Loading...
HomeMy WebLinkAbout2510 WEST RANCH ST; ; CBC2018-0096; Permit4Jity of Carlsbad Commercial Permit Print Date: 12/13/2018 Permit No: CBC2018-0096 Job Address: 2510 West Ranch St Permit Type: BLDG-Commercial Work Class: Cogen Status: Closed - Finaled Parcel No: 2081951000 Lot U: Applied: 02/20/2018 Valuation: $413,902.00 Reference U: Issued: 04/05/2018 Occupancy Group: Construction Type: Permit Finaled: U Dwelling Units: Bathrooms: Inspector: MColl Bedrooms: . Orig. Plan Check U: Final Plan Check U: Inspection: 12/13/2018 4:25:24PM Project Title: Description: MONTECITO: NEW SHADE STRUCTURES 17 W/O SOLAR & 3 WITH SOLAR ON TOP 396 PV PANELS TOTAL Applicant: Owner: ALLIANCE LAND PLANNING AND ENGINEERING SHAPELL MONTECITO LLC INC ELIZABETH SHOEMAKER 8383 Wilshire Blvd, 700 2248 Faraday Ave Beverly Hills, CA 90211-2400 Carlsbad, CA 92008-7208 323-988-7590 760-431-9896 BUILDING PERMIT FEE ($2000+) $1,740.70 BUILDING PLAN CHECK FEE (BLDG) $1,218.49 5B1473 GREEN BUILDING STATE STANDARDS FEE $17.00 STRONG MOTION-COMMERCIAL . - $115.89 Total Fees: $3,092.08 Total Payments To Date: $3,092.08 Balance Due: $0.00 Please take NOTICE that approval of your project includes the "Imposition" of fees, dedications, reservations, or other exactions hereafter collectively referred to as "fees/exaction." You have 90 days from the date this permit was issued to protest imposition of these fees/exactions. If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their imposition. You are hereby FURTHER NOTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project. NOR DOES IT APPLY to any fees/exactions of which you have previously been given a NOTICE similar to this, or as to which the statute of limitation has previously otherwise expired. 1635 Faraday Avenue, Carlsbad, CA 92008-7314 1 760-602-2700 760-602-8560 f I www.carlsbadca.gov ITHE FOLLOWING APPROVALS REQUIRED PRIOR TO PERMIT ISSUANCE: []PLANNING 0 ENGINEERING 0 BUILDING 0 FIRE 0 HEALTH DHAZ.MATIAPCD Building Permit Application Plan Check No ()1 -(rfl Est. Value /.- I , OZ) (City f 1635 Faraday Ave., Carlsbad, CA 92008 Ph: 760-602-2719 Fax: 760-602-8558 Plan Ck. Deposit (I ar1sbac1: email: building@carlsbadca.gov Date /c2/) /I I I www.cartsbadca.gov JOB ADDRESS H soI/SPAce#/UNff# APN I208 195 - 11 - 00 CT/PROJECT # LOT # PHASE # # OF UNITS # BATHROOMS BUSINESSNAME CONSTR. PIPE DCC. GROUP 14-08 342 I 8 I N/A 1#11EDROO101S N/A N/A 7shapellMontecito, LLC Il-B S-2 DESCRIPTION OF WORK: Include Square Feet of Affected Area(s) Robertson Ranch Market Rate plan check for regular shade canopies / carports and solar mounted with related equipment. There is a grand total of 396 Solar PV modules that are located on the roof of 3 solar shade structures (9,382 sq. ft.) located in the Market Rate building parking lot. There is also a grand total of 17 shade canopies with no solar on top (11,340 sq. ft.). EXISTING USE PROPOSED USE IGARAGE (SF) PATIOS (SF) IDECKS(SF) 'FIREPLACE A1RC0ND0N1NG Market Rate Apartments I Carports I 0 I kD NC1.J IITI YES ONO D IFIRESPRINKLERS YEsONoD APPUCANTNAME Alliance Land Planning & Engineering Conta P,*tary ct PROPER'VYOWNER NAME Shapell Montecito, LLC a ADDRESS 2248 Faraday Avenue ADDRESS 8383 Wilshire Blvd., Suite 700 CITY STATE ZIP Carlsbad CA 92008 CITY STATE ZIP Beverly Hills CA 90211 PHONE FAX PHONE IFAX (760) 550-1957 (323) 988-7590 I (323) 651-4349 EMAIL elizabeth.shoemaker(qmail.com EMAIL adewar(shapell.com DESIGN PROFESSIONAL — Home energy Systems I Attn: Ross Williams CONTRACTOR BUS NAME Home Enerav Systems / Attn: Ross William ADDRESS 5980 Fairmont Avenue, Suite 105 ADDRESS 5980 Fairmont Avenue, Suite 105 CITY STATE ZIP CITY STATE ZIP San Dieao CA 92120 San Dieao CA 92120 PHONE FAX PHONE FAX (619) 692-2015 Cell: (619) 417-0098 (619) 692-2015 I Cell: (619) 417-0098 EMAIL EMAIL ross(hessolar.com ross(hessolar.com I STATE LIC. A STATE LIC.# I CLAW5 CITY BUS. LIC.# I #800657 #800657 I C46/C10 I 1242302 (Sec. 7031.5 Business and Professions Code: Any City or County which requires a permit to construct, alter, improve, demolish or repair any structure, prior to its issuance, also requires the applicant for such permit to file a signed statement that he is licensed pursuant to the provisions of tIre Contractor's License Law fChapter 9. commending with Section 7000 of Division 3 of the Business and Professions Code) or that he is exempt therefrom, and the basis for the alleged exemption. Any violation of Section 7031.5 by any applicant for a permit subjects the applicant to a civil penalty of not more than five hundred dollars ($500)). WOR K E RS' COM r 'ii1.L Workers' Compensation Declaration:! hereby aillnn under penalty of pequry one of lire following dedamlions: I have and will maintalo a certificate of consent to self-insure for workers' compensation as provided by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. / I have and will maintain workers' compensation, an required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. My workers' compensation insurance came, and polity number are: Insurance CO. American Zurich Insurance Company Policy No. _WC 101745102 Expiration Data _0410112018 is section need not be completed if the permit is for one hundred dollars ($100) or less. Certificate of Exemption: I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner on as to become subject to the Workers' Compensation Laws of California. WARNING: Failure to seems workers' compensation coverage is unlawful, and shall subject an employer to criminal penalties and and fines up to one hundred thousand dollars (&100,000), in addition to the cost of compensation, damages as ' for in Section 3708 of the Labor code interest and attorney's fees, cotmtcroit SIGNATURE DAGENT DATE 2/1 9/1 8 E.IV Ir:III.IIr_ •'wly'tgt:i I hereby affIrm that! sin exempt from Contractor's License Law for the following reason: [J I, as owner of the property or my employees with wages as their sole compensation, will do the work and the structure is not intended or offered for sale (Sec. 7044, Business and Professions Coder The Contractor's License Law does not apply to an owner of property, who builds or improves thereon, and who does such work himself or through his own employees, provided that such improvements are not intended or offered for sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale). 0 I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Coder The Contractor's License Law does not apply to an owner of properly who builds or improves thereon, and contracts for such projects with contractor(s) licensed pursuant to the Contractor's License Law). E3 I am exempt under Section Business and Professions Code for this reason. 1.1 personally plan to provide the major labor and materials for construction of the proposed properly errprovemenl. []Yes IJ4o 2.1 (have! have not) signed an application for a building permit for the proposed work. 3.1 have contracted with the following person (firm) to provide the proposed construction (include name address! phone! contractors' license number): 4.1 plan to provide portions of the work, bull have hired the following person to coordinate, supervise and provide the major work (include name / address I phone / contractors' license number): 5.1 will provide some oldie work, but I have contracted (hoed) the following persons to provide the work indicated (include name/address! phone! type of work): PROPERTY OWNER SIGNATURE N/A — This Section []AGENT DATE Is the applicant or future building occupant required to submit a business plan, acutely hazardous materials egislialum form or risk management and prevention program under Sections 25505,25533 or 25534 of the Presley-Tanner Hazardous Substance Account Act? 0 Yes El No Is the applicant or future building occupant required to obtain a permit from the air pollution control district or air reduty management district? DYes (] No Is the facility to be constructed within 1,000 feet of the outer boundary of a school site? 0 Yes / No IF ANY OF THE ANSWERS ARE YES, A FINAL CERTIFICATE OF OCCUPANCY MAY NOT BE ISSUED UNLESS THE APPLICANT HAS MET OR IS MEETING THE REQUIREMENTS OF THE OFFICE OF EMERGENCY SERVICES AND THE AIR POLLUTION CONTROl. DISTRICT. I hereby aflinn that there is a oonstrucfion lending agency for the performance of the work this permit is issued (Sec. 3097 (I) Civil Code). Lender's Name N/A - This Section Lender's Address - I cur1i,thatI have read theappll above isounact and that nfltiuuorithepbrre toauate lagmetocojnpIywWi all Cltyonlhmiand State lrebsingto larildingonredmolion. I hereby authorire representative of the City of Carlsbad to enter upon the above mentioned property for inspection purposes. I ALSO AGREE TO SAVE, INDEMNIFY AND KEEP HARMLESS THE CITY OF CARLSBAD AGAINST ALL LIABILITIES, JUDGMENTS, COSTS AND EXPENSES WHICH MAY IN ANY WAY ACCRUE AGAINST SAID CITY INCONSEQUENCE OF THE GRANTING OF THIS PERMIT. OSHA: An OSHA permit is requbml for esaIiaar over 5'0' deep and derrdltkrn or construction ofstrsdrnesover3stoites in height EXPIRATION: Every permit issued byte Building Offiriol underthe provisiomof this Code thaI expito by Indtabmi and beurnw null and void if the taiibikig or work authorized by such permit Is not command within l8o days Uoni the date ofsudr pmmitorifthe uldingorwiakauttubmd by such permit is snpendedorarAsed atanytiron aflerthework oudfor aperiodof180days(Sedion 106.4.4 thrifmm Building Code). £APPUCANT'S SIGNATURE -AJ4 DATE 2/1 9/1 8 Elizabeth Shoemaker Permit Type: BLDG-Commercial Application Date: 02/20/2018 Owner: SHAPELL MONTECITO LLC Work Class: Cogen Issue Date: 04/05/2018 Subdivision: Status: Closed - Finaled Expiration Date: 06/10/2019 Address: 2510 West Ranch St Carlsbad, CA 92010-5622 IVR Number: 9612 Scheduled Date Actual Start Date Inspection Type Inspection No. Inspection Status Primary Inspector Reinspection Complete 08/28/2018 08/28/2018 BLDG-14 068403-2018 Partial Pass Michael Collins Reinspection Incomplete Frame/Steel/Bolting! Welding (Decks) Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial carport structures Yes BLDG-Building Deficiency Partial carport structures Yes 08/29/2018 08/29/2018 BLDG-14 068535-2018 Partial Pass Michael Collins Reinspection Incomplete Frame/Steel/Bolting! Welding (Decks) Checklist Item COMMENTS Passed BLDG-Building Deficiency Upper level (PA8) carport structures, see Yes card BLDG-Building Deficiency Partial carport structures Yes BLDG-Building Deficiency Partial carport structures Yes 08/30/2018 08/30/2018 BLDG-14 068719-2018 Cancelled Michael Collins Reinspection Complete Frame/Steel/Bolting! Welding (Decks) Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial carport structures Yes BLDG-Building Deficiency Upper level (PA8) carport structures, see Yes card BLDG-Building Deficiency Partial carport structures Yes 08/31/2018 08/31/2018 BLDG-14 068857.2018 Partial Pass Michael Collins Reinspection Incomplete Frame/Steel/Bolting! Welding (Decks) Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial carport structures Yes BLDG-Building Deficiency Lower level carport/shade structures, see Yes card BLDG-Building Deficiency Partial carport structures Yes BLDG-Building Deficiency Upper level (PA8) carport structures, see Yes card 12/11/2018 12/11/2018 BLDG-35 Solar 078628.2018 Passed Michael Collins Complete Panel Checklist Item COMMENTS Passed BLDG-Building Deficiency Release emailed to SDGE Yes 12/13/2018 12/13/2018 BLDG-Final 078884-2018 Passed Michael Collins Complete Inspection December 13, 2018 Page 2 of 3 Permit Type: BLDG-Commercial Application Date: 02/20/2018 Owner: SHAPELL MONTEClTO LLC Work Class: Cogen Issue Date: 04/05/2018 Subdivision: Status: Closed - Finaled Expiration Date: 06/10/2019 Address: 2510 West Ranch St Carlsbad, CA 92010-5622 IVR Number: 9612 Scheduled Actual Inspection Type Inspection No. Inspection Status Primary Inspector Reinspection Complete Date Start Date 07/18/2018 07/18/2018 BLDG-34 Rough 064329.2018 Failed Michael Collins Reinspection Complete Electrical Checklist Item COMMENTS Passed BLDG-Building Deficiency Not ready No 07/25/2018 07/24/2018 BLDG-Final 064787.2018 Cancelled Michael Collins Reinspection Complete Inspection Checklist Item COMMENTS Passed BLDG-Building Deficiency Cancelled per contractor No BLDG-Structural Final No BLDG-Electrical Final No 07/30/2018 07/30/2018 BLDG-34 Rough 065293.2018 Partial Pass Michael Collins Reinspection Incomplete Electrical Checklist Item COMMENTS Passed BLDG-Building Deficiency Not ready No BLDG-Building Deficiency See card. Conductor, OCD, disconnects, Yes inverters, etc... BLDG-Final 065294.2018 Failed Michael Collins Reinspection Complete Inspection Checklist Item COMMENTS Passed BLDG-Building Deficiency Cancelled per contractor No BLDG-Structural Final No BLDG-Electrical Final No 08/03/2018 08/03/2018 BLDG-34 Rough 065886.2018 Failed Michael Collins Reinspection Electrical Checklist Item COMMENTS Passed BLDG-Building Deficiency See card. Conductor, OCD, disconnects, Yes inverters, etc... BLDG-Building Deficiency Complete all signage No BLDG-Building Deficiency Not ready No BLDG-Final 065887.2018 Failed Michael Collins Reinspection Inspection Checklist Item COMMENTS Passed BLDG-Building Deficiency 08/03/18 Complete all signage No BLDG-Building Deficiency Cancelled per contractor No BLDG-Structural Final No BLDG-Electrical Final No 08/07/2018 08/07/2018 BLDG-14 066334-2018 Partial Pass Michael Collins Reinspection Frame/Steel/Bolting! Welding (Decks) Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial carport structures Yes 1] Complete Complete Incomplete December 13, 2018 Pagel of 3 Daily Report Montecito @ Robertson's Ranch Robertson's Ranch West Village Carlsbad, Ca Job#: 1016519 Monday, May 14, 2018 Time Temp Hum W-Dir W-Speed W-Gust Precip Condition 06:02 AM 55°F 93% SW 0MPH 0MPH 01N Clear 10:12AM 65°F 67% N 7MPH 11 MPH 0 I Partly Cloudy 02:01 PM 67°F 61% N 9MPH 18 MPH 0 I Partly Cloudy 08:47 AM David Bickle Arrived at Montecito at 10:30 A.M. Checked in with Pete Torres, T. B. Penick Superintendent. 08:55 AM David Bickle PV Structural Plans by United Structural Design dated 12/19/07 & approved by the City of Carlsbad on 4/19/18. 08:48 AM David Bickle City of Carlsbad Permit number CBC2018-0096. 08:56 AM David Bickle Provided periodic welding inspection at Photovoltaic structural steel per details provided on Sheet S3.1. Powered By Note Vault Nova Services, Inc. I Montecito @ Robertson's Ranch I Monday, May 14, 2018 I Page 1 of 3 C9:17 AM David Bickle Reviewed welders certification and continuity logs. 09:37 AM David Bickle Photovoltaic Structural Steel Subcontractor welding beam attachment tabs to vertical columns via a pre-qualified fillet welds utilizing E71T-8 electrode. Work is being performed between Bldg 4 (address #2568) and Bldg 7 (address #2554). Subject areas were cleaned & prepped prior to commencement of welding Powered By NoteVault Nova Services, Inc. I Montecito @ Robertson's Ranch I Monday, May 14, 2018 1 Page 2 of 3 05:27 PM David Bickle The work was inspected in accordance with the requirements of the Approved Contract Documents. The work inspected met the requirements of the Approved Contract Documents. 05:26 PM David Bickle Departed Montecito at Robertson's Ranch at 2:30 P.M. Checked out with Pete Torres, T. B. Penick Superintendent. Employee Signature: 4J ..- Powered By NoteVru t Nova Services, Inc. I Montecito @ Robertson's Ranch I Monday, May 14, 2018 1 Page 3 of 3 iAl '. Daily Report Thursday, May 10, 2018 Montecito @ Robertson's Ranch Robertson's Ranch West Village Carlsbad, Ca Job#: 1016519 Time Temp Hum W-Dir W-Speed W-Gust Precip Condition 06:09 AM 61°F 92% SW 3MPH 4MPH 0 I Overcast 10:00 AM 67°F 73% SW 11 MPH 11 MPH 0 I Mostly Cloudy 02:09 PM 67°F 73% SW 7MPH 15 MPH 0 I Mostly Cloudy 09:25 PM Emad Beshay on site at lOam 09:26 PM Emad Beshay CBC2018-0096 09:24 PM Emad Beshay (16) solar shade canopies caissons located at the parking lot at the south side. Observed (3) # 3 ties at top of caissons, observed steel d hx s clearance 41111ij I j r itt Ilk XF Nor - r- - . -- - Powered By NoteVault Nova Services, Inc. I Montecito @ Robertson's Ranch I Thursday, May 10, 2018 1 Page 1 of 6 Powered By NoteVault Nova Services, Inc. I Montecito @ Robertson's Ranch I Thursday, May 10, 2018 1 Page 2 of 6 :-::. ''• t- S : fl 4 Powered By NoteVault Nova Services, Inc. I Montecito @ Robertson's Rancn I Thursday, May 10, 2018 1 Page 3 of 6 * 4 09:24 PM Emad Beshay observed concrete placement at (16) solar shade canopies caissons located at the parking lot at the south side. Robertson's ready mix concrete placed using tailgate ncI consoldited usn rnn-LiniciI s idritor rict 1 set or simple 5(4x8) from 1ST truck ticket# 3630362, truck# 1923 required strength 3000PSI. 20C'f placed. '4* Ig6 0 Powered By NoteVault Nova Services, Inc.) Montecito @ Robertson's Ranch I Thursday, May 10, 2018 1 Page 4 of 6 r Sc'- '414 aA- Powered By NoteVault Nova Services, Inc. I Montecito @ Robertson's Ranch I Thursday, May 10.2018 1 Page 5 of 6 09:25 PM Emad Beshay Work observed comply with approved plan to the best of my knowledge ICC# 8008238 09:25 PM Emadi Beshay departure at 2:30 Employee Signature: Powered By NoteVault Nova Services, Inc. I Montecito @ Robertson's Ranch I Thursday, May 10, 2018 1 Page 6 of 6 NOVA Scrvi'. Daily Report Tuesday, May 01, 2018 Portola at Robertson's Ranch Robertson's Ranch West Village Carlsbad, California Job#: 1016518 Time Temp Hum W-Dir W-Speed W-Gust Precip Condition 06:10AM 57°F 63% SW 7MPH 9MPH 0 I Overcast 10:01AM 60°F 51% SW 11 MPH 13 MPH 0 I Overcast 02:00 PM 62°F 52% SW 12 MPH 12 MPH 0 I Overcast 10:25 AM David Bickle Arrived at Robertson's Ranch Montecito project at 10:30 A.M. Checked in with Pete Torres, T.B. Penick Superintendent. Powered By NoteVault Nova Services, Inc. I Portola at Robertson's Ranch I Tuesday, May 01, 2018 1 Page 1 of 4 II2r - 10:25 AM David Bickle City of Carlsbad Permit number CBC2018-0096. 11:04 AM David Bickle hspected reinforcing at PV structural I columns per details 3/S2.2 & 2/S3.1. Reinforcing steel was verified for size, grade, lap, spacing, & clearances. Powered ByNoteVault Nova Services, Inc. Portola at Robertson's Ranch I Tuesday, May 01, 2018 1 Page 2 of 4 -V V 'V 01:09 PM David Bickle PV subcontractor placed approximately 4 CY of concrete at structural I column footings between Bldgs 4 & 7(2554 & 2568). One (1.) set of five cylinders was cast. Powered By NoteVault Nova Services, Inc. Portola at Robertson's Ranch I Tuesday, May 01, 2018 1 Page 3 of 4 01:10 PM David Bickle The work was inspected in accordance with the requirements of the Approved Contract Documents. The work inspected met the requirements of the Approved Contract Documents. Material sampling was performed in accordance with the Approved Contract Documents. 03:57 PM David Bickle Departed Robertson's Ranch Montecito project at 1:30 P.M. Checked out with Pete Torres, TB Penick Superintendent. Employee Signature I Powered By NoteVuIt Nova Services, Inc. I Portola at Robertson's Ranch I Tuesday, May 01, 2018 1 Page 4 of 4 EsGilV/0 A SAFEbuILt Company DATE: 3/29/2018 D APPLICANT JURIS. JURISDICTION:.. CARLSBAD PLAN CHECK #.: CBC2018-0096 SET: II PROJECT ADDRESS: 2510 WEST RANCH STREET PROJECT NAME: CARPORTS The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's building codes. The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. The plans transmitted"herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. LI The applicant's copy of the check list has been sent to: EsGil staff did not advise the applicant that the plan check has been completed. Li EsGil staff did advise the applicant that the plan check has been completed. Person contacted: Telephone #: Date contacted: (by'1) Email: Mail Telephone Fax In Person LI REMARKS: By: Bert Domingo Enclosures: EsGil 3/21/2018 9320 Chesapeake Drive, Suite 208 • San Diego, California 9223 • (858) 560-1468 • Fax (858) 560-1576 EsGil A SAFEbuittCornpany DATE: MAR. 01, 2018 JURISDICTION: CARLSBAD PLAN CHECK #.: CBC2018-0096 SET: I U APPLICANT JURIS. PROJECT ADDRESS: 2510 WEST RANCH STREET PROJECT NAME: CARPORTS The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. II The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to: LI EsGil staff did not advise the applicant that the plan check has been completed. EsGil staff did advise the applicant that the plan check has been completed. Person contacted: Ross Telephone #: 619-692-2015 Date contacted: 31t1i (by._.- Email: rosschessoIar.com IepnFax ~InersonUKK Ka ç( E-V LSMft L REMARKS: Twenty carports are under this permit, three of which are solar-supporting and the other seventeen are as follows: (1) 6-space carport & (16) 4-space carports. By: ALl SADRE, S.E. Enclosures: EsGil 2/21 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858) 560-1576 CARLSBAD CBC20 18-0096 MAR. 01, 2018 GENERAL PLAN. CORRECTION LIST JURISDICTION: CARLSBAD PLAN CHECK #.: CBC2018-0096 PROJECT ADDRESS: 2510 WEST RANCH STREET OCCUPANCY = U; STORIES = ONE; SPRINK. = NO; HEIGHT = 15' (MAX); CONSTRUCTION = Il-B; AREAS = VARY (4,018 MAX) DATE PLAN RECEIVED BY DATE REVIEW COMPLETED: ESGIL: 2/21 MAR. 019, 2018 REVIEWED BY: AL! SADRE, S.E. FOREWORD (PLEASE READ): This plan review is limited to the technical requirements contained in the International Building Code, Uniform Plumbing Code, Uniform Mechanical Code, National Electrical Code and state laws regulating energy conservation, noise attenuation and disabled- access. This plan review is based on regulations enforced by the Building Department. You may have other corrections based on laws and ordinances enforced by the Planning Department, Engineering Department or other departments. The following items listed need clarification, modification or change. All items must be satisfied before the plans will be in conformance with the cited codes and regulations. The approval of the plans does not permit the violation of any state, county or city law. . GENERAL Please make all corrections, as requested in the correction list. Submit FOUR new complete sets of plans for commercial/industrial projects (THREE sets of plans for residential projects). For expeditious processing, corrected sets can be submitted in one of two ways: Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602-2700. The City will route the plans to EsGil and the Carlsbad Planning, Engineering and Fire Departments. Bring TWO corrected set of plans and calculations/reports to EsGil, 9320 Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of plans and calculations/reports directly to the City of Carlsbad Building Department for routing to their Planning, Engineering and Fire Departments. NOTE: Plans that are submitted directly to EsGil only will not be reviewed by the City Planning, Engineering and Fire Departments until review by EsGil is complete. 2. To facilitate rechecking, please identify, next to each item, the sheet of the plans upon which each correction on this sheet has been made and return this sheet with the revised plans. cARLsBAD CBC20 18-0096 MAR. 019 2018 Please indicate here if any changes have been made to the plans that are not a result of corrections from this list. If there are other changes, please briefly describe them and where they are located on the plans. Have changes been made not resulting from this list? U Yes U No . PLANS Include the following information on site plans: Sec. 107.2: I.e., Sht. PV-100. a) Clearly dimension new carport setbacks from each other, adjacent structures, property lines, and street centerlines, on the site plans, as applicable. Please specify the following information on the plans for the proposed carports: Occupancy = S2; Type of Construction = Il-B; Height = 15' (Max); Story = One; Sprinklers = No; Floor Areas: C4 = ...; C6 = ...; Solar supported Carports Types A = ... ; B = ... ; C = ... ; etc. Please specify the actual versus allowable areas on the plans for the carports. When two or more buildings (or carports) are on the same property, they shall have an assumed property line between them for the purpose of determining the required wall and opening protection and roof cover requirements, per Section 705.3. An exception is provided if the combined area of the buildings is within the limits specified in Chapter 5 for a single building. If this exception is used, show how the building(s) will comply. Section 503.1.2. Show compliance on PV-100. Please demonstrate compliance with Table 602 for fire-resistance rating requirements for exterior walls. If not applicable, depending on the distance to adjacent structures, or assumed PL's, please specify N/A & skip to the next item. For buildings on the same lot, opening protectives having a fire-protection rating of not less than 34-hour shall be provided in every opening that is within a horizontal fire separation distance of 15' of the wall in which the opening is located. Section 705.8.6. See also Section 705.8.5. Show fire rating of any elements with details, references and approval number(s) on plans, as required: The City Policy requires that their special Inspection Agreement Form be completed for this project. This Form is available at the building department. Inked-in changes are not permitted on plans. Please revise the project address on the cover sheet of the plans accordingly, to match the permit application. ACCESSIBILITY 13. Provide notes and details on the plans to show compliance with the enclosed "Disabled Access" Review List. [Compliance by others is unacceptable response]. CARLSBAD CBC2018-0096 MAR. 019 2018 . STRUCTURAL Please clarify detail 051X, as noted on plans, starting on Sheet S2.0. Please indicate where details 1, 2,4 & 51S6.0 are called out on the plans. Please show that no confinement reinforcement is required for details NSI .0 & B/S60. If so, please show 3) #3 ties within the top 5" of the pier. AOl 3i8-14, Sec. 10.7.6.1.6. Asphalt, as noted will not create fixity at the top of the pier to justify constrained conditions. Concrete is fine, as stated under Foundation Note, on Sheet S1.0. Please demonstrate how the pad footings will provide fixity at the bottom to produce cantilevered column elements. [Flag pole footings are fine as noted]. Additional corrections may be necessary, once updated plans are submitted for review and approval. . MISCELLANEOUS Please see attached for the electrical & HC corrections.. The jurisdiction has contracted with EsGil, located at 9320 Chesapeake Drive, Suite 208, San Diego, California 92123; telephone number of 858/560-1468, to perform the plan review for your project. If you have any questions regarding these plan review items, please contact AL! SADRE, S.E. at EsGil. Thank you. ELECTRICAL and ENERGY COMMENTS PLAN REVIEWER: Eric Jensen ELECTRICAL (2016 CALIFORNIA ELECTRICAL CODE) That inverter AC disconnect is limited to 67" to the centerline of the operating handle. Include this specification on the PV200 sheet Why are all the underground conduits "existing"? When were they permitted? Parallel 2/0 aluminum is undersized for the 300-ampere circuit. See CEC 240.6 Explain the single line string fuse design: On sheet PV200 and the cut sheet a DC disconnect is specified (required) that has string fusing installed and the single line also has a "Y" fuse set-up? If only using the DC disconnect fusing, specify the DC fuse sizing. Note: If you have any questions regarding this Electrical and Energy plan review list please contact Eric Jensen at (858) 560-1468. To speed the review process, note on this list (or a copy) where the corrected items have been addressed on the plans. CARLSBAD CBC20 18-0096 MAR. 01, 2018 [DO NOT PAY— THIS IS 'NOT AN INVOICE] VALUATION AND PLAN CHECK FEE JURISDICTION: CARLSBAD PLAN CHECK #.: CBC2018-0096 PREPARED BY: ALl SADRE, S.E. DATE: MAR. 019 2018 BUILDING ADDRESS: 2510 WEST RANCH STREET BUILDING OCCUPANCY: 52; II-B BUILDING PORTION AREA ( Sq. Ft.) Valuation Multiplier Reg. Mod. VALUE ($) CARPORTS 9382 CARPORTS W/ 11340 SOLAR Air Conditioning Fire Sprinklers TOTAL VALUE 613,564 Jurisdiction Code ICB IBY Ordinance 1997 UBC Building Permit Fee V 1997 UBC Plan Check Fee Type of Review: 0 Complete Review J Structural Only I $2,379.261 I $1,546.521 O Repetitive Fee Repeats Other ci Hourly Hr. @ * EsGil Fee I $1,356.181 Comments: The valuation is stated on the cover sheet of the plans & is different from that reported on the City paper work. Sheet 1 of 1 CARLSBAD CBC20 18-0096 MAR. 01, 2018 PRIVATELY FUNDED MULTI-FAMILY DISABLED ACCESS CORRECTION CHECKLIST Note: All Sections referenced are from Title 24 (2016 CBC) SITE DEVELOPMENT/ACCESSIBLE ROUTE OF TRAVEL: PARKING: Please indicate on a resoonse list where each item is addressed on plans: The plans must indicate if the parking is "assigned" or "not assigned." Depending on the choice, the following items apply. If assigned parking is provided at privately funded multifamily building sites, accessible parking shall be provided for at least 2% of the assigned parking spaces, but not less than one. At least one space of each frøe of parking facility shall be made accessible even if the total number exceeds 2%. Signage is not required for assigned parking. Sec. 1109A.4. When parking is not assigned to a resident, at least 5% of the parking spaces shall be accessible and provide access to covered multifamily dwellings and facilities (club houses, pools, etc.). Such parking spaces shall be provided with signage by Section 1109A.8.8. Such signage shall not be blocked from view by a vehicle parked in the space. Sec. 1109A.5. Accessible parking shall be located on the shortest possible accessible route of travel to an accessible building entrance. Sec. 1109A.7.1. In facilities with multiple accessible building entrances with adiacent parking, accessible parking spaces shall be dispersed and located near the accessible entrances. Sec. 1109A.7.2. When practical, the accessible route shall not cross lanes for vehicular traffic. When crossing vehicle traffic lanes is necessary, the accessible route shall be designated and marked as a crosswalk. Sec. 1109A.7.3. A vertical clearance of 8'-2" (measured to the lowest projection from the ceiling) shall be maintained to each required accessible parking space. Sec. 1109A.8.1. Dimension this on plans to the bottom of any bracing. Each accessible space shall be 14' wide & outlined to provide a 9' parking area & a 5' loading & unloading area. The loading & unloading area may be located on the either side of the vehicle. Sec. 1109A.8.5.1. Two adiacent accessible parking spaces may be provided with a 23' wide area lined to provide a 9' parking area on each side of a 5' loading and unloading area in the center. Sec. 1109A.8.5.2. One in every eight accessible spaces, but not less than one, shall be served by an access aisle 8' wide mm and shall be designated van accessible with a sign "Van Accessible" mounted below the symbol of accessibility. Alternately, the parking space may be 12' wide with the access aisle 5' wide. Sec. 1109A.8.6. The access aisle shall be located on the passenger side of the vehicle. Ramps shall not encroach into any accessible parking space or the adiacent loading/unloading access aisle. Sec. 1109A.8.2.2. The words. "NO PARKING" shall be painted on the ground within each loading/unloading access aisle, located sothat it is visible to-traffic enforcement officials. Sec. 1109A.8.5.4 The minimum length of each parking space shall be 18 feet. Sec. 1109A.8.5.3. At each parking space, a bumper or curb shall be provided to prevent encroachment of cars over the required width of walkways. Sec. 1109A.8.2.1. The accessible parking space(s) shall be so located that people with disabilities are not compelled to wheel or walk behind parked cars other than their own. Sec. 1109A.7.5. Surface slopes of parking spaces for physically disabled shall not exceed 1/4 inch per foot (2.083 % gradient) in any direction. Section 1109A.8.3. If a parking lot has unassigned parking spaces, then the accessible parking stalls shall be identified by a sign, complying with Sec. 1109A.8.8. CARLSBAD CBC20 18-0096 MAR. 01, 2018 18. An additional sian shall be oosted in a consoicuous olace at each entrance to off-street oarkina facilities or immediately adiacent to and visible from each stall or space. The sign shall not be less than 17 inches by 22 inches in size with lettering not less than 1 inch in height, which states the following: "Unauthorized vehicles parked in designated handicapped spaces not displaying distinguishing placards or license plates issued for physically disabled persons may be towed away at owners expense. Towed vehicles may be reclaimed at or by telephoning Section 1109A.8.8. 19. The surface of each accessible parking space or stall shall have a surface identification duplicating either of the following schemes: By outlining or painting the stall or space in blue and outlining on the ground in the stall or space in white or suitable contrasting color the "International Symbol of Accessibility"; or. By outlining the "International Symbol of Accessibility" in white on blue background. The symbol shall be located so that it is visible to a traffic enforcement officer when a vehicle is properly parked in the space and shall be 36 inches high by 36 inches side. Section 1109A.8.8. CURB RAMPS 20. Curb ramps shall be constructed at each corner of street intersections and where pedestrian way crosses a curb. Sec. 1112A.1. 21. Curb ramps shall be a mm. of 4' in width. Sec. 1112A.3. 22. The slope of the curb ramp shall not exceed 1 vertical to 12 horizontal. If a curb ramp is located where pedestrians must walk across the ramp, then it shall have flared sides which slope at max 1:10. Sec. 11112A.5. 23. A level landing 4' deep shall be provided at the upper end of each curb ramp over its full width to permit safe egress from the ramp surface, or the slope of the fanned or flared sides of the curb ramp shall not exceed 1 vertical to 12 horizontal. Sec. 1112A.6. 24. All curb ramps shall have a grooved border, 12" wide at the level surface of the sidewalk along the top and each side, approximately %" on center. Sec. 1112A.8. 25. Show that detectable warnings, extending the full width and depth of the curb ramp, inside the grooved border, are to be installed for all curb ramps (regardless of slope), per Sec. 11 B-705. Only approved DSA/AC detectable warning products & directional surfaces shall be installed. Sec. 11 B-705.3, as ref. by Sec. 1112A.9. 26. Curb ramp shall be located or protected to prevent their obstruction by parked cars. Sec. 1112A.2. WALKS AND SIDEWALKS 27. All walks and sidewalks subiect to these reaulations shall have continuous common surface, not interrupted by steps or by abrupt changes in level exceeding ½ inch, and shall be a minimum of 48" in width. Walks and sidewalks serving individual dwelling units in privately-funded multifamily buildings may be reduced to 36" in clear width. Sec. 1113A.1. 28. When the slope in the direction of travel of any walk exceeds 5%, it must comply with the provisions for Pedestrian ramps. Sec. 1113A.3. 29. Walks shall be provided with a level area not less than 60" by 60" at a door or gate that swings toward the walk, and not less than 48" by 44" deep at a door or gate that swings away from the walk. Such walks shall extend 24" to the side of the strike edge of a door or gate that swings toward the walk. Sec. 1113A.4. 30. All walks with continuous gradients shall have level areas at least 5' in length at intervals of atleast every 400'. Sec. 1113A.2. RAMPS: If none, state N/A & skip to the end 31. Any path of travel is considered a ramp if its slope is greater than 5% (1:20). The slope of the ramp cannot exceed 8.33% (1:12). Sec. 1114A.2. CARLSBAD CBC20 18-0096 MAR. 01, 2018 Continuous, full-length handrails are required at each side for all ramps. The handrails are to extend in the direction of the ramp not less than 12" beyond the top & bottom of the ramp. Sec. 1114A.6.1 & 1114A.6.2.3. The handrails must be 34 to 38" above the ramp surface. The size and spacing requirements for ramp handrails are the same as for stairway handrails. Sec. 11 14A.6.2. Where a ramp is not bounded by a wall or fence and the ramp exceeds 10' in length, there shall be a curb at least 4" high, or a wheel guide rail 4" above the ramp surface. Sec. 11 14A.7. Top landings shall be not less than 60" wide and shall have a length of not less than 60" in the direction of ramp run. Sec. 1114A.4.2. The top landing width shall extend a mm. of 24" past the strike edae of the door. Section 1114A.4.5. Intermediate landings shall be provided at intervals not exceeding 30" of vertical rise. Such intermediate landings are to be at least 60", measured in the direction of the ramp. Sec. 1114A.4.1 & 1114A.4.7. Intermediate landings shall be provided at each change of ramp direction. Bottom and intermediate landings at a change of direction over 30 degrees must be at least 72" as measured in the direction of the ramp. Sec. 1114A.4.1 & 1114A.4.6. Job No. 18-103 Sheet No. cover By RRD Date JAN 2018 1741~ It, IS14i Z CLIENT: SKYLINE STEEL, INC. 631 W. Commerce Ave. Gilbert, AZ 85233 PROJECT: MONTECITO APARTMENTS @ ROBERTSON RANCH Carlsbad, CA 92 OIO° Lit* NEW STEEL CANOPY WITH SOLAR PV PANELS GENERAL INFORMATION: BUILDING CODE: 2016 C.B.C. ?OESSIO/V. \ Exp. 03-31-18 01-25-18 NOTE: THE CALCULATIONS PRESENTED HERE ARE PROJECT / SITE SPECIFIC TO THE ADDRESS NOTED ABOVE, ONLY FOR THE STRUCTURES AND/OR EQUIPMENTS REFERENCED IN THIS ANALYSIS AND PREPARED FOR ONE TIME USE EXCLUSIVELY BY SKYLINE STEEL, INC. THE INFORMATION PROVIDED HEREIN BY DESERT FOX, LLC, SHALL NOT BE USED FOR ANY PURPOSE OTHER THAN TO FACILITATE THE BUILDING PERMIT APPLICATION APPROVAL FOR THIS PROJECT AND SHALL NOT BE USED IN LIEU OF THE APPROVED CONSTRUCTION DOCUMENTS. THIS DOCUMENT SHALL NOT BE USED OR REFERENCED FOR THE ACTUAL INSTALLATION OR CONSTRUCTION OF ANY STRUCTURES OR EQUIPMENTS THAT ARE ASSOCIATED WITH THIS PROJECT. IT SHALL NOT BE RELEASED TO ANY OTHER PARTY WITHOUT THE WRITTEN CONSENT OF DESERT FOX. LLC. THE INFORMATION CONTAINED IN THIS REPORT IS AN INSTRUMENT OF SERVICE AND IS THE PROPERTY OF DESERT FOX, L-C. 02018 DESERT FOX, LLC., ALL RIGHTS RESERVED. THIS REPORT OR ANY PART THEREOF MUST NOT BE REPRODUCED IN ANY FORM WITHOUT THE EXPRESSED WRITTEN PERMISSION OF DESERT PDX, U.C. 969 E. Saratoga St. Gilbert, AZ 85296 • 1: (480) 205-2094 • F: (480) 633-9328 • www.dfoxonline.com I tarv"l I wo OcW. I I I I GJV1J 3 3 1 C 4 QA2JR A O R O Y T wotv a aiiv a I I I I I I I I , I 1 PARKING CANOPY BASIS FOR DESIGN: BUILDING CODE: 2016 EDITION OF THE CALIFORNIA BUILDING CODE WITH CITY OF CARLSBAD AMENDMENTS. LOADS: ROOF LIVE LOAD =20 PSF (REDUCIBLE). ROOF DEAD LOAD =6 PSF (SOLAR CANOPY). =4 PSF (NON-SOLAR CANOPY). LATERAL: RISK CATEGORY II (GROUP U STRUCTURE). WIND ANALYSIS PROCEDURE = ASCE 7-10 FOR OPEN STRUCTURES (SEC. 30.8). 3 SECOND WIND GUST= 110 MPH. EXPOSURE C. SEISMIC: IMPORTANCE FACTOR = 1.0. DESIGN CATEGORY D. MAPPED SPECTRAL RESPONSE ACCELERATION (Ss) = 1.017. MAPPED SPECTRAL RESPONSE ACCELERATION (Si) = 0.3 87. SITE CLASS D. I ANALYSIS PROCEDURE: EQUIVALENT LATERAL FORCE PROCEDURE. BASIC SEISMIC FORCE RESISTING SYSTEM: CANTILEVERED COLUMN SYSTEM DETAILED TO I CONFORM TO THE REQUIREMENTS FOR ORDINARY CANTILEVERED COLUMN. RESPONSE MODIFICATION FACTOR, R = 1.25. I FOUNDATION: 1,500 PSF ALOWABLE BEARING PRESSURE FOR SPREAD TYPE FOOTINGS. 100 PSF/FT ALLOWABLE LATERAL BEARING RESISTANCE VALUE FOR POLE TYPE FOOTINGS. I I I U I MecaWind Std v2.2.7.0 per ASCE 7-10 Developed by MECA Enterprises, Inc. Copyright www.rnecaeoterprises.com I Date : 1/19/2017 Project No. : 18-103 Company Name : Desert Fox Designed By : PAD Address : 2600 Gage Dr. Description : Carport Canopies City : Carlsbad Customer Name : Skyline State : CA Proj Location : Carlsbad, Ca. I File Location:G:\Desert Fox\08-103\Montecito.wnd Input Parameters: Directional Procedure Open Building (Ch 27 Part 1) Basic Wind Speed(V) 110.00 mph Structural Category II I Natural Frequency N/A Exposure Category Importance Factor 1.00 9.50 Flexible Structure = No Alpha 0.11 0.15 Nd Directional Factor = 0.85 At 0.20 0.20 Zg 900.00 ft Am 1.05 : 12 Bt = 1.00 • Cc 38.75 ft Bra 0.65 Epsilon 13.00 ft 1 500.00 ft Pitch of Roof Zmin 15.00 ft D: Roof Len along Ridge Slope of Roof (Theta) = 5.00 h: Mean Roof Ht Deg Horizontal Width = 20.50 ft I L: Gust Factor Calculations Type of Roof = MONOSLOPE Gust Factor Category I Rigid Structures - Simplified Method Gustl: For Rigid Structures (Nat. Freq.>1 Hz) use 0.85 = 0.85 I Gust Factor Category II Rigid Structures - Complete Analysis 2m: 0.6*Ht = 15.00 ft lzm: Cc*(33/Zm)0.167 0.23 Lzm: 1*(Zm/33)Epsilon = 427.06 ft 4: (1/(1+0.63*((B+Ht)/Lzm)0.63))'0.5 = 0.94 I Gust2: 0.925*((1_1_1.7*lzm*3.4*Q(/(1+1.7*3.4*lzm)) 0.89 Gust Factor Summary Not a Flexible Structure use the Lesser of Gusti or Gust2 = 0.85 I Open Building-Monoslope Roof per Figure 27.4-4: L 1 CNNV I _ I Normal to Ridge - Open Building - Monoslope Roof per Figure 27.4- I 4: Gamma = 0 degrees, Clear Wind Flow Load Cnw Cnl Windward Wind Pres.Leeward Wind Pres. I Case psf psI ----------------------------------------------- A 1.200 0.300 22.798 5.699 B -1.100 -0.100 -20.898 -1.900 I I 3 a a MO Notes - Normal to Ridge Normal to Eave - Open Building - donoslope Roof per Figure 27.4-4: Gamma = 180 degrees, Clear Wind Flow Load Cow Cnl Windward Wind Pres.Leeward Wind Pies. Case psf psf --------------------------------------------------------------- A 1.200 0.300 22.798 5.699 B -1.100 -0.100 -20.898 -1.900 Notes - Normal to Rave Along Ridge - Open Building - Nonoslope Roof per Figure 27.4-4: Gamma 90 degrees, Clear Wind Flow Length Along Roof Angle Load Cm Wind Press Along Ridge Ridge of Roof (Theta) Case pof psf ------------------------------------------------------------------ < 13.0 Theta<=45 deg A -0.800 -15.199 B 0.800 15.199 >13.0&<,,2*13.0 Theta<=45 deg A -0.600 -11.399 B 0.500 9.499 Notes - Along Ridge Wind Pressure on Components and Cladding (Ch 30 Part 5) j. r Mono sjoiie Roof All pressures shown are based upon STRENGTH Design, with a Load Factor of 1 Width of Pressure Coefficient Zone 'a" = 3.00 ft Description Width Span Area Zone Co Cn Max P Min P ft ft ft2 Max Win psf pef ----------------------------------------------------------------------- Zone .1 1.00 1.00 1.0 1 1.47 -1.30 27.86 -24.70 Zone 2 1.00 1.00 1.0 2 2.20 -1.97 41.80 -37.36 Zone 3 1.00 1.00 1.0 3 2.93 3.90 55.73 -74.09 Zone 3 Roof Purlj 3.39 19.00 120.3 3 1.17 -1.30 27.86 -24.70 Zone 3 Roof Putli 3.39 10.00 33.9 3 2.20 -1.97 41.80 -37.36 ag USGS Design Maps Summary Report User—Specified Input Report Title MONTECITO APARTMENTS Tu January 25, 20J8 0U58:43 iJTC Building Code Reference Document ASCE 7-10 Standard (whyh ublizea USGS h.aad data available n 2008) Site Coordinates 33,155860N, 1 17.29963°W Site Soil Classification Site Class D - "Stiff Soil" S= 1.075g S= 1150g S= 0.767g S1 = 0.414 g SMI = 0,657 g SDI = 0.438 g For information on how the SS and Si values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document. cise Sn'ect-jr For PGAI, T, C,,, and C,, values, please view the detailed report. SEISMIC ANALYSIS IBC 2O15/ASCE7-1O EQUIVALENT LATERAL FORCE METHOD PROJECT: For Cantilvered Column (Longitudinal) DESCRIPTION: LOCATION: Ss: 1.075 S1: 0.414 IE: 1 Occupancy: I Seis. Category: D Site Class: D ap 1 R 1.25 Ct 0.02 TL: 8.00 sec V: Cs W C5: SDS/(R/l): 0.613 Max C5: SDI/(R/I)T: 2.716 Max C5: SDI(TL)/(R/I)T2: - Min C5: 0.5S11(RII): - Min C5: (001) or 0.044SDSI 0.010 Fa: 0.613 S0s: 0.767 F5: 0.429 SDI: 0.438 V = 0.613 W (ULTIMATE) V = 0.429 W (ASD) ASCE 7-05 SEC. 12.8-1 ASCE 7-05 SEC. 12.8-2 ASCE 7-05 SEC. 12.8-3 ASCE 7-05 SEC. 12.8-4 ASCE 7-05 SEC. 12.8-6 ASCE 7-05 SEC. 12.8-5 T: 0.13 sec rev. 07-29-10 DESERT FOX, LLC Job Name:MONTECITO APTS. Consulting Structural Engineers Job No.: 18-103 Sheet: 6 969 E. Saratoga St. By: RRD Date: JAN 2018 Gilbert, AZ 85296 1(480) 205-2094 F(480) 633-9328 Solar Panel Designed supplied and installed by others. cioofPur]ins: Ccc 8" x 3 1/2" x 16ga Max. span, Lprth 19.0 ft apr :-= 10.06-ft tributary, pTn 3,39-ft W (RDLI + RDL2 + RLL)Sprtn w 80.92p1f Wind Pressures (zone 31. P3prtn.pn = 27.860psf W 05 := (0.6p3prinp + RDLI + RDL2).(s11)Wpos = 69.79p1f P3pr!n.neg = 24.700psf Wneg : [0.6p3prjn.neg 0.67(RDLJ + RDL2)1(spdfl) "neg = 41.45p1f DL+LL_ controls. (see pages 7-8) Purlin to Beam Coction: 14ga clip with (8) #12 screws each leg (4-screws each purlin, 4-screws each cee beam) Pudins are stacked on top of beams. Check connection foruplift load. R 0.5(wneg)Lpjjn R = 0.39 kips 2-R = 0.79 kips I t IWneg)t I Lprjn + Rcant:= Rcant= 0.92 kips .g)iD to beam connection critical (Dullout : Member not in contact w/ screw head (14ga beam minimum), t2:= 0.070-in Tensile Strength, Fu2 := 65.0-ksi Screw diameter, d:= 0.216-in to := t2 to = 0.070 in Priot:= 0.85•tc-d-Fu2 Pnot = 0.84 kips .0 := 3.0 Pnot Allow. Pullout, Pap llout := -- Paji0 278.46 Jhf for(4)#12 screws: 4.(Pa.i0t) = 1.11 kips - O.K. for (8) #12 screws: X.(Papunot = 2.23 kips O.K. 7 Project Name: MONTECITO APTS. Page 1 of I Model: Roof Purlins Date: 01 /19/2018 Code: 2007 NASPEC EAISI S100-20071 Simpson Strong-lietSi CFS DesignerTM 1.5.0.0 Section: Cee 8 x 3.5 x 16ga Single C Stud Maxo = 5585.3 Ft-Lb Moment of Intertia, I = 970 inA4 Loads have not been modified for strength checks Loads have not been modified for deflection calculations CInws.r I ,.,4 flafln,-4n,, rhnr It Fy55.0 ksi Va = 2519.7 lb • Mmax Mmax! Mpos Bracing Ma(Brc) Mposl Deflection Span Ft-Lb Maxo Ft-Lb (in) Ft-Lb Ma(Brc) (in) Ratio Span 3651.5 0.654 3651.5 Mid-Pt 5200.8 0.702 0.829 L/275 Distortional Buckling Check Span K-phi Lm Brac Ma-d Mmaxl lb-in/In in Ft-Lb Ma-d Span 0.00 228.0 4733.0 0.772 Combined Bending and Web Crippling Reaction or Load Bearing Pa Pn Mmax Intr. Stiffeners Pt Load P(lb) (in) (lb) (lb) (Ft-Lb) Value Required? Ri 768.7 2.50 911.5 1595.2 0.0 0.44 NO R2 768.7 2.50 911.5 1595.2 0.0 0.44 NO Combined Bending and Shear Reaction or Vmax Mmax Va Intr. Intr. Pt Load (lb) (Ft-Lb) Factor VNa Ni/Ma. tinstiffened Stiffened RI 768.7 0.0 1.00 0.31 0.00 0.31 N/A R2 768,7 0.0 1.00 0.31 0.00 0.31 N/A SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com I I I I I I I 8 Project Name: MONTEC ITO APTS. Page 1 of I Model: Roof Purlins at Cantilever Date: .01/19/2018 Code: 2007 NASPEC [AISI Si 00-2007] Simpson Strong-Tie® CFS DesignerIM 1.5.0.0 80.92 80.92 IMENNUM OEM Ri R2 10.06 19.00 Section: Cee 8 x 3.5 x 16ga Single C Stud Maxo = 5585.3 Ft-Lb Moment of fntertia, I = 9.70 inA4 Loads have not been modified for strength checks Loads have not been modified for deflection calculations ,..1 (hI, Fy = 55.0 ksi Va =2519.7 lb • Mmax Mmaxl Mpos Bracing Ma(Brc) Mpos/ Deflection Span Ft-Lb Maxo Ft-Lb (in) Ft-Lb Ma(Brc) (in) Ratio Left Cantilever 4094.7 0.733 2614.1 None 5341.9 0.489 0.796 L/303 Span 4094.7 0.733 1891.1 Mid-Pt 5085.7 0.372 0.290 L/787 Distortional Suckling Check Span K-phi Lm Brac Ma-d Mmaxl lb-inlin in Ft-Lb Ma-d Left Cantilever 0.00 120.7 4733.0 0.865 Span 0.00 228.0 4733.0 0.865 gombined Bending and Web Crippling Reaction or Load Bearing Pa Rn Mmax Intr. Stiffeners Pt Load P(lb) (In) (lb) (lb) (Ft-Lb) Value Required? Ri 1798.3 2.50 1760.2 2904.3 4094.7 1.00 YES R2 553.2 2.50 911.5 1595.2 0.0 0.32 NO Combined Bending and Shear Reaction or Vmax Mmax Va. Intr. intr. Pt Load (lb) (Ft-Lb) Factor V/Va MIMa Unstiffened Stiffened RI 984.3 4094.7 1.00 0.39 0.73 0.83 N/A R2 553.2 0.0 1.00 0.22 0.00 0.22 N/A SIMPSON STRONG-TIE COMPANY INC. www.strongtle.com Project Name: MONTECITO APTS. Page 1 of Mode!: Roof Purlins Date: P1/19JPi8 Code: 2007 NASPEC [AISI S100-20071 Simpson Strong-Tie® CFS Designer 1.5.0.0 Section Designation: Cee 8 x 3.5 x 16ga Single C Stud INPUT PROPERTIES: Web Height = 8.0000 In Steel Thickness = 0.0600 in Top Flange = 3.5000 in Inside Corner Radius 0.1250 in Bottom Flange 3.5000 in Yield Stress, Fy = 55.0000 ksi Stiffening Lip 1.0000 in Fy With Cold-Work, Fya = 55.0000 ksi OUTPUT PROPERTIES: Effective Section Properties, Strong Axis Neutral Axis from Top Fiber Ycg) 4,3622 in Moment of Inertia for Deflection (lxx) 9.7024 lnA4 Section Modulus (Sox) 2.0351 1n1'3 Allowable Bending Moment (Ma) 5585,30 Ft-Lb Allowable Distortional Buckling Moment (Mda) at K$ = 0 4732.99 Ft-lb Gross Section Properties of Full Section, Strong Axis Neutral Axis from Top Fiber (Ycg) 4.0000 in Moment of Inertia (lxx) . 10.1768 inA4 Cross Sectional Area (A) 0.9896 lnA2 Radius of Gyration (Rx) 3.2068 in Section Projes, Wek AxIs Gross Neutral Axis (Xcg) From Web Face 1.1243 in Gross Moment of Inertia (Iyy) 1.7247 lnA4 Radius of Gyration (Ry) 1.3201 In Other Section Property Data Member Weight per Foot of Length 3.3675 lb/ft Allowable Shear Force In Web (Unpuoched) 2519.65 lb Pao for use in Interaction Equation C5-2 16307 lb Torsional Properties Dist. from Sheer Center to Neutral Axis (Xo) -2.7600;n St. Venant torsion Constant (J x 1000) 1.1876 in 114 Warping Constant (Cw) 24.1671 lnA6 Radii of Gyration (Ro) 4.4321 in AG Torsional Flexural Constant (Beta) 0.6122 Warping Torsional Properties a(InA3) Sxx(Iip)(inA3) Wn(1)(inA2) Wn(2)(inA2) Wn(3)(inA2) Wn(4)(inA2) Wn(5)(inA2) Wn(6)(in2) 230,5 2.6404 11.9966 7.0441 -6.6127 6.6127 -7,0441 -11.9966 Location (1) and (6) are tip of compression and tension lip respectively Location (2) and (5) are flange/lip corner of compression and tension side respectively Location (3) and (4) are flange/web corner of compression and tension side respectively SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com 91 T-S" X 5-4 X 26 THK. OPTIONAL SPREAD F0OTIN SECTION A KEYNOTES: I. 5PR-E20-435-COM SOLAR MODULES. 2 GEE 4X2.5XI2A. (2-I4005250-q7) DOUBLE STEEL BEAM. GEE S'X35XIS&A. (5005350-54) STEEL PURLINS. 2 GEE I2"X3.5"XIO&A (2-12005350-11-7) BOXED STEEL COLUMN. (E) FINISHED GRAPE. S. CROVN TOP TO FACILITATE HATER RUN OFF. 1. 5-#5 VERTICAL BARS. S. S-S PEEP AT ASPHALT OR SOIL. . GIP 24 PIA. CONCRETE EMBEDDED POLE FO0TIN. 0. (I0)-5 BOTTOM LONSIThPINAL REBAR. II. #4 EACH DIRECTION (DRILLED) EXTEND 3 MIN. EXTEND PAST COLUMN. (I(b)-*5 TRANSVERSE REBAR. CENTERLINE OF COLUMN AND FOOTINS. DESERT FOX, L LC Consulting Structural Engineers 969 E. Saratoga St. Gilbert, AZ 85296 T(480) 205-2094 F(480) 633-9328 Job Name:MONTECITO APTS. Job No.: 18-103 Sheet: 11 By: RRD Date: JAN 2018 Roof.Beams- (2) Ccc 14" x 2 1/2" x l2ga DP TEE CROSS SECTION A 1-9.0-ft tnbutaiydcpth, dbm :' 40.53-ft TrThutaiy Area: At ;r. (5b1n)(t1bm) At 770.07 ft2 RI := if(At <200-ft2, I , if: 'At> 600•ft2,0.60, 1.2 - 0.00i -) RI = 0.600 ft) Roof slope less than 4:12: R2 := 1.0 Lr:= (RI)-(R2).(RLL) Lr = 1200psf wdl : (R.L)L)Sbm wdl = 114.00p1t wU := (Lr)Sbrn wil 228.00 plf Load Each CeeSection w:= (RD], 4- Lr)-sbm w = 342.00 p11 0.5w = 171.00 p11 Beam sp:jLL Left cantilever, Lt0ft := 12.55-11 Right cantilever, := 12.76-ft Centerspan, Lctr:= 15.21-ft Max. Positive VAnd Premres (MWFRS): P wjnçrd = 22.80psf 1Ajecward = 5.70 pSf assume windward pressure full length (0.6P/Lwindward + JU)L)(sbm) wpos = 373.90p1f 0.5w r-r 186.95 p11 w 05 := (06PAIccwpJ + RDL)(Sbm) w = 178.97 p11 0.5w = 89.48 plf B windrd = -20.90 psf Wneg : l(0.6PWjndJd - 0.67RDL)(sbm)I Wneg = 314.62 p11 0.5w, = 157.31 plf Left cantilever, Lien := 12.60 ft Center span, Lctr := 1526ft - Seepages below Right cantilever, Ltt 12.821t 12 I Project Name: MONTECITO APTS. Page 1 of I Model: Roof Beams (OP - Dale: 1/25/2018 Code: 2012 NASPEC [AISI SI 00-2012] Simpson Strong-Tie® CFS Designer1M 1.5.0.0 Ri R2 12.60 15.26 12.82 SloedIPartLLoads -. Case Xl ft W(XI) lb/ft X2 ft W(X2) lb/ft 1 0.00 187.0 20.34 187.0 2 20.34 89.5 40.68 89.5 Section Cee 14 x 2.5 x l2ga'Single C Stud Maxo = 18884.0 Ft-Lb Moment of Intertla, 1=53.11 inA4 Loads have not been modified for strength checks Loads have been multiplied by 0.70 for deflection calculations Fy55.0ks1 Va =7609.6 lb Mmax Mmax/ Mpos Bracing Ma(Brc) Mpos! Deflection Span Ft-Lb Maxo Ft-Lb (In) Ft-Lb N7a(Brc) (in) Ratio Left Cantilever 14840.1 0.786 9473.9 Mid-Pt 16650.0 0.569 1.162 EJ260 Span 14840.1 0.786 10393.4 Mid-Pt 14501.3 0.717 0.174 L/1051 Right Cantilever 7350.8 0.389 4691.1 Mid-Pt 16506.9 0.284 0.781 L1394 Distortional Buckling Check Span K-phi Lm Brac Ma-d Mmax/ lb-In/In In Ft-Lb Ma-d Left Cantilever 200.00 151.2 17698.3 0.839 Span 200.00 183,1 17698.3 0.839 Right Cantilever 200.00 153.8 17698.3 0.415 Combined Bendijig and Web Crippflng Reaction or Load Bearing Pa Pin Mmax Intr. Stiffeners Pt Load P(lb) (in) (lb) (lb) (Ft-Lb) Value Required? RI 4092.0 2.50 5339.2 8809,7 14840.1 0.89 YES R2 1530.6 2.50 5339.2 8809.7 7350.8 0.39 NO Combined Bending and Shear Reaction or Vmax Mmax Va V + M Pt Load (Ib) (Ft-Lb) Factor viva MJMa Intr. RI 2355.6 14840.1 1.00 0.31 0.79 0.84 R2 1147.4 7350.8 1.00 015 0.39 0.42 SIMPSON STRONG-TIE COMPANY INC. www.strongiie.com I I I I Project Name: MONTECITO APTS. Page 2 of 2 Model: Roof Beams (DP Date: 1/25/2018 Code: 2012 NASPEC [AISI S1O02c1121 Simpson Strong-Tie® CFS Designer 1.5.00 Within Span (unstiffenod) Unpunched Punched Location, X M(X) V(X) Location, X M(X) V(X) Span (ft) (Ft-Lb) (lb) Intr. (ft) (Fe-Lb) (lb) Intr. Left Cantilever 12.60 -14840.1 -2355.6 0.71 N/A N/A N/A N/A Span 12,60 -14840.1 1736.5 0.67 N/A N/A N/A N/A Right Cantilever 27.86 -7350.8 1147.4 0.17 N/A N/A N/A N/A 13 SIMPSON STRONG-TIE COMPANY INC. www.strongtiecom 14 Project Name: MONTECITO APTS. Page 1 of 1 Model: Roof Beams (DP 19.0' bay trib) - (DL+LL) Date: 1/25/2018 Code: 2012 NASPEC (AISI S100-20121 Simpson Strong-Tlec5CFS Designer'l-4 1.5.0.0 171.00 171.00 171.00 Ri R2 12.55 15.21 12.76 Section: Gee 14 x 2.5 x 12ga Single C Stud Maxo = 18884.0 Ft-Lb Moment of Intertla, I = 53.11 1n4'4 Loads have not been modified for strength checks Loads have not been modified for deflection calculations rnd Fy = 55.0 ksi Va = 7609.6 lb Mmax Mmax/ Mpos Bracing Ma(Brc) Mpos! Deflection Span Ft-Lb Maxo Ft-Lb (In) Ft-Lb Ma(Brc) (in) Ratio Left Cantilever 13466.5 0.713 8597.0 None 10987.3 0.782 1.671 IJIBO Span 13920.9 0.737 10652.9 Mid-Pt 14412.2 0.739 0.305 1J598 Right Cantilever 13920.9 0.737 8887.1 None 10684.5 0.832 1.746 U175 Distortional Buckling Check Span K-phi Lm Brac Ma-d Mmax/ lb-In/in In Ft-Lb Ma-d Left Cantilever 0.00 150.6 17054.6 0.790 Span 0.00 182.5 17054.6 0.816 Right Cantilever 0.00 153.1 17054.6 0.816 Combined Bending and Web Crioplin Reaction or Lead Bearing Pa Pn Mmax Intr. Stiffeners Pt Load P(lb) (in) (Ib) (lb) (Ft-Lb) Value Required? RI 3416.6 2.50 5339.2 8809.7 13466.5 0.78 NO R2 3512.3 2.50 5339.2 8809.7 13920.9 0.80 YES Combined Bending and Shear Reaction or Vmax Mmax Va V + M Pt Load (lb) (Ft-Lb) Factor VNa M/Ma Intr. RI 2146.1 13466.5 1.00 0.28 0.71 0.77 R2 2182.0 13920.9 1.00 0.29 0.74 0.79 SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com I 15 Project Name: MONTECITO APTS. Model: Roof Beams (DP Code: 2012 NASPEC [AISI S100-2012j Section Designation: Cee 14 x 2.5 x 129a Single C Stud INPUT PROPERTIES: Page 1 of I Date: 1/25/2018 Simpson Strong-TiecR CFS Designer1M 1.5.0.0 0.1050 In 0.1250 in 55.0000 ksi 55.0000 ksi Web Height = 14.0000 in Steel Thickness Top Flange 2.5000 in inside Corner Radius Bottom Flange = 2.5000 in Yield Stress, Fy = Stiffening Up = 1.0000 In Fy With Cold-Work. Fya = OUTPUT PROPERTIES Effective Section Properties, Strong Axis Neutral Axis from Top Fiber (Ycg) Moment of Inertia for Deflection (hoc) Section Modulus (Sxx) Allowable Bending Moment (Ma) Allowable Distortional Buckling Moment (Mdc) at K4 - 0 Gross Section Properties of Full Section. Strong Axis Neutral Axis from Top Fiber (Ycg) Moment of Inertia (lxx) Cross Sectional Area (A Radius of Gyration (Rx) Section Properties. Weak Axis Gross Neutral Axis (Xcg) From Web Face Gross Moment of inertia (iyy) Radius of Gyration (Ry) Oilier Section _Property Data Member Weight per Foot of Length Allowable Shear Force In Web (Unpurcched) Pao for use in Interaction Equation C5-2 Torsional Properties Dist. from Shear Center to Neutral Axis (Xc) St. Venant torsion Constant (J x 1000) Warping Constant (Cw) Radii of Gyration (Ro) Torsional Flexural Constant (Beta) Warping Torsional Properties a(inA3) Sxx(lip)(ln3) Wn(1)(inA2) Wn(2)(In2) Wn(3)(in'2) 143.0 7.9468 13.3549 10.2086 -6.4308 Location (1) and (6) are tip of compression and tension tip respectively Location (2) and (5) are flange/lip corner of compression and tension side respectively Location (3) and (4) are flange/web corner of compression and tension side respectively Wn(4)(ln'2) 6.4306 7,4537 in 53.1137 ine4 6.8808 inA3 18883.09 Ft-Lb 17054.63 Ft-Lb 7.0000 in 54,5463 in"4 2.1289 in2 5.0618 in 0.5413 in 1.5001 inA4 0.8394 in 7.2442 lb/ft 7609.58 lb 35327 lb -1.4144 in 7.8237 in4 61.2937 in"6 5.3223 inA6 0.9294 Wn(5)(lnA2) Wn(6)(inA2) -10.2066 -13.3549 SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com I I I I I I I I I I DESERT FOX, LLC Consulting Structural Engineers 969 E. Saratoga St. Gilbert, AZ 85296 1(480) 205-2094 F(480) 633-9328 Job Name:MONTECITO APTS. Job No.: 18-103 Sheet: 16 By: RRD Date: JAN 2018 Beam to Column Connection: (4)314" 4) A 307 bolts Lctr = 15.26ft Lieft = 12.60 ft Light = 12.82ft Rbrn m3((W,Wp0s,Wncg).(0.5LCtt .t. L t,) Rbm = 773 kip Half load each cee section: V := v = 0.97 kips per bolt 4 Allowable Bearing on 14ga (beam I column): t := 0.07 in Fu := 65.0.ksi d := 0.75-in M := 2.22 Pp := 2.22-Fu Fp = 144.30 ksi Pit := Fp.dt Pn = 7.58 kips Pa :=-- Pa=3.4ikips Allow. Bolt Mgar, Va := 4.4kips - O.K. DESERT FOX, LLC Consulting Structural Engineers 969 E. Saratoga St. Gilbert, AZ 85296 T(480) 205-2094 F(480) 633-9328 Job Name:MONTECITO APTS. Job No.: 18-103 Sheet: 17 By: RRD Date: JAN 2018 Column Loading: (2)1.2 x 3.5 x lOga Boxed TYPICAL Column design height, Hcol:= 1311-ft high side critical Tributaiywidth, s 01 : 21.24.ft tributary depth, d,,,:= 20.26-ft TributayArea: At := (sco (dcoi) At = 430.32 ft2 ( ( At" RI := if At <200-ft2,i.ifl .At>600ft2,0.60,1.2-0.001— II R.1 —0.770 ft2)) Roof slope less than 4:12: R2:= 1.0 1,r:= (RI).(R2)•(RLL) Lr = 15.39psf Dl.. oncoiumn, Lctr := 15.21ft Lieft := 12.76.ft Pd! := RDL- (Sj). (O.5Lctr + L10ft Pdl = 2.595 kips MDL :' 0.0-ft-kips LL on column P11 := (Lr).(5001).(0.5Lctr + Lleft) P11 = 6.659kips Mr,L := 0.0-ft-kips seismic response coefficient, Cs = 0.614 W := Pd! W = 2.595 kips V:= Cs•W V = 1.592kips Mseis := (V)-(Hcol) Mseis = 20.974 ft-kips Horizontal Seismic Load Effect: redundancy factor, p := 1.3 QE:= V Q= 1.592 kips Eh:= PQE Eh-2.070kips := Eh•(Hcol) = 27.136ft.kips Vertical Seismic Load Effect: From page 7, SDS = 0.767 Dead load, D:= W D=2595.321bf Ev := 0.2S05 D Ev 0.398 kips dead load on column seismic load on column DESERT FOX, LLC Consulting Structural Engineers 969 E. Saratoga St. Gilbert, AZ 85296 1(480) 205-2094 F(480) 633-9328 Job Name:MONTECITO APTS. Job No.: 18-103 Sheet: 18 By: RRD Dale: JAN 2018 C21qp-Q Lo cont.: Column de-sign height, Ficol = 13.11 ft roof slope, 9 := 5.0-deg Overall length (sloped), Lt := 29.64-ft ' 21.24f1 Positive Wind Loads: Gamma..Q,Load Case A: Windward pressure, it.windward 22.80 psf windward PAv,drd (scoj)(0.5L0 '1windward = 7.176 kips Leeward pressure, A.ieeward = 5.70 psf 21ecwd A.1eeward (s).(O.S.Lt) 2jeeward = 1.794 kips Windwardpjesseapijdto column.. Vertical wind co Ywind.po.s.A := P1Wlfld Jdc0s(9) 'PYwind.pos.A = 7.149 kips Horizontal wind co 2111t. 'wind.pns.A := (i Wlndw8rd)'fl(0) 'wind.pos,A = 0.625 kips Mrien..ttQ_cpl'ta!x!n, MwindpOs.A. : PXwlnd.Pos.A(HcOl) Mwindpos A = 8.200 ft-kips NeeWind Loads: Gamma 0, Load Case .B.: Windward pressure, Pfl windward = -20.90ps1 J.?J windward := PB.windward'(scoj'(0.5'I.t) '1winidward = -6.578kips Leeward pressure, P81 = -1.90 psf 2Iecward := Pieewarti(Scoi)(O.S'Lt) 2Iward = 059p jica1_cal.wind L component: PYwind.neg,B := (Plwindward)cos(0) Ywind.neg. = -6,553 kips kipJJ9.KLtJj914tpoinnQp..cj3ji PXwind.ncg. : (P1WIndW5 1)'sin(0) PXWjndnCgB = -0.573 kips MQiflUQ.Qi1iffltii Mwindreg. := P;vjndneg.B.(Rcol) MWjfldngB = -7.516 ft-kips I I I I I I I I I DESERT FOX, LLC Consulting Structural Engineers 969 E. Saratoga St. Gilbert, AZ 85296 1(480) 205-2094 F(480) 633-9328 Job Name:MONTECITO APTS. Job No.: 18-103 Sheet: 19 By: RRD Date: JAN 2018 Check Longitudin at Lateral Loads gL Hcol = 13.I1ft d 0t=20.26ft Dead Load + Live Load Dead load on column, Pd1 = 2.595kips MDL = 0.000ft-kips WindLoad: Max wind pressure, windwa := 22798-psf (apply to 2'-0' veitical projection) FWongit (IPwjndwardI)(6.91ft + 7.9141)(2.0ft) .FWjongjt = 0.68 kips Mwindjongjt := (Fw)ongit)(Hcol) MWindiongit = 8859ftkips total wind load load per column Seismic Loaer column ): seismic response coefficient, Cs = 0.6 14 Pdllo.git := (RDL)-(2026-ft.114.67-ft) Pdltongjt = 13.94kips W:= O.liPdljongjt W 2.370 kips V:= Cs-W 'I = i.4541cips Mseis= (V)-(Hcol) Mscis 19.059 ft-kips Horizontal Seismic Load Eflct: redundancy factor, p := 1.3 QG =1.454kips Eh:= pQj Eh= 1.890 kips Eh(I-Jcol) MEh = 24.777 ft-kips 6 columns resisting dead load on each column seismic load on each column 20 CFS Version 10.0.0 Page 1 Section: Boxed 12x7x10ga.cfss (2) Cee 12 x 3.5 x lOga Boxed Section Inputs Material- M53 BSLAS Grade 55/2 Apply strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 55 ksi. Tensile Strength, Fu 70 ksi Warping Constant Override, Cw 0 ln6 Torsion Constant: Override, J 0 in4 Connector Spacing 0 in Left Channel, Thickness 0.135 in Placement of Part from Origin: X to right edge 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 1.000 270.000 0.12500 None 0.000 0.000 0.500 2 3.500 180.000 0.12500 Single 0.000 0.000 1.750 3 12.000 90.000 0.12500 Cee 0.000 0.000 6.000 4 3.500 0.000 0.12500 Single 0.000 0.000 1.750 5 1.000 -90.000 0.12500 None 0.000 0.000 0.500 Right Channel, Thickness 0.135 in Placement of Part: from Origin: X to left edge 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 1.000 -90.000 0.12500 None 0.000 0.000 0.500 2 3.500 0.000 0.12500 Single 0.000 0.000 1.750 3 12.000 90.000 0.12500 Cee 0.000 0.000 6.000 4 3.500 180.000 0.12500 Single 0.000 0.000 1.750 5 1.000 270.000 0.12500 None 0.000 0.000 0.500 Full Section Properties Area 5.4350 in'2 Wt. 0.018479 k/ft Width 40.259 in I I I I CFS Version 10.0.0 Page 2 Section: Boxed 12x7x10ga.cfss 2) Cee 12 x 3.5 x lOga Boxed Ix 113.47 in"4 rx 4.5691 in Ixy 0.00 irt"4 Sx(t) 18.911 in"3 y(t) 6.0000 in a 0.000 deg Sx(b) 18.911 in"3 y(b) 6.0000 in Height 12.0000 in ly 44,50 in'4 ry 2.8615 in xo 0.0000 in Sy(i) 12.715 in"3 x(i) 3.5000 in yo 0.0000 in Sy(r) 12.715 in3 x(r) 3.5000 in ix 0.0000 in Width 7.0000 in iv 0.0000 in II. 11.3.17 in4 ri 4.5691 in 12 44,50 jA4 r2 2.8615 in IC 157.97 inA4 rc 5.3912 in Cw 227.01 inA6 In 157.97 jA4 ro 5.3912 in J 0.033017 jA4 Fully Braced Strength - 2007 North American Specification - US (ASD) Material Typo; A653 HSLS Grade 55/2, Fy-55 ksi Compression Positive Moment Positive Moment Pao 108.41 k Maxo 649.78 k-in Mayo 261.71 k-in Ae 3.5481 in2 Ixe 110.01 in4 lye 32.86 in"4 Sxe(t) 17.972 in3 Sye(1) 11.469 in3 Tension . Sxe(b) 18.714 inA3 Sye(r) 7.946 .i.n3 Ta 185.23 k Negative Moment Negative Moment Maxo 649.78 k-in Mayo 261.71 k-in Shear Ixe 110.01. inA4 lye 32.86 inA4 Vay 38.14 k Sxe(t) 18.714 inA3 Sye(1) 7.946 jA3 Vax 33.19 k Sxe(b) 17.972 irr3 Sye(r) 11.469 in3 21 US Version 10.0.0 Analysis: Column Trans Dir (DP).cfsa Montecito Apts. Job #18-103 Rev./ Date: 1/19/17 10:20:15 PM Page 1 22 Printed: 1/25/2018 11:56:17 Analysis Inputs Members Section File 1 Boxed 12x7x10ga.cfss Start Loc. End Loc. Braced R (ft) (ft) Flange 1 0.000 13.61.0 None 0.0000 ex ey (in) (in) 1 0.000 0.000 Supports Revision Date and Time 3/10/2017 10:58:06 AM k4m Lm (k) (ft) 0.0000 13.610 Type Location Bearing Fastened K (ft) (in) I XT 0.000 2.00 No 1.0000 2 XYTRxRy 13.610 2.00 No 1.0000 Loading: Dead Load Type Angle Start Loc. (deg) (tt) I Axial NA 0.000 2 Concentrated 90.000 0.500 End Loc. Start End (ft) Magnitude Magnitude 13.610 2.5950 2.5950 k. NA 0.0000 NA k Bearing Length 1.00 in CFS Version 10.0.0 Analysis: Column Trans Dir (DP).cfsa Page 2 Montecito Apts. Job #18-103 Rev./ Date: 1/19/17 10:20:15 PM Printed: 1/25/2018 11:56:17 Loading: Roof Live Load Type Angie Start Loc. End Loc. Start End. (dog) (ft) (ft) Magnitude Magnitude 1 Axial NA 0.000 13.610 6.6590 6.6590 k 2 Concentrated 90.000 0.500 NA 0.0000 NA k Bearing Length 1.00 in Loading: Wind Load Type Angle Start Loc. End Loc. Start End. (deg) (ft) (ft) Magnitude Magnitude 1 Axial. NA 0.000 13.610 7.1490 7.1490 k 2 Concentrated 90.000 0.500 NA 0.6250 NA k Bearing Length 1.00 in Loading: Earthquake Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Concentrated 90.000 0.500 NA 2.0700 NA k Bearing Length 1.00 in Load Combination: D+Lr Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Roof Live Load 1.000 Load Combination.: D+0. 714E Specification: 2007 North American Specification - US (AS!)) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 2 Earthquake Load 0.714 Load Combination: D+0.6W Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1. Dead Load 1.000 2 Wind Load 0.600 Member Check - 2007 North American Specification_- US (ASD) Load Combination: D+Lr Design Parameters at 13.610 ft, Left side: Lx 13.610 ft Ly 1.3.610 ft Lt 13.610 ft Kx 2.0000 Ky 1.0000 Kt 1.0000 Section: Boxed 12x7xlOga.cfss Material Type: A653 HSL1S Grade 55/2, Fy=55 ksi Chx 1.0000 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cnty 1.0000 ey 0.0000 in Braced Flange: None k 0 k Red. Factor, R: 0 Lm 13.610 ft 23 I CFS Version 10.0.0 Analysis: Column Trans Dir (DP).cfsa Page 3 Montecito Apts. Job #18-103 I Rev./ Date: 1/19/17 10:20:15 PM I Printed: 1/25/2018 11:56:17 Loads: P Mx Vy My Vx (k) (k-in) (k) (k-in) (k) Total 9.254 0.00 0.000 0.00 0.000 Applied 9.254 0.00 I 0.000 0.00 0.000 Strength 41.259 537.82 38.143 237.93 33.190 Effective section properties at applied loads: Ae 5.4350 in2 Ixe I 113.47 i.nA4 lye 44.50 in4 Sxe(t) 18.911 in3 Sye(l) 12.715 in3 Sxe(b) 18.911 in3 Sye(r) 12.715 inA3 I Interaction Equations NAS Eq. C5.2.1-1 (F, Mx, My) 0.224 + 0.000 + 0.000 = 0.224 <= 1.0 NAS Eq. C5.2.1-2 (P, Mx, My) 0.085 + 0.000 4- 0.000 = 0.085 <= 1.0 NAS Eq. C3.3.1-1 (Mx, Sly) Sqrt(0.000 -I- 0.000)= 0.000 <= 1.0 NAS Eq. C3.3.1-1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <= 1.0 Member Check - 2007 North American Specification - US (ASD) Load Combination: D+0.714E Design Parameters at 13.610 ft, Left side: Lx 13.610 ft Ly 13.610 ft Lt 13.610 ft [Cx 2.0000 Ky 1.0000 Kt 1.0000 Section: Boxed 12x7xlOga.cfss Material Type: A653 HSLAS Grade 55/2, Fy55 ksi Cbx 1.0000 Cby 1.0000 ex 0.0000 in cmx 1.0000 Cmy 1.0000 cy 0.0000 in Braced Flange: None k4 0 k Red. Factor, R: 0 14n 13.610 ft Loads: P Mx Vy My VX (k) (k-in) (k) (k-in) (k) Total ' 2.595 232.52 1.478 0.00 0.000 Applied 2.595 232.52 1.478 0.00 0.000 Strength '41.259 537.82 38.143 237.93 33.190 .Effective section properties at applied loads: Ae 5.4350 in2 Ixe 113.47 in4 lye 44.50 in4 Sxe(t) 18.911 in3 Sye(1) 12.715 in3 • Sxe(b) 18.911 in3 Sve(r) 12.715 inA3 Interaction Equations I . NAS Eq. C5.2.1-1 (F, Mx, My) 0.063 + 0.439 + 0.000 = 0.502 <= 1.0 NAS Eq. C5.2.1-2 (F, Mx, My) 0.024 + 0.432 + 0.000 = 0.456 <= 1.0 NAS Eq. C3.3.1-1. (Mx, Vy) Sqrt(0.128 + 0.002)= 0.360 <= 1.0 NAS Eq. C3.3.1-1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <= 1.0 Member Check - 2007 North American Specification_- US (ASD) I Load Combination: D+0.6W Design Parameters at 13.610 ft, Left side: Lx 13.610 ft Ly 13.610 ft It 13.610 ft Kx 2.0000 • Ky 1.0000 Kt 1.0000 I 24 25 CFS Version 10.0.0 Analysis: Column Trans Dir (DP).cfsa Page 4 Montecito Apts. Job #18-103 Rev./ Date: 1/19/17 10:20:15 PM Printed: 1/25/2018 11:56:17 Section: Boxed 12x7x10ga.cfss Material Type: A653 FJSLAS Grade 55/2, Fy=55 ksi Cbx 1.0000 Chy 1.0000 ex 0.0000 in Cmx 1.0000 Cm.y 1.0000 ey 0.0000 in Braced Flange: None k4 0 k Red. Factor, R: 0 Lm 13.610 ft Loads: P Mx. Vy 4y Vx (k) (k-in) (k) (k-in) (k) Total 6.884 58.99 0.375 0.00 0.000 Applied 6.884 58.99 0.375 0.00 0.000 Strength 41.259 537.82 38.143 237,93 33.190 Effective section properties at applied loads: Re 5.4350 in"2 Ixe 113.47 in4 lye 44.50 in"4 Sxe(t) 18.911 in3 Sye(1) 1.2.715 in3 Sxe(b) 18.911 in3 Sye(r) 12.715 :inA3 Interaction Equations NAS Eq. C5.2.1-1 (1?, Mx, My) 0.167 + 0.114 + 0.000 = 0.281 <= 1.0 NAS Eq. C5.2.1-2 (P, Mx, My) 0.064 + 0.110 + 0.000 = 0.173 <= 1.0 NAS Eq. C3.3.1-1 (Mx, Vy) Sqrt(0.008 + 0.000)= 0.091 <= 1.0 NAS Eq. C3.3.1-1 (My, Vx) Sqrt(0.000 + 0.000)= 0,000 <- 1.0 CFS Version 10.0.0 Analysis: Column Long Dir (DP).cfsa Montecito Apts. Job #18-103 Rev.! Date: 1/19/17 10:25:12 PM Page 1 Printed: 1/25/2018 12:05:25 Analysis Inputs - - Members Section File Revision Date and Time 1 Boxed 12x7xlUqa.cfss 3/10/2017 10:58:06 AM Start Loc. End Loc. Braced R k4 Lm (ft) (ft) Flange (k) (ft) 1 0.000 13.610 None 0.0000 0.0000 13.610 ex ey (in) (in) 1 0.000 0.000 Supports Type Location Bearing Fastened. K (ft) (in) 1 YT 0.000 2.00 No 1.0000 2 XYTRxRy 13.610 2.00 No 1.0000 Loading: Dead Load Type Angle Start Loc. End Loc. Stan: End (deg) (ft) (ft) Magnitude Magnitude 1 Axial NA 0.000 13.610 2.5950 2.5950 k I I I I I I I I CFS Version 10.0.0 Analysis: Column Long Dir (DP).cfsa Montecito Apts. Job #18-103 Rev./ Date: 1/19/17 10:25:12 PM Page .2 27 Printed: 1/25/2018 12:05:25 Loading: Longi L. Seismic Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Concentrated 0.000 0.500 NA 2.0700 NA k Bearing Length 1.00 in Loading: Longit Wind Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1. Concentrated 0.000 0.500 NA 0.6800 NA k Bearing Length 1.00 in Load Combination: D+0.714E Specification: 2007 North American Specification -- US (ASD) Inflection Point Bracing: Np Loading Factor 1 Dead Load 1.000 2 Longit. Seismic Load 0.714 Load Combination: D+0. 6W Specification: 2007 North American Spedificatiori -. US (ASD) Inflection Point Bracing: No Loading Factor 1 Dead Load 1.000 Member Check - 2007 North American Specification- US (ASD) Load Combination: D+0.714E Design Parameters at 13.610 ft, Left side: Lx 13.610 ft Ly 13.610 ft Lt 13.610 ft Kx 1.0000 Ky 2.0000 Kt 1.0000 Section: Boxed 12x7x10ga.cfss Material Type: A653 }ISLAS Grade 55/2, Fy=55 ksi Cbx 1.0000 Cby 1.0000 ex Cmx 1.0000 Cmy 1.0000 ey Braced Flange: None k4 0 k Red. Factor, R: 0 Lm 13.610 ft Loads: P Mx Vy My (k) (k-in) (k) 1,k-in) Total 2.595 0.00 0.000 232.52 Applied 2.595 0.00 0.000 232.52 Strength 41.259 352.34 38.143 260.96 Effective section properties at applied loads: Am 4.9991 inA2 Ixe 113.09 in4 lye Sxe(t) 18.848 in'3 Sye(1) Sxe(b) 18.848 in'3 Sye(r) 0.0000 in 0.0000 in Vx (k) 1.478 1.478 33.190 38.92 inA4 12.159 in3 10.244 in"3 Interaction Equations NAS Eq. C5.2.1-2. (P, Mx, My) 0.063 + 0,000 + 0.927 0.990 <=1.0 WAS Eq. C5.2.1-2 (P, Mx, My) 0.024 + 0.000 + 0.891 0.915 <= 1.0 WAS Eq. C3.3.1-1 (Mx, Vy) Sqrt(0.000 + 0.000)s 0,000 <= 1.0 WAS Eq. C3.3.1-1 (My, Vx) Sqrt(0.789 1 0.002)= 0.890 <= 1.0 L CFS Version 10.0.0 Analysis: Column Long Dir (DP).cfsa Montecito Apts. Page 3 Job #18-103 Rev.! Date: 1/19/17 10:25:12 PM Printed: 1/25/2018 12:05:25 Shear flow between parts due to: Vertical Shear Horizontal Shear Between.parts 1 and 2 0.0000 k/ft 2.8005 k/ft Member Check - 2007 North American Specification - US (ASD) Load Combination: 040.6W Design Parameters at 13.610 ft, Left side: Lx 13.610 ft Ly 13.610 ft Lt 13.610 ft Kx 1.0000 Ky 2.0000 Kt 1.0000 Section: Boxed 12x7xloga.cfss Material Type: A653 HSLAS Grade 55/2, Fy=55 ksi Cbx 1.0000 Cby 1.0000 ex 0.0000 in, Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None 0 k Red. Factor, R: 0 Lm 13.610 ft Loads: P Mx Vy My Vx (k) (k-in) (Ic) k--- in) (k) Total 2.595 0.00 0.000 0.00 0.000 Applied 2.595 0.00 0.000 0.00 0.000 Strength 41.259 352.34 38.143 260.96 33.190 Effective section properties at applied loads: Ae 5.4350 inA2 Ixe 113.47 in4 lye ' 44.50 in "4 Sxe(t) 18.911 in Sye(1) 12.715 in3 Sxe(b) 18.911 in3 Sye(r) 12.7.15 ±n3 Interaction Equations NAS Eq. C5.2.1-1 (P. Mx, My) 0.063 + 0.000 F 0.000 0.063 <= 1.0 NAS Eq. CS.2.1-2 (P. Mx, My) 0.024 + 0.000 + 0.000 = 0.024 <= 1.0 NAS Eq. C3.3.1-1 (Mx, Vy) Sqrt(0.000 + 0.000)- 0.000 <= 1.0 WAS Eq. C3.3.1-1 (My, Vx) Sqrt(0.000 + 0.000) 0.000 1.0 28 I I I I I I I DESERT FOX, LLC Consulting Structural Engineers 969 E. Saratoga St. Gilbert, AZ 85296 1(480) 205-2094 F(480) 633-9328 Job Name:MONTECITO APTS. Job No.: 18-103 Sheet: 29 By: RRD Date: JAN 2018 Pier Foogj 24" pier 8'-3" Hcol= 13.11 ft (MDL + M.11,( = 0.000 It-kips (MDI. + 0.6MwindposAI = 4.920 fl-kips I M + 0.6MWindneg.B( = 4•.510ft-kips MDL 4- I0o.0.7Mseisj = 18.265ft-kips (MDL - Co.31Aseis( = 18.265 ft-kips 0.6Mwindt01 = 5.32 ft-kips Mrnax :'= 18.265-ft-kips Equivalent Point Load, p Mxnax fool P=1.39kips Allowable lateral bearing pressure ......................Sa = 100,00 psf ft Pole diameter (or diagonal) .................................... b := 24.0-in Structure is not adversely affected by 1/2" ground motion use twice value of Sa Unconstrained pier embedment depth ............... .Dunconst 8.25-ft S1 := 2-S8 Duaconst S1 = 550.00 psf A=2.96ft S1-b 4.36 d 55t := + j: 1ci] S.161 DESERT FOX, LLC Consulting Structural Engineers 969 E. Saratoga St. Gilbert, AZ 85296 1(480) 205-2094 F(480) 633-9328 Check Pier Footing for Vertical Loads (DL4-LL)r Max. Vertical Load .......... ...... P Pd1 + P11 P = 9.25 kips Allowable soil bearing pressure, SBP9it0 = 1500.00 psf Allow. Skin Friction ..............Ff := SBPaitov 6 Pier Capacity .........................Cap := rcb-Ff Friction capacity .................. F:= (Cap)-(Duriconst - 1.0-ft) (neglect top 1.0 it) Check. Pier Footing for Uplift Loads (DL+Wind): 'E.windward = —20.898psf &lceward = —1.900psf UPIiIIA := 1(0.6PBWiadward + 0.67.RDL)I .(s 01).(d1) Weight of footing ................ Wftg:= (145.pcf).(ic,r2).(Dunconst) .! OJ< (upliftA) I I I I I I I I I I I I I I I I I I I Job Name:MONIECtTO APTS. Job No.: 18-103 Sheet: 30 By: RRD Date: JAN 2018 Ff = 250.00 psf Cap =-- 1570.80p1f F- 11.39 kips O.K. UpJifl = 3.67kips Wftg = 3.76kips DESERT FOX, LLC Consulting Structural Engineers 969 E. Saratoga St. Gilbert, AZ 85296 1(480) 205-2094 F(480) 633-9328 Job Name:MONTECITO APTS. Job No.: 18-103 Sheet: 31 By: RRD Date: JAN 2018 Repjired cohinin embedment Load factor .....................................................LF:= 1.7 Maximum moment: Mrnax = i&265 fi-kips LF-(Mniax) = 31.05 ft-kips ACI318-11 Section 10.14: Strength reduction factor ...............................:= 0.65 Concrete Strength .......................................... fc := 2500-psi Design bearing strength ...............................Fbrg $-(0.85.fc) Fbrg = 1.38 ksi Column flange width .....................................h 0 := 7.0-in w := (FbI .(bCOl) w 116025.00 plf Required column embedment: f(LF) - (Mmax) d dreqd: reqd = 15 rn Aik DESERT FOX, LLC. Project Title: MONTECITO APARTMENTS M Consulting Structural Engineers Engineer: RRD Project ID: 18-103 969 E. Saratoga St. Project Descr: solar parking canopy / Gilbert, AZ 85296 T: (480) 205-2094 DSIRT PDX LLC. F: (480) 633-9328 Flnrifac 2fi k 2212, 3:27PM G I F t File G:\DESERT-1\18JOBS--i\18-103-1\STRUCT-1\MoNTEC-1.EC6 enera Doting ENERCAIC, INC. 1983-2017,Build:10.17.8.29,Ver:6.178.31 Description : Double Post Canopy - DL + LL + Lateral (alternate spread footing) Code References Calculations per ACI 318-11. IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : BC 2015 General Information Material Properties fc : Concrete 28 day strength fy: Rebar Yield Ec : Concrete Elastic Modulus Concrete Density Values Flexure Shear Analysis Settingf Min Steel % Bending Reinf. Min Allow % Temp Reinf. Mm. Overturning Safety Factor Mm. Sliding Safety Factor Add Ftg Wt for Soil Pressure Use ftg wt for stability, moments & shears Add Pedestal Wt for Soil Pressure Use Pedestal wt for stability, mom & shear Dimensions 2.50 ksi = 60.0 ksi = 3,122.0 ksi = 145.0 pcf = 0.90 = 0.750 = = = 1.0 : 1 1.0 : 1 : Yes : Yes : No : No Soil Design Values Allowable Soil Bearing Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) = Soil/Concrete Friction Coeff. = Increases based on footing Depth Footing base depth below soil surface = Allow press. increase per foot of depth = when footing base is below = Increases based on footing plan dimension Allowable pressure increase per foot of depth when max length or width is greater than = . g g = 1.50 ksf No 250.0 pcf 0.250 ft ksf 2.0 ft ksf ft Width parallel to X-X Axis = 7.670 ft Length parallel to Z-Z Axis = 5.330 ft Footing Thickness = 26.0 in ---.. Pedestal dimensions I ••.• px : parallel to X-X Axis 6.0 in pz: parallel to Z-Z Axis : 12.0 in = 4 Height - in Rebar Centerline to Edge of Concrete........ .. . at Bottom of footing 13.0 in -- — Reinforcing .. ....... Bars parallel to X-X Axis — Number of Bars — 10.0 Reinforcing Bar Size = # 5 Bars parallel to Z-Z Axis . .. Number of Bars = 16.0 - Reinforcing Bar Size = # 5 Bandwidth Distribution Check (ACI 15442) Direction Requiring Closer Separation ig Z-Z Axis # Bars required within zone 82.0% # Bars required on each side of zone 18.0% Applied Loads D Lr L S W E II P: Column Load = 2.595 6.659 0.3980 k OB : Overburden = ksf M-xx = 8.859 24.777 k-ft M-zz 8.20 27.136 k-ft V-x = 0.6250 2.070 k V-z = 0.680 1.890 k I I I I I I I I DESERT FOX, LLC. Consulting Structural Engineers j' 969 E. Saratoga St. Gilbert, AZ 85296 T: (480) 205-2094 oraSLRY VCX, :-L'M F: (480) 633-9328 General Footing Project Title: MONTECITO APARTMENTS Engineer: RRD Project ID: 18-103 Project Descr: solar parking canopy I Rip7: 25 ON 27 IC, 3:27PM G.D Description : Double Post Canopy - DL + LL + Lateral (alternate spread footing) EMEMMEMSEM Mm. Ratio Item Applied Capacity Governing Load Combination PASS 0.9833 Soil Bearing 1.475 ksf 1.50 ksf +0.60D+0.70E+0.60H about X-X axis PASS 1.258 Overturning - X-X 20.210 k-ft 25.429 k-ft +0.60D+0.70E+0.60H PASS 1.653 Overturning - Z-Z 22.135 k-ft 36.592 k-ft +0.60D+0.70E+0.60H PASS 1.646 Sliding - X-X 1.449k 2.385 k +0.600+0.70E+0.60H PASS 1.803 Sliding - Z-Z 1.323 k 2.385 k +0.60D+0.70E+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.1093 Z Flexure (+X) 3.524 k-ft/ft 32.234 k-ft/ft +0.90D+E+090H PASS 0.06714 Z Flexure (-X) 2.164 k-ft/ft 32.234 k-ft/ft +1.20D+1.60Lr+0.50L+1.60H PASS 0.06089 X Flexure (+Z) 2.169 k-ft/ft 35.617 k-ft/ft +0.900+E+0.90H PASS 0.02216 X Flexure (-Z) 0.7891 k-ft/ft 35.617 k-ft/ft +1.20D+1.60Lr+0.50L+1.60H PASS 0.1157 1-way Shear (+X) 8.681 psi 75.0 psi +0.90D+E+0.90H PASS 0.07360 1-way Shear (-X) 5.520 psi 75.0 psi +1.20D+1.60Lr+0.50L+1.60H PASS 0.1014 1-way Shear (+Z) 7.604 psi 75.0 psi +0.90D+E+0.90H PASS 0.03435 1-way Shear (-Z) 2.576 psi 75.0 psi +1.20D+0.50L+0.705+E+1.60H PASS 0.07382 2-way Punching 11.072 psi 150.0 psi +1.20D+1.60Lr+0.50W+1.60H Detailed.Results Soil Bearing Rotation Axis & Xecc Zecc Actual Soil Bearing Stress @ Location Actual I Allow Load Combination... Gross Allowable (in) Bottom, -Z lop, +Z Left, -x Right, +X Ratio X-X, +D+}4 1.50 n/a 0.0 0.3776 0.3776 n/a n/a 0.252 X-X, +D+L+H 1.50 n/a 0.0 0.3776 0.3776 n/a n/a 0.252 X-X, +D+Lr+H 1.50 n/a 0.0 0.5405 0.5405 n/a n/a 0.360 X-X. +D+S+H 1.50 n/a 0.0 0.3776 0.3776 n/a n/a 0.252 X-X, +D+0.750Lr+0.750L+I-1 1.50 n/a 0.0 0.4998 0.4998 n/a n/a 0.333 X-X, +D+0.750L+0750S+H 1.50 n/a 0.0 0.3776 0.3776 n/a n/a 0.252 X-X, +o+fow+}- 1.50 n/a 4.819 0.2098 0.5455 n/a n/a 0.364 X-X. +o+070+ 1.50 n/a 15.431 0.0 0.9799 n/a n/a 0.653 X-X, +D+0.750Lr+0,750L+0450W+H 1.50 n/a 2.731 0.3739 0.6257 n/a n/a 0.417 X-X, +D+0.750L+0.750S+0.450W+H 1.50 n/a 3.614 0.2517 0.5035 n/a n/a 0.336 X-X. +D+0.750L+0.7505+05250E+H 1.50 n/a .11.625 0.0 0.7948 n/a n/a 0.530 X-X, +060D+060W+060H 1.50 n/a 8.031 0.05872 0.3944 n/a n/a 0.263 X-X, +0.60D+0.70E+060H 1.50 n/a 25.417 0.0 1.475 n/a n/a 0.983 Z-Z, +D+H 1.50 0.0 n/a n/a n/a 0.3776 0.3776 0.252 Z-Z, +D+L+H 1.50 0.0 n/a n/a n/a 0.3776 0.3776 0.252 Z-Z, +D+Lr+H 1.50 0.0 n/a n/a n/a 0.5405 0.5405 0.360 Z-Z, +D+S+H 1.50 0.0 n/a n/a n/a 0.3776 0.3776 0.252 Z-Z, +D+0.750Lr+0750L+H 1.50 0.0 n/a n/a n/a 0.4998 0.4998 0.333 Z-Z, +D+0.750L+0.7505+H 1.50 0.0 n/a n/a n/a 0.3776 0.3776 0.252 Z-Z, ++00w+ 1.50 4.456 n/a n/a n/a 0.2698 0.4855 0.324 Z-Z, ++070+ 1.50 16.90 n/a n/a n/a 0.0 0.8030 0.535 Z-Z, +D+0.750Lr+0.750L+0.450W+}-j 1.50 2.525 n/a n/a n/a 0.4189 0.5807 0.387 Z-Z, +D+0.750L+0.7505+0.450W+H 1.50 3.342 n/a n/a n/a 0.2967 0.4585 0.306 Z-Z, +D+0.750L+0.750S+0.5250E+H 1.50 12.731 n/a n/a n/a 0.07039 0.6951 0.463 Z-Z, +0.60D+0.60W+0.60H 1.50 7.426 n/a n/a n/a 0.1187 0.3345 0.223 Z- Z, 1.50 27.837 n/a n/a n/a 0.0 / 0.7766 0.518 Overturning _Stability Rotation Axis & Load Combination... Overturning Moment Resisting Moment Stability Ratio Status X-X, +D+H None 0.0 k-ft Infinity OK X-X. +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X, +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.7505+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H 6.199 k-ft 41.144 k-ft 6.637 OK X-X. +D+0.70E+H 20.210k-ft 41.886 k-ft 2.073 OK X-X. +D+0.750Lr+0750L+0450W+H 4.650 k-ft 54.453 k-ft 11.712 OK I SECTION E KEYNOTES: '" X 4-4" X 2" THK. OPTIONAL SPREAD FOOTINS ROOF DECK. II. 2 GEE I0"X25"X126A. (2—I0005250—'fl) DOUBLE STEEL BEAM GEE I0"X25"XI26A. (I0005250—q7) STEEL PURLINS. STEEL "U" SHAPED CONN. BRACKET. I 2 GEE I0"X3.5"XI26A. (2I0005350_cfl) BOXED STEEL COLUMN. S. (E) FINISHED SRADE. I 1. 8-0" DEEP AT ASPHALT OR SOIL. S. GIP 24" t7IA. CONCRETE EMBEDDED POLE FOOTINS. 1. 5—#5 VERTICAL BARS. 10. (S)—*5 BOTTOM LONGITUDINAL REBAR. I II. #4 EACH DIRECTION (DRILLED) EXTEND 3" MIN EXTEND PAST COLUMN. (I4)—*5 TRANSVERSE REBAR. I CROV4N TOP TO FACILITATE HATER RUN OFF. CENTERLINE OF COLUMN AND FOOTIN&. I I I S Beam and Column Analysis I ¼'J V r.rio r'.jr '.AJLLJIVII'l IVIUU) 35 Envelooe Member Section Forces Member Sec Axialilbi LC y Shearilbi LC z Shear[lb] LC Torgue[Ib-. LC y -y MomentFtb... LC z-z Moment[Ib-...LC I 641 M65 1 Imaxl3776.339 I 7 1 15.269 1 7 1 688,679 :13 29T228 113 19.384 9 730,', T1 642 mm -1011484 3 -636.307 12 -993 9 -79 5 -44376 1T 643 2 rnix 3759 1891 7 15.269 7 _681.14 13 29228l 13 1.483 5 7317.802 5 644 min-1021.774 3_ -628.768 12 -993 9 -79 5 -2897.333 13 -8408.036 - 9 I 645 3 max 37039 42 7 15.269 7 673 601 13 297 228 13 12801 5 7333.436 5 646 mm -1032.064 3 -621.229 12 -993 9-79 5 -1373.248 13 -8342.521 9 647 4 Imaxil 3724 889 1 7 15.269 7 - 666 061 13 297.228 13 16 7349.07 5 1 Imin-1042.354 3 -613.69 12 -9.93 9 -79 5 - 138.547 -47.646 9 -8277.006 9 I 648 - 14 5 Imaxl 37077397 32.894 7 66055 13 297,228 13 11626.902 13 737686 5 1,650 min -10526443 -610.345 12 79641 9-79 5 -69.579 9 -8163.865 COLUMN MEMBER (M65) FORCES I I Load Combinations Governing Design: LC 1.00+0.6W I LC 1.OD+0.6W L013 1.OD+0.7Ez I I I I I I 37 Envelone Member Section Forces ...,Mmb.er..... 1661 M67 I Sec Axial[IbJ, max 004 LC 9 y,,Shea,r[IbJT 1153267 LCz 5 sheartlbl,,J..C. 293576 16 698.294 Torque[Ib-...LCyy,,Mo,m.ent[Ib... 16 22.963 9 ,LC....Z:Z.,MQmeflt[Ib 7001921 LC 5 592 1 mm 278.358 15 271 1160.127 -22948.37 11166.9871, 11173.847 rnin-268.306____15__1-22834049-3.8279-196.582 mm____-263.28____15__1_-2271.9719-18279-196.582 q 5 9 5 5283.524 -3.827 288.55 -3.827 - 278.498 Q 16 9 16 16 -196.582 698.294 -196.582 698.294 698.294 9 16 9 16 9 16 9-413.978 -iPjJ42 17,222 -1264.549 11.482 -835.493 5.741 9 9 16 16r130 16-10249,594 91765.914 16_______-3399.383 2 3 5266.875 3521.54_ ____-6815.9139 9.; 5 9 5 Y 9 1663 2rnax, .004 9 - - - - min-273.332 15 665 3 max:.004 9 - F6 6-6 667 1 4max_.004 _9 I_668 670 16691 5a .004 mmn 7258.254 9 15 11180.707 2260.53' 5 9 273472 -3 827 9 16698.294160 -196.582 9 0 2 2 O2 0 2 BEAM MEMBER (M67) FORCES Load Combinations Governing Design: 38 Member Section Forces LC Member Label Sec Axialllbj y Shear lb z She[lbj TorgueFlb-ftL....y.y Mo... z-z Mo... I 321 7 I M65 1 37Zfili3I_15.269 FT4.578 722 &97O.1 322 - 1 2 3759.189 15.269 -4.578___- 323 - 3 -3742.039 15.269 -4.578 722 -1 364____4405_767j _4131 4 - 3724889 L~73 722 -11.666_4371 337.059] I 324 [.L .............. I ............................................... I....................5 - ....I....37..Q7.19....-4...44.5 - ........................72..O1?P.. It, M9nbL4 Set iR1flb ArStdlb1' 2Shørflb1 Táflb-ft1v..'M& .6 -2959 Z757_4__1 -9.118_-993 b -25_303 _ 2 4 _72.4 -?9Jj _f_•9641 _9_9 F5 t5S6 -474 277.00 5________________1_37O5.854. .)L2:.7 _______ .3 Mi4Db vShlI1 zShorflb1. Totcflbft1' -vMo. 'jZL •M65 .1 ._-11153 97.$J-816 rtri 29''22 22 7 1fCJF___1f2 -1,1 .fi_1 7___22 1480 '.1L_I 9i223 II_.............................. 4 147____RF 1454.'12 f'fl r7 _ '297.228 tL1L2 1I2h 2I2Oy 173____F7_"21 L -2.4 — .- .... .:. . '*-,,,----.--- i N Mgth Lab- ..kfr4flhF ...44 W 7-7 f. 1 J.L1._i_-5.J_ -3.~? 1l5',2 - 7 77 196,6821"772 1\L ;. .CQ - -22J.404 ______ -19EL,& 1i.42 _134 1. 4 __ 16_5 _74 _ .5,__ i27 ................................................................................................ ...... -._ .. NOTE: HIGHLIGHTED MEMBER FORCES ARE USED TO CHECK EXISTING BEAM AND COLUMN CAPACITIES 1 FOR GOVERNING LOAD COMBINATIONS WITH CFS PROGRAM. I I I I all J,6 .-_...-.. 1 U1 _ çrI AcrIflb v r'flt1 _ -,hrflh1___T1rflh-ft t 7_- ' .__'_r__-.-_-_.. 4j 4 2w'"_e_24 17f1 I ,________ 121.-t -_UU1 -C)4.L 263.24_ .2l4 114___18 4 - _ffl1 ______________ -'4R___ i41__, 77 4 ________ L4'2 b2.'14 U U 39 O.O08657. 1k/ft 'WitfA 3767 Ix 5.0000 in a 5.3Q j IQ..0u0G if,,, 9g40. it, Xo 2.5000 j 2.5.00Q in 0O Q0 ñ 3767'2 .n 1.45,46,in. 4..2624. in. Cw; 4.262 i;i. J P. thb o.0300 in: ct.000Q 12. 52 n' in 4. 2..6076 .ci13 Lñ3 10 363 1n4'4 iy .1473 4 >1473 in3 x(r) ii: 37'. 006 in'4 .36 in'4 r2 3is ii4 .rc 37 I CFS Version 8.0.3 Column LC 9 Analysis 40 I CFS Version 8-63 Section: CoIumnsct Box 1Ox25x1 .5xO. 0747 .l..:ember Check 2012 North American S ifk'aticn - US I Material 53 Design. Paraeters.:::: Lx 90000 ft I Xx 2.1000 Cbx 1.0.000 CMX 1.0000 Braced Flange:' .NOe Red. Factor,, R: 0 SS Grade, 55 Fy=55 ksi Ly 9.00100 ft ,Lt 9..01000 ft .Ky 2.1000 Kt 2.1000 Cby i,..oc,00 ex 0.0000. i. Ciy 1.0000 ey 0.0000 in k. 0 k• Lm. 9.0000 ft P tx Vy 11y Vx {k) (k-in) k)(k-in),(k) 3.775 1.70 0.063 O.4 0.010 3.775 101.17 0.063 0.84 0.010 2.0. 45'0 2.00.50 7...69• 6S.2 13.1 69, section laroperties at applied loads:: 2.6076 in'Z Ixe 3:7.00 . 6 in-:%4 lye 10 368 in4 Sxe(t) T 4013 in3 Sye(l) 4 1473 in3 Sxe(b) 7.4013 1n3 Sye(r): 4.1473 A3 Loads: I Entered Ap1Ied Strength E fi'e ctive I 1iteractioi NAS Eq C5.2.1-1 P, 1x, My) NAS Eq... CS 2.1-2 (P, 11x, My) U NS, Eq.. C3...3.1-1 Mx Vy)i. NAS Eq. I 3 3 1-1 (MY r. Vx) I I 0.14 +:0.524 + 0.014 = 0.722 <= 1.0 0.091 + .507 + 0.012 = 0.611 < 1.0 8qrt(0.226 + 0.000)= 0.475 <= 1.0 Sqrt(0.000 + 0.000.. 0.012 <= 1.0 CFS Version 8.0.3 Column LC 7 Analysis CFSIVersion 8.0.3 Section: Co1umn.sct: Box 10x2 5x'l 5x0 0747 Member Check - 2012 North American Spédficàiio•n US (AS.D) I Nate.ri.a.l Type: A653 SS Grade 55< Fy55 k31 Design Parameters; Lx 9.0000 ft Ly 9.0000 ft :Lt 9.000. ft Kx. 2.1000 Ky 2.1000 Kt 2.1000 cbx 1.0000 1.0000 ex 0.0000 in Cmx 1.0000 1.0000 ey 0.0000 in Braced Flange: None k 0 k Red. Factor, R: 0 Lm 9.0000 ft Loads:: P 11* 14y Vx k-in (k) Entered 3.776 53m.28 0.033 0.38 0.005 Applied 3.776 53.28 0.0:33 0.38 0.005 Strength 20.480 200.50 7.<€98 68.28 :13.1<69 Effective section properties at applied loads:: A•e 2.6076 •in2 Ixe 37.006 in lye 10.368 1n Sxet) T.'4013 in3 Sye(l) 4.1473 in'3 Sxe(b) 7.4013 .in'3 Sye (r) 4.1473 in3 Interaction Equations NAS Eq. CS 2.1-1 P, Mx, My) 0.184- + 0 275 + -0,,-.006 = -O A65. <= 1 0 NAS Eq. C5.2-1172 f P, Mx, 14y) 0.091,+ 0.266 - 0.006 = 0.362 <= L. 0 NAS Eq. C3.3.1-1 (Mx, V Sqrt(0.062 + 00001= 0.249 <= L. 0 NAS Eq. C3..'3..1-1.(My, Vx) Sqrt(0.000+ 0..000)= 0.006 .<= 10 I CFS Version 8.0.3 Column LC 13 Analysis 42 I CFS Version 80:3 Section: Column..sct 'B ox 10x2..5x1.5x;O 0747 Member Check -2:0112'N brth American Specification.-, US (AS 0) Material Type A653 55 Grade 55, Fy55 ksi Design Parameters 9.0000 ft Ly 9..0000 ft 'Lt 9.0000 :ft: ITx Xx 2.1000 KY 2.100G. K. .2.1000 Cbx 1.000G. Cby t.0000 ex 0.0000 in I clmx 1.0000 C .1...0000 ey 0.0000 in BracedFiange: None. k4 0. k Factor, R: 0 I Red.. L. 00bo ft. Loads P Mx. Vy My Vx (k-in) (]c 1C 1 k-in) I.Entered' 523 lov 00 0 002 53 28 0.6189 Applied 1 523 10 00 0 002 53 28 0.689 Strength 20 480 200 50 7.698 S 28 13.16S Effective $ectioxi properties at applied ..oads.:: R Ae 2.2420 .in.2 Ixe. 36.269'. in4 lye. 7.739 in4 Sze {t) 7.2213 in3 Sye(l) 3.7120 in3 - Sxe(b) 7.2864 in'3 Sye(r) 2.,684-5' n'3 Interaction Equations NAS. Eq. . C51 .2 A-1. INAS E.. C5.,212' P, NAS Eq... C3. 3....1-1 NA Eq.. C3..3'.1'-1 I I I I 'i,,1dj} 0.07 + 0.051 + 0.819 = 0.943 <= 1.0 Mx, My) 0 037 + 0.050'4 0 780 0.867 <= 1.0 CMx, Vy) Sqrt0 002 + 0;.. 000) 0 047 < 1 0 (My, 'Vx) Sqrt0.609 + 0.:003 ) 0 732 <= I.:0 43 nPropejttes 6076 iii"2 Wt. 0.Q'088657 ktt W1d.h 37 006 in4 rx 3 7672 in Ixy 7 .;90_3 j3 y(t) 5.000O 1 1.4013 i3 .y(b .0030 Ln :Mei d 0.0300 in 18 804 in'4 ry 2 654 in Xa 44387 in3 x(1) 4. 264 in '4 4387 in'3 x(r 4 2364 in Width 8 4727 in 37 006 in'4 If 3,.767.2 in 18 304 in '4 r2 :2,. 2 6354 in 55 810 n"4 rc 4 6264 in Cw 55 810 in4 ro 4 6264 in J '0.' 0009 I 0.0000 :fl 0.0000 ia o..00'00 in 73643 I CFS Version 8.0.3 Beam LC 9 Analysis 44 CFS Verson 8O 3 Section Beam sct Dàuib1é'ChäñeI X, 4: I .M ibèE hèk- 2O12àth.èihS i Mater2-41Iye A653SSGrad55, F55 ksi Design Paraiueters Lx 6 0000 ft Ly 6 0000 ft Lt 6.0000 ft 2 1000 Kw 2 1000 Kt 2 1000 I:bx 1000O Chy 1"0O0O ex o0000 .n Cix. 0000' 'C 1.0.000 00000'in Braed Flange None Ok I 6;0000.:'ft Loads Mx Vy My / Vx k) (k71n) (k) k-7in) (k) Entered 0 000 164 40 2 306 0" 2 0 004 1 App11ed 0 000 164 40 '-Z`3'0.6' 0 2 0 004 trength I Ae 2 6066 in'2 Ixe 36 995 in4 lye "1 78 in4 Sxe{t) 7 3972 in3 Sye(l) ,4-A 3 5 2 in3 I Sxe{b} 7 ,41008-In-.,.3"'Sye(r) 44346 I Interaction Equati'bns NAS Eq CS 2 1-1 (P.", Mx, My) NAS Eq C5.2 1-2 {P, Mx, My) I q. N AS;~C3.3 11 (Mx, "NAS Eq 'C3 "3 1-1 (My l/z) I I I I I 0 000 +11-0`8 0.20f3 = 3 S64 1 0 O 030 +50 61 + 0003 0 64 <-,1.101 Sqrt{0 590 + 0 090}0 S 25 < 1 0 Scirt{0 000 + 0 000)= 0 303 < I D CFS Version 8.0.3 Beam LC 16 Analysis CFS Version 81.3 Section: Beam s•ct ouble Channel 10x2:5x1-14: Gage 45 1 I I I Member Check- 2,012 North American Specification - US (ASD) I Material Type: A653 SS Grade 55, Fy55 kzi Design Parameters: Lx 6. 0000.., ft .LT 6.0000 ft Lt 6.0000..ft Kx 2 1000 KY ?.1000 Kt 2.1000 Cbx 1.0000 cby 1.0000 ex 0 0000 ifl Cx 1.0000 1..C.000 ey 0.0000 in Braced Flange: None k. .0 k Red Factor, R 0 LIM 6 0000 ft P Mx My Vx (k) (k-in) (k) (k-in) (k.) Entered 0.000 29 16 0 294 20 41 0 420 Applied 0.000 29.:.16 0.29 20.41 0.420 Strength 16.989 190.88 7.698 103.77 13.169 Effective section properties at applied loads Ae I2..60.76 in '2 Ixe 37.006 in4 lye.. 18.04 iñ4 Sxe M) 7.4013 in^3 Sy•e(l} 4.4387 in3 .Sxe(b} 7.40.13 in"3 Sye(r) 4.4387 in3 Interaction Equations NAS Eq. CS..2 1-1 (F, Mx, My) 0 000 + 0;153 + 0 197 = 0 3491 ,<= 1.0 NAS Eq. C5.2.1-2 (F, Mx, My) 0 000 + .0 .153 + 0.197 = 0 349 < .1.,Q NAS Eq. C3.'3.1-1 (Mx., Vy) Sqrt(0 019 0 001)= 0.142 < 1A NAS Eq. C3 3 1-1 (My, Vx) Sqrt(0 039 i- 0.001)= 0 19 < 1 0 DESERT FOX, LLC consulting Structural Engineers 969 E. Saratoga St. Gilbert, AZ 85296 T(480) 205-2094 F(480) 633-9328 Job Name:MONIECITO APTS. Job No.: 18-103 Sheet: 46 By: RRD Date: JAN 2018 Knee Brace: Tapered Cee 7.125" to 7" x 5" x 1.2ga Lbr = 2.83 ft LTnbraced length ,J(Lbr)2 + (Lbr)2 = 4.00 ft Maximum beam reaction at brace (each cee), R2 := 6010.5-lbf - page 16 2R2 total knee brace axial load, Pbr 0,707 Pbr = 17.003 kips (with solar panels) Pbr = 11.33 5kips (without solar panels) See pages below: Knee Brace Connection: (8) #12-24 screws each side, each end ci := 0,216-in 3.0 Steel in contact with screw head: 12ga Steel not in contact with screw head; 12ga Fu1 := 65ksi t1 := 0.105-in Pu2 := 65ksi t2 := 0.105- in Pn1 := 2.7t1•dFu1 Pnj = 3.98 kips Pci2 := 2.7-t2-dFu2 Pn2 = 3.98 kips E or Lt1al to or less than 1 I3 \O.5 Pn3 := 4.21%t2 .dj •Fu2 Rn3 = 4.32 kips Pn := if(_ :!~ 1, min(Pni,Pn2,Pn3),min(Pnj Pii2)J Pn = 3.98 kips Pn=3.98kips > Pa:=- Pa=l.33kips GF:=2.(8) (Pa) GF21.28 kips O.K. for # 12-2.4.s Allowable screw shear, cm,.24:= 8854bf GFscmw74 := 2.(8) .(Pa50w24) GFçr4 = 14.16 ikips . O.K. I I I I I I I I I I 1 I I I I 47 Project Name: MONTECITO APTS. Page 1 of I Model: Diagonal Knee Brace - Date: 01/1912018 Code: 2007 NASPEC [AISI S100-20071 Simpson Strong-lie® CFS Designer 1.500 RI R2 4.00 Section: Open Ceo 7 x 5 x 12ga Single Channel Maxo = 6131.6 Ft-Lb Moment of intertla, I = 10.66 in'4 Loads have not been modified for strength checks Loads have not been modified for deflection calculations Plnv,,rp,I ,n, flnfinrflnn flknrle Fy = 55.0 ksi Va = 12169.5 lb Mmax Mmax/ Mpos Bracing Ma(Brc) Mpos/ Deflection Span Ft-Lb Maxo Ft-Lb (in) Ft-Lb Ma(Brc) (in) Ratio Span 0.0 0.000 0.0 None 6131.6 0.000 0.000 hO bed Sending andWebCrijjq Reaction or Load Bearing Pa Pn Mmax Intr. Stiffeners Pt Load P(lb) (in) (lb) (lb) (Ft-Lb) Value Required? RI 0.0 2.50 2276.5 4097.7 0.0 0.00 NO R2 0.0 2.50 2276.5 4097.7 0.0 0.00 NO Combined BendiQand Shear Reaction or Vmax Mmax Va Intr. Intr. Pt Load (lb) (Ft-Lb) Factor V/Va M/Ma Unstiffoned Stiffened Ri 0.0 0.0 1.00 0.00 0.00 0.00 N/A R2 0.0 0.0 1.00 0.00 0.00 0.00 N/A Combined Banding an Axial Load Details Axial Ld Bracing(in) Max K-phi Lm Bracing Allow Intr. Span (lb) KyLy KtLt KLJr (lb-In/in) (in) load(lb) P/Pa Value Span 17003.0(c) None None 29 0.0 48.0 20729.7(c) 0.82 0.82 SIMPSON STRONG-TIE COMPANY INC. www.1rongIie.con, 48 Project Name: MONTECITO APTS. Page 1 of I Model: Diagonal Knee Brace - Date: 01/19/2018 Code: 2007 F'JASPEC [AISI S100-2007j Simpson Strong-Tic® CFS Designer TM 15.0.0 Section Designation: Open Cee 7 x 5 x 12ga Single Channel INPUT PROPERTIES: Web Height = 7.0000 in Steel Thickness = Top Flange = 5.0000 In Inside Corner Radius Bottom Flange = 5.0000 in Yield Stress, Fy Fy \Alllh Cold-Work, Fyc = 55,0000 ksi 0,1050 in 0.1250 in 55.0000 ksi OUTPUT PROPERTIES: Effective Section Properties, Strong Axis Neutral Axis from Top Fiber (Ycg) Moment of Inertia for DeflectIon (lxx) Soilon Modulus (Sxx) Allowable Bending Moment (Ma) Grpss Section Properties of Full Section.QnqAxis Neutral Axis from Top Fiber (Ycg) Moment of Inoilla (lxx) Cross Sectional Area (A) Radius of Gys tlon (Rx) Section Properties, Weak Axis Gross Neutral Axis (Xcg) From Web Face Gross Moment of Inertia (lyy) Radius of Gyration (Ry) Other Section Property Data Member Weight per Foot of Length Allowable Shear Force In Web (IJnpunchcd) Pao for use In Interaction Equation C5-2 Torsional Properties Dist. from Shear Center to Neutral Axis (Xo) St. Venant torsion Constant (J x 1000) Warping Constant (Cw) Radii of Gyration (Re) Torsional Flexural Constant (Beta) Warping Torsional Prope, a(in'3) Sxx(llp)(in'3) Wn(1)(in"2) Wn(2)(inA2) Wn(3)(in'2) 126.6 2.2341 10.1358 10.1358 -6.9208 Location (1) and (6) are tip of compressIon and tension lip respectively Location (2) and (5) are flange/lip corner of compression and tension side respectively Location (3) and (4) are flange/web corner of compression and tension side respectively 4.3725 in 10.6608 mM 2.2341 in A3 6131.56 Ft-lb 3.5000 in 15.0232 ln"4 1.7470 InA2 2.9325 in 1.5240 in 4.6944 lnA4 1.6393 In 5.9445 lb/ft 12169.50 lb 23381 lb -3,4790 In 6.4200 mM 39.4321 lnA6 4.8383 In A6 0.4.826 Wn(4)(inA2) Wn(5)(in'2) Wn(6)(inA2) 6.9208 -10.1358 -10.1358 SIMPSON STRONG-TIE COMPANY INC. www.stronglie.com D Dead Load 0.1220 k Lr: Roof Live 0.550 k L: Live k S: Snow k W: Wind 0.6850 k E: Earthquake 1.192k H : Lateral Earth k Load distance above ground surface 10.610 ft Load Combination Results ...... +D+H +D+L+H +D+Lr+H +D+0750Lr+0750L+H +D+0,750L+0,7505+H +D+0.60W+H +D+0.70E+H +D+0.750Lr+0.750L+0450W+H DESERT FOX, LLC. 4% Consulting Structural Engineers /7. 969 E. Saratoga St. : Gilbert, AZ 85296 T: (480) 205-2094 FtT rX. --C F: (4801633-9328 Pole Footing Embedded in Soil Project Title: MONTECITO APARTMENTS Engineer: RRD Project ID: 18-103 Project Descr: solar parking canopy Pin5: 25 JAN 2013, 3:53PM ' \18-10. TRUcT-10NTEc1.Ec "483-201 uildi10:7 6.17.8 1 ---.. Description : Single Post Canopy - DL + LL + lateral (non-solar) C&Mftè?êrences Calculations per IBC 2012 1807.3, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2015 Generai liiforrna(ton Pole Footing Shape Circular Pole Footing Diameter 24.0 in ........ ....... ....._ Calculate Mm. Depth for Allowable Pressures No Lateral Restraint at Ground Surface I................ Allow Passive ..................200.0 pcf Max Passive ...................1,500.0 psf Controlling Values Governing Load Combination: +D+0.70E+H Lateral Load 1.031 k Moment 10,541 k-ft NO Ground Surface Restraint Pressures at 1/3 Depth Actual 457.927 psf Allowable 459.506 psf Mrrrimum Required Depth 7.0 ft Footing Base Area 3.142 ftA2 Maximum Soil Pressure 2.312 ksf Appiied Loads. Lateral Concentrated Load (k) Lateral Distributed Loads (klf) Vertical Load (k) I k/ft 1.430 k klft 5.832 k k/ft k k/ft k 0.0230 k/ft 0.2590 k 0.010 k/ft k k/ft k TOP of Load above ground surface 10.610 ft BOTTOM of Load above ground surface ft A 1 iO * 2 .-.-. .. 2 - Pie 1 Dp . niei.e '.1iL- D 7 A ui-7.f A ,iH Ft- •. - 0.122 1.294 3.25 210.6 210.6 1.000 0.122 1.294 3.25 210.6 210.6 1.000 0.672 7.130 6.00 393.3 394.1 1.000 0.122 1.294 3.25 210.6 210.6 1.000 0.535 5.671 5.50 361.0 361.7 1.000 0.122 1.294 3.25 210.6 210.6 1.000 0.679 6.432 5.88 384.2 384.7 1.000 1.031 10.541 7.00 457.9 459.5 1.000 0.953 . 9.524 6.75 442.3 443.3 1.000 DESERT FOX, LLC. Consulting Structural Engineers 969 E. Saratoga St. Gilbert, AZ 85296 1: (480) 205-2094 DSRT U,- F: (4801633-9328 [Pole Footing _Embedded in Soil - Description : Single Post Canopy - DL + LL + Lateral (non-solar) Code Rèferenes Calculations per lEG 2012 180G3 CRC 2013, ASCE 7-10 Load Combinations Used IBC 2015 a;.;n?O"rnation Pole Footing Shape Circular Pole Footing Diameter 24.0 in Calculate Mm. Depth for Allowable Pressures No Lateral Restraint at Ground Surface Allow Passive ..................200.0 pcI Max Passive ...................1,500.0 psf Controlling Values Governing Load Combination: +D+0.70E+H Lateral Load 1.031 k Moment 10.541 k-ft NO Ground Surface Restraint Pressures at 1/3 Depth Actual 457.927 psf Allowable 459.506 psf Mwimum Required Depth 7.0 ft Footing Base Area 3.142 ftA2 Maximum Soil Pressure 2.312 ksf Project Title: MONTECITO APARTMENTS Engineer: RRD Project ID: 18-103 Project Descr: solar parking canopy Pin:vu:25 JAN 2uiB. 3:tEPM F - EPT1\18JOBS 1 1-1 -1ISTRUCT \M0N1EC-1 Er6 NERCALC iu -2017, Build: 1O.17.8.29, Ver6.17.8 31 - ......................... - ApphedLoads Lateral Concentrated Load (k) Lateral Distributed Loads (klf) Vertical Load (k) D:Dead Load 0.1220k k/It 1.430k Lr: Roof Live 0.550 k klft 5.832 k L:Live k kift k S: Snow k k/ft k W: Wind 0.6850 k 0.0230 k/ft 0.2590 k E:Earthquake 1.192 k 0.010 k/ft k H : Lateral Earth k k/ft k Load distance above TOP of Load above ground surface ground surface 10.610 ft 10.610 ft BOTTOM of Load above ground surface ft Load CobH3tton Results F e GrcLnd SuSuce Rer,,,jired Pre:suedl 1 Depth S n"-reuse b nut Londs A .1crn , - 'ti-k: . :h Ac un '' 4 u,f Fueler +D+H 0.122 1.294 3.25 210.6 210.6 1.000 +D+L+H 0.122 1.294 3.25 210.6 210.6 1.000 +D+Lr+H 0.672 7.130 6.00 393.3 394.1 1.000 +D+S+H 0.122 1.294 3.25 210.6 210.6 1.000 +D+0.750Lr+0.750L+H 0.535 5.671 5.50 361.0 361.7 1.000 +D+0.750L+0.750S+H . 0.122 1.294 3.25 210.6 210.6 1.000 +D+0.60W+H 0.679 6.432 5.88 384.2 384.7 1.000 +D+0.70E+H 1.031 10.541 7.00 457.9 ' 459.5 1.000 +D+0.750Lr+0.750L+0.450W+H 0.953 9.524 6.75 442.3 443.3 1.000 DESERT FOX, LLC. Consulting Structural Engineers 969 E. Saratoga St. Gilbert, AZ 85296 T: (480) 205-2094 PDX. LLM F: (480) 633-9328 Pole Footing Embedded in Soil Description : Single Post Canopy - DL + LL + Lateral (non-solar) +D+0.750L+0.750S+0.450W+H 0.540 +D+0.750L+0.750S+0.5250E+H 0.804 +0.600+0.60W+0.60H 0.631 +0.600+0.70E+0.60H 0.982 Project Title: MONTECITO APARTMENTS Engineer: RRD Project ID: 18-103 Project Descr: solar parking canopy P:25JAN218. 3:FM 5.148 5.38 352.9 353.3 1.000 8.230 6.38 417.5 417.6 1.000 5.914 5.63 372.1 373.4 1.000 10.024 6.88 450.0 450.5 1.000 Ak DESERT FOX, LLC. Project Title: MONTECITO APARTMENTS Consulting Structural Engineers Engineer: RRD Project ID: 18-103 969 E. Saratoga St. Project Descr: solar parking canopy I. Gilbert, AZ 85296 T: (480) 205-2094 5aTOX, UX F: (480) 633-9328 25 :AN 2010, 4:03PM G Footing File G:\DESERT-1\18JOBS--1%18-1O3-1STRUCT-i'MONTEC'-1.EC6 General 00 ing ENERCALC, INC. 1983-2017, Butd:10.17.829, Ver6.17.8.31 Description : Single Post Canopy - DL + LL + Lateral (alternate spread footing) