Loading...
HomeMy WebLinkAbout2515 PALOMAR AIRPORT RD; SHADE STRUCT; PCR13054; Permit06-28-2013 City of Carlsbad 1635 Faraday Av Carlsbad, CA 92008 Plan Check Revision Permit No PCR13054 Building Inspection Request Line (760) 602-2725 Job Address Permit Type Parcel No Valuation Reference # PC# Project Title 2515 PALOMAR AIRPORT RD CBAD PCR 2130201800 Lot# $0 00 Construction Type CB102442 LOWE'S DEFERRED SHADE STRUCT IN GARDEN AREA 58 Status Applied Entered By Plan Approved Issued Inspect Area ISSUED 04/25/2013 JMA 05/31/2013 05/31/2013 Applicant MARTY MCGARRY Owner COUNTY OF SAN DIEGO PUBLIC AGENCY OOOOO 949-422-4547 Plan Check Revision Fee Fire Expedited Plan Review/ Additional Fees $625 00 $0 00 $0 00 Total Fees $625 00 Total Payments To Date $0 00 Balance Due $625 00 Inspector FINAL APPROVAL Date Clearance NOTICE Please take NOTICE that approval of your project includes the "Imposition" of fees, dedications, reservations, or other exactions hereafter collectively referred to as "fees/exactions" You have 90 days from the date this permit was issued to protest imposition of these fees/exactions If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section 3 32 030 Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their imposition You are hereby FURTHER NOTIFIED that your nght to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project NOR DOES IT APPLY to any fees/exactions of which vou have previously been given a NOTICE similar to this, or as to which the statute of limitations has previously othenwise expired ^ CITY OF CARLSBAD PLAN CHECK REVISION APPLICATION B-16 Development Services Building Division 1635 Faraday Avenue 760-602-2719 www carlsbadca gov Plan Check Revision No. ' 0^ V Ongmal Plan Check No O • Project Address _ Contact UorV^yX A^ATiv^ P^{g^qyH22_-^^l Fax Ema/I C^^dZZ^^t^-^^<!ZZ^^<^£Z. .^^c^J^ Contact Address General Scope of Work ^/\gt^ C^o^A^r-^ Original plans prepared by an architect or engineer, revisions must be signed & stamped by that person. 1 • Elements revised ^S? Plans ..^EP^a'culations • Soils • Energy • Other 2. Describe revisions In detail 3. List page(s) where each revision is shown 4. List revised sheets that replace existing sheets ^:Wi^ f^ocWrf ^;>s^j^/-e-^ ^^AixAAvVt^V 5 • Does this revision, in any way, alter the exterior of the project? • Yes 6. Does this revision add ANY new floor area(s)? • Yes .0^No T. Does this revision affect any fire related issues? D Yes 0^o 8. Is this a complete set? Yes • No ^Signature. ^No 1635 Faraday Avenue, Carlsbad, 760-602-8558 Email building@carlsbadca gov www carlsbadca gov EsGii Corporation In (Partnership with government for (ButCcCing Safety DATE May 2, 2013 O^BELIgANT JURIS, JURISDICTION Carlsbad •"TCANREVIEWER • FILE PLAN CHECK NO 10-2442 REV 3, PCR13054 SET I PROJECT ADDRESS 2515 Palomar Airport Rd. PROJECT NAME Lowes Deferred Shade Structure Q The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's building codes 13 The plans transmitted herewith will substantially comply with the junsdiction's building codes when minor deficiencies identified below are resolved and checked by building department staff Q The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck O The check list transmitted herewith is for your information The plans are being held at Esgil Corporation until corrected plans are submitted for recheck 0 The applicant's copy of the check list is enclosed for the junsdiction to forward to the applicant contact person 1 I The applicant's copy of the check list has been sent to Esgil Corporation staff did not advise the applicant that the plan check has been completed I I Esgil Corporation staff did advise the applicant that the plan check has been completed Person contacted Telephone # Date contacted (by ) Fax # Mail Telephone Fax In Person ^ REMARKS Evidence must be submitted to show that the shade cloth and polycarbonate panels have California SFM approval By Kurt Culver Enclosures Previously-approved EsGll Corporation plans • GA • EJ • PC 4/29/13 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858) 560-1576 Carlsbad 10-2442 REV 3, PCR13054 May 2, 2013 [DO NOT PAY- THIS IS NOT AN INVOICE] VALUATION AND PLAN CHECK FEE JURISDICTION Carlsbad PLAN CHECK NO 10-2442 REV 3, PCR13054 PREPARED BY Kurt Culver DATE May 2, 2013 BUILDING ADDRESS 2515 Palomar Airport Rd. BUILDING OCCUPANCY TYPE OF CONSTRUCTION BUILDING PORTION AREA (Sq Ft) Valuation Multiplier Reg Mod VALUE ($) Air Conditioning Fire Spnnklers TOTAL VALUE Jurisdiction Code cb By Ordinance Bldg Permit Fee by Ordinance Plan Check Fee by Ordinance Type of Review • Repetitive Fee Repeats • Gonnpiete Review • Other 0 Hourly EsGil Fee Based on hourly rate $625.00 • Structural Only $100 00 Hrs. @ * $500.00 Comnnents PCR13-054 Sheetl of 1 macvalue doc + PLANNING DIVISION Development Services 4 BUILDING PLAN CHECK Planning Division 4 ^ CITY OF APPROVAL 1635 Faraday Avenue ARLSBAD P-29 (760) 602-4610 www carlsbadca eov DATE: 4-26-13 PROJECT NAME: PROJECTID: PLAN CHECK NO: PCR 13-54 SET#: 1 ADDRESS: 2515 Palomar Airport Rd APN: ^ This plan check review is complete and has been APPROVED by the Planning Division. By: Chris Sexton A Final Inspection by the Planning Division is required • Yes ^ No You may also have corrections from one or more of the divisions listed below. Approval from these divisions may be required prior to the issuance of a building permit. Resubmitted plans should include corrections from all divisions. Q This plan check review is NOT COIVIPLETE. Items missing or incorrect are listed on the attached checklist. Please resubmit amended plans as required. Plan Check APPROVAL has been sent to: mmcgarry@csigc.com For questions or clarifications on the attached checklist please contact the followmg reviewer as marked PLANNING 760-602-4610 ENGINEERING 760-602-2750 FIRE PREVENTION 760-602-4665 X Chris Sexton 760-602-4624 Chris Sexton@carlsbadca gov I 1 Kathleen Lawrence 760-602-2741 Kathleen Lawrence@carlsbadca gov 1 Greg Ryan 760-602-4663 Gregory Rvan@carlsbadca gov 1 1 Gina Ruiz 760-602-4675 Gma Ruiz@carlsbadca gov 1 1 Lmda Ontiveros 760-602-2773 Lmda OntiverosOcarlsbadca gov n Cindy Wong 760-602-4662 Cynthia Wong®carlsbadca gov • 1 1 Dominic Fieri 760-602-4664 Dommic Fieri@carlsbadca gov Remarks: jySLDING DEFt COPY DATE: 05/21/2013 PROJECT NAIVIE: LOWE'S PROJECT ID: PCR13054 PLAN CHECK NO: 2 SET#: 1 ADDRESS: 2515 PALOAMR AIRPORT RD APN: • This plan check review is complete and has been APPROVED by the FIRE Division. By: GR A Final Inspection by the FIRE Division is required ^ Yes • No This plan check review is NOT COMPLETE. Items missing or incorrect are listed on the attached checklist. Please resubmit amended plans as required. Plan Check Comments have been sent to: CSI, GC INC. You may also have corrections from one or more ofthe divisions listed below. Approval from these divisions may be required prior to the issuance of a building permit. Resubmitted plans should incluae corrections from all divisions. For questions or clarifications on the attached checklist please contact the followreviewer as marked PlANNING t; 760-602^4610:^ . r# -..,ENG,pEERINl / ^ ^. '.y760i6p2-275'pf,. ' ^/ " * -z^z "' ' • zw 5F!RETPR|^ENT|IPN ZJ^ Q Chris Sexton 760-602-4624 Chns Sexton@carlsbadca gov Kathleen Lawrence 760-602-2741 Kathleen Lawrence@carlsbadca gov X Greg Ryan 760-602-4663 Gregorv Rvan@carlsbadca gov 1 Gina Ruiz 760-602-4675 Gma Rui2@carlsbadca gov 1 1 Linda Ontiveros 760-602-2773 Linda Ontiveros@carlsbadca gov Cindy Wong ^ 760-602-4662 Cvnthia Wong@carlsbadca gov • • 1 1 Dominic Fieri 760-602-4664 Dommic Fieri@carlsbadca gov Remarks SEE ATTACHED Carlsbad Fire Department BOILDIMG DEPT. \J9 Plan Review Date of Report Name Address 05-21-2013 MARTY MCGARRY Requirements Category Reviewed by Permit # PCR13054 Job Name Job Address LOWE'S DEFERRED SHADE STRUCT 2515 PALOMAR AIRPORT RD CBAD Please review carefully all comments attached. CITY OF CARLSBAD FIRE DEPARTMENT - APPROVED: THIS PROJECT HAS BEEN REVIEWED AND APPROVED FOR THE PURPOSES OF ISSUANCE OF BUILDING PERMIT THIS APPROVAL IS SUBJECT TO FIELD INSPECTION AND REQUIRED TEST NOTATIONS HEREON, CONDITIONS IN CORRESPONDENCE AND CONFORMANCE WITH ALL APPLICABLE REGULATIONS THIS APPROVAL SHALL NOT BE HELD TO PERMIT OR APPROVE THE VIOLATION OF ANY LAW Entry 05/21/2013 By GR Action AP JOB TITLE LOWE'S ROUGH BROTHERS INC. carlsbad CA JOBNO 134226 CALCULATED BY M ALY PE CHECKED BY SHEET NO DATE DATE City Of Carlsbad Building Division MAY 3 1 2013 APPROVED BY ISSUED BY <jrW^ STRUCTURAL CALCULATIONS FOR LOWE'S carlsbad.CA • NO EXCEPTIONS EXCEPTIONS NOTED • • REVISE AND RESUBMIT RECORD COPY REVIEWED FOR CONFORMANCE WITH DESIGN CONCEPT ONLY CONTRACTOR IS RESPONSIBLE FOR DIMENSIONS FIELD CONDITIONS COORDINATION WITH RELATED WORK. INSTALLATION PROCEDURES AND ALL OTHER REQUIREMENTS OF THE CONTRACT DOCUMENTS 04/23/13 BBB Tohnston Burkholder Associates JOB TITLE LOWE'S ROUGH BROTHERS INC. carlsbad CA JOBNO 134226 CALCULATED BY M ALY PE CHECKED BY SHEET NO DATE DATE Code Search Code 2007 CALIFORNIA BUILDING CODE II Live Loads Roofanale (a) 6 00/12 26 6dea Roof Oto200 sf ISosf 200 to 600 sf 216-0 OlSArea but not less than 12 osf over 600 sf 12 Dsf III Wind Loads ASCE 7-05 IniDortance Factor Basic Wind soeed Directionalitv (Kd) Mean Roof Ht (h) Paraoet ht above ard ExDosure Cateoorv Enclosure Classif Internal oressure Buildina lenath (L) Least width (B) Kh case 1 Kh case 2 1 00 85 moh 0 85 18 2 ft 60ft C Enclosed Buildina +/-0 18 77 0 ft 41 5 ft 0 884 0 884 ESCARPMENT Topoaraphic Factor (Kzt) Toooaraohv Flat HillHeiaht ( H) 80 0 ft Half Hill Lenath (LM 100 0 ft Actual H/Lh = 0 80 Use H/Lh = 0 50 Modified Lh = 160 0 ft From top of crest x= 50 0 ft BIda up/down wind'' downwind 2D RIDGE or 3D AXISYMMETRICAL HILL H/Lh= 0 50 x/Lh = 0 31 z/Lh= 0 11 At Mean Roof Ht Kzt = (1+KiK2K3)*2 = K, : K^: OOOO 0 792 1 000 1 000 ROUGH BROTHERS INC. JOB TITLE LOWE'S carlsbad CA JOBNO 134226 CALCULATED BY M ALY PE CHECKED BY SHEET NO DATE DATE III Wind Loads - cont • Gust Effect Factor h= 182ft use this h B = Calculated Iz = Use this /z 182ft 41 5 ft 15 Oft 15 Oft Flexible structure if natural freauencv < 1 Hz (T > 1 secondl However rule of thumb if buildine is if h/B < 4 then rieid structure h/B = 0 44 Therefore orobablv rieid structure G = 0.85 Usine rieid structure default Rieid Structure Flexible or Dvnamicallv Sensitive Structure /s = 0 20 Natural Freauencv (ni^ = 0 OHz 1 = 500 ft Damoine ratio f = 0 15ft /b = 0 65 C = 0 20 /a = 0 15 EQ. av = 3 4 Vz = 71 8 L.= 427 1 ft N,= 0 00 0 = 0 92 R„ = OOOO Iz = 0 23 Rh = 28 282 n = 0 000 G = 0 88 useG=0 85 RB = 28 282 n = 0 000 RL = 28 282 n = 0 000 = OOOO R = 0 000 G = 0 000 h= 182ft Enclosure Classification Test for Enclosed Building A buildina that does not aualifv as ooen or oartiallv enclosed Test for Open Building All walls are at least 80% ooen Ao > 0 8AE Test for Partially Enclosed Building Inout Test Ao 0 Osf Ao > 1 lAoi YES As OOsf Ao>4'/001Ae NO Aoi OOsf Aoi/Aei < 0 20 NO Aei OOsf Building IS NOT Partially Enclosed Conditions to gualifV as Partially Enclosed Buildine Must satisfy all of the followine Ao >= 1 lAoi Ao> smaller of 4'or 0 01 Ae Aoi/Aei<= 0 20 Where Ao = the total area of onenines in a wall that receives oositive external pressure As = the eross area of that wall in which Ao is identified Aoi = the sura of the areas of ooenines in the buildins envelooe fwalls and rooft not includins Ao Aei = the sum of the eross surface areas of the buildine envelooe (walls and roofi not includine Ae Reduction Factor for large volume partially enclosed buildings (Ri): Ifthe nartially enclosed buildine contains a smele room that is unnartitioned the intemal nressure coefficient mav be multiolied bv the reduction factor Ri Total area of all wall & roof ooenines (Aoe) Unnartitioned internal volume (Vi) Ri = Osf Ocf 1 00 Altitude adjustment to constant 0.00256 : Altitude = 0 Constant = 0 00256 feet Averaee Air Density = 0 0765 Ibm/ft^ JOB TFTLE LOWE'S ROUGH BROTHERS INC. carlsbad.CA JOBNO 134226 CALCULATED BY M ALY,PE CHECKED BY SHEET NO DATE DATE Wind Loads - MWFRS h<60' (Low-nse Buildings! Enclosed/partially enclosed only Torsional loads are 25% of zones 1 -4 See code for loading diagram Kz = Kh = 0 88 (case 1) Base pressure (qh) = 13.9 psf GCpi= +/-0 18 Edge Strip (a) 4 2ft End Zone (2a) 8 3ft Zone 2 length = 20 8 ft Transverse Direction Longitudinal Direction Perpendicular 0 = 26 6 deg Parallel 8 = Odeg Surface GCpf w/-GCpi w/+GCpi GCpf w/-GCpi w/+GCpi 1 0 55 0 73 0 37 0 40 0 58 0 22 2 -0 10 0 08 -0 28 -0 69 -0 51 -0 87 3 -0 45 -0 27 -0 63 -0 37 -0 19 -0 55 4 -0 39 -0 21 -0 57 -0 29 -Oil -0 47 S -0 45 -0 27 -0 63 -0 45 -0 27 -0 63 6 -0 45 -0 27 -0 63 -0 45 -0 27 -0 63 IE 0 73 0 91 0 55 0 61 0 79 0 43 2E -0 19 -0 01 -0 37 -1 07 -0 89 -1 25 3E -0 58 -0 40 -0 76 -0 53 -0 35 -0 71 4E -0 53 -0 35 -0 71 -0 43 -0 25 -0 61 Wind Surface pressures (psf) 1 10 1 5 1 8 1 3 1 2 1 1 -3 9 -7 1 -12 1 3 -3 7 -8 7 -2 6 -7 6 4 -2 9 -7 9 -1 5 -6 5 5 -3 8 -8 8 -3 8 -8 8 6 -3 8 -8 8 -3 8 -8 8 IE 12 6 7 6 11 0 6 0 2E -0 1 -5 1 -12 4 -17 4 3E -5 6 -10 6 -4 9 -9 9 4E -4 9 -9 9 -3 5 -8 5 Windward roof overhangs Parapet Windward parapet Leeward parapet 9 5 psf (upward) add to windward roof pressure 20 0 psf -13 3 psf (GCpn = (GCpn = +1 5) -1 0) WINDWARD OVERHANG LEEWARD ROOF t t 1 t t 1 1 t Horizontal MWFRS Simple Diaphragm Pressures (psO Transverse direction (normal to L) Interior Zone Wall 13 1 psf Roof4 8 psf End Zone Wall 17 6 psf Roofs 5 psf Longitudinal direction (parallel to L) Interior Zone Wall 9 6 psf End Zone Wall 14 5 psf TRANSVERSE ELEVATION H WIM 11 WIMDWARD ROOF LEEWARD ROOF t t t t t t t 3 LC or ZONE 2 LONGITXIDIlSrAL ELEVATION ROUGH BROTHERS INC JOB TITLE LOWE'S carlsbad CA JOBNO 134226 CALCULATED BY M ALY PE CHECKED BY SHEET NO DATE DATE Snow Loads Roof slooe = 26 6 dee Honz eave to ridse dist (W^ = 20 8 ft Roof leneth oarallel to ndce (Ll = 77 0 ft Rain on Snow Surcharee Ancle = 0 42 dee TvDeofRoof Sawtooth etc Ground Snow Load Pe = OOosf ImDortance Cateeorv n Imoortance Factor 1 = 1 0 Thermal Factor Ct = 1 00 ExDOsure Factor Ce = 1 0 ExDosure Factor Ce Pf = 0 7*Ce*Ct*I*Pe = OODsf ExDosure of roof Pfmin 0 Oosf Terrain FuUv Partiallv Sheltered A n/a 1 1 1 3 Flat Roof Snow Load Pf 0 Cosf B 09 1 0 1 2 Rain on Snow Surcharae = OODsf C 09 1 0 1 1 Unobstructed Sliooerv D 08 09 1 0 Surface (oer Section 7 4^ no Above treeline 07 08 n/a SloDed-roof Factor Cs = 1 00 Alaska-no trees 07 0 8 n/a Desien Roof Snow Load (Ps) Buildine Official Minimum 0 0 Dsf ("balanced" snow loadl OOosf NOTE Altemate soans of continuous beams and other areas shall be loaded with half the desien roof snow load so as to produce the ereatest possible effect - see code ROUGH BROTHERS INC JOB TITLE LOWE'S carlsbad CA JOBNO 134226 CALCULATED BY M ALY PE CHECKED BY SHEET NO DATE DATE VI Seismic Loads ASCE 7-05 Occunancv Cateeorv II Imnortance Factor (I) 1 00 Site Class D Ss(0 2 sec) = Sl (1 0 sec) = 113 60%e 43 00 %e ZIP Code Search for Ss & S1 http //egint cr uses gov/ea-men/htmi/zipcode html Fa = Fv = 1 046 1 570 Sms = Smi = 1 188 0 675 Sds = Sdi = 0 792 0 450 Desien Cateeorv = Desien Cateeorv = D D Seismic Desien Cateeorv = D Number of Stones 1 Structure Tvoe Not aoohcable Honzontal Struct Irreeulanties No olan Irreeulantv Vertical Structural Irreeulanties No vertical Irreeulantv Flexible Diaohraems Buildme Svstem Seismic resistme svstem Svstem Buildme Heieht Limit Actual Buildme Heieht (hn) = No Buildme Frame Systems Ordinary steel concentncallv braced frames 3Sft (see code footnote) 182ft See ASCE7 Section 12 2 5 4 for excentions and other system limitations DESIGN COEFFICIENTS AND FACTORS ResDonse Modification Factor (R) = 3 25 Svstem Over-Streneth Factor (Clo) = 2 Deflection Amohfication Factor (Cd) = 3 25 Sds = 0 792 Sdi = 0 450 Seismic Load Effect (E) = o OE +/- 0 2SDS D Soecial Seismic Load Effect (E) = fJo OE +/- 0 2SDS D PERMITTED ANALYTICAL PROCEDURES = o OE +/- 0 158D = 2 0 OE +/- 0 I58D Index Force Analysis (Seismic Cateeorv A only) Method Not Permitted Simohfied Analysis Use Eauivalent Lateral Force Analysis D = redimdancv coefficient OE = honzontal seismic force D = dead load Eauivalent Lateral-Force Analysis Buildme period coef (Cj) = Aonrox fundamental oeriod (Ta) = User calculated fundamental oenod (T) = Lone Period Transition Penod (TL) = Seismic resDonse coef (Cs) = need not exceed Cs = but not less than Cs = USE Cs = Model & Seismic ResDonse Analysis Permitted 0 020 CTh„'' = ASCE7 map = Sdsl/R = Sdl I/RT~ 0 176 sec x=0 75 6 sec 6 0 244 0 561 0 010 0 244 Desien Base Shear V = Cu = Tmax = CuTa = UseT = 1 40 0 247 0 247 0 244W - Permitted (see code for orocedure) ALLOWABLE STORY DRIFT Structure Tvne All other structures Allowable storv dnft = 0 020hsx where hsx is the story heieht below level x ROUGH BROTHERS INC JOB TITLE LOWE'S carlsbad CA JOBNO 134226 CALCULATED BY M ALY PE CHECKED BY SHEET NO DATE DATE Roof Design Loads Items Description Multiple psf (max) psf (mm) Roofma Glazme 1 0 1 0 Deck None 00 00 Framme Structure & Fixed Eauioment 20 20 Insulation None X 2 0" 00 00 Ceilme None x 1 olvfs) 00 00 Snrinklers Collateral on Ton Chord 50 5 0 Mech & Elec None 00 00 Misc 0 1 00 00 Actual Dead Load il 80 80 Use this DL instead 0 20 0 O 90 Live Load 18 0 00 Snow Load 00 0 0 Wmd(zone2- lOOsfl 100 -192 ASD Loading Dead + Live Load 26 0 - Dead + 0 75(Wmd + Live) Load 29 0 - 0 6*Dead + Wmd Load --14 4 LRFD Loadine 1 2D + 1 6 Lr + 0 8W 46 4 - 1 2D + 1 6W + 0 5Lr 34 6 - 0 9D + 1 6W --23 5 Roof Live Load Reduction Roof anele 6 00/12 26 6 des Oto 200 sf 18 0 osf 200 to 600 sf 216-0 OlSArea but not less than 12 osf over 600 sf 12 0Dsf 300 Osf 16 2Dsf 400 Osf 14 4 osf 500 Osf 12 6 osf Userlnout 207 5 sf 17 9 osf JOBinLE LOWE'S carlsbad CA JOB NO 134226 SHEET NO CALCULATED BY M ALY P] DATE CHECKED BY DATE VIX Sample Calculation of Nodal Loads on Trusses 1-DL Node X(ft) Vffl) T SDacinelft) LoadfDSfl V(lbs> 3 1 435 0717 10 0ft 8 115 10 3 339 1 670 10 0ft 8 267 9 3 809 1 904 10 0ft 8 305 55 3 809 1 904 10 0ft 8 305 61 3 809 1 904 10 0ft 8 305 8 3 339 1 670 10 0ft 8 267 7 1 435 0717 10 0ft 8 115 2-LL Node Xllt) Y(ftl T SDacine Load(Dsf) V(lbs) 3 1 435 0717 10 0ft 17 87 256 10 3 339 1 670 10 0ft 17 87 597 9 3 809 1 904 10 0ft 17 87 680 55 3 809 1 904 10 0ft 17 87 680 61 3 809 1 904 10 0ft 17 87 680 8 3 339 1 670 10 0ft 17 87 597 7 1 435 0717 10 0ft 17 87 256 3-WLL Node X(ft> Y(ft) T soacme Load(DSf) V(lbs) H(lbs) 3 1 435 0717 10 0ft 1 12 16 8 10 3 339 1 670 10 0ft 1 12 38 19 Q 9 3 809 1 904 10 0ft 1 12 43 21 55 3 809 1 904 10 0ft 1 12 43 21 61 3 809 1 904 10 0ft 1 12 43 21 8 3 339 1 670 10 0 ft 1 12 38 19 7 1 435 0 717 10 0ft 1 12 16 8 18 1 435 0717 100ft -3 71 -53 -27 16 3 339 1 670 10 0ft -3 71 -124 -62 15 3 809 1 904 10 0ft -3 71 -141 -71 < 56 3 809 1 904 10 0ft -3 71 -141 -71 62 3 809 1 904 10 0ft -3 71 -141 -71 LEE 14 3 339 1 670 10 0ft -3 71 -124 -62 LEE 7 1 435 0717 10 0ft -3 71 -53 -27 4-WLL Node xm) vm) T SDacine Load(DSf) Vllbs) H(lbs) 3 1 435 0718 10 0ft 3 90 56 28 10 3 339 1 670 10 0ft 3 90 130 65 9 3 809 1 905 10 0ft 3 90 149 74 55 3 809 1 905 100 ft 3 90 149 74 61 3 809 1 905 10 0 ft 3 90 149 74 a 8 3 339 1 670 100ft 3 90 130 65 7 1 435 0718 10 0 ft 3 90 56 28 18 1 435 0718 10 0ft 8 70 125 62 16 3 339 1 670 10 0ft 8 70 290 145 IS 3 809 1 905 10 0ft 8 70 331 166 PB 56 3 809 1 905 10 0 ft 8 70 331 166 62 3 809 1 905 100ft 8 70 331 166 LEE 14 3 339 1 670 10 0ft 8 70 290 145 LEE 7 1 435 0718 100ft 8 70 125 62 S-WL // Node X(ft) Yfft) T soacme Load(Dsf) V(lbs) H(lbs) 3 1 435 0 717 10 0ft -7 09 -102 -51 10 3 339 1 670 10 0ft -7 09 -237 -118 9 3 809 1 904 10 0ft -7 09 -270 -135 55 3 809 1 904 10 0ft -7 09 -270 -135 61 3 809 1 904 10 0ft -7 09 -270 -135 9 8 3 339 1 670 10 0ft -7 09 -237 -118 7 1435 0 717 10 0ft -7 09 -102 -51 6-WL // Node X(ft) Yfft) T SDacine Laad(DSf) V(lbs) H(lbs) 3 1 435 0718 10 0ft 12 10 174 87 10 3 339 1 670 10 0ft 12 10 404 202 9 3 809 1 905 10 0ft 12 10 461 230 55 3 809 1 905 100ft 12 10 461 230 61 3 809 1 905 10 0ft 12 10 461 230 M 8 3 339 1 670 10 0ft 12 10 404 202 7 1 435 0718 10 0ft 12 10 174 87 7-BSL Node xm) Yfft) T SDacine LoadfDSfl V(lbs) 3 1 435 0717 10 0ft 0 00 0 10 3 339 1 670 10 0ft 0 00 0 9 3 809 1 904 10 0ft 0 00 0 55 3 809 1 904 10 0ft 0 00 0 61 3 809 1 904 10 0ft 0 00 0 8 3 339 1 670 10 0ft 0 00 0 7 1 435 0 717 10 0ft 0 00 0 S-VSL Node X(ft) Y(ft) T SDacine Load(Dsf) Vflbs) 3 1 435 0 717 10 0ft 0 00 0 10 3 339 1 670 10 0ft 0 00 0 9 3 809 1 904 10 0ft 0 00 0 55 3 809 1 904 10 0ft 0 00 0 61 3 809 1 904 10 0ft 0 00 0 8 3 339 1 670 10 0ft 0 00 0 7 1 435 0717 10 0ft 0 00 0 9-DSL Node X(ft) Yfft) T SDacine LoadfDsf) Vflbs) 3 1 435 0717 10 0 ft #DIV/Oi #DIV/Ol 10 3 339 1 670 10 0ft #DIV/Ol #DIV/0' 9 3 809 1 904 10 0ft #D1V/0I #DIV/Oi 55 3 809 1 904 10 0ft #DIV/OI #DIV/Ol 61 3 809 1 904 10 0ft #DIV/Oi #DIV/01 8 3 339 1 670 10 0ft #DIV/Ol #DIV/Oi 7 1 435 0 717 10 0ft #DIV/Oi #DIV/Oi 14 3 339 1 670 10 0ft #DIV/Oi #DIV/Oi 62 3 809 1 904 10 0ft #DIV/Oi #DIV/Oi 56 3 809 1 904 10 0ft #DIV/OI #DIV/Oi 15 3 809 1 904 10 0ft #DIV/Oi #DIV/Oi 16 3 339 1670 10 0ft #DIV/Oi #DIV/Oi 18 1 435 0717 10 0ft #DIV/0' #DIV/Oi 10-EQ Node Xfft) Yfft) T SDacine Load(Dsf) Hflbs) 3 1 435 0 717 10 0ft 1 95 28 10 3 339 1 670 10 0ft 1 95 65 9 3 809 1 904 10 0ft 1 95 74 SS 3 809 1 904 10 0ft 1 95 74 61 3 809 1 904 10 0ft 1 95 74 8 3 339 1 670 10 0ft 1 95 65 7 1 43S 0 717 10 0ft 1 95 28 11-BOTTOM CHORD COLLATERAL Node Xflt) YffU T SDacine LoadfDsfl Hflbs) 3 2 984 10 0ft 5 00 149 4 6 484 100ft 5 00 324 5 7 391 100ft 5 00 370 11 7 781 100ft 5 00 389 12 7 391 10 0ft 5 00 370 17 6 484 10 0ft 5 00 324 18 2 984 10 0ft 5 00 149 ROUGH BROTHERS INC JOB TTTLE LOWE'S carlsbad CA JOB NO 134226 SHEET NO CALCULATED BY M ALY PE DATE_ CHECKED BY DATE VIX. Purlin Desiqn and Analysts Mechanical ProDerties F, =Yeild Strength SO 0 ksi E = Modulus of Elashcitv 29000 0 ksi Qb- Bendina Factor 1 67 fij- Comp Factor 1 8 Crn-for simple beam 1 R- for Simple Span 05 1 •Valley Purlin (VP-11 Section Wt Ib/ft Area lin'l Swot s.„„ 1, V.(klDS) M.Ik in) P. (kiDS) 6 z 16 aa 2 395 0 704 1 196 1 196 3 803 3 184 39 393 9 89 L,=Span 100ft btn=Tnbutarv Width 3 34 ft Wn=Purlin wt 0 72 osf WprPanels wt 2 00 psf Wha= Collateral Load 1 00 psf WDL=i:(WD+wpl+whal 3 72 psf WL=Snow (Uve) Load 17 87 osf W,=Wind Load 7 09 osf P,=Wind Load (Wind //ridael 2 0 kiDS Deflection Check 5act 5/384-fWoL+WL)-b„-LV(E*l,) 0 15 in Sail L/120 1 00 in OK Design Forces Mn»<=(WDL+WLrb,„*L^/8 10 81 kiD In V„„=(WcL+WLrbfc-L/2 0 36 kiDS Rm„=V™x 0 36 kips Flexural Stress Check-Flexure about x-x Flexure Check x-x PASS Shear Check x-x PASS Check UDhft Wind M„„=W,-WBL)'b,„*L'/8 014kiDft M„=R'S„„-F, 2 49 kiD ft 1 49 kiD ft OK DL+WL+LL Combination P„=7i'*E*y(KU^ 1 75 65 kios | a;,=1-(n,*P/Pex) 0 9524127 Ea6 53 C,=P/P,+C„ M/(<M.) 0 4903387 Ea6 54 C2=P/P,+M/(M.l 0 4766281 Ea6 54 lf(P/Pa<=0 15 CjC,! 0 4903387 OK 2-Vallev Purlin (VP-2> Section Wtlb/n Area (in'l 1. V.lklDSl M.Ik In) P. (kiDS) 6z 16 aa 2 395 0 704 1 196 1 196 3 803 3 184 39 393 9 89 L,=Span 100ft b,„=Tnbutarv Width 3 81 ft WD=Purlin wt 0 63 psf Wp|=Panels wt 2 00 osf Wha= Collateral Load 1 00 osf WDL=s/wo+wol+whql 3 63 osf WL=Snow (Live) Load 17 87 psf W»=Wind Load 7 09 DSf P,=Wind Load (Wind //ridae) 2 0 kips Deflection Check Sact 0 17 in Sail L/120 1 00 in OK Desian Forces Mm.x=(WDL+WL)*b,„-L'/8 12 28 kip in V„.x=(WoL+WO-b,„-L/2 0 41 kiDS Rm.<=V„„ 0 41 kiDS Flexural Stress Check-Flexure about x-x Flexure Check x-x PASS Shear Check x-x PASS Check Uplift Wind M™.,=(W.-WoL)*b,„-L'/8 0 16 kiDft M„=R-S.„„-F, 2 49 kiD ft 1 49 kiD ft OK OL+WL+LL Combinabon P„=ii^*E*y(KL)^ 1 75 65 kips | a<=1-(f!j*P/P„) 0 9524127 Ea6 53 C,=P/P,+C„ M/(a/M.) 0 5295214 Ea6 54 C2=P/P.+M/(M.) 0 5139462 Ea6 54 lf(P/Pa<=0 15C2C0 0 529S214 OK 3-Vallev Purlin (VP-3) Secbon Wt Ib/ft Area dn') s„„ s.„«, 1, V.(klDS) M.Ik in) P. (kiDS) 6 z 16 aa 2 395 0 704 1 196 1 196 3 803 3 184 39 393 9 89 L,=SDan 100ft b,n=Tributarv Width 3 81ft Wn-Pur1in wt 0 63 osf WorPanels wt 2 00 psf Wbn= Collateral Load 1 00 psf WDL=S(wp+wpl+whal 3 63 psf WL=Snow (Live) Load 17 87 DSf W,=Wind Load 7 09 psf P,=Wind Load (Wind //ndae) 2 0 kips Deflection Check 5act 5/384*(WoL*Wtl*b„*L''/(E'l,l 0 17 in Sail U120 1 00 in OK Design Forces Mm.,='WDL+WL)*b,„*L^/8 12 28 kiD in V„„=(Wi,L+WLl*b,„'U2 0 41 kiDS R™x=V„„ 0 41 kiDS Flexural Stress Check-Flexure about x-x Flexure Check x-x PASS Shear Check x-x PASS Check UDllft Wind Mn,«r(W.-Wi,L)*b,„*L'/8 D 16 kio ft Mn=R*S.„«,*F, 2 49 kiD ft 1 49 kio ft OK DL'»WL+LL Combination P„=it^E*M(KL)^ 1 76 65 kios | a^1-(n,*P/Pex) 0 9524127 Ea6 53 C,=P/P.+C„ M/(a,*M,) 0 5295214 Ea 6 64 C;=P/P.+M/(M.) 0 5139462 Ea6 55 if(P/Pa<=0 ISCjC,) 0 5295214 OK 4-Vallev Purlin (VP-4) Section Wt Ib/ft Area lin') Spnw lx V.(klDS) M.(k.ln) P. (kios) 6z 16 aa 2 395 0 704 1 196 1 196 3 803 3 184 39 393 9 89 L,=SDan lOOft b,n=Tnbutarv Width 3 81 ft Wo=Purlin wt 0 63 osf Woi=Panels wt 2 00 psf Whg= Collateral Load 1 00 psf WDL=2:(wo+wpl+whq) 3 63 DSf WL=Snow (Live) Load 17 87 psf W„=Wind Load 7 09 DSf P,=Wind Load (Wind //ridae) 2 0 kiDS Deflecbon Check 5act 5/384*(W„L+WL)*b„*L''/(E*l,) 0 17 in Sail L/120 1 00 in OK Desian Forces M„.,=(WoL+W|.)*b,„*L^/8 12 28kiD in V,„„=(WDL+WL)*b,„'L/2 0 41 kiDS R„.,rV„„ 0 41 kiDS Flexural Stress Check-Flexure about x-x Flexure Check x-x PASS Shear Check x-x PASS Check UDhft Wmd Mm.>=(W,-WoL)*b,„*LVe OieklDft M.=R*S.„„'F. 2 49 kiD ft 1 49 kiD ft OK DL+WL+LL Combinabon P„=ii^E-y(KL)^ 75 65 kiDS ax=1-(nj*P/Pex) 0 9524127 Ea6 53 C,=P/P.+C „ M/«M.) 0 5295214 Ea6 54 Cj-sP/P.+M/IM.) 0 5139462 Ea6 55 lf(P/Pa<=0 I6C2C,) 0 S29S214 OK 5-Vallev Purlin IVP-5) Secbon Wt Ib/ft Area (in*) S»po« 1. V.lklDS) M,(k in) P. (kios) 6z 16 aa 2 396 0 704 1 196 1 196 3 803 3 184 39 393 9 89 L.=SDan 100ft b,„=Tnbutarv Width 3 34 ft Wo=Pur1in vrt 0 72 osf Wei=Panels wt 2 00 psf Wh(,= Collateral Load 1 00 psf WDL=2;(wp+WDl+wha) 3 72 psf W|,=Snow (Live) Load 17 87 psf W,=Wind Load 7 09 psf P,=Wind Load (Wind //ridae) 2 0 kips Deflecbon Check 8act 5/384*(WoL+WL)*b|„*L'/(E*l.) 0 16 in Sail L/120 1 00 in OK Desian Forces M™,r(WDL+WL)'b,rt*L^/8 10 81 kiD in V„„=(W„L+WL)'b„'LO 0 36 kips Rm.«=V„„ 0 36 kiDS Flexural Stress Check-Flexure about x-x Flexure Check x-x PASS Shear Check x-x PASS Check UDllft Wind Mm«='W,-WoL)*b,„*L*/8 ai4klDft M„=R*S.„„-F, 2 49 kiD ft 1 49 km ft OK DL+WL-^LL Combination P„=n^*E*y(KL)^ 1 75 65 kips | a,=1-(n,*P/Pex) 0 9524127 Ea6 53 C,=P/P,+C„ M/«M.) 0 4903387 Ea6 54 Cj=P/P,+M/(M.) 0 4766281 Ea6 55 if(P/Pa<=0 I5C2C,) 0 4903387 jiKme^Mi^^lli Software licensed to Job No 134226 Sheet No NODES Rev jiKme^Mi^^lli Software licensed to Part Job Title Carlsbad CA Ref Bv D='M1-Mar-13 Chd Client •"''^ TRUSS A Std Date/Time 16-NOV-2012 07 14 NODES Uncut data was moditied alter Dicture taken) Print Time/Date 13/03/2013 10 16 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Job No Sheet No Rev 134226 MEMBERS ^mmmiSBtKtM Software licensed to ^mmmiSBtKtM Software licensed to Part Job Title Carlsbad CA Ref Bv °^'M1-Mar-13 Client F'ls TRUSS A Std Dale/Time 16-NOV-2012 07 14 79 MEMBERS Print Time/Date 13/03/2013 10 18 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Job No 134226 Job Title Carlsbad CA °^'M1-Mar-13 •"'i^ TRUSS A Std Date/Time 16-Nov-2012 07 14 Basic Load Cases Number Name 1 DEAD LOAD 2 LIVE LOAD 6 WIND A 7 WIND B 8 SEISMIC 9 WINDC 10 WIND D Combination Load Cases Comb Combination L/C Name Primarv Primary L/C Name Factor 11 D 1 DEAD LOAD 1 00 12 D+L 1 DEAD LOAD 1 00 2 LIVE LOAD 1 00 15 D+0 75W1+0 75L 1 DEAD LOAD 1 00 6 WIND A 0 75 2 LIVE LOAD 0 75 16 D+0 75W2+0 75L 1 DEAD LOAD 1 00 7 WIND B 0 75 2 LIVE LOAD 0 75 17 D+0 75W3+0 75L 1 DEAD LOAD 1 00 9 WIND C 0 75 2 LIVE LOAD 0 75 18 D+0 75W4+0 75L 1 DEAD LOAD 1 00 10 WIND D 0 75 2 LIVE LOAD 0 75 27 D+0 525E+0 75L 1 DEAD LOAD 1 00 8 SEISMIC 0 52 2 LIVE LOAD 0 75 30 0 6D+W1 1 DEAD LOAD 0 80 6 WIND A 1 00 31 0 6D+W2 1 DEAD LOAD 0 80 7 WIND B 1 00 32 0 6D+W3 1 DEAD LOAD 0 60 9 WIND C 1 00 33 0 6D+W4 1 DEAD LOAD 0 60 10 WIND D 1 00 34 0 6D+0 7E 1 DEAD LOAD 0 60 8 SEISMIC 0 70 Pnnt Time/Date 13/03/2013 10 20 STAAD Pro V8i 20 07 05 15 Print Run 1 of 11 Software licensed to Job No 134226 Job Title Carlsbad CA °=*'11-Mar-13 File TRUSS A Std Daten-ime 16-NOV-2012 07 14 Node Loads : 1 DEAD LOAD Node FX FY FZ MX MY MZ (kiD) (kiD) (kiD) (kiD'ft) (kiom (kiD"fl) 3 --0 115 ---- --0 149 ---- 4 --0 324 ---- 5 --0 370 ---- 7 --0 230 ---- 8 --0 267 ---- 9 --0 305 ---- 10 --0 267 ---- 11 --0 389 ---- 12 --0 370 ---- 14 --0 267 ---- 15 --0 305 ---- 16 --0 267 ---- 17 --0 324 ---- 18 --0 230 ---- --0 298 ---- 21 --0 324 ---- 22 --0 370 ---- 24 --0 230 ---- 25 --0 267 ---- 26 --0 305 ---- 27 --0 267 ---- 28 --0 389 ---- 29 --0 370 ---- 31 --0 267 ---- 32 --0 305 ---- 33 --0 267 ---- 34 --0 324 ---- 35 --0 230 ---- --0 298 ---- 39 --0 370 ---- 41 --0 230 ---- 45 --0 389 ---- 46 --0 370 ---- 52 --0 115 ---- --0 149 ---- 55 --0 305 ---- 56 --0 305 ---- 57 --0 305 ---- 58 --0 305 ---- 61 --0 305 ---- 62 --0 305 ---- 63 --0 305 ---- 64 --0 305 ---- 65 --0 324 ---- Pnnt Time/Date 13/03/2013 10 20 STAAD Pro V8i 20 07 05 15 Pnnt Run 2 of 11 fH, "^^^3^ Software licensed to Job No 134226 Sheet No Rev fH, "^^^3^ Software licensed to Part Job Title Carlsbad CA Ref Job Title Carlsbad CA Bv °='M1-Mar-13 Client F'le TRUSS A Std Date/Time 16-NOV-2012 07 14 Node Loads : 1 DEAD LOAD Cont... Node FX (kiD) FY (kiD) FZ (kiD^ MX (kiom MY (kiom MZ (kiom 67 --0 267 ---- 68 --0 305 ---- 69 --0 267 ---- 71 --0 267 ---- 72 --0 305 ---- 73 --0 267 ---- 74 --0 324 ---- 75 --0 305 ---- 76 --0 305 ---- 77 --0 305 ---- 78 --0 305 ---- Node Loads : 2 LIVE LOAD Node FX (kiD) FY (kiD) FZ (kio) MX (kiom MY (kiD"ft) MZ (kiD"ft) 3 --0 256 ---- 7 --0 512 ---- 8 --0 597 ---- 9 --0 680 ---- 10 --0 597 ---- 14 --0 597 ---- 15 --0 680 ---- 16 --0 597 ---- 18 --0 512 ---- 24 --0 512 ---- 25 --0 597 ---- 26 --0 680 ---- 27 --0 597 ---- 31 --0 597 ---- 32 --0 680 ---- 33 --0 597 ---- 35 --0 512 ---- 41 --0 512 ---- 52 --0 256 ---- 55 --0 680 ---- 56 --0 680 ---- 57 --0 680 ---- 58 --0 680 ---- 61 --0 680 ---- 62 --0 680 ---- 63 --0 680 ---- 64 --0 680 ---- 67 --0 597 ---- Pnnt Time/Date 13/03/2013 10 20 STAAD ProVSi 20 07 05 15 Pnnt Run 3 of 11 Software licensed to Job No 134226 Job Title Carlsbad CA ''^'MI-Mar-13 F'le TRUSS A Std Date/Time 16-NOV-2012 07 14 Node Loads : 2 LIVE LOAD Cont... Node FX FY FZ MX MY MZ (kiDl (kiD) (kiD) (kiD'ftl (kiD ft) (kiD'ft) 68 --0 680 ---- 69 --0 597 ---- 71 --0 597 ---- 72 --0 680 ---- 73 --0 597 ---- 75 --0 680 ---- 76 --0 680 ---- 77 --0 680 ---- 78 --0 680 ---- Node Loads : 6 WIND A Node FX (kiD) FY (kiD) FZ (kiD) MX (kiD"ft) MY (kiD'ft) MZ (kiD'ft) 3 0 008 -0 016 ---- 7 0 008 -0 016 ---- 0 027 0 053 ---- 8 0019 -0 038 ---- 9 0 021 -0 043 ---- 10 0019 -0 038 ---- 14 0 062 0 124 ---- 15 0 071 0 141 ---- 16 0 062 0 124 ---- 18 -0 027 0 053 ---- 0 027 0 053 ---- 24 -0 027 0 053 ---- 0 027 0 053 ---- 25 -0 082 0 124 ---- 26 -0 071 0 141 ---- 27 -0 062 0 124 ---- 31 0 062 0 124 ---- 32 0 071 0 141 ---- 33 0 062 0 124 ---- 35 -0 027 0 053 ---- 0 027 0 053 ---- 41 -0 027 0 053 ---- 0 027 0 053 ---- 52 0 027 0 053 ---- 55 0 021 -0 043 ---- 56 0 071 0 141 ---- 57 -0 071 0 141 ---- 58 0 071 0 141 ---- 61 0 021 -0 043 ---- 62 0 071 0 141 ---- Print Time/Date 13/03/2013 10 20 STAAD ProV8i20 07 05 15 Pnnt Run 4 of 11 Sofhvare licensed to Job No 134226 Job Title Carlsbad CA Bv Chd °='«11-Mar-13 Date/Time 16-NOV-2012 07 14 F'i« TRUSS A std Node Loads : 6 WIND A Cont. Node FX FY FZ MX MY MZ (kio) (kiD^ (kiD) (kiDft) (kiDft) (kiD ft) 63 -0 071 0 141 ---- 64 0 071 0 141 ---- 67 0 062 0 124 ---- 68 0 071 0 141 ---- 69 0 062 0 124 ---- 71 -0 062 0 124 ---- 72 -0 071 0 141 ---- 73 -0 062 0 124 ---- 75 0 071 0 141 ---- 76 -0 071 0 141 ---- 77 0 071 0 141 ---- 78 -0 071 0 141 ---- Beam Loads : 6 WIND A Beam Tvoe Direction Fa Da Fb Db Ecc (ft) (ft) 2 UNI Ibf/ft GX 101 000 ---- 119 UNI Ibf/ft GX 29 000 ---- Node Loads : 7 WIND B Node FX FY FZ MX MY MZ (kiD) (kiD) (kiD) (kiD"ft) (kiD"ft) (kiD ft) 3 -0 028 0 056 ---- 7 -0 028 0 056 ---- 0 062 0 125 ---- 8 -0 065 0 130 ---- 9 -0 074 0 149 ---- 10 -0 065 0 130 ---- 14 0 145 0 290 ---- 15 0 166 0 331 ---- 16 0 145 0 290 ---- 18 -0 062 0 125 ---- 0 062 0 125 ---- 24 -0 062 0 125 ---- 0 062 0 125 ---- 25 -0 145 0 290 ---- 26 -0 166 0 331 ---- 27 -0 145 0 290 ---- 31 0 145 0 290 ---- 32 0 166 0 331 ---- 33 0 145 0 290 ---- 35 -0 062 0 125 ---- Pnnt Time/Date 13/03/2013 10 20 STAAD ProV8i 20 07 05 15 Pnnt Run 6 of 11 Software licensed to Job No 134226 Job Title Carlsbad CA °^'M1-Mar-13 File TRUSS A Std Date/Time 16-NOV-2012 07 14 Node Loads : 7 WIND B Cont. Node FX FY FZ MX MY MZ (kiD) (kiD) (kiD) (kiDft) (kiDft) (kiD"ft) 35 0 062 0 125 ---- 41 -0 062 0 125 ---- 0 062 0 125 ---- 52 0 062 0 125 ---- 55 -0 074 0 149 ---- 56 0 166 0 331 ---- 57 -0 166 0 331 ---- 58 0 166 0 331 ---- 61 -0 074 0 149 ---- 62 0 166 0 331 ---- 63 -0 166 0 331 ---- 64 0 166 0 331 ---- 67 0 145 0 290 ---- 68 0 166 0 331 ---- 69 0 145 0 290 ---- 71 -0 145 0 290 ---- 72 -0 166 0 331 ---- 73 -0 145 0 290 ---- 75 0 166 0 331 ---- 76 -0 166 0 331 ---- 77 0 166 0 331 ---- 78 -0 166 0 331 ---- Beam Loads : 7 WIND B Beam Tvoe Direction Fa Da (ft) Fb Db Ecc (ft) 2 UNI Ibf/ft GX 51 000 ---- 119 UNI Ibf/ft GX 79 000 ---- Pnnt Time/Date 13/03/2013 10 20 ST/\AD ProV8i 20 07 05 15 Pnnt Run 6 of 11 Sofhvare licensed to Job No 134226 Job Title Carlsbad CA Bv Chd °^'M1-Mar-13 Daten-ime 16-NOV-2012 07 14 F'le TRUSS A std Node Loads : 8 SEISMIC Node FX (kiD) FY (kiD) FZ (kiD) MX (kiDft) MY (kiD"ft) MZ (kiDft) 3 0 028 ----- 7 0 056 ----- 8 0 065 ----- 9 0 074 ----- 10 0 065 ----- 14 0 065 ----- 15 0 074 ----- 16 0 065 ----- 18 0 056 ----- 24 0 056 ----- 25 0 065 ----- 26 0 074 ----- 27 0 065 ----- 31 0 065 ----- 32 0 074 ----- 33 0 065 ----- 35 0 056 ----- 41 0 056 ----- 52 0 028 ----- 55 0 074 ----- 56 0 074 ----- 57 0 074 ----- 58 0 074 ----- 61 0 074 ----- 62 0 074 ----- 63 0 074 ----- 64 0 074 ----- 67 0 065 ----- 68 0 074 ----- 69 0 065 ----- 71 0 065 ----- 72 0 074 ----- 73 0 065 ----- 75 0 074 ----- 76 0 074 ----- 77 0 074 ----- 78 0 074 ----- Pnnt Time/Date 13/03/2013 10 20 STAAD Pro V8i 20 07 05 15 Pnnt Run 7 of 11 Software licensed to Job No 134226 Job Title Carlsbad CA Bv Chd F'le TRUSS A std °='M1-Mar-13 Date/Time 16-NOV-2012 07 14 Node Loads : 9 WIND C Node FX (kiD) FY (kiD) FZ (kiD) MX (kiDft) MY (kioft) MZ (kioft) 3 -0 051 0 102 ---- 7 -0 051 0 102 ---- 0 051 0 102 ---- 8 -0 118 0 237 ---- 9 -0 135 0 270 ---- 10 -0 118 0 237 ---- 14 0 118 0 237 ---- 15 0 135 0 270 ---- 16 0 118 0 237 ---- 18 -0 051 0 102 ---- 24 -0 051 0 102 ---- 0 051 0 102 ---- 25 -0 118 0 237 ---- 26 -0 135 0 270 ---- 27 -0 118 0 237 ---- 31 0 118 0 237 ---- 32 0 135 0 270 ---- 33 0 118 0 237 ---- 35 -0 051 0 102 ---- 41 -0 051 0 102 ---- 0 051 0 102 ---- 52 0 051 0 102 ---- 55 -0 135 0 270 ---- 56 0 135 0 270 ---- 57 -0 135 0 270 ---- 58 0 135 0 270 ---- 61 -0 135 0 270 ---- 62 0 135 0 270 ---- 63 -0 135 0 270 ---- 64 0 135 0 270 ---- 67 0 118 0 237 ---- 68 0 135 0 270 ---- 69 0 118 0 237 ---- 71 -0 118 0 237 ---- 72 -0 135 0 270 ---- 73 -0 118 0 237 ---- 75 0 135 0 270 ---- 76 -0 135 0 270 ---- 77 0 135 0 270 ---- 78 -0 135 0 270 ---- Print Time/Date 13/03/2013 10 20 STAAD ProV8i20 07 05 15 Pnnt Run 8 of 11 Sofhvare licensed to Job No 134226 Job Title Carlsbad CA °='M1-Mar-13 Client F'le TRUSS A std Date/Time 16-NOV-2012 07 14 Beam Loads : 9 WIND C Beam Tvoe Direction Fa Da Fb Db Ecc (ft) (ft) 2 UNI Ibf/ft GX -38 000 ---- 119 UNI Ibf/ft GX 38 000 ---- Node Loads : 10 WIND D Node FX (kiD) FY (kiD) FZ (kiD) MX (kiD"ft) MY (kiDft) MZ (kiD ft) 3 -0 087 0 174 ---- 7 -0 087 0 174 ---- 0 087 0 174 ---- 8 -0 202 0 404 ---- 9 -0 230 0 461 ---- 10 -0 202 0 404 ---- 14 0 202 0 404 ---- 15 0 230 0 461 ---- 16 0 202 0 404 ---- 18 -0 087 0 174 ---- 0 087 0 174 ---- 24 -0 087 0 174 ---- 0 087 0 174 ---- 25 -0 202 0 404 ---- 26 -0 230 0 461 ---- 27 -0 202 0 404 ---- 31 0 202 0 404 ---- 32 0 230 0 461 ---- 33 0 202 0 404 ---- 35 -0 087 0 174 ---- 0 087 0 174 ---- 41 -0 087 0 174 ---- 0 087 0 174 ---- 52 0 087 0 174 ---- 55 -0 230 0 461 ---- 56 0 230 0 461 ---- 57 -0 230 0 461 ---- 58 0 230 0 461 ---- 61 -0 230 0 461 ---- 62 0 230 0 461 ---- 63 -0 230 0 461 ---- 64 0 230 0 461 ---- 67 0 202 0 404 ---- 68 0 230 0 461 ---- 69 0 202 0 404 ---- 71 -0 202 0 404 ---- 72 -0 230 0 461 ---- Pnnt Time/Date 13/03/2013 10 20 STAAD ProV8i20 07 05 15 Pnnt Run 9 of 11 Software licensed to Job No 134226 Sheet No Rev Job Title Carlsbad CA Bv °^"11-Mar-13 File TRUSS A std Daten^ime 16-NOV-2012 07 14 Node Loads : 10 WIND D Cont. Node FX FY FZ MX MY MZ (kiD) (kiD) (kiD) (kiDft) (kiD ft) (kiDft) 73 -0 202 0 404 ---- 75 0 230 0 461 ---- 76 -0 230 0 461 ---- 77 0 230 0 461 ---- 78 -0 230 0 461 ---- Beam Loads : 10 WIND D Beam Tvoe Direction Fa Da (ft) Fb Db Ecc (ft) 2 UNI Ibf/ft GX -88 000 ---- 119 UNI Ibf/ft GX 88 000 ---- Node Displacement Summary Node UC X Y z Resultant rX rY rZ (m) (in) (in) (in) (rad) (rad) (rad) MaxX 13 33 0 6D+W4 0 060 0 090 OOOO 0 108 OOOO OOOO OOOO MinX 3 12 D+L -0 511 -0 027 OOOO 0 512 OOOO OOOO 0 003 Max Y 23 33 0 6D+W4 0 006 0 092 OOOO 0 092 OOOO OOOO -0 000 Mm Y 23 12 D+L -0 191 -0 551 OOOO 0 584 OOOO OOOO 0 000 MaxZ 1 11 D OOOO OOOO OOOO OOOO OOOO OOOO 0 001 Min Z 1 11 D OOOO OOOO OOOO OOOO OOOO OOOO 0 001 Max rX 1 11 D OOOO OOOO OOOO OOOO OOOO OOOO 0 001 Mm rX 1 11 D OOOO OOOO OOOO OOOO OOOO OOOO 0 001 MaxrY 1 11 D OOOO OOOO OOOO OOOO OOOO OOOO 0 001 Mm rY 1 11 D OOOO OOOO OOOO OOOO OOOO OOOO 0 001 Max rZ 69 12 D+L -0 088 -0 243 OOOO 0 259 OOOO OOOO 0 005 Mm rZ 10 12 D+L -0 424 -0 243 OOOO 0 489 OOOO OOOO -0 005 Max Rst 13 12 D+L -0 487 -0 540 OOOO 0 727 OOOO OOOO -OOOO Pnnt Time/Date 13/03/2013 10 20 STAAD Pro V8i 20 07 05 15 Pnnt Run 10 of 11 Mil u 1 ll ••Bp Software licensed to Job No 134226 Sheet No Rev Mil u 1 ll ••Bp Software licensed to Part jobTrtte Carlsbad CA Ref jobTrtte Carlsbad CA Bv Da'«ll-Mar-13 Chd Client File TRUSS A std Date/Time 16-NOV-2012 07 14 Beam Force Detail Summarv S/of7 convention as diaarams - oositive above line neaative below line exceot Fx where positive is comoression Distance d is aiven Irom beam end A Axial Shear Torsion Bendina Beam L/C d (ft) Fx (kiD) Fv (kiD) Fz (kiD) Mx (kiD"ft) Mv (kiD ft) Mz (kiD"ft) Max Fx 3 12 D+L OOOO 12 925 OOOO OOOO OOOO OOOO OOOO Mm Fx 124 12 D+L OOOO -11 471 -0 042 OOOO OOOO 0 000 -0 250 Max Fv 25 12 D+L OOOO 12 898 0 148 OOOO OOOO OOOO OOOO Mm Fv 36 12 D+L OOOO 12 898 -0 148 OOOO OOOO OOOO -0 476 Max Fz 1 11 D OOOO 2 717 OOOO OOOO OOOO OOOO OOOO Mm Fz 1 11 D OOOO 2 717 OOOO OOOO OOOO OOOO OOOO Max Mx 1 11 D OOOO 2 717 OOOO OOOO OOOO OOOO OOOO Mm Mx 1 11 D OOOO 2 717 OOOO OOOO OOOO OOOO OOOO Max Mv 1 11 D OOOO 2 717 OOOO OOOO 0 000 OOOO OOOO Mm Mv 1 11 D OOOO 2 717 OOOO OOOO 0 000 OOOO OOOO Max Mz 83 12 D+L 7 781 -6 506 -0 031 OOOO 0 000 OOOO 0 120 Mm Mz 126 12 D+L 4 258 12 089 0 094 OOOO OOOO OOOO -0 476 Reaction Summarv Horizontal Vertical Horizontal Moment Node L/C FX (kiD) FY (kiD) FZ (kiD) MX (kiDft) MY (kiD ft) MZ (kiD"ft) Max FX 52 32 0 6D+W3 0 102 OOOO OOOO OOOO OOOO OOOO Mm FX 52 34 0 6D+0 7E -1 714 OOOO OOOO OOOO OOOO OOOO Max FY 20 12 D+L -OOOO 12 925 OOOO OOOO OOOO OOOO Mm FY 37 33 0 6D+W4 OOOO •1 818 OOOO OOOO OOOO OOOO Max FZ 1 11 D -0 000 2 717 OOOO OOOO OOOO OOOO Mm FZ 1 11 D -OOOO 2 717 OOOO OOOO OOOO OOOO Max MX 1 11 D -OOOO 2 717 OOOO OOOO OOOO OOOO Mm MX 1 11 D -OOOO 2 717 OOOO OOOO OOOO OOOO Max MY 1 11 D -OOOO 2 717 OOOO OOOO 0 000 OOOO Mm MY 1 11 D -OOOO 2 717 OOOO OOOO OOOO OOOO Max MZ 1 11 D -OOOO 2 717 OOOO OOOO OOOO OOOO Mm MZ 1 11 D -OOOO 2 717 OOOO OOOO OOOO OOOO Pnnt Time/Date 13/03/2013 10 20 STAAD ProVSi 20 07 05 15 Pnnt Run 11 of 11 Software licensed to Job No 134226 TOP Job Title Carisbad CA °e*«11-Mar-13 File TRUSS A std Date/Tims 16-NOV-2012 07 14 Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line except Fx where oositive is comoression Distance d is aiven trom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kiDft) (kioft) (kiDft) Max Fx 127 12 D+L OOOO 12 899 -0 148 OOOO OOOO OOOO -0 476 Mm Fx 67 33 0 6D+W4 OOOO -2 567 0 032 OOOO OOOO OOOO 0 103 Max Fv 25 12 D+L OOOO 12 898 0 148 OOOO OOOO OOOO OOOO Mm Fv 36 12 D+L 0 000 12 898 -0 148 OOOO OOOO OOOO -0 476 Max Fz 25 11 D OOOO 5 323 0 061 OOOO OOOO OOOO OOOO Mm Fz 25 11 D OOOO 5 323 0 061 OOOO OOOO 0 000 OOOO Max Mx 25 11 D OOOO 5 323 0 061 OOOO OOOO OOOO OOOO Mm Mx 25 11 D OOOO 5 323 0 061 OOOO OOOO OOOO OOOO Max Mv 25 11 D OOOO 5 323 0 061 OOOO OOOO OOOO OOOO Mm Mv 25 11 D OOOO 5 323 0 061 OOOO OOOO OOOO OOOO Max Mz 66 33 0 6D+W4 4 008 -2 293 -0 022 OOOO OOOO OOOO 0 103 Mm Mz 126 12 D+L 4 258 12 089 0 094 OOOO OOOO OOOO -0 476 Pnnt Time/Date 13/03/2013 10 20 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Sofhvare licensed to Job No 134226 Sheet No BOTTOM Job Title Carlsbad CA Dei^11-Mar-13 '^i'"' F'le TRUSS A std Daten-ime 16-N0V-2012 07 14 Beam Force Detail Summarv Sian convention as diaarams - oositive above line neaative below line exceot Fx where oositive is comoression Distance d is aiven trom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kio) (kiD"ft) (kiDft) (kiD ft) Max Fx 122 33 0 6D+W4 OOOO 1 516 -0 005 OOOO OOOO OOOO 0 000 Mm Fx 124 12 D+L OOOO -11 471 -0 042 OOOO OOOO OOOO -0 250 Max Fv 122 12 D+L OOOO -11 471 0 042 OOOO OOOO OOOO OOOO Mm Fv 124 12 D+L OOOO -11 471 -0 042 OOOO OOOO OOOO -0 250 Max Fz 5 11 D OOOO -4 733 0 018 OOOO OOOO OOOO OOOO Mm Fz 5 11 D OOOO -4 733 0 018 OOOO OOOO OOOO 0 000 Max Mx 5 11 D OOOO -4 733 0 018 OOOO OOOO OOOO OOOO Mm Mx 5 11 D OOOO -4 733 0 018 OOOO OOOO OOOO OOOO Max Mv 5 11 D OOOO -4 733 0 018 OOOO OOOO OOOO OOOO Mm Mv 5 11 D OOOO -4 733 0 018 OOOO OOOO OOOO OOOO Max Mz 83 12 D+L 7 781 -6 506 -0 031 OOOO OOOO 0 000 0 120 Mm Mz 123 12 D+L 7 001 -10 738 0 018 OOOO OOOO OOOO -0 250 Print Time/Date 13/03/2013 10 20 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Job No 134226 Sheet No COLUMN Part Job Title Carlsbad CA Ref Bv Chd °^'«11-Mar-13 Date/Time 16-Nov-2012 07 14 F'le TRUSS A std Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line exceot Fx where positive is compression Distance d is aiven Irom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kioft) (kiD"ft) (kioft) Max Fx 3 12 D+L OOOO 12 925 OOOO OOOO OOOO OOOO OOOO Mm Fx 79 33 0 6D+W4 0 000 -1 818 -OOOO OOOO OOOO OOOO -OOOO Max Fv 2 33 0 6D+W4 1 500 -0 909 0124 0 000 OOOO OOOO OOOO Mm Fv 2 30 0 6D+W1 1 500 1 548 -0 143 OOOO OOOO OOOO -OOOO Max Fz 1 11 D OOOO 2 717 OOOO OOOO OOOO OOOO OOOO Mm Fz 1 11 D OOOO 2 717 OOOO OOOO OOOO OOOO OOOO Max Mx 1 11 D OOOO 2 717 OOOO OOOO OOOO OOOO OOOO Mm Mx 1 11 D OOOO 2 717 OOOO OOOO OOOO OOOO 0 000 Max Mv 1 11 D OOOO 2 717 OOOO OOOO OOOO OOOO OOOO Mm Mv 1 11 D OOOO 2 717 OOOO OOOO OOOO OOOO OOOO Max Mz 2 33 0 6D+W4 0 150 -0 909 0 006 OOOO OOOO OOOO 0 088 Mm Mz 2 30 0 6D+W1 0 150 1 548 -0 006 OOOO OOOO OOOO -0 101 Print Time/Date 13/03/2013 10 21 STAAO Pro VSi 20 07 05 15 Pnnt Run 1 of 1 pp Job No Sheet No Rev 134226 WEB ip;;i^^,«gM4H|| Software licensed to Part Job Title Carlsbad CA Ref Bv °='M1-Mar-13 '^^"^ Client F'le TRUSS A std Date/Time 16-Nov-2012 07 14 Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line except Fx where positive is compression Distance d is aiven Irom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kiD'ft) (kioft) (kiD"ft) Max Fx 147 12 D+L OOOO 1 718 OOOO OOOO OOOO OOOO OOOO Mm Fx 20 33 0 6D+W4 OOOO -0 601 OOOO OOOO OOOO OOOO OOOO Max Fv 11 11 D OOOO 0 204 OOOO OOOO OOOO OOOO OOOO Mm Fv 11 11 D OOOO 0 204 OOOO OOOO OOOO OOOO OOOO Max Fz 11 11 D OOOO 0 204 OOOO OOOO OOOO OOOO OOOO Min Fz 11 11 D OOOO 0 204 OOOO OOOO OOOO OOOO OOOO Max Mx 11 11 D OOOO 0 204 OOOO OOOO 0 000 OOOO OOOO Mm Mx 11 11 D OOOO 0 204 OOOO OOOO OOOO OOOO OOOO Max Mv 11 11 D OOOO 0 204 OOOO OOOO OOOO OOOO OOOO Mm Mv 11 11 D OOOO 0 204 OOOO OOOO OOOO OOOO OOOO Max Mz 11 11 D OOOO 0 204 OOOO OOOO OOOO OOOO OOOO Mm Mz 11 11 D OOOO 0 204 OOOO OOOO OOOO OOOO OOOO Print Time/Date 13/03/2013 10 44 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Sofhvare licensed to Job No 134226 Sheet No DIAGONAL Rev Job Title Carlsbad CA Bv F'le TRUSS A std De<M1-Mar-13 Date/Time 16-NOV-2012 07 14 Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line except Fx where positive is comoression Distance d is aiven trom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kiD"ft) (kiD ft) (kiD"ft) Max Fx 75 33 0 6D+W4 OOOO 1 398 0 002 OOOO OOOO OOOO 0 010 Mm Fx 75 12 D+L OOOO -5 032 -0 007 OOOO OOOO OOOO -0 039 Max Fv 152 12 D+L OOOO -4 323 0 006 OOOO OOOO OOOO OOOO Mm Fv 40 12 D+L OOOO -5 032 -0 007 OOOO OOOO OOOO -0 039 Max Fz 37 11 D OOOO -1 781 0 002 OOOO OOOO OOOO OOOO Mm Fz 37 11 D OOOO -1 781 0 002 OOOO OOOO 0 000 OOOO Max Mx 37 11 D OOOO -1 781 0 002 OOOO OOOO OOOO OOOO Mm Mx 37 11 D OOOO -1 781 0 002 OOOO OOOO OOOO 0 000 Max Mv 37 11 D OOOO -1 781 0 002 OOOO OOOO 0 000 OOOO Mm Mv 37 11 D OOOO -1 781 0 002 OOOO OOOO OOOO 0 000 Max Mz 74 33 0 6D+W4 7 001 1 083 -0 001 OOOO OOOO OOOO 0 010 Min Mz 74 12 D+L 7 001 -4 323 0 006 OOOO OOOO OOOO -0 039 Pnnt Time/Date 13/03/2013 10 21 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Job No 134226 SAG Job Title Carlsbad CA °^"11-Mar-13 Client F'le TRUSS A std Date/Time 16-Nov-2012 07 14 Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line exceot Fx where positive is comoression Distance d is aiven trom beam end A Axial Shear Torsion Bendina Beam UC d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kiD'ft) (kiD"ft) (kiDft) Max Fx 117 33 0 6D+W4 OOOO -0 210 OOOO OOOO OOOO OOOO OOOO Mm Fx 78 12 D+L OOOO -0 452 OOOO OOOO OOOO OOOO OOOO Max Fv 41 11 D OOOO -0 412 OOOO OOOO OOOO OOOO OOOO Mm Fv 41 11 D OOOO -0 412 OOOO OOOO OOOO OOOO OOOO Max Fz 41 11 D OOOO -0 412 OOOO OOOO OOOO OOOO OOOO Mm Fz 41 11 D OOOO -0 412 OOOO OOOO OOOO OOOO OOOO Max Mx 41 11 D OOOO -0 412 OOOO OOOO OOOO OOOO OOOO Mm Mx 41 11 D OOOO -0 412 OOOO OOOO OOOO 0 000 OOOO Max Mv 41 11 D 0 000 -0 412 OOOO OOOO OOOO OOOO OOOO Mm Mv 41 11 D OOOO -0 412 OOOO 0 000 OOOO OOOO OOOO Max Mz 41 11 D OOOO -0 412 OOOO 0 000 OOOO OOOO OOOO Min Mz 41 11 D OOOO -0 412 OOOO OOOO OOOO OOOO OOOO Print Time/Date 13/03/2013 10 21 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Truss TOD Chord Inout Data Member Section 4x2x14aa A = Tube Width 2 in B = Tube Lenath 4 in R = Corner Inner Radius 0 0938 in t = Thickness 0 083 in KLx= Bucklina around x-x 3 5 ft KLv= Bucklina around x-x 3 5 ft E = Modulus of Elasticitv 29500 ksi = Yield Stress 50 ksi G = Shear Modulus 11300 ksi Yj ! j • E • A • Calculated Parameter AoDlied Forces 1- Prooerties of 90° corner M 0 476 kiDft r = R +1/2 Centerline of Dimension 0 135 in P 12 899 kiDS u = TT r/2 Arc Lenath 0213 in c=0 637 r Distance of c a from center 0 086 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6464 in Flat width of Dim b= B - (2 r + t^ 3 6464 in Calculation of Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2a 3 2928 B/2 -1/2 1 9585 12 6303 0 OOOO Web 2b 7 2928 0 0 0 OOOO 8 0806 Corners 4 u 0 850 b/2 + c 1 909 3 0995 0 OOOO Sum 11 4358 3 8679 15 7298 8 0806 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2 a 3 2928 0 0 0 OOOO 0 7438 Web 2 b 7 2928 A/2 - t/2 0 9585 6 7001 0 OOOO Corners 4 u 0 850 a/2 + c 0 909 0 7031 0 OOOO Sum 11 4358 1 8679 7 4031 0 7438 Section Prooerties A Lxt 0 9492 in^ lx tx ( Lx Y^ +lx') 1 9763 IY tx^LxX^+i;) 0 6762 in^ Sx lx /(B/2) 0 9881 in^ SY IY /fA/2) 0 6762 in^ "•x 1 4429 in TY 0 8440 in Nominal Bucl^lina Stress KL^r, 29 1071 KL^rv 49 7605 KL/r 49 7605 Fe 7t^ E/(KL/r)^ 117 5850 ksi Ic (Fv/Fe)"' 0 6521 Fn 41 8480 ksi Effective Area effective width of comoression flanae w/t = a/t 19 8361 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 3930 r (1-0 22 IX) IX 1 1201 ae 1 6464 in effective width of web element w/t = b/t 43 9325 1 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 8704 r (1-0 22 IX) IX 0 8585 be 3 1305 in Allowable Axial Load Ae Ae = A - 2 X t X r(a-ae) + (b-be)l 0 86353775 in^ Pn Pn~ X Fp 36 1373707 kiDS He 1 8 Pa = Pn 1^0 20 0763 kios Check Comoression Stresses Loads from Wind*? Cbi Cb1=(P/Pa)NO 0 6425 Allowable Stress Unitv 1 0 6425 Section IS OK Comoutina of Mnx Bv usina the effective width of comoression flanae and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) V Distance to too fiber (in) Lv Lv^ C Flanaes ae 1 6464 t/2 0 0415 0 0683 0 0028 Web 2 b 7 2928 B/2 2 14 5856 29 1712 C Corners 2 u 0 42508554 c+t/2 0127686 0 0543 0 0069 T Flanaes ae 3 6464 B-t/2 3 9585 14 4343 57 1381 T Corners 2u 0 42508554 B-c 3 914 1 6637 6 5114 Sum 13 4358 10 0415 30 8062 92 8305 v„,= Lv/L 2 2928 Z=R+t 0 1768 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fl (Vca- Z)F/Vca 46 1445 ksi - (B-Vca- Z)FJy„ -33 3723 ksi V fj/fl -0 7232 k 4+2(1-vu)^+2(1-\i/) 17 6804 hi be/t 43 9325 1 1 052/(k)"x(h/t)x(f1/E)°^ 0 4347 r n-0 22 IX) IX 1 1362 be 3 1305 in bl bj(3-\u) 0 8408 in b2 1 5653 in bi+b2 2 4061 in 2 1 web 2(1/12)(b)^ 8 0806 in^ S(Lv^) 92 8305 in^ (-WSL)(Vc„)^ 70 6339 in" I'x 30 2771 in" lx=l'xt 2 5130 in" Sex=IAcQ 1 0960 in^ C|5=1 0 for combined axial load and bendina moment i 2b^d^t/(b+d) 1 1304 in" s, fuliSx 0 9881 in" Lu 0 36Cb7t(E 1 G i)°^/(F, Sf) 52 0769 ft Fe' CbTt (E 1 G 1)0 5/(L Sf) 2066 5439 ksi Allowable Bendma Moment M„x 4 5667 kiDft Ob 1 67 M3 = Mnx /fib 2 73457546 kioft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wmd? Cbi (P/Pa) + (C„, M,/M, 0 7469 ) 0 Cb2 (P/Pa) + (Mx/Ma) 0 8166 Allowable Stress Unitv 1 Cb lf((P/Pa) <=0 15Cb2Cbi) 0 7469 Section IS OK Truss BOTTOM Chord (COMP) Inout Data Member Section 4x2x14aa A = Tube Width 2 in B = Tube Lenath 4 in R = Corner Inner Radius 0 0938 in t = Thickness 0 083 in KLx= Bucklina around x-x 6 21 ft KLv= Bucklina around x-x 10 ft E = Modulus of Elasticitv 29500 ksi Fv = Yield Stress 50 ksi G = Shear Modulus 11300 ksi Calculated Parameter AoDlied Forces 1 - Prooerties of 90° corner M 0 000001 kioft r = R + t/2 Centerline of Dimension 0 135 in P 1 516 kiDS u = 71 r/2 Arc Lenath 0213 in c=0 637 r Distance of c a from center 0 086 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6464 in Flat width of Dim b= B - (2 r + t) 3 6464 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2 a 3 2928 B/2 -1/2 1 9585 12 6303 0 OOOO Web 2 b 7 2928 0 0 0 OOOO 8 0806 Corners 4 u 0 850 b/2 + c 1 909 3 0995 OOOOO Sum 11 4358 3 8679 15 7298 8 0806 Calculation of ly Element L Lenath (m) X Distance to the center (in) LxX^ Iv' Flanaes 2 a 3 2928 0 0 OOOOO 0 7438 Web 2 b 7 2928 A/2 -1/2 0 9585 6 7001 0 OOOO Corners 4 u 0 850 a/2 + c 0 909 0 7031 0 OOOO Sum 11 4358 1 8679 7 4031 0 7438 Section Prooerties A Lxt 0 9492 in^ lx tx( LxY^+U') 1 9763 in" IY t X (L x x^ +i;) 0 6762 in" Sx lx /(B/2) 0 9881 in^ SY ly /(A/2) 0 6762 in^ Tx (\JA)°^ 1 4429 in TY (]ylA)°'' 0 8440 in Nominal Bucklina Stress KL^r, 51 6443 KLv/rv 142 1729 KL/r 142 1729 Fe n E/(KL/r)^ 14 4042 ksi Ic (Fv/Fe)"" 1 8631 F„ 12 6324 ksi Effective Area effective width of compression flanae w/t = a/t 19 8361 X 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 2159 r (1-0 22 IX) IX -0 0877 ae 1 6464 in effective width of web element w/t = b/t 43 9325 1 1 052/(k)°^x(w/t)x(Fn/E)°* 0 4782 r n-Q22IX)IX 1 1291 be 3 6464 in Allowable Axial Load Ae Ae = A-2xtxr(a-ae) + (b-be)l 0 949169 in^ Pn Pn~ X Fn 11 9903281 kios 1 8 Pa = Pn IQc 6 6613 kiDS Check Comoression Stresses Loads from Wind"? Cbi Cb1=(P/Pa) 0 2276 NO Allowable Stress Unitv 1 0 2276 Section is OK Comoutina of Mnx Bv usino the effective width of comoression flanae and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) v Distance to too fiber (in) L v Lv^ C Flanaes ae 1 6464 t/2 0 0415 0 0683 0 0028 Web 2b 7 2928 B/2 2 14 5856 29 1712 C Corners 2 u 0 42508554 c+t/2 0127686 0 0543 0 0069 T Flanaes ae 3 6464 B-t/2 3 9585 14 4343 57 1381 T Corners 2 u 0 42508554 B-c 3 914 1 6637 6 5114 Sum 13 4358 10 0415 30 8062 92 8305 Vca=Lv/L 2 2928 Z=R+t 0 1768 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web (Vca- Z)FyVca 46 1445 ksi h - (B-Vca- Z)Fv/Vca -33 3723 ksi v fj/fl -0 7232 k 4+2(1-vi/)^+2(1-VI/) 17 6804 hi be/t 43 9325 1 1 052/(k)''^x(h/t)x(f1/E)°^ 0 4347 r (1-0 22 IX) IX 1 1362 be 3 6464 in bl be/(3-vu) 0 9794 m bz 1 8232 in bi+bj 2 8026 in 2 1 web 2(1/12)(b)^ 8 0806 in" S(Lv^) 92 8305 m" (-)(SH(Vcg)^ 70 6339 in" I'x 30 2771 in" lx=l'xt 2 5130 in" Sex=lx/Vca 1 0960 in^ Cb=1 0 for combined axial load and bendina moment 1 2b^d^t/(b+d) 1 1304 in" s, fullSx 0 9881 in" 0 36Cb7t (E 1 G i)°^/(Fv Sf) 52 0769 ft Fe' CbTi (E 1 G 1)0 5/(L Sf) 1164 7188 ksi Allowable Bendina Moment Mnx 4 5667 kioft "b 1 67 Ma = Mnx /fib 2 73457546 kioft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P/Pa) + (C„, M./Ma) 0 2276 NO Cb2 (P/Pa) + (Mx/Ma) 0 2276 Allowable Stress Unitv 1 Cb lf((P/Pa)<=0 15Cb2 Cbi) 0 2276 Section is OK Truss Bottom Chord (Tension) Inout Data Yj Member Section 4x2x14aa A = Tube Width 2 in T» i B = Tube Lenath 4 in R = Corner Inner Radius 0 0938 in X _ ! X , E 1 t = Thickness 0 083 in j.— -1 E 1 KL x= Bucklina around x-x 6 21 ft 1 KL v= Bucklina around x-x 10 ft i E = Modulus of Elasticitv 29500 ksi E = Modulus of Elasticitv 29500 ksi Fv = Yield Stress 55 ksi Y\ G = Shear Modulus 11300 ksi G = Shear Modulus 11300 ksi d = Bolt diameter 0 5 in A— n = Number of bolts 1 Calculated Parameter Aoolied Forces 1- Prooerties of 90° corner r = R + t/2 Centerline of Dimension 0 135 in P 11 471 kios u = JT r/2 Arc Lenath 0213 in c=0 637 r Distance of c a from center 0 086 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6464 in Flat width of Dim b= B - (2 r + t) 3 6464 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2 a 3 2928 B/2 -1/2 1 9585 12 6303 0 OOOO Web 2 b 7 2928 0 0 OOOOO 8 0806 Corners 4 u 0 850 b/2 + c 1 909 3 0995 0 OOOO Sum 11 4358 3 8679 15 7298 8 0806 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ Iv' Flanaes 2a 3 2928 0 0 OOOOO 0 7438 Web 2 b 7 2928 A/2 - t/2 0 9585 6 7001 0 OOOO Corners 4 u 0 850 a/2 + c 0 909 0 7031 0 OOOO Sum 11 4358 1 8679 7 4031 0 7438 3- Section Prooerties A = L x t Gross Area 0 9492 in^ A„= A - n x t X (d+ 0625) x 2 0 8558 in" 4- Allowable Axial Load Pn~ Ap X Fy 47 06867 kios 1 67 Pa = Pn /fit 28 1848323 kios 5- Check Tension Stresses Loads from Wind? Cbi=(P / Pa) 0 4070 NO Allowable Stress Unitv 1 0 4070 Section is OK Column Inout Data vl Member Section 4x4x14aa 1 A = Tube Width 4 in X t" i JIIIIIIIII'YIIHIIIJ I: 1 E 1 B = Tube Lenath 4 in X t" i JIIIIIIIII'YIIHIIIJ I: 1 E 1 R = Corner Inner Radius 0 0938 in X t" i JIIIIIIIII'YIIHIIIJ I: 1 E 1 t = Thickness 0 083 in X t" i JIIIIIIIII'YIIHIIIJ I: 1 E 1 KLx= Bucklina around x-x 13 ft X t" i JIIIIIIIII'YIIHIIIJ I: 1 E 1 KLy= Bucklina around x-x 13 ft X t" i JIIIIIIIII'YIIHIIIJ I: 1 E 1 E = Modulus of Elasticitv 29500 ksi X t" i JIIIIIIIII'YIIHIIIJ I: 1 E 1 Fy = Yield Stress 50 ksi X G = Shear Modulus 11300 ksi Calculated Parameter Aoolied Forces 1- Properties of 90° corner M 0 0001 kioft r = R + t/2 Centerline of Dimension 0 135 in P 12 925 kios u = 71 r/2 Arc Lenath 0213 in c=0 637 r Distance of c a from center 0 086 in -2- Flat widths of flanaes and webs - Flat width of Dim a= A - (2 r + t) 3 6464 in - Flat width of Dim b= B - (2 r + t) 3 6464 in - Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2 a 7 2928 B/2 -1/2 1 9585 27 9732 0 OOOO Web 2 b 7 2928 0 0 0 OOOO 8 0806 Corners 4 u 0 850 b/2 + c 1 909 3 0995 0 OOOO Sum 15 4358 3 8679 31 0727 8 0806 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2 a 7 2928 0 0 OOOOO 8 0806 Web 2 b 7 2928 A/2 - t/2 1 9585 27 9732 0 OOOO Corners 4 u 0 850 a/2 + 0 1 909 3 0995 0 OOOO Sum 15 4358 3 8679 31 0727 8 0806 Section Prooerties A Lxt 1 2812 in^ lx t x ( L x Y^ +i;) 3 2497 in" IY t X (L X X^ +ly') 3 2497 in" Sx lx /(B/2) 1 6249 in^ SY ly /(A/2) 1 6249 in' Tx (lx/A)°^ 1 5926 in TY (ly/A)"*" 1 5926 in Nominal Bucklina Stress KL^r, 97 9501 KLy/ry 97 9501 KL/r 97 9501 Fe E/(KL/r)^ 30 3467 ksi Ic (FMlFe)"" 1 2836 F„ 25 0885 ksi Effective Area effective width of comoression flanae w/t = a/t 43 9325 X 1 052/(k)°^x(w/t)x(Fn/E)''^ 0 6739 r (1-0 22 IX) IX 0 9995 ae 3 6445 in effective width of web element w/t = b/t 43 9325 1 1 052/(k)°*x(w/t)x(Fn/E)°^ 0 6739 r (1-0 22/A,)/:>L 0 9995 be 3 6445 in Allowable Axial Load Ae Ae = A-2xtxr(a-ae) + (b-be)l 1 28052198 in^ Pn Pn~ Ag X Fn 32 1263699 kios He 1 8 Pa = Pn /fic 17 8480 kios Check Comoression Stresses Loads from Wind"? Cbi Cb1=(P/Pa) 0 7242 NO Allowable Stress Unitv 1 0 7242 Section IS OK Comoutina of Mnx Bv usina the effective width of comoression flanae and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) V Distance to too fiber (in) Lv Lv^ C Flanaes ae 3 64445115 t/2 0 0415 0 1512 0 0063 Web 2 b 7 2928 B/2 2 14 5856 29 1712 C Corners 2 u 0 42508554 c+t/2 0127686 0 0543 0 0069 T Flanaes ae 3 6464 B-t/2 3 9585 14 4343 57 1381 T Corners 2 u 0 42508554 B-c 3 914 1 6637 6 5114 Sum 15 4338 10 0415 30 8891 92 8339 Vca = L v/ L 2 0014 Z=R+t 0 1768 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fl (Vca- Z)Fy/Vca 45 5831 ksi f2 - (B-Vca- Z)Fy/Vca -45 5136 ksi v fj/fi -0 9985 k 4+2(1-vi/)^+2(1-tif) 23 9604 hi be/t 43 9325 1 1 052/(k)°*x(h/t)x(f1/E)°^ 0 3711 r (1-0 22 IX) IX 1 0973 be 3 6445 in bl bj(3-\ii) 09115 in b2 1 8222 in bi+bz 2 7337 in 2 1 yyeb 2(1/12)(b)^ 8 0806 in" S(Lv*) 92 8339 in" (-)fSL)(Vca)^ 61 8212 in" I'x 39 0933 in" lx=l'xt 3 2447 in" Sex=lx/Vca 1 6212 in^ Cb=1 0 for combined axial load and bendina moment i 2b^d^t/(b+d) 4 0241 in" s, fullSx 1 6249 in" Lu 0 36Cb7t(EiGi)°V(Fy Sf) 76 6247 ft Fe' CbTi (E 1 G 1)0 5/(L Sf) 818 6399 ksi Allowable Bendina Moment Mnx 6 7552 kioft fib 1 67 Ma = Mnx /fib 4 04502544 kioft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind*? Cbi (P/Pa) + (Cn,x Mx/Ma) 0 7242 NO Cb2 (P/Pa) + (Mx/Ma) 0 7242 Allowable Stress Unitv 1 Cb lf((P/Pa) <= 0 15Cb2 Cbi) 0 7242 Section is OK Truss Web (como ) Inout Data vl Member Section 2x2x1Saa 1 A = Tube Width 2 in t. j { 1 1 B = Tube Lenath 2 in t. j { 1 1 R = Corner Inner Radius 0 0938 in t. j { 1 1 t = Thickness 0 072 in t. j { 1 1 KLx= Bucklina around x-x 7 04 ft t. j { 1 1 KLy= Bucklina around x-x nn 1 ill If* 1 ^1 ^ITI/ 7 04 ft ksi t. j { 1 1 t IvIOOUIUS OT CiaSTICITV Fy = Yield Stress 50 ksi i ......... Yi 1 G = Shear Modulus 11300 ksi — o • Calculated Parameter Aoolied Forces 1- Prooerties of 90° corner M 0 0001 kioft r = R + t/2 Centerline of Dimension 0 130 in P 1 718 kios u = 71 r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6684 in Flat width of Dim b= B - (2 r + t) 1 6684 in Calculation of 1, Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2 a 3 3368 B/2 -1/2 0 964 3 1009 0 OOOO Web 2 b 3 3368 0 0 0 OOOO 0 7740 Corners 4 u 0 816 b/2 + c 0917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ Iv' Flanaes 2 a 3 3368 0 0 0 OOOO 0 7740 Web 2 b 3 3368 A/2 -1/2 0 964 3 1009 0 OOOO Corners 4 u 0 816 a/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Section Prooerties A Lxt 0 5392 in^ lx tx(LxY^+lx') 0 3284 in" IY t X (L x X^ +ly') 0 3284 in" Sx lx /(B/2) 0 3284 in^ SY ly /(A/2) 0 3284 in^ fx (Ix/A)" 0 7804 in TY (ly/A)"* 0 7804 in Nominal Bucklina Stress KLx/rx 108 2588 KLy/ry 108 2588 KL/r 108 2588 Fe 7T^ E/(KL/r)^ 24 8425 ksi Ic (FvlFe)"" 1 4187 Fn 21 5336 ksi Effective Area effective width of comoression flanae w/t = a/t 23 1722 X 1 052/(k)°^x(w/t)x(Fn/E)°* 0 3293 r (1-0 22 IX) IX 1 0080 ae 1 6684 in effective width of web element w/t = b/t 23 1722 1 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 3293 r (1-0 22 IX) IX 1 0080 be 1 6684 in Allowable Axial Load Ae Ae = A - 2 x t X r(a-ae) + (b-be)l 0 53922321 in^ Pn Pn~ Ae X Fn 11 6114254 kios fic 1 8 Pa = Pn /fic 6 4508 kios Check Compression Stresses Loads from Wind? Cbi Cb1=(P/Pa)N0 0 2663 Allowable Stress Unitv 1 0 2663 Section IS OK Comoutina of Mnx Bv usina the effective width of comoression flanae and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) v Distance to too fiber (in) L V Lv^ C Fiances ae 1 6684 t/2 0 036 0 0601 0 0022 Web 2 b 3 3368 B/2 1 3 3368 3 3368 C Corners 2 u 0 40780564 c+t/2 0118683 0 0484 0 0057 T Flanaes ae 1 6684 B-t/2 1 964 3 2767 6 4355 T Corners 2 u 0 40780564 B-c 1 917 0 7819 1 4991 Sum 7 4892 5 0360 7 5039 11 2794 Vca = L V/ L 1 0020 Z=R+t 0 1658 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fl (Vca- Z)Fy/Vca 41 7262 ksi f2 - (B-Vca- Z^Fy/Vca -41 5306 ksi v f2/fl -0 9953 k 4+2(1-vi/)^+2(1-ti/) 23 8784 hi be/t 23 1722 1 1 052/(k)°S(h/t)x(f1/E)°^ 0 1876 r (1-0 22 IX) IX -0 9199 be 1 6684 in b, bJ(3-Mi) 0 4176 in b2 0 8342 in bi+bj 1 2518 in 2 lyyeb 2(1/12)(b)^ 0 7740 in" S(Lv^J 11 2794 in" (-)(SL)(Vca)' 7 5186 in" I'x 4 5348 in" lx=l'xt 0 3265 in" Sex=lx/Vca 0 3259 in^ Cb=1 0 for combined axial ioad and bendina moment 1 2b^d^t/(b+d) 0 3344 in" s, fuiiSx 0 3284 in" Lu 0 36Cb7T(EIGi)°V(Fy Sf) 34 7430 ft Fe' CbTi (E 1 G 1)0 5/(L Sf) 685 4290 ksi Allowable Bendina Moment Mnx 1 3578 kioft fib 1 67 Ma = Mnx /fib 0 81303531 kioft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P/Pa) + (Cn,x Mx/Ma 0 2664 ) O Cb2 (P / Pa) + (Mx/Ma) 0 2664 Allowable Stress Unitv 1 Cb lf((P/Pa) <=0 15Cb2Cbi) 0 2664 Section is OK Truss Web (Ten ) Inout Data Member Section A = Tube Width B = Tube Lenath R = Corner Inner Radius t = Thickness KLx= Bucklina around x-x KL„= Bucklina around x-x E = Modulus of Elasticitv Fv = Yield Stress G = Shear Modulus d = Bolt diameter n = Number of bolts 2x2x1Saa 0 0938 0 072 7 18 7 18 29500 55 11300 0 5 in in in in ksi ksi ksi in Yj if;i 1 e e A Calculated Parameter Aoolied Forces 1- Prooerties of 90 corner M 0 0001 kioft r = R + t/2 Centerline of Dimension 0 130 in 0 601 kios u = 7T r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) Flat width of Dim b= B - (2 r + t) 1 6684 in 1 6684 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2 a 3 3368 B/2 -1/2 0 964 3 1009 0 OOOO Web 2 b 3 3368 0 0 0 OOOO 0 7740 Corners 4 u 0 816 b/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2a 3 3368 0 0 OOOOO 0 7740 Web 2b 3 3368 A/2-t/2 0 964 3 1009 OOOOO Corners 4u 0 816 a/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 3- Section Prooerties A = L x t Gross Area 0 5392 A„= A - n x t x (d+ 0625) x 2 0 4582 in" 4- Allowable Axial Load Pn~ An X Fy 25 2022767 kiDS 1 67 Pa = Pn /fit 15 0911836 kiDS 5- Check Tension Stresses Loads from Wind? Cb1=<P / Pa) 0 0398 NO Allowable Stress Unitv 1 0 0398 Section IS OK DIAGONAL(comD ) Inout Data vl Member Section 2x2x1Saa 1 A = Tube Width 2 m X _ t* j f •.jjjjjjjjjjijjj. 