com WESTFIELD THEATER Cbeam 2002 6/18/2014 9:25 Fi1e: J.AMB B ~~ffoN: ELEV.-D/E.3 DETAIL-lA/D.8, 2/D.6 By: D.W.W. Max. Span Deflection = ~fax. Positive Moment(l) = Max. Positive Mornent(2) = -0.9940" (Span 11 @ 2703311# (Span 1, @ 26622 11# (Span 2, @ 85.8511) 90 .90!!) 0.0011) Member Infoil!lation Span Length(in) I(in"4) S(in"3) E(psi)_ 1 101.000 8.398 2.522 1.0e+007 2 61. 750 6.016 2.124 1.0e+007 Distributed Load Information Span Wl(#/in) W2(#/in) Xl(in) X2(in) 1 6.694 6.694 0.000 101.000 2 11.552 11.552 0.000 61. 750 - Joints Free to Displace Free Joints -2 Support Reactions Joint Pounds 1 602 3 788 T, ~' =-·iol/J( l-11,~ iis "i-s~+ 01,1s" (;ti, btle&?--'5'1 l'i~ :, wu= zi,1-1.. ,~-r [>JuJL,-"-')..~,1,.1.. ,~-t-( LJl,lij}~Z.i&'~}~rt=-h,G"j'-l'o/i" Ww1..i::. 1-~.i.i.f~f{ 11dl-lC1>~/l.)/l~i.t = }li'io1..:/tfi'I) 0 6f4--~'910 J'f\l'-N3/'lA vwo '--I-"(_ '°"'( . Ct,L, 5eA~ltJ4) Maximum distributed load value shown only, see distributed load table for detailed information. WESTFIELD THEATER Cbea.m 2002 6/18/2014 9:25 Fi1e: .J1\MB B Span No. l O.OOL O.lOL 0.20L 0.30L 0.40L O.SOL 0.60L 0.70L 0.80L 0.90L Location 0.00 · 10.10 20.20 30.30 40.40 50.50 60.60 70.70 80.80 90.90 Shear 601.63 534.02 466.41 398.80 331.20 263.59 195.98 128.37 60. 76 -6.85 Moment -0.0 5735.l 10787.3 15156.6 18843.1 21846.8 24161.6 25805.5 26760.6 27032.8 Defl. 0.0000 -0.1834 -0.3599 -0.5234 -0.6685 -0.7908 -0.8866 -0.9532 -0.9885 -0.9913 Stress -0.0 2274.0 4277.3 6009.8 7471.5 8662.5 9582.7 10232.2 106o/ 10718.8 Span No. 2 ~ jt}62-DpE,~~ . 0.001 O.lOL 0.20L 0.301 0.40L 0.50L 0.60L 0.70L 0.80L 0.901 Location 0.00 6.18 12.35 18.52 24.70 30.88 37.05 43.22 49.40 55.58 Shear -74.46 -145.79 -217.13 -288.46 -359.80 -431.13 -502.46 -573.80 -645.13 -716.46 Moment 26622.2 25942.2 24821.6 23260.6 21259.1 18817.2 15934.7 12611.8 8848.3 4644.4 Defl. -0.9614 -0.9247 -0.8717 -0.8029 -0.7194 -0.6225 -0.5137 -0.3947 -0.2679 -0.1354 Stress 12534.0L213.8 11686.3 10951.3 1000_9.0 8859.3 7502.2 5937.7 4165.9 2186.6 L.. )~ b'Z-O ~'r f\-l,iOVJl\'ol.h (?41 '2.-'f) /,rJ'ft.-j * O~Cv ~w 'JAMB /MiVL-!AON k~ ~ttor,Jtv ON Piz.ev', ~q,l @ L..ttA1lONS L-i 6'1e.t> @. ro? 0 F p 12-ev f' It~, --at',. For questions on Cbeam, a Windows-based program, contact: Architectural Wall Systems, Inc. at Ph-(972) 552-9336 Fax-(972) 552-9608 Email: software@arcwallsys.com 1.001 101.00 -74.46 26622.2 -0.9614 10556.0 1.001 61. 75 -787.80 -0.0 0.0000 -0.0 l BY: D.W.W. DATE: 6/18/14 SUBJl;CT WESTFIELD THEATER SHEET NO. 33 CHKD. BY: ___ DATE: CENTEX GLAZING JOB NO. 14157 TUBULAR TYPE JAMBS/DOOR JAMBS -WIND LOAD ANALYSIS : ELEVS.: J/E.6, K/E.6, L/E.6 DETAILS: 3/D.6, 1/D.9 2005 ALUMINUM DESIGN MANUAL -TABLE 2~24 PER SPEC. 3.4.14 -L8 Sc I ly = 193.9 < 2400, Thus Fb = 16.7 -0.140 x ( Lb Sc/ ly )A0.5 ALLOWABLE F8 PER SPEC. 3.4.14 = 14751 PSI PER SPEC. 3.4.16 -b /t = 20.5 < 23, Thus Fb = 15152 psi ALLOWABLE F8 PER SPEC. 3.4.16 = 15152 PSI SPAN LENGTH = IN. 119.25 96 UNBRACED LENGTH = Ls= IN. TYPICAL WALL THICKNESS = t = IN. 0.1 MULLION WIDTH = b = IN. 2.050 MOMENT OF INERTIA (WEAKAXIS) = ly= IN.4 1.39S SECTION MODULUS (MAXIMUM)= Sc= IN.3 2.817 TRIBUTARY AREA= 119.3 x 39.250 / 144. = 32.50 SQ. FT. MIN. WIND LOAD PER SPEC'S= N/A PSF (ENTER 'NIA' IF NOT APPLICABLE) WIND LOAD =I . 24.28 IPSF. . TRIB. WIDTH =I 39.25 !IN. ALLOWABLE BENDING STRESS (Fb) =I 14751 !PSI. (MIN. FROM ABOVE) REACTION = 394.60 LBS MAX. POSTIVE MOMENT = 11764.0 IN-LBS REQUIRED Sxx = 0.798 IN;:s MAX. SPAN DEFLECTION = 0.208 IN ==> L / 573.3 PIECE MATERIAL NO. ALU=1 STL=2 1 1 PIECE NO. 1 DIE NO. OPG-1910 lxx IN.4 8.398 OPG-1910 O.K. Sxx IN. 2.522 I TOTAL= lxx IN ALU. 8.398 8.398 4665 PSI. < 14751 , BY: D.W.W. DATE: 6/18/14 SUBJECT WESTFIELD THEATER SHEET NO. 34 CHKD. BY: ___ DATE: CENTEX GLAZING JOB NO. 14157 TUBULAR TYPE DOOR MULLiON -WIND LOAD ANALYSIS : ELEVS.: J/E.6, 1/e,b DETAILS: 4/D.6, 3/D.7 2005 ALUMINUM DE;SIGN MANUAL -TABLE 2-24 PER SPEC. 3.4.14 -L8 Sc I ly = 193.9 < 2400, Thus Fb = 16. 7 -0.140 x ( Lb Sc/ ly )/\0.5 ALLOWABLE Fa PER SPEC. 3.4.14 = 14751 PSI PER SPEC. 3.4.16 -b / t = 20.5 < 23, Thus Fb = 15152 psi ALLOWABLE Fa PER SPEC. 3.4.16 = 15152 PSI SPAN LENGTH= IN. 119.25 UNBRACED LENGTH = L8 = IN. 96 TYPICAL WALL THICKNESS = t = IN. 0.1 MULLION WIDTH = b = IN. 2.050 MOMENT OF INERTIA (WEAK AXIS)= ly = IN.4 1.395 . SECTION MODULUS (MAXIMUM) = Sc = iN. 3 2.817 TRIBUTARY AREA= 119.3 x 72.000 / 144. = 59.63 SQ. FT. MIN. WIND LOAD PER SPEC'S = N/A PSF (ENTER 'NIA' IF NOT APPLICABLE) WIND LOAD =I 23.23 !PSF. TRIB. WIDTH =I 72 IIN. ALLOWABLE BENDING STRESS (Fb) =L 14751 !PSI. (MIN. FROM ABOVE) REACTION = 692.54 LBS MAX. POSTIVE MOMENT = 20646.5 IN-LBS REQUIRED Sxx = 1.4 IN;:s MAX. SPAN DEFLECTION = 0.365 IN ==> L / 326.7 PIECE MATERIAL NO. ALU=1 STL=2 1 1 PIECE NO. DIE lxx NO. IN.4 OPG -1910 8.398 1 Fb = (M X IALu) / (Sxx X I TOTAL) = OPG -1910 O.K. Sxx · IN. 2.522 lxxlN ALU. 8.398 I TOTAL= 8.398 8187 PSI. < 14751 , BY: D.W.W. DATE: 6/18/14 SUBJECT WESTFll;LD THEATER SHEET NO. 35 CHKD. BY: ___ DATE: CENTEX GLAZING JOB NO. 14157 TUBULAR TYPE MULLIONS -WIND LOAD ANALYSIS : ELEVS.: K/E.6, UE.6 DETAILS: 2/0.5 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 PER SPEC. 3.4.14 -La Sc I ly = ALLOWABLE Fa PER SPEC. 3.4.14 = 156.5 < 2400, Thus Fb = 16.7 -0.140 x ( Lb Sc fly )/\0.5 14949 PSI PER SPEC. 3.4.16 -b It= 20.5 < 23, Thus Fb = 15152 psi ALLOWABLE Fa PER SPEC. 3.4.16 = SPAN LENGTH = UNBRACED LENGTH = L8 = TYPICAL WALL THICKNESS = t = MULLION WIDTH = b = MOMENT OF INERTIA (WEAK AXIS) = ly = SECTION MODULUS (MAXIMUM) = Sc = 15152 PSI 118.75 77 0.1 2.050 1.454 2.955 IN. IN. IN. IN. IN.4 IN.3 TRIBUTARY AREA= 118.8 x 47.500 I 144. = 39.17 SQ. FT. MIN. WIND LOAD PER SPEC'S = NIA PSF (ENTER 'NIA' IF NOT APPLICABLE) WIND LOAD =I 23.94 !PSF. TRIB. WIDTH =I 47.5 llN. ALLOWABLE BENDING STRESS (Fb) =I 14949 !PSI. (MIN. FROM ABOVE) REACTION = 468.88 LBS MAX. POSTIVE MOMENT= 13919.8 IN-LBS REQUIRED Sxx = 0.932 IN" MAX. SPAN DEFLECTiON = 0.278 IN==> L/ 427.2 PIECE MATERIAL NO. ALU=1 STL=2 1 1 PIECE NO. 1 DIE NO. OPG-1926 lxx IN.4 7.362 OPG -1926 O.K. Sxx IN. 2.863 I TOTAL= lxx IN ALU. 7.362 7.362 4862 PSI. < 14949 1 BY: D.W.W. DATE: 6/18/14 SUBJECT WESTFIELD THEATER SHEET NO. 3G CHKD, 'BY: ___ DATE: GENTEX GLAZING JOB NO. 14157 TUBULAR TYPE JAMBS -WIND LOAD ANALYSIS : ELEVS.: 1/E.6 1 M/c./t I M,\ /-e.i1 DETAILS: 1/D.5, 3/D.6 .2005 ALUMiNUM DESIGN MANUAL -TABLE 2-24 PER SPEC. 3.4.14-L8 Sc I ly = ALLOWABLE F8 PER SPEC. 3.4.14 = 117.1 < 130, Thus Fb = 15152 psi 15152 PSI PER SPEC. 3.4.16 -b / t = 20.5 < 23, Thus Fb = 15152 psi ALLOWABLE F8 PER SPEC~ 3.4.16 = SPAN LENGTH= UNBRACED LENGTH = L8 = TYPICAL WALL THICKNESS = t = MULLION WIDTH = b = MOMENT OF INERTIA (WEAK AXIS) = ly = SECTION MODULUS (MAXIMUM) = Sc = 15152 PSI 196.75 58 0;1 2.050 -, 1.395 2.817 IN. IN. IN. IN. IN.4 IN.3 EFF. TRIBUTARY AREA= 196.8 x 65.583 MIN. WIND LOAD PER SPEC'S = NIA PSF / 144. = 89.61 SQ. FT. (ENTER 'NIA' IF NOT APPLICABLE) .Ac..-ruM,. 11~,= IC\b,'%(ilf,i't'v)/f~t.f WIND LOAD =I 22.69 !PSF. tRIB. WIDTH =r-1 -2-4-.8-75----'IIIN. ::. '33/l~kt~ :,WL=2~ ALLOWABLE BENDING STRESS (Fb) =I 15152 !PSI. (MIN. FROM ABOVE) r-a.. 1\-c..itJA-L-~~/lpfto~ _ ;, REACTION= 385.58 LBS J fO\t. COtJtJ~·norJ --:aii,,~i\7'tfl1-/n,6'l}== ~IJ Yi: . N~ef 1 MAX. POSTIVE MOMENT= 18966.0 IN-LBS f f!:.R c.Sc Thi!£ /G0'-1,3 REQUIRED Sxx = 1.252 IN;,-s . MAX. SPAN DEFLECTION= 0.911 IN==>. ~ 0,1 ; <9,G..~·t' 4 ,1/1;043 l,Of.t-/ PIECE MATERIAL DIE lxx NO. ALU=1 STL=2 NO. IN.4 1 1 OPG -1910 8.398 PIECE . NO. 1 Ft,= (M x IALu) / (Sxx x I TOT AL) = OPG -1910 O.K. Sxx IN. 2.522 I TOTAL= lxx IN ALU. 8.398 8.398 7520 PSI. < 15152 BY: , D.W.W. DATE: 6/18/14 CHKD. BY: ___ DATE: SUBJECT WESTFIELD THEATER CENTEX GLAZING SHEET NO. JOB NO. TUBULAR TYPE JAMBS/ DOOR JAMBS .. WIND LOAD ANALYSIS : i~/"flr&J 3Pt/O,C, l;LEVS.: H/E.6, M/E.7, M.1/E.7 DETAILS: 3/D.6, 1/D.8, 1A/D.8 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 PER SPEC. 3.4.14 -LB Sc/ fy = ALLOWABLE F8 PER SPEC. 3.4.11 = PER SPEC. 3.4.16 -· b /t = ALLOWABLE F8 PER SPEC. 3.4.11 = SPAN LENGTH= UNBRACED LENGTH = LB = TYPICAL WALL THICKNESS = t = MULLION WIDTH = b = MOMENT OF INERITA (WEAK AXIS)= ly = SECTION MODULUS (MAXIMUM) = Sc = 117.1 15152 20.5 15152 197.25 58 0.1. 2.050 1.395 2.817 < 130, Thus Fb = 15152 psi PSI < 23, Thus Fb = 15152 psi PSI IN. IN. IN. IN. IN.4 IN.a EFF, TRIBUTARY AREA= 197.25 x 65.750 / 144. = 90.06 SQ. FT. MIN. WIND LOAD PER SPEC'S= NIA PSF (ENTER 'NIA' IF NOT APPLICABLE) WIND LOAD =I 22.68 !PSF. ___ TR-1B. WIDTH =I 39.25 llN. ALLOWABLE BENDING STRESS (Fb) =l 15152 !PSI. STEEL (Fb) = 21557 Rl;ACTION = 609.69 LBS MAXIMUM POSTIVE MOMENT = 30065.3 IN-LBS DEFLECTION LIMIT= L / 175 Estl/ Ealu = 29x106/10x106=2.9 I IN ALU= I OF STLx2.9 REQUIRED Sxx = 1.985 IN"·3 MAXIMUM SPAN DEFLECTION= 0.49 . IN = L / 402.6 OK PIECE MATERIAL DIE NO. ALU=1 STL=2 NO. 1 1 OPG-1910 2 2 1 7/8"x~ 5/8"x1/4" CHNL 3 2 4 2 5 2 6 2 I IN.4 8.398 5.681 0.000 0.000 0.000 0.000 CONTINUED ON NEXT PAGE s IN.a 2.522 2.457 0.000 0.000 0.000 0.000 I TOTAL= GERARD HOMER AND ASSOCIATES 2374 W. WHITENDALE, VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com IIN ALU. 8.398 16.475 0.000 0.000 0.000 0.000 24.873 37 14157 PSI BY:' D.W.W. DATE: 6/18/14 SUBJECT WESTt=IELD THEATER SHEET NO. CHKD. BY: DATE: CENTEX GLAZING JOB NO. PIECE NO. 1 Fb= (M x IALu)/(S x I TOTAU = 4025 PSI. < 15152 2 Fb= 8105 PSI. < 21557 3 Fb= 0 PSI. < 21557 4 Fb= 0 PSI. < 21557 5 Fb= 0 PSI. < 21557 6 Fb= 0 PSI. < 21557 OPG-1910 ·& 1 7/8"x4 5/~"x1/4" CHNL SCREWS TO STEEL REINFORCING: T/SCREWFOR# 10SCREWS @ 12 "O.C.= 22.7(1 ')(3.3')(16.4749) = 49# 24.873 PG. A1: TALLOW·= 518 ( -~-) = 518# 518 # > 49# O.K. REACTION@ ENDS OF STEEL= (49 I 12) x 197.3 / 2 = 404 # #10 SCREWS O.K. ==)=> OPG-1910 JAMQ,s. W/ 1 7/S"x 45/S"x 1/4" A36 STEEL CHANNEL REINFORCING CUT 12" SHORT OF :!AM B , LENGTH CENTERED IN JAMBS , W/ (2) -#10 SCREWS 3" FROM ENDS OF STEEL & (t)@ 12" O.C. IN BETWEEN @LOCATIONS LISTED ON THE PREVlOUS PAGE -O.K. GERARD HOMER AND ASSOCIATES 2374 W. WHITENDALE, VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com 38 14157 OK OK OK OK OK OK OK BY: ! D.W.W. DATE: 6/18/14 CHKD. BY: ___ DATE: SUBJECT WESTFIELD THEATER CENTEX GLAZING SHEET NO. JOB NO. ------------ TUBULAR TYPE DOOR MULLIONS -WIND LOAD ANALYSIS : ELEVS.: 1/E.6, M/E.7, M.1/E.7 DETAILS: 4/0.6, 3/D.7 . 'iMP,bl "31\-(JW; 2005 ALUMINUM DESIGN MANUAL-: TABLE 2-24 PER SPEC. 3.4.14 -Ls Sc/ ly = ALLOWABLE Fa PER SPEC. 3.4.11 = PER SPEC. 3.4.16 -b It= ALLOWABLE Fa PER SPEC. 3.4.11 = SPAN LENGTH= UNBRACED LENGTH = L8 = TYPICAL WALL THICKNESS = t = MULLION WIDTH = b = MOMENT OF !NERITA (WEAK AXIS) = ly = SECTION MODULUS (MAXIMUM) = Sc = 117.1 < 130, Thus Fb = 15152 psi 1"5152 PSI 20.5 < 23, Thus Fb = 15152 psi 15152 PSI 197.25 58 0.1 2.050 1.395 2.817 IN. IN. IN. IN. IN.4 IN.3 EFF. TRIBUTARY AREA= 197.25 x 80.688 / 144. = 110.53 SQ. FT. MIN. WIND LOAD PER SPEC'S= N/A PSF {ENTER 'NIA' IF NOT APPLICABLE) WIND LOAD =I 22.50 !PSF. .---a....,--,-,--T_R_,IB. WIDTH =I 80.6875 !IN. ALLOWABLE BENDING STRESS (Fb) =! 15152 !PSI. STEEL (Fb) = 21557 REACTION= 1243.41 LBS MAXIMUM POSTIVE MOMENT= 61315.6 IN-LBS DEFLECTION LIMIT= L/ 175 Estl/ Ealu = 29x106/1 0x106=2.9 I IN ALU= I OF STLx2.9 REQUIRED Sxx = MAXIMUM SPAN DEFLECTION= 4.047 IN11.3 1.0 IN ==;>, X 0,7 = D,1-'1 ~ ~'2~'i-@ PIECE NO. 1 2 3 4 5 6 MATERIAL DIE I s ALU=1 STL=2 NO. IN.4 IN.3 1 OPG-1910 8.398 2.522 2 17/8"x4 5/8"x1/4" CHNL 5.681 2.457 2 0.000 0.000 2 0.000 0.000 2 .o.ooo 0.000 2 0.000 0.000 I TOTAL= CONTINUED ON NEXT PAGE GERARD HOMER AND ASSOCIATES 2374 W. WHITENDALE, VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com I IN ALU. 8.398 16.475 0.000 0.000 0.000 0.000 24.873 39 14157 PSI BY:'· D.W.W. DATE: 6/18/14 SUBJECT WESTFIELD THEATER SHEET NO. 40 CHKD. BY: DATE: Cl;NTEX GLAZING JOB NO. 14157 PIECE NO. 1 Fb= . (M x IALu)/(S x I TOTAU = 8209 PSI. < 15152 OK 2 Fb= 16530 PSI. < 21557 OK 3 Fb= 0 PSI. < 21557 OK 4 Fb= 0 PSI. < 21557 OK 5 Fb= 0 PSI. < 21557 OK 6 Fb= · 0 PSI. < 21557 OK OPG-1910 & 1 7/8"x4 5/8"x1/4" CHNL OK SCREWS TO STEEL REINFORCING: T/SCREWFOR# 10SCREWS @ 12 "O.C.= 22.5(1 ')(6.7')(16.4749) = 100# 24.873 PG. A 1: TALLOW·= 518 ( -~-) = 518# 518 # > 100# O.K. REACTION@ ENDS OF STEEL= (100 / 12) x 197.3 / 2 = 823 # ADDITIONAL SCREWS @ ENDS REQUIRED TOTAL NUMBER OF SCREWS REQUIRED @ENDS= 2 SCREWS ==)>. OPG-1910 DOOR MULLIONS W/ 17/S"x45/S"x 1/4" A36 STEEL CHANNEL REINFORCING CUT 12" SHORT OF MULLION LENGTH CENTERED IN MULLIONS W/ (2) -#1 O SCREWS 3" FROM ENDS OF STEEL & (1) @ 12" O.C. IN BETWEEN @ LOCATIONS LISTED ON THE PREVIOUS PAGE -O.K. GERARD HOMER AND ASSOCIATES 2374 W. WHITENDALE, VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com BY:' D.W.W. DATE: 6/18/14 CHKD. BY: ___ DATE: SUBJECT WESTFIE:LD THEATER CENTEX GLAZING ------------ TUBULAR TYPE MULLIONS -WIND LOAD ANALYSIS : SHEET NO. JOB NO. ELEVS.: H/E.6, 1/E.6, M/E.7, M.1/E.7 DETAILS: 2/D.5 ) 1.f\f y;v'5 2005 ALUMINUM DESIGN MANUAL -TABLE 2-24 PER SPEC. 3.4.14 -Ls Sc fly= 117.9 < 130, Thus Fb = 15152 psi ALLOWABLE F8 PER SPEC. 3.4.11 = 15152 PSI PERSPEC.3.4.16-bit= 20.5 <23,ThusFb=15152psi ALLOWABLE F8 PER SPEC. 3.4.11 = 15152 PSI SPAN LENGTH= UNBRACED LENGTH = L8 = TYPICAL WALL THICKNESS = t = MULLION WIDTH = b = MOMENT OF !NERITA (WEAK AXIS)= ly = SECTION MODULUS (MAXIMUM) = Sc = 196.75 58 0.1 2.050 1.454 2.955 IN. IN. IN. IN. IN.4 IN.3 EFF. TRIBUTARY AREA= 196.75 x 76.750 / 144. = 104.87 SQ. FT. MIN. WIND LOAD PER SPEC'S= NIA PSF (ENTER 'NIA' IF NOT APPLICABLE) WIND LOAD =I 22.50 !PSF. ___ T_RIB. WIDTH =I 76.75 !IN. ALLOWABLE BENDING STRESS (Fb) =! 15152 !PSI. STEEL (Fb) = 21557 REACTION= 1179.73 LBS MAXIMUM POSTIVE MOMENT= 58028.1 IN-LBS DEFLECTION LIMIT= L/ 175 Estl/ Ealu = 29x106/10x106=2.9 I IN ALU = I OF STL x 2.9 REQUIRED Sxx = MAXIMUM SPAN DEFLECTION= PIECE MATERIAL NO. 1 2 3 4 5 6 ALU=1. STL=2 1· 2 2 2 2 2 3.83 f N/\3 f P~P-cic r1r~1£ tbc'/(5, Ncrrt~ f 1.1 IN -=>--x 0,1 = o:rr"--==9' ,Vise. g;; DIE I S I IN NO. IN.4 IN.3 ALU. OPG-1926 7.362 2.863 7.362 1 7/8"x4 1/4"x1/4" CHNL 4.625 2.176 13.413 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 I TOTAL= 20.775 CONTINUED ON NEXT PAGE GERARD HOMER AND ASSOCIATES 2374 W. WHITENDALE,. VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com 41 14157 PSI :!, BY: D.W.W. DATE: 6/18/14 SUBJECT WESTFI.ELD THEATER SHEET NO. 42 CHKD. BY: DATE: CENTEX GLAZING JOB NO. 14157 PIECE NO. 1 Fb= (M X IALu)/(S x I TOTAJ = 7183 PSI. < 15152 OK 2 Fb= 17217 PSI. < 21557 OK 3 Fb= 0 PSI. < 21557 OK 4 Fb= 0 PSI. < 21557 OK 5 Fb= 0 PSI. < 21557 OK 6 Fb= 0 PSI. < 21557 OK OPG·-1926 & 17/8"x4 1/4"x1/4" CHNL OK SCREWS TO STEEL REINFORCING: T/ SCREW FOR# 10 SCREWS @ 12 "o.c. = 22.5 (1 ')(6.4 ') (13.4125) = 93 # 20.775 PG. A1: TALLOW·= 518 ( -~-) = 518# 518 # > 93# O.K. REACTION @ ENDS OF STEEL= (93 / 12) x 196.8 / 2 = 762 # ADDITIONAL SCREWS @ ENDS REQUIRED TOTAL NUMBER OF SCREWS REQUIRED @ENDS= 2 SCREWS ==)• OPG-1926 MULLIONS W/ 17/S"x 41/4"x 1/4" A36 STEEL CHANNEL REINFORCING CUT 12" SHORT OF MULLION LENGTH CENTERED iN MULLIONS W/ (2)-#10 SCREWS 3" FROM ENDS OF STE~L & (1)@ 12" O.C. IN BETWEEN@ LOCATIONS LISTED ON THE PREVIOUS PAGE -O.K. GERARD HOMER AND ASSOCIATES 2374 W: WHITENDALE, VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com BY: D.W:W. DATE: 6/18/14 SUBJECT: WESTFIELD THEATER CHKD. BY: ___ DATE: CENTEX GLAZING CONNECTION TO D.F. LARCH NO.2 WOOD FRAMING MIN. : *Dl=TAILS: 1/0.1, 4/0.1, 5/D.1, 4/D.2 RMULLION = 1,021 # ( PG. 30) 395# ( PG. 33) SCREW LAYOUTS: @MULLIONS MULLION. 11/2 II TYP. 0 SCREWS, SEE BELOW 11/2 II TYP. @JAMBS 11/2 II --.i MAX. 11F"LUG V/SCREW@ MULLIONS = 1,021 # / 4 SHEET NO. 43 JOB NO. 14157 Conn_ Wood_M&J_Lug.xls = 255 #/SCREW V/SCREW @ JAMBS = 395# 2 )2 + ( 395# ( 1.5 ) )2= 2.5 · 309 #/SCREW CHECK SIMPSON SOS 1/4"x2" LONG MIN. WOOD SCREWS : GOVERNING VfscREW = 309 LBS., SEE ABOVE PG.B4: VALLow= 290 X 1.6 = 464# >309# O.K. Co ==::;l)> PROVIDE: (2) -SIMPSON SOS 1/4"x2" LONG MIN. WOOD SCREWS EACH SIDE OF MULLIONS & (2) @JAMBS W/ 2 1/2" MIN. SPACING TO WOOD FRAMING AS SHOWN ABOVE PER DETAILS LISTED ABOVE ==> 0.K. GERARD HOMER AND ASSOCIATES 2374 WEST WHITENDALE AVE., VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559~734-5232 e-mail: ghometse@gmail.com ,, BY: D.W.W. DATE: 6/18/14 SUBJECT: WESTFIELD THEATER SHEET NO. 44 CHKD. BY: ___ DATE: CENTEX GLAZIIIIIG JOB NO. 14157 CONNECTION TO CONCRETE@ SILL W/ ALUMINUM LUG INSERTS : *DETAILS: 3/D.1 RJAMB= 741 # ( PG.17) RMULLION = 1,390 # ( PG. 20 ) ANCHOR LAYOUTS: @MULLIONS "F" LUG C.U5fDM 0//bll fHlcK MG S'i~L llJCt @ zy A-Nv \')1, 1 5/8 II TYP. 21/4 II 0 ANCHORS, SEE BELOW 1 5/8 II TYP. 41/2 11 --- 1 II MAX. V/ANCHOR@ MULLIONS & DOOR MUb.LIONS = 1,390 # / 2 = V/ANCHOR@JAMBS = 741 # x 611 / 4.5 11 = CHECK ANCHORS : JAMB 0 [] :Ifb ~ k 695 #/ANCHOR 906 #/ANCHOR SCREW ANCHORS: ESR -3027 CONCRETE STRENGTH MIN. = 2500 PSI TRY: 1/4" DIA. HIL Tl KWIK HUS-EZ CONCRETE SCREW ANCHORS W/ 2 1/2" MIN. EMBEDMENT & 3 7/8" MIN. EDGE DISTANCE iVJ ¥'""""" FOR STRENGTH DESIGN MINIMUM SPACING= 5.5 IN. VMULLION = 695 LBS x 1.6 = 1112 # MINIMUM EDGE DISTANCE= 3.875 IN. VJAMB = 906 LBS x 1.6 = 1449 # CONCLUSION: @MULLIONS: @JAMBS: C ClJii'foM L\J~~) -SEE PG. 45 -48 FOR ANCHOR ANALYSIS DETAILS: 3/D.1 PROVIDE (1) -1/4" DIA. HIL Tl KWIK HUS-EZ CONCRETE SCREW ANCHOR ON EACH SIDE OF MULLIONS W/ 21/2" MIN. EMBEDMENT, 3 7/8" MIN. EDGE DISTANCE & st' MIN. SPACING AS SHOWN ABOVE -O.K. PROVIDE (2) -1/4" DIA. HIL Tl KWIK HUS-EZ CONCRETE SCREW ANCHORS @ JAMBS W/ 2 1/2" MIN. EMBEDMENT, 3 7/8" MIN. EDGE DISTANCE & 4 1/2" MIN. SPACING W/ FIRST ANCHOR 1 "MAX. FROM JAMB AS SHOWN ABOVE -O.K. GERARD HOMER AND ASSOCIATES 2374 WEST WHITENDALE AVE., VISALIA, CA 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com ~ .BY:' D.W.W. DATE: 6/18/14 SUBJECT WESTFIELD THEATER SHEET NO. JOB NO. 45 CHKD. BY: ____ DATE: CENTEX GLAZING 14157 STRENGTH DESIGN OF ANCHORAGE TO CONCRETE {By Ronald Cook -Published By PCA OR APPENDIX D, 318) APPD 0.25 diameter ·in inches Bolt material: CARBON STEEL f ,_ c-3000 psi @ 28 days n= 1 No. of Anchors Nu= Np,cr or uncr= ESR 0 kips Vu= 1.112 kips 1.166 kips (or 'N/A' per ESR) k (kcr or kuncr) = 17 D.5.2.2 or ESR 3027 cracked concrete (Y or N) Y (f ~'/250())A0.5= nNp,fc= 1.095 ACTUAL EMBED.= 2.5" EFF. EMBED.= 1.92 inches 1.277 kips ACTUAL EDGE DIST = 3.875 inches D.5.1.2 D.6.1.2 MIN. SLAB THICKNESS = 6 inches DO LOADS INCLUDE SEISMIC LOADS N Y FOR YES & N FOR NO Steel Strength in Tension and Shear (Tension AC/ 318 D.5.1 & D.6.1 Shear) Ase= . 0.045 PER ESR or Eff. Area in in:.: ( Table 2, pg. 7 of ESR) fut= 134 ksi PER ESR Table 2, pg.7 fy= 107 ksi PER ESR Table 2, pg.7 $= 0.65 for Steel Tension failure modes x 0.75 FOR SEISMIC= $= 0.6 for Steel Shear failure modes x 0. 75 FOR SEISMIC = n<f>Ns= 4>nAsef ut = 3.920 kips n$Vs= $n0.6Asefut= 2.171 kips n$Ase1.sfya = n$0.6Ase1.9fya= 5.947 3.293 kips kips 0.65 0.6 Concrete Breakout Strength of Fastener in Tension and Shear (Tension AC/ 318 D. 5 & D. 6 Shear) (Tension see ACI 318 Figures RD.4.2.2(a); pg. 387 and RD.5.2.1(a), pg 391) her 1.92 inches 1.5*her 2.88 Ano= 33.2 sq. in. D.5.2.1 f}.i15 + tl~)(t.M(t.»= AN= 32.429 (fig RD.5.2.2(a) App D) Ca.min= 3.875 inches D.5.2.2 Nb= k*fc'A0.5*het"1.5 Cer= 2.78 inches ESR Nb= 2.477 kips \Jf edge= 1.000 per ESR = CICer;;;: 1.5her/Cer D.5.2.4 . eN' = 0 eccentricty for a group of fasteners (see ACI 318 fig.RD.5.2.4, pg. 393) lJ!1= 1 =1/(1+2*e'N/(3*het)) \Jf3= 1.0 see ESR or 1.4 if k = 17 'l'2= 1.000 =0.7+0.3*Ca,minf1.5hef if Ca,min<=1.5hef and 1.0 if Ca,min>=1.5hef $= 0.65 see ESR x 0.75 FOR SEISMIC= 0.650 $Neb or $Nebg=$~/ANo *'lf 1 *'lf2*'lf3Nb= 1.574 X 'l'ectge= 1.574 kips (ShearseeACI 318 Figures RD.4.2.2(b), pg. 387 and RD.6.2.1(c)&(d), pg 399) Ca1= 3.875 inches 1.5*c1= 5.8125 Ca2= 6 inches (1,,15t 5',11i.S)~il'l-5 = Ave= 49.770 see above for figures Avco= 67.6 sq. in. Le= 1.920 in.(see D.6.2.2 or definition pg A2, Shall not exceed 8d0 = 2.00 in. ) D.6.2.2 Vb= 2.198 kips= 7(LJd0) 0·2*v'do"*\lfc*c/5 e'v = o eccentricty fastener group e'v<=s/2 (see ACI 318 fig.RD.6.2.5, pg. 402) D.6.2.5 'l's= 1 =1/(1+2*e'v/3*ca1) \j/7= 1.0 (1.0 if in tension zone and \Jfs= 1.000 =0.7+0.3*cazf1.5ca1 if Ca2<=1.5Ca1 sec D.6.2.7 w/ reinf and 1.0 if C82>=1.5ca1 'If = 1.2 or 1.4 and $= 0.7 see ESR x0.75 FOR SEISMIC= 0.700 1.4 in uncracked caner.) D.6.2.1 $Veb or $Vcb9=$Avr/Aveo*'lf5*'lf5*'lf7Vb= 1.133 kips FOR PARALLEL TO EDGES <!>Veb or <!>Vebg=2*$Av/Avo *j5*1/J5*j7Vb with 1/Js=1.0 ENTER Yor N FOR SHEAR PARALLEL TO EDGE N $Veb or <!>Vebg= 1.133 GERARD HOMER AND ASSOCIATES 2374 W. WHITENDALE, VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com BY: D.W.W. DATE: 6/18/14 SUBJECT WESTFIELD THEATER CHKD. BY: ____ DATE: CENTEX GLAZING STRENGTH DESIGN OF ANCHORAGE TO CONCRETE Concrete Pryout strength of Fastener in Shear (AC/ 318 D.6.3) see previous pg. under Concrete Breakout Strenght for <I> <j>= 0.7 x0.75 FOR SEISMIC= 0.700 her 1.92 kcp=1.0 for het<2.5 and 2.0 for het>=2.5 in. <l>Ncb=<!>AN/AN0*1f1 *j2*Nb= 1.695 <J>Vcp= <J>kcpNcb = 1.695 kips Interaction of Tensile and Shear Forces (D.7) SHEET NO. JOB NO. Nu= 0 kips 1.112 kips cpN0= <j>N5= <j>nAsef y = 3.920 <j>nAse1.sfya = 5.947 <l>Ncb or <!>Ncbg= 1.57 4 <!>Np,tc= 1.277 <!>Vs= <j>nAsefy = <j>n0.6Ase1.sfya= <J>Vcb or <l>Vcbg= <J>Vcp= <J>kcpNcb = Min cj,Nn= 1.277 kips 20% cj,N0= 0.255 Min <j>V0= 20% <l>Vn= Nu <=20%fNn, then full strength in shear permitted -Anchors O.K. GERARD HOMER AND ASSOCIATES 2374 W. WHITENDALE, VISALIA," CA 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com 1.133 0.227 46 14157 2.171 3.293 1.133 1.695 kips > t,Ut;; trtJ#!-1 BY:' D.W.W. DATE: 6/18/14 SUBJECT WESTFIELD THEATER SHEET NO. JOB NO. 47 CHKD. BY: ____ DATE: CENTEX GLAZING 14157 STRENGTH DESIGN OF ANCHORAGE TO CONCRETE (By Ronald Cook -Published By PCA OR APPENDIX D. 318) d0= 0.25 diameter in inches Bolt material: CARBON STEEL f c'= 3000 psi @ 28 days n= 1 No. of Anchors Nu= 0 kips Vu= 1.449 kips Np,cr or uncr= 1.166 kips (or 'N/A' per ESR) k (kcr or kuncr) = 17 D.5.2.2 or ESR ESR 3027 cracked concrete (Y or N) Y (fc'/2500)"'0.5= 1.095 ACTUAL EMBED.= 2.5" EFF. EMBED.= 1.92 inches D.5.1.2 D.6.1.2 nNp,fc= 1.277 kips ACTUAL EDGE DIST= 3.875 inches MIN. SLAB THICKNESS = 6 inches DO LOADS INCLUDE SEISMIC LOADS N Y FOR YES & N FOR NO Steel Strength in Tension and Shear (Tension AC/ 318 D.5.1 & D.6.1 Shear) Ase= 0.045 PER ESR or Eff. Area in in2 ( Table 2, pg. 7 of ESR) fu1= 134 ksi PER ESR Table 2, pg.7 fy= 107 ksi PER ESR Table 2, pg.7 $= 0.65 for Steel Tension failure modes x 0.75 FOR SEISMIC= $= 0.6 for Steel Shear failure modes x 0. 75 FOR SEISMIC = n$Ns= $nAsef ut = 3.920 kips n$Vs= $n0.6Asefu1= 2.171 kips n$Ase1.sfya = n$0.6Ase1.0fya= 5.947 3.293 kips kips 0.65 0.6 Concrete Breakout Strength of Fastener in Tension and Shear (Tension AC/ 318 0.5 & 0.6 Shear) (Tension see ACI 318 Figures RD.4.2.2(a), pg. 387 and RD.5.2.1(a), pg 391) her 1.92 inches 1.5*her 2.88 Ano= 33.2 sq. in. D.5.2.1 (lr'J..5 f-2,1,i'fJ-,'a'J(:).)) ~ AN= 29.549 (fig RD.5.2.2(a) App D) Ca.min= 3.875 inches D.5.2.2 D.5.2.4 Nb= k*fc'J\0.5*he('1.5 Ccr= 2. 78 inches ESR Nb= 2.477 kips \fledge= 1.000 per ESR = c/Ccr?. 1.5hetfCcr eN' = 0 eccentricty for a group of fasteners (see ACI 318 fig.RD.5.2.4, pg. 393) \fl1= 1 =1/(1 +2*e'N/(3*het)) ~3= 1.0 see ESR or 1.4 if k = 17 \fl2= 1.000 =0. 7+0.3*Ca,minf1.5hef if Ca,min<=1.5hef and 1.0 if Ca,min>=1.5hef tj>= 0.65 see ESR x 0.75 FOR SEISMIC= 0.650 $Neb or $Ncbg=$AN/AN0*1ft1 *1ft2*1ftsNb= 1.434 X \fledge= 1.434 kips (Shear see ACI 318 Figures RD.4.2.2(b), pg. 387 and RD.6.2.1(c)&(d), pg 399) Ca1= 3.875 inches 1.5*c1= 5.8125 Ca2= 6 inches &16~'2---S{2.))5,11i.s=. Ave= 67.570 see above for figures Avco= 67.6 sq. in. Le= 1.920 in.(see D.6.2.2 or definition pg A2, Shall not exceed 8d0 = 2.00 in.) D.6.2.2 Vb= 2.198 kip$= 7(LJd0)°-2*-{cf/-/f;,*c11·5 e'v = o eccentricty fastener group e'v<=s/2 (see ACI 318 fig.RD.6.2.5, pg. 402) D.6.2.5 \fls= 1 =1/(1 +2*e'v /3*c81) \fl7= 1.0 (1.0 if in tension zone and \fls= 1.000 =0.7+0.3*ca2'1.5Ca1 if Ca2<=1.5Ca1 sec D.6.2.7 w/ reinf and 1.0 if Ca2>=1.5ca1 1ft = 1.2 or 1.4 and ~= 0.7 see ESR x 0.75 FOR SEISMIC= 0.700 1.4 in uncracked caner. ) D.6.2.1 <J>Vcb or $Vcbg=$AvJAvco*1/J5*'ljt5*1/J7Vb= 1.539 kips FOR PARALLEL TO EDGES $Vcb or $Vcbg=2*$Av/Av0*'ljt5*'ljt5*'ljt7Vb with 1fts=1.0 ENTER Yor N FOR SHEAR PARALLEL TO EDGE N <J>Vcb or <J>Vcbg= 1.539 GERARD HOMER AND ASSOCIATES 2374 W. WHITENDALE, VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: gl:lomerse@gmail.com BY:; D.W.W. DATE: 6/18/14 SUBJECT WESTFIELD THEATER SHEET NO. JOB NO. CHKD. BY: DATE: CENTEX GLAZING STRENGTH DESIGN OF ANCHORAGE TO co·NCRETE Concrete Pryout strength of Fastener in Shear (AC/ 31 BD. 6.3) see previous pg. under Concrete Breakout Strenght for <!> qi= 0.7 x 0.75 FOR SEISMIC= 0.700 her 1.92 kcp=1.0 for het<2.5 and 2.0 for het>=2.5 in. <!>Neb =<j>AN/ANo*'lf 1 *'lJ;2*Nb= 1.544 <!>Vep= <!>kcpNcb = 1.544 kips Interaction of Tensile and Shear Forces (D.7) Nu= 0 kips 1.449 kips <!>Nn= <!>Ns= <j>nAsef y = 3.920 <!>Vs= qinAsefy = qinAse1.sfya = 5.947 <!>Neb or <!>Ne!Jg= 1.434 <!>Np,te= 1,277 <j>n0.6Ase1.sfya= <!>Veb or <!>Vcbg= <!>Vcp= <!>kcpNcb = Min <!>Nn= 20% <!>Nn= 1.2'77 kips 0.255 'Min <!>Vn= 20% 1J>Vn= Nu <=20%fNn, then full strength in shear permitted -Anchors O.K. GERARD HOMER AND ASSOCIATES 2374 W. WHITENDALE, VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com 1.539 0.308 48 14157 1 2.171 3.293 1.539 1.544 kips > l,Y!-19 f::.j :~dft!. BY: D.W.W.. DATE: 6/18/14 SUBJECT: WESTFIELD THEATER SHEET NO. 49 CHKD. BY: DATE: CENTEX GLAZING JOB NO. 14157 CON_NECTION TO METAL STUDS. (18_GAGE MIN.) W/ STANDARD LUGS: *DETAIL: 1/0.2, 2/0.2, 3/0.2, 5/0;2 RMULLION = 1,243 # ( PG. 3 ) SCREW LAYOUTS: @MULLIONS MULLION SCREWS, SEE BELOW 610 # ( PG. 37) @JAMBS "T"LUG INSERT----. O 3 j 11/2 II TYP. --11/2" TYP. MIN. 1 MAX. .. ___ I 1 "F" LUG ·I+-INSERT V/SCREW @ MULLIONS = 1,243 # / 4 V/SCREW @ JAMBS = V< ~10# )2 + ( 610#(1. ) )2= 3.0 CHECK 1/4-20 DRIL-FLEX SCREWS TO 18 GA MIN. METAL STUDS: GOVERNING V/ SCREW = 367 LBS., SEE ABOVE PG. C3-C4: VALLOW. SCREW SHEAR = 872# >/= 367# O.K VALLOW. BRG. 18 GA. STL MIN. = 386# >I= 367# O.K PG.A1: VALLOW. BRG. ALUM. = 750# ( 0.125 ) = 750# 0.125 = 311 >/= #/SCREW 367 #/SCREW 367# ==:::;)> PROVIDE:. (2) -1/4-20 ELCO DRIL-FLEX SCREWS 1 1/2" FROM EACH SIDE OF MULLIONS & (2)@ 1" MAX. FROM JAMBS TO 18 GAGE MIN. METAL STUD SUPPORTS W/ 3" MIN. SCREW SPACING AS SHOWN ABOVE PER DETAILS LISTED ABOVE ==> O.K. BUILDING. ARCHitECTIENGINEER TO VERIFY STRUCTURAL ADEQUACY OF STUD HEAD TO SUPPORT WIND LOAD FROM WINDOW SYSTEMS. -GERARD HOMER AND ASSOCIATES 2374 WESTWHITENDALEAVE., VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com O.K SY: D.W.W. DATE: 6/18/14 SUBJECT: WESTFIELD THEATER CHKD. BY: ___ DATE: CENTEX GLAZING CONNECTION TO CONCRETE SILL@ DOOR MULLION : *DETAILS: 3/D.7, 1/D.8, 2/D.8, 1/D.9 RMULLION = 1,243 # ( PG. 39 ) ANCHOR LAYOUTS@ CONCRETE SILL: @ DOOR MULLIONS 1/8" THICK U-SHAPED ALUM. SHEAR CLIP, SNUG-FIT W/ 1 1/2" LEGS ~ MIN. -'---ff+-- DOOR MULLION ANCHORS, SEE BELOW SHEET NO. 50 JOB NO. 14157 Conn_Conc_DMSill_UClip.xls V/ANCHOR @ MULLIONS & DOOR MULLIONS = 1,243 # I 2 = 622 #/ ANCHOR CHECK 1/4" DIAMETER ANCHOR BOLTS: SCREW ANCHORS: ESR -3027 CONCRETE STRENGTH MIN. = 2500 PSI TRY: 1/4" DIA. HILTI KWIK HUS-EZ CONCRETE SCREW ANCHORS W/ 2 1/2" MIN. EMBEDMENT ..,....-FOR STRENGTH DESIGN MIN. SPACING= 2.5 IN. Vs SHEAR= 622 LBS x 1.6 = 994 # MIN. EDGE DISTANCE= 3.25 IN. -SEE PG. 51 -52 FOR ANCHOR ANALYSIS PROVIDE 1/8" THICK ALUM. SHEAR CLIP W/1112" TALL LEGS, SNUG-FIT IN MULLIONS & W/ (2) -1/4" DIA. HIL Tl KWIK HUS-EZ CONCRETE SCREW ANCHORS WI 2 1/2" MIN. EMBEDMENT, 2 1/2" MIN. SPACING & 3 1/4" MIN. EDGE DISTANCE@ CONCRETE SILL OF DOOR MULLIONS AS SHOWN ABOVE ==> O.K. GERARD HOMER AND ASSOCIATES 2374 WEST WHITENDALE AVE., VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com BY:> D.W.W. DATE: 6/18/14 SUBJECT WESTFIELD THEATE_R SHEET NO. JOB NO. 51 CHKD. BY: ____ DATE: CENTEX GLAZING 14157 STRENGTH DESIGN OF ANCHORAGE TO CONCRETE (By Ronald.Cook -Published By PCA OR APPENDIX D, 318) APP D d0= 0.25 diameter in inches Bolt material: CARBON STEEL fc'= 3000 psi @ 28 days n= 1 No. of Anchors Nu= 0 kips Vu= 0.994 kips Np,cr or uncr= 1.166 kips (or 'N/A' per ESR) k (kcr or kuncr) = 17 D.5.2.2 ·or ESR ESR 3027 cracked concrete (Y or N) Y (fc'/2500)A0.5= 1.095 ACTUAL EMBED.= 2.5" EFF. EMBED.= 1.92 inches D.5.1.2 D.6.1.2 nNp,fc= 1.277 kips ACTUAL EDGE DIST = 3.25 inches MIN. SLAB THICKNESS = 6 inches DO LOADS INCLUDE SEISMIC LOADS N Y FOR YES & N FOR NO Steel Strength in Tension and Shear (Tension AC/ 318 D.5.1 & D.6.1 Shear) . Ase= 0.045 PER ESR or Eff. Area in in2 ( Table 2, pg. 7 of ESR) fut= 134 ksi PER ESR Table 2, pg.7 fy= 107 ksi PER ESR Table 2, pg.7 <j>= 0.65 for Steel Tension failure modes x 0. 75 FOR SEISMIC = <J>= 0.6 for Steel Shear failure modes x 0.75 FOR SEISMIC= n<J>Ns= <j>nAsef ut = 3.920 kips n<j>V5= lj>n0.6A5efut= 2.171 kips n<J>Ase1.sfya = n<j>0.6A581 _9fya= 5.947 3.293 kips kips 0.65 0.6 ConcreteBreakout Strength of Fastener in Tension and Shear (Tension AC/ 318 D.5 & D.6 Shear) (Tension see ACI 318 Figures RD.4.2.2(a), pg. 387 and RD.5.2.1 (a), pg 391) her 1.92 inches 1.5*heF 2.88 Ano= 33.2 6,1.S t t.,i~ Xz_,ii (z)) :::AN= 23. 789 (fig RD.5.2.2(a) App D) Ca.min= 3.25 sq. in. D.5.2.1 inches D.5.2.2 D.5.2.4 k*fc'"0.5*het"1 .5 Ccr= 2. 78 inches ESR 2.477 kips o/edge= 1.000 per ESR = c/Ccr-;z_ 1.5hetfCcr 0 eccentr.icty for a group of fasteners (see ACI 318 fig.RD.5.2.4, pg. 393) 1 =1/(1+2*e'N/(3*het)) \j/3= 1.0 see ESR or 1.4 if k = 17 \j/2= 1.000 =0. 7+0.3*ca,minf 1.5hef if Ca,min<=1.5hef and 1.0 if Ca,min>=1.5hef <J>= 0.65 see ESR x 0.75 FOR SEISMIC= 0.650 <J>Ncbor<J>Ncbg=lj>AN/ANo*'lf1*1,V2*1,VsNb= 1.155 X 'l'edge= 1.155 kips (ShearseeACI 318 Figures RD.4.2.2(b), pg. 387 and RD.6.2.1(c)&(d), pg 399) . Ca1= 3.25 inches 1.5*c1= 4.875 Ca2= 6 inches 0,'&15(2.J)Y,~15= Ave= 47.531 see above for figures Avco= 47.5 sq. in. Le= 1.920 in.(see D.6.2.2 or definition pg A2, Shall not exceed 8d0 = 2.00 in.) D.6.2.2 Vb= 1.689 kips = 7(LJd0)0·2*~*~*c11·5 e'v = 0 eccentricty fastener group e'v<=s/2 (see ACI 318 fig.RD.6.2.5, pg. 402) D.6.2.5 IJ-'s= 1 ::;1/(1+2*e'v/3*ca1) 'V1= 1.0 (1.0 if in tension zone and D.6.2.1 'Va= 1.000 =0.7+0.3*C8z/1 .5C81 if Ca2<=1.5Ca1 and 1.0 ifc82>=1.5Ca1 sec D.6.2.7 w/ reinf 'lf = 1.2 or 1.4 and <j>= 0.7 see ESR x 0.75 FOR SEISMIC= 0.700 1.4 in uncracked concr. ) $Vcborlj>Vcbg=q>AvcfAvco*'lf5*'lf5*1f7Vb= 1.182 kips FOR PARALLEL TO EDGES $Vcb or $Vcbg=2*<J>Av/Avo*'lf5*'lf5*1f1Vb with 1fa=1.0 ENTER Yor N FOR SHEAR PARALLEL TO EDGE N <J>Vcb or <J>Vcbg= 1.182 GERARD HOMER AND ASSOCIATES 2374 W. WHITENDALE, VISALIA, CA 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail. corn BY:; D.W.W. DATE: 6/18/14 SUBJECT WESTFIELD THEATER CHKD. BY: DATE: CENTEX GLAZING ---- STRENGTH DESIGN OF ANCHORAGE TO CONCRETE Concrete Prvout strength of Fastener in Shear (A CJ 318 D. 6. 3) see previous pg. under Concrete Breakout Strenght for q> <j>= 0.7 x 0.75 FOR SEISMIC= 0.700 her 1.92 kcp=1.0 for het<2,5 and 2.0 for he,>=2.5 in. <J>Ncb=<J>AN/ANo*'lf 1 *t2*Nb= 1.243 <!>Vcp= <!>kcpNcb = 1.243 kips Interaction of Tensile and Shear Forces {D.7) SHEET NO. JOB NO. Nu= 0 kips 0.994 kips c!>Nn= cl>Ns= <j>nAsef y = 3.920 cj>nAse1.sfya = 5.947 <!>Neb or <J>Ncbg= 1.155 q>Np,tc= 1.277 <!>Vs= <j>nAsefy = <j>n0.6Ase1.sfya= <J>Vcb or <J>Vcbg= $Veµ= <!>kcpNcb = Min <!>Nn= 1.155 kips 20% <!>Nn= 0.231 Min <!>Vn= 20% <!>Vn= Nu ~=20%fNn, then full strength in shear permitted -Anchors O.K. GERARD HOMER AND ASSOCIATES 2374 W. WHITENDALE, VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com 1.182 0.236 52 14157 1 2.171 3.293 1.182 1.243 . BY: D.W._W. DATE: 6/18/14 SUBJECT: WESTFIELD THEATER SHEET NO. 53 CHKD. BY: ____ DATE: CENTEX GLAZING JOB NO. 14157 Wind Load Angle Clips : 5 *DETAIL: 11D.3, 2/D.3, 1/D.4 RJAMB= " 1,659 # ( PG. 17) RMULLION = 3,199 # ( PG. 20 ) Plates Present on Both Sides (1 for YES, 2 for NO) : 1 ----v I SIDE= 1,600 # CLIP SKETCH: STEEL SUPPORT BY OTHERS ------------.--;---VERTICAL WINDOW FRAME MEMBER 11 3/8 II MAX. 1/2 II E70XX TYP. BOLT TO VERTICAL WITH SLOT, SEE BELOW SLOT SIZE : L1 7 (° F) Length UP/DOWN d aoLT SLOT LENGTH REQUIRED= 1.280E-05 x 100 x 233. x 2 + .750 = 1.346 PROVIDE A 1 3/4 11 !-ONG SLOT MIN., O.K. BOLT TO VERTICAL : VMAX. = 1659 LBS. PG.A1: VALLOW. SI. SHEAR = 4,418 # >!= 1,659 # O.K VALLOW. BRG. ALUM. = 2,250# ( 0.1 ) 0.125 = 1,800 # >/= 1,659# O.K PROVIDE A 3/4 11 DIA. A307 GALVANIZED BOLT TO VERTICALS. (1 SIDE@ JAMBS & THRUBOLT@ MULLIONS (DOUBLE SHEAR) -O.K.) GERARD HOMER AND ASSOCIATES 2374 WEST WHITENDALE AVE., VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com B'Y: D.W.W. DATE: 6/18/14 ·SUBJECT: WESTFIELD THEAT!=R SHEET NO. 54 CHKD. BY: ___ DATE, CENTEX GLAZING JOB NO. 14157 PLATE CLIP DESIGN : fa= 1659 / 1.94 = 855 psi k I/ r = 2.1 X 13.875/ 0.853 = 34.16 USE AISC TABLES FcrfO = (FROM TABLE 4-22, PG. 4-318) = 20300 psi ===)~ PROVIDE AN ANGLE 5" x 3" x 1/4" x 1' -3 9/8" LONG MAX. A36 STEEL.ANGLE CLIP @JAMBS & EACH SIDE OF MULLIONS, TYP. WELD TO STEEL SUPPORT .DESIGN : TRY WELD SIZE = 3/16 " WELD LENGTH = 4 II VwELD = 1659 I 4.000 = 414.75 # I in. V E70XX FILLET = .3 X .707 x .1875 x 70000 = 2784 # I in. ======)~ 3/16" E70XX FILLET WELD AS SHOWN ON PG. 53 -O.K. f MPr'j., T,/!J, fOfl. 1 C/.-/P -l~-'PLP.ti)E: SE.~~ M\t, r = 3, '-121 r~t ( lii:i,f11v'1( 1-t1./-lo6i5'~/1"l'-I := \ 1i1, 1, 4 5e~. ~ha.,p;:: li1,i(v~,m·~/e,~,l = L!J,z.tj p6; < r 174,,z. -1.A.Jc.~0 l== 1~1,1.(ii,,1-1··w~f/~,,;1.1psf):s: si1,,1:1- /\Jwei-0 = is~1.vy' C'5''t1'~ ==-~"5,1 -·vll'J ~ ' 1-1'5~1-fcS; /,"~/ (\'4rZ.) fv\,-:. 5~9 1"1 (11,~r't>n):: ~HS,$11# 'Vw1'1-0~ = '%11~,s/1,CJb 101 :. l.baG-=A-/ivi / 1JTurAl.3 ~ ~ ~~f + ~b~e,-2 =. \~ ~'8¼At1 C i1.g~--¼A"" :~ ()'f :-k IN-PLAN~ ~ef6fyHt--Ol'-, _ GERARD HOMERANOAssoclATES 2374 WEST WHITENDALE AVE., VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerse@gmail.com w·B6-rft£1,,o -n,~Nfe~ Cefl)tex CjLAt:I~ ¼ W i t-l ~ LO t\-t) CU f @ CDtt-)et2.. 1\/1 \JlUO ~ -DeHt~L~ 0/t,,B L = -3:. 1 ;'' k v.Jt.,-:::. 20," t' c.f 1. \ I l ~~ .. -R wt. =-2-0G9 # ( rlir,1-'?JPr') C.O~NEtl.: f{IUU,jot,l -, ~s.-e; 'fG.,~3 ~ AffDuMiv»~ Pt-t.i. to.AO vo ONE: '$1D6 > /, ost:: 'Z-19~ ¾ \%t'. (t~;.."DJtlt Avo1 Cif\t.."~1'\\'l&:t> ~oi.:rs _ Cf:;~--Ve;~ \f\} ~ \ ~I,/ t...D1J4, VE.R.1K-~L SLDT .--o~ ~IN/~ 3 11 SPA-C-1,-)~ -...., ~lr.\fe-\'. A~t.G. __ C-t.H' --%£. t¾N A~W:: C,t.W@ \...E:ti ~ID& OF C.O'fZ.NEP. f{JLJ1,.L1DN A-tJ() a,Nf,efl..VP(rlV6t,,Y Tl\-~ A-U.. ·r...Of\O -W ANl1t£ -_ ()~ }4= 2..0~1/l,9'-11l ~ · lobb fi; @ 'Si' 11J~pE'c-tioo/ +1::? 106~("3,'6'~ t.os46°/ b,-~e,61,rl= 1..D11--brs; < 2,J'6~1-p5) PrUOW,/r-51,e,. (~1t2)!Jty k0~3/-z.H6o t :tp1~l'o'51-:::: 1,0}'J. ,,,__ J,,o I, LE1' Cco-r -IN-fJIJ\~E seisMtC \'= '3,t.J2.~(i-3s.p=J-S'~(1-~.~ii~11)/l"I~-= o'30,) i .r 0\ ~ f30. I ~~ 'iS1},1'i111'7,::: /lD rli f b-=-i 38,l ('8,~11)c.os'1S-_;/4rGoC)/ CL-If .©:> a.ip . (:(J7' = i,o1-~~;-@ * U5c: A '511 y.. ~/jv<. 11'-l// A-36 s1&E ,_ ANc,l,f. ct.Ip @ l{::fj 'SIDG'. ANt> Pl. Yt.(.XS11 A,c. 51"Gel. ft..Af-G. © (Z.l4t\'f Sia:>~ ~~\'-.. ,, l~i~.~t ~ -C!t\SC~ WE:Lp . WEsn::1€,;o 7l-rEl\ieK .... GeN't'e)(. AL~~~ '1Jx::: 10"1/(~'4-t.t,~'' ~ 1.12,i o/i11 1.J"t.-== 1.o6~ ('8~5 111/'e,,M,~1 :: 1.~60, b #/m 56 11rvrAt.-~ 1 ii:z,iz.+ U6(J,6"-= Ubi:i il\-fi~ < 1-1~lf<#r-/w, AU.OwA-~'!.E (P4,'.}'1) trc>~v' , Pti/2. """)}..)-Pl-1\,-Je. ieioMtc. ?::: "573orl ( [Di"rl3/~, '-/2-1) -::. to'?,l,"I tl- Vx ~ }oi i. i c.ps %/( i;t't,~):;;. 11, 1? *Im 1)2 = lo-~I,~ $/nt.i~ (t!J,~1~/btG.lm--i.::::-'\11,'8~/1() '1J ror~ ~ '·f I -1tft~ <. i-~f.f '*!WI @ -* O'St A 3/1El ·1-tt tc;jC. flU-eT W EL[) JtU, l\iovtSt> ftN41.£ Tu STiz.vc.-w~ -sree1,,. . 5vWoi:z.r --elf- \ w es,-f 1 ~LO 1\1 Ef\'W(l. ... ce~e){. At.Ps11NfJ ...., t,Ji,f\-)( I fol2-C.6'6 t [f4,Zoi) f.:: 'o~f ( \1lo,1-r;J~( io,'5'11-f,'~ /1qq== 0 Vi3,-Sil: \r= K,"ls-1-,'1-I ~ \Y\= '31flf://., ,'f; II-#: < ·se-iz.e~ 'Pf'f11e~rJ _,e" f'lv\V-~Ofl.eD Aijot.,G SPLIC-~ i--.1--i-------1-------,____J.W ---1<--~::...:...· -SPL-ld -ll ii I . T 'I :, I . 'I I. I I . :1-~- l I 0 J;; ~ (~1'801'}1i)¼ z.l,,'i>11)\t-i(1,s1/ =-I {i1,'5 ,r,1- \J t:i~ = G L~•1/'2.(lo') =-~o.'i .ft. Vti)\-= }6'i?t,Z-1/iL10) = ~'1vl*' V ""'1 = ] iu1..,.g ( I li>'Y1.t w1.s,i)-=--i1-si1:lt \)Mi;;: 'M,%2~ (Mi'1/?..(/D1.S):: $'):S,'2--:lr Vi:01;~ (~c,,9-1-1,i;,))¾ {iY.ltsis,i{ = ,,1 ~ r411\-\ i V i\UOW -= ~oi.1* > 66 ,~ S//6~'f SGrelv ,~t{J~,./ Vrruw,= ~~~(@'~,,i%') ~!¼, pt.utfl, = r'i,o~ > bbr :,or .. BY: D.W.W. DATE: 6/19/14 SUBJECT: WESTFIELD THEATER CENTEX GLAZING CHKD. BY: ___ DATE: ------------ DRIFT ANALYSIS FOR BUTT-GLAZED CURTAIN WALL SYSTEMS: ELEVATION: · C/E.2 6 ACTUAL GLASS HEIGHT 2 6ALLOWABLE (WORST CASE) STORY DRIFT X STORY HEIGHT = 8.98 2 SHEET NO. 58 JOB NO. 14157 Drift_ButtGlazed.xls i----W= 0.25 SEA.L JOINT DIMENSION ALLOWABLE LATERERAL MOVEMENT ELEVATION 8 = V (1.5 w)2 -W2 A-A 6= J ( 2 X 0.25) 2 -(0.25) 2 = 0.433 II ALLOWABLE DRIFT PER LITE = 2 6. = 2 ( 0.433 11 ) = 0.866 11 GLASS POCKET @ JAMBS = 0.25 " 0.25 < 0.433 11 • • • 6GOVERNING = 0.250 11 ALLOWABLE STORY DRIFT = (2) ( &ovERNING ) ( STORY HEIGHT ) MAX. GLASS HEIGHT -(2) ( 0.250 11 ) 8.98 33.67 1.87 II = =====11111.-1.87" ALLOWABLE FOR WINDOW SYSTEM IS GREATER THAN > 1.5".FOR BUILDING DM -BUTT-GLAZED CURTAIN WALL SYSTEMS ARE O.K. GERARD HOMER AND ASSOCIATES 2374 WEST WHITENDALE AVE., VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerstructengr@sbcglobal.com 1.5 II O.K. BY: 0.W.W. DATE: 6/19/14 SUBJECT: WESTFIELD THEATER CENTEX GLAZING SHEET NO. 59 ---CHKD. BY: DATE: JOB NO. 14157 --- DRIFT ANALYSIS FOR BUTT-GLAZED CURTAIN WALL SYSTEMS: ELEVATION: M/E.7, M.1/E.7 (WORST CASE) STORY DRIFT = ,6_ ACTUAL GLASS HEIGHT 2 X . STORY HEIGHT ,6_ ALLOWABLE ELEVATION ,6_: J ( 2 X 0.25) 2 -(0.25) 2 = 0.433 II 4.833 X 1.5 2 18 MULLION IN DIPLACED POSITION ---W= 0.25 SEAL JOINT DIMENSION !:::. ---ALLOW.ABLE LATERERAL MOVEMENT 6 = V (1.5 w)2 -w2 A-A ALLOWABLE DRIFT PER LITE; = 2 .6_ = 2 ( 0.433 11 ) = 0.866 11 Gl.,ASS POCKET @ JAMBS = 0.25 11 0.25 < 0.433 11 • • • 6_ GOVERNING = 0.250 II ALLOWABLE STORY DRIFT= (2) { ~oveRNING ) ( STORY HEIGHT) MAX. GLASS HEIGHT Drift_ButtGlazed.xls = ( 2 ) C o.2so 11 ) 18 1.86 II > 1.5 11 O.K. = 4.833 ===11111• 1.86" ALLOWABLE FOR WINDOW SYSTEM IS GREATER THAN 1.5" FOR BUILDING DM -BU1T-GLAZED CURTAIN WALL SYSTEMS ARE O.K. GERARD HOMER AND ASSOCtATES 2374 WEST WHITENDALE AVE., VISALIA, CA. 93277 PH.: 559-734-6675 FAX: 559-734-5232 e-mail: ghomerstructengr@sbcglobal.com '· B. Unified Coarse Threads TABLES SAE Grade 2 Steel for Diameters Up thru 9/16" ASTM A 307 Steel for Diameters 5/8" and Over D Minimum Material Thickness to Nominal A(S) A(R) Allowable Shear Bearing (Pounds) Nominal Allowable Equal Tensile Capacity of Fastener Thread Thread Tensile Stress Thread Tension (In.) Diameter& Diameter Area Root Area (Pounds) Thread/Inch (Sq. In.) (Sq.In.) Single Double l/8''St. l/8"AI. l/8"AI. (Inch) (Pounds) (Pounds) A36 6063-T5 6063-T6 A36 6063-TS 6063-16 #6-32 0.1380 0.0091 0.0078 269 133 267 1201 276 414 0.101 0.211 0.154 #8-32 0.1640 0.0140 0.0124 414 212 424 1427 328 492 0.128 0.280 0.202 #10-24 0.1900 0.0175 0.0152 518 260 520 1653 380 570 0.136 0.286 0.209 #12-24 0.2160 0.0242 0.0214 716 366 731 1879 432 648 0.159 0.344 0.248 1/4-20 0.2500 0.0318 0.0280, 941 479· 957 2175 500 750 0.180 0.385 0.279 5/16-18 0.3125 0.0524 0.0469 1551 802 1603 2719 625 938 0.225 0.492 0.35~ 3/8-16 0.3750 0.0775 0.0699 2294 1195 2389 3262 750 1125 0,268 0.537 0.425 7/16-14 0.4375 0.1063 0.0961 3146 1642 3285 3806 875 1313 0.311 0.740 0.494 1/2-13 O.SOQO 0.1419 0.1292 4200 2208 4416 4350 1000 1500 0.357 0.860 0.571 9/16-12 0.5625 0.1819 0.1664 5384 2844 5687 4894 1125 1688 0.399 0.965 0.640 5/8-11 0.6250 0.3068 0.2071 6136 3068 6136, 5437 1250 1875 0.411 0.985 0.655 3/4-10 0.7500 0.4418 0.3091 8836 4418 8836 6525 1500 2250 0.484 I.I 70 0.766 7/8-9 0.8750 0.6013 0.4286 12026 6013 12026 7612 1150 2625 0.555 1.348 0.892 1-8 1.0000 0.7854 0.5630 15708 7854 15708, 8700 2000 3000 0.627 1.526 1.010 SAEGRADE2 ASTM A 307 For Diameters up thru 9/16" F. (Min. Ultimate Tensile Strength) 74,000psi 60,000 psi* A(R) ~ 0.7854[D-1.2~69 ] 2 F, = 0.40Fu F; (Allowable Tensile Stress) 29,600 psi 20,000 psi• F, (Allowable Shear Stress) l7,090psi 10,00!J'psi• Allowable tension= 0.40Fu [A(S)) A(S) = 0.7854[D. 0.9~43] 2 Fv= ~O Fu ¥3 Allowable shear (Single) = :;;.o F.[A(R)) --- TABLE6 : SAE Grade 5 Steel for Diameters Up thru 9/16" ASTM A 449 Steel for Diameters 5/8" and Over Minimum Material Nominal DNominal A(R) Allowable Shear Bearing (Pounds) Thickness to Equal Thread Thread A(S) Tensile Thread Allowable Tensile Capacity of Diameter& Diameter Stress Area Root Area Tension Fastener (In.) Thread/Inch (Inch) (Sq. In.) (Sq. In.) (Pounds) Single Double 1/8" SL 1/8" Al. .(Pounds) (Pounds) A36 6063-T5 1/8" Al. 6063-T6 A36 6063-T6 #6-32 0.1380 0.0091 0.0078 437 216 432 120r 276 414 0.144 0.231 #8-32 0.1640 0.0140 0.0124 672 344 687 1427 328 492 0.188 0.308 #10-24 0.1900 0.0175 0.0152 840 421 842 1653 380 5?0 0.195 0.3i3 #12-24 0.2160 0.0242 0.0214 1162 593 1186 1879 432 648 0.232 0.377 1/4-20 0.2500 0.0318 0.0280 1526 776 1552 2175' 500 750 0.261 0.422 5/16-18 0.3125 0.0524 0.0469 2515 1300 2599 2719 625 938 0.330 0.539 3/8-16 0.3750 0.0775 0.0699 3720 1937. 3874 . 3262 750 1125 0.396 0.651 7/16-14 0.4375 0.1063 0.0961 5102 2663 5326 3806 875 1313 0.460 0.756 1/2-13 0.5000 0.1419 0.1292 6811 3580 7161 4350 1000 1500 0.532 0.878 9il6-J2 0.5625 0.1819 0.1664 8731 4611 9223 4894 1125 1688 0.596 0.986 5/8-11 0.6250 0.3068 0.2071 12149 6259 12517 5437 1250 1875 0.732 1.220 3/4-IO 0.7500 0.4418 0.3091 17495 9013 18025 6525 1500 2250 0.867 1.452 7/8-9 0.8750 0.6013 0.4286 2381 I 12267' 24533 7612 1750 2625 0.998 1.674 1-8 1.0000 0.7854 0.5630 31102 15022 32044 8700 2000 3000 1.129 1.894 SAE GRADE 5 ASTM A 449 For Diameters up thru 9/16" A(R) = 0.7~54 [o · 1.2i69 r F,= 0.40Fu Fu (Min. Ultimate Tensile Strength) 120,000 psi 120,000 psi• F, (Allowable Tensile Stress) 48,000psi 39,600 psi• Allowable tension = 0.40Fu [ACS)] F, (Allowable Shear Stress) 27,713 psi 20,400 psi• A(S) = 0.7854 [o -0.9~43 r F -0.40 F v-¥3 u Allowable shear (Single) = s;.o Fu[A(R)J -" F9r Q1ametcrs 5/8" and over: A(S) = 0. 7858D'• • For fasteners 5/8" diameter and greater, values, formulas and procedures used are taken from AISC, "Manual of Steel Construction." 9th Edition (See page #23 for additional notes.) AAMA TIR A9-91 Page24 At ;, • + ~~ -''"'"'l ·~-.:·~' .. '!.iJ ~"'"' -' '"'•.·--,.!~ Es ICC EVALUATION · :.:'.1 ~-SERVICE Most Widely Accepted and Trusted ~ • _. A ICC-ES Evaluation Report www.icc-es.org I (800) 423-6587 I (562) 699-0543 DIVISION: 06 00 00-WOOD, PLASTICS, AND COMPOSITES Section: 06 05 23-Wood, Plastic, and Composite Fastenings REPORT HOLDER: SIMPSON STRONG-TIE COMPANY INC. 5956 WEST LAS POSIT AS BOULEVARD PL!=ASANTON, CALIFORNIA94588 (800) 560-9000 www.strongtie.com EVALUATION SUBJECT: SIMPSON STRONG-DRIVE SOS SERIES WOOD SCREWS 1.0 EVALUATION SCOPE Compliance with the following codes: • 2012, 2009 and 2006 International Building Code® (IBC) • 2012, 2009 and 2006 International Residential Code® {IRC) Properties evaluated: • Structural • Corrosion Resistance 2.0 USES The Simpson Strong-Drive SOS series wood screws described in this report are used for steel-to-wood atid wood-to-wood connections that are designed in accordance with the IBC and IRC. Screws having the proprietary Doubie Barrier Coating (i.e., those with a four- cut point) may be used where fasteners are required to exhibit corrosion resistance when exposed to adverse environmental conditions and7or in chemically treated wood (subject to the limitations of Sections 4.2, 5.2 and Table 6), and are alternates to hot-dip zinc gc;1lvanized .fasteners with a coating weight in compliance with ASTM A153, Class D. Screws having the proprietary Double Barrier Coating have been evaluated for use with wood chemically treated with waterborne alkaline copper quaternary, Type D (ACQ-0). 3.0 DESCRIPTION 3.1 General: The SOS series wood screws are manufactured using a standard cold-forming process, and consist of either heat- treated carbon-steel or type 316L stainless steel. The screws have rolled threads, spaced 10 threads per-inch ~ t (" ' ESR-2136 Reissued November 1, 2013 This report is subject to renewal January 1, 2015. A Subsidiary of the International Code Council® (0.393 thread per millimeter), a plain (unslotted) hex washer head, and either a Type 17 drill (fluted) point or a proprietary four-cut (square-shank) point. The length of threads is approximately equal to two-thirds of the nominal screw length. The screw's major and minor diameters are 0.250 inch and 0.185 inch (6.4 mm and 4.7 mm), respectively, and the unthreaded shank diameter is 0.242 inch (6.1 mm). Table 1 provides a description of screws recognized in this report, and specifies the screws' nominal bending yield strength and allowable tensile and shear loads. See Figure 1 for a diagram of the SDS series wood screw. 3.2 Materials: 3.2.1 SDS Series Wood Screws: The SOS series wood screws are manufactured from SAE J403 low-carbon steel wire, grade 1022; SAE J403 low-carbon-alloy steel wire, grade 10821; or from type 316L stainless steel complying with ASTM A493. The carbon steel screws with the type 17 point are supplied with a yellow zinc dichromate finish. The carbon steel screws with the four-cut point have a proprietary coating that is identified as a Double Barrier Coating. The screws can be supplied with a hot-dipped galvanized (HOG) coating having a minimum average zinc coating thickness of 0.0021 inch (0.053 mm) and a minimum individual zinc coating thickness of 0.0017 inch (0.043 mm) in accordance with ASTM A153. 3.2.2 Wood Members: Wood side and main members must have a moisture content of less than 19 percent both at time of screw installation, and in service. Wood members may be either solid-sawn lumber having an assigned specific gravity of 0.50 or greater, or engineered wood {e.g., LVL, PSL, and LSL) having an equivalent specific gravity of 0.50 or greater. Assigned specific gravity for solid-sawn lumber and wood structural panels must be determined in accordance with Tables 11.3.3A and 11.3,3.B, respectively, of the 2012 ANSI/AWC National Design Specification for Wood Construction (NDS-2012) (Tables 11.3.2A and 11.3.2B of the 2005 NOS). The thickness of the wood main member, tm, must be equal to or greater than the screw length less the thickness of the side member. For wood-to-wood connections, the actual thickness of the wood side member, ts, must be either 11 /2 or 13'4 inches (38.1 or 44.5 mm), as specified in Table 3. The wood side member thickness is an actual value, and is not a minimum or maximum value. 3.2.3 Steel Members: Steel side members must have a minimum tensile strength, Fu, equal to 45 ksi (310.1 MPa) when the steel member design thickness (base-metal thickness exclusive of any coatings) is from 0.0584 inch to 0.1795 inch (1.5 to 4.5 mm), i.e., Nos. 16 gage to 7 gage, ICC-ES Evaluatio11 Reports are not to be construed as representing aesthetics or ally other attributes not specifically addressed, nor are they to be construed as an endorseinent of the subject of the report or a recommendation for its use. There is no waJ'l"anty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product coveied by the report. • == ,ooo Copyright© :1013 Page 1 of5 Bl ESR-2236 I Most Widely Accepted and Trusted and a minimum Fu equal to 52 ksi ·(358.3 MPa) when the steel member design thickness is 0.2405 inch (6.1 mm), i.e., No. 3 gage. The hole in the steel side member for the SOS screw must be predrilled or prepunched, and must have a standard round hole diameter no greater than 0.273 inch (6.9 mm) when the steel member thickness is from 0.0584 to 0.1795 inch (1.48 to 4.56 mm), and no greater than 0.305 inch (7.6 mm) when the steel member thickness is 0.2405 inch (6.1 mm). Hole sizes may deviate from these limitations when the screws are recognized in a current evaluation report for use with a specific steel member with larger holes. 4.0 DESIGN AND INSTALLATION 4.1 Design: 4.1.1 General: Reference lateral and withdrawal design values in the report are for allowable stress design, and must be multiplied by all applicable adjustment factors, as applicable to wood screws, in accordance with the NDS to determine adjusted design values. When designing a connection, the structural members must be checked for load-carrying capacity in accordance with Section 10.1.2 of the NOS, ~nd local stresses within multiple~fastener connections must be checked against Appendix E of the NOS to ensure the capacity of the connection and fastener group. Connections containing multiple screws must also be designed in accordance with Sections 10.2.2 and 11.6 of the NOS. Where the screws are subjected to combined lateral and withdrawal loads, conflections shall be designed in accordance with Section 11.4.1 of the NOS. Design of connections having steel side members must comply with Section 10.2.3 of the NOS. Structural members forming the connection must be designed in accordance with the code. 4.1.2 Reference Lateral Design Values: Reference lateral (Z) design values for SOS series wood screws for single shear steel-to-wood and wood-to-wood connections loaded perpendicular and parallel to grain are shown in Table 2 and Table 3, respectively. Minimum connection geometries must comply with Table 4. 4.1.3 Reference Withdrawal Design Values: Reference withdrawal {W) design values for SOS series wood screws must be derived according to provisions for wood screws in the NOS. For purposes of determining NbS tabulated· withdrawal design values, the SOS series screws are classified as a No. 14 wood screw. The thread lengths for the SOS series screws are provided in Table 1 of this report. The withdrawal design value in pounds per inch of thread penetration into the side grain of the main member of wood or engineered wood having a minimum specific gravity of 0.50 is shown in Table 5 of this report. 4.1.4 Pull-through Design · Values: Pull-through (pull-over) design values are outside the scope of this report. 4.2 Installation: SOS series wood screws are installed with a 3/s-[nch (9.5 mm) hex head driver and a low-speed drill. Installation may be performed without predrilling wood members. Edge distances, end distances and spacing of the screws must Page 2 of5 be sufficient to prevent splitting of the wood, or as required by Table 4 of this report, whichever is more restrictive. When use is in engineered wood products, the minimum fastener end and edge distances and spacing must be in accordance with Table 4 of this report or in accordance with the recommendations of the engineered wood product manufacturer, whichever is more restrictive. The bottom of the screw head must be installed flush to the surface of the member being connected. The screws must not be overdriven. The SOS wood screws with a proprietary Double Barrier Coating (i.e., those with a four-cut point) are recognized for use in wood treated with waterborne alkaline <::Opper quaternary, Type D (ACQ-D), to a maximum retention level of 0.40 pcf (6.4 kg/m3), or in other treated wood products that have been demonstrated to have lower levels of corrosivity. These fasteners must be limited to use in the applications and limitations defined in Table 6. 5.0 CONDITIONS OF USE The Simpson Strong-Drive SOS-series wood screws described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions: 5.1 When the capacity of a connection is controlled by fastener or side plate metal strength, rather than wood strength, the allowable strength of the connection is not permitted to be multiplied by the adjustment factors specified in the NOS. 5.2 Use of fasteners in locations exposed to saltwater or saftwqter spray is outside the scope of this evaluation report. &.3 The SOS series wood screws are manufactured under a quality control program with inspections by ICC Evaluation Service, LLC .. 6.0 EVIDENCE SUBMITTED 6.1 Data in accordance with the ICC-ES Acceptance Criteria for Alternate Dowel-type Threaded Fasteners (AC233), dated June 2012. 6.2 Data in accordance with the ICC-ES Acceptance Criteria for Corrosion-resistant Fasteners and Evaluation of Corrosion Effects of Wood Treatment Chemicals (AC257), dated October 2009 (editorially revised August2013). 7.0 IDENTIFICATION The packaging for the SOS series wood screws is labeled with the designation "Simpson Strong-Drive SOS," the Simpson Strong-Tie Co. name and address, the fastener size, point type (four-cut or type 17), the name of the inspection agency (ICC-ES), and the ICC-ES evaluation report number (ESR-2236). Each screw head is marked with the not-equal-to symbol (;,!), and the letter S followed by a number designating the screw length, as shown in Table 1. ESR-2236 I Most Widely Accepted and Trusted TABLE 1-SDS SERIES WOOD SCREW SPECIFICATIONS, ALLOWABLE BENDING YIELD STRENGTH, AND FASTENER ALLOWABLE STEEL STRENGTH FASTENER DESIGNATION HEAD SCREW SPECIFICATIONS ALLOWABLE {based on MARKING (inches) BENDING YIELD point geometry) STRENGTH3, Carbon Steel Stainless Steel Screw Thread Unthreaded Minor Thread Fyb Length, Length 1, Shank (root) {psi) Type 17 Four-Cut Type 17 or L1 T Length, Diameter2, Point Point Four-Cut Point L1-T D, SOS 1/4x11'2 SDS25112 SDS25112SS S1.5 11/2 1 1,2 SDS1/4X13/4 SDS25134 -S1.75 13/4 11'4 1/2 SDS1/4X2 SDS25200 SDS25200SS S2 2 11'4 3/4 SDS1/4xi/2 S0S25212 SDS25212SS S2.5 21/2 11/2 1 SDS1/4x3 S0S25300 S0S253008S S3 3 2 1 SDS1/4x31/2 31/2 21/4 11/4 0.185 164,000 SDS25312 S0S253128S S3.5 SDS1/4x41'2 SDS25412 -S4.5 41/2 23'4 13/4 SDS\x5 S0S25500 -S5 5 23/4 21/4 SD_S1/4X6 S0S25600 -S6 6 31'4 23/4 SDS1/4x8 S0S25800 -S8 8 31/4 43/4 Page 3 of 5 FASTENER ALLOWABLE STEEL STRENGTH4 {lbf) Tension Shear 1,430 800 For SI: 1 inch = 25.4 mm, 1 psi= 6.89 kPa, 1 lbf = 4.45 N. 1Length ofthread·includes tip. See Figure 1. 2Minor thread diameter shown-in the table is the nominal diameter with manufacturing tolerances from a minimum of 0.183 inch to a maximum of 0.193 inch. 3Bending yield strength determined in accordance with ASTM F1575 using the minor thread (root) diameter, D,. 4Allowable fastener loads are based on steel properties of the screw. Refer to Tables 2 and 3 for allowable reference lateral (Z) design values for steel-to-wood and wood-to-wood connections, respectively. · TYP.E 17 fill'H DR ttJUR C1JT TIP ',,i1TH SEP.f-;1\1£11 lfiREMS § _ r 0.242 ~l/4-1( ~ ~r~!ct, m;c_'~-;--.=!=c:::===·;:::;;::=iF--.-~------'::.=i--l,UgU.L\µ,.U;i.4-\4U,~ ~...! _ 0.250 I . t D.250 31'+2·,,-L 0,190---! D.240 -c,· ~n ru~ 0,050 OJJE:O 0.250 i---~-----Ll ---------i FIGURE 1-SDS SCREW ESR-2236 I Most Widely Accepted and Trusted SCREW LENGTH (inches) 11/2 13/4 2 i/2 3 31/2 41/2 5 6 8 TABLE 2-REFERENCE LATERAL DESIGN VALUES (2) FOR SINGLE SHEAR STEEL-TO-WOOD CONNECTIONS WITH SDS SERIES WOOD SCREWS1'2 STEEL SIDE MEMBER DESIGN THICKNESS3'4, ts (inches) 0.0584 0.0721 0.1026 0.1342 0.1795 (No. 16 gage) (No.14 gage) (No.12 gage) . (No. 10 gage) (No. 7 gage) Lateral Design Value (2)5;6•7 (lbs) 250 250 250 250 250 250 250 250 250 250 250 290 290 290 290 250 390 390 420 420 250 420 420 420 420 250 420 420 420 420 250 420 420 420 420 250 420 420 420 420 250 420 420 420 420 250 420 420 420 420 For SI: 1 inch= 25.4 mm, 1 lbf = 4.45 N, 1 ksi = 6.89 MPa. Page4 of5 0.2405 (No. 3 gage) 250 250 290 420 420 420 420 420 420 420 1The side member must be steel having a minimum tensile strength (Fu) equal to 45 ksi when the steel member design thickness is from 0.0584 inch to 0.1795 inch, and a minimum Fu equal to 52 ksi when the steel member design thickness is 0.2405 inch. 2The main member must be wood or engineered wood having a minimum assigned specific gravity of 0.50, such as Douglas fir-larch, and must be sufficiently sized to accommodate the screw length less the thickness of the side member. Values are also applicable to engineered wood (e.g., LVL, PSL, and lSL) having an equivalent specific gravity of 0.50 or greater. 3rhe uncoated minimum steel thickness of the cold-formed product delivered to the jobsite must not be less than 95 percent of the tabulated design thickness, t •. 4Holes in the steel side-member must be predrilled or prepunched. Hole diameter must comply with Section 3.2.3 of this report. 5Tabulated lateral design values (Z) must be multiplied by all applicable adjustment factors, including the load duration factor, Go, from the NOS as referenced in the IBC or IRC. 6Screws must be installed into the side gr.ain of the wood main member with the screw axis perpendicular to wood fibers. 7Minimum fastener penetration must be equal to the screw length less the thickness of the metal side plate. TABLE 3-REFERENCE LATERAL DESIGN VALUES (2) FOR SINGLE SHEAR WOOD-TO-WOOD CONNECTIONS WITH SDS SERIES WOOD SCREWS SCREW LENGTH WOOD SIDE MEMBER ACTUAL THICKNESS1, ts (inches) (inches) 11/2 13/4 Lateral Design Value (2)2•3•4•5 (lbs) 21/2 190 - 3 280 - 31/2 340 340 41/2 350 340 5 350 340 6 350 340 8 350 340 For SI: 1 inch= 25.4 mm, 1 lbf = 4.45 N. 1The actual thickness of the wood side member, t., must be either 11/2 or 1% inches, as specified in the table. The wood side member thickness is an absolute value, and is not a minimum or maximum value. . 2The tabulated lateral design values (Z) are based on wood members having the same assigned specific gravity of 0.50, such as Douglas fir- larch. Values are also applicable to engineered wood (e.g., LVL, PSL, and LSL) having an equivalent specific gravity of 0.50 or greater. 3The wood main member must be equal to or greater than the screw length less the thickness of the wood side member. 4Tabulated lateral design values {Z) must be multiplied by all applicable adjustment factors, including the load duration factor, G0, from the NDS as referenced in the IBC or IRC. 5Screws must be installed into the side grain of the wood members with the-screw axis perpendicular to wood fibers. TABLE 4-CONNECTION GEOMETRY CONDITION1 MINIMUM DISTANCE OR SPACING (in.) Edge distance· Perpendicular to grain loading 11/2 Parallel to grain loading 1 Perpendicular to grain loading 4 End distance Paralll?I to grain loading 3 Between fasteners in a row 3 Spacing Between rows 3 Between staggered rows 11/2 For SI: 1 inch ::: 25.4 mm. 1Edge distances, end distances and spacing of the screws must be sufficient to prevent splitting of the wood, or as required by this table, whichever is the more restrictive. El;iR-2236 I Most Widely Accepted and Trusted Page 5 of5 TABLE 5-SDS SERIES WOOD REFERENCE WITHDRAWAi,. DESIGN VALUE FOR SCREWS INSTALLED IN THE SIDE GRAIN OF A WOOD OR STRUCTURAL COMPOSITE LUMBER MAIN MEMBER HAVING A MINIMUM SPECIFIC GRAVITY OF 0.50 SOS SERIES WOOD SCREW DIMENSIONS {in.) REFERENCE WITHDRAWAL DESIGN VALUE2·3, W Screw Length, L 1 Thread Length 1, T {lbs/inch) 11/2 1 1% 11/4 2 11/4 21/2 11/2 3 2 31/2 21/4 172 41/2 23/4 5 23h 6 31h 8 31/4 For SI: 1 inch = 25.4 mm, 1 !bf/inch= 4.44 kPa. 1The tabulated reference withdrawal design value (W = 172 lbs/inch) is in pounds per inch of the thread penetration into the side· grain of the . main member. 2Tabulated reference withdrawal design values (W;: 172 lbs/inch) must be multiplied by all applicable adjustment factors from the NOS as referenced in the IBC or IRC. 3Embedded thread length is that portion held in the main member including the screw tip. TABLE 6-RECOGNIZED EXPOSURE CONDITIONS FOR SIMPSON STRONG-TIE SOS FASTENERS EXPOSURE TYPICAL APPLICATIONS RECOGNITION LIMITATIONS CONDITION Limited to use where equilibrium moisture content of the 1 Treated Wood in dry use applications chemically treated wood meets the dry services condition as described in the NOS 3 General construction Limited to freshwater and chemically treated wood exposure, e.g., no saltwater exposure ~cc .. ES Evaluation Report W'l!llW.icc~es.org I (800) 423-6587 I (562) 599 .. 0543 DIVISION: 05 00 00-METALS Section: 05 05 23-Metal Fastenings REPORT HOLDER: INFASTECH DECORAH LLC ELCO CONSTRUCTION PRODUCTS 1302 KERR DRIVE DECORAH, IOWA 52101 (800) 435-7213 WV'JW.elcoconstruction.com infoElco@infastech.com EVALUA,TION SUBJECT: DRIL-FLEX® SELF-DRILLING STRUCTURAL FASTENERS ADDITIONAL LISTEE: HILTl,INC. 5400 SOUTH 122No ,EAST AVENUE TULSA, OKLAHOMA 7.4146 (800) 879-8000 VJ\.YW.us.hiltl.com PRODUCT NAME: KWJK-FL~ SELF DRILLING SCREWS 1.0 EVAL\JATION SCOPE Compliance with the following codes: • 2012, 2009 and 2006 lnternationai Bw1ding Code® (IBC) • 2012 and 2009 International Residential Code® (IRC) property evaluated: Structural 2.0 USES Elco Dril-Flex® and Hilti ·Kwik-Flex® Self-Drilling Structural Fasteners are used in engineered connections of cold~ formed steel members. The fasteners may be used under the IRC when an engineered design is submitted for review in accordance with IRC Section R301.1.3. 3.0 DESCRIPTION 3.1 General: Elco Dril-Flex® and Hilti Kwik-Flex® Self-Drilling Structural Fasteners are proprietary, self-drilling tapping screws that have a dual heat treatment and that are coated with a· corrosion-preventive coating identified as Silver Stalgard®. The drill point and lead threads of the screws are heat- treated to a relatively_ high hardness to facilitate drilling and thread forming. The balance of the fastener is treated to a lower hardness complying with the hardness limits for SAE Reissued October 1, 2013 This report is subject to renewal September 1, 2014. A Subsidlary of the International Code Council® J429 Grade 5 screws and the hardness limits for ASTM A449-10 Type 1 screws. The threaded portion of.the screw with the lower hardness is considered the load-bearing area, used to transfer loads between connected elements. See Figures 1D, 11 and 12. Table 1 provides screw descriptions (size, tpi, length), nominal diameters, head styles, head diameters, point styles, drilling capacities and length of load-bearing area. 3.1,1 EDX445 (Type 1): The EDX445 screw is a #10, coarse threaded screw with a phillips pan head. See Figure 1. 3.1.2 EAF430, EAF460, EAF470, EAF480 {Type 2): These screws are #10, coarse threaded screws with an indented hex washer head. See Figure 2. 3.1.3 EAF621, EAF641, EAF681, EAF690, EAF715 (Types 3 and 4): These screws are #12, coarse threaded screws with an indented hex washer head. See Figure 3. 3.1.4 EAF755 {Type 5): The EAF755 screw is a #12, fine threaded screw with an indented hex washer head. See Figure 4. 3.1.5 EAF816, EAF841, EAF846 (Type 6): These screws are 1'4-inch-diameter, coarse threaded screws with an indented hex washer head. See Figure 5. 3.1.6 EAF865, EAF876, EAF886, EAF890 (Type 7): These screws are 1/4-inch-diameter, fine threaded screws with an indented hex washer head. See Figure 6. 3.1.7 EAF888 (Type 8): The EAF888 screw is a 1 /4-inch- diameter, fine threaded screw with an indented hex washer head. The lead threads have a design identified by the manufacturer as Round BodyTaptite®. See Figure 7. 3.1.8 EAF900, EAF910 (Types 9 and 10): These screws are 1/4-inch-diameter, partially threaded, fine threaded screws with an indented hex washer head. 3.1.9 EAFS40 (Type 11): The EAF940 screw is a 5/16- inch-diameter, fine threaded screw with an indented hex washer head. The lead threads have a design identified by the.manufacturer as Round Body Taptite®. See Figure 8. 3.1.10 EAF960, EAF970 (!fype 12): These screws are 5/16-inch-diameter, fine threaded screws with an indented hex washer head. At the lead end of the screw, the shank of the screw is notched to form a shank slot. See Figure 9. 3.2 Screw Material: ·The screws are formed from alloy steel wire complying with ASTM F2282 Grade IFl-4037. The screws are heat-treated to a through-hardness of 28 to 34 HRG. The drilling point and lead threads are heat-treated to a minimum of 52 HRC. ICC-ES Evaluation Repo,ts are not to be construed as representing aesthetics or a11y otlier aiJrib111es not specifically addressed, nor are they to be co11$ll'Jled as m, e11dor.~eme111 .of the .mbject oft/ze report or a recommendatio,ifor it,· use. There i.~ ,zo wan-tmly by ICC Evoluatio11 Sen-ice. I.LC, express or implied, a.~ • to any finding or other liiatter in this report, 01· as to WO' prod11cft:overed by tlte repo,t · Copyright© 2013 Page 1 of 6 Cl ESR-3332 I Most Widely Accepted andTrusted """".t. m •= == m.w =-= m ==~======·~~~ ==n -===m 3.3 Connected Material: The connected steel materials must comply with one of the standards listed in Section A2 of AISI S100 (AISI NAS for the 2006 IBC) and have the minimum thickness, yield strength and tensile strength shown in the tables in this report. 4.0 DESIGN AND INSTALLATION 4.1 Design: Elco Dril-Flex® and Hilti Kwik-Flex® Self-Drilling Structural Fasteners are recognized for use in engineered connections of cold-formed steel construction. Design of the connections must comply. with Section E4 of AISI S100 (AISI-NAS for the 2006 IBC). Nominal and available fastener tension and shear strengths for the scr1;iws are shown in Table 2. Available connection shear, p1..dl-over and pull-out capacities are given in Tables 3, 4 and 5, respectively. For tension connections, the lowest of the available fastener tension strength, pull-over strength and pull-out strength, in accordance with Tables 2, 4 and 5, respectively, must be used for design. For shear connections, the lower of the available fastener shear strength and the shear (bearing) strength, in accordance with Tables 2 and 3, respectively, must be used for design. Connections subject to combined tension and shear loading must be designed in accordance with Section E4.5 of AISI S100 ,(AISI-NAS for the 2006 IBC). Connected members must be checked for rupture in accordance with Section ES of AISI S100. The values in the tables are based on a minimum spacing between the centers of fasteners of three times the nominal diameter of the scr~w. and a minimum distance from the center of a fastener to the edge of any connected part of 1.5 times the nominal diameter of the screw. See Table 6. When the direction to the end of the connected part is parallel to the line of the applied force, the allowable connection shear strength determined in accordance with Section E4.3.2 of Appendix A of AISI S100 (AISI-NAS for the 2006 IBC) must be considered. When tested for corrosion resistance in accordance with ASTM B117, the screws meet the minimum requirement listed in ASTM P1941, as required by ASTM C1513, with no white corrosion after three hours and no red rust after twelve hours. 4.2 Installation: Installation of Elco Dril-Flex® and Hilti Kwik-Flex® Self- Drilling Structural Fasteners must be in accordance with the manufacturer's published installation instructions and this report. The manufacturer's published instaliation instructions must be available at the jobsite at all times during installation. Screw length and point style must be selected by considering, respectively, the length of load-bearing area and the drilling capacities shown in Table 1. The f&steners must be installed without predrilling holes in the receiving member of the connection. The drilling function of the fastener rnust be completed prior to the lead threads of the fastener engaging the metal. When the total connection thickness exceeds the maximum drilling capacity shown in Table 1, clearance holes must be provided in the attached material to reduce the thickness to be drilled by the screw. Clearance holes must be 13/54, 15/64, 17/54 and 21/54 inch (5.2, 5.9, 6.7 and 8.3 mm) in diameter for #10, #12, 1/4-inch- diameter and 5'16-inch-diameter (4.7, 5.3, 6.4 and 7.9 mm) fasten~rs, respectively. The screw must be installed perpendicular to the work surface using a 1,200 to 2,500 rpm screw gun incorporating a depth-sensitive or torque- limiting nose piece. The screw must penetrate through the supporting metal with a minimum of three threads protruding past the back side of the supporting metal. 5.0 CONDITIONS OF USE The Elco Dril-Flex® and Hilti Kwilc-Flex® Self-Drilling Structural Fasteners described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this repott, subject to the following conditions: 5.1 The fasteners must be installed in accordance with the manufacturer's published installation instructions and this report. If there is a conflict between the manufacturer's published installation instructions and this report, the more severe requirements govern. 5.2 The allowable connection capacities specified in Section 4.1 are not to be increased when the fasteners are used to resist short-duration loads, such as wind or seismic forces. 5.3 The utilization of the nominal connection capacities contained in this evaluation report, for the design of cold-fonned steel diaphragms, is outside the scope of this report. 5.4 Drawings and calculations verifying compliance with this report and the applicable code must be submitted to the code official for approval. The drawings and calculations are to be prepared by a registered design professional when required by the statutes of the jurisdiction in which the project is to be constructed. 6.0 EVIDENCE SUBMITTED Data in accordance with the ICC-ES Acceptance Criteria for Tapping Screw Fasteners (AC118), dated June 2012. 7.0 IDENTIFICATION The Elco Dril-Flex® and Hilti Kwik-Flex® self-drilling tapping screws are marked with a "@>' on the top surface of the screw heads, as shown in Figures 1 through 9. Packages of self-drilling tapping screws are labeled with the report holder or listee name (Elco Construction Products or Hilti, Inc.) and address, product brand name (Dril-Flex® or l<wik-Flex®), product number or item number, size and length, point style and the evaluation report number (ESR-3332). _,E=S1..,R=~=3=!._=2"""""=M=9=2!=lM~idi ... e.;,/y=A=c=c='!P=t=e=d=a=!!_=r!_=T=1ru_s_te=~=--=====~=========·=-·= -=- TABLE 1-ELCO QRIL-FLEX ~ELF-DRILLING STRUCTURAL FASTENERS DRILLING SCREW ELCO HILTIITEM DESCRIPTION .NOMINAL HEAD HEAD POINT CAPACITY TYPE PRODUCT NUMBER (nom. size-tpi x DiAMETER STYLE1 DIAMETER STYLE {in.) NUMBER length) (in·.) (in.) Min. Max. 1 EDX445 03409732 #10-16x3/4 0.190 PPH 0.365 2 0.11 0.110 EAF430 00408123 #10-16x3/4 0.190 IHWH 0.399 3 0.11 0.150 EAF460 03489672 #10-16x11/z 0.190 IHWH 0.399 3 0.11 0.150 2 EAF470 03458234 #10-16x2 0.190 IHWH 0.415 0.11 0.150 3 EAF480 03492651 #10-16i<Z1/z 0.190 IHWH 0.399 3 0.11 0.150 EAF621 00087572 #12-14x7/a 0.216 IHWH 0.415 3 0.11 0.187 EAF641 00087646 #12-14x1 0.2i6 IHWH 0.415 3 0.11 0.187 3 EAF681 #12-14x11/2 IHWH 00087647 0.216 0.415 3 0.11 0.187 EAF690 00008595 #12-14x2 0.216 IHWH 0.415 3 0.11 0.187 4 EAF715 03011177 #12-14x3 0.216 IHWH 0.500 2 0.11 0.110 5 EAF755 03458235 #12-24x13/4 0.216 IHWH 0.415 5 0.11 0.500 EAF816 00087648 1/4-14x1 0.250 IHWH 0.500 3 0.11 0.210 6 EAF841 00087649 1/4-14x1 1/2 0.250 IHWH 0.500 3 0.11 0.210 EAF846 00008598 1/.~-14x2 0.250 IHWH 0.500 3 0.11 0.210 EAF865 03011203 1/4-20x11/a 0.250 IHWH 0.500 4 0.11 0.312 7 EAF876 00000451 1/4-20x11/2 0.250 IHWH 0.500 4 0.11 0.312 EAF886 00000452 1'4-20x2 0.250 IHWH 0.500 4 0.11 0.312 EAF890 00010436 1h,-2ox2112 0,250 IHWH 0.500 4 0.11 0.312 8 EAF888 03458236 1/4-2Qx1 3/4 0.250 IHWH 0.500 5 0.11 0.500 9 EAF900 03414194 1/4-20X33/a 0.250 IHWH 0.500 3 0.11 0.210 10 EAF910 03463594 1/4·20x4 0.250 IHWH 0.500 4 0.11 0.312 11 EAF940 03011230 5'1e·18x11/2 0.313 IHWH 0.600 3 0.11 0.312 EAF960 03006009 5/1e·24x11 /z 0.313 IHWH 0.600 4 0.11 0.312 12 EAF970 03432628 5/1a·24x2 0.313 IHWH 4 0.312 0.600 0.11 -- For SI: 1 inch = 25.4 mm. LIENGTH OF LOAD BEARING AREA2 (in.) 0.38 0.38 1.00 1.50 1.83 0.38 0.50 1.00 1.50 2.35 0.80 0.45 0.95 1.45 0.50 0.83 1.33 1.83 0.80 2.70 3.50 0.80 0.80 1.25 1 Head styles: ltiWH = Indented Hex Washer Head; PPH = Phillips Pan Head. 2The Length of Load Bearing Area is based on the length of the threaded portion of the screw that is heat treated to HRC 28-34, and represents the limit of the total thickness of the connected elements. See Sections 3. 1 and 4.2 and Figures 10 through 12 for further clarification. TABLE 2-FASTENER SHEAR AND TENSION STRENGTH, pounds-force1•2•3 SCREW SCREW NOMINAL STRENGTH ALLOWABLE STRENGTH {ASD) DESIGN STRENGTH (LRFD) (TESTED) 0=3 0=0.5 TYPE SIZE Shear,Pss Tension, Pis Shear, Pss/!l Tension, P1sfn Shear, ©Pss Tension, <l>P1, 1 #10-16 1526 2273 509 758 763 1136 2 #10-16 1463 2276 488 759 732 1138 3,4 #12-14 1992 3216 664 1072 996 1608 5 #12-24 2503 4177 834 1392 1252 2088 6 1/4-14 2692 4363 897 1454 1346 2182 7,9, 10 1/4-20 2659 4729 886 1576 1330 2364 8 1/4-20 2617 4619 872 1540 1308 2309 11 5/1a-18 4568 8070 1523 2690 2284 4035 12 5/1a-24 5471 8757 1824 2919 2736 4379 For SI: 1 inch = 25.4 mm, 1 !bf= 4.4 N. 1 For tension connections, the lower of the available fastener tension strength, pullover strength, and pull-out strength found in Tables 2, 4 and 5, respectively, must be used for design. 2For shear connections, ti,e lower of the available fastener shear strength and the allowable shear {bearing) capacity found in Tables 2 and 3, respectively, must be used for des1gn, 3Nominal strengths are based on laboratory tests. --"'==-========· ===================P=a='g==e=~-, =~=f=G TABLE 3-SHEAR (BEARING} CAPACITY Of SCRE.1/"JT CONNECTIONS, pmmu:11s-force1'2,3,4,5 SCREW SCREW NOMINAL DESIGN THICKNESS (in.)6 TYPE DESIGNATION DIAMETER 0.075-0.075 1/s"-3/15" 3/1s"·1'4" 1//'-0.105" {in.} 0.048-0.048. 0.048-0.075, 0.050-0.060 ALLOWABLE STRENGTH (ASD) 1 #10-16 0.190 289 289 404 ---- 2 #10-16 0.190 369 395 453 ---- 3,4 #12-14 0.216 356 573 513 497 --- 6 1/,4-14 0.250 317 626 520 661 638 -- 7,8 1'4-20 0.250 3867'8 5267'8 5338 6708 5959 6249 5549 11 5/w18 0.313 408 622 561 891 --- 12 6/1,24 0.313 ----1347 984 887 DESIGN STRENGTH (LRFD) 1 #1(?-16 0.190 433 433 605 ---- 2 ' #10-16 0.190 590 631 724 ---- 3,4 #12-14 0.216 569 917 820 795 --- 6 \-14 0.250 603 1001 833 1058 1021 7,8 1/,4-20 0.250 6177•8 8427'8 8528 10728 9529 9999 8869 11 5/1s·18 0.313 653 996 897 1425 --- 12 5/15-24 0.313 ----2155 1575 1419 For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 ksi = 6.89 Mpa. 1 Available strengths are based on laboratpry tests, with safety factors/resistance factors ~alculated in accordance with AISI S100. 2For shear connections, the lower of the available fastener shear strength and the available shear (bearing) capacity must be used for design. 3Values are based on steel members with a minimum yield strength of Fy = 33 ksi and a minimum tensile strength of F" = 45 ksi. 4Available capacity for other member thickness.may be determined by interpolating within the table. 5Unless otherwise noted, when both steel sheets have a minimum specified tensile strength Fu<! 58 ksi, multiply tabulated values by 1.29 and when both steel sheets have a minimum tensile strength Fu:;?; 65 ksi steel,. multiply tabulated values by 1.44. 6The first number is the thickness of the steel sheet in in contact with the screw head (top sheet). The second number is the thickness of the steel sheet not in contact with the screw head (bottom sheet). . 7When both steel sheets have a minimum specified tensile strength of Fu~ 55 ksi (e.g. ASTM A653 SS Grade 40), multiply tabulated values by 1.22. 8When both steel sheets have a minimum specified tensile strength of Fu~ 52 ksi {e.g. ASTM A653 SS Grade 37), multiply tabulated values by 1.15. 9When both steel sheets have a minimum specified tensile strength of F;, ~ 58 ksi (e.g. ASTM A36}, multiply tabulated values by 1.29. TABLE 4-TENSILE PULL-OVER CAPACITY OF SCREW CONNECTIONS, pounds-force1•3•4·5•6 MINIMUM DESIGN THICKNESS OF MEMBER IN CONTACT WITH SCREW HEAD SCREW SCREW NOMINAL EFFECTIVE {in.) TYPE DESIGNATION DIAMETER PULL-OVER (in.) DIAMETER 0.048 0.060 0.075 0.105 1/e" 3l1a" 1/4" 5/1s" (in.) ALLOWABLE STRENGTH (ASD) 1 #10-16 0.190 0.357 386 4812 4812 4812 4812 --- 2 #10-16 0.190 0.384 415 4812 4812 481 2 4812 -. - 3,4 #12-14 0.216 0.398 430 537 672 7342 7342 7342 -- 5 #12-24 0.216 0.398 430 537 672 7342 7342 7342 7342 7342 6 1/4-.14 0.250 0.480 518 648 810 11262 11262 11262 -- 7, 8 1/4-20 0.250 0.480 -648 810 11262 11262 11262 11262 11262 11 s/w18 0.313 n/a2 ---11692 11692 --- 12 5'15•24 0.313 n/a2 ---13262 13262 13262 13262 132G2 DESIGN STRENGTH (LRFD) '.I #10-16 0.190 0.357 578 723 7812 781 2 7812 --- 2 #10-16 0.190 0.384 622 778 781 2 7812 7812 -. - 3,4 #12-14 0.216 0.398 645 806 1007 11922 11922 11922 -- 5 #12-24 0.216 0.398 645 806 1007 11922 11922 11922 11922 11922 6 1'4-14 0.250 0.480 778 972 1215 1701 18302 18302 -- 7,8 1/4-20 0.250 0.480 -972 1215 1701 18302 18302 18302 18302 11 5'1s-18 0.313 n/a2 ---18712 18712 --- 12 5111,24 0.313 nla2 ---21212 21212 21212 21212 21212 For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 ksi = 6.89 Mpa. 1Available strengths are based on calculations in accordance with AISI S100, unless otherwise noted. 2Available strengths are based on laboratory tests, witn safetyfactors/r~istance factors calculated in accordance with AISI 8100, or on the shear strength of the integral washer. Increasing valuesfor higher steel tensile strength per Note 6 is not allowed. 3For tension connections, the lowest of the available pull-out, pull-over, and fastener tension strength must be used for design. 4Values are based on steel members with a minimum yield strength of Fy = 33 ksi and a minimum tensile strength of Fu= 45 ksi. 6Available capacity for other member thickness may be determined by interpolating within the table. 6For steel with a minimum tensile strength Fu<! 58 ksi, multiply tabulated values by i .29 and for steel with a minimum tensile strength Fu.: 65 ksi steel, multiply tabulated values by 1.44. ESR-3332 I Most Widely Accepted and Trusted -Ac=<:>= === ===-===== = = -=-=· TABLE 5-TENSILE PULL-OUT CAPACITY OF SCREW CONNECTIONS, poum:ls-force1'2'3,4,s SCREW SCRE1N NOMINAL DESIGN THICl{NESS OF MEMBER NOT IN CONTACT WITH SCREW HEAD (in.) TYPE DESIGNATION DIAMETER {in.) 0.048 0.060 0.075 0.105 1/a" 3/1511 1/4" 5f1s" ALLOWABLE STRENGTH (ASD) 1 #10-16 0.190 136 193 236 307 297 --- 2 #10-16 0.1fl0 136 193 236 307 297 --- 3,4 #12-14 0.216 132 205 264 328 510 665 -- 6 1/4-14 0.250 131 207 255 342 561 899 -- 7, 8, 9, 10 1/4-20 0.250 .. 2046 2606 4236 5247 9147 1044 1206 11 5/1,18 0.313 ---520 707 --- 12 5/1s-24 0.313 ---459 637 724 1189 1424 DESIGN STRENGTH {LRFD) 1 #10-16 0.190 217 309 378 492 476 --- 2 #10-16 0.190 217 309 378 492 476 --- 3,4 #12-14 0.216 211 328 423 525 816 1064 -- 6 1/4-14 0.250 210 331 409' 548 897 1439 -- 7, 8, 9, 10 1/4-20 0.250 -3266 4166 6776 8387 14627 1670 1930 11 5'1s-18 0.313 ---832 1131 --- 12 5/1s-24 0.313 ---735 1019 1159 1903 2279 For Si: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 ksi = 6.89 Mpa. 1Available strengths are based on laboratory tests, with safety factors/resistance factors calculated in accordance with AISI S100. 2Fortension connections, the lowest of the available pull-out, pull-over, and fastener tension strength must be used for design. 3values are based on steel members with a minimum yield strength of Fy = 33 ksi and a minimum tensile strength of Fu= 45 ksi. 4Available capacity for other member thickness may be rletermined by interpolating within the table. 5Unless otherwise noted, for steel with a minimum tensile strength Fu;,; 58 ksi, multiply tabulated values by 1.29 and for steel with a minimum tensile strength Fu;,; 65 ksi steel, multiply tabulated values by 1.44. 6When both steel sheets have a minimum specified tensile strength of Fu~ 52 ksi (e.g. ASTM A653 SS Grade 37), multiply tabulated values by 1.15. 7Whim both steel sheets have a minimum specified tensile strength of Fu;;: 58 ksi (e.g. ASTM A36), multiply tabulated values by 1.29. TABLE 6-MINIMUM FASTENER.SPACING AND EDGE DISTANCE BASIC SCREW FASTENED MINIMUM SPACING MINIMUM EDGE MINIMUM EDGE DISTANCE FOR DIAMETER MATERIAL (3d) DISTANCE FRAMING MEMBERS (3d) (inch) (1.5d) 0.190 Steel 9l1s" 5/15'' 9/15" (#10) 0.216 Steel 11/1s" 3,~ .. 11/1s" (#12) 1'4 Steel 3/4" 3/a" 3/4" 5/15 Steel 1s/1s" 1N, 1s/1s" For SI: 1 inch = 25.4 mm. C0 !=SR~32 L~st Wf!!!!Y~~.:;;c;;:;,9e;;;i(!;;,;;fe;;;d;.:a;;;n;;cf_..;!~!!l....;;.;;s;;;,;t~;,;;d;.,..._ =··============--·=====•=•====-==~=====·-=-=~Pa.,,;g:;..e=6=o=f ~ FIGURE 1-#10-16 PHILLIPS PAN HEAD TYPE1 SCREW FIGURE 2-#10•16 INDENTED HEX WASHER HEAD TYPE2SCREW FIGURE 3-#12-14 INDENTED HEX WASHER HEAD TYPE 3AND 4 SCREW FIGURE 4--#12•24 INDENTED HEX WASHER HEAD TYPE5SCREW FIGURE 5-1/4-14 INDENTED HEX WASHER HEAD TYPE6SCREW FIGURE 6-1/4•20 INDENTED HEX WASHER HEAD TYPE7SCREW FIGURE 7-1/4-20 INDENTED HEX WASHER HEAD ROUND BODY TAPTITE TYPE8SCREW FIGURE 8-5/1 6-18 INDENTED HEX WASHER HEAD ROUND BODYTAPTITE TYPE 11 SCREW FIGURE 9-5/16-24 INDENTED HEX WASHER HEAD WITH SHANK SLOT TYPE 12 SCREW f I MAl<IMUM '""'''*...........i,..., ___ LOA~lNG -p- FIGURE 10-PHILLIPS PAN HEAD AND INDENTED HEX WASHER HEAD LOAD BEARING AREA MAX!Mt.lM 1-<---i--LOAOBEARlNG AREA FIGURE 11-INDENTED HEX WASHER HEAD WITH SHANK SLOT LOAD BEARING AREA J-jwZ~o {)ltl\lJ]llL~:Y FIGURE 12-INDENTED HEX WASHER HEAD ROUND BODY . TAPTITE LOAD BEARING AREA Clo ; -~--.-:..,-, -.. ~ .. ~r~--:•'"~~;:_ ... ,.,-,-~,. . -* , ~ ~.,-, ,-',. 14 F ICC EVALUATION . / ; ·~ ~ SERVICE Most Widely Accepted and Trusted ' I 1cc .. ES Evaluation Report www;icc-es.org I (800) 423-6587 I (562) 699-0543 DIVISION: 03 00 00-CONCRETE Section: 03 16 GO-Concrete Anchors DIVISION: 05 00 00-METALS Section: 05 05 19-Post-lnstalled Concrete Anchors REPORT HOLDER: HILTI, INC. 5400 SOUTH 122ND EAST AVENUE TULSA, OKLAHOMA 74146 (800) 879-8000 www.us.hilti.com HiltiTechEng@us.hilti.com EVALl,IATION SUBJECT: HIL Tl KWIK HUS-EZ (KH-EZ) AND KWIK HUS-EZ I (KH-EZ I) CARBON STEEL SCREW ANCHORS FOR USE IN CRACKED AND UNCRACKED CONCRETE 1.0 EVALUATION SCOPE Compliance with the following codes: • 2012, 2009, 2006 and 2003 International Building Code® (IBC) • 2012, 2009, 2006 and 2003 International Residential Code®(IRC) Property evaluated: Structural 2.0 USES The Hilti KWIK HUS-EZ (KH-EZ) screw anchors are used· to resist static, wind and seismic tension and shear loads in cracked and uncracked normal-weight and sand- lightweight concrete having a specified strength, fa, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa); and cracked and uncracked normal-weight or sand-lightweight conorete over steel deck having a minimum specified compressive strength, fa, of 3,000 psi (20.7 MPa). The KWIK HUS-EZ I (KH-EZ I) screw anchors are used to resist static, wind and seismic tension loads only in cracked and uncracked normal-weight and sand-- lightweight concrete having a specified strength, fa, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa); and cracked and uncracked normal0weight or sand-lightweight concrete over steel deck having a minimum specified compressive strength, fc, of 3,000 psi (20.7 MPa). The Hilti KWIK HUS-EZ (KH-EZ) and KWIK HUS-EZ I (KH-EZ I) screw anchors are an alternative to anchors described in Sections 1908 and 1909 of the 2012 !BC, Sections 1911 and 1912 of the 2009 and 2006 !BC-and ~ • ~-..... ~ ,.__.._ .. ~ ~ -<-" --"' ESR .. 3027 Reissued December 1, 2013 This report is subject to renewal December 1, 2015. A Subsidiary of the International Code Council® Sections 1912 and 1913 of the 2003 IBC. The anchors may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the !RC. 3.0 DESCRIPTION 3.1 KWIK HUS-EZ (KH-EZ): Hilti KWIK HUS-EZ (KH-EZ) anchors are comprised of a body with hex washer head. The anchor is manufactured from carbon steel and is heat-treated. It has a minimum 0.0003-inch-thick (8 µm) zinc coating in accordance with DIN EN ISO 4042. The anchoring system is available in a variety of lengths with nominal diameters of 1'4 inch, 3ta inch, 1/i inch, % inch and 3/4 inch (6.4 mm, 9.5 mm, 12.7 mm, 15.9 mm and 19.1 mm). A typical KWIK HUS-EZ (KH-E:Z) is illustrated in Figure 2. The hex head is larger than the diameter of the anchor and is formed with serrations on the underside. The anchor body is formed with threads running most of the length of the anchor body. The anchor is installed in a predrilled hole with a powered impact wrench or torque wrench. The anchor threads cut into the concrete on the sides of the hole and interlock with the base material during installation. 3.2 KWIK HUS-EZ I (KH-EZ I): The KWIK HUS-EZ I (KH-EZ I) anchors are comprised of a body with a long internally threaded (1'4 inch or 3Ja inch internal thread) hex washer head. The anchor is manufactured from carbon steel and is heat-treated. It has a minimum 0.0003-inch-thick (8 µm) zinc coating in accordance with DIN EN ISO 4042. The anchoring system is available in two lengths and a nominal diameter of 1/4 inch (6.4 mm). A typical KWIK HUS-EZ I (KH-EZ I) is illustrated in Figure 3. The over-sized hex head is larger than the diameter of the anchor and is formed with serrations on the underside. The anchor body is formed with threads running most of the length of the anchor body. The anchor is installed in a predrilled hole with a powered impact wrench or torque wrench directly to the supporting member surface. The anchor threads cut into the concrete on the sides of the hole and interlock with the base material during installation. 3.3 Concrete: Normal-weight and sand-lightweight concrete must conform to Sections 1903 and 1905 of the IBC. 3.4 Steel Deck Panels: Steel deck panels must comply with the configurations in Figure 5 and have a minimum base steel thickness of 0.035 inch (0.889 mm). Steel must comply with ASTM A653/A 653M SS Grade 33 and have a minimum yield strength of 33,000 psi (228 MPa). ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject.of the report or a recommendatio11for its use. There is 110 wanw1ty by ICC Evaluation Sen,ice, LLC, express or implied, as to mzy finding or other matter in this report, or as to any product covered by the report. Copyright© 2013 Page1 of11 Vl IESR-3027 I Most Widely Accepted and Trusted 4.0 DESIGN AND INSTALLATION 4.1 Strength Design: 4.1.1 General: Design strength of anchors complying with the 2012 and 2003 IBC as well as Section R301.1.3 of the 2012 and 2003 IRC must be determined in accordance with ACI 318-11 Appendix D and this report. Design strength of anchors complying with the 2009 IBC and Section R301.1.3 of the 2009 IRC must be determined in accordance with ACI 318-08 Appendix D and this report Design strength of anchors complying with the 2006 IBC and 2006 IRC must be in accordance with ACI 318-05 Appendix D and this report. DesJgn parameters provided in Table 2 through Table 5 of this report are based on the 2012 IBC (ACI 318-11) unless noted otherwise in Sections 4.1.1 through 4.1.12. The strength design of anchors must comply with ACI 318 D.4.1, except as required in ACI 318 D.3.3. Strength reduction factors, ¢, as given in ACI 318-11 D.4.3, and noted in Tables 3 and 4 of this report, must be used for load combinations calculated in accordance with Section 1605.2 of the IBC and Section 9.2 of ACI 318. Strength reduction factors, ¢, as given in ACI 318-11 D.4.4 must be used for load combinations calculated in accordance with ACI 318 Appendix C. The value of fc used In.the calculations must be limited to a maximum of 8,000 psi (55.2 MPa), in accordance with ACI 318-11 D.3.7. An example calculation in accordance with the 2012 IBC is provided in Figure 6. 4.1.2 Requirements for Static Steel Strength in Tension, Nsa: The nominal static steel strength, Nsa, of a single anchor in tension calculated in accordance with ACI 318 D.5.1.2, is given in Table 3 of this report. Strength , reduction factors,¢, corresponding to brittle steel elements must be used. 4.1.3 Requirements for Static Concrete Breakout Strength in Tension, Neb or Ncbg: The nominal concrete breakout strength of a single anchor or a group of anchors in tension, Neb and Ncbg, respectively, must be calculated in accordance with ACI 318 0.5.2, with modifications as described in this section. The basic concrete breakout strength of a single anchor in tension, Nb, must be calculated in accordance with ACI 318 D.5.2.2, using the values of her and kcr as given in Table 3 of this report. The nominal concrete breakout strength in tension in regions where analysis indicates no .cracking in accordance with ACI 318 D.5.2.6 must be calculated with the value of kuncr as given in Table 3 and with l/lc,N= 1 ;Q. For anchors insti;illed in the lower or upper flute of the soffit of Sand-lightweight or normal-weight concrete-filled steel d~ck floor and roof assemblies, as shown in Figure 5, calculation of the concrete breakout strength in accordance with ACI 318 D.5.2 is not required. 4.1.4 Requirements for Static Pullout Strength in Tension, Np: The nominal pullout strength of a single anchqr ih accordance with ACI 318 D.5.3.1 and D.5.3.2 in c'racked and uncracked concrete, Np,cr, and Np,uncr, respectively, is given in .Table 3. In lieu of ACI 318 D.5.3.6, l/lc,P = 1.0 for all design cases. In accordance with ACI 318 D.5.3, the nominal pullout strength in cracked concrete may be adjusted according to Eq.-1: N I -N JC ( £I )n P,fc -p,cr 2,500 ( £I )n N I -N JC p,fc -p,cr m · (lb, psi) (N, MPa) (Eq-1) Page 2 of 11 where f'c is the specified concrete compressive strength and n is the factor defining the influence of concrete compressive strength on the pullout strength. For the 1/4-inch-diameter anchor at 1-% inch nominal embedment in cracked concrete n is 0.3. For all other cases n is 0.5. In regions where analysis indicates no cracking in accorcjance with ACI 318 D.5.3.6, the nominal pullout strength in tension may be adjusted according to Eq-2: ( £I )n N I -N JC P,fc -p,uncr 2,500 ( £I )n N I -N JC P,fc -p,uncr 17.2 (lb, psi) (N, MPa) (Eq-2) where f'c is the specified concrete compressive strength and n is the factor defining the influence of concrete compressive strength on the pullout strength. For the 1'4- inch-diameter anchor at a nominal embedment of 15ta inches in uncracked concrete, n is 0.3. For all other cases, n is 0.5. Where values for Np,cr or Np,uncr are not provided in Table 3 of this report, the pullout strength in tension need not be considered. The nominal pullout strength in tension of the anchors installed in the soffit of sand-lightweight or normal-weight concrete filled steel deck floor and roof assemblies, as shown in Figure 5, is provided in Table 5. In accordance with ACI 318 D.5.3.2, the nominal pullout strength in cracked concrete must be calculated according to Eq-1, whereby the value of Np,deck,cr must be substituted for Np,cr. and the value of 3,000 psi (20.7 MPa) must be substituted for the value of 2,500 psi (17.2 MPa) in the denominator. In regions where analysis indicates no cracking in accordance with ACI 318 5.3.6, the nominal strength in uncracked concrete must be calculated according to Eq-2, whereby the value of Np,deck,uncr must be substituted for Np,uncr and the value of 3,000 psi (20.7 MPa) must be substituted for the value of 2,500 psi (17.2 MPa) in the denominator. 4.1.5 Requirements for Static Steel Shear Capacity, Vsa: The nominal steel strength in shear, Vsa, of a single anchor in accordance with ACI 318 D.6.1.2 is given in Table 4 of this report and must be used in lieu of the values derived by calculation from ACI 318-11, Eq. D-29. The strength reduction factor,¢, corresponding to brittle steel elements must be used. The nominal shear strength Vsa,deck, of anchors installed in the soffit of sand-lightweight or normal-weight concrete filled steel deck floor and roof assemblies, as shown in Figure 5, is given in Table 5. 4.1.6 Requirements for Static Concrete Breakout Strength in Shear, Vcb or Vcbg: The nominal concrete breakout strength of a single anchor or group of anchors in shear, Vcb or Vcbg, respectively, must be calculated in accordance with ACI 318 D.6.2, with modifications as described in this section. The basic concrete breakout strength in shear, Vb, must be calculated in accordance with AC! 318 D.6.2.2 using the values of le and da (do) given in Table 4. For anchors installed in the lower or upper flute of the soffit of sand-lightweight or normal-weight concrete-filled steel d~ck floor and roof assemblies, as shown in Figure 5, calculation of the concrete breakout strength in accordance with ACI 318 D.6.2 is not required. 4.1.7 Requirements for Static Concrete Pryout Strength in Shear, Vcp or Vcpg: The nominal concrete pryout strength of a single anchor or group of anchors, Vcp or Vcpg, respectively, must be calculated in accordance with ACI 318 D.6.3, using the coefficient for pryout strength, kcp ESR-3027 I Most Widely Accepted and Trusted provided in Tab!e 4 and the value of Neb or Ncbg as calculated in Section 4.1.3 of this report. For anchors installed in the lower or upper flute of the soffit of sand-lightweight or normal-weight concrete-filled steel deck floor and roof assemblies, as shown in Figure 5, calculation of the concrete pryout strength in accordance with ACI 318 D.6.3 is not required. 4. 1.8 Requirements for Seismic Design: 4.1.8.1 General: For load combinations including seismic, the design must be in accordance with ACI 318 D.3.3. For the 2012 IBC, Section 1905.1.9 shall be omitted; Modifications to ACI 318 D.3.3 shall be applied under Section 1908.1.9 of the 2009 IBC, Section 1908.1.16 of the 2006 IBC, or the following, as applicable: ACI 318 SECTION CODE EQUIVALENT CODE D.3.3 SEISMIC REGION DESIGNATION 2003 IBCand Moderate or high Seismic Design 2003 IRC seismic risk Categories C, D, E and F The nominal steel strength and nominal concrete breakout strength for anchors in tension, and the nominal . concrete breakout strength and pryout strength for anchors in shear, must be calculated in accordance with ACI 318 D.5 and D.6, respectively, taking into account the corresponding values in Tables 2 through 5 of this report. The anchors comply with ACI 318 0.1 as brittle steel elements and must be designed in accordance with ACI. 318-11 D.3.3.4 or D.3.3.5, ACI 318-08 0.3.3.5 or 0.3.3.6 or ACI 318-05 D.3.3.5, as applicable. 4.1.8.2 Seismic Tension: The nominal steel strength and nominal concrete breakout strength for anchors in tension must be calculated in accordance with ACI 318 0.5.1 and D.5.2, as described in Sections 4.1.2 and 4.1.3 of this report. In accordance with ACI 318 D.5.3.2, the appropriate value for pullout strength in tension for seismic loads, Np,eq or Np,deek,er described in Table 3 and 5, respectively, of this report must be used in lieu of Np, Np,eq or Np,deek,er may be adjusted by calculations for concrete compressive strength in a9cordance with Eq-1 of this report in addition for concrete-filled steel deck floor and roof assemblies the value of 3,000 psi (20.7 MPa) must be substituted for the value of 2,500 psi (17.2 MPa) ·in the denominator. Where values for Np,eq are not provided in Table 3 of this report, the pullout strength in tension for seismic loads need not be evaluated. 4.1.8.3 Seismic Shear: The nominal concrete breakout strength and pryout strength in shear must be calculated in accordance with ACI 318 D.6.2 and D.6.3, as described in Sections 4.1.6 and 4.1.7 of this report. In accordance with ACI 318 D.6.1.2, the appropriate value for nominal steel strength for seismic loads, Vsa,eq or Vsa,deek,eq described in Table 4 and 5, respectively, of this report, must be used in lieu of Vsa, 4.1.9 Requirements for Interaction of Tensile and Shear Forces: For anchors or groups of anchors that are subject to the effects of combined tensile and shear forces, the design must be determined in accordance with ACI 318 D.7. 4.1.10 Requirements for Minimum Member Thickness, Minimum Anchor Spacing and Minimum Edge Distance: In lieu of ACI 318 D.8.1 and D.8.3, values of Smin ·and Cmin, respectively, as given in Table 2 of this report must be used. In lieu of ACI 318 D.8.5, minimum member thicknesses, hmin as given in Table 2 must be used. Additional combinations for minimum edge distance, Cmin, Page 3 of 11 and minimum spacing distance, Smin, may be derived by linear interpolation between the given boundary values as defined in Table 2 of this report. For anchors installed through the soffit of steel deck assemblies, the anchors must be installed in accordance with Figure 5 and shall have an axial spacing along the flute equal to the greater of 3het or 1.5 times the flute width. 4.1.11 Requirements for Critical Edge Distance, Cac: In applications where c < Cae and supplemental reinforcement to control splitting of the concrete is not present, the concrete breakout strength in tension for uncracked concrete, calculated in accordance with ACI 318 D.5:2, must be further multiplied by the factor lfJcp,N as given by Eq-3: (Eq-3) where the factor I.Jlcp,N need not be taken as less than t.Sher. For all other cases, lfJcp,N = 1.0. In lieu of using ACI Cac 318 0.8.6, values of Cae must comply with Table 3. 4.1.12 Sand-lightweight Concrete: For ACI 318-11 and ACI 318-08, when anchors are used in sand-lightweight concrete, the modification factor for concrete breakout, }-..a or>.., respectively, must be taken as 0.6 in lieu of ACI 318- 11 D.3.6 (2012 IBC) or ACI .318-8 D.3.4 (2009 IBC). In addition, the pullout strength Np,uncr, Np.er, and Np,eq must be multiplied by 0;6, as applica_ble. For ACI 318-05 the values Nb, Np,uner. Np.er, Np,eq, and Vb determined in accordance with this report must be multiplied by 0.60, in lieu of ACI 318 0.3.4. For anchors installed in the lower or upper flute of the soffit of sand-lightweight concrete-filled steel deck and floor and roof assemblies, this reduction is not required. 4.2 Allowable Stress Design {ASD): 4.2.1 General: Design values for use with allowable stress design load combinations calculated in accordance with Section 1605.3 of the IBC must be established using the following equations: T, _ ¢Nn a//owable,ASD -a (Eq-4) (Eq-5) V: _ ¢Vn a//owable,ASD -a where: Ta11owable,ASD = Allowable tension load (lb, N) Va11owableASD = Allowable shear load (lb, N) ¢Nn = Lowest design strength of an anchor or anchor group in tension as determined in accordance with ACI 318 Appendix D, Section 4.1 of this report and 2009 IBC Section 1908.1.9 or 2006 IBC Section 1908.1.16, as applicable. ¢Vn = Lowest design strength of an anchor or anchor group in shear as determined in accordance with ACI 318 Appendix D, Section 4.1 of this report and 2009 IBC Section 1908.1.9 or 2006 IBC Section 1908.1.16, as applicable. a = Conversion factor calculated as a weighted average of the load factors for the controlling load combination. In addition, a must include all applicable factors to account for nonductile failure modes and required over-strength. ESR-3027 I Most Widely Accepted and Trusted Limits on edge distance, anchor spacing and member thickness as given in Table 2 of this report must apply. An example of Allowable Stress Design tension values is given in Table 6 and Figure 6. 4.2.2 Interaction of Tensile and Shear Forces: The interaction must be calculated and consistent with AC( 318 D.7, as follows: For shear loads Vappllad s 0.2Va11owabte,ASD, the full allowable load in tension Tattowable,ASD shall be permitted. For tension loads Tapplied s 0.2Tattowabte,ASD, the full allowable load in shear Va11owable,ASD shall be permitted. For all other c_ases: Tapp/ied + Vapp/ied :s; 1_2 Tallowab/e,ASD Vallowabla,ASD (Eq-6) 4.3 Installation: Installation parameters are provided in Tables 1 and 2 and Figures 1, 4A, 48 and 5. Anchor locations must comply with this report and plans and specifications approved by the code official. The Hilti KWIK HUS-EZ (KH-EZ) and KWIK HUS-EZ I (KH-EZ I) must be installed in accordance with the manufacturer's published instructions and this report. In case of conflict, this report governs. Anchors must be installed in holes drilled into concrete perpendicular to the surface using carbide-tipped masonry drill bits complying with ANSI 8212.15-1994. The nominal drill bit diameter must be equal to that of the -anchor. The minimum drilled hole depth is given in Table 2. Prior to installation, dust and debris must be removed from the drilled hole using a hand pump, compressed air or a vacuum. The anchor must be installed into the predrilled hole using a powered impact wrench or installed with a torque wrench until the proper nominal embedment depth is obtained. The maximum impact wrench torque, 1impact,max and maximum installation torque, 1inst,max for the manual torque wrench must be in accordance with Table 2. The KWIK HUS-EZ (KH-EZ) and KWIK HUS-EZ I (KH-EZ I) may be loosened by a maximum of one turn and retightened with a torque wrench or powered impact wrench to facilitate fixture attachment or realignment. Complete removal and reinstallation of the anchor is not allowed. For installation in the soffit of concrete on steel deck assemblies, the hole diameter in the steel deck must not exceed the diameter of the hole in the concrete by more the 1/8 inch (3.2mm). For member thickness and edge distance restrictions for installations into the soffit of concrete on steel deck assemblies, see Figure 5. 4.4 Special Inspection: Periodic special inspection is required, in accordance with Section 1705.1.1 and Table 1705.3 of the 2012 18C, Section 1704.15 ofthe 2009 IBC or Section 1704.13 of the 2006 or 2003 IBC, as applicable. The special inspector must be on the site periodically during anchor installation to verify anchor type, anchor dimensions, hole dimensions, concrete type, concrete compressive strength, drill bit type and size, hole dimensions, hole cleaning procedures, anchor spacing(s), edge distance(s), concrete member thickness, anchor embedment, installation torque,. impact wrench power and adherence to the manufacturer's printed installation instructions and the conditions of this report (in case of conflict, this report governs). The special inspector must be present as often as required in accordance with the "statement of special inspection." Under the IBC, additional requirements as set forth in Sections 1705, 1706 and 1707 must.be observed, where applicable. Page4 of 11 5.0 CONDITIONS OF USE The Hilti KWIK HUS-EZ (KH-EZ) and KWIK HUS-EZ I (KH- EZ I) concrete anchors described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions: 5.1 The anchors must be installed in accordance with the manufacturer's published installation instructions and this report. ln·case of conflict, this report governs. 5.2 Anchor sizes, dimensions, and minimum embedment depths are as set forth in this report. 5.3 Anchors must be installed in accordance with Section 4.3 of this report in uncracked or cracked normal- weight concrete and sand-lightweight concrete having a specified compressive strength, fc, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa), and cracked and uncracked normal-weight or sand-lightweight concrete over metal deck having a minimum specified compressive strength; fc, of 3,000 psi (20.7 MPa). 5.4 The value of fc used for calculation purposes must not exceed 8,000 psi (55.2 MPa). 5.5 Strength design values must be established in accordance with Section 4.1 of this report. 5.6 Allowable stress design values must be established in accordance with Section 4.2 of this report. 5.7 Anchor spacing(s) and edge distance(s), and minimum member thickness, must comply with Table 2 and Figure 5 of this report. 5.8 The KWIK HUS-EZ I (KH-EZ I) version is used to resist static, wind and seismic tension loads only. 5.9 Reported values for the KWIK HUS-EZ I (KH-EZ I) with an internally threaded hex washer head do not consider the steel insert element which must be verified by the design professional. 5.10 Prior tc;> installation, calculations and details demonstrating compliance with this report must be supmitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed. 5.11 Since an ICC-ES acceptance criteria for evaluating data to determine the performance of anchors subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report. 5.12 Anchors may be installed in regions of concrete where cracking has occurred or where analysis indicates cracking may occur (ft>f,), subject to the conditions of this report. 5.13 Anchors may be used to resist short-term loading due to wind or seismic forces, subject to the conditions of this report. 5.14 Anchors are not permitted to support fire-resistance- rated construction. Where not otherwise prohibited in the code, anchors are permitted for use with fire- resistance-rated construction provided that at least one of the following conditions is fulfilled: • Anchors are used to resist wind or seismic forces only. • Anchors that support gravity load-bearing structural elements are within a fire-resistance-rated envelope or a fire-resistance-rated membrane, are protected by approved fire-resistance-rated materials, or have been evaluated for resistance to ESR-3027 I Most Widely Accepted and Trusf?d fire exposure in accordance with recognized standards. o Anchors are used to support nonstructural elements. 5.15 Anchors have been evaluated for reliability against brittle failure and found to be not significantly sensitive to stress-induced hydrogen embrittlement. 5.16 Use of carbon steel anchors is limited to dry, interior locations. 5.17 Special inspection must be provided in accordance with Sections 4.4. 5.18 KWIK HUS-EZ (KH-EZ) and KWIK HUS-EZ I (KH-EZ I) anchors are manufactured by Hilti AG, under a quality control program with inspections by UL LLC (M-668). Page 5 of 11 6.0 EVIDENCE SUBMITTED Data in accordance with the ICC-ES Acceptance Criteria for Mechanical Anchors in Concrete Elements (AC193), dated March 2012; and quality control documentation. 7.0 IDENTIFICATION The HIL Tl KWIK HUS-EZ (KH-EZ) and KWIK HUS-EZ I (KH-EZ I) anchors are identified by packaging with the manufacturer's name (Hilti, Inc.) and contact information, anchor name, an<;:hor size, evaluation report number (ICC-ES ESR-3027), and the name of the inspection agency (UL LLC). The anchors with hex washer head have KH-EZ, HIL Tl; and anchor size and anchor length embossed on the anchor head. Identifications are visible after installation, for verification. TABLE 1-KWIK HUS-EZ (KH-EZ) AND KWIK HUS-EZ I (KH-EZ I) PRODUCT INFORMATION Name and Size Diameter Total Length -under the Minimum Nominal anchor head (lanc,J Embedment (hnom) KH-EZ 11,i' x1 5/s" 1114" 1/4" (11,tUNC-20 -Internal Thread Length -.375") 1%" 15ta" KH-EZ 11,t x1 5fa• I 3/a" 1/{ (3/a" UNC-16-lnternal Thread Length -.453") 1%" 15/a" KH-EZ 1/,t x2 1/,J,' 11'4" 11/ (11/UNC-20 -Internal Thread Length -.375") il2" itt KH-EZ 1/,i' x2 1/2" I 3/a" 11,t (3/a" UNC-16-Internal Thread Length -.453") ill' iii" KH-EZ 1/,i"x1 7/8" 11,t 17/a" 15/a" KH-EZ 1//x25/a" 11,i' 2%" 15/a" KH-EZ 11/'x3" 1/4" 3" 15/a'.' KH-EZ 1//x31/2" \• 3112" 15/a" KH-EZ 11/x4" 11,i' 4" 15/a" KH-EZ 3/lxfla" %· 17/a" 15/a" KH-EZ 3Ja•xz1/a" 3/a" ita" 15/a" KH-EZ 318"x3" 31a" 3" ii{ KH-EZ 3/a"x31./,J,' 3/a" 31/2" ii{ · KH-EZ 3/a"x4" 31a" 4" 311/ KH-EZ 3/s"x5" 3Ja• 5" 31// KH-EZ 1/,J,'x21/,J,' 1,.;: 21/2" it/ KH-EZ 1/,J,'x3" 1/2'' 3" ii/ KH-EZ 1/,J,'x31'2'' 1,.;: 31/-/.' 3" KH-EZ \"x4" 1/2" 4" 3" KH-EZ 1/2"x41/,J,' 1'2'' 4112'' 3" KH-EZ 1/,J,'x5" 1/2" 5" 3" KH-EZ 1/,J,'x6" 1,.;: 6" 3" KH-EZ 5fa"x31/,J,' 5/a" 31'2'' 31// KH-EZ 5ta"x4;, 5la" 4" 31// KH-EZ 5/a"x51/2" 5Ja• 51/2" 31// KH-EZ 5/a"x61'2'' sis" 61/2'' 3114" KH-EZ 5/a"x8" 5Ja'! 8" 31// KH-EZ 3'4"x41'2'' 3/,i' 41/2" 4" KH-EZ 3/lx51/2' 3/4" 51/2" 4" KH-EZ 3/tx7" %" 7" 4" KH-EZ 3/4''x8" 3'4'' 8" 4" KH-EZ 3//x9" 3/4" 9" 4" For SI: 1 inch = 25.4 mm. E~R-3027 I Most Widely Accepted and Trusted ~-1:. -~ ...,____,____,_E::1-----'--- d bit ---<::...<.:Z::=-----~--- FIGURE 1-KWIK HUS EZ ANCHOR Page6of11 Q~ .!I ' FIGURE 2-,-HIL Tl KWIK HUS EZ CONCRETE SCREW ANCHOR FIGURE 3-HILTI KWIK HUS-EZ I ANCHOR ·. jd,' ' .r-o -·-. --· ·········-·-··-... -···--· ·-· ···-... ·---J 1nrt111 ,n,nor ullnfl propar111p..>-cl !<>01 er torqu~ wr:n:~ ---------- ~·· -3! ' [-··--·-·--·-·-··--·---·-···-............ ····· f!~t;n ~:nor trgntr1 agalnEt r,st;n~, part ~--. --,-~.-..--.......... -... -0; .~,------~ .......... --.--.---. ---••••• FIGURE 4A-INSTALLATION INSTRUCTIONS-HILT! KWIK HUS EZ (KH-EZ) µ\.~ I '' ::,_') '•.r.. .. -.' ':"'"i ~); , • : -~ ' ~' ,f; i . -· ·1 ·, l c·rtri h~le I~ -b~~~ m;i~·~I u;·,~9-prop;rdl~i;;'~-,e;drill i;i'1 Clean drllk:d hole to remove debris---·--··--· J Ins en lhreadcd rod Into lns!illled anchor FIGURE 48-INSTALLATION INSTRUCTIONS-HILT! KWIK HUS EZ I (KH-EZ I) ESR-3027 I Most Widely Accepted and Trusted Page 7 of11 TABLE 2-KWIK HUS-EZ.(KH-EZ) AND KWIK HUS-EZ I (KH-EZ I) INSTALLATION INFORMATION AND ANCHOR SPECIFICATION1 Nominal Anchor Diameter (inches) Characteristic Symbol Units 1/4 (KH-EZ I) 1/4 % 1/2 51a 3/4 Head Style -Internally Standard Hex Standard Hex Standard Hex Standard Hex Standard Hex . Threaded Head Head Head Head Head Nominal Diameter da ih. 1/4 % 11z 51a 3/4 {do}5 Drill Bit Diameter dbn in. 1/4 % 1,2 51a ~,4 Minimum Baseplate dh in. N/A7 3/a 1,2 sis 3/4 7/a Clearance Hole Diameter Maximum Installation Tinst,ma/ ft-lbf 18 19 40 45 85 115 Torque Maximum Impact Wrench Torque Rating3· Tim;,,ct,max ft-lbf 114 137 114 137 114 450 137 450 450 450 Minimum Nominal hnom in. 15/s 21/2 1?/s il2 15/s 21/2 31'4 i'4 3 41/4 31/4 5 4 61/4 Embedment depth Effective Empedment Depth h., in. 1.18 1.92 1.18 1.92 1.11 1.86 2.50 1.52 2.16 3.22 2.39 3.88 2.92 4.84 Minimum Hole Depth hhole in. 2 271a 2 27/a fla 23/4 3112 2% 33/a 451a 3% 53/a 43/a 65/a Critical Edge Distance2 Cac in. 2.00 2.78 2.00 2.78 2.63 2.92 3.75 2.75 3.75 5.25 3.63 5.81 4.41 7.28 Minimum Spacing at Critical Edge distance2 Smrn,ca/ in. 1.50 2.25 3.0 Minimum Edge Distance2 Cm1/ in. 1.50 1.75 .. Minimum Spacing Distance at Minimum Edge Distance2 Sm1/ in. 3.0 4.0 Minimum Concrete hmln in. 3.25 4.125, 3.25 4.125 3.25 4 4.75 4.5 4.75 Thickness 11/ Internal 3ta Wrench socket size -Thread KH-EZ I Model 31a" Internal in. Not Applicable Thread 1/z Wrench socket size -in • NIA 7/15 9'16 314 KH-EZModel . 114" lnterncJI 5ta Max. Head height-Tbread in. Not Applicable KH-EZ I Model %"Internal Thread 11'16 Max. Head height . in. NIA 0.24 0.35 Effective tensile stress area As• in.2 o.o'45 0.086 (Au,N)5 Minimum specified ultimate futa psi 134,000 106,975 120,300 strengt.h {fu/ For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m, 1 psi = 6.89 kPa, 1 in2 = 645 mm2, 1 lb/in= 0.175 N/mm. 1The data presented in this table is to-be used in conjunction with the design criteria of ACI 318 Appendix D. 0.49 0.161 112,540 6.75 5 7 15116 0.57 0.268 90,180 2For installations through the soffit of steel deck.into concrete (see Figure 3) anchors installed in the lower flute may be installed with a maximum 1 inch offset in either direction from the center of, the flute. 3 Because of variability in measurement procedures, the published torque of an impact tool may not correlate properly with the above setting torques. Over-torquing can damage the anchor and/or reduce its holding capacity. 4T1nst,max applies to installations using a calibrated torque wrench. 5The notation in parenthesis Is for the 2006 IBC, 6The notation in parenthesis is for the 2003 IBC. · 6 8.125 11/s 0.70 0.392 81,600 7The KWIK HUS-EZ I (KH-EZ I) version is driven directly to the supporting membersurface. 8Additional combinations for minimum edge distance, Cmin, and minimum spacing distance, Smin or Sm;n,cac. may be derived by linear interpolation between the given boundary values. e!;R-3027 I Most Widely Accepted and Trusted Page 8 of 11 TABLE 3-HILTI KWIK HUS-EZ (KH-EZ) and KWIK HUS-EZ I (KH-EZ I) TENSION STRENGTH DESIGN DATA1•2•4•7 Nqminal Anchor Diameter(inches) Characteristic Symbol Units \ (KH-EZI) 1/4 3/a 1/2 5/s 3'4 · Anchor Category 3 1 3 1 1 -. 1, 2or3 Head Style Internally Standard·Hex Standard Hex Standard Hex Standard Hex Standard --Threaded Head Head Head Head Nominal hnom in. 15/s 21/2 15/s 21h 15ta 21/2 31/4 2114 3 41/4 31/4 5 Embedment Depth Steel Strength in Tension (ACI 318 D.5.1)7 Tension Resistance Nsa lb. 6,070 9,200 10,335 18,120 24,210 of Steel Reduction Factor for IPsa 0.65 Steel Strength3•8 - Concrete Breakout Strength in Tension {ACi 318 D.5.2) Effective her in. 1.18 1.92 1.18 1.92 1.11 1.86 2.50 1.52 2.16 3.22 2.39 3.88 Embedment Depth Critical Edge Cac in. 2.00 2.78 2.00 2.78 2.63 2.92 3.74 2.75 3.67 5.25 3.63 5.82 Distance · Effectiveness Factor -Uncracked kuncr -24 27 Concrete Effectiveness Factor kcr -17 -~ Cracked Concrete Modification factor for cracked and <Jlc,N -1.0 uncracked concrete6 Reduction Factor for Concrete Breakout !pcb -0.45 0.65 0.45 0.65 Strength2 Pulloµt Strength in Tension (Non Seismic Applications) (ACl318 D.5.3) Characteristi9 pullout strength, Np,uncr lb. 1,3056 2,3485 1,3056 2,3485 N/A N/A NIA NIA NIA N/A N/A NIA uncracked concrete (2,50.0psi) Characteri~tic pullout strength, Np,cr lb. 6676 1,16$5 6676 1,1665 7275 N/A NIA N/A N/A N/A NIA cracked concrete (2500 psi) Reduction factor for !pp 0.45 0.6$ 0.45 0.65 pullout strength2 - Pullout Strength in Tension (Seismic Applications) {ACI 318 D.5.3) Characteristic .Pullout Strength, Np,eq lb. 5346 1,1665 5346 1,1665 7275 N/A NIA NIA NIA NIA N/A Seismic (2,500 psi) Reduction Factor for Pullout Strength2 tpeq -0.45 0.65 0.45 0.65 (2,500 psi) Axial Stiffness in Service.Load Range Uncracked Concrete f3uncr 760,000 lb/in. Cracked Concrete f3cr 293,000 For SI: 1 inch= 25.4 mm, 1 ft-lbf= 1.356 N-m, 1 psi =6.89 kPa, 1 in2-= 645 mm2, 1 lbfln = 0.175 N/mm. 1The data In this table ls intended for use with the design provisions of ACI 318 Appendix D; for anchors resisting seismic load combinations the additional requirements of ACl·D.3.3 shall apply. 2Values of ¢in this table apply when-the load combinations for ACI 318 Section 9.2, IBC Section 1605.2.1 are used and the requirements of ACI 318-11 .D.4.3 for Condition B are met. For situations where reinforcement meets the requirements of Condition A, ACI 318-11 D.4.3 or D.4.4 provides the appropriate ¢factor, as applicable. N/A NIA 31fthe load combinations of ACI 318 Appendix Care used, the appropriate value of ¢must be determined in accordance with ACI 318-11 D.4.4. 41n this report, NIA denotes that pullout resistance does not govern and· does not need to be considered. 5rhe characteristic pullout resistance for concrete compressive strengths greater.than 2,500 psi may be increased by multiplying the value in the table ·by (f'r/2,500)°'5 for psi 9r (f' r/17.2)°·5 for MPa. 6The characteristic pullout resistance for concrete compressive strengths greater than 2,500 psi may be increased by multiplying the value in the table by (f' r/2,500)°·3 for psi or (f'r/17.2)°'3 for MPa. 7For sand-lightweight concrete, calculate values according to Section 4.1.12 of this report. 8The KWIK HUS-EZ (KH-EZ) and KWIK HUS-EZ I {KH-EZ I) Is considered a brittle steel element as defined by ACI 318 D.1. Hex Head 4 I 6114 32,013 2.92 4.84 4.41 7.28 N/A NIA N/A N/A NIA N/A E~R-3027 I Most Widely Acceptetj and Trt,Jsted Page 9 of 11 TABLE 4-HILTI KWIK HUS-EZ (KH,EZ) SHEAR STRENGTH DESIGN DATA1'8 Characteristic Symbol Units Nominal Anchor Diameter(inches) 1/4 a/a 1,2 Anchor Category 1,2 or'3 3 I 1 Embedment Depth hnom in. 15ta I 21/2 15/s 2112 I 3\ i,4 I 3 I 41/4 Steel Strength in Shear (ACI 318 D.6.1)5•6 Shear Resistance of v •• 4 lb. 1,548 3,669 5,185 9,245 Steel -Static Shear Resistance of v ••.• / lb. 1,393 3,669 3,111 5,547 Steel -Seismic Reduction Factor for 'Isa . 0.60 Steel Strength3 Concrete Breakout SttE1ngth in Shear (ACI 318 D.6.2) Nominal Diameter da[do]7 in. 0.250 0.375 0.500 Load Bearing t.4 in. 1.18 I 1.92 1.11 I 1.86 I 2.50 1.52 I 2.16 I 3.22 Length of Anchor ReduGtion Factor for 'Pcb 0.70 Concrete Breakout Strength2 . . Concrete Pryout Strength in Shear (ACI 318 D.6.3) .coefficient for kcp . 1.0 I 1.0 1.0 I 1.0 I 2.0 1.0 I 1.0 I 2.0 Pryout·Strength Reduction Factor for 'lcp 0.70 Pryout Strength2 . For SI: 1 inch= 25.4 mm, 1 ft-lbf = 1.356 N-m, 1 psi= 6.89 kPa, 1 in2 = 645 mm2, 1 lb/in = 0. 1"75 N/mm. 1The data in this table Is intended for use with the design provisions of ACI 31.8 Appendix r;> sla 31'4 I 5 11,221 6,733 0.625 2.39 I 3.88 1.0 I 2.0 3/4 4 I 61/4 16,662 11,556 0.750 2.92 I 4.84 2.0 I 2.0 2Values of ¢in this table apply when the load combinations for ACI 318 Section 9.2, IBC Section 1605.2.1 are used and the requirements of ACI 318-11 D.4.3 for Condition Bare met. For situations where reinforcement meets the requirements of Condition A. ACI 318-11 D.4.3 or D.4.4 provides the appropriate ¢factor, as applicable. 31f the load combinations of ACI 318 Appendix Care used, the appropriate value.of ¢ must be determined in accordance with ACI 318-11 D.4.4. 4For 2003 IBC code basis replace l0 with l, Vsa with Vs, and Vsa,eqWith Vsa,seis, 5Reported values for steel strength in shear are based on test results per ACI 355.2, Section 9.4 and must be used for design in lieu of calculated results using equation D-29 of ACI 318-11. 6The KWIK HUS-EZ (KH-EZ) is considered a brittle steel element as defined by ACI 318 D.1. 7The notation in brackets Is for the 2006 IBC. 8The KWIK HUS-EZ I (KH-EZ I) Version are used to resist static, wind and seismic tension loads only. TABLE 5-HILTI KWIK HUS-EZ (KH-EZ) AND KWIK HUS-EZ I (KH-EZ I) TENSION AND SHEAR DESIGN DATA FOR INSTALLATION IN THE UNDERSIDE OF CONCRETE-FILLED PROFILE STEEL DECK ASSEMBLIES1'6•7•8 Lower Flute Upper Flute Characteristic Symbol Units Anchor Diameter 1'4 1/4 3ta 1'2 5/a 3/4 1'4 1/4 I 3/a (KH-EZ I) (KH-EZ I) Head Style -. Internally Standard Hex Head Internally Standard Hex Head Threaded Threaded 1,2 Embedment hnom in. 15/a 21/2 15/a 21/2 15/a 21'2 31'4 21/4 3 41/4 31/4 5 4 15/a i/2 15ta i/2 15/a i/2 i/4 Minimum Hole hhoro in. 2 21,~ 2 271a fta 2314 31'2 25/a 33ta 45/a Depth Effective her in. 1.18 1.92 1.18 1.92 1.11 1.86 2.50 1.52 2.16 3.22 Embedment Depth Pullout Resistance, (uncracked Np,deck,uncr lb. 1,210 1,875 1,210 1,875 1,300 ;2,240 3,920 1,305 3,060 5,360 concrete)2 Pullout Resistance ( cracked concrete Np,deck,cr lb. 620 930 620 and seismic loads)3 930 810 1,590 2,780 820 1,930 3,375 Steel Stren~th in Shear Vsa,dec/ lb. NIA NIA 1,205 2,210 1,510 1,510 3,605 1,605 2,920 3,590 Steel Strength in Vsa,deck,eq lb. NIA N/A 905 1,990 905 905 2,165 965 1,750 2,155 Shear, Seismic For SI: 1-inch = 25.4 mm, 1 ft-lbf= 1.356 N-m, 1 psi= 6.89 kPa, 1 in2 = 645 mm2, 1 lb/in= 0.175 N/mm. 1 Installation must comply with Sections 4.1.1 O and 4.3 and Figure 3 of this report. 2The values listed must be used in accordance with Section 4.1.4 of this report. 3The values listed must be used In accordance with Section 4.1.4 arid 4.1.8.2 of this report. 4The values listed must be used in accord.ance with Section 4.1.5 and 4.1.8.3 of this· report. 35/a 53ta 43/a 2 27/a 2 27/a 17/a 27/a 25ta 2.39 3.88 2.92 1.18 1.92 1.18 1.92 1.11 1.86 1.52 4,180 9,495 4,180 1,490 1,960 1,490 1,960 1,490 2,920 1,395 2,630 5,980 2,630 760 975 760 975 1,185 2,070 985 3,470 4,190 3,760 NIA NIA 1,205 3,265 3,670 6,090 7,850 2,080 2,515 2,610 NIA N/A 1,080 2,940 3,670 3,650 4,710 5The values for ,fip in tension can be found in Table 3 of this report and the values for ¢.a in shear can be found in Table 4 of this report. 6For the 1/4-inch-diameter (KH-EZ, KH-EZ I) at 2-1'2 inch nominal embedment and the %-inch-through 3/4-inch-diameter anchors the characteristic pullout resistance for concrete compressive strengths greater than 3,000 psi may be increased by multiplying the value in the table by (f' cl3,000)112 for psi or (f' r/20.7)112 for MPa. 7For the 1 /4-inch-diameter anchors (KH-EZ, KH-EZ I) at 1 %-inch nominal embedment characteristic pullout resistance for concrete compressive strengths greater than 3,000 psi may be increased by multiplying the value in the table by (f' r/2;500)°-3 for psi.or (f' cl17.2)°-3 for MPa. 8The KWIK HUS-EZ I (KH-EZ I) version are used to resist static, wind and seismic tension loads only. r TABLE 2 ~ Unegua.l leim ,.-. (Formula 28) ->-0 -~ ·t.:;: X <l" I Angle L srt sxb Syl Sy1' J I ~ Ox Ox 0v LB:x6:x1 26.0 30.8 62.B 49.7 18.6 247 1.63 4.37 2.63 5.37 :x3/4 26.5 31.5 67.1 54.1 1.8.9 255 1.55 4.45 2.55 5.45 x1/2 27.0 32.2 72.2 · 59.7 19.3 266 1.47 4.53 2.47 5.53 Angle L s L3,5x3:z:3/8 12,2 6 x5/16 ·12.4 6 x1/4 12.5 6 L3-5:x2.5x3/8 11.2 5 x5/16 11.4 6 .x1/4 11.5 6 L}x2,5x3/8 10.2 4 x1/4 .10.5 · 4 ::r.3/16 10.6 4 L3x2x3/8 9.25 '4 x5/16 9,38 ·4 ::r.1/4 9.50 4 x3/16 9.63 ,4 LB:x4:z:1 22.0 28.7 47.3 25.7 a.a4 169 1.02 2.9a 3.02 4.9a ·zj/4 22.5 29.3 50.5 20.4 8.73 175 .94 :;.06 2.94 5.06 :x1/2 23.0 30.1 54.3 32.5 8.82 183 .85 3.15 2.85 5.15 L7:x4:x3/4 20.5 22.8 41.1 25.0 8.56 128 1.00 3.00 2.50 4.50 :x1/2 21.0 23.4 44.6 29.5 8.69 134 .91 :;.09 2.41 4.59 :x3/8 21.2 23.8 46.5 31.9 8.82 138 ,87 3.13 2,37 4,63 L2.5:x2::r.3/8 8.25 3 x5/16 8.38 3 x1/4 8~50 3 x3/16 a.6:;. 3 L2,5x1,5x x5/16 7.38 2 16x.4,x3/4 18.5 17.0 32.5 23. 1 8.37 91.6 1.06 2,94 2,06 3.94 x5/8 10.7 17.2 33.9 24,6 0.43 93, 7 1.02 2.98 2.02 3.98 x1/2 19.0 17.5 35.5 26.3 a.52 96.1 .98 3.02 1-.98 4.02 x3/8 19.2 17.a 37.3 28.3 a.66 98,8 . ,94 3.06 1.94 4.06 L6x3.5x3/8 18,2 17.4 33.9 23.2 6.69 87,.2 .10 2.72 2.03 3.97 x5/16 18.4 17.5 34.0 ·24.3 6,75 88.5 ,76 2.74 2,01 3.99 L2::r.1.5x1/4 6,501 L2x1,25x1/4 6,00 1 L1.75x1.25::r. ::r.1/4 5,501 L5:x3,5x3/4 15.5 11.8 22.3 16.4 6.35 54,5 .98 2,52 1, 73 3.27 x1/2 16.0 12.1 24.6 18.6 6.44 57,3 ,90 2.60 1.65 3.35 x3/8 16.2 12.3 26.0 20.2 6.54 59.1 .06 2.64 1.61 3. 39 -:c.5/16 16.4 12.4 26.8 21.2 6.61 60.1 ,83 2.67 1.58 3.42 L5x3x1/2 15.0 11.a 22.1 14.6 4.ao 49,2 ,74 2.26 1.74 3.26 . x3/8 15.2 12.0 23.3 16.0 4.06 50,8 ,70 2,30 1, 70 3.30 x5/16 15.4 12. 1 24.0 16.a 4.90 51.7 ,68 2.32 1.68 3.32 :x1/4 15.5 12,3 24,a 17.a 4,96 52.7 .66 2,34 1,66 3.34 L4x3,5x1/2 14.0 7.91 17,6 15.a 6.24 37.5 .99 2,51 1,24 2.76 x3/8 14.2 a.06 18.8 17. 1. 6.36 ;a.a ,95 2,55 1,20 2.ao x5/16 14,4 s.15 19,5 17.8 6,43 39,5 .93 2.57 1.18 2.82 :x1/4 14.5 8,25 20,3 18.6 6.51 40.3 .91 2.59 1.16 2.84 i-----·· .a·2 L4x3x1/2 n.o 7.71 15. 7 12.4 4.65 30.a 2.18 1.32 2,68 x3/8 13,2 7,87 16,8 13.5 4,72 31.9 .78 2.22 '1.28 2.72 x5/16 13.4 7.96 17,4 14.~ 4,77 32,6 :~16 2.24. 1,26 2,74 x1/4 13.5 8.06 18, 1 14,9 4,84 33,2 .73 2.27 1.23 2.77 -46 - . }: -~ . :• ... • V · PCR'S FOR WESTFIELD ~ CB1J181 MUST ALL BE SLIPSHEETED AT LAST PCR ISSUANCE~ ;1~ 9Jl~~ ( . v . efl q (l (( f<V.7 oJ . ~o p()v