HomeMy WebLinkAbout2510 WEST RANCH ST; ; CBC2018-0096; Permit4Jity of
Carlsbad
Commercial Permit
Print Date: 12/13/2018 Permit No: CBC2018-0096
Job Address: 2510 West Ranch St
Permit Type: BLDG-Commercial Work Class: Cogen Status: Closed - Finaled
Parcel No: 2081951000 Lot U: Applied: 02/20/2018
Valuation: $413,902.00 Reference U: Issued: 04/05/2018
Occupancy Group: Construction Type: Permit
Finaled:
U Dwelling Units: Bathrooms: Inspector: MColl
Bedrooms: . Orig. Plan Check U: Final
Plan Check U: Inspection: 12/13/2018 4:25:24PM
Project Title:
Description: MONTECITO: NEW SHADE STRUCTURES 17 W/O SOLAR & 3 WITH SOLAR ON TOP 396 PV PANELS TOTAL
Applicant: Owner:
ALLIANCE LAND PLANNING AND ENGINEERING SHAPELL MONTECITO LLC
INC
ELIZABETH SHOEMAKER 8383 Wilshire Blvd, 700
2248 Faraday Ave Beverly Hills, CA 90211-2400
Carlsbad, CA 92008-7208 323-988-7590
760-431-9896
BUILDING PERMIT FEE ($2000+) $1,740.70
BUILDING PLAN CHECK FEE (BLDG) $1,218.49
5B1473 GREEN BUILDING STATE STANDARDS FEE $17.00
STRONG MOTION-COMMERCIAL .
-
$115.89
Total Fees: $3,092.08 Total Payments To Date: $3,092.08 Balance Due: $0.00
Please take NOTICE that approval of your project includes the "Imposition" of fees, dedications, reservations, or other exactions hereafter
collectively referred to as "fees/exaction." You have 90 days from the date this permit was issued to protest imposition of these
fees/exactions. If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the
protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section
3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their
imposition.
You are hereby FURTHER NOTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection
fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this
project. NOR DOES IT APPLY to any fees/exactions of which you have previously been given a NOTICE similar to this, or as to which the
statute of limitation has previously otherwise expired.
1635 Faraday Avenue, Carlsbad, CA 92008-7314 1 760-602-2700 760-602-8560 f I www.carlsbadca.gov
ITHE FOLLOWING APPROVALS REQUIRED PRIOR TO PERMIT ISSUANCE: []PLANNING 0 ENGINEERING 0 BUILDING 0 FIRE 0 HEALTH DHAZ.MATIAPCD
Building Permit Application Plan Check No ()1 -(rfl
Est. Value /.- I , OZ) (City f 1635 Faraday Ave., Carlsbad, CA 92008
Ph: 760-602-2719 Fax: 760-602-8558 Plan Ck. Deposit (I ar1sbac1: email: building@carlsbadca.gov Date /c2/) /I I I www.cartsbadca.gov
JOB ADDRESS H
soI/SPAce#/UNff# APN
I208 195 - 11 - 00
CT/PROJECT # LOT # PHASE # # OF UNITS # BATHROOMS BUSINESSNAME CONSTR. PIPE DCC. GROUP
14-08 342 I 8 I N/A
1#11EDROO101S
N/A N/A 7shapellMontecito, LLC Il-B S-2
DESCRIPTION OF WORK: Include Square Feet of Affected Area(s)
Robertson Ranch Market Rate plan check for regular shade canopies / carports and solar mounted with related equipment. There
is a grand total of 396 Solar PV modules that are located on the roof of 3 solar shade structures (9,382 sq. ft.) located in the
Market Rate building parking lot. There is also a grand total of 17 shade canopies with no solar on top (11,340 sq. ft.).
EXISTING USE PROPOSED USE IGARAGE (SF) PATIOS (SF) IDECKS(SF) 'FIREPLACE A1RC0ND0N1NG
Market Rate Apartments I Carports I 0 I kD NC1.J
IITI
YES ONO D
IFIRESPRINKLERS
YEsONoD
APPUCANTNAME Alliance Land Planning & Engineering Conta P,*tary ct
PROPER'VYOWNER NAME Shapell Montecito, LLC a
ADDRESS 2248 Faraday Avenue ADDRESS
8383 Wilshire Blvd., Suite 700
CITY STATE ZIP
Carlsbad CA 92008
CITY STATE ZIP
Beverly Hills CA 90211
PHONE FAX PHONE IFAX
(760) 550-1957 (323) 988-7590 I (323) 651-4349
EMAIL elizabeth.shoemaker(qmail.com EMAIL adewar(shapell.com
DESIGN PROFESSIONAL — Home energy Systems I Attn: Ross Williams CONTRACTOR BUS NAME Home Enerav Systems / Attn: Ross William
ADDRESS
5980 Fairmont Avenue, Suite 105
ADDRESS 5980 Fairmont Avenue, Suite 105
CITY STATE ZIP CITY STATE ZIP
San Dieao CA 92120 San Dieao CA 92120
PHONE FAX PHONE FAX
(619) 692-2015 Cell: (619) 417-0098 (619) 692-2015 I Cell: (619) 417-0098
EMAIL EMAIL
ross(hessolar.com ross(hessolar.com
I STATE LIC. A STATE LIC.# I CLAW5 CITY BUS. LIC.# I #800657 #800657 I C46/C10 I 1242302
(Sec. 7031.5 Business and Professions Code: Any City or County which requires a permit to construct, alter, improve, demolish or repair any structure, prior to its issuance, also requires the applicant for such permit to file a signed statement that he is licensed pursuant to the provisions of tIre Contractor's License Law fChapter 9. commending with Section 7000 of Division 3 of the Business and Professions Code) or that he is exempt therefrom, and the basis for the alleged exemption. Any violation of Section 7031.5 by any applicant for a permit subjects the applicant to a
civil penalty of not more than five hundred dollars ($500)).
WOR K E RS' COM r 'ii1.L
Workers' Compensation Declaration:! hereby aillnn under penalty of pequry one of lire following dedamlions:
I have and will maintalo a certificate of consent to self-insure for workers' compensation as provided by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.
/ I have and will maintain workers' compensation, an required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. My workers' compensation insurance came, and polity
number are: Insurance CO. American Zurich Insurance Company Policy No. _WC 101745102 Expiration Data _0410112018
is section need not be completed if the permit is for one hundred dollars ($100) or less.
Certificate of Exemption: I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner on as to become subject to the Workers' Compensation Laws of
California. WARNING: Failure to seems workers' compensation coverage is unlawful, and shall subject an employer to criminal penalties and and fines up to one hundred thousand dollars (&100,000), in
addition to the cost of compensation, damages as ' for in Section 3708 of the Labor code interest and attorney's fees,
cotmtcroit SIGNATURE DAGENT DATE 2/1 9/1 8
E.IV Ir:III.IIr_ •'wly'tgt:i
I hereby affIrm that! sin exempt from Contractor's License Law for the following reason:
[J I, as owner of the property or my employees with wages as their sole compensation, will do the work and the structure is not intended or offered for sale (Sec. 7044, Business and Professions Coder The Contractor's
License Law does not apply to an owner of property, who builds or improves thereon, and who does such work himself or through his own employees, provided that such improvements are not intended or offered for
sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale).
0 I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Coder The Contractor's License Law does not apply to an owner of
properly who builds or improves thereon, and contracts for such projects with contractor(s) licensed pursuant to the Contractor's License Law).
E3 I am exempt under Section Business and Professions Code for this reason.
1.1 personally plan to provide the major labor and materials for construction of the proposed properly errprovemenl. []Yes IJ4o
2.1 (have! have not) signed an application for a building permit for the proposed work.
3.1 have contracted with the following person (firm) to provide the proposed construction (include name address! phone! contractors' license number):
4.1 plan to provide portions of the work, bull have hired the following person to coordinate, supervise and provide the major work (include name / address I phone / contractors' license number):
5.1 will provide some oldie work, but I have contracted (hoed) the following persons to provide the work indicated (include name/address! phone! type of work):
PROPERTY OWNER SIGNATURE N/A — This Section []AGENT DATE
Is the applicant or future building occupant required to submit a business plan, acutely hazardous materials egislialum form or risk management and prevention program under Sections 25505,25533 or 25534 of the
Presley-Tanner Hazardous Substance Account Act? 0 Yes El No
Is the applicant or future building occupant required to obtain a permit from the air pollution control district or air reduty management district? DYes (] No
Is the facility to be constructed within 1,000 feet of the outer boundary of a school site? 0 Yes / No
IF ANY OF THE ANSWERS ARE YES, A FINAL CERTIFICATE OF OCCUPANCY MAY NOT BE ISSUED UNLESS THE APPLICANT HAS MET OR IS MEETING THE REQUIREMENTS OF THE OFFICE OF
EMERGENCY SERVICES AND THE AIR POLLUTION CONTROl. DISTRICT.
I hereby aflinn that there is a oonstrucfion lending agency for the performance of the work this permit is issued (Sec. 3097 (I) Civil Code).
Lender's Name N/A - This Section Lender's Address
-
I cur1i,thatI have read theappll above isounact and that nfltiuuorithepbrre toauate lagmetocojnpIywWi all Cltyonlhmiand State lrebsingto larildingonredmolion.
I hereby authorire representative of the City of Carlsbad to enter upon the above mentioned property for inspection purposes. I ALSO AGREE TO SAVE, INDEMNIFY AND KEEP HARMLESS THE CITY OF CARLSBAD
AGAINST ALL LIABILITIES, JUDGMENTS, COSTS AND EXPENSES WHICH MAY IN ANY WAY ACCRUE AGAINST SAID CITY INCONSEQUENCE OF THE GRANTING OF THIS PERMIT.
OSHA: An OSHA permit is requbml for esaIiaar over 5'0' deep and derrdltkrn or construction ofstrsdrnesover3stoites in height
EXPIRATION: Every permit issued byte Building Offiriol underthe provisiomof this Code thaI expito by Indtabmi and beurnw null and void if the taiibikig or work authorized by such permit Is not command within
l8o days Uoni the date ofsudr pmmitorifthe uldingorwiakauttubmd by such permit is snpendedorarAsed atanytiron aflerthework oudfor aperiodof180days(Sedion 106.4.4 thrifmm Building Code).
£APPUCANT'S SIGNATURE -AJ4 DATE 2/1 9/1 8
Elizabeth Shoemaker
Permit Type: BLDG-Commercial Application Date: 02/20/2018 Owner: SHAPELL MONTECITO LLC
Work Class: Cogen Issue Date: 04/05/2018 Subdivision:
Status: Closed - Finaled Expiration Date: 06/10/2019 Address: 2510 West Ranch St
Carlsbad, CA 92010-5622
IVR Number: 9612
Scheduled
Date
Actual
Start Date Inspection Type Inspection No. Inspection Status Primary Inspector Reinspection Complete
08/28/2018 08/28/2018 BLDG-14 068403-2018 Partial Pass Michael Collins Reinspection Incomplete
Frame/Steel/Bolting!
Welding (Decks)
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Partial carport structures Yes
BLDG-Building Deficiency Partial carport structures Yes
08/29/2018 08/29/2018 BLDG-14 068535-2018 Partial Pass Michael Collins Reinspection Incomplete
Frame/Steel/Bolting!
Welding (Decks)
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Upper level (PA8) carport structures, see Yes
card
BLDG-Building Deficiency Partial carport structures Yes
BLDG-Building Deficiency Partial carport structures Yes
08/30/2018 08/30/2018 BLDG-14 068719-2018 Cancelled Michael Collins Reinspection Complete
Frame/Steel/Bolting!
Welding (Decks)
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Partial carport structures Yes
BLDG-Building Deficiency Upper level (PA8) carport structures, see Yes
card
BLDG-Building Deficiency Partial carport structures Yes
08/31/2018 08/31/2018 BLDG-14 068857.2018 Partial Pass Michael Collins Reinspection Incomplete
Frame/Steel/Bolting!
Welding (Decks)
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Partial carport structures Yes
BLDG-Building Deficiency Lower level carport/shade structures, see Yes
card
BLDG-Building Deficiency Partial carport structures Yes
BLDG-Building Deficiency Upper level (PA8) carport structures, see Yes
card
12/11/2018 12/11/2018 BLDG-35 Solar 078628.2018 Passed Michael Collins Complete
Panel
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Release emailed to SDGE Yes
12/13/2018 12/13/2018 BLDG-Final 078884-2018 Passed Michael Collins Complete
Inspection
December 13, 2018 Page 2 of 3
Permit Type: BLDG-Commercial Application Date: 02/20/2018 Owner: SHAPELL MONTEClTO LLC
Work Class: Cogen Issue Date: 04/05/2018 Subdivision:
Status: Closed - Finaled Expiration Date: 06/10/2019 Address: 2510 West Ranch St
Carlsbad, CA 92010-5622
IVR Number: 9612
Scheduled Actual Inspection Type Inspection No. Inspection Status Primary Inspector Reinspection Complete Date Start Date
07/18/2018 07/18/2018 BLDG-34 Rough 064329.2018 Failed Michael Collins Reinspection Complete
Electrical
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Not ready No
07/25/2018 07/24/2018 BLDG-Final 064787.2018 Cancelled Michael Collins Reinspection Complete
Inspection
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Cancelled per contractor No
BLDG-Structural Final No
BLDG-Electrical Final No
07/30/2018 07/30/2018 BLDG-34 Rough 065293.2018 Partial Pass Michael Collins Reinspection Incomplete
Electrical
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Not ready No
BLDG-Building Deficiency See card. Conductor, OCD, disconnects, Yes
inverters, etc...
BLDG-Final 065294.2018 Failed Michael Collins Reinspection Complete
Inspection
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Cancelled per contractor No
BLDG-Structural Final No
BLDG-Electrical Final No
08/03/2018 08/03/2018 BLDG-34 Rough 065886.2018 Failed Michael Collins Reinspection
Electrical
Checklist Item COMMENTS Passed
BLDG-Building Deficiency See card. Conductor, OCD, disconnects, Yes
inverters, etc...
BLDG-Building Deficiency Complete all signage No
BLDG-Building Deficiency Not ready No
BLDG-Final 065887.2018 Failed Michael Collins Reinspection
Inspection
Checklist Item COMMENTS Passed
BLDG-Building Deficiency 08/03/18 Complete all signage No
BLDG-Building Deficiency Cancelled per contractor No
BLDG-Structural Final No
BLDG-Electrical Final No
08/07/2018 08/07/2018 BLDG-14 066334-2018 Partial Pass Michael Collins Reinspection
Frame/Steel/Bolting!
Welding (Decks)
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Partial carport structures Yes
1]
Complete
Complete
Incomplete
December 13, 2018 Pagel of 3
Daily Report
Montecito @ Robertson's Ranch
Robertson's Ranch West Village
Carlsbad, Ca
Job#: 1016519
Monday, May 14, 2018
Time Temp Hum W-Dir W-Speed W-Gust Precip Condition
06:02 AM 55°F 93% SW 0MPH 0MPH 01N Clear
10:12AM 65°F 67% N 7MPH 11 MPH 0 I Partly Cloudy
02:01 PM 67°F 61% N 9MPH 18 MPH 0 I Partly Cloudy
08:47 AM David Bickle
Arrived at Montecito at 10:30 A.M. Checked in with Pete Torres, T. B. Penick Superintendent.
08:55 AM David Bickle
PV Structural Plans by United Structural Design dated 12/19/07 & approved by the City of Carlsbad on 4/19/18.
08:48 AM David Bickle
City of Carlsbad Permit number CBC2018-0096.
08:56 AM David Bickle
Provided periodic welding inspection at Photovoltaic structural steel per details provided on Sheet S3.1.
Powered By Note Vault Nova Services, Inc. I Montecito @ Robertson's Ranch I Monday, May 14, 2018 I Page 1 of 3
C9:17 AM David Bickle
Reviewed welders certification and continuity logs.
09:37 AM David Bickle
Photovoltaic Structural Steel Subcontractor welding beam attachment tabs to vertical columns via a pre-qualified fillet welds utilizing
E71T-8 electrode.
Work is being performed between Bldg 4 (address #2568) and Bldg 7 (address #2554).
Subject areas were cleaned & prepped prior to commencement of welding
Powered By NoteVault Nova Services, Inc. I Montecito @ Robertson's Ranch I Monday, May 14, 2018 1 Page 2 of 3
05:27 PM David Bickle
The work was inspected in accordance with the requirements of the Approved Contract Documents. The work inspected met the
requirements of the Approved Contract Documents.
05:26 PM David Bickle
Departed Montecito at Robertson's Ranch at 2:30 P.M. Checked out with Pete Torres, T. B. Penick Superintendent.
Employee Signature: 4J ..-
Powered By NoteVru t Nova Services, Inc. I Montecito @ Robertson's Ranch I Monday, May 14, 2018 1 Page 3 of 3
iAl
'.
Daily Report Thursday, May 10, 2018
Montecito @ Robertson's Ranch
Robertson's Ranch West Village
Carlsbad, Ca
Job#: 1016519
Time Temp Hum W-Dir W-Speed W-Gust Precip Condition
06:09 AM 61°F 92% SW 3MPH 4MPH 0 I Overcast
10:00 AM 67°F 73% SW 11 MPH 11 MPH 0 I Mostly Cloudy
02:09 PM 67°F 73% SW 7MPH 15 MPH 0 I Mostly Cloudy
09:25 PM Emad Beshay
on site at lOam
09:26 PM Emad Beshay
CBC2018-0096
09:24 PM Emad Beshay
(16) solar shade canopies caissons located at the parking lot at the south side. Observed (3) # 3 ties at top of caissons, observed steel
d hx s clearance
41111ij I
j r itt
Ilk XF
Nor
- r-
-
. -- -
Powered By NoteVault Nova Services, Inc. I Montecito @ Robertson's Ranch I Thursday, May 10, 2018 1 Page 1 of 6
Powered By NoteVault Nova Services, Inc. I Montecito @ Robertson's Ranch I Thursday, May 10, 2018 1 Page 2 of 6
:-::. ''•
t- S :
fl
4
Powered By NoteVault Nova Services, Inc. I Montecito @ Robertson's Rancn I Thursday, May 10, 2018 1 Page 3 of 6
* 4
09:24 PM Emad Beshay
observed concrete placement at (16) solar shade canopies caissons located at the parking lot at the south side. Robertson's ready mix concrete placed using tailgate
ncI consoldited usn rnn-LiniciI s idritor rict 1 set or simple 5(4x8) from 1ST truck ticket# 3630362, truck# 1923 required strength 3000PSI. 20C'f placed.
'4* Ig6 0
Powered By NoteVault Nova Services, Inc.) Montecito @ Robertson's Ranch I Thursday, May 10, 2018 1 Page 4 of 6
r Sc'-
'414
aA-
Powered By NoteVault Nova Services, Inc. I Montecito @ Robertson's Ranch I Thursday, May 10.2018 1 Page 5 of 6
09:25 PM Emad Beshay
Work observed comply with approved plan to the best of my knowledge ICC# 8008238
09:25 PM Emadi Beshay
departure at 2:30
Employee Signature:
Powered By NoteVault Nova Services, Inc. I Montecito @ Robertson's Ranch I Thursday, May 10, 2018 1 Page 6 of 6
NOVA
Scrvi'.
Daily Report Tuesday, May 01, 2018
Portola at Robertson's Ranch
Robertson's Ranch West Village
Carlsbad, California
Job#: 1016518
Time Temp Hum W-Dir W-Speed W-Gust Precip Condition
06:10AM 57°F 63% SW 7MPH 9MPH 0 I Overcast
10:01AM 60°F 51% SW 11 MPH 13 MPH 0 I Overcast
02:00 PM 62°F 52% SW 12 MPH 12 MPH 0 I Overcast
10:25 AM David Bickle
Arrived at Robertson's Ranch Montecito project at 10:30 A.M. Checked in with Pete Torres, T.B. Penick Superintendent.
Powered By NoteVault Nova Services, Inc. I Portola at Robertson's Ranch I Tuesday, May 01, 2018 1 Page 1 of 4
II2r
-
10:25 AM David Bickle
City of Carlsbad Permit number CBC2018-0096.
11:04 AM David Bickle
hspected reinforcing at PV structural I columns per details 3/S2.2 & 2/S3.1.
Reinforcing steel was verified for size, grade, lap, spacing, & clearances.
Powered ByNoteVault Nova Services, Inc. Portola at Robertson's Ranch I Tuesday, May 01, 2018 1 Page 2 of 4
-V
V
'V
01:09 PM David Bickle
PV subcontractor placed approximately 4 CY of concrete at structural I column footings between Bldgs 4 & 7(2554 & 2568).
One (1.) set of five cylinders was cast.
Powered By NoteVault Nova Services, Inc. Portola at Robertson's Ranch I Tuesday, May 01, 2018 1 Page 3 of 4
01:10 PM David Bickle
The work was inspected in accordance with the requirements of the Approved Contract Documents. The work inspected met the
requirements of the Approved Contract Documents. Material sampling was performed in accordance with the Approved Contract
Documents.
03:57 PM David Bickle
Departed Robertson's Ranch Montecito project at 1:30 P.M. Checked out with Pete Torres, TB Penick Superintendent.
Employee Signature I
Powered By NoteVuIt Nova Services, Inc. I Portola at Robertson's Ranch I Tuesday, May 01, 2018 1 Page 4 of 4
EsGilV/0
A SAFEbuILt Company
DATE: 3/29/2018 D APPLICANT
JURIS.
JURISDICTION:.. CARLSBAD
PLAN CHECK #.: CBC2018-0096 SET: II
PROJECT ADDRESS: 2510 WEST RANCH STREET
PROJECT NAME: CARPORTS
The plans transmitted herewith have been corrected where necessary and substantially comply
with the jurisdiction's building codes.
The plans transmitted herewith will substantially comply with the jurisdiction's
codes when minor deficiencies identified below are resolved and checked by building
department staff.
The plans transmitted"herewith have significant deficiencies identified on the enclosed check list
and should be corrected and resubmitted for a complete recheck.
The check list transmitted herewith is for your information. The plans are being held at EsGil
until corrected plans are submitted for recheck.
The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant
contact person.
LI The applicant's copy of the check list has been sent to:
EsGil staff did not advise the applicant that the plan check has been completed.
Li EsGil staff did advise the applicant that the plan check has been completed.
Person contacted: Telephone #:
Date contacted: (by'1) Email:
Mail Telephone Fax In Person
LI REMARKS:
By: Bert Domingo Enclosures:
EsGil
3/21/2018
9320 Chesapeake Drive, Suite 208 • San Diego, California 9223 • (858) 560-1468 • Fax (858) 560-1576
EsGil
A SAFEbuittCornpany
DATE: MAR. 01, 2018
JURISDICTION: CARLSBAD
PLAN CHECK #.: CBC2018-0096 SET: I
U APPLICANT
JURIS.
PROJECT ADDRESS: 2510 WEST RANCH STREET
PROJECT NAME: CARPORTS
The plans transmitted herewith have been corrected where necessary and substantially comply
with the jurisdiction's codes.
II The plans transmitted herewith will substantially comply with the jurisdiction's
codes when minor deficiencies identified below are resolved and checked by building
department staff.
The plans transmitted herewith have significant deficiencies identified on the enclosed check list
and should be corrected and resubmitted for a complete recheck.
The check list transmitted herewith is for your information. The plans are being held at EsGil
until corrected plans are submitted for recheck.
The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant
contact person.
The applicant's copy of the check list has been sent to:
LI EsGil staff did not advise the applicant that the plan check has been completed.
EsGil staff did advise the applicant that the plan check has been completed.
Person contacted: Ross Telephone #: 619-692-2015
Date contacted: 31t1i (by._.- Email: rosschessoIar.com
IepnFax ~InersonUKK Ka ç( E-V LSMft L
REMARKS: Twenty carports are under this permit, three of which are solar-supporting and the
other seventeen are as follows: (1) 6-space carport & (16) 4-space carports.
By: ALl SADRE, S.E. Enclosures:
EsGil
2/21
9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858) 560-1576
CARLSBAD CBC20 18-0096
MAR. 01, 2018
GENERAL PLAN. CORRECTION LIST
JURISDICTION: CARLSBAD PLAN CHECK #.: CBC2018-0096
PROJECT ADDRESS: 2510 WEST RANCH STREET
OCCUPANCY = U; STORIES = ONE; SPRINK. = NO; HEIGHT = 15' (MAX);
CONSTRUCTION = Il-B; AREAS = VARY (4,018 MAX)
DATE PLAN RECEIVED BY DATE REVIEW COMPLETED:
ESGIL: 2/21 MAR. 019, 2018
REVIEWED BY: AL! SADRE, S.E.
FOREWORD (PLEASE READ):
This plan review is limited to the technical requirements contained in the International
Building Code, Uniform Plumbing Code, Uniform Mechanical Code, National Electrical
Code and state laws regulating energy conservation, noise attenuation and disabled-
access. This plan review is based on regulations enforced by the Building Department.
You may have other corrections based on laws and ordinances enforced by the
Planning Department, Engineering Department or other departments.
The following items listed need clarification, modification or change. All items must be
satisfied before the plans will be in conformance with the cited codes and regulations.
The approval of the plans does not permit the violation of any state, county or city law.
. GENERAL
Please make all corrections, as requested in the correction list. Submit FOUR new
complete sets of plans for commercial/industrial projects (THREE sets of plans for
residential projects). For expeditious processing, corrected sets can be submitted in one
of two ways:
Deliver all corrected sets of plans and calculations/reports directly to the City of
Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602-2700.
The City will route the plans to EsGil and the Carlsbad Planning, Engineering and Fire
Departments.
Bring TWO corrected set of plans and calculations/reports to EsGil, 9320 Chesapeake
Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of
plans and calculations/reports directly to the City of Carlsbad Building Department for
routing to their Planning, Engineering and Fire Departments.
NOTE: Plans that are submitted directly to EsGil only will not be reviewed by the City
Planning, Engineering and Fire Departments until review by EsGil is complete.
2. To facilitate rechecking, please identify, next to each item, the sheet of the
plans upon which each correction on this sheet has been made and return
this sheet with the revised plans.
cARLsBAD CBC20 18-0096
MAR. 019 2018
Please indicate here if any changes have been made to the plans that are not a
result of corrections from this list. If there are other changes, please briefly
describe them and where they are located on the plans. Have changes been
made not resulting from this list? U Yes U No
. PLANS
Include the following information on site plans: Sec. 107.2: I.e., Sht. PV-100.
a) Clearly dimension new carport setbacks from each other, adjacent structures, property
lines, and street centerlines, on the site plans, as applicable.
Please specify the following information on the plans for the proposed carports:
Occupancy = S2; Type of Construction = Il-B; Height = 15' (Max); Story = One;
Sprinklers = No; Floor Areas: C4 = ...; C6 = ...; Solar supported Carports Types
A = ... ; B = ... ; C = ... ; etc.
Please specify the actual versus allowable areas on the plans for the carports.
When two or more buildings (or carports) are on the same property, they shall
have an assumed property line between them for the purpose of determining the
required wall and opening protection and roof cover requirements, per Section
705.3. An exception is provided if the combined area of the buildings is within the
limits specified in Chapter 5 for a single building. If this exception is used, show
how the building(s) will comply. Section 503.1.2. Show compliance on PV-100.
Please demonstrate compliance with Table 602 for fire-resistance rating
requirements for exterior walls. If not applicable, depending on the distance to
adjacent structures, or assumed PL's, please specify N/A & skip to the next item.
For buildings on the same lot, opening protectives having a fire-protection rating
of not less than 34-hour shall be provided in every opening that is within a
horizontal fire separation distance of 15' of the wall in which the opening is
located. Section 705.8.6. See also Section 705.8.5.
Show fire rating of any elements with details, references and approval number(s)
on plans, as required:
The City Policy requires that their special Inspection Agreement Form be
completed for this project. This Form is available at the building department.
Inked-in changes are not permitted on plans. Please revise the project address
on the cover sheet of the plans accordingly, to match the permit application.
ACCESSIBILITY
13. Provide notes and details on the plans to show compliance with the enclosed
"Disabled Access" Review List. [Compliance by others is unacceptable
response].
CARLSBAD CBC2018-0096
MAR. 019 2018
. STRUCTURAL
Please clarify detail 051X, as noted on plans, starting on Sheet S2.0.
Please indicate where details 1, 2,4 & 51S6.0 are called out on the plans.
Please show that no confinement reinforcement is required for details NSI .0 &
B/S60. If so, please show 3) #3 ties within the top 5" of the pier. AOl 3i8-14,
Sec. 10.7.6.1.6.
Asphalt, as noted will not create fixity at the top of the pier to justify constrained
conditions. Concrete is fine, as stated under Foundation Note, on Sheet S1.0.
Please demonstrate how the pad footings will provide fixity at the bottom to
produce cantilevered column elements. [Flag pole footings are fine as noted].
Additional corrections may be necessary, once updated plans are submitted for
review and approval.
. MISCELLANEOUS
Please see attached for the electrical & HC corrections..
The jurisdiction has contracted with EsGil, located at 9320 Chesapeake Drive,
Suite 208, San Diego, California 92123; telephone number of 858/560-1468, to
perform the plan review for your project. If you have any questions regarding
these plan review items, please contact AL! SADRE, S.E. at EsGil. Thank you.
ELECTRICAL and ENERGY COMMENTS
PLAN REVIEWER: Eric Jensen
ELECTRICAL (2016 CALIFORNIA ELECTRICAL CODE)
That inverter AC disconnect is limited to 67" to the centerline of the operating
handle. Include this specification on the PV200 sheet
Why are all the underground conduits "existing"? When were they permitted?
Parallel 2/0 aluminum is undersized for the 300-ampere circuit. See CEC 240.6
Explain the single line string fuse design: On sheet PV200 and the cut sheet a
DC disconnect is specified (required) that has string fusing installed and the
single line also has a "Y" fuse set-up? If only using the DC disconnect fusing,
specify the DC fuse sizing.
Note: If you have any questions regarding this Electrical and Energy plan review list
please contact Eric Jensen at (858) 560-1468. To speed the review process, note on
this list (or a copy) where the corrected items have been addressed on the plans.
CARLSBAD CBC20 18-0096
MAR. 01, 2018
[DO NOT PAY— THIS IS 'NOT AN INVOICE]
VALUATION AND PLAN CHECK FEE
JURISDICTION: CARLSBAD PLAN CHECK #.: CBC2018-0096
PREPARED BY: ALl SADRE, S.E. DATE: MAR. 019 2018
BUILDING ADDRESS: 2510 WEST RANCH STREET
BUILDING OCCUPANCY: 52; II-B
BUILDING
PORTION
AREA
( Sq. Ft.)
Valuation
Multiplier
Reg.
Mod.
VALUE ($)
CARPORTS 9382
CARPORTS W/ 11340
SOLAR
Air Conditioning
Fire Sprinklers
TOTAL VALUE 613,564
Jurisdiction Code ICB IBY Ordinance
1997 UBC Building Permit Fee V
1997 UBC Plan Check Fee
Type of Review: 0 Complete Review
J
Structural Only
I $2,379.261
I $1,546.521
O Repetitive Fee Repeats
Other
ci Hourly Hr. @ *
EsGil Fee I $1,356.181
Comments: The valuation is stated on the cover sheet of the plans & is different from that
reported on the City paper work.
Sheet 1 of 1
CARLSBAD CBC20 18-0096
MAR. 01, 2018
PRIVATELY FUNDED MULTI-FAMILY DISABLED
ACCESS CORRECTION CHECKLIST
Note: All Sections referenced are from Title 24 (2016 CBC)
SITE DEVELOPMENT/ACCESSIBLE ROUTE OF TRAVEL:
PARKING: Please indicate on a resoonse list where each item is addressed on plans:
The plans must indicate if the parking is "assigned" or "not assigned." Depending on the choice, the
following items apply.
If assigned parking is provided at privately funded multifamily building sites, accessible parking shall be
provided for at least 2% of the assigned parking spaces, but not less than one. At least one space of each
frøe of parking facility shall be made accessible even if the total number exceeds 2%. Signage is not
required for assigned parking. Sec. 1109A.4.
When parking is not assigned to a resident, at least 5% of the parking spaces shall be accessible and
provide access to covered multifamily dwellings and facilities (club houses, pools, etc.). Such parking
spaces shall be provided with signage by Section 1109A.8.8. Such signage shall not be blocked from view
by a vehicle parked in the space. Sec. 1109A.5.
Accessible parking shall be located on the shortest possible accessible route of travel to an accessible
building entrance. Sec. 1109A.7.1.
In facilities with multiple accessible building entrances with adiacent parking, accessible parking spaces
shall be dispersed and located near the accessible entrances. Sec. 1109A.7.2.
When practical, the accessible route shall not cross lanes for vehicular traffic. When crossing vehicle traffic
lanes is necessary, the accessible route shall be designated and marked as a crosswalk. Sec. 1109A.7.3.
A vertical clearance of 8'-2" (measured to the lowest projection from the ceiling) shall be maintained to each
required accessible parking space. Sec. 1109A.8.1. Dimension this on plans to the bottom of any bracing.
Each accessible space shall be 14' wide & outlined to provide a 9' parking area & a 5' loading & unloading
area. The loading & unloading area may be located on the either side of the vehicle. Sec. 1109A.8.5.1.
Two adiacent accessible parking spaces may be provided with a 23' wide area lined to provide a 9' parking
area on each side of a 5' loading and unloading area in the center. Sec. 1109A.8.5.2.
One in every eight accessible spaces, but not less than one, shall be served by an access aisle 8' wide mm
and shall be designated van accessible with a sign "Van Accessible" mounted below the symbol of
accessibility. Alternately, the parking space may be 12' wide with the access aisle 5' wide. Sec. 1109A.8.6.
The access aisle shall be located on the passenger side of the vehicle.
Ramps shall not encroach into any accessible parking space or the adiacent loading/unloading access
aisle. Sec. 1109A.8.2.2.
The words. "NO PARKING" shall be painted on the ground within each loading/unloading access aisle,
located sothat it is visible to-traffic enforcement officials. Sec. 1109A.8.5.4
The minimum length of each parking space shall be 18 feet. Sec. 1109A.8.5.3.
At each parking space, a bumper or curb shall be provided to prevent encroachment of cars over the
required width of walkways. Sec. 1109A.8.2.1.
The accessible parking space(s) shall be so located that people with disabilities are not compelled to wheel
or walk behind parked cars other than their own. Sec. 1109A.7.5.
Surface slopes of parking spaces for physically disabled shall not exceed 1/4 inch per foot (2.083 %
gradient) in any direction. Section 1109A.8.3.
If a parking lot has unassigned parking spaces, then the accessible parking stalls shall be identified by a
sign, complying with Sec. 1109A.8.8.
CARLSBAD CBC20 18-0096
MAR. 01, 2018
18. An additional sian shall be oosted in a consoicuous olace at each entrance to off-street oarkina facilities or
immediately adiacent to and visible from each stall or space. The sign shall not be less than 17 inches by
22 inches in size with lettering not less than 1 inch in height, which states the following:
"Unauthorized vehicles parked in designated handicapped spaces not
displaying distinguishing placards or license plates issued for physically disabled persons may be
towed away at owners expense. Towed vehicles may be reclaimed at or by telephoning
Section 1109A.8.8.
19. The surface of each accessible parking space or stall shall have a surface identification duplicating either of
the following schemes:
By outlining or painting the stall or space in blue and outlining on the ground in the stall or space in
white or suitable contrasting color the "International Symbol of Accessibility"; or.
By outlining the "International Symbol of Accessibility" in white on blue background. The symbol
shall be located so that it is visible to a traffic enforcement officer when a vehicle is properly
parked in the space and shall be 36 inches high by 36 inches side. Section 1109A.8.8.
CURB RAMPS
20. Curb ramps shall be constructed at each corner of street intersections and where pedestrian way crosses a
curb. Sec. 1112A.1.
21. Curb ramps shall be a mm. of 4' in width. Sec. 1112A.3.
22. The slope of the curb ramp shall not exceed 1 vertical to 12 horizontal. If a curb ramp is located where
pedestrians must walk across the ramp, then it shall have flared sides which slope at max 1:10. Sec.
11112A.5.
23. A level landing 4' deep shall be provided at the upper end of each curb ramp over its full width to permit
safe egress from the ramp surface, or the slope of the fanned or flared sides of the curb ramp shall not
exceed 1 vertical to 12 horizontal. Sec. 1112A.6.
24. All curb ramps shall have a grooved border, 12" wide at the level surface of the sidewalk along the top and
each side, approximately %" on center. Sec. 1112A.8.
25. Show that detectable warnings, extending the full width and depth of the curb ramp, inside the grooved border,
are to be installed for all curb ramps (regardless of slope), per Sec. 11 B-705. Only approved DSA/AC
detectable warning products & directional surfaces shall be installed. Sec. 11 B-705.3, as ref. by Sec. 1112A.9.
26. Curb ramp shall be located or protected to prevent their obstruction by parked cars. Sec. 1112A.2.
WALKS AND SIDEWALKS
27. All walks and sidewalks subiect to these reaulations shall have continuous common surface, not interrupted
by steps or by abrupt changes in level exceeding ½ inch, and shall be a minimum of 48" in width. Walks
and sidewalks serving individual dwelling units in privately-funded multifamily buildings may be reduced to
36" in clear width. Sec. 1113A.1.
28. When the slope in the direction of travel of any walk exceeds 5%, it must comply with the provisions for
Pedestrian ramps. Sec. 1113A.3.
29. Walks shall be provided with a level area not less than 60" by 60" at a door or gate that swings toward the
walk, and not less than 48" by 44" deep at a door or gate that swings away from the walk. Such walks shall
extend 24" to the side of the strike edge of a door or gate that swings toward the walk. Sec. 1113A.4.
30. All walks with continuous gradients shall have level areas at least 5' in length at intervals of atleast every
400'. Sec. 1113A.2.
RAMPS: If none, state N/A & skip to the end
31. Any path of travel is considered a ramp if its slope is greater than 5% (1:20). The slope of the ramp cannot
exceed 8.33% (1:12). Sec. 1114A.2.
CARLSBAD CBC20 18-0096
MAR. 01, 2018
Continuous, full-length handrails are required at each side for all ramps. The handrails are to extend in the
direction of the ramp not less than 12" beyond the top & bottom of the ramp. Sec. 1114A.6.1 & 1114A.6.2.3.
The handrails must be 34 to 38" above the ramp surface. The size and spacing requirements for ramp
handrails are the same as for stairway handrails. Sec. 11 14A.6.2.
Where a ramp is not bounded by a wall or fence and the ramp exceeds 10' in length, there shall be a curb
at least 4" high, or a wheel guide rail 4" above the ramp surface. Sec. 11 14A.7.
Top landings shall be not less than 60" wide and shall have a length of not less than 60" in the direction of
ramp run. Sec. 1114A.4.2.
The top landing width shall extend a mm. of 24" past the strike edae of the door. Section 1114A.4.5.
Intermediate landings shall be provided at intervals not exceeding 30" of vertical rise. Such intermediate
landings are to be at least 60", measured in the direction of the ramp. Sec. 1114A.4.1 & 1114A.4.7.
Intermediate landings shall be provided at each change of ramp direction. Bottom and intermediate
landings at a change of direction over 30 degrees must be at least 72" as measured in the direction of the
ramp. Sec. 1114A.4.1 & 1114A.4.6.
Job No. 18-103 Sheet No. cover
By RRD Date JAN 2018
1741~ It,
IS14i Z
CLIENT:
SKYLINE STEEL, INC.
631 W. Commerce Ave.
Gilbert, AZ 85233
PROJECT:
MONTECITO APARTMENTS @ ROBERTSON RANCH
Carlsbad, CA 92 OIO° Lit*
NEW STEEL CANOPY WITH SOLAR PV PANELS
GENERAL INFORMATION:
BUILDING CODE: 2016 C.B.C.
?OESSIO/V.
\ Exp. 03-31-18
01-25-18
NOTE: THE CALCULATIONS PRESENTED HERE ARE PROJECT / SITE SPECIFIC TO THE ADDRESS NOTED ABOVE, ONLY FOR THE STRUCTURES AND/OR EQUIPMENTS
REFERENCED IN THIS ANALYSIS AND PREPARED FOR ONE TIME USE EXCLUSIVELY BY SKYLINE STEEL, INC. THE INFORMATION PROVIDED HEREIN BY DESERT FOX, LLC,
SHALL NOT BE USED FOR ANY PURPOSE OTHER THAN TO FACILITATE THE BUILDING PERMIT APPLICATION APPROVAL FOR THIS PROJECT AND SHALL NOT BE USED IN LIEU
OF THE APPROVED CONSTRUCTION DOCUMENTS. THIS DOCUMENT SHALL NOT BE USED OR REFERENCED FOR THE ACTUAL INSTALLATION OR CONSTRUCTION OF ANY
STRUCTURES OR EQUIPMENTS THAT ARE ASSOCIATED WITH THIS PROJECT. IT SHALL NOT BE RELEASED TO ANY OTHER PARTY WITHOUT THE WRITTEN CONSENT OF
DESERT FOX. LLC. THE INFORMATION CONTAINED IN THIS REPORT IS AN INSTRUMENT OF SERVICE AND IS THE PROPERTY OF DESERT FOX, L-C.
02018 DESERT FOX, LLC., ALL RIGHTS RESERVED. THIS REPORT OR ANY PART THEREOF MUST NOT BE REPRODUCED IN ANY FORM WITHOUT THE EXPRESSED WRITTEN PERMISSION OF DESERT PDX, U.C.
969 E. Saratoga St. Gilbert, AZ 85296 • 1: (480) 205-2094 • F: (480) 633-9328 • www.dfoxonline.com
I tarv"l I wo OcW.
I
I
I
I
GJV1J
3
3
1
C 4
QA2JR
A
O
R
O
Y
T
wotv
a
aiiv
a
I
I
I
I
I
I
I
I , I
1
PARKING CANOPY BASIS FOR DESIGN:
BUILDING CODE:
2016 EDITION OF THE CALIFORNIA BUILDING CODE WITH CITY OF CARLSBAD AMENDMENTS.
LOADS:
ROOF LIVE LOAD =20 PSF (REDUCIBLE).
ROOF DEAD LOAD =6 PSF (SOLAR CANOPY).
=4 PSF (NON-SOLAR CANOPY).
LATERAL: RISK CATEGORY II (GROUP U STRUCTURE).
WIND ANALYSIS PROCEDURE = ASCE 7-10 FOR OPEN STRUCTURES (SEC. 30.8).
3 SECOND WIND GUST= 110 MPH.
EXPOSURE C.
SEISMIC:
IMPORTANCE FACTOR = 1.0.
DESIGN CATEGORY D.
MAPPED SPECTRAL RESPONSE ACCELERATION (Ss) = 1.017.
MAPPED SPECTRAL RESPONSE ACCELERATION (Si) = 0.3 87.
SITE CLASS D.
I
ANALYSIS PROCEDURE: EQUIVALENT LATERAL FORCE PROCEDURE.
BASIC SEISMIC FORCE RESISTING SYSTEM: CANTILEVERED COLUMN SYSTEM DETAILED TO
I CONFORM TO THE REQUIREMENTS FOR ORDINARY CANTILEVERED COLUMN.
RESPONSE MODIFICATION FACTOR, R = 1.25.
I FOUNDATION:
1,500 PSF ALOWABLE BEARING PRESSURE FOR SPREAD TYPE FOOTINGS.
100 PSF/FT ALLOWABLE LATERAL BEARING RESISTANCE VALUE FOR POLE TYPE FOOTINGS.
I
I
I
U
I
MecaWind Std v2.2.7.0 per ASCE 7-10
Developed by MECA Enterprises, Inc. Copyright www.rnecaeoterprises.com
I Date : 1/19/2017 Project No. : 18-103
Company Name : Desert Fox Designed By : PAD
Address : 2600 Gage Dr. Description : Carport Canopies
City : Carlsbad Customer Name : Skyline
State : CA Proj Location : Carlsbad, Ca. I File Location:G:\Desert Fox\08-103\Montecito.wnd
Input Parameters: Directional Procedure Open Building (Ch 27 Part 1)
Basic Wind Speed(V) 110.00 mph
Structural Category II
I Natural Frequency N/A Exposure Category
Importance Factor 1.00 9.50 Flexible Structure = No
Alpha 0.11 0.15 Nd Directional Factor = 0.85 At 0.20 0.20 Zg 900.00 ft Am 1.05 : 12 Bt = 1.00
• Cc 38.75 ft Bra 0.65
Epsilon 13.00 ft 1 500.00 ft
Pitch of Roof Zmin 15.00 ft
D: Roof Len along Ridge Slope of Roof (Theta) = 5.00
h: Mean Roof Ht Deg
Horizontal Width = 20.50 ft I
L:
Gust Factor Calculations Type of Roof = MONOSLOPE
Gust Factor Category I Rigid
Structures - Simplified Method
Gustl: For Rigid Structures (Nat. Freq.>1 Hz) use 0.85 = 0.85
I Gust Factor Category II Rigid Structures - Complete Analysis
2m: 0.6*Ht = 15.00 ft lzm: Cc*(33/Zm)0.167 0.23
Lzm: 1*(Zm/33)Epsilon = 427.06 ft
4: (1/(1+0.63*((B+Ht)/Lzm)0.63))'0.5 = 0.94
I Gust2: 0.925*((1_1_1.7*lzm*3.4*Q(/(1+1.7*3.4*lzm)) 0.89
Gust Factor Summary
Not a Flexible Structure use the Lesser of Gusti or Gust2 = 0.85
I Open Building-Monoslope Roof per Figure 27.4-4:
L
1
CNNV
I _
I
Normal to Ridge - Open Building - Monoslope Roof per Figure 27.4-
I
4: Gamma = 0 degrees, Clear Wind Flow
Load Cnw Cnl Windward Wind Pres.Leeward Wind Pres.
I
Case psf psI -----------------------------------------------
A 1.200 0.300 22.798 5.699
B -1.100 -0.100 -20.898 -1.900
I
I
3
a
a
MO
Notes - Normal to Ridge
Normal to Eave - Open Building - donoslope Roof per Figure 27.4-4:
Gamma = 180 degrees, Clear Wind Flow
Load Cow Cnl Windward Wind Pres.Leeward Wind Pies.
Case psf psf ---------------------------------------------------------------
A 1.200 0.300 22.798 5.699
B -1.100 -0.100 -20.898 -1.900
Notes - Normal to Rave
Along Ridge - Open Building - Nonoslope Roof per Figure 27.4-4:
Gamma 90 degrees, Clear Wind Flow
Length Along Roof Angle Load Cm Wind Press Along Ridge
Ridge of Roof (Theta) Case pof psf ------------------------------------------------------------------
< 13.0 Theta<=45 deg A -0.800 -15.199
B 0.800 15.199 >13.0&<,,2*13.0 Theta<=45 deg A -0.600 -11.399
B 0.500 9.499
Notes - Along Ridge
Wind Pressure on Components and Cladding (Ch 30 Part 5)
j. r
Mono sjoiie Roof
All pressures shown are based upon STRENGTH Design, with a Load Factor of 1
Width of Pressure Coefficient Zone 'a" = 3.00 ft
Description Width Span Area Zone Co Cn Max P Min P
ft ft ft2 Max Win psf pef -----------------------------------------------------------------------
Zone .1 1.00 1.00 1.0 1 1.47 -1.30 27.86 -24.70
Zone 2 1.00 1.00 1.0 2 2.20 -1.97 41.80 -37.36
Zone 3 1.00 1.00 1.0 3 2.93 3.90 55.73 -74.09
Zone 3 Roof Purlj 3.39 19.00 120.3 3 1.17 -1.30 27.86 -24.70
Zone 3 Roof Putli 3.39 10.00 33.9 3 2.20 -1.97 41.80 -37.36
ag USGS Design Maps Summary Report
User—Specified Input
Report Title MONTECITO APARTMENTS
Tu January 25, 20J8 0U58:43 iJTC
Building Code Reference Document ASCE 7-10 Standard
(whyh ublizea USGS h.aad data available n 2008)
Site Coordinates 33,155860N, 1 17.29963°W
Site Soil Classification Site Class D - "Stiff Soil"
S= 1.075g S= 1150g S= 0.767g
S1 = 0.414 g SMI = 0,657 g SDI = 0.438 g
For information on how the SS and Si values above have been calculated from probabilistic (risk-targeted) and
deterministic ground motions in the direction of maximum horizontal response, please return to the application and
select the "2009 NEHRP" building code reference document.
cise Sn'ect-jr
For PGAI, T, C,,, and C,, values, please view the detailed report.
SEISMIC ANALYSIS IBC 2O15/ASCE7-1O
EQUIVALENT LATERAL FORCE METHOD
PROJECT: For Cantilvered Column (Longitudinal) DESCRIPTION:
LOCATION:
Ss: 1.075
S1: 0.414
IE: 1
Occupancy: I
Seis. Category: D
Site Class: D
ap 1
R 1.25
Ct 0.02
TL: 8.00 sec
V: Cs W
C5: SDS/(R/l): 0.613
Max C5: SDI/(R/I)T: 2.716
Max C5: SDI(TL)/(R/I)T2: -
Min C5: 0.5S11(RII): -
Min C5: (001) or 0.044SDSI 0.010
Fa: 0.613 S0s: 0.767
F5: 0.429 SDI: 0.438
V = 0.613 W (ULTIMATE)
V = 0.429 W (ASD)
ASCE 7-05 SEC. 12.8-1
ASCE 7-05 SEC. 12.8-2
ASCE 7-05 SEC. 12.8-3
ASCE 7-05 SEC. 12.8-4
ASCE 7-05 SEC. 12.8-6
ASCE 7-05 SEC. 12.8-5
T: 0.13 sec
rev. 07-29-10
DESERT FOX, LLC Job Name:MONTECITO APTS.
Consulting Structural Engineers Job No.: 18-103 Sheet: 6
969 E. Saratoga St. By: RRD Date: JAN 2018
Gilbert, AZ 85296
1(480) 205-2094 F(480) 633-9328
Solar Panel
Designed supplied and installed by others.
cioofPur]ins: Ccc 8" x 3 1/2" x 16ga
Max. span, Lprth 19.0 ft apr :-= 10.06-ft tributary, pTn 3,39-ft
W (RDLI + RDL2 + RLL)Sprtn w 80.92p1f
Wind Pressures (zone 31.
P3prtn.pn = 27.860psf W 05 := (0.6p3prinp + RDLI + RDL2).(s11)Wpos = 69.79p1f
P3pr!n.neg = 24.700psf Wneg : [0.6p3prjn.neg 0.67(RDLJ + RDL2)1(spdfl) "neg = 41.45p1f
DL+LL_ controls. (see pages 7-8)
Purlin to Beam Coction: 14ga clip with (8) #12 screws each leg
(4-screws each purlin, 4-screws each cee beam)
Pudins are stacked on top of beams. Check connection foruplift load.
R 0.5(wneg)Lpjjn R = 0.39 kips 2-R = 0.79 kips
I t IWneg)t I Lprjn +
Rcant:= Rcant= 0.92 kips
.g)iD to beam connection critical (Dullout :
Member not in contact w/ screw head (14ga beam minimum), t2:= 0.070-in
Tensile Strength, Fu2 := 65.0-ksi
Screw diameter, d:= 0.216-in to := t2 to = 0.070 in
Priot:= 0.85•tc-d-Fu2 Pnot = 0.84 kips
.0 := 3.0 Pnot Allow. Pullout, Pap llout := -- Paji0 278.46 Jhf
for(4)#12 screws: 4.(Pa.i0t) = 1.11 kips - O.K.
for (8) #12 screws: X.(Papunot = 2.23 kips O.K.
7
Project Name: MONTECITO APTS. Page 1 of I
Model: Roof Purlins Date: 01 /19/2018
Code: 2007 NASPEC EAISI S100-20071 Simpson Strong-lietSi CFS DesignerTM 1.5.0.0
Section: Cee 8 x 3.5 x 16ga Single C Stud
Maxo = 5585.3 Ft-Lb Moment of Intertia, I = 970 inA4
Loads have not been modified for strength checks
Loads have not been modified for deflection calculations
CInws.r I ,.,4 flafln,-4n,, rhnr It
Fy55.0 ksi
Va = 2519.7 lb
•
Mmax Mmax! Mpos Bracing Ma(Brc) Mposl Deflection
Span Ft-Lb Maxo Ft-Lb (in) Ft-Lb Ma(Brc) (in) Ratio
Span 3651.5 0.654 3651.5 Mid-Pt 5200.8 0.702 0.829 L/275
Distortional Buckling Check
Span K-phi Lm Brac Ma-d Mmaxl
lb-in/In in Ft-Lb Ma-d
Span 0.00 228.0 4733.0 0.772
Combined Bending and Web Crippling
Reaction or Load Bearing Pa Pn Mmax Intr. Stiffeners
Pt Load P(lb) (in) (lb) (lb) (Ft-Lb) Value Required?
Ri 768.7 2.50 911.5 1595.2 0.0 0.44 NO
R2 768.7 2.50 911.5 1595.2 0.0 0.44 NO
Combined Bending and Shear
Reaction or Vmax Mmax Va Intr. Intr.
Pt Load (lb) (Ft-Lb) Factor VNa Ni/Ma. tinstiffened Stiffened
RI 768.7 0.0 1.00 0.31 0.00 0.31 N/A
R2 768,7 0.0 1.00 0.31 0.00 0.31 N/A
SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com
I
I
I
I
I
I
I
8
Project Name: MONTEC ITO APTS. Page 1 of I
Model: Roof Purlins at Cantilever Date: .01/19/2018
Code: 2007 NASPEC [AISI Si 00-2007] Simpson Strong-Tie® CFS DesignerIM 1.5.0.0
80.92 80.92
IMENNUM OEM
Ri R2
10.06 19.00
Section: Cee 8 x 3.5 x 16ga Single C Stud
Maxo = 5585.3 Ft-Lb Moment of fntertia, I = 9.70 inA4
Loads have not been modified for strength checks
Loads have not been modified for deflection calculations
,..1 (hI,
Fy = 55.0 ksi
Va =2519.7 lb
•
Mmax Mmaxl Mpos Bracing Ma(Brc) Mpos/ Deflection
Span Ft-Lb Maxo Ft-Lb (in) Ft-Lb Ma(Brc) (in) Ratio
Left Cantilever 4094.7 0.733 2614.1 None 5341.9 0.489 0.796 L/303
Span 4094.7 0.733 1891.1 Mid-Pt 5085.7 0.372 0.290 L/787
Distortional Suckling Check
Span K-phi Lm Brac Ma-d Mmaxl
lb-inlin in Ft-Lb Ma-d
Left Cantilever 0.00 120.7 4733.0 0.865
Span 0.00 228.0 4733.0 0.865
gombined Bending and Web Crippling
Reaction or Load Bearing Pa Rn Mmax Intr. Stiffeners
Pt Load P(lb) (In) (lb) (lb) (Ft-Lb) Value Required?
Ri 1798.3 2.50 1760.2 2904.3 4094.7 1.00 YES
R2 553.2 2.50 911.5 1595.2 0.0 0.32 NO
Combined Bending and Shear
Reaction or Vmax Mmax Va. Intr. intr.
Pt Load (lb) (Ft-Lb) Factor V/Va MIMa Unstiffened Stiffened
RI 984.3 4094.7 1.00 0.39 0.73 0.83 N/A
R2 553.2 0.0 1.00 0.22 0.00 0.22 N/A
SIMPSON STRONG-TIE COMPANY INC. www.strongtle.com
Project Name: MONTECITO APTS. Page 1 of
Mode!: Roof Purlins Date: P1/19JPi8
Code: 2007 NASPEC [AISI S100-20071 Simpson Strong-Tie® CFS Designer 1.5.0.0
Section Designation: Cee 8 x 3.5 x 16ga Single C Stud
INPUT PROPERTIES:
Web Height = 8.0000 In Steel Thickness = 0.0600 in
Top Flange = 3.5000 in Inside Corner Radius 0.1250 in
Bottom Flange 3.5000 in Yield Stress, Fy = 55.0000 ksi
Stiffening Lip 1.0000 in Fy With Cold-Work, Fya = 55.0000 ksi
OUTPUT PROPERTIES:
Effective Section Properties, Strong Axis
Neutral Axis from Top Fiber Ycg) 4,3622 in
Moment of Inertia for Deflection (lxx) 9.7024 lnA4
Section Modulus (Sox) 2.0351 1n1'3
Allowable Bending Moment (Ma) 5585,30 Ft-Lb
Allowable Distortional Buckling Moment (Mda) at K$ = 0 4732.99 Ft-lb
Gross Section Properties of Full Section, Strong Axis
Neutral Axis from Top Fiber (Ycg) 4.0000 in
Moment of Inertia (lxx) . 10.1768 inA4
Cross Sectional Area (A) 0.9896 lnA2
Radius of Gyration (Rx) 3.2068 in
Section Projes, Wek AxIs
Gross Neutral Axis (Xcg) From Web Face 1.1243 in
Gross Moment of Inertia (Iyy) 1.7247 lnA4
Radius of Gyration (Ry) 1.3201 In
Other Section Property Data
Member Weight per Foot of Length 3.3675 lb/ft
Allowable Shear Force In Web (Unpuoched) 2519.65 lb
Pao for use in Interaction Equation C5-2 16307 lb
Torsional Properties
Dist. from Sheer Center to Neutral Axis (Xo) -2.7600;n
St. Venant torsion Constant (J x 1000) 1.1876 in 114
Warping Constant (Cw) 24.1671 lnA6
Radii of Gyration (Ro) 4.4321 in AG
Torsional Flexural Constant (Beta) 0.6122
Warping Torsional Properties
a(InA3) Sxx(Iip)(inA3) Wn(1)(inA2) Wn(2)(inA2) Wn(3)(inA2) Wn(4)(inA2) Wn(5)(inA2) Wn(6)(in2)
230,5 2.6404 11.9966 7.0441 -6.6127 6.6127 -7,0441 -11.9966
Location (1) and (6) are tip of compression and tension lip respectively
Location (2) and (5) are flange/lip corner of compression and tension side respectively
Location (3) and (4) are flange/web corner of compression and tension side respectively
SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com
91
T-S" X 5-4 X 26 THK.
OPTIONAL SPREAD F0OTIN
SECTION A KEYNOTES:
I. 5PR-E20-435-COM SOLAR MODULES.
2 GEE 4X2.5XI2A. (2-I4005250-q7)
DOUBLE STEEL BEAM.
GEE S'X35XIS&A. (5005350-54)
STEEL PURLINS.
2 GEE I2"X3.5"XIO&A (2-12005350-11-7)
BOXED STEEL COLUMN.
(E) FINISHED GRAPE.
S. CROVN TOP TO FACILITATE HATER
RUN OFF.
1. 5-#5 VERTICAL BARS.
S. S-S PEEP AT ASPHALT OR SOIL.
. GIP 24 PIA. CONCRETE EMBEDDED
POLE FO0TIN.
0. (I0)-5 BOTTOM LONSIThPINAL REBAR.
II. #4 EACH DIRECTION (DRILLED) EXTEND
3 MIN. EXTEND PAST COLUMN.
(I(b)-*5 TRANSVERSE REBAR.
CENTERLINE OF COLUMN AND FOOTINS.
DESERT FOX, L LC
Consulting Structural Engineers
969 E. Saratoga St.
Gilbert, AZ 85296
T(480) 205-2094 F(480) 633-9328
Job Name:MONTECITO APTS.
Job No.: 18-103 Sheet: 11
By: RRD Date: JAN 2018
Roof.Beams- (2) Ccc 14" x 2 1/2" x l2ga DP TEE CROSS SECTION A
1-9.0-ft
tnbutaiydcpth, dbm :' 40.53-ft
TrThutaiy Area: At ;r. (5b1n)(t1bm) At 770.07 ft2
RI := if(At <200-ft2, I , if: 'At> 600•ft2,0.60, 1.2 - 0.00i -) RI = 0.600
ft)
Roof slope less than 4:12: R2 := 1.0
Lr:= (RI)-(R2).(RLL) Lr = 1200psf
wdl : (R.L)L)Sbm wdl = 114.00p1t
wU := (Lr)Sbrn wil 228.00 plf Load Each CeeSection w:= (RD], 4- Lr)-sbm w = 342.00 p11 0.5w = 171.00 p11
Beam sp:jLL
Left cantilever, Lt0ft := 12.55-11 Right cantilever, := 12.76-ft
Centerspan, Lctr:= 15.21-ft
Max. Positive VAnd Premres (MWFRS): P wjnçrd = 22.80psf 1Ajecward = 5.70 pSf
assume windward pressure full length
(0.6P/Lwindward + JU)L)(sbm) wpos = 373.90p1f 0.5w r-r 186.95 p11
w 05 := (06PAIccwpJ + RDL)(Sbm) w = 178.97 p11 0.5w = 89.48 plf
B windrd = -20.90 psf
Wneg : l(0.6PWjndJd - 0.67RDL)(sbm)I Wneg = 314.62 p11 0.5w, = 157.31 plf
Left cantilever, Lien := 12.60 ft
Center span, Lctr := 1526ft
- Seepages below
Right cantilever, Ltt 12.821t
12
I Project Name: MONTECITO APTS. Page 1 of
I Model: Roof Beams (OP -
Dale: 1/25/2018
Code: 2012 NASPEC [AISI SI 00-2012] Simpson Strong-Tie® CFS Designer1M 1.5.0.0
Ri R2
12.60 15.26 12.82
SloedIPartLLoads
-. Case Xl ft W(XI) lb/ft X2 ft W(X2) lb/ft
1 0.00 187.0 20.34 187.0
2 20.34 89.5 40.68 89.5
Section Cee 14 x 2.5 x l2ga'Single C Stud
Maxo = 18884.0 Ft-Lb Moment of Intertla, 1=53.11 inA4
Loads have not been modified for strength checks
Loads have been multiplied by 0.70 for deflection calculations
Fy55.0ks1
Va =7609.6 lb
Mmax Mmax/ Mpos Bracing Ma(Brc) Mpos! Deflection
Span Ft-Lb Maxo Ft-Lb (In) Ft-Lb N7a(Brc) (in) Ratio
Left Cantilever 14840.1 0.786 9473.9 Mid-Pt 16650.0 0.569 1.162 EJ260
Span 14840.1 0.786 10393.4 Mid-Pt 14501.3 0.717 0.174 L/1051
Right Cantilever 7350.8 0.389 4691.1 Mid-Pt 16506.9 0.284 0.781 L1394
Distortional Buckling Check
Span K-phi Lm Brac Ma-d Mmax/
lb-In/In In Ft-Lb Ma-d
Left Cantilever 200.00 151.2 17698.3 0.839
Span 200.00 183,1 17698.3 0.839
Right Cantilever 200.00 153.8 17698.3 0.415
Combined Bendijig and Web Crippflng
Reaction or Load Bearing Pa Pin Mmax Intr. Stiffeners
Pt Load P(lb) (in) (lb) (lb) (Ft-Lb) Value Required?
RI 4092.0 2.50 5339.2 8809,7 14840.1 0.89 YES
R2 1530.6 2.50 5339.2 8809.7 7350.8 0.39 NO
Combined Bending and Shear
Reaction or Vmax Mmax Va V + M
Pt Load (Ib) (Ft-Lb) Factor viva MJMa Intr.
RI 2355.6 14840.1 1.00 0.31 0.79 0.84
R2 1147.4 7350.8 1.00 015 0.39 0.42
SIMPSON STRONG-TIE COMPANY INC. www.strongiie.com
I
I
I
I
Project Name: MONTECITO APTS. Page 2 of 2
Model: Roof Beams (DP Date: 1/25/2018
Code: 2012 NASPEC [AISI S1O02c1121 Simpson Strong-Tie® CFS Designer 1.5.00
Within Span (unstiffenod)
Unpunched Punched
Location, X M(X) V(X) Location, X M(X) V(X)
Span (ft) (Ft-Lb) (lb) Intr. (ft) (Fe-Lb) (lb) Intr.
Left Cantilever 12.60 -14840.1 -2355.6 0.71 N/A N/A N/A N/A
Span 12,60 -14840.1 1736.5 0.67 N/A N/A N/A N/A
Right Cantilever 27.86 -7350.8 1147.4 0.17 N/A N/A N/A N/A
13
SIMPSON STRONG-TIE COMPANY INC. www.strongtiecom
14
Project Name: MONTECITO APTS. Page 1 of 1
Model: Roof Beams (DP 19.0' bay trib) - (DL+LL) Date: 1/25/2018
Code: 2012 NASPEC (AISI S100-20121 Simpson Strong-Tlec5CFS Designer'l-4 1.5.0.0
171.00 171.00 171.00
Ri R2
12.55 15.21 12.76
Section: Gee 14 x 2.5 x 12ga Single C Stud
Maxo = 18884.0 Ft-Lb Moment of Intertla, I = 53.11 1n4'4
Loads have not been modified for strength checks
Loads have not been modified for deflection calculations
rnd
Fy = 55.0 ksi
Va = 7609.6 lb
Mmax Mmax/ Mpos Bracing Ma(Brc) Mpos! Deflection
Span Ft-Lb Maxo Ft-Lb (In) Ft-Lb Ma(Brc) (in) Ratio
Left Cantilever 13466.5 0.713 8597.0 None 10987.3 0.782 1.671 IJIBO
Span 13920.9 0.737 10652.9 Mid-Pt 14412.2 0.739 0.305 1J598
Right Cantilever 13920.9 0.737 8887.1 None 10684.5 0.832 1.746 U175
Distortional Buckling Check
Span K-phi Lm Brac Ma-d Mmax/
lb-In/in In Ft-Lb Ma-d
Left Cantilever 0.00 150.6 17054.6 0.790
Span 0.00 182.5 17054.6 0.816
Right Cantilever 0.00 153.1 17054.6 0.816
Combined Bending and Web Crioplin
Reaction or Lead Bearing Pa Pn Mmax Intr. Stiffeners
Pt Load P(lb) (in) (Ib) (lb) (Ft-Lb) Value Required?
RI 3416.6 2.50 5339.2 8809.7 13466.5 0.78 NO
R2 3512.3 2.50 5339.2 8809.7 13920.9 0.80 YES
Combined Bending and Shear
Reaction or Vmax Mmax Va V + M
Pt Load (lb) (Ft-Lb) Factor VNa M/Ma Intr.
RI 2146.1 13466.5 1.00 0.28 0.71 0.77
R2 2182.0 13920.9 1.00 0.29 0.74 0.79
SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com
I
15
Project Name: MONTECITO APTS.
Model: Roof Beams (DP
Code: 2012 NASPEC [AISI S100-2012j
Section Designation: Cee 14 x 2.5 x 129a Single C Stud
INPUT PROPERTIES:
Page 1 of I
Date: 1/25/2018
Simpson Strong-TiecR CFS Designer1M 1.5.0.0
0.1050 In
0.1250 in
55.0000 ksi
55.0000 ksi
Web Height = 14.0000 in Steel Thickness
Top Flange 2.5000 in inside Corner Radius
Bottom Flange = 2.5000 in Yield Stress, Fy =
Stiffening Up = 1.0000 In Fy With Cold-Work. Fya =
OUTPUT PROPERTIES
Effective Section Properties, Strong Axis
Neutral Axis from Top Fiber (Ycg)
Moment of Inertia for Deflection (hoc)
Section Modulus (Sxx)
Allowable Bending Moment (Ma)
Allowable Distortional Buckling Moment (Mdc) at K4 - 0
Gross Section Properties of Full Section. Strong Axis
Neutral Axis from Top Fiber (Ycg)
Moment of Inertia (lxx)
Cross Sectional Area (A
Radius of Gyration (Rx)
Section Properties. Weak Axis
Gross Neutral Axis (Xcg) From Web Face
Gross Moment of inertia (iyy)
Radius of Gyration (Ry)
Oilier Section _Property Data
Member Weight per Foot of Length
Allowable Shear Force In Web (Unpurcched)
Pao for use in Interaction Equation C5-2
Torsional Properties
Dist. from Shear Center to Neutral Axis (Xc)
St. Venant torsion Constant (J x 1000)
Warping Constant (Cw)
Radii of Gyration (Ro)
Torsional Flexural Constant (Beta)
Warping Torsional Properties
a(inA3) Sxx(lip)(ln3) Wn(1)(inA2) Wn(2)(In2) Wn(3)(in'2)
143.0 7.9468 13.3549 10.2086 -6.4308
Location (1) and (6) are tip of compression and tension tip respectively
Location (2) and (5) are flange/lip corner of compression and tension side respectively
Location (3) and (4) are flange/web corner of compression and tension side respectively
Wn(4)(ln'2)
6.4306
7,4537 in
53.1137 ine4
6.8808 inA3
18883.09 Ft-Lb
17054.63 Ft-Lb
7.0000 in
54,5463 in"4
2.1289 in2
5.0618 in
0.5413 in
1.5001 inA4
0.8394 in
7.2442 lb/ft
7609.58 lb
35327 lb
-1.4144 in
7.8237 in4
61.2937 in"6
5.3223 inA6
0.9294
Wn(5)(lnA2) Wn(6)(inA2)
-10.2066 -13.3549
SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com
I
I
I
I
I
I
I
I
I
I
DESERT FOX, LLC
Consulting Structural Engineers
969 E. Saratoga St.
Gilbert, AZ 85296
1(480) 205-2094 F(480) 633-9328
Job Name:MONTECITO APTS.
Job No.: 18-103 Sheet: 16
By: RRD Date: JAN 2018
Beam to Column Connection: (4)314" 4) A 307 bolts
Lctr = 15.26ft Lieft = 12.60 ft Light = 12.82ft
Rbrn m3((W,Wp0s,Wncg).(0.5LCtt .t. L t,) Rbm = 773 kip
Half load each cee section:
V := v = 0.97 kips per bolt 4
Allowable Bearing on 14ga (beam I column): t := 0.07 in
Fu := 65.0.ksi d := 0.75-in M := 2.22
Pp := 2.22-Fu Fp = 144.30 ksi
Pit := Fp.dt Pn = 7.58 kips
Pa :=-- Pa=3.4ikips
Allow. Bolt Mgar, Va := 4.4kips - O.K.
DESERT FOX, LLC
Consulting Structural Engineers
969 E. Saratoga St.
Gilbert, AZ 85296
T(480) 205-2094 F(480) 633-9328
Job Name:MONTECITO APTS.
Job No.: 18-103 Sheet: 17
By: RRD Date: JAN 2018
Column Loading: (2)1.2 x 3.5 x lOga Boxed TYPICAL
Column design height, Hcol:= 1311-ft high side critical
Tributaiywidth, s 01 : 21.24.ft tributary depth, d,,,:= 20.26-ft
TributayArea: At := (sco (dcoi) At = 430.32 ft2
( ( At" RI := if At <200-ft2,i.ifl .At>600ft2,0.60,1.2-0.001— II R.1 —0.770 ft2))
Roof slope less than 4:12: R2:= 1.0
1,r:= (RI).(R2)•(RLL) Lr = 15.39psf
Dl.. oncoiumn, Lctr := 15.21ft Lieft := 12.76.ft
Pd! := RDL- (Sj). (O.5Lctr + L10ft Pdl = 2.595 kips
MDL :' 0.0-ft-kips
LL on column
P11 := (Lr).(5001).(0.5Lctr + Lleft) P11 = 6.659kips
Mr,L := 0.0-ft-kips
seismic response coefficient, Cs = 0.614
W := Pd! W = 2.595 kips
V:= Cs•W V = 1.592kips
Mseis := (V)-(Hcol) Mseis = 20.974 ft-kips
Horizontal Seismic Load Effect:
redundancy factor, p := 1.3
QE:= V Q= 1.592 kips
Eh:= PQE Eh-2.070kips
:= Eh•(Hcol) = 27.136ft.kips
Vertical Seismic Load Effect:
From page 7, SDS = 0.767
Dead load, D:= W D=2595.321bf
Ev := 0.2S05 D Ev 0.398 kips
dead load on column
seismic load on column
DESERT FOX, LLC
Consulting Structural Engineers
969 E. Saratoga St.
Gilbert, AZ 85296
1(480) 205-2094 F(480) 633-9328
Job Name:MONTECITO APTS.
Job No.: 18-103 Sheet: 18
By: RRD Dale: JAN 2018
C21qp-Q Lo cont.:
Column de-sign height, Ficol = 13.11 ft roof slope, 9 := 5.0-deg
Overall length (sloped), Lt := 29.64-ft ' 21.24f1
Positive Wind Loads: Gamma..Q,Load Case A:
Windward pressure, it.windward 22.80 psf
windward PAv,drd (scoj)(0.5L0 '1windward = 7.176 kips
Leeward pressure, A.ieeward = 5.70 psf
21ecwd A.1eeward (s).(O.S.Lt) 2jeeward = 1.794 kips
Windwardpjesseapijdto column..
Vertical wind co Ywind.po.s.A := P1Wlfld Jdc0s(9) 'PYwind.pos.A = 7.149 kips
Horizontal wind co 2111t. 'wind.pns.A := (i Wlndw8rd)'fl(0) 'wind.pos,A = 0.625 kips
Mrien..ttQ_cpl'ta!x!n, MwindpOs.A. : PXwlnd.Pos.A(HcOl) Mwindpos A = 8.200 ft-kips
NeeWind Loads: Gamma 0, Load Case .B.:
Windward pressure, Pfl windward = -20.90ps1
J.?J windward := PB.windward'(scoj'(0.5'I.t) '1winidward = -6.578kips
Leeward pressure, P81 = -1.90 psf
2Iecward := Pieewarti(Scoi)(O.S'Lt)
2Iward = 059p
jica1_cal.wind L component: PYwind.neg,B := (Plwindward)cos(0) Ywind.neg. = -6,553 kips
kipJJ9.KLtJj914tpoinnQp..cj3ji PXwind.ncg. : (P1WIndW5 1)'sin(0) PXWjndnCgB = -0.573 kips
MQiflUQ.Qi1iffltii Mwindreg. := P;vjndneg.B.(Rcol) MWjfldngB = -7.516 ft-kips
I
I
I
I
I
I
I
I
I
DESERT FOX, LLC
Consulting Structural Engineers
969 E. Saratoga St.
Gilbert, AZ 85296
1(480) 205-2094 F(480) 633-9328
Job Name:MONTECITO APTS.
Job No.: 18-103 Sheet: 19
By: RRD Date: JAN 2018
Check Longitudin at Lateral Loads gL
Hcol = 13.I1ft d 0t=20.26ft
Dead Load + Live Load
Dead load on column, Pd1 = 2.595kips
MDL = 0.000ft-kips
WindLoad:
Max wind pressure, windwa := 22798-psf (apply to 2'-0' veitical projection)
FWongit (IPwjndwardI)(6.91ft + 7.9141)(2.0ft) .FWjongjt = 0.68 kips
Mwindjongjt := (Fw)ongit)(Hcol) MWindiongit = 8859ftkips
total wind load
load per column
Seismic Loaer column ):
seismic response coefficient, Cs = 0.6 14
Pdllo.git := (RDL)-(2026-ft.114.67-ft) Pdltongjt = 13.94kips
W:= O.liPdljongjt W 2.370 kips
V:= Cs-W 'I = i.4541cips
Mseis= (V)-(Hcol) Mscis 19.059 ft-kips
Horizontal Seismic Load Eflct: redundancy factor, p := 1.3
QG =1.454kips
Eh:= pQj Eh= 1.890 kips
Eh(I-Jcol) MEh = 24.777 ft-kips
6 columns resisting
dead load on each column
seismic load on each column
20
CFS Version 10.0.0 Page 1
Section: Boxed 12x7x10ga.cfss
(2) Cee 12 x 3.5 x lOga Boxed
Section Inputs
Material- M53 BSLAS Grade 55/2
Apply strength increase from cold work of forming.
Modulus of Elasticity, E 29500 ksi
Yield Strength, Fy 55 ksi.
Tensile Strength, Fu 70 ksi
Warping Constant Override, Cw 0 ln6
Torsion Constant: Override, J 0 in4
Connector Spacing 0 in
Left Channel, Thickness 0.135 in
Placement of Part from Origin:
X to right edge 0 in
Y to center of gravity 0 in
Outside dimensions, Open shape
Length Angle Radius Web k Hole Size Distance
(in) (deg) (in) Coef. (in) (in)
1 1.000 270.000 0.12500 None 0.000 0.000 0.500
2 3.500 180.000 0.12500 Single 0.000 0.000 1.750
3 12.000 90.000 0.12500 Cee 0.000 0.000 6.000
4 3.500 0.000 0.12500 Single 0.000 0.000 1.750
5 1.000 -90.000 0.12500 None 0.000 0.000 0.500
Right Channel, Thickness 0.135 in
Placement of Part: from Origin:
X to left edge 0 in
Y to center of gravity 0 in
Outside dimensions, Open shape
Length Angle Radius Web k Hole Size Distance
(in) (deg) (in) Coef. (in) (in)
1 1.000 -90.000 0.12500 None 0.000 0.000 0.500
2 3.500 0.000 0.12500 Single 0.000 0.000 1.750
3 12.000 90.000 0.12500 Cee 0.000 0.000 6.000
4 3.500 180.000 0.12500 Single 0.000 0.000 1.750
5 1.000 270.000 0.12500 None 0.000 0.000 0.500
Full Section Properties
Area 5.4350 in'2 Wt. 0.018479 k/ft Width 40.259 in
I
I
I
I
CFS Version 10.0.0 Page 2
Section: Boxed 12x7x10ga.cfss
2) Cee 12 x 3.5 x lOga Boxed
Ix 113.47 in"4 rx 4.5691 in Ixy 0.00 irt"4
Sx(t) 18.911 in"3 y(t) 6.0000 in a 0.000 deg
Sx(b) 18.911 in"3 y(b) 6.0000 in
Height 12.0000 in
ly 44,50 in'4 ry 2.8615 in xo 0.0000 in
Sy(i) 12.715 in"3 x(i) 3.5000 in yo 0.0000 in
Sy(r) 12.715 in3 x(r) 3.5000 in ix 0.0000 in
Width 7.0000 in iv 0.0000 in
II. 11.3.17 in4 ri 4.5691 in
12 44,50 jA4 r2 2.8615 in
IC 157.97 inA4 rc 5.3912 in Cw 227.01 inA6
In 157.97 jA4 ro 5.3912 in J 0.033017 jA4
Fully Braced Strength - 2007 North American Specification - US (ASD)
Material Typo; A653 HSLS Grade 55/2, Fy-55 ksi
Compression Positive Moment Positive Moment
Pao 108.41 k Maxo 649.78 k-in Mayo 261.71 k-in
Ae 3.5481 in2 Ixe 110.01 in4 lye 32.86 in"4
Sxe(t) 17.972 in3 Sye(1) 11.469 in3
Tension . Sxe(b) 18.714 inA3 Sye(r) 7.946 .i.n3
Ta 185.23 k
Negative Moment Negative Moment
Maxo 649.78 k-in Mayo 261.71 k-in
Shear Ixe 110.01. inA4 lye 32.86 inA4
Vay 38.14 k Sxe(t) 18.714 inA3 Sye(1) 7.946 jA3
Vax 33.19 k Sxe(b) 17.972 irr3 Sye(r) 11.469 in3
21
US Version 10.0.0
Analysis: Column Trans Dir (DP).cfsa
Montecito Apts.
Job #18-103
Rev./ Date: 1/19/17 10:20:15 PM
Page 1
22
Printed: 1/25/2018 11:56:17
Analysis Inputs
Members
Section File
1 Boxed 12x7x10ga.cfss
Start Loc. End Loc. Braced R
(ft) (ft) Flange
1 0.000 13.61.0 None 0.0000
ex ey
(in) (in)
1 0.000 0.000
Supports
Revision Date and Time
3/10/2017 10:58:06 AM
k4m Lm
(k) (ft)
0.0000 13.610
Type Location Bearing Fastened K
(ft) (in)
I XT 0.000 2.00 No 1.0000
2 XYTRxRy 13.610 2.00 No 1.0000
Loading: Dead Load
Type Angle Start Loc.
(deg) (tt)
I Axial NA 0.000
2 Concentrated 90.000 0.500
End Loc. Start End
(ft) Magnitude Magnitude
13.610 2.5950 2.5950 k.
NA 0.0000 NA k
Bearing Length 1.00 in
CFS Version 10.0.0
Analysis: Column Trans Dir (DP).cfsa Page 2
Montecito Apts.
Job #18-103
Rev./ Date: 1/19/17 10:20:15 PM
Printed: 1/25/2018 11:56:17
Loading: Roof Live Load
Type Angie Start Loc. End Loc. Start End.
(dog) (ft) (ft) Magnitude Magnitude
1 Axial NA 0.000 13.610 6.6590 6.6590 k
2 Concentrated 90.000 0.500 NA 0.0000 NA k
Bearing Length 1.00 in
Loading: Wind Load
Type Angle Start Loc. End Loc. Start End.
(deg) (ft) (ft) Magnitude Magnitude
1 Axial. NA 0.000 13.610 7.1490 7.1490 k
2 Concentrated 90.000 0.500 NA 0.6250 NA k
Bearing Length 1.00 in
Loading: Earthquake Load
Type Angle Start Loc. End Loc. Start End
(deg) (ft) (ft) Magnitude Magnitude
1 Concentrated 90.000 0.500 NA 2.0700 NA k
Bearing Length 1.00 in
Load Combination: D+Lr
Specification: 2007 North American Specification - US (ASD)
Inflection Point Bracing: No
Loading Factor
1 Dead Load 1.000
2 Roof Live Load 1.000
Load Combination.: D+0. 714E
Specification: 2007 North American Specification - US (AS!))
Inflection Point Bracing: No
Loading Factor
1 Dead Load 1.000
2 Earthquake Load 0.714
Load Combination: D+0.6W
Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: No
Loading Factor
1. Dead Load 1.000
2 Wind Load 0.600
Member Check - 2007 North American Specification_- US (ASD)
Load Combination: D+Lr
Design Parameters at 13.610 ft, Left side:
Lx 13.610 ft Ly 1.3.610 ft Lt 13.610 ft
Kx 2.0000 Ky 1.0000 Kt 1.0000
Section: Boxed 12x7xlOga.cfss
Material Type: A653 HSL1S Grade 55/2, Fy=55 ksi
Chx 1.0000 Cby 1.0000 ex 0.0000 in
Cmx 1.0000 Cnty 1.0000 ey 0.0000 in
Braced Flange: None k 0 k
Red. Factor, R: 0 Lm 13.610 ft
23
I CFS Version 10.0.0
Analysis: Column Trans Dir (DP).cfsa Page 3
Montecito Apts.
Job #18-103 I Rev./ Date: 1/19/17 10:20:15 PM
I Printed: 1/25/2018 11:56:17
Loads: P Mx Vy My Vx
(k) (k-in) (k) (k-in) (k)
Total 9.254 0.00 0.000 0.00 0.000
Applied 9.254 0.00 I 0.000 0.00 0.000
Strength 41.259 537.82 38.143 237.93 33.190
Effective section properties at applied loads:
Ae 5.4350 in2 Ixe I 113.47 i.nA4 lye 44.50 in4
Sxe(t) 18.911 in3 Sye(l) 12.715 in3
Sxe(b) 18.911 in3 Sye(r) 12.715 inA3
I Interaction Equations
NAS Eq. C5.2.1-1 (F, Mx, My) 0.224 + 0.000 + 0.000 = 0.224 <= 1.0
NAS Eq. C5.2.1-2 (P, Mx, My) 0.085 + 0.000 4- 0.000 = 0.085 <= 1.0
NAS Eq. C3.3.1-1 (Mx, Sly) Sqrt(0.000 -I- 0.000)= 0.000 <= 1.0
NAS Eq. C3.3.1-1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <= 1.0
Member Check - 2007 North American Specification - US (ASD)
Load Combination: D+0.714E
Design Parameters at 13.610 ft, Left side:
Lx 13.610 ft Ly 13.610 ft Lt 13.610 ft
[Cx 2.0000 Ky 1.0000 Kt 1.0000
Section: Boxed 12x7xlOga.cfss
Material Type: A653 HSLAS Grade 55/2, Fy55 ksi
Cbx 1.0000 Cby 1.0000 ex 0.0000 in
cmx 1.0000 Cmy 1.0000 cy 0.0000 in
Braced Flange: None k4 0 k
Red. Factor, R: 0 14n 13.610 ft
Loads: P Mx Vy My VX
(k) (k-in) (k) (k-in) (k)
Total ' 2.595 232.52 1.478 0.00 0.000
Applied 2.595 232.52 1.478 0.00 0.000
Strength '41.259 537.82 38.143 237.93 33.190
.Effective section properties at applied loads:
Ae 5.4350 in2 Ixe 113.47 in4 lye 44.50 in4
Sxe(t) 18.911 in3 Sye(1) 12.715 in3
• Sxe(b) 18.911 in3 Sve(r) 12.715 inA3
Interaction Equations
I . NAS Eq. C5.2.1-1 (F, Mx, My) 0.063 + 0.439 + 0.000 = 0.502 <= 1.0
NAS Eq. C5.2.1-2 (F, Mx, My) 0.024 + 0.432 + 0.000 = 0.456 <= 1.0
NAS Eq. C3.3.1-1. (Mx, Vy) Sqrt(0.128 + 0.002)= 0.360 <= 1.0
NAS Eq. C3.3.1-1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <= 1.0
Member Check - 2007 North American Specification_- US (ASD)
I Load Combination: D+0.6W
Design Parameters at 13.610 ft, Left side:
Lx 13.610 ft Ly 13.610 ft It 13.610 ft
Kx 2.0000 • Ky 1.0000 Kt 1.0000
I
24
25 CFS Version 10.0.0
Analysis: Column Trans Dir (DP).cfsa Page 4
Montecito Apts.
Job #18-103
Rev./ Date: 1/19/17 10:20:15 PM
Printed: 1/25/2018 11:56:17
Section: Boxed 12x7x10ga.cfss
Material Type: A653 FJSLAS Grade 55/2, Fy=55 ksi
Cbx 1.0000 Chy 1.0000 ex 0.0000 in
Cmx 1.0000 Cm.y 1.0000 ey 0.0000 in
Braced Flange: None k4 0 k
Red. Factor, R: 0 Lm 13.610 ft
Loads: P Mx. Vy 4y Vx
(k) (k-in) (k) (k-in) (k)
Total 6.884 58.99 0.375 0.00 0.000
Applied 6.884 58.99 0.375 0.00 0.000
Strength 41.259 537.82 38.143 237,93 33.190
Effective section properties at applied loads:
Re 5.4350 in"2 Ixe 113.47 in4 lye 44.50 in"4
Sxe(t) 18.911 in3 Sye(1) 1.2.715 in3
Sxe(b) 18.911 in3 Sye(r) 12.715 :inA3
Interaction Equations
NAS Eq. C5.2.1-1 (1?, Mx, My) 0.167 + 0.114 + 0.000 = 0.281 <= 1.0
NAS Eq. C5.2.1-2 (P, Mx, My) 0.064 + 0.110 + 0.000 = 0.173 <= 1.0
NAS Eq. C3.3.1-1 (Mx, Vy) Sqrt(0.008 + 0.000)= 0.091 <= 1.0
NAS Eq. C3.3.1-1 (My, Vx) Sqrt(0.000 + 0.000)= 0,000 <- 1.0
CFS Version 10.0.0
Analysis: Column Long Dir (DP).cfsa
Montecito Apts.
Job #18-103
Rev.! Date: 1/19/17 10:25:12 PM
Page 1
Printed: 1/25/2018 12:05:25
Analysis Inputs
- -
Members
Section File Revision Date and Time
1 Boxed 12x7xlUqa.cfss 3/10/2017 10:58:06 AM
Start Loc. End Loc. Braced R k4 Lm
(ft) (ft) Flange (k) (ft)
1 0.000 13.610 None 0.0000 0.0000 13.610
ex ey
(in) (in)
1 0.000 0.000
Supports
Type Location Bearing Fastened. K
(ft) (in)
1 YT 0.000 2.00 No 1.0000
2 XYTRxRy 13.610 2.00 No 1.0000
Loading: Dead Load
Type Angle Start Loc. End Loc. Stan: End
(deg) (ft) (ft) Magnitude Magnitude
1 Axial NA 0.000 13.610 2.5950 2.5950 k
I
I
I
I
I
I
I
I
CFS Version 10.0.0
Analysis: Column Long Dir (DP).cfsa
Montecito Apts.
Job #18-103
Rev./ Date: 1/19/17 10:25:12 PM
Page .2
27
Printed: 1/25/2018 12:05:25
Loading: Longi L. Seismic Load
Type Angle Start Loc. End Loc. Start End
(deg) (ft) (ft) Magnitude Magnitude
1 Concentrated 0.000 0.500 NA 2.0700 NA k
Bearing Length 1.00 in
Loading: Longit Wind
Type Angle Start Loc. End Loc. Start End
(deg) (ft) (ft) Magnitude Magnitude
1. Concentrated 0.000 0.500 NA 0.6800 NA k
Bearing Length 1.00 in
Load Combination: D+0.714E
Specification: 2007 North American Specification -- US (ASD)
Inflection Point Bracing: Np
Loading Factor
1 Dead Load 1.000
2 Longit. Seismic Load 0.714
Load Combination: D+0. 6W
Specification: 2007 North American Spedificatiori -. US (ASD)
Inflection Point Bracing: No
Loading Factor
1 Dead Load 1.000
Member Check - 2007 North American Specification- US (ASD)
Load Combination: D+0.714E
Design Parameters at 13.610 ft, Left side:
Lx 13.610 ft Ly 13.610 ft Lt 13.610 ft
Kx 1.0000 Ky 2.0000 Kt 1.0000
Section: Boxed 12x7x10ga.cfss
Material Type: A653 }ISLAS Grade 55/2, Fy=55 ksi
Cbx 1.0000 Cby 1.0000 ex
Cmx 1.0000 Cmy 1.0000 ey
Braced Flange: None k4 0 k
Red. Factor, R: 0 Lm 13.610 ft
Loads: P Mx Vy My
(k) (k-in) (k) 1,k-in)
Total 2.595 0.00 0.000 232.52
Applied 2.595 0.00 0.000 232.52
Strength 41.259 352.34 38.143 260.96
Effective section properties at applied loads:
Am 4.9991 inA2 Ixe 113.09 in4 lye
Sxe(t) 18.848 in'3 Sye(1)
Sxe(b) 18.848 in'3 Sye(r)
0.0000 in
0.0000 in
Vx
(k)
1.478
1.478
33.190
38.92 inA4
12.159 in3
10.244 in"3
Interaction Equations
NAS Eq. C5.2.1-2. (P, Mx, My) 0.063 + 0,000 + 0.927 0.990 <=1.0
WAS Eq. C5.2.1-2 (P, Mx, My) 0.024 + 0.000 + 0.891 0.915 <= 1.0
WAS Eq. C3.3.1-1 (Mx, Vy) Sqrt(0.000 + 0.000)s 0,000 <= 1.0
WAS Eq. C3.3.1-1 (My, Vx) Sqrt(0.789 1 0.002)= 0.890 <= 1.0
L
CFS Version 10.0.0
Analysis: Column Long Dir (DP).cfsa
Montecito Apts. Page 3
Job #18-103
Rev.! Date: 1/19/17 10:25:12 PM
Printed: 1/25/2018 12:05:25
Shear flow between parts due to: Vertical Shear Horizontal Shear
Between.parts 1 and 2 0.0000 k/ft 2.8005 k/ft
Member Check - 2007 North American Specification - US (ASD)
Load Combination: 040.6W
Design Parameters at 13.610 ft, Left side:
Lx 13.610 ft Ly 13.610 ft Lt 13.610 ft
Kx 1.0000 Ky 2.0000 Kt 1.0000
Section: Boxed 12x7xloga.cfss
Material Type: A653 HSLAS Grade 55/2, Fy=55 ksi
Cbx 1.0000 Cby 1.0000 ex 0.0000 in,
Cmx 1.0000 Cmy 1.0000 ey 0.0000 in
Braced Flange: None 0 k
Red. Factor, R: 0 Lm 13.610 ft
Loads: P Mx Vy My Vx
(k) (k-in) (Ic) k--- in) (k)
Total 2.595 0.00 0.000 0.00 0.000
Applied 2.595 0.00 0.000 0.00 0.000
Strength 41.259 352.34 38.143 260.96 33.190
Effective section properties at applied loads:
Ae 5.4350 inA2 Ixe 113.47 in4 lye ' 44.50 in "4
Sxe(t) 18.911 in Sye(1) 12.715 in3
Sxe(b) 18.911 in3 Sye(r) 12.7.15 ±n3
Interaction Equations
NAS Eq. C5.2.1-1 (P. Mx, My) 0.063 + 0.000 F 0.000 0.063 <= 1.0
NAS Eq. CS.2.1-2 (P. Mx, My) 0.024 + 0.000 + 0.000 = 0.024 <= 1.0
NAS Eq. C3.3.1-1 (Mx, Vy) Sqrt(0.000 + 0.000)- 0.000 <= 1.0
WAS Eq. C3.3.1-1 (My, Vx) Sqrt(0.000 + 0.000) 0.000 1.0
28
I
I
I
I
I
I
I
DESERT FOX, LLC
Consulting Structural Engineers
969 E. Saratoga St.
Gilbert, AZ 85296
1(480) 205-2094 F(480) 633-9328
Job Name:MONTECITO APTS.
Job No.: 18-103 Sheet: 29
By: RRD Date: JAN 2018
Pier Foogj 24" pier 8'-3"
Hcol= 13.11 ft
(MDL + M.11,( = 0.000 It-kips
(MDI. + 0.6MwindposAI = 4.920 fl-kips
I M + 0.6MWindneg.B( = 4•.510ft-kips
MDL 4- I0o.0.7Mseisj = 18.265ft-kips
(MDL - Co.31Aseis( = 18.265 ft-kips
0.6Mwindt01 = 5.32 ft-kips
Mrnax :'= 18.265-ft-kips
Equivalent Point Load, p Mxnax
fool P=1.39kips
Allowable lateral bearing pressure ......................Sa = 100,00 psf
ft
Pole diameter (or diagonal) .................................... b := 24.0-in
Structure is not adversely affected by 1/2" ground motion use twice value of Sa
Unconstrained pier embedment depth ............... .Dunconst 8.25-ft
S1 :=
2-S8 Duaconst S1 = 550.00 psf
A=2.96ft S1-b
4.36 d 55t := + j: 1ci] S.161
DESERT FOX, LLC
Consulting Structural Engineers
969 E. Saratoga St.
Gilbert, AZ 85296
1(480) 205-2094 F(480) 633-9328
Check Pier Footing for Vertical Loads (DL4-LL)r
Max. Vertical Load .......... ...... P Pd1 + P11 P = 9.25 kips
Allowable soil bearing pressure, SBP9it0 = 1500.00 psf
Allow. Skin Friction ..............Ff :=
SBPaitov
6
Pier Capacity .........................Cap := rcb-Ff
Friction capacity .................. F:= (Cap)-(Duriconst - 1.0-ft)
(neglect top 1.0 it)
Check. Pier Footing for Uplift Loads (DL+Wind):
'E.windward = —20.898psf &lceward = —1.900psf
UPIiIIA := 1(0.6PBWiadward + 0.67.RDL)I .(s 01).(d1)
Weight of footing ................ Wftg:= (145.pcf).(ic,r2).(Dunconst)
.! OJ<
(upliftA)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Job Name:MONIECtTO APTS.
Job No.: 18-103 Sheet: 30
By: RRD Date: JAN 2018
Ff = 250.00 psf
Cap =-- 1570.80p1f
F- 11.39 kips O.K.
UpJifl = 3.67kips
Wftg = 3.76kips
DESERT FOX, LLC
Consulting Structural Engineers
969 E. Saratoga St.
Gilbert, AZ 85296
1(480) 205-2094 F(480) 633-9328
Job Name:MONTECITO APTS.
Job No.: 18-103 Sheet: 31
By: RRD Date: JAN 2018
Repjired cohinin embedment
Load factor .....................................................LF:= 1.7
Maximum moment: Mrnax = i&265 fi-kips
LF-(Mniax) = 31.05 ft-kips
ACI318-11 Section 10.14:
Strength reduction factor ...............................:= 0.65
Concrete Strength .......................................... fc := 2500-psi
Design bearing strength ...............................Fbrg $-(0.85.fc)
Fbrg = 1.38 ksi
Column flange width .....................................h 0 := 7.0-in
w := (FbI .(bCOl) w 116025.00 plf
Required column embedment:
f(LF) - (Mmax)
d dreqd: reqd = 15 rn
Aik DESERT FOX, LLC. Project Title: MONTECITO APARTMENTS M Consulting Structural Engineers Engineer: RRD Project ID: 18-103
969 E. Saratoga St. Project Descr: solar parking canopy
/ Gilbert, AZ 85296
T: (480) 205-2094
DSIRT PDX LLC. F: (480) 633-9328 Flnrifac 2fi k 2212, 3:27PM
G I F t File G:\DESERT-1\18JOBS--i\18-103-1\STRUCT-1\MoNTEC-1.EC6 enera Doting ENERCAIC, INC. 1983-2017,Build:10.17.8.29,Ver:6.178.31
Description : Double Post Canopy - DL + LL + Lateral (alternate spread footing)
Code References
Calculations per ACI 318-11. IBC 2012, CBC 2013, ASCE 7-10
Load Combinations Used : BC 2015
General Information
Material Properties
fc : Concrete 28 day strength
fy: Rebar Yield
Ec : Concrete Elastic Modulus
Concrete Density
Values Flexure
Shear
Analysis Settingf
Min Steel % Bending Reinf.
Min Allow % Temp Reinf.
Mm. Overturning Safety Factor
Mm. Sliding Safety Factor
Add Ftg Wt for Soil Pressure
Use ftg wt for stability, moments & shears
Add Pedestal Wt for Soil Pressure
Use Pedestal wt for stability, mom & shear
Dimensions
2.50 ksi
= 60.0 ksi
= 3,122.0 ksi
= 145.0 pcf
= 0.90
= 0.750
=
=
= 1.0 : 1
1.0 : 1
: Yes
: Yes
: No
: No
Soil Design Values
Allowable Soil Bearing
Increase Bearing By Footing Weight
Soil Passive Resistance (for Sliding) =
Soil/Concrete Friction Coeff. =
Increases based on footing Depth
Footing base depth below soil surface =
Allow press. increase per foot of depth =
when footing base is below =
Increases based on footing plan dimension
Allowable pressure increase per foot of depth
when max length or width is greater than = . g g
=
1.50 ksf
No
250.0 pcf
0.250
ft
ksf
2.0 ft
ksf
ft
Width parallel to X-X Axis = 7.670 ft
Length parallel to Z-Z Axis = 5.330 ft
Footing Thickness = 26.0 in ---..
Pedestal dimensions
I
••.•
px : parallel to X-X Axis 6.0 in
pz: parallel to Z-Z Axis : 12.0 in = 4
Height - in
Rebar Centerline to Edge of Concrete........ .. .
at Bottom of footing 13.0 in
-- —
Reinforcing .. .......
Bars parallel to X-X Axis — Number of Bars — 10.0
Reinforcing Bar Size = # 5
Bars parallel to Z-Z Axis . ..
Number of Bars = 16.0 -
Reinforcing Bar Size = # 5
Bandwidth Distribution Check (ACI 15442)
Direction Requiring Closer Separation ig Z-Z Axis
# Bars required within zone 82.0%
# Bars required on each side of zone 18.0%
Applied Loads
D Lr L S W E II
P: Column Load = 2.595 6.659 0.3980 k
OB : Overburden = ksf
M-xx = 8.859 24.777 k-ft
M-zz 8.20 27.136 k-ft
V-x = 0.6250 2.070 k
V-z = 0.680 1.890 k
I
I
I
I
I
I
I
I
DESERT FOX, LLC.
Consulting Structural Engineers
j'
969 E. Saratoga St.
Gilbert, AZ 85296
T: (480) 205-2094
oraSLRY VCX, :-L'M F: (480) 633-9328
General Footing
Project Title: MONTECITO APARTMENTS
Engineer: RRD Project ID: 18-103
Project Descr: solar parking canopy
I
Rip7: 25 ON 27 IC, 3:27PM
G.D
Description : Double Post Canopy - DL + LL + Lateral (alternate spread footing)
EMEMMEMSEM
Mm. Ratio Item Applied Capacity Governing Load Combination
PASS 0.9833 Soil Bearing 1.475 ksf 1.50 ksf +0.60D+0.70E+0.60H about X-X axis
PASS 1.258 Overturning - X-X 20.210 k-ft 25.429 k-ft +0.60D+0.70E+0.60H
PASS 1.653 Overturning - Z-Z 22.135 k-ft 36.592 k-ft +0.60D+0.70E+0.60H
PASS 1.646 Sliding - X-X 1.449k 2.385 k +0.600+0.70E+0.60H
PASS 1.803 Sliding - Z-Z 1.323 k 2.385 k +0.60D+0.70E+0.60H
PASS n/a Uplift 0.0 k 0.0 k No Uplift
PASS 0.1093 Z Flexure (+X) 3.524 k-ft/ft 32.234 k-ft/ft +0.90D+E+090H
PASS 0.06714 Z Flexure (-X) 2.164 k-ft/ft 32.234 k-ft/ft +1.20D+1.60Lr+0.50L+1.60H
PASS 0.06089 X Flexure (+Z) 2.169 k-ft/ft 35.617 k-ft/ft +0.900+E+0.90H
PASS 0.02216 X Flexure (-Z) 0.7891 k-ft/ft 35.617 k-ft/ft +1.20D+1.60Lr+0.50L+1.60H
PASS 0.1157 1-way Shear (+X) 8.681 psi 75.0 psi +0.90D+E+0.90H
PASS 0.07360 1-way Shear (-X) 5.520 psi 75.0 psi +1.20D+1.60Lr+0.50L+1.60H
PASS 0.1014 1-way Shear (+Z) 7.604 psi 75.0 psi +0.90D+E+0.90H
PASS 0.03435 1-way Shear (-Z) 2.576 psi 75.0 psi +1.20D+0.50L+0.705+E+1.60H
PASS 0.07382 2-way Punching 11.072 psi 150.0 psi +1.20D+1.60Lr+0.50W+1.60H
Detailed.Results
Soil Bearing
Rotation Axis & Xecc Zecc Actual Soil Bearing Stress @ Location Actual I Allow Load Combination... Gross Allowable (in) Bottom, -Z lop, +Z Left, -x Right, +X Ratio
X-X, +D+}4 1.50 n/a 0.0 0.3776 0.3776 n/a n/a 0.252
X-X, +D+L+H 1.50 n/a 0.0 0.3776 0.3776 n/a n/a 0.252 X-X, +D+Lr+H 1.50 n/a 0.0 0.5405 0.5405 n/a n/a 0.360 X-X. +D+S+H 1.50 n/a 0.0 0.3776 0.3776 n/a n/a 0.252
X-X, +D+0.750Lr+0.750L+I-1 1.50 n/a 0.0 0.4998 0.4998 n/a n/a 0.333 X-X, +D+0.750L+0750S+H 1.50 n/a 0.0 0.3776 0.3776 n/a n/a 0.252
X-X, +o+fow+}- 1.50 n/a 4.819 0.2098 0.5455 n/a n/a 0.364
X-X. +o+070+ 1.50 n/a 15.431 0.0 0.9799 n/a n/a 0.653
X-X, +D+0.750Lr+0,750L+0450W+H 1.50 n/a 2.731 0.3739 0.6257 n/a n/a 0.417
X-X, +D+0.750L+0.750S+0.450W+H 1.50 n/a 3.614 0.2517 0.5035 n/a n/a 0.336 X-X. +D+0.750L+0.7505+05250E+H 1.50 n/a .11.625 0.0 0.7948 n/a n/a 0.530 X-X, +060D+060W+060H 1.50 n/a 8.031 0.05872 0.3944 n/a n/a 0.263
X-X, +0.60D+0.70E+060H 1.50 n/a 25.417 0.0 1.475 n/a n/a 0.983 Z-Z, +D+H 1.50 0.0 n/a n/a n/a 0.3776 0.3776 0.252 Z-Z, +D+L+H 1.50 0.0 n/a n/a n/a 0.3776 0.3776 0.252 Z-Z, +D+Lr+H 1.50 0.0 n/a n/a n/a 0.5405 0.5405 0.360 Z-Z, +D+S+H 1.50 0.0 n/a n/a n/a 0.3776 0.3776 0.252 Z-Z, +D+0.750Lr+0750L+H 1.50 0.0 n/a n/a n/a 0.4998 0.4998 0.333 Z-Z, +D+0.750L+0.7505+H 1.50 0.0 n/a n/a n/a 0.3776 0.3776 0.252 Z-Z, ++00w+ 1.50 4.456 n/a n/a n/a 0.2698 0.4855 0.324 Z-Z, ++070+ 1.50 16.90 n/a n/a n/a 0.0 0.8030 0.535 Z-Z, +D+0.750Lr+0.750L+0.450W+}-j 1.50 2.525 n/a n/a n/a 0.4189 0.5807 0.387
Z-Z, +D+0.750L+0.7505+0.450W+H 1.50 3.342 n/a n/a n/a 0.2967 0.4585 0.306 Z-Z, +D+0.750L+0.750S+0.5250E+H 1.50 12.731 n/a n/a n/a 0.07039 0.6951 0.463 Z-Z, +0.60D+0.60W+0.60H 1.50 7.426 n/a n/a n/a 0.1187 0.3345 0.223 Z- Z, 1.50 27.837 n/a n/a n/a 0.0 / 0.7766 0.518
Overturning _Stability
Rotation Axis &
Load Combination... Overturning Moment Resisting Moment Stability Ratio Status
X-X, +D+H None 0.0 k-ft Infinity OK X-X. +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK
X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.7505+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H 6.199 k-ft 41.144 k-ft 6.637 OK X-X. +D+0.70E+H 20.210k-ft 41.886 k-ft 2.073 OK X-X. +D+0.750Lr+0750L+0450W+H 4.650 k-ft 54.453 k-ft 11.712 OK
I SECTION E KEYNOTES: '" X 4-4" X 2" THK.
OPTIONAL SPREAD FOOTINS
ROOF DECK. II.
2 GEE I0"X25"X126A. (2—I0005250—'fl)
DOUBLE STEEL BEAM
GEE I0"X25"XI26A. (I0005250—q7) STEEL PURLINS.
STEEL "U" SHAPED CONN. BRACKET. I 2 GEE I0"X3.5"XI26A. (2I0005350_cfl)
BOXED STEEL COLUMN.
S. (E) FINISHED SRADE.
I 1. 8-0" DEEP AT ASPHALT OR SOIL.
S. GIP 24" t7IA. CONCRETE EMBEDDED POLE FOOTINS.
1. 5—#5 VERTICAL BARS.
10. (S)—*5 BOTTOM LONGITUDINAL REBAR. I II. #4 EACH DIRECTION (DRILLED) EXTEND 3" MIN
EXTEND PAST COLUMN.
(I4)—*5 TRANSVERSE REBAR.
I CROV4N TOP TO FACILITATE HATER RUN OFF.
CENTERLINE OF COLUMN AND FOOTIN&.
I
I
I
S
Beam and Column Analysis
I
¼'J V r.rio r'.jr '.AJLLJIVII'l IVIUU)
35
Envelooe Member Section Forces
Member Sec Axialilbi LC y Shearilbi LC z Shear[lb] LC Torgue[Ib-. LC y -y MomentFtb... LC z-z Moment[Ib-...LC I 641 M65 1 Imaxl3776.339 I 7 1 15.269 1 7 1 688,679 :13 29T228 113 19.384 9 730,', T1
642 mm -1011484 3 -636.307 12 -993 9 -79 5 -44376 1T
643 2 rnix 3759 1891 7 15.269 7 _681.14 13 29228l 13 1.483 5 7317.802 5
644 min-1021.774 3_ -628.768 12 -993 9 -79 5 -2897.333 13 -8408.036 - 9 I 645 3 max 37039 42 7 15.269 7 673 601 13 297 228 13 12801 5 7333.436 5
646 mm -1032.064 3 -621.229 12 -993 9-79 5 -1373.248 13 -8342.521 9
647 4 Imaxil 3724 889 1 7 15.269 7
-
666 061 13 297.228 13 16 7349.07 5 1 Imin-1042.354 3 -613.69 12 -9.93 9 -79 5
- 138.547
-47.646 9 -8277.006 9
I
648
- 14 5 Imaxl 37077397 32.894 7 66055 13 297,228 13 11626.902 13 737686 5
1,650 min -10526443 -610.345 12 79641 9-79 5 -69.579 9 -8163.865
COLUMN MEMBER (M65) FORCES
I
I
Load Combinations Governing Design:
LC 1.00+0.6W
I
LC 1.OD+0.6W
L013 1.OD+0.7Ez
I
I
I
I
I
I
37
Envelone Member Section Forces
...,Mmb.er.....
1661 M67 I
Sec Axial[IbJ,
max 004
LC
9
y,,Shea,r[IbJT
1153267
LCz
5
sheartlbl,,J..C.
293576 16 698.294
Torque[Ib-...LCyy,,Mo,m.ent[Ib...
16 22.963 9
,LC....Z:Z.,MQmeflt[Ib
7001921
LC
5
592 1 mm 278.358 15 271
1160.127
-22948.37
11166.9871,
11173.847
rnin-268.306____15__1-22834049-3.8279-196.582
mm____-263.28____15__1_-2271.9719-18279-196.582
q
5
9
5
5283.524
-3.827
288.55
-3.827 -
278.498
Q
16
9
16
16
-196.582
698.294
-196.582
698.294
698.294
9
16
9
16
9
16
9-413.978
-iPjJ42
17,222
-1264.549
11.482
-835.493
5.741
9
9
16
16r130
16-10249,594
91765.914
16_______-3399.383
2 3
5266.875
3521.54_
____-6815.9139
9.;
5
9
5
Y
9
1663 2rnax, .004 9
- - - - min-273.332 15
665 3 max:.004 9 -
F6 6-6
667 1 4max_.004 _9
I_668
670
16691 5a .004
mmn 7258.254
9
15
11180.707
2260.53'
5
9
273472
-3 827 9
16698.294160
-196.582 9 0
2
2
O2
0 2
BEAM MEMBER (M67) FORCES
Load Combinations Governing Design:
38
Member Section Forces
LC Member Label Sec Axialllbj y Shear lb z She[lbj TorgueFlb-ftL....y.y Mo... z-z Mo...
I
321 7 I M65 1 37Zfili3I_15.269 FT4.578 722 &97O.1
322 -
1
2 3759.189 15.269 -4.578___-
323 - 3 -3742.039 15.269 -4.578
722 -1 364____4405_767j
_4131
4 - 3724889 L~73
722 -11.666_4371
337.059]
I
324
[.L .............. I ............................................... I....................5 - ....I....37..Q7.19....-4...44.5 - ........................72..O1?P..
It, M9nbL4 Set iR1flb ArStdlb1' 2Shørflb1 Táflb-ft1v..'M&
.6 -2959 Z757_4__1 -9.118_-993
b -25_303 _ 2
4 _72.4 -?9Jj _f_•9641
_9_9
F5
t5S6
-474 277.00
5________________1_37O5.854. .)L2:.7
_______
.3 Mi4Db vShlI1 zShorflb1. Totcflbft1' -vMo.
'jZL •M65 .1 ._-11153
97.$J-816
rtri 29''22
22 7 1fCJF___1f2 -1,1 .fi_1 7___22
1480 '.1L_I 9i223
II_..............................
4 147____RF
1454.'12
f'fl r7
_ '297.228
tL1L2
1I2h 2I2Oy
173____F7_"21
L -2.4 — .- .... .:. . '*-,,,----.---
i
N Mgth Lab- ..kfr4flhF ...44 W 7-7
f. 1 J.L1._i_-5.J_ -3.~? 1l5',2 -
7 77 196,6821"772 1\L
;. .CQ - -22J.404 ______ -19EL,& 1i.42
_134
1.
4 __ 16_5 _74 _
.5,__ i27
................................................................................................ ......
-._
..
NOTE: HIGHLIGHTED MEMBER FORCES ARE USED TO CHECK EXISTING BEAM AND COLUMN CAPACITIES
1 FOR GOVERNING LOAD COMBINATIONS WITH CFS PROGRAM.
I
I
I
I
all J,6
.-_...-..
1 U1 _
çrI AcrIflb v r'flt1 _ -,hrflh1___T1rflh-ft t 7_- ' .__'_r__-.-_-_..
4j 4 2w'"_e_24 17f1
I
,________
121.-t
-_UU1 -C)4.L 263.24_ .2l4 114___18
4 - _ffl1
______________
-'4R___
i41__,
77 4 ________
L4'2 b2.'14 U U
39
O.O08657. 1k/ft 'WitfA
3767 Ix
5.0000 in a
5.3Q j
IQ..0u0G if,,,
9g40. it, Xo
2.5000 j
2.5.00Q in
0O Q0 ñ
3767'2 .n
1.45,46,in.
4..2624. in. Cw;
4.262 i;i. J
P. thb
o.0300 in:
ct.000Q
12. 52 n'
in 4.
2..6076
.ci13 Lñ3
10 363 1n4'4 iy
.1473
4 >1473 in3 x(r)
ii:
37'. 006 in'4
.36 in'4 r2
3is ii4 .rc
37
I CFS Version 8.0.3 Column LC 9 Analysis 40
I CFS Version 8-63
Section: CoIumnsct
Box 1Ox25x1 .5xO. 0747
.l..:ember Check 2012 North American S ifk'aticn - US
I Material 53
Design. Paraeters.::::
Lx 90000 ft
I Xx 2.1000
Cbx 1.0.000
CMX 1.0000
Braced Flange:' .NOe
Red. Factor,, R: 0
SS Grade, 55 Fy=55 ksi
Ly 9.00100 ft ,Lt 9..01000 ft
.Ky 2.1000 Kt 2.1000
Cby i,..oc,00 ex 0.0000. i.
Ciy 1.0000 ey 0.0000 in
k. 0 k•
Lm. 9.0000 ft
P tx Vy 11y Vx
{k) (k-in) k)(k-in),(k)
3.775 1.70 0.063 O.4 0.010
3.775 101.17 0.063 0.84 0.010
2.0. 45'0 2.00.50 7...69• 6S.2 13.1 69,
section laroperties at applied loads::
2.6076 in'Z Ixe 3:7.00
. 6 in-:%4 lye 10 368 in4
Sxe(t) T 4013 in3 Sye(l) 4 1473 in3
Sxe(b) 7.4013 1n3 Sye(r): 4.1473 A3
Loads:
I Entered
Ap1Ied
Strength
E fi'e ctive
I 1iteractioi
NAS Eq C5.2.1-1 P, 1x, My)
NAS Eq... CS 2.1-2 (P, 11x, My)
U NS, Eq.. C3...3.1-1 Mx Vy)i.
NAS Eq.
I
3 3 1-1 (MY r. Vx)
I
I
0.14 +:0.524 + 0.014 = 0.722 <= 1.0
0.091 + .507 + 0.012 = 0.611 < 1.0
8qrt(0.226 + 0.000)= 0.475 <= 1.0
Sqrt(0.000 + 0.000.. 0.012 <= 1.0
CFS Version 8.0.3 Column LC 7 Analysis
CFSIVersion 8.0.3
Section: Co1umn.sct:
Box 10x2 5x'l 5x0 0747
Member Check - 2012 North American Spédficàiio•n US (AS.D) I
Nate.ri.a.l Type: A653 SS Grade 55< Fy55 k31
Design Parameters;
Lx 9.0000 ft Ly 9.0000 ft :Lt 9.000. ft
Kx. 2.1000 Ky 2.1000 Kt 2.1000
cbx 1.0000 1.0000 ex 0.0000 in
Cmx 1.0000 1.0000 ey 0.0000 in
Braced Flange: None k 0 k
Red. Factor, R: 0 Lm 9.0000 ft
Loads:: P 11* 14y Vx
k-in (k)
Entered 3.776 53m.28 0.033 0.38 0.005
Applied 3.776 53.28 0.0:33 0.38 0.005
Strength 20.480 200.50 7.<€98 68.28 :13.1<69
Effective section properties at applied loads::
A•e 2.6076 •in2 Ixe 37.006 in lye 10.368 1n
Sxet) T.'4013 in3 Sye(l) 4.1473 in'3
Sxe(b) 7.4013 .in'3 Sye (r) 4.1473 in3
Interaction Equations
NAS Eq. CS 2.1-1 P, Mx, My) 0.184- + 0 275 + -0,,-.006 = -O A65. <= 1 0
NAS Eq. C5.2-1172 f P, Mx, 14y) 0.091,+ 0.266 - 0.006 = 0.362 <= L. 0
NAS Eq. C3.3.1-1 (Mx, V Sqrt(0.062 + 00001= 0.249 <= L. 0
NAS Eq. C3..'3..1-1.(My, Vx) Sqrt(0.000+ 0..000)= 0.006 .<= 10
I CFS Version 8.0.3 Column LC 13 Analysis 42
I CFS Version 80:3
Section: Column..sct
'B ox 10x2..5x1.5x;O 0747
Member Check -2:0112'N brth American Specification.-, US (AS 0)
Material Type A653 55 Grade 55, Fy55 ksi
Design Parameters
9.0000 ft Ly 9..0000 ft 'Lt 9.0000 :ft:
ITx Xx 2.1000 KY 2.100G. K. .2.1000
Cbx 1.000G. Cby t.0000 ex 0.0000 in
I
clmx 1.0000 C .1...0000 ey 0.0000 in
BracedFiange: None. k4 0. k
Factor, R: 0
I
Red.. L. 00bo ft.
Loads P Mx. Vy My Vx
(k-in) (]c 1C
1
k-in)
I.Entered' 523 lov 00 0 002 53 28 0.6189
Applied 1 523 10 00 0 002 53 28 0.689
Strength 20 480 200 50 7.698 S 28 13.16S
Effective $ectioxi properties at applied ..oads.::
R Ae
2.2420 .in.2 Ixe. 36.269'. in4 lye. 7.739 in4
Sze {t) 7.2213 in3 Sye(l) 3.7120 in3
- Sxe(b) 7.2864 in'3 Sye(r) 2.,684-5' n'3
Interaction Equations
NAS. Eq. . C51 .2 A-1.
INAS E.. C5.,212' P,
NAS Eq... C3. 3....1-1
NA Eq.. C3..3'.1'-1
I
I
I
I
'i,,1dj} 0.07 + 0.051 + 0.819 = 0.943 <= 1.0
Mx, My) 0 037 + 0.050'4 0 780 0.867 <= 1.0
CMx, Vy) Sqrt0 002 + 0;.. 000) 0 047 < 1 0
(My, 'Vx) Sqrt0.609 + 0.:003 ) 0 732 <= I.:0
43
nPropejttes
6076 iii"2 Wt. 0.Q'088657 ktt W1d.h
37 006 in4 rx 3 7672 in Ixy
7 .;90_3 j3 y(t) 5.000O 1
1.4013 i3 .y(b .0030 Ln
:Mei d 0.0300 in
18 804 in'4 ry 2 654 in Xa
44387 in3 x(1) 4. 264 in
'4 4387 in'3 x(r 4 2364 in
Width 8 4727 in
37 006 in'4 If 3,.767.2 in
18 304 in '4 r2 :2,. 2 6354 in
55 810 n"4 rc 4 6264 in Cw
55 810 in4 ro 4 6264 in J
'0.' 0009 I
0.0000 :fl
0.0000 ia
o..00'00 in
73643
I CFS Version 8.0.3 Beam LC 9 Analysis 44
CFS Verson 8O 3
Section Beam sct
Dàuib1é'ChäñeI X, 4:
I .M ibèE hèk- 2O12àth.èihS i
Mater2-41Iye A653SSGrad55, F55 ksi
Design Paraiueters
Lx 6 0000 ft Ly 6 0000 ft Lt 6.0000 ft
2 1000 Kw 2 1000 Kt 2 1000
I:bx 1000O Chy 1"0O0O ex o0000 .n Cix. 0000' 'C 1.0.000 00000'in
Braed Flange None Ok I 6;0000.:'ft
Loads Mx Vy My / Vx
k) (k71n) (k) k-7in) (k)
Entered 0 000 164 40 2 306 0" 2 0 004
1 App11ed 0 000 164 40 '-Z`3'0.6' 0 2 0 004
trength
I Ae 2 6066 in'2 Ixe 36 995 in4 lye "1 78 in4
Sxe{t) 7 3972 in3 Sye(l) ,4-A 3 5 2 in3
I Sxe{b} 7 ,41008-In-.,.3"'Sye(r) 44346
I Interaction Equati'bns
NAS Eq CS 2 1-1 (P.", Mx, My)
NAS Eq C5.2 1-2 {P, Mx, My)
I q. N AS;~C3.3 11 (Mx,
"NAS Eq 'C3 "3 1-1 (My l/z)
I
I
I
I
I
0 000 +11-0`8 0.20f3 = 3 S64 1 0
O 030 +50 61 + 0003 0 64 <-,1.101
Sqrt{0 590 + 0 090}0 S 25 < 1 0
Scirt{0 000 + 0 000)= 0 303 < I D
CFS Version 8.0.3 Beam LC 16 Analysis
CFS Version 81.3
Section: Beam s•ct
ouble Channel 10x2:5x1-14: Gage
45 1
I
I
I
Member Check- 2,012 North American Specification - US (ASD) I
Material Type: A653 SS Grade 55, Fy55 kzi
Design Parameters:
Lx 6. 0000.., ft .LT 6.0000 ft Lt 6.0000..ft
Kx 2 1000 KY ?.1000 Kt 2.1000
Cbx 1.0000 cby 1.0000 ex 0 0000 ifl
Cx 1.0000 1..C.000 ey 0.0000 in
Braced Flange: None k. .0 k
Red Factor, R 0 LIM 6 0000 ft
P Mx My Vx
(k) (k-in) (k) (k-in) (k.)
Entered 0.000 29 16 0 294 20 41 0 420
Applied 0.000 29.:.16 0.29 20.41 0.420
Strength 16.989 190.88 7.698 103.77 13.169
Effective section properties at applied loads
Ae I2..60.76 in '2 Ixe 37.006 in4 lye.. 18.04 iñ4
Sxe M) 7.4013 in^3 Sy•e(l} 4.4387 in3
.Sxe(b} 7.40.13 in"3 Sye(r) 4.4387 in3
Interaction Equations
NAS Eq. CS..2 1-1 (F, Mx, My) 0 000 + 0;153 + 0 197 = 0 3491 ,<= 1.0
NAS Eq. C5.2.1-2 (F, Mx, My) 0 000 + .0 .153 + 0.197 = 0 349 < .1.,Q
NAS Eq. C3.'3.1-1 (Mx., Vy) Sqrt(0 019 0 001)= 0.142 < 1A
NAS Eq. C3 3 1-1 (My, Vx) Sqrt(0 039 i- 0.001)= 0 19 < 1 0
DESERT FOX, LLC
consulting Structural Engineers
969 E. Saratoga St.
Gilbert, AZ 85296
T(480) 205-2094 F(480) 633-9328
Job Name:MONIECITO APTS.
Job No.: 18-103 Sheet: 46
By: RRD Date: JAN 2018
Knee Brace: Tapered Cee 7.125" to 7" x 5" x 1.2ga
Lbr = 2.83 ft
LTnbraced length ,J(Lbr)2 + (Lbr)2 = 4.00 ft
Maximum beam reaction at brace (each cee), R2 := 6010.5-lbf - page 16
2R2 total knee brace axial load, Pbr
0,707 Pbr = 17.003 kips (with solar panels)
Pbr = 11.33 5kips (without solar panels)
See pages below:
Knee Brace Connection: (8) #12-24 screws each side, each end
ci := 0,216-in 3.0
Steel in contact with screw head: 12ga Steel not in contact with screw head; 12ga
Fu1 := 65ksi t1 := 0.105-in Pu2 := 65ksi t2 := 0.105- in
Pn1 := 2.7t1•dFu1 Pnj = 3.98 kips Pci2 := 2.7-t2-dFu2 Pn2 = 3.98 kips
E or Lt1al to or less than 1
I3 \O.5
Pn3 := 4.21%t2 .dj •Fu2 Rn3 = 4.32 kips
Pn := if(_ :!~ 1, min(Pni,Pn2,Pn3),min(Pnj Pii2)J Pn = 3.98 kips
Pn=3.98kips > Pa:=- Pa=l.33kips
GF:=2.(8) (Pa) GF21.28 kips O.K.
for # 12-2.4.s
Allowable screw shear, cm,.24:= 8854bf
GFscmw74 := 2.(8) .(Pa50w24) GFçr4 = 14.16 ikips . O.K.
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
47
Project Name: MONTECITO APTS. Page 1 of I
Model: Diagonal Knee Brace - Date: 01/1912018
Code: 2007 NASPEC [AISI S100-20071 Simpson Strong-lie® CFS Designer 1.500
RI R2
4.00
Section: Open Ceo 7 x 5 x 12ga Single Channel
Maxo = 6131.6 Ft-Lb Moment of intertla, I = 10.66 in'4
Loads have not been modified for strength checks
Loads have not been modified for deflection calculations
Plnv,,rp,I ,n, flnfinrflnn flknrle
Fy = 55.0 ksi
Va = 12169.5 lb
Mmax Mmax/ Mpos Bracing Ma(Brc) Mpos/ Deflection
Span Ft-Lb Maxo Ft-Lb (in) Ft-Lb Ma(Brc) (in) Ratio
Span 0.0 0.000 0.0 None 6131.6 0.000 0.000 hO
bed Sending andWebCrijjq
Reaction or Load Bearing Pa Pn Mmax Intr. Stiffeners
Pt Load P(lb) (in) (lb) (lb) (Ft-Lb) Value Required?
RI 0.0 2.50 2276.5 4097.7 0.0 0.00 NO
R2 0.0 2.50 2276.5 4097.7 0.0 0.00 NO
Combined BendiQand Shear
Reaction or Vmax Mmax Va Intr. Intr.
Pt Load (lb) (Ft-Lb) Factor V/Va M/Ma Unstiffoned Stiffened
Ri 0.0 0.0 1.00 0.00 0.00 0.00 N/A
R2 0.0 0.0 1.00 0.00 0.00 0.00 N/A
Combined Banding an Axial Load Details
Axial Ld Bracing(in) Max K-phi Lm Bracing Allow Intr.
Span (lb) KyLy KtLt KLJr (lb-In/in) (in) load(lb) P/Pa Value
Span 17003.0(c) None None 29 0.0 48.0 20729.7(c) 0.82 0.82
SIMPSON STRONG-TIE COMPANY INC. www.1rongIie.con,
48
Project Name: MONTECITO APTS. Page 1 of I
Model: Diagonal Knee Brace - Date: 01/19/2018
Code: 2007 F'JASPEC [AISI S100-2007j Simpson Strong-Tic® CFS Designer TM 15.0.0
Section Designation: Open Cee 7 x 5 x 12ga Single Channel
INPUT PROPERTIES:
Web Height = 7.0000 in Steel Thickness =
Top Flange = 5.0000 In Inside Corner Radius
Bottom Flange = 5.0000 in Yield Stress, Fy
Fy \Alllh Cold-Work, Fyc = 55,0000 ksi
0,1050 in
0.1250 in
55.0000 ksi
OUTPUT PROPERTIES:
Effective Section Properties, Strong Axis
Neutral Axis from Top Fiber (Ycg)
Moment of Inertia for DeflectIon (lxx)
Soilon Modulus (Sxx)
Allowable Bending Moment (Ma)
Grpss Section Properties of Full Section.QnqAxis
Neutral Axis from Top Fiber (Ycg)
Moment of Inoilla (lxx)
Cross Sectional Area (A)
Radius of Gys tlon (Rx)
Section Properties, Weak Axis
Gross Neutral Axis (Xcg) From Web Face
Gross Moment of Inertia (lyy)
Radius of Gyration (Ry)
Other Section Property Data
Member Weight per Foot of Length
Allowable Shear Force In Web (IJnpunchcd)
Pao for use In Interaction Equation C5-2
Torsional Properties
Dist. from Shear Center to Neutral Axis (Xo)
St. Venant torsion Constant (J x 1000)
Warping Constant (Cw)
Radii of Gyration (Re)
Torsional Flexural Constant (Beta)
Warping Torsional Prope,
a(in'3) Sxx(llp)(in'3) Wn(1)(in"2) Wn(2)(inA2) Wn(3)(in'2)
126.6 2.2341 10.1358 10.1358 -6.9208
Location (1) and (6) are tip of compressIon and tension lip respectively
Location (2) and (5) are flange/lip corner of compression and tension side respectively
Location (3) and (4) are flange/web corner of compression and tension side respectively
4.3725 in
10.6608 mM
2.2341 in A3
6131.56 Ft-lb
3.5000 in
15.0232 ln"4
1.7470 InA2
2.9325 in
1.5240 in
4.6944 lnA4
1.6393 In
5.9445 lb/ft
12169.50 lb
23381 lb
-3,4790 In
6.4200 mM
39.4321 lnA6
4.8383 In A6
0.4.826
Wn(4)(inA2) Wn(5)(in'2) Wn(6)(inA2)
6.9208 -10.1358 -10.1358
SIMPSON STRONG-TIE COMPANY INC. www.stronglie.com
D Dead Load 0.1220 k
Lr: Roof Live 0.550 k
L: Live k
S: Snow k
W: Wind 0.6850 k
E: Earthquake 1.192k
H : Lateral Earth k
Load distance above
ground surface 10.610 ft
Load Combination Results
......
+D+H
+D+L+H
+D+Lr+H
+D+0750Lr+0750L+H
+D+0,750L+0,7505+H
+D+0.60W+H
+D+0.70E+H
+D+0.750Lr+0.750L+0450W+H
DESERT FOX, LLC.
4% Consulting Structural Engineers
/7. 969 E. Saratoga St.
: Gilbert, AZ 85296
T: (480) 205-2094
FtT rX. --C F: (4801633-9328
Pole Footing Embedded in Soil
Project Title: MONTECITO APARTMENTS
Engineer: RRD Project ID: 18-103
Project Descr: solar parking canopy
Pin5: 25 JAN 2013, 3:53PM
' \18-10. TRUcT-10NTEc1.Ec "483-201 uildi10:7 6.17.8 1
---..
Description : Single Post Canopy - DL + LL + lateral (non-solar)
C&Mftè?êrences
Calculations per IBC 2012 1807.3, CBC 2013, ASCE 7-10
Load Combinations Used : IBC 2015
Generai liiforrna(ton
Pole Footing Shape Circular
Pole Footing Diameter 24.0 in ........ ....... ....._
Calculate Mm. Depth for Allowable Pressures
No Lateral Restraint at Ground Surface I................
Allow Passive ..................200.0 pcf
Max Passive ...................1,500.0 psf
Controlling Values
Governing Load Combination: +D+0.70E+H
Lateral Load 1.031 k
Moment 10,541 k-ft
NO Ground Surface Restraint
Pressures at 1/3 Depth
Actual 457.927 psf
Allowable 459.506 psf
Mrrrimum Required Depth 7.0 ft
Footing Base Area 3.142 ftA2
Maximum Soil Pressure 2.312 ksf
Appiied Loads.
Lateral Concentrated Load (k) Lateral Distributed Loads (klf) Vertical Load (k) I
k/ft 1.430 k
klft 5.832 k
k/ft k
k/ft k
0.0230 k/ft 0.2590 k
0.010 k/ft k
k/ft k
TOP of Load above ground surface
10.610 ft
BOTTOM of Load above ground surface
ft
A 1 iO
*
2
.-.-. ..
2
- Pie 1 Dp . niei.e
'.1iL- D 7 A ui-7.f A ,iH Ft-
•. -
0.122 1.294 3.25 210.6 210.6 1.000
0.122 1.294 3.25 210.6 210.6 1.000
0.672 7.130 6.00 393.3 394.1 1.000
0.122 1.294 3.25 210.6 210.6 1.000
0.535 5.671 5.50 361.0 361.7 1.000
0.122 1.294 3.25 210.6 210.6 1.000
0.679 6.432 5.88 384.2 384.7 1.000
1.031 10.541 7.00 457.9 459.5 1.000
0.953 . 9.524 6.75 442.3 443.3 1.000
DESERT FOX, LLC.
Consulting Structural Engineers
969 E. Saratoga St.
Gilbert, AZ 85296
1: (480) 205-2094
DSRT U,- F: (4801633-9328
[Pole Footing _Embedded in Soil -
Description : Single Post Canopy - DL + LL + Lateral (non-solar)
Code Rèferenes
Calculations per lEG 2012 180G3 CRC 2013, ASCE 7-10
Load Combinations Used IBC 2015
a;.;n?O"rnation
Pole Footing Shape Circular
Pole Footing Diameter 24.0 in
Calculate Mm. Depth for Allowable Pressures
No Lateral Restraint at Ground Surface
Allow Passive ..................200.0 pcI
Max Passive ...................1,500.0 psf
Controlling Values
Governing Load Combination: +D+0.70E+H
Lateral Load 1.031 k
Moment 10.541 k-ft
NO Ground Surface Restraint
Pressures at 1/3 Depth
Actual 457.927 psf
Allowable 459.506 psf
Mwimum Required Depth 7.0 ft
Footing Base Area 3.142 ftA2
Maximum Soil Pressure 2.312 ksf
Project Title: MONTECITO APARTMENTS
Engineer: RRD Project ID: 18-103
Project Descr: solar parking canopy
Pin:vu:25 JAN 2uiB. 3:tEPM
F - EPT1\18JOBS 1 1-1 -1ISTRUCT \M0N1EC-1 Er6
NERCALC iu -2017, Build: 1O.17.8.29, Ver6.17.8 31
-
......................... -
ApphedLoads
Lateral Concentrated Load (k) Lateral Distributed Loads (klf) Vertical Load (k)
D:Dead Load 0.1220k k/It 1.430k
Lr: Roof Live 0.550 k klft 5.832 k
L:Live k kift k
S: Snow k k/ft k
W: Wind 0.6850 k 0.0230 k/ft 0.2590 k
E:Earthquake 1.192 k 0.010 k/ft k
H : Lateral Earth k k/ft k
Load distance above TOP of Load above ground surface
ground surface 10.610 ft 10.610 ft
BOTTOM of Load above ground surface
ft
Load CobH3tton Results
F e GrcLnd SuSuce Rer,,,jired Pre:suedl 1 Depth S n"-reuse
b nut Londs A .1crn , - 'ti-k: . :h Ac un '' 4 u,f Fueler
+D+H 0.122 1.294 3.25 210.6 210.6 1.000
+D+L+H 0.122 1.294 3.25 210.6 210.6 1.000
+D+Lr+H 0.672 7.130 6.00 393.3 394.1 1.000
+D+S+H 0.122 1.294 3.25 210.6 210.6 1.000
+D+0.750Lr+0.750L+H 0.535 5.671 5.50 361.0 361.7 1.000
+D+0.750L+0.750S+H . 0.122 1.294 3.25 210.6 210.6 1.000
+D+0.60W+H 0.679 6.432 5.88 384.2 384.7 1.000
+D+0.70E+H 1.031 10.541 7.00 457.9 ' 459.5 1.000
+D+0.750Lr+0.750L+0.450W+H 0.953 9.524 6.75 442.3 443.3 1.000
DESERT FOX, LLC.
Consulting Structural Engineers
969 E. Saratoga St.
Gilbert, AZ 85296
T: (480) 205-2094
PDX. LLM F: (480) 633-9328
Pole Footing Embedded in Soil
Description : Single Post Canopy - DL + LL + Lateral (non-solar)
+D+0.750L+0.750S+0.450W+H 0.540
+D+0.750L+0.750S+0.5250E+H 0.804
+0.600+0.60W+0.60H 0.631
+0.600+0.70E+0.60H 0.982
Project Title: MONTECITO APARTMENTS
Engineer: RRD Project ID: 18-103
Project Descr: solar parking canopy
P:25JAN218. 3:FM
5.148 5.38 352.9 353.3 1.000
8.230 6.38 417.5 417.6 1.000
5.914 5.63 372.1 373.4 1.000
10.024 6.88 450.0 450.5 1.000
Ak DESERT FOX, LLC. Project Title: MONTECITO APARTMENTS
Consulting Structural Engineers Engineer: RRD Project ID: 18-103
969 E. Saratoga St. Project Descr: solar parking canopy I. Gilbert, AZ 85296
T: (480) 205-2094
5aTOX, UX F: (480) 633-9328 25 :AN 2010, 4:03PM
G Footing File G:\DESERT-1\18JOBS--1%18-1O3-1STRUCT-i'MONTEC'-1.EC6 General 00 ing ENERCALC, INC. 1983-2017, Butd:10.17.829, Ver6.17.8.31
Description : Single Post Canopy - DL + LL + Lateral (alternate spread footing)
Code References
Calculations per ACt 318-11, IBC 2012, CBC 2013, ASCE 7-10
Load Combinations Used : IBC 2015
General Information
Material Properties
fc : Concrete 28 day strength 2.50 ksi
fy: Rebar Yield 60.0 ksi
Ec : Concrete Elastic Modulus = 3,122.0 ksi
Concrete Density = 145.0 pcf
Values Flexure 0.90
orledr U. Increases based on footing Depth Analysis Settings Footing base depth below soil surface Min Steel % Bending Reinf. = Allow press. increase per foot of depth Min Allow % Temp Reinf. = when footing base is below Min. Overturning Safety Factor = 1.0 : 1
Mm. Sliding Safety Factor 1.0 : 1 Increases based on footing plan dimension
Add Ftg Wt for Soil Pressure : Yes Allowable pressure increase per foot of depth
Use fig wt for stability, moments & shears : Yes when max. length or width is greater than Add Pedestal Wt for Soil Pressure : No
Use Pedestal wt for stability, mom & shear : No
Dimensions
Soil Design Values
Allowable Soil Bearing
Increase Bearing By Footing Weight
Soil Passive Resistance (for Sliding)
Soil/Concrete Friction Coeff.
1.50 ksf
= No
= 250.0 pcf
= 0.250
= ft
= ksf
= 2.0 ft
ksf
ft
Width parallel to X-X Axis = 6.670 ft
Length parallel to Z-Z Axis 4.330 ft
Footing Thickness 26.0 in
Pedestal dimensions...
px : parallel to X-X Axis 6.0 in
pz: parallel to Z-Z Axis 12.0 in
Height in
Rebar Centedine to Edge of Concrete...
at Bottom of footing = 13.0 in
Reinforcing
Bars parallel to X-X Axis - Number of Bars - 8.0
Reinforcing Bar Size = # 5
Bars parallel to Z-Z Axis - -
Number of Bars = 140
Reinforcing Bar Size # 5
Bandwidth Distribution Check (ACt 15442) -
Direction Requiring Closer Separation ig Z-Z Axis
# Bars required within zone 78.7%
# Bars required on each side of zone 21.3%
Applied Loads
D Lr L S W E H
P: Column Load = 1.43 5.832 0.2590 k
OB : Overburden = ksf
M-xx = 1.454 13.215 k-ft
M-zz = 1.296 5.832 7.268 13.215 k-ft
V-x = 0.6850 1.192 k
V-z = 0.1370 1.192 k
I
I
I
DESERT FOX, LLC. Project Title: MONTECITO APARTMENTS
Consulting Structural Engineers Engineer: RRD Project ID: 18-103
969 E. Saratoga St. Project Descr: solar parking canopy
Gilbert, AZ 85296
' .............% T: (480) 205-2094
OX LC. F: (480) 633-9328 . Pne:25jA42O, 4:3PM
G I Footing File G\DEET 11BJO8S-11.1i)3--1\SWUCT-1\MONTEC-.1 E enera 00 ing ENERCALC., INC. 1 J
Description : Single Post Canopy - DL + LL Lateral (alternate spread footing)
DESIGN SUMMARY
Mm. Ratio Item Applied Capacity Governing Load Combination
PASS 0.9160 Soil Bearing 1.374 ksf 1.50 ksf +0.60D+0.70E+0.60H about X-X axis
PASS 1.269 Overturning - X-X 11.058k-ft 14.037 k-ft +0.60D+0.70E+0.60H
PASS 1.827 Overturning - Z-Z 11.836k-ft 21.622k-ft +0.600+0.70E+0.60H
PASS 1.943 Sliding - X-X 0.8344 k 1.621 k +0.600+0.70E+0.60H
PASS 1.943 Sliding - Z-Z 0.8344 k 1.621 k +0.60D+0.70E+0.60H
PASS n/a Uplift 0.0 k 0.0 k No Uplift
PASS 0.1065 Z Flexure (+X) 3.384 k-ft/ft 31.769 k-ft/ft +1.20D+160Lr+050W+160H
PASS 0.02470 Z Flexure (-X) 1.421 k-ft/ft 57.543 k-ft/ft +1.200+0.50L+0.70S+E+1.60H
PASS 0.03483 X Flexure (+Z) 1.248 k-ft/ft 35.823 k-ft/ft +0.90D+E+0.90H
PASS 0.01480 X Flexure (-Z) 0.5302 k-ft/ft 35.823 k-ft/ft +1.20D+1.6OLr+0.50L+1.60H
PASS 0.1223 1-way Shear (+X) 9.175 psi 75.0 psi +1.200+1.60Lr+0.50W+1.60H
PASS 0.05261 1-way Shear (-X) 3.946 psi 75.0 psi +1.20D+0.50L+0.70S+E+1.60H
PASS 0.05911 1-way Shear (+Z) 4.434 psi 75.0 psi +0.90D+E+0.90H
PASS 0.01888 1-way Shear (-Z) 1.416 psi 75.0 psi +1.20D+1.60Lr+0.50L+1.60H
PASS 0.05737 2-way Punching 8.605 psi 150.0 psi +1.20D+1.60Lr+0.50W+1.60H
Soil Bearing
Rotation Axis & Xecc Zecc Actual Soil Bearing Stress @ Location Actual / Allow
Load Combination... Gross Allowable (in) Bottom, -Z Top, +Z Left, -X Right, +X Ratio
X-X, +D+H 1.50 n/a 0.0 0.3637 0.3637 n/a n/a 0.243 X-X, +D+L+H 1.50 n/a 0.0 0.3637 0.3637 n/a n/a 0.243
X-X, +D+Lr+H 1.50 n/a 0.0 0.5656 0.5656 n/a n/a 0.377
X-X, +D+S+H 1.50 n/a 0.0 0.3637 0.3637 n/a n/a 0.243 X-X, +D+0.750Lr+0.750L+H 1.50 n/a 0.0 0.5151 0.5151 n/a n/a 0.343
X-X. +D+0750L+0750S+H 1.50 n/a 0.0 0.3637 0.3637 n/a n/a 0.243
X-X, +D+0.60W+H 1.50 n/a 1.20 0.3141 0.4132 n/a n/a 0.276 X-X, +D+0.70E+H 1.50 n/a 12.420 0.0 0.9350 n/a n/a 0.623
X-X, +D+0.750Lr+0.750L+0.450W+H 1.50 n/a 0.6355 0.4780 0.5523 n/a n/a 0.368 X-X, +D+0.750L+0.750S+0.450W+H 1.50 n/a 0.9001 0.3265 0.4009 n/a n/a . 0.267
X-X. +D+0.750L+0.7505+0.5250E+H 1.50 n/a 9.354 0.0 0.7609 n/a n/a 0.507
X-X, +0.60D+0.60W+0.60H 1.50 n/a 2.0 0.1686 0.2678 n/a n/a 0.179
X-X, +0.60D+0.70E+0.60H 1.50 n/a 20.468 0.0 1.374 n/a n/a 0.916 Z-Z, +D+H 1.50 1.481 n/a n/a n/a 0.3240 0.4034 0.269
Z-Z, +D+L+H 1.50 1.481 n/a n/a n/a 0.3240 0.4034 0.269 Z-Z, +D+Lr+H 1.50 5.236 n/a n/a n/a 0.3473 0.7839 0.523
Z-Z, +D+S+H 1.50 1.481 n/a n/a n/a 0.3240 0.4034 0.269
Z-Z, +D+0.750Lr+0.750L+H 1.50 4.573 n/a n/a n/a 0.3415 0.6888 0.459 Z-Z, +D+0.750L+0.750S+H 1.50 1.481 n/a n/a n/a 0.3240 0.4034 0.269
Z-Z, +D+0.60W+H 1.50 7.480 n/a n/a n/a 0.1632 0.5642 0.376
Z-Z, +D+0.70E+H 1.50 13.875 n/a n/a n/a 0.0 0.7486 0.499 Z-Z, +D+0.750Lr+0.750L+0450W+H 1.50 7.750 n/a n/a We 0.2208 0.8094 0.540 Z-Z, +D+0.750L+0.7505+0.450W+I-1 1.50 5.980 n/a n/a n/a 0.2034 0.5240 0.349 Z-Z, +D+0.750L+0.750S+0.5250E+H 1.50 10.816 n/a n/a n/a 0.07468 0.6621 0.441 Z-Z, +0.60D+060W+060H 1.50 11.480 n/a n/a n/a 0.03356 0.4029 0.269
Z-Z, +0.60D+0.70E+0.60H 1.50 21.907 n/a n/a n/a 0.0 0.6532 0.436
Overturning Stability
Rotation Axis &
Load Combination... Overturning Moment Resisting Moment Stability Ratio Status
X-X. +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X. +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H 1.051 k-ft 22.740 k-ft 21.647 OK X-X, +D+0.70E+H 11.058k-ft 23.133 k-ft 2.092 OK X-X, +D+0.750Lr+0.750L+0.450W+H 0.7879 k-ft . 32.210 k-ft 40.882 OK
DESERT FOX, LLC.
Consulting Structural Engineers
969 E. Saratoga St.
Gilbert, AZ 85296
T: (480) 205-2094
DSMT PDX. LL. F: (480) 633-9328
General Footing
......... - -
Project Title: MONTEC ITO APARTMENTS
Engineer: RRD Project ID: 18-103
Project Descr: solar parking canopy
20 JAN 2210, 4:03PM
UCT-1\MONTEC-1 E
Description : Single Post Canopy - DL + LL + Lateral (alternate spread footing)
o.14 uric Stablity
Rotation Axis &
Load Combination. Overturning Moment Resisting Moment Stability Ratio Status
X-X, +D+0.750L+0.750S+0.450W+H 0.7879 k-ft . 22.740 k-ft 28.862 OK
X-X, +D+0.750L+0.7505+0.5250E+H 8.294 k-ft 23.034 k-ft 2.777 OK
X•X, +0.60D+0.60W+0.60H 1.051 k-ft 13.644 k-ft 12.988 OK
X-X, +0.60D+0.70E+060H 11.058 k-ft 14.037 k-ft 1.269 OK
Z-Z, +D+H 1.296k-ft 35.029 k-ft 27.029 OK
Z-Z, +D+L+H .1.296 k-ft . 35.029 k-ft . 27.029 OK
Z-Z, +D+Lr+H 7.128 k-ft 54.479 k-ft 7.643 OK
Z-Z, +D+S+H 1.296k-ft 35.029 k-ft 27.029 OK
Z-Z, +D+0.750Lr+0.750L+H 5.670 k-ft 49.616 k-ft 8.751 OK
Z-Z, +D+0.750L+0.750S+H 1.296 k-ft 35.029 k-ft 27.029 OK
Z-Z, +D+0.60W+H 6.547 k-ft 35.029 k-ft 5.350 OK
Z-Z, +D+0.70E+F-1 12.354 k-ft 35.634 k-ft 2.884 OK
Z-Z, +D+0.750Lr+0.750L+0.450W+H 9.608 k-ft 49.616 k-ft 5.164 OK
Z-Z, +D+0.750L+0.750S+0.450W+H . 5.234 k-ft 35.029 k-ft 6.692 OK
Z-Z, +D+0.750L+0.7505+0.5250E+H 9.590 k-ft 35.483 k-ft 3.70 OK
Z-Z, +0.60D+0.60W+0.60H 6.029 k-ft 21.017 k-ft 3.486 OK
Z-Z, +060D+070E+060H 11.836 k-ft 21.622k-ft 1.827 OK
All units k
Force Application Axis
Load Combination... Sliding Force Resisting Force Stability Ratio Status
X-X, +D+H 0.0k 2.626 k No Sliding OK
X-X, +D+L+H 0.0 k 2.626 k No Sliding OK
X-X, +D+Lr+H 0.0 k 4.084 k No Sliding OK
X-X, +D+S+H 0.0 k 2.626 k No Sliding OK
X-X, +D+0.750Lr+0.750L+H 0.0 k 3.719 k No Sliding OK
X-X, +D+0.750L+0.7505+H 0.0 k 2.626 k No Sliding OK
X-X, +D+0.60W+H 0.4110k 2.626k 6.389 OK
X-X, +D+0.70E+F-I 0.8344 k 2.671 k 3.201 OK
X-X, +D+0.750Lr+0.750L+0.450W+H 0.3083 k 3.719 k 12.066 OK
X-X, +D+0.750L+0.7505+0.450W+H 0.3083 k 2.626k 8.519 OK
X-X, +D+0.750L+0.750S+0.5250E+H 0.6258 k 2.660 k 4.250 OK
X-X, +0.60D+0.60W+0.60H 0.4110k 1.576k 3.833 OK
X-X. +0.60D+0.70E+0.60H 0.8344 k 1.621 k 1.943 OK
Z-Z, +D+H 0.0 k 2.626k No Sliding OK
Z-Z, +D+L+H 0.0 k 2.626 k No Sliding OK
Z-Z, +D+Lr+H 0.0 k 4.084 k No Sliding . OK
Z-Z, +D+S+H 0.0 k 2.626k No Sliding OK
Z-Z, +D'-0.750Lr+0.750L+H 0.0 k 3.719k No Sliding OK
Z-Z, +D+0.750L+0.7505+H 0.0 k 2.626 k No Sliding OK
Z-Z, +D+0.750L+0.750S+0.450W+H 0.06165 k 2.626 k 42.593 OK
Z-Z, +D+0.750L+0.7505+0.5250E+R 0.6258 k 2.660 k 4.250 OK
Z-Z, +0.60D+0.60W+0.60H 0.08220k 1.576k 19.167 OK
Z-Z. +0.60D+0.70E+0.60H 0.8344k 1.621 k 1.943 OK Z-Z. +D+0.60W+H 0.08220k 2.626k 31.945 OK
Z-Z, +D+0.70E+H 0.8344 k 2.671 k 3.201 OK Z-Z. +D+0.750Lr+0.750L+0.450W+H 0.06165 k 3.719 k 60.330 OK
Footing Fle.xure
Flexure Axis & Load Combination Mu Side Tension As Req'd Gym. As Actual As PhiMn Status k-ft Surface InA2 InA2 InA2 k-ft
X-X, +1.40D+1.60H 0.09608 +Z Bottom 0.0016426814066 Min for Bending 0.6507 35.823 OK
X-X, +1.40D+1.60H 0.09608 -Z Bottom 0.0016426814066 Min for Bending 0.6507 35.823 OK
X-X, +1.20D+0.50Lr+1.60L+1.60H 0.2223 +Z Bottom 0.0038013922327 Min for Bending 0.6507 35.823 OK
X-X, +1.20D+0.50Lri-1.60L+1.60H 0.2223 -Z Bottom 0.0038013922327 Min for Bending 0.6507 35.823 OK
X-X, +1.20D+1.60L+0.505+1.60H 0.08236 +Z Bottom 0.0014079827246 Min for Bending 0.6507 35.823 OK
X-X, +1.20D+1.60L+0.50S+1.60H 0.08236 -Z Bottom 0.0014079827246 Min for Bending 0.6507 35.823 OK
X-X, +1.20D+1.60Lr+0.50L+1.60H 0.5302 +Z Bottom 0.0090705487435 Min for Bending 0.6507 35.823 OK
X-X, +1.20D+1.60Lr+0.50L+1.60H 0.5302 -Z Bottom 0.0090705487435 Min for Bending 0.6507 35.823 OK
X-X, +1.20D+1.60Lr+0.50W+1.60H 0.5735 +Z Bottom 0.0098116477971 Min for Bending 0.6507 35.823 OK
X-X, +1.200+1.60Lr+0.50W+1.60H 0.4869 -Z Bottom 0.0083295492477 Min for Bending 0.6507 35.823 OK
I
I
I
DESERT FOX, LLC.
Consulting Structural Engineers
hi.
969 E. Saratoga St.
Gilbert, AZ 85296
... 1: (480) 205-2094
DESUAT PDX- LLC, F: (480) 633-9328
Project Title: MONTECITO APARTMENTS
Engineer: RRD Project ID: 18-103
Project Descr: solar parking canopy
I
Pr:2jAN2In, 4:03PM
- Et.:r ftLC, INC..19832017, Bud.0
k•
Description : Single Post Canopy - DL + LL + Lateral (alternate spread footing)
Flexure Axis & Load Combination Mu Side Tension As Reqd Gym. As Actual As PhiMn
k-ft Surface In12 inA2 inA2 k-ft
X•X, +1.20D+0.50L+1.605+160H 0.08236 +Z Bottom 0.0014079827246 Min for Bending 0.6507 35.823 OK
X-X, +1.20D+0.50L+1.605+1.60H 0.08236 -Z Bottom 0.0014079827246 Min for Bending 0.6507 35.823 OK
X-X, +1.20D+1.60S+0.50W+1.60H 0.1256 +Z Bottom 0.0021480535557 Min for Bending 0.6507 35.823 OK
X-X, +1.20D+1.60S+0.50W+1.60H 0.03908 -Z Bottom 0.0006680110376 Min for Bending 0.6507 35.823 OK
X-X, +1.20D+0.50Lr+0.50L+W+1.60H 0.3089 +Z Bottom 0.0052822749272 Min for Bending 0.6507 35.823 OK
X-X, +1.20D+0.50Lr+0.50L+W+1.60H 0.1357 -Z Bottom 0.0023209066305 Min for Bending 0.6507 35.823 OK
X-X, +1.20D+0.50L+0.505+W+1.60H 0.1689 +Z Bottom 0.0028882235707 Min for Bending 0.6507 35.823 OK
X-X, +1.20D+0.50L+0.50S+W+1.60H 0.004204 -Z Top 4.0617743547635 Min for Bending 0.6507 65.103 OK
X-X, +1.20D+0.50L+0.705+E+1.60H 1.004 +Z Bottom 0.0171829952890 Min for Bending 0.6507 35.823 OK
X-X, +1.20D+0.50L+0.705+E+1.60H 0.5223 -Z Top 0.0050474776444 Min for Bending 0.6507 65.103 OK X-X, +0.90D+W+090H 0.1483 +Z Bottom 0.0025360998869 Min for Bending 0.6507 35.823 OK X-X, +0.90D+W+0.90H 0.02479 -Z Top 0.0002395493244 Min for Bending 0.6507 65.103 OK X-X, +0.90D+E+0.90H 1.248 +Z Bottom 0.0213695727867 Min for Bending 0.6507 35.823 OK X-X, +0.90D+E+0.901-1 0.3919 -Z Top 0.0037873959054 Min for Bending 0.6507 65.103 OK
Z-Z, +1.40D+1.60H 0.1439 -X Bottom 0.0024601988897 Min for Bending 0.5727 31.769 OK
Z-Z, +1.40D+1.60H 0.5158 +X Bottom 0.0088237796094 Min for Bending 0.5727 31.769 OK
Z-Z, +1.200+0.50Lr+1.60L+1.60H 0.3049 -X Bottom 0.0052146356447 Min for Bending 0.5727 31.769 OK
Z-Z, +1.20D+0.50Lr+1.60L+1.60H 1.221 +X Bottom 0.0209174384284 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+1.60L+0.505+1.60H 0.1233 -X Bottom 0.0021086748090 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+1.60L+0.505+1.60H 0.4421 +X Bottom 0.0075623756984 Min for Bending 0.5727 31.769 OK Z-Z, +1.200+1.60Lr+0.50L+1.60H 0.7044 -X Bottom 0.0120539090563 Min for Bending 0.5727 31.769 OK Z-Z, +1.200+1.60Lr+0.50L+1.60H 2.936 +X Bottom 0.0504132540456 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+1.60Lr+0.50W+1.60H 0.2559 -X Bottom 0.0043762888954 Min for Bending 0.5727 31.769 OK Z-Z, +1.200+1.60Lr+0.50W+1.60H 3.384 +X Bottom 0.0581555280016 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+0.50L+1.605+1.60H 0.1233 -X Bottom 0.0021086748090 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+0.50L+1.605+1.60H 0.4421 +X Bottom 0.0075623756984 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+1.605+0.50W+1.60H 0.3251 -X Top 0.0031419447388 Min for Bending 0.5727 57.543 OK Z-Z, +1.20D+1.60S+0.50W+1.60H 0.8906 +X Bottom 0.0152444355398 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+0.50Lr+0.50L+W+1.60H 0.5920 -X Top 0.0057218068308 Min for Bending 0.5727 57.543 OK Z-Z. +1.20D+0.50Lr+0.50L+W+1,60H 2.118 +X Bottom 0.0363296939351 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+0.50L+0.505+W+1.60H 0.7736 -X Top 0.0074773717071 Min for Bending 0.5727 57.543 OK Z-Z, +1.20D+0.50L+0.505+W+1.60H 1.339 +X Bottom 0.0229372211742 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+0.50L+0.705+E+1.60H 1.421 -X Top 0.0137417126127 Min for Bending 0.5727 57.543 OK Z-Z. +1.20D+0.50L+0.705+E+1.60H 2.132 +X Bottom 0.0365622643578 Min for Bending 0.5727 31.769 OK Z-Z. +0.90D+W+0.90H 0.8044 -X Top 0.0077755123740 Min for Bending 0.5727 57.543 OK Z-Z, +0.90D+W+0.90H 1.229 +X Bottom 0.0210403719117 Min for Bending 0.5727 31.769 OK Z-Z, +0.90D+E+0.90H 1.291 -X Top 0.0124829706736 Min for Bending 0.5727 57.543 OK +0.90D+E+0.90H 2,167 +X Bottom 0.0371682155839 Min for Bending 0.5727 31.769 OK
81 Ohe Way Shear
Load Combination... Vu @ -x Vu @ +X Vu @ -z Vu @ +Z Vu:Max Phi Vn Vu! Phi*Vn Status
+1.40D+1.60H 0.38 psi 1.40 psi 0.26 psi 0.26 psi 1.40 psi 75.00 psi 0.02 0.00
+1.20D+050Lr+160L+160H 0.81 psi 3.31 psi 0.59 psi 0.59 psi 3.31 psi 75.00 psi 0.04 0.00
+1.20D+1.60L+0.50S+1.60H 0.33 psi 1.20 psi 0.22 psi 0.22 psi 1.20 psi 75.00 psi 0.02 0.00
+1.20D+1.60Lr+0.50L+1.60H 1.86 Psi 7.95 psi 1.42 psi 1.42 psi 7.95 psi 75.00 psi 0.11 0.00 +1.20D+1.60Lr+0.50W+1.60H 0.64 Psi 9.18 psi 1.28 psi 1.55 psi 9.18 psi 75.00 psi 0.12 0.00 +1.20D+0.50L+1.605+1.60H 0.33 Psi 1.20 psi 0.22 psi 0.22 psi 1.20 psi 75.00 psi 0.02 0.00
+1.20D+1.605+050W+160H 0.90 psi 2.42 psi 0.09 psi 0.35 psi 2.42 psi 75.00 psi 0.03 0.00
+1.20D+0.50Lr+0.50L+W+1.60H 1.64 psi 5.76 psi 0.32 psi 0.86 psi 5.76 psi 75.00 psi 0.08 0.00
+1.20D+0.50L+0.50S+W+1.60H 2.12 psi 3.65 psi 0.05 psi 0.49 psi 3.65 psi 75.00 psi 0.05 0.00
+1.20D+0.50L+0.705+E+1.60H 395 psi 5.81 psi 1.40 psi 3.16 psi 5.81 psi 75.00 psi 0.08 0.00
+0.90D+W+0.90H 2.20 psi 3.35 psi 0.10 psi 0.43 psi 3.35 psi 75.00 psi 0.04 0.00 +0.90D+E+0.90H 3,62 psi 5.91 psi 1.05 psi 4.43 psi 5.91 psi 75.00 psi 0.08 0.00
Two-Way "Pundli(" Shear All units k
Load Combination... Vu Phi*Vn Vu! Phi*Vn Status
+1.40D+1.60H . 1.56 psi 150.00psi 0.0104 OK +1.20D+0.50Lr+1.60L+1.60H 3.61 osi 150.00psi 0.02405 OK
+1.20D+1.60L+0.505+1.60H 1.34 osi 150.000si 0.008911 OK +1.20D+1.6OLr+0.50L+160H 8.61 psi 150.00psi 0.05737 OK +1.20D+1.60Lr+0.50W+1.60H 8.61 psi 150.00psi . 0.05737 OK
Status
DESERT FOX, LLC.
Consulting Structural Engineers
969 E. Saratoga St.
/ Gilbert, AZ 85296
T. (480) 205-2094
.LC. F: (480) 633-9328
Project Title:
Engineer: Project Descr:
MONTECITO APARTMENTS RRD
solar parking canopy
Project ID: 18-103
pred:25j AN' 2ola, 413PM
General Footing ~FRCA'
Description : Single Post Canopy - DL + LL + Lateral (alternate spread footing)
To-Wy"Punchig" hea} All units k
Load Combination... Vu Phi*Vn Vu I Phi*Vn Status
+1.20D+0.50L+1.605+1.60H 1.34 osi 150.00psi 0.008911 - OK
+1.20D+1.605+0.50W+1.60H 1.34 osi 150.00si 0.008911 OK
+1.20D+0.50Lr+0.50L+W+1.60H 3.61 psi 150.00psi 0.02405 OK +1.20D+0.50L+0.50S+W+1.60H 1.34 psi 150.00psi 0.008911 OK
+1.20D+0.50L+0.705+E+1.60H 1.85 osi 150.00psi 0.01235 OK
+0.90D+W+0.90H 1.00 psi 150.00psi 0.006683 OK
+0.90D+E+0.90H 1.97 psi 150.00psi 0.01311 OK
I
I
I
I
I
I
I
I
ESR-1976 I Most Widely Accepted and Trusted
TABLE 2-ALLOWABLE TENSILE PULL-OUT LOADS (PNOTIQ), pounds-force" 234 '
Steel F,, = 46 ksi, Applied Factor of Safety, C14.0
Screw
Designation
Nominal
Diameter
Design Thickness of Member Not in Contact with the Screw Head (in)
0.018 1 0.024 0.00 0.036 0,0.8 0.080 0.075 0.105 0.125 0.187 1 0,250
10-16 0.190 44 58 73 87 116 145 182 254 303
12-14,12-24 0.216 50 66 83 99 132 165 207 289 344 515 689
1/14 1/28 0.250 57 77 96 115 153 191 239 335 398 596 797
For 81:1 inch = 25.4 mm, I lbf = 4.4 N, 1 hal = 689 We.
'For tension connections, the least of the allowable pull-out, pullover, and fastener tension strength found in Tables 2.3. and 5. respectively, must be used for
design.
2ANSIIASME standard screw diameters were used in the calculations and are listed in the tables.
3The allowable pull-out capacity for other member thickness can be determined by interpolating within the table.
calculate IRFD values, multiply values in table by the ASO safety factor of 3.0 and multiply again with the LRFO 4' factor of 0.5.
'For F. = 58 hal, multiply values by 1.29; for F, = 65 hal, multiply values by 1.44.
'Outside drilling capacity limits.
TABLE 3-ALLOWABLE TENSILE PULL-OVER LOADS (P6o1Ifl), pounds4orce1'2'4'5
Steel Fu = 45 ksi, Applied Factor of Safety, 03.0
Screw
Designation
Nominal
Diameter
(in.)
Head or
Integral
Washer
Diameter
Design Thickness of Member in Contact with the Screw Head (in)
0.018 0.024 0.030 0.038
(in.)
0.048 0.060 0.07$ 0.105 0.125 0.187
-
0.250
Hex Washer Head(HWH)
10-16 0.190 0.400 1 162 216 270 324 1 432 540 1 675 1 945 111251 '
12-14,12-24 0.216 0.415 168 224 280 336 1 448 L 560 700 980 1167 1746 12334
/4-14 '/4-28 0.250 0.500 203 270 338 405 540 1 675 1 844 1 1181 11406 1 210412813
IlIMI with Serrations
10-16 0.190 0.435 176 235 294 352 470 587 1 734 1 1028 1 12231 6 6
1/14 0.250 0.610 203 270 338 405 540 675 844 1181 1406 2104 '
Phillips Pan Head
10-16 0.190 0.365 148 j 197 1 246 1 296 394 J 493 J 616 I 862 11021 I 6
For Sl:l inch '25.4mm, 11bf4.4N,1 ksi6.89MPa.
'For tension connections, the lower of the allowable pull-out pullover, and fastener tension strength found In Tables 2, 3, and 5, respectively must be used for
design.
2N'ISIJASME standard screw diameters were used in the calculations and are listed in the tables.
37he allowable pull-over capacity for other member thickness can be determined by interpolating within the table.
To calculate LRFD values, multiply values in table by the ASO safety factor of 3.0 and multiply again with the LRFO 4' factor of 0.5.
'For Fu = 58 ksi, multiply values by 1.29; for Fu = 65 Irs, multiply values by 1.44.
'Outside drilling capacity limits.
I ESR-1976 I Most Widely Accepted and Trusted
TABLE 4-ALLOWABLE SHEAR (BEARING) CAPACITY (P85I0), pounds-force" ''
Steel Fu = 45 ksi, Applied Factor of Safety, 03.0
Designation
Nominal
Diameter
Design
Thickness of
Member Not
In Contact
Screw Head
Design Thickness of Member In Contact with the Screw Head (in)
0.018 0.024 0.030
(in)
0.036 0.048 0.080 0.075 0.105 0.125 0.187
- -
0.250
10.16 0.190
0.018 66 66 66 66 66 66 66 66 66
0.024 102 102 102 102 1 102 102 102 102 102 - -
0.030 111 143 143 143 143 143 143 143 143 - -
0.036 120 152 185 188 188 188 188 188 188 - -
0.048 139 168 199 228 289 289 289 289 289 - -
0.060 139 185 213 239 327 404 404 404 404 - -
0.075 139 185 231 251 337 427 564 564 564 - -
0.105 139 185 231 277 356 436 570 808 808 - -
0.125 139 185 231 277 369 442 571 808 962 - -
12-14 0.216
0.018 71 71 71 71 71 71 71 71 71 71 71
0.024 109 109 109 109 109 109 109 109 109 109 109
0.030 125 152 152 152 152 152 152 152 152 152 152
0.036 136 170 205 200 200 200 200 200 200 200 200
0.048 157 190 223 253 308 308 308 308 308 308 308
0.060 157 210 240 266 362 430 430 430 430 430 430
0.075 157 210 262 282 375 468 601 601 601 601 601
0.105 157 210 262 315 402 483 624 919 919 919 919
0.125 157 210 262 315 420 494 629 919 1094 1094 1094
0.187 157 210 262 315 420 525 642 919 1094 1636 1636
0.250 157 210 262 315 420 525 656 919 1094 1636 2187
0.250
0.018 76 76 76 76 76 76 76 76 76 76 76
0.024 117 117 117 117 117 117 117 117 117 117 117
0.030 142 164 164 164 164 164 164 164 164 164 184
0.036 156 193 215 215 215 215 215 215 215 215 215
0.048 182 218 253 283 331 331 331 331 331 331 331
0.060 182 243 276 300 406 463 463 463 463 463 463
0.075 182 243 304 322 424 521 647 647 647 647 647
0.105 182 243 304 365 461 544 694 1063 1063 1063 1063
0.125 182 243 304 365 486 560 03 1063 1266 1266 1266
0,187 182 243 304 365 486 608 731 1063 1266 1893 1893
0.250 182 243 304 365 486 608 759 1063 1266 1893 2531
For Si: I inch z 25.4 mm,1 1bf44 N. I ksi = 6.89 We.
'The lower of the allowable shear (bearing) and the allowable fastener shear strength found in Tables 4 and 5, respectively, must be used for design.
2ANSIIASME standard screw diameters were used In the calculations and are listed in the tables.
3lhe allowable bearing capacity for other member thickness can be determined by interpolating within the table.
4To calculate LRFD values, multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD 0 factor of 0.5.
'For F,, 58 ksi, multiply values by 1.29; for F,, = 65 kel, multiply values by 1.44.
88hear values do not apply to 5,6 and 8-inch-long '/4-28 screws, due to the fact that they are not fully threaded.
TABLE 5-FASTENER STRENGTH OF SCREWS" $.4.5
SCREW
DESIGNATION
DIAMETER
(in.)
ALLOWABLE FASTENER STRENGTH NOMINAL FASTENER STRENGTH
Tensile, Ps/fl (lb) Shear, PSJn (lb) Tensile, P, (Ib) Shear, P,, (lb)
10-16 0.190 885 573 2654 1718
12-14 0.216 1184 724 3551 2171
12-24 0.216 1 1583 885 4750 2654
1/14 0250 1605 990 4816 2970
1/28 0.250 1922 1308 5767 3925
For SI: Inch = 25.4 mm, 1 Ibf4.4 N, I ksi = 6.89 MPa.
'For tension connections, the least of the allowable pull-out, pullover, and fastener tension strength found in Tables 2, 3, and 5, respectively, must be used for
design.
2For shear connection, the lower of the allowable shear (bearing) and the allowable fastener shear strength found in Table 4 and 5, respectively, must be used for
design.
3See Section 4.1 for fastener spacing and end distance requirements.
4Nominal strengths are based on laboratory tests;
5To calculate LRFD values, multiply nominal strength values by the LRFD it' factor of 0.5.
I
I
I
I
I
I
I
(City of
Carlsbad
Print Date: 12/17/2018 Permit No: PREV2018-0166
2510 West Ranch St
BLDG-Permit Revision
2081951000
$ 0.00
Job Address:
Permit Type:
Parcel No:
Valuation:
Occupancy Group:
U Dwelling Units:
Bedrooms:
Project Title
Description:
Work Class: Commercial Permit Revi5 Status: Closed - Finaled
Lot U: Applied: 06/22/2018
Reference U: Issued: 07/03/2018
Construction Type Permit 12/17/2018 Finaled:
Bathrooms: Inspector:
Orig. Plan Check U: CBC2018-0096 Final
Plan Check U: Inspection:
MONTECITO: DELTA 2 - REMOVE MODULES AT CARPORTS 1 & 3
Applicant: Owner:
ALLIANCE LAND PLANNING AND ENGINEERING SHAPELL MONTECITO LLC
INC
ELIZABETH SHOEMAKER 8383 Wilshire Blvd, 700
2248 Faraday Ave Beverly Hills, CA 90211-2400
Carlsbad, CA 92008-7208 323-988-7590
760-431-9896
FEE AMOUNT
BUILDING PLAN CHECK ADMIN FEE $35.00
MANUAL BUILDING PLAN CHECK FEE $459.38
Total Fees: $ 494.38 Total Payments To Date : $ 494.38 ----_Balance Due: $0.00
Building Division
1635 Faraday Avenue, Carlsbad CA 92008-7314 1 760-602-2700 1 760-602-8560 f I www.carlsbadca.gov
c PLAN CHECK REVISION OR Development Services City of DEFERRED SUBMITTAL Building Division
Carlsbad APPLICATION 1635 Faraday Avenue
760-602-2719 B-I 5 www.carlsbadca.gov
Original Plan Check Number CBC 2018-0096 Plan Revision Number
Project Address 2510 West Ranch Drive (Recreational Building - #16)
General Scope of Revision/Deferred Submittal: Delta 2 - Solar Carport # 1 and 3 had to
remove a couple solar modules due to the drive isle corners.
CONTACT INFORMATION:
Name Elizabeth Shoemaker Phone 760-550-1957 Fax
Address 4938 Newport Ave. # 3 city_San Diego Zip 92107
Email Address elizabeth.shoemaker@gmaii.com or eliabeth@espermits.com
Original plans prepared by an architect or engineer, revisions must be signed & stamped by that person.
1 . Elements revised: Plans fl Calculations J Soils EJ Energy fl Other
2.
Describe revisions in detail
3.
List page(s) where each
revision is shown
Title Page PV 000
Scope / Site Plan PV 100
Site Plan PV 200
Canopy Layout PV 201
Single Line PV 300
Stringing Layout PV 301
4. Does this revision, in any way, alter the exterior of the project? Li Yes El No
Does this revision add ANY new floor area(s)? 9 Yes It No
Does this revision affect any fire related issues? Li Yes Ill No
Is this a complete set? Yes II No
Signature_&JML WIL, Date 6/21/18
1635 Faraday Avenue, Carlsbad, CA 92008 : 760-602- 2719 f 760-602-8558 Email: building@carlsbadca.gov
www.carisbadca.gov
EsG
V/0
.
A SAFEbuittCompany
DATE: 6/29/2018
JURISDICTION: cCARLBAb
PLAN CHECK#.: CBC2018-0166(2018-0096.REV2)
PROJECT ADDRESS: 2510 WEST RANCH DRIVE
O APPLICANT
O JURIS.
SET:I
PROJECT NAME: REMOVAL OF SOLAR MODULES ON CARPORTS #1 & 3 FOR SHAPELL
PORTOLA
The plans transmitted herewith have been corrected where necessary and substantially comply
with the jurisdiction's building codes.
The plans transmitted herewith will substantially comply with the jurisdiction's
codes when minor deficiencies identified below are resolved and checked by building
department staff.
The plans transmitted herewith have significant deficiencies identified on the enclosed check list
and should be corrected and resubmitted for a complete recheck.
The check list transmitted herewith is for your information. The plans are being held at EsGil
until corrected plans are submitted for recheck.
The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant
contact person.
The applicant's copy of the check list has been sent to:
EsGil staff did not advise the applicant that the plan check has been completed.
EsGil staff did advise the applicant that the plan check has been completed.
Person contacted: Telephone #:
Date contacted: (by.t9, ) Email:
Mail Telephone Fax In Person
REMARKS:
By: Bert Domingo Enclosures:
EsGil
6/25/2018
9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858) 560-1576
CARLSBAD CBC2018-0166(2018-0096.REV2)
6/29/2018
[DO NOT PAY— THIS IS NOTAN INVOICE]
VALUATION AND PLAN CHECK FEE
JURISDICTION: CARLSBAD PLAN CHECK #.: CBC2018-
0166(2018-0096.REV2)
PREPARED BY: Bert Domingo DATE: 6/29/2018
BUILDING ADDRESS: 2510 WEST RANCH DRIVE
BUILDING OCCUPANCY: PV
BUILDING
PORTION
AREA
(Sq. Ft.)
Valuation
Multiplier
Reg.
Mod.
VALUE ($)
Air Conditioning
Fire Sprinklers
TOTAL VALUE
Jurisdiction Code 1CB IBY Ordinance
1997 UBC Building Permit Fee
1997 UBC Plan Check Fee Ivl
Type of Review:
Repetitive Fee
Repeats
* Based on hourly rate
Eli Complete Review
El Other
El Hourly
EsGil Fee
El Structural Only
3.5 Hrs.@*
$105.00 I $367.501
Comments: In addition to the' above fee, an addition fee of $ is due (_. hour@
'/hr;) for thèCalGreen review'.
Sheet 1 of 1
(City of
Carlsbad
Print Date: 12/17/2018 Permit No: PREV2018-0091
Job Address: 2510 West Ranch St
Permit Type: BLDG-Permit Revision Work Class: Residential Permit Revisi Status: Closed - Finaled
Parcel No: 2081951000 Lot #: Applied: 04/05/2018
Valuation: $ 0.00 Reference U: Issued: 04/19/2018
Occupancy Group: Construction Type Permit 12/17/2018 Finaled:
U Dwelling Units: Bathrooms: Inspector:
Bedrooms: Orig. Plan Check U: CBC2018-0096 Final
Plan Check U: Inspection:
Project Title:
Description: MONTECITO: STRUCTURAL CHANGES TO SOLAR CARPORTS (ONLY)
Applicant: Owner:
ALLIANCE LAND PLANNING AND ENGINEERING SHAPELL MONTECITO LLC
INC
ELIZABETH SHOEMAKER 8383 Wilshire Blvd, 700
2248 Faraday Ave Beverly Hills, CA 90211-2400
Carlsbad, CA 92008-7208 323-988-7590
760-431-9896
FEE AMOUNT
MANUAL BUILDING PLAN CHECK FEE $489.37
Total Fees: $ 489.37 Total Payments To Date : $ 489.37 Balance Due: $0.00
-
Building Division
1635 Faraday Avenue, Carlsbad CA 92008-7314 1 760-602-2700 1 760-602-8560 f I www.carlsbadca.gov
PLAN CHECK REVISION OR Development Services (City of DEFERRED SUBMITTAL Building Division
Carlsbad APPLICATION 1635 Faraday Avenue
760-602-2719 B-I 5 www.carisbadca.gov
Original Plan Check Number CBC 2018-0096 Plan Revision Number d?a';bfY- c ,69/
Project Address 2510 West Ranch Drive (Recreational Building - #16)
General Scope ofRevision/DeferredSubmittal: Delta 1 - Solar Carports to be
modified to a single beam design.
CONTACT INFORMATION:
Elizabeth Shoemaker Phone 7605501957
Address 4939 Newport Ave. #3 City San Diego Zip 92107
Email Address elizabeth.shoemaker@gmail.com
Original plans prepared .by.an architect or engineer, revisions must be signed & stamped by that person.
1. Elements revised: 1 Plans W Calculations Soils fl Energy fl Other
2.
Describe revisions in detail
3..
List page(s) where each
revision is shown
Overall Site Plan for the Solar Carports PV 201
Structural Sheets for Single Beam Design
Does this revision, in any way, alter the exterior of the project? L1 Yes 1 No
Does this revision add ANY new floor area(s)? []Yes [UI No
Does this revision affect any fire related issues? L1 Yes Iii No
Is this a comple set? • Yes J No
Signature Date 4/03/18
1635 Faraday Avenue, Carlsbad, CA 92008 Eh. 760-602-2719 f 760-602-8558 Eniail:building@carlsbadca.gov
www.carlsbadca.gov
/ EsGil
A SAFEbuiLt Company
DATE: 4/16/2018 D APPLICANT
URIS.
JURISDICTION: CARLSBAD
PLAN CHECK #.: CBC2O1S-0096(2018-0091. REV) SET: I
PROJECT ADDRESS: 2510 WEST RANCH DRIVE
PROJECT NAME: SOLAR CARPORTS REVISION TO SINGLE BEAM DESIGN FOR
ROBERTSON RANCH REC. CENTER
The plans transmitted herewith have been corrected where necessary and substantially comply
with the jurisdiction's building codes.
The plans transmitted herewith will substantially comply with the jurisdiction's
codes when minor deficiencies identified below are resolved and checked by building
department staff.
The plans transmitted herewith have significant deficiencies identified on the enclosed check list
and should be corrected and resubmitted for a complete recheck.
The check list transmitted herewith is for your information. The plans are being held at EsGil
until corrected plans are submitted for recheck.
The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant
contact person.
LII The applicant's copy of the check list has been sent to:
EsGil staff did not advise the applicant that the plan check has been completed.
LII EsGil staff did advise the applicant that the plan check has been completed.
Person contacted._ Telephone #:
Date contacted: (b : Email:
Mail Telephone Fax I PrSon
REMARKS:
By: Bert Domingo Enclosures:
EsGil
4/9/2018
9320 Chesapeake Drive, Suite 208.• San Diego, California 92123 • (858) 560-1468 • Fax(858)560-1576
' CARLSBAD CBC20 18-0096(2018-0091. REV)
4/16/2018
(DO NOT PAY— THIS IS NOTAN INVOICE]
VALUATION AND PLAN CHECK FEE
JURISDICTION: CARLSBAD . PLAN CHECK#.: CBC2018-
0096(2018-0091.REV)
PREPARED BY: Bert Domingo DATE: 4/16/2018
BUILDING ADDRESS: 2510 WEST RANCH DRIVE
BUILDING OCCUPANCY: U
IBUILDING
PORTION
AREA
(Sq. Ft.)
Valuation
Multiplier
Reg.
Mod.
VALUE ($)
Air Conditioning
Fire Sprinklers
TOTAL VALUE
Jurisdiction Code ICB IBY Ordinance I
1997 UBC Building Permit Fee vI
1997 UBC Plan Check Fee
Type of Review
fl Repetitive Fee
N' Repeats
* Based on hourly rate
El Complete Review
El Other
El Hourly
EsGil Fee
fl Structural Only
3.5 Hrs. @ *
$105.00 I $367.501
Comments: In addition to the above fee, an additional fee of is due ( hour c I-
$ Ihr ) for the CaIG reenreew.
Sheet 1 of 1
U
I.
P4 oicAv- A
S1i4iso-1.1
1;II_.
Project Adress: 2510 W Ranch St., Carlsbad, CA 92010
Engineer: DG
Checked By: JE
I
I
I
I
Issue Date: December 19, 2017
B.
S6534
* 12/19/2017 *
David Grasas P.E.
Phoenix, AZ
John Elder, P.E. 480-454-6408
www.unitedsn.com www.unitedstr.com
I 4 11 Ik11
TABLE OF CONTENTS
PAGES
DESIGN CRITERIA AND DESIN LOADS 1--S
STRUCTURE KEY PLAN AND LAYOUT q
PURL-IN DESIGN 10 - 1-s
(a PANEL STRUCTURE
BEAM DESIcN
LATERAL ANALYSIS AND COLUMN DESIN 23 - 317
FOOTINc DESIN 40 -53
CONNECTION CHEC4 54 -55
0evkl C-moons P.E.
Phoenix, AZ
John Elder, P.E. 480454-6408
www.unitedstr.com www.unitedstr.com
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
NITED
STRUCTURAL DESIGN LLC PROJECT NAME: Montecito Apartments
PROJECT LOCATION: CA 92010
ENGINEER: DG
REVIEWER: JE
DATE: 12/19/2017
Project Name: Montecito Apartments
Job Number:
CODE
California Building Code 2016
LOADS
Roof:
Dead Load
DL: 8.0psf
Roof Live Load
RLL: 12.0 psf
Wind
Risk Category
V: 100 MPH
Exposure Category: C
Importance Factor (I): 1.00
Mean Roof Height: 15.0 ft
6: 0.85
0.85
K0: 1.0
K: 0.85
Enclosure Classification : Open Building
Seismic
Risk Category
Importance Factor (It): 1.00
Seismic Site Class: 0
Seismic Design Category: 0
1.097
S: 0.423
Sos: 0.776
SDI : 0.445
R: 2.5
0: 1.25
Ca: 2.5
C: 0.310
Snow Load
_ 0.0 psi
0.80
1.20 (Unheated and Open Air Structures)
Exposure: C
C: 1
0.0 psi
0.0 psi
1.00
P: 0.0 psi
Phoenix, AZ
480454-6408
www.unitedstr.com
NITED
STRUCTURAL DESIGN LLC PROJECT NAME: Montecito Apartments
PROJECT LOCATION: 2510W Ranch St., Carlsbad, CA 92010
ENGINEER: DO
REVIEWER: JE
DATE: 12/19/2017
II1
Dead Load
Solar Panels: JJJ p 1
Purlins : C' p:f
Beams: 5 psi
Misc.
Total Dead Load: 8.0 psf
Material Strengths
Concrete:
Assumed f'c: 2500 psi
Steel:
Rebar: A615, Fy = 60ksi —ASTM
ASTM A706, Fy = 60ksi
Bolts: ASTM A325N
Anchor Rods: ASTM F1554 Gr. 55
W Section: ASTM A992, Fy = 50ksi
M, 5, C, MC, L Sections: ASTM A36, Fy = 36ksi
HSS Rect. Section: ASTM ASOO Gr. B, Fy = 45ksi
HSS Round. Section: ASTM ASOO Gr. B, Fy = 42k5i
Light Gage Steel: Fy = 55k5i
Soil:
Allowable Soil Bearing: 150D psf
Allowable Lateral Bearing: 51)5 PSI/ft
jie isu,iied sr,d Islets 'tern Tab): 155 2 Inset I BC
2
Phoenix, AZ
480454-6408
www.unitedssr.com
3 United Structural Design LLC JOB TITLE Montecito Apartments
P0 Box 33245
Phoenix, AZ 85067 JOB NO. SHEET NO.____________
(480) 454-6408 CALCULATED BY DG DATE___________
CHECKED BY JE DATE__________
www.struware.com
Code Search
Code: California Building Code 2016
Occupancy:
Occupancy Group = U Utility & Miscellaneow
Risk Category & Importance Factors:
Risk Category =
Wind factor = 1.00
Snow factor = 0.80
Seismic factor = 1.00
Type of Construction:
Fire Rating:
Roof = 0.0 hr
Floor = 0.0 hr
Building Geometry:
Roof angle (8) 1.05/12 5.0 deg
Building length (L) 100.0 ft
Least width (B) 40.0 ft
Mean Roof Ht (h) 15.0 ft
Parapet ht above grd 0.0 ft
Minimum parapet ht 0.0 ft
Live Loads:
Roof 0 to 200 sf: 20 psf use 12.0 psf
200 to 600 sf: 12 psf
over 600 sf: 12 psf
N/A
Floor:
Typical Floor 0 psf
Partitions N/A
0 psf
0 psf
0 psf
I
I
I
I
I
P
I
I
I
I
I
I
I
I
I
I
I
I
,-,Speed-up
4 United Structural Design LLC
P0 Box 33245
Phoenix, AZ 85067
(480) 454-6408
Wind Loads: ASCE 7- 10
Ultimate Wind Speed 100 mph
Nominal Wind Speed 77.5 mph
Risk Category
Exposure Category C
Enclosure Classif. Open Building
Internal pressure +1-0.00
Directionality (Kd) 0.85
Kh case 1 0.849
Kh case 2 0.849
Type of roof Monoslope
Topographic Factor (Kzt)
Topography Flat
Hill Height (H) 80.0 ft
Half Hill Length (Lh) 100.0 ft
Actual H/Lh = 0.80
Use H/Lh = 0.50
Modified Lh = 160.0 ft
From top of crest: x = 50.0 ft
Bldg up/down wind? downwind
H/Lh= 0.50 K1 = 0.000
xlLh = 0.31 K2 = 0.792
zlLh = 0.09 K3 = 1.000
At Mean Roof Ht:
Kzt = (1+K1K2K3)A2 = 1.00
JOB TITLE Montecito Apartments
JOB NO. SHEET NO.
CALCULATED BY DG DATE
CHECKED BY JE DATE
ESCARPMENT
V(z)
z
1I 1 11 Speed-up
V(z) x(upwind) x(downwind)
IItLf IH
2D RIDGE or 3D AXISYMMETRICAL HILL
[ii
I
I
I
Gust Effect Factor
h= 15.0 ft
B= 40.0 ft
/z(0.6h)= 15.0 ft
Flexible structure if natural frequency < 1 Hz (T> 1 second).
However, if building h/B <4 then probably rigid structure (rule of thumb).
h/B = 0.38 Rigid structure
Rigid Structure
0.20
= 500 ft
z= 15 ft
C = 0.20
gQ,g= 3.4
L= 427.1 ft
0.92
l = 0.23
G = 0.88 use G = 0.85
G = 0.85 Using rigid structure default
Flexible or Dynamically Sensitive Structure
Natural Frequency (q) = 0.0 Hz
Damping ratio (13) = 0
/b = 0.65
0.15
Vz= 84.4
N1 = 0.00
R= 0.000
Rh = 28.282 ri = 0.000
RB = 28.282 rl = 0.000
RL = 28.282 rl = 0.000
= 0.000
R = 0.000
G = 0.000
h= 15.0 ft
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
5 United Structural Design LLC JOB TITLE Montecito Apartments
P0 Box 33245
Phoenix, AZ 85067 JOB NO. SHEET NO.
(480) 454-6408 CALCULATED BY DG DATE
CHECKED BY JE DATE
Wind Loads - Open Buildings: 0.25 :5 hIL :5 1.0 Ultimate Wind Pressures
Type of roof = Monoslope Free Roofs G = 0.85
Wind Flow= Clear Roof Angle = 5.0 deg
NOTE: The code requires the MWFRS be
Main Wind Force Resisting System designed fora minimum pressure of 16 psf.
Kz = Kh (case 2) = 0.85 Base pressure (qh) = 18.5 psf
Roof pressures - Wind Normal to Ridge
Wind Load Wind Direction
= 0 & 180 deg Flow Case Cnw Cnl
A Cn = 1.20 0.30
Clear Wind p = 18.8 psf 4.7 psf
Cn = -1.10 -0.10 Flow
p = -17.3psf 1.6 psf
NOTE: 1). Cnw and Cnl denote combined pressures from top and bottom roof surfaces.
Cnw is pressure on windward half of roof. Cnl is pressure on leeward half of roof.
Positive pressures act toward the roof. Negative pressures act away from the roof.
Roof oressures - Wind Parallel to Ridae. V = 90 dea
Wind Load Horizontal Distance from Windward
Edge Flow Case 15 >h :5 2h > 2h
A ' Cn = -----------0.80 -0.60 -0.30
Clear Wind p = -12.6 Ps -9.4 psf -4.7 psf
Cn = 0.80 0.50 0.30 Flow
12.6 ps 7.9ps 4.7psf
Fascia Panels -Horizontal pressures
qp = 18.5 psf Windward fascia: 27.7 psf (GCpn = +1.5)
Leeward fascia: -18.5 psf (GCpn = -1.0)
Components & Cladding - roof pressures
Kz=Kh (case l)= 0.85 a= 4.0 ft a2 = 16.0 sf
Base pressure (qh) = 18.5 psf 4a2 = 64.0 sf
G= 0.85
Clear _Wind _Flow
Effective Wind Area zone 3 zone 2 zone I
positive negative positive negative positive negative
:5 16 sf 2.93 -3.90 2.20 -1.97 1.47 -1.30
CN >16564sf 2.20 --------------1.97 2.20 -1.97 1.47 -----------1.30
> 64 sf 1.47 --------------1.30 1.47 -1.30 1.47 -1.30
-a?jL .23.Qaf 20.4 psf Wind >16, ~ 64 sf 34.5 psf -30.9 psf
is-----
34.5 psf -30.9 psf
----
23.0 psf -20.4 psf p reure >64 sf 23.0 psf -20.4 psf 23.0 psf -20.4 psf 23.0 psf -20.4 psf
15.0 ft
2h= 30.0 ft
I 6 United Structural Design LLC JOB TITLE Montecito Apartments
P0 Box 33245
Phoenix, AZ 85067 JOB NO. SHEET NO.
I (480) 454-6408 CALCULATED BY DG DATE____________
CHECKED BY JE DATE____________
Location of Wind Pressure Zones
WIND
DIRECTION
Y= O•, IO
RTCHED
L
C 14W
WUD DIRECTION Ij
Y= O 180
1ROUG1I
WIND DIRECTION v = 0°. 180°
WIND
DIRECTION
pfirHED TOUGH
WIND DIRECTION Y= 90°
MAIN WIND FORCE RESISTING SYSTEM
8<10°
MONOSLOPE PITCHED ORTROUOHED ROOF
COMPONENTS AND CLADDING
I
I
I
I
I
I
I
I
I
I
I
\VIND
DIRECTION/
MONOLO}E
Wu
DIRECTION
8? 10°
3 3
2 2
11
LJ2H2
---3 3
Seismic Loads: IBC 2015
Risk Category: I
Importance Factor (I): 1.00
Site Class: D
Ss (0.2 sec) = 109.70 %g
Si (1.0 sec) = 42.30 %g
I
Strength Level Forces
I
I
United Structural Design LLC
P0 Box 33245
Phoenix, AZ 85067
(480) 454-6408
JOB TITLE Montecito Apartments
JOB NO.
CALCULATED BY DG
CHECKED BY JE
SHEET NO.
DATE
DATE
7
Ll
Fa = 1.061 Sms = 1.164 SDS = 0.776 Design Category =
Fv = 1.577 Smi = 0.667 S01 = 0.445 Design Category =
Seismic Design Category = D
Number of Stories: 1
Structure Type: All other building systems
Horizontal Struct lrregularities:No plan Irregularity
Vertical Structural lrregularities:No vertical Irregularity
Flexible Diaphragms: Yes
Building System: Cantilevered Column Systems detailed to conform to the requirements for:
Seismic resisting system: Steel special cantilever column systems
System Structural Height Limit: 35 ft
Actual Structural Height (hn) = 16.7 ft
See ASCE7 Section 12.2.5 for exceptions and other system limitations
DESIGN COEFFICIENTS AND FACTORS
Response Modification Coefficient (R) = 2.5
Over-Strength Factor (00) = 1.25
Deflection Amplification Factor (Cd) 2.5
SDS = 0.776
5D1 = 0.445
p = redundancy coefficient
Seismic Load Effect (E): P Q +1- 0•25DS D = p QE +1- 0.155D QE = horizontal seismic forc
Special Seismic Load Effect (Em): 0oQs+/-0.2SosD = 1.3 QE I- 0.155D D= dead loac
PERMITTED ANALYTICAL PROCEDURES
Simplified Analysis - Use Equivalent Lateral Force Analysis
Equivalent Lateral-Force Analysis - Permittec
Cu= 1.40
0.165 sec x=0.75 Tmax = CuTa = 0.231
sec UseT 0.165
6
0.310
1.077
0.034
0.310
Design Base Shear V = 0.31 OW
Model & Seismic Response Analysis - Permitted (see code for procedure)
ALLOWABLE STORY DRIFT
Structure Type: All other structures
Allowable story drift = 0.020h5x where hsx is the story height below level x
I
I
I
I
I
I
Building period coef. ((T) = 0.020
Approx fundamental period (Ta) CThfl'
User calculated fundamental period (1) =
Long Period Transition Period (TL) = ASCE7 map =
Seismic response coef. (Cs) S05l/R =
need not exceed Cs = Sd1 I /RT =
but not less than Cs 0.044Sdsl =
USE Cs =
I
I
12/19/2017 Design Maps Summary Report
JSGS DesignRlapslSummarylReport
User—Specifiedlinput
ReportiTitle Montecitopts
TuetecemberR9O172:31:44R)TC
BuiIdingtod&ReferenceFDocument 2012/2015RnternationaIRuiIdtngRode
SiteRoordinates 33. 17219°N,R 1731834°W
Site l6oilFclassification SiteassRR- RStiffoiI"
Riskltategory 1/11/111
SR 1,097I SMSR 1J64 S05R 0.776I
S1R 0.423 SMlR 0667ft S01R 0.445
For formationRnRowRhe ICS Rnd IE 1 Rral
deterministicroundRnotionsR,RheftirectionftfRnaximumorizontal Response, easeReturnRoRheItpplicationnd
seIectRheR2009R4 EHRP"Ruilding RodeReferenceocument.
12
A R,<pmssedFb: Ft.-.p lied, FIbsRoR.1-he
&Iongitude=-117.31834409999993&sit.. 1/1
GRID----- --{-----1----4---
- 'F rpLufLIN
- I g, TPJRUP irVYFC 'L PfRIMTER PVRUN
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
1
9
TYPICAL KEY PLAN
David Grpsas, P.E.
Phoenix, AZ
John Elder, P.E. 480454-6408
www.unitedstr.com www.unitedstr.com
PURL-IN PESIcN
10
Purlin Span 575 ft
I Purlin Tributary Width: 5
Dead Load
Dead Load : 3.5 psf
W01: 22.8 plf
I
Roof Live Load
Roof Live load: 12.0 psI
We1i: 78.0 p11
I
Snow load
Snow load 0.0 psI
W5 : 0.0 p11
Wind Load
Wind Load : 23.0 psI
I Wwi: 149.6 p11
Wind Uplift Load : -20.4 psI
WWL: -132.6 p11
I
I
I
I
I
I
I
I
1
(Plus Self Weight(
27.0 ft
See Output for Purlin Size
DonkJ Grapsas, P.E.
Phoenix, AZ
John Elder, P.E. 480-454-6408
www.unitedstr.com www.unitedstr.com
I CFS Version 10.0.0
I
Section: 10X3.5X12 GA.cfss
Channel 10x3.54.880.105
Page 1
11
Rev. Date: 12/19/2017 3:45:32 PM
Printed: 12/19/2017 3:47:17 PM
I
I
F]
I
12 I CFS Version 10.0.0 Page 1
Section: 10X3.5X12 GA.cfss
Channel 10x3.50.880.105
Rev. Date: 12/19/2017 3:45:32 PM
Printed: 12/19/2017 3:47:18 PM
Section Inputs ------------------------------------------------------------------------
Material: A653 SS Grade 55
No strength increase from cold work of forming.
Modulus of Elasticity, E 29500 ksi
55 ksi Yield Strength, Fy
Tensile Strength, Fu 70 ksi
Warping Constant Override, Cw 0 in'6
0 in4 Torsion Constant Override, J
Stiffened Channel, Thickness 0.105 in
Placement of Part from Origin:
X to center of gravity 0 in
Y to center of gravity 0 in
Outside dimensions, Open shape
Length Angle Radius Web k Hole Size Distance
(in) (deg) (in) Coef. (in) (in)
l0.880 270.000 0.10690 None 0.000 0.000 0.440
2 3.500 180.000 0.10690 Single 0.000 0.000 1.750
3 10.000 90.000 0.10690 Cee 0.000 0.000 5.000
4 3.500 0.000 0.10690 Single 0.000 0.000 1.750
5 0.880 -90.000 0.10690 None 0.000 0.000 0.440
I
I
I
I
I
I
I
I
I
CFS Version 10.0.0
Analysis: Typical Purlin.cfsa
27 ft Span Simple Beam
Rev. Date: 12/19/2017 3:46:51 PM
Printed: 12/19/2017 3:47:18 PM
Page 1
13
Analysis Inputs
Members
Section File Revision Date and Time
1 10X3.5X12 GA.cfss 12/19/2017 3:45:32 PM
Start Loc. End Loc. Braced R k4 Lm
(ft) (ft) Flange (k) (ft)
0.000 27.000 None 0.0000 0.0000 27.000
ex ey
(in) (in)
1 0.000 0.000
Supports
Type Location Bearing Fastened 10
(ft) (in)
1 XYT 0.000 2.00 No 1.0000
2 XT 9.000 1.00 No 1.0000
3 XT 18.000 1.00 No 1.0000
4 XYT 27.000 2.00 No 1.0000
Loading: Dead Load
Type Angle Start Loc.
(deg) (ft)
1 Distributed 90.000 0.000
Loading: Wind Load
Type Angle Start Loc.
(deg) (ft)
1 Distributed 90.000 0.000
Loading: Wind Uplift
Type Angle Start Loc.
(deg) (ft)
1 Distributed 90.000 0.000
Loading: Roof Live Load
Type Angle Start Loc.
(deg) (ft)
1 Distributed 90.000 0.000
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
End Loc. Start End
(ft) Magnitude Magnitude
27.000 -0.02280 -0.02280 k/ft
End Loc. Start End
(ft) Magnitude Magnitude
27.000 -0.14960 -0.14960 k/ft
End Loc. Start End
(ft) Magnitude Magnitude
27.000 0.13260 0.13260 k/ft
End Loc. Start End
(ft) Magnitude Magnitude
27.000 -0.07800 -0.07800 k/ft
Page 2 CFS Version 10.0.0
Analysis: Typical Purlin.cfsa
27 ft Span Simple Beam
Rev. Date: 12/19/2017 3:46:51 PM
Printed: 12/19/2017 3:47:18 PM
Load Combination: D
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: No
Loading Factor
1 Beam Self Weight 1.000
2 Dead Load 1.000
Load Combination: D+0.6W
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: No
Loading Factor
1 Beam Self Weight 1.000
2 Dead Load 1.000
3 Wind Load 0.600
Load Combination: 0.6D+0.6W
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: No
Loading Factor
1 Beam Self Weight 0.600
2 Dead Load 0.600
3 Wind Uplift 0.600
Load Combination: D+Lr
Specification: 2016 North American Specification - US (ASD)
Inflection Point Bracing: No
Loading Factor
1 Beam Self Weight 1.000
2 Dead Load 1.000
3 Roof Live Load 1.000
Member Check - 2012 North American Specification - US (ASD)
Load Combination: D+0.6W
Design Parameters at 13.500 ft:
Lx 27.000 ft Ly 9.000 ft Lt 9.000 ft
Kx 1.0000 KY 1.0000 Kt 1.0000
Section: 10X3.5X12 GA.cfss
Material Type: A653 SS Grade 55, Fy=55 ksi
Cbx 1.0135 Cby 1.0000 ex 0.0000 in
Cmx 1.0000 Cmy 1.0000 ey 0.0000 in
Braced Flange: None k4 0 k
Red. Factor, R: 0 Lm 27.000 ft
Loads: P Mx Vy My Vx
(k) (k-in) (k) (k-in) (k)
Total 0.000 130.14 0.000 0.00 0.000
Applied 0.000 130.14 0.000 0.00 0.000
Strength 22.944 143.86 10.757 36.64 13.324
Effective section properties at applied loads:
Ae 1.8970 iri2 Ixe 28.804 in'4 lye 2.959 in4
Sxe(t) 5.7608 in3 Sye(l) 3.0328 in3
Sxe(b) 5.7608 in3 Sye(r) 1.1724 in3
14
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
U
I
I
I
I
I
15
CFS Version 10.0.0
Analysis: Typical Purlin.cfsa
27 ft Span Simple Beam
Rev. Date: 12/19/2017 3:46:51 PM
Printed: 12/19/2017 3:47:18 PM
Interaction Equations
NAS Eq. C5.2.1-1 (P, Mx, My)
NAS Eq. C5.2.1-2 (P, Mx, My)
NAS Eq. C3.3.1-1 (Mx, Vy)
NAS Eq. C3.3.1-1 (My, Vx)
Page 3
0.000 + 0.905 + 0.000 = 0.905 <= 1.0
0.000 + 0.905 + 0.000 = 0.905 <= 1.0
Sqrt(0.613 + 0.000)= 0.783 <= 1.0
Sqrt(0.000 + 0.000)= 0.000 <= 1.0
P INISOEG GRADE WITHIN S FEET Of
ID IF DRILLING POLE FOUNDATIONS IS
1 PER DETAIL 0152.7 ILO DRILLED P06
76112'
78510' uS' 856(0'
700(0' 021(0'
81.
E.I
I
ONPL rJ
9TTOMOFCOLUMN j
1" BOTTOM OF CAISSON
David Graps, P.O.
Phoenix, AZ
John Elder, P.S. 480-454-6408
f1r:t1c4mi www.uniledstr.com www.unitedstr.com
16
17
Beam Spani :77 tt
Beam Trib Width: 0 I 71
I
20.5 ft
Snow Load
Snow Load : 0.0 psI
W51: 0.0 Of
Wind Load
Wind Load: 23.0 psI
WWL: 621.2 p11
I
I
I See Output for Column Size
I
I
I
I
I
I
I
David Gropsa, P.E.
Phoenix, AZ
John Elder, P.E. 480454-6408
Pi0cieaI www.unitedstr.com www.unitedstr.com
I
I
I
I
I
I
I
Li
Dead Load
Dead Load: 5.5 psI (PLUS SELF WEIGHT)
W01: 148.5 p11
Roof Live Load
Roof Live Load : 12.0 psI
WRIL: 324.0 Of
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
18
Sheet no. 1
Job Ref.
Date 12/19/2017
Calc. by JE
Tedds calculation version 3.0.12
NITED
STRUCTURAL DESIGN LLC.
Project
Subject Steel Beam
STEEL BEAM ANALYSIS & DESIGN (AISC360-10)
In accordance with AISC360 141h Edition published 2010 using the LRFD method
kip_fi Bending Moment Envelope
-221.248 -
1
-221.2
0.0
It I 20.5
Load Envelope -Combination 1
1.007-
0.0-
it 20.5 I A 1 B
Load Envelope -Combination 2
1.053-
0.0—
It 20.5 I
A 1 B
Shear Force Envelope kips
21.585- 21.6
It 20.5 1 A 1 B
Support conditions
Support A Vertically restrained
Rotationally restrained
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
U N I TED
RUCTURAL DESIGN LLC.
Project
Subject Steel Beam
19
Sheet no. 2
Job Ref.
Date 12/19/2017
Caic. by JE
Support B Vertically free
Rotationally free
Applied loading
Beam loads Dead self weight of beam x 1
Dead full UDL 0.148 kips/ft
Wind full UDL 0.621 kips/ft
Roof live full UDL 0.324 kips/ft
Load combinations
Load combination 1 Support A Dead x 1.20
Wind x 1.00
Roof live x 0.50
Span 1 Dead 1.20
Wind x 1.00
Roof live x 0.50
Support B Dead x 1.20
Wind x 1.00
Roof live x 0.50
Load combination 2 Support A Dead x 1.20
Wind x 0.50
Roof live x 1.60
Span 1 Dead 1.20
Wind x 0.50
Roof live x 1.60
Support B Dead 1.20
Wind x 0.50
Roof live x 1.60
Analysis results
Maximum moment Mmax = 0 kips—ft Mmin = -221.2 kips—ft
Maximum moment span I segment I Msi_segi_max = 0 kips—ft Msi_segi_min = -221.2 kips—ft
Maximum moment span 1 segment 2 Ms1_se92max = 0 kips—ft Ms1_se92_min = -103.2 kips—ft
Maximum moment span 1 segment 3 Ms1_se93_max = 0 kips—ft Ms1_seg3_min = -29.6 kips—ft
Maximum shear Vmax = 21.6 kips Vmin = 0 kips
Maximum shear span 1 segment I Vsi_segi_max = 21.6 kips Vsi_segi_min = 0 kips
Maximum shear span 1 segment 2 Vs1_se92_max = 14.7 kips Vs1_seg2_min = 0 kips
Maximum shear span 1 segment 3 Vs1_seg3_max = 7.9 kips Vs1_se93_min = 0 kips
Deflection segment 4 &ax 2.1 in mn = 0 in
Maximum reaction at support A RA-max = 21.6 kips RA-min = 20.6 kips
20
Sheet no. 3
Job Ref.
Date 12/19/2017
Calc. by JE
RA—Dead = 3.8 kips
RA—Wind = 12.7 kips
RA_Roof live = 6.6 kips
RB_max = 0 kips RB-min = 0 kips
I)
NITED
STRUCTURAL DESIGN LLC.
Project
Subject Steel Beam
Unfactored dead load reaction at support A
Unfactored wind load reaction at support A
Unfactored roof live load reaction at support A
Maximum reaction at support B
Section details
Section type W 14x38 (AISC 14th Edn (04.1))
ASTM steel designation A992
Steel yield stress Fy = 50 ksi
Steel tensile stress Fu = 65 ksi
Modulus of elasticity E = 29000 ksi
: r----------------------------1
-0 -0.31'
4-677
Resistance factors
Resistance factor for tensile yielding 4ty = 0.90
Resistance factor for tensile rupture Otr = 0.75
Resistance factor for compression 4c = 0.90
Resistance factor for flexure Ob = 0.90
Resistance factor for shear = 1.00
Lateral bracing
Span 1 has lateral bracing at supports plus 78 in and 156 in
Cantilever tip is unbraced
Cantilever support is continuous with lateral and torsional restraint
Classification of sections for local buckling - Section B4.1
Classification of flanges in flexure -Table B4.lb(case 10)
Width to thickness ratio bf / (2 x tf) = 6.57
Limiting ratio for compact section Xpff = 0.38 x [E / F] = 9.15
Limiting ratio for non-compact section Xm = 1.0 x /[E I F] = 24.08 Compact
I
I
I
I
I
I
I
I
L
I
I
I
I
I
I
I
I
I
I
21
Classification of web in flexure - Table B4.1b (case 15)
Width to thickness ratio (d - 2 x k) I t, = 39.58
Limiting ratio for compact section Xpwf = 3.76 x [E I Fy] = 90.55
Limiting ratio for non-compact section Xm = 5.70 x I[E I F] = 137.27 Compact
Section is compact in flexure
Design of members for shear - Chapter G
Required shear strength Vr = max(abs(Vmax), abs(Vmin)) = 21.585 kips
Web area Aw= d x tw = 4.371 in2
Web plate buckling coefficient k = 5
Web shear coefficient - eq G2-2 C = 1.000
Nominal shear strength - eq G2-1 Vr,= 0.6 x Fy x Aw x C, = 131.130 kips
Design shear strength V = x Vn = 131.130 kips
PASS - Design shear strength exceeds required shear strength
Design of members for flexure in the major axis at span I segment I - Chapter F
Required flexural strength Mr = max(abs(Msi_segi_max), abs(Msi_segi_min)) = 221.248 kips—ft
Yielding - Section F2.1
Nominal flexural strength for yielding - eq F2-1 Mnyid = Mp = Fy x Z, = 256.25 kips—ft
Lateral-torsional buckling - Section F2.2
Unbraced length Lb = Lsi_segi = 78 in
Limiting unbraced length for yielding - eq F2-5 Lp = 1.76 x ry x I[E / F] = 65.699 in
Distance between flange centroids h0 = d - tf = 13.585 in
c=1
rts = 4['(l x C) / S] = 1.822 in
Limiting unbraced length for inelastic LTB - eq F2-6
Lr = 1.95 x rts x El (0.7 x F) x x c / (Sx x h0)) + /((J xcl (Sx x h0))2 + 6.76 x (0.7 x F / E)2)] = 195.1 in
Cross-section mono-symmetry parameter Rm = 1.000
Lateral torsional buckling modification factor Cb = 1.000
Nominal flexural strength for lateral torsional buckling - eq F2-2 Mnitb = Cb X [M - (M - 0.7 X Fy X S)x (Lb - L) / (L - L)] =
247.029 kips—ft
Nominal flexural strength M = min(Mnd, Mnitb) = 247.029 kips—ft
Design flexural strength Mc = 4b x M = 222.326 kips—ft
PASS - Design flexural strength exceeds required flexural strength
Design of members for vertical deflection
Consider deflection due to wind loads
Limiting deflection 5iim = 2 x L1 /180 = 2.733 in
Maximum deflection span 1 8 = max(abs(&ax), abs(ömin)) = 2.122 in
PASS - Maximum deflection does not exceed deflection limit
I
I tNITED
RUCTURAL DESIGN LLC
Project
Subject Steel Beam
22
Sheet no. 5
Job Ref.
Date 12/19/2017
Calc. by JE
I
I
I
I
I
I
I
- ja~B~IqC~W_OF COL MN
en BOTTOM OF CAISSON
23
X V
0.0000 0.0000
0.0000 11.7785
-20.4227 10.0000
20.4227 13.5570
Dead Load
Dead Load : 8.0 psI
WDL: 216.0 pIt
Roof Live load
Roof Live Load: 12.0 psI
W511: 324.0 plf
Snow Load
Snow Load : 0.0 psI
Ws1 0.0 plf
Wind Load
1: Base
2: Beam/Column Intersection:
Left End Beam
Right End Beam:
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Wind Flow Load Case
Wind Direction Wind Direction
Y o0 deg V = 180 deg
CA... CA' C.. CAl
0.00 A p = 18.8 psI 4.7 psI
B p = -17.3 psI -1.6 psI
WIND 1 WINDS Fascia Shear
= 508.7 plf Wn.. V1 1.2 k
127.2 plf W01
WIND 2 WIND 6
W,, = 127.2 plf W0
W01 = 508.7 plf W.
WIND 3 WIND 7
Wrw = -466.3 plf W
W1 = -42.4 plf W 1 =
WIND 4 WIND 8
W, = -42.4 plf W,,
-466.3 plf W01 =
Seismic Load
WOL: 216.0 plf
Cs: 0.310
SOS: 0.776
V00: 2.7k
p: 1.3
See Output for Column Size
David c-FaPSSS, P.E.
Phoenix, AZ
John Elder, P.E. 480-454-6408
Pr116pv: www.unitedstr.com
Column Design
Strong Axis (From 20 Analysis) Weak Axis (Seismic)
Pu: Pu: 12.0k
Vu:29k Vu: 3.6k
Mu: !144-& - Mu: 42.lk-ft
www.unitedstr.com
ty
STRUCTURAL DESIGN LLC.
Sheet no. 1
Job Ref.
Date 12/19/2017
Cale. by JE
Tedds calculation version 1.0.20
24
Project
Subject
ANALYSIS
Geometry
2D Analysis
Geometry (ft) - Steel (AISC)
Loading
Self weight included
Dead - Loading (kips/ft)
z
WI - Loading (kips/ft,kips)
0
0
FA
2D Analysis
CU
NITED
STRUCTURAL DESIGN LLC
Project
Subject
Sheet no. 2
Job Ref.
Date 12/19/2017
Calc. by JE
I 25
I
I
I
I
I
I
I
I
I
I
I
W2 - Loading (kips/ft,kips)
z
W3 - Loading (kips/ft,kips)
z
W4 - Loading (kips/ft,kips)
I
I
I
I
I
Sheet no. 3
Job Ref.
Date 12/19/2017
Caic. by JE
26
Project
Subject 20 Analysis
EQ - Loading (kips)
z
Roof Live - Loading (kips/ft)
I
I
I
Results
Forces
z
Strength combinations - Moment envelope (kip_ft)
-201.7
I
1
I
I
I
I
Sheet no. 4
Job Ref.
Date 12/19/2017
Calc. by JE
27
Project
Subject 2D Analysis
I
I
I
I
I
Strength combinations - Shear envelope (kips)
19.7
Member results
Envelope - Strength combinations
Member Shear force Moment
Pos
(ft)
Max abs
(kips)
Pos
(ft)
Max
(kip_ft)
Pos
(ft)
Mm
(kip_ft)
BEAM 20.5 19.681 (max abs 20.5 52.383 20.5 -201.729(min)
COLUMN 0 2.907 0 113.862 (max) 0 -114.405
Envelope - Strength combinations
Member Axial force
Pos Max Pos Mm
(ft) (kips) (ft) (kips)
BEAM 20.5 0.517 20.5 -0.517
COLUMN 0 31.934 (max) 11.78 -1.458 (mm)
I
I
I
I
I
I
I
I
JP NITED
RUCTURAL DESIGN LLC
Project
Subject 20 Analysis
28
Sheet no. 5
Job Ref.
Date 12/19/2017
Calc. by JE
ST
NITED Sheet no.
RUCTURAL DESIGN LLC. Job Ref.
Project Date
Subject Steel Column - Strong Axis Calc. by
29
12/19/2017
JE
I
I
I
I
I
I
I
I
I
I
STEEL COLUMN DESIGN
In accordance with AISC360-10 and the LRFD method
d
A k
e
...........
Column and loading details
Column details
Column section W 14x38
Design loading
Required axial strength
Moment about x axis at end 1
Moment about x axis at end 2
Maximum moment about x axis
Maximum moment about y axis
Maximum shear force parallel to y axis
Maximum shear force parallel to x axis
Material details
Steel grade A992
Yield strength Fy = 50 ksi
Ultimate strength Fu = 65 ksi
Modulus of elasticity E = 29000 ksi
Shear modulus of elasticity G = 11200 ksi
Unbraced lengths
For buckling about x axis L5 = 144 in
For buckling about y axis Ly = 144 in
Tedds calculation version 1.0.07
Pr = 32 kips (Compression)
Mi 114.4 kips—ft
M = 114.4 kips—ft
Single curvature bending about x axis
Mx = max(abs(Mxi), abs(M)) = 114.4 kips_ft
My = 0.0 kips—ft
V, = 2.9 kips
V = 0.0 kips
30
tNITED
STRUCTURAL DESIGN LLC.
Project
Subject Steel Column - Strong Axis
I
I
I
Sheet no. 2
Job Ref.
Date 12/19/2017
Calc. by JE
For torsional buckling Lz = 144 in
Effective length factors
For buckling about x axis Kx = 2.00
For buckling about y axis Ky = 2.00
For torsional buckling Kz = 1.00
Section classification
Section classification for local buckling (ci. B4)
Critical flange width b = bf I 2 = 3.385 in
Width to thickness ratio of flange Xf = b I tr = 6.573
Depth between root radii h = d - 2 x k = 12.270 in
Width to thickness ratio of web Xw = h / tw = 39.581
Compression
Limit for nonslender flange = 0.56 x /(E / F) = 13.487
The flange is nonslender in compression
Limit for nonslender web = 1.49 x '/(E I F) = 35.884
The web is slender in compression
The section is slender in compression
Flexure
Limit for compact flange Xpff = 0.38 x /(E I Fy) = 9.152
Limit for noncompact flange = 1.0 x /(E / F) = 24.083
The flange is compact in flexure
Limit for compact web = 3.76 x (E / F) = 90.553
Limit for noncompact web Xrw_r = 5.70 x '/(E / F) = 137.274
The web is compact in flexure
The section is compact in flexure
Slenderness
Member slenderness
Slenderness ratio about x axis SR KxL/r49.1
Slenderness ratio about y axis SRy = Ky x Ly / ry = 185.8
Second order effects
Second order effects for bending about x axis (ci. App 8.1)
Coefficient Cm Cmx = 0.6 + 0.4 X Mi / Mx2 = 1.000
Coefficient a a = 1.0 1
Elastic critical buckling stress Peix =2 x E x lx / (Kin x L, )2 = 5314.1 kips
P-8 amplifier Bi = max(1 .0, C x / (1 - ax Pr / Peix)) = 1.006
Required flexural strength Mrx = Bix x Mx = 115.1 kips—ft
I
I
U
I
I
I
I
I
I
I
Ki
NITED Sheet no. 3
STRUCTURAL DESIGN LLC Job Ref.
Project Date 12/19/2017
Subject Steel Column - Strong Axis Caic. by JE
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
Second order effects for bending about y axis (ci. App 8.1)
Coefficient Cm Cmy = 1.0
Coefficient a a = 1.0
Elastic critical buckling stress Peiy = it2 x E x l / (Kly x L)2 = 368.5 kips
P-8 amplifier Bi = max(1 .0, Cmy / (1 - ax P / Peiy)) = 1.095
Required flexural strength Mry = Biy x My = 0.0 kips—ft
Shear strength
Shear parallel to the minor axis (ci. G2.1)
Shear area
Web plate buckling coefficient
Web shear coefficient
Nominal shear strength
Design shear strength (cl.GI & G2.1(a))
Resistance factor for shear
Design shear strength
Reduction factor for slender elements
Reduction factor for slender unstiffened elements (E7.1)
No slender unstiffened elements therefore QS = 1.000
Reduction factor for slender stiffened elements (E7.2)
Initial reduction factor Q = 1.0
For flexural buckling about x axis
Elastic critical buckling stress Fex = (it2 x E) / (Kx x L / rx)2 = 118.9 ksi
Flexural buckling stress Fcm = Q x (0.658Yx) x Fy = 41.9 ksi
Effective web width be = min(h. 1.92 x t x -'I (E / Fcr,) x [1 - 0.34 / (h / t) x ' (E I Fcm)1)
A=dxt=4.371 in2
k = 5.0
C= 1.000
V=0.6x FxAxC= 131.1 kips
4v = 1.00
Vcy = 0, x Vny = 131.1 kips
PASS - The design shear strength exceeds the required shear strength
be = 12.117 in
Effective area Ae = A - tw x (h - be) = 11.153 in2
Reduction factor Qax = Ae / A = 0.996
Resultant reduction factor Q = Qs x Qax = 0.996
For flexural buckling about y axis
Elastic critical buckling stress Fey = (7t2 x E) / (Ky x L I r)2 = 8.3 ksi
Flexural buckling stress Fcry = 0.877 X Fey = 7.3 ksi
Effective web width be = min(h, 1.92 x tw x '/ (E I Fcry) x [1 - 0.34 / (h / t) x I (E / Fcry)])
be = 12.270 in
Effective area Ae = A - twx (h - be) = 11.200 in2
Reduction factor Qay=Ae/A= 1.000
gr NITED
RUCTURAL DESIGN LLC
Project
Subject Steel Column - Strong Axis
32
Sheet no. 4
Job Ref.
Date 12/19/2017
Calc. by JE
I Resultant reduction factor Qy= QS x Qay = 1.000
For torsional/flexural-torsional buckling
Torsional/flexural-torsional elastic buckling stress Fet = [it2 x E x C / (Kz x L)2 + G x
I
Flexural buckling stress F11 = Q x (0.658OxFY/Fet) x Fy = 35.9 ksi
Effective web width be = min(h, 1.92 x tw x I (E / F) x [1 - 0.34 / (h / t) x ./ (E I F)])
I Effective area Ae = A - tw x (h - be) = 11.200 in2
I Reduction factor Qaz = Ae IA = 1.000
Resultant reduction factor Qz = Qs x Qaz = 1.000
Compressive strength
1 Flexural buckling about x axis (cl. E3)
Elastic critical buckling stress Fex = (it2 x E) / (SR)2 = 118.9 ksi
Flexural buckling stress about x axis Fcr.= Ox x (0.658 <FYX) x Fy = 41.8 ksi
Nominal flexural buckling strength P = F x A9 = 468.0 kips
Flexural buckling about y axis (Cl. E3)
Elastic critical buckling stress Fey = (712 x E) / (SR)2 = 8.3 ksi
Flexural buckling stress about y axis Fcry = 0.877 x Fey = 7.3 ksi
Nominal flexural buckling strength Pny=Fcry x A9 = 81.4 kips
Torsional and flexural-torsional buckling (cl. E4)
Torsional/flexural-torsional elastic buckling stress Fet = [it2 x E x C I (Kz x L)2 + G x
J] x 1 / (l + ly) = 62.9 ksi
Torsional/flexural-torsional buckling stress Fcrt = Qz x (0658QzxFY/Fet) x Fy = 35.9 ksi
Nom. torsional/flex-torsional buckling strength Pt =Fct x Ag = 401.6 kips
Design compressive strength (cl.EI)
Resistance factor for compression = 0.90
Design compressive strength Pc = c x min(Pnx, Pny, Pet) = 73.3 kips
PASS - The design compressive strength exceeds the required compressive strength
Flexural strength about the major axis
Yielding (cl. F2.1)
Nominal flexural strength Md = Mpx = Fy x Z = 256.2 kips—ft
Lateral torsional buckling limiting lengths (cl. F2.2)
Unbraced length Lb = 144.0 in
Limiting unbraced length (yielding) Lp = 1.76 x ry x I(E / F) = 65.7 in
Lb > L,, - Limit state of lateral torsional buckling applies
tU NITED Sheet no. 5
1 STRUCTURAL DESIGN LLC Job Ref.
Project Date 12/19/2017
Subject Steel Column - Strong Axis Calc. by JE
I Effective radius of gyration rt5 = (4(I x C) I S) = 1.822 in
Distance between flange centroids h0 = d - tf = 13.585 in
Factor c c = 1.000 ' Limiting unbraced length (inelastic LTB)
Lr = 1.95 x rts x EI(0.7xF) x 'I(Jxc / (Sxxho)) x I[1 + I(1 + 6.76 x (0.7xFxSxho / (ExJxc))2)]
Lr = 195.1 in
I Lateral torsional buckling modification factor (ci. Fl)
Maximum moment in unbraced segment Mmax = Mx = 114.40 kips—ft
Moment at centreline of unbraced segment MB = abs((Mxi + M) / 2) = 114.40 kips—ft
I
Moment at 1/4 point of unbraced segment MA = abs((Mi + MB)/ 2) = 114.40 kips—ft
Moment at % point of unbraced segment Mc = abs((M + MB)/ 2) = 114.40 kips—ft
I Lateral torsional buckling modification factor Cb = 12.5 x Mmax / (2.5 x Mmax + 3 x MA + 4 x MB + 3 x Mc)
Cb = 1.000
Lateral torsional buckling (ci. F2.21
Plastic bending moment Mpx = Fy x Zx = 256.2 kips—ft
Nominal flexural strength M_Itb = min(Mpx, Cb x [M - (M - 0.7 x Fy x S) x (Lb - L) / (Lr - Lu)])
M_Itb = 197.6 kips—ft
Design flexural strength about the major axis (ci. Fl)
Resistance factor for flexure Ob = 0.90
Design flexural strength Mcx = 4b x min(Mfld, Mnxltb) = 177.8 kips—ft
PASS - The design flexural strength about the major axis exceeds the required flexural strength
I Combinedforces
M, / Mry < 0.05 - Moments exist primarily in one plane therefore check combined forces in accordance with clause
H1.3.
I In-plane instability (cl. 1-1I.3(a))
Available comp. strength in plane of bending Pci = Oc x min(P, Pet) = 361.4 kips
Member utilization (eqn Hi-i) UR1 = Pr/(2 X Pci) + Mrx / Mcx = 0.691
Out-of-plane buckling and lateral-torsional buckling (ci. HI.3(b))
Available comp. strength out of plane of bending Pcy = Oc x min(Pny, Pat) = 73.3 kips
I Available lat-torsional strength (Cb is 1.0) Mcxitb = 197.6 kip_ft
Member utilization (eqn 1-11-2) UR0 = Pr! Pcyx (1.5 - 0.5 x Pr / P) + (Mrx / (Cbx Mcx_ltb))2 = 0.898
PASS - The member is adequate for the combined forces
I
I
I
I
33
[11
1
I
34
6
12/19/2017
JE.
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
35
Sheet no. 1
Job Ref.
Date 12/19/2017
Caic. by DG
U NITED
STRUCTURAL DESIGN LLC.
Project
Subject Steel Column - Weak Axis
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
STEEL COLUMN DESIGN
In accordance with A1SC360-10 and the LRFD method
'.4
ui
Ic
0
-7-
-: 4-O.31
-,-
Column and loading details
Column details
Column section W 14x38
Design loading
Required axial strength Pr = 12 kips (Compression)
Maximum moment about x axis M = 0.0 kips—ft
Moment about y axis at end 1 My, = 0.0 kips—ft
Moment about y axis at end 2 My2 = 41.8 kips—ft
Single curvature bending about y axis
Maximum moment about y axis My = max(abs(Mi), abs(M)) = 41.8 kips—ft
Maximum shear force parallel to y axis V,,=0.0kips
Maximum shear force parallel to x axis Vrx = 3.6 kips
Material details
Steel grade A992
Yield strength Fy = 50 ksi
Ultimate strength Fu = 65 ksi
Modulus of elasticity E = 29000 ksi
Shear modulus of elasticity G = 11200 ksi
Unbraced lengths
For buckling about x axis Lx = 138 in
For buckling about y axis Ly = 138 in
Tedds calculation version 1.0.07
36
U NITED
STRUCTURAL DESIGN LLC
Project
Subject Steel Column - Weak Axis
For torsional buckling Lz = 138 in
Effective length factors
For buckling about x axis Kx = 2.00
For buckling about y axis Ky = 2.00
For torsional buckling Kz = 1.00
Section classification
Section classification for local buckling (cl. B4)
Critical flange width b = bt I 2 = 3.385 in
Width to thickness ratio of flange A.r = b / tr = 6.573
Depth between root radii h = d - 2 x k = 12.270 in
Width to thickness ratio of web Xw = h I tw = 39.581
Compression
L]
I
I
I
1
I
I
I
Sheet no. 2
Job Ref.
Date 12/19/2017
Caic. by DG
I
I
I
I
I
I
I
I
I
I
I
Limit for nonslender flange = 0.56 x 1(E / F) = 13.487
The flange is nonslender in compression
Limit for nonslender web Xrw_c = 1.49 x \l(E I Fy) = 35.884
The web is slender in compression
The section is slender in compression
Flexure
Limit for compact flange Apt f = 0.38 x (E I Fy) = 9.152
Limit for noncompact flange = 1.0 x /(E I Fy) = 24.083
The flange is compact in flexure
Limit for compact web = 3.76 x 'I(E / F) = 90.553
Limit for noncompact web = 5.70 x 'I(E / F) = 137.274
The web is compact in flexure
The section is compact in flexure
Slenderness
mernoer sienaerness
Slenderness ratio about x axis SR KxL/r47.0
Slenderness ratio about y axis SRy = Ky x L/ ry = 178.1
Second order effects
Second order effects for bending about x axis (ci. App 8.1)
Coefficient Cm Cmx = 1.0
Coefficient cx cx = 1.0
Elastic critical buckling stress Peix = 7T x E x l / (Kix x L)2 = 5786.3 kips
P-ö amplifier Bi = max(1 .0, Cmx 1(1 - ax Pr / Peix)) = 1.002
Required flexural strength Mrx = Bix x Mx = 0.0 kips—ft
tNITED
RUCTURAL DESIGN LLC
Project
Subject Steel Column - Weak Axis
37
Sheet no. 3
Job Ref.
Date 12/19/2017
Calc. by DG
I
I
I
I
1
I
1
I
I
I
Second order effects for bending about y axis (ci. App 8.1)
Coefficient Cm Cmy = 0.6 + 0.4 X Mi I My2 = 0.600
Coefficient cx a = 1.0
Elastic critical buckling stress Peiy = it2 x E x 1y / (Kly x Ly)2 = 401.3 kips
P-S amplifier B1 = max(1 .0, Cmy / (1 - ax Pr / Peiy)) = 1.000
Required flexural strength Mry = Bly x My = 41.8 kips—ft
Shear strength
Shear parallel to the major axis (ci. G2.1)
Shear area
Web plate buckling coefficient
Web shear coefficient
Nominal shear strength
Design shear strength (ci.GI & G2.1 (a))
Resistance factor for shear
Design shear strength
Reduction factor for slender elements
Reduction factor for slender unstiffened elements (E7.1)
I No slender unstiffened elements therefore QS = 1.000
Reduction factor for slender stiffened elements (E7.2)
I
Initial reduction factor Q = 1.0
For flexural buckling about x axis
Elastic critical buckling stress Fex = (it2 x E) / (Kx x L / rx)2 = 129.5 ksi
I Flexural buckling stress Fcrx = Q x (0.658 FY/Fex) x Fy = 42.5 ksi
U Effective web width be = min(h, 1.92 x tw x I (E / F) x [1 - 0.34 / (h / t) x ' (E / Fcm)I)
Aw2XbfXtf6.973 in2
k = 1.2
Cv= 1.000
Vnx = 0.6 x Fy x Aw x C = 209.2 kips
4v = 0.90
Vcx = Ov x Vnx = 188.3 kips
PASS - The design shear strength exceeds the required shear strength
Effective area
Reduction factor
Resultant reduction factor
For flexural buckling about y axis
Elastic critical buckling stress
Flexural buckling stress
Effective web width
I Effective area
Reduction factor
I
I
I
I
I
be = 12.055 in
AeAtwX(h be)= 11.133 in2
QaxAeIA = 0.994
Qx = Qs x Qax = 0.994
Fey = (it2 x E) / (K x L I ry)2 = 9.0 ksi
Fcry = 0.877X Fey = 7.9 ksi
be= min(h, 1.92xtwxI(E/Fcn,)x[1-0.34/(h/tw)xI(EIFc)])
be = 12.270 in
Ae = A - tw x (h - be) = 11.200 in2 '
Qay = Ae / A = 1.000
tNITED Sheet no. 4
I STRUCTURAL DESIGN LLC Job Ref.
Project Date 12/19/2017
Subject Steel. Column - Weak Axis Calc. by DG
Resultant reduction factor Qy= Q x Qay = 1.000
I For torsional/flexural-torsional buckling
Torsional/flexural-torsional elastic buckling stress Fet = [it2 x E x Cw / (K x L)2 + G x
I J] x 1 / (i + l) = 66.6 ksi
Flexural buckling stress Fat= 0 x (0.6580xFYIFet) x Fy = 36.5 ksi
Effective web width be = min(h, 1.92 x tw x J (E / F) x [1 - 0.34 / (h I t) x '/ (E / Fcd)])
I be = 12.270 in
Effective area Ae = A - t x (h - be) = 11.200 in2
Reduction factor Qaz = Ae / A = 1.000
I Resultant reduction factor Qz= Qs x Qaz = 1.000
Compressivestrength
I Flexural buckling about x axis (ci. E3)
Elastic critical buckling stress Fex = (it2 X E) / (SR)2 = 129.5 ksi
Flexural buckling stress about x axis Fcrx= Qx x (0.658 FY/Fex) x Fy = 42.3 ksi
Nominal flexural buckling strength Pnx Fc, x A9 = 474.0 kips
Flexural buckling about y axis (Cl. E3)
Elastic critical buckling stress Fey = (it2 x E) / (SR)2 = 9.0 ksi
Flexural buckling stress about y axis Fcry= 0.877 x Fey = 7.9 ksi
Nominal flexural buckling strength P, =Fcry x A9 = 88.7 kips
Torsional and flexural-torsional buckling (ci. E4)
Torsional/flexural-torsional elastic buckling stress Fet = [it2 x E x C I (K x L)2 + G X
J] x 1 I (l + l) = 66.6 ksi
Torsional/flexural-torsional buckling stress Fcrt= Q x (0.658QzxFY/Fet) x Fy = 36.5 ksi
Nom. torsional/flex-torsional buckling strength Pt =Fat x A9 = 409.0 kips
Design compressive strength (cl.EI)
Resistance factor for compression OC = 0.90
Design compressive strength Pc =or x min(P, Pny, Pet) = 79.8 kips
PASS - The design compressive strength exceeds the required compressive strength
Flexuralstrengthabout theminoraxis
Yielding (ci. F6.1)
Nominal flexural strength Mnyd = Mpy = min(Fy x Z,, 1.6 x Fy x S) = 50.4 kips_ft
Design flexural strength about the minor axis (ci. Fl)
Resistance factor for flexure 4b = 0.90
Design flexural strength Mcy = Ob x Mnyd = 45.4 kips—ft
PASS - The design flexural strength about the minor axis exceeds the required flexural strength
38
39
5
12/19/2017
DC
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
1
I
1
Combined forces
Member utilization (cl. H1.1)
Equation Hi-lb UR = abs(Pr) /(2 x Pc) + (Mrx I Mcx + Mry / M) = 0.996
PASS - The member is adequate for the combined forces
Column Reactions
Strong Axis (From 2D Analysis)
Pmax :2O k
Vmxx 1 9 k
Mmax: 33 3
kA
4j
I
40 [I
See Output for Footing Size
I
I
I
I
1
David Grapsas, P.E.
John Elder, P.E.
Pvcipi
Phoenix, AZ
480-454-6408
www.unitcdstr.com www.unitedstr.com
Service combinations - Moment envelope (kip_ft)
-149.6
Service combinations - Shear envelope (kips)
14.6
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
41
!JNDTED
STRUCTURAL DESIGN LLC
Project
Subject
ANALYSIS
Geometry
Results
Forces
Geometry (ft) - Steel (AISC)
Tedds calculation version 1.0.20
Sheet no. 1
Job Ref.
Date 12/19/2017
2D Analysis Calc. by JE
JPNI TED
STRUCTURAL DESIGN LLC.
Project
Subject 2D Analysis
Sheet no. 2
Job Ref.
Date 12/19/2017
Caic. by JE
42
Service combinations - Axial force envelope (kips)
Member results
Envelope - Service combinations
Member Shear force Moment
Pos
(ft)
Max abs
(kips)
Pos
(ft)
Max
(kip_ft)
Pos
(ft)
Mm
(kip_ft)
BEAM 20.5 14.617 (max abs 20.5 28.39 20.5 -149.826 (mm)
COLUMN 0 1.913 0 68.317 (max) 0 -64.571
Envelope - Service combinations
Member Axial force
Pos Max Pos Mm
(ft) (kips) (ft) (kips)
BEAM 20.5 0.43 20.5 -0.43 (mm)
COLUMN 0 26.045 (max) 11.78 -0.279
2D Analysis
tN I TED
RUCTURAL DESIGN LLC
Project
Subject
I
I
I
43
Sheet no. 3
Job Ref.
Date 12/19/2017
Calc. by JE
I
I
I
I
I
tNITED
RUCTURAL DESIGN LLC
Project
Subject
FLAGPOLE EMBEDMENT (IBC 201
Pole Footing
44
Sheet no. 1
Job Ref.
Date 12/19/2017
Calc. by JE
TEDDS calculation version 1.2.00
Soil capacity data
Allowable passive pressure
Maximum allowable passive pressure
Load factor 1(1806.1)
Load factor 2 (1806.3.4)
Pole geometry
Shape of the pole
Diameter of the pole
Laterally restrained
Load data
First point load
Distance of Pi from ground surface
Second point load
Distance of P2 from ground surface
Uniformly distributed load
Start distance of W from ground surface
End distance of W from ground surface
Applied moment
Lsbc = 100 pcf
Pmax = 1500 psf
LDFi = 1.00
LDF2 = 2.0
Round
Dia = 24 in
No
Pi = 1900 lbs
Hi = 0 ft
P2 = 0 lbs
H2 = 1 ft
W = 0 plf
a=2ft
ai = 4 ft
Mi = 68300 lb—ft
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Distance of Mi from ground surface
Shear force and bending moment
Total shear force
Total bending moment at grade
Distance of resultant lateral force
Embedment depth (1807.3.2.1)
Embedment depth provided
Allowable lateral passive pressure
Factor A
Embedment depth required
Actual lateral passive pressure
psf
Pole Footing
45
Sheet no. 2
Job Ref.
Date 12/19/2017
Calc. by JE
H3 = 12 ft
F = P + P2 + W x (al - a) = 1900 lbs
Mg PixHi+P2xH2+Wx (al —a)x(a+ai)/2+Ml=68319lb—ft
h = abs(M9 / F) = 35.96 ft
D = 11.95 ft
Si = min(Pmax, Lsbc x min(D, 12 ft) / 3) x LDF1 x LDF2 = 796.5 psf
A = 2.34 x abs(F) / (Si x Dia) = 2.8 ft
Di = 0.5 x Ax (1 + (1 + ((4.36 x h) /A))°5) = 11.95 ft
S2 = (2.34 x abs(F) x ((4.36 x h) + (4 x 0))) / (4 x D2 x Dia) = 796.5
I
I
I
NITED Sheet no.
STRUCTURAL DESIGN LLC Job Ref.
Project Date
Subject Spread Footing Calc. by
12/19/2017
JE
HI
COMBINED FOOTING ANALYSIS AND DESIGN (AC1318-11)
TAT
('1
U,
_y_
4 106"
Combined footing details
Length of combined footing L = 10.500 ft
Width of combined footing B = 5.500 ft
Area of combined footing A = L x B = 57.750 ft2
Depth of combined footing h = 24.000 in
Depth of soil over combined footing h01i = 0.000 in
Density of concrete Pconc = 150.0 lb/ft3
Column details
Column base length IA = 12.000 in
Column base width bA = 12.000 in
Column eccentricity in x epxA = 0.000 in
Column eccentricity in y ePyA = 0.000 in
Soil details
Density of soil Psoit = 120.0 lb/ft3
Angle of internal friction 0'= 25.0 deg
Design base friction angle 5 = 19.3 deg
Coefficient of base friction tan(s) = 0.350
Allowable bearing pressure Pbearing = 1.500 ksf
Axial loading on column
Dead axial load on column PGA = 26.000 kips
Live axial load on column PQA = 0.000 kips
Wind axial load on column PWA = 0.000 kips
Total axial load on column PA = 26.000 kips
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TEDDS calculation version 2.0.06
tU N I TED Sheet no. 2
STRUCTURAL DESIGN LLC. Job Ref.
Project Date 12/19/2017
Subject Spread Footing Calc. by JE
Foundation loads
Dead surcharge load
Live surcharge load
Footing self weight
Soil self weight
Total foundation load
Horizontal loading on column base
Dead horizontal load in x direction
Live horizontal load in x direction
Wind horizontal load in x direction
Total horizontal load in x direction
Dead horizontal load in y direction
Live horizontal load in y direction
Wind horizontal load in y direction
Total horizontal load in y direction
Moment on column base
Dead moment on column in x direction
Live moment on column in x direction
Wind moment on column in x direction
Total moment on column in x direction
Dead moment on column in y direction
Live moment on column in y direction
Wind moment on column in y direction
Total moment on column in y direction
Check stability against sliding
Resistance to sliding due to base friction
Passive pressure coefficient
Stability against sliding in x direction
FGsur = 0.000 ksf
F0sur = 0.000 ksf
Fswt = h X Pconc = 0.300 ksf
F0i = h50i X Psoil = 0.000 ksf
F = A x (FGsur + F0sur + F5 + F50i) = 17.325 kips
HGXA = 1.900 kips
HoxA = 0.000 kips
HWxA = 0.000 kips
HxA = 1.900 kips
HGyA = 0.000 kips
HayA = 0.000 kips
HwyA = 0.000 kips
HyA = 0.000 kips
MGXA = 68.300 kip_ft
MQXA = 0.000 kip_ft
MwxA = 0.000 kip_ft
MxA = 68.300 kip_ft
MGyA = 0.000 kip_ft
MayA = 0.000 kip_ft
MwyA = 0.000 kip_ft
MyA = 0.000 kip_ft
Hrt0 = max([PGA + (FGsur + F5 + F50i) x A], 0 kips) x tan(s) = 15.172 kips
Kp = (1 + sin(')) / (1 - sin(')) = 2.464
I
I
I
I
Li
I
Passive resistance of soil in x direction Hxpas = 0.5 x Kp x (h2 + 2 x h x h50i) x B x Psoil = 3.252 kips
Total resistance to sliding in x direction Hxres + Hxpas = 18.425 kips
PASS - Resistance to sliding is greater than horizontal load in x direction
Check stability against overturning in x direction
Total overturning moment MXOT = M + HxA x h = 72.100 kip_ft
I Restoring moment in x direction
Foundation loading
Axial loading on column
I
11
Mxsur = A x (FGsur + F5t + Fsoi) x L I 2 = 90.956 kip_ft
Mxaxiai = (PGA) x (L / 2 - ep,) = 136.500 kip_ft
0.037 ksf
Load combination factors for loads
Load combination factor for dead loads yfG = 1.20
Load combination factor for live loads yfQ = 1.60
Load combination factor for wind loads yiw = 0.00
Strength reduction factors
Flexural strength reduction factor Of= 0.90
Shear strength reduction factor Os = 0.75
I
I
I
I
I
I
I
1.464 ksf
tNITED
RUCTURAL DESIGN LLC
Sheet no. 3
Job Ref.
Date 12/19/2017
Caic. by JE
48
Project
Subject Spread Footing
Total restoring moment
Calculate base reaction
Total base reaction
Eccentricity of base reaction in x
Eccentricity of base reaction in y
Check base reaction eccentricity
Calculate base pressures
Minimum base pressure
Maximum base pressure
0.037 ksf
Mxres = Mxsur + Mxaxiai = 227.456 kip—ft
PASS - Restoring moment is greater than overturning moment in x direction
T = F + PA = 43.325 kips
eTx = (PA x ep + M + HA x h)/ T = 19.970 in
eTy = (PA X epyA + MyA + HyA x h) / T = 0.000 in
abs(eTx) / L + abs(ery) / B = 0.158
Base reaction acts within middle third of base
ql=T/A-6xTx eTx /(LxA)-6xTxeT/(BxA)=0.037ksf
q2=T/A-6xTx eTx /(LxA)+6xTxeTY /(BxA)=0.037ksf
q3 = T / A + 6 x T x eix / (L x A) - 6 x T x er / (B x A) = 1.464 ksf
q4 = T / A + 6 x T x eTx I (L x A) + 6 x Tx eTy/ (B x A) = 1.464 ksf
qmin = min(qi, q2, q3, q4) = 0.037 ksf
qmax = max(qi, q2, q3, q4) = 1.464 ksf
PASS - Maximum base pressure is less than allowable bearing pressure
:~ ~~111 I ~ ~~~ MIME
I
I
49 I tO N IT ED Sheet no. 4
I STRUCTURAL DESIGN LLC Job Ref.
Project Date 12/19/2017
Subject Spread Footing Calc. by JE
Ultimate axial loading on column I Ultimate axial load on column PuA = PGA x + PQA x o + PWA x ytw = 31.200 kips
Ultimate foundation loads
I Ultimate foundation load F = A x [(Fsur + Fswt + F0i) x yc + FQsur x a] = 20.790 kips
Ultimate horizontal loading on column
I Ultimate horizontal load in x direction H.uA = HGXA x G + HQxA x yfQ + HwxA x yfw = 2.280 kips
Ultimate horizontal load in y direction HyuA = HGYA X G + HayA xyfa + HWYA X yfw = 0.000 kips
Ultimate moment on column
I Ultimate moment on column in x direction MxuA = MGXA x YfG + MQXA x yfQ + MwxA x yfw = 81.960 kip_ft
Ultimate moment on column in y direction MyuA = MGYA X ffG + MQyA X fiQ + MwyA x yiw = 0.000 kip_ft
I Calculate ultimate base reaction
Ultimate base reaction Tu = F + PuA = 51.990 kips
Eccentricity of ultimate base reaction in x eTxu = (PuA X ep + MxuA + HxuA x h) I Tu = 19.970 in
I Eccentricity of ultimate base reaction in y eTyu = (PuA x ePyA + M + HyA x h) / Tu = 0.000 in
Calculate ultimate base pressures
qiu = TUIA - 6XTuXeTxu/(LXA) - 6xTuxeTyu/(BxA) = 0.044 ksf
I q2u = TUIA - 6xTxeixJ(LxA) + 6xTx eTyu/(BxA) = 0.044 ksf
q3u = TU/A + 6xTUxeTXJ(LxA) - 6xTUxeTJ(BxA) = 1.756 ksf
I q4u = TUIA + 6xTUxeTXJ(LxA) + 6xTUxeT/(BXA) = 1.756 ksf
Minimum ultimate base pressure qminu = min(qiu, q2u, q3u, q4u) = 0.044 ksf
I
Maximum ultimate base pressure
Calculate rate of change of base pressure in x direction
qmaxu = max(qiu, q2u, q3u, q4u) = 1.756 ksf
Left hand base reaction fuL = (qiu + q2u) x B / 2 = 0.243 kips/ft
I Right hand base reaction fuR = (q3u + q4u) x B / 2 = 9.660 kips/ft
Length of base reaction L = L = 126.000 in
Rate of change of base pressure C = (fuR - fuL) I Lx = 0.897 kips/ft/ft
I Calculate footing lengths in x direction
Left hand length LL = L / 2 + epxA = 5.250 ft
Right hand length LR = L / 2 - eFYA = 5.250 ft
I Calculate ultimate moments in x direction
Ultimate positive moment in x direction M = fuL X LL / 2 + Cx X U.3 I 6 - Fu X LL2 / (2 X L) + HxuA X h + MxuA =
84.210 kip_ft
• Position of maximum negative moment L = 5.250 ft
Ultimate negative moment in x direction Mxneg = fuR X LR2 12 - Cx X LR3 / 6 - Fu x LR2 I (2 X L) - HxuA X h - MxuA
I Mxneg = -2.310 kip_ft
I
I
Sheet no. 5
Job Ref.
Date 12/19/2017
50
Subject Spread Footing Caic. by JE
Calculate rate of change of base pressure in y direction I Top edge base reaction fuT = (q2u + q4u) x L I 2 = 9.453 kips/ft
Bottom edge base reaction fuB = (qiu + q3u) x L / 2 = 9.453 kips/ft
I Length of base reaction L = B = 5.500 ft
Rate of change of base pressure C = (f8 - fi) / Ly = 0.000 kips/ft/ft
Calculate footing lengths in y direction
I Top length LT = B / 2 + ePyA= 2.750 ft
Bottom length L6 = B / 2 - epyA = 2.750 ft
Calculate ultimate moments in y direction I Ultimate moment in y direction My = fuT x Li2 /2 + C x LT I 6 - Fu x LT / (2 x B) = 21.450 kip—ft
Material details
I Compressive strength of concrete f' = 2500 psi
Yield strength of reinforcement fy 60000 psi
Cover to reinforcement cnom = 3.000 in
I Concrete type Normal weight
Concrete modification factor X = 1.00
I Moment design in x direction
Reinforcement provided 7 No. 6 bars bottom and 7 No. 6 bars top
Depth of tension reinforcement dx = h - cnom - 4xB / 2 = 20.625 in
I Area of tension reinforcement provided As_xBrov = NxB X It X OxB2 / 4 = 3.093 in2
Area of compression reinforcement provided As_xTrov = NxT X It X OxT2 / 4 = 3.093 in2
Minimum area of reinforcement As-.-min = 0.0018 x h x B = 2.851 in2 I Spacing of reinforcement 5xBj,rov = (B - 2 x cnom) I max(Nxs - 1, 1) = 10.000 in
Maximum spacing of reinforcement Smax = min(3 x h, 18in) = 18.000 in
I PASS - Reinforcement provided exceeds minimum reinforcement required
Depth of compression block ax = As_xB_prov x f / (0.85 x f'r, x B) = 1.32 in
Neutral axis factor 3i = 0.85
I Depth to the neutral axis cna_x = ax / 3i = 1.56 in
Strain in reinforcement £tx = 0.003 X (dx - Cna_x) / cna_x = 0.03675
PASS- The section has adequate ductility (ci. 10.3.5)
I Nominal moment strength required Mnx = abs(M) / Of = 93.567 kip_ft
Moment capacity of base Mcapx = As_xBv X fy X [dx - (As_xB..prov X fy / (1.7 X f'c X B))]
Mcapx = 308.686 kip_ft
PASS - Moment capacity of base exceeds nominal moment strength required
Negative moment design in x direction
Reinforcement provided 7 No. 6 bars top and 7 No. 6 bars bottom I Depth of tension reinforcement dx = h - cnxm - 4T / 2 = 20.625 in
Area of tension reinforcement provided As_Trov = NxT x it x OxT2 / 4 = 3.093 in2
I
1
Area of compression reinforcement provided
Minimum area of reinforcement
Spacing of reinforcement
Maximum spacing of reinforcement
Depth of compression block
Neutral axis factor I Depth to the neutral axis
Strain in reinforcement
Nominal moment strength required
I
Moment capacity of base
Moment design in y direction
I Reinforcement provided
Depth of tension reinforcement
I Area of tension reinforcement provided
Area of compression reinforcement provided
Minimum area of reinforcement
Spacing of reinforcement I Maximum spacing of reinforcement
Depth of compression block
Neutral axis factor
Depth to the neutral axis
Strain in reinforcement
Nominal moment strength required
Moment capacity of base
I
I
1
tNITED
RUCTURAL DESIGN LLC
Sheet no. 6
Job Ref.
51
Project Date 12/19/2017
Subject Spread Footing Cale. by JE
As_xBprov = NxB X It X IxB2 / 4 = 3.093 in2
As_x_min = 0.00 18 x h x B = 2.851 in2
5xTfirov = (B -2 X Cnom) / max(Ni- 1, 1) = 10.000 in
5max = min(3 x h, 18in) = 18.000 in
PASS - Reinforcement provided exceeds minimum reinforcement required
ax=AsxTj,rovxfy/(0.85xf'cxB)= 1.32 in
I3i= 0.85
Cna_x=axll3i = 1.56 in
ELX = 0.003 X (dx - Cna_x) / Cna_x = 0.03675
PASS - The section has adequate ductility (ci. 10.3.5)
Mnxneg = abs(M09) / ctt = 2.567 kip_ft
Mcapxneg = As_xTj,rov X fy X [dx - (As_xr_prov X fy / (1.7 X f'c X B))]
Mcapxneg = 308.686 kip_ft
PASS - Moment capacity of base exceeds nominal moment strength required
13 No. 6 bars bottom and 13 No. 6 bars top
dy = h - cnom - ixB - 4yB/2 = 19.875 in
As..yB_prov = NyB x it x OYB2 / 4 = 5.743 in2
As.jij,rov = NyT x it x ci2 / 4 = 5.743 in2
Asy_min = 0.0018 x h x = 5.443 in2
5y8jr0v = (L -2 x cnom) / max(NB - 1, 1) = 10.000 in
5max = min(3 x h, 18in) = 18.000 in
PASS - Reinforcement provided exceeds minimum reinforcement required
ay = As,erov x f / (0.85 x f c x L) = 1.29 in
= 0.85
cna=ay/3i=1.51in
Et.y = 0.003 x (d - cna) / cna = 0.03638
PASS - The section has adequate ductility (cl. 10.3.5)
Mny = abs(M) / ilif = 23.833 kip_ft
Mcapy = Asj&prov X fy X [dy (AsyBprov X fy / (1.7 X f'c X L))]
Mcapy = 552.254 kip_ft
PASS - Moment capacity of base exceeds nominal moment strength required
Calculate ultimate shear force at d from right face of column
Ultimate pressure for shear d from face of column qsu = (qiu + C x (L / 2 + ep + IA / 2
+ d) I B + q4u) / 2
qsu = 1.509 ksf
Area loaded for shear at d from face of column As B x min(3 x (LI 2 - eTx), L /2 - ep, - IAI 2 - d) = 16.672 ft2
Ultimate shear force at d from face of column = A x (qsu - Fu /A) = 19.160 kips
Shear design at d from right face of column
Strength reduction factor in shear Os = 0.75
1
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
NITED
STRUCTURAL DESIGN LLC
Project
Subject
Nominal shear strength Vnsu = Vsu / Os = 25.546 kips
Concrete shear strength = 2 x x (fc x 1 psi) x (B x d) = 136.125 kips
PASS - Nominal shear strength is less than concrete shear strength
Calculate ultimate punching shear force at perimeter of d / 2 from face of column
Ultimate pressure for punching shear qpuA = q1U+[(L/2+ep-IJ2-d/2)+(IA+2xd/2)/2]xCJB-[(B/2+epA-bi2-
d12)+(bA+2XdI2)I2JXCyIL
qpuA = 0.900 ksf
Average effective depth of reinforcement d = (d + d) I 2 = 20.250 in
Area loaded for punching shear at column ApA = (IA+2XdI2)X(bA+2XdI2) = 7.223 ft2
Length of punching shear perimeter upA = 2X(IA+2Xd/2)+2X(bA+2Xd/2) = 10.750 ft
Ultimate shear force at shear perimeter VpuA = P + (F I A - qp) x App. = 27.298 kips
Punching shear stresses at perimeter of d I 2 from face of column
Nominal shear strength VnpA = V I 4 = 36.397 kips
Ratio of column long side to short side 3A = max(lA, bA) / min(lA, bA) = 1.000
Column constant for interior column MA = 40
Concrete shear strength VQ i = (2 + 4 I 3A) x x /(f'c x 1 psi) x up, x d = 783.675 kips
ye_p_u = (asA x d / upA + 2) x ? x 4(f'c x 1 psi) x upA x d = 1081.350 kips
Vc_pju = 4 X ? X I(f'e x 1 psi) x UpA x d = 522.450 kips
Vs_p = min(V_p_u, V_p_uu, V_p_uuu) = 522.450 kips
PASS - Nominal shear strength is less than concrete shear strength
13 No. 6 bars btm (10" c/c)
13 No.6 bars top (10" c/c)
7 No.6 bars btm (10 c/c), 7 No.6 bars top (10 c/c)
- - - One way shear at d from column face
Two way shear at d / 2 from column face
Spread Footing
52
Sheet no. 7
Job Ref.
Date 12/19/2017
Calc. by JE
I
I
I
I
I
NITED
STRUCTURAL DESIGN LLC.
Project
Subject Spread Footing
53
Sheet no. 8
Job Ref.
Date 12/19/2017
Caic. by JE
I
I
I
I
I
I
I
I
I
%'rJ N IT ED
RUCTURAL DESIGN LLC PROJECT NAME: Montecito Apartments
PROJECT LOCATION: 2510W Ranch St., Carlsbad, CA 92010
ENGINEER: OG
REVIEWER: JE
DATE: 12/19/2017
Connection Design
Connection Inputs
Member Sizes Flange bf Depth d Design Summary
Beam Size: Tts 6.77 in 14.10 In Steel Column Embedment d,,,,1 7: OK
Column Size:, 5'$X36 6.77 in 14.10 In Pole Footing Reinforcing •#: OK
Spread Footing Reinforcing 5t. OK
Reactions Hodg Plate Size: b7 . OK
Pu : 31.9 hips
Vu: 2.9 kips
Mu: 114 k-ft
Pole Footing Properties
Design Concrete Strength : 2,500 psi
Footing Diameter : 24
Footing Depth H : 12,0 ft
Steel Column Embedment d,.,j: 4 0 ft
Footing Pressure: 7905 psI
Size of Rebar Tales #9
No. of Rebar Tales Each Side of Column: 2
Spread Footing Properties
Design Concrete Strength : 2,SOO psi
Size of Rebar Each Side 29
No. of Rebar Tales Each Side of Column: 3
Hodge Plate Connection
Plate Strength : 50 ksi
Plate Width: 5755 OK
Plate Height 12 irs OK Minimum Weld Length = 18.6 in
Plate Thickness 0 75 sr Minimum Plate Thickness = 0.5 in
Weld Size 0 (0/16)
Embedment of Steel Column in Pole Footing Check
Column : W14X38 .
Column Flange Width bE : 6.6 in
Column Embedment da,t : 48.0 in :
Effective Column Flange Width bfeff : 3.9 in (0.60obf) .
tp: 0.6 ...,T7
Concrete Bearing Capacity tpbn : 1275 psi ((pxo.$5x1'c)
Bearing Section Modulus Sb : 1511.42 ina3 (bf,axda,12I6) .
Ultimate Bearing Pressure bu : 908.30 psi (Mu/Sb + Vu/(bf 5xd.,,)) .. 4,_ ,.. .•. :
Demand Capacity Ration OCR: 71': (buI(pbn) :
Pole Footing Reinforcing Check .
Size of Rebar Tales: 119
Column depth dc : 14.1 In . ..
2 .. :
No. of Rebar Tales Each Side of Column:
Area of Reinforcing Ab: 2.00 inxi .
.—rs f9'
Bearing Pressure at Si:
Bearing Pressure at 52 :
265.5 psf
796.5 psf
-I
.-i 1
Equivalent Force Peq: 8.S hips
Ultimate Moment Mu: 45 k-ft . .
Reinforcing depth d: 16.0 in
Concrete Design a:
0.9
3.5 in
Concrete Bearing Capacity yMn : 111 k-ft (q,x.Abx60k51x(d.a/2)
.:........-.-'
Demand Capacity Ration OCR: ..
-F
Phoenix, AZ
775-351-9037
www.unitedstr.com
54
I
I
I
I
I
I
I
I
I
I
ITED
TRUCTURAL DESIGN LLC PROJECT NAME:
PROJECT LOCATION: 2510W F',,nch i I L I
ENGINEER: DO
REVIEWER: if
DATE: 12/19/2O17
Spread Footing Reinforcing Check
Column : W14X38
Column depth dc : 14.1 In
Size of Rebar Each Side: #9
No. of Rebar Each Side of Column: 3 A ----I-..
Area of Reinforcing Ab: 3.00 inn2
Ultimate Shear Force Vu : 129.3 kips
Area of Shear Reinforcing Av: 6.00 in-2 I
_________ p : 0.9 /.............
Capacityof Shear Reinforcing ipVn : 194.4 kips ((pxo.6x6OksixAv) /
Demand Capacity Ration DCR: -.4---....
Spread Footing Reinforcing Check
Column : W14X38
Column depth dc : 14.1 In
Column Flange Width bfc : 6.8 In
Beam : W14X38
Beam depth db : 14.1 in
Beam Flange Width bfb: 6.8 In
Ultimate Tensile Force Tu : 129.3 kips -
0.9
Plate Width: 5.8 in
Plate Thickness: 0.8 In
CapaciiyofHodgc Plate cpPn : 194.1 kips
Demand Capacity Ration OCR
Minimum Weld Length: 18.6 In . I
55
Phoenix, AZ
775-351-9037
www.uniicdsir.com