Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
CT 98-10; CARLSBAD RACEWAY; DRAINAGE STUDY; 2003-06-20
HYDROLOGY AND HYDRAULIC STUDY FOR CARLSBAD RACEWAY CT. 98-10 J.N. 981012/5 DECEMBER 20, 2002 REVISED: APRIL 17, 2003 REVISED: JUNE 20, 2003 O'DAY CONSULTANTS RBC^ 2710 LOKER AVENUE WEST, SUITE 100 " . ^^fti* CARLSBAD, CA 92008 jVll (760)931-7700 Mrit^e^^^''- 1 Carlsbad Raceway Hydrology and Hydraulic Study Table of Contents Narrative Introduction 1 Stonnwater Basin Runoff Analysis Criteria 1 Permanent Pollution Prevention Basin Design Criteria 2 Temporary Desilting Basin Design Criteria 3 Curb Inlet Sizing & Modified Type "F" Catch Basin Sizing Criteria 8 Open Charmel Sizing Criteria 9 Rip Rap Sizing Criteria 10 Conclusion 10 Appendix Appendix A Appendix B Basin 1 Analysis Hydrology Analysis Closed Conveyance Hydraulic Analysis Basin 2 Analysis Upstream Analysis (Reference) Hydrology Analysis Closed Conveyance Hydraulic Analysis Basin 4 Analysis Hydrology Analysis Closed Conveyance Hydraulic Analysis Basin 5 Analysis Hydrology Analysis Closed Conveyance Hydraulic Analysis Pond 1 (Includes Melrose) Pond Sizing Calculations Melrose Low Flow Analysis Basin 5 Low Flow Analysis Pond 2 Pond Sizing Calculations Pond 3 Pond Sizing Calculations Pond 4 Pond Sizing Calculations Desilting Basin Inlet Open Conveyance Rip Rap W:\MSOFFICE\WINWORD\981012\HYDROLOGY toc.doc Narrative Introduction The purpose of this report is to analyze the onsite surface runoff, determine the proposed onsite storm drainage facilities necessary for the Carlsbad Raceway Industrial Park final design, and meet the requirements stated in the "Standards for Design and Construction of Public Works Improvements in the City of Carlsbad". Carlsbad Raceway Industrial Park will be a 146-acre, 28-lot project located on the northerly portion of Palomar Airport Road, near the City of Vista. The CivilCad software was used to analyze basin runoff, open conveyance systems, and flow capacity for several pipes. The HydroWin software was used to analyze the closed conveyance systems throughout the site. Flow velocities generated by CivilCad were initially used for a conservative design approach. Stormwater Basin Runoff Analysis Criteria The hydrology study followed the procedure in the San Diego County Drainage Manual for a 100-year storm. The 100-year, 6-hour (Pe) and 24-hour (P24) storm precipitation values for the project site are 3.0 and 5.2 respectively (See pages 3 and 4 of Appendix A). Times of concentration were based on the following equations: For Natural Areas (See Appendix A): Tc 60 11.9 + 10 minutes H For Urban Areas (See page 8 of Appendix A): T.=-1.8(1.1-0)40 , with a minimum of 5 minutes is Additional time in pipes or charmels was based on the average velocity in those facilities. Intensity was determined by (See Appendix A): I = 7.44 P6 Te "-^^^ The rational method was used to determine flows: Q = CIA Where: Q = flow in cubic feet per second C = runoff coefficient, based on land use and soil type. For this project, the soil type was all 'D' (See Page 5 of Appendix A) I = intensity A = area, in acres W:\MSOFFICE\WINWORD\981012\HYDROLOGY AND HYDRAULIC STUDY.doc 1 A Hydraulic Study was then done to confirm pipe sizes and pressure flow using a form taken fi-om the Virginia Department of Highways and Transportation "Drainage Manual." Permanent Pollution Prevention Basin Design Criteria The permanent pollution prevention basin (Pond 1 to 4) volumes were designed for the total volume produced firom a 24-hour, 85"' percentile storm event, as determined from the local historical rainfall record. The approximate average for the San Diego County area is 0.6 inches. The volume criteria was determined per the California Regional Water Quality Control Board San Diego Region Order Number 2001-01. The curve number (CN) for an urban commercial-industrial area is 92 per Table I-A-1 (See Appendix A) A precipitation value of 0.6 inches and a CN value of 92 yield a direct runoff values of 0.12 inches per Figure III-A-2 of (See page 10 of Appendix A) The total area to be detained in each basin was determined from the stormwater runoff analysis section of this report. The minimum required volume was then calculated using the following equation: Vmin = 3630*dr*A Where: Vmin = minimum required volume in cubic feet 3630 = (1 ft/12 in)*(43560 sf 1 ac) dr = direct runoff value in inches A = area to be detained in acres This minimum volume is the volume required to meet the pollution prevention criteria. An actual required volume was calculated based on that portion of the 100-year, 6-hour peak flow entering the low flow pipe and based on the simplified hydrograph shown in the San Diego County Hydrology Manual, pages I-C-5 through I-C-7. The volume under the hydrograph = y2(Qmax)(2.67Tc)(60sec/min) Where: Vmax = actual required volume in cubic feet Tc = Time of Concentration in minutes Qioo = Flow through pipe during a 100-year, 6-hour storm Vmax is used to determine the volume required for the pollution prevention basin. The actual required volume had to be analyzed since the 100-year, 6-hour storm will affect the amount of flow entering the basin. Flows will be discharged through two pipes during the 100- W:\MSOFFICE\WINWORD\981012\HYDROLOGY AND HYDRAULIC STUDY.doc 2 year, 6-hour storm. One pipe will enter the pollution prevention basin while the other pipe will be discharged to the open space area (Lot 27) of the project site. Low flows will be discharged into the pollution prevention basin since the pipe entering the pollution prevention basin has a lower inlet elevation. A higher water surface during the 100-year, 6-hour storm will increase the flow through the low flow pipe. The water surface elevation was obtained from the stormwater runoff basin analysis section of this project. The HW/D data and the pipe diameter information along with the Headwater Depth for Concrete Pipe Culverts with Inlet Control chart (See page 1 of Pollution section in Appendix) was used to determine tiie peak flow value (Q) entering the pollution prevention system during the 100-year storm. CivilCad was used to analyze the pipe capacities for the inlet and discharge pipes of each pollution prevention system. Temporary Desilting Basin Design Criteria According to the Fact Sheet for Water Quality Order 99-08-DWQ issued by the State Water Resources Control Board (SWRCB), sediment basins shall, at a minimum, be designed and maintained as follows: Option 1: Pursuant to local ordinance for sediment basin design and maintenance, provided that the design efficiency is as protective or more protective of water quality than Option 3. OR Option 2: Sediment basin(s), as measured from the bottom of the basin to the principal outiet, shall have at least a capacity equivalent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length ofthe basin shall be more than twice the width of the basin. The length is determined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. OR Option 3: Sediment basin(s) shall be designed using the standard equation: As-1.2Q/Vs Where: As is the minimum surface area for trapping soil particles of a certain size; Vs is the settiing velocity of the design particle size chosen; and Q^C*I*A where Q is the discharge rate measured in cubic feet per second; C is the runoff coefficient; I is the average precipitation intensity (See page 1 of Desilting Basin section in Appendix) for the 10-year, 6-hour rain event and A is the area draining into the sediment basin in acres. The design particle size shall be the smallest soil grain size determined by wet W:\MSOFFICE\WINWORD\981012\HYDROLOGY AND HYDRAULIC STUDY.doc sieve analysis, or the fine silt sized (0.01 mm) particle, and the Vs used shall be 100 percent of the calculated settling velocity. The length is determined by measuring the distance between the inlet and the outlet; the length shall be more than twice the dimension as the width; the depth shall not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency (two feet of storage, two feet of capacity). The basin(s) shall be located on the site where it can be maintained on a year-round basis and shall be maintained on a schedule to retain the two feet of capacity. OR Option 4: The use of an equivalent surface area design or equation provided that the design efficiency is as protective or more protective of water quality than Option 3. Sediment basins for Carlsbad Raceway were designed to satisfy the requirements of Option 3, using the following parameters: Appendix II-A-4 of the San Diego County Hydrology Manual gives the precipitation for a 10- year, 6-hour storm as 1.9 inches for this project. (See Appendix A) lavg =1.9 inches/6 hours lavg = 0.32 inches/hour The San Diego County Soils Interpretation Study gives the soil classification for this project as "D". (See Appendix A) Appendix IX of the San Diego County Hydrology Manual gives the runoff coefficient for this project as C=0.55. This C value was used since all the area entering each basin will be either earth lined or hydroseeded. (See Appendix A) Table 8.1 of the Erosion and Sediment Control Handbook (See page 2 of Desilting Basin section) gives the settling velocity for a 0.01mm sized particle as Vs = 0.00024 feet/second. Basin Dewatering Calculation from The Erosion and Sediment Control Handbook pg. 8.24: Ao = As\|2(H) 3600(T)CdsjG Where: Ao = oriface area As - basin surface area H = head of water = 2 ft. T = dewatering time = 40 hr. Cd = coefficient of contraction = 0.6 G = gravity = 32.2 ft/s W:\MSOFFICE\WrNWORD\981012\HYDROLOGY AND HYDRAULIC STUDY.doc 4 Then: Ao = Asxj2(2) 3600(40)0.6( >^32.2) = As(0.0000041) = FT^ xl44 = As(0.0005874) = in^ Soil Loss Calculations Chapter 5 of the Erosion and Sediment Control Handbook discusses calculating soil loss with the universal soil loss equation. 6Jhk The EquAtioii wher* J4 » aoil low, ton/C«a*) iy—t) R ~ tainfall MoaioB indat, in 100 ft • tcma/acni X in/hr K •» toO trodibiUty ttetor, toni/aen p«r unit of Jl LS " tlopt hngtki and itaipntu (actor, rtimnntlonl<ti C - w(mtti¥« eomt fector, rthwowiinwlMi P offOiiMi ciNBtrol pmctico fectof , diinoniionloM W:\MSOFFICE\WINWORD\981012\HYDROLOGY AND HYDRAULIC STUDY.doc 5 Rainfall Index "R" Rainfall erosion index "R" is based on the geographical location. S.1S mmi 8<dfa»—t Contfl HnnJbook 700 600 500 400 .0' / / a- LSSSSB 25 p " ?-veof, 6 hf rain, in 50 75 too 0 « 2-vesr, 6-fi< rain, mm Fig. 5.5 Relations b«twe«n average annual erosion index and 2-yetr, 6-hr rainfall in California. (14) ng. 53 Oistrilnition of storm typtt in tho wmun United Steto*. (4) Typ* n •tomo oeew LB Ariiooa, Colorado, Idaho. Montana. NovMfe. N*w hfeiie*^ Utah, and WywBinf Thodiibtanm in p*ali iataMAiy an nflMlid h tiw MoMeitNti of tte tioM fer th* rainfeO fector. npm U b a fcaphied npnaantatiao «f tlw equ^ tion*. The equatiofu, aUo shown on th* corm for each individnal rtorra typ*. «»87p" t»p*n K-UJJUp** typ*I A-10.21^ typ*IA "P" for this equation is the precipitation for a 2-year, 6-hour-stonn event. Appendix II-A-2 from the San Diego County Hydrology Manual gives P = 1.4 (See page 1 of Appendix A). R = 16.55*P^2.2 = 16.55*1.4^2.2 = 34.7 W:\MSOFF1CE\WINWORD\981012\HYDROLOGY AND HYDRAULIC STUDY.doc 6 Soil Factor "K" From the soils report, the site consists of 47% sand and 53% clay and silt. Assuming half of the 53% is clay, the other half silt. K = 0.26 (See table below) P IRC INT a, CLAr Length Slope and Steepness Factor "LS" Slope length and steepness factor "LS" is calculated using Table 5.5 of the Erosion and Sediment Control Handbook. (See page 3 of Desilting Basin section in Appendix). W:\MSOFFICE\WINWORD\981012\HYDROLOGY AND HYDRAULIC STUDY.doc 7 Vegetation Cover Factor "C" The cover factor table listed below is used for area under construction or cultivation. To be conservative, the highest value is assumed. C= 1.0 90« . Wood abw nralch. K (OB/acn U.T t/ba). wtth »Mat StfanriMiMtr I* tnmm/mtwm (S.4 l/hai). teoiud dopwa 4 tam/mn »ja t/haK «MlMd iia— tr«r llUM ay ta III. Erosion Confrol Practice Factor "P" The P values listed below are given for areas under construction or cultivation. To be conservative, the highest value was assumed. P=1.3 TtackaranHid alaac caotouT* tJ» TrmiVmmnmA vp and dowa siop**' A* Rauah, inacalar cut I. rmaa to IX-in (SO-caa) dapth "TMaai Wiila •ttMii«ia»aa<idaiMilin rftaa* mm^ oil»al»« ymnMdi la nan a« la Wlm- —Maia.**. Section 5.31, pages 5.27 to 5.28 lists a step-by-step procedure for using the universal soil loss equation. (See page 4 of Desilting Basin section in Appendix) W:\MSOFFICE\WINWORD\981012\HYDROLOGY AND HYDRAULIC STUDY.doc 8 Curb Inlet and Modified Type "F" Catcli Basin Sizing Criteria The curb inlets were designed per the 1993 Standards for Design and Construction of Public Work Improvements in the City of Carlsbad. Curb inlets at sump conditions were designed for two cubic-feet per second (cfs) per lineal foot of opening. Curb inlets on a continuous grade was designed based on the following equation: Q = 0.7*L*(a + y)^3/2 Where: y == depth of flow in approach gutter in feet a = depth of depression of flow line at inlet in feet L = length of clear opening in feet (maximum of 30 feet) Q = flow in cfs, minimum design storm: 50-years The Q values were obtained from the basin analysis section, and the actual continuous slopes along the curb inlets were obtained from the roadway profile of the improvement plans. The depths of flow approaching the curb inlet were obtained using the Gutter and Roadway Discharge-Velocity Chart (See page 1 of Inlet Sizing section in Appendix). The modified Type "F" catch basin inlet within the desilting basin spillway will convey approximately 39.2 cfs through the four openings when the depth of flow is 0.88 feet above the top of the opening. The modified Type "F" catch basin will provide adequate flowthrough capacity during the 100-year storm since the largest 100-year, 6-hour storm will be 37.8 cfs. The Type "F" flow capacity was determined using the following orifice flow equation: Q = C*A*(2*g*h)^l/2 Where: Q = Flow through the Type "F" catch basin opening in cfs C = Discharge coefficient, 0.67 g = gravity acceleration, 32.2 ft/sec^2 h = water head above orifice in ft There are four openings for each modified catch basin in a spillway. The cross-sectional areas for the openings were determined from the detail D-7 of the San Diego Area Regional Standard Drawings. The flow inlet opening area is 1.94 square feet on each side. The maximum head above the top of the opening will be 0.88 feet. This head depth provides 0.5 feet of freeboard to the top of the spillway. The flow capacity for each opening is 9.8 cfs based on the areas of the opening and the orifice flow equation. Since there are four of the same openings facing each other the total flow capacity through the openings are 4*(9.8) = 39.2 cfs. W;VMSOFFICE\WINWORD\981012\HYDROLOGY AND HYDRAULIC STUDY.doc 9 The largest lot area (A) is Lot 25 at 7.8 acres. The stormwater runoff basin analysis approximated the rainfall intensity (I) at 7.9 for the 100-year storm when the time of concentration is 5 minutes. A runoff coefficient (C) value of 0.55 was used since there will be no impervious surface on the lots while the temporary desilting basin is being used. The peak flow yields 37.8 cfs based on the above values. Open Channel Sizing Criteria The following different open channels were sized or analyzed for the project site: • The earthlined swales conveying sheet flow across a lot • The earthlined swales through the desilting basin slopes • Tenace ditches along 2:1 and 3:1 slopes The earthlined swales were designed to convey the largest sheet runoff through the largest lot within the project site. The peak flow through the largest lot yields 37.8 cfs based on the last paragraph of the Curb Inlet and Modified Type "F" Catch Basin Sizing Criteria section of this report. Most surface runoffs from each lot will sheet flow across the site and into the desilting basins. Each swale will convey approximately 50 percent of the lot's surface runoff and therefore the swales were sized to convey 18.9 cfs (0.50*37.8). The required earth-lined V-shaped swale along a 1.0 percent longitudinal slope is 27.0 feet wide at the top, 2.7 feet deep with a 5:1 side slope on both sides. The required earth-lined V-shaped swale along a 20.0 percent longitudinal slope is 17.5 feet wide at the top, 1.8 feet deep with a 5:1 side slope on both sides. Both swales assume a Manning's 'n' of 0.020. The V-shaped swales that will be used to convey sheet flow across the lots will be 27.0 feet wide at the top and 2.7 feet deep with a 5:1 side slope on both sides. The minimum longitudinal slope will be 1.0 percent with a smooth and earth lined surface. The V-shaped swales that will be used to convey flows into the desilting basins will be 18.0 feet wide at the top and 1.8 feet deep with a 5:1 side slope on both sides. The longitudinal slope will be 20.0 percent with a smooth and earth lined surface. The terrace ditches were analyzed based on the following: The pipe analysis function of CivilCad was used to determine the ditch capacity since the ditch is essentially a sectioned pipe. These ditches at 2 percent longitudinal slope with a Manning's 'n' of 0.013 can convey approximately 22.2 cfs. This flow is equivalent to an area flowing from an approximately 5.1 acres when the C value is 0.55 and the intensity is approximately 7.9 inches per hour. This intensity is for a 100-year, 6-hour precipitation of 3.0 inches and a Time of Concentration of 5 minutes. The use of this intensity is reasonable since all flows entering the terrace ditch will have slopes steeper than 3:1 and is for a short distance. The C value is also reasonable since the W:\MSOFFICE\WINWORD\981012\HYDROLOGY AND HYDRAULIC STUDY.doc 10 areas upstream to the ditch will be grass lined. The areas entering each terrace ditch are less than 5.1 acres and thus should have adequate capacity. Rip Rap Sizing Criteria Rip Raps were sized using the Erosion and Sediment Control Handbook by Goldman, Jackson and Bursztynsky, the 1982 Special Provisions Regional Standard Specifications, San Diego Area Regional Standard Drawings, and the 1993 Standards for Design and Construction of Public Work Improvements in the City of Carlsbad. Figure 7.46 of the Erosion and Sediment Control Handbook was used to determine the approximate rip rap size required. The rip rap size is determined based on the peak flow and pipe diameter size discharging the flows onto the rip rap. The Rip Rap thickness "T" dimension was then increased to three times the size of rip rap per the 1993 Standards for Design and Construction of Public Work Improvements in the City of Carlsbad. Filter Blankets were then selected using the 1982 Special Provisions Regional Standard Specifications, San Diego Area Regional Standard Drawings. The rip rap length and width dimensions were determined per detail D-40 of the San Diego Area Regional Standard Drawings. Concrete energy dissipaters were used for flow velocities exceeding 20 feet per second (ft/sec) and less than 35 ft/sec, and pipe diameters less than 72 inches. CONCLUSION The permanent pollution prevention basins, temporary desilting basins, open channel and closed conveyance systems, curb inlets, modified Type "F" inlets, and rip raps meet the 1993 Standards for Design and Construction of Public Work Improvements in the City of Carlsbad requirements. Any increase in flow over existing conditions is accounted for with the detention basin on the east side of Melrose Drive. This basin is based on a study done by Rick Engineering for the City of Carlsbad (see Appendix B). Pipes are sized to eliminate pressure flow with a few exceptions, as noted. W:\MSOFFICE\WINWORD\981012\HYDROLOGY AND HYDRAULIC STUDY.doc 11 Appendix A COUNTY OF SAN DIEGO DEPARTMENT OF SANITATIOM S> FLOOD CONTROL 33- 2-YEAR 6-HOUR PRECIPITATION v-lO—ISOPLUVIALS OF 2-YEAR 6-HOUR PRECIPITATION IN TENTHS OF AN INCH Pnpafa* by U.S. DEPART.\1ENT OF COMMERCE NATIONAL OCEANIC A.VD ATMOSPHERIC ADMraiSTRATION „_„^, SPECIAL STUDIES BRANCH. OFFICE OF HVDROLOGV. NATIONAL WEATHER UKVlCt ,. -I H 1— 30 3> I to 118* '»5' 30' 15' 117' 30' 15' 116' COUNTY OF SAN DIEGO DEPARTMENT OF SANITATION fi. FLOOD CONTROL 10-YEAR e-HQUlt PRECiPITATiO^J ^16- fSOPLUVIALS PRECIPITATION IN OF 10-YEAR C-liOUa ENTHS OF AN INCH I 4?- U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND AT >:OSP||ER|C AOMINISTRA-noM SPECIAL STtlDIE, BRANCH. OFFICU OF .f oROLOOr.^AT.ON^T^^^^ .„V,CE 30 1 i. m a t-t X X n I m couirry OF SAN DIEGO DEPARTMENT OF SANITATION 6 FLOOD COtJTROL 100-YEAR 6-ll0U^ PRECIPITATION o ISOPLUVIALS PRECIFITATION IN OF 100-YEAR 6-HOUR ENTHS 0? m IMCil Pnpa c U.S. DEPARTMEN r OF COMMERCE NATIONAL OCEANIC AND AT>|(ISPHERIC ADMINISTRATION SPECIAL STUDIES DRANCII, OFFICE OF » •"•If I 1. » n T3 m to •o CO COUNTY OF SAN DIEGO DEPARTMENT OF SANITATION t FLOOD CONTROL 1.5' 30' 15' 33* '•5' PfC|>* U.S. DEPARTMEN I NATIONAL OCUAMC ANO AT: SPECIAL STUDIES UBANCII. OFFICE OF II 100-YEAR. 24-H0l)R PRECIPITATION '-20^ ISOPLUVIALS 0? 100 -YEAR 24-HOUR PRECIPITATIOfI IN ENTHS OF AN INCH 30' 33W30' ExE 'oins 3A€9 'SITE TABLE 2 RUNOFF COEFFICIENTS (RATIONAL METHOD) DEVELOPED AREAS (URBAN) Land Use Residential: Si ngle Family Multi-Units Mob i1e homes Rural (lots greater than 1/2 acre) Comnerci al (2) 80% Impervious Industrial U) 90% Impervious Coefficient, C - Soil TypeC) A B C D AO .^5 .50 .55. M .50 .60 .70 M .50 .55 .65 .30 .35 .^fO M .70 .75 .80 .85 .80 .85 .90 •95 NOTES: (^Obtain soil type frem Appendices IX-C1 thru IX-C4. (2)where actual^conditions deviate significantly from the tabulated impervious- ness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in no case shall the final coefficient be less than 0.50. For example: Consider commercial property on D soil. Actual imperviousness 50% Tabulated imperviousness ** 80% . Revised C - 50 ^ 0.85 - 0.53 80 III.199 APPENDIX IX-B H — /aaa ^ 900 - 800 - 700 \ - £00 \ — SOO \ —400 -3DO — 200 —soao —4aao —3ooo —2ooa rc ft e .385 T/me o/ concc/7/^na.h'o/7 LengM o/ nva/ar'sJ/ed Dt/fisre/7cs in et/^y/a./'ian aJong e//'cch'ye sJoos //ne (See Appendix )['B) L /l4//es /Hse/ //ou/s 4 — /O- \ \ S — 4- 3— 2— \ \ •/OO \ - 40 JO as- 1 (NOTE: 2a t ADD TEN MINUTES TO J I COMPUTED TIME OF CON- I ^ CENTRATION. \ /O IFIGURE J4.I3 T^saoo — — 4^0 I—fooo" \ _ - 20OO — /30O — /600 — /aoo — /2oa - /ooa -900 — 800 — TOO .£00 -SOO — 400 '300 '— 200 > \ \ /l/t//ju/es — 240 /86 /20 /OO 90 aa 70 -60 'SO 40 — 30 20 — /B — — /pr — /2 - /C a — a — 7 — 6 — S 4 SAN DIEGO COUNTY III. 210 DEPARTMENT OF SPECIAL DISTRICT SERVICES DESIGN MANUAL APPROVED •> • -'i- .'r^^A^*^ S~IAI . DATE NOMOGRAPH FOR DETERMINATION OF TIME OF CONCENTRATION (Tc) FOR NATURAL WATERSHEDS ADOCKirMV V-A —— "h 4^0 7a £xa/77p/e •• ^/>tf/7 .• Z e/Tg//j at^ J^/OK^ • _f<i^^ Coe/ryc/s/f/ 0/ /eu/To//. C ' .SO SAN OIEGO COUNTY CEPARTMEMT OF SPECIAL DISTRICT SERVICES ' DESIGN MANUAL^ URBAN AREAS OVE.=^LA.ND TIME OF FLOW CURV'3 } OATE /2 A A ? ' APOENCIX X lee •IHTENSIT^jiiTION DESIGN CHART TTIJ111 lll^UlllJ-^'H^^4W1•^w^llllllllllllMll--^•J^l-ll•n^'^y£^^M i.i i i i-i i rmliTii Equation: I " 7.44 D'"*'^^ • g Directions for Applicatloir: 1) From precipitation maps determine 6 h»*. .' 24 hr. amounts for the selected frequenc These maps are printed, In the County Hyd Manual (10, 50 and 100 yr. maps included Design and Procedure Manual). 2) Adjust 6 hr.'precipltatlon (if necessary that It is within the range of 4555 to 65 the 24 hr. precipitation. (Hot applicab to Desert) 3) Plot 6 hr. precipitation on the riflht si of the chart. 4) Draw a line through'the point parallel t plotted lines. * 5) This line Is the Intensity-duration curv the location being analyzed. Application Form: 0) Selected Frequency 1 1) Jn., P24- 2) Adjusted *Pg- 3) t, • P24 in. min. 4) I in/hr. *Not Applicable to Desert Region 15. 20 Mfntif-pc 30 40 50 1 2 .. 3-.,:.^;4.;5.5;|j/6 ;•. .. . Hours • • ; v. M'-j.; .• •• ; This chart replaces the Intensity- Dura tion-Frequency curves used since 1965. v.: RUNOFF CURVE NUMBERS FOR HYDROLOGIC SOIL-COVER COMPLEXES (CN) TABLE I-A-1 AMC 2 la = 0.2S Cover Hydro log ic Soil GrouDS Land Use Treatment or Practice-' Hydro log ic Condition^' A B c D Water Surfaces (during floods) 97 98 99 99 Urban Comme rc i a 1-i ndus t r i a 1 89 90 91 92 High density residential 75 82 88 90 Medium density residential 73 80 86 88 Low density residential 70 78 84 87 Barren 78 86 91 93 Fallow Straight row 76 85 90 92 Vineyards (see accompanying iand-use descript ion) d isked 76 85 90 92 annua] grass or legume cover Poor Fa ir 65 50 78 69 85 79 89 84 Roads^ (hard surface) Good 38 61 74 80 Roads^ (hard surface) 7^* 84 90 92 (dirt) 72 82 87 89 Row crops Straight row Poor 72 81 88 91 Good 67 78 85 89 Contoured Poor 70 79 84 88 Good 65 75 82 86 Narrowleaf chaparral Poor 71 82 88 91 Fa i r 55 72 81 86 I-A-5 »- 4 »- t I :L* CN c -I o I > 1 ro COUNTY OF SAN DIEGO DEPARTMENT OF SANITATION AND 55 FLOOD CONTROL o.\i 1.0 1.5 2.0 Precipitation in Inches Appendix B RANCHO CARLSBAD CHANNEL & BASIN PROJECT (Job Number 13182) June 30, 1998 Prepared for: City of Carlsbad 2075 Las Palmas Drive Carlsbad, CaUfomia 92009-1576 Demiis Cr^b;s«Mhg, M.S. R.C.E. #32838 Exp. 6/02 Prepared By: Rick Engineering Company Water Resources Division 5620 Friars Road San Diego, Califomia 92110-2596 (619) 291-0707 Preliminary designs were perfonned for each proposed detention facility to determine the ^ outlet works required to achieve maximum detention, while maintaining the height and storage volume below DSOD jurisdictional limits. The preliminary design of each detention facility and the results for each detention facility design are described below. The most upstream proposed detention facility in Agua Hedionda Creek is at Melrose Drive. This facility will be a flow-through detention basin. Melrose Drive runs north-south and currently ends just south of Aspen Way near the Carlsbad Corporate boundary. Future plans call for the extension of Melrose Drive to Palomar Airport Road. An existing reinforced concrete box (RCB) culvert conveys flow under Melrose Drive and is 10 feet wide by 7 feet high. The existing Melrose Drive embankment provides minimal detention because ofthe RCB's large capacity. Hydrologic calculations show that a 36-inch diameter opening at this location will detain the peak flow discharge from approximately 450 cubic feet per second (cfs) to 180 cfs. There are two altematives for creating the 36-inch opening. One is to replace the existing culvert with a 36-inch RCP and the other is to construct a concrete barrier at the inlet with a 36-inch diameter opening. The resultant storage volume and ponded water surface elevation (WSEL) with the new outlet works will be approximately 41 acre-feet and 329 feet, respectively. This will create an inundation area of approximately seven acres. The estimated outlet velocities for the first and second altemative will be 25 and 13 feet per second (fps), respectively. The velocity under the first altemative is greater than the maximum desired velocity of 20 fps. The velocity calculation assumed that the proposed 36-inch RCP was constmcted at the slope of the existmg culvert, which is one percent. If this altemative is selected, the final culvert design should analyze methods for reducing the outlet velocity, such as placing the culvert at a flatter slope or using multiple small diameter culverts. A . — — — DCB; MDLxmn/Report/J-i 3182.001 Prepared By: o 07/01/98 Rick Engineering Company - Water Resources Division o Table 2 Summary of Proposed Detention Facilities Rancho Carlsbad Channel and Basin Project 100-year, 24-hour Storm Event Facility Naiae Melrose (south of Aspen Way) Worlfs Pomied Stof«g«, w>4k Area, ac Vetaeity, fys Facility Naiae Melrose (south of Aspen Way) 450 180 36" RCP 329 41 7 13 (Alt 2) 25 (Alt. 1) Faraday 1,050 780 6'x7' RCB 240 49 7 19 BJB 1,560 1,200 1-10'xT RCB & 48" RCP 75 49 15 19 BJ 670 350 6'x3'RCB 76 48 8 19 Prepared By: Rick Engineering Company - Water Resources Division 12 DCB:MDL:einn/Repait/J->13182.001 07/01/98 Basin 1 Hydrology Analysis San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 06/19/03 CARLSBAD RACEWAY BASIN 1 06-19-03 G:\ACCTS\971035\RACE01 OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method Process from Point/Station 101.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 ~~ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 60.00(Ft.) Highest elevation = 511.40(Ft.) Lowest elevation = 510.20(Ft.) Elevation difference = 1.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.66 min. TC = [1.8*(l.l-C)*distance-^.5)/(% slope-^ (1/3) ] TC = [1.8*(l.l-0.9500)*( 60.00'^.5)/( 2 . OO'^ (1/3) ] = 1.66 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.075(CFS) Total initial stream area = 0.010(Ac.) +++++++-H++++-l-+++-h+++H-++++-h++++++++++++-h++++++++++-l-+++++++++-h+ Process from Point/Station 102.000 to Point/Station 103.000 **** STREET FLOW TRAVEL TIME -I- SUBAREA FLOW ADDITION **** Top of street segment elevation = 510.200(Ft.) ~ End of street segment elevation = 445.000(Ft.) Length of street segment = 2440.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.181(CFS) Depth of flow = 0.115(Ft.), Average velocity = 2.281(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 2.28(Ft/s) Travel time = 17.83 min. TC = 22.83 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 2.968(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 7.923(CFS) for 2.810(Ac.) Total runoff = 7.998(CFS) Total area = 2.82(Ac.) Street flow at end of street = 7.998(CFS) Half street flow at end of street = 7.998(CFS) Depth of flow = 0.363(Ft.), Average velocity = 4.276(Ft/s) Flow width (from curb towards crown)= 13. 413(Ft.) +++++++++++++-H++-H++++++++++++++++++-h+++H-+++-h++-l-++-l-+-H++++++++^ Process from Point/Station 103.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 433.49(Ft.) Downstream point/station elevation = 432.22(Ft.) Pipe length = 43.23(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.998(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.998(CFS) Normal flow depth in pipe = 8.4 0(In.) Flow top width inside pipe = 17.96(In.) Critical Depth = 13.15(In.) Pipe flow velocity = 9.89(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 22.90 min. ++++-l--l-+++++++++++-l-++++++++++++++-l--l--H-h+++++++-l-++-h++H-+++++++++ Process from Point/Station 103.000 to Point/Station 106.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.820(Ac.) Runoff from this stream = 7.998(CFS) Time of concentration = 22.90 min. Rainfall intensity = 2.962(In/Hr) + H- + H- + -I-H- + + H- + + + + + H- + + + -H + + + + + + + + + + + + + + -H-I--I- + + + + + + + + + -H + + + + + + + + + + + + + + Process from Point/Station 104.000 to Point/Station 105.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 630.00(Ft.) Highest elevation = 469.00(Ft.) Lowest elevation = 448.00(Ft.) Elevation difference = 21.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.54 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope'^ (1/3) ] TC = [1.8*(l.l-0.9500)*(630.00^.5)/( 3.33^(1/3)]= 4.54 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 51.587(CFS) Total initial stream area = 6.870(Ac.) Process from Point/Station 105.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 440.29(Ft.) Downstream point/station elevation = 431.55(Ft.) Pipe length = 121.32(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 51.587(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 51.587(CFS) Normal flow depth in pipe = 14.44(In.) Flow top width inside pipe = 29.98(In.) Critical Depth = 27.82(In.) Pipe flow velocity = 22.06(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 5.09 min. ++-h+-H+++ ++++++++ +++++ +++++++ + + + + + + -^-t-+ +++++++++++++++++ + ++H--H++ Process from Point/Station 105.000 to Point/Station 106.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 6.870(Ac.) Runoff from this stream = 51.587(CFS) Time of concentration = 5.09 min. Rainfall intensity = 7.812(In/Hr) + + -I- + + H- + -I- + + + + + + + -I- + + + + + + -I- + + + + + + + + + + -H + + -I--HH--I- + -I-++ + + H- + + + + + + + + + + + + Process from Point/Station 107.000 to Point/Station 108.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 90.00(Ft.) Highest elevation = 470.00(Ft.) Lowest elevation = 4 65.00(Ft.) Elevation difference = 5.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.45 min. TC = [1.8*(l.l-C)*distance'>.5)/(% slope^(l/3)] TC = [1.8*(l.l-0.9500)*( 90.00'^.5)/( 5.56^(1/3)]= 1.45 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.075(CFS) Total initial stream area = 0.010(Ac.) + -I- + -H-H + + + -I--I- + + + + + + + + + + + -I- + -H-H-HH--H + + + + + + + + + + + + -H + + + + + -I- + + + + + + + + + Process from Point/Station 108.000 to Point/Station 109.000 **** STREET FLOW TRAVEL TIME -I- SUBAREA FLOW ADDITION **** Top of street segment elevation = 4 65.000(Ft.) End of street segment elevation = 445.000(Ft.) Length of street segment = 870.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.107(CFS) Depth of flow = 0.097(Ft.), Average velocity = 1.889(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.89(Ft/s) Travel time = 7.67 min. TC = 12.67 min. Adding area flow to street Decimal fraction soil group A = O.OOO Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 4.338(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 3.462(CFS) for 0.840(Ac.) Total runoff = 3.537(CFS) Total area = 0.85(Ac.) Street flow at end of street = 3.537(CFS) Half street flow at end of street = 3.537(CFS) Depth of flow = 0.295(Ft.), Average velocity = 3.317(Ft/s) Flow width (from curb towards crown)= 9.97 6(Ft.) +++++++++++++++++++++++++++++++++++-\•-^--^--^-+++++++++++++++++++++++ Process from Point/Station , 109.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 433.22(Ft.) Downstream point/station elevation = 432.22(Ft.) Pipe length = 5.26(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.537(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.537(CFS) Normal flow depth in pipe = 3.38(In.) Flow top width inside pipe = 14.07(In.) Critical Depth = 8.61(In.) Pipe flow velocity = 15.36(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 12.68 min. Process from Point/Station 109.000 to Point/Station 106.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 0.850(Ac.) Runoff from this stream = 3.537(CFS) Time of concentration = 12.68 min. Rainfall intensity = 4.337(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 7 .998 22. 90 2. 962 2 51 .587 5. 09 7 . 812 3 3 .537 12. 68 4 . 337 Qmax(1) : .000 * 1 000 * 7. 998) -1- 0 .379 * 1 000 * 51 587) + 0 .683 * 1 000 * 3 ,537) + = Qmax(2) = 1 .000 * 0 222 7 998) + 1 .000 * 1 000 * 51 587) -1- 1 .000 * 0 402 * 3 537) + = Qmax(3) = 1 .000 * 0 554 * 7 998) + 0 .555 * 1 000 * 51 587) + 1 .000 1 .000 * 3 .537) + = 29.971 54.785 36.603 Total of 3 streams to confluence: Flow rates before confluence point: 7.998 51.587 3.537 Maximum flow rates.at confluence using above data: 29.971 54.785 36.603 Area of streams before confluence: 2.820 6.870 0.850 Results of confluence: Total flow rate = 54.785(CFS) Time of concentration = 5.092 min. Effective stream area after confluence = 10.540(Ac.) Process from Point/Station 106.000 to Point/Station 135.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 433.00(Ft.) " Downstream point/station elevation = 423.33(Ft.) Pipe length = 255.11(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 54.785(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 54.785(CFS) Normal flow depth in pipe = 18.26(In.) Flow top width inside pipe = 29.28(In.) Critical Depth = 28.23(In.) Pipe flow velocity = 17.53(Ft/s) Travel time through pipe = 0.24 min. Time of concentration (TC) = 5.33 min. Process from Point/Station 135.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream, point/station elevation = 423.00(Ft.) Downstream point/station elevation = 407.75(Ft.) Pipe length = 266.37(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 54.785(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 54.785(CFS) Normal flow depth in pipe =16.02(In.) Flow top width inside pipe = 29.93(In.) Critical Depth = 28.23(In.) Pipe flow velocity^ 20.54(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 5.55 min. 4--l- + -H + + + + -H-H + H- + -h + + + + -HH- + + + + + + + + + + + + -h-l-4H- + + + + + + + -h-l- + -H + -H + + + + + + -l--^ Process from Point/Station 135.000 to Point/Station 110.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 10.540(Ac.) Runoff from this stream = 54.785(CFS) Time of concentration = 5.55 min. Rainfall intensity = 7.389(In/Hr) Program is now starting with Main Stream No. 2 + + + + + + + + + + + + -H-I-I- + + + + + + + + + + + + + + + + + + + -H-H-I- + + + + + + + + + + + + + + + + + -I- + -I- + + H Process from Point/Station 140.000 to Point/Station 141.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11. 9*length(Mi)'^3)/(elevation change) ]. 385 *60(min/hr) + 10 min. Initial subarea flow distance = 140.00(Ft.) Highest elevation = 451.00(Ft.) Lowest elevation = 445.00(Ft.) Elevation difference = 6.00(Ft.) TC=[ (11. 9*0.0265^^3) / ( 6.00)]^.385= 1.18 + 10 min. = 11.18 min. Rainfall intensity (I) = 4.704 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 0.402(CFS) Total initial stream area = 0.190(Ac.) -H++-H+-H+-H++++-H-H++-H+++++++++++++ +++ ++++++H--h++-H-H+-h++ + + + + +++-h-H+-h + Process from Point/Station 141.000 to Point/Station 142.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 445.00(Ft.) Downstream point elevation = 429.00(Ft.) Channel length thru subarea = 160.00(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 0.836(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 0.836(CFS) Depth of flow = 0.333(Ft.), Average velocity = 7.529(Ft/s) Channel flow top width = 0.666(Ft.) Flow Velocity = 7.53(Ft/s) Travel time = 0.35 min. Time of concentration = 11.53 min. Critical depth = 0.535(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 4.610(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.350 Subarea runoff = 0.662(CFS) for 0.410(Ac.) Total runoff = 1.064(CFS) Total area = 0.60(Ac.) -H + -H + + + + + -l--H + -H + -l- + + + + + -l--l- + + + + + + + + + + + + + + + + + + + + + + H- + + + + + H- + + + + + ++H- + + + + -HH^ Process from Point/Station 142.000 to Point/Station 110.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 ~~ Decimal fraction soil group B = 0.000 Decimal fraction soil group.C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration = 11.53 min. Rainfall intensity = 4.610(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 Subarea runoff = 1.597(CFS) for 0.770(Ac.) Total runoff = 2.661(CFS) Total area = 1.37(Ac.) Process from Point/Station 142.000 to Point/Station 110.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.370(Ac.) Runoff from this stream = 2.661(CFS) Time of concentration = 11.53 min. Rainfall intensity = 4.610(In/Hr) Program is now starting with Main Stream No. 3 +-H+-H+H--H-H-H+++H-+++++++++ + + ++-h+++-H+-h+-h+++ +++-l-+-h-h+-H+-h + ++++++++-H+-^ Process from Point/Station 111.000 to- Point/Station 112.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.0 00 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Initial subarea flow distance = 350.00(Ft.) Highest elevation = 504.00(Ft.) Lowest elevation = 482.00(Ft.) Elevation difference = 22.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.86 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope'^ (1/3) ] TC = [1.8*(l.l-0.4500)*(350.00^.5)/( 6 . 29^^ (1/3) ] = 11.86 Rainfall intensity (I) = 4.528 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 0.917(CFS) Total initial stream area = 0.450(Ac.) h + + + + + -l- + + + + + -l- + + + + + + + + + + + + + + + + + + + + + + + +++ + -l-|-|- + + + + + + -(- ++H- + + -(- + + + + + + Process from Point/Station 113.000 to Point/Station 144.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 4.360(CFS) Depth of flow = 0.353(Ft.), Average velocity = 3.187(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 10.00 0.00 3 20.00 5.00 Manning's 'N' friction factor = 0.035 Sub-Channel flow = 4.360(CFS) flow top width = 7.759(Ft.) ' ' velocity= 3.187(Ft/s) area = 1.368(Sq.Ft) ' ' Froude number = 1.338 Upstream point elevation = 426.000(Ft.) Downstream point elevation = 415.0 00(Ft.) Flow length = 190.000(Ft.) Travel time = 0.99 min. Time of concentration = 12.85 min. Depth of flow = 0.353(Ft.) Average velocity = 3.187(Ft/s) Total irregular channel flow = 4.360(CFS) Irregular channel normal depth above invert elev. = 0.353(Ft.) Average velocity of channel(s) = 3.187(Ft/s) Sub-Channel No. 1 critical depth = 0.396(Ft.) ' ' ' critical flow top width = 8.723(Ft.) ' ' ' critical flow velocity= 2.522(Ft/s) ' ' ' critical flow area = 1.729(Sq.Ft) Adding area flow to channel User specified 'C value of 0.450 given for subarea Rainfall intensity = 4.299(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 Subarea runoff = 6.539(CFS) for 3.380(Ac.) Total runoff = 7.456(CFS) Total area = 3.83(Ac.) -H+++-h + +++++++-H-h++-l-++++++++++++++ + ++++++-l-+++H-++-l-+++++++++++-H+++-l--t- Process from Point/Station 144.000 to Point/Station 114.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 415.00(Ft.) Downstream point elevation = 413.00(Ft.) Channel length thru subarea = 210.00(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 50.000 Slope or 'Z' of right channel bank = 50.000 Estimated mean flow rate at midpoint of channel = 7.991(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 7.991(CFS) Depth of flow = 0.351(Ft.), Average velocity = 1.298(Ft/s) Channel flow top width = 35.086(Ft.) Flow Velocity = 1.30(Ft/s) Travel time = 2.70 min. Time of concentration = 15.55 min. Critical depth = 0.275(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 3.802(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.350 Subarea runoff = 0.732(CFS) for 0.550(Ac.) Total runoff = 8.188(CFS) Total area = 4.38(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + H--H + + + + +++ + + + + + + + -H++ + + + + + + + + + + + + + + + + + + + + Process from Point/Station 114.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 409.00(Ft.) Downstream point/station elevation = 407.75(Ft.) Pipe length = 125.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.188(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 8.188(CFS) Normal flow depth in pipe = 9.98(In.) Flow top width inside pipe = 23.66(In.) Critical Depth = 12.23(In.) Pipe flow velocity = 6.62(Ft/s) Travel time through pipe = 0.31 min. Time of concentration (TC) = 15.86 min. Process from Point/Station 114.000 to Point/Station 110.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 4.380(Ac.) Runoff from this stream = 8.188(CFS) Time of concentration = 15.8 6 min. Rainfall intensity = 3.753(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 54 785 5 55 7 389 2 2 661 11 53 4 610 3 8 188 15 86 3 753 Qmax(1) = 1 000 * 1 000 * 54 785) + 1 000 * 0 481 * 2 661) + 1 000 * 0 350 * 8 188) + = 58 930 Qmax(2) = 0 624 * 1 000 * 54 785) + 1 000 * 1 000 * 2 661) + 1 000 * 0 727 * 8 188) + = 42 794 Qmax(3) = 0 508 * 1 000 * 54 785) + 0 814 * 1 000 * 2 661) + 1 000 * 1 000 * 8 188) + = 38 .182 Total of 3 main streams to confluence: Flow rates before confluence point: 54.785 2.661 8.188 Maximum flow rates at confluence using above data: 58.930 42.794 38.182 Area of streams before confluence: 10.540 1.370 4.380 Results of confluence: Total flow rate = 58.930(CFS) Time of concentration = 5.550 min. Effective stream area after confluence = 16.290(Ac.) ++++++H- +++ + + ++++++-H+++-I-++++ ++-I-+++ + ++-I-+-H-H+ + -I-+++ +++++++-H-H-H++++++ Process from Point/Station 110.000 to Point/Station 115.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 407.25(Ft.) Downstream point/station elevation = 391.33(Ft.) Pipe length = 283.4 6(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 58.930(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 58.930(CFS) Normal flow depth in pipe = 15.22(In.) Flow top width inside pipe = 35.57(In.) Critical Depth = 29.78(In.) Pipe flow velocity = 20.73(Ft/s) Travel time through pipe = 0.23 min. Time of concentration (TC) = 5.7 8 min. +-h++-l-+-l--l-+++ +++++++++-H + + +++++-h-H+++++-l-4- ++-h+-H++++H-+-h++-H-H++++-l--H+++ Process from Point/Station 110.000 to Point/Station 115.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 16.290(Ac.) Runoff from this stream = 58.930(CFS) Time of concentration = 5.78 min. Rainfall intensity = 7.200(In/Hr) +++++4- ++-H-l-++++ + + ++-H-H-h++-H+ ++++++++++-h-h-H ++++-h+-H++++++-H-|-+-H+++-l--H Process from Point/Station 116.000 to Point/Station 117.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.0 00 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 600.00(Ft.) . Highest elevation = 423.00(Ft.) Lowest elevation = 410.00(Ft.) Elevation difference = 13.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.11 min. TC = [1.8* (1.1-C) *distance^.5) / (% slope'^ (1/3) ] TC = [1.8*(l.l-0.9500)*(600.00'^.5)/( 2 .17'^ (1/3) ] = 5.11 Rainfall intensity (I) = 7.793 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 37.831(CFS) Total initial stream area = 5.110(Ac.) +++++-I-+++-I-+++++++-I-+++++++++++++-H+++++-I-++++-H+H-+++H-++++++H--H+++++++++ Process from Point/Station 117.000 to Point/Station 115.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 393 . 29 (Ft. ).. Downstream point/station elevation = 391.83(Ft.) Pipe length = 73.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 37.831(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 37.831 (CFS) Normal flow depth in pipe = 17.65(In.) Flow top width inside pipe = 2 9.53(In.) Critical Depth = 24.96(In.) Pipe flow velocity = 12.59(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 5.21 min. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 117.000 to Point/Station 115.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 5.110(Ac.) Runoff from this stream = 37.831(CFS) Time of concentration = 5.21 min. Rainfall intensity = 7.699(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 58.930 5.78 7.200 2 37.831 5.21 7.699 Qmax(1) = 1.000 * 1.000 * 58.930) -i- 0.935 * 1.000 * 37.831) + = 94.308 Qmax(2) = 1.000 * 0.901 * 58.930) + 1.000 * 1.000 * 37.831) + = 90.942 Total of 2 streams to confluence: Flow rates before confluence point: 58.930 37.831 Maximum flow rates at confluence using above data: 94.308 90.942 Area of streams before confluence: 16.290 5.110 Results of confluence: Total flow rate = 94.308(CFS) Time of concentration = 5.778 min. Effective stream area after confluence = 21.400(Ac.) ++-l-++-l-+++-l--h-l-++++++++++-l-+-l-H-++-H++++++ + ++-l-+++++++++++-l- ++++++++++++ + Process from Point/Station 115.000 to Point/Station 118.