1 ( 1 B = Tube Lenath 2 in X _ t* j f •.jjjjjjjjjjijjj. 1 ( 1 R = Corner Inner Radius 0 0938 in X _ t* j f •.jjjjjjjjjjijjj. 1 ( 1 t = Thickness 0 072 in X _ t* j f •.jjjjjjjjjjijjj. 1 ( 1 KLx= Bucklina around x-x 12 97 ft X _ t* j f •.jjjjjjjjjjijjj. 1 ( 1 KLy= Bucklina around x-x 12 97 ft X _ t* j f •.jjjjjjjjjjijjj. 1 ( 1 E = Modulus of Elasticity 29500 ksi X _ t* j f •.jjjjjjjjjjijjj. 1 Fy = Yield Stress 50 ksi X _ Y| G = Shear Modulus 11300 ksi • O Calculated Parameter Aoolied Forces 1- Prooerties of 90° corner M 0 0001 kioft r = R + t/2 Centerline of Dimension 0 130 in P 1 398 kios u = 7T r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6684 in Flat width of Dim b= B - (2 r + t) 1 6684 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2a 3 3368 B/2 -1/2 0 964 3 1009 0 OOOO Web 2 b 3 3368 0 0 OOOOO 0 7740 Corners 4 u 0 816 b/2 + c 0917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2 a 3 3368 0 0 0 OOOO 0 7740 Web 2 b 3 3368 A/2 -1/2 0 964 3 1009 OOOOO Corners 4 u 0 816 a/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Section Prooerties A Lxt 0 5392 in^ lx tx(LxY^+lx') 0 3284 in" IY tx(LxX^ +ly') 0 3284 in" Sx lx /(B/2) 0 3284 in^ SY ly /(A/2) 0 3284 in^ "•x (lx/A)°^ 0 7804 in fy (iy/A)"" 0 7804 in Nominal Bucklina Stress KLx/rx 199 4484 KLy/ry 199 4484 KL/r 199 4484 Fe 71^ E/(KL/r)^ 7 3192 ksi Ic (Fv/Fe)"" 2 6137 F„ 6 4189 ksi Effective Area effective width of compression flanae w/t = a/t 23 1722 X 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 1798 r n-0 22 IX) IX -1 2438 ae 1 6684 in effective width of web element w/t = b/t 23 1722 1 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 1798 r (1-0 22 IX) IX -1 2438 be 1 6684 in Allowable Axial Load Ae Ae = A - 2 x t X r(a-ae) + (b-be)l 0 53922321 in^ Pn Pn~ Ae X Fn 3 46121746 kios Qc 1 8 Pa = Pn /fic 1 9229 kios Check Comoression Stresses Loads from Wind? Cbi Cb1=(P/Pa)NO 0 7270 Allowable Stress Unitv 1 0 7270 Section is OK Comoutina of M„x Bv usina the effective width of comoression fiance and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) v Distance to too fiber (in) L V Lv^ C Flanaes ae 1 6684 t/2 0 036 0 0601 0 0022 Web 2 b 3 3368 B/2 1 3 3368 3 3368 C Corners 2 u 0 40780564 c+t/2 0118683 0 0484 0 0057 T Flanaes ae 1 6684 B-t/2 1 964 3 2767 6 4355 T Corners 2 u 0 40780564 B-c 1 917 0 7819 1 4991 Sum 7 4892 5 0360 7 5039 11 2794 Vca = L V/ L 1 0020 Z=R+t 0 1658 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fl (Vca- Z)Fy/Vca 41 7262 ksi f2 - (B-Vca- Z)Fy/Vca -41 5306 ksi V f2/fl -0 9953 k 4+2(1-vu)^+2(1-VI/) 23 8784 hi be/t 23 1722 1 1 052/(k)°^x(h/t)x(f1/E)°* 0 1876 r (1-0 22 IX) IX -0 9199 be 1 6684 in bi bj(3-\u) 0 4176 in b2 0 8342 in bi+b2 1 2518 in 2 1 web 2(1/12)(b)^ 0 7740 in" S(Lv*) 11 2794 in" (-USL)(Vca)^ 7 5186 in" I'x 4 5348 in" lx=l'xt 0 3265 in" Sex=lx/Vca 0 3259 in^ Cb=1 0 for combined axial load and bendina moment i 2b^d^t/(b+d) 0 3344 in" s, fullSx 0 3284 in" Lu 0 36Cb7c(ElGi)°^/(Fy Sf) 34 7430 ft Fe' Cb7i (E 1 G 1)0 5/(L Sf) 372 0448 ksi Allowable Bendina Moment Mnx 1 3578 kioft fib 1 67 Ma = Mnx /fib 0 81303531 kioft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P/Pa) + (Cn,x Mx/Ma 0 7271 ) 0 Cb2 (P / Pa) + (Mx/Ma) 0 7272 Allowable Stress Unitv 1 Cb lf((P/Pa)<=0 15Cb2Cbi) 0 7271 Section is OK DIAGONAL (Ten.) Inout Data Member Section 2x2x1Saa Yj A = Tube Width 2 in r j B = Tube Lenath 2 in j R = Corner Inner Radius 0 0938 in j t = Thickness 0 072 in i 1 KLx= Bucklina around x-x 12 97 ft i 1 KLy= Bucklina around x-x 12 97 ft ! E = Modulus of Elasticitv 29500 ksi ! Fv = Yield Stress 55 ksi Yi G = Shear Modulus 11300 ksi Yi d = Bolt diameter 05 in H O •^ n = Number of bolts 1 Calculated Parameter Aoolied Forces 1- Properties of 90° corner M 0 0001 kioft r = R + t/2 Centerline of Dimension 0 130 in P 5 032 kios u = TT r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6684 in Flat width of Dim b= B - (2 r + t) 1 6684 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2 a 3 3368 B/2 -1/2 0 964 3 1009 0 OOOO Web 2 b 3 3368 0 0 0 OOOO 0 7740 Corners 4 u 0 816 b/2 + c 0917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2 a 3 3368 0 0 0 OOOO 0 7740 Web 2 b 3 3368 AJ2-i/2 0 964 3 1009 OOOOO Corners 4 u 0 816 a/2 + c 0917 0 6857 OOOOO Sum 7 4892 1 8809 3 7865 0 7740 3- Section Prooerties A = L X t Gross Area A„= A - n X t X (d+ 0625) x 2 0 5392 0 4582 in in 4- Allowable Axial Load Pn~ An X Fy fit Pa = Pn /fit 25 2022767 1 67 15 0911836 kios kios S- Check Tension Stresses Loads from Wind? Cbi=(P / Pa) 0 3334 NO Allowable Stress Unitv 1 0 3334 Section is OK Bolt Prooerties d = Bolt diameter 05 in e = Edoe Distance 1 in s = Bolt Soacina 2 in e1=Clear between holes 1 4375 in e2= between hole &edae 0 71875 in t= Connected olate thickness 0 1345 in Fnt = Bolt nominal Tensile strenath 90 ksi Fny = Bolt nominal Shear strenath 54 ksi Fy= Yield Stress of connected sheet 50 ksi Fu=Ultimate Stress of connected sheet 65 ksi AISI Reouirements Dist between center to edae=1 5d 0 75 Ok Dist between Centers =3d 1 5 Ok Clear distance between holes=2d 1 Ok distance between hole and edoe =d 0 5 Ok Q Edae Dist Net Section Beanna Bolt Shear 2 2 22 2 22 24 * Number of bolts through the cross section BOLT STRENGTH BASED ON- Member Section Width Thickness Area n * Force(kios) Edoe Dist Net Section Beanna Bolt Shear Pmin Bolts needed TOP Chord 4x2x14aa 4 0 083 0 968 2 12 915 5 395 11 847 7 291 8 836 5 40 3 Bottom Chord 4x2x14aa 4 0 083 0 968 2 11.473 5 395 11 847 7 291 8 836 5 40 3 Column 4x4x14aa 4 0 083 1 310 2 12 925 5 395 11 847 7 291 8 836 5.40 3 Lona Diaaonal 2x2x15aa 2 0 072 0 555 1 5 117 4 680 5 139 6 324 8 836 4.68 2 Web 2x2x15aa 2 0 072 0 555 1 1.748 4 680 5 139 6 324 8 836 4.68 1 il^M^^M^Sl^ Software licensed to Job No Sheet No NODES Rev il^M^^M^Sl^ Software licensed to Part Job Title Ref Bv Det6ii.|y|ar-13 Client File TRUSS+SHADE std Date/Time 15.Nov-2012 11 48 3 28 30 32 16 35 34 33 14 29 31 39 17 38 37 36 ^15 NODES Pnnt Time/Date 13/03/2013 10 55 STAAD Pro VSi 20 07 05 15 Pnnt Run 1 of 1 Ill 1 "^"^M^j^ Softwarn hrnnReri tn Job No Sheet No MEMBERS Rev Ill 1 "^"^M^j^ Softwarn hrnnReri tn Part Job Title Ref Bv °^^^^^-Ma^-^3 ^'^'^ Client F'le TRUSS+SHADE std DatBfTme •(5.NOV-2012 11 48 14 MEMBERS Pnnt Time/Date 13/03/2013 10 56 STAAD Pro VSi 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Part °=''11-Mar-13 Client F'le TRUSS+SHADE std Date/Time 15.Nov-2012 11 48 Basic Load Cases Number Name 1 DEAD LOAD 2 LIVE LOAD 3 SNOW LOAD 4 UNBALANCED SNOW 5 DRIFT SNOW 6 WIND A 7 WIND B 8 SEISMIC 9 WIND C 10 WIND D Combination Load Cases Comb Combination L/C Name Primarv Primarv L/C Name Factor 11 D 1 DEAD LOAD 1 00 12 D+L 1 DEAD LOAD 1 00 2 LIVE LOAD 1 00 13 D+BSL+DSL 1 DEAD LOAD 1 00 3 SNOW LOAD 1 00 5 DRIFT SNOW 1 00 14 D+USL 1 DEAD LOAD 1 00 4 UNBALANCED SNOW 1 00 15 D+0 75W1+0 75L 1 DEAD LOAD 1 00 6 WIND A 0 75 2 LIVE LOAD 0 75 16 D+0 75W2+0 75L 1 DEAD LOAD 1 00 7 WIND B 0 75 2 LIVE LOAD 0 75 17 D+0 75W3+0 75L 1 DEAD LOAD 1 00 9 WIND C 0 75 2 LIVE LOAD 0 75 18 D+0 75W4+0 75L 1 DEAD LOAD 1 00 10 WIND D 0 75 2 LIVE LOAD 0 75 19 D+0 75W1+0 75BSL+0 75DSL 1 DEAD LOAD 1 00 6 WIND A 0 75 3 SNOW LOAD 0 75 5 DRIFT SNOW 0 75 20 D+0 75W2+0 75BSL+0 75DSL 1 DEAD LOAD 1 00 7 WIND B 0 75 3 SNOW LOAD 0 75 5 DRIFT SNOW 0 75 21 D+0 75W3+0 75BSL+0 75DSL 1 DEAD LOAD 1 00 Pnnt Time/Date 13/03/2013 10 56 STAAD Pro V8i 20 07 05 15 Pnnt Run 1 of 12 Software licensed to °^'M1-Mar-13 File TRUSS+SHADE std DateAtime 15.Nov-2012 11 48 Combination Load Cases Cont. Comb Combination L/C Name Primarv Primarv L/C Name Factor 9 WINDC 0 75 3 SNOW LOAD 0 75 5 DRIFT SNOW 0 75 22 D+0 75W4+0 75BSL+0 75DSL 1 DEAD LOAD 1 00 10 WIND D 0 75 3 SNOW LOAD 0 75 5 DRIFT SNOW 0 75 23 D+0 75W1+0 75USL 1 DEAD LOAD 1 00 6 WIND A 0 75 4 UNBALANCED SNOW 0 75 24 D+0 75W2+0 75USL 1 DEAD LOAD 1 00 7 WIND B 0 75 4 UNBALANCED SNOW 0 75 25 D+0 75W3+0 75USL 1 DEAD LOAD 1 00 9 WIND C 0 75 4 UNBALANCED SNOW 0 75 26 D+0 75W4+0 75USL 1 DEAD LOAD 1 00 10 WIND D 0 75 4 UNBALANCED SNOW 0 75 27 D+0 525E+0 75L 1 DEAD LOAD 1 00 8 SEISMIC 0 52 2 LIVE LOAD 0 75 28 D+ 0 525E+0 75BSL+0 75DSL 1 DEAD LOAD 1 00 8 SEISMIC 0 52 3 SNOW LOAD 0 75 5 DRIFT SNOW 0 75 29 D+0 525E+0 75USL 1 DEAD LOAD 1 00 S SEISMIC 0 52 4 UNBALANCED SNOW 0 75 30 0 6D+W1 1 DEAD LOAD 0 60 6 WIND A 1 00 31 0 6D+W2 1 DEAD LOAD 0 60 7 WIND B 1 00 32 0 6D+W3 1 DEAD LOAD 0 60 9 WIND C 1 00 33 0 6D+W4 1 DEAD LOAD 0 60 10 WIND D 1 00 34 0 6D+0 7E 1 DEAD LOAD 0 60 8 SEISMIC 0 70 Pnnt Time/Date 13/03/2013 10 56 ST>V\D ProVSi 20 07 05 15 Pnnt Run 2 of 12 Software licensed to °^"11-Mar-13 File TRUSS+SHADE std Date/Time 15.Nov-2012 11 48 Node Loads : 1 DEAD LOAD Node FX (Ib) FY (Ib) FZ (Ib) MX (kioft) MY (kioft) MZ (kiD"ft) 4 --146 500 ---- 6 --115 000 ---- --149 000 ---- 8 --115 000 ---- --149 000 ---- 11 --389 000 ---- 12 --230 000 ---- 13 --73 250 ---- 15 --73 250 ---- 28 --275 000 ---- 29 --275 000 ---- 30 --343 250 ---- 31 --343 250 ---- 32 --243 750 ---- 33 --275 000 ---- 34 --343 250 ---- 35 --243 750 ---- 36 --275 000 ---- 37 --343 250 ---- 38 --243 750 ---- 39 --243 750 ---- 40 --267 000 ---- 41 --305 000 ---- 42 --305 000 ---- 43 --305 000 ---- 44 --267 000 ---- 45 --267 000 ---- 46 --305 000 ---- 47 --305 000 ---- 48 --305 000 ---- 49 --267 000 ---- 50 --324 000 ---- 51 --370 000 ---- 52 --324 000 ---- 53 --370 000 ---- Print Time/Date 13/03/2013 10 56 STAAD ProVSi 20 07 05 15 Pnnt Run 3 of 12 Software licensed to °et«ii-Mar-13 Chd File TRUSS+SHADE std Date/Time i5.Nov-2012 11 48 Beam Loads : 1 DEAD LOAD Beam Tvoe Direction Fa Da (ft) Fb Db Ecc (ft) 21 UNI Ibf/ft GY -30 000 ---- 22 UNI Ibf/ft GY -30 000 ---- 23 UNI Ibf/ft GY -30 000 ---- 24 UNI Ibf/ft GY -30 000 ---- 25 UNI Ibf/ft GY -30 000 ---- 26 UNI Ibf/ft GY -30 000 ---- 27 UNI Ibf/ft GY -30 000 ---- 28 UNI Ibf/ft GY -30 000 ---- 29 UNI Ibf/ft GY -30 000 ---- 30 UNI Ibf/ft GY -30 000 ---- 31 UNI Ibf/ft GY -30 000 ---- 32 UNI Ibf/ft GY -30 000 ---- Node Loads : 2 LIVE LOAD Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kiD'ft) (kioft) (kiDft) 6 --256 000 ---- 8 --256 000 ---- 12 --512 000 ---- 40 --597 000 ---- 41 --680 000 ---- 42 --680 000 ---- 43 --680 000 ---- 44 --597 000 ---- 45 --597 000 ---- 46 --680 000 ---- 47 --680 000 ---- 48 --680 000 ---- 49 --597 000 ---- Pnnt Time/Date 13/03/2013 10 56 STAAD ProVSi 20 07 05 15 Pnnt Run 4 of 12 Software licensed to Rev DetM1-Mar-13 ^=1^" F'le TRUSS+SHADE std Date/Time 15.Nov-2012 11 48 Beam Loads : 2 LIVE LOAD Beam Tvoe Direction Fa Da (ft) Fb Db Ecc (ft) 21 UNI Ibf/ft GY -50 000 ---- 22 UNI Ibf/ft GY -50 000 ---- 23 UNI Ibf/ft GY -50 000 ---- 24 UNI Ibf/ft GY -50 000 ---- 25 UNI Ibf/ft GY -50 000 ---- 26 UNI Ibf/ft GY -50 000 ---- 27 UNI Ibf/ft GY -50 000 ---- 28 UNI Ibf/ft GY -50 000 ---- 29 UNI Ibf/ft GY -50 000 ---- 30 UNI Ibf/ft GY -50 000 ---- 31 UNI Ibf/ft GY -50 000 ---- 32 UNI Ibf/ft GY -50 000 ---- Node Loads : 3 SNOW LOAD Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kiD ft) (kiD ft) (kiD"ft) 42 --OOOO ---- 47 --OOOO ---- Node Loads : 4 UNBALANCED SNOW Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kiD"ft) (kiDft) (kiD"ft) 42 --OOOO ---- 47 --OOOO ---- Node Loads : 5 DRIFT SNOW Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kiD"ft) (kioft) (kioft) 2 --OOOO ---- 4 --OOOO ---- 6 --OOOO ---- 8 --OOOO ---- 12 --0 000 ---- Print Time/Date 13/03/2013 10 56 STAAD ProV8i20 07 05 15 Pnnt Run 5 of 12 Software licensed to Bv °^"11-Mar-13 ^hd F'le TRUSS+SHADE std Date/Time 15.Nov-2012 11 48 Node Loads : 6 WIND A Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kiD"ft) (kiD-ft) (kiD"ft) 6 -27 000 53 000 ---- 8 27 000 53 000 ---- 12 -27 000 53 000 ---- 27 000 53 000 ---- 40 -62 000 124 000 ---- 41 -71 000 141 000 ---- 42 -71 000 141 000 ---- 43 -71 000 141 000 ---- 44 -62 000 124 000 ---- 45 62 000 124 000 ---- 46 71 000 141 000 ---- 47 71 000 141 000 ---- 48 71 000 141 000 ---- 49 62 000 124 000 ---- Beam Loads : 6 WIND A Beam Tvoe Direction Fa Da (ft) Fb Db Ecc (ft) 1 UNI Ibf/ft GX 101 000 ---- 6 UNI Ibf/ft GX 29 000 ---- 21 UNI Ibf/ft Y 100 000 ---- 22 UNI Ibf/ft Y 100 000 ---- 23 UNI Ibf/ft Y 100 000 ---- 24 UNI Ibf/ft Y 100 000 ---- 25 UNI Ibf/ft Y 100 000 ---- 26 UNI Ibf/ft Y 100 000 ---- 27 UNI Ibf/ft Y 100 000 ---- 28 UNI Ibf/ft Y 100 000 ---- 29 UNI Ibf/ft Y 100 000 ---- 30 UNI Ibf/ft Y 100 000 ---- 31 UNI Ibf/ft Y 100 000 ---- 32 UNI Ibf/ft Y 100 000 ---- Pnnt Time/Date 13/03/2013 10 56 STAAD ProV8i20 07 05 15 Pnnt Run 6 of 12 Software licensed to °e"l1-Mar-13 ^hd F'le TRUSS+SHADE std Daten-ime i5.Nov-2012 11 48 Node Loads : 7 WIND B Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kiD"ft) (kiD"ft) (kiD ft) 6 -62 000 125 000 ---- 8 62 000 125 000 ---- 12 -62 000 125 000 ---- 62 000 125 000 ---- 40 -145 000 290 000 ---- 41 -166 000 331 000 ---- 42 -166 000 331 000 ---- 43 -166 000 331 000 ---- 44 -145 000 290 000 ---- 45 145 000 290 000 ---- 46 166 000 331 000 ---- 47 166 000 331 000 ---- 48 166 000 331 000 ---- 49 145 000 290 000 ---- Beam Loads : 7 WIND B Beam Tvoe Direction Fa Da (ft) Fb Db Ecc (ft) 1 UNI Ibf/ft GX 51 000 ---- 6 UNI Ibf/ft GX 79 000 ---- 21 UNI Ibf/ft Y 100 000 ---- 22 UNI Ibf/ft Y 100 000 ---- 23 UNI Ibf/ft Y 100 000 ---- 24 UNI Ibf/ft Y 100 000 ---- 25 UNI Ibf/ft Y 100 000 ---- 26 UNI Ibf/ft Y 100 000 ---- 27 UNI Ibf/ft Y 100 000 ---- 28 UNI Ibf/ft Y 100 000 ---- 29 UNI Ibf/ft Y 100 000 ---- 30 UNI Ibf/ft Y 100 000 ---- 31 UNI Ibf/ft Y 100 000 ---- 32 UNI Ibf/ft Y 100 000 ---- Pnnt Time/Date 13/03/2013 10 56 STAAD ProV8i 20 07 05 15 Pnnt Run 7 of 12 Job No Sheet No Rev nitEi-_aMHiH Software licensed to Part Job Title Ref Bv D='M1-Mar-13 ^i"* Client File TRUSS+SHADE std Date/Time 15.NOV-2012 11 48 Node Loads : 8 SEISMIC Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kiD"ft) (kiD"ft) (kioft) 6 28 000 ----- 8 28 000 ----- 12 56 000 ----- 40 65 000 ----- 41 74 000 ----- 42 74 000 ----- 43 74 000 ----- 44 65 000 ----- 45 65 000 ----- 46 74 000 ----- 47 74 000 ----- 48 74 000 ----- 49 65 000 ----- Beam Loads : 8 SEISMIC Beam Tvoe Direction Fa Da (ft) Fb Db Ecc (ft) 21 UNI Ibf/ft GX 19 520 ---- 22 UNI Ibf/ft GX 19 520 ---- 23 UNI Ibf/ft GX 19 520 ---- 24 UNI Ibf/ft GX 19 520 ---- 25 UNI Ibf/ft GX 19 520 ---- 26 UNI Ibf/ft GX 19 520 ---- 27 UNI Ibf/ft GX 19 520 ---- 28 UNI Ibf/ft GX 19 520 ---- 29 UNI Ibf/ft GX 19 520 ---- 30 UNI Ibf/ft GX 19 520 ---- 31 UNI Ibf/ft GX 19 520 ---- 32 UNI Ibf/ft GX 19 520 ---- Pnnt Time/Date 13/03/2013 10 56 STAAD ProVSi 20 07 05 15 Pnnt Run 8 of 12 Software licensed to °e'M1-Mar-13 F'le TRUSS+SHADE std Daten-ime 15.Nov-2012 11 48 Node Loads : 9 WIND C Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kiDft) (kiDft) (kiDft) 6 -51 000 102 000 ---- 8 51 000 102 000 ---- 12 -51 000 102 000 ---- 51 000 102 000 ---- 40 -118 000 237 000 ---- 41 -135 000 270 000 ---- 42 -135 000 270 000 ---- 43 -135 000 270 000 ---- 44 -118 000 237 000 ---- 45 118 000 237 000 ---- 46 135 000 270 000 ---- 47 135 000 270 000 ---- 48 135 000 270 000 ---- 49 118 000 237 000 ---- Beam Loads : 9 WIND C Beam Tvoe Direction Fa Da (ft) Fb Db Ecc (ft) 1 UNI Ibf/ft GX -38 000 ---- 6 UNI Ibf/ft GX 38 000 ---- 21 UNI Ibf/ft Y 100 000 ---- 22 UNI Ibf/ft Y 100 000 ---- 23 UNI Ibf/ft Y 100 000 ---- 24 UNI Ibf/ft Y 100 000 ---- 25 UNI Ibf/ft Y 100 000 ---- 26 UNI Ibf/ft Y 100 000 ---- 27 UNI Ibf/ft Y 100 000 ---- 28 UNI Ibf/ft Y 100 000 ---- 29 UNI Ibf/ft Y 100 000 ---- 30 UNI Ibf/ft Y 100 000 ---- 31 UNI Ibf/ft Y 100 000 ---- 32 UNI Ibf/ft Y 100 000 ---- Pnnt Time/Date 13/03/2013 10 56 STAAD ProVSi 20 07 05 15 Pnnt Run 9 of 12 Software licensed to °^'M1-Mar-13 ^^''^ F'le TRUSS+SHADE std Date/Time 15.Nov-2012 11 48 Node Loads : 10 WIND D Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kioft) (kiDft) (kiD"ft) 6 -87 000 174 000 ---- 8 87 000 174 000 ---- 12 -87 000 174 000 ---- 87 000 174 000 ---- 40 -202 000 404 000 ---- 41 -230 000 461 000 ---- 42 -230 000 461 000 ---- 43 -230 000 461 000 ---- 44 -202 000 404 000 ---- 45 202 000 404 000 ---- 46 230 000 461 000 ---- 47 230 000 461 000 ---- 48 230 000 461 000 ---- 49 202 000 404 000 ---- Beam Loads : 10 WIND D Beam Tvoe Direction Fa Da (ft) Fb Db Ecc (ft) 1 UNI Ibf/ft GX -88 000 ---- 6 UNI Ibf/ft GX 88 000 ---- 21 UNI Ibf/ft Y 100 000 ---- 22 UNI Ibf/ft Y 100 000 ---- 23 UNI Ibf/ft Y 100 000 ---- 24 UNI Ibf/ft Y 100 000 ---- 25 UNI Ibf/ft Y 100 000 ---- 26 UNI Ibf/ft Y 100 000 ---- 27 UNI Ibf/ft Y 100 000 ---- 28 UNI Ibf/ft Y 100 000 ---- 29 UNI Ibf/ft Y 100 000 ---- 30 UNI Ibf/ft Y 100 000 ---- 31 UNI Ibf/ft Y 100 000 ---- 32 UNI Ibf/ft Y 100 000 ---- Pnnt Time/Date 13/03/2013 10 56 STAAD Pro VSI 20 07 05 15 Pnnt Run 10 of 12 Job No Sheet No Rev IMS—arf^B Software licensed to Part Job Title Ref Bv °^'M1-Mar-13 ^hd Client '''le TRUSS+SHADE std Daten-ime i5.Nov-2012 11 48 Node DisDiacement Summarv Node L/C X (in) Y (in) Z (in) Resultant (in) rX (rad) rY (rad) rZ (rad) MaxX 28 33 0 6D+W4 0 063 0 046 OOOO 0 078 OOOO OOOO 0 001 MinX 28 12 D+L -0 284 -0 104 OOOO 0 303 OOOO OOOO -0 002 Max Y 16 30 0 6D+W1 0011 0 145 OOOO 0 146 OOOO OOOO -0 000 Min Y 54 12 D+L -0 022 -0 529 OOOO 0 530 OOOO OOOO OOOO Max Z 1 11 D OOOO OOOO OOOO OOOO OOOO OOOO 0 002 MinZ 1 11 D OOOO OOOO OOOO OOOO OOOO OOOO 0 002 MaxrX 1 11 D OOOO OOOO OOOO OOOO OOOO OOOO 0 002 Min rX 1 11 D OOOO OOOO 0 000 OOOO OOOO 0 000 0 002 Max rY 1 11 D OOOO 0 000 OOOO OOOO OOOO OOOO 0 002 Mm rY 1 11 D OOOO OOOO OOOO OOOO OOOO OOOO 0 002 Max rZ 19 33 0 6D+W4 0 017 0 140 OOOO 0 141 OOOO OOOO 0 011 Mm rZ 19 12 D+L -0 172 -0 314 OOOO 0 358 OOOO OOOO -0 010 Max Rst 55 12 D+L -0 151 -0 527 OOOO 0 548 OOOO OOOO -0 000 Beam Force Detail Summarv Sian convention as diaarams - oositive above line neaative below line exceot Fx where positive is comoression Distance d is aiven Irom beam end A Axial Shear Torsion Bendina Beam L/C d (ft) Fx (Ib) Fv (Ib) Fz (Ib) Mx (kiD"ft) Mv (kiD'ft) Mz (kiD"ft) Max Fx 11 12 D+L OOOO 12 9E+3 147 733 OOOO OOOO OOOO OOOO Mm Fx 7 12 D+L OOOO -11 4E+3 41 642 OOOO OOOO OOOO OOOO Max Fv 1 12 D+L OOOO 2 35E+3 408 453 OOOO OOOO OOOO OOOO Mm Fv 28 33 0 6D+W4 OOOO 470 982 -351 059 OOOO OOOO OOOO -0 412 Max Fz 1 11 D OOOO 1 37E+3 219 251 OOOO OOOO OOOO OOOO Mm Fz 1 11 D OOOO 1 37E+3 219 251 OOOO OOOO OOOO OOOO Max Mx 1 11 D OOOO 1 37E+3 219 251 OOOO OOOO OOOO OOOO Mm Mx 1 11 D OOOO 1 37E+3 219 251 OOOO OOOO OOOO OOOO Max Mv 1 11 D OOOO 1 37E+3 219 251 OOOO OOOO 0 000 OOOO Mm Mv 1 11 D OOOO 1 37E+3 219 251 OOOO OOOO OOOO OOOO Max Mz 23 12 D+L 7 107 -1 1E+3 -330 709 OOOO OOOO OOOO 0 384 Mm Mz 1 12 D+L 1 500 2 35E+3 408 453 OOOO OOOO OOOO -0 613 Pnnt Time/Date 13/03/2013 10 56 STAAD ProVSi 20 07 05 15 Pnnt Run 11 of 12 Software licensed to •^eten-Mar-IS <=i"' F'le TRUSS+SHADE std Date/Time 15.Nov-2012 11 48 Reaction Summarv Horizontal Vertical Horizontal Moment Node UC FX FY FZ MX MY MZ (Ib) (Ib) (lb) (kiD"ft) (kiD'ft) (kiD"ft) Max FX 1 12 D+L 53 277 2 43E+3 OOOO OOOO OOOO OOOO Mm FX 8 34 0 6D+0 7E -1 74E+3 OOOO OOOO OOOO OOOO OOOO Max FY 5 12 D+L -15 673 8 87E+3 OOOO OOOO OOOO OOOO Mm FY 3 31 0 6D+W2 -1 919 -2 46E+3 OOOO OOOO OOOO OOOO Max FZ 1 11 D 28 598 1 45E+3 OOOO OOOO OOOO OOOO Mm FZ 1 11 D 28 598 1 45E+3 OOOO OOOO OOOO OOOO Max MX 1 11 D 28 598 1 45E+3 OOOO OOOO OOOO OOOO Mm MX 1 11 D 28 598 1 45E+3 0 000 OOOO OOOO OOOO Max MY 1 11 D 28 598 1 45E+3 OOOO OOOO OOOO OOOO Min MY 1 11 D 28 598 1 45E+3 OOOO OOOO OOOO OOOO Max MZ 1 11 D 28 598 1 45E+3 OOOO OOOO OOOO OOOO Mm MZ 1 11 D 28 598 1 45E+3 OOOO OOOO OOOO OOOO Print Time/Date 13/03/2013 10 56 STAAD Pro V8i 20 07 05 15 Pnnt Run 12 of 12 Software licensed to Job No Part TOP Bv De'M1-Mar-13 F'le TRUSS+SHADE std Oate/rime 15.N0V-2012 11 48 Beam Force Detail Sum m a rv Sion convention as diaarams - positive above line neaative below line except Fx where positive is comoression Distance d is aiven Irom beam end A Axial Shear Torsion Bendina Beam UC d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kiD"ft) (kiD"ft) (kioft) Max Fx 11 12 D+L OOOO 12 899 0 148 OOOO OOOO OOOO OOOO Min Fx 73 33 0 6D+W4 OOOO -2 569 0 032 OOOO OOOO 0 000 0 104 Max Fv 11 12 D+L 0 000 12 899 0 148 OOOO OOOO OOOO OOOO Mm Fv 74 12 D+L OOOO 12 899 -0 148 OOOO OOOO OOOO -0 474 Max Fz 11 11 D OOOO 5 323 0 061 OOOO OOOO OOOO OOOO Min Fz 11 11 D OOOO 5 323 0 061 0 000 OOOO OOOO 0 000 Max Mx 11 11 D OOOO 5 323 0 061 OOOO OOOO OOOO OOOO Mm Mx 11 11 D OOOO 5 323 0 061 OOOO OOOO OOOO OOOO Max Mv 11 11 D OOOO 5 323 0 061 OOOO 0 000 OOOO OOOO Mm Mv 11 11 D OOOO 5 323 0 061 OOOO OOOO OOOO OOOO Max Mz 12 33 0 6D+W4 3 199 -2 569 -0 032 OOOO OOOO OOOO 0 104 Mm Mz 74 12 D+L OOOO 12 899 -0 148 OOOO OOOO OOOO -0 474 Pnnt Time/Date 13/03/2013 10 59 STAAD Pro V8i 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Sheet No BOTTOM i^etei1-Mar-13 c*"* File TRUSS+SHADE std Date/Time i5.Nov-2012 11 48 Beam Force Detail Summarv Sian convention as diaarams - oositive above line neaative below line exceot Fx where positive is comoression Distance d is aiven trom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (km) (kiD) (kiB ft) (kiDft) (kiD"ft) Max Fx 7 33 0 6D+W4 OOOO 1 501 -0 005 OOOO OOOO OOOO 0 000 Mm Fx 7 12 D+L OOOO -11 414 0 042 OOOO OOOO OOOO OOOO Max Fv 7 12 D+L OOOO -11 414 0 042 OOOO OOOO OOOO OOOO Mm Fv 81 12 D+L OOOO -11 414 -0 042 OOOO OOOO OOOO -0 249 Max Fz 7 11 D OOOO -4 709 0 018 OOOO OOOO OOOO OOOO Mm Fz 7 11 D OOOO -4 709 0 018 OOOO OOOO OOOO OOOO Max Mx 7 11 D OOOO -4 709 0 018 OOOO OOOO OOOO 0 000 Mm Mx 7 11 D OOOO -4 709 0 018 OOOO OOOO OOOO 0 000 Max Mv 7 11 D OOOO -4 709 0 018 OOOO OOOO OOOO OOOO Mm Mv 7 11 D OOOO -4 709 0 018 OOOO OOOO OOOO OOOO Max Mz 10 12 D+L OOOO -6 452 0 032 OOOO OOOO OOOO 0 121 Mm Mz 7 12 D+L 5 970 -11 414 0 042 OOOO OOOO OOOO -0 249 Pnnt Time/Date 13/03/2013 10 59 STAAD ProVOi 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Sheet No COLUMN 'M1-Mar-13 <=hd F'le TRUSS+SHADE std Date/Time 15.Nov-2012 11 48 Beam Force Detail Summarv Sian convention as diaarams - oositive above line neaative below line except Fx where positive is compression Distance d is aiven trom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kiD ft) (kiD"ft) (kiD"ft) Max Fx 16 12 D+L OOOO 8 872 0 016 OOOO OOOO OOOO 0 180 Min Fx 2 31 0 6D+W2 OOOO -2 465 -0 015 OOOO OOOO OOOO -0 000 Max Fv 1 12 D+L OOOO 2 349 0 408 OOOO OOOO OOOO OOOO Mm Fv 1 33 0 6D+W4 1 500 -1 073 -0 207 OOOO OOOO OOOO 0 212 Max Fz 1 11 D OOOO 1 371 0 219 OOOO OOOO OOOO OOOO Min Fz 1 11 D OOOO 1 371 0 219 OOOO OOOO OOOO OOOO Max Mx 1 11 D OOOO 1 371 0 219 OOOO OOOO OOOO OOOO Mm Mx 1 11 D OOOO 1 371 0 219 OOOO OOOO OOOO OOOO Max Mv 1 11 D OOOO 1 371 0 219 OOOO OOOO OOOO 0 000 Mm Mv 1 11 D OOOO 1 371 0 219 OOOO OOOO OOOO OOOO Max Mz 1 33 0 6D+W4 1 500 -1 073 -0 207 OOOO OOOO OOOO 0 212 Mm Mz 1 12 D+L 1 500 2 349 0 408 OOOO OOOO OOOO -0 613 Pnnt Time/Date 13/03/2013 10 58 STAAD Pro V8i 20 07 05 15 Pnnt Run 1 of 1 Software licensed to WEB Job Title °«'M1-Mar-13 ^hd F'le TRUSS+SHADE std Date/Time 15.Nov-2012 11 48 Beam Force Detail Summarv S;on convention as diaarams - positive above line neaative below line except Fx where positive is comoression Distance d is aiven trom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kiD"ft) (kiD ft) (kiD"ft) Max Fx 91 12 D+L OOOO 1 717 OOOO OOOO OOOO OOOO OOOO Min Fx 89 33 0 6D+W4 OOOO -0 601 OOOO OOOO OOOO OOOO OOOO Max Fv 87 11 D OOOO 0 204 OOOO OOOO OOOO OOOO' OOOO Mm Fv 87 11 D OOOO 0 204 OOOO OOOO OOOO OOOO OOOO Max Fz 87 11 D OOOO 0 204 OOOO OOOO OOOO OOOO OOOO Min Fz 87 11 D OOOO 0 204 OOOO OOOO OOOO OOOO OOOO Max Mx 87 11 D OOOO 0 204 OOOO OOOO OOOO OOOO OOOO Mm Mx 87 11 D OOOO 0 204 OOOO OOOO OOOO OOOO OOOO Max Mv 87 11 D OOOO 0 204 OOOO OOOO OOOO OOOO OOOO Mm Mv 87 11 D 0 000 0 204 OOOO OOOO OOOO OOOO OOOO Max Mz 87 11 D 0 000 0 204 OOOO OOOO OOOO OOOO OOOO Mm Mz 87 11 D 0 000 0 204 OOOO OOOO OOOO OOOO OOOO Print Time/Date 13/03/2013 11 00 STAAD Pro V8i 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Sheet No DIAGONAL °='M1-Mar-13 Client F'le TRUSS+SHADE std Datenime 15.Nov-2012 11 48 Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line except Fx where positive is compression Distance d is aiven Irom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kiD"ft) (kiD"ft) (kiD"ft) Max Fx 83 33 0 6D+W4 OOOO 1 399 -0 002 OOOO OOOO OOOO OOOO Mm Fx 83 12 D+L OOOO -5 033 0 007 OOOO OOOO OOOO OOOO Max Fv 83 12 D+L OOOO -5 033 0 007 OOOO OOOO OOOO OOOO Mm Fv 85 12 D+L OOOO -4 324 -0 006 OOOO OOOO OOOO -0 039 Max Fz 83 11 D OOOO -1 979 0 003 0 000 OOOO OOOO OOOO Min Fz 83 11 D OOOO -1 979 0 003 OOOO OOOO OOOO OOOO Max Mx 83 11 D OOOO -1 979 0 003 OOOO OOOO OOOO OOOO Mm Mx 83 11 D OOOO -1 979 0 003 OOOO OOOO OOOO OOOO Max Mv 83 11 D OOOO -1 979 0 003 OOOO OOOO OOOO OOOO Mm Mv 83 11 D OOOO -1 979 0 003 OOOO OOOO OOOO OOOO Max Mz 84 33 0 6D+W4 5 970 1 399 -0 002 OOOO OOOO OOOO 0 010 Mm Mz 83 12 D+L 5 970 -5 033 0 007 OOOO OOOO OOOO -0 039 Print Time/Date 13/03/2013 10 59 STAAD ProV8i 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Sheet No SH-TOP °e'eii.Mar-13 File TRUSS+SHADE std Date/Time 15.Nov-2012 11 48 Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line except Fx where positive is compression Distance d is aiven trom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kiDft) (kiD ft) (kiDft) Max Fx 31 12 D+L 7 107 4 654 -0 276 OOOO OOOO OOOO 0 375 Min Fx 31 33 0 6D+W4 OOOO -2 222 -0 294 OOOO OOOO OOOO -0 412 Max Fv 23 33 0 6D+W4 7 107 0 480 0 351 OOOO OOOO OOOO -0 412 Mm Fv 28 33 0 6D+W4 OOOO 0 471 -0 351 OOOO OOOO OOOO -0 412 Max Fz 21 11 D OOOO 1 630 0 084 OOOO OOOO OOOO OOOO Min Fz 21 11 D OOOO 1 630 0 084 OOOO OOOO OOOO OOOO Max Mx 21 11 D OOOO 1 630 0 084 OOOO OOOO OOOO OOOO Mm Mx 21 11 D OOOO 1 630 0 084 OOOO OOOO OOOO 0 000 Max Mv 21 11 D OOOO 1 630 0 084 OOOO OOOO OOOO OOOO Mm Mv 21 11 D OOOO 1 630 0 084 OOOO OOOO OOOO OOOO Max Mz 23 12 D+L 7 107 -1 098 -0 331 OOOO OOOO OOOO 0 384 Mm Mz 23 33 0 6D+W4 7 107 0 480 0 351 OOOO OOOO 0 000 -0 412 Pnnt Time/Date 13/03/2013 10 57 STAAD Pro V8i 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Sheet No SH-BOTTOM Rev °etMl-Mar-13 F'le TRUSS+SHADE std Date/Time 15.Nov-2012 11 48 Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line except Fx where positive is compression Distance d is aiven Irom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (km) (kiD) (kioft) (kiDft) (kiD'ft) Max Fx 18 12 D+L OOOO 6 547 -0 001 OOOO OOOO OOOO OOOO Min Fx 55 12 D+L OOOO -4 282 0 001 OOOO OOOO OOOO -0 006 Max Fv 17 12 D+L OOOO 0 462 0 005 OOOO OOOO OOOO OOOO Mm Fv 53 27 D+0 525E+( OOOO 0 153 -0 008 OOOO OOOO OOOO -0 017 Max Fz 17 11 D OOOO 0 248 0 003 OOOO OOOO OOOO 0 000 Mm Fz 17 11 D OOOO 0 248 0 003 OOOO OOOO OOOO OOOO Max Mx 17 11 D OOOO 0 248 0 003 OOOO OOOO OOOO OOOO Mm Mx 17 11 D OOOO 0 248 0 003 OOOO OOOO OOOO OOOO Max Mv 17 11 D OOOO 0 248 0 003 OOOO OOOO OOOO OOOO Min Mv 17 11 D OOOO 0 248 0 003 OOOO OOOO OOOO OOOO Max Mz 39 30 0 6D+W1 OOOO 1 175 0 001 OOOO OOOO OOOO 0 007 Mm Mz 53 27 D+0 525E+( OOOO 0 153 -0 006 OOOO OOOO OOOO -0 017 Pnnt Time/Date 13/03/2013 10 68 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 ifK:^.nr^^^3lll| Software licensed to Job No Sheet No SH-WEB Rev ifK:^.nr^^^3lll| Software licensed to Part Job Title Ref Job Title Bv °="11-Mar-13 Client F'le TRUSS+SHADE std Date/Time 15.Nov-2012 11 48 Beam Force Detail Summarv S;on convention as diaarams - positive above line neaative below line except Fx where positive is comoression Distance d is aiven trom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kioft) (kioft) (kioft) Max Fx 67 12 D+L OOOO 4 091 OOOO OOOO OOOO OOOO OOOO Min Fx 68 12 D+L OOOO -6 158 OOOO OOOO OOOO OOOO OOOO Max Fv 41 11 D OOOO -2 007 OOOO OOOO OOOO OOOO OOOO Mm Fv 41 11 D OOOO -2 007 OOOO OOOO OOOO OOOO OOOO Max Fz 41 11 D OOOO -2 007 OOOO OOOO OOOO OOOO OOOO Mm Fz 41 11 D OOOO -2 007 OOOO OOOO OOOO OOOO OOOO Max Mx 41 11 D OOOO -2 007 OOOO OOOO OOOO OOOO OOOO Mm Mx 41 11 D OOOO -2 007 OOOO OOOO OOOO OOOO OOOO Max Mv 41 11 D OOOO -2 007 OOOO OOOO OOOO OOOO OOOO Mm Mv 41 11 D OOOO -2 007 OOOO OOOO OOOO OOOO 0 000 Max Mz 41 11 D OOOO -2 007 OOOO OOOO OOOO OOOO 0 000 Mm Mz 41 11 D OOOO -2 007 OOOO OOOO OOOO OOOO OOOO Print Time/Date 13/03/2013 10 57 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Truss Too Chord Inout Data Member Section 4x2x14aa A = Tube Width 2 in B = Tube Lenath 4 in R = Corner Inner Radius 0 0938 in t = Thickness 0 083 in KLx= Bucklina around x-x 3 21 ft KLy= Bucklina around x-x 3 21 ft E = Modulus of Elasticitv 29500 ksi Fy = Yield Stress 50 ksi G = Shear Modulus 11300 ksi Calculated Parameter Applied Forces 1- Properties of 90° corner M 0 474 kiDft r = R + t/2 Centerline of Dimension 0 135 in P 12 899 kiDS u = Tt r/2 Arc Lenath 0213 in c=0 637 r Distance of c a from center 0 086 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6464 in Flat width of Dim b= B - (2 r + t) 3 6464 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2a 3 2928 B/2 -1/2 1 9585 12 6303 0 OOOO Web 2b 7 2928 0 0 OOOOO 8 0806 Corners 4u 0 850 b/2 + c 1 909 3 0995 OOOOO Sum 11 4358 3 8679 15 7298 8 0806 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2a 3 2928 0 0 OOOOO 0 7438 Web 2 b 7 2928 A/2-t/2 0 9585 6 7001 OOOOO Corners 4 u 0 850 a/2 + c 0 909 0 7031 OOOOO Sum 11 4358 1 8679 7 4031 0 7438 Section Properties A Lxt 0 9492 in^ lx tx(LxY^+i;) 1 9763 in^ IY t X (L X X^ +ly') 0 6762 in- Sx lx /(B/2) 0 9881 in^ SY IY /(A/2) 0 6762 in^ fx (\JA)°^ 1 4429 in (IY/A)"" 0 8440 in Nominal Bucklina Stress KL^r^ 26 6954 KLy/ry 45 6375 KL/r 45 6375 Fe E/(KL/r)^ 139 7906 ksi Ic (Fv/Fe)"" 0 5981 F„ 43 0480 ksi Effective Area effective width of compression flanae w/t = a/t 19 8361 X 1 052/(k)''^x(w/t)x(Fn/E)°^ 0 3986 r (1-0 22 IX) IX 1 1241 ae 1 6464 in effective width of web element w/t = b/t 43 9325 1 1 052/(k)''^x(w/t)x(Fn/E)°^ 0 8827 r (1-0 22 IX) IX 0 8505 be 3 1013 in Allowable Axial Load Ae Ae = A-2xtxr(a-ae) + (b-be)l 0 8586763 in^ Pn Pn" Ae X Fp 36 9643349 kios fic 1 8 Pa = Pn /fic 20 5357 kiDS Check Compression Stresses Loads from Wind? Cbi Cb1=(P/Pa) 0 6281 NO Allowable Stress Unitv 1 0 6281 Section is OK Comoutina of Mnx Bv usina the effective width of comoression flanae and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) v Distance to too fiber (in) Lv Lv^ C Flanaes ae 1 6464 t/2 0 0415 0 0683 0 0028 Web 2b 7 2928 B/2 2 14 5856 29 1712 C Corners 2u 0 42508554 c+t/2 0127686 0 0543 0 0069 T Flanaes ae 3 6464 B-t/2 3 9585 14 4343 57 1381 T Corners 2u 0 42508554 B-c 3 914 1 6637 6 5114 Sum 13 4358 10 0415 30 8062 92 8305 Vca = L V/ L 2 2928 Z=R+t 0 1768 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness ofthe Web fl (Vca- Z)Fy/Vca 46 1445 ksi f2 - (B-Vca- Z)Fy/Vca -33 3723 ksi v f^/fl -0 7232 k 4+2(1-vi/)^+2(1-vu) 17 6804 hi be/t 43 9325 1 1 052/(k)"x(h/t)x(f1/E)°^ 0 4347 r (1-0 22 IX) IX 1 1362 be 3 1013 in bl be/(3-vi/) 0 8330 in b2 1 5506 in bi+b2 2 3836 in 2 1 web 2(1/12)(b)^ 8 0806 in^ S(Lv^) 92 8305 in^ (-)(SH(v„)' 70 6339 in^ I'x 30 2771 lx=l'xt 2 5130 in^ Sex='x/Vca 1 0960 in^ Cb=1 0 for combined axial load and bendina moment i 2b^d^t/(b+d) 1 1304 in^ Sf fullSx 0 9881 in^ 0 36Cb7i(ElGi)°^/(Fy Sf) 52 0769 ft Fe" CbTt (E 1 G 1)0 5/(L Sf) 2253 2411 ksi Allowable Bendina Moment Mnx 4 5667 kiDft fib 1 67 Ma = Mnx /fib 2 73457546 kioft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P/P3) + (Cn,x Mx/Ma) 0 7321 NO Cb2 (P / Pa) + (Mx/Ma) 0 8015 Allowable Stress Unitv 1 Cb lf((P/Pa) <=0 15Cb2 Cbi) 0 7321 Section is OK Truss B OTTOW Chord (CCR/P) Input Data Member Section 4x2x14aa A = Tube Width 2 in B = Tube Lenath 4 in R = Corner Inner Radius 0 0938 in t = Thickness 0 083 in KLx= Bucklina around x-x 6 21 ft KLy= Bucklina around x-x 10 ft E = Modulus of Elasticitv 29500 ksi Fy = Yield Stress 50 ksi G = Shear Modulus 11300 ksi Yj 5 1 1 j i E Yl • A • Calculated Parameter Applied Forces 1 • Properties of 90° corner M 0 000001 kiDft r = R + t/2 Centerline of Dimension 0 135 in P 1 515 kiDS u = TI r/2 Arc Lenath 0213 in c=0 637 r Distance of c a from center 0 086 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6464 in Flat width of Dim b= B - (2 r + t) 3 6464 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2a 3 2928 B/2 -1/2 1 9585 12 6303 0 OOOO Web 2b 7 2928 0 0 OOOOO 8 0806 Corners 4 u 0 850 b/2 + c 1 909 3 0995 OOOOO Sum 11 4358 3 8679 15 7298 8 0806 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2a 3 2928 0 0 OOOOO 0 7438 Web 2b 7 2928 A/2-t/2 0 9585 6 7001 OOOOO Corners 4 u 0 850 a/2 + c 0 909 0 7031 0 OOOO Sum 11 4358 1 8679 7 4031 0 7438 Section Prooerties A Lxt 0 9492 in^ lx tx(LxY^+lx') 1 9763 in" IY t X (L X X^ +ly') 0 6762 in-* Sx lx /(B/2) 0 9881 in^ SY IY /(A/2) 0 6762 in-' ""x (lx/A)°^ 1 4429 in TY (lylA)"" 0 8440 in Nominal Bucklina Stress KLx/rx 51 6443 KLy/ry 142 1729 KL/r 142 1729 Fe n E/(KL/r)^ 14 4042 ksi Ic (Fv/Fe)"" 1 8631 Fn 12 6324 ksi Effective Area effective width of comoression flanae w/t = a/t 19 8361 X 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 2159 r (1-0 22 IX) IX -0 0877 ae 1 6464 in effective width of web element w/t = b/t 43 9325 1 1 052/(k)°S(w/t)x(Fn/E)°^ 0 4782 r (1-0 22 IX) IX 1 1291 be 3 6464 in Allowable Axial Load Ae Ae = A - 2 X t X Ka-ae) + (b-be)l 0 949169 in^ Pn Pn~ Ae X Fn 11 9903281 kiDS fic 1 8 Pa = Pn /fic 6 6613 kiDS Check Compression Stresses Loads from Wind*? Cbi Cb1=(P/Pa) 0 2274 NO Allowable Stress Unitv 1 0 2274 Section is OK Comoutina of Mnx Bv usina the effective width of comoression flanae and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) V Distance to too fiber (in) L V Lv^ C Flanaes ae 1 6464 t/2 0 0415 0 0683 0 0028 Web 2b 7 2928 B/2 2 14 5856 29 1712 C Corners 2u 0 42508554 c+t/2 0127686 0 0543 0 0069 T Flanaes ae 3 6464 B-t/2 3 9585 14 4343 57 1381 T Corners 2u 0 42508554 B-c 3 914 1 6637 65114 Sum 13 4358 10 0415 30 8062 92 8305 Vca = L v/ L 2 2928 Z=R+t 0 1768 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fl (Vca- Z)Fy/Vca 46 1445 ksi f2 - (B-Vca- Z)Fy/Vca -33 3723 ksi v fj/fl -0 7232 k 4+2(1-vi/)^+2(1-VI/) 17 6804 hi be/t 43 9325 1 1 052/(k)°^x(h/t)x(f1/E)°^ 0 4347 r (1-0 22 IX) IX 1 1362 be 3 6464 in bl be/(3-vu) 0 9794 in b2 1 8232 in bi+b2 2 8026 in 2 1 web 2(1/12)(b)^ 8 0806 in^ S(Lv^) 92 8305 in^ (-)(SL)(Vca)' 70 6339 in^ I'x 30 2771 in^ lx=l'xt 2 5130 in^ Sex=lx/Vca 1 0960 in^ Cb=1 0 for combined axial load and bendina moment i 2bWm+d) 1 1304 in^ Sf fullSx 0 9881 in^ 0 36CbTt(ElGi)''^/(Fy Sf) 52 0769 ft Fe' CbTt (E 1 G 1)0 5/(L Sf) 1164 7188 ksi Allowable Bendina Moment Mnx 4 5667 kioft fib 1 67 Ma = Mnx/fib 2 73457546 kiDft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P / Pa) + (Cmx Mx/Ma ) 0 2274 NO Cb2 (P / Pa) + (Mx / Ma) 0 2274 Allowable Stress Unitv 1 Cb lf((P/Pa) <=0 15Cb2Cbi) 0 2274 Section is OK Truss Bottom Chord (Tension) Input Data Y\ Member Section 4x2x14aa A = Tube Width 2 in 1 B = Tube Lenath 4 in 1 R = Corner Inner Radius 0 0938 in x__ 1 [ 1 X . E t = Thickness 0 083 in 1 [ 1 — t E 1 KLx= Bucklina around x-x 5 97 ft 1 i KLy= Bucklina around x-x 10 ft i E = Modulus of Elasticitv 29500 ksi E = Modulus of Elasticitv 29500 ksi Fv = Yield Stress 55 ksi G = Shear Modulus 11300 ksi G = Shear Modulus 11300 ksi d = Bolt diameter 05 in A n = Number of bolts 1 Calculated Parameter Applied Forces 1- Properties of 90° corner r = R + t/2 Centerline of Dimension 0 135 in P 11 419 kiDS u = Tl r/2 Arc Lenath 0213 in c=0 637 r Distance of c a from center 0 086 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6464 in Flat width of Dim b= B - (2 r + t) 3 6464 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ i; Flanaes 2a 3 2928 B/2 -1/2 1 9585 12 6303 ooooo Web 2 b 7 2928 0 0 OOOOO 8 0806 Corners 4 u 0 850 b/2 + c 1 909 3 0995 ooooo Sum 11 4358 3 8679 15 7298 8 0806 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2a 3 2928 0 0 OOOOO 0 7438 Web 2b 7 2928 A/2-t/2 0 9585 6 7001 OOOOO Corners 4 u 0 850 a/2 + c 0 909 0 7031 OOOOO Sum 11 4358 1 8679 7 4031 0 7438 3- Section Properties A = L X t Gross Area 0 9492 in=^ A„= A - n X t X (d+ 0625) x 2 0 8558 in" 4- Allowable Axial Load Pn~ Ap X Fy 47 06867 kiDS 1 67 Pa = Pn /fit 28 1848323 kiDS 5- Check Tension Stresses Loads from Wind? Cbi=(P / Pa) 0 4051 NO Allowable Stress Unitv 1 0 4051 Section is OK Column Inout Data Member Section 4x4x14aa A = Tube Width 4 in B = Tube Lenath 4 in R = Corner Inner Radius 0 0938 in t = Thickness 0 083 m KLx= Bucklina around x-x 13 ft KLy= Bucklina around x-x 13 ft E = Modulus of Elasticity 29500 ksi Fy = Yield Stress 50 ksi G = Shear Modulus 11300 ksi Yj 3 1 4 e • A Calculated Parameter Applied Forces 1- Prooerties of 90° corner M 0 0001 kiDft r = R + t/2 Centerline of Dimension 0 135 in P 8 872 kiDS u = Tt r/2 Arc Lenath 0 213 in c=0 637 r Distance of c a from center 0 086 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 3 6464 in Flat width of Dim b= B - (2 r + t) 3 6464 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2a 7 2928 B/2 -1/2 1 9585 27 9732 0 OOOO Web 2 b 7 2928 0 0 OOOOO 8 0806 Corners 4u 0 850 b/2 + c 1 909 3 0995 OOOOO Sum 15 4358 3 8679 31 0727 8 0806 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2a 7 2928 0 0 OOOOO 8 0806 Web 2b 7 2928 A/2-t/2 1 9585 27 9732 OOOOO Corners 4 u 0 850 a/2 + c 1 909 3 0995 0 OOOO Sum 15 4358 3 8679 31 0727 8 0806 Section Prooerties A Lxt 1 2812 in^ lx t X ( L X Y^ +lx') 3 2497 in" IY t X (L X X^ +ly') 3 2497 in" Sx lx /(B/2) 1 6249 in^ SY IY /(A/2) 1 6249 in^ fx (Ix/A)" 1 5926 in ry UylA)"" 1 5926 m Nominal Bucklina Stress KLx/rx 97 9501 KLy/ry 97 9501 KL/r 97 9501 Fe Tl^ E/(KL/r)^ 30 3467 ksi Ic (Fv/Fe)"" 1 2836 F„ 25 0885 ksi Effective Area effective width of compression flanae w/t = a/t 43 9325 X 1 052/(k)''^x(w/t)x(Fn/E)°^ 0 6739 r (1-0 22 IX) IX 0 9995 ae 3 6445 in effective width of web element w/t = b/t 43 9325 1 1 052/(k)''^x(w/t)x(Fn/E)''^ 0 6739 r (1-0 22 IX) IX 0 9995 • be 3 6445 in Allowable Axial Load Ae Ae = A - 2 X t X f(a-ae) + (b-be)l 1 28052198 in^ Pn Pn~ Ae X Fn 32 1263699 kiDS fic 1 8 Pa = Pn /fic 17 8480 kios Check Compression Stresses Loads from Wind? Cbi Cb1=(P/Pa) 0 4971 NO Allowable Stress Unitv 1 0 4971 Section is OK Comoutina of Mnx Bv usina the effective width of comoression flanae and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) V Distance to too fiber (in) Lv Lv^ C Flanaes ae 3 64445115 t/2 0 0415 0 1512 0 0063 Web 2 b 7 2928 B/2 2 14 5856 29 1712 C Corners 2u 0 42508554 c+t/2 0127686 0 0543 0 0069 T Flanaes ae 3 6464 B-t/2 3 9585 14 4343 57 1381 T Corners 2u 0 42508554 B-c 3 914 1 6637 6 5114 Sum 15 4338 10 0415 30 8891 92 8339 Vca = L v/ L 2 0014 Z=R+t 0 1768 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fl (Vca- Z)Fy/Vca 45 5831 ksi f2 - (B-Vca- Z)Fy/Vca -45 5136 ksi v fj/fi -0 9985 k 4+2(1-ti/)^+2(1-vi/) 23 9604 hi be/t 43 9325 1 1 052/(k)°^x(h/t)x(f1/E)''^ 0 3711 r (1-0 22 IX) IX 1 0973 be 3 6445 in bl be/(3-\i/) 09115 in b2 1 8222 in bi+b2 2 7337 in 2 1 web 2(1/12)(b)^ 8 0806 in^ S(Lv^) 92 8339 in^ (-)(SH(Vea)' 61 8212 in^ I'x 39 0933 in^ lx=l'xt 3 2447 in^ Sex=lx/Vca 1 6212 in^ Cb=1 0 for combined axial load and bendina moment I 2b^d^t/(b+d) 4 0241 in^ S, fullSx 1 6249 in^ L„ 0 36CbTi(E 1 Gi)''^/(Fy Sf) 76 6247 ft Fe" CbTt (E 1 G 1)0 5/(L Sf) 818 6399 ksi Allowable Bendina Moment Mnx 6 7552 kiDft fib 1 67 Ma = Mnx/fib 4 04502544 kiDft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P/Pa) + (Cmx Mx/Ma) 0 4971 NO Cb2 (P / Pa) + (Mx/Ma) 0 4971 Allowable Stress Unitv 1 Cb lf((P/Pa) <=0 15Cb2 Cbi) 0 4971 Section is OK Truss Web (comp.) Input Data Member Section 2x2x1Saa A = Tube Width 2 in B = Tube Lenath 2 in R = Corner Inner Radius 0 0938 in t = Thickness 0 072 in KLx= Bucklina around x-x 7 12 ft KLy= Bucklina around x-x 7 12 ft E = Modulus of Elasticity 29500 ksi Fy = Yield Stress 50 ksi G = Shear Modulus 11300 ksi Calculated Parameter Applied Forces 1- Properties of 90° corner M 0 0001 kiDft r = R +1/2 Centerline of Dimension 0 130 in P 1 717 kiDS u = Tt r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6684 in Flat width of Dim b= B - (2 r + t) 1 6684 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx" Flanaes 2a 3 3368 B/2 -1/2 0 964 3 1009 OOOOO Web 2 b 3 3368 0 0 OOOOO 0 7740 Corners 4u 0 816 b/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2 a 3 3368 0 0 0 OOOO 0 7740 Web 2 b 3 3368 A/2-t/2 0 964 3 1009 OOOOO Corners 4 u 0 816 a/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Section Properties A Lxt 0 5392 in^ lx tx(LxY^+lx') 0 3284 in" IY t x (L X X^ +ly') 0 3284 in" Sx lx /(B/2) 0 3284 in^ SY IY /(A/2) 0 3284 in^ fx (lx/A)°^ 0 7804 in ry (IY/A)"" 0 7804 in Nommal Bucklina Stress KLx/rx 109 4890 KLy/ry 109 4890 KL/r 109 4890 Fe Tt^ E/(KL/r)^ 24 2874 ksi Ic (Fv/Fe)"' 1 4348 Fn 21 1230 ksi Effective Area effective width of comoression flanae w/t = a/t 23 1722 X 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 3262 T (1-0 22 IX) IX 0 9979 ae 1 6684 in effective width of web element w/t = b/t 23 1722 1 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 3262 r (1-0 22 IX) IX 0 9979 be 1 6684 in Allowable Axial Load Ae Ae = A - 2 X t X [(a-ae) + (b-be)l 0 53922321 in^ Pn Pn~ Ae X Fn 11 3899928 kios fic 1 8 Pa = Pn /fic 6 3278 kios Check Comoression Stresses Loads from Wind? Cbi Cb1=(P/Pa) 0 2713 NO Allowable Stress Unitv 1 0 2713 Section IS OK Comoutina of Mnx Bv usina the effective width of comoression flanae and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) V Distance to too fiber (in) L V Lv^ C Flanaes ae 1 6684 t/2 0 036 0 0601 0 0022 Web 2b 3 3368 B/2 1 3 3368 3 3368 C Corners 2 u 0 40780564 c+y2 0118683 0 0484 0 0057 T Flanaes ae 1 6684 B-t/2 1 964 3 2767 6 4355 T Corners 2 u 0 40780564 B-c 1 917 0 7819 1 4991 Sum 7 4892 5 0360 7 5039 11 2794 Vca=Lv/L 1 0020 Z=R+t 0 1658 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fl (Vca- Z)Fy/Vca 41 7262 ksi f2 - (B-Vca- Z)Fy/Vca -41 5306 ksi v fj/fi -0 9953 k 4+2(1-vu)^+2(1-vu) 23 8784 hi be/t 23 1722 1 1 052/(k)°^x(h/t)x(f1/E)°^ 0 1876 r (1-0 22 IX) IX -0 9199 be 1 6684 in bl bj(3-w) 0 4176 in b2 0 8342 in bi+b2 1 2518 in 2 1 web 2nn2)(b? 0 7740 in^ S(Lv^) 11 2794 in^ (-)(SL)(Vcp)^ 7 5186 in^ I'x 4 5348 in^ lx=l'xt 0 3265 in^ Sex=IAca 0 3259 in^ Cb=1 0 for combined axial load and bendina moment 1 2b^d^t/(b+d) 0 3344 in^ s, fullSx 0 3284 in^ Lu 0 36CbTt(EIGi)''^/(Fy Sf) 34 7430 ft Fe" CbTt (E 1 G 1)0 5/(L Sf) 677 7276 ksi Allowable Bendina Moment Mnx 1 3578 kioft fib 1 67 Ma = Mnx/fib 0 81303531 kioft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P/Pa) + (Cmx Mx/Ma) 0 2714 NO Cb2 (P / Pa) + (Mx/Ma) 0 2715 Allowable Stress Unitv 1 Cb lf((P/Pa) <=0 15Cb2 Cbi) 0 2714 Section is OK Truss Web (Ten.) Inout Data Yj Member Section 2x2x1Saa Yj A = Tube Width 2 in r 1—, B = Tube Lenath 2 in R = Corner Inner Radius 0 0938 in t = Thickness 0 072 in x__ I .Jf, 1 1 1 KLx= Bucklina around x-x 7 27 ft 1 1 1 KLy= Bucklina around x-x 7 27 ft E = Modulus of Elasticity 29500 ksi —' Fv = Yield Stress 55 ksi Yi G = Shear Modulus 11300 ksi Yi d = Bolt diameter 05 in *• 0 -1 A . n = Number of bolts 1 Calculated Parameter Applied Forces 1- Properties of 90° corner M 0 0001 kioft r = R + t/2 Centerline of Dimension 0 130 in P 0 601 kios u = Tt r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6684 in Flat width of Dim b= B - (2 r + t) 1 6684 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ i; Flanaes 2a 3 3368 B/2 -1/2 0 964 3 1009 0 OOOO Web 2b 3 3368 0 0 OOOOO 0 7740 Corners 4 u 0 816 b/2 + c 0917 0 6857 OOOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2a 3 3368 0 0 OOOOO 0 7740 Web 2 b 3 3368 A/2-t/2 0 964 3 1009 OOOOO Corners 4 u 0 816 a/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 3- Section Prooertie 5 A = L X t Gross Area 0 5392 A„= A - n X t X (d+ 0625) x 2 0 4582 in" 4- Allowable Axial Load Pn An X Fy 25 2022767 kios n, 1 67 Pa = Pn /fit 15 0911836 kios S- Check Tension Stresses Loads from Wind"? Cbl=(P / Pa) 0 0398 NO Allowable Stress Unity 1 0 0398 Section is OK Truss [IA CC N A L (como ) Input Data vl Member Section 2x2x1Saa 1 A = Tube Width 2 in X _ t' i J JJ JJ.IJ .jjlj •. ...Jl J< 3 1 .Jf, i 1 1 B = Tube Lenath 2 in X _ t' i J JJ JJ.IJ .jjlj •. ...Jl J< 3 1 .Jf, i 1 1 R = Corner Inner Radius 0 0938 in X _ t' i J JJ JJ.IJ .jjlj •. ...Jl J< 3 1 .Jf, i 1 1 t = Thickness 0 072 in X _ t' i J JJ JJ.IJ .jjlj •. ...Jl J< 3 1 .Jf, i 1 1 KLx= Bucklina around x-x 12 97 ft X _ t' i J JJ JJ.IJ .jjlj •. ...Jl J< 3 1 .Jf, i 1 1 KLy= Bucklina around x-x 12 97 ft X _ t' i J JJ JJ.IJ .jjlj •. ...Jl J< 3 1 .Jf, i 1 1 E = Modulus of Elasticity 29500 ksi X _ t' i J JJ JJ.IJ .jjlj •. ...Jl J< 3 1 .Jf, i 1 1 Fy = Yield Stress 50 ksi X _ Y| G = Shear Modulus 11300 ksi o —- Calculated Parameter Applied Forces 1- Properties of 90° corner M 0 0001 kioft r = R + t/2 Centerline of Dimension 0 130 in P 1 399 kios u = Tt r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6684 in Flat width of Dim b= B - (2 r + t) 1 6684 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2a 3 3368 B/2 -1/2 0 964 3 1009 OOOOO Web 2 b 3 3368 0 0 OOOOO 0 7740 Corners 4 u 0 816 b/2 + c 0 917 0 6857 OOOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of iy Element L Lenath (in) X Distance to the center (in) LxX^ i; Fiances 2a 3 3368 0 0 OOOOO 0 7740 Web 2b 3 3368 AI2-V2 0 964 3 1009 0 OOOO Corners 4 u 0 816 a/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Section Properties A Lxt 0 5392 ,n^ lx tx(LxY^+lx') 0 3284 in" IY t X (L X X^ +ly') 0 3284 in" Sx lx /(B/2) 0 3284 in^ SY IY /(A/2) 0 3284 in^ fx (lx/A)°^ 0 7804 in ry (IY/A)"' 0 7804 in Nominal Bucklina Stress KLx/rx 199 4484 KLy/ry 199 4484 KL/r 199 4484 Fe Tt^ E/(KL/r)^ 7 3192 ksi Ic (Fv/Fe)"" 2 6137 Fn 6 4189 ksi Effective Area effective width of compression flanae w/t = a/t 23 1722 X 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 1798 T (1-0 22 IX) IX -1 2438 ae 1 6684 in effective width of web element w/t = b/t 23 1 722 1 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 1798 r (1-0 22 IX) IX -1 2438 • be 1 6684 in Allowable Axial Load Ae Ae = A - 2 X t X [(a-ae) + (b-be)l 0 53922321 in^ Pn Pn~ Ae X Fn 3 46121746 kiDS Qc 1 8 Pa = Pn /fic 1 9229 kios Check Compression Stresses Loads from Wind? Cbi Cb1=(P/Pa) 0 7275 NO Allowable Stress Unity 1 0 7275 Section IS OK Comoutina of M„x By usina the effective width of comoression flanae and assumina the web is fully effective the neutral axis can be located as follow Element L Lenath (in) y Distance to too fiber (in) Lv Lv^ C Flanaes ae 1 6684 t/2 0 036 0 0601 0 0022 Web 2 b 3 3368 B/2 1 3 3368 3 3368 C Corners 2u 0 40780564 c+t/2 0118683 0 0484 0 0057 T Flanaes ae 1 6684 B-t/2 1 964 3 2767 6 4355 T Corners 2u 0 40780564 B-c 1 917 0 7819 1 4991 Sum 7 4892 5 0360 7 5039 11 2794 Vca=Lv/L 1 0020 Z=R+t 0 1658 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fl (Vca- Z)Fy/Vca 41 7262 ksi f2 - (B-Vca- Z)Fy/yca -41 5306 ksi v f2/fl -0 9953 k 4+2(1-u/)^+2(1-vu) 23 8784 hi be/t 23 1722 1 1 052/(k)''^x(h/t)x(f1/E)°^ 0 1876 r (1-0 22 IX) IX -0 9199 be 1 6684 in bl bj(3-\u) 0 4176 in b2 0 8342 in bi+b2 1 2518 in 2 Iweb 2(1/12)(b)^ 0 7740 in^ S(Lv^) 11 2794 in^ (-)(SL)(Vca)^ 7 5186 in^ I'x 4 5348 in^ lx=l'xt 0 3265 in^ Sex=lx/Vca 0 3259 in^ Cb=1 0 for combined axial load and bendina moment 1 2b^d^y(b+d) 0 3344 in^ s, fullSx 0 3284 in^ Lu 0 36Cbn(EIGi)°^/(Fy Sf) 34 7430 ft Fe" CbTt (E 1 G 1)0 5/(L Sf) 372 0448 ksi Allowable Bendina Moment Mnx 1 3578 kioft fib 1 67 Ma = Mnx/fib 0 81303531 kioft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P/Pa) + (Cmx Mx/Ma) 0 7276 NO Cb2 (P / Pa) + (Mx/Ma) 0 7277 Allowable Stress Unity 1 Cb lf((P/Pa) <=0 15Cb2 Cbi) 0 7276 Section is OK Truss IIACGNAl (Ten) Inout Data Member Section 2x2x1Saa Yj A = Tube Width 2 in j LLLW -—1 B = Tube Lenath 2 in j R = Corner Inner Radius 0 0938 in t = Thickness 0 072 in X _ [ —— 1 1 t KLx= Bucklina around x-x 12 97 ft KLy= Bucklina around x-x 12 97 ft ! E = Modulus of Elasticity 29500 ksi ! •nl Fv = Yield Stress 55 ksi YJ G = Shear Modulus 11300 ksi d = Bolt diameter 05 in !• O H A . n = Number of bolts 1 Calculated Parameter Applied Forces 1- Properties of 90° corner M 0 0001 kiDft r = R +1/2 Centerline of Dimension 0 130 in P 5 033 kiDS u = Tt r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6684 in Flat width of Dim b= B - (2 r + t) 1 6684 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2a 3 3368 B/2 -1/2 0 964 3 1009 ooooo Web 2 b 3 3368 0 0 OOOOO 0 7740 Corners 4 u 0 816 b/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2a 3 3368 0 0 OOOOO 0 7740 Web 2b 3 3368 A/2-t/2 0 964 3 1009 OOOOO Corners 4u 0 816 a/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 3- Section Prooerties A = L X t Gross Area 0 5392 in^ A„= A - n X t X (d+ 0625) x 2 0 4582 in" 4- Allowable Axial Load Pn~ An X Fy 25 2022767 kios 1 67 Pa = Pn /fit 15 0911836 kios S- Check Tension Stresses Loads from Wind"? Cb1=<P / Pa» 0 3335 NO Allowable Stress Unity 1 0 3335 Section is OK SHAIE -Too Input Data Member Section 2x2x1Saa A = Tube Width 2 in B = Tube Lenath 2 in R = Corner Inner Radius 0 0938 in t = Thickness 0 072 in KLx= Bucklina around x-x 7 11 ft KLy= Bucklina around x-x 7 11 ft E = Modulus of Elasticity 29500 ksi Fy = Yield Stress 50 ksi G = Shear Modulus 11300 ksi Yl ii [ \ 1 f .Jf, E vi . A . Calculated Parameter Applied Forces 1 - Properties of 90° corner M 0 375 kioft r = R + t/2 Centerline of Dimension 0 130 in P 4 653 kios u = Tt r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6684 in Flat width of Dim b= B - (2 r + t) 1 6684 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ i; Flanaes 2a 3 3368 B/2 -1/2 0 964 3 1009 0 OOOO Web 2 b 3 3368 0 0 OOOOO 0 7740 Corners 4 u 0 816 b/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2a 3 3368 0 0 OOOOO 0 7740 Web 2b 3 3368 A/2-t/2 0 964 3 1009 0 OOOO Corners 4 u 0 816 a/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Section Properties A Lxt 0 5392 in^ lx t X ( L X Y^ +lx') 0 3284 in" IY t X (L X X^ +ly') 0 3284 in" Sx lx /(B/2) 0 3284 in^ SY IY /(A/2) 0 3284 in-' Tx flx/A)°^ 0 7804 in ry (IY/A)"' 0 7804 in Nominal Bucklina Stress KLx/rx 109 3352 KLy/ry 109 3352 KL/r 109 3352 Fe Tt^ E/(KL/r)^ 24 3557 ksi Ic (Fv/Fe)"" 1 4328 Fn 21 1741 ksi Effective Area effective width of compression flanae w/t = a/t 23 1722 X 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 3265 r (1-0 22 IX) IX 0 9992 ae 1 6684 in effective width of web element w/t = b/t 23 1722 1 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 3265 r (1-0 22 IX) IX 0 9992 be 1 6684 in Allowable Axial Load Ae Ae = A-2xtxf(a-ae) + (b-be)l 0 53922321 in^ Pn Pn~ Ag X Fn 11 4175752 kios fic 1 8 Pa = Pn /fic 6 3431 kios Check Compression Stresses Loads from Wind? Cbi Cb1=(P/Pa) 0 7336 NO Allowable Stress Unity 1 0 7336 Section is OK Comoutina of Mnx By usina the effective width of comoression flanae and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) v Distance to too fiber (in) Lv Lv^ C Flanaes ae 1 6684 t/2 0 036 0 0601 0 0022 Web 2b 3 3368 B/2 1 3 3368 3 3368 C Corners 2u 0 40780564 c+t/2 0118683 0 0484 0 0057 T Flanaes ae 1 6684 B-t/2 1 964 3 2767 6 4355 T Corners 2u 0 40780564 B-c 1 917 0 7819 1 4991 Sum 7 4892 5 0360 7 5039 11 2794 Vca = L V/ L 1 0020 Z=R+t 0 1658 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fl (Vca- Z)Fy/yca 41 7262 ksi f2 - (B-Vca- Z)Fy/yca -41 5306 ksi v f2/fi -0 9953 k 4+2(1-vi/)^+2(1-vu) 23 8784 hi be/t 23 1722 1 1 052/(k)°^x(h/t)x(f1/E)°^ 0 1876 r (1-0 22 IX) IX -0 9199 be 1 6684 in bl bJ(3-Mi) 0 4176 in b2 0 8342 in bi+b2 1 2518 in 2 1 web 2(1/12)(b)^ 0 7740 in^ S(Lv^) 11 2794 in^ (-)(SL)(Vea)^ 7 5186 in^ I'x 4 5348 in^ lx=l'xt 0 3265 in^ Sex=lx/Vca 0 3259 in^ Cb=1 0 for combined axial load and bendina moment 1 2b^d^t/(b+d) 0 3344 in^ s, fullSx 0 3284 in^ Lu 0 36CbTt(ElGi)°^/(Fy Sf) 34 7430 ft Fe" CbTt (E 1 G 1)0 5/(L Sf) 678 6808 ksi Allowable Bendina Moment Mnx 1 3578 kioft fib 1 67 Ma = Mnx/fib 0 81303531 kiDft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P/P3) + (Cmx Mx/Ma) 1 0103 NO Cb2 (P / Pa) + (Mx/Ma) 1 1948 Allowable Stress Unity 1 Cb lf((P/Pa) <=0 15Cb2 Cbi) 1 0103 Section is NG and trv another section SHAIE Bottom (TEN) Input Data y\ Member Section 2x2x1Saa y\ A = Tube Width 2 in i B = Tube Lenath 2 in 1 R = Corner Inner Radius 0 0938 in X 1 t = Thickness 0 072 in 1 1 1 KLx= Bucklina around x-x 5 66 ft 1 i KLy= Bucklina around x-x 5 66 ft i E = Modulus of Elasticity 29500 ksi E = Modulus of Elasticity 29500 ksi Fv = Yield Stress 55 ksi VI G = Shear Modulus 11300 ksi G = Shear Modulus 11300 ksi d = Bolt diameter 05 in • A n = Number of bolts 1 Calculated Parameter Applied Forces 1- Properties of 90° corner r = R + t/2 Centerline of Dimension 0 130 in P 4 287 kiDS u = Tt r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6684 in Flat width of Dim b= B - (2 r + t) 1 6684 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2a 3 3368 B/2 -1/2 0 964 3 1009 OOOOO Web 2b 3 3368 0 0 OOOOO 0 7740 Corners 4u 0 816 b/2 + c 0 917 0 6857 OOOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2a 3 3368 0 0 OOOOO 0 7740 Web 2 b 3 3368 A/2 - t/2 0 964 3 1009 OOOOO Corners 4u 0 816 a/2 + c 0 917 0 6857 OOOOO Sum 7 4892 1 8809 3 7865 0 7740 3- Section Properties A = L x t Gross Area 0 5392 in^ A„= A - n X t X (d+ 0625) x 2 0 4582 in" 4- Allowable Axial Load Pn~ An X Fy 25 2022767 kios Qt 1 67 Pa = Pn /fit 15 0911836 kiDS S- Check Tension Stresses Loads from Wind? Cbi=(P / Pai 0 2841 NO Allowable Stress Unitv 1 0 2841 Section is OK SHADE-BOTTOM (COMP) Input Data vl Member Section 2x2x1Saa 1 A = Tube Width 2 in X _ t" i 1 -Jf. 1 B = Tube Lenath 2 in X _ t" i 1 -Jf. 1 R = Corner Inner Radius 0 0938 in X _ t" i 1 -Jf. 1 t = Thickness 0 072 in X _ t" i 1 -Jf. 1 KLx= Bucklina around x-x 2 93 ft X _ t" i 1 -Jf. 1 KLy= Bucklina around x-x 2 93 ft X _ t" i 1 -Jf. 1 E = Modulus of Elasticity 29500 ksi X _ t" i 1 -Jf. 1 Fy = Yield Stress 50 ksi X _ vi G = Shear Modulus 11300 ksi • 0 Calculated Parameter Applied Forces 1- Properties of 90° corner M 0 00001 kioft r = R +1/2 Centerline of Dimension 0 130 in P 6 542 kios u = Tt r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat Width of Dim a= A - (2 r + t) 1 6684 in Flat Width of Dim b= B - (2 r + t) 1 6684 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx" Flanaes 2a 3 3368 B/2 -1/2 0 964 3 1009 ooooo Web 2 b 3 3368 0 0 OOOOO 0 7740 Corners 4 u 0816 b/2 + c 0 917 0 6857 ooooo Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2a 3 3368 0 0 OOOOO 0 7740 Web 2 b 3 3368 A/2-t/2 0 964 3 1009 OOOOO Corners 4 u 0 816 a/2 + c 0 917 0 6857 OOOOO Sum 7 4892 1 8809 3 7865 0 7740 Section Properties A Lxt 0 5392 lx t X ( L X Y^ +lx') 0 3284 in" "Y tx(LxX^+ly') 0 3284 in" Sx lx /(B/2) 0 3284 in-' SY IY /(A/2) 0 3284 in^ "•x (lx/A)°^ 0 7804 in ^ (IY/A)"' 0 7804 in Nominal Bucklina Stress KLx/rx 45 0566 KLy/ry 45 0566 KL/r 45 0566 Fe Tt^ E/(KL/r)^ 143 4186 ksi Ic (Fv/Fe)"*" 0 5904 Fn 43 2114 ksi Effective Area effective width of comoression flanae w/t = a/t 23 1722 X 1 052/(k)''^x(w/t)x(Fn/E)°^ 0 4665 r (1-0 22 IX) IX 1 1327 ae 1 6684 in effective width of web element w/t = b/t 23 1722 1 1 052/(k)°^x(w/t)x(Fn/E)''^ 0 4665 r (1-0 22IX) IX 1 1327 be 1 6684 in Allowable Axial Load Ae Ae = A-2xtxr(a-ae) + (b-be)l 0 53922321 in^ Pn Pn~ Ag X Fn 23 3005784 kios fic 1 8 Pa = Pn /fic 12 9448 kiDS Check Compression Stresses Loads from Wind? Cbi Cb1=(P/Pa) 0 5054 NO Allowable Stress Unity 1 0 5054 Section is OK Comoutina of Mnx By usina the effective width of comoression flanae and assumina the web is fully effective the neutral axis can be located as follow Element L Lenath (in) V Distance to too fiber (in) Lv Lv^ C Flanaes ae 1 6684 t/2 0 036 0 0601 0 0022 Web 2b 3 3368 B/2 1 3 3368 3 3368 C Corners 2u 0 40780564 c+t/2 0118683 0 0484 0 0057 T Flanaes ae 1 6684 B-t/2 1 964 3 2767 6 4355 T Corners 2u 0 40780564 B-c 1 917 0 7819 1 4991 Sum 7 4892 5 0360 7 5039 11 2794 Vca= Lv/L 1 0020 Z=R+t 0 1658 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fl (Vca- Z)Fy/yca 41 7262 ksi f2 - (B-Vca- Z)Fy/yca -41 5306 ksi v f2/fi -0 9953 k 4+2(1-ti/)'+2(1-VI/) 23 8784 hi be/t 23 1722 1 1 052/(k)°^x(h/t)x(f1/E)''^ 0 1876 r (1-0 22 IX) IX -0 9199 be 1 6684 in bi be/(3-u/) 0 4176 in b2 0 8342 in bi+b2 1 2518 in 2 1 web 2(1/12)(b)^ 0 7740 in^ S(Lv^) 11 2794 in^ (-)(SL)(Vca)^ 7 5186 in^ I'x 4 5348 in^ lx=l'xt 0 3265 in^ Sex=lx/Vca 0 3259 in^ Cb=1 0 for combined axial load and bendma moment 1 2b^d^t/(b+d) 0 3344 in^ s, fullSx 0 3284 in^ Lu 0 36CbTt(ElGi)°^/(Fy Sf) 34 7430 ft Fe" CbTt (E 1 G 1)0 5/(L Sf) 1646 9012 ksi Allowable Bendina Moment Mnx 1 3578 kiDft fib 1 67 Ma = Mnx /fib 0 81303531 kiDft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P/Pa) + (Cn,x Mx/Ma) 0 5054 NO Cb2 (P / Pa) + (Mx/Ma) 0 5054 Allowable Stress Unitv 1 Cb lf((P/Pa) <=0 15Cb2 Cbi) 0 5054 Section is OK SHADE Web (como ) Input Data Member Section 2x2x1Saa A = Tube Width 2 in B = Tube Lenath 2 in R = Corner inner Radius 0 0938 in t = Thickness 0 072 in KLx= Bucklina around x-x 5 07 ft KLy= Bucklina around x-x 5 07 ft E = Modulus of Elasticity 29500 ksi Fy = Yield Stress 50 ksi G = Shear Modulus 11300 ksi Calculated Parameter Applied Forces 1 - Properties of 90° corner M 0 0001 kioft r = R + t/2 Centerline of Dimension 0 130 in P 4 091 kios u = Tt r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6684 in Flat width of Dim b= B - (2 r + t) 1 6684 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2a 3 3368 B/2 -1/2 0 964 3 1009 0 OOOO Web 2 b 3 3368 0 0 OOOOO 0 7740 Corners 4 u 0 816 b/2 + c 0917 0 6857 OOOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2a 3 3368 0 0 OOOOO 0 7740 Web 2b 3 3368 A/2-t/2 0 964 3 1009 OOOOO Corners 4 u 0 816 a/2 + c 0 917 0 6857 OOOOO Sum 7 4892 1 8809 3 7865 0 7740 Section Prooerties A Lxt 0 5392 in^ lx t X ( L X Y^ +lx') 0 3284 in" IY t X (L X X^ +ly') 0 3284 in" Sx lx /(B/2) 