Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
1095 HOOVER ST; ; PC2018-0025; Permit
PERMIT REPORT ~('( ity of Carlsbad Print Date: 07/01/2020 Permit No: PC2018-0025 Job Address: 1095 HOOVER ST, Permit Type: BLDG-Plan Check Parcel #: 2061720100 Valuation: $ 0.00 Occupancy Group: #of Dwelling Units: Bedrooms: Bathrooms: CARLSBAD, CA 92008 Work Class: Track #: Lot #: Project #: Plan #: Construction Type: Orig. Plan Check #: Plan Check #: Status: Closed - Finaled Residential Applied: 06/08/2018 Issued: 11/06/2018 DEV2017-0112 Finaled Close Out: 07/01/2020 Inspector: Final Inspection: Project Title: VIOLA RESIDENCE HOOVER STREET Description: HOOVER ST: NEW SFD AND ADU Applicant: Property Owner: WRIGHT DESIGN THE AGMISH TOFF TRUST 06-23-95 SAMUEL WRIGHT 4858 PARK DR 2911 STATE ST, #A CARLSBAD, CA 92008-3811 CARLSBAD, CA 92008-2338 • (760) 613-8333 (760)720-7631 FEE • • AMOUNT MANUAL BUILDING PLAN CHECK FEE • • $2,000.00 Total Fees: $ 2,000.00 Total Payments To Date: $ 2,000.00 Balance Due: $0.00 Building Division • Page 1 of 1 1635 Faraday Avenue, Carlsbad CA 92008-7314 1 760-602-2700 1 760-602-8560 fl www.carlsbadca.gov APPLICATION MISSING FOR THIS PROJECT 1 GEOTECHNICAL EXPLORATION, INC. SOIL & FOUNDATION ENGINEERING GROUNDWATER • ENGINEERING GEOLOGY DATE: ____________ TIME: JOB NO. _______ PROJECT NAME: ërve c-7ce'-f- 41z/iv/it tia?s PROJECT ADDRE / /7'bbVei—cc4d t-(,C'1- -'fl The footing excavations listed below were bottomed on material for which the bearing values L J1 recommended in the foundation report are applicable. The cast-in-place drilled friction piles listed below penetrated material for which the allowable supporting capacities recommended in the foundation report are applicable. The piles were excavated to diameters at least as large as specified and the excavations extended at least to the depths indicated on the Foundation Plans. The excavations for the cast-in-place belied piers listed below were bottomed on material for which the bearing values recommended in the foundation report are applicable. The excavations were at least as large as specified on the Foundation Plans. The driven piles listed below were observed to be driven to the specified lengths and/or driving resistances to obtain the supporting capacities recommended in the foundation report. Based upon observations, it is our opinion that the fou ion recommendjtioris presented in the report of the foundation investigation, Job No.fbi'fI f , dated __________________ 3 applicable to the conditions observed. Foundation Plans by c_$'u14 k dated were used as a reference for our observations. 54 (JtL1(( b4t c6&c 4 LavJ,4 ,1tc ffr ejr&,( pd (i — J roitr iii NOTE: 1 The observations reported above do not constitute an approval of foundation location, footing size or depth, reinforcement, or foundation design. 2 Loose, soft, or disturbed soils must be removed prior to placement of reinforcement or concrete. 3 The opinions and recommendations presented in this report were based upon our observa tions and are presented in accordance with rally accepted professional engineering practice. We make no other warranty, either e ress p i BY: c&&#--- ~ -r' .6 rr 4 1, 7420 Trade St. San Diego, Ca. 92121 • (858) 549-7222 • FAX: (858) 549-1604. Nc; Vag a FIELD REPORT ON OBSERVATION OF FOUNDATIONS CLIENT: -ra VI'D/4. EsGil A SAFEbuI1t Company DATE: October 8, 2018 U APPLICANT 9JURIS. JURISDICTION: CARLSBA17 PLAN CHECK #.: CBPC2018-0025 SET: IV PROJECT ADDRESS: 1095 HOOVER STREET PROJECT NAME: NEW SFD + ADU FOR VIOLA The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. D The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. E The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to: EsGil staff did not advise the applicant that the plan check has been completed. D EsGil staff did advise the applicant that the plan check has been completed. Person contacted: SAM, Telephone #: 760 213 1460 Date contacted: (tfrj.)) Email: WRlGHTHOUSE(äROADRUNNER.COM?; wriqhthaus(road runner. cori-1t' Mail Telephone Fax In Person REMARKS: Set IV submittal included only revised sheet A7. By: Abe Doliente (for B.D.) Enclosures: EsGil 9/28/18 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858) 560-1576 EsGil A SAFEbuitCompany DATE: 9/24/2018 0 APPLICANT 0 JURIS. JURISDICTION: CARLSBAD PLAN CHECK #.: PC2018-0025 SET: III PROJECT ADDRESS: 1095 HOOVER STREET PROJECT NAME: NEW SFD + ADU FOR VIOLA. LII The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. Lii The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. LI The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to: SAM WRIGHT EsGil staff did not advise the applicant that the plan check has been completed. EsGil staff did advise the applicant that the plan check has been completed. Person contacted: SAM Telephone #: 760 213 1460 Date contacted:9/'2.i—f (U ) Email: WRlGHTHOUSE(aROADRUNNER.COM?; wriphthaus road run ner.com Mai elephone x In Person LI REMA By: Bert Domingo Enclosures: EsGil 9/17/2018 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax(858)560-1576 CARLSBAD CBPC20 18-0025 9/24/2018 NOTE: The items listed below are from the previous correction list. These remaining items have not been adequately addressed. The numbers of the items are from the previous check list and may not necessarily be in sequence. The notes in bold font are current. PLANS 1. Please make all corrections, as requested in the correction list. Submit FOUR new complete sets of plans for commercial/industrial projects (THREE sets of plans for residential projects). For expeditious processing, corrected sets can be submitted in one of two ways: Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602-2700. The City will route the plans to EsGil and the Carlsbad Planning, Engineering and Fire Departments. Bring TWO corrected set of plans and calculations/reports to EsGil, 9320 Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of plans and calculations/reports directly to the City of Carlsbad Building Department for routing to their Planning, Engineering and Fire Departments. NOTE: Plans that are submitted directly to EsGil only will not be reviewed by the City Planning, Engineering and Fire Departments until review by EsGil is complete. 2. All sheets of plans must be signed by the person responsible for their preparation. (California Business and Professions Code). This will be checked on the final 3. Plans deviating from conventional wood frame construction shall have the structural portions signed and sealed by the California state licensed engineer or architect responsible for their preparation, along with structural calculations. (California Business and Professions Code). The framing and foundation plans should be stamped and signed by the structural engineer. This will be checked on the final. ROOFS/DECKS/BALCONIES 20. Wood balconies and decks that support moisture-permeable floors shall be provided with an impervious moisture barrier system under the moisture- permeable floor, with positive drainage. CBC Section 2304.12.2.5, as amended by emergency building standards. NO RESPONSE. The response 9 only shows tile/mortar. The same finish is a moisture permeable floor and therefore needed an impervious moisture barrier system. CARLSBAD CBPC20 18-0025 9/24/2018 22. Specify on the plans the following information for the roof materials, per Section R106.1.1: NO RESPONSE. Please show the ICC approval of the waterproof underlayment. Manufacturer's name and product name/number. ICC approval number, or equal to the waterproof underlayment of the metal seams. To speed up the review process, note on this list (or a copy) where each correction item has been addressed, i.e., plan sheet, note or detail number, calculation page, etc. Please indicate here if any changes have been made to the plans that are not a result of corrections from this list. If there are other changes, please briefly describe them and where they are located in the plans. Have changes been made to the plans not resulting from this correction list? Please indicate: Yes L3 No The jurisdiction has contracted with EsGil, located at 9320 Chesapeake Drive, Suite 208, San Diego, California 92123; telephone number of 858/560-1468, to perform the plan review for your project. If you have any questions regarding these plan review items, please contact Bert Domingo at EsGil. Thank you. t EsGil A SAFEbuilttompany DATE: 9/6/2018 JURISDICTION: CARLSBAD U APPLICANT U JURIS. -i PLAN CHECK #.: PC2018-0025 PROJECT ADDRESS: 1095 HOOVER STREET PROJECT NAME: NEW SFD + ADU FOR VIOLA SET: II The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. El The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. LI The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. El The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to: SAM WRIGHT LI EsGil staff did not advise the applicant that the plan check has been completed. EsGil staff did advise the applicant that the plan check has been completed. Person contacted: SAM Telephone #: 760 213 1460 Date contacted: '/(Q (b4 ) Email: WRlGHTHOUSE(ROADRUNNER.COM?; wriqhthauscroad run ner.com :.- ' Mail Cfe-i--epho—ne) Fax In Person El REMARKS"' By: Bert Domingo Enclosures: EsGil 8/28/2018 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858) 560-1576 CARLSBAD CBPC20 18-0025 9/6/2018 NOTE: The items listed below are from the previous correction list. These remaining items have not been adequately addressed. The numbers of the items are from the previous check list and may not necessarily be in sequence. fl notes in bold font are current. PLANS Please make all corrections, as requested in the correction list. Submit FOUR new complete sets of plans for commercial/industrial projects (THREE sets of plans for residential projects). For expeditious processing, corrected sets can be submitted in one of two ways: Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602-2700. The City will route the plans to EsGil and the Carlsbad Planning, Engineering and Fire Departments. Bring TWO corrected set of plans and calculations/reports to EsGil, 9320 Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of plans and calculations/reports directly to the City of Carlsbad Building Department for routing to their Planning, Engineering and Fire Departments. NOTE: Plans that are submitted directly to EsGil only will not be reviewed by the City Planning, Engineering and Fire Departments until review by EsGil is complete. 2. All sheets of plans must be signed by the person responsible for their preparation. (California Business and Professions Code). This will be checked on the final Plans deviating from conventional wood frame construction shall have the structural portions signed and sealed by the California state licensed engineer or architect responsible for their preparation, along with structural calculations. (California Business and Professions Code). The framing and foundation plans should be stamped and signed by the structural engineer. This will be checked on the final. ROOFSIDECKS/BALCONIES Enclosed framing in wood exterior balconies and decks shall be provided with openings that provide a net free cross ventilation area not less than 1/150 of the area of each separate space. CBC Section 2304.12.2.6, as amended by emergency building standards. NO RESPONSE. Wood balconies and decks that support moisture-permeable floors shall be provided with an impervious moisture barrier system under the moisture- permeable floor, with positive drainage. CBC Section 2304.12.2.5, as amended by emergency building standards. NO RESPONSE '4 CARLSBAD CBPC2018-0025 9/612018 Specify on the plans the following information for the deck/balcony surfacing materials, per Section R106.1.1: NO RESPONSE Manufacturer's 'name and product name/number. ICC approval number, or equal. Specify on the plans the following information for the roof materials, per Section R106.1.1: NO RESPONSE. Please show the ICC approval of the waterproof underlayment Manufacturer's name and product name/number. ICC approval number, or equal to the waterproof underlayment of the metal seams. FOUNDATION REQUIREMENTS 32. Provide a letter from the soils engineer confirming that the foundation plan, grading plan and specifications have been reviewed and that it has been determined that the recommendations in the soils report are properly incorporated into the construction documents.. Please submit the requested letter from the soils engineer. To speed up the review process, note on this list (or a copy) where each correction item has been addressed, i.e., plan sheet, note or detail number, calculation page, etc. Please indicate here if any changes have been made to the plans that are not a result of corrections from this list. If there are other changes, please briefly describe them and where they are located in the plans. Have changes been made to the plans not resulting from this correction list? Please indicate: Yes 13 No U The jurisdiction has contracted with EsGil, located at 9320 Chesapeake Drive, Suite 208, San Diego, California 92123; telephone number of 858/560-1468, to perform the plan review for your project. If you have any questions regarding these plan review items, please contact Bert Domingo at EsGil. Thank you. EsGil A SAFEbuIttCompany DATE: 6/21/2018 U APPLICANT X JURIS. JURISDICTION: CARLSBAD / PLAN CHECK#.: PC2018-0025 SET:I PROJECT ADDRESS: 1095 HOOVER STREET PROJECT NAME: NEW SFD + ADU FOR VIOLA The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. El The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to: SAM WRIGHT EsGil staff did not advise the applicant that the plan check has been completed. EsGil staff did advise the applicant that the plan check has been completed. Person contacted: SAM Telephone #: 760 213 1460 Date :~7,11, 1 (by-P4 Email: WRIGHTHOUSE@ROADRUNNER.COM? S]~Mat Telephone Fax In Person itIC& Ct RE 5: By: Bert Domingo Enclosures: EsGil 6/11/2018 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858) 560-1576 CARLSBAD CBPC20 18-0025 6/21/2018 PLAN REVIEW CORRECTION LIST SINGLE FAMILY DWELLINGS AND DUPLEXES PLAN CHECK# CBPC2018-0025 JURISDICTION: CARLSBAD PROJECT ADDRESS: 1095 HOOVER STREET FLOOR AREA: STORIES: HEIGHT: REMARKS: DATE PLANS RECEIVED BY JURISDICTION: DATE INITIAL PLAN REVIEW COMPLETED: 6/21/2018 FOREWORD (PLEASE READ): DATE PLANS RECEIVED BY ESGIL CORPORATION: 6/11/2018 PLAN REVIEWER: Bert Domingo This plan review is limited to the technical requirements contained in the California version of the International Residential Code, International Building Code, Uniform Plumbing Code, Uniform Mechanical Code, National Electrical Code and state laws regulating energy conservation, noise attenuation and access for the disabled. This plan review is based on regulations enforced by the Building Department. You may have other corrections based on laws and ordinance by the Planning Department, Engineering Department, Fire Department or other departments. Clearance from those departments may be required prior to the issuance of a building permit. Present California law mandates that construction comply with the 2016 edition of the California Code of Regulations (Title 24), which adopts the following model codes: 2015 IRC, 2015 IBC, 2015 UPC, 2015 UMC and 2014 NEC. The above regulations apply, regardless of the code editions adopted by ordinance. The following items listed need clarification, modification or change. All items must be satisfied before the plans will be in conformance with the cited codes and regulations. Per Sec. 105.4 of the 2015 International Building Code, the approval of the plans does not permit the violation of any state, county or city law. To speed up the recheck process, please note on this list (or a copy) where each correction item has been addressed i.e., plan sheet number, specification section, etc. Be sure to enclose the marked up list when you submit the revised plans. CARLSBAD CBPC2018-0025 6/21/2018 * [DO NOT PAY— THIS IS NOT AN INVOICE] VALUATION AND PLAN CHECK FEE JURISDICTION: CARLSBAD PLAN CHECK #.: CBPC2018-0025 PREPARED BY: Bert Domingo DATE: 6/21/2018 BUILDING ADDRESS: 1095 HOOVER STREET BUILDING OCCUPANCY: R 3 BUILDING PORTION AREA (Sq. Ft.) Valuation Multiplier Reg. Mod. VALUE ($) HOUSE 4796 141.76 679,881 ADU 832 141.76 117,944 DECK . 424 20.03 . 8,493 COV TERRACE .652 20.03 13,060 GARAGE 1808 36.98 66,860 Air Conditioning Fire Sprinklers TOTAL VALUE 886,237 Jurisdiction Code ICB IBY Ordinance I 1997 UBC Building Permit Fee V 1997 UBC Plan Check Fee IL"I Type of Review: I21 Complete Review U Repetitive Fee El Other I Repeats Hourly EsGil Fee El Structural Only Hr. © * I $19823.01 Comments: [In addition to the above fee, an additional fee of $ is due ( hour /hr.) for the CalGreen review. Sheet 1 of 1 CARLSBAD CBPC2018-0025 6/21/2018 PLANS Please make all corrections, as requested in the correction list. Submit FOUR new complete sets of plans for commercial/industrial projects (THREE sets of plans for residential projects). For expeditious processing, corrected sets can be submitted in one of two ways: 1. Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602-2700. The City will route the plans to EsGil and the Carlsbad Planning, Engineering and Fire Departments. 2. Bring TWO corrected set of plans and calculations/reports to EsGil, 9320 Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of plans and calculations/reports directly to the City of Carlsbad Building Department for routing to their Planning, Engineering and Fire Departments. NOTE: Plans that are submitted directly to EsGil only will not be reviewed by the City Planning, Engineering and Fire Departments until review by EsGil is complete. 2. All sheets of plans must be signed by the person responsible for their preparation. (California Business and Professions Code). This will be checked on the final 3. Plans deviating from conventional wood frame construction shall have the structural portions signed and sealed by the California state licensed engineer or architect responsible for their preparation, along with structural calculations. (California Business and Professions Code). The framing and foundation plans should be stamped and signed by the structural engineer. This will be checked on the final. 4. Provide a fully dimensioned site plan drawn to scale. Section R106.2. Please include the following: North arrow. Property lines/easements. Streets/alleys. Existing and proposed buildings and structures. 5. Clearly dimension building setbacks from property lines, street centerlines, and from all adjacent buildings and structures on the site plan. Section R106.2. 6. Please indicate on the site plan the structures as not a part of this permit. CARLSBAD CBPC2018-0025 6/21/2018 FIRE PROTECTION 7. Show locations of permanently wired smoke alarms with battery backup, per Section R314: Inside each bedroom. Outside each separate sleeping area in the immediate vicinity of the bedrooms. On each story, including basements. Such smoke alarm lOcations shall comply with the following: They shall be not less than 3' from the door opening of a bathroom. They shall be at least 20' from a cooking appliance. They shall be at least 3' from supply registers of heating/cooling systems. They shall be at least 3' from the tip of the blade of a ceiling- mounted fan. NOTE: When more than one smoke alarm is required to be installed, the alarm devices shall be interconnected in such a manner that the actuation of one alarm will activate all of the alarms in the unit. 8. In dwelling units within which fuel-burning appliances are installed (and in dwelling units having attached garages), show the locations of permanently wired carbon monoxide alarms with battery backup, per Section R315: Outside each separate sleeping area in the immediate vicinity of the bedrooms. On each story, including basements. NOTE: When more than one carbon monoxide alarm is required to be installed, the alarm devices shall be interconnected in such a manner that the actuation of one alarm will activate all of the alarms in the unit. GENERAL RESIDENTIAL REQUIREMENTS 9. Sleeping rooms shall have a window or exterior door for emergency escape. Section R310. Windows must have an openable area of at least 5.7 square feet, with the minimum openable width 20" and the minimum openable height 24". The bottom of the clear opening shall not exceed 44" above the floor. Do not measure to the window sill. This generally applies to windows that have a height of 3' or less. See the figure below to see the correct method of measurement. ILL CARLSBAD CBPC2018-0025 6/21/2018 Such openings shall open directly into a public way or a court that opens to a public way (4-sided courts are prohibited). If such openings occur at a patio, the patio may not be enclosed. Appendix H, Section AHI03.2. The emergency door or window shall be openable from the inside to provide a full, clear opening without the use of any keys or tools. For egress openings at window wells, refer to Section R310.2 for requirements. 10. Glazing in the following locations should be shown on the plans as safety glazing material in accordance with Section R308.4: Glazing in doors. Glazing adjacent to a door where the nearest vertical edge of the glazing is within a 24" arc of either vertical edge of the door in a closed position and where the bottom exposed edge of the glazing is less than 60" above the walking surface. Exceptions: I) Glazing in walls on the latch side of and perpendicular to the plane of the door in a closed position. Glazing in walls on the push side of and perpendicular to the plane of the door in a closed position (hinge side). Glazing that is adjacent to the fixed panel of patio doors. Sc (60 in. Floor Section view CARLSBAD CBPC20 18-0025 6/21/2018 C) Glazing in the walls/doors facing or containing bathtubs, showers, hot tubs, spas, whirlpools, saunas, steam rooms and indoor/outdoor swimming pools where the bottom exposed edge of the glazing is less than 60" above the standing surface. Exception: Glazing that is more than 60", measured horizontally, from the water's edge of a bathtub, hot tub, spa, whirlpool or swimming pool. See the figure below. Bathtub, whirlpool tub 1,s4 4. 11. SG = Safety glazing required Measurements are to exposed glazing d) Glazing in individual fixed or operable panels that meet all of the following conditions: Exposed area of an individual pane is greater than 9 square feet, and: Exposed bottom edge is less than 18" above the floor, and: Exposed top edge is greater than 36" above the floor, and: One or more walking surfaces are within 36" horizontally of the plane of the glazing. e) All glass railings, regardless of height, above a walking surface (including structural baluster panels and nonstructural in-fill panels). f) Glazing where the bottom exposed edge is less than 36" above the plane of the adjacent walking surface of stairways, landings and ramps. g) Glazing adjacent to the landing at the bottom of a stairway, where the glazing is less than 36" above the landing and within 60" horizontally of the bottom tread. 11. Please show this note.Shower enclosure shall be safety glazing. CARLSBAD CBPC20 18-0025 6/21/2018 EXITS, STAIRWAYS, AND RAILINGS 12. Guards (Section R312): Shall be installed along open-sided walking surfaces that are located more than 30" above the floor or grade below. Shall have a height of 42" (may be 34" along the sides of stairs). Openings between railings shall be less than 4". The triangular openings formed by the riser, tread and bottom element of a guardrail at a stair shall be less than 6". Shall be detailed to show capability to resist a concentrated load of 200 pounds in any direction along the top rail Table R301.5. 13. Where a window sill is more than 6' above the finished grade, the lowest part of the window shall be at least 24" above the finished floor of the room. Glazing between the floor and a height of 24" shall be fixed or have openings such that a 4" sphere cannot pass through. Section R312.2. 14. Provide stairway and landing details. Section R311.7. Maximum rise is 7-3/4" and minimum run is 10", measured from the nosing projection. Where there is no nosing, the minimum run is 11". Minimum headroom is 6'-8". C) Minimum width is 36". The greatest riser height within any flight of stairs shall not exceed the smallest by more than 3/8 inch. The greatest tread depth within any flight of stairs shall not exceed the smallest by more than 3/8 inch. 15. Open risers are only permitted if the opening between treads does not permit the passage of a 4" diameter sphere. Section R311.7.5. 1. 16. A nosing (between %" and 1-1/4") shall be provided on stairways with solid risers. Exception: No nosing is required if the tread depth is at least 11 inches. Section R311.7.5.3. 17. Handrails (Section R311.7.8): Shall be provided on at least one side of each stairway with four or more risers. Handrails and extensions shall be 34" to 38" above nosing of treads and be continuous. The handgrip portion of all handrails shall be not less than 1-% inches nor more than 2 inches in cross-sectional dimension. See Section R311.7.8.3 for alternatives. CARLSBAD CBPC2018-0025 6/21/2018 Handrails projecting from walls shall have at least 144 inches between the wall and the handrail. Ends of handrails shall be returned or shall have rounded terminations or bends. 18. Every stairway landing shall have a dimension, measured in the direction of travel, at least equal to the stairway width. If a door occurs at the landing, such dimension need not exceed 36 inches. Section R311.7.6. Exception: At the top of an interior flight of stairs, provided a door does not swing over the stairs. ROOFS/DECKS/BALCONIES 19. Enclosed framing in wood exterior balconies and decks shall be provided with openings that provide a net free cross ventilation area not less than 1/150 of the area of each separate space. CBC Section 2304.12.2.6, as amended by emergency building standards. 20. Wood balconies and decks that support moisture-permeable floors shall be provided with an impervious moisture barrier system under the moisture- permeable floor, with positive drainage. CBC Section 2304.12.2.5, as amended by emergency building standards. 21. Specify on the plans the following information for the deck/balcony surfacing materials, per Section RI 06.1.1: Manufacturer's name and product name/number. ICC approval number, or equal. 22. Specify on the plans the following information for the roof materials, per Section R106.I.1: Manufacturer's name and product name/number. ICC approval number, or equal to the waterproof underlayment of the metal seams. 23. Show the required ventilation for attics (or enclosed rafter spaces formed where ceilings are applied directly to the underside of roof rafters). The minimum vent area is 1/150 of attic area (or 1/300 of attic area if at least 40% (but not more than 50%) of the required vent is located no more than 3' below the ridge). Show on the plans the area required and area provided. Section R806.2. a) When using a radiant barrier, California energy design affects the attic ventilation area requirement: If using the Prescriptive method for energy compliance, then the attic vent area must be at the 1/150 area: If using the Performance method, either the 150 or 300 areas may be used, as documented on the energy forms. Section RA4.2.1. CARLSBAD CBPC20 18-0025 6/21/2018 24. Enclosed rafter spaces do not require venting if the following specific insulation design is used, per Sections ,R806.5/EM3.9.6: If the insulation is air-permeable and it is installed directly below the roof sheathing with rigid board or sheet insulation with a minimum R-4 value installed above the roof sheathing. (or). If the insulation is air-impermeable and it is in direct contact with the underside of the roof sheathing. (or) If two layers of insulation are installed below the roof sheathing: An air- impermeable layer in direct contact with the underside of the roof sheathing and an additional layer of air permeable insulation installed directly under the air- impermeable insulation. 25. Where eave vents are installed, insulation shall not block the free flow of air. A minimum of 1" of air space shall be provided between the insulation and the roof sheathing. To accommodate the thickness of insulation plus the required 1" clearance, member sizes may have to be increased for rafter-ceiling joists.. Section R806.3. 26. Note on the plans: "Attic ventilation openings shall be covered with corrosion-resistant metal mesh with 1/16" minimum to %" maximum openings. Section R806.1. 27. Show the sizes of roof drains and overflows. Section R903.4. 28. Specify on the plans the following information for the skylights, per Section RI 06. 1. 1: Manufacturer's name and product name/number. ICC approval number, or equal. GARAGE AND CARPORTS 29. Show a self-closing, self-latching door, either 1-3/8" solid core or a listed 20 - minute assembly, for openings between garage and dwelling.. Section R302.5.1. 30. In the garage, provide an adequate barrier to protect the water heater from vehicle damage. An 18" platform for the water heater does not satisfy this requirement. CPC Section 507.13. CARLSBAD CBPC2018-0025 6/21/2018 FOUNDATION REQUIREMENTS 31. The soils engineer recommended that he/she review the foundation excavations. Note on the foundation plan that "Prior to the contractor requesting a Building Department foundation inspection, the soils engineer shall advise the building official in writing that: The building pad was prepared in accordance with the soils report, The utility trenches have been properly backfilled and compacted, and The foundation excavations, the soils expansive characteristics and bearing capacity conform to the soils report." 32. Provide a letter from the soils engineer confirming that the foundation plan, grading plan and specifications have been reviewed and that it has been determined that the recommendations in the soils report are properly incorporated into the construction documents (when required by the soil report). MECHANICAL 33. Detail the dryer exhaust duct design from the dryer to the exterior. The maximum length is 14 feet with a maximum of two 90-degree elbows or provide the manufacturer's duct length specification description on the plans: Include the dryer specifications (manufacturer, model, and fuel type) as well as the duct description (size and type). CIVIC Section 504.4.2. ELECTRICAL 34. Show on the plan the amperage of the electrical service, the location of the service panel and the location of any sub-panels. If the service is over 200 amperes, submit a single line diagram, panel schedules, and provide service load calculations. 35. Note on the plans that receptacle outlet locations will comply with CEC Article 210.52. 36. For a single-family dwelling unit (and for each unit of a duplex), show that at least one receptacle outlet accessible at grade level will be installed outdoors at the front and back of the dwelling. CEC Article 210.52(E). This receptacle must be GFCI protected. 37. A balcony, deck, or porch that is accessible from the interior of the dwelling will require a minimum of one receptacle outlet. CEC 210.52(E) (3). This receptacle must be GFCI protected. CARLSBAD CBPC2018-0025 6/21/2018 38. Show on the plans that countertop receptacle outlets comply with CEC Article 210.52(C): In kitchens a receptacle outlet shall be installed at each counter space 12 inches or wider; Receptacles shall be installed so that no point along the wall line is more than 24 inches; Island and peninsular countertops 12 inches by 24" long (or greater) shall have at least one receptacle. (Counter top spaces separated by range tops, refrigerators, or sinks shall be considered as separate counter top spaces). 39. Per CEC Article 210.11(C)3, note on the plans that bathroom circuiting shall be either: A 20 ampere circuit dedicated to each bathroom, or At least one 20 ampere circuit supplying only bathroom receptacle outlets. 40. Show on the plans a wall receptacle within 36" of each lavatory in the bathroom. CEC 210.52(D). 41. Include a receptacle outlet in any hallways 10 feet or more in length. CEC Article 210.52(H). 42. Show at least one wall switch-controlled lighting outlet to be installed in every habitable room; in bathrooms, hallways, stairways, attached garages, and detached garages with electric power; and at the exterior side of outdoor entrances or exits. At interior stairways show 3-way switching for lighting outlets at each floor level where there are six or more steps. CEC Article 210.70(A). 43. Please show electrical legends on the electrical plans. 44. Please show the use of the spaces on the electrical plan. PLUMBING 45. Show water heater size (1st hour rating), type, and location on plans. Note: For both new dwellings and additions the Energy Standards (150.0(n)) requires a gas input rating of 200,000 Btu for both tank and instantaneous gas water heaters. (Also) Provide a gas piping design for the gas system. 46. An instantaneous water heater is shown on the plans. Please include a gas pipe sizing design (isometric or pipe layout) for all gas loads. a) The gas pipe sizing for a tank type water heater shall be based upon a minimum 199,000 Btu gas input rating. Energy Standards 150.0(n). 47. Specify on the plans: Water conserving fixtures: New water closets shall use no more than 1.28 gallons of water per flush, kitchen faucets may not exceed 1.8 CARLSBAD CBPC20 18-0025 6/21/2018 GPM, lavatories are limited to 1.2 GPM, and showerheads may not exceed 2.0 GPM of flow. CPC Sections 407, 408, 411, 412. Specify on the plans whether the existing house was built before or after 1994. For additions or improvements to a residence built before 1994, note on the plans that existing "noncompliant" fixtures (toilets that use more than 1.6 gallons of water per flush, urinals that use more than one gallon of water per flush, showerheads that have a flow capacity of more than 2.5 gallons of water per minute, and interior faucets that emit more than 2.2 gallons of water per minute) shall be replaced. Certification of compliance shall be given to the building inspector prior to final permit approval. California S13407. Provide a note on the plans: The control valves in showers, tub/showers, bathtubs, and bidets must be pressure balanced or thermostatic mixing valves. CPC Sections 408, 409, 410. RESIDENTIAL GREEN BUILDING STANDARDS The California Building Standards Commission has adopted the Green Building Standards Code and must be enforced by the local building official. The following mandatory requirements for residential construction must be included on your plans. CGC Section 101.3. The Standards apply to newly constructed residential buildings, along with additions/alterations that increase the building's conditioned area, volume or size. CGC Section 301.1.1. Provide a sheet on the plans labeled "Green Building Code Requirements" and include the following notes as applicable. Electric Vehicle Charging. Note on the plans that electrical vehicle supply equipment (EVSE) is required in NEW one and two family dwellings and townhomes with attached garages. Include the following information on the plans: A minimum size 1" conduit originating from a panel or service having a spare 40 ampere 240 volt capacity terminating in a box located in close proximity to the location of the future EV charger. CGC 4.106.4.. Storm water drainage/retention during construction. Note on the plans: Projects which disturb less than one acre of soil shall manage storm water drainage during construction by one of the following: A. Retention basins. B. Where storm water is conveyed to a public drainage system, water shall be filtered by use of a barrier system, wattle or other approved method. CGC Section 4.106.2. Grading and paving. Note on the plans that site grading or drainage system will manage all surface water flows to keep water from entering buildings (swales, water collection, French drains, etc.). CGC Section 4.106.3. Exception: Additions not altering the drainage path. CARLSBAD CBPC20 18-0025 6/21/2018 53. Indoor water use. Show compliance with the following table, per CGC Section 4.303.1. FIXTURE FLOW RATES FIXTURE TYPE MAXIMUM FLOW RATE Water closets 1.28 gallons/flush Urinals (wall-mounted) 0.125 gallon/flush Urinals (others) 0.5 gallon/flush Showerheads 2 gpm © 80 psi Lavatory faucets 1.2 gpm © 60 psi' Kitchen faucets 1.8 gpm © 60 psi Metering faucets 0.25 gallons per cycle 1 Lavatory faucets shall not have a flow rate less than 0.8 gpm at 20 psi. Note on the plans that when a shower is provided with multiple shower heads, the sum of flow to all the heads shall not exceed 2.0 gpm © 80 psi, or the shower shall be designed so that only one head is on at a time. CGC Section 4.303.1.3.2. Note on the plans that landscape irrigation water use shall have weather or soil based controllers. CGC Section 4.304.1. Recycling. Note on the plans that a minimum of 65% of construction waste is to be recycled. CGC Section 4.408.1. Recycling. Note on the plans that the contractor shall submit a Construction Waste Management Plan, per CGC Section 4.408.2. Operation and maintenance manual. Note on the plans that the builder is to provide an operation manual (containing information for maintaining appliances, etc.) for the owner at the time of final inspection. CGC Section 4.410.1. Note on the plans that the gas fireplace(s) shall be a direct-vent sealed- combustion type. Woodstove or pellet stoves, must be US EPA Phase II rated appliances. CGC Section 4.503.1. CARLSBAD CBPC20 18-0025 6/21/2018 Pollutant control. Note on the plans that during construction, ends of duct openings are to be sealed, and mechanical equipment is to be covered. CGC Section 4.504.1. Pollutant control. Note on the plans that VOC's must comply with the limitations listed in Section 4.504.3 and Tables 4.504.1, 4.504.2, 4504.3 and 4.504.5 for: Adhesives, Paints and Coatings, Carpet and Composition Wood Products. CGC Section 4.504.2. Interior moisture control. Note on the plans that concrete slabs will be provided with a capillary break. CGC Section 4.505.2.1. Interior moisture control. Note on the plans that the moisture content of wood shall not exceed 19% before it is enclosed in construction. The moisture content needs to be certified by one of 3 methods specified. Building materials with visible signs of water damage should not be used in construction. The moisture content must be determined by the contractor by one of the methods listed in CGC Section 4.505.3. Indoor air quality. Note on the plans that bathroom fans shall be Energy Star rated, vented directly to the outside and controlled by a humidistat. CGC 4.506.1. Note on the plans that prior to final inspection the licensed contractor, architect or engineer in responsible charge of the overall construction must provide to the building department official written verification that all applicable provisions from the Green Building Standards Code have been implemented as part of the construction. CGC 102.3. ENERGY CONSERVATION Include on the Title Sheet of the plans the following statement: "Compliance with the documentation requirements of the 2016 Energy Efficiency Standards is necessary for this project. Registered, signed, and dated copies of the appropriate CFI R, MR, and CF3R forms shall be made available at necessary intervals for Building Inspector review. Final completed forms will be available for the building owner." All domestic hot water piping to have the following minimum insulation installed: W' pipe (1/2" insulation); %" pipe (1" insulation); 1" to 1-W pipe (144" insulation). CPC 609.11 & ES 150.00) a) Additionally, the 1A" hot water pipe to the kitchen sink, and the cold water pipe within 5' of the water heater both require 1" minimum insulation. ES 150.0(j) Residential ventilation requirements: ES I 50.0(o)/ASHRAE 62.2 CARLSBAD CBPC20 18-0025 6/21/2018 Kitchens require exhaust fans with a minimum 100 cfm ducted to the exterior. Detail compliance by including a complying exhaust fan or a ducted range hood to the exterior. Bathrooms require exhaust fans (minimum 50 cfm) to be ducted to the exterior. A bathroom is defined "as a room with a bathtub, shower, or spa or some similar source of moisture" Residential bathroom exhaust fans shall be energy star rated and shall be control by a humidistat capable of an adjustment between 50 and 80% humidity. CalGreen 4.506.1. Exception: Control by a humidistat is not required if the bathroom exhaust fan is also the dwelling whole house ventilation. Mechanical whole house ventilation must be provided. Identify the fan providing the whole house ventilation (complete with CFM and Sone rating) on the floorplans. For additions 1,000 square feet or less, whole house ventilation is not required. For additions over 1,000 square feet, the whole house ventilation CFM shall be based upon the entire (existing and addition) square footage, not just the addition. Please identify this vent on the plans. a) All fans installed to meet all of the preceding ventilation requirements must be specified at a noise rating of a maximum I "Sone" (continuous use) or 3 "Sone" (intermittent). MISCELLANEOUS Please show sheet index on the cover sheet. On the cover sheet shows the scope of work indicating one story addition only. Please clarify. The section cut references may change. To speed up the review process, note on this list (or a copy) where each correction item has been addressed, i.e., plan sheet, note or detail number, calculation page, etc. Please indicate here if any changes have been made to the plans that are not a result of corrections from this list. If there are other changes, please briefly describe them and where they are located in the plans. Have changes been made to the plans not resulting from this correction list? Please indicate: Yes No L3 The jurisdiction has contracted with EsGil, located at 9320 Chesapeake Drive, Suite 208, San Diego, California 92123; telephone number of 858/560-1468, to CARLSBAD CBPC2018-0025 6/21/2018 perform the plan review for your project. If you have any questions regarding these plan review items, please contact Bert Domingo at EsGil. Thank you. MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers STRUCTURAL CALCULATIONS Project: 0 CO Viola Residence I '- 0 CI 1095 Hoover Street 04 Co 0 Carlsbad, California California 92008 CD 0 I co C4 CO Cm Prepared for: Ted Viola 4858 Park Drive I I cn< 0.. Carlsbad, California 92008 'OLLI5 04 0 O Z N 0 Project No.: 18063 Ooo w Date: May11, 2018 SUR / II ff4352 9975 Buslnesspark Avenue, Suite A San Diego, California 92131 Tel. (858) 693.0757 • Fax. (858) 693.0758 MIKE SURPRENANT J & ASSOCIATES Consulting Structural Engineers JOB 'JiOIJ1 CGO'_ sr.) I ________________________________________________ SHEET NO.____________ OF 17-6 CALCULATED BY__ DATE CHECKED BY DATE SCALE I 33 _551 IS 2245675 _23.7613 _23 _261 __22 _567612345473123.14573722 TABLE OF CONTENTS PAGE 1 PROJECT SCOPE 2 DESIGN CRITERIA SUMMARY 3 DESIGN LOADS 4- . . VERTICAL ANik LYSS:. . . .. . . . . A. HORIZONTAL MEMBER DESIGN (BEAMS, HEADER S6 JOISTS, ETC.).......... B VERTICAL MEMBER DESIGN (COLUMNS, STUDS, ETC) - 5 LATERAL ANALYSIS A. SEISMIC i WIND COEFFICIENTS.......................................................... B W, (])EAD LOADS) C LATERAL LOAD DISTRIBUTION D LATERAL LOAD-RESISTING DESIGN I SHEAR WALL DESIGN IT. CANTILEVERED STEEL COLUMN ELEMENTS Ill STEEL MOMENT FRAMES 6 FOUNDATION DESIGN ....................k.-'....COUNIJOIJ...EOOTrNGS.; :.:. . ::.. .; . ;. :;..........;:. .....:::.::::.:... :;. ..:::..: :i.:............L(O..................... B SPREAD FOOTINGS (It C RETAINING WALLS D SPECIAL SYSTEMS ______ I GRADE BEAMS VE1.. II DEEPENED PIERS 7. SCHEDULES..................................................................................................R3_. A SHEARWALL SCHEDULE B HOLD DOWN SCHEDULE C SPREAD FOOTING SCHEDULE IZC WOBURN 1T Mike Surprenant & Associates Consulting Structural Engineers Job Sheet No. 2.. of Calculated by Tc. Date Checked by Date Scale PROJECT SCOPE o Provide vertical & lateral load calculations for a proposed two-story single family residence located at 1095 Hoover Street, Carlsbad, California 92008. Residence to be constructed utilizing primarily wood-frame construction. Roof framing to consist of conventional stick-frame, and the foundation system to consist of a concrete slab-on-grade with deepened perimeter footings and retaining walls at east face of structure. A soils report was provided for this project by GEl. These calculations have been prepared for the exclusive use of Ted Viola and their design consultants for the specific site listed above. Should modifications be made to the project subsequent to the preparation of these calculations, Mike Surprenant & Associates should be notified to review the modifications withrespect to the recommendations/conclusions provided herein, to determine if any additional calculations and/or recommendations are necessary. Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with generally accepted engineering principles and practices. MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB SHEET NO 3 OF CALCULATED BY_C DATE CHECKED BY DATE SCALE DESIGN CRITERIA SUMMARY GOVERNING CODE: 2016 C.B.C. CONCRETE: rc = 2500 PSI, NO SPECIAL INSPECTION RBQ'D, (U.N.O.) MASONRY: ASTM C90, f'm = 1500 PSI, SPECIAL INSPECTION REQ'D (U.N.O.) MORTAR: ASTM C270, f'c = 1900 PSI, TYPE S GROUT: ASTM C1019, ?c = 2000 PSI REINFORCING STEEL: ASTM A615, F = 40 KS! FOR #3 AND SMALLER ASTM A615, Fy = 60 KS! FOR #4 AND LARGER (U.N.O.) STRUCTURAL STEEL: ASTM A992, Fy = 50 KSI (ALL 'W' SHAPES, ONLY) ASTM A36, Fy =36 KS! (STRUCTURAL PLATES, ANGLES, CHANNELS) ASTM A500, GRADE B, Fy = 46 KS! (STRUCTURAL TUBES-HSS) ASTM A53, GRADE B, Fy =35 KSI (STRUCTURAL PIPES) WELDING: E70-T6-TYP. FOR STRUCTURAL STEEL E90 SERIES FOR A615 GRADE 60 REINFORCING BARS SAWN LUMBER: DOUG FIR LARCH, ALLOWABLE UNIT STRESSES PER THE NDS. 1-JOISTS: - BOISE CASCADE - ICC ESR-1336 - (BC! JOIST) MICROLLAMS/ BOISE CASCADE - ICC ESR-1040 - (VERSA-LAM) PARALLAMS/ TIMBERSTRAND GLULAMS: DOUGLAS FIR OR DOUGLAS FIR/HEM GRADE 24F-V4 (SIMPLE SPANS) GRADE 24F-V8 (CANTILEVERS) SOIL: 0 EXISTING NATURAL SOIL VALUES PER CBC TABLE 1806.2 SOIL CLASSIFICATION - SOILS REPORT BY: 4 pa I DATED: ALLOWABLE BEARING PRESSURE = ''t 5° ° PSF ACTIVE SOIL PRESSURE (CANTILEVER) `*po PCF ACTIVE SOIL PRESSURE (RESTRAINED) = _PCF PASSIVE SOIL PRESSURE =_?°°PCF COEFFICIENT OF FRICTION =o JOB MIKE SIJRPRENANT & ASSOCIATES SHEET NO.____________________________ OF Consulting Structural Engineers CALCULATED BY_1 4 DATE CHECKED BY DATE SCALE - DESIGN LOADS CASE _1 CASEII MATERIAL: ROOF : SLOPE: 0 -1 DEAD LOAD: ROOFINGMATERIAL .........................................................................................PS? PSF SHEATHING...................................................................................................................1.5 1.5 RAFTERS/C.J. (or) TRUSSES ............................................................................................4.0 4.0 INSULATION.....................................................................................................................1.5 1.5. DRYWALL ..........................................................................................................................2.5 . 2.5 OTHER (ELEC., NCH., MISC.) .......................................................................................0.5 . 0.5 TOTAL .AI).OATh. : . .18 .0 ..PSF .0 .jSF LIVE LOAD: . .0 PSF- .0_PSF TOTAL LOAD: 'j% .0 PSF .0 PSF FLOOR DECK FLOOR :. MATERIAL: c%t DEAD LOAD: FLOORINGFINISH ....................................................................................................I PSF . PSF LT. WEIGHT CONCRETE (—in.) ................................................................. ... .......... — ,SHEATHING ...................................................................................................................2.0 2.0 JOISTS..............................................................................................................................3.5 3.5 DRYWALL........................................................................................................................2.5 2.5 OTHER (ELEC., MECH., MISC.) .................. .................................................................... .3.0 . 3.0 TOTAL DEAD LOAD: U.0 . PSF 40.0 PSF LIVE LOAD: 4' .0 PSF 400 .0 PSF TOTAL LOAD: : Coo .0 PSF 8° .0 PSF EXTERIOR WALL FINISH: STUDS.............................................................................................................................1.0 PSF 1.0 PSF DRYWALL......................................................................................................................2.5 2.5 INSULATION....................................................................................................................1.5 1.5 EXTERIORFINISH ................................................................................................ .° .0 ' .0 OTHER. ...........................................................................................................................1.0. 1.0 TOTAL LOAD: 16.0 PSF 16 .0 PSF INTERIOR WALL STUDS :....................................................................................................................................1.0 PSF DRYWALL....................................................................................................................................................5.0 OTHER............................................................................................................................................................1.0 TOTAL LOAD: . 1. a PSF 0 PROaJCT207 I- MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB SHEETNO._________________________ OF____________________ CALCULATED BY_______________________ DATE____________________ CHECKED BY________________________ DATE___________________ SCALE HORIZONTAL MEMBER DESIGN LEVEL: MEMBERS: 't STS LABEL: P4 - I SPAN=---2j1—FT. UNIFORM LOAD . . . . .. S . 'U POINT-LOAD(CENTERED) . .. . CUS1M LOADING (SEE DIAGRAM) -. 10 A. P2 = . . RL=_lbs. RB=_lbs VMAX = 450 lbs E = _'2oee _ksi USE: ('I" ' '3' '&'f GRADE: _ . — Mx= ?3bo ft-lbs IREOD = - ALT: _GRADE: _C:______ LABEL: _-i. SPAN= FT. t UNIFORM LOAD O POINT LOAD (CENTERED) CUSTOM LOADING (SEE DIAGRAM) W2= Pt = Pt = 7/V qir USE: ' __ ''1 GRADE: _M C:_______ ALT: _____GRADE: _C:______ LABEL: t-3_-/ SPAN= tFT. -ø UNIFORM LOAD U POINT LOAD (CENTERED) CUSTOM LOADING (SEE DIAGRAM) w1= Ct.'rn)-. '-r W2 = P1 = P2 USE: _______GRADE: ALT: _GRADE: _C:______ St R= lbs R= 54lbs Vix = 5 1. lbs E °° °ksi MMAX= b._o_ft-lbs IREQD = - in4 RL= 5Ø_ lbs R= _lbs VMAx = 544-lbs E too_ksi Mtix= •191 _ft-lbs = — . 4 B PRODUCT 207 Title Block Line 1 project Title: Viola You can change this area Engineer: IC 6 using the "Settings' menu item Project Descr Sheet of and then using the Printing & Title Block selection. " Title Block Line 6 Project ID; 18063 Printed: 2S APR 2OI 3:04PM Wood Beam Fife= FiPectsD18W8063MoIa-Hoov&Street-WrightlO3- CMCDt'AI I' ILH Description: RJ-1 CODE REFERENCES Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb + 3100 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb- 3100 psi Ebend-xx 2000ksi Fc - Pill 3000 psi Eminbend xx 530120482 ksi Wood Species : Boise Cascade Fc - Perp 750 psi Wood Grade : Versa Lam 2.0 3100 West Fv 285 psi Ft 1950ps1 Density 41.75pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 9 p D(O.O18 Lr(0.02) 1.75x9.5 Span =21.0rt '1 Applied Loads Beam self weight calculated and added to loads Uniform Load: D = 0.0 180. Lr = 0.020, Tributary Width = 1.0 ft. (roof) Service loads entered. Load Factors will be applied for calculations. DESIGN SUMMARY Maximum Bending Stress Ratio = 0.278 1 Section used for this span 1.75x9.5 tb : Actual 1,076.08p5i FB: Allowable 3,875.00 psi Load Combination +O+tr4l Location of maximum on span = 10.500ft Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Maximum Shear Stress Ratio 0.106:1 Section used for this span 1.75x9.5 fv : Actual = 37.61 psi Fv : Allowable = 356.25 psi Load Combination +04j+H Location of maximum on span = 0.000 ft Span # where maximum occurs = Span #1 0.352 in Ratio = 715>=360 0.000 in Ratio = 0<360 0.754 in Ratio = 334 >=240 0.000 In Ratio = 0<240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V C C FN C1 Cr Cm C t CL M lb Pb V tv ry 40911 0.00 0.00 0.00 0.00 Length =21.oft 1 0.206 0.078 0.90 1.000 1.00 1.00 1.00 1.00 1.00 1.26 573.47 2790.00 0.22 20.04 256.50 40+L4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =21.0ft 1 0.185 0.070 1.00 1.000 1.00 1.00 1.00 1.00 1.00 1.26 573.47 3100.00 0.22 20.04 285.00 404t.r4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =21.0ft 1 0.278 0.106 1.25 1.000 1.00 1.00 1.00 1.00 1.00 2.36 1,076.08 3875.00 0.42 37.61 356.25 40+S41 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =21.oft 1 0.161 0.061 1.15 1.000 1.00 1.00 1.00 1.00 1.00 1.26 573.47 3565,00 0.22 20.04 327.75 4090.75OLr40.750L+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Title Block Une I Project Title: Viola You can change this area Engineer: TC Project ID: 18063 using the 'Settings" menu item Project Descr: Sheet 1 of and then using the Printing & Title Block selection. 4' I IllU DIUUK LI1I C) IlnIed 26 APR 2018. 304PM [Wood Beam File = F:tProjectst201818063-VioIa4toover StreeI-W69111103-Engineeringcalc Templates1Vlota.Hoover.ec6 I ENERcALC, INC. 1983.2018. Bvird:10.lal.31. Ver.I0.I8.1.31 Description: RJ-1 Load Combination Segment Length Span Max Stress Ratios M V C CFN C I Cr Cm C t CL Moment Values M lb Pb V Shear Values Iv Pv Length =21.oft 1 0.245 0.093 1.25 1.000 1.00 1.00 1.00 1.00 1.00 2.08 950.43 3875.00 0.37 33.21 356.25 4X.750L+0.750S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 21.0ft 1 0.161 0.061 1.15 1.000 1.00 1.00 1.00 1.00 1.00 1.26 573.47 3565.00 0.22 20.04 327.75 4040.60W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =21.0ft 1 0.116 0.044 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.26 573.47 4960.00 0.22 20.04 456.00 9040.70E4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =21.0ft 1 0.116 0.044 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.26 573.47 4960.00 0.22 20.04 456.00 .D0.750Lr40.750Ls0.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =21.oft 1 0.192 0.073 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.08 950.43 4960.00 0.37 33.21 456.00 4040.750140.750S40.450W411 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 21.0 ft 1 0.116 0.044 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.26 573.47 4960.00 0,22 20.04 456.00 4040.750L40.750S40.5250E4fl 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =21.oft 1 0.116 0.044 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.26 573.47 4960.00 0.22 20.04 456.00 +0.60D40.60Ws0.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =21.oft 1 0.069 0.026 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.75 344.08 4960.00 0.13 12.02 456.00 "0.60D#0.70E40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 21.0ft 1 0.069 0.026 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.75 344.08 4960.00 0.13 12.02 456.00 Overall Maximum Deflections Load Combination Span Max. °° DoD Location in Span Load Combination Max. W Deft Location in Span 404.141 1 0.7537 10.577 0.0000 0.000 Vertical Reactions Support notation: Far left is #1 Values in KIPS Load Combination ----Support 1 Support 2 Overall MAXimum 0.450 0.450 Overall MiNimum 0.210 0.210 401+1 0.240 0.240 4041-41 0.240 0.240 40+Lr4H 0.450 0.450 0.240 0.240 .0+0.750Lfi0.750L'.H 0.397 0.397 +040.750L40.750S*I 0.240 0.240 4040.60 W+H 0.240 0.240 4040.70E41 0.240 0.240 40'+0.750Lr40.750L.0.450W+H 0.397 0.397 +D40.750L40.750S40.450W41 0.240 0.240 040.750L40.750S40.5250E+H 0.240 0.240 40.60D40.60W40.60H 0.144 0.144 40.60D40.70E+0.60H 0.144 0.144 o Only 0.240 0.240 LrOnly 0.210 0.210 L Only S Only W Only E Only H Only 4, Title Block Line 1 Project Title: Viola You can change this area Engineec IC ç Project ID: 18063 using the "Settings' menu Item Project Descr: Sheet o of and then using the 'Printing & Title Block' selection. Title Block Line 6 Printed: 26 APR 2018. 308PM I Wood Beam File= FPmJls201818O83-Vla-HooverS eet-WghLW3-Engine gCalcTomplaloslla-Hoover.ec8 1 ENERCALC, INC. 1983-2018. Buod:10.lal.31, Ver.10.181.31 I IiJL.WEiI.13I*IiI.t Description: RJ-2 CODE REFERENCES - Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material ProDerties Analysis Method: Allowable Stress Design Fb + 3,100.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb- 3,100.0 psi Ebend-xx 2,000.0ksi Fc - Pill 3000.0 psi Eminbend - xx 1,036.83 ksi Wood Species : Boise Cascade Pc - Perp 750.0 Ps! Wood Grade : Versa Lam 2.0 3100 West Fv 285.0 psi Ft 1,950.0 psi Density 41.750pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(O.018) Lr(O.02) 1.75x11.875 Span = 24.0 ft Applied Loads Beam self weight calculated and added to loads Uniform Load: D = 0.0160, Lr = 0.020, Tributary Width = 1.0 ft, (roof) Service loads entered. Load Factors will be applied for calculations. DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span fb : Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.238 1 Maximum Shear Stress Ratio 1.75x1 1.875 Section used for this span 924.10psi fv:Actual 3,875.00 psi Fv: Allowable 'lJ4.j-+H Load Combination 12.000ft Location of maximum on span Span # 1 Span # where maximum occurs 0.307 in Ratio = 937 >=360 0.000 in Ratio = 0<360 0.676 in Ratio = 426 >=240 0.000 in Ratio = 0<240 esirin C = 0.098:1 1.75x11.875 = 35.06 psi = 356.25 psi +04j+H = 0.000 It = Span #1 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span 0 M V C C IN C1 Cr Cm C t CL M fb Pb V l`V F'v 0.00 0.00 0.00 0.00 Length =24.oft 1 0.181 0.075 0.90 1.000 1.00 1.00 1.00 1.00 1.00 1.73 504.32 2790.00 0.27 19.13 256.50 .Ot.H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =24.Oft 1 0.163 0.067 1.00 1.000 1.00 1.00 1.00 1.00 1.00 1.73 504.32 3100.00 0.27 19.13 285.00 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =24.oft 1 0.238 0.098 1.25 1.000 1.00 1.00 1.00 1.00 1.00 3.17 924.10 3875.00 0.49 35.06 356.25 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =24.0ft 1 0.141 0.058 1.15 1.000 1.00 1.00 1.00 1.00 1.00 1.73 504.32 356500 0.27 19.13 327.75 4D.e0.750Lr40.750L.I+l 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Title Block Line I Project Tide: Viola You can change this area Engineer IC using the 'Settings' menu item Project Descr: Sheet Project ID: 18063 and then using the'Printing & Title Block selection. Title Block Line 6 PinEed: 2SAPR 2018. 3:08PM L Wood Beam File = F:IP ts20I818O63-vio1a-Hoover Street-Wdgh503-EnglnearingCelc Templaleswiola-Haover.ecti - ENERCAIC. INC. 1983-2018, Buld:10.l 8.1 .31. Ver:1O.18.1.31 I Lic. #: KW-06003057 Licensee: MIKE SUPRENANT & ASSOCIATES Description: RJ-2 Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M V Cd C IN C Cr Cm C t CL M lb Pb V IV Fv Length =24.Oft 1 0.211 0.087 1.25 1.000 1.00 1.00 1.00 1.00 1.00 2.81 819.16 3875.00 0.43 31.08 356.25 4D40.750L+0.750S4( 1.000 1.00 1.00 1.00 1.00 1.00 DOD 0.00 0.00 0.00 Length =24.Oft 1 0.141 0.058 1.15 1.000 1.00 1.00 1.00 1.00 1.00 1.73 504.32 3565.00 0.27 19.13 327.75 4D+0.60WiH 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =24.Oft 1 0.102 0.042 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.73 504.32 4980.00 0.27 19.13 456.00 +0.0.70E41 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =24.Oft 1 0.102 0.042 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.73 504.32 4960.00 0.27 19.13 456.00 +00.750Lr40.750L40.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 24.0 ft 1 0.165 0.068 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.81 819.16 4960.00 0.43 31.08 456.00 +0i0.750L+0.7505+0.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 24.oft 1 0.102 0.042 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.73 504.32 4960.00 0.27 19.13 456.00 #040.750L+0.750540.5250E#1 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 24.0 ft 1 0.102 0.042 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.73 504.32 4960.00 0.27 19.13 456.00 40.60D+0.60W+0.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =24.oft 1 0.061 0.025 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.04 302.59 4960.00 0.16 11.48 456.00 0.60De0.70E40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =24.oft I 0.061 0.025 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.04 302.59 4960.00 0.16 11.48 456.00 Overall Maximum Deflections __ Load Combination Span Max. - Deft Location in Span Load Combination Max. + Dell Location in Span .D*Lr4l 1 0.6760 12.088 0.0000 0.000 Vertical Reactions Support notation: Far left Is #1 -- Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum - 0.528 0.528 Overall MiNimum 0.240 0.240 +D+I1 0.288 0.288 +0+1+11 0.288 0.288 0.528 0.528 +D+S+H 0.288 0.288 '0s0.750Lr+0.750L#H 0.468 0.468 +040J50L40.750S.H 0.288 0.288 4D+O.60W41 0.288 0.288 +O40.70E4H 0.288 0.288 +O+0.750Lr40.750L40.450W+H 0.466 0.468 40'0.750L40.750940.450W4H 0.288 0.288 +0+0.750L40.750S40.5250E4H 0.288 0.288 40.60D40.60W40.601-1 0.173 0.173 .0.60D+0.70E+0.60H 0.173 0.173 D Only 0.288 0.288 Lr Only 0.240 0.240 L Only S Only WOnly EOnly H Only Maximum Shear Stress Ratio Section used for this span Iv : Actual Fv: Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.099:1 1.75x11.875 = 35.09 psi = 356.25 psi = 18.029ft = Span #1 Title Block Line I Project Title: Viola You can change this area Engineer: IC Project ID: 18063 using the "Settings" menu item Project Descr: Sheet 10 of and then using the "Printing & Title Block" selection. Title Block Line Pthite:26 APR 2OI& 3:0913M [Wood Beam File F:tProjssts2018l18O63-oIa41oover St eet-Wrighit03.EngineeiingCalc lemplatestViola-Hoover.0c5 ENERCAIC, INC. 1983-2018, Bud:10.18.1.31,Ver:1O.18.1.31 I Description: RJ-3 CODE REFERENCES Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Pronerties Analysis Method: Allowable Stress Design Fb + 3,100.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb- 3,100.0 psi Ebend-xx 2,000.0ksi Fc - Pril 3,000.001 Eminbend-xx 1,036.83ksi Wood Species Boise Cascade Fc - Perp 750.0 Ps! Wood Grade : Versa Lam 2.0 3100 West Fv 285.0 PSI Ft 1,950.0 psi Density 41.750pc1 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(O.024)Lr(O.027) 1.75x11.875 Span= 19.0 ft .......pp! !!d Loads Service loads entered. Load Factors will be applied for calculations. Beam sell weight calculated and added to loads Uniform Load: D = 0.0240, Li = 0.0270, Tributary Width = 1.0 ft, (roof) DESIGN SUMMARY. Maximum Bending Stress Ratio = 0.1941 Section used for this span 1.75x1 1.875 lb : Actual = 750.18psi FB : Allowable 3875.00 psi Load Combination +D+Lr+H Location of maximum on span 9.5001t Span # where maximum occurs Span # 1 Maximum Deflection Max Downward Transient Deflection 0.163 in Ratio = 1400 >=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.344 in Ratio= 662 >=240 Max Upward Total Deflection 0.000 in Ratio= 0<240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V C C FN C Cr Cm C t CL tA lb Pb V lv F'v 4041 0.00 0.00 0.00 0.00 Length= 119.0 It 1 0.142 0.072 0.90 1.000 1.00 1.00 1.00 1.00 1.00 1.35 395.00 2790.00 0.26 18.48 256.50 4041411 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length= 19.011 1 0.127 0.065 1.00 1.000 1.00 1.00 1.00 1.00 1.00 1.35 395.00 3100.00 0.26 18.48 285.00 O-.t.r#t 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length= 19.0 It 1 0.194 0.099 1.25 1.000 1.00 1.00 1.00 1.00 1.00 2.57 750.18 3875.00 0.49 35.09 356.25 40+S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length= 19.0 It 1 0.111 0.056 1.15 1.000 1.00 1.00 1.00 1.00 1.00 1.35 395.00 3565.00 0.26 18.48 327.75 4040.750Lr9O.750L+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Title Block Line I Project Title: Viola You can change this area Engineer: IC Project ID: 18063 using the 'settings' menu item Project Descr: Sheet 11 of and then using the 'Printing & Title Block' selection. Title Block Line 6 nd:26R20I8 &OSPM I VVood Beam Re F:tProjccIs2018l8063-Viola-Hoover Street-Wdght\03-EnglneeringCutc TemplatesWiota.HOovet.eC6 I ENERCALC, INC. 1983-20I 6ulld:10.18.1.31. Ver.10.18.l.31 Description: Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M V Cd C IN C1 Cr Cm C I CL M lb Pb V Iv Fv Length =19.Oft 1 0.171 0.087 1.25 1.000 1.00 1.00 1.00 1.00 1.00 2.27 661.38 3875.00 0.43 30.94 356.25 4O'0.750L40.750S#I 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =19.0ft 1 0.111 0.056 1.15 1.000 1.00 1.00 1.00 1.00 1.00 1.35 395.00 3565.00 0.26 18.48 327.75 '040.60W41 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 19.0It 1 0.080 0.041 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.35 395.00 4960.00 0.26 18.48 456.00 4040.70E+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 19.Oft 1 0.080 0.041 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.35 395.00 4960.00 0.26 18.48 456.00 '040.750Lr40.750L-'0.450W#1 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =19.oft 1 0.133 0.068 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.27 661.38 4960.00 0.43 30.94 456.00 s0+0.750L40.750S+0.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 19.0 ft 1 0.080 0.041 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.35 395.00 4960.00 0.26 18.48 456.00 +040.750L.0.750S40.5250E+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 19.0 It 1 0.080 0.041 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.35 395.00 4960.00 0.26 18.48 456.00 40.60040.60W40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =19.oft 1 0.048 0.024 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.81 237.00 4960.00 0.15 11.09 456.00 40.60D40.70E40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 19.0 It 1 0.048 0.024 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.81 237.00 4960.00 0.15 11.09 456.00 Overall Maximum Deflections Load Combination Span Max. "-' Deft Location In Span Load Combination Max. '+' Dell Location in Span 1 0.3439 9.569 0.0000 0.000 Vertical Reactions Support notation: Far left is #1 Values In KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.542 0.542 - Overall MiNimum 0.257 0.257 +D4I 0.285 0.285 +O+14H 0.285 0.285 OLr+H 0.542 0.542 +O+SsH 0.285 0.285 sD.0.7501r40.750L.H 0.478 0.478 iO40.7501.0.750S.H 0.285 0.285 iO0.60W.ffl 0.285 0.285 'O40.70E+H 0.285 0.285 +D40.7501r..0.750L+0.450WiH 0.478 0.478 +D40.75014750Si0.450WiH 0.285 0.285 'O'0.750L40.750S40.5250E+H 0.285 0.285 0.60D40.60We0.601-1 ' 0.171 0.171 +0.600+0.70E0.60H 0.171 0.171 D Only 0.285 0.285 Lr0nly 0.257 0.257 L Only S Only WOnly E Only H Only RL= ________lbs RR= ((37. lbs VmAx = lbs E= ksi MMtx= ft-lbs IREQ'D = in4 MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB 1306? SHEETNO._________________________ OF____________________ CALCULATED BY DATE_____________________ CHECKED BY_________________________ DATE____________________ SCALE LEVEL: fLov. MEMBERS:__________________ LABEL: il. I SPAN= t1 Fr. j .S' Ciii UNIFORM LOAD POINT LOAD (CENTERED) rr CUSTOM LOADING (SEE DIAGRAM) w1 = (C/1\ 74? pt! ( U10! i•3t; A' W2 = . . I 606 - P A 2 -. . = - Is RR = - lbs VAX= . lbs E = ksi ire SE C: It4 GRADE:IOO MM ft-lbs IID = ALT: GRADE: C:______ LABEL: 1U SP= 2.1 FT. 3 . ( 'r UNIFORM LOAD - POINi LOAD (CENTERED) .- .. CUSTOM LOADING (SEE DIAGRAM) (14 o/t(Zt. W, =(10/,2)( 'i ('to pit (9-n 0/00-1-a) 1 lbs R lbs ( VM: USE: (ci(4'Y R' GRADE _'4P j4 C: MMAX= ft-lbs IRa*'D ALT: (R GRADE: . C:_______ LABEL: PL-2 SPAN= ft's - UNIFORM LOAD POINT LOAD (CENTBREI)) CUSTOM LOADING (SEE DIAGRAM) Wi = W2 = P1 P2 = USE: '3 II,i _1_ 1 1 GRADE: (I Ci C:_________ ALT: GRADE: _C:______ B PRODUCT2O1 Description: RB-i CODE REFERENCES Calculations per NDS 2015, 1 B 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Prooerties Analysis Method: Allowable Stress Design Fb + 3,100.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb- 3100.0 psi Ebend-xx 2,000.0ksi Fc - Pdl 3,000.0 psi Eminbend - xx 1,036.83ksi Wood Species : Boise Cascade Fc - Perp 750.0 psi Wood Grade : Versa Lam 2.0 3100 West Fv 285.0 psi Ft 1,950.0 psi Density 41 .750pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 0(0.117) Lr(O.13) 9 , 9 9 I . 3.5x11.875 X . 35x11.875 Span = 4.50 ft Span = 17.0 ft F 'F Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D=0.1170, Lr = 0.130, Tributary Width= 1.0 ft, (Root) DESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span lb : Actual = FB : Allowable = Load Combination Location of maximum on span = Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.099 1 Maximum Shear Stress Ratio = 0.092: 1 3.5x11.875 Section used for this span 3.5x11.875 382.31 psi fv : Actual = 32.89 psi 3,875.00 psi Fv : Allowable = 356.25 psi Load Combination +D4j+H 4.500ft Location of maximum on span = 3.520 ft Span # 1 Span # where maximum occurs = Span # 1 0.071 in Ratio= 1518>=360 0.000 in Ratio= 0<360 0.122 in Ratio = 884 >=240 0.000 in Ratio = 0<240 Maximum Forces & Stresses for Load Combinations Load Combinaton Max Stress Ratios Segment Length Span # M V C C FN C1 Cr Moment Values Shear Values Cm C I CL M lb Pb V lv Pv 4041 0.00 0.00 0.00 0.00 Length =4.501t 1 0.068 0.064 0.90 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 2790.00 0.45 16.39 256.50 Length = 17.0 it 2 0.068 0.064 0.90 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 2790.00 0.17 16.39 256.50 +04141 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 4.50 ft 1 0.061 0.057 1.00 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 3100.00 0.45 16.39 285.00 Length =17.0ft 2 0.061 0,057 1.00 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 3100.00 0.17 16.39 285.00 40+Lr+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =4.50ft 1 0.099 0.092 1.25 1.000 1.00 1.00 1.00 1.00 1.00 2.62 382.31 3875.00 0.91 32.89 356.25 Mike Surprenant & Associates Project Title: Viola Project Descr: Engineer: _______ ot 14.f Project ID: 18063 Shee File = 12.10. Ve,-.1O.17.12.10 Descption: RB-i Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M V Cd C FN C1 Cr Cm C t CL M lb F'b V lv Pv Length = 17.01t 2 0.099 0.092 1.25 1.000 1.00 1.00 1.00 1.00 1.00 2.62 392.31 3875.00 0.25 32.89 356.25 +O+S41 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =4.50ft 1 0.053 0.050 1.15 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 3565.00 0.45 16.39 327.75 Length = 17.011 2 0.053 0.050 1.15 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 3565.00 0.17 16.39 327.76 +040.750L1.0.750L9H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =4.50f1 1 0.086 0.081 1.25 1.000 1.00 1.00 1.00 1.00 1.00 2.29 334.35 3875.00 0.80 28.77 356.25 Length= 17.011 2 0.086 0.081 1.25 1.000 1.00 1.00 1.00 1.00 1.00 2.29 334.35 3875.00 0.23 28.77 356.25 4O40.750L40.7508*H 1.000 1.00 1.00 1.00 tOO 1.00 0.00 0.00 0.00 0.00 Length =4.501t 1 0.053 0.050 1.15 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 3565.00 0.45 16.39 327.75 Length =17.oft 2 0.053 0.050 1.15 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 3565.00 0.17 16.39 327.75 4040.60WIH 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =4.5011 1 0.038 0.036 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 4960.00 0.45 16.39 456.00 Length =17.011 2 0.038 0.036 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 4960.00 0.17 16.39 456.00 +O90.70E+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =4.501t 1 0.038 0.036 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 4960.00 0.45 16.39 456.00 Length = 17.011 2 0.038 0.036 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 4960.00 0.17 16.39 456.00 s'0+0.750Lr+0.750L40.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =4.5011 1 0.067 0.063 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.29 334.35 4960.00 0.80 28.77 456.00 Length = 17.011 2 0.067 0.063 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.29 334.35 4960.00 0.23 28.77 456.00 4040.750L40.750840.450W4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =4.5011 1 0.038 0.036 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 4960.00 0.45 16.39 456.00 Length = 17.011 2 0.038 0.036 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 4960.00 0.17 16.39 456.00 '0+0.750L+0.750S+0.5250E+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =4.500 1 0.038 0.036 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 4960.00 0.45 16.39 456.00 Length =17.oft 2 0.038 0.036 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.31 190.46 4960.00 0.17 16.39 456.00 +0.600+0.BOW+0.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =4.5011 1 0.023 0.022 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.78 114.28 4960.00 0.27 9.83 456.00 Length =17.oft 2 0.023 0,022 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.78 114.28 4960.00 0.10 9.83 456.00 +0.60D+0.70E*0.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =4.5011 1 0.023 0.022 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.78 114.28 4960.00 0.27 9.83 456.00 Length =17.Oft 2 0.023 0.022 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.78 114.28 4960.00 0.10 9.83 456.00 Overall Maximum Deflections Load Combination Span Max. "-° Den Location in Span Load Combination Max. Deft Location In Span +O+1r41 1 0.1221 0.000 0.0000 0.000 2 0.0000 0.000 +O+Lr+H .0.0647 6.743 Vertical Reactions .Support notation: Far left is #1 Values in KIPS - Load Combination Support 1 Support 2 Support 3 Overall MAXimum 1.423 -0.077 Overall MINimum 0.662 0.026 +0*1 . 0.760 0.026 40+141 0.760 0.026 'D+Lr+H 1.423 .0.052 sDi-S+H 0.760 0.026 'D'0.750Lr+0.750L+H 1.257 -0.032 400.750L+0.750S+H 0.760 0.026 40+0.60W41 0.760 0.026 +0+0.70E+H 0.760 0.026 4O40.750Lrs0.750L+0.450W+H 1.257 -0.032 4040.750L40.750SI0.450W+H 0.760 0.026 .040.750L+0.7508*0.5250E+H 0.760 0.026 +0.60D+0.60W+0.60H 0.456 0.015 0.60D40.70E+0.60I1 0.456 0.015 D Only 0.760 0.026 Lr Only 0.662 -0.077 LOnly S Only W Only E Only Mike Surprenant & Associates Project Title: Viola Engineer: S TIC heet l . Project ID: 18063 Project Descr: Pinted: 3MAY2018, 1:15PM Re= F:t'rojects2018t18063-Viola-Hoover Skeet-WghtW3-EngTneeCatcTempIatesWioIa-Hoover.ec6 ENERCALC. INC. 1902017, Bui!d:10.17.12.10. Ver:10.I7.12.10 Description: RB- Vertical Reactions Support notation: Far left Is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 HOnly Mike Suiprenant & Associates Project Title: Viola Engineer: IC Project ID: 18063 , Project Descr: Sheet 6 of 3 MAY 2Ola. 1:39PM Fe = F:ProJects01818063-Viola-Hoover 17.1210, Ver.10.17.12.10 Description: 11131-2 CODE REFERENCES Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb + 2400 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - 1850 psi Ebend- xx 1800 ksl Fc - Piil 1650 psi Eminbend xx 950ks1 Wood Species : DF/DF Fc - Perp 650 psi Ebend- yy 1600ksi Wood Grade :24F - V4 Fv 265 psi Eminbend - yy 850ksi Ft 1100 psi Density 31.2pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling Lr(0.1) 89) V(O.149)tr(O?165 U(0.149) 155) 9 9 9 9 9 9 9 9 10.7502 10.7502 Snan=3.50ft Soan=21.Oft Applied Loads Beam self weight calculated and added to loads Load for Span Number I Uniform Load: D = 0.1490, Lr = 0.1650, Tributary Width 1.0 U, (Root) Uniform Load: D = 0.090, Lr = 0.10, Tributary Width = 1.0 ft, (Roof) Load for Span Number 2 Uniform Load: 0 = 0.1490, Lr = 0.1650, Tributary Width = 1.0 It, (Roof) Uniform Load: D = 0.090, Lr = 0.10, Tributary Width = 1.0 U, (Roof) Service loads entered. Load Factors will be applied for calculations. Varying Uniform Load: D=0.0->0.1350, Lc= 0.O->0.150 kift, Extent = 0.0--" 21.0 ft. Trib Width = 1.0 ft. (Roof) DESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb:Actual = FB : Allowable = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection IlI1iII] 0.6961 Maximum Shear Stress Ratio = 0.234 :1 10.75x12 Section used for this span 10.75x12 1,659.07psi Iv: Actual = 77.49 psi 2,785.80psi Fv: Allowable = 331.25 psi 40+Lr+H Load Combination +0411+H 11.14511 Location of maximum on span = 20.061 It Span #2 Span # where maximum occurs = Span #2 0.511 in Ratio= 493>=360 0.000 in Ratio= 0<360 1.012 in Ratio= 248'=240 0.000 in Ratio = 0<240 Mike Surprenant & Associates Project Title: Viola Engineer IC Project ID: 18063 Project Descr: Sheet Cl of_______ Pdnted: 3 MAY 2018, 1:39PM INC. 1983-2017. 8u11d:10.17.12.10. Ver.I0.I7.12.10 Description: RB-2 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M V Cd C IN c I Cr Cm C I CL M lb Pb V fv F'v sO+H 0.00 0.00 0.00 0.00 Length =3.50ft 1 0.046 0.151 0.90 1.000 1.00 1.00 1.00 1.00 1.00 1.64 76.05 1665.00 3.10 36.05 238.50 Length =21.0ft 2 0.410 0.161 0.90 0.929 1.00 1.00 1.00 1.00 1.00 17.68 822.13 2005.78 3.30 38.32 238.50 4O+141 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 3.50ft 1 0.041 0.136 1.00 1.000 1.00 1.00 1.00 1.00 1.00 1.64 76.05 1850.00 3.10 36.05 265.00 Length =21.Oft 2 0.369 0.145 1.00 0.929 1.00 1.00 1.00 1.00 1.00 17.68 822.13 2228.64 3.30 38.32 265.00 iO+Lr+H 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.501t 1 0.066 0.219 1.25 1.000 1.00 1.00 1.00 1.00 1.00 3.26 151.54 2312.50 6.23 72.48 331.25 Length = 21.oft 2 0.596 0.234 1.25 0.929 1.00 1.00 1.00 1.00 1.00 35.67 1,659.07 2785.80 6.66 77.49 331.25 40+S4H 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 3.50 ft 1 0.036 0.118 1.15 1.000 1.00 1.00 1.00 1.00 1.00 1.64 76.05 2127.50 3.10 38.05 304.75 Length =21.oft 2 0.321 0.126 1.15 0.929 1.00 1.00 1.00 1.00 1.00 17.68 822.13 2562.94 3.30 38.32 304.75 -'D40.750Lr40.750L+H 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =3.50ft 1 0.057 0.191 1.25 1.000 1.00 1.00 1.00 1.00 1.00 2.85 132.67 2312.50 5.45 63.37 331.25 Length =21.oft 2 0.520 0.204 1.25 0.929 1.00 1.00 1.00 1.00 1.00 31.17 1,449.83 2785.80 5.82 67.70 331.25 IO40.750L40.750S4H 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =3.50ft 1 0.036 0.118 1.15 1.000 1.00 1.00 1.00 1.00 1.00 1.64 76.05 2127.50 3.10 36.05 304.75 Length =21.oft 2 0.321 0.126 1.15 0.929 1.00 1.00 1.00 1.00 1.00 17.68 822.13 2562.94 3.30 38.32 304.75 sO'0.60W+H 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =3.soft 1 0.026 0.085 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.64 76.05 2960.00 3.10 36.05 424.00 Length =21.oft 2 0.231 0.090 1.60 0.929 1.00 1.00 1.00 1.00 1.00 17.68 822.13 3565.82 3.30 3832 424.00 4040.70E4H 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =3.501t 1 0.026 0.085 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.64 76.05 2960.00 3.10 36.05 424.00 Length =21.ott 2 0.231 0.090 1.60 0.929 1.00 1.00 1.00 1.00 1.00 17.68 822.13 3565.82 3.30 38.32 424.00 +Oi0,750Lr40.750L40.450W'4-I 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =3.501t 1 0.045 0.149 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.85 132.67 2960.00 5.45 63.37 424.00 Length = 21.0 ft 2 0.407 0.160 1.60 0.929 1.00 1.00 1.00 1.00 1.00 31.17 1,449.83 3565.82 5.82 67.70 424.00 +O40.750Ls0.750S40.450W-#1 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 3.50 ft 1 0.026 0.085 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.64 76.05 2960.00 3.10 36.05 424.00 Length =21.oft 2 0.231 0,090 1.60 0.929 1.00 1.00 1.00 1.00 1.00 17.68 822.13 3565.82 3.30 38.32 424.00 'O.0.750L10.750S40.5250E+H 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 3.50ft 1 0.026 0.085 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.64 76.05 2960.00 3.10 36.05 424.00 Length 2l.oft 2 0.231 0.090 1.60 0.929 1.00 1.00 1.00 1.00 1.00 17.68 822.13 3565.82 3.30 38.32 424.00 40.60D40.60W40.60H 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 3.50 ft 1 0.015 0.051 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.98 45.63 2960.00 1.86 21.63 424.00 Length = 21.0 It 2 0.138 0.054 1.60 0.929 1.00 1.00 1.00 1.00 1.00 10.61 493.28 3565.82 1.98 22.99 424.00 40.60D40.70E40.60H 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =3.50ft 1 0.015 0.051 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.98 45.63 2960.00 1.86 21.63 424.00 Length =21.0ft 2 0.138 0.054 1.60 0.929 1.00 1.00 1.00 1.00 1.00 10.61 493.28 3565.82 1.98 22.99 424.00 Overall Maximum Deflections ___________________________________________________ Gad Combination Span Max. - Defi Location in Span Load Combination Max. "-'- Defi Location in Span 1 0.0000 0.000 D+tr.H .0.5012 0.000 2 1.0123 10.676 0.0000 0.000 Vertical Reactions Support notation: Far left is #1 Values in KlPS - Load Combination Support 1 Support 2 Support 3 Overall MAXimum - 8.600 7.425 Overall MINimum 4.312 3.755 4D4fI 4.288 3.670 4.288 3.670 *D-t1r41 8.600 7.425 4.288 3.670 +D+0.750Lr+0.750141 7.522 6.487 .iO.0j50L40,750S+H 4.288 3.670 D.0.60W4I 4.288 3.670 'D40.70E41 4.288 3.670 4090.750Lr40.750L40.450W+H 7.522 6.487 .O-.0.750L40.750S40.450W+H 4.288 3.670 Description: RB2 Vertical Reactions Support notation: Far left is #1 Values in KIPS Load Combination Support I Support 2 Support 3 40.0.750140.750S40.5250E#1 4.288 3.670 40.60D40.60W40.6011 2.573 2.202 40.60D.e0.70E40.60H 2.573 2.202 DOnly 4.288 3.670 LrOnly 4.312 3.755 LOnly S Only W Only E Only H Only Mike Surprenant & Associates Project Title: Viola Engineer: IC Project Descr: Sheet IS of Project ID: 18063 Pñnted: 3 IY 2018. 1:4191 Build:10.11.12.10. Ver.10.17.12.10 CODE REFERENCES ____ Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Prooerties Analysis Method: Allowable Stress Design Fb .1- 3100 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - 3100 psi Ebend- xx 2000 ksi Fc - Pdl 3000ps1 Eminbend-xx 530120482ksj Wood Species : Boise Cascade Fc - Perp 750 psi Wood Grade : Versa Lam 2.0 3100 West Fv 285 psi Ft 1950ps1 Density 41.75pc1 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(0.347) r(O.385) 3.5x11.875 . 3.5x11.875 Span =19.50ft . Span 5.50ft Applied Loads Beam self weight calculated and added to loads Load for Span Number 2 Point Load: D = 0.3470, Lr = 0.3850 k @5.50 ft, (Roof Beam) DESIGN SUMMARY Maximum Bending Stress Ratio = 0.1681 Section used for this span 3.5x11.875 fb:Actual = 613.40psi FB : Allowable = 3,875.00 psi Load Combination +D.s4+H Location of maximum on span = 19.500 It Span # where maximum occurs = Span # 1 Service toads entered. Load Factors will be applied for calculations. IIafnb1 Maximum Shear Stress Ratio 0.080 :1 1 Section used for this span 3.5x11.875 fv : Actual = 28.37 psi Fv: Allowable 356.25 psi Load Combination '04.r+H Location of maximum on span = 19.500 ft Span # where maximum occurs = Span #1 I Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.171 in Ratio= 770 '=360 0.000 in Ratio = 0<360 0.303 in Ratio = 434 '=240 0.000 in Ratio = 0<240 Load Combination Max Stress Ratios Segment Length Span# M V C C FN C1 Cr Maximum Forces & Stresses for Load Combinations Cm C t C1 Moment Values M lb Pb v Shear Values Iv Fv +04H 0.00 0.00 0.00 0.00 Length = 19.50 ft 1 0.109 0.056 0.90 1.000 1.00 1.00 1.00 1.00 1.00 2.09 304.76 2790.00 0.40 14.48 256.50 Length =5.5011 2 0.109 0.056 0.90 1.000 1.00 1.00 1.00 1.00 1.00 209 304.76 2790.00 0.40 14.48 256.50 4O4t4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =19.501t 1 0.098 0.051 1.00 1.000 1.00 1.00 1.00 1.00 1.00 2.09 304.76 3100.00 0.40 14.48 285.00 Length = 5.50 ft 2 0.098 0.051 1.00 1.000 1.00 1.00 1.00 1.00 1.00 2.09 304.76 3100.00 0.40 14.48 285.00 4O4Lr.H . 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =19.50f1 1 0.158 0.080 1.25 1.000 1.00 1.00 1.00 1.00 1.00 4.21 613.40 3875.00 0.79 28.37 356.25 Mike Surprenant & Associates Project Title: tibia Engineer TC Sheet 2. of Project ID: 18063 Project Descr: _______ Printed. 3MAY2018. 1:41PM Fte= F:lPtojectsOl8%18O63-Viola4boaverSIat-Wrigh5O3.EngneeringCacTempIatesWIafa-H004.ec6 ENERCALC, INC. 1983.2017, BiId:10.17.12.10. Ver:10.I7.12.10 Description: RB-3 Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M V C C FN C1 Cr Cm C I CL M lb Pb V fv Pv Length 5.50ft 2 0.158 0.080 1.25 1.000 1.00 1.00 1.00 1.00 1.00 4.21 613.40 3875.00 0.79 28.37 356.25 404S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 19.50ft 1 0.085 0.044 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.09 304.76 3565.00 0.40 14.48 327.75 Length 5.50ft 2 0.085 0.044 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.09 304.76 3565.00 0.40 14.48 327.75 90*0.750Lr40.750L4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 19.50 It 1 0.138 0.070 1.25 1.000 1.00 1.00 1.00 1.00 1.00 3.68 536.24 3875.00 0.69 24.90 356.25 Length =5.501t 2 0.138 0.070 1.25 1.000 1.00 1.00 1.00 1.00 1.00 3.68 536.24 3875.00 0.69 24.90 356.25 Os0.750L40.750S.H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =19.50ft 1 0.085 0.044 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.09 304.76 3565.00 0.40 14.48 327.75 Length 5.50ft 2 0.085 0.044 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.09 304.76 3565.00 0.40 14.48 327.75 +O.0.60W*l 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 19.50ft 1 0.061 0.032 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.09 304.76 4960.00 0.40 14.48 456.00 Length =5.50ft 2 0.061 0.032 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.09 304.76 4960.00 0.40 14.48 456.00 sDs0.70E41 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Lenglh= 19.50 It 1 0.081 0.032 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.09 304.76 4960.00 0.40 14.48 456.00 Length 5.50ft 2 0.061 0.032 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.09 304.76 4960.00 0.40 14.48 456.00 O40.750Lr40.750L40.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 19.50 ft 1 0.108 0.055 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.68 536.24 4960.00 0.69 24.90 456.00 Length =5.5011 2 0.108 0.055 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.68 536.24 4960.00 0.69 24.90 456.00 4040.750L40.750S10.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =19.50ft 1 0.061 0.032 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.09 304.76 4960.00 0.40 14.48 456.00 Length =5.5011 2 0.061 0.032 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.09 304.76 4960.00 0.40 14.48 456.00 +O+0.750L10.750S40.5250E4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =19.50ft 1 0.061 0.032 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.09 304.76 4960.00 0.40 14.48 456.00 Length =5.5011 2 0.061 0.032 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.09 304,76 4960.00 0.40 14.48 456.00 40.60D40.60W40.60K 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =19.5011 1 0.037 0.019 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.25 182.85 4960.00 0.24 8.69 456.00 Length =5.50ft 2 0.037 0.019 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.25 182.85 4960.00 0.24 8.69 456.00 40.60D40.70E40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 19.50 ft 1 0.037 0.019 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.25 182.85 4960.00 0.24 8.69 456.00 Length = 5.50 ft 2 0.037 0.019 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.25 182.85 4960.00 0.24 8.69 456.00 Overall Maximum Deflections Load Combination Span Max. Dell Location in Span Load Combination Max. V Deft Location in Span 1 0.0000 0.000 .O+LrsH . .0.1437 11.765 - 404tJ'#1 2 0.3035 5.500 0.0000 11.765 Vertical Reactions Support notation: Far left is #1 Values in KIPS Load Combination Support I Support 2 Support 3 Overall MAXimum -0.109 1.132 OveraliMINimum 0.010 0.494 .O+H 0.010 0.638 4041.411 0.010 0.638 4041r.I1 -0.098 1.132 40+S4H 0.010 0.638 .0+0.75OLr+0.750L.H -0.071 1.008 +040.75OLi0.750S+H 0.010 0.638 9040.60WH 0.010 0.638 4040,70E4l 0.010 0.638 +040.750Lr40,750L40.450W4( -0.071 1.008 4D40.750L90.750S40.450W41 0.010 0.638 4040.750L40.750S40.5250EsH 0.010 0.638 - +0.60040.60W40.60H 0.006 0.383 40.60D40.70E40.60K 0.006 0.383 D Only 0.010 0.638 Lr Only -0.109 0.494 LOnly S Only WOnly E Only Mike Surprenant & Associates Project Title: Viola Engineer: TC Prolect ID: 18063 Sheet f Project Descr: _______ Punted: 3MAY2018. 1:41PM File = INC. 1983.2017. 8ud:1O.17.12.1D. Ver.10.17.12.10 Description: R8-3 Vertical Reactions - Support notation: Far left ls#1 Values lnKIPS Load Combination Support 1 Support 2 Support 3 H Only JOB________________________________________ MIKE SURPRENANT ______________ OF____________ & ASSOCIATES SHEET NO.____________________ Consulting Structural Engineers CALCULATED BY_____________________ DATE CHECKED BY DATE SCALE LEVEL: MEMBERS: : LABEL: - I SPAN=-1j------YT. f ' D UNIFORM LOAD D, POINT LOAD (CENTERED) ' CUSTOM WADING (SEE DIAGRAM) W, (-"t io') -' 4:s tf' (l. ) -1.30 - W2= P1 = 141 (s ILS-0 CI 6o b/663'L a) P2.= 1 I1J4I RL= •••• lbs RR= 1A3 lbs VMAX= _______lbs E = ksi M1Ax= ___________fl-lbs IREQD = in4 USE: M GRADE: (O(' C:________ ALT: GRADE: C:______ LABEL: r SPAN= . Fl. j 6' c D UNIFORM LOAD 0 POINT LOAD (CENTEREI)) 0 CUSTOM LOADING (SEE DIAGRAM) W, = ((S.SJ)cS' '5 flf(!40 DILj'} PI = P2 = USE: s 14"_y 'ts1" GRADE: 0 C:________ ALT:GRADE: C:______ LABEL: C' SPAN=_(.,'S' . • ( [I UNIFORM UNiFORM LOAD o POINT LOAD (CENTERED) CUSTOM LOADING (SEE DIAGRAM) W1= = z.4og Ib( f j S" Ei USE: c '/4" Y 9 It1' GRADE: 1(c.(\ C: _ ALT: . GRADE: _C:______ .1..- ..3. 41 I" 4 I u1'I,D = lbs R = _lbs lbs E = ksi MIAx= ft-lbs 11sQD = in4 p1 4 —7- (t q4? ( R,,= '3 (IS lbs R = __i3 lbs VMAX= • lbs E M:Ax= • ft-lbs IREQD 0 PRODUCT 207 Mike Surprenant & Associates Project Title: Viola Engineer IC Project Descr: Sheet 2_ : of INC. Project ID: 18063 Printed: 4l.W' 2018, 3:12PM tCalc TemptatesWi&a.Hoover.ec6 Build:IO.17i2.1O. Verl0.17.12.lO Description: RBA CODE REFERENCES Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb '- 3,100.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - 3,100.0 psi Ebend- xx 2,000.0ks1 Fc - Pdl 3,000.Opsi Eminbend - xx 1,036.83ksi Wood Species : Boise Cascade Fc - Perp 750.0 psi Wood Grade : Versa Lam 2.0 3100 West Fv 285.0 psi Ft 1,950.0 psi Density 41.750pc1 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(O.76) 5.250 X 9.0 5.250 X 9.0 Span = 2.0 ft Span = 12.0 ft fi App!ied Loads Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: 0 = 0.2250, Lr = 0.250, Tributary Width = 1.0 ft, (Roof) Point Load: 0 = 0.760, Lr = 0.6630k @0.0 if, (RB-I) Load for Span Number 2 Uniform Load: D =0.2250, Lr = 0.250, Tributary Width = 1.0 if, (Roof) Service loads entered. Load Factors will be applied for calculations. DESIGN SUMMARY Maximum Bending Stress Ratio = 0.3051 Maximum Shear Stress Ratio = 0.258 :1 Section used for this span 5.250 X 9.0 Section used for this span 5.250 X 9.0 lb : Actual = 1,183.27ps1 fv:Actual = 91.76 psi FB : Allowable = 3,875.00 psi Fv : Allowable = 356.25 psi Load Combination 'O+Lr+H Load Combination +0+4I Location of maximum on span = 6.637 ft Location of maximum on span = 2.000 ft Span # where maximum occurs = Span #2 Span # where maximum occurs = Span #1 Maximum Deflection Max Downward Transient Deflection 0.140 in Ratio = 1031 >=360 Max Upward Transient Deflection 0.000 in Ratio = 0<360 Max Downward Total Deflection 0.267 in Ratio = 539 >=240 Max Upward Total Deflection 0.000 in Ratio = 0<240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V Cd C FN C Cr Cm C CL M lb Pb V fv F'v 401+1 . 0.00 0.00 0.00 0.00 Length =2.oft 1 0.121 0.176 0.90 1.000 1.00 1.00 1.00 1.00 1.00 2.00 338.18 2790.00 1.42 45.16 256.50 Mike Surprenant & Associates Project Title: Viola Engineer: TIC Sheet 24 of Project ID: 18063 Project Descr: JXfi21. Piloted: 4 MAY 2018. 3:12PM Ale = F:tProjecIs2018118063-Viola-Hoover SIreeI-Wagh03-EnglneedngCalc TemplatesWjola.Hoover.ec6 ENERCAIC. INC. 1983-2017. Build:10.17.12.10. Ve,:I0.I7.12.10 Desctiption: RB4 Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V Cd CFN C 1 Cr Cm C CL M lb Pb V Iv F'v Length =12.Oft 2 0.204 0.176 0.90 1.000 1.00 1.00 1.00 1.00 1.00 3.36 568.20 2790.00 1.42 45.16 256.50 sD+L-.H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =2.olt 1 0.109 0.158 1.00 1.000 1.00 1.00 1.00 1.00 1.00 2.00 338.18 3100.00 1.42 45.16 285.00 Length = 12.0 ft 2 0.183 0.158 1.00 1.000 1.00 1.00 1.00 1.00 1.00 3.36 568.20 3100.00 1.42 45.16 285.00 'O1.r4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =2.Oft 1 0.167 0.258 1.25 1.000 1.00 1.00 1.00 1.00 1.00 3.82 647.35 3875.00 2.89 91.76 356.25 Length =12.oft 2 0.305 0.258 1.25 1.000 1.00 1.00 1.00 1.00 1.00 6.99 1,183.27 3875.00 2.89 91.76 356.25 IOIS4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =2.oft 1 0.095 0.138 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.00 338.18 3565.00 1.42 45.16 327.75 Length =12.oft 2 0.159 0.138 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.36 568.20 3565.00 1.42 45.16 327.75 +D...750Lr40.750L4 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =2.0ft 1 0.147 0.225 1.25 1.000 1.00 1.00 1.00 1.00 1.00 3.37 570.06 3875.00 2.52 80.11 356.25 Length =12.oft. 2 0.266 0.225 1.25 1.000 1.00 1.00 1.00 1.00 1.00 6.08 1,029.48 3875.00 2.52 80.11 356.25 +O*0.750L*0.750S*H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =2.0f1 1 0.095 0.138 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.00 338.18 3565.00 1.42 45.16 327.75 Length = 12.0 ft 2 0.159 0.138 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.36 568.20 3565.00 1.42 45.16 327.75 4040.60W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =2.Oft 1 0.068 0.099 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.00 338.18 4960.00 1.42 45.16 456.00 Length =12.0ft 2 0.115 0.099 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.36 568.20 4960.00 1.42 45.16 456.00 '040.70E41 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =2.0ft 1 0.068 0.099 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.00 338.18 4960.00 1.42 45.16 456.00 Length = 12.0 11 2 0.115 0.099 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.36 568.20 4960.00 1.42 45.16 456.00 +Oi0.750Lr+0.750L40.450W*l 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =2.oft 1 0.115 0.176 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.37 570.05 4960.00 2.52 80.11 456.00 Length =12.oft 2 0.208 0.176 1.60 1.000 1.00 1.00 1.00 1.00 1.00 6.06 1,029.48 4960.00 2.52 80.11 456.00 -'040.750L+0.750S40.450W-H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =2.Oft 1 0.068 0.099 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.00 338.18 4960.00 1.42 45.16 456.00 Length =12.Oft 2 0.115 0.099 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.36 568.20 4960.00 1.42 45.16 456.00 4090.750L40.750840.5250E#I 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =2.0ft 1 0.068 0.099 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.00 338.18 4960.00 1.42 45.16 456.00 Length =12.oft 2 0.115 0.099 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.36 568.20 4960.00 1.42 45.16 456.00 40.60040.60W40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =2.01t 1 0.041 0.059 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.20 202.91 4960.00 0.85 27.10 456.00 Length= 12.0ft 2 0.069 0.059 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.01 340.92 4960.00 0.85 27.10 456.00 s0.60D40.70E.0.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =2.Olt 1 0.041 0.059 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.20 202.91 4960.00 0.85 27.10 456.00 Length =12.0ft 2 0.069 0.059 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.01 340.92 4960.00 0.85 27.10 456.00 OverallMaximum Deflections ____ Load Combination Span Max. - Defi Location in Span Load Combination Max. + Dell Location in Span 0.0000 0.000 4D4LrsH -0.0948 0.000 +O+1rsH 2 0.2668 6.302 0.0000 0.000 Vertical Reactions Support notation: Far left is #1 Values In KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 5.651 2.614 Overall MiNimum 2.815 1.348 404H 2.836 1.266 2.836 1.266 .OsLr+H 5.651 2.614 +0+941 2.836 1.266 4040.750Lr40.7501-4H 4.947 2.277 .0+0.750L40.750S4H 2.838 1.266 40+0.60W+H 2.836 1.266 +D+0.70E+H 2.836 1.266 4040.750Lr40.750L40.450W+H 4.947 2.277 +D'0.750140.750S40.450W4t 2.836 1.266 040.750140.750S40.5250E41 2.836 1.266 40.60Di0.60W+0.60H 1.702 0.759 40.60D+0.70E40.60H 1.702 0.759 Mike Surprenani & Associates Project Title: Viola Engineer TC Sheet U of Project ID: 18063 Project Descr: Printed: 4 MAY 2018. 3:12PM File 8uil:I0.17.12.10. Ver.10.I7.12.10 Description: RB-I Vertical Reactions Support nolaon: Far left Is #1 Values in KIPS Load Combination Support I Support 2 Support 3 D Only 2.836 1.266 LrOnly 2.815 1.348 L Only S Only W Only E Only H Only Mike Surprenant & Associates Project Title: Viola Engineer: TC Sheet 2-G of Project 10: 18063 Project Descr: 1S5PM .12.10. Ver.10.17.12. Description: RB-5 CODE REFERENCES Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb + 3100 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - 3100 psi Ebend- xx 2000 ksi Fc - Prll 3000 psi Eminbend -'cc 530120482 ksi Wood Species : Boise Cascade . Fc - Perp 750 psi Wood Grade : Versa Lam 2.0 3100 West Fv 285 psi Ft 1950 psi Density 41.75 pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 0(0.14) Lr(O.155) 9 -$ 5.25x9.5 5.25x9.5 Span = 12.0 ft Span = 6.0 ft --.----.-.---...-.--J Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 2 Uniform Load: 0 = 0.140, Lr = 0. 11550, Tributary Width = 1.0 It, (Roof) DESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb : Actual FB : Allowable = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.218 1 Maximum Shear Stress Ratio 5.25x9.5 Section used for this span 846.45 psi Iv : Actual 3,875.00 psi Fv : Allowable +D+Lr+H Load Combination 12.0001t Location of maximum on span Span # 1 Span # where maximum occurs 0.212 in Ratio = 678 >=360 0.000 in Ratio= 0<360 0.409 in Ratio = 352>=240 0.000 in Ratio = 0 c240 D,skin C = 0.137:1 5.25x9.5 = 48.67 psi = 356.25 psi +04r'H 12.000 ft = Span #1 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios -.Moment Values Segment Length Span # M V .Cd CFN C1 Cr Cm C CL M lb Fb 4041 0.00 Length = 12.0 It 1 0.151 0.095 0.90 1.000 1.00 1.00 1.00 1.00 1.00 2.78 422.49 2790.00 Length =6.oft 2 0.151 0,095 0.90 1.000 1.00 1.00 1.00 1.00 1.00 278 422.49 2790.00 404141 1.000 1.00 1.00 1.00 1.00 1.00 0.00 Length =12.Oft 1 0.136 0.085 1.00 1.000 1.00 1.00 1.00 1.00 1.00 2.78 422.49 3100.00 Length =6.011 2 0.136 0.085 1.00 1.000 1.00 1.00 1.00 1.00 1.00 2.78 422.49 3100.00 4041J4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 Length =12.0ft 1 0.218 0.137 1.25 1.000 1.00 1.00 1.00 1.00 1.00 5.57 846.45 3875.00 Shear Values V fv F'v 0.00 0.00 0.00 0.81 24.29 256.50 0.81 24.29 256.50 0.00 0.00 0.00 0.81 24.29 285.00 0.81 24.29 285.00 0.00 0.00 0.00 1.62 48.67 35625 Description: RB-5 Load Combination Max Stress Ratios Moment Values Shear Values - Segment Length Span 4 M V C C IN C1 CrCm C t CL M lb Pb V Iv Fv Length =6.Dft 2 0.218 0.137 1.25 1.000 1.00 1.00 1.00 1.00 1.00 5.57 846.45 3875.00 1.62 48.67 356.25 40+S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =12.0ft 1 0.119 0.074 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.78 422.49 3565.00 0.81 24.29 327.75 Length =6.01t 2 0.119 0.074 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.78 422.49 3565.00 0.81 24.29 327.75 4040.750Lr40.750L#H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length= 12.0ft 1 0.191 0.120 1.25 1.000 1.00 1.00 1.00 1.00 1.00 4.87 740.46 3875.00 1.42 42.57 356.25 Length 6.0ft 2 0.191 0.120 1.25 1.000 1.00 1.00 1.00 1.00 1.00 4.87 740.46 3875.00 1.42 42.57 356.25 40+0.750L40.750S-*l 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 12.0ft 1 0.119 0.074 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.78 422.49 3585.00 0.81 24.29 327.75 Length 6.0ft 2 0.119 0.074 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.78 422.49 3565.00 0.81 24.29 327.75 -.040.60W4$ 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 12.0 It 1 0.085 0.053 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.78 422.49 4960.00 0.81 24.29 456.00 Length =6.0ft 2 0.085 0.053 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.78 422.49 4960.00 0.81 24.29 456.00 +040.70E.H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 12.0 It 1 0.085 0.053 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.78 422.49 4960.00 0.81 24.29 456.00 Length =6.oft 2 0.085 0.053 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.78 422.49 4960.00 0.81 24.29 456.00 .0s0.750Lr40.750L40.450W1+I 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 12.0ft 1 0.149 0.093 1.60 1.000 1.00 1.00 1.00 1.00 1.00 4.87 740.46 4960.00 1.42 42.57 456.00 Length 6.0ft 2 0.149 0.093 1.60 1.000 1.00 1.00 1.00 1.00 1.00 4.87 740.46 4960.00 1.42 42.57 456.00 .040.750L.0.750S40.450W4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =12.oft 1 0.085 0.053 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.78 422.49 4960.00 0.81 24.29 456.00 Length =6.0ft 2 0.085 0.053 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.78 422.49 4960.00 0.81 24.29 456.00 -'040.750L40.750S40.5250E41 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =12.0ft 1 0.085 0.053 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.78 422.49 4960.00 0.81 24.29 458.00 Length =6.0ft 2 0.085 0.053 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.78 422.49 4960.00 0.81 24.29 456.00 40.600+0.60W40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 12.0 ft 1 0.051 0.032 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.67 25349 4960.00 0.48 14.57 456.00 Length 6.0ft 2 0.051 0.032 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.67 253.49 4960.00 0.48 14.57 456.00 +0.60D+0.70E40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =12.oft 1 0.051 0.032 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.67 253.49 4960.00 0.48 14.57 456.00 Length =6.oft 2 0.051 0.032 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.67 253.49 4960.00 0.48 14.57 456.00 Overall Maximum Deflections Load Combination Span Max. Deft Location In Span Load Combination Max. Y Deft Location in Span 1 0.0000 0.000 *Dstr+H -0.1106 7.039 -'09Lr+H 2 . 0.4066 6.000 0.0000 7.039 Vertical Reactions . -. Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum -0.377 2.408 Overall MiNimum -0.145 1.163 40-s-H -0.145 1.245 40+1-s-H -0i45 1.245 s-O'Lr+H -0.377 2.408 sO+SsH -0.145 1.245 s0+0.750Lr+0.750L.H -0.319 2.117 sD40.750140.750S-'H -0.145 1.245 4040.60W4I -0145 1.245 -.D40.70E41 -0.145 1.245 +0+0.750Lr+0750L+0.450W+H -0.319 2.117 s0+0.750L+0.750S+0.450W+H -0.145 1.245 40+0750L40.750S+05250E+H -0.145 1.245 40.60040.60W+0.60H -0.087 0.747 +0.600-'0.70E40.60H -0.087 0.747 D Only -0.145 1.245 LrOnly -0.232 1.163 I Only S Only WOnly E Only Mike Surprenant & Associates Project Title: Viola Engineer: TC Sheet 14' of Project ID: 18063 Project Descr: Printed: 3 INC. 1983.2017. Build:10.I7.12.10. Ver.10.17.12.10 Description: RB-5 Vertical Reactions Support notation: Far left ls#1 Values in KIPS 'Load Combination Support I Support 2 Support 3 }lOnly Mike Surprenant & Associates Project Title: Viola Engineer: TC Sheet of Project ID: 18063 Project Descr: Tenipiate0iaIa-1-1oover.ec6 INC. 10.17.12.19, Ver.10.17.12.10 Description: RB-6 CODE REFERENCES Calculations per NDS 2015, lBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Prooerties Analysis Method: Allowable Stress Design Fb + 3100 psi E: Modulus of Elasticity Load Combination 'ASCE 7-10 Fb - 3100 psi Ebend xx 2000ksi Fc - PrIl 3000 psi Eminbend - xx 530120482 ksi Wood Species : Boise Cascade Fc - Perp 750 psi Wood Grade : Versa Lam 2.0 3100 West Fv 285 psi Ft 1950psi Density 41.75pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 0(1.245) Lr(1.163) 5.25x9.5 5.25x9.5 Span = 3.0 It Span = 12.50 ft I. •T- Service loads entered. Load Factors will be applied for calculations. Applied Loads Beam self weight calculated and added to loads Load for Span Number 1 Point Load: 0 = 1.245, Lr = 1.163k @0.0 ft, (RB-5) DESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb : Actual = FB : Allowable = Load Combination Location of maximum on span = Span 11 where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.2861 Maximum Shear Stress Ratio 5.25x9.5 Section used for this span 1,107.64 psi fv:Actual 3,875.00 psi Fv : Allowable +0+Lr+H Load Combination 3.000 ft Location of maximum on span Span 111 Span # where maximum occurs 0.125 in Ratio = 576 '=360 0.000 in Ratio = 0360 0.252 in Ratio = 284 >=240 0.000 in Ratio = 0<240 = 0.206:1 5,25x9.5 = 73.38 psi = 356.25 psi = 2.212 ft Span #1 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Raflos . Moment Values Shear Values Segment Length Span# M V Cd C FN CICr 0m C 1. CL M lb F'b V tv F'v 40#1 - 0.00 0.00 0.00 0.00 Length =3.oft 1 0.207 0.150 0.90 1.000 1.00 1.00 1.00 1.00 1.00 3.80 577.45 2790.00 1.28 38.41 256.50 Length = 12.50 ft 2 0.207 0.150 0.90 1.000 1.00 1.00 1.00 1.00 1.00 3.80 577.45 2790.00 0.38 38.41 256.50 DL4H 1.000 1.00 .1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =3.olt 1 0.186 0.135 1.00 1.000 1.00 1.00 1.00 1.00 1.00 3.80 577.45 3100.00 1.28 38.41 285.00 Length = 12.50 ft 2 0.186 0.135 1.00 1.000 1.00 1.00 1.00 1.00 1.00 3.80 577.45 3100.00 0.38 38.41 285.00 4041r+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =3.oft 1 0.286 0.206 1.25 1.000 1.00 1.00 1.00 1.00 1.00 7.29 1,107.64 3875.00 2.44 73.38 356.25 ProiectlD: 18063 Printed: 38.IAY 2018. I:S?PM Mike Swprenant & Associates Project Title: Viola Engineer TC Project Descr: Sheet 30 of L':2 .TIj1IIMI1.7 Description: R8-6 Load Combination Segment Length Span# M V Max Stress Ratios Moment Values Cd CFN C1 Cr Cm C CL M lb Fb tCatr lemplalesWiola-Hoover.ec6 Bu2d:I0.17.12.10. Vor.1O.I7.12.1O Shear Values V fv Pv Length 12.50ft 2 0.286 0.206 1.25 1.000 1.00 1.00 1.00 1.00 1.00 7.29 1107.64 3875.00 0.66 73.38 356.25 +D+S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =3.Oft 1 0.162 0.117 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.80 577.45 3565.00 1.28 38.41 327.75 Length =12.50ft 2 0.162 0.117 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.80 577.45 3565.00 0.38 38.41 327.75 O40.750l.x40.750L+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =3.oft 1 0.252 0.181 1.25 1.000 1.00 1.00 1.00 1.00 1.00 6.42 975.09 3875.00 2.15 64.64 356.25 Length = 12.50 It 2 0.252 0.181 1.25 1.000 1.00 1.00 1.00 1.00 1.00 6.42 975.09 3875.00 0.59 64.64 356.25 4040.750L0.750S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =3.Dlt 1 0.162 0.117 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.80 577.45 3565.00 1.28 38.41 327.75 Length = 12.50 ft 2 0.162 0.117 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.80 577.45 3565.00 0.38 38.41 327.75 4040.60W4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 3.0ft 1 0.116 0.084 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.80 577.45 4960.00 1.28 38.41 456.00 Length :12.50ft 2 0.116 0.084 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.80 577.45 4960.00 0.38 38.41 456.00 I090.70E4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =3.oft 1 0.116 0.084 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.80 577.45 4960.00 1.28 38.41 456.00 Length 12.50ft 2 0.116 0.084 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.80 57745 4960.00 0.38 38.41 456.00 4040.750Lr+0.750L40.450W41 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 3.0ft 1 0.197 0.142 1.60 1.000 1.00 1.00 1.00 1.00 1.00 6.42 975.09 4960.00 2.15 6464 456.00 Length = 12.50 ft 2 0.197 0.142 1.60 1.000 1.00 1.00 1.00 1.00 1.00 6.42 975.09 4960.00 0.59 64.64 456.00 '040.750140.750S40.450W'H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =3.oft 1 0.116 0.084 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.80 577.45 4960.00 1.28 38.41 456.00 Length = 12.50 ft 2 0.116 0.084 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.80 577.45 4960.00 0.38 38.41 456.00 4040.750L40.750S+0.5250E+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =3.oft 1 0.116 0.084 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.80 577.45 4960.00 1.28 38.41 456.00 Length= 12.50 ft 2 0.116 0.084 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.80 577.45 4960.00 0.38 38.41 456.00 40.60D40.60W40.60H . 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =3.oft 1 0.070 0.051 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.28 346.47 4960.00 0.77 23.04 456.00 Length = 12.50 ft 2 0.070 0.051 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.28 346.47 4960.00 0.23 23.04 456.00 -.0.60D40.70E40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 3.Oft 1 0.070 0.051 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.28 346.47 4960.00 0.77 23.04 456.00 Length 12.50 It 2 0.070 0.051 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.28 846.47 4960.00 0.23 23.04 456.00 Overall Maximum Deflections Load Combination Span Max. "- Deft Location in Span Load Combination Max. Y Deft Location In Span 1 0.2522 0.000 - 0.0000 0.000 2 0.0000 0.000 iO+Lr+H -0.1604 5.237 Vertical Reactions Support notation : Far left Is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 3.125 -0.493 Overall MiNimum 1.442 -0.214 1.683 -0.214 4D4L#1 1.683 -0.214 +O'Lr'H 3.125 -0.493 'O+SsH 1.683 -0.214 ,O40.750Lr40.75011-H 2.764 -0.423 040.750L0.750S+H . 1.683 -0.214 .040.60W4H 1.683 -0.214 +040.70E#1 1.663 -0.214 +090.750Lr40.750L40.450W*I 2.764 -0.423 4040.750L40.750S-i0.450W+H 1.683 .0.214 'O0.750140.750540.5250E+H 1.683 -0.214 '0.60D40.60W'0.60H 1.010 .0.128 40.60040.70E40.6011 1.010 -0.128 DOnly 1.683 -0.214 Lr Only 1.442 -0.279 L Only S Only W Only E Only Mike Surprenant & Associates Project Title: Viola Engineer TC Sheet of Project ID: 18063 Project Descr: __ _______ Ptlnted: 3 MAY 2OIS, 1:57PM File = 03-EegineeiingCaic TemptatesbIa-ioovere.5 INC. 1983-2017. Buiki:10.17.12.I0, Veri0.17.12.I0 Description: RB-6 Vertical Reactions Support notation: Far left is #1 Values in KIPS Load Combination Support I Support 2 Support 3 MIKE SUEPRENANT & ASSOCIATES Consulting Structural Engineers (O62 JOB SHEET NO. -. OF___________________ CALCULATED BY__ DATE_____________________ CHECKED BY, SCALE LEVEL: : Door MEMBERS:__________________ LABEL: 'ft-_) SPAN= _42-_ UNIFORM LOAD POINT LOAD (CENTERED) CUSTOM LOADING (SEE DIAGRAM) .wl = I2 $j (.(,'3 L'1( ss hi) JA I:, 1 (l RL = '5__lbs R5 = 1 '5 lbs lbs E =ksi MMAX = _ft-lbs IREQD = in4 USE: _GRDE 49i. C: I_/4 ALT: :_GRADE:Q- I liSrL R,= 2JT lbs = ____lbs Vrx = lbs E MMAX= _ft-lbs IpEQ'D = _______in4 USE: _li4v''GRADE:(° C:__-. ALE: GRADE: _C:______ LABEL: _______ SPAN=-------YT. UNIFORM LOAD POINT LOAD (CENTERED) O CUSTOM LOADING (SEE DIAGRAM) WI= W2= P1 = P2 = lbs RR= _________lbs Vrix= lbs E =ksi Mx= __________ft-Lbs I1lEQ'D = in4 USE: DE: C: ALT: _GRADE: _C:______ 0 FRflflhItTfl7 Mike Surpcenant & Associates Ale Description: R8-7 CODE REFERENCES Calculations per AISC 360-10, IBC 2015, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Beam Bracing : Beam is Fully Braced against lateral-torsional buckIin Bending Axis: Major Axis Bending tj(1.883)Lr1.155) 0(1.1 Project Title: Viola Engineer. TIC Project Descr: Sheet '3.3 of INC. Project ID: 18063 fln1ed: 7MAY 2018. I0:4lNl mplatesWiola-Hoover.ec6 .17.12.10, Ve-.10.17.12.I0 Fy: Steel Yield: 50.0 ksi E: Modulus: 29000.0 ksi 583) Lrl.155) 0(1.683) Lr1.155) W12x79 Span = 42.0 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load(s) for Span Number 1 Point Load: 0=1.663, Lr=1.155k@ 11.0 Ft,(RB-8) Point Load: 0 = 1.683, Lr = 1.155k @21.0 It, (RB-8) Point Load: 0=1.683, Lr= 1.1551@31.oft, (RB.8) DESIGN SUMMARY Maximum Bending Stress Ratio = 0.'264:1 Maximum Shear Stress Ratio = 0.051 1 Section used for this span WI 2x79 Section used for this span W1 2x79 Ma Applied 78.431 k-ft Va : Applied 5.915 k Mn! Omega: Allowable 296.906k-ft Vn/Omega : Allowable 116.560 k Load Combination 'Dtr+H Load Combination +D+Lr+H Location of maximum on span 21.000ft Location of maximum on span 0.000 ft Span U where maximum occurs Span # 1 Span U where maximum occurs Span if 1 Maximum Deflection Max Downward Transient Deflection 0.391 in Ratio = 1,287>=360 Max Upward Transient Deflection 0.391 in Ratio = 1,287 >=360 Max Downward Total Deflection 1.251 in Ratio = 403 >=240 L Max Upward Total Deflection 0.000 in Ratio = 0 <240 Maximum Forces & Stresses for Load Combinations Load Combinaton Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span U M V Mmax + Mmax- Ma Max Mnx Mnxl0mega Cb Rm Va Max Vnx Vmdomega 40+H Dsgn. L= 42.00 ft 1 0.181 0.036 53.60 53.60 495.83 296.91 1.00 1.00 4.18 174.84 116.56 4D+L+H Dsgn. L= 42.00 ft 1 0.181 0.036 53.60 53.60 495.83 296.91 1.00 1.00 4.18 174.84 116.56 40+t.r'B Dsgn. L= 42.00 ft 1 0.264 0.051 78.43 78.43 495.83 296.91 1.00 1.00 5.92 174.84 116.56 +0+S+H Dsgn. L= 42.00 ft 1 0.181 0.036 53.60 53.60 495.83 296.91 1.00 1.00 4.18 174.84 116.56 +D40.750Lr4O.750L+H Dsgn. L = 42.00 ft 1 0.243 0.047 72.22 72.22 495.83 296.91 1.00 1.00 5.48 174.84 116.56 #040.750L90.750S1H Dsgn. L= 42.00 ft 1 0.181 0.036 53.60 53.60 495.83 296.91 1.00 1.00 4.18 174.84 116.56 4040.60W#t Dsgn. t.= 42.00 ft 1 0.181 0.036 53.60 53.60 495.83 296.91 1.00 1.00 4.18 174.84 116.56 4OsO.70E4H Dsgn. L= 42.00 ft 1 0.181 0.036 53.60 53.60 495.83 296.91 1.00 1.00 4.18 174.84 116.56 4040.750Lr40.750140.450W4fl Mike Surprenant & Associates Project Title: Viola Engineer: TC Sheet 4- of Project 1[): 18063 Project Descr: Printed: 7 MAY 2018. 10:41AM Re = FPecs20I8118063-Viota-Hoover Sheet-WdghttO3-EngineeringtCarc TempIatesViola-Hoover.ec6 ENERCALC. INC. 1983-2017, Build:10.17.I2.1O, Ver.10.17.12.10 Description: RB-i Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma Max Max Mnx/Omega Cb Rni Va Max Vax VnxfOmega Dsgn. L= 42.00 It 1 0.243 0.047 72.22 72.22 495.83 296.91 1.00 1.00 5.48 174.84 116.56 040.75OL40.750S40.450W4l Dsgn. L= 42.00 ft 1 0.181 0.036. 53.60 53.60 495.83 296.91 1.00 1.00 4.18 174.84 116.56 4O'O.750L0.750S90.5250E41 Dsgn. L= 42.00 ft 1 0.181 0.036 53.60 53.60 495.83 296.91 1.00 1.00 4.18 174.84 116.56 40.60D40.60W10.60H Dsgn. L: 42.00 ft 1 0.108 0.022 32.16 32.16 495.83 296.91 1.00 1.00 2.51 174.84 116.56 40.60D+0.70E40.60H Dsgn. L= 42.001t 1 0.108 0.022 32.16 32.16 495.83 296,91 1.00 1.00 2.51 174.84 116.56 Overall Maximum Deflections Load Combination Span Max. "-" Defl Location in Span Load Combination Max. + Dell Location in Span .1.O+Lr+H 1 1.2508 21.120 0.0000 OMOO Vertical Reactions Load Combination Support I Support 2 Overall MAXimum 5.915 5.915 Overall MINimum 1.733 1.733 +O+H 4.183 4.183 '.O+L+H 4.183 4.183 O+t.r.H 5.915 5.915 '0+541 4.183 4.183 "040.750Lr40.750L+H 5.482 5.482 +D'0.750L40.750S+H 4.183 4.183 +O0.60W+H 4.183 4.183 +040.70E#1 4.183 4.183 +O0.750Lr40.750L40.450W4l 5.482 5.482 's'O40.750L'+0.750S40.450W4H 4.183 4.183 +0+0.750L'+0,750S0.5250E+H 4.183 4.183 40.601390.60W40.601-1 2.510 2.510 40.60D40.70E40.60H 2.510 2.510 D Only 4.183 4.183 Lr Only 1.733 1.733 I Only S Only WOnly E Only H Only Support notation: Far left is #1 Values In KIPS Mike Surprenant & Associates Project Tulle: Viola Engineer: TC Project Descr: Sheet of INC. Project ID: 18063 Pin(ed: 7MAY 2018. 10:38AM mplatesWtola-Hoover.ec6 .17.12.10. Ver:10.17.12.10 Description: R8-8 CODE REFERENCES Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Pronerties Analysis Method: Allowable Stress Design Fb + 3,100.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - 3,100.0 psi Ebend- xx 2,000.0ksi Fc - PrIl 3,000.0 psi Erninbend - xx I ,036.83ks1 Wood Species : Boise Cascade Fc - Perp Fv 750.0 psi 285.0 psi Wood Grade : Versa Lam 2.0 3100 West Ft 1,950.0 psi Density 41 .750pcf Beam Bradng : Beam is Fully Braced against lateral -torsional buckling D(0.1897Lr(0.21) 0(0.105) -._- 3.50 X 9.0 Span = 11.0 ft Appl led Loads Beam self weight calculated and added to loads Uniform Load: D = 0.1890, Lr = 0.210 Tributary Width = 1.0 It, (Roof) ______-.......-... ...-.-_--.- ..' .... Service loads entered. Load Factors will be applied for calculations. Uniform Load: D = 0.1050, Tributary Width = 1.0 ft, (Stucco Lid) DESIGN SUMMARY Maximum Bending Stress Ratio = 0.5021 Section used for this span 3.50 X 9.0 fb : Actual = 1,971.08 psi FB : Allowable 3,875.00 psi Load Combination +04r+H Location of maximum on span = 5.500ft Span # where maximum occurs = Span # 1 Maximum Shear Stress Ratio = 0.328: 1 Section used for this span 3.50 X 9.0 Iv: Actual = 116.73 psi Fv: Allowable = 356.25 psi Load Combination +D4r4f Location of maximum on span = 10.277 ft Span #where madmum occurs = Span #1 Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.164 in Ratio = 806 >=360 0.000 in Ratio = 0 <360 0.400 in Ratio = 330 >=240 0.000 in Ratio = 0 <240 Maximum Forces & Stresses for Load Combinations Load Combination MaxStressRatios Moment Values Shear Values Segment Length Span 11 M V C C IN C I Cr Cm C I CL M lb Pb V fv Fv -+041 0.00 0.00 0.00 0.00 Length = 11.0 ft 1 0.417 0.269 0.90 1.000 1.00 1.00 1.00 1.00 1.00 4.58 1,164.41 2790.00 1.45 68.96 256.50 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length= 11.001 1 0.376 0.242 1.00 1.000 1.00 1.00 1.00 1.00 1.00 4.58 1,164.41 3100.00 1.45 68.96 285.00 .+D4Lr+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 11.0 ft 1 0.509 0.328 1.25 1.000 1.00 1.00 1.00 1.00 1.00 7.76 1,971.08 3875.00 2.45 116.73 356.25 Mike Surprenant & Associates Project Title: Viola Engineer: TC Sheet 3 of Project ID: 18063 Project Descr: n_- \PriMed: 7 MAY2018.10:3MM p.V 'y F0e= FlPes 20l8\18063-VioIa--HoerS1 t-WrighLt03-EngineeringCalc TempiateslViola-Hoover.ec6 _______ ENERCALC. INC. 19812017. 8u11d:10.I7.12.10. Ver:10.17.12.10 Descption: RB-8 Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V Cd C EN C1 Cr Cm C t CL M lb Pb V ft' F'v -'04S4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =11.oft 1 0.327 0.210 1.15 1.000 1.00 1.00 1.00 1.00 1.00 4.58 1,164.41 3565.00 1.45 68.96 327.75 +Oi0.750Lr40.750LiH 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 11.0ft 1 0.457 0.294 1.25 1.000 1.00 1.00 1.00 1.00 1.00 6.97 1,769.41 3875.00 2.20 104.79 356.25 +D.0.750L.0.750S41 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =11.oft 1 0.327 0.210 1.15 1.000 1.00 1.00 1.00 1.00 1.00 4.58 1,164.41 3565.00 1.45 68.96 327.75 4040.60W*1 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 11.0 It 1 0.235 0.151 1.60 1.000 1.00 1.00 1.00 1.00 1.00 4.58 1,164.41 4960.00 1.45 68.96 456.00 +D40.70E41 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 11.0 it 1 0.235 0.151 1.60 1.000 1.00 1.00 1.00 1.00 1.00 4.58 1,164.41 4960.00 1.45 68.96 456.00 9040.750Lr4O.750L40.450W+H 1.000 1.00 1.00 1.00 1.00 100 0.00 0.00 0.00 0.00 Length = 11.0 it 1 0.357 0.230 1.60 1.000 1.00 1.00 1.00 1.00 LOO 6.97 1,769.41 4960.00 2.20 104.79 456.00 4O+O.750L40.750S40.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 11.0 ft 1 0.235 0.151 1.60 1.000 1.00 1.00 1.00 1.00 1.00 4.58 1,164.41 4960.00 1.45 68.96 456.00 .O.0.750L,0.750S40.5250E+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 11.0 ft 1 0.235 0.151 1.60 1.000 1.00 1.00 1.00 1.00 1.00 4.58 1,164.41 4960.00 1.45 68.96 456.00 40.60D40.60W40.60H 1.000 1,00 1.00 tOO 1.00 tOO 0.00 0.00 0.00 0.00 Length = 11.0 It 1 0.141 0.091 1.60 t000 1.00 1.00 1.00 1.00 1.00 2.75 698.65 4960.00 0.87 41.38 456,00 40.60D40.70E90.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =11.olt 1 0.141 0.091 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.75 698.65 4960.00 0.87 41.38 456.00 Overall Maximum Deflections Load Combination Span Max."--' Deft Location in Span Load Combination Max. +' Deft Location in Span +O+Lr+H 1 0.3998 5.540 0.0000 0.000 Vertical Reactions Support notation: Far left is #1 Values in KIPS Load Cornbirfàtion Support 1 Support 2 Overall MAXimum . 2.822 2.822 Overall MiNimum 1.155 1.155 'eO+H 1.667 1.667 +O+t4I 1.667 1.667 +D+Lr4H 2.822 2.822 '*D+S+H 1.667 1.667 '.D40.750Lr"0.750L+H 2.533 2.533 4040.750L40.750S41 . 1.667 1.667 ..D40.60W41 1.687 1.667 4O+O.70E+H 1.667 1.667 4040.750Lr40.750L40.450W+H 2.533 2.533 "O'.0.750L'.0.750S.0.450W+H 1.667 1.667 - 1O+0.7501.0.75050.5250E.H 1.667 1.667 460D40.60W40.601-1 1.000 1.000 4060D+0.70E+0.60H 1.000 1.000 DOnly 1.667 1.667 LrOnly 1.155 1.155 LOnly S Only WOnly E Only H Only MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB O63 SHEET NO. 1? OF___________________ CALCULATED BY DATE CHECKED BY____________________________ DATE______________________ SCALE LEVEL: fl1OI'. MEMBERS: Ui 0 AA LABEL: SPAN=_ FT. UNIFORM LOAD POINT WAD (CENTERED) CUSTOM LOADING (SEE DIAGRAM) I1cj4 fit (U4h/t&bL W2= Pt = P2 = - f3• RL= (i( _lbs R= 02..lbs WAX = lbs E =ksi USE: (,)c6 GRADE: f* C: •. MMAX= _. _ft-lbs IREQ'D n4 = i ALT: GRADE: C:______ LABEL: SPAN= FT. UNIFORM LOAD POINT LOAD (CENTERED) CUOM LOADING (SEE DIAGRAM) W1 . wz= P1 = P2 = . R. = lbs RR lbs E = . ksi Mrax= ft-lbs IREQ'D = in4 USE: GRADE: C:_______ ALT: GRADE: C:______ LABEL: _______ SPAN= FT. UNIFORM LOAD POINT LOAD (CRNTEREJ)) CUSTOM LOADING (SEE DIAGRAM) W2= P1 = P2 = RL= lbs R= ________lbs WAX = lbs E = kst MMax= ___________ft-lbs IREQD USE: GRADE: C:. ALT: GRADE: C:______ fl oInnIv'r,,, am Mike Surprenant & Associates Project Title: Viola Engineer IC Project ID: 18063 Project Descr: Sheet ly of_______ Punted: 3MM 2018, 2:02PM J File F.-P( 0120l8118053-Vio1a400verStffietWd9htW3-Eflgilleefiflg\COTC lemplatesWlola-Hoover.ec6 ENERCALC. INC. 1983-2017. Build:I0.17.12.10, Ver.10.17.12.10 Description : RH-i CODE REFERENCES Calculations per NOS 2015, 1 B 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb + 875 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - 875 psi Ebend- xx 1300 ksi Fc - Pifi 600 psi Erninbend - xx 470ksi Wood Species :Douglas Fir- Larch Fc - Perp 625 psi Wood Grade : No.2 Fv 170 psi Ft 425 psi Density 31.2pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 13(0.234) Lr(o.2fl. - 9 6x6 nn = fl ft Applied Loads Beam self weight calculated and added to loads Uniform Load: 0 0.2340, tr = 0260, Tributary Width 1.0 ft. (Roof) Service loads entered. Load Factors will be applied for calculations. 0.891:1 Maximum Shear Stress Ratio = 0.299 :1 6x6 Section used for this span 6x6 974.78 psi lv : Actual = 63.59 psi 1,093.75ps1 Fv: Allowable = 212.50 psi u 41J+Lr4l Load Combination 3.000ft Location of maximum on span = 0.000 ft Span 111 Span # where mad mum occurs = Span Ill 935 >=360 0 <360 486 >=240 o <240 Moment Values Shear Values Cm C I CL M lb Fb V Iv Fit -. 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.08 468.46 787.50 0.62 30.56 153.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.08 468.46 875.00 0.62 30.56 170.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 2.25 974.78 1093.75 1.28 63.59 212.50 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.08 468.46 1006.25 0.62 30.56 195.50 1.00 1.00 1.00 0.00 0.00 0.00 0.00 DESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span lb : Actual FB : Allowable = Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection 0.077 in Ratio = 0.000 in Ratio = Max Downward Total Deflection 0.148 in Ratio Max Upward Total Deflection 0.000 in Ratio = Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Segment Length Span# M V Cd CFN C1 Cr +0+H Length 6.0lt 1 0.595 0.200 0.90 1.000 1.00 1.00 1.000 1.00 1.00 Length =6.Dft 1 0.535 0.180 1.00 1.000 1.00 1.00 1.000 1.00 1.00 Length =6.oft 1 0.891 0.299 1.25 1.000 1.00 1.00 +0+S-.H 1.000 1.00 1.00 Length =6.oft 1 0.466 0.156 1.15 1.000 1.00 1.00 040.750Lr4O.750Le4-I - 1.000 1.00 1.00 Mike Surprenant & Associates Project Title: Viola En fleer IC Project ID: 18063 Prcecl Descc: Sheet -' of_______ Pdnted: 3MAY Ver.10.17.I2.1O Description: RH-I Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span 4 M V C C FN C i Cr Cm C CL M - lb F'b V fV FY Length 6.Olt 1 0.775 0.260 1.25 1.000 1.00 1.00 1.00 1.00 1.00 1.96 848.20 1093.75 1.12 55.33 212.50 +D..O.750140,750S41 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 6.0ft 1 0.468 0.156 1.15 1.000 1.00 1.00 1.00 1.00 1.00 1.08 468.46 1006.25 0.62 30.56 195.50 4040.60W4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 6.0ft 1 0.335 0.112 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.08 466.46 1400.00 0.62 30.56 272.00 4040.70E44 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 6.0ft 1 0.335 0.112 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.08 468.46 1400.00 0.62 30.56 272.00 i040.750Lr40.750L40.450W"11 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0,00 Length 6.0ft 1 0.606 0.203 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.96 848.20 1400.00 1.12 55.33 272.00 +D+0.750L.0.750S'0.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 6.0ft 1 0.335 0.112 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.08 468.46 1400.00 0.62 30.56 272.00 +040.750L90.750S+0.5250E9H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 6.0ft 1 0.335 0.112 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.08 468A6 1400.00 0.62 30.56 272.00 40.60D'+0.60W40.50H . 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =6.oft 1 0.201 0.067 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.65 281.07 1400.00 0.37 18.34 272.00 +0.600*0.70E-4601-l' 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 6.0ft 1 0.201 0.067 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.65 281.07 1400.00 0.37 18.34 272.00 Overall Maximum Deflections . ... - Load Combination Span Max:'- Dell Location in Span Load Combination Max. W Dell Location in Span 1 0.1481 3.022 - 0.0000 0.000 Vertical Reactions . -. Support notation : Far left is #1 Values in KIPS - Load Combination Support 1 Support 2 Overall MAXimum 1.502 1.502 Overall MiNimum 0.780 0.780 0.722 0.722 0.722 0.722 +D+Lr+H 1.502 ' 1.502 404-S+H 0.722 0.722 .040.750Lr40.750LsH 1.307 1.307 eO0.750L.0.750541 0.722 0.722 "040.60W+H . 0.722 0.722 4040.70E4H 0.722 0.722 .O40.750Lr40.750L40.450WH 1.307 1.307 90.0.750L40.750S40.450W4H 0.722 0.722 +0.0.750L40.750S0.5250E+H 0.722 0.722 40.60D40.60W40.60H 0.433 0.433 +0600+0.70E.0.60H 0.433 0.433 D Only 0.722 0.722 Lr Only 0.780 0.780 LOfty S Only WOnly E Only H Only MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB SHEET NO. 40 OF____________________ CALCULATED BY._ DATE____________________ CHECKED BY_________________________ DATE SCALE LEVEL: LOófI.. MEMBERS:________________ LABEL: I SPAN= (C) FT. . . 5 UNIFORM LOAD U. POINT LOAD (CENTERED) 0 CUSTOM LOADING (SEE DIAGRAM) .W1= (?-1/2)(') PIP ((OD/4QL) . .. . W2 I?J(O') p1= P2 RL = S / 60 bs R = _________lbs (q0ç(6) 14.1I Vri*x= lbs E = ksi I(4"y(lf GRADE C: -.- MMAx= ft-lbs IP.EQ'D = _______ USE: ALT: GRADE: _C:______ LABEL: fl SPAN=_ ((FT. - Or UNIFORM LOAD o POINT LOAD (CENTERED) - -- O CUSTOM LOADING (SEE DIAGRAM) 5.1 w1= ((?..II 46 (f (V 6 b/7- W2 = () . P1 = 5697 (ki ( a• 4) P2 - si (sc i.e-() ( i t. , RL = i_lbs RR = C 1bs 1f/i )(ç, 4v (j ( Vwc= lbs E USE: L): 4) GRADE: /l -. C:- MMAx= ft-lbs ISEQO ALT: GRADE: C:______ LABEL: i3 SPAN=—!---[ - F'F. I ' UNIFORM LOAD U POINt LOAD (CENTERED) 0 CUSTOM LOADING (SEE DIAGRAM) W1= (4")(6") •?iO C W2=(G//) pl ((f) 0/ P.01.') PI= P2 = _ ?..3 lbs REt=I .i 4:1' lbs VMAX= lbs E USE: 'lb GRADE: C MMAX= _ft-lbs IREQ'D =in ALT: __GRADE:C. 0 PRflDU(Tfl7 Mike Surprenant & Associates Project Title: Viola Engineer: TC Sheet Project ID: 18063 Project Descr: Punted: 3MAY 2018, 2:44PM J" _____ ENERCAIC. INC. I983.2017.BuiN:1O.17.12.10.Ve:I0.17.12.10 "1- File= F:lPmJecls2018%1BO63-ViaIa-Hoover Street-Wnghl%03 EngineeringCnlc TeniplatesWlola-Hoover.ec6 Description: FBA CODE REFERENCES Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb + 3100 psi E; Modulus of Elasticity Load Combination ASCE 7-10 Fb - 3100 psi Ebend- xx 2000 ksl Fc - Prll 3000 psi Eminbend - xx 530120482 ksi Wood Species : Boise Cascade Fc - Perp 750 psi Wood Grade : Versa Lam 2.0 3100 West Fv 285 psi Ft 1950 psi Density 41.75pc1 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(0.) D(O.O9'L(O144.27) 010.21 yL(O.42 5.25x11.875 Span= 10.0 ft Applied Loads Beam self weight calculated and added to loads Uniform Load: 0 = 0.210, L = 0.420, Tributary Width = 1.0 it, (Floor) Uniform Load: 0 = 0.090, L = 0.270, Tributary Width = 1.0 ft. (Deck) Uniform Load: D = 0.1440, tributary Width = 1.0 ft. (Wall Above) Service loads entered. Load Factors will be applied for calculations. DESIGN SUMMARY Maximum Bending Stress Ratio = - Section used for this span 1b: Actual = FB : Allowable = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection M.s., I T,s11 fl'Ijnn 0.4521 Maximum Shear Stress Ratio = 5.25x11.875 Section used for this span 1,400.54 psi fv : Actual = 11125 psi 3,100.00 psi Fv : Allowable = 285.00 psi +D+L4I Load Combination • +D+L+H 5.000 ft Location of maximum on span = 0.000 ft Span #1 Span # where maxi mum occurs = Span #1 0.107 in Ratio 1125 >=360 0.000 in Ratio = 0<360 0.178 in Ratio = 674 >=240 0.000 in Ratio = 0<240 0.390: 1 5.25x11.875 L •.. - ...__ .... -... Maximum Forces & Stresses for Load Combln!tions_, _______._._ ______ Load Combination Max Stress Ratios • Moment Values Shear Values Segment Length Span # M V Cd GIN CI Cr Cm C t CL M ft) Pb V - iv Pv +0+H 0.00 0.00 0.00 0.00 Length= 10.0 it 1 0.201 0.174 0.90 1.000 1.00 1.00 1.00 1.00 1.00 5.78 561.73 2790.00 1,86 44.63 256.50 +041-'H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 10.00 1 0.452 0.390 1.00 1.000 1.00 1.00 1.00 1.00 1.00 14.40 1,400.54 3100.00 4.63 111.28 285.00 Project Title: Viola Engineer: 'IC Mike Surprenant & Associates Project Descr: Sheet 4?.. of Project ID: 18063 Pdnted: 3 MAY 2018. 24PM File = FiProiects201818063-Vic1a4loover Steet-WnghD.EreineerinoCalcTemPlatesWiotaHoover.ec6 ENERCALC. IN( 1983-2017. Build:I0.17.12.10. Ver:10.17.12.10 Description : FB-1 Load Combination Max Stress Ratios Moment Values Shear Values - Segment Length Span M V Cd CFN C1 Cr Cm C t CL M lb Pb V fv F'v 1.000 1.00 .1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length '10.0ft 1 0.145 0.125 1.25 1.000 1.00 1.00 1.00 1.00 1.00 5.78 561.73 3875.00 1.86 44.63 356.25 40+641 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =10.oft 1 0.158 0.136 1.15 1.000 1.00 1.00 1.00 1.00 1.00 5.78 561.73 3565.00 1.86 44.63 327.75 4040.750Lri0.750L4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 10.0 ft 1 0.307 0.266 1.25 1.000 1.00 1.00 1.00 1.00 1.00 12.24 1,190.84 3875.00 3.93 94.62 356.25 40i0.7501+0.750S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 10.0 ft 1 0.334 0.289 1.15 1.000 1.00 1.00 1.00 1.00 1.00 12.24 1,190.84 3565.00 3.93 94.62 327.75 +D0.60W#t 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =10.oft 1 0.113 0.098 1.60 1.000 1.00 1.00 1.00 1.00 1.00 5.78 561.73 4960.00 1.86 44.63 456.00 40+0.70E#1 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 10.0ft 1 0.113 0.098 1.60 1.000 1.00 1.00 1.00 1.00 1.00 5.78 561.73 4960.00 1.86 44.63 456.00 4040.750Lr40.750L40.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =10.0ft 1 0.240 0.207 1.60 1.000 1.00 1.00 1.00 1.00 1.00 12.24 1,190.84 4960.00 3.93 94.62 456.00 4040.750L40.750S40.450W4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 10.0 It 1 0.240 0.207 1.60 1.000 1.00 1.00 1.00 1.00 1.00 12.24 1.190,84 4960.00 3.93 94.62 456.00 s040,750L..0,750S,0,5250Ei+l 1.000 1.00 1.00 1.00 1.00 1.00 0.00 . 0.00 0.00 0.00 Length= 10.0 It 1 0.240 0.207 1.60 1.000 1.00 1.00 1.00 1.00 1.00 12.24 1,190.84 4960.00 3.93 94.62 456.00 +0.60.e0.60W40.601-1 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length= 10.0 ft 1 0.068 0.059 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.04 4960.00 1.11 26.78 456.00 +0.60D+0.70E+0.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =10.oft 1 0.068 0.059 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.04 4960.00 1.11 26.78 456.00 Overall Maximum Deflections _______ Load Combination Span Max. U Deft Location in. Span Load Combination Max. + Deft Location in Span 404141 1 0.1779 5.036 0.0000 0.000 Vertical Reactions Support notation: Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 5.760 5.760 Overall MiNimum 3.450 3.450 4O+H 2.310 2.310 40+1+H 5.760 5.760 +04r+H 2.310 2.310 4046*1 2.310 2.310 40+0.750Lr40.750L4H 4.898 4.898 "O40.750L40.750S+H 4.898 4.898 4040,60Wi+1 2.310 2.310 +040.70E41 2.310 2.310 s040,750Lr40,750L40.450W4H 4.898 4.898 +D+0.750L+0.750S.0.450W#H 4.898 4.898 +D+0.750L+0.750Ss0.5250E+H 4.898 4.898 +0.600+0.60W+0.601-1 . 1.386 1.386 .0.60D0.70E.0.60H 1.386 1.386 DOnly 2.310 2.310 LrOnly L Only 3.450 3.450 S Only W Only E Only H Only Mike Surprenant & Associates Project Title: Viola Engineer: TC Sheet 43' of Project Descr: project ID: 18063 Printed: 4 MAY 2018. 6:46AM 17.12.10. Vw10.17.Ill0 Description: FB-2 CODE REFERENCES Calculations per AISC 360-10, IBC 2015, ASCE 7-10 Load Combination Set: ASCE 7-10 -Material Pperties Analysis Method: Allowable Strength Design Beam Bracing: Beam is Fully Braced against lateral-torsional buckling Bending Axis: Major Axis Bending D32 -i2) Fy: Steel Yield: 50.0 ksi E: Modulus: 29,000.0 ksi 1 S Q0.32) U.11 ---.. - W8x4O Span = 16.0 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load(s) for Span Number 1 Point Load: 0 = 2.872, Lr = 2.815 k @5.0 It, (RB4) Point Load: D = 2.310, L = 3.450 k @5.0 it, (FB-1) Uniform Load: D = 0.2160 WIt, Extent = 5.0 ->> 16.0 It, Tributary Width = 1.0 It, (Roof) Uniform Load: 0 = 0.1440 k/fl, Extent = 5.0-->> 16.0 It, Tributary Width = 1.0 It, (Wall Above) Uniform Load: 0 = 0.160, 1 = 0.320 k/It, Extent = 5.0 ->> 16.0 It, Tributary Width = 1.0 It, (Floor) DESIGN SUMMARY . ITISI Maxirnum Bending Stress Ratio = 0.498: 1 - Maximum Shear Stress Ratio = - 0.168:1 Section used for this span W800 Section used for this span W8x40 Ma : Applied 49.426 k-ft Va : Applied 9.985 k Mn (Omega : Allowable 99.301 k-ft Vn/Omega : Allowable 59.40 k Load Combination +D*0.750Lr-*0.750L+H Load Combination 1D40.750Lr40.750L+H Location of maximum on span 5.0291t Location of maximum on span 0.000 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # I Maximum Deflection Max Downward Transient Deflection 0.186 in Ratio = 1,031 >=360 Max Upward Transient Deflection 0.186 in Ratio = 1,031 >=360 Max Downward Total Deflection 0.505 in Ratio = 381 '=240 [ Max Upward Total Deflection 0.000 in Ratio = 0 <240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mrnax - Ma Max Mm Mnxl0mega Cb Rm Va Max Vnx Vnx!Omega +D+H Dsgn.L= 16.00 ft 1 0.291 0.098 28.93 2893 165.83 99.30 1.00 1.00 5.85 89.10 59.40 4041+H 0s9n. I = 16.00 it 1 0.472 0.159 46.85 46.85 165.83 99.30 1.00 1.00 9.43 89.10 59.40 404Lr+H Dsgn.L= 16.0011 1 0.387 0.131 38.40 38.40 165.83 99.30 1.00 1.00 7.78 89.10 59.40 +D+54j Dsgn. I = 16.00 it 1 0.291 0.098 28,93 28.93 165.83 99.30 1.00 1.00 5.85 89.10 59.40 +0+0.750Lr'+0.750LsH Dsgn. I = 18.00 ft 1 0.498 0.168 49.43 49.43 165.83 99.30 1.00 1.00 9.99 89.10 59.40 4040.750L40.7508+H Mike Surprenant & Associates Project Title: Viola Engineer: TC Sheet 44 of Project ID; 18063 Project Desci: 4 MAY 2016. 8:46AM File = Ver10.17.12.10 Description: F8-2 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma Max Mnx Mnx/Omega Cb Rni Va Max Vnx Vnx/Omega Dsgn. L= 16.00 It 1 0.427 0.144 42.37 42.37 165.83 99.30 1.00 1.00 8.53 89.10 59.40 #040.6OW4H Dsgn. L= 16.00 It 1 0.291 0.098 28.93 28.93 165.83 99.30 1.00 1.00 5.85 89.10 59.40 +D'0.70E+H Dsgn. L = 16.00 ft 1 0.291 0.098 28.93 28.93 165.83 99.30 1.00 1.00 5.85 89.10 59.40 +O+0.750Lr40.750L+0.450W+H Dsgn. L= 16.00 It 1 0.498 0.168 49.43 49.43 165.83 99.30 1.00 1.00 9.99 89.10 59.40 O0.750L+0.750S0.450W+H Dsgn. L= 16.00 It 1 0.427 0.144 42.37 42.37 165.83 99.30 1.00 1.00 8.53 89.10 59.40 +Oi0.750L+0.750S+0.5250EH Dsgn. L = 16.00 It 1 0.427 0.144 42.37 42.37 165.83 99.30 1.00 1.00 8.53 89.10 59.40 40.60Di0.60W460H Dsgn. L= 16.0011 1 0.175 0.059 17.36 17.36 165.83 99.30 1.00 1.00 3.51 89.10 59.40 40.6013+0.7OEe0.60H Dsgn. L= 16.00 ft 1 0.175 0.059 17.36 17.36 165.83 99.30 1.00 1.00 3.51 89.10 59.40 Overall Maximum Deflections Load Combination Span Max. oefl Location In Span Load Combination Max. °+ Deft Location In Span '0+0.750Lr+0.750L0.450W+H 1 0.5045 7.680 0.0000 0.000 Vertical Reactions Support notation: Far left is #i Values In KIPS Load Combination Support I Support 2 Overall MAXimum 9.985 9.080 Overall MINImum 1.935 0.880 40+41 5.847 5.692 9.429 9.080 +O+Lr+H 7.783 6.571 - 5.847 5.692 +0iO.750Lr+0.750LH 9.985 8.893 '0+0.750L+0.750S+H 8.534 8.233 +0+0.6OW4H 5.847 5.692 40+0.70E44 5.847 5.692 +Oi.750Lr+0.750L0.450WH 9.985 8.893 .0'0.750Li0.750S+0.450W#I 8.534 8.233 s0.0.750L+0.750S+0.5250EH 8.534 . 8,233 +0.60D+0.60W+0.60H 3.508 3.415 +0,600+0.70E'+0.60H 3.508 3A15 D Only 5.847 5.692 Ir Only 1.935 0.880 L Only 3.582 3.388 S Only WOnty EOnly H Only Mike Surprenant & Associates Project Title: Viola Engineer: TC Project ID: 18063 Project Descr: Sheet _______ of_______ PriIed: 4MAY 2018, 9:02N i'tcalc Teniptats\Viola-Hoover.ec6 ENERcAIC. INC. MUM tl.12.10. Ver.10.17.12.I0 Description: FB-3 CODE REFERENCES Calculations per AISC 360-10, IBC 2015, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties - Analysis Method: Allowable Strength Design Beam Bracing: Beam is Fully Braced against lateral-torsional buckling Bending Axis: Major Axis Bending WO Fy: Steel Yield: 50.0 ksi E: Modulus: 29,000.0 ksi W8x4O Span =21.50ft _Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam sell weight calculated and added to loading Load for Span Number 1 Varying Uniform Load: D= 0.24040.0, L= 0.480-4.0 k/ft. Extent = 0.0 ->> 21.50 It, Trib Width = 1.0 ft. (Floor) Uniform Load: D = 0.060, L = 0.120 k/ft. Tributary Width = 1.0 ft. (Floor) DESIGN SUMMARY . Maximum Bending Stress Ratio = 0.341:1 Maximum Shear Stress Ratio = 0.127:1 Section used for this span W8x40 Section used for this span W8x40 Me: Applied 33.854 k-ft Va : Applied 7.523 k Mn I Omega: Allowable 99.301 k-ft Vn/Omega : Allowable 59.40 k Load Combination 404.41 Load Combination +044_+H Location of maximum on span 9.644ft Location of maximum on span 0.000 ft Span # where maximum occurs Span if 1 Span if where maximum occurs Span if I Maximum Deflection Max Downward Transient Deflection 0.411 in Ratio = 627 >=360 Max Upward Transient Deflection 0.411 in Ratio= 627 >=350 Max Downward Total Deflection 0.662 in Ratio= 390 >=240 Max Upward Total Deflection 0.000 in Ratio = 0 <240 Maximum Forces & Stresses for Load Combinations Load Combinaf on Max Stress Ratios - Summary of Moment Values Summary of Shear Values Segment Length Span if M V Mmax + Mmax - Ma Max Mm MnxiOmega Cb Rm Va Max Vnx Vnx/omega +04H 0sgn.L= 21.50 ft 1 0.129 0.047 12.81 12.81 165.83 99.30 1.00 1.00 2.79 89.10 59.40 Dsgn. L= 21.50 ft 1 0.341 0.127 33.85 33.85 165.83 99.30 1.00 1.00 7.52 89.10 59.40 *O+4.r.iH Dsgn. L= 21.50 ft 1 0.129 0.047 12.81 12.81 165.83 99.30 1.00 tOO 2.79 89.10 59.40 4O+S.H Dsgn.L= 21.50 ft 1 0,129 0.047 12.81 12.81 165.83 99.30 1.00 1.00 2.79 89.10 59.40 1'040.750Lr40.750L41 Dsgn. L = 21.50 ft 1 0.288 0.107 28.59 28.59 165.83 99.30 1.00 1.00 6.34 89.10 59.40 +D+0.750L4 750S#i Dsgn. L= 21.50 ft 1 0.288 0.107 28.59 28.59 165.83 99.30 1.00 1.00 6.34 89.10 59.40 1O'+0.60W4H Dsgn. L= 21.50 ft 1 0.129 0.047 12.81 12.81 165.83 99.30 1.00 1.00 2.79 89.10 59.40 4040.7OE4H Dsgn.L= 21.50 ft 1 0.129 0.047 12.81 12.81 165.83 99.30 1.00 1.00 2.79 89.10 59.40 4040.750Lr+0.750140A50W'4i Dsgn. L= 21.50 ft 1 0.288 0.107 28.59 28.59 165.83 99.30 1.00 1.00 6.34 89.10 59.40 +040.750L40.750S40.450W+H Dsgn. L= 21.50 ft 1 0.288 0.107 28.59 28.59 165.83 99.30 100 1.00 6.34 89.10 59.40 Mike Surprenant & Associates Project Title: Viola Engineer TC Sheet 4 of Project ID: 18063 Project Descr: File = INC1983-2017. Build: 10.17.12.10. Ver.10.17.12.I0 Description : F8-3 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span I! M V Mmax + Mmax - Ma Max Mnx MnxlOmega Cb Rm Va Max Vnx Vnx(Oniega +D40.750L40.750S40.5250E4H Dsgn. L= 21.50 ft 1 0.288 0.107 28,59 28.59 165.83 99.30 1.00 1.00 6.34 89.10 59.40 40.60D40.60W40.60H Ds9n. L= 21.50 It - 1 0.077 0.028 7.68 7.68 165.83 99.30 1.00 1.00 1.68 89.10 59.40 40.60D40.70E40.60H Dsgn.L = 21.50 It 1 0.077 0.028 7.68 7.68 165.83 . 99.30 1.00 1.00 1.68 89.10 59.40 Overall Maximum Deflections Load Combination Span Max. Deft Location In Span Load Combination Max. +° Dell Location In Span 40414H 1 0.6620 10.504 -- 0.0000 0.000 Vertical Reactions Support notation Far left Is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 7.523 4.943 Overall MiNimum 1.676 1.160 +0-i-H 2.793 1.933 40+L#H 7.523 4.943 40+Lr+H 2.793 1.933 -+0+5+H 2.793 1.933 0.750Lr40.750L+Fl 6.341 4.191 -.0'0.750L#0.7505i-H 6.341 4.191 +040.60W4N 2.793 1.933 +00.70E41 2.793 1.933 +040.750Lr40.750L+0.450WH 6.341 4.191 040.750L-.0.750S-+0.450W41 6.341 4.191 +D.0.750L40.750S+0.5250E+H 6.341 4.191 40.60D40.60W+0.60H 1.676 1.160 0.600+0.70E40.60H 1.676 1.160 D Only 2.793 1.933 U Only L Only 4.730 3.010 S Only W Only E Only H Only MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB I SHEET NO._________________________ OF a CALCULATED BY________________________ DATE_____________________ CHECKED BY, DATE SCALE LEVEL: Co.. MEMBERS:__________________ LABEL: '1 SPAN= J ' FT. UNIFORM LOAD I POINT LOAD (CENTERED) O CUSTOM LOADING (SEE DIAGRAM) = (6f )() (O P ( li fl( 40 ) . . . .1.; W2= NJC(- jq4 -(o) U . C?Jf (/fl( (4 ( RL=J(RR= lbs VMAJ= _______ lbs E USE: (' S' GRADE: 19?. C: M:Ax ft-lbs IRE;D in4 ALT: GRADE: C:______ LABEL: c 6 - S SPAN= _j:2_- UNIFORM LOAD POINT LOAD (CENTERED) CUSTOM WADING (SEE DIAGRAM) W1 ,o) 63o ' '1 0 1- W2= Cr 144 t( () P2 = ': /i94. p(f ( t34-.of-i 6rJ(? USE: W(0)SA GRADE: /199 . C:________ ALT: GRADE: C:______ oe -F' Z665 i., = 1 1'5( b ° R = -UL-S-( lb, VMAx = lbs E =_ksi MMAx= ft-lbs IREQ'D = : LABEL: ç-& , SPAN=-10 - _SFr. 0 UNIFORM LOAD . 0 POINT LOAD (CENTERED) I- 11' CUSTOM LOADING (SEE DIAGRAM) I., W1=(00((6)- (44. f (0) . . 1 .40 Sc,f- ('?4:&/?l. '1 = 'gr RL= o(t lbs RR= I) (73 lbs P2 = VMAx= _______lbs E = ksi MMAX= ft-lbs IREQ'D = in4 USE: L0 ., S4 GRADE:11/ C: - ALT: GRADE: C:______ S PRflflhItTfl7 Mike Surprenant & Associates Project Title: Viola Engineer: T ' of Project ID: 18063 Sheet Project Descr: S PAW& 4MAY 2018, 9:02AM File F:Projeclst20l81I8063-VioTa4loover Street-Wi gh603.Engineering\Calo TemplatesWiola-HOOV8(.eC6 ENERCALC. INC. 1983.2017, Build:10.11.12.10, Ver.10.17.12.10 CODE REFERENCES Calculations per AISC 360-10, IBC 2015, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Beam Bracing: Beam is Fully Braced against lateral-torsional buckling Bending Axis: Major Axis Bending nm Fy : Steel Yield: 50.0 ksi E: Modulus: 29,000.0 ksi W8x58 Span22.O ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: D = 0.060, L = 0.120 k/ft, Tributary Width = 1.0 ft. (Floor) Uniform Load: 0 = 0.1440 k/ft. Tributary Width = 1.0 11, (Wall) Uniform Load: D = 0.0540, Lr = 0.060 k/ft. Tributary Width = 1.0 ft. (Lower Roof) Uniform Load: D = 0.2160, Lr = 0.240 k/ft. Tributary Width = 1.0 ft, (Upper Root) DESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Me: Applied Mn I Omega : Allowable Load Combination Location of maximum on span Span If where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection IIInI.X 0.344: 1 Maximum Shear Stress Ratio = 0.104: 1 W8x58 Section used for this span W8x58 51.256k-ft Va:Applied 9.319 k 149.202k-ft VnlOmega : Allowable 89.250 k +O*0.750Lr40.750L+H Load Combination 4040.750Lr'.0.750L+H 11.00011 Location of maximum on span 0.000 ft Span If 1 , Span If where maximum occurs Span # 1 0.240 in Ratio 1.098>=360 0.240 In Ratio = 1,098 >=360 0.678 in Ratio = 369 >=240 0.000 in Ratio = 0 <240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Segment Length Span If M V Mmax + Mmax - Summary of Moment Values Ma Max Mnx Mnxl0mega Cb Rm Summary of Shear Values Va Max Vnx VnxI0mega 404H Dsgn. 1 = 22.00 ft 1 0.216 0.066 32.20 32.20 249.17 149.20 1.00 1.00 5.85 133.88 89.25 '0414H Dsgn.L= 22.00ft 1 0.264 0.080 39.46 39.46 249.17 149.20 1.00 1.00 7.17 133.88 89.25 +04+H Dsgn. L = 22.0011 1 0.337 0.103 50.35 50.35 249.17 149.20 1.00 1.00 9.15 133.88 89.25 40+SIH Dsgn. L= 22.0011 1 0.216 0.066 32.20 32.20 249,17 149.20 1.00 1.00 5.85 133.88 89.25 l'0,0,750Lr40.750L4H Dsgn, L= 22.00 ft 1 0.344 0.104 51.26 51.26 249.17 149.20 1.00 1.00 9,32 133.88 89.25 i-Di0.750L,0.750S+H Dsgn. L= 22.0011 1 0.252 .0.077 37.64 37.64 249.17 149.20 1.00 1.00 6.84 133.88 89.25 '.O'.0.60W41 Dsgn.L= 22.00 ft 1 0.216 0.066 32.20 32.20 249.17 149.20 1.00 tOO 5.85 133.88 69.25 +040.70E41 Mike Surprenarit & Associates Project Title: Viola Engineer: TC Project Descr Sheet 41 of ProlectiD: 18063 Punted: 4MAY2018. 9:02Ai.I Re= F:lProjects201BtI8O63-VleIa-Hoovez Sfre*Wdgha03.Engineecing\CatcTemplatestViola.Hoover.eC6 I ENERCAIC. INC. 1983.2017. Build:I0.17.12.10. Ver.10.17.12.10 Description: FB.4 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span U M V Mmax + Mmax- Ma Max Mnx Mnx/Omega Cb Rm Va Max Vnx VnOmega Dsgn. 1= 22.00 ft 1 0.216 0.066 32.20 32.20 249.17 149.20 1.00 1.00 5.85 133.88 89.25 +D40.750Lr40.750L40.450W41 Dsgn. L= 22.00 ft 1 0.344 0.104 51.26 51.26 249.17 149.20 1.00 1.00 9.32 133.88 89.25 #040.750L40.750S40.450W+H Dsgn. L = 22.00 ft 1 0.252 0.077 37.64 37.64 249.17 149.20 1.00 1.00 6.84 133.88 89.25 4040.750L40.750S40.5250E9H Dsgn. L = 22.00 It 1 0.252 0.077 37.64 37.64 249.17 149.20 1.00 1.00 6.84 133.88 89.25 40.60040.60W460H Dsgn. L= 22.00 It 1 0.129 0.039 19.32 19.32 249.17 149.20 1.00 1.00 3.51 133.88 89.25 40.60D40.70E40.601-1 Dsgn. L = 22.00 ft 1 0.129 0.039 19.32 19.32 249.17 149.20 1.00 1.00 3.51 133.88 89.25 Overall Maximum Deflections Load Combination Span Max. - Dell Location in Span Load Combination Max. +" Dell Location In Span +0.0.750Lr.0.750L40.450WsH I 0.6784 11.063 0.0000 - 0.000 - Vertical Reactions Support notation : Far left is #i Values In KIPS Load Combination Support 1 Support 2 Overall MAXimum 9.319 9.319 - Overall MiNimum 1.320 1.320 +D41 5.854 5.854 +D+L.eH 7.174 7.174 #04r41 9.154 9.154 *O+S+H 5.854 5.854 4040.750Lr4O.750L+H 9.319 9.319 +040.750L.0.750SsH . 6.844 6.844 +0.0.60W4H 5.854• 5.854 4040.70E4H 5.854 5.854 4040.7501-r40.7501-40.45041 9.319 9.319 +040.750L40.750S,0.450W+H 6.844 6.844 +040.750L40.750S40.5250E*l 6.844 6.844 e0.80D40.60W40.60H 3.513 3.513 e0.60D.u0.70E.e.60H 3.513 3.513 O Only 5.854 .5.854 LrOnly 3.300 3.300 L Only 1.320 1.320 S Only WOnly EOnty H Only Mike Surprenant & Associates Project Title: Viola Engineer: TC Sb of Project ID: 18063 Project Descr: Sheet Pcinted: OMAY 2018. 1:00PM n-71--le, File F:tProIecIs%2018t18063-VioiaIloover Steet-Wright\03.EnglneeringtCalc lemplatastViola-Hoover.ec6 ENERCALC. INC. 1983.2017, Build:10.17.I2.I0, Ver.10.I7.12.10 Description: FB-5 CODE REFERENCES Calculations per AISC 360-10, IBC 2015, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Beam Bracing: Beam is Fully Braced against lateral-torsional buckling Bending Axis: Major Axis Bending r •--- Fy : Steel Yield: 50.0 ksi E: Modulus: 29,000.0 ksi 0(0.234) Lr(O.26) D(oI44 __....... ____- .4..---...-...-__......_Q(O.21)L(O.42)_._---• --- W10x54 Span 20.50 ft Loads Beam self weight calculated and added to loading Uniform Load: 0 = 0.210, L = 0.420 k/fl, Tributary Width = 1.0 ft, (Floor) Uniform Load: D = 0.1440 k/ft. Tributary Width = 1.0 ft, (Wall) Uniform Load: 0 = 0.2340, Lr = 0.260 k/ft, Tributary Width = 1.0 It, (Roof) DESIGN SUMMARY Maximum Bending Stress Ratio = 0.364: 1 Maximum Shear Stress Ratio = 0.158 :1 Section used for this span WI 0x54 Section used for this span WI 0x54 Ma : Applied 60.505 k-ft Va : Applied 11.806 k Mn! Omega: Allowable 166.168 k-ft Vn/Omega : Allowable 74.740 k Load Combination 4040.750Lr+0.750L+H Load Combination 4O'O.7501-r-47501-+H Location of maximum on span 10.250ft Location of maximum on span 0.000 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward Transient Deflection 0.191 in Ratio = 1,289>=360 Max Upward Transient Deflection 0.191 in Ratio = 1,289 >=360 Max Downward Total Deflection 0.523 in Ratio = 470 '=240 Max Upward Total Deflection 0.000 in Ratio 0 <240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary olShear Values Segment Length Span# M V Mmax + Mmax- Ma Max Mnx Mnx!Omega Cb Rm Va Max Vnx Vnxlornega +041 Dsgn.L= 20.5011 1 0.203 0.088 33.71 33.71 277.50 166.17 1.00 1.00 6.58 112.11 74.74 +0+LIH Dsgn.L= 20.5011 1 0.336 0.146 55.78 55.78 277.50 166.17 1.00 1.00 10.88 112.11 74.74 DSgn.L= 20.5011 1 0.285 0.124 47.37 47.37 277.50 166.17 1.00 1.00 9.24 112.11 74.74 40+S+H Dsgn.L= 20.5011 1 0.203 0.088 33.71 33.71 277.50 166.17 1.00 1.00 6.58 112.11 74.74 4040.750Lr40.750L#1 Dsgn.L= 20.5011 1 0.364 0.158 60.50 60.50 277.50 166.17 1.00 1.00 11.81 112.11 74.74 +D+0.750L40.7505#1 Dsgn.L= 20.5010 1 0.302 0.131 50.26 50.26 277.50 166.17 1.00 1.00 9.51 112.11 74.74 +0.0.60W4+1 Dsgn.L= 20.5010 1 0.203 0.058 33.71 33.71 277.50 166.17 1.00 1.00 6.58 112.11 74.74 +0+0.70E41 Dsgn.L= 20.5010 1 0.203 0.088 33.71 33.71 277.50 166.17 1.00 1.00 6.58 112.11 74.74 4040.750Lr40j50L40.450W+H Dsgn.L= 20.5011 1 0.364 0.158 60.50 60.50 277.50 16617 1.00 1.00 11.81 112.11 74.74 Service loads entered. Load Factors will be applied for calculations. Mike Surprenant & Associates Project Title: Viola Engineer. TC Project ID: 18063 Project Descr: Sheet Printed: 8 r,AY 2018. 1:001311.1 INC. 1902017. Bui!d:1O.I7.12.10 Vei:10.17.12.10 Description: FB5 Load Combination Max Stress Ratios Summary of Moment Values -Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma Max Mnx MniJOnlega Cb Rm Va Max Vnx VnxlOmega 4090.750L40.750S40.450W4H - Dsgn.L = 20.50 It 1 0.302 0.131 50.26 50.26 277.50 166.17 1.00 1.00 9.81 112.11 74.74 00.750L.0.750S40.5250E4l Dsgn.L= 20.501t 1 0.302 0.131 50.26 50.26 277.50 166.17 1.00 1.00 9.81 112.11 74.74 90.60040.60W40.60H Dsgn.L= 20.50 ft 1 0.122 0.053 20.23 20.23 277.50 166.17 1.00 1.00 3.95 112.11 74.74 -'0.60040.70E40.60H Dsgn.L. = 20.50 ft 1 0.122 0.053 20.23 - 20.23 277.50 166.17 1.00 1.00 3.95 112.11 74.74 Overall Maximum Deflections Load Combination Span Max. - Dell Location in Span Load Combination Max. +" Oefl Location In Span 4040.750Lr40.750140.450+1-1 1 0.5232 10.309 0.0000 0.000 Vertical Reactions Support notation: Farleftis#11 Values In KIPS Load Combination Support 1 Support 2 Overall MAXimum 11.806 11.806 Overall MiNimum 2.665 2.665 6.578 6.578 10.883 10.883 +D4%+H 9.243 9.243 6.578 6.578 sD40.750Lr40.750LH 11.806 11.806 4040.750L40.750S4H 9.807 9.807 -.D40.60W+H 6.578 6.578 .O+0.70E41 6.578 6.578 4040.750Lr40.750L40.450W#I 11.806 11.806 ..040.7501.4750840.450+1`1 9.807 9.807 400.750L'0.750S40.5250E+H 9.807 9.807 0.60D40.60W-e0.60H 3.947 3.947 40.60D'0.70E-+0.60H 3.947 3.947 D Only 6.578 6.578 Lr Only 2.665 2.665 LOnly 4.305 4.305 S Only W Only E Only H Only Mike Surprenant & Associates Project Title: Viola Engineer TC Sheet 6't of Project ID: 18063 Project Descr: P,inte: 8 MAY 2018. 1:00PM File tCalc lemplalesWiola.Hoover.ec6 INC. Buitd:10.17.12.1D, Ver:10.17.12.10 Description : FBI CODE REFERENCES Calculations per AISC 360-10, IBC 2015, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Beam Bracing: Beam is Fully Braced against lateral-torsional buckling Bending Axis: Major Axis Bending Fy : Steel Yield: 50.0 ksi E: Modulus: 29,000.0 ksi D(0.24 o 3) Lr(O.27) D(6.824) Lr2.p65) L(4.305) L,40-27) W1Ox54 -. Span = 20.50 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: 0 = 0.1440 k/lt, Tributary Width = 1.0 ft, (Wall) Uniform Load: D = 0.2430, Lr = 0.270 Mt, Tributary Width = 1.0 ft, (Root) Point Load: 0 = 6.624, Lr = 2.665, L = 4.305 k @ 19.0 ft, (FB-5) DESIGN SUMMARY .flIeK Maximum Bending Stress Ratio = .269: 1 Maximum Shear Stress Ratio = 0.235: 1 Section used for this span W10x54 Section used for this span W10x54 Me: Applied 44.630 k-ft Va : Applied 17.578 k Mn / Omega Allowable 166.168 k-ft Vn/Omega : Allowable 74.740 k Load Combination +D+Lr4H Load Combination 4040.750Lr40.750L41-I Location of maximum on span 11.187ft Location of maximum on span 20.500 ft Span # where maximum occurs Span # I Span # where maximum occurs Span # 1 Maximum Deflection Max Downward Transient Deflection 0.143 in Ratio= 1.716 >=360 Max Upward Transient Deflection 0.143 in Ratio= 1,716 >=360 Max Downward Total Deflection 0.395 in Ratio = 623 >=240 Max Upward Total Deflection 0.000 in Ratio = 0 <240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax- Ma Max • Mnx MnxlOmega Cb Rm Va Max Vnx Vnx/0mega sD+H Dsgn.L= 20.50 it 1 0.171 0.143 28.39 28.39 277.50 166.17 1.00 1.00 10.66 112.11 74.74 sD+L+H osgn.L= 20.500 1 0.193 0.196 32.08 32.08 277.50 166.17 1.00 1.00 14.65 112.11 74.74 +O+Lr+H Dsgn.L= 20.500 1 0.269 0.213 44.63 44.63 277.50 166.17 1.00 1.00 15.89 112.11 74.74 40+S+H Dsgn.L= 20.50 ft 1 0.171 0.143 28.39 28.39 277.50 166.17 1.00 1.00 10.66 112.11 74.74 s040.7501ri0.750L41 Dsgn.L= 20.50 ft 1 0.260 0.235 43.27 43.27 277.50 166.17 1.00 1.00 17.58 112.11 74.74 l0i0.750L40.750S+H Dsgn.L= 20.50 it 1 0.187 0.183 31.13 31.13 277.50 166.17 1.00 1.00 13.65 112.11 74.74 *D'0.60W+H Dsgn.L= 20.500 1 0.171 0.143 28.39 28.39 277.50 166.17 1.00 1.00 10.66 112.11 74.74 .040.70E41 Nn. L= 20.50 It 1 0.171 0.143 28.39 28.39 277.50 166.17 1.00 1.00 10.66 112.11 74.74. 4040.750Lr40.750L40.450W41 Dsgn. L= 20.50 ft 1 0.260 0.235 43.27 43.27 277.50 166.17 1.00 1.00 17.58 112.11 74.74 Mike Surprenant & Associates Project Title: Viola Engineer TC Sheet .S? of Pro ID: 18063 Project Descr: l.__JT I •LItU n&eiL.iuLUMI17 Description : FBI Load Combination Segment Length Pith€d: OMA? 2018. 1:COPW lCatclemptatesWiola-Hoover.ec6 INC. 8uiid:10.17.12.10. Ver.10.17.12.10 Max Stress Ratios Summary of Moment Values Summary of Shear Values Span # M V Mmax + Mmax - Ma Max Mnx MnxlOmega Cb Rm Va Max Vnx VnxiOmega Dsgn.L= 20.50 ft 1 0.187 0.183 31.13 31.13 277.50 166.17 1.00 1.00 13.55 112.11 74.74 4040.750L40.750S90.5250E41 Dsgn.L = 20.50 It 1 0.187 0.183 31.13 31.13 277.50 166.17 1.00 1.00 13.65 112.11 74.74 40.60D40.60W40.60H Dsgn.L = 20.50 ft 1 0.103 0.086 17.03 17.03 277.50 166.17 1.00 1.00 6.39 11211 74.74 460D40.70E#0.60H Dagn. L = 20.50 It 1 0.103 0.086 17.03 17.03 277.50 166.17 1.00 1.00 6.39 112.11 74.74 Overall Maximum Deflections Load Combination Span Max. Deft Location in Span Load Combination Max. W Deft Location in Span 404LrH 1 0.3949 10.543 0.0000 0.000 Vertical Reactions Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAlCimum 7.965 17.578 Overall MINimum 0.315 3.990 40*1 5.003 10.657 5.318 14.647 e041r+H 7.965 15.895 40+544 5.003 10.657 +0.0.750Lr.0.750L#I 7.461 17.578 40.0. 750L.0.750S+H 5.239 13.650 +D'0.60W+H 5.003 10.657 4040.70EIH 5.003 10.657 +040.750Lr.0.750L+0.450W4H 7.461 17.578 +D+0.750L40.750S40.450W.H 5.239 13.650 .040.7501.0.750S40.5250E41 5.239 13.650 40.60D40.60W40.60H 3.002 6.394 .0.60D40.70E40.60H 3.002 6.394 D Only 5.003 10.657 Lr Only 2.963 5.238 L Only 0.315 3.990 S Only W Only EOnly H Only MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB SHEET NO. S):1. OF___________________ CALCULATED BY CHECKED BY- DATE___________________ SCALE LEVEL: oo& MEMBERS: M. .jMS. LABEL: 1 SPAN=--1 U UNIFORM LOAD t. o POINT LOAD (CENTERED) J(I' ( El CUSTOM LOADING (SEE DIAGRAM) - w =() ( 4 4 () . . . I PIP'(!. 11OLn) . . 04 = Jc)(14' 2a0 (jI3J I P2.= (((I (. ): 5 Of (0) . R= lbs RR= _S3 lbs lbs USE:4_tl't/tF - MMAx= ft-lbs IREQD GRADE: ALT: GRADE: _C:______ LABEL: .'?i SPA= 2 I UNIFORM LOAD O oi LOAD (CENTERED) CUSTOM WADING (SEE DIAGRAM) w1= (th1) (J 4 3j D/ ?.6 W2 = (2010,(66) (Iôè i'f f -, fiD P14(10") P1 = P2 = \jJ3Z (.q)(() i( o) USE: "-'l.3 4GRADE: _________C:_______ ALT: GRADE: _C:______ I— Ii O4 _lbs Rp= 1-7( lbs ViAx lbs E MMAX=ft-lbs IREQ'D in4 LABEL: _______ SPAN=_ FT 0 UNIFORM LOAD POINT LOAD (CENTERED) CUSTOM LOADING (SEE DIAGRAM) Wi = W2= P1 = P2 = RL= ________lbs RR= _________lbs YMAX = lbs E =ksi MMAX=ft-lbs IREQ'D = 0 USE: _GRADE: _C:. ALT: _GRADE: _C:______ 0 PRODuCT 201 Shear Values V fv F'v 0.00 0.00 0.00 Mike Surprenant & Associates Project Title: Viola Engineer: TC Project Descr: Sheet s'r of Project ID: 18063 Punted: 1 17.12.10. Ver.10.17.12.I0 CODE REFERENCES Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb + 3,100.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb- 3,100.0 psi Ebend-xx 2,000.0ksi Fe - Pdl 3,000.0 psi Emlnbend - xx 1,036.83 ksi Wood Species : Boise Cascade Fc - Perp Fv 750.0 psi 285.0 psi Wood Grade : Versa Lam 2.0 3100 West Ft 1950.0 psi Density 41 .750pc1 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(1.35 Lr(1.5) D(O.b55) D(O.091-r(0.11) 5.25x11 .875 Span = 10.0 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load: 0 = 0.1440, Tributary Width = 1.0 fl, (Wall Above) Point Load: D = 1.350, Lr = 1.50k @5.0 ft, (Post Above) Uniform Load: D=0.0990, Lr 0.110, Tributary Width 1.0 ft, (lower Root) Uniform Load: D = 0.0550 Tributary Width = 1.0 ft, (Stucco Lid) 0.312 1 Maximum Shear Stress Ratio = 0.212 :1 5.25x11.875 Section used for this span 5.25x11.875 1,210.90psi fv:Actual = 75.44 psi 3,875.00 psi Fv : Allowable = 35625 psi +04r+H Load Combination +D+Lri41 5.000ft Location of maximum on span = 0.000 ft Span #1 Span # where maximum occurs = Span #1 0.054 in Ratio = 2220>=360 0.000 in Ratio = 0 <360 0.136 in Ratio = 880 >=240 0.000 in Ratio = 0<240 Maximum Forces &_Stresses for Load Combinations -. Load Combination Max Stress Ratios - Moment Values Segment Length Span# M V Cd C FN C 1 Cr Cm C t CL M fb Pb 0.00 DESIGN SUMMARY 'Maximum Bending Stress Ratio = Section used for this span fb : Actual = FB : Allowable = Load Combination Location of maximum on span Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Mike Surprenant & Associates Project Title: Viola Engineer: TC Sheet of Prolect ID: 18063 Project Descr: Piinted I MAY 2018, 10:49AM He= FPectst20I80 8063-Viola-Hoover Sfr 03- eeI-WñghtEngineeflngCalc TemplatesW'cola-Hoover.ec6 ENERCAIC, INC. 1983-2017, 8uild:I0.17.12.1O, Ver:10.17.12.10 Desciiption: FB-7 Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M Cd C FN C i Cr Cm C CL M lb Fb V fv, Fv Length= 10.09 1 0.255 0.182 0.90 1.000 1.00 1.00 1.00 1.00 1.00 7.33 712.47 2790.00 1.94 46.77 256.50 +04L41 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 10.09 1 0.230 0.164 1.00 1.000 1.00 1.00 1.00 1.00 1.00 7.33 712.47 3100.00 1.94 46.77 285.00 40-'Lr#I 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 10.09 1 0.312 0.212 1.25 1.000 1.00 1.00 1.00 1.00 1.00 12.45 1,210.90 3875.00 3.14 75.44 356.25 +O+S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0,00 0.00 0.00 Length =1O.olt 1 0.200 0.143 1.15 1.000 1.00 1.00 1.00 1.00 1.00 7.33 712.47 3565.00 1.94 46.77 327.75 '040.750Lr'0.750L*I 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 10.0 It 1 0.280 0.192 1.25 1.000 1.00 1.00 1.00 1.00 1.00 11.17 1,086.29 3875.00 2.84 68.27 356.25 O0.750L40.750S4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length= 10.09 1 0.200 0.143 1.15 1.000 1.00 1.00 1.00 1.00 1.00 7.33 712.47 3565.00 1.94 46.77 327.75 .iol.0.60W..H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length= 10.0 ft 1 0.144 0.103 1.60 1.000 1.00 1.00 1.00 1.00 1.00 7.33 712.47 4960.00 1.94 46.77 456.00 4040.70E*H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 10.09 1 0.144 0.103 1.60 1.000 1.00 1.00 1.00 1.00 1.00 7.33 712.47 4960.00 1.94 46.77 456.00 .O40.7501-r40.7501--e0.450W41-1 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =10.oft 1 0.219 0.150 1.60 1.000 1.00 1.00 1.00 1.00 1.00 11.17 1,086.29 4960.00 2.84 68.27 456:00 ID40.750L+0.750S40.450W#I 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =10.oft 1 0.144 0.103 1.60 1.000 1.00 1.00 1.00 1.00 1.00 7.33 712.47 4960.00 1.94 46.77 456.00 "040.750L40.750S40.5250E+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =10.oft 1 0.144 0.103 1.60 1.000 1.00 1.00 1.00 1.00 1.00 7.33 712.47 4960.00 1.94 46.77 456.00 40.600'0.60W-.0.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 10.09 1 0.086 0.062 1.60 1.000 1.00 1.00 1.00 1.00 1.00 4.40 427.48 4960.00 1.17 28.06 456.00 40.60Di0.70Ee0.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length= 10.0 It 1 0.086 0.062 1.60 1.000 1.00 1.00 1.00 1.00 1.00 4.40 427.48 4960.00 1.17 28.08 456.00 Overall Maximum Deflections Load Combination Span Max. '-" Dell Location In Span Load Combination Max. + Dell Location In Span '04(.rtH 1 0.1362 5.036 0.0000 0.000 Vertical Reactions . ..--.- Support notation : For left is #1 Values in KIPS - Load Combination Support ISupport 2 Overall MAXimum - 3.555 3.555 - Overall MiNimum 1.300 1.300 .041 2.255 2.255 9D+L4H 2.255 2.255 3.555 3.555 40+S+H 2.255 2.255 'D.0.750Lr40.750L4H 3.230 3.230 'O-.0.750140.750S4H 2.255 2.255 +D40.60W4H 2.255 2.255 +Ds0.70E4H 2.255 2.255 40+0.7501.r40.750L40.450W+H 3.230 3.230 O0.750L40.750S40.450W4H 2.255 2.255 4D.0.750L+0.7505s0.5250E+H 2.255 2.255 40.601340.60W+0.601-1 1.353 1.353 40.60D40.70E40.60H 1.353 1.353 o Only 2.255 2.255 t.r Only 1.300 1.300 I Only S Only WOnly E Only H Only Mike Surprenant & Associates Project Title: Viola Engineer: geet S' at Project ID: 18063 Project Descc Printed: OMAY 2018. 1:00PM 17.12.10. VecI0.17.12.10 Description: F8-8 CODE REFERENCES Calculations per AISC 360-10, IBC 2015, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties_-________ Analysis Method: Allowable Strength Design Beam Bracing: Beam is Fully Braced against lateral-torsional buckling Bending Axis: Major Axis Bending Fy : Steel Yield E: Modulus: 50.0 ksi 29,000.0 ksi WI 0x54 Span = 21.0 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: D = 0.20, L = 0.40 kilt, Tributary Width = 1.0 ft, (Floor) Uniform Load: 0 = 0.1440 K/ft, Tributary Width = 1.0 ft. (Wall Above) Uniform Load: 0 = 0.2340, Lr = 0.260 kilt, Tributary Width = 1.0 ft. (Upper Roof) PointLoad: 0=1.683, Lr= 1.155k@11.oft, (RB-8) DESIGN SUMMARY MfrtiiiiBendin =0.53:1 Maximum Shear Stress Ratio = ' 0.176: 1 Section used for this span WI 0x54 Section used for this span WI 0x54 Ma: Applied 75.313k-ft Va :Applied 13.167 k Mn I Omega: Allowable 166.168 k-ft VnlOmega: Allowable 74.740 k Load Combination -+0-0.750Lr40.750L#1 Load Combinafon #040.750Lr40.760L+H Location of maximum on span 10.98011 Location of maximum on span 21.000 ft Span # where maximum occurs Span #1 Span # where maximum occurs Span #1 Maximum Deflection Max Downward Transient Deflection 0.200 in Ratio = 1,259 >=360 Max Upward Transient Deflection 0.200 in Ratio = 1,259 >=360 Max Downward Total Deflection 0.661 in Ratio = 382 >=240 L Max Upward Total Deflection 0.000 in Ratio = 0 (240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax- Ma Max Mnx Mnxl0mega Cb Rm Va Max Vnx Vnxlomega +D+H Dsgn.L= 21.00 ft 1 0.262 0.101 43.55 43.55 277.50 166.17 1.00 1.00 7.52 112.11 74.74 'O+L'H Dsgn. 1 = 21.00 ft 1 0.395 0.157 65.56 65.56 277.50 166.17 1.00 1.00 11.72 112.11 74.74 Dsgn.L= 21.00111, 1 0.385 0.145 63.90 63.90 277.50 166.17 1.00 1.00 10.85 112.11 74.74 +0+S+H Dsgn.L= 21.00ft 1 0.262 0.101 43.55 43.55 277.50 166.17 1.00 1.00 7.52 112.11 74.74 4040.750Lr40.750L4H Dsgn.L z 211.00 ft 1 0.453 0.176 75.31 75.31 277.50 166.17 1.00 tOO 13.17 112.11 74.74 4040.750L40.750S4H Dsgn.L= 211.00 ft 1 0.361 0.143 60.06 60.06 277.50 166.17 1.00 1.00 10.67 112.11 74.74 +D+0.60W+H Dsgn.L= 21.00 ft 1 0.262 0.101 43.55 43.55 277.50 166.17 1.00 1.00 7.52 112.11 74.74 .040.70E#1 Mike Surprenant & Associates Project Title: Viola TC Project Descr: Engineer: Sheet Project ID: 18063 inid: 8 Ale F:Projects'i201818063-Viota-Hoover Street-WrighLO3Engineenn9Geic TemplaIesVioJa-Moover.eCb - _______ ENERCALC. INC. 1983-2017. Build:10.17.12.10, Ver.10.I7.12.10 Description : FB-8 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma Max Max Mnx/Omega Cb Rm Va Max Vnx VnxlOmega Dsgn. L 21.00 ft 1 0.453 0.176 75.31 75.31 277.50 166.17 1.00 1.00 13.17 112.11 74.74 4D+0.750L90.750S40.450W#1 Dsgn. L = 21.00 ft 1 0.361 0.143 60.06 60.06 277.50 166.17 1.00 1.00 10.67 112.11 74.74 4040.750L40.750S40.5250E4H Osqn.L = 21.00 ft 1 0.361 0.143 60.06 60.06 277.50 166.17 1.00 1.00 10.67 112.11 74.74 0.60D40.60W40.60H Dsgn. L= 21.00 ft 1 0.157 0.060 26.13 26.13 277.50 166.17 1.00 1.00 4.51 112.11 74.74 40.600#0.70E40.60H Dsgn.L= 21.00ft 1 0.157 0.060 26.13 26.13 277.50 166.17 1.00 1.00 4.51 112.11 74.74 Overall Maximum Deflections Load Combination Span Max. -' DeS Location In Span Load Combination Max. '+ Dell Location In Span 4040.750Lr40.750L40.450W'H 1 0.6605 10.560 0.0000 - 0.000 Vertical Reactions Support notation: For left is 91 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 13.045 13.167 Overall MiNimum 3.280 3.335 7.435 7.515 +O1*I 11.635 11.715 40et.r+H 10.715 10.850 +0+841 7.435 7.515 +0.0.750Lr+0.750L41 13.045 13.167 +0+0.750L*0.750941 10.585 10.665 +040.60W+H 7.435 7.515 .O+0.70E#1 7.435 7.515 4040.750Lr40.750L40.450W+H 13.045 13.167 .0+0.750Ls0.7505+0.450W.11 10.585 10.665 +O+0.750L'0.750S+0.5250EH 10.585 10.665 40.60D90.60W40.60H 4.461 4.509 +0.60D+0.70E'0.60H 4.461 4.509 D Only 7.435 7.515 Lr Only 3.280 3.335 I Only 4.200 4.200 S Only W Only E Only H Only MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB FOV _____________ OF__________ CALCULATED BY - DATE CHECKED BY________________________ DATE SCALE LEVEL: Noa& MEMBERS:___________________ LABEL: _(I SPAN= tS_FT. . . efloz UNIFORM LOAD Li O POINT LOAD (CENTERED) sr---_ - -.................... D CUSTOM LOADING (SEE DIAGRAM) w= ()t('6) (44•• (Pc I I P1 =S?I' . 60) (5 4(co i,'&/(310i) Pz.S u'jcz..e-4) (t?.DJIJ) RL= 7_Jbs R= ________lbs VMA lbs ksi . . . - Mrx = ft-lbs IREQ'D USE: 1'' __"(It'GRADE: C:_________ ALT: :_GRADE: _C:______ I., LABEL: SPAT _FT. UNIFORM WAD.. POINT LOAD (CENTEREt)) CUSTOM LOADING (SEE DIAGRAM) w1= W2 = P1 = Pz = RL= ________lbs R= VMAX = lbs B MMAX= _ft-lbs IREQD = in4 USE: GRADE: _C:_______ ALT: __GRADE: _C:______ LABEL:_______ SPAN=-------". 0 UNIFORM LOAD 0 POINT LOAD (CENTERED) D CUSTOM LOADING (SEE DIAGRAM) Wi = W2= P1 = P2 = USE: ___GRADE: _C:______ ALT: _GRADE: _C:______ 1 _ RL= lbs R= _________lbs lbs E =ksi WAX= ft-lbs IIIEQ'D = in4 B PRoDIICTn7 Moment Values Cm C CL M lb Pb 0,00 1.00 1.00 1.00 21.76 1585.99 2790.00 1.00 1.00 1.00 0.00 Shear Values V fv F'v 0.00 0.00 0.00 4.87 87.90 256.50 0.00 0.00 0.00 Mike Surprenant & Associates Project Title: Viola Engineer IC cc Project ID: 18063 Project Desc: Sheet _______of Printed: 4MAY2018, 9:15dM File= F:lPielects20I8l18O63-Viola-Hoover Streol-Wrighttil3.En9ineeringtCalclemPTaleSilViOla-HOOVe1.ec6 ENERCALC, INC. 1902017, Bui!d:10.17.12,10, Ver.I0.17.I2.10 Description: FH-1 CODE REFERENCES Calculations per NOS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load CombinationSet : ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb + 3100 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - 3100 psi Ebend- xx 2000ks1 Fc - PrIl 30000 Eminbend - xx 530120482 ksi Wood Species : Boise Cascade Fc - Perp 750 psi Wood Grade : Versa Lam 2.0 3100 West Fv 285 psi Ft 1950 psi Density 41.75pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(87Q Br.62) D(O.144) 9 9 7x11.875 Span =9.50 ft -------- ------------ ......-- _j. Applied Loads ---- Service loads entered, Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: 0 = 0.1440 k/ft, Extent 0.0--'> 5.0 It, Tributary Width = 1.0 It, (Wall Above) Point Load: D =5.854, Lr = 3.30, L = 1.320k @5.0 ft, (FB-4) Point Load: D = 2.872, Lr = 2.815 k @5.0 ft, (RB-4) DESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb:Actual = FB : Allowable Load Combination Location of maximum on span = Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.681:1 Maximum Shear Stress Ratio = 0.410 :1 7x11.875 Section used for this span 7x11.875 2,639.94 psi fv : Actual = 145.95 psi 3,875.00p5i Fv : Allowable = 356.25 psi +D+1r'fl Load Combination 4.993ft location of maximum on span = 8.529 ft Span # 1 Span # where maximum occurs = Span # 1 0.097 in Ratio = 1179>=360 0.000 in Ratio = 0<360 0.244 in Ratio = 466 >=240 0.000 in Ratio = 0<240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Segment Length Span# M V - Cd C FN C1 Cr 40411 Length = 9.50 ft 1 0.568 0.343 0.90 1.000 1.00 1.00 404L+H 1.000 1.00 1.00 Mike Surprenant & Associates Project Title: Viola Engineer: TIC of Project ID: 18063 Sheet Project Descr: ______ Punted: WAY 2018, 9:19Alu File = F:Proectsl20I80 8063-Viola-Hoover Street-W4ghIt03-EngineeiingtCa1c lemplatesWiola-Hoover.ec6 ENERCALC. INC. 1983-2017. Burd:I0.17.I2.10. Ver:lO.17.12.10 Description: FH-1 Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V Cd CFN C Cr Cm C t CL M lb F'b V fv F'v Length 9.50ft 1 0.585 0.352 1.00 1.000 1.00 1.00 1.00 1.00 1.00 24.88 1,813.50 3100.00 5.57 100.43 285.00 'O+Lr'H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =9.50ft 1 0.681 0.410 1.25 1.000 1.00 1.00 1.00 1.00 1.00 36.22 2,639.94 3875.00 8.09 145.95 356.25 .uD+S4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =9.50ft 1 0.445 0.268 1.15 1.000 1.00 1.00 1.00 1.00 1.00 21.76 1,585.99 3565.00 4.87 87.90 327.75 '040.750Lr40.750L4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =9.50ft 1 0.657 0.395 1.25 1.000 1.00 1.00 1.00 1.00 1.00 34.95 2,547.09 3875,00 7.81 140.84 356.25 .0+0.750L40.750S#1 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 9.50 ft I 0.493 0.297 1.15 1.000 1.00 1.00 1.00 1.00 1.00 24.10 1,756.62 3565.00 5.39 97.30 327.75 4040.60W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =9.501t 1 0.320 0.193 1.60 1.000 1.00 1.00 1.00 1.00 1.00 21.76 1,585.99 4960.00 4.87 87.90 456.00 4Di0,70E*H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 9.50 ft 1 0.320 0.193 1.60 1.000 1.00 1.00 1.00 1.00 1.00 21.76 1,585.99 4960.00 4.87 87.90 456.00 +D40.750Lr40.750L40.450W.H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 9.50 ft 1 0.514 0.309 1.60 1.000 1.00 1.00 1.00 1.00 1.00 34.95 2,547.09 4960.00 7.81 140.84 456.00 4040.750L40.750940.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 9.50ft 1 0.354 0.213 1.60 1.000 1.00 1.00 1.00 1.00 1.00 24.10 1,756.62 4960.00 5.39 97.30 456.00 -iO-u0,750L40.750S-0.5250E"H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =9.501t 1 0.354 0.213 1.60 1.000 1.00 1.00 1.00 1.00 1.00 24.10 1,756.62 4960.00 5.39 97.30 456.00 40.600+0.60W+0.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 9.50ft 1 0.192 0.116 1.60 1.000 1.00 1.00 1.00 1.00 1.00 13.06 951.59 4960.00 2.92 52.74 456.00 40.60D40.70E40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =9.50ft 1 0.192 0.116 1.60 1.000 1.00 1.00 1.00 1.00 1.00 13.06 951.59 4960.00 2.92 52.74 456.00 Overall Maximum Deflections Load Combination Span Max. - Deft Location In Span Load Combination Max. "+ Deft Location in Span 1 02442 4.819 0.0000 0.000 Vertical Reactions Support notation: Far left is #1 Values in KIPS -- Load Combination ' Support 1 Support 2 Overall MAXimum -- 7.675 8.115 Overall MiNimum 0.625 0.695 +O4 4.778 4.897 sO-s1_+H 5.404 5.591 -'O+Lr&H 7.675 8.115 +0484H 4.778 4.897 +040.7501.r40.750L'.H . 7.420 7.831 +O.0,750L-e0.750S41 5.247 5.418 D40.60WH 4.778 4.897 -uO00.70E4H 4.778 4.897 4040.750Lr40.750L40.450W-'+I . 7.420 7.831 .040,750L40.7503+0.450W'+l 5.247 5.418 'O-.0.750L46.750S40.5250E-.H 5.247 5.418 .60D40.60W40.60H 2.867 2.938 40.600+0.70E40.60H 2.867 2.938 O Only 4.778 4.897 Lr Only 2.897 3.218 L Only 0.625 0.695 S Only W Only E Only H Only 62.. SHEET NO. CALCULATED BY__ CHECKED BY SCALE MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers DATE DATE - 1 LEVEL: (:(oo oc/- MEMBERS:__________________ LABEL: -. •- SPAN=_______ 21' UNIFORM LOAD POINT LOAD (CENTERED) CUSTOM LOADING (SEE DIAGRAM) 6o 1= w2= P1 = P2 = RL= ))( lbs RR= 7Z lbs : lbs . M.x= ft-lbs IREQD = USE: I4)c U t' ...''GRAbE: C: - ALT: GRADE: C:______ LABEL: N\ - SPAN=-LL-S FT. .. UNIFORM LOAD U POINT LOAD (CENTERED) U CUS*)M LOADING (SEE DIAGRAM) W,= W2 = P. = P2 RL= ___ tr____ lbs R= lbs = Vzix= lbs E USE: I4' )( GRADE: _?t C: MMAX= ft-lbs IREQD = in4 ALT: GRADE: . C:______ LABEL: SPAN=--------FT. UNIFORM LOAD POINT LOAD (CENTERED) CUSTOM LOADING (SEE DIAGRAM) Wi = W2= P1 = P2 = RL= _______lbs R2 = _lbs VMix = . lbs E = _ksi MMAX= ft-lbs IREQ'D = in4 USE: GRADE: _C:______ ALT: GRADE: _C:______ D PRODUCT 2O7 mm Mike Surprenant & Associates Project Title: Viola Engineer: IC Project Descr: Sheet ___ of Project ID: 18063 Fife = Pdnted: 4 MAY 2018. 9:07Nvl BlI±10.17.12.I0. Ver:10.17.12.10 CODE REFERENCES Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Load Combination ASCE 7-10 Fb + Fb- Fc - PrIl 3100 psi 3100 psi 3000 psi E: Modulus of Elasticity Ebend.xx 2000ksi Eminbend - xx 530120482 ksi Wood Species : Boise Cascade Wood Grade Versa Lam 2.0 3100 West Fc - Perp Fv Ft 750 psi 285 psi 1950 psi Density 41.75pc1 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 9 0(0.02) L(O:04) 1.75x11.875 Span =22.Oft I - - ._---.- ..........-.-.................____ Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load: 0 = 0.020, L = 0.040, Tributary Width = 1.0ft,(floor) DESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb : Actual = FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.3761 Maximum Shear Stress Ratio = 0.168 :1 1.75x11.875 Section used for this span I .75x1 1,875 1,164.51 psi fv : Actual = 47.81 psi 3,100.00 psi Fv : Allowable = 285.00 psi .'1J+L+H Load Combination +lJ+L+H 11.0001`1 Location of maximum on span 21.036 ft Span # 1 Span # where maximum occurs = Span # 1 0.434 in Ratio = 608 >=360 0.000 in Ratio= 0 <360 0.716 in Ratio= 368 >=240 0.000 in Ratio = 0<240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Segment Length Span# M V Cd C FN C1 Cr +D+H Length =22.Oft 1 0.165 0.073 0.90 1.000 1.00 1.00 +04L4H 1.000 1.00 1.00 Length =22.0ft 1 0.376 0.168 1.00 1.000 1.00 1.00 '04t+H 1.000 1.00 1.00 Length =22.oft 1 0.118 0.053 1.25 1.000 1.00 1.00 +0+S4H 1.000 1.00 1.00 Length =22.Dfl 1 0.129 0.058 1.15 1.000 1.00 1.00 '0+0.750Lr40.750L+H 1.000 1.00 1.00 Cm C t CL - Moment Values M fb Pb V Shear Values - by F'v 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.57 459.04 2790.00 0.26 18.85 256.50 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 3.99 1,164.51 3100.00 0.66 47.81 285.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.57 459.04 3875.00 0.26 18.85 356,25 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.57 459.04 3565.00 0.28 18.85 327.75 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Mike Surprenant & Associates Project Title: Viola Engineer: TC Project ID: 18063 Project Descr: Sheet of _______ Printed: 17.12.10. Ver:10.17.12.10 Description : FJ.2 Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M V Cd C FN C Cr Cm C CL M - lb Pb V lv Pv Length 22.0lt 1 0.255 0.114 1.25 1.000 1.00 1.00 1.00 1.00 1.00 3.39 988.14 3875.00 0.56 40.57 356,25 e0+0.750140.750S#t 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 22.0ft 1 0.277 0.124 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.39 988.14 3565.00 0.56 40.57 327.75 i040.60W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =22.oft 1 0.093 0.041 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.57 459.04 4960.00 0.26 18.85 456.00 4040.70E4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =22.oft 1 0.093 0.041 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.57 459.04 4960.00 0.26 18.85 456.00 40.0.750Lr+0.750L40.450W#I 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =22.oft 1 0.199 0.089 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.39 988.14 4960.00 0.56 40.57 456.00 040.750L.0.750S40.450W4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 22.0 ft 1 0.199 0.089 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.39 988.14 4960.00 0.56 40.57 456.00 9040.750L40.750S90.5250E9H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 22.0ft 1 0.199 0.089 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.39 988.14 4960.00 0.56 40.57 456.00 40.60040.60W40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.01) 0.00 0.00 0.00 Length 22.0ft 1 0.056 0.025 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.94 275.42 4960.00 0.16 11.31 456.00 40.60040.70E40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =22.0ft 1 0.056 0.025 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.94 275.42 4960.00 0.16 11.31 456.00 Overall Maximum Deflections Load Combination Span Max. -° Dell Location in Span Load Combination Max. V Dell Location in Span 1 0.7158 11.080 0.0000 0.000 Vertical Reactions Support notation For left is #1 Values In KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.726 0.726 Overall MiNimum 0.440 0.440 0.286 0.286 *0+141 0.726 0.726 .i0+Lr+H 0.286 0.286 +O+S*H 0.286 0.286 4040.75DLr40.750L41 0.616 0.616 .e040.750L*0.750S41 0.616 0.616 *D+0.60W#1 0.286 0.286 +D40.70E43 0.286 0.286 9040.750Lr40.750L40.450W+H 0.616 0.616 +O*0.750L+0.7505*0.450W+H 0.616 0.616 4040.750L40.750S40.5250E41 0.616 0.616 40.601340.60W40.60H 0.172 0.172 *0.60D*0.70E40.60H 0.172 0.172 D Only 0.286 0.286 LrOnly L Only 0.440 0.440 S Only W Only E Only H Only Project Title: Viola Project ID: 18063 Engineer: TC 6 of Mike Surprenant & Associates Project Descr: Sheet PAW& 4MAY20I8. 1:10PM File= F1Prc4ecls20l8\l8O63-Viola-HooverSIreet-WighftD3-EngineeringlCalc TemplateslVlola-Hoover.ec6 ENERCALC. INC. 1903.2017. Butd:10.17.12.1O, Ver10.17.1210 Description : DJ-1 CODE REFERENCES Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Pronertles Analysis Method: Allowable Stress Design Fb + 3,100.0 psI E: Modulus of Elasticity Load Combination ASCE 7-10 Fb- 3,100.0 psi Ebend-xx 2,000.Oksi Fc - PrIl 3000.0 psi Eminbend - xx 1,036.83 ksi Wood Species : Boise Cascade Fc - Perp 750.0 psi Wood Grade : Versa Lam 2.0 3100 West Fv 285.0 psi Ft 1,950.0 psi Density 41 .750pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling Repetitive Member Stress Increase D(O.02) L(0.06) p -- 9 9 1.75x9.25 I Span =16.50ft L.L____ - pplieç Loads ______ Beam self weight calculated and added to loads Uniform Load: D = 0.020, L = 0.060, Tdbutary Width = 1.0 ft (Deck) Service loads entered. Load Factors will be applied for calculations. 0.436 in Ratio= Max Upward Transient Deflection 0.000 in Ratio= Max Downward Total Deflection 0.615 in Ratio Max Upward Total Deflection 0.000 in Ratio= DESIGN SUMMARY Maximum Bending Stress Ratio = 0.3891 Section used for this span 1.75x9.25 tb : Actual = 1,385.92psi F`13: Allowable = 3,565.00 psi Load Combination +O-it+H Location of maximum on span 8.25041 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward Transient Deflection Maximum Shear Stress Ratio 0.207 :1 Section used for this span 1.75x9.25 N : Actual = 59.07 psi Fv: Allowable = 285.00 psi Load Combination +D+l_+H Location of maximum on span = 0.000 ft Span # where maximum occurs = Span #1 454 >=360 0<360 321 >=240 0<240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V C CFN C 1 Cr Cm C t CL M lb Pb V fv Fv 0.00 0.00 0.00 0.00 Length = 16.50 It 1 0.126 0.067 0.90 1.000 1.00 1.15 1.00 1.00 1.00 0,84 404.08 3208.50 0.19 17.22 256.50 1.000 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 16.50 ft 1 0.389 0.207 1.00 1.000 1.00 1.15 1.00 1.00 1.00 2.88 1,385.92 3565.00 0.64 59.07 285.00 +0+1r41 1.000 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length= 16.50 ft 1 0.091 0.048 1.25 1.000 1.00 1.15 1.00 1.00 1.00 0.84 404.08 4456.25 0.19 17.22 356.25 '0+341 1.000 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 16.50 ft 1 0.099 0.053 1.15 1.000 1.00 1.15 1.00 1.00 1.00 0.84 404.08 4099.75 0.19 17.22 327.75 '0+0.7501rs0.750L+11 1.000 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Mike Surprenant & Associates Project Title: Viola Engineer: TC Project Descr: Sheet of Project ID: 18063 Bulld:10.17.12.1O, Ver.10.17.12.10 Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V Cd C IN C Cr Cm C CL M lb Pb V IVFv Length =1650ft 1 0.256 0.136 125 1.000 100 115 100 100 100 237 114046 445625 052 4861 35625 4040.750L10.750S$H 1.000 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =16.soft 1 0.278 0.148 1.15 1.000 1.00 1.15 1.00 1.00 1.00 2.37 1,140.46 4099.75 0.52 48.61 327.75 4040.60W+H 1.000 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 16.50 ft 1 0.071 0.038 1.60 1.000 1.00 1.15 1.00 1.00 1.00 0.84 404.08 5704.00 0.19 17.22 456.00 'O.0.70E4H 1.000 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 16.50ft 1 0.071 0.038 1.60 1.000 1.00 1.15 1.00 1.00 1.00 0.84 404.08 5704.00 0.19 17.22 456.00 4040.750Lr40.750L40.450W+H 1.000 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 16.50ft 1 0.200 0.107 1.60 1.000 1.00 1.15 1.00 1.00 1.00 2.37 1,140.46 5704.00 0.52 48.61 456.00 4040.750L+0.750S40.450W+H 1.000 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =16.50ft 1 0.200 0.107 1.60 1.000 1.00 1.15 1.00 1.00 1.00 2.37 1140.45 5704.00 0.52 48.61 456.00 #090.760L40.750S40.5250E+H 1.000 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 16.50 ft 1 0.200 0.107 1.60 1.000 1.00 1.15 1.00 1.00 1.00 2.37 1,140.46 5704.00 0.52 48.61 456.00 40.60040.60W40.60H 1.000 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 16.50ft 1 0.043 0.023 1.60 1.000 1.00 1.15 1.00 1.00 1.00 0.50 242.45 5704.00 0.11 10.33 456.00 40.60040.70E90.60H 1.000 1.00 1.15 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 16.50 ft 1 0.043 0.023 1.60 1.000 1.00 1.15 1.00 1.00 1.00 0.50 242.45 5704.00 0.11 10.33 456.00 Overall Maximum Deflections Load Combination Span Max. Defi Location in Span Load Combination Max. +' Dell Location In Span iD+L,H -. 1 0.6154 8.310 0.0000 0.000 Vertical Reactions Support notation: Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.699 0.699 Overall MiNimum 0.495 0A95 0.204 0.204 40+L4H 0.699 0.699 +O+Lr4H 0.204 0.204 .O+S41 0.204 0.204 4040.750Lr#0.750L4H 0.575 0.575 +D+0.7501*0.7508+H 0.575 0.575 sO'0.60W4H 0.204 0.204 +040.70E+11 0.204 0.204 .O.0.750Lr40.750140.450W4H 0.575 0.575 4D40.750L40.750S+0.450W+H 0.575 0.575 .i.O.*O.750L40.750S+0.5250E+H 0.575 ,0.575 40.60040.60W40.60H 0.122 0.122 40.60D40.70EI0.60H 0.122 0.122 O Only 0.204 0.204 LrOnly L Only 0.495 0.495 S Only W Only E Only H Only Boise Cascade Single 11-718" BCI® 6000-1.8 DF Joist\FJ-1 _______ Dry Ii span I No cantilevers 1 0/12 slope May 3, 2018 08:50:23 BC CALC® Design Report 12 OCS I Repetitive I Member construction Build 6536 File Name: Viola-Hoover.bcc Job Name: Description: Designs\FJ-1 Address: Specifier: City, State, Zip:, Designer: JZ Customer: Company: Code reports: ESR-1336 Misc: Sheet 67 of 20-00-00 BO BI Total Horizontal Product Length = 20-00-00 Reaction Summary (Down I Uplift) (ibs) Bearing Live . Dead Snow Wind Roof Live BO, 2-1/2' 200 /0 401/0 Bi 200/0 399/0 Live Dead Snow Wind Roof Live OCS Load Summary Tag Description Load Type Ref. Start End 100% 90% 115% 160% 125% I Standard Load Unf. Area (Ib/ftA2) L 00-00-00 20-00-00 20 40 12 Controls Summary Value %Allowable Duration Case Location Pos. Moment 2,925 ft-lbs 57.6% 125% 1 10-00-04 End Reaction 599 lbs 38.7% 125% 1 20-00-00 End Shear 589 lbs 28.1% 125% 1 00-02-08 Total Load Defi. L/345 (0.686'). 69.5% n/a 1 10-00-04 Live Load Defi. L/518 (0.457") 92.6% n/a 2 10-00-04 Max Defi. 0.686' 68.6% n/a 1 10-00-04 Span / Depth 20 n/a n/a 0 00-00-00 %Allow %Ailow Bearing Supports Dim. (Lx W) Value Support Member Material BO Wall/Plate 2-1/2" x 2-5/16" 601 lbs n/a 37% Unspecified Bi Hanger 2" x 2-5/16" 599 lbs n/a 38.7% Hanger Notes Design meets Code minimum (L/240) Total load deflection criteria. Design meets User specified (U480) Live load deflection criteria. Design meets arbitrary (1") Maximum Total load deflection criteria. Calculations assume member is fully braced. BC CALC.® analysis is based on IBC 2009. Design based on Dry Service Condition. Disclosure Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call (800)232-0788 before installation. BC CALC®, BC FRAMER® ,AJSTM, ALLJOIST®, BC RIM BOARDTM, BCI®, BOISE GLULAMTM, SIMPLE FRAMING SYSTEMS , VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIMS, VERSA-STRAND®, VERSA-STUDS are trademarks of Boise Cascade Wood Products L.L.C. Page 1 of 1 Mike Surprenant & Associates Consulting Structural Engineers Job Sheet No. - of____________ Calculated by "VC Date Checked by Date WIND DESIGN Main Wind Force Resisting System: Method Used = Analytical Procedure Maximum Building Height (z) = 30 feet Design Wind Speed = mph (110 mph for California) Kd= 0.85 1= 1.00 Exposure Category =1 _CI (per ASCE-7, 6.5.6.3) I(= 0.98 K t = 1.00 G= 0.85 Gc -0.18 Cp = 0.80 and -0.5 (windward and leeward walls) qh - 25.86 pst P = _17.861psf (Note: Reduced by factor of 1.6 for ASD Design) CHOSEN EXPOSURE = Exposure a L9 S1 B' 1 O 1 B I C I I I E I -min B 7.0 1200 0.14 0.84 1 0.25 1 0.45 1 0.30 1 320 I 0.33 I 30 I C 9.5 900 0.11 1.00 1 0.15 1 0.65 1 0.20 1 500 1 0.20 1 15 D 11.5 700 0.09 1 1.07 1 0.11 1 0.80_L_0,15 1 650 1 0.13 1 7J SEISMIC DESIGN Methodused = Equivalent Lateral Force Procedure Occupancy Category = 2 R=[6.5_I 1=1.0 Site Class = 0 Ss= 1.135 _g Si = 0.436 g Seismic Design category (SOS) = 0 Seismic Design Category (Sol) = D Ta = 0.26 sec Cs= 0.12 C5mc = 0.27 Csm 0.01 Cs(IQ.122 I (1,2,34) (Residential = 2) (6.5 for wood shear walls) (Residential = 1.0) (A,B,C,D,E) ______ (0.2 see) Fe = 1.047 S05 = 0.792 g (1 sec) F,,= 1.564 ] S01 = 0.455 g (Use the worst case seismic design category) p1_1.31 c V=_0.113jWx (CSact*P)*W11.4 JOB_______________________________________________________ MIKE SURPRENANT & ASSOCIATES SHEET NO. Consulting Structural Engineers CALCULATED BY- __Tc DATE CHECKED BY_________________________ DATE SCALE 2345777 1 2341 Q 771134 5 a 212347 5 1 734 54' W (DEAD LOADS) (SEISMIC) — ROOF WEIGHT - Diaphragm= )(tc'M) 1PL'V2. LBS Exterior Wall Weight = 14k-5 h ) (!t'I .) ( 't 2'lI to Q)O LBS Interior Wall Weight=' ()7.I5 1tv)Ci'a.)(.r ?5r) LBS - Total Weight'(Tributary to Diaphragm) = - LB .......... . :'IJRwEIGHt: ... . Diaphragm= (1'I5'r si')UPsI.F) i- (2oSv)t..lkW) LBS Exterioi Wal(Weight AAL I 51 )Oi'Ir )r) 4 4rtSto LBS Interior Wall Weight= LBS Total Weight (Tributary to Diaphragm) _____ ____________ ____________ tv (•) LBS - FLOOR WEIGHT - . Diaphram . .. . . LBS Exterior Wall Weight LBS .! ......... ................. . .--• .......... ..................................: :i BS Total Weight.',(Tributary to Diaphragm) = LBS ...: .. ......................... A 'J 115.1.. UJZ!IW J1j%Jt% L19 VT I BASE SHEAR, V = 0 + ( ° % Addn'l F 0 SI Wt = (Y' " LBS UNIT SHEAR. v = V / Area (Applies to single level structures only) — - — - — PSF 0 PRODUCT 207 JOB__________________________________ MIKE SURPRENANT - o & ASSOCIATES SHEET NO.______ OF________________ -ry - Consulting Structural Engineers CALCULATED BY Tc DATE____________________ CHECKED BY_________________________ DATE SCALE £1: :. .1 : L • 23.1 3 £ r • 1 3 LATERAL LOAD DISTRIBUTION DIAPHRAGM LEVEL (!c - h,, CIt) h (k-ft) W, h, Zw hi F 3 = w3 (V) w1 h1 (ibs) A . (ft2) v = (F 3 IA) (psi) ROOF . 117).66 '2.1 ?I 'LFLOOR 174__o6 11,0 ?o 1 YWI- o ________ )•6S ._LFLOOR 1_00 V= lbs ISHEARWALL DESIGN LATERAL LOADSI WIND LOAD = PRESSURE (P) x PROJECTED VERTICAL HEIGHT (h) SEISMIC LOAD = STORY SHEAR (vi) x DIAPHRAGM DEPTH (d) .ROCFDTAPHRAGM A i'i1(It2) N-Si WIND: P t• (psi) x ID (ft) = o)_(pif) •'SEISMIC: v 5. (psi) X It (ft) = (P11) : GOVERNS E-W: I: P (sx ID (ft) = (pI SEISMIC: v _ (psi) x '). (ft) = to(pit) SWI•.0 GOVERNS LEVEL'DIAPHRAGM: A= ')°(ft2) N-S: WIND: P -0-M ° (psf)x (ft) = (pit) SEISMIC: v 'b.to(psi) x f'2. (ft) = I(pit) II4 GOVERNS VAT,jb- E-W: WIND: P (psi) x !i1 (ft) = 116 (plo SEISMIC: .(psi) x _(pit) '-I (ft) = I _4 vo GOVERNS V LEVEL DIAPHRAGM: A= (ft2) N-S: WIND: P (psI) x _______ (ft) = _______(pit) SEISMIC: v (psi) x = _______(ft) _______(pu) ____________ GOVERNS E-W: WIND: P _______ (psi) x _______(ft) = _______(pit) SEISMIC: v (psi) x _______ (ft) = _______(pit) GOVERNS 0 PRODUCT 207 U. I I- MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB_____________ ____________ SHEET NO. OF CALCULATED BY IC DATE CHECKED BY DATE SCALE 5 6 7 8 12 3 4 1 6 P E 2 3 6 W (DEAD LOADS) - - (SEISMIC) * - I ROOF WEIGHT Diaphragm= ("r) ('8 ?.r) 1- LBS Exterior Wall Weight= ' __(_s's-)_ x ttSOkIJIr LBS Interior Wall 'Weight (1 __1 _) (i )(sr) _• s LBS Total Weight1(Tributary to Diaphragm) = '*1% LBS - 'L!.:FL:ooRwEIGfft: .. I Dia 777-7- phiagm= LBS Exterior Wall Weight ___________1____.-_______esF - LBS Interior Wll Weight = 'a + (4 _ ('i ) ( C) LBS Total Weight (Tributary to Diaphragm) _____ l_____________ ____________ ____________ 4_I LBS —_FLOOR WEIGHT - - Diaphragm=i LBS Exterior Wall Weight= LB Interior Wall Weight = LBS Total Weight (Tributary to Diaphragm) ____________ _____________ LBS _________ - TOTALDEAD LOAD, Wt= LBS BASE SHEAR,V= C_+( _%Addn'lFOS Wt 0_L5 ( i'-)- 1%t1 LBS UNIT SHEAR, v = V I Ar*ei (Applies to single lvel structures only) = PSF 0 PRODUCT 207 SI JOB I.%-06?, - MIKE SURPRENANT & ASSOCIATES SHEET wo.___________________ OF_______________ TC Consulting Structural Engineers CALCULATED By DATE____________________ CHECKED BY_________________________ DATE SCALE 2 2 6 S26 3 L I 3. 223.33.3 4 I .3.3 2 d 3 - 3 4 3 LATERAL LOAD DISTRIBUTION su. DIAPHRAGM LE'V EL W33 (It) h,,w h (k-ft) W. Z_w1 h1 = W1 _X (V) Z w1 h3 (ibs);. A (ft2). = (F IA) (pst) ROOF '4_ l ot (oof 0 t.2.) 61'j 961 (.5 FLOOR 4o 0 'q iFLOOR 161 1.010 Iimam II lbs ISHEARWALL DESIGN LATERAL LOADSI WIND LOAD = PRESSURE (P) x PROJECTED VERTICAL HEIGHT (h) SEISMIC LOAD = F STORY SHEAR (vs) x DIAPHRAGM DEPTH (d) ROCiF DIAPHRAGM!.. . A= ::WIND: P (pst)x to (It) = (pit) JSEISMIC: v to .5D (psf) x 2- (ft) = st- (pit) .St,tIG GOVERNS E-W: 'WIND: P Ipsx :6 O (ft) = (pit) . .SEISMIC: v 6.9v (pst) x '7.k (It) = t' (pit) GOVERNS LEVEL DIAPHRAGM: A=— 1 (f1) N-S: WIND: P (psI) x (I (It) = : i(pif) :SEISMIC: v .4__(psI) x /2 (It) = t'2- (pit) . GOVERNS rt.00 EX: WIND: P '' (psI) x _______ it (It) = (pit) SEISMIC: v,3 _ •°o(psI) x M (It) = .t)to.(pit) v ir'9 GOVERNS 5.(o LEVEL DIAPHRAGM A = (ft2) N-S: WIND: P _______ (psI) x - SEISMIC: v (psI) x - E-W: WIND: P (psI) x SEISMIC: v (psI) x (It) = _______(pit) (ft) = .(pif) GOVERNS (ft) = ______(pif) (ft) = ______(pit) GOVERNS 0 PRODUCT 207 MIKE SURPRENANT JOB ____________________________ OF_______________________ & ASSOCIATES SHEET NO.________________ Consulting Structural Engineers CALCULATED BY--------1C DATE__________________ CHECKED BY DATE SHEARWALL DESIGN Story Shearwalls P'___Direction Unit Lateral Load, v = 5' psf Gridline I Tributary AEea (This Level): 2.t'c).")9 sq.ft. Lateral Load (This Level): . . . Q4'S' Lbs Lateral Load (Level Above)-.. . _.....- Lbs flj.) t,4('J.sf Total Load (All Levels), F,,= 'Z.,3S• Lbs Shearwali(s) Length, L Unit Wall Shear, v = P/L = Of £. . Shearwall Type: Overturning: L = Tlnlift ft. Okay by Inspection 52-It'll - : 4I Lbs r Holdown Anchor Type: ......... Gridline Tributary Aiea (This Level): (.ii'I'_)(_€.5)t tt%.s1Z.)(V15)=•:jeo sq. ft. Lateral Load (This Level): . '*&F Lbs Lateral Load (Level Above): . . . — Ls Total Load (All Levels), F = : _ • 16 ' 1 Lbs Shearwall(s) Length, L = a Unit Wall Sheli, v = FAIL = % fo pif Shearwall Type: Overturning: L Okay by Inspection TJplift= . L(.i) - Lbs Holdown Anchor Type: j , Gridllne sq. ft. Tributary Area (This Level): Lateral Load (This Level): . . Lateral Load (Level Above): . : . Lbs Lbs = , Total Load (AU Levels), F = kI1_Lbs Shearwall(s) Length, L ft. Unit Wall Shear, v = FA = I plf Shearwall Type: Overturning: L=-& kay by Inspection Uplift = Holdown Anchor Type: fl PRflfllL(Tfl7 Lbs I MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers ttve / JOB 74- . OF___________________ SHEET NO.__________ 1c CALCULATED BY DATE CHECKED BY DATE SCALE S. OLke Story Shearwalls t _'./ Direction Unit Lateral Load, v = -° psf Gridline : Tributary Area (This Level): 14' 7,) (i) _5 sq. ft. Lateral Load (This Level): .... . 4513 Lbs Lateral Load (Level Above): . . . . .Lbs Total Load(All Levels), F= k5 V0 Lbs Shéarw?ll(s)1nith,L OLft. ...: • ......... Unit Wall Shear, v = F/L = pf Sheaiwall Type: Overturning: . L ft. - Okay by Inspection Uplift = . Lbs Hidown Anchor Type: FJ Gridline Tributary Area (This Level): ''' ' ') (ii ) . . ,. . . sq. ft. Lateral Load (This Level): Lbs Lateral Load (Level Above): . - Lbs L Total Load (All Levels), F = . _'_.4isS Shearwall(s) Length, L Lbs ' Unit Wall Shear, v = FAIL = Io_I pif 'o. Shearwall Type: (} Overturning: L ft. - Okay by Inspection Uplift= . Lbs Holdown Anchor Type: FJ Gridline Tributary Area (This Level): sq. ft. Lateral Load (This Level): Lbs Lateral Load (Level Above): Lbs Total Load (All Levels), F = Lbs Shearwall(s) Length, L Unit Wall Shear, v = F/L = plf Shearwall Type: () Overturning: L = ft. - Okay by Inspection Uplift = Lbs Holdown Anchor Type: 0 PROOUCT2O7 Overturning: L = ft. Uplift = Holdown Anchor Type: - Okay by Inspection i Lbs MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB SHEET NO. CALCULATED BY________________________ DATE CHECKED BY . DATE SCALE V1?_.Story Shearwalls : .( Direction Unit Lateral Load, v = psi Gridline : Tributary Area (This Level): (. 9'fi) ()Ir (1-k1t) c) sq. ft. Lateral Load (This Level): 7 1.-. Lbs Lateral Load (Level Above: : : - Lbs .......(o Total Load{All = . Lbs Shearv.,àfl(i)Lèngth,L - .. ............ fu Unit Wall Shear, v = FAIL = : a.:r. . . Of Shearwall Type: I Overturning: L = ___________ fi; Okay by Inspection ( 'I )7 . MI. C -1t) Lbs Uplift = Holdown Anchor Type: , Gridline . Tributary Aica (This Level) ........+. CWI(5} . . . . 1°. sq.it.. Lateral Load (This Level): : 44 t ( Lbs Lateral Load (Level Above): Lbs b Total Load (All Levels), F. Lbs Shearwall(s) Length, L = __________________________ ft. Unit Wall Shear, v = F1IL 1561 pif Shearwall Type: (} Overturning: L = ___________ ft - Okay by Inspection Uplift = (.5liI) (i) . Lbs Holdown Anchor Type: 11 Gridline 'z4- Tributary Area (This Level): - Lateral Load (This Level): - Lateral Load (Level Above): Shearwall(s) Length, L Unit Wall Shear, v = F/L = 1 t. pif Shearwall Type: () 34 sq.ft. 'Z.lj{, Lbs - Lbs Total Load (All Levels), F = '2-fl (o Lbs ft. uj'I(&)4- ("-It 0 PRODUCT 207 JOB__________________________________________________________ MIKE SURPRENANT OF_____________________ & ASSOCIATES SHEET NO.________________ Consulting Structural Engineers CALCULATED BY_________________ DATE CHECKED BY____________________________ DATE SCALE ' Stàry Shearwalls It 3/ Direction Uhit Lateral Load, v = psf -14 Gridline 4 140 Tributary Area (This Level): I2)(k) k(2t t 4.c)(%S ) i+ sq.ft. Lateral Load (This Level): . . •. P4 44 Lbs Lateral Load (Level Above): . . . . . — Lbs cs4c' sf Total Load'-(All Le"els), P= -4'-1 Lbs Shearwall(s) Lenjth, L JI[ if: ... . . Unit Wall Shear, v = F/L = 94 10.Of Shearwall Type: (J Overturning: . L = Uplift Holdown Anchor Typ EI. - Okay by Inspection. '' 4 . Lbs Gridline : Tributary Aea (This Level): L. (_Q4 '1';)(.lk') t (t().j(t.) ls51 sq.ft. Lateral Load (This Level): % f) (c '2. ( ; r)( 1P.Itt c1 Lbs Lateral Load (Level Above): Lbs al Total Load (All Levels), F, 1P,2L1 Lbs Shearwall(s) Length,L = '' ft Unit Wall Shear, V = FJL = '>(o pif Shearwall Type: (J Overturning: L - Okay by Inspection . Uplift= '&( Lbs Holdown Anchor Type: Gridline Tributary Area (This Level): i1) ( ) sq. ft. Lateral Load (This Level): . V( Lbs Lateral Load (Level Above): — Lbs Total Load (All Levels), F = Lbs Shearwall(s) Length. L = ft. Unit Wall Shear, v = FjL = 'ZI Of Shearwall Type: 0 Overturning: L = - Uplift = Holdown Anchor Type: _______ ft. - Okay by Inspection Lbs L 'wckv' JOB______________________________________________________________ MIKE SURPRENANT & ASSOCIATES SHEET NO.________________ OF Consulting Structural Engineers CALCULATED BY___________________ DATE_________________ CHECKED BY________________________ DATE__________________ SCALE V' Story Shearwalls Direction Unit Lateral Load,v =S. ".' psI Gridline : Tributary Area (This Level): tSl't2.)(.'tf) a . ft. Lateral Load (This Level): . . . VIn Lbs Lateral Load (Level Above): . . . . . - Lbs • Total Load(All Leals), P = 1 Lbs Shearwall(s) Length, L 'V . . ft. Unit Wall Shear, v = Ff1.. = '2 €4 p11 Shearwall Type: OerWrning: . L . fit. Okay by Inspection Uplift = . SS Lbs Holdown Anchor Type:IAN 4 . Gdl . . ()) ' 5 /).c'f)1 '-)() Tributary Mea.(This Level): . sq.ft. Lateral Load (This Level): I 4o So Lbs Lateral Load (Level Above): : — Lbs Total Load (All Levels), F = ..So Lbs Shearwall(s) Length, L Unit Wall Shear, v = FJL = 5 0 12. plf Shearwall Type: Overturning: L = t. - Okayby Inspection . Uplift = Lbs Holdown Anchor Type: Gridilne VOT, Use - Tributary Area (This Level): - . sq. ft. Lateral Load (This Level): ______________________________________________________________________ Lbs Lateral Load (Level Above): . Lbs Total Load (All Levels), F = . Lbs Shearwall(s) Length, L Unit Wall Shear, v = FJL = _plf Shearwall Type: 0 Overturning: L - Okay by Inspection Uplift= . Lbs }Ioldo'wn Anchor Type: 13 PRODUCT 207 MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB SHEET NO. •1 OF_____________________ CALCULATED BY Te. DATE____________________ CHECKED BY________________________ DATE___________________ SCALE %R?e[L- Story Shearwalls : Direction Unit Lateral Load, v = G. 'LIP Gridline _. Tributary Aiea (This Level): 1._6O'IQ_k . I)(ta) _'136 sq. ft. Lateral Load (This Level): . .. '4tj Lbs Lateral Load (Level Above): . . . . . — Lbs Total Load(A1l Lels),.F = 4 u... Lbs Shèarwall() Lëii1h, 1 ...._ _______________ Unit Wall Shear, v = F/L = S2. _. plf4. 943 ,ç4 Shearwall Type: I Overturning: L ft. Okay by Inspection Uplift= . Lbs Holdown Anchor Type:Ml T Gridime Tributary Area (This Level): . . :... . .. sq. ft. Lateral Load (This Level): . Lbs Lateral Load (Level Above): . . Lbs Total Load (All Levels), F = Lbs Shearwall(s) Length, L Unit Wall Shear, v = PJfL = pif Shearwall Type: Overturning: L = ft - Okayby Inspection Uplift= Lbs Holdown Anchor Type: Gridline Tributary Area (This Level): sq. ft. Lateral Load (This Level): Lbs Lateral Load (Level Above): Lbs Total Load (All Levels), F Lbs Shearwall(s) Length, L = ft. Unit Wall Shear, v = FAIL = pif Shearwall Type: () Overturning: L = ft. - Okay by Inspection Uplift = . Lbs Holdown Anchor Type: D PRODUCT 207 MIKE SURPRENANT & ASSOCIATES _••• Consulting Structural Engineers JOB SHEET NO. OF___________________ CALCULATED BY -rc DATE_____________________ CHECKED BY DATE SCALE Al- Story Shearwalls ' Direction Unit Lateral Load, v = 1.00 psf Gridline Tributary kea (This Level): Lateral Load (This Level): Lateral Load (Level Above): Total Load* (All Levels), FA= Shearwall(s) Length, L Unit Wall Shear, v = FXIL = 9 St. pf Qlinnrnrnll kjtflfl&& Vt ash .i. jps.• Overturning: L = Okay by Inspection Uplift = (. m,) ( % / '>('L Lbs Holdown Anchor Type: Gridline I Tributary Area (This Level): Lateral Load (This Level): Lateral Load (Level Above): Total Load (All Levels), F Shearwall(s) Length, L to Unit Wall Shear, v = FJL = h51 plf,/ 2. • to 4. 1,: SheaTwall Type: Overturning: L = - Okay by Inspection Uplift= 3- Lbs Holdown Anchor Type: Gridline '5 sq. ft. Tributary Area (This Level): Lateral Load (This Level): lo25 Lbs Lateral Load (Level Above): : - Lbs Total Load (All Levels), F= ''5 Lbs Shearwall(s) Length, L Unit Wall Shear, v = FAIL = 'Z.',' pif Shearwall Type: (j Overturning: L = - Okay by Inspection Uplift = Lbs Holdown Anchor Type: E:1 -'v' D PRODUCT 207 sq. ft. Lbs Lbs Lbs (tt'i ')+ Sib sq. ft. Lbs Lbs Lbs MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB - SHEET NO. OF__________________ CAL.CULATEDBY Te. DATE CHECKED BY_________________________ DATE SCALE 'P— Story Shearwalls ri-S Direction Unit Lateral Load, v = 00 psf Vt Gridline Tributary Aim (This Level): P'k) (") # ...-51 °'51) F ('I 'i) '-i( sq. ft. Lateral Load (This Level):G 16 8 r Lbs Lateral Load (Level Above): : . (4.J) Lbs : Total Load(M Lels), F = . Lbs ShèarvIl()Leniii,L .\_•3'f __ft: .... :. Unit Wall Shear, v = FAIL = . 75 if Shearwall Type: Overturning: L = ft. Okay by Inspection . Uplift = 14) (t ) 7i.- ' . 13 Lbs Holdown Anchor Type: Gridline Tributary Akea (This Level): .. . . sq. ft. Lateral Load (This Level): : . Vs Lbs Lateral Load (Level Above): : . . - Lbs Total Load (All Levels), F. 2A-66 Lbs Shearwall(s) Length, L = S5 . Unit Wall Shear, v = FJL. = of g pif Shearwall Type: (} Overturning: L = ft Lbs Okay by Inspection Uplift= __________ - Holdown Anchor Type: Gridline sq. ft. Tributary Area (This Level): Lateral Load (This Level): . t Lbs Lateral Load (Level Above): - Lbs Total Load (All Levels), F = 1_ Lbs Shearwall(s) Length, L = 4( _5 / _ ft. Unit Wall Shear, v = F/L = plf Shearwall Type: (i) V Overturning: L = ft. - Okay by Inspection Uplift= Lbs Holdown Anchor Type: 0 FPOoucTn? MIKE SURPRENANT - & ASSOCIATES Consulting Structural Engineers SHEET NO. ____________ OF__________________ CALCULATED BY________________________ DATE CHECKED BY_______________________ DATE SCALE Story Shearwalls 74 I Direction Unit Lateral Load, v = ° psi t-•v.t Gridline . '2o r 't' — ' d — Tributary Area (This Level): sq. ft. Lateral Load (This Level): . Lbs Lateral Load (Level Above): . . Lbs Total Load(All Levels), F=. . ______ Lbs Shearall()LigthL .L•• - ç..........ft . .:... Unit Wall Shear, v = FXFL = . f Of Shearwall Type: (i) Overturning: L = ft. - Okay by Inspection Uplift= i Lbs Holdown Anchor Tye: Gridline . , .j . ft. Tributary Area (This Level): .. sq. Lateral Load (This Level): Lbs Lateral Load (Level Above):: t) . -'.'(e' Lbs Total Load (All Levels), F. 51 "L. Lbs Shearwall(s) Length, L = ______________________ ft. Unit Wall Shear, v = FXIL = *t1.. pif Shearwall Type: Overturning: L ______ ft - Okay by Inspection Uplift = (Aii.) 5ti 1' Lbs Holdown Anchor Type: ri LJ . 'a., Gridline 4.i. sq. ft. Tributary Area (This Level): Lateral Load (This Level): tAlro Lbs Lateral Load (Level Above): . C i._) 1. Lbs Total Load (All Levels), F = 4 (.' I Lbs Shearwall(s) Length, L = ft. Unit Wall Shear, v = FJL = 1.5 t. p11 Shearwall Type: Overturning: L ft. - Okay by Inspection Lbs Uplift = Holdown Anchor Type: B PRODUCT207 MIKE SURPRENANT _. & ASSOCIATES Consulting Structural Engineers - JOB 07, SHEETNO.________________________ OF___________________ CALCULATED EY_Tc. DATE__________________ CHECKED BY DATE SCALE Story Shearwalls ±/ Direction Unit Lateral Load, v = psf Gridline . '1* Tributary Area (This Level): — . sq. ft. Lateral Load (This Level): .' •1 . Lbs Lateral Load (Level Above): . . . . C2.j) '24 6 Lbs Total Load (All Levels), Fx= 44_4 Lbs Shèarwàll(s) Léiith, 1 ' - ft. . .... .......: Unit Wall Shear, v = FfL = .'21 pif Shearwall Type: Overturning: L = — Uplift Holdown Anchor Type: t. Okay by Inspection Lbs J . %'L t' . -. Gridline Tributary Area (This Level); .. ,q) . .......... S'VL. sq.ft. Lateral Load (This Level): . 156S!J!Lbs Lateral Load (Level Above): . ci54.) 'Z& t.l Lbs Total Load (All Levels), F = 61i5 Lbs Shearwall(s) Length, L = ft. Unit Wall Shear, v = F/L = 4 101P pif Shearwall Type: (} Overturning: L = ft. Okay by Inspection Uplift= (")c) - Lbs Holdown Anchor Type: j .It Gridline_A c) Tributary Area (This Level): "V'a-) sq. ft. Lateral Load (This Level): Lbs Lateral Load (Level Above): (." /5%) ("M'l ) C t'ç) Lbs Total Load (All Levels), F= Lbs Shearwall(s) Length, L = ft. Unit Wall Shear, v = F/L = plf/ Shearwall Type: (J Overturning: L = ft. Okay by Inspection Lbs Uplift = . Holdown Anchor Type: j 0 PROSUCT207 MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB SHEETNO.____________________________ OF_______________________ __________________________ CALCULATED BY______________________ DATE CHECKEDBY . DATE SCALE Story Shearwalls Direction Unit Lateral Load, v = 00 Of Gridline 4r Tributary Area (This Level): sq. ft. Lateral Load (This Level); . .- Lbs Lateral Load (Level Above): . . Lbs Total Load* (All Le-Ms),-F,,= Lbs Shearwall(s) Lèügth,L ...............ft: . .. Unit Wall Shear, v = F/L = pif Shearwall Type: (J Oyerturning: L = ft. Qkay by Inspection Uplift = Lbs Holdown Anchor Type: . . Gridline . Area .(.' 1') '' . .... Tributary (This Level):.:.. .. . . sq. ft. Lateral Load (This Level): . 1 '-+ Lbs Lateral Load (Level Above): ( (5-s) . C. A) t 4k44 Lbs I k 1 0 Total Load (All Levels), F= r-ô Lbs Shearwall(s) Length, L = ft Unit Wall Shear, v = FJL = "i o plf Shearwall Type: 9. Overturning: L = __________ Okay by Inspection Uplift = L-) 0 Lbs Holdown Anchor Type: Gridline Tributary Area (This Level): I_., f ) . sq. ft. Lateral Load (This Level): . -S'ri Lbs Lateral Load (Level Above): Lbs Total Load (All Levels), F= 9S1 Lbs Shearwall(s) Length. L Unit Wall Shear, v = FJL = 14 pif Shearwall Type: 0 Overturning: L Okay by Inspection Uplift = Lbs Holdown Anchor Type: E 0 PRODUCT 207 MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB SHEET NO. _________________________ OF____________________ -TC CALCULATED BY__________ DATE_____________________ CHECKED BY__________________________ DATE SCALE t.O14ti. Story Shearwalls - i-i Direction Unit Lateral Load, v = - psf Gridline : Tributary Area (This Level): : .'l.1"Ii. (s) . . 43' sq. ft. Lateral Load (This Level): Lateral Load (Level Above): 5 4' ()V.0* t. G) : Lbs Shearwail(s)Lèngth,JL . Total Load' (All Levels), F = s%9 ft. 6 r22— Lbs Unit Wall Shear, v = FJL = _____ Of Shearwall Type: . Overturning: L = __ (. ft. Okay by Inspection Uplift = - cA&'.) P\.;? Lbs Holdown Anchor Type: Gridline L :•• 41-i Tributary Area (This Level): .. . . sq. ft. Lateral Load (This Level): : 3065 Lbs Lateral Load (Level Above): Lbs Total Load (All Levels), F = I ' ' AS Lbs Shearwall(s) Length, L = ft. Unit Wall Shear, v = F/L = 11- pif Shearwall Type:9 Overturning: L = ft Okay by Inspection Uplift= - ('L4-) Lbs Holdown Anchor Type: I Gridline C,I't) 3 C.° - ') f Tributary Area (This Level): ft. Lateral Load (This Level): . Lbs Lateral Load (Level Above): ) 'tuSV Lbs Total Load (All Levels), F. 184kv Lbs Shearwall(s) Length, L 2'O ft. Unit Wall Shear, v=FJL = -i/Z. plf/1..2.. Shearwall Type: cj Overturning: L = ft. Okay by Inspection At = uplift Lbs Cm2e') %') Holdown Anchor Type: [] D PRODUCT 207 MIKE SURPRENANT - & ASSOCIATES - Consulting Structural Engineers JOB SHEET NO. Or OF -r CALCULATED BY DATE____________________ CHECKED BY_______________________ DATE SCALE t.ir- Story Shearwalls : E -s.d Direction Unit Lateral Load, v = ° pSI Gridline . t4 Tributary Aim (This Level): (f'2. )( (9 .-.c) s. ft. Lateral Load (This Level): ... Scl3 Lbs Lateral Load (Level Above): : . . Lbs Total Load-(All Levels), F= AV Lbs Shèarwil(s)Liijth,L ..ft. .....' .'-5 • Unit Wall Shear, v = FJL = . . Of 1-0 Vic- (OK(J Shearwall Type: . Overturning: L= ft. — Qkay by Inspection Uplift = . Lbs Hc)ldown Anchor Type: Fj Gridline -kW u Tributary Area (This Level): . - .. . . sq. ft. Lateral Load (This Level): . Lbs Lateral Load (Level Above): . . Lbs Total Load (All Levels), F= __________________Lbs Shearwall(s) Length, L Unit Wall Shear, v = F/L = plf Shearwall Type: Overturning: L = ft - Okayby Inspection Uplift = Lbs Holdown Anchor Type: FJ Gridline _______________ Tributary Aiea (This Level): (2t')(ltS) . sq. ft. Lateral Load (This Level): 11b 1. Lbs Lateral Load (Level Above): g-1 13 - Lbs Total Load (All Levels). F = 4 t$ ,Lbs Shearwall(s) Length, L 1141 Unit Wall Shear, v = FJL = ____________ pif ShearwaliType: (J $. f/.p/U Overturning: L =- Uplift Holdown Anchor Type: I ft. Okay by Inspection Lbs 0 P000UCT 207 JOB___________ MIKE SURPRENANT & ASSOCIATES SHEET NO._- OF_______________ Consulting Structural Engineers CALCULATED BY DATE CHECKED BY OATE...._________________ SCALE Cl s, tor () tAJ 0 PRODUCT 207 N2 N4 #J3 Solution: Envelope Mike Surprenant & Associ.. .1 ME-I Jorge Zesati May 8, 2018 at 1:04 PM • -2er N4 13 Loads: BLC 1, Dead Load Solution: Envelope Mike Surprenant & Assoc!... MF-1 Jorge Zesati V May 8, 2018 at 1:05 PM 18063 . MF-1,r2d Ex -2.482k -.11 k/I N2 N4 3 Loads: BLC 2, Roof Live Load Solution: Envelope Mike Surprenant & Associ..) MF-1 Jorge Zesati May 8, 2018 at 1:05 PM -1.56k N2 N4 41 'i'J3 Loads: BLC 3, Live Load Solution: Envelope - Mike Surprenant & Associ... . ME-I Jorge Zesati . . May 8, 2018 at 1:05 PM 18063 . MF-1.r2d 9' N2 N4 Loads: BLC 4, Seismic Load Solution: Envelope - Mike Surprenant & Associ..j MF-1 Jorge Zesati May 8, 2018 at 1:05 PM I 18063 - -- MF-1.r2d Company : Mike Surprenant & Associates May 8, 2018 91 Designer : Jorge Zesatl 1:08 PM Job Number: 18063 MF-1 Checked By:_____ Basic Load Cases I ( fl,'dnIinn f+rir,r,, V (ruiu V (rh, mint Pnint Distributed 1 Dead Load one —-•-, 2 2 2 Roof Live Load None I I 3 Live Load None I 4 Seismic Load None I Joint Boundary Conditions Hot Rolled Steel Design Parameters f1!L'fl( •• .MZOLK77-IM WWI Joint Coordinates and Temperatures I hI V fffl V Ff11 Temo rFI 2 N2 0 10 0 N3 12.5 0 0 _. 