Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
2780 Loker Ave W; ; CBC2018-0530; Permit
Ccityof Carlsbad Commercial Permit Print Date: 12/18/2018 Permit No: CBC2018-0530 Job Address: Permit Type: Parcel No: Valuation: Occupancy Group: # Dwelling Units: Bedrooms: 2780 Loker Ave W BLDG-Commercial 2091001600 $84,800.00 Work Class: Lot#: Reference#: Construction Type: Bathrooms: Orig. Plan Check#: Cogen Status: Applied: Issued: Permit Finaled: Inspector: Closed -Finaled 09/18/2018 10/22/2018 AKrog Plan Check#; Final Inspection: 12/18/2018 12:55:26PM Project Title: Description: HUDSON PRINTING: 212 ROOF MOUNT PV, 78.44KW BUILDING PERMIT FEE ($2000+) BUILDING PLAN CHECK FEE (BLDG) SB1473 GREEN BUILDING STATE STANDARDS FEE STRONG MOTION-COMMERCIAL Total Fees: $981.53 Owner: JAABALLC 1767 Old Glen St SAN MARCOS, CA 92078 Total Payments To Date: $981.53 Contractor: N B BAKER ELECTRIC INC 1298 Pacific Oaks Pl Escondido, CA 92029-2900 76D-745-2D01 Balance Due: Please take NOTICE that approval of your project includes the "Imposition" of fees, dedications, reservations, or other exactions hereafter collectively referred to as "fees/exaction." You have 90 days from the date this permit was issued to protest imposition of these fees/exactions. If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their imposition. You are hereby FURTHER NOTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project. NOR DOES ff APPLY to any fees/exactions of which you have previously been given a NOTICE similar to this, or as to which the statute of limitation has previously otherwise expired. $0.00 1635 Faraday Avenue, Carlsbad, CA 92008-7314 I 760-6D2-2700 I 760-602-8560 f I www.carlsbadca.gov $561.05 $392.74 $4.00 $23.74 THE FOLLOWING APPROVALS REQUIRED PRIOR TO PERMIT ISSUANCE: •PLANNING •ENGINEERING •BUILDING •FIRE •HEALTH 0HAZMATIAPCD Ccityof Building Permit Application Plan Check No.~\~ -05 2-Q 1635 Faraday Ave., Carlsbad, CA 92008 ½4'' Est. Value . '0' \ '\- Carlsbad Ph: 760-602-2719 Fax: 760-602-8558 Plan Ck. Deposit email: building@carlsbadca.gov www.carlsbadca.gov Dateiq -l\.1-, -Ir'\ lswPPP JOB ADDRESS SUITE#/SPACE#/UNIT# 2780 Loker Avenue West IAPN 209 -100 -016 - Cl/PROJECT# ILOT# I PH;;E~50 I# OF UNITS I# BEDROOMS # BATHROOMS I TENANT BUSINESS NAME I CONSTR. TYPE I occ. GROUP P-M 1 Hudson Printing DESCRIPTION OF WORK: Include Square Feet of Affected Area(s) Rooftop solar installation of a 78.44 kWDC system on an existing Commercial building. 5011 sqft affected, 2\::2 ~ EXISTING USE I PROPOSED USE 11 GARAGE (SF) PATIO~ (SF) I DECKS-{SF) FIREPLACE I AIR CONDITIONING I FIRE SPRINKLERS Commercial Building :ommercial Buildii:J • YES0, No[] YES•No• YES•No• APPLICANT NAME Courtnev Cabral PROPERTY OWNER NAME Jabba LLC Prlmarv Contact ADDRESS ADDRESS 1298 Pacific Oaks Place 2780 Loker Avenue West CITY STATE ZIP CITY STATE ZIP Escondido CA 92029 Carlsbad CA 92010 PHONE IFAX PHONE IFAX 760-745-2001x 5027 760-602-1260 EMAIL EMAIL lventura@baker-electric.com DESIGN PROFESSIONAL Daniel Postoian CONTRACTOR BUS. NAME Baker Electric Inc ADDRESS ADDRESS 1298 Pacific Oaks Place 1298 Pacific Oaks Place CITY STATE ZIP CITY STATE ZIP Escondido CA 92029 Escondido CA 92029 PHONE IFAX PHONE IFAX 760-745-2001x 5148 760-745-2001 EMAIL EMAIL doostoian®baker-electric.com STATE UC.# ISTATELIC.161756 161756 I CLASS I CITY BUS. UC.# C10,C46,B 161756 (Sec. 7031.5 Business and Professions Code. Any City or County which requires a permit to construct, alter, improve, demolish or repair an~ structure, prior to Its issuance, also requires tile applicant for such permit to file a si11:ned statement that he is licensed pursuant to the provisions of the Contractor's license Law {Chapter 9, commending with Section 7000 of Division 3 of the Business and Professions Code) or £hat he is exempt therefrom, and the basis for the alleged exemption. Any violation of Section 7031.5 by any applicant for a permit subjects the applicant to a civil penalty of not more than five hundred dollars ($500)). WORKERS' COMPENSATION Workers' Compensation Declaration: I hereby affirm under penalty of pefjuf'/ one of the following dec/arafions: D I have and will maintain a certificate of consent to self-Insure for workers' compensation as provided by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. [2] I have and will maintain workers' compensation, as required bv Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. My workers' compensation insurance carrier and policy number are: Insurance co. Alliant Insurance Services, Inc Policy No. MWC30560500 Expiration Date 03/01/2019 ~section need not be completed if the permit is for one hundred dollars ($100) or less LJ Certificate of Exemption: I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject lo the Workers' Compensation Laws of California. WARNING; Failure to secure workers' compensation coverage is unlawful, and shall subject an employer lo crlmlnal penalties and civll fines up to one hundred thousand dollars (&100,000), in addition to the cost of compensalion, damages provld for In Sacllon 3706 of lhe Labor code, Interest and attorney's fees. Ji! CONTRACTOR SIGNATURE I hereby affirm that I am exempt from Contractor's License Law for the following reason: D I, as owner of the property or my employees with wages as their sole compensation, will do the work and the structure is not intended or offered for sale (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and who does such work himself or through his own employees, provided that such improvements are not intended or offered for sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale) • • I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and contracts for such projects with contracto~s) licensed pursuant to the Contractor's License Law), I am ex.empt under Section ____ ,Business and Professions Code for this reason: 1. I personally plan to provide the major labor and materials for construction of the proposed property improvement. OYes ONo 2. I (have/ have not) signed an application for a building permit for the proposed work. 3. I have contracted with the following person (firm) lo provide the proposed construction (include name address I phone/ contraclOfs' license number): 4. I plan to provide portions of the work, but I have hired the following person to coordinate, supervise and provide the major work (include name/ address I phone I contractors' license number): 5. I will provide some of the work, but I have contracted (hired) the following persons to provide the work indicated (include name I address I phone/ type of work): ,6$ PROPERTY OWNER SIGNATURE •AGENT DATE - - COMPLETE THIS SECTION FOR NON-RESIDENTIAL BUILDING PERMITS ONLY ls the applicant or future building occupant required to submit a business plan, acutely hazardous materials registration form or risk management and prevention~ under Sections 25505, 25533 or 25534 of the Presley-Tanner Hazardous Substance Account Act? Yes .,, No Is the applicant or future building occupant required to obtain a permit from the air pollution control district or air quality management district? Yes .,, No Is the facility to be constructed within 1,000 feet of lhe outer bound.-y of a school site? Yes ., No IF ANY OF THE ANSWERS ARE YES, A FINAL CERTIFICATE OF OCCUPANCY MAY NOT BE ISSUED UNLESS 11-IE APPLICANT HAS MET OR IS MEETING THE REQUIREMENTS OF THE OFFICE OF EMERGENCY SERVICES AND THE AIR POLLUTlON CONTROL DISTRICT. CONSTRUCTION LENDING AGENCY 1 hereby affirm that there II a construction lending agency for the performance of the work this permit Is issued (Sec. 3097 (1) Civil Code). Lender's Name Lenders Address APPLICANT CERTIFICATION I certify that I have read the application and state that the above lnfonnation is conectand that the infonnatlon on the plans is accurate. I agree to complyMth all City ordinances and State laws relating to building oonstructlon. I hereby au1horize representative of the City of Car1sbad to enter upon the above mentioned property for inspection purJX)S8S. I .AJ..S0 AGREE TO SAVE, INDEMNIFY AND KEEP HARMLESS THE CITY OF CARLSBAD AGAINST ALL LIABILITIES, JUDGMENTS, COSTS AND EXPENSES WHICH MAY IN ANYWAY ACCRUE AGAINST SAID CITY IN CONSEQUENCE OF THE GRANTING OF THIS PERMIT. OSHA: An OSHA permh is required for excavations over 5'0' deep and demolition or construction of structures over 3 stories in height. EXPIRATION: Every permit Issued by !he Building Official under lhe provisions of this Code stiall expire by limitation and become nul and void if the building or work authorized by such permit is not commenced within 180 days from the date of such pemitor iflhe bui!ding or work authorized by such ~Js.Sl:lspended 01' abandoned at any time after !he work is c.orrrnenced for a period of 180 days (Section 106.4.4 Uniform Buikling Cocle). AS' APPLICANT'S SIGNATURE DATE q IL f I 2d. f STOP: THIS SECTION NOT REQUIRED FOR BUILDING PERMIT ISSUANCE. Complete the following ONLY If a Certificate of Occupancy will be requested at final inspection. Fax (760) 602-8560, Email building@carlsbadca.gov or Mail the completed form to City of Carlsbad, Bui~ing DMsion 1635 Faraday Avenue, C.risbad, C.IWomia 92008. CO#: (Office UH Only) CONTACT NAME OCCUPANT NAME ADDRESS BUILDING ADDRESS CtTY STATE ZIP CITY STAT< Carlsbad CA PHONE FAX EMAIL OCCUPANT'S BUS. UC. No. DEUVERY OP'IIONS PICK UP: CONTACT (Usted above) OCCUPANT (Listed above) CONTRACTOR (On Pa,. 1) MAIL TO: CONTACT (Usted above) CONTRACTOR (On Pl, 1) OCCUPANT (Listed above) MAIL/ FAX TO OTHER: _______________ _ ,15 APPLICANl'S SIGNATURE ASSOCIATED CB# ND CHANGE IN USE/ NO CONSTRUCTION CHANGE OF USE/ NO CONSTRUCTION DATE ZIP PERMIT INSPECTION HISTORY REPORT (CBC2018-0530) Permit Type: BLDG-Commercial Application Date: 09/18/2018 Owner: JAABALLC Work Class: Cogen Issue Date: 10/22/2018 Subdivision: CARLSBAD TCT#92-06 Status: Closed -Finaled Expiration Date: 06/17/2019 Address: 2780 Loker Avew Carlsbad, CA 92010-6611 IVR Number: 14005 Scheduled Actual Inspection Type Inspection No. Inspection Status Primary Inspector Date Start Date Reinspection Complete 1211012018 12110/2018 BLDG-34 Rough 078175-2018 Partial Pass Andy Krogh Relnspection Incomplete Electrical Checklist Item COMMENTS Passed BLDG-Building Deficiency New panel as noted on plans Yes BLDG-35 Solar 078176-2018 Failed Andy Krogh Relnspectlon Complete Panel Checklist Item COMMENTS Passed BLOG-Building Deficiency Roof not ready No BLDG-Final 078177-2018 Failed Andy Krogh Reinspectlon Complete Inspection Checklist Item COMMENTS Passed BLDG-Building Deficiency No BLDG-Plumbing Final No BLDG-Mechanical Final No BLDG-Structural Final No BLOG-Electrical Final No 1211812018 12/18/2018 BLDG-35 Solar 079113-2018 Passed Andy Krogh Complete Panel BLDG-Final 079115-2018 Passed Andy Krogh Complete Inspection Checklist Item COMMENTS Passed BLDG-Structural Final Yes BLDG-Electrical Final Yes December 18, 2018 Page 1 of 1 DATE: October 18, 2018 JURISDICTION: Carlsbad PLAN CHECK#.: CBC2018-0530 ✓• EsG1I .t•. SAft.built Comp<ir:'/ SET: II PROJECT ADDRESS: 2780 Loker Avenue West PROJECT NAME: 60 KW Commercial Roof Mount PV System • APPLICANT ...--D-:tl.lRIS. ~ The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's building codes. D The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. D The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. D The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. D The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. D The applicant's copy of the check list has been sent to: ~ EsGil staff did not advise the applicant that the plan check has been completed. D EsGil staff did advise the applicant that the plan check has been completed. Person contacted: Date contacted: Mail Telephone 0 REMARKS: By: Eric Jensen EsGil GouFtn@-· ·f) Email: Telephone#: 760 745-2001 X5027 lventura@baker-electric.com Fax In Person Enclosures: 10/11 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858) 560-1576 DATE: September 28, 2018 JURISDICTION: Carlsbad PLAN CHECK#.: CBC2018-0530 ✓• EsG1I A SAFEbuilf Company SET: I PROJECT ADDRESS: 2780 Loker Avenue West PROJECT NAME: 60 KW Commercial Roof Mount PV System • APPLICANT _;;21 JURIS. D The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. D The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. D The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. ~ The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. D The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. D The applicant's copy of the check list has been sent to: D EsGil staff did not advise the applicant that the plan check has been completed. ~ EsGil staff did advise the applicant that the plan check has been completed. Person contacted: Courtney "D Telephone#: 760 745-2001 X5027 --eim;cortt&E:ted.:._· :.,l~W liB'(by,...J""1) Email: lventura@baker-electric.com t;Mail Telephone In Person 0 RE By: Eric Jensen EsGil 09/20 Enclosures: 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858) 560-1576 C'arlsbad CBC2018-0530 September 28, 2018 GENERAL PLAN CORRECTION LIST JURISDICTION: Carlsbad PROJECT ADDRESS: 2780 Loker Avenue West DATE PLAN RECEIVED BY ESGIL: 09/20 REVIEWED BY: Eric Jensen FOREWORD (PLEASE READ): PLAN CHECK#.: CBC2018-0530 DATE REVIEW COMPLETED: September 28, 2018 This plan review is limited to the technical requirements contained in the International Building Code, Uniform Plumbing Code, Uniform Mechanical Code, National Electrical Code and state laws regulating energy conservation, noise attenuation and disabled access. This plan review is based on regulations enforced by the Building Department. You may have other corrections based on laws and ordinances enforced by the Planning Department, Engineering Department or other departments. The following items listed need clarification, modification or change. All items must be satisfied before the plans will be in conformance with the cited codes and regulations. The approval of the plans does not permit the violation of any state, county or city law. Please make all corrections, as requested in the correction list. Submit FOUR new complete sets of plans for commercial/industrial projects (THREE sets of plans for residential projects). For expeditious processing, corrected sets can be submitted in one of two ways: 1. Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602-2700. The City will route the plans to EsGil and the Carlsbad Planning, Engineering and Fire Departments. 2. Bring Til\lQ corrected set of plans and calculations/reports to EsGil, 9320 Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of plans and calculations/reports directly to the City of Carlsbad Building Department for routing to their Planning, Engineering and Fire Departments. NOTE: Plans that are submitted directly to EsGil only will not be reviewed by the City Planning, Engineering and Fire Departments until review by EsGil is complete. • To facilitate rechecking, please identify, next to each item, the sheet of the plans upon which each correction on this sheet has been made and return this sheet with the revised plans. • Please indicate here if any changes have been made to the plans that are not a result of corrections from this list. If there are other changes, please briefly describe them and where they are located on the plans. Have changes been made not resulting from this list? • Yes • No Carlsbad CBC2018-0530 September 28, 2018 ELECTRICAL and ENERGY COMMENTS PLAN REVIEWER: Eric Jensen ELECTRICAL (CALIFORNIA ELECTRICAL CODE) 1. Provide design compliance with CEC 690.12 (rapid shut-down) on the plans. The jurisdiction has contracted with EsGil, located at 9320 Chesapeake Drive, Suite 208, San Diego, California 92123; telephone number of 858/560-1468, to perform the plan review for your project. If you have any questions regarding these plan review items, please contact Eric Jensen at Esgil. Thank you. Carlsbad CBC2018-0530 September 28, 2018 [DO NOT PAY -THIS IS NOT AN INVOICE] VALUATION AND PLAN CHECK FEE JURISDICTION: Carlsbad PREPARED BY: Eric Jensen PLAN CHECK#.: CBC2018-0530 DATE: September 28, 2018 BUILDING ADDRESS: 2780 Loker Avenue West BUILDING OCCUPANCY: BUILDING AREA Valuation Reg. PORTION ( Sq. Ft.) Multiplier Mod. Air Conditioning Fire Sprinklers TOTAL VALUE Jurisdiction Code cb By Ordinance -·· --··-, 1997 UBC Buildin Permit Fee 9 __ _ ..,. l 1997 use Plan Check Fee • ! Type of Review: • Complete Review VALUE D Structural Only D Repetitive Fee ..,.1 Repeats -~I • Other D Hourly EsGII Fee 1------tlHr. @ • Comments: ($) 84,000 $336.551 Sheet 1 of 1 E TKJ Structural Engineering 9820 Willow Creek Rd., Suite 455 San Diego, CA 92131 858.649.1700 www.tkJse.com STRUCTURAL CALCULATIONS Date: TKJSE Job No: For: Baker Electric Hudson Printing 2780 Loker Ave W. Carlsbad, CA 92010 September 12, 2018 18086.00 CBC2018-0530 2780 LOKER AVE W HUDSON PRINTING: 212 ROOF MOUN PV. 78.44KW 2091001600 10/10/2018 CBC2018-0530 TKJ Structural Engineering 9820 Willow Creek Rd., Suite 455 San Diego, CA 92131 858.649.1700 www.tkjse.com SCOPE AND TABLE OF CONTENTS Project Description: Client: Property: Baker Electric Hudson Printing 2780 Loker Ave W. Carlsbad, CA 92010 The calculations provided herein are the property of TIU Structural Engineering, Inc., and may be used solely by the Client for the Project located at the Address noted above. The project consists solely of evaluating the structural capacity of the existing roof framing for the additional loads imposed by the proposed ballasted solar arrays. The design of the ballast system and all other components is the responsibility of others. Table of Contents: Section USGS Design Maps Summary Report Basis of Design Array Site Plan Design Loads & Building Seismic Loads Roof Framing Key Plan Typical Roof Joist Checks Roof Beam & Girder Checks Mechanical Attachments Reference Documents 1 2 3 4 7 8 10 15 17 Pa es to 1 to 2 to 3 to 6 to 7 to 9 to 14 to 16 to 18 Hudson Printing 2780 Loker Ave W, Carlsbad, CA 92010, USA Latitude, Longitude: 33.133232, -117.25433829999997 9staples Google Clate Loker..q "e1p Design Code Reference Document Risk Camgory I Site Class Type Value Description Ss 1.039 MCER ground motion. (for 0.2 second period) ' ,, .,, ,, "MS SM1 ,-•>os 8 01 0.403 1.126 0.644 0.751 0.429 MCER ground motion. (ror 1.0s period) Site-modified spectral acceleration value Site-modified spectral acceleration value Numeric seismic design value at 0.2 second SA Numeric seismic design value at 1.0 second SA l ype soc Fa F V PGA FPGA PGAM TL SsRT Value D 1.085 1.597 0.396 1.104 0.437 8 1.039 Description Seismic design category Site amplification factor at 0.2 second Site amplification factor at 1.0 second MCEG peak ground acceleration Site amplification factor at PGA Site modified peak ground acceleration long-period transition period in seconds Probabilistic risk-targeted ground motion. (0.2 second) 8/31/2018, 2:15:32 PM ASCE7-10 II D -Stiff Soil SsUH SsD 1.048 1.5 Factored unifonn-hazard (2% probability of exceedance in 50 years) spectral acceleration Factored detenninistic acceleration value. (0.2 second) S1RT S1UH S1D PGAd CRS CR1 0.403 0.386 0.6 0.5 0.991 1.044 Probabilistic risk-targeted ground motion. (1 .0 second) Factored unifonn-hazard (2% probability of exceedance in 50 years) spectral acceleration. Factored detenninistic acceleration value. (1.0 second) Factored detenninistic acceleration value. (Peak Ground Acceleration) Mapped value of the risk coefficient at short periods Mapped value of the risk coefficient at a period of 1 s Map data ©2018 Google BASIS OF DESIGN • 2016 California Building Code • 2016 California Existing Building Code • ASCE 7-10 Minimum design loads for buildings and other structures • SEAOC PVl-2012: Structural Seismic Requirements and Commentary for Rooftop Solar Photovoltaic Arrays • SEAOC PV2-2017: Wind Design for Solar Arrays • 2015 ANSI/ AF&PA Special design provisions for wind and seismic [2015 SDPWS] • 2015 ANSI/ AF&PA National design specification for wood construction [2015 NOS] Material Soecifications & Strengths • Douglas Fir-Larch • Glulam Timber Deflection • Roof Framing: Dead and Ljve Loads Roof Exterior Walls .6.LL < L/360 .6.TL < L/240 DL 9 psf 75 psf Seismic Design Data: ASCE 7-10 Occupancy Category Seismic Importance Factor Mapped Acceleration Mapped Acceleration Design Spectral Acceleration Design Spectral Acceleration Site Class Seismic Design Category Analysis Procedure Seismic Force Resisting System LL As specified in 2015 NOS 24F-V4 & 24F-V8, As specified in 2015 NOS LLr 20psf le= Ss= S1= Sos= So1= Wind DesiKn Data: ASCE 7•10 II Basic Wind Speed 1.0 Exposure Category 1.039 g Enclosure Category 0.403 g Gust & Int. Pressure Coeff. 0.751 g Directionality Factor 0.429 g Topographic Factor 0 0 Nonstructural Components Concrete Tilt-Up Panel Shear Walls Project: Project No.: Date: V• 110 C Enclosed GCp;= 0.18 Kd= 0.85 K,1= 1.00 mph Page 2 of 18 Hudson Printing 18086 9/7/2018 Page3of18 ARRAY SITE PLAN ----------------156'-----------------i ... I Project: Project No.: Date: Page 4 of 18 Hudson Printing 18086 9/7/2018 ROOFTOP BALLASTED-MOUNTED SOLAR ARRAYS: BUILDING SEISMIC WALL WEIGHT WALL DEAD LOADS TO ROOF DIAPHRAGM Roof 7 Roof Area -13127 ft sq. I Wall Thickness= 6,0ln Wall Weight = 150pcf Trib. Wall Height= 19.00 ft Wall Length Wall Trib. Area Wall Openings Total Wall Equiv. Wall Framed Wall Elevation (ft) (ft') (ft') Area (ft') Weight (psi) North 160.0 3040.0 0.0 3040.0 17.4 South 152.0 2888.0 0.0 2888.0 16.5 West 90.0 1710.0 0.0 1710.0 9.8 East 76.0 1444.0 0.0 1444.0 8.3 Interior 84.0 1596.0 0.0 1596.0 9.1 Total Wall Se1sm1c Weight per Roof Area= 61.0 psi ROOFTOP BALLASTED-MOUNTED SOLAR ARRAYS: DESIGN LOADS ROOF DEAD LOADS I Roof Built-Up Roofing Waterproofing 1/2" Struct I Ply MEP Insulation 2x4@ 24" o/c 3.125" GLB@ 8'-0" o/c 6.75" GLB Girder Cone. Shear Walls Misc. Notes: live Load: • DL of beam member(s) self-weight included in analysis Assumptions: Joists 2.0 0.1 l.S 2.0 1.0 0.7 - - - 1.7 9.0 20.0 Beams 2.0 0.1 l.S 2.0 1.0 0.7 2.7 - - 1.0 11.0 20.0 Girders 2.0 0.1 l.S 2.0 1.0 0.7 2.7 0.9 - 1.1 12.0 20.0 Seismic 2.0 0.1 1.5 2.0 1.0 0.7 2.7 0.9 61.0 1.1 73.0 Project: Project No.: psf psf Date: Page 5 of 18 Hudson Printing 18086 9/7/2018 -Worst case for roof framing occurs where new panels cover the entire tributary area for a given member. -50% Roof live Load is removed at areas covered by proposed panels, as foot traffic will not occur on top of panels. Ill ROOFTOP BALLASTED-MOUNTED SOLAR ARRAYS: ARRAY LOADS ARRAY LOADS PER PLANS (FROM PANELCLAW ENGINEERING REPORT} System Weight (lb) Area (ft2) Load (psi) Array 1 4284 1070.0 4.00 Array 2 2602 672.0 3.90 Array 3 4620 1182.0 3.90 Array 4 2137 543.0 3.90 Array 5 1246 320.0 3.90 Array 6 4914 1240.0 4.00 Array 7 1703 440.0 3.90 Total 21506 5467.0 3.93 BUILDING SEISMIC WEIGHT INCREASE CHECK I Roof I Roof Area (ft') Existing I 13127 958307 lbs 21506lbs Roof Load (psi) I Mass to Roof (lb)I 73.o I 958307 I Project: Project No.: Date: Max psi= ! 4.00 Page 6 of 18 Hudson Printing 18086 9/12/2018 (E) Mass= (N) Mass= % Iner.= 2.2 < 10.0 OK JPer CBC Section 403.4, existing lateral load-carrying structural elements are permitted to remain unaltered if the demand capacity ratio dies not increase by more than 10%. Page 7 of 18 ROOF FRAMING KEY PLAN , RJ-1 - I~ RG-2!, l ---------I,,_..,... _______ ..,... __ ...,.._,,, __________ _ ' I RG-1 RG-3 s ; ---'--------------. --- , --------------, ·- Wood Beam Design Joist Label:LI ___ ___.o.RJc.•.clc_ __ _, GeometN Left Overhang Center Span Right Overhang Joist Spacing Roof Pitch = = = = = Point Load 1 Point Load 2 Point Load 3 Point Load 4 Existing New Dist Load 3 0.00ft 8.00ft 0.00ft 24" o.c. 0:12 DL 0# 0# 0# 0# DL (psf) Start End 9.0 9.0 4 4 0 0 Dist Load 4 0 0 DL(pln Start Ead Dist Load 1 18 18 Dist Load 2 8 8 Dist Load 3 0 0 Dist load 4 0 0 Q= 1.0 True Length= True Length= True Length= Overall Length= .7pEh LL or .6W 0# 0# 0# 0# 0# 0# 0# 0# .7pEh 0.00 ft 8.00 ft 0.00 ft 8.00 ft Location From Left 0.00 ft 0.00 ft 0.00 ft 0.00 ft Location LL (psf) or .6W {psf) From Left Start Ead Start Ead Start Ead 20 20 0 0 0.00 ft 8.00 ft -10 -10 0 0 0.00 ft 8.00 ft 0 0 0 0 0.00ft 0.00 ft 0 0 0 0 0.00 ft 0.00 ft .7pEh location LL (plf) or .6W (plf) From Left Start Ead Start Ead Start Ead 40 40 0 0 0.00 ft 8.00 ft -20 -20 0 0 0.00 ft 8.00 ft 0 0 0 0 0.00 ft 0.00 ft 0 0 0 0 0.00 ft 0.00 ft [LO for Wind loading or if not req'd per ASCE 7*10 12.4.3.1] Load Combinations D+L 0.60 +/* (.6W or .7pE) D D + (.6W or .7pE) Governing Combination: Deflection Criteria D + 0.75[L + (.6W or .7pE)l I D+l 6LL<=I L/ 360 l!.n<=( L/180 Joist Member Design Section Grade 2x4Sawn DF#2 b= 1.50 in Fv= 180 psi d= 3.50 in Fb= 900 psi Sx= 3.06 in3 E= 1600 ksi Ix= 5.36 in4 ~ ! • • ~ ,,, ~ e = i .. " Project: Project No.: Date: l Page 8 of 18 Hudson Printing 18086 9/7/2018 l Wood Beam Design Shear Peslcn Eauation F',= F,(C0 )(C")(C1)(C1)(C,) fv=VQ/lb (=3V / 2bd for rectangular sections] Flexural Design Eauatlon F',= F,(C0)(C")(Ci)(Cc)(C,)(Cv)(Ci,)(C,)(C,)(C,) f11=M/S., Modification Factors Co= 1.25 CM= 1.00 C1= 1.00 CL= 0.99 lu= 24 in Rb= 6.11 CF= 1.50 Cv= 1.00 Cru= 1.00 c,= 1.00 C,= 1.15 Cc= 1.00 Load Duration Factor {NOS 15 Table 2.3.2] Wet Service Factor (NOS 15 Table 4A, 4D, SA, SB) Temperature Factor [NOS 15 Table 2.3.3] Beam Stability Factor [NOS 15 3.3.3] Effective Unbraced Length [NOS 15 Table 3.3.3] Size Factor [NOS 15 4.3.6] Volume Factor [GLB's only. NOS 15 5.3.6] Flat Use Factor [NOS 15 Table 4A, 40, SA, SB] Incising Factor (NOS 15 Table 4.3.8] Repetitive Member Factor [=1.15 ifs<= 24" o.c.] Curvature Factor [GLB's only. See NDS 15 5.3.8] Vmax= Vm;n= Mmax= Mm;n= Rlmax= Rlmin= RRmax= RRmln= fv= F' -.- fb= F'b= .::UL= l!.TL= Project: Project No.: Date: Ana1ys1s :,ummary OL LL 104# 80# -104# -80# 208 ft-lbs 160 ft-lbs 0 ft-lbs 0 ft-lbs 104# 80# 104# 80# Design Summary 53 psi 225 psi 1442 psi 1930 psi O.OOin 0.215 in al/ 447 0.0000 in 0.4943 in =L / 194 D/C a 0/C= Page 9 of 18 Hudson Printing 18086 9/7/2018 EorW Combinations 0# 184# 0# -184# Oft-lbs 368 ft-lbs Oft-lbs 0 ft-lbs 0# 184# 62# 0# 184# 62# 0.23 OK 0.75 OK 0.00in OK 0.00 in OK Wood Beam Desian Beam Label:! RB-1 Left Overhang= 0,00 ft Center Span=1-~'°:::::·"°::.:ft:.....~ Right Overhang"''--•~·="°~ft:.:..._, Overall length=L! -~'°:::::·"°=-eft:........J Low .7pE~ Location DL LL or.6W From Left Point Load 1 0# 0# 0# 0.00 ft Point Load 2 0# 0# 0# 0.00 ft Point load 3 0# 0# 0# 0.00 ft Point load 4 0# 0# 0# 0.00ft .7pE~ Location DL(plf) LL (plf} or.6W(plf) From left Start Ead Start Ead Start Ead Start Ead Beam Self Wt. 17.1 17.1 0 0 0 0 0.00ft 40.00 ft E,dsting 88 88 141 141 0 0 0.00ft 40.00 ft New 32 32 -80 -80 0 0 0.00ft 40.00ft Dist Load 3 0 0 0 0 0 0 0.00ft 0.00ft Dist Load 4 0 0 0 0 0 0 0.00ft 0.00ft n• 1.0 (1.0 for Wind loading or if not req'd per ASCE 7-10 12.4.3.1] I 2ad Combinations DH D + (.6W or .7pE) Governing Combination: PeflCG!lon CrlJerla 0.6D +/-(.6W or .7pE) D + 0.75[L+ (.6W or .7pE)] I D+l l!.LL<=I l/360 tin<=I bilm M1mlil:1c 12&:J.IID Section Grade 3.125"x22.5" GLB 24F0V4 b• 3.13 in Fv= 165 psi da 22.50 in Fb= 2400 psi S,• 263.67 in3 [a 1800 ksi I,= 2966.31 in4 Shear Pesicn Fsui!Slon F',= F,(Cn)(CM)(C..)(C1)(CF) l/180 f,= VQ/ lb [=3V / 2bd for rectangular sections] flexural Pc1i1n Esuatlon F' b= Fb(Co)(CM)(C,)(Cd(CF)f Cv)(C:,,,)(C,)(C,)(C,) fb= M/5, ModlflcilfiPD Eilrtori Co= 1.00 Load Duration Factor [NDS lS Table 2.3.2] D C.· 1.00 Wet Service Factor [NOS 15 Table 4A, 40, SA, 58] C1= 1.00 Temperature Factor [NOS 1S Table 2.3.3] Ct= 0.9B Beam Stability Factor [NDS 15 3.3.3] lu= 71 in Effective Unbraced Length [NOS 15 Table 3.3.3] Rb= 12.79 CF= 1.00 Size Factor {NDS 15 4.3.6] Cv= 0.93 Volume Factor [GLB's only. NDS 15 5.3.6] Cru= 1.00 Flat Use Factor [NDS 15 Table 4A, 4D, SA, SB] C;= 1.00 Incising Factor [NDS 15 Table 4.3.8] C,a 1.00 Repetitive Member Factor (=1.15 ifs<= 24" o.c.) C,= 1.00 Curvature Factor (GLB's only. See NOS 15 5.3.8] Ker=~ Vm••= Vm1n= M,...,= Mm1n"' Rtm .. "' R,.,,,,0= RRmox= RRmln= f.= F' -.- fb= F'b"' till= till= Project: Project No.: Date: l ! l • Analysis Summary Ol LL 2742 # 1216 # -2742 # -1216 # 27416 ft-lbs 121S9ft-lbs 0 ft-lbs 0 ft-lbs 2742# 1216# 2742# 1216 # Design Summary 84 psi 165 psi D/C= 1801 psi D/C= 2124 psi O.OOln 0.66 in 0.00 in =L / 732 0.00 in 2.13 In 0.00 in =L / 225 0.S1 0.8S Page 10 of 18 Hudson Printing 18086 9/7/2018 1 EorW Combinations 0# 3958# 0# -3958# Oft-lbs 39575 ft-lbs 0 ft-lbs Oft-lbs 0# 3958# 1645 # 0# 3958# 1645# OK OK OK OK Wood Beam Design Beam Label:01 ------"R=•~·2:.._ __ _, Left Overhang=,_-'-0.~00-""ft-> Center Span=,__44=.00=ft=--a Right Overhange:~-'-•·~OO~ft_0 Overall Length=cl __ 44=.00=ft~~ DL Point Load 1 0# Point load 2 0# Point load 3 0# Point load 4 0# DL(plf) Start '"' Beam Self Wt. 20.5 20.5 Existing 88 88 New 32 32 Dist Load 3 0 0 Dist Load 4 0 0 LL 0# 0# 0# 0# LL (plf) Start '"' 0 0 136 136 -80 -80 0 0 0 0 .7pEh Location or.6W From Left 0# 0.00ft 0# 0.00ft 0# 0.00ft 0# 0.00ft .7pEh location or .6W (plf) From left Start '"' Start '"' 0 0 0.00 ft 44.00 ft 0 0 0.00ft 44.00ft 0 0 0.00ft 44.00ft 0 0 0.00ft 0.00ft 0 0 0.00ft 0.00 ft n• 1.0 (1.0 for Wind loading or if not req'd per ASCE 7-1012.4.3.1] I 2ad Combinations D + L 0.6D +/· (.6W or .7pE) D + (.6W or .7pE) D +0.75[L + (.6W or .7pE)] Governing Combination: I D + L PrlleSIPD Critecla ll.LL<=I L/360 l!.n<=I L/240 llHm Member 12i:sl1a Section Grade 3.12S"x28.5" GLB 24F•V4 b, 3.13in F,= 165 psi ,, 27.00 in Fb= 2400 psi s.= 379.69 in3 ,, 1800 ksi I,= 5125.78 in4 Shear Desl1n Eauatlon F'.= F,(C0)(C,..)((i}(C,)(CF) f,= VQ/ lb {=3V / 2bd for rectangular sections] Fleimcal Des!rn Eauatlon F'b= Fb(Co)(C,..)(C.)(Cd(CF)(Cv)(Ciu)(C1){C,)(C,) fb=M/5, ModlflcaUon Factors Co= 1.00 load Duration Factor [NDS 15 Table 2.3.2] 0 C,..= 1.00 Wet Service Factor (NOS 15 Table 4A, 4D, SA, SB] c,, 1.00 Temperature Factor [NOS 15 Table 2.3.3] c,, 0.94 Beam Stability Factor [NDS 15 3.3.3) lu= 71 in Effective Unbraced Length [NOS 15 Table 3.3.3] Rb= 14.01 CF= 1.00 Size Factor [NOS 15 4.3.6] C~= 0.90 Volume Factor jGLB's only. NOS 15 5.3.6} c,", 1.00 Flat Use Factor [NOS 15 Table 4A, 40, SA, SB] C1= 1.00 Incising Factor [NOS 15 Table 4.3.8] C,= 1.00 Repetitive Member Factor [=1.1S ifs<= 24" o.c.] c,, 1.00 Curvature Factor [GLB's only. See NOS 15 5.3.8) Ker=~ Vrna,= Vm,n= M..,,.,,, Mm1n= Rlrna,= Rlmln= RRrna,= RRmln= f,:: F',"' fb= F'b:: l!.LL: l!.Tl: l g J 0 OL 3091 # ·3091 # 34000 ft-lbs Oft-lbs 3091 # 3091 # 77 psi 16S psi 1500 psi 2030 psi O.OOln 0.51 in =:L/ 1038 0.00 In 1.79 in =L/ 294 Project: Project No,; Date: Analusls Summary LL 1225 # ·1225 # 13474ft-lbs 0 ft-lbs 1225 # 1225 # Design Summary 0/C= 0/C:: O.OOin 0.001n 0.47 0.74 Page 11 of 18 Hudson Printing 18086 9/7/2018 l EorW Combinations 0# 4316# 0# -4316 # 0 ft-lbs 47474 ft-lbs Oft-lbs 0 ft·lbs 0# 4316# lSSS# 0# 4316# 1855 # OK OK OK OK Wood Beam Desian Beam label:I RG-1 .....,,.,.. left Overhang= 0,00ft Center Span= 32.00ft Overall Length=l._...::•=•·=OO~ft,.,___, Right Overhang" 8,00ft Low OL RG-2 9869 # Point load 2 0# Point Load 3 o, Point Load 4 o, Dl(plf) Start '"' Beam Self Wt. 39.4 39.4 Existing 504 504 N,w 168 168 Dist Load 3 0 0 Dist Load 4 0 0 LL 1170# o, o, o, LL (plf) Start Eed 0 0 504 504 -420 -420 0 0 0 0 .7pEh location or.6W From Left o, 40.00ft o, 0.00ft o, 0.00ft o, 0.00ft .7pEi, location or.6W(plf) From Left Start '"' Start '"' 0 0 0.00ft 40.00ft 0 0 0.00ft 40.00ft 0 0 0.00ft 40.00 ft 0 0 0.00ft 0.00ft 0 0 0.00 ft 0.00 ft n= 10 [LO for Wind loading or if not req'd per ASCE 7-10 12.4.3.1] Lp;,d Cnmblnt'IODS D•L D t (.6W or .7pE) Governing Combination: Ptflmlon Criteria 0.60 +/-(.6W or .7pE) 0 + 0.75[l+ (.6W or .7pE)] I O+ L t.LL<=] l/360 6Tl<=I 111:im Mimbs::[ L11:sl10 Section Grade 8.75" x M" GLB 24F•V8 b= 6.75 ln f,: 190 psi d= 24.00 in fb= 2400 psi S,= 648.00 in3 E= 1800 ksi I,= 7776.00 in4 Sbrar Pe:ilrn fguatlon F'.= F,(Co)(~)(Ci)(Y)(CF) L/240 f,= VQ/ lb [=3V / 2bd for rectangular sections\ flexural Deslrn Eaua\Ioo F'b= Fb(Co)(C"')(Ci)(CL)(CF)(Cv)(C1")(CI)(C,)(C,J fb"' M/5,. Modlfl&i!Slon Eectors Co= 1.00 Load Duration factor [NOS 1S Table 2.3.2] D CM= 1.00 Wet Service Factor [NOS 15 Table 4A, 40, SA, SB] C,= 1.00 Temperature Factor [NOS 15 Table 2.3.3J CL: 0.99 Beam Stability Factor [NOS 15 3.3.3] '"" 71 in Effective Unbraced Length {NOS lS Table 3.3.3] Rb= 6.12 CF= 1.00 Siie factor [NOS 15 4.3.6I Cv= 0.87 Volume Factor [GLB's only. NOS 15 5.3.6] c,"= 1.00 Flat Use Factor [NOS 15 Table 4A, 40, SA, 5B] C;= 1.00 Incising Factor [NOS 15 Table 4.3.8] C,= 1.00 Repetitive Member Factor [=1.15 ifs<= 24" o.c.] C,= 1.00 Curvature Factor [GLB's only. See NOS 15 5.3.8] Ker=~ Vm.,= Vm1n" Mmax= Mm,n= Rlmax" Rtmln" RRma,= RRmln" f,= F".= fb= F'b= ti.LL= ti.TL= Project: Project No.: Date: l i ! Analysis Summary DL LL 15!>58 # 1842# -14557 # -1720 # 47277 ft-lbs 5572 ft-lbs -101708 ft-lbs -12048 ft-lbs 8200# 968# 30115# 3563# Design Summary 161 psi 0/C= 0.85 190 psi 2107 psi 0/C= 2075 psi 1.02 O.OOin 0.05 In 0.04in =L/7750 =L/ 2201 O.OOin 0.47 in 0.41 in =L/ 815 =L / 235 Page 120118 Hudson Printing 18086 9/7/2018 ZS t E orW Combinations o, 11400 # 0# -16277 # 0 ft-lbs 52848 ft-lbs oft-lbs -113756ft-lbs 0# 9168 # 492011 o, 33678# 18069 # OK Close, Say OK OK OK Wood Beam Deslan Beam Label:! RG-2 Left Overhang= 0.00 ft Center Span=,__2_&_.00~ft--< Right Overhang=~_o._oo_ft_" Overall Length=.l __ 26_.00_ft~~ wll1 .7pEn Location OL LL or.6W From Left Point Load 1 0# 0# 0# 0.00ft Point Load 2 0# o, 0# 0.00ft Point load 3 o, o, o, 0.00ft Point Load 4 0# o, 0# 0.00ft .7pEh Location DL (plf} LL (plf) or.6W(plf) From left Start '"' Start '"' Start '"' Start '"' Beam Self Wt. 39.4 39.4 0 0 0 0 0.00ft 26.00 ft f)(isting 540 540 540 540 0 0 0.00ft 26.00ft New 180 180 -450 -450 0 0 0.00ft 26.00ft Dist Load 3 0 0 0 0 0 0 0.00ft 0.00ft Dist Load 4 0 0 0 0 0 0 0.00ft 0.00ft n= 10 (1.0 for Wind loading or if not req'd per Load Cnroblnatlnns OH D + (.6W or .7pE) Governing Combination: Prtltctlnn Criteria ASCE 7-10 12.4.3.1] 0.6D +/-(.6W or .7pE) D + 0.75[l + (.6W or .7pE)) I D •L ll.LL<:o\ L/360 t,.TL<=\ lkilm Mi:mtHIC Ds:~IKD Section Grade 6. 75" x 24" GLB 24F•V8 ba 6.751n Fv= 190 psi d• 24.00 in Fb= 2400 psi S,= 648.00 in3 ,. 1800 ksi I,"' 7776.00 in4 Shear Pealrn Eauation F\= Fv(Co)(CM)(Cc)(C1)(CF) L / Z4<J f,= VQ/ lb (=3V / 2bd for rectangular sections) fln»HI PtJlrn Eauatlon F'b= Fb(Co)(~)(C1)(C,)jCF)(Cv)((i-")(C,)(C,)(C0) fb= M /S, Modification Eactor1 Co= 1.00 load Duration Factor !NOS 15 Table 2.3.2] D C:.,• 1.00 Wet Service Factor !NOS 15 Table 4A, 40,SA, 58] ~· 1.00 Temperature Factor (NOS 15 Table 2.3.3] C,= 0.99 Beam Stability Factor !NOS 15 3.3.3] lu= 71 in Effective Unbraced length (NOS 15 Table 3.3.3) Rb= 6.12 CF= 1.00 Size Factor [NOS 1S 4.3.6] C,a 0.89 Volume Factor [GLB's only. NOS 15 5.3.6] Cru= 1.00 Flat Use Factor [NOS 15 Table 4A, 40, SA, 58] C,= 1.00 Incising Factor [NOS 15 Table 4.3.8] C,= 1.00 Repetitive Member Factor [=1.15 Ifs<= 24" o.c.J C0= 1.00 Curvature Factor [GLB's only. See NOS 15 S.3.8) Ker:.~ Vm.,= Vm1n"' Mm .. = Mm1n"' Run .. = Run1n= RRma,= Ramin= f,:. ,. -.- fb= F'b= l'ill= l'iTL= Project: Project No,: Date; l g I • Analysis Summarv DL LL 9869# 1170# -9869 # ·1170# 64143 ft-lbs 7604 ft-lbs Oft-lbs Oft-lbs 9869# 1170# 9869 # 1170# Design Summary 102 psi D/C= 190 psi 1329 psi 0/C= 2119 psi O.OOin 0.07 in 0.001n =l/ 4720 0.00 in 0.621n 0.00 In =L/ 500 o.54 0.63 Page 13 of 18 Hl)dson Printing 18086 9/7/2018 1 EorW Combinations 0# 11039 # o, -11039 # 0 ft-tbs 71748 ft-lbs 0 ft-lbs Oft-lbs 0# 11039# 5921 # o, 11039 # 5921 # OK OK OK OK Wood Bemn Qesiqn Beam Label:LI ____ R~G~-•'-----' left Overhang=§i§.00 ft Center Span= 34.00 ft Overall Length-LI -~40~.oo,,,,~ft'--' Right Overhang= 0,00 ft RG-2 Point Load 2 Point Load 3 Point Load 4 Beam Self Wt. EKisting New Dist Load 3 Dist Load 4 OL 9869# 0# 0# o, DL(plf) Start Eod 39.4 39.4 456 456 152 152 0 0 0 0 LL 1170# o, o, o, LL (plf) Start Eod 0 0 456 456 -380 -380 0 0 0 0 .7pEn Location or.6W From left o, 0.00 ft o, 0.00ft o, 0.00ft o, 0.00ft .7pEn location or.6W(plf) From Left Start Eod Start Eod 0 0 0.00ft 40.00 ft 0 0 0.00ft 40.00ft 0 0 0.00ft 40.00ft 0 0 0.00ft 0.00ft 0 0 0.00ft 0.00 ft n= 1.0 (1.0 for Wind loading or If not req'd per I Pad CQmbloatlons OH D + (.6W or .7pE) Governing Combination: PefltctiPD CdU:ria ASCE 7-10 12.4.3.1] 0.6D +/-(.6W or .7pE) D +0.75[L + (.6W or .7pE)] I D•L l!.LL<=I L/360 l'in<=I Dearo Ms:mb1c D:11110 Section Grade 6.75" x 24• GLB 24f-V8 b• 6.7S In F,= 190 psi d= 24.00 in fb= 2400 psi S,: 648.00 in3 ,. 1800 ksi I,= 7776.00 in4 Shear Pc,110 Eauatlon F'.= f,(C0)(CM)(C1)(C1)(CF) L/240 f,= VQ/ lb [=3V / 2bd for rectangular sections] 1=1eimral Qr,110 Eouatlon F'b= Fb{C.,)(CM)(C.)(Cd(CF)(Cv)(C,")(C.)(C,)(C,) fo:: M /S, Modiflsatlon Eacters Co= 1.00 Load Duration Factor [NOS 1S Table 2.3.2] D CM= 1.00 Wet Service Factor [NOS 1S Table 4A, 4D, SA, 58] C,• 1.00 Temperature Factor [NOS 15 Table 2.3.3] CL: 0.99 Beam Stability Factor !NOS 15 3.3.3] I= 71 in Effective Unbraced length [NOS 15 Table 3.3.3] Ro"' 6.12 CF= 1.00 Size Factor [NOS 15 4.3.6] C,• 0.86 Volume Factor [GLB's only. NOS 15 5.3.6] C,,• 1 OD Flat Use Factor [NOS lS Table 4A, 40, SA, 58] c,= 1.00 Incising Factor !NOS 15 Table 4.3.B] C,= 1.00 Repetitive Member Factor [=1.15 If so::= 24" o.c.] C,= 1.00 Curvature Factor [GLB's only. See NOS lS 5.3.B] Ker=~ v,....,= Vm,,.= Mm,.= M.,,;,.= Rlma," R,.,,n" RRma,= RRm,,." f,: F\- fo= F'b= .)Llee llTL= Project: Project No.: Date· ZS l J 00 Analysis Summarv DL LL 13086 # 1539 # -13752 # -1626# 61441 ft-lbs 7188ft-lbs -70863 ft-lbs -8388 ft-lbs 26838 # 3165 # 8918 # 1045 # Design Summary 142 psi 0/Cee 190 psi 1468 psi D/C: 2063 psi 0.01 in 0.091n O.OOln -L / 7305 =L/ 4549 0.10 in 0.86 in O.OOin =L /724 =l/475 0.75 0.71 Page 14 ot 18 Hudson Printing 18086 9/7/2018 l EorW Combinations o, 14625 # o, -1S378 # Oft-lbs 68629 ft-lbs Oft-lbs -79251 ft-lbs o, 30003 # 16103 # o, 9963# S351 # OK OK OK OK ROOFTOP BALLASTED-MOUNTED SOLAR ARRAYS: U-ANCHOR ATTACHMENT DESIGN LOADS: Raised Roofing Height= Seismic Horizontal (Shear)= Seismic Vertical (Tension)= Co= Load Comb.: 0.6D + 0.7E ASD Shear V = ASD Tension T = ANCHORAGE TO ROOF SHEATHING· Screw Spacing: Anchor Type: Anchor Size: # of Screws: V/Screw = T/Screw = 0 300.00 300.00 1.6 i n # # 210.00 # 210.00 # 4.375 Wood Screw #14 4 52.5 52.5 in # # Screw Shear Capacity: Dowel Bearing Strength : Plywood Grade Plywood G = : Fe= Plywood Thickness Screw Diameter D = Root Diameter Dr= p= Z' = C0 *Fe* p *Dr= Other 0.42 3350 1/2 " 0.242 0.196 1/2" 525 Screw Withdrawal Capacity: W = 2850 G2 D psi i i n. n. # W=~22 #/in. W' = 195 #/in. Ta=W'*p= 97 # Un factored Un factored See NOS 2015 ASD Level ASD Level NOS 2015 12.3.3.2 NOS 2015 [Table 12.3.38/ NOS 2015 12.2.2 /Eqn. 12.2-2/ Combined Shear & Tension: z ... ' (Wp)Z NOS 201512.4.1 /Eqn. 12.4-1/ {w'p)cos2 a+Zsln2 a a= 45,00 ° f----,---Za' = 164 # f-----~ R= 74 # 1-------1 Resultant applied load D/C= 45% ._ ____ _. Project: Project No.: Date: Page 15 of 18 Hudson Printing 18086 9/11/2018 Project: Project No.: Date: ROOFTOP BALLASTED-MOUNTED SOLAR ARRAYS: U-ANCHOR ATTACHMENT PLYWOOD FLEXURE: Joist Spacing: Maximum Moment M = Span Rating. Bending Strength FbS = CG= Strip Width Slope= Slope both sides? Strip Width = Allowable Moment Ma= D/C= PLYWOOD EDGE NAILING: Nail Size: Nail Type: Nail Spacing: Nail L= Nail D = 24 1023.750 24/0 250 1.2 1:1 Yes 24.43208163 977.3 105% 8d Common 611 0.c. 2.50 0.131 W= 1380G D W= W'=W*Co= . ,,. 31.96 51.13 p= Ta=W'*p= # Nails Engaged Ta= : D/C= 2.00 102.26 2.00 205 106% i i i i i n. n-# n-#/ft. n. n-# Assume 2-span continuous panel Assume 5-ply plywood Includes C_D and C_G Close, Say OK i i n. n . #/in. #/in. n. #/nail i # NOS Eqn. 1.2.2-3 Close, Say OK Page 16 of 18 Hudson Printing 18086 9/11/2018 I 370 Wp I 7i2 Cell I Monocrystalline I Pr Module I I D ( J,!i,t,) .~. ~ Fraunhof~ E IEC r· ENSURES MAXIMUM EFFICIENCY 100% MAXIMUM POWER DENSITY Silfab's SLG-M 370 ultra-high-efficiency modules are optimized for Commercial projects where maximum power density is preferred. 100% NORTH AMERICAN QUALITY MA TIERS Silfab's fully-automated manufacturing facility ensures precision engineering is applied at every stage. Superior reliability and performance combine to produce one of the highest quality modules with the lowest defect rate in the industry. NORTH AMERICAN CUSTOMIZED SERVICE Silfab's 100% North American based team leverages just-in-time manufacturing to_ deliver unparalleled service, on-time delivery and flexible project solutions. • • • •-. • • • • • • • 44 PPM DEFECT RATE* --- • • • • • • ·•·-·-• • • • • • • • • • • • • • • 72 of the highest efficiency, premium quality monocrystalline cells result in a maximum power rating of 370Wp. Total automation ensures strict quality control during each step of the process at our certified ISO manufacturing facility. *As of December 31, 2016 ADVANCED PERFORMANCE WARRANTY 25-year linear power performance guarantee to 82% ENHANCED PRODUCT WARRANTY 12-year product/workmanship warranty BUILT BY INDUSTRY EXPERTS With over 35 years of industry experience, Silfab's technical team are pioneers in PV technology and are dedicated to an innovative approach that provides superior manufacturing processes including: infra-red cell sorting, glass washing, automated soldering and meticulous cell alignment. POSITIVE TOLERANCE {-0/+SW) All positive module sorting ensures maximum performance LIGHT AND DURABLE Over-engineered to weather low load bearing structures up to 5400 Pa. Light-weight frame exclusively designed with wide-ranging racking compatibility and durability. PID RESISTANT Proven in accordance to IEC 62804-1 AVAILABLE IN All Black Silver . . . . : . : Electrical Spec1f1cat1ons SILFAB SLG Monocrystallme Test Conditions STC NOCT Module Power (Pmax) Wp 370 279.4 Maximum power voltage (Vpmax) V 39.6 35.6 Maximum power current (tpmax) A 9.35 7.85 Open circuit voltage (Voe) V 48.2 44.56 Short circuit current (lsc) A 9.93 8.14 Module efficiency % 19.0 17.9 Maximum system voltage (VDC) V 1000 Series fuse ratin A 15 Power Tolerance Wp -0/+5 Measurement conditions: STC 1000 W/m2 • AM 1.5 • Temperature 25 °C • NOCT 800 W/mi • AM 1.5 • Measurement uncertainty s 396 • Sun simulator calibration reference modules from Fraunhofer Institute. Electrical characteristics may vary by ±596 and power by -0/+SW. Temperature Ratings SILFAB SLG Monocrystallme Temperature Coefficient lsc %/K 0.03 Temperature Coefficient Voe %/K -0.30 Temperature Coefficient Pmax %/K -0.38 NOCT(± 2°() ·c 45 Operating temperature ·c -40/+85 Mechanical Properties and Components SILFAB SLG Monocrystallme Module weight (± 1 kg) kg 23 Dimensions (H x L x D; ± 1 mm) mm 1970 X 990 X 38 Maximum surface load (wind/snow)* N/m2 5400 Hail impact resistance e 25 mm at 83 km/h Cells 72 • SI monoc,ystalline -3 or 4 busbar-156.75 x 156.75 mm Glass 3.2 mm high transmittance, tempered, antireflective coating Backsheet Multilayer polyester-based Frame Anodized Al Bypass diodes 3 diodes-45V/12A, IP67/IP68 Cables and connectors (See installation manual) 1200 mm e 5.7 mm (4mm2), MC4 compatible Warranties SILFAB SLG Monocrystalhne Module product warranty 12 years 25 years ~ 97% end of 1st year Linear power performance guarantee ~ 90% end of 12" year ~ 82% end of 25" ear Cert1f1cat1ons SILFAB SLG Monocrystalhne Product Factory Warning: Read the Installation and User Manual before handling, installing and operating modules. Third-party generated pan files from PV Evolution Labs available for download at: www.silfab.ca/downloads ~~~ ~--Kl. ... llUTV o;coM.C.UO m Pallet Count: 30 ::: Container Count: 750 S1lfab Solar Inc. 240 Courtneypark Drive East• Mississauga, Ontario Canada L5T 255 Tel +1 905-255-2501 • Fax +1 905-696-0267 info@silfab.ca • www.silfab.ca ULC ORD C1703, UL 1703, IEC 61215, /EC 61730, /EC 61701, CEC listed UL Fire Rating: Type 2 (Type 1 on request) --- ISO 9001 :2008 ...._.,_ T-tl""" __ ,_ Dr-.,_ .. --L-FOOT BRACKET U -ANCHOR 2400 -~ (E) 1/2" PLYWOOD ROOF SHEATHING, V.I.F. (E) 2x4 ROOF JOIST PER PLAN @ 24" o/c --#14 x 1-1/2" WOOD SCREW (4) PERU-ANCHOR (E) 8d@ 6" E.N., V.I.F. Mechanical Attachment Detail 11/2"=1'-0" • STRUCTURAL ~~~!w~,~~~!~4~ San Diego, California 92131 '------------------- 858.649.1700 I www.tkjse.com Project#: Structural Detail 18086 S-1.0 Date: 09-11-18 CARUSO TURLEY SCOTT structural engineers STRUCTURAL ENGINEERING EXPERTS PARTNERS Richard Turley, SE Paul Scott, SE, PE Sandra Herd, SE, PE, LEED AP c,ns Atkinson, SE, PE, LEED AP Thomas Morris, SE, LEED AP Richard Dahlmann, SE, PE Troy Turley, SE, PE, LEED AP B1·ady Notbohm, SE, PE PROFESSIONAL REGISTRATION 50 States Washington D.C. U.S. Virgin Islands Puerto Rico 1215 W. Rio Salado Pkwy. Suite 200 Tempe, AZ 85281 T: (480) 774-1700 F: (480) 774-1701 www.ctsaz.com CLIENT: Job No. 18-242-1589 By MAP/PGS Panel''' caw· 1570 Osgood Street Suite 2100 North Andover, MA 01845 PROJECT: Hudson Printing 2780 Loker Ave. W Carlsbad, CA 92010 GENERAL INFORMATION: Sheet No. Cover Date 9/12/18 9/12/18 2016 CBC, ASCE 7-10 BUILDING CODE: With SEAOC PV1-2012 and PV2-2012 CBC2018-0530 2780 LOKER AVE W HUDSON PRINTING: 212 ROOF MOUN PV, 78.44KW 2091001600 10/10/2018 CBC2018-0530 CARUSO TURLEY SCOTT structural engineers STRUCTURAL ENGINEERING EXPERTS PARTNERS Richard Turley, SE Paul Scott, SE, PE Sandra Herd, SE, PE, LEED AP C"lriS Atkinson, SE, PE, LEED AP Thomas Morris, SE, LEED AP Richard Oahlmann, SE, PE Troy Turley, SE, PE, LEED AP B1·ady Notbohm, SE, PE PROFESSIONAL REGISTRATION 50 States Washington D.C. U.S. Virgin Islands Puerto Rico 1215 W. Rio Salado Pkwy. Suite 200 Tempe, r,;z 85281 T: (480) 774-1700 F: (480) 774-1701 www.ctsaz.com Date: September 12, 2018 Mr. Ryan Heil PanelClaw 1570 Osgood Street, Ste 2100 North Andover, MA 01845 RE: Evaluation of PanelClaw system Project Name: Hudson Printing CTS Job No.: 18-242-1589 Per the request of Ryan Heil at PanelClaw, CTS was asked to review the PanelClaw racking system with respect to the system's ability to resist uplift and sliding caused by wind and seismic loads. Wind Evaluation: PanelClaw has provided CTS with wind tunnel testing performed by I.F.I (Institute for Industrial Aerodynamics) at the Aachen University of Applied Science. The system tested was the "Polar Bear 5deg Gen Ill HD" system. This system consists of photovoltaic panels installed at a 5 degree tilt onto support assemblies. The support assemblies consist of a support frame for the PV panels, wind deflectors and areas for additional mass/weight as required for the ballast loads. The wind tunnel testing was performed per Chapter 31 of ASCE 7-10. The parameters of the testing were a flat roof system in both Exposure B and C on a building with and without parapets. The testing has resulted in pressure and/or force coefficients that were applied to the velocity pressure q2 in order to obtain the wind loads on the PV system. From the wind load results it is then possible to calculate the ballast loads required to resist the uplift and sliding forces. PanelClaw has provided CTS with the excel tool that was developed to obtain the uplift and sliding forces. CTS has reviewed this tool and the wind forces obtained to find that the amounts of ballast and mechanical attachments provided are within the values required. Furthermore, CTS agrees with the methodologies used to develop the uplift and sliding forces for the "Polar Bear 5deg Gen Ill HD" system per the wind tunnel testing results. Seismic Evaluation: CTS was asked to review the PanelClaw system to determine attachments required to resist seismic loading of the ballasted solar support system on the roof of the existing building. Following CBC Load Combination 16-16 and ASCE Section 12.4.2.3, the Dead Load value has been reduced by subtracting the vertical component of the seismic forces (0.6*0 -0.14Sd,*D). The contribution of friction has been further reduced by a factor of 0.7 in accordance with recommendations from SEAOC PV1-2012. Utilizing this method, calculations have been provided for the number of mechanical attachments that are required to resist seismic forces that are applied to the system. CARUSO TURLEY SCOTT structural engineers STRUCTURAL ENGINEERING EXPERTS PARTNERS Richard Turley, SE Paul Scott, SE, PE Sandra Herd, SE, PE, LEED AP Chris Atkinson, SE, PE, LEED AP Tnomas Morris, SE, LEED AP Richard Dahlmann, SE, PE Troy Turley, SE, PE, LEED AP Brady Notbohm, SE, PE PROFESSIONAL REGISTRATION 50 States Washington D.C. U.S. Virgin Islands Puerto Rico 1215 W. Rio Salado Pkwy. Suite 200 Tempe.""-85281 T: (480) 774-1700 F: (480) 774-1701 www.ctsaz.com Conclusion: Therefore, it has been determined that the system as provided by PanelClaw is sufficient to resist both wind and seismic loads at this project. Please contact CTS with any questions regarding this letter or attachments. Respectfully, Matt Parrish Structural Designer 9/12/18 PaulG.Scott,SE,PE Partner P anel ''' caw® Partner Name: Baker Electric Project Name: Hudson Printing Project Location: 2780 Loker Ave W Carlsbad, CA, 92010 Racking System: Polar Bear Ill HD Structural Calculations for Roof-Mounted Solar Array Submittal Release: Rev. 1 PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, M A 01845 9/12/2018 P anel''' c avv" Section: 1.0 Project Information 1.1 General 1.2 Building lnformotion 1.3 Structural Design Information 2.0 Snow Load 2.1 Snow load Data 2.2 Snow load Per Module 3.0 Wind Load 3.1 Wind load Data 3.2 Roof I Array Zone Map 3.3 Wind Design Equations 4.0 Design Loads -Dead 4.1 Dead load of the Arrays Table of Contents: 4.2 Racking System Dead load Calculation 4.3 Module Assembly Dead load Calculations Array 1 5.0 Design Loads -Wind 5.1.1 Global Wind Uplift Summary Table: 5.1.2 Global Wind Shear Summary Table: 6.0 Design Loads -Downward 6.1 Downward Wind Lood Co/cu/ation 6.2 Racking Dimensions for Point loads 6.3 Point Load Summary 7.0 Design Loads -Seismic 7.1 Seismic Load Data 7.2 Seismic Design Equations 7.3 Lateral Seismic Force Check 7.4 Vertical Seismic Force Check Page# 1 1 1 1 2 2 2 3 3 3 3 4 4 5 5 6 6 7 8 8 8 9 10 10 10 11 12 PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel''' c avv .. Appendix: 9/12/2018 A. I.F.I PCMl0-8: Wind Loads on the solar ballasted roof mount system 'Polar Bear 5 deg Gen IIIHD' of PanelClaw Inc.; March 03,2016 B. B. Building Code and Technical data PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 P ane1.1.1.1 c avv" 1.0 Project Information: 1.1 General: Project Name: Hudson Printing Project Locaton: 2780 Loker Ave W Carlsbad, CA, 92010 Racking System: Polar Bear Ill HD Module: Silfab Solar Module Tilt: 5.00 Module Width: Module Length: Module Area: Ballast Block Weight= 38.98 77.56 20.99 32.60 1.2 Building Information: Height Roof Measurement N/S (ft) (ft.) IRoofl 35 86 1.3 Structural Design Information: Building Code: Risk Cat.: Basic Wind Speed (V) = Exposure Category: Ground Snow Load (Pg) = Is= Site Class: Short Period Spectral Resp. (5%) (Ss}: ls Spectral Response {5%)(51}: le= Ip= Roof Measurement E/W (ft.) 156 2016 CBC II 110 C 0 1 D 1.039 0.403 1 1 SLG-M degrees in. in. sq.ft. lbs. Parapet Height (ft) 2 mph Pitch Membrane (deg) Material 1 TPO PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 Coeff. of Friction (µ) 0.64 P anel''' c avv .. _2.0 Snow Load: Snow Calculations per ASCE 7-10, Chapter 7 2.1 Snow Load Data: Ground Snow Load (Pg) = 0.00 psf Exposure Factor (Ce) = 1.00 Thermal Factor (Ct) = 1.20 Importance Factor (Is)= 1 Flat Roof Snow Load (Pf)= 0.7*Pg*Ce*Ct*ls= Min Snow Load for Low Slope Roof= Snow Load on Array (SL A) = Pg*ls = 0.00 psf 0.00 psf 0.00 psf Minimum Snow Load Fig. 2.1 -Uniform Roof Snow Load on Array 2.2 Snow Load Per Module: Snow Load per Module (SLM)= Module Projected Area• SLA Where; 9/12/2018 ASCE, Figure 7-1 ASCE, Table 7-2 ASCE, Table 7-3 (ASCE, Table 1.5-2) (ASCE 7 .3-1) (ASCE 7 .3.4) Module Projected Area (Amp) = Module Area • Cos(Module Tilt) Where; Module Area = 20.99 Module Tilt= 5.00 sq.ft. degrees Amp= 20.91 sq.ft. 0.00 lb PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 P anel ''' caw® 9/12/2018 3 0 Wind Load· Wind Analysis per ASCE 7-10-Wind Tunnel Procedure. Chapter 31 3.1 Wind Load Data: Basic Wind Speed (Vult) = 110 Exposure Category: C Topographic Factor (Kzt) = 1.00 Directionality Factor (Kd) = 0.85 Exposure Coefficient (Kz) = 1.01 MRI Reduction = 0.93 Velocity Pressure (qz) = 0.00256'Kz'Kzt"Kd'V'2'MRl'2 = .uJ1!!..fS.E 3,2 Roof/ Arrav Zone Map· setback• setback• mph {ASCE, Figurf!' 26.5-lA} (ASCE, ~c. 26. 7.3) (ASCE, Fig. 26.B·l} (ASCE, Tablf!' 26.6-l} (ASCE, Tab~ 27.3-1) (Eqn. C16.S·2) (ASCE, Eqn.17.3-1) For west winds 'Mth 'Mnd dirocuone from 1so• to 360• . "f ___ ....,.., ..... ~dn<,tio,,K .. _O"t0110ro.f-~-~- Typical Roof Zone Mapping for West Winds with Directions from 180" to 360" Roof Zone Map Dimenions per IFI Wind Tunnel Study Height (ft) 35.0 3 3 Wind Design Eauations· W LMpllft/modul~ = QzAmC/z,uplift WLsuatng/modtdf!' = QzAmCfxy,sllding ll (ft) 55.94 Where l2 (ft) l3 (ft) l4 (It) 30.06 0.00 55.94 qz::: Velocity Pressure Am= Module Area LS (ft) 42.49 Cfz and Chey= Vary and related to wind zone map l6 (ft) 57.58 Velocity Pressure (qz) 23.00 PSF {Ref. Pg. 3, Wind Load) {Ref. Pg. l, Project Information) {Proprietary Wind Tunnel Coefficients) PanelClaw, Inc., 1570 Osgood Street , Suite 2100, North Andover, MA 01845 L, P ane1.1.1.1 C 8\N" 4 o D@§icn Loads -Pead· There are two categories of dead load used to perform the structural analysis of the Pane/Claw racking system; Dead Load of the Array {DLA} and Dead Load of the Components (DL c). DLA is defined as the weight of the entire array including all of the system components and total ballast used on the array. Ole is defined as the weight of the modules and the racking components within an array. The Dlc does not include the ballast used to resist loads on this array. 4.1 Dead Load of the Arrays: Max. Allowable Pressure on Roof" 4.01 psf Array Information Results -:;ut:1-Array ~oo Sub-Array Numbers of DLC Sub-Array Sub-Array Roof Pressure (DLA) No. modules DlC (lbs.) OLA(lbs.} (lbs.)/module Area {Ft"2) Pressure (DLC) (psf) (psf) Acceptable? 1 42 2,817 4,284 67 1,070 2.63 4.00 Yes 1 16 1,787 2,602 69 671 2.66 3.87 Yes 3 46 3,120 4,620 68 1,182 2.64 3.91 Yes 4 21 1,452 2,137 69 543 2.67 3.93 Yes s 12 855 1,246 71 32D 2.67 3.90 Yes 6 48 3,284 4,914 68 1,240 265 3.96 Yes 7 17 1,181 1,703 69 44D 2.69 3.87 Yes Totals: m 14,495 21,504 Table 4.1 Array Dead Loads and Roof Pressures Panel Claw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel''' c avv" 4.0 Design Load -Dead {Cont.I: Racking System: Polar Bear Ill HD 4.2 Racking System Dead Load Calculation: 9/12/2018 The array dead load is made up of three components; the racking assembly, ballast and module weights. Array# 1 Component Weight: SOUTH SUPPORT= l.8S lbs. STANDARD SUPPORT= 2.30 lbs. LONG BALLAST TRAY= 7.08 lbs. MEDIUM BALLAST TRAY= 5.86 lbs. SHORT BALLAST TRAY= 4.58 lbs. CLAWS(2)= 3.88 lbs. MECHANICAL ATTACHMENT= 0.73 lbs. MA Bracket= 2.32 lbs. Silfab Solar -SLG-M = 50. 71 lbs. Ballast Weight: CMU Ballast Block= 32.60 lbs. 4.3 Module Assembly Dead Load Calculations Array 1: Quantity 12 84 8 0 49 42 9 9 42 45 The following calculation determines the nominal weight of a single module assembly. This value is used to calculate the required ballast for Wind Loads as shown in Section 6.1. Single Module+ Racking System Weights: Nominal Assembly Weight Components Array Dead Load (DLC) = 2817 lbs, Module Assembly Dead Load (DLc) = Components Array Dead Load (DLC) / # Modules= PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 Panel''' c avv" s.o Design Loads -Wind. 5.l.l Global Wind Uplift Summary Table: 9/12/2018 The necessity to add mechanical attachments can arise for several reasons. Building code requirements~ roof load limits and array shape all may come into play when determining their need. The table below provides the mechanical attachment requirements for each sub-array within this project Assumed Allowable Mechanical Attachment Strength= 300.00 lbs. Applied load Resisting Load Code Check Sub-Array W = Total Wind DL = Total Dead Quantity MA MA Capacity Calculated Factor No. Uplift(lb) load (lb) Provided (lb) of Safety* Check 1 7,068 4,284 9 2,700 1.65 OK 2 3,059 2,602 5 1,500 2.24 OK 3 7,987 4,620 12 3,600 1.72 OK 4 3,979 2,137 8 2,400 1.90 OK 5 1,933 1,246 4 1,200 2.11 OK 6 7,840 4,914 13 3,900 1.87 OK 7 2,995 1,703 7 2,100 2.12 OK Totals: 34,861 lbs. 21,504 lbs. 58 17,400 lbs Table 5.1 Summary of Mechanical Attachment Requirements • Back calculated factor of safety provided to determine factor ol ,afety applied to dead load in lieu of0.6 in ASCE 7-10 equation 7, BACK CALCLUATI:.0 SAFETY FACTOR~ (DEAD LOAO+MECliANICAl ATTAOIMENT)/(.6IWIND LOAD PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 P ane1.1.1.1 c avv" s.o Design Loads -Wind (Cont.I 5.1.2 Global Wind Shear Summary Table: B.ssumed Allowable Mechanical Attachment Strength = 300.00 lbs. Applied Load Resisting Loads Code Check Sub-Array Wu =Wind Ws=Wind DL = Total MA MA Capacity Calculated Factor No. Uplift (lb) Shear (lb) Dead Load (lb) Provided (lb) of Safety* Check 1 4,001 351 4,284 9 2700 2.56 OK 2 2,614 229 2,602 5 1500 2.30 OK 3 4,554 399 4,620 12 3600 2.65 OK 4 3,171 278 2,137 8 2400 2.10 OK 5 1,537 135 1,246 4 1200 2.33 OK 6 6,275 550 4,914 13 3900 2.06 OK 7 2,312 202 1,703 7 2100 2.41 OK Totals: 24,463 lbs 2,143 lbs. 21,S04 lb>. 58 17.4001bs Table 5.2 Summary of Mechanical Attachment Requirements. • Back calculated factor of safety provided to determine factor of safety applied to dead load ln lieu of0.6 ,n ASCE 7-10 equation 7, BAO< CALCLUATED SAl'ETY FACTOR• (DEAD LOAO+MECHANICALATTACHM£NT)/l((.6)WIND SHEAR/FRICTION)+j.6)WIND UPLIFT) PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel''' C 8\N" _6.0 Design Loads -Downward: 6.1 Downward Wind Load Calculation: WL;n = qz •Am• Crz • cos 0 Where: qz = 23.00 psf Am= 20.99 sq.ft. e = s.oo deg. (Single Module Area) Crz = 0.90 (Inward) Crz = 0.30 WL;n (no snow) = (Inward with snow) 433 lbs./module WL;n(with snow)= 144 lbs./module Contact Pad by location: A= Northern B = Northern C = Interior D = Interior E = Southern F = Southern 6.2 Racking Dimensions for Point Loads: Inter-Module Support Spacing= Inter-Column Support Spacing= 39.37 in. 39.19 in. i ' ' ' • . ' . . (Ref Pg. 3, Wind Load) (Ref Pg. 1, Project Information) (Ref. Pg. 1, Project Information) (Proprietary Wind Tunnel Data) (ASCE 7-10 figure 30.4-2A) .. , II • ' ' • I • • I • _j .. i Typical Array Plan View (Section A-A on Next Page) PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel ''' caw® 6,0 Design Loads .. Downward {CONT.\; 6.2 Racking Dimensions for Point loads (Cont.}: A B Distances Between Supports /Unless Noted): 6.3 Point load Summary: DLsys = 71 lbs./module Xl = 27.74 in. X2 = 32.39 in. X3 = lB.40 in. C D Total DL = (Varies on location and ballast quantity) SLm = o lbs./module Wlin (no snow) = 433 lbs./module Wlin (with snow)= 144 lbs /module E F section A-A Point Load Summary Table load combinations (ASD) L+ Lm + 0.6 X Wlin DL + 0. 75 X SLm + 0. 75(0.6 X Wlin 31 lbs. 63 lbs. 39 lbs. 20 lbs. 52 lbs. 2B lbs. 29 lbs. 94 lbs. 45 lbs. 40 lbs. 104 lbs. 561bs. 29 lbs. 94 lbs. 45 lbs. 40 lbs. 104 lbs. 561bs. 6 lbs. 2B lbs. 11 lbs. 22 lbs. 44 lbs. 2B lbs. 22 lbs. 44 lbs. 28 lbs. 237 lbs. 627 lbs. 335 lbs. Table 7.1 Point Load Summary Ballast Block Point Load Summary -(LB/Single Block Applied at Tray Location) Point Load5 (lb/single block) at ~ach Tray Location Tra 1 ray 2 Tray 3 Tray 4 1 lbs. 5 lbs. 5 lbs. 11 lbs. 5 lbs. 11 lbs. B lbs. B lbs. G PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 H P anel''' c avv" 7.0 Design Loads -Seismic Seismic Calculations per ASCE 7-10, Chapter 11 -Seismic Design Criteria Chapter 13 -Requirements for Nonstructural Components 7.1 Seismic Load Data: Site Class: D Seismic Design Category: D Short Period Spectral Resp. (5%) (Ss): 1.039 ls Spectral Response (5%)(51): 0.403 Bldg. Seismic Imp. Factor (le) = 1 Site Coefficient (Fa) = 1.0844 Site Coefficient (Fv) = 1.60 Adj. MCE Spec. Resp. (Short) (Sms)= Adj. MCE Spec. Resp. (1 sec.)(Sml) = Fa*Ss = 1.1266916 Fv*S1 = 0.643591 Short Period Spectral Response (Sds) = 2/3(Sms) = 0.75 One Second Spectral Response (Sdl) = 2/3(Sml) = 0.43 Component Seismic Imp. Factor (Ip)= 1 Repsonse Modification Factor (Rp) = 2.5 Amplification Factor (ap) = 1 7.2 Seismic Design Equations: Lateral Force (Fp) = 0·4a(~sWp ( 1 + 2 (~)) FPLmin = 0.3SoslpWp FPLmax = 1.6SoslpWp Vertical Force (Fpv) = ±[0.20S05Wp] .ateral Resisting Force (FRL)* = 7) (mu)(Wp)] Vertical Resisting Force (FRV) = 0.6*Wp (Ref. Pg. 1, Project Information) (ASCE, Tables 11.6-1 and 11.6-2) (Ref. Pg. 1, Project Information) (Ref. Pg. 1, Project Information) (ASCE, Table 1.5-2) (ASCE, Table 11.4-1) (ASCE, Table 11.4-2) (ASCE, Eqn. 11.4-1) (ASCE, Eqn. 11.4-2) (ASCE, Eqn. 11.4-3) (ASCE, Eqn. 11.4-4) (ASCE, Sec. 13.1.3) (ASCE, Table 13.6-1) (ASCE, Table 13.6-1) (ASCE, Eqn. 13.3-1) (ASCE, Eqn. 13.3-3) (ASCE, Eqn. 13.3-2} (ASCE, Eqn. 12.4-4) (Factored Load, ASD) (Factored Load, ASD) • Per SEAOC PVl -2012 -Frictional resistance due to the components weight may be used to resist lateral forces caused by seismic loads. The coefficient of friction for the roof material must be reduced by 30%. PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel''' c avv" 7 O Pe3ign Load§ -SeismiE (cent ) 7 .3 Lateral Seismic Force Check: The necesity to add mechanical attachments can arrise for several reasons. Building code requirements, roof load limits and array shape all may come into play when determining their need. The table below provides the mechanical attachment requirements for each sub-array within this project. Assumed Allowable Mechanical Attachment Lateral Strength= 300.00 lbs. Nomendatuar WP"' Sub-Array Weight FPL :a:: Lateral Seismic Force FRL = Lateral Seismic Resisting Force Arrav Information lateral Force Verification Sub-Array 0.7 FPL -fRL MA's No. Wo (lbs.) FPL (lbs.) fRL (lbs.) (lbs.) Required'" 1 4,284 1,544 950 131 1 2 2,602 938 577 80 1 3 4,620 1,666 1,024 142 I 4 2,137 770 474 66 1 5 1,246 449 276 38 1 6 4,914 1,772 1,089 151 1 7 1,703 614 377 52 1 Totals: 21,504 lbs. 7,753 lbs. 4,767 lbs. 660 lbs. 7 Table 7.1-Summary of Mechanical Attachment Requirements • MA'• Required~ 0.7 Fpl-FRI/MA strength Results MA's Provided Acceptable 9 Yes 5 Yes 12 Yes 8 Yes 4 Yes 13 Yes 7 Yes 58 PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel''' c avv" 7 O De%i&n Load$ -S@i5mic (Cont.) 7 .4 Vertical Seismic Force Check: Assumed Allowable Mechanical Attachment Vertical Strength= Nomenclature· WP= Sub-Array Weight FPv = Vertical Seismic Force FRv= Vertical Seismic Resisting Force Arra Information Vertical Force Verification 0.7 FPV-FRV Required Arr'ill/ No. Wpllbs.) fpv (lbs.) fRv (lbs.I (lbs.) MA's 1 4,284 643 2,570 -2,120 0 2 2,602 391 1,561 -1,287 0 3 4,620 694 2,772 -2,286 0 4 2,137 321 1,282 -1,057 0 5 1,246 187 747 -616 0 6 4,914 738 2,948 -2,432 0 7 1,703 256 1,022 -843 0 Totals: 21,504 lbs. 3,230 lbs. 12,902 lbs. -10,641 lbs 0 Table7.2 -Summary of Mechanical Attachment Requirements "' MA's Required= 0.7 FPV FRV/MA strength 300 lbs. Results Total MA's Provided Acceotable 9 Yes 5 Yes 12 Yes 8 Yes 4 Yes 13 Yes 7 Yes 58 PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel''' c avv® Appendix A PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel''' c avv® IF.I -,!I.flu! l'OtlnCIUSb1~kGmtil-t ll'lltlhAe •tA.a.t'llffl Uf!IRnltyal Appllld ScJon,:,s Wdl.erratier Sba1?.e 12'0 ISX'74 ~. Girnlanr ~ •.t!l10-.12,1,t1~ Fae •.,t0)241;rJTWOO..tQ .... ,_.._ .. Client Report No.: PanelClaw Inc .• North Andover. MA 01845. USA PCM10-8 Date: 03/03/2016 Wind loads on the solar ballasted roof mount system "Polar Bear 5deg Gen III HD" of PanelClaw Inc. Design wind loads for uplltt and slldlng acc:orclng to the ASCE 7-10 Reviewed by: 'fJ-A. "l4g' Dr.-lng. Th. Kray (Hssd of depsrlmenl of PVwind/oamg} ·-DIJl,-IIQ. 8. ~ [)"~tllJ R.-0 LISI SdenMt """"'5ory Baan1 P!uf Dt.-hg R. ~ F>,aP CJt_.t,g H. F111Jz-. P!'llf Dt -119 Th He1n1111 ....... ., ~ Or . .q fU. Girflanll. Prof.Qr -r'O. C. Kl'Mnl'I' SpaU:un .0.Critr, Prepared by: ~;P,¼,/ Dipl.-lng. (FH) J. Paul (Consultant for wind loading) JaN,1. OE,llll!ECO:,OOQD474-COOO) u:· AACSDE33 AcD'lldl!!d Tmi 91d ~ Bocl)'; Eiropmn NdlkKIPrOl:Ul:Oeldi::ati:ln ~fl!laacaMlll!GIDCPR --1-t=111eH1 ¥AT No.. tlE12-tOGZ7-41 Ceo9kd KIXffA-G b 150 ID>t LAa!IS~ lltxlr1ltlr)'tor .irK1 ~ tc11lngdlllldr\llSdVIEUD T~ A;erc:,~NU'l'lba"'l'A~HJ PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel ''' caw® ~ P''H ..!-. 1.F.l lnatitut fur lndu.triuerodynllmlk GmbH . 2 . Wind tunnel tests were conducted on the "Polar Bear 5deg Gen Ill HO" solar ballasted roof mount system of PanelClaw Inc. The tests were performed at I.F.I. lnstitut fur lndustrieaerodynamlk GmbH (Institute for Industrial Aerodynamics), Institute at the Aachen University of App~ed Sciences in accordance with the test procedures described In ASCE 7-10, chapter 31 and In accordance with the specifications of ASCE 49-12. The array assembly and the correspollding geometric dimensions of the solar ballasted roof mount system "Polar Bear 5deg Gen Ill HO" with tilt angles of 5deg are depicted in Figure 1 and Figure 2. Figure 1: lvrBy assembly cl Iha solar bella&led roof mount t.ystem "Polar Bear 5dag Gen Ill HO" in landscape orientation with a modile tilt angle cl 5deg Testing was carried out with a surface roughness of the fetch lo the boundary layer wind lunnet equivalent to open country (Exposure C according to ASCEISEl 7-10) and for a total of 12 building configurations wilh sharp roof edges and with parapets of varying height. Figure 3 shows one flat-roofed building model with parapet induding the view of the fetch in the large I.F.I. boundary layer wind tunnel. In Figure 4 a close-up of the Polar Bear 5deg Gen Ill HO solar ballasted roof mount system is depicted. Pressure coefficients were provided for normalized loaded areas of varying size. live roof zones and eight array zones. Loaded areas scale with building dimensions and are valid for flat-roofed buildings with a minimum setback of 1.0m from the roof edges. The pressure coefficients may be multiplied by the design velocity pressure Qi. determined depending on the wind zone, the exposure category Report No.: PCM10-2 Wind loads on the solar ballaated roof mount ayatem .Pola, B11ar !!deg Gen Ill HD" of PenelCJ-Inc. Deaign wind loads for uplifl and •tiding according to the ASCE 7-10 PanelClaw, In c., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel ''' caw® ~ F"'•H _f _ I.F.I. lnatitut fiir lnduatrieaerodynamilt GmbH .3. and lhe roof height in acoordance with lhe American standard ASCE/SEI 7-10 to determine the wind loads on the solar system. ~ ' -a= 11:1= I -,, ("> ., • II !!' -• II --· -· I ~ ~1 • .. ,· f --~ Figure 2: Geomeiric dimensions of the array assembly of the &Clar ballasted roof mount 11)1f,1em -Polar Beer 5deg Gen Ill HD" in landscape orientation llllith a module blt engle cl' 5deg The test results are likely to be appropriate for upwind Exposures B. C and D on flat- roofed buildings, assuming use in compliance with ASCE/SEI 1.10, Chapter 30.1.3. From these results it Is possible to calculate the design ballast for uplift and sftd1ng safety • sliding of solar elements occurs if the aerodynamic lift has decreased the down force due to deadweight sufficiently so that the drag forces are large.-than the frictional forces -on nat roofs with pitch angles up lo 7". The pressure coefficients were determined for a set-up where wind direction o• corresponded to wind blowing on the north facade of the nat-roofed building. However. the results may be applied if the main axis of the array is not skewed more than 15" with the building edges. Repott No.: PCM10•2 Wind loada on lhe solar ballaated roof mount ayatem "Polar Bear 5deg Gen Ill HO" of PanelClaw Inc. Deaign wind loads for uplift and •liding e,c:c:on:ling ID the ASCE 7-10 PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel ''' caw® ~ FIH --I.F.I. ln.titut fur lndufflie.aarodynamik GmbH -4. Figure 3: Wl"!d runnel model of lhe flal-rooled builcing wilh the solar ballasted roof mou,t system "Polar Bear 5deg Gen Ill HO in landscape orientation" 'IMlh e module Ult angle of 5cleg mounted on lhe tumlable inducing view of the fetch in the large I.F.I. boundary layer wind tunnel; 8K12 anay in the &OU!h-east rod portion The present design loads for wind actions apply without restriction lo solar arrays deployed on low-rise buildings as defined In section 26.2 of ASCE 7-10. The wfnd tunnel testing also applies to buildings higher than 18.3 m (60 ft) which are considered rigid. A building may always be assumed as rigid if it Is at least as wide as it Is high. The pressure coefficients determined from the wind tunnel tests show that the system in question needs very lilUe ballast in the array Interior. The sliding and uplift loads exerted by the wind on the modules are small due to the arrangement in rows. Higher loads were only observed In array oomers and along exposed edges of the array, and these have to be taken into acoount. On the basis of the measurements carried out. this may be done direcUy by increasing the ballast locally on the array edges or comers as well as -in the arrangement of rows and space between the rows -by largely redistributing the ballasl However. in the latter case, the structural requirements for the load transfer through the support system are higher. as a comer module lifted off the roof has to be held in place by the adjacent modules. Rep,an No.: PCM10.2 Wind loads on the eoiar baflai.ted roof mount ayatam MPolar Bear 5deg Gen Ill HD" of PanelCI-Inc. Deaign wind loed• for uplift and •tiding according to the ASCE 7-10 PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel ''' caw® ~ Ei._ I.F.l 1-titut ffi.-lndustrieae,odynamik GmbH . 5 . As staled in ASCE 7-10, section C 26.1.2 buildings with site locations that have channelling effects or wakes from upwind obstructions. buildings with unusual or irregular geometric shape and buildings with unusual response charaderistics require use of recognized literature for documentation pertaining to wind effects. Figure 4, Close-up d lhe 8x12 anay of the sder ballasted roof mount system -Polar Beac 5deg Geo Ill HD in lands.cape orientation· \\ith a module b"l angle ol 5deg Details of the wind tunnel testing and of the analysis can be round in the long version of the report PCM10-6-4. Report No.: PCM10-2 Wind loads on the solar balluled roof mount system .. Polar Bear 5deg Gen Ill HD" of PanelCI-Inc. Design wind load& for uplift and •liding according to the ASCE 7-10 PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel''' c avv® Appendix B ··-· --·-··--- 9/12/2018 PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 P anel''' C a\N® Chapter 13 SEISMIC DESIGN REQUIREMENTS FOR NONSTRUCTURAL COMPONENTS JJ.l UEN:EKAL IJ,l.J SC'OIW This chaplcr t!l:ihlisllt~ llllBillWm !ks.pi cntcna far I\Ofllitnictu:rJ.I compooc11b lb.rt Mr JX111U1111Cntly ,1tta1.:hro lo iotructum. 4M for thcu-supports 11J1J ,1lW.:lurw:-n1.1-Whc-rt the weight of a oons1nk:t:un.l C<lttlp1.'otn! i, g:rcatn dun or c:qu.;d 10 !.'i Jl('frellt a( th!!' dke1ivc ~U.llllc 1,1.·c1~1. n·, of thi:-structure .ai d.tincd ill 5<-dioa 12.7.2. lhc component shall be da.,;!Ufkd IL~ 3 no11buildiag sl.rul.1urc 1111.:I sh.ill bc- dc-sifncd in a.:.rnrdanu· with S1Xlion 15 .. l2 IJ.l.l Sfbmk Design Calraory For the purposes of ltus duptn J'k,rutructur.J compontnts shall be .u.i~ncJ 10 the same scisma.c dc-sig-n c.J1ci;:t1(1' .n the struclurr th.J.I 1hcy ou:upy or 10 whkh they Mt al1.i!!:hcd. ll.l..l Campomnt lmp,orlmc~ Factor All cumpoocnts shaJI be &igni:J .1 compufll'.'111 importanicc factm as indic:dc-d in 1hls r.cction The rnmpt.1ocnl imporl.illk'C faclllf". I,. shall be-tiktn on I 5 if JIBY of the folOOwing coOOltioru .ippl) · I l. Tht component i.s ~uirrd lu fun.:lion for lifc--s.lfcty PUJPC<K'~ ,1fli=-r an cunhqu.:ilc. ULdud~ fifC' protection lpfink.k-.r syi,~ms .1J1J ei,.ow.;~ st.tirwavs.. !. The co~cat coc\'t)-s... supp«b:. or ..-..ht-r,,isc coctw.ns tm.ic. hii;:hly l.t1:\il:. or uplusi,·c suh- ~1aocrs •nt'rc the quantil)· ur 1bc IIUl~ria.l cKd\ !I t.htes.oold qu.llltil)' Cdablulxd b) lhc authority h,n-ing jurudicUon ;1od IS suflkicnt 10 ~ 11 lhrclll to the public if rt k..1Kd J The compoacat is m or o1l1;ichcd lo a Risi: Cat+ ei;:ory JV i.truclure i!Ild 1l h needed for coolinucd opcr.11tiot1 of the f.-.:iti1y or ils fail~ n,uld impair 1hc coolin1JCJ op('Illtion or th!' faciltt)' -1. The compooenl cun,·c}~ supports.. OJ ..-..ht-rwise cootains haz:udou.s wb:citu1,:n and is an..chcd to .a siructurc or pi.1t1ion lhcrcof cla~lfi«l by the :iuthorit) h.:a,·ini;: ,un§(bction .n ;1 hu.miou~ o..:up.:u,cy All othc-r rnrnpoocnts sh.11l ht-as~ig.ncd a .. 1,m)'ll•ll:Clll imponancc factor, I,.. equJI w Ul IJ.U Enmptioa!J The followioi nonlitrucltir:il rnmpo!Xnls MC n:cmpl from the requirements or lhis ~hon: Fumilure texccpt storage c.ablocls ~ nuccd in Table l l."i+ I J. !. Temporary or mov.-:iblc equ1pmcnL l Aochilcclwal componcnls in SeinnK'. IX'si_i;:n Ca1eg:ory B othrr than p.:m1pc1s suppm1cd b:, hrllfinJ; 11·1Uls or shc:;ir v.-alls pro\oicleJ that lhc cllmponc111 itnp1)11.1ntt factor. /~, 1s equal 10 I _o. -I Mcch.1aical .and ckctrkal compoocnts in Seismic On1i;:n C;ite;ill) B. 5 Mcch.10kal .mil dcctrii.·al compoMnts in Scismk Dcsii;:a C.11.~0I)-C pnwilkd th.ii. the (Omponent import.llk:e Ci!Ctor, I,.. is equal 10 1.0. ~ Mcch.ini...·11l .md ckclri.:ill rnrnpoRC"ot~ in Sr1smi.: Dl!!lii;o C.ate~orics D. E. or F "'here aU of 1.hc followin-i;: :ipply: .:i. ~ wmponen.1 m1pi.lrtan,.:c faL'11·w. Ir. is equal to Ir•: b. The cornpon,,em is J)llii1i,·d~· 111111.dxd to the slm.::turc: c. Fkxibk L"OMC1.ilom n.n: proviJcd bcl.,,C'C'D UK component and associ.atcd dur.:twork.. pipin:;. illld conJuit: .ind either L The rompoocot •·e1i;:hs -M.lll tb i 1,7110 SJ iir le~ ,10d bas a ctntcr of m.;us lociikd -1-n i 1..21 m, or kn ahm·c the: adjJiCtnt ftoor k,·d; or 11 Tbc LVIIIJIOIICnl 1i1·c1~hs ~l n, (89 NI or ks.~ or. in lhc ca.o;c of .a distri:btrtc.d !i!'·s.lem, 5 lh/ft 03 Nim) or Jes-s.. 13.13 Applkatloa. or S'IIOIU'IM:lunl Component Reqalnntta.ls te Nanblrlldl.a1 Strudure1 ftionbuildin~ stnictuKs 1111,WWn;; star.&~ racks and tallls) th.lt arc: wpp;:,rtcJ bJ other ;t;~turcs ~ he dc!iigncd in accord!lllcc lliil:b Ch.apter 15 Wlxrc Sn-tioo l 5.J rrquircs that !itismic foo:cs be dc::lcmtintd in accordww:c "'ilh Cbapkr B wd ~.alues for R, JIit' not pnmdeJ in T.abk B.5+ I or I .l.b-l, R, slwl be lake l1S equal to till:: ,·a.luc of R listed 1a S«trno 15. The ,·aloe of a,. shall he dcier- m.ined in .iccorda.ncc w11h foo4nuk a ('{Tahle l.l:i+l or 13.0-I. 111 PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel''' C &\N® ihmi-11 th.it thr C(lfl1poocn1 15 inherently ruggtd b:,· .:-ompari.Wll "Vrith 1~tla.r k'isrnkally qma.litkd compoocnts. E~·idrn.:c dcmoalilTllliD:; cumpli.l!KC' with 1tus mfWrcmcJ1I sha.ll be mbnuncd for appro-·al to the .iulhont) luvinf, juri!idkUon iftcr min• anJ ,.xcptam:c b~· .1 «,istcrcd design profcuionaL !. CompontlR.\ with hu.anlou.s w&.;1an.::r~ and assigned a complDC'nt import&Kc fa..:tnr. I,., of 1 . .5 i11 .Kcordan.::c \liilh Sc:L°illlll IH .J WI.IJ be a:r1ifkJ by the-m:muf.Ktu~r ,l§. maintaining «>n.1.ainmcnt following the dt-5ign cartbqWlk gmuod motioo b}- i 11 .malJ·sU.. t.:!) JJppro,·cd Wkc bhk-tC\lin.g in xconhocc \l'ith Scl·Uoo JJ.!.5. or C\J c.tpericni:c data in accordanL""t "''ith Sc-cU01:1 13.2.b. faiJaii.""t dcim111slraliag compli.ao,;c 11..-ith I.hi\ rcguin:mtnl m.all be submiucd for appro\'aJ to the authori1~• Juv1n1, jwudictJoo .1fkr rc1'1c·w anJ Ai:Li:ptaru:c by a re~iJ.1acd dc~LPI proCcuilJllal IJ,1.) Cnuqut11lllll DIIIUp The fuoction.al .111d phy~kal inkrrdatiooship uf ,rnmpi.1DCnls. !heir supporu., ollld lhc:ir dfo;:t on each other slmU DC-ctJDSWl:'rrd so that !he failure uf an ('s"°miaJ or lhlf'l(:5:S<'!lli.a.l architrt:tw.ll. mi:cbani~-4'. or dn"1riical cfflllpoot'nl shall not cll.D~ 1h,: failUK of .an csM:ntia.l mhitc(1urJ.I. mcch.mical. or da:ttical compi.1ocnl. JJ.U Flolbllll)' The do4;n and nalll.llJon of compoD(nls. thdr WJlPDfb., amt lhdr utl.lldunc:au. lhall rnn~.kr tlxir tkxib.ll!y .ai; wdl 11.s 1hcir slR:l'll!th, IJ.J.5'. Tetla&Alleraatin for Seimdc Ca~· Dtttnialnatlon A§ 11n allmlllli\'C to the anlllytieal rcquirmli::'Dli. of 5Mioru. IJ.2 lhrougb B.O, testing wll be Lkcmrd ~ an ac[o:-pt:ihlc method IO dciam.nc the "tC"ismic cap.xlly of rornpo!k'Db. and tbt'l! !iUJlll(ll'l, RI iltt.:K:hmrnb. ScUmk qiwililx.at.ion by test.in; based u:pr,n .a ruiooaally rt"[~niud kjtin: f.land.mi pn1'e- durc. such as ICC-ES AC l!'ib. J.(tcpt:Jbk lo the authont) hning ju:rudiction Juli be: dc:cmaj to s.atiUy 11K-dcsi1m 11.nd ,mdu:Woo R.'(jUtrtlllt'n1s p,o,·ldcJ thd the ~IJlJ,:,;llulfiali:J j('l5m.lC C:llpa&:1tic5 <"qual or nc~d lbC" ieism,c demand, dct.:-rmined m ill:rnrdm.:e wi1h S«-tim~ DJ.I mil ll.l.2 IJ,J.6 uperimr. Data Altenutti..-e for Sthmk Capadl)' DtttrmlaatlOln A.~ an ;al1C'l'tl.1fi1·c lo lhc analytical miuin:-mcnts of Sn:lioru 13.:? throuih 1 Jo, Uj( M npcri,i:ncr dat..11 '.\llXl'.\ll''.\1 0CSKiS LO.ms s.h.:tll be dcclnW M ;111 a.."Ccpt.ihlc n1e1hod ro Jctmninc tht i!i:IMniL" C3P.1dly of (Ompoa(IIL~ anJ thctr $Uppon.~ and 3tbchmnlls. Sc:i~mic qualilkat:ioo by c:1.pcric1Kc d:da Jw.cd upoo 11atioo.illy K"ropHL<i-i p-occdUrc".s .111:ci:pta.blc to !he autboOl)' having juriMJi.:- 1ion ffl:.dl DC-deemed to sal.isf} !he dtsii:n 1111J C'\.alua.- lJIJll rcquimncnl.s ptm idcd that the ~ubst.mti.llcJ S<i.smac cap.,alK"s i::qwd m nc«J thr-!>C:1smic dcnu111Js dc1mni.1111:J i11 :u::rnrdan,c .,,,.,Lh 5«'.lioru 1:LU llJ1d Lll.!. ll.l. 7 Camlncdao Documeats Wbm'. dn.1;i;n of ~trudural u1mponcnts or thc-u supports illld .att.idm11:nls is: rrqu:ircd by T.&bk 11.:!-L s:ucb dn.ip1 shall be shown in construction docum~ls prr-p,.vn) bJ II rc:;is:lcrcd desig11 pro(C'i- s:ioo.il for n_'IC' by the" owllt'r. authonli(-s ba'iifl~ juri'5daction.. cootrxtors, md insp,:-cturs. Such docu- lJ\C'Dts shaU indudc 11 qu.ility iU.'iur.m.:,c plan 1f rcqturcd by Appcodi1 I I A. IJ.J SEISMIC DE.\lANDS ON ~OSSTRU<TIJRAL C'OllPOl\"F_"ffS 13,J.J Set!llllk OMlp Fo~e The borl:rontal sdsmic design fllf'Ci: cF,1 shall~ appliC'd 111 tlr i:ompoACm·s c,cJl!Cf of lh"ity and Jistnbcilrcl rdnfo·c to 1bt c:mnpoocot·s: nw.s dis1ribu- U011 md t.lu.U be dclrnnincJ in ,m:ordaocc with Eq.lD-1 F,. ,~ not R"(jUi.rcd to be token as g;n:alc'r th.m F,"" l.oS,.J,W, mJ F, ~h,111 not be lau'n 11.~ less than F, = ~ismic design fon.--c !IB-11 1 IJ.3-2) i1]3-Ji S,,, = spectral ai:cdcrJlioll, shorl penod . .n dctcmuncJ from So:lion I 1.4.-4 '-, = CO~DI amplific.11llll1 fllLiw truJ.I \ w~ Crom I .Oil to 2.50 L'!oCkct appropriat,c l'alur from Tul>J~ IJ.5-1 llt' IJ.t1-I\ I, = COmp,::,n,C'fll im~rt.anu (;k:l(lf !hat \'ari.Cl'i from I JJO tu UO occ Si=clion n IJ I fl', = componcnl OpC'r.llint, w~ij:.hl ID PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel''' c avv® The rlfcds or sc:i~mic rc-1.ali~ 1fo.pl.lcc-mcn~ s..h.ul be co!ti.idc-rN in cl.,mbin.moo with dU.pl.k:C"lllCD(.!. ..:allS('.d by o!Mr lo.:llb .u.s appropri.ttc ll..f :SOSSRl1CTl!RAL CO~IPONENT ASCHOR\GE Soa!.1JU&:luml compooi:nls 1111d 1hdr j.uwuru w..:dl he all.Xhn! llll" .aru:hil,ri:d) to lhe mur..·turc" m J1Cet1J'd:111a with the rtq\li~mc111s or chis. i!Xhon :uid 1hc att.xh- mt'nl sh.JU satisfy the ~mcnls for the ?,!ffnl matcri~ ;is K'l forth dscv.·hcrr iD this ~andan:I. CompollCllt .~t1achmt111s shall he bolled, 't\'cldcd. or otherwise posit.i"dy f.utcnal wLthool l"l-'lflSid~a\J[ln or frictional rcsisWlce" produad b~, the cfft'cl\ of grn,·iry. A conlinuous load path of ruffkicnt sircngl.b and stiffocss b.=1wc.c:11 the-.:ompoDCnl .illd the mpport- ln~ Ulllcturr shall ~ pro\'idaL Local ckmcnts of thc RllKturt i.ocl1Jdin,g: conoc:clioas srull he lksi;ncd and .:om.tractcd fo1 the COlnpurlC'll1 forccs 11,·hi:rc the)· cuctuul the Jc!iign of thc demcnl.1. or thcar con1Kcticru. The oomponcnl forces shall be lho!sc dc:ttm1.med in S<ctioo IJ_Ji.J. tx~-cpt thal modific.1" tiOll~ lo F~ lllld RP due to a11c~c conditions nt'td oc,t be cun.,;Kkrcd Thie deM~ do...""UJ111mts. WU ind~ suffu::1tBI iDfonn.atioo rdatioi;: lo !he atlllch- mrnts lo \'aif} ,.·ompli:mcc with tbr ttquirrtnc'nts. of !his i«tion. U.U Deslp FOffll tu OW Altarhmeut Thie fore,: in di,: attadunC'nl da.al.l be dclmniMd based oo lhc ptnmbcd fon:c~ and d.ispl.acemcnl!i for the component a1. dclcrm.incJ in Stcti,111.,; J J.J. I mil I Ll.!. C'lla:pl lh:11 Rr stull 0tJC be l~n 11.S l.lr~ th.an ti. IJ • ./J.l .-t•,rlton in Concttl~ Anchon in concrete shaU DC 1.hi~d in ai...:oc- d.aDcc "''ilh Appclldi.x Dor AC! JIit IJ . ./.JJ .tJulton in AlasalUJ Aoch,n in til!Ul.1111)' dull bi= &-sa~ncd in a".: .. "OC- <bru:c 'lllilh TMS 402/ACI 50.1,/ASCE 5. Ancbon shall be dcsifncd to be i;o,·cmc:.d b}· tbc lcnsile or shear J.tttoi;:th of .a ductile lilcd clement EXCEPtlON: Anchors sh.all ~ p.:rmitkd to he dcsipk'd iil 1bal tht attad11nc111 lhnt the .11Khor i., ,;:ooDCctini; lo lhc structurr undcq:IJ(s ductik yiddinf ;it a kind k,d cOfl'l::spomlm;: lu anchor fotCC'5o no! pt"Jitcr 1han their &sign ~tn:n~'th. or lbt-mini.nwm MJ:-;:[Ml 'M OCSl(J'.\: LO.\DS dc~1rn :s.tttnrt:h rof lbc anchon ~ OC'.' a1 ka. .. 1 !5 llmrs 1hc f:11..""lorcd fotcc~ transmiucJ by 1hre rnmponc:111. IJ../,1,J Pru.l-l,iDtJIWAnt'l,sn in Ca11cr~ tmd ,lla.ran,:y Post-in~ulk-d a.n,,,:hoD in coocrciC' Wll he prequalifteJ fOJ ~ismK applteation.1-m ~con!uKt' 1,1,:i1h ACI 3~5 . .! or othc-r ,1ppnwc:J qu.ilificalion pr(l(edum.. Posl-iruta.lJcJ .1nchon in rnasoof} WUN' prcqua~fkd for i;cismic o.pplii:atioru. in accardat!C<' with a.ppnwcd qu.atiJkation pnx:cdun:s. JJ.4.l laslallalian Coaditiom Dcknnill.ltian of foocC'.'ll in auachmcnts WU t.akc j11M a..:counl the npct"led condi&ioiu of im,t:ill.itioo i11ctudinf ccc-c:otnci1ics and psyin_g dfo:ls. J.J.M MDltJple-Altadunenb DckrminaUon of fori:c di1;tributi<111 of multipk .iuaduncnts .-1 one !oc.)!i(III shall lllkc-inl<Jo xcmm:I the 11.iffnclis and ductility of lhc ,umpoocnl, n,mpooc.lll supp.ml-, all:s,:hmcnls. .and :s.tra.:turc imJ the abil1t) to redistribute' lnad:r; to other ,,1lb:hmnit.s 1n tbc ~mup. Designs of ,1111dmnic in coocrc1:e in ;i~.:ord.mcc wilh Appcndii D a-f ACI JUI 5tulJ be cansidcn-J to s.atUfl tru~ rrguiTcmffit. ll..ol.$ Power Al1uated F111lfllfnl Plw.cr 4"'1u11kd [nslcll('JS ill J:OCIL"lC'tc or st«\ sh.all oot t,(" u!ICd for Sl&Slai.nc:d tension lo.ad,; or for brace .ippt~a!Klns in Sdllflk DcsiJ;n Calc~orii.-s. D. E. or F unlcu apprm·C'd for scismi:c looding. Power ,actuated fostcncn m ctWUDI)' :arc oot pcnnitlal unless appro,·ed for Jt"ismtc ll1'kling. EXCE"1ON: Pa•·tt actuated fas1c11rn. ln ,oni:rclr wed fix support of 111.0lWical tile « lay-in panel .!iU~ndcd cci.li11i; 4"Plic.ations and diitributcd i)stem., whc:rc thl:-ttrvict load on an)· i.ndi~·idual faskncr don 00! c:ccttd Qfl Jb f,1{10 S). Po11iu aclu.Jted fas-tc-ncn in sled wbt-n= the 5m,·icl!' loJitl oo .an~-iodiYidu.al faslmcr d()("S not e:\cttd !SO lh i 1.111 N). JJ.-1.6 Friction l'Ups Fridii.111 di~ in Scimlic lk.!ilgtl Calci;uncs D. E. or F iball not be= 115(:~ for supportir1~ suslaincd loads i11 addibon ID R'S.ilibng liCtsmic fun:~. C-typc bc:am .and lUJF' flaoi;~ damps. arr p.:nNt~d for han~cn pro,·idcd &My art" equipped with rcsir.unini !ii.raps t:"qui,·ak11110 thi.11iC specified in J\"f'P,\ I J, Section 9.J.7. Lock mrl.!i Of"ct]l:n\·altnl sbaU be prm·~J IU prnc-nt J01»Cnin~ of threaded oontk'.'li.JOO~. 115 PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel''' c avv® l.~krall~-bran•d ta the buitdini;; Wllcturc. Such M'°Jo:i.n: .shall he Uldepmdcnt oi an} ceiling !..dual force M.xing. Br.:ici~ shall be 1.paccd to limil .horilootd U('f1«tion at thc pani1ton bc;,d 10 k .:omp~ibk with ccilia~ dclkctioo rcquire-~nt~ al.\ IX1mn1ncd in SC\'.Cion I J..5.o for suspcndrd .:cilin;s and clscwbcrt-ia th.is sc,:lion for other .§.}"'51C'Rl\. EXCEPTIOS: Partiti\lDJ; 1h.ll: mttt all of the foUo""·i~ "-'.ooditjoos: I. Tht part.Jtion bci;h1 doc-s. 11ot c-xcccd 9 rt L?.7.fOmml. ~-T1k" li.nie.u-wcii;;bt o-f the p.:irtiti.1..m doc-s r,ot ua::cd the prudu,1 of IO lh •0.479 L'i J Umc, the htii;ht • R or m) of the putilion T1lr rwtition borizont.J.l st'isrruc lo.id does not C"xcccd 5 psf 40.~-I L'llm'!. 11.S.8.2 Gkw Glm in !!lazed p.irllhon:s WU be dcs.ipxd .md insta.lkJ in aiccnrdiUlcc wilh S«tion B.5.9. IJ.!:.9 Gius bl Gland Curtain \\'alb, Glued Storefronts. and Gland PuUOom IJ.5.f./ Gntmtl GLm 111 g:b.mt .:urta.m 11,aJb. glairJ M"otcfrnt1b. and gla:tcJ partition~ shall mm tbc rdati,1: dhpfau:- mcnt n:quittmc"nt o( E.q. I ~.5-J: ( IJ.5-11 or 05 in_ ID o~mJ. "-"hic~·C"r is rrc.akr 1,1kK: .lo,;..= 1hr rdalivie scismk dispb:cmm1 hirifiJ id which ,;l;w. fallout from the ewuin ,.,all. i;tffltlrom Willi, or pilltilion occurs 1Scc1ioo 1.U.92.J D,. = the Kblivc seismic dir;pbi:iemcnl lha1 thie COfflporl('At rnuY bt dc-si&nc-d lo acconunodJk' IS<L1.iOl1 ID-.2.l l. D, WU be applied o• .. ier the ~ighl of the gla~s compt1Detd undc-r comidcralioo I .. "' the: importanL't' factor delcnnmcd m accor- dance with S«bon 11.5.l EXCEPTION: G~ with J-Uffldieol ckaranccs t"mm i1J-frami= such th.al pbysic11J roni-1C1 between the glass .,nd fratn(' will not o..""Cur .11 t~ design drift. as dt-mc.111- m.llci.i by E.g. l~.5-2, nttd oot comply Wilh thi5 rcqum:ml:nt: dJ5-2) !.11:0.IMl.l~I Dl:.SKJs LO.\DS D .. 4 -= KlmiH: bonron.tal h.llifh displacement. ~~d over tbt helght of the gla.~,; pnnd unda c011s1dcrution. v.-hich C.JW('S i.nibal i;b.<is-lo--fr.unc conlacl. For m:f.mL'UIM g:bss panel5. wlthin ,1 m.·t.ini:ul.ir ;,,aJt frame [). ="• f1+1lrc~ ;,..,1.-,... ..... -l bre1 ; ,..;-... Irr = the bciprt of ihe m:tan;i;ular i:t.i..~s p311d b,. = th(. widlh of 1hc n=i:t.:mg-ulur glaM palll"I r, = thc a~·cr.igc of the de.ar.t,nc~ lg:ips) on hcilh si«~ bct'\-«n lhe \"('Rica! glass 1Cdgu aod the! fran:11: r: = tlx ,a,,"('rai;c of the ckarJ;PC~ !gaps) lop J;nd bottom b.:1wcC'n the b1.1rizooul gl.bs cJ~cs and the fr.imr :!. fl.1lly t('!np('l°ICd mon.olirhii.: :f;w tll Ri~ Cak~es l U. and III k•nlcd no morr !run IO fl 13 ml .1bo~-c ii 111·..Jkin~ surf.aL""t" occJ oot .:ompl) \llo"ilh th1!> requiKmcnl. .l. Annc:il('rl or hc-.111-stren~DCd I.IR\Jnatc-d tlass IJ\ sin;i;k lruCkncs5 with intcrl.a)·cr oo ks~ th.in 0.0~) in. Ut7o mm) !hat i.\ c.:iptuml m«hJ;ni.cally in 11 wdl §}-S.IICm gla.ting: pocket mJ who!;ie pcrimckr i~ s.c-cun:d lo the frumc hy .n 111·ct rl.:acd .gurublc curio; da!i1.omtric ~.da111 pcrimc!.('r ~ad ofO.~ in. i I:\ mm I mirumum tl.1Ss cootuct ,,,idth, or ocher 21.ppro,·c-d llllcootllgt sy!itcm ncc,J not comply with ,ru~ ~quirrmmt IJ.S.9.1 Sdrant' Drl/1 l.Jlltiu for Gld:u c...,.. • .,.is A... .... the drift causi.ai eb.u fallool from the curtain Yfall. slordrool. or p1111Jb0n lhatl br dctcr- minal in ;M:i:orrlllll(( wilh AAMA SOl.b or hli ('ni::incmoi:; tm.aly-S.s • 13.6 !'tlECHA.~CALAl"iD ELECTRICAL CO}IPOSE.,'TS l.l,6.1 Ge-•ral Mecham.ml .md iekctncaJ rnmpon,cnh .and 1hm ~uppc,ru shall ialisf} the Rquimnaits of this section. ~ ~IJr:bmtru or mcdut.nic.al uod cl«tricaJ compo- Dt'ntli sad their wp11ofh. lo llx slructun: shall mi."d th,. rcqu1n=a-=nh or Sc:-i..i.ion 1.1.4. AppmpriJtc cocfficicnh ihall bc-s,d1Cctc=d from Tabk Llt:1-I. EXCEPTION: Li;ht tillum, ligliled s1gllii. ~od ccilin~ faru. not OO!Uk"ctcd lo duct~ or pi.pinf, which .m-suppc,rtcd hy ch.iJn~ or odxrwts1C sui;pcndcd CIUfO Im-structure. art not ttqui.rc:J lo Yid} the sci.smk 11• PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel''' C S\N® Tal>H I.J.6-1 Smmk CoefflrWntl rar ~ledlanlcal and EIKtrical Component.I A.ir-:,;idc! HV.\C. fan,;. 11ir h.aindlr-ro. • .mi .:oOOlltonicip WJlt"-(ab1or1 he..llt:'ri. •ir Ju111i:wut1011 boic:,;. and a1her ~h.in11:al ~<1111["-lllel!lls u,n.11:n,.·i.c,J <If .tiN-t IJl!:l.11 fnlffilJI! Wer.U\k HV.-\C hctlcr-.. i'W'll.i.:<'J.. ~.: t=b ~d hun. cb1ll.-n.. w.u:er ht,~li:~. hi:iu c,uluti11en. <'~lpot;i!on . .ur ..,,r,.v111,n. rn.muf.u-tunni; ._,r J"<'<:fi:> cqmpmtllll .m<J ,>1:~r m1.••:!unK.1l ,,,mpc•~b ,<tfUlrut:lcJ ,,4 h1pl~f<1nnJb-JIJI~• DlMcn...b f.J111n.-.., mrlouw,1,.. punp ... ,.,mprc~ ... on. • .inil rr-=-1~urc \,:,._,.,1., rwt ~PJ'<l1Cd ,;:,n ,J;in, JOO 11<11. •1thm !be .._<>JII' ol C"h.aptcr I~ Sl1111-WPJP<-TI011 pninUR ,use-I:> Dill •1tlu11 lb,, ""'"P:: of ~11;:T I!! B~·nlOf and =lll.»oo" cnm,panc!:11~ Cl,m,n-Mc...-,, t'-l°IIC1W:>, in,..:-rlrtn. motc,n:. lr.u'I.Sormcn. i1Dd ,lffie'f di:,.,c-..:-al CCfflpo!M'llh ,:oru.tru<:1Cl.t of hi!'lh JdOOUJfflln~ l.'fWicri.ili. ~focur .:oolrol ccnwn. pand bo..w\l,-_ ,.,..-11,h !ICM, 1rnr.rum .. 01.mon ,.,1,.;n,,,1 •• anJ c-o!Dei' ~umponcat~ ~'1Mlmn«J of .ticc,1 tnt'I~ fu,nun:i C',mum.111.:-.1i11111:1 cqw~nt. Cmt1J1Ulc'n. 1rnt.ruo1l'r,;,1uon . .mJ i:,,:itn•I~ R,,,..,f-mou:ntcJ sta.:k.<. '<"->1111~ and chin.~ 1u..-,:r~ l.111n~Uy 1>r-.u:,:J bc:-lu.,._ lli.,11 ,tnln of m.cu R,l<lf-m,ounted stxb. cm-.Im~ ~ l!lt.."'tr.c .. l W.,.cn lnl,:•n.11~ 1'r-.11..,:d ,1ho~,: tlw-,r ,cnt.., of 11...,.• Li!lbl .. ,.-n,uu""-• {)Lber med1omic.il or ,:Jectt1c.tf compo~ai,, CoQlpa11C!11b and ")°1,IC'mt j,agUl,:d IUl"t n~~ clemcnb ;lOO TICClflRtz' 1,ul.;ued fllxin -.1th built-In DI" !lqYr,_ elat.1omcr'i, U11Jbbi11p Je,-ices or -rni:111 f'M"llm'lff ,.l.,pt, Sprin,: 1wl.dc.J: c~nt• .md ~-Hem, and Hbr.itiuu i~lcJ Roon clo1t:I} n-..u.iincd as.int bu.iii-in or ~-<.'l.u.tom,:nc Ulllbblfl!! .:l,"-i,u Of" 1"11iffl f'"1EIIClff •lops fnlallall:,-i<D~ cump>Dl'llb mcl 1,pUm1, S.Uspelllled ,·ibr:abl:a iMJl.-d l!Qll.,m.'111 iac!ula~ 111-lull'.! dud M••K= Jllld -~nded mkm.ally i!t'.Obl,:d _,,...." P1pn~~ m ..:,~e w•h AS:ME fHJ. in.:IBJin~ m-1.i~ ,<1mp<1~ni, w111h J«llh maik t>~-'4dWnp or bc-,i.uri, P1~ap lD ~~OJU,WII;.,. 11, 11b :\SME 5.11. 1n.;luJinp-nd1n.:-~11m~nU. '-'«ulroctt'J 1>I b1Fh. OIi" llm11c..l Jcfon1uh1\ir:,-Q!Jtcruh. ,.,,m J<11nl, m.k ~ d1tt~lnj!", h1:•nd1n~. ,-,..,,rr,:,,ano cooplmr• ,..-E"""~,:J cuupliiq:1 Pip.a~ ~nd 1uti1n11 0<>( m ..._-._•Old.,n..-.. •·1th ASME Bll _ m.:ku.lt<>;! 10-l1n., .:<>:mp<'IIC'nl .. , .:~,ru;\ru,:1.00 ,,f l11gb--J,,:fonr~1b1~ m11lrnah .... ;m J<iinl• nw~ ~ 11,..,JJrn!f ar t-n1.t1n;t Pipl~ imJ wbt.n!" av<; an '11.-.C<>«W,,,.--e 1'"ith .-\SME B ll .. oru:luJ«>p in-1,n,: rnmr~nb. ~•lfUl.nit;t-,J .,J h>l!h-<J( hnlilo!'d-J...runn.,t--1li1~-nu.1.t!n,tl~, ""h i,,mh m.iJe h~ lhr~adm;. f,..,mJrnp ... ,,mrre~,tm .:"Uf'linp,~. m FTI'•,,_-,s1 c1.111p1,~ .. Plp.inp, iUld mbing w11~1ru:1fJ of 11',"11·-ikforrrui~1h1~-m.w~ruh. •~Ji u ca.sj m"Jl'l. p,lau. a1>J nonductlk pl.all,n t'lu..,.,.o,k. in.:luJrn11 m-11~ ~"mr,<!f>Cfll> . .cc>astruo;n-.lol b11,li-dcl,1rmah1hc,,· mat,:n,11.,_ "'uh _1n1m~ mack b~ w,:IJin11 m bruin!! 011..:1.,.,,,k. m.duJinjl Ui-ln:,e ~~•ml"lft(-111 ,. ctxi.tru,tcJ o,I h,ih-m lm111~J-J,:larnut,dn} m.1tcri,1h.,. ill! Jt!mb n~ ~· mc.-no-r,,h:1-th,;m 'll·rl<linj!" or tiratLll!l D11.:1..-«k. in.:ludin¥ m-11~ ~ump-;,nnil.s. <:<n!UlldN <>I l.>111 ..d,,,fc:,mul,,1<1~ nU'l<'ri~.._ ~u.:b .u ,:·;m ll"L'll. 11laH mJ nuPduclllc rl~J.t•~ I l~O ,.: '" '" '" j(I '" '" '" IU 2 . .li 11,: 0.0 ::::., .!.~ "' "' ,., ,, l.O 1.0 1.5 J!:il "' ,o "' •;uJ "' "' PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 9/12/2018 P anel ''' caw® /Ah', STRUCTURAL ENGINEERS ASSOCIATION OF CALIFORNIA ,IJ11\.' By STRUCTURAL SEISMIC REQUIREMENTS AND COMMENTARY FOR ROOFTOP SOLAR PHOTOVOLTAIC ARRAYS SEAOC Solar Photovoltaic Systems Committee Report SEAOC PV1-2012 August 2012 PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 (978) 688.4900 • (978) 688.5100 fax • www.panelclaw.com Appendix B P anel''' c avv® STRUCTURAL ENGINEERS ASSOCIATION OF CALIFORNIA '~ Requirements and Commentary 1. Structural ,-rferlttance •IIJec:tiwa Ccnllstent with lhe intent r:I the IBC 2009 {Section 101.3), Pl/ arrays and their atructural IUl)pOrt systenw shall be oetagned to provide lif9.U1lty Pttlonnance in the Design BMit Earthquake groood mcticn and the design wind event Ufe.ufety performence meant 1het PV ,miya are expec:tecl not to c,eete a hazard to lift, tor exa"1)1e ae • reait of breaking he from Ile roof, llding off the roots edge, exceeding the Ck'AWl..-d load-can')Tlg ~ of lhe roof, or damagilg ak}41ghtt, tlec'1all systems, or 01W rooftop fNll.ns or eqlipment In • way that 1hrffleM life.Mlety. For ---·-·--·""" movement .-e acceptablt, • IOng as they do not poee a ltnat to human lfe. CoDmHDfary: Tht Design Buis Eutbquake gtound motion iD ASCE 7 bas , mum period of _.,......ii, 5-00 yem, 1111d clnipWDJdJo1"' (~Jo•df•don)tquaW 10 I mum period of~ ynn fwRuk Cmgoiy I ........._ 700 yem lwi< C11opy IL 111d 1700 yem Ri.,i< CIWpy IV. (In ASCE 7.10, tbe ~• fa-is built into the mum period far ....0. For """" tiequmt .,,_ (t.g., _,...,. with I l().y,ar rttum period), it may bt dHinblt 10 design the PV may 10......, opentioul; these requi.emeuts do DOt cova-but do not prednd,e using lDOff Sl!ingml clnip crir.ria. Tues, ......... m •pplicable to all 0ccup"")' Cmgories. Howei.-e-it the PV may or any rooftop c__,,i •dj•cmt 10 the may have I, •• 1.0, po,I· tmthquakeoptnbililyoftbe~mmtbt..,.blished ,_with Section ll.1.3 of ASCE 1.10. 2-Typee of •rray1, For the purp01e9 of thne a1rudlnl requnmenta, rooftop PV panel support systems shall be c:atlfted as follows: Unattached (baUalt-(fflly) am1ye •e not attachod to the roof etruc:wre. Reelaance to wnd .-id eeismic forcee is provided by weight and friction. Attached roof-bearing arrays am attached 10 the roof structure at one or more attachment pons, bUt they also beer on 1he roof at 1uppart points that may or may not occur at the Nffllt loealiont aa aaac:tment points. The IOCld path for upward forces is different from that for strucual Seismic Requirements tor Rooftop Soa. Photovoltaic Amr'/9 Report SEAOC PV1•2012 downWard forces. These syllen'IS may lndude additional welglltl (ballast) as well. FuUy-framed arrays (tlanchion syslernl) are ltn.idlnf frames that are ettaehed to the roof lbucbn IUCh that the load path ti the same tor b0dl ~ and downwS'd --CommHtar,·: Sections 1, 2. and 3 of Ibis document are relevant to all rooftop mays. Seetion 4 addresses atbcbed llnJ". Sections 5, 6, 7, 1111d 9 •ddrtu 1llllltacbed mny,. Section 8 applies. to attached 01 um.ttach!d roof-bearing mays. Attaclml mays can include those with t1mble tethm as well u more rigid attachments. Both types of att.acbm,eJd:s are to bt detipd per Section 4. Tbt doam>eDb AC 428 (ICC.ES 2011b) 1111d AC 365 (ICC.ES 20111) provide c:rileria for other t)pff of PV systems. which are not ~ in the specific P,O\isions herein. AC 428 addresses systems ftusb.-mounted on buildiDg roofs or walls, and be stmding (g,o,md-........i) --AC 365-...., building.u,i.pted ')......, such as roof ls, . Ol adbered modules. 3 ••• ld .. Mlatnl~......a.till9ayatem For Pl/ .-rays added to ml existing bulding, the Niafriv f0rce-fnisting l)'ltem ot the bulklng 1h11 be dleCked per the requirements of Chapter 34 d ISC 2009. Coount-•1..,-: Per Sections 3403.4 and.3404.4 ofIBC 2009, if the added mass of the PV may does DOI ......,. the seismic mass tri.butuy to any latml-force-misting s1?uclunl element by more -10'/~ the oti,mie.forc,.. misting system of the building is pemlitted to remain unaltmd. Stdiom 3403.3 ml 3404.3 also requir> 1b•t the gravity structural sy,t,m of th, building be t\..iuated if the gravity load to my m,ting element is inae•sed by .... than 5•1 ... AlOJ&{"2012 Page1 PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 (978) 688.4900 • (978) 688.5100 fax • www.panelclaw.com Appendix B P anel''' C S\N® STRUCTURAL ENGINEERS ASSOCIATION OF CALIFORNIA '~ 4. Attachecl aways PV tuPl)Oft. ~ that are attached IO the roof lllructure lhd be deo9led 10 milt the lateral seilmic: force F,, ,r,edfted in ASCE MO Chapter 13. In the computation of F, for attached Pl #T'8)9, Ill 9'1lluation or the 1lexlOilHy and ductililY -or the PV support 9lruchn • permitted to be Ul9d to eslabhh values of a, and "-· rt the lateral tnngCh to reslet F11 relN on attachmentl wilh low deformation capecity, R, ahall not be -....-.... ,.s. ror Jow.prolile IIITllY9 tor 'M'lich no part of lhe ,nay extends more than 4 feet above the roof IUl'face, the value of a. iS penNtled to be taken equal to 1.0, the value Of R., ii -"'be ...... -"'1.5, and the -..,,,_ .... not be taken ore.,. thin 0.67. C-ommtntu,-: In the compmatim. of F,, for attached low. poll1e 10Lv may>, a, is cOIIIIDOD!y takm u 1.0 ml JI, is COIDlll0llly taken as 1.5, which .,. the values pmcnoed fo, "okmoclwuealorelectricalc_.....," in Table 13.6-1 of ASCE 7-10. A:a eva1mtioo ofthe flmoilily ml dudility capacity of tho PV support -can bt made accorcm,g 1D the definitions in ASCE-7 fur rilid ml flmole ,_,...,. "Dd fur high-, limited-, ml low-defomlability -ml•-- Tbe provisions of tbis section focus en low-po& 100£. bearing ,ymms. Other l)J>ff of ')'Stems are 1D bt dt,iped by ok c:oclo requinmeals that aro applicab1'. Solar cmport 1)1'0 ,_ ... , OD the roof of l buildiDg are IO bt de,jpd p..-tho applicable nqi,imamls of Sectiom 13.1.5 ml ll.J of ASCE 7-10. Fer dachecl roof-bNring f;)'llernl, tldion ii pennilled to .,.,.,,.,.,.. "..,,..,_, -the-_,. -or lllachmentl to JNilt the 1a1en11 force F,, .._.. an of the follooMng concitioN .. met The maximum roof llope at the location of the array ii le9& than cr-equal to 7 degr1le8 (12.3 pmt:ent); • The Might above the roor ufece to the center or maa of the eolar array it laM than the smaHer of 36 inchN and half the lealt plan <lmeneion of lhe ~ beae of the aTay; and ffp lhal not exceed 1.5 unJesa it ia 9hov«'I lhat 1he laln displacement behavior of attachments is compatible 'Mth the lirnlJtoneoul development m frictional reeistancc. The reaislance of slack tether attachments lhal n<X be com- bined with fric:tlonel resistance. Slrudunil SeiomlCRequ-fo<R-Solar-i>m,yt Report SEAOC PV1•2012 The eontrbJtion of tiicllon lhall not eKCeed (0.9-0.2Soa)(0.7,U:1W.-,, v.tiere W,., Is the component weight p,oviding normal foree at the n:l0f bearing locations, and µ ia the coefflcient of friction at the tie.Ing interface. The coefficient JJ shal bt detet11•.ec1 by friction testing per the requireml!lntt fl Section 8, except that for SeilnK OelNgn CategoriN A, 8, 0t C, µia pennilted 10 betaken equal to O.• if the roof uface conlista of rrinenll-Nfaced cap sheet, lingle-i,ly meni:lram, or sprayed taram meninne, and is not gravel, wood, or metal. Coauatntary: \\'hen frictional mistmce is used to Hmt Jalffll srismic fortes, the applicabi. srismic load combination of ASCE: 7 results in. a nonnal force of (0.9- 0.2S..)W.,,. This aom,al lbrce is multiplild by the friction coelliciat. which is reduced by a 0.7 &ctor, ba,ed on the coasmsus judgment of tbt committee to provide , ....... _ fur frictional~-Tbe &ctor of 6.7 dots not med 1D bt applied 10 the axtioml prop..-1ies wed in evalu ...... 1llllttached Sectio"9. no,e_....,._or_;s_.,_,25.,. of F,,, t,e array n1 meet the requirementl cl Section 6 wifl .Juov taken equal to 6 inches. Co1111HDfary: The iequimmnt abcn.·e is intended to Jlff"'l1I • deii-tromaddingootivoly few,.._ 1D ID otherwise unattached. for the se of not pro- the minimllD. seismic amt I. Unattachell ..,..ys Unattached (baleilt-ony) arrays .. prermibd when al of the fojloftlg conditions .. met • The mPinKm roof slope at the location of the mray II 1eu than Ot eqlJII to 7 degrees (12.3 percenti • The height above the roof aurface 1o h center of man of the SOiar array is fen than the smallef of 36 inches end half the -p1an .........,. or the -bole or the an-ay. The array ii designed to acccw1•nodate the Nilrric displacement delennilfld by one of the folowinO pro. cedunis: 0 Pres~ CSNign Hien'wc dlaplacement per Sections 6, 7, and 8; o NDnlinea" reapoi,se history anafysjs per Sections 6, e, tne1 9; or o Shake table testing per SettiOns 6, 8, and 9. Al9Jll2012 P ... 2 PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 (978) 688.4900 • (978) 688.5100 fax • www,panelclaw,com Appendix B P anel''' c avv® STRUCTURAL ENGINEERS ASSOCIATION OF CALIFORNIA 1 ~, Comm.t11w-y: The PfO\"WODS of Section 13.4 of ASCE 7 RqUire lhat "C-and 1beir -"' shall be attJdied (or ~ to the ----• and that "Compc,oenl •-shall be bott.d, weldod, or Olb<r-wise positively fastffled without comidaation of ft:ic:tional -.produc,d by 111o-. of gmity." This document recommends ccmdiliom: fin which exception CUI be takm to Ille above requimm,lls; Appendix A mdicalfl recomme>dtdchanges to ASCE 7-10. UDlil such a cbanp is made in ASCE 7. tbt pio,.-isiom of this document can be considered an altemative method prr IBC 2009 S«1i01110411 1. Dnipl of unattactt.d •rrer• to a«ommeclate .... mlc 111...aac.,_...t For unattached (bellallt..fflY) ll'TIIYI, accommodation of ---be-byp,o,idingttle following minimum Mpandionl; to allow sliding: ~ Minimure Strrdoo 8etweoti aepa,ate lOlar arrayt;d Ml'il• conatruction Between a SOiar array and a fixed objed on the root or solar array of different construction Between • IOlar array and • roof --·--BetwNn a ICllar array and • roof --•""""1g- O.SC/11).:ll.v Where 4.,,., it the deeigr'I seismic cfiaplaCement of the array relative to the roof, •~per the '8qUiremenll herein, 4 ii the ~ce factor for the bulding, end l11 it the COl'IIPOIN!l'II importance faclor for the IOlar array or the COIIC)OIMffll ili4)(Ala1Ce fador tor olher rooftop t0iill)Ol6ftt actacent to the aol.-array, whichever ia greatest. For the _ ..... _._is"qualfylng"ffttle top of the parapet ii not lele-hm 6 inches above the center of mass of the 90lar anay, mid alto not less th.-. 24 inches above lhe adjacent roof IUl'face. Commntary: The factor of 05, based on juc!gm,,,~ accomrts for the likelihood that mo\'elDellt of adjacmt IIIR}'S will "'1d to be synchronous and !hat collisioos between urays. do DOt necessu:ily upreseot a life-safety huml. The factor of U is added, by judgmmt of 1be committee, to pmide ""1Ill prot<ctioD apiDst Ille lifo safety bazud of ID amy sliding off the edg,, of • rooi A qualif)'ing p,rap<t (and Ille roof slope ehang, that may be adjaemt to 11) is Strudurals.;,m;cRequi......,..lor_S __ _ Ret,ort SEAOC PV1°2012 asflJD:led to partly reduct the probability of an may sliding off tbt roof justifying the use of 4.,,,., ntber than U4w,._ C&leulati"11 of tho pmpet's latenl m,igth., ... m Ille may IDO\-ementisnot · tbisdoalment Ead'I separate .-ray 9hall be interconnected ,. an integral unit lueh that tor lff'/ vertical MCtion 1hrough the array, the members and eot1iectiol• etl8lt have design lb'englh 1o resist a 10111 horizcntal torc:e acf'OM the tee:ticn, in bdh tensOO and compreseiOn, equal to the larger d 0. 133SosW, and0.1W, Where w, -the ~tt of the portion of the .ray, inc:lucing bdast, on the tide of the aedion ltlat hal under wei;hl The horbXlntal force lhal be applied to the sray at the level of the roof surface, and shat be dsb1buled In p., in propomon to the ~ that makn up W,. The c:cmputation of strength acroaa the section ehal accouit for any ecoentricity of torces. Elements of the .-ray that are not lnterconneded ae specified thall be consklered Slruc1Urally eeparate and shall be provided with the required mnmurn l8P(lf1ltion. CoDUDf-atan-: the intercoDDectiCI force of 0.1335ns-lJ"1 w 0.111', ~ for the potmial that frie)ioml mistme• to sliding l\ill be di&:rmt" 1JDClft" some portions of the ura.y as• result of vuying oonoal force and actual instmtaoeous values of II for a ffi"m roof smface makrial The roof structure of the bUidlng thall be capabtt of _ng ... ___ ., ... r,,.,r,,yciol)l&ead from its orignal location up 1o ~ in My horizontal --Roof drainage 9hall not be obstructed by movement of the PV array and blllalt up to 4.i., in any horiZontal direction. Electrical tyl,t ... and othtw items attached to arraya shall be flexl>fe and deligned IO KCOIIIIIIOdale the ,eqund mininun seperatiOn in a manner that meets code life.eafety per. f0fmance requnments. Oetalll of providing slacknesa Of movement capability to etectncal wiring shall be included on the penni dra'ft9 tor the .oa. inltaltation Commeat.111.-y: lhis docummt provides only structwal requir........ The dnign 11111S1 a1ao meet applicable . oftbe . deelricd code<. The nwiimum clearance aromd IOltW" arrays shaU be the larger of the seismic eepcwation de1'ned herein and rrinimum separation clearances required fortirefigllting access. August.2012 Page3 Panel Claw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 (978) 688.4900 • (978) 688.5100 fax• www.panelclaw.com Appendix B P anel''' C &\N® STRUCTURAL ENGINEERS ASSOCIATION OF CALIFORNIA '~ 7'. .,._liptlve dniln .. 1am1c displacement for unattachecll arrays Ju,.., is perrmted 10 be detiermined by the prescrlptiw pro- cedure below if all of 1he fcl<Ming conditione are met: I.per ASCE 7-10 Qapler 13 ilequal lo 1.0 for the aolar array and for all rooftop COIIIPC)l.etlta adjacent to the l0lar amay. The rnaxi'Tun roof llope Ill: the location of the M'ay is lees than or equal to 3 de9WI (524 percent). • The manufadur9r pn:Mdes fndion test reuta, per the requiremente in Secticwl 8, which Nblbllh a coeffleilnt Of friction between the PV 1UPP01t ey:atem and the roof Slriace of not 1eN UW1 0.4. For Seltmic Design categories A, e, or c. tiction teet teuta need not be provided if the roof surface CONIIIS of rnin9l1Murfaced cap lhNt, lir9e-PIY rnert'lbrwle, or ll)l'ayed loam rneninne, and ii: not gl1IY9l. wood, or metllf. ~ lhal be taken aa follows: Sei9fflic Design ~ c-., A. B, C 6 inches D, E, F [(S..-0.4)1 • 60 ,-, but not 1eM than 8 inches I. Prlc1ion tntln9 The coefficient of friction used in tt... requirements thal be delei111ined by experilatenlal loetlng of Ille interface between the PV support lytlem and the roofing uface it bell's on. Fnction tells ....U be e,rr1ec1 out tor the general type of roof beaing sl.rlace used for the project under 1he oxpeded worat-case concltlc:N, such as wet conditiOnl vtrwu1 dry CClf'ldilion$.. The INtl shall conform to applicable ,...... menta Of ASTM G11S, incluclno the report formet of Hdion 11. An illdepe11det1t testing agency lhall pedom, or validate the frictiOn tatl and provide. report wit, the reNll.. The friction ... shall be conducted usng • tlled that realiaticaly ~. flt ful scale, the PV panel support aystem, Inducing materials of 1he friction interface and the ..... .,, .,.,. __ under ---The ncnnal ton::e on the ff'idlon aurface lh8II b6 ....., .. ..,. of thll: in typical Installations. lateral force thall be appiecl to the lled at the ~ location of the an-ay nwsa, using -------increuea and decreases il resistive force. The loading vetoctty shall be betWNn 0.1 and 10 inchN per eecond. If atlek-tip behmcr i. oblerved, the velodty t:hal be ..,_led to minimize hi behavicf. Contlnuouo etKtronic recordinO ahall be used lo meaure the lalenll reeiltance. A rninirTWJm of three telfl; shall be conducted, with Nch lest moving the tied a mininun of lhrN Rhee t.Rter continuout movement. The force UUd 10 calculate the frlcUon coeffleient ahal be the aY«"age force n...-ed while the -tied is under continuoul ffl0Yemenl The fridlon tnts thell be carried out for the --Ol~UHdforlhe- Commtntary: Because fridi.on coeffieient is not neceauily conmnt wi1h normal force or ~wocity. 1be aomaal force is to bt npmmlalive of l)llical -uul Ille,~ is to bt lffl 1lwl or equal to 1hat e,pected re. anhquake mo,-mieat A !lip ,-elocity of loadmg could ovor-pmtict frictional mistlnce. Laten1 force is to be applied under displacement control to be able to mnsure 1be effective dynamic friction. under mo,.."l!IIJent_ Fon:e-<:ontrollecl loading. including iDcliDed .... -ODly captma Ille -fri'""8 ""111cieot.!:idoesnotqualify. Friction wsts are to be applicable to tbt gmeral type of rooftng USO<! for tu, project, sud, as a minml-<Urflced cap -. "' • 1)1'< of singl,-ply --sud, u EPDM, TPO, or PVC. !tis not eavisioaod lhatdiff'erenttem wowd be ,eq,med for di1lmot brands of roofing or for small~ in rooL• ..__ or condition. For aolar array9 on buildings 8l8qleCI to s.lric Deaton Category D, E, or F ~ rOOfk>ps are IUbjeCt to tignillcant potential for frost or ice that S likely lo reduce friction -2012 p .... PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 {978) 688.4900 • {978) 688.5100 fax • www.panelclaw.com Appendix B P anel''' C 8\N® STRUCTURAL ENGINEERS ASSOCIATION OF CALIFORNIA '~ 1 between the IOI• array and the roof, h bUidlng official at 1hetr discretion may require inCreaNCI minimlm separabon, llrther --• or attachment 10 the roof. Comm .. w-y: A ,mmbti of &don all'ect the potmial Iha! 6-"ost on a roof smface will be present at the same time that a me mthquake occur,., and wbetber such frost incmses tM sliding displac,m,:nl of an ,my. These factor, 1Ddude, -!ho potmtial for frost to <><= oo a roof based oo !ho ,lima .. at !ho site, .. -!ho building is beat,d, ...i how ...U the roof is insulated -!ho DUZDber of hours per day and day, per)~" !hat frost is ~ -whrtber solar modules occur abo\-e, and shield from frost, the roof~ around the ... .-bases of the PV -.., I. Nonll...,. reeponae hillterY anaa,.t. or shake tallle led119 fer unattached an-aya FOf' Lnattached 90la'" a,rays not comptying with the ~ements of Section 7, the design NtSITlic displacemenl coueapo,iding 10 the Oealgn Balis Earthquake flhall be c1ete,111Hled by nonline• rnponse history~ or lhake table testing: Ulllng ir1)lll: motk>ne conelltent with ASCE 7-10 Chapter 13 dNJon forces b non41rudUral w14,JO,ients on a rcol. The analySia rnod9f or expenmental tat 1h11 account for friction between the array and the roof lllrface, and the mope of the roof. The friction coefficient UNCI In analysis lhall be baled on testing per the recµrement:s in Section 8. For~ tntory analysis er derivation of shake table test motiono, either or the .. _ ...,.. -... ..__, <•> -matched ---« (b) ,_ responee to app,op,illely ICaled design baail earthquake ~ motions applied to lhe b89e of a dynamically ~ tentative model of the bukffng ~no the PV array being -· (a) _,., Matched -Motioosc This method rtl(JJlrel a suite of not lets than thrH appropriate roof motions, spectrally matched to broadband des9l 1pedra per AC 156 (ICCES 2010) f"ig1.re 1 and Section 6.5.1. The spectrum shall include the portion for T > o.n seoonc11 (flequency < 1.3 Hz) fer whieh lhe spec.trum iS penmted to be proportional to 1/T. Cbl -s-• Design.....,...._,. Ground Motions Applied to Building Model: This methOd requires a lllite of not kl6I than throe appropriato ground motions, ICaled in c:o.rb11a,..-with the requirements of Chapter 16 of ASCE 7-10 over at least the range of periods from the Structural Seilmk: Requkemonts fa' Rooftop Solar -Am,ys Report $£AOC PV1-2012 initial buildilg perioel, Ti to a mlnimtm of 2.0 teeonds or 1.57; whidle\ler ii-greeter. The building ii penNtted to be modeled a linear elattic. The viscoua damping used in lhe retp0n9e hilt.cry anatysie thall not exceed 5 percent Each roof or ground motion lhall have a total dl.ntlon Of at least 30 se<:onds and lhlll contain at least 20 leconds of tb'ong shakng per AC 156 Section 6.5.2. For analysia, a ttne-dlmensional .,._ lhall be ueed, and the roof motion8 thalt include two horiZontal componenta and one venical co,1 .po. e It appled concurrentty . Commt-ata~·: Nonstruetunl ooq,onmts ou elt\rated fJoon or roofs of buildiDgs experim:e earthquab wkmg !hat is dill'«mt from !ho com,pooding IJllllll'l,lo,'OI shabng. Rootlevel shaking is filt,ml tluough the buildmg so it te>ds to cause ~ borizGntal spectnl accelentioll at the natural penod(s) of -,1,nlion of !ho building and amller •ccelerations at other periods. For input method (a). AC 1S6 is reffflnced because it provide, requimmnts ,.. input motioos ., - -C<lllSista>t with ASCE 7 Cbapter 13 de,ign forces. Therequuema,t addodlDthis -to mdude lho portion of the spectrum with T :,. O. 77 seconds is ue«Ssary ., make the motioos •w"!'riate for predicting ,JjdiDg dispbcemem, which can be affectocl by 1oagv period motions. The wg,t spectra defiJ>ld ID AC IS6 m broadband spectra. ~ !hat they ..,,.lope pota,tial peak, ID spectn1 accelention over a broad nnp of periods of V1lntion. repesenting a map of dift'ertnt buildiogt wh«e nou- structural rcmp tells could be located. Comparative amlytical s1Udies (Mal!"<i et al 2012) haw sbo,w that the use of broadband speetn p-ovides a cousen'ati\'e eslimak of !ho ,JjdiDg displac,m,:nl of solar ,mys co_..! to UIUtlOdified roof motioos For iDput method (b). appropriatdy scol,d Design Bw Earthquake ground uwtioos a:e ,ppli<d to the bue of a builiting analysis model Iha! indudes the model of !ho solar amy on the roof_ In sucli. a case, the pcopertin of the buildmg analysis model should be opp,opria"ly bncketed to cover a nnge of powl>le building: dynamic properti~ (Walten 2010, Walten 2012). Because thction resistmce depends on DOmW force,. vertical earthquake acci!len:tion can also affect the horizontal movement of mattached components, so inclusion of a vertical C is . For shake table testing, it is pennitted to conduct a ttvee- dimensional test uaing two hof1Zontal con,pooenbs and one Al9JSl:2012 PaoeS PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 (978) 688.4900 • (978) 688.5100 fax • www.panelclaw.com Appendix B P anel''' c avv® STRUCTURAL ENGINEERS ASSOCIATION OF CALIFORNIA '~ 'lleftical co,1,po.te1d:, or a two4menlionail test with one horizl0ntal compo,,e,,t and one vertical componeut. In al Caeet the COiil)Ol•ds ct motion lhal be appied rm--· Shake tabte tests lhall apply the m1nun of high-pass -to ... Input -......... -laciity ---fillorlng ...... ouch ....... reeulting PV array cits fecentetda are comperable to DION analytically-... _ Input_ """' '"""' mollonf; .,. high-paN ftlterecl er If two-cimenlional tests .,. -.... --.. --onolytical ltudiel of lhe felts IO calbrate the inftuentiat variables and three clmene:ionll anal)'NI lo compute the Nisnic dllpoc:ementt,rUlftllorwdinOulmotiOnl. CollUllfDtary: for some input motiom IDCi shake tai. fiicilities, iDpul Jt<ords ay -to be high-pa,$ -(nmoviDg ,.,.. of tbt low-flequmcy conr.ut of tbt recoid) so 11w tbt shake-tablo movement dots DOI ......i tbt tablo's dispbcement capocily. If fillaing of.., .... is needed, it should be dme in snch I way U to ha\-e U little eft'ect U powble cm tbt 1ff111tiq sliding ctispi-Coq,uatn .. onaJytes should be ccmduct,d to -.. tbt effect of filtering on sliding ctisplac<m,nt, 11m whidi unfil- motioos lhould be llHd iD tbt analysis to ci,...,..,. the desip seismit dispacemmt. If the wk• tablo...., .,. two-d-•icv,>1, the IKt, should be us<d to c:alibnte co_,bi. two-dimomional analyses, -which -onalytes should.,. used to ci,...,..,.tbt . seismic. l ff et least eeven root motiof-. ant UNd, 1ht design ~ cilpiac«nent it permllmd to be taken • 1.1 tma the ~ of the peak ~ valuee (In any direction) from 1he MlllyMt, or INtl. If fewer than ,even rvol motiont are ueed, the dN9l Nl9mlc <bpl11cemeut IIMII be tlken as 1.111mes the mauncm of the pea1c dilp&acernent va1ue11rorn ... _ .. __ Resulting values for .4wv lhal not be leN than 50% of the values apecifted n Section 6, ~ lower values are _., ____ _ ___ .,,_Solar __ _ Repcn SEAOC PVt-2012 Commtatary: Tbe factor of I.I us<d io defiDiDg tbt d.-ip seismic ctisplac<m,ot is to ''""""' for tbt -1lllCe1liDty of response for a tingle Ii""' roof motion. This \1IICWUlty is. assumed to b< lmpr for sticbiJislidiDJ --it is for other l)'Jle• of --coasidond in stmctural enginHnng. Tbe factor is chosm by judpmtt. ADafytical""' nperirnentai "1ldi<, of tbt seismi, respom, ofuaattachrd solar mays .,.r,port<d by Sch<u..bag ,ta/. Oil. Netation a,, • co.14)0f.a1it6R1)1iffcationfador(perASCE7) F, • ---Cleligrltorte(pe< ASCE7) '• • Nilfflic impcrtance factor for t,e buicing (per ASCE7) I,. • corrc,o,11tit mportancefactDr (per ASce: 7) 1'p • CCNl ....... •1l,.tepOnMnlOdlftcatio,1 factor(per ASCE7) So, • -5--•--at--(perASCE 7) T • lundalMntolperiod W1 • totafweighl Of the .-ray, inducing balast, on the _.,..,_(beingdlockedt,r lltte.co.w.ectiui1 llrength) that hal tmaller weight W-, • COl'IIPQINtl ll weight pn,vlding notn1i111 force at the roof --,A.,.tv • delign NilmiC dlsplacement or the anayretattve to ..,_ µ • --01-atllle-hteolace between lhe roof a.rface and the tdar aray PanelClaw, Inc., 1570 Osgood Street, Suite 2100, North Andover, MA 01845 (978) 688.4900 • {978) 688.5100 fax • www.panelclaw.com Appendix B