0 3284 in-' SY \yl(AI2] 0 3284 in^ rx (\JA)°^ 0 7804 in ry (IY/A)"" 0 7804 in Nominal Bucklina Stress KLx/rx 77 9648 KLy/ry 77 9648 KL/r 77 9648 Fe Tt^ E/(KL/r)^ 47 8988 ksi Ic (Fv/Fe)"" 1 0217 F„ 32 3014 ksi Effective Area effective width of compression flanae w/t = a/t 23 1722 X 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 4033 r (1-0 22 IX) IX 1 1270 ae 1 6684 in effective width of web element w/t = b/t 23 1722 1 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 4033 r (1-0 22 IX) IX 1 1270 be 1 6684 in Allowable Axial Load Ae Ae = A-2xtxf(a-ae) + (b-be)l 0 53922321 in^ Pn Pn~ Ae X Fn 17 4176899 kios Qc 1 8 Pa = Pn /fic 9 6765 kios Check Compression Stresses Loads from Wind? Cbi Cb1=(P/Pa) 0 4228 NO Allowable Stress Unity 1 0 4228 Section IS OK Comoutina of Mnx By usina the effective width of comoression flanae and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) V Distance to too fiber (in) Lv Lv^ C Flanaes ae 1 6684 t/2 0 036 0 0601 0 0022 Web 2b 3 3368 B/2 1 3 3368 3 3368 C Corners 2u 0 40780564 c+t/2 0118683 0 0484 0 0057 T Flanaes ae 1 6684 B-t/2 1 964 3 2767 6 4355 T Corners 2u 0 40780564 B-c 1 917 0 7819 1 4991 Sum 7 4892 5 0360 7 5039 11 2794 Vca=Lv/L 1 0020 Z=R+t 0 1658 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fl (Vca- Z)Fy/Vca 41 7262 ksi f2 - (B-Vca- Z)FAca -41 5306 ksi v f2/fl -0 9953 k 4+2(1-u/)^+2(1-vi/) 23 8784 hi be/t 23 1722 1 1 052/(k)"x(h/t)x(f1/E)°^ 0 1876 r (1-0 22 IX) IX -0 9199 be 1 6684 in bl bj(3-\u) 0 4176 in b2 0 8342 in bi+b2 1 2518 in 9 r * 'web 2(M^2)(b? 0 7740 in^ S(Lv^) 11 2794 in^ (-)(SL)(Vca)' 7 5186 in^ I'x 4 5348 in^ lx=l'xt 0 3265 in^ Sex=lx/Vca 0 3259 in^ Cb=1 0 for combined axial load and bendma moment 1 2b^d^t/(b+d) 0 3344 in^ s, fullSx 0 3284 in^ Lu 0 36CbTt(EIGi)°^/(Fy Sf) 34 7430 ft Fe" CbTt (E 1 G 1)0 5/(L Sf) 951 7595 ksi Allowable Bendina Moment Mnx 1 3578 kioft fib 1 67 Ma = Mnx/fib 0 81303531 kiDft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P/Pa) + (Cn,x Mx/Ma) 0 4229 NO Cb2 (P / Pa) + (Mx/Ma) 0 4229 Allowable Stress Unitv 1 Cb lf((P/Pa) <=0 15Cb2Cbi) 0 4229 Section is OK SHADE Web (Ten.) Input Data Yj 1 Member Section 2x2x1Saa Yj 1 A = Tube Width 2 in r i \—1 B = Tube Lenath 2 in 1 j R = Corner Inner Radius 0 0938 in 1 i i t = Thickness 0 072 in x _ 1 i i — -• .Jf, > 1 1 KLx= Bucklina around x-x 3 29 ft 1 i i > 1 KLy= Bucklina around x-x 3 29 ft i i E = Modulus of Elasticity 29500 ksi i i Tti —1 Fv = Yield Stress 55 ksi vi G = Shear Modulus 11300 ksi vi d = Bolt diameter 05 in H 0 H A • n = Number of bolts 1 Calculated Parameter Applied Forces 1 - Prooerties of 90° corner M 0 0001 kioft r = R + t/2 Centerline of Dimension 0 130 in P 6 158 kios u = Tt r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6684 in Flat width of Dim b= B - (2 r + t) 1 6684 m Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ i; Flanaes 2a 3 3368 B/2 -1/2 0 964 3 1009 ooooo Web 2b 3 3368 0 0 OOOOO 0 7740 Corners 4 u 0816 b/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2a 3 3368 0 0 OOOOO 0 7740 Web 2 b 3 3368 A/2-t/2 0 964 3 1009 OOOOO Corners 4u 0816 a/2 + c 0 917 0 6857 OOOOO Sum 7 4892 1 8809 3 7865 0 7740 3- Section Properties A = L X t Gross Area An= A - n X t X (d+ 0625) x 2 0 5392 0 4582 in in 4- Allowable Axial Load Pn~ An X Fy fi. Pa = Pn /fit 25 2022767 1 67 15 0911836 kios kios S- Check Tension Stresses Loads from Wind? Cbl=(P / Pa) 0 4081 NO Allowable Stress Unitv 1 0 4081 Section IS OK Bolt Properties AISI Reouirements d = Bolt diameter 05 in Dist between center to edae=1 5d 0 75 Ok e = Edae Distance 1 in Dist between Centers =3d 1 5 Ok s = Bolt Soacina 2 in Clear distance between holes=2d 1 Ok e1=Clear between holes 1 4375 in distance between hole and edae =d 05 Ok e2= between hole &edae 0 71875 in t= Connected olate thickness 0 1345 in Q Fnt = Bolt nominal Tensile strenath 90 ksi Edae Dist Net Section Beanna Bolt Shear Fnv = Bolt nominal Shear strenath 54 ksi 2 2 22 2 22 24 Fy= Yield Stress of connected sheet 50 ksi Fu=Ultimate Stress of connected sheet 65 ksi * Number of bolts throuah the cross section BOLT STRENGTH BASED ON- Member Section Width Thickness Area n* Force(kips) Edae Dist Net Section Beanna Bolt Shear Pmin Bolts needed Top Chord 4x2x14aa 4 0 083 0 968 2 12.899 5 395 11 847 7 291 8 836 5 40 3 Bottom Chord 4x2x14aa 4 0 083 0 968 2 11.419 5 395 11 847 7 291 8 836 5 40 3 Column 4x4x14aa 4 0 083 1 310 2 8 872 5 395 11 847 7 291 8 836 5 40 2 Lona Diaaonal 2x2x15aa 2 0 072 0 555 1 5 033 4 680 5 139 6 324 8 836 4.68 2 Web 2x2x15aa 2 0 072 0 555 1 1 717 4 680 5 139 6 324 8 836 4 68 1 ToD-SHADE 2x2x15aa 2 0 072 0 555 1 4 653 4 680 5 139 6 324 8 836 4.68 1 Bottom-SHADE 2x2x15aa 2 0 072 0 555 1 6 542 4 680 5 139 6 324 8 836 4.68 2 WEB-SHADE 2x2x15aa 2 0 072 0 555 1 6 158 4 680 5 139 6 324 8 836 4.68 2 Software licensed to Job No 134226 NODES P^rtjQigt Analvsis Job Title Carlsbad CA M Alv '"''^ Joist-1 std Chd ^^''3/16/2010 Date/Time 16-NOV-2012 OS 14 '^i'^"' Lowe's NODES (Inout data was modilied alter picture taken) Pnnt Time/Date 13/03/2013 11 18 STAAD Pro VSi 20 07 05 15 Pnnt Run 1 of 1 i^ii„iiii^'|^!^3^ Software licensed to Job No 134226 Sheet No MEMBERS Rev i^ii„iiii^'|^!^3^ Software licensed to '''''Joist Analvsis Job Title Carlsbad CA Ref Bv fjf Alv D''«3/16/2010 Client Lowe's •"''^ Joist-1 std Date/Time 16-Nov-2012 08 14 MEMBERS (Inout data was modilied alter picture taken) Pnnt Time/Date 13/03/2013 11 17 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Job No 134226 P''*Joist Analvsis Job Title Carlsbad CA Ref M Alv Dat«3/16/2010 Client Lowe's I"''* Joist-1 std Date/Time 16-NOV-2012 08 14 Basic Load Cases Number Name 1 DL 2 LL 3 BSL 4 VSL 5 DSL 6 WLI 7 WL2 S HL Combination Load Cases Comb Combination L/C Name Primarv Primarv L/C Name Factor 9 D 1 DL 1 00 8 HL 1 00 10 D+L 1 DL 1 00 8 HL 1 00 2 LL 1 00 11 D+BSL+DSL 1 DL 1 00 8 HL 1 00 3 BSL 1 00 5 DSL 1 00 12 D+USL 1 DL 1 00 8 HL 1 00 4 VSL 1 00 13 D+0 75W1+0 75L 1 DL 1 00 8 HL 1 00 6 WLI 0 75 2 LL 0 75 14 D+0 75W2+0 75L 1 DL 1 00 8 HL 1 00 7 WL2 0 75 2 LL 0 75 15 D+0 75W1+0 75BSL+0 75DSL 1 DL 1 00 8 HL 1 00 6 WLI 0 75 3 BSL 0 75 5 DSL 0 75 16 D+0 75W2+0 75BSL+0 75DSL 1 DL 1 00 8 HL 1 00 7 WL2 0 75 3 BSL 0 75 5 DSL 0 75 17 D+0 75W1+0 75USL 1 DL 1 00 Print Time/Date 13/03/2013 11 17 STAAD Pro V8i 20 07 05 15 Pnnt Run 1 of 5 Software licensed to Job No 134226 Sheet No Joist Analvsis Job Title Carlsbad CA M Alv '^^''3/16/2010 Client Lowe's Joist-1 std Date/Time 16-NOV-2012 OS 14 Combination Load Cases Cont. Comb Combination L/C Name Primarv Primary L/C Name Factor 8 HL 1 00 6 WLI 0 75 4 VSL 0 75 18 D+0 75W2+0 75USL 1 DL 1 00 8 HL 1 00 7 WL2 0 75 4 VSL 0 75 19 0 6D+W1 1 DL 0 60 8 HL 0 60 6 WLI 1 00 20 0 6D+W2 1 DL 0 60 8 HL 0 60 7 WL2 1 00 Node Loads : 1 DL Node FX (Ib) FY (Ib) FZ (Ib) MX (kiD"ft) MY (kiD"ft) MZ (kioft) 2 --2 72E+3 ---- 4 --2 72E+3 ---- 11 --2 72E+3 ---- Node Loads : 2 LL Node FX (Ib) FY (lb) FZ (Ib) MX (kiD"ft) MY (kioft) MZ (kiDft) 2 --3 75E+3 ---- 4 --3 75E+3 ---- 11 --3 75E+3 ---- Node Loads : 3 BSL Node FX (Ib) FY (Ib) FZ (Ib) MX (kioft) MY (kiDft) MZ (kiD"ft) 2 --1 000 ---- 4 --1 000 ---- 11 --1 000 ---- Print Time/Date 13/03/2013 11 17 STAAD Pro VSi 20 07 05 15 Pnnt Run 2 of 5 jffEnmf^i^llt Software licensed to Job No 134226 Sheet No Rev jffEnmf^i^llt Software licensed to •"'"Joist Analvsis Job Title Carlsbad CA Ref Job Title Carlsbad CA Bv lyi Dat£3/16/2010 '^^^ Client Lowe's f^'i^ Joist-1 Std Daten-ime 16-Nov-2012 OS 14 Node Loads : 4 VSL Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kiD"ft) (kiD"ft) (kioft) 2 --1 000 ---- 4 --1 000 ---- 11 --1 000 ---- Node Loads : 5 DSL Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kioft) (kiD"ft) (kiD ft) 2 --1 000 ---- 4 --1 000 ---- 11 --1 000 ---- Node Loads : 6 WU Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kiD'ft) (kiD ft) (kioft) 2 -114E+3 ---- 4 -1 14E+3 ---- 11 -1 14E+3 ---- Node Loads : 7 WL2 Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kiD ft) (kiD ft) (kioft) 2 -2 54E+3 ---- 4 -2 54E+3 ---- 11 -2 54E+3 ---- Node Loads : 8 HL Node FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kiD'ft) (kiD"ft) (kiD"ft) 2 --103 000 ---- 4 --103 000 ---- 11 --103 000 ---- Print Time/Dale 13/03/2013 11 17 STAAD ProVSi 20 07 05 15 Pnnt Run 3 of 5 Job No 134226 Sheet No Rev =sm^t^ Rnftwam licanfteiH tn P'lt Joist Analvsis Job Title Carlsbad CA Ref M Alv °"'3/16/2010 C''^"' Lowe's '"''^ Joist-1 std Daten-ime 16-NOV-2012 08 14 Node DisDiacement Summarv Node L/C X Y Z Resultant rX rY rZ (in) (in) (in) (in) (rad) (rad) (rad) MaxX 2 10 D+L 0 064 -0 042 OOOO 0 077 OOOO OOOO -0 006 MinX 4 10 D+L -0 064 -0 042 OOOO 0 077 OOOO OOOO 0 006 Max Y 11 20 0 6D+W2 OOOO 0 075 OOOO 0 075 OOOO OOOO -0 000 Min Y 11 10 D+L -OOOO -0 581 OOOO 0 581 OOOO OOOO OOOO MaxZ 1 9D OOOO OOOO OOOO OOOO OOOO OOOO OOOO MinZ 1 9 D OOOO OOOO OOOO OOOO OOOO OOOO OOOO Max rX 1 9D OOOO OOOO OOOO OOOO OOOO OOOO OOOO Min rX 1 OD OOOO OOOO OOOO OOOO OOOO OOOO OOOO MaxrY 1 9D OOOO OOOO OOOO OOOO OOOO OOOO OOOO Mm rY 1 9 D OOOO OOOO 0 000 OOOO OOOO OOOO OOOO Max rZ 16 10 D+L 0 059 -0 190 OOOO 0 199 OOOO OOOO 0 008 Mm rZ 12 10 D+L -0 059 -0 190 OOOO 0 199 OOOO OOOO -0 006 Max Rst 11 10 D+L -OOOO -0 581 OOOO 0 581 OOOO OOOO OOOO Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line exceot Fx where oositive is comoression Distance d is aiven trom beam end A Axial Shear Torsion Bendma Beam L/C d (ft) Fx (Ib) Fv (Ib) Fz (Ib) Mx (kiD ft) Mv (kioft) Mz (kiDft) Max Fx 8 10 D+L OOOO 17 1E+3 66 863 OOOO OOOO OOOO -0 042 Mm Fx 13 10 D+L OOOO -13 5E+3 21 829 OOOO OOOO OOOO -0 034 Max Fv 3 10 D+L OOOO 9 84E+3 633 088 OOOO OOOO OOOO 1 161 Mm Fv 4 10 D+L OOOO 9 84E+3 -633 088 OOOO OOOO OOOO -1 161 Max Fz 1 9 D OOOO 4 23E+3 -69 710 OOOO OOOO OOOO -0 280 Min Fz 1 9 D OOOO 4 23E+3 -69 710 OOOO OOOO OOOO -0 280 Max Mx 1 9D OOOO 4 23E+3 -69 710 OOOO OOOO OOOO -0 280 Mm Mx 1 9D OOOO 4 23E+3 -69 710 OOOO OOOO OOOO -0 280 Max Mv 1 9D OOOO 4 23E+3 -69 710 OOOO OOOO OOOO -0 280 Mm Mv 1 9 D OOOO 4 23E+3 -69 710 OOOO OOOO OOOO -0 280 Max Mz 1 10 D+L 11 167 9 S5E+3 -162 310 OOOO OOOO OOOO 1 161 Mm Mz 2 10 D+L 11 167 9 85E+3 162 310 OOOO OOOO OOOO -1 161 Pnnt Tinne/Date 13/03/2013 11 17 STAAD ProVSi 20 07 05 15 Pnnt Run 4 of 5 Software licensed to Job No 134226 •"'"Joist Analvsis Job Title Carlsbad CA M Alv Joist-1 std Chd °"'3/16/2010 Date/Time 16-NOV-2012 OS 14 Client Lowe's Reaction Summarv Horizontal Vertical Horizontal Moment Node L/C FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kioft) (kiDft) (kiDft) Max FX 1 10 D+L 162 310 9 85E+3 OOOO OOOO OOOO -0 652 Mm FX 3 10 D+L -162 310 9 85E+3 OOOO OOOO OOOO 0 652 Max FY 1 10 D+L 162 310 9 85E+3 OOOO OOOO OOOO -0 652 Mm FY 1 20 0 6D+W2 -20 938 -1 27E+3 OOOO OOOO OOOO 0 084 Max FZ 1 9D 69 710 4 23E+3 OOOO OOOO OOOO -0 280 Mm FZ 1 9D 69 710 4 23E+3 OOOO OOOO OOOO -0 280 Max MX 1 9 D 69 710 4 23E+3 OOOO OOOO OOOO -0 280 Mm MX 1 9 D 69 710 4 23E+3 OOOO OOOO OOOO -0 280 Max MY 1 9D 69 710 4 23E+3 OOOO OOOO OOOO -0 280 Mm MY 1 9D 69 710 4 23E+3 OOOO OOOO OOOO -0 280 Max MZ 3 10 D+L -162 310 9 S5E+3 OOOO OOOO OOOO 0 652 Mm MZ 1 10 D+L 162 310 9 85E+3 OOOO OOOO OOOO -0 652 Print Time/Date 13/03/2013 11 17 STAAD Pro VSi 20 07 05 15 Pnnt Run 5 of 5 Software licensed to Job No 134226 TOP Joist Analvsis Job Title Carlsbad CA Bv M Alv °"«3/16/2010 Client Lowe's Joist-1 std Date/Time 16-NOV-2012 08 14 Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line except Fx where positive is compression Distance d is aiven trom beam end A Axial Shear Torsion Bendma Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kioft) (kiD ft) (kiD"ft) Max Fx 8 10 D+L OOOO 17 113 0 067 OOOO OOOO OOOO -0 042 Mm Fx 8 20 0 6D+W2 OOOO -2 207 -0 009 OOOO OOOO OOOO 0 005 Max Fv 8 10 D+L OOOO 17 113 0 067 OOOO OOOO OOOO -0 042 Mm Fv 11 10 D+L OOOO 17 113 -0 067 OOOO OOOO OOOO -0 176 Max Fz 5 9D OOOO 1 256 0 004 OOOO 0 000 OOOO OOOO Mm Fz 5 9 D OOOO 1 256 0 004 OOOO OOOO OOOO OOOO Max Mx 5 9 D OOOO 1 256 0 004 OOOO OOOO OOOO OOOO Mm Mx 5 90 OOOO 1 256 0 004 OOOO OOOO OOOO OOOO Max Mv 5 9D OOOO 1 256 0 004 OOOO OOOO OOOO OOOO Mm Mv 5 9 D OOOO 1 256 0 004 OOOO OOOO OOOO OOOO Max Mz 8 20 0 6D+W2 2 000 -2 207 -0 009 OOOO OOOO OOOO 0 023 Min Mz 8 10 D+L 2 000 17 113 0 067 0 000 OOOO OOOO -0 176 Print Time/Date 13/03/2013 11 18 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Job No 134226 Sheet No BOTTOM P'"Joist Analvsis Job Title Carlsbad CA Bv M Alv '''i^ Joist-1 std Chd °"'3/16/2010 Date/Time 16-NOV-2012 OS 14 Client Lowe's Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line exceot Fx where oositive is compression Distance d is aiven trom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kiDft) (kioft) (kiD ft) Max Fx 13 20 0 6D+W2 OOOO 1 737 -0 003 OOOO OOOO OOOO 0 004 Mm Fx 13 10 D+L OOOO -13 465 0 022 OOOO OOOO OOOO -0 034 Max Pv 13 10 D+L OOOO -13 465 0 022 OOOO OOOO OOOO -0 034 Mm Fv 14 10 D+L OOOO -13 465 -0 022 OOOO OOOO OOOO -0 121 Max Fz 6 9 D OOOO 0 342 0 005 OOOO OOOO OOOO OOOO Mm Fz 6 9 D OOOO 0 342 0 005 0 000 OOOO OOOO OOOO Max Mx 6 9D OOOO 0 342 0 005 OOOO OOOO OOOO 0 000 Mm Mx 6 9 D OOOO 0 342 0 005 OOOO OOOO OOOO OOOO Max Mv 6 9 D OOOO 0 342 0 005 OOOO OOOO OOOO OOOO Mm Mv 6 9 D OOOO 0 342 0 005 OOOO OOOO OOOO OOOO Max Mz 13 20 0 6D+W2 4 000 1 737 -0 003 OOOO OOOO OOOO 0 016 Mm Mz 13 10 D+L 4 000 -13 465 0 022 OOOO OOOO OOOO -0 121 Print Time/Date 13/03/2013 11 19 STAAD Pro V8i 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Job No 134226 Sheet No COLUMN •"'"Joist Analvsis Job Title Carlsbad CA Bv M Alv °'"3/16/2010 Client Lowe's I"'" Joist-1 std Date/Time 16-NOV-2012 OS 14 Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line exceot Fx where positive is compression Distance d is aiven Irom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kioft) (kiB"ft) (kiD"ft) Max Fx 1 10 D+L OOOO 9 849 -0 162 OOOO OOOO OOOO -0 652 Mm Fx 1 20 0 6D+W2 OOOO -1 270 0 021 OOOO OOOO OOOO 0 084 Max Fv 3 10 D+L OOOO 9 836 0 633 OOOO OOOO OOOO 1 161 Mm Fv 4 10 D+L OOOO 9 836 -0 633 OOOO OOOO OOOO -1 161 Max Fz 1 9D OOOO 4 230 -0 070 OOOO OOOO OOOO -0 280 Mm Fz 1 9D OOOO 4 230 -0 070 OOOO OOOO OOOO -0 280 Max Mx 1 9D OOOO 4 230 -0 070 OOOO OOOO OOOO -0 280 Min Mx 1 9D OOOO 4 230 -0 070 OOOO OOOO OOOO -0 280 Max Mv 1 9 D OOOO 4 230 -0 070 OOOO OOOO OOOO -0 280 Mm Mv 1 9 D OOOO 4 230 -0 070 OOOO OOOO OOOO -0 280 Max Mz 1 10 D+L 11 167 9 849 -0 162 OOOO OOOO OOOO 1 161 Mm Mz 2 10 D+L 11 167 9 849 0 162 OOOO OOOO OOOO -1 161 Print Time/Date 13/03/2013 11 19 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Job No 134226 WEB Part Joist Analvsis Job Title Carlsbad CA Bv M Alv DatE3/i 6/2010 P''« JoiSt-1 std Date/Time 16-Nov-2012 OS 14 Client Lowe's Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line exceot Fx where positive is comoression Distance d is aiven trom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kiD"ft) (kioft) (kiDft) Max Fx 18 10 D+L OOOO 4 843 OOOO OOOO OOOO OOOO OOOO Mm Fx 19 10 D+L OOOO -4 853 OOOO OOOO OOOO OOOO OOOO Max Fv 17 9D OOOO -2 073 OOOO OOOO OOOO OOOO OOOO Mm Fv 17 9D OOOO -2 073 OOOO OOOO OOOO OOOO OOOO Max Fz 17 9 D OOOO -2 073 OOOO OOOO OOOO OOOO OOOO Mm Fz 17 9 D OOOO -2 073 OOOO OOOO OOOO OOOO OOOO Max Mx 17 9D OOOO -2 073 OOOO OOOO OOOO OOOO OOOO Mm Mx 17 9 D OOOO -2 073 OOOO OOOO OOOO OOOO OOOO Max Mv 17 9 D OOOO -2 073 OOOO OOOO OOOO OOOO OOOO Mm Mv 17 9 D OOOO -2 073 OOOO OOOO OOOO OOOO OOOO Max Mz 17 9 D OOOO -2 073 0 000 OOOO OOOO OOOO OOOO Mm Mz 17 9 D OOOO -2 073 OOOO OOOO OOOO OOOO OOOO Print Time/Date 13/03/2013 11 19 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Joist Too Chord Input Data vl Member Section 4x4x14aa A = Tube Width 4 in +• 1 [ -Jf. ( B = Tube Lenath 4 in +• 1 [ -Jf. ( R = Corner Inner Radius 0 0938 in +• 1 [ -Jf. ( t = Thickness 0 083 in +• 1 [ -Jf. ( KLx= Bucklina around x-x 4 ft +• 1 [ -Jf. ( KLy= Bucklina around x-x 10 ft +• 1 [ -Jf. ( E = Modulus of Elasticity 29500 ksi +• 1 [ -Jf. ( Fy = Yield Stress 50 ksi V| G = Shear Modulus 11300 ksi o Calculated Parameter Applied Forces 1- Properties of 90° corner M 0 176 kioft r = R + t/2 Centerline of Dimension 0 135 in P 17 113 kios u = Tt r/2 Arc Lenath 0213 in c=0 637 r Distance of c a from center 0 086 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 3 6464 in Flat width of Dim b= B - (2 r + t) 3 6464 in Calculation of lx Element L Lenoth (in) Y Distance to the center (in) LxY^ i; Flanaes 2a 7 2928 B/2 -1/2 1 9585 27 9732 0 OOOO Web 2 b 7 2928 0 0 0 OOOO 8 0806 Corners 4 u 0 850 b/2 + c 1 909 3 0995 0 OOOO Sum 15 4358 3 8679 31 0727 8 0806 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2 a 7 2928 0 0 OOOOO 8 0806 Web 2 b 7 2928 A/2 - t/2 1 9585 27 9732 OOOOO Corners 4 u 0 850 a/2 + c 1 909 3 0995 OOOOO Sum 15 4358 3 8679 31 0727 8 0806 Section Properties A Lxt 1 2812 in^ lx tx(LxY^ +lx') 3 2497 in^ IY tx(LxX^ +ly') 3 2497 in^ Sx lx /(B/2) 1 6249 in^ SY IY /(A/2) 1 6249 in^ fx (Ix/A)"^ 1 5926 in "•Y (lylA)"" 1 5926 in Nominal Bucklina Stress KLx/rx 30 1385 KLy/ry 75 3462 KL/r 75 3462 Fe Tt^ E/(KL/r)^ 51 2860 ksi Ic (Fv/Fe)"' 0 9874 Fn 33 2471 ksi Effective Area effective width of compression flanae w/t = a/t 43 9325 X 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 7758 r (1-0 22 IX) IX 0 9235 ae 3 3674 in effective width of web element w/t = b/t 43 9325 1 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 7758 r (1-0 22 IX) IX 0 9235 be 3 3674 in Allowable Axial Load Ae Ae = A - 2 X t x Ka-ae) + (b-be)l 1 18853018 in^ Pn Pn~ Ag X Fn 39 5151844 kios fic 1 8 Pa = Pn /fio 21 9529 kios Check Comoression Stresses Loads from Wind? Cbi Cb1=(P/Pa)N0 0 7795 Allowable Stress Unitv 1 0 7795 Section is OK Comoutina of Mnx By usino the effective width of comoression flanae and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) v Distance to too fiber (in) Lv Lv^ C Flanaes ae 3 36736741 t/2 0 0415 0 1397 0 0058 Web 2 b 7 2928 B/2 2 14 5856 29 1712 C Corners 2 u 0 42508554 c+t/2 0127686 0 0543 0 0069 T Flanaes ae 3 6464 B-t/2 3 9585 14 4343 57 1381 T Corners 2 u 0 42508554 B-c 3 914 1 6637 65114 Sum 15 1567 10 0415 30 8776 92 8334 Vca = L v/ L 2 0372 Z=R+t 0 1768 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fi (Vca- Z)Fy/yca 45 6608 ksi f2 - (B-Vc- Z)Fy/Vca -43 8338 ksi v f^/fi -0 9600 k 4+2(1-vi/)^+2(1-vi/) 22 9788 hi be/t 43 9325 1 1 052/(k)°*x(h/t)x(f1/E)°^ 0 3793 r (1-0 22 IX) IX 1 1073 be 3 3674 in bi bJ(3-Mi) 0 8503 in b2 1 6837 in bi+b2 2 5340 in 2 1 web 2(1/12)(b)^ 8 0806 in^ S(Lv^) 92 8334 in^ (-)(SL)(Vca)^ 62 9045 in^ I'x 38 0095 in" lx=l'xt 3 1548 in" Sex=lx/Vca 1 5486 in^ Cb=1 0 for combined axial load and bendma moment i 2bWm-^d) 4 0241 in" Sf fullSx 1 6249 in" L„ 0 36CbTt(ElGi)°^/(Fy Sf) 76 6247 ft Fe" CbTt (E 1 G 1)0 5/(L Sf) 2660 5797 ksi Allowable Bendma Moment Mnx 6 4524 kioft fib 1 67 Ma = Mnx /fib 3 86371651 kioft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P/P3) + (Cn,x Mx/Ma 0 8069 ) 0 Cb2 (P / Pa) + (Mx/Ma) 0 8251 Allowable Stress Unitv 1 Cb lf((P/Pa)<= 0 15Cb2 Cbi) 0 8069 Section is OK 1 Joist Bottom Chord Inout Data Yj Member Section 4x4x14aa k A = Tube Width 4 in i B = Tube Lenath 4 in R = Corner Inner Radius 0 0938 in X ! X > E t = Thickness 0 083 in r — t > E 1 KL x= Bucklina around x-x 4 ft j KL y= Bucklina around x-x 20 ft i E = Modulus of Elasticity 29500 ksi Fv = Yield Stress 55 ksi VI G = Shear Modulus 11300 ksi G = Shear Modulus 11300 ksi d = Bolt diameter 05 in A n = Number of bolts 1 Calculated Parameter Applied Forces 1- Prooerties of 90° corner r = R + t/2 Centerline of Dimension 0 135 in P 13 465 kiDS u = Tt r/2 Arc Lenath 0213 in c=0 637 r Distance of c a from center 0 086 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 3 6464 in Flat width of Dim b= B - (2 r + t) 3 6464 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2 a 7 2928 B/2 -1/2 1 9585 27 9732 0 OOOO Web 2 b 7 2928 0 0 0 OOOO 8 0806 Corners 4 u 0 850 b/2 + c 1 909 3 0995 0 OOOO Sum 15 4358 3 8679 31 0727 8 0806 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2 a 7 2928 0 0 0 OOOO 8 0806 Web 2 b 7 2928 A/2 - t/2 1 9585 27 9732 0 OOOO Corners 4 u 0 850 a/2 + c 1 909 3 0995 0 OOOO Sum 15 4358 3 8679 31 0727 8 0806 3- Section Properties A = L X t Gross Area 1 2812 in^ A„= A - n X t X (d+ 0625) x 2 1 1878 in- 4- Allowable Axial Load Pn An X Fy 65 32867 klDS fit 1 67 Pa = Pn /fi, 39 1189641 kios S- Check Tension Stresses Loads from Wind? Cbl=(P / Pa) 0 3442 NO Allowable Stress Unity 1 0 3442 Section is OK Column Input Data vl Member Section 4x4x14aa 1 A = Tube Width 4 m X _ y • Ml MIMM , IMU • 3 , 3 MM it 1 1 1 I 1 B = Tube Lenath 4 in X _ y • Ml MIMM , IMU • 3 , 3 MM it 1 1 1 I 1 R = Corner Inner Radius 0 0938 in X _ y • Ml MIMM , IMU • 3 , 3 MM it 1 1 1 I 1 t = Thickness 0 083 in X _ y • Ml MIMM , IMU • 3 , 3 MM it 1 1 1 I 1 KLx= Buckling around x-x 134 ft X _ y • Ml MIMM , IMU • 3 , 3 MM it 1 1 1 I 1 KLy= Buckling around x-x 156 ft ksi X _ y • Ml MIMM , IMU • 3 , 3 MM it 1 1 1 I 1 C — MOUUIUS OT tiasiiciTV Fy = Yield Stress 50 ksi X _ v\ 1 G = Shear Modulus 11300 ksi • o • Calculated Parameter Applied Forces 1- Properties of 90° corner M 1 161 kioft r = R + t/2 Centerline of Dimension 0 135 in P 9 849 kios u = Tt r/2 Arc Lenath 0213 in - c=0 637 r Distance of c a from center 0 086 in -2- Flat widths of flanaes and webs - Flat width of Dim a= A - (2 r + t) 3 6464 in - Flat width of Dim b= B - (2 r + t) 3 6464 in - Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2 a 7 2928 B/2 -1/2 1 9585 27 9732 0 OOOO Web 2 b 7 2928 0 0 0 OOOO 8 0806 Corners 4 u 0 850 b/2 + c 1 909 3 0995 0 OOOO Sum 15 4358 3 8679 31 0727 8 0806 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2 a 7 2928 0 0 0 OOOO 8 0806 Web 2 b 7 2928 A/2-t/2 1 9585 27 9732 0 OOOO Corners 4 u 0 850 a/2 + c 1 909 3 0995 0 OOOO Sum 15 4358 3 8679 31 0727 8 0806 Section Properties A Lxt 1 2812 in^ lx t X ( L X Y^ +lx') 3 2497 in" IY t X (L X X^ +ly') 3 2497 in" Sx lx /(B/2) 1 6249 in^ SY IY /(A/2) 1 6249 in^ (lx/A)°^ 1 5926 in ry (IY/A)"' 1 5926 in Nominal Bucklina Stress KLx/rx 100 9640 KLy/ry 117 5401 KL/r 117 5401 Fe Tt^ E/(KL/r)^ 21 0741 ksi lc (Fv/Fe)"' 1 5403 F„ 18 4820 ksi Effective Area effective width of compression flanae w/t = a/t 43 9325 X 1 052/(k)°^x(w/t)x(Fn/E)''^ 0 5784 r (1-0 22 IX) IX 1 0713 ae 3 6464 in effective width of web element w/t = b/t 43 9325 1 1 052/(k)"x(w/t)x(Fn/E)°^ 0 5784 r (1-0 22 IX) IX 1 0713 be 3 6464 in Allowable Axial Load Ae Ae = A-2 xtx Ka-ae)+ (b-be)l 1 281169 in^ Pn Pn~ Ae X Fn 23 6785666 kios fic 1 8 Pa = Pn /fic 13 1548 kios Check Compression Stresses Loads from Wind? Cbi Cb1=(P/Pa)N0 0 7487 Allowable Stress Unity 1 0 7487 Section IS OK Comoutina of M„x By usino the effective width of comoression flanae and assumina the web is fully effective the neutral axis can be located as follow Element L Lenath (in) v Distance to too fiber (in) Lv Lv^ C Flanaes ae 3 6464 t/2 0 0415 0 1513 0 0063 Web 2 b 7 2928 B/2 2 14 5856 29 1712 C Corners 2 u 0 42508554 c+t/2 0127686 0 0543 0 0069 T Flanaes ae 3 6464 B-t/2 3 9585 14 4343 57 1381 T Corners 2 u 0 42508554 B-c 3 914 1 6637 6 5114 Sum 15 4358 10 0415 30 8892 92 8339 Voa=Lv/L 2 0011 Z=R+t 0 1768 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fi (Vca- Z)Fy/Vea 45 5825 ksi f2 - (B-Vca- Z)Fy/yca -45 5254 ksi v f2/fl -0 9987 k 4+2(1-vi/)^+2(1-vu) 23 9674 hi be/t 43 9325 1 1 052/(k)°^x(h/t)x(f1/E)°^ 0 3711 r (1-0 22 IX) IX 1 0972 be 3 6464 in bl be/(3-vi/) 09119 in b2 1 8232 in bi+b2 2 7351 in 2 1 yyeb 2(1/12)(b)^ 8 0806 in" S(Lv^) 92 8339 in" (-)(SL)(Vca)^ 61 8137 in" I'x 39 1008 in" lx=l'xt 3 2454 in" Sex=lx/Vca 1 6218 in^ Cb=1 0 for combined axial load and bendma moment 1 2b^d^t/(b+d) 4 0241 in" s, fullSx 1 6249 in" Lu 0 36CbTt(EIGi)°^/(Fy Sf) 76 6247 ft Fe" CbTt (E 1 G 1)0 5/(L Sf) 794 2029 ksi Allowable Bendma Moment Mnx 6 7573 kioft fib 1 67 Ma = Mnx /fib 4 04630019 kioft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P/Pa) + (Cn,x Mx/Ma 0 9209 ) 0 Cb2 (P / Pa) + (Mx/Ma) 1 0356 Allowable Stress Unitv 1 Cb lf((P/Pa) <=0 15Cb2Cbi) 0 9209 Section is OK Joist Web (como.) Input Data Member Section 2x2x1Saa A = Tube Width 2 in B = Tube Lenath 2 in R = Corner Inner Radius 0 0938 in t = Thickness 0 072 in KLx= Bucklina around x-x 2 71 ft KLy= Bucklina around x-x 2 71 ft E = Modulus of Elasticity 29500 ksi Fy = Yield Stress 50 ksi G = Shear Modulus 11300 ksi Yl Zfr^ i 1 33 MM IMM 3 3 3 113 3 3 3 3 3 • . . .'. .Jfl i E *"""""t"""""r V| • A • Calculated Parameter Applied Forces 1- Properties of 90° corner M 0 0001 kioft r = R + t/2 Centerline of Dimension 0 130 in P 4 843 kios u = Tt r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6684 in Flat width of Dim b= B - (2 r + t) 1 6684 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2 a 3 3368 B/2 -1/2 0 964 3 1009 0 OOOO Web 2 b 3 3368 0 0 OOOOO 0 7740 Corners 4 u 0 816 b/2 + c 0917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2 a 3 3368 0 0 0 OOOO 0 7740 Web 2 b 3 3368 A/2 - t/2 0 964 3 1009 0 OOOO Corners 4 u 0 816 a/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Section Properties A Lxt 0 5392 in^ lx tx( LxY^+lx') 0 3284 m" IY tx(LxX^ +ly') 0 3284 in" Sx lx /(B/2) 0 3284 in^ SY IY /(A/2) 0 3284 in^ fx (lx/A)°^ 0 7804 in ry (IY/A)"" 0 7804 in Nominal Bucklina Stress KLx/rx 41 6735 KLy/ry 41 6735 KL/r 41 6735 Fe Tt^ E/(KL/r)^ 167 6494 ksi Ic (FwlFe)"" 0 5461 Fn 44 1324 ksi Effective Area effective width of compression flanae w/t = a/t 23 1722 X 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 4714 r (1-0 22 IX) IX 1 1313 ae 1 6684 in effective width of web element w/t = b/t 23 1722 1 1 052/(k)°^x(w/t)x(Fn/E)''^ 0 4714 r (1-0 22 IX) IX 1 1313 be 1 6684 in Allowable Axial Load Ae Ae = A - 2 X t X Ka-ae) + (b-be)l 0 53922321 in^ Pn Pn~ Ae X Fn 23 7972088 kios fic 1 8 Pa = Pn /fic 13 2207 kios Check Compression Stresses Loads from Wind? Cbi Cb1=(P/Pa)N0 0 3663 Allowable Stress Unity 1 0 3663 Section IS OK Comoutina of Mnx By usina the effective width of comoression flanae and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) v Distance to too fiber (in) Lv Lv^ C Flanaes ae 1 6684 t/2 0 036 0 0601 0 0022 Web 2 b 3 3368 B/2 1 3 3368 3 3368 C Corners 2 u 0 40780564 c+t/2 0118683 0 0484 0 0057 T Flanaes ae 1 6684 B-t/2 1 964 3 2767 6 4355 T Corners 2 u 0 40780564 B-c 1 917 0 7819 1 4991 Sum 7 4892 5 0360 7 5039 11 2794 Vca = L v/ L 1 0020 Z=R+t 0 1658 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fi (Vca- Z)Fy/yca 41 7262 ksi h - (B-Vca- Z)Fy/Vca -4^ 5306 ksi v Vfi -0 9953 k 4+2(1-\i/)^+2(1-vi/) 23 8784 hi be/t 23 1722 1 1 052/(k)°^x(h/t)x(f1/E)°* 0 1876 r (1-0 22 IX) IX -0 9199 be 1 6684 in bi bj(3-\u) 0 4176 in b2 0 8342 in bi+bj 1 2518 in 2 1 yyeb 2(1/12)(b)^ 0 7740 in" S(Lv^) 11 2794 in" (-)(SL)(Vea)^ 7 5186 in" I'x 4 5348 in" lx=l'xt 0 3265 in" Sex=lx/Vca 0 3259 in^ Cb=1 0 for combined axial load and bendma moment i 2b^d^t/(b+d) 0 3344 in" Sf fullSx 0 3284 in" Lu 0 36CbTt (E 1 G i)°^/(Fy Sf) 34 7430 ft Fe" CbTt (E 1 G 1)0 5/(L Sf) 1780 5979 ksi Allowable Bendina Moment Mnx 1 3578 kioft fib 1 67 Ma = Mnx /fib 0 81303531 kioft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P/Pa) + (Cn,x Mx/Ma 0 3664 ) 0 Cb2 (P / Pa) + (Mx/Ma) 0 3664 Allowable Stress Unity 1 Cb lf((P/Pa) <=0 15Cb2 Cbi) 0 3664 Section is OK Joist Web (Ten.) Input Data Member Section A = Tube Width B = Tube Lenath R = Corner Inner Radius t = Thickness KL„= Bucklina around x-x KL = Bucklina around x-x E = Modulus of Elasticity Fv = Yield Stress G = Shear Modulus d = Bolt diameter n = Number of bolts 2x2x1Saa 0 0938 0 072 2 71 2 71 29500 55 11300 05 in in in in ksi ksi ksi in Yj ifr^'" j 1 — i i E 1 — i i E vi • A Calculated Parameter Applied Forces 1- Properties of 90° corner M 0 001 kioft r = R +1/2 Centerline of Dimension 0 130 in 4 853 kios u = TI r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) Flat width of Dim b= B - (2 r + t) 1 6684 in 1 6684 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2 a 3 3368 B/2 -1/2 0 964 3 1009 0 OOOO Web 2 b 3 3368 0 0 0 OOOO 0 7740 Corners 4 u 0 816 b/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ Iv' Flanaes 2 a 3 3368 0 0 0 OOOO 0 7740 Web 2 b 3 3368 A/2-t/2 0 964 3 1009 0 OOOO Corners 4 u 0 816 a/2 + c 0 917 0 6857 OOOOO Sum 7 4892 1 8809 3 7865 0 7740 3- Section Properties A = L X t Gross Area 0 5392 in^ A„= A - n X t X (d+ 0625) x 2 0 4582 in" 4- Allowable Axial Load Pn~ An X Fy 25 2022767 kios fit 1 67 Pa = Pn /fi. 15 0911836 kios S- Check Tension Stresses Loads from Wind? Cbi=(P / Pa) 0 3216 NO Allowable Stress Unitv 1 0 3216 Section is OK Joist to Gutter Post Connection at Store Wall 1 r 1 t: REFER TO PLANS FOR TOP CHORD MEMBER SIZE REFER TO PLANS FOR WEB STRUT MEMBER SIZE -REFER TO PLANS FOR BOTTOM CHORD MEMBER SIZE REFER TO JOIST SKETCH FOR SIZE (4) 1/2 X 8" HEX HD BOLT & NUT • 4" POST GUSSET FOR BOLTED TRUSS {ONE EA SIDE) [S09S2030-4L/R] •WELDED GUTTER POST ASSEMBLY (REF DWG GI 0) Max Truss Reaction (from STAAD Model) = | 3 39 kios From Load Case DL+LL 1 Shear Caoacitv of (1) 1/2" dia bolts in Smole Shear | 4 12 kips | Max Load oer Shear Plane on Bolt = | 0.99 kips | Result: [ Connection is OK ] Use (2) sets of (2) bolts for connection ^SM^^^SI Software licensed to Job No 134226 Sheet No NODES Rev ^SM^^^SI Software licensed to ''^'^ Joist Analvsis Job Title Carlsbad CA Ref Bv n/i °3'^3/16/2010 Lowe's •"''^ Joist-2&3 std Date/Time 16-Nov-2012 08 25 NODES Pnnt Time/Date 13/03/2013 11 28 STAAD Pro VSi 20 07 05 15 Pnnt Run 1 of 1 IS^^^^^Sfl Software licensed to Job No 134226 Sheet No MEMBERS Rev IS^^^^^Sfl Software licensed to Joist Analvsis Job Title Carlsbad CA Ref Bv lyi °^''3/16/2010 ^''"^ Lowe's Joist-2&3 std Date/Time 16-NOV-2012 OS 25 MEMBERS Pnnt Time/Date 13/03/2013 11 29 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Job No 134226 P^''Joist Analvsis Job Title Carlsbad CA M Alv °=*'3/16/2010 Client Lowe's i^'i^ Joist-2&3 std Daten^ime 16-NOV-2012 OS 25 Basic Load Cases Number Name 1 DL 2 LL 3 BSL 4 VSL 5 DSL 6 WLI 7 WL2 8 HL Combination Load Cases Comb Combination L/C Name Primarv Primarv L/C Name Factor 9 D 1 DL 1 00 8 HL 1 00 10 D+L 1 DL 1 00 8 HL 1 00 2 LL 1 00 11 D+BSL+DSL 1 DL 1 00 8 HL 1 00 3 BSL 1 00 5 DSL 1 00 12 D+USL 1 DL 1 00 S HL 1 00 4 VSL 1 00 13 D+0 75W1+0 75L 1 DL 1 00 8 HL 1 00 6 WLI 0 75 2 LL 0 75 14 D+0 75W2+0 75L 1 DL 1 00 8 HL 1 00 7 WL2 0 75 2 LL 0 75 15 D+0 75W1+0 75BSL+0 75DSL 1 DL 1 00 8 HL 1 00 6 WLI 0 75 3 BSL 0 75 5 DSL 0 75 16 D+0 75W2+0 75BSL+0 75DSL 1 DL 1 00 8 HL 1 00 7 WL2 0 75 3 BSL 0 75 5 DSL 0 75 17 D+0 75W1+0 75USL 1 DL 1 00 Print Time/Date 13/03/2013 11 30 ST/\AD ProVSi 20 07 05 15 Pnnt Run 1 of 5 m ""^^^l Software licensed to Job No 134226 Sheet No Rev m ""^^^l Software licensed to Pa'*Joist Analvsis Job Title Carlsbad CA Ref Job Title Carlsbad CA Bv n/i Alv Da'^3/16/2010 Client Lowe's p''= Joist-2&3 std Daten-ime 16-NOV-2012 08 25 Combination Load Cases Cont... Comb Combination L/C Name Primarv Primarv L/C Name Factor 8 HL 1 00 6 WLI 0 75 4 VSL 0 75 18 D+0 75W2+0 75USL 1 DL 1 00 8 HL 1 00 7 WL2 0 75 4 VSL 0 75 19 0 6D+W1 1 DL 0 60 8 HL 0 60 6 WLI 1 00 20 0 6D+W2 1 DL 0 60 8 HL 0 60 7 WL2 1 00 Node Loads : 1 DL Node FX (Ib) FY (Ib) FZ (Ib) MX (kiD ft) MY (kiD ft) MZ (kioft) 2 --5 43E+3 ---- 4 --5 43E+3 ---- 11 --5 43E+3 ---- Node Loads : 2 LL Node FX (Ib) FY (Ib) FZ (Ib) MX (kiD"ft) MY (kiD"ft) MZ (kiD'ft) 2 --7 49E+3 ---- 4 --7 49E+3 ---- 11 --7 49E+3 ---- Node Loads : 3 BSL Node FX (Ib) FY (Ib) FZ (Ib) MX (kiD"ft) MY (kiD"ft) MZ (kiDft) 2 --0 010 ---- 4 --0 010 ---- 11 --0 010 ---- Print Time/Date 13/03/2013 11 30 STAAD ProVSi 20 07 05 15 Pnnt Run 2 of 5 fm=i—Software licensed to Job No 134226 Sheet No Rev fm=i—Software licensed to Part Joist Analvsis Job Title Carlsbad CA Ref Job Title Carlsbad CA M Alv °a''3/16/2010 Client Lowe's Joist-2&3 std Date/Time 16-Nov-2012 OS 25 Node Loads : 4 VSL Node FX (Ib) FY (Ib) FZ (Ib) MX (kiD"ft) MY (kioft) MZ (kiD"ft) 2 --0 010 ---- 4 --0 010 ---- 11 --0 010 ---- Node Loads : 5 DSL Node FX (Ib) FY (Ib) FZ (Ib) MX (kiD ft) MY (kioft) MZ (kiD"ft) 2 --0 010 ---- 4 --0 010 ---- 11 --0 010 ---- Node Loads : 6 WL1 Node FX (Ib) FY (Ib) FZ (Ib) MX (kiD ft) MY (kioft) MZ (kiD"fl) 2 -3 65E+3 ---- 4 -3 65E+3 ---- 11 -3 65E+3 ---- Node Loads : 7 WL2 Node FX (Ib) FY (Ib) FZ (Ib) MX (kiD ft) MY (kioft) MZ (kiD ft) 2 -5 08E+3 ---- 4 -5 08E+3 ---- 11 -5 08E+3 ---- Node Loads : 8 HL Node FX (Ib) FY (Ib) FZ (Ib) MX (kiD"ft) MY (kioft) MZ (kioft) 2 --0 010 ---- 4 --0 010 ---- 11 --0 010 ---- Print Time/Date 13/03/2013 11 30 STAAD ProVSi 20 07 05 15 Pnnt Run 3 of 5 fpii 1 iM^jll Software licensed to Job No 134226 Sheet No Rev fpii 1 iM^jll Software licensed to Partjoist Analvsis Job Title Carlsbad CA Ref Job Title Carlsbad CA Bv M Alv °='^3/16/2010 ci«nt Lowe's P'i« Joist-2&3 std Date/Time 16-Nov-2012 OS 25 Node DisDiacement Summarv Node L/C X (in) Y (in) Z (in) Resultant (in) rX (rad) rY (rad) rZ (rad) MaxX 2 10 D+L 0 126 -0 082 OOOO 0 151 OOOO OOOO -0 012 MinX 4 10 D+L -0 126 -0 082 OOOO 0151 OOOO OOOO 0 012 MaxY 11 20 0 6D+W2 -OOOO 0 181 OOOO 0 161 OOOO OOOO -0 000 Mm Y 11 10 D+L -OOOO -1 143 OOOO 1 143 OOOO OOOO OOOO MaxZ 1 10 D+L OOOO OOOO OOOO OOOO OOOO OOOO OOOO Mm Z 1 10 D+L OOOO OOOO OOOO OOOO OOOO OOOO OOOO MaxrX 1 10 D+L OOOO OOOO OOOO OOOO OOOO OOOO OOOO Min rX 1 10 D+L OOOO OOOO OOOO OOOO OOOO OOOO OOOO MaxrY 1 10 D+L OOOO OOOO OOOO OOOO OOOO OOOO OOOO Mm rY 1 10 D+L OOOO OOOO OOOO OOOO OOOO OOOO OOOO Max rZ 16 10 D+L 0 116 -0 375 OOOO 0 392 OOOO OOOO 0 012 Mm rZ 12 10 D+L -0 116 -0 375 OOOO 0 392 OOOO OOOO -0 012 Max Rst 11 10 D+L -OOOO -1 143 OOOO 1 143 OOOO OOOO OOOO Beam Force Detail Summarv Sian convention as diaarams - oositive above line neaative below line except Fx where positive is compression Distance d is aiven Irom beam end A Axial Shear Torsion Bendina Beam L/C d (ft) Fx (Ib) Fv (Ib) Fz (Ib) Mx (kiD-ft) Mv (kiD"ft) Mz (kiDft) Max Fx 8 10 D+L 0 000 33 7E+3 131 618 OOOO OOOO OOOO -0 082 Mm Fx 13 10 D+L OOOO -26 5E+3 42 969 OOOO OOOO OOOO -0 067 Max Fv 3 10 D+L OOOO 19 4E+3 1 25E+3 OOOO OOOO OOOO 2 285 Min Fv 4 10 D+L OOOO 19 4E+3 -1 25E+3 OOOO OOOO OOOO -2 285 Max Fz 1 10 D+L OOOO 19 4E+3 -319 504 OOOO OOOO OOOO -1 283 Mm Fz 1 10 D+L OOOO 19 4E+3 -319 504 OOOO OOOO OOOO -1 283 Max Mx 1 10 D+L OOOO 19 4E+3 -319 504 OOOO OOOO OOOO -1 2S3 Mm Mx 1 10 D+L OOOO 19 4E+3 -319 504 OOOO OOOO OOOO -1 283 Max Mv 1 10 D+L OOOO 19 4E+3 -319 504 OOOO OOOO OOOO -1 283 Mm Mv 1 10 D+L OOOO 19 4E+3 -319 504 OOOO OOOO OOOO -1 283 Max Mz 1 10 D+L 11 167 19 4E+3 -319 504 OOOO OOOO 0 000 2 285 Mm Mz 2 10 D+L 11 167 19 4E+3 319 504 OOOO OOOO OOOO -2 285 Pnnt Time/Date 13/03/2013 11 30 STAAD ProVSi 20 07 05 15 Pnnt Run 4 of 5 Software licensed to Job No 134226 P^rtJoist Analvsis Job Title Carlsbad CA M Alv P'i° Joist-28i3 std Chd °a"3/16/2010 Date/Time 16-NOV-2012 OS 25 ci'ent Lowe's Reaction Summarv Horizontal Vertical Horizontal Moment Node L/C FX FY FZ MX MY MZ (Ib) (Ib) (Ib) (kioft) (kiD ft) (kiB'ft) Max FX 1 10 D+L 319 504 19 4E+3 OOOO OOOO OOOO -1 283 Mm FX 3 10 D+L •319 504 19 4E+3 OOOO OOOO OOOO 1 283 Max FY 1 10 D+L 319 504 19 4E+3 OOOO OOOO OOOO -1 283 Mm FY 1 20 0 6D+W2 -44 945 -2 73E+3 OOOO OOOO OOOO 0 180 Max FZ 1 10 D+L 319 504 19 4E+3 OOOO OOOO OOOO -1 283 Min FZ 1 10 D+L 319 504 19 4E+3 OOOO OOOO OOOO -1 283 Max MX 1 10 D+L 319 504 19 4E+3 OOOO OOOO OOOO -1 283 Mm MX 1 10 D+L 319 504 19 4E+3 OOOO OOOO OOOO -1 283 Max MY 1 10 D+L 319 504 19 4E+3 OOOO 0 000 OOOO -1 283 Mm MY 1 10 D+L 319 504 19 4E+3 OOOO OOOO OOOO -1 283 Max MZ 3 10 D+L -319 504 19 4E+3 OOOO 0 000 OOOO 1 283 Mm MZ 1 10 D+L 319 504 19 4E+3 OOOO 0 000 OOOO -1 283 Pnnt Time/Date 13/03/2013 11 30 ST/\AD ProV8i20 07 05 15 Pnnt Run 5 of 5 jib , " Software licensed to Job No 134226 Sheet No TOP Rev jib , " Software licensed to Pa"*Joist Analvsis Job Title Carlsbad CA Ref Job Title Carlsbad CA Bv n/i Alv •5»*«3/16/2010 Client Lowe's '''i^ Joist-2&3 std Date/Time 16-NOV-2012 08 25 Beam Force Detail Summarv Sian convention as diaarams - D0s/(/ve above line neaative below line exceot Fx where positive is compression Distance d is aiven Irom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (km) (kiD"ft) (kioft) (kiD ft) Max Fx 8 10 D+L OOOO 33 686 0 132 OOOO OOOO 0 000 -0 082 Mm Fx 8 20 0 6D+W2 OOOO -4 739 -0 019 OOOO OOOO OOOO 0 012 Max Fv 8 10 D+L OOOO 33 686 0 132 OOOO OOOO OOOO -0 082 Mm Fv 11 10 D+L OOOO 33 686 -0 132 OOOO OOOO OOOO -0 345 Max Fz 5 10 D+L OOOO 5 758 0 017 OOOO OOOO OOOO OOOO Mm Fz 5 10 D+L OOOO 5 758 0 017 OOOO OOOO OOOO OOOO Max Mx 5 10 D+L OOOO 5 758 0 017 OOOO OOOO OOOO OOOO Mm Mx 5 10 D+L OOOO 5 758 0 017 OOOO OOOO OOOO OOOO Max Mv 5 10 D+L OOOO 5 758 0 017 OOOO OOOO OOOO OOOO Mm Mv 5 10 D+L OOOO 5 758 0 017 OOOO OOOO OOOO OOOO Max Mz 8 20 0 6D+W2 2 000 -4 739 -0 019 OOOO OOOO OOOO 0 049 Min Mz S 10 D+L 2 000 33 686 0 132 OOOO OOOO OOOO -0 345 Print Time/Date 13/03/2013 11 31 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Job No 134226 Sheet No BOTTOM Part Joist Analvsis Job Title Carlsbad CA Chd M Alv Dat£3/ie/2010 P'i« Joist-2&3 std Date/Time i6-Nov-2012 OS 25 Client Lowe's Beam Force Detail Summarv S;on convention as diaarams - positive above line neaative beiow line except Fx where positive is compression Distance d is aiven trom beam end A Axial Shear Torsion Bendma Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (km) (kiD) (kiD) (kioft) (kiD"ft) (kiD"ft) Max Fx 13 20 0 6D+W2 OOOO 3 729 -0 006 OOOO OOOO OOOO 0 009 Mm Fx 13 10 D+L OOOO -26 506 0 043 OOOO OOOO OOOO -0 067 Max Fv 13 10 D+L OOOO -26 506 0 043 OOOO OOOO OOOO -0 067 Mm Fv 14 10 D+L OOOO -26 506 -0 043 OOOO OOOO OOOO -0 239 Max Fz 6 10 D+L OOOO 1 566 0 025 OOOO OOOO OOOO OOOO Mm Fz 6 10 D+L OOOO 1 566 0 025 OOOO OOOO OOOO OOOO Max Mx 6 10 D+L OOOO 1 566 0 025 OOOO OOOO OOOO OOOO Mm Mx 6 10 D+L OOOO 1 566 0 025 OOOO OOOO OOOO OOOO Max Mv 6 10 D+L OOOO 1 566 0 025 OOOO OOOO OOOO OOOO Min Mv 6 10 D+L OOOO 1 566 0 025 OOOO OOOO OOOO OOOO Max Mz 13 20 0 6D+W2 4 000 3 729 -0 006 OOOO OOOO OOOO 0 034 Mm Mz 13 10 D+L 4 000 -26 506 0 043 OOOO OOOO OOOO -0 239 Pnnt Time/Date 13/03/2013 11 31 STAAD Pro VSI 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Job No 134226 Sheet No COLUMN Part Joist Analvsis Job Title Carlsbad CA Chd M Alv °at£3/ie/2010 ''''^ Joist-2&3 std Date/Time 16-Nov-2012 08 25 Client Lowe's Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line except Fx where positive is comoression Distance d is aiven Irom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (km) (kiD) (km) (kiD"ft) (kiD"ft) (kioft) Max Fx 1 10 D+L OOOO 19 388 -0 320 OOOO OOOO OOOO -1 283 Min Fx 1 20 0 6D+W2 OOOO -2 727 0 045 OOOO OOOO OOOO 0 180 Max Fv 3 10 D+L OOOO 19 362 1 246 OOOO OOOO OOOO 2 285 Mm Fv 4 10 D+L OOOO 19 362 -1 246 OOOO OOOO OOOO -2 285 Max Fz 1 10 D+L OOOO 19 388 -0 320 OOOO OOOO OOOO -1 283 Min Fz 1 10 D+L OOOO 19 388 -0 320 OOOO OOOO OOOO -1 283 Max Mx 1 10 D+L OOOO 19 388 -0 320 OOOO OOOO OOOO -1 283 Mm Mx 1 10 D+L OOOO 19 388 -0 320 OOOO OOOO OOOO -1 283 Max Mv 1 10 D+L OOOO 19 388 -0 320 OOOO OOOO OOOO -1 283 Min Mv 1 10 D+L OOOO 19 388 -0 320 OOOO OOOO OOOO -1 283 Max Mz 1 10 D+L 11 167 19 388 -0 320 OOOO OOOO OOOO 2 285 Mm Mz 2 10 D+L 11 167 19 388 0 320 OOOO OOOO OOOO -2 285 Print Time/Date 13/03/2013 11 32 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Job No 134226 WEB Partjoist Analvsis Job Title Carlsbad CA B» M Alv Dat«3/16/2010 Client Lowe's ''''^ Joist-2&3 std Datenime 16-NOV-2012 OS 25 Beam Force Detail Summarv Sian convention as diaarams - oositive above line neaative below line exceot Fx where oositive is comoression Distance d is aiven trom beam end A Axial Shear Torsion Bendina Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (km) (km) (km) (kioft) (kiD"ft) (km ft) Max Fx 18 10 D+L OOOO 9 532 OOOO OOOO OOOO OOOO OOOO Mm Fx 19 10 D+L OOOO -9 553 OOOO OOOO OOOO OOOO OOOO Max Fv 17 10 D+L OOOO -9 501 OOOO OOOO OOOO OOOO OOOO Mm Fv 17 10 D+L OOOO -9 501 0 000 OOOO OOOO OOOO OOOO Max Fz 17 10 D+L OOOO -9 501 0 000 OOOO OOOO OOOO OOOO Min Fz 17 10 D+L OOOO -9 501 OOOO OOOO OOOO OOOO OOOO Max Mx 17 10 D+L OOOO -9 501 OOOO OOOO OOOO OOOO OOOO Mm Mx 17 10 D+L OOOO -9 501 0 000 OOOO OOOO OOOO OOOO Max Mv 17 10 D+L OOOO -9 501 0 000 OOOO OOOO OOOO OOOO Mm Mv 17 10 D+L OOOO -9 501 OOOO OOOO OOOO OOOO OOOO Max Mz 17 10 D+L OOOO -9 501 0 000 OOOO OOOO OOOO OOOO Mm Mz 17 10 D+L OOOO -9 501 0 000 OOOO OOOO OOOO OOOO Pnnt Time/Date 13/03/2013 11 31 STAAD ProVSi 20 07 05 15 Pnnt Run 1 of 1 Joist TOP Chord Input Data Member Section 4x4x11aa A = Tube Width 4 in B = Tube Lenath 4 in R = Corner Inner Radius 0 1875 in t = Thickness 0 12 in KLx= Bucklina around x-x 2 ft KLy= Bucklina around x-x 10 ft E = Modulus of Elasticity 29500 ksi Fy = Yield Stress 50 ksi G = Shear Modulus 11300 ksi Calculated Parameter Aoolied Forces 1 - Prooerties of 90° corner M 0 082 kioft r = R + t/2 Centerline of Dimension 0 248 in P 33 686 kios u = Tt r/2 Arc Lenath 0 389 in c=0 637 r Distance of c a from center 0 158 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 3 385 in Flat width of Dim b= B - (2 r + t) 3 385 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2 a 6 77 B/2 -1/2 1 94 25 4796 0 OOOO Web 2 b 6 77 0 0 OOOOO 6 4643 Corners 4 u 1 555 b/2 + c 1 850 5 3235 0 OOOO Sum 15 0952 3 7902 30 8031 6 4643 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2 a 6 77 0 0 OOOOO 6 4643 Web 2 b 6 77 A/2-t/2 1 94 25 4796 0 OOOO Corners 4 u 1 555 a/2 + c 1 850 5 3235 0 OOOO Sum 15 0952 3 7902 30 8031 6 4643 Section Prooerties A Lxt 1 8114 in^ lx tx(LxY^ +lx') 4 4721 in" IY t x (L X X^ +ly') 4 4721 in" Sx lx /(B/2) 2 2360 in^ SY IY /(A/2) 2 2360 in^ I'x (lx/A)°^ 1 5713 in ry (IY/A)"' 1 5713 in Nominal Bucklina Stress KLx/rx 15 2745 KLy/ry 76 3723 KL/r 76 3723 Fe Tt^ E/(KL/r)^ 49 9172 ksi Ic (Fv/Fe)"'' 1 0008 F„ 32 8772 ksi Effective Area effective width of compression flanae w/t = a/t 28 2083 X 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 4953 r (1-0 22 IX) IX 1 1222 ae 3 3850 in effective width of web element w/t = b/t 28 2083 1 1 052/(k)°^x(w/t)x(Fn/E)°* 0 4953 r (1-0 22 IX) IX 1 1222 be 3 3850 in Allowable Axial Load Ae Ae = A - 2 x t X Ka-ae) + (b-be)l 1 81142292 in^ Pn Pn~ Ae X Fn 59 5544718 kios fic 1 8 Pa = Pn /fio 33 0858 kios Check Compression Stresses Loads from Wind? Cbi Cb1=(P/Pa)NO 1 0181 Allowable Stress Unity 1 1 0181 Section is NG and trv another section Comoutina of Mnx Bv usina the effective width of comoression flanae and assumina the web is fully effective the neutral axis can be located as follow Element L Lenath (in) y Distance to too fiber (in) Lv Lv^ C Flanaes ae 3 385 t/2 0 06 0 2031 0 0122 Web 2b 6 77 B/2 2 13 5400 27 0800 C Corners 2u 0 7775955 c+t/2 0 217658 0 1692 0 0368 T Flanaes ae 3 385 B-t/2 3 94 13 3369 52 5474 T Corners 2 u 0 7775955 B-c 3 842 2 9878 11 4801 Sum 15 0952 10 0600 30 2370 91 1565 yca=l-v/L 2 0031 Z=R+t 0 3075 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fl (Vca- Z)Fy/V<.a 42 3244 ksi f2 - (B-Vca- Z)Fy/Vca -42 1701 ksi V fj/fl -0 9964 k 4+2(1-w)^+2(1-\i/) 23 9054 hi be/t 28 2083 1 1 052/(k)°^x(h/t)x(f1/E)°* 0 2299 r (1-0 22 IX) IX 0 1872 be 3 3850 in bl bj(3-\u) 0 8470 in bj 1 6925 in bi+b2 2 5395 in 2 1 yyeb 2(1/12)(b)^ 6 4643 in" S(Lv^) 91 1565 in" (-)(SL)(Vca)^ 60 5675 in" I'x 37 0533 in" ix=rxt 4 4464 in" S6x=lx/Vca 2 2198 in^ Cb=1 0 for combined axial load and bendma moment 1 2bWm•^d) 4 6543 in" s, fullSx 2 2360 in" 0 36CbTi(EIGi)°*/(Fy Sf) 70 2472 ft Fe" CbTt (E 1 G 1)0 5/(L Sf) 4878 2796 ksi Allowable Bendina Moment Mnx 9 2490 kioft fib 1 67 Ma = Mnx/fib 5 53834736 kioft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P/Pa) + (Cn,x Mx/Ma 1 0270 ) o Cb2 (P / Pa) + (Mx/Ma) 1 0329 Allowable Stress Unity 1 Cb lf((P/Pa) <=0 15Cb2Cbi) 1 0270 Section is NG and trv another section Joist Bottom Chord Input Data Member Section A = Tube Width B = Tube Lenath R = Corner Inner Radius t = Thickness KLx= Bucklina around x-x KLy= Bucklina around x-x E = Modulus of Elasticity Fv = Yield Stress G = Shear Modulus d = Bolt diameter n = Number of bolts 4x4x1laa 0 1875 0 12 20 29500 55 11300 0 5 in in in in ksi ksi ksi in Calculated Parameter Applied Forces 1- Properties of 90° corner r = R + t/2 Centerline of Dimension 0 248 in 26 506 kios u = Tt r/2 Arc Lenath 0 389 in c=0 637 r Distance of c a from center 0 158 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) Flat width of Dim b= B - (2 r +1) 3 385 in 3 385 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2 a 6 77 B/2 -1/2 1 94 25 4796 0 OOOO Web 2 b 6 77 0 0 0 OOOO 6 4643 Corners 4u 1 555 b/2 + c 1 850 5 3235 OOOOO Sum 15 0952 3 7902 30 8031 6 4643 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ Iv' Flanaes 2 a 6 77 0 0 0 OOOO 6 4643 Web 2 b 6 77 A/2 - t/2 1 94 25 4796 0 OOOO Corners 4 u 1 555 a/2 + c 1 850 5 3235 0 OOOO Sum 15 0952 3 7902 30 8031 6 4643 3- Section Properties A = L X t Gross Area 1 8114 in^ A„= A - n x t X (d+ 0625) x 2 1 6764 in" 4-Allowable Axial Load Pn~ An X Fy 92 2032606 kios fi, 1 67 Pa = Pn /fi, 55 2115333 kios S- Check Tension Stresses Loads from Wind? Cbi=(P / Pa) 0 4801 NO Allowable Stress Unitv 1 0 4801 Section is OK Column Input Data vl Member Section 4x4x8aa 1 A = Tube Width 4 in x _ f. j f Li//iiii//|fiif///fi.,: 3 1 — t ' 1 1 B = Tube Lenath 4 in x _ f. j f Li//iiii//|fiif///fi.,: 3 1 — t ' 1 1 R = Corner Inner Radius 0 1875 in x _ f. j f Li//iiii//|fiif///fi.,: 3 1 — t ' 1 1 t = Thickness 0 165 in x _ f. j f Li//iiii//|fiif///fi.,: 3 1 — t ' 1 1 KLx= Bucklina around x-x 134 ft x _ f. j f Li//iiii//|fiif///fi.,: 3 1 — t ' 1 1 KLy= Bucklina around x-x 156 ft x _ f. j f Li//iiii//|fiif///fi.,: 3 1 — t ' 1 1 E = Modulus of Elasticity 29500 ksi x _ f. j f Li//iiii//|fiif///fi.,: 3 1 — t ' 1 1 Fy = Yield Stress 50 ksi x _ VI G = Shear Modulus 11300 ksi O ' Calculated Parameter Applied Forces 1 - Properties of 90° corner M 2 285 kioft r = R + t/2 Centerline of Dimension 0 270 in P 19 388 kios u = Tt r/2 Arc Lenath 0 424 in c=0 637 r Distance of c a from center 0 172 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 3 295 in Flat width of Dim b= B - (2 r + t) 3 295 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2 a 6 59 B/2 -1/2 1 9175 24 2302 0 OOOO Web 2 b 6 59 0 0 0 OOOO 5 9623 Corners 4 u 1 697 b/2 + c 1 819 5 6166 0 OOOO Sum 14 8766 3 7370 29 8467 5 9623 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2a 6 59 0 0 0 OOOO 5 9623 Web 2 b 6 59 A/2-t/2 1 9175 24 2302 0 OOOO Corners 4 u 1 697 a/2 + c 1 819 5 6166 0 OOOO Sum 14 8766 3 7370 29 8467 5 9623 Section Properties A Lxt 2 4546 in^ lx tx(LxY^+lx') 5 9085 in" IY tx(LxX^ +ly') 5 9085 in" Sx lx /(B/2) 2 9542 in^ SY IY /(A/2) 2 9542 in^ Tx (lx/A)°^ 1 5515 in ry (lylA)"" 1 5515 in Nominal Bucklina Stress KLx/rx 103 6433 KLy/ry 120 6593 KL/r 120 6593 Fe Tt^ E/(KL/r)^ 19 9986 ksi Ic (Fv/Fe)"" 1 5812 F„ 17 5388 ksi Effective Area effective width of compression flanae w/t = a/t 19 9697 X 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 2561 r (1-0 22/>.)/X 0 5506 ae 3 2950 in effective width of web element w/t = b/t 19 9697 1 1 052/(k)°*x(w/t)x(Fn/E)°^ 0 2561 r (1-0 22 IX) IX 0 5506 be 3 2950 in Allowable Axial Load Ae Ae = A - 2 X t x r(a-ae) + (b-bg)! 2 45463438 in^ Pn Pn~ Ae X Fn 43 0513083 kios fic 1 8 Pa = Pn /fic 23 9174 kios Check Comoression Stresses Loads from Wind? Cbi Cb1=(P/Pa)N0 0 8106 Allowable Stress Unitv 1 0 8106 Section is OK Comoutina of Mnx Bv usina the effective width of comoression flanae and assumina the web is fully effective the neutral axis can be located as follow Element L Lenath (in) v Distance to too fiber (in) Lv Lv^ C Flanaes ae 3 295 t/2 0 0825 0 2718 0 0224 Web 2 b 6 59 B/2 2 131800 26 3600 C Corners 2 u 0 848286 c+t/2 0 25449 0 2159 0 0549 T Flanaes ae 3 295 B-t/2 3 9175 12 9082 50 5677 T Corners 2 u 0 848286 B-c 3 828 3 2472 12 4305 Sum 14 8766 10 0825 29 8231 89 4356 Vca = L V/ L 2 0047 Z=R+t 0 3525 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fl (Vca- Z)Fy/yca 41 2082 ksi f2 - (B-Vca- Z)Fy/Vca -40 9735 ksi v f^/fl -0 9943 k 4+2(1-w)^+2(1-w) 23 8523 hi be/t 19 9697 1 1 052/(k)°^x(h/t)x(f1/E)°^ 0 1608 r (1-0 22 IX) IX -2 2916 be 3 2950 in bl bj(3-w) 0 8249 in b2 1 6475 in bi+b2 2 4724 in 2 lyyeb 2(1/12)(b)^ 5 9623 in" S(Lv^) 89 4356 in" (-)(SL)(Vc<,)^ 59 7866 in" I'x 35 6114 in" lx=l'xt 5 8759 in" Sex=IAca 2 9310 in^ Cb=1 0 for combined axial load and bendma moment 1 2bVt/(b+d) 5 9027 in" Sf fullSx 2 9542 in" Lu 0 36CbTt(EIGi)°^/(Fy Sf) 68 8245 ft Fe" CbTt (E 1 G 1)0 5/(L Sf) 713 3548 ksi Allowable Bendina Moment Mnx 12 2127 kioft fib 1 67 Ma = Mnx /fib 7 31297989 kioft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wmd? Cbi (P/Pa) + (C„x Mx/Ma 0 9981 ) 0 Cb2 (P / Pa) + (Mx/Ma) 1 1231 Allowable Stress Unitv 1 Cb lf((P/Pa) <=0 15Cb2Cbi) 0 9981 Section is OK Joist Web (como.) Input Data vl Member Section 2x2x1Saa 1 A = Tube Width 2 in x _ t- i 1 .Jf, i 1 B = Tube Lenath 2 in x _ t- i 1 .Jf, i 1 R = Corner Inner Radius 0 0938 in x _ t- i 1 .Jf, i 1 t = Thickness 0 072 in x _ t- i 1 .Jf, i 1 KLx= Bucklina around x-x 2 71 ft x _ t- i 1 .Jf, i 1 KLy= Bucklina around x-x 2 71 ft x _ t- i 1 .Jf, i 1 E = Modulus of Elasticity 29500 ksi t- i 1 .Jf, i 1 Fy = Yield Stress 50 ksi V| G = Shear Modulus 11300 ksi o Calculated Parameter Applied Forces 1- Properties of 90° corner M 0 0001 kioft r = R + t/2 Centerline of Dimension 0 130 in P 9 532 kios u = Tt r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6684 in Flat width of Dim b= B - (2 r + t) 1 6684 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2a 3 3368 B/2 -1/2 0 964 3 1009 0 OOOO Web 2 b 3 3368 0 0 0 OOOO 0 7740 Corners 4 u 0 816 b/2 + c 0917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2 a 3 3368 0 0 0 OOOO 0 7740 Web 2 b 3 3368 A/2 -1/2 0 964 3 1009 0 OOOO Corners 4 u 0 816 a/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 Section Prooerties A Lxt 0 5392 in^ lx tx( Lx Y^+lx') 0 3284 in- IY tx(LxX^ +ly') 0 3284 in- Sx lx /(B/2) 0 3284 in' SY IY /(A/2) 0 3284 in^ Tx (lx/A)°* 0 7804 in ry (IY/A)"* 0 7804 in Nominal Bucklina Stress KLx/rx 41 6735 KLy/ry 41 6735 KL/r 41 6735 Fe Tt^ E/(KL/r)^ 167 6494 ksi Ic (Fv/Fe)"" 0 5461 Fn 44 1324 ksi Effective Area effective width of compression flanae w/t = a/t 23 1722 X 1 052/(k)"x(w/t)x(Fn/E)°^ 0 4714 r (1-0 22 IX) IX 1 1313 ae 1 6684 in effective width of web element w/t = b/t 23 1722 1 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 4714 r (1-0 22 IX) IX 1 1313 be 1 6684 in Allowable Axial Load Ae Ae = A-2xtxr(a-ae) + (b-be)l 0 53922321 in^ Pn Pn~ Ae X Fp 23 7972088 kios fic 1 8 Pa = Pn /fic 13 2207 kios Check Comoression Stresses Loads from Wind? Cbi Cb1=(P/Pa)N0 0 7210 Allowable Stress Unity 1 0 7210 Section is OK Comoutina of Mnx Bv usina the effective width of comoression flanae and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) y Distance to too fiber (in) Lv Lv^ C Flanaes ae 1 6684 t/2 0 036 0 0601 0 0022 Web 2 b 3 3368 B/2 1 3 3368 3 3368 C Corners 2 u 0 40780564 c+t/2 0118683 0 0484 0 0057 T Flanaes ae 1 6684 B-t/2 1 964 3 2767 6 4355 T Corners 2 u 0 40780564 B-c 1 917 0 7819 1 4991 Sum 7 4892 5 0360 7 5039 11 2794 Vca = L v/ L 1 0020 Z=R+t 0 1658 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fi (Vca- Z)Fy/Vca 41 7262 ksi f2 - (B-Vca- Z)Fy/yca -41 5306 ksi V f2/fi -0 9953 k 4+2(1-\i/)^+2(1-u/) 23 8784 hi be/t 23 1722 1 1 052/(k)°^x(h/t)x(f1/E)°^ 0 1876 r (•\-0 22IX)IX -0 9199 be 1 6684 in bi bj(3-w) 0 4176 in b2 0 8342 in bi+b2 1 2518 in 2 1 yyeb 2(1/12)(b)^ 0 7740 in" S(Lv^) 11 2794 in" (-)(SL)(Vco)^ 7 5186 in" I'x 4 5348 in" lx=l'xt 0 3265 in" Sex=lx/Vca 0 3259 in^ Cb=1 0 for combined axial load and bendina moment 1 2b^d^t/(b+d) 0 3344 in" s, fullSx 0 3284 in" Lu 0 36CbTt(E 1 G i)°^/(Fy Sf) 34 7430 ft Fe' CbTt (E 1 G 1)0 5/(L Sf) 1780 5979 ksi Allowable Bendma Moment Mnx 1 3578 kioft fib 1 67 Ma = Mnx /fib 0 81303531 kioft Check Stresses Cmx 0 6-0 4*Mi/M2 0 6000 Loads from Wind? Cbi (P/Pa) + (Cn,x Mx/Ma 0 7211 ) 0 Cb2 (P / Pa) + (Mx/Ma) 0 7211 Allowable Stress Unity 1 Cb lf((P/Pa) <=0 15Cb2Cbi) 0 7211 Section is OK Joist Web (Ten.) Input Data Member Section 2x2x1Saa Yj A = Tube Width 2 in r j 1 1 B = Tube Lenath 2 in r j R = Corner Inner Radius 0 0938 in , t = Thickness 0 072 in x _ i —— i E 1 KL x= Bucklina around x-x 2 71 ft i KL y= Bucklina around x-x 2 71 ft ! E = Modulus of Elasticity 29500 ksi ! Fv = Yield Stress 55 ksi V| G = Shear Modulus 11300 ksi V| d = Bolt diameter 0 5 in «——— 0 m^ m.^^—^^ A • n = Number of bolts 1 Calculated Parameter Applied Forces 1 - Properties of 90° corner M 0 001 kioft r = R + t/2 Centerline of Dimension 0 130 in P 9 553 kios u = TI r/2 Arc Lenath 0 204 in c=0 637 r Distance of c a from center 0 083 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6684 in Flat width of Dim b= B - (2 r +1) 1 6684 in Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2a 3 3368 B/2 -1/2 0 964 3 1009 0 OOOO Web 2 b 3 3368 0 0 OOOOO 0 7740 Corners 4 u 0 816 b/2 + c 0917 0 6857 OOOOO Sum 7 4892 1 8809 3 7865 0 7740 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ Iv' Flanaes 2 a 3 3368 0 0 0 OOOO 0 7740 Web 2 b 3 3368 A/2 -1/2 0 964 3 1009 0 OOOO Corners 4 u 0 816 a/2 + c 0 917 0 6857 0 OOOO Sum 7 4892 1 8809 3 7865 0 7740 3- Section Properties A = L X t Gross Area 0 5392 in^ A„= A - n X t x (d+ 0625) x 2 0 4582 in" 4- Allowable Axial Load Pn~ An X Fy 25 2022767 kios fi. 1 67 Pa = Pn /fit 15 0911836 kiDS S- Check Tension Stresses Loads from Wind? Cb1=(P / Pal 0 6330 NO Allowable Stress Unity 1 0 6330 Section is OK Joist to Gutter Post Connection at Store Wall Ti -REFER TO PLANS FOR BOTTOM CHORD REFER TO JOIST SKETCH FOR SIZE" - (4) JJ X 8' HEX HD BOLT & NUT - 4' POST GUSSET FOR BOLTED TRUSS (ONE EA SIDE) [S0gS2030-4L/R] -WELDED GUTTER POST ASSEMBLY (REF DWG MEMBER SIZE Gl 0) Max Truss Reaction (from STAAD Model) = 1 6 46 kiDS From Load Case DL+LL 1 Shear CaDacitv of (1) 1/2" dia bolts in Sinale Shear r~4 12 kios H Max Load oer Shear Plane on Bolt = | 1 89 kips | Result: | Connection is OK Use (2) sets of (2) bolts for connection LATERAL LOAD RESISTING SYSTEM Lateral loads on the structure are resisted bv BRACED FRAMES WIND LOADS - PARALLEL TO THE RIDGE Truss Soan =f 41.50 ft Roof SloDe(x/12)=*' 6 Heieht from Eave to Ridse 10 38ft Skirt Heieht 1.50 ft Tnb Area (for INT COL LINE) 278 ft^2 Windward Wall Wind Pressure =f 8.1 osf Leeward Wall Wind Pressure 1.5 osf Number of Purlin oer Slooe 5 Number of Soaces Between Purlin 12 Honz Dist B/W Purlin (x) 3 46 ft Bav Soacme (v) Leneth of Roof Brace (z) =1 Total Windward Force Total Leeward Force Number of roof bracines sets 10.00 ft 10 58 ft (Total Force at Intenor Column Line) MEMBER FORCES (Moving Down the Slope) NOTE Roof Braces are Desiened as TENSION ONLY Members Ridee Purlin = 0 19 kiDS Purlin #1 = 0 30 kiDS Brace #1 = 0 12 kiDS Purlin #2 = 0 52 kiDS Brace #2 = 0 35 kiDS Purlin #3 = 0 74 kiDS Brace #3 = 0 59 kiDS Purlin #4 = 0 96 kiDS Brace #4 = 0 82 kiDS Purlin #5 = 1 19kiDS Brace #5 = 1 06 kiDS Purlin #6 = 0 00 kiDS Brace #6 = 1 29 kiDs Purlin #7 = 0 00 kiDS Brace #7 = 0 00 kiDS Gutter = 1 31 kiDS Brace #8 = 0 00 kios ROOF BRACING DESIGN CHECK Roof Brace (Trial section) 1.315 dia. 14 2a. Fv Fu Brace X-sectional Area (A) Least Radius of Gyration (r) Brace Thickness (t) =1 Bolt Diameter (d)='? 50 ksi 65 ksi 0 312 in'^2 0 437 in 0 083 in 0.375 in Tensile Force in Brace due to Lateral Loads A„ = net area. An=A-2*(d+ 0625)*t Ab = bolt area. D*d IA Wt= ASD Tension Factor Wb= ASD Bearine Factor - AISI Section E3 3 1 W, = ASD Shear Factor Table E3 4-1 F„y = Nominal Shear Streneth Table E3 4-1 Tall = Based on tension on net area. A„*Fy/Wt Tall ~ Based on bearine on net area. 3*d*t*Fu/Wb** Tall ^ Based on Bolt shear streneth Ai,*Fny/Ws 1.29 kiDS 0 239 in'^2 0 llOin'^2 1 670 2 500 2 400 54 ksi 7 167 (Assumes Threads INCLUDED in klDS 4 856 kiDS 2 485 kiDS LOADS TO COLUMN LINES AND TOTAL LATERAL LOAD INTERIOR COLUMN LINE P = Windward Force + Leeward Force 2 66 kios EXTERIOR COLUMN LINE P = (Windward Force + Leeward Force)/2 1 33 kios TOTAL LATERAL WIND FORCE Number of Houses 3 P = Total Wind Force * Nbr of Houses Mf^^^. SEISMIC LOADS - PARALLEL TO THE RIDGE Total Weieht of Structure 47.9 kios fConservative Estimate = 5Dsff2»41 smnOOftVlOOO = 41 S kws) Tvt)eofLat Force Resistine Svstem Concentric Braced Frames R 3.25 Q„='? 2 C, 0.244 V = c,*w ='7F^P»sr py^Mvviy^j^j^^ USE MINIMUM OF (4) SETS OF BRACING AT INTERIOR SIDEWALL AND (2) SETS PER EXTERIOR WALL SIDEWALL BRACING FOR LATERAL LOADS Tension in Diaeonal Brace from STAAD 1.96 kins Gable Brace (Trial section) 1.315 dia 14 ea. Fv Fu =•> Brace X-sectional Area (A) Least Radius of Gyration (r) Brace Thickness (t) Bolt Diameter (d)='' 50 ksi 65 ksi 0 312in'^2 0 437 in 0 083 in 0.500 in Tensile Force in Brace due to Lateral Loads A„ = net area. An=A-2*(d+ 0625)*t Ab = bolt area. D*d^/4 W, = ASD Tension Factor Wb = ASD Bearine Factor - AISI Section E3 3 1 Ws = ASD Shear Factor Table E3 4-1 F„y = Nommal Shear Streneth Table E3 4-1 Tall ^ Based on tension on net area. A„*Fv/W, Tall - Based on bearine on net area. 3*d*t*Fu/Wb** Tall = Based on Bolt shear streneth. Ab*F„y/Ws 4418 (Assumes Threads INCLUDED in kios kiDS klDS Software licensed to Job No 134226 Sheet No REACTIONS-1 Job Title Carlsbad CA Bv Chd °^'^11-Mar-13 Daten-ime 16-NOV-2012 07 14 •"'i^ TRUSS A std Reactions Horizontal Vertical Horizontal Moment Node UC FX FY FZ MX MY MZ (kiDi (kiD) (kiD) (kiD"m (kiom (kiom 1 11 D -OOOO 2 717 OOOO 0 000 OOOO OOOO 12 D+L -OOOO 6 463 OOOO 0 000 OOOO OOOO 15 D+0 75W1 + -0 007 5 465 OOOO OOOO OOOO 0 000 16 D+0 75W2+ -0 003 4 675 OOOO 0 000 OOOO 0 000 17 D+0 75W3+ 0 002 4410 OOOO OOOO OOOO OOOO 18 D+0 75W4+ 0 006 3 622 OOOO 0 000 OOOO 0 000 27 D+0 525E+( -OOOO 5 472 OOOO 0 000 OOOO OOOO 30 0 6D+W1 -0 009 1 548 OOOO 0 000 OOOO OOOO 31 0 6D+W2 -0 004 0 495 OOOO 0 000 OOOO 0 000 32 0 6D+W3 0 003 0 142 OOOO 0 000 0 000 OOOO 33 0 6D+W4 0 008 -0 909 OOOO 0 000 OOOO 0 000 34 0 6D+0 7E -OOOO 1 558 OOOO 0 000 0 000 0 000 20 11 D -OOOO 5 433 OOOO OOOO 0 000 0 000 12 D+L -0 000 12 925 OOOO OOOO OOOO 0 000 15 D+0 75W1 + -0 000 10 126 OOOO OOOO 0 000 0 000 16 D+0 75W2+ -OOOO 8 554 OOOO OOOO 0 000 0 000 17 D+0 75W3+ -0 000 8 896 OOOO OOOO 0 000 0 000 18 D+0 75W4+ -OOOO 7 243 OOOO OOOO 0 000 0 000 27 D+0 525E+( -0 000 11 052 OOOO OOOO 0 000 0 000 30 0 6D+W1 -0 000 2 025 OOOO OOOO OOOO OOOO 31 0 6D+W2 OOOO -0 070 OOOO OOOO 0 000 OOOO 32 0 6D+W3 -OOOO 0 386 OOOO OOOO 0 000 0 000 33 0 6D+W4 OOOO -1 818 OOOO OOOO 0 000 0 000 34 0 6D+0 7E -OOOO 3 260 OOOO OOOO 0 000 0 000 37 11 D -OOOO 5 433 OOOO OOOO OOOO OOOO 12 D+L -OOOO 12 925 OOOO OOOO OOOO OOOO 15 D+0 75W1 + -OOOO 9 886 OOOO OOOO OOOO OOOO 16 D+0 75W2+ -OOOO 8 317 OOOO OOOO OOOO OOOO 17 D+0 75W3+ -OOOO 8 896 OOOO OOOO OOOO OOOO 18 D+0 75W4+ -OOOO 7 243 OOOO OOOO OOOO OOOO 27 D+0 525E+( -0 000 11 052 OOOO OOOO OOOO OOOO 30 0 6D+W1 OOOO 1 706 OOOO OOOO OOOO OOOO 31 0 6D+W2 OOOO -0 386 OOOO OOOO OOOO OOOO 32 0 6D+W3 -OOOO 0 386 OOOO OOOO OOOO OOOO 33 0 6D+W4 OOOO -1 818 OOOO OOOO OOOO OOOO 34 0 6D+0 7E OOOO 3 260 OOOO OOOO OOOO OOOO 52 11 D -0 000 OOOO 0 000 OOOO OOOO OOOO 12 D+L -0 000 OOOO 0 000 OOOO OOOO OOOO 15 D+0 75W1 + -0 519 OOOO 0 000 OOOO OOOO OOOO 16 D+0 75W2+ -0 516 OOOO 0 000 OOOO OOOO OOOO 17 D+0 75W3+ 0 077 OOOO OOOO OOOO OOOO OOOO 18 D+0 75W4+ -0 000 OOOO OOOO OOOO OOOO OOOO 27 D+0 525E+( -1 285 OOOO 0 000 0 000 OOOO 0 000 30 0 6D+W1 -0 692 OOOO OOOO OOOO OOOO 0 000 Print Time/Date 13/03/2013 10 22 STAAD Pro V8i20 07 05 15 Print Run 1 of 2 Software licensed to Job No 134226 Sheet No REACTIONS -1 Job Title Carlsbad CA Bv °="11-Mar-13 F'le TRUSS A std Date/Time 16-NOV-2Q12 07 14 Reactions Cont. Honzontal Vertical Honzontal Moment Node UC FX FY FZ MX MY MZ (kiDi (kiD) (kiD) (kiD m (kiD ft^ (kiD m 31 0 6D+W2 -0 688 OOOO OOOO OOOO OOOO 0 000 32 0 6D+W3 0 102 OOOO OOOO OOOO OOOO OOOO 33 0 6D+W4 OOOO OOOO OOOO OOOO OOOO 0 000 34 0 6D+0 7E -1 714 OOOO OOOO OOOO OOOO OOOO 54 11 D OOOO 2 717 0 000 OOOO OOOO 0 000 12 D+L OOOO 6 463 OOOO OOOO OOOO OOOO 15 D+0 75W1 + -0 002 4 943 OOOO OOOO OOOO OOOO 16 D+0 75W2+ -0 005 4 159 OOOO OOOO OOOO OOOO 17 D+0 75W3+ -0 002 4410 OOOO OOOO OOOO OOOO 18 D+0 75W4+ -0 006 3 622 OOOO OOOO OOOO OOOO 27 D+0 525E+( OOOO 5 580 0 000 OOOO OOOO OOOO 30 0 6D+W1 -0 003 0 853 0 000 OOOO OOOO OOOO 31 0 6D+W2 -0 007 -0 193 0 000 OOOO OOOO OOOO 32 0 6D+W3 -0 003 0 142 0 000 OOOO OOOO OOOO 33 0 6D+W4 -0 008 -0 909 OOOO OOOO OOOO OOOO 34 0 6D+0 7E 0 000 1 702 0 000 OOOO OOOO 0 000 Print Time/Date 13/03/2013 10 22 STAAD ProV8l 20 07 05 15 Print Run 2 of 2 Software licensed to Sheet No REACTIONS-2 °^'«11-Mar-13 F''^ TRUSS+SHADE std Date/Time i5.Nov-2012 11 48 Reactions Honzontal Vertical Horizontal Moment Node UC FX (kiD) FY (kiD^ FZ (kiD^ MX (kiD"m MY (kiD ft) MZ (kiD m 1 11 D 0 029 1 448 OOOO OOOO 0 000 OOOO 12 D+L 0 053 2 427 OOOO OOOO OOOO 0 000 13 D+BSL+DSI 0 029 1 448 OOOO OOOO 0 000 OOOO 14 D+USL 0 029 1 448 OOOO OOOO 0 000 0 000 15 D+0 75W1 + 0 022 0 760 OOOO OOOO 0 000 0 000 16 D+0 75W2+ 0 021 0 759 OOOO OOOO 0 000 0 000 17 D+0 75W3+ 0 022 0 758 OOOO OOOO 0 000 OOOO 18 D+0 75W4+ 0 020 0 757 OOOO OOOO OOOO 0 000 19 D+0 75W1 + 0 004 0 026 OOOO OOOO 0 000 0 000 20 D+0 75W2+ 0 002 0 025 OOOO OOOO 0 000 0 000 21 D+0 75W3+ 0 003 0 024 OOOO OOOO OOOO 0 000 22 D+0 75W4+ 0 002 0 023 OOOO OOOO OOOO 0 000 23 D+0 75W1 + 0 004 0 026 OOOO OOOO OOOO 0 000 24 D+0 75W2+ 0 002 0 025 OOOO OOOO OOOO 0 000 25 D+0 75W3+ 0 003 0 024 OOOO OOOO OOOO OOOO 26 D+0 75W4+ 0 002 0 023 OOOO OOOO OOOO OOOO 27 D+0 525E+( 0 044 2 152 OOOO OOOO OOOO OOOO 28 D+ 0 525E+ 0 025 1 417 OOOO OOOO OOOO OOOO 29 D+0 525E+( 0 025 1 417 OOOO OOOO OOOO OOOO 30 0 6D+W1 -0 016 -1 027 OOOO OOOO OOOO OOOO 31 0 6D+W2 -0 018 -1 029 OOOO OOOO OOOO OOOO 32 0 6D+W3 -0 017 -1 030 OOOO OOOO OOOO OOOO 33 0 6D+W4 -0 018 -1 031 OOOO OOOO OOOO OOOO 34 0 6D+0 7E 0 013 0 828 OOOO OOOO OOOO OOOO 3 11 D 0 009 3 412 OOOO OOOO OOOO OOOO 12 D+L 0 019 5 727 OOOO 0 000 OOOO OOOO 13 D+BSL+DSI 0 009 3 412 OOOO OOOO OOOO OOOO 14 D+USL 0 009 3 412 OOOO 0 000 OOOO OOOO 15 D+0 75W1 + 0 013 1 766 OOOO 0 000 OOOO OOOO 16 D+0 75W2+ 0 Oil 1 766 OOOO OOOO OOOO OOOO 17 D+0 75W3+ 0 012 1 767 OOOO OOOO OOOO OOOO 18 D+0 75W4+ 0 Oil 1 766 OOOO OOOO OOOO OOOO 19 D+0 75W1 + 0 005 0 030 OOOO OOOO OOOO OOOO 20 D+0 75W2+ 0 003 0 029 OOOO OOOO OOOO 0 000 21 D+0 75W3+ 0 004 0 030 OOOO OOOO OOOO 0 000 22 D+0 75W4+ 0 003 0 030 OOOO OOOO OOOO OOOO 23 D+0 75W1 + 0 005 0 030 0 000 OOOO OOOO 0 000 24 D+0 75W2+ 0 003 0 029 OOOO OOOO OOOO OOOO 25 D+0 75W3+ 0 004 0 030 OOOO OOOO OOOO OOOO 26 D+0 75W4+ 0 003 0 030 0 000 OOOO OOOO OOOO 27 D+0 525E+( 0 014 5 155 OOOO OOOO OOOO OOOO 28 D+ 0 525E+ 0 005 3419 0 000 OOOO OOOO OOOO 29 D+0 525E+( 0 005 3419 OOOO OOOO OOOO OOOO 30 0 6D+W1 OOOO -2 462 OOOO OOOO OOOO OOOO Print Time/Date 13/03/2013 11 00 STAAD Pro V8i 20 07 05 15 Pnnt Run 1 of 3 Software licensed to Sheet No REACTIONS-2 Bv Chd °=*M1-Mar-13 F'l= TRUSS+SHADE std Date/Time i5.Nov-2012 11 48 Reactions Cont. Horizontal Vertical Horizontal Moment Node UC FX FY FZ MX MY MZ (kiD) (kiD) (kiD) (kiD m (kiD m (kiDft) 31 0 6D+W2 -0 002 -2 463 OOOO OOOO OOOO OOOO 32 0 6D+W3 -0 001 -2 462 OOOO OOOO OOOO OOOO 33 0 6D+W4 -0 003 -2 463 OOOO OOOO OOOO OOOO 34 0 6D+0 7E 0 001 2 056 OOOO OOOO OOOO OOOO 5 11 D -0 012 4 156 OOOO OOOO OOOO OOOO 12 D+L -0 016 8 872 0 000 OOOO OOOO OOOO 13 D+BSL+DSI -0 012 4 156 OOOO OOOO OOOO OOOO 14 D+USL -0 012 4 156 OOOO OOOO OOOO OOOO 15 D+0 75W1 + 0 003 5 689 0 000 OOOO 0 000 OOOO 16 D+0 75W2+ 0 001 4 906 OOOO OOOO OOOO OOOO 17 D+0 75W3+ 0 002 5 158 0 000 OOOO OOOO OOOO 18 D+0 75W4+ 0 000 4 371 0 000 OOOO OOOO 0 000 19 D+0 75W1 + 0 006 2 153 OOOO OOOO 0 000 OOOO 20 D+0 75W2+ 0 004 1 370 OOOO OOOO 0 000 0 000 21 D+0 75W3+ 0 005 1 621 0 000 OOOO OOOO OOOO 22 D+0 75W4+ 0 003 0 834 OOOO OOOO OOOO 0 000 23 D+0 75W1 + 0 006 2 153 OOOO OOOO OOOO 0 000 24 D+0 75W2+ 0 004 1 370 0 000 OOOO OOOO OOOO 25 D+0 75W3+ 0 005 1 621 OOOO OOOO OOOO OOOO 26 D+0 75W4+ 0 003 0 834 OOOO OOOO OOOO OOOO 27 D+0 525E+( -0 018 7 663 OOOO OOOO 0 000 OOOO 28 D+ 0 525E+ -0 015 4 126 OOOO OOOO OOOO OOOO 29 D+0 525E+( -0 015 4 126 OOOO OOOO 0 000 OOOO 30 0 6D+W1 0 016 -0 177 OOOO OOOO OOOO OOOO 31 0 6D+W2 0 014 -1 222 OOOO OOOO OOOO OOOO 32 0 6D+W3 0 015 -0 886 OOOO OOOO OOOO OOOO 33 0 6D+W4 0 013 -1 935 OOOO OOOO OOOO OOOO 34 0 6D+0 7E -0 Oil 2 454 OOOO OOOO OOOO OOOO 7 11 D 0 000 2 716 OOOO OOOO OOOO OOOO 12 D+L 0 000 6 462 OOOO OOOO OOOO OOOO 13 D+BSL+DSI 0 000 2 717 OOOO OOOO OOOO OOOO 14 D+USL 0 000 2 716 OOOO OOOO OOOO OOOO 15 D+0 75W1 + -0 002 4 943 OOOO OOOO OOOO OOOO 16 D+0 75W2+ -0 005 4 159 OOOO OOOO OOOO OOOO 17 D+0 75W3+ -0 002 4410 OOOO OOOO OOOO OOOO 18 D+0 75W4+ -0 006 3 622 OOOO OOOO OOOO OOOO 19 D+0 75W1 + -0 002 2 134 OOOO OOOO OOOO OOOO 20 D+0 75W2+ -0 005 1 349 0 000 OOOO OOOO OOOO 21 D+0 75W3+ -0 002 1 601 0 000 OOOO OOOO OOOO 22 D+0 75W4+ -0 006 0812 0 000 OOOO OOOO OOOO 23 D+0 75W1 + -0 002 2 134 OOOO OOOO OOOO OOOO 24 D+0 75W2+ -0 005 1 349 OOOO OOOO OOOO OOOO 25 D+0 75W3+ -0 002 1 600 OOOO 0 000 OOOO 0 000 26 D+0 75W4+ -0 006 0812 OOOO OOOO OOOO 0 000 Print Time/Date 13/03/2013 11 00 STAAD ProV8i 20 07 05 15 Print Run 2 of 3 Software licensed to Sheet No REACTIONS-2 Bv °^'M1-Mar-13 F''^ TRUSS+SHADE std Date/Time i5.Nov-2012 11 48 Reactions Cont. Horizontal Vertical Horizontal Moment Node UC FX (kiD) FY (kiD) FZ (kiD> MX (kiD m MY (kiD"m MZ (kiD'ft) 27 D+0 525E+( 0 000 5 580 OOOO OOOO OOOO OOOO 28 D+ 0 525E+ 0 000 2 770 OOOO OOOO OOOO OOOO 29 D+0 525E+( 0 000 2 770 OOOO OOOO OOOO OOOO 30 0 6D+W1 -0 003 0 853 OOOO OOOO OOOO OOOO 31 0 6D+W2 -0 007 -0 193 OOOO OOOO OOOO OOOO 32 0 6D+W3 -0 003 0 142 OOOO OOOO OOOO OOOO 33 0 6D+W4 -0 008 -0 909 OOOO OOOO OOOO OOOO 34 0 6D+0 7E OOOO 1 702 OOOO OOOO OOOO OOOO 8 11 D -0 025 OOOO OOOO OOOO OOOO OOOO 12 D+L -0 057 OOOO OOOO OOOO OOOO OOOO 13 D+BSL+DSI -0 025 OOOO OOOO OOOO OOOO OOOO 14 D+USL -0 025 OOOO OOOO OOOO OOOO OOOO 15 D+0 75W1 + -0 182 OOOO OOOO OOOO OOOO OOOO 16 D+0 75W2+ -0 174 OOOO OOOO 0 000 OOOO OOOO 17 D+0 75W3+ -0 034 OOOO OOOO 0 000 OOOO OOOO 18 D+0 75W4+ -0 026 OOOO OOOO 0 000 OOOO OOOO 19 D+0 75W1 + -0 158 OOOO OOOO OOOO OOOO OOOO 20 D+0 75W2+ -0 151 OOOO OOOO 0 000 OOOO OOOO 21 D+0 75W3+ -0 010 OOOO 0 000 0 000 OOOO OOOO 22 D+0 75W4+ -0 002 OOOO 0 000 0 000 OOOO OOOO 23 D+0 75W1 + -0 158 OOOO 0 000 0 000 OOOO OOOO 24 D+0 75W2+ -0 151 OOOO 0 000 0 000 OOOO 0 000 25 D+0 75W3+ -0 010 OOOO OOOO OOOO OOOO 0 000 26 D+0 75W4+ -0 002 OOOO OOOO 0 000 OOOO 0 000 27 D+0 525E+( -1 342 OOOO 0 000 0 000 OOOO OOOO 28 D+ 0 525E+ -1 318 OOOO 0 000 0 000 0 000 0 000 29 D+0 525E+( -1 318 OOOO OOOO OOOO 0 000 OOOO 30 0 6D+W1 -0 193 OOOO OOOO OOOO OOOO 0 000 31 0 6D+W2 -0 182 OOOO OOOO OOOO 0 000 0 000 32 0 6D+W3 0 005 OOOO OOOO OOOO OOOO OOOO 33 0 6D+W4 0 016 OOOO OOOO OOOO OOOO 0 000 34 0 6D+0 7E -1 739 OOOO OOOO OOOO OOOO OOOO Pnnt Time/Date 13/03/2013 11 00 STAAD ProVSi 20 07 05 15 Pnnt Run 3 of 3 pKM-M^^^li Software licensed to Job No 134226 Sheet No LOAD Rev pKM-M^^^li Software licensed to ^^'•Sidewall Bracina Job Title Carlsbad CA Ref M Alv °='M5-SeD-10 Client F<i° srdewallbracina std Date/Time 16-NOV-2012 08 37 LOAD Pnnt Time/Date 13/03/2013 11 42 STAAD Pro V8i 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Job No 134226 ''^''Sidewall Bracina Job Title Carlsbad CA Chd Bv M Alv °='M5-SeD-10 Fiis sidewallbracina std Date/Time 16-Nov-2012 08 37 Basic Load Cases Number Name 1 LATERAL LOAD Combination Load Cases Comb Combination L/C Name Primarv Primary L/C Name Factor 2 COMBINED 1 LATERAL LOAD 1 00 Node Loads : 1 LATERAL LOAD Node FX FY FZ MX MY MZ (kiD) (kiDt (kiD) (kiD"ft) (kiDft) (kiDft) 2 1 300 ----- Node Displacement Summarv Node L/C X Y z Resultant rX rY rZ (in) (in) (in) (in) (rad) (rad) (rad) MaxX 2 2 COMBINED 1 153 0 003 OOOO 1 153 OOOO OOOO 0 002 MinX 1 2 COMBINED OOOO OOOO OOOO OOOO OOOO OOOO OOOO MaxY 2 2 COMBINED 1 153 0 003 OOOO 1 153 OOOO OOOO 0 002 Mm Y 3 2 COMBINED 1 145 -0 005 OOOO 1 145 OOOO OOOO 0 002 MaxZ 1 2 COMBINED OOOO OOOO OOOO OOOO OOOO OOOO OOOO Mm Z 1 2 COMBINED OOOO OOOO OOOO OOOO OOOO OOOO OOOO MaxrX 1 2 COMBINED OOOO OOOO OOOO OOOO OOOO OOOO OOOO Mm rX 1 2 COMBINED OOOO OOOO OOOO OOOO OOOO OOOO OOOO Max rY 1 2 COMBINED 0 000 0 000 0 000 0 000 0 000 0 000 0 000 Mm rY 1 2 COMBINED OOOO OOOO OOOO OOOO OOOO OOOO 0 000 Max rZ 3 2 COMBINED 1 145 -0 005 OOOO 1 145 OOOO OOOO 0 002 Mm rZ 5 2 COMBINED 1 101 0 003 OOOO 1 101 OOOO OOOO -0 007 Max Rst 2 2 COMBINED 1 153 0 003 OOOO 1 153 OOOO OOOO 0 002 Print Time/Date 13/03/2013 11 43 STAAD ProV8i 20 07 05 15 Print Run 1 of 2 Job No 134226 Sheet No Rev jxc-aHHI Software licensed to P^fSidewall Bracina Job Title Carlsbad CA Ref Bv M Alv °='^15-SeD-10 Client File Sidewallbracina std Date/Time 16-Nov-2012 08 37 Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line except Fx where positive is comoression Distance d is aiven Irom beam end A Axial Shear Torsion Bendina Beam L/C d (ft) Fx (kiD) Fv (kiD) Fz (kiD) Mx (kiD'ft) Mv (kiD"ft) Mz (kiD"ft) Max Fx 2 2 COMBINED OOOO 1 844 OOOO OOOO OOOO OOOO OOOO Mm Fx 8 2 COMBINED OOOO -2 617 OOOO OOOO OOOO OOOO OOOO Max Fv 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO OOOO 3 412 Mm Fv 4 2 COMBINED OOOO OOOO -0 544 OOOO OOOO OOOO -2 446 Max Fz 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO OOOO 3 412 Mm Fz 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO OOOO 3 412 Max Mx 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO OOOO 3 412 Mm Mx 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO OOOO 3 412 Max Mv 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO OOOO 3 412 Mm Mv 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO OOOO 3 412 Max Mz 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO OOOO 3 412 Mm Mz 5 2 COMBINED 9 000 1 074 0 649 OOOO OOOO OOOO -3 399 Reaction Summarv Horizontal Vertical Horizontal Moment Node L/C FX (kiD) FY (km) FZ (kiD) MX (kiDft) MY (kiDft) MZ (kiD"ft) Max FX 4 2 COMBINED -0 649 1 074 OOOO OOOO OOOO 3 399 Mm FX 1 2 COMBINED -0 651 -1 074 OOOO OOOO OOOO 3412 Max FY 4 2 COMBINED -0 649 1 074 OOOO OOOO OOOO 3 399 Mm FY 1 2 COMBINED -0 651 -1 074 OOOO OOOO OOOO 3 412 Max FZ 1 2 COMBINED -0 651 -1 074 OOOO OOOO OOOO 3412 Mm FZ 1 2 COMBINED -0 651 -1 074 OOOO OOOO OOOO 3 412 Max MX 1 2 COMBINED -0 651 -1 074 OOOO OOOO OOOO 3412 Mm MX 1 2 COMBINED -0 651 -1 074 OOOO OOOO OOOO 3 412 Max MY 1 2 COMBINED -0 651 -1 074 OOOO OOOO OOOO 3 412 Mm MY 1 2 COMBINED -0 651 -1 074 OOOO OOOO OOOO 3 412 Max MZ 1 2 COMBINED -0 651 -1 074 OOOO OOOO OOOO 3 412 Mm MZ 4 2 COMBINED -0 649 1 074 OOOO OOOO OOOO 3 399 Print Time/Date 13/03/2013 11 43 STAAD ProV8i 20 07 05 15 Pnnt Run 2 of 2 Software licensed to 134226 P^^Sidewall Bracina GIRT Job Title Carlsbad CA Chd Bv M Alv °='M5-SeD-10 File sidewallbracina std Date/Time 16-Nov-2012 08 37 Beam Force Detail Summarv Sian convention as diaarams - oositive above line neaative below line except Fx where positive is compression Distance d is aiven trom beam end A Axial Shear Torsion Bendma Beam L/C d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kiD ft) (kiD-ft) (kiDft) Max Fx 2 2 COMBINED OOOO 1 844 OOOO OOOO OOOO OOOO OOOO Mm Fx 6 2 COMBINED OOOO 1 192 OOOO OOOO OOOO OOOO OOOO Max Fv 2 2 COMBINED OOOO 1 844 OOOO OOOO OOOO OOOO OOOO Mm Fv 6 2 COMBINED OOOO 1 192 OOOO OOOO OOOO OOOO OOOO Max Fz 2 2 COMBINED OOOO 1 844 OOOO 0 000 OOOO OOOO OOOO Mm Fz 2 2 COMBINED OOOO 1 844 OOOO OOOO OOOO OOOO OOOO Max Mx 2 2 COMBINED OOOO 1 844 OOOO OOOO OOOO OOOO OOOO Mm Mx 2 2 COMBINED OOOO 1 844 OOOO OOOO OOOO OOOO OOOO Max Mv 2 2 COMBINED OOOO 1 844 OOOO 0 000 OOOO OOOO OOOO Mm Mv 2 2 COMBINED OOOO 1 844 OOOO 0 000 OOOO OOOO OOOO Max Mz 2 2 COMBINED OOOO 1 844 OOOO 0 000 OOOO OOOO OOOO Mm Mz 2 2 COMBINED 9 000 1 844 OOOO OOOO OOOO OOOO -OOOO Print Time/Date 13/03/2013 11 39 STAAD ProV8i 20 07 05 15 Pnnt Run 1 of 1 Software licensed to Job No 134226 Sheet No COLUMN PertSidewall Bracina Job Title Carlsbad CA Chd Bv M Alv °='M5-SeD-10 File sidewallbracina std Date/Time 16-Nov-2012 08 37 Beam Force Detail Summarv Sian convention as diaarams - positive above line neaative below line except Fx where positive is compression Distance d is aiven Irom beam end A Axial Shear Torsion Bendma Beam UC d Fx Fv Fz Mx Mv Mz (ft) (kiD) (kiD) (kiD) (kiD'ft) (kiD"ft) (kiD"ft) Max Fx 3 2 COMBINED OOOO 1 074 -0 543 OOOO OOOO OOOO -0 000 Mm Fx 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO OOOO 3 412 Max Fv 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO OOOO 3 412 Mm Fv 2 COMBINED OOOO OOOO -0 544 OOOO OOOO OOOO -2 446 Max Fz 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO OOOO 3 412 Mm Fz 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO OOOO 3 412 Max Mx 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO OOOO 3 412 Mm Mx 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO 0 000 3 412 Max Mv 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO OOOO 3 412 Mm Mv 1 2 COMBINED OOOO -1 074 0 651 OOOO OOOO 0 000 3 412 Max Mz 1 2 COMBINED OOOO -1 074 0 651 OOOO 0 000 OOOO 3 412 Mm Mz 5 2 COMBINED 9 000 1 074 0 649 OOOO 0 000 OOOO -3 399 Print Time/Date 13/03/2013 11 40 STAAD Pro V8i 20 07 05 15 Pnnt Run 1 of 1 Sidewall Bracina Girt Inout Data vl Member Section 4x2x14aa 1 A = Tube Width 2 in x _ t' i irriii/iiii'Yiittiiiiit 1 1 1 B = Tube Lenath 4 in x _ t' i irriii/iiii'Yiittiiiiit 1 1 1 R = Corner Inner Radius 0 09375 in x _ t' i irriii/iiii'Yiittiiiiit 1 1 1 t = Thickness 0 083 m x _ t' i irriii/iiii'Yiittiiiiit 1 1 1 KLx= Bucklina around x-x 10 ft x _ t' i irriii/iiii'Yiittiiiiit 1 1 1 KLv= Bucklina around v-v 10 ft x _ t' i irriii/iiii'Yiittiiiiit 1 1 1 E = Modulus of Elasticity 29500 ksi x _ t' i irriii/iiii'Yiittiiiiit 1 1 1 Fy = Yield Stress 50 ksi x _ Y\ G = Shear Modulus 11300 ksi o Calculated Parameter Aoolied Forces 1- Prooerties of 90° corner M 0 00001 kiDft r = R + t/2 Centerline of Dimension 0 135 in P 1.844 kiDS u = 71 r/2 Arc Lenath 0212 in c=0 637 r Distance of c a from center 0 086 in 2- Flat widths of flanaes and webs Flat width of Dim a= A - (2 r + t) 1 6465 in Fiat width of Dim b= B - (2 r + t) 3 6465 in Calculation of 1^ Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2a 3 293 B/2 -1/2 1 959 12 631 OOOO Web 2 b 7 293 0 OOOO OOOO 8 081 Corners 4 u 0 850 b/2 + c 1 909 3 098 OOOO Sum 11 436 3 868 15 729 8 081 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2a 3 293 0 OOOO OOOO 0 744 Web 2 b 7 293 A/2-t/2 0 959 6 700 0 000 Corners 4 u 0 850 a/2 + c 0 909 0 703 0 000 Sum 11 436 1 868 7 403 0 744 Section Prooerties A Lxt 0 9492 in^ lx t X ( L X +lx') 1 9763 in^ IY t X (L X +i;) 0 6762 in-* Sx lx /(B/2) 0 9881 in" SY IY /(A/2) 0 6762 in" fx (\JA)°^ 1 4430 in ry (IY/A)"" 0 8440 in Nominal Bucklina Stress KL,/r, 83 16 142 17 KL/r 142 17 Fe n E/(KL/r)^ 14 40 ksi (Fv/Fe)"' 1 86 Fn 12 63 ksi Effective Area effective width of comoression flanae w/t = a/t 19 84 X 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 22 0 (1-0 22 IX) IX -0 09 ae 1 65 in effective width of web element w/t = b/t 43 93 X 1 052/(k)''^x(w/t)x(F„/E)°^ 0 48 0 (1-0 22 IX) IX 1 13 be 3 65 in Allowable Axial Load Ae Ae = A - 2 X t X r(a-ae) + (b-bg)] 0 95 in^ P„ Pn~ Ag X Fn 11 99 kiDS Qc 1 80 Pa = Pn IQc 6 66 kiDS Check Comoression Stresses Loads from Wind*? Cbi Cb1=(P/P3) 0 28 NO Allowable Stress Unitv 1 0 28 Section is OK Comoutina of Mnx Bv usina the effective width of compression flanae and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) V Distance to too fiber (m) L V Lv^ C Flanaes ae 1 647 t/2 0 042 0 068 0 003 Web 2 b 7 293 B/2 2 000 14 586 29 172 C Corners 2 u 0 425 c+t/2 0 128 0 054 0 007 T Flanaes ae 1 647 B-t/2 3 959 6 518 25 800 T Corners 2 u 0 425 B-c-t/2 3 872 1 645 6 372 Sum 11 436 10 000 22 872 61 354 Vca = L v/ L 2 000 Z=R+t 0 177 in The max stress of 50 ksi ocurs in the comoression flanae as assumed in the calculation Check the effectiveness of the Web fl (Vca- Z)Fv/Vca 45 58 ksi f2 - (B-Vca- Z)F,/Vca ^5 58 ksi Ul f^lf, -1 00 k 4+2(1-vi/)^+2(1-u/) 24 00 hit be/t 43 93 X 1 052/(k)''^x(h/t)x(f1/E)°^ 0 37 D n-0 22 IX) IX 1 10 be 3 65 in bl be/(3-w) 0 91 in b2 1 82 in bi+bj 2 73 in 2 1 yyeb 2(1/12)(b)^ 8 08 in^ S(Lv^) 61 35 in" (-)(SL)(Vca)* 45 74 m" I'x 23 69 in" lx=l'xt 1 97 in" Sex=lx/Vca 0 98 in^ Cb=1 0 for combined axial load and bendma moment 1 2b^d%b+d) 1 13 in" s, fullSx 0 99 in" 0 36Cb7i (E 1 G \)°^I(F^ Sf) 30 45 ft Fe CbTi (E 1 G i)"''/(L Sf) 723 04 ksi Allowable Bendina Moment Mnx 4 097 kiDft Qb 1 670 M3 = M™/nb 2 453 kiDft Check Stresses Cmx 0 6-0 4*Mi/M2 0 60 Loads from Wind? Cb1 (P / Pa) + (C„x Mx/Ma ) 0 28 NO Cb2 (P / Pa) + (Mx/Ma) 0 28 Allowable Stress Unitv 1 Cb lf((P/Pa)<=0 ISCbzCbi) 0 28 Section is OK Sidewall Bracina Column Inout Data Member Section 4x4x14aa A = Tube Width 4 m B = Tube Lenath 4 in R = Corner Inner Radius 0 09375 in t = Thickness 0 083 in KLx= Bucklina around x-x 108 ft KLv= Bucklina around v-v 108 ft E = Modulus of Elasticity 29500 ksi Fy = Yield Stress 50 ksi G = Shear Modulus 11300 ksi Yl ; \ 1 i 4 .Jf, • E .3..,. - Y\ • A • Calculated Parameter Aoolied Forces 1 - Prooerties of 90° corner M 2.559 kiDft r = R + t/2 Centerline of Dimension 0 135 in P 12.925 kiDS u = Tt r/2 Arc Lenath 0212 in COL. IS OK AT 14GA.. SO HEAVIER GAGE COLS ARE OK AS WELL. c=0 637 r Distance of c a from center 0 086 in COL. IS OK AT 14GA.. SO HEAVIER GAGE COLS ARE OK AS WELL. 2- Flat widths of flanaes and webs COL. IS OK AT 14GA.. SO HEAVIER GAGE COLS ARE OK AS WELL. Flat width of Dim a= A - (2 r + t) 3 6465 in COL. IS OK AT 14GA.. SO HEAVIER GAGE COLS ARE OK AS WELL. Flat width of Dim b= B - (2 r + t) 3 6465 in COL. IS OK AT 14GA.. SO HEAVIER GAGE COLS ARE OK AS WELL. Calculation of lx Element L Lenath (in) Y Distance to the center (in) LxY^ lx' Flanaes 2a 7 293 B/2 -1/2 1 959 27 974 OOOO Web 2 b 7 293 0 OOOO OOOO 8 081 Corners 4 u 0 850 b/2 + c 1 909 3 098 OOOO Sum 15 436 3 868 31 072 8 081 Calculation of ly Element L Lenath (in) X Distance to the center (in) LxX^ i; Flanaes 2a 7 293 0 OOOO OOOO 8 081 Web 2 b 7 293 A/2-t/2 1 959 27 974 OOOO Corners 4 u 0 850 a/2 + c 1 909 3 098 0 000 Sum 15 436 3 868 31 072 8 081 Section Prooerties A Lxt 1 2812 lx t X ( L X Y^ +lx') 3 2497 in- IY t X (L X +i;) 3 2497 in" Sx lx /(B/2) 1 6249 in" SY ly /(A/2) 1 6249 in" "•x (lx/A)°^ 1 5927 in I'Y (IY/A)"" 1 5927 in Nominal Bucklina Stress KLx/rx 81 37 KL,/rv 81 37 KL/r 81 37 Fe n E/(KL/r)^ 43 97 ksi (Fv/Fe)"' 1 07 F„ 31 06 ksi Effective Area effective width of comoression flanae w/t = a/t 43 93 X 1 052/(k)°^x(w/t)x(Fn/E)°^ 0 75 0 (1-0 22/X)/A. 0 94 ae 3 44 in effective width of web element w/t = b/t 43 93 X 1 052/(k)°^x(w/t)x(F„/E)°^ 0 75 0 (1-0 22 IX) IX 0 94 be 3 44 in Allowable Axial Load Ae Ae = A - 2 X t X r(a-ae) + (b-be)l 1 21 in^ Pn Pn~ Ae X Fp 37 63 kiDS Qc 1 80 Pa = Pn IQc 20 90 kiDS Check Comoression Stresses Loads from Wind*? Cbi Cb1=(P/Pa)N0 0 62 Allowable Stress Unity 1 0 62 Section IS OK Comoutina of M„x Bv usina the effective width of comoression flanae and assumina the web is fullv effective the neutral axis can be located as follow Element L Lenath (in) V Distance to too fiber (in) L V Lv^ C Flanaes ae 3 436 t/2 0 042 0 143 0 006 Web 2 b 7 293 B/2 2 000 14 586 29 172 C Corners 2 u 0 425 c+t/2 0 128 0 054 0 007 T Flanaes ae 3 436 B-t/2 3 959 13 602 53 842 T Corners 2 u 0 425 B-c-t/2 3 872 1 645 6 372 Sum 15015 10 000 30 030 89 399 Vca = L y/ L 2 000 Z=R+t 0 177 in The max stress of 50 ksi ocurs in the compression flanae as assumed in the calculation Check the effectiveness of the Web fl (Vca- Z)Fv/yca 45 58 ksi f2 - (B-Vca- Z)Fv/Vca -45 58 ksi VJ f2/fl -1 00 k 4+2(1-w)^+2(1-vi/) 24 00 hit be/t 43 93 X 1 052/(k)°S(h/t)x(f1/E)°^ 0 37 0 (1-0 22 IX) IX 1 10 be 3 65 m bl bj(3-w) 0 91 in b2 1 82 in bi+b2 2 73 m 2 1 web 2(1/12)(b)^ 8 08 in" S(Lv*) 89 40 in" (-)(SL)(Vco)^ 60 06 in" I'x 37 42 in" lx=l'xt 3 11 in" Sex=lx/Vca 1 55 m^ Cb=1 0 for combined axial load and bendma moment 1 2b^d%(b+d) 4 02 m" s, fullSx 1 62 in" 0 36Cb7i(E 1 G i)°^/(Fv Sf) 76 60 ft Fe" Cb7t(E 1 G i)"''/(L Sf) 985 04 ksi Allowable Bendina Moment M„x 6 471 kiDft Qb 1 670 Ma = M™/nb 3 875 kiDft Check Stresses Cmx 0 6-0 4*Mi/M2 0 60 Loads from Wind"? Cbi (P / Pa) + (C^x Mx / Ma 1 01 ) O Cb2 (P / Pa) + (Mx/Ma) 1 28 Allowable Stress Unity 1 Cb lf((P/Pa)<=0 15Cb2Cbi) 1 01 Section is NG and trv another section r ROUGH GREENHOUSES JOB TITLE Lowe's JOB NO CALCULATED BY CHECKED BY #REFI #REFI POST FEET DESIGN (FIXED BASE) i 1 i Zn ! g GUTTER ZZ" DIA HILTI HY150 MAX EPOXY SET THREADED ROD ANCHOR x 12" LG [2TR5X12] WITH MINIMUM 4V2" EMBEDMENT [ESR #2262] {A REQUIRED) TRUSS (2) %" WELDED POST FOOT ASSEMBLY WITH ^/A" DIA HOLES [SAS11 26] CONCRETE SLA (BY OTHERS) BOLTED POST ASSEMBLY (REF DWG GI 0) (2) 9/16" WEEP HOLE FOOTING DESIGN BY OTHERS) Stiffened Base Anale Section Properties A 4 594 in^ lx 8 in" Iv 16 019 in" rx 1 32 in Tv 1 867 in Sxt 2 02 in' Sxb 8 082 in' Zx 2 14 in' Reaction from Truss (STAAD MODEL) Max UDllft = 2 460kiDS Reaction from SIDEWALL BRACING (STAAD MODEL) Max Uplift = 0 805 kiDS Moment= 2 550 kio ft Tension force /anchor T= 2 86 kios Moment® edae of anale M= 7 85 kio in Actual bendina stress f|,=M/Zx = 3 67 ksi Allowable bendma stress Fb= Fv/O = 21 56 ksi case of 0 6DL+WL4 Base anale check -Pass r www hlltl us Comcanv Soecifier Address Phone I Fax E-Mail PROFIS Anchor 2 2 1 •I- Paoe Proiect Sub-Proiect I Pos No Date Soecifier's comments 1 134226 Carlsbad CA 3/13/2013 1 Inout data Anchor tvoe and diameter Effective embedment deoth Material Proof Stand-off installation Anchor olate Profile Base material Reinforcement HIT-HY150MAX + HAS 1/2 ASTM F 568M Class 5 8 desian method Hilti ASD from Hilti Product Technical Guide e^ = 0 000 in (no stand-off) t = 0 500 in I, X I, x t = 10 000 X 8 000 x 0 500 in (Recommended olate thickness not calculated) Sauare HSS (AISC) (L x W x T) = 4 000 in x 4 000 in x 0 125 m uncracked concrete 4000 f' = 4000 DSI h = 420 000 in temperature 14''F Geometrv hn 1 & Loadina fkio ft -kiol t CO Inout data and results must be checked for aareement wrth the existina condittons and for plausibiiitvl PROFIS Anchor f c ) 2003-2009 Hilti AG FL-9494 Schaan Hilti is a registered Trademark of HiHi AG Schaan www hlltl us PROFIS Anchor2 2 1 Comoanv Soecifier Address Phone I Fax E-Mail -I- Pace Proiect Sub-Proiect I Pos No Date 134226 Carlsbad CA 3/13/2013 2 Resultina anchor forces Load case (oovernina) Anchor reactions fkinl Tension force (+Tension -Comoression) Anchor Tension force Shear force Shear force x Shear force v OOOO OOOO 3 035 3 035 0 244 0 244 0 244 0 244 OOOO OOOO OOOO OOOO max concrete comoressive strain IM 0 13 max concrete comoressive stress IDSII 582 resultina tension force in (x/v)=(0 000/2 992) Ikiol 6 068 resultina comoression force in (x/v)=(0 000/-3 605) Ikiol 3 444 0 244 0 244 0 244 0 244 Tension ComDression-T^ 3 Forces on the hiahest loaded anchor 3 Desian values Ikiol Proof Load Caoacitv Utilization l%1 B„/B„ Status Tension load Shear load without lever arm 3 034 0 244 3 075 2 420 99/- -/10 OK OK 4 Combined tension and shear loads utilization B„v'%l Status 0 986 B: + B: <= 1 0 101 1 667 100 OK 5 Details Use. *hear thread red 0 997 0 997 1 000 1 000 all N, IkiDl all V, IkiDl all N. IkiDl all V. IkiDl all M Ift -kiDl N„ IkiDl V™ Ikiol 3 083 3 958 4 700 2 420 0 055 3 075 2 420 6. Warninas • Refer to the manufacturer's oroduct literature for cleanino and installation instructions • The anchor olate is assumed to be sufficientiv stiff in order to be not deformed when subiected to the actionsi Fastenina meets the desian criteria! Inout data and results must be checked for aareement with the existina conditions and for olausibilitv! PROFIS Anchor f c ) 2003-2009 Hilti AG FL 9494 Schaan Hilti is a reoistered Trademark of Hifti AG Schaan www hlltl us PROFIS Anchor2 2 1 Comoanv Specifier Address Phone I Fax E-Mail •I- Paae Proiect Sub-Proiect I Pos No Date 134226 Carlsbad CA 3/13/2013 7 Installation data Anchor plate steel - Profile Sauare HSS (AISC) 4 000 in x 4 000 in x 0 125 in Hole diameter in the fixture d, = 0 563 in Plate thickness (input) 0 500 in Recommended plate thickness not calculated Anchor tvpe and diameter HIT-HY 150 MAX + HAS 1/2 Installation toraue 0 030 ft -kip Hole diameter in the base matenal 0 563 in Hole depth in the base material 3 024 in Minimum thickness ofthe base material 5 024 in o o 1 2500 5 0000 1 2500 5 0000 Coordinates Anchor fin 1 Anchor 1 2 3 4 X V -3 750 -3 000 3 750 -3 000 -3 750 3 000 3 750 3 000 Inout data and results must be checked for aareement witti ttie existina conditions and for olausibititvi PROFIS Anchor ( c > 2003-2009 Hlltl AG FL-9494 Schaan Hilti is a reoistered Trademark of Hilti AG Schaan www hlltl u$ PROFIS Anchor2 2 1 Company Specifier Address Phone I Fax E-Mail -I- Pace Proiect Sub-Proiect I Pos No Date 134226 Carlsbad CA 3/13/2013 8 Remarks: Your Coooeration Duties • Anv and all information and data contained in the Software concern solely the use of Hilti products and are based on the pnnciples formulas and secuntv reaulations in accordance with Hilti's technical directions and operatmo mountina and assembly instructions etc that must be strictly complied with bv the user All fiaures contained therein are averaoe fiaures and therefore use-specific tests are to be conducted pnor to usina the relevant Hilti product The results ofthe calculations earned out bv means ofthe Software are based essentially on the data vou put in Therefore you bear the sole responsibility for the absence of errors the completeness and the relevance of the data to be put m by vou Moreover you bear sole responsibility for havina the results of the calculation checked and cleared by an expert particularly with reaard to compliance with applicable norms and permits prior to usina them for your specific facility The Software serves only as an aid to interpret norms and permits without anv auarantee as to the absence of errors the correctness and the relevance of the results or suitability for a specific application • You must take all necessan/ and reasonable steps to prevent or limit damaae caused bv the Software In particular you must arranae for the reaular backup of proorams and data and if applicable earn/ out the updates of the Software offered bv Hilti on a reaular basis If vou do not use the AutoUpdate function of the Software vou must ensure that vou are usina the current and thus up-to-date version ofthe Software in each case by carryma out manual updates via the Hilti Website Hilti will not be liable for conseauences such as the recovery of lost or damaaed data or oroorams arisina from a culpable breach of dutv bv vou Input data and results must be checked for aareement with the existina conditions and for olausibilitv! PROFIS Anchor ( c > 2003 2009 Hlltl AG FL 9494 Schaan Hilti Is a realstered Trademark of Hilti AG Schaan GOVERNINC; CODE. CAUFORNIA SUILDING CODE (CBC 2007) nrsiGN I OADf;. 1 DEAD LOADS • STRUCTURE & GLAZING 3 0 PSF • COLLATERAL A SHADE HOUSE PURLIN/TOP CHORD 5 0 PSF B SHADE HOUSE BOTTOM CHORD 5 0 PSF ROOF LIVE LOAD = 20 PSF SNOW LOAD = 0 PSF (GROUND SNOW) = 0 PSF (FLAT ROOF SNOW) = % = N/A WIND LOAD (MAIN WIND FORCE RESISTING SYSTEM) • V =85 MPH • EXPOSURE C . OCCUPANCY CATEGORY 11 • L = ' 0 0 792 0 450 I SEISMIC Sg - 1 136 SJ S. = 0 430 S OCCUPANCY CATEGORY SITE CLASS D DESIGN CATEGORY D SEISMIC FORCE RESISTING SYSTEM = BRACED FRAME DESIGN BASE SHEAR V = 0 244 W C = 0 244 R = 3 25 EQUIVALENT LATERAL FORCE ANALYSIS GFNERAI NOTES. 1 ROUGH BROTHERS INC TO SET ALL POST ANCHOR BOLTS SEE DRAWING GI 1 FOR POST ANCHOR DETAILS 2 GUTTER TO SLOPE } PER 10-0 TO REAR 3 ALL GUTTER POST HEIGHTS TO BE DETERMINED IN FIELD WITH TRANSIT 4 SEE DRAWING 04 0 & G5 0 FOR PURLIN CONNECTION DETAILS 5 SEE DRAWING GB 0 G6 1 G6 2 G6 3 FOR SHADE STRUCTURE DETAILS WGT1 TRUSS STANDARD 2x4 14GA TC & BC GABLE TRUSS WITH 5 PURLINS (REF 04 OA FOR DETAILS) WTl TRUSS STANDARD 2x4 14GA TC & BC INTER TRUSS WITH 5 PURLINS (REF G4 OA FOR DETAILS) WT1J TRUSS JOIST MOUNTING 2x4 14GA TC & BC INTER TRUSS WITH 5 PURLINS (REF G4 OA FOR DETAILS) HB1 BAR JOIST 33 x 235% WELDED JOIST ASSEMBLY ^ 4 SQ IIGA TC A; B C (REF G3 1 FOR DETAILS) HB2 BAR JOIST 33 x 235^^ WELDED JOIST ASSEMBLY "/ 4 SQ 14GA TC & B C (REF G3 IA FOR DETAILS) CONCRFTF SIAR/TOIINnATION NOTES 1 ROUGH BROTHERS INC IS NOT RESPONSIBLE FOR THE DESIGN MATERIALS AND WORKMANSHIP OF THE SLAB IT IS THE RESPONSIBILITY OF THE SLAB/FOUNDATION DESIGNER TO ENSURE THAT THE SLAB/FOUNDATION IS PROPERLY DESIGNED TO ANCHOR THE EPOXY SET AND MECHANICAL ANCHORS FOUNDATIONS SHALL BE DESIGNED TO RESIST THE LOADS IMPOSED BY THE GARDEN CENTER AS WELL AS OTHER IMPOSED LOADS BASED ON THE LOAD BEARING CAPABILITIES OF THE SOIL AND OTHER CONDITIONS OF THE BUILDING SITE FIELD WFiniNG NOTES. ALL COLUMNS ALONG EXTERIOR WALL OF STORE TO BE FIELD WELDED TO 4 CHANNEL (PROVIDED BY OTHERS) TOP OF CHANNEL ELEVATIONS SHALL BE 12-0 ABOVE FINISHED FLOOR REFERENCE DETAIL C/G5 0 MISCFI I ANFOIJS FASTENER NOTFS. 1 ANCHOR RODS SHALL BE ASTM A307 OR A36 THREADED ROD UNLESS NOTED OTHERWISE 2 MECHANICAL AND/OR EPOXY ANCHORS SHALL BE THE TYPE SIZE AND EMBEDMENT INDICATED ON DRAWINGS AND SHALL BE INSTALLED PER ANCHOR MANUFACTURER S RECOMMENDATIONS 3 EPOXY ANCHORS SHALL BE HILTI HIT-HY 150 MAX (ESR-2262) 4 ALL BOLTS SHALL BE THE TYPE AND SIZE INDICATED ON DRAWINGS ALL HOLES SHALL BE BOLT DIAMETER + l/^g MAX City of Carlsbad Building Division MAY 31 Z013 POST LENGTH SCHEDULE (15 -0 OFFSET) POST LENGTH POST LENGTH POST LENGTH POST LENGTH Al 1581/16 81 163 Cl 168 Dl 173 A2 1567/15 82 16l3/§ C2 1663^ D2 1713/6 A3 1551/) B3 1601,^ 03 I65I/2 D3 170I/2 A4 155I/4 B4 04 D4 A5 B5 160 05 165 D5 170 A6 1543/4 B6 1593/4 C6 1543/4 A7 1541/^ 87 159I/2 C7 1641/^ A8 154I/4 88 I59I/4 C8 I64I/4 A9 154 B9 159 C9 164 POST DESCRIPTION ID # TYPE QTY DETAIL © TS 4x4x14GA GALV GUTTER PQST ANCHOR TO CONCRETE 4 1/Gl 1 @ TS 4x4x8GA GALV GUTTER POST ANCHOR TO CONCRETE 2 1/G1 1 © TS 4x4x14GA GALV GUTTER POST ANCHOR TO CONCRETE SLAB FAB D POR SWAY RODS 2 2/G1 1 © TS 4x4x14GA GALV GUTTER POST ANCHOR TO CONCRETE 2 1 /Gl 1 @ TS 4x4x14GA GALV GUTTER POST ANCHOR TO CONCRETE SLAB FAB D FOR SWAY RODS 5 1/Gl 1 POST DESCRIPTION ID # TYPE QTY DETAIL © TS 4x4x14GA GALV GUTTER PQST ANCHOR TO CONCRETE 2 1 /Gl 1 @ TS 4x4x14GA GALV GUTTER POST ANCHOR TO CONCRETE SLAB FAB D FOR SWAY RODS 2/Gl 1 ® TS 4x4x14GA GALV GUTTER POST ANCHOR TO CONCRETE 4 1/Gl 1 TS 4x4xl4GA GALV GUTTER POST ANCHOR TO CONCRETE SLAB FAB D FOR SWAY RODS 4 2/G1 1 A \ POST LAYOUT Gl 0 / SCALE = 1 -0 • NO EXCEPTIONS EXCEPTIONS NOTED • • REVISE AND RESUBMIT RECORD COPY REVIEWED FOR CONFORMANCE WITH DESIGN CONCEPT ONLY CONTRACTOR IS RESPONSIBLE FOR DIMENSIONS FIELD CONDmONS COORDINATION WITH RELATED WORK INSTALLATION PROCEDURES AND ALL OTHER REQUIREMENTS OF THE CONTRACT DOCUMENTS BBB 03/25/13 DATE CHECKED BY Tohnston Burkholder Associates CONSULTING STRUCTURAL ENGINEERS PURLIN LAYOUT ID # DESCRIPTION H 16GA GALV FORMED Z-PURLIN 1163/4 LG 0 2 SQ 15GA GALV TUBE PURLIN 239% LG 0 2 SQ 15GA GALV TUBE PURLIN 203% LG 2 SQ 15GA GALV TUBE PURLIN 246 LG B 2 SQ 15GA GALV TUBE PURLIN 204 LG GUTTER SCHEDULE COLUMN DESCRIPTION 14GA GALV GUTTER FAB D FOR GUTTER SPLICE 14GA GALV 6^2 GUTTER FAB D FOR GUTTER SPUCE 14GA GALV 6/i2 GUTTER FABD FOR GUTTER SPLICE 14GA GALV 6/12 GUTTER FABD FOR GUTTER SPLICE SYMBOL TABLE SYMBOL DESCRIPTION DS« 4 CAST DOWNSPOUT REF DETAIL 1 DWG G31 FCR CP>\0 ROUGH BROTHERS INC 5513 VINE STREET CINCINNATI OHIO 45217 1-300-543-7351 513-2*2-0310 VOICE 513-242-0311 FAX 513-242-0816 N^INEERS SEAL APPLirS J DESIGN OF STRUCTURAL COMPONENTS OMV • BIVI8IGH RIOOBD < o cJ L_ < O CQ in < o Gl. 0 j j 1 -*—1 1 ' 1 s o t o s o t o g TRUSS CONCRETE SLAB (BY OTHERS) -% DIA HILTI HY150 MAX EPOXY SET THREADED ROD ANCHOR x 6 LG [2TR5X12] WITH MINIMUM 31/2 EMBEDMENT [ESR #2262] (4 REQUIRED) g GUTTER (2) 2 x3 % POST FOOT WITH (4) 'Xe, DIA HOLES [S1125] BOLTED POST ASSEMBLY (REF DWG 01 0) 4" SQ SHADE POST SCALE 11/^=1-0 3i , 3i lUU m CONCRETE SLAB (BY OTHERS) Ij ^ji DIA HILTI HY150 MAX EPOXY SET THREADED ROD ANCHOR X 12 LG [2TR5X12] WITH MINIMUM 4I/2 EMBEDMENT [ESR #2262] (4 REQUIRED) TRUSS - (2) % WELDED POST FOOT ASSEMBLY WITH 3/4 DIA HOLES [SAS1126] BOLTED POST ASSEMBLY (REF DWG Gl 0) FOOTING DESIGN BY OTHERS) 4" SQ GUTTER POST SCALE =1 -0 SI OPF OF SLAB NnTT. REF TO DWGS G2 0 & G3 0 FOR FINISH FLOOR ELEV 1 315 ROUND TUBE 18 GA GALV - TRUSS STRINGER DOWNSPOUT LOCATIONS TO BE VERIFIED IN FIELD SIDEWALL BRACING SCHEDULE ID DESCRIPTION SBl 1 315 DIA 14GA SIDEWALL BRACING - FLATTENED ^9/5 DIA HOLES 1 FROM EA END (1231/2 ) SB2 1 315 DIA 14GA SIDEWALL BRACING - FLATTENED W/9/|g DIA HOLES 1 FROM EA END CII7V4 ) ROOF BRACING SCHEDULE DESCRIPTION RB2 1 315 OlA 14GA INTER PURLIN TO RIDGE PURLIN - FLATTENED W/9^g DIA HOLES 1 FROM EA END (1253^ ) RB3 1 315 OlA 14GA INTER PURLIN TO RIDGE PURLIN - FLATTENED DIA HOLES 1 FROM EA END (124 ) RB4 1 315 DIA 14GA SIDEWALL POST TO 1ST PURLIN - FLATTENED W ^As DIA HOLES 1 FROM EA END (l24l^ ) RB5 1 315 DIA 14GA INTER PURLIN TO INTER PURLIN - FLATTENED QIA HOLES 1 FROM EA END (125?/^ ) B\ BRACING & STRINGER LAYOUT Gl 1 J SCALE %2 =1-0 CABLE BRACING SCHEDULE DESCRIPTION 17-0" LENGTHS OF S S CABLE SYMBOL TABLE SYMBOL DESCRIPTION D S s 4 CAST DOWNSPOUT REF DETAIL 1 DWG G31 c \BC CABLE BRACING LAYOUT Gl 1 / SCALE ROUGH BROTHERS INC 5515 VINE STREET CINCINNATI OHIO 45217 1-800-543-7351 513-242-0310 VOICE 513-242-0311 FAX 513-242-0316 ENGINEERS SEAL APPUES TO DESIGN OF STRJCTURAL co^^Po^EN•^l ONLY < o Q' 1^ < O CD IJI _] cr < Gl.l (8) 5/,6 X 1 HEX HD BOLT & NUT W/ LEAD Sc GALV WASHER (PLACE LEAD WASHER BETWEEN GALV WASHER Si GUTTER FOR SEAL) 4 SO CAST ALUM GUTTER POST TOP [1CA-0071F] 1 315 DIA 14GA ROOF SWAY BRACING [70492] 2 X 2 X 1/4 ALUM CLIP ANGLE AT PURLIN [AC220-2002] 3^ X 1 HEX HD BOLT a< NUT 2 BEADS OE PUTTYLASTIC TAPE ONE ON EACH SIDE QF TTIE BOLTED CONNECTION W/(i) 4 pc |N CENTER OF GUTTER 6/12 GUTTER FAB 0 FOR GUTTER SPLICE [S09D0] 1 315 ROUND TUBE 18 GA GALV - TRUSS STRINGER 6/12 GUTTER SADDLE [S0902] 1 315 CLAMP SINGLE - 3 HOLES [A034-1003] W/ (3) #12x1 HEX HD TEK SCREWS EA 1/^x5 HEX HD BOLT & NUT 17-0 LENGTHS OE 1* DIA 7x7 SS CABLE [1CB-0177] l/§ CRIPPLE FOR WIRE ROPE [1CB-0115] GABLE TRUSS BOTTOM CHORD 1/2 X 4 PLATED EYEBOLT & NUT FOR 2 SQ B C 1/^x6 PLATED EYEBOLT & NUT FOR 2x4 B C BOTTOM CHORD BRACING @ GABLE END SCALE ll/^ =1-0 WELDED GUTTER POST ASSEMBLY (REF DWG Gl 0) 1 315 ROUND TUBE GALV - TRUSS STRINGER ^/Z X 4" PLATED EYEBOLT & NUT ROOF BRACING AT GUTTER 1/^ CRIPPLE FOR WIRE ROPE [1CB-0115] 17 -0" LENGTHS OF DIA 7x7 S S CABLE [lCB-0177] 1 315 CLAMP SINGLE - 3 HOLES [A034-1003] W/ (3) #12x1 HEX HD TEK SCREWS EA INTERM TRUSS BOTTOM CHORD BRACING CONNECTION DETAIL @ POLY BAY SCALE 3/15 BOTTOM CHORD BRACING @ INTERM TRUSS 01 2 y SCALE 11/5 -1-0 FORMED STEEL Z-PURLIN (REF DWG 01 0) % X 1 HEX HD BOLT & NUT 1 315 DIA 14GA ROOF SWAY BRACING [70492] % X 1 HEX HD BOLT 4 NUT STRUT/PURLIN BRACKET FOR BOLTED Z-PURLIN TRUSS 2x4 TOP CHORD (ONE EA SIDE) [S09Z424L/R] ROOF BRACING AT Z-PURLIN 2 X 2 X 1/4 ALUM CLIP ANGLE AT PURLIN [AC220-2002] 2 SO 15GA PURLIN (REF DWG Gl 0) 1/^x3 HEX HD BOLT It NUT 12GA FORMED TUBE PURLIN BRACKET FOR BOLTED TRUSS [S09S45] 3/^ X 1 HEX HD BOLT * NUT 1 315 DIA 14GA ROOF SWAY BRACING [70492] STRUT BRACKET FOR BOLTED TRUSS [S09S424] ROOF BRACING AT TUBE PURLIN SIDEWALL BRACING SCHEDULE ID ff DESCRIPTION SBl 1 315 DIA 14GA SIDEWALL BRACING - FLATTENED ^As DIA HOLES 1 FROM EA END (123'/^ ) SB 2 1 315 DIA 14GA SIDEWALL BRACING - FLATTENED "^/^AB DIA HOLES 1 FROU EA END (ll?'/} ) CABLE BRACING SCHEDULE ID ff DESCRIPTION CB1 17-0 LENGTHS OF 1^ OlA 7x7 S S CABLE BRACING CONNECTION DETAIL @ FABRIC BAY BRACING BRACKET-SINGLE [S1112] 1 315 DIA GALV SIDEWALL SWAY BRACING [704900] 4 SQ I4GA GALV STEEL TUBE 1/2 X 3 HEX HD BOLT Sc NUT 3/6 . 1 -0 4 SQ GALV GUTTER POST W X 5 HEX HD BOLT & NUT WELDED POST ASSEMBLY (REF DWG Gl 0) BRACING CONNECTION DETAIL SCALE ll/^" = 1-0 1/2 X ll/4 HH BOLT & NUT 1 3i5 DIA GALV SIDEWALL SWAY BRACING [70490D] 1/fe X 2" X 2 GALV ANGLE X 2 LONG W/5/6 HOLE EA LEG [SCI 2200-2002] 4 POST GUSSET FOR BOLTED TRUSS (ONE EA SIDE) [S09S2030-4L/R] 1/i X 5 HEX HD BOLT tc NUT WELDED POST ASSEMBLY (REF DWG 01 0) BRACING CONNECTION DETAIL SCALE ll/5 -1-0 1/5" X 5 HEX HD BOLT Sc NUT 1 315 DIA GALV SIDEWALL SWAY BRACING [70490D] PLASTIC RECTANGULAR GAP 2 X 4 X 10 [lPL-0020-204] 1/^x3 HEX HD BOLT 8t NUT 4 SO 14GA GALV STEEL TUBE 2 SQ 3/12 SLOPE POST GUSSET [S1620L4R] BRACING BRACKET- SINGLE [S1112] ROUGH BROTHERS INC 5513 VINE STREET CINCINNATI OHIO 45217 1-800-543-7351 513-242-0310 VOICE 513-242-0311 FAX 513-242-0816 E\G1NEERS SEAL APPUES TO DESirU OF ETRUCTUiiAL COMPONENTS ONLY < O Q Li_ < O m Ul _] cr < 61.2 NOTE. ALL FIXTURES MOUNTING TO OUR STRUCTURE NEED TO BE BELOW 13-0 ELEV IN RETRACTABLE SHADE AREA 2" SQ 15GA GALV TUBE PURLIN (REF DWG Gl 0) - RIDGE VENTILATOR ASSEMBLY [S0962] 72 WIDE 8MM POLYCARBONATE (THERMAGLAS SLT) 6/12 GUTTER EXTENSION FAB D FOR SPLICES WELDED END & DWNSPT 12 LG [S0911-12W] 4 SQ 14GA GALV STEEL TUBE ^ WELDED PQST ASSEMBLY (REF DWG 1 0) CONCRETE SLAB (BY OTHERS) 4^ -1 -215/6 ELEV / RIDGE VENTILATOR ASSEMBLY [S0962] 72 WIDE 8MM POLYCARBONATE (THERMAGLAS SLI) 6/12 CUTTER EXTENSION FAB D FOR SPLICES W/ WELDED END 3 LG [S0910-03W] . IJ -0 T/0 POST WELDED POST ASSEMBLY (REF DWG Gl 0) CONCRETE SLAB (BY OTHERS) — 8 ^ SIDEWALL ELEVATION SCALE 3^6 =1-0 6/12 GUTTER EXTENSION FAB D FOR SPLICES W/ WELDED END 3 LG [S0910-03W] 13 -0 T/0 POST BRACING SCHEDULE ID ff DESCRIPTION SBl 1 315 DIA 14GA SIDEWALL BRACING - FLATTENED DIA HOLES 1 FROM EA END SB2 1 315 DIA 14GA SIDEWALL BRACING - FLATTENED W/9/^5 DIA HOLES 1 FROM EA END 11 -4l/^ B/O SKIRTJ SIDEWALL ELEVATION G2 0 / SCALE ^A& = 1 -0 8MM METAL SCREW BAR [5164] 72 WIDE 8MM POLYCARBONATE (THERMAGLAS SLT) 8MM ALUW RAFTER CAP [516 MID-PANEL SUPPORT & #12 X 1V2 WHITE TEK SCREW W/ll/^ WHITE BONDED WASHER (3) PER PANEL @ EACH GENERAL NOTES. REF DRAWING G5 0 FOR PANEL FASTENING DETAILS ALL POLYCARBONATE TO HAVE UV SIDE OUT POLYCARBONATE ROOF FASTENING DETAIL G2 0 / SCALE 6=1-0 8WM DOUBLE H-SPLICE [5171] (3) 2GT12X100HHW PER HORIZONTAL GABLE FRAMING LOCATIONS GABLE TRUSS ASM (REF SHEET 01 0} POLYCARBONATE GABLE END FASTENING DETAIL 02 0 / SCALE ROUGH BROTHERS INC 5513 VINE STREET CINCINNATI OHIO 45217 1-BO0-543-7351 513-242-0310 VOICE 513-242-0311 FAX 513-242-0816 < o Q" < O CD GO _) a: < o G2.0 18GA FORMED GALV STEEL COUNTER FLASHING SET IN REGLET WITH CONT BEAD OF CAULK (BY OTHERS) (8) 5/e XI HEX HD BOLT & NUT W/LEAO tc GALV WASHER (PLACE LEAD WASHER BETWEEN GALV WASHER tc GUTTER FOR SEAL) 2X4 BOLTED TOP CHORD ASSEMBLY (REF Gl 0) GENERAL NOTES. 1 REF DRAWING 05 0 FOR PANEL FASTENING DETAILS ALL POLYCARBONATE TO HAVE UV SIDE OUT - 2x4 BOLTED BOTTOM CHORD ASSEMBLY (REF SHEET Gl 0) 12GA GALV CLIP ll/i x l'/2 xl3/8 W/(2) '?/64 HOLES [SC12150150-1382] 11 -4l/i B/O SKIRT 2 SQ BOLTED BOTTOM CHORD ASSEMBLY (REF SHEET Gl 0) #12x1 H H TEK SCREW 4 \ SKIRTING DETAIL 2 SQ GALV STEEL TUBE SPACED EQUALLY APART 2 SQ STEEL FRAMING TUBE 03 0 / SCALE 11/5 COUNTER FLASHING DETAIL @ GUTTER G3 0 y SCALE 3 RIDGE VENTILATOR ASSEMBLY [S0962] P STORE WALL //, (BY OTHERS) 5/12 GUTTER EXTENSION FAB D FOR SPLICES W/WELDED END 12 LG [S0911-12W] 1/6 ALUM ANGLE 23/, 53/g [AFR062-275537] WELDED GUTTER POST ASSEMBLY (REF DWG Gl 0) 2 SQ GALV STEEL/ TUBE EQUALLY / SPACED ' 3MM DOUBLE H-SPLICE [5171] 1 CONCRETE SLAB (BY OmERS) - 8MM SINGLE H-SPLIGE / 2 SQ STEEL [5203] ' FRAMING TUBE- ^ \aiy SIM .yC 13-0 T/0 POST AZj^ 11 -41/, B/O SKIRT^^ //, 0 -0 ELEV A \ GABLE ELEVATION 6/12 GUTTER EXTENSION FAB D FOR SPLICES W/ WELDED END & DWNSPT 12 LG [S0911-12W] B A GABLE ELEVATION G3 0 y SCALE 3/16 =1 -0 mm ROUGH BROTHERS INC 5513 VINE STREET CINCINNATI OHIO 45217 1-800-543-7351 513-242-0310 VOICE 513-242-0311 FAX 513-242-0816 ENGiNEESS SEAL APPLIES TO DE.SIGK OF STai/CTURM, COMPONENTS ONLY • REVXSXCM MOOBD < o Lu < o m if) zyz < 63.0 RIDGE VENTILATOR ASSEMBLY [S0962] WOE 8MM POLYCARBONATE (THERMAGLAS SLT) -8MM METAL SCREW BAR [5164] WELDED POST ASSEMBLY- (REF DWG Cl 0) •N0TE«« PLACE TWO STRIPS OF PUTTYLASTIC TAPE IN CENTER OF GUTTER SPLICE TO CREATE A WATERTIGHT SEAL BETWEEN GUTTER SPLICE AND GUTTER A A HEADER SECTION 'HB1' G3 1 J SCALE 3/^ =1-0 6/12 GUTTER EXTENSION FABD FOR SPLICES W/WELDED END 12 LG [S0911-12W] RD DOWNSPOUT HAT [1CA-0045] SET IN PUTTYLASTIC TAPE [1PA-RUBTAPE50] */(2) 3/fe x 1 HEX HD BOLTS */LEAD AND GALV WASHERS RD DOWNSPOUT (BY OTHERS) BASE PLATE 8 x8 xl/2 WITH 3/4 DIA HOLES [SI 120] ELEV VARIES _La_ MIN 21/2 DOWNSPOUT DETAIL SCALE 3/4 =1-0 GALV TUBE [7020] 2 SO 15GA GALV TUBE STRUT SLOPE CUT @ 37 EACH END [7CS37S10] -4 X 4 X 11GA Z^l 11 DA DALV GALV TUBE TUBE W/ (B) 9/5 [7C20] HOLES [7C5O13062]- B\ HEADER CONNECTION DETAIL -(8) 1/2 X 8 HEX HD BOLT & NUT - 4 POST GUSSET FOR BOLTED TRUSS (ONE EA SIDE) [S09S2030-4L/R] -WELDED GUTTER POST ASSEMBLY (REF DWG Gl 0) 4 SQ 11 GA GALV TUBE W/ (4) 9/6 HOLES [7G201306] 2 SQ 15GA GALV TUBE STRUT SLOPE CUT @ 37 EACH END [7CS37S10] SCALE 11/^ 4 X 4 X 11GA GALV TUBE W/(2) 9/,6 HOLES [7C20T4] ROUGH BROTHERS INC 5513 VINE STREET CINCINNATI OHIO 45217 1-B0O-543-7351 513-242-0310 VOICE 513-242-0311 FAX 513-242-0816 EVC[^E:ER3 SEAL APPLIES TO DESIGN OF STRUCTURAL CQMPOVENra OKLV • mvuioa ncoBD < O LL < o m (/I -A cr < o 63.1 RIDGE VENTILATOR ASSEMBLY [S0962] 72 WIDE 8MM POLYCARBONATE (THERMAGLAS SLT) 8MM METAL SCREW BAR [5154] HEADER SECTION 'HB2' G3 1Ay SCALE 3/g = i -o 21/2 . ... ^ \ \ 0 II 0 I \ I GALV TUBE [7C21] GALV TUBE [7C21] 2 SO J5GA GALV TUBE STRUT SLOPE CUT @ 37 EACH END [7CS37S10] 2x4 IIGA GALV TUBE W/(4) 9/5 HOLES [7C501308] (8) 1/^ X 8 HEX HD BOLT & NUT - 4 POST GUSSET FOR BOLTED TRUSS (ONE EA SIDE) [S09S2030-4L/R] - WELDED GUTTER POST ASSEMBLY (REF DWG Gl 0) 4" SO 11 GA GALV TUBE W/ (4) 9/i6 HOLES [7C201306] - 2 SQ 15GA GALV TUBE STRUT SLOPE CUT @ 37 EACH END [7CS37S10] 4 X 4 X IIGA GALV TUBE W/ (2) 9/^g HOLES [7C20T4] GALV TUBE [7C21] B \ HEADER CONNECTION DETAIL 03 lA y SCALE l1^ STRUT DETAIL G3 lAy SCALE l^/^ =1-0 mm ROUGH BROTHERS INC 5513 VINE STREET CINCINNATI OHIO +5217 1-800-543-7351 513-242-0310 VOICE 513-242-0311 FAX 513-242-0816 EVGINEERS SEAL APPLlbS TO DESIrN OF STRUCTURAL CCVP0NENT3 ONLY • BCVISIOH M008D < o cJ ^ < O CD iT) -A cr < 8 S CN M 03 • 2 x3l/i FORMED 14GA ANGLE "/ 5/, 6 x2 SLOTS PART A 1/4 X 11/4 GALV NAIL RIVET 24 ON CENTER [2RIVET25X125] 2X2x3/^6 ALUM ANGLE FIELD GUT [5127] 2 SO 15GA HORIZONTAL GABLE GIRTING 2 x3l/2 FORMED 14GA ANGLE «/ 5/5 x2 SLOTS PART B (FIELD CUT END TO LENGTH) 2 x6 14GA FLAT PLATE "/ (4) 0 203 HOLES STORE CANOPY (BY OTHERS) GLAZING CONNECTION DETAIL 8MM SINGLE H-SPLICE [5203] CONTINUOUS 2 X 2 X 3/g ALUM CLOSURE ANGLE (ATTACH TO WALL I NAIL IN RIVET 24 ON CENTER) 72 WIDE 8MM POLYCARBONATE (THERMAGLAS SLT) 2 SO GALV HORIZONTAL GIRTING mm ROUGH BROTHERS INC 5513 VINE STREET CINCINNATI OHIO 45217 l-aOO-543-7351 513-242-0310 VOICE 513-242-0311 FAX 513-242-0815 ENGINEERS SEAL APPLIES TO OESIGN OF STRUCTURAL COMPONENTS O-JLY < O cJ u. < O CD Ul —I 01 < o 63.2 2x4 BOLTED TOP CHORD ASSEMBLY (REF DWG Gl 0) 2 SQ BOLTED LONG DIAGONAL ASSEMBLY UNO 1 315 ROUND TUBE 18 GA GALV - TRUSS STRINGER 2x4 BOTTOM CHORD TIE (REF Gl 0) STRINGFR NOTFS. 1 »1 315 laOA TUBE TRUSS STRINGERS ARE TO BE ATTACHED WITH TUBE CLAMPS @ EACH BOTTOM CHORD (REF DRAWING 01 1 FOR DETAILS AND LOCATIONS) ROOF BRACING NOTES. 1 POST GUSSET AND TRUSS MEMBERS NOT SHOWN FOR CLARITY (REF 1 /G4 OA FOR DETAILS) ROOF ASSEMBLY NOTES. 1 GABLE TRUSS ONLY NEEDS PURLIN BRACKETS ON ROOF GLAZING SIDE OF TRUSS -2x4 BOLTED BOTTOM CHORD ASSEMBLY (REF 01 0) BOLTED TRUSS MATERIAL SCHEDULE ID ff DESCRIPTION 10 ff DESCRIPTION (Z) 2 SQ 15GA TUBE 9/j g QIA HOLE EA END - TRUSS STRUT 38 2 SQ 15GA TUBE 9/^ 5 DIA HOLE EA END - SAG STRUT 117% 2 SQ 15GA TUBE ^/{^) 9/5 DIA HOLE EA END - TRUSS STRUT 781/2 0 2x4 GALV TUBE W/(20) 9/5 DIA HOLE 272% 2 SQ 15GA TUBE W/(i) 9/5 DIA HOLE EA END - TRUSS STRUT 63?^ 2x4 GALV TUBE W/(io) S/^g DIA HOLE 1521/4 2 SQ IIGA TUBE W/(g) DIA HOLE TRUSS STRUT - LONG DIAGONAL 148 2x4 GALV TUBE W/(io) 9/,g DIA HOLE 186 TRUSS SECTION WTl G4 OA / SCALE 2 SQ TUBE W/(1) 3/6 DIA HOLE EA END - TRUSS STRUT 1/2 X 3 HEX HD BOLT tc NUT 2 B C /STRUT FLAT PLATE 12 GA 3 HOLE [S09S40F] 2 SQ 15GA BOLTED BOTTOM CHORD ASSEMBLY UNO B C /STRUT GUSSET DETAIL G4 OA / SCALE 3 =1-0 FORMED STEEL Z-PURLIN (REF DWG Gl 0) % X 1 HEX HD BOLT tc NUT 2x4 BOLTED TOP CHORD ASSEMBLY (REF DWG 01 0) 2 SQ TUBE W/(1) 9/6 DIA HOLE EA END - TRUSS STRUT 1/2 X 3 HEX HD BOLT & NUT STRUT/PURLIN BRACKET FOR BOLTED Z-PURLIN TRUSS 2x4 TOP CHORD (ONE EA SIDE) [S09Z424L/R] Z-PURLIN GUSSET DETAIL G4 OA / SCALE 3=1-0 2 SQ TUBE W/(1) 9/6 DIA HOLE EA END - TRUSS STRUT 1/^x3 HEX HD BOLT tc NUT 2 SQ 15GA BOLTED BOTTOM CHORD ASSEMBLY UNO 2 SQ BOLTED LONG DIAGONAL ASSEMBLY UNO 2 SO BOTTOM CHORD/ LONG DIAGONAL 12GA FLAT PLATE [S0943F] 2 SQ 15GA BOTTOM CHORD TIE 2 SQ TUBE W/(l) 9/6 DIA HOLE EA END - SAG TUBE 1/2 X 3 HEX HD BOLT SI NUT (2) GUSSET 2 TO 3 STRUT ADAPTOR [S0942-3] 2 SQ 15GA BOTTOM CHORD TIE DIAGONAL GUSSET DETAIL 04 OA / SCALE 3=1-0 2 SQ 15GA PURLIN (REF SHEET 01 0) 1/2 X 3 HEX HD BOLT tc NUT STRUT BRACKET FOR BOLTED TRUSS [S09S424] 12GA FORMED TUBE PURLIN BRACKET FOR BOLTED TRUSS [S09S45] 2x4 BOLTED TOP CHORD ASSEMBLY (REF DWG Gl 0) 2 SQ TUBE W/ (1) 3/6 DIA HOLE EA END - TRUSS STRUT 1/^x3 HEX HD BOLT it NUT TUBE W/(i) DIA HOLE EA - TRUSS STRUT (a) 5/|6 X 1 HEX HD BOLT Sc NUT W/ LEAD Ic GALV WASHER (PLACE LEAD WASHER BETWEEN GALV WASHER t£ GUTTER FOR SEAL) 6/12 GUTTER FAB D FOR GUTTER SPLICE [S0900] 6/12 GUTTER SADDLE [S0902] 4 SQ CAST ALUM GUTTER PQST TOP [1CA-0071F] 1/^x3 HEX HD BOLT Sc NUT 2x4 BOLTED TOP CHORD ASSEMBLY (REF DWG Gl 0) 2 SO )5GA BOLTED BOTTOM CHORD ASSEMBLY UNO 1/2 X 5 HEX HD BOLT & NUT WELDED GUTTER POST ASSEMBLY (REF DWG Gl 0) 4 POST GUSSET FOR BOLTED TRUSS (ONE EA SIDE) [S09S2030-4L/R] 2x4 TRUSS APEX GUSSET BOLTED/ WELDED [S09414F] 1/2 X 3 HEX HO BOLT & NUT 2 SQ BOLTED LONG DIAGONAL ASSEMBLY UNO 12GA STRUT GUSSET PLATE-ONE EA SIDE [S09S40F] 2 SQ 15GA PURLIN (REF DWG 01 0) 12GA FORMED TUBE PURLIN BRACKET FOR BOLTED TRUSS [S09S45] STRUT GUSSET DETAIL G4 0A/ SCALE 3=1-0 TUBE PURLIN GUSSET DETAIL G4 0Ay SCALE 2x4 BOLTED TOP CHORD ASSEMBLY (REF DWG Gl 0) 2 SQ BOLTED LONG DIAGONAL ASSEMBLY (REF SHEET Gl 0) 2 SQ TUBE W/ (1) 9/6 DIA HOLE EA END - SAG TUBE APEX GUSSET DETAIL G4 OA / SCALE mtm ROUGH BROTHERS INC 5513 VINE STREET CINCINNATI OHIO 45217 1-800-543-7351 513-242-0310 VOICE 513-242-0311 FAX 513-242-0816 ENCINFERS SEAL APPLIES TO D:3IG(. OF STRUCTURAL COMPONENTS ONLY < o cJ Lu < O CD Ul _l cr < G4.QA. #12 X 1 GALV TEK SCREW 2 SQ 15GA BOLTED TOP CHORD ASSEMBLY UNO 1 315 ROUND TUBE 18 GA GALV - TRUSS STRINGER 2 SO TUBE TOP SHADE RIDGE PURLIN ' 8mm DOUBLE H-SPLIGE [5171] 72 WIDE SMM POLYCARBONATE (THERMAGLAS SLT)- -2 SQ TUBE TRUSS SAG TUBE 2 X 1 GALV TEK SCREW TRUSS SECTION ST1 SCALE 3/^ =1-0 8 A SHADE PURLIN @ POLYCARBONATE STRUT SCHEDULE 41 -6 ID # DESCRIPTION DESCRIPTION 2 SQ 15 GA TUBE W/ (6) Q/gDIA HOLE TRUSS TOP CHORD 250 l/g (D 2 SQ 15 GA TUBE W/ (l) S/eDIA HOLE EA END - TRUSS STRUT 86 ^/e 2" SQ 15 GA TUBE W/ (1) S/ieDIA HOLE EA END - TRUSS STRUT 26 ® 2 SQ 15 GA TUBE W/ (7) S/eDIA HOLE BOTTOM CHORD 245 2 SQ 15 GA TUBE W/ (l) S/isO'A HOLE EA END - TRUSS STRUT 61 STRINGER NOTFS 1 1 315 DIA 18GA TUBE TRUSS STRINGERS ARE TO BE ATTACHED WTH TUBE CLAMPS # EACH BOTTOM CHORD (REF DRAWNG Gl 1 FOR LOCATIONS) 2 SQ 15CA PURLIN (REF DWG Gl 0) U-STRUT GUSSET 12GA FORMED [S09S4D] 1/^x3 HEX HD BOLT It NUT 2 SQ 15GA BOLTED TOP CHORD ASSEMBLY UNO 2 SQ TUBE W/(i) ; DIA HOLE EA END - TRUSS STRUT 2 SQ CLAMP SINGLE - [A233-2002] */ (2) #12 X 1 HEX HD TEK SCREWS EA 2 SO 15GA BOLTED TOP CHORD ASSEMBLY UNO 2 SQ TUBE W/(1) 9/6 OlA HOLE EA END - TRUSS STRUT 2 SQ 15GA PURLIN (REF DWG Gl 0) 12GA FORMED 3/2 SLOPE APEX GUSSET [S1640] 2 SQ CLAMP SINGLE [A233-2002] W/ (2) #12 X 1 HEX HD TEK SCREWS EA BOLT & NUT 2 SQ 15GA BOLTED TOP CHORD ASSEMBLY UNO 1/2 X 3 HEX HD BOLT & NUT TRUSS STRUT STRUT GUSSET DETAIL 04 1 / SCALE 3=1-0 APEX DETAIL U-STRUT GUSSET 12GA FORMED [S09S40] - 2 SQ TUBE W/ (1) 6 DIA HOLE EA END - TRUSS STRUT 1 315 ROUND TUBE 18 GA GALV - TRUSS STRINGER fZ z\ h - -/ ^ —E i 2 SQ 15GA BOLTED BOTTOM CHORD ASSEMBLY UNO WELDED GUTTER POST ASSEMBLY (REF DWG 01 0) 1 315 CLAMP SINGLE - 3 HOLES [A034-1003] W/ (3) #12 X 1 HEX HD TEK SCREWS EA 1/2 X 3 HEX HD / BOLT & NUT ' - 2 SQ 15GA BOLTED BOTTOM CHORD ASSEMBLY UNO BOTTOM CHORD SPLICE GUSSET [S1942] 1/^x3 HEX HD BOLT & NUT - 2 SQ 15GA BOLTED BOTTOM CHORD ASSEMBLY UNO STRUT GUSSET DETAIL BOTTOM CHORD SPLICE POST GUSSET DETAIL ROUGH BROTHERS INC 5513 VINE STREET CINCINNATI OHIO 45217 1-800-543-7351 513-242-0310 VOICE 513-242-OJtI FAX 513-242-0316 ENGINEERS SEAL APPLILS TO DESIGN OF STRUCTURAL COMPONENTS ONLY < O Q" u_ < O CD Ul -A cr < G4.1 #12x1 H H TEK SCREWS 12 OC (AT GUTTER SPLICE INSTALL 6 EITHER SIDE OF POST) 4 SQ CAST ALUM GUTTER PQST TOP [1CA-0071F] -(8) 5/6 X 1 HEX HO BOLT tc NUT W/ LEAD Sc GALV WASHER (PLACE LEAD WASHER BETWEEN GALV WASHER & GUTTER FOR SEAL) 6/12 GUTTER SADDLE [S0902] T/0 POST ELEV 8MM DOUBLE H-SPLICE [5171] 72 WIDE 8MM POLYCARBONATE (THERMAGLAS SLT)- 8MM SINGLE H-SPLICE [5203] 6/12 GUTTER FAB D FOR GUTTER SPLICE [S0900] 2x4 BOLTED TOP CHORD ASSEMBLY COUNTER FLASHING (BY OmERS) - (8) 5/6 X 1 HEX HO BOLT 8: NUT W/ LEAD Sc GALV WASHER (PLACE LEAD WASHER BETWEEN GALV WASHER & GUTTER FOR SEAL) 11 -4" B/O SKIRT ELEV 2 SQ 15GA TUBE FRAMING — #12X1 H H TEK SCREW- ALUM 2 SQ SINGLE CLAMP [A233-20a2]- •1/2 X 5 HEX HD BOLT tc NUT -2x4 BOLTED TOP CHORD ASSEMBLY (REF Gl 0) SQ 15GA BOLTED BOTTOM CHORD ASSEMBLY UNO PQST GUSSET FOR BOLTED TRUSS (ONE EA SIDE) [S09S2030-4L/R] 72 WIDE 8MM POLYCARBONATE (THERMAGLAS SLT) 4 POST GUSSET FOR BOLTED TRUSS (ONE EA SIDE) [S09S2030-4L/R] WELDING TO BE COMPLETED BY GREEN HOUSE INSTALLERS EXTERIOR STORE WALL (BY OTHERS) -2 SQ TUBE W/(l) 9/6 DIA HOLE EA END - TRUSS STRUT -2 SQ 15GA GALV TUBE - GABLE SKIRTING 1/2 X 5 HEX HD BOLT Sc NUT GABLE GLAZING SECTION , G5 0 y SCALE 3=1-0 WALL ATTACHMENT SECTION G5 0 y SCALE 3=1-0 72 WIDE SMM POLYCARBONATE (THERMAGLAS SLT) 8MM DOUBLE H-SPLICE [5171 TO g GUTTER POST #12X1 H H TEK SCREW TO i GUTTER POST GUTTER POST 2 SO TUBE FRAMING 1/fe ALUM ANGLE CLIP 2 X 2 W/ (4) HOLE [AGl 35-2004] 4 POST GUSSET FOR BOLTED TRUSS (ONE SIDE) [S09S2040-6L/6R] 4 POST GUSSET FOR BOLTED TRUSS (ONE SIDE) [S09S2040] ALUM 2 SQ SINGLE CLAMP [A233-2002] 23/4 X 53,^ X 1/6 FORMED ALUM FLASHING [AFR062-275537] SMM DOUBLE H-SPLICE [5171 TQ GUTTER POST B \ GABLE CORNER SECTION BOLTED BOTTOM CHORD (REF SHEET Gl 0) 72 WIDE 8MM POLYCARBONATE (THERMAGLAS SLT) 112 X 1I/2 HEX HD GALV TEK W/ WASHER 8MM DOUBLE H-SPLICE [5171] 1/4 X 1I/4 GALV NAIL IN RIVET [2RIVET25X125] 3I/2 X 5I/2 X 1/6 FORMED ALUM FLASHING [AFR062-350550] WELDED GUTTER POST ASSEMBLY (REF DWG Gl 0) SIDEWALL CLOSURE AT BUILDING 05 0 y SCALE 3=1-0 PLACE ONE STRIP OF PUTTYLASTIC TAPE IN CENTER OF GUTTER SPLICE TO CREATE A WATERTIGHT SEAL BETWEEN GUTTER SPLIOE AND GUTTER PLACE A CONTINUOUS BEAD OF SILICONE CAULK ALONG THE BACK OF 8MM SINGLE H-SPLICE BEFORE MOUNTING TO GUTTER 05 0 // SCALE 6=1-0 mm ROUGH BROTHERS INC 5513 VINE STREET CINCINNATI OHIO 45217 1-800-543-7351 513-242-0310 VOICE 513-242-0311 FAX 513-242-0816 L APPLIES TO OESTGN OF STRUCTURAL COMPONENT'S ONL" < O Q' 1^ < o cn CD cr < a 'J G5.0 72 WIDE 8MM POLYCARBONATE (THERMAGLAS SLT)- 24 LG 1 x3/4 xl/6 ANGLE SPACED EQUALLY (4) TIMES EACH SLOPE - ATTACHED */ #10x3/4 TEK SCREWS - 12GA FORMED TUBE PURLIN BRACKE:T FOR BOLTED GABLE TRUSS [S09S45-XX] — STRUT BRACKET FOR BOLTED TRUSS [S09S424-XX] TO NEXT TRUSS 3 -03/4 TO NEXT TRUSS 6 -03/4 6 -03/4 TO NEXT RAFTER TO NEXT RAFTER #12 X 1I/2 HHW-WH TEK SCREW 8MM DOUBLE H-SPLICE [5171 72 WIDE 8MM POLYCARBONATE (THERMAGLAS SLT) MID-PANEL SUPPORT Sc #12 X 1I/2 WHITE TEK SCREW W/l1/^ WHITE BONDED WASHER (2 PER PANEL 9 24 0 C BETWEEN ROOF RAFTER IS EACH PURLIN) 72 WIDE 8MM POLYCARBONATE (THERMAGLAS SLT) MID PANEL SUPPORT DETAIL -BMM ALUM BAR CAP [5166] -23/4 X 53/a X 1/5 FORMED ALUM FLASHING [AFR062-275537] -2x4 BOLTED TOP CHORD ASSEMBLY (REF Gl 0) 72 WDE 8MM POLYCARBONATE (THERMAGLAS SLT)- 8MM DOUBLE H-SPLICE [5171] 72 WIDE 3MM POLYCARBONATE (THERMAGLAS SLT) 2 SO TUBE W/(i) 9/6 DIA HOLE EA END - TRUSS STRUT 2I/2 X 2 ALUM ANGLE [A129-2002] - #12X1 H H TEK SCREW - ALUM 1I/4 SQ SINGLE CLAMP [A059-1002]- SMM DOUBLE H-SPLICE [5171] TO NEXT TRUSS 3- 03/4 TO NEXT TRUSS 6 -03/4 6 -03/4 TO NEXT RAFTER TO NEXT RAFTER 72 WIDE 8MM POLYCARBONATE (THERMAGLAS SLT)- - 2I/2 X 2 ALUM ANGLE [Al 29-2002] -2x4 BOLTED TOP CHORD ASSEMBLY (REF 01 0) TEK SCREW -ALUM 11/4 SQ SINGLE CLAMP [A059-1002] - SMM DOUBLE H-SPLICE [5171] 72 WIDE SMM POLYCARBONATE (THERMAGLAS SLT) 72 WIDE 8MM POLYCARBONATE (THERMAGLAS SLT) #10 X 1/2 SELF-TAPPING ' SCREW AT 9 0 C - EPDM GASKET EACH SIDE OF RAFTER CAP [1PL-0130] SMM ALUM RAFTER CAP [5166] SMM ALUM METAL SCREW RAFTER 6-0 0 0 [5164] #10 X 1/2 TEK SCREW RAFTER TO GUTTER TERMINATOR #10 X 1/^ SELF-TAPPING SCREW @ 9 0 C - 72 WIDE SMM POLYCARBONATE (THERMAGLAS SLT) SMM METAL SCREW BAR (RAFTER) [5164] SMM ALUM RAFTER CAP [5156] EPDM GASKET TO BE INSTALLED IN BAR CAP ON SITE BY FIELD CREW [lPL-0130] M I I M IT ' 1111111/ 2 RAFTER #12 X 1 GALV HEX HD TEK SCREW @ EACH TUBE PURLIN 3 A GLAZING BAR CAP ASSY DETAIL SCALE 3=1-0 GUTTER TERMINATOR DETAIL ROUGH BROTHERS INC 5513 VINE STREET CINCINNATI OHIO 45217 1-SD0-543-7351 513-242-0310 VOICE 513-242-0311 FAX 513-242-0816 ENGINEERS SEAL APPLIES TO DESIGN OF STRUCTURAL COMPONENTS ONLY • ISVISIOM MCOBP < o Q b- < o cn Ul cr < .1 RIDGE VENTILATOR RAIL [S0962R] ALUM END RAFTER [5152] RIDGE VENTILATOR ASSEMBLY [S0962] 72 WIDE 8MW POLYCARBONATE (THERMAGLAS SLT) RIDGE VENTILATOR HOOD [S0962H] FIELD ROOF VENTll ATOR NOTF. 1 RIDGE VENTILATOR TO BE ASSEMBLED IN FIELD USING THE PROVIDED # 14 X 1 TEK & AVEX RIVETS 2 EACH SECTION TO BE FASTENED DOWN WITH A MIN OF 8 #12x1 5 HEX HD GALV TEK SCREWS PER SIDE FRONT FLASHING NOTFS. 1 FLASHING TO BE HELD FLUSH WITH FRONT BAR CAP 2 2 TO EXTEND UNDER RIDGE VENTILATOR 3 OAULK BETWEEN FLASHING & RIDGE VENTILATOR GABLE GLAZING DETAIL RIDGE VENTILATOR BIRD GUARD [S0962M] RIDGE VENTILATOR END CAP [SD962C] A \ RIDGE VENTILATOR EXPLODED ASSEMBLY 05 2 y SCALE 1I/2 =1 -0 RIDGE VENTILATOR ASSEMBLY [S0962] #12 X II/2 TEK SCREW W/WASHER (11) PER SIDE EQUALLY SPACED [2GT12X15DHH] 1/4 X 1/2 FOAM TAPE PLACE BETWEEN RIDGE VENTILATOR HOLD DOWN FLANGES AND POLYCARBONATE [lPL-1000] SMM ALUM BAR CAP [5166] APPLY CLEAR SILICONE SEALANT WHERE END CAP MEETS FLASHING [1PA-P120100CLCT] , - RIDGE VENTILATOR ASSEMBLED IN FIELD [S0962] 6 X 13 X 22GA GALV FORMED ANGLE FLASHING [SF22G1261301305] - RIDGE VENTILATOR ASSEMBLED IN FIELD [S0962] / \ / \ / \ / \ / \ \ \ \ \ / / / \ \ ^ a -\ e #12 X 1 TEK SCREW W/WASHER LOCATED 1 FROM EACH END 4 SCREWS PER SPLICE [2GT12X100HH] RIDGE VENTILATOR FLASHING PLACED ON CENTER WITH TRUSS TOP CHORD #12 X 1I/2 TEK SCREW «/WASHER/ (11) PER SIDE EQUALLY SPACED^ |^2GT12X15DHH] 2x4 BOLTED TOP CHORD ASSEMBLY U NO 2 \ ROOF GLAZING DETAIL G5 2 J SCALE 3-1-0 ALUM END RAFTER [5162 2x4 GALV TOP CHORD SMM ALUM BAR CAP [5166] - TUBE/Z-PURLIN (REF 01 0) 4 \ FRONT FLASHING DETAIL 05 2 y SCALE 3=1-0 c2Czcn ROUGH BROTHERS INC 5513 VINE STREET CINCINNATI OHIO 45217 1-800-543-7351 513-242-0310 VOICE 513-242-0311 FAX 513-242-0816 EhGINPERS SFAL APPLIES TO DESIGN OF STHLLTURAL COMPONEMS ONLY 05.2 NOTES, 1 STRINGERS NOT SHOWN FOR CLARITY 2 FOR PQST LAYOUT REFER TO 01 0 O® O (T) © © SHADE TRUSS STl -m dl) is?i (SD Z!5 55 55 55 55 55TB 55 55 155 liS^'^iP © ®^® © © ® ® ® © ®® ^ZJ= ^Ti^j) 4i)-<ii) (s!) ^0 4iii (ii) (ii)— 155=^!) ISO (S!) -ISF ^5 55 55 55® ® liij (SO (s5!g) NOTF. ALL FIXTURES MOUNTING TO OUR STRUCTURE NEED TO BE BELOW 13-0 ELEV IN RETRACTABLE SHADE AREA -BO-TEX BO-LlTE 7X5 2mm SS SHADE WIRE [1SH-0461] -WELDED POST ASSEMBLY (REF DWG Gl 0) 1 END CAP BOTH ENDS LEAD EDGE TUBE [1PL-0020-100] %i) ijgz—(jj) 4!). (jj) sjiy'^ii tfc liV^—AS^^^i 4ir^^g^^^g(te 0 "(ST) 55 B \ TRUSS SECTION 06 0 y SCALE 1/4 = 1 -0 @ @ @ (fiJ® @ @ @ @ @ @ @@ SHADE TRUSS STl SHADE SYSTEM PATTERN LAYOUT KEY ROLLER BRACKET 1SH-0480 (MOUNTED TO SOUTH SIDE OF TRUSS) CLOTH TRAVEL TO COVER POSTION 0 DRIVE BOX #HWA 53 GEAR BOX ® WIRE CLIP [AHW1443D] ® CABLE CLIP 3/g DIA GALV [1SH-0299] m SHADE CLOTH UNCOVER POSITION © LEADING EDGE SUPPORT PLATE @ COMPACT WRE TEN SIGNER [1SH-0472] @ WIRE TENSIONER [1SH-0320] SCALE 1/4 = 1 -0 ROUGH BROTHERS INC PUSH-PULL SUSPENDED SHADE SYSTEM SYSTEM INCIIinFR 1 LOCK #HWA 53 GEAR BOX 2 TGU21 PINIONS W/H40 RIDDER RACKS 3 SHADE CLOTH TO BE BO-TEX BOW-LITE 7X5 A SHADE CLOTH MATERIAL I BO-TEX BO-LITE 7X5 607 AVG SHADE FACTOR 1000 DENIER POLYESTER WTH BLACK FLEXIBLE FOAMED PVC COATING FIELO NOTTS 1 FIRST WIRE POSITIONED 8 OFF OF CL QF RIDGE 2 SPACING OE WIRE TENSIONER [lSH-0472] Sc WIRE TIGHTENER [lSH-0320] IS TO EQUAL THE SPACING OF THE SHADE WIRE REFER TO DETAIL B/G6 0 3 TENSIONER AND TIGHTENER ARE TQ BE EITHER TEK SCREWED OR CLAMPED IN PLACE BEFORE POLYCARBONATE IS INSTALLED 4 INSTALL SHADE GEAR DRIVE BOX CENTERED ON THE MIDDLE BAY FRAMING PQST CENTERED WITH THE TOP TRUSS CHORD WIRE TIGHTENER 2 SQ [1SH-0320] 2 X 2 X 1/fe ANGLE CLIP [SCI 2200200-2004] COMPACT WIRE ^GHTENER [lSH-0472] ® POST WELDED PQST ASSEMBLY (REF DWG Gl 0) 1 -27/^ ELEV c A SHADE SUPPORT @ HOUSE (GABLE END ELEVATION) 06 0 J SCALE 1/4 = 1 -0 CXZCQ ROUGH BROTHERS INC 5513 VINE STREET CINCINNATI OHIO 45217 1-800-543-7351 513-242-0310 VOICE 513-242-0311 FAX 513-242-0816 ENGINEERS SEAL APPLIE TO DFSICN OF STRUcrUR COMPONEVTS ONLY I sBvxsioa aiooBD < O < O CQ m —} < o G6.0 SHADE GEAR BOX MOTOR MOUNT [S1590] U-JOINT ASSEMBLY [4WS9110] 5% STEEL SHAFT HANGER ASM [SHB054] 1 315" DIA 14 GA DRIVE SHAFT TUBE [7R131514G-2876] RELD NOTF. ENSURE ROLLER BRACKET IS SET LEVEL - SECURE W/2 #12 X 1 TEK U-JOINT ASSEMBLY 4 HARDWARE [4WS9110] MATCH DRILL DRIVE SHAFT WITH U-JOINT 1 315 DIA 14 GA DRIVE SHAFT TUBE [7R131514G-2876] 53^ STEEL SHAFT HANGER ASM [SHB054] MATCH DRILL HOLE THROUGH DRIVE TUBE TQ FIT 5/6 X l3/4 NUT [2GB31X173HH" ROLLER BRACKET [1SH-04aO] 1 315" GALV [PUSH PULL TUBE] 2X1 TEK SCREW U-BQLT FOR 2 X [4WH2525] B A ROLLER BRACKET DETAIL 2mm SS SHADE WIRE -CABLE CLIP 3/6 DIA GALV [1SH-0299] ATTACH W/f|2-r TEK SCREW (TYP) SHADE DRIVE SYSTEM DETAIL SCALE 3=1-0 53/§ STEEL SHAFT HANGER ASM [SHB054] 1 315 DIA 14 GA DRIVE SHAFT TUBE [7R131514G-2876] LOCK MANUAL DRIVE BOX 120 NM [4F-HWA531206] 1 315 DIA 14 GA DRIVE SHAFT TUBE [7R131514G-2876] CHAIN WHEEL [4E-HKR010116] CHAIN [4F-HKE960509] 1/4 ALUM PLATE DRIVE BOX MOUNTING ANGLE [065004-FAB1] SYSTEM PINION TU21-40 [1SH-04a3] 53^ STEEL SHAFT HANGER ASM [SHB054] (2) 3/^ xll/4' HH GALV BOLT/NUT GEARBOX MOUNTING 1/2" ALUM SHIM ic 1 /2 ALUM SHIM U-BOLT FOR 2 X 2 SQ [4WH2525] SYS U-RACK L3955 H40-3 [1SH-04I 1 315 DIA 14 GA DRIVE SHAFT TUBE |;7R131514G-2876] SHADE TRUSS TOP CHORD U-JOINT DETAIL PINION SECTION DETAIL SHADE DRIVE SYSTEM DETAIL mm ROUGH BROTHERS INC m 5513 VINE STREET CINCINNATI OHIO 45217 1-500-543-7351 513-242-0310 VOICE 513-242-0311 FAX 513-242-0816 ENGINEESS SEAL APPLIES TO DESIGN OF STRUCTURAL C01!PONENTS ONTY • KSVZfllOV MCOPP < Q" < O CQ on _j < G6.1 REF SHEET G5 0 FOR CORRECT TENSIONER LOCATION WRE TIGHTENER FOR 2 SQ [1SH-0320] WIRE TIGHTENER COMPACT VERSION [1SH-0472] GABLE 8UU POLYCARBONATE 5^^ STEEL SHAFT HANGER ASM [SHB054] - SYSTEM PINION TU21-40 [lSH-0483^ COUPLING RACK [lSH-0492] - SQ GALV GABLE END WIRE TENSIONER SUPPORT TUBE BO-LITE GREEN 53r [1F161012405030] SHADE WIRE OLIP [AHW1443D] SHADE DRIVE SYSTEM SECTION G6 2 / SCALE 3=1-0 GENERAL NOTES. 1 THIS VIEW IS A SECTION VIEW AND DOES NOT SHOW ALL BAYS REF SHEET Gl 0 FOR CORRECT NUMBER OF BAYS SQ GALV GABLE END WIRE TENSIONER SUPPORT TUBE -REF SHEET G6 0 FOR CORRECT TENSIONER LOCATION WIRE TIGHTENER FOR 2 SQ [lSH-0320] WIRE TIGHTENER COMPACT VERSION [lSH-0472] 1 SQ LEAD EDGE IBGA GALV TUBE [7C001640] 1 SQ LEAD EDGE 18GA GALV TUBE , [7C001640] - - 18GA LEADING EDGE SUPPORT PLATE W/ GROMMET [S1561A] SHADE DRIVE SYSTEM SECTION (FROM ABOVE) G6 2 / SCALE mm ROUGH BROTHERS INC 5513 VINE STREET CINCINNATI OHIO 45217 1-800-543-7351 513-242-0310 VOICE 513-242-0311 FAX 513-242-0816 ENGINEERS SEAL APPUES TO DESIGN OF STRUCTURAL DNL^ • RIVI8IGM MOOBD < o LL < o m if) _i cr < 0) T- Q6 • 2