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 390.83(Ft.) Downstream point/station elevation = 387.65(Ft.) Pipe length = 165.09(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 94.308(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 94.308(CFS) Normal flow depth in pipe = 25.29(In.) Flow top width inside pipe = 41.11(In.) Critical Depth = 36.00(In.) Pipe flow velocity = 15.58(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 5.95 min. Process from Point/Station 115.000 to Point/Station 118.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 21.400(Ac.) Runoff from this stream = 94.308(CFS) Time of concentration = 5.95 min. Rainfall intensity = 7.062(In/Hr) ++++-|-+-h++++ +++++ + + ++++ + ++-H++ + + ++++++ + ++-H-h+++++++-h-H+++-l-+++++ ++H-++++ Process from Point/Station 119.000 to Point/Station 120.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 380.00(Ft.) Highest elevation = 412.00(Ft.) Lowest elevation = 403.00(Ft.) Elevation difference = 9.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.95 min. TC = [1.8* (1.1-C) *distance^.5) / (% slope'^ (1/3) ] TC = [1.8* (1.1-0. 9500) * (380.00-^.5) / ( 2.37-^(1/3)]= 3.95 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 15.919(CFS) Total initial stream area = 2.120(Ac.) +++-l--l-+ ++-H++++++++-H+H-++ ++H-++ + ++-h+++-HH- + ++-l- +++ ++++++H-+-h+++++++++-H+-h + Process from Point/Station 120.000 to Point/Station 118.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 392.04(Ft.) Downstream point/station elevation = 389.32(Ft.) Pipe length = 68.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 15.919(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 15.919(CFS) Normal flow depth in pipe = 11.72(In.) Flow top width inside pipe = 17.16(In.) Critical Depth = 17.08(In.) Pipe^ flow velocity = 13.07(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 5.09 min. -H + H- + H- + + + + + + + H--H + + + + + + + + + + + + + + H--l- + + + + -H + -+ + + + + + + + + + ++-H-H ++-+-h + + + * + + + + + + Process from Point/Station 120.000 to Point/Station 118.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.120(Ac.) Runoff from this stream = 15.919(CFS) Time of concentration = 5.09 min. Rainfall intensity = 7.817(In/Hr) Summary of stream data: stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 94.308 5.95 7.062 2 15.919 5.09 7.817 Qmax(1) Qmax(2) 1.000 * 1.000 * 94.308) + 0.903 * 1.000 * 15.919) -I- = 108.688 1.000 * 0.854 * 94.308) -I- 1.000 * 1.000 * 15.919) + = 96.477 Total of 2 streams to confluence: Flow rates before confluence point: 94.308 15.919 Maximum flow rates at confluence using above data: 108.688 96.477 Area of streams before confluence: 21.400 2.120 Results of confluence: Total flow rate = 108.688(CFS) Time of concentration = 5.955 min. Effective stream area after confluence = 23.520(Ac.) + + + -l- + -HH- + + + + + + + + + + + + + -H-h + + + -H + + + + -H + + -h-H-l--H + -H + -l- + + H- + + + + + + + + + + -H + + + + + + + Process from Point/Station 118.000 to Point/Station 121.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 387.32(Ft.) Downstream point/station elevation = 381.90(Ft.) Pipe length = 251.30(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 108.688(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 108.688(CFS) Normal flow depth in pipe = 26.77(In.) Flow top width inside pipe = 40.39(In.) Critical Depth = 37.90(In.) Pipe flow velocity = 16.79(Ft/s) Travel time through pipe = 0.25 min. Time of concentration (TC) = 6.20 min. -HH-H- + + + + + + + + + + + + + 4- + + -I- + + + + + + + + + + + + + + ++-I--HH- + H- + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 118.000 to Point/Station 121.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 23. 520 (Ac. )- Runoff from this stream = 108.688(CFS) Time of concentration = 6.20 min. Rainfall intensity = 6.877(In/Hr) Program is now starting with Main Stream No. 2 +++-H + ++H-+++++++++-l-4-++++-|-+-|- + + ++-h +++ + -h++++++++++-|-+++++++ ++++++ ++++ Process from Point/Station 122.000 to Point/Station 109.000 **** INITIAL AREA EVALUATION **** Decimal fraction Decimal fraction Decimal fraction Decimal fraction [INDUSTRIAL area Initial subarea soil group A = 0, soil group B = 0. soil group C = 0. soil group D = 1. type flow distance = 000 000 000 000 2 6.00(Ft.) Highest elevation = 445.00(Ft.) Lowest elevation = 444.50(Ft.) Elevation difference = 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.11 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope^(l/3)] TC = [1.8*(l,l-0.9500)*( 26.00'".5)/( 1.92-^(1/3)] = Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) Subarea runoff = 0.075(CFS) Total initial stream area = 0.010(Ac.) 1.11 storm is C = 0.950 Process from Point/Station 109.000 to Point/Station 123.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 444.500(Ft.) End of street segment elevation = 396.000(Ft.) Length of street segment = 1100.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break Manning's N from grade break to crown ' Estimated mean flow rate at midpoint of street = Depth of flow = 0.088(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 2.46(Ft/s) 0.020 0.0150 0.0150 0.116(CFS) 2.462(Ft/s) TC = 12.45 min. 0.000 0.000 0.000 Travel time = 7.45 min. Adding area flow to street Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D = 1.0 00 [INDUSTRIAL area type Rainfall intensity = 4.389(In/Hr) Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 4.503(CFS) for 1.080(Ac.) Total runoff = 4.578(CFS) Total area = 1.09(Ac.) Street flow at end of street = 4.578(CFS) Half street flow at end of street = 4.578(CFS) Depth of flow = 0.289(Ft.), Average velocity = 4.520(Ft/s) Flow width (from curb towards crown)= 9.704(Ft.) ] for a 100.0 year storm +++++-I-4- +++++++++++ +++-H ++++ ++-I-++H-+++ ++++-H+++++++++++ + + + -H-H +++++ + ++++ + + Process from Point/Station 123.000 to Point/Station 121.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 384.38(Ft.) Downstream point/station elevation = 383.90(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.578(CFS) Given pipe size = 18.00 (In.) Calculated individual pipe flow = 4.578(CFS) Normal flow depth in pipe = 4.56(In.) . Flow top width inside pipe = 15.66(In.) Critical Depth = 9.86(In.) Pipe flow velocity = 13.00(Ft/s) travel time through pipe = 0.01 min. Time of concentration (TC) = 12.45 min. Process from Point/Station 123.000 to Point/Station 121.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.090(Ac.) Runoff from this stream = 4.578(CFS) Time of concentration = 12.45 min. Rainfall intensity = 4.387(In/Hr) Program is now starting with Main Stream No. 3 + + H- + -H + -H + + + + + + + + + + + -H + + + + -H + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + H--H-H + + + + -I- Process from Point/Station 125.000 to Point/Station 126.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.0 00 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.0 00 [INDUSTRIAL area type ] Initial subarea flow distance = 370.00(Ft.) Highest elevation = 410.00(Ft.) Lowest elevation = 400.00(Ft.) Elevation difference = 10.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.73 min. TC = [1.8*(l.l-C)*distance^.5)/(% slope-^ (1/3) ] TC = [1.8*(l.l-0.9500)*(370.00^.5)/( 2.70-^(1/3)]= 3.73 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 15.769(CFS) Total initial stream area = 2.100(Ac.) +-H++ +++-H+++++++ ++-H+++ + +++++++H-H-++ + +++ + ++H--I- ++++ + + +++ ++++++++++++H- + +++ Process from Point/Station 126.000 to Point/Station 124.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 388.47(Ft.) Downstream point/station elevation = 386.13(Ft.) Pipe length = 26.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 15.769(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 15.769(CFS) Normal flow depth in pipe = 9.00(In.) Flow top width inside pipe = 18.00(In.) Critical Depth = 17.05(In.) Pipe flow velocity = 17.83(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 5.02 min. Process from Point/Station 126.000 to Point/Station 124.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 2.100(Ac.) Runoff from this stream = 15.769(CFS) Time of concentration = 5.02 min. Rainfall intensity = 7.880(In/Hr) ++++-l- + + + ++++++H-++ +++++++-h++++-H++ + ++-H-l-++-h++-H+++++++ + ++++H-++++-H +++++ Process from Point/Station 122.000 to Point/Station 103.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 2 6.00(Ft.) Highest elevation = 445.00(Ft.) Lowest elevation = 444.50(Ft.) Elevation difference = 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.11 min. TC = [1.8* (1.1-C) *distance^.5) / (% slope-^ (1/3) ] TC = [1.8*(l.l-0.9500)*( 26.00'^.5)/( 1.92^(1/3)]= 1.11 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.075(CFS) Total initial stream area = 0.010(Ac.) + + + + + + + + + + + + + + -H + + + + + + + + + + + + + + + + + -H + + + + + + + + + H- + + + -I- + + + + + + + + -I- + + + + + + + + + + + + + + Process from Point/Station 103.000 to Point/Station 124.000 **** STREET FLOW TRAVEL TIME + SUBAREA FiOW-ADDITION **** Top of street segment elevation = 444.500(Ft.), End of street segment elevation = 396.000(Ft.) Length of street segment = 1180.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000 (Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.117(CFS) Depth of flow = 0.090(Ft.), Average velocity = 2.403(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 2.40(Ft/s) Travel time = 8.18 min. TC = 13.18 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 4.230(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 4.4 60(CFS) for 1.110(Ac.) Total runoff = 4.535(CFS) Total area = 1.12(Ac.) Street flow at end of street = 4.535(CFS) Half street flow at end of street = 4.535(CFS) Depth of flow = 0.291(Ft.), Average velocity = 4.391(Ft/s) Flow width (from curb towards crown)= 9.806(Ft.) ++-h-H ++++++ ++-H+++ ++-|-++++++++++H-+++ + -H+++-l-++-l-+++-H-H ++++++++++-H+-h-H+^ Process from Point/Station 103.000 to Point/Station 124.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 1.120(Ac.) Runoff from this stream = 4.535(CFS) Time of concentration = 13.18 min. Rainfall intensity = 4.230(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 15.769 5.02 7.880 2 4.535 13.18 4.230 Qmax(1) = 1.000 * 1.000 * 15.769) + Qmax(2) 1.000 * 0.381 * 4.535) + = 17.497 0.537 * 1.000 * 15.769) + 1.000 * 1.000 * 4.535) + = 12.999 Total of 2 streams to confluence: Flow rates before confluence point: 15.769 4.535 Maximum flow rates at confluence using above data: 17.497 12.999 Area of streams before confluence: 2.100 1.120 Results of confluence: Total flow rate = . 17.497(CFS) Time of concentration = 5.024 min. Effective stream area after confluence = 3.220(Ac. +++++-H++++++ ++++-l-++++-l-H- +++++++++++-h + + +++++ +++-h-H-h+++++++++-H+-l--H+++ Process from Point/Station 124.000 to Point/Station 121.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 385.80(Ft.) Downstream point/station elevation = 383.90(Ft.) Pipe length = 43.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.497(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 17.4 97(CFS) Normal flow depth in pipe = 12.09(In.) Flow top width inside pipe = 16.90(In.) Critical depth could not be calculated. Pipe flow velocity = 13.86(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 5.08 min. Process from Point/Station 124.000 to Point/Station 121.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 3.220(Ac.) Runoff from this stream = 17.4 97(CFS) Time of concentration = 5.08 min. Rainfall intensity = 7.828(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 108 688 6 20 6.877 2 4 578 12 45 4.387 3 17 497 5 08 7.828 Qmax(1) = 1 000 * 1 000 * 108. 688) + 1 000 * 0 498 * 4 . 578) + 0 879 * 1 000 * 17. 4 97) + = 126 341 Qmax(2) = 0 638 * 1 000 * 108 . 688) + 1 000 * 1 000 * 4 . 578) + 0 561 * 1 000 * 17. 497) + = 83 727 Qmax(3) = 1 000 * 0 818 * 108 . 688) + 1 000 * 0 408 * 4 . 578) + 1 000 * 1 000 * 17. 497) + = 108 285 Total of 3 main streams to confluence: Flow rates before confluence point: 108.688 4.578 17.497 Maximum flow rates at confluence using above data: 126.341 83.727 108.285 Area of streams before confluence: 23.520 1.090 3.220 Results of confluence: Total flow rate = 126.341(CFS) Time of concentration = 6.204 min. Effective stream area after confluence = 27.830(Ac.) Process from Point/Station 121.000 to Point/Station 127.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 380.90(Ft.) Downstream point/station elevation = 37 6.50(Ft.) Pipe length = 246.83(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 126.341(CFS) Given pipe size = 54.00(In.) Calculated individual pipe flow = 126.341(CFS) Normal flow depth in pipe = 26.39(In.) Flow top width inside pipe = 53.99(In.) Critical Depth = 39.70(In.) Pipe flow velocity = 16.35(Ft/s) Travel time through pipe = 0.25 min. Time of concentration (TC) = 6.4 6 min. + + + -H + + + + H- + + + + -H-HH--H-H + + + + + + + + + + -h + + + + + + -l- + + + + + + + + + + + + + -H + + + + + + + + + + + + -l- + + + Process from Point/Station 121.000 to Point/Station 127.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 27.830(Ac.) Runoff from this stream = 126.341(CFS) Time of concentration = 6.4 6 min. Rainfall intensity = 6.703(In/Hr) + + -H + + + + + + + + + + + + + + + -H-H + + H--H + + + + + -H-H-H + + -HH- + + + + + + -I- + + + + + + H- + + + + + + + + + + + + + + Process from Point/Station 128.000 to Point/Station 129.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 340.00(Ft.) Highest elevation = 405.00(Ft.) Lowest elevation = 398.00(Ft.) Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.91 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope-^ (1/3) ] TC = [1.8*(l.l-0.9500)*(340.00^.5)/( 2.06"(1/3)]= 3.91 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 15.018(CFS) Total initial stream area = 2.000(Ac.) + + + + + + + -H + + + + + + + + + + + + + + + + + + + + H--H + + + + + + + + + + -I- + -I- + +++4- + + + + H-H- + + + + + + + + + + + + Process from Point/Station 129.000 to Point/Station 127.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 380.50(Ft.) Downstream point/station elevation = 37 9.00(Ft.) Pipe length = 79.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 15.018(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 15.018(CFS) Normal flow depth in pipe = 18.00(In.) Flow top width inside pipe = 0.00(In.) Critical Depth = 16.86(In.) Pipe flow velocity = 8.19(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 5.16 min. ++++4-++++++++++++++++-h + + + + + + +++++++-H +++++++++++++++++-l-++++++++++++++ Process from Point/Station 129.000 to Point/Station 127.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.000(Ac.) Runoff from this stream = 15.018(CFS) Time of concentration = 5.16 min. Rainfall intensity = 7.745(In/Hr) ++ + -l-++H- ++H-++++H-+-H-h++++-|-++++ + ++++++++ ++-H-h-H+++++++-h+++++++++++++++++ Process from Point/Station 130.000 to Point/Station 131.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 330.00(Ft.) Highest elevation = 400.00(Ft.) Lowest elevation = 393.00(Ft.) Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.82 min. TC = [1.8* (1.1-C) *distance'^.5) / (% slope-^ (1/3) ] TC = [1.8*(l.l-0.9500)*(330.00'^.5)/( 2.12-^(1/3)]= 3.82 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 13.066(CFS) Total initial stream area = 1.740(Ac.) Process from Point/Station 131.000 to Point/Station 132.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 382.92(Ft.) Downstream point/station elevation = 380.33(Ft.) Pipe length = 73.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 13.066(CFS) Given pipe size = 24.00 (In.) Calculated individual pipe flow = 13.066(CFS) Normal flow depth in pipe = 9.12(In.) Flow top width inside pipe = 23.30(In.) Critical Depth = 15.62(In.) Pipe flow velocity = 11.93(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 5.10 min. ++-^+++++++++4-++++++-l--l-+++-^++++++++++-l-+-^-^++-^+++-^+++++++++-^-^+-^+++++ Process from Point/Station 132.000 to Point/Station 127.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 380.00(Ft.) Downstream point/station elevation = 378.50(Ft.) Pipe length = 208.67(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 13.066(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 13.066(CFS) Normal flow depth in pipe = 14.53(In.) Flow top width inside pipe = 23.4 6(In.) Critical Depth = 15.62(In.) Pipe flow velocity = 6.57(Ft/s) Travel time through pipe = 0.53 min. Time of concentration (TC) = 5.63 min. -H ++++++++H-+++++++++++++++-h+ + ++++++-H-H-H-H+H-+++++++++++++-H ++++++-H++ ++++ Process from Point/Station 132.000 to Point/Station 127.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 1.740(Ac.) Runoff from this stream = 13.066(CFS) Time of concentration = 5.63 min. Rainfall intensity = 7.320(In/Hr) Summary of stream data: Stream Flow rate TC No. (CFS) (min) (In/Hr) 1 126 341 6 46 6 703 2 15 018 5 16 7 745 3 13 066 5 63 7 320 Qmax(1) = 1 000 * 1 000 * 126 341) + 0 866 * 1 000 * 15 018) + 0 916 * 1 000 * 13 066) + = 151.303 Qmax(2) = 1 000 * 0 799 * 126 341) -1- 1 000 * 1 000 * 15 018) + 1 000 * 0 916 * 13 066) + = 127.985 Qmax(3) 1 000 * 0 872 * 126 341) + 0 945 * 1 000 * 15 018) 1 000 * 1 000 * 13 066) + 137.469 Total of 3 streams to confluence: Flow rates before confluence point: 126.341 15.018 13.066 Maximum flow rates at confluence using above data: 151.303 127.985 137.469 Area of streams before confluence: 27.830 2.000 1.740 Results of confluence: Total flow rate = 151.303(CFS) Time of concentration = 6.456 min. Effective stream area after confluence = 31.570(Ac.) Process from Point/Station 127.000 to Point/Station 133.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 376.00(Ft.) Downstream point/station elevation = 369.50(Ft.) Pipe length = 353.84(Ft.) Manning's N = 0.013 No. of pipes =1 Required pipe flow = 151.303(CFS) Given pipe size = 54.00(In.) Calculated individual pipe flow = 151.303 (CFS) Normal flow depth in pipe = 29.13(In.) Flow top width inside pipe = 53.83(In.) Critical Depth = 43.28(In.) Pipe flow velocity = 17.29(Ft/s) Travel time through pipe = 0.34 min. Time of concentration (TC) = 6.80 min. -H++++-H+H- ++++++++++-H++++++++++++++++-I- ++++++ +++++++++++-H+++++++++-H+++ Process from Point/Station 133.000 to Point/Station 133.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 6.80 min. Rainfall intensity = 6.484(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 29.321(CFS) for 4.760(Ac.) Total runoff = 180.624(CFS) Total area = 36.33(Ac.) Process from Point/Station 133.000 to Point/Station 134.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 369.00(Ft.) Downstream point/station elevation = 363.50(Ft.) Pipe length = 63.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required,pipe flow = 180.624(CFS) Given pipe size = 54.00 (In.) Calculated individual pipe flow = 180.624(CFS) Normal flow depth in pipe = 20.67(In.) Flow top width inside pipe = 52.50(In.) Critical Depth = 46.70(In.) Pipe flow velocity = 32.25(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 6.83 min. End of computations, total study area = 36.33 (Ac.) Closed Conveyance Hydraulic Analysis **********************************************vt*****vt,*,*.J,,^,^Jt.J.,^.,^,^,y^,^,,^,^,^,J^J^,^.,^^,^,^^,^.,^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAR RACEWAY ^ * * SD B * * C:\AES2001\HYDROSOFT\RATSCX\RACE01.RES * ***************************************************VHHk,yt*^^,ytJt^,y^Jt,^.,y^j,j^^,^,^.,j^,^,j^,j^ FILE NAME: RACE01.DAT TIME/DATE OF STUDY: 10:09 06/19/2003 **********************************************************Jr****,;,Vk************* GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 6093.20 134.00- } FRICTION 133.50- } JUNCTION 133.00- } FRICTION 127.50- } JUNCTION 127.00- } FRICTION 121.50- } JUNCTION 121.00- } FRICTION 118.50- } JUNCTION 118.00- 3.91 Dc 3.91*Dc DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 8606.47 6093.20 7.53* 8118.63 } HYDRAULIC JUMP 3.63*Dc 4747.40 6.68* 6412.00 } HYDRAULIC JUMP 3.34 Dc 3714.04 3462.39 3462.38 3.18 Dc 3.18*Dc } FRICTION 115.50- } JUNCTION 115.00- } FRICTION 110.50- } JUNCTION 110.00- } FRICTION 135.50- 4.12* 3301.50 } HYDRAULIC- JUMP " 3.03*Dc 2820.81 4.62 2398.49 2.52 Dc 1600.13 2.35 Dc 1552.71 2.35 Dc 1552.71 2.26* 3.91*Dc 2.50 3.63*Dc 2.23 2.29* 2.33* 3.18*Dc 2.23 3.03*Dc 1.30* 1.35* 1.28* 1.42* 6093.21 5649.64 4747.42 4555.41 4437.60 3949.23 3462.39 3186.89 2820.81 2571.23 2445.77 2391.42 2137 .77 } JUNCTION 135.00- 2.35 Dc } FRICTION 106.50- 2.35 Dc } JUNCTION 106.00- 2.63 } FRICTION 105.50- 2.32*Dc 1552.71 1552.71 1472.32 1414.43 1.42* 1.42* 1.28* 2.32*Dc 2138.38 2125.04 2128.69 1414.43 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 134.00 FLOWLINE ELEVATION = 363.50 PIPE FLOW = 183.10 CFS PIPE DIAMETER = 54.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 367.100 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 3.60 FT.) IS LESS THAN CRITICAL DEPTH( 3.91 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 134.00 : HGL = < 365.759>;EGL= < 373.907>;FLOWLINE= < 363.500> FLOW PROCESS FROM NODE UPSTREAM NODE 133.50 134.00 TO NODE 133.50 IS CODE = 1 ELEVATION = 369.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 183.10 CFS PIPE PIPE LENGTH = 63.00 FEET DIAMETER = 54.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.74 CRITICAL DEPTH(FT) = 3.91 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3.91 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0. 000 3 . 907 12 .482 6 328 6093. 21 0. 071 3 . 820 12 .718 6 333 6098. 29 0.280 3 .733 12 . 977 6 350 6112. 92 0.638 3 . 646 13 .259 6 378 6137. 47 1.163 3 .560 13 .566 6 419 6172. 40 1.872 3 . 473 13 .899 6 474 6218. 26 2.78 9 3 .386 14 .259 6 545 6275. 68 3.941 3 .299 14 . 649 6 633 6345. 42 5.362 3 .212 15 .071 6 741 6428. 31 7.092 3 .125 15 .527 6 871 6525. 33 9.182 3 .038 16 .020 7 026 6637. 57 11.694 2 .951 16 .555 7 210 6766. 29 14.703 2 .865 17 .134 7 426 6912, 94 18.308 2 .778 17 .762 7 680 7079. 14 22.633 2 . 691 18 .445 7 977 7266. 80 27.841 2 . 604 19 .189 8 325 7478. 09 34.148 41.853 51.377 63.000 2.517 2. 430 2.343 2.259 20.001 20.889 21.862 22.900 8.733 9.210 9.770 10.407 7715.52 7982.03 8281.04 8606.47 NODE 133.50 : HGL = < 372.907>;EGL= < 375.328>;FLOWLINE= < 369.000> *******************************************jt,*.***********vt********************* FLOW PROCESS FROM NODE 133.50 TO NODE 133.00 IS CODE = 5 UPSTREAM NODE 133.00 ELEVATION = 369.50 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 153.70 54.00 90.00 369.50 DOWNSTREAM 183.10 54.00 - 369.00 LATERAL #1 29.40 24.00 0.00 372.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== FLOWLINE CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 3.63 9.664 3.91 12.476 1.85 9.358 0.00 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00701 JUNCTION LENGTH = 5.50 FEET FRICTION LOSSES = 0.039 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.153)+( 0.000) = 3.153 00611 00792 0.000 FEET NODE 133.00 HGL < 377.030>;EGL= < 378.480>;FLOWLINE= < 369.500> ****************************************** *********************JrJt,yHt,i.,i.,ytjt^^,^.^t^t^^ FLOW PROCESS FROM NODE UPSTREAM NODE 127.50 133.00 TO NODE ELEVATION = 127.50 IS CODE = 1 376.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW PIPE LENGTH = 153.70 CFS 355.00 FEET PIPE DIAMETER = 54.00 MANNING'S N = 0 INCHES .01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 2.45 CRITICAL DEPTH(FT ) = 3.63 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.63 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0. 000 0.139 0.521 1.167 2.103 3.357 FLOW DEPTH (FT) 3.628 3.581 3.534 3.487 3.440 3.393 VELOCITY SPECIFIC (FT/SEC) ENERGY(FT) 11.183 5.571 11.322 5.573 11.467 5.577 11.619 5.585 11.777 5.595 11.943 5.609 PRESSURE+ MOMENTUM(POUNDS) 4747.42 4748.82 4752.59 4758.81 4767.53 4778.84 4.963 3 .346 12. 115 5 627 4792 .84 6.962 3 .299 12. 295 5 648 4809 60 9.398 3 .252 12. 483 5 674 4829 23 12.329 3 .205 12. 679 5 703 4851 85 15.820 3 . 158 12. 884 5 738 4877 55 19.954 3 .111 13. 097 5 111 4906 46 24.829 3 .064 13. 320 5 821 4938 72 30.569 3 .017 13. 552 5 871 4974 46 37.330 2 . 971 13. 795 5 927 5013 83 45.316 2 . 924 14'. 049 5 990 5057 00 54.791 2 .877 14. 313 6 060 5104 13 66.117 2 .830 14. 590 6 137 5155 42 79.801 2 .783 14. 879 6 223 5211 07 96.588 2 .736 15. 182 6 317 5271 28 117.629 2 .689 15. 499 6 421 5336 30 144.860 2 . 642 15. 831 6 536 5406 38 181.907 2 .595 16. 178 6 661 5481 78 236.920 2 548 16. 542 6 800 5562 80 336.056 2 501 16. 925 6 951 5649 77 355.000 2 501 16. 924 6 951 5649 64 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 7.53 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 7 .530 9. 664 8. 980 8118 .63 248.351 4 .500 9. 664 5 950 5111 .43 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 4 .50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 248.351 4 .500 9. 661 5 950 5111 .43 250.876 4 .465 9. 672 5 919 5080 .34 253.125 4 . 431 9. 692 5 890 5052 .03 255.212 4 .396 9. 719 5 864 5025 .59 257.168 4 .361 9. 750 5 838 5000 .71 259.014 4 .327 9. 785 5 814 4977 .23 260.761 4 .292 9. 825 5 792 4955 . 03 262.415 4 .257 9. 868 5 770 4934 .06 263.983 4 .223 9. 914 5 750 4914 .25 265.468 4 . 188 9. 963 5 730 48 95 .58 266.873 4 .153 10. 016 5 712 4878 .03 ,268.198 4 .119 10. 072 5 695 4861 .58 269.446 4 .084 10. 131 5 679 4846 .21 270.615 4 .049 10. 193 5 663 4831 . 93 271.705 4 .014 10. 258 5 649 4818 .73 272.715 3 .980 10. 326 5 636 4806 . 61 273.645 3 .945 10. 396 5 624 4795 .59 274.491 3 .910 10. 470 5 614 4785 . 66 275.252 3 .876 10. 547 5 604 4776 .85 275 925 3 841 10.626 5 596 4769.15 276 506 3 806 10.709 5 588 4762.59 276 992 3 772 10.794 5 582 4757.18 277 380 3 737 10.883 5 577 4752.93 277 663 3 702 10.975 5 574 4749.88 277 838 3 668 11.070 5 572 4748.03 277 897 3 633 11.168 5 571 4747.40 355 000 3 633 11.168 5 571 4747.40 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 227.73 FEET UPSTREAM OF NODE 133.00 | I DOWNSTREAM DEPTH = 4.752 FEET, UPSTREAM CONJUGATE DEPTH = 2.672 FEET | NODE 127.50 : HGL = < 379.628>;EGL= < 381.571>;FLOWLINE= < 376.000> ****************************************************************************** FLOW PROCESS FROM NODE 127.50 TO NODE 127.00 IS CODE = 5 UPSTREAM NODE 127.00 ELEVATION = 37 6.42 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 128.70 54.00 90.00 376.42 3.34 8.092 DOWNSTREAM 153.70 54.00 - 376.00 3.63 11.172 LATERAL #1 13.10 24.00 90.00 379.00 1.30 4.170 LATERAL #2 11.90 18.00 20.00 379.50 1.31 6.734 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00428 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00628 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00528 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.026 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-1-HV1-HV2) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.543)+( 0.000) = 2.543 NODE 127.00 : HGL = < 383.097>;EGL= < 384.114>;FLOWLINE= < 376.420> ****************************************************************************** FLOW PROCESS FROM NODE 127.00 TO NODE 121.50 IS CODE = 1 UPSTREAM NODE 121.50 ELEVATION = 380.90 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 128.70 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 247.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 2.21 CRITICAL DEPTH(FT) = 3.34 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.29 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ lOL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 000 2 .292 15 803 6 172 4437 60 5 221 2 .289 15 831 6 183 4442 92 10 684 2 .286 15 859 6 193 4448 27 16 411 2 .283 15 887 6 204 4453 64 22 425 2 .279 15 915 6 215 4459 04 28 756 2 276 15 943 6 226 4464 47 35 435 2 273 15 971 6 236 4469 92 42 501 2 270 16 000 6 247 4475 41 49 997 2 267 16 028 6 258 4480 92 57 976 2 263 16 057 6 269 4486 46 66 500 2 260 16 085 6 281 4492 03 75 645 2 257 16 114 6 292 4497 63 85 502 2 254 16 143 6 303 4503 25 96 186 2 251 16 172 6 314 4508 91 107 842 2 248 16 201 6 326 4514 59 120 653 2 244 16 230 6 337 4520 30 134 866 2 241 16 260 6 349 4526 05 150 809 2 238 16 289 6 361 4531 82 168 948 2 235 16 319 6 373 4537 62 189 960 2 232 16 348 6 384 4543 45 214 898 2 229 16 378 6 396 4549 30 245. 527 2 225 16 408 6 408 4555 19 247 . 000 2 225 16 409 6 409 4555 41 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 6.68 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 6 . 677 8.092 7. 694 6412 00 157.155 4 .500 8.092 5. 517 4251 20 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 4 .50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 157.155 4 .500 8.090 5 517 4251 20 160.209 4 . 454 8.104 5 474 4208 72 163.002 4 . 407 8.130 5 434 4169 34 165.638 4 .361 8.164 5 396 4132 08 168.149 4 .314 8.205 5 360 4096 64 170.549 4 .268 8.251 5 326 4062 86 172.850 4 .221 8.303 5 292 4030 65 175.056 4 .175 8.359 5 261 3999 95 177.172 4 .128 8.420 5 230 3970 75 179.199 4 .082 8.486 5 201 3943 02 181.139 4 .036 8.556 5 173 3916 75 182.990 3 . 989 8.631 5 146 3891 96 184.751 3 .943 8.710 5 121 3868 65 186.420 3 .896 8.793 5 098 3846 85 187.995 3 .850 8.881 5 075 3826 57 189. 471 3.803 8 973 5. 054 3807 84 190. 845 3.757 9 070 5. 035 3790 69 192. 110 3.710 9 172 5. 017 3775 15 193. 262 3.664 9 278 5. 001 3761 26 194 . 293 3.617 9 390 4. 987 3749 06 195. 196 3.571 9 506 4. 975 3738 60 195. 961 3.525 9 627 4. 965 3729 91 196. 578 3.478 9 754 4. 956 3723 06 197 . 037 3.432 9 886 4. 950 3718 09 197 . 323 3.385 10 024 4. 947 3715 06 197. 422 3.339 10 168 4. 945 3714 04 247 . 000 3.339 10 168 4. 945 3714 04 END OF HYDRAULIC JUMP ANALYSIS PRESSURE-l-MOMENTUM BALANCE OCCURS AT 137.96 FEET UPSTREAM OF DOWNSTREAM DEPTH = 4.766 FEET, UPSTREAM CONJUGATE DEPTH NODE 127.00 I = 2.247 FEET | NODE 121.50 : HGL = < 383.192>;EGL= < 387.072>;FLOWLINE= < 380.900> ******************************************.******J,i.***Vt*,*,jt.ytjt,jt^j,,jt^^,jjj,jt,jj.,jt^,^.,y^j,,^.,j^,^.,^. FLOW PROCESS FROM NODE 121.50 TO NODE 121.00 IS CODE = 5 UPSTREAM NODE 121.00 ELEVATION = 381.90 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 111.00 42.00 0.00 381.90 3.18 16.354 DOWNSTREAM 128.70 54.00 - 380.90 3.34 15.808 LATERAL #1 13.00 18.00 ' 90.00 383.90 1.35 7.756 LATERAL #2 4.70 18.00 90.00 383.90 0.83 4.665 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01805 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.072 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES JUNCTION LOSSES = ( 1.306)-i-( 0.000) = 1.306 ENTRANCE LOSSES 02000 01609 0.000 FEET NODE 121.00 : HGL = < 384.225>;EGL= < 388.378>;FLOWLINE= < 381.900> *******************************************************************,^**j,vt****** FLOW PROCESS FROM NODE UPSTREAM NODE 118.50 121.00 TO NODE ELEVATION = 118.50 IS CODE = 1 387.32 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 111.00 CFS PIPE PIPE LENGTH = 254.31 FEET DIAMETER = 42.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.27 CRITICAL DEPTH(FT) = 3.18 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3.18 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.152 0.563 1.247 2.218 3.4 97 5.108 7.082 9.456 12.273 15.587 19.465 23.989 29.259 35.407 42.598 51.056 61.079 73.090 87.709 105.896 129.263 160.832 207.395 254.310 FLOW DEPTH (FT) 3.175 3, 3, 3. 3. 2. 2. 2. 2. 2. 2. 2. 2. 139 103 067 031 995 959 923 887 851 814 778 742 2.706 2. 670 634 598 562 526 4 90 454 418 382 346 325 VELOCITY (FT/SEC) 12.098 12.198 12.304 12.416 12.535 12.660 12.791 12.929 13.073 13.225 13.383 13.548 13.721 13.901 14 .089 14.285 14.490 14.703 14.925 15.157 15.399 15.651 15.914 16.189 16.348 SPECIFIC ENERGY(FT) 5.449 ,451 , 455 ,462 ,472 ,485 ,501 ,520 ,542 ,568 ,597 ,630 5.667 5.709 ,754 ,805 ,860 ,921 ,987 ,060 ,138 ,224 ,317 6.418 6.478 PRESSURE+ MOMENTUM(POUNDS) 3462.39 3463.30 3465.74 3469.72 3475.22 3482.29 3490.93 3501.17 3513.05 3526.60 3541.86 3558.88 3577.71 3598.40 3621.02 3645.62 3672.28 3701.07 3732.07 3765.37 3801.07 3839.25 3880.03 3923.51 3949.23 NODE 118.50 : HGL = < 390.495>;EGL= < 392.769>;FLOWLINE= < 387.320> ****************************************************************************** FLOW PROCESS FROM NODE 118.50 TO NODE 118.00 IS CODE = 5 UPSTREAM NODE 118.00 ELEVATION = 387.65 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 96.60 42.00 0.00 387.65 3.03 111.00 42.00 - 387.32 3.18 14.40 18.00 90.00 388.17 1.39 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== 10.040 12.092 8.149 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00922 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01064 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00993 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.040 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES JUNCTION LOSSES = ( 0.565)+( 0.000) = 0.565 ENTRANCE LOSSES = 0.000 FEET NODE 118.00 HGL < 391.768>;EGL= < 393.334>;FLOWLINE= < 387.650> ************************************Jt************************************vt**** FLOW PROCESS FROM NODE 118.00 TO NODE 115.50 IS CODE = 1 UPSTREAM NODE 115.50 ELEVATION = 390.83 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 96.60 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 165.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 2.14 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.03 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 3.03 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3 .029 10 915 4 880 2820.81 0.102 2 . 993 11 023 4 881 2821.41 0. 415 2 . 958 11 135 4 884 2823.21 0. 956 2 .922 11 254 4 890 2826.24 1.741 2 . 887 11. 378 4 898 2830.53 2.7 92 2 .851 11. 507 4 908 2836.09 4.135 2 . 815 11. 643 4 922 2842.96 5.798 2 .780 11. 784 4 938 2851.18 7.819 2 .744 11. 932 4 957 2860.78 10.238 2 .709 12. 086 4 978 2871.80 13.108 2 .673 12. 247 5 004 2884.29 16.490 2 . 638 12. 414 5 032 2898.30 20.462 2 . 602 12. 589 5 065 2913.86 25.118 2 .567 12. 771 5 101 2931.05 30.581 2 .531 12. 960 5 141 2949.91 37.005 2 .496 13. 158 5 186 2970.51 44.598 2 .460 13. 364 5 235 2992.92 53.639 2 .425 13. 578 5 289 3017.20 64.521 2 .389 13. 802 5 349 3043.44 77.820 2 .354 14 . 035 5 414 3071.72 94.429 2 .318 14 . 278 5 486 3102.13 115.847 2 .283 14 . 532 5 564 3134.75 144.883 2 .247 14 . 796 5 649 3169.70 165.000 2 .230 14 . 924 5 691 3186.89 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 4.12 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE-1- CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 4 .118 10.040 5.684 3301.50 61.515 3.500 10.040 5.065 2930.19 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 61.515 63.135 64.537 65.813 66.990 68.084 69.105 70.059 70.953 71.788 72.570 73.298 73.97 6 74.604 75.183 75.713 76.196 76.630 77.016 77.353 77.641 77.880 78.067 78.202 78.285 78.313 165.000 FLOW DEPTH (FT) 3.500 VELOCITY (FT/SEC) 10.037 SPECIFIC ENERGY(FT) 3. 3. 3. 3. 3. 3. 3, 481 462 443 425 406 387 3.368 3.349 330 311 293 274 255 236 217 198 3.179 3.161 3.142 ,123 , 104 085 066 047 029 029 10, 10, 10, 10, 10, 10, 10, 10, 044 056 072 091 113 136 162 190 10.220 10.251 10. 10. 10. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10. 10. 10, 285 320 356 394 434 475 518 563 609 656 705 755 807 860 915 915 065 049 034 020 007 995 983 973 963 953 944 936 928 921 915 909 903 898 894 890 887 885 882 881 4.880 4.880 4 . 880 PRESSURE+ MOMENTUM(POUNDS) 2930.19 2920.13 2911.13 2902.83 2895.09 2887.86 2881.08 2874.73 2868.78 2863.22 2858.03 2853.19 2848.71 2844.58 2840.78 2837.32 2834.19 2831.39 2828.92 2826.77 2824.96 2823.47 2822.31 2821.48 2820.98 2820.81 2820.81 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 22.26 FEET UPSTREAM OF NODE 118.00 | I DOWNSTREAM DEPTH = 3.895 FEET, UPSTREAM CONJUGATE DEPTH = 2.250 FEET | NODE 115.50 : HGL = < 393.859>;EGL= < 395.710>;FLOWLINE= < 390.830> ****************************************************************************** FLOW PROCESS FROM NODE 115.50 TO NODE 115.00 IS CODE = 5 UPSTREAM NODE " 115.00 ELEVATION = 391.33 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL^ #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL 61.10 96. 60 35.50 O.OO 0.00= 36.00 42.00 30.00 a. 00 0.00 90.00 0.00 391.33 390.83 391.83 0.00 =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS- 0.03213 JUNCTION LENGTH = 4.00 FEET 2.52 3.03 2.02 0.00 0.05579 0.00847 VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 20.875 10.919 8.346 0.000 FRICTION LOSSES = 0.129 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.684)+( 0.000) = 3.684 NODE 115.00 HGL < 392.627>;EGL= < 399.394>;FLOWLINE= < 391.330> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110.50 115.00 TO NODE 110.50 IS CODE = 1 ELEVATION = 407.25 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 61.10 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 283.50 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.29 CRITICAL DEPTH(FT) 2.52 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.35 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.354 19.719 7.396 2445.77 3.124 1.352 19.764 7.421 2450.70 6.391 1.349 19.810 7.447 2455.65 9.815 1.347 19.856 7.473 2460.62 13.409 1.345 19.902 7.499 2465.62 17.191 1.342 19.948 7.525 2470.65 21.179 1.340 19.995 7.552 2475.70 25.396 1.337 20.041 7.578 2480.78 29.868 1.335 20.088 7.605 2485.88 34.627 1.333 20.136 7. 632 2491.01 39.708 1.330 20.183 7.660 2496.17 45.158 1.328 20.230 7.687 2501.35 51.030 1.326 20.278 7.715 2506.56 57.393 1.323 20.326 7.743 2511.80 64.331 1.321 20.374 7.771 2517.06 71.955 1.318 20.423 7.799 2522.35 80.409 1.316 20.472 7.828 2527.67 89.890 1.314 20.520 7.856 2533.01 100.672 1.311 20.569 7.885 2538.39 113.159 1.309 20.619 7.914 2543.79 127.973 1.306 20.668 7.944 2549.21 146.162 1.304 20.718 7.973 2554.67 169.687 1.302 20.768 8.003 2560.15 202.953 1.299 20.818 8.033 2565.67 260.100 1.297 20.869 8.064 2571.21 283.500 1.297 20.869 8 .064 • 2571.23 NODE 110.50 : HGL = < 408.604>;EGL= < 414.64 6>;FLOWLINE= < 407.250> ****************************************************************************** FLOW PROCESS FROM NODE 110.50 TO NODE 110.00 IS CODE = 5 UPSTREAM NODE 110.00 ELEVATION = 407.75 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 54.80 30.00 0.00 407.75 2.35 21.713 DOWNSTREAM 61.10 36.00 - 407.25 2.52 19.725 LATERAL #1 5.10 24.00 45.00 407.75 0.80 2.995 LATERAL #2 1.20 18.00 90.00 408.25 0.41 1.966 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = DOWNSTREAM: MANNING'S N = AVERAGED FRICTION SLOPE IN JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 0. 01300; 0.01300; JUNCTION 4.00 FEET 0.228 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 1.703)+( 0.000) = 1.703 FRICTION SLOPE = 0.06629 FRICTION SLOPE = 0.04784 ASSUMED AS 0.05707 ENTRANCE LOSSES = 0.000 FEET NODE 110.00 : HGL = < 409.028>;EGL= < 416.349>;FLOWLINE= < 407.750> ****************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 135.50 IS CODE = 1 UPSTREAM NODE 135.50 ELEVATION = 423.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 54.80 CFS PIPE PIPE LENGTH = 22 6.00 FEET DIAMETER = 30.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.27 CRITICAL DEPTH(FT) = 2.35 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.42 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 2.595 5.323 8.195 11.225 14.428 17.823 21.430 25.274 29.384 33.793 38.544 43.689 49.289 55.424 62.198 69.745 78.249 87.965 99.269 112.743 FLOW DEPTH (FT) 1.416 410 404 399 393 387 381 375 370 364 358 352 346 341 335 329 323 317 312 306 300 VELOCITY (FT/SEC) 19.100 19.196 19.293 19.391 19.491 19.591 19.693 19.795 19.899 20.004 20.110 20.217 20.326 20.435 20.546 20.658 20.772 20.886 21.002 21.120 21.238 SPECIFIC ENERGY(FT) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 084 136 188 241 295 351 407 464 522 581 642 703 766 829 894 960 027 096 165 236 309 PRESSURE+ MOMENTUM(POUNDS) 2137.77 2146.96 2156.26 2165.68 2175.21 2184.87 2194.64 2204.54 2214.57 2224.72 2235.00 2245.40 2255.94 2266.62 2277.43 2288.37 2299.46 2310.69 2322.06 2333.58 2345.24 129.364 150.960 181.641 226.000 1.294 1.288 1.283 1.278 21.358 21.480 21.602 21.706 8.382 8. 457 8.534 8.599 2357.06 2369.02 2381.15 2391.42 NODE 135.50 HGL < 424.416>;EGL= < 430.084>;FLOWLINE= < 423.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 135.00 135.50 TO NODE 135.00 IS CODE = 5 ELEVATION = 423.33 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 54.80 54.80 0.00 0.00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT. 30.00 0.00 423.33 30.00 - 423.00 O.OO 0.00 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== 2.35 2.35 0.00 0.00 VELOCITY (FT/SEC) 19.112 19.106 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04736 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.189 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.333)+( 0.000) = 0.333 04738 04734 ENTRANCE LOSSES = 0.000 FEET NODE 135.00 HGL < 424.746>;EGL= < 430.417>;FLOWLINE= < 423.330> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 106.50 135.00 TO NODE ELEVATION = 106.50 IS CODE = 1 431.22 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 54.80 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 166.03 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.41 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.42 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.35 DISTANCE FROM CONTROL(FT) 0.000 3.328 6.800 10.427 14 .226 18.212 22.404 26.826 FLOW DEPTH VELOCITY [FT) 424 424 423 423 423 422 422 421 (FT/SEC) 18.966 18.972 18.979 18.985 18.992 18.998 19.005 19.011 SPECIFIC ENERGY(FT) 7.013 7 7 7 7 7 7 7 017 020 023 027 030 034 037 PRESSURE+ MOMENTUM(POUNDS) 2125.04 2125.65 2126.26 2126.87 2127.49 2128.10 2128.71 2129.32 31.503 1 421 19. 017 7.040 2129.94 36.466 1 421 19. 024 7.044 2130.55 41.752 1 420 19. 030 7.047 2131.17 47.406 1 420 19. 037 7.051 2131.78 53.482 1 419 19. 043 7.054 2132.40 60.048 1 419 19. 050 7.058 2133.02 67.190 1 419 19. 056 7.061 2133,63 75.017 1 418 19. 063 7.064 2134.25 83.673 1 418 19. 069 7.068 2134.87 93.355 1 418 19. 076 7.071 2135.49 104.338 1 417 19. 082 7.075 2136.11 117.022 1 417 19. 089 7.078 2136.73 132.032 1 416 19. 095 7.082 2137.35 150.412 1 416 19. 102 7.085 2137.97 166.030 1 416 19. 106 7.088 2138.38 106.50 : HGL = < 432. 644>;EGL= < 438.233>;FLOWLINE= < 431.220> NODE ****************************************************************************** FLOW PROCESS FROM NODE 106.50 TO NODE 106.00 IS CODE = 5 UPSTREAM NODE 106.00 ELEVATION = 431.55 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 51. 60 54.80 2.20 1.00 DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION O.OO 30.00 30.00 18.00 18.00 90.00 90.00 431.55 431.22 432.22 432.22 CRITICAL DEPTH(FT.) 2.32 2.35 0.56 0.37 VELOCITY (FT/SEC) 20.431 18.972 3. 655 1.856 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05258 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.210 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.077)+( 0.000) = 1.077 05867 04649 0.000 FEET NODE 106.00 HGL < 432.828>;EGL= < 439.310>;FLOWLINE= < 431.550> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 105.50 106.00 TO NODE ELEVATION = 105.50 IS CODE = 1 440.29 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 51.60 CFS PIPE DIAMETER 30.00 INCHES PIPE LENGTH = 121.32 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.20 CRITICAL DEPTH FT) = 2.32 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.32 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.057 0.229 0.521 0. 937 1.489 2.188 3.051 4 . 097 5.350 6.838 8.599 10.677 13.130 16.028 19.468 23.573 28.514 34.532 41.981 51.412 63.749 80.731 106.267 121.320 FLOW DEPTH (FT) 2.319 2.274 2.230 2.185 2.140 2.096 2.051 .007 . 962 . 917 ,873 ,828 ,784 1.739 , 694 ,650 , 605 .561 ,516 .471 . 427 .382 .337 1.293 1.278 1. 1, 1, 1, 1, 1, 1, 1, 1, VELOCITY (FT/SEC) 10.860 11.001 11.160 11.336 11.529 11.739 11.968 12.215 12.481 12.769 13.078 13.411 13.768 14.152 14.566 15.011 15.490 16.007 16.564 17.167 17.820 18.529 19.299 20.138 20.425 SPECIFIC ENERGY(FT) 4 .151 4 4 , 4 , 4 , 4 4 4 4 4, 4 , 4 . 4 , 4 , 4 , 5. 5, 5, 5, 6. 6, .155 .165 , 182 .206 .237 .277 ,325 .383 . 451 .530 . 623 .729 .851 .991 ,151 .333 .541 .779 .051 .361 6.716 7.124 7.594 7.760 PRESSURE+ MOMENTUM(POUNDS) 1414.43 1415.41' 1418.32 1423.13 1429.87 1438.58 1449.32 1462.16 1477.21 1494.57 1514.39 1536.81 1562.00 1590.16 1621.51 1656.30 1694.82 1737.38 1784.35 1836.15 1893.25 1956.20 2025.64 2102.28 2128.69 NODE 105.50 : HGL = < 442.609>;EGL= < 444.441>;FLOWLINE= < 440.290> ***************************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 105.50 FLOWLINE ELEVATION = 440.29 ASSUMED UPSTREAM CONTROL HGL = 442.61 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS **********************************************^^^^^^J^^^^^^^^^^^^^^^^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * SD B AT LOT 7 * * 12-11-02 C:\AES2001\HYDROSOFT\FATSCX\RACE1A.RES * ***********************************************^,(^^j^^^^^^^^^^^^^^^^^^^^^^^^ FILE NAME: RACE1A.DAT TIME/DATE OF STUDY: 11:22 12/11/2002 ********************************************^*j,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 127.00-4.60* 811.59 1.21 232.07 } FRICTION 132.50-3.80* 654.26 1.30 Dc 230.42 } JUNCTION 132.00-4.02* 698.06 0.79 311.32 } FRICTION 131.50-1.56* 241.63 1.30 Dc 230.42 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. **************************************************^^^^^j,^^^^^^^^^^^^^^^^^^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 127.00 FLOWLINE ELEVATION = 378.50 PIPE FLOW = 13.10 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 383.100 FEET NODE 127.00 : HGL = < 383.100>;EGL= < 383.370>;FLOWLINE= < 378.500> ****************************************************^^,^,j,,^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 127.00 TO NODE 132.50 IS CODE = 1 UPSTREAM NODE 132.50 ELEVATION = 380.00 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 13.10 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 208.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 13.10)/( 226.223))**2 = 0.00335 HF=L*SF = ( 208.00)*(0.00335) = 0.697 NODE 132.50 : HGL = < 383.797>;EGL= < 384.067>;FLOWLINE= < 380.000> *********************************************************************^,^.,^,^,j^,^,j.,^,^ FLOW PROCESS FROM NODE 132.50 TO NODE 132.00 IS CODE = 5 UPSTREAM NODE 132.00 ELEVATION = 380.33 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 13.10 13.10 0.00 0.00 0.00== DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION 24.00 90.00 380.33 24.00 - 380.00 0.00 0.00 380.33 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.30 1.30 0.00 0.00 VELOCITY (FT/SEC) 4 .170 4.170 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00335 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.013 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.553)-l-( 0.000) = 0.553 00335 00335 0.000 FEET NODE 132.00 : HGL = < 384.351>;EGL= < 384.621>;FLOWLINE= < 380.330> ****************************************************************************** FLOW PROCESS FROM NODE 132.00 TO NODE 131.50 IS CODE = 1 UPSTREAM NODE 131.50 ELEVATION = 382.92 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 13.10 CFS PIPE DIAMETER = PIPE LENGTH = 73.00 FEET MANNING'S 24.00 INCHES N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4.02 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 62.904 PRESSURE HEAD(FT) 4.021 2.000 VELOCITY (FT/SEC) 4.170 4.170 SPECIFIC ENERGY(FT) 4.291 2.270 PRESSURE+ MOMENTUM(POUNDS) 698.06 301.89 NORMAL DEPTH(FT) 0.76 CRITICAL DEPTH(FT) 1.30 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 62.904 FLOW DEPTH (FT) 2.000 VELOCITY (FT/SEC) 4 .169 SPECIFIC ENERGY(FT) 2.270 PRESSURE+ MOMENTUM(POUNDS) 301.89 63.723 1 972 4.180 2 244 296.72 64.497 1 944 4.202 2 218 291.82 65.243 1 916 4.229 2 194 287.11 65.966 1 888 4.262 2 171 282.58 66.667 1 860 4.300 2 148 278.22 67.350 1 833 4.343 2 126 274.01 68.013 1 805 4.389 2 104 269.97 68.657 1 777 4.440 2 083 266.10 69.281 1 749 4.495 2 063 262.39 69.886 1 721 4.554 2 043 258.85 70.469 1 693 4.618 2 024 255.49 71.031 1 665 4.685 2 006 252.30 71.570 1 637 4.758 1 989 249.30 72.084 1 609 4.834 1 972 246.49 72.572 1 581 4.916 1 957 243.88 73.000 1 555 4.996 1 943 241.63 131.50 HGL = < 384 475>;EGL= < 384.863>;FLOWLINE= < 382.920> NODE ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 131.50 FLOWLINE ELEVATION = 382.92 ASSUMED UPSTREAM CONTROL HGL = 384.22 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ************************************************************* PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, California 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * Lionshead Ave. Sta 35+03.17 * * * ************************************************************************** FILE NAME: RACE1B.DAT TIME/DATE OF STUDY: 11:31 04/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ f'^^ NUMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM {POUNDS) 127.50- 3.63*Dc 4747.40 3.63*Dc 4747.40 } JUNCTION 127.00- 7.59* 1001.06 1.25 333.93 } FRICTION 129.00- 7.60* 1002.26 1,41 Dc 325.80 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM, ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 127.50 FLOWLINE ELEVATION =« 376.50 PIPE FLOW = 153.70 CFS PIPE DIAMETER = 54.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 379.630 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 3.13 FT.) IS LESS THAN CRITICAL DEPTH( 3.63 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 127.50 : HGL = < 380.133>;EGL= < 382.071>;FLOWLINE= < 376.500> ****************************************************************************** FLOW PROCESS FROM NODE 127.50 TO NODE 127.00 IS CODE = 5 UPSTREAM NODE 127.00 ELEVATION = 379.00 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH{FT.) (FT/SEC) UPSTREAM 15.00 18.00 15.00 379.00 1.41 8.488 DOWNSTREAM 153.70 54.00 - 376.50 3.63 11.172 (i LATERAL #1 126.00 54.00 90.00 376.50 3.30 7.922 LATERAL #2 12.80 24.00 90.00 378.50 1.29 4.074 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.02039 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00628 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01334 JUNCTION LENGTH = 6.00 FEET FRICTION LOSSES = 0.080 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 5.638)+( 0.000) = 5.638 NODE 127.00 : HGL = < 386.591>;EGL= < 387,709>;FLOWLINE= < 379,000> ****************************************************************************** FLOW PROCESS FROM NODE 127.00 TO NODE 129,00 IS CODE = 1 UPSTREAM NODE 129.00 ELEVATION = 380.60 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 79.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 15.00)/( 105.043))**2 = 0.02039 HF=L*SF = ( 79.00)* (0.02039) = 1.611 NODE 129.00 : HGL = < 388.202>;EGL= < 389.320>;FLOWLINE= < 380.600> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 129.00 FLOWLINE ELEVATION = 380.60 ASSUMED UPSTREAM CONTROL HGL = 382.01 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, California 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * Lionshead Ave. Sta 37+55.00 * * * ************************************************************************** FILE NAME: RACE1C.DAT TIME/DATE OF STUDY: 11:33 04/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM{POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 121.50- 3,34 Dc 3714,04 3.05* 3756.22 } JUNCTION 121.00- 1.45 Dc 416.51 1.09* 474.36 } FRICTION 124.50- 1.45 Dc 416.51 1.32* 423.68 } JUNCTION 124.00- 2.12 425.19 0.90* 465.82 } FRICTION 126,00- l,42*Dc 353.46 1.42*Dc 353.46 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 121.50 FLOWLINE ELEVATION = 380.90 PIPE FLOW = 128.70 CFS PIPE DIAMETER » 54.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 383.290 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 2.39 FT.) IS LESS THAN CRITICAL DEPTH( 3.34 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 121,50 : HGL = < 383.953>;EGL= < 385,902>;FLOWLINE= < 380,900> ****************************************************************************** FLOW PROCESS FROM NODE 121.50 TO NODE 121.00 IS CODE = 5 UPSTREAM NODE 121.00 ELEVATION = 383.90 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 17.50 18.00 90.00 383.90 DOWNSTREAM 128.70 54.00 - 380.90 LATERAL #1 106.90 42.00 0.00 381.90 LATERAL #2 4.40 18.00 90.00 383.90 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02148 CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 1.45 3.34 3.14 0.80 12.770 11.205 11.746 4.558 JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 5.00 FEET 0.107 FEET ENTRANCE LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 1.616)+( 0.000) = 1.616 03632 00664 0,000 FEET NODE 121.00 : HGL = < 384.986>;EGL= < 3 87.518>;FLOWLINE= < 383.900> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 124.50 121.00 TO NODE 124.50 IS CODE = 1 ELEVATION = 385.80 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 17.50 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 43.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.01 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.32 sss = = sssss = = = = = = ss = s = s = ss = = = = = = =5 = = = =:=:=: = = = s = s = = S3es: = s==: = ss:s3:s = ss = = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.45 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1,320 10. 619 3 .073 423,68 0 . 737 1.308 10 . 699 3 .087 425.12 1 .560 1.295 10. 783 3 .102 426,69 2 .474 1.283 10. 870 3 .119 428,39 3 .487 1.270 10. 961 3 .137 430.23 4 .608 1.258 11. 056 3.157 432.19 5 . 847 1.245 11. 154 3 .178 434.30 7 .216 1,233 11. 256 3 .201 436.54 8 .729 1,220 11. 362 3.226 438.92 10 .403 1,208 11. 471 3 .253 441.45 12 .259 1,195 11. 585 3 .281 444.12 14 .321 1,183 11. 703 3 .311 446.94 16 .620 1.170 11. 825 3 .343 449.92 19 ,195 1.158 11. 951 3.377 453.06 22 ,092 1.145 12. 082 3.413 456.35 25 .374 1.133 12. 217 3 .452 459.82 29 .123 1.120 12. 357 3.493 463.45 33 .449 1.108 12. 502 3.536 467.27 38 .508 1.095 12. 651 3 .582 471.26 43 ,000 1,086 12, 766 3,618 474.36 NODE 124.50 : HGL = < 387.120>;EGL= < 388.872>;FLOWLINE» < 385.800> ****************************************************************************** FLOW PROCESS FROM NODE 124.50 TO NODE 124.00 IS CODE = 5 UPSTREAM NODE 124.00 ELEVATION = 386.13 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 15.80 17 .50 0.00 0.00 DIAMETER (INCHES) 18.00 18.00 0.00 0.00 ANGLE (DEGREES) 0.00 0,00 0,00 FLOWLINE ELEVATION 386,13 385,80 0,00 0,00 CRITICAL DEPTH(FT,) 1.42 1.45 0.00 0.00 VELOCITY (FT/SEC) 14.345 10.622 0.000 0.000 1.70===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/({A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03788 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.152 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.999)+( 0.350) = 1.349 NODE 124.00 : HGL = < 387.026>;EGL= < 390.221>;FLOWLINE= < 386.130> ****************************************************************************** ,05078 ,02497 0.350 FEET FLOW PROCESS FROM NODE UPSTREAM NODE 126.00 124.00 TO NODE 126.00 IS CODE = 1 ELEVATION = 388.47 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.80 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 26.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.75 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.42 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.42 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM{POUN] 0.000 1.421 9.122 2 .714 353.46 0.036 1.394 9.225 2 .717 353.73 0.141 1.368 9.343 2.724 354.52 0.315 1.341 9.477 2 .736 355.80 0.561 1.314 9.625 2 .753 357.57 0.883 1.287 9.788 2.776 359.83 1.287 1.260 9.965 2.803 362.60 1.781 1.234 10.158 2.837 365.88 2.374 1.207 10.367 2.877 369.70 3.080 1.180 10.592 2.923 374.08 3.913 1.153 10.835 2.977 379.06 4.892 1.126 11.097 3 .040 384.65 6.042 1.100 11.378 3.111 390.91 7.392 1.073 11.680 3.192 397.88 8.981 1.046 12.005 3.285 405.60 10.858 1.019 12.354 3.391 414.14 13.089 0.992 12.731 3.511 423.56 15.765 0.966 13.136 3.647 433.92 19.012 0.939 13.573 3.801 445.33 23.018 0.912 14.044 3.977 457.86 26.000 0.896 14.340 4.091 465.82 NODE 126.00 : HGL = < 389.891>;EGL= < 391.184>;FLOWLINE= < 388.470> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 126.00 FLOWLINE ELEVATION = 388.47 ASSUMED UPSTREAM CONTROL HGL = 389.89 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPOTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, California 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * Lionshead Ave, Sta 37+55.00 Northerly Lateral to Mainline * * * ************************************************************************** FILE NAME: RACE1D.DAT TIME/DATE OF STUDY: 11:36 04/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 121.50- 3.34*Dc 3714.04 3.34*Dc 3714.04 } JUNCTION 121.00- 1.84* 143.41 0.54 79.93 } FRICTION 123.00- 1.36* 91.77 0.82 Dc 63.12 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 121.50 FLOWLINE ELEVATION = 380.90 PIPE FLOW = 128.70 CFS PIPE DIAMETER = 54.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 383.290 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 2.39 FT.) IS LESS THAN CRITICAL DEPTH( 3.34 FT,) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 121.50 : HGL = < 384.239>;EGL= < 385.845>;FLOWLINE= < 380.900> ****************************************************************************** FLOW PROCESS FROM NODE 121.50 TO NODE 121.00 IS CODE = 5 UPSTREAM NODE 121.00 ELEVATION = 383.90 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 4.60 18.00 90.00 383.90 0.82 2.603 DOWNSTREAM 128.70 54.00 - 380.90 3,34 10.171 LATERAL #1 107.30 42.00 0,00 381,90 3.14 LATERAL #2 16,90 18,00 90,00 383,90 1,44 Q5 0,00===Q5 EQUALS BASIN INPUT=== 11,779 9.699 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S{DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00360 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.018 FEET ENTRANCE LOSSES = ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS, NODE 121,00 : HGL = < 385,740>;EGL= < 385,845>;FLOWLINE= < 383,900> ****************************************************************************** ,00192 ,00528 0,000 FEET FLOW PROCESS FROM NODE 121,00 TO NODE 123,00 UPSTREAM NODE 123.00 ELEVATION = 384.38 IS CODE = 1 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.60 CFS PIPE DIAMETER = PIPE LENGTH = 5.00 FEET MANNING'S 18.00 INCHES N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.84 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.840 2.603 1.945 143.41 3.614 1.500 2.603 1.605 105.91 NORMAL DEPTH(FT) = 0.38 CRITICAL DEPTH(FT) 0.82 ===================== =========== ========== ================= =================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 ===================== =========== ========== ================= =================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 3.614 1.500 2,602 1.605 105.91 3,893 1,473 2,613 1.579 103.02 4,163 1,446 2.633 1,554 100.24 4.427 1.419 2.658 1.529 97.53 4.687 1,392 2 .689 1.504 94.90 4.943 1.365 2 .724 1.480 92.34 5.000 1.359 2.733 1.475 91.77 NODE 123.00 : HGL = < 385.739>;EGL= < 385.855>;FLOWLINE= < 384.380> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 123.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION - 384.38 385.20 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ********************************************************^^^^^^^^^^*****^*^(*^^m**^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver, 8,0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc, 2710 Loker Avenue West, Suite 100 Carlsbad, California 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * Lionshead Ave, Sta 40+10,22 * * * ************************************************************************** FILE NAME: RACE1E.DAT TIME/DATE OF STUDY: 11:38 04/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM{POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 118.50- 3.18*Dc 3462.38 3.18*Dc 3462.38 } JUNCTION 118.00- 3.34* 563.07 1.02 419.38 } FRICTION 120,00- 2,18* 434,93 1.42 Dc 357.01 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 118.50 FLOWLINE ELEVATION = 387,32 PIPE FLOW = 111.00 CFS PIPE DIAMETER = 42.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 389,030 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1,71 FT,) IS LESS THAN CRITICAL DEPTH( 3,18 FT,) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 118,50 : HGL = < 390,499>;EGL= < 392.769>;FLOWLINE= < 387.320> ****************************************************************************** FLOW PROCESS FROM NODE 118.50 TO NODE 118.00 IS CODE = 5 UPSTREAM NODE 118.00 ELEVATION = 388.17 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE PLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 15.90 18.00 90.00 388.17 1.42 8.998 DOWNSTREAM 111.00 42.00 - 387.32 3.18 12.092 LATERAL #1 95.10 36.00 0.00 387.65 2,87 13,454 LATERAL #2 0,00 0,00 0,00 0,00 0,00 0,000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS{DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02291 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01064 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01678 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.084 FEET ENTRANCE LOSSES = 0.000 FEET ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. NODE 118.00 : HGL = < 391.512>;EGL= < 392.769>;FLOWLINE= < 388.170> ****************************************************************************** FLOW PROCESS FROM NODE 118.00 TO NODE 120.00 IS CODE = 1 UPSTREAM NODE 120.00 ELEVATION = 390.89 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.90 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 68.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 15.90)/( 105.043))**2 = 0.02291 HF=L*SF = ( 68.00)*(0.02291) = 1.558 NODE 120.00 : HGL = < 393.070>;EGL= < 394.327>;FLOWLINE= < 390,890> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 120,00 FLOWLINE ELEVATION = 390,89 ASSUMED UPSTREAM CONTROL HGL = 392,31 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS (t • **********************************«**^^«*************^******^^*****^^^***^******* PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver, 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, California 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * Lionshead Ave. Sta 41+79.32 * * * *****************************************************************#***jm**jt FILE NAME: RACE1F.DAT TIME/DATE OF STUDY: 11:39 04/12/2003 *******************************************************«*ip***********«««**«^*« GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 115.50- 3.03*Dc 2820.81 3.03*Dc 2820.81 } JUNCTION 115.00- 4,62* 1594,92 1.56 994,51 } FRICTION 117,00- 3,78* 1337,61 2.08 Dc 894.41 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ********************************************************«**4,**«*«*«**«*««««A«« DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 115.50 FLOWLINE ELEVATION = 390.83 PIPE FLOW = 96.60 CFS PIPE DIAMETER = 42.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 393.860 FEET NODE 115.50 : HGL = < 393.860>;EGL= < 395.710>;FLOWLINE= < 390.830> **************************************************************««********«««««^ FLOW PROCESS FROM NODE 115.50 TO NODE 115.00 IS CODE = 5 UPSTREAM NODE 115.00 ELEVATION = 391.83 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 37.80 30.00 90.00 391.83 2.08 7.701 DOWNSTREAM 96.60 42.00 - 390.83 3.03 10.915 LATERAL #1 58.80 36.00 0.00 391.33 2.48 8,318 LATERAL #2 0,00 0,00 0.00 0.00 0.00 0.000 Q5 0,00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16,1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00849 DOWNSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0.00846 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00848 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.034 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.656)+( 0.000) = 1.656 NODE 115,00 : HGL = < 396.445>;EGL= < 397,366>;FLOWLINE= < 391,830> ****************************************************************************** FLOW PROCESS FROM NODE 115.00 TO NODE 117,00 IS CODE = 1 UPSTREAM NODE 117,00 ELEVATION = 393.29 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 37.80 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 73.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 37.80)/( 410.176))**2 = 0.00849 HF=L*SF = ( 73.00)* (0.00849) = 0.620 NODE 117.00 : HGL = < 397.065>;EGL= < 397.986>;FLOWLINE= < 393.290> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 117.00 FLOWLINE ELEVATION = 3 93.29 ASSUMED UPSTREAM CONTROL HGL = 395.37 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS *************************************,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, California 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * Lionshead Ave. Sta 44+66.77 * * * ***************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PILE NAME: RACE1H.DAT TIME/DATE OF STUDY: 11:40 04/12/2003 *****************************************^^,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM{POUNDS) DEPTH(FT) MOMENTUM{POUNDS) 110-50- 2.52*DC 1600.13 2.52*Dc 1600.13 } JUNCTION llO-OO- 3.25* 524.30 1.02 205.18 } FRICTION 114-00- 2.33* 343.69 1.22 Dc 196.08 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM *****************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^-^^^^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 110.50 FLOWLINE ELEVATION = 407.25 PIPE FLOW = 61,10 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 408.610 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1.36 FT.) IS LESS THAN CRITICAL DEPTH( 2.52 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 110.50 : HGL = < 409.771>;EGL= < 411.213>;FLOWLINE= < 407.250> *******************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 110,50 TO NODE 110,00 IS CODE = 5 UPSTREAM NODE 110,00 ELEVATION = 407,75 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT,) (FT/SEC) UPSTREAM 11,60 24.00 45.00 407.75 1.22 3 692 DOWNSTREAM 61,10 36.00 - 407.25 2 52 9 637 /^^^ LATERAL #1 47.30 30.00 0.00 407.75 2.26 9.636 LATERAL #2 2.20 18.00 90.00 408.25 0.56 1.245 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00263 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00805 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00534 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.021 FEET ENTRANCE LOSSES = 0.000 FEET ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. NODE 110.00 : HGL = < 411.001>;EGL= < 411.213>;FLOWLINE= < 407.750> ****************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 114.00 IS CODE = 1 UPSTREAM NODE 114.00 ELEVATION = 409.00 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 125,00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 11.60)/( 226.230))**2 = 0,00263 HF=L*SF = ( 125.00)*(0.00263) = 0.329 NODE 114.00 : HGL = < 411.330>;EGL= < 411.541>;FLOWLINE= < 409.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 114.00 FLOWLINE ELEVATION = 409.00 ASSUMED UPSTREAM CONTROL HGL = 410.22 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ************************************************************************,^,^.J^J^,J^,^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * LIONSHEAD STA 4 8+75L * * RACEII.RES * ************************************************************************** FILE NAME: RACE1I.DAT TIME/DATE OF STUDY: 10:26 06/19/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 106.00- 1.20 67.21 0.39* 68.91 } FRICTION 109.00- 0.71*Dc 44.24 0.71*Dc 44.24 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 106.00 FLOWLINE ELEVATION = 432.22 PIPE FLOW = 3.50 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 433.420 FEET NODE 106.00 : HGL = < 432.609>;EGL= < 434.047>;FLOWLINE= < 432.220> ****************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 109.00 IS CODE = 1 UPSTREAM NODE 109.00 ELEVATION = 433.22 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.50 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 5.26 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.28 CRITICAL DEPTH(FT) = 0.71 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.71 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY FT) MOMENTUM(POUNDS 0. 000 0 714 4 220 0. 990 44.24 0. 005 0 696 4 356 0. 991 44.28 0. 019 0 679 4 501 0. 994 44.41 0. 045 0 662 4 656 0. 999 44.64 0. 083 0 644 4 822 1. 006 44.96 0. 136 0 627 4 999 1. 015 45.39 0. 206 0 610 5 188 1. 028 45. 93 0. 296 0 592 5 392 1. 044 46. 60 0. 408 0 575 5 611 1. 064 47.40 0. 547 0 558 5 847 1. 089 48.34 0. 717 0 540 6 103 1. 119 49.44 0. 925 0 523 6 379 1. 155 50.71 1. 178 0 506 6 680 1. 199 52.17 1. 485 0 488 7 007 1. 251 53.84 1. 858 0 471 7 365 1. 314 55.74 2. 314 0 454 7 756 1. 389 57.90 2. 874 0 436 8 187 1. 478 60.34 3. 567 0 419 8 663 1. 585 63,12 4 . 435 0 402 9 190 1. 714 66.28 5. 260 0 389 9 622 1. 827 68.91 NODE 109.00 : HGL = < 433.934>;EGL= < 434.210>;FLOWLINE= < 433.220>\/ ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 109.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 433.22 433.93 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * LIONSHEAD STA 4 8+75R * * RACEIJ.RES * ************************************************************************** FILE NAME: RACE1J.DAT TIME/DATE OF STUDY: 10:30 06/19/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 106.00- 1.20 133.38 0.74* 160.15 } FRICTION 103.00- 1.10*Dc 131.77 1.10*Dc 131.77 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE. NUMBER = 106.00 FLOWLINE ELEVATION = 432.22 PIPE FLOW = 8.00 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 433.420 FEET NODE 106.00 : HGL = < 432.958>;EGL= < 434.284>;FLOWLINE= < 432.220> ****************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 103.00 IS CODE = 1 UPSTREAM NODE 103.00 ELEVATION = 433.49 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 43.23 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.70 CRITICAL DEPTH(FT) = 1.10 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.10 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 ,000 1 .096 5.782 • 1 615 131 77 0 ,022 1 .080 5.872 1 616 131 81 0 .089 1 .064 5.966 1 617 131. 93 0 .207 1 .048 6.064 1 620 132. 14 0 .380 1 .032 6.166 1 623 132. 44 0 .615 1 .017 6.273 1 628 132. 82 0 .918 1 .001 6.385 1 634 133. 31 1 .298 0 , 985 6.501 1 642 133. 89 1 .765 0 .969 6. 623 1 651 134 . 57 2 .330 0 .953 6.750 1 661 135. 36 3 .006 0 . 938 6.883 1 674 136. 27 3 .811 0 . 922 7.022 1 688 137. 29 4 .765 0 . 906 7.168 1 704 138. 44 5 .893 0 .890 7.321 1 723 139. 72 7 .229 0 .874 7.480 1 744 141. 13 8 .812 0 .858 7.648 1 767 142. 69 10 . 698 0 .843 7.824 1 794 144 . 39 12 . 963 0 .827 8.009 1 823 146. 26 15 .709 0 .811 8.203 1 856 148. 29 19 .091 0 .795 8.407 1 893 150. 51 23 .347 0 .779 8.621 1 934 152. 91 28 .874 0 .764 8.848 1 980 155. 51 36 .422 0 .748 9.086 2 030 158. 33 43 .230 0 .738 9.237 2 064 160. 15 NODE 103.00 : HGL = < 434.586>;EGL= < 435.105>;FLOWLINE= < 433.490> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 103.00 FLOWLINE ELEVATION = 433.49 ASSUMED UPSTREAM CONTROL HGL = 434.59 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Basin 2 upstream Analysis (Reference) pROM CITY ol' \/lSrA /^^-TiER j)/?A/V/^^ ^Tc^D' *************^t* **iT«rr*********************************************************** VI062220.0 TO NODE VI062220.0 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLirfE PEAK F10W<<<<< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 2.451 =«=« USER-SPECIFIED RUNOFF COEFFICIENT - .5000 S.C.S. CURVE NUMBER (AMC II) - 86 SUBAREA AREA (ACRES) - 39.53 SUBAREA RUNOFF (CFS) - in ??ImNf^^3?5r ' TOTAL SNS??°?i:r-\304.;5'" .i.-.-^r""'"'"' INOEPEKDEMT STREW) TOR CoiirLUEijcE«<<< TOTAL NUMBER OF STREAMS • 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE- TIME OF CONCENTRATION (MIN.) - 32.31 RAINFALL INTENSITY(INCH/HR) - 2.45 TOTAL STREAM AREA (ACRES) - 605.74 PEAK FLOW RATE(CFS) AT CONFLUENCE - 1304.07 ****************^****^^^^^^^,^,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -I^"--.!???!!?.!?®" VI062225.0 TO NODE VI062230.0 IS CODE - 22 _^>>^^TIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< USER-SPECIFIED RUNOFF COEFFICIENT = gQQQ""*"""'"'""""""*"'—==•-- S.C.S. CURVE NUMBER (AMC II) - 91 USER SPECIFIED Tc(MIN.) « 10.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 5.223 SUBAREA RUNOFF(CFS) - 115.55 TOTAL AREA (ACRES) - 24.58 TOTAL RUNOFF (CFS) » 115.55 *****************.»*^*^*^*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -!!:?!!.!????f?.!???'.!!°°= V1062230.0 TO NODE V1062235.0 is CODE - 5^ »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA<«« ELEVATION DATAi UPSTREAM (FEET) - 5l"or'DoImSTREWn5«^7"-*""n^ CHANNEL LENGTH THRU SUBAREA(FEET) - 1316 27 CHAMNE? Jf^l ^f^..^^"^ BASE{FEET) - 3.io C^H ElS^'^lrl ^ I'o'" "Z" FACTOR - 3.000 MANNING'S FACTOR - .035 ''"^"''^^TJ= 1.0 ESTIMATED CHANNEL HEIGHT(FEET) - 2.60 CHANNEL FLOW THRU SUBAREA(CFS) - 115.55 JiJlLy^i?^"^'^^^^^^' • ^-^e FLOW DBPTH(FEET) « 1 60 TRAVEL TIME(MIN.) - 2.37 Tc(MIN.)- 12 37 LONGEST FLOWPATH FROM NODE 62225.00 TO NODE 62235.00- 2789.05 FEET. -!^*?!.!??f!ff.!??!!/°°^ V1062235.0 TO NODE V1062235.0 is CODE - ****** »»>ADDITION OP SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 4. 554 USER-SPECIFIED RUNOFF COEFFICIENT « .8500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) - 74.96 SUBAREA RUNOFF(CFS) = 290.17 I J^^JUN^^'^'I?' " RUNOFF(CFS) - 405.72 **^*J^T******************************************************************* VI062235.0 TO NODE VI062220.0 IS CODE - 56 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »>»TRAVELTIME THRU SUBAREA««< ELEVATION DATA: UPSTREAM (FEET) - 447.00 DOWNSTREAM fPPffTi l""''^^"^^" CHANNEL LENGTH THRU SUBAREA(FEET) - 3471.50 cSSSSS sSpi I lllk^^ WVEN CHANNEL BASE (PEET) - 5.00 CHAJNEJ! PR^SS(?B??) T l'^ FACTOR 3.000 MANNING'S FACTOR - .035 ESTIMATED CHANNEL HEIGHT (PEET) « 3.79 CHMINEL PLOW THRU SUBAREA(CFS) - 405.72 FMW VELOCITY (FEET/SEC) - 10.89 FLOW DEPTH (FEET) - 2 79 TRAVEL TIME (MIM.) - 5.31 Tc(MIN.)- 17.68 LONGEST FLOWPATH PROM NODE 62225.00 TO NODE 62220.00 - 6260.55 FEET. **^I1********************************************************************** —VI062220.0 TO NODE VIO62220.O IS CODE - 81 ^ »»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<<< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) '•"g"^""""""""'""""""-*'—— USER-SPECIFIED RUNOFF COEFFICIENT - .6500 S.C.S. CURVE NUMBER (AMC II) = 90 SUBAREA AREA (ACRES) - 147.54 SUBAREA RUNOFF (CFS) = 346 84 TOTAL AREA (ACRES) - 247.08 TOTAL RUNOFF(CFS) - 752 36 TC(MIN) - 17.68 /a^.sb —r^!?!.!???®^^ VI062220.0 TO NODE VI062220.0 IS CODE -'"'l »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< __>^>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS • 2 COMFLUBNCE VALUES USED FOR INDEPENDENT STREAM 2 ARE- TIME OF CONCENTRATION (MIN.) - 17.68 RAINFALL INTENSITY (INCH/HR) - 3.62 TOTAL STREAM AREA (ACRES) - 247.08 PEAK PLOW RATE(CFS) AT CONFLUENCE - 752.56 *• CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 1256.48 1 1304.07 1 1292.61 2 752.56 2 STREAMS. Tc INTENSITY AREA (MIN.) (INCH/HOUR) (ACRE) 22.47 3.098 605.74 32.31 2.451 605.74 32.83 2.426 605.74 17.68 3.617 247.08 D TIME OF CONCENTRATION RATIO ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CPS) (MIN.) (INCH/HOUR) 1 1829.00 17.68 3.617 2 1901.21 22.47 3.098 3 1814.12 32.31 2.451 4 1797.51 32.83 2.426 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS- PEAK FLOW RATE (CPS) - 1901.21 Tc(MIN.) • 22 47 TOTAL AREA (ACRES) = 852.82 LONGEST FLOWPATH FROM NODE 62005.00 TO NODE 62220.00 » 11460.85 FEET. „^.!??f!ff,!??!? VI062220.0 TO NODE VI062220.0 IS CODE - ;********* ^2^>fr??5r^i?!L*^J^ ESTIMATOR CHANGED irwwISDR0Gm;"SMOD<<<<< «--i^fiIIS ^^**^-OF-CONCENTRATION OF LONGEST PLOWPATH««< UNIT-HYDROGRAPH DATA: AREA-AVERAGED CURVE NUMBER - 90. MINIMUM LOSS RATE tINCHyHOUBi . nr, UNIT-INTERVAL (MIN) = 5.00 TOTAL AREA(ACRES) - flS2 fl? RisSiSjurts-^^"?"? .^I'liis.• ™HP °^ FLOW(HR) - 2.67 RUNOFF VOLUME (AF) - 148 75 UNIT-HYDROGRAPH METHOD PEAK FLOW RATE (CFS) - 1365 07 RATIONAL METHOD PEAK FLOW RATE (CFS) - 1901 21 (UPSTREAM NODE PEAK FLOW RATE (CFS) - 1901 21) PEAK PLOW RATE (CFS) USED - 1901.21 *************************^**^^^^^^,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ..r!fl!-!??f!f?_!'^°" "^^^ VI062220.0 TO NODE VI062220.0 IS CODE = 152 ^J-»»3T0RZ PEAK FLOWRATE TABLE TO A PILE««< PEAK FLOWRATE TABLE FILE NAME: vi0622"wlA""""'^""""'"'"""^"""''"'""""'""* END OF STUDY SUMMARY: *" TOTAL AREA (ACRES) - 652.82 TC(MIN.)- 22 47 AREA-AVERAGE CURVE NUMBER - 90. 4 Eta (INCH/HR)- 02* PEAK FLOW RATE (CFS) - 1901.21 END OF INTEGRATED RATIONAL/UNIT-HYDROGRAPH'METHOD"AN^SIS' • BASIN # 062235.0 UP NODE 062230.0 DOWN NODE 062235.0 EL UP 514.00 EL DOWN 447.00 BASIN # UP NODE DWN NODE EL. UP EL DOWN 062240.0 062235.0 062220.0 447.00 329.00 CIVILDESIGN CORP. Consulting Engineers 250 S. Lena Rd. San Bernardino, CA 92408 (909)885-3806 Inside Diameter ( 24.00 in.) Water I * ( 11.16 in.) ( 0.930 ft.) 1 I V Circular Channel Section 17. 900 CFS 12. 516 fps 24 000 inches 11 157 inches 0 930 feet 1 525 feet Depth/Diameter (D/d) 0 465 3 220 % 1 430 sq. ft 3 001 feet 0 873 0 013 Min. Fric. Slope, 24 inch 0 .626 % CIVILDESIGN CORP. Consulting Engineers 250 S. Lena Rd. San Bernardino, CA 92408 (909)885-3806 Inside Diameter ( 24.00 in.) Water ( 16.36 in.) ( 1.363 ft.) I I V Circular Channel Section 32 800 CFS 14 381 fps 24 000 inches 16 356 inches 1 363 feet 1 898 feet Depth/Diameter (D/d) 0 682 3 220 % 2 281 sq. ft 3 885 feet AR*(2/3) 1 599 0 013 Min. Fric. Slope, 24 inch Pipe Flowing Full 2 102 % Hydrology Analysis San Diego Coxxnty Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/22/03 CARLSBAD RACEWAY BASIN 2 01-21-03 G:\ACCTS\971035\02.OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5,200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 200.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity (I) = 4.407 for a 100.0 year storm User specified values are as follows: TC = 12.37 min. Rain intensity = 4.41(In/Hr) Total area = 99.54(Ac.) Total runoff = 405.70(CFS) Process from Point/Station 200.000 to Point/Station 201.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 437.52(Ft.) Downstream point/station elevation « 426.36(Ft.) Pipe length = 186.00(Ft.) Manning's N » 0.013 No. of pipes = 1 Required pipe flow = 405.700(CFS) Given pipe size = 66.00(In.) Calculated individual pipe flow = 405.700(CFS) Normal flow depth in pipe = 32.72(In.) Flow top width inside pipe = 66.00(In.) Critical Depth - 62.49(In.) Pipe flow velocity = 34.50(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 12.46 min. Vl ++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 201.000 to Point/Station 201.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Time of concentration = 12.46 min. Rainfall intensity = 4.386(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 27.515 (CFS) for 7,380 (Ac) Total runoff = 433,215 (CFS) Total area = 106,92 (Ac) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 201,000 to Point/Station 202,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 425.86(Ft.) Downstream point/station elevation 422.31 (Ft.) Pipe length » 201.60(Ft.) Manning's N = 0.013 No. of pipes - 1 Recjuired pipe flow = 433.215 (CFS) Given pipe size > 72.00(In.) Calculated individual pipe flow = 433.215(CFS) Normal flow depth in pipe = 47.44(In.) Flow top width inside pipe = 68.27 (In.) Critical Depth « 65.64(In.) Pipe flow velocity = 21.93(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 12.61 min. Process from Point/Station 202.000 to Point/Station 202.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B » 0.000 Decimal fraction soil group C - 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 12.61 min. Rainfall intensity = 4.352(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q^KCIA, C » 0.950 Subarea runoff = 11.741 (CFS) for 2.840 (Ac) Total runoff » 444.956(CFS) Total area - 109.76(Ac.) Process from Point/Station 202.000 to Point/Station 203,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 421.98(Ft.) Downstream point/station elevation = 419.73(Ft.) Pipe length - 225.00(Ft.) Manning's N = 0.013 No. of pipes « 1 Required pipe flow = 444.956(CFS) Given pipe size = 72.00(In.) • Calculated individual pipe flow = 444.956(CFS) Normal flow depth in pipe = 63.00(In.) Flow top width inside pipe = 47.62(In.) Critical Depth « 66.21(In.) Pipe flow velocity = 16.96(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 12.83 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 203.000 to Point/Station 203,000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 12.83 min. Rainfall intensity = 4.303(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff » 17. 865 (CFS) for 4,370 (Ac) Total runoff = 462,821 (CFS) Total area = 114,13 (Ac) +++++++++++++++++++++++++++++++++++++++H Process from Point/Station 203,000 to Point/Station 204,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 419,40(Ft,) Downstream point/station elevation = 416,66(Ft,) Pipe length » 123,00(Ft.) Manning's N = 0.013 No. of pipes > 1 Rec}uired pipe flow = 462.821 (CFS) Given pipe size = 72.00(In.) Calculated individual pipe flow = 462.821(CFS) Normal flow depth in pipe = 45.75(In.) Flow top width inside pipe = 69.31(In.) Critical Depth = 66,88(In,) Pipe flow velocity = 24.42(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 12.92 min. + + + + + ++++ + -I- + + ++++++++ + +++ + + + + + + +++ ++++ + H Process from Point/Station 204.000 to Point/Station 204.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 12.92 min. Rainfall intensity « 4.285(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q^KCIA, C * 0.950 Subarea runoff = 18.482(CFS) for 4.540(Ac.) Total runoff = 481.303(CFS) Total area « 118.67(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 205.000 (i **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 416.33(Ft.) Downstream point/station elevation = 403.53(Ft.) Pipe length = 319.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Recjuired pipe flow = 481.303 (CFS) Given pipe size = 72.00(In.) Calculated individual pipe flow = 481.303(CFS) Normal flow depth in pipe = 38.81(In.) Flow top width inside pipe = 71.78(In.) Critical Depth = 67.50(In.) Pipe flow velocity = 30.94(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 13.09 min. +++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 205.000 to Point/Station 205.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 13.09 min. Rainfall intensity » 4.249(In/Hr) for a 100.0 year storm Rvuioff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff > 24.824(CFS) for 6.150(Ac.) Total runoff » 506.126 (CFS) Total area = 124.82 (Ac) ++++++++++++++++S Process from Point/Station 205.000 to Point/Station 206.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 403.53(Ft.) Downstream point/station elevation = 399.83(Ft.) Pipe length = 90.00(Ft.) Manning's N = 0.013 No. of pipes " 1 Required pipe flow » 506.126(CFS) Given pipe size * 72.00(In.) Calculated individual pipe flow = 506.126(CFS) Normal flow depth in pipe = 39.75(In.) Flow top width inside pipe = 71.61(In.) Critical Depth > 68.23(In.) Pipe flow velocity » 31.61(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 13.14 min. +++++++++++++++++++++++++++++++^ Process from Point/Station 206.000 to Point/Station 206.500 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 399.50(Ft.) Downstream point/station elevation = 398.40(Ft.) Pipe length = 105.00(Ft.) Manning's N - 0,013 No. of pipes « 1 Required pipe flow * 506.126(CFS) Given pipe size » 72.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 7.863(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 1.499(Ft.) Minor friction loss = 7.463(Ft.) K-factor = 1.50 Pipe flow velocity = 17.90(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 13.24 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.500 to Point/Station 207.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 398.40(Ft.) Downstream point elevation = 396,40(Ft.) Channel length thru subarea = 225.00(Ft.) Channel base width = 100.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 8.000 Estimated mean flow rate at midpoint of channel = 518.555(CFS) Manning's 'N' =0.040 Maximum depth of channel = 2.000(Ft.) Flow{q) thru subarea = 518.555(CFS) Depth of flow = 1.250(Ft.), Average velocity = 3.904(Ft/s) Channel flow top width = 112.501(Ft.) Flow Velocity = 3.90 (Ft/s) Travel time = 0.96 min. Time of concentration = 14.20 min. Critical depth = 0.922(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 4.032(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 11.123 (CFS) for 6.130 (Ac) Total runoff = 517.250(CFS) Total area « 130,95(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 207,000 to Point/Station 208.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 396.40(Ft.) Downstream point elevation = 393.90(Ft.) Channel length thru subarea = 290.00(Ft.) Channel base width = 55.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 8.000 Estimated mean flow rate at midpoint of channel > 521.930(CFS) Manning's 'N' = 0.040 Meucimum depth of channel = 3.000(Ft.) Flow(q) thru subarea = 521.930(CFS) Depth of flow - 1.773(Ft.), Average velocity « 4.611(Ft/s) Channel flow top width = 72.726(Ft.) Flow Velocity = 4.61(Pt/s) Travel time = 1.05 min. Time of concentration = 15.24 min. Critical depth = 1,344(Ft.) Adding area flow to channel Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 3.851(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 4,107 (CFS) for 2.370 (Ac) Total runoff = 521.357(CFS) Total area = 133.32(Ac.) +++++++++++++++++++++++++++++++++++++++H Process from Point/Station 207.000 to Point/Station 208.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 133.320(Ac.) Runoff from this stream = 521.357(CFS) Time of concentration = 15.24 min. Rainfall intensity = 3.851(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 211.000 to Point/Station 212.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 650.00(Ft.) Highest elevation = 413.00(Ft.) Lowest elevation = 400.00(Ft.) Elevation difference = 13.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.46 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.9500)*(650.00*.5)/( 2.00*(l/3)]= 5.46 Rainfall intensity (I) = 7,465 for a 100.0 year storm Effective runoff coefficient used for area (Q=«KCIA) is C * 0.950 Subarea runoff = 27.303(CFS) Total initial stream area = 3.850(Ac.) h+++++++++++++++++++++++++++H Process from Point/Station 212.000 to Point/Station 208.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 395.00(Ft.) Downstream point/station elevation = 394.00(Ft.) Pipe length = 40.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow =• 27.303 (CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 27.303(CFS) Normal flow depth in pipe = 15.70(In.) Flow top width inside pipe = 22.83(In.) Critical Depth - 21.77(In.) Pipe flow velocity = 12.54(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 5.52 min. ++++++++-t.++++++-i"i-+++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 212.000 to Point/Station 208.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.850(Ac.) Runoff from this stream = 27.303(CFS) Time of concentration = 5.52 min. Rainfall intensity = 7.418(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 521.357 15.24 3.851 2 27.303 5.52 7.418 Qmax(1) = 1.000 * 1.000 * 521.357) + 0.519 * 1.000 * 27.303) + = 535.531 Qmax.(2) = 1.000 * 0.362 * 521.357) + 1,000 * 1.000 * 27.303) + = 215.979 Total of 2 streams to confluence: Flow rates before confluence point: 521.357 27.303 Maximum flow rates at confluence using above data: 535.531 215.979 Area of streams before confluence: 133.320 3.850 Results of confluence: Total flow rate = 535.531(CFS) Time of concentration = 15.244 min. Effective stream area after confluence = 137.170(Ac.) +++ + + -I--H- +++ +++ + + +++ + + +++ + + + + + + + + + + + + + + + H Process from Point/Station 208.000 to Point/Station 209.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 393.90(Ft.) Downstream point elevation = 393.50(Ft.) Channel length thru subarea = 50.00(Ft.) Channel base width = 55.000(Ft.) Slope or 'Z' of left channel bank - 2.000 Slope or 'Z' of right channel bank » 8.000 Estimated mean flow rate at midpoint of channel = 536.156(CFS) Manning's 'N' » 0.040 Maximum depth of channel = 3.000(Ft.) Flow(q) thru subarea = 536.156(CFS) Depth of flow = 1.840(Ft.), Average velocity = 4.540(Ft/s) Channel flow top width = 73.396(Ft.) Flow Velocity = 4.54(Ft/s) Travel time - 0.18 min. Time of concentration = 15.43 min. Critical depth - 1.375(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 • Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 3.822(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.400 Subarea runoff = 0.489(CFS) for 0.320(Ac.) Total runoff = 536.020(CFS) Total area = 137.49(Ac.) +++++++++++++++++++++++++++++++++++++++H Process from Point/Station 209.000 to Point/Station 209.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration = 15.43 min. Rainfall intensity = 3.822(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.400 Subarea runoff = 1,085(CFS) for 0,710(Ac.) Total runoff = 537.105 (CFS) Total area = 138.20 (Ac) +++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 209.000 to Point/Station 210.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 393.50(Ft.) Downstream point elevation = 390.00(Ft.) Channel length thru subarea = 400.00(Ft.) Channel base width = 30.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 538.213(CFS) Manning's 'N' = 0.040 Maximum depth of channel = 5.000(Ft.) Flow(q) thru subarea = 538.213(CFS) Depth of flow = 2.601(Ft.), Average velocity » 5.877(Ft/s) Channel flow top width = 40.405(Ft.) Flow Velocity = 5.88(Ft/s) Travel time = 1.13 min. Time of concentration = 16.56 min. Critical depth = 2.063(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 3.651(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.400 Subarea runoff = 0.832 (CFS) for 0.570 (Ac) Total runoff » 537.938 (CPS) Total area » 138.77 (Ac) End of computations, total study area =• 138.77 (Ac.) " Wed, Apr 02 at 5:15pm Arrive: New York-LaGuardia (LGA) - CENTRAL TERMINAL " Wed, Apr 02 at 6:34pm _§eats: 5C, 5D (Canadair Regional Jet) Jal: No Meal Served Ptatus: Confirmation Code M9T1NI Flight: United Airlines flight 409 (Non-Stop) Depart: New York-LaGuardia (LGA) - CENTRAL TERMINAL " Mon, Apr 07 at 4:30pm Arrive: Denver, CO (DEN) - Terminal Information Unavailable " Mon, Apr 07 at 6:50pm Seats: 19A, 19B (Boeing 757 Jet) Meal: Snack/Brunch Status: Confirmation Code M9T1NI Flight: United Airlines flight 1685 (Non-Stop) Depart: Denver, CO (DEN) - Terminal Information Unavailable " Mon, Apr 07 at 7:50pm Arrive: San Diego, CA (SAN) - TERMINAL 1 " Mon, Apr 07 at 9:02pm Seats: 12E, 12F (Airbus Industrie Jet) Meal: No Meal Served Status: Confirmation Code M9T1NI Airfare Summary-Prices shown in U.S. dollars Total: USD 450.00 Travelers Price per person Taxes & Fees Total Price 2 adults 170.23 49.77 440.00 Service Fee 5.00 10.00 ^•BO 8 not too latel You may be able to save up to $50 if you boked a flight! Join the Travelocity Preferred program and you'll receive $75 in cash rebates on your next two flights over $250, $15 off Hertz weekly rentals, 15% off at 4,000 restaurants nationwide, and more. Enroll today! http://leisure.travelocity.com/preferred/?source=PO ******************* Why choose between airline miles or hotel points programs when the Travelocity MasterCard gives you both! Enjoy a low introductory 0% APR on balance transfers for 6 months and receive 4,000 points instantly. Earn points anywhere, anytime and receive free and discounted travel with no restrictions or blackout dates. Travelocity gives you options! Visit https://www.citibankusa.com/cards/travelocity/onlineapp.cgi?mktcode=WMASR+3054+TRVL+ 2213126614&PageID=stnd ******************** If you need further assistance, please contact our Customer Service Center. Telephone within the United States: TDD/Hearing Impaired telephone service within the United States: Telephone for customers outside the United States: FeDC number within the United States: Feuc number for customers outside the United States: En Espaiiol 7am-11pm: ;mail Address: memberservicesetravelocity.com For faster service you need to have your Trip ID ready. 888-709-5983 800-555-7585 210-521-5871 800-944-0005 210-258-2034 866-828-3933 Your Trip ID is: 666582868775 Closed Conveyance Hydraulic Analysis *************************************************^,^^^^J^^,J.^^^^^^^^^^^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * SD C * 12-11-02 C:\AES2001\HYDROSOFT\RATSCX\RACE02.RES * ************************************************^^^^^^^^^^^,^^^^^^^^^^^^^^^ FILE NAME: RACE02.DAT TIME/DATE OF STUDY: 11:47 12/11/2002 **************************************************j,^,^^^j^^^^j^^^^^^^^^^^^^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE NUMBER 206.00- } MODEL PROCESS FRICTION PRESSURE HEAD(FT) 5.87 Dc PRESSURE+ MOMENTUM(POUNDS) 20205.68 FLOW DEPTH(FT) 3.10* PRESSURE+ MOMENTUM(POUNDS 31490.11 205 50- } JUNCTION 5 87 Dc 20205.68 4.99* 20948.78 205 00- } FRICTION 6 69 19509.20 4.48* 20430.07 204 50- } JUNCTION 5 75 Dc 18821.54 4.36* 20804.60 204 00- } FRICTION 6 30 18138.35 • 4,08* 20385.97 203 50- } JUNCTION 5 65 Dc 17812.26 4,17* 20062.48 203 00- } FRICTION 6 16 17139.20 3. 91* 19672.14 202 50- } JUNCTION 5 54 Dc 16862.77 3.58* 21254.52 202 00- } FRICTION 5 48 Dc 16244.77 3,46* 20893.99 201 50- } JUNCTION 5 48 Dc 16244.77 3.38* 21419.78 201 00-5 27*Dc 19267.52 • 5.27*Dc 19267.52 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. *********** + ******************************,*********^,(^^^^^^^^^^^^^^^^^^^^^^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 206.00 FLOWLINE ELEVATION = 403.00 PIPE FLOW = 506.00 CFS PIPE DIAMETER = 84.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 408.600 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 5.60 FT.) IS LESS THAN CRITICAL DEPTH( 5.87 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 206.00 : HGL = < 406.101>;EGL= < 420.782>;FLOWLINE= < 403.000> *****************************************************,j^,^.j.^j^,^,^^j^^,^,j.,^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 206.00 TO NODE 205.50 IS CODE = 1 UPSTREAM NODE 205.50 ELEVATION = 412.83 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 506.00 CFS PIPE PIPE LENGTH = 68.00 FEET DIAMETER = 84.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.17 CRITICAL DEPTH(FT) = 5.87 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 4 . 99 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0. 898 1. 965 3.223 4 . 696 6.414 8,411 10.727 13.412 16.525 20.139 24.341 29.244 34.987 41.749 49.764 59.345 68.000 FLOW DEPTH (FT) 4.994 ,881 ,768 .655 ,542 .429 ,316 ,203 .090 977 ,864 ,751 638 ,525 .412 ,299 ,186 , 101 4, 4 , 4 , 4 . 4 , 4 , 4 , 4, 3. 3, 3, 3. 3, 3, 3, 3, 3, VELOCITY (FT/SEC) 17.220 17.654 18.117 18.612 19.141 19.707 20.313 20.963 21.661 22.412 23.220 24.092 25.033 26.053 27.160 28.364 29.677 30.739 SPECIFIC ENERGY(FT) 9.602 9, 9, .724 .868 10.037 10.235 10.463 10.727 11.031 11.380 11.781 12.241 12.769 13.375 14,071 14.873 15.799 16.870 17.782 PRESSURE+ MOMENTUM(POUNDS) 20948,78 21169.36 21424.02 21715.02 22044.89 22416.45 22832.87 23297.70 23814.95 24389,12 25025.33 25729.40 26507.95 27368.58 28320.03 29372.38 30537.33 31490.11 NODE 205.50 : HGL = < 417.824>;EGL= < 422.432>;FLOWLINE= < 412.830> ******************************************************,^,j.j,^j^,^,^.,^,^.,^.^,^.^,^.^,^^^^^^^^^ FLOW PROCESS FROM NODE 205.50 TO NODE 205.00 IS CODE = 5 UPSTREAM NODE 205.00 ELEVATION = 413.16 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) UPSTREAM 481.30 84.00 0.00 413,16 5.75 DOWNSTREAM 506.00 84.00 - 412.83 5.87 VELOCITY (FT/SEC) 18.509 17.226 LATERAL #1 24.70 30.00 80.00 417.33 1,69 LATERAL #2 0,00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== 6, 981 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4))/((A1+A2)*16,1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01038 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00852 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00945 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.038 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0,527)+( 0.000) = 0.527 NODE 205.00 : HGL = < 417.639>;EGL= < 422.958>;FLOWLINE= < 413.160> ***************************************************************,j.^^^j^j^^^,^.^,^^,n.,^^ FLOW PROCESS FROM NODE 205.00 TO NODE 204.50 IS CODE = 1 UPSTREAM NODE 204.50 ELEVATION = 416.33 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 481.30 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 317.00 FEET MANNING'S N = 0,01300 NORMAL DEPTH(FT) = 4.54 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.36 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 5.75 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) ( FT) (FT/SEC) ENERGY FT) MOMENTUM(POUNDS) 0.000 4 .356 19. 116 10 033 20804.60 12.034 4 .363 19. 078 10 018 20781.12 24.512 4 .370 19. 041 10 003 20757.82 37.473 4 .377 19. 004 9 989 20734,70 50.963 4 .385 18. 967 9 974 20711.76 65.034 4 .392 18. 930 9 960 20688.99 79.744 4 .399 18. 894 9 946 20666.39 95.164 4 .406 18. 857 9 931 20643.97 111.374 4 .414 18. 821 9 917 20621.72 128.470 4 .421 18. 785 9 904 20599.64 146.567 4 . 428 18. 749 9 890 20577.73 165.803 4 .436 18. 713 9 876 20556,00 186.348 4 .443 18. 677 9 863 20534,43 208.411 4 .450 18. 642 9 850 20513.03 232.256 4 .457 18. 606 9 837 20491.80 258.225 4 .465 18. 571 9 823 20470.74 286.764 4 , 472 18. 536 9 811 20449.84 317.000 4 . 479 18. 503 9 798 20430.07 NODE 204.50 : HGL = < 420. 685>;EGL= < 426.363>;FLOWLINE= < 416,330> *******************************************.*******************^^,I^,I^^,^J^.,^,^^^^,J.,^^^^ FLOW PROCESS FROM NODE 204.50 TO NODE 204.00 IS CODE = 5 UPSTREAM NODE 204.00 ELEVATION = 416.66 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) UPSTREAM 462.80 84.00 DOWNSTREAM 481.30 84.00 LATERAL #1 18.50 24.00 LATERAL #2 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== (DEGREES) ELEVATION 0.00 416.66 416,33 80,00 421,33 0.00 0.00 CRITICAL DEPTH(FT.) 5. 65 5.75 1.55 0.00 VELOCITY (FT/SEC) 19.886 19.122 7.089 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16,1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0,01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01200 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0,048 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.516)+( 0.000) = 0.516 01273 01127 0.000 FEET NODE 204.00 HGL < 420.738>;EGL= < 426.879>;FLOWLINE= < 416.660> ******************************************************j,,^,j.^j^^,^^^^,^j^,,j.^^^^^^^^^^^ • FLOW PROCESS FROM NODE UPSTREAM NODE 203.50 204.00 TO NODE 203.50 IS CODE = 1 ELEVATION = 418.40 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4 62.80 CFS PIPE PIPE LENGTH = 123.00 FEET DIAMETER = 84.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 3.94 CRITICAL DEPTH(FT) = 5.65 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 4 .17 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 4 .166 19.375 9 999 20062.48 9.597 4 .158 19.425 10 020 20093.75 19,668 4 . 149 19.474 10 041 20125.29 30.257 4 .140 19.524 10 063 20157.13 41.410 4 .131 19.575 10 085 20189.25 53.185 4 .122 19.626 10 107 20221.66 65.644 4 .113 19.677 10 129 20254.37 78.862 4 ,104 19.728 10 151 20287.36 92.925 4 ,096 19.779 10 174 20320.65 107.937 4 ,087 19.831 10 197 20354.24 123.000 4 .078 19.880 10 219 20385.97 NODE 203.50 : HGL = < 422. 566>;EGL= < 428.399>;FLOWLINE= < 418.400> ****************************************************^,I^,J,^,^.^,^.,^^,^J^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE UPSTREAM NODE 203.00 203,50 TO NODE ELEVATION = 203,00 IS CODE = 5 418.73 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 445.00 462.80 17.80 0.00 DIAMETER (INCHES) 84.00 84.00 24 .00 0.00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 418.73 418.40 80.00 422.90 0.00 0.00 CRITICAL DEPTH(FT.) 5.54 5.65 1.52 0.00 VELOCITY (FT/SEC) 20.130 19.381 6.949 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01346 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0,01192 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01269 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.051 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.533)+( 0.000) = 0.533 NODE 203,00 : HGL = < 422, 640>;EGL= < 428.932>;FLOWLINE= < 418,730> ***********************************************************^,^,j^,^,j.^^,^j^j^,^,^j^^^^^^^ FLOW PROCESS FROM NODE 203.00 TO NODE 202.50 IS CODE = 1 UPSTREAM NODE 202.50 ELEVATION = 420.98 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 445.00 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 225.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 4.30 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.58 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 5.54 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 3 .581 22. 457 11 417 21254.52 16. 609 3 . 610 22. 231 11 289 21095.13 33. 638 3 .639 22. 009 11 165 20940.04 51. 125 3 .667 21, 792 11 046 20789.15 69. 116 3 . 696 21, 579 10 931 20642.36 87. 660 3 .725 21, 370 10 821 20499.57 106. 815 3 .754 21. 166 10 715 20360.68 126. 650 3 .783 20. 965 10 612 20225.61 147. 245 3 .812 20. 768 10 513 20094.26 168. 692 3 .840 20. 575 10 418 19966.54 191. 104 3 .869 20. 386 10 327 19842.39 214 . 617 3 .898 20. 201 10 238 19721.70 225. 000 3 .910 20. 124 10 202 19672.14 NODE 202 ,50 . HGL = < 424. 561>;EGL= < 432.397>;FLOWLINE= < 420.980> ***********************************************************J^J^,;^^,^^,^,^,^,n.,^^,^^^^^^^ FLOW PROCESS FROM NODE 202.50 TO NODE 202.00 IS CODE = 5 UPSTREAM NODE 202.00 ELEVATION = 421.31 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 433,20 84.00 0.00 421.31 DOWNSTREAM 445.00 84.00 - 420.98 LATERAL #1 11.80 18.00 45.00 426.48 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== FLOWLINE CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 5.48 22.816 5.54 22.464 1.31 7.226 0.00 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01851 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.074 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.460)+( 0.000) = 0,460 0,01906 0,01796 0,000 FEET NODE 202,00 : HGL = < 424.773>;EGL= < 432.857>;FLOWLINE= < 421.310> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 201.50 202.00 TO NODE 201.50 IS CODE = 1 ELEVATION = 424.86 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4 33.20 CFS PIPE PIPE LENGTH = 202.00 FEET DIAMETER = 84.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 3.55 CRITICAL DEPTH(FT) = 5,48 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3.38 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: NODE ICE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ lOL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0,000 3 .378 23 554 11 998 21419 78 12.017 3 .384 23 494 11 960 21376 59 24.493 3 .391 23 433 11 923 21333 68 37,472 3 .398 23 373 11 886 21291 05 50,998 3 .405 23 313 11 850 21248 69 65.125 3 .412 23 254 11 813 21206 60 79.916 3 .418 23 195 11 111 21164 79 95.442 3 .425 23 136 11 742 21123 25 111.788 3 . 432 23 077 11 707 21081 98 129.053 3 .439 23 019 11 672 21040 97 147.356 3 .446 22 961 11 637 21000 23 166,840 3 .452 22 903 11 603 20959 76 187,682 3 .459 22 846 11 569 20919 54 202.000 3 .463 22 809 11 547 20893 99 201.50 : HGL = < 428. 238>;EGL= < 436.858>;FLOWLINE= < 424.E J60> ****************************************************************************** FLOW PROCESS FROM NODE 201.50 TO NODE 201.00 IS CODE = 5 UPSTREAM NODE 201.00 ELEVATION = 426.36 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 433.20 66.00 0.00 426.36 5.27 433.20 84.00 - 424,86 5.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 18.499 23.562 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01763 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.071 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.086)+( 0.000) = 0.086 01448 02077 0.000 FEET NODE 201.00 : HGL = < 431.630>;EGL= < 436.944>;FLOWLINE= < 426.360> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 201.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 426.36 431.63 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS **********************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * SD A * 12-20-02 C:\AES2001\HYDROSOFT\RATSCX\RACE04.RES * *****************^^^^^,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FILE NAME: RACE04.DAT TIME/DATE OF STUDY: 09:35 12/20/2002 (i **************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS 413,00-4.53 Dc 9209 09 2 . 61* 13010.66 } FRICTION 13010.66 412,50-4,53 Dc 9209 09 2 . 91* 11663.87 } JUNCTION 11663.87 412.00-5.29 8814 56 2 58* 11536.50 } FRICTION 11536.50 411.50-4,39 Dc 8347 86 3 40* 9097.74 } JUNCTION 9097.74 411,00-4.34 Dc 8048 32 3 31* 8842.01 } FRICTION 8842.01 410.50-4.33*Dc 8048 31 4 33*Dc 8048.32 } JUNCTION 8048.32 410.00-7.21 10618 60 2 22* 11147.93 } FRICTION 11147.93 409.50-4.17 DC 7188 65 2 81* 8708.17 } JUNCTION 8708.17 409.00-4.16 Dc 7111 23 2 90* 8361.16 } FRICTION 8361.16 429.50-4.15*Dc 7111 22 4 15*Dc 7111.22 } JUNCTION 7111.22 429.00-3.26* 916 68 1 39 725.72 } FRICTION 725.72 426.50-2.69* 804 . 88 1. 82 Dc 656.77 } JUNCTION 656.77 426.00-3.80* 796. 47 0. 94 569.93 } FRICTION 569.93 425.00-2.00* 442. 45 1. 61 Dc 409,87 lyiAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************^,^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 413.00 FLOWLINE ELEVATION = 329.50 PIPE FLOW = 265.00 CFS PIPE DIAMETER = 66.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 333.900 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 4.40 FT.) IS LESS THAN CRITICAL DEPTH( 4.53 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 413.00 : HGL = < 332.111>;EGL= < 340,940>;FLOWLINE= < 329,500> ****************************************************************************** FLOW PROCESS FROM NODE 413.00 TO NODE 412.50 IS CODE = 1 UPSTREAM NODE 412.50 ELEVATION = 333.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 265.00 CFS PIPE PIPE LENGTH = 66.00 FEET DIAMETER = 66.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.22 CRITICAL DEPTH(FT) = 4 .53 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2. 91 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY FT) MOMENTUM(POUNDS) 0. 000 2.908 20.786 9 621 11663.87 4 . 197 2.880 21.035 9 755 11770.15 8. 676 2.853 21.290 9 895 11879.86 13. 4 65 2.825 21.552 10 042 11993.10 18 . 593 2.798 21.821 10 196 12109.99 24. 095 2.770 22,096 10 356 12230.64 30. 013 2,743 22,378 10 523 12355.17 36. 392 2.715 22,667 10 698 12483.70 43. 289 2,688 22.964 10 882 12616.37 50. 769 2,660 23.269 11 073 12753.32 58 . 909 2, 633 23.582 11 273 12894.69 66. 000 2.611 23.838 11 440 13010.66 NODE 412 .50 HGL = < 335. 908>;EGL= < 342.621>;FLOWLINE= < 333.000> ******************************************************************************* FLOW PROCESS FROM NODE 412.50 TO NODE 412.00 IS CODE = 5 UPSTREAM NODE 412.00 ELEVATION = 333.33 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 247.10 66,00 O.OO 333,33 4.39 22.532 DOWNSTREAM 265.00 66.00 - 333.00 4.53 20.792 LATERAL #1 17.90 24.00 90.00 336.50 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== 1.52 0.00 6.968 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02683 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02067 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02375 JUNCTION LENGTH = 4,00 FEET FRICTION LOSSES = 0.095 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.177)+( 0.000) = 1.177 NODE 412,00 : HGL = < 335.914>;EGL= < 343,798>;FLOWLINE= < 333,330> ***************************************^^^j,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 412.00 TO NODE 411.50 IS CODE = 1 UPSTREAM NODE 411.50 ELEVATION = 340.77 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 247.10 CFS PIPE DIAMETER = 66.00 INCHES PIPE LENGTH = 214.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.40 CRITICAL DEPTH(FT) 4.39 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3.40 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3 . 397 16 .037 7 393 9097.74 3.104 3 .357 16 .262 7 466 9167.60 6.491 3 .317 16 495 7 544 9241.44 10.187 3 .277 16 734 7 628 9319.40 14.225 3 .237 16 982 7 718 9401.64 18.640 3 .198 17 238 7 815 9488.31 23.475 3 ,158 17 502 7 917 9579.58 28.778 3 . 118 17 776 8 027 9675.62 34.607 3 .078 18 058 8 145 9776.62 41.029 3 ,038 18 350 8 270 9882.78 48.126 2 . 998 18 652 8 404 9994.31 55.995 2 . 959 18 965 8 547 10111.42 64.758 2 . 919 19 289 8 699 10234.36 74.563 2 , 879 19 624 8 862 10363.37 85.598 2 .839 19 971 9 036 10498.72 98.107 2 .799 20 331 9 222 10640.69 112.409 2 .759 20 704 9 420 10789.59 128.938 2 .720 21 092 9 632 10945.73 148.301 2 . 680 21 494 9 858 11109.46 171.389 2 .640 21. 911 10 100 11281.14 199.583 2 .600 22. 345 10. 358 11461.16 214.000 2 584 22. 525 10. 468 11536.50 NODE 411.50 : HGL = < 344 . 167>;EGL= < 348.163>;FLOWLINE= < 340.770> ******************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 411,50 TO NODE 411.00 IS CODE = 5 UPSTREAM NODE 411.00 ELEVATION = 341.10 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 240.70 247.10 6.40 0.00 0.00== DIAMETER (INCHES) 66.00 66.00 18.00 0.00 ANGLE (DEGREES) 0.00 75.00 0.00 FLOWLINE ELEVATION 341.10 340.77 344.27 0.00 CRITICAL DEPTH(FT.) 4.33 4.39 0. 98 0.00 VELOCITY (FT/SEC) 16.087 16.042 5.244 0.000 =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01123 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01099 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01111 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.04 4 FEET ENTRANCE LOSSES = [DY+HV1-HV2)+(ENTRANCE LOSSES) [ 0.270)+( 0.000) = 0,270 JUNCTION LOSSES = JUNCTION LOSSES = 0.000 FEET NODE 411.00 : HGL = < 344.415>;EGL= < 348.433>;FLOWLINE= < 341.100> ******************************************* *********************************** FLOW PROCESS FROM NODE UPSTREAM NODE 410.50 411,00 TO NODE 410.50 IS CODE = 1 ELEVATION = 344.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 240.70 CFS PIPE DIAMETER = 66.00 INCHES PIPE LENGTH = 225.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 3.17 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.33 4.33 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 . 000 4 .329 11 995 6 565 8048 32 0 . 172 4 .283 12 122 6 566 8049 87 0 . 659 4 .236 12 254 6 569 8054 14 1 . 487 4 . 190 12 390 6 575 8061 20 2 . 690 4 .144 12 531 6 584 8071 12 4 .303 4 .097 12 677 6 594 8083 98 6 .369 4 .051 12 828 6 608 8099 85 8 . 939 4 .005 12 984 6 624 8118 82 12 . 072 3 .958 13 146 6 643 8140 98 15 .836 3 . 912 13 313 6 666 8166 43 20 .316 3 .866 13 486 6 692 8195 27 25 . 613 3 .819 13 665 6 721 8227 59 31 . 852 3 .773 13 851 6 754 8263 52 39 . 186 3 .727 14 042 6 791 8303 17 47.810 57.977 70.016 84.377 101.690 122.877 149,372 183.572 225,000 3.680 3.634 3.588 3.541 495 449 402 356 315 14.241 14.447 14.660 14.881 15.109 15.346 15.592 15.847 16.082 6.831 6.877 6. 927 6.982 042 108 180 258 333 8346.67 8394.15 8445.75 8501.62 8561.91 8626.79 8696.45 8771.06 8842.01 NODE 410.50 : HGL < 348.329>;EGL= < 350,565>;FLOWLINE= < ************************** 344,OOO ****************************^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 410,50 TO NODE 410.00 IS CODE = 5 UPSTREAM NODE 410.00 ELEVATION = 344.58 (FLOW IS AT CRITICAL DEPTH! (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 221.80 240. 18. 0. 0. 70 90 00 DIAMETER (INCHES) 66.00 66.00 24,00 0.00 ANGLE (DEGREES) 80.00 0.00 0.00 FLOWLINE ELEVATION 344.58 344.00 347.00 0.00 00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT. 4.17 4.33 1.56 0.00 ) VELOCITY (FT/SEC) 24.729 11.999 7.170 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 03731 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 00556 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0 02143 JUNCTION LENGTH = 7.00 FEET FRICTION LOSSES = 0.150 FEET ENTRANCE LOSSES = 0 000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 5.728)+( 0,000) = 5 728 NODE 410.00 : HGL = < 346.798>;EGL= < 356.293>;FLOWLINE= < 344.580> ******************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW^PROCESS FROM NODE 410.00 TO NODE 409.50 IS CODE = 1 ELEVATION = 358.00 (FLOW IS SUPERCRITICAL) UPSTREAM NODE 4 09.50 CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 221.80 CFS PIPE PIPE LENGTH = 324.00 FEET DIAMETER = 66.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.16 CRITICAL DEPTH(FT) = 4.17 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 3,871 FLOW DEPTH VELOCITY (FT) (FT/SEC) 2.814 18.130 2.788 18.347 SPECIFIC ENERGY(FT) 7.921 8.018 PRESSURE+ MOMENTUM(POUNDS) 8708,17 8781.61 8 12 17 22 27 33 40 47. 54. 63, 72. 82. 93. 106. 120. 136. 155. 178. 205. 238. 283. 324 . .011 .445 .203 .318 .828 .778 .221 ,218 . 845 ,189 .361 .498 .770 .398 674 992 903 218 192 927 368 000 2, 2. 2. 2, 2. 2. 2. 2, 2. 2. 2. 2. 2. 2. 2. 2, 2, 2. 2, 2. ,761 ,735 ,708 ,682 . 656 ,629 .603 ,577 .550 .524 ,498 ,471 ,445 .419 ,392 ,366 ,340 .313 ,287 ,261 2.234 2.218 18.570 18.798 19.031 19.271 19.517 19.769 20.027 20.292 20.564 20.843 21.130 21.424 21.727 22.038 22.357 22.685 23,023 23,370 23,728 24.096 24.475 24.721 8.119 8.225 8,336 8,452 8.574 8.701 8.835 8. 975 9.121 9,274 9,435 9. 603 9.780 9,965 10,159 10.362 10.576 10.800 11.035 11.282 11.541 11.713 8857,58 8936.13 9017.36 9101.34 9188.17 9277.92 9370,69 9466.59 9565.70 9668.15 9774.04 9883.50 9996.64 10113.59 10234.49 10359.49 10488.73 10622.37 10760.58 10903.54 11051.42 11147.93 NODE 409.50 : HGL = < 360.814>;EGL= < 365,921>;FLOWLINE= < 358. 000> *****************, r******************^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 409,50 TO NODE 409 00 IS —- _U_PSTREAM_NO_D_E___40_9.00_____E^^^^^^ (FLOW°is"sUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 212.90 221.80 8.90 0.00 DIAMETER (INCHES) 60.00 66.00 24.00 0.00 ANGLE (DEGREES) 0.00 90.00 0.00 FLOWLINE ELEVATION 358.50 358.00 361.00 0,00 CRITICAL DEPTH(FT, 4.15 ) 0.00===Q5 EQUALS BASIN INPUT=== 17 06 00 VELOCITY (FT/SEC) 18.038 18.135 5.236 0,000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED- DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- noc.S^l?*''^^ ^''^^'''^^ ' ' ^ ^ <^^-'^2) *16.1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 01647 ZSnJf'^^ MANNING'S N = 0.01300; FRICTION SLOpl = S'o 6 5 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0 01631 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.065 FEET ENTRANCE loqqp-q - n nnn x^^r^m JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE SsSES^ " ^ JUNCTION LOSSES = ( 0.530)+( 0.000) = 0.530 NODE 409.00 : HGL = < 361.399;;EGLrri66:45i;;FLO^^^^ ***********************,,,,,,,,,^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 409.00 TO NODE 429 50 IS CODE - ^ ************** __U_PSTREAM_NO_DE___42_9.50___ ELEVATION = 361. of ^FLoS'?s"sUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD)• PIPE FLOW = 212.90 CFS PIPE DIAMETER = 60,00 INCHES PIPE LENGTH = 81.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 2.40 CRITICAL DEPTH(FT) = 4.15 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 4.15 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY CONTROL(FT) (FT) (FT/SEC) 0, 000 4 .150 12.217 0.116 4.080 12.407 0. 475 4.010 12.610 1.102 3. 940 12.825 2.020 3.870 13.053 3.262 3.799 13.295 4.863 3.729 13.551 6. 867 3. 659 13,822 9.324 3.589 14.109 12.296 3.519 14.412 15.856 3.449 14.734 20.094 3.379 15.074 25.120 3.309 15.435 31.074 3.239 15.817 38.131 3.168 16.223 46.517 3. 098 16,653 56.533 3.028 17,111 68.587 2.958 17,597 81.000 2.899 18.033 NODE 429.50 : HGL = < 365. 150>;EGL= < SPECIFIC PRESSURE+ ENERGY(FT) MOMENTUM(POUN 6 .469 7111.22 6 .472 7114.23 6 .480 7123.39 6 495 7138.93 6 517 7161.08 6 546 7190.14 6 582 7226.40 6 627 7270.20 6 682 7321.91 6 746 7381.93 6 822 7450.72 6 909 7528.75 7. 010 7616.58 7. 126 7714.79 7. 258 7824.03 7. 407 7945.03 7. 577 8078.57 7. 769 8225.55 7. 951 8361.16 ,000> *********************,y r**************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 429.50 TO NODE 429.00 IS CODE = 5 UPSTREAM^NODE 429.00 ELEVATION = 363.00 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 27.70 212.90 183.30 1.90 0,00== DIAMETER (INCHES) 24,00 60.00 48,00 18,00 ANGLE (DEGREES) 90,00 0,00 90.00 FLOWLINE ELEVATION 363,00 361,00 362,00 364.50 CRITICAL DEPTH(FT,) 1.82 15 79 =Q5 EQUALS BASIN INPUT=== 0.52 VELOCITY (FT/SEC) 8.817 12,220 14.888 1.248 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 01499 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 00654 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01076 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.043 FEET ENTRANCE LOSSES = 0 000 FEET ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS NODE 429.00 : HGL = < 366.262>;EGL= < 367.469>;FLOWLINE= < 363.000> ***********************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 429.00 TO NODE 426.50 IS CODE = 1 ^ UPSTREAM^NODE 426.50 ELEVATION = 364.20 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.70 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 42.00 FEET MANNING'S N = 0 01300 SF=(Q/K)**2 = (( 27.70)/( 226.223))**2 = 0.01499 HF=L*SF = ( 42.00)*(0.01499) = 0.630 NODE 426,50 : HGL = < 366,891>;EGL= < 368,099>;FLOWLINE= < 364,200> **********************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 426.50 TO NODE 42 6.00 IS CODE = 5 UPSTREAM NODE 426.00 ELEVATION = 364.53 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT ) (FT/SEC) UPSTREAM 24.00 24.00 0,00 364.53 1 73 7 639 DOWNSTREAM 27.70 24.00 - 364.20 1 82 8*817 LATERAL #1 0.00 0.00 0.00 0.00 o'oo o"oOO LATERAL #2 0.00 0.00 0.00 0.00 0.00 o'oOO Q5 3.70===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01125 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01499 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01312 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.052 FEET ENTRANCE LOSSES = 0.241 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.353)+( 0.241) = 0.595 NODE 426.00 : HGL = < 367.787>;EGL= < 368.694>;FLOWLINE= < 364.530> *********************************^*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 426.00 TO NODE 425.00 IS CODE = 1 UPSTREAM NODE 425.00 ELEVATION = 366.50 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 24.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 21.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.81 CRITICAL DEPTH(FT) = 1.73 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.73 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.735 8. 288 2,802 531.33 0,025 1.698 8. 438 2,804 531.70 0,103 1.661 8, 602 2,811 532.83 0,238 1.624 8. 780 2,822 534.76 0,436 1.587 8. 973 2,838 537.50 0.705 1.550 9. 181 2,860 541.11 1.052 1.514 9. 406 2.888 545.63 1. 487 1.477 9. 649 2.923 551.12 2.024 1.440 9. 910 2.966 557.63 2. 677 1.403 10. 192 3.017 565.25 3.464 1.366 10. 496 3.078 574.04 4.407 1.329 10. 824 3,149 584.11 5.534 1.292 11. 178 3,233 595.54 6. 882 1,255 11. 560 3.332 608.47 8. 493 1,218 11. 974 3.446 623.03 10.427 1.181 12. 423 3.579 639.36 12.762 1.144 12. 910 3.734 657.65 15.604 1.107 13. 439 3.914 678.09 19.104 1.071 14. 016 4.123 700.92 21.000 1.055 14, 283 4.224 711.61 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 3.26 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 ,000 3 .257 7. 639 4 164 797 81 15 ,230 2 ,000 7 . 639 2 906 551 34 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 15 .230 2 .000 7. 637 2 906 551 34 15 , 344 1 .989 7. 642 2 897 549 50 15 .445 1 , 979 7 . 651 2 888 547 84 15 .538 1 , 968 7. 663 2 881 546 32 15 . 625 1 . 958 7. 677 2 873 544 91 15 .706 1 , 947 7 , 693 2 867 543 58 15 .782 1 . 936 7. 711 2 860 542 34 15 .854 1 . 926 7. 730 2 854 541 18 -15 . 921 1 . 915 7. 750 2 849 540 09 15 .983 1 . 905 7. 773 2 843 539 07 16 .042 1 .894 7, 796 2 838 538 12 16 ,097 1 .883 7, 821 2 834 537 24 16 .148 1 .873 7, 847 2 829 536 42 16 ,195 1 .862 7, 874 2 825 535 66 16 .238 1 .852 7. 902 2 822 534 97 16 ,278 1 .841 7 . 932 2 818 534 34 16 .314 1 ,830 7. 962 2 815 533 77 16 .347 1 .820 7. 994 2 813 533 26 16 .375 1 ,809 8. 027 2 810 532 81 16 400 1 799 8 061 2 808 532 42 16 422 1 788 8 096 2 806 532 08 16 439 1 111 8 132 2 805 531 81 16 453 1 767 8 170 2 804 531 60 16 463 1 756 8 208 2 803 531 45 16 469 1 746 8 247 2 802 531 36 16 471 1 735 8 288 2 802 531 33 21 000 1 735 8 288 2 802 531 33 EjjQ OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 9.06 FEET UPSTREAM OF NODE 426.00 | I DOWNSTREAM DEPTH = 2.510 FEET, UPSTREAM CONJUGATE DEPTH = 1.157 FEET | NODE 425.00 : HGL = < 368.235>;EGL= < 369.302>;FLOWLINE= < 366.500> *************************************************************,j^j^,j,,^^,j.^,^.,^,^,^,^^j^^^^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 425.00 FLOWLINE ELEVATION = 366.50 ASSUMED UPSTREAM CONTROL HGL = 368.23 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Basin 4 Hydrology Analysis RACE04.OUT San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 02/20/04 CARLSBAD RACEWAY BASIN 4 2-20-04 G:\ACCTS\971035\RACE04 OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method Process from Point/Station 401.000 to Point/Station 402.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MULTI - UNITS area type ] Initial subarea flow distance = 25.00(Ft.) Highest elevation = 396.00(Ft.) Lowest elevation = 395.50(Ft.) Elevation difference = 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.86 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope-^ (1/3) ] TC = [1.8* (1.1-0.7000) * ( 25.00'^.5)/( 2 . OO'^ {1/3) ] = 2.86 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.700 Subarea runoff = 0.055(CFS) Total initial stream area = 0.010(Ac.) I-++++++H Process from Point/Station 402.000 to Point/Station 403.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 395.500(Ft.) End of street segment elevation = 383.000(Ft.) Length of street segment = 800.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Page 1 RACE04.OUT Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.077(CFS) Depth of flow = 0.092(Ft.), Average velocity = 1.509(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.51(Ft/s) Travel time = 8.83 min. TC = 13.83 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 4.100(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 3.116(CFS) for 0.800(Ac.) Total runoff = 3.171(CFS) Total area = 0.81(Ac.) Street flow at end of street = 3.171(CFS) Half street flow at end of street = 3.171(CFS) Depth of flow = 0.301(Ft.), Average velocity = 2.790(Ft/s) Flow width (from curb towards crown)= 10.322(Ft.) Process from Point/Station 403.000 to Point/Station 407.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 375.00(Ft.) Downstream point/station elevation = 374.17(Ft.) Pipe length = 43.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.171(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.171(CFS) Normal flow depth in pipe = 5.71(In.) Flow top width inside pipe = 16.75(In.) Critical Depth = 8.14(In.) Pipe flow velocity = 6.59(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 13.94 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 403.000 to Point/Station 407.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.810(Ac.) Runoff from this stream = 3.171(CFS) Time of concentration = 13.94 min. Rainfall intensity = 4.079(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 404.000 to Point/Station 405.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Page 2 RACE04.OUT Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 320.00(Ft.) Highest elevation = 396.00(Ft.) Lowest elevation = 388.00(Ft.) Elevation difference = 8.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.56 min. TC = [1.8* (1.1-C) *distance".5) / (% slope''(1/3) ] TC = [1.8*(l.l-0.9500)*(320.00''.5)/{ 2 . SO'^ (1/3) ] = 3.56 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 15.619(CFS) Total initial stream area = 2.080(Ac.) +++++++++++++++++++++++^ Process from Point/Station 405.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** I-++++++ 407.000 Upstream point/station elevation = 37 9.00(Ft.) Downstream point/station elevation = 374.17(Ft.) Pipe length = 113.21(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 15.619(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 15.619(CFS) Normal flow depth in pipe = 11.31(In.) Flow top width inside pipe = 17.40(In.) Critical Depth = 17.02(In.) Pipe flow velocity = 13.36(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 5.14 min. +++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 405.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 407.000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.080(Ac.) Runoff from this stream = 15.619(CFS) Time of concentration = 5.14 min. Rainfall intensity = 7.764(In/Hr) Process from Point/Station 401.000 to Point/Station **** INITIAL AREA EVALUATION **** 422.000 ] 25.00(Ft.; Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Initial subarea flow distance Highest elevation = 396.00(Ft.) Lowest elevation = 395.50(Ft.) Elevation difference = 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.07 min. TC = [1.8* (1.1-C) *distance''.5) / (% slope''(1/3) ] TC = [1.8*(1.1-0.9500)* ( 25.00^.5)/( 2.00"(l/3)]= 1.07 Page 3 RACE04.OUT Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.075(CFS) Total initial stream area = 0.010(Ac.) I-+++++++++++++++++++++++++ ++++++++++++++H Process from Point/Station 422.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 408.000 Top of street segment elevation = 395.500(Ft.) End of street segment elevation = 381.000(Ft.) Length of street segment = 795.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side{s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street = 0.102(CFS) Depth of flow = 0.100(Ft.), Average velocity = 1.712(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.71(Ft/s) TC = 0.0150 0.0150 Travel time = 7.74 min. TC = 12.74 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Rainfall intensity = 4.324(In/Hr) Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 2.917(CFS) for 0.710{Ac.) Total runoff = 2.992(CFS) Total area = 0.72(Ac.) Street flow at end of street = 2.992(CFS) Half street flow at end of street = 2.992(CFS) Depth of flow = 0.290(Ft.), Average velocity = 2.918(Ft/s) Flow width (from curb towards crown)= 9.7 67(Ft.) ] for a 100.0 year storm I-+++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 408.000 to Point/Station 407.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 376.00(Ft.) Downstream point/station elevation = 374.00(Ft.) Pipe length = 6.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.992(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.992(CFS) Normal flow depth in pipe = 2.72(In.) Flow top width inside pipe = 12.89(In.) Critical Depth = 7.89(In.) Pipe flow velocity = 17.82(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 12.74 min. Page 4 RACE04.OUT I-+++++++++++++++++++++H Process from Point/Station 408.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** I-++++++++++++ 407.000 Along Main Stream number: 1 in normal stream number 3 Stream flow area = 0.720(Ac.) Runoff from this stream = 2.992(CFS) Time of concentration = 12.74 min. Rainfall intensity = 4.323(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 Qmax{1) Qmax(2) Qmax(3) = 3.171 15.619 2. 992 13. 94 5.14 12.74 4.079 7.764 4.323 1 000 * 1 000 * 3 171) + 0 525 * 1 000 15 619) + 0 944 * 1 000 * 2 992) + = 14 201 1 000 * 0 369 * 3 171) + 1 000 * 1 000 * 15 619) + 1 000 * 0 403 * 2 992) + = 17 995 1 000 * 0 914 * 3 171) + 0 557 * 1 000 * 15 619) + 1 000 * 1 000 * 2 992) + = 14 587 Total of 3 streams to confluence: Flow rates before confluence point: 3.171 15.619 2.992 Maximum flow rates at confluence using above data: 14.201 17.995 14.587 Area of streams before confluence: 0.810 2.080 0.720 Results of confluence: Total flow rate = 17.995(CFS) Time of concentration = 5.141 min. Effective stream area after confluence = 3.610(Ac.) Process from Point/Station 407.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 373.67(Ft.) Downstream point/station elevation = 367.50(Ft.) Pipe length = 193.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.995(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 17.995(CFS) Normal flow depth in pipe = 11.21(In.) Flow top width inside pipe = 23.95 (In.) Critical Depth = 18.34(In.) Pipe flow velocity = 12.50(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 5.40 min. I-++++++++++++ 414.000 I-++++++++++++++++++++++++++++H Page 5 I-+++++++++++++++ RACE04.OUT Process from Point/Station 414.000 to Point/Station 409.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 367.17(Ft.) Downstream point/station elevation = 361.00(Ft.) Pipe length = 193.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.995(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 17.995(CFS) Normal flow depth in pipe = 11.21(In.) Flow top width inside pipe = 23.95(In.) Critical Depth = 18.34(In.) Pipe flow velocity = 12.50(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 5.66 min. Process from Point/Station 414.000 to Point/Station 409.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 3.610(Ac.) Runoff from this stream = 17.995(CFS) Time of concentration = 5.66 min. Rainfall intensity = 7.300(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++H Process from Point/Station 424.000 to Point/Station 425.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 450.00(Ft.) Highest elevation = 392.00(Ft.) Lowest elevation = 380.00(Ft.) Elevation difference = 12.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.13 min. TC = [1.8*(1.1-C)*distance^.5)/(% slope^(l/3)] TC = [1.8*(l.l-0.9500)*(450.00'^.5)/( 2 . 67" (1/3) ] = 4.13 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 23.954(CFS) Total initial stream area = 3.190(Ac.) I-++++++++++ Process from Point/Station 425.000 to Point/Station 426.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 366.50(Ft.) Downstream point/station elevation = 364.53(Ft.) Pipe length = 21.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 23.954(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 23.954(CFS) Normal flow depth in pipe = 9.74(In.) Page 6 RACE04.OUT Flow top width inside pipe = 23.57(In.) Critical Depth = 20.79(In.) Pipe flow velocity = 20.04(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 5.02 min. Process from Point/Station 425.000 to Point/Station 426.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3.190(Ac.) Runoff from this stream = 23.954(CFS) Time of concentration = 5.02 min. Rainfall intensity = 7.886(In/Hr) I-++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 427.000 to Point/Station 428.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 26.00(Ft.) Highest elevation = 38 6.30(Ft.) Lowest elevation = 385.80(Ft.) Elevation difference = 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.11 min. TC = [1,8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.9500)*( 26.00'".5)/( 1. 92'^ (1/3) ] = 1.11 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0,075(CFS) Total initial stream area = 0.010(Ac.) I-++++++++++++++++++++++++++++H Process from Point/Station 428.000 to Point/Station 426.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 385.800(Ft.) End of street segment elevation = 371.800(Ft.) Length of street segment = 490.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.092(CFS) Depth of flow = 0.088(Ft.), Average velocity = 1.974(Ft/s) Streetflow hydraulics at midpoint of street travel: Page 7 RACE04.OUT Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.97(Ft/s) Travel time = 4.14 min. TC = 9.14 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 5.357(In/Hr Runoff coefficient used for sub-area, Subarea runoff = 2.239(CFS) for Total runoff = 2.314(CFS) Total for a 100.0 year storm Rational method,Q=KCIA, C 0.440(Ac.) area = 0.45(Ac.) 0. 950 Street flow at end of street = 2.314(CFS) Half street flow at end of street = 2.314(CFS) Depth of flow = 0.255(Ft.), Average velocity = 3.262(Ft/s) Flow width (from curb towards crown)= 7.989(Ft.) I-+++++++++++++++++ Process from Point/Station 428.000 to Point/Station 426.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.450(Ac.) Runoff from this stream = 2.314(CFS) Time of concentration = 9.14 min. Rainfall intensity = 5.357(In/Hr) Siimmary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 23.954 2.314 Qmax(1) = Qmax(2) = 1.000 * 1.000 * 0.679 * 1.000 * 5.02 9.14 1.000 * 0.549 * 1.000 * 1.000 * 7.886 5.357 23.954) + 2.314) + = 23.954) + 2.314) + = 25.225 18.587 Total of 2 streams to confluence: Flow rates before confluence point: 23.954 2.314 Maximiam flow rates at confluence using above data: 25.225 18.587 Area of streams before confluence: 3.190 0.450 Results of confluence: Total flow rate = 25.225(CFS) Time of concentration = 5.017 min. Effective stream area after confluence = 3.640(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 426.000 to Point/Station 426.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [INDUSTRIAL area type 0.000 0.000 0.000 1.000 Page 8 RACE04.OUT Time of concentration = 5.02 min. Rainfall intensity = 7.886(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C Subarea runoff = 2.173(CFS) for 0.290(Ac.) Total runoff = 27.397(CFS) Total area = 3.93(Ac.) 0. 950 Process from Point/Station 426.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 429.000 Upstream point/station elevation = 364.20(Ft.) Downstream point/station elevation = 363.00(Ft.) Pipe length = 42.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 27.397(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 27.397(CFS) Normal flow depth in pipe = 15.02(In.) Flow top width inside pipe = 23.23(In.) Critical Depth = 21.81(In.) Pipe flow velocity = 13,23(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 5.07 min. Process from Point/Station 426.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 429.000 Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3.930(Ac.) Runoff from this stream = 27.397(CFS) Time of concentration = 5.07 min. Rainfall intensity = 7.833(In/Hr) Process from Point/Station 429.000 to Point/Station 429.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Rainfall intensity (I) = User specified values are as follows: TC = 17,03 min. Rain intensity = ] 3.586 for a 100.0 year storm 3.59(In/Hr) Total area = 59.96(Ac.) Total runoff 199.00(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 429.000 to Point/Station 429.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 59.960(Ac.) Runoff from this stream = 199.000(CFS) Time of concentration = 17.03 min. Rainfall intensity = 3.586(In/Hr) I-+++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 430.000 to Point/Station 431.000 **** INITIAL AREA EVALUATION **** Page 9 RACE04.OUT ,000 ,000 ] Decimal fraction soil group A = 0. Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1. [INDUSTRIAL area type Initial subarea flow distance = 26.00(Ft.) Highest elevation = 394.00(Ft.) Lowest elevation = 393.50(Ft.) Elevation difference = 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.11 min. TC = [1.8* (1.1-C) *distance''.5) / (% slope" (1/3) ] TC = [1.8*(l.l-0.9500)*( 26.00".5)/( 1.92"(1/3)]= 1. Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.075(CFS) Total initial stream area = 0.010(Ac.) ,11 )-++++H Process from Point/Station 431.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 432.000 Top of street segment elevation = 3 End of street segment elevation = 3 Length of street segment = 370.000 ( Height of curb above gutter flowline Width of half street (curb to crown Distance from crown to crossfall grade Slope from gutter to grade break (v/hz Slope from grade break to crown (v/hz) Street flow is on [1] side(s) of the s Distance from curb to property line = Slope from curb to property line (v/hz Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In. Manning's N in gutter = 0.0150 Manning's N from gutter to grade brea Manning's N from grade break to crown Estimated mean flow rate at midpoint o Depth of flow = 0.075(Ft.), Average Streetflow hydraulics at midpoint of s Halfstreet flow width = 1.500(Ft.) Flow velocity = 2.55(Ft/s) Travel time = 2.42 min. TC = Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Rainfall intensity = 6.127(In/Hr) Runoff coefficient used for sub-area, Subarea runoff = 1.74 6(CFS) for Total runoff = 1.821(CFS) Total Street flow at end of street = 1. Half street flow at end of street = Depth of flow = 0.217(Ft.), Average Flow width (from curb towards crown)= 93.500(Ft.) 71.800(Ft.) Ft. ) 6.0(In.) = 26.000(Ft.) break = 24.500(Ft.) ) = 0.020 0.020 treet 10.000(Ft.) ) = 0.020 k = 0.0150 = 0.0150 f street = velocity = treet travel; 7.42 min. 0.086(CFS) 2.547(Ft/s) ] for a 100.0 year storm Rational method,Q=KCIA, C = 0.950 0.300(Ac.) area = 0.31(Ac.) 821(CFS) 1.821(CFS) velocity = 4.086(Ft/s) 6.120(Ft.) Process from Point/Station 432.000 to Point/Station Page 10 432.000 RACE04.OUT SUBAREA FLOW ADDITION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 7.42 min. Rainfall intensity = 6.127(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 0.291(CFS) for 0.050(Ac.) Total runoff = 2.112(CFS) Total area = 0.36(Ac.) Process from Point/Station 432.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 429.000 Upstream point/station elevation = 364.90(Ft.) Downstream point/station elevation = 364.50(Ft.) Pipe length = 4.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.112(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.112(CFS) Normal flow depth in pipe = 3.08(In.) Flow top width inside pipe = 13.55(In.) Critical Depth = 6.58(In.) Pipe flow velocity = 10.52(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 7.43 min. Process from Point/Station 432.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 429.000 Along Main Stream number: 2 in normal stream number 3 Stream flow area = 0.360(Ac.) Runoff from this stream = 2.112(CFS) Time of concentration = 7.43 min. Rainfall intensity = 6.123(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 27.397 199.000 2.112 Qmax(1) Qmax(2) = Qmax(3) = 5.07 17.03 7.43 1.000 1.000 1.000 0.458 1.000 0.586 0.782 1,000 1.000 1.000 0.298 0. 683 1.000 1.000 1.000 1.000 0.436 1.000 7.833 3.586 6.123 27.397) + 199.000) + 2.112) + 27.397) + 199.000) + 2.112) + 27.397) + 199.000) + 2.112) + 88.088 212.775 110.324 Total of 3 streams to confluence: Flow rates before confluence point: Page 11 RACE04.OUT 27.397 199.000 2.112 Maximum flow rates at confluence using above data: 88.088 212.778 110.324 Area of streams before confluence: 3.930 59.960 0.360 Results of confluence: Total flow rate = 212.778(CFS) Time of concentration = 17.030 min. Effective stream area after confluence = 64.250(Ac.) I-++++++++++++H Process from Point/Station 429.000 to Point/Station 409.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 361.00(Ft.) Downstream point/station elevation = 358.50(Ft.) Pipe length = 81.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 212.778(CFS) Given pipe size = 60.00(In.) Calculated individual pipe flow = 212.778(CFS) Normal flow depth in pipe = 28.76(In.) Flow top width inside pipe = 59.95(In.) Critical Depth = 49.78(In.) Pipe flow velocity = 22.88(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 17.09 min. Process from Point/Station 429.000 to Point/Station 409.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream niomber: 2 Stream flow area = 64.250(Ac.) Runoff from this stream = 212.778(CFS) Time of concentration = 17.09 min. Rainfall intensity = 3.578(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 17.995 5.66 7.300 2 212.778 17.09 3.578 Qmax(1) = Qmax(2) = 1.000 * 1.000 * 17.995) + 1.000 * 0.331 * 212.778) + = 88.417 0.490 * 1.000 * 17.995) + 1.000 * 1.000 * 212.778) + = 221.596 Total of 2 main streams to confluence: Flow rates before confluence point: 17.995 212.778 Maximum flow rates at confluence using above data: 88.417 221.596 Area of streams before confluence: 3.610 64.250 Results of confluence: Total flow rate = 221.596(CFS) Page 12 RACE04.OUT Time of concentration = 17.08 9 min. Effective stream area after confluence = 67.860(Ac.; Process from Point/Station 409.000 to Point/Station 410.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 358.00(Ft.) Downstream point/station elevation = 344.58(Ft.) Pipe length = 324.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 221.596(CFS) Given pipe size = 66.00(In.) Calculated individual pipe flow = 221.596(CFS) Normal flow depth in pipe = 25.85(In.) Flow top width inside pipe = 64.43(In.) Critical Depth = 49.96(In.) Pipe flow velocity = 25.68(Ft/s) Travel time through pipe = 0.21 min. Time of concentration (TC) = 17.30 min. +++H Process from Point/Station 409.000 to Point/Station 410.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream niomber 1 Stream flow area = 67.860(Ac.) Runoff from this stream = 221.596(CFS) Time of concentration = 17.30 min. Rainfall intensity = 3.549(In/Hr) I-+++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 415.000 to Point/Station 416.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 310.00(Ft.) Highest elevation = 392.00(Ft.) Lowest elevation = 384.00(Ft.) Elevation difference = 8.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.47 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.9500)*(310.00".5)/( 2.58"(l/3)]= 3.47 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 10.362(CFS) Total initial stream area = 1.380(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 416.000 to Point/Station 417.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 374.00(Ft.) Downstream point/station elevation = 369.50(Ft.) Pipe length = 202.00(Ft.) Manning's N = 0.010 No. of pipes = 1 Required pipe flow = 10.362(CFS) Page 13 RACE04.OUT Given pipe size = 18.00(In.) Calculated individual pipe flow = 10.362(CFS) Normal flow depth in pipe = 9.09(In.) Flow top width inside pipe = 18.00 (In.) Critical Depth = 14.86(In.) Pipe flow velocity = 11.58(Ft/s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 5.29 min. Process from Point/Station 417.000 to Point/Station 417.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 5.29 min. Rainfall intensity = 7.621(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff = 10.788(CFS) for 1.490(Ac.) Total runoff = 21.150(CFS) Total area = 2.87(Ac.) Process from Point/Station 417.000 to Point/Station 418.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 369.00(Ft.) Downstream point/station elevation = 364.33(Ft.) Pipe length = 179.00(Ft.) Manning's N = 0.010 No. of pipes = 1 Required pipe flow = 21.150(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 21.150(CFS) Normal flow depth in pipe = 11.21(In.) Flow top width inside pipe = 23.95(In.) Critical Depth = 19.76(In.) Pipe flow velocity = 14.68(Ft/s) Travel time through pipe = 0.20 min. Time of concentration (TC) = 5.4 9 min. I-+++++++++++++++++++++++++H Process from Point/Station 418.000 to Point/Station **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 5.4 9 min. Rainfall intensity = 7.438 (In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff = 7.985(CFS) for 1.130(Ac.) Total runoff = 29.135(CFS) Total area = 4.00(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 418.000 to Point/Station 419.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 364.00(Ft.) Page 14 RACE04.OUT Downstream point/station elevation = 352.33(Ft.) Pipe length = 190.00(Ft.) Manning's N = 0.010 No. of pipes = 1 Required pipe flow = 29.135(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 29.135(CFS) Normal flow depth in pipe = 10.55(In.) Flow top width inside pipe = 23.82(In.) Critical Depth = 22.18 (In.) Pipe flow velocity = 21.90(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 5.64 min. Process from Point/Station **** SUBAREA FLOW ADDITION I-++++H 419.000 to Point/Station 419.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Time of concentration •• Rainfall intensity = ] 5.64 min. 7.315(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 9.729(CFS) for l,400(Ac.) Total runoff = 38.864(CFS) Total area = 5.40(Ac.) I-++++++++H Process from Point/Station 419.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 410.000 Upstream point/station elevation = 353.42(Ft.) Downstream point/station elevation = 353.00(Ft.) Pipe length = 15.00(Ft.) Manning's N = 0.010 No. of pipes = 1 Required pipe flow = 38.864(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 38.864(CFS) Normal flow depth in pipe = 16.08(In.) Flow top width inside pipe = 22.57(In.) Critical depth could not be calculated. Pipe flow velocity = 17.36(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 5.65 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 419.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 410.000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 5.400(Ac.) Runoff from this stream = 38.864(CFS) Time of concentration = 5.65 min. Rainfall intensity = 7.303(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 221.596 17.30 2 38.864 5.65 Qmax{1) = 3.549 7.303 Page 15 Qmax(2) RACE04.OUT 1.000 * 1.000 * 221.596) + 0.486 * 1.000 * 38.864) + = 240.486 1.000 * 0.327 * 221.596) + 1.000 * 1.000 * 38.864) + = 111.275 Total of 2 streams to confluence: Flow rates before confluence point: 221.596 38.864 Maximum flow rates at confluence using above data: 240.486 111.275 Area of streams before confluence: 67.860 5.400 Results of confluence: Total flow rate = 240.486(CFS) Time of concentration = 17.299 min. Effective stream area after confluence = 73.260(Ac.) Process from Point/Station 410.000 to Point/Station 411.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 344.00(Ft.) Downstream point/station elevation = 341.10(Ft.) Pipe length = 224.80(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 240.486(CFS) Given pipe size = 66.00(In.) Calculated individual pipe flow = 240.486(CFS) Normal flow depth in pipe = 38.02(In.) Flow top width inside pipe = 65.23(In.) Critical Depth = 51.98(In.) Pipe flow velocity = 16.97(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 17.52 min. Process from Point/Station 411.000 to Point/Station 411.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 17.52 min. Rainfall intensity = 3.521(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff = 6.355(CFS) for 1.900(Ac.) Total runoff = 246.841(CFS) Total area = 75.16(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 411.000 to Point/Station 412.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 340.77(Ft.) Downstream point/station elevation = 333.40(Ft.) Pipe length = 214.00(Ft.) Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 246.841(CFS) Given pipe size = 66.00(In.) Calculated individual pipe flow = 246.841(CFS) Normal flow depth in pipe = 28.88(In.) Flow top width inside pipe = 65.48(In.) Page 16 RACE04.OUT Critical Depth = 52.65 (In.) Pipe flow velocity = 24.71(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 17.66 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 411.000 to Point/Station 412.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream ncunber: 1 in normal stream number 1 Stream flow area = 75.160(Ac.) Runoff from this stream = 246.841(CFS) Time of concentration = 17.66 min. Rainfall intensity = 3.502(In/Hr) Process from Point/Station 420.000 to Point/Station 421.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 600.00{Ft.) Highest elevation = 371.00(Ft.) Lowest elevation = 360.00(Ft.) Elevation difference = 11.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.40 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.9500)* (600.00".5)/( 1.83"(l/3)]= 5.40 Rainfall intensity (I) = 7.518 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 14.284(CFS) Total initial stream area = 2.000(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 421.000 to Point/Station 423.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 353.50(Ft.) Downstream point/station elevation = 339.82(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.010 No. of pipes = 1 Required pipe flow = 14.284(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 14.284(CFS) Normal flow depth in pipe = 7.92(In.) Flow top width inside pipe = 17.87(In.) Critical Depth = 16.66(In.) Pipe flow velocity = 19.08(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 5.58 min. I-++++++H Process from Point/Station 423.000 to Point/Station 423.000 **** SUBAREA FLOW ADDITION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Page 17 RACE04.OUT Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 5.58 min. Rainfall intensity = 7.365(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0. Subarea runoff = 23.370(CFS) for 3.340(Ac.) Total runoff = 37.655(CFS) Total area = 5.34(Ac.) 950 Process from Point/Station 423.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 412.000 37.655(CFS) Upstream point/station elevation = 339.32(Ft.) Downstream point/station elevation = 336.00(Ft.) Pipe length = 49.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = Given pipe size = 24.00(In.) Calculated individual pipe flow = 37.655(CFS) Normal flow depth in pipe = 13.95(In.) Flow top width inside pipe = 23.68(In.) Critical depth could not be calculated. Pipe flow velocity = 19.88(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 5.62 min. Process from Point/Station 423.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** I-+++ 412.000 Along Main Stream niamber: 1 in normal stream number 2 Stream flow area = 5.340(Ac.) Runoff from this stream = 37.655(CFS) Time of concentration = 5.62 min. Rainfall intensity = 7.331(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 246.841 37.655 Qmax(1) = Qmax(2) = 17.66 5. 62 1.000 0.478 ,000 ,000 1.000 1.000 0.318 1.000 3.502 7.331 246.841) + 37.655) + 246.841) + 37.655) + 264.830 116.181 Total of 2 streams to confluence: Flow rates before confluence point: 246,841 37.655 Maximiim flow rates at confluence using above data: 264.830 116.181 Area of streams before confluence: 75.160 5.340 Results of confluence: Total flow rate = 264.830(CFS) Time of concentration = 17.664 min. Effective stream area after confluence = 80.500(Ac.) Page 18 RACE04.OUT Process from Point/Station 412.000 to Point/Station 413.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 333.00(Ft.) Downstream point/station elevation = 329.50(Ft.) Pipe length = 66.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 264.830(CFS) Given pipe size = 66.00(In.) Calculated individual pipe flow = 264.830(CFS) Normal flow depth in pipe = 26.63(In.) Flow top width inside pipe = 64.76(In.) Critical Depth = 54.30(In.) Pipe flow velocity = 29.49(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 17.70 min. End of computations, total study area = 80.50 (Ac.) Page 19 Closed Conveyance Hydraulic Analysis ****************************************** ***********************,J^,^^J^^J^,J^J^,^,^,^^J^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * SD A * * 12-20-02 C:\AES2001\HYDROSOFT\RATSCX\RACE04.RES * ********************************************************************j^j^j^,^j^^ FILE NAME: RACE04.DAT TIME/DATE OF STUDY: 09:34 07/01/2003 ***********************************************************************,j^.^,y^^^,^,^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 413.00- } 412.50- } 412.00- } 411.50- } 411.00- } 410.50- } 410.00- } 409.50- } 409.00- } 429.50- } 429.00- } 434.00- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 9209.09 FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 4.53 Dc 4.53 Dc 5.29 4.39 Dc 4.34 Dc 4.33*Dc 7.21 4.17 Dc 4,16 Dc 4,15 Dc 3,85 Dc 3,84*Dc DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 13010,66 9209.09 8814.56 8347.86 8048.32 8048.31 10618.60 7188.65 7111.23 7111.22 7633.50 7633.49 2.61* 2.91* 2.58* 3.40* 3.31* 4.33*Dc 2,17* 2,28* 2,27* 2.21* 2.33* 3.84*Dc 11663.87 11536.50 9097.74 8842.01 8048.32 11426.60 10820.74 10646.75 11002.27 10585.71 7633.49 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 413.00 FLOWLINE ELEVATION = 329.50 PIPE FLOW = 265.00 CFS PIPE DIAMETER = 66.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 333.900 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 4.40 FT.) IS LESS THAN CRITICAL DEPTH( 4.53 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 413.00 : HGL = < 332.111>;EGL= < 340.940>;FLOWLINE= < 329.500> ****************************************************************************** FLOW PROCESS FROM NODE 413.00 TO NODE 412.50 IS CODE = 1 UPSTREAM NODE 412.50 ELEVATION = 333.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 265.00 CFS PIPE DIAMETER = 66.00 INCHES PIPE LENGTH = 66.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.22 CRITICAL DEPTH(FT) 4.53 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.91 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 .908 20 786 9, 621 11663.87 4 .197 2 .880 21 035 9, 755 11770.15 8 .676 2 .853 21 290 9, 895 11879.86 13 .465 2 .825 21 552 10, 042 11993.10 18 .593 2 .798 21 821 10. 196 12109.99 24 .095 2 .770 22 096 10. 356 12230.64 30 ,013 2 .743 22 378 10. 523 12355.17 36 ,392 2 .715 22 667 10. 698 12483.70 43 ,289 2 .688 22 964 10. 882 12616.37 50 ,769 2 . 660 23 269 11. 073 12753.32 58 . 909 2 .633 23 582 11. 273 12894.69 66 ,000 2 . 611 23 838 11. 440 13010.66 NODE 412.50 : HGL = < 335.908>;EGL= < 342.621>;FLOWLINE= < 333.000> ****************************************************************************** FLOW PROCESS FROM NODE 412.50 TO NODE 412.00 IS CODE = 5 UPSTREAM NODE 412.00 ELEVATION = 333.33 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 247.10 265.00 17 . 90 0.00 0.00= DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 66.00 0.00 333.33 4.39 22.532 66.00 - 333.00 4.53 20.792 24.00 90.00 336.50 1.52 6.968 0.00 0,00 0.00 0.00 0.000 ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02375 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.095 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.177)+( 0.000) = 1.177 02683 02067 0.000 FEET NODE 412,00 : HGL = < 335.914>;EGL= < 343,798>;FLOWLINE= < 333.330> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 411.50 412.00 TO NODE 411.50 IS CODE = 1 ELEVATION = 340.77 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 247.10 CFS PIPE DIAMETER = 66.00 INCHES PIPE LENGTH = 214.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.40 CRITICAL DEPTH(FT) = 4.39 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.40 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 3 .397 16.037 7.393 9097.74 3 .104 3 .357 16.262 7.466 9167.60 6 .491 3 .317 16.495 7.544 9241.44 10 .187 3 .277 16.734 7.628 9319.40 14 .225 3 .237 16.982 7.718 9401.64 18 . 640 3 .198 17.238 7.815 9488.31 23 .475 3 .158 17.502 7. 917 9579,58 28 .778 3 .118 17.776 8.027 9675,62 34 . 607 3 .078 18.058 8.145 9776,62 41 .029 3 .038 18.350 8.270 9882,78 48 . 126 2 .998 18.652 8.404 9994,31 55 . 995 2 . 959 18,965 8.547 10111,42 64 .758 2 . 919 19,289 8. 699 10234,36 74 .563 2 .879 19,624 8.862 10363.37 85 . 598 2 .839 19,971 9.036 10498.72 98 . 107 2 .799 20,331 9.222 10640.69 112 .409 2 .759 20.704 9.420 10789.59 128 . 938 2 .720 21.092 9. 632 10945.73 148 .301 2 . 680 21.494 9.858 11109.46 171 .389 2 . 640 21.911 10.100 11281.14 199 .583 2 .600 22.345 10.358 11461.16 214 .000 2 .584 22.525 10.468 11536.50 NODE 411.50 : HGL = < 344 . 167>;EGL= < 348.163>;FLOWLINE= < 340.770> ****************************************************************************** FLOW PROCESS FROM NODE 411.50 TO NODE 411.00 IS CODE = 5 UPSTREAM NODE 411.00 ELEVATION = 341.10 (FLOW IS SUPERCRITICAL) 7 CALCULATE PIPE JUNCTION LOSSES; UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 240.70 247.10 6.40 0.00 DIAMETER (INCHES) 66.00 66.00 18.00 0.00 ANGLE (DEGREES) 0.00 75.00 0.00 FLOWLINE ELEVATION 341.10 340.77 344.27 0.00 CRITICAL DEPTH(FT.) 4.33 4.39 0. 98 0.00 VELOCITY (FT/SEC) 16.087 16.042 5.244 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01123 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01099 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01111 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.044 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.270)+( 0.000) = 0.270 ENTRANCE LOSSES = 0.000 FEET NODE 411.00 : HGL = < 344.415>;EGL= < 348.433>;FLOWLINE= < 341.100> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 410.50 411.00 TO NODE 410.50 IS CODE = 1 ELEVATION = 344.00 (FLOW IS SUPERCRITICAL) • CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 240.70 CFS PIPE PIPE LENGTH = 225.00 FEET DIAMETER = 66.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 3.17 CRITICAL DEPTH(FT) = 4 .33 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 4.33 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.172 0.659 1.487 2. 690 4.303 6.369 8 . 939 12.072 15.836 20.316 25.613 31.852 39.186 47,810 57,977 70,016 84,377 FLOW DEPTH (FT) 4 .329 283 236 190 144 097 051 005 958 912 866 819 773 727 680 634 588 541 VELOCITY (FT/SEC) 11.995 12.122 12.254 12.390 12.531 12.677 12.828 12.984 13.146 13,313 13.486 13.665 13.851 14.042 14.241 14.447 14.660 14.881 SPECIFIC ENERGY(FT) 6.565 ,566 ,569 .575 ,584 ,594 ,608 624 643 666 6.692 6.721 6.754 6.791 6.831 6.877 6.927 6.982 PRESSURE+ MOMENTUM(POUNDS) 8048,32 8049.87 8054.14 8061.20 8071.12 8083.98 8099.85 8118,82 8140,98 8166,43 8195,27 8227,59 8263.52 8303.17 8346.67 8394.15 8445.75 8501.62 101.690 122.877 149.372 183.572 225.000 3.495 3.449 3.402 3.356 3.315 15.109 15.346 15.592 15.847 16.082 7.042 7.108 7.180 7.258 7.333 8561.91 8626.79 8696.45 8771.06 8842.01 NODE 410.50 : HGL = < 348.329>;EGL= < 350.565>;FLOWLINE= < 344.OOO ****************************************************************************** FLOW PROCESS FROM NODE 410.50 TO NODE 410.00 IS CODE = 5 UPSTREAM NODE 410.00 ELEVATION = 344.58 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW , DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION 221.80 66.00 80.00 344.58 240.70 66.00 - 344.00 18.90 24.00 0.00 347.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== FLOWLINE CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 4.17 25.436 4.33 11.999 1.56 7.170 0.00 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04031 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00556 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02293 JUNCTION LENGTH = 7.00 FEET FRICTION LOSSES = 0.161 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 6.233)+( 0.000) = 6.233 NODE 410.00 : HGL = < 346.751>;EGL= < 356.798>;FLOWLINE= < 344.580> ****************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 409.50 IS CODE = 1 UPSTREAM NODE 409.50 ELEVATION = 358.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 221.80 CFS PIPE PIPE LENGTH = 324.00 FEET DIAMETER = 66.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.16 CRITICAL DEPTH(FT) = 4.17 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.28 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.000 2.276 23,883 11.138 10820.74 6.171 2.271 23,950 11.184 10846.92 12.630 2.266 24.018 11.229 10873.25 19.403 2.261 24.086 11.275 10899.75 26.519 2.257 24.154 11.322 10926.42 34.012 2.252 24.223 11.369 10953.25 41.919 2 247 24 292 11 416 10980 24 50.287 2 242 24 362 11 464 11007 41 59.168 2 237 24 432 11 512 11034 74 68.625 2 232 24 502 11 561 11062 25 78.731 2 228 24 573 11 610 11089 93 89.576 2 223 24 644 11 659 11117 78 101.272 2 218 24 716 11 709 11145 81 113.952 2 213 24 787 11 760 11174 01 127.791 2 208 24 860 11 811 11202 39 143.008 2 204 24 932 11 862 11230 94 159.895 2 199 25 005 11 914 11259 68 178.846 2 194 25 079 11 966 11288 60 200.414 2 189 25 153 12 019 11317. 69 225.409 2 184 25 227 12 072 11346. 98 255.086 2 179 25 302 12 126 11376. 44 291,548 2 175 25 377 12 180 11406. 10 324.000 2 171 25 429 12 218 11426. 60 NODE 409.50 : HGL = < 360.276>;EGL= < 369.138>;FLOWLINE= < 358.000> **'j^*************************************************************************** FLOW PROCESS FROM NODE 409.50 TO NODE 409.00 IS CODE = 5 UPSTREAM NODE 409.00 ELEVATION = 358.50 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; FLOWLINE CRITICAL VELOCITY PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 212.90 60.00 0.00 358.50 4.15 24.551 DOWNSTREAM 221.80 66.00 - 358.00 4.17 23.890 LATERAL #1 8.90 24.00 90.00 361.00 1.06 5.236 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,03563 JUNCTION LENGTH = 4,00 FEET FRICTION LOSSES = 0.143 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.992)+( 0.000) = 0.992 0.03730 0.03396 0.000 FEET NODE 409.00 HGL = < 360.771>;EGL= < 370.130>;FLOWLINE= < 358.500> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 429.50 409.00 TO NODE ELEVATION = 429.50 IS CODE = 1 361.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 212.90 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 81.00 FEET IJIANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.40 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.21 4.15 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.206 25.488 12 300 11002.27 8.198 2.214 25.372 12 216 10958.62 16.696 2.221 25.258 12 134 10915.40 25.521 2.229 25.144 12 052 10872.60 34 .704 2.237 25,032 11 972 10830.22 44.279 2,244 24,920 11 893 10788.26 54.287 2,252 24.810 11 816 10746.72 64.776 2,259 24.700 11 739 10705.58 75.800 2,267 24.592 11 663 10664.84 81.000 2.271 24.543 11 630 10646.75 NODE 429.50 : HGL = < 363.206>;EGL= < 373.300>;FLOWLINE= < 361.000> *****************************************************************************,J FLOW PROCESS FROM NODE 429.50 TO NODE 429.00 IS CODE = 5 UPSTREAM NODE 429.00 ELEVATION = 362.00 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 199.00 48.00 0.00 362.00 DOWNSTREAM 212.90 60.00 - 361.00 LATERAL #1 12.90 24.00 90.00 363.00 LATERAL #2 1.00 18.00 90.00 364.50 Q5 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 3.84 4 .15 1.29 0.37 26.218 25.496 6.011 2.918 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04671 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0,04132 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04401 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.17 6 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.702)+( 0.000) = 1,702 ENTRANCE LOSSES = 0,000 FEET NODE 429.00 HGL < 364.328>;EGL= < 37 5.002>;FLOWLINE= < 362.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 434.00 42 9.00 TO NODE ELEVATION = 434.00 IS CODE = 1 379.81 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 199.00 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 348.79 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.26 CRITICAL DEPTH(FT) = 3.84 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3.f H GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0. 000 0.192 0.747 1.651 2. 906 4.524 6.527 8.946 11.819 15.198 19.146 23.740 29.079 35.286 42.519 50.982 60.948 72.785 87.016 104.405 126.142 154.222 192.392 249.077 348.790 FLOW DEPTH (FT) 3.843 3, 3. 3. 3. 3. 3. 780 717 654 591 527 464 3.401 3.338 3.275 211 148 085 022 959 895 832 769 706 643 579 516 453 390 328 VELOCITY (FT/SEC) 16.039 16.179 16.342 16.526 16.732 16.958 17.204 17.470 17.757 18.066 18.397 18.751 19.129 19.532 19.963 20.422 20.911 21.433 21.990 22.584 23.218 23.896 24.622 25.399 26.210 SPECIFIC ENERGY(FT) 7.841 7.847 7,866 7,898 7,940 7,995 8,063 8.143 8.237 8.346 8.470 8.611 8.770 8.950 9.151 9.375 9. 627 9.907 10.219 10.567 10.956 11.389 11.872 12,413 13,002 PRESSURE+ MOMENTUM(POUNDS) 7633,49 7638,58 7653.18 7676.67 7708.74 7749.26 7798.23 7855.75 7922.02 7997.28 8081.86 8176.14 8280.57 8395.66 8521.98 8660.18 8811.01 8975.26 9153.87 9347.83 9558.31 9786.56 10034.02 10302.29 10585.71 NODE 434.00 : HGL = < 383.653>;EGL= < 387.651>;FLOWLINE= < 379.810 *****************************************************************************j UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 434.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 37 9.81 383.65 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS RACE4A.RES GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM{POUNDS 0. 000 0 927 12 620 3 402 475 .16 2. 043 0 928 12 607 3 398 474 .79 4. 170 0 929 12 595 3 394 474 .42 6. 388 0 930 12 582 3 389 474 .05 8. 706 0 930 12 570 3 385 473 .67 11. 133 0 931 12 558 3 381 473 .30 13. 681 0 932 12 545 3 377 472 . 94 16. 362 0 932 12 533 3 373 472 57 19. 192 0 933 12 520 3 369 472 20 22. 189 0 934 12 508 3 365 471 83 25. 375 0 935 12 496 3 361 471 47 28. 775 0 935 12 483 3 357 471 10 32. 421 0 936 12 471 3 353 470 74 36. 353 0 937 12 459 3 349 470 38 40. 621 0 937 12 447 3 345 470 01 45. 289 0 938 12 435 3 341 469 65 50. 441 0 939 12 422 3 337 469 29 56. 191 0 940 12 410 3 333 468 93 62. 700 0 940 12 398 3 329 468 57 70. 202 0 941 12 386 3 325 468 21 79. 061 0 942 12 374 3 321 467 86 89. 886 0 942 12 362 3 317 467 50 103. 821 0 943 12 350 3 313 467 15 123. 432 0 944 12 338 3 309 466 79 156. 956 0. 945 12 326 3 305 466 44 192. 000 0. 945 12 326 3 305 466 43 NODE 414 .50 : HGL = < 368. 327>;EGL= < 370.802>;FLOWLINE= < 367.400> ********************************************************************^^,J^,J,J^,(,JJ,^J^J FLOW PROCESS FROM NODE 414.50 TO NODE 414.00 IS CODE = 5 UPSTREAM NODE 414.00 ELEVATION = 367.73 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 18.00 18.00 0.00 0.00 DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT. 24.00 24.00 0.00 0.00 0. 00 367 73 367 40 0. 00 0 00 0. 00 0 00 1.53 1.53 0.00 0.00 VELOCITY (FT/SEC) 12.310 12.624 0.000 0,000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03176 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.127 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.227)+( 0.000) = 0.227 0.03068 0.03283 0.000 FEET NODE 414.00 HGL < 368.676>;EGL= < 371.029>;FLOWLINE= < 367.730> t*************************************************************************,^j. FLOW PROCESS FROM NODE UPSTREAM NODE 407.50 414.00 TO NODE 407.50 IS CODE = 1 ELEVATION = 373.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): Page 2 RACE4A. RES PIPE FLOW = 18.00 CFS PIPE DIAMETER 24.00 INCHES PIPE LENGTH = 193.00 FEET MANNING 'S N = 0. 01300 NORMAL DEPTH(FT) = 0. 94 CRITICAL DEPTH(FT) = 1.53 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0 97 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0, 000 0 . 967 11 961 3 .190 455 .76 1. 873 0 .966 11 975 3 .194 456 .17 3. 830 0 . 965 11 989 3 .198 456 .58 5. 878 0 . 964 12 003 3 .203 456 . 98 8. 025 0 . 963 12 017 3 .207 457 .40 10. 282 0 . 962 12 031 3 .211 457 .81 12. 659 0 .962 12 045 3 .216 458 .22 15. 170 0 .961 12 060 3 .220 458 .63 17. 829 0 .960 12 074 3 .225 459 .05 20. 656 0 . 959 12 088 3 .229 459 .46 23. 671 0 .958 12 102 3 .234 459 .88 26. 900 0 . 957 12 117 3 .238 460 .30 30. 376 0 .956 12 131 3 .243 460 .72 34 . 138 0 . 955 12 146 3 .247 461 14 38. 235 0 . 954 12 160 3 .252 461 56 42. 732 0 . 954 12 174 3 .257 461 99 47. 713 0 . 953 12 189 3 .261 462 41 53. 293 0 . 952 12 203 3 .266 462 84 59. 630 0 . 951 12 218 3 .270 463 27 66. 962 0 . 950 12 233 3 .275 463 70 75. 650 0 .949 12 247 3 .280 464 13 86. 304 0 . 948 12 262 3 .285 464 56 100. 069 0 . 947 12 277 3 .289 464 99 119. 510 0 . 947 12 291 3 294 465 42 152. 870 0 . 946 12 306 3 299 465 86 193. 000 0 . 946 12 307 3 299 465 87 NODE 407 .50 : HGL = < 374 . 537>;EGL= < 37 6.f i60>;FLOWLINE= < 373.670> f***************************************************************************** FLOW PROCESS FROM NODE 407.50 TO NODE 407.00 IS CODE = 5 UPSTREAM NODE 407.00 ELEVATION = 374.17 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 15. 60 18.00 1.20 1.20 DIAMETER (INCHES) 18.00 24.00 18.00 18.00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 90.00 90.00 374.17 373.67 374.17 374.17 CRITICAL DEPTH(FT.) 1.42 1.53 0.41 0.41 VELOCITY (FT/SEC) 13.053 11.964 1.447 1.447 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTI0N LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04025 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02842 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03434 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.137 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.917)+( 0.000) = 0.917 NODE 407.00 : HGL = < 375.130>;EGL= < 377.776>;FLOWLINE= < Page 3 374.170> RACE4A.RES ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 405.00 407.00 TO NODE 405.00 IS CODE = 1 ELEVATION = 379.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.60 CFS PIPE PIPE LENGTH = 113.21 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.94 CRITICAL DEPTH(FT) = 1.42 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.42 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0,052 0.207 0.464 0.825 1.296 1.883 2.595 3.444 4.445 5. 614 6.976 8.556 10.390 12.522 15.010 17.929 21.384 25.519 30.548 36.802 44.837 55.697 71.725 100.447 113.210 FLOW DEPTH (FT) 1.417 .398 .379 .360 .341 ,322 .303 .284 .265 .246 .227 .208 ,189 , 170 , 151 ,132 ,113 .094 ,075 .056 ,037 ,018 0.999 0. 980 0. 961 0. 960 VELOCITY (FT/SEC) 9.019 ,091 , 171 ,259 ,354 .456 ,565 , 682 ,806 ,938 10.078 10.225 10.381 10.545 10.719 10.901 11.093 11.296 11.509 11.733 11.969 12.218 12.480 12.757 13.048 13.049 SPECIFIC ENERGY(FT) 2.681 683 686 692 701 712 725 741 759 781 805 833 863 898 936 978 025 076 133 195 263 337 419 508 606 606 PRESSURE+ MOMENTUM(POUNDS) 346.43 346.56 346.95 347.59 348.46 349.58 350.95 352.55 354.41 356.52 358.89 361.52 364.43 367.63 371.13 374.93 379.06 383.53 388.34 393.54 399.12 405.11 411.54 418.42 425.80 425.82 NODE 405.00 : HGL = < 380.417>;EGL= < 381.681>;FLOWLINE= < 379.000> *****************************************************************************^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 405.00 FLOWLINE ELEVATION = 379.00 ASSUMED UPSTREAM CONTROL HGL = 380.42 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 4 ************ ****************************************************^^J^,^.,^.,^.JJ,^,J^,^^,^.,^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference; WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * STA 10+65 EAGLE * * C:\AES2001\HYDROSOFT\RATSCX\RACE4D.RES * ********************************************************************,^,^.,^^^,^. FILE NAME: RACE4D.DAT TIME/DATE OF STUDY: 09:53 07/01/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 429.00- 1.82 Dc 656.77 1.39* 726.66 } FRICTION 426.50- 1.82 Dc 656.77 1.74* 659.37 } JUNCTION 426.00- 2.53 655.88 1.05* 711.61 } FRICTION 425.00- 1.73*Dc 531.33 1.73*Dc 531.33 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. **************************************************************************^,^,^.j^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 429.00 FLOWLINE ELEVATION = 363.00 PIPE FLOW = 27.70 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 364.600 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1.60 FT.) IS LESS THAN CRITICAL DEPTH( 1.82 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 429.00 : HGL = < 364.392>;EGL= < 366.580>;FLOWLINE= < 363.000> ****************************************************************************** FLOW PROCESS FROM NODE 429.00 TO NODE 426.50 IS CODE = 1 UPSTREAM NODE 42 6.50 ELEVATION = 364.20 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.70 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 42.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.26 CRITICAL DEPTH(FT) 1.82 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.74 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) ( FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1 .735 9 565 3 157 659. 37 0. 474 1 .716 9 652 3 164 660. 63 1.058 1 .697 9 743 3 172 662. 14 1.758 1 ,678 9 838 3 182 663. 90 2.585 1 ,659 9 937 3 194 665. 93 3.549 1 ,641 10 041 3 207 668. 22 4.663 1 . 622 10 149 3 222 670. 79 5. 944 1 . 603 10 262 3 239 673. 63 7.410 1 .584 10 379 3 257 676. 75 9.082 1 .565 10 501 3 278 680. 17 10.987 1 .546 10 628 3 301 683. 89 13.157 1 .527 10 760 3 326 687. 92 15.632 1 .508 10 897 3 353 692. 27 18.461 1 .489 11 040 3 383 696. 94 21.706 1 .470 11 188 3 415 701. 96 25.449 1 .451 11 342 3 450 707. 33 29.794 1 .432 11 502 3 488 713. 06 34.885 1 .413 11 669 3 529 719. 17 4 0.92 6 1 .394 11 841 3 573 725. 67 42.000 1 .392 11 867 3 580 726. 66 NODE 426.50 : HGL = < 365.935>;EGL= < 367,357>;FLOWLINE= < 364.200> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 426.00 426.50 TO NODE ELEVATION = 426.00 IS CODE = 5 364.53 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 24.00 24.00 0.00 364.53 1.73 ,14.287 DOWNSTREAM 27.70 24.00 - 364.20 1.82 9.568 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 3.70===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: I^NNING'S N = 0.01300; FRICTION SLOPE = 0.03767 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0,01372 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,02570 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.103 FEET ENTRANCE LOSSES = 0.284 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.113)+( 0.284) = 1.397 NODE 426.00 : HGL = < 365.585>;EGL= < 368.754>;FLOWLINE= < 364.530> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 425.00 426.00 TO NODE 425.00 IS CODE = 1 ELEVATION = 366.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 24.00 CFS PIPE DIAMETER 24.00 INCHES PIPE LENGTH = 21.00 FEET MANNING' S N = 0 01300 NORMAL DEPTH(FT) = 0.81 CRITICAL DEPTH(FT) 1.73 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1. 73 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 .735 8 288 2 802 531.33 0 .025 1 .698 8 438 2 804 531.70 0 , 103 1 .661 8 602 2 811 532.83 0 ,238 1 . 624 8 780 2 822 534.76 0 , 436 1 .587 8 973 2 838 537.50 0 ,705 1 .550 9 181 2 860 541.11 1 .052 1 .514 9 406 2 888 545.63 1 .487 1 .477 9 649 2 923 551.12 2 .024 1 . 440 9 910 2 966 557.63 2 . 677 1 . 403 10 192 3 017 565.25 3 .464 1 .366 10 496 3 078 574.04 4 .407 1 .329 10 824 3 149 584.11 5 .534 1 .292 11 178 3 233 595.54 6 .882 1 ,255 11 560 3 332 608.47 8 .493 1 ,218 11 974 3 446 623.03 10 . 427 1 ,181 12 423 3 579 639.36 12 .762 1 , 144 12 910 3 734 657.65 15 . 604 1 , 107 13 439 3 914 678.09 19 . 104 1 .071 14 016 4 123 700.92 21 ,000 1 .055 14 283 4 224 711.61 NODE 425.00 HGL = < 368.235>;EGL= < 369.302>;FLOWLINE= < 366.500> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 425.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 366.50 368.23 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * * * * ************************************************************************** FILE NAME: RACE4B.DAT TIME/DATE OF STUDY: 10:29 07/01/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 429.00- 1.20* 57.18 0.35 30.53 } FRICTION 432.00- 0.74* 26.95 0.55 Dc 22.94 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 429.00 FLOWLINE ELEVATION = 364.50 PIPE FLOW = 2.10 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 365.700 FEET NODE 429.00 : HGL = < 365.700>;EGL= < 365.730>;FLOWLINE= < 364,500> ****************************************************************************** FLOW PROCESS FROM NODE 429,00 TO NODE 432.00 IS CODE =1 UPSTREAM NODE 432.00 ELEVATION = 364.90 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.10 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 4.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.26 CRITICAL DEPTH(FT) = 0.55 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.20 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ ^(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 1,200 1 .385 1. 230 57 .18 0 .249 1,174 1 .415 1. 205 54 .86 0 .498 1,148 1 .447 1. 180 52 .60 0 .744 1,122 1 .481 1. 156 50 .40 0 . 990 1,096 1 .518 1. 131 48 .27 1 .233 1, 069 1 558 1. 107 46 20 1 . 475 1.043 1 600 1. 083 44 20 1 .715 1.017 1 646 1. 059 42 28 1 , 952 0. 991 1 695 1. 036 40 43 2 .187 0. 965 1 747 1. 012 38 66 2 .419 0.939 1 804 0. 989 36 96 2 . 647 0. 913 1 865 0. 967 35 34 2 .871 0.886 1 931 0. 944 33 81 3 .091 0. 860 2 002 0. 923 32 35 3 .306 0. 834 2 079 0. 901 30. 99 3 .515 0.808 2. 163 0. 881 29. 72 3 .716 0. 782 2. 254 0. 861 28. 54 3 . 910 0.756 2. 353 0. 842 27. 45 4 .000 0.743 2. 405 0. 833 26. 95 NODE 432.00 HGL < 365.643>;EGL= < 365.733>;FLOWLINE= < 364.900> ***************************************************************j,,^,^.,^.,^^^,^,^.,^^,^j^^^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 432.00 FLOWLINE ELEVATION = 364.90 ASSUMED UPSTREAM CONTROL HGL = 365.45 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS L2964R.RES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * 29+64 RT LIONSHEAD * * L2964R.RES * ************************************************************************** FILE NAME: L2964R.DAT TIME/DATE OF STUDY: 12:46 02/20/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 407.00- 0.96* 47.79 0.49 46.23 } FRICTION ) HYDRAULIC JUMP 403,00- 0.68*Dc 39.40 0.68*Dc 39.40 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 407.00 FLOWLINE ELEVATION = 374.17 PIPE FLOW = 3.20 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 375.130 FEET NODE 407,00 : HGL = < 375.130>;EGL= < 375.241>;FLOWLINE= < 374.170> ****************************************************************************** FLOW PROCESS FROM NODE 407.00 TO NODE 403.00 IS CODE = 1 UPSTREAM NODE 403.00 ELEVATION = 375.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.20 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 43.25 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.48 CRITICAL DEPTH(FT) = 0.68 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.68 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.681 4.100 0.942 39.40 Page 1 L2964R.RES 0 014 0 673 4 165 0 942 39 41 0 056 0 665 4 231 0 943 39 44 0 131 0 657 4 300 0 944 39 49 0 241 0 649 4 371 0 945 39 55 0 389 0 640 4 445 0 947 39 64 0 581 0 632 4 520 0 950 39 75 0 821 0 624 4 598 0 953 39 88 1 115 0 616 4 679 0 956 40 03 1 471 0 608 4 763 0 960 40 20 1 896 0 600 4 849 0 965 40 40 2 401 0 592 4 938 0 971 40 62 2 998 0 584 5 030 0 977 40 87 3 702 0 575 5 126 0 984 41 14 4 534 0 567 5 225 0 992 41 44 5 518 0 559 5 328 1 000 41 77 6 687 0 551 5 434 1 010 42 13 8 085 0 543 5 545 1 021 42 52 9 776 0 535 5 660 1 032 42 94 11 852 0 527 5 779 1 046 43 40 14 454 0 519 5 903 1 060 43 89 17 823 0 510 6 031 1 076 44 42 22 404 0 502 6 165 1 093 44 98 29 206 0 494 6 305 1 112 45 59 41 455 0 486 6 450 1 132 46 23 43 250 0 486 6 450 1 132 46 23 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.96 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 0 .960 2 678 1 071 47 79 0 .463 0 . 949 2 715 1 063 47 19 0 . 920 0 . 938 2 753 1 055 46 61 1 .370 0 .927 2 792 1 048 46 05 1 .812 0 . 915 2 832 1 040 45 51 2 .246 0 . 904 2 874 1 033 44 99 2 . 672 0 .893 2 917 1 025 44 48 3 .089 0 .882 2 961 1 018 44 00 3 .496 0 .871 3 007 1 Oil 43 54 3 .892 0 .860 3 054 1 005 43 10 4 .277 0 .848 3 104 0 998 42 68 4 .650 0 .837 3 154 0 992 42 28 5 .010 0 .826 3 207 0 986 41 91 5 .356 0 .815 3 262 0 980 41 56 5 . 686 0 .804 3 318 0 975 41 23 6 .000 0 .793 3 376 0 970 40 93 6 .296 0 .781 3 437 0 965 40 65 6 .571 0 .770 3 500 0 961 40 40 6 .825 0 .759 3 565 0 957 40 17 7 .056 0 .748 3 633 0 953 39 97 7 .260 0 .737 3 703 0 950 39 80 7 .435 0 .726 3 777 0 947 39 66 7 .579 0 .714 3 853 0 945 39 55 7 . 687 0 .703 3 932 0 944 39 47 7 .755 0 . 692 4 014 0 943 39 42 7 .779 0 .681 4 100 0 942 39 40 43 .250 0 . 681 4 100 0 942 39 40 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 1.22 FEET UPSTREAM OF NODE 407.00 I DOWNSTREAM DEPTH = 0.930 FEET, UPSTREAM CONJUGATE DEPTH = 0.486 FEET Page 2 L2964R.RES NODE 403.00 : HGL = < 375.681>;EGL= < 375.942>;FLOWLINE= < 375.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 403.00 FLOWLINE ELEVATION = 375.00 ASSUMED UPSTREAM CONTROL HGL = 375.68 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 3 L2964L.RES ******************************i,*************************i,i,i,i,i,*iri,i,i,*ir*****i,*i,4,i, PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * 2 9+64 LT LIONSHEAD * * L2964L.RES * **********************************************************************^j^^^ FILE NAME: 2964L.DAT TIME/DATE OF STUDY: 12:50 02/20/2004 **************************************************************** ****jt^j^^jt***** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 407.00- 0.99 47.55 0.32* 66.74 ) FRICTION 408.00- 0.66*Dc 36.26 0.66*Dc 36.26 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 407.00 FLOWLINE ELEVATION = 374.17 PIPE FLOW = 3.00 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 375.160 FEET NODE 407.00 : HGL = < 374.485>;EGL= < 376.401>;FLOWLINE= < 374.170> ****************************************************************************** FLOW PROCESS FROM NODE 407.00 TO NODE 408.00 IS CODE = 1 UPSTREAM NODE 408.00 ELEVATION = 375.75 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.00 CFS PIPE PIPE LENGTH = 5.25 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.23 CRITICAL DEPTH(FT) = 0. 66 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.66 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.658 4.017 0.909 36.26 0.003 0.641 4.158 0.910 36.30 0.012 0.624 4.309 0.913 36.42 Page 1 L2964L.RES 0 029 0 607 4 470 0 918 36 63 0 055 0 590 4 644 0 925 36 94 0 090 0 573 4 830 0 936 37 35 0 137 0 556 5 030 0 949 37 87 0 198 0 539 5 247 0 967 38 51 0 274 0 522 5 481 0 989 39 27 0 368 0 505 5 735 1 016 40 18 0 485 0 488 6 012 1 050 41 25 0 628 0 471 6 313 1 090 42 48 0 804 0 454 6 643 1 140 43 91 1 018 0 437 7 006 1 200 45 55 1 281 0 420 7 405 1 272 47 43 1 605 0 403 7 847 1 360 49 58 2 006 0 386 8 337 1 466 52 04 2 507 0 369 8 885 1 595 54 86 3 142 0 352 9 500 1 754 58 08 3 959 0 335 10 193 1 949 61 79 5 035 0 318 10 979 2 191 66 06 5 250 0 315 11 103 2 231 66 74 NODE 408.00 : HGL = < 376.408>;EGL= < 376.659>;FLOWLINE= < 375.750> **********************************************************^*jt,j.j^,j,^j^^j^j^,j,^^j^,j,,^^,j,j UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 408.00 FLOWLINE ELEVATION = 375.75 ASSUMED UPSTREAM CONTROL HGL = 376.41 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 2 Basin 5 Hydrology Analysis San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 04/01/03 CARLSBAD RACEWAY BASIN 5 04-01-03 G:\ACCTS\971035\RACE05.OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by modified rational method +++++++++++++++++++++++++++++++++++++++H Process from Point/Station 501.000 to Point/Station 502.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 25.00(Ft.) Highest elevation = 381,50(Ft,) Lowest elevation = 381,00(Ft,) Elevation difference = 0,50(Ft,) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.07 min. TC = [1.8*(l.l-C)*distance*,5)/(% slope*(1/3)] TC = [1.8*(1,1-0,9500)*( 25,00*.5)/( 2.00*(l/3)]= 1.07 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,950 Subarea runoff = 0.075(CFS) Total initial stream area = 0.010(Ac.) I- + + + + H Process from Point/Station 502.000 to Point/Station 503.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 381.000(Ft.) End of street segment elevation = 367.000(Ft.) Length of street segment = 1015.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.109(CFS) Depth of flow = 0.108(Ft.), Average velocity = 1.570(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.57(Ft/s) Travel time = 10.78 min. TC = 15.78 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 3.767(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.950 CA = 0.874 Subarea runoff = 3.217(CFS) for 0.910(Ac.) Total runoff = 3.292(CFS) Total area = 0.920(Ac.) Street flow at end of street = 3.292(CFS) Half street flow at end of street = 3.292(CPS) Depth of flow = 0.310(Ft.), Average velocity = 2.685(Ft/s) Flow width (from curb towards crown)= 10.747 (Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 503.000 to Point/Station 503.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 15.78 min. Rainfall intensity = 3.767(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.950 CA = 1.102 Subarea runoff = 0.859(CFS) for 0.240(Ac.) Total runoff = 4.151(CFS) Total area = 1,160(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-1-++++ Process from Point/Station 503.000 to Point/Station 504.000 ***• PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 358.00(Ft.) Downstream point/station elevation = 357.67(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Recjuired pipe flow = 4.151(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4,151(CFS) Normal flow depth in pipe = 4.77(In,) Flow top width inside pipe = 15.89(In.) Critical Depth = 9.37(In.) Pipe flow velocity = 11.06(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 15.79 min. h++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 503.000 to Point/Station 504.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area ^ 1.160(Ac.) Runoff from this stream = 4.151(CFS) Time of concentration = 15.79 min. Rainfall intensity = 3.766(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 505.000 to Point/Station 506.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial siibarea flow distance = 530. 00 (Ft.) Highest elevation = 381.00(Ft.) Lowest elevation = 368.00(Ft.) Elevation difference = 13.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.61 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*(1/3)] TC = [1.8*(l.l-0.9500)*(530.00*.5)/( 2.45*{l/3)]= 4.61 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7,904 for a 100,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,950 Subarea runoff = 34,391(CFS) Total initial stream area = 4,580 (Ac) h++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506,000 to Point/Station 507,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 359,05(Ft,) Downstream point/station elevation - 358,37(Ft.) Pipe length - 62,50(Ft,) Manning's N = 0.013 No. of pipes » 1 Recjuired pipe flow = 34.391(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 34.391(CFS) Normal flow depth in pipe « 20.37(In.) Flow top width inside pipe = 28.01(In.) Critical Depth = 23.93(In.) Pipe flow velocity = 9.69(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 5.11 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 507.000 to Point/Station 504.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 357.37(Ft.) Downstream point/station elevation = 356.00(Ft.) Pipe length = 167.00(Ft.) Manning's N - 0,013 No. of pipes = 1 Required pipe flow = 34.391(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 34.391(CFS) Normal flow depth in pipe = 17.88(In.) Flow top width inside pipe = 41.53(In.) Critical Depth = 21.82(In.) Pipe flow velocity = 8.81(Ft/s) Travel time through pipe = 0.32 min. Time of concentration (TC) = 5.42 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++-I-++++++++++++ Process from Point/Station 507.000 to Point/Station 504.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area « 4.580(Ac.) Runoff from this stream = 34.391(CFS) Time of concentration = 5.42 min. Rainfall intensity = 7.500(In/Hr) Program is now starting with Main Stream No. 3 +++++++++++++++++++++++++++++++++++++++++++++++++++-l•+•l•+++-l"l"t"^-^++++++•^•+ Process from Point/Station 508.000 to Point/Station 509.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 420.00(Ft.) Highest elevation = 378.00(Ft.) Lowest elevation = 368.00(Ft.) Elevation difference - 10.00 (Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.14 min. TC - [1.8*(1.1-C)*distance*.5)/(% slope*(l/3)] TC => [1.8* (1.1-0,9500) * (420.00*.5) / ( 2.38*(l/3)]= 4.14 Setting time of concentration to 5 minutes Rainfall intensity (I) - 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff =» 22.527 (CFS) Total initial stream area = 3.000(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++-I--I-I-++++++++++++++++++++ Process from Point/Station 509.000 to Point/Station 510.000 (t **** PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation = 359.10(Ft.) Downstream point/station elevation = 358.78(Ft.) Pipe length = 18.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 22.527(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 22.527(CFS) Normal flow depth in pipe = 15.47(In.) Flow top width inside pipe = 22.98(In.) Critical Depth = 20.31(In.) Pipe flow velocity = 10.53(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 5.03 min. I- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + H Process from Point/Station 509.000 to Point/Station 510.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area » 3.000(Ac.) Runoff from this stream = 22.527(CFS) Time of concentration = 5.03 min. Rainfall intensity = 7.875(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 511.000 to Point/Station 512.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 50.00(Ft.) Highest elevation - 373.30(Ft.) Lowest elevation = 372.30(Ft.) Elevation difference = 1.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.52 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*(l/3)] TC =. [1.8*(l.l-0.9500)*( 50.00*.5)/( 2.00*(l/3)]= 1.52 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff » 0.075(CFS) Total initial stream area = 0.010(Ac.) ++++++++++-I-++++++++++++++-I-++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 512.000 to Point/Station 510.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 372.300(Ft.) End of street segment elevation = 367.000(Ft.) Length of street segment » 615.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) • 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) (i Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side{s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.093(CFS) Depth of flow = 0.111(Ft.), Average velocity = 1.266(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.27(Ft/s) Travel time = 8.10 min. TC = 13.10 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 4.247(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.950 CA = 0.475 Subarea runoff = 1.942(CFS) for 0.490(Ac.) Total runoff = 2.017(CFS) Total area = 0.500(Ac.) Street flow at end of street = 2.017(CFS) Half street flow at end of street = 2,017(CFS) Depth of flow = 0,289(Ft.), Average velocity = 1,997(Ft/s) Flow width (from curb towards crown)= 9.690(Ft,) Process from Point/Station 510.000 to Point/Station 510.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 13.10 min. Rainfall intensity = 4.247(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.950 CA = 0.789 Subarea runoff = 1.331(CFS) for 0.330(Ac.) Total runoff = 3.349(CFS) Total area = 0.830(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 510.000 to Point/Station 510.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0.830(Ac.) Runoff from this stream = 3.349(CFS) Time of concentration = 13.10 min. Rainfall intensity = 4.247(In/Hr) Summary of stream data: stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(l) 22.527 3.349 Qmax(2) = 000 000 539 000 5.03 13.10 1.000 * 0.384 * 1.000 * 1.000 * 7,875 4 .247 22.527) + 3.349) + 22.527) + 3.349) + 23.812 15.497 Total of 2 streams to confluence: Flow rates before confluence point: 22.527 3.349 Maximum flow rates at confluence using above data: 23.812 15.497 Area of streams before confluence: 3.000 0.830 Results of confluence: Total flow rate » 23.812(CFS) Time of concentration = 5.028 min. Effective stream area after confluence = 3.830(Ac, ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 510.000 to Point/Station 504.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 358.45(Ft.) Downstream point/station elevation = 357.17(Ft.) Pipe length = 43.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 23.812(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 23.812(CFS) Normal flow depth in pipe = 13.55(In.) Flow top width inside pipe = 23,80(In.) Critical Depth = 20,76(In,) Pipe flow velocity = 13,04(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 5.08 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 510.000 to Point/Station 504.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area » 3.830(Ac.) Runoff from this stream « 23.812(CFS) Time of concentration = 5.08 min. Rainfall intensity » 7.820(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 4.151 15.79 3 .766 34. 391 5. 42 7, 500 23. 812 5 08 7. 820 1. 000 * 1 000 * 4 .151) + 0. 502 * 1 000 * 34 .391) + 0. 482 * 1 000 * 23 .812) + = 32 .883 1. 000 * 0 344 * 4 .151) + 1. 000 * 1 000 * 34 .391) + 0. 959 * 1 000 * 23 .812) + = 58 .656 1 000 * 0 .322 * 4 ,151) + 1 000 * 0 .937 * 34 ,391) + 1 000 * 1 .000 * 23 ,812) + = 57 .384 2 3 Qmax(1) Qmax(2) = Qmax(3) Total of 3 main streams to confluence: Flow rates before confluence point: 4.151 34.391 23.812 Maximum flow rates at confluence using above data: 32.883 58.656 57.384 Area of streams before confluence: 1.160 4.580 3.830 Results of confluence: Total flow rate = 57.384 (CFS) Time of concentration = 5.083 min. Effective stream area after confluence = 9.570(Ac, +++-I--1-++-I-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 504.000 to Point/Station 513.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 355.67(Ft.) Downstream point/station elevation = 353.37(Ft.) Pipe length = 296.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Recjuired pipe flow = 57.384 (CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 57.384(CFS) Normal flow depth in pipe = 24.61(In.) Flow top width inside pipe = 41.37(In.) Critical Depth = 28.45(In.) Pipe flow velocity = 9.81(Ft/s) Travel time through pipe = 0.50 min. Time of concentration (TC) = 5.59 min. + + + + + + + + + + + + -H-t-t"t"l- + + + + + + + + + + + + + + + + + + + + + + +++ + + -l Process from Point/Station 513.000 to Point/Station 514.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation - 352.87(Ft.) Downstream point/station elevation >= 351. 90 (Ft.) Pipe length = 99.40(Ft.) Manning's N = 0.013 No. of pipes =• 1 Required pipe flow = 57.384 (CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 57.384(CFS) Normal flow depth in pipe = 21.23(In.) Flow top width inside pipe = 47.68(In.) Critical Depth = 27.34(In.) / — Pipe flow velocity = 10.69(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 5.74 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 513.000 to Point/Station 514.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 9.570(Ac.) Runoff from this stream = 57.384(CFS) Time of concentration = 5.74 min. Rainfall intensity = 7.230(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++-I-++++++++-I-I--1-++ Process from Point/Station 515.000 to Point/Station 516.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 575.00(Ft.) Highest elevation = 383.00(Ft.) Lowest elevation <• 368.00 (Ft.) Elevation difference = 15.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.70 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.9500)*(575.00*.5)/( 2.61*(l/3)]= 4.70 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 41,750(CFS) Total initial stream area = 5,560 (Ac) ++++++++++++++++++++++++++•1 Process from Point/Station 516.000 to Point/Station 514.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 358.57(Ft.) Downstream point/station elevation = 353.57(Ft.) Pipe length » 67.50(Ft.) Manning's N = 0.013 No. of pipes " 1 Required pipe flow = 41,750(CFS) Given pipe size = 24,00(In,) Calculated individual pipe flow * 41.750(CFS) Normal flow depth in pipe = 14.48(In.) Flow top width inside pipe = 23.48(In.) Critical depth could not be calculated. Pipe flow velocity = 21.06(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 5.05 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++-(-+-i-+++++++++++ Process from Point/Station 516.000 to Point/Station 514.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 5.560 (Ac) Runoff from this stream = 41.750(CFS) Time of concentration = 5.05 min. Rainfall intensity = 7.850(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CPS) (min) (In/Hr) 1 57.384 5.74 7.230 2 41.750 5.05 7.850 Qmax(l) = 1.000 * 1.000 * 57.384) + 0.921 * 1.000 * 41.750) + = 95.834 Qmax(2) = 1,000 * 0,880 * 57.384) + 1.000 * 1.000 * 41.750) + = 92.257 Total of 2 streams to confluence: Flow rates before confluence point: 57.384 41.750 Maximum flow rates at confluence using above data: 95.834 92.257 Area of streams before confluence: 9.570 5.560 Results of confluence: Total flow rate = 95.834(CFS) Time of concentration = 5.742 min. Effective stream area after confluence = 15.130(Ac.) Process from Point/Station 514.000 to Point/Station 517.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 351.40(Ft.) ~ Downstream point/station elevation = 341.83(Ft.) Pipe length = 137.27(Ft.) Manning's N - 0.013 No. of pipes « 1 Recjuired pipe flow = 95.834 (CFS) Given pipe size = 54.00(In.) Calculated individual pipe flow = 95.834(CFS) Normal flow depth in pipe = 15.71(In.) Flow top width inside pipe = 49.06(In.) Critical Depth = 34.47(In.) Pipe flow velocity = 24.92(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 5.83 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 514.000 to Point/Station 517.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: ~ In Main Stream number: 1 Stream flow area = 15.130(Ac.) Runoff from this stream = 95.834(CFS) Time of concentration = 5.83 min. (i Rainfall intensity = 7.156(In/Hr) Program is now starting with Main Stream No. 2 I-++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 518,000 to Point/Station 519,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = l.OOO [INDUSTRIAL area type ] Initial subarea flow distance = 600. 00(Ft.) Highest elevation = 384.00(Ft.) Lowest elevation = 370.00(Ft.) Elevation difference = 14.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.99 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*(1/3)] TC = [1.8*(l.l-0.9500)*(600.00*.5)/( 2.33*(l/3)]= 4.99 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 48.358(CFS) Total initial stream area = 6.44 0(Ac.) I- + + + + + + +++ + + + + + + + + + + + +++-("("I"H- +++ + + + + + + + Process from Point/Station 519.000 to Point/Station 520.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 355.83(Ft.) Downstream point/station elevation = 355.23(Ft.) Pipe length = 15.75(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 48.358(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 48,358(CFS) Normal flow depth in pipe « 16,83(In,) Flow top width inside pipe = 29,78(In.) Critical Depth =• 27.33 (In.) Pipe flow velocity = 17.08(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 5.02 min. ++++++++++++++++++++++++++++++++++++++++++++-i-++++++++++++++-t-++++++++++ Process from Point/Station 519.000 to Point/Station 520.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area » 6.440(Ac.) Runoff from this stream = 48.358(CFS) Time of concentration = 5.02 min. Rainfall intensity = 7.889(In/Hr) ++++++++++++-(-++-i.+-i.++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 521.000 to Point/Station 522.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 1,000 [INDUSTRIAL area type ] Initial subarea flow distance = 110,00(Ft.) Highest elevation = 373,80(Ft.) Lowest elevation = 372.90(Ft.) Elevation difference = 0.90(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.03 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*(1/3)] TC = [1.8*(l.l-0.9500)*(110.00*.5)/( 0.82*(l/3)]= 3.03 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.075(CFS) Total initial stream area = 0.010 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 522.000 to Point/Station 520.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 372.900(Pt.) End of street segment elevation = 367.000(Ft.) Length of street segment = 280.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) = 0,020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft,) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown >= 0.0150 Estimated mean flow rate at midpoint of street = 0.091(CFS) Depth of flow = 0.093(Ft.), Average velocity = 1.757(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.76(Ft/s) Travel time = 2.66 min. TC = 7.66 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity » 6.005(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q-KCIA) is C - 0.950 CA - 0.409 Subarea runoff « 2.378 (CFS) for 0,420 (Ac) Total runoff = 2,453 (CFS) Total area » 0,430 (Ac) Street flow at end of street = 2.453(CFS) Half street flow at end of street = 2.453(CFS) Depth of flow = 0.270(Ft.), Average velocity = 2.942(Ft/s) Flow width (from curb towards crown)= 8.732(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 522.000 to Point/Station 520.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.430(Ac.) Runoff from this stream = 2.453(CFS) Time of concentration = 7.66 min. Rainfall intensity = 6.005(In/Hr) Summary of stream data: Stream No. Plow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 48.358 2.453 000 000 761 000 5.02 7.66 1.000 * 0.655 * 1.000 * 1.000 * 7.889 6.005 48.358) + 2.453) + = 48.358) + 2.453) + = 49.965 39.265 Total of 2 streams to confluence: Flow rates before confluence point: 48.358 2.453 Maximum flow rates at confluence using above data: 49.965 39.265 Area of streams before confluence: 6.440 0.430 Results of confluence: Total flow rate = 49.965(CFS) Time of concentration = 5.015 min. Effective stream area after confluence = 6.870(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 520.000 to Point/Station 520.000 **** SUBAREA FLOW ADDITION **** ] Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Time of concentration « 5.02 min. Rainfall intensity = 7.889(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q-KCIA) is C - 0.950 CA = 6.755 Subarea runoff - 3.318(CFS) for 0.240(Ac.) Total runoff = 53.283(CFS) Total area « 7.110(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 520.000 to Point/Station 523.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 354.90(Ft.) Downstream point/station elevation = 352.63(Ft.) Pipe length = 52.50(Ft.) Manning's N = 0.013 No, of pipes = 1 Recjuired pipe flow = 53,283 (CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 53,283(CFS) Normal flow depth in pipe = 17,18(In,) Flow top width inside pipe = 2 9,68(In.) Critical Depth = 28,05(In,) Pipe flow velocity = 18.33(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 5.06 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 520.000 to Point/Station 523.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 7.110(Ac.) Runoff from this stream = 53.283(CFS) Time of concentration = 5.06 min. Rainfall intensity = 7.841(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++-I-++++-1-+++++++ Process from Point/Station 521.000 to Point/Station 524.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 80.00(Ft.) Highest elevation = 373.80(Ft.) Lowest elevation = 371.40(Ft.) Elevation difference = 2.40(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.67 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*(1/3)] TC = [1.8* (1.1-0.9500)* ( 80.00*.5)/( 3.00*(l/3)]= 1.67 Setting time of concentration to 5 minutes Rainfall intensity (I) « 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.075(CFS) Total initial stream area = 0.010(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 524.000 to Point/Station 523.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 371.400(Ft.) End of street segment elevation = 367.000(Ft.) Length of street segment = 320.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break » 30.500(Pt.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.086(CFS) Depth of flow = 0.099(Ft.), Average velocity = 1.477(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.48(Ft/s) Travel time = 3.61 min. TC = 8.61 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Rainfall intensity = 5.566(In/Hr) Effective runoff coefficient used for total area (Q=KCIA) is C = 0.950 CA = 0.285 Subarea runoff = 1.511(CFS) for 0.290(Ac. Total runoff = 1.586(CFS) Total area = Street flow at end of street = 1.586(CFS) Half street flow at end of street = 1.586(CFS) Depth of flow = 0.254(Ft.), Average velocity = Flow width (from curb towards crown)= 7.948(Ft.) ] for a 100.0 year storm 0.300(Ac.) 2.257(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-i-++++-t- Process from Point/Station 524.000 to Point/Station 523.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area > 0.300(Ac.) Runoff from this stream = 1.586(CFS) Time of concentration = 8.61 min. Rainfall intensity = 5.566(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 53 .283 1,586 000 000 710 000 5,06 8.61 1.000 * 0.588 * 1.000 * 1.000 * 7.841 5.566 53.283) + 1.586) + 53.283) + 1.586) + 54.216 39.414 Total of 2 streams to confluence: Flow rates before confluence point: 53.283 1.586 MeUcimum flow rates at confluence using above data: 54.216 39.414 Area of streams before confluence: 7.110 0.300 Results of confluence: Total flow rate = 54.216(CFS) Time of concentration = 5.063 min. Effective stream area after confluence = 7.410(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 523.000 to Point/Station 523.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 5.06 min. Rainfall intensity = 7.841(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.950 CA = 7.258 Subarea runoff = 2.691 (CFS) for 0.230 (Ac) Total runoff = 56.907(CFS) Total area = 7.640(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 523.000 to Point/Station 517.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 352.50(Ft.) Downstream point/station elevation = 343.50(Ft.) Pipe length = 15.74(Ft.) Manning's N = 0.013 No, of pipes = 1 Recjuired pipe flow = 56,907 (CFS) Given pipe size = 30,00(In.) Calculated individual pipe flow = 56.907(CFS) Normal flow depth in pipe = 8.71(In.) Flow top width inside pipe = 27.23(In.) Critical Depth = 28.43(In.) Pipe flow velocity = 48.15(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 5.07 min. I-+++++++++++++++++++++++++++++ Process from Point/Station 523.000 to Point/Station 517.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 7.640(Ac.) Runoff from this stream = 56.907(CFS) Time of concentration = 5.07 min. Rainfall intensity = 7,835(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmeuc (1) 95.834 56.907 S 1.000 * 5.83 5.07 1.000 * 7.156 7.835 95.834) + G 0.913 * 1.000 * 56.907) + = 147.809 Qmax(2) = 1.000 * 0.869 * 95.834) + 1.000 * 1.000 * 56.907) + = 140.176 Total of 2 main streams to confluence: Flow rates before confluence point: 95.834 56.907 Maximum flow rates at confluence using above data: 147.809 140.176 Area of streams before confluence: 15.130 7.640 Results of confluence: Total flow rate = 147.809(CFS) Time of concentration = 5.833 min. Effective stream area after confluence = 22.770(Ac.) I- + + + + + + + + +++ + + + + + + + + H Process from Point/Station 517.000 to Point/Station 525.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 341.50(Ft.) Downstream point/station elevation = 333.83(Ft.) Pipe length = 50.60(Ft.) Manning's N = 0.013 No. of pipes = 1 Recjuired pipe flow = 147.809 (CFS) Given pipe size » 54.00(In.) Calculated individual pipe flow = 147.809(CFS) Normal flow depth in pipe 16.08 (In.) Flow top width inside pipe = 49.38(In.) Critical Depth = 42.82(In.) Pipe flow velocity = 37.21(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) =» 5.86 min. End of computations, total study area = 22.77 (Ac.) Iiiii iiiill——will I il iiill Closed Conveyance Hydraulic Analysis ***************«************«******************^t^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, California 92008 Tel: 760-931-7700 Fax: 760-931-8680 FILE NAME: RACE05,DAT TIME/DATE OF STUDY: 10:27 04/12/2003 GRADUALLY VARIED FLOW ^ALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 525 ,00- } FRICTION 3 .60 4495.24 1.79* 7457 .50 517 .50- } JUNCTION 3 .57*Dc 4494.73 3.57*Dc 4494 .74 517 .00- } FRICTION 5 .29 4139.25 1.42* 4285 .67 514 .50- } JUNCTION 2 .87*Dc 2496.30 2.87*Dc 2496 .30 514 .00- } FRICTION 3 .77* } HYDRAULIC 1912.66 JUMP 1.70 1482 .33 513 .50- } JUNCTION 2 .67 1366.54 1.59* 1566 .57 513 .00- } FRICTION 2 .38 Dc 1371.37 2.06* 1410 .00 504 .50- } JUNCTION 2 .37*Dc 1371.36 2.37*Dc 1371 .36 504 .00- } FRICTION 3 .39* } HYDRAULIC 1226.13 JUMP 1.50 736 .09 507 .50- } JUNCTION 1 .82*Dc 698.10 1.82*Dc 698 .10 507 .00- } FRICTION 2 .33* } HYDRAULIC 813.50 JUMP 1.74 803 .62 506 .00-1 .99*Dc 783.34 1.99*Dc 783 .34 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ********************«*****************************^*^^^^^^^^^^^^^,^^^^^^^^^^^^^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 525.00 FLOWLINE ELEVATION = 333.83 PIPE FLOW = 147.80 CFS PIPE DIAMETER = 54.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 337.430 FEET NODE 525.00 : HGL = < 335.619>;EGL= < 345.384>;FL0WLINE= < 333.830> *****************«*****************************^^*^^^j^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE UPSTREAM NODE 517.50 525.00 TO NODE 517.50 IS CODE = 1 ELEVATION = 341.50 (FLOW IS SUPERCRITICAL) CALCXniATE FRICTION LOSSES(LACFCD): PIPE FLOW = 147.80 CFS PIPE PIPE LENGTH = 51.00 FEET DIAMETER = 54.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.34 CRITICAL DEPTH(FT) = 3.57 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3.57 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 037 148 342 630 026 544 206 032 052 300 820 8,665 10,906 13 ,632 16.961 21.052 26.126 32.496 40.628 51.000 FLOW DEPTH VELOCITY (FT) 3.565 3 .476 3 .387 3 .298 3 .209 3.121 032 943 854 765 676 587 498 409 321 232 143 054 965 876 789 (FT/SEC) 10.934 11.208 11.505 11.827 12.176 12.554 12.964 13 .408 13.891 14.416 14.988 15.612 16.295 17.044 17.867 18.775 19.780 20.896 22.142 23.537 25.069 SPECIFIC ENERGY(FT) 5.423 428 444 472 513 569 643 736 852 994 166 374 624 923 281 709 8.222 8.839 9.582 10.484 11.554 PRESSURE+ MOMENTUM(POUNDS) 4494.74 4499.13 4512.05 4534.03 4565.67 4607,67 4660,82 4726,01 4804,28 4896,78 5004,89 5130,16 5274,39 5439.72 5628.62 5844.02 6089.40 6368.92 6687.60 7051.54 7457.50 NODE 517.50 HGL < 345.065>;EGL= < 346.923>;FL0WLINE= < 341.500> ****************************************************************************** PLOW PROCESS FROM NODE 517.50 TO NODE 517.00 IS CODE = 5 UPSTREAM NODE 517.00 ELEVATION = 341.83 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: DIAMETER ANGLE (DEGREES) ELEVATION PIPE FLOW (CFS) (INCHES) UPSTREAM 95.80 54.00 DOWNSTREAM 147.80 54.00 LATERAL #1 52.00 30.00 LATERAL #2 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT== FLOWLINE CRITICAL VELOCITY 80.00 0.00 0.00 341.83 341.50 343.50 0.00 DEPTH(FT.) 2.87 3.57 2 .32 0.00 (FT/SEC) 22.234 10.938 10.934 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE « 0, AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02839 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES » 0.142 FEET ENTRANCE LOSSES = 05076 00603 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 4.005)+( 0.000) = 4.005 NODE 517.00 : HGL = < 343.251>;EGL= < 350.927>;FLOWLINE= < 341.830> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 514.50 517.00 TO NODE 514.50 IS CODE = 1 ELEVATION = 351.40 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 95.80 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 138.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.31 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.87 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.87 DISTANCE FROM CONTROL(FT) 0.000 0.042 0.174 0.409 0.758 1.237 1,864 2 ,661 3.652 4.870 6.351 8.140 10.296 12.889 16.011 19.781 24.358 29.959 36.890 45.603 56.804 71.676 92 .448 124.137 138.000 FLOW DEPTH (FT) 2.873 811 748 686 623 561 498 436 373 311 248 186 123 061 998 936 873 811 748 686 623 561 498 1.436 1.421 VELOCITY (FT/SEC) 8.933 9.165 9.411 9.672 9.950 10.246 10.561 10.898 11.257 11.642 12.054 12.496 12.972 13.484 14.037 14.636 15.285 15.991 16.761 17.602 18.526 19.542 20.666 21.913 22 .227 SPECIFIC ENERGY(FT) 4 .113 4 , 4, 4, 4, ,116 .124 .140 .162 4.192 4.232 4 .281 4 .342 4 .417 4.506 .612 .738 ,886 .060 ,264 ,504 ,784 ,113 ,500 ,956 ,495 8.134 8.897 9.097 4 . 4. 4. 5, 5, 5. 5, 6. 6. 6. 7. PRESSURE+ MOMENTUM(POUNDS) 2496.30 2498.08 2503.57 2512.98 2526.53 2544.49 2567.14 2594.79 2627.81 2666.59 2711.58 2763.28 2822.26 2889.16 2964.74 3049.83 3145.40 3252.59 3372.70 3507.27 3658.07 3827.25 4017.31 4231.28 4285.67 NODE 514.50 : HGL = < 354 .273>;EGL= < 355.513>;FLOWLINE- < 351.400> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 514.00 514.50 TO NODE ELEVATION = 514.00 IS CODE = 5 351.90 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 57.40 95.80 38.40 0.00 0.00> DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 48.00 10.00 351.90 2.28 4.672 54.00 - 351.40 2.87 8.935 24.00 80.00 353.90 1.94 12.321 0.00 0.00 0.00 0.00 0.000 ==Q5 EQUALS BASIN INPUT-== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE - 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.002 87 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.011 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.500)+( 0.000) = 0.500 NODE 514.00 : HGL = < 355.674>;EGL= < 356.013>;FLOWLINE= < 351.900> *********************************************************************^^^^^^^^^^^^ 00138 00437 0.000 FEET FLOW PROCESS FROM NODE UPSTREAM NODE 513.50 514.00 TO NODE 513.50 IS CODE = 1 ELEVATION = 352.87 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 57.40 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 99.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.77 CRITICAL DEPTH(FT) - UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) - 1.59 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.28 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0,000 1,588 12 . 351 3.958 1566.57 4,708 1,595 12 . 276 3.936 1560.35 9,559 1.602 12. 202 3.916 1554.24 14,566 1.609 12 . 129 3.895 1548.23 19,744 1.617 12. 057 3.875 1542.32 25.110 1.624 11. 985 3,856 1536.52 30.682 1.631 11. 914 3,837 1530.82 36.485 1.638 11. 844 3.818 1525.22 42,543 1.646 11. 775 3.800 1519.72 48.889 1.653 11. 707 3.782 1514.32 55,560 1.660 11. 639 3.765 1509.01 62,600 1.667 11. 572 3.748 1503.79 70,066 1.675 11. 506 3.732 1498.67 78,024 1.682 11. 441 3.715 1493.64 86,561 1.689 11. 376 3.700 1488.71 95,789 1.696 11. 312 3.684 1483.86 99,000 1,699 11. 292 3.680 1482.33 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ================= ============== ======= ====== ============= ===============s===s= DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.77 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 6.323 12.545 FLOW DEPTH VELOCITY (FT) (FT/SEC) 3.774 4.671 3.715 4.716 3.655 4.766 SPECIFIC ENERGY(FT) 4.113 4,060 4.008 PRESSURE+ MOMENTUM(POUNDS) 1912.66 1872.05 1832.51 18 .671 3 .595 4 822 3 ,956 1794.08 24 .705 3 .535 4 883 3 .906 1756.76 30 .647 3.476 4 949 3 .856 1720,60 36 .498 3 .416 5 021 3 ,807 1685,62 42 .254 3 .356 5 098 3 .760 1651,87 47 .911 3 .296 5 180 3 .713 1619,38 53 .465 3 .236 5 268 3 .668 1588,19 58 .908 3.177 5 362 3 .623 1558,36 64 .232 3 .117 5 462 3 .580 1529.93 69 .427 3,057 5 568 3 .539 1502.96 74 .480 2,997 5 681 3 .499 1477.48 79 .376 2,938 5 801 3 .461 1453.57 84 .099 2,878 5 929 3 .424 1431.29 88 .626 2,818 6 065 3 .390 1410.69 92 .932 2,758 6 209 3 .357 1391.85 96 .987 2,699 6 362 3 .327 1374.85 99 .000 2,667 6 448 3 .313 1366.54 HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 64.73 FEET UPSTREAM OF DOWNSTREAM DEPTH = 3.111 FEET, UPSTREAM CONJUGATE DEPTH NODE 514,00 = 1,636 FEET NODE 513.50 : HGL = < 354,458>;EGL= < 356,828>;FLOWLINE= < 352.870> *****************************************************^j***********^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 513,50 TO NODE 513,00 IS CODE - 5 UPSTREAM NODE 513.00 ELEVATION = 353,37 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 57,40 57.40 0.00 0.00 DIAMETER (INCHES) 42.00 48.00 0.00 0.00 ANGLE (DEGREES) 0.00 0,00 0,00 FLOWLINE ELEVATION 353.37 352.87 0.00 0.00 CRITICAL DEPTH(FT.) 2 .37 2 .28 0.00 0.00 VELOCITY (FT/SEC) 9.734 12.355 0.000 0.000 0.00—Q5 EQUALS BASIN INPUT— LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N - 0.01300; FRICTION SLOPE - 0, DOWNSTREAM: MANNING'S N - 0.01300; FRICTION SLOPE = 0, AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01105 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.044 FEET ENTRANCE LOSSES = JUNCTION LOSSES - (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.076)+( 0.000) = 0.076 NODE 513.00 : HGL = < 355.432>;EGL= < 356,903>;FLOWLINE- < 353,370> ******************************************************<^******^^^**^^^^^^,j,^^^^^^^^ 00763 01446 0,000 FEET FLOW PROCESS FROM NODE UPSTREAM NODE 504,50 513.00 TO NODE 504.50 IS CODE = 1 ELEVATION - 355.67 (FLOW IS SUPERCRITICTUJ) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 57.40 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH - 296.00 FEET MANNING'S N - 0.01300 NORMAL DEPTH(FT) = 2.05 CRITICAL DEPTH(FT) - UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.37 2.37 BSB3SSB3S = SSa GRADUALLY VARIED FLOW PROFILE COMPOTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.000 2 .373 8 265 3 .434 1371.36 0.052 2 .360 8 315 3 .434 1371.42 0.214 2 .347 8 367 3 .435 1371.60 0.496 2 .334 8 419 3 435 1371.90 0.909 2 .321 8 472 3 436 1372.33 1.466 2 .308 8 526 3 438 1372.88 2.182 2 .295 8 581 3 439 1373.56 3.075 2 .282 8 636 3 441 1374.37 4 .164 2 .269 8 693 3 443 1375.31 5.473 2 .256 8 750 3 446 1376.38 7.032 2 .244 8 808 3 449 1377.58 8.875 2 .231 8 867 3 452 1378.93 11.045 2 .218 8 927 3 456 1380.41 13.593 2 ,205 8 988 3 460 1382.03 16.587 2 ,192 9 050 3 464 1383.79 20.111 2 ,179 9 113 3 469 1385.70 24.278 2 ,166 9 177 3 475 1387.76 29,241 2 ,153 9 242 3 480 1389.96 35,212 2 .140 9 308 3 486 1392.32 42,505 2 .127 9 375 3 493 1394.83 51,604 2 .114 9 443 3 500 1397.50 63.322 2 .101 9 512 3 507 1400.33 79.181 2 .089 9 583 3 515 1403.32 102.605 2 .076 9 654 3 524 1406.47 144.573 2 .063 9 727 3 533 1409,79 296.000 2 .062 9 732 3 533 1410,00 NODE 504.50 HGL - < 358. 043>;EGL= < 359.104> FLOWLINE- < 355.670 ******************************************************************^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 504.50 TO NODE 504.00 IS CODE = 5 UPSTREAM NODE 504.00 ELEVATION = 356.00 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 34.40 57.40 19.60 3,40 DIAMETER (INCHES) 42,00 42.00 24.00 18.00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 356.00 355.67 90.00 357.17 90,00 357,67 CRITICAL DEPTH(FT,) 1.82 2.37 1.59 0.70 VELOCITY (FT/SEC) 3.609 8.267 7.314 2.581 0.00===Q5 EQUALS BASIN INPUT— LACFCD AND OCEMA FLOW JXJNCTION FORMULAE USED: DY-(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N - 0.01300; FRKTTION SLOPE - 0.00103 DOWNSTREAM: MANNING'S N - 0.01300; FRICTION SLOPE - 0.00506 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00304 JUNCTION LENGTH - 4.00 FEET FRICTION LOSSES - 0.012 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES - { 0.489)+( 0.000) = 0.489 NODE 504.00 : HGL - < 359.391>;EGL- < 359.593>;FLOWLINE- < 356.000> **************************************************************^^^^^^^^^^^^^^j^^^^^^ FLOW PROCESS FROM NODE 504.00 TO NODE 507.50 IS CODE = 1 0.000 FEET UPSTREAM NODE 507.50 ELEVATION - 357.37 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 34,40 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH - 167,00 FEET MANNING'S N - 0,01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) - 1,49 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1,82 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1,82 DISTANCE FROM CONTROL(FT) 0,000 0 0 0 0. 1, 1. .045 .186 .432 ,793 .280 .906 2.688 3.643 4.792 6.163 7.784 9.696 11.943 14.586 17.701 21.388 25.784 31.079 37,553 45,639 56.063 70.186 91.067 128.519 167.000 FLOW DEPTH (FT) 1.817 1. 1, 1, 1, 1, 1. 1, 1. 1. 1. 1. 1. 1. 1. .804 ,791 ,778 .765 .752 .739 .726 .713 ,700 .687 .674 .660 .647 .634 1.621 608 595 582 569 556 543 530 517 504 503 VELOCITY (FT/SEC) 6.814 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 SPECIFIC ENERGY(FT) 2 .539 877 940 005 071 138 207 276 347 420 494 570 646 725 805 887 970 8.056 8.142 8.231 8.322 8.415 8.509 8.606 8.705 8,706 2 , 2 , 2 , 2, 2, 2, 2 , 2 . 2 . 2 , 2 , 2 . 2 . 2 , 2 . 2 . 2. 2. 2. 2, 2. 2. 2. 2. 2. 539 540 541 542 544 546 549 552 555 559 564 569 575 581 588 595 603 612 622 632 643 655 667 681 681 PRESSURE+ MOMENTUM(POUNDS) 698,10 698,16 698,33 698.62 699.03 699.56 700.21 700.99 701.90 702.94 704.11 705.41 706.85 708,44 710.16 712.04 714.06 716.24 718.57 721.06 723.72 726.54 729.53 732.70 736.04 736.09 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.39 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 8.246 16.364 24.373 32.286 40.108 47.840 55.484 63.036 70.493 FLOW DEPTH VELOCITY (FT) 3 .391 328 265 202 139 076 014 951 888 825 (FT/SEC) 3 .608 3 . 3, 3 , 3, 3, 3 , 3 , 4, 4 , 641 681 727 780 838 903 974 050 133 SPECIFIC ENERGY(FT) 3.593 3.534 3.476 3.418 3, 3, 3 3 , 3 , 3 ,361 .305 .250 .196 il43 .090 PRESSURE+ MOMENTUM(POUNDS) 1226,13 1191,05 1156.82 1123.44 1090.96 1059.40 1028.80 999.20 970.64 943.16 77.848 2 762 4.223 3 039 916.81 85.093 2 699 4 .320 2 989 891.64 92.217 2 636 4 .424 2 940 867.69 99.206 2 573 4.536 2 893 845.02 106.045 2 510 4.657 2 847 823.67 112.711 2 447 4.787 2 803 803.72 119,179 2 384 4.927 2 761 785.22 125,416 2 321 5.077 2 722 768.24 131.381 2 258 5.239 2 685 752.85 137.021 2 195 5.414 2 651 739.14 142,267 2 132 5.603 2 620 727.21 147.028 2 069 5.807 2 593 717.14 151.180 2 006 6.029 2 571 709.06 154.548 1 943 6.269 2 554 703.09 156.878 1 880 6.530 2 543 699.38 157.778 1 817 6.814 2 539 698.10 167.000 1 817 6.814 2 539 698.10 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 149.80 FEET UPSTREAM OF DOWNSTREAM DEPTH - 2.027 FEET, UPSTREAM CONJUGATE DEPTH NODE 504.00 = 1.623 FEET NODE 507.50 : HGL = < 359.187>;EGL- < 359.909>;FLOWLINE- < 357.370> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 507.00 507.50 TO NODE ELEVATION - 507.00 IS CODE - 5 358.37 (FLOW IS AT CRITICAL DEPTH) FLOWLINE CRITICAL DEPTH(FT.) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 34.40 30.00 90,00 358,37 1.99 DOWNSTREAM 34.40 42.00 - 357.37 1.82 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00—Q5 EQUALS BASIN INPUT- VELOCITY (FT/SEC) 7.213 6.816 0.000 0.000 LACFCD AND OCEMA PLOW JUNCTION FORMULAE USED: DY-(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N - 0.01300; FRICTION SLOPE - 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE - 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00510 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.020 FEET ENTRANCE LOSSES - JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES - ( 1.603)+( 0.000) - 1.603 NODE 507.00 : HGL - < 360.704>;EGL- < 361,512>;FLOWLINE- < 358,370> ****************************************************************************** 00608 00412 0.000 FEET FLOW PROCESS FROM NODE UPSTREAM NODE 506.00 507.00 TO NODE 506.00 IS CODE - 1 ELEVATION - 359.05 (HYDRAULIC JUMP OCCURS) CALCiniATE FRICTION LOSSES(LACFCD): PIPE FLOW = 34.40 CFS PIPE DIAMETER - 30.00 INCHES PIPE LENGTH - 63.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) - 1.70 CRITICAL DEPTH(FT) = 1.99 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) - 1.99 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: B FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0. 000 1. 993 8. 196 3 .037 783.34 0. 044 1.981 8. 242 3.037 783.37 0. 183 1.970 8. 289 3.037 783.49 0. 422 1.958 8. 337 3 .038 783.69 0. 772 1.947 8. 385 3 .039 783.96 1 243 1,935 8. 435 3.041 784.32 1 846 1.923 8 486 3 .042 784.75 2 597 1.912 8 538 3 .044 785.27 3 510 1.900 8 590 3.047 785.88 4 605 1.889 8 644 3.050 786.57 5 907 1.877 8 699 3 .053 787.35 7 441 1.865 8 755 3.056 788.21 9 244 1.854 8 812 3 .060 789.17 11 357 1.842 8 870 3 .064 790.21 13 835 1.830 8 929 3 .069 791.35 16 747 1.819 8 989 3 .074 792.58 20 .183 1.807 9 .050 3,080 793,90 24 .268 1.796 9 .113 3 ,086 795.33 29 . 174 1.784 9 .176 3 .092 796.85 35 .157 1.772 9 .241 3 .099 798,47 42 .610 1.761 9 .307 3 .107 800,19 52 .193 1.749 9 .375 3 .115 802.02 63 .000 1.739 9 .432 3.122 803.62 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: = s = = = S£s:ssa 2.33 DISTANCE FROM CONTROL(FT) 0.000 1.645 3.234 4.769 6.251 7.680 9.057 10.382 11,656 12.877 14.045 15.159 16.218 17.220 18.163 19.046 19.866 20.620 21.304 21.916 22.450 22.902 23.265 FLOW DEPTH (FT) 2.334 2. 2 . 2 , 2, 2 . 2. 2 . 2. 2 , 2, 2, 2 . 2 . 2. 2. 2 , 2 , 2 , 2, 2, 2 , 2 . ,320 ,307 .293 .280 .266 ,252 ,239 .225 .211 ,198 .184 .170 ,157 ,143 .130 .116 .102 .089 ,075 ,061 ,048 .034 VELOCITY (FT/SEC) 7,211 7 7 7 7 7 7 SPECIFIC ENERGY(FT) 3 .142 237 264 293 322 353 385 7.418 7.452 487 523 560 598 637 678 719 762 805 850 896 943 991 7. 7 . 7. 7 . 7 , 7, 7, 7, 7, 7, 7 , 7, 7. 8.040 3 . 3. 3. 3 , 3 , 3, 3, 3 , 3 , 3. 3. 3, 3 , 3 , 3 3 3 3 3, 3 3 3 134 127 120 113 106 100 094 088 082 077 072 067 063 059 055 052 049 046 044 042 040 039 PRESSURE+ MOMENTUM(POUNDS) 813.50 811.19 808.98 806.86 804.83 802.89 801.03 799.27 797.60 796.01 794.51 793.11 791.79 790.57 789.44 788.40 787.45 786.60 785.85 785.19 784.63 784.17 783.81 23.535 2.020 8.091 3.038 783.55 23.703 2.007 8.143 3.037 783.39 23.761 1.993 8.196 3.037 783.34 63.000 1.993 8.196 3.037 783.34 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 8.02 FEET UPSTREAM OF NODE 507.00 DOWNSTREAM DEPTH - 2.263 FEET, UPSTREAM CONJUGATE DEPTH - 1.747 FEET NODE 506.00 : HGL = < 361.043>;EGL= < 362.087>;FLOWLINE- < 359.050> ************************************************************************'****** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 506.00 FLOWLINE ELEVATION - 359.05 ASSUMED UPSTREAM CONTROL HGL = 361.04 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, California 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * BASIN 5, LOT 1 * * 12-12-02 C:\AES2001\HYDROSOFT\RATSCX\RACE5A.RES * ************************************************************************** FILE NAME: RACE5A.DAT TIME/DATE OF STUDY: 10:29 04/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 517.00- 2.37 Dc 1647.37 1.11* 3040.39 } FRICTION 523.50- 2.37*Dc 1647.37 2.37*Dc 1647.37 } JUNCTION 523.00- 3.14 1701.35 1.69* 1720.86 } FRICTION 520.50- 2.34*Dc 1487.00 2.34*Dc 1487.00 } JUNCTION 520.00- 3.21* 1524.64 1.83 1374.55 } FRICTION 519.50- 2.83* 1409.10 2.28 Dc 1283.15 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NXB1BER - 517.00 FLOWLINE ELEVATION - 343.50 PIPE FLOW - 56.90 CFS PIPE DIAMETER - 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL - 345.500 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 2.00 FT.) IS LESS THAN CRITICAL DEPTH( 2.37 FT.) —> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 517.00 : HGL - < 344.610>;EGL- < 355,944>;FLOWLINE- < 343.500> ****************************************************************************** FLOW PROCESS FROM NODE 517.00 TO NODE 523.50 IS CODE « 1 UPSTREAM NODE 523.50 ELEVATION = 352,50 (FLOW IS SUPERCRITICAL) CI m CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW - 56,90 CFS PIPE DIAMETER = 30,00 INCHES PIPE LENGTH - 16.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.73 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.37 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = — = = = = = — — ~ — = — — ~ — ~ — — — — GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.37 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (PT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0.000 2 .370 11,821 4 .542 1647.37 0.017 2.305 12.023 4.551 1650.07 0.066 2 .239 12.268 4 .577 1657.88 0.148 2.173 12.554 4.622 1670.65 0.265 2.108 12.881 4 .686 1688.43 0.420 2 .042 13.251 4.770 1711.40 0.619 1.976 13.667 4 .878 1739.88 0.868 1.911 14.130 5,013 1774,25 1.175 1.845 14.647 5,178 1815.02 1.549 1.779 15.222 5,379 1862.80 2.004 1,714 15.861 5,623 1918.34 2.555 1.648 16.574 5.916 1982.53 3.224 1.582 17.369 6.269 2056,44 4.038 1.517 18.257 6.696 2141.38 5.033 1.451 19.254 7.211 2238.89 6.255 1.385 20.377 7.836 2350.90 7.772 1.319 21.645 8.599 2479.76 9.674 1.254 23.087 9.536 2628,38 12.096 1.188 24.736 10.695 2800,41 15.238 1.122 26.632 12.142 3000,46 16.000 1.110 27.008 12 .444 3040,39 NODE 523.50 HGL - < 354, 870>;EGL- < 357.042>;FLOWLINE- < 352.500 ****************************************************************************** FLOW PROCESS FROM NODE 523.50 TO NODE 523.00 IS CODE - 5 UPSTREAM NODE 523.00 ELEVATION - 352,83 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER (CFS) (INCHES) UPSTREAM 53,30 30,00 DOWNSTREAM 56,90 30.00 LATERAL #1 0.00 0.00 LATERAL #2 0.00 0.00 Q5 3.60—Q5 EQUALS BASIN INPXJT- ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 352.83 352.50 0.00 0,00 0,00 0.00 CRITICAL DEPTH(FT.) 2.34 2 .37 0.00 • 0.00 VELOCITY (FT/SEC) 15.072 11.825 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY-(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02635 DOWNSTREAM: MANNING'S N - 0.01300; FRICTION SLOPE = 0.01666 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02151 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES - 0.086 FEET ENTRANCE LOSSES • 0.434 JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.574)+( 0.434) = 1.008 FEET • NODE 523.00 : HGL - < 354.522>;EGL- < 358.050>;FLOWLINE- < 352.830> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 520.50 523.00 TO NODE 520.50 IS CODE - 1 ELEVATION - 354.90 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 53.30 CFS PIPE DIAMETER - 30.00 INCHES PIPE LENGTH = 52.50 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.47 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.34 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.34 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0.000 2 .337 11.163 4 .274 1487.00 0.087 2.303 11.268 4.276 1487.64 0.346 2.268 11.384 4.282 1489.52 0.780 2 .234 11.511 4.293 1492.62 1.397 2.199 11.649 4.308 1496.93 2.207 2.165 11.797 4 .327 1502.46 3.223 2.130 11.956 4.351 1509.21 4.464 2 .096 12.126 4.380 1517.22 5.952 2.061 12.307 4 .415 1526.52 7.717 2.027 12,499 4.454 1537.14 9.791 1.992 12.703 4 .500 1549.13 12.217 1.958 12.920 4.551 1562.54 15.049 1.923 13.149 4.610 1577.43 18.351 1.889 13.392 4.675 1593.86 22.209 1.854 13 .649 4.749 1611.90 26.731 1.820 13.920 4.830 1631.64 32.063 1.785 14.207 4.922 1653.16 38.400 1.751 14.511 5.023 1676.56 46.018 1.716 14.833 5.135 1701.94 52.500 1.692 15.068 5.220 1720.86 NODE 520.50 HGL = < 357. 237>;EGL= < 359.174>;FLOWLINE= < 354.900 ****************************************************************************** FLOW PROCESS FROM NODE 520.50 TO NODE 520.00 IS CODE - 5 UPSTREAM NODE 520.00 ELEVATION = 355.23 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 48.40 53 .30 0.00 0.00 DIAMETER (INCHES) 30.00 30.00 0.00 0.00 ANGLE (DEGREES) 0.00 0.00 0.00 FLOWLINE ELEVATION 355.23 354.90 0.00 0.00 CRITICAL DEPTH(FT.) 2.28 2.34 0.00 0.00 VELOCITY (FT/SEC) 9.860 11.166 0.000 0.000 4.90—Q5 EQUALS BASIN INPUT— LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N - 0.01300; FRICTION SLOPE - 0, AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.01426 01392 01460 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.057 FEET ENTRANCE LOSSES = 0.387 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.387)+( 0.387) = 0.774 NODE 520,00 : HGL - < 358,438>;EGL= < 359,948>;FLOWLINE- < 355.230> ****************************************************************************** FLOW PROCESS FROM NODE 520.00 TO NODE 519.50 IS CODE = 1 UPSTREAM NODE 519.50 ELEVATION = 355.83 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 48.40 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 16.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 48.40)/( 410.175))**2 = 0.01392 HF-L*SF - ( 16.00)*(0.01392) = 0.223 NODE 519.50 : HGL = < 358.661>;EGL= < 360.171>;FLOWLINE- < 355.830> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER - 519.50 FLOWLINE ELEVATION - 355.83 ASSUMED UPSTREAM CONTROL HGL = 358,11 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS (i ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver, 8,0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, California 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * Lionshead sta 15+30.35 * * * ************************************************************************** FILE NAME: RACE5B.DAT TIME/DATE OF STUDY: 10:48 04/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 514.50- 2.87*Dc 2496.30 2.87*Dc 2496.30 } JUNCTION 514.00- 2.66 1402.39 1.36* 1569.39 } FRICTION 516.00- 1.96*Dc 1271.16 1.96*Dc 1271.16 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE - 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER - 514.50 FLOWLINE ELEVATION - 351.40 PIPE FLOW = 95.80 CFS PIPE DIAMETER = 54.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 354.270 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 2.87 FT.) IS LESS THAN CRITICAL DEPTH( 2.87 FT.) —> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 514.50 : HGL - < 354.273>;EGL= < 355.513>;FLOWLINE- < 351.400> ****************************************************************************** FLOW PROCESS FROM NODE 514.50 TO NODE 514.00 IS CODE = 5 UPSTREAM NODE 514.00 ELEVATION - 353.90 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 41.80 24.00 75.00 353.90 1.96 18.320 DOWNSTREAM 95.80 54.00 - 351.40 2.87 8.935 LATERAL #1 54.00 48.00 15.00 351.90 2.21 5.599 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE - 0.05224 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE - 0.00437 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02830 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.142 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES - ( 4.962)+( 0.000) = 4.962 NODE 514.00 : HGL = < 355.264>;EGL= < 360.475>;FLOWLINE- < 353.900> ***********************************************************************^*^^^^^^ FLOW PROCESS FROM NODE 514.00 TO NODE 516.00 IS CODE = 1 UPSTREAM NODE 516.00 ELEVATION = 358.57 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 41.80 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH - 67.50 FEET MANNING'S N = 0,01300 NORMAL DEPTH(FT) - 1,24 CRITICAL DEPTH(FT) = 1,96 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) - 1,96 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0,000 1.960 13.366 4.735 1271.16 0.124 1.931 13 .447 4.740 1272.10 0.465 1.902 13.548 4.754 1274.70 0.996 1.873 13.667 4.775 1278.74 1.709 1.844 13.801 4.803 1284.10 2.603 1.815 13.950 4.838 1290.74 3.686 1.786 14.113 4,881 1298.60 4.966 1.757 14.291 4,930 1307.69 6.461 1.728 14.483 4.987 1318.01 8.190 1.699 14.689 5.052 1329.56 10.180 1.670 14.911 5.125 1342.39 12.465 1.641 15.147 5,206 1356.51 15.087 1.612 15.399 5,296 1371.97 18.099 1.583 15.667 5.397 1388.82 21.568 1,554 15,951 5.508 1407.12 25.585 1.525 16,254 5.630 1426.93 30.266 1.496 16.575 5.765 1448.32 35.772 1.467 16.915 5.913 1471.39 42.329 1.439 17.276 6.076 1496,22 50.268 1.410 17.659 6.255 1522.91 60.103 1.381 18.064 6.451 1551.58 67.500 1.364 18.314 6.575 1569.39 NODE 516.00 : HGL = < 360.530>;EGL= < 363.305>;FLOWLINE- < 358.570> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER - 516.00 FLOWLINE ELEVATION - 358 57 ASSUMED UPSTREAM CONTROL HGL - 360.53 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS —=—========= ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc, 2710 Loker Avenue West, Suite 100 Carlsbad, California 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * Lionshead Sta 19+40,00 Southerly Lateral to Mainline * * * ************************************************************************** FILE NAME: RACE5C,DAT TIME/DATE OF STUDY: 10:57 04/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM{POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 504.50- 2.37*Dc 1371.36 2,37*Dc 1371.37 } JUNCTION 504.00- 3.10* 762.05 1.25 601.82 } FRICTION 510.50- 2.30* 604.43 1.73 Dc 524.92 } JUNCTION 510.00- 2.38* 582.90 1.44 501.38 } FRICTION 509.00- 2.24* 555.07 1.69 DC 484.15 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE - 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER - 504.50 FLOWLINE ELEVATION = 355.67 PIPE FLOW - 57.40 CFS PIPE DIAMETER - 42.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 358.040 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 2.37 FT.) IS LESS THAN CRITICAL DEPTH( 2.37 FT.) —> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 504.50 : HGL = < 358.043>;EGL- < 359.104>;FLOWLINE- < 355.670> ****************************************************************************** FLOW PROCESS FROM NODE 504.50 TO NODE 504.00 IS CODE - 5 UPSTREAM NODE 504.00 ELEVATION = 357.17 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 23,80 24.00 90.00 357.17 57.40 42.00 - 355.67 33.60 42.00 0.00 356.00 0.00 0.00 0.00 0.00 0.00—Q5 EQUALS BASIN INPUT— 1.73 2,37 1.80 0.00 7.576 8.267 3.677 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY-(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N - 0.01300; FRICTION SLOPE = 01107 00506 0.000 FEET AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,00806 JUNCTION LENGTH - 4.00 FEET FRICTION LOSSES = 0.032 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES - ( 2.062)+( 0.000) = 2.062 NODE 504.00 : HGL = < 360.275>;EGL= < 361.166>;FLOWLINE- < 357.170> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 510.50 504.00 TO NODE 510.50 IS CODE = 1 ELEVATION - 358.45 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 23.80 CFS PIPE DIAMETER - 24.00 INCHES PIPE LENGTH - 43.00 FEET MANNING'S N - 0.01300 SF-(Q/K)**2 = ({ 23.80)/( 226.219))**2 - 0.01107 HP=L*SF = ( 43.00)* (0.01107) = 0.476 NODE 510.50 : HGL - < 360.751>;EGL= < 361.642>;FLOWLINE- < 358.450> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 510.00 510.50 TO NODE ELEVATION = 510.00 IS CODE - 5 358.78 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 22.50 24.00 0.00 358.78 23,80 24,00 - 358.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.30—Q5 EQUALS BASIN INPUT— 1.69 1.73 0.00 0,00 7.162 7.576 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY-(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*C0S{DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N - 0.01300; FRICTION SLOPE - DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE - AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01048 JUNCTION LENGTH - 4.00 FEET FRICTION LOSSES = 0.042 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.137)+( 0.178) = 0.315 00989 ,01107 0.178 FEET NODE 510.00 HGL < 361,160>;EGL- < 361.957>;FLOWLINE- < 358,780> ****************************************************************************** FLOW PROCESS FROM NODE 510.00 TO NODE 509.00 IS CODE - 1 UPSTREAM NODE 509,00 ELEVATION = 359.10 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 22.50 CFS PIPE DIAMETER - 24.00 INCHES PIPE LENGTH = 18.00 FEET MANNING'S N = 0.01300 SF-(Q/K)**2 = (( 22.50)/( 226.235))**2 - 0,00989 HF-L*SP = ( 18,00)*(0,00989) = 0.178 NODE 509.00 : HGL = < 361.339>;EGL- < 362.135>;FLOWLINE- < 359.100> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 509.00 FLOWLINE ELEVATION - 359.10 ASSUMED UPSTREAM CONTROL HGL = 360.79 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS (A ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, California 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * Lionshead Sta 19+40.00 Northerly Lateral to Mainline * * * ************************************************************************** FILE NAME: RACE5D.DAT TIME/DATE OF STUDY: 10:58 04/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 504.50- 2.37*Dc 1371.36 2,37*Dc 1371.36 } JUNCTION 504.00- 5.04* 492.16 0.37 105.71 } FRICTION 503.00- 3.05* 272.51 0.79 DC 56.06 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE - 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER - 504.50 FLOWLINE ELEVATION = 355.67 PIPE FLOW = 57,40 CFS PIPE DIAMETER = 42.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL - 358,040 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 2.37 FT.) IS LESS THAN CRITICAL DEPTH( 2.37 FT.) —> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 504.50 : HGL - < 358.043>;EGL= < 359.104>;FLOWLINE- < 355.670> ****************************************************************************** FLOW PROCESS FROM NODE 504.50 TO NODE 504.00 IS CODE - 5 UPSTREAM NODE 504.00 ELEVATION = 355.67 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE PLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 4.20 18.00 90.00 355.67 0.79 2.377 DOWNSTREAM 57.40 42.00 - 355.67 2.37 8.267 LATERAL #1 31.50 42.00 0.00 356.00 1.74 3.311 LATERAL #2 21.70 24.00 90.00 357.17 1,67 6.907 Q5 0.00—Q5 EQUALS BASIN INPUT— LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY-(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE - 0.00160 DOWNSTREAM: MANNING'S N - 0.01300; FRICTION SLOPE = 0.00506 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00333 JUNCTION LENGTH - 5.00 FEET FRICTION LOSSES - 0.017 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES - (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.692)+( 0.000) = 1.692 NODE 504.00 : HGL - < 360.708>;EGL- < 360,796>;FLOWLINE- < 355,670> ****************************************************************************** FLOW PROCESS FROM NODE 504,00 TO NODE 503,00 IS CODE = 1 UPSTREAM NODE 503,00 ELEVATION = 357,67 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4,20 CFS PIPE DIAMETER - 18.00 INCHES PIPE LENGTH - 5.00 FEET MANNING'S N - 0.01300 SF-(Q/K)**2 = (( 4,20)/( 105,029))**2 - 0.00160 HF=L*SF = ( 5.00)* (0.00160) = 0.008 NODE 503.00 : HGL - < 360.716>;EGL- < 360.804>;FLOWLINE- < 357.670> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 503.00 FLOWLINE ELEVATION - 357.67 ASSUMED UPSTREAM CONTROL HGL = 358.46 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Pond 1 Pond Sizing Calculations ay X u lao 168 156 144 132 120 I08 - 96 - 84 - 72 O - 36 - 33 - 30 - 27 24 - 21 IB - 15 - 12 10,000 8,000 6,000 5,000 4,000 3,000 - 2.000 1,000 800 600 500 400 300 -200 100 80 60 50 40 30 20 EXAMPLE D'42 Inchn (3.5 fMl) 0>I20 cfi HV»* HW D fMt (1) Z.S B,B (2) Z.I 7.4 (3) Z.Z 7,7 *D In fitt 10 8 6 5 4 3 - 2 - t.O HW SCALE ID (2) (3) ENTRANCE TYPEc: Squori adgi with headwall ^ Groov* and «ith haadooll 6roo«« end t projaetlng To u» •colt (2) or (3) pro)*et horlzontolly lo seoto (l),th*n uio straight Incllnod lini through 0 and 0 (colti, or rivart* at niuitrattd. CHART 2 (I) (2) (3) I- 6. 1- 6. - 3. - 2. 3B" I_ OT K. UJ I- Ui S < o z X' Q. Ul O BC UJ O < UJ - 1.5 6. 5. 4.- 5. 4. - 3. 3. =-2. - 1.0 - .9 - .8 1.5 = 2: - 1.5 - 1.0 - .9 .8 =^.7- - .7 - .6 - .6 5. 4. MM _ 10 - .9 - .8 —7- - .6 .5 <- .5 HEADWATER DEPTH FOR BUREAU OF PUBLIC ROADS JAN. 1963 HEADWATER SCALES 2 53 REVISED MAY 1964 WITH INLETaCONTROL 5-22 POLLUTION PREVENTION BASIN VOLUME CALCULATION PONDl NORTHEASTERLY CORNER OF MELROSE DR. & LIONSHEAD AVE. System from Melrose entering basin: lOO-yr water surface elevation @ catch basin prior to pipe entering basin: SW= 351.38 ft SW = Obtained from basin analysis section Pipe inlet elevation at upstream end of pipe: IE = 344.40 ft Pipe diameter of pipe entering basin: D = 12 inches HW/D = 7.0 HW/D = 12*(SW-IE)/D Q = 9.9 cfs Q = Using Headwater Depth for Concrete Pipe Culverts 'with Inlet Control chart Tc = 16.68 min Tc = Time of Concentration obtained from basin runoff analysis System from Raceway project entering basin (Basin 5): 100-yr water surface elevation @ catch basin prior to pipe entering basin: SW = 345.06 ft SW = Obtained from basin analysis section Pipe inlet elevation at upstream end of pipe: IE = 339.65 ft Pipe diameter of pipe entering basin: D = 24 inches HW/D = 2.7 HW/D = 12*(SW-IE)/D Q= 31.0 cfs Q = Using Headwater Depth for Concrete Pipe Culverts -with Inlet Control chart Tc = 5.59 min Tc = Time of Concentration obtained from basin runoff analysis Volume Required V = 27108 cf K= £80.I*Tc*Q100 Volume Provided 32000 cf G:\iobsV971035\CALC\HydRpt\PondVol DIscharage Pipe & Overflow 18" dia. HDPE @ 9.3% & Spillway Standpipe Calculations Q = 40.9 cfs H= 1 ft. Case 1 Q = CPH 3/2 Case 2 Q = CA(2gh) 1/2 C= 3.0 P= 13.63 ft d = 4.34 ft C = A = d = 0.67 7.60 3.11 ft^ ft 60" pipe Basin Dewatering Calculations AJ2H) 1/2 36Q0(T)C,(g) 1/2 As = H = T = Cd = g = 9460 2 40 0.6 32.2 sf ft hr ft/sec 0.038590 ft 5.56 m G:\jobs\971035\CALC\HydRpt\PondVol CIVILDESIGN CORP. Consulting Engineers 250 S. Lena Rd. San Bernardino, CA 92408 (909)885-3806 Inside Diameter ( 12.00 in.) * * * * * * Water * | I I I * * ( 10.95 in.) ( 0.913 ft.) to * * * * * Circular Channel Section I I V Flowrate 9.900 CFS Velocity 13.166 fps Pipe Diameter 12.000 inches Depth of Flow 10.952 inches Depth of Flow 0.913 feet Critical Depth Greater than Pipe Diameter Depth/Diameter (D/d) 0.913 Slope of Pipe 6.730 % X-Sectional Area 0.752 sq. ft. Wetted Perimeter 2.541 feet AR*(2/3) 0.334 Mannings 'n' 0.013 Min. Fric. Slope, 12 inch Pipe Flowing Full 7.720 % / CIVILDESIGN CORP. Consulting Engineers 250 S. Lena Rd. San Bernardino, CA 92408 (909)885-3806 Inside Diameter ( 24,00 in,) Water ( 5,37 in,) ( 0,447 ft.) I Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) Slope of Pipe X-Sectional Area Wetted Perimeter AR*(2/3) Maimings ' n' Min. Fric Slope, 24 inch Pipe Flowing Pull 8 .000 CFS 15 .251 fps 24 .000 inches 5 .365 inches 0 .447 feet 1 .002 feet 0 .224 10 .400 % 0 .524 sq. ft 1 970 feet 0 217 0 013 0. 125 % to CIVILDESIGN CORP. Consulting Engineers 250 S. Lena Rd. San Bernardino, CA 92408 (909)885-3806 Inside Diameter ( 24.00 in.) Water to I I ( 11.16 in.) ( 0.930 ft.) I I V Circular Channel Section 17 900 CFS 12 516 fps 24 000 inches 11 157 inches 0 930 feet 1 525 feet Depth/Diameter (D/d) 0 465 3 220 % X-Sectional Area 1 430 sq. ft 3 001 feet AR*(2/3) 0 873 0 013 Min. Fric. Slope, 24 inch 0 626 % Melrose Analysis (A San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 10/28/02 PALOMAR FORUM PROPOSED CONDITIONS - MELROSE DRIVE 10-28-02 LOW FLOW G:\ACCTS\981022\LOWMEL.OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 2.0 Map data precipitation entered: 6 hour, precipitation(inches) = 0.690 24 hour precipitation(inches) = 1.200 Adjusted 6 hour precipitation (inches) = 0.690 P6/P24 = 57.5% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 201.000 to Point/Station 202 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 ~ ~ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 [INDUSTRIAL area type ] Initial subarea flow distance = 170.00(Ft.) Highest elevation = 457,00(Ft.) Lowest elevation = 451.00(Ft.) Elevation difference = 6.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.08 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope'^ (1/3) ] TC = [1.8*(l.l-0.9000)*(170.00".5)/( 3 . 53^^ (1/3) ] = 3.08 Setting time of concentration to 5 minutes Rainfall intensity (I) = 1,818 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 0.082(CFS) Total initial stream area = 0.050(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 203.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** * * * * Top of street segment elevation = 451.000(Ft.) End of street segment elevation = 378.000(Ft.) Length of street segment = 1360.OOO(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 55.000(Ft.) Distance from crown to crossfall grade brealc = 53.500 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.170(CFS) Depth of flow = 0.099(Ft.), Average velocity = 2.919(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 2.92(Ft/s) Travel time = 7.77 min. TC = 12.77 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 0.993(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff = 2.038(CFS) for 2.160(Ac.) Total runoff = 2.120(CFS) Total area = 2.21(Ac.) Street flow at end of street = 2.120(CFS) Half street flow at end of street = 2.120(CFS) Depth of flow = 0.229(Ft.), Average velocity = 4.080(Ft/s) Flow width (from curb towards crown)= 6.695(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 203.000 to Point/Station 204.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 367.53(Ft.) Downstream point/station elevation = 365.53(Ft.) Pipe length = 96.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.120(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.120(CFS) Normal flow depth in pipe = 4.55(In.) Flow top width inside pipe = 15.64(In.) Critical Depth = 6.60(In.) Pipe flow velocity = 6.05(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 13.03 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 203.000 to Point/Station 204.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.210(Ac.) Runoff from this stream = 2.120(CFS) Time of concentration = 13.03 min. Rainfall intensity 0.980(In/Hr) to ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 219.000 to Point/Station 220.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11. 9*length (Mi)-^3)/(elevation change) l^". 385 *60 (min/hr) + 10 min. Initial subarea flow distance = 24.00(Ft.) Highest elevation = 459.00(Ft.) Lowest elevation = 447.00(Ft.) Elevation difference = 12.00(Ft.) TC=[(11.9*0.0045"3)/( 12.00)]^.385= 0.12 + 10 min. = 10.12 min. Rainfall intensity (I) = 1.154 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 0.026(CFS) Total initial stream area = 0.050(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++-I-+++++++++++++ Process from Point/Station 220.000 to Point/Station 221.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = Depth of flow = 0.094(Ft.), Average velocity = ******* Irregular Channel Data *********** Information entered for subchannel number 1 : 0.903(CFS) 1.021(Ft/s) Point number 1 2 3 Manning's 'N' 'X' coordinate 0.00 100,00 200.00 friction factor = 'Y' coordinate 1.00 0.00 1.00 0 .030 Sub-Channel flow = 0.903(CFS) ' ' flow top width = 18.818(Ft.) ' ' velocity= 1.021(Ft/s) area = 0.885(Sq,Ft) ' ' Froude number = 0.829 447.000(Ft.) = 435.000(Ft,) Upstream point elevation = Downstream point elevation Flow length = 480,000(Ft.) Travel time = 7.84 min. Time of concentration = 17.96 min. Depth of flow = 0.094(Ft.) Average velocity = 1.021(Ft/s) Total irregular channel flow = 0.903(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) = 1.021(Ft/s) 0.094(Ft. Sub-Channel No. 1 critical depth = 0.087(Ft.) ' ' ' critical flow top width = 17.480(Ft.) ' ' ' critical flow velocity= 1.183(Ft/s) to critical flow area 0.764(Sq.Ft) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 0.797(In/Hr) for a ^^^^ Runoff coefficient used for sub-area. Rational method,Q=KCIA Subarea runoff = 2.559(CFS) for 3.380(Ac,) Total runoff = 2.585(CFS) Total area = 3 43(Ac ) 2.0 year storm C = 0.950 to ++++++++++++++++++++++++++++++++++++++++^.^++^^^^^^^^_^_i__i__i__i__^_^_^_i__^_^ Process from Point/Station 221.000 to Point/Station 222 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 416.50(Ft.) Downstream point/station elevation = 410.70(Ft.) Pipe length = 156.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.585(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 2.585(CFS) Normal flow depth in pipe = 3, 96(In,) Flow top width inside pipe = 17.82(In.) Critical Depth = 6.71(In.) Pipe flow velocity = 7.61(Ft/s) Travel time through pipe = 0.34 min. Time of concentration (TC) = 18.30 min. +++++++++++++++++++++++++^^^^^^^^^^^^^^^^^^_^^^_^^^^_^^^^^_^^^_^^^^^^^^^^^_^ Process from Point/Station 222.000 to Point/Station 222 000 **** SUBAREA FLOW ADDITION **** ^^^.uuu Decimal fraction soil group A = 0.000 ' ' ' " Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration = 18.30 min. Rainfall intensity = 0.787(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 450 Subarea runoff = 0.602(CFS) for 1.700(Ac.) Total runoff = 3.187(CFS) Total area = 5 13(Ac ) Process from Point/Station 222.000 to Point/Station 206 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 410.37(Ft.) Downstream point/station elevation = 389.83(Ft.) Pipe length = 315.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = Given pipe size = 24.00(In.) Calculated individual pipe flow = 3.187(CFS) Normal flow depth in pipe = 3.83(In.) Flow top width inside pipe = 17.58(In.) Critical Depth = 7.48(In.) 3.187(CFS) Pipe flow velocity = 9.87(Ft/s) Travel time through pipe = 0,53 min. Time of concentration (TC) = 18.83 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 204.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 389.50(Ft.) ~ ~ Downstream point/station elevation = 365.20(Ft.) Pipe length = 311,00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.187(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 3.187(CFS) Normal flow depth in pipe = 3.66(In.) Flow top width inside pipe = 17.26(In.) Critical Depth = 7.48(In.) Pipe flow velocity = 10.51(Ft/s) Travel time through pipe = 0.4 9 min. Time of concentration (TC) = 19.32 min. to +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-I-++++++++ Process from Point/Station 206.000 to Point/Station 204 000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 5.130(Ac.) Runoff from this stream = 3.187(CFS) Time of concentration = 19.32 min. Rainfall intensity = 0.760(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) 120 187 000 000 Qmax(2) = 0.776 * 1.000 * 13.03 19.32 1.000 * 0.674 * 1.000 * 1.000 * 2.120) 3.187) 0. 980 0.760 + + = 2.120) + 3.187) + 4.269 4 .831 Total of 2 streams to confluence: Flow rates before confluence point: 2.120 3.187 Maximum flow rates at confluence using above data: 4.269 4.831 Area of streams before confluence: 2.210 5.130 Results of confluence: Total flow rate = 4.831(CFS) Time of concentration = 19.323 min. Effective stream area after confluence = 7.340(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++-I-+++++ Process from Point/Station 204.000 to Point/Station **** SUBAREA FLOW ADDITION **** 204.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 19.32 min. Rainfall intensity = 0.760(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 1.394(CFS) for 1.930(Ac.) Total runoff = 6.225(CFS) Total area = 9.27(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++-I-++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 205.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 365.20(Ft.) Downstream point/station elevation = 346.50(Ft.) Pipe length = 299.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.225(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 6.225(CFS) Normal flow depth in pipe = 5.38(In.) Flow top width inside pipe = 20.01(In.) Critical Depth = 10.59(In.) Pipe flow velocity = 11.84(Ft/s) Travel time through pipe = 0.42 min. Time of concentration (TC) = 19.74 min. ++++++++++++++++++++++++++++++++++++++++++++-(-+++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 205,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 9.270(Ac.) Runoff from this stream = 6.225(CFS) Time of concentration = 19.74 min. Rainfall intensity = 0.750(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 207.000 to Point/Station 208.000 **** INITIAL AREA EVALUATION **** to Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)'^3)/(elevation change) ]'-. 385 *60(min/hr) + 10 min. Initial subarea flow distance = 70.00(Ft.) Highest elevation = 469.00(Ft.) Lowest elevation = 440.00(Ft.) Elevation difference = 29.00(Ft.) TC=[ (11.9*0.0133'"3)/( 29.00)]-".385= 0.29 + 10 min. = 10.2 9 min. Rainfall intensity (I) = 1.141 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0 450 Subarea runoff = 0.026(CFS) Total initial stream area = 0.050(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++^^^^^^^^^^_^_^_^_i__^^^_^ Process from Point/Station 208.000 to Point/Station 209 000 **** IMPROVED CHANNEL TRAVEL TIME **** to Covered channel Upstream point elevation = 440.00(Ft.) Downstream point elevation = 380,00(Ft.) Channel length thru subarea = 530.00(Ft.) Channel base width = 1.030(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0.005 Maximum depth of channel Flow(q) thru subarea = 0, Depth of flow = 0.029(Ft.) Channel flow top width = 1, Flow Velocity = 8.95(Ft/s) Travel time = 0.99 min. Time of concentration = 11.28 min, Critical depth = 0.119(Ft.) Adding area flow to channel fraction soil group A fraction soil group B • fraction soil group C • fraction soil group D ^ (greater than 1/2 acre) 0.100(Ft.) .277(CFS) Average velocity = ,14 4(Ft.) 0.277(CFS) 8.950(Ft/s) Decimal Decimal Decimal Decimal [RURAL .000 ,000 ,000 ,000 area type Rainfall intensity = 1.076(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 Subarea runoff = 0.474 (CFS) for 0.980 (Ac) Total runoff = 0.500(CFS) Total area = 1 03(Ac ) 450 +++++++++++++++++++++++++++++++++++^.++++4.+^.+^ Process from Point/Station 209.000 to Point/Station **** SUBAREA FLOW ADDITION **** I-+++ 209.000 Decimal fraction soil group A = 0.000 ~~ ~ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration = 11.28 min. Rainfall intensity = 1.076(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 450 Subarea runoff = 0.126(CFS) for 0.260(Ac.) Total runoff = 0.626(CFS) Total area = l 29(Ac ) + + + + + + + + + + -^'^- + + '¥ + + + + -i--{- + + + + + + + + + -^ + + + + .^-t- + + + + + + + + + + + + + + + ^. + + + ^^^^^ Process from Point/Station 209.000 to Point/Station 210 000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = Downstream point elevation 380.00(Ft.) 369.00(Ft.) Channel length thru subarea = 180.00(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 0,832(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 0.832(CFS) Depth of flow = 0.086(Ft.), Average velocity = 4.473(Ft/s) Channel flow top width = 2.343(Ft.) Flow Velocity = 4.47(Ft/s) Travel time = 0.67 min. Time of concentration = 11.95 min. Critical depth = 0.166(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 1.037(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 0.396(CFS) for 0.850(Ac.) Total runoff = 1.023(CFS) Total area = 2.14(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^.++^.^^^.^.^.-^^^ Process from Point/Station 210.000 to Point/Station 210.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 ' ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.0 00 [RURAL (greater than 1/2 acre) area type ] Time of concentration = 11.95 min. Rainfall intensity = 1.037(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 0.4 66(CFS) for 1.000(Ac.) Total runoff = 1.489(CFS) Total area = 3.14(Ac.) +++++ +++++++++-H+-H+++++++++++ + ++-H+++++++ +++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 211.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 364.00(Ft.) ~ Downstream point/station elevation = 358,00(Ft,) Pipe length = 266.00(Ft.) Manning's N = 0.010 No. of pipes = 1 Required pipe flow = 1.489(CFS) Given pipe size = 18,00(In.) Calculated individual pipe flow = 1.489 (CFS) Normal flow depth in pipe = 3.28(In.) Flow top width inside pipe = 13.90(In.) Critical Depth = 5.48(In.) Pipe flow velocity = 6.75(Ft/s) Travel time through pipe = 0.66 min. Time of concentration (TC) = 12.60 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ to Process from Point/Station 211.000 to Point/Station 212.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 357.67(Ft.) ' Downstream point/station elevation = 350.00(Ft.) Pipe length = 343.35(Ft.) Manning's N = 0.010 No. of pipes = 1 Required pipe flow = 1.489(CFS) Given pipe size = 18,00(In,) Calculated individual pipe flow = 1.489 (CFS) Normal flow depth in pipe = 3.29(In.) Flow top width inside pipe = 13.91(In.) Critical Depth = 5,48(In,) Pipe flow velocity = 6.73(Ft/s) Travel time through pipe = 0.85 min. Time of concentration (TC) = 13.45 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 212.000 to Point/Station 212.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 13.45 min. Rainfall intensity = 0.960(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 6.759(CFS) for 7.410(Ac.) Total runoff = 8.248(CFS) Total area = 10.55(Ac.) ++++++++++++++++++++++-(-+++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 212.000 to Point/Station 205.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 349.50(Ft.) Downstream point/station elevation = 346.50(Ft.) Pipe length = 72.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.248(CFS) Given pipe size = 24. 00(In.) Calculated individual pipe flow = 8.248(CFS) Normal flow depth in pipe = 6.88(In.) Flow top width inside pipe = 21.70(In.) Critical Depth = 12.28(In.) Pipe flow velocity = 11.09(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 13,56 min. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -(•-H- + + + + + + + + + + + + + + + + + + + Process from Point/Station 212.000 to Point/Station 205.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 10.550(Ac.) Runoff from this stream = 8.24 8(CFS) Time of concentration = 13.56 min. Rainfall intensity = 0.955(In/Hr) Summary of stream data: stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 2 Qmax(1) 6 225 19 74 0 750 8 248 13 56 0 955 1 000 * 1 000 * 6.225) + 0 785 * 1 000 * 8.248) + = 12 699 1 000 * 0 687 * 6.225) + 1 000 * 1 000 * 8.248) + 12 524 Qmax(2) = Total of 2 streams to confluence: Flow rates before confluence point: 6.225 8.248 Maximum flow rates at confluence using above data: 12.699 12.524 Area of streams before confluence: 9.270 10.550 Results of confluence: Total flow rate = 12.699(CFS) Time of concentration = 19.744 min. Effective stream area after confluence = 19.820(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 205.000 to Point/Station 213.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 346. 00(Ft.) Downstream point/station elevation = 320.67(Ft.) Pipe length = 167.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 12.699(CFS) Given pipe size = 30,00(In.) Calculated individual pipe flow = 12.699 (CFS) Normal flow depth in pipe = 5.72(In.) Flow top width inside pipe = 23.57(In.) Critical Depth = 14.37(In.) Pipe flow velocity = 19.45(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 19.89 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-H-+ Process from Point/Station 213.000 to Point/Station 220.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 320.34(Ft.) Downstream point/station elevation = 320.00(Ft.) Pipe length = 17.18(Ft.) Manning's N = 0,013 No. of pipes = 1 Required pipe flow = 12.699(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 12.699(CFS) Normal flow depth in pipe = 9.56(In.) Flow top width inside pipe = 27.96(In.) Critical Depth = 14.37(In.) Pipe flow velocity = 9.43(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 19.92 min. End of computations, total study area = 19,82 (Ac.) to Basin 5 Low Flow Analysis San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 10/28/02 CARLSBAD RACEWAY BASIN 5—Loi\J IFCo^ 10-24-02 G:\ACCTS\971035\RACEi^ OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 2.0 Map data precipitation entered: 6 hour, precipitation(inches) = 0.690 24 hour precipitation(inches) = 1.200 Adjusted 6 hour precipitation (inches) = 0.690 P6/P24 = 57.5% San Diego hydrology manual 'C values used Runoff coefficients by rational method +++++++++++++++++++++++++++++++++++++++++++++++-(-++++++++++++++++++++++ Process from Point/Station 501.000 to Point/Station 502 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.00 0 ~ ~ Decimal fraction soil group B = 0.00 0 Decimal fraction soil group C = 0.00 0 Decimal fraction soil group D = 1.00 0 [INDUSTRIAL area type ] Initial subarea flow distance = 25.00(Ft.) Highest elevation = 381.50(Ft.) Lowest elevation = 381.00(Ft.) Elevation difference = 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.07 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope"(l/3)] TC =[1.8*(1.1-0.9500)*( 25.00^.5)/( 2 . 00'^ (1/3) ] = 1.07 Setting time of concentration to 5 minutes Rainfall intensity (I) = 1.818 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.017(CFS) Total initial stream area = 0.010(Ac.) ++++++++++++++++++++++++++++++++++++ +++++++++++-(-++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 503.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 381.000(Ft.) End of street segment elevation = 367.000(Ft.) Length of street segment = 1015.000(Ft.) to 0.025(CFS) 1.087(Ft/s) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft, Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.062(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.09(Ft/s) Travel time = 15.56 min. TC = 20.56 min. Adding area flow to street Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 0.730(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 0.631(CFS) for 0.910(Ac.) Total runoff = 0.649(CFS) Total area = 0.92(Ac.) Street flow at end of street = 0.649(CFS) Half street flow at end of street = 0.649(CFS) Depth of flow = 0.200(Ft.), Average velocity = 1.857(Ft/s) Flow width (from curb towards crown)= 5.273(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++-(•+++++++++++++++++ Process from Point/Station 503.000 to Point/Station 503.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 ~~ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 20.56 min. Rainfall intensity = 0.730(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 0.166(CFS) for 0.240(Ac.) Total runoff = 0.815(CFS) Total area = 1.16(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 503.000 to Point/Station 504.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** to Upstream point/station elevation = 358.55(Ft.) Downstream point/station elevation = 358.30(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.815(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.815(CFS) to Normal flow depth in pipe = 2.30(In.) Flow top width inside pipe = 12.01(In.) Critical Depth = 4.02(In.) Pipe flow velocity = 6.21(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 20.58 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++4.+++++^.++^^^^^^^^ Process from Point/Station 503.000 to Point/Station 504 000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: ' ~ In Main Stream number: 1 Stream flow area = 1.160(Ac.) Runoff from this stream = 0.815(CFS) Time of concentration = 20.58 min. Rainfall intensity = 0.730(In/Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++++++++++++++-(-++++++++++++++++++ Process from Point/Station 505,000 to Point/Station 506 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A - 0,000 ~ ~~ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 530.00(Ft.) Highest elevation = 381.00(Ft.) Lowest elevation = 368.00(Ft.) Elevation difference = 13.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.61 min. TC = [1.8*(l.l-C)*distance^.5)/(% slope"^ (1/3) ] TC = [1.8*(l.l-0.9500)*(530.00*,5)/( 2 . 4 5'" (1/3) ] = 4.61 Setting time of concentration to 5 minutes Rainfall intensity (I) = 1.818 for a 2,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,950 Subarea runoff = 7,910(CFS) Total initial stream area = 4.580 (Ac) ++++++++++++++++++++++++++++++++++++++++++++++++++-H-++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 507.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 359.05(Ft.) Downstream point/station elevation = 358.37(Ft.) Pipe length = 68.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.910(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 7.910(CFS) Normal flow depth in pipe = 8.93(In.) Flow top width inside pipe = 27,43(In.) Critical Depth = 11.20(In.) Pipe flow velocity = 6.46(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 5.18 min. to ++ + + + + + + + + ++++++ +++++ + + ++++++++ + + + + + + +++ + +++++ + + ++++-(- ++-H- ++++++++++++ + Process from Point/Station 507.000 to Point/Station 504.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 358.04(Ft.) Downstream point/station elevation = 356.37(Ft.) Pipe length = 167.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.910(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 7.910(CFS) Normal flow depth in pipe = 8.93(In.) Flow top width inside pipe = 27.43(In.) Critical Depth = 11. 20 (In.) Pipe flow velocity = 6.46(Ft/s) Travel time through pipe = 0.4 3 min. Time of concentration (TC) = 5.61 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-I-+++++++++ Process from Point/Station 507.000 to Point/Station 504.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4.580 (Ac) Runoff from this stream = 7.910(CFS) Time of concentration = 5,61 min. Rainfall intensity = 1.689(In/Hr) Program is now starting with Main Stream No, 3 +++++++++++++++++++++++++++++++++++++++++++++++++++++-I-++++++++++++++++ Process from Point/Station 508.000 to Point/Station 509.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0,000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1,000 [INDUSTRIAL area type ] Initial subarea flow distance = 420,00(Ft.) Highest elevation = 378.00(Ft.) Lowest elevation = 368.00(Ft.) Elevation difference = 10.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.14 min. TC = [1.8* (l.l-C)*distance'^.5)/(% slope-^ (1/3) ] TC = [1.8*(l.l-0.9500)*(420.00'^.5)/( 2.38^(1/3)]= 4.14 Setting time of concentration to 5 minutes Rainfall intensity (I) = 1.818 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 5.181(CFS) Total initial stream area = 3.000(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -!-(- + + + + + + + + + + + + + Process from Point/Station 509.000 to Point/Station 510.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 358.80(Ft.) Downstream point/station elevation = 358.48(Ft.) Pipe length = 18.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.181(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 5.181(CFS) Normal flow depth in pipe = 6.73(In.) Flow top width inside pipe = 21.56(In.) Critical Depth = 9.62(In.) Pipe flow velocity = 7.18(Ft/s) Travel time through pipe = 0.04 rain. Time of concentration (TC) = 5.04 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++^^^.^^^^^^^^^^^^ Process from Point/Station 509.000 to Point/Station 510 000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 3.000(Ac.) Runoff from this stream = 5.181(CFS) Time of concentration = 5.04 min. Rainfall intensity = 1.808(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 511.000 to Point/Station 512 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 ~ ~ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 50.00(Ft.) Highest elevation = 373.30(Ft.) Lowest elevation = 372.30(Ft.) Elevation difference = 1.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.52 min. TC = [1.8* (1.1-C) *distance'^.5) / (% slope'" (1/3) ] TC = [1.8*(1.1-0.9500)*( 50.00*.5)/( 2.00^(1/3)]= 1.52 Setting time of concentration to 5 minutes Rainfall intensity (I) = 1.818 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.017(CFS) Total initial stream area = 0.010(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++^.+++^++^^^^^^ Process from Point/Station 512.000 to Point/Station 510 000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 372.300(Ft.) ~ End of street segment elevation = 367.000(Ft.) Length of street segment = 615.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 to to street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.022(CFS) Depth of flow = 0.064(Ft.), Average velocity = 0.880(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 0,88(Ft/s) Travel time = 11.65 min. TC = 16.65 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 0.837(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 950 Subarea runoff = 0.421(CFS) for 0.530(Ac.) Total runoff = 0.439(CFS) Total area = 0.54(Ac.) Street flow at end of street = 0.439(CFS) Half street flow at end of street = 0.439(CFS) Depth of flow = 0.192(Ft.), Average velocity = 1.423(Ft/s) Flow width (from curb towards crown)= 4.869(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 510.000 to Point/Station 510 000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 ~ ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = l.OOO [INDUSTRIAL area type ] Time of concentration = 16.65 min. Rainfall intensity = 0.837(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 950 Subarea runoff = 0.223(CFS) for 0.280(Ac.) Total runoff = 0.661(CFS) Total area = 0.82(Ac.) +++++++++++++ ++++++++++ + + ++++ +++++++++ +++++ ++++++++++++++-I-H-++++ + + ++++ Process from Point/Station 510.000 to Point/Station 510.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0.820(Ac.) Runoff from this stream = 0.661(CFS) Time of concentration = 16.65 min. Rainfall intensity = 0.837(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 2 Qmax(1) to 5 181 5 04 1 808 0 661 16 65 0 837 1 000 * 1 000 * 5 181) + 1 000 * 0 303 * 0 661) + = 5 381 0 463 * 1 000 * 5 181) + 1 000 * 1 000 * 0 661) + = 3 059 Total of 2 streams to confluence: Flow rates before confluence point: 5.181 0,661 Maximum flow rates at confluence using above data: 5.381 3.059 Area of streams before confluence: 3.000 0.820 Results of confluence: Total flow rate = 5.381(CFS) Time of concentration = 5.042 min. Effective stream area after confluence = 3.820(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 510.000 to Point/Station 504.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 358.15(Ft.) ~ Downstream point/station elevation = 356.87(Ft.) Pipe length = 43.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.381(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 5.381(CFS) Normal flow depth in pipe = 6.02(In.) Flow top width inside pipe = 20.80(In.) Critical Depth = 9.81(In.) Pipe flow velocity = 8.72(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 5.12 min, ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 510.000 to Point/Station 504.000 +*** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: ~~" In Main Stream number: 3 Stream flow area = 3.820(Ac.) Runoff from this stream = 5.381(CFS) Time of concentration = 5.12 min. Rainfall intensity = 1.789(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 0.815 20.58 0.730 2 7.910 5.61 1.689 3 5.381 5.12 1.789 Qmax(1) = 1.000 * 1.000 * 0.815) + V to 0 432 * 1 000 * 7 910) + 0 408 * 1 000 * 5 381) + = 6 430 1 000 * 0 272 * 0 815) + 1 000 * 1 000 * 7 910) + 0 944 * 1 000 * 5 381) + = 13 210 1 000 * 0 249 * 0 815) + 1 000 * 0 914 * 7 910) + 1 000 * 1 000 * 5 381) + = 12 814 Qmax(2) = Qmax(3) Total of 3 main streams to confluence: Flow rates before confluence point: 0.815 7.910 5.381 Maximum flow rates at confluence using above data: 6.430 13.210 12.814 Area of streams before confluence: 1.160 4.580 3.820 Results of confluence: Total flow rate = 12.814(CFS) Time of concentration = 5.124 min. Effective stream area after confluence = 9.560 (Ac) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 504,000 to Point/Station 513,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 355,37(Ft.) Downstream point/station elevation = 354.13(Ft.) Pipe length = 185.54(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 12.814(CFS) Given pipe size = 42. 00(In.) Calculated individual pipe flow = 12.814(CFS) Normal flow depth in pipe = 11.20(In.) Flow top width inside pipe = 37.15(In.) Critical Depth = 13.03(In.) Pipe flow velocity = 6,21(Ft/s) Travel time through pipe = 0,50 min. Time of concentration (TC) = 5.62 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 513.000 to Point/Station 514.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 353.80(Ft.) Downstream point/station elevation = 352.40(Ft.) Pipe length = 209.90(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 12.814(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 12.814(CFS) Normal flow depth in pipe = 11.21(In.) Flow top width inside pipe = 37.16(In.) Critical Depth = 13.03(In.) Pipe flow velocity = 6.21(Ft/s) Travel time through pipe = 0.56 min. Time of concentration (TC) = 6.18 min. to ++++++++++++++++++++++++++++++++++++++++++++++++++++++++-I-+++++++++++++ Process from Point/Station 513.000 to Point/Station 514.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 9.560(Ac.) Runoff from this stream = 12.814(CFS) Time of concentration = 6,18 min. Rainfall intensity = 1.585(In/Hr) +++++++++++++++++++++++++++++++++++++++-I-++++-I-+++++++++++++++++++++++++ Process from Point/Station 515.000 to Point/Station 516.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 575.00(Ft.) Highest elevation = 383.00(Ft.) Lowest elevation = 368.00(Ft.) Elevation difference = 15.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.70 min. TC = [1.8*(l.l-C)*distance'".5)/(% slope^(l/3)] TC = [1.8*(l.l-0.9500)*(575.00'^.5)/( 2.61"(l/3)]= 4.70 Setting time of concentration to 5 minutes Rainfall intensity (I) = 1.818 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 9.603(CFS) Total initial stream area = 5.560(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 516.000 to Point/Station 514.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 358.00(Ft.) Downstream point/station elevation = 353.57(Ft.) Pipe length = 55.00(Ft.) Manning's N = 0,013 No. of pipes = 1 Required pipe flow = 9.603(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 9.603(CFS) Normal flow depth in pipe = 6.27(In.) Flow top width inside pipe = 21, 09(In,) Critical Depth = 13.29(In.) Pipe flow velocity = 14.68(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 5.06 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 516.000 to Point/Station 514.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 5.560 (Ac) Runoff from this stream = 9. 603(CFS) Time of concentration = Rainfall intensity = Summary of stream data: Stream No. Flow rate (CFS) 5.06 min. 1.803(In/Hr) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 12.814 9. 603 1.000 * 0.879 * 1.000 * 1.000 * 6.18 5.06 1.000 * 1.000 * 0.819 * 1.000 * 1.585 1.803 12.814) + 9.603) + 12.814) + 9.603) + 21.253 20.091 Total of 2 streams to confluence: Flow rates before confluence point: 12.814 9.603 Maximum flow rates at confluence using above data: 21.253 20.091 Area of streams before confluence: 9.560 5.560 Results of confluence: Total flow rate = 21.253(CFS) Time of concentration = 6.185 min. Effective stream area after confluence = 15.120(Ac.) + + + + + + + + + + + + + + + + + + + +++ + + + + + + + + + + + + + + + + + 4. + + + + + + + + + + + + + + + + + + + + ^.^. + + + + ^^^^ Process from Point/Station 514.000 to Point/Station 517.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 352.07(Ft.) ~~ ~~ Downstream point/station elevation = 341.83(Ft,) Pipe length = 137.74(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 21.253(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 21.253(CFS) Normal flow depth in pipe = 7.91(In.) Flow top width inside pipe = 32.84(In.) Critical Depth = 16.96(In.) Pipe flow velocity = 16.92(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 6.32 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 514.000 to Point/Station 517.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 15.120(Ac.) Runoff from this stream = 21.253(CFS) Time of concentration = 6.32 min. Rainfall intensity = 1.563(In/Hr) Program is now starting with Main Stream No. 2 to ++++++++++++++++++++++++++++++++++++++++++++++-I-+++++++++++++++++++++++ Process from Point/Station 518.000 to Point/Station 519 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 600.00(Ft.) Highest elevation = 384.00(Ft.) Lowest elevation = 370.00(Ft.) Elevation difference = 14.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.99 min. TC = [1.8*(l.l-C)*distance'".5)/(% slope'" (1/3) ] TC = [1.8*(l.l-0.9500)*(600.00'".5)/( 2 . 33'" (1/3) ] = 4.99 Setting time of concentration to 5 minutes Rainfall intensity (I) = 1.818 for a 2,0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0,950 Subarea runoff = 11.122(CFS) Total initial stream area = 6.440(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 519.000 to Point/Station 520 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 356.00(Ft.) Downstream point/station elevation = 355.40(Ft.) Pipe length = 15.75(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 11.122(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 11.122(CFS) Normal flow depth in pipe = 7.55(In.) Flow top width inside pipe = 26.04(In.) Critical Depth = 13.38(In.) Pipe flow velocity = 11.47(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 5.02 min. +++++++++++++++-1-+++++++++++++++++++++++++++++++++++++^.+++++^^^^^^^^^^^ Process from Point/Station 519.000 to Point/Station 520 000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 ~ Stream flow area = 6.440(Ac.) Runoff from this stream = 11.122(CFS) Time of concentration = 5.02 min. Rainfall intensity = 1.813(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 521.000 to Point/Station 522 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 ~ ~ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 (i [INDUSTRIAL area type ] Initial subarea flow distance = 110.00(Ft.) Highest elevation = 373.80(Ft.) Lowest elevation = 372.90(Ft.) Elevation difference = 0.90(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.03 min. TC = [1.8*(l.l-C)*distance'",5)/(% slope'" (1/3) ] TC = [1.8*(l.l-0.9500)*(110.00'".5)/{ 0 . 82^" (1/3) ] = 3.03 Setting time of concentration to 5 minutes Rainfall intensity (I) = 1.818 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.017(CFS) Total initial stream area = 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 522.000 to Point/Station 520 000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 372.900(Ft.) End of street segment elevation = 367.000(Ft.) Length of street segment = 280.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.020(CFS) Depth of flow = 0.053(Ft.), Average velocity = 1.204(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.20(Ft/s) Travel time = 3.88 min. TC = 8.88 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 1.256(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 0.382(CFS) for 0.320(Ac.) Total runoff = 0.399(CFS) Total area = 0.33(Ac.) Street flow at end of street = 0.399(CFS) Half street flow at end of street = 0.399(CFS) Depth of flow = 0.166(Ft.), Average velocity = 2.028(Ft/s) Flow width (from curb towards crown)= 3.542(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 522.000 to Point/Station 520 000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.330(Ac.) Runoff from this stream = 0.399(CFS) Time of concentration = 8.88 min. Rainfall intensity = 1.256(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) to 1 2 Qmax(1) Qmax(2) 11.122 0.399 1.000 * 1.000 * 0.693 * 1.000 * 5.02 8.88 1.000 * 0.566 * 1.000 * 1.000 * 1,813 1.256 11.122) + 0.399) + 11.122) + 0,399) + 11,348 8.103 Total of 2 streams to confluence: Flow rates before confluence point: 11.122 0.399 Maximum flow rates at confluence using above data: 11.348 8.103 Area of streams before confluence: 6.440 0.330 Results of confluence: Total flow rate = 11.348(CFS) Time of concentration = 5.023 min. Effective stream area after confluence = 6. 770 (Ac) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 520.000 to Point/Station 520.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 ~ ~~ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = O.OOO Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 5.02 min. Rainfall intensity = 1.813(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 0.413(CFS) for 0.240(Ac.) Total runoff = 11.761(CFS) Total area = 7.01(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++-(-+++++++++++++++++++++ Process from Point/Station 520.000 to Point/Station 523.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 354.90(Ft.) Downstream point/station elevation = 352,63(Ft.) Pipe length = 52.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 11.761(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 11.761(CFS) Normal flow depth in pipe = 7.52(In.) (i to Flow top width inside pipe = 26.01(In.) Critical Depth = 13. 80(In.) Pipe flow velocity = 12.20(Ft/s) Travel time through pipe = 0.07 rain. Time of concentration (TC) = 5.09 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 520,000 to Point/Station 523.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 7.010(Ac.) Runoff from this stream = 11.761(CFS) Time of concentration = 5,09 min. Rainfall intensity = 1.796(In/Hr) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ + + + + + + + + + + + H-|-|-(- + + -|- + + + + + Process from Point/Station 521,000 to Point/Station 524,000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 ~~ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 80.00(Ft.) Highest elevation = 373.80(Ft.) Lowest elevation = 371.40(Ft.) Elevation difference = 2.40(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.67 min. TC = [1.8*(l.l-C)*distance'".5)/(% slope'^ (1/3) ] TC = [1.8*(l.l-0.9500)*( 80.00'".5)/( 3 . 00'" (1/3) ] = 1.67 Setting time of concentration to 5 minutes Rainfall intensity (I) = 1.818 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.017(CFS) Total initial stream area = 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 524.000 to Point/Station 523.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 371.400 (Ft.) End of street segment elevation = 367.000(Ft.) Length of street segment = 320.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10,000(Ft,) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.020(CFS) Depth of flow = 0.057(Ft.), Average velocity = 1.023(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.02(Ft/s) Travel time = 5.22 min. TC = 10.22 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1,000 [INDUSTRIAL area type ] Rainfall intensity = 1.147(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 0.316(CFS) for 0.290(Ac,) Total runoff = 0.333(CFS) Total area = Street flow at end of street = 0.333(CFS) Half street flow at end of street = 0.333(CFS) Depth of flow = 0.167(Ft.), Average velocity = 1.646(Ft/s) Flow width (from curb towards crown)= 3.622(Ft.) 0.30(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 524.000 to Point/Station 523 000 **** CONFLUENCE OF MINOR STREAMS **** to Along Main Stream number Stream flow area = Runoff from this stream Time of concentration = Rainfall intensity = Summary of stream data: 2 in normal stream number 2 0.300(Ac.) 0.333(CFS) 10.22 min. 1,147(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(11 Qmax(2) 11. 0. 1. 1. 0. 1. 761 333 000 000 638 000 5.09 10.22 1.000 * 0.499 * 1.000 * 1.000 * 11.761) 0.333) 11.761) 0.333) 1.796 1.147 + + = + + = 11.928 7.842 Total of 2 streams to confluence: Flow rates before confluence point: 11.761 0.333 Maximum flow rates at confluence using above data: 11.928 7.842 Area of streams before confluence: 7.010 0.300 Results of confluence: Total flow rate = 11.928(CFS) Time of concentration = 5.095 min. Effective stream area after confluence = 7.310(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4.++++ Process from Point/Station 523.000 to Point/Station **** SUBAREA FLOW ADDITION **** 523.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 .000 .000 Decimal fraction soil group C = 0 Decimal fraction soil group D = 1 [INDUSTRIAL area type ] Time of concentration = 5.09 min. Rainfall intensity = 1.796(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C Subarea runoff = 0.392(CFS) for 0.230(Ac.) Total runoff = 12.320(CFS) Total area = 7 54(Ac = 0.950 to ++++ +++++++++-H+H-+++ ++++++++++++ + ++++4.+++++++++ + + + ^^^^_^^^^^^_^^^_^^_l__l__^^ Process from Point/Station 523.000 to Point/Station 517 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 352.50(Ft.) 342.50(Ft.) N = 0.013 12.320(CFS) 320(CFS) Upstream point/station elevation = Downstream point/station elevation = Pipe length = 16.24(Ft.) Manning's No. of pipes = 1 Required pipe flow = Given pipe size = 30.00(In.) Calculated individual pipe flow = 12 Normal flow depth in pipe = 4.01(In.) Flow top width inside pipe = 20.41(In. Critical Depth = 14.13(In.) Pipe flow velocity = 31.55(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 5.10 mi + + + + + + + + + -H-l- + + + + + + + + -|- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ^. + + ^^^^^^^^^^ Process from Point/Station 523.000 to Point/Station 517 000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: ~ In Main Stream number: 2 Stream flow area = 7.540(Ac.) Runoff from this stream = 12.320(CFS) Time of concentration = 5.10 min. Rainfall intensity = 1.794(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 21, 12. Qmax(1) = Qmax(2) = 253 320 000 871 000 000 6.32 5.10 1.000 * 1.000 * 0.807 * 1.000 * Total of 2 main streams to confluence: Flow rates before confluence point: 21.253 12.320 1.563 1.794 21.253) + 12.320) + 21.253) + 12.320) + 31.985 29.480 (l Maximum flow rates at confluence using above data: 31.985 29.480 Area of streams before confluence: 15.120 7.540 Results of confluence: Total flow rate = 31.985(CFS) Time of concentration = 6.320 min. Effective stream area after confluence = 22.660(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 517.000 to Point/Station 525.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 341.50(Ft.) Downstream point/station elevation = 333.83(Ft.) Pipe length = 51.10(Ft.) Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 31.985(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 31.985(CFS) Normal flow depth in pipe = 8.13(In.) Flow top width inside pipe = 33.19(In.) Critical Depth = 20.97(In.) Pipe flow velocity = 24.44(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 6.36 min. End of computations, total study area = 22,66 (Ac.) (( Pond 2 Pond Sizing Calculations to POLLUTION PREVENTION BASIN VOLUME CALCULATION PONDl NEAR NODE 412 100-yr water siuface elevation @ catch basin prior to pipe entering basin: SW = 336.01 ft SW = Obtained from basin analysis section Pipe inlet elevation at upstream end of pipe: IE = 330.60 ft Pipe diameter of pipe entering basin: D = 24 inches HW/D = 2.7 HW/D = 12*(SW-IE)/D Q = 32.0 cfs Q = Using Headwater Depth for Concrete Pipe Culverts •with Inlet Control chart Tc = 15.9 min Tc = Time of Concentration obtained from basin runoff analysis Volume Required V = 40755 cf V = 80.1*Tc*Q100 Volume Provided 65000 cf Overflow 24" dia. HDPE @ 2.4% & Spillway Standpipe Calculations Q = H = 32 1 cfs ft. Case 1 Q = CPH^ Case 2 Q = CA(2gh) 1/2 c = p = d = 3.0 10.67 ft 3.40 ft C = A = d = 0.67 5.95 2.75 ft^ ft 42" pipe ^Basin Dewatering Calculations A, = A,(2H) 1/2 3600(T)C^(g)"' to A.= 12187 sf H = 2 ft T = 40 hr Cd = 0.6 g = 32.2 ft/sec Ao = 0.049715 ft^ = 7.16 in^ Ci CIVILDESIGN CORP, Consulting Engineers 250 S, Lena Rd, San Bernardino, CA 92408 (909)885-3806 Inside Diameter ( 24.00 in.) Water ( 22,42 in,) ( 1.869 ft.) I to Circular Channel Section Flowrate 31 636 CFS 10 359 fps 24 000 inches 22 425 inches Depth of Flow 1 869 feet 1 884 feet Depth/Diameter (D/d) 0 934 Slope of Pipe 1 000 % 3 054 sq, ft 5 247 feet AR*(2/3) 2 129 Mannings 'n' 0 010 Min, Fric, Slope, 24 inch Pipe Flowing Full 1 .157 % C\ CIVILDESIGN CORP, Consulting Engineers 250 S, Lena Rd, San Bernardino, CA 92408 (909)885-3806 (I Inside Diameter ( 24.00 in.) Water I * (17.84 in.) ( 1,487 ft,) I I V Circular Channel Section 31 636 CFS 12 629 fps 24 000 inches 17 843 inches 1 487 feet 1 882 feet 0 743 2 400 % 2 505 sq, ft 4 .159 feet AR*(2/3) 1 .786 0 .013 Min. Fric. Slope, 24 inch 1 ,955 % Pond 3 Pond Sizing Calculations POLLUTION PREVENTION BASIN VOLUME CALCULATION POND 3 NEAR NODE 133 100-yr water surface elevation @ catch basin prior to pipe entering basin: SW = 377.03 ft SW = Obtained from basin analysis section Pipe inlet elevation at upstream end of pipe: IE = 367.50 ft Pipe diameter of pipe entering basin: D = 18 inches HW/D = 6.4 HW/D = 12*(SW-IE)/D Q = 25.0 cfs Q = Using Headwater Depth for Concrete Pipe Culverts with Inlet Control chart Tc = 6.77 min Tc = Time of Concentration obtained from basin runoff analysis Volume Required V= 13557 cf V = 80.I*Tc*QI00 Volume Provided 29000 cf Overflow 24" dia. HDPE @ 2.78% & Spillway Standpipe Calculations Q = H = 25 1 cfs ft. Case 1 Q = CPH 3/2 Case 2 Q = CA(2gh) 1/2 c = p = d = 3.0 8.33 2.65 ft ft C = A = d = 0.67 4.65 2.43 ft^ ft 36" pipe Basin Dewatering Calculations A, = A,(2H)"' 3600(T)C,(g) 1/2 6070 sf H = 2 ft T = 40 hr Cd = 0.6 g = 32.2 ft/sec Ao = 0.024762 ft^ = 3.57 in^ CIVILDESIGN CORP. Consulting Engineers 250 S. Lena Rd. San Bernardino, CA 92408 (909)885-3806 Inside Diameter ( 18.00 in.) Water I ( 16.82 in.) ( 1.402 ft.) I I V Circular Channel Section Flowrate 18 840 CFS 10 967 fps Pipe Diameter 18 000 inches 16 819 inches 1 402 feet Critical Depth 1 462 feet Depth/Diameter (D/d) 0 934 Slope of Pipe 2 780 % 1 718 sq. ft Wetted Perimeter 3 935 feet AR*(2/3) 0 .988 Mannings 'n' 0 .013 Min. Fric. Slope, 18 inch Pipe Flowing Full 3 .216 % CIVILDESIGN CORP. Consulting Engineers 250 S. Lena Rd. San Bernardino, CA 92408 (909)885-3806 to Inside Diameter ( 24.00 in.) Water * (14.07 in.) ( 1.173 ft.) Circular Channel Section 18 840 CFS 9 841 fps Pipe Diameter 24 000 inches 14 071 inches 1 173 feet Critical Depth 1 558 feet Depth/Diameter (D/d) 0 586 1 650 % 1 914 sq. ft 3 489 feet AR*(2/3) 1 283 Mannings 'n' 0 013 Min. Fric. Slope, 24 inch Pipe Flowing Full 0 693 % to Pond 4 II lill iiUlillMIBMiWIBiiliiliiiliii iii 1 i i Pond Sizing Calculations POLLUTION PREVENTION BASIN VOLUME CALCULATION POND 4 NEAR NODE 205 100-yr water surface elevation @ catch basin prior to pipe entering basin: SW = 425.83 ft SW = Obtained from basin analysis section Pipe inlet elevation at upstream end of pipe: IE = 422.50 ft Pipe diameter of pipe entering basin: D = 12 inches HW/D = 3.3 HW/D = 12*(SW-IE)/D to Q = 6.5 cfs Q = Using Headwater Depth for Concrete Pipe Culverts with Inlet Control chart Tc = 5 min Tc = Time of Concentration obtained from basin runoff analysis Volume Required V = 2603 cf V = 80.I*Tc*Q100 Volume Provided 8100 cf Overflow 18" dia. HDPE @ 2.5% & Spillway Standpipe Calculations Q = H = 6.5 1 cfs ft. C = P = d = Case 1 Q = CPH^ 3.0 2.17 0.69 ft ft Case 2 Q = CA(2gh) 1/2 c = A = d = 0.67 1.21 1.24 ft^ ft 24" pipe Basin Dewatering Calculations A„ = A,(2H)"' 3600(T)Cj(g) 1/2 A.= 7841 sf H = 2 ft T = 40 hr Cd = 0.6 g = 32.2 ft/sec Ao = 0.031986 ft^ = 4.61 in^ to CIVILDESIGN CORP. Consulting Engineers 250 S. Lena Rd. San Bernardino, CA 92408 (909)885-3806 Inside Diameter ( 12.00 in.) Water I I ( 4.43 in.) ( 0.369 ft.) I I V Circular Channel Section 6. 500 CFS 24. 710 fps 12. 000 inches 4. 426 inches 0 369 feet 0 964 feet Depth/Diameter (D/d) 0 369 23 400 % 0 263 sq. ft 1 305 feet 0 090 0 010 Min. Fric. Slope, 12 inch 1 .970 % fl CIVILDESIGN CORP. Consulting Engineers 250 S. Lena Rd. San Bernardino, CA 92408 (909)885-3806 Inside Diameter ( 18.00 in.) Water I * ( 6,77 in,) ( 0,565 ft.) I Circular Channel Section 6 500 CFS 10 692 fps 18 000 inches 6 775 inches 0 565 feet 0 990 feet Depth/Diameter (D/d) 0 376 2 500 % 0 .608 sq, ft 1 .981 feet AR*(2/3) 0 .277 0 .010 Min. Fric Slope, 18 inch Pipe Flowing Full 0 .227 % Desilting Basin An average flow Qavi> rather than peak flow, is used to find the required surface area of sediment basins and traps. The rational formula is still applied, except that an average precipitation intensity instead of the peak intensity is used: Qavg "~ C X Igvg X A (^^^ Average precipitation intensity is determined by taking the total rainfall for a specified storm return period and duration (e.g., 10-year, 6-hr storm) and dividing that total by the number of hours of duration: _ total 6-hr rain ».v» - g A 6-hr storm duration is suggested. Sediment basins designed with a 6-hr storm strike a reasonable compromise between being somewhat undersized during storm peaks and being somewhat oversized during the rest of the storm. TABLE 8.1 Surface Area Requiremente of Sediment Traps and Baaiiia Surface area requirementB, Settlinf velocity. ft* per ft^/sec (n^petrnVsec Particle size, fam ft/aec (m/aec) diaAarge diacharfe) 0.5 (coazaeiand) 0.19 (0.058) 6.3 (20.7) 0.2 (medium sand) 0.067 (0.020) 17.9 {bi.D 0.1 (fine sand) 0.023 (0.0070) 52.2 (1710) 0.05 (coaiaesilt) 0.0062 (0.0019) 193.6 (636!o) 0.0^ (medium silt) 0.00096(0.00029) 1,260.0 (41010) aoi (fin»aiH) 0.00024(0.000073) 5,000.0 (16 404 0) 0.005 (day) 0.00006(0.000018) 20.000.0 (osioivio) to TABLE 5.5 LS . -lues* (10) •CalcuUtcd bom I 65.41 X »' ' U' + 10.000 4.S6 X s : + 0.066 LS - topographic fiutoT / - ilapeleiifth,ft(m X 0.3048) « > ilope itaepiMM, m B •xponcnt dapendent npon ilopa ttaepoaiKi (0.2for ilopaa < IX, 0.3 foralopes 1 to3%, 0.4 for 3,5 to 4.5%, and 0.5forik4ie«>5X) to Slope LS values for foUowing slope lengths I, ft (m) ,1 r Slope 90 100 Slooe eradient 10 20 30 40 SO 60 70 80 90 100 i ratio a. % (3.0) (6.1) (9.1) (12.2) (15.2) (18.3) (21.3) (24.4) (27.4) (30.5) I i 0.5 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0.09 0.09 0.10 100:1 1 0.08 0.09 0.10 0.10 0.11 0.11 0.12 0.12 0.12 0.12 f 100:1 2 —-0.10 0.12 0.14 0.15 0.16 0.17 0.18 0.19 0.19 0.20 i 3 0.14 0.18 0.20 0.22 0.23 0.25 0.26 0.27 0.28 0.29 4 0.16 0.21 0.25 0.28 0.30 0.33 0.36 0.37 0.38 0.40 jl 20:1 5 0.17 0.24 0.29 0.34 0.38 0.41 0.45 0.48 0.51 0.63 t 20:1 6^ 0.21 0.30 0,37 0.43 0.48 0.52 0.56 0.60 0.64 0.67 1 7 0.26 0.37 0.45 0.52 0.58 0.64 0.69 0.74 0.78 0.82 12)4:1 8 0.31 0.44 0.54 0.63 0.70 6.77 0.83 0.89 0.94 0.99 U 12)4:1 9 0.37 0.52 0.64 0.74 0.83 0.91 0.98 1.05 1.11 1.17 1 (• 10:1 10 0.43 0.61 0.75 0.87 0.97 1.06 L15 1.22 1.30 1.37 V 10:1 11 0.50 0.71 0.86 1.00 1.12 1.22 1.32 1.41 1.50 1.58 8:1 12.5 0.61 0.86 1.05 1.22 1.36 1.49 1.61 1.72 1.82 1.92 8:1 15 0.81 L14 1.40 1.62 1.81 1.98 2.14 2.29 2.43 2.56 I' 1 6:1 16.7 0.96 1.36 1.67 1.92 2.15 2.36 2.64 2.72 2.88 3.04 1 5:1 20 1.29 1.82 2,23 2.58 2.88 3.16 3.41 3.65 3.87 4.08 r 4K:1 22 1.61 2.13 2,61 3.02 3.37 3.69 3,99 4.27 4.53 4.77 i* 4:1 25 1.86 2.63 3.23 3.73 4.16 4.56 4,93 5.27 5.69 6.89 •j 4:1 30 2.51 3.56 4.36 5.03 5.62 6.16 6.65 7.11 7.64 7.95 t 3:1 33.3 2.98 4.22 5.17 5.96 6.67 7.30 7.89 8.43 &95 9.43 i 35 3.23 4.67 5.60 6.46 7.23 7.92 8.55 9.14 9.70 10.22 2)i:l 40 4.00 5.66 6.93 8.00 8.96 9.80 10,69 11.32 12.00 12.65 i 2)i:l 45 4.81 6.80 8.33 9.61 10.75 11,77 12.72 13.60 14.42 16.20 2:1 50 5.64 7.97 9.76 11.27 12.60 13.81 14,91 15.94 16.91 17.82 55 6.48 9.16 11.22 12.96 14.48 16.87 17,14 18.32 19.43 20.48 • i 1K:1 57 6.82 9.64 11.80 13.63 15.24 16.69 18,03 19.28 20.45 21.56 j 1K:1 60 7.32 10.35 12.68 14.64 16.37 17.93 19.37 20.71 21.96 23.16 1)4:1 66.7 8.44 11.93 14.61 16.88 18.87 20.67 22.32 23.87 26.31 26.68 1 1)4:1 70 8.98 12.70 15.55 17.96 20.08 21.99 23.76 25.39 26.93 28.39 1 75 9.78 13.83 16.94 19.66 21.87 23.95 25.87 27.66 29.34 30.92 V 1)4:1 80 10.55 14.93 18.28 21.11 23.60 25.85 27.93 29.85 31.66 33.38 1, 1)4:1 85 11.30 15.98 19.58 22.61 25.27 27.69 29.90 31.97 33.91 35.74 t 90 12.02 17.00 20.82 24.04 26.88 29.44 31.80 34.00 36.06 38.01 95 12.71 17.97 22.01 25.41 28.41 3L12 33.62 35.94 38.12 40.18 1:1 100 13.36 18.89 23.14 26.72 29.87 32.72 35.34 37.78 40.08 42.24 i to LS values for following slope lengths I, ft (m) 150 200 250 300 360 400 460 500 600 700 800 900 1000 (46) (61) (76) (91) (107) (122) (137) (162) (183) (213) (244) (274) (306) 0.10 0.11 0.11 0.12 0.12 0,13 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.14 0.14 0.15 0.16 0.16 0.16 0.17 0.17 0.18 0.16 0.19 0,19 0.20 0.23 0.26 0.26 0.28 0.29 0.30 0.32 0.33 0.34 0.36 0.37 0.39 0.40 0.32 0.35 0.38 0.40 0.42 0.43 0.45 0.46 0.49 0.51 0.54 0.55 0.57 0.47 0.53 0.58 0.62 0.66 0.70 0.73 0.76 0.82 0.87 0.92 0.96 1.00 0.66 0.76 0.86 0.93 1.00 1.07 1.13 1.2Q 1.31 1.42 1.51 1.60 1.69 0.82 0.95 1.06 1.16 L26 1.34 1.43 1.50 1.66 1.78 1.90 2.02 2.13 1.01 1.17 1.30 1.43 1.54 1.65 1.75 1.84 2.02 2.16 2.33 2.47 2.61 1.21 1.40 1.67 1.72 1.66 1.98 2.10 2.22 2.43 2.62 2.80 2.97 3,13 1.44 1.66 1.85 2,03 2.19 2.36 2.49 2.62 2.87 3.10 3.32 3.52 3.71 1.68 1.94 2.16 2.37 2.56 2.74 2.90 3.06 3.35 3.62 3.87 4.11 4.33 1.93 2.23 2.60 2.74 2.95 3.16 3.35 3.53 3.87 4.18 4.47 4.74 4.99 2.35 2.72 3.04 3.33 3.59 3.84 4.08 4.30 4.71 5.08 5.43 6.76 6.08 3.13 3.62 4.05 4,43 4.79 5.12 6.43 5.72 6.27 6.77 7.24 7.68 8.09 3.72 4.30 4.81 6.27 5.69 6.08 6.45 6.80 7.46 8.04 8.60 9.12 9.62 5.00 6.77 6.45 7,06 7.63 8.16 8.65 9.12 9.99 10.79 11.54 12.24 12.90 5.84 6.75 7.64 8.26 8.92 9.54 10.12 10.67 11.68 12.62 13.49 14.31 16.08 7.21 8.33 9.31 10.20 11.02 11.78 12.49 13.17 14.43 15.58 16.66 17.67 18.63 9.74 11.25 12.67 13.77 14.88 16.91 16.87 17.78 19.48 21.04 22.49 23.86 25.15 11.56 13.34 14.91 16.33 17.64 18.86 20.00 21.09 23.10 24.95 26.67 28.29 29.82 12.52 1446 16.16 17.70 15.60 17.69 20.01 21.91 18.62 21.60 24.03 26.33 2L83 25.21 28.18 30.87 25.09 28.97 32.39 35.48 19.12 20.44 21.68 22.66 23.67 26.30 26.84 28.29 28.44 30.40 32.24 33.99 33.34 36.65 37.81 39.85 38.32 40.97 43.46 45.80 25.04 27,04 28,91 30.67 32.32 30.99 33.48 35.79 37.96 40.01 37.23 40.22 42.99 46.60 48.07 43.66 47.16 50.41 53.47 56.36 50.18 64.20 57.94 61.45 64.78 26.40 30.48 34.08 37.33 28.36 32.74 36.60 40.10 32.68 37.74 42.19 46.22 34.77 40.16 44.89 49.17 37.87 43.73 48.69 63.66 40.32 43.10 46.72 48.19 43.31 46.30 49.11 51.77 49.92 53.37 56.60 59.66 63.11 56.78 60.23 63.48 67.86 61.85 65.60 69.16 62.79 57.02 60.96 64.66 68.16 66.71 61.25 65.48 69.45 73.21 65.36 7a60 75.47 80.05 84.38 69.54 75.12 80.30 86.17 89.78 76.75 61.82 87.46 92.77 97.79 40 88 47 20 52.77 57.81 62.44 66,76 70.80 74.63 81,76 88.31 94.41 100.13 105.55 43.78 60.65 66.51 61.91 66.87 71.48 76.82 79.92 87.56 94.67 101.09 107.23 113.03 46 65 53.76 60,10 66,84 71.11 76.02 80.63 84.99 93.11 100.57 107.51 114.03 120.20 49.21 56.82 63.53 69.59 75.17 60.36 66.23 89.64 98.42 106.30 113.64 120.54 127.06 5174 69.74 66.79 73.17 79.03 84.49 89.61 94.46 103.48 111.77 119.46 126.73 133.59 (i to • Sample Soil Lom Caleuiutton; StejHtyStep Procedure 1. Determine the R factor. 2. Baud on soil sample particle size analysis, determine the K value from the nomograph (Fig. 5.6). Repeat if you have more than one soil sample. 3. Divide the site into sections of uniform slope gradient and length. Assign an LS value to each section (Table 5.S). 4. Choose the C valueCs) to represent a seasonal average of the effect of mulch and vegetation (Table 5.6). 5. Set the P factor based on the final grading practice applied to the slopes (Table 5.7). 6. Multiply the five factors together to obtain per acre soil loss. 7. Multiply soil loss per acre by the acreage to find the total volume of sediment. If the soil loss prediction shows excessive volume lost from the site, consider (a) working only a portion of the site at one time, (b) altering the slope length and gradient, or (c) increasing mulch application rate or seeding. (i Basin 1 Desiltation Basin Calculations Standpipe Calculations Qavg ~ C X Igvg X A Q = H = 48.4 1 cfs ft. c = 0.45 'avg ~ Pe/e hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ 'avg ~ 0.32 in./hr A = 6.4 ac. C = 3.0 C = 0.67 P = 16.13333333 tt A = 9.00 ft^ Qavg ~ 0.9177 cfs d = 5.14 ft d = 3.39 ft As = 1.2Q 60" pipe V, v,= 0.00024 ft/sec min. Ag = 4589 sf actual As = 727^ sf So/7 Loss Calculations A = RxKxLSxCxP R =16.55(p)" Basin Dewatering Calculations Ao = A3(2H) 1/2 3600(T)Cd(g) 1/2 P = 1.4 In. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 26 30 2:1 9.76 Pad 74 250 2.5 0.32 H = 2 ft T = 40 hr Cd = 0.6 9 = 32.2 ft/sec Ao = 0.029657 ft2 = 4:27 In^ Ave LS •• A- Soil Loss: 2.77 32.54 tn/yr/ac 209.5 tn/yr 38tO cf to to Basin 2 Desiltation Basin Calculations Standpipe Calculations Qavg ~ C X igyg X A Q = H = 41.8 1 cfs ft. Q, 0 = 0.45 'avg ~ Pe/e hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ 'avg ~ 0.32 in./hr ft^ A = 5.6 ac. 0 = 3.0 0 = 0.67 ft P = 13.93 ft A = 7.77 avg ~ 0.7923 cfs d = 4.44 ft d = 3.15 A,= 1.2Q 54" pipe Vs v,= 0.00024 ft/sec A,= 3962 sf actual As = 6300 sf Soil Loss Calculations A=RxKxLSxCxP Basin Dewatering Calculations Ao= A.(2H) 1/2 R=16.55(p) 2.2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 22 50 2:1 12.6 Pad 78 500 2.5 0.40 Ave LS = 3.08 A = 36.12 tn/yr/ac Soil Loss = 200.8 3652 tn/yr cf 3600(T)Cd(g) H = T = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao = 0.025700 ft^ 3.70 in^ to to Basin 3 Desiltation Basin Calculations Qavg C X igyg X A actual As = 469S' sf Soil Loss Calculations A=RxKxLSxCxP R=16.55(p) 2.2 Standpipe Calculations Q = H = 22.5 1 cfs ft. 0 = 0.45 'avg ~ Pe/e hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = GA(2gh)^'^ 'avg ~ 0.32 in./hr A = 3.0 ac. 0= 3.0 C = 0.67 P = 7.50 ft A= 4.18 ft^ avg ~ 0.4275 cfs d = 2.39 ft d = 2.31 ft As = 1.2Q 30" pipe Vs Vs = 0.00024 ft/sec As = 2138 sf 5as/n Dewatering Calculations Ao= A.(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 0 = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 20 30 2:1 9.76 Pad 80 350 2.5 0.36 Ave LS = 2.24 A = 26.22 tn/yr/ac Soil Loss = 78.7 1430 tn/yr cf 3600(T)Cd(g) H = T = Cd = 9 = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao= 0.019152 ft^ 2.76 in'' Basin 4 to Desiltation Basin Calculations Qavg ~ C X igyg X A standpipe Calculations Q = H = 34.4 1 cfs ft. 0 = 0.45 'avg ~ Pe/6 hr. Case 1 Case 2 P6 = 1.9 In. Q = CPH^ Q = CA(2gh)^'^ 'avg ~ 0.32 in./hr A = 4.6 ac. C = 3.0 C = 0.67 P = 11.47 ft A= 6.39 ft^ Qavg ~ 0.65265 cfs d = 3.65 ft d = 2.85 ft As = 1.2Q AB" pipe Vs Vs = 0.00024 ft/sec min. As = 3263 sf actual As = 3860, sf So/7 Loss Calculations A=RxKxLSxCxP Basin Dewatering Calculations Ao= A.(2H) 1/2 R=16.55(p) 2.2 P = 1.4 in. R = 34.70 K = 0.26 0 = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 16 35 2:1 10.52 Pad 84 450 2.5 0.39 Ave LS = 2.01 A = 23.58 tn/yr/ac Soil Loss = 108.0 1964 tn/yr cf 3600(T)Cd(g) H = T = Cd = 9 = 1/2 ft hr 2 40 0.6 32.2 ft/sec Ao= 0.015746 ft^ 2.27 in^ to Basin 5 Desiltation Basin Calculations Qavg C X igyg X A actual As = 4830 sf Soil Loss Calculations A=RxKxLSxCxP R=16.55(p)" Standpipe Calculations 24.8 1 cfs ft. C = 0.45 'avg ~ Pg/e hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ 'avg ~ 0.32 in./hr A = 3.3 ac. C= 3.0 C = 0.67 P = 8.27 ft A= 4.61 ft^ avg ~ 0.47025 cfs d = 2.63 ft d = 2.42 ft As = 1.2Q 36" pipe Vs Vs = 0.00024 ft/sec As = 2351 sf fias/A7 Dewatering Calculations Ao= A.(2m^^ 3600(T)Cd(g)^" P = 1.4 in. R = 34.70 K = 0.26 0 = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 18 60 2:1 13.81 Pad 82 400 2.5 0.37 Ave LS = 2.79 A = 32.71 tn/yr/ac Soil Loss = 107.9 1963 tn/yr cf H = T = Cd = g = ft hr 2 40 0.6 32.2 ft/sec Ao= 0.019703 ft^ 2.84 in'' 6as/n 6 Desiltation Basin Calculations to Qavg — C X igyg X A C = 0.45 'avg ~ Pe/6 hr. P6 = 1.9 in. 'avg ~ 0.32 in./hr A = 2.1 ac. Qavg = 0.29925 cfs As = 1.2Q Vs v,= 0.00024 ft/sec min. As = 1496 sf actual As = 3080 sf So/7 Loss Calculations A = RxKxLSxCxP R=16.55(p) 2.2 Standpipe Calculations Q = H = 15.6 1 cfs ft. Case 1 Q = CPH^ C= 3.0 P = 5.20 d= 1.66 Soil Loss' 71.4 tn/yr 1298 cf Case 2 Q = CA(2gh)^° ft ft C: A^ d^ 0.67 2.90 1.92 24" pipe ft^ ft 5as/n Dewatering Calculations Ao= A.(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 19 60 2:1 13.81 Pad 81 300 2.5 0.34 Ave LS = 2.90 A = 34.00 tn/yr/ac 3600(T)Cd(g) H = T = Cd = g = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao= 0.012564 ft^ 1.81 m to Basin 7 Desiltation Basin Calculations Qavg ~ C X ia,,g X A C = 0.45 'avg ~ Pg/e hr. P6 = 1.9 in. 'avg ~ 0.32 in./hr A = 1.7 ac. Qavg ~ 0.24225 cfs As = 1.2Q Vs Vs = 0.00024 ft/sec min. As = 1211 sf actual As = 2790 sf So/7 Loss Calculations A=RxKxLSxCxP R =16.55(p) 2.2 Standpipe Calculations Q = H = 13.1 1 cfe ft. 3/2 Case 1 Q = CPH C= 3.0 P = 4.37 d= 1.39 24" pipe. Soil Loss = 52.1 947 tn/yr cf ft ft Case 2 Q = CA(2gh)''2 C = 0.67 A = 2.43 ft^ d= 1.76 ft Basin Dewatering Calculations Ao= A.(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 17 60 2:1 13.81 Pad 83 250 2.5 0.32 Ave LS = 2.61 A = 30.65 tn/yr/ac 3600(T)Cd(g) H = T = Cd = g = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao= 0.011381 ft^ 1.64 in to Basin 8 Desiltation Basin Calculations Standpipe Calculations Qavg ~ C X igyg X A Q = H = 15.0 1 cfe ft. C = 0.45 'avg ~ Pe/e hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ 'avg ~ 0.32 in./hr A = 2.0 ac. C= 3.0 C = 0.67 ft^ P = 5.00 ft A = 2.79 ft Qavg ~ 0.285 cfs d= 1.59 ft d= 1.88 As = 1.2Q 24"* pipes Vs Vs = 0.00024 ft/sec min. As = 1425 sf actual As = 3160 sf Soil Loss Calculations A = RxKxLSxCxP 5as/ff Dewatering Calculations Ao= A.(2H) 1/2 R=16.55(p) 2.2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 16 60 2:1 13.81 Pad 84 300 2.5 0.34 Ave LS = 2.50 A = 29.26 tn/yr/ac Soil Loss = 58.5 1064 tn/yr cf 3600(T)Cd(g) H •• 9' 1/2 ft hr 2 40 0.6 32.2 ft/sec Ao= 0.012891 ft^ 1.« in Basin 9 Desiltation Basin Calculations to to Qavg ~ C X igyg X A C = 0.45 'avg ~ Pe/6 hr. P6 = 1.9 in. 'avg ~ 0.32 in./hr A = 2.1 ac. Qavg ~ 0.29925 cfe As = 1.2Q Vs Vs = 0.00024 ft/sec min. As = 1496 sf Standpipe Calculations actual As = 3175 sf Soil Loss Calculations A=RxKxLSxCxP R =16.55(p) 2.2 C = P = d = H' Case 1 Q = CPH^ 3.0 5.27 1.68 24? pipe- 15.8 1 cfe ft. ft ft Case 2 Q = CA(2gh)^'^ C = 0.67 A = 2.94 ft^ d= 1.93 ft Basin Dewatering Calculations Ao= A.(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 16 60 2:1 13.81 Pad 84 300 2.5 0.34 Ave LS = 2.50 A = 29.26 tn/yr/ac Soil Loss = 61.4 1117 tn/yr cf 3600(T)Cd(g) H = T = Cd = 9 = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao= 0.012952 ft^ 1.87 in Basin 10 Desiltation Basin Calculations to standpipe Calculations Qavg ~ C X igyg X A Q = H = 15.9 1 cfe ft. C = 0.45 'avg ~ Pe/6 hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ 'avg — 0.32 in./hr A = 2.1 ac. C= 3.0 C = 0.67 P = 5.30 ft A = 2.96 ft^ 0.29925 cfe d= 1.69 ft d= 1.94 ft As = 1.2Q 24* pip^ Vs Vs = 0.00024 ft/sec min. As = 1496 sf actual As = 3000 sf Soil Loss Calculations A = RxKxLSxCxP Basin Dewatering Calculations Ao= A.(2H) 1/2 R =16.55(p) 2.2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 17 30 2:1 9.76 Pad 83 250 2.5 0.32 Ave LS = 1.92 A = 22.57 tn/yr/ac Soil Loss = 47.4 862 tn/yr cf 3600(T)Cd(g) H = T = Cd = g = 1/2 ft hr 2 40 0.6 32.2 ft/sec Ao= 0.012238 ft' 1.76 in^ to Basin 11 Desiltation Basin Calculations Qavg ~ C X iavg X A min. As = 3634 sf actual As = 4640 sf So/7 Loss Calculations A = RxKxLSxCxP R=16.55(p) 2.2 Standpipe Calculations Q = H = 37.8 1 cfs ft. C = 0.45 avg ~ Pe/O hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ avg ~ 0.32 in./hr A = 5.1 ac. C= 3.0 C = 0.67 P= 12.60 ft A = 7.03 ft^ 0.72675 cfe d = 4.01 ft d = 2.99 ft As = 1.2Q 48" pipe Vs Vs = 0.00024 ft/sec Basin Dewatering Calculationa Ao= A,(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 22 35 2:1 8.87 Pad 78 700 2.5 0.37 Ave LS = 2.24 A = Soil Loss = 26.27 134.0 243& tn/yr/ac tn/yr cf 3600(T)Cd(g) H = T = Cd = 9 = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao= 0.018928 ft^ 2.73 in to easff? 12 Desiltation Basin Calculations Qavg = C X lavg X A P« = 'avg A = 0.45 Pe/6 hr. 1.9 in. 0.32 in./hr 6.9 ac. 0.98325 cfe As= 1.2Q V, Standpipe Calculations Q = H = 51.6 1 cfe ft. C = P = d = Case 1 Q = CPH^ 3.0 17.20 5.48 'pipe' ft ft Case 2 Q = CA(2gh)^'^ C = 0.67 A = 9.59 ft2 d = 3.50 ft to Vs= 0.00024 ft/sec min.A,= 4916 sf actual As = 6755 sf Soil Loss Calculations A=RxKxLSxCxP R =16.55(p) 2.2 Basin Dewatering Calculatinna Ao= A.(2H)^^ 3600(T)Cd(g)"' P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 18 50 2:1 12.6 Pad 82 550 2.5 0.41 Ave LS = 2.60 A = Soil Loss = 30.54 210.7 3831 tn/yr/ac tn/yr cf H = T = Cd = g = 2 40 0.6 32.2 ft hr ft/sec Ao = 0.027556 ^ 3.97 m to to Basin 13 Desiltation Basin Calculations Qavg ~ C X iavg ^ A Standpipe Calculations Q = H = 21.3 1 cfs ft. C = 0.45 'avg ~ Pe/6 hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ 'avg ~ 0.32 in./hr A = 2.8 ac. C= 3.0 C = 0.67 P= 7.10 ft A = 3.96 ft^ 0.399 cfe d = 2.26 ft d = 2.25 ft As = 1.2Q 30*' pipe Vs Vs = 0.00024 ft/sec min. As = 1995 sf actual As = 3460 sf So/7 Loss Calculations A=RxKxLSxCxP R=16.55(p) 2.2 Basin Dewatering Calculations Ao= A,(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 26 30 2:1 9.76 Pad 74 250 2.5 0.32 Ave LS = 2.77 A = 32.54 tn/yr/ac Soil Loss = 91.1 1656 tn/yr cf 3600(T)Cd(g) H = T = Cd = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao= 0.014114 ft^ = 2.03 in^ Basin 14 Desiltation Basin Calculations Qavg = C X iavg X A min. As = actual A, = 3206 sf 4840 sf Soil Loss Calculations A=RxKxLSxCxP R =16.55(p) 2.2 Standpipe Calculations Q = H = 34.1 1 cfe ft. c = 0.45 'avg ~ Pe/6 hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^" avg ~ 0.32 in./hr A = 4.5 ac. C= 3.0 C = 0.67 P= 11.37 ft A = 6.34 ft^ 0.64125 cfs d = 3.62 ft d = 2.84 ft As = 1.2Q 42" pipe Vs Vs = 0.00024 ft/sec Basin Dewatering Calculatinnft Ao= A.(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 10 40 2:1 11.27 Pad 90 400 2.5 0.37 Ave LS = 1.46 A = Soil Loss = 17.12 770 1401 tn/yr/ac tn/yr cf 3600(T)Cd(g) H = T = Cd = g = 1/2 2 40 0.6 32.2 ft hr ft/sec 0.019744 ft 2.84 in^ to to Basin 15 Desiltation Basin Calculations Qavg ~ C X igvg X A actual As = 6320 sf Soil Loss Calculations A=RxKxLSxCxP R=16.55(p)' 2.2 Standpipe Calculations 45.9 1 cfe ft. C = 0.45 avg ~ Pe/6 hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ avg ~ 0.32 in./hr A = 6.1 ac. C= 3.0 C = 0.67 P= 15.30 ft A= 8.53 ft^ 0.86925 cfe d = 4.87 ft d = 3.30 ft As = 1.2Q 60" pipe Vs Vs = 0.00024 ft/sec As = 4346 sf Basin Dewatering Calculations Ao= A.(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 8 50 2:1 12.6 Pad 92 500 2.5 0.40 Ave LS = 1.38 A = 16.14 tn/yr/ac Soil Loss = 98.4 1790 tn/yr cf 3600(T)Cd(g) H = T = Cd = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao = 0.025781 ft^ 3;71 in^ Basin 16 to Desiltation Basin Calculations Qavg ~ C X igvg X A Standpipe Calculations Q = H = 27.3 1 cfe ft. C = 0.45 'avg ~ Pe/e hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)''^ 'avg ~ 0.32 in./hr A = 3.6 ac. C= 3.0 C = 0.67 P= 9.10 ft A = 5.07 ft^ 0.513 cfs d = 2.90 ft d = 2.54 ft As = 1.2Q 36" pipe Vs Vs = 0.00024 ft/sec min. As = 2565 sf actual As = 3760 sf Soil Loss Calculations A = RxKxLSxCxP R =16.55(py 2.2 Bas/A7 Dewatering Calculations Ao= A.(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 0 50 2:1 0 Pad 100 550 2 0.34 Ave LS = 0.34 A = 3.99 tn/yr/ac Soil Loss = 14.4 261 tn/yr cf 3600(T)Cd(g) H = T = Cd = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao= 0.015338 ft^ 2.21 in^ to • Basin 17 Desiltation Basin Calculations Qavg ~ C X iavg X A actual A, = 2975 sf Soil Loss Calculations A=RxKxLSxCxP R =16.55(p) 2.2 Standpipe Calculations Q H 35.7 1 cfe ft. C = 0.45 'avg ~ Pe/e hr. Case 1 P6 = 1.9 in. Q = CPH^ 'avg ~ 0.32 in./hr A = 3.8 ac. C= 3.0 P= 11.90 0.5415 cfe d = 3.79 As = 1.2Q 48" pipe V, Vs = 0.00024 ft/sec min. As = 2708 sf ft ft C^ A: d^ Case 2 Q = CA(2gh)^'^ 0.67 6.64 fl^ 2.91 ft Basin Dewatering Calculations Ao= A.(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 0 50 2:1 0 Pad 100 500 2 0.33 Ave LS = 0.33 A = 3.87 tn/yr/ac Soil Loss = 14.7 267 tn/yr cf 3600(T)Cd(g) H = T = Cd = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao= 0.012136 ft^ 1.75 in Basin 18 Desiltation Basin Calculations to standpipe Calculations Qavg ~ C X igyg X A Q = H = 10.4 1 cfs ft. C = 0.45 'avg ~ Pe/O hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ 'avg ~ 0.32 in./hr A = 1.4 ac. C= 3.0 C = 0.67 P = 3.47 ft A= 1.93 ft^ 0.1995 cfe d= 1.10 ft d= 1.57 ft As = 1.2Q 24" pipa. Vs Vs = 0.00024 ft/sec min. As = 998 sf actual As = 3000 sf Soil Loss Calculations A=RxKxLSxCxP Basin Dewatering Calculations Ao= A.(2H) 1/2 R=16.55(p) 2.2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 4 7 2:1 4.94 Pad 96 200 2.5 0.30 Ave LS = 0.49 A = 5.69 tn/yr/ac Soil Loss = 8.0 14S tn/yr cf 3600(T)Cd(g) H = T = Cd = g = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao= 0.012238 ft^ 1.76 in'' to to Basin 19 Desiltation Basin Calculations Qavg — C X iavg ^ A C = 0.45 'avg ~ Pe/6 hr. P6 = 1.9 in. avg ~ 0.32 in./hr A = 1.5 ac. 0.21375 cfe As = 1.2Q Vs Vs = 0.00024 ft/sec min. A, 1069 sf actual As = 2940 sf So/7 Loss Calculations A = RxKxLSxCxP R =16.55(p)" Standpipe Calculations Q = H = 11.2 1 cfe ft. Case 1 Q = CPH^ C= 3.0 P = 3.73 d= 1.19 24" pipe ft ft Case 2 Q = CA(2gh)^'^ C = 0.67 A = 2.08 ft^ d= 1.63 ft Basin Dewatering Calculations Ao= A.f2H)^^ 3600(T)Cd(g)^'' P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 1 2 2:1 1.13 Pad 99 200 2.5 0.30 Ave LS = 0.31 A = Soil Loss = 3.62 5.4 99 tn/yr/ac tn/yr cf H = T = Cd = g = 2 40 0.6 32.2 ft hr ft/sec Ao= 0.011993 ft^ 1.73 in to Basin 20 Desiltation Basin Calculations Standpipe Calculations Qavg ~ C X iavg X A Q = H = 8.5 1 cfe ft. c = 0.45 'avg ~ Pe/e hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ 'avg ~ 0.32 in./hr A = 1.1 ac. C= 3.0 C = 0.67 P = 2.83 ft A= 1.58 ft^ 0.15675 cfe d = 0.90 ft d= 1.42 ft As = 1.2Q 18" pipe . Vs Vs = 0.00024 ft/sec min. As = 784 sf actual As = 3230 sf Soil Loss Calculations A = RxKxLSxCxP Basin Dewatering Calculations Ao= A.(2H) 1/2 R =16.55(py 2.2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 2 4 2:1 2.26 Pad 98 200 2.5 0.30 Ave LS = 0.34 A = 3.98 tn/yr/ac Soil Loss = 4.4 80 tn/yr cf 3600(T)Cd(g) H = T = Cd = g = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao= 0.013176 ft^ in 1^^^ Basin 21 Desiltation Basin Calculations Standpipe Calculations Qavg Q X X A Q = H = 10.5 1 cfe ft. C = 0.45 'avg ~ Pg/e hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ 'avg ~~ 0.32 in./hr A = 1.4 ac. C= 3.0 C = 0.67 P = 3.50 ft A= 1.95 ft^ 0.1995 cfs d= 1.11 ft d= 1.58 ft As = 1.2Q 24" pipe Vs v,= 0.00024 ft/sec min. As = 998 sf actual As = 2770 sf Soil Loss Calculations A = RxKxLSxCxP Basin Dewatering Calculations Ao= A.(2H) 1/2 R=16.55(py 2.2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 0 4 2:1 2.26 Pad 100 250 2.5 0.32 Ave LS = 0.32 A = 3.75 tn/yr/ac Soil Loss = 5.3 tn/yr 3600(T)Cd(g) H = T = Cd = g = 1/2 ft hr 2 40 0.6 32.2 ft/sec Ao= 0.011300 ft^ 1.63 in'' 96 cf Basin 22 Desiltation Basin Calculations Qavg = C X iavg X A c = 0.45 'avg ~ Pe/e hr. Pe = 1.9 in. 'avg ~ 0.32 in./hr A = 1.9 ac. 0.27075 cfs As = 1.2Q Vs Vs = 0.00024 ft/sec As = 1354 sf actual A, = 3000 sf So/7 Loss Calculations A = RxKxLSxCxP R =ie.55(p) 2.2 Standpipe Calculations Q = H = 13.9 1 cfe ft. C = P = d = Case 1 Q = CPH^ 3.0 4.63 1.48 24" pipe ft ft C = A = d = Case 2 Q = CA(2gh)^'^ 0.67 2.58 ft^ 1.81 ft Basin Dewatering Calculatinna 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 0 4 2:1 2.26 Pad 100 300 2.5 0.34 Ave LS = 0.34 A = 3.99 tn/yr/ac Soil Loss = 7.6 138 tn/yr cf A.(2H) 3600(T)Cd(g) H = T = Cd = g = 1/2 2 40 0.6 32.2 ft hr fl/sec Ao= 0.012238 ft^ 1.76 in^ to Basin 23 Desiltation Basin Calculations Qavg ~ C X iavg X A actual As = 5450 sf Soil Loss Calculations A=RxKxLSxCxP R=16.55(p) 2.2 Standpipe Calculations 25.1 1 cfe ft. C = 0.45 'avg ~ Pg/e hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ avg " 0.32 in./hr A = 3.3 ac. C= 3.0 C = 0.67 P = 8.37 ft A = 4.67 ft^ 0.47025 cfs d = 2.66 ft d = 2.44 ft As = 1.2Q 36" pipe Vs Vs = 0.00024 ft/sec As = 2351 sf Basin Dewatering Calculations Ao= A.(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 0 4 2:1 2.26 Pad 100 450 2.5 0.39 Ave LS = 0.39 A = 4.57 tn/yr/ac 3600(DCd(g) H = T = Cd = g = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao = 0.022232 ^ 3.20 in Soil Loss = 15.1 tn/yr 274 cf • Basin 24 Desiltation Basin Calculations Standpipe Calculations Qavg ~ C X igyg X A Q 15.0 1 cfe ft. c = 0.45 'avg ~ Pe/e hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ 'avg ~ 0.32 in./hr A = 2.0 ac. C= 3.0 C = 0.67 P = 5.00 ft A = 2.79 ft^ 0.285 cfs d= 1.59 ft d= 1.88 ft As = 1.2Q 24" pipe Vs v,= 0.00024 ft/sec min. As = 1425 sf actual A^ = 3350 sf Soil Loss Calculations A=RxKxLSxCxP 8as/n Dewatering Calculations Ao= A.(2H) 1/2 R=ie.55(p) 2.2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 0 4 2:1 2.26 Pad 100 350 2.5 0.36 Ave LS = 0.36 A = 4.22 tn/yr/ac Soil Loss = 8.4 154 tn/yr cf 3600(T)Cd(g) H = T = Cd = 1/2 2 40 0.6 32.2 ft hr fl/sec Ao= 0.013666 ft^ 1.97 in Basin 25 Desiltation Basin Calculations Qavg ~ C X igvg X A actual A, = 6680 sf Soil Loss Calculations A = RxKxLSxCxP R=ie.55(p) 2.2 Standpipe Calculations Q = H = 55.6 1 cfs ft. C = 0.45 'avg ~ Pe/e hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^'^ Q = CA(2gh)^"' avg ~ 0.32 in./hr A = 7.4 ac. C = 3.0 C = 0.67 P = 18.53 ft A = 10.33 ft^ 1.0545 cfe d = 5.90 ft d = 3.63 ft As = 1.2Q 72" pipe: Vs Vs = 0.00024 ft/sec As = 5273 sf Basin Dewatering Calculations Ao= A.(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 15 50 2:1 12.6 Pad 85 700 2.5 0.46 Ave LS = 2.28 A = 26.75 tn/yr/ac Soil Loss = 1979 3599^ tn/yr cf 3600(T)Cd(g) H = T = Cd = g = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao = 0.027250 ^ 3.92 in ! i: tit-- to no to ni Table 1 SUMMARY MINIMUM BASIN BASIN SURFACE AREA 1 to 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 4589 SF 3962 SF 2138 SF 3263 SF 2351 SF 1469 SF 1211 SF 1425 SF 1496 SF 1496 SF 3634 SF 4916 SF 1995 SF 3206 SF 4346 SF 2565 SF 2708 SF 998 SF BASIN SURFACE AREA AT 4' DEPTH 7270 SF 6300 SF 4695 SF 3860 SF 4830 SF 3080 SF 2790 SF 3160 SF 3175 SF 3000 SF 4640 SF 6755 SF 3460 SF 4840 SF 6320 SF 3760 SF 2975 SF 3000 SF Aa 4.27 in^ 3.70 in^ 2.76 in^ 2.27 in^ 2.84 in^ 1.81 in^ 1.64 in^ 1.86 in^ 1.87 in^ 1.76 in^ 2.73 in^ 3.97 in^ 2.03 In^ 2.84 in^ 3.71 in^ 2.21 in^ 1.75 in^ 1.76 in^ DIAMETER 2 ~ 1V 2 ~ 1V 2" 1V 2" lV 1V, 1%" iV 1V2" 2~1V2" 2~1V 1V 2" 2~ lV 1V 1V2" IV2" SUMMARY MINIMUM BASIN BASIN SURFACE BASIN SURFACE AREA AREA AT 4'DEPTH A^ DIAMETER 19 1069 SF 2940 SF 1.73 in^ V/j" 20 784 SF 3230 SF 190 in' 1%" 21 998 SF 2770 SF 1.63 in^ 1V2" 22 1354 SF 3000 SF 1.76 in' 1V2" 23 2351 SF 5450 SF 3.20 in' 2~lV2" 24 1425 SF 3350 SF 1-97 in' ^\" 25 5373 SF 6680 SF 3.92 in' 2~lV W:MSOFFICE/WINWORD/981012/basln-size.xls Inlet RESIDENTIAL STREET ONE SIDE ONLY 20-H— 1 18-r 16 — i - • • 14 12 10— 9 — ..— 8 f 7 — <v/— 6 — • 3 I I •1 ••; 6 7 8 9 10 DISCHARGE ' (C F S) EXAMPLE- Given: Q= 10 S= 2.5% Chart gives: Depth = 0.4, Velocity = 4.4 fpiS. SAN DIEGO COUNTY DEPARTMENT OF SPECIAL DISTRICT SERVICES DESIGN MANUAL APPROVED /3, V. /UfjAn^^mJj^A^ GUTTEF^ AND ROADWAY DISCHARGE-VELOCITY CHART DATE JC: APPENDIX X-D IV-A-n CURB INLET SIZING NODE 103 LIONSHEAD AVE. STA 48+75 (SOUTHERLY) Q = 8.0 cfs s = 1.55 % y = 0.301 ft a = 0.33 fit L = 22.8 ft L = (0.7(a+y)''3/2)/Q Use 24' Type 'B-1' Curb Inlet NODE 109 LIONSHEAD AVE. STA 48+75 (NORTHERLY) Q = 3.5 cfs s = 1.55 % y = 0.320 ft a = 0.33 ft L= 9.5 ft L = (0.7(a+y)''3/2)/Q Use 12'Type 'B-1'Curb Inlet NODE 123 LIONSHEAD AVE. STA 37+55.00 (NORTHERLY) Q = 4.6 cfs s = 1.41 % y = 0.350 ft a = 0.33 ft L= 11.7 ft L = (0.7(a+y)''3/2)/Q Use 14' Type 'B-1' Curb Inlet NODE 124 LIONSHEAD AVE. STA 37+55.00 (SOUTHERLY) Q = 4.5 cfs s = 1.41 % y = 0.350 ft a = 0.33 ft L= 11.5 ft L = (0.7(a+y)'^3/2)/Q Use 14' Type 'B-1' Curb Inlet G:\jobs\971035\CALC\HydRpt\Curblnlet NODE 403 LIONSHEAD AVE. STA 30+69.40 (SOUTHERLY) Q = 2.9 cfs s= 1.60% y= 0.300 ft a= 0.33 ft L= 8.3 ft L = (0.7(a+y)''3/2)/Q Use 10'Type 'B-1'Curb Inlet NODE 408 LIONSHEAD AVE. STA 29+64.82 (NORTHERLY) Q= 3.0 cfs s = 3.00 % y= 0.275 ft a= 0.33 ft L= 9.1 ft L = (0.7(a+y)''3/2)/Q Use 10'Type 'B-1'Curb Inlet NODE 426 EAGLE DR. STA 10+65.00 (EASTERLY) Ql = 2.83 cfs Q2= 2.17 cfs L= 2.5 ft L = Q/2 Use 5' Type 'B' Curb Inlet NODE 432 EAGLE DR. STA 10+65.00 (WESTERLY) Ql = 1.82 cfs Q2 = 0.29 cfs L= 1.1 ft L = Q/2 Use 5' Type 'B' Curb Inlet NODE 503 LIONSHEAD AVE. STA 19+40.00 (NORTHERLY) Ql = 3.29 cfs Q2 = 0.86 cfs L= 2.1 ft G:\jobs\971035\CALC\HydRpt\Curblnlet L=Q/2 Use 5' Type 'B' Curb Inlet NODE 510 LIONSHEAD AVE. STA 19+40.00 (SOUTHERLY) Ql = 2.18 cfs Q2= 1.13 cfs L= 1.7 ft l = Q/2 Use 5' Type 'B' Curb Inlet NODE 520 LIONSHEAD AVE. STA 13+92.20 (SOUTHERLY) Ql= 1.88 cfs Q2 = 2.95 cfs L = 2.4 ft L = Q/2 Use 5' Type 'B' Curb Inlet NODE 523 LIONSHEAD AVE. STA 13+92.20 (NORTHERLY) Ql= 1.59 cfs Q2 = 2.69 cfs L= 2.1 ft L-Q/2 Use 5' Type 'B' Curb Inlet G:\jobs\971035\CALC\HydRpt\Curblnlet Open Conveyance O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ****** *** *** *** ****** *** *** *** *** |< ( 9.28') >| *** ***AAAAA^ J g . 93 t J AAAAA**.* * * * *** * * * * * * •*** *** * * * *** *** *** ****** ** Triangular Channel Flowrate 18.910 CFS Velocity 4.394 fps Depth of Flow 0.928 feet Critical Depth 0.977 feet Freeboard 0.000 feet Total Depth 0.928 feet Width at Water Surface 9.277 feet Top Width 9.277 feet Slope of Channel 1.000 % Left Side Slope 5. OOO : 1 Right Side Slope 5.000 : 1 X-Sectional Area 4.303 sq. ft. Wetted Perimeter 9.4 61 feet AR'^(2/3) 2.545 Mannings 'n' 0.020 O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 Inside Diameter ( 24.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water I ( 8.33 in.) ( 0.694 ft.) Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) . . . , Slope of Pipe X-Sectional Area Wetted Perimeter AR^(2/3) Mannings 'n' Min. Fric. Slope, 24 inch Pipe Flowing Full 18 . 910 CFS 19 .519 fps 24 .000 inches 8 .328 inches 0 . 694 feet 1 .569 feet 0 .347 20 .000 % 0 . 969 sq. ft 2 .520 feet 0 .512 0 .018 1.339 %. ( CIVILDESIGN CORP. Consulting Engineers 250 S. Lena Rd. San Bernardino, CA 92408 (909)885-3806 Inside Diameter ( 36.00 in.) Water I * ( 2.62 in.) ( 0.218 ft.) Circular Channel Section 1. 000 CFS 4. 369 fps 36. 000 inches 2. 617 inches 0. 218 feet 0. 307 feet Depth/Diameter (D/d) 0. 073 2 . 000 % 0. 230 sq. ft 1 638 feet 0 062 0 013 Min. Fric. Slope, 36 inch 0 000 % Rip Rap to 3D Outlet pipe —I- _5 1 diameter | 10 20 50 100 200 J L IIII 500 1000 0.3 .9- 0.2 = + 0.1 I I I II I I I Discharge, ft''/sec -I 1 1 H h .2 .3 .4 .5.6.7.8.91 2 3 4 5 6 7 8 10 15 20 25 Discharge, rvfllxc Fig. 7.46 Design of riprap outlet protection from a round pipe flowing full; maximum tailwater conditions. (6, 14) to FRo^A; SPECIAL PR0VI5IOMS ' RE&IOMAL STD. SPECS. (\9S2) 200-1.6 Stone for Riprap (p. 69) Add: "The Individual classes of rocks used In sjope protection shall conform to the following: PERCENTAGE LARGER THAN* CLASSES Rode Sizes 2 Ton 1 Ton 1/2 Ton 1/4 Ton No. 2 BscKlng No. 3 Backing 4 Ton 2 Ton 1 Ton 1/2 Ton 1/4 Ton i 200 lb 1 79 lb 25 lb 5 lb 1 lb 0-5 50-100 99-100 0-5 50-100 95-100 0-5 50-100 95-100 0-5 50-100 95-100 0-5 25-75 90-100 0-5 25-75 90-100 •The amount ot material sniBiin- rnw a.™..-*, size listed In the table for any class of rock slope protection shall not exceed the percentage llm t listed In the table determined on a tielght basis. CofflpllancB with the percentage limit shown In the table for all other sizes of the Individual pieces of any class of rock slope protection shall be de- termined by the ratio of the number of Individual pieces larger than the smallest size listed In the table for that class. r •200-1.6.1 Selection of Riprap and Filter "BrraiReTTCTSTO Filter Blanket (3) l^per Layer(s) Val. Ft/Sec (1) Rock Class (2) Riprap Thick- ness "T" Opt. 1 Sec. 200 (4) Opt. 2 Sec. 400 (4) Opt. 3 (9) Lower Layar (6) 6-7 No. 3 Back- ing .6 3/16* C2 0.6. 7-8 No. 2 Back- ing; 1.0 1/4" B3 D.G. 8-9.5 Fac- ing 1.4 3/B" — Q.6. — 9.9-n Light 2.0 1/2" 3/4", 1 1/2" P.B. 11-13 1/« Ton 2.7 3/4" 3/4", 1 1/2" P.B. Sand 13-15 1/2 Ton 3.4 1" 3/4", 1 t/2" P.B. Sand 15-17 1 Ton 4.3 1 1/2" — Type B Sand 17-20 2 Ton • 5.4 2" — Type B Sand Practical use of this table Is limited to situations whara "T" Is less than 0. (1) Average velocity In pipe or bottom velocity In energy dissipater, whichever Is greater. . (2> If desired riprap and filter blanket class Is not available, use next larger class. (3> Filter blanket thickness - 1 Foot or "T", whlch- aver Is lass. (4) standard Specifications for Public Works Con- struction. (5.) .0.6. - Disintegrated Granite, 1 DM to 10 MH P.B. » Processed HI see 11 aneous Base- Type B • Type B bedding material, (mlnfmuffl 75X- crushed particles, lOOjt passing 2 1/2" sieve, \0% passing 1" sieve) (6) Sand 7i% retained on 1200 slave. III.304 2D OR 2 W (min.) Endwoil (typical) D = Pipe Diameter W = Bottom Width of Channel |4 Bors Flow -RIter Blanket Sill, Gloss 420-C-2000 Concrete Concrete Chonnel- 1/20 min. SECTION A-A NOTES 1. Plans shall specify: A) Rock Class and thickness (T). B) RIter moteriol, number of layers and thickness. 2. Rip rap shall be either quorry stone or broken concrete (if shown on the plans.) Cobbles ore not occeptoble. 3. Rip rap shall be placed over filter blanket which may be either gronulor materiol or filter fobric. 4. See Regional Supplement Amendments for selection of rip rop ond filter blanket. 5. Rip rop energy dissipators shil be desianated os either Type 1 or Type 2. Type 1 shall be with concrete sill; Type 2 shall be without sill. Revision By Approved Date SAN DIEGO REGIONAL STANDARD DRAWING RECOMMENOeO BY THE SAN OCGO RCOONAL STANOAROS COMMITTEE Ch^^^Kn^R. CE .^IM46 Dote ORIGINAL Kerchevol 12/75 SAN DIEGO REGIONAL STANDARD DRAWING RECOMMENOeO BY THE SAN OCGO RCOONAL STANOAROS COMMITTEE Ch^^^Kn^R. CE .^IM46 Dote RIP RAP ENERGY DISSIPATOR RECOMMENOeO BY THE SAN OCGO RCOONAL STANOAROS COMMITTEE Ch^^^Kn^R. CE .^IM46 Dote RIP RAP ENERGY DISSIPATOR RIP RAP ENERGY DISSIPATOR DRAWING n Af\ NUMBER ""'^W RIP RAP ENERGY DISSIPATOR DRAWING n Af\ NUMBER ""'^W