Loading...
HomeMy WebLinkAboutCT 99-06; PALOMAR FORUM; HYDROLOGY AND HYDRALIC STUDY; 2004-05-13HYDROLOGY AND HYDRAULIC STUDY FOR PALOMAR FORUM CT 99-06 J.N. 011010-05 JANUARY 4, 2002 REVISED MARCH 12,2002 REVISED SEPTEMBER 12,2002 REVISED DECEMBER 6,2002 REVISED FEBRUARY 3, 2003 BY O'DAY CONSULTANTS 2710 LOKER AVENUE WEST, SUITE 100 CARLSBAD, CA 92008 (760) 931-7700 RECEIVED MAY 1 3 ^uu^ ENGINEERING DEPARTMENT HYDROLOGY AND HYDRAULIC STUDY FOR PALOMAR FORUM CT 99-06 J.N. 011010-05 JANUARY 4, 2002 REVISED MARCH 12,2002 REVISED SEPTEMBER 12, 2002 REVISED DECEMBER 6,2002 REVISED FEBRUARY 3, 2003 BY O'DAY CONSULTANTS 2710 LOKER AVENUE WEST, SUITE 100 CARLSBAD, CA 92008 (760) 931-7700 TABLE OF CONTENTS INTRODUCTION 2 PROCEDURE 2 CONCLUSION 3 HYDROLOGY AND HYDRAULICS 4 AREA DRAINING TO STREET 'A' 5 AREA DRAINING TO MELROSE DRIVE 94 TEMPORARY OFF-SITE (SECONDARY ACCESS ROAD) 122 INLET SIZING 139 RIP-RAP 152 TEMPORARY DESILTING BASIN CALCULATIONS 156 APPENDIX 189 INTENSITY-DURATION DESIGN CHART 190 100-YR 6-HR PRECIPITATION 191 100-YR 24-HR PRECIPITATION 192 SOILS MAP 193 RUNOFF COEFFICIENTS 194 NOMOGRAPH FOR TIME OF CONCENTRATION-NATURAL 195 URBAN TIME OF FLOW CURVES 196 "RANCHO CAIU.SBAD CHANNEL 4 BASIN PROJECT" REPORT 197 60-SCALE DRAINAGE MAP - 5 SHEETS (POCKET) 100-SCALE DRAINAGE MAP - TEMPORARY - 1 SHEET (POCKET) INTRODUCTION This study is an evaluation of the stormwater nmoff for the fmal design of Palomar Forum Industrial Park, a 70 acre, 12 lot project located on the northerly side of Palomar Airport Road, near the City of Vista. The purpose of this study is to detennine the facilities needed to meet the requirements stated in the "Standards for Design and Construction of Public Works Improvements m the City of Carlsbad." PROCEDURE The hydrology study followed the procedure in the San Diego County Drainage Manual for a lOO-year storm. For this location, P6= 3.0 and P24= 5.2. Times of concentration were based on the following: For Natural Areas: Tc=f60 119171''" + 10 minutes =j60 11.9 L^^'^ + For Urban Areas: Tc= 1.8 fl.l-OsfP , with a minimum of 5 minutes Additional time m pipes or chaimels was based on the average velocity in those facilities. Intensity was determined by: I = 7.44 Pfi T6 '-^^ The rational method was used to determme flows: Q = CIA, where Q = flow in cubic feet per second C = runoff coefficient, based on land use and soil type. For tiiis project, die soil type was all 'D' I = intensity A = area, in acres W:\MSOFF1CE\WINWORD\011010\HVDROLOGY AND HYDRAULIC STUDY.doc A Hydraulic Study was then done to confirm pipe sizes and eliminate pressure flow. This was done using a form taken from die Virginia Department of Highways and Transportation "Drainage Manual." CONCLUSION Any increase in flow over existing conditions is accounted for with the detension basin on the east side of Melrose Drive. This basin is based on a study done by Rick Engineering for the City of Carisbad (see Appendix). All pipes are sized to eliminate pressure flow with the exception of the last reach ofthe storm drains coming out of Melrose Drive. These pipes will be underwater when water ponds in tiie detension basin. The pipe at the downstream end of Street 'A', Node 170 to Node 172 is temporary and will be realigned with die Carlsbad Raceway Project. W:\MSOFFICE\WINWORD\011010\HYDROLOGY AND HYDRAULIC STUDY.doc HYDROLOGY & HYDRAULICS AREA DRAINING TO STREET *A' (EAGLE DR.) San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 02/05/03 PALOMAR FORUM PROPOSED CONDITIONS INTERIOR BACKBONE SYSTEM 12-3-02 G:\ACCTS\981022\FORUM.OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 ~~ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 50.00(Ft.) Highest elevation = 511.20(Ft.) Lowest elevation = 510.20(Ft.) Elevation difference = 1.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.52 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.9500)* ( 50.00*.5)/( 2.00^(1/3)]= 1.52 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.375(CFS) Total initial stream area = 0.050(Ac.) +++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 102.000 to Point/Station 103.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 510.200(Ft.) End of street segment elevation = 467.800(Ft.) Length of street segment = 1940.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 51.000(Ft.) Distance from crown to crossfall grade break = 4 9.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Marming's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.886(CFS) Depth of flow = 0.205(Ft.), Average velocity = 2.377(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.491 (Ft.) Flow velocity = 2.38(Ft/s) Travel time = 13.60 min. TC = 18.60 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 3.387(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 8.752(CFS) for 2.720(Ac.) Total runoff = 9.127(CFS) Total area = 2.77(Ac.) Street flow at end of street = 9.127(CFS) Half street flow at end of street = 9.127(CFS) Depth of flow = 0.389(Ft.), Average velocity = 4.094(Ft/s) Flow width (from curb towards crown)= 14.691(Ft.) +++++++++++++++++++++++++++++++++++++++H Process from Point/Station 103.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 459.00(Ft.) Downstream point/station elevation = 440.00(Ft.) Pipe length = 48.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.127(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 9.127(CFS) Normal flow depth in pipe = 4.52(In.) Flow top width inside pipe = 15.61(In.) Critical Depth = 14.02(In.) Pipe flow velocity = 26.26(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 18.63 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 439.67(Ft.) Downstream point/station elevation = 429.00(Ft.) Pipe length = 269.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.127(CFS) 1 Given pipe size = 18.00(In.) Calculated individual pipe flow = 9.127(CFS) Normal flow depth in pipe = 8.32(In.) Flow top width inside pipe = 17.95(In.) Critical Depth = 14.02(In.) Pipe flow velocity = 11.44(Ft/s) Travel time through pipe = 0.39 min. Time of concentration (TC) = 19.03 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 115.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 428.00(Ft.) Downstream point/station elevation = 423.57(Ft.) Pipe length = 109.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.127(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 9.127(CFS) Normal flow depth in pipe = 6.73(In.) Flow top width inside pipe = 25.03(In.) Critical Depth = 12.07(In.) Pipe flow velocity = 11.09(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 19.19 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 115.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.770(Ac.) Runoff from this stream = 9.127(CFS) Time of concentration = 19.19 min. Rainfall intensity = 3.320(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 108.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.680 given for subarea Initial subarea flow distance = 190.00(Ft.) Highest elevation = 476.00(Ft.) Lowest elevation = 470.00 (Ft.) Elevation difference = 6.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 7.10 min. TC = [1.8*(1.1-C)*distance*.5)/(% slope*(1/3)] TC = [1.8*(l.l-0.6800)*(190.00*.5)/( 3.16^(1/3)]= 7.10 Rainfall intensity (I) = 6.303 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.680 Subarea runoff = 1.629(CFS) Total initial stream area = 0.380(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 110.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 30.108(CFS) Depth of flow = 0.340(Ft.), Average velocity = 2.600(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 1.00 2 100.00 0.00 3 200.00 1.00 Manning's 'N' friction factor = 0.03 0 Sub-Channel flow = 30.108(CFS) ' ' flow top width = 68.056(Ft.) ' ' velocity= 2.600(Ft/s) ' ' area = 11.579(Sq.Ft) ' ' Froude number = l.lll Upstream point elevation = 470.000(Ft.) Downstream point elevation = 432.000(Ft.) Flow length = 1300.000(Ft.) Travel time = 8.33 min. Time of concentration = 15.44 min. Depth of flow = 0.340(Ft.) Average velocity = 2.600(Ft/s) Total irregular channel flow = 30.108(CFS) Irregular channel normal depth above invert elev. = 0.340(Ft.) Average velocity of channel(s) = 2.600(Ft/s) Sub-Channel No. 1 critical depth = 0.355(Ft.) ' ' ' critical flow top width = 71.094(Ft.) ' ' ' critical flow velocity= 2.383(Ft/s) ' ' ' critical flow area = 12.636(Sq.Ft) Adding area flow to channel User specified 'C value of 0.850 given for subarea Rainfall intensity = 3.820(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.850 Subarea runoff = 43.156(CFS) for 13.290(Ac.) Total runoff = 44.785(CFS) Total area = 13.67(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 115.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 426.40(Ft.) Downstream point/station elevation = 423.57(Ft.) Pipe length = 80.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 44.785(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 44.785(CFS) Normal flow depth in pipe = 16.41(In.) Flow top width inside pipe = 2 9.87(In.) Critical Depth = 26.65(In.) Pipe flow velocity = 16.30(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 15.52 min. Process from Point/Station 110.000 to Point/Station 115.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 13.670(Ac.) Runoff from this stream = 44.785(CFS) Time of concentration = 15.52 min. Rainfall intensity = 3.807(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 9.127 19.19 3.320 2 44.785 15.52 3.807 Qmax(1) = 1.000 * 1.000 * 9.127) + Qmax(2) 0.872 * 1.000 * 44.785) + = 48.177 1.000 * 0.809 * 9.127) + 1.000 * 1.000 * 44.785) + = 52.165 Total of 2 streams to confluence: Flow rates before confluence point: 9.127 44.785 Maximum flow rates at confluence using above data: 48.177 52.165 Area of streams before confluence: 2.770 13.670 Results of confluence: Total flow rate = 52.165(CFS) Time of concentration = 15.517 min. Effective stream area after confluence = 16.440(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 115.000 to Point/Station 116.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 423.07(Ft.) Downstream point/station elevation = 419.21(Ft.) Pipe length = 296.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 52.165(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 52.165(CFS) Normal flow depth in pipe = 21.87(In.) Flow top width inside pipe = 35.16(In.) Critical Depth = 28.18(In.) Pipe flow velocity = 11.60(Ft/s) Travel time through pipe = 0.43 min. Time of concentration (TC) = 15.94 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 134.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 418.71(Ft.) Downstream point/station elevation = 417.72(Ft.) Pipe length = 149.00(Ft.) Manning's N = 0.013 10 No. of pipes = 1 Required pipe flow = 52.165(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 52.165(CFS) Normal flow depth in pipe = 24.33(In.) Flow top width inside pipe = 41.47(In.) Critical Depth = 27.10(In.) Pipe flow velocity = 9.03(Ft/s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 16.22 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 134.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 16.440(Ac.) Runoff from this stream = 52.165(CFS) Time of concentration = 16.22 min. Rainfall intensity = 3.700(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 131.000 to Point/Station 132.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 544.00(Ft.) Lowest elevation = 536.00(Ft.) Elevation difference = 8.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.35 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*(1/3)] TC = [1.8*(l.l-0.9500)*(100.00*.5)/( 8.00*(l/3)]= 1.35 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.375(CFS) Total initial stream area = 0.050(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 133.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 536.000(Ft.) End of street segment elevation = 430.500(Ft.) Length of street segment = 500.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 II Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.511(CFS) Depth of flow = 0.115(Ft.), Average velocity = 6.419(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 6.42(Ft/s) Travel time = 1.30 min. TC = 6.30 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Rainfall intensity = 6.811(In/Hr) Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 4.659(CFS) for 0.720(Ac.) Total runoff = 5.034(CFS) Total area = 0.77(Ac.) Street flow at end of street = 5.034(CFS) Half street flow at end of street = 5.034(CFS) Depth of flow = 0.240(Ft.), Average velocity = 8.425(Ft/s) Flow width (from curb towards crown)= 7.254(Ft.) 1 for a 100.0 year storm +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 133.000 to Point/Station 133.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.880 given for subarea Time of concentration = 6.30 min. Rainfall intensity = 6.811(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.880 Subarea runoff = 30.207(CFS) for 5.040(Ac.) Total runoff = 35.241(CFS) Total area = 5.81(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 133.000 to Point/Station 133.000 **** StJBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 6.30 min. Rainfall intensity = 6.811(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 3.688(CFS) for 0.570(Ac.) Total runoff = 38.929(CFS) Total area = 6.38(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 133.000 to Point/Station 134.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 422.69(Ft.) Downstream point/station elevation = 418.72(Ft.) Pipe length = 43.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 38.929(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 38.929(CFS) Normal flow depth in pipe = 12.94(In.) Flow top width inside pipe = 23.93(In.) Critical depth could not be calculated. Pipe flow velocity = 22.56(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 6.33 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 133.000 to Point/Station 134.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 6.380(Ac.) Runoff from this stream = 38.929 (CFS) Time of concentration = 6.33 min. Rainfall intensity = 6.789(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 52. 165 16. 22 3 700 2 38. 929 6. 33 6 789 Qmax(1) = 1. 000 * 1. 000 * 52 .165) + 0. 545 * 1. 000 * 38 .929) + = 73 385 Qmax(2) = 1. 000 * 0. 390 * 52 .165) + 1. 000 * 1. 000 * 38 .929) + = 59 290 Total of 2 streams to confluence: Flow rates before confluence point: 52.165 38.929 Maximum flow rates at confluence using above data: 73.385 59.290 Area of streams before confluence: 16.440 6.380 Results of confluence: Total flow rate = 73.385(CFS) Time of concentration = 16.218 min. Effective stream area after confluence = 22.820(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 134.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 16.22 min. Rainfall intensity = 3.700(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 13 Subarea runoff = 2.004(CFS) for 0.570(Ac.) Total runoff = 75.389(CFS) Total area = 23.39(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 417.22(Ft.) Downstream point/station elevation = 413.00(Ft.) Pipe length = 211.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 75.389(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 75.389(CFS) Normal flow depth in pipe = 21.73(In.) Flow top width inside pipe = 41.97(In.) Critical Depth = 32.58(In.) Pipe flow velocity = 15.00(Ft/s) Travel time through pipe = 0.23 min. Time of concentration (TC) = 16.45 min. Process from Point/Station 134.000 to Point/Station 130.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 23.390(Ac.) Runoff from this stream = 75.389(CFS) Time of concentration = 16.45 min. Rainfall intensity = 3.666(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 123.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 105.00(Ft.) Highest elevation = 472.80(Ft.) Lowest elevation = 467.80(Ft.) Elevation difference = 5.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.64 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*(1/3)] TC = [1.8*(l.l-0.9500)*(105.00*.5)/( 4.76*(l/3)]= 1.64 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.375(CFS) Total initial stream area = 0.050(Ac.) Process from Point/Station 123.000 to Point/Station 124.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 472.800(Ft.) End of street segment elevation = 462.000(Ft.) Length of street segment = 530.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.533(CFS) Depth of flow = 0.181(Ft.), Average velocity = 2.094(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.282(Ft.) Flow velocity = 2.09(Ft/s) Travel time = 4.22 min. TC = 9.22 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 5.327(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 4.251(CFS) for 0.840(Ac.) Total runoff = 4.626(CFS) Total area = 0.89(Ac.) Street flow at end of street = 4.626(CFS) Half street flow at end of street = 4.626(CFS) Depth of flow = 0.323(Ft.), Average velocity = 3.379(Ft/s) Flow width (from curb towards crown)= 11.393(Ft.) ++++++H Process from Point/Station 124.000 to Point/Station 125.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 462.000(Ft.) End of street segment elevation = 438.500(Ft.) Length of street segment = 380.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.704(CFS) 15 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 472.800(Ft.) End of street segment elevation = 462.000(Ft.) Length of street segment = 530.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.533(CFS) Depth of flow = 0.181(Ft.), Average velocity = 2.094(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.282(Ft.) Flow velocity = 2.09(Ft/s) Travel time = 4.22 min. TC = 9.22 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 5.327(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 4.251(CFS) for 0.840(Ac.) Total runoff = 4.626(CFS) Total area = 0.89(Ac.) Street flow at end of street = 4.626(CFS) Half street flow at end of street = 4.626(CFS) Depth of flow = 0.323(Ft.), Average velocity = 3.379(Ft/s) Flow width (from curb towards crown)= 11.393(Ft.) Process from Point/Station 124.000 to Point/Station 125.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 462.000(Ft.) End of street segment elevation = 438.500(Ft.) Length of street segment = 380.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.704(CFS) Depth of flow = 0.278(Ft.), Average velocity = 5.176(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.152(Ft.) Flow velocity = 5.18(Ft/s) Travel time = 1.22 min. TC = 10.44 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 4.916(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 0.140(CFS) for 0.030(Ac.) Total runoff = 4.767(CFS) Total area = 0.92(Ac.) Street flow at end of street = 4.767(CFS) Half street flow at end of street = 4.767(CFS) Depth of flow = 0.279(Ft.), Average velocity = 5.192(Ft/s) Flow width (from curb towards crown)= 9.202(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 125.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 431.00(Ft.) Downstream point/station elevation = 414.67(Ft.) Pipe length = 103.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.767(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.767(CFS) Normal flow depth in pipe = 4.10(In.) Flow top width inside pipe = 15.10(In.) Critical Depth = 10.07(In.) Pipe flow velocity = 15.72(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 10.55 min. Process from Point/Station 125.000 to Point/Station 130.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.920(Ac.) Runoff from this stream = 4.767(CFS) Time of concentration = 10.55 min. Rainfall intensity = 4.883(In/Hr) Program is now starting with Main Stream No. 3 +++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 126.000 to Point/Station 127.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Initial subarea flow distance = 50.00(Ft.) Highest elevation = 469.20(Ft.) Lowest elevation = 468.20(Ft.) Elevation difference = 1.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.52 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.9500)*( 50.00*.5)/( 2.00*(l/3)]= 1.52 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.375(CFS) Total initial stream area = 0.050(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 127.000 to Point/Station 128.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 468.200(Ft.) End of street segment elevation = 459.000(Ft.) Length of street segment = 880.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 51.000(Ft.) Distance from crown to crossfall grade break = 49.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.601(CFS) Depth of flow = 0.204(Ft.), Average velocity = 1.637(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.438(Ft.) Flow velocity = 1.64(Ft/s) Travel time = 8.96 min. TC = 13.96 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 4.076(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 4.647(CFS) for 1.200(Ac.) Total runoff = 5.022(CFS) Total area = 1.25(Ac.) Street flow at end of street = 5.022(CFS) Half street flow at end of street = 5.022(CFS) Depth of flow = 0.364(Ft.), Average velocity = 2.677(Ft/s) Flow width (from curb towards crown)= 13.434(Ft.) Process from Point/Station 128.000 to Point/Station 128.000 **** SUBAREA FLOW ADDITION **** 17 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 13.96 min. Rainfall intensity = 4.076(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = Subarea runoff = 2.091(CFS) for 0.540(Ac.) Total runoff = 7.113(CFS) Total area = 1.79(Ac.) 0.950 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 129.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 444.50(Ft.) Downstream point/station elevation = 443.10(Ft.) Pipe length = 106.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.113(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 7.113(CFS) Normal flow depth in pipe = 8.58(In.) Flow top width inside pipe = 23.00(In.) Critical Depth = 11.36(In.) Pipe flow velocity = 7.05(Ft/s) Travel time through pipe = 0.25 min. Time of concentration (TC) = 14.21 min. ++++++++++++++++++++H Process from Point/Station **** SUBAREA FLOW ADDITION 129.000 to Point/Station 129.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 14.21 min. Rainfall intensity = 4.030(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 6.546(CFS) for 1.710(Ac.) Total runoff = 13.660(CFS) Total area = 3.50(Ac.) Process from Point/Station 129.000 to Point/Station 160.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 442.77(Ft.) Downstream point/station elevation = 430.00(Ft.) Pipe length = 50.00(Ft.) Manning's N = 0.013 13.660(CFS) No. of pipes = 1 Required pipe flow = Given pipe size = 24.00(In.) Calculated individual pipe flow = 13.660(CFS) Normal flow depth in pipe = 5.60(In.) Flow top width inside pipe = 2 0.30(In.) Critical Depth = 15.96(In.) Pipe flow velocity = 24.51(Ft/s) Travel time through pipe = 0.03 min. 18 Time of concentration (TC) = 14.24 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 160.000 to Point/Station 161.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 429.67(Ft.) Downstream point/station elevation = 425.35(Ft.) Pipe length = 273.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 13.660(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 13.660(CFS) Normal flow depth in pipe = 11.72(In.) Flow top width inside pipe = 23.99(In.) Critical Depth = 15.96(In.) Pipe flow velocity = 8.97(Ft/s) Travel time through pipe = 0.51 min. Time of concentration (TC) = 14.75 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 161.000 to Point/Station 162.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 425.02(Ft.) Downstream point/station elevation = 419.00(Ft.) Pipe length = 275.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 13.660(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 13.660(CFS) Normal flow depth in pipe = 10.68(In.) Flow top width inside pipe = 23.85(In.) Critical Depth = 15.96(In.) Pipe flow velocity = 10.11(Ft/s) Travel time through pipe = 0.45 min. Time of concentration (TC) = 15.20 min. Process from Point/Station 162.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 418.67(Ft.) Downstream point/station elevation = 414.17(Ft.) Pipe length = 35.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 13.660(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 13.660(CFS) Normal flow depth in pipe = 6.66(In.) Flow top width inside pipe = 21.49(In.) Critical Depth = 15.96(In.) Pipe flow velocity = 19.20(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 15.23 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 162.000 to Point/Station 130.000 **** CONFLUENCE OF MAIN STREAMS **** \1 The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 3.500(Ac.) Runoff from this stream = 13.660(CFS) Time of concentration = 15.23 min. Rainfall intensity = 3.853(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 75. 425 16 .42 3 670 2 4. 767 10 .55 4 883 3 13. 660 15 .23 3 853 Qmax(1) = 1. 000 * 1 .000 * 75 .425) + 0. 752 * 1 .000 * 4 .767) + 0. 953 * 1 .000 * 13 .660) + = 92 022 Qmax(2) = 1. 000 * 0 .642 * 75 .425) + 1. 000 * 1 .000 * 4 .767) + 1. 000 * 0 .693 * 13 .660) + = 62 683 (}max(3) = 1. 000 * 0 .928 * 75 .425) + 0. 789 * 1 .000 * 4 .767) + 1. 000 * 1 .000 * 13 .660) + = 87 386 Total of 3 main streams to confluence; Flow rates before confluence point: 75.425 4.767 13.660 Maximum flow rates at confluence using above data: 92.022 62.683 87.386 Area of streams before confluence: 23.390 0.920 3.500 Results of confluence: Total flow rate = 92.022(CFS) Time of concentration = 16.424 min. Effective stream area after confluence = 27.810(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 135.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 412.67(Ft.) Downstream point/station elevation = 403.43(Ft.) Pipe length = 202.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 92.022(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 92.022(CFS) Normal flow depth in pipe = 19.20(In.) Flow top width inside pipe = 41.84(In.) Critical Depth = 35.67(In.) Pipe flow velocity = 21.50(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 16.58 min. 10 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 135.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 27.810(Ac.) Runoff from this stream = 92.022(CFS) Time of concentration = 16.58 min. Rainfall intensity = 3.648(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 136.000 to Point/Station 137.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 95.00(Ft.) Highest elevation = 462.50(Ft.) Lowest elevation = 460.50(Ft.) Elevation difference = 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.05 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.9500)*( 95.00*.5)/( 2.11*(l/3)]= 2.05 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year stoirm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.375(CFS) Total initial stream area = 0.050(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 137.000 to Point/Station 138.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 460.500(Ft.) End of street segment elevation = 421.500(Ft.) Length of street segment = 600.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 51.000(Ft.) Distance from crown to crossfall grade break = 49.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.479(CFS) Depth of flow = 0.147(Ft.), Average velocity = 3.448(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.599(Ft.) Flow velocity = 3.45(Ft/s) Travel time = 2.90 min. TC = 7.90 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 5.885(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 3.075(CFS) for 0.550(Ac.) Total runoff = 3.450(CFS) Total area = 0.60(Ac.) Street flow at end of street = 3.450(CFS) Half street flow at end of street = 3.450(CFS) Depth of flow = 0.254(Ft.), Average velocity = 4.907(Ft/s) Flow width (from curb towards crown)= 7.949(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 138.000 to Point/Station 138.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.870 given for subarea Time of concentration = 7.90 min. Rainfall intensity = 5.885(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.870 Subarea runoff = 38.910(CFS) for 7.600(Ac.) Total runoff = 42.360(CFS) Total area = 8.20(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 138.000 to Point/Station 135.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 406.00(Ft.) Downstream point/station elevation = 404.10(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 42.360(CFS) Given pipe size = 3 0.00(In.) Calculated individual pipe flow = 42.360(CFS) Normal flow depth in pipe = 8.31(In.) Flow top width inside pipe = 26.85(In.) Critical Depth = 26.13(In.) Pipe flow velocity = 38.25(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 7.90 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 138.000 to Point/Station 135.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 8.200(Ac.) Runoff from this stream = 42.360(CFS) Time of concentration = 7.90 min. Rainfall intensity = 5.884(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) Zl 1 92.022 16.58 3.648 2 42.360 7.90 5.884 Qmax(1) = 1.000 * 1.000 * 92.022) + 0.620 * 1.000 * 42.360) + = 118.286 QmeLx(2) = 1.000 * 0.477 * 92.022) + 1.000 * 1.000 * 42.360) + = 86.218 Total of 2 streams to confluence: Flow rates before confluence point: 92.022 42.360 Maximum flow rates at confluence using above data: 118.286 86.218 Area of streams before confluence: 27.810 8.200 Results of confluence: Total flow rate = 118.286(CFS) Time of concentration = 16.580 min. Effective stream area after confluence = 36.010(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 135.000 to Point/Station 139 ooO **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 403.10(Ft.) ~ ~ Downstream point/station elevation = 400.63(Ft.) Pipe length = 90.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 118.286(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 118.286(CFS) Normal flow depth in pipe = 26.13(In.) Flow top width inside pipe = 40.73(In.) Critical Depth = 38.82(In.) Pipe flow velocity = 18.80(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 16.66 min. Process from Point/Station 135.000 to Point/Station 139 000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 36.010(Ac.) Runoff from this stream = 118.286(CFS) Time of concentration = 16.66 min. Rainfall intensity = 3.637(In/Hr) Process from Point/Station 140.000 to Point/Station 141 000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.850 given for subarea ~ Initial subarea flow distance = 600.00(Ft.) Highest elevation = 442.00(Ft.) Lowest elevation = 428.00(Ft.) Elevation difference = 14.00(Ft.) Time of concentration calculated by the urban Z3 areas overland flow method (App X-C) = 8.31 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*{l/3)] TC = [1.8*(l.l-0.8500)*(600.00*.5)/( 2.33*(l/3)]= 8.31 Rainfall intensity (I) = 5.696 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 20.866(CFS) Total initial stream area = 4.310(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 141.000 to Point/Station 142.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 414.00(Ft.) Downstream point/station elevation = 411.43(Ft.) Pipe length = 71.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 20.866(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 20.866(CFS) Normal flow depth in pipe = 11.79(In.) Flow top width inside pipe = 24.00(In.) Critical Depth = 19.63(In.) Pipe flow velocity = 13.60(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 8.40 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 142.000 to Point/Station 143.500 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 411.10(Ft.) Downstream point/station elevation = 407.54(Ft.) Pipe length = 222.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 20.866(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 20.866(CFS) Normal flow depth in pipe = 15.19(In.) Flow top width inside pipe = 23.14(In.) Critical Depth = 19.63(In.) Pipe flow velocity = 9.95(Ft/s) Travel time through pipe = 0.37 min. Time of concentration (TC) = 8.77 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 143.500 to Point/Station 143.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 407.04(Ft.) Downstream point/station elevation = 404.23(Ft.) Pipe length = 191.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 20.866(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 20.866(CFS) Normal flow depth in pipe = 13.55(In.) Flow top width inside pipe = 2 9.86(In.) Critical Depth = 18.63(In.) Pipe flow velocity = 9.69 (Ft/s) Travel time through pipe = 0.33 min. Time of concentration (TC) = 9.10 min. H-+++++++++++++++++++++++++++++++++++++++ Process from Point/Station 143.000 to Point/Station 143.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 9.10 min. Rainfall intensity = 5.372(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 11.330(CFS) for 2.220(Ac.) Total runoff = 32.196(CFS) Total area = 6.53(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 143.000 to Point/Station 139.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 403.40(Ft.) Downstream point/station elevation = 401.63(Ft.) Pipe length = 45.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 32.196(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 32.196(CFS) Normal flow depth in pipe = 13.11(In.) Flow top width inside pipe = 2 9.76(In.) Critical Depth = 23.18(In.) Pipe flow velocity = 15.60(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 9.15 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 143.000 to Point/Station 139.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 6.530(Ac.) Runoff from this stream = 32.196(CFS) Time of concentration = 9.15 min. Rainfall intensity = 5.354(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 118.286 16.66 3.637 2 32.196 9.15 5.354 Qmax(1) = 1.000 * 1.000 * 118.286) + 0.679 * 1.000 * 32.196) + = 140.155 Qmax(2) = 1.000 * 0.549 * 118.286) + 1.000 * 1.000 * 32.196) + = 97.134 Total of 2 streams to confluence: ZS Flow rates before confluence point: 118.286 32.196 Maximum flow rates at confluence using above data: 140.155 97.134 Area of streams before confluence: 36.010 6.530 Results of confluence: Total flow rate = 140.155(CFS) Time of concentration = 16.660 min. Effective stream area after confluence = 42.540(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 139.000 to Point/Station 121.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 400.13(Ft.) Downstream point/station elevation = 382.00(Ft.) Pipe length = 265.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 140.155(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 140.155(CFS) Normal flow depth in pipe = 21.80(In.) Flow top width inside pipe = 41.97(In.) Critical depth could not be calculated. Pipe flow velocity = 27.78(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 16.82 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 139.000 to Point/Station 121.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 42.540(Ac.) Runoff from this stream = 140.155(CFS) Time of concentration = 16.82 min. Rainfall intensity = 3.615(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 111.000 to Point/Station 116.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 360.00(Ft.) Highest elevation = 430.00(Ft.) Lowest elevation = 420.00(Ft.) Elevation difference = 10.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.64 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.9500)*(360.00*.5)/( 2.78*(l/3)]= 3.64 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 15.919(CFS) Total initial stream area = 2.120(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 117.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 410.17(Ft.) Downstream point/station elevation = 400.90(Ft.) Pipe length = 474.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 15.919(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 15.919(CFS) Normal flow depth in pipe = 10.80(In.) Flow top width inside pipe = 28.80(In.) Critical Depth = 16.15(In.) Pipe flow velocity = 10.00(Ft/s) Travel time through pipe = 0.79 min. Time of concentration (TC) = 5.79 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 117.000 to Point/Station 117.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 5.79 min. Rainfall intensity = 7.190(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 25.343(CFS) for 3.710(Ac.) Total runoff = 41.262(CFS) Total area = 5.83(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 117.000 to Point/Station 118.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 400.57(Ft.) Downstream point/station elevation = 387.63(Ft.) Pipe length = 42.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 41.262(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 41.262(CFS) Normal flow depth in pipe = 8.65(In.) Flow top width inside pipe = 27.18(In.) Critical Depth = 25.85(In.) Pipe flow velocity = 35.22(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 5.81 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 117.000 to Point/Station 118.000 **** CONFLiraiNCE OF MINOR STREAMS **** Zl Along Main Stream number: 2 in normal stream number 1 Stream flow area = 5.830(Ac.) Runoff from this stream = 41.262(CFS) Time of concentration = 5.81 min. Rainfall intensity = 7.175(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 119.000 to Point/Station 120.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 75.00(Ft.) Highest elevation = 436.00(Ft.) Lowest elevation = 433.00(Ft.) Elevation difference = 3.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.47 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*(l/3)] TC = [1.8* (1.1-0.9500)* ( 75.00*.5)/( 4.00*(l/3)]= 1.47 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.375(CFS) Total initial stream area = 0.050(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 118.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 433.000(Ft.) End of street segment elevation = 396.500(Ft.) Length of street segment = 550.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.473(CFS) Depth of flow = 0.146(Ft.), Average velocity = 3.484(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.540(Ft.) Flow velocity = 3.48(Ft/s) Travel time = 2.63 min. TC = 7.63 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Z6 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 6.018(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 2.973(CFS) for 0.520(Ac.) Total runoff = 3.348(CFS) Total area = 0.57(Ac.) Street flow at end of street = 3.348(CFS) Half street flow at end of street = 3.348(CFS) Depth of flow = 0.251(Ft.), Average velocity = 4.913(Ft/s) Flow width (from curb towards crown)= 7.812(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 118.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.570(Ac.) Runoff from this stream = 3.348(CFS) Time of concentration = 7.63 min. Rainfall intensity = 6.018(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 41.262 5.81 7.175 2 3.348 7.63 6.018 Qmax(l) = 1.000 * 1.000 * 41.262) + 1.000 * 0.761 * 3.348) + = 43.811 Qmax(2) = 0.839 * 1.000 * 41.262) + 1.000 * 1.000 * 3.348) + = 37.957 Total of 2 streams to confluence: Flow rates before confluence point: 41.262 3.348 Maximum flow rates at confluence using above data: 43.811 37.957 Area of streams before confluence: 5.830 0.570 Results of confluence: Total flow rate = 43.811(CFS) Time of concentration = 5.810 min. Effective stream area after confluence = 6.400(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 121.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 387.30(Ft.) ~ Downstream point/station elevation = 383.17(Ft.) Pipe length = 43.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 43.811(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 43.811(CFS) Normal flow depth in pipe = 12.15(In.) Flow top width inside pipe = 29.45(In.) Critical Depth = 26.46(In.) Pipe flow velocity = 23.51(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 5.84 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 121.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 6.400(Ac.) Runoff from this stream = 43.811(CFS) Time of concentration = 5.84 min. Rainfall intensity = 7.150(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 140.155 16.82 3.615 2 43.811 5.84 7.150 Qmax(1) = 1.000 * 1.000 * 140.155) + 0.505 * 1.000 * 43.811) + = 162.301 Qmax(2) = 1.000 * 0.347 * 140.155) + 1.000 * 1.000 * 43.811) + = 92.481 Total of 2 main streams to confluence: Flow rates before confluence point: 140.155 43.811 Maximum flow rates at confluence using above data: 162.301 92.481 Area of streams before confluence: 42.540 6.400 Results of confluence: Total flow rate = 162.301(CFS) Time of concentration = 16.819 min. Effective stream area after confluence = 48.940(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 121.000 to Point/Station 121.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.92 0 given for subarea Time of concentration = 16.82 min. Rainfall intensity = 3.615(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.920 Subarea runoff = 36.646(CFS) for 11.020(Ac.) Total runoff = 198.947(CFS) Total area = 59.96(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 121.000 to Point/Station 144.000 30 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 381.50(Ft.) Downstream point/station elevation = 361.33(Ft.) Pipe length = 381.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 198.947(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 198.947(CFS) Normal flow depth in pipe = 26.86(In.) Flow top width inside pipe = 47.66(In.) Critical depth could not be calculated. Pipe flow velocity = 27.51(Ft/s) Travel time through pipe = 0.23 min. Time of concentration (TC) = 17.05 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 144.000 to Point/Station 144.000 **** streAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 17.05 min. Rainfall intensity = 3.583(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 14.704(CFS) for 4.320(Ac.) Total runoff = 213.651(CFS) Total area = 64.28(Ac.) Process from Point/Station 144.000 to Point/Station 170.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 361.00(Ft.) Downstream point/station elevation = 358.33(Ft.) Pipe length = 81.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 213.651(CFS) Given pipe size = 60.00(In.) Calculated individual pipe flow = 213.651(CFS) Normal flow depth in pipe = 28.29(In.) Flow top width inside pipe = 59.90(In.) Critical Depth = 4 9.88(In.) Pipe flow velocity = 23.47(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 17.11 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 170.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 17.11 min. Rainfall intensity = 3.575(In/Hr) for a 100.0 year storm 31 Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 10.529(CFS) for 3.100(Ac.) Total runoff = 224.180(CFS) Total area = 67.38(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 171.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 358.00(Ft.) Downstream point/station elevation = 347.40(Ft.) Pipe length = 325.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 224.180(CFS) Given pipe size = 60.00(In.) Calculated individual pipe flow = 224.180(CFS) Normal flow depth in pipe = 29.16(In.) Flow top width inside pipe = 59.98(In.) Critical Depth = 50.91(In.) Pipe flow velocity = 23.66(Ft/s) Travel time through pipe = 0.23 min. Time of concentration (TC) = 17.34 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 171.000 to Point/Station 171.000 **** StJBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 17.34 min. Rainfall intensity = 3.545(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 18.184(CFS) for 5.400(Ac.) Total runoff = 242.364(CFS) Total area = 72.78(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 171.000 to Point/Station 172.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 347.00(Ft.) Downstream point/station elevation = 341.10(Ft.) Pipe length = 230.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 242.364(CFS) Given pipe size = 60.00(In.) Calculated individual pipe flow = 242.364(CFS) Normal flow depth in pipe = 32.84(In.) Flow top width inside pipe = 59.73(In.) Critical Depth = 52.45(In.) Pipe flow velocity = 22.04(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 17.51 min. Process from Point/Station 172.000 to Point/Station 172.000 **** SUBAREA FLOW ADDITION **** 32 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 17.51 min. Rainfall intensity = 3.522(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 6.357(CFS) for 1.900(Ac.) Total runoff = 248.721(CFS) Total area = 74.68(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 172.000 to Point/Station 173.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 340.70(Ft.) Downstream point/station elevation = 333.40(Ft.) Pipe length = 220.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 248.721(CFS) Given pipe size = 60.00(In.) Calculated individual pipe flow = 248.721(CFS) Normal flow depth in pipe = 30.84(In.) Flow top width inside pipe = 59.98(In.) Critical Depth = 52.97(In.) Pipe flow velocity = 24.44(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 17.66 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 173.000 to Point/Station 173.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 17.66 min. Rainfall intensity = 3.503(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 17.635(CFS) for 5.300(Ac.) Total runoff = 266.356(CFS) Total area = 79.98(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 173.000 to Point/Station 174.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 333.00(Ft.) Downstream point/station elevation = 328.00(Ft.) Pipe length = 90.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 266.356(CFS) Given pipe size = 60.00(In.) Calculated individual pipe flow = 266.356(CFS) Normal flow depth in pipe = 27.63(In.) Flow top width inside pipe = 59.81(In.) Critical Depth = 54.23(In.) Pipe flow velocity = 30.16(Ft/s) Travel time through pipe = 0.05 min. 33 Time of concentration (TC) = 17.71 min. End of computations, total study area = 79.98 (Ac.) 3< PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * PALOMAR FORUM * * MAIN LINE * * 12-4-02 C:\AES2001\HYDROSOFT\RATSCX\RACE01.RES * ************************************************************************** FILE NAME: RACE01.DAT TIME/DATE OF STUDY: 07:19 12/04/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) } NODE NUMBER 174.00- 1 173.50- } 173.00- } 172.50- } 172.00- } 171.50- } UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 171.00- } 170.50- j 170.00- 1 144.50- ) 144.00- 121.50- ] 121.00- 139.50- } } } } } FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 4.52 Dc 4.52 Dc 5.21 4.42 Dc 4.38 Dc 4.37*Dc 9851.93 9851.93 9426.76 8902.93 8574.88 8574.87 9.14* 13106.59 } HYDRAULIC JUMP 4.24 Dc 4 .72 4.16 Dc 3.85 Dc 3.84 Dc 6.83 3.35*Dc 7660.14 7335.20 7149.15 7633.50 7633.49 7007.98 4979.96 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 13803.99 2. 64* 3.01* 2.68* 3.01* 2.93* 4.37*Dc 2.44 2.47* 2.29* 2.25* 2.29* 3.73* 1.88* 3.35*Dc 12123.53 11960.00 10721.25 10477.28 8574.88 10866.23 10699.75 10641.33 10850.45 10763.27 7650.72 7496.41 4979.96 36 } JUNCTION 139.00- 4.92* 4724.74 2.40 4317.07 } FRICTION 135.50- 3.70* 3988.88 2.87 3903.92 } JUNCTION 135.00- 5.27 3817.42 1.67* 3824.70 } FRICTION 130.50- 2.97*Dc 2629.28 2.97*Dc 2629.28 } JUNCTION 130.00- 5.94* 3659.43 1.86 2381.19 } FRICTION } HYDRAULIC JUMP 134.50- 2.72*Dc 1987.41 2.72*Dc 1987.41 } JUNCTION 134.00- 3.74* 1741.09 1.87 1268.47 } FRICTION } HYDRAULIC JUMP 115.60- 3.04 1378.05 1.49* 1504.72 } JUNCTION 115.50- 2.35 Dc 1282.52 1.84* 1386.11 } FRICTION 115.10- 2.35*Dc 1282.52 2.35*Dc 1282.52 } JUNCTION 115.00- 2.70 1236.08 1.66* 1280.45 } FRICTION 110.00- 2.22*Dc 1143.47 2.22*Dc 1143.47 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 174.00 FLOWLINE ELEVATION = 328.00 PIPE FLOW = 266.40 CFS PIPE DIAMETER = 60.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 332.000 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 4.00 FT.) IS LESS THAN CRITICAL DEPTH( 4.52 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 174.00 : HGL = < 330.642>;EGL= < 340.585>;FLOWLINE= < 328.OOO ****************************************************************************** FLOW PROCESS FROM NODE 174.00 TO NODE 173.50 IS CODE = 1 UPSTREAM NODE 173.50 ELEVATION = 333.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 266.40 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 90.00 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 2.30 CRITICAL DEPTH FT) 4.52 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.01 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) FLOW DEPTH VELOCITY SPECIFIC (FT) (FT/SEC) ENERGY{FT) PRESSURE+ MOMENTUM(POUNDS) 3(0 0.000 3. 014 21. 528 10. 215 12123.53 4 .219 2. 986 21. 773 10. 352 12228.38 8.724 2. 957 22. 025 10. 495 12336.69 13.542 2. 929 22. 283 10. 644 12448.57 18.702 2 901 22. 547 10. 800 12564.15 24.242 2 872 22. 819 10. 963 12683.52 30.201 2 844 23. 098 11. 133 12806.81 36.626 2 815 23. 384 11. 311 12934.15 43.575 2 787 23. 677 11. 497 13065.66 51.112 2 758 23. 979 11. 692 13201.49 59.316 2 730 24 . 288 11. 896 13341.78 68.283 2 701 24. 606 12. 109 13486.67 78.129 2 673 24. 933 12. 332 13636.34 88.998 2 644 25. 269 12. 565 13790.93 90.000 2 642 25. 297 12. 585 13803.99 173.50 HGL = < 336 014>;EGL= < 343.215>; FLOWLINE= < 333.000 NODE ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 17 3.00 173.50 TO NODE ELEVATION = 173.00 IS CODE = 5 333.40 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 248.80 60.00 0.00 333.40 DOWNSTREAM 266.4 0 60.00 - 333.00 LATERAL #1 17.60 24.00 90.00 336.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== FLOWLINE CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 4.42 23.219 4.52 21.535 1.51 6.909 0.00 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02894 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02284 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.0258 9 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.104 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.236)+( 0.000) = 1.236 NODE 173.00 : HGL = < 336.080>;EGL= < 344.451>;FLOWLINE= < 333.400> ****************************************************************************** FLOW PROCESS FROM NODE 173.00 TO NODE 172.50 IS CODE = 1 UPSTREAM NODE 172.50 ELEVATION = 340.70 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 248.80 CFS PIPE PIPE LENGTH = 220.00 FEET DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) 2.57 CRITICAL DEPTH(FT) = 4. 42 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3.01 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 31 DISTANCE FROM CONTROL(FT) 0.000 5.478 11.274 17.417 23.940 30.881 38.284 46.199 54.686 63.816 73.671 84.354 95.988 108.728 122.766 138.354 155.819 175.606 198.340 220.000 FLOW DEPTH (FT) 008 991 973 956 939 921 904 886 869 ,851 , 834 ,816 .799 ,781 .764 .746 .729 .711 .694 . 680 VELOCITY (FT/SEC) 20.153 20.293 20.436 20.582 20.729 20.879 21.031 21.185 21.342 21.502 21.664 21.828 21.996 22.166 22.338 22.514 22.693 22.874 23.059 23.212 SPECIFIC ENERGY(FT) 9.319 9 9 9 9 9 9 9 9 390 463 538 615 694 776 860 946 10.035 10.126 10.220 10.316 10.415 10.517 10.622 10.730 10.841 10.956 11.051 PRESSURE+ MOMENTUM(POUNDS) 10721.25 10775.71 10831.31 10888.09 10946.05 11005.22 11065.63 11127.30 11190.24 11254.49 11320.08 11387.01 11455.34 11525.07 11596.25 11668.89 11743.03 11818.70 11895.93 11960.00 NODE 172.50 : HGL = < 343.708>;EGL= < 350.019>;FLOWLINE= < 340.700> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 172.00 172.50 TO NODE ELEVATION = 172.00 IS CODE = 5 341.10 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 242.50 248.80 6.30 0.00 0.00= DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 60.00 0.00 341.10 4.37 20.292 60.00 - 340.70 4.42 20.159 18.00 40.00 344.27 0.97 5.211 0.00 0.00 0.00 0.00 0.000 :=Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)* 16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02037 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.081 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.404)+( 0.000) = 0.404 0.02069 0.02005 0.000 FEET NODE 172.00 : HGL = < 344.029>;EGL= < 350.423>;FLOWLINE= < 341.100> r**************************************************************************** FLOW PROCESS FROM NODE 172.00 TO NODE 171.50 IS CODE = 1 UPSTREAM NODE 171.50 ELEVATION = 347.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): 3S PIPE FLOW PIPE LENGTH 242.50 CFS 230.00 FEET PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.74 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.37 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 4.37 DISTANCE FROM CONTROL(FT) 0. 000 0.168 0.649 1.466 2.647 4.223 6.235 8.729 11.760 15.397 19.721 24.831 30.849 37.929 46.265 56.107 67.788 81.758 98 . 649 119.391 145.425 179.171 225.165 230.000 FLOW DEPTH (FT) 4.370 4 . 4 . 4 , 4 , 4. 3. 3. 3. 3, 3, 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 2. 2. 2, ,305 ,240 . 174 . 109 ,044 978 913 ,848 ,782 ,717 . 652 586 ,521 ,456 391 ,325 ,260 . 195 129 ,064 ,999 ,933 , 929 VELOCITY (FT/SEC) 13.318 13.482 13.657 13.843 14.040 14.250 14.471 14.705 14.952 15.212 15.487 15.777 16.083 16.405 16.745 17.103 17.482 17 18 SPECIFIC ENERGY(FT) 7.126 881 303 18.749 19.220 19.719 20.247 20.286 129 138 152 172 199 232 273 321 378 444 519 7 . 605 7.703 7 . 812 7.936 8.074 8.228 8.400 8. 591 8.804 9.040 9.303 9.323 PRESSURE+ MOMENTUM(POUNDS) 8574.88 8578.22 8587.63 8603.22 8625.17 8653.64 8688.85 8731.04 8780.48 8837.45 8902.29 8975.33 9056.98 9147.65 9247.80 9357.95 9478.65 9610.50 9754.16 9910.37 10079.92 10263.68 10462.63 10477.28 NODE 171.50 : HGL = < 351.370>;EGL= < 354.126>;FLOWLINE= < 347.000> ^^.^.^v************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 171.00 171.50 TO NODE 171.00 IS CODE = 5 ELEVATION = 347.40 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) 224.30 60.00 90.00 242.50 60.00 18.20 24.00 0.00 0.00 0.00 0.00 ELEVATION 347.40 347.00 350.00 0.00 DEPTH(FT.) 4.24 4.37 1.54 0.00 (FT/SEC) 11.423 13.313 5.793 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00764 00742 00785 3R JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 6.00 FEET 0.04 6 FEET ENTRANCE LOSSES = 0.000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 4.445)+( 0.000) = 4.445 NODE 171.00 HGL < 356.545>;EGL= < 358.571>;FLOWLINE= < 347.400> r******************************************************^t^*^t^***^^>.jm.jt,ytj,.^.yt^^tj,^j,^ FLOW PROCESS FROM NODE 171.00 TO NODE 170.50 IS CODE = 1 UPSTREAM NODE 170.50 ELEVATION = 358.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 224.30 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 325.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 2.43 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.47 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 4.24 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 .474 23 150 10 801 10699. 75 7 .019 2 .472 23 170 10 814 10707. 48 14 .347 2 .470 23 190 10 826 10715. 23 22 .011 2 .469 23 211 10 839 10722. 99 30 . 041 2 .4 67 23 231 10 852 10730. 77 38 .475 2 .465 23 251 10 865 10738. 57 47 .353 2 .464 23 271 10 878 10746. 38 56 .723 2 .4 62 23 292 10 891 10754. 21 66 .642 2 .460 23 312 10 904 10762. 05 77 .176 2 .459 23 332 10 917 10769. 91 88 . 404 2 . 457 23 353 10 930 10777. 79 100 . 423 2 .455 23 373 10 944 10785. 68 113 .351 2 .454 23 394 10 957 10793. 59 127 .331 2 . 452 23 414 10 970 10801. 52 142 .549 2 .450 23 435 10 983 10809. 46 159 .239 2 .448 23 456 10 997 10817. 42 177 .714 2 .447 23 476 11 010 10825. 39 198 .393 2 .445 23 497 11 024 10833. 38 221 .868 2 .443 23 518 11 037 10841. 39 249 .004 2 .442 23 538 11 050 10849. 42 281 . 139 2 . 440 23 559 11 064 10857. 46 320 .521 2 .438 23 580 11 078 10865. 52 325 .000 2 .438 23 582 11 079 10866. 23 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 9. 14 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) PRESSURE HEAD(FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE+ MOMENTUM(POUNDS) 40 0.000 164.481 9.145 5.000 11.424 11.424 11.171 7.026 13106.59 8028.49 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 5.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ 0L{ FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 164 .481 5. 000 11 420 7. 026 8028. 49 165 .548 4 . 970 11 429 6. 999 7995. 34 166 .494 4 . 939 11 446 6. 975 7965. 53 167 .367 4 . 909 11 4 67 6. 952 7937. 92 168 .181 4 . 879 11 4 93 6. 931 7912. 13 168 .944 4 . 848 11 522 6. 911 7887. 95 169 .661 4 . 818 11 555 6. 893 7865. 24 170 .336 4 . 788 11 590 6. 875 7843. 90 170 .971 4. 758 11 628 6. 858 7823. 86 171 .568 4 . 727 11 668 6. 843 7805. 08 172 .128 4 . 697 11 711 6. 828 7787. 51 172 .653 4 . 667 11 757 6. 814 7771. 12 173 .142 4. 636 11 804 6. 801 7755. 89 173 .597 4. 606 11 854 6. 789 7741. 80 174 .018 4 . 576 11 907 6. 778 7728. 84 174 .404 4 . 545 11 961 6. 768 7717. 00 174 .755 4 . 515 12 018 6. 759 7706. 28 175 .073 4. 485 12 077 6. 751 7696. 67 175 .355 4 . 454 12 138 6. 744 7688. 17 175 .602 4 . 424 12 201 6. 737 7680. 78 175 .813 4 . 394 12 266 6. 732 7674. 51 175 .988 4 . 364 12 334 6. 727 7669. 36 176 .125 4 . 333 12 403 6. 724 7665. 34 176 .225 4 . 303 12 475 6. 721 7662. 46 176 .285 4. 273 12 549 6. 719 7660. 72 176 .306 4 . 242 12 625 6. 719 7660. 14 325 .000 4 . 242 12 625 6. 719 7660. 14 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 73.09 FEET UPSTREAM OF NODE 171.00 | I DOWNSTREAM DEPTH = 7.303 FEET, UPSTREAM CONJUGATE DEPTH = 2.442 FEET | NODE 170.50 : HGL = < 360.474>;EGL= < 368.801>;FLOWLINE= < 358.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 170.00 170.50 TO NODE 170.00 IS CODE = 5 ELEVATION = 358.33 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 213.70 60.00 0.00 358.33 4.16 24.426 DOWNSTREAM 224.30 60.00 - 358.00 4.24 23.157 LATERAL #1 10.60 24.00 90.00 361.00 1.17 5.573 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- 41 Q4*V4*COS(DELTA4))/({A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03669 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03076 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03372 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.135 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.079)+( 0.000) = 1.079 NODE 170.00 : HGL = < 360.616>;EGL= < 369.880>;FLOWLINE= < 358.330> **********************************************************************.ij,*^t^i.jt^t^t FLOW PROCESS FROM NODE 170.00 TO NODE 144.50 IS CODE = 1 UPSTREAM NODE 144.50 ELEVATION = 361.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 213.70 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 81.00 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 2.36 CRITICAL DEPTH(FT) 4.16 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.25 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL{ FT) (FT) (FT/SEC) ENERGY [FT) MOMENTUM(POUNDS) 0 .000 2 .247 24 974 11 938 10850. 45 7 . 654 2 .251 24 910 11 8 92 10826. 33 15 . 607 2 .256 24 846 11 848 10802. 36 23 .885 2 .260 24 783 11 803 10778. 52 32 .520 2 .265 24 720 11 759 10754. 82 41 .545 2 .269 24 657 11 716 10731. 25 51 .002 2 .273 24 595 11 672 10707. 81 60 . 936 2 .278 24 533 11 629 10684. 50 71 .402 2 .282 24 471 11 587 10661. 33 81 .000 2 .286 24 418 11 550 10641. 33 NODE 144.50 : HGL = < 363.247>;EGL= < 372.938>;FLOWLINE= < 361.000> ****************************************************************************** FLOW PROCESS FROM NODE 144.50 TO NODE 144.00 IS CODE = 5 UPSTREAM NODE 14 4.00 ELEVATION = 361.33 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 199.00 213.70 14 .70 0.00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL 48.00 0.00 361.33 3.84 60.00 - 361.00 4.16 24.00 90.00 363.00 1.38 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 26.723 24.981 6.350 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04907 42 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03899 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04 403 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.17 6 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.773)+( 0.000) = 1.773 NODE 144.00 HGL < 363.622>;EGL= < 374.711>;FLOWLINE= < 361.330> ,jt^tVi.*V,************************************************************************ FLOW PROCESS FROM NODE UPSTREAM NODE 121.50 144.00 TO NODE ELEVATION = 121.50 IS CODE = 1 381.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 199.00 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 381.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.23 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.73 3.84 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.751 1.794 3.138 4 . 795 6.789 9.146 11.901 15.098 18.788 23.037 27.924 33.547 40.030 47.530 56.253 66.467 78.540 92.989 110.574 132.474 160.668 198.868 255.424 357.132 381.000 FLOW DEPTH (FT) 3.725 3. 3. 3. 3. 3. 3. 3. 666 606 546 487 427 367 307 3.248 3.188 128 068 009 949 889 829 770 710 650 591 531 471 411 352 292 292 VELOCITY (FT/SEC) 16.319 16.490 16.680 16.888 17.115 17.359 17.622 17.904 18.205 18.526 18.868 19.233 19.620 20.031 20.469 20.933 21.427 21.952 22.510 23.104 23.736 24.410 25.128 25.895 26.715 26.715 SPECIFIC ENERGY(FT) 7.863 7.891 7.929 7.978 8.038 8.109 8.192 8.288 8.397 8.521 8.660 8.816 8.990 9.184 9.399 9. 638 9. 903 10.197 10.523 10.884 11.285 11.729 12.222 12.770 13.381 13.381 PRESSURE+ MOMENTUM(POUNDS) 7650.72 7671.60 7700.18 7736.32 7779.99 7831.27 7890.28 7957.22 8032.32 8115.88 8208.24 8309.81 8421.03 8542.40 8674.48 8817.90 8973.35 9141.60 9323.52 9520.04 9732.24 9961.29 10208.50 10475.34 10763.46 10763.27 NODE 121.50 : HGL = < 385.395>;EGL= < 389.533>;FLOWLINE= < 381.670> .t..^.j,,yt*^t**jr********************************************************************* FLOW PROCESS FROM NODE 121.50 TO NODE 121.00 IS CODE = 5 UPSTREAM NODE 121.00 ELEVATION = 382.00 (FLOW IS SUPERCRITICAL) 43 CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 140.20 42.00 0.00 382.00 DOWNSTREAM 199.00 48.00 - 381.67 LATERAL #1 22.10 30.00 90.00 383.17 LATERAL #2 36.70 18.00 90.00 384.67 Q5 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 3.35 3.84 1. 60 1.50 26.620 16.324 6.668 20.771 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)* 16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06109 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01660 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03885 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.155 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 5.351) +( 0.000) = 5.351 NODE 121.00 : HGL = < 383.880>;EGL= < 394.884>;FLOWLINE= < 382.000> **********************************************************************jt*vnr^i.^t^tjt FLOW PROCESS FROM NODE UPSTREAM NODE 139.50 121.00 TO NODE 139.50 IS CODE = 1 ELEVATION = 400.13 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW 140.20 CFS PIPE DIAMETER 42.00 INCHES PIPE LENGTH = 265.00 FEET MANNING' S N = 0. 01300 NORMAL DEPTH(FT) = 1. 82 CRITICAL DEPTH(FT) 3.35 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3. 35 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 3 .354 14 778 6. 748 4979. 96 0 . 132 3 .293 14 926 6. 754 4983. 95 0 .513 3 .231 15 100 6. 774 4995. 42 1 . 138 3 .170 15 298 6. 806 5013. 92 2 .008 3 .108 15 520 6. 851 5039. 24 3 . 136 3 .047 15 764 6. 908 5071. 35 4 .539 2 . 986 16 032 6. 979 5110. 30 6 .242 2 . 924 16 323 7. 064 5156. 25 8 .276 2 .863 16 639 7. 164 5209. 41 10 . 679 2 . 801 16 980 7. 281 5270. 08 13 .503 2 .740 17 347 7. 415 5338. 60 16 .806 2 .678 17 743 7. 569 5415. 39 20 . 666 2 .617 18 168 7. 745 5500. 91 25 . 178 2 .555 18 624 7. 944 5595. 71 30 .466 2 .494 19 114 8. 170 5700. 42 36 . 690 2 .432 19 641 8. 426 5815. 72 44 .061 2 .371 20 206 8. 714 5942. 43 52 .869 2 .309 20 814 9. 040 6081. 43 44 63.522 76.621 93.098 114.520 143.832 187.654 265.000 139.50 248 186 125 063 002 940 21.468 22.173 22.932 23.752 24.639 25.599 26.612 1.880 HGL = < 403.484>;EGD 9.409 9.825 10.296 10.829 11.434 12.123 12.884 6233.75 6400.52 6583.07 6782.88 7001.65 7241.32 7496.41 NODE < 406.878>;FLOWLINE= < 400.130> ****************************************************************************** FLOW PROCESS FROM NODE 139.50 TO NODE 139.00 IS CODE = 5 UPSTREAM NODE 139.00 ELEVATION = 400.63 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) ( DEGREES ) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 118.30 42.00 0.00 400.63 3.24 12.296 DOWNSTREAM 140.20 42.00 -400.13 3.35 14.782 LATERAL #1 21.90 30.00 90.00 401.63 1.59 4.461 LATERAL #2 0.00 0.00 0.00 0. 00 0.00 0.000 Q5 0.00= ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01536 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.061 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.025)+( 0.000) = 1.025 01382 01690 0.000 FEET NODE 139.00 : HGL = < 405.555>;EGL= < 407.902>;FLOWLINE= < 400.630> **.i.*vm.************************************************************************ FLOW PROCESS FROM NODE UPSTREAM NODE 135.50 139.00 TO NODE ELEVATION = 135.50 IS CODE = 1 403.10 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 118.30 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 90.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 118.30)/( 1006.096))**2 = 0.01383 HF=L*SF = ( 90.00)*(0.01383) = 1.244 NODE 135.50 : HGL = < 406.799>;EGL= < 409.147>;FLOWLINE= < 403.100> +***^t************************************************************************* FLOW PROCESS FROM NODE 135.50 TO NODE 135.00 IS CODE = 5 UPSTREAM NODE 135.00 ELEVATION = 403.43 (FLOW IS UNDER PRESSURE) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 92.00 42.00 0.00 403.43 2.97 20.336 45 DOWNSTREAM 118.30 42.00 - 403.10 3.24 LATERAL #1 26.30 30.00 90.00 404.10 1.75 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== 12.296 6.759 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03942 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01382 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02662 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.106 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.373)+( 0.000) = 2.373 NODE 135.00 : HGL = < 405.098>;EGL= < 411.520>;FLOWLINE= < 403.430> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 130.50 135.00 TO NODE 130.50 IS CODE = 1 ELEVATION = 412.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW 92.00 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 202.00 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) = 1. 60 CRITICAL DEPTH(FT) 2. 97 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2. 97 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) ( FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 . 969 10 571 4 705 2629. 28 0 .071 2 . 914 10 745 4 708 2630. 71 0 .283 2 .859 10 931 4 716 2634 . 91 0 .648 2 .804 11 131 4 729 2641. 97 1 .181 2 .749 11 344 4 749 2652. 00 1 . 901 2 . 695 11 571 4 775 2665. 14 2 .829 2 . 640 11 814 4 808 2681. 54 3 . 989 2 .585 12 073 4 850 2701. 36 5 .412 2 .530 12 349 4 900 2724 . 80 7 . 135 2 . 475 12 643 4 959 2752. 04 9 .202 2 .421 12 956 5 029 2783. 33 11 . 666 2 .366 13 290 5 110 2818. 92 14 .594 2 .311 13 646 5 204 2859. 08 18 .069 2 .256 14 026 5 313 2904. 15 22 .198 2 .201 14 432 5 438 2954. 46 27 .118 2 .147 14 867 5 581 3010. 40 33 .011 2 .092 15 331 5 744 3072. 43 40 .125 2 .037 15 829 5 930 3141. 03 48 .809 1 . 982 16 363 6 142 3216. 75 59 . 577 1 .927 16 937 6 385 3300. 22 73 .226 1 .873 17 555 6 661 3392. 16 91 .095 1 .818 18 221 6 976 3493. 36 115 .699 1 .763 18 941 7 337 3604. 75 4fc 152.693 202.000 1.708 1.668 19.720 20.330 7.750 8.090 3727.38 3824.70 NODE 130.50 : HGL = < 415.639>;EGL= < 417.375>;FLOWLINE= < 412.670> ****************************************************************************** FLOW PROCESS FROM NODE 130.50 TO NODE 130.00 IS CODE = 5 UPSTREAM NODE 130.00 ELEVATION = 413.00 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 75.40 92.00 12.30 4.30 DIAMETER (INCHES) 42.00 42.00 24.00 18.00 ANGLE (DEGREES) 90.00 90.00 45.00 FLOWLINE ELEVATION 413.00 412.67 414.17 414.67 CRITICAL DEPTH(FT.) 2.72 2. 97 1.26 0.79 VELOCITY (FT/SEC) 7.837 10.570 3. 915 2.433 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00675 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.027 FEET ENTRANCE LOSSES = JUNCTION LOSSES = {DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.517)+( 0.000) = 2.517 00562 00789 0.000 FEET NODE 130.00 HGL < 418.938>;EGL= < 419. 892>; FLOWLINE= < 413.OOO ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 134.50 130.00 TO NODE 134.50 IS CODE = 1 ELEVATION = 417.22 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 75.40 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 211.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.81 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.72 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.72 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.717 9.404 4.092 1987.41 0.076 2.681 9.531 4.093 1987.92 0.313 2.645 9.663 4.096 1989.48 0.726 2.609 9.801 4 .101 1992.12 1.332 2.572 9. 945 4.109 1995.88 2 .151 2.536 10.095 4.120 2000.80 3.207 2.500 10.251 4 .133 2006.91 4.526 2. 464 10.414 4 .149 2014.26 47 6 142 2 428 10 585 4 168 2022 91 8 091 2 391 10 762 4 191 2032 89 10 421 2 355 10 948 4 217 2044 26 13 186 2 319 11 141 4 247 2057 09 16 455 2 283 11 343 4 282 2071 42 20 312 2 246 11 554 4 320 2087 34 24 865 2 210 11 774 4 364 2104 91 30 252 2 174 12 004 4 413 2124 20 36 656 2 138 12 244 4 467 2145 31 44 323 2 101 12 496 4 528 2168 31 53 602 2 065 12 759 4 595 2193 31 65 002 2 029 13 035 4 669 2220 41 79 312 1 993 13 324 4 751 2249 71 97 856 1 956 13 627 4 842 2281 35 123 120 1 920 13 945 4 942 2315 45 160 685 1 884 14 279 5 052 2352 16 211 000 1 857 14 538 5 141 2381 19 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 5. 94 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 5 . 938 7.837 6. 892 3659 43 169 .502 3 .500 7 . 837 4 . 454 2195 73 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 169 .502 3 .500 7.834 4 . 454 2195 73 171 .459 3 .469 7.846 4 . 425 2178 59 173 .226 3 .437 7.866 4 . 399 2162 85 174 .878 3 .406 7.893 4 . 374 2148 06 176 .440 3 .375 7.925 4 . 351 2134 07 177 . 924 3 .343 7.961 4. 328 2120 79 179 .337 3 . 312 8.001 4 . 307 2108 20 180 . 683 3 .281 8.044 4 . 286 2096 24 181 . 966 3 .250 8.092 4 . 267 2084 91 183 . 189 3 .218 8.142 4 . 248 2074 19 184 . 352 3 . 187 8.196 4 . 231 2064 07 185 .455 3 . 156 8.254 4 . 214 2054 55 186 .499 3 . 124 8.314 4 . 198 2045 64 187 .483 3 .093 8.378 4 . 184 2037 32 188 .406 3 .062 8.445 4 . 170 2029 61 189 .266 3 .030 8.515 4 . 157 2022 51 190 .061 2 . 999 8.589 4. 145 2016 04 190 .789 2 . 968 8.666 4 . 135 2010 18 191 .448 2 . 937 8.746 4 . 125 2004 97 192 .034 2 . 905 8.829 4 . 116 2000 41 192 .543 2 .874 8.916 4 . 109 1996 50 192 . 972 2 .843 9.006 4. 103 1993 27 48 193.315 193.568 193.725 193.779 211.000 811 780 749 717 717 100 198 299 404 404 098 095 092 092 092 1990.73 1988.90 1987.78 1987.41 1987.41 2ND OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 175.68 FEET UPSTREAM OF NODE 130.00 | I DOWNSTREAM DEPTH = 3.390 FEET, UPSTREAM CONJUGATE DEPTH = 2.145 FEET | NODE 134.50 : HGL = < 419.937>;EGL= < 421.312>;FLOWLINE= < 417.220> *****************************************************.j^.^^.j.^^j^.^^^ *************** FLOW PROCESS FROM NODE UPSTREAM NODE 134.00 134.50 TO NODE ELEVATION = 134.00 IS CODE = 5 417.72 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 52.20 75.40 21.20 2.00 DIAMETER ANGLE FLOWLINE (INCHES) 42.00 42.00 24.00 18.00 (DEGREES) ELEVATION 0.00 90.00 90.00 417.72 417.22 418.39 418.89 CRITICAL DEPTH(FT.) 2.26 2.72 1. 65 0.53 VELOCITY (FT/SEC) 5.426 9. 407 6.748 1.132 0.00===Q5 EQUALS BASIN INPUT== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00269 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00625 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00447 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.018 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.601)+( 0.000) = 0.601 NODE 134.00 : HGL = < 421.456>;EGL= < 4 21.913>;FLOWLINE= < 417.720> ***********************************************************.^.^.j.^^.^..^.^.^.^^^^^^^^^^ FLOW PROCESS FROM NODE 134.00 TO NODE 115.60 IS CODE = 1 UPSTREAM NODE 115.60 ELEVATION = 418.71 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 52.20 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 14 9.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 2.03 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.4 9 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.26 DISTANCE FROM CONTROL(FT) 0.000 6. 920 FLOW DEPTH VELOCITY (FT) (FT/SEC) 1.490 13.365 1.512 13.115 SPECIFIC ENERGY(FT) 4.266 4 .184 PRESSURE+ MOMENTUM(POUNDS) 1504.72 1484.68 4q 13 919 1 533 12 873 4 108 1465 62 21 006 1 555 12 640 4 037 1447 52 28 189 1 576 12 415 3 971 1430 33 35 478 1 598 12 197 3 909 1414 00 42 885 1 619 11 987 3 852 1398 52 50 424 1 641 11 784 3 798 1383 83 58 110 1 662 11 587 3 748 1369 92 65 962 1 684 11 396 3 702 1356 76 74 003 1 705 11 212 3 659 1344 31 82 260 1 727 11 034 3 618 1332 54 90 765 1 748 10 861 3 581 1321 45 99 561 1 770 10 693 3 546 1310 99 108 698 1 791 10 531 3 514 1301 15 118 243 1 813 10 373 3 485 1291 91 128 285 1 834 10 220 3 457 1283. 25 138 942 1 856 10 072 3 432 1275. 14 149 000 1 875 9 945 3 412 1268. 47 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 3.74 DISTANCE FROM CONTROL(FT) 0.000 59.687 PRESSURE HEAD(FT) 3.736 3.500 VELOCITY (FT/SEC) 5.426 5. 426 SPECIFIC ENERGY(FT) 4.193 3. 957 PRESSURE+ MOMENTUM(POUNDS) 1741.09 1599.46 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 59 687 3 500 5 424 3 957 1599.46 71 146 3 450 5 439 3 910 1571.28 81 720 3 401 5 468 3 865 1544.52 91 822 3 351 5 505 3 822 1518.81 101 574 3 302 5 549 3 780 1494.03 111 041 3 252 5 599 3 739 1470.15 120 264 3 202 5 656 3 699 1447.16 129 267 3 153 5 718 3 661 1425.04 138 069 3 103 5 786 3 623 1403.81 146 678 3 053 5 860 3 587 1383.49 149 000 3 040 5 881 3 577 1378.05 QP HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 124.00 FEET UPSTREAM OF NODE 134.00 I DOWNSTREAM DEPTH = 3.182 FEET, UPSTREAM CONJUGATE DEPTH = 1.567 FEET NODE 115.60 : HGL = < 420.200>;EGL= < 422.976>;FLOWLINE= < 418.710 *****************************************************^j^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 115.60 TO NODE 115.50 IS CODE = 5 UPSTREAM NODE 115.50 ELEVATION = 419.21 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: 50 PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 52.20 52.20 0.00 0.00 DIAMETER (INCHES) 36.00 42.00 0.00 0.00 ANGLE (DEGREES) 0.00 00 00 FLOWLINE ELEVATION 419.21 418.71 0. 00 0.00 CRITICAL DEPTH(FT.) 2.35 2.26 0.00 0.00 VELOCITY (FT/SEC) 11.456 13.369 0.000 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01262 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01890 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01576 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.063 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.116)+( 0.000) = 0.116 NODE 115.50 : HGL = < 421.054>;EGL= < 423.092>;FLOWLINE= < 419.210> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 115.10 115.50 TO NODE ELEVATION = 115.10 IS CODE = 1 423.07 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 52.20 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 296.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1 .82 CRITICAL DEPTH(FT) 2.35 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.35 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2. 346 8 801 3 549 1282. 52 0 .083 2. 325 8 879 3 550 1282. 72 0 .303 2. 304 8 959 3 551 1283. 21 0 . 670 2. 283 9 041 3 553 1284 . 00 1 .198 2. 262 9 126 3 556 1285. 11 1 . 904 2. 241 9 214 3 560 1286. 53 2 . 804 2. 220 9 303 3 565 1288. 28 3 . 921 2. 199 9 396 3 571 1290. 36 5 .278 2. 179 9 491 3 578 1292. 78 6 . 906 2. 158 9 589 3 586 1295. 55 8 .839 2. 137 9 689 3 596 1298 . 67 11 . 121 2. 116 9 793 3 606 1302. 17 13 .804 2. 095 9 899 3 618 1306. 03 16 . 951 2. 074 10 009 3 631 1310. 28 20 . 647 2. 053 10 121 3 645 1314. 93 24 . 995 2. 032 10 237 3 661 1319. 98 30 . 135 2. 012 10 357 3 678 1325. 45 36 .255 1. 991 10 479 3 697 1331. 35 43 . 620 1. 970 10 606 3 718 1337. 69 52 . 617 1. 949 10 736 3 740 1344. 48 5i 63.847 78.316 97.911 126.875 178.816 296.000 1. 928 1.907 1.886 1.865 1.845 1.844 10.870 11.008 11.150 11.296 11.447 11.453 764 790 818 848 880 882 1351.74 1359.48 1367.72 1376.47 1385.75 1386.11 NODE 115.10 : HGL = < 425.416>;EGL= < 426.619>;FLOWLINE= < 423.070> ****************************************************************************** FLOW PROCESS FROM NODE 115.10 TO NODE 115.00 IS CODE = 5 UPSTREAM NODE 115.00 ELEVATION = 423.57 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 44.80 52.20 7.40 0.00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT. 30.00 40.00 423.57 2.22 36.00 - 423.07 2.35 30.00 70.00 423.57 0.90 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 12.938 8.803 2.012 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01960 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00672 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01316 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.053 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.211)+( 0.000) = 1.211 NODE 115.00 : HGL = < 425.231>;EGL= < 427.830>;FLOWLINE= < 423.570 ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110.00 115.00 TO NODE 110.00 IS CODE = 1 ELEVATION = 426.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 44.80 CFS PIPE DIAMETER 30.00 INCHES PIPE LENGTH = 111.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.60 CRITICAL DEPTH(FT) = 2.22 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.22 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.222 9.715 3. 688 1143.47 0.073 2.197 9.800 3. 689 1143.70 0.296 2.172 9.889 3. 692 1144.40 0.680 2.147 9. 984 3.696 1145.58 1.233 2.122 10.083 3.702 1147.23 5Z 1. 971 2 097 10 187 3 709 1149 37 2. 908 2 072 10 296 3 719 1152 01 4 065 2 047 10 409 3 731 1155 15 5 463 2 022 10 528 3 744 1158 81 7 132 1 997 10 652 3 760 1163 00 9 104 1 972 10 782 3 779 1167 73 11 421 1 947 10 917 3 799 1173 03 14 132 1 922 11 058 3 822 1178 90 17 301 1 8 97 11 204 3 848 1185 37 21 009 1 872 11 357 3 877 1192 45 25 357 1 847 11 516 3 908 1200 17 30 483 1 822 11 682 3 943 1208 54 36 571 1 797 11 855 3 981 1217 60 43 882 1 773 12 034 4 023 1227 37 52 795 1 748 12 221 4 068 1237 86 63 903 1 723 12 416 4 118 1249 13 78 196 1 698 12 619 4 172 1261 19 97 535 1 673 12 831 4 231 1274 08 111 000 1 661 12 934 4 260 1280 45 NODE 110.00 : HGL = < 428.222>;EGL= < 429.688>;FLOWLINE= < 426.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 110.00 FLOWLINE ELEVATION = 426.00 ASSUMED UPSTREAM CONTROL HGL = 428.22 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 53 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * PALOMAR FORUM * * SD A * * 12-4-02 C:\AES2001\HYDROSOFT\RATSCX\SDA.RES * ************************************************************************** FILE NAME: SDA.DAT TIME/DATE OF STUDY: 08:38 12/04/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 115.00- 2.00 689.59 1.12* 956.45 } FRICTION 105.50- 1.91*Dc 687.28 1.91*Dc 687.28 } JUNCTION 105.00- 3.05* 344.62 0.68 219.11 } FRICTION } HYDRAULIC JUMP 104.50- 1.17 Dc 157.25 0.43* 382.35 } JUNCTION 104.00- 1.17 Dc 157.25 0.41* 417.21 } FRICTION 103.00- 1.17*Dc 157.25 1.17*Dc 157.25 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 115.00 FLOWLINE ELEVATION = 423.57 PIPE FLOW = 31.30 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 425.570 FEET NODE 115.00 : HGL = < 424.687>;EGL= < 428.062>;FLOWLINE= < 423.570> ****************************************************************************** FLOW PROCESS FROM NODE 115.00 TO NODE 105.50 IS CODE = 1 UPSTREAM NODE 105.50 ELEVATION = 428.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 31.30 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 109.40 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1 .07 CRITICAL DEPTH(FT) 1.91 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.91 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY FT) MOMENTUM(POUNDS) 0 .000 1. 906 7.792 2. 849 687 . 28 0 .037 1. 872 7.935 2 851 687. 59 0 . 154 1. 839 8 . 085 2 855 688. 53 0 .359 1. 805 8.244 2 861 690. 15 0 .661 1. 772 8.412 2 871 692. 46 1 .072 1. 738 8.589 2 884 695. 50 1 .604 1. 705 8.776 2 901 699. 31 2 .274 1. 671 8 . 974 2 922 703. 92 3 .098 1. 638 9.183 2 948 709. 38 4 .100 1. 604 9.404 2 978 715. 74 5 .305 1. 570 9.638 3 014 723. 05 6 .745 1. 537 9.885 3 055 731. 37 8 .460 1. 503 10.148 3 103 740. 76 10 .4 98 1. 470 10.426 3 159 751. 28 12 . 921 1. 436 10.722 3 222 763. 03 15 .811 1. 403 11.036 3 295 776. 07 19 .274 1. 369 11.370 3 378 790. 51 23 .455 1. 336 11.727 3 472 806. 44 28 .557 1. 302 12.106 3 579 824. 00 34 .879 1. 269 12.512 3 701 843. 30 42 .887 1. 235 12.946 3 839 864. 49 53 .359 1. 201 13.412 3 996 887. 75 67 .759 1. 168 13.911 4 175 913. 25 89 .377 1. 134 14.448 4 378 941. 22 109 .400 1. 117 14.737 4 4 92 956. 45 NODE 105.50 : HGL = < 429. 906>;EGL= < 430.849>;FLOWLINE= < 428.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 105.00 105.50 TO NODE ELEVATION = 105.00 IS CODE = 5 429.00 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 9.10 31.30 22.20 0.00 0.00= DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 18.00 0.00 429.00 1.17 5.150 30.00 - 428.00 1.91 7.795 24.00 90.00 428.33 1.68 7.066 0.00 0.00 0.00 0.00 0.000 •=Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES 55 UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00750 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00675 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00713 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.029 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.614)+( 0.000) = 1.614 NODE 105.00 : HGL = < 432.052>;EGL= < 432.463>;FLOWLINE= < 429.000> ****************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 104.50 IS CODE = 1 UPSTREAM NODE 104.50 ELEVATION = 439.67 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.10 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 268.80 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.69 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.43 1.17 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 435 21 405 7 554 382 35 2 .514 0 445 20 721 7 116 370 55 5 . 077 0 455 20 075 6 717 359 44 7 . 694 0 466 19 464 6 352 348 96 10 .371 0 476 18 886 6 018 339 07 13 . 114 0 486 18 338 5 711 329 71 15 .932 0 496 17 818 5 429 320 87 18 .832 0 507 17 325 5 170 312 49 21 .826 0 517 16 856 4 931 304 56 24 . 925 0 527 16 409 4 711 297 03 28 . 144 0 538 15 984 4 507 289 89 31 . 501 0 548 15 578 4 318 283 11 35 . 018 0 558 15 191 4 144 276 66 38 .722 0 568 14 822 3 982 270 53 42 . 647 0 579 14 468 3 831 264 70 46 .836 0 589 14 131 3 691 259 14 51 . 348 0 599 13 807 3 561 253 86 56 .260 0 609 13 497 3 440 248 82 61 . 682 0 620 13 200 3 327 244 02 67 .774 0 630 12 916 3 222 239 44 74 .786 0 640 12 642 3 124 235 07 83 .133 0 651 12 379 3 032 230 91 93 .597 0 661 12 127 2 946 226 93 107 . 933 0 671 11 884 2 866 223 14 131 . 770 0 681 11 651 2 791 219 51 268 .800 0 683 11 625 2 782 219 11 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS 5lp DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 3.05 DISTANCE FROM CONTROL(FT) 0.000 48.203 PRESSURE HEAD(FT) 3.052 1.500 VELOCITY (FT/SEC) 5.150 5.150 SPECIFIC ENERGY(FT) 3.463 1. 912 PRESSURE+ MOMENTUM(POUNDS) 344.62 173.51 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 48.203 48, 48 , ,578 , 919 FLOW DEPTH (FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE+ MOMENTUM(POUNDS) 173.51 172.17 170. 94 169.79 168.69 167.66 166.67 165.74 1.500 5.148 1.912 1.487 5.155 1.900 1.473 5.169 1.888 49.238 1.460 5.186 1.878 49.541 1.447 5.207 1.868 49.828 1.433 5.230 1.858 50.102 1.420 5.256 1.849 50.363 1.407 5.285 1.841 50.612 1.393 5.315 1.832 164.85 50.849 1.380 5.348 1.824 164.02 51.074 1.367 5.384 1.817 163.23 51.287 1.353 5.421 1.810 162.48 51.489 1.340 5.460 1.803 161.79 51.678 1.327 5.502 1.797 161.14 51.856 1.313 5.545 1.791 160.54 52.021 1.300 5.591 1.786 159.99 52.174 1.287 5.639 1.781 159.48 52.313 1.273 5.689 1.776 159.02 52.439 1.260 5.741 1.772 158.62 52.550 1.247 5.795 1.768 158.26 52.647 1.233 5.851 1.765 157.96 52.728 1.220 5.910 1.763 157.71 52.792 1.207 5.971 1.761 157.51 52.840 1.193 6.035 1.759 157.36 52.869 1.180 6.100 1.758 157.28 52.879 1.167 6.169 1.758 157.25 268.800 1.167 6.169 1.758 157.25 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 35.33 FEET UPSTREAM OF NODE 105.00 | I DOWNSTREAM DEPTH = 1.914 FEET, UPSTREAM CONJUGATE DEPTH = 0.682 FEET | NODE 104.50 : HGL = < 440.105>;EGL= < 447.224>;FLOWLINE= < 439.670> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 104.00 104.50 TO NODE 104.00 IS CODE = 5 ELEVATION = 440.00 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) UPSTREAM 9.10 18.00 0.00 440.00 1.17 DOWNSTREAM 9.10 18.00 - 439.67 1.17 VELOCITY (FT/SEC) 23.428 21.412 51 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)* 16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.28787 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.22378 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.25582 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 1.023 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.706)+( 0.000) = 1.706 NODE 104.00 : HGL = < 440.408>;EGL= < 448.930>;FLOWLINE= < 440.000> ****************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 103.00 IS CODE = 1 UPSTREAM NODE 103.00 ELEVATION = 459.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.10 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 48.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0 .38 CRITICAL DEPTH(FT) 1.17 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.17 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1. 167 6 169 1 758 157. 25 0 .005 1. 135 6 341 1 760 157. 42 0 .020 1. 103 6 529 1 766 157. 94 0 .048 1. 072 6 734 1 776 158. 84 0 .089 1. 040 6 957 1 792 160. 15 0 . 145 1. 009 7 200 1 814 161. 91 0 .221 0. 977 7 465 1 843 164. 13 0 .317 0. 945 7 754 1 880 166. 88 0 .439 0. 914 8 071 1 926 170. 20 0 .590 0. 882 8 419 1 983 174 . 15 0 .777 0. 850 8 800 2 054 178 . 80 1 .007 0. 819 9 221 2 140 184 . 22 1 .289 0. 787 9 685 2 245 190. 52 1 . 635 0. 756 10 200 2 372 197. 79 2 .060 0. 724 10 773 2 527 206. 19 2 .587 0. 692 11 414 2 716 215. 86 3 .243 0. 661 12 132 2 948 227. 01 4 .067 0. 629 12 943 3 232 239. 88 5 .119 0. 597 13 863 3 583 254. 77 6 .482 0. 566 14 913 4 021 272. 05 8 .296 0. 534 16 122 4 573 292. 20 10 .791 0. 502 17 523 5 273 315. 85 14 .412 0. 471 19 162 6 176 343. 79 20 .162 0. 439 21 101 7 357 377. 09 58 31.279 0.408 23.421 8.930 All.21 48.000 0.408 23.421 8.930 417.21 NODE 103.00 : HGL = < 460.167>;EGL= < 460.758>;FLOWLINE= < 459.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 103.00 FLOWLINE ELEVATION = 4 59.00 ASSUMED UPSTREAM CONTROL HGL = 460.17 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * PALOMAR FORUM * * SD B * * 12-04-02 C:\AES2001\HYDROSOFT\RATSCX\SDB.RES * ************************************************************************** FILE NAME: SDB.DAT TIME/DATE OF STUDY: 10:06 02/05/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NtJMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 130.00- 4.77* 854.83 0.63 443.38 } FRICTION } HYDRAULIC JUMP 162.50- 1.33*Dc 244.62 1.33*Dc 244.62 } JUNCTION 162.00- 1.79 278.49 0.91* 295.73 } FRICTION 161.50- 1.33*Dc 244.62 1.33*Dc 244.62 } JUNCTION 161.00- 1.44 246.71 0.99* 275.08 } FRICTION 160.50- 1.33*DC 244.62 1.33*Dc 244.62 } JUNCTION 160.00- 1.44* 246.71 1.33 Dc 244.62 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CTOIRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 130.00 FLOWLINE ELEVATION = 414.17 PIPE FLOW = 13.70 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 418.940 FEET NODE 130.00 : HGL = < 418.940>;EGL= < 419.235>;FLOWLINE= < 414.170> ****************************************************************************** &0 FLOW PROCESS FROM NODE UPSTREAM NODE 162.50 130.00 TO NODE ELEVATION = 162.50 IS CODE = 1 418.67 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 13.70 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 35.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.56 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.33 1.33 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtlNl 0.000 1.331 6.167 1.922 244.62 0.013 1.300 6.335 1.924 244.84 0.052 1.269 6.514 1.928 245.47 0.120 1.238 6.705 1.937 246.54 0.222 1.207 6.910 1.949 248.07 0.361 1.176 7.128 1.966 250.11 0.543 1.145 7.363 1.988 252.68 0.775 1.114 7.615 2.015 255.83 1.065 1.083 7.885 2 .049 259.59 1.422 1.052 8.176 2.091 264.02 1.858 1.021 8.491 2 .141 269.18 2 .386 0.990 8.830 2.202 275.14 3 .026 0.959 9.197 2 .274 281.96 3.799 0.928 9.596 2 .359 289.73 4.734 0.897 10.031 2 .460 298.56 5.870 0.866 10.504 2.581 308.56 7 .257 0.835 11.023 2 .723 319.86 8.965 0.804 11.592 2.892 332.63 11.092 0.773 12.218 3.093 347.04 13.786 0.742 12.911 3 .332 363.33 17.274 0.711 13.680 3.619 381.77 21.941 0.680 14.538 3.964 402 .67 28.514 0.649 15.499 4 .382 426.42 35.000 0.629 16.178 4 .696 443.38 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4.77 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0.000 4.770 4.361 5.065 854.83 22.177 2.000 4.361 2.295 311.81 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2 .00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POtJNDS) 22.177 2.000 4.359 2.295 311.81 22.378 1.973 4.371 2.270 306.89 22.569 1.947 4.392 2.246 302.23 22.752 1.920 4.419 2.223 297.77 22.930 1.893 4.451 2.201 293.49 23.101 1.867 4.488 2.180 289.37 23.268 1.840 4.530 2.159 285.40 23.430 1.813 4.575 2.138 281.60 23.586 1.786 4.624 2.119 277.95 23.738 1.760 4.678 2.100 274.47 23.884 1.733 4.735 2.081 271.15 24.024 1.706 4.797 2.064 267.99 24.159 1.680 4.862 2.047 265.01 24.288 1.653 4.932 2.031 262.20 24.410 1.626 5.006 2.016 259.57 24.525 1.600 5.085 2.001 257.13 24.634 1.573 5.167 1.988 254.89 24.734 1.546 5.255 1.975 252.84 24.826 1.519 5.348 1.964 251.00 24.908 1.493 5.446 1.954 249.37 24.981 1.466 5.549 1.945 247.96 25.043 1.439 5.658 1.937 246.79 25.094 1.413 5.774 1.931 245.86 25.131 1.386 5.895 1.926 245.18 25.155 1.359 6.024 1.923 244.76 25.163 1.333 6.159 1.922 244.62 35.000 1.333 6.159 1.922 244.62 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 19.76 FEET UPSTREAM OF NODE 130.00 | I DOWNSTREAM DEPTH = 2.302 FEET, UPSTREAM CONJUGATE DEPTH = 0.729 FEET | NODE 162.50 : HGL = < 420.001>;EGL= < 42 0.592>;FLOWLINE= < 418.670> ****************************************************************************** FLOW PROCESS FROM NODE 162.50 TO NODE 162.00 IS CODE = 5 UPSTREAM NODE 162.00 ELEVATION = 419.00 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 13.70 24.00 70.00 419.00 1.33 9.896 DOWNSTREAM 13.70 24.00 - 418.67 1.33 6.169 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02060 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00600 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01330 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.053 FEET ENTRANCE LOSSES = 0.000 FEET 61 JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.835)+( 0.000) = 0.835 NODE 162.00 : HGL = < 419.907>;EGL= < 421.427>;FLOWLINE= < 419.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 161.50 162.00 TO NODE 161.50 IS CODE = 1 ELEVATION = 425.02 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 13.70 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 275.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.89 CRITICAL DEPTH(FT) = 1.33 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.33 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNDS) 0.000 1.331 6.167 1.922 244.62 0.034 1.314 6.261 1.923 244 .69 0.131 1.296 6.358 1.924 244.90 0.297 1.278 6.459 1.927 245.23 0.539 1.261 6.564 1.930 245.71 0.866 1.243 6.673 1.935 246.33 1.286 1.226 6.787 1.941 247.10 1.812 1.208 6.904 1.949 248.03 2.455 1.190 7.026 1.957 249.11 3.233 1.173 7.153 1.968 250.36 4.163 1.155 7.285 1.980 251.79 5.267 1.138 7.423 1.994 253.40 6.574 1.120 7.566 2 .009 255.19 8.117 1.102 7 .715 2 .027 257.18 9.940 1. 085 7 . 871 2.047 259.38 12.100 1.067 8.033 2.070 261.79 14.668 1.050 8.202 2.095 264.43 17.745 1.032 8.378 2 .123 267.30 21.472 1.014 8.562 2.154 270.42 26.053 0.997 8.755 2.188 273.80 31.806 0.979 8.957 2 .226 277.45 39.265 0.962 9.168 2 .267 281.39 49.430 0.944 9.389 2.314 285.64 64.550 0.926 9.620 2.364 290.21 91.838 0.909 9.863 2.420 295.12 275.000 0.907 9.893 2 .427 295.73 NODE 161.50 : HGL = < 426.351>;EGL= < 426.942>;FLOWLINE= < 425.020> ****************************************************************************** FLOW PROCESS FROM NODE 161.50 TO NODE 161.00 IS CODE = 5 UPSTREAM NODE 161.00 ELEVATION = 425.35 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY 63 (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 13.70 24.00 45.00 425.35 1.33 8.829 DOWNSTREAM 13.70 24.00 - 425.02 1.33 6.169 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01516 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00600 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01058 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.042 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.609)+( 0.000) = 0.609 NODE 161.00 : HGL = < 426.340>;EGL= < 427.551>;FLOWLINE= < 425.350> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 160.50 161.00 TO NODE 160.50 IS CODE = 1 ELEVATION = 429.67 (FLOW IS SUPERCRITICAU^) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 13.70 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 273.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0 .98 CRITICAL DEPTH(FT) 1.33 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.33 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1. 331 6.167 1.922 244.62 0 .037 1. 317 6.242 1.922 244.67 0 .139 1. 303 6.319 1.923 244.80 0 .312 1. 289 6.399 1.925 245.02 0 .564 1. 275 6.481 1.927 245.32 0 .902 1. 261 6.566 1.930 245.72 1 .337 1. 246 6.653 1.934 246.21 1 .878 1. 232 6.743 1.939 246.79 2 .539 1. 218 6.835 1.944 247.47 3 .335 1. 204 6.931 1.950 248.26 4 .285 1. 190 7.029 1.958 249.14 5 .410 1. 176 7.131 1.966 250.14 6 .737 1. 162 7.236 1.975 251.24 8 .300 1. 148 7.344 1.986 252.46 10 .141 1. 133 7.456 1.997 253.80 12 .315 1. 119 7.572 2.010 255.26 14 .892 1. 105 7.691 2.024 256.85 17 .971 1. 091 7.814 2.040 258.57 21 .688 1. 077 7.942 2.057 260.43 26 .242 1. 063 8.074 2.076 262.42 31 .942 1. 049 8.210 2.096 264.57 ^4 39.309 49.314 64.144 90.814 273.000 1.035 1.020 1.006 0.992 0.990 8.352 8.498 8.650 8.807 8.827 2.118 2.143 2.169 2.197 2.201 266.86 269.31 271.93 274.72 275.08 NODE 160.50 : HGL = < 431.001>;EGL= < 431.592>;FLOWLINE= < 429.670> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 160.00 160.50 TO NODE 160.00 IS CODE = 5 ELEVATION = 430.00 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 13 .70 13.70 0.00 0.00 0.00= DIAMETER ANGLE FLOWLINE CRniCAL (INCHES) (DEGREES) ELEVATION DEPTH(FT. 24.00 45.00 430.00 1.33 24.00 - 429.67 1.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ••=Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 5.669 6.161 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00543 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.022 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.344)+( 0.000) = 0.344 00489 00598 0.000 FEET NODE 160.00 : HGL = < 431.437>;EGL= < 431.936>;FLOWLINE= < 430.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 160.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 430.00 431.33 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 6.S ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * PALOMAR FORUM •> * SD IN TIGER RUN CT * 12-4-02 C:\AES2001\HYDROSOFT\RATSCX\SDTIGER.RES •* ************************************************************************** FILE NAME: SDTIGER.DAT TIME/DATE OF STUDY: 10:02 12/04/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 139.00- ] 143.50- ] 143.00- } 142.60- ) 142.50- ] 142.10- 1 142.00- } 141.00- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 1383.38 } } } ) FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 4.43* 2.42* 770.96 497.97 2.28* } HYDRAULIC JUMP 1.55 Dc 398.95 1.64 Dc 436.01 1.64*Dc 436.00 3.01* 664.10 } HYDRAULIC JUMP 1.64*Dc 436.00 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 949.62 1.18 1.93 Dc 1.12 0. 98* 1.28* 1.64*Dc 1.04 1.64*Dc 714.67 458.69 522.10 472.17 436.01 556.55 436.00 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 139.00 FLOWLINE ELEVATION = 401.13 PIPE FLOW = 32.20 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 405.560 FEET NODE 139.00 HGL < 405.560>;EGL= < 406.228>;FLOWLINE= < 401.130> (0(P ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 143.50 139.00 TO NODE ELEVATION = 143.50 IS CODE = 1 403.40 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 32.20 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 44.00 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4 . 43 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 42.485 PRESSURE HEAD(FT) 4.430 2.500 VELOCITY (FT/SEC) 6.560 6.560 SPECIFIC ENERGY(FT) 5.098 3.168 PRESSURE+ MOMENTUM(POUNDS) 1383.38 792.21 NORMAL DEPTH(FT) = 1.01 CRITICAL DEPTH(FT) = ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.50 1.93 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS 42.485 2.500 6.558 3.168 792.21 42.940 2.477 6.567 3.147 785.86 43.356 2.455 6.585 3.128 780.02 43.747 2.432 6. 608 3.110 774.52 44.000 2.416 6. 626 3.099 770.96 NODE 143.50 HGL = < 405.f U6>;EGL= < 406.4 99>;FLOWLINE= < 403.400> ****************************************************************************** FLOW PROCESS FROM NODE 143.50 TO NODE 143.00 IS CODE = 5 UPSTREAM NODE 143.00 ELEVATION = 404.23 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 20.90 32.20 4.60 6.70 0.00== DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 30.00 0.00 404.23 30.00 - 403.40 18.00 90.00 404.40 18.00 45.00 404.40 =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00383 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.015 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.323)+( 0.000) = 0.323 1.55 1. 93 0.82 1.00 VELOCITY (FT/SEC) 4 .444 6.628 2.603 3.791 00226 00540 0.000 FEET NODE 143.00 : HGL = < 406.515>;EGL= < 406.821>;FLOWLINE= < 404.230 *********** ******************************************************************* FLOW PROCESS FROM NODE UPSTREAM NODE 142.60 143.00 TO NODE ELEVATION = 142.60 IS CODE = 1 407.04 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.90 CFS PIPE DIAMETER = PIPE LENGTH = 191.00 FEET MANNING'S 30.00 INCHES N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.13 CRITICAL DEPTH(FT) = 0.98 1.55 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 2.997 6.082 9.262 12.548 15.949 19.477 23.147 26.974 30.979 35.184 39.617 44.312 49.311 54.669 60.452 66.753 73.693 81.443 90.256 100.520 112.889 128.586 150.362 187.039 191.000 FLOW DEPTH (FT) 0.97 6 0. 982 0.988 0. 994 1. 1. 1. 1. 1, 1. 1. 1. 1. 1. 1. 1. 1. 1, 1. 1. 1. 1. 1. 1. 1. 1. .001 .007 ,013 .019 .025 .032 ,038 ,044 .050 .056 ,062 ,069 ,075 ,081 ,087 ,093 ,100 ,106 ,112 118 124 124 VELOCITY (FT/SEC) 11.773 11.674 11.577 11.480 11.386 11.292 11.201 11.110 11.021 10.933 10.847 10.762 10.678 10.595 10.514 10.434 10.355 10.277 10.200 10.124 10.049 9. 976 9.903 9. 832 9.761 9.761 SPECIFIC ENERGY(FT) 3.130 100 071 042 015 988 962 937 913 889 866 843 822 801 780 760 741 722 704 2.686 2. 669 652 636 620 605 605 2. 2. 2. 2. 2, PRESSURE+ MOMENTUM(POUNDS) 522.10 518.77 515.50 512.31 509.18 506.11 503.11 500.16 497.29 494.47 491.70 489.00 486.36 483.76 481.23 478.75 476.32 473.94 471.61 469.34 467.11 464.93 462.80 460.72 458.68 458.69 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.28 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY CONTROL(FT) (FT) (FT/SEC) 0.000 2.285 4.442 SPECIFIC ENERGY(FT) 2.591 PRESSURE+ MOMENTUM(POUNDS) 4 97.97 1. 903 2.255 4 . 483 2. 567 491. 05 3. 771 2.226 4 . 526 2. 544 484 . 33 5. 605 2.197 4. 572 2. 522 477 . 82 7 . 403 2.167 4 . 621 2. 499 471. 52 9. 167 2.138 4. 674 2 478 465. 43 10. 893 2.109 4. 729 2 456 459. 56 12. 582 2.080 4. 787 2 436 453. 91 14 230 2.050 4 849 2 416 448 48 15 837 2.021 4 914 2 396 443 30 17 400 1.992 4 982 2 378 438 35 18 915 1.963 5 054 2 360 433 65 20 380 1. 933 5 129 2 342 429 21 21 7 90 1.904 5 208 2 326 425 03 23 142 1. 875 5 291 2 310 421 12 24 429 1.846 5 378 2 295 417 49 25 647 1.816 5 469 2 281 414 15 26 789 1.787 5 565 2 .268 411 11 27 846 1.758 5 665 2 .256 408 38 28 810 1.729 5 770 2 .246 405 97 29 670 1. 699 5 .881 2 .237 403 89 30 .414 1.670 5 .996 2 .229 402 .15 31 .028 1. 641 6 .118 2 .222 400 .77 31 .495 1.612 6 .245 2 .218 399 .77 31 .794 1.582 6 .379 2 .215 399 . 16 31 . 900 1.553 6 .520 2 .214 398 . 95 191 .000 1.553 6 .520 2 .214 398 .95 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 11.04 FEET UPSTREAM OF NODE 143.00 | I DOWNSTREAM DEPTH = 2.106 FEET, UPSTREAM CONJUGATE DEPTH = 1.123 FEET | NODE 142.60 : HGL = < 408.016>;EGL= < 410.170>;FLOWLINE= < 407.040> ****************************************************************************** FLOW PROCESS FROM NODE 142.60 TO NODE 142.50 IS CODE = 5 UPSTREAM NODE 142.50 ELEVATION = 407.54 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 20.90 24.00 0.00 407.54 1.64 9.828 DOWNSTREAM 20.90 30.00 - 407.04 1.55 11.777 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01554 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02501 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02027 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.081 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.152)+( 0.000) = 0.152 NODE 142.50 : HGL = < 408.822>;EGL= < 410.321>;FLOWLINE= < 407.540> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 142.10 142.50 TO NODE ELEVATION = 142.10 IS CODE = 1 411.10 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.90 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 222.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1 .27 CRITICAL DEPTH(FT) = 1.64 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1. 64 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 1. 635 7.599 2.532 436.01 0. 058 1. 620 7.663 2.533 436.08 0. 202 1. 606 7.729 2.534 436.25 0 440 1. 591 7.797 2.535 436.54 0 781 1. 576 7.8 67 2.538 436.93 1 233 1. 562 7.939 2.541 437.43 1 807 1. 547 8.013 2.545 438.05 2 517 1. 532 8.090 2.549 438.78 3 378 1. 518 8.169 2.554 439.63 4 408 1. 503 8.251 2.561 440.59 5 628 1. 488 8.335 2.567 441.69 7 065 1. 473 8.421 2.575 442.91 8 751 1. 459 8.510 2.584 444.26 10 727 1. 444 8.602 2.594 445.74 13 042 1. 429 8.697 2.605 447.36 15 7 63 1. 415 8.794 2.616 449.12 18 975 1. 400 8.894 2.629 451.02 22 794 1. 385 8.998 2.643 453.07 27 384 1. 371 9.105 2.659 455.28 32 986 1. 356 9.214 2.675 457.64 39 969 1. 341 9.328 2.693 460.16 48 . 959 1. 327 9.444 2.713 462.85 61 . 122 1. 312 9.565 2.733 465.71 79 .085 1. 297 9.689 2.756 468.75 111 .269 1. 283 9.817 2.780 471.97 222 . 000 1. 282 9. 825 2.781 472.17 NODE 142.10 : HGL = < 412. 735>;EGL= < 413.632>;FLOWLINE= < 411.100> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 142.00 142.10 TO NODE 142.00 IS CODE = 5 ELEVATION = 411.43 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 FLOW (CFS) 20.90 20.90 0.00 0.00 DIAMETER (INCHES) 24.00 24.00 0.00 0.00 ANGLE (DEGREES) 90.00 0.00 0.00 FLOWLINE ELEVATION 411.43 411.10 0.00 0.00 CRITICAL DEPTH(FT.) 1.64 1.64 0.00 0.00 VELOCITY (FT/SEC) 6. 653 7.589 0.000 0.000 10 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00853 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00855 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00854 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.034 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.498)+( 0.000) = 1.4 98 NODE 142.00 : HGL = < 414.443>;EGL= < 415.130>;FLOWLINE= < 411.430> ****************************************************************************** FLOW PROCESS FROM NODE 142.00 TO NODE 141.00 IS CODE = 1 UPSTREAM NODE 141.00 ELEVATION = 414.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.90 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 71.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NOFUyiAL DEPTH (FT) = 0.98 CRITICAL DEPTH (FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.64 1.64 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.035 0.144 0.335 0.614 0. 992 FLOW DEPTH (FT) 479 088 834 736 816 100 622 422 11.553 14.082 17.099 20.723 25.125 30.555 37.399 46.307 58.499 71.000 638 612 586 559 533 507 481 455 428 402 376 350 324 297 271 ,245 ,219 ,193 .166 ,140 .114 ,088 ,062 1.044 VELOCITY (FT/SEC) 7.586 7.701 7 . 822 7.950 8.085 8.227 8.377 8.536 8.703 8.879 9.065 9.262 9.469 9. 687 9. 919 10.163 10.421 10.695 10.985 11.292 11.619 11.965 12.335 12.602 SPECIFIC ENERGY(FT) 2.532 533 536 541 549 559 571 587 605 627 653 683 717 756 800 850 906 970 041 121 3.211 3.312 3.426 3.511 PRESSURE+ MOMENTUM(POUNDS) 436.00 436.17 436.67 437.51 438.72 440.31 442.28 444.66 447.47 450.73 454.46 458 . '68 463.42 468.71 474.59 481.08 488 .23 496.08 504.67 514.06 524.30 535.46 547.60 556.55 1\ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.01 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 36.626 PRESSURE HEAD(FT) 3.013 2.000 VELOCITY (FT/SEC) 6. 653 6. 653 SPECIFIC ENERGY(FT) 3.700 2. 687 PRESSURE+ MOMENTUM(POUNDS) 664.10 465.48 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY( FT) MOMENTUM(POUNI 36. 626 2. 000 6. 651 2. 687 465. 48 37 . 094 1. 986 6. 658 2. 674 462. 93 37 . 512 1. 971 6. 670 2. 662 4 60. 61 37 . 900 1. 957 6. 687 2. 651 458. 45 38. 263 1. 942 6. 706 2. 641 456. 42 38 606 1. 928 6. 728 2. 631 454 . 51 38 930 1. 913 6. 753 2. 622 452. 71 39 237 1. 899 6 780 2. 613 451. 00 39 527 1. 884 6 809 2. 605 449 40 39 801 1 870 6 840 2. 597 447 89 40 060 1 855 6 873 2. 589 446 47 40 303 1 841 6 908 2. 582 445 15 40 532 1 826 6 944 2. 576 443 91 40 745 1 812 6 983 2. 569 442 76 40 944 1 797 7 023 2. 564 441 70 41 127 1 783 7 065 2. 559 440 73 41 295 1 768 7 109 2. 554 439 85 41 447 1 754 7 155 2. 549 439 05 41 583 1 739 7 203 2. 545 438 35 41 703 1 725 7 252 2. 542 437 73 41 807 1 710 7 303 2. 539 437 21 41 893 1 696 7 356 2. 537 436 78 41 .961 1 682 7 .411 2. 535 436 44 42 .010 1 667 7 .467 2. 533 436 20 42 041 1 .653 7 .526 2. 533 436 05 42 .051 1 . 638 7 .586 2. 532 436 .00 71 .000 1 . 638 7 . 586 2. 532 436 .00 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 23.50 FEET UPSTREAM OF NODE 142.00 | I DOWNSTREAM DEPTH = 2.363 FEET, UPSTREAM CONJUGATE DEPTH = 1.085 FEET I NODE 141.00 : HGL = < 415.638>;EGL= < 416.532>;FLOWLINE= < 414.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 141.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 414.00 415.64 FOR DOWNSTREAM RUN ANALYSIS 72 END OF GRADUALLY VARIED FLOW ANALYSIS 73 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * PALOMAR FORUM * * SD CROSSING AT 14+50 EAGLE DR * * 12-04-02 C:\AES2001\HYDROSOFT\RATSCX\1450.RES * ************************************************************************** FILE NAME: 1450.DAT TIME/DATE OF STUDY: 12:52 12/04/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 121.00- 2.20 Dc 1106.11 1.03* 2012.23 } FRICTION 118.50- 2.20 Dc 1106.11 1.05* 1950.94 } JUNCTION 118.00- 2.70 1116.49 0.86* 2233.46 } FRICTION 117.00- 2.16*Dc 1015.37 2.16*Dc 1015.37 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 121.00 FLOWLINE ELEVATION = 383.00 PIPE FLOW = 4 3.80 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 385.000 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 2.00 FT.) IS LESS THAN CRITICAL DEPTH( 2.20 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 121.00 : HGL = < 384.025>;EGL= < 392.318>;FLOWLINE= < 383.000> FLOW PROCESS FROM NODE 121.00 TO NODE 118.50 IS CODE = 1 UPSTREAM NODE 118.50 ELEVATION = 387.30 (FLOW IS SUPERCRITICAL) 74 CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 43.80 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 43.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1 .00 CRITICAL DEPTH(FT) = 2.20 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.05 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1. 051 22 .343 8.808 1950. 94 2.336 1. 049 22 .400 8.845 1955. 50 4.780 1. 047 22 .456 8.883 1960. 09 7.340 1. 045 22 .514 8.921 1964. 70 10.027 1. 043 22 .571 8 . 959 1969. 33 12.855 1. 041 22 . 629 8.997 1973. 99 15.837 1. 039 22 .687 9.036 1978. 67 18.990 1. 037 22 .745 9.075 1983. 38 22.334 1. 035 22 .804 9.115 1988. 11 25.892 1. 033 22 .863 9.155 1992. 87 29.692 1. 031 22 .922 9.195 1997. 65 33.766 1. 029 22 .981 9.235 2002. 46 38.157 1. 027 23 .041 9.276 2007. 29 42.914 1. 025 23 .101 9.317 2012. 15 43.000 1. 025 23 .102 9.318 2012. 23 NODE 118.50 : HGL = < 388. 351>;EGL= < 396.108>;FLOWLINE= < 387.300> ****************************************************************************** FLOW PROCESS FROM NODE 118.50 TO NODE 118.00 IS CODE = 5 UPSTREAM NODE 118.00 ELEVATION = 387.63 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 41.30 30.00 0.00 387.63 DOWNSTREAM 43.80 30.00 - 387.30 LATERAL #1 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 2.50===Q5 EQUALS BASIN INPUT=== CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 2.16 2.20 0.00 0. 00 27.487 22.350 0. 000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.11911 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.476 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.566)+( 1.551) = 4.117 15450 08372 1.551 FEET NODE 118.00 : HGL = < 388.493>;EGL= < 400.225>;FLOWLINE= < 387.630> 15 ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 117.00 118.00 TO NODE ELEVATION = 117.00 IS CODE = 1 400.57 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 41.30 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 42.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0 .72 CRITICAL DEPTH(FT) 2.16 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.16 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 2. 156 9. 172 3.4 63 1015.37 0. 013 2. 099 9. 385 3.467 1016.48 0. 055 2. 041 9. 621 3.480 1019.87 0. 129 1. 984 9. 883 3.502 1025.66 0 239 1. 927 10. 172 3. 534 1034.00 0 388 1. 869 10 489 3.578 1045.07 0 585 1. 812 10 837 3. 636 1059.07 0 835 1. 754 11 219 3.710 1076.26 1 148 1. 697 11 639 3.802 1096.91 1 534 1. 639 12 100 3. 914 1121.38 2 009 1. 582 12 608 4.052 1150.05 2 588 1. 525 13 168 4.219 1183.38 3 295 1. 467 13 786 4.420 1221.92 4 157 1. 410 14 472 4.664 1266.33 5 212 1. 352 15 234 4.958 1317.37 6 .510 1 295 16 084 5.315 1375.98 8 . 118 1 238 17 036 5.747 1443.28 10 . 129 1 180 18 .108 6.275 1520.65 12 .678 1 123 19 .320 6. 922 1609.79 15 . 968 1 065 20 . 699 7.723 1712.80 20 . 318 1 008 22 .278 8.720 1832.34 26 .272 0 951 24 . 100 9. 975 1971.81 34 .8 60 0 893 26 .219 11.575 2135.58 42 .000 0 863 27 .478 12.595 2233.46 NODE 117.00 : HGL = < 402.726>;EGL= < 404.033>;FLOWLINE= < 400.570> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 117.00 FLOWLINE ELEVATION = 400.57 ASSUMED UPSTREAM CONTROL HGL = 402.73 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 7lo ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * PALOMAR FORUM * * SD FROM 20+94 EAGLE DR * * 12-4-02 C:\AES2001\HYDROSOFT\RATSCX\2094.RES * ************************************************************************** FILE NAME: 2094.DAT TIME/DATE OF STUDY: 09:31 12/04/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 130.00- 4.27* 445.00 0.44 234.99 } FRICTION ) HYDRAULIC JUMP 125.00- 1.04*Dc 114.26 1.04*Dc 114.26 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 130.00 FLOWLINE ELEVATION = 414.67 PIPE FLOW = 7.20 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 418.940 FEET NODE 130.00 : HGL = < 418.940>;EGL= < 419.198>;FLOWLINE= < 414.670 ****************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 125.00 IS CODE = 1 UPSTREAM NODE 125.00 ELEVATION = 431.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.20 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 102.50 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.42 CRITICAL DEPTH(FT) = 1.04 77 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.04 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 1. 039 5. 511 1.511 114.26 0. 008 1. 014 5. 660 1.512 114.36 0. 033 0. 990 5. 820 1.516 114.65 0. 077 0. 965 5. 991 1.523 115.16 0. 144 0. 940 6. 175 1.533 115.90 0. 235 0. 915 6. 372 1.546 116.88 0. 355 0. 891 6. 584 1.564 118.12 0. 508 0. 866 6. 812 1.587 119.64 0 699 0. 841 7. 057 1.615 121.46 0 936 0. 816 7. 322 1. 649 123.61 1 224 0. 792 7. 608 1. 691 126.12 1 576 0. 767 7. 919 1.741 129.02 2 001 0 742 8. 256 1.801 132.35 2 517 0 717 8. 622 1.873 136.15 3 142 0 693 9. 023 1.958 140.48 3 902 0 668 9. 461 2.059 145.39 4 833 0 643 9 942 2.179 150.96 5 982 0 619 10 472 2.322 157.26 7 418 0 594 11 057 2.494 164.41 9 240 0 569 11 708 2. 699 172.50 11 .606 0 544 12 433 2. 946 181.70 14 .782 0 520 13 245 3.245 192.17 19 .269 0 495 14 160 .3.610 204.13 26 .196 0 .470 15 196 4.058 217.83 39 .193 0 . 445 16 377 4 . 613 233.62 102 .500 0 .443 16 480 4.663 234.99 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4 .27 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL{FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 4 .270 4 .074 4.528 445.00 17.915 1.500 4.074 1.758 139.55 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 17 . 915 1.500 4.073 1.758 139.55 18 .027 1.482 4.083 1.741 137.65 18 .131 1.463 4.100 1.724 135.87 18 .232 1.445 4.122 1.709 134.16 18 .329 1.426 4.149 1.694 132.53 18 .422 1.408 4.179 1.679 130.97 7« 18 . 512 1 389 4. 213 1. 665 129 47 18. 599 1 371 4. 250 1. 652 128 03 18. 683 1 352 4 291 1 639 126 66 18. 765 1 334 4 335 1 626 125 35 18 842 1 316 4 382 1 614 124 10 18 917 1 297 4 432 1 602 122 92 18 989 1 279 4 485 1 591 121 81 19 057 1 260 4 541 1 581 120 76 19 121 1 242 4 601 1 571 119 78 19 181 1 223 4 664 1 561 118 88 19 238 1 205 4 731 1 553 118 04 19 290 1 187 4 801 1 545 117 28 19 337 1 168 4 875 1 537 116 60 19 380 1 150 4 953 1 531 116 00 19 417 1 131 5 034 1 525 115 49 19 449 1 113 5 120 1 520 115 05 19 475 1 094 5 211 1 516 114 71 19 494 1 076 5 306 1 513 114 46 19 506 1 057 5 406 1 512 114 31 19 510 1 039 5 511 1 511 114 26 102 500 1 039 5 511 1 511 114 26 END OF HYDRAULIC JUMP ANALYSIS : I PRESSURE+MOMENTUM BALANCE OCCURS AT 12.33 FEET UPSTREAM OF NODE 130.00 | I DOWNSTREAM DEPTH = 2.363 FEET, UPSTREAM CONJUGATE DEPTH = 0.444 FEET | NODE 125.00 : HGL = < 432.039>;EGL= < 432.511>;FLOWLINE= < 431.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 125.00 FLOWLINE ELEVATION = 431.00 ASSUMED UPSTREAM CONTROL HGL = 432.04 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 7^ CRO^£/AJG e OR^Y/-^Ai^< COURT **************************************************************************,^,^^,^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 FILE NAME: 1190.DAT TIME/DATE OF STUDY: 09:42 02/05/2003 *****************************************************************,^,^,^^j^^,^,^,^,^^,^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESStJRE PRESSURE+ FLOW PRESSURE* NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1-00- 2.74 1274.52 1.27* 1462.33 } FRICTION 2.00- 1.95*Dc 1125.93 1.95*Dc 1125.93 } JUNCTION 3.00- 4.80* 1306.69 1.50 805.91 } FRICTION 4.00- 4.43* 1234.50 1.87 Dc 749.37 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ***********************************************************,>,^,j^,^,^,^,^,^,^^^^^^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1.00 FLOWLINE ELEVATION = 418.72 PIPE FLOW = 38.90 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 421.460 FEET NODE 1.00 : HGL = < 419.993>;EGL= < 425.267>;FLOWLINE= < 418.720> ********************************************************^^,^,^,^^^^,^^^,^,^^^^,^^^^j^^^^^ FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 1 UPSTREAM NODE 2.00 ELEVATION = 422.69 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 38.90 CFS PIPE PIPE LENGTH = 43.25 FEET DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.08 CRITICAL DEPTH(FT) = 1.95 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.95 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: SO DISTANCE FROM CONTROL(FT) 0.000 0 0 0 1 1 2 3 4 5 7 9 082 313 680 181 819 601 539 646 943 453 206 11.240 13.602 16.354 19.574 23.368 27.878 33.309 39.955 43.250 FLOW DEPTH (FT) 1.947 1.912 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. , 877 .842 .808 ,773 .738 .704 ,669 ,634 ,599 ,565 ,530 1.495 1.461 1.426 1.391 1.357 1.322 1.287 1.273 VELOCITY (FT/SEC) 12 .470 12 .573 12 .701 12.849 13.018 13.206 13.413 13.639 13.885 14.151 14.438 14.747 15.079 15.436 15.818 16.229 16.670 17.143 17.651 18.197 18.424 SPECIFIC ENERGY(FT) 4.363 4.368 4.383 4.408 4.441 4.483 4.534 ,594 ,664 .746 ,838 ,944 ,063 ,197 ,348 ,518 ,709 ,923 ,162 .432 ,547 4. 4. 4 . 4 , 4 . 5. 5. 5. 5. 5. 5. 6. 6. 6. PRESSURE+ MOMENTUM(POUNDS) 1125.93 1126.98 1129.92 1134.53 1140.73 1148.48 1157.76 1168.59 1181.01 1195.06 1210.81 1228.33 1247.73 1269.10 1292.57 1318.28 1346.39 1377.07 1410.54 1447.01 1462.33 NODE 2.00 : HGL = < 424.637>;EGL= < 427.053>;FLOWLINE= < 422.690> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 3.00 2.00 TO NODE 3.00 IS CODE = 5 ELEVATION = 423.02 (FLOW IS AT CRITICAL DEPTH) CAUJCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 DIAMETER ANGLE FLOWLINE CRITICAL FLOW (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. 30.20 24.00 40.00 423.02 1.87 38.90 24.00 - 422.69 1.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.70===Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 9.613 12.474 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*C0S(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02199 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.088 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.715)+( 0.483) = 2.198 01782 02616 0.483 FEET NODE 3.00 : HGL = < 427.816>;EGL= < 429.251>;FLOWLINE= < 423.020> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 4.00 3.00 TO NODE ELEVATION = 4.00 IS CODE = 1 423.93 (FLOW IS UNDER PRESSURE) 8( CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 30.20 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 30.40 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 30.20)/( 226.221))**2 = 0.01782 HF=L*SF = ( 30.40)* (0.01782) = 0.542 NODE 4.00 : HGL = < 428.357>;EGL= < 429.792>;FLOWLINE= < 423.930> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 4.00 FLOWLINE ELEVATION = 423.93 ASSUMED UPSTREAM CONTROL HGL = 425.80 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 0Z ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92 008 Tel: 760-931-7700 Fax: 760-931-8680 FILE NAME: 1190A.DAT TIME/DATE OF STUDY: 07:19 01/28/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTtJM(POUNDS) 5.00- 2.74* 234.45 0.38 79.03 } FRICTION 6.00- 1.47* 94.03 0.73 Dc 47.54 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5.00 FLOWLINE ELEVATION = 418.72 PIPE FLOW = 3.70 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 421.460 FEET NODE 5.00 : HGL = < 421.460>;EGL= < 421.52 8>;FLOWLINE= < 418.720> ******************************************************************,^**,^^,^,^^^^^,^^^ FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 1 UPSTREAM NODE 6.00 ELEVATION = 420.00 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.70 CFS PIPE DIAMETER = PIPE LENGTH = 5.25 FEET MANNING'S 18.00 N = 0 INCHES .01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.74 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.740 2.094 2.808 234.45 5.112 1.500 2.094 1.568 97.72 NORMAL DEPTH(FT) 0.27 CRITICAL DEPTH(FT) 0.73 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 5.112 5.235 5.250 FLOW DEPTH VELOCITY (FT) (FT/SEC) 1.500 2.093 1.469 2.103 1.466 2.105 SPECIFIC ENERGY(FT) 1.568 1.538 1.535 PRESSURE+ MOMENTUM(POUNDS) 97.72 94.42 94.03 NODE 6.00 : HGL = < 421.466>;EGL= < 421.535>;FLOWLINE= < 420.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 6.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 420.00 42 0.73 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 1"E A\f^ol^A{<'^ OUTLB-T Results of confluence: Total flow rate = 177.156(CFS) Time of concentration = 15.156 min. Effective stream area after confluence = 48.940(Ac.) +++++++++++++- Process from Point/Station **** SUBAREA FLOW ADDITION **** 121.000 to Point/Station 121.000 User specified 'C value of 0.920 given for subarea Time of concentration = 15.16 min. Rainfall intensity = 3.866(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, 0=0 Subarea runoff = 39.191(CFS) for 11.020(Ac.) Total runoff = 216.347(CFS) Total area = 59.96(Ac ) 920 +++++++++++++++++++++-^-^++++++++++^.++++^.+++4+^.+^.^.^.^.^.^.^^^^^^^^^^^^_^^^^^^ Process from Point/Station 121.000 to Point/Station 145 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 381.67(Ft.) Downstream point/station elevation = 372.33(Ft.) Pipe length = 175.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 216.347(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 216.347(CFS) Normal flow depth in pipe = 28.24(In.) Flow top width inside pipe = 47.24(In.) Critical depth could not be calculated. Pipe flow velocity = 28.13(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 15.26 min. ++++++++++++++++++-t-++++++++++++++++++++++++++++^.^.^.+^.^.4+4^^^^^^^^^^^^^^ Process from Point/Station 145.000 to Point/Station 145 000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Time of concentration = 15.2 6 min. Rainfall intensity = 3.849(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method, Q=KCIA, C = 0 950 Subarea runoff = 7.312(CFS) for 2.000(Ac.) Total runoff = 223.660(CFS) Total area = 61 96(Ac ) ] ++ +++++++++++ ++++++++++++++++++++++++++++++++++++++++4^.+44^^^^^^^^^_^_^^ Process from Point/Station 145.000 to Point/Station 144 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 372.33(Ft.) Downstream point/station elevation = 362.00(Ft.) Pipe length = 206.00(Ft.) Manning's N = 0.013 80/1 No. of pipes = 1 Required pipe flow = 223.660 (CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 223.660(CFS) Normal flow depth in pipe = 29.46(In.) Flow top width inside pipe = 46.74(In.) Critical depth could not be calculated. Pipe flow velocity = 27.66(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 15.38 min. ++++++-)-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 144.000 to Point/Station 144.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 15.38 min. Rainfall intensity = 3.829(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff = 3.637(CFS) for 1.000(Ac.) Total runoff = 227.297(CFS) Total area = 62.96(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 144.000 to Point/Station 170.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 361.00(Ft.) Downstream point/station elevation = 358.33(Ft.) Pipe length = 81.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 227.297 (CFS) Given pipe size = 60.00(In.) Calculated individual pipe flow = 227.297(CFS) Normal flow depth in pipe = 29.32(In.) Flow top width inside pipe = 59.98(In.) Critical Depth = 51.19(In.) Pipe flow velocity = 23.85(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 15.44 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 171.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 358.00(Ft.) Downstream point/station elevation = 342.63(Ft.) Pipe length = 262.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 227.297 (CFS) Given pipe size = 60.GO(In.) Calculated individual pipe flow = 227.297(CFS) Normal flow depth in pipe = 24.89(In.) Flow top width inside pipe = 59.12(In.) Critical Depth = 51.19(In.) Pipe flow velocity = 29.50(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 15.59 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 171.000 to Point/Station 172.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 342.30(Ft.) Downstream point/station elevation = 341.60(Ft.) Pipe length = 56.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 227.297(CFS) Given pipe size = 60.00(In.) Calculated individual pipe flow = 227.297(CFS) Normal flow depth in pipe = 39.89(In.) Flow top width inside pipe = 56.65(In.) Critical Depth = 51.19(In.) Pipe flow velocity = 16.40(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 15.65 min. End of computations, total study area = 62.96 (Ac.) San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 12/21/01 POLOMAR FORUM PROPOSED CONDITIONS STREET C SOUTH FORCl.OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-I-++ Process from Point/Station 145.000 to Point/Station 146.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 80.00(Ft.) Highest elevation = 440.50(Ft.) Lowest elevation = 436.00(Ft.) Elevation difference = 4.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.36 min. TC = [1.8* (1.1-C) •distance'^.5) / (% slope'^ (1/3) ] TC = [1.8*(1.1-0.9500)*( 80.00'^.5)/( 5.63"(l/3)]= 1.36 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.375(CFS) Total initial stream area = 0.050(Ac.) + ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-I-++++ Process from Point/Station 146.000 to Point/Station 147.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 436.000(Ft.) ~~ End of street segment elevation = 416.700(Ft.) Length of street segment = 1020.000(Ft.) S3A Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 51.000(Ft.) Distance from crown to crossfall grade break = 49.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike f rom flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.612(CFS) Depth of flow = 0.189(Ft.), Average velocity = 2.084(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.716(Ft.) Flow velocity = 2.08(Ft/s) Travel time = 8.16 min. TC = 13.16 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 4.235(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 5.069(CFS) for 1.260(Ac.) Total runoff - 5.444(CFS) Total area = 1.31(Ac.) Street flow at end of street = 5.444(CFS) Half street flow at end of street = 5.444(CFS) Depth of flow = 0.342(Ft.), Average velocity = 3.417(Ft/s) Flow width (from curb towards crown)= 12.336(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 147.000 to Point/Station 143.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 405.50(Ft.) Downstream point/station elevation = 404.40(Ft.) Pipe length = 43.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.444 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.444(CFS) Normal flow depth in pipe = 7.05(In.) Flow top width inside pipe = 17.57(In.) Critical Depth = 10.79(In.) Pipe flow velocity = 8.49(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 13.24 min. End of computations, total study area = 1.31 (Ac.) g4A ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 FILE NAME: TEMP.DAT TIME/DATE OF STUDY: 07:01 01/28/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1.00- 4.27 Dc 7807.62 2.34* 11667.53 } FRICTION 2.00- 4.27 DC 7807.62 2.21* 12432.69 } JUNCTION 3.00- 4.27 Dc 7807.62 2.21* 12431.75 } FRICTION 4.00- 4.27*Dc 7807.62 4.27*Dc 7807.62 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAtJLIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1.00 FLOWLINE ELEVATION = 341.60 PIPE FLOW = 227.30 CFS PIPE DIAMETER = 60.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 345.600 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 4.00 FT.) IS LESS THAN CRITICAL DEPTH( 4.27 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 1.00 : HGL = < 343.938>;EGL= < 353.821>;FLOWLINE= < 341.600> ****************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 1 UPSTREAM NODE 2.00 ELEVATION = 342.30 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 227.30 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 50.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 3.19 CRITICAL DEPTH(FT) = 4.27 «5 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 .21 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.212 27.112 13.633 12432.69 15.218 2.251 26.495 13.159 12181.57 30.713 2.291 25.905 12.717 11942.63 46.514 2.330 25.339 12.306 11715.20 50.000 2.338 25.220 12 .221 11667.53 NODE 2.00 : HGL = < 344.512>;EGL= < 355.933>;FLOWLINE= < 342.300> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 3.00 2.00 TO NODE ELEVATION = 3.00 IS CODE = 5 342.63 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 227.30 60.00 0.00 342.63 227.30 60.00 - 342.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== 4.27 4 .27 0.00 0.00 27.118 27.121 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04662 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.186 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.328)+( 0.000) = 0.328 04662 04663 0.000 FEET NODE 3.00 : HGL = < 344.842>;EGL= < 356.262>;FLOWLINE= < 342.630> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 4.00 3.00 TO NODE 4.00 IS CODE = 1 ELEVATION = 358.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 227.30 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 262.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 2.07 CRITICAL DEPTH(FT) = 4.27 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 4 .27 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) FLOW DEPTH (FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE+ MOMENTUM(POUNDS) ec 0 .000 4 .265 12 735 6.785 7807.62 0 .089 4 . 178 12 966 6.790 7812.62 0 .364 4 .090 13 216 6 . 804 7827.86 0 . 843 4 . 003 13 486 6 . 828 7853.74 1 .548 3 .915 13 777 6.864 7890.75 2 .503 3 .827 14 090 6.912 7939.44 3 .738 3 . 740 14 426 6.973 8000.44 5 .290 3 .652 14 787 7.049 8074.49 7 .201 3 .564 15 175 7.142 8162.39 9 .525 3 .477 15 591 7.254 8265.07 12 .324 3 .389 16 038 7.386 8383.55 15 .678 3 .302 16 519 7.541 8519.00 19 .683 3 .214 17 036 7.723 8672.73 24 .462 3 . 126 17 593 7.935 8846.22 30 .171 3 .039 18 193 8.181 9041.15 37 .012 2 .951 18 840 8.466 9259.42 45 .255 2 .864 19 .541 8.796 9503.20 55 .269 2 .776 20 .299 9.178 9774.98 67 .573 2 .688 21 .122 9.620 10077.59 82 .932 2 . 601 22 .017 10.132 10414.33 102 .538 2 .513 22 .993 10.727 10789.00 128 .395 2 .425 24 .059 11.419 11206.03 164 .268 2 .338 25 .228 12.227 11670.58 218 .632 2 .250 26 .513 13.172 12188.75 262 .000 2 .212 27 .110 13 .632 12431.75 NODE 4.00 : HGL = < 362.265>;EGL= < 3 64.785>;FLOWLINE= < 358.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 4.00 FLOWLINE ELEVATION = 358.00 ASSUMED UPSTREAM CONTROL HGL = 362.27 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 09/04/02 PALOMAR FORUM PROPOSED CONDITIONS LOT 5 - ALLOWING FOR SPLIT FLOW 9-04-02 ********* Hydrology Study Control Inforraation ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^-++-l--^+-^+++++ Process from Point/Station 101.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 50.00(Ft.) Highest elevation = 511.20(Ft.) Lowest elevation = 510.20(Ft.) Elevation difference = 1.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.52 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope"(l/3)] TC = [1.8*(l.l-0.9500)*( 50.00'^.5)/( 2.00^(1/3)]= 1.52 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.375(CFS) Total initial stream area = 0.050(Ac.) + + ++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++-I-+++++++++ Process from Point/Station 102.000 to Point/Station 103.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 510.200(Ft.) ~~ End of street segment elevation = 467.800(Ft.) Length of street segment = 1940.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 51.000(Ft.) Distance from crown to crossfall grade break = 4 9.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated mean flow rate at midpoint of street = 0.886(CFS) Depth of flow = 0.205(Ft.), Average velocity = 2.377(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.491(Ft.) Flow velocity = 2.38(Ft/s) Travel time = 13.60 min. TC = 18.60 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 3.387(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 8.752(CFS) for 2.720(Ac.) Total runoff = 9.127(CFS) Total area = 2.77(Ac.) Street flow at end of street = 9.127(CFS) Half street flow at end of street = 9.127(CFS) Depth of flow = 0.389(Ft.), Average velocity = 4.094(Ft/s) Flow width (from curb towards crown)= 14.691(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-I-+++++-I-+++ Process from Point/Station 103.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 459.00(Ft.) ~ Downstream point/station elevation = 440.00(Ft.) Pipe length = 48.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.127 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 9.127(CFS) Normal flow depth in pipe = 4.52(In.) Flow top width inside pipe = 15.61(In.) Critical Depth = 14.02(In.) Pipe flow velocity = 26.26(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 18.63 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-(•++++ Process from Point/Station 104.000 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 439.67(Ft.) Downstream point/station elevation = 429.00(Ft.) Pipe length = 269.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.127 (CFS) «by4 Given pipe size = 18.00(In.) Calculated individual pipe flow = 9.127(CFS) Normal flow depth in pipe = 8.32(In.) Flow top width inside pipe = 17.95(In.) Critical Depth = 14.02(In.) Pipe flow velocity = 11.44(Ft/s) Travel time through pipe = 0.39 min. Time of concentration (TC) = 19.03 min. +++++++++++H Process from Point/Station **** SUBAREA FLOW ADDITION H + + + + + + + ++++ + + +++ + + + + + + + + + + + + + + + + + + + + + + 105.000 to Point/Station 105.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Time of concentration = Rainfall intensity = ] 19.03 min. 3.338 (In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 22.199(CFS) for 7.000(Ac.) Total runoff = 31.326(CFS) Total area = 9.77(Ac.) +++++++++++++++++++++++++++++++++++++++^-++-l-+++++-^+++++++++^.+++++++++++ Process frora Point/Station 105.000 to Point/Station 115.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 4 28.00(Ft.) ~~ Downstream point/station elevation = 423.57(Ft.) Pipe length = 109.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 31.326(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 31.326(CFS) Normal flow depth in pipe = 12.80(In.) Flow top width inside pipe = 29.67(In.) Critical Depth = 22.90(In.) Pipe flow velocity = 15.68(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 19.14 min. End of computations, total study area = 9.77 (Ac.) 81/4 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 12/21/01 PALOMAR FORUM PROPOSED CONDITIONS STREET C NORTH F0RC2.OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational raethod + + + ++++++++++++++++++++++ + ++++++++++++++++++ +++++++ +++++-H. + -f+ + + ++-H++ + + Process frora Point/Station 148.000 to Point/Station 149.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 ~ ~ ~~ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 [INDUSTRIAL area type ] Initial subarea flow distance = 55.00(Ft.) Highest elevation = 437.00(Ft.) Lowest elevation = 435.50(Ft.) Elevation difference = 1.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.91 min TC = [1.8* (1.1-C) *distance'^.5) / (% slope'^ (1/3) ] TC =[1.8*(1.1-0.9000)*( 55.00".5)/( 2.73"(1/3)]= 1.91 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 0.142(CFS) Total initial stream area = 0.020(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^.^. Process from Point/Station 149.000 to Point/Station 150.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 435.500(Ft.) ~ ~ End of street segment elevation = 416.700(Ft.) Length of street segment = 940.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 51.000(Ft.) Distance from crown to crossfall grade break = 49.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.203(CFS) Depth of flow = 0.130(Ft.), Average velocity = 2.006(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.737(Ft.) Flow velocity = 2.01(Ft/s) Travel time = 7.81 min. TC = 12.81 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 4.308(In/Hr) for a 100.0 year storra Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 3.520(CFS) for 0.860(Ac.) Total runoff = 3.662(CFS) Total area = 0.88(Ac.) Street flow at end of street = 3.662(CFS) Half street flow at end of street = 3.662(CFS) Depth of flow = 0.303(Ft.), Average velocity = 3.172(Ft/s) Flow width (from curb towards crown)= 10.408(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++-I- Process from Point/Station 150.000 to Point/Station 143.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 405.00(Ft.) Downstream point/station elevation = 404.40(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.662(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.662(CFS) Normal flow depth in pipe = 3.86(In.) Flow top width inside pipe = 14.77(In.) Critical Depth = 8.76(In.) Pipe flow velocity = 13.19(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 12.82 min. End of computations, total study area = 0.88 (Ac.) San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational raethod hydrology program based on San Diego County Flood Control Division 198 5 hydrology manual Rational Hydrology Study Date: 01/02/02 PALOMAR FORUM PROPOSED CONDITIONS STORM DRAIN 'C FORSDC.OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storra event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology raanual 'C values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 151.000 to Point/Station 152.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.910 given for subarea Initial subarea flow distance = 540.00(Ft.) Highest elevation = 448.00(Ft.) Lowest elevation = 434.00(Ft.) Elevation difference = 14.00(Ft.) Tirae of concentration calculated by the urban areas overland flow raethod (App X-C) = 5.79 min. TC = [1.8*{l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.9100)*(540.00".5)/( 2.59"(l/3)]= 5.79 Rainfall intensity (I) = 7.195 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.910 Subarea runoff = 25.402(CFS) Total initial stream area = 3.880(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 152.000 to Point/Station 153.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 420.00(Ft.) Downstreara point/station elevation = 412.50(Ft.) Pipe length = 85.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 25.402 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 25.402(CFS) Normal flow depth in pipe = 12.33(In.) Flow top width inside pipe = 16.72(In.) 40 Critical depth could not be calculated. Pipe flow velocity = 19.67(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 5.86 min. ++++++++++++++++++++++++++++++-i-++++++++++++++++++++++++++++++++++^.++^.+ Process from Point/Station 153.000 to Point/Station 154.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 412.00(Ft.) Downstream point/station elevation = 404.25(Ft.) Pipe length = 419.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 25.402(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 25.402(CFS) Norraal flow depth in pipe = 16.62(In.) Flow top width inside pipe = 22.15(In.) Critical Depth = 21.26(In.) Pipe flow velocity = 10.94(Ft/s) Travel time through pipe = 0.64 min. Time of concentration (TC) = 6.50 min. ++++++++++++++++++++++++++-(-+++++++++++++++++++++++++++++++++++++^.+^.^.44 Process frora Point/Station 154.000 to Point/Station 154 000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 6.50 min. Rainfall intensity = 6.677(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 21.375(CFS) for 3.370(Ac.) Total runoff = 46.778(CFS) Total area = 7.25(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-(-++++++++ Process from Point/Station 154.000 to Point/Station 155.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 403.75(Ft.) Downstream point/station elevation = 396.66(Ft.) Pipe length = 419.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 46.778(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 4 6.778(CFS) Normal flow depth in pipe = 21.77(In.) Flow top width inside pipe = 26.77(In.) Critical Depth = 27.05(In.) Pipe flow velocity = li2.26(Ft/s) Travel time through pipe = 0.57 min. Tirae of concentration (TC) = 7.07 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 155.000 to Point/Station 155.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 7.07 min. Rainfall intensity = 6.324(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = 0.950 Subarea runoff = 20.247(CFS) for 3.370(Ac.) Total runoff = 67.025(CFS) Total area = 10.62(Ac.) ++++++++++++++++++++++-|.+-^-+-^+-l--l-(.++++++++++++++^.^.++4.+^.^.^.^.^.+^.4^.^.^.+^.^.444^^ Process frora Point/Station 155.000 to Point/Station 156.000 **** PIPEFLOW TRAVEL TIME (User specified size) ***• Upstream point/station elevation = 396.00(Ft.) Downstream point/station elevation = 387.08(Ft.) Pipe length = 55.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 67.025(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 67.025(CFS) Normal flow depth in pipe = 13.30(In.) Flow top width inside pipe = 29.81(In.) Critical depth could not be calculated. Pipe flow velocity = 31.90(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 7.09 min. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -H. + + + +++ + + + + + + + + + + + + + + ^.^.4 + + 4^.44444^^^^ Process from Point/Station 156.000 to Point/Station 156.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 7.09 min. Rainfall intensity = 6.308(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 2.397(CFS) for 0.400(Ac.) Total runoff = 69.422(CFS) Total area = 11.02(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 156.000 to Point/Station 121 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 386.75(Ft.) Downstream point/station elevation = 383.50(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 69.422(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 69.422(CFS) Normal flow depth in pipe = 9.33(In.) Flow top width inside pipe = 27.77 (In.) Critical depth could not be calculated. Pipe flow velocity = 53.32(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 7.10 min. End of computations, total study area = 11.02 (Ac.) ^13 AREA DRAINING TO MELROSE DRIVE 44 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 02/05/03 PALOMAR FORUM PROPOSED CONDITIONS - MELROSE DRIVE 12-04-02 G:\ACCTS\981022\FORMEL.OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 201.000 to Point/Station 202.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 [INDUSTRIAL area type ] Initial svibarea flow distance = 170.00 (Ft.) Highest elevation = 457.00(Ft.) Lowest elevation = 451.00(Ft.) Elevation difference = 6.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.08 min. TC = [1.8*(l.l-C)*distance*.5)/(% slope*(1/3)] TC = [1.8*(l.l-0.9000)*(170.00*.5)/( 3.53*(l/3)]= 3.08 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 0.356(CFS) Total initial stream area = 0.050(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^.^.^.^.+44 Process from Point/Station 202.000 to Point/Station 203.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** **** Top of street segment elevation = 451.000(Ft.) End of street segment elevation = 378.000(Ft.) Length of street segment = 1360.000 (Ft.) ^5 Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 55.000(Ft.) Distance from crown to crossfall grade break = 53.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.740(CFS) Depth of flow = 0.173(Ft.), Average velocity = 3.310(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.902(Ft.) Flow velocity = 3.31(Ft/s) Travel time = 6.85 min. TC = 11.85 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 4.531(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 9.298(CFS) for 2.160(Ac.) Total runoff = 9.653(CFS) Total area = 2.21(Ac.) Street flow at end of street = 9.653(CFS) Half street flow at end of street = 9.653(CFS) Depth of flow = 0.347(Ft.), Average velocity = 5.828(Ft/s) Flow width (from curb towards crown)= 12.590(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 203.000 to Point/Station 204.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 367.87(Ft.) Downstream point/station elevation = 365.87(Ft.) Pipe length = 96.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.653(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 9.653(CFS) Normal flow depth in pipe = 10.43(In.) Flow top width inside pipe = 17.77(In.) Critical Depth = 14.39(In.) Pipe flow velocity = 9.09(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 12.02 min. ++++++++++++++++++++++++++++++++H Process from Point/Station 203.000 to Point/Station 204.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.210(Ac.) Runoff from this stream = 9.653(CFS) Time of concentration = 12.02 min. ^C Rainfall intensity = 4.488(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 219.000 to Point/Station 220.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)*3)/(elevation change)]*.385 *60(min/hr) + 10 min. Initial subarea flow distance = 24.00 (Ft.) Highest elevation = 459.00(Ft.) Lowest elevation = 447.00(Ft.) Elevation difference = 12.00(Ft.) TC=[(11.9*0.0045*3)/( 12.00)]*.385= 0.12 + 10 min. = 10.12 min. Rainfall intensity (I) = 5.017 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 0.113(CFS) Total initial stream area = 0.050(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 221.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 3.928(CFS) Depth of flow = 0.163(Ft.), Average velocity = 1.474(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 1.00 2 100.00 0.00 3 200.00 1.00 Manning's 'N' friction factor = 0.030 Sub-Channel flow = 3.928(CFS) ' ' flow top width = 32.652(Ft.) ' • velocity= 1.474(Ft/s) ' • area = 2.665(Sq.Ft) ' ' Froude number = 0.909 Upstream point elevation = 447.000(Ft.) Downstream point elevation = 435.000(Ft.) Flow length = 480.000(Ft.) Travel time = 5.43 min. Time of concentration = 15.55 min. Depth of flow = 0.163(Ft.) Average velocity = 1.474(Ft/s) Total irregular channel flow = 3.928(CFS) Irregular channel normal depth above invert elev. = 0.163(Ft.) Average velocity of channel(s) = 1.474(Ft/s) Sub-Channel No. 1 critical depth = 0.157(Ft.) ' ' ' critical flow top width = 31.445(Ft.) ' ' ' critical flow velocity= 1.589(Ft/s) ' ' ' critical flow area = 2.472(Sq.Ft) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 3.803(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 12.211(CFS) for 3.380(Ac.) Total runoff = 12.323(CFS) Total area = 3.43 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 221.000 to Point/Station 222.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 416.50(Ft.) Downstream point/station elevation = 410.70(Ft.) Pipe length = 156.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Recjuired pipe flow = 12.323 (CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 12.323(CFS) Normal flow depth in pipe = 8.73(In.) Flow top width inside pipe = 23.09(In.) Critical Depth = 15.13(In.) Pipe flow velocity = 11.94(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 15.76 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 222.000 to Point/Station 222.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration = 15.76 min. Rainfall intensity = 3.769(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, c = 0.450 Subarea runoff = 2.883(CFS) for 1.700(Ac.) Total runoff = 15.207(CFS) Total area = 5.13(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 222.000 to Point/Station 206.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 410.37(Ft.) Downstream point/station elevation = 389.83(Ft.) Pipe length = 315.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Recjuired pipe flow = 15.207 (CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 15.207(CFS) Normal flow depth in pipe = 8.40(In.) Flow top width inside pipe = 22.90(In.) Critical Depth = 16.86(In.) Pipe flow velocity = 15.50(Ft/s) Travel time through pipe = 0.34 min. Time of concentration (TC) = 16.10 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 204.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 389.50(Ft.) Downstream point/station elevation = 365.70(Ft.) Pipe length = 311.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 15.207(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 15.207(CFS) Normal flow depth in pipe = 8.06(In.) Flow top width inside pipe = 22.67(In.) Critical Depth = 16.86(In.) Pipe flow velocity = 16.43(Ft/s) Travel time through pipe = 0.32 min. Time of concentration (TC) = 16.42 min. (•++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 204.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 5.130(Ac.) Runoff from this stream = 15.207(CFS) Time of concentration = 16.42 min. Rainfall intensity = 3.671(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 9.653 12.02 4.488 2 15.207 16.42 3.671 (Jmaxd) = 1.000 * 1.000 * 9.653) + 1.000 * 0.732 * 15.207) + = 20.790 Qmax(2) = 0.818 * 1.000 * 9.653) + 1.000 * 1.000 * 15.207) + = 23.103 Total of 2 streams to confluence: Flow rates before confluence point: 9.653 15.207 Maximum flow rates at confluence using above data: 20.790 23.103 Area of streams before confluence: 2.210 5.130 Results of confluence: Total flow rate = 23.103(CFS) Time of concentration = 16.418 min. Effective stream area after confluence = 7.340(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 204.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 16.42 min. Rainfall intensity = 3.671(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 6.731(CFS) for 1.930(Ac.) Total runoff = 29.834(CFS) Total area = 9.27(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 205.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 365.20(Ft.) Downstream point/station elevation = 346.33(Ft.) Pipe length = 299.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 29.834(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 29.834(CFS) Normal flow depth in pipe = 11.05(In.) Flow top width inside pipe = 28.94(In.) Critical Depth = 22.34(In.) Pipe flow velocity = 18.17(Ft/s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 16.69 min. Process from Point/Station 204.000 to Point/Station 205.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 9.270(Ac.) Runoff from this stream = 29.834(CFS) Time of concentration = 16.69 min. Rainfall intensity = 3.632(In/Hr) Process from Point/Station 207.000 to Point/Station 208.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)*3)/(elevation change)]*.385 *60(min/hr) + 10 min. Initial subarea flow distance = 70.00(Ft.) Highest elevation = 469.00(Ft.) Lowest elevation = 440.00(Ft.) Elevation difference = 29.00(Ft.) TC=[(11.9*0.0133*3)/( 29.00)]*.385= 0.29 + 10 min. = 10.29 min. (OO Rainfall intensity (I) = 4.963 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 0.112(CFS) Total initial stream area = 0.050(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 209.000 **** IMPROVED CHANNEL TRAVEL TIME **** Covered channel Upstream point elevation = 440.00(Ft.) Downstream point elevation = 380.00(Ft.) Channel length thru subarea = 530.00(Ft.) Channel base width = 1.030(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 1.206(CFS) Manning's 'N' =0.005 Maximum depth of channel = 0.100(Ft.) Flow(q) thru subarea = 1.206(CFS) Depth of flow = 0.068(Ft.), Average velocity = 15.222(Ft/s) Channel flow top width = 1.302(Ft.) Flow Velocity = 15.22(Ft/s) Travel time = 0.58 min. Time of concentration = 10.87 min. Critical depth = 0.293(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 4.790(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 2.112(CFS) for 0.980(Ac.) Total runoff = 2.224(CFS) Total area = 1.03(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 209.000 to Point/Station 209.000 **** StJBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration = 10.87 min. Rainfall intensity = 4.790(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 0.560(CFS) for 0.260(Ac.) Total runoff = 2.785(CFS) Total area = 1.29(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 209.000 to Point/Station 210.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 380.00(Ft.) Downstream point elevation = 369.00(Ft.) Channel length thru subarea = 180.00(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 3.702(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 3.702(CFS) Depth of flow = 0.205(Ft.), Average velocity = 7.496(Ft/s) Channel flow top width = 2.820(Ft.) Flow Velocity = 7.50(Ft/s) Travel time = 0.40 min. Time of concentration = 11.27 min. Critical depth = 0.410(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Rainfall intensity = 4.680 (In/Hr) for a 100.0 year stom Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 1.790(CFS) for 0.850(Ac.) Total runoff = 4.575(CFS) Total area = 2.14(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 210.000 to Point/Station 210.000 **** StJBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [RtJRAL (greater than 1/2 acre) area type ] Time of concentration = 11.27 min. Rainfall intensity = 4.680(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.450 Subarea runoff = 2.106(CFS) for 1.000(Ac.) Total runoff = 6.680(CFS) Total area = 3.14(Ac.) I-++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 211.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 366.00(Ft.) Downstream point/station elevation = 363.33(Ft.) Pipe length = 266.00(Ft.) Manning's N = 0.010 No. of pipes = 1 Required pipe flow = 6.680(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.680(CFS) Normal flow depth in pipe = 8.87(In.) Flow top width inside pipe = 18.00(In.) Critical Depth = 12.00(In.) Pipe flow velocity = 7.69(Ft/s) Travel time through pipe = 0.58 min. Time of concentration (TC) = 11.85 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ lOZ Process from Point/Station 211.000 to Point/Station 212.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 363.00(Ft.) Downstream point/station elevation = 359.63(Ft.) Pipe length = 343.35(Ft.) Manning's N = 0.010 No. of pipes = 1 Required pipe flow = 6.680(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.680(CFS) Normal flow depth in pipe = 8.93(In.) Flow top width inside pipe = 18.00(In.) Critical Depth = 12.00(In.) Pipe flow velocity = 7.63(Ft/s) Travel time through pipe = 0.75 min. Time of concentration (TC) = 12.60 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 212.000 to Point/Station 212.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 12.60 min. Rainfall intensity = 4.356(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 30.662(CFS) for 7.410(Ac.) Total runoff = 37.342(CFS) Total area = 10.55(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 212.000 to Point/Station 205.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 359.60(Ft.) Downstream point/station elevation = 346.50(Ft.) Pipe length = 72.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Recjuired pipe flow = 37.342 (CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 37.342(CFS) Normal flow depth in pipe « 10.38(In.) Flow top width inside pipe = 23.78(In.) Critical depth could not be calculated. Pipe flow velocity = 28.68(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 12.64 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 212.000 to Point/Station 205.000 **** CONFLtJENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 10.550(Ac.) Runoff from this stream = 37.342(CFS) Time of concentration = 12.64 min. Rainfall intensity = 4.346(In/Hr) Summary of stream data: 103 stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 29.834 16.69 3.632 2 37.342 12.64 4.346 Qmax(1) Qmax(2) = 1.000 * 1.000 * 29.834) + 0.836 * 1.000 * 37.342) + = 61.041 1.000 * 0.757 * 29.834) + 1.000 * 1.000 * 37.342) + = 59.929 Total of 2 streams to confluence: Flow rates before confluence point: 29.834 37.342 Maximum flow rates at confluence using above data: 61.041 59.929 Area of streams before confluence: 9.270 10.550 Results of confluence: Total flow rate = 61.041(CFS) Time of concentration = 16.692 min. Effective stream area after confluence = 19.820(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 205.000 to Point/Station 213.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 346.00(Ft.) Downstream point/station elevation = 320.67(Ft.) Pipe length = 167.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Recjuired pipe flow = 61.041 (CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 61.041(CFS) Normal flow depth in pipe = 12.87(In.) Flow top width inside pipe = 29.70(In.) Critical depth could not be calculated. Pipe flow velocity = 30.37(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 16.78 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 213.000 to Point/Station 220.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 320.34(Ft.) Downstream point/station elevation = 320.00(Ft.) Pipe length = 17.18(Ft.) Manning's N = 0.013 No. of pipes = 1 Recjuired pipe flow = 61.041 (CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 61.041(CFS) Normal flow depth in pipe = 26.53(In.) Flow top width inside pipe = 19.19(In.) Critical depth could not be calculated. Pipe flow velocity = 13.28(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 16.81 min. End of computations, total study area = 19.82 (Ac.) CO r ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * PALOMAR FORUM * * MELROSE DR * * 12-4-02 C:\AES2001\HYDROSOFT\RATCSX\FORMEL.RES * ************************************************************************** FILE NAME: FORMEL.DAT TIME/DATE OF STUDY: 11:21 12/04/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 220.00- 9.00* 3842.85 } FRICTION DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 213.50-9.06* 3860.66 } JUNCTION 213.00- } FRICTION 205.50- } JUNCTION 205.00- } FRICTION 8.82* 3786.67 } HYDRAULIC JUMP 2.40*Dc 1841.38 5.05* 1517.59 } HYDRAULIC JUMP 204.50- } JUNCTION 204.00- } FRICTION 206.50- } JUNCTION 206.00- } FRICTION 222.50- } JUNCTION 222.00- } FRICTION 221.00- 1.86*Dc 2.74 1.41 Dc 1.41 Dc 1.41 Dc 1.64 1.26*Dc 645.46 483.92 281.26 281.26 281.26 234.81 211.90 1.21 1.14 1.12 2.40*Dc 0. 96 1.86*Dc 0. 67* 0.72* 0.72* 1.20* 0.82* 1.26*Dc 3131.95 3361.06 3432.96 1841.38 1038.49 645.46 499.78 455.95 461.02 290.93 267.84 211.90 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST 10(0 CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 220.00 FLOWLINE ELEVATION = 320.00 PIPE FLOW = 61.00 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 329.000 FEET NODE 220.00 : HGL = < 329.000>;EGL= < 331.398>;FLOWLINE= < 320.000> ****************************************************************************** FLOW PROCESS FROM NODE 220.00 TO NODE 213.50 IS CODE = 1 UPSTREAM NODE 213.50 ELEVATION = 320.34 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 61.00 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 18.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 61.00)/( 410.175))**2 = 0.02212 HF=L*SF = ( 18.00)* (0.02212) = 0.398 NODE 213.50 : HGL = < 329.398>;EGL= < 331.796>;FLOWLINE= < 320.340> ****************************************************************************** FLOW PROCESS FROM NODE 213.50 TO NODE 213.00 IS CODE = 5 UPSTREAM NODE 213.00 ELEVATION = 320.67 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 61.00 30.00 0.00 320.67 2.40 12.427 DOWNSTREAM 61.00 30.00 - 320.34 2.40 12.427 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 o.OO===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02212 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02212 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02212 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.088 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.088)+( 0.000) = 0.088 NODE 213.00 : HGL = < 329.487>;EGL= < 331.884>;FLOWLINE= < 320.670> ****************************************************************************** FLOW PROCESS FROM NODE 213.00 TO NODE 205.50 IS CODE = 1 UPSTREAM NODE 205.50 ELEVATION = 34 6.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 61.00 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 167.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS 101 NORMAL DEPTH(FT) = 1.07 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.40 2.40 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: :E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ )L (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN: 0.000 2. 398 12. 597 4 . 864 1841.38 0.058 2. 345 12. 752 4 . 871 1843.67 0.218 2. 292 12. 938 4 . 892 1849.96 0.478 2. 239 13. 154 4. 927 1860.01 0.841 2. 186 13. 398 4 . 975 1873.72 1.313 2. 133 13. 672 5. 037 1891.13 1.903 2. 079 13. 974 5. 114 1912.32 2.623 2. 026 14 307 5. 207 1937.44 3.490 1. 973 14 673 5 318 1966.69 4.524 1. 920 15 072 5 450 2000.33 5.749 1 867 15 508 5 604 2038.64 7.197 1 814 15 983 5 783 2081.99 8.908 1 761 16 501 5 992 2130.79 10.931 1 708 17 065 6 233 2185.50 13.329 1 655 17 681 6 512 2246.71 16.188 1 602 18 .354 6 836 2315.04 19.619 1 549 19 .089 7 211 2391.25 23.775 1 .496 19 .896 7 .646 2476.21 28.875 1 . 443 20 .781 8 . 153 2570.96 35.240 1 .390 21 .755 8 .744 2676.70 43.371 1 .337 22 .831 9 . 436 2794.86 54.116 1 .284 24 .023 10 .250 2927.13 69.064 1 .231 25 .347 11 .213 3075.55 91.802 1 . 178 26 .825 12 .358 3242.56 133.850 1 .124 28 .481 13 .728 3431.12 167.000 1 . 124 28 .498 13 .742 3432.96 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 8.82 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 8.817 12.427 11.214 3786.67 48 .754 2.500 12.427 4.898 1851.87 2.50 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY FT) MOMENTUM(POUNDS 4f S.754 2.500 12.423 4 898 1851.87 4f 5.781 2.496 12.424 4 894 1850.80 4f 5.805 2.492 12.427 4 891 1849.86 4f 3.826 2.488 12.430 4 889 1849.01 4E 3.845 2.484 12.434 4 886 1848.23 m 48. 863 2. 480 12 438 4 . 884 1847 51 48 880 2. 476 12 443 4 . 881 1846 84 48 895 2. 472 12 448 4 . 879 1846 23 48 909 2. 468 12 454 4 . 878 1845 66 48 923 2. 464 12 460 4 . 876 1845 13 48 935 2. 460 12 466 4 . 874 1844 65 48 946 2. 456 12 473 4. 873 1844 20 48 956 2. 452 12 479 4 . 872 1843 79 48 965 2. 448 12 487 4 . 870 1843 42 48 974 2. 444 12 494 4 . 869 1843 08 48 981 2. 440 12 502 4 . 868 1842 78 48 988 2. 436 12 510 4 . 867 1842 50 48 994 2. 432 12 518 4 . 866 1842 26 48 999 2. 428 12 527 4 . 866 1842 05 49 004 2. 424 12 536 4 . 865 1841 87 49 007 2. 420 12 545 4 . 865 1841 72 49 Oil 2. 416 12 554 4 . 864 1841 60 49 013 2. 411 12 564 4 . 864 1841 50 49 015 2. 407 12 573 4. 864 1841 44 49 016 2. 403 12 583 4. 864 1841 40 49 016 2. 399 12 593 4 . 864 1841 38 167 000 2. 399 12 593 4 . 864 1841 38 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 8.93 FEET UPSTREAM OF NODE 213.00 | I DOWNSTREAM DEPTH = 7.660 FEET, UPSTREAM CONJUGATE DEPTH = 1.124 FEET | NODE 205.50 : HGL = < 348.398>;EGL= < 350.8 64>;FLOWLINE= < 346.000> ****************************************************************************** FLOW PROCESS FROM NODE 205.50 TO NODE 205.00 IS CODE = 5 UPSTREAM NODE 205.00 ELEVATION = 346.33 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 29.90 30.00 90.00 346.33 1.86 6.091 DOWNSTREAM 61.00 30.00 - 346.00 2.40 12.597 LATERAL #1 31.10 24.00 0.00 346.50 1.88 9.899 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00531 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01927 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01229 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.04 9 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.095)+( 0.000) = 1.095 NODE 205.00 : HGL = < 351.382>;EGL= < 351.958>;FLOWLINE= < 346.330 ****************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 204.50 IS CODE = 1 UPSTREAM NODE 204.50 ELEVATION = 365.20 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 29.90 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 302.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.92 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.86 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.86 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 1.864 7 . 616 2. 765 645. 46 0. 028 1.826 7 . 779 2. 767 645. 85 0. 118 1.789 7. 953 2. 772 647 . 02 0. 275 1.751 8. 138 2. 780 649. 03 0. 508 1.714 8 . 335 2. 793 651. 92 0. 827 1. 676 8. 544 2. 810 655. 73 1. 242 1.638 8. 766 2. 833 660. 53 1. 766 1.601 9. 003 2. 860 666. 37 2. 415 1.563 9. 256 2. 894 673. 33 3. 208 1.526 9 525 2 935 681 46 4 . 167 1.488 9 812 2 984 690 87 5 320 1.451 10 119 3 042 701 64 6 701 1.413 10 448 3 109 713 88 8 353 1.375 10 800 3 188 727 69 10 330 1.338 11 178 3 279 743 22 12 704 1.300 11 584 3 386 760 61 15 568 1.263 12 .022 3 .508 780 02 19 .050 1.225 12 .494 3 .651 801 .66 23 .333 1.188 13 .004 3 .815 825 .73 28 .681 1.150 13 .557 4 .006 852 .48 35 .509 1.113 14 . 157 4 .227 882 .22 44 .512 1.075 14 .811 4 .483 915 .26 56 .999 1.037 15 .524 4 .782 952 .01 75 .911 1.000 16 .306 5 .131 992 .90 110 .690 0.962 17 .165 5 .540 1038 .49 302 .000 0.962 17 . 165 5 .540 1038 .49 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 5.05 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE CONTROL(FT) HEAD(FT) 0.000 5.052 44.644 2.500 VELOCITY (FT/SEC) 6.091 6.091 SPECIFIC ENERGY(FT) 5.628 3.076 PRESSURE+ MOMENTUM(POUNDS) 1517.59 735.82 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: HO DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 44.644 2.500 6.089 3.076 735.82 45.053 2.475 6.100 3.053 728.65 45.431 2.449 6.119 3.031 722.00 45.788 2.424 6.144 3.010 715.72 46.129 2.398 6.174 2.991 709.75 46.455 2.373 6.208 2.972 704.06 46.768 2.347 6.246 2.954 698.63 47.068 2.322 6.288 2.936 693.47 47.355 2.296 6.333 2.920 688.56 47.630 2.271 6.381 2.904 683.89 47.892 2.246 6.433 2.889 679.48 48.142 2.220 6.488 2.874 675.31 48.379 2.195 6.546 2.860 671.40 48.603 2.169 6.607 2.848 667.73 48.813 2.144 6.672 2.835 664.33 49.010 2.118 6.740 2.824 661.19 49.192 2.093 6.811 2.814 658.31 49.359 2.067 6.885 2.804 655.70 49.510 2.042 6.964 2.795 653.37 49.644 2.017 7.045 2.788 651.33 49.761 1.991 7.130 2.781 649.57 49.860 1.966 7.219 2.775 648.12 49.939 1.940 7.312 2.771 646.97 49.997 1.915 7.409 2.768 646.14 50.033 1.889 7.510 2.766 645.63 50.045 1.864 7.616 2.765 645.46 302.000 1.864 7.616 2.765 645.46 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 27.36 FEET UPSTREAM OF NODE 205.00 | I DOWNSTREAM DEPTH = 3.488 FEET, UPSTREAM CONJUGATE DEPTH = 0.962 FEET | NODE 204.50 : HGL = < 367.064>;EGL= < 367.965>;FLOWLINE= < 365.200> ****************************************************************************** FLOW PROCESS FROM NODE 204.50 TO NODE 204.00 IS CODE = 5 UPSTREAM NODE 204.00 ELEVATION = 365.70 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 15.20 24.00 0.00 365.70 1.41 16.422 DOWNSTREAM 29.90 30.00 - 365.20 1.86 7.618 LATERAL #1 8.70 18.00 90.00 365.87 1.14 6.028 LATERAL #2 6.00 18.00 90.00 365.87 0.95 5.110 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07648 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00648 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.0414 8 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.166 FEET ENTRANCE LOSSES = 0.000 FEET IK JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.594) +( 0.000) = 2.594 NODE 204.00 HGL = < 366.371>;EGL= < 370.559>;FLOWLINE= < 365.700 ****************************************************************************** FLOW PROCESS FROM NODE 204.00 TO NODE 206.50 IS CODE = 1 UPSTREAM NODE 206.50 ELEVATION = 389.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 15.20 CFS PIPE DIAMETER 24.00 INCHES PIPE LENGTH = 308.00 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0 .67 CRITICAL DEPTH(FT) 1.41 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.72 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0 .000 0. 724 14 821 4 137 455. 95 1 .330 0. 722 14 881 4 162 457 . 59 2 .725 0. 719 14 942 4 188 459. 24 4 .189 0. 717 15 003 4 215 460. 91 5 .729 0. 715 15 065 4 241 462. 59 7 .353 0. 713 15 127 4 268 464 . 29 9 .070 0. 711 15 190 4 296 466. 00 10 .889 0. 709 15 253 4 324 467 . 73 12 .823 0. 706 15 317 4 352 469. 47 14 .885 0. 704 15 381 4 380 471. 23 17 .091 0. 702 15 446 4 409 473. 00 19 . 462 0. 700 15 511 4 438 474 . 79 22 .023 0. 698 15 577 4 468 476. 59 24 .803 0. 696 15 643 4 497 478 . 41 27 .842 0. 693 15 709 4 528 480. 24 31 .187 0. 691 15 777 4 559 482. 09 34 .906 0. 689 15 844 4 590 483. 96 39 .084 0. 687 15 913 4 621 485. 84 43 .846 0. 685 15 981 4 653 487. 74 49 .373 0. 683 16 051 4 685 489. 65 55 . 943 0. 680 16 121 4 .718 491. 59 64 .028 0. 678 16 191 4 .751 493. 53 74 .505 0. 676 16 262 4 .785 495. 50 89 .353 0. 674 16 334 4 .819 497. 48 114 . 914 0. 672 16 406 4 .854 499. 48 308 .000 0. 671 16 417 4 .859 499. 78 NODE 206.50 : HGL = < 390.224>;EGL= < 393.637>;FLOWLINE= < 389.500> ****************************************************************************** FLOW PROCESS FROM NODE 206.50 TO NODE 206.00 IS CODE = 5 UPSTREAM NODE 206.00 ELEVATION = 389.83 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 112 UPSTREAM 15.20 24.00 0.00 389.83 1.41 DOWNSTREAM 15.20 24.00 - 389.50 1.41 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== 15.012 14.825 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)* 16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05965 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05763 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05864 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.235 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.410)+( 0.000) = 0.410 NODE 206.00 HGL = < 390.547>;EGL= < 394.046>;FLOWLINE= < 389.830> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 222.50 206.00 TO NODE ELEVATION = 222.50 IS CODE = 1 410.37 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.20 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 315.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0 .70 CRITICAL DEPTH(FT) 1.41 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.20 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 1. 202 7. 702 2. 124 290.93 0 325 1. 182 7. 859 2. 142 293.11 0 700 1. 162 8. 023 2. 162 295.55 1 131 1. 142 8 195 2. 186 298.26 1 624 1. 122 8 375 2 212 301.26 2 186 1. 102 8 563 2 241 304.57 2 826 1. 082 8 761 2 274 308.19 3 553 1. 062 8 968 2 311 312.14 4 379 1. 042 9 186 2 353 316.45 5 318 1. 022 9 414 2 399 321.14 6 386 1. 002 9 654 2 450 326.22 7 605 0. 981 9 907 2 507 331.72 8 .998 0. 961 10 174 2 570 337.67 10 .596 0. 941 10 454 2 639 344.10 12 . 439 0. 921 10 751 2 717 351.04 14 .577 0. 901 11 064 2 803 358.52 17 .077 0. 881 11 396 2 899 366.59 20 .031 0. 861 11 746 3 005 375.29 23 .564 0. 841 12 119 3 123 384.65 27 .864 0. 821 12 514 3 254 394.75 33 .223 0. 801 12 .934 3 400 405.63 40 .125 0. 781 13 .381 3 563 417.37 lis 49 486 0 761 13 859 3 745 430 03 63 359 0 740 14 368 3 948 443 71 88 333 0 720 14 914 4 176 458 48 315 000 0 717 15 007 4 216 461 02 NODE 222.50 : HGL = < 411.572>;EGL= < 412.494>;FLOWLINE= < 410.370> ****************************************************************************** FLOW PROCESS FROM NODE 222.50 TO NODE 222.00 IS CODE = 5 UPSTREAM NODE 222.00 ELEVATION = 410.70 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 12.30 15.20 2.90 0.00 0.00- DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT. 24.00 24 . 00 18.00 0.00 0.00 90.00 0.00 410.70 410.37 411.20 0.00 1.26 1.41 0. 65 0.00 VELOCITY (FT/SEC) 10.149 7 . 704 3. 976 0.000 ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS{DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01689 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.068 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.625)+( 0.000) = 0.625 ,02383 ,00994 0.000 FEET NODE 222.00 : HGL = < 411.520>;EGL= < 413.119>;FLOWLINE= < 410.700> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 221.00 222.00 TO NODE 221.00 IS CODE = 1 ELEVATION = 416.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 12.30 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 226.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.80 CRITICAL DEPTH(FT) = 1.26 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.26 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.260 5.896 1. 800 211.90 0.026 1.242 5.997 1. 801 211.97 0.109 1.224 6.103 1. 803 212.18 0.254 1.206 6.213 1. 805 212.52 0.467 1.187 6.328 1. 809 213.02 0.756 1.169 6.448 1. 815 213.67 1.131 1.151 6.572 1. 822 214.48 1.601 1.132 6.702 1. 830 215.46 114 2 .179 1. 114 6. 837 1.840 216 61 2.878 1. 096 6. 978 1.852 217 95 3.718 1. 077 7 . 126 1.866 219 .47 4 .717 1. 059 7. 280 1.883 221 .19 5. 903 1. 041 7 441 1.901 223 . 12 7 . 307 1 023 7 609 1. 922 225 .27 8.969 1 004 7 785 1.946 227 .65 10.943 0 986 7 970 1. 973 230 .27 13.295 0 968 8 163 2.003 233 . 14 16.121 0 949 8 366 2.037 236 .28 19.551 0 931 8 579 2.075 239 .71 23.776 0 913 8 803 2.117 243 .44 29.096 0 895 9 039 2.164 247 .48 36.009 0 876 9 287 2.216 251 . 87 45.452 0 858 9 549 2.275 256 .61 59.531 0 .840 9 .825 2.339 261 .74 85.001 0 .821 10 .116 2.411 267 .28 226.000 0 .820 10 .145 2.419 267 .84 221.00 HGL = < 417 7 60>;EGL= < 418.300>;FLOWLINE= < 416. 500> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 221.00 FLOWLINE ELEVATION = 416.50 ASSUMED UPSTREAM CONTROL HGL = 417.76 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 115 »«'>iiii»#iSaiiiftgitilll ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * PALOMAR FORUM * * SD CROSSING AT 25+54 MELROSE * * 12-4-02 C:\AES2001\HYDROSOFT\RATSDX\MEL2554.RES * ************************************************************************** FILE NAME: MEL2554.DAT TIME/DATE OF STUDY: 11:33 12/04/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 1631.40 219.00- } FRICTION 218.50- } JUNCTION 218.00- } FRICTION 217.50- } JUNCTION 217.OO- IS.00* 14.86* 1615.91 } FRICTION 216.00- 14.55* 1581.71 } HYDRAULIC JUMP 1.05*Dc 118.56 1.49* 101.78 ) HYDRAULIC JUMP 0.79*Dc 57.80 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 228.71 0.47 0.42 0.39 1.05*Dc 0.44 0.79*DG 267.81 291.32 118.56 87.54 57.80 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 219.00 FLOWLINE ELEVATION = 314.00 PIPE FLOW = 7.40 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 329.000 FEET NODE 219.00 HGL < 329.000>;EGL= < 329. 272>; FLOWLINE= < 314.000 ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 218.50 219.00 TO NODE 218.50 IS CODE = 1 ELEVATION = 314.20 (FLOW IS UNDER PRESSURE) 11(0 CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.40 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 12.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 7.40)/( 105.029))**2 = 0.00496 HF=L*SF = ( 12.00)*(0.00496) = 0.060 NODE 218.50 : HGL = < 329.060>;EGL= < 329.332>;FLOWLINE= < 314.200> ****************************************************************************** FLOW PROCESS FROM NODE 218.50 TO NODE 218.00 IS CODE = 5 UPSTREAM NODE 218.00 ELEVATION = 314.53 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 7.40 18.00 0.00 314.53 1.05 4.187 DOWNSTREAM 7.40 18.00 - 314.20 1.05 4.188 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 o.OO===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00496 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00496 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00496 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.020 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.020)+( 0.000) = 0.020 NODE 218.00 : HGL = < 329.079>;EGL= < 329.352>;FLOWLINE= < 314.530 ****************************************************************************** FLOW PROCESS FROM NODE 218.00 TO NODE 217.50 IS CODE = 1 UPSTREAM NODE 217.50 ELEVATION = 334.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.40 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 67.50 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.37 CRITICAL DEPTH(FT) = 1.05 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.05 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.054 5.578 1.537 118.56 0.005 1.026 5.743 1.539 118.68 0.022 0.999 5.920 1.543 119.05 0.052 0.971 6.111 1.551 119.68 117 0. 096 0. 944 6.318 1. 564 120. 61 0. 158 0. 916 6.541 1. 581 121. 84 0. 239 0 889 6.783 1. 604 123. 41 0. 344 0 861 7.046 1. 633 125. 34 0. 476 0 834 7.331 1. 669 127 . 66 0 639 0 806 7. 642 1. 714 130. 43 0 841 0 779 7.981 1. 769 133. 67 1 088 0 751 8.352 1. 835 137 . 44 1 391 0 724 8.759 1. 916 141. 80 1 760 0 697 9.208 2. 014 146. 82 2 213 0 669 9.703 2. 132 152. 59 2 771 0 642 10.253 2. 275 159. 20 3 461 0 614 10.865 2. 448 166. 78 4 324 0 587 11.550 2. 659 175. 47 5 416 0 559 12.320 2. 918 185. 46 6 822 0 532 13.191 3. 235 196. 95 8 677 0 504 14.182 3. 629 210. 24 11 207 0 477 15.317 4 . 122 225. 66 14 843 0 449 16.627 4. 745 243. 66 20 557 0 422 18.153 5. 542 264. 82 31 484 0 394 19.948 6. 577 289. 90 67 500 0 393 20.049 6. 639 291. 32 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 14.55 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 14 .549 4. 188 14 . 822 1581 71 46 .033 1 .500 4 . 188 1. 772 142 75 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 46 .033 1 .500 4. 186 1. 772 142 75 46 .092 1 .482 4. 195 1. 756 140 92 46 . 147 1 .464 4. 212 1. 740 139 20 46 .199 1 . 446 4. 234 1. 725 137 56 46 .250 1 .429 4. 260 1. 711 135 99 46 .299 1 .411 4. 290 1. 697 134 49 46 .346 1 .393 4. 323 1. 683 133 06 46 .392 1 .375 4 . 360 1. 670 131 68 46 .436 1 .357 4 . 399 1. 658 130 37 46 .478 1 .339 4. 442 1. 646 129 11 46 .518 1 .321 4 . 488 1. 634 127 92 46 .557 1 .304 4 . 536 1. 623 126 80 46 .594 1 .286 4. 588 1. 613 125 73 46 .629 1 .268 4. 643 1. 603 124 73 46 .663 1 .250 4. 701 1. 593 123 80 46 . 694 1 .232 4. 762 1. 585 122 94 46 .723 1 .214 4. 827 1. 576 122. 15 IIS 46. 750 1.196 4 895 1.569 121 42 46 774 1.179 4 967 1.562 120 78 46 796 1.161 5 042 1. 556 120 21 46 815 1.143 5 121 1.550 119 72 46 831 1.125 5 203 1.546 119 31 46 844 1.107 5 290 1.542 118 99 46 854 1.089 5 382 1.539 118 75 46 860 1.071 5 478 1. 538 118 61 46 862 1.054 5 578 1.537 118 .56 67 500 1.054 5 578 1.537 118 .56 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 41.75 FEET UPSTREAM OF NODE 218.00 | I DOWNSTREAM DEPTH = 2.715 FEET, UPSTREAM CONJUGATE DEPTH = 0.409 FEET | NODE 217.50 HGL < 335.054>;EGL= < 335.537>;FLOWLINE= < 334.000> ****************************************************************************** FLOW PROCESS FROM NODE 217.50 TO NODE 217.00 IS CODE = 5 UPSTREAM NODE 217.00 ELEVATION = 334.33 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 4.30 7.40 0.00 0.00 3.10= DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 18.00 0.00 334.33 18.00 - 334.00 0.00 0.00 0.00 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== 0.79 1.05 0.00 0.00 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = DOWNSTREAM: MANNING'S N = AVERAGED FRICTION SLOPE IN JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = FRICTION SLOPE = FRICTION SLOPE = ASSUMED AS 0.00429 0.01300; 0.01300; JUNCTION 4.00 FEET 0.017 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES ( 0.277)+( 0.097) = 0.374 00156 00702 VELOCITY (FT/SEC) 2.436 5.580 0.000 0.000 ENTRANCE LOSSES = 0.097 FEET NODE 217.00 HGL = < 335.819>;EGL= < 335.911>;FLOWLINE= < 334.330> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 216.00 217.00 TO NODE ELEVATION = 216.00 IS CODE = 1 340.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.30 CFS PIPE DIAMETER = PIPE LENGTH = 106.50 FEET MANNING'S 18.00 INCHES N = 0.01300 0.79 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.43 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.7 9 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: :E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ DL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0. 000 0. 795 4 . 521 1. 112 57 . 80 0. Oil 0. 780 4. 628 1. 113 57. 83 0. 047 0. 766 4 . 740 1. 115 57. 93 0. 109 0. 751 4 . 858 1. 118 58. 09 0. 201 0. 736 4. 982 1. 122 58 32 0. 327 0 721 5 113 1. 128 58 63 0. 492 0 707 5 250 1. 135 59 02 0 699 0 692 5 395 1 144 59 48 0 955 0 677 5 548 1 156 60 04 1 268 0 663 5 709 1 169 60 68 1 646 0 648 5 880 1 185 61 43 2 099 0 633 6 061 1 204 62 27 2 640 0 619 6 252 1 226 63 23 3 285 0 604 6 455 1 251 64 30 4 056 0 589 6 672 1 281 65 50 4 977 0 575 6 902 1 315 66 84 6 085 0 560 7 147 1 353 68 32 7 426 0 545 7 408 1 398 69 96 9 068 0 531 7 689 1 449 71 77 11 .109 0 516 7 989 1 507 73 77 13 .701 0 .501 8 311 1 574 75 97 17 .101 0 .486 8 .657 1 651 78 40 21 .789 0 .472 9 .031 1 739 81 07 28 .846 0 . 457 9 .435 1 840 84 01 41 .740 0 .442 9 .872 1 957 87 25 106 .500 0 .441 9 .912 1 .968 87 54 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.49 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 1 489 2 .435 1 .581 101. 78 0 .515 1 461 2 .450 1 .554 98. 86 1 .020 1 433 2 .471 1 .528 96. 01 1 .516 1 406 2 .498 1 .503 93. 23 2 .004 1 378 2 .530 1 .477 90. 54 2 .485 1 350 2 .566 1 . 452 87. 91 2 . 959 1 322 2 . 606 1 .428 85. 37 3 .425 1 .295 2 .651 1 .404 82. 91 3 .884 1 .267 2 .700 1 .380 80. 53 4 .334 1 .239 2 .753 1 .357 78. 25 4 .775 1 .211 2 .811 1 .334 76. 05 5 .207 1 .184 2 .874 1 .312 73. 96 5 . 627 1 . 156 2 .942 1 .290 71. 96 6 .036 1 .128 3 .015 1 .269 70. 07 6 .432 1 .100 3 .094 1 .249 68. 29 6 .814 1 .073 3 .179 1 .230 66. 63 7 .178 1 .045 3 .271 1 .211 65. 08 7 .524 1 .017 3 .370 1 . 193 63. 67 7 .848 0 .989 3 .477 1 .177 62. 38 120 8 148 0. 961 3.593 1.162 61 23 8 420 0. 934 3.717 1.148 60 24 8 658 0.906 3.853 1.137 59 40 8 858 0.878 3.999 1.127 58 72 9 013 0.850 4.158 1.119 58 22 9 114 0.823 4.332 1.114 57 91 9 150 0.795 4.521 1.112 57 80 106 500 0.795 4.521 1.112 57 80 END OF HYDRAULIC JUMP I PRESSURE+MOMENTUM BALANCE OCCURS AT 2.56 FEET UPSTREAM OF NODE 217.00 | I DOWNSTREAM DEPTH = 1.346 FEET, UPSTREAM CONJUGATE DEPTH = 0.441 FEET | NODE 216.00 : HGL = < 340.795>;EGL= < 341.112>;FLOWLINE= < 340.000> ***********************************************************************.j..j^.^.^..^..^..^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 216.00 FLOWLINE ELEVATION = 340.00 ASSUMED UPSTREAM CONTROL HGL = 340.79 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 121 TEMPORARY OFF-SITE DRAINAGE SECONDARY ACCESS ROAD 122 ^ c •ifr 123 •is Pr; g TP "i^. g> -S^^U-^ F^c^u^ JU^ 1^^^!^,!-^ 124 ^ ft- 3 ?(Pj^ pi.g.r. . '<^^ < - 11.9 >^,^. AP-&/^ OJ \^^C>^i^, 3.^^ / y^T^r - / ^ lie -Ht- 1 f H —^ / ^ i — — . j 1 ! i L I j 1- 1 *- j i j- i ^. j L j. -rH- -1.^ Pr^ /(T:^ -m:? pr M ATA . Jc/ P?- t 1 -rfc> Pr IX ^ P/P_^ T=L-r-^ 121 ,ii OfT ^_ ill pr -r^ ^ i~? u- Soa -nr- 1^ ':>^^>oy/ra.^^)'^^' ^.^.cr- "tr ii; -Ui ^ ;i e.R LL ,—_— i|l PT- l^r -r^ pr. P<P;=^ 7=l,o<^ 128 *** *************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * * (Tel) 760-931-7700 (Fax) 760-931-8680 * * I ****** ****** *** * * * *** * * * *** *** *** |< ( 32.20') >| *** ***AAAAA^ g_ J g _ 32 ' ) '^'^'^•^A*** * * * * * * * * * * * * *** *** * * * * * * * * * * * * ****** * * Triangular Channel Flowrate 1.900 CFS Velocity 0.366 fps Depth of Flow 0.322 feet Critical Depth 0.155 feet Freeboard 0.000 feet Total Depth 0.322 feet Width at Water Surface .... 32.197 feet Top Width 32.197 feet Slope of Channel 2.000 % Left Side Slope 50.000 : 1 Right Side Slope 50.000 : 1 X-Sectional Area 5.183 sq. ft. Wetted Perimeter 32.203 feet AR'^(2/3) 1.534 Mannings 'n' 0.170 124 *** *************************************************************************** O'Day Consultants, Inc. 5900 Pasteur Ct., Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 18.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water I * * ( 14.24 in.) ( 1.187 ft.) I * * I * v_ Circular Channel Section Flowrate 12.000 CFS Velocity 8.003 fps Pipe Diameter 18.000 inches Depth of Flow 14.240 inches Depth of Flow 1.187 feet Critical Depth 1.312 feet Depth/Diameter (D/d) 0.791 Slope of Pipe 1.000 % X-Sectional Area 1.499 sq. ft. Wetted Perimeter 3.288 feet AR'^(2/3) 0.888 Mannings 'n' 0.011 Min. Fric. Slope, 18 inch Pipe Flowing Full 0.934 % pr (^) TO pr- 3> 130 *************************************************************************.***** * O'Day Consultants, Inc. * 5900 Pasteur Ct., Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 18.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water I ( 11.59 in.) ( 0.966 ft.) Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) . . . . Slope of Pipe X-Sectional Area Wetted Perimeter AR'^(2/3) Mannings 'n' Min. Fric. Slope, 18 inch Pipe Flowing Full 13. 100 CFS 10. 892 fps 18. 000 inches 11. 588 inches 0. 966 feet 1. 351 feet 0. 644 2. 000 % 1. 203 sq. ft 2. 794 feet 0. 68 6 0. Oil 1.113 % pr 3 h *** *************************************************************************** O'Day Consultants, Inc. 5900 Pasteur Ct., Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 18.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water * * ( 5.85 in.) ( 0.488 ft.) * * I * * I * v_ Circular Channel Section Flowrate 14.200 CFS Velocity 28.480 fps Pipe Diameter 18.000 inches Depth of Flow 5.854 inches Depth of Flow 0.488 feet Critical Depth 1.383 feet Depth/Diameter (D/d) 0.325 Slope of Pipe 25.000 % X-Sectional Area 0.4 98 sq. ft. Wetted Perimeter 1.821 feet AR"(2/3) 0.210 Mannings 'n' 0.011 Min. Fric. Slope, 18 inch Pipe Flowing Full 1.308 % pr. 132 ******************************************************************************* * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * * (Tel) 760-931-7700 (Fax) 760-931-8680 * Inside Diameter ( 18.00 in.) * * * * * * * AAAAAAAAAAAAAAAAAAAAA * Water * ( 6.85 in.) ( 0.571 ft.) * * Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Perimeter AR'^(2/3) Mannings 'n' Min. Fric. Slope, 18 inch Pipe Flowing Full 10 100 CFS 16 357 fps 18 000 inches 6 851 inches 0 571 feet 1 221 feet 0 381 7 000 % 0 617 sq. ft 1 994 feet 0 283 0 Oil 0 662 % 133 ** + *************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * * (Tel) 760-931-7700 (Fax) 760-931-8680 * *^^ Inside Diaraeter ( 18.00 in.) * * * * AAAAAAAAAAAAAAAAAAAAA Water * * ( 12.06 in.) ( 1.005 ft.) * I * * I v Circular Channel Section Flowrate 11.600 CFS Velocity 9.213 fps Pipe Diaraeter 18.000 inches Depth of Flow 12.063 inches Depth of Flow 1.005 feet Critical Depth 1.300 feet Depth/Diameter (D/d) 0.670 Slope of Pipe 1.400 % X-Sectional Area 1.259 sq. ft. Wetted Perimeter 2.877 feet AR"(2/3) 0.726 Mannings 'n' 0.011 Min. Fric. Slope, 18 inch Pipe Flowing Full 0.873 % \0 rc? pr. l\ 134 **-**************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * * (Tel) 760-931-7700 (Fax) 760-931-8680 * *^^ Inside Diameter ( 18.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water * * ( 13.33 in.) ( 1.111 ft.) I I * v_ Circular Channel Section Flowrate 13.200 CFS Velocity 9.405 fps Pipe Diameter 18.000 inches Depth of Flow 13.331 inches Depth of Flow 1.111 feet Critical Depth 1.356 feet Depth/Diameter (D/d) 0.741 Slope of Pipe 1.400 % X-Sectional Area 1.403 sq. ft. Wetted Perimeter 3.109 feet AR"(2/3) 0.826 Mannings 'n' 0.011 Min. Fric. Slope, 18 inch Pipe Flowing Full 1.130 % pr // TCP pr (Z 135 ****************************************************************************** O'Day Consultants, Inc. 5900 Pasteur Ct., Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 48.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water * * ( 8.04 in.) ( 0.670 ft.) * * I * * I * v_ Circular Channel Section Flowrate 10.600 CFS Velocity 7.651 fps Pipe Diameter 48.000 inches Depth of Flow 8.035 inches Depth of Flow 0.670 feet Critical Depth 0.953 feet Depth/Diameter (D/d) 0.167 Slope of Pipe 5.000 % X-Sectional Area 1.385 sq. ft. Wetted Perimeter 3.372 feet AR'^(2/3) 0.766 Mannings 'n' 0.024 Min. Fric. Slope, 48 inch Pipe Flowing Full 0.019 % pr. /5' I3(p **•* *************************************************************************** * O'Day Consultants, Inc. * * * 5900 Pasteur Ct., Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 18.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water I ( 11.19 in.) ( 0.932 ft.) 1 * v_ Circular Channel Section Flowrate 8.800 CFS Velocity 7.621 fps Pipe Diameter 18.000 inches Depth of Flow 11.187 inches Depth of Flow 0.932 feet Critical Depth 1.152 feet Depth/Diameter (D/d) 0.621 Slope of Pipe 1.000 % X-Sectional Area 1.154 sq. ft, Wetted Perimeter 2.724 feet AR''(2/3) 0.651 Mannings 'n' 0.011 Min. Fric. Slope, 18 inch Pipe Flowing Full 0.502 % pr. \y IS \31 **-*****************************************************************.^.^.^.J,^^J^^^^^ * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * * (Tel) 760-931-7700 (Fax) 760-931-8680 * Inside Diameter ( 18.00 in.) * Water * | I I I * * ( 4.85 in.) ( 0.404 ft.) I I * v_ Circular Channel Section Flowrate 8.800 CFS Velocity 22.956 fps Pipe Diameter 18.000 inches Depth of Flow 4.845 inches Depth of Flow 0.404 feet Critical Depth 1.149 feet Depth/Diameter (D/d) 0.269 Slope of Pipe 20.000 % X-Sectional Area 0.383 sq. ft. Wetted Perimeter 1.636 feet AR*(2/3) 0.146 Mannings 'n' 0.011 Min. Fric. Slope, 18 inch Pipe Flowing Full 0.502 % P7 "TO PT. I? INLET SIZING 134 JA^LRcys.e DR _ .Z'S,±S>.H.. (klL.^Qnh^y't'^ ^-JJ'SS to: •:,'^A Z^AAl tv^sx^ Q'f-h y=Al'l .1 Q/L -0.^2. .•^ L'- /3,z, _ _ [ U/i^: Z>^ '£-/' C,X, .'.S-TA .2/f /l _ .... 6;>=i7 ,.y-42y7 ..; ^/L-0,n l-^^Y•.1 U%e 2(o' 7Yr>r 'a-t'Ca- I4C pA_4P.,ii4r^, v4:^/SL.PM 7 RoA:0_ _ M0>£_.. Jol SrA- /"^l-tVY. U _.^7S^^ -_ai7 Q/_L = o._y L = IM' t^ie Z0\ TYi^^'S.-)' a, ; NA(>E_^ JZ^ SXA jMf^S, _ _ S.c^_/n i^^ ! c^^A^^OA'^l ' L-Ck2^' U'^__s' Type 'g'c.x. isrR0^f_r_ 'Al H^/e/^u^^ jbR -ri--- _ a^_^^ai3 ,4.^ _ Use 13' rrP£ ^d-j^ c,Z, [jy' oe^^_j>^<^y I" • • -— -. -. — - _ -. -. ' CPs: ^ /^c>v>u-SY - Hole: ^df /.V Co_^(>^7K^^ PR^(?RAi^_ \A I ', \ ' i 1 ! —"T" i i 1 i i y / 1 use /y' r//^i^ 's.-/' c.l. i/^^ 1^' TYP^ '^-I' C,7, I j • ,.i , . • • ^ ~~~ ' ' —— i f —^jjH^ i , f ——— , , — :ii : ^ ^.J i ! ^ \A0 ~ Sn-K^R7_^ 'X:^ ORlD/^_. j. MQ.Qe,, j_ ^I>^__ /^i 7 s: ^^^^ :ez i ^^jy\t^ , a:L5.Y^ __M^_ I i:_„ _ A/po^__ _i S o ZO-fO'^. plC 'LJ \ __^_^o/^J^_ _ 4. ajL^n^M/t-^j^ I ST^^^i^x.^ _:.6: P££AS.C/^ _ p_L __j/ooe-:_ n>_3, _ ^ZA__j/jtM-^^^-j?^-~^ li-^j^ A^AQS: i Q^it.O^ Q/u^l. A/ooe 103. STA ICl^-l&.Zl y _ . - ——. I... 1 •. 1 •.. -- • • • -. — -.- , •- . - - • . - • , , h -- - - L • — ' •• • ' —— — . _ \- .... .... - 1 • —11 —1 - i 1T lii -H- 444- San' Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 03/12/02 PARSTA.OUT INLET § NODE 125 ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 122.000 to Point/Station 123.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 105.00(Ft.) Highest elevation = 486.00(Ft.) Lowest elevation = 481.00(Ft.) Elevation difference = 5.00(Ft.) Time of concentration calculated by the urban areas overland flow raethod (App X-C) = 1.64 min. TC = [1.8*(l.l-C)*distance".5)/(% slope'^ (1/3) ] TC = [1.8*(l.l-0.9500)*(105.00^.5)/( 4.76^(1/3)]= 1.64 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.375(CFS) Total initial stream area = 0.050(Ac.) -I--H- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 123.000 to Point/Station 124.000 **** STREET FLOW TEIAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segraent elevation = 481.000(Ft.) End of street segment elevation = 462.000(Ft.) Length of street segment = 880.000(Ft.) 145 Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.190(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.751(Ft.) Flow velocity = 2.23(Ft/s) 0.663 (CFS) 2.232(Ft/s) Travel time = 6.57 min. Adding area flow to street Decimal fraction soil group Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group [INDUSTRIAL area type Rainfall intensity = TC = 11.57 min. A = 0.000 0.000 0.000 D = 1.000 ] year storm C = 0, 4.600 (In/Hr) for a 100.0 Runoff coefficient used for sub-area, Rational method,Q=KCIA, Subarea runoff = 6.687(CFS) for 1.530(Ac.) Total runoff = 7.062(CFS) Total area = 1.58(Ac.) Street flow at end of street = 7.062(CFS) Half street flow at end of street = 7.062(CFS) Depth of flow = 0.361(Ft.), Average velocity = 3.827 (Ft/s) Flow width (from curb towards crown)= 13.319(Ft.) 950 ++++++-).+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 124.000 to Point/Station 125.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** .000(Ft.) .500(Ft.) .) 6.0(In.) 26.000{Ft. Top of street segment elevation = 4 62 End of street segment elevation = 438 Length of street segment = 380.000(Ft Height of curb above gutter flowline = Width of half street (curb to crown) Distance from crown to crossfall grade break = 24.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at raidpoint of street = 7.934(CFS) Depth of flow = 0.321(Ft.), Average velocity = 5.864(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.321(Ft.) Flow velocity = 5.86(Ft/s) Travel time = 1.08 rain. TC = 12.65 min. 1% Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deaimal fraction soil group D = 1.000 [INDUSTRIAL area type Rainfall intensity = ] 4.343(In/Hr) for a 100.0 year storra Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff = 1.609(CFS) for 0.390(Ac.) Total runoff = 8. 671(CFS) Total area = Street flow at end of street = 8. 671(CFS) Half street flow at end of street = 8.671(CFS) Depth of flow = 0.330 (Ft.), Average velocity = 5. Flow width (from curb towards crown)= 11.730(Ft.) End of computations, total study area = 1. 1.97(Ac.) ,991(Ft/s) .97 (Ac.) 147 o m at I^L^t e IOoC£ IZS OEPTH OF FLpW-^-FEET 01 04 03 0« oa 10 .2 3 ^ J. FIGURE 27.5 I 1073.01 I 3 6 B 10., (b) . PARTIAL INTER CEPTION RATIO FOR INLETS OF LENGTH LESS THAN La CAPACITY OF CURB OPENING INLETS ON CONTINUOUS GRADE III-27.9 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 01/04/02 PALOMAR FORUM PROPOSED CONDITIONS P.A.R. NEAR MELROSE FORPAR.OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++++++++++++++++++++H Process from Point/Station 301.000 to Point/Station 302.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 ~~~ ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 50.00(Ft.) Highest elevation = 469.20(Ft.) Lowest elevation = 468.20(Ft.) Elevation difference = 1.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.52 min. TC = [1.8* (1.1-C) *distance'^.5) / (% slope'^ (1/3) ] TC = [1. 8* (1. 1-0. 9500) * ( 50.00^.5)/{ 2.00-^(1/3)]= 1.52 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.150(CFS) Total initial stream area = 0.020(Ac.) +++++ + ++++ +++ + + + + + + +++ + + + + + + +++++++++++ ++++++++++++++ + + + +++++++++ + -H-H+ Process from Point/Station 302.000 to Point/Station 303.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 468.200(Ft.) End of street segment elevation = 453.200(Ft.) Length of street segment = 920.000(Ft.) 14^ Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 51.000(Ft.) Distance from crown to crossfall grade break = 4 9.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.248(CFS) Depth of flow = 0.149(Ft.), Average velocity = 1.728(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.686(Ft.) Flow velocity = 1.73(Ft/s) Travel time = 8.87 min. TC = 13.37 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 4.092(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 5.054(CFS) for 1.300(Ac.) Total runoff = 5.204(CFS) Total area = 1.32(Ac.) Street flow at end of street = 5.204(CFS) Half street flow at end of street = 5.204(CFS) Depth of flow = 0.345{Ft.), Average velocity = 3.195(Ft/s) Flow width (from curb towards crown)= 12.481(Ft.) End of computations, total study area = 1.32 (Ac.) \50 CIVILDESIGN CORP. Consulting Engineers 250 S. Lena Rd. San Be"rnardino, CA 92408 (909)885-3806 Inside Diameter ( 18.00 in.) of ou T 103 AAAAAAAAAAAAAAAAAAAAA Water * * ( 7.35 in.) ( 0.612 ft.) I I * v_ Circular Channel Section Flowrate 5.200 CFS Velocity 7.660 fps Pipe Diameter 18.000 inches Depth of Flow 7.348 inches Depth of Flow 0.612 feet Critical Depth 0.877 feet Depth/Diameter (D/d) 0.408 Slope of Pipe 2.000 % X-Sectional Area 0.678 sq. ft. Wetted Perimeter 2.079 feet AR'^(2/3) 0.321 Mannings 'n' 0.013 Min. Fric. Slope, 18 inch Pipe Flowing Full 0.245 % 151 RIP-RAP 152 RlP- RAP Oyen ^LAAJiiaj of llz^'S^^v^i- 1 //oo^ ZZO /S3 B)P:.M^ X ^ l/.^_Zi? . 0^.__ FJ£=^_ ^71^. jJsA. ^_ i::ii./\?LS^_2^ Z /i^^^' LICA^ t7lLX9.f~^^l'^ I __._./rAcp^^ ^ _ __ T.'.liZXdt.^. ^ 7^c> i Af.(>is: _ _ J^''^/'^- <^?^ ^^/zt/^v^^-^f!^ _^ ^'/LZ'' C)^_<^'^'^ ^cA/^i^^y pf Y^^^A^u^C^ x^?- '^7^^MX-^ P f^^ ^l /'f 7P n IS. iji I. ~ .1 Pi/'^'^ ..E<^/>'^^^'^ ^7 ^1^". A&'^^^T-, . 7^/^. ^'^A.'^Av. p' .../^^.... ^ ?7.. K4 •200-1.6.1 Selection of Riprap afwl Flltw Blanket naterlal FROM: SPECIAL PR0VI51OMS RE&IOMAL STO. SPECS. (\9S2) 200-1.6 Stone for Riprap (p. 69) Adel- -The Individual classes of rocks used In slope protection shall conform to the following: PERCENTAGE LARGER TWN* 4 Ton 2 Ton 1 Ton 1/2 Ton 1/4 Ton 200 lb 75 Ib 25 lb 5 Ib 1 lb CLASSES 0-5 50-100 95-100 1/2 1/4 No. 2 1 Ton Ton Ton Backing E 0-5 50-100 0-5 50-100 0-5 95-100 50-100 95-10O —— 95-100 0-5 25-75 90-100 No. 3 0-5 25-75 90-100 j F liter Blanket (3) 1 Jpper Layer(s) Vel. IRock Ft/Sec Class (1) 1 (2) Riprap Thick- ness "V apt. 1 ( Sec. 200 (4) )pt. 2 Sec. 400 (4) Opt. 3 (5) -owor Layer (6) INO. 3 jBack- 6-7 ling .6 3/16" 02 D.G. — |NO. 2 Isack- 7-8 ling. 1.0 1/4" B3 D.G. — iFac- 8-9.5 Ing 1.4 3/8" — D.G. — 9.5-1l|Llght 2.0 1/2" 3/4", 1 1/2" P.B. — 1/4 11-13| Ton 2.7 3/4" ' — 3/4", 1 1/2" P.B. Sand 1 1/2 13-I5j Ton 3.4 1" 3/4", 1 1/2" P.B. Sand 15-l7jl Tor 1 4.3 1 1/2" __ Type B Sand 17-2012 Ten 1 - 5.4 2" — Type B Sand •The amount of mater 1 al sma11er ^'•- •r„rrock slooe size Iisted In the table for any class of rock slope orotectton shall not exceed the percentage IIm t uSld ^t^* +«ble determined on a -eight basis. rJ^Tlana -1th the percentage limit shown In the f^all other 'sizes of the 'ndlvldua pieces of anv class of rock slope protection shall be de- ?ir"ned " the ratio of the number ^^es larger than the smallest size listed In the table for that class. Practical use of this table Is limited to situations where "T" Is less than 0. (1) Average velocity In pipe or bottom velocity In energy dissipator, whichever Is greater. (2) If desired riprap and fliter blanket class Is not available, use next larger class. <3) Filter blanket thickness « 1 Foot or "T", which- ever Is less. (4) Standard Specifications for Public Works Con- struction. (5.) O.G. " Disintegrated Granite, 1 l»W to 10 |iW P.B. " Processed MiscelIaneous Base- Type B = Type B bedding material, (minimum 75J. crushed particles, lOOt passing 2 1/2" sieve, ]0% passing 1" sieve) (6) Sand 75% retained on #200 sieve. FIGURE .J9.7 III.304 \g5 Temporary Desilting Basin Calculations Palomar Forum J.N. 011010/5 Prepared By: O'DAY CONSULTANTS, INC. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 I5(D DESILTING BASIN CALCULATIONS SECTION DESCRIPTION 1 Surface Area Calculations 2 Soil Loss Calculations 3 Summary 4 Dewatering Calculation 5 Exhibits W:\MSOFFICE\WINWORD\011010\NPDESbasin. doc 157 SECTION 1 Surface Area Caiculations According to the Fact Sheet for Water Quality Order 99-08-DWQ issued by the State Water Resources Control Board (SWRCB), sediment basins shall, at a minimum, be designed and maintained as follows: Option 1: Pursuant to local ordinance for sediment basin design and maintenance, provided that the design efficiency is as protective or more protective of water quality than Option 3. OR Option 2: Sediment basin(s), as measured from the bottom of the basin to the principal outlet, shall have at least a capacity equivalent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length of the basin shall be more than twice the width of the basin. The length is determined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. OR Option 3: Sediment basin(s) shall be designed using the standard equation: As=1.2Q/Vs Where: As is the minimum surface area for trapping soil particles of a cert£un size; Vg is the settling velocity ofthe design particle size chosen; and Q=CxIxA where Q is the discharge rate measured in cubic feet per second; C is the runoff coefficient; I is the precipitation intensity for the 10-year, 6-hour rain event and A is the area draining into the sediment basin in acres. The design particle size shall be the smallest soil grain size determined by wet sieve analysis, or the fine silt sized (0.01 mm) particle, and the Vs used shall be 100 percent of the calculated settling velocity. The length is determined by measuring the distance between the inlet and the outlet; the length shall be more than twice the dimension as the width; the depth shall not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency (two feet of storage, two feet of capacity). The basin(s) shall be located on the site where it can be maintained on a year- round basis and shall be maintained on a schedule to retain the two feet of capacity; OR m Option 4: The use of an equivalent surface area design or equation, provided that the design efficiency is as protective or more protective of water quality than Option 3. Sediment basins for Palomar Forum were designed to satisfy the requirements of Option 3, using the following parameters: Appendix II-A-4 of the San Diego County Hydrology Manual gives the precipitation for a 10-year, 6-hour storm as 1.9 inches for this project. (See Exhibit "A") 1=1.9 inches/6 hours I = 0.32 inches/hour Appendix IX of the San Diego County Hydrology Manual gives the runoff coefficient for this project as C=0.45. (See Exhibit "B'O Table 8.1 of the Erosion and Sediment Control Handbook (See Exhibit "C") gives the settling velocity for a 0.01mm sized particle as Vs = 0.00024 feet/second. The San Diego County Soils Interpretation Study gives the soil classification for this project as "D". (See Exhibit "D") FOR BASIN CALCULA TION SUMMAR Y TABLE SEE SECTION 3. \(flC) SECTION 2 i(»t SOIL LOSS CALCULATIONS CHAPTER 5 OF THE EROSION AND SEDIMENT CONTROL HANDBOOK DISCUSSES CALCULATING SOIL LOSS WITH THE UNFVERSAL SOIL LOSS EQUATION (UU The KquaUon The fMMnl im of tiM «M<«wiri MA IM a^artiM IK A-AXKXLSXCXP where A - Mtl lou, Um$/fjten) (year) R - ninfaU erwUan iadn. ia 100 (t • toni/aen X in/hi K - mA wodiblUty factor, toaa/acM per unit ol It L8 - lifm laith —d tfwpmtm factot, ilimeniliinleM C- RAINFALL INDEX "R" RAINFALL EROSION INDEX "R" IS BASED ON THE GEOGRAPHICAL 1 Fig. 5J DittributioD of ttorm type* in the United Statee. (4) Type U •tornw Ma»m^ ColonMliS Mnho, UoBt«u. New Mesice, UUk. and Wyominc in NevMia. 5.ia fiOO 500 a 400 wntCMtMi 25 25 3,0 3.5 4.0 P = 2-veaf. 6-hr rain, m 4.5 50 75 100 D - 2 vear. S hr rain, mm ciiifo^L 'olT'''""' ^-^^ The dUBmncK in peak intensity are i«f laeted in the cocSdento of the eqiw- lioni fnr the raiahit fBCtoc r«utt S.S is a graphical lapreientMian of the eque- tioiw. Hie equationt, al«o ihown on th* curva* for tech faidividiial storm type, are: «»27p** typen «»16.55p« typel S-lMj^ typelA "P" FOR THIS EQUATION IS THE PRECIPITATION FOR A 2-YEAR, 6-HOUR STORM EVENT. APPENDIX II-A-2 FROM THE SAN DIEGO COUNTY HYDROLOGY MANUAL GIVES P = 1.4 (SEE EXHIBIT "E") R = 16.55*P^2.2 = 16.55*1.4^2.2 = 34.7 SOIL FACTOR "K" FROM THE SOILS REPORT, THE SITE CONSISTS OF 47% SAND AND 53% CLAY AND SILT. ASSUMING HALF OF THE 53% IS CLAY, THE OTHER HALF SILT K = 0.26 (SEE TABLE BELOW) PERC RNT ' (. ClJ>r t 3 s i i f6 9 PSRCSNT SAND LENGTH SLOPE AND STEEPNESS FACTOR "LS" SLOPE LENGTH AND STEEPNESS FACTOR "LS" IS CALCULATED USING TABLE 5.5 OF THE EROSION AN SEDIMENT CONTROL HANDBOOK. (SEE EXHIBIT "F") FOR BASIN CALCULATION SUMMARY SEE SECTION 4 VEGETATION COVER FACTOR "C" THE COVER FACTOR TABLE LISTED BELOW IS USED FOR AREA UNDER CONSTRUCTION OR CULTIVATION. TO BE CONSERVATIVE THE HIGHEST VALUE IS ASSUMED. C=1.0 TAMMMtM CVdweAwMLa Tweef. 1J tnW»*T* (3.4 tAti, tmiM <— M 4 «eW»cie (9.0 t/ha>. < ^ It. tiki rfWiiapa I. EROSION CONTROL PRACTICE FACTOR "P" THE P VALUES LISTED BELOW ARE GIVEN FOR AREAS UNDER CONSTRUCTION OR CULTIVATION. TO BE CONSERVATIVE, THE HIGHEST VALUE WAS ASSUMED. P=1.3 TABLBS.7 r rrif—I 'tr "itTii^nirHra BIIM tfH*pt*< Itim Ittt II) Bwif*— coaJIrt— frtim Co**pecle4 UKI sMooth IJ T^«ii»»ft«il miamg coatour* Vt Ttadnpelkid up tad domi ilapat l^MMlMd itrew *M Itoufh, imcolar cot OL* LoM* to IS-b (SO-CBi) daptk TViaa aufto ahmtmi up aad 4»»» a trtMd MflB oriwlad p«W la (Mmm. M hi a.* Mii IM SECTION 5.31, PAGES 5.27 TO 5.28 LISTS A STEP BY STEP PROCEDURE FOR USING THE UNIVERSAL SOIL LOSS EQUATION (SEE EXHIBIT "G") FOR BASIN CALCULATION SUMMARY SEE SECTION 3 I(P5 SECTION 3 Basin IA Desiltation Basin Calculations Qavg ~ C X igvg X A Standpipe Calculations Q= 12.3 cfs H = 1 ft. c = 0.45 'avg ~ Pe/e hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH*^ Q = CA(2gh)^'^ 'avg ~ 0.32 in.Air A = 3.5 ac. C= 3.0 C = 0.67 P= 4.1 ft A= 2.29 ft^ QavB = 0.49875 cfs d= 1.31 ft d= 1.71 ft As = 1.2Q V, v,= 0.00024 ft/sec min. AJ = 2494 sf actual As = sf Soil Loss Calculations Basin Dewateiina Calculations A = RxKxLSxCxP Ao= A,(2H)^° R=16.55(p) 2.2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 12 20 2:1 7.97 Pad 88 500 3 0.46 Ave LS = 1.36 A = 15.96 tn/yr/ac Soil Loss = 55.9 tn/yr cf 3600(T)Cd(g) H = T = Cd = 9 = 1/2 2 40 0.6 32.2 ft hr fl/sec Ao= 0.019479 ft^ in 101 Basin IB Desiltation Basin Calculations Qavs = Cxiav8XA Standpipe Calculations Q = H = 25.4 1 cfs ft. c = 0.45 'avg ~ Pa/ehr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ 'avg ~ 0.32 in./hr A = 3.9 ac. C = 3.0 c = 0.67 ft P = 8.47 ft A = 4.72 Qav9 = 0.55575 cfs d = 2.70 ft d = 2.45 1.2Q v,= 0.00024 ft/sec min. Ag = 2779 sf actuai A, = S^Of' sf Soil Loss Calculations A=RxKxLSxCxP R=16.55(p) 2.2 8as/n Dewaterina Calculations 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 10 40 2:1 11.27 Pad 90 500 3 0.46 Ave LS = 1.54 A = 18.07 tn/yr/ac Soil Loss = 70.5 mi tn/yr cf ^(2H) 3600(T)Cd(g) H = T = Cd = 9 = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao = 0.020805 ft in Basin 2 Desiltation Basin Calculations Qavg = Cxi,v,xA Standpipe Calculations Q = H = 20.9 1 cfs ft. c = 0.45 'avg ~ Pg/ehr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ 'avg ~ 0.32 in./hr A = 4.5 ac. C= 3.0 C = 0.67 P = 6.97 ft A = 3.88 ft^ Qavg = 0.64125 cfs d= 2.22 ft d = 2.22 ft As = 1.2Q V, v,= 0.00024 ft/sec min. A, = 3206 sf actual A, = 707g sf Soil Loss Calculations A=RxKxLSxCxP R=16.55(p) 2.2 6as/A7 Dewaterina Calculations Ao= A.(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 20 60 2:1 13.81 Pad 80 400 3 0.43 Ave LS = 3.11 A = 36.42 tn/yr/ac Soil Loss = 163.9 29dO tn/yr cf 3600(T)Cd(g) H = T = Cd = 9 = 1/2 2 40 0.6 32.2 ft hr ft/sec 0.028841 ft 4.1 Sb' in^ Basin 3 Desiltation Basin Calculations Qavg C X igyg X A standpipe Calculations Q 38.9 1 cfs ft. c = 0.45 'avg ~ P6/6 hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^" 'avg ~ 0.32 in./hr A = 7.7 ac. C = 3.0 C = 0.67 P = 12.97 ft A= 7.23 ft^ Qav9 = 1.09725 cfs d = 4.13 ft d = 3.03 ft A,= 1.2Q S4*|^ Vs v,= 0.00024 fl/sec min. A, = 5486 sf actual A, = ^|^, sf So/7 Loss Calculations A = RxKxLSxCxP R=16.55(p) 2.2 Basin Dewaterina Calculations v1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 20 50 2:1 12.6 Pad 80 500 3 0.46 Ave LS = 2.89 A = 33.87 tn/yr/ac Soil Loss = 260.8 4743 tn/yr cf A.(2H)' 3600(T)Cd(g) H = T = Cd = g = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao = 0.034674 ft in no Basin 4 Desiltation Basin Calculations QaVfl " C X igyg X A Standpipe Calculations Q = H = 19.0 1 cfe ft. C = 0.45 'ayg ~ p6/6 hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'^ 'a»g ~ 0.32 in./hr A = 5.1 ac. C = 3.0 C = 0.67 P = 6.33 ft A = 3.53 ft* Q.,B = 0.72675 cfs d = 2.02 ft d = 2.12 ft As = 1.2Q V. 0.00024 ft/sec min. A, = 3634 sf actualsf Soil Loss Calculations A = RxKxLSxCxP R =16.55(p) 2.2 Basin Dewaterina Calculations Ao= A.(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 20 40 2:1 11.27 Pad 80 600 3 0.49 Ave LS = 2.65 A = 31.03 tn/yr/ac Soil Loss = 158.3 2877 tn/yr cf 3600(T)Cd(g) H = T = Cd = 9 = 1/2 ft hr 2 40 0.6 32.2 ft/sec A„= 0.017949 ft^ in ni Basin 5A Desiltation Basin Calculations Qavg = Cxiav,XA Standpipe Calculations Q = 22.2 cfs H = 1 ft. C = 0.45 'avg ~ Pfi/e hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^° 'avg — 0.32 in./hr A = 3.1 ac. C= 3.0 C = 0.67 P = 7.40 ft A= 4.13 ft* 0^ = 0.44175 cfs d = 2.36 ft d= 2.29 ft As = 1.2Q Vs Vs = 0.00024 ft/sec min. A, = 2209 sf actual As = sf Soil Loss Calculations Basin Dewaterina Calculations A=RxKxLSxCxP A„= A.(2HV° R =16.55(py 2.2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 25 40 2:1 11.27 Pad 75 400 2.5 0.36 Ave LS = 3.09 A = 36.21 tn/yr/ac Soil Loss = 112.2 2041 tn/yr cf 3600(T)Cd(g) H = T = Cd = 9 = 1/2 2 40 0.6 32.2 ft hr ft/sec Ao = 0.024680 ft^ in* 172 Basin SB Desiltation Basin Calculations Standpipe Calculations Qavg - C X iav( X A Q = 25.3 cfs H= 1 ft. 0 = 0.45 'avg ~ P6/6 hr. Case 1 Case 2 P6 = 1.9 in. Q = CPH^ Q = CA(2gh)^'* 'avg — 0.32 in./hr A = 10.9 ac. C = 3.0 C = 0.67 P = 8.43 ft A = 4.70 fl^ Qa,9 = 1.55325 cfs d = 2.69 ft d = 2.45 ft A,= 1.2Q V, v.= 0.00024 ft/sec min. A, = 7766 sf actual As = ffl® , sf Soil Loss Calculations A=RxKxLSxCxP R =16.55(p) 2.2 5as/n Dewaterina Calculations Ao= A.(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 20 60 2:1 13.81 Pad 80 1200 2.5 0.50 Ave LS = 3.16 A = 37.08 tn/yr/ac Soil Loss = 404.2 734t tn/yr cf 3600(T)Cd(g) H = T = Cd = 9 = 1/2 2 40 0.6 ,32.2 ft hr ft/sec Ao = 0.039569 ft^ in Basin 6 Desiltation Basin Calculations Qavg = C X iav, X A C = 0.45 iavg = P6/6hr. P6 = 1.9 in. 'avg ~ 0.32 in./hr A = 2.1 ac. Qav,= 0.29925 cfs A.= 1.2Q V, v,= 0.00024 ft/sec min. A, = 1496 sf actual A, =.•:; ^|Jsf Soil Loss Calculations A=RxKxLSxCxP R =16.55(p) 2.2 Standpipe Calculations Q = H = 14.7 1 cfs ft. Case 1 Q = CPH** C= 3.0 P = 4.90 d= 1.56 Case 2 Q = CA(2gh)^'* ft ft C = A = d = 0.67 2.73 1.87 24'<pq|ML ft* ft Basin Dewaterina Calculations Ao= A.(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 12 20 2:1 7.97 Pad 88 350 3 0.42 Ave LS = 1.33 A = 15.55 tn/yr/ac Soil Loss = 32.7 tn/yr cf 3600(T)Cd(g) H = T = Cd = 9 = 1/2 2 40 0.6 32.2 ft hr fl/sec Ao= 0.013666 ft^ in Basin 7 Desiltation Basin Calculations Qavg = 0 X iavj X A actual A, = !|sf Soil Loss Calculations A=RxKxLSxCxP R=16.55(p)** Standpipe Calculations Q = H = 24.0 1 cfs ft. c = 0.45 'avg ~ Ps/6 hr. Case 1 P6 = 1.9 in. Q = CPH** 'avg ~ 0.32 in./hr A = 3.9 ac. C= 3.0 P = 8.00 Qavg = 0.55575 cfs d = 2.55 A.= i.2q 39*phHf V. v,= 0.00024 fl/sec min. As = 2779 sf ft ft Case 2 Q = CA(2gh)^'* C = 0.67 A = 4.46 ft* d = 2.38 ft Basin Dewaterina Calculations Ao= A,(2H) 1/2 3600(T)Cd(g) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Lenglh Slope/ Grade LS Slope 15 20 2:1 7.97 Pad 85 400 3 0.43 Ave LS = 1.56 A = 18.31 tn/yr/ac Soil Loss = 71.4 tn/yr cf H = 2 ft T = 40 hr Cd = 0.6 9 = 32.2 ft/sec Ao= 0.018153 ft^ = ZSf 'in* 175 Basin 8 Desiltation Basin Calculations Qavg = Cxi,vgXA 'avg ~ P6 = 'avg ~~ A = 0.45 Pe/e hr. 1.9 in. 0.32 in./hr - ac. 0.969 cfs 1.2Q V. Standpipe Calculations Q = H = 41.6 cfs 1 ft. Case 1 Q = CPH** C = P = d = 3.0 13.87 ft 4.42 ft Case 2 Q = CA(2gh) 1/2 C = 0.67 A = 7.73 fl* d= 3.14 ft Vs= 0.00024 ft/sec min. As = 4845 sf actual As = sf Soil Loss Calculations A = RxKxLSxCxP R =16.55(p) 2.2 Basin Dewaterina Calculations Ao= A.(2H) 1/2 P = 1.4 in. R = 34.70 K = 0.26 C = 1.0 P = 1.3 Area Use % Area Length Slope/ Grade LS Slope 15 30 2:1 9.76 Pad 85 500 3 0.46 Ave LS = 1.86 A = 21.75 tn/yr/ac Soil Loss = 147.9 tn/yr cf 3600(T)Cd(g) H = T = Cd = 9 = 1/2 2 40 0.6 32.2 ft hr fl/sec Ao= 0.026108 ft^ 3.7$ in SECTION 4 m •il ,1? lii rtf 1 • 4. 4+1-"- ^ IM-^ 118 tr -0. Table 1 SUMMARY MINIMUM BASIN BASIN SURFACE AREA IA 1B 5A 5B 6 7 8 2494 SF 2779 SF 3206 SF 5486 SF 3634 SF 2209 SF 7848 SF 1496 SF 2779 SF 4845 SF BASIN SURFACE AREA AT 4'DEPTH 4775 SF 5100 SF 7070 SF 8500 SF 4400 SF 6050 SF 9700 SF 3350 SF 4450 SF 6400 SF Ao 2.80 in* 2.99 in* 4.15 in* 4.99 In* 2.58 in* 3.55 in* 5.70 in* 1.97 in* 2.60 in* 3.76 in* DIAMETER 2" 2" 2 ~ 1%" 2~lV 2~1V4" 2~lV," 2-2" 1V lV 2 ~ 1V2" ISO SECTION 5 oo COUNTY OF SAN DIEGO OEPAHTMENT OF SANITATION & FLOCO CONTROL 10-YEAR 6-H0U[l PRECIPITATION 33' IS- iSOPLUl'IALS PRECiPITATIOfj IfJ OF 10-YEAR C-liOUn EHTIIS OF AN INCH NATIONAL OCEANIC AND AT SPECIAL STUDIES ORANCH. OKFlCLi OF Pnpilrf d by U.S. DEPARTMENT OF COMMERCE > I 30' :OSI«IIER|C ADMINISTRATION ip OBOLOGY. NATIONAL WEATHER SERVICE t::><Hiit>'r r> RUNOFF COEFFICIENTS (R.\TI0NAL METHOD) LAND USE Soil Group (1) A B C D Undeveloped .50 .35 .40 .45 Residential: .Rural .50 . 55 .40 . -»5 Single Family .40 .45 .50 . 55 Multi-Units .45 .50 .60 - 70 Mobile Homes (2) .45 .50 .55 .65 Commercial (2) 30% Impervious .70 . 75 .80 .35 Industrial (2) .80 .85 .90 .95 90% Impervious -VOTES: (1) Obtain soil group from maps on file with the Department of Sanitation and Flood Control. (2) Where actual conditions deviate significantly from the tabulated imperviousness values of 30% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in no casa shall the final coefficient be less than 0.50. For example: ConsiUsi commercial property on D soil group. Actual imperviousness = 50% Tabulated imperviousness = 80% Revised C = _ 50 X 0.85 = 0.53 APPENDIX IX &1« Eroiion ud Sediment Control Handbook Sediment Retention Structur TABLE 8.1 Surface Area Requirementa of Sediment Trapa and Baaina Suiface area requirementa. Settling velocity, ft'perftVaec (m' pet mVaec Particle size, inm ft/sec (m/sec) disi^iarge diacitarge) 0.5 (coarae aand) 0.19 (0.058) 6.3 (20.7) 0.2 (medium aand) 0.067 (0.020) 17.9 (68.7) 0.1 (fine sand) 0.023 (0.0070) 52.2 (171.0) 0.05 (coarae silt) 0.0062 (0.0019) 193.6 (636.0) 0.02 (medium silt) 0.00096(0.00029) 1,250.0 (4.101.0) 0.01 (fine silt) 0.00024 (0.000073) 5,000.0 (16,404.0) 0.006 (cUy) 0.00006 (0.000018) 20,000.0 (65,617.0) weight composed of particles in the 0.01- to 0.02-min range. A surface area 4 times larger would be needed to capture 5 percent more of this soil. A balance between the cost-effectiveness of a certain basin size and the desire to capture fine particles must be achieved. It ia desirable to capture the very small soU particles (clays and fine silts) because they cause turbidity and other water quality problems. However, Table 8.1 shows that a basin would have to be very large to capture particles smaller than 0.02 mm, particularly clay particles 0.005 mm and smaller. Because of the high cost of trapping very small particles, the authors recommend 0.02 as the design particle si2» for sediment basins except in areas with coarse soils, where a larger design particle may be used. The 0.02-mm particle is classified as a medium silt by the AASHTO soil classification system. 8.2d Basin Discharge Rate The peak discharge, calculated by the rational or another approved method, is used to size the basin riser. During any major storm, a sediment basin should fill with water to the top of its riser and then discharge at the rate til inflow to the basin. A sediment basin is not designed with a large water storage volume as is a reservoir. If the inflow exceeds the design peak flow uaed to size the riser, the overflow should discharge down an emergency spillway. 8.2e Design Runoff Rate In the equation for surface area of a sediment basin, the discharge rate Q is a variable to be chosen by the designer. The above discussion of basin discharge rate shows that the discharge rate is, to a large extent, equal to the inflow. The riser is sized to handle the peak inflow to the basin. The authors suggest deter- mining the surface area by the average runoff of a 10-year, 6-hr storm instead of the peak flow. A substanti and basin efficiency is not sig Consider a basin designed off rate. The average rainfaU storm (Sec. 4.1f). On-a site wi ideal settling conditions this aoil (i.e., 62 percent of the c particles). If the surface area of this would be roughly 3 times le Reclamation (10). 25 perceni period (Fig. 4.2). Since the rc limeters) per hour, the peak percent of the 6-hr totaL Sin discharge rate (A = 1.2Q/V, times the average rate (50% flow would be about 3 times t sized for the peak flow would particles with approximate!) cle. Since the 0.02-mm partic with a settling velocity of 0 tured. These are approximal Suppose a basin on a site rate. For the purpose of illu of the San Francisco Bay Ai tides, by weight, greater th) 0.02 mm). A basin with a lar ture the 0.01- to 0.02-mm pi 67 percent of the eroded mai cent (5/62) by tripling the effective to size a basin by basin efficiency mU notJb«^ 8.2f Settling Depth If a basin is too shallow, wa settled particles and decrea grit-settling chambers at se trolled to prevent particle : grit chamber (2) is: V n an D/ego Count/ 5o/7s Interpretation Stuciy VtROLOGIC SOIL GROUPS - Runolt Potential r% A r^rr\t irk P l«5 r^rrwirk P. Z bu ^ < O O l/> eC O UJ o >-^" z < o a. o O Ul _i (J o tt. < u bl II-A-2 TABLE 6.6 .aues* (10) Slope LS values for following slope lengths I, ft (m) Slope gradient 10 20 30 40 SO 60 70 80 90 100 ratio », % (3.0) (6.1) (9.1) (12.2) (15.2) (18.3) (21.3) (24.4) (27.4) (30.5) 3 0.5 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0.09 0.09 0.10 100:1 1 0.08 0.09 0.10 0.10 0.11 0.11 0.12 0.12 0.12 0.12 2 — 0.10 0.12 0.14 0.15 0.16 0.17 0.18 0.19 0.19 0.20 3 0.14 0.18 0.20 0.22 0.23 0.25 0.26 0.27 0.28 0.29 4 0.16 0.21 0.25 0.28 0.30 0.33 0.35 0.37 0.38 0.40 20:1 5 0.17 0.24 0.29 0.34 0.38 0.41 0.45 0.48 0.51 0.53 6 0.21 0.30 0.37 0.43 0.48 0.52 0.56 0.60 0.64 0.67 7 0.26 0.37 0.45 0.52 0.58 0.64 0.69 0.74 0.78 0.82 m:i 8 0.31 0.44 0.54 0.63 0.70 0.77 0.83 0.89 0.94 0.99 9 0.37 0.52 0.64 0.74 0.83 0.91 0.98 1.05 1.11 1.17 10:1 10 0.43 0.61 0.75 0.87 0.97 1.06 1.15 1.22 1.30 1.37 11 0.50 0.71 0.86 1.00 1.12 1.22 1.32 1.41 1.50 1.58 8:1 12.5 0.61 0.86 1.05 1.22 1.36 1.49 1.61 1.72 1.82 1.92 15 0.81 1.14 1.40 1.62 1.81 1.98 2.14 2.29 2.43 2.56 6:1 16.7 0.96 1.36 1.67 1.92 2.15 2.36 2.54 2.72 2.88 3.04 5:1 20 1.29 1.82 2.23 2.58 2.88 3.16 3.41 3.65 3.87 4.08 4)^:1 22 1.51 2.13 2.61 3.02 3.37 3.69 3.99 4.27 4.53 4.77 4:1 25 1.86 2.63 3.23 3.73 4.16 4.56 4.93 5.27 5.59 5.89 30 2.51 3.56 4.36 5.03 5.62 6.16 6.65 7.11 7.54 7.95 3:1 33.3 2.98 4.22 5.17 5.96 6.67 7.30 7.89 8.43 8.95 9.43 35 3.23 4.57 5.60 6.46 7.23 7.92 8.55 9.14 9.70 10.22 2)4:1 40 4.00 5.66 6.93 8.00 8.95 9.80 10.59 11.32 12.00 12.65 45 4.81 6.80 8.33 9.61 10.75 11.77 12.72 13.60 14.42 15.20 2:1 50 5.64 7.97 9.76 11.27 12.60 13.81 14.91 15.94 16.91 17.82 55 6.48 9.16 11.22 12.96 14.48 15.87 17.14 18.32 19.43 20.48 1K:1 57 6.82 9.64 11.80 13.63 15.24 16.69 18.03 19.28 20.45 21.55 60 7.32 10.35 12.68 14.64 16.37 17.93 19.37 20.71 21.96 23.15 1)4:1 66.7 8.44 11.93 14.61 16.88 18.87 20.67 22.32 23.87 25.31 26.68 70 8.98 12.70 15.55 17.96 20.08 21.99 23.75 25.39 26.93 28.39 75 9.78 13.83 16.94 19.56 21.87 23.95 25.87 27.66 29.34 30.92 1>1:1 80 10.55 14.93 18.28 21.11 23.60 25.85 27.93 29.85 31.66 33.38 85 11.30 15.98 19.58 22.61 25.27 27.69 29.90 31.97 33.91 35.74 90 12.02 17.00 20.82 24.04 26.88 29.44 31.80 34.00 36.06 38.01 95 12.71 17.97 22.01 25.41 28.41 31.12 33.62 35.94 38.12 40.18 1:1 100 13.36 18.89 23.14 26.72 29.87 32.72 35.34 37.78 40.08 42.24 'Calculated from „ , 65.41 X i" LS / 65.4 4.56 X s 10.000 : + 0.065 IS • topographic factor ( - ilope length, ft (m X 0.3048) 1 • slope ateepnesa, m - exponent dependent upon ilope ateepoeu (0.2 for alopea < 1%, 0.3 for alope* 1 to 3%, 0.4 for alopea 3.5 to 4.5%, and 0.5 for alopea > 6%) LS values for following slope lengths {, ft (m) 150 200 250 300 350 400 450 500 600 100 800 900 1000 (46) (61) (76) (91) (107) (122) (137) (152) (183) (213) (244) (274) (306) 0.10 0.11 0.11 0.12 0.12 0.13 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.14 0.14 0.15 0.16 0.16 0.16 0.17 0.17 0.18 0.18 0.19 0.19 0.20 0.23 0.25 0.26 0.28 0.29 0.30 0.32 0.33 0.34 0.36 0.37 0.39 0.40 0.32 0.35 0.38 0.40 0.42 0.43 0.46 0.46 0.49 0.51 0.54 0.55 0.57 0.47 0.53 0.58 0.62 0.66 0.70 0.73 0.76 0.82 0.87 0.92 0.96 1.00 0.66 0.76 0.85 0.93 1.00 1.07 1.13 1.2Q 1.31 1.42 1.51 1.60 1.69 0.82 0.95 1.06 1.16 1.26 1.34 1.43 1.50 1.65 1.78 1.90 2.02 2.13 1.01 1.17 1.30 1.43 1.54 1.65 1.75 1.84 2.02 2.18 2.33 2.47 2.61 L21 1.40 1.57 1.72 1.85 1.98 2.10 2.22 2.43 2.62 2.80 2.97 3.13 1.44 1.66 1.85 2.03 2.19 2.35 2.49 2.62 2.87 3.10 3.32 3.52 3.71 1.68 1.94 2.16 2.37 2.56 2.74 2.90 3.06 3.35 3.62 3.87 4.U 4.33 1.93 2.23 2.50 2.74 2.95 3.16 3.35 3.53 3.87 4.18 4.47 4.74 4.99 2.35 2.72 3.04 3.33 3.59 3.84 4.08 4.30 4.71 5.08 5.43 5.76 6.08 3.13 3.62 4.05 4.43 4.79 5.12 5.43 5.72 6.27 6.77 7.24 7.68 8.09 3.72 4.30 4.81 5.27 5.69 6.08 6.45 6.80 7.45 8.04 8.60 9.12 9.62 5.00 5.77 6.45 7.06 7.63 8.16 8.65 9.12 9.99 10.79 11.54 12.24 12.90 5.84 6.75 7.54 8.26 8.92 9.54 10.12 10.67 11.68 12.62 13.49 14.31 15.08 7.21 8.33 9.31 10.20 11.02 11.78 12.49 13.17 14.43 15.58 16.66 17.67 18.63 9.74 11.25 12.57 13.77 14.88 16.91 16.87 17.78 19.48 21.04 22.49 23.86 25.15 11.56 13.34 14.91 16.33 17.64 18.86 20.00 21.09 23.10 24.95 26.67 28.29 29.82 12.52 14.46 16.16 17.70 19.12 20.44 21.68 22.86 25.04 27.04 28.91 30.67 32.32 15.60 17.89 20.01 21.91 23.67 25.30 26.84 28.29 30.99 33.48 35.79 37.96 40.01 18.62 21.50 24.03 26.33 28.44 30.40 32.24 33.99 37.23 40.22 42.99 45.60 48.07 21.83 25.21 28.18 30.87 33.34 35.65 37.81 39.85 43.66 47.16 50.41 53.47 56.36 25.09 28.97 32.39 35.46 38.32 40.97 43.45 45.80 60.18 64.20 57.94 61.45 64.78 26.40 30.48 34.08 37.33 40.32 43.10 45.72 48.19 52.79 57.02 60.96 64.66 68.15 28.35 32.74 36.60 40.10 43.31 46.30 49.11 51.77 56.71 61.25 65.48 69.45 73.21 32.68 37.74 42.19 46.22 49.92 53.37 56.60 59.66 65.36 7a60 75.47 80.05 84.38 34.77 40.15 44.89 49.17 53.11 56.78 60.23 63.48 69.54 75.12 80.30 85.17 89.78 37.87 43.73 48.89 53.56 57.86 61.85 65.60 69.15 76.75 81.82 87.46 92.77 97.79 40.88 47.20 52.77 57.81 62.44 66.75 70.80 74.63 43.78 50.56 66.51 61.91 66.87 71.48 75.82 79.92 46.55 53.76 60.10 65.84 71.11 76.02 80.63 84.99 49.21 56.82 63.53 69.59 75.17 80.36 86.23 89.84 51.74 59.74 66.79 73.17 79.03 84.49 89.61 94.46 81.76 88.31 94.41 100.13 87.56 94.57 101.09 107.23 93.11 100.57 107.51 114.03 98.42 106.30 113.64 120.54 103.48 111.77 119.48 126.73 105.55 ^ 113.03 J 120.20 ~ 127.06 - 133.59 \ Sample Soil Loaa Calculation; Step^-Step Procedure 1. Determine the R factor. 2. Based on soil sample particle size analysb, determine the K value from the nomograph (Fig. 5.6). Repeat if you have more than one soil sample. 3. Divide the site into sections of uniform slope gradient and length. Assign an LS value to each section (Table 5.5). 4. Choose the C value(B) to represent a seasonal average of the effect of mulch and vegetation (Table 5.6). 5. Set the P factor based on the final grading practice applied to the slopes (Table 5.7). 6. Multiply the five factors together to obtain per acre soil loss. 7. Multiply soil loss per acre by the acreage to find the total volume of sediment. If the soil loss prediction shows excessive volume lost from the site, consider (a) working only a portion ofthe site at one time, (b) altering the slope length and gradient, or (c) increasing mulch application rate or seeding. APPENDIX m •IHTENSJIt'^WION DESIGN CHART rrrlnnTOnlsnSFr'WFlt'fRinnninii Equation: I "> Ll LtLmmlwi .645 , Directions for Application: 1) From precipitation maps determine 6 hr. ." 24 hr. amounts for the selected frequenc These maps are printed,in the County Hyc Manual (10, 50 and 100 yr. maps includec Design and Procedure Manual). 2) Adjust 6 hr.'precipitation (if necessar> that It Is within the range of 45< to 6t the 24 hr. precipitation. (Not applicat to Desert) 3) Plot 6 hr. precipitation bn the right si of the chart. 4) Draw a line through'the point parallel t plotted lines. ; , 5) This line Is the Intensity-duration curv the location being ianalyzed. Application Form: 0) Selected Frequency yr. 1) in.. P 24' 2) Adjusted *Pg- 4) I - ^24 in. min. In/hr. *Not Applicable to Desert Region This chart replaces the Intensity- Duratlon-Frequency curves used since 1965. n o MVniif oc o < -I. n (1- cn TJ m D »—t X COUlfTY OF SAN DIEGO DEPARTMENT OF SANITATION t FLOOD CONTROL 100-YEASl 6-llOin PHECIPITfiTIOSl O (Jl 3] lo m '20^ ISOPLUVIALS OF 100-YEAR 6-IIOUR pnECiFiTATion in E^STMS GF AM I;:CII U.S. DEPARTMEN NATIONAL OCIiANIC ANO SPECIAL STUDIES ORANCH, OFFICE OF II sr\ r V V T R to t/l OQ Ol -a rrt o COUNTY OF SAN DIEGO DEPARTMENT OF SANITATION & FLOOD CONTROL 'l5' to •o oo 3] d rn 33' 30' 15 Pi<|iy U.S. DCPARTMKN NATIONAL OCKAMC ANO AT SPECIAI. STUDIES UKANCII. OFFICIi OF 11 30* - lOO-YEAR 24-1101R PmPITATION -20.^ ISOPLUVIALS OF 100 -YEAR 24-llOUR PRECIPITATIOM Itl | ENJIIS OF AM JNCII X r OF COMMERCE OSI'llliKIC AOWINISTIIATION DKOLOGV, NATIONAL WtATIItK SCBVICE Ji 33'd7'30" SITE TABLE 2 RUNOFF COEFFICIENTS (RATIONAL METHOD) DEVELOPED AREAS (URBAN) Coefficient, C Soil Typel') Land Use A B C 0 Residential: Si ngle Family .40 .45 .50 .55. Multi-Units .50 .60 .70 MobiIe homes .45 .50 .55 .65 Rural (lots greater than 1/2 acre) .30 .35 .40 .45 Commerci al(2) .70 .75 .80 .85 80% Impervi OUS Industrial(2) .80 .85 .90 .95 90% Impervious NOTES: (1) obtain soil type from Appendices IX-Cl thru IX-C4. (2) where actual"'condi tions deviate significantly from the tabulated impervious- ness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in no case shall the final coefficient be less than 0.50. For example: Consider commercial property on D soil. Actual imperviousness = 50% Tabulated imperviousness = 80% . Revised C = 50 ^ 0.85 = 0.53 80 FIGURE 14.4 III. 199 APPENDIX IX-B H pr— /oaa BOO - 700 \ - eoo \ — SOO ^\ ^—400 £QU/Jr/OA/ — soao — 4 aao 3000 —2 oaa 7c I .J8S T/me of conce/7/na.h'a/7 e/^<rc/^/ye shoe //ne (See Append/x Y B) j- //' L /Pf//es /nee/ /a- •400 •300 •20O \ 4 S— 2 — \ \ /aa \ - \ - -sa •40 — 30 • zo as- jjNOTE: 1 n AOD TEN MINUTES TO \ \ COMPUTED TIME OF CON- fl ^CENTRATION- J /O FIGURE M.I3 //auAs 4 — '•^4^0 — 3000 \ \ _ — 2000 — /aoa — /6ao — /aoo — /2ao - /ooa — 900 — 800 — 70O — 600 — SOO — 400 — 300 200 > \ /i/!/nu/es — e40 /SO /20 /OO 30 80 70 -eo -so — 40 — SO - zo /a /s /a — /2 - /a • 9 a 7 6 SAN DIEGO COUNTY HI. 210 DEPARTMENT OF SPECIAL DISTRICT SERVICES DESIGN MANUAL APPROVED • - -'i. />^^/,v. ^ . NOMOGRAPH FOR DETERMINATION OF TIME OF CONCENTRATION (Tc) FOR NATURAL WATERSHEDS DATE APPENDIX X-A sao, 70 £xc7/Trp/i CaeMc/s/f/ a/ /Pa/70//. C -.SO /P<Ta £^ •• Oi'e.'/<^r}e/ /VatY/'/nTe '/^ /if//7a/es s SAN OIEGO COUNTY DE.CARTME.NT OF SPECIAL CISTHICT SE.=?VICc: DESIGN MANUAL UR3AN AREAS OVE.^^LANO TIME OF FLOW CURVI3 CATE /^A/^^ ArOENClX X-' RANCHO CARLSBAD CHANNEL & BASD^ PROJECT (Job Number 13182) June 30, 1998 Prepared for: C ity of Carlsbad 2075 Las Palmas Drive Carlsbad, California 92009-1576 Dennis Cn|b;wjJihg, M.S. R.C.E. #32838 Exp. 6/02 Prepared By : Rick Engineering Company Water Resources Division 5620 Friars Road San Diego, Califomia 92110-2596 (619) 291-0707 Preliminary designs were perfonned for each proposed detention facility to detennine the outlet works required to achieve maximum detention, while maintaining the height and storage volume below DSOD jurisdictional limits. The preliminary design of each detention facility and the results for each detention facility design are described below. The most upstream proposed detention facility in Agua Hedionda Creek is at Melrose Drive. This facility will be a flow-through detention basin. Melrose Drive mns north-south and cunentiy ends just soutii of Aspen Way near tiie Carlsbad Corporate boundary. Future plans call for the extension of Melrose Drive to Palomar Airport Road. An existing reinforced concrete box (RCB) culvert conveys flow under Melrose Drive and is 10 feet wide by 7 feet high. The existing Melrose Drive embankment provides minimal detention because oftiie RGB's large capacity. Hydrologic calculations show tiiat a 36-inch diameter opening at tiiis location will detain tiie peak flow discharge from approximately 450 cubic feet per second (cfs) to 180 cfs. There are two altematives for creating ttie 36-inch opening. One is to replace tiie existing culvert witii a 36-inch RCP and tiie otiier is to constnict a concrete banier at tiie inlet witii a 36-inch diameter opening. The resultant storage volume and ponded water surface elevation (WSEL) witii tiie new outiet works will be approximately 41 acre-feet and 329 feet, respectively. This will create an inundation area of approximately seven acres. The estimated outiet velocities for tiie first and second altemative will be 25 and 13 feet per second (fps), respectively. The velocity under tiie first altemative is greater tiian tiie maximum desired velocity of 20 fps. The velocity calculation assumed tiiat the proposed 36-inch RCP was constmcted at tiie slope of tiie existing culvert, which is one percent. If this altemative is selected, tiie final culvert design should analyze metiiods for reducing the outlet velocity, such as placing the culvert at a flatter slope or using multiple small diameter culverts. A ^ — DCB.MDL.emn/Rcport/M 3182.001 PreparedBy; . . 8 07/01/98 Rick Engineering Company - Water Resources Division Table 2 Summary of Proposed Detention Facilities Rancho Carlsbad Channel and Basin Project lOO-year, 24-hour Storm Event -JO Prepared By: Rick Engineering Company - Water Resources Division 12 DCB:MDL:emnmeport/M3182.001 07/01/98