4 N4 12.5 10 0 Envelope Joint Displacements Y f.nl In V finI lr Rntetinn Frtd1 Ic —Ni 0 7 0 7 M45e-3 6 _2_ 0 6 0 6 -7.279e-3 7 N2 Njin .737 7 .001 7 3.197e-3 8 4 -.739 6 -.005 6 -3.53e-3 5 5 N3 0 5 0 8 7.266e-3 8 6 0 8 1 0 1 5 1 -7.395e-3 5 N4 max .734 t 7 1 .002 1 8 1 3.534e-3 6 mm -.737 1 6 1 -.004 1 5 1 -3.165e-3 1 7 - Envelope Joint Reactions V rui I,. V 11,1 In Moment fk.fll Ic Ni max 5.361 6 15.094 6 0 1 2. mm -4.738 1. -3.265 1. 0 1 .1.. N3 max 4.728 8 10.235 5 0 1 _4.. min -5.351 A -6.324 0 1 5 Totals: max 10 8 15.5 3 6 mm -10 5 6.412 11. Load Combinations RISA-20 Version 6.0 [F:\.. .\.. .\...03-Engmneering\Calc Templates\MF-1\MF-1 .r2d] . Page 1 Company : Mike Surprenant & Associates May 8, 2018 tt Designer : Jorge Zesati 1:08 PM Job Number :18063 MF-1 Checked By:_____ Load Combinations (Continued) flri,tn ntuA Pno A P A Q CH ( Portnir RI ( rI,irPI ,4,rRI f'ttnrRI (Fg'tnrI (Fr4nrRI (FfnrRI (Frtnr WRWZ__ wrni __ Member Distributed Loads (BLC I : Dead Load) Member Distributed Loads (BLC 2: Roof Live Load) Member Label Direction Start Magnitude[klft.d... End f4gnitude(kIftdea Start Location[ft.%] End Locationrft.%i I I I M3 I Y I -.11 I -.11 0 I 12.5 I Joint Loads and Enforced Displacements (BLC I : Dead Load) Joint Loads and Enforced Displacements (BLC 2: Roof Live Load) Joint Label - L.O.M Direction MapnMII.k-ft in.rad k*sA2lftl I 1 I N2 I L I V -2.482 Joint Loads and Enforced Displacements (BLC 3: Live Load) Joint Label LD.M Direction Magnitudelk.k-ft in.rad k*sA2(ftl F 1 I N2 I L I V I -1.56 -T Joint Loads and Enforced Displacements (BLC 4: Seismic Load) Joint Label LD.M Direction Magnitude[k.k-ftin.rad k*sA2lftl Li I N2 I L X Member Point Loads Member Label Direction Maanitudefk.k-ftl Locationlft.%1 F No Data to Print ... Hot Rolled Steel Properties I .ift u ri,.i n m—il Nil Thrm 11Fc F flnQiMkIftA1 VioWIki1 I 2 _3 _50 3 _A36_29000 _11154 _.3 _.65 _-.49 4 _A572Grade50 _A992 _29000 _29000 _11154 _11154 _.3 _.3 _.65_.49 _.65 _.49 _50 5 _A50042 _A50046 _29000 _29000 _11154 11154 _.3_.65 __.3 __.65 _.49 __.49 _42 _46 RISA-2D Version 6.0 [FA ... \ ... \ ... 03-Engineering\Calc Templates\MF-1\MF-1.r2dl Page 2 Company : Mike Surprenant & Associates May 8, 2018 94 Designer : Jorge Zesati 1:08 PM Job Number: 18063 MF-1 Checked By:_____ Member Primary Data I I ..:n I •._s n..s_s...,a__ r.....n:__,al.___ n_..:.... 1:-4 T..... tA.,&.$..I flaeh.n Oa.Iae Ml Ni N2 Column Wide Flange Beam A992 Tvøical _ M2 N3 N4 Column Wide Flange Beam A992 Typical M3 N2 N4 Beam Wide Flange Beam A992 Typical Envelope Member Section Deflections I,- I h, Patin In Ml I max 0 10 _1_ NC min o _1_ 0 _1_ NC 3 2 max 0 _7_ .225 6 2981.286 _j_ mm -.001 6 -.22 _L_. 3372.992 _L_ 3 max 0 7 .434 6 1863.304 6 _.&. mm -.003 6_. -.426 ._7_ 2108.12 _L_. 4 max 0 7 .611 6 2129.49 6 _L mm -.004 6 -.603 7 2409.28 ...L.... 5 max .001 7 .739 6 NC 6 i.Q. mm -.005 6 -.737 7- NC _7 - 11 M2 1 max 0 1 0 1_ NC _1_ IL min 0 _j_ 0 _1_ NC _1_ 13 2 max 0 8 .22 JL. 3380.271 _L_. 14 min 0 5 -.224 5 2986.971 5 15 3 max .001 8 .425 8 2112.67 8_ mm -.002 5 -.431 5 1866.857 5 17_ 4 max .002 8 1 .602 8 2414.479 8 18 mm -.003 5 -.607 5 2133.551 5 19_ 5 max .002 _L_ .737 _L_ NC min _j 20 _ --.004 -.734 _.L_ NC _L.. 21. M3 I max .737 7 .001 7 NC 7 22 mm -.739 _..L -.005 _ NC 21 2 max .737 7 .033 8 4230.675 8 24 mm -.739 6 1 -.054 5_. 2821.002 5 25 3 max .736 7 1 -.012 8 NC 8 26 mm -.738 6 -.026 _. 6489.189 3 27 4 max .735 _j_. .033 _L. 4294.123 7 28 mm -.737 ._. -.052 6 2849.072 6 29 5 max .734 _L_ .002 8 NC 8 _p mm -.737 6_. -.004 1_5 NC 75 - Envelope Member Section Forces - L. IVUCIIuIJI Ml I ____________ max . _••_9••J 15.094 ._. -..--..L--I 4.738 7 1 ----- - 0 2_. mm -3.265 _L. -5.361 6 0 _L. 2 max 15.094 _L. 4.738 _j_ 13.402 _._. 4 mm -3.265 _L. -5.361 _&. -11.846 _L. _L. 3 max - 15.094 _L. 4.738 ..i_ 26.804 _L_ _Q. mm -3.265 _L.1 -5.361 _L... -23.691 _L. _L... 4 max 15.094 ._&. 4.738 _L. 40.206 _L_ _.&. min -3.265 ._j_ -5.361 ._. -35.537 _L. _L 5 max 15.094 4.738 _L. 53.608 _L. 10 mm -3.265 7 -5.361 6_. -47.383 7 11 1 M2 I max 10.235 5 5.351 j_. 0 _j_. 12.. mm -6.324 8 4.728 _L. 0 _L. IL 2 max 10.235 5 5.351 5 11.82 IL mm -6.324 8 -4.728 8 -13.377 5 RISA-20 Version 6.0 [F:\...\ ... \ ... \03-Engineering\Calc Templates\MF-1MF-1.r2d] Page 3 Company : Mike Surprenant & Associates May 8, 2018 qT- Des : Jorge Zesati 1:08 PM Job Number: 18063 IVIF-1 Checked By:_____ Envelope Member Section Forces (Continued) Mn,hr As,,trI.1 b. Qk,rI,i I,. nfrI_f* _ii_ 3 max 10.235 5 1 5.351 5 1 23.64 _L. j. mm -6.324 8 1 -4J28 8 1 -26.753 IL 4 max 10.235 5 1 5.351 5 1 35.461 _&... I.. mm -6.324 8_. -4.728 8 1 -40.13 _L.. 19 _________________ ______ 5 max 10.235 5 5.351 5 1 47.281 ._ .20L. mm -6.324 8 -4.728 8 1 -53.506 ._ 21 M3 1 max 5.351 5 10.235 ....._ 53.608 _6_ ia. mm -4.728 _j_... -6.324 _J_...1 -47.383 _L 23 2 max 5.351 5 9.117 6 23.79 _&... 14... mm -4.728 8 -7.162 _L... -26132 5_ 25 3 max 5.351 5 8 6 -2.519 _.._ 26 min 4.728 8 -8 _L.. -5.114 27 4 max 5.351 5 7.162 8 23.688 7 28 mm -4.728 .A. -9.117 5 -26.63 6 29 _____ 5 max 5.351 5 6.324 8 53.506 5 30 1 min 1 4.728 1 8 1 -10.235 5 47.281 8 Hot Rolled Steel Section Sets Envelope ASD Steel Code Checks r..,i f'h.l, I ,.-rfI I... Qh, (h.-I, I ,,ffiJ I.. r. FI,,! Cf Tk1 Ch FkJ (JI fm fl rn,. I 1 MI W12X40 .456 1 10 1 6 1 .076 1 0 - 6 1 22.361 1 30 1 30 1.75 .6 t 1-11-2 2 1 M2 IW12X401 .441 1 10 1 5 1 .076 0 5 22.361 1 30 1 30 11.751 .6 1 1-11-2 3 1 M3 IWIOX301 .707 1 12.5 1 5 1 .163 1 12.5 5 ..12.538.. 30 1 30 12.31.85 1 HI-3 RISA-2D Version 6.0 [F:\...\ .. .\. . .03-Engineering\CaIc Templates\MF-1\MF-1 .r2dJ Page 4 MIKE SURPRENANT f T & ASSOCIATES Consulting Structural Engineers JOB lu SHEET NO. OF CALCULATED BY__... - DATE CHECKED BY DATE SCALE a I 2 3 4 5 6 I $ I 3 3 4 3 a 7 I I 6 4 3 Moment Connection (ME-i) . I F 350: Table 3-3 1 Ordinary Moment Resisting Frame Welded Unreinforced Flanges - Welded Web (WUF-W) Connection Frame Attributes I MF-1 Line P 1 1 Story Shear to this column: /= 10.000k. fa 2.00ks1 I w= 408 p1f .........hn bi 0 in L, 12.500 ft L= . Column: W1 2X40 dcr 11.9 in Z57in3 F= 50ksi . 0.295 in t 0.5151n bfc 8.0 in kc =:1;02ifl Beam: WIOX30 db10.5in Zbe 36.6fl3 Fyb 50ks1 Sb= 32.4 in3 tp = 0.51 in bfb r. ....... - .............................1F= 36ksi Ry 1.1 ....? I General . . Ordinary Moment Resisting Frame (R =3.5) OK Hinge Location Distance I •. s, = dj2 +dbI2 = 11.20 in Critical Beam Parameters Max Depth....W36 . . 10 36 ........-.............- OK Span: Depth Ratio L' 127.60 in L'Idb = 12.15>5 OK Max Flange Thickress: 1.5" t1b 0.510 in OK Material Specifiction: A992 . OK CriticalCoiumA Parãñtérs 1................ - ........- ........ Allowable Depths NO LIMIT OK Material Specification: A992 1 OK Beam I Column Relations . I Panel Zone Strenth ............... ........................- -.... ............. -............ i1pr =CpyZbeFyb 2416k-in V = (Mpr +Mpr + w LIZI2)IL1 4003 k (x + dJ2) = Sh = 11.2O in Mc =Mpr t1 Vp(X 4 dc/2)2864kifl Cy = 1/Cpr (ZbeISb),O.738 . ...... ... .. - . h—d tc I I ' C h 1 = 0.546 in t =(XI)d (d () . . Minimum Plate Thicknes = I- t = 0.251 in tdp = 9.500 in OK wZ =dC -2tfC — 10.870 in #ofpltes=1 .0.295 in (di +.w)/90 . .. d,:5 15.68 in .01K B PRODUCT 207 Column / Beam Bending Strength: hj=(hfl /2)-db/2= 0 i hb = (h.1 /2) - db/ 2 = 54.75 in 2) 34.697k ____________ C hb+db +h) MCb = (V + V1) hb = 2447 k-in = Vc h1 = 0 k-in C ZMr =Mt + Mb = 2447 k-in Z_(F__fa) = 1.118>1 ymc Continuity Plate Thickness Pbf = 1.8 bfb tfb Fyb = 266.679 k (UBC 2213.7.4) P —F(t +51ç) = fb 5.109 in2 = jst b5 = . 7,n Minimum Stiffener Plate Thickness = tst = 0.3649 in Use: t,t = 0.500 in OK OK JOB 2 MIKE SURPRENANT & ASSOCIATES SHEET NO OF__________________ =_•_C Consulting Structural Engineers CALCULATED BY DATE CHECKED BY________________________ DATE SCALE MF-1 Line P 0 PRODUCT 207 L 0 PR013UOT207 -qt- MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers Jos . SHEET NO._________ OF - CALCULATED ey_____ DATE CHECKED BY DATE - SCALE C 6 5 a 7 I! 3 5C 7 7; 1 a77! 7 7 F 11 e (1J I 'L1z- vc4- Q(l (fl.(.) ((s4 ( (OL) 7 Gil EX N2 N4 Solution: Envelope Mike Surprenant & Associ... MF-2 L Jorge Zesati [y 11, 2018 at 9:07 AM 18063 MF-2.r2d OD Ism N2 N4 'PJ1 i13 Loads: BLC 1, Dead Load Solution: Envelope Mike Surprenant & Associ... MF-2 Jorge Zesati May 11, 2018at9:07AM 18063 MF-2.r2d lot LLX -2.482k Loads: BLC 2, Roof Live Load Solution: Envelope Mike Surprenant & Associ... Jorge Zesati 18063 MF-2 May 11, 2018 at 9:07 AM MF-2.r2d tot - T. -1.56k N2 N4 "P11 Loads: BLC 3, Live Load Solution: Envelope Mike Surprenant & Associ...I MF-2 Jorge Zesati May 11, 2018 at 9:07 AM 18063 . MF-2.r2d to 10k N2 N4 Ni Loads: BLC 4, Seismic Load Solution: Envelope Mike Surprenant & Associ... May MF-2 , 2018 at 9:07 AM Jorge Zesati _____ 2d (f Company : Mike Surprenant & Associates May 11, 2018 Designer Jorge Zesati 9:09 AM Job Number: 18063 MF-2 Checked By: Basic Load Cases v V Inint Pnirit Distributed I DL.¼, J..IItJUUII Dead Load None ..'7 2 2 2 Roof Live Load None I I 3 Live Load None 4 Seismic Load None 1 Joint BoundalX Conditions Hot Rolled Steel Design Parameters _ Joint Coordinates and Temperatures I .i...i Y tfH V ifti Temo [Fl Iii I_dual NI 'S.... I 0 I 0 - i 0 121 N2 I 0 I 10 I 0 131 N3 I 10 I 0 I 0 141 N4 I 10 I 10 I 0 Envelope Joint Displacements I.. vr;nl I., Pntatinn rrsdl Ic - j_. Siullit NI ____________ max 1 ,'L j .S. 0 7 _ ___________ 0 __________ 7 -.- -. - - 6.887e-3 __________ 6 2 min 1 0 6 0 6 -6.775e-3 7 _.L N2 max .674 7 .092 7 2.732e-3 8 _.4_. mm -.676 6 -.006 6 -2.921e-3 5 5 N3 max 0 5 0 8 6.77 le-3 8 6 min 0 8 1 0 5 -6.837e-3 5 7 1 N4 max .671 7 1 .003 8 2.935e-3 6 mm -.674 6 I -.004 5 1 -2.7e-3 7 Envelope Joint Reactions -. rfr_cH Ic - I_. IUIIU NI - max F IIM___ 1 5.22 l 6 1 IlI 16.647 .11 ••• . . 0 - 1 min 1 4.844 _L1 -5.6 ..L1 0 1 _L N3 max 4.834 1. 11.788 5. 0 1 _4_. mm -5.21 5. -8.659 1. 0 I 5 Totals: max 10 6 14.166 Load Combinations RISA-20 Version 6.0 [F:. . .\. .'. . .103-Engineering\Calc Templates\MF-2\MF-2.r2d] Page 1 Company : Mike Surprenant & Associates May 11, 2018 Designer : JorgeZesati 9:09 AM Job Number: 18063 MF-2 Checked By:_____ Load Combinations (Continued) e....I.... rr __IW1IF1 Member Distributed Loads (BLC 1: Dead Load) Member Distributed Loads (BLC 2: Roof Live Load) Member Label Direction Start Magnitude[klft.d... End MaanitudelkifLdecil Start LocationFft.%1 -- EndiocationFft.%1 ru M3 -.11 -.11 I 0 I 12.5 Joint Loads and Enforced Displacements (BLC 1: Dead Load) Joint Loads and Enforced Displacements (BLC 2: Roof Live Load) Joint Label L.D.M Direction Maanitudefk.k-ft in.rad k*sA2/ftl I I I N2 I L V 1 . -2.482 Joint Loads and Enforced Displacements (BLC 3: Live Load) Joint Label — . L.D.M Directidn Magnitudefk.k-ft in.rad k*s*2IfL] I I I N2 1 L V I -1.56 I Joint Loads and Enforced Displacements (BL.0 4: Seismic Load) Joint Label L.D.M Direction Magnitude[k.k-ft in.rad k*sA2lft1 N2 I L I X I 10 Member Point Loads Member Label Direction Map nitudetk.k-ftl Location[ft.%1 I No Data to Print Hot Rolled Steel Properties t Ft,.; Thr.., it1i ri nancitullelfthil YittIFki1 I A36 29000 11154 .3 ..-- - .65 .49 36 2 A572Grade50 29000 11154 .3 .65 .49 50 3 A992 29000 11154 .3 .65 .49 50 4 A500_42 29000 11154 .3 .65 .49 42 5 A500 46 29000 1 11154 .3 .65 .49 46 RISA-2D Version 6.0 '[F:\...\ . . .\. . .\O3-EngineeringCaIc Templates\MF-2\MF-2.r2dj Page 2 tO' Company : Mike Surprenant & Associates May II, 2018 Designer : Jorge Zesati 9:09 AM Job Number :18063 MF-2 Checked By: Member Primary Data n.._s..,J__.s fl__!_._jt%i__ n.:.. i ;, 'r..-- I MI N1 N2.. r Column I Wide Flange Beam A992 I Typical M2 N3 N4 Column Wide Flange I Beam A992 I Typical LI M3 N2 ....N4 Beam Wide Flange I Beam I A992 I Typical - gn,eIope Member Section Deflections I Ml I max 0 1 1 0 1 NC _t_. min 0 1 0 1 NC _j_ 3 2 max 0 7 .208 6 3061.808 .Q. _4.. mm -.001 6 -.205 _j_. 3299.703 ...j..... 5 3 max 0 7 .401 6_. 1913.63 6 _L mm -.003 6 -.395 _7_. 2062.314 _j_ 7 4 max .001 7 .562 6_. 2187.006 6_. 8 _____ mm -.004 6 -.556 _7_. 2356.93 _L. 9 5 max .002 7 .676 _j_ NC 6 10 _____ mm -.006 6 -.674 _7_ NC _7 - J.1. M2 I max 0 1 0 _1_ NC _1_ 12... min 0 _j_ 0 _1_ NC _1_ i. ____ 2 max 0 8 .205 3306.281 8 IA.. mm -.001 .._. -.207 ..._. 3067.471 5 j. 3 max .002 8_. .395 8 2066.426 8 j.. mm -.002 5 -.398 __. 1917.17 .A_. IL 4 max .002 8 .556 8 2361.629 8 Ii mm -.003 5 -.558 5_. 2191.051 5_. Ii. 5 max .003 8 .674 6 NC 6 20 mm -.004 5 -.671 ...L.. NC _.L.. it. M3 I max .674 _j 22 _ 7 .002 7 NC mm -.676 6 -.006 _j_. NC _j... 23 2 max .673 7 .021 8 4975.072 8 14. mm -.676 6 -.032 5_ 3737.894 5 25 _____ 3 max .673 7 -.006 8 NC 8 26 mm -.675 ..._. -.013 3 NC 3 27 4 max .672 7 .021 7 5041.259 7 28 ____ mm -.675 6 -.031 6 3775.133 _. 29 -5 max .671 _j_.... .003 8 NC 8 ____ mm -.674 1 .. -.004 ...j_ NC Envelope Member Section Forces I- .J_. Ml 1 max - 16.647 ._. 4.844 7 0 _1 - 2 ______ mm -5.6 -5.22 6 0 - - 3 2 max 16.647 4.844 j ______mm 13.05 A -5.6 -5.22 L -12.109 3 max L L 16.647 f 4.844 L 26.099 mm -5.6 -5.22 L 4 -24.218 max 16.647 39.149 _____ 4.844 L mm -5.6 -5.22 ..._. -36.327 .....i..... 9 5 max 16.647 _L_. 4.844 _j_. 52.199 6 i.cL mm -5.6 _L.... -5.22 6 -48.435 _Z_... ii. ________________ M2 _____ I max 11.788 ._. 5.21 5 0 .i2. mm -8.659 ._. -4.834 8 0 13 _____ 2 max 11.788 5 5.21 5 12.085 8 14 ______ mm -8.659 1 8 . -4.834 8 -13.026 5 RISA-20 Version 6.0 IF:'. ..\. . .\. . .\03-EngmneeringCaIc Temp1ates\MF-2MF-2.r2d1 Page 3 to-, Company : Mike Surprenant & Associates May 11, 2018 Designer : Jorge Zesati 9:09 AM Job Number: 18063 MF-2 Checked By:_____ Envelope Member Section Forces (Continued) RiIrn,kn.. Q.- A.,Irb1 I,. CkdI1 I.. Mnn,nItk_ft1 i._ 3 max 11.78 5 5.21 5 24.169 8 mm -8.659 8 -4.834 8 -26.051 5 17 4 max 11.788 5 5.21 5 36.254 8 18 mm -8.659 8_ -4.834 8 -39.077 5 5 max 11.788 5 5.21 5 48.339 8 .20 mm -8.659 8 1 4.834 8 -52.102 5 21 M3 I max 5.21 5 11.788 6 52.199 6 22 mm -4.834 8 -8.659 7 -48.435 7 23 2 max 5.21 5 10.894 6 24.147 8 24 mm -4.834 8 -9.33 7 -26.25 5 25 3 max 5.21 5 10 6 -1.691 8 2. mm -4.834 8 -10 5 -3.461 3 ii. 4 max 5.21 5 9.33 8 24.05 7 28 mm -4.834 8 -10.894 5 -26.154 6 ii. 5 max 1 5.21 5 8.659 8 52.102 5 fl. mm -4.834 8 -11.788 5 -48.339 8 Hot Rolled Steel Section Sets Envelope ASD Steel Code Checks I Ml W12X40 .449 10 6 .074 1 0 6 1 22.361 1 30 30 1.75 .6 1 H1-2 2 M2 W12X40 .435 10 1 5 1 .074 1 0 1 5 1 22.361 1 30 1 30 11.751 .6 1 HI-2 3 M3 WIOX30 .661 10 1 5 1 .188 1 10 1 5 1 17.512 1 30 1 30 12.31.85 1 H1-2 F RISA-2D Version 6.0 [F:\...\...\. . .\03-Engineering\Calc TempIatesMF-2MF-2.r2d] Page 4 MIKE SURPRENANT & ASSOCIATES 4. Consulting Structural Engineers JOB 1O6 SHEET NO. OF_____________________ CALCULATED BY DATE CHECKED BY DATE SCALE Moment Connection (MF-2) FEMA 350: Table 3-3 Ordinary Moment Resisting Frame Welded Unreinforced Flanges - Welded Web (WUF-W) Connection Frame Attributes MF-1 Line P Story Shear to this column: Vf = 10.000 k fa = 2.00 ksi w = 408 plf h= 01n h 1 = 120in hh39 = 120 in r L1 = 10.000 ft Lr Column: W12X40 dc = 11.9 in Zce = 57 in3 Fy, = 50 ksi t,, = 0.295 in tfc = 0.515 in bc = 8.0 in k= 1.02 in Beam: WI6X30 db= 10.5 in Zbe = 36.6 in3 Fyb = 50 ksi Sb = 32.4 in3 tn = 0.51 in bp, = 5.8 in F1 = 36 ksi R = 1.1 Cpr = 1.2 General Ordinary Moment Resisting Frame (R = 3.5) OK Hinge Location Distance Shdd2+db/2 11.20 in Critical Beam Parameters Max Depth: W36 10 <36 Span : Depth Ratio L'= 97.60 in L'/db= 9.30>5 Max Flange Thickness: 1.5" t,, = 0.510 in Material Specification: A992 Critical Column Parameters Allowable Depths: NO LIMIT Material Specification: A992 Beam I Column Relations Panel Zone Strength Mpr = CprRyZbeFyb = 2416 k-in V=(Mpr+Mpr+wL'2I2)IL'= 51.16k (x+dJ2)=sh =11.20in M = Mpr + Vp (x + dd2) = 2989 k-in Cy = 1I[Cpr (ZbelSb)] = 0.738 CYMh —db h = 0.570 in t _(o9Xo6)FRd(d t ) Minimum Plate Thickness = t - 0.275 in tdp = 0.500 in w = d - 2t = 10.870 in # of plates = 1 0.295 in ;->(d2 + w) 1 90 d;,:5 15.68 in 0 PRODUCT 207 OK OK OK OK OK OK OK -- MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers Jon iO6) SHEETNO. ________________________ OF______________________ CALCULATED BY DATE CHECKED BY________________________ DATE SCALE 4It•S!VJ I 511 I i 3 * 5174 'III *51% I23I2S1I'Z 3*1i 71173 MF-1 Line P CôlumA / Beam Bending Strength: ht (hfl/2)-db/2= 0 i hb =(hfl.1/2)-db/2= 54.75 in flMprSh/P)hb) = 36.607k 1 hb+db+ht) MCb = (V + V) hb = 2552 k-in = V h = 0 k-in = M1 + Mcb = 2552 k-in vz c (FyC fa ) = 1.072>1 OK Emc Continuity Plate Thickness : Pbf = 1.8 blbtfb Fyb = - 266.679 k (UBC 2213.7.4) 9 F ctw (t +51ç) = 5.109 in2 F ...b5t - -7 in Minimum Stiffener Plate Thickness = t = 0.3649 in Use: t,t 0.500 in OK D PRODUCT 207 JOB____________________________________________________ MIKE SURPRENANT & ASSOCIATES SHEET NO. OF Consulting Structural Engineers CALCULATED BY_____________________ DATE___________________ CHECKED BY________________________ DATE___________________ SCALE FOUNDATION DESIGN ALLOWABLE APPLIED LOADS Allo,wable Soil Bearing Pressure (ASBP) = 'i 5O0 psf (Per Design Criteria) CONTINUOUS FOOTINGS . I w MARKLI, Ftg.Width(b)= ' ft. . : Depth ofFtg.(h) = ft. WA w=ASBP(b)= LL pif USE: 15 WIDE x 'DE #5 !iB0T0M1. MARK: CF. 2 . . Ftg. :Width (b) = ft. Depth of Ftg. (h) WAiLow = ASBP (b) . pif I USE: "WIDE x DEEP. WITH # TOP & BOTI'OM I W @ Gridline = pif USE: CF- WmAx @ Gridline = pif USE: CP- W 3 @ Gridline.____ = pif USE: CP- W @ Gridline____ = __pif USE: CF- ____ MIKE SURPRENANT JOB & ASSOCIATES SHEET NO.__________________ OF______________ - Consulting Structural Engineers cALCuIA10 BY____________________ DATE_________________ CHECKED BY__________________________ DATE_____________________ SCALE CONTINUOUS FOOTINGS - MAX POST LOADS , Pxnax h (ft.) • ••• 2h (ft.) .• LJ MARK: CF-1 ?1A= ASBP(b)(2h)E )(.a..)(u) LBS. MARK: CF-2 • PMAX ASBP(b)(2h) LBS. - I:t MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB SHEET NO. __LI2L OF- CALCULATED BY_____________________ DATE CHECKED BY DATE SCALE I . I . . I : ~ . * I . ! : . , : . ~ • - . - SPREAD FOOTINGS - MAX. ALLOWABLE CONCENTRATED LOADS PMAX L- (ft.) - !b (ft.) MARK: P-..1-- * Px ASBP (b)2 .... . LBS. USE: 24" SQUARE x t "DEEP WITH (2) #4 EACH WAY @ BOTTOM MARK: P2 PMAX ='ASBP (b)2 = " 5 LBS USE: 30" SQUARE x " DEEP WITH (3) #4 EACH WAY @ BOTTOM MARK:?-3 PmAx = ASBP (b)2 = 5QQ LBS. USE: 36': SQUARE x V% "DEEP WITH (4) #4 EACH WAY © BOTTOM MARK: P-4 PMAX = ASBP (b)2 = __________________wt 54 LBS. USE: 42' SQUARE x "DEEP WITH (5) #4 EACH WAY @ BOTTOM MARK: P-5 PAUX = ASBP (b)2 = . tv Gault .1 LBS USE: 48" SQUARE x "DEEP WITH (6)#4 EACH WAY ® D PRODUCT 207 - E1 ME Adjacent Footing Load Adjacent Footing Load = 3,000.0 lbs Footing Width = 4.67 It Eccentricity = 0.00 in Wall to Fig CL Dist = 2.50 ft Footing Type Line Load Base Above/Below Soil - - 1 ft - at Back of Wall Poisson's Ratio = 0.300 Added seismic base force 890.8 lbs Mike Surprenant & Associates Title Viola Hoover St. Page: 113 Job#:18109 Dsgnr. JZ Date: 1 JUN 2O18 Description.... 15'-0" Max Retained Height (WI Seismic) This Wall in File: 8\18083—Viola-Hoover Street—Wriaht03-Enaineerinq\CaIc TempIateSV License: KW.06056839 Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14,ACI 530-13 Criteria I Retained Height = 15.00 ft Wall height above soil = 0.00 ft Slope Behind Wall = 0.00 Soil Data 1 Allow Soil Bearing = 3,300.0 psf Equivalent Fluid Pressure Method Active Heel Pressure = 38.0 psf/ft Height of Soil over Toe = 0.00 in = Water height over heel = 0.0 ft Passive Pressure 300.0 psf/ft = Soil Density, Heel = 110.00 pcf Soil Density Toe = 0.00 pcf FootingISoil Friction = 0.400 Soil height to ignore for passive pressure = 12.00 in Surcharge Loads I I Lateral Load Applied to Stem Surcharge Over Heel = 0.0 psf Lateral Load = 0.0 #Ift Used To Resist Sliding & Overturning .J-Ieight to Top 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom 0.00 ft Used for Sliding & Overturning Load Type = (W) F Wind I Axial Load Applied to Stem (Service Level) Axial Dead Load = 0.0 lbs Wind on Exposed Stem = 0.0 psI Axial Live Load = 0.0 lbs (Strength Level) Axial Load Eccentricity = 0.0 In Earth Pressure Seismic Load • Method : Mononobe-Okabe/Seed-Whitman Kee for seismic earth pressure = 0.382 = 6.302 DesignKh = 0.1589 = 0.080 Using Mononobe-Okabe I Seed-Whitman procedure I Design Summary Wall Stability Ratios Overturning 1.65 OK Slab Resists All Sliding I Total Bearing Load = 11,469 lbs ... resultant ecc. = 26.88 in Soil Pressure @ Toe = 2,770 psI OK Soil Pressure © Heel = 0 psf OK Allowable = 3.300 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 3,878 psI ACI Factored @ Heel = 0 psI Footing Shear @ Toe = 40.5 psi OK Footing Shear @ Heel = 26.2 psi OK Allowable = 75.0 psi Sliding Calcs Lateral Sliding Force = 7,150.1 lbs Mike Surprenant & Associates Title Viola Hoover St. Page: ((4 Job #:18109 Dsgnr: JZ Date: 1 JUN 2018 Description.... 15-0" Max Retained Height (WI Seismic) This Wallin File: F:ProJectst2018\18063-Viola-HOOVer Street-Wrightt03-Engineering\Calc TemplatestV RetainPro (C) 1907-2017, Build 11.17.11.03 License: KW.06056839 Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14,ACI 530-13 [Stem Construction 1 3rd Stem OK Design Height Above Ftg ft = 8.00 Wall Material Above 'Ht' = Masonry Design Method = ASD Thickness = 12.00 Reber Size = # 6 Reber Spacing 8.00 Reber Placed at = Edge Design Data fbIFB + fa/Fa = 0.652 Total Force © Section Service Level lbs = 1,957.9 Strength Level lbs = Moment .... Actual Service Level ft-#= 5,601.1 Strength Level ft-# = Moment ..... Allowable ft-# = 8,587.7 Shear ..... Actual Service Level psi = 14.0 Strength Level psi = Shear.....Allowable psi = 45.6 Anet (Masonry) in2 = 139.50 Reber Depth d' in = 9.00 Masonry Data I'm Fs Solid Grouting Vertical component of active lateral soil pressure IS Modular Ratio 'n' NOT considered in the calculation of soil bearing Wall Weight Load Factors Short Term Factor Building Code CBC 2016,ACl Equiv. Solid Thick. Dead Load 1.200 Masonry Block Type Live Load 1.600 Masonry Design Method Earth, H 1.600 Concrete Data Wind, W 1.000 Ic psi = Seismic. E 1.000 Fy psi 2nd Bottom Stem OK Stem OK 4.00 0.00 Masonry Concrete ASD LRFD 16.00 16.00 #8 #8 8.00 8.00 Edge Edge 0.804 0.867 3697.9 9,251.0 16915.9 55,927.0 21 .049.1 64,532.3 19.7 57.1 46.4 75.0 187.50 13.00 13.50 200.0 2,500.0 60,000.0 psi= 1,500 1,500 psi = 20,000 20,000 = Yes Yes = 21.48 21.48 ps1 133.0 175.0 = 1.000 1.000 in= 11.60 15.60 = Normal Weight = ASD - Mike Surprenant & Associates Title Viola Hoover St. Page: b ! Job #:18109 Dsgnr JZ Date: 1 JUN 2O18 Description.... 15'-0" Max Retained Height (wi Seismic) License: KW-06056839. - - Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14,ACI 530-13 Concrete Stem Rebar Area Details Bottom Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment): 0.9429 in2/ft (4/3) * As: 1.2572 in2/ft Min Stem T&S Reinf Area 1.536 in2 200bd/fy: 200(12)(13.5)160000: 0.54 in2/ft Min Stem T&S Reinf Area per It of stem Height: 0.384 1n2/ft 0.0018bh : 0.0018(12)(16): 0.3456 in2lft Horizontal Reinforcing Options: One layer of: Two layers of: Required Area : 0.9429 ln2lft 94@ 6.25 in #4@ 12.50 in Provided Area : 1.185 1n21ft #5@ 9.69 in #5@ 19.38 in Maximum Area : 1.8288 in21ft #6@ 13.75 in #6@ 27.50 in Footing Dimensions & Strengths I I Footing Design Results 1 Toe Width = 5.50 It Toe Heel Heel Width = 4.50 Factored Pressure =3,878 0 psI Total Footing Width = 10.00 Mu': Upward 45,672 236 ft-# Footing Thickness = 24.00 in Mu': Downward 5,445 11,733 ft-# Mu: Design = 40,227 11,496 ft-# Key Width 0.00 Actual 1-Way Shear = 40.54 26.21 psi Key Depth - 0.00 in Allow 1-Way Shear = 75.00 40.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #5 @ 6.00 in t'c = 2,500 psi Fy = 60,000 psi Heel Reinforcing = #5 @ 16.00 in Footing Concrete Density = 150.00 pd Key Reinforcing = #5 @ 16.00 in Mm. As % = 0.0018 Other Acceptable S'z Spacings Cover @ Top 3.00 @ Btm= 3.00 in i Toe: #4@ 4.06 n, #5@ 6.30 in, #6@ 8.94 in, #7@ 12.19 In, #8@ 16.05 in, #9@ 20.3 Heel: Not req'd: Mu <phi*5*lambda*sqrt(fc)*Sm Key: No key defined Min footing T&S reini Area 5.18 in2 Min rooting T&S relnf Area per foot 0.52 in2 lft If one layer of horizontal bars: If two layers of horizontal bars: #4@ 4.63 in #4@ 9.26 in #5@ 7.18 in #5@ 14.35 in #6@ 10.19 in #6@ 20.37 in I Summary of Overturning & Resisting Forces & Moments OVERTURNING ,,,..RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-# lbs ft ft-# Heel Active Pressure = 5,491.0 5.67 31,115.7 Soil Over Heel 5225.0 6.42 43,977.1 Surcharge over Heel = Sloped Soil Over Heel = Surcharge Over Toe = Surcharge Over Heel = Adjacent Footing Load = 768.3 10.87 8349.5 Adjacent Footing Load = 556.1 8.42 4,680.4 Added Lateral Load = Axial Dead Load on Stem = Load @ Stem Above Soil = Axial Live Load on Stem Seismic Earth Load = 890.8 10.20 9,086.4 Soil Over Toe = Surcharge Over Toe = Total 71501 O.T.M.48,551.5 Stem Weight(s) = 2,431.0 6.10 14,838.0 . Earth @ Stem Transitions 256.7 6.67 1,711.1 = = Footing Weighl 3,000.0 5.00 15000.0 Resisting/Overturning Ratio = 1.65 Key Weight = Vertical Loads used for Soil Pressure = 11,468.8 lbs Vert. Component = Total 11,468.8 lbs R.M.= 80,204.6 If seismic is included, the OTM and sliding ratios * Axial live load NOT included in total displayed1 or used for overturning resistance, but is included for soil pressure calculation. be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201 Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance. Mike Surprenant & Associates Title Viola Hoover St. Page: Job#: 18109 Dsgnr: JZ Date: I JUN 2018 Description.... 15-0 Max Retained Height (wl Seismic) This Wall in File: F:\Projects\201818063-Viola-Hoover Street-Wright03-EngineeringCalc TemplatesV RetainPro (C) 1987.2017, Build 11.17.11.03 License: W-06839..__.. Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14ACI 530-13 ITilt I Horizontal Deflection at ToD of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Defi @ Top of Wall (approximate only) 0.115 in The above calculation is not valid If the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil. I Adjacent Footing Load Adjacent Footing Load = 0.0 lbs Footing Width = 0.00 It Eccentricity = 0.00 in Wall to Ftg CL Dist = 0.00 ft Footing Type Line Load Base Above/Below Soil - 0.0 It - at Back of Wall Poisson's Ratio = 0.300 Added seismic base force 421.1 lbs Mike Surprenant & Associates Title Viola Hoover St. Page: (fl Job #:18109 Dsgnr JZ Date: 1 JUN 2018 Description.... 8'-0" Max Retained Height (W/ Seismic) This Wait In File: F:tProjectst2018\18063-Viola-HOOVer Street-Wright03-Engineering\Calc TemplatesV RetainPro (c) 1987-2017, Build 11.11.11.03 License: KW-06056839 Cantilevered Retaining Wall Code: CBC 2016,ACl 318-14,ACl 530-13 Criteria Retained Height = 8.00 ft Wall height above soil = 0.00 ft Slope Behind Wall = 0.00 ioii Data 1 Allow Soil Bearing = 3300.0 psf Equivalent Fluid Pressure Method Active Heel Pressure = 52.0 psf/ft Height of Soil over Toe = 0.00 in Passive Pressure = = 300.0 psf/ft Water height over heel = 0.0 ft Soil Density, Heel = 110.00 pcI Soil Density, Toe = 0.00 pcf FootingilSoil Friction = 0.400 Soil height to ignore for passive pressure = 12.00 in Lateral Load Applied to Stem 1 Surcharge Loads Surcharge Over Heel 0.0 psf Lateral Load = 0.0 #/ft Used To Resist Sliding & Overturning ...Height to Top 0.00 ft Surcharge Over Toe = 0.0 psf ..ileight to Bottom = 0.00 ft Used for Sliding & Overturning Load Type = Wind (W) [Aat Load Applied to Stem (Service Level) Axial Dead Load = 0.0 lbs Wind on Exposed Stem = 0.0 psf Axial Live Load = 0.0 lbs (Service Level) Axial Load Eccentricity = 0.0 in Earth Pressure Seismic Load Method : Mononobe-Okabe/Seed-Whitman Kee for seismic earth pressure = 0.532 = 0.423 Design Kh = 0.1589 = 0.109 Using Mononobe-Okabe I Seed-Whitman procedure Mike Surprenant & Associates Title Viola Hoover St. Page: 4 Job # :18109 Dsgnr JZ Date: 1 JUN 2018 Description.... 8'-O" Max Retained Height (WI Seismic) This Wall in File: F:\Projects201818063—ViOia—HOOVer Street-Wnght03-EngineeringCaIc Templates\V RetalnPro (c) 1987-2017, Build 11.17.11.03 License: KW-06056839 Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14,ACI 530-13 License To: MIKE SURPRENANT I Design Summary I rstem Construction 1 2nd Bottom Stem OK Stem OK Wail Stability Ratios Design Height Above Ftc ft= 4.00 0.00 Overturning = 1.47 Ratio < 1.5! Wall Material Above Ht" = Masonry Masonry Slab Resists All Sliding! Design Method ASD ASD LRFD Thickness = 8.00 12.00 Total Bearing Load = 4,865 lbs Rebar Size = # 5 4 6 ...resuitant ccc. = 20.11 in RebarSpacing = 16.00 8.00 Reber Placed at = Edge Edge Soil Pressure @ Toe = 3,020 Pst OK Design Data Soil Pressure® Heel = 0 pst OK fbIFB + fa/Fa = 0.609 0.728 Allowable = 3,300 Pt Total Force® Section Soil Pressure Less Than Allowable Service Level lbs = 645.1 2,041.3 AC! Factored @ Toe = AC! Factored Heel = 4,228 PSf 0 psf Strength Level lbs = @ Moment ... Actual Footing Shear @Toe = 19.4 psi OK Service Level ft-#= 1,104.4 6,248.4 Footing Shear® Heel = 13.3 psi OK strength Level ft-# Allowable = 75.0 psi Moment.....Allowable ft-#= 1,812.8 8,587.7 Sliding Coles Shear Actual ..... Lateral Sliding Force = 3.021.1 lbs Service Level psi = 7.0 14.6 Strength Level psi = Shear.....Allowable psi = 44.7 45.8 And (Masonry) 1n2 = 91.50 139.50 Reber Depth 'd' in = 5.25_9.00 Masonry Data - psi = 1,500 1,500 Fe psi = 20,000 20.000 Solid Grouting = Yes Yes Vertical component of active lateral soil pressure IS Modular Ratio 'rf 21.48 21.48 NOT considered in the calculation of soil bearing %ASII AIinht nsf= 84.0 133.0 Short Term Factor = 1.000 1.000 Load Factors Building Code CBC 2016,ACI Equiv. Solid Thick. in= 7.60 11.60 Dead Load 1.200 Masonry Block Type = NormaiWeight Live Load 1.600 Masonry Design Method = ASD Earth, H 1.600 Concrete Data Wind, W 1.000 rcpsi = Seismic, E 1.000 Fy psi = License: KW.06056839 License To: MIKE SURPRENANT Footing Dimensions & Strengths I Toe Width = 2.00 It Heel Width = 3.50 Total Footing Width = 5.50 Footing Thickness = 24.00 In Key Width = 0.00 in Key Depth = 0.00 in Key Distance from Toe = 0.00 ft fc = 2,500 psi Fy = 60,000 psi Footing Concrete Density = 150.00 pcI Mm. As % 0.0018 Cover @ Top 3.00 @ Btm 3.00 in Item - Heel Active Pressure = Surcharge over Heel = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = Seismic Earth Load = OVERTURNING..... Force Distance Moment lbs ft ft-# 2,600.0 3.33 8,666.7 421.1 6.00 2,526.5 Total 3,021.1 O.T.M. 11,193.2 Resisting/Overturning Ratio = 1.47 Vertical Loads used for Soil Pressure = 4,864.7 lbs Mike Surprenant & Associates Title Viola- Hoover St. Page: Job #:18109 Dsgnr: JZ Date: 1 JUN 2018 Description.... 8'-0" Max Retained Height (wi Seismic) This Wall in File: F:Projects\201818063-Viola-Hoover Street-Wright03-Engineering\Calc Cantilevered Retaining Wall Code: CBC 2016,ACl 318-14,ACl 530-13 Footing Design Results 1 I2 Heel Factored Pressure = 4,228 0 psf Mu': Upward 6.706 2 ft4 Mu': Downward = 900 5,310 ft-# Mu: Design = 5,806 5,308 ft-# Actual 1-Way Shear = 19.36 13.29 psi Allow 1-Way Shear = 40.00 40.00 psi Toe Reinforcing = #5 @ 8.00 in Heel Reinforcing = # 5 @ 16.00 in Key Reinforcing = None Spec'd Other Acceptable Sizes & Spacings Toe: Not req'd: Mu < phi*5*lambda*sqrt(rC)*Sm Heel: Not req'd: Mu < phi*5*lambda*sqrt(fc)*Sm Key: No key defined Min footing T&S reinf Area 2.85 in2 Min footing T&S reinf Area per foot 0.52 in2 ,ft If one layer of horizontal bars: If two layers of horizontal bars: #4@ 4.63 in #4@ 9.26 in #5@ 7.18 in #5@ 14.35 in #6@ 10.19 in #6@ 20.37 in I Summary of Overturning & Resisting Forces & Moments I If seismic is included, the OTM and sliding ratios be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201 Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance. Force Distance Moment -. lbs ft ft-# Soil Over Heel 2,200.0 4.25 9,350.0 Sloped Soil Over Heel = Surcharge Over Heel = Adjacent. Footing Load = Axial Dead Load on Stem= Axial Live Load on Stem = Soil Over Toe = Surcharge Over Toe = Stem Weight(s) = 868.0 2.44 2,114.0 Earth @ Stem Transition 146.7 2.83 415.6 Footing Weighi = 1,650.0 2.75 4,537.5 Key Weight = Vert. Component = Total = 4,864.7 lbs R.M. 16,417.1 * Axial live load NOT included in total displayed or used for overturning resistance, but Is included for soil pressure calculation. I_Tilt HorizontalDeflectionatTopof Wallduetosettlementof soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Deft @ Top of Wall (approximate only) 0.122 In Theabovecalculationisnotvalidif the _heel soil bearing _Pressure exceeds that of the too, because _the wall would then tend to rotate into the retained soil. [Surcharge Loads Surcharge Over Heel = 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 Used for Sliding & Overturning (Axial Load Applied to Stem j Axial Dead Load = 0.0 lbs Axial Live Load = 0.0 lbs Axial Load Eccentricity = 0.0 in I Design Summary I Wall Stability Ratios Overturning = 1.58 OK Slab Resists All Sliding Total Bearing Load = 2,203 lbs ...resultant ecc. = 11.67 in Soil Pressure @ Toe = 1,890 psf OK Soil Pressure @ Heel = 0 psf OK Allowable = 2,500 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,646 psf ACt Factored @ Heel = 0 psf Footing Shear @ Toe = 8.2 psi OK Footing Shear @ Heel = 5.1 psi OK Allowable = 75.0 psi Sliding Caics Lateral Sliding Force = 1274.0 lbs Mike Surprenant & Associates Title Viola? Hoover St. Page: 120 Job #:18109 Dsgnr: JZ Date: 1 JUN 2018 Description.... 5'.0' Max Retained Height (w/o Seismic) This Wall in File: F:\Projects\2018118063-Viola-Hoover Street-Wright\03-Engineering\Calc TemplatestV RetalnPro (C) 1987-2017, Build 11.1 T.'Il.03 Llcense:KW.06056839 - Cantilevered Retaining Wall Code: CBC 2016,ACl 318-14,ACI 530-13 Criteria Retained Height = 5.00 ft Wall height above soil = 0.00 ft Slope Behind Wall = 0.00 Height of Soil over Toe = 0.00 in Water height over heel = 0.0 It (Soil Data Allow Soil Bearing = 2,500.0 psf Equivalent Fluid Pressure Method Active Heel Pressure - = 52.0 psflfl Passive Pressure = 300.0 psf/ft Soil Density, Heel = 110.00 pd Soil Density, Toe = 0.00 pcf FootingilSoil Friction = 0.400 Soil height to ignore for passive pressure = 12.00 in [Lateral Load Applied to Stem Lateral Load = 0.0 #/ft ...Height to Top 0.00 ft ...Height to Bottom = 0.00 ft Load Type = Wind (W) (Service Level) Wind on Exposed Stem = 0.0 psf (Service Level) I Adjacent Footing Load I Adjacent Footing Load = 0.0 lbs Footing Width = 0.00 It Eccentricity = 0.00 In Wall to Fig CL Dist = 0.00 ft Footing Type Line Load Base Above/Below Soil - 00 ft - at Back of Wall Poisson's Ratio = 0.300 Tstem Construction Bottom Stem OK Design Height Above Ftc ft= 0.00 Wall Material Above Ht" Masonry Design Method = ASD ASD LRFD Thickness = 8.00 Reber Size = # 5 Reber Spacing = 16.00 Reber Placed at = Edge Design Data tb/FB + fa/Fa = 0.598 Total Force @ Section Service Level lbs = 650.0 Strength Level lbs Moment. ...Actual Service Level ft-# = 1,083.3 Strength Level ft-# = Moment ..... Allowable = 1,812.8 Shear ..... Actual Service Level psi 7.1 Strength Level psi = Shear ..... Allowable psi = 45.0 Anet (Masonry) in2 = 91.50 - Reber Depth 'd in = -_5.25 Masonry Data Fm psi= 1,500 Fs psi= 20,000 Solid Grouting = Yes Vertical component of active lateral soil pressure IS Modular Ratio 'n = 21.48 NOT considered in the calculation of soil bearing Wall Weight psf = 84.0 Load Factors Short Term Factor = 1.000 Building Code CBC 2016,ACI Equiv. Solid Thick. in = 7.60 Dead Load 1.200 Masonry Block Type = Normal Weight Live Load 1.600 Masonry Design Method = ASD Earth, H 1.600 Concrete Data Wind, W 1.000 l'c psi = Seismic, E 1.000 Fy psi = Mike Surprenant & Associates Title Viola Hoover St. Page :12! Job #:18109 Dsgnr: JZ Date: 1 JUN 2O18 Description.... 6'-0" Max Retained Height (w/o Seismic) This Wallin File: F:Projects2018\18063-Viola-Hoover Street-'Wright\03-EngineeringCaIc TemplatesV RetalnPro (c) 1987-2017, Build 1 1.17.11.03 Ucense: KW-06056839 Cantilevered Retaining Wall Code: CBC 2016,ACI 318-14,ACI 530-13 Footing Dimensions & Strengths • Toe Width = 1.50 ft Heel Width = 2.00 Total Footing Width = 3.50 Footing Thickness = 24.00 in Key Width = 0.00 in Key Depth = 0.00 in Key Distance from Toe = 0.00 ft ft = 2,500 psi Fy = 60,000 psi Footing Concrete Density 150.00 pcf Mm. As % = 0.0018 Cover @ Top 3.00 @ Btm= 3.00 in Footing Design Results Toe Heel Factored Pressure = 2,646 0 psf Mu': Upward = 2,338 1 ft-# Mu': Downward = 495 1,133 ft-# Mu: Design = 1,843 1,132 ft-f! Actual 1-Way Shear = 8.15 5.09 psi Mow 1-Way Shear = 40.00 40.00 psi Toe Reinforcing = # 5 @8.00 in Heel Reinforcing = # 5 @ 16.00 in Key Reinforcing = None Spec'd Other Acceptable Sizes & Spacings Toe: Not req'd: Mu <phi5*lambda*sqrt(fc)*Sm Heel: Not req'd: Mu < phi*51ambda 5qrt(fc)*Sm Key: No key defined Min footing T&S reinf Area Min footing T&S relnf Area per foot If one layer of horizontal bars: #4@ 4.63 in #5@ 7.18 in #6@ 10.19 in 1.81 in2 0.52 1n2 At If two layers of horizontal bars: #4@ 9.26 in #5@ 14.35 in #6@ 20.37 in I Summary of Overturnina & Resisting Forces & Moments I Item -- .....OVERTURNING..... Force Distance Moment lbs ft ft-f! Heel Active Pressure = 1,274.0 2.33 2,972.7 Surcharge over Heel = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = Total 1,274.0 O.T.M. 2,972.7 Resisting/Overturning Ratio = 1.68 Vertical Loads used for Soil Pressure = 2,203.3 lbs Force Distance Moment lbs ft ft-# Soil Over Heel 733.3 2.83 2,077.8 Sloped Soil Over Heel = Surcharge Over Heel = Adjacent Footing Load = Axial Dead Load on Stem = Axial Live Load on Stem = Soil Over Toe = Surcharge Over Toe = Stem Weight(s) = 420.0 1.83 770.0 Earth @ Stem Transitions= Footing Weight = 1,050.0 1.75 1,837.5 Key Weight = Vert. Component = Total = 2,203.3 lbs R.M. 4,685.3 * Axial live load NOT Included in total displayed or used for overturning resistance, but is included for soil pressure calculation. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance. Tilt HorizontalDeflectionat Top of Wallduetosettlementof soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Deft © Top of Wall (approximate only) 0.075 in Theabovecalculationisnot validif the heal soil bearing _pressure exceeds that of the toe, becausethewallwouldthentendtorotateintotheretainedsoil. Mike Surprenant & Associates Consulting Structural Engineers Job 18063 Sheet No. of___________ Calculated by - Date Checked by Date Beam Loading Height of Column Applied Force (Lateral from Steel) Applied Moment (Lateral from Steel) Max Moment (wl1.4 for Seismic) GRADE BEAM DESIGN Strain £ Stress 0;B5T Ic h= 10 ft P= kips G L M 140 kip-ft M z ------------ -- ----e-e-- ------- . •: L=I 12.5 ft £9 bI 28 in ;< d = 21Iin b Cover =j 3 In hE 24 in 60 ksl 60 ksl typ. C, = 0.00207 fcl 2500lpsi 2500 psttyp. Ecu = 0.003 0= 0.9 0.875 A. = 1.69 lfl (M:12)1(01,rd) [nrhanaI lon #ofBars BarSlze db(in) Ah(in) (feet) 2 4 1/2 0.39 2 2 5 518 0.61 3 rA 4 6 314 1.77 4 2 7 718 1.20 5 2 8 1 1.57 6 Beam information Span of Beam Beam Width Effective Depth Reqd Steel Reinforcement Cover Total Beam Height Steel Reinforcement Grade Steel Yield Strain Concrete Compressive Strength Concrete Crushing Strain Strength Reduction Factor Assume I = 0.815 Req'd Steel Area Reinforcement Options CHOSEN OPTION C 4 # 6 ALONG TENSION SIDE GREAT SELECTION Corresponding Stress Block Depth a 1.71 in . (As'fy)1(0.859rcb) lever arm Id = 2015 in d - a12 Check assumption j = 0.96 (jd)ld New Req'd Steel Area A. (new) = 1.54 in' (M9912)I((b'fid) STILL GREAT SELECTION Max Steel Ratio p,, = 0.00333 200lfy Actual Steel Ratio p, = 0.00301 AJ(bd) STEEL RATIO OKAY USE: 28 X 24 CONT. GRADE BEAM WI 4 # 6 ALONG TOP AND BOTTOM wl # 3 TIES @ 8" O.C. wl 4 - 0' inches overhang on each side of column wl 3 ' cover Grade 60 Reinforcing Steel Concrete wl £c of 2600 psi (MIN) JOB : MIKE SURPRENANT ID & ASSOCIATES SHEET NO. _I OF__________________ Consulting Structural Engineers CALCULATED BY_ DATE CHECKED BY____________________________ DATE SCALE 0 PRODUCT O7 It MIKE SURPRENANT SHEET NO._______ OF CALCULATED BY & ASSOCIATES _____ ________ DATE__________ Consulting Structural Engineers - CHECKED BY________________________ DATE___________________ SCALE HOLD-DOWN SCHEDULE [] 4x POST wl MSTC40 FLR-To-FLR HOLD-DOWN [] 4x POST wl MSTC52 FLR-To-FLR HOLD-DOWN Ei 4x .POST W/ MSTC6 FLR-To-FLR HOLD-DOWN []4x POST w/ MSTC4853 HOLD-DOWN 4x MIN. BEAM BELOW wl MIN.3 lOd TO POST) 4x POST wl STHDIO HOLD-DOWN 4x POST WI I4DU2 I1OLD-DOWH ON SSTBI6 A.B. 7 4x POST wl 1401)4 HOLD-DOWN ON 551B20 -A.:5. [] 4x POST wl I4DU5 HOLD-DOWN ON 551B24 A B (] '-ft "POST wl 1401)6 HOLD-DOWN ON 551626 A B [] t'x POST w/ 14DU1I HOLD-DOWN ON 561X30 A.B. [ éx POST 4, 14DU14 }.1OLDDNN ON SBIx30 A.B. .. FN .--------HH NOTEZ %) HOW DOWN ANd4OR5 MUST BE TIEDII4 PLACE prOg TO • . FOUNDATION INSPECTION. • DEEPEN FOOTING TO PROVIDE NIH: CONCRETE • :OVERNHERE HOLD DOWN AHC14006 ARE LONER : THAN THE FIG DEPTH. USE ?RJ) 6 6 bi OLb-56W FORA....D WOOD SUB-FLOOR CONDITION. ii) I1STC 14OLD-DO4N5 MAY USE td SINKERS QE IOd c)MMoH HAILS. . . 5) NSTC HOLD-DOWNS TO BE CENTERED BETWEEN UPPER LOWER FLOORS. MAXIMUM CLEAR PM i. NAILS: REQUIRED IN CLEAR SPAN (RIM BOARD) AREA. REV. JAN. 2o06 fl PflflhIT1 JOB___ I- MIKE SURPRENANT SHEET NO._____________ __________ OF_________ CALCULATED BY- & ASSOCIATES ______ DATE___________ consulting Structua1 Engineers CHECKED BY_______________________ DATE SCALE SP, READ FOOTING SCHEDULE SYMBOL : SIzE AND REINFORCEMENT (r2øopl 4 F41M 24 SQUARE X V " PEEP ib/ (2) *t4 EACJ1 WAY 30 SQUARE X it a- DEEP tIll (3) *4 EACH WAY 43> 36 SQUARE X 'i$ " DEEP wl (4) *4 EACH WAY S> 42t1 SQUARE X't DEEP wI(S) *4 EACH WAY 4&0 SQUARE X j" PEEP w/ () *4 EACH HAT 0 PROOUCT 207 7420 TRADE STREET• SAN Wright Design Mike Suprenant cc: 220 FAX: (858) 549-16040 EMAIL: geotech@gei-sd.com SPIN Geotechnical Exploration, Inc. SOIL AND FOUNDATION ENGINEERING 0 GROUNDWATER ENGINEERING GEOLOGY 15 August 2018 Mr. Ted Viola 4958 Park Drive, Unit 110 Carlsbad, CA 92008 Subject: Revised Building Plan Review Hoover Street Residential Project 1095 Hoover Street Carlsbad, California Dear Mr. Viola: Job No. 16-11187 As requested and as required by the .City of Carlsbad reviewer, we have reviewed the revised foundation structural plans (15 sheets total) for the proposed residential project to be built at the subject address. The structural plans were prepared by Mike Suprenant and Associates. We have also reviewed the revised architectural plans provided by Wright Design (10 sheets total). The revised architectural and structural plans are dated June 10, 2018. The plans were reviewed from a geotechnical engineering viewpoint. After suggested corrections were made, we found the revised plans to be in accordance with the recommendations presented in our "Update Report of Geotechnical Investigation," for the subject project dated February 21, 2018. A copy of our report and this letter should be provided to all pertinent contractors involved with the grading and foundation construction. Any soil compaction should be as required by the City of Carlsbad and per our soils report. If you have any questions regarding this letter, please contact our office. Reference to our Job No. 16-11187 will help expedite a response to your inquiry. Respectfully submitted, GPIECHNICAL EXPLORATION, INC. P. E. Richard A. Cerros, E.I.T. R.C.E. 34422/G.E. 2007 Staff Engineer Senior Geotechnical Engineer PC W%16,0 M1,15 REPORT OF CEOTECHNIcAL INVESTIGATION UPDATE Hoover Street Residential Project 1095 Hoover Street Carlsbad, California 2OBNO.16-11I87 11 January 2018 Prepared for: Mr. Ted Viola PC2018-0025 1095 HOOVER ST HOOVER ST: NEW SFD & ADU DEV2017-0112 2061720100 6/812018 PC2018-0025 '0' ' (1 Geotechnical Exploration, Inc. SOIL AND FOUNDATION ENGINEERING o GROUNDWATER t ENGINEERING GEOLOGY 11 January 2018 Mr. Ted Viola Job No. 16-11187 4858 Park Drive, Unit 110 Carlsbad, CA 92008 Subject: Renort of Geotechnical Investigation Update Hoover Street Residential Project 1095 Hoover Street Carlsbad, California Dear Mr. Viola: In accordance with your request, Geotechnical Exploration, Inc. has performed a geotechnical investigation update for the subject property. The original fiel d w o r k was performed on August 12, 2016. If the conclusions and recommendations presented in this report are incorporat e d into the design and construction of the proposed residential structures, it is o u r opinion that the site is suitable for the project. This opportunity to be of service is sincerely appreciated. Should you hav e a n y questions concerning the following report, please do not hesitate to contact u s . Reference to our Job No. 16-11187 will expedite a response to your inquiries. Respectfully submitted, GEOTECHNICAL EXPLORATION, INC. 1' , - Jaime A. Cerros, P.E. JojF1an A. Browning R.C.E. 34422/G.E. 2007 P.G. 9012/C.E.G. 2615 Senior Geotechnical Engineer Senior Project Geologist 7420 TRADE STREETI SAN DIEGO, CA. 921210 (858)549-72221 FAX: (858) 549-16041 EMAIL: geotech@gei.sd.com 11 I TABLE OF CONTENTS PAGE 1 1 2 3 4 5 6 .7 26 26 PROJECT SUMMARY AND SCOPE OF SERVICES SITE DESCRIPTION FIELD INVESTIGATION SOIL DESCRIPTION GROUNDWATER SEISMIC CONSIDERATIONS LABORATORY TESTS & SOIL INFORMATION CONCLUSION AND RECOMMENDATIONS GRADING NOTES LIMITATIONS FIGURES I. Vicinity Map IIa-b. Plot Plan and Geologic Cross Section lila-h. Exploratory Test Pit Logs. Laboratory Test Results Geologic Map and Legend Foundation Requirements Near Slopes Retaining Wall Drainage Schematic APPENDICES Unified Soil Classification System USGS Design Maps Summary Report REPORT OF GEOTECHNICAL INVESTIGATION UPDATE Hoover Street Residential Project 1095 Hoover Street Carlsbad, California 30b No. 16-11187 The following report presents the findings and recommendations of Geotechnicaf Exploration, Inc. for the subject proposed residential structures. I. PROJECT SUf4NARYAND SCOPE OF SERVICES It is our understanding, based on information provided by Mr. Viola, t h a t t h e residential property is to be split into two lots and the construction of a n e w s i n g l e - family residential structure and associated improvements. We understand tha t t h e planned project will consist of a two-story structure with a basement that wi l l u t i l i z e conventional foundations. We have reviewed the grading plans by the Se a B r i g h t Company. Additional or modified recommendations have been provided. The scope of work performed for this investigation included a site recon n a i s s a n c e and subsurface exploration program, laboratory testing, geotechnical engi n e e r i n g analysis of the field and laboratory data, and the preparation of this report. T h e data obtained and the analyses performed were for the purpose of prov i d i n g d e s i g n and construction criteria for the project earthwork, building foundations, s l a b o n - grade floors, and concrete driveways. IL SITE DESCRIPTION The subject site Is located in the City of Carlsbad, State of Californ i a . F o r t h e location of the site, refer to the Vicinity Map, Figure. No. I. Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 2 The vacant lot is bordered on the north by Hoover Street; on the east by Ada m s Street; on the south by similar undeveloped residential property; and on th e w e s t by open space property adjacent to Agua Hedionda Lagoon. Access to the lo t i s along the south side of Hoover Street, a cul-de-sac. Refer to the Plot Plan, Figure No. II. Vegetation at the site consists primarily of native weeds, ice plant and sp a r s e shrubbery. A relatively deep erosion gulley exists in the southern portion of the property. A storm drain pipe discharges onto the southeast portion of the prop e r t y from under Adams Street. The lot slopes moderately down to the north and w e s t . Elevations across the property range from approximately 67 feet above Mean Se a Level (AMSL) along the eastern property line, to approximately 25 feet AMSL at the southwest corner of the property. Information concerning approximate elevat i o n s across the site was obtained from a topographic survey prepared by The Sea Bright Company, dated August 25, 2016. IlL FIELD INVESTIGATION The field investigation consisted of a surface reconnaissance and a subsur f a c e exploration program using hand tools to investigate and sample the subsurface soils. Eight exploratory test pits were advanced in the vicinity of the proposed residential structures and improvements. The trenches were excavated to a maximum depth of 3 to 4 feet in order to obtain representative soil samples and to define a soil profile across the residential property. Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 3 The soils encountered in the exploratory test pit were continuously logged in the field by our geologist and described in accordance with the Unified Soil' Classification System (refer to Appendix A). The approximate locations of the exploratory trenches are shown on the Plot Plan, Figure No. II. Representative samples were obtained from the exploratory trenches at selected depths appropriate to the investigation. All samples were returned to our laboratory for evaluation and testing. Exploratory trench logs have been prepared on the basis of our observations and laboratory test results. Logs of the exploratory test pits are attached as Figure Nos. lila-h. IV. SOIL DESCRIPTION Existing fill/topsoil, consisting of loose to medium dense, silty sands, were encountered in all test pits to a depth of 1 to 2 feet. Medium dense to dense formational materials, comprised of silty sand, terrace materials referred to as Old Paralic Deposits (Q0P2-4), underlie the fill/topsoil as encountered in the eight exploratory test pits. These formational materials are generally massive and horizontal. In our opinion, the silty sand fill/topsoil and the silty sand formational soils possess a low potential for expansion. The exploratory test pit logs and related information depict subsurface conditions only at the specific locations shown on the site plan and on the particular date designated on the logs. Also, the passage of time may result in changes in the subsurface conditions due to environmental changes. Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 4 V. GROUNDWATER Free groundwater was not encountered in the exploratory test pits a t t h e t i m e o f excavation. It must be noted, however, that fluctuations in the level of groundwater may occur due to variations in ground surface topograp h y , s u b s u r f a c e stratification, rainfall, and other possible factors that may not have b e e n e v i d e n t a t the time of our field Investigation. It should be kept in mind that grading operations can change surface d r a i n a g e patterns and/or reduce permeabilities due to the densification of compac t e d s o i l s . Such changes of surface and subsurface hydrologic conditions, plus i r r i g a t i o n o f landscaping or significant increases in rainfall, may result in the appe a r a n c e o f surface or near-surface water at locations where -none existed pr e v i o u s l y . T h e appearance of such water is expected to be localized and cosmetic in n a t u r e , i f good positive drainage is implemented, as recommended in this report, d u r i n g a n d at the completion of construction. It must be understood that unless discovered during initial site e x p l o r a t i o n o r encountered during site grading operations, it is extremely difficult to p r e d i c t i f o r where perched or true groundwater conditions may appear in the future. W h e n s i t e fill or formational soils are fine-grained and of low permeability, w a t e r p r o b l e m s may not become apparent for extended periods of time. Water conditions, where suspected or encountered during Constructio n , s h o u l d b e evaluated and remedied by the project civil and geotechnical consu l t a n t s . T h e project developer and property owner, however, must realize that post-con s t r u c t i o n appearances of groundwater may have to be dealt with on a site-specific b a s i s . 0 Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 5 VI. SEISMIC COWS ID EP. 4TIONS The San Diego area, as most of California, is located in a seismically active re g i o n , . The San Diego area has been referred to as the eastern edge of the South e r n California Continental Borderland, an extension of the Peninsular R a n g e s Geomorphic Province. The borderland is part of a broad tectonic boundary b e t w e e n the North American and Pacific Plates. The plate boundary is dominate d b y a complex system of active major strike-slip (right lateral), northwest trendi n g f a u l t s extending from the tan Andreas fault, about 70 miles east, to the San Clem e n t e fault, about 50 miles west of the San Diego metropolitan area. Based on our review of some available published information including t h e California Geologic Survey and United States Geological Survey "Geologic Map of the Oceanside 30'x60' Quadrangle, California," by Michael P. Kennedy and Slang S. Tan (2007), the bedrock geologic materials underlying the site are referred t o a s the "Old Paralic Deposits—Reddish brown, silty, sandstone interbedded with bro w n , clayey sandstone." According to the aforementioned map, there are n o f a u l t s known to pass through the site. Refer to Figure No. V, Geologic Map. The prominent fault zones generally considered having the most potential f o r earthquake damage in the vicinity of the site are the active Rose Canyo n a n d Coronado Bank fault zones mapped approximately S and 21 miles southwest o f t h e site, respectively, and the active Elsinore and San Jacinto fault zones m a p p e d approximately 24 and 47 miles northeast of the site, respectively. Although research on earthquake prediction has greatly increased in recent year s , geologists and seismologists have not yet reached the point where they can pr e d i c t when and where an earthquake will occur. Nevertheless, on the basis of curr e n t Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 6 technology, it is reasonable to assume that the proposed residence may be su b j e c t to the effects of at least one moderate to major earthquake during its des i g n l i f e . During such an earthquake, the danger from fault offset through the site is r e m o t e , but relatively strong ground shaking is likely to occur. In our opinion, there is no probability of soil liquefaction occurrence at the s i t e d u e to the lack of shallow groundwater and the presence of very dense soils at sh a l l o w depth. The on-site soils are not anticipated to lose shear strength due to a s e i s m i c event. VII. LABORATORY TESTS & SOIL INFORMATION Laboratory tests were performed on relatively undisturbed and bulk sample s o f t h e soils encountered in order to evaluate their index, strength, expansion, a n d compressibility properties. Test results are summarized on Figure Nos. III a n d I V . The following tests were conducted on the sampled soils: Laboratory Compaction Characteristics (ASTM 01557-12) Determination of Percentage of Particles Smaller than No. 200 Sieve (ASTM 01140-14) Expansion Index (ASTM 04829-11) Moisture content measurements were performed to establish the in situ moist u r e o f samples retrieved from the exploratory borings. Moisture content and dens i t y measurements were performed by ASTM methods D2216 and D2937. T h e s e density tests help to establish the in situ moisture and density of samples r e t r i e v e d from the exploratory borings. Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 7 Laboratory compaction tests establish the laboratory maximum dry density a n d optimum moisture content of the tested soils and are also used to aid in evaluating the strength characteristics of the soils. The test results are presented on the boring logs at the appropriate sample depths. The particle size smaller than a No. 200 sieve analysis aids in classifying the te s t e d soils in accordance with the Unified Soil Classification System and provides qualitative information related to engineering characteristics such as expansio n potential, permeability, and shear strength. The test results are presented on t h e boring logs at the appropriate sample depths. The expansion potential of soils is determined, when necessary, utilizing t h e Standard Test Method for Expansion Index of Soils. In accordance wit h t h e Standard (Table 5.3), potentially expansive soils are classified as follows: Expansion Index Potential Expansion 0 to 20 Very low 21t050 Low 51 to 90 Medium 91 to 130 High Above 130 Very high Based on this table, the existing silty sand formational soils have a very low expansion potential, with an expansion index of less than 20. VIII. CONCLUSIONS AND RECOMMENDATiONS The following conclusions and recommendations are based on the field investigation conducted by our firm, our laboratory test results, and our experience with sim i l a r El Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 8 soils and formational materials. The opinions, conclusions, and recommendations presented in this report are contingent upon Geotechnical Exploration, Inc. being retained to review the final plans and specifications as they are develope d and to observe the site earthwork and installation of foundations. Our subsurface investigation revealed that the proposed residential structures are underlain by loose to medium dense, silty sand fill/topsoil over medium dense t o dense, good-bearing sandstone formational materials. The opinions, conclusions, and recommendations presented in this report are contingent upon Geotechnical Exploration, Inc. being retained to review the final plans and specifications as they are developed and to observe the site earthwork and installation of foundations. Accordingly, we recommend that the following paragraph be included on the grading and foundation plans for the project. If the geotechnical consultant of record is changed for the project, the work shall be stopped until the replacement has agreed in writing to accept the responsibility within their area of technical competence for approval upon completion of the work. It shall be the responsibility of the permittee to not/li, the City Engineer In writing of such change prior to the recommencement of grading and/or foundation installation work. A. prel3aration of Soils for Site Development kv Clearing and Stripping: The areas of new construction should be cleared of any miscellaneous debris that may be present at the time of construction. After clearing, the ground surface should be stripped of surface vegetation as well as associated root systems. Holes resulting from the removal of buried obstructions that extend below the proposed finished site grades should be Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 9 cleared and backfihled with suitable material compacted to the requirements provided under Recommendation Nos. 4, 5, and 6 below. Prior to any filling operations, the cleared and stripped vegetation and debris should be disposed of off-site. 2. Removal and Recompaction of Existing Surface Fill SQl/si In order to provide suitable support for the proposed new structures and associated improvements such as decking, sidewalks and driveways, we recommend that all existing surface fill soils be removed and properly compacted to a minimum degree of compaction of 90 percent. The limits of recompaction should extend at least 10 feet beyond the perimeter limits of all new improvements, where feasible. The recompaction work should consist of: (a) removing the existing surface fill/topsoil to a depth of 2 feet; (b) scarifying, moisture conditioning, and compacting the exposed subgrade soils; and (c) replacing the materials as compacted structural fill. The areal extent and depths required to remove the existing fill/topsoil should be determined by our representative during the excavation work based on their examination of the soils being exposed and physical constraints. There should be no cut/fill transition line under any of the two building pads. The minimum fill thickness under any building pad should be not less than 3 feet. In addition, the existing erosion gulley should be backfllled and compacted during site grading. The existing drainage pipe under Adams Street should be re-directed to an approved discharge location. Grading along Adams Street will consist of the addition of 8 .to 10 feet of fill for the widening of Adams Street. Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 10 In addition, we recommend that low expansion soil from the req u i r e d removals be selectively stockpiled for use as capping material and wall backfills as recommended below in Recommendation Nos. 4 and 8. Subgrade Preparation: After the site has been cleared, stripped, and the required excavations made, the exposed subgrade soils should be scarified to a depth of 8 inches, moisture conditioned to at least 2 percent above t h e laboratory optimum, and compacted to the requirements for structur a l f i l l . Areas where highly expansive soils are exposed, (if encountered) should b e moisture conditioned to at least 5 percent over optimum moisture content. Material for Fill: All on-site soils with an organic content of less than 3 percent by volume are in general suitable for reuse as fill. Any required imported fill material should be a low-expansive granular soil. In additio n , a l l fill material should not contain rocks or lumps over 6 inches in great e s t dimension and not more than 15 percent larger than 21/2 inches. No more than 25 percent of the fill should be larger than ¼-inch. All materials for use as till should be approved by our representative prior to filling. Fill Compaction: All structural fill should in general be compacted to a minimum degree of compaction of 90 percent at a moisture content at lea s t 2 percent above the optimum based upon ASTM D1557-12. Fill materia l should be spread and compacted in uniform horizontal lifts not exceeding 8 inches in uncompacted thickness. Before compaction begins, the fill shoul d be brought to the recommended moisture content by either: (1) aeratin g and drying the fill if it is too wet, or (2) moistening the fill with water I f i t i s too dry. Each lift should be thoroughly mixed before compactio'n to ens u r e a uniform distribution of moisture. Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 11 6. Permanent Slopes: We recommend that any required permanent cut and fill slopes be constructed to an inclination no steeper than 2.0:1.0 (horizont a l t o vertical) where feasible. The project plans and specifications shoul d c o n t a i n all necessary design features and construction requirements to p r e v e n t erosion of the on-site soils both during and after construction . A n e a r t h berm should be constructed at the top of fill slopes, per the Cou n t y o f S a n Diego requirements and designed according to their standard dr a w i n g s . Slopes and other exposed ground surfaces should be appropriat e l y p l a n t e d with a protective groundcover. Existing, properly compacted fill/cut s l o p e s should possess a factor of safety of at least 1.5 against gross an d s h a l l o w failure potential. New fill slopes should be constructed to assure that the recom m e n d e d minimum degree of compaction is attained out to the finished slope f a c e . This may be accomplished by "backrolling" with a sheepsfoot roller or o t h e r suitable equipment as the fill is raised. Placement of fill near t h e t o p s o f slopes should be carried out in such a manner as to assure t h a t l o o s e , uncompacted soils are not sloughed over the tops and allowed to acc u m u l a t e on the slope face. 7. Temporary Slopes: Based on our subsurface investigation .work, laboratory test results, and engineering analysis, temporary slopes should be s t a b l e f o r a maximum slope height of up to 12 feet and may be cut at a slope r a t i o o f 0.75:1.0 in properly compacted fill soils, and vertical in the lower 5 feet a n d 0.5:1.0 in the upper 8 feet in cemented, stiff natural soils. Some local i z e d sloughing or raveling of the soils exposed on the slopes, however, m a y o c c u r . If the encountered soils are not cemented, the temporary slope ra t i o s h o u l d be no steeper than 0.75:1.0. Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 12 Since the stability of temporary construction slopes will depend large l y o n t h e contractor's activities and safety precautions (storage and e q u i p m e n t loadings near the tops of cut slopes, surface drainage provision s , e t c . ) , i t should be the contractor's responsibility to establish and maint a i n a l l temporary construction slopes at a safe inclination appropr i a t e t o h i s methods of operation. No soil stockpiles or surcharge may be plac e d w i t h i n a horizontal distance of 10 feet from the excavation. The. contractor s h o u l d follow all Cal-OSHA guidelines at all times. If these recommendations are not feasible due to space constr a i n t s , temporary shoring may be required for safety and to protect a d j a c e n t property improvements. Similarly, footings near temporary cuts shoul d b e underpinned or protected with shoring. No soil stockpiles or surcharge may be placed within a horizontal dista n c e o f 10 feet from the excavation. If these recommendations are not feasi b l e , o f f - site stockpiling may be required. 8. Slope Top/Face Performance: The soils that occur in close proximity to the top of slope or face of even properly compacted fill or dense/stiff na t u r a l ground cut slopes often possess poor lateral stability. The degree o f l a t e r a l and vertical deformation depends on the Inherent expansion and s t r e n g t h characteristics of the soil types comprising the slope, slope steepnes s a n d height, loosening of slope face soils by burrowing rodents, and irrigati o n a n d vegetation maintenance practices, as well as the quality of compaction o f f i l l soils. Structures and other improvements could suffer damage due t o t h e s e soil movement factors if not properly designed to accommodate or w i t h s t a n d Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 13 such movement. New fill or cut slopes should be constructed at a 2.0:1.0 slope gradient. 9. Slope Top Structure Performance: Rigid improvements such as top-of-slope walls, columns, decorative planters, concrete flatwork, swimming pools, a n d other similar types of improvements can be expected to display varyin g degrees of separation typical of improvements constructed at the top of a slope. The separations result primarily from slope top lateral and vertical soil deformation processes. These separations often occur regardless of being underlain by cut or fill slope material. Proximity to a slope top is often th e primary factor affecting the degree of separations occurring. Shallow foundations close to descending slopes should be provided with a setback of 8 feet measured from the top of the foundation. Foundations within this setback distance should be deepened as shown on Figure No. VI, Foundation Requirements Near Slopes. Typical and to-be-expected separations can range from minimal to up to 1 inch or greater in width. In order to minimize the effect of slope-top lateral soil deformation, we recommend that the top-of-slope improvements be designed with flexible connections and joints in rigid structures so that the separations do not result in visually apparent cracking damage and/or can be cosmetically dressed a s part of the Ongoing property maintenance. These flexible connections ma y include "slip joints" in wrought iron fencing, evenly spaced vertical joints i n block walls or fences, control joints with flexible caulking in exterior flatwork improvements, etc. Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 14 In addition, use of planters to provide separation between top-of-slope hardscape such as patio slabs and pool decking from top-of-slope walls c a n aid greatly in reducing cosmetic cracking and separations in exteri o r improvements. Actual materials, and techniques would need to be determined by the project architect or the landscape architect for individual properties. Steel dowels placed in flatwork may prevent noticeable ve r t i c a l differentials, but if provided with a slip-end they may still allow some lat e r a l displacement. 10. Trench and Retaining Wall Backfill: All backfill soils placed in utility trenches or behind retaining walls should be compacted to a minimum degree o f compaction of 90 percent. Backfill material should be placed in lift thicknesses appropriate to the type of compaction equipment utilized and compacted to a minimum degree of 90 percent by mechanical means. In pavement areas, that portion of the trench backfill within the pavem e n t section should conform to the material and compaction requirements of th e adjacent pavement section. In addition, the low-expansion potential fill layer should be maintained in utility trench backfill within the building a n d adjoining exterior slab areas. Trench backfill beneath the level of the l o w - expansion fill layer should consist of on-site soils in order to minimize t h e potential for migration of water below the perimeter footings at the trenc h locations. Our experience has shown that even shallow, narrow trenches, such a s f o r irrigation and electrical lines, that are not properly compacted can result i n problems, particularly with respect to shallow ground water accumulation and migration. Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 15 B Foundation Recommenóations Footings: We recommend that the proposed new structures be supported on conventional, individua I-spread and/or continuous footing foundations bearing on recompacted fill soils prepared as recommended above in Recommendation No. 2. All footings should be founded at least 18 inches below the lowest adjacent finished grade. At the recommended depths, footings may be designed for allowable bearing pressures of 2,500 pounds per square foot (psf) for combined dead and live loads and 3,300 psf for all loads, including wind or seismic. The footings should, however, have a minimum width of 12 inches. General Criteria For All Footings: Footings located adjacent to the tops of slopes should be extended sufficiently deep so as to provide at least 8 feet of horizontal cover between the slope face and outside edge of the footing at the footing bearing level. Footings located adjacent to utility trenches should have their bearing surfaces situated below an imaginary 1.0 to 1.0 plane projected upward from the bottom edge of the adjacent 'utility trench. All continuous footings should contain top and bottom reinforcement to provide structural continuity and to permit spanning of local irregularities. We recommend that a minimum of two No. 5 top and two No. 5 bottom reinforcing bars be provided in the footings. A minimum clearance of 3 inches should be maintained between steel reinforcement and the bottom or sides of the footing. In order for us to offer an opinion as to whether the footings are founded on soils of sufficient load bearing capacity, it is essential Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 16 that our representative inspect the footing excavations prior to the place m e n t of reinforcing steel or concrete. NOTE: The project Civil/Structural Engineer should review all r e i n f o r c i n g schedules. The reinforcing minimums recommended herein are not t o b e construed as structural designs, but merely as minimum reinforceme n t t o reduce the potential for cracking and separations; Seismic Design Criteria Site-specific seismic design criteria for the proposed structures are presented in the following table in accordance with Se c t i o n 1613 of the 2016 CBC, which incorporates by reference ASCE 7 - 1 0 f o r seismic design. We have determined the mapped spectral ac c e l e r a t i o n values for the site, based on a latitude of 33.1483 degrees and longit u d e o f - 117.33 degrees, utilizing a tool provided by the USGS, which provid e s a solution for ASCE 7-10 (Section 1613 of the 2016 CBC) utilizing digitized f i l e s for the Spectral Acceleration maps. Based on the observed soils co n d i t i o n s , we have assigned a Site Soil Classification of D. TABLE I NaDDed SoectraLAcceleration Values and pgsign Parameters [ S S1 Fa Fy I Sms Smi SdS I Sd1 To1.135 0.436 1 1.046 1 1.564 1 1.187 0.682 1 0.792 1 0.454 Lateral Loads: Lateral load resistance for the structures supported on footing foundations may be developed in friction between the foundatio n b o t t o m s and the supporting subgrade. An allowable friction coefficient o f 0 . 4 0 i s considered applicable. An additional allowable passive resistance eq u a l t o a n equivalent fluid weight of 300 pd acting against the foundations may b e u s e d in design provided the footings are poured neat against the adjacent pro p e r l y Hoover Street Residential Project 20b No. 16-11187 Carlsbad, California Page 17 compacted fill or dense formational materials. These lateral resist a n c e values assume a level surface in front of the footing for a minimum distance of three times the embedment depth of the footing and any shear keys. Settlement; Settlements under building loads are expected to be within tolerable limits for the proposed structure. For footings designed in accord- ance with the recommendations presented in the preceding paragraphs , w e anticipate that total settlements should not exceed 1 inch and that post- construction differential settlements should be less than 1/240. Retaining Walls: Retaining walls must be designed to resist lateral earth pressures and any additional lateral pressures caused by surcharge loads o n the adjoining retained surface. We recommend that unrestrained (cantilever) walls with level, low-expansive backfill be designed for an equivalent fluid pressure of 38 pcf. We recommend that restrained walls (i.e., basement walls or any walls with angle points that restrain them f r o m rotation) with level backfill be designed for an equivalent fluid pressure of 5 6 pcf. Unrestrained walls with up to 2.0:1.0 sloping, low-expansive backfills should be designed for an equivalent fluid pressure of 52 pcf. Restr a i n e d walls with up to 2.0:1.0 sloping backfills should be designed foran equiv a l e n t fluid pressure of 76 pcf. Wherever walls will be subjected to surcharge loa d s they should also be designed for an additional uniform lateral pressure equa l to one-third the anticipated vertical surcharge pressure for unrestrained walls and an additional one-half the anticipated vertical surcharge pressure for restrained walls (all using low-expansive backfill soils). J. . Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 18 For seismic design of unrestrained walls, we recommend that th e s e i s m i c pressure increment be taken as a fluid pressure distribution utili z i n g a n equivalent fluid weight of 14 pcf. For restrained walls, we recommen d t h e seismic pressure increment be waived. The preceding design pressures assume that the walls are backfilled w i t h l o w expansion potential materials (Expansion Index less than 50) and t h a t t h e r e is sufficient drainage behind the walls to prevent the build-up of hydro s t a t i c pressures from surface water infiltration. We recommend, in additi o n t o waterproofing, that back drainage be provided by a composite d r a i n a g e material such as Miradrain 6000/6200 or equivalent. The back drain m a t e r i a l should terminate 12 inches below the finish surface where the s u r f a c e i s covered by slabs or 18 inches below the finish surface in landscap e a r e a s . Waterproofing should continue to 6 inches above the top of t h e w a l l . A subdrain (such as Total Drain or perforated pipe in an envelope of c r u s h e d rock gravel a maximum of 1 inch in diameter and wrapped with ge o f a b r i c such as Mirafi 140N), should be placed at the bottom of retainin g w a l l s . Subdrains should discharge at an approved drainage facility. Backfill placed behind the walls should be compacted to a minimum de g r e e o f compaction of 90 percent using light compaction equipmen t . I f h e a v y equipment is used, the walls should be appropriately temporarily b r a c e d . Shoring walls, if required, may be designed for the same soil pre s s u r e indicated above. The soldier piles' passive resistance may be calculat e d a s 750 pcf applied in the embedment depth of the pile below the cut surf a c e , times the diameter of the pile. Surcharge load effect on shoring w a l l s m a y be calculated similarly to retaining walls. Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 19 C. Concrete Slab-on-grade Criteria Slabs on-grade may only be used on new, properly compacted fill or wh e n b e a r i n g on dense natural soils. 17. Minimum Floor Slab Reinforcement: Based on our experience, we have found that, for various reasons, concrete floor slabs occasionally c r a c k . Therefore, we recommend that all slabs-on-grade contain at least a m i n i m u m amount of reinforcing steel to reduce the separation of cracks, s h o u l d t h e y occur. Interior floor slabs should be a minimum of 4 inches actual thickn e s s a n d b e reinforced with No. 3 bars on 18-inch centers, both ways, pl a c e d a t midheight in the slab. Slab subgrade soil moisture should be v e r i f i e d b y a Geotechnical Exploration, Inc. representative to have the proper moisture content within 48 hours prior to placement of the vapor barrier and p o u r i n g of concrete. Shrinkage control joints should be placed no farth e r t h a n 2 0 feet apart and at re-entrant corners. The joints should penetrate a t l e a s t 1 inch into the slab. Following placement of any concrete floor slabs, sufficient drying ti m e m u s t be allowed prior to placement of floor coverings. Premature place m e n t o f floor coverings may result in degradation of adhesive materials and loo s e n i n g of the finish floor materials. 18. Slab Moisture Protection and Vapor Barrier Membrane: Although it is not the responsibility of geotechnical engineering firms to provide m o i s t u r e protection recommendations, as a service to our clients we provid e t h e Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 20 following discussion and suggested minimum protection criteria. Actual recommendations should be provided by the architect and waterproofing consultants or product manufacturer. Soil moisture vapor can result in damage to moisture-sensitive floors, some floor sealers, or sensitive equipment in direct contact with the floor, in addition to mold and staining on slabs, walls, and carpets. The common practice in Southern California is to place vapor retarders made of PVC, or of polyethylene. PVC retarders are made in thickness ranging from 10- to 60- mil. Polyethylene retarders, called visqueen, range from 5- to 10-mil in thickness. These products are no longer considered adequate for moisture protection and can actually deteriorate over time. Specialty vapor retarding products possess higher tensile strength and are more specifically designed for and intended to retard moisture transmission into and through concrete slabs. The use of such products is highly recommended for reduction of floor slab moisture emission. The following American Society for Testing and Materials (ASTM) and American Concrete Institute (ACI) sections address the issue of moisture transmission into and through concrete slabs: ASTM E1745-97 (2009) Standard Specification for Plastic Water Vapor Retarders Used in Contact Concrete Slabs; ASTM E154-88 (2005) Standard Test Methods for Water Vapor Retarders Used in Contact with Earth; ASTM E96-95 Standard Test Methods for Water Vapor Transmission of Materials; ASTM E1643-98 (2009) Standard Practice for Installation of Water Vapor Retarders Used in Contact Under Concrete Slabs; and ACI 302.211-06 Guide for Concrete Slabs that Receive Moisture-Sensitive Flooring Materials. Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 21 18.1 Based on the above, we recommend that the vapor barrier consist of a minimum 15-mH extruded polyolefin plastic (no recycled c o n t e n t o r woven materials permitted). Permeance as testedbef o r e a n d a f t e r mandatory conditioning (ASTM E1745 Section 7.1 and sub-p a r a g r a p h s 7.1.1-7.1.5) should be less than 0.01 U.S. perms (grains / s q u a r e foot/hour/inch of mercury (Hg)) and comply with the A S T M E 1 7 4 5 Class A requirements. Installation of vapor barriers sho u l d b e i n accordance with ASTM E1643. The basis of desig n i s 1 5 - m u StegoWrap •vapor barrier placed per the manufacturer's guidelines. Reef Industries Vapor Guard membrane has also be e n s h o w n t o achieve a permeance of less than 0.01 perms. Our s u g g e s t e d acceptable moisture retardant membranes are based on a r e p o r t entitled "Report of Water Vapor Permeation Testing of C o n s t r u c t i o n Vapor Barrier Materials" by Dr. Kay Cooksey, Ph.D., C l e m s o n University, Dept. of Packaging Science, 2009-10. The membrane may be placed directly on properly com p a c t e d subgrade soils and directly underneath the slab. Proper s l a b c u r i n g i s required to help prevent slab curling. A 4-inch-thick cr u s h e d r o c k layer may be placed under the plastic membrane. 18.2 Common to all acceptable products, vapor retarder/ b a r r i e r j o i n t s m u s t be lapped and sealed with mastic or the manufacturer's rec o m m e n d e d tape or sealing products. In actual practice, stakes are o f t e n d r i v e n through the retarder material, equipment is dragged or roll e d a c r o s s the retarder, overlapping or jointing is not properly implemen t e d , e t c . All these construction deficiencies reduce the retarder's effecti v e n e s s . / Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 22 In no case should retarder/barrier products be punctured or gaps b e allowed to form prior to or during concrete placement. 18.3 As previously stated, following placement of concrete fl o o r s l a b s , sufficient drying time must be allowed prior to placement of any fl o o r coverings. Premature placement of• floor coverings may result in degradation of adhesive materials and loosening of the finish f l o o r materials. Concrete Isolation Joints: We recommend the project Civil/Structural Engineer incorporate isolation joints and control joints (sawcuts) to a t l e a s t one-fourth the thickness of the slab in any floor designs. The joints a n d c u t s , if properly placed, should reduce the potential for and help control fl o o r s l a b cracking. We recommend that concrete shrinkage joints be spac e d n o farther than approximately 20 feet apart, and also at re-entrant cor n e r s . However, due to a number of reasons (such as base pr e p a r a t i o n , construction techniques, curing procedures, and normal shrin k a g e o f concrete), some cracking of slabs can be expected. Exterior Nonstructural Concrete Slabs: As a minimum for protection of on- site improvements, we recommend that all nonstructural con c r e t e s l a b s (such as patios, sidewalks, etc.), be founded on properly compacte d a n d tested fill or dense native formation and be underlain by 2 inche s ( a n d n o more than 3 inches) of compacted clean leveling sand, with No. 3 b a r s a t 1 8 - inch centers, both ways, at the center of the slab. Exterior conc r e t e s l a b s should be at least 4 inches thick. Exterior slabs should contain ad e q u a t e isolation and control Joints as noted in the following paragraphs. Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 23 The performance of on-site improvements can be greatly affe c t e d b y s o i l base preparation and the quality of construction. It is theref o r e i m p o r t a n t that all improvements are properly designed and constructed for the existing soil conditions. The improvements should not be built on loose s o i l s o r f i l l s placed without our observation and testing. The subgrad e o f e x t e r i o r improvements should be verified as properly prepared within 48 h o u r s p r i o r to concrete placement. A minimum thickness of 2 feet of p r o p e r l y recompacted soils should underlie exterior slabs on-grade f o r s e c o n d a r y improvements. Exterior Slab Control Joints: For exterior slabs with the minimum shrinkage reinforcement, control joints should be placed at spaces no farth e r t h a n 1 2 feet apart or the width of the slab, whichever is less, and als o a t r e - e n t r a n t corners. Control joints in exterior slabs should be sealed with el a s t o m e r i c joint sealant. The sealant should be inspected every 6 mont h s a n d b e properly maintained. Concrete slab joints should be dowelled or c o n t i n u o u s steel reinforcement should be provided to help reduce a n y p o t e n t i a l ri differential movement. D. Pavements Concrete Pavement: We recommend that concrete driveway pavements, subject only to automobile and light truck traffic, be 5 inch e s t h i c k a n d b e supported directly on properly prepared/compacted on-site s u b g r a d e s o i l s . The concrete for areas subject to occasional heavy truck traffi c ( s u c h a s f i r e truck access) should have a minimum thickness of 6 inches. T h e u p p e r 8 inches of the subgrade below the slab should be compacted to a m i n i m u m Hoover Street Residè,tial Project Job No. 16-11187 Carlsbad, California Page 24 degree of compaction of 95 percent just prior to paving. The concrete should be f'c= 3,500 psi at 28 days of age. In order to control shrinkage cracking, we recommend that sawcut, weakened-plane joints be provided at about 12-foot centers, both ways, and at re-entrant corners. The pavement slabs should be saw-cut as so o n a s practical but no more than 24 hours after the placement of the concre t e . The depth of the joint should be one-quarter of the slab thickness and its width should not exceed 0.02-feet. Reinforcing steel is not necessary unl e s s it is desired to increase the joint spacing recommended above. E. Aft Dralnage Considerations 23. Surface Drainage: Adequate measures should be taken to properly finish- grade the site after the improvements are in place. Drainage waters f r o m this site and adjacent properties should be directed away from the footin g s , floor slabs, and slopes, onto the natural drainage direction for this area o r into properly designed and approved drainage facilities provided by t h e project civil engineer. Roof gutters and downspouts should be installed o n the new improvements, with the runoff directed away from the foundatio n s via closed drainage lines. Proper subsurface and surface drainage will help reduce the potential for waters to seek the level of the bearing soils un d e r footings and floor slabs, or other extensive improvements. Failure to observe this recommendation could result in undermining an d possible differential settlement of the structure or other improvements or cause other moisture-related problems. Currently, the 2016 CBC require s a minimum 1 percent surface 'gradient for proper drainage of building pad s j Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 25 unless waived by the building official. Concrete pavement may hav e a minimum gradient of 0.5-percent. Surface gradient adjacent to structure s must drain away as indicated in the 2016 CBC. Erosion Control: Appropriate erosion control measures should be taken at all times during and after construction to prevent surface runoff waters fro m entering footing excavations or ponding on finished building pad areas. Planter Drainage: New planter areas, flower beds, and planter boxes should be sloped to drain away from the footings and floor slabs at a gradient of a t least 5 percent within 5 feet from the perimeter walls. Any planter a r e a s adjacent to the structures or surrounded by concrete improvements shou l d be provided with sufficient area drains to help with rapid runoff disp o s a l . N o water should be allowed to pond adjacent to the residence or o t h e r improvements. Drainage quality Control: It must be understood that it is not within the scope of our services to provide quality control oversight for surfac e o r subsurface drainage construction or retaining wall sealing, and bas e o f w a l l drain construction. It is the responsibility of the contractor to verify p r o p e r wall sealing, geofabric installation, protection board (if needed), drain d e p t h below interior floor or yard surface, pipe percent slope to the outlet, etc. F Qeneral Recommendations Project Start Up Notification: In order to minimize any work delays during site development, this firm should be contacted 24 hours prior to any n e e d for observation of footing excavations or field density testing of com p a c t e d Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 26 fill soils. If possible, placement of formwork and steel reinf o r c e m e n t i n footing excavations should not occur prior to observing the e x c a v a t i o n s ; i n the event that our observations reveal the need for deepening o r r e d e s i g n i n g foundation structures at any locations, any formwork or steel rei n f o r c e m e n t in the affected footing excavation areas would have to be remov e d p r i o r t o correction of the observed problem (i.e., deepening the footi n g e x c a v a t i o n , recompacting soil in the bottom of the excavation, etc.). IX GRADING NOTES Geotechnical Exploration, Inc. recommends that we be retained to verify the actual soil conditions revealed during site grading work and footin g e x c a v a t i o n t o b e as anticipated in this "Report of Geotechnical Investigation Update" for the project. In addition, the compaction of any fill soils placed during site gr a d i n g w o r k m u s t b e observed and tested by the soil engineer. It is the responsibili t y o f t h e g r a d i n g contractor to comply with the requirements on the gradin g p l a n s a n d t h e l o c a l grading ordinance. All retaining wall and trench backfill s h o u l d b e p r o p e r l y compacted. Geotechnical Exploration, Inc. will assume no liability for damage occurring due to improperly or uncompacted backfill p l a c e d w i t h o u t o u r observations and testing. X. LIMITATIONS Our conclusions and recommendations have been based on ava i l a b l e d a t a o b t a i n e d from our document review, field investigation and laboratory an a l y s i s , a s w e l l a s our experience with similar soils and formational materials l o c a t e d i n t h i s a r e a o f the City of Carlsbad. Of necessity, we must assume a certain deg r e e o f c o n t i n u i t y between exploratory excavations. It is, therefore, necessary t h a t a l l o b s e r v a t i o n s , Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 27 conclusions,, and recommendations be verified at the time grading operations be g i n or when footing excavations are placed. In the event discrepancies are n o t e d , additional recommendations may be issued, if required. The work performed and recommendations presented herein are the result of a n investigation and analysis that meet the contemporary standard of car e i n o u r profession within the County of San Diego. No warranty is provided. This report should be considered valid for a period of two (2) years, and is su b j e c t to review by our firm following that time. If significant modifications are made t o the building plans, especially with respect to the height and location o f a n y proposed structures, this report must be presented to us for immediate review a n d possible revision. It is the responsibility of the owner and/or developer to ensure that t h e recommendations summarized in this report are carried out in the field o p e r a t i o n s and that our recommendations for design of this project are incorporate d i n t h e grading and structural plans. We should be retained to review the projec t p l a n s once they are available, to see that our recommendations are ade q u a t e l y incorporated in the plans. This firm does not practice or consult in the field of safety engineering. We d o n o t direct the contractor's operations, and we cannot be responsible for the safet y o f personnel other than our own on the site; the safety of others is the resp o n s i b i l i t y of the contractor. The contractor should notify the owner if any of th e recommended actions presented herein are considered to be unsafe. Hoover Street Residential Project Job No. 16-11187 Carlsbad, California Page 28 The firm of GeOtechnical Exploration, Inc. shall not be held responsible for changes tà the physical condition of the property, such as addition of fill soils or changing drainage patterns, which occur subsequent to issuance of this report and the changes are made without our observations, testing, and approval. Once again, should any questions arise concerning this report, please feel free to contact the undersigned. Reference to our 3ob No. 16-11187 will expedite a reply to your inquiries. Respectfully submitted, EOTECHNICAL EXPLORATION, INC. Jaime A. Cerros, P.E. ja0athan A. Browning R.C.E. 34422/G.E. 2007 P.G. 9012/C.E.G. 2615 Senior Geotechnical Engineer Senior Project Geologist VICINITY MAP MAV JODR I_ '•.i 'Z9B . CAflr.SADCLIL "I 4 ARTS -- $' SThLBEP - • 6 aoo*vj CMEORD .' j;-' - - ------ ial / Od 10 rx MW W WCNTHURAV 4 y •-, •L 4 s Tq 41 2' , 0 I46 KA 'J 41 v Thomas Bros Guide San Diego County pg 11 06-G7 Viola Residence Hoover Street Property Southwest Corner of Hoover Street and Adams Street Carlsbad, CA. Figure No. I Job No. 16-11187 M ME Erosion 'N Scale; V 40' Tba LEGEND Approximate Location of Cross Section PLOT PLAN Vick Residence now" street Pmpeq SwffirwastOameraffiboyarSbeet GEOLOGIC LEGEND :. andAdamoSlivet / 00 p, - Figure No. I! Old Parølic Deposits isa Santiago Formation PWI JObNO.18-flla7 OM Geat"llinicall PROPOSED RESIDENCE Garage floor 44.0 Existhig Grade Proposed Grade 2455ng Grade 1W GOP.— f - _____ 70 Future 60 . Retaining RetalnI won , oo \I S 50_ BasIn Entry GEOLOGIC CROSS SECTION Viola Residence Southwest Corner of Hoover Street and Adorns Street Coilsbad. CA. I - .4 -------------------- _______ Tea Tea Tea 30 I I • I I I I I 0 so 30 40 50 60 70 60 90 160 110 120 130 140 Retolke Horizontal DIstance (feet) 5cate:1 10' GEOLOGIC LEGEND (HohIsordal and Vesticol) 00p24 Old Pcrattc Deposits - F ti Figure No. lib Santiago ormation Job No. 1741187 Tea __ 44 GOOE4CIIflICJI - - - - Approximate Geologic Contact ,.. EQUIPMENT DIMENSION & TYPE OF EXCAVATION DATE LOGGED Hand Tools 3' X 3 X 4' Handpit 8-12-16 SURFACE ELEVATION GROUNDWATER] SEEPAGE DEPTH LOGGED BY ± 52' Mean Sea Level Not Encountered JKH — - FIELD DESCRIPTION — — — ig .2! AND CLASSIFICATION Ix . • — -J Lb CL Q'- - z DESCRIPTION AND REMARKS Density, Moisture, Color) C') to (Grainsize, LU o Liu uC13 C)CO. ._ - SILTY SAND, fine- to medlum-grained, with SM — — — - some roots, rock fragments and debris. Loose. • . Dry. Brown. -' FILL (Oaf) -'. - --21% passing #200 sieve. 8.5 131.0 - SILTY SAND, fine- to medium-grained; SM - moderately well cemented. Medium dense to dense. Damp. Red-brown. 2- OLD PARAUC DEPOSITS (Qop2.4) 3- - Bottom 4' LL Y. PERCHED WATER TABLE JOB NAME Hoover Street Project SITE LOCATION BULK BAG SAMPLE J IN-PLACE SAMPLE SW Corner Hoover St. & Adams St., Carlsbad, CA JOB NUMBER REVIEWED BY LDRIJAC LOG No. MODIFIED CALIFORNIA SAMPLE NUCLEAR FIELD DENSITY TEST 16-11187 FIGURE NUMBER HP=1 Geoteciinicar Etplaration, Inc. STANDARD PENETRATION TEST lila WW— UIPMENT DIMENSION & TYPE OF EXCAVATION - DATE LOGGED Hand Tools 2'X 2'X 3' Handpit 8-1246 SURFACE ELEVATION GROUNDWATER/ SEEPAGE DEPTH LOGGED BY ± 53' Mean Sea Level Not Encountered JKH FIELD DESCRIPTION AND CLASSIFICATION .1 0- 0 6r DESCRIPTION Uj ca (Grain size, Density, Moisture, Color) 0 - SILTY SAND, fine- to medium-grained, with SM - - - - some roots and rock fragments. Loose. Dry. Brown. FILL (Qaf) I - SILTY SAND, fine- to medium-grained. Medium SM - dense to dense. Damp. Red-brown. - OLD PARALIC DEPOSITS (Qop) 2- 3 - Bottom @ 3' 4- .Y PERCHED WATER TABLE BULK BAG SAMPLE ElI IN-PLACE SAMPLE MODIFIED CALIFORNIA SAMPLE Eli NUCLEAR FIELD DENSITY TEST IN STANDARD PENETRATION TEST JOB NAME Hoover Street SITE LOCATiON - SW Corner Hoover St. & Adams St., Carlsbad, CA JOB NUMBER REVIEWED BY LDRIJAC J LOG No. HP=2 Ilib 16-11187 FIGURE NUMBER 'I T rpm DIMENSION & TYPE OF EXCAVATION Tools DATE LOGGED 3' X 3' X 3 Handpit 8-1246 SURFACE ELEVATION GROUNDWATER/ SEEPAGE DEPTH LOGGED BY ± 54' Mean Sea Level Not Encountered JKH - - - FIELD DESCRIPTION AND CLASSIFICATION ir .5 ° UJ>. Uj + 0 DESCRIPTION AND REMARKS -UJL U w (Grain size, Density, Moisture, Color) - Z 0 - wu in SILTY SAND, fine- to medium-grained, with SM - - - - some roots and rock fragments. Loose. Dry. - Brown. FILL (Oaf) 1- SILTY SAND, fine- to medium-grained. Medium dense to dense. Damp. Red-brown. OLD PARALIC DEPOSITS (Qop24) 2- - Bottom @ 3' JOB NAME .Y PERCHED WATER TABLE Hoover Street Project BULK BAG SAMPLE SITE LOCATION J IN-PLACE SAMPLE SW Corner Hoover St. & Adams St., Carlsbad, CA I MODIFIED CALIFORNIA SAMPLE JOB NUMBER REVIEWED BY LD!JAC LOG No. ethnical Fs NUCLEAR FIELD DENSITY TEST 1611187 NUMBER Geot Inc. HPw3 FIGURE STANDARD PENETRATION TEST IlIc C ) U ffEQUIPMENT DIMENSION & TYPE OF EXCAVATION DATE LOGGED and Tools 3' X 3' X 3' Handplt 84246 SURFACE ELEVATION GROUNDWATERJ SEEPAGE DEPTH LOGGED BY 45' Mean Sea Level Not Encountered JKH - - - FIELD DESCRIPTION - - - CLASSIFICATION AND - 'l o.sLUa. + w LU>. C.) i... DESCRIPTION AND REMARKS U w >. < Q. 5 (Grain size, Density, Moisture, Color) o,. q. o - 0 _a Oz C3 o U wo SILTY SAND, fine- to medium-grained, with SM some roots and rock fragments. Loose. Dry. - Brown. - FILL! TOPSOIL (Qaf) - • : I - c.I. ______________________________________________________ SILTY SAND, fine- to medium-grained; SM • moderately well cemented. Medium dense to dense. Damp. Red-brown. - OLD PARALIC DEPOSITS (Qop24) 2 - 11 3- 1111 - Bottom @ 3' 4- JOB NAME PERCHED WATER TABLE Hoover Street Project BULK BAG SAMPLE SITE LOCATION IN-PLACE SAMPLE SW Corner Hoover St. & Adams St., Carlsbad, CA MODIFIED CALIFORNIA SAMPLE JOB NUMBER REVIEWED BY LDR!JAC I LOG No. NUCLEAR FIELD DENSITY TEST I 1641187 FIGURE NUMBER HP-4 STANDARD PENETRATION TEST I IlId C U C IL MENT ff DIMENSION & TYPE OF EXCAVATION Tools DATE LOGGED and 3' X 3' X 4' Handpit 8-1246 SURFACE ELEVATION GROUNDWATER] SEEPAGE DEPTH LOGGED BY 135' Mean Sea Level Not Encountered JKH - - FIELD DESCRIPTION AND CLASSIFICATION w °.s u .s .;0 o DESCRIPTION AND REMARKS coo X!LN LU '-2f o '.- Z 0. 0. Ch (Grath size, Densdy, Moisture, Color)o °- z 'C 0 O SO C.) <Z C3 a 0 0 0 0- - SILTY SAND, fine-to medium-grained, with sm - - - - some roots, rock fragments and debris. Loose. • Dry. Brown. -: FILL (Oaf) : - SILTY SAND • fine- to medium-grained; SM - moderately well cemented. Medium dense to • dense. Damp. Red-brown. 2— OLD PARALIC DEPOSITS (Qop) 3 - 4- - Bottom 4' 5— . PERCHED WATER TABLE JOB NAME Hoover Street Project BULK BAG SAMPLE SITE LOCATION J IN-PLACE SAMPLE SW Corner Hoover St. & Adams St., Carlsbad, CA • MODIFIED CALIFORNIA SAMPLE JOB NUMBER REVIEWED BY LDRIJAC LOG No. J NUCLEAR FIELD DENSITY TEST 16-11187 Irroei Geotecjinlcai HP=5 FIGURE NUMBER xploratlon. Inc. STANDARD PENETRATION TEST ! Ille ci PMENT DIMENSION r and Tools & TYPE OF EXCAVATION DATELOGGED 3' X 3' X 4' Handplt 842-16 SURFACE ELEVATION GROUNDWATER! SE'AGE DEPTH LOGGED BY ± 33' Mean Sea Level Not Encountered JKH - - FIELD DESCRIPTION AND CLASSIFICATION - .s a — + 0 . I- -J ° Ui -' ca g DESCRIPTION AND REMARKS C.) 0 Cl) Cl) (Grain size, Density, Moisture, Color) E - SILTY SAND, fine- to medium-grained, with - - — - - - some roots, rock fragments and debris. Loose. :r Dry. Brown. - Cl FILL (Oaf) -. - • . C SILTY SAND, fine- to medium-grained; SM - moderately well cemented. Medium dense to dense. Damp. Red-brown. 2- OLD PARALIC DEPOSITS (Qop) 3- 4 - - Bottom 4' 5- .I. PERCHED WATER TABLE JOB NAME Hoover Street Project SITE LOCATION 0 BULK BAG SAMPLE J IN-PLACE SAMPLE SW Corner Hoover St. & Adams St., Carlsbad, CA JOB NUMBER REVIEWED BY LDRIJAC LOG No. MODIFIED CALIFORNIA SAMPLE o j NUCLEAR FIELD DENSITY TEST 16-1118? HP=6 40 _WarWan, Inc. Geotethnkal FIG E NUMBER STANDARD PENETRATION TEST IlIf 'QUIPMENT DIMENSION & TYPE OF EXCAVATION DATE LOGGED Hand Tools 3' X 3' X 3' Handpit 8-12-16 SURFACE ELEVATION GROUNDWATER/ SEEPAGE DEPTH LOGGED BY ± 50' Mean Sea Level Not Encountered JKH - FIELD DESCRIPTION - - - AND CLASSIFICATION -. 'j. g. D3 Z 0 <ci, LU DESCRIPTION REMARKS °) C) a. u (Grain size, Density, Moisture, Color) C),. a. Z o - SILTY SAND, fine- to medium-grained, with SM - - - - some roots and rock fragments. Loose. Dry. Brown. - FILL (Oaf) - . 1- SILTY SAND, fine- to medium-grained. Medium SM dense to dense. Damp. Red-brown. OLD PARALIC DEPOSITS (Qop2.4) 2- - Bottom 3' . PERCHED WATER TABLE JOB NAME Hoover Street Project BULK BAG SAMPLE SITE LOCATION i:ii IN-PLACE SAMPLE SW Corner Hoover St. & Adams St., Carlsbad, CA $ MODIFIED CALIFORNIA SAMPLE JOB NUMBER I REVIEWED BY LDRIJAC LOG No. ns NUCLEAR FIELD DENSITY TEST 16-11187 HP=7 FIGURE NUMBER Expioraton, Inc STANDARD PENETRATION TEST 1110 wo C C U C U QUIPMENT DIMENSION & TYPE OF EXCAVATION DATE LOGGED Hand Tools 3' X 3' X 4' Handpit 842-16 SURFACE ELEVATION GROUNDWATER/ SEEPAGE DEPTH LOGGED BY ± 48' Mean Sea Level Not Encountered JKH - - FIELD DESCRIPTION - - - AND CLASSIFICATION >- 2 ° LULU (I) CL Z >-q i- + - zQ c" DESCRIPTION AND REMARKS U. 0 u (Grain size, Density, Moisture, Color) U) . g - SILTY SAND, fine- to medium-grained, with - - - - - - : some roots and rock fragments. Loose to medium dense. Dry. Brown. - - FILL! . TOPSOIL (Qaf) o - .1 - q 2 -1 SILTY SAND, fine- to medium-grained; SM moderately cemented. Medium dense to dense. Damp. Red-brown. • OLD PARALIC DEPOSITS (Qop2.4) 3- 4- - Bottom 4' 5- JOB NAME PERCHED WATER TABLE Hoover Street Project BULK BAG SAMPLE SITE LOCATION IN-PLACE SAMPLE SW Corner Hoover St. & Adams St., Carlsbad, CA MODIFIED CALIFORNIA SAMPLE JOB NUMBER REVIEWED BY LDR/JAC I LOG No. NUCLEAR FIELD DENSITY TEST 16-11187 I FIGURE NUMBER STANDARD PENETRATION TEST I lllh I HP-8 MEN so U.. Hoover Street Property Southwest Corner of Hoover Street and Adams Street Cartsbad. CA. ONSHORE MAP SYMBOLS DESCRD!HON O}'MAP UNITS TeMbb-brmlk, b=rmpmd aaWliw, bu +—•— ndcWtwWdepWbcmWomdofsibUwsmdo arA p.ky.ft o &nmtly by - pbyM . di iIId i Fi5aTa3 EXCERPT FROM GEOLOGIC MAP OF THE OCEANSIDE 30X 60 QUADRANGLE, CAUFORNIA ./ Figure No. V Job No, 16-11187 r.5I.&geoaI SeptembETJ6 FOUNDATION REQUIREMENTS NEAR SLOPES Proposed Structure Concrete Floor Slab Setback Reinforcement of . Foundations and Floor N Slabs Following the Recommendations of the Architect or Structural 4' Engineer. Concrete Foundation TOP OF COMPACTED FILL SLOPE (Any loose soils on the slope surface shall not be considered to provide lateral or vertical strength for the footing or for slope stability. Needed depth of embedment shall be meas: from competent soil.) I COMPACTED FILL SLOPE WrrH MAXIMUM INCLINATION AS PER SOILS REPORT. Total Depth of Footing Measured from Finish Soil Subgrade COMPACTED FIL 18" Minimum or as Deep as Required for Lateral Stability Outer Most Facè-. of Footing TYPICAL SECTION (Showing Proposed Foundation Located Within 8 Feet of Top of Slope) 18" FOOTING /8' SETBACK Total Depth of Footing 1.5:1.0 SLOPE 2.0:1.0 SLOPE 1 82' 66" ii 66" 54" 4' 51" 42' 6' 34" 30" iEi * when applicable Figure No. VI Job No. 16.11187 4 r4 Seotechnicall Exploration, Inc SCHEMATIC RETAINING WALL SUBDRAIN RECOMMENDATIONS Proposed Exterior Grade \ —Miradrain 6000 Properly Compacted Waterproofing Backf ill To Top Of Wall Retaining Wall Perforated PVC (SDR 35) 4" pipe with 0.5% mm. slope, with bottom of pipe located 12" below slob or Interior (crawlspace) ?rCu.ft.) ound surface elevation, with 1.5 of gravel '1" diameter Lawn or Patio max, wrapped with filter cloth Sealant such as Miradrain 6000 Ameridrain, Quickdrain or equivalent may be used as on alternative. WZ/-, 4~- A / n -I T Between Bottom 12" of Slab and Pipe Bottom rain Cloth NOT TO SCALE Figure No. VII Job No. 16-11187 NOTE: As an option to Mirodroin 6000. Grovel or Crushed rock 3/4 maximum diameter may be used with a minimum 12 thickness along the interior face of the wall and 2.0 cu.ft./ft. of pipe gravel envelope. 16-11187--WI ri4 Ge.technk.I ExIoralI.n, Inc. Sept 2016 ) I APPENDIX A UNIFIED SOIL CLASSIFICATION CHART SOIL DESCRIPTION Coarse-grained (More than half of material is larger than a No. 200 sieve) GRAVELS, CLEAN GRAVELS GW Well-graded gravels, gravel and sand mixtures, little (More than half of coarse fraction or no fines. is larger than No. 4 sieve size, but smaller than 3") GP Poorly graded gravels, gravel and sand mixtures, little or no fines. GC Clay gravels, poorly graded gravel-sand-silt mixtures SW Well-graded sand, gravelly sands, little or no fines SP Poorly graded sands, gravelly sands, little or no fines. SM Silty sands, poorly graded sand and silty mixtures. SC Clayey sands, poorly graded sand and clay mixtures. GRAVELS WITH FINES (Appreciable amount) SANDS, CLEAN SANDS (More than half of coarse fraction is smaller than a No. 4 sieve) SANDS WITH FINES (Appreciable amount) Fine-grained (More than half of material is smaller than a No. 200 sieve) SILTS AND CLAYS Liquid Limit Less than 50 ML Inorganic silts and very fine sands, rock flour, sandy silt Liquid Limit Greater than 50 HIGHLY ORGANIC SOILS and clayey-silt sand mixtures with a slight plasticity CL Inorganic clays of low to medium plasticity, gravelly clays, silty clays, clean clays. OL Organic silts and organic silty clays of low plasticity. MH Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts. CH Inorganic clays of high plasticity, fat clays. OH Organic clays of medium to high plasticity. PT Peat and other highly organic soils (rev. 6/05) r r:;; 71 ,.. M Mun - Aupopl MCER Response Spectrum 1.20 1.02 0.96 0.94 0.72 o.co 0.42 0.36 0.24 0.12 0.00 C Period, T (sec) Design Response Spectrum Period, T (sac) 01% 8130F2018 Design Maps Summary Report Design Maps Summary Report User—Specified Input Report Tulle Hoover Street Property Tue August 30, 2016 20:11:04 UTC Building Code Reference Document ASCE 7-10 Standard (which utilizes USGS hazard data available In 2008) Site Coordinates 33.14830N, 117.33°W Site Soil Classification Site Class D - "Stiff Soil" Risk Category 1/11/111 - -----.---- - - .-' - . . - -.2. r . ', e c i - .- •-'.•.-- .•... •"' •'k-" r1 ..- ri USGS—Provided Output ISIA rA ai Ss = 1.135 g Sms = 1.187 9 Sos = 0.792 g SI = 0.436 g SM1 = 0.682 g SDI = 0.454 g For Information on how the SS and Si values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions In the direction of maximum horizontal response, please return to the a p p l i c a t i o n a n d select the "2009 NEHRP" building code reference document. 0.99 0.20 0.72 0.64 0.56 a 0.49 0.40 0.32 0.24 0.36 0.02 0.00 DO 0 For PG, TL, CRv and CR1 values, please view the detailed reoort. Although this Information is a product or the U.S. Geological Survey, we provide n o w a r r a n t y , e x p r e s s e d o r I m p l i e d , a s t o t h e accuracy of the data contained therein. This tool is not a substitute for technical s u b j e c t - m a t t e r k n o w l e d g e . Ill (City of Carlsbad CERTIFICATION. OF SCHOOL FEES PAID B-34 Developme,it Services Building Department 1635 Faraday Avenue 760-602-2719 www.carlsbadca.gov This form must be completed by the City, the applicant, and the appropriate school districts and returned to the City prior to issuing a building permit. The City will not issue any building permit without a completed school fee form. VIOLA DWELLING Project Name Project ID: CT/MS: Building Permit PC2018-0025 Plan Check Number: RECEIVED Project Address: A.P.1'!. Project Applicant (Owner Name): Project Description: Building Type Residential: 1095& 1097 HOOVER ST 206-172-01-00 CITY OFAIRLSBAD BUILDING DIVISION TED VIOLA NEW SFD AND ADU SFD 4,796 NEW DWELLING UNIT(S) Square Feet of Living Area in New Dwelling/s Second Dwelling Unit: 832 Square Feet of Living Area in SDU Residential Additions: Net Square Feet New Area Commercial/Industrial: Net Square Feet New Area City Certification of Applicant Information: SHAY EVEN Date 8/13/18 SCHOOL DISTRICTS WITHIN THE CITY OF CARLSBAD J Carlsbad Unified School District . Vista Unified School District 0 San Marcos Unified School District 6225 El Camino Real 1234 Arcadia Drive 255 P i co Ave Ste. 100 Carlsbad CA 92009 (760-331-5000) Vista CA 92083 (760-726-2170) xt San Marcos, CA 92069 (760-290-2649) 2222 Contact:Katherine Marcelja(ByAppt. Only) Encinitas Union School District- J San Dieguito Union High School District-By Appointment Only By appointment only 684 Requeza Dr. 101 South Rancho Santa Fe Rd Encinitas, CA 92024 Encinitas, CA 92024 (760-753-6491 x 5514) (760-944-4300 xli 66) Certification of Applicant/Owners. The person executing this declaration ("Owner") certifies under penalty of perjury that (1) the information provided above is correct and true to the best of the Owner's knowledge, and that the Owner will file an amended certification of payment and pay the additional fee if Owner requests an increase in the number of dwelling units or square footage after the building permit is issued or if the initial determination of units or square footage is found to be incorrect, and that (2) the Owner is the owner/developer of the above described project(s), or that the person executing this declaration is authorized to sign on behalf of the Owner. Signature: _________________________________•Date: B-34 Page 1 of 2 Rev. 03/09 SCHOOL DISTRICT SCHOOL FEE CERTIFICATION (To be completed by the school district(s)) THIS FORM INDICATES THAT THE SCHOOL DISTRICT REQUIREMENTS FOR THE PROJECT HAVE BEEN OR WILL BE SATISFIED. SCHOOL DISTRICT: The undersigned, being duly authorized by the applicable School District, certifies that the developer, builder, or owner has satisfied the obligation for school facilities. This is to certify that the applicant listed on page 1 has paid all amounts or completed other applicable school mitigation determined by the School District. The City may issue building permits for this project. - SIGNATURE OF AUTHORIZED SCHOOL DISTRICT OFFICIAL 'S 4 CARLSBAD UNIFIED SCHOOL DISTRICT 6225 EL CAMINO REAL CARLSBAD, CA 92009 9itct1c . r1.cO /Th& TITLE NAME OF SCHOOL DISTRICT DATE PHONE NUMBER B-34 Page 2 of 2 Rev. 03/09 PERMIT REPORT rcity of Carlsbad Print Date: 07/01/2020 Permit No: PREV2019-0071 Job Address: 1095 HOOVER ST, CARLSBAD, CA 92008 Status: Closed - Finaled Permit Type: BLDG-Permit Revision Work Class: Residential Permit Revisic Parcel #:- 2061720100 Track #: Applied: 04/01/2019 Valuation: $ 0.00 Lot #: Issued: 04/25/2019 Occupancy Group: Project #: DEV2017-0112 Finaled Close Out: 07/01/2020 #of Dwelling Units: Plan #: Bedrooms: Construction Type: Bathrooms: Orig. Plan Check It: PC2018-0025 Inspector: Plan Check #: Final Inspection: Project Title: VIOLA RESIDENCE HOOVER STREET Description: HOOVER ST: ADDING 390 SF DECK AND 105 SF LV TO MAIN DWELLING// REMOVE ADU DECK AND ADD 224 SF LIVING TOADU Applicant: Property Owner: WRIGHT DESIGN THE AGMISH TOFF TRUST 06-23-95 SAMUEL WRIGHT 4858 PARK DR 2911 STATE ST, #A CARLSBAD, CA 92008-3811 CARLSBAD, CA 92008-2338 (760) 613-8333 (760) 720-7631 FEE AMOUNT BUILDING PLAN CHECK REVISION ADMIN FEE $35.00 MANUAL BUILDING PERMIT FEE $357.00 MANUAL BUILDING PLAN CHECK FEE $117.00 Total Fees: $ 509.00 Total Payments To Date: $ 509.00 Balance Due: $0.00 Building Division Page 1 of 1 1635 Faraday Avenue, Carlsbad CA 92008-7314 1 760-602-2700 I 760-602-8560 f I www.carlsbadca.gov PLAN CHECK REVISION OR Development Services (City of DEFERRED SUBMITTAL Building Division Carlsbad APPLICATION 1635 Faraday Avenue 760-602-2719 B 1 5 www.carlsbadca.gov Original Plan Check Number Ol b 'Z Plan Revision Number EV'2O iTOg1 ( ProjectAddress I r iL. F_1. General Scope of Revision/Deferred Submittal: eL. . C., 1-4 LrC...9 N40 CrL T Lcj soar lja.J CONTACr INFORMATION: Name_ria 1= I 0 L. 4A Phone Fax Address 48rD II'' .I ,. Jap City_ Zip cZ. CQ!Z7 Email Address Original plans prepared by an architect or engineer, revisions must be signed & stamped by that person. 1. Elements revised: Z Plans • 0 Calculations EJ Soils Eli Energy E Other 2. Describe revisions in detail 3. List page(s) where each revision is shown ITE.w1 : I It. To + ifl.1 /15. _ rre A co _____ __ iTi'i IPE. 14L4 L4vi1-4 cr ,Ai4 (cL ab .E I +Ioq.. 4. Does this revision, in any way, alter the exterior of the project? Jf Yes E No Does this revision add ANY new floor area(s)? ,J?'.f Yes El No Does this revision affect any fire related issues? fl Yes J.f No Is this a complete set? Yes No Signature _('4441 tA Date 1635 Faraday Avenue, Carlsbad, CA 92008 fb: 760-602-2719 f: 760-602-8558 Email: building@carlsbadca.gov www.carlsbadca.gov JOB _"(014- (t4Otx,) MIKE SURPRENANT I W V! & ASSOCIATES SHEErNO.________________ -1' OF_____________ DATE _(lye Consulting Structural Engineers CALCULATED BY CHECKED BY________________________ DATE SCALE C. C S C. 1 C s 1 2 ., I C. 1 3 1 j. I ... 3 1 1 6 1 a . 2 3 1 5 6 I II 1 2 3. 1 3 6 SC I 2 5 VI cc OR r ... 01 1 :ji 1' • .: ,' Ut I C. (jc6 t euc : . I I 3 Le 3' : cq E6'(( (ow Ito .. ..i..... () Av I Iz PaflCO1I V(Oc JOB________________________ MIKE SURPRENANT ) Il. & ASSOCJATIS SHEET NO.___________________ OF_________________ _L Consulting Structural Engineers CALCULATED BY DATE WIN CHECKED BY________________________ DATE SCALE 23 4 21.1,1234 5 d 7 1 3 I 5 5 r a I 6 3 41.6 r a 123' 2671 2345612123 -- OF I W. MIKE SURPRENANT JOB (/lotiq- (Ffti,4) \. 1 & ASSOCIATES SHEET NO. __________ OF___________________ Consulting Structural Engineers CALCULATED BY DATE 1/wgc CHECKED BY DATE__________________ SCALE PARAPET PER . b€Ch. EATWING PER PLAN 1 2x NAILER w/B.N. 4 (4)idiOC : • STEEL-,BEAM, ER PLAN................................ wl WENLLER5 w/4,61# STUDS24' OC (I' MAX • • COUN1ERINI 4 &TACsGi. . . . . • 4. - fl flflflnl In Ifl7 MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers joa V(flt. (.OM'(t) J% 061 IL SHEET NO._________________________ OF____________________ CALCULATED BY .t DATE Ii Ufl9 CHECKED BY_________________________ DATE____________________ SCALE 6 7 5 7 77 / IcçJç 3o.cr te& STEEL BEAM PER PLAN wl / I . f 3x TOP NAILER 4 WEB FILLER-' t...,jf ttc" WI B/+ STUDS IT 32'. O.C. . . . . . (STAGGERED 4 wil' MAX. . COUNTERSINK) . •..: 44Iv. or i()c?t I° . Pt LT CONNECTION DETAIL 46 . . FES Tn .........................................................*...0613.t .............. 0 PRODUCT 201 - MIKE SURPRENA14T : & ASSOCIATES Consulting Structural Engineers JOB vCuLA- (R(V*') SHEET NO. OF___________________ CALCULATED BY DATE_I ilii(9 - CHECKED BY DATE_________ SCALE &IIEARPANEL VA ,.__.,.STUD WALL" PER PLAN, LAN.... . BTM. PLATE WI ATTACH. PER S.W. SCHED. 05HEAfl.HNG . 7 PER PLAN FLOOR SHEATHING PER PL-AN . EN.. ...:.:. . JOISTFLOOR PER PLAN • (6) F Ei.i DBL. TOP PLATE5 WI CLIP PER .W. 5CI1E. 514EAR PANEL PER PLAN - STUD WALL PER PLAN H ..: SHEAR TRANSFER DETAIL ...................................... H .. ....H.. CA If A flflflflhlryqa, - ml MIKE SURPRENANT if & ASSOCIATES ç r Consulting Structural Engineers JOB (JIOII% Cfou&) 9062 SHEET NO. 6 OF______________________ CALCULATED BY_1?:- DATE CHECKED BY DATE SCALE ...... . . 3,; :' r : . • SHEAR PANEL ;,.- STUD WALL PER PLAN, . ..FERPLAN .................... TI1. PLATE wI B44 ALL-THREAD S.W.PER sci-r. WELD TO BM.) ROOF SHEATHING V PER PLAN W ( FLOOR SHEATHING PER PLAN ftm FLOOR JOIST pi- AAM PER PLAN W1 ifut 2x OtDc'. QwN• fjj Lit (6) re J \2xLKG6TUN.F. w/ I(pd PER BAY STEEL SEAM PER PLAN WI WEB FILLER 4 5wo STUDS -Li . 32 aci (STAGGERED 4 V MAX. cUNTERSINK) . ..................... CONNECTION DETAIL (3 OflflfllS(• MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB (O SHEET NO. OF___________________ CALCULATED BY DATE___________________ CHECKED BY_________________________ DATE___________________ SCALE LEVEL: : 000 TLJ SPAN= 41. ftM-lO 0, POINT LOAD (CENTERED) 12 CUSTOM LOADING (SEE DIAGRAM) %v1 =(((/)(go)4fo 1LP(I(O/3j I I P2 = RL= _______lbs R= 10910, bs VNIAX lbs E = kst W $ Gk4DE: /19 1. C:_ 1 /4 MMAX= ft-lbs hsQn USE: ItX ALT: GRADE: C:_______ LABEL: P& SPAN=J.L_YI'. - .0 UNIFORM LOAD O POIt'fl' LOAD (CENTERED) LI CUSTOM LOADING (SEE DIAGRAM) 1= 39 p to O/Ott 10 1' W2 = (1l/ )(0) (OS p'f (0) P1 = L (iSsL P2 = RL =2SiT lbs RR 23 lbs Vr:.x = lbs E =_ksi USE: !'i ' (I4 "4'\GRADE: t' C:- Mi,x= __________ft-lbs IREQD . in ALT: GRADE: C:______ LABEL: _______ SPAN= FT. IJ UNIFORM LOAD POINT LOAD (CENTEREI) CUSTOM LOADING (SEE DIAGRAM) wl= W2= P1 = P2 = I USE: ___GRADE:__________ C:_______ [ALT: GRADE: C;______ lbs ________lbs _ RR= INAX = lbs E = Icsi mmAx=- ft-lbs IBEQ'D = in4 B Pnflh,F.T7 - to Mike Surprenant & Associates I Steel Beam Project Title: Viola Engineer: TC Project ID: 18063 Project Descr: Sheet ID of Printed: 11 JAN 2019, 8:32AM Calclernplateswiota-Haover.ec6. NC. 1902018, Build:10.1112.13 - Description : R8-7 (Rev. 1-11.19) CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material P!operties Analysis Method: Allowable Strength Design Beam Bracing: Beam is Fully Braced against lateral-torsional buckling Bending Axis: Major Axis Bending - D(O.11)L Span = 4 F Applied Loads ______.•••__________ Beam sell weight calculated and added to loading Uniform Load: D = 0.020 L = 0.060 ksf, Tributary Width = 5.50 ft, (Deck) Fy : Steel Yield: 50.0 ksi E: Modulus: 29,000.0 ksi .33) Oft Service loads entered. Load Factors will be applied for calculations. DESIGN SUMMARY P1fTiIs] siaximum Bending Stress Ratio = 0.385: 1 Maximu'm'- Shear Stress Ratio = 0.094 :1 Section used for this span W12x79 Section used for this Span W1209 Ma :Applied 114.434k-fl Va:Applied 10.898 k Mn /Omega: Allowable 296.906 k-fl Vn/omega : Allowable 116.560 k Load Combination -*O+14H Load Combination 404+1-I Location of maximum on span 21 .000 ft Location of maximum on span 0.000 fl Span # where maximum occurs Span # I Span # where maximum occurs Span # 1 Maximum Deflection Max Downward Transient Deflection 1.209 in Ratio = 416 >=360 Max Upward Transient Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 1.901 in Ratio = 265 >=240 Max Upward Total Deflection __-O.00O•n Ratio = 0 <240 Maximum Forces & Stresses for Load Combinations ______________________________ Load Combination - Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma Max Mnx MnxI0mega Cb Rm Va Max Vnx Vnx/0mega 4D+H Dsgn. L= 42.00 ft 1 0.140 0.034 41.67 41.67 495.83 296.91 1.00 1.00 3.97 174.84 116.56 -iD+L4j Dsgn. L= 42.00 ft 1 0.385 0.094 114.43 114.43 495.83 296.91 in in 10.90 174.84 116.56 +D-+Lr-+H Dsgn. L= 42.00 It 1 0.140 0.034 41.67 41.67 495.83 296.91 1.00 1.00 3.97 174.84 116.56 *o+S+11 Dsgn.L = 42.00 it 1 0.140 0.034 41.67 41.67 495.83 296.91 1.00 1.00 3.97 174.84 116.56 -+O40750Lr40J50LsH Dsgn.L= 42.00 ft 1 0.324 0.079 9624 9624 495.83 296.91 1.00 1.00 9.17 174.84 116.56 *040.750L90.750StH Dsgn. L= 42.00 ft 1 0.324 0.079 96.24 96.24 495.83 296.91 1.00 1.00 9.17 174.84 11656 -+D'O.BOW.+H Dsgn. L= 42.00 it 1 0.140 0.034 41.67 41.67 495.83 296.91 1.00 1.00 3.97 174.84 116.56 4040.70E-*H Dsgn.1 = 42.00 ft 1 0.140 0.034 41.67 41.67 495.83 296.91 1.00 1.00 3.97 174.84 116.56 4010.750Lr4O.750L-'0.450W+H Dsgn. I = 42.00ft 1 0.324 0.079 9624 96.24 49583 296.91 1.00 1.00 9.17 174.84 116.56 40-+0.750L-e0.75080.450W#I Dsgn. L= 42.O0 ft 1 0.324 0.079 96.24 9624 495.83 296.91 1.00 1.00 9.17 174.84 116.56 -fD-+0.750L40750S0.5250E4l Dsgn. 1= 42.0011 1 0.324 0.079 96.24 96.24 495.83 296.91 1.00 1.00 9.17 ,174.84 116.56 40.600-'0.60W40.60H - Dsgn. L= 42.00 ft 1 0.084 0.020 25.00 25.00 495.83 296.81 1.00 1.00 2.38 174.84 116.56 Mike Surprenant & Associates Project Title: Viola Engineer: IC Project ID: 18063 Project Descr: Sheet of t7- Printed: II JAN 2019. 8:32AM INC. 1983-2018, Build:I0.18.12.13 Descption: R8-7 (Rev. 1-11-19) Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span II M V Mmax + Mniax - Ma Max Mnx MnOmega Cb Rm Va Max Vnx VnWOniega 40.60040J0E40.60H Dsgn. L = 42.00 ft 1 0.084 0.020 25.00 25.00 495.83 296.91 1.00 1.00 2.38 174.84 116.56 Overall Maximum Deflections Load Combination - Span Max. Dell Location In Span Load Combination Max. + Defi Location in Span 1 1.9013 21.120 0.0000 0.000 Vertical Reactions . Support notation Far left Is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 10.898 10.898 Overall MiNimum 2.381 2.381 3.968 3.968 40+L4H 10.898 10.898 -.D.4.riH 3.968 3.968 sD+S.*i 3.968 3.968 -'D-'0.750Lr40.750L#I 9.166 9.166 +O+0.750L40.750S*I 9.166 9.166 D40.60W4M 3.968 3.968 -040.70E44l 3.968 3.968 +D40.750Lr.0.750L40.450W+H 9.166 9.166 iDi0.750140.750S40.450W+H 9.166 9.166 ID-0.750L-'0J50S40.5250E.H 9.166 9.166 40.60D40.60W40.60H 2.381 2.381 40.600+0.70E40.60H 2.381 2.381 D Only 3.968 3.968 Lr Only L Only 6.930 6.930 S Only IN Only E Only H Only MIKE SURPRENANT JOB & ASSOCIATES SHEET NO.____________________OF Consulting Structural Engineers CALCULATED BY_______________________ DATE____________________ CHECKED BY DATE SCALE LEVEL: LdO& MEMBERS:e LABEL: SPAN= (0 FT. UNIFORM WAD . El POINT LOAD CENTERBD) ...... .I(l• .1 El CUSTOM LOADING (SEE DIAGRAM) ,.1. ,4'.............-- 1) ((6) •. %44 Of () .. . __________________ I Ir(O/ UoL, . . _ W2 2.0 p 2,71 P1 = t'(J(K(4'') :. 2gy (jC;J I Y/n(to. sfco) V:_lbs E=______ 111 ,Ln Mx= ft-lbs IREQD GRADE: =_. ALT: GRADE: Q- 2-1 FT. CUSTOM LOADING (SEE AGRAM ., W,= (')(J 4• ) W2= (?O;c):COO tiff.N00014060 P2 R = = v3.,3. (i )( (6) fool[ (o) (rr lbs R VIAx lbs E - -lbs LREQ USE: '.) lO>,3 4 GRADE:li- C: ft D =. : ALT: GRADE: C:______ LABEL: _______ SPAN= FT. UNIFORM LOAD POINT LOAD (CENTERED) O CUSTOM LOADING (SEE DIAGRAM) Wi = W2= P1 = P2 = -_b3 RR = ___________lbs Vx = • IN E = ksi KmAx=___________ft-lbs IREQ'O = in4 USE: GRADE: I C:. ALT: GRADE: C:______ 0 PRODUCT 23? Mike Surprenant & Associates Project Title: Viola Engineer: IC Project ID: 18063 , Project Descr: Sheet It - of_ R. ______ Printed: 11 JAN 2019, 8:33AM Steel Beam 8uild:10.18. Description: FB-8 (Rev. 1-11-19) CODE REFERENCES Calculations perAtSC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Beam Bracing: Beam is Fully Braced against lateral-torsional buckling Bending Axis: Major Axis Bending -__ D(O.234 Dcc Fy : Steel Yield: 50.0 ksi E: Modulus: 29,000.0 ksi WI 0x54 Span = 21.0 ft Applied Loads Service toads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: 0 = 0.20, L = 0.40 k/fl, Tributary Width = 1.0 It, (Floor) Uniform Load: 0 = 0.1440 k/ft, Tributary Width = 1.0 ft. (Walt Above) Uniform Load: D = 0.2340, Lr = 0.260 k/ft. Tributary Width = 1.011, (Upper Roof) Uniform Load: D = 0.020, L = 0.060 ksf, Tributary Width = 5.50 ft. (Deck) DESIGN SUMMARY cnuin Bending Stress Ratio = 0.492: 1 Maximum Shear Stress Ratio = - Section used for this span WI 0x54 Section used for this span Ma : Applied 81.821 k-ft Va : Applied Mn Omega: Allowable 166.168k-ft Vn/omega : Allowable Load Combination +D.+.75OLr+0.750L4I Load Combination Location of maximum on span 10.500ft Location of maximum on span Span # where maximum occurs Span #1 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection 0.365 in Ratio= 690 >=360 Max Upward Transient Deflection 0.000 in Ratio = 0 (360 Max Downward Total Deflection 0.743 in Ratio= 339 >=40 Max Upward Total Deflection 0.000 in Ratio = 0 <240 0.209:' W1Ox54 15.585 k 74.740 k +D'0.750Lr*0.750L+H 0.000 ft Span # 1 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mniax - Ma Max Mnx Mnx/Omega Cb Rm Va Max Vnx VniJomega +O+H Dsgn.L= 21.00ft 1 0.246 0.104 40.89 40.89 277.50 166.17 1.00 1.00 7.79 112.11 74.74 #OL9H Dsgn.L= 21.00 ft 1 0.488 0.207 81.13 81.13 277.50 166.17 1.00 1.00 15.45 112.11 74.74 4O'1r4H Dsgn.L= 21.00ft 1 0.332 0.141 55.22 55.22 277.50 166.17 1.00 1.00 10.52 112.11 74.74 +D+S+H Dsgn.L = 21.00 It 1 0,246 0.104 40.89 40.89 277.50 166.17 1.00 1.00 7.79 112.11 74.74 4090.750Lr.0.750LH Dsgn.L= 21.00 ft 1 0.492 0.209 81.82 81.82 277.50 166.17 1.00 1.00 15.58 112.11 74,74 4O.O.750L+0.750SsH Dsgn.L= 2`1.00 ft 1 0.428 0.181 71.07 71.07 277.50 166.17 1.00 1.00 13.54 112.11 74.74 4040.60W+H Dsgn. L = 21.00 ft 1 0.246 0.104 40.89 40.89 277.50 166.17 1.00 1.00 7.79 112.11 74.74 4040.70E#H Mike Surprenant & Associates Project Title: Viola Engineer: TC Project ID: 18063 Project Descr: Sheet It of R. Flo Prinled: 11 JAN 2019, 8:33AM Software copyrighl ENERCALC, INC. 1902018. Build:10.18.12.13. Descripfton: FB.8 (Rev. 1-11-19) Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma Max Mnx Mnxlamega Cb Rm Va Max Vax VnQOmega Dsgn. I = 21.00 It 1 0.246 0.104 40.89 40.89 277.50 166.17 1.00 1.00 7.79 112.11 74.74 4040.750Lr,0.750L.*0.450W1M Dsgn. L = 21.00 ft 1 0.492 0.209 81.82 81.82 277.50 166.17 1.00 1.00 15.58 112.11 74.74 040.750L+0.750S.0.450WH Dsgn. L= 21.0011 1 0.428 0.181 71.07 71.07 277.50 166.17 1.00 1.00 13.54 112.11 74.74 4040.750L40.750S40.5250E+H Dsgn. L= 21.000 1 0.428 0.181 71.07 71.07 277.50 166.17 .1.00 1.00 13.54 112.11 74.74 4060D40.60W10.60H Dsgn. L = 21.00 It 1 0.148 0.063 24.53 24.53 277.50 166.17 1.00 1.00 4.67 112.11 74.74 40.60040.70E40S0H Dsgn. L= 21.00 ft 1 0.148 0.063 24.53 24.53 277.50 166.17 1.00 1.00 4.67 112.11 74.74 Overall Maximum Deflections Load Combination Span Max. '-' Deft Location In Span Load Combination Max. +° Deft Location in Span 'D40.75OLr40.750L40.450W4H 1 0.7425 10.560 0.0000 0.000 Vertical Reactions Support notation :Far left is#1 Values inKIPS Load Combination Support 1 Support 2 Overall MAXimum 15.585 15.585 Overall MINimum 2.730 2.730 40+H 7.789 7.789 +D441 15.454 15.454 4O4Lr+H 10.519 10.519 0'S4H 7.789 7.789 13+0.750Lr40.7501-.1-1 15.585 15.585 4090.750L40.750StH 13.537 13.537 4.0.60W4H 7.789 7.789 +D40.70EsH 7.789 7.789 4O40.750Lr40.750140.450W+H 15.585 15.585 +D.0.750L.0.750S.0.450WsH 13.537 13.537 400.750L40.750S40.5250E+H 13.537 13.537 'O.600.0.60W40.60H 4.673 4.673 ..0.60D40.70E40.60H 4.673 4.673 0 Only 7.789 7.789 Lr Only 2.730 2.730 L Only 7.665 7.665 S Only W Only E Only H Only L / JOB V I o(* 1f1Oo,eA 1062 - ----- MIKE SURPRENANT t ___________ & ASSOCIATES SHEET NO._____________________ OF______ -,.. . Consulting Structural Engineers CALCULATED BY_ DATE ' ,(( g F 7iw'n j i__r, _. - - - ___- af ____ F N. 41'R1 . . 2013Op ;•3 ;r CA 11VQ S& 17 I ' •. _;J4. . it 4_MJ - ... I4')((6''_'JA •flf_ejQJ_ ;OvU Oi,j IV i 'FM SLON 21 N IT j2 • I .. I I NN\ O/I 3 1 kkit tNli ..I1,•. ::. . IF:.. 1 .._A .. JOB VIOLA, t(A,u) I SOP MIKE SURPRENANT & ASSOCIATES - Consulting Structural Engineers • (4 \tI' C iw'. '\ > • r q' I •••d&_ _ I . .. •42 VZ?' ( ( H Al !d d . T IL IP Kit ' \.•! . (krJ !: •j1 . . .••• /t • •r-- •.. Ic :.J:• 0C. ITNU.t 4 ':_ L1 c4&ivY • \4H cc) : 4. •:. •. •• - . • :: • . . . .. I .-. • • • ••. I WV / b .KUQ_ -4 WA IiRVc , ? r((t. I • • . • s C JOB "(UM MIKE SURPRENANT SHEET NO - OF & ASSOCIATES DATE Consulting Structural Engineers CALCULATED BY- CHECKED BY - DATE - _________________________ SCALE Alm. 1.6 - . r ..•. . .: - .. ________________.. .•. - . : 1r&1, ) 1 4 I IJL OccuiU) I • 4 ... L :gg,7F • f y4$UR* II11F1Ji$. - 1I It /'W55/2o/ftJ •;IJ F;T1.I.;I.. .• -I I' I •7.1 . : L1J!I!LIF \: 01 : ,t$. •c. • •. I I!I •-l&.; '' . •. I .IJI '4 £4 MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB dQtfi- (WjUQ'4) 1062 2e SHEET NO._____________ A OF______________________ CALCULATED BY_ DATE CHECKED BY___________________________ DATE SCALE - - RETAINING WALL . 7 PER PLAN' .................... FLOOR SHEATHING PER PLAN tLlL :7/ . S'I .1tl1j J LAJcrl13 )c )c. L'Iç)tU 4Uc;& ) 'K K CtMCIIUii) / . . . FLOOR ........ L-APA123 ANCHOR 0 32 Ot. NAILED TO '1eA --ry two 7/y \ /...... CONT. P.T.LGR . . 10(f- / WI '+ A.B. . ('' MIN. EMBEDMENT)4 (d(N 8.d# P•i - (STAGGERED) CONNECTION DETAIL RL= '(lbs R= ((3(.lbs V.1Ax = lbs ksi ft-lbs IREQ'D = in4 MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB IO6? SHEET NO. -. - -OF CALCULATED ov - DATE CHECKED BY DATE SCALE LEVEL: MEMU SPAN=-J]-FT. •( UNIFORM WAD O POJNT LOAD (CENTERED) CLJSTQM LOADING (SEE bIAGRM) (trio! W2= P2 USE: 4' uW GtADE:IOO C:_______ ALT: -. GRADE: C:______ 4 1I.)8O IIo#6tn RL =1?V)lbs RR=_L?I lbs VIVIAX = . lbs E = ksi MMAX = ___________ft-lbs IREQD = in4 LABEL: ft(Z )SPAN= 2.1 FT. -f 6.c c,&.i 0 POINT LOAD (CENTERED) O CIJS*)M WADING (SEE DIAGRAM) WI = (10/1-)( I'fO p1l ('tO (tf/ )(e) 'f (tjf fet USE: 1O'4" 11 ADE:_t41V4 C:_______ ALT: _(hA GRADE: C:_______ R= (OS) lbs YMAX = lbs MMAX= 7. = lcD4r_lbs ksi IREQD LABEL: PJ 2 SPAN=__I1 S FT. j . .' UNIFORM LOAD POINT LOAD (CENTERED) t CUSTOM LOADING (SEE DIAGRAM) W'= W2= - 11;.f (24 VES i.,,) = USE: 4 f GRADE: C:_ ALT: GRADE: - C:______ Associates Project Title: Viola Engineer: IC Project ID: 18063 Project Descr:Sheet 6 of_______ Printed: 21 JAN 2019, 9:48AM Wood Beam FiI8 &frwre coSvfiaht ENERCALC.1NC. 1983-2018. 8ui1d:10.18.12.13 Description: RB-I (Rev. 1.21-19) CODE REFERENCES Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb + 3,100.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - 3,100.0 psi Ebend- xx 2,000.0ksi Fc - PrH 3,000.0 psi Eminbend - xx 1,036.83ksi Wood Species : Boise Cascade Fc - Perp 750.0 psi Wood Grade : Versa Lam 2.0 3100 West Fv 285.Opsi Ft 1,950.0 psi Density 41.750pc1 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(o.077..,17) .r(0.0850.13) r 5.25x11.875 5.25x11.875 F Span = 8.0 ft . Span = 17.0 ft Applied Loads -. Service loads entered. Load Factors will be applied for Calculations. Beam sell weight calculated andaddedto loads - Load for Span Number 1 Varying Uniform Load: D=0.0770->0.1170, U-4.0850-4.1130 klft, Extent = 0.0->>8.0 II, Tub Width = 1.01t, (Roof) )ESIGN SUMMARY 3ximum Bending Stress Ratio Section used for this span fb : Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection = 0.1671 5.25x11.875 = 648.59 psi = 3,875.00 psi +D+Lr+H = 8.0001t = Span #1 Maximum Shear Stress Ratio Section used for this span fv:Actual Fv: Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.103 :1 5.25x11.875 = 36.69 psi = 356.25 psi 4041-J+H = 7.017 ft = Span #1 0.230 in Ratio = 834 >=360 -0.071 in Ratio = 2873>=360 0.445 in Ratio= 430 '=240 -0.125 in Ratio = 1627 '=240 MaximumForces& Stresses for LoadCombinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V Cd CFN C 1 Cr Cm C CL M lb Pb V lv Fv 40+H 0.00 0.00 0.00 0.00 Length =8.oft 1 0.121 0.074 0.90 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.38 2790.00 0.79 19.01 256.50 Length =17.011 2 0.121 0.074 0.90 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.38 2790.00 0.34 19.01 256.50 40+L4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =8.oft 1 0.109 0.067 1.00 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.38 3100.00 0.19 19.01 285.00 Length =17.oft 2 0.109 0.067 1.00 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.38 3100.00 0.34 19.01 285.00 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 8.0ft 1 0.167 0.103 1.25 1.000 1.00 1.00 1.00 1.00 1.00 6.67 648.59 3875.00 1.53 36.69 356.25 Mike Surprenant & Associates Project Title: Viola Engineer: IC Project ID: 18063 Project Descr: Sheet of Printed: 21 JAN 2019, 9:48AM Wood Beam File = F:lRojectsl2Ol8tle 3-Viola-Hoover StreetWrgh003.EnglneeItnglCaicTempla1esIViOIa-HO0Vet.eC6. Software copydghl ENERCALC. INC 1983-2018, 8ui1d:10.18.1213. IRTFi''EaI.iiliMsI.1' Description: R8.1 (Rev. 1.21.19) Load CombInation Max Stress Ratios Moment Values Shear Values Segment Length Span# M V C CFN G Cr Cm C CL M fb Pb V Iv Pv Length = 17.0 ft 2 0.167 0.103 1.25 1.000 1.00 1.00 1.00 1.00 1.00 6.67 648.59 3875.00 0.53 36.69 356.25 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =8.0ft 1 0.095 0.058 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.38 3565.00 0.79 19.01 327.75 Length = 17.0 ft 2 0.095 0.058 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.38 3565.00 0.34 19.01 327.75 -i040.750Lrs0.750141 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =8.oft 1 0.147 0.091 1.25 1.000 1.00 1.00 1.00 1.00 1.00 5.87 570.79 3875.00 1.34 32.27 356.25 Length =17.oft 2 0.147 0.091 1.25 1.000 1.00 1.00 1.00 1.00 1.00 5.87 570.79 3875.00 0.48 32.27 356.25 4040.750L+0.750S'+H 1.000 1.00 1.00 1.00 1.00 1.00 . 0.00 0.00 0.00 0.00 Length =8.oft 1 0.095 0.058 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.38 3565.00 0.79 19.01 327.75 Length =17.0ft 2 0.095 0.058 1.15 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.38 3565.00 0.34 19.01 327.75 4O40.60W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 8.oft 1 0.068 0.042 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.38 4960.00 0.79 19.01 456.00 Length = 17.0 ft 2 0.068 0.042 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.38 4960.00 0.34 19.01 456.00 -+O.0.70E+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =8.oft 1 0.068 0.042 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.38 4960.00 0.79 19.01 456.00 Length 17.oft 2 0.068 0.042 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.38 4950.00 0.34 19.01 456.00 +040.7501r40.750L40.450W-'H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =8.Oft 1 0.115 0.071 1.60 1.000 1.00 1.00 1.00 1.00 1.00 5.87 570.79 4960.00 1.34 32.27 456.00 Length = 17.0 ft 2 0.115 0.071 1.60 1.000 1.00 1.00 1.00 1.00 1.00 5.87 570.79 4960.00 0.48 32.27 456.00 -+O40.750L.0.750S0.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =8.oft 1 0.068 0.042 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.38 4960.00 0.79 19.01 456.00 Length =17.oft 2 0.068 0.042 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.36 4960.00 0.34 19.01 456.00 sQ'0.750L"0.750S0.5250E4t 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =8.oft 1 0.068 0.042 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.38 4960.00 0.79 19.01 456.00 Length = 17.0 ft 2 0.068 0.042 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.47 337.38 4960.00 0.34 19.01 456.00 0.60D-i0.60W*0.60H 1.000 1.00 1.00 1.00 1.00 1.00 . 0.00 0.00 0.00 0.00 Length =8.0ft 1 0.041 0.025 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2,08 202.43 4960.00 0.47 11.41 456.00 Length =17.oft 2 0.041 0.025 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.08 202.43 4960.00 0.20 11.41 456.00 0.60D'0.70E40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =8.oft 1 0.041 0.025 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.08 202.43 4960.00 0.47 11.41 456.00 Length= 17.0 ft 2 0.041 0.025 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.08 202.43 4960.00 0.20 11.41 456.00 Overall Maximum Deflections Load Combination -- Span Max.-" Qefl Location in Span Load Combination ' Max. +' Deft Location in Span '04Lr41 1 0.4445 0.000 0.0000 0.000 2 0.0000 0.000 .O4Lr+H -0.1253 6.933 Vertical Reactions Support notation: Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 2.327 -0.239 Overall MINimum 1.048 -0.050 +D+H 1.278 .0.050 4O+L4H 1.278 -0.050 iD4jsH 2.327 -0.239 40451+4 1.278 -0M50 +0'0750Lr40750L#H 2.064 -0.192 -'0.0.750L40.750S41 1.278 -0.050 sO*060W9H 1.278 -0.050 -.040.70E-*l 1.278 -0.050 40-'0.750Lr40.750L40450W+H 2.064 -0.192 +D0750L40.750S40450W+H 1.278 -0050 4040.7501--*0.750S40.5250E4fI 1.278 -0.050 .0.60D'0.60W+0.60H 0.767 -0.030 4060D'0.70E+060H 0.767 -0.030 O Only 1.278 -0.050 Lr Only 1.048 -0.188 L Only S Only W Only E Only Mike Surpre;ant&Associates Project Title: Viola Engineer: IC Project ID: 18063 Project Descr:Sheet - 9 ofto Printed: 21 JAN 2019, 9:46AM Wood Beam File F:lPmjects2018t18098.VioI-jioover St eet-WdghttO3-Engineering\Calc lemptatesWlola-Hoover.ec6. L nflwzrA mnydaht ENERCALC INC. 1983-2018. Build:1O.18.12.13 I Description: RB-I (Rev. 1-21-19) _.Vertical Reactions Support notation: Far left Is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 = 0.534 1 10.75x12 = 1,488.96 psi = 2,785.80p5i 404.r+H = 11.615ft = Span #2 Maximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.232 :1 10.75x12 = 76.89 psi = 331.25 psi +D+lr+H = 6.500 ft = Span #1 0.442 in Ratio = 569 '=360 -0.326 in Ratio= 478 '=360 0.875 in Ratio = 287 >=240 -0.643 in Ratio = 242 >=240 Mike Surprenant & Associates Project Title: Viola Engineer: TC Project ID: 18063 Project Descr: Sheet of _10 Printed: 21 JAN 2019, 9:00AM Wood Beam File= F:1ProJecLs201818053-Ji&a-Hooyer Slreet-Wrig003-EngineefinglCalc TemplatesWiolaHoOVer.9 . nfiwar ionvdoht NERCALC. INC. 1983.2018. Bufld:10.18.12.13 . I Description: RB-2 (Rev. 1-2149) CODE REFERENCES Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb + 2400.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - 1,850.0 psi Ebend-xx 1 ,800.0ksi Fe - Prll 1,650.0 psi Eminbend - xx 950.0ksi Wood Species : DFIDF Fc - Perp 650.0 psi Ebend- yy I ,600.0ks1 Wood Grade :24F - V4 Fv 265.0 psi Eminbend - yy 850.Oks! Ft 1,100.Opsi Density 31.20pc1 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 0(0.09) Lr(O. 1) DtO.149)tr(O.165) D(915 b(ö.141r(0.15) 9 1' 10.75x12 10.75x12 Span =6.50ft Span =21.oft H Applied Loads Service loads entered. Load-Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D=0.1490, Lr = 0.1650, Tributary Width = 1.0 It, (Roof) Uniform Load: 0=0.090, Lr 0.10, Tributary Width 1.0% (Roof) Load for Span Number 2 Uniform Load: D = 0.1490, Li = 0.1650, Tributary Width = 1.0 ft. (Roof) Uniform Load: D = 0.090, Lr= 0.10, Tributary Width = 1.0 It, (Roof) Varying Uniform Load: 0= 0.0->0.1350, Lr= 0.0->0.150 k/fl, Extent =0.0->> 21.0 It, Trib Width= 1.0 ft. (Root) DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span fb : Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M V - Cd C FN C I Cr Cm C t CL M lb Pb V fv Fv +D+H 0.00 0.00 0.00 0.00 Length = 6.50 ft 1 0.158 0.160 0.90 1.000 1.00 1.00 1.00 1.00 1.00 5.64 262.29 1665.00 3.29 38.26 238.50 Length =21.0ft 2 0367 0.160 0.90 0.929 1.00 1.00 1.00 1.00 1.00 15.84 736.68 2005.78 3.29 38.26 238.50 I iL Mike Surprenant & Associates Project Title: Viola Engineer: IC Project ID: 18063 Project Descr: Sheet tO of to Printed: 21 JAN 2018, 9:00AM Wood Beam File Software Build 10.18.12.13 Description: RB-2 (Rev. 1-21-19) Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span It M V - Cd C FN C i Cr Cm C CL M lb F'b V fv F\i 404.4H 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =6.50ft 1 0.142 0.144 1.00 1.000 1.00 1.00 1.00 1.00 1.00 5.64 262.29 1850.00 3.29 38.26 265.00 Length =21.Oft 2 0.331 0.144 1.00 0.929 1.00 1.00 1.00 1.00 1.00 15.84 736.68 2228.64 3.29 38.26 265.00 +D41r4H 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =6.50ft 1 0.226 0.232 1.25 1.000 1.00 1.00 1.00 1.00 1.00 11.24 522.67 2312.50 6.61 76.89 331.25 Length 21.0ft 2 0.534 0.232 1.25 0.929 1.00 1.00 1.00 1.00 1.00 32.01 1,488.96 2785.80 6.61 76.89 331.25 104S4H 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 6.50ft 1 0.123 0.126 1.15 1.000 1.00 1.00 1.00 1.00 1.00 5.64 262.29 2127.50 3.29 38.26 304.75 Length 21.0ft 2 0.287 0.126 1.15 0.929 1.00 1.00 1.00 1.00 1.00 15.84 736.68 2562.94 3.29 38.26 304.75 '0'0.750Lr40.750L4l 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 6.50ft 1 0.198 0:203 1.25 1.000 1.00 1.00 1.00 1.00 1.00 9.84 457.58 2312.50 5.78 67.24 331.25 Length = 21.0 It 2 0.467 0.203 1.25 0.929 1.00 1.00 1.00 1.00 1.00 27.97 1,300.89 2785.80 5.78 67.24 331.25 'O+0.750L40.750S*I 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 6.50 ft 1 0.123 0.126 1.15 1.000 1.00 1.00 1.00 1.00 1.00 5.64 262.29 2127.50 3.29 38.26 304.75 Length 21.0ft 2 0.287 0.126 1.15 0.929 1.00 1.00 1.00 1.00 1.00 15.84 736.68 2562.94 3.29 38.26 304.75 +090.60W+H 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =6.50ft 1 0.089 0.090 1.60 1.000 1.00 1.00 1.00 1.00 1.00 5.64 262.29 2960.00 3.29 38.26 424.00 Length = 21.0 It 2 0.207 0.090 1.60 0.929 1.00 1.00 1.00 1.00 1.00 15.84 736.68 3565.82 3.29 38.26 424.00 4040.70E#1 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 6.50 ft 1 0.089 0.090 1.60 1.000 1.00 1.00 1.00 1.00 1.00 5.64 262.29 2960.00 3.29 38.26 424.00 Length 21.Oft 2 0.207 0.090 1.60 0.929 1.00 1.00 1.00 1.00 1.00 15.84 736.68 3585.82 3.29 38.26 424.00 O4O.750Lr'0.750L40.450W4I 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 6.50 ft 1 0.155 0.159 1.60 1.000 1.00 1.00 1.00 1.00 1.00 9.84 457.58 2960.00 5.78 67.24 424.00 Length =21.oft 2 0.365 0.159 1.60 0.929 1.00 1.00 1.00 1.00 1.00 27.97 1,300.89 3565.82 5.78 67.24 424.00 4040.750L40.750540.450W41 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 6.50ft 1 0.089 0.090 1.60 1.000 1.00 1.00 1.00 1.00 1.00 5.64 262.29 2960.00 3.29 3826 424.00 Length =21.oft 2 0.207 0.090 1.60 0.929 1.00 1.00 1.00 1.00 1.00 15.84 736.68 3565.82 3.29 38.26 424.00 4O4O.750LsL750S'0.5250E4t 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 6.50 It 1 0.089 0.090 1.60 1.000 1.00 1.00 1.00 1.00 1.00 5.64 262.29 2960.00 3.29 38.26 424.00 Length = 21.0 It 2 0.207 0.090 1.60 0.929 1.00 1.00 1.00 1.00 1.00 15.84 736.68 3565.82 3.29 38.26 424.00 40.60D40.60W40.60H 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =6.50ft 1 0.053 0.054 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.38 157.38 2960.00 1.97 22.96 424.00 Length =21.oft 2 0.124 0.054 1.60 0.929 1.00 1.00 1.00 1.00 1.00 9.50 442.01 3565.82 1.97 22.96 424.00 40.60D40.70E40.60H 0.929 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =6.50ft 1 0.053 0.054 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.38 157.38 2960.00 1.97 22.96 424.00 Length= 21.oft 2 0.124 0.054 1.60 0.929 1.00 1.00 1.00 1.00 1.00 9.50 442.01 3565.82 1.97 22.96 424.00 Overall Maximum Deflections Load Combination Span Max. n-" Deft Location in Span Load Combination Max. '-#? Deft Location In Span 1 0.0000 0.000 404154H -0.6433 0.000 "041r+H 2 0.8752 11.028 0.0000 0.000 Vertical Reactions Support notation Far left is #1 Values In KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 10.576 7.045 Overall MiNimum 5.297 3.566 40*1 5.279 3.479 4041*1 5.279 3.479 "O+lr'.H 10.576 7.045 40+S+H 5.279 3.479 40'.0.750Lr40.7501'.l-1 9.252 6.154 40-+0.750140.750S41 5.279 3.479 4D40.60W+H 5.279 3.479 '.D40.70E4l 5.279 3.479 .0'.0.7501r'.0.750L40.450W#1 9.252 6.154 4040.750L40.750S40.450W+I1 5.279 3.479 40'.0.750L40.750540.5250E+H 5.279 3.479 40.60040.60W40.60H 3.168 2.088 40.60040.70E'.0.60H 3.168 2.088 0 Only 5.279 3.479 Mike Surprenant & Associates Project Title: Viola Engineer: IC Project ID: 18063 lo Project Descr:Sheet ( of Printed: 21 JAN 2019, 9:00AM Wood Beam File F:112r*0201818083-Vj-Hoover Street-WdghflO3-EngineeringCaIc Templateslvlole.Hoover.ec6. SoftNarecopyiight ENERcALC. INC. 1983-2018, 8uiId:10.18.12.13. Description: RB-2 (Rev. 1-21-19) Vertical Reactions Support notaUon: Far left is #S Values in KIPS Load Combination Support I Support 2 Support 3 Lr Only 5.297 3.566 L Only S Only WOnly Eonly H Only MIKESURPRENANT & ASSOCIATES consukkig Structural Engineers JOB. Io6i SHEET NO. OF___ CALCULATED BY 3 • - DATE CHECKED BY_ __-_---- DATE SCALE LEVEL: cLor¼ MEMBERS: at 4M5 LABEL: c- 1 SPAN= 10 Fr. UNIFORM LOAD POW LOAD (CBNTBRBD) iI".i Li CUSTOM LOADING (SEEDIAGRAM) ((6) 44 ptf (is) I ,J(): pl(O/ ((OLd) . I'i (?j(T)( tOt• 23) j13Js Of1tA (UI )(joy.. S Of (o) = 1bs =2 S3 lbs VMA, = Lbs E LiE:4 Y I!1''i,4r Mx= ft-lbs IREQ'D in 4 GRADE: '(O C: = ALT: _GRADE: ______ SPAN;_2-I FT. AD 13 Poori` LOAD (CENTERBP) . CUSTOMLOA (Cp IN DNO EDIAGRAM) - 440 LJi Yth' wl= ('-"1 t)a%) b%4 1(3140/760i) L ((! W2 = \ ( K () (( (r Lbs RR = lbs P2 = Vwc= _lbs E = __ksi 19 Mi,x=J.Ibs EREQD _____in4 USE: (34 GRADE: ALT: - GRADE:_- C:_______ LABEL: _______ SPAN=_ FT. UNIFORM LOAD POINT LOAD (CENTERED) O CUSTOM LOADING (SEE DIAGRAM) w1= = P1 = P2 = RL= ________lbs RR lbs VNIAX lbs E =_ksi ft-lbs JREQD = USE: GRADE: _C:. ALT: GRADE: _C:______ I. Mike Surprenant & Associates Project Title: Viola Engineer: TC Project ID: 18063 Project Descr: Sheet 13 of -7-0 Printed: 21 JAN 2019 9:01AM Steel Beam Ale" FrOJe 018118 -Vjoia4loover Street-Wtightlo3-EngineeringlCalc TemplatesWiola-Hoover.ec6. ,w,vth.l,I FJFR(AP ( IN( 19R.-2fl1& Build-I0.18.12.13 Description: FBI (Rev. 1-21-19) CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Beam Bracing: Beam is Fully Braced against lateral-torsional buckling Bending Axis: Major Axis Bending Fy : Steel Yield: 50.0 ksl E: Modulus: 29,000.0 kst O(0.11)L(033) O(0.324tLr(0.36) D(0P144) D(0.2rL(0.4) W1 OX54 Span = 21.0 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam sell weIght calculated and added to loading Uniform Load: D = 0.20, 1 = 0.40 k/ft, Tributary Width = 1.0 ft. (Floor) Uniform Load: 0 = 0.1440 k/ft. Tributary Width = 1.0 It, (Wall Above) Uniform Load: D = 0.3240, Lr = 0.360 k/ft. Tributary Width = 1.0 ft, (Upper Root) Uniform Load: D =0.020. L = 0.060 ksf, Tributary Width = 5.50 ft, (Deck) DESIGN SUMMARY Maximum Bending Stress Ratio = 0.547: 1 Maximum Shear Stress Ratio 0.232 : Section used for this span WI 0x54 Section used for this span W10x54 Ma : Applied 90.917k-ft Va : Applied 17.317 k Mn I Omega: Allowable 166.168 k-ft Vn/Omega : Allowable 74.740 k Load Combination -'O+0.750Lr40.750L+H Load Combination 4040.750Lr40.750L+H Location of maximum on span 10.50011 Location of maximum on span 0.000 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward Transient Deflection 0.365 in Ratio = 690 >=360 Max Upward Transient Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.825 in Ratio = 305 >=240 Max Upward Total Deflection 0.000 in Ratio = 0 <240 Maximum Forces & Stresses for Load Combinations -- Load combination Max Stress Ratios - Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma Max Mm Mnxlornega Cb Rm Va Max Vnx Vnx(0mega 404H Dsgn.l.= 21.00ff I 0.276 0.117 45.85 45.85 277.50 166.17 1.00 1.00 8.73 112.11 74.74 40+LIH Dsgn. L= 21.00 it 1 0.518 0.219 86.09 65.09 277.50 166.17 1.00 1.00 16.40 112.11 74.74 4D1tr4M Dsgn. L= 21.00 it 1 0.395 0.167 65.70 65.70 277.50 166.17 1.00 1.00 12.51 112.11 74.74 40+S4H Dsgn. L= 21.00 ft 1 0.276 0.117 45.85 45.85 277.50 166.17 1.00 1.00 8.73 112.11 74.74 4040.750Lr0.750L4fl Dsgn. 1= 21.00 ft 1 0.547 0.232 90.92 90.92 277.50 166.17 1.00 1.00 17.32 112.11 74.74 D+0.750L40.75084f Dsgn. L= 21.00 ft 1 0.458 0.194 76.03 76.03 277.50 166.17 1.00 1.00 14.48 112.11 74.74 +040.60W+H Dsgn. L= 21.00 ft 1 0.276 0.117 45.85 45.85 277.50 166.17 1.00 1.00 8.73 112.11 74.74 4040.70E+H _ Mike Surprenant & Associates Project Title: Viola - Engineer: TC Project ID: 18063 14 Project Descr:Sheet of __ ______ Printed: 21 JAN 2019, 9:01AM Steel Beam Description: FBI (Rev. 1-21-19) Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma Max Max Mn0mega Cb Rrn Va Max Vnx Vnxlomega Dsgn. I 21.00f1 1 0.276 0.117 45.85 45.85 277.50 166.17 1.00 1.00 8.73 112.11 74.74 0.750Lr40.750L40.450W41 Dsgn. L = 21.00 It 1 0.547 0.232 90.92 90.92 277.50 166.17 1.00 1.00 17.32 112.11 74.74 4040.750140.750S40.450W4H Dsgn.L= 21.00ft 1 0.458 0.194 76.03 76.03 277.50 166.17 1.00 1.00 14.48 112.11 74.74 4040.750L40.750840.5250E4H Dsgn.L= 21.0011 1 0.458 0.194 76.03 76.03 277.50 166.17 1.00 1.00 14.48 112.11 74.74 .0.60D+0.60W40.60H Dsgn. 1= 21.001t 1 0.166 0.070 27.51 27.51 277.50 166.17 1.00 1.00 5.24 112.11 74.74 0.60D0.70E40.60H Dsgn. L= 21.001t 1 0.166 0.070 27.51 27.51 277.50 166.17 1.00 1.00 5.24 112.11 74.74 OverallMaximumDeflections Load Combination Span Max. Deft Location In Span Load Combination Max. Y Deft Location In Span 40+0.750Lr40.7501.+0.450W+H 1 0.8251 10.560 0.0000 0.000 Vertical Reactions Support notation: Far left is#1 Values In KIPS Load Combination Support I Support Overall MAXimum 17.317 17.317 Overall MINimum 3.780 3.780 +041 8.734 8.734 +D+LeH 16.399 16.399 .+0Lr4H 12.514 12.514 i.0+S+H 8.734 8.734 s00.750Lr40.750L#1 17.317 17.317 .00.750140.750541 14.482 14.482 +040.60 Will 8.734 8.734 +O.0.70E4H 8.734 8.734 t00.750Lr40.75DL+0.450W+H 17.317 17.317 +040.750L+0.750S90.450W4H 14.482 14.482 4040. 75OL0.750SO.525OE4fI 14.482 14.482 0.60040.60W+0.60H 5.240 5.240 +0.60040.70E+0.60H 5.240 5.240 D Only 8.734 8.734 Lr Only 3.780 3.78D LOnly 7.665 7.665. S Only W Only E Only H Only Mike Surprenant & Associates Project Title: Viola Engineer: TC Project ID: 18063 10Project Descr:Sheet (!.... of_______ Printed: 21 JAN 2019, 9:02AM Wood Beam File= FPioJects2O18118 Yela-Hoover Stree gh(03EneeingCalcTernplatesW1oTa-HOOVer.eCS. I softwarecopyflghtENERCALC. INC 19812018.Dulld:I0.18.12.13. I Description: RJ-1 (Rev. 1-21-19) CODE REFERENCES Calculations per NDS 2015, lBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Proøerties Analysis Method: Allowable Stress Design Fb + 2,800.0 psi E : Modulus of Elasticity Load Combination ASCE 7-10 Fb - 2,800.0 psi Ebend-xx 2,000.0ksi Fc - Prll 3,000.0 psi Eminbend - xx I 036.83ksi Wood Species : Boise Cascade Fc- Perp 750.0 psi Wood Grade : Versa Lam 2800 FV 285.0 psi Ft 2,100.0psi Density 41.760pc1 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 0(0.018) Lr(0.02) 0(0.024) Lr(0.027) 1.750X10.0 1.750X10.0 Span = 8.0 ft Span 21.0 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: 0 = 0.0180, Lr = 0.020, Tributary Width = 1.0 It, (roof) Load for Span Number 2 Uniform Load: 0 = 0.0240, Lr = 0.0270, Tributary Width = 1.0 It, (roof) DESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb : Actual = FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs = 0.2871 Maximum Shear Stress Ratio 1.750 X 10.0 Section used for this span I ,003.99psi Iv : Actual 3,500.00psi Fv : Allowable O+Lr+I-I Load Combination 11.615 ft Location of maximum on span Span #2 Span # where maximum occurs 0.146 :1 1.750 X 10.0 = 52.15 psi = 356.25 psi 40+Ir4H 8.000 It = Span #1 Maximum Deflection Max Downward Transient Deflection 0.303 in Ratio = 830 >=360 Max Upward Transient Deflection -0.221 in Ratio = 870 >=360 Max Downward Total Deflection 0.622 in Ratio = 405 >=240 Max Upward Total Deflection -0.437 in Ratio = 438 >=240 - Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios - - Moment Values Shear Values Segment Length Span # M V Cd C FN C I Cr Cm C t CL M ID Pb V fv F'v +D+H 0.00 0.00 0.00 0.00 Length =8.0ft 1 0.121 0.106 0.90 1.000 1.00 1.00 1.00 1.00 1.00 0.74 303.80 2520.00 0.32 27.13 256.50 Length =21.0ft 2 0.205 0.106 0.90 1.000 1.00 1.00 1.00 1.00 1.00 1.25 516.27 2520.00 0.32 27.13 256.50 4D44H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =8.0ft 1 0.108 0.095 1.00 1.000 1.00 1.00 1.00 1.00 1.00 0.74 303.80 2800.00 0.32 27.13 285.00 Length =21.0 ft 2 0.184 0.095 1.00 1.000 1.00 1.00 1.00 1.00 1.00 1.25 516.27 2800.00 0.32 27.13 285.00 iOLr#$ 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Mike Surpenant & Associates Project Title: Viola Engineer: TC Project ID: 18063 / to 7-0 of Project Descr:Sheet - Printed: 21 JAN 2019, 9:02AM d B 00 earn File F:tpr Jects20l818o53-V ala over Street-WdghLl03-EngineeringlCatc TempiatiOlaH0OV9teC6 Software copydght ENERCAIC. INC,1983-2018. 8u1ld:10.18.12.13. .*&EhL1IDMuJ* g.1(•Ifl. Description: RJ-1 (Rev. 1-21-19) Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V C C FN C1 Cr Cm C CL M ft) F'b V fi? F'v Length 8.0ft 1 0.162 0.146 1.25 1.000 1.00 1.00 1.00 1.00 tOO 1.38 567.11 3500.00 0.61 52.15 356.25 Length =21.Oft 2 0.287 0.146 1.25 1.000 1.00 1.00 1.00 1.00 1.00 2.44 1.003.99 3500.00 0.61 52.15 35625 40+S+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 8.0ft 1 0.094 0.083 1.15 1.000 1.00 1.00 1.00 1.00 1.00 0.74 303.80 3220.00 0.32 27.13 327.75 Length 21.Oft 2 0.160 0.083 1.15 1.000 1.00 1.00 1.00 1.00 1.00 125 516.27 3220.00 0.32 27.13 327.75 4040.7501r40.750L+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length m 8.0 It 1 0.143 0.129 1.25 1.000 1.00 1.00 1.00 1.00 1.00 122 501.28 3500.00 0.54 45.89 356.25 Length z21.Dft 2 0.252 0.129 1.25 1.000 1.00 1.00 1.00 1.00 1.00 2.14 882.06 3500.00 0-54 45.89 356.25 4040.750L40.750S4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 8.0ft 1 0.094 0.083 1.15 1.000 1.00 1.00 1.00 1.00 1.00 0.74 303.80 3220.00 0.32 27.13 327.75 Length 21.0ft 2 0.160 0.083 1.15 1.000 1.00 1.00 1.00 1.00 1.00 1.25 516.27 3220.00 0.32 27.13 327.75 .O.0.60Wi+I 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =8.oft 1 0.068 0.060 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.74 303.80 4480.00 0.32 27.13 456.00 Length =21.oft, 2 0.115 0.060 1.80 1.000 1.00 1.00 1.00 1.00 1.00 125 51627 4480.00 0.32 27.13 456.00 4D40.70E#I 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 8.0ft 1 0.068 0.060 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.74 303.80 4480.00 0.32 27.13 456.00 Length =21.0ft 2 0.115 0.060 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.25 516.27 4480.00 0.32 27.13 456.00 +040.7501140.750Ls0.450W41 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =8.oft 1 0.112 0.101 1.60 1.000 1.00 1.00 1.00 1.00 1.00 122 501.28 4480.00 0.54 45.89 456.00 Length =21.0ft 2 0.197 0.101 1.60 1.000 1.00 1.00 1.00 1.00 1.00 214 882.06 4480.00 0.54 45.89 456.00 4040.750L40.750S40.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 000 0.00 0.00 0.00 Length =8.0ft 1 0.068 0.060 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.74 303.80 4480.00 0.32 27.13 456.00 Length =21.0ft 2 0.115 0.060 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.25 516.27 4480.00 0.32 27.13 456.00 +D*0.750L40.750S40.5250E+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =8.011 1 0.068 0.060 1.60 1000 1.00 1.00 1.00 1.00 1.00 0.74 303.80 4480.00 0.32 27.13 456.00 Length =21.oft 2 0.115 0.060 1.60 1.000 1.00 1.00 1.00 1.00 1.00 125 516.27 4480.00 0.32 27.13 456.00 40.60D40.60W40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 8.0 ft 1 0.041 0.036 1.60 1.000 tOO 1.00 1.00 1.00 1.00 0.44 182.28 4480.00 0.19 16.28 456.00 Length =21.oft 2 0.069 0.036 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.75 309.76 4480.00 0.19 16.28 456.00 40.60D40.70E40601-1 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 000 0.00 Length =8.011 1 0.041 0.036 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.44 18228 4480.00 0.19 16.28 456.00 Length =21.0ft 2 0.069 0.036 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.75 309.76 4480.00 0.19 16.28 456.00 Overall Maximum Deflections Load CombInation Span Max. V Dell Location in Span Load Combination Max- Y Deft Location In Span 1 0.0000 0.000 '04tr++l -0.4371 0.000 2 0.6222 11.028 0.0000 0.000 Vertical Reactions Support notation: Far left Is #1 Values In KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 0.999 0.523 Overall MINimum 0.474 0.253 4041 0.525 0.270 404L4H 0.525 0.270 -.0'tr*H 0.999 0.523 sD+S41 0.525 0.270 040.750Lr40.750L-IH 0.881 0.460 +D+0.750190.750S4j 0.525 0.270 -sD'0.60W4H 0.525 0.270 1040.70E4M 0.525 0.270 '0'0.750Lr40.750L40.450W#1 0.881 0.460 -eD.0.750L-0.750Ss0.450W4H 0.525 0.270 040.75OL40J50S4O.5250E4H 0.525 0.270 40.60D40.60W90.60H 0.315 0.162 0.6040.70E.0.6011 0.315 0.162 D Only 0.525 0.270 Lr Only 0.474 0.253 L Only S Only W Only Mike Surprenant & Associates Project Title: Viola Engineer: IC Project ID: 18063 Project Descr:Sheet I) of ZO Printed: 21 JAN 2019, 9:02AM Wood Beam File F:1Pr*M201811803 Vole.HooyerStrWrighft03-Eng1neeth1gtCalcTempIatesWIoIa-HoOver.ec8. oo Solamñght ENERCALC. INC. 1983-2018, Build:1O.18.12.13. I = Lic. # KW-06003057 Licensee : MIKE SUPRENANT & ASSOCIATES Description: RJ-1 (Rev. 1-21-19) _Vertical Reactions Support notation Far left is #1 Values In KIPS Load Combination - Support 1 Support 2 Support 3 E0ny H Only MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB to SHEET NO....._._ ___________________ OF_.—.. CALCULATED BY .1----.--_._ DATE CHECKED BY --.-_____ DATE SCALE SHEARWALL DESIGN U?1t.Stor walls ?1 SI, Direction Unit Lateral Load, v = psf ridline I Tn utary. a -iiiLce : (2-%'b2- it -) s) . sq. ft. Lateral Load (This Level): _Lbs Lateral Load (Level Above)"; . . : .... . . — Lbs Toial Load (All Levels), F, = ?i I.? - Lbs Shearwall(s) Length, L fl-S ft. I. zt —0. tu. 9qk I) it 9li Unit Wall Shear, v=FIL = ±1JO ShearvaI1 Type: Overturning: L = - ft. Okay by Inspection r I U f*t . Lbs - }Io1down Anchor Type: i Gridline Tributary (This Level): (.iI 'i_) ( t ('24 .s.)(#..q): °° Area sq. ft. Lateral Load (This Level): *Ii'&/ Lbs Lateral Load (Level Above): . . . - Lbs Total Load (All Levels), F = : '* Lbs Shearwall(s) Length, L Unit Wall Shear, v = F,/L 3L6 f2 pif Shearwall Type: KI Overturning: L ft. — Okay by Inspection Lbs Holdown Anchor Type: Gridline Tributary Area (This Level): - Lateral Load (This Level): Lateral Load (Level Above):.: Shearwalls Length, L = b 't f 5 Unit Wall Shear, v = F/L = It I Of Shearwall Type: Overturning: L ft. Uplift Holdown Anchor Type: El Total Load (All Levels), F = ft. 5o sq. ft. Lbs - Lbs k$l" Lbs Okay by Inspection Lbs -it MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB..___. OlQ'3 SHEET NO. ... ft OF CALCULATED By - 1C DATE CHECKED BY ..i DATE SCALE L.v't- Story Shea all _14-3 ______ Direction Unit Lateral Load, v = 9.00 psf '1G hi Lateral Load (This Level): . Lateral Load (Level Above): Vt 11ho ) (34(2 ) C' D Total Load(AII Le'els), F = Skièarwl. als) Leiigtli,L = . .. ............. :4 .. . Unit Wall Shear, v=F/L = pif Shearwall Type: KI Overturning: L , - Okay by Inspection Uplift (i,.16)\ll) 4; I-io ktown Anchor Type: [] . Gridline : Tributary Area (This Level): .... . . sq. ft. Lateral Load (This Level): t' 1 Lbs Lateral Load (Level Above): . . 2-) %l - Lbs Total Load (All Levels), F= Lbs Shearwall(s) Length,L Unit Wall Shear, v = F11L = plf,/1 • b Shearwall Type: Overturning: L = ft. - Okay by Inspection . Uplift= U'k"C"). '1- Lbs Holdown Anchor Type: _______ Lbs Gridilne __________________ Tributary Area (This Level): Lateral Load (This Level): . !25. Lbs Lateral Load (Level Above): : . - - Lbs Total Load (All Levels), F,.= '2)ø'Z-5 Lbs Shearwall(s) Length, L Unit Wall Shear, v = FAIL = . '.) '( pif Shearwall Type: (j Overturning: L = ft. - Okay by Inspection Uplift = . (v' ) ('.') Holdown Anchor Type: i lto sq.ft. VI 2,. -Lbs z.c' Lbs Lbs MIKE SURPRENANT - & ASSOCIATES Consulting Structural Engineers JOB__________ ST NO. 10 OF- CA'LCULATED BY. _..___ DATE CHECKEDBY. . . DATE SCALE tV't Story Shea rwalls Direction Unit Lateral Load, v = ° psf Gridilne Tributary Area (This Level): i Ci Cl / 146 sq. ft. Lateral Load (This Level): . . .. 'tt. Lbs Lateral Load (Level Above): - . . Lbs . .. Total Load(AII Levels), Lbs Shearwalt(s) Length,L . . - . ft. . .. Unit Wall Shear, v = F/L = . I . plf Shearwall Type: Overturning: L = ft. - Okay by Inspection Uplift= Lbs Eoldown Anchor Type: Gridilne '2.1 .... c!') '.) . . °' sq.ft. Lateral Load (This Level): : . 15'Q Lbs Lateral Load (Level Above):. . ) ') 19 96' .Lbs Total Load (All Levels), F Jr I 2.... Lbs Shearwall(s) Length, L Unit Wall Shear, v=FlL = 04 . plf Shearwall Type: Overturning: L = - Okay by Inspection 's- Lbs Uplift = HoldownAnchorType: FV I(. Gridline #. j Tributary Area (This Level): 12--- sq.IL Lateral Load (This Level): . 1'(ju Lbs Lateral Load (Level Above): C 11-7 l'.(, 1. Lbs Total Load (All Levels), F. 4(. u '2_ Lbs Shearwall(s) Length, L = ft. Unit Wall Shear, v = FjL = 't5 10 plf Shearval1 Type: (~~ Overturning: L = Okay by Inspection Lbs Uplift = Holdown Anchor Type: p * qu 4.110DI, JOB V(00- ((iD€t C) MIKE SURPEENANT ______________ 10 :t4 r- & ASSOCIATES SHEET NO.____________________ ___________________________ OF______________________ - Consulting Structural Engineers CALCULATED BY____________________ DATE CHECKED BY________________________ DATE SCALE ..•: _ F- 1• Ec 74t #' 4o L <'0/8 1 • . I •, j . T I 1I JOB_V(O(Pr (ftDoyL f7) MIKE SURPRENANT & ASSOCIATES SHEET NO.__________________ OF_______________ Consulting Structural Engineers CALCULATED BY_____________________ DATE__________________ CHECKED BY__________________________ DATE SCALE #*c& *' P141 ii') bc eo live 5'r-1 6VA \\\ W7 '9 N %¼/ " N . ,2ç\' J .k:<• ( 4 I 6 \. t v / U L !S k•. A t. . • .. VWi4 • __ \ LL 4ft "#A\j :1 "4 t-f'y,u e 'I."°Ic • ., 'k Il,o,c 9 / ?sr ----.---------------------tN. • • I • I '4 \ Li • OL .- •. K -/'I:i '• • 0 PROOUCT 207 TM. PLATE wl A PER S.W. SCI-4ED. VLAM RIM WI CL PER S.W. $CI-IED DBL. TOP PLATE SHEAR PANEL PER PLAN JOB. ((oo4) MIKE SURPRENANT & ASSOCIATES SHEET NO. OF 0 Consulting Structural Engineers CALCULATED BY_ DATE________________ CHECKED BY_________________________ DATE___________________ SCALE I SHEAR TRANSFER DETAIL MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB SHEET NO. OF to Yi~ CALCULATED 8Y______ DATE____________________ CHECKED 8Y_..._ DATE___________________ SCALE LEVEL:___________________ LABEL:_4) SPAN=_1-i jrr. L) (,);(ii):lSf. ( ( 6 0 POINT LOAD (CENTERED) f CUSTOM WADING (SEE DIAGRAM) -............... (iI/-)(60) k 160 ptI(l?OO/ ct' . W2 = NJ(if)j '.L6440 L L3. (j7X3El u4 (f(4 of6(t.") RL= lb(, _IbS RR= ioiglbs VMAX= lbs E=______ USE: (?c_SGRADE:f9q?. Mr:*x=ft-lbs IasQv ALT: GRADE: C: LABEL: r6 S SPAN=_2-OS_FT. 19 UNIFORM LOAD POINT LOAD (CENTERED) O CUSTOM LOADING (SEE DIAGRAM) W, = (7.(//7 )( (,o) • 63o fU (/m(y4261 •) W2= (9)((6I '41 f( Co) P2 = "J3: USE: (?.61l)() 44• pit C t34.of? dSr;) USE: Li(O 54 -qRADE: 4r'rP, C:_______ ALT: _GRADE: C:_____ 4, RLtIT;S( bs4' RR _lbs Vis*x= lbs E =_ksi MMAX=fl-lbs IREQo = :in 4 LABEL: _L SPAN=_10. S Fr. 0 UNIFORM LOAD -.......'1 .. 0 POINT LOAD (CENTERED) 1' CUSTOM WADING (SEE DIAGRAM) IA. _5 W2 =(?I,:j) : (-4Y/?'dot P1 = U,j( tvi)(61 R = c_oU lbs RR= I)(i2 lbs 2 VMAX= _______lbs E = MMAX= ______ft-lbs IREQD = in4 USE: ____GRADE: 49c1 C: - ALT: _GRADE:- C:______ RL= 991 Lbs RR= Ibs V1Ax = lbs .ksi MMAX= ____ft-lbs IREQD = in4 MIKE SURPR1NANT & ASSOCIATES - Consulting Structural Engineers JOB -- 17 M SHEETNO. OF I) CALCULATED BY__________________ DATE CHECKED BY DATE SCALE LEVEL: -'LOO1l. MEMBERS:G(AAJ LABEL: 4_I SPAN=_U)FT. 'UNwORMLOAJ) El POINT LOAD (CENTERED) 0 CUSTOM WADING (SEE DIAGRAM) 2(/'z )(é,&) PIP (i(OP/ 411- ) W2= 1i2cicc) P1= P2= 00Jo) USE: _______"' GRADE: ?bOo C: ALT: GRADE: C:______ LABEL: 2 SPAN=---LL—FT. Ck UNIFORM LOAD El POINT LOAD (CENTERED) o CUS1OM WADING (SEE DIAGRAM) 1= pu f (j 16 A/ W2 = (q)( (' ('1'l (( (3) Pi = Sgl s(p.4) (t -L.O/1.', to) P2 = ¶•)() (S(F6.-l) bf45rL 4C USE: " '10 GRADE: (lç1. _C: ALT: GRADE: C:______ SPAN= V.S Fr. El POINT LOAD (CENTERED) 0 CUSTOM LOADING (SEE DIAGRAM) w= (z 44) ( 66J -7ZO 0 P(14OtlP4OL.), W2= (Wzj( ) I9D iP(dof ,29C..) (?uIc,o)(G(lI' 1!;84. Il (ILg/(?60L USE: k 'lb GRADE: _______C:______ ALT: .GRADE: C:______ RL = / 60 lbs Rn = SO lbs VMAX= ______ IN E = ksi MMAX= ft-lbs IT1EQ'fl = in4 P1 = - o%lbs RR VIi4x = lbs E =_Jcsi MMMc ft-lbs IREQ'D = in4 _g Mike Surprenant & Associates Project Title: Viola - Engineer: TC Project ID: 18063 Project Descr: Sheet 6 of to Printed: 22 FEB 2019. 2:07PM Steel F:Wtst201818O63-VioHooverSeetghfto.EngfneedngtJc Templateswiola.Hoover.ec6. eei earn Software copydghtENERCAI.C, INC. 1983-2018,liuild:10.18.12.13. 1f!WA'ilhII'II1cII14 Description: F13-3 (Rev. 2-22-19) CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Analysis Method: Allowable Strength Design Fy: Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E: Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(006Lç01L D(1.22Lr1.36) W8x40 Span = 21.50 ft A lied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load for Span Number 1 Varying Uniform Load: 0= 0.240-4.0, L= 0.480-4.0 k/ft. Extent = 0.0 ->> 21.50 ft. Trib Width = 1.0 ft. (Floor) Uniform Load: D = 0.060, L =0.120 k/ft. Tributary Width = 1.0 ft. (Floor) Point Load: D = 1.224, Lr = 1.360k @ 16.50 ft. (Post Above) DESIGN SUMMARY - Maximum Bending Stress Ratio Maximum Shear Stress Ratio = 0.131: 1 Section used for this span W800 Section used for this span W8x40 Me : Applied 36.674 k-ft Va : Applied 7.808 k Mn! Omega: Allowable 99.301 k-ft VnlOmega : Allowable 59.40 k Load Combination 4044H Load Combination Location of maximum on span 10.136ft Location of maximum on span 0.000 It Span # where maximum occurs Span 8 1 Span 8 where maximum occurs Span 8 1 Maximum Deflection Max Downward Transient Deflection 0.411 in Ratio = 627 >=360 Max Upward Transient Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.729 in Ratio = 354 >4() Max Upward Total Deflection 0.000 in Ratio = 0 <240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span 8 M V Mmax Mmax- Ma Max Mac Mnx/omega Cb Rm Va Max Vnx Vnxl0mega +04H Dsgn. L= 21.50 ft 1 0.159 0.052 15.77 15.77 165.83 99.30 1.00 1.00 3.08 89.10 59.40 40+L4H Dsgn. I = 21.50 It 1 0.369 0.131 36.67 36.67 165.83 99.30 1.00 1.00 7.81 89.10 59.40 4041r+H Dsgn. 1 = 21.50 ft 1 0.196 0.066 19.51 19.51 165.83 99.30 tOO 1.00 3.92 89.10 59.40 .D+S4H Dsgn. L = 21.50 It 1 0.159 0.052 15.77 15.77 165.83 99.30 1.00 1.00 3.08 89.10 59.40 4040.750Lr40.750L+H Dsgn. L = 21.50 ft 1 0.342 0.116 33.91 33.91 165.83 99.30 1.00 1.00 6.86 89.10 59.40 .0.0.7501.4750S*1-1 Dsgn. L= 21.50 ft 1 0.316 0.112 31.43 31.43 165.83 99.30 1.00 1.00 6.63 89.10 59.40 +040.60W+H Dsgn. L= 21.50 It 1 0.159 0.052 15.77 15.77 165.83 99.30 1.00 1.00 3.08 89.10 59.40 4040.70E+H Dsgn. L= 21.50 ft 1 0.159 0.052 15.77 15.77 165.83 99.30 1.00 1.00 3.08 89.10 59.40 D4O.7501-r40.7501.40.450W41-11 Mike Surprenant & Associates Project Title: Viola Engineer: IC Project ID: 18063 Project Descr: Sheet 7 of Description FB.3 (Rev. 2-22.19) Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax- Ma Max Mflx MnxlOmega Cb Rm Va Max Vnx VnxlOmega Dsgn. L = 21.50 ft 1 0.342 0.116 33.91 33.91 165.83 99.30 1.00 1.00 6.86 89.10 59.40 sO40750L40.750S.450WH Dsgn.L= 21.50 It 1 0.316 0.112 31.43 31.43 165.83 99.30 1.00 1.00 6.63 89.10 59.40 +O+0.750L40.750S40.5250E+H Dsgn.L = 21.50 ft 1 0.316 0.112 31.43 31.43 165.83 99.30 1.00 1.00 6.63 89.10 59.40 '0.60D40.60W40.60H Dsgn.L= 21.50 ft 1 0.095 0.031 9.46 9.46 165.83 19.30 1.00 1.00 1.85 89.10 59.40 40.60D40.70E40.60H Dsgn.L = 21.50 ft 1 0.095 0.031 9.46 9.46 165.83 99.30 1.00 1.00 1.85 89.10 59.40 OveaII_Maximum DefIect,or Load Combination Span Max. - Deft Location in Span Load Combination Max. ? DeN Location in Span 1 0.7289 10.689 0.0000 0.000 VertuaI Reactions - q. l Support notation Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 7.808 5.913 Overall MINimum 0.316 1.044 41)41 3.078 2.872 404141 7.808 5.882 +0Lr+H 3.394 3.916 40+S#1 3.078 2.872 4090.750Lr+0.750141 6.862 5.913 4040.750L90.7505+H 6.625 5.130 +0.0.60W+H 3.078 2.872 4040.70E41 3.078 2.872 4040.750Lr40.750L40.450W4H 6.862 5.913 9D40.750L40.750S40.450W4H 6.625 5.130 +040.750140.7505.0.5250E#1 6.625 5.130 40.60D40.60W40.60H 1.847 1.723 40.60D+0.70E+0.60H 1.847 1.723 D Only 3.078 2.872 LrOnly . 0.316 1.044 I Only 4.730 3.010 S Only W Only E Only H Only Mike Surprenant & Associates Project Title: Viola Engineer: TC Project ID: 18063 Project Descr: Sheet of to ______ File = Punted: 22 FEB 2019, 2:11 PM 18.12.13. Description: FB4 (Rev. 2-22-19) CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Beam Bracing: Beam is Fully Braced against lateral-torsional buckling Bending Axis: Major Axis Bending Fy: Steel Yield: 50.0 ksi Er Modulus: 29,000.0 ksi _T1 W8x5$ Span =22.oft Applied Loads - Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load r D = 0.120, L = 0.240 k/It, Tributary Width = 1.0 ft, (Floor) Uniform Load: D = 0.1440 k/ft. Tributary Width = 1.0 It, (Wall) Uniform Load: D = 0.0540, Lr = 0.060 k/fl, Tributary Width = 1.011, (Lower Roof) Uniform Load: D = 0.2160, Lr = 0.240 k/fl, Tributary Width = 1.0 ft, (Upper Roof) DESIGN SUMMARY Hr lTLtllL]UU Maximum Bending Stress Ratio = - 0.404: 1 Maximum Shear Stress Ratio = 0.123 :1 Section used for this span W8x58 Section used for this span W8x58 Ma: Applied 60.331 k-ft Va : Applied 10.969 k Mn! Omega: Allowable 149.202k-ft Vn/Omega : Allowable 89.250 k Load Combination 4040.750Lr-.0.750L1H Load Combination 4090.75OLr+0.750L..4-I Location of maximum on span 11.000 ft Location of maximum on span 0.000 ft i Span # where maximum occurs Span 4 1 Span 4 where maximum occurs Span 4 1 Maximum Deflection Max Downward Transient Deflection 0.240 in Ratio = 1,098>=360 Max Upward Transient Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.799 in Ratio = 331 >=240 Max Upward Total Deflection 0.000 in Ratio = 0 <240 Maximum Forces & Stresses for Load Combinations - Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma Max Max Max/Omega Cb Rm 17a Max Vnx Vax/Omega .0+41 Dsgn. 1 = 22.00 ft 1 0.240 0.073 35.83 35.83 249.17 149.20 1.00 1.00 6.51 133.88 89.25 Dsgn. L= 22.00 ft 1 0.337 0.103 50.35 50.35 249.17 149.20 1.00 1.00 9.15 133.88 89.25 .0+1r41 Dsgn. I = 22.00 ft 1 0.362 0.110 53.98 53.98 249.17 149.20 1.00 1.00 9.81 133.88 89.25 +O+S.41 Dsgn. I = 22.00 ft 1 0.240 0.073 35.83 35.83 249.17 149.20 1.00 1.00 6.51 133.88 89.25 'D40.750Lr4O.750L4H Dsgn. L = 22.00 It 1 0.404 0.123 60.33 60.33 249.17 149.20 1.00 1.00 10.97 133.88 89.25 '*40.750L.0.750S.H Dsgn. I = 22.00 It 1 0.313 0.095 46.72 46.72 249.17 149.20 1.00 1.00 8.49 133.88 89.25 4040.60 W4H Dsgn. 1= 22.00 ft 1 0.240 0.073 35.83 35.83 249.17 149.20 1.00 1.00 6.51 133.88 89.25 OO.7OE+H Mike Surprenani & Associates Project Title: Viola Al Engineer: TC - Project ID: 18063 Project Descr:Sheet of tO Printed: 22 FEB 2019. 2:11 PM Steei e .arn Ale F:lPrectsl2018l18OS3-Vlola-Haovez Stet-Wrtghti0gheedng1CacTemp4atesWiota.Hoovei.ec6. Description : FB4 (Rev. 2-22-19) Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma Max Max Mnxlomega Cb Rm Va Max Vnx Vnx/omega Dsgn. 1: 22.00 ft 1 0.240 0.073 35.83 35.83 249.17 149.20 1.00 1.00 6.51 133.88 89.25 4D40.750Lr40.750L40.450W#1 Dsgn. L = 22.00 ft 1 0.404 0.123 60.33 60.33 249.17 149.20 1.00 1.00 10.97 133.88 89.25 4D+0.750L0.750S+0.450W+H Dsgn. L = 22.00 ft 1 0.313 0.095 46.72 46.72 249.17 149.20 1.00 1.00 8.49 133.88 89.25 O'0.750L0.750S0.5250Ef1 Dsgn.L = 22.00(1 1 0.313 0.095 46.72 46.72 249.17 149.20 1.00 1.00 8.49 133.88 89.25 +0.60D.60W+060M Dsgn.L = 22.00(1 1 0.144 0.044 21.50 21.50 249.17 149.20 1.00 1.00 3.91 133.88 89.25 .0.60D.0.70E.0.601-1 Dsgn. 1 = 22.00 ft 1 0.144 0.044 21.50 21.50 249.17 149.20 1.00 1.00 3.91 133.88 89.25 Overall Maximum Deflections Load Combination Span Max.'-* Dell Location in Span Load Combination Max. + Dell Location in Span +O+0.750Lr+0.750L+0.450W+H 1 0.7986 11.063 0.0000 0.000 Vertical Reactions Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 10.969 10.969 Overall MiNimum 2.640 2.640 +044 6.514 6.514 4044.41 9.154 9.154 e04r44 9.814 9.814 iD+S44 6.514 6.514 4090.750Lr40.750L#4 10.969 10.969 4040.750L40.750544 8.494 8.494 +040.60W4H 6.514 6.514 4040.70E44 6.514 6.514 +O+O.750Lr40.750L.0.450W#1 10.969 10.969 +040.750L40.750S90.450W4F4 8.494 8.494 +0+0.750L+0.750S0.5250E+H 8.494 8.494 .0.60D+0.60W0.601-1 3.909 3.909 40.60040.70E40.60H 3.909 3.909 D Only 6.514 6.514 Lr Only 3.300 3.300 I Only 2.640 2.640 S Only W Only E Only H Only JOB - MIKE SURPRENANT ___________ to. to Consuhing Structural Engineers CALCULATED ______________________ DATE___________________ & ASSOCIATES SHEET NO.....________ _______________ OF___________________ CHECKED BY DATE____________________ SCALE U ri Stor v Is Direction Unit Lateral Load,v = S. 'L, psf Gridl e CS9(t)tf) (4 1 J(P() 9)I sq.ft. Lateral Load (This Level): . (loll(i,fl + (1)U24) . Lateral Load (Level Above): . . . — Lbs Total Load(All Leels), F= J_bs Shèiwall(s)Lerigth, L . k. l66r • ...: : Unit Wall Shear, v= F1/L = 'O If/ UJ ?OO Shearwall Type: (J Overturning: L = Inspection Uplift - Okay by lnsp -7OO Lbs Hoidown Anchor Type:tAcAt 4o" CT_ Gridline (c) .c)t 1k) (t3); . sq. Tributary Aiea (This Level): ft. Lateral Load (This Level): . Lbs Lateral Load (Level Above): . — Lbs Total Load (All Levels), F= I.-So Lbs Shearwall(s) Length, L = I ok = ft. Unit Wall Shear, v = FJL 5 v 12. Of Shearwall Type: 0 Overturning: L = - Okayby Inspection Uplift = Lbs Holdown Anchor Type: Ej I't15ptcbv Griclilne &r(ft Tributary Area (This Level): sq. ft. Lateral Load (This Level): . Lbs Lateral Load (Level Above): Lbs Load (All Levels), F = ._Lbs Shearwall(s) Length, L = ft. Unit Wall Shear, v = FAIL = Of Shearwall Type: 0 Overturning: L = . .ft. Okay by Inspection Uplift = -f -Lbs Holdown Anchor Type: JOB _10L?, i9O6? MIKE SURPRENANT & ASSOCIATES SHEET NO.___________________ OF________________ - - Consulting Structural Engineers CALCULATEDBY_____________ DATE CHECKED BY_________________________ DATE SCALE 23444241334 5 Op., 73444761234547412344436124454 26143444w P73 1.0 Q. :9()DF ?t4PI'\:.. .. As If o — \7 1 r4~~ J )' ..y ••• W e A , Nf- ask 111 A •• •.• 'r 9 . c: g .y I I4A'o ::-. -•••- .. . .• . .. . . . . . .. . . ... @)' I. • 2' 4 .. i''..:. ...• . .. : -- . ...• • .. ..c•. .T - - . • .. • • . .. . 6b,/. • . . .................. . .: • • . -- II JOB b (200 MIKE SU1PRENANT vo zz & ASSOCIATES SHEET NO.____________________ OF________________ - Consulting Structural Engineers CALCULATED BY DATE______________ () . 'S . 41 bfr %1 t Lif UJI . 1 ( r'.01 &51 J !4vi r I ...so b &5 , ,, • (1444 vt It ML L?'/° fie _.L : / • '•• (I'X- . • I SUR - MIKE SURPRENANT & ASSOCIATES - Consulting Structural Engineers JOB V(0Q. lido 2 117.___ SHEET NO.________________________ OF CALCULATED BY DATE (I U/ (q CHECKED BY__________________________ DATE SCALE - ',v.. ..• :' • • ••'•' \\ l!..sT .•. .4• .• \' \\ I .••. i • '•• • ¶ c•-4 FtAMU L&I JOB I ________________ OF_____________ & ASSOCIATES SHEET NO. I I- MIXESURPEENANT 4 I Consulting Structurai Engineers CALCULATED BY__________ DATE I ta/t CHECKED BY__________________________ DATE SCALE 0 67077 3 4 5 6 76172 4 5670 1 2 3 4 5 6 1173I7410123 .2 s-.'1:-Look 4VJc JOB- VIOLA, (S —X — MIKE SURPRENANT p & ASSOCIATES SHEET NO_________________ OF_____________ - Consulting Structural Engineers CALCULATED BY____________________ DATE (if CHECKED BY________________________ DATE SCALE - 77245 234547 1724 61 234 74 234 ü 741134347A 123456787 23 - . . . ..........................................7 _... I - - .-.-... —, NOTE: NC1OR :SOLTS $PE.CIAL INSPE.TöNRED... (MAINt4IW t3M cNcRE1E EDGE ISTANCE)_I.... . . . . SIMPSON 140' :WOLDO(LK PER . ................LPLJ W/-ANCHOR PER. SCHED. ... - . ................. ,-T...EPDXYED. lNT.(E)FOOTING. • . . ...........................................................(.........1....WIII '$ET-)<P - ....-...................................... . .............Ic-E52 ..................-•.--.............................................--., ... - ........... ......................................,.— ........ - ... - -...-.-----....--"................ . ..c... 3x SLK'G STUi1 STUDS......................... POST PER PLAN • -ATTACH TO (E) PLATE- . . . .. . WI (2)'LPT4' CLIPS ...... • .•. ) 5TH PLATE \.............. 3 '— - - SILL 4Nc14OR5 PER5C14E0 - -.................................. - . (EPDXADL.A.S ................... . .. MNEi'15EDMENTT --.. .. ............... _ ........ •...............................................•---•-.............. WHERE EXISTING SPACING ........• • . I . . . . . I . . . .. . 7 EXCEEDS ØCI4ED. --.............. .....fl '•••,••• • • . . . . . I (E) öOTI HOT. DDO, 3x SILL & A.B. TkOFIT ...... ..: ......... :. •.. _i ...-.- . )Jc, 0 PROOUCT207 WOLD-DOUN A N 6 IEMBEDMENT EDGE 0191. HDU2,14DU4 :..iøM 2 MN. - 12 filM 3_MN - WOUS 5 filM — 3t Mitt _ MIKESUIRPRENANT & ASSOCIATES Consulting Structural Engineers JOB (8067 SHEET NO.___ Zi. CALCULATED BY DATE CHECKED BY_ DATE SCALE HORIZONTAL MEMBER DESIGN LEVEL: MEMBERS: df On ________________ LABEL: 4 4 SPAN= I FT. UNIFORM LOAD . . - POW LOAD (CENTERED) .............. ' CUS1OM LOADING (SEE DIAGRAM) W1= (!tX3 4i8 #U (rqo(2zoL w2= (L?/t(,.2$) Z47AF.(1I)6/ I?ocj) P1= I USE if '( (Ad GRADE: t0Itf C:. 470 [T:. GRADE: C:______ SPA= lo FT. UNIFORM LOAD D, POINT LOAD (CENTERED) CUSTOM LOADING (SEE DIAGRAM) WI =Ito( 28) -crL Ot't) W2= P1 = USE: ."ZUV 'M" GRADE: '2(00 c: ALT: GRADE: C:______ = lbs . =ç400 lbs VMAX= lbs E MMAx= - ft-lbs IREQD 70'r a I UY?tis. = SrL bs RR = lbs Vsa,ix= lbs E MMAX= _ft-lbs IREQD = _. Jfl4 LABEL: 8—(0 SPAN= q. S FT. + 1. 14 . P UNIFORM LOAD O POINT WAD (CENTERED) W CUSTOM LOADING (SEE DIAGRAM) 4 w1= w2 = P, = (it (z.e r ru 2.G) c.) : '-414 lbs R =(() I Jbs = . VMAx = lbs MINTAX= __________ft-lbs IREQD = 4 USE: _?L"Jr' (t''SlA GRADE: .C: —. ALT: _GRADE:_ fl DPflNIf9fl7 Mike Surprenant & Assodates Wood Beam Description: R8-4 (Rev. 1.28-19) Project Title: Viola Engineer: IC Project ID: 18063 Project Descr:Sheet '1 of ?..Z. Printed: 28 JAN 2019, 12:44PM CODE REFERENCES Calculations per NDS 2015. IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb + 2400 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Pb- 1850ps1 Ebend-xx 1800ks1 Fc - Prll 1650 psi Eminbend - xx 950ks1 Wood Species : DF/DF Fc - Perp 85O psi Ebend-yy 1600ksi Wood Grade :24F - V4 Fv 265 psi Eminbend - yy 850ksi Ft IlOOpsi Density 31.21pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(0.117)Lr(0.13) 8.75x12 Span 19.Oft 'I Applied Loads - Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load: D = 0.1980, Ir = 0.220, Tributary Width = 1.0 It, (Roof) Uniform Load: D = 0.1170, It = 0.130 klft, Extent = 0.0-->> 7.50 ft Tbutary Width = 1.0 ft, (Roof) Varying Uniform Load: 0= 0.1170->0.O, Lr= 0.130->O.O kilt, Extent = 7.50 ->> 19.0 ft, 1db Width = 1.0 ft, (Roof) aximum Bending Stress Ratio Section used for this span Fe : Actual FS: Allowable Load Combination Location of maximum on span Span (I where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.5651 Maximum Shear Stress Ratio 8.75x12 Section used for this span 1,622.12psi fv:Actual 2,872.34psi Fv : Allowable 4O4tr4H Load Combination 9.15311 Location of maximum on span Span #1 Span # where maximum occurs 0.413 in Ratio = 552 >=360 0.000 in Ratio = 0<360 0.814 in Ratio 0 280=240 0.000 in Ratio = 0<240 0.241 :1 8.75x12 = 79.71 psi = 331.25 psi *0+lr+H 0.000ft = Span #1 Maximum Forces & Stresses for Load Combinations • Load Comblnatbri Max Stress Ratios Moment Values Shear Values Segment Length Span It M V Cd C FN C Cr Cm CI CL M lb Pb V IV PV +D+Fl 0.00 0.00 0.00 0.00 Length = 19.0 ft 1 0.386 0.164 0.90 0.957 1.00 1.00 1.00 1.00 1.00 13.99 .799.22 2068.09 2.75 39.22 238.50 +DsI.+H 0.957 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 19.0 ft 1 0.348 0.148 1.00 0.957 1.00 1.00 1.00 1.00 1.00 13.99 799.22 2297.87 2.75 39.22 265.00 40+t.r.H 0.957 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Leng1h=19.0ft 1 0.565 0.241 1.25 0.957 1.00 1.00 1.00 1.00 1.00 28.39 1,622.12 2872.34 5.58 79.71 331.25 4046*1 0.957 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Mike SurprenanL & Associates Project Title: Viola Engineer: IC Project ID: 18063 Project Descr: Sheet 8 of _______ Printed: 28 JAN 2010, 12:44PM Wood Beam t-110 = IemPIWSVlOIa4WUVW.U. Software OODVIiOhIENERC4LC. INC. 198340* 8u1ld:10.18.I2.13 . Descliption: Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span II M V C C IN C1 Cr Cm C11 CL M lb Pb V i F'v Length = 19.0 ft 1 0.302 0.129 1.15 0.957 1.00 1.00 1.00 1.00 1.00 13.99 799.22 2642.56 2.75 39.22 304.75 .040.750Lr*0.7501.411 0.957 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 ON Length = 19.0 It 1 0.493 0.210 1.25 0.957 1.00 1.00 1.00 1.00 1.00 24.79 1,416.39 2872.34 4.87 69.58 331.25 4090.750L90.75054H 0.957 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length l9.0ft 1 0.302 0.129 1.15 0.957 1.00 1.00 1.00 1.00 1.00 13.99 799.22 2642.56 2.75 39.22 304.75 4040.60W*H 0.957 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 19.0ft 1 0.217 0.092 1.60 0.957 1.00 1.00 1.00 1.00 1.00 13.99 799.22 3676.60 2.75 39.22 424.00 'D.0.70E4H 0.957 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 19.0 It 1 0.217 0.092 1.60 0.957 1.00 1.00 1.00 1.00 1.00 13.99 799.22 3676.60 2.75 39.22 424.00 4090,7501r40.750L40.450W+H 0.957 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =19.Oft 1 0.385 0.164 1.60 0.957 1.00 1.00 tOO 1.00 1.00 24.79 1,416.39 3676.60 4.87 69.58 424.00 40.0.750L40.750S40.450W4H 0.957 1.00 1.00 1.00 tOO 1.00 0.00 0.00 0.00 0.00 Length 19.0ft 1 0.217 0.092 1.60 0.957 1.00 1.00 1.00 1.00 1.00 13.99 799.22 3676.60 2.75 39.22 424.00 4040.750L90.750S40.5250E4H 0.957 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 19.0ft 1 0.217 0.092 1.60 0.957 1.00 1.00 1.00 1.00 1.00 13.99 799.22 3676.60 2.75 39.22 424.00 40.60D40.60W40.60H 0.957 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 19.0 ft 1 0.130 0.055 1.60 0.957 1.00 1.00 1.00 1.00 1.00 8.39 479.53 3676.60 1.65 23.53 424.00 40.80040.70E40.60H 0.957 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 19.Oft 1 0.130 0.055 1.60 0.957 1.00 1.00 1.00 1.00 1.00 8.39 479.53 3676.60 1.65 23.53 424.00 Overall Maximum Deflections Load Combination Span Max. -' Dell Location in Span Load Combination Max. '+" Dell Location In Span 40+tr4H 1 0.8142 9.431 0.0000 0.000 Vertical Reactions Support notation: Far left Is #1 Values In KIPS Load Combination Support 1 Support 2 Overall MAXImum 6.247 5.400 Overall MINimum 3.174 2.728 40411 3.073 2.612 404L9H 3.073 2.672 .041r4H 6.247 5.400 4044H 3.073 2.672 4040.750Lr40.750L#I 5.454 4.718 4090.750L40.75064H 3.073 2.672 4040.60W411 3.073 2.672 4040.705411 3.073 2.672 4040.750Lr40.750L40.450W.H 5.454 4)18 4D40.750140.750S40.450W.H 3.073 2.672 4040.750L40.7508+0.5250E411 3.073 2.672 40.60D90.60W40.60H 1.844 1.603 .0.600'0.70540.60H 1.844 1.603 D Only 3.073 2.672 It Only 3.174 2.728 L Only S Only WOnly E Only H Only Mike Surprenant & Associates Project Title: Viola Engineer: IC Project ID: 18063 Project Descr: Sheet of_______ 7-7- Printed: 28 JAN 2019, 12:47PM 1Wood Beam RIO nRmrnvdnht NEReALC. INC. 1983.2011 BuIt&.10.I8.12.13. Description: R8.9 (Rev. CODE REFERENCES Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Prooerties Analysis Method: Allowable Stress Design Fb + 2,400.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - 1,850.0 psi Ebend- xx 1,800.0ksi Fc - Pt1l 1,650.0 psi Eminbend - xx 950.0 ksi Wood Species : OF/OF Fc - Perp 850.0 psi Ebend- yy 1,600.0 ksl Wood Grade :24F - V4 Fv 285.0 psi Eminbend - yy 850.0ks1 Ft 1,100.0 psi Density 31.210pc1 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 3.5x11.875 Span =10.oft ppd Loads Service loads entered. Load Factors will be applied for calculations. Beam sell weight calculated and added to loads Load for Span Number 1 Varying Uniform Load: D4.0720-4.0, Lr 0.080-0.0 klft, Extent= 0.0 - 10.011, Irib Width = 1.0 ft, (Root) Maximum Banding Stress Ratio = 0.0521 Section used for this span 3.5x11.875 fb:Actual 158.19psl FB : Allowable 3,000.00 psi Load Combination +O4r4H Location of maximum on span = 4.307ft Span # where maximum occurs = Span #1 Maximum Shear Stress Ratio Section used for this span lv : Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.044 :1 3.5x11.875 = 14.45 psi 331.25 psi 4O4Lr4H = 0.00011 = Span #1 Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.010 in Ratio= 11642>=360 0.000 In Ratio = 0<360 0.022 in Ratio = 5480 >=240 0.000 in Ratio 0<240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M V Cd C FN C 1 Cr Cm Ct CL M lb Pb V Iv F'v 4041 0.01) 0.00 0.00 0.00 Length= 10.0 ft 1 0.039 0.032 0.90 1.000 1.00 1.00 1.00 1.00 1.00 0.57 83.42 2160.00 0.21 7.53 238.50 .0.141 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length= 10.0 it 1 0.035 0.028 1.00 1.000 1.00 1.00 1.00 1.00 1.00 0.57 83.42 2400.00 0.21 7.53 265.00 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =1O.oft 1 0.053 0.044 1.25 1.000 1.00 1.00 1.00 1.00 1.00 1.09 158.19 3000.00 0.40 14.45 331.25 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length= 10.0 ft 1 0.030 0.025 1.15 1.000 1.00 1.00 1.00 1.00 1.00 0.57 83.42 2760.00 0.21 7.53 304.75 Mike Surprenant & Associates Project Title: Viola Engineer: IC Project ID: 18063 Project Descr: Sheet to of_______ Printed: 28 JAN 2019, 12:47PM I Wood Beam Description: RB..9 (Rev. Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# 11 V Cd C IN C1 Cr Cm C C1 M lb Pb V !v N +040.750Lr40.750L#1 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 10.0 ft 1 0.046 0,038 1.25 1.000 1.00 1.00 1.00 1.00 1.00 0.96 139.49 3000.00 0.36 12.72 331.25 4040.750L40.7508411 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 10.0ft 1 0.030 0.025 1,15 1.000 1.00 1.00 1.00 1.00 1.00 0.57 83.42 2760.00 0.21 7.53 304.75 4040.60W4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Lenglh= 10.0 ft 1 0.022 0.018 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.57 83.42 3840.00 0.21 7.53 424.00 9040,70E44 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 10.oft 1 0.022 0.018 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.57 83.42 3840.00 0.21 7.53 424.00 4D0.750Lr40.7501.e0,450W41-1 1.000 . 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 10.0 It 1 0.036 0.030 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.96 139.49 3840.00 0.35 12.72 424.00 4040.750L40.750S40.450W4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Lengtii= 10.0 It 1 0.022 0.018 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.57 83.42 3840.00 0.21 7.53 424.00 +1510.7501.40.75040.5250EeH 1.000 1.00 1.00 1.00 1.00 1,00 0.00 0.00 0.00 0.00 Length= 10.0 ft 1 0.022 0.018 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.57 83.42 3840.00 0.21 7.53 424.00 40.60D40.60W40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =10.oft 1 0.013 0.011 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.34 50.05 3840.00 0.13 4.52 424.00 40.60040.TOE40.60H 1.000 1.00 1.00 1.00 1.0D 1.00 0.00 0.00 0.00 0.00 Length = 10.0ft 1 0.013 0.011 1.60 1.000 . 1.00 1.00 1.00 1.00 1.00 0.34 50.05 3840.00 0.13 4.52 424.00 Overall Maximum Deflections Load Combination Span Max. - Deft Location In Span Load Combination Max. ' Deft Location In Span 1 0.0219 4.854 0.0000 0.000 Vertical Reactions Support notation: Far left Is #1 Values in KIPS Load Combination - Support I Support 2 Overall MAXimum 0.552 0.298 Overall MiNimum 0.267 9.133 4041 0.285 0.165 .04141 0.285 0.165 .0.Lr4H 0.552 0.298 404911 0.285 0.165 4O0.750Lr40.7501.4I 0.485 0.265 040.750L40.750S.*1 0.285 0.165 40'0.60W4H 0.285 0.165 +D40.70E.Ij 0.285 0.165 +040.750t540.750L40.450W41 0.485 0.265 +D40.750L40.750S90.450W+H 0.285 0.165 4040.750190.750S40.5250E+H 0.285 0.165 40.60D40.60W40.60H 0.171 0.099 40.60D40.70E+0.60H 0.171 0.099 o Only 0.285 0.165 Ii Only 0.267 0.133 I Only S Only W Only E Only H Only = 0.1681 3.5x11.875 = 652.87psi = 3,875.00psi 40+Lr+H = 9.500111 = Span #1 Maximum Shear Stress Ratio Section used for this span fv:Actual Fv : Allowable Load Combination Location of maximum on span Span # where madrnum occurs 0.064:1 3.5x11.875 = 22.76 psi = 356.25 psi +09Lr4H 9.500 ft = Span #1 0.150 in Ratio= 1198>=360 -0.021 in Ratio= 5525>=360 0.327 in Ratio= 550 >=240 -0.044 in Ratio = 2594 >=240 Mike Surprenant & Associates Project Title: Viola Engineer: TC Project ID: 18063 (I Project Descr: Sheet I of 1Z Printed: 28 JAN 2019, 1:56PM I_Wood Beam _ INC 1902018. Buill10.18.12.13. I Descrlpon: CODE REFERENCES Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Prooertles Analysis Method: Allowable Stress Design Fb + 3,100.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb- 3,100.0psi Ebend-xx 2,000.0ksi Fc - Pdl 3,000.0psi Eminbend - xx 1,036.83ksi Wood Species : Boise Cascade Fc - Perp 750.0 psi Wood Grade : Versa Lam 2.03100 West Fv 285.0 psi Ft 1,950.0 psi Density 41.760pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(O.285) Lr(O.267) 3.5x1 1.875 3.5x11.875 H Span = 9.60 It Span = 7.50 ft AppliedLoads Service loads entered. Load Factors will be applied for calculations. Beam salt weight calculated and added to loads Load for Span Number 2 Point Load: 0 = 0.2850, Is = 0.2670k @7.50 ft, (RB-9) Maximum Bending Stress Ratio Section used for this span lb : Actual FB : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection MaximumForces&Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span 6 M V C C FN C Cr Cm C t CL N lb Pb V lv F'v 40911 0.00 0.00 0.00 0.00 Length =9.50ft 1 0.129 0.051 0.90 1.000 1.00 1.00 1.00 1.00 1.00 2.48 360119 2790.00 0.36 13.12 256.50 Length =7.50ft 2 0.129 0.051 0.90 1.000 1.00 1.00 1.00 1.00 1.00 2.48 360.99 2790.00 0.36 13.12 256.50 +D+LH 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length :9.50ft 1 0.116 0.046 1.00 1.000 1,00 1.00 1.00 1.00 1.00 2.48 360.99 3100.00 0.36 13.12 285.00 Length =7.5011 2 0.116 0.046 1.00 1.000 1.00 1.00 1.00 1.00 1.00 2.48 360.99 3100.00 0.36 13.12 285.00 'D91J4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =9.50ft 1 0.168 0.064 1.25 1.000 1.00 1.00 1.00 1.00 1.00 4.48 652.87 3875.00 0.63 22.76 356.25 Length =7.50ft 2 0.168 0.064 1.25 1.000 1.00 1.00 1.00 1.00 1.00 4.48 652.87 3875.00 0.63 22.76 358.25 Mike Surprenant & Associates Project Title: Viola Enqineer: IC Project ID: 18063 I' Project Descr: Sheet - _'C - of Printed: 28 JAN 2019, 1:56PM Wood Beam File FPMla180o SIseelgh0O3-EreineednaCo TetnpSat1W0a1Xver.ec6. Soft ecopynght ENERCALC, INC. 1983-2018. Build:10.1B.12.13. Ill -$YJKhTLuII1lIH.t Description : RB-b (Rev. 1.2849) Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span!! M V C C FN C1 Cr Cm C t CL M lb Pb V fv Pv s6'841 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =9.50ft 1 0.101 0.040 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.48 360.99 3565.00 0.36 13.12 327J5 Length 7.50ft 2 0.101 0.040 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.48 360.99 3565.00 0.36 13.12 327.75 4040.750Lr40.750L41-1 1.000 tOO 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length9.50ft I 0.150 0.057 1.25 1.000 1.00 1.00 1.00 1.00 1.00 3.98 579.90 387500 0.56 20.35 356.25 Length =7.50ft 2 0.150 0.057 1.25 1.000 100 1.00 1.00 1.00 1.00 3.98 579.90 3875.00 0.56 2035 356.25 4040.750L40.75089H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 9.50ft 1 0.101 0.040 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.48 360.99 3565.00 0.36 13.12 327.75 Length 7.50ft 2 0.101 0.040 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.48 360.99 3565.00 0.36 13.12 327.75 .1340.60W.H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 9.50ft 1 0.073 0.029 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.48 360.99 4960.00 0.36 13.12 456.00 Length 7.50ft 2 0.073 0.029 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.48 360.99 4960.00 0.36 13.12 456.00 .040.70E4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length9.50ft 1 0.073 0.029 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.48 360.99 4960.00 0.36 13.12 456.00 Length 7.50ft 2 0.073 0.029 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.48 360.99 4960.00 0.36 13.12 456.00 400.750Lr40.7501-e0.450#1 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 9.50 it 1 0.117 0.045 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.98 579.90 4960.00 0.56 20.35 456.00 Length 7.50ft 2 0.117 0.045 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.98 579.90 4960.00 0.56 20.35 456.00 .D0.750L40.750S40.450W.H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 9.50ft 1 0.073 0.029 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.48 360.99 4960.00 0.36 13.12 456.00 Length 7.50ft 2 0.073 0.029 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.48 360.99 4960.00 0.36 13.12 456.00 4040.750140.750S40.5250E4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 9.50ft 1 0.073 0.029 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.48 360.99 4960.00 0.36 13.12 456.00 Length 7.50ft 2 0.073 0.029 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.48 360.99 4960.00 0.36 13.12 456.00 40.60D0.60W90.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 9.50ft 1 0.044 0.017 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1A9 216.59 4960.00 0.22 7.87 456.00 Length =7.50ft 2 0.044 0.017 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.49 216.59 4960.00 0.22 1.87 456.00 .0.60D0.70E40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 9.50ft 1 0.044 0.017 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.49 216.59 4960.00 0.22 7.87 456.00 Length 7.5Oft 2 0.044 0.017 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.49 216.59 4960.00 0.22 7.87 456.00 Overall Maximum Deflections Load Combination Span Max. '-" Deft Location In Span Load Combination Max. "+ Daft Location In Span 0.0000 0.000 4041J4H -0.0439 5.573 2 0.3272 7.500 0.0000 5.573 Vertical Reactions Support notation: Far left Is #1 Values in KIPS Load Combination - Support I Support 2 Support Overall MA)Cimum 4.414 1.171 Overall MiNimum .0.203 0.478 40.H .0.203 0.693 404H .0.203 0.693 4D4Lr4H -0.414 1.171 'OiSH -0.203 0.693 -.0,0.750Lr40.750L.H -0.362 1.052 'DIO.750L40.75084H .0.203 0.693 sD40.60W4H .0.203 0.693 4040.70E#f 1.203 0.693 4130.750Lr40.7501,40.450W*1 1.362 1.052 .O.0.750L40.750S40A50W4i -0.203 0.693 4040.750L40750S40.5250E+H -0.203 0.693 40.60040.60W-s0.60H .0.122 0.416 40.60D40.70E40.60H .0.122 0.416 o Only -0.203 0.693 Ir Only 1.211 0.478 L Only So* W Only EOnIy H Only j MIKE SURPRENANT & ASSOCIATES - Consulting Structural Engineers JOB U? SHEET NO. OF- CALCULATED BY_ DATE CHECKED BY________________________ DATE SCALE LEVEL: : flooll LABEL:_94(( SPAN= CFT. J X4 (4"F . D UNIFORM LOAD O POINT LOAD (CENTERED,) CUSOM LOADING (SEE DIAGRAM) A (l(!12)(78) Y)( .(P-(.I')6Af4qrL.) ......44-' w2 = (i)t1C7I) l) pl = ts lhcga..q) ' P2 RL =.12 lbs = _________lbs R VMAX= lbs E USE: ((Q 44r dRADE: Zoo C: • MIAX= 1k-lbs IREQD = I ALT: _GRADE: _C:______ LABEL: SPAN _Fr. U UNIFORM LOAD ....... Cl POINT LOAD (CENTERE1) - 0 CUSTOM LOADING (SEE DIAGRAM) w1= OF w2= P1 = P2 = R.= lbs RR= _Jbs Vraix= lbs MMAX .ft-lbs E IREQ'D USE: _GRADE: _C:______ ALT:E_GRADE: LABEL: SPAN_______ o UNIFORM LOAD Cl POINT LOAD (CENTERED) o CUSTOM WADING (SEE DIAGRAM) Wl W2= • P2 = RL =lbs RA VbtAx • lbs E = _ksi M1rAx= _ft-lbs IREQ'D = _______in4 USE: . _..GRADE: _C:_______ ALT: GRADE- c: fl PmrgTn7 Mike Surprenant & Associates Project Title: Viola Engineer: TO Project ID: 18063 Project Descr: Sheet (4. of_______ Printed: 28 JAN 2019, 1:56PM Wood Beam flIe FfProj OI818 Yale-Hoover Software copyright ENERCAI.C. INC. 1583-2018, Bulti:10.18.I2.13. lLic.in WoYEIMSIII(OI.t Dascdptlon: RB.11 (Rev. 1.28-19) CODE REFERENCES Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : ASCE 7-10 Material Prooerties Analysis Method: Allowable Stress Design Fb + 3,100.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - 3,100.0 psi Ebend-xx 2,000.0ksi Fc - PrO 3,000.0 psi Eminbend - I ,036.83ksi Wood Species : Boise Cascade Fc- Perp 750.0 psi Wood Grade : Versa Lam 2.0 3100 West Fv 285.0 psi Ft 1,950.0 psi Density 41.760pc1 Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 0(0.165) Lr(0.133) D(O.153tLr(0.17) 0(0.176) Lr(O.195) 04 5.25x11.875 5.25x11.875 I, Span = 6.0 ft - Span = 4.50 ft Applied Loads Beam self weight calculated and added to loads Load for Span Number 1 UnlformLoad: D=0.1530, Lr0.170, Tributary Width= 1.0 ft. (Roof) Load for Span Number 2 Uniform Load: D 0.1760, Lr = 0,1950, Tributary Width= 1.0 ft, (Roof) Point Load: 0 0.1650, Lr = 0.1330k @4.50 It, (RB-9) Service loads entered. Load Factors will be applied for calculations. aximum Bending Stress Ratio Section used for this span lb : Actual FB : Allowable Làad Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.133 1 Maximum Shear Stress Ratio 5.25x11.875 Section used fOr this span 513.54psi Iv: Actual 3.875.00psi Fv : Allowable +04.r4H Load Combination 6.000ft Location of maximum on span Span #1 Span #where mad mum occurs 0.038 in Ratio = 3026 >=360 -0.004 in Ratio = 18792>=360 0.074 in Ratio = 1462=240 -0.008 In Ratio = 8994>=240 0.113 :1 5.2501.875 = 40.12 psi = 356.25 psi 4D4LS+H = 6.000 ft = Span #1 Maximum Forces & Stresses for Load Combinations Load Combination -...... Max .Stress Ratios - Moment Values Shear Values Segment Length Span # M V C C FN C1 Cr Cm C C1 M fb Pb V fv Fly +04H 0.00 0.00 0.00 0.00 Length = 6.0 ft 1 0.094 0.080 0.90 1.000 1.00 1.00 1.00 1.00 1.00 2.71 263.32 2790.00 0.85 20.40 256.50 Length 4.5011 2 0.094 0.080 0.90 1.000 1.00 1.00 1.00 1.00 1.00 2.71 263.32 2790.00 0.85 20.40 256.50 4044H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =6.0ft 1 0.085 0.072 1.00 1.000 1.00 1.00 1.00 1.00 1.00 2.71 26332 3100.00 0.85 20.40 265.00 Length = 4.50 ft 2 0.085 0.072 1.00 1.000 1.00 1.00 1.00 1.00 1.00 2.71 263.32 3100.00 0.85 20.40 285.00 Mike Surprenant&Associates Project Title: Viola Engineer: IC Project ID: 18063 Project Descr:Sheet of_______ Printed: 26 JAN 2019. 1:58PM Wood Beam RF 018 18 of &Street-Wrigh503-E dglCalcTemptatesWlo?a.HoOYef.eC6 S.....,. ......bJ. clirnt'&, , liv' 4OftflIQ D,IW.lfl 1A 1012 Description: RB-li (Rev. 1.28- Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span U M V Cd C IN C1 Cr Cm C t C1 N lb F'b V (V Fv 4041141 1.000 1.00 1.00 tOO 1.00 1,00 0.00 0.00 0.00 0.00 Length =6.Oft 1 0.133 0.113 1.25 1.000 1.00 1.00 1.00 1.00 1.00 5.28 513.54 3875.00 1.67 40.12 356.25 Length =4.50ft 2 0.133 0.113 1.25 1.000 1.00 1.00 1.00 1.00 1.00 5.28 513.54 3875.00 1.67 40.12 356.25 40484H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 01)0 Length =6.Oft 1 0.074 0.062 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.71 263.32 3565.00 0.85 20.40 32735 Length =4.50ft 2 0.074 0.062 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.71 263.32 3565.00 0.85 20.40 327.75 .D0.750Lr40.750L4l 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =6.oft I 0116 0.099 1.25 1.000 1.00 1.00 1.00 1.00 1.00 4.64 450.99 3875.00 1.46 35.19 356.25 Length 4.50ft 2 0.116 0.099 1.25 1.000 1.00 1.00 .1.00 1.00 1.00 4.64 450.99 3875.00 1.46 35.19 356.25 '.040.750140.7508.H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =6.0ft 1 0.074 0.062 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.71 263.32 3565.00 0.85 20.40 327.75 Length 4.50ft 2 0.074 0.062 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.71 263.32 3565.00 0.85 20.40 32735 4040.6OW4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 01)0 Length 6.0ft 1 0.053 0.045 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.71 263.32 4960.00 0.85 20.40 456.00 Length = 4.50 It 2 0.053 0.045 1.60 1.000 1.00 1.00 1.00 1.00 1.00 231 263.32 4960.00 0.85 20.40 456.00 4040.70E4H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 6.0tt 1 0.053 0.045 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.71 263.32 4960.00 0.85 20.40 456.00 Length 4.50ft 2 0.053 0.045 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.71 263.32 4960.00 0.85 20.40 456.00 +D'0.750Lr'0.750L0.450W+H 1.000 1.00 1.00 1.00 1,00 1.00 0.00 0.00 0.00 0.00 Length 6.0ft 1 0.091 0.077 1.60 1.000 1.00 1.00 1.00 1.00 1.00 4.64 450.99 4960.00 1.46 35.19 456.00 Length 4.50ft 2 0.091 0.077 1.60 1.000 1.00 1.00 1.00 1.00 1.00 4.64 450.99 4960.00 1.46 35.19 456.00 4040.750L40.750S40.450W41 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =6.0ft 1 0.053 0.045 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.71 263.32 4960.00 0.85 20.40 456.00 Length =4.50ft 2 0.053 0.045 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.71 263.32 4960.00 0.85 20.40 456.00 e00,7501..0.750S.0.5250E4t 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 6.0 ft 1 0.053 0.045 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.71 263.32 4960.00 0.85 20.40 456.00 Length = 4.50 ft 2 0.053 0.045 1.60 1.000 1.00 1.00 1.00 11)0 1.00 2.71 263.32 4960.00 0.85 20.40 456.00 40.60D40.60W40.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length 6.0 ft 1 0.032 0.027 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.62 157.99 4960.00 0.51 12.24 456.00 Length =4.50ft 2 0.032 0.027 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.62 157.99 4960.00 0.51 12.24 456.00 40.60D40.70E.0.60H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 6.0 It 1 0.032 0.027 1.60 1.000 1.00 1.00 1.00 1.00. 1.00 1.62 157.99 4960.00 0.51 12.24 456.00 Length :4.50ft 2 0.032 0.027 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.62 157.99 4960.00 0.51 12.24 456.00 Overall Maximum Deflections Load Combination Span Max. ":Dell Location In Span Load Combination Max. '+ Defi Location in Span 1 0.0000 0.000 40+114H -0.0080 3.888 4041141 2 0.0738 4.500 0.0000 3.888 Vertical Reactions Support notation: Far left Is 91 Values In lOPS Load Combination " Support 1 Support 2 Support 3 Overall MAXimum 0.143 3.952 Overall MiNimum 0.081 1.949 .04H 0.062 2.003 4041411 0.062 2.003 404Lr4H 0.143 3.952 +0.S+H 0.062 2.003 4040.7501.0.7501#1 0.123 3.465 '.D.O.750Li0.750S#1 0.062 2.003 40i0.60W41 0.062 2.003 +D40.70EH 0.062 2.003 +040,750Lr40.7501.40,45041 0.123 3.465 D40.750L40.750S0.450W+H 0.062 2,003 D'0.750Le0.750S'0.5250E#f 0.052 2.003 40.60040.60W40.601-1 0.037 1.202 60040.70E40.60H 0.037 1.202 D Only 0.062 2.003 LrOnly 0.081 1.949 I Only 8 Only Mike Surprenant & Associates Project Title: Viola Engineer: TC Project ID: 18063 Project Descr: Sheet ' of______ Printed: 2$ JAN 2019, 1:58PM Wood Beam Description : RB-11 (Rev. 1-28-19) Vertical Reactions Support notation Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 w uni E Only H Only JOB MIKE SURPRENANT fl & ASSOCIATES MEMO._OF___________ Consulting Structural Engineers CALCULATED BY. ..._ DATE._ - CHECKEDBY. DATE - SCALE SAW ' Story Shearwalls $/ rection Unit Lateral Load, v= 10-SO Gridlice Tributary Area (This Level): : '1'st') (66) & sq. ft. Lateral Load (This Level): . . . Lateral Load (Level Above): . . . . .. _LbS Total Load (All Leels), F ism Lbs Shèar&ll(s)lith,L.....& .11tv3 . .ft. .••. Unit Wall Shear, v=F111L = to. plf Sheazval1 Type: (E) Oerturing: . L ft. 'Qkay by lnspectiQn Uplift =_________ lb down Anchor Type: Gridline I f1V(40) _.(.i3 sq. ft. Lateral Load (This Level): Lateral Loal (Level Above):. & ri's Lbs Lbs _Total Load (All Levels), F,= Lbs Shearwall(s) Length, L Unit Wall Shear, v = F/L ILO I plf Go.K tu Shearwall Type: Overturning: L = ft. - Okay. by Inspection Uplift = . Lbs Holdown Anchor Type: I CGr~i d B ini Lei 3 (7e'7.f,r)(1) __sq ft Lateral Load (This Level): . 2. L.I' Lbs Lateral Load (Level Above): . _Lbs Total Load (411 Levels), F= L SI_ Lbs Shearwall(s) Length, L Unit Wall Shear, v FA 1.'t plf Shearwall Type: (j) Overturning: L = ft. Okay by Inspection Uplift . . Lbs Noldown Anchor Type: Lbs 0. . 1600 JOB MIKE SURPRENANT (6 71 & ASSOCIATES NT SHEET NO. Of - Consulting Structural Engineers .CALCULATED BY_ DATE - CHECKED BY_ DATE SCALE Vf?Pt_..Story ShearwaHs : I Direction Unit Lateral Load, v Psi! Gridline Tributary Area (This Level): -i U 9'f 'a-) () Lateral Load (This Level): .. t tP t' Lbs Lateral Load (Level Above): : . .• Lbs . Total Load(Ali Leiels),.F, = Lbs UP64— Sheary LI® 1e1igt1i,L Unit Wall Shear, v = PXIL = :_..plf Shearwall Type: Oerturning; L ___ . - Okay by Inspection . MtV' Uplift= (1a-t)(1) Lbs Holdown Anchor Type: . . GrWIlne . . Tributary Aiea (This Level).: i.._.(.'(2)(j)+L1a)('9 ____sq.ft.. Lateral Load (This Level): . 44$' Lbs Lateral Load (Level Above): -. Lbs Total Load (All Levels), F= r$ b Lbs Shearwall(s) Length, L = _________________________ ft Unit Wall Shear, v = PAIL = %61 pif Sheanvall Type: (J Overturning: L = ft Okay by Inspection if Uplift = (Sw) (i) • $b 1r Lbs Hàldown. Anchor Type: a " t* WT46 Is , CGr~ldline i)(I6 . - S. Lateral Load (This Level): 23IO_Lbs Lateral Load (Level Above): -_Lbs Total Load (All Levels), F, Shearwall(s) Length, L Unit Wall Shear, v = F/L = ____________ Of Shearwall Type: Overturning: L= ft. - Okay by Inspection Uplift= (1.6(1(q) 1!4S Lbs Holdown Anchor Type: f MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB_____________ SHEETNO._______________________ OF DATE CALCULATED BY_ 'rc. CHECKEOBY -.. .-- DATE' - SCALE for valls '_Direction Unit La Gridline C, teral Load, v pf iIt)(,i)4 (Z44'i1(t(1 ft. Lateral Load (This Level): C'tó8) ((.fl + (261CU) Lateral Loat (Level Above): . . . . - Lbs rias Lbs Total Load(All Levels), F= SlieaiwàIl(s)Lèiigih, L ..... . it. :• : Unit Wall Shear, v FJL = pf Shearwall Type: Ov.erlrnlng: . L = . - Okay by Inspection Uplift = . 2.69t Lbs Hodown Anchor Type: a,... P RVq oil. Grldfine Tributary Aea (This Level): Cl ) Lateral Load (This Level): ' b, Lbs Lateral Load (Level Above): : - . Lbs Total Load- (All Levels),F= ¶.So Lbs Shearwall(s) Length; L Unit Wall Shear, V = F/L = 50 '2. Of Shearwall Type: (} Overturning: L = __________ Uplift = - Okayby Inspection Lbs Holdown Anchor Type: Gridilne .r'r- vs - . Tributary Aim (this Level): - . . sq.-ft. - Lbs Lateral Load (This-Level): - , Lbs Lateral Load (Level Above): Total Load (All Levels), F,= Lbs Shearwall(s) Length, L = ______________________ ft. Unit Wall Shear, v =PJL = _lf Shearwail.Type: (3 Overturning: L = - .,..,ft. - Okay by Inspection Uplift= , . Lbs Holdown Anchor Type; 0 MIKE SURP1UNANT & ASSOCIATES Consulting Structural Engineers JOB Vloi ChoouA n) SHEETNO CAthULAlEOBy ., ______ DATE CHECKED BY DATE SCALE ... , . . . . . . - . Story Shearwalls P1 Direction Unit Lateral Load, v = .i?° pt Gildilne_ Tributary Area (This Level): 1l. ft Lateral Load (ThisLevel); .• .. Lbs Lateral Load (Level Above): . . Lbs Total Load(Alt )[.evels),.P1 Lbs ShearwIt(sLèiigiIi,t = ft.• Unit Wall Shear, v = PJL = . ShearwaIl.fype: (J oyeslQrfllng L ft. - Qicay by Inspection Upllft= Lbs Holdown Anchor Type: o VIL sq. ft. Lateral Loa (Thls:Levei): .Us Lateral Load (Level Above): tO (5) 'pi z CA) # 4 "f lii 47.q 'Lbs I' Total Load (All Levels), P= - 8112 Lbs Shearwall(s) Length, L Unit Wall S iear, v = PJ[. = plf Sheaiwall Type: Overturning: L = Okay by Inspection Uplift= !4 6.. 1 Lbs Holdown Anchor Type: j i i4p TTibutary Area (This Love!): Lñt) L") sq. ft. Lateral Load (This Level): ?41 Lbs Lateral Load(Level Above): - a Lbs 'Total Load (All Levels), F= 9St1_Lbs Shearwell(s) Length, L = Unit Wall Shear, v = FJL = -IPA pif Shearwall Type: 0 Overturning: L =ft. - Okay by Inspection Uplift= . . ' Lbs Holdown Anchor Type: El a. MIKE SURPRENANT & ASSOCIATES Consulting Structural Engineers JOB Oil SHEET NO. ______________________ OF CALCULATED BY - 1c. DATE CHECKED BY_ DATE SCALE s/ Direction Unit Lateral Load, v = t psi CGriine utAzACEhise el): t'&"iui1( t) e 'Zt.f sq.ft. Lateral Load (This Level): . tç€ Lbs Lateral Load (Level Above): - Okay by Inspection ID) - - Lbs Type; Gridline Tributary Mea (This Level): L. 'Li . .. . ... S'3.'2.. sq.ft. Lateral Load (This Level): . %S4" Lbs Lateral Lad (Level Above): . . i54%'3 12 -I Lbs Total Load (All Levels), PA = b,44S Lbs Sheatwall(s) Length, L ft Unit Wall Shear, v = FJL = 46 pif Shearwall Type: Overturning: L = _____ ft( Okay by Inspection 4 Uplift = (M.') (.4) . b4)a Lbs Holdown Anchor Type: j Gridline_A Tributary Area (This Level): - Lateral Load (This Level): - Lateral Load (Level Above): - - Total Load (All Levels), P. 6"--Lbs Shearwall(s) Length, L = It-Ir ft. Unit Well Shear, v = AIL ' tt Shearwall Type: Vf - Overturning: L = - Uplift Holdown Anchor Type: El tt& Okay by Inspection Lbs Shèarwà1l(s)Lèiiih, L Total Lóad(A1I Levels), FX Unit Wall Shear, v = PJL = . pff : Shearvall Type: (} Oyerturning: L= ft Uplift Holdown And MIKE SURPEENANT - & ASSOCIATES Consulting Structural Engineers JOB SHEET NO. it - Z 2. CALCULATED BY_ic OATE CHECKED BY________________________ DATE SCA__ Story Shearwalls s4 Direction Unit Lateral Load, v = pSI • ZPrIdHne 4 ah:, ea I 1,1p'(i C ' sq. ft. Lateral Load (This Level): . - 3.51 L6s Lateral Load (Level Above): - C) CcJ . : çg9 Lbs Sliearwàll(s)Lèngth,L Total Load(AII Levels), F, . ft. '•• O 44. Lbs Unit Wall Shear, v=FjL = __4 - p11 Shearwall Type () Overturning: L = ft. - Okay by Inspection Uplift= 4?D_Lbs Holdown Anchor TyPe: Gridlinë_______________ c 1) L ") ' ..-... .. 44 ft. Tributary Mea (This Level): . sq. eg 5 Lbs Lateral Load (This Level): : Lateral Load (Level Above): - — Lbs : Total Load (All Levels), F= - 9 •5 ft. '45 Lbs Shearwall(s) Length,L - Unit Wall Shear, v = P1/L - _ pif Shearwall Type: Overturning: L = ft — Okay by Inspection . Uplift = Lbs HoldôwnAnchor Type: r . - ttfb K4, Gridline__________ Tributary Area (This Level): Lateral Load (This Level): • '?6'T. Lbs Lateral Load (Level Above): - ) Lbs Total Load (All Levels), F = ik Lbs Shearwall(s) Length, L ,2.0 ft. Unit Wall Shear, v =PJL = - 1 " plf/I 4. . Shearwall Type:. Overturning: • L = ft. Okay by Inspection Uplift= CiiY(t") Lbs HoldownAnchor Type: