Loading...
HomeMy WebLinkAboutCT 98-10; CARLSBAD RACEWAY; Supporting Hydrology & Hydraulic Calculations; 2005-08-17SUPPORTING HYDROLOGY & HYDRAULIC CALCULATIONS FOR CARLSBAD RACEWAY DWG NO. 409-1 CONSTRUCTION-eH5y^^GE #1 Job No. 051130-04 Prepared: August 17, 2005 Prepared by: O'DAY CONSULTANTS, INC. 2710 Loker Avenue West Suite 100 Carlsbad, Califomia 92010-6603 Tel: (760)931-7700 Fax: (760)931-8680 Keith Hansen RCE 60223 Date Exp. 06/30/06 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 08/03/05 CARLSBAD RACEWAY BASIN 4 - CONSTRUCTION CHANGE NO. IX 8-3-05 G: \ACCTS\971035\RACE4X.OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method Process from Point/Station 401.000 to Point/Station 402.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MULTI - UNITS area type ] Initial subarea flow distance = 25.00(Ft.) Highest elevation = 396.00(Ft.) Lowest elevation = 395.50(Ft.) Elevation difference = 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.86 min. TC = [1.8*(1.1-C)^distance".5)/(% slope^(l/3)] TC = [1.8* (1.1-0.7000) * ( 25.00".5)/( 2.00-^(1/3)]= 2.86 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area {Q=KCIA) is C = 0.700 Subarea runoff = 0.055(CFS) Total initial stream area = 0.010(Ac.) + + + + + + ++ + + + +ff+i- + + + + + + + +f+-l- + + + + + + + ++ + + + + + + + + + + + + + + ++ + + ++-1- + + H Process from Point/Station 402.000 to Point/Station 403.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * 0.0150 0.0150 0.072(CFS) 1.337(Ft/s) Top of Street segment elevation = 395.500(Ft.) End of street segment elevation = 384.600(Ft.) Length of street segment = 860.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) Slope from gutter to grade break (v/hz) = 0.094 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.330(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street Depth of flow = 0.089(Ft.), Average velocity Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.34(Ft/s) Travel time = 10.72 min. TC = 15.72 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 3.775(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 2.188(CFS) for 0.610(Ac.) Total runoff = 2.243(CFS) Total area = 0.62(Ac.) Street flow at end of street = 2.243(CFS) Half street flow at end of street = 2.243(CFS) Depth of flow = 0.269(Ft.), Average velocity = 2.367(Ft/s) Flow width (from curb towards crown)= 9.418(Ft.) Process from Point/Station 402.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 403.000 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.620(Ac.) Runoff from this stream = 2.243(CFS) Time of concentration = 15.72 min. Rainfall intensity = 3.775(In/Hr) Process from Point/Station **** INITIAL AREA EVALUATION 404.000 to Point/Station * * * * 405.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 320.00(Ft.) Highest elevation = 396.00(Ft.) Lowest elevation = 388.00(Ft.) Elevation difference = 8.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.56 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.9500)*(320.00".5)/( 2.50"(l/3)]= 3.56 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 15.619(CFS) Total initial stream area = 2.080(Ac.) Process from Point/Station 405.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 403.000 Upstream point/station elevation = 379.00{Ft.) Downstream point/station elevation = 377.47(Ft.) Pipe length = 35.83(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 15.619(CFS) Given pipe size = 18.00(In.) Calculated individual pipe TTow = 15.619(CFS) Normal flow depth in pipe = 11.30(In.) Flow top width inside pipe = 17.40(In.) Critical Depth = 17.02(In.) Pipe flow velocity = 13.36(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 5.04 min. Process from Point/Station 405.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 403.000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.080(Ac.) Runoff from this stream = 15.619(CFS) Time of concentration = 5.04 min. Rainfall intensity = 7.859(In/Hr) Summary of stream data: Stream Flow rate TC No . (CFS) (min) 1 2 243 15 72 3 775 2 15 619 5 04 7 859 Qmax(1) 1 000 * 1 000 * 2.243) 0 480 * 1 000 * 15.619) + = Qmax(2) = 1 000 * 0 . 321 ' 2.243) Rainfall Intensity (In/Hr) 9.746 1.000 * 1.000 * 15.619) + = 16.338 Total of 2 streams to confluence: Flow rates before confluence point: 2.243 15.619 Maximum flow rates at confluence using above data: 9.746 16.338 Area of streams before confluence: 0.620 2.080 Results of confluence: Total flow rate = 16.338(CFS) Time of concentration = 5.045 min. Effective stream area after confluence = 2.700(Ac.) Process from Point/Station 403.000 to Point/Station 407.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 377.30(Ft.) Downstream point/station elevation = 374.17(Ft.) Pipe length = 73.38(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 16.338(CFS) Given pipe size = 18. 00 (In.) Calculated individual pipe flow = 16.338(CFS) Normal flow depth in pipe = 11.67(In.) Flow top width inside pipe = 17.19(In.) Critical depth could not be calculated. Pipe flow velocity = 13.49(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 5.14 min. Process from Point/Station 407.000 to Point/Station 407.500 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 373.67(Ft.) Downstream point/station elevation = 371.43(Ft.) Pipe length = 72.82(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 16.338(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 16.338(CFS) Normal flow depth in pipe = 10.73(In.) Flow top width inside pipe = 23.87(In.) Critical Depth = 17.49(In.) Pipe flow velocity = 12.02(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 5.24 min. Process from Point/Station 407.000 to Point/Station 407.500 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.700(Ac.) Runoff from this stream = 16.338(CFS) Time of concentration = 5.24 min. Rainfall intensity = 7.672(In/Hr) Process from Point/Station 401.000 to Point/Station 422.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 25.00(Ft.) Highest elevation = 396.00(Ft.) Lowest elevation = 395.50(Ft.) Elevation difference = 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.07 min. TC = [1.8* (l.l-C) *distance'^.5) / (% slope^(l/3)] TC = [1.8*(l.l-0.9500)*( 25.00".5)/( 2.00^(1/3)]= 1.07 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.075(CFS) Total initial stream area = 0.010(Ac, Process from Point/Station 422.000 to Point/Station 408.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 395.500(Ft.) End of street segment elevation = 380.700(Ft.) Length of street segment = 850.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) Slope from gutter to grade break (v/hz) = 0.094 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.330(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.102(CFS) Depth of flow = 0.096(Ft.), Average velocity = 1.641(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.64(Ft/s) Travel time = 8.64 min. TC = 13.64 min. Adding area flow to street Decimal fraction soil group A ^= 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 4.138(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 2.791(CFS) for 0.710(Ac.) Total runoff = 2.866(CFS) Total area = 0.72(Ac.) Street flow at end of street = 2.866(CFS) Half street flow at end of street = 2.866(CFS) Depth of flow = 0.276(Ft.), Average velocity = 2.832(Ft/s) Flow width (from curb towards crown)= 9.754(Ft.) Process from Point/Station 408.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 407.500 N Upstream point/station elevation = Downstream point/station elevation Pipe length = 5.17(Ft.) Manning's No. of pipes = 1 Required pipe flow = Given pipe size = 18.00(In.) Calculated individual pipe flow = 2. Normal flow depth in pipe = 2.91(In.) Flow top width inside pipe = 13.25 (In^)_ Critical Depth = 7.72(In.) " Pipe flow velocity = 15.49(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 13.64 min. 373.00(Ft.) 371.80(Ft.) = 0.013 2.866(CFS) 866(CFS) Process from Point/Station 408.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 407 . 500 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.720(Ac.) Runoff from this stream = 2.866(CFS) Time of concentration = 13.64 min. Rainfall intensity = 4.137(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) = Qmax(2) 16.338 2.866 1.000 * 1.000 * 0.539 * 1.000 * 5 .24 13. 64 1.000 * 0.384 * 1.000 * 1.000 * Total of 2 streams to confluence: 7 . 672 4 . 137 16.338) + 2.866) + 16.338) + 2.866) + 17.439 11 . 677 Flow rates before confluence point: 16.338 2.866 Maximum flow rates at confluence using above data: 17.439 11.677 Area of streams before confluence: 2.700 0.720 Results of confluence: Total flow rate = 17.439(CFS) Time of concentration = 5.236 min. Effective stream area after confluence = 3.420(Ac.) Process from Point/Station 407.500 to Point/Station 414.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 371.30(Ft.) Downstream point/station elevation = 367.73(Ft.) Pipe length = 115.86(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.439(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 17.439(CFS) Normal flow depth in pipe = 11.13(In.) Flow top width inside pipe = 23.94(In.) Critical Depth = 18.06(In.) Pipe flow velocity = 12.23(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 5.39 min. Process from Point/Station 414.000 to Point/Station 409.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 367.40(Ft.) Downstream point/station elevation = 361.00(Ft.) Pipe length = 193.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.439(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 17.439(CFS) Normal flow depth in pipe = 10. 90(In.) Flow top width inside pipe = 23.90(In.) Critical Depth = 18.06(In.) Pipe flow velocity = 12.57(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 5.65 min. Process from Point/Station 414.000 to Point/Station 409.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 3.420(Ac.) Runoff from this stream = 17. 439(CFS) Time of concentration = 5.65 min. Rainfall intensity = 7.305(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 424.000 to Point/Station 425.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 450.00(Ft.) Highest elevation = 392.00(Ft.) Lowest elevation = 380.00(Ft.) Elevation difference = 12.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.13 min. TC = [1. 8* (1.1-C) *distance'". 5) / (% slope^^ (1/3) ] TC = [1. 8* (1.1-0.9500)* (450. 00^.5)/( 2.67^(1/3)]= 4.13 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 23.954(CFS) Total initial stream area = 3.190(Ac.) Process from Point/Station 425.000 to Point/Station 426.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 366.50(Ft.) Downstream point/station elevation = 364.53(Ft.) Pipe length = 21.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 23.954(CFS) Given pipe size = 24.00 (In.) Calculated individual pipe flow = 23.954(CFS) Normal flow depth in pipe = 9.74(In.) Flow top width inside pipe = 23.57 (In.) Critical Depth = 20.79(In.) Pipe flow velocity = 20.04 (Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 5.02 min. Process from Point/Station 425.000 to Point/Station 426.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream num.ber: 2 in normal stream number 1 Stream flow area = 3.190(Ac.) Runoff from this stream = 23.954(CFS) Time of concentration = 5.02 min. Rainfall intensity = 7.886(In/Hr) Process from Point/Station 427.000 to Point/Station **** INITIAL AREA EVALUATION **** 428.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 26.00(Ft.) Highest elevation = 386.30(Ft.) Lowest elevation = 385.80(Ft.) Elevation difference = 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.11 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(1/3)] TC = [1. 8* (1.1-0. 9500) * ( 26.00'^.5)/( 1. 92^-(1/3) ] = 1.11 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.075 (CFS) Total initial stream area = 0.010(Ac.) Process from Point/Station 428.000 to Point/Station 426.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 385.800(Ft.) End of street segment elevation = 371.800(Ft.) Length of street segment = 490.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) 0.0150 0.0150 Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street = Depth of flow = 0.088(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel; Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.97(Ft/s) Travel time = 4.14 min. Adding area flow to street Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Rainfall intensity = 5.357(In/Hr) 0.092(CFS) 1.974(Ft/s) TC 9.14 min. 0. 000 0.000 for a 100.0 Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 2.239(CFS) for 0.440(Ac.) Total runoff = 2.314{CFS) Total area = 0.45(Ac.) Street flow at end of street = 2.314(CFS) Half street flow at end of street = 2.314(CFS) Depth of flow = 0.255(Ft.), Average velocity = 3.262(Ft/s) Flow width (from curb towards crown)= 7.989(Ft.) Process from Point/Station 428.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 426.000 Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.450(Ac.) Runoff from this stream = 2.314(CFS) Time of concentration = 9.14 min. Rainfall intensity = 5.357(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) Qmax(2) 23.954 2 . 314 Qmax(1) = 1.000 * 1.000 * 0.679 * 1.000 * 5. 02 9. 14 7 . 886 5.357 1.000 * 0.549 * 1.000 * 1.000 * 23.954) + 2.314) + 23.954) + 2.314) + 25.225 18.587 Total of 2 streams to confluence: Flow rates before confluence point: 23.954 2.314 Maximum flow rates at confluence using above data: 25.225 18.587 Area of streams before confluence: 3.190 0.450 Results of confluence: Total flow rate = 25.225(CFS) Time of concentration = 5.017 min. Effective stream area after confluence = 3.640(Ac.) Process from Point/Station **** SUBAREA FLOW ADDITION 426.000 to Point/Station 426.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Time of concentration = 5.02 min. Rainfall intensity 7. 886 (In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = Subarea runoff = 2.173(CFS) for 0.290(Ac.) Total runoff = 27.397(CFS) Total area = 3.93(Ac.) 0. 950 Process from Point/Station 426.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 429.000 Upstream point/station elevation = 364.20(Ft.) Downstream point/station elevation = 363.00(Ft.) N = 0.013 27.397(CFS) Pipe length = 42.00(Ft.) Manning's No. of pipes = 1 Required pipe flow Given pipe size = 24.00(In.) Calculated individual pipe flow = 27.397(CFS) Normal flow depth in pipe = 15.02(In.) Flow top width inside pipe = 23.23(In.) Critical Depth = 21.81(In.) Pipe flow velocity = 13.23(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 5.07 min. Process from Point/Station 426.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 429.000 Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3.930(Ac.) Runoff from this stream = 27.397(CFS) Time of concentration = 5.07 min. Rainfall intensity 7.833(In/Hr) Process from Point/Station 429.000 to Point/Station **** USER DEFINED FLOW INFORMATION AT A POINT **** 429.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Rainfall intensity (I) = 3.586 for User specified values are as follows: TC = 17.03 min. Rain intensity = ] a 100.0 year storm 3.59(In/Hr) Total area = 59.96(Ac. Total runoff 199.00(CFS) Process from Point/Station 429.000 **** CONFLUENCE OF MINOR STREAMS **** to Point/Station 429.000 Along Main Stream number: 2 in normal stream number 2 Stream flow area = 59.960(Ac.) Runoff from this stream = 199.000(CFS) Time of concentration = 17.03 min. Rainfall intensity 3.586{In/Hr) I Process from Point/Station 430.000 to Point/Station **** INITIAL AREA EVALUATION **** 431.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 26.00(Ft.) Highest elevation = 394.00(Ft.) Lowest elevation = 393.50(Ft.) Elevation difference = 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.11 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope"{l/3)] TC = [1.8*(l.l-0.9500)*( 26.00".5)/( 1.92^(1/3)]= 1.11 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.075 (CFS) Total initial stream area = 0.010(Ac.) Process from Point/Station 431.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 432.000 Top of street segment elevation = 393.500(Ft.) End of street segment elevation = 371.800(Ft.) Length of street segment = 370.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) 0 .0150 0.0150 Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street = Depth of flow = 0.075(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 2.55(Ft/s) Travel time = 2.42 min. TC = Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 7.42 min. 0.086(CFS) 547(Ft/s) Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 6.127(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 1.746(CFS) for 0.300(Ac.) Total runoff = 1.821(CFS) Total area = 0.31(Ac.) Street flow at end of street = 1.821(CFS) Half street flow at end of street = 1.821(CFS) Depth of flow = 0.217(Ft.), Average velocity = 4.086(Ft/s) Flow width (from curb towards crown)= 6.120(Ft.) Process from Point/Station 432.000 to Point/Station 432.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 7.42 min. Rainfall intensity = 6.127(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 0.291(CFS) for 0.050(Ac.) Total runoff = 2.112(CFS) Total area = 0.36(Ac.) Process from Point/Station 432.000 to Point/Station 429.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 364.90(Ft.) Downstream point/station elevation = 364.50(Ft.) Pipe length = 4.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.112(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.112(CFS) Normal flow depth in pipe = 3.08(In.) Flow top width inside pipe = 13.55 (In.) Critical Depth = 6.58(In.) Pipe flow velocity = 10.52(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 7.43 min. Process from Point/Station 432.000 to Point/Station 429.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 0.360(Ac.) Runoff from this stream = 2.112(CFS) Time of concentration = 7.43 min. Rainfall intensity = 6.123 (In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 27 397 5 07 7 833 2 199 000 17 03 3 586 3 2 112 7 43 6 123 Qmax(1) = 1 000 * 1 000 * 27 397) + 1 000 * 0 298 * 199 000) + 1 000 * 0 683 * 2 112) + = Qmax(2) = 0 458 * 1 000 * 27 397) + 1 000 * 1 000 * 199 000) + 0 586 * 1 000 * 2 112) + = Qmax(3) = 0 782 * 1 000 * 27 397) + 1 000 * 0 436 * 199 000) + 1 000 * 1 000 * 2 112) + = 88.088 212.778 110.324 Total of 3 streams to confluence: Flow rates before confluence point: 27.397 199.000 2.112 Maximum flow rates at confluence using above data; 88.088 212.778 110.324 Area of streams before confluence: 3.930 59.960 0.360 Results of confluence: Total flow rate = 212.778(CFS) Time of concentration = 17.030 min. Effective stream area after confluence = 64.250(Ac.) Process from Point/Station 429.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 409.000 Upstream point/station elevation = 361.00(Ft.) Downstream point/station elevation = 358.50(Ft.) Pipe length = 81.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 212.778(CFS) Given pipe size = 60.00(In.) Calculated individual pipe flow = 212.778(CFS) Normal flow depth in pipe = 28.76 (In.) Flow top width inside pipe = 59. 95 (In.) Critical Depth = 49.78(In.) Pipe flow velocity = 22 Travel time through pipe = Time of concentration (TC) = 3(Ft/s) 0.06 min. 17.09 min. Process from Point/Station 429.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS ***-• - + + + 409.000 The following data inside Main Stream is listed: In Main Stream number: 2 stream flow area = 64.250(Ac.) Runoff from this stream = 212.778(CFS) Time of concentration = 17.09 min. Rainfall intensity = 3.578(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 17.439 5.65 7.305 2 212.778 17.09 3.578 Qmax(1) = 1.000 * 1.000 * 17.439) + 1.000 * 0.331 * 212.778) + = 87.790 Qmax(2) = 0.490 * 1.000 * 17.439) + 1.000 * 1.000 * 212.778) + = 221.318 Total of 2 main streams to confluence: Flow rates before confluence point: 17.439 212.778 Maximum flow rates at confluence using above data: 87.790 221.318 Area of streams before confluence: 3.420 64.250 Results of confluence: Total flow rate = 221.318(CFS) Time of concentration = 17.089 min. Effective stream area after confluence = 67.670(Ac.) Process from Point/Station 409.000 to Point/Station 410.000 PIPEFLOW TRAVEL TIME (User specified size) **** * * * * Upstream point/station elevation = 358.00(Ft.) Downstream point/station elevation = 344.58(Ft.) Pipe length = 324.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 221.318(CFS) Given pipe size = 66.00(In.) Calculated individual pipe flow = 221.318(CFS) Normal flow depth in pipe = 25.83(In.) Flow top width inside pipe = 64.42(In.) Critical Depth = 49.96(In.) Pipe flow velocity = 25.67(Ft/s) Travel time through pipe = 0.21 min. Time of concentration (TC) = 17.30 min. Process from Point/Station 409.000 to Point/Station 410.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 67.670(Ac.) Runoff from this stream = 221.318(CFS) Time of concentration = 17.30 min. Rainfall intensity = 3.549(In/Hr) Process from Point/Station 415.000 to Point/Station **** INITIAL AREA EVALUATION **** 416.000 0.000 1.000 310.00(Ft.) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C Decimal fraction soil group D [INDUSTRIAL area type Initial subarea flow distance = Highest elevation = 392.00(Ft.) Lowest elevation = 384.00(Ft.) Elevation difference = 8.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.47 min. TC = [1.8* (1.1-C) *distance''.5) / (% slope^^ (1/3) ] TC = [1.8*(l.l-0.9500)*(310.00".5)/( 2.58-^(1/3)]= 3.47 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 10.362(CFS) Total initial stream area = 1.380(Ac.) Process from Point/Station 416.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 417.000 10.362(CFS) Upstream point/station elevation = 374.00(Ft.) Downstream point/station elevation = 369.50(Ft.) Pipe length = 202.00(Ft.) Manning's N = 0.010 No. of pipes = 1 Required pipe flow = Given pipe size = 18.00(In.) Calculated individual pipe flow = 10.362(CFS) Normal flow depth in pipe = 9.09(In.) Flow top width inside pipe = 18.00 (In.) Critical Depth = 14.86(In.) Pipe flow velocity = 11.58(Ft/s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 5.29 min. + + + H Process from Point/Station 417.000 to Point/Station **** SUBAREA FLOW ADDITION **** 417 . 000 Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [INDUSTRIAL area type 0.000 0. 000 0 . 000 1. 000 Time of concentration = 5.29 min. Rainfall intensity = 7.621(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 10.788(CFS) for 1.490(Ac.) Total runoff = 21.150(CFS) Total area = 2.87(Ac.) Process from Point/Station 417.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 418.000 Upstream point/station elevation = 369.00(Ft.) Downstream point/station elevation = 364.33(Ft.) Pipe length = 17 9.00(Ft.) Manning's N = 0.010 No. of pipes = 1 Required pipe flow = 21.150(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 21.150(CFS) Normal flow depth in pipe = 11.21(In.) Flow top width inside pipe = 23.95(In.) Critical Depth = 19.76(In.) Pipe flow velocity = 14.68(Ft/s) Travel time through pipe = 0.20 min. Time of concentration (TC) = 5.49 min. Process from Point/Station 418.000 to Point/Station **** SUBAREA FLOW ADDITION **** 418.000 Decimal fraction soil group A group group group B = C = D = 000 000 000 000 Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration Rainfall intensity = Runoff coefficient used for sub-area Subarea runoff = 7.985(CFS) for 5.49 min. 7.438(In/Hr) for a 100.0 year storm Rational method,Q=KCIA, C = 0.950 1.130(Ac.) Total runoff = 29.135(CFS) Total area 4.00(Ac.) Process from Point/Station 418.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 419.000 364.00(Ft.) 352.33(Ft. Upstream point/station elevation = Downstream point/station elevation Pipe length = 190.00(Ft.) Manning's N = 0.010 No. of pipes = 1 Required pipe flow = 29.135(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 29.135(CFS) Normal flow depth in pipe = 10.55(In.) Flow top width inside pipe = 23.82(In.) Critical Depth = 22. 18 (In.) Pipe flow velocity = 21.90(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 5.64 min. Process from Point/Station 419.000 to Point/Station **** SUBAREA FLOW ADDITION **** 419.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 5.64 min. Rainfall intensity = 7.315(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff = 9.729(CFS) for 1.400(Ac.) Total runoff = 38.864(CFS) Total area = 5.40(Ac.) Process from Point/Station 419.000 to Point/Station 410.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 353.42(Ft.) Downstream point/station elevation = 353.00(Ft.) Pipe length = 15.00(Ft.) Manning's N = 0.010 No. of pipes = 1 Required pipe flow = 38.864(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 38.864(CFS) Normal flow depth in pipe = 16.08(In.) Flow top width inside pipe = 22.57(In.) Critical depth could not be calculated. Pipe flow velocity = 17.36(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 5.65 min. Process from Point/Station 419.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 410.000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 5.400(Ac.) Runoff from this stream = 38.864(CFS) Time of concentration = 5.65 min. Rainfall intensity = 7.303 (In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 221.318 17.30 2 38.864 5.65 Qmax(1) = 1.000 * 1.000 0.486* 1.000 Qmax (2) = 3.549 7.303 221.318) + 38.864) + = 240.208 1.000 * 0.327 * 221.318) + 1.000 * 1.000 * 38.864) + = 111. 183 Total of 2 streams to confluence: Flow rates before confluence point: 221.318 38.864 Maximum flow rates at confluence using above data: 240.208 111.183 Area of streams before confluence: 67.670 5.400 Results of confluence: Total flow rate = 240.208(CFS) Time of concentration = 17.299 min. Effective stream area after confluence = 73.070(Ac.) Process from Point/Station 410.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 411.000 Upstream point/station elevation = 344.00(Ft.) Downstream point/station elevation = 341.10(Ft.) Pipe length = 224.80(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 240.208(CFS) Given pipe size = 66.00(In.) Calculated individual pipe flow = 240.208(CFS) Normal flow depth in pipe = 37.97(In.) Flow top width inside pipe = 65.25(In.) Critical Depth = 51.92(In.) Pipe flow velocity = 16.97(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 17.52 min. Process from Point/Station **** SUBAREA FLOW ADDITION 411.000 to Point/Station 411.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Time of concentration = 17.52 min. Rainfall intensity = 3.521(In/Hr) Runoff coefficient used for sub-area, Subarea runoff = 6.355(CFS) for Total runoff = for a 100.0 year storm Rational method,Q=KCIA, C 1.900(Ac.) 0. 950 246.563(CFS) Total area 74.97(Ac.) Process from Point/Station 411.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 412.000 Upstream point/station elevation = 340.77(Ft.) Downstream point/station elevation = 333.40(Ft.) Pipe length = 214.00{Ft.) Manning's N - 0.013 No. of pipes = 1 Required pipe flow = 246.563(CFS) Given pipe size = 66.00(In.) Calculated individual pipe flow = 246.563(CFS) Normal flow depth in pipe = 28.85(In.) Flow top width inside pipe = 65.48(In.) Critical Depth = 52.54 (In.) Pipe flow velocity = 24.70(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 17.66 min. Process from Point/Station 411.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 412.000 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 74.970(Ac.) Runoff from this stream = 246.563(CFS) Time of concentration = 17.66 min. Rainfall intensity = 3.502(In/Hr) Process from Point/Station 420.000 to Point/Station **** INITIAL AREA EVALUATION **** 421.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 600.00(Ft.) Highest elevation = 371.00(Ft.) Lowest elevation = 360.00(Ft.) Elevation difference = 11.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.40 min. TC = [1.8*(l.l-C)*distance-^.5)/(% slope-^ (1/3) ] TC = [1.8*(l.l-0.9500)*(600.00'^.5)/( 1. 83'^ (1/3) ] = 5.40 Rainfall intensity (I) = 7.518 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 14.284(CFS) Total initial stream area = 2.000(Ac.) Process from Point/Station 421.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** • + + 423 . 000 Upstream point/station elevation = 353.50(Ft.) Downstream point/station elevation = 339.82(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.010 No. of pipes = 1 Required pipe flow = Given pipe size = 18.00(In.) Calculated individual pipe flow = 14.284 (CFS) Normal flow depth in pipe = 7. 92 (In.) Flow top width inside pipe = 17.87(In.) 14.284(CFS) Critical Depth = 16.66(In.) Pipe flow velocity = 19.08(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 5.58 min. Process from Point/Station 423.000 to Point/Station **** SUBAREA FLOW ADDITION **** 423.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 5.58 min. Rainfall intensity = 7.365(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 23.370(CFS) for 3.340{Ac.) Total runoff = 37.655(CFS) Total area = 5.34(Ac.) Process from Point/Station 423.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 412.000 Upstream point/station elevation = 339.32(Ft.) Downstream point/station elevation = 336.00(Ft.) Pipe length = 49.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 37.655(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 37.655(CFS) Normal flow depth in pipe = 13.95(In.) Flow top width inside pipe = 23.68(In.) Critical depth could not be calculated. Pipe flow velocity = 19.88(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 5.62 min. Process from Point/Station 423.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 412.000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 5.340(Ac.) Runoff from this stream = 37.655(CFS) Time of concentration = 5.62 min. Rainfall intensity = 7.331 (In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (mill) Rainfall Intensity (In/Hr) 246.563 37.65 5 17 . 66 5 . 62 3 .502 7 . 331 Qmax(1) 1.000 * 1.000 * 246.563) + 0.478 * 1.000 * 37.655) + = 264.551 Qmax(2) = 1.000 * 0.318 * 246.563) + 1.000 * 1.000 * 37.655) + = 116.091 Total of 2 streams to confluence: Flow rates before confluence point: 246.563 37.655 Maximum flow rates at confluence using above data: 264.551 116.091 Area of streams before confluence: 74.970 5.340 Results of confluence: Total flow rate = 264.551(CFS) Time of concentration = 17.665 min. Effective stream area after confluence = 80.310(Ac.) Process from Point/Station 412.000 to Point/Station 413.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 333.00(Ft.) Downstream point/station elevation = 329.50(Ft.) ^"Fipe~rehgt"h"~^^ 66700lrt7y Manning^s N = 0.013 No. of pipes = 1 Required pipe flow = 264.551(CFS) Given pipe size = 66.00 (In.) Calculated individual pipe flow = 264.551(CFS) Normal flow depth in pipe = 26.63(In.) Flow top width inside pipe = 64.76(In.) Critical Depth = 54.30(In.) Pipe flow velocity = 29.49(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 17.70 min. End of computations, total study area = 80.31 (Ac.) PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * SD A, IN LIONSHEAD - CONSTRUCTION CHANGE NO. IX * * G:\ACCTS\971035\RACE4AX.OUT * *******************************j,^,^,* + j,*^j,^ji,j,^^^^^^^j^j^j^j^^^^^^j,^^^^j^^^^^^^^^^ FILE NAME: G:\ACCTS\971035\RACE4AX.DAT TIME/DATE OF STUDY: 17:10 08/03/2005 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 409.00- } 414.10- } 414.00- } 407 .51- } 407.50- } 407.10- } 407 . 00- } 403.10- } 403.00- } 405.10- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 1. 60 FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 1.50 Dc 1.50 Dc 1.50 Dc 1.67 1.4 6 Dc 1.4 3 Dc 1.43*Dc 339.94 338.01 338 .01 338 .01 318.22 309.18 371.40 371.40 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 446. 18 1.95* 399.18 } HYDRAULIC JUMP 1.42*Dc 346.43 0. 93* 0. 91* 0 . 93* 0. 97* 0. 87* 0 . 80* 1. 01* 1. 43*Dc 1. 04 1. 42*Dc 454 .57 445.37 429.16 422.18 463.44 442.30 371.40 398.30 346.43 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION r -k -k ^ -k k-k-k-k-k-k-k'kk-kk->^-k-k-i^-k-k-k-k-k-k-)<--k-. • -i,. 'k -k k *• •• k -k -k -k k y 'k -k -t.- k k -k DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 409.00 FLOWLINE ELEVATION = PIPE FLOW = 17.40 CFS PIPE DIAMETER ASSUMED DOWNSTREAM CONTROL HGL = 363.100 FEET 361.50 24.00 INCHES NODE 409.00 HGL = < 362.428>;EGL= < 364.7 39>;FLOWLINE= < 361.500> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 414.10 409.00 TO NODE 414.10 IS CODE = 1 ELEVATION = 367.40 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 17.40 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 193.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0. 93 CRITICAL DEPTH(FT) 1.50 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0. 91 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 0 . 911 12 487 3 334 454 . 57 2. 006 0 .912 12 475 3 330 454 . 21 4 . 095 0 . 912 12 463 3 326 453. 85 6. 272 0 . 913 12 450 3 322 453. 49 8. 548 0 . 914 12 438 3 317 453. 14 10. 931 0 . 914 12 426 3 313 452 . 78 13. 432 0 . 915 12 413 3 309 452 . 43 16. 065 0 . 916 12 401 3 305 452. 07 18 . 844 0 . 917 12 389 3 301 451. 72 21. 786 0 . 917 12 376 3 297 451. 37 24 . 914 0 . 918 12 364 3 293 451. 02 28. 253 0 . 919 12 352 3 289 450 . 67 31. 833 0 . 919 12 340 3 285 450. 32 35. 694 0 . 920 12 328 3 281 449. 97 39. 885 0 . 921 12 315 3 277 449. 62 44 . 468 0 . 921 12 303 3 273 449. 27 49. 526 0 . 922 12 291 3 269 448 . 93 55. 173 0 . 923 12 279 3 266 448 . 58 61. 564 0 . 924 12 267 3 262 448 . 24 68 . 930 0 . 924 12 255 3 258 447 . 89 77 . 629 0 . 925 12 243 3 254 447 . 55 88 . 259 0 . 926 12 231 3 250 447 . 21 101. 943 0 . 926 12 219 3 246 446. 87 121. 203 0 . 927 12 207 3 242 446. 53 154 . 130 0 . 928 12 195 3. 239 446. 19 193. 000 0 . 928 12 195 3. 239 446. 18 NODE 414 . 10 : HGL = < 368 . 311>;EGL= < 370.734>;FLOWLINE= < 367.400> FLOW PROCESS FROM NODE 414.10 TO NODE 414.00 IS CODE = 5 UPSTREAM NODE 414.00 ELEVATION = 367.73 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 17 . 40 17 . 40 0.00 0.00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 24.00 0.00 367.73 1.50 24.00 - 367.40 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== 12.171 12.491 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03046 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03267 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03157 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.126 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.099)+( 0.126)+( 0.000) = 0.226 NODE 414.00 : HGL = < 368.659>;EGL= < 370.959>;FLOWLINE= < 367.730> ****************************************************************************** FLOW PROCESS FROM NODE 414.00 TO NODE 407.51 IS CODE = 1 UPSTREAM NODE 407.51 ELEVATION = 371.30 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 17.40 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 115. 86 FEET MANNING' S N = 0. 01300 NORMAL DEPTH(FT) = 0 . 93 CRITICAL DEPTH(FT) 1.50 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0. 97 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0. 965 11 590 3 052 429. 16 1 .767 0. 963 11 613 3 059 429. 82 3 . 617 0. 962 11 638 3 066 430. 49 5 .556 0. 960 11 662 3 073 431. 16 7 . 592 0. 959 11 686 3 081 431. 84 9 .735 0. 957 11 710 3 088 432 . 51 11 . 997 0 . 956 11 735 3 095 433. 20 14 . 390 0 . 954 11 759 3 103 433. 88 16 . 928 0 . 953 11 784 3 110 434 . 57 19 . 631 0. 951 11 809 3 118 435. 26 22 .518 0 . 950 11 834 3 125 435. 96 25 . 615 0 . 948 11 859 3 133 436. 66 28 . 954 0. 946 11 884 3 141 437 . 36 32 . 574 0. 945 11 909 3 148 438 . 07 36 . 523 0. 943 11 934 3 156 438 . 78 40 .864 0. 942 11 960 3 164 439. 50 45 . 679 0. 940 11 985 3 172 440. 22 51 . 082 0 . 939 12 Oil 3 180 440. 94 57 .229 0 . 937 12 036 3 188 441 . 67 64 .351 0. 936 12 062 3 196 442 . 40 72 .804 0 . 934 12 088 3 204 443. 14 83 . 186 0 . 932 12 114 3 213 4 4 3 . 37 96.619 0.931 12.140 3. 221 444.62 115.624 0.929 12.167 3.229 445.36 115.860 0.929 12.167 3.229 445.37 NODE 407.51 : HGL = < 372.265>;EGL= < 374 . 352>;FLOWLINE= < 371.300> ********************************************^j,* + *j,j^^j,^i.^t^^.^jt.j.j^^^^^^^ji.^j,^.j..^j^j^j,.^ FLOW PROCESS FROM NODE 4 07.51 TO NODE 407.50 IS CODE = 5 UPSTREAM NODE 407.50 ELEVATION = 371.43 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES ) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 16.30 24.00 0.00 371.43 1.46 12.417 DOWNSTREAM 17.40 24.00 371.30 1.50 11.593 LATERAL #1 1.10 18.00 90.00 371.80 0.39 2.238 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03367 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02673 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03020 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.030 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.313)+( 0.030)+( 0.000) = 0.343 NODE 407.50 : HGL = < 372.301>;EGL= < 374.695>;FLOWLINE= < 371.430> FLOW PROCESS FROM NODE 407.50 TO NODE 407.10 IS CODE = 1 UPSTREAM NODE 407.10 ELEVATION = 373.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.30 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 72.82 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.8 9 CRITICAL DEPTH(FT) = 1.4 6 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.80 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 0 800 13 .893 3 799 463 44 2 279 0 803 13 .807 3 765 460 99 4 636 0 807 13 .722 3 733 458 58 7 078 0 811 13 . 638 3 701 456 20 9 614 0 815 13 . 554 3 669 453 85 12 252 0 818 13 . 472 3 638 451 53 15 004 0 822 13 .391 3 608 449 25 17 881 0 826 13 . 310 3 579 446 99 20 898 0 8 30 13 .231 3 550 444 77 24 07 2 0 833 13 . 152 3 521 442 57 2 7 4 2 4 0 8 3 7 1 3 . 07 5 3 4 93 4 40 41 30. 978 0 .841 12 . 998 3. 466 438 .27 34.764 0 . 844 12 . 922 3.439 436 .16 38.820 0 . 848 12. 847 3.413 434 .08 43.192 0 .852 12. 773 3.387 432 .03 47.942 0 . 856 12. 699 3.361 430 .01 53.150 0 .859 12. 626 3. 336 428 .01 58.922 0 .863 12. 554 3. 312 426 .04 65.412 0 .867 12 . 483 3.288 424 . 10 72.820 0 . 871 12. 413 3.265 422 .18 NODE 407.10 : HGL = < 374 . 470>;EGL= < 377.4 69>;FLOWLINE= < 373. 670> FLOW PROCESS FROM NODE 407.10 TO NODE 407.00 IS CODE = 5 UPSTREAM NODE 407.00 ELEVATION = 374.17 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 16.30 18.00 0.00 374.17 1.43 12.897 DOWNSTREAM 16. 30 24 . 00 -373.67 1.46 13.897 LATERAL #1 0.00 0.00 0. 00 0.00 0.00 0. 000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00 === =Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03825 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04578 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04202 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.168 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.125)+( 0.168)+( 0.000) = 0.293 NODE 407.00 HGL < 375.179>;EGL= < 377.762>;FLOWLINE= < 374.170> FLOW PROCESS FROM NODE 4 07.00 TO NODE 4 03.10 IS CODE = 1 UPSTREAM NODE 403.10 ELEVATION = 377.30 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.30 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 73.38 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.97 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.4 3 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.43 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.429 9. 381 2 . 797 371. 40 0 . 059 1.411 9.448 2.798 371.54 0.233 1 . 393 9.524 2.802 371.94 0.519 1. 374 9. 606 2 .808 372.61 0.919 1.356 9. 696 2.817 37 3.52 1 436 1 338 9 793 2 828 374 67 2 077 1 319 9 898 2 841 376 07 2 850 1 301 10 009 2 858 377 71 3 768 1 283 10 128 2 876 379 60 4 844 1 264 10 253 2 898 381 74 6 097 1 246 10 386 2 922 384 13 7 549 1 227 10 527 2 949 386 79 9 229 1 209 10 675 2 980 389 72 11 173 1 191 10 832 3 014 392 92 13 424 1 172 10 996 3 051 396 41 16 043 1 154 11 169 3 092 400 20 19 108 1 136 11 352 3 138 404 30 22 723 1 117 11 543 3 188 408 72 27 039 1 099 11 745 3 242 413 48 32 274 1 081 11 956 3 302 418 59 38 768 1 062 12 178 3 367 424 07 47 091 1 044 12 412 3 438 429 93 58 312 1 026 12 658 3 515 436 21 73 380 1 009 12 893 3 592 442 30 NODE 403.10 HGL < 378.729>;EGL= < 380.097>;FLOWLINE= < 377.300> ****************************************************************************** FLOW PROCESS FROM NODE 403.10 TO NODE 403.00 IS CODE = 5 UPSTREAM NODE 4 03.00 ELEVATION = 37 7.4 7 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 15.60 18.00 0.00 377.47 DOWNSTREAM 16.30 18.00 - 377.30 LATERAL #1 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.70===Q5 EQUALS BASIN INPUT=== CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 1. 42 1.43 0 . 00 0.00 8 . 828 9. 384 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02205 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02088 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02147 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.086 FEET ENTRANCE LOSSES = 0.273 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.174)+( 0.086)+( 0.273) = 0.533 NODE 403.00 : HGL = < 379.420>;EGL= < 380.630>;FLOWLINE= < 377.470> ******************************************V,:**V,**j,*j,i-ty^^.,.^tj,^j^j^j^j^^j^^^^^j,j^^^^^^^j^ FLOW PROCESS FROM NODE 4 03.00 TO NODE 4 05.10 IS CODE = 1 UPSTREAM NODE 405.10 ELEVATION = 379.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.60 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 35.83 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 0 . 94 CRITICAL DEPTH(I 1.42 • UPSTREAM :ONTROL ASSUMED FLOWDEPTH(FT) = 1.42 1 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ • CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) • ° .000 1 .417 9. 019 2 . 681 346 43 0 .052 1 .398 9. 091 2 . 683 346 56 _ 0 .207 1 .379 9. 171 2 . 686 346 95 I .463 1 .360 9. 259 2 . 692 347 59 • 0 .825 1 .341 9. 354 2 .701 348 . 47 1 .295 1 . 322 9. 456 2 .712 349 .59 .882 1 . 303 9. 566 2 . 725 350 . 95 1 . 594 1 .284 9. 683 2 . 741 352 .56 3 .443 1 .265 9. 807 2 . 759 354 . 42 4 .443 1 .246 9. 939 2 .781 356 .53 1 . 612 1 .227 10. 079 2 . 805 358 .90 • .97 3 1 .208 10. 226 2 . 833 361 .54 8 .553 1 . 189 10. 382 2 .864 364 .46 .386 1 . 170 10. 547 2 .898 367 66 I .518 1 . 151 10. 720 2 . 936 371 16 15 .005 1 . 132 10. 903 2 . 979 374 97 17 . 924 1 .113 11. 095 3 . 025 379 10 • 21 .377 1 . 094 11. 298 3 . 077 383 57 • 25 .511 1 . 075 11. 511 3 . 133 388 40 30 .539 1 .056 11. 736 3 . 195 393 60 g 35 .830 1 .039 11. 935 3 .253 398 30 " HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS • DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1. 95 •| =========== ======= == ====== ===== ======= ========= ======= ======= ============ ======== PRESSURE FLOW PROFILE COMPUTED INFORMATION: 1 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ • CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 1 . 950 8. 828 3 .160 399 18 • '^^ .786 1 . 500 8 . 828 2 710 349 58 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 1 . 50 fl GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ ^ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I .786 1 . 500 8 . 825 2 710 349 58 • 21 . 923 1 .497 8 . 827 2 707 349 26 22 . 039 1 .493 8 . 829 2 705 348 98 • 22 . 144 1 .490 8. 833 2 702 348 . 73 1 22 . 239 1 .487 8 . 837 2 700 348. 49 22 . 326 1 .483 8 . 842 2 698 348 . 28 _ 22 . 406 1 .480 8 . 848 2 697 348 . 08 • 22 .480 1 .477 8 . 854 2 695 347 . 90 • 22 .549 1 .474 8. 860 2 693 347. 73 22 .612 1 .470 8. 867 o 692 347 . 57 m 22 . 669 1 .467 8 . 874 9 691 347 . 4 2 22 723 1 464 8 881 2 689 347 29 22 771 1 4 60 8 889 2 688 347 16 22 816 1 457 8 897 2 687 347 05 22 856 1 454 8 906 2 686 346 95 22 892 1 450 8 915 2 685 346 86 22 925 1 447 8 924 2 685 346 77 22 954 1 444 8 934 2 684 346 70 22 979 1 441 8 943 2 683 346 64 23 000 1 437 8 953 2 683 346 58 23 018 1 434 8 964 2 682 346 53 23 033 1 431 8 974 2 682 346 50 23 044 1 427 8 985 2 682 346 47 23 052 1 424 8 996 2 682 346 45 23 057 1 421 9 008 2 681 346 43 23 059 1 417 9 019 2 681 346 43 35 830 1 417 9 019 2 681 346 43 END OF HYDRAULIC JUMP ANALYSIS i PRESSURE+MOMENTUM BALANCE OCCURS AT 0.63 FEET UPSTREAM OF NODE 4 03.00 | I DOWNSTREAM DEPTH = 1.937 FEET, UPSTREAM CONJUGATE DEPTH = 1.041 FEET | NODE 405.10 : HGL = < 380.417>; EGL= < 381.681>;FLOWLINE= < 379.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 405.10 FLOWLINE ELEVATION = 379.00 ASSUMED UPSTREAM CONTROL HGL = 380.42 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD RACEWAY * * X-ING FROM NODE#408 TO 407.5 (SD A), IN LIONSHEAD, CONST. CHANGE NO. IX * * G:\ACCTS\971035\RACE408.OUT * ***********************************************************jr************** FILE NAME: G:\ACCTS\971035\RACE4 08.DAT TIME/DATE OF STUDY: 17:25 08/11/2005 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 407.50- 0.65 34.71 0.33* 58.68 } FRICTION 408.10- 0.65*Dc 34.71 0.65*Dc 34.71 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD, LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 407.50 FLOWLINE ELEVATION = 371.80 PIPE FLOW = 2.90 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 372.300 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.50 FT.) IS LESS THAN CRITICAL DEPTH( 0.65 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 407.50 : HGL = < 372.131>;EGL= < 373.686>;FLOWLINE= < 371.800> ************************************ ******************^**^*j^^^j^^^^^^^^^^_i^^^^^^ FLOW PROCESS FROM NODE 407.50 TO NODE 408.10 IS CODE = 1 UPSTREAM NODE 408.10 ELEVATION = 373.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH 2.90 CFS PIPE DIAMETER = 18.00 INCHES 5.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0 . 24 CRITICAL DEPTH(FT) 0. 65 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0. 65 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 0. 647 3 975 0 892 34 . 71 0. 004 0. 631 4 109 0 893 34 . 74 0. 015 0. 615 4 253 0 896 34 . 85 0. 035 0. 599 4 406 0 900 35. 04 0. 066 0 . 583 4 569 0 907 35. 31 0. 108 0. 566 4 745 0 916 35. 67 0. 164 0. 550 4 933 0 928 36. 13 0. 235 0. 534 5 136 0 944 36. 69 0. 325 0. 518 5 354 0 964 37. 36 0. 436 0. 502 5 591 0 988 38. 16 0. 573 0. 486 5 846 1 017 39. 09 0. 740 0. 470 6 124 1 053 40. 16 0. 944 0. 454 6 427 1 096 41. 40 1. 192 0. 438 6 757 1 147 42. 81 1. 495 0. 422 7 119 1 209 44 . 4 3 1. 865 0. 406 7 517 1 284 46. 27 2 . 322 0. 389 7 957 1 373 48 . 37 2 . 890 0. 373 8 444 1 481 50. 75 3. 603 0. 357 8 986 1 612 53. 46 4 . 515 0. 341 9 593 1 771 56. 56 5. 250 0. 331 10 003 1 886 58 . 68 NODE 4 08 .10 : HGL = < 373. 64 7>;EGL= < 373.892>;FLOWLINE= < 373.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 408.10 FLOWLINE ELEVATION = 373.00 ASSUMED UPSTREAM CONTROL HGL = 373.65 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS HYDROLOGY SHEET 1 SHEET CITY 0. ENGINEE SHEET CITY 0. ENGINEE