Loading...
HomeMy WebLinkAbout2508 GATEWAY RD; STRUCTURAL; CB150850; PermitBlvd. 66 IS,E R HY TU R L E STRUCTURAl UlATIO VIASAT BUilDING 11 Carlsbad, (~_ffj (5 (J% 5 (J OF NTENTS VIASAT BUI 11 Gravity Design Wa!l of Plane Design 1-10 11- Lateral ·· 210 Up! Panel Holdown Design Foundation Design Design 318- 323- I ROHY WISEMA!Il+ROHY Structural Engineers PROJECT; ViaSat Building ff11 == Design Loads == OCATlON: Carlsbad, C/\ Roofloads{i of1} JOS NO: 14-143 Date: 313!2015 Flat Roof: Materia! Beams Girders Seismic Bullt-up Roofin 2.0 2.0 Re-roof 1.0 1.0 Backing Board 3.0 3.0 5" Foam Insulation iS 20 Meta! Deck Suspended Gyp. Bd. Ceiling ram '18.0 HU:i 18.0 Live Loads: {Reducible} 20 Roof Mechanical We!!: Deck Beams Girders Seismic 2.0 2.0 2.0 2.0 i .o i.O 1.0 1.0 3.0 3.0 54.4 54.4 54.4 2.1 2.1 2.1 3.0 3.0 3.0 1.5 1.5 i .5 3.0 3.0 3.0 ram ram ram 20.0 20:0 Total 67.0 90.0 90.0 Live Loads: USE: 20 * i.n deck ViaSat Loads Roof Antenna Area: live Loads: USE: 20 ViaSat #1 LoYls WISEMAN+ROHY Structural Engineers == Design loads "'"' Floor Loads (1 of i) Typical Second Floor: Partitions Live Loads; USE: 100 PSF Ll PROJECT: ViaSat Building #11 LOCATlON: Carlsbad, CA JOB NO: 14-143 Date: 31-3/2015 +0 PSF PART • in deck capacities alre'ady Second Floor at Bathrooms; Material Concrete (avg) 3 1/4" Lt. \IV eight Concrete Suspended Sprinklers Mise, M&E WF Beams Columns Partitions 1.5 2.5 2.5 ram Total 54.0 57.0 live Loads: USE: 85 PSF LL * in deck capacities already Girders Seismic 2.0 2.0 8.0 8.0 3.0 3.0 34.7 34.7 2.3 2.3 3.0 3.0 '1.5 25 ram ram 57.0 + 15 PSF PART (unreducib!e} Second Floor Total 1ii.O 1 i 5J.l '117.() live Loads: USE: 100 PSf LL +0 PSFPART W!SEMAN+ROHY Structural PROJECT: ViaSat BuHdlng 1 --Loads== LOCATiON: CA Wall Loads (1 of 1} JOB NO: 14-143 Date: 3/3!2015 Exterior Tilt Wall: Material 14" Tilt WaH 175.0 Furring 0.5 Batt Insulation i.O 5/8 G . Bd 2.8 2.8 !Misc. lA 1.2 137.0 180.5 psf Unit 155.5 154.7 Total 12.0 Exterior Walls: ViaSat Bldg #.l Desi1:,>r1 Loads WISEMAN + ROHY S:TR!.lCTIJRlt E~G!H£ERS SIEn' HO. ---:-- JOIIO. F ; -~ """ :::_ ' I ""' L t, ::;- _o s F $ F F WISEMAN + ROHY STRl.JCTIJRAl. [NGIJ\lEERS f F f $1£~1' Jll(l. -----:-- JOIIO. _:__....;._......:.......;;..;;;:::...;._ __ u0-l SIAJR 2 LJU i.O.P. RO u AL GIN ~ The computer program URAMSTEEL" was used to and design the beams/ columns and base plates for gravity loads. The design is based on the 2013 California Building Code and and Factor criteria. The program calculates tributary loads, live load reductions and the member sizes. The output consists of the following: key plans indicating final gravity beam designs key plans indicating beam numbers and column numbers plans showing the load patterns used gravity beam design criteria beam summary -an example of gravity beam designs -steel connections summary gravity column design criteria and column summary an example of gravity column design -a base plate design summary gravity base plate design The column load summarj was referred to for sizing column pad footings. The output for all of the columns and base plates are not included because of large volume output. J f 0 0 ,~.--,, c f"f"') j:.l., ~ ,_j 0 o.n () t...;= ---''-'N'-'1-'4J5±?..1~4l._~~--~ j~ n !UA.W l t~U J& \IV J,....A.<:.k.. ·\..t..-t} VVi4x22 (24) V\'14x22.{24} ·--····-.-:~!~12.1~SL_--··- 'N14x22~ "' I __ _'!'!1:\>.;;??(?:!l '~(!:!;<22 J2'!)_ W14x22(2il) W14X22 (20l <:.."'D W14x22(28) >~- (/) -(1) !L > ~ c.. (Jt; ~ tt ,_; '"0 9. ::::s ,....,. s ~ c.. Ul Steel I 4.07.00.05 future point loads psf psf 18.0 0.0 34.0 0.0 90.0 59.5 k/ft L3 Stair Glass Roof 0.000 0.000 DL CDL ldps kips Pl Add-Load 2.000 0.000 PS Hateh 0.250 0.000 Reduction psf Type psf 20.0 .Roof 0.0 20.0 Roof 0.0 20.0 Roof 0.0 LL Reduction PL.L k/ft Type luft 0.000 Reducible 0.000 LL Reduction J>LL kips Type kips 0.000 Reducible 0.000 0.000 Reducible 0.000 0.0 10.0 CL.L i<lft 0.000 CLL kips 0.000 0.000 .19 10 LRFD 32.0 91 0.140 .Mass nL 0.000 0.250 I Floor 1\1au 11 -03 with future noint loads Steel Floor Mau RAM Steel l fltture point loads Steel Code: DL CDL LL Reduction PLL CLL 1\lass DL psf psf Typ Floor 57.0 47.8 I 00.0 Reducible I 15.0 47.8 100.0 Reducible 0.0 10.0 117.0 Reduction Type k/ft ldft 0.080 0.000 0.000 Reducible 0.000 Reducible 0.000 0.000 0.230 CDL LL Reduction kips kips l<ips Type kips Jdps PI Add-Load 2.000 0.000 0.000 Reducible 0.000 0.000 0.000 0.525 0.000 1.500 Unreducible 0.000 0.000 0.525 0.975 0.000 2. 787 Unreducible 0.000 0.000 0.975 1.562 0.000 4.463 Unredudblc 0.000 0.000 1 future point loads 03/20/15 1 360-lOLRFD 2/10 point -Mu Mn Fy 38.00 0.0 50.0 u 78 38.00 0.0 W14X22 u 38.00 109.2 0.0 50.0 u 80 31.00 0.0 50.0 Wl2X19 u 81 31.00 78.0 0.0 102.9 50.0 2X19 u 82 31.00 78.0 0.0 102.9 50.0 W12X19 u 83 31.00 78.0 0.0 50.0 WI2Xl9 u 84 31.00 78.0 0.0 102.9 50.0 Wl2X19 u 31.00 78.0 0.0 102.9 50.0 \Vl2X19 u 31.00 0.0 1 50.0 W12Xl9 u 87 38.00 109.2 0.0 138.3 50.0 W14X22 u 88 38.00 109.2 0.0 8.3 \V14X22 u 89 38.00 109.9 0.0 138.3 50.0 \Vl4X22 u 90 38.00 109.2 0.0 138.3 50.0 Wl4X22 u 91 31.00 78.0 0.0 102.9 50.0 \Vl2X19 u 92 31.00 58.6 0.0 83.8 50.0 W12X16 u 94 3LOO 75.0 0.0 102.9 50.0 W12X19 u 100 31.00 59.8 0.0 83.8 50.0 W12X16 u 103 38.00 89.3 0.0 138.3 50.0 W1 u 106 31.00 59.8 0.0 83.8 50.0 \Vl2X16 u 107 38.00 100.8 0.0 138.3 50.0 Wl4X22 u 108 31.00 71.5 0.0 50.0 Wl2X16 u 109 31.00 71.5 83.8 50.0 W12X16 u 110 38.00 7L6 0.0 138.3 50.0 \Vl u 111 31.00 67.2 0.0 83.8 50.0 \V12X16 u 112 31.00 67.2 0.0 .8 50.0 V\ll2X16 u 113 31.00 65.3 .8 50.0 W12X16 u 114 38.00 97.1 0.0 138.3 50.0 W14X22 u 115 31.00 0.0 83.8 50.0 116 31 59.7 0.0 83.8 50.0 117 31 59.7 0.0 .8 50.0 118 31.00 54.8 0.0 83.8 50.0 u 119 31.00 83.8 50.0 W12X16 u 31.00 143.3 0.0 356.8 50.0 30 140 31.00 143.3 50.0 u 30 141 31.00 1 0.0 50.0 u 30 142 31.00 143.3 50.0 30 3LOO 0.0 356.8 50.0 u 30 144 38.00 103.9 0.0 138.3 u ,., 1 .9 u ~ 146 31.00 ] .., 50.0 u • .J 147 31.00 143.3 u 148 .00 103.9 50.0 u 38.00 103.9 50.0 \V14X22 u 31 1 0.0 50.0 \Vl u 30 \Vlfu loads Mn 83.8 31.00 0.0 83.8 153 31 0.0 83.8 50.0 154 31.00 66.8 0.0 1 99.3 1 50.0 u 38.00 1 50.0 W14X22 u 38.00 0.0 1 50.0 u 38.00 0.0 138.3 50.0 Wl4X22 u 31.00 66.8 50.0 u 31.00 66.8 50.0 6 u 31.00 66.8 W12X16 u 31.00 66.8 83.8 50.0 u 38.00 82.7 138.3 u 38.00 61.3 0.0 13 u 31.00 55.7 0.0 83.8 W12Xl6 u 31.00 71.8 0.0 102.9 50.0 W12X19 u 167 8.00 0.2 0.0 46.4 W1 4 u 168 8.00 0.2 0.0 46.4 50.0 W12X14 u 169 8.00 02 0.0 46.4 u 170 9.17 0.0 36.7 W12XlL u 171 9.17 0.0 50.0 1 9.17 0.0 36.7 50.0 173 0.4 30.2 50.0 u 1 5.96 0.4 30.2 W8Xl0 u 1 5.96 50.0 4 u 176 7.67 0.1 49.8 50.0 W12X14 u p-r ! I 9.17 36.7 50.0 \V12X14 u 178 9.17 0.0 36.7 W12X14 u 179 9.17 36.7 u 180 9.17 36.7 u 181 0.0 \V12X14 u 1 0.1 0.0 51.4 50.0 183 51.4 50.0 1 7.42 0.1 0.0 51 50.0 185 0.0 46.4 186 50.0 187 7.42 0.1 51.4 50.0 u l 0.1 51.4 W12X14 u 189 7.42 0.1 0.0 51.4 50.0 190 50.0 50.0 192 1 0.1 51.4 u 195 0.1 0.0 51.4 u ~ 4/10 point loads 03/20/15 10:51 360-10 LR1 ~ -l\·1u Mn 0.0 51.4 50.0 197 0.0 46.4 u 1 7.67 OJ 0.0 49.8 50.0 Wl2X14 u 199 9.17 0.2 0.0 50.0 \:V12X14 u 200 9J7 0.0 36.7 50.0 u 201 17 0.2 0.0 50.0 W12X14 u 202 9.17 0.0 36.7 50.0 u 203 5.96 0.0 0.0 72.5 50.0 W12X14 u 204 7.67 0.1 0.0 49.8 \ 50.0 \Vl2X14 u 205 9.17 0.0 50.0 206 9.17 0.2 0.0 36.7 50.0 0.0 0.0 50.0 Floor Floor # Length -Mu Mn kip-ft 19 18.67 94.1 0.0 172.1 46.0 HSS 6 u 20 18.67 94.1 0.0 172.1 46.0 HSS12X8X5/16 u 21 20.42 1.7 0.0 50.0 V/1 u 45 23 40.50 1196.8 0.0 1338.0 50.0 W24X76 u 71 24 40.50 1226.8 0.0 1367.6 50.0 W24X76 u 75 ,.,~ k.J 21.08 266.5 0.0 422.5 50.0 W18X35 u 16 2LOO 396.5 0.0 448.5 50.0 W18X35 u 20 27 16.00 252.7 0.0 286.4 50.0 Wl u 12 28 37.08 1039.8 0.0 1160.2 50.0 W24X68 u 48 29 20.42 352.0 0.0 396.6 50.0 WJ 1 u 28 30 20.42 351.3 0.0 407.4 Wl8X35 u 16 31 40.50 11 0.0 1338.0 50.0 W24X76 u "'! ;::;_ 40.50 1142.1 0.0 50.0 \\l24X76 u 33 21.08 0.0 50.0 8X35 u 16 34 21.00 50.0 Wl u 16 16.00 252.7 50.0 1 u 12 37.08 1039.8 0.0 1160.2 50.0 W24X68 u 48 20.42 1.3 407.4 50.0 W18X35 u 16 29.00 236.5 0.0 50.0 44 8.00 17.1 0.0 50.0 8.00 18.2 0.0 138.3 u 46 265.9 300.1 50.0 u 48 1.1 50.0 18 49 317.5 50.0 37 31.00 259.5 50.0 u 18 51 31.00 18 38.00 50.0 31.00 50.0 vV14X22 u 18 31.00 0.0 307.8 u 31 with point loads +1'r1u Mn 396.0 0.0 277.9 307.8 50.0 u 31 277.2 0.0 307.8 50.0 Wl4X22 u 31 307.8 50.0 u 31 69 524.4 597.8 50.0 u 20 70 31.00 421.2 50.0 u 18 71 31.00 0.0 50.0 4X22 u 24 72 38.00 338.4 0.0 407.0 50.0 Wl6X31 u 26 73 31.00 0.0 284.3 50.0 u 31.00 252.0 0.0 284.3 50.0 u 31.00 0.0 50.0 u 24 76 31.00 252.0 0.0 284.3 50.0 vV14X22 u 77 38.00 359.3 0.0 407.7 \Vl 1 u 26 78 38.00 0.0 407.7 50.0 Wl 1 u 26 38.00 359.3 0.0 407.7 50.0 W16X31 '\.l 26 80 31.00 252.0 50.0 W14X22 u 24 81 31.00 252.0 0.0 284.3 50.0 W1 u 24 3LOO 252.0 0.0 284.3 50.0 W14X22 u 24 85 31 252.0 0.0 50.0 \Vl u 24 31 252.0 0.0 284.3 50.0 W14X22 u 38.00 0.0 407.7 WI J u 26 38.00 359.3 0.0 407 50.0 W16X3:l u 38.00 0.0 407.7 W16X3 u 26 90 38.00 0.0 W1 . u J 94 31 0.0 50.0 W14X22 u 20 95 31.00 244.8 0.0 300.1 50.0 vV14X22 u 38 50.0 22 97 31.00 244.8 50.0 u 28 98 31.00 263.1 0.0 50.0 u 28 31 l u 1 31 0.0 50.0 W14X22 u 101 38.00 375.5 0.0 \Vl 1 u 32 \V1 1 u 103 38.00 0.0 431.8 50.0 ] u 104 31.00 1 u 28 1 31 300J 28 31 246.4 0.0 300.1 50.0 107 38.00 389.4 50.0 1 50.0 u 111 214.4 50.0 u 18 112 .., 50.0 u 18 "- 113 214.4 50.0 u 18 114 38.00 u 115 31 214.4 u 18 116 31 l .3 u 18 14.07.00.05 6/10 ViaS at 11 -03 with future point loads 03/20/15 1 1' Building Code: IBC 360-10 LRt JJ +Mu 117 31.00 185.3 0.0 258.2 50.0 18 118 3LOO 185.3 0.0 50.0 W14X22 u 18 119 31.00 1 0.0 50.0 W14X22 u 18 120 11.92 10.7 0.0 50.0 u 6 121 11 59.4 0.0 50.0 W12X26 u 6 122 8.50 14.4 0.0 72.5 50.0 \V12X14 u 17.00 50.1 0.0 6.2 50.0 u lO 124 4.00 2.8 0.0 72.5 50.0 W12X14 u 125 11.92 10.7 0.0 188.8 50.0 W14X22 u 6 126 11.92 59.4 0.0 50.0 vVl2X26 u 6 1 8.50 14.4 0.0 50.0 vV12X14 u 128 17.00 50.1 0.0 216.2 50.0 \VI u 10 129 4.00 0.0 72.5 50.0 W12X14 u 130 8.50 14.4 0.0 50.0 Wl2X14 u 131 8.50 14.4 0.0 72.5 50.0 \N12X14 u 1"'"> .)~ 19.50 38.8 0.0 50.0 W12X14 u 133 19.50 38.8 0.0 72.5 50.0 W1 u 134 21.08 188.3 0.0 422.5 50.0 Wl l1 16 1 21.08 185.1 0.0 422.5 50.0 \V18X35 u 16 136 10.00 30.4 0.0 138.3 50.0 Wl u 137 10.50 .5 0.0 50.0 W14X22 u 138 17.50 103.7 0.0 216.2 50.0 \V14X22 u 10 151 33.00 90.9 0.0 211.8 50.0 W14X22 u 11 152 31.00 151.2 0.0 216.1 50.0 \V14X22 u 11 153 8.00 0.6 0.0 46.4 50.0 W12X14 u 154 9.17 0.0 36.7 50.0 W12X14 u 155 8.00 0.0 0.0 36.5 50.0 \V8X10 u 156 9.17 0.0 0.0 0 u 157 8.00 0.6 0.0 46.4 50.0 \V12X14 u 158 0.0 36.7 50.0 W12Xl4 u 1 1.5 0.0 50.0 u 18 167 33.00 281.4 0.0 50.0 Wl6X26 u 18 168 31.00 254.0 0.0 307.8 50.0 u 31 33.00 0.0 308.1 50.0 31 170 33.00 50.0 18 171 .00 0.0 228.7 50.0 u 172 33.00 0.0 1 50.0 u 31 173 33.00 435.2 50.0 u 176 .00 u 12 177 .00 186.1 0.0 287.3 50.0 u 12 178 3 2.7 72.5 u 179 22.00 0.0 216.7 u 10 180 6.00 1 50.0 Wl2X14 u 1 -03 Bm# ft 19 18.67 118.1 0.0 20 1 118.1 0.0 21 20.42 0.0 40.50 0.0 24 40.50 1226.8 0.0 .08 0.0 21.00 0.0 27 1 0.0 37.08 1039.8 0.0 20.42 352.0 30 1.3 0.0 31 40.50 1196.8 0.0 32 40.50 1142.6 0.0 33 21.08 268.8 0.0 21.00 265.7 0.0 35 16J}O 252.7 0.0 36 37.08 1039.8 0.0 37 20.42 1.3 0.0 38 29.00 236.5 0.0 8.00 0.0 8.00 18.2 0.0 46 31.00 265.9 0.0 31.00 Ll 0.0 38.00 317.5 0.0 50 .00 Ll 0.0 51 31.00 0.0 38.00 32LO 53 31 232.8 31.00 277.9 64 38.00 396.0 65 .9 67 .2 68 277.5 0.0 69 0.0 324.7 71 237.6 0.0 .6 252.0 31.00 76 31 0.0 77 38.00 loads M.n ksi 46.0 50.0 1338.0 50.0 1367.6 50.0 50.0 448.5 50.0 50.0 1160.2 50.0 396.6 50.0 1338.0 50.0 1 .2 50.0 422.5 50.0 421.1 50.0 286.4 50.0 1160.2 50.0 407.4 50.0 .5 50.0 50.0 138.3 50.0 300.1 50.0 259.5 50.0 50.0 50.0 259.5 50.0 50.0 259.5 50.0 307.8 50.0 ..., 50.0 j .8 307.8 50.0 50.0 50.0 421.2 50.0 50.0 50.0 50.0 50.0 Steel u u u W24X76 u W24X76 u W18X35 u Wl u W16X26 u W24X68 u 1 u u W24X76 u W24X76 u Wl u W18X35 u Vl16X26 u \V24X68 u Wl8X35 u WJ u W14X22 u V'/14X22 u u W14X22 u W16X26 u u W14X22 u 1 u \Vl4X22 u W14X22 u \V16X31 u W14X22 u u u u u u Wl4X22 u \V1 u \Vl u 16X3J u / 7/10 1:30 360-10 LRFD 28 71 75 16 20 48 16 71 75 16 16 16 20 18 37 18 18 18 31 31 31 31 20 18 26 14~07.00.05 Page 9/10 11 -03 with future loads 03/20/15 1 Steel Code: AISC 360-l 0 -Mu 1\':ln Studs 0.0 50.0 131 8.50 0.0 72.5 50.0 1 19.50 50.0 1 19.50 0.0 50.0 134 21.08 188.3 0.0 422.5 50.0 u 16 .08 185,1 0.0 5{).0 Wl8X35 u 16 136 10.00 30.4 0.0 50.0 u 137 10.50 0.0 138.3 50.0 \V14X22 u 17.50 103.7 0.0 216.2 50.0 u 10 J -42.8 -42.8 155.0 50.0 u 140 3.83 0.0 -106.6 10.00 11.0 -106.6 50.0 WI u 141 3.83 0.0 -106.6 10.00 11.0 -106.6 50.0 Wl Ll 142 2.00 0.0 -42.8 10.00 15.5 -42.8 155.0 50.0 W12X26 u 1.67 -1 17.67 85.5 186.7 50.0 W12X19 u 12 l 0.0 144 12 50.8 -39.8 50.0 Wl2Xl9 u 9 6.05 0.0 -39.8 145 0.0 -39.8 14.12 50.8 164.1 50.0 W12X19 u 9 146 sew Wl2X14 u 1 0.0 72.5 50.0 148 13.03 0.0 50.0 u 149 13.03 49.8 0.0 72.5 50.0 u 151 33.00 90.9 0.0 u 20 152 31.00 151.2 0.0 50.0 u 20 153 8.00 0.6 0.0 46.4 u 17 0.2 0.0 36.7 50.0 u 155 8.00 0.0 0.0 "6-... ) ~.:> 50.0 0 u 1 9.17 0.0 0.0 50.0 \V8X10 u 157 8.00 0.0 50.0 4 u 1 9.17 0.2 0.0 50.0 4 u 1 33 L5 50.0 \'l16X26 u 18 167 33.00 1.4 0.0 50.0 u 1 33.00 255.5 308.1 W14X22 u 31 169 31 0.0 307.8 50.0 u 31 170 .00 344.2 u 20 171 33.00 255.5 u 31 1 0.0 u 18 173 33.00 281.5 0.0 50.0 u 18 176 21.00 1 .1 Ll 14.07.00.05 10/10 DataBase: ViaSat Bldg 11 -03 vvith future point 03/20/15 10:51 Building Code: IBC 0 '-' Fy 21.00 186.1 0.0 287.3 50.0 178 3.00 2.7 0.0 50.0 4u 179 22.00 1 0.0 50.0 W14X22 u 10 180 6.00 10.9 50.0 W12X14 u 181 13.83 0.0 50.0 4u 182 13.83 37.2 0.0 72.5 50.0 W12X14 u * after Size denotes beam failed criteria. # after denotes beam failed deflection criteria. u after denotes has been by the (in) Mnf (kip-ft) c Ieff (in4) length Stud Capacity (kips) #of Full = Number of Stud Rows = 1 LOADS 11 -03 future point loads W24X76 ~ 40.50 (Not Left Typical Floor 121 1502.84 601 4856.63 115.00 3.00 parallel \V3 Fom1Iok bar(in) Mn (kip-ft) (in4) Stud diam (in) = 17.7 Rg = 1.00 Rp = 0.75 Partial= 75 Actual= 75 = 50.0 Right Ty-pical Floor Deck 3.25 115.00 3.00 parallel = 21.49 1367.63 5667.52 0.75 ofFui1 Lornuos1te Action= 59.55 03/20115 10:51:30 360-10 LRFD CDL RedLL Red% NonRL Red% RoofLL Red%, PartL 3.833 3.833 13.000 13.000 22.167 31 31 10.04 11 1 11 9.44 0.000 40.500 7.65 15.!1 8.92 1 7.66 1 2 17.42 7.13 1 7.13 14.21 17.42 0.076 lVIax 0.076 Load Combo 45.4 45.4 45.4 45.4 45.4 L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 1 1 1v1u 575.8 0.00 0.00 0.00 0.00 0.00 Red~'o 0.0 0.0 0.0 0.0 NonR 1.00Vn = ft ft 22.2 0.00 0.00 0.00 0.00 0.00 0.00 PartL 0.000 0.00 1.51 0.0 0.00 1.74 0.0 0.00 I .51 0.0 1.74 0.00 1 1.74 0.00 1.42 0.00 Phi kip-ft 123Ct87 Steel 14.07.00.05 DataBase: Bldg 11 -03 with future point loads Building Code: IBC REACTIONS Initial reaction DL reaction Max Max +total reaction (factored) (Camber= Initial (in) Live load (in) Post Comp load (in) Total load {in) at at at at 1 Right 46.00 35.16 49.94 38.19 39.87 30.20 .72 94.15 20.25 ft --1.820 20.25 ft --0.810 20.25 ft -1.039 20.25 ft -L609 Steel UD LID 2/2 03/20/15 10:51 267 600 468 302 Column Line Level Roof 3nd Floor Line Level Roof 3nd Floor Floor 2nd Floor 2nd Floor Level Floor 2-B 4-C 1 43.4 21 " .;) Pu Pu 57.5 280.0 459.2 Pu 56.6 283.9 466.6 54.5 Mux 37.7 17.0 Mux 17.0 ~lux 35.0 18.4 L7 Mux "I -.J I,:> 3.0 Mux 0.0 188.9 25.4 0.0 loads 7.7 2.7 1.4 M.uy LC Eq. 7.7 2 0.29Eq(H1-1b) 2 0.48 (Hl-2) 1.4 1 0.78 (Hl-2) Muy Interaction Eq. 0.0 2 0.17 (Hl-lb) 0.0 2 0.52 Eq (Hl-2) 1 0.85 Eq (Hl Muy LC 0.0 2 0.18 Eq (Hl-lb) 0.0 2 0.53 Eq (Hl-2) 0.0 1 0.86 Eq (Hl-2) Interaction 0.0 1 0.72 Eq (Hl-la) 7.4 Eq. 1-la) 03/20/15 10:54:19 Code: A1SC360-05 LRFD Fy Size 0.0 50 0.0 50 W8X58 Fy 0.0 50 W8X58 0.0 50 W8X58 0.0 50 W8X58 Angle Size 0.0 50 W8X67 0.0 50 W8X67 0.0 50 W8X67 Fy 0.0 50 50 W8X67 50 W8X67 Fy 0.0 HSS5X5Xl/8 Size W8X58 0.0 50 50 RAM Steel 14.07.00.05 213 DataBase: ViaSat 11 -03 with future point loads 03/20/15 1 Building Code: IBC Column Line Level Muy LC Fy Roof 53.6 5.3 13.5 4 0.21 {Hl-lb) 0.0 50 W8X58 3nd Floor 174.8 2.9 7.7 4 0.45 Eq (Hl-la) 0.0 W8X58 Floor 0.0 6.6 10 0.62 Eq -1 a) 0.0 \V8X58 Eq. Fy Size Roof 53.6 10.5 15.5 2 0.25 Eq (Hl-lb) 0.0 50 W8X58 3nd Floor 174.2 6.5 9.6 2 0.48 Eq (Hl-la) OJJ 50 W8X58 Floor 264.2 8.6 6 0.65 Eq (Hl-la) 0.0 50 \V8X58 Line 133.00ft-E Level Pu 1\'lux 1\iluy Interaction Eq. Angle Fy Size 2nd Floor 0.0 0.0 0.72 Eq (HJ-la) 0.0 46 HSS5X5X1/8 Column Line 5-C Level Pu Mux Muy LC Interaction Angie Fy Roof 34.2 15.3 13 0.34 Eq (H1-l b) 0.0 50 \V8X40 3nd Floor 125.7 5.1 11.7 2 0.59 Eq (HI 0.0 50 W8X40 2nd Floor 197.6 1.6 12.5 6 0.91 Eq (H1-1 0.0 50 \V8X40 Column 6-C Level Pu LC Fy Roof 44.3 31.0 8.6 5 0.27 Eq (H1-1b) 0.0 50 W8X58 3nd Floor 182.9 19.9 10 Eq (Hl-1 a) 0.0 50 W8X58 2nd Floor 321.3 1 1.5 1 0.70 Eq (HI 50 W8X58 Co)umu Line Level Pu Mux Muy Size Roof 31.0 8.6 0.0 50 W8X58 3nd Floor 1 5.2 0.0 50 W8X58 2nd Floor 15.2 1.5 0.0 50 W8X58 Pu l\tuy 52.4 7.8 4 0.28 Eq (H1 0.0 50 213.4 .... 0.47 Eq (Hl 50 W8X58 J 351.2 13.7 1.4 1 0.76 Eq (H1 50 Pu 7.8 0.0 50 point 4.3 3 1.4 l Page 03/20/15 10:54:19 Code: AISC360-05 RAM 14.07.00.05 DataBase: ViaSat Bldg 11 -03 \Vith future point Building Code: Fy (ksi) Orientation (deg.) DESIGN ;;;;: 50.00 0.0 Column 15.00 1 Braced Against Joint Translation ----· Column Eccentricity (in) Top 7.50 CONTROLLING LOADS-Skip-Load 2: Axial (kip) ---------------40.25 Moments Top (kip-ft) ---··-········---0.85 My (kip-ft) ·-· 0.00 Bot l\h (kip-ft) ______ _ 1.33 My c>u.,, ... .,,. curvature about X-Axis Single curvature about CALCULATED PARAMETERS: (1.2DL + Pu (kip) = 56.58 Mux (kip-ft) Muy (kip-ft) Rm Pex (kip) Blx = = 37.49 0.00 1.00 1.70 2402.82 1 + 0.020 = 0.128 .3: 0.038 + + 0.00 + 0.5RF) 0.90PILx (kip) 0.90Pny (kip) 0.90*1Vill.x (kip-ft) 0.90*Mny (kip-ft) M ex (kip-ft) Cmy Pey (kip) y = 0.180 = ·- Steel Code: \V8X67 Y-A:xis 15.00 1 0.00 0.00 Live 0.00 0.00 0.00 0.00 746.73 523.50 262.88 1 262.88 LOO 1.08 03/20/15 10:54 Roof 16.56 0.39 0.00 0.00 0.00 lO f --'9z; G !, 4; Q, ,;;;;: ' f> -, P-i fL $1£0 10. ---:-- J@I ~0. C/,1 iii u.. Company: Specifier: Address: Phone! Fax: E-Mail: Specifier's comments: 1 Input data Anchor type and diameter: Effective embedment depth: Material: Proof: Stand-off rnstaltation: Anchor plate: Profile: Base material; Reinforcement WRE DM Date: ··················~-~----- Profis Anchor 2.5.0 ViaSat Building 11 Hoof Embed .2112/2015 ·----·····································-···~········ AWS DU GR 8 5/8 h.,= 5.000 in. Design method ACI 318-08 f CIP eb = 0.000 in. {no siand·c•ff); t = 0.500 in. I, x ~ x t = 12.000 in. x 8.000 in. x 0.500 in.; {Recommended plale thickness: noi calculated) Rectangular plates and bars (AISC); (L x \N x T)"' 12.000 in. x 0.313 in. x 0.000 in. cracked ccncrete, 4000, f~· "4000 psi; h"' 7.250 in. tension: condition B, shsar: condition El; edge reinforcement none or< No. 4 bar Seismic loads (cat C, D, E, or P) no Geometry [in.J & Loading [lb, in.!b] Company: Specifier: Address~ Phone I Fax: E-Mail: Load case: Design loads Anchor reactions [!bj WRE DM Tension force: (+Tension, -Compression} 2 0 2666 4250 4250 4250 4250 4 0 4250 4250 max. concrete compressive strain: 0.11 [%o] max. concrete compressive stress: 475 [psi] resulting tension force in (xly}=(-4.50010.000}: 5332 [!b] resulting compression force in (xJy)=(5.065/0.000): 5332 Ubl 3 load Pullout Strength* Concrete Breakout Strength" 2666 5332 N/A Concrete Side-Face Blowout, direction '* • anchor having the highest loading "*anchor group (anchors in tension) 3.1 St~l Strength N, == n A.e.N fu,. <fJ N,u,Ol <! Nua Variables Calculations N,. Ubl 19955 Results ACl 318-08 Eq. (D-3) ACI 318-08 Eq. (D-1) f?X!Stlng conditions HlW fs a registered r,e,;~=••Vnf 0 0 0 Schaan Page: Project Sub-Project f Pos. No.: Dale: 20608 15839 N/A 3 (4) Tension 13 34 N/A Profis Anchor 2.5.0 2 ViaSat Building i 1 Roof Embed 2!1212015 OK OK N!A n Phone I Fax: E-Mall: 3.2 Pullout Strength "'lyc,p NP =B ( <! Nua Variables Calculations Results WRE DM ACl31fH)8 Eq. {D-14} ACI318-0ll Eq. (D-15) AC!318-0B Eq. (D-1} 3.3 Concrete Breakout Strength NC"" = (AANc) "!ecN '"ed.N WeN w~N Nb "'::.' Nct:l '1 , v . , . < ,..,., <j> Nobg <! N"" ~" sse ACI318-08, Part 0.5.2.1, Fig. RD.5.2. i(b) A,,C() = 9 h~t \lfec,N = (1 + ~ e;,) S 1.0 3 hel :::: 07+0"" (Ca,rnin)< 1" 'Jie<J.N ~. .v 'L5h.r -.v 5 1.0 Variables Calculations Results ACI 318-08 Eq. {D-5) AC13i8-08 Eq. (D-1) AC13i8-08 Eq. (D-6) ACI 318-08 Eq. {D-9) ACI3i8-08 Eq. (D-11} ACI318-08 Eq. (D-13) AC13i8-08 Eq. (D-7} Date: Protis Anchor 2.5.0 ViaSat Bullding 1 i Roof Embed 21'12/2015 Company: Speclfier: Address: Phone! Fax: E-MaH: 4 Shear Steel failure (with lever am1)~ Pryout Strength** WRE DM Concrete edge failure in direction x+** N/A 17000 17000 • anchor having the highest loading '"anchor group (relevant anchors) 4.1 Steel Strength V •• ~ n A.e.v f~,. 1> V.,.er<::Vua ACI318·08 Eq. (D-19:) ACI 318..08 Eq. (D-2) Variables Calculations Results v .. [tbl 19955 4.2 Pryout Strength 0.650 = k..p [ (~:) \jfeo,i\1 \t'M.>J 'l!o.l\l \f!op,N Nb] v,.9 "' v •• 1> v •• [lb] 12971 see ACI3i8-0!3, Part D.5.2.i, Fig. RD.5.2.i(b) A,.ce = 9 = (1 + ~e;,);:; 1.0 3 h., Ved,N " 0.7 + 0.3 ( ~:s~:J s 1.0 1.5h•') $ 1.0 Cac Cac Variables Calculations Results 4250 ACI318-Q.!l Eq. (D-31) AC13i8-00 Eq. (D-2) ACI318-08 Eq. (D-6) AC13i8-08 Eq. (D-9) AC13i8-08 Eq. {D-11) ACI318-08 Eq. (0-13) ACI 318-08 Eq {D-7) Date: N!A 50685 21149 NJA 34 81 Profis Anchor 2.5.0 4 ViaSat Building 11 Roof Embed 2!12/2015 NfA OK OK Phone! Fax: E-t,iail: WRE DM 4.3 Concrete edge failure in direction x+ ~ Vcog z: V0• Ave see ACJ 3i8-D8, Part 0.6.2.1, Flfi RD.6.2.i(b) Avec = 4.5 Variables Calculations Results tension and shear ACJ 3 i 8·08 Eq, (D-22) AC1 3 Hl-08 Eq. (D-2) ACi 3i8-08 Eq. (D-23) AC13i8-08 Eq. (D-26) ACI318-08 Eq. (D-28) ACI 318-08 Eq. (D-29} ACI3i8-08 Eq. (D-25) Date: Profis Anchor 2.5.0 5 ViaSat Building 11 Roof Embed 2/12!2015 • Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be su:fficiently stiff, in order not to be deformed when subjected to the loading! Input data and results must be checked for agreement with !he existing conditions and for plausibH!ty! • Condition A applies when supplemenlEif'/ reinforcement is used. The ¢factor is increased for non-steel Design str·.,nntr"' except Puflout Strength and Pry out Condition B applies when supplementary reinforcement is not used and for Pullout Strength Strength. Refer to your local Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standardl Input data and results must be PROfiS ,4nchcr { c} 2003-2000 Hilt~ AG, Company: Specifier: Address: Phone I Fax: E-MaH: 1 data Anchor plate. steel:- \VRE DM Profile: Rectangular plates and bars {AISC); 12.000 x 0.313 x 0.000 in. Hole diameter in the fixture:~"' 0.668 in. Plate thickness (input): 0.500 in. Re:::ommended plate thickness: not calculated Cleaning: No cleaning of the drilled hole is required 3 1.500 Coordinates Anchor in. 2 3 4 4.500 -4.500 4.500 -2.500 2.500 2.500 6.000 12.000 21.000 12.000 y !LOGO Page; Project: Sub-Project I Pes. No.: Date: Profis Anchor 2.5.0 6 ViaSat Building 11 Roof Embed 2/12/2015 Anchor type and diameter: AWS D1.1 GR. B 5/8 Installation torque: -0.009 in.!b Hole diameter Jn the base material: -in. Hole deplh in the base materia!: 5.000 in. Minimum thickness of the base materia!: fU3i 3 in. 6.000 ----------------------·-· --------------------·-·-------· -------------------------·---··-~-----------------··-------- Company: Specifier: Address: Phone! Fax: E-MaH: WRE DM Date: Profis Anchor 2.5.0 7 ViaSat Building i 1 Roof Embed 2/12/2015 • Any and ali information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and regulalions in accordance with Hiltl's technical directions and operating, mounting and etc .. !hat must be strictly cmnolied with by the user. All figures contained therein are and therefore use-specific are to conducted prior to using the Hifll product. The resuits of the ce!cuialions carried means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calcu!alion checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software sentes only as an aid lo interpret norms and penmrts without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reas-::mabie or limit damage caused by the Software. ln you must arrange for the regular backup of and data ;and, if carry out the updates of the Software offered by on a regular basis, If you do not use the Auto Update of the Softv;are, you must ensure that you are using the current and !hus up-to-date version of the Software in each case by carrying out manuaf updates via the Hi!ti Website. Hi!ii will not be liable for consequences, such as !he recovery of lost or damaged data or programs, arising from a culpable breach of duty by you. Schaan Stwdflet11f cnmm!>-nffl~ 1 Input data Anchor typo ~n!.l d~rurmb:!r: tff«:fh.•e en"ltmdmenl dt,;ipth; ~MMrl<~t Prcwt Sl~rxl-offln::o:t.af!~afndfl: MeJo))f~}~!e: Prt>fll~: ~~·we nmt\1rlat R»Jr,f~:~<::~!nent tl<~~J~'I'l:1~f)' [in.J & loaditl!J fib~ !rdb] AWS 01.1 GP.. a 5!6 n.1 ~ twoo m, Da~ign trm1Md ACt 31~~11 /CIP e~ ;;;f 0 MO h {no stand-off]; t ;::-0.500 lrt, I V!a.."1a.t Hu~d!ng i 1 N1.t; Hoof Embed (Seh>mlc} 21i2.i2015 f:r X ly)) t ~ 12.000 tl't. 'X 8".1}00 frt. X 0.500 ih.; {!~~Cr.IH'mWm~d pJ.af~ 1hkf<:r!I'H~$, ~'Ot caklulafad} f't~!<llng<Aar pJatesand b~t.s.{A!SC}; tL xWx T}"" l2.0()0ln,)J 0 31J lrt ll: lJ:!J(tOh. cra~k~tl cti!V.:t~ro:. 4000, f\;' ""400tl p~!: h "'1.2W !n, l~ii:sio!"t: oond!llnn 8. ~J~<)!r; cond!fft)., B; ~dg@ retnfOIWfi'>-ant none or< No.4 oor 2 Load caS<l/Resulting anchor forces l.o~d r.a~~: 0-l!lt.lgh toads 3 Tension load PuUO\t1 Slren¢h* Cbncr~te fifMk:otJl Streng!h** 3500 0010 Cormr~t6 Slde¥Face B!owetJt, dfmc!loo ~.. N!A 6 ~M!u:u· Mvbg th~ h!gJ~:esJ faadlpg >h>anch~:~r grUJlp (£;m:chor$ ~n tension} 3:1 St-ee' Stttlflgtfl V.nrJabl~s C>il¢11~atit>nl!i' Rl!ltJU~ 0 2060$ w-amt WA ()3 C)1 17 49 N/A ~1 ")( OK Qj( NIA 04 ()2 J,Z Pullout Suen_u~!'i Vad~h,a\!1 Caktdathm~ ~~!l-ttltll J,3 CnMt~!~ Sr(l-d:<H.rt Sk$h(!;~h V.nrtal::ili1.t Calm.dli:tftl1~$ fli'11H.!l1* Rrt,5.2,1(b) ACl318-1? f{J (04) A.C! 31-B-11 Tabllil P4 q AC! 31~·11 Eq (D.Q) AG! 31&, 11 Eq, {tl·(l} AC'J 318~11 Eq, (D-10) AC! >18·11 Eq. (D-1~) AC! 31a·'i1 F.q (CHJ} ~~~~.~ 'UJOO"' 4 Sh<>nr load '1!\iii!S:iriliigb'''' ..... S~l!!t fallure (with ~ever armY Pry~ot Sttenut~o~~ Crn1cref& ~ge tt~lh.tt!li ln dir~tiOtllt.j-'*"' NIA 6580 6MO N!A 60685 1M$B ,. ~tm-"mr ha'<'ht} tOO t<Jgh~st /o$dJog "'**tchm' {!l\!Up {t~!~Wmt ~R'h~rs} <l. 1 Si~&l St~t~:gth ~ tl fl'I'~,Y fl!l~ Vafiabtee Ca!cu!athms ~esun~ <LZ f<ryout Sln'Jflt)th Var!<)bl!ils GtHc~Jfatlom Rmn!tl:!) ACI >18·11 Eq. (041) ACt316--t1 T~bleOA.U AG:t :.na~tr Eq. (0~5J ACI31B·I1 Eq. {D·«) AC! 3lfH1 ~:q (0~10) ACI SJe .. IJ Sq. ~Hl:i ACI3HH t f~. (n -61 WA 13 34 N!A OK OK 4.3-C~mcre:te ~diJtl faliure In d!ret:Uon X'*- mun.1(bJ Vai!"hr!b!i'!'s Cal~flh!!tl~!"l$ RtHHdb 5 Combined tension and shear load• j',t-<1.'~ Jil:J ~ ~!,(~ ~2:1 1 6Wam!ngs f\C! ::H6·11 Eq, {t).-;~1} ACI31B·11 Ta:b!e[t•tl,1 ACI @IB·111'.q (D0~] ACI31$-11 Eq. {ll-36j AC! 3"1 a:~ 11 E-q, (D<~8) AC! 318-11 Eq. (0·31,)) ACI 31~·1 I Eq, (D~) [;'11581 Pto!is lltlthor 2.5.0 ~ C~c~fng v~~ ttaMMr rJf badslnla U\l>' ba:11a tnal$r!a~ ~tid lhl) sMar rn1l'i'!!!tll'nl':~ art) rE::f.l!J~rfJ-d In acoord$n~ whhACI31E or th~~t re:tev~nt stafld~nH Fastening meets the design criteria! 7 lnstal!ation data CQ~rdinll:t(!.~ An«hor-in. WISEMAN + ROHY STlUiO'IJRAl lATE __ _ ' £<. '"" ," ~-,,., ? ! ~. {!...- ( /; {._l f f SISEV II. ---,-- Jill II. -, I ·.:-~. ~ r"-J ,' j "' ~~·!!!~,·~-·-~~-~"-- Specmet's enmmfl:tltR~ 1 Input dam Anchar typn and dlnmfl;ir<:r, ~Jfwt.l!va !'.lmhe.drn~nt dep~h; M~r>Hl<:~1: Proof; Sittnd-.{lff f!1Sti;l:~~fiM' Anctmt pta!~: Pro1!hla· Uatw tmlteri~l: R!i!lnf\:lr~:mrmm!· Bf.lf&rn!"ksd~(od C, t), E. m f) Geonmtry [ln.J & to!:!"tffng {!b, ltdb} AWS 01,1 GR. B 518 h-rl'~~tODOln Dosigr1 T$¥:lttmd ACI 3 H3:..08 f CW A&~ tt000 iti (nG ~irnnd...off); t :>: 0.:500 ttL ~~ l'i ~~ ¥.~"" 14.000 in. x a.ooo h :t0.£00 ln; (f~~~rWJ"+f!nrl..•>d N;tf#lh!d~.f1<mls; rroJ,;;~!cu!affid} ~~d<mgohupl<tbMJ ~db-:ars{AIWC)·,{LXW ;<i}"" U.ODO!n l>:'0 3!$ itl.); O.OOO!n. ' oraci~d OOn<Cte111t. 4(l00, (c'""' 4000 p~t; h ""'7.250 b, 1Ml!;k:lrJ' ('.tlndi!iO!) H. !!h!2"~r Cl:l!Hiihor1 A; edq(l relt~fQll.:tm\tmt ~> No.4 tm~ 00 2 Load case/Resulting anchor forces Load eaoo; Ooofi;lt~ .f-;)<:His: 1445 5001 0 5007 37M 5007 144@ 5001 3 Tension load P\llk)ut Btl~ngth,. Con<:;cre~a Sraa~<;oul Stnmoth~ b%57 1Xl67 5667 56(17 37M HMZ4 ('..oncmte S.O.:Ie·faelit Bbwool, dh~ti¢fl *'" NIA • $r;tl'>(>r having Hi~ h~gtlast ltH.t-dlng ~~atlC:t\01' gro~m (m"lt:htHs Jn teMkln} ~t1 Stll:afStr~mtHil Varheb!f!$. Cal!::t.l't~ffons. Rl-'lMlU u u 0 0 206{)8 1~615 NIA i I I ()4 Ot 19 56 !!II\ OK OK N!A 1-2 PuU-aut Stt~fl$th AGf J'H!--,fl$ Eq. {0-H) Vadab!~-"/J' ····.t:\t\~;1" cakul~tkm~ R~~M!h $.$ C$~ot::Fli..~ BrMkf.:l!r{ 5ir!<;li1Qfh ,~,..-!.; "'she~ \\1"'-'N \'~»:1.~ ~·q:~N No V<lli'i.at.*':re Caleuldin-t"!f<! H<.!l!<Uih ACI JlS-M Eq ~J-5) AC! 318-00 Eq .. (0··1) AC! $i$·M CQ .. {0-$) AC! 3·1a .. oa t-el (D·fl} AC'!'31!lQ6E.q,iO,H) ACf 31i~-08 Eq. tD-,1::1) AC! :n}H)S F,;,q. f!J ... l) 4Shoar load 'StWfSk~~ swe! r~!h~m {w!fu lever £nmy Pryixlt.Strengto~·-~ Concts(~ edlf(') f~1turn t.n t!~~ectien :<"'"' .. WA 340fl0 :l~0DO x ancJ)(Jr h<t•,tlftQ.1~ 11!gtl~!ll !()1!ttHng *"~t1cfwr gwup {r-fl>!6¥flfit MchtH~) 4 .. 1 Stll':!cl StNlnUih '/i$.t!ab!e$ Gak:ul-iitl~tt!l. f'Nl$\~na 4.2 Pryt~ut Stref!stO VM!ahl¢1J C~kul~tions R~$U~h!• ACI:31!:H)tl!;';q.(0..;.:11) AC! 31$"08 Eq, (t)._.,J) ACI CHB,Qfl Eq, (tulj ACI3lB·ih~ Eq, (0·9) ACI 3\MUl Eq. (0·1 I) Al~ 318AJ8 Eq .. {tH3} ACilll>ei! Eq. (DCI) NiA. 54909 Q\:48~ WA Bi :1-P NIA OK OK ~-~~~-tlHl~Y~ ..... 4.~ Cont>r~1'El ~rly~ t.n!1~1r~ 1~1 d!recth::m ~t+ V<Hlahkt$ ... ~-~J~l:J -~~·"' . C:ti~eultrth~r!5. P~IH.stla 5 Comblfwd tension and shear loads lhN"" I'·~~ ll~ ~"' 1 6 Warnings ACI ll6-06 Eq, (fl-12) ACI 316--00 Eo fiH) 1\Cl 31e.OO Eq Ill ;sJ ACI 3 1,9..{}!) Eq. (0~26) ACi 31i.l4J8 Eq. (U--OW) ACi ..31 a-oa Eq. (0"2tq ACI 318-01'1 Eq.. (D·2!H ""-"·""1:iiiir· ~~~~~.if&j¥·~·- • C-h~d~!nu thi'l tnMfm nf hu.-d~ !nl:.1 1h~ ba\tf!l m~tartal awl tll~ 1>lwr->l rm~Wmw~ um r~~?lr"t<d in ac>:::.t:m:!omef.< \li«h AC'I 31£1 or l!!a ~~~\'tmi nlar>-.darl)J Fastening meets the design criteria! 7 Installation data Cu'Ofd!neta~ A1'1t::hM iu. Sp-eclfter'lll t:mmn(:!nh.: 1 Input data A1H~!i~t h'fJtl ~rHJ d!anttJt'ltr: Fffe-r...tiYE.l ~merit tkpth: Ma:!eriiill: Pmof: Siand--n* !M!a~l~atlol'l: An>::hor plate; Profi!e- l:l'all-a n~~eriJ:lll; Re.lnfr~wemen~ ~lsm!cinsds.{r;.1t C,D,E'"•::<tFt Grwro~~ry (hq ,\ t<•t~tiiflS (1b, irl.ib] AW$. 01.1 Gft B 518: h,.,"' 5J:JO!'HrJ. 0~4,!n rnethnd ACI 31$-.QS !CIP e11 :; 0.000 ln. (rm ~>-l~rH:l>-Off}; t"' 0 i:"iOO m. ~ .. X ly X t !*< 113 QUO lfl. X 8.000 itl. l>l 0500 In, {R>:tiOOiflt~HmdtK! plaie Udc¥.ntmt:: nei t~alt:~~~~~~d) R~a-ngu1l!lr pmt~a em4b$:m{J\!SC}: (L 1tV'J ){'I)~ 1€,tKlO in. ~0.313 i~ . .1:: IJJJOO ln. t',m{.:$.1lld roncnHa, 40IYJ, f~' ""•WOO p$; '' ~ 7}15{Hn. •enJs:km: ~)Mi!kH~ B, ~h~Pr:: ctJn&tion A; *dtm reff1foro~nmnt: "' Nn. 4 taE· no 2 Load caseiResul!fng anchor forces Lo&ct <:a$6': r~ltln kmWI 3 Tension load f'lu1fout Stmngtn• 1SQ9 3B91 150~ Ct~ncr-ela tlreal>;f)!Jt strtmgth*'* 0833 fjm:n 6633 ~$33 !B33 EBS3 0033 633j MY.l 10790 .Conqf"!"!W. S.W-fac{!> fHf)Wfi!Jt, dlroc:tiDn "'~ N/A "' ancMr havin$) tha h!ghltlst loading 'MlJin<:IKl!' gratJp (am::hor~t in #~(l~k':in) 3.1 5tM~ Strnngt~ Vartabh~rt C~:~:~ltth1th~~ns Rll!Mllt~ lCHW~ 100!!.9 Wi\ 1~ 51 Wl\ OK OK NIA ~" $.2 f'lH!ol.;!~ 5tronyth ACl il16...05:Eq, (0-H) V~d~M~~ Ca!t<ulaU<:lTiS R~$Ulh> 3.:3 Cum:rat~ arM~I<f\rt 5tr~nuth RO.M.1(b) V&rl~blt>-!!> C~kufldl~HW Rt~~uff~ AC! 3HHIB Eq. {U--8) AC! 31fJ<-~,1B E-q {D~1) AU 31~Hlti Fq. (D.S) ACi ~UH}fl E<!. {r:w;lJ AGI3ilHJfl Eq. {D·i1) Jl.Cl :n8-08 Eq. {'-D-iS) AC! 318-0a Cq. ~(),1) No; r-Mat 4Sheartoad ·sh~MtHfijh)ll? .... 8ti:lal f.aU,lr.a {v.4th J~<,olfr arm~" Ptyl:lllt $~rer.¢hu Cot!t.H!tli! !Ellf{}f.l f;,ol!um k;; dhr~~tlon ¥'"""'* NIA 41C:DO 41000 * anchor tu~vlog lM h!gtw!rt kladin~ "K1l!~~!K<t· gr-oup (re!e· .. uw-t ~n·~~»m} 4.1 Stet~t Str'l3tl!l~h Vatfa:b~a C-afe.ulatlmm Rasu!is 4 .. 2 f'ryou~ :Strunsn" Var!alikn> Caleu!MloM P:fl!WMa ACI 318·CS Eq. (!:>.;\1) ACA 3t!!~J1.5 F.q, (Ov'l} ACI ~i$.08 Eq. (0_,) AC131H~a Eq. (0·0) ACI 3·W·OB Eq. (0·11} .-'\G! 3'1~..00: Eq. {0·13} AC! :l'lft-.08 Eq (D~7) NiA Ml13:l (\:QJ$1 N!A 70 flll NIA OK OK ~-,, ~ .I,:J Ctonvrst£1 ~dga f<>ll\lr~t lt1 d!reef!on H V<1Iri<~.bl9!S Ciltt:u~a:titml'l Rl!!.!\t.ilh 5 Combined tension and shear toads !lfo~v"' !~f. 1 f!~ «"" 1 6Wamings ACl aifH)S: f:.q. {0·22) AC! 218-08 Eq. {IJ-2) AC! 3ta-OO Eq. (0-13) ACI am-DO Eq. {!J-lu) ACt J.H.I-08 Eq, (0~~-a} ACI31ft·OO Eq (D-29) AGI 31a.Ot~ €q, {0,2:5} ~ Ch>Mkil'l!J tha lrMsfar o{ bad~ i<<ftt the ba:~e rrmt~!a! and lh~ ~m~ar m::dett<:nce: at~ <ffl:ttfJf:!Q In (!Coorctanne wfth AC! 318 ur !he n;.l~votnl ttan®tl.lf Fastening meow the design criteria! 7 Installation d"ta C!lofd~n:at~&1 Arwhot ln. ~ ~:_~~-~~~l!i:.mL Sp~dltef$ ~PrrmHmbB: 1 fnpul data Ant:hur ~ype ,and cl!arne tm:·; f]t(}~tt\<l!Jl t<mhMrrH.M11 dtJplk M~Wlll.a!' Proot St~! mJ.·ofr in:$l>lll!a.llt)f1~ ft.nctwr platn~ Pmf;ll!:!: t!1~!J~ rnt~tl:'ltb!: Re!nfomeftlt::nt' Sfcli~mfe 'o~it> {>t~<.<t C, D, !;. or q GtH:tmtltry {irL] & lnatHng-[lb, itdh} AWS 01;1 GR B 3f4 h"""" 10J)001fl. {](,!S~F1 niDt~ol:t PC! 3HHI8 i CiP et."' (t(l!,M.J !tt (na !$1~f!rhJft\ t:::: .0, 750 !11. l~ X t" lll ("" HU)OO ift. ll: 14.QOO ~.><()]50 IR; {Fl,~c,,:::;rr~li!flded p1ate1h!OkX~!!lS3-; 1"1>:){ cak~:u!~ted) R&~oiM;JU!atpMtO>S< <ltldha:lt't(AIS(;t il:t-W XT/"' I~LDOO ffl. )t0.3B ln X OXIOO !~ cm~t'ld mntt"<'iM, 4000, (' lO'j 4{100 p%t h "'.II 14.000 h1 ft:'l~'t1:Jt~· cMd!Hoo A. $lwa:r; condi~on A; erlg\B! re\nfon:;tHnent: > N<::1. 4 har 2 Load casaiResul!ing anchor forces Lo~~ ~alfR DIM:~!~ k>~H.i:l'i 2 3 3 Tension load ·hl~kf SV€flri¥i)~ ... Pv:lout Stmngn·,"' iOO& 0 :~660 154:11! CO!K<f~~ Hr~a~O~Jt 8-lre:nSth,.... 7007 7l'W7 /1)61 1001 Conculte Side-Paw R:bWJ:!l.lt, di~km lt ~ .. 1'857 70$1 1001 1007 10S:M 17f{'A .. tt>)cho~ tmvk'!tt t!ln hl~hoot bading ~'~>aoctlorgmop (anr.hors in lM!!<lnn} :3,1 St<>a-1 S~tt>:ngth \fariabks C!deur~~'-Hl'i fi:~"&ulbs 0 0 0 28749 32501 :;a 2< OK Ol< '!:\'·,,, "' "' Iii 6' ~ §' ~ -8 g g g P, 8 g & ~ at zy g {jj "' "' i ~ ~ ~ ~ ~ ~ '? ~ "" "' "' "' '0 "' n (3 (3 5 (3 ~ (3 (3 « " <( < < < ~ N "l "' ~-i:t tt :;; ~ ro "' ! B <( p '§ ] f ! ro ;; i<;::< 1 1 rQ ~ . ~~ . ~· ~ ~ !-~ . . 1!: Ji ~ ¢ '< i z ·~ ~ .. ; ;;; " ~ . "i " & "' < t ?-:£ ;; iii 4 Sh.,ar load Shiii>JStt;tl'ijifi"···· St£:;~1 f!ll:!h.wa {wllh tav!'lt J:tr~nY Pt)'Olll Sh~1J}!h"" Cmwr~1o tK!go faifw~ !n d!rectlon -.:+H N/)\ 411(10 47:100 ~ Ml>ch~r hillVii'IQ the h!f!h!!jt>t loMin[l u!:!flcitnr 9f(l3Jp (re!'!>\.<snt t:\Wlohorn) NIA 68835 5Mtm w• 69 8~ NiA (lf( OK 4.3 C(J!1~Wt~ !tttue f~dh.IM !:n dinactklt'll!: .. flo,a <,1\o) ACI ,'rf!Hl~ E~. ([}.-1:~!) ACI318-0J Eq, (0,2) AC! JJB,oa Eq, (0·2:1) AC! 318-06 Eq. (IHfi) 4.1 StMt S.UfNlt{th ACt 31'8-00 Eq, {D-28) V<J-rl<.~lthw C~kul~lkm~ ~atmlh~ •Ut Ptyoyt StH.toqHl Ar«:\1 "'-9 ~-~~~ '1!q:,.!! "' V~ri~tHeS CJJf{:uftilioms R$$Ulhl ACI 318,t8 Eq, (D"ll) ACI 318-tm E.tt-(D<~} NJ! 316·00 Eq, (D.fl} ACl 3-·H~~oa ttq, (!HJ} ACI 3 w,oa Eq, !D ll) AC! Jla~oa r:s-q tD·13J ACI JJ$,,08 Eq, IIH) Vttd-ahh:I<J Cllh::u!~th>M R~lHJ'!'tu 5 Combined tension and shear loads thw~f!i+@~<=l 6Wamlngs ACI3164la Eq, (0"9) AC! JJM>!l Eq, \0·25) ,. Ghe<:'klng me k"'m!!w d k;ltld!J mw thi!"i ~1$& tTBtMia! i:!'1d the ~lMr rnsl£f~~ are required In ~~"t.lrrl~wm v..ith A-Cl 318 !)! ihllll f-®-l!;)Vat~l ~t<ff"ld~>d! Fastening meets the criterial ~yw~·~!!.ttu~ Spedfl~r'!!~ comment.!:~: ·1 Input data AndtO'f t~'fl!& <.Uld tllanuH~t: Effactive ernt&:d!'tl~~~~ tl$Plh Met~r!r.!l: P'mt1f' 51and-otr !fis.ta!hltitlw Anr;hor t~laie f'rif,Jk;r Base tMltJ:rie!· fhirtf(lt'Ct'-ll'HJf1-t SQismh::: !Md~ ~~~t C, 0, E, (!f F) Qg.QfNl1ry (ln.J &.lotuHng [H:l'r !nth} Awn o·u. P..ft a .314 h.,!:::. 5,000 hl. Oe!:>igrt nmthod AC! 31S 08 l CIP !'!!;,;, O.DOO in. {11o stam!·off); t ;:=OJ' SO ;tt D~Ha: I~ 'lily:t I, 1-fHH':lO h.); H.OOV itt ll: 0)'50 in.; {Rw:m!'ru'l'1Mdmi ptatn1h!~~-r1'rum;!lotca.JmJia~ct) R~ngu!a;r ploclte"S ~nd bars (A!SC}; (t x W ~t i) ~ ·12:.<&\0 ftt i1 031"3 ~). x n.OOO \fl. o~ekt~d ttlt'!l:mt~, ljQ(JO, f/ .:::t 4000 f>t;l; h,., 7250 h1 fM~fon: t'>l:mdllion .t<,, ~fii!!Br. r.tw~1l!llm t< odgu!el.nfon:-emt'!nL :.-NOA bM 2 Load c<ise/Resutting anchor forces I..Ol'td i~SEt ~~~Jfl lO.:td~ 3 Tension load '5JJ.m!l3ti~~ti;lh""•·-----­ Pun()m St~ng~h .. 100!3 [j 3aM 1558 Concte1a Bn~al;:o~.:f St)ttngH/"' 7667 7H8T 1%7 C<mt;teW ~iid-e"ra".e Uhw¢n1, cl;rt'lct~~tt .. n~J J!l8T 1&61 3000 '10800 NIA .. anchor having dw hlgM$l k!~dir._g ..,N"!tfwr 'Jlj;j~p (!lnt'h<lt& if, tenskm; .:t 1 Shmt Stmngth Varhtbles Catkl.d~tlQm! R~li:<!.dt$ [j [j 11mM 2:,1fl/'3 WA n 46 NIA OK OK Nh\ ~~~"l :'tl ?ul!vut 5trotJgth V~r1Mh1$$ -~~-~~ HJOO C<l'!<;'QhUioM Rosult$ $,3 Cotlj;fM~ Sma .. out SJ.J(1fl)Jth Varl<Sth!~t> Ca1e~sh~tir.m~ R~$U!f$ ACtlU!-OS Eq, (DvG} AC13-'lB·D6 tq, (D~1l ACI 3ifl·M EQ (0..,0) ACI31e··D8 1"1. {IH; ACI316-0U Eq. !D·II) ACI3J& .. QO Eq. !0·13) ACi 3!~HJ!!6q. (0.-:t} 4 Shear load '&fi!i{'S!rength"~ Stm/ !!aiture 'with ~ev& ~mw Pl)'O:Jf Hlrensth*"' w~ H100 C~~r#~ >lO;d~$ t~ilUit! )rl !hm;\bn ~!(+H "1:200 "nnc!1or h.wi~g th~ h!9h<J!:d loading "'anehnr gro~Jp (r>fl!$>J!11f!t ~f!CI~om) 4,1 $1t!~l Str(!ngfh renA~yl,~ Varhbf~l;ll Ca!eu~l!I'Uomt RtHHJ!t-s 4.r Pfy6i.d: Stnt~Ottl' \t~r!lllblt:$ C.ak~dation(S R~~ufts ACl 318-UB Eel {0~31) ACl 31& UO Eq. jO .. z) AG131$-<l8 !!'~. (0--6) AG~ ::Ht-011 r:~. {0·{1} ACl3!&-Ca Ell {D--H) AOI31Mn ""· ill-13) P.CI31Ml\l Eq IIH) Nil\ 13SB1 80(5,70 WA 55 ·~ NJA OK OK 4,3 C¢<ncrote edge taHur~ ht dite-cU<m xt \f~rl&hl"e$ ?:0\J~I:l ... C~k:Uiath:rm> tl$S~1!1$ AC! 3 W-0.&. Eq. tD~Z:l) AOI3t8-C<l fq ID~) AGI JiB-@ Eq. (tH3) NJ! 3 HHW E.q. (0-1£.) ACI3 W·08 f<J, (D,<•J ACI31S-00 Eq. (llc2U) AC! J"f8 .. Q8 Eq {IJ-2~) 5 Combined tension and sh0ar loads th.Jl.'("zpt~ tlS.,._,. t a warnings Chec~h·tg !ha fu"anafet (~f {(JJ*Ei!< lnl<> the ba~e mal~Mf iiWJ ihfli ~tll%~r te~Gtance l:'i!O :r!.\lq!Jfnad In acoord~nce vvllh ACI 318 nr !11~ m!.&Mtln! M;l!1d>lrd1 Fastening meets the des[gn criteria! ,,,, .. ,,,, ___________ _ 7 Installation data " g ,..: CQCetdkr!il.tt~~ A.nclwrln. I .. "' e >-:- ~ ffi E Ill ~ t:r: ~ "" srmtffll>lr'f.l! Mmrt1fMlb! f.dQe c(mdi!!~>n@ Grid 5 ! Input tlata An char tvpn and dii:tm~ mr~ EffuG.tiv~ eniOOdmw-~t U-ep\k MllMrh'lf' Pn)of; StJmd--o!t lnMa1~~tiurs: Atw~r~!e: Prof!~; Ba~::<& tll.")1@ti>i'l!: Relnfu~ CSO"liN1l 8eismlclo~ds {t-at G, b. E., Qt F) Geon~eHy {l~t.} It trH'Hflnt~ (lb, t"ldbj AWS n1.1 tm. B 3/4 "~' >:< 5J)(}O irt, O~slg!i 111ttthwl ACI 319-l)$/ClP V~>c"' 0 000 in (no s~ami"-Dff}; f::;. Q !50 ln 1, x lr .,; t "" 18 .<\100 ln. )t H.OOO 1o. x 0.750 irt; (Rm~·nt!OO~ vmte 11\k:~.f~$5-. not oot.;u!alOO) Hcyd$11!}l1l~r p~<~ro~ .,M h<lm. {A!Sq; (L x w x 1'}"" 1:umo !o.Jt t.t3n m. l!: u.ooo !rt. Nat.:k:ed mrH:t>ttl\2>, 4otHl f/ ~ 4000 p$.1; h = $L250 ln. hm'l'lkw,: ctmdffion A, £<hear: oond!Mn A', edt1~ H!iFiff)lr..ement: :>o-No. 4 bar 2 Load case/Resulting anchor forces load ~.a~~ ~~Inn ~M 3 Tensio!l load SJ:®l $€i~:oiijlh,;•~•o Pull r<~.lt Stre>1qth • 1$>. {) 33$3 1:ill2 Ca11ru-eW areak1.mt Str-ength'" 6633 B-&3:3 6633 ('-..{)l"Wf~~e t.Jrt~·fa(.:$ tlbWtl~lt, dlradlon "'~ ~!13 6B33 6!33 33$3 9430 tJtA .. arach\'# h;>~;ving: Um hi{l~St kn~ijlng "'"~n<:h<tf g:ruup {Mdwrs h> tul'%ru-ti) :t 1 5tmd Strf!<ngth V-llrll~b!;;l!:l C:akuh!til:ltH~ R#M.dl$ {) {) 11584 25223 -NiA 2V ;ll! NJA OK OK N,,~ J.'l P~liteout Sit1!llf1~h: Act 318 oa f:q_ iO-H) VMhlbkl$ .. 'f:_lfjthy·· Cat~'$h~11~oll R~tn.llt$ :j,S C!':>n'tti"Mn $:n:M~~oui Rtx~mnth A>let! <'\' 9 h~l 1VocJ>! l;',l'.tl N, Vu.r!JJN»Hi C«ltll!-ffl:kma R-n~o!ts 1.0 AC! 3:HJ.--OS El"l:· (D·Sl AC! ~18·08 E~l {!) 1) AC! iH~-oa E!1 (t"H'H AC1 "JH:HlB Eq. (Oo!$} AC1lHHifi Eq. (0-11) ACI SJIJ.OO ~q, (t;-H) 1\CISH)·Otl. Eq, (0·71 4 Shear load Si00i.Sk$ogth:o··· SWel f$i!'uff! (·~<&l.h le'Vro! t~rm)"' NIA Ptyout&tr~ngth"''" A10t."<O cr-.-n--::t~:<~ !"lff<JH-t:r.t!Utl!! lrt dirt'lr.:l:lnn v~·~ 4 HlOD "anchor having th>!t h~ghe!:!1 boi~Hn(} "'"~>"~'Cht3r ~roup (mlt~~v~·u,t ta.nctt-Ms) -4.1 St~~~ $ktH1fl1h Varlsbffi~¥ Ca:k:tl~l!lltlon~ RrtsU!tll 4,2 Pryout Stnl>ngth At.!~"<.l ""9:11~1 ~i<¥;}.> ;j:l 'r~.n "' N, V~td~b1~" Ci*h.:Hl<lti=<lrlB- Re!Sullf* ACI 318-QB [q, (!HJ) AC! :\16-~a Eq, (D-21 ACl 3H!4Ja l;q, (D-<l) 1\CD·lS·M Eq, (D·Sj i\{.~j ;:w~-oa Eq. (D~11l AGl.:HiHl8 Eq. {D~1Z) >\CI ~Ja-M Eq, (D-7) NlA 7G\l26 64404 r:rr•iiD Nil\. M <l4 NIA OK OK 4,3-Ormcr~:H~ odg!l f.<illhlr~ fn dlf~Cti()O 'jv Fig. RC.5.2. 1(hi Vst#d:.iu C~~i:Uiath:mts. R~t<>ults 5 Comblll!lrl tension and s!!IN!r loads f\M.< <:;: ~~~ ·! f~} ~-· i BWamings AC! 318·08 Ett{tl12) AC! 310-M Eq. (0·2) A<H18-(J$ Eq (O·lS} ACI ~W-08 Eq. {D-2S) ACI310-00 Eq. {0-~<1) AC! 3illM E:q. (0~2\J) ACI >10.08 Eq. (ll~5) • Cht~ok!ng 1!:!~ !r~nt>fiM of bS!h Ink~ 1ife {JI!lS~ muteri<:al omd t!w she.e:r msrstanoo lilra r~ukM m ru::wn:fMl::.e W$111 ACt 3H'! or the rola'.lartl starldan1l fastening meets the design criteria! [~rr•=mMD Profh> Anchor 2.5.0 IP11-_,,N(1.: 7 !nslallation data Clit~«<buat&!! AMhot hl, -1 9 m 9 m 9 $1 ~ 9 0 '<!:" If\ 9 $! @ ' m 9 m <tt -7'---------'1; ~ { 1. point WaH Mesh Distance 4.00 Ground Level: LOAD D Lp PosLiveLoad Rfp PosRoofLiveLoad SECTION CUT INFOR,1ATION: ..., .. ..., .... ,H .. SCl factor: 1.00 Offset (ft): 7.25 Measured bottom opening "A" end: Right Edge of Opening #160 in Wall# Story 2nd Floor "B" Left Edge of Opening #161 \Vall# 35Story 2nd 5.00 ELEMENTS IN Concrete Wall #35 Concrete Wall •w-·J"-11\ ... "'" (in) = 11 (ksi) ;= 4.00 \VALL D 41.43 Rfp 2nd Floor Length (ft) = Wt = l Story 2nd Floor v~••"·''"' (ft) = Wt (pet) = 145.00 Mmino:r kip-ft 03/10/15 11 Orientation Horizontal Number: 18 Unit \Vt-SeU\Vt (pd) ::c:: 150.00 Frame Nu::nber: 18 Unit Wt-SelfWt (pcf) = 150.00 = 1 >'-<>-.iVLw 14,07,00.05 11 -03 with future point Wall Mesh Max_ Distance hp-t-·n""'"''~ P-Delta: Diaphragm: Rigid Ground Level: Lp PosLiveLoad RAM USER RAMUSER PosRoofLiveLoad Ri\MUSER SECTION INFORMATION: 4.00 1.00 SC1 Offset (ft): 7.25 Measured from: bottom opening edge "A" end: Right Edge of Opening #160 in \Vall# 33 Story 2nd Floor Left of Opening # 161 in \Vall # 2nd Floor Len&rth ( ft): 5.00 IN Concrete Wall #35 Thickness (in) = 7.25 f'c (ksi) = 4.00 Concrete Wall #34 Thickness (in) = 11 :f'c (ksi) = 4.00 FORCES: Story 2nd Floor Length (ft) = 10.00 \Vt (pcf) = 145 2nd Floor Len&rth (ft) = 5.00 Unit Wt (pcf) = 145.00 .LdC p VmaJor 81.87 8.65 kip-ft 1 1.46 0/15 10:28 Orientation Horizontal Frame 18 Unit \Vt-Self\Vt (pcf) = 150.00 Frame 18 Unit (pet)= 150.00 18 = 150.00 kip-ft 0.00 0.00 11 -03 \Vith future point loads (fl): 4.00 LOO PosLiveLoad RAMUSER SECTION CUT INFORMATION: Offset ( ft): r~An end: "B'' end: ELEI\lENTS IN Wall 7.25 LH'-<Jl"-'L'-'''"-' (in) = 14,00 'VALL FORCES: LdC D Rfp 4.00 p 34.22 18 oou:om left wall corner 2nd Floor ~-'",,..., ... (ft) = 28.33 Wt (pcf) = 145.00 kip-ft 0.00 0.00 2.07 1.55 I 5 11 19 Frame Nmnber: 15 Unit \Vt-Self\Vt (pcf) = 150.00 0.00 0.00 Wall Mesh Max P-Delta: Diaphragm: 14.07.00.05 '''""-"""'between Yes Ground Level: LOAD Sca1e Factor: DeadLoad R,~MUSER Lp PosLiveLoad RAMUSER PosRoofLiveLoad RA.MUSER CUT INFORl\tiATION: Section: SC2 point 5 1 4.00 Offset (ft): 7.25 bottom left wall comer Orientation ( deg): Horizontal "A" end: Left Edge of Wall #48 "B!! Left Edge of Opening# 166 in \Vall # 48Story 2nd Floor Len&,rth (ft): Concrete \Jv' all #48 Thickness (in)= 14.00 fc (ksi) = 4.00 D :W.I8 Story Floor Length (ft) = 28.33 0.12 Wt = 145.00 1\:lmhior kip-ft 0.00 0.00 0.00 0.03 Frame 15 Wt-Self\Vt (pd) = 150.00 0.00 0.00 -0.00 11-03 Lp PosLiveLoad SECTION INFORJVI:ATI.ON: "A" end: "B'' end: SC3 725 Right 2nd Floor ,.,.,.._.,.,,..,"'"(in)= 14.00 = 4.00 \VALL FORCES: P Mmajo:r Lp Rfp 4.88 future 1 bottom \Vall# 48 Story kip 2.04 1.57 5 11 (deg): Frame Number: 15 (pcf) = 150.00 0.00 FRAME 14.07.00.05 .... ,. ... , .... ""'"'· ViaS at Bldg 11 -03 with future point Max P-Delta: between Nodes (ft): 4.00 Diaphragm: CASES: D Lp Rfp SECTION DeadLoad PosLiveLoad RAMUSER RAMUSER PosRoofLiveLoad R,.t\MUSER INFORL'VlATION: Factor: Section: SC3 Offset 7.25 from: bottom opening "A" end: Right Edge Opening 66 in vVall # 48 Story 2nd Floor Left of Opening #167 in vVaii # 48Story 2nd Floor (ft): 5.00 IN SECTION CUT: Concrete \Vall #48 Thickness = 14.00 (ksi) = 4.00 p D 123.14 Lp 36.00 Rf~1 3 Story 2nd Floor Length (ft) = Unit (pcf) = 145.00 Mminor kip-ft 0.00 ..., 0.00 :; -0.03 0.00 -0.01 03/10/15 Orientation (deg): Horizontal Frame Number: 15 (pcf) = 150.00 Vnlinor 0.00 -0.00 0.00 n.r>..l.'-'--'-' 14.07.00.05 Bldg 11-point 4.00 1.00 Diaphragm: Rigid Ground Lp PosLiveLoad Offset (ft): bottom wan comer "A" end: Left Edge ofWall "B" end: Left of Opening 80 in \Vall# 45Story Floor Length (ft): 7.50 ELEMENTS Concrete W aU Thickness (in)= (ksi) = 4.00 \VALL p kip D 19.24 Lp 0.18 Story 2nd Floor Length (ft) = 5.00 (pd) = 145.00 Length (ft) = 7.50 (pcf) = 0.01 0.02 03/10/15 11 19 Frame Number: 16 lJnit (pd) = 150.00 Frame Number: 16 Unit (pcf) = 1 0.00 -0.00 0.00 RAM FRAME 14.07.00.05 Database: ViaSat Bldg 11 -03 with CRITERIA: Wall P-Delta: Diapbmgm: Ground D DeadLoad PosLiveLoad Rfp PosRoofLiveLoad RAMUSER SECTION CUT I_;_"FORl\IATION: SC4 point loads 4.00 LOO Off.;;et (ft): 7.25 Measured from: bottom left waH corner nA" end: ffB" end: Edge of Wail #44 Left Edge of Opening #1 \\TaU# 45Story 2nd Floor Length (ft): 7.50 ELEMENTS IN CUT: Concrete Wall #45 Thickness (in)= 6.50 f'c = 4.00 Concrete 'vV all #44 •.a'"'''"'.""'""' (in)= f'c (ksi) = 4.00 p D 64.60 .53 0.18 Story Length Unit Wt (pcf) = 145.00 Floor ..... C'-'>J<,;o.CH (ft) = 7.50 Unit Wt (pcf) = 145.00 0.00 4.67 0.00 I 0.00 0.01. 03/10/15 10:28·""' Frame Number: 16 Unit \Vt-SeH\Vt (pcf) = 150.00 Number: 16 Unit Wt-Self\:Vt (pcf) = 150.00 -0.00 -0.00 with Ri\MUSER PosLiveLoad RA.f\llUSER Rfp PosRoo±LiveLoad RAMUSER Offset (ft): "A" Right Edge of Opening 2nd Floor 1.00 "Bn end: Left Edge of Opening #204 \Vall# 102Story 2nd Floor 5.00 Concrete Wall #100 Concrete #102 Lp Rfp Thickness = 7 (ksi) = 4.00 p kip 20.42 CUT: Story Floor Length (ft) = 10.00 Wt (pcf) = 145.00 Mmajor 3.41 0.00 0.00 -0.34 0.01 13 03/10/15 11 19 Horizontal Unit :;;;; 150.00 Frame 19 (pcf) = 1 =I -0.00 0.00 \Vall Mesh .Max P-Delta: LOAD DeadLoad Rigid Base Lp PosLiveLoad 11 -03 with point loads 4.00 1.00 Rfp PosRoofLiveLoad RA .. MUSER 7.25 Measured edge in Wall# 100 Story ''A'' end: Right 2nd Floor "B" end: Left Edge of Opening #204 in Wall# 102Story 2nd Floor Length (ft): 5.00 IN rH~f'·rprp. \Vall # 100 Thickness (in)= 7.25 f'c (ksi) = 4.00 Concrete Wall 02 Thickness (in)= 7 = '-'·"'"''-'·~·"' (in) = 10.50 f'c (ksi) = LdC p Lp Rfp 65.41 27.07 Story 2nd Floor Length (ft) = 10.00 Unit \Vt (pd) = 145.00 2nd Length (ft) = 10.00 Wt (pcf) = 145.00 Story 2nd IVlmajo.r 1.87 Vmajo:r 03/10/15 1 Number: 19 Frame Number: 19 = 150.00 kip -0.00 D Dead Load Offset (ft): " ''B" end: Length (ft): cortcrete Wall Thickness (ksi) = FORCES: Lp p .47 49.77 14.()7.00.05 11 -03 \:Vith loads 5 11:09:19 Ri\MUSER Orientation Frame Number: 19 = 5.67 Unit Wt (pcf) = 145.00 Wt-Sdf\Vt = 150.00 Number: 19 = 145J)0 (pcf) = 150.00 Vminor Torsion -0.00 future point 4.00 Factor: 1. 00 DeadLoad RAMUSER D Lp Rfp PosLiveLoad RM1USER PosRoofLiveLoad Rl\MUSER "A" end: aB" end: Length (ft): ELEl\:IENTS IN Rfp 7.25 Right 2nd Floor Right 4.90 ivieasured from: bottom opening of Opening in \Vall# 102 Story ofWall 03 2nd Floor Length (ft) = 5.67 Wt (pd) = 145.00 Story 2nd .L...•VL,,;o;.,Ui (ft) :::; 10.00 \Vt (pcf) = 145.00 .M:majo:r kip-ft -15.91 -11. 0.00 0.00 5 1 Orientation (deg): Horizontal Frame 19 Unit (pcf} = 150.00 Number: 19 (pcf) = 150.00 -0.00 Rfu\11 FRfu\,1E 14.07.00.05 CRITERIA: \Alan Mesh Max ''A" end: Yes Rigid Bldg 11 - Scale RAM USER RM1USER 4.00 7.25 :Measured from: bottom opening Right Edge of Opening 13 in # 33 3nd Floor 1.00 "B"end: Left Edge of Opening 3nd 1 in Wall# 35Story (ft): 5.00 03/1 0/15 11 :09:19 Concrete 18 = 7.25 4.00 \Vall #34 Tirickness = 9.25 FORCES; LdC p kip 19.48 3.56 Floor J..Jv>.''-"'u' (ft) = 1 0.0() = 145.00 Mmajor l\Iminor 1.54 Vmajor 2.91 0.42 (pet) = 150.00 Frame Number: 18 = 150.00 =1 v;rith point loads Max Distance "'"'''T'"'"~ Nodes (ft): 4.00 P-Delta: Yes Scale Factor: LOO Rigid Ground Level: D DeadLoad Lp PosLiveLoad Rfp PosRoofLiveLoad Section: SC7 Offset (ft): 7.25 Measured from: bottom opening "A" end: Right Edge of 13 in \Van# Story 3nd Floor "B" end: Left Edge of Opening #221 in \Vall# 35Story Floor Length (ft): 5.00 ELElVIENTS Concrete \\taU Thick-ness (in)= 7.25 f'c (ksi) = 4.00 Concrete 5 hJCJla1eSS (in) = 7 = 4.00 nn.~rp·rp wall #34 Thickness (in)= 9.25 fc (ksi) = 4.00 Lp Rfp 3nd Floor Lenf.,:rfu Unit \Vt (pd) = 145.00 Unit Wt (pcf) = 145.00 3nd Floor (ft) = 5.00 (pcf) = J 0.00 0.00 0/15 10:28 (deg): Horizontal Number: 18 Wt-Se1f\Vt (pcf) = 150.00 Frame Nmnber: 18 Unit (pcf) = 150.00 18 = 150.00 kip-ft -0.00 0.42 -0.00 CRITERIA: CASES: D RAMUSER Lp PosLiveLoad P osRoofLi veLoad SECHON "A" end: "B" end: Left Edge of Opening 3nd D Lp Rfp fc (ksi) = 4.00 FORCES: p kip kip-ft 11 03/1 5 11 19 4.00 1.00 in Wall # 48Story Number: 15 (pcf) = 150.00 Mminor kip 4.02 -0.00 -0.00 -0.00 11 -03 with future point 03/10/15 1 Max Distance h"''""'·~·"''"' 4.00 P-Delta: Factor: 1.00 Diaphragm: Rigid Ground Level: D DeadLoad Lp RA1v1USER PosRoofLiveLoad INFORMATION: SC8 (ft): from: bottom left \Vall comer Orientation "A" end: of\·Va11 #48 ''B" end: Left Edge of Opening #225 in \Vall# 48Stor; 3nd Floor Length (ft): IN Concrete Wall #48 '1''1 . k (' ) 9 ·;-.11C. ness m = .... ) (ksi) = 4.00 Story 3nd Floor Length ( ft) = Unit \Vt (pd) = 145.00 Number: 15 Unit \Vt-Self\Vt (pcf) = 150.00 INFORMATION: Section: SC9 (ft): 11A" end: Right Floor end: Left Opening #228 in Wall# Floor Length 5.00 SECTION CUT: Story 3nd L'viHo:_tH (ft) = (pcf) = 145.00 03/1 5 11 J 9 1 (pcf) = 150.00 14.07.00.05 11 ~ 03 with loads CRITERIA: \Vall DeadLoad Lp PosLiveLoad Rfp RAl\illSER 7.25 Measured "A" "B" Left Edge of\Vall Left 3nd Floor Length (ft): 7.50 CUT: Factor: 1.00 comer # 45Story Concrete Wall Stor:y 3nd Floor Thickness (in) = 6.50 f'c (ksi) = 4.00 WALL FORCES: p kip D 13.93 = 5.00 = 145.00 Mminor kip-ft 0.00 0.00 0/15 11 19 Horizontal Frame Ntlffiber: 16 Unit Wt-Se1fWt (pc(l"" 150.00 Number; \Vt-SeUVlt (pd) = 150.00 Vminor -0.00 RM1 FRAME 14.07.00.05 Bldg 11 -loads Max J.J''"'"'u''" h,,tur.PPn Nodes (ft): 4.00 P-Delta: Diaphragm: LOAD "-'-DUJ.L.I>-7 D DeadLoad Lp PosLiveLoad PosRoofLiveLoad SECTION CUT Section: SC10 Offset (it): "An end: 7 Measured from: bottom left of WaH #44 "B" end: Left Edge of Opening #231 WaH# Length (ft); 7.50 SECTION Lorwrete Wall #4 5 Thickness (in) = fc (ksi) = 4.00 Concrete Wall #44 Thickness (in)= fc = 4.00 D 0.06 3nd Floor Length (ft) = 5.00 'VVt = 1 ().00 0.32 0.00 1 comer 3.10 2. 0.12 03/10/15 1 Number: 16 Wt-SelfWt (pcf) = 150.00 16 Unit (pcf) = 1 kip-ft -0.00 Bldg 11 · 03 with 'vVall Mesh Distance Nodes (ft): P-Delta: 1.00 SECTION CUT INFORIVlATION: \V :Measured ODt~mrtg edge in WaH # 100 Story Edge 3nd Floor Length ( ft): 5. 00 Lp IN Wall Thickness 2.90 :::: 145.00 J..A.-Lt.;:;;cu (ft)""' 5.00 Unit Wt (pcf) = kip-ft -0.56 11:09:19 Frame 1'\umber: 19 (pd) = 150.00 Number: Wt-Self\Vt = 150.00 =1 -0.00 RAM Database: \Vall Mesh P-Delta: Ground Level: D Rfp Dead Load PosLiveLoad 11 -03 with point 4.00 RM1DSER 4.25 Measured from: bottom opening LOO "A" end: Right Edge of Opening in WaH # 1 00 Story 3nd Floor "B" end: Left Edge of in Wall# 102Story 3nd Floor Length (ft): 5.00 Concrete Wall #102 iH,_,,.,...._,_"'"' (in) = (ksi) = 4.00 #101 Thickness = fc (ksi) = 4.00 LdC p Floor _._ .... .._,,h''-" (ft) = 10.00 Unit vVt (pd) = 145.00 Floor "'"'".u .• ,w..< (ft) "" Wt (pcf) = 145.00 kip D 44.01 13. -0.00 2.90 -0.56 03/10/15 Orientation (deg): Horizontal Frame 19 Unit = 150.00 19 = 150.00 19 (pet)= 1 kip-ft 0.00 -0.00 RAM Database: ViaSat wan :rv1esh 4.00 LOAD D DeadLoad Lp RA:tv1USER Rfp PosRoofLiveLoad SECTION CUT from: bottom opening "A" end: Right 3nd Floor of Opening #260 Wan # 102 Right Edge ofWall 03 Length (ft): 5.67 ELEMENTS SECTION CUT: p -10.47 -11.39 Rfp -1.16 3nd Floor = 10.00 (pcf) = 1 = 145.00 kip-:ft -0.00 -0.00 1.00 17 -0.34 03/10/15 11 Orientation Horizontal 19 = 150.00 Frame Number: 19 Vminor kip (pcf) = 1 Torsion 0.00 9 14.07.00.05 Bldg 11 - 1 RAMUSER Measured bottom 4.25 Right of Opening #260 in Wall # 102 Story 3nd Floor Right of\Vall Length (ft): IN SECTION CUT; ·r.nc•rp.·rp. W'ai1 02 Thickness (in) = D = 4.00 #103 Thickness (in) = 8.50 (ksi) = 4.00 FORCES: 4.49 Story· 3nd Floor L;v;,l.oLH (ft) = 10,00 (pet)= lHmmor -0.00 -0.00 -1.16 -0.00 -0.35 03/1 5 Orientation (deg): Horizontal 19 Unit (pci) = 1 (pcf) = 150.00 0.00 0.00 Wan Mesh D DeadLoad Lp PosLiveLoad PosRoofLiveLoad CUT Section: SC13 Offset (ft): 7.50 "An 5.00 #27 Thickness (in)= fc WALL FORCES: D Lp p kip 0.15 4.00 1.00 RAMUSER CUT: bottom opening in Wall # 27 Story m # 27Story Story Length ( ft) = 0.85 11 Wt (pet)= 145.00 kip-ft -0.00 -0.21 -0. 5 11 19 Orientation Horizontal Number: 18 Wt-Se1fvVt {pcf) = 150.00 kip-ft -0.00 -0.00 RAM 11 -03 with future point loads Max Distance between 4.00 LOO Diaphragm: Rigid Gmund Level: JLP<J."'1.0.J CASES: D DeadLoad RAMUSER Lp RAMUSER PosRoo±LiveLoad R.AMUSER Section: Offset ( ft): 7.50 Right Roof Measured bottom opening edge " of Opening #3 in Wall # Story "B" end: Edge ofOpening Wall tf 27Story Roof Length (ft): 5.00 Concrete Wail \VALL D Lp Thickness (in) = 7.25 fc (ksi) = 4.00 p kip 21 (\1 0.15 Story Roof Length (ft) = 29.83 Unit V•lt (pcf) = 145.00 0.86 -0.00 -0.11 -0.00 Vmajor ~0.57 0.13 -0.12 03/10/15 10:28 Orienta6on Horizontal Number: 18 Unit Wt-SelfWt (pet) = 150.00 -0.00 -0.00 -0.00 0.00 J.,.J>.Ln.w 14.07.00.05 11-5 11 19 1 D DeadLoad PosLiveLoad bottom wall comer Horizontal "Aff end: in Wall# Roof CUT: Concrete WaH 15 '-'"'-L''"'"'"' (in) = = 4.00 =145.00 Unit Wt-SelfWt = 150.00 CRITERIA: Ground Level: Lp Rfp Dead Load 11 -03 with future point R.t\MUSER R.t\MUSER RAMUSER 4.00 SECTION CUT INFORl\IIA TION: Section: SC14 Offset (ft): 7.50 f..t1easured from: bottom left wall corner "A" end: "B" end: Length (ft): IN \ .. AJUvL'vVv wall Left of Wall Left Edge of Roof Thickness = 7.25 fc (ksi) = 4.00 LdC Lp Rfp 1.69 3.18 0.65 Wan # 22Story 0.00 OJO 03/1 5 1 Horizontal Frame Number: 15 Unit Wt-Sdf\Vt (pci) = 150 .. 00 kip -0.00 0.00 LOAD D 14.07.00.05 Bldg 11 - Nodes (ft): RAMUSER SECTION INFORMATION: ""'"'"-'"'"· SC15 (ft): 7.50 Measured "A" Right Edge of Roof end: of Opening (11): 5.00 IN Story = 7.25 f'c (ksi) = 4.00 5 11:09:19 LOO m #22Story Frame Number: !5 = 145.00 = 1 RAM 14.07.00.05 Database: ViaSat Bldg 11 -03 Max Distance 4.00 1.00 Diaphra£,rm: Ground Level: Base D DeadLoad INFORl\:IA TION: Section: SC15 Of:tsct (ft): 7.50 from: bottom opening Right Edge of Opening #47 in Wall# Story "B" Left Roof Length (ft): 5.00 of Opening #54 in \Vall # 22Story Concrete W aU Thickness (in)= 7.25 fc (ksi) = 4.00 FORCES: LdC -0.03 Roof Length (ft) = 28.33 Unit Wt = 145.00 Mminor 6.89 03/10/15 10:28 Horizontal Frame Number: 15 Unit (pc±) = 150.00 kip 0.14 -0.00 P-Delta: Ground Level: SECTION (ft): 7.50 Concrete WaH #3 3 mc.rness (in) "" p RAMUSER RAivlUSER Wall# 0.00 03/10/15 11 19 1 wall comer ( deg): Horizontal Nunber: 16 = 150.00 -0.00 -0.00 RAM FRAME 14.Cl7.00.05 Database: ViaSat 11 - \Vall Mesh Distance between Diaphragm: Level: DeadLoad PosLiveLoad RAMUSER RAMUSER CUT INFORMATION: Section: future loads 4.00 1 Offset (ft): 7.50 Measured from: bottom left wall corner "A" end: nB" end: Edge ofVvall #33 Left Edge of Opening #265 \Vall# 34Story Roof Length (ft): 7.50 ELEMENTS IN Concrete vVa11 #33 Story Roof TI1ickness = 9.30 =7.50 fc (ksi) = = 145.00 WALL p I'vlmajor l'Vh:ninor kip D l 5.78 (!.00 Lp -0.48 0.00 Rfp 0.16 1.17 -0.09 5 1 0:2f (deg): Horizontal Frame Number: 16 Wt-Selfvlt (pcf) = 150.00 kip -0.00 -0.00 LOAD "A" end: end: Left Roof Length (ft): 5.00 cor1crere \\7all Thickness (in) = 7 fc (ksi) = 4.00 \VALL Lp p kip 3.84 4.00 RAM USER 37 in Wall f:f Story Roof Length = 40.58 Unit Wt (pcf) = 145.00 l\'Imajor -0.45 l Mminor / 5 11:09:19 Orientation Horizontal Number: 19 kip -0.00 \Vall Section Forces 14.07.00.05 Bldg 11 -with point loads Wall Mesh Max ~.,,. .. '--'""'"'between Nodes (ft): Yes 1.00 Diaphragm: Rigid Ground Level: Dead Load Lp PosLiveLoad Rfp PosRoofLiveLoad SECTION SC17 Offset (ft): 4.50 Measured bottom opening edge "A!! end: Right m # Story Roof "B" Edge Opening 37 in \Vail# Roof -'-''-''''A''-" (ft): 5.00 IN SECTION CUT: Concrete Wall Story Roof Thickness 7 LdC D (ksi) = 4.00 p kip 20.70[\7 -0.27 = 40.58 -0.00 kip 1.96 l 0.41 5 Orientation (deg): Horizontal Number: 19 Unit Wt-SelfWt (pcfl = 150.00 Vntinor LdC D 4.50 Right Roof 5.67 p 4.00 Length = 40.58 Unit Wt (pel)= 145.00 -0.00 1 \ 1 \ "-") -0.46 03/l0/15 11 I9 Orientation (deg): Horizontal Number: 19 Unit = 150.00 Ri\M FR.AJ'v1E 14.07.00.05 .L'a·cau'""'--ViaSat 11 -03 \VaH Mesh Distance bet\veen Nodes (ft): P-Delta: Rigid LOAD D DeadLoad PosLiveLoad Rfp RAMUSER R.AMUSER future point 4.00 1 nr\u 4.50 Measured Right Edge of Opening Roof bottom opening edge 37 in Wall# 29 Story "Bn Right of Wall Length (ft): 5.67 SECTION CUT: Concrete Wall Story Roof .cu'-'"'-'''"''"'"' (in)= Length (ft) = 40.58 (ksi) = 4.00 Wt (pcf) = 145.00 p kip D 17.50 -0.00 Lp -0.01 -0.00 Rfp 3.20 -0,00 0/15 1 Orientation ( deg): Horizontal Number: 19 kip kip-ft 0.00 -0.00 -0.00 W!SEMAN+ROHY Structural Engineers TILT-UP PROGRAM (ACI31B-11-'14.8) February 2015 (:2012 JSC I 2013 CBC I ASCE 7-10} !NPUTDATA: Bar Size: Number of Bars : Steel Area Pier)::::: Sns = Importance Factor (I)= F, = 0.40 Scs I Ww = 1/\fir.d = PANEL Dl 5 5.D 1.55 0.79 1.00 0.316 27.00 Height (Span)= Reveal Depth = Steel Depth = Parapet Height"' Parapet Thickness = (0.31 in"2) in 5 foot pier inz g xWw psf(LRFD) 14.50 0.75 9.06 (LOO 11.25 Opening 0 inches Weight/sf= 0.0 psf Full Opening! Pier Width=-0 teet 0.0 plf Solid 14.5 feet 0 feet 0 feet 0 feet 0 feet (ASCE 7-05 [12.11.1l) ft in in fi in 'li.25 140.6 5 703.1 311212015 Concrete 'Neigh! -145.00 pcf Wall Weigh!= 150.00 pcf f, = 6000 ksi fc = 4.00 ksi beta= 0.85 Es= 29000 ksi Ec ~ 3644 ksi n= 7.96 phi (bending) "' 0.90 0 Steel at Center Steel at Face Stee! at Face Inside #3 Stirrups Other: 4.75 in Right Opening inches 0 inches psf 0.0 psf feet 0 feet plf 0.0 p!f 14. feet 0 feet 0 feet 0 feel 0 feet 8.50 in) Floor Live Load Roof Live Load Snow Combination 3b: Combination 3c: Combination 3d: Combination 4a: Combination 4b: CombinationS: Combination€: Combination 7: 0.0 pif 1.40 1.20 + 1.6L + 0.5L, 1.2D + 1.6L +O.SS 1.2D + 1.6L. + f,L 1.2D + i .6S + f,L 1.20 • 1.6L. ~ 0.5W 1.20 ~ 1.6S + o.svv 120 ~ "': ,OVV + f~L + CL5L1 1.2D + ~ .OVY + f~L + 0.5S (1 .2 + E;)D ·• f,L + 1.0E + 0.25 0.90-1.QVV 0.0 lb 0.0 lb f, 0.5 UveLoadFactor("l,Oor05} E.,= 0.2S;o5D= 0.158 xD 13.7% 10.0% 10.3% 13.€% 13.7°k 39.4% 40.6% 1.200 1.200 1.200 1.200 1.356 0.900 L '1.6()0 0.500 1.600 0.500 1.600 0.500 1.600 0.500 0.500 0.500 0,500 (.t;SCE 7-05 [2.3.2] Exception 1) s o.sno 1.600 HlOO 0 0. 3920.0 lb 0.0 lb E (1\SCE 7-05 (12.4.2]) (l~ot<o: If SDs "" 0.125 then E,. = 0) 1.16 2006 !BC Eq (16-18): 2006 IBC Eq ('16-20): in Ls (ln) 0.02 0.500 0.500 1.000 1,000 -1.000 4.8% W!SEMAN+ROHY Structura.l Engineers TILT·UP PROGRAM {AC! 318·11 -14.8) February 2015 (2012 IBC f 2013 CBC I ASCE 7-10) INPUT DATA: Bar Size· Number of Bars . Steel Area (In" J Pier)= S:;s = Importance Factor (1) = F,=OAOSos I Ww= Wind"' PANELD!MEN 5 4.0 1.24 0.79 1.00 0.316 27.00 Height (Span) = (0.31 in"2} in 4.8 foot pier in< g xWw (ASCE 7-05 [i2.1Ul) psf (LRFD) 14.50 0 Concrete Weigh!= 145,00 pd WaliWeJghl= 150.00 pcf fy = 60.00 ksi f' "' 4.00 ksi 'C beta= 0.85 Es= 29000 ksi Ec = 3644 ksi n= 7.96 phi (bending) "' 0.90 Steel at Center Steel at face Reveal Depth "" Steel Depth = 0.75 ii .8i in in Steel at face Insi::le #3 Stirrups Parapet Height= Parapet Thickness = 0.00 0.00 Thickness= Weight/sf= Full Opening J Pier Width = Dead Load Floor Live Load Roof Live Load Snow Combination 2b: Combination 3a: Cornbinatfon 3b: Combination 3c: Combination 3d: ·mbinabon 4a: mbination 4b: mblnation 5: mb!nation 6: mbinaUon 7: Opening 0 inches 0.0 psf 0 feet 0,0 p!f feet feet feet 1 .20 + 1 ,Gl + 0.5S 1.20 -t-1.6L,+f1L 1.20 + HlS + f,l 1.20 + 1 .6L, + O.SVV 1.20 +HiS+ 0,5\/V 1.20 + 1.0W + f1L + Q,SL, 1.2D + 1.0VV-:-f~L + O.SS fl in Ol'.her: Middle Pier (design) 0.0 lb 0.0 lb 14.00 inches 175.0 psf 4.92 feel 861.0 plf 0 1.400 1.200 '1.200 1.200 1.200 1.200 1.200 1.200 13513 0.900 0.742 !.. 1.600 H\00 0.500 0.500 0.500 0.500 0500 L" 0.5 Live Load Factor (1 .0 or 0.5) (ASCE 7-05 (ASCE 7-05 ::,. = 0.2Sos D" CL158 x 0 10.0% 534% 8.4% 52.3% 51.4% 8.7% 54.2% 21.8!}-t. 48.0% 9.9% 50.6% 23-4'%) 54.5% 10.0% 51.2~<) 23.1% 10.4% 48.0% 24.7S~ 62.5~10 18.8% 4.75 0,500 1.600 1.600 0.500 in Right Opening 0 inches 0.0 psf 0 feet . 0.0 plf 14.5 feet 0 feet 0 feet feet feet 0.500 1.600 1.600 0.500 3880.0 lb 0.0 lb 0.200 1.000 <= 0.125 then E.,= 0) U6 in 2006 lBC Eq (16·18): 2006 IBC Eq {16-20): 0.500 (L500 1.000 1.000 W!SEMAN+ROHY Structural Engineers TIL T·UI" PROGRAM {ACI 318-11-14.3} February 2015 (20121BC 12013 CBC! ASCE 7-10) INPUT DATA; Bar Size: Number of Bars : Steel Area Pier)= Sos = Importance Factor (I)= F~" = 0.40Scs I Ww= Wind= PANEL DlMENS!ONS: 5 4.0 1.24 0,79 1.00 0.316 2700 Height (Span)= Reveal Depth = Steel Depth = Parapet Height= Parapet Thickness= (0.31 inA:Z) in 5 foot pier ln2 g xWw (ASCE7-05[12.i1.i]) psf (LRFO) 14.50 ft 0.75 in 11.81 in 0.00 ft 0.00 in #11 3!12/2015 Concrete Weight-145.00 pet Wall Weight= 150 00 pet fy = 6000 ksi r "' " 4.00 ksi beta= 0.85 Er;= 29000 ksi Ec ~ 3644 ksf n= 7.96 phi (bending) = 0.90 Steel at center 0 Steel at Pace Steel at Face Inside #3 Stirrups 0 Other: 4.75 in ning Middle Pier (design) Right Opening Thickness"' Weight/sf= Full Opening i Pier Width = Solid Pane! Height to top: Opening Opening Ht Height to btm: Solid Panel Below: Combination 2b: Combination 3a: Combination 3b: Combination 3c: Combination 3d: mbination 4a: ombination 4b: Combination 6: Combination 7: 0 inches 0.0 psf 0 feet 0.0 plf 14.5 feet 0 feet 0 feet 0 feet 0 feet 1.20 + LOL., + f1L 1.20 + 1.€S +f.1L 1.2D ·+ 1.6L.., + 0.5'v'V ·1 .20 + 1 .6E """D.5VV -EJD·1.0E 0.158 14.0~b 19.0% 14.9% 15.3% 12.9% 40.6%, 1"' 'J\"1/ 0.-.J !0 41.7% 15.2% 39.1% 15.3% 39A% 15.7% 36,6% xD 13135.0 lb D.G lb 0.0 lb "14,00 i75.0 5 875.0 D 1.400 1.200 1.200 '1.200 1.200 1.200 inches psf feet pif {},0 pif O.G plf L l, 1.600 0.500 1.600 0501) 1J30G 0.500 1.600 0,1500 0.50G 0.50() 0500 0 0,0 0 0.0 14.5 0 0 0 0 0.500 1.600 1.600 0.500 0.200 inches psf feet plf fee! feet feet feet feet Point: 96510.0 lb 13505.0 lb 3830.0 lb 0.0 lb 1.000 7-05 [2.3 .2] Exception 7 -05{12.4.2]) (Note: If ""' 0.125 1hen E, =OJ i. 16 2006 JBC Eq (i6-H:): 2006 IBC Eq (16-20): in ils (in) 0.02 0.500 J.500 1.000 1.000 -1 1.3% W!SEMAN+ROHY Structural Engineers TILT-UP PROGRAM (ACI318-11-'14.8} February 2016 (2012 !BC I 2013 CBC/ ASCE 7-10) Number of Bars : Steel Area (in21 Pier)"' Sos = Importance Factor(!)= Fr "'OAO S05 I V'lw"' Wind= PANEL DH\IlENS!ONS: 5.0 1.55 0.79 1.00 0.316 27.00 Height (Span)"' Reveal Depth "" Steel Depth = Parapet Height = Parapet Thickness = In 7.5 foot pier tn2 g xvVw (P,SCE?-05[12.11.1]) psf(LRFD) 14.50 h 0.75 in 7.06 in 0.00 fl 0.00 in 3112/2015 Wall \/\Ieight = 150.00 pcf f,= 60.00 ksi "' = 4.00 ksi ' beta= 085 Es"' 29000 ksi Ec = 3644 ksi n= 7.96 phi (bending) = 090 0 Steel at Center Steel at Face ·~ Steel at Face Inside #3 Stirrups Other: 4.75 in Middle Pier (design) Right Opening 0 0,0 0 0.0 inches 9.25 inches 0 inches Weight/sf= FuJI Opening J Pier Width = Open Dead Load Floor Llve Load Roof Live Load Snow psf feet plf 14.5 teet feet feet 0.0 plf 9450.0 lb 0.0 plf 9600.0 lb 0 0 plf 0,0 lb 0,0 plf 0.0 lb '1.4u 1.2D + 1.6L + 0.5L, i.2D + 1.6L, + f,L i .2D + 'UlS + f,L ~-20 + 1.6Lr + 0/JVV 1.2D + 1.6S + 0.5W r;::::~:.;;.;::.;:::;..:._:;c;;_-----+ i.OV\/ + f1L + 0.5l, + 1.0W + f1L + O.SS -1.DVV Uve Load Factor (1.0 or 0,5) 02S0sD" 0.158 xD Tension M,, ! phl·Mr Controlled 54.5% 48,3%1 48.4% 54.8% 54.9S<h 58.4'Yo 26.5% 24.8% 24.8~t; 26.59~ 115.6 psf 7.5 feet 857.2 plf L 1.600 0,500 0.500 0.500 0.500 0,500 48.6°/o 4204%> 42.2~/o 48.7% 0 1.600 1.600 0.5{}0 0.0 plf 0.0 plf 0.0 plf 0.0 If 0.0 psf 0 feet 0.0 plf 0 0 0 0 s 0.500 1.600 1.600 0.500 feet feet feet feet feet 55150.0 lb 13930,0 ib 180.0 !b (LO lb E 0.200 1.000 ··1.000 <" 0.125 then E, =OJ in 20061BC Eq ('16-18): 2006 IBC Eq (16-20): vv CL500 0500 1.000 i.COO WJSEMA!\I+ROHY Structural Engineers TILT-UP PROGRAM (ACI 318·11 • 14.8) BC!ASCE7-10) !NPUT DATA: Bar Size: Number of Bars : Steel Area I Pier) = 5 4.0 1.24 OJ9 Importance Factor (I)= 1.00 Fp = OAO ScsI Ww = Wind= 0.316 27.00 ENS!ONS: Height (Span)= Reveal Depth = Steel Depth = (0.31 inA2) in 5 foot pier in2 g X Ww (ASCE 7-05 [12.11.1]) psf(LRFD) 14.50 ft 0.75 in 8.31 in 0.00 fl 0.00 in Concrete IN eight= Wall Weight= fy = fc = bela= Es = Ec"' n= phi (bending) = Steel at Center Steel at Face !45.00 150.00 60.00 4.00 CL85 29000 364L 7.96 OJ;JO Steel at Face Inside #3 Stirrups Other: 4.75 in 3!12!2015 pel pcf ksi ksi ksi ksi Middle Pier (design) Right Opening Thickness= Vvelght/sf = Full Opening ! Pier Width = s Opening Dead Load Floor Uve Load Roof live Load Snow er ASCE 7..[)5[2.3.2] -nbina!ion 5: binatlon 8: binat!on 7: O.D plf 0.0 p!f D.J plf 1.2Q + ~,.GL, + 0.5'\1\i 1.2D"' 1.65 + 0.5W 1.20 + 1.20 + 13JV\f f1L + 058 (1.2 + E,)D + f1l + i.OE + 0.28 0.90-l.O'vV (0.9 E,.)D -', .OE 9834.0 lb 0.0 lb 0.0 lb ive lo<od Factor(i.O or0.5) E.,= C2S8s0 ::: (L 158 x D Combination i: Combination 2a: Combination 2b: Combination 3a: 43.9l~{j Combinaticn3b: 10.3% 45. 1°;0 Combination 3c: 7.0% 46.5% 29.2<}-Q 7.3c;tj 47.9Sii, 28.3t)Q '!0,2% 44.7% 30.4'% 10.3% 45:~0A"J 30.2% 42.5% 32.1% 24 22.8% OK 10,50 Inches 131.3 psf 5 fest 656.3 1.200 1.200 ~.200 !200 L 1600 1.600 0,500 0.500 0.500 0.500 1.600 0.500 0 incnss 0.0 psf 0 feet 1.500 1.600 0.500 0.200 fee! feet feet 57420.0 lb 10'1[.17.0 lb 29000 lb 0.0 lb i,OOD ·1.000 7-05 [2.3.2] Exception 7·05 [12.4.2]) {Note: If <:. 0.125 then E," 0) SD Load' 1.16 2006 !BC Eq (16-iB): 2006 IBC Eq (16-20): in 0.500 INPUT DATA: W!SEMAN+ROHY Structural Engineers TILT-UP PROGRAM (AC! 318-ii -14.8} February 2015 (20i21BC /2013 CBC i ASCE 7-10) CA T!ON: Ptar 6 JOB NO: 14-143 311212015 Bar Size: 5 40 1.24 (0.31 ln'2) Concrete Weight-145.00 pof Number of Bars : Steel Area Pier) = Scs = Importance Factor (I)= 0.79 1.00 in 5Jl foot pier in~ g WaH VVeighl = f "' y f'c"' beta= Es"' Ec= 150.00 pcf 60.00 ksi 4.00 ksi OB5 29000 ksi 3644 ksi Fp =0.40 Sos l Ww= Wind= 0.316 27.00 xWw (ASCE7·05[42.4U]) n= 7.96 EL DIMENSIONS: Height (Span)= Reveal Depth = Steel Depth = psf(LRFD) 14.50 ft 0.75 in 8.31 in 0.00 ft 0.00 in phi (bending)= 0 Steel at Center Steel at Face 090 Steel at face lnslde #3 Stirrups Other: 4.75 in Middle Pier {design) Right Opening Thickness= Weight/sf= Full Opening! Pier Width = Openi Dead Load Floor Live Load Roof Live Load Snow 0.0 14.5 0 0 inches psf feet plf feet feet feet 0.0 plf 1 .2D + 1.BL + 0.5S 1.20 + Hll, + f,L 1.20 + U)S + f,L 1.20 + 1.6L ~ 0.5W 1.20 •1.6S + 0.5W 1.20 + 1.0W + f,L + 0.5L, 1.20 + 1.0\f'J + f.~L + 0.5S (1.2 .. EJD + i1l + 1.0E + 0.2S 90 -1.0W .9-E,)D -1.0E 18796.0 lb O.IJ lb 0.0 lb I. " 0.5 Live Load Factor (1 .0 or 0.5) E,"' Q.2SmD = 0.158 x 0 36.7% '19 6'>;> 42.4% 20.4% 44. :30.9% 15.4% 46.6% 29.1 '}~ Hli% 48.6% 27.9% 20.1% 43.6% 31.3% 20.4% 44.Hio 30.9% 4i.5%l 32.9% 23.9% 21.9o/rJ OK 10.50 inches 13U psf 5.67 feet 744.2 plf L 1.800 HlOO 1.200 0500 1.200 0.500 1.2()0 1.200 1.200 0.500 1.200 0500 1.358 0.500 CdOO 0.742 (ASCE 7-05 {,A,SCE 7-05 72.0o/o 65.4% 60 5~-s 73.6o/c 72.0% L. 0.50{) '1.600 1.600 2.500 0 inches 0.0 psf 0 feet 0.0 plf 14.5 0 0 0 feet feet feet feet 0 feet D.50G 1,600 1.600 0.500 0.200 18000.0 !b 4900.0 lb 0.0 lb <= 0.125 then E.~:;: 0) !temate ASD Load \. us 20061BC Eq (16-18): 2006 18C Eq (16-20): in 6s (tn) 0.03 0.03 0.580 D.5DO 1.000 1.000 W!SEMAN+ROHY Str TILT-UP PHOGRAM \AC! 318-11 -14.8) INPUT DATA: Bar Size· Number of Bars : Steel Area f Pier)= Sos"' Importance Factor(!) = 5 {0.31 inA2) 4.0 in 5 foot pier 1.24 in" 0.79 g i.GO 3112!2015 Concrete Weight = 145.00 pcf VVa!i Weight::: 150.00 pcf f, = 60.00 ksi f = " 400 ksi beta= 0.135 Es = 29000 ksi Ec" 3644 ksi Fr=D.40Scs1Ww= 'Nind= 0.316 xWw (J\SCE 7·05 [12.11.1]} n= 7.96 27.00 psf (LRFD) PANELD! S: Height (Span)= 14,50 Reveal Depth = Steel Depth = 0.75 7.06 Thickness= Weight'sf= Full Opening f Pier \Nfd\h = Dead load Floor Live Load Roof Live Load Snow Combination 2h: Combination 3a: Combination 3b: Combination 3-c: Combination 3d: Combination 4-a: Ccmbination 4b: 0.0 14.5 0 0 0 0 {J.OO fJOO inches psf fee! plf teet feet feet feel fee; i .20 + i ,GL + 0.5Lr L20 + i.6l + 0.5S 1.20 + 1.6L, + f1L ·1.20 + 1.6S + f,L i .20 + 4 .6L, + 0.5W 4.20 + 4 .6S + 0.5'1\f 4.20 + 'LOVV + f,L + 0,5Lr 1.20 + 1.0W + f,L + 0.5S ft in in ft in (1.2 + E,JO + f,L + '!.Oc + 0.2S 1(0.9 • EJO · 1 phi (bending) = Steel at Center Steel at Face 0.90 @ Steel et Face Inside # 3 Stirrups 0 Other: Middle Pier (design} 20590.0 lb 0.0 lb 0.0 lb 925 Inches 115.6 psf 5 feet 5781 1.200 1 200 1.200 1.200 1200 1.200 '1.200 1.600 1.600 0.500 0.500 0.500 0.50(' 4.75 1.600 1.600 Z':L500 in Right Opening 0 inches 0.0 psf 0 feel 0.0 1 0 feet 0 feet 0 feet 0 feet Point: 0.500 1.600 1.600 0.500 0200 36320.0 lb 0.0 lb 3560.0 lb 00 lb 1.000 -1.000 f, = 0.5 Live Load Factor (1 .0 or CLS) (ASCE7-05 (ASCE 7-05 E, = 0.2Sn5 D" O.Hi8 X D Cornbinatton 1: 18.6'% 46.2% Combination 2a: 39.6% 39.9% Combination 2b: 40 oo;; 40.3% Combination 3a: 24.4Slo 44.5% bination 3b: 25.3% 46.2% 16.4°/o 47.6% 17.1% 4951JD 25.0% 45.6% 25.3% 46.2% 2e.O'i<O 43.9% 31.13% 58.3°;0 30.7%) 54.5% 29.5% 49.9% 32.1% 59.8% 318% 33.5% <= £Li25 then E, ~ 0) U5 200618C Eq (16-18): 2006!BC Eq (i6-20): in 0.500 WISEMAN+ROHY Structural Engineers T!LT·UP PROGRAM (ACI 318·11 ·14.8) February 2015 (2012 IBC! 2013 CBC I ASCE 7-10) Number of Bars : 4.0 in 4.9 foot pier Steel /\rea Pier)= 1.24 In" S:;s"' 0.79 g Importance Factor (I)::: 1.00 Fp= 0.40 ScsI Ww= 0.3i6 xW,., (ASCE 7·05 [12.11.1]) Wind= 27.00 psf{LRFD) !MENS!ONS: Height (Span)= 14.50 ft Reveal Depth = 0.75 in Steel Depth = 7.06 in Parapet Height = 0.00 ft Parapet Thickness = 0.00 in 3/12/2015 Wai!Weignt= 150.00 pcf f,"' 60.00 ksi f = c 4.00 ksi beta"' 0.85 Es"' 29000 ksi Ec'-" 3644 ksi n= 7.96 phi (bending) = 090 steel at Center Steel at Face (!) Steel at Face Inside #3 StirTups 0 Other: <i.75 in ing Middle Pier {design) Right Opening Thickness- Weightisf= Futl Opening I Pier Width = Solid Panel Above: J Height to top: Opening , Opening Ht: HEHght to btm: Solid Panel Below Dead Load Floor Live Load Roof Live Load $now 0 0.0 0 0.0 14.5 0 0 0 0 inches psf feet p!f feet feet feet feet feet 0.0 plf 0.0 p!f 1.2D + i .BL + 0.5S 1.20 + 1.6L, + f,L L2D + 1.6S + f,L 1 .2D + 1 J)Lr + 0,5Vl/ .1 .20 .,. 1 .OS + 0 .5W 120 + i.OYV + fil + 0,5L, i.2D + 1.0W + f,L + 0.53 (1.2 + 2,)0 + f1L + i .OE + 0.23 J• 1.0\N (0.9 ·• E,)D-1 .OE oint: 12650.0 lb 13570.0 lb 0.0 lb 0.0 lb f, = 0.5 Live Load Factor (i .0 or 0,5) E,_, ~ 0.2Sv~ D-= 0.15B X D 46.6% 31.5% 46 . .aS<n 31.3% 48.8% 30.0% 46.0% 31.9% 46,6% 31.5~'0 9.25 115.6 4.92 558.9 1.200 1 200 i.200 1.200 1.200 inches pst feet plf in) 0 0.0 0 0.0 14.5 0 0 0 0 Loads: 0.0 plf 0.0 plf 0.0 plf 0.0 plf 1.600 0.500 HlOO 0.500 ().500 0,500 1.600 1.600 1.600 1.1500 0.500 0,500 0.200 2006 JBC Eq (16-18): 2006 !BC Eq (16·20); inches psf feet plf feet feet feet feet feet Point: 35100.0 lb 0.0 lb 3880.0 lb 0.0 lb 1.000 -1.000 lls (in) 0.03 0.03 0.500 0.500 1.000 1.000 -1.000 2.8"70 W!SEMAN+ROHY Structural Engineers T!LT·UP PROGRAM (ACI31S-11 -14.8) February 2015 (2012 IBC /2013 CBC I ASCE 7-10) Number of Bars : 4.0 Steel Area Pier)"' 1.24 Sos = 0.79 importance Factor (I)"' i.OO FP = 0.40 S05 J W..,"' 0.3i6 Wind= 27.00 PANEL DIMENSIONS: Height (Span)= Reveal Depth = Steel Depth = Parapet Height = Parapet Thickness = ln 5 foot pier in2 g xWw (ASCE 7-05 f12.1 U]) psf(LRFD) i4.50 ft 0.75 in 7.06 in 0.00 ft 0.00 ~n 0 @ JECT; VisSat #i l TION: Pier9 43 Wall Weight= 150JJO fy = 60.00 f = c 4.00 beta.= 0.85 Es = 29000 Ec= 3644 n= 7.96 phi (bending)"' 0.90 Steel at Center Steel at Face Steel at face Inside #3 Stwrups Other: 4.75 In 3/12/2015 pcf ksi ksi ksi ksi Left Opening Middle Pier (design} Right Opening Thickness= Weight/sf= Fuil Opening ! Pier Width = Sol Opening Floor Live Load Roof Uve Load Snow o inches 0.0 psf 0 0.0 14.5 0 0 0 0 feel plf eet feet feat feat feet 0.0 plf 0.0 plf 0.0 plf 0.0 plf '13640.0 lb 18250.0 lb 0 0 tb 0.0 lb Live Load Factor (1 .G or 0.5) 0.158 x D 42,1 o/o 39.1% 19.7% 37.8% 12.9';/; 39.8% 37.1 ~1o 13.3% 41.2%. 35.8% 19.5% 38.8% 38.2!Jb 39.2% 37.8% 36.9% 40.4% 47A~Ic 30.9% 5°L5% 2B_3f}b OK OK 9.25 'l11i6 "' "' 578. i 8.00 D 1400 1200 "r.200 "";.200 1.200 1.200 inches 0 psf 0.0 feet 0 pif 0.0 14.5 0 0 0 0 in\ 1.600 0,500 1.600 0.500 0.500 1.600 0.500 1.600 1.600 1.600 0500 0.500 l\500 0.500 0.500 0.200 (ASCE 7~05 {2,3,2} Exception (ASCE 7-05 [12.4.2]) (Note: 1.16 2006 IBC Eq (16-18) 2006 IBC Eq (16-20): inches psf feet plf feet feet feet feet feel 0.0 lb 3830.0 lb 0.0 lb E in 0.04 0,500 0.500 1.000 1.000 ·1.000 Ser/ice Deflection 3.2% W!SEMAN+ROHY Structural Engineers TILT-UP PROGRAM (AC! 318·11 ·14.8) Februal)l 2015 (20 i 2 I BC I 2013 CBC / ASCE 7-1 0) Number of Bars ; 6.0 in 7.5 foot pier Steel Area (!n"! Pier) = 1.86 in" Sos"' 0.79 g Importance Factor (!) = i 00 F., = 0.40 Scs I W .• , = 0.316 x'Ww (ASCE 7-05 [12.11.1]} Wind= 2!.00 psf(LRFD) I PANEL DIMENSIONS: Height (Span} = 14,50 ft Reveal Depth = (J.75 in Steel Depth = 7.06 in Parapet Height= 0.00 ft Parapet Thickness "' 0.00 in 0 PROJECT: v;sSat#11 LOCATION: Pier '10 JOB NO: 14-·143 \11/all Weight"' 150.00 fy = 60.00 f = . c 4DO beta"' 085 Es= 29000 Ec"' 3644 n= 7.96 phi (bending)"' 0.90 Steel at Center Steel at Fate Steel at Face Inside #3 Stirrups Ot'ler: 4.75 in 3/12/2015 pcf ksi ksi ksi ksi I Left Opening Middle Pier (design} Right Opening Thickness= Weigh,Vsf= Full Opening / Pier Width = Solid Height to top: Opening Opening Ht: Height lo btm: Soiid Panel Below AD!NG: Dead Load Floor Live Load Roof Live Load Snow Combination 2b: Comblnation 3a. Combination 3b: CcmbJr.aUon 3c: ... cmblnadon 3d: 0 inches 0.0 psf 0 feet 0.0 plf 4.5 feet 0 feel 0 feet 0 feet 0 feet i1,4D 1.20 + ·1.6L + 0.5L, 1.20 + 1.6L + 0.53 1.20 + ·L6L.,. f,L 1.2D + 1.65 + f,L 1.20 + 1.6L.. + 0.5W 1.20 + 1.63 + 0.5W 1.20 + ·LO\N + f1L + 0.5L., 1 .2D .;. 1.0W + f1L + J.5S 13930.0 !b 0.0 !b o.c 10 fl :e 0.5 Live Load Factor (1.0 or 0,5) E, = 0.2Scs D = 0.158 X D ·J4SYo 24.5~;0 9.5% 6i .5o/ij 23.5~/o 9.5% 61.6% 23.5% 14.5% 59.1"% 24.5tr0 14.6% 59.1% 24.5~~s 17.2o/~ 57.0°/o 25.5% 66.5% 21.7% 9,25 115.6 75 8572 8.00 D 1 . .200 1.2[)0 1.200 1.200 1.200 1.200 1200 1.200 1.358 OJJOO 0.?42 27.3~'0 27.3% 31.1% inches psf feet plf in) l 1.600 1.800 0.500 0.500 0.500 0.500 0.5()0 (ASCE 7-05 (ASCE 7-05 (L500 1.600 1.600 0.500 0,0 pif [1.0 plf 0.0 p1f Q 0.0 0 0.0 14.5 0 0 0 0 0.500 1.600 1.600 0.500 0.200 inches psf feet plf feet feet feet feet feet Point: 31970.0 lb 0.0 lb 60.0 lb 0.0 lb u:oo oad Combinations: As:::·~.o~X = 1.16 in L>s {in) 2006lBC Eq \16-18): 0.02 2006 IBC Eq {16-20) 0.02 09:52:58 w 0.500 0.500 1.000 1.000 -1.000 1.9% 20'% W!SEMAN+ROHY Structural Engineers TilT-UP PROGRAM (ACI 318-11 -14.8) February 2015 {20i2 IBC f 20"!3 CBC I ASCE 7-10) Number of Bars: 4.0 Steel .Area (In"! Pier) "' 1.24 Sns = 0.79 Importance Factor (I)= 1.00 F,=OAOS0siW,= 0.3Hi Wind= 27.00 PANELD NS: Height (Span)= Reveal Depth = Steel Depth = Parapet Height= Parapet Thic!mass = in 5 foot pier irr2 g xVVw (ASCE 7-D5 [12.11.1]) psf (LRFD) 14.50 ft 0.75 in 6.31 in 0.00 ft 000 in ION: Pier 11 NO: 14·143 \!Vall Weight= fy = fc = bela"" Es = Ec"' n= phi (bending)= 0 Steel at Center 0 Steel at Face 150.00 60.00 4.00 0.85 29000 3644 7.96 0.90 @ Steel at Face Inside # 3 Stirrups 0 Otr.er: 4.75 in 311212015 pcf ksi ksi ksl ksi dd!a Pier {design) Right Opening Thickness= Weightlsf= Full Opening 1 Pier Width "' Opening Dead Load Floor live Lead Roof Uve Load Snow Combination 2a: Combination 2b: Combir,ation 3a: Combination 3b: Combination 3c: Combination 3d: 0 0.0 0 inchas psf feet 0.0 plf 0.0 plf 0.0 plf .2D + 1.0V'J + f1L ...... 0.5L .2D + 1.0\N + f,L + 0.5S (Eccentricity = 8580.0 lb 13780.0 lb 0.0 lb 0.0 lb Uve Load Factor(1.8 orD.5) 0.158 D 47.5% ':)") ~(l/ "-'•'-, { /C 4EL2t'Yn 32, i'~b 1 0.9o/o 49.9% 3'1.0% 47.0% 33.0% 47.5% 32..7% 45.3% 34.4o/o 8.50 inches i 06.3 psf 5 feet 53i .3 plf 7.25 1.200 ';.2(}0 1.200 1.200 1.200 1.200 1.200 1.358 0.900 0.742 53.5~b 51.5'1b 47,30;0 54.8% 53.5:Yo 59.7% in L 1.600 1.600 0.500 0.500 0.500 0.500 0.500 (ASCE 7-05 (ASCE 7-05 0 inches 0.0 psf 0 feel 0.0 p!f 14.5 feet 0 feet 0 feet 0 feet 0 feet Point: 0.0 plf 35430 0 lb 0 0 plf 0.0 lb 0.0 plf 29000 lb 0.0 plf 0.0 lb L-s 0.500 0.500 1500 1.600 ~.600 1.600 0.500 1.000 -1.000 Exception 1} (Note: II Sos <: D.125 then E, = 0) 1.16 2006 ISC Eq (16·1B): 2006 !8C Eq {16-2G): in 0.03 0.04 0.500 0.500 1.000 1.000 -1.000 W!SEMAN+ROHY Structural Engineers TILT-UP PROGRAM (AC! 3i8·1i ·14.ll} February 2015 (2012!BC! 2013 CBC f /'\SCE 7·10) 311212015 INPUT DATA: Bar Size: Number of Bars : Steel Area Pier) = Scs = Importance Factor (I) = F" = 0.40S0s I W,= Wind= PANEL DIMENSIONS: 5 4JJ 1.24 '1.00 Height (Span)= Reveal Depth "' Steel Depth :::: Parapet Height = Parapet Thickness = (0.31 in~2) in 5.6 foot pier ir? g xWw (ASCE 7-05 [12.11.1}) psf (LRFD) 14.50 ft 0.75 in Concrete Weight= Waf! Weight" f = y " j c:::: bets= E-"' 0 Ec'Z:: n= phi (bending)= Steel at Center Steel at Face 145.00 pcf 150.00 pd 60.00 ksi 4.00 ksl 0.85 .29000 ksi 3644 ksi 7.96 0.90 6.31 in Steel at Face Inside #3 Stirrups 0.00 ft 0 other: in 0.00 ln Middle Pier {design) Right Op<;;ning 8.50 inches 0 inches Opening Dead Load Floor Live Load Roof Live load Snow n 1: n 2a: n2b: CornbinaUon 3c: Combination 3d: Combination 4a: Combination4b: 1.20 + 1.6L, + f1L 1.20 + i.GS + f,L 12D + 1 .0Lr-+ 0_5VV '1.20 + 1.6S + 0.5VV 1.20 + 1 .OW+ f,,L + 0.5:.., 1.20 + 'LOY/+ f1L + 0.58 OJ~D-1DVV 0.0 lb 0.0 lb f,oo 0.5 UveLcadFactor(C.Oor0.5) E, = CL2S08D = CLi58 x D Tenslon Controlled 42.9% 27,5~1o 482% 28.8°/" 50.5% 18.0'});, 52.2% 29.6% 18.9% 55.0o/o 28.0% 49.7% 311% 30.6% 32.2% 25.0% 23.4% OK 106.3 psf 5.67 feet 602.4 plf D 1400 1.200 1.200 i.20Q 1.208 l.2DD 1.200 '1.200 1.200 1.353 0.900 0.742 VerHcal Stress 53.8% 49J)S<Q 44.2% 55.6% 53.8% 459. 7'1'0 332% L 1.600 1.500 0.500 0.500 (L500 (L500 0.!500 (ASCE 7-05 (ASCE7-05 0.0 psf 0 feet 0.0 plf i4.5 feet 0 feet 0 feet 0 feet feel L, s 0500 0.500 1.500 1.600 1.600 1JJOO 0.000 1.16 in 2006!BC Eq {16-18): 2006 IBC Eq (16-20): L490.0 ib 0.0 \b E ns: VI/ 0,500 0.500 -1.0DD W!SEMAN+HOHY Structural Engineers TILT-UP PROGRAM (AC! 318·11 ·14.8) February 2015 (2012 IBC f 2013 CBC! ASCE 7-10) INPUT DATA: Bar Size: Number of Bars · Steel Area Pier) = Sos"' importance Factor(!)= 5 0.79 i.OO (0.31 inA2) in 5 foot pier in2 Fp=0.40S:JsiW .. " Wind= 0.316 27.00 xWw (ASCE7-05[12.1U]) psf(LRFD) lMENS!ONS: Height (Span)= 15.00 Reveal Depth "' 0.75 Steel Depth = 3.25 Parapet Heigh!= 0.00 Par Thickness"' Weightisf" Full Opening ! Pier 'Nidth = Opening Dead Load Floor Live Load Roof Live Load Snow Combination 2b: Combination 3a: Combination 3b: Combination 3c: Combination 3d: Combination 4a: Combination 4b: Thickness= 0.00 ing 0 inches 0.0 psf 0 feet 00 plf 15 feet 0 feet 0 feel 0 feet 0 feel ·1.20 + 1.6L + 0.5L, 1.2D + 1.6L + 0.55 1.2D+ 1.5:..,+ Ll 1.2D+1.613+LL 12D+ 1.6L,+0.5VV ·L2D + 1.6.S ~ 0.5\f\1 1.2D + ~, .DVV + LL + 0.5L, 1.20 + 1.0'N + f,L + 0.55 •.9D-1.0W tl in in ft in 0.0 lb 2340.0 lb OJ} lb f1 = 0.5 Live Load Factor (1 .0 cr !}5) E,= 0.2SneD= 0.158 xD MMARY: Tension M,,i phi-M, Controlled 152~/.~ 58 Combination 2a: 16.0% 57.0% Combination 2b: 43.5% 56 A% Combination 3a: 21.4% 76.4% 58.2% Combination 3b: 13.5%· 78 51}0 56.4% Combination 3c: 26.0'"7'!: 76Ao/o 58.2% Combination 3d: 19.5%, 78.5% 56.4~t0 31.6%. 77.8% s~· nl,l-,t [ ,'>,.J /0 ~ombination 4b: 29.6% 78.5% 56.4% ombination 5: 32.6% 76,5~/u 5£1."1% 53.3% 5"1.7% K OK 5 453.1 1.200 1.:1.00 1.200 1.200 1.200 1.200 1.200 1.358 0,900 0,742 Vertical Stress 29.3% 28.4% 32.1% 28.1CJ~ 32.1~0 28.1% 29.3% 28 i% 3· 1 ,8°/c 21.1 ~~n PROJECT: VisSat #11 LOCATION: Pier 13 JOB NO: 14-143 Concrete Weight= Wall Weight= fy ::::.:; " -I C- beta= E;s = Ec = n= phi (bending) = @) Steel at Center Steel at Face 145.00 150.00 60.00 4.00 0.85 29000 3644 7.96 090 Steel at Face Inside If 3 Stirrups 0 Cther: 4.75 in 3/12i2015 pcf pcf ksl ksi ksi ksi Right Opening inches psf feet plf 1.6QC 1.600 0.500 0,500 0.500 0500 1.600 1.600 CLO p~f 0.0 plf 0.0 plf 0 0.0 0 0.0 15 0 0 0 0 0.500 1.600 Loa 1.20 2006\BC Eq {'16-18) 2006 iBC Eq (16-20): inches psf feet eet feet feet feet feet in ,:\s (in) 0.03 0.03 lb 0.0 lb 09:57:00 w 0.500 0.500 1.000 i.OOO WISEMAN+ROHY Structural Engineers TILT-UP PROGRAM {AC! 312-11 • 14.8) february 2015 (2012 lBC f 2013 CBC f ASCE 7-10) INPUT DATA: Bar Size: Number of Bars : Steel Area Pier)= Importance Factor (I) = 1.00 FD= 0.40 805 I W,= Wind= 0.316 27.00 PANEL DIMENSIONS: Height (Span)= Reveal DepL'l = Steel Depth = Parapet Height = Parapet Thickness = {0.3i in-"2) in 4.9 foot pier in~ g X w, (ASCE 7-05[12.1 Uj) psf(LRFD) 15.00 ft 0.75 in 325 in 0.00 ft OA}O in 0 () 0 CA,TIC)N: Pier 14 .JOB NO: 14-143 Concrete Weight = 14500 Wail Weight= 150.00 fv = 60.00 f" = 4.00 beta= 0.85 Es = 29000 E: = 3644 n= 7.96 phi (bending) = 0.90 Steel at Center Stesl at Facs Steel <'it Face Inside #3 Stirrups Otiler: 4]5 in 3/12/2015 pcf pcf ksi ksi ksi ksl mng Middle Pier {design) Right Opening Thickness- Weight/sf= Full Opening I Pier Width= Solid Panel Above: Height to lop: Opening Opening Ht Height to btm: Solid Panel Below: Dead Load Floor Live Load Roof Uve Load Snow ~!ONS: ~ Combination 2b: Combination 3a: Combination 3b: Combination 3c: Combination 3d: Corn bination 4a: Combinat1on 4b: Combination 5: Combination 6: ~t.;ombination 7; 1.40 0 Inches 0.0 psf 0 teet 0.0 plf 15 feet 0 0 0 0 feet feet feet feet 0.0 0.0 plf 0.0 plf 0.0 plf 12D + 1.6L +0.5Lr 1.20 + 1.6L + 0.5S 1.20 + ·, .GL, + f1L 1 .2D • ~, .6S + f1L 1.20 ,. 1.6L,. + 0.5W 1.2D *' 1 ~6S + 0.5VV i .2D + 1 !JW + f1l + 0.5L, i .20 + 1.0\fol + f,L •· 0.5S J.9D -1,0\N (0.9-E,)D-i.OE 3830.0 ib 0.0 !b f., 0.5 live Load Factor (1,0 or 0.5) 4b: E ... = 0.2SnsD= C.1'58 xD / phi-Mn Mer I phl-Mn 83.9°/o 33.5% 86.1% 29.1 Sl~ 87.5% 42.7% 83.1% 29.1% BTS~~h 49.0% 83.1% 34.9% 87.5% 51.7% 86.1% 4T3·1b B7.s~~s :52:£19/,? 84.6% Tension Controlled 52.5% 51.oq~o 46.5% 44.6% OK 7.25 90.6 4.92 4459 D 1.400 1.200 1.200 1.2()0 4200 1.2GO 1.200 1.200 1.200 1.358 0.900 0,742 Vertical Stress 37.7% 34.4% inches psf feet p!f L L i.BOO 0.500 "i.600 0.500 1.600 0.500 1.600 0,500 0.500 0,500 0.500 0 0.0 0 0.0 15 0 0 0 0 s 0.500 1.500 1.600 0500 0.200 I inches psf reet p!f feel feet feet feet feet Point: 15410.0 ib 0,0 !b 0.0 lb 0.0 lb 1 -1.000 (ASCE 7-05 f2~3.2l Ex:aeption i_J (ASCE 7-05\12.4.2}) (Note: If S08 "'"' 0,125 then E, "'0) ernaleA 1.20 20061BC Eq (1,6-18) 2006 IBC Eq (16-20): in :is (in) 0.04 0.04 CHECK: 09:58: vv 0.500 0.500 1.000 1.000 -1.000 3.0%. 3,0% WISEMAN+HOHY Structural Engineers TILT-UP PROGRAM (ACf 318·11 ·14.8) Fetm:ary 2015 Number of Bars ; 4.0 Steel Area Pier)= 1.24 Sos= 0.79 Importance Factor (I)= 1.00 F,= 0.40 Sos I 'Nw= 0.316 Wind= 2700 PANEL DIMENSIONS: Height (Span)= Reveal Depth = Steel Deptt1 = Parapet Height= Parapet Thickness = in 5 foot pier in2 g X V"riw psf(LRFD) 15.00 0.75 3.25 0.00 0.00 (ASCE 7-05 [12.11.1]) ft in In ft in ROJECT: VisSat #~ i CATION: Pier 15 JOB NO: 14-143 Wail Weight= 150.00 f'j::::: 60.00 f -c-4.00 beta= 085 Es" 29000 Ec = 3644 n= 7.96 phi (bending) = 0.90 @ Steel at Center· Steel at face Steel at Face Inside .tt3 Stlrrups Other: 4.75 in 311212015 pd ksi ksi ksi ksi g M Pier (design} Right Opening Thickness= Weigh!/sf= Fun Opening i Pier Width= Dead Load Floor Live Load Roof Live Load Snow inches psf feet pff feet feet feet feet 0:0 plf L2D+1.6.+05S 1.2D +1.6:.., + foL 120 + i.6.S + f~L 1 .2D + i .6L. + O.SW 1.2D + 4 .65 + 05!V 1.20""' ", .OvV + f,L + 0.5Lr 1.2D vr 1 .01/V + f-,L + 0.55 OE 0.0 lb f, ~ Live Load Factor (1.0 or (L5) E; :::. D.2Sos D := 0, 1S8 0 72,8~1~ 61.5% 69.8% 64.4% Combination 3b: 51.5%, 7'2.8% 6'1.5% Combination 3c: 87.5'i~\ 68.8% 64.4% Combination 3d: 6£37% 728% 61 ,5°/c 88.4% 71.8% 62.4% 8£,Qt:i;h 72.8~:/c 61.5% 64.9% 54.9% 7.25 90.6 5 453.1 1.2()() 1.200 1.200 1.200 1.200 59.3% 65,9'Y{J 59.3% 61.4~/o 59.3% inches psf feet plf L L, '1600 0.500 1.600 0.500 1.600 0.500 1.600 0,500 0.500 0,500 0500 (ASCE 7-05 [2.3.2] Exception 1) 0 0.0 0 0.0 15 0 0 0 0 (L500 'L600 'L600 0.500 0.200 inches psf feet plf feet feet feet feel feet 28560.0 tb 0.0 ll:l 0,0 !b G.G !b .GOD -1.000 ;ASCE 7·05 (12.4.2]) (Hole: If S~s <= 0.125 then E.,"' C) 1.20 2006 IBC Eq (16-48): 2006 IBC Eq (16-20): in "'s (in) 0.05 0.05 09:59:131 O.SOD 0.500 1.0DO 1.000 -1.000 WISEMAN+ROHY Structural Engineers TilT-UP PROGRAM (AC! 313-11 ·14.8} Februar; 2Di5 (2012 IBC /2013 CBC f ASCE 7-10) Number of Bars : 6.0 in 7.5 fool pier Steel Area Pier)= 1.86 in2 Sos = 0.79 g importance Factor (I)= 1.00 FF=040So5 1Ww"' 0.316 xVfw (ASCE 7-05 [12. 11. i]) Wind= 27.00 psf(LRFD) !MENSlONS: Height (Span)= 15.0() ft Reveal Depth = D.75 in Steel Depth= 7.00 In Parapet Height = 0.00 fj Parapet Thickness= (LOO In PROJECT: VisSat #11 LOCATION: Pier 16 .JOB NO: 14-i 43 Wa!l Weight"' 150 00 f.= 1 60.00 f = 'c 4.00 beta= OJJ5 Es = 29000 Ec = 3644 n= 7.96 phi (bending) "' 0.90 Steed at Center Steel at Face Steel at face Ito5ide #3 Stirrups Other: 4 75 in 3!12!2015 pcf ksi ksi ksi ksi !Left Opening Middle Pier {design) Right Opening Thickness= 0 Weight/sf= 0.0 Fun Opening I Pier Width = 0 0.0 15 l Height to top: 0 Opening Opening Ht: 0 Height to btm: 0 Sofid Panel Below: 0 Combination 3s: Combination 3b: Combination 3c: Combination Jd: Combination 4a: Combination 4b: inches psf feet plf feet feet feet feet feet 0. 0.0 plf 0.0 plf 0.0 plf .OE 80.0 lb 0.0 lb Uve !...oad Factor {4 J) or 0.5) 0.158 x. D 74.3%s 74.3!JS 74.2% 74.2% 74.3% 74.3% 74.3% 19.3% 19.3% 18.3% 19.3% 19 7% 9.25 inches 115.6 psf 7.5 feet 857.2 plf 00 1:1) 1.200 1.200 1.20() !2DO 1200 1200 1.358 0.800 0.742 L .l..r 1.600 0.500 LBOO 0.500 1.600 0.500 1.500 0.500 0.500 0.500 0.500 7-05 [232] Exception 1} 0 0.0 0 0.0 15 0 0 0 0 0.500 1.500 1.500 0.500 0200 inches psf feet plf feet feel feet feet feel Point: 17570.0 lb 0.0 lb 0.0 lb 0.0 lb E 1.000 7-05 [12.4.2]) (hate: If Scs <= 0.125 then E.= 0) 11.7% 11.8% 11. 7o/o 11.7% 13.2% 2005 1BC Ec; (11H8): 2006 lBC Eq (1€-20): in 0.500 0.500 1.000 1.000 WISEMAN+ROHY Structural Engineers T!LT·UP PROGRAM {AC! 318·'11 -14.8) February 2015 (20'121BC i 2013 CBC! ASCE 7-10) INPUT DATA: Bar Size: Number of Bars : Steel Area Pier)= Sos"' Importance Factor (I) = F r "'0.40 Sos I Ww = Wind= PANEL DIMENSIONS: 5 5,0 1.55 0.78 i.OO (} 316 27.00 Height (Span}"' Reveal Depth = Sleel Depth = Parapet Height= Para et Thickness = (0.31 irr'2) ln 5 foot pier in2 G xiNw (ASCE 7-05 [12.111]) psf{LRFD) 15.00 ft 0.75 in 3.25 ln DJJO ft 0.00 in 3112/2015 Concrete Weight= 145.00 pcf Wall VVeight = 150.00 pcf f,"' 60.00 ksi fc"' 4.00 ksi beta= 085 Es= 29000 ksi Ec = 3644 ksi n= 7.96 phi (bending)"' 0.90 Steel at Center Steel at Face Steel at Face Inside #3 Stirrups Other: 4.75 in left Opening Middle Pier (design) Right Opening Thickness ·~ 0 inches Weight/sf= Full Opening I Pier vVidth = Opening Dead Load Floor Uve Load Roof Live Load Snow 0.0 psf feet plf 0.0 plf 0.0 plf 0.0 pit iJ,O plf 1.20 + 1.6L + f.L 1.20 + 1.6S + f,L 1 .2D + i .6L, ~ 0.5W + D.5Lr 1.2D + 'UJV'\/ + f~L + 0.5S (L2 ~ E.,)D + f,L + 1.0E-+ C:.2S 0.90-1.0vV Point; 3&40.0 lb 0.0 lb 2530 0 lb 0.0 lb f-O.c Uve Load Factor (1<0 or 0.5} E,, =: 0.2$05 D = 0.158 x D Combination 2a: Combination 2b: 11 ,7<;!0 55.8~/::, Combination 3a: 21.4% 57.8% Combination 3b: 1 i.?%, 79.3% 55.8% Combination 3c: 25.8~0 76.9~{1 57.8°/o 18.1~% 79.3% 55.8% 30.5% 78.5%, 5fl4~b 7.25 inches 90 6 psf 5 feet 453.1 plf D 1200 1.200 1200 1.:100 1.200 1.200 1.200 1.200 L 1.600 1.600 0.500 0.500 0.500 0.500 L, 0.500 Hi GO 1.600 0,500 0.0 plf 0.0 plf 0.0 ptf 0.0 plf 0 inches 0.0 psf 0 feet 0.0 plf i5 0 0 s 0.500 ·t.eco '1,600 0.500 0.200 feet feet feet feet feet Point: 17000.0 lb 0.0 lb 0.0 lb 0.0 lb E i.OOG -1.000 7-05 [2.3.2] Exceptio~ 1) 261% 31J}%~ 26.7% 31 0% 26.7% 7-05 [12.4.2]) (Note: If Scs <= 0.125 then E, = 0) 1.20 20061BC Eq (16-Hl): 2006 !BC Eq {16-20): in As (in) 0.03 (),03 I 40:01 :0' 0.5::!0 0.500 1,000 \.DOG -1.000 OK W!SEMAN+ROHY Structural Engineers TILT-UP PROGRAM (AC! 318-11 -14.8) February 2015 (2012 IBC! 2013 CBC! ASCE 7-10) INPUT DATA: Bar Size: Number of Bars : 5 5.0 Steel Area I Pier)= 1.55 0,79 Importance Factor(!)= 1.00 Fp '"0.40 Sos I Ww"' \Nind = 0.316 27.00 PANEL OH\I!ENS!ONS: Height (Span)= Reveal Depth = ' Steel Depth = Parapet Height = Parapet Thickness = (0.31 int·2) in 5.6loot pier in2 g X W.,, (ASCE 7-05 [12.11.1]) psf (LRFD) 15.00 ft 0.75 In 3.25 in 0.00 ft 0.00 in @ 0 PROJECT: VisSat #1 1 OCATION: Pier 18 JOB NO: 14-143 Concrete Weight= 145.00 Wall Weight"' 150.00 fy = 60.00 fc = 4.00 beta= 0.85 Es"' 29000 Ec~ 3644 n= 7.96 phi (bending)= 0.90 Steel at Center Steel at Face Sceel at Face Inside # 3 Stirrups other: 4.75 in 3112i2015 pcf pc;f ks! ksi ksi ksl Middle Pier (design) Right Opening Thickness- Welghtlsf= Full Opening l Pier Wldth = Solid Panel Above: ~to top: Opening ng Ht: oblm: Solid Panel Below:! Combination 2b: Combination 3a: Carnbinatlon Zc: Cornbin:aticn 3c: Combination 3d: 0 0.0 0 0.0 0 0 0 0 inches psf feet pif feel feet feet feet feet 0.0 plf 0.0 plf 0.0 plf 0.0 p!f 1.20 + 1.5L + 0.5~ 1.20 + 1.6L + 0.5S 1.20 + U3L. + f1L 1.20 + HlS + f.L 1.20 + i .6L, + 0.5'1\1 1 .2D + 1 ,6S + C.5V'/ 1.20 + 1 .01./V + f.,L + 0.5L, 1.20 + 1 .01N .. f, L + 05S 0.90~ 1.0W (0.9 · E)O ~ 1.0E 0.0 1b f. = 0.5 Uve Load Factor (1.0 or 0.5) E.,= 0.2S0sD= £U58 xD M" I ph1-Mn M",! phi-Mn 18.6% 89_2q~ 20,3% 9D.6r7~ 16.4% 91.7% 28.5~'0 88.1% Combination 3b: ~.BA% 91.7% Combination 3c: 30.7% 81'!.1% Combination 3d: 21.4% 91.7% Combination 4a: 35.2% 90.6~"c Combination 4b: 47.6~0 Combination 5: 4£L7o/o Combination 6: 45.4% ombination 7: OK 7.25 inches 90.6 psf 5.67 feet 513.8 plf 8.00 ~n) D L 1.200 1.1300 1.200 1.600 '1.200 0.500 1.200 0.500 1,208 1.200 1.200 0.500 19.8% 22..4% 0 0.0 0 0.0 15 0 0 0 0 L 0.500 0.500 1.60() 1.600 1.600 'L600 0.500 0500 inches psf feet plf feet feet feet feet feet Point: '12230.0 lb 0.0 ib 0.0 lb 0.0 lb 0.2()() 1.000 -1.000 · Combinations: 1.20 2006 !BC Eq (HHS): 2006 IBC Eq (16·20): in .1s (in) 0.03 0.03 10:01:56 -J.500 0.500 1.000 1.000 -1.0DO 1 ~' ";;: &/ WISEMAN+ STRliOIJRAt ENGINEERS Sl£n Ill. -~- 30110. --'--"----'---'-::;;;,...... __ ROHY 121BC Base Shear: W!SEMAN+ROHY Structural Engineers SEISMIC BASE SHEAR (ASCE 7-10 11.4) (201218C/ 2013 CBC! ASCE 7-10) ::::~t<•n'"''" = 2012 IBC Table 1604.5 (1,iUiLor 1.00 ASCE7-10Table1.5-2 Site Class= D Solis or 'D' if not known) = B sec ASCE 7-10 22-12 S,= 1.129 g OA27 g R= Maximum Height;:;; Number of Stories= ,-,) 44 :3 ASCE 7-10 Table 12.2-i feet 1.05 1.57 1.184 0.672 0.7'89 0.448 Shorl Period Seismic Design Category= I Sec Period Seismic Design = ::: 1.4 :::: o.c:.w 0.:34 = Sec Sec D D ASCE 7-010 Table 11.4-1 ASCE 7-10 Table 11.4-2 ASCE 7-'10 Eq 11.4-1 ASCE 7-10 Eq ·nA-2 ASCE 7-iO Eq 11.4-3 ASCE 7-10 11.4-4 ASCE 7-iO Table 11.6-i ASCE 7-10 Table '11.6-2 X"' 0.75 ASCE 7-10 Eq 12.8-7 ASCE 7-iO 12.8-8 Vu:::: 0.158 X W V= 1.4-O.ii27 xW Structural Wa!l Out-OH'!am~ and forces: Out·of-P!ane Wall Forces 7-iO Sect 12.1 i) 0.3'16 X (LRFO) Anf"hnr<m.<> Force for Walls at Flexible & Total Flexible nbnh•·:::~nm 5th Floor 4th Floor 3rd Floor 29 ft 2nd Floor 15 ft 0.244 0.175 50 f! 0.473 PROJECT: ViaSal Bldg i'! LOCATION: Carlsbad, CA JOB NO: 14·143 3/13/2015 10:31:17 Steel Homent Frame COncrete rAoment Frame 0 Exsntricallv Braced Steel Frame @ All Other Structural Systems ASCE 7-10 Table 12.8-2 USE = 0.34 sec '12.11-i) xW0 (LRFD) X w, (LR"D) xWL (LRFO) i X vv. (LRFD) ~ x VVo (LRFD) D WISEMAN+ROHY Structural Engineers VERTICAL D!STR!SUT!ON of SEISMIC FORCES & DIAPHRAGM FORCES (2012lBC! 2013 CBC / ASCE 7-iO) Use ASD Forces @ Use LRFD Forces Shear: V"' Vu= #Levels= O.i578 984.4 3 x Mass (LRFD) Kips Over the (ASCE 7~05 {h,.) Mass {wx) Wx Perceni: Level {feet) (l-<-ft) Force Roof 44.00 1486.9 65424 39.07% Third 29.00 2286.5 66309 39.59% Second 14.50 2464.6 35737 21.34% SUM: 6238.0 167469 1ClD.O% Forces 7~0512.10.1.1) Min: I. Level F; 0.2 SDS I W; Roof 384.55 1486.9 0.158 Third 389.75 2286.5 0.158 0205 Second 210.06 2464.6 0.158 (};158 SUM: 6238.0 PROJECT: Via Sat Bldg 11 LOCATION: Carlsbad, CA JOB NO: 14-143 7-10 Sect = 0.789 f"' 'LOO Period;::; 0.27 k= 1.000 rho= 1.0 3113/2015 seconds NOTE: rho should be used 10:37 for non-inertia! (not from diaphragm itself) forces (e.g. shearwal! offesets). Force F" 384.55 389.75 210.06 984.36 kips Max: 0.4 SDS I 0.316 0.316 0.316 Distribution w,J 0.259 1.639 0.170 i.080 0.085 0.540 Factor Factor {dia! 1.000 1.639 1204 1.300 1.851 1.000 ViaS at #i 1 \Calcs\20i 3 CBC -Dist over Height & Min Walls Out-o±:plane for Dynamic Links Included at Beam-to-W all "-""""·"'"'V'""' Roof Disconnect -'-'"'"'Lu.cu Disconnect Nodes outside Low Parapet l J # 1 Rigid # 42.47 .01 # 0.00 ft ft ft n 108.50 l 50.00 1 1 'i ') ~ .... _) RAM Frame 14.07.00.05 DataBase: ViaSat Story Roof Floor 2nd Floor Combined/.1\lerged Roof 3nd Floor 2nd Floor Story Roof Roof 3nd Floor 2nd Floor Beams Columns \Valls Parapet Low Parapet Roof 3nd Floor 2nd 1 1 1 1 1 1 # # # # 1486.9 2286.5 -0.50 -1.00 -LOO Dead Roof k-s2/ft ft ft ft 46.18 244027 1 71 109.14 76.54 109.26 10.95 1355.84 42.107 (ft) MaxY ft 217.50 102.50 Full 0.00 218.00 102.50 0.00 218.00 102.50 Fun 0.00 ft ft ft ft 108.50 50.00 0.00 108.50 50.00 1 50.17 1 1 1 Yc ft ft :l 265.86 0.00 Values: Story # Dead Xc Yc Live n ft ft ft J 773.88 113.15 50.15 0.00 I 50.31 110.00 108.50 43.84 Story # Roof Yc ft ft 265.9 1 50.01 Floor 0.00 0.00 2nd 0.00 RAM .00.05 L"~"'·"''"''""'"'· ViaSat Bldg 11 -03 point loads Dir X y 7-1 0 Equivalent Lateral nnrt<lfii~P Factor: 1. 00 L 129 g R 5.0 5.0 0.789 g D User Defined Ta Cu T 0.342 1.400 0.264 y Total Building APPLIED Type: High Parapet Low Roof Applied Loads Level High Parapet Lovv Parapet Cu T T-used Eql2.8-2 1 0.274 OJ58 (kips) = 6238.00 FORCES Diaph.# 1 1 ft Ht ft 44.00 29.00 14.50 kips Sl: 0.427 g 1: 0.448 g Cs(max) Eq12.8-3 0.339 Cs(max) 12.8-3 0.327 kips 0.035 Eq12.8-5 0.035 Fy kips 0.00 Fy kips 0.00 X ft s k 0.158 LOOO k 0.158 1.000 y ft 55.40 APPLIED T)1'e: Roof High Parapet 1 Diaph.# l 1 1 ft 52.00 44.00 29.00 14.50 984.48 Ht ft 44.00 14.50 Fx ft 210.08 kips 0.00 0.00 0.000 0.00 ft 1 1 109.26 1 1 ft y ft 44.90 y ft 15 1 Roof Roof 3nd Floor 2nd Story APPLIED 11 -03 vvith Diaph # 1 ft 1 29.00 1 or Diaph # 1 EQ_ASCE710_Y_ F High Parapet 46.00 point loads 0.00 Sum Fx 0.00 Fx 0.00 kips 21 389.80 21 X ft 101.67 19 1 ft .Diaph. #: 1 ......,..,,"'.._..._,"' Direction 1.16 984.48 Region 0.83 1.17 1.19 llTI!l __ _ -t lo (. -8 WISEMAN+ ENGINEERS }J~ B o. SIEnll. --- JIIIO. ,.....;;_..;.,_..;.._:......... __ _ ! j 0 >~ ..J-l '0 0 :f} 8 ?,.. . .; [;::., {i} :=: iJ} ~ ,...., ;D 'l) 5 .;_; r d ·------------L~. 14.07.00.05 11 -03 with future point Zones: Member Force '-/""'"'""'''"-'"'"' ofJoint Factor (DL): Scale (Roof): Ground Level: Mesh Nodes on (ft): 4.00 Node Tolerance (in): 0.0100 Geometry (in): 0.01 Walls Out-of-plane Not Included Analysis. Sign for Dy11amic Results. Included at Eigenvalue Analysis : Frame D Low Roof 3nd Floor 2nd Floor Low Parapet Seismic Low 0.00 -0.55 -4.43 0.00 22.28 36.17 68.32 kips 0.00 -0.55 -5.00 1. 0.00 13.89 37.05 kips 0.00 0.00 0.00 0.00 0.00 0.00 0.00 kips 0.00 0.00 0.00 0.00 0.00 0.00 ().00 13 0.50 Bldg 11 -03 with future point loads 13 0.00 0.00 17.26 0.00 0.00 ,., Cl.OO 0.00 .) 66.46 D Page 03/06/15 1 13 El Floor D Parapet Roof Lmv Roof F 74.11 1 1 26.10 0.00 0.00 0.00 0.00 0.00 -0.01 -0.03 0.00 0.00 0.00 0.00 0.00 -0.01 0.01 -0.03 03/06/15 1 Parapet Roof 3nd Floor Level Low Parapet #8 Lovv Parapet Roof Floor El Low Bldg 11 -03 with I kips 0.00 1.51 5.50 0.00 0.00 0.30 3.80 4.23 point loads 5 49.71 21.44 1.51 3.98 0.00 18.93 1 0.14 0.00 0.03 0.00 0.00 0.00 0.00 0.00 kips 0.00 Franu;; Story Shears 0.00 0.00 0.00 Bldg 11 -03 1-vith future point loads Mesh Criteria : on Merge Node Tolerance (in): 0.0100 ue<Jm(~rry ·roierance (in) ; 0.0100 COilSIC!en;a for Dynamic Rigid Links Included at Eigenvalue Analysis : Load Case: D Low Parapet El Seismic Low Parapet Roof 3ndFloor 2nd E2 Parapet Roof Not 4.10 0.00 11 2nd Floor 56.59 1.20 (ft): 4.00 kips 0.00 0.00 -0.29 0.00 4.60 0.00 -0.21 0.00 kips 0.00 0.00 18.46 16.56 1 0.00 0.00 23.51 11.60 2L48 0.00 0.00 kips 0.00 0.00 kips 0.00 03/06/15 ] 0.50 0.00 13 0.00 0.00 -0.30 Low Change~ X kips 0.00 0.00 22.95 40.13 17.18 1 D DeadLoad Level 0.35 -1.82 El 0.00 0.00 0.00 0.00 kips 0.00 0.00 Shear-Y l 0.00 0.00 0.00 0.00 Change-Y 0.00 -0.01 kips 3nd Floor 2nd High Low Roof 2nd Floor Level Parapet Low Parapet Parapet Roof 3nd Floor 2nd Floor D 76.36 0.00 0.00 20.79 8.46 0.00 36.46 38.09 0.00 1 6.40 -12.33 0.00 36.46 1 -13.31 0.00 43.11 7.64 5 10:55:1.:5 Shear-Y 0.00 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Shca:r-Y 0.00 0.00 0.00 0.00 0.00 5 !0:55:13 kips kips 0.00 0.00 0.00 28.16 16 0.00 I 18.85 0.00 -11 0.00 -E F kips 0.00 0.00 0.00 0.00 0.00 Roof 75 0.00 48.93 15.18 0.00 -11 0.00 #16 Load D Level 0.00 0.00 0.00 kips Roof E2 Shear-Y Lmv .00.05 Bldg 11-03 0.00 -1.62 Lmv 0.00 17.82 3nd Floor 39.61 6L54 D Low 0.00 -0.79 4.46 0.00 17.82 21.79 21 0.00 0.00 0.00 0.00 0.00 0.00 kips 0.00 Shear-Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 L) Low 35.48 64.75 5 10:55:13 0.00 0.00 0.00 0.00 0.00 11 -03 with future Base considered for Results. Links Included at Fixed Beam-to-\V aU Eigenvalue Analysis : #9 D Lmv Parapet Roof 2nd Floor Roof Floor 2nd #10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 (ft): 4.00 0.00 0.65 1 6.40 44.95 1.81 1 Shea:r-Y 0.65 16.04 -10.29 -kips 0.00 8.01 66.40 03/06/15 1 0.50 / 0.51 0.51 3nd Floor 1 11.77 0.00 4.59 .70 E3 kips kips 0.00 0.00 43.40 .40 1 78.82 E4 Parapet 0.00 0.00 0.00 Roof 0.00 29.52 0.00 0.00 17 68.66 100.21 D Low Parapet Roof Jnd 2nd Floor E4 Roof 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 !0 0.00 kips 0.40 11.70 13 1 74.68 108.98 l 134.96 0.00 I future point loads 15 10:56:55 1 1 -03 with point loads of Joint Scale Factor (DL): "''a.Hv'-' Between on Node Tolerance (in) : 0.01 lie<)me:trvTolerance (in): 0.0100 \Valis Out-of-plane Stiffuess Not Included Roof Roof Roof 3nd "''"'w"·'"""'·' for Dynamic Included at D 2nd Floor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 : 4.00 -14.94 102.71 169.06 258.30 kips 102.71 81.18 92.55 0.50 0.00 Load Level 0.00 0.00 172.48 Shear-Y -1 113.12 90.24 80.82 or- or- 0 Ui Ui 10 0 Ui lO 10 0 m m G'l c:-.i Cl """ r-.: c:n N Cl """ co ..... ">!' ">!' "t ' ">!' .,... M N ' ' ..-""" N • ' ()J} S!:UO.:;j Q co 0 1'- Q <0 j Q Ui 0 rt '<t --"' 0 ~ M ~ .;<' '<:?--·~ .:::,_ \"- Q r-· N p 0 ('-..... f"-,,~ -- 0 lj,J 1 fL ji ,_: ;i ,_ j / f f;i Hl5 84 63 42 21 0 ~21 ~42 63 -84 ·105 0 21.7 f ( 43.4 65.1 136.8 ' " f ) F I {.t{ '%: F F/ j,L{::. %? ~LF- 108.5 ( ( 130.2 151.9 173.6 195.3 217 \ f) (:, .. ) + ECC 84.8 63.6 42.4 21.2 (I -21.2 -42.4 -63.6 ·84.8 -106 -1:27.2 0 21.7 43A 65.1 86.8 108.5 130.2 151.9 173.6 195.3 :217 I I • I /.t. t{ IS: ;:,s--p :~ L!A.S ;'A··t)~'<··J a / Dn:t ::.. ') ft. Ljt5 PL-F 1/'-'s e ?-~~ A.f t;":"' \ . ' , L{ ( C(fri' -~-{ (f <;''-I S C{ L .. ···• i;:, ll. ~ MAXIMUM JOIST SPAGING) NUMBER Of 9/4" CD 21~~o.c. s-5 @ 1 ® 4/SHT 1B" 0 20 1/5HT 121! KEY PLAN ATTACHMENT IN LIEU TYPICAL ATTACHMENTS INDICATED IN THIS TABLE. FOR TABLE i ·ALLOWABLE SHEAR FOR ARC SPOT ARC SEAM WELDS, H!L Tl PNEUTEK FASTENERS AND SDI RECOGNIZED SCREWS FOR VERCO DECK PANEL 1-""' "'~ ~C\1 ID 0 ~z """ w .... F) a.. ' w w "<!' tJi om a.. !-:X: :X: w z:Z z :::l GAGE 0 U;~x ~ l.l.J 0 0 :X: 0:: z (!J (!J < >< a. 22 B, N & \A'3 0.0299 783 i23i 603 650 618 691 694 W2 0.\}300 788 1236 605 652 620 693 697 21 &W3 0J}330 936 1365 664 715 678 744 797 20 B. N&W3 0.0359 1091 1491 720 775 733 791 886 W2 0.0360 1096 1495 722 777 735 792 889 19 B, N, W2 & 1/1/3 0.0420 1455 1758 837 901 846 884 1057 HI W2 0.0470 1793 1981 932 i003 937 956 1184 N&W3 0.0478 1850 2017 947 1020 951 967 1204 16 W2 0.0590 2280 2527 i 155 1244 1145 1115 1457 B. N & \A'3 0.0598 23D9 2564 '1169 1259 1158 1125 1474 The profile designations used in this table apply to the profile families as summarized below: "B"-PLB & HSB roof deck (inducting acoL:stical and fully perfed versions) and PLB & B FORMLOK deck "N"-PLN3. HSN3, HSN3-NS. PLN24 & N24 roof deck (including acoustical and fully peried versions) and PLN3, N3, N3-NS, PLN & N FORMLOK deck "VIf2"-PLW2 & W2 FORMLOK deck "\N3"-PLW3 & W3 FORMLOK deck w w ~ 736 739 822 903 906 1079 1228 1253 i604 1630 Base metal thickness (BMT) "' specified minimum uncoated base metal thickness used in design. Deck subject lo thickness tolerances as described in Section P..2.4 of AISI S100. 561 563 619 673 675 788 881 896 1106 1121 The minimum arc spot weld effective fusion diameter. d0, is il2 inch. The minimum arc seem weld effective fusion width. de, is 318 inch and the minimum arc searn weld length is 1 inch excluding circular ends. 4 Details, workmanship. technique and qualification of welds must comply with AWS Di .3. The HHtl fasteners are applicabiH to !r1e following substrate thicknesses: X-EDNK22: i/8 in, s s;;bstrate thickness s i/4 in. X-HSN24: 1/8 in. 5 substrate thickness 5 3/8 in. X-ENP-19 substrate thickness;;: Y. in. The PneuteK fasteners are applicable to the following substrete thicknesses: SDK61 series: 0. i 13 in. :>substrate thickness s 0.155 in. SDK63 series: 0.155 in.:> substrate thickness s 0.250 in. K64 series: 0.187 in.,;; substrate thickness::; 0.312 in. K66 series: substrate thickness 2: 0.281 in. The strength is the ASD allovlat)ie connection shear strength, where 00 for earthquakes is 3.0 for welds and 2.5 for Hilti. Pneu!ek and SOl Recognized Screvv fasteners in accordance with General Note 22. !vlodify ASD shear strengths for wind or convert to LRFD as shown in General Note 22. 3 Al!owable values may not be increased one-lhird for earthquake loading. 9 SOl recognized #12 or #14 screws to supports are limited to Buildex, Eke. Hilt!, or Simpson strong-Tie screws with a minimum substrate thickness of 0.0385 in. w See Table 158 page 57 for guioe w proper selection of support fastening screws. DECK DECK GROSS PROFiLE GAGE lx SPAN SPAN Roof Deck; 20 0.231 0.213 0.231 0.219 0.231 0.230 6Jj 0.237 7,1 PUS& 6 18 0.306 0.300 0.306 0.302 0.314 9.4 0.331 9.9 11.9 0.410 12.3 BR FORMLOK1 20 0.23'1 0.231 0.213 0.231 0.231 0.237 7.1 0.230 6.9 '18 0.305 0.306 0.300 0.306 0.306 0.331 0.314 9.4 0.381 0.38'! 0.681 0.773 Roof Deck; 20 0.959 0.855 0.950 0.889 0.953 0.452 13.5 0.509 15.2 PLN3 & N:l 18 1.273 1.207 1.229 1.273 0.671 20.1 0.722 21.6 1.562 1.571 1.587 0.883 26.4 0.932 0.668 Roof Deck; 20 'L032 0.845 1.031 0.908 1.032 0.443 n3 CL531 15.9 PLN&N 18 1.369 1.216 1_369 1..267 1.368 (L652 19.5 0.735 22.0 FORMLOK1'5 i6 1.706 1.610 1.706 1.642 1.706 0.837 25:1 0.914 27.4 21 0.398 0.372 0.369 0.381 0.381 0.283 8.5 0.294 8.8 PLW2&W2 20 0.434 0.415 D.412 0.422 0.422 0.323 9.7 0.333 10.0 FORMLOK1 19 0.506 0.502 0.496 0.503 0.503 0.405 12.1 0.415 12.4 '18 0.565 0.564 0.560 0.564 0.471 14.1 14.4 21 0.840 0.816 0.806 0.824 0.824 0.453 13.6 0.470 14.~ PLW3& W3 20 0.914 0.904 0.892 0.907 0.907 0.510 15.3 0.528 15.8 FORMLOK1 19 1.068 1.067 1.058 1.067 1.067 0.636 19.0 0.652 19.5 18 1.214 1.213 1.210 1.213 1.213 0.752 22.5 1.515 0.013 (SHALLOW) 24 0.018 0.018 0.018 0.0'18 0.059 2.1 0.059 2.1 0.022 2.5 b.o75 3.5 24 0.097 0.097 0.096 0.097 0.097 0.137 4.9 0.138 5.0 22 0.120 0.120 0.120 0.120 0.120 0:172 6.2 0.171 5.2 1 Values based on yield strength of 50.000 psi. 2 Values based on yield strength of 60,000 psi (specified yield strength of 80,000 psi). 10 is for deflection due to uniform loads. 4 S (+or-) is !he effective section modulus. M (+or-) is the ASD allowable moment, M=1v1J00, where Q 0"'1 .67 and M0 is !he nominal flexural strength. Nominal moments may be delem1ined by multiplying the table values by 0 0. LRFD moments may be delerm11ed by multiplying nominal moments by 'l'b=0.95. Multiply iabu!ated 8, N3 or N-24 roof deck values by the following factors t::J obtain acoustical and fully perforated dBak section N3 -ACOUSTICAL 0.94 0.93 0.94 0.93 0.94 0.91 0.92 N-24-ACOUSTiCAL 0.95 0.94 0.95 0.94 0.95 0.92 0.94 B -FULLY PERF. 0.69 0.69 080 080 0.56 0.56 1113 ·FULLY PERF. 0.70 0.6fi 0.80 0.80 0.56 0.56 N-24 ·FULLY PERF. 0.73 0.69 0.82 0.32 0.56 0.56 See Page 14 tor additional footnotes. Page 65 174 11/2015 TABLE 22-ALLOWABlE DIAPHRAGM SHEAR STRENGTH, q (p!f), AND FlEXIBILITY FACTORS, F, FOR PlBm-36 DECK PANELS ATTACHED WITH WELDS TO SUPPORTS AND SIDElAPS FASTENED WITH THE DECK GAGE 22 20 16 ATTACH- MENT VSC2@ 24" VSC2@ 18" VSC2@ 12" q F q F -5.i+269R -14+2i5R 2.4+178R · ~688·~-~~~6-75~ · s85 -6.3+270R -2.5+216R -·· 789 ...... ········· 759 -7.2•<~70R -3.4+2i5R 11'-0" 12'-0" 4+1 53R 5.5+133R 7.3+118R 9.2+1 05R 595 584 '' ........ 539 548 2.8+153R 4J+134R 6.1+119R 6.9+107R , ...... 72"3""""" """""iff··~·-·-· 701"-----·-694 ____ -·---··---~---- i.2+i54R 2 .. 6+135R 3.7+119R 4.7+107R ••••••••••••••• •••••••••• •••• ••••••• • •••••••••w 889 .. 89\f ............ .. iliif VSC2 @8" VSC2@6" VSC2 @4" VSC2@ 12" q F VSC:Z@S" q F VSC2 @6" q F VSC2@4" VSC2@ 12'' q F ·-·····--··-·····-·-- VSC2@8" ~ VSC2@ 6" q F VSC2 @4" q F \/SC2@ 24J' q F VSC2@ 18'' q F VSC2@ 12" q F VSC2@ 8'' q VSC2@ 6" -0'+84R 1836 -0.8+84R 2if4 ............. 2685 2535''''' 2.7+27R 3+24R 3.2+21R 3.4+19R 3.5+17R 3.6+16R 2446 2384 1.7+32R 2+27R ..... 2:569 2654 lAPMO TABLE 22-ALLOWABLE DiAPHRAGM SHEAR q (p!f), AND FLEXIBILiTY FACTORS, F, FOR PU:FM-36 DECK PANELS ATTACHED WITH WELDS TO SUPPORTS AND SlDElAPS FASTENED W!Ti-l THE DECK SIDELAP GAGE ATTACH- VSC2@24" V8C2@ 18" VSC2@ 12" 22 20 VSC2@8" VSC2@B" VSC2 @4" VSC2@24" VSC2@ 18" VSC2@ 12" 18 -----····· VSC2@ 24" VSC2@ 18" VSC2@ 12" 15 \/SC2@ 5" VSC2@5" VSC2 @4" q F q F F q F q F q F 842 1l8+11R 953 8+11R 1"268 1'1'-0" 12'-0" 9+9R 10+8R 10+7R i0.8+6R 10.7+5R il.5+4R -949' 945 -~-~7--853 ---797"" 8.2"-10R 8.5+8R 9.2+7R 9.4+6R 10+5R ---f17o --------f140 -----1117 ----ioaz 4,6+5R 4.7+4R 5.3+3R 5.2+2R 5.7+2R 5.6+2R 6+1R 5.9+1R 5.2+1R 1632 ' 2434 --------2346 2665 ------1396 1989 ---1'792 1867 -----1819 4.7~3R 4.7+2R 5.1+2R 5.1+1R VSC2 = Verco Sidelap Connection 2. The dimension from the first and iast sidelap connection vvi!htn each span is to be no more then one-half of specified spacing. R is the ratio of vertical span (Lv) of the deck to the length (Ls) of the deck sheet R = Lv J Ls interpolation of diaphragm sheer strength bet~Jeen adjacent spans or sidelap spaci:1gs is permissible. For lnterpotaEo.n of the diaphragm flexibility factor between adjacent spans, use the fiexiblity factor for the closest adjacent span length. 5 Diaphragm shear values for side seam fasteners placed at spacings other than those in lhe table should be determined based on the number of fasteners in each spzn The allowable diaphragm shear values in the table utilize a factor of safety, Q"' 3.0 (limited by connections) wlth the exception of the shaded tabk':: values, which utilize a factor of safety of Q = 2,0 (limited by panel buckling). A 1" x 3!8" effective arc seam weld is required a~ supports adjacent to side!ap and a 1 12" effective diameter arc spot welds are required at supports in interior flutes See Table 16F page 53 for adjustment factors when usbg acoustical deck profiles. WISEMAN ROHY STRUCTURAl ENGINEERS ; 1 ~ q ' 1: Rctns 264.8 193.6 132.4 66.2 0 2 ~132.4 ~198.6 ~264.8 ·331 I 0 iO 20 30 40 50 60 70 80 90 100 L I G ~ B PL [> l '( -I, •· ~ "\ t Leo 11 ~-·\ -" / H ,,, ( 16 "' ' -ECC 131.8 f' tW-t\·<;,t•'"'-· 1~) tt £1 C) fL, '"·~)I ft l . ') \{, w ~-, 19 h 184.4 138.3 46:1 0 -46.1 fd ·92.2 m J: m -138.3 ·184.4 ·230.5 -276.6 I. ~7 181.837 0 _,l '''") . ( ') { 21.7 43.4 65.1 ( -I t) / /.c( ~ i .. l ( 'j' ~. I "... ·- , LC1: + Rctns 86.8 108.5 130.2 151.9 173.6 195.3 217 Member L..VI.itluu! ;;:: ~ _J 12 ~· l L( It L.-!~ { .t: (__ 11-•1 t> rJ \:t '" I l1 I ti4:,. ._.,;; .~ r 21.7 43.4 65.1 86.8 108.5 130.2 151.9 i73J3 195.3 217 cr. t /7 ' I / ~ /Bel j ,, J..f An A 1M! A#"!. 535 428 321 :i' 214 ""'-' !» 107 0 ..... 0 0 !J.. ..... ~107 -214 -321 -428 -535 ! 0 5 (~ l I 1: Disfribut~d + 10 20 30 40 50 60 ' ·;> 17 'l t) 70 80 90 v\ s ~;· ;kt. """""''---..-..--"~""-~"--"'~----~"''""""'.......,.,..,."'''"~""·'~~ A'"~""""""""~~·--·--~~--------~,~ ;:, tt 100 654 436 327 21 109 ~ b. ro 0 (!) .c: (f) ~218 -327 -436 I I l I j I 0 Hl 20 30 40 50 60 70 80 90 100 tl q C j 1' { !'"~ / i·L< -f) I ore._, i+ I '1 _, F· /Lt{":-~~-~es t4 II Jt·{ l ''? !"""\-:r,:. 5 t~ It E._. 114.4 ~-, ---··· 85.8 57.2 28.6 0 ?_._.~~--~~~~~-- ·2fL6 ...... + ......................... . I.. ~ -57.2 ..r::: w ·85.8 ·114.4 . ·143 ·111.6 I 0 H 21.7 43.4 65.1 l!:J 1 ' mECC 86.8 108.5 130.2 151.9 173.6 195.3 217 ) ,.-.'~ S5J3 57.2 28.6 0 8.6 -57.2 -85~8 -114.4 ·143 ·171.6 -200.2 I () 21.7 43.4 65.1 86.8 108.5 130.2 151.9 173.!3 195.3 2i7 I L{ / :sf F•t .. F~ /f. J L{ 'f ~\· ~~ t .. r;..?J PROJECT: ViaSat Building 11 == Diaphragm Reinforcing Design == LOCATION: CA 3" lvletaf Deck with 3.25" Concrete 2010 esc Section: 190BA Concrete strength f'c = Rebar yield Strength f1 = $= f.= Concrete Diaphragm: Concrete Above Flutes = Note: concrete in ribs, consider only p,= 6x5·W1AX\rV1.4 5x6-\N2.0XW2.0 6x6-W5 .OXW5.0 4x4-W2.5XW2.5 #3 #4 #5 ::: fVn/LF LF = load factor for qJVn= + == net area of concrete"' 6 6 6 0.100 0.0026 4 0.075 0.0019 12 0.110 0.0028 18 0.133 0.0034 18 0.207 0.0053 3000 60000 0.75 JOB NO: 14-143 Date: Mar-15 0.85 Use 1.0 for normal Wt. Concrete 3.15 in loads= 1.4 39 3984 4524 3231 7224 5160 6099 4356 7674 5481 8724 6231 12024 8588 Engineers ==Shear Friction Diaphragm Reinforcing Design === PROJECT: ViaSat LOCATION: San CA Diaphragm Concrete f' = c Shear Wa!l Concrete strength f', = Rebar yield fv = $= Concrete Diaphragm: Concrete Above Flutes = 3.25 in p, =A,/(12t) = ¢Nn/LF JOB NO: 14-143 Date: Mar-15 30M psi 4000 psi 60000 psi 0.75 0.85 Use 1.0 for norma! Wt. Concrete 0.60 See AC! 318 11.5.4.3 0.51 <---O.SLambda LF =load factor for earthquake loads= 1.4 = $Avff.Jl (11-25) WfSEMAN+ROHY Concrete strength f' c = 3000 psi Anchor tensile strength 65 ksr Concrete weight we= 115 Shear stud diameter 0.75 in Shear stud 24 in 12.92 **for a steel headed stud anchor +this value may be increased to 0.75 when e md-ht?:: 2 in. PROJECT: ViaSat LOCATION: Carlsbad, CA JOB NO: 14-143 11 / Date: Mar-15 308 0 ·308 -616 -924 -12:32 ·1848 -2156 -2464 -2772 0 21.7 43.4 . :;; // . /L• (t;, \£.& 1: Distributed + 65.1 86.3 10l:L5 130.2 151.9 173.6 195.3 217 -ECC Rctns 0 0 -1020 -2040 -3060 -- -4080 ....., -5100 -6120 -7140 -13160 -9180 -10200 0 21.7 43.4 65.1 86J3 108.5 130.2 151.9 173J) 195.3 217 tf . \ l ' Q, """' :z l j \' ' ra \¢1 ~~ 0 ·1220 -3660 ~4880 -6100 -7320 -8540 -9760 -10930 -12200 0 0 21.7 ''< <' t L ~ 43.4 65.1 136.8 101L5 130.2 151.9 173.6 195.3 217 tf ~"'\.\. WISEMAN IOHY .STRUCTURAl ENGI~EH~S lift __ _ '?._. 7 :>Ct '" ~ l ft.___ q (~ ,)~L k- ""t.,~. ~ ~ 11 I 8 $~£Hfti0. --- JOIIO. __:_..:-.:.......:..=---- 1{0.¥!! ) 9 j' t-1:;;:,. 11-. I i v~ '-' ~ I . L{ s-= ,:;;i WISEMAN ROHY STRUCTURAL ENG!IUERS SlEET It:). --- JOIIO. _...:_....;;.._....;;.._.....:......:. __ _ ! ~·IOD' LF Fy" E~ Beam UH,~ttion 0 0 0 0 () 0 0 ll Be<'~rn LocaUon 1 0 () 0 n iJ ll 0 0 () I 0 0 0 0 I 0 I) 0 0 50 k:s-l 29Qtif} ksi Beam Size Wl0>:2G I 8tm Length (ft) w :;:: 2.50 ~ OJ89 t:cct:nlricity (in) I f~u J)! .n (!< .. ~!) (12 wcton OLOO fJENDING: Be2'mSfze W'Hlt2fl () u I) 0 0 rJ 11 D 0 8e~nn Size srenoer I rron~ Sfender Wl&x2G Slender (j #NIA 0 #f',lfA 0 1/NlA I) #NlA 0 #NIA Q #Nil\ () #NIA 0 1/NII\ 0 #N/A 0 0 0 0 0 ll 3} ~ssume~ d1 aJ<:!D! b th1ouar· bHsln I L,, (fl) L, (H) 3.06 11.21 #HlA IINlA #N1A lif·~'t\ #NiA #NfA #NIA IINi.A. #Nlt\ #NIA ff.NIA i!Nii\ #H/A IINiA 1/Nh\ #NIA #NIA #N!J\ !lt,VA liN! A flN/A tlNI~\ #'FA IINIA #N/A #NfA re-ssfort; Kl!r,. Klfr_{ F >l (E;~~Ij) (ksi} 57.5! O.IJO 8!1.5 /JNIA 0.00 i!NlJ\ 1/NiA 0.00 liN! A tf.t'!/A o.on -!YN/A ffNIA OvO{.l :#N,'A #NIA (UJO #f<JJA IIN/,A {LOO liN/A #N/A 0.00 #N/A /fNlA 0.00 ftNIA liN/A 0,00 JiNIA useKLir, ~o? '<', ·'· :Y iYIN) ISC H 1, i "'Bending & Cnmpf(o>SSiort Btrn F!:ange Tent;;k:m #NIA #r'<!./A #Nil\ #NI;\ #NIA #N!/\ #Nil\ #N/A #N/A, !tf'Jh\ #N/A #NfA #NtA fU~JA #Nil\ ffNiA ALLOWABLE <l>M,('·") #f'UA #NIA ffNIA if.NfA #t~f}\ PNIA #N/A #N!A ~AuK 0-'{i.20l t 1Jl FllHk·ft) B\.Ul4 PROJECT: Vhl5<~1 Dwtdi"nn 11 f( ":;; 1.0 Kz~ HI M1,,(Mt) (lmfm:lored) 51.67 CLOD lUltJ 0.00 0.00 OJJO 03)0 0.00 O.DI! OJH) (see Com. 84) 0.00 coo lHlH n.nl) 0.00 0.00 !lOU \1.00 o.oo (J.()Q #N/A 1,)(10 0.00 #NIA 0.0() (1.()0 #NiA 0.00 O.IJG #NIA o.on 0.00 #W'< Allow~ hie Sendlng fur Combimdloo with Campres&i9JL ' ' "·'< ' ., c' M,, (k-ir>)Lal;,r81· I f .1\LLOWAOLE M,\{k.-rnt f·ekhn:g Fl.r!_;:c,;) ~orsmnal MJ<At) <l>fvt;f~At) Ru<Okllno ' 2210.0 21 ,:tJ a·1n.o G<i.:J tH-43 f!N!A [,bo() #NIA #NIA liN/A #NfA Lt~o #N/A #NIA #NIA #,',lA lt-,m(l {!NlA #NiA #NiA liN/A LIFO 11'1/A #N/A #Nil\ #Nil\ Lb~o #NlA #N/A ffNIA #NIA lb"O #Nil\ ttNfA #N/A #NIA l !)""fl #N/.4 #N/A #N!A #N/A Lb~0 #NIA #NIA #N/.l\ liN/A Lo~o #N/A #N//\ IfNI A 000 MD coo MD coo ftOO 000 0.00 ftOO {AISC Sodl001 E71 o .. f' {E7.?~1! b.,freallyh,) 0, (J_e::cQ~Qi.l F<.:t (.(sf} P .. lk) 1,000 39/j. '10.9 0.89J OJ3D3 36.0 l ?InA ffNI.~ #Nil\ #NIA 1>~1.1\ 1/NH; #NIA t!NlA NN/A #NIA #N!A #t>-UA #f<J/A I IfNI A #NIA #N/A #f'VA #N/A !fNtA #N/A #N!A #NIA !IN/A #NIA !IN! A #N/A #Nil\ #NiA ll~liA #NIJ\ liN! A 1/NIA IP-JIA IINIA #NiA ffNJA #HI A fn.,J/A ifNI A #NIA liN/A UNlA #NiA #Nil\ #Nfl\ 1/N.Ii\ #NIA liN/A #NiA liN! A !IHIA liN/A 1/NIA #i··liA ifNI,,_ 11~)/,\ #NIA #N/A #NIA ffNl>, #N/A #NlA + 0.5 FLL+m: 12 lUJ RnmSteei Beam OtHput: Ra'1lStee! s.<>lf (in1~ bottom f~<btmtbnge: of Sb;)ef fmctored {k!::>1} ~e'nsiof'i ML10 '16 3{) #N!A 1/NIA #NIA fiN/A 1fN!A liN/A #NIA #N!A #NIA -1N/A #t-J!i\ liN/A #NIA #N/A #WA lfNlA liN/A #Nil\ __ ,_ ............................ ALLOWABLE ¢-P.,(k) 2•1BB #N!A JfN!A #N!A #NIA #NIA HN/1\ liN/A #NIA #Nil\ phl ':! sqrt(EIFyj ~ t.,f.{lrt4) B!>l 00 f!i{kni) ~ 1.'1'7 fiN/A fJ.N!A ~NIA ffNIA #N/A #NIA #N!A #N1A #NI!\ f~;msion: P,(k) 384.J #NlA #NIA #NIA 1/NiA #NJA IINIA !!e.\<' A #NIA #N!A OJJO 24JJH Y bar(in} IU8 'f.D I!NI'i fiN/A #NlA #Nl/\ #Nh~ #NIA !IN! A #Nll\ #NlA #N/A #N/A #NIA #Nil\ UN/A Thk; 'rs fnr Axi~! Coturnn·,<\ction only i\'lnd refers to th!il globaf bracing of the 'tn":.lmber in the weak direction-the presence of a d>i1pfimgrn ,'::J!lcJv~.<s this k~ b~ ~ero, 11-Nh\ #N/A #NIA #NJA IINIA #N/!\ #N/1\ #Nil\ #lN(A Sactk.Jns 0!'\. h Use fm A:rd~ll A!SGTH .:r:Th~Odlt1~1 & TDni:>ion PJP,:; M,IM, 0<218 0.2()8 #f'<-l!A #NIA #NI.~ #NIA #NIA #N!A #NIA #N!A #-N/A #N!:A ftN!A NN/A #N/A fiN! A #NJA #f',;iA liN! A #KIA Chock Interaction OK 0.66 UN/A #NiA i #NiA #NIA NNIA UN/A #NIA #N/A #N/A #NIA #N/A #N!A #N/1\ #N.IA f!NfA #NIA #Nit-'\ #NIA #N/A I #NtA A #N/A Pu1 ~Ar::::-8 1 X Mu Fy e c~ 0 a () D () () (l u 0 0 1) 0 Q 0 0 0 0 0 () 0 D I l so 29000 Beom S!ze V./Hix2G D 0 II n 1\ 0 0 n 0 if,Jl(lx)6 (j I) 0 0 0 0 () ksl k$1 INPUT: Lengh {f1) IH--UA tf'fll/A ffNJA ltN!A ft~<J.!A #Nil\ f/NfA #HI/\ HN/l\ HN/A liN/A fiN/A NN/A #HlA nellA I lt) Lp(H) ~lO(i #N/A 1/NIA #Ni/\ #NiA #N!A ffNfl\ #N!A llt<<'A #:Nil~ KU<~ 1534 #N!A iiH!A ffNIA !iN/A #N/A #Nf/\ #~II A t!N!A #N/A Use Kl! ry"' o IIJ,! p OJcB #Nil\ #N/A #HlA i!NIA I'1H/;~ liN/A II NIP. NN!~\ #Nil\ WISEMAN+ROHY Structural Engineers =• NON-COMPOSITE BEAM WITH ORAG FORCES •• APHiL2M1 Special Seismic folJil H 1~1 ('l ,20L ·I LSFIJ .. )(k·ft) 1Jifi ;·$.81 Ll ~n; M~, {k~in} \'laidlng F" (ksl) 1121 22'1LO f.l4.:~2 #Nit<. f!N.!A Lb,O fff'-l!/\ #N/A Lb~o #NN'I #N>'A Ur'i) #NlA #N/,A lb=O ii>liA itN.!l\ ltF() tnl!A #NO\ Lb::::.O #NIA #Nil\ Lbof) NWA I Lb•O HN!A ! Lb:':':O !A!SC Section E 1l KUr, F, (E:H)(<si) o('i (l(/1.' P11Jl 1_nnn o,m: #N/A #N!J.\ coo liN/A #Nb\- ttOO #N/A #N//\ o nn #-N!f\ #Ni"~ o"no #N/A #NlA ()(\() #NtA #NIA n.on #NIA #NiA tLOD !!Nil\ #NIA 0.00 #NiA IIW!\ h ~to K·t~ 1.0 Me< (k-M) t.41'tt (k-ft) (udattomd} {unfacwred} LJ8 1.41 U.Otl (1.00 [)i](j 0.00 MD li.OO f)J)\) 0.00 !Hlll (LOO 0.00 0.00 (LOG OJJO n.oo (LOO ···omirJ~t~.ll ~L(k-ft) BuckHn 1727.0 14~l9 #NIA liNIA #NiA HN!A #N/A M~!J\ liN/A #N/A /JNtA ifN/A f,hli!\ #N/A #NIA f.NIA HNIA #i'l'A f (E7.2a) h,_l{H)a!lyfl.n} ~W,I HHI #NIA #NiA #Nf/\ IINIA Nf.l/A #Nil\ #N!i\ #NIA #N/A ttN!A IINIA 1/NIA #Nil\ "'liil ffNlA #Hi~A #N!A #i'-li,A, I #N/A I ftN/A #NiA !I!'>UA ! o.., o~o$ol~ F~, {ksl) fU1ff2 O"BU2 4~L5 #WA #Nil\ #N/A #Nf!:\ #NIA #WA #~UA ffNIA #NIA #Nil'>. W'JfA #l'N/,4. #NIA #N/A #NIA ffNiA #Ni,i\ #N/A II Nil\ #N!A IIN/1\ liN! A #Nil\ #NN\ /IN/A liN/A i'NiA 1.2 OJ~ 108.00 0.00 D.OO tHlU 0.\)0 (U10 0.()0 OXIO 03)0 !1.00 t\, {k,) 325.2 i!WI\ #N!A ff.N!~>\ li-NU\ iiNiil #N/A UNI.~ #NI,~ UN/A I + 0.5 FLL+ QE 0.62 14.00 #N.iA I!Ni!\ #MiA HNh\ !fN/A #N/A. #NfA #N/A #NIA tJN,'A #NIA #NIA #t-l.',t\ #N//\ I irNlA NNJA #!>J/A #N/A ALLOV'II\tlLE IPf',.(k) P,\k) 29J.ti 3fl•LD #Nit\ #NtA #NIA #N/A #NI.~ #N/A :fi:Nll\ #NIA liN! A #N!i\ #N!i\ #N./A HNlA #1'>~/i<\ #N/A liN/A 1h!r. is for Axial Coiumn4~ct1on only and refers to the gbbal bracing of the member in the weak Jlmctlon ~the presence of a diaphragm f'!llo,,-.;s this to be zero. P1{P, Ch•ck ~ OK #NlA liN/A #HI I\ #N;A !!Nil' /IN/A #-NlA ·k>MA #NJA #WA #Nit\ /iN/A #NIA liWA. #NfA 1!Nf.D. #NIA #OVA #"1/A ifNI A PNlll: #N!A #WA #N/A #NIA #N/A #Nil\ #Nf/\ #NfA #NiA #!'<l/A #NiA #NJA IINIA #NIA t!NlA trf'.J/A ftN/.A #N!A til¥ A #N!A IINIA #NiA #NIA #N/A NN/A #NlA ift>,t!A #OJ! A #t.Jiil UN/A #N!J\ #NI1\ ffN.lA fti'>UA #NIA #N/A 1!-f<J!A #NiA #N/A #NIA #N/A #NIA fiN!/\ #N/A liN/A fiN!t":!. #N:A il.f'VA #N/A #N!A m~uP. #NJA liN/A #NIA l #N/A 1/NIA ttN:A P.NiA tfNiA itN!A l UN! A #HJA #NIA #N/A #WA #HI A ·....... #NIA ::~~;::::·---................................... x;·--r:::;;:~:;:;--~::.~;::::;;;··~~;i;:::~~-,ili'i .. ,liiT'TiSF'i;t;;;::;:;;;m;;;cts,;;;;;;;;;s\-------cmieci:;;;(i:o;;;e;:;;;:;;;;;;s;;;;;:-AI:';c:iilli:ru::c::u:s:-c:;;;;·:i;ii;:;;:t::;i;;:;;;;i,i;;:;,:;x~'": iA:;;;ilix~iu .. -i3,~HJ #NlA #N!A #Nit\ #NiA I!N!A '#NJA tlfi!A #N/A #NIA ALLOWABLE <DP,(k) M&Ji #Nil\ #NIA #"t>JJA #N/A !n4/A J!-NLJ.\ #NIA #NJA #N!A lnt(!radton CLJH NWA #N/A liN/A liN/;\ UN/A #NfA #Nil\ ;nM ' {tNH\ ,, '-+ ' ! ! WISEMAN S~En 1(). --- $0110 • ....;;...,.....;;...,..;......,;..,._ __ _ s ~- ( 8 s;, i rfi- C;-; v T-A"" \. (p }LJ~F- WISEMAN + ROllY STIWCTtiRAt ENG!NEERS I I I ( ( '::: ~·:;;{ q\ J $~~~' ~~. --- JOI f.IO. ,.J,.:;,.:;~"----- -t ~ $" """ ~ 0 ~ ;v'1.1:. ' WISEMAN + ROHY STRIJO!.JRAL 11.11 __ _ S:~EU 10. __ _ JOB 10 • ...:_...::.,_....::.._.~--- ( ~-'L. 8 f- , 0 iLJ 7tf 1 WISEMAN IOHY -n .. c..s-1!-Z"'l-10 '%~-"<;; WISEMAN ROHY SiR!.lGIJRAl nummRS D s~~n 10. _ __,__ JO~ 10 • .....:...._.....:.... ___ _ WISEMAN + ROHY S~EE'¥10. __ _ JOIIO. -.::....-'-----"---::=.---- ::: I tf I .? f -L>! (L~ti'! L - -~- ':_ 0 ~ &4 -"· tt W!SEMAN+ROHY STRUCTURAL ENGINEERS DEVELOPMENT OF STANDARD HOOKS !N TENSION:::::::::: Version 1.0 (101201 1) rd Concrete f'c = 4000 psi F:ebar fy"' 60 ksi Ught Concrete? (Y/N) N 'A= Epoxy Covered Rebar? (Y/N) N 4Je:::: NORMAl WEfGHT CONCRETE -4000PS! Bar bask lcth with !c~11 with Diameter 1a11 {in) cover ties 3 0.375 4 0.5 5 0.625 6 0.75 1 0.875 8 1 9 1.125 21.3 14.9 17.1 10 1.25 23.7 16.6 19.0 11 1.375 26.1 18.3 20.9 1.5 28.5 19.9 1.75 33.2 23.2 2.25 42.7 29.9 May reduce by As req I As provided per 125.3(d) PROJECT: V:r.A s AT LOCATION: JOB !'10: ! 1.00 1.00 loh with both 6.6 8.0 9.3 10.6 12.0 13.3 14.6 15.9 18.6 23.9 SlEET MO. --:--- 201 tto • ........;--··············· ___ _ SlEET II]. ----,- J®I ~a --:..--:..__..:._..,;;_;_ __ _ {), ":,. y{ -z ~' "'Z ';:: '1 p, r 0 ' J L Profis Anchor :2.5.0 Company: W+R Struc!:urai Engineers Phone 1 Fax: E-Mail: Specifier's comments: 1 Anchor type aml diameter: Effective embedment depth: Mwteria!: Proof: Stand-off installation: Anchor plate: Profile: Base material: Reinforcement Seismic loads (cat C, D, E, or F) Geometry [in.] & Loading [lb, inJbj and results rrK.<st bf: ci'Iecksd ( c ) 2003~2008 HJitl A/3., Date: AWS DU GR 8 1!2 Design method ACl 313-08 I ClP e0 = o.ooo in, (no stand-off); t = ().500 in. x ~ x t"' 36.000 irl. x 9.250 in. x 0.500 in.; (Recommended plate thickness: not calcufatod) no profile cracked concrete, 4000, f.' "' 4000 psi; h = 420.000 in. t<:msion: condition B, shear: condition B; E'•dge reinforcement: none or < No. 4 bar yes(fH3.5) www.hmi.us Company: VV+R Structural Engineers Spedfi<er: Address: Phone l Fax: E-Mail; anchor forces Load case: Dssign ioads 2 3 4 0 [) 0 max. concrete compressive strain: max. concreie compressive stress: resulting tension force in resulting compression force 3 Tension load Pullout Strength' Concrete B;eakout Strength*' Concrete Side-Face Bicwout, direction •• 1775 1775 1775 -l:'l'ool -[psiJ Q [!b) 0 [!bJ 1775 1775 1775 N!A NIA N!A • anchor having me highest leading **anchor group (anchors in tension) Date: 0 0 0 NiA N!A N!A N!A N!A NIA Profis Anchor 2.5.0 N!A N!A N/A www.hlltl.us W+R Structural Engineers Phone I Fax: E-Mail: Steel failure (with lever am1}* Pryout Strength** Concrete edge feilure in direction y+" N!A 7100 TWO • anchor having the highest loading .. anchor group (relevant anchors) 4. i Steel Stnmgth V,. = n A,.;v t"'" ~ v.,.,1:o::v •• Variables Calculations Results 4.2 Pryout Strength ACI 313-08 Eq. (0-19} ACI 313-08 Eq. (D-2) see ACI 318-08, Part 0.5.2. 1, Fig. RD.5.2.1 (b) ANoc = 9 Variables Calculations Results ACI 318-08 Eq. (D-31} ACI 318-08 Eq. (D-2) ACI 31.5-08 Eq. (D-6) ACI318-D8 Eq. (D-9} ACI318-08 Eq. (D-11) ACf 31B~OB Eq. {D-13) ACI318-08 Eq. (D-7) Date: NIA 15469 17248 NiA 46 42 l ' ' Profis Anchor 2.5.0 3 ViaSat Building 11 Top of Wa11 Shear Plate 3i42!20i5 NIA OK OK {} Profis Anchor .2.5.0 ·····························~---------W+R Structural Engineers Address: Phone I Fax: E-MaiL 4.3 Concrete edge failure in direction y+ <: Vua see ACI318-08, Part 0.6.2.1, Fig. RD.621(b) Avto = 4.5 Variables Calculations Results ··············-----·~------- ACI 318-08 Eq. (D--22) ACI 318-08 Eq. (D-2) ACI318-08 Eq. (0-23) ACI318-08 Eq. (0-26) ACI 3 i 8-08 Eq. (D-28) ACI 3Hl-08 Eq. (0-29) ACI318-08 Eq. (D-25) 4 Ptalc Date: • Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the loading! Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies when supplementarj reinforcement is used. The¢ factor is increased for non-steel Design str·.,nmr-,>< and Pr;out Condition B applies when supplementary reinforcement is not used and for Pu\lout Strength your local • Checking the transfer of loads into the base material and the shear resistance are required in accordance with AC! 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design C,. D, E or F is given in ACI 318-08 Appendix D. Part D.3.3.41hai requires the governing design of an anchor or of anchors by ductile steel failure. If this is NOT the case, Part 0.3.3.5 requires !hat the attachment that anchor is to the structure snail be designed so that the attachment will undergo ductile yielding ai a load level corresponding to anchor forces no greater the design strength. In lieu of 0.3.3.4 and 0.3.3.5, the minimum design of !he anchors sha!l be a reduction factor per !Ollt,n>:ot'""" anchor design 318·08, Part 0.3.3 is given in ISC 2009, Seeton 1908.1.9. This contains "Exceptions" that may be applied in lieu of "non-structural as defined in /\SCE 7, 13.4.2. An alternative anchor design approach to 318-08. Part is given in IBC Section 1908.1.9. Thls approach ccntams "Exceptions" be applied in lieu of 0.3.3 for applications involving "wall cut-of-plane forces" as defined in ASCE 7, Equation 12.1 i-i or Equation • rt is lhe responsibility of the user when inputting values for brirtle reduction factors dif!erenl than those noted in ACI31 8-08, Part 0.3.3.6 to determine are consistent with !he of ACI 7 and !he governing oode. Selection of •Pnorn"""•"' 1 as a means of satisfying Part 0.3 .. 3.5 assumes tl-Je user has designed the the anchor is connecting to undergo ductile yielding at a force level<= !he design strengths calculated per ACi 3i8-D8, Part 0.3.3.3. \V+R S!ructura.l Engineers Phone! Fax: E-Mail: Plate thickness Recommended platc not cadcu!aled Cleaning: No cleaning of the driHed hole is required 18.000 ; ........... ----··········---·······--·· ·--~-----·---. ······························--- 12.000 Coordinates Anchor ln. 2 3 4 fLOOD -2.625 -5.000 2.625 6.000 2.625 3 2000 7250 7.250 7.250 2.000 2.000 Profis Anchor 2.5.0 Date: Anchortype and diameter AWS DU GR. B 1/2 Installation -0.009 lnJb Hole diameter the base material:-in. Hole depth in the base material: ?J:lOO in. Minimum thickness of the base material: 8.813 in. 18.000 Plate '!2.000 ................................ ···--·-----+--------:._:_~ ..... .-................... --·······?· Schaar www.hilti.us W+R S!wctural Engineers Phone I Fax: E-Mail: Duties Page: Project Sub-Project I Pes. No.: Date: Profis Anchor 2.5.0 6 ViaSat Building 11 Top of Wan Sbear Plate 3/12/2015 • Any and ali Information and data contained in the Softvvare concem solely the use of Hllti producls and are based on the principles, formulas and security regulations ln accordance with Hilti's technical directions and mounting and assembly instructions, etc., that must be stlict::y complied with by the user. Ail figures conta.ined therein are figures, therefore L1se-sp;,cific tests are to be conducted prior lo using the relevant Hilti product. The results of me calculalioos carried by means of !he SoftNare are based on lhe daia you put In, Therefore, you boar the sole responsibility for the absence of errors, the and !he relevance of the to be put in by you. Moreover, you bear sole responsibility for having the results of the calcu.lation and cleared by an expert, particuiar.ly with regard !o compliance v;ith applicable norms and perml!s, tc using them for your specific facility. The Software serves only as an aid to interpret norms and without any guarantee as to the of errors, me correctness and the relevance of the results or suitability for a specific You must lake all necessary and reasonable or limit damage caused In particular, you must arrange for the regular backup of programs and da!a and, if carry out the updates of the Hiiti on a regular basis. If you do no! use the AutoUpdete function of the Software, must ensure that you are !he current and thus version of the Software in each case by carrying out manual updates via the Websile. HHti w\11 not be liable such as the recovery of lost or damaged data or programs, arising from a culpeble breach of duty by you. results mus; be checked ( c ~ 2DC3~20D9 Hin\ AC';, -,-ROHY EERS WISEMAN + ROHY snurcru~Ju S~Et'i'IO. --- JOIIO. I ; I I I· ' ":':::.. I ( W!SEMAN+ROHY Structvra! Engineers WIND LOAD TABLES {ASGE 7-0!i Chapter !i, Method 2) December 2013 (2012 IBC f 2013 CBC I ASCE 7-10, Sup #1 & 2) Eave 42 ft Parapet Height= 2 ft Roof Slope= 0.25 :12 Roof Angle"' L2 degrees "' +1-0.18 Enclosed c K,.,= 1.06 K,t= 1.00 Kd = 0.85 V= 110.00 Risk Category= !I q" "" 0.00256 K, K0 V2 1 qh= 28.03 psf Factors; Area Windward sq. ft. 1, 2 & 2> 1 10 0.30 -1.00 -1.80 20 0.27 -0.97 -1.59 30 0.25 -0.95 -1.47 40 0.24 -0.94 -1.38 50 0.23 -0.93 -1.31 60 0.22 -0.92 -1.26 70 0.22 -0.92 -1.21 80 0.21 -0.91 -1.17 90 0.20 -0.90 -1.13 100 0.20 -0.90 -1.10 NOTES: PROJECT: ViaSat #1 1 LOCATION: Carlsbad JOB NO: 14·143 ASCE 7-10 Section 30.4: Ht <60ft. Roof-Flg!Jres 30.4-2A, 30.4-23 & 30.402C Area< 700 square feet Area greater of (Span x \!Vidth) or x h"' mean roof height (eave fore< 10 deg) Least Building Dimension"' 100 ft 10% of least bldg. Dim = 10.0 ft 40% :.6.8 ft 4% of least bldg. Dlm ~ 4.0 ft Three Feet= 3.0 ft Comer Zone 'a'= 10.00 ft I 3/1912Gi5 Pressures 'p' (psf): -55.51 12.61 -32.24 -49.60 -1.99 12.12 -31.74 -46.14 -1.78 11.77 -3:..39 -43.69 -54.85 -1.61 11.50 -31.12 -41.79 -50.23 -1.48 11.27 -30.90 -40.24 -46.46 -1.36 11.09 -30.71 -38.92 -43.27 -1.26 10.92 -30.55 -37.79 -40.50 -1.18 10.78 -30.40 -36.78 -38.06 -1.10 10.65 -30.28 -35.88 -35.88 I I ..J C, Q "" c;J"' m if'; ~ ~ """' @ ::l. ,....., WISEMAN+ ROHY Structural Engi...,ccrs """" Tilt-Up Pane! Ho!downs == Line PROJECT: V1aSat Building 11 LOCATION: Car f'.A JOB NO: 14-143 Date: 3/10/2015 0.127 0.139 0.127 0.132 0.133 0.165 0.133 0.166 0.178 0.124 0.164 0.134 0.146 0.136 0.097 0.107 0.108 0.097 C.) .,._, 0 .c rl .-.;_, i-~l ~ o·...-'l _:_..; ('0 8 (rj ~ ~0 y-; >-1 [:;...! Cl) ~ :;~ ~ /~ .,.~. <: {j ""'"' D ;7 <( <( .,..,._,"'---~-­-·········--··········<( ·········<( ------<( ---------·-< -<( ---< < --------------------------< < <( <( --<( ·<I:: Diaphragm: Rigid 14 0.742 D + 1 15 16 17 "All end: "B" end: Length (ft): Right Edge 2nd Floor Left SECTION CUT: Thickness 4.00 from: bottom opening 82 in # V\T all # 69Story Story Length (ft) = 5.00 Unit = 145.00 = 145.00 5 11:51 Horizontal Frame Unit {pcf) = Unit = 150.00 Frame -1 1 -1 1 = 1 14 132.72 15 -CJ.OO 16 17 Length IN -1468.61 CUT: # 74Story 2nd (ft) = 5.00 (pcf) = 145.00 I 0.00 0.00 Orientation Number: 2 = 150.00 Number: 2 Unit Wt-SelfVv't (pcf) = 150.00 2 Unit \Vt-SelfWt = 1 = 14.00 fc (ksi) = 4.00 'VALL LdC 14 15 16 17 Offset (ft): '1A11 end: 138.65 1 -151.91 -141.93 point loads bottom left comer Orientation m 0.00 -17.95 0.00 -1 0.00 22.32 0.00 20.89 0.00 openmg in \Vall# 80 Story "B" end: 97 in \Vall# 80Story 2nd Floor .ld"-L't;;,:;CH (fi): 5.00 14 15 16 17 p 134.37 4 5 :::::: 150.00 Torsion kip-ft 0.00 -0.00 0.00 Horizontal 4 = 1 WALL .FORCES: 14 15 16 17 14 15 16 17 l 1 p 44.09 p CUTz rvlmajo:r -130.14 of\Va11 144.41 -1 -1 # 81Story Mminor 0.00 0.00 -22.49 16.78 1 bottom opening vVaH # 81 Story 5 Wt-SelfWt = 150.00 Vm.inor -0.00 -0.00 -0.00 0.00 5 =1 (in)= fc (ksi) = 4.00 \Vall #89 ''""'''-""""""'"' (in) = 11 f'c (ksi) = 4.00 Concrete Thickness (in)= 7.25 f'c (ksi) = LdC p kip 4.12 15 9. 16 137.91 17 132.26 Offset (ft): 0.78 "A" end: end: 5.00 = 7 11:5: Story 7 "-''-'~'-"•'" ( ft) = 10.00 (pd) = 145.00 (pcf) = 1 Story 7 Length (ft) = 5.00 Unit \Vt = 145.00 Unit (pcf) = 150.00 Frame Length (pcf) = 145.00 = 150.00 Torsion 100.84 -19.66 -0.00 0.00 93.07 -1 -0.00 -0.00 -114.90 92 in Wall# loads fc (ksi) = Unit 7 ~~ 150.00 7 Unit Wt-SeHWt (pcf) = 150.00 p Vmajo:r kip kip 124.33 -13.09 15 118.68 -12.03 -0.00 0.00 17 -3.81 0.00 0.00 INFORl"\iA.TION: SCA9 Offset (ft): 3.95 Edge of '-'l-''~"H'F< 2nd Floor of m # 97Story CUT: 8 Unit Vlt-Self\Vt (pd) = 8 Unit = 1 8 = 1 15 16 17 -1450.77 loads -0.00 -0.00 7!7 5 11:5 -0.00 0.00 -0.00 WISEMAN+ ROHY Structural t:n.ameeJ's == Tift-Up Panel Holdowns == PROJECT: ViaSat Building 11 lOCATION: JOB NO: 14-143 Holdown Date: 3il 0/204 5 0.114 0.121 0.221 0.258 0.249 0.230 0.129 0.169 0.127 0.175 0.185 0.118 0.166 0.132 0.226 0.243 0.180 0.156 0.108 0.097 CJ 0 :....{ :J +-l :;:; "--1 ,.C $ C'"':; c rl ~ r·--i <f rl L.; r--j \0 ~u (/) :1j ;:;_( ·rl ct: > t::' 0 )..; ~ ~--~ ~:( ([ ::; c:D (Tj :8 .w ~ ;.~ ····0 ·····---------0 ---······---------------o ------------0 ··-0 0 0 0 ·-0 ·0 0 ---0 0 0 ---------· -----------0 0 0 -------------·0 0 ·0 15 16 17 SECTION CUT n_BH .Left Edge of Opening 2nd Floor '-''-'le<F,UJ. (ft): 20,00 CUT: bottom opening 60 # Story 2nd Length (ft)"" 10.00 Wall Thickness fc (ksi) = 7 5 11:51:19 Horizontal (pd) = 150.00 (pcf) = 1 18 = 150.00 = 1 18 i'-i", .. LVLL·14.07,00,05 Bldg 11 -03 point loads p 14 15 16 17 2nd Floor .wva .• ,p;ua (ft): 20.00 Co11crete Wall Thickness (in) == fc (ksi) = 4.00 Hi'-'·""'''-'""' (in) = 11 fc (ksi) = 4.00 nnerPTP Wall Thickness fc rw'0 '"'"u." Wall #60 14 15 16 Thickness (in)= 7.30 #63 cKn.ess (in)= 11 = 4.00 p 0.00 1665.61 -0.00 ~1 -1 -0.00 0.00 Wall# Story Floor Length (ft) = 10.00 Unit Wt (pcf) = 145.00 2nd Floor Length = 5. 00 Wt (pd) = 145.00 Story Floor Lene,rth (ft) = \Vt = 1 Story 2nd Floor (ft) = (pcf) = 145.00 Floor = 5.00 = 145.00 0/15 11:51 . -0.00 Orientation Number: 11 Unit Wt-Self\Vt (pet)= 150.00 Number: 11 Unit Wt-Self\Vt (pcf)""' 150.00 Number: !1 (pcf) = 150.00 ll (pet)= 150.00 \Vt-Se1f\Vt = 150.00 kip -54.69 17 5.00 C onc.Tete Wall #3 8 u!v.r.u""'" (in) = = 4.00 point # 40Story Unit Wt (pcf) = 145.00 Floor =4.92 (pcf) = 145.00 11:51:19 Frame 17 (pcf) "" 150.00 Number: 17 Unit \Vt-SelfWt = 1 Orientation 1"" . I =l Oftset (ft): "A" end: Measured WaH point = 1 (pcf) = 145.00 bottom left 5 1 J :51 17 =1 17 Wt-SeifWt =1 com.er Orientation (deg): Horizontal Opening #166 in # 48Story Concrete Wall #48 15 16 l7 = 14.00 p -7.91 -13.86 11 Number: 15 (pd) = I 50.00 ELE.MENTS IN 14 15 16 17 5.00 2nd Floor 1 from: bottom opening of Opening #170 in # 49 kip-ft -138.57 5 (pcf) = 150.00 Orientation Horizontal 14 Wt-SelfWt = 1 Vminor kip -0.00 14.07.00.05 {\1'\('rp·rp wall Thickness (in) = l (ksi) = p 14 107.42 15 111.83 16 6.64 17 SECTION SCD8 Offset (ft): 1.13 "A" end: Right Edge Floor end: Left of 2nd Floor Length (ft): 5.00 IN ckness (in) = 11 fc (ksi) = 4.00 Concrete \Vall 14 15 16 H1'-''"'"""'""' (in) = 7 fc (ksi) =o 4.00 p -1 -17.40 1 1 I -03 with Story 2nd Floor (ft) = = 145.00 kip-ft 144.46 -0.00 -0.00 -131.84 0.00 -141.98 0.00 \Vall# Story Length (ft) = 5.00 (pcf) = = 145.00 0.00 -111.11 0311 5 14 Unit (pcf) = 150.00 -20.99 -(),00 0.00 -0.00 -0.00 0.00 -0.00 0.00 0.00 Frame lJnit Wt-Se:lf\:Vt =1 Number: =1 kip -30.51 17 1 15 16 17 P Mxnajor -125.44 -1 Wall# 59Story -0.00 5 11:51:19 Frame Number: (pd) = 150.00 Frame Number: 12 Wt-SelfWt (pd) = 150.00 Frame Number: 12 = 150.00 -0.00 Line LRFD (for Holdown Panel Shear Axial Moment v Holdown Force Hoi down 0.231 0.254 0.251 0.230 74.5 k 8.624 -47.9 k 9.487 ~56.5 k 9.572 89.6 k 8.689 Line LRFD Pane! Shear Axial Moment v Ho!down Force Ho!down 78.3 k 0.229 -56.8 k 0.254 -52.8 k 0.250 83.0 k 0.231 69.9 k 8.609 -51.5 k 9.546 -57.5 k 9.661 86.4 k 8.617 0 rl f) ~ ;:j ·-' ;:l '+-l J_J :> \""': c ~-< c.; ri F.C: :X... ri 1"-/ ~.-; {(; >, ..w r-i it (lj '.../.: Tl ·~I ,> rc ;--! "" o; ?,~ c. <.:C 23 ;:c. c;: ~ +-' ;:'..:( }Q ;:r:: 15 16 17 0.742 D-1.000 E2 future 0.99 !\·1easured from: bottom left wall comer 14 15 16 17 Left Edge Wall #76 Edge m # Floor p -30.11 12 Right Stor:y Floor Length (ft)"" 7 (pcf! = 145.00 -0.00 -0.00 -46.68 51 47.71 5 (deg): Frame (pd) = 150.00 15 16 17 14 15 16 17 p 7.50 27L54 -269.07 CUT: Number: 3 =l (pcf) = 150.00 -50.87 !lOO 0.00 0.00 0.00 -0.00 -0.00 -CWO bottom left \Vall comer Orientation Frame 6 = 150.00 7.50 p 14 l5 16 17 point Floor Length ( ft) = Unit (pcf) = 145.00 M:mino:r 293.00 0.00 0.00 -289.97 -0.00 -0.00 Story 6 = 150.00 6 Unit Wt-SelfWt = 150.00 0.00 0.00 0.00 46.92 -0.00 -0.00 -0.00 ~ ., .... ....,;-<rl L. ~ >'!..;..: ;U ((2 ~n nJ i>-·! ~ .::r ?; :r:. ·"' c :Y.; ;:,) rc 2: .Ll < }7~ ;:::; 14 0.742 -+· 1 15 0.742 16 0. 742 D -1.000 17 0. D-LOOO Offset (ft): " end: "B"end: .,.,.,,,~.,.Pcrr.> \Vall Thickness (in)= (ksi) = 4.00 Wall TI1ickness (in) = (ksi) = 4.00 point 03/1 5 4.00 bottom left wall corner Horizontal # 45Story Stor)' 2nd Floor 16 Unit vVt (pcf) = 145.00 Wt-Se1nVt (pd) = 150.00 Floor 16 = 7.50 Wt (pd) = 145.00 = 1 p 14 15 16 17 Section: SCD.2-3 (ft): p point 2nd Floor ....... ,,,., .. , ( ft) = 7.50 = 145.00 \Vall# con1er 5 16 (pcf) = 1 16 =1 -0.00 -0.00 -0.00 0.00 0.00 Frame (pcf) ~ 1 13 = 1 14 15 16 17 = 6.50 Thickness (in) = fc = 4.00 FORCES: LdC 14 15 17 point Floor '-''-'.1.""\.lcJ (ft) = 5.00 Unit Wt = 145.00 Story 2nd ...._,....,,,,·"'"·" (ft) = 7.50 \Vt (pcf) = -0.00 kip -48.65 03/J Orientation Unit 13 (pet) = 150.00 Number: 13 \Vt-Self\Vt = 150.00 kip-ft -0.00 ------~ 0 "-',-, r\J ~ri > w il' (t! (:j r:, CJ 2., +J <: 1-:j :.::: ::::, 14 15 16 17 5 16 17 p # lOOStory CUT: Story 2nd -39.94 5 (deg): Horizontal Frame 19 =1 19 = 1 Frame 19 =1 5.00 """"'''"""'"'""'(in)= 7.25 (ksi) = 4.00 (in)= 7.25 (ksi) = 4.00 Concrete \Vall 01 '-"""'''"'''-"''·, (in) = 10.50 fc (ksi) = 4.00 p 43.45 15 41.89 16 17 55.18 5.67 point loads Wall # l02Story 2nd Floor Length (ft) = 10.00 (pcf) = 145.00 Floor -'-''·'"J'but (ft) = 1 0.00 Unit Wt (pcf) = 145.00 Story 2nd Floor Length = 5. 00 Wt (pcf) = 145.00 202.90 0.00 0.00 0.00 5 15:18 19 = 150.00 Number: 19 Unit \Vt-SeH\Vt (pcf) = 150.00 Number: 19 Unit Wt-SelfWt (pcf) = 150.00 -0.00 0.00 -0.00 -0.00 Orientation Horizontal 19 =1 onset (ft): 0.68 14 15 16 17 5.67 CUT: ·'"'"''''U''-''"""' (in)= 10.50 f1c (ksi) = 4.00 p 5 19 Unit =1 corner \Vall# 108Story = 150.00 -0.00 0.00 38.52 14 15 16 17 07 Thickness (in) = 1 p 56.59 43.15 0.00 -0.00 from: bottom opening edge Right Edge of Opening WaH :# 1 06 Story end: 2nd Floor Left of m # 104Story 5.00 #106 = 7.25 = 4.00 5 20 = 20 Unit = 150.00 -(l.OO -0.00 0.00 -0.00 0.00 -0.00 Orientation (deg): Horizontal = 1 = 150.00 ,_n ····00 ...,.J ··00 .-'I > 2: ~ ...... , m 2~ + 1.000 + LOOO E4 0.742 D-1.000 17 0.742 -1.000 Offset (ft): "A'' end: 1.01 Right 2nd future Factor: bottom 11 in Wall# 116 Story Right Edge ofWail 21 IN Concrete Wall 17 (in) "" 10.50 fc (ksi) = 4.00 Concrete Wall 16 Thickness (in)= fc 4.00 Thickness = l 0.50 = 4.00 2nd Floor -'-<VLl.'-'lH (ft) = (pcf; = 145.00 ;).·· 03/l 5 15;18 (deg): Frame Number: 1 0 (pd) = 150.00 Number: 10 = 150.00 = 1 10 Number: 10 = 1 Frame 10 LdC 15 16 1 17 1 ELEMENTS IN Thickness p CUT: 96.05 left wall comer # llOStory 2nd Floor =4.92 = 145.00 =1 kip -0.00 Horizontal 9 Wt-SelfWt (pcf) = 150.00 9 Wt-Self\Vt (pcf) = 150.00 9 9 = 1 9 = 1 9 =1 14 1 16 17 1 162.08 162.08 -104.34 I 5 (t 15 0.742D+l 16 D-1 17 - 1 14 16 17 (ksi) = (in}= 9.30 p 285.46 285.46 5 15:1 1 comer (deg}: ~umber: 21 Wt-Self\Vt = 150.00 Vminor Torsion 0.00 259.01 -0.00 future loads 5 15:] 4.00 Offset (ft): Measured from: bottom left "A" end: ''B" end: Edge of Wall Length (ft): 32.00 14 15 16 17 = 9.30 (ksi) = 4.00 p Story F1om Length (ft) = 32.00 Wt (pcf) = l -6172.54 -0.00 0.00 comer Orientation (deg): Unit Wt-Self\Vt (pcf) = 150.00 -0.00 Diaphragm Concrete strength f'c::: psi Shear Wall Concrete strength f'c = 4000 Rebar 60000 psi $= A"' LF ;;;; ioad factor for ~\in::: 0.75 1.00 0.60 i:U:i loads= 1.4 Use 1.0 for normal Wt. Concrete See ACI 318 11.6.4.3 <---0.6Lambda .;__1 WISEMAN+ROHY Structural Engineers I PROJECT: ViaSat Buildinp i i "'"'TYPICAL SQUARE PAD FOOTING DESlGN TABLE""" LOCATION: Carlsbad, CA October 20'!3 Ver 2,0 JOB NO: PM Soil Pressure: Miscellaneous: q;::, 2500 psf FF to TOF = '18 Inches column footprint "" 10 in FF to Pad"" 9 inches {slab + gravel/sand) steel spacing factor = 8 Min Depth"" 12 inches (for selection of steel soadno vs, size Increase per fool = 0 psf Superimposed Load = 100 psf (for slab, dirt or Min Width"' 24 inches Notes: fncrease Per Foot = 0 psf Material Strengths: -Assumes concrete :::: aooo psi ·Subtracts MAximum Bearino = 2500 osf fy = GO ksi -Subtracts weiohl of suoerlmoosed load from aHowr1b!e Mark: I Size I Thlck j Adj. Pma• I Depth I ONE WAYS!-' Vac! (k) v,.11 (k) OK? (k-in) (in) (Rt~q'tl) (200/Fy) (.0018) Use USE: 1 "1.8 0.0 94.6 y 3 0.01 0,01 0.72 0,3!) 0.39 4 # 3 9 8 0.0 5Jl 94:6 • .. y 13 0.03 0,03 . 0,96 0,52 0.52. 5 # 3 14 8 1.3 HH 94,6 y 33 0.06 0,08 1,20 0.65 0.65 4 # 4 '12 20 8 :Hl 23,7 £)7 0.10 0.16 1.44 _0,78 0.78 4#4 3.5 I 15 2500 27 l! 4.4 38,0 y 1!3 0.11 0.19 2,10 U3 1' '13 6 # 4 F4 I 40 1~} 2500 '35 1'l 43.4 y 0.15 2.40 1.30 1-30 7. tr 4 F4.5 4,5 v 2500 45 11 12,5 48.8 151,8 y 020 0.47 2.70 146 1.46 5 # 5 ,) iG 55 11 1/,7 8 y 0.67 3.00 1-62' U32 6 # 5 5.!'5 '15 2500 67 11 23.7 59.6 151,8 (J_33 0,93 3.:30 L78 '1,78 6 # 5 6.0 'HI 2500 78 24,9 8:2U3 0.31 Q,94. 4:32 2.33 2.33 8 # 5 0.5 18 2500 92 i4 31-7 89.7 220,8 916 0.37 123 4,68 2.53 2.53 l:) # 5 7.0 18 107 '14 3!12 96Jl 1'!68 OA4 1Si' 5,04 2.72 232 .,9 # 5 (,5 21 2500 120 17 40.4 125,7 301.7 1406 OA'l 1.55 0,30 3.40 3.40 8 # 6 HO 21 2500 1:37 17 • 134,1 . 1733 1.91 3.63. 9'# 6 8.5 24 2500 i52 20 49,7 167,6 y 178.2 394.4 0.44 1.89 EU6 4.4'1 8 # I' E!.O 24 2500 i70 20 58.7 $94.4 2;28 R64 · 4.67 6 #:7 B.5 24 2500 '190 20 68.4 137.3 394.4 0,56 2,71 9.'12 4.92 9 # 7 F10 I 'lO.O 24 2500 2'10 20 y EL60 5.-18 9 # 7 10-l'i 24 2500 232 20 89.8 207,0 y 394.4 0.70 3.74 10,08 5.44 5.44 10 # 7 F11 I iHl 24 2500 254 101.5 y 4,35 1056 5,70 5.78 Hl # 7 F12 12JJ 24 2500 302 20 '126.9 236,6 y 3l:l4.4 0,94 5J5 11.52 0.22 7.f>4 iO # 8 F1~Ui 13!) 27 2500 2:3 154.3 i y '!0'1 GJ12 14.58 7JJ7 9,20 12 # 8 'at #1 lcc<:ltl!r>Hn with mod factors l-l 0 0 .-! P:i L(} rl {Y) C) (fj v ru 0 rl (]J w +J l-l I 0 Orl .-{rl !lr.l ~ i1j \"4UJ > rD ·d > m () '0 0\: 0 (C ::s: :Jl (() ~ .w ~ Q j RA!Vl Fmmdation v 14.07.00.05 DamBa~e: ViaSat Bldg ! 1 -03 wi1h future-point loads Building Code: IBC Footing Mark; J7 LONGITUDINi'd. IHRF.CTION Lncntion ft ().{}!){) 0.552 (L771 0,854 1.000 1.677 !.896 1.979 2.781 3.000 3.083 3.385 4.!88 4.490 5.000 5.313 5.458 5.615 5.688 6.813 7.917 S.OM 9.<)21 10.!46 lfJ.417 Hl.688 11.813 12.917 Mu 4.22 6.97 8.18 W.5l 24.89 :Ht79 33.!9 60.87 69.$4 73.4! 87.09 129.05 146.95 179.81 201.54 21.210 181.61 JS.:\.25 216.88 26516 269.41 328.44 408.24 429.75 371.42 324.23 329.23 Positive flexure Phi .Mn A3 Heq. kip.ft in' 259.49 2.15 259.49 2>15 259.49 2J5 259.49 215 259.49 2.!5 25949 :us 259.49 2.15 259.49 2.15 259.49 2.15 259.49 2.15 259.49 2,15 259.49 2.15 259.49 2.15 259.49 2.15 259.49 :; 15 259.49 2.15 259.49 2.15 25'!.49 2.15 259.49 2,15 259.49 2.15 164.72 2.15 156.12 0.00 52.75 0.00 52.75 0.00 5:2.75 0.00 52.75 0.00 52.75 0.00 52.75 000 R.O.JA Foundation vl4.07.00.05 DataBase: ViaSat Bldg ll -03 with future point loads Building C()de; IBC !4.02.! 15.146 !7.917 11l.688 2Ull3 22.917 23.0(){) 24,()21 25.146 25.417 2S.ii88 26.813 27.9.17 28Jl00 .2'UJ2i 3!1.l46 30.375 30.771 3Ul96 32.500 32.1!33 33.1)1)1} 33.938 35,(163 35A58 35.688 36.813 37,.917 38,@{) 39.{)2! 41l.H6 41lAP 356.24 390.61 5!3.19 580.16 623.51 6?5.50 679.81 7J7J6 Bl0.24 910.74 880.93 763.84 659,65 652.23 566.3! 482.53 493.21 447 09 323.95 262.72 255.44 254.61 2%.G3 413.24 457.08 440.71 5165!6 603.02 609.95 699.99 809.81 837).\6 52:75 51.75 52.75 30552 305.52 305.52 305.52 305.52 305.52 305.51 305.52 305.52 305.52 305.52 30552 30552 305.52 305v51 305.52 274.93 28843 2:95,18 284.85 284.85 260.23 22155 52.75 52.75 5L75 52.75 5:2-75 52,75 CLOD 0.00 0.00 2.!7 2.17 2.17 2.'!7 ,., ·~ _,J: .,.~ --l.J 2. t7 2,17 2.17 2-17 2.17 2!7 ::; 17 2.17 2.17 2.17 ::en 2.17 2.16 2.!6 2.16 2.16 0.00 0.()() ().()() 0.00 (!.()() O.'JO Mu klp-fl -OliO -0.17 -0.33 -0.41 -0.56 ~L57 -2.00 -2.18 -431 -5.01 -5,30 -6.39 -9.77 -ll.13 -!3.92 -15.72 -16.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.()0 0.00 0.()0 0.00 -26.82 -68.08 -132.26 -186.40 -196.82 -199.85 -!99.80 -195.98 -185.12 ~271.80 -263.09 ~222.80 -176.93 -l24.'i8 -69.76 -32.90 -53.44 0.00 0.00 (!.00 (1.()0 0.00 -39.63 -70.01 -58.98 -! 14.64 -168.98 -172.86 -217.63 -?.60.84 -270.25 NeJJative Flexure Phi Mn A; Req. in' ().04 -55.72 0.04 -55.72 0.04 ·55.72 0.04 -55.72 0.04 -55.72 (H\4 -55.72 0.()4 -55.72 0.04 -55.72 0.04 -55.72 (!.{)4 -55.72 0.04 -55 72 0.04 -55.72 0.04 ~55,72 0.04 -55.72 01)0 -55.72 o no -55.72 0.00 -55,72 0,00 ~55.72 0.00 -55.72 0,00 -55.72 0.00 -55.72 CtOO -55 72 0.00 -55.72 0.00 -55.72 0.00 -55.72 0.00 -55.72 CU)O -55.72 0.00 -55,72 -55.72 --55.72 -55.72 ~55.72 -55.72 -55,72 -55.72 --55.72 -55.72 .. 55.72 -tW.02 -8.337 -11 L02 -1 l l.G2 -Jll.()2 .JlJ.02 -I.! l.G2 ·lll.O:: -I 1 JOl -11!.02 -ll 1.()2 -80.86 -64,94 -55.7'2 -55.?2 -55.72 -55.72 --55.T2 -55.72 O.f)() 0.00 0.00 0.00 0.00 0.00 (>,()\) OJ)() 0.00 0.00 0.00 0.00 0.00 {\76 0.76 CL76 0.76 0.76 0_76 0.76 0.76 0.70 0.76 0.00 ().{)0 0.00 0.00 0.00 CLOO 0.00 0.00 ()(X) 12.80 14.60 l6.!3 21.93 27.!7 22.<!6 35.32 41.20 42.98 45.64 53.!3 59.57 64.89 69.85 72.55 7'2.25 30.12 36,85 47.79 52,81 59J8 72.08 79.68 8x.49 89,04 81.49 68.17 54.58 44.69 39,{)5 39.68 48.:20 5!.87 57,22 66.10 7U2 109.76 l 10.32 105.23 95.48 89.17 85.21 75.61 Jlii.lO !l6.9l 110.60 101.95 97.24 95.81) 104 so 1lL16 .:10.35 61\.93 79.06 83.34 89.24 98.76 103.87 10332 Date: OY!l!l5 15:39.22 Dosign Code: AC!J J S-08 Critical Section Shear Phi Vn A5 Req. kip in'ifl {)/Jll 000 0.00 0()() (}J){l 0.00 0,()(1 0.00 0 00 0.00 0.00 0.00 0/JO 0.00 0.00 0.00 (),()(] 0.00 0.\JO 0.00 0.00 000 (),()() ()J)() IJ.OO 0 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.uo 0.00 0.()() 0.0() 0.00 0.00 0,00 0.00 G.OO 0.00 0.00 0.00 0.00 il.OO O.t}O 0.00 0.00 0.00 0.00 000 0.00 Pag).; 2.!6 Date: OJ!I 1:15 15:39:22 0.0{} 0.00 0.00 0.00 ()J)() 0.00 0.()0 0.00 0.00 0.00 0.00 0,00 CI.DO 000 0.00 0.00 om OfJO 0.00 0.00 0.00 0.00 0.00 0.00 ().00 0.00 0£10 ().(!() 0.00 000 ().()0 O,OD 0.00 0.00 0Jl(} 0.\}0 0 GO o.on o.un 0.00 0 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (i.OO 0,00 OJK! 0.00 0.0{! Ci.OO 0.00 0.00 0.00 0.00 0.00 O(l() ().{)0 0.00 RA!v! foundation vl4JJ7.0(J,(J5 DataBas·~: ViaSut Bldg ll • ()3 w1th fl•ture point loads Building Code: lBC 4UHJ 42.917 43.000 44.021 45.146 47.917 50.688 51.813 52.9.17 53.000 54:!\:Zl 55.146 55Al.i 55.6&8 56.813 57.917 58.(!()() 59.fl2l 6!U46 60.375 62.8JJ 63.938 64.0(1() 65 063 65.833 659.23 603.44 599.62 557.31 519.94 471.90 374.96 348.29 328.81 327.59 353.53 4ll.44 461.97 44050 356.67 289.42 284.95 237J7 19947 220.63 7432 33.78 3L93 8.20 0.00 5235 52.75 52.75 52.75 52,75 52. 52,75 52.75 147.52 !56.!2 259.49 259.49 259.49 259.49 259.49 259A9 259.49' 259A9 259.49 25'1.49 259 49 259.49 259.49 259.49 259.49 ()_()() 0.00 0.00 0.00 0.00 (J.O() i.HJO (j,(j() (),()() 2.15 215 2.15 2.15 2.15 2.15 Note: Locations in bold font are under :a column TRANSVERSE D!RECT!Ol'\ Location ft Mu ldp-1'! Top F!cxu.re Phi 'V!n As Req. klp-ft in" !U\..1\<! FoundJ.tion vl4.07.00D5 1.0() .5.00 8.00 13.00 l3.0H 23.00 23.00 :!8.0{1 28.00 32.50 32.5() 38.\JO 38JH.I 43.0() 43.00 53JHI 53.{1{) 58.00 2.23 120 J.2(1 1.63 L63 0.00 G.OO 0.00 0.00 0.00 ()J)O ().()[) 0.00 0.00 0.00 0 00 ()()() !63 1.63 -03 voiith future point loads 13.78 l3.7t 13.78 12.90 12.90 0.00 0.00 O.OU 0.00 0.00 0.00 u.oo \)(}() (U)O 0 00 0.00 0000 12.90 12.90 0.00 0.()2 0.01 O.Gl (l.()l 0.00 0.00 C.Oi.J (l.DO O.OG 0.00 0.00 0.00 OJJO 0.00 0.00 0.00 0.(!1 OJ) I -!9663 -197.84 -197.65 -1.92.!6 ~} 79,08 1450 --4357 -0.25 il.(){j 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 IHIO -16.58 ·5.01 -2.00 .),8'1 .().33 -O.DO -55,72 -55.72 ~55,72 -55.72 -55.72 ·55.72 -55.72 ~55,7:2 -55.72 -55.71 -55,72 -55.72 -55.72 -55.72 -55.12 ~55,72 -55.72 -55.72 -55_72 --55,72 -55.72 -55.72 -55.72 55.72 -55 .. 72 Bottom F!nu.re O.OfJ 0.00 ().()() 0.00 0.00 0.00 0.00 ODO 0.00 0,()() G.OO 0.00 0.00 0.00 0.00 ().{)(} 0.04 0.04 0.04 i).(J4 0.04 0.04 0.04 0.04 0.04 Nlu Phi Mn As Rcq. ldp-ft kip-ft in' 9.47 29AO 29AC 15.60 !5.60 20.67 20,67 4".60 47.6() 19 90 !9,90 :2.22 27.04 27JJ4 t~/.75 47.51 47.5~ 20.63 20.68 63.63 237.24 287.24 .215,75 215.75 36730 367.30 748.05 7480:5 378.83 J7KS3 342.18 342.18 418.22 418.22 378.&3 748.05 748.05 36730 367,30 2.59 l.8} L33 3.35 3.35 6.48 6.48 3A6 3A6 2.92 3.56 3.56 3.46 3.46 6.48 6AS 335 3.35 Page 3!6 Date; 03'11'15 15:39:::2 6G.B2 51.65 45 90 42.48 34.36 32.22 47.82 60.76 66.71 74.17 87.06 94.6' 94.05 83.25 75.66 62 03 54A8 49.90 39.65 56.91 61.94 33.02 2'!.55 23.42 !.43 O,GU 0,00 0.00 0.00 OJ)() 0.(¥) 000 0.00 0.00 0.00 0.00 0.00 G.OG 0.00 0.00 ()()() 0.00 0.00 000 ().\)() 0.00 0.00 0.00 0.00 0.00 Punching Shear Vu Phi Yn kip klp 0.00 65.17 930.20 0.00 0.()() 5021 j 146.51 1013.27 929.20 64.09 930.20 191.00 11)13.27 45.23 t9i5.81 lill3.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O,OG 0.00 0.00 00() (\.()0 0.00 \LOO 0.00 0.00 0.00 (l.OO 0.00 0.00 0.00 0.00 ODO 0.00 Page 4.'6 Ri\rd foundatifm vJ.:l.07Jl0 05 DataBase: ViaSat Bldg l I -03 with future point loads Building Code: lBC 58.00 2.4! 13.79 0.02 64.00 2.41 13.79 002 6400 .1..02 13.77 ()Jll 65JG L02 13.77 0.01 Soil Stress limiet Foundation Loeation Stress LdCo# Location fr ksf ft fl.OO 2.75 56 0.55 0.85 2.76 56 1.00 L90 2.76 56 1.98 3.{)0 2.77 56 3.08 4.19 2.77 5(i 4.49 531 2.73 56 5.46 5.69 2.78 56 6.8! 8.00 2.78 56 9.02 HJA2 2.78 56 HL69 12.92 .2-76 56 l3JJO !5.15 :L74 56 17.92 21.81 2Ji9 56 22.92 14.()1 1.67 56 25.15 25.69 2.65 56 26Jl1 28.0{) 2 .. 62 56 29J)2 3{).38 2.59 56 3().77 32.50 2.58 40 32.83 33.94 2.58 40 35Jl6 J5.69 2.58 52 36..8! 38.00 261 52 39.02 40A2 2.63 52 4!1.69 42.92 2.66 52 43.00 45.15 2.68 52 47.92 5Ull 2.74 52 52.91 RA.M Foundation v14.07.00.05 DataBase: ViaSat Bldg ll -OJ with furure pomt loads Building Code: lHC 54JJ2 55.69 58.00 60.38 2,75 2,76 2.76 2.75 52 55.15 52 56.81 52 5\1.02 52 62.83 64.00 2.74 52 65.06 Note: Locations in bdd fnnt are umJer a column 3!.49 443.88 31.49 4U8il !0.7!) l27JJJ 10.70 127.03 Stress LdCo# k>f 2.75 56 2.76 56 2.76 56 2.77 56 'L77 56 2.78 56 2.78 56 2.78 56 2.78 56 2.76 56 .,.~ 7'1 k..f-56 2.68 56 2.66 56 2.64 56 2.61 56 259 56 158 4\l 258 52 2.6\J 52 2.62 52 2.64 52 2.66 52 2.70 52 2.74 52 2.76 52 2.76 52 2.76 52 2.74 52 2.73 52 3.73 3,7B LOS 1.08 Location ft 0.77 1.68 1.78 3.39 5A.W 5.61 7.92 10.15 lUll !4.02 10.69 23A!O Z$.42 27.92 30.15 31.90 33.{){) 35.46 37.92 4(U5 4J.SI 44.01 51L69 533)() 55.42 57.92 6(1.15 63.94 65.83 63.16 Stress k>f 2.76 2.76 '2.77 2.77 2,73 2.78 2~78 2.78 2,77 2.75 2.70 2.68 2.65 2.62 2.60 2.58 2.58 2.58 2.6.1 2.63 2.65 2.67 273 2.75 2.76 2.76 2.76 :.t74 2.7:2 Page 5/6 Date: 03·'!1:15 15:39:22 De;;Jgn Code; ACB!S-08 929.10 LdCo# 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 40 40 52 51 52 52 52 52 52 Page 6!6 Date: 03'11/15 !5:39:22 Design Code: ACl3 J 8-08 52 52 52 52 52 n 9.3~5 880.34 797.16 755.02 755.02 6.85 6.52 0.99 1 l n 1 ! 6.()4 1 5.0! 5.01 755.02 755.02 755.02 755.02 6.52 in2 0.13 O.lJ -145.66 -269.93 -126.89 -1 A7 -269.93 -113.29 -269.93 -86.58 -269.93 -74.85 -269.93 -38.19 -l -0.00 .22 As 1.00 1.00 1.00 l LOO l.OO LOO 1.00 LOO l.OO 1 2.15 2.15 u 116.04 11 109.75 136.05 136.70 1 1 l 107.34 41.19 156.76 l l 1 1 1 1 1 1 i 1 1 1~ Continuous Foundation DesiiJ!n Envelope n 4.177 .Mu CU3 1.17 79.79 re 2.80 3.01 3 3.01 0.00 1 1 1 0.20 l 1 1 .37 15 7 » ft kip-ft Ld # 56 As n 0.11 1.20 2.04 2.07 2<10 -55.76 LdCo# 56 17.17 17.17 Vu 21 # 56 Continuous Foundation Desi2n .Envcloge ~ Continuous FoundHtion Design EnvcloJlc n: 21.71 0.00 -126.39 ' 1102.51 -I n J ----·--- 5.18 5.!8 0.13 24.95 0.13 !3. ! 1 I 13. -120.23 -II -75.46 As 1 l. 3.78 3. 3.13 3.13 18 ---------------------------------------------------~------------------------------------------------------------------~ L Phi M:n As n 0.00 425.01 411.72 t in2 2.80 2.80 0.00 -9.59 1 f .14 13 2.16 2.16 2.!6 -I 69.40 2.16 2.16 2.16 0.00 -419.17 I 1 -55.76 7L3l -55. 0.00 Shear Ret]. As ft kip !.94 4! 54.53 4L50 Continuous Foundation Design Envelope 0.00 0.00 31 3L96 7i 7l 38! 3 276.75 101 52 52 52 ~ Mu n Jdp-n 3.188 4.583 Continuous Foun,lation Design Envelope ----------------~'~"·------------------------ 208.14 14 14 14 L48 0.00 -216.06 16.06 16.06 -216.06 16.06 -216.06 -21 -216.06 -216.06 0.11 O.ll OJ 1 lU l 0.11 0.11 0.1! 0.11 0.11 0.11 ll II 0.11 0.11 0.11 O.ll O.ll 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 35.15 131 0.00 40.98 131 44.72 131 46.90 131 13L25 131 !31 13! 62.27 131 68.75 !31 74.04 131 131 80.88 131 131 84.89 131 131 131 92.80 131 98.08 131 105.36 131 I 17.50 131 1 13!.25 123.66 131 !3! 131.~~ 'J~'I.J\,_f 74.77 !31.25 ~ Mu 0.00 -18.40 .75 -90.56 -1 13 -JOL43 -! 56.50 -204.35 As Req. -216.06 0.00 !6.06 0.80 -216.06 0.00 16.06 0.00 -216.06 0.00 1.25 1 131 ]31 7 131 131 131 l3l 131 131 131 13! 131 ! 31 13! 131 131 86.47 131 91.16 131 131 131.25 131 131 13! Continuous Ji~oundation Design Enveloue I 1.59 0.00 -216.06 CU2 58.17 !31 0. i2 71 131.25 0.!2 85.97 131 0.12 16 131 0.12 52.66 131 0.12 46.03 !Jl 0.12 31.69 131.25 a Mu ft v-, ,._ ·-.c -:::: 0. 0\ \r, v-, {'-!'- ('] C"l 00 0-. cr. c\ N <"'-l ('-1 c~··'i f'l (:"4 "" 0 0 0 0 0 # 57 57 57 0.02 lAJcation n I # n 3.19 ft: 8.5fH 18.919 5 I 4.42 R08.99 6.71 1 1 6.71 I 6.71 1 11 0.00 -1 -69.70 -97.45 As 0.70 0.70 ft 13.75 I 5.18 5.18 13 13 6.71 6.71 I 6.71 -97.45 .16 16 3.13 !3 41 .11 w,, ~" ,, 69 Note: in are a '-"':> Phi Mu As . n ldo-n in2 kin~n kip-n -55.76 0.13 349.81 2.80 0.00 -55.76 !.16 1.62 349.81 2.80 0.00 -.1 1.31 2.80 -46.55 .76 -55.76 l 419.73 29.!1:33 30.924 -101.14 Mu n Co# 57 1.58 2.10 57 Continuous Foundation Design Envelope in2 Locution ft OJ 1 L20 L97 ] l l\lu Stress ksf 2.08 2.1 J .Phi Mn 1 LdCo# in2 17.17 17.17 Location n 1.50 .31 21 Co# 2.()9 ')~ ~ -! ~' ·' 2.14 n 20.500 21.589 IH 135.12 6i 7.17 Continuous Foundation Desi2n Envelope 622.51 622.51 ! I in1 5.27 5.27 Phi M11 i\s -6! -87.61 1!3.1l 113.64 11 21 I 1 0.00 - ft 5.18 5.18 1 48.02 O.ll ll 0.05 0.05 2.15 2.15 41 385.33 3 37.09 359.34 3.09 5 ~1- """ l,.. tr; VI if) r'i ~ f"""'j ("',) ("<; r~ r~ if> ~ CJ', =~ ~. I) n 0.00 l2.ll -55.76 71 -55.7() Location 4Ui17 Mu I! l<Ui3 1l Continuo.us Founthhwn Design Envelope PhiMn As Req. 2.69 Mu -27l.l8 2.69 -12.73 0.00 J>lli M:n -55.76 -55.76 0.00 0.00 147.72 l 0.00 0.00 0.00 n in2 0.00 .14 24.23 7 18 ~" 0 0 0 - 2.44 5J 2.33 53 53 are a As n -427.42 30.001) !5Jl7 0.7! 8.27 513.26 1.35 391.59 I 316.22 1.35 217.00 ·~, ".'\ 3.31 3.31 I I 1 ft 2.95 3.l5 3.31 3571 18 # t':>{ I ft 1585.77 l 2473. I 2 l l 1 1 9.ll 9.11 9.11 9.11 9.11 9.11 9.11 225.87 -587.17 -1372.70 -759.41 -] -l -1 7.87 -983.23 -466.35 I;:;" As 1 Mu As n Conth1uous l'foun{lation Design Envelo(!e 13.92 13 13 13.92 l 1 15.59 -767.54 -805.38 l -436.17 -436.20 l -600.96 1 -210.12 10 .. 12 -210.12 0.12 10.12 10.12 10.12 10.12 -210.12 -210.12 10.12 0.12 -825.01 l 0.62 6. Location Mu !274.42 1 86.917 15.59 1 15.59 1 15.59 l I 0.00 -21CU2 -210.!2 -210.12 0.12 -210.12 -210.!2 10.12 -210.12 10.12 -21CU2 10.12 !0.12 10.12 10.12 -2Hl.l2 l 0.12 -210.12 -210.12 10.12 10.12 -210.12 -210.12 10.12 58.34 147.12 l 0.00 Mn As -210.12 -56.92 10. 12 0.03 -210.12 HU2 0.03 -2HU2 0.03 10.12 1.48 -23.27 10.12 I -18.81 -210.12 1.48 J -6.05 10. 0.03 0.12 0.03 -1.33 10.!2 0.03 -1.12 10.12 0.03 -1.07 HU2 ().03 l -210.12 lOJ2 a n ldo-ft kin-ft kiu-ft ldn-ft 4.00 3 3.07 16 20.16 1 I 1 1 1.84 .17 1 1 86.11 1 46.35 131 13!.13 43.99 1 ! l I ! I ~ 6.50 5.41 34.12 11.50 5.41 12 -- 11.50 36.73 0.15 63.22 2i {\ I .:;: \J~ J ...,1 77.97 I .li -- 34.12 0.\)4 13 12 0.04 24.13 1 1 0.00 50.35 7 6. 0.08 65.36 683 Hl83.ll 2 !2 0.04 341t49 4.46 J Jfl 6.72 36.73 0.08 7L02 7 t.02 683.39 8.67 1083.11 ~~~ 91.50 5.41 34.12 0.07 39.22 348.49 4.46 \')', 12 ().{)7 39.22 4.46 293.20 .81 -...~ 2 0.05 41.73 0.02 41.73 0.£)2 8.38 Co# Location Stress n I{ sf 51 0. 2.66 51 1.02 51 2.08 2.60 51 3.45 51 4.46 2.50 51 2.45 51 7.98 2.36 51 2.19 5! l 2.17 51 1 1 2.16 34.76 55 55 2.40 J 4 2.19 Ld !9 19 40.11 40.11 # 51 51 51 51 51 51 51 5[ 51 2.75 I,ocathm ft 0.94 1.78 4.00 4.54 6.50 <).07 10.85 37,lJ8 ll Stn~ss Ld # 2.65 51 2.61 51 2.59 51 51 2.50 5! 51 51 51 55 55 2.40 55 1/ I»id l\ln As n 1.48 202.20 0.00 202.20 10.!2 10J2 IO.l2 -210.12 10.12 10.12 -210.12 HU2 -2!0.12 -210.12 10.12 -210. -210.12 10.12 10.12 -2HU2 -2HU2 10.12 I 0.12 Vu 76.05 131.15 143.19 l 1'11 <: I 1 l.,J I.._J,l ... .J 24.260 1 l 1 Conthu1ous Foundm.:ion Design EnYelope 202.20 1 1 I 1 l I 1 1 0.00 0.00 (U)() 0.00 0.00 -H14.17 -257.09 -291 46 -525.()9 -448.1 l As Rcq. 10.12 -?!0.12 10.12 10.12 10.12 l 0.12 10.12 0.00 10.12 10.12 -210.12 -210.12 -2l0. 31.15 I .67 I t,ocation Mn 7.38 7.38 .17 202.20 19 9L4l7 432.34 -20.35 10.12 10.12 10.12 -210.12 HU2 10.12 10.12 -210.12 -2HU2 10.12 -210.12 -210J2 IOJ2 -210.12 -2HU2 10.12 -210.12 -210.12 I0.12 10.12 12 12 !2 61.41 !27.55 1 l l I 127.55 127.55 n 10.12 0.12 I J L50 1 i 2.!8 n 41 2.41 1 2.13 I ~ 537.93 71 Tl 50 11 9.11 n 1083. [ 1 11 # 2.30 Continuous Foundation Design Enveloge 2419 11/Wlhill'lldnltli"U'll! + ROHY H~GINEERS S!UliC. --- J~I ~0. --'-'--"-..;;..;;;;;... ___ _ --· www.hil_!~~~- l::·!\.·ll'l:tl: Sp~<:ffl~f'')S; c:ommenb: 1 !nputdala Ancller typ~ ~nd d1.>~rnd<€t,: -Effbci1V# wtlhfltf~M>t d~pfh· M~!erh!: Evafumtkln S~n,<Tt"~ f!<Jport h$Uhd! V-1:!;d~ Proot .$ti:!of1d-of! iM{&I!~~~<m: Profile: {b,;t<mmt-nld· Rdr~fe!c¢lmntit S>='1it;mic !tmdtl; (eat c. D E, et t1 Oe'-'>mf>ftY [fn.] & Lm~dirtg fib. an.lbl Kvrlk Bott l'Z • -cs 1/£ p H<fl !)~"' 3.25tl {f1. ~ "l 3.625ln Cmbnn 8t(!"~f EO:R·1917 5J1!20t3f5!F2015 dasim; h'mlhod' AC! J16/AC193 • {R~mP.>Mm! plaM ~Mchnr:>'IOs: nut C<'lleuf«t!ld} .f1op-toffh er<i(;.ked o::mt:tcfre. 2500, f< • ~ 2000 p!li; b ""'9,:150 in. r:rrs~aJ Prol1s Anchor 1..4.9 3trt201S: t!lMk!n, .;;cmdit'on l:t sh~ar: <A"<ndit"ib!l B; no ~;upP'tlmoM.~lspll!1in);;l mll'lf>:J~mtint proM!nt l!ld~ rE!imo..-e.t!~nt: n{)n'"' or< No, 4 bar ~-~·~.!~.1.1~$ 2 Load case/Resulting anchor forces Lood cu~; Oe!S!gn !>P:::a:d!l 3 Tension load Pullout Strt.-Jtgth~ 142. C:o.t~W 6rg'<1!k01..ri $:frength~• 1~ ,.. l'ttll::'l"!N" ht:li\ilng .th&~ hf;thli!~~ fo~dtng vanct'!<!r Ql'>:;)Up ($1'!eh1!lt~ fn bm;Jool 3.1 S~l!lt &trtngth V.ar~bfl!)$ C<111Wlafiun!S. rt~~S<ut~ ~U: Ptd!~ut Strlllngth N"",,{; ,pNpt>,1,~N.% V;~~~ti;t~bl~ R~s:Ht;; r;zfQrts,~ !Ct:·'t~S E:SRA·1~17 AC! Si&!J~H!q. fD·i} r!l>flJotio:fCC-E.S ES:F\·1$17' ACJ 319.()8 (q (CH) 31S$ :\237 2<! ,, 1:115-llJ Prof!$ Anchor 1.4.1! ~Vti201S OK OK ww~_,ryl!ttl.l:!l: 3-.:l CQtlct~ti!!' Elt'~<a'k<JIJt Slteng1h i.FJ9.RD.5,2.1tl::il A.;~ ""'9hJf ll'n•~ Hl Y~rl~h!i!ll'l ,, n C<~obu!<t~~tm"$ .. "'""~ . ·{.1%6 ... 'R~~1llts ACI3H3..0El E<.:t. !D-41 ACI31i'HT$ Eq. {D~;J ACI 31 G-OB Eq. 1!>6) AC! 318-tlt: Eq. ~0-'J} ACf 3iS.Ofl !?.q. iJ)· H) AC! 3"1:6:-08 fq. (0~ ~3.} AC! 3HI<-Ot.n:q. (0-1) '---1~00ir·-- ·1JiB·6 :P.:t"!:~~-1.:000 r;u:s&J Prolls Anchor 2.4.9 No· 3ttt:"'!tl1S www.hini.u~ £A.1~lt 4 Shear load ·st;ot Sif(ii9th~ St~ll!l f<~lk!rn (wilt! k:ver ~rmr Pryout Stmng\h"" (;O("!Cf-0t~a adQ~ f<Hl\rro lr: dlrQdbt\ "~ NlA 100 NIA "'"~m.:!mr fm:ving ttm hk!hest !o<1di1"lg H~mchelf !Jmtlfi {m!evenl.;:m>~.;b>t») t, 1 s~1 su-~ngUl :o;f.':SRval<J$ v~r!a.b~es C~h::ul3tiOf"l~ R-es:;olb;l 4...2 Prynu~ Str~~\)th Vatiab!~~ --"'·{:a~r[r C~k>ulatl:on.$ R~suttt. ACI :3tlHH'S E:<l'. {l:J .. E-0) AC!,Jl.S na&::. (0-2) AC! $1$-~~ E~. f)Al) At13HH38 Eq. tQ.g~ AC! 3H'J:·OS E:q.\0,11) ACI 311-Hl-8 Eq (!)..1:~} ACl3HH:!~ EQ. {0...7) .'f~q.~, 1J}0(t NlA Ml2 NlA r;u:s~LJ NIA f'~tA Pmt1s Anchor 2.4.9 'U7121)i5 N!A OK N,'.A -- [;II.S-i] a;;TJ!iJO W>#W,hilti.u:s Pro If• Anchor 2.4.9 ~.!~!~~!_:~.~---···· Prolis Anchor 2.4.9 Sr71Z015: S/7f2:015 5 Combined tension and shear loads 7 Installation data !'11'>'""!1~+p&"""'1 GWarnings Coe>rditm!l"~ Ar1c:l1(:tdn. --~-"~ ~ R~fi:!"r k< ~h~ m~ubcturtlr'~ pi'<Jdweilit$Jral!~re f& cl~~ning 211nd it1~!;"l!l\1i~ofl ir;'%b"Utit.CI~" l:l Remarks; Your Cooperation Outh!s ~ Ch~r:.:klng-the! tm:n:~<rm ~~ !e::o,;adt> bb l'* bt~~ m<tfuriaf ttnd f!m l!rf'l~~r mlSdn~ aro tt!"ql.l!re<j ln <:H;~;;,nrA witt! ACJ .318 tit (M m~vant $~M,1rd! Fastening meets the design criteria! SH~~~ ~0. -__,.-- JOI ~0. _...;...__...;..._ __ _ 0 f {) ! -, -~-r I .WIN 5124 with waH mo1 .. 1!1t buse or socket hose mounted flush .1 --~·1oEei I i ! I -~-·I 71i>l ' I I .. -J.. -.. _L __ L..c .. -.. L __ i o 4X .68 HOLE DIA Pago40 B-1 !3-2 8·3 2Sln 36in 45in 71in SOlo 88in Dimensions <ue for referenc;; only and sc~bfect In change without notice . 5124 Flush- A· I 45ln 32 in A-2. 57 in 33 in A-3 69 in 34in 8-1 28in 57 in 8-2 3uin 66 in B-3 45ln 74 in Di:nensions are lor reference only and subject to change wi!hout no!1ce. or tion to insure that it will "''-"'''!"'""'"' support. • Locate the crane so it wi H be vis- ible during the entire operation. Owner's Manual for Them 5110 and 5124 Sarles Portable Davit Cranes 1.1 I Do not instaU the crane near corrosive clu!m1ca!s, "I'"'"""" or other elements that may uam<11J;:c the crane and the ~ r-· _,_. .. Position the crane so the can stand dear ofthe of a broken vti.re rope iliat conid snap back ami cause Attach the crane to a and level foundation that wm "'"''"""~rt the crane and its load Under all load COlltl]tlons, im:!u;:llllil!SllOCk IV~'!.W"J;<• 1.u CONStJLT APPLICABLE CODESA'N'D REGULATIONS for rules on installing the eqttiprnerlt u.2 LOC!UE THE CRANE in an area clear oftra:ffic and obstacles that could UA interfere with ,..,.,..,,,r"t'"" Make sure the crane is accessible for maintenance and operation. INSTALL THE CRAN'E on a level surface. An I.Ill.even surface may cause the boom to rotate in the direction the mast is '""''""!<>• FASTEN THE BASE securely to !he foundation to >vithS!and "1-'l~..,,,=v"" moments and mounting bolt reaction. See Iiible 1. FOR STJ.\.NDARD PRODUCTS referred to in this use 5/8-inch coarse thread 5 or better. for Grade 5 fastener,; with- out lubrication is 150 fi lb. iviake sure mounting holes are sectrred to a solid foundation able to support !he crane and the load under all conditions with factors based on ac<:epted enj~m1::enmg nra.etH:::es. NON-STA.'illARD .PRODUCTS that vary .from the may have different fastening Contact a structural engineer or Th- el1l, Inc. for this infmmation. TO COMPLY \VITH LOCAL CONTACT A PROFES- SIONAL TO OBTAIN PROPER STRUCTURE OR FOU0;DATION SPECIFI- C.I\.TIONS FOR THE MOlTJ.\,'TING OF YiffiRN .PRODUCTS. 5110 5124 Mast Moment 37,817 in-!b 518 inch 1 Force in tension Wall-Mount $p~dfl~($ t\tl!tntni'H'Ihl: 1 Input d"ta .l\ndu}r tyrm :<~ml dltt!~rehtro EHa<:~lVf.l emtH'ldm~nt rl&plh: M.a~r!~l: Proof· StMd-:::>ff insts!!~ltcn: 1\n-tllt~! p~<!:to:J: f"ml1J.a.; !ht.e~tl:lti!.l! R~!nfNremer!t Glll<mf!S't~y {lo.J & Lol1ldh1U i!h, l~dbJ AW'i!J 01.1 Gtt a 518 hw~Ll5!)irL Oil"s'ign mtt!mdAC! 31iH1 H-:IP o~."' ttCI'tH"J h {ll(l ~1am:H~ft'); t = 0.000 ln. !, :x~ ltl '!"' t7.000in, X 1't000 in. ;.r Q$0{) ln. lHri700rnnl-entk-ld vtat~ thlf:.!-<f161!is.' OtllCC!b.d~Jed) nnprMHa -cwcked comte>!!), 4000. f,' =Anon p$!; h "'9.250 b len!llN1\ nr.m-dltltm a, sh~ar: t:cru:.litloo B; :Bdge tt:lhkrt~men~ Mne or~~ No.4 har 2 Lood case/Resulting anchor forces l.O$d <:all!e:: ~n.i,~n loaua 2 ~!Sf12 3 Tension load l'l!/l ~7-a1 "b'k'iff:H1'itt:glh~ -'""~A•• •• ·-·~""'"'""'""'~•·'"'<'"'"w• P"tWllltSiruO,.'}lh" C'AJnCr!)!~ BraakNJ' 51!~tf•.l CJ)nt:r(tl~ Skii\!·F~c~ Blf:fW(I1ft <ilrudlott ..... A211:q N2't81 95$2 19164 NL4 ~ am::-hor h~vlng tha high~s~ lc.arllng "'"M1(lhor~f0l.Jp {~l'F)hO(» §n ienllibr~) l. 1 S~l atn_,or~h Vo>!~hbitt~i Cak.n!<>t!OI)~t R~lHJlt$ 0 i;i~~=;~t=~~~~~~~~===:•;t;~·~~;;~ii':::~:i:'Sl '"'= :({l$013 ~H~76 NIA 41 GU NIA OK OK .N/A \.,) 3.i _fu1k~ut Sho<!"$1$:h ViO!ti:<~b!-a!'t C~kul~tloruo Rll>~uf~ij ACI 316·11 Eq. f,{)jjj!).jj AGfJH.Ht ·:t"l C~hNs4_$ l:lt*ukout Sk~osfh ~M ':"!'9h;r Wocl\f 'f!"<p.!J fl, V.Mfahh•t CJJ:!ool.trli¢m!a- !1>1\lUH$. ArCJ 11e-11 eq iO·•J -"\CI"JHH1T.ai~D4;U f~Gt 31$~11 C:q. (0-5) AC13J$-Ii EQ.)Nl) ACI ol8·1l E<J. (0·10) Act 31a 11 Eq. (D·l2) ACl ~HI:H l !~q (0{-l} ··t&N1 4 Shear load ··steartTtreitgir,····· · "·----·--" , Gten:f failure (wili1l!.!>,%r .armV Ptyol.lt $trtlfl#1u w~ 11124 Cta)o.."Y"Sla edg:e fulfuro In i1ife(:!f"l:.)fl :t· ~~ 11 t"N N/A 10§745 W!t'IS '"'o1nch~ h~\!fua tM-hfght1d k.\.M:fil){l ""anthor gmup (rek!v;;m~ ~nchcrn} 4-:t Siool St:ro~19fh VathdJfe~S< c~te.rn>)t!>On~ R~!H.di~ 4.2. Pf"yout S"!:t~n£;1h Villliabf.e$ C<i!tn.daUom ~es.t.>ff!St A,Cl ~1B·H E1-ID-41) A"C! 3UH11'abla OA. U ACI$HHiEq.(fHl) ACI SiB·H Eq. (0-S) AC131$--1i E"q. f0·10~ AC!318·11 aq. \0-12) ACI -31&.11 E:q. (0·6; N/A Jt 57 Nb\ OK OK E~MaH: 4~11 C9m:u.!!!!l -ttag~ faHtsr.e: h1 d!w-ctio-il ~N Vzr!ii!b!t.li! CsO!klll~!:hm~ R<atW!f!l 5 Combined tension and shear lo~ds 11mr~ fl1t + (~0-..::-* 1 &Warnings AG' 318~11 I:J:f. !D<H} AO! J.-"!:8-ii Tab!~DA.U AC! 3f~-i1 f:q fD·32) AC! 311!·1~ Fq {l':i.J~) AG111~11 E-q. {D·3~} AC~ ::'HB-H ltq. (0<39) ACl ;~l!H1 !::4. f0-34} ,, .. It'(~~ 1 vou .. :rr,;d6Y-...... No,, <JtHl/1:015 • 0!-fl'CI-:lHJ tha lr~t!Sf(~r (,4 ~<::n'lotfS lntc lh;g {l:!'l~~ m.::rl~rl-a:! ll!t\d th-1 -th~ar ra~i!st<IJR;f:.l E~t-$ n.nwf~M ¥~l6•tc.mdanw w!th ACI 316m !t\~ r~l~vaot $ttlntl<.mH Fastening merets the design criteria! 7 Installation data CQ'cmllmd~!'> AndK1r In, Spqdf1e.l"a. eemnwnt:&~ 1 lnput data An>'!"h<'r ·~~;n 3nd tihun(lfur: f;:H~1<;;t!va £>~m.ent <k~ptk Mf.j!\trl.ml: Evi.l:hJ~lhm $(lwioo Re-port l$i>altj:tj:l Valld: Pn:>til: Stand-(!fl in~la\I;J~tiru'l: . .t\n.t:h'!)( pb~q,: Pmfll->;-' Ssse rnM!!!Illl: lnr;Wlmlbn: H.<'!htrw'Ci!ml:ll'lt G~om~hyftn.J 1'!:.. Lt)~Hflnu f!b~ !rdbJ r::rr5:1ll Prolis Anchor 2.5.1 Kwik tht>lt rz . ss 315 u.a {a i14i hm..«<.i"' ':);250m., 1\>f<";.:;, 3,€2510 1\lS! 316 BStt¥19!7 &IU201'3 t 5fi!20i5 0~\.gn l"l'"liilth<nlACI M~H, !Me,;h, Ja~ * !'U100 1~. (M '&l;~~nd--trff); t"' (Uif.ll} !t~ !~ ;.r ir:lCt"'-" tLOOO lrt ¥ !Hl® he xfL6DO in.; {R~J:-BWMf-!f!dt!»i ~~t.at~th$:)\mff:;W ~~otcalou!ate.dj noprof'!a Ct;JJci>cfld Wm1tcl.JU, 4000. \;' ~ 4tl{)Q p~l; h ""V 2~.1) in ha!ttfnt::r drH!OO hnM, ltnlt;;!J!atinn co~dithm: Ol'y te,ns.mn; t;!md>ton a, sheilr: t:.o~dli.EOn B; tin ~.tJf!pl~rfre-nM splitting reh'"i.fuR"£t"!'ltlll• pH>!MlTlt ~dWl' tt<loforoome-d: l"l.On!!': cr .:: No-4 bar 11 2 Load case/Resulting anchor forces l. Olild ca:~~: Das-\gn k!;MI.!! 3 Tension load Puihlof Btf"(!H\:l!h~ ;)8•! 0 ~u t:iO 50 NJA t4:mr;.~\f! En.'!afc:out Stf"{lr,Ufll'"" :l'-1)2 ~ aoct~or tm¥lng 1h$! ,'l'!Oh~t lo~dktg ""ntv;!w~ grOk"'P fa*~hau; 111 ~nskin) .:t i Stlli<Gl S.~r~ngth v~rtabW!':i C~\{tU~2tiCti& R-astllt'l NIA M!M WJ\ 12 t-VA ov. ~, :J.:t Cont:mt" El:rMft:tmt $!r~:mgtt1 R'0.5.2.1{b} 1/1Jitf~bk~ C<tfcttl<~tir.H1~ rt~~IAt!< ACI3lB·i1 f.:q.{IJ-4) . .i\Cl3HH1Table04:U ACt 3U:!· H Ptl: (0·5} An 31!!"·11 Eq. {D--81 M::1 3HH·! Eq. (!.ln10} ACI3!8·!1 6q. !D-12) ACU!8"'"11 Eq.(O B) 4 ShearJood S!ool fa~W$ {with !eVJ;!t arm)~t NIA Prynut Htr~.mu!h... zoo Cooet$1!2! ~td~ ~l!lll"l!:! in d!rl$~o~ y+~"*' .200 N!.t... o115l-6 3!1<49:1 ~ Motmr hM!ng Um M-ltJt\-$~t{ klacllnu .... *f~(:h<lr g.toop (r~f~1f ~neh~mJ ~-1 St""<e~' Stf·!.mQfft Va-riable$ C$h~u~~tt.m:m Re~u!l~ .4.2 Pryou~ SfmnQHJ Vlll.rf~Me~ C-<Jieufath:m.te: Rtl~Ul'!$ f-(1 31$ H Eq. ltk 1) ~.CI31.8~H Tflhh'dJA.U Atl 3lfl..11 Eq ID·S) ACl'.llR·H Eq. (O.Jl) AC1 ~la-!1 Eq. (0-10) ACI31B·H Eq. (0·11) ACI318·11 t~ {!HJ) WA NIA OK OK ~~'li~_.hl!~!:.~l! 4.3 Cont:l'flW nd~~ f~llun1· In flk!t!cticm y~ Vat~ablv~ (:a!-tto!-g,tlnm!> f'kfo::U!1'f\i AC! 3Hkt1 Eq {O<'ijj AG1 311'1·1 I Tabh~ !).4.1.1 ACl ~1S"1 t Eq. (0·32) r~c; J~B~l i ttq. {D--3&} AC! ~18"11 Eq. (0·38) ACl 3 i8"1 t Eq {O~W) ACl $1£.·11 Eq. {0<3.J} · "·~YY-"'1:3'~t:r_. ... ..J~~uy;~(" 5 Comblrun1 tensi<111 and shMr loads fhN "' r~ t pf .. ;.~ 1 6 Warnings _. Refer to th!:l mJn~d;m;torl!!f'n prnduct ll!tll! ~h.M> for d!iin!llrtg <lt11 h'mh::ilbtlNllm;.imc!ions ~ Chr.ck1ng th~ tr11nM~t pt kl<1>~~ into tim bi:i:(w rndMla! <Hltl rtw Ml~a>l recls!J:lfJ(:.t:l '*'~ rtJqu1r~d 1n (t;x<>:lfdm-·;ca wHh ACl 319 fjf lh~ rdevar>t <Jt.a:rJdfm:H In >lVfX<rdanve w!lh U"1tio I !ntl Mar.uhm!UI'er'$ Plir!-ml lt~~>!mHatbn ln111rttM!oo..~ (VW'li}. R<!.<futeru;:\fr AC! Fastening meets the design criteria! 7 !nstalfatlon data C~Jtm:limHt~lt Anehor ijfi, \,..\_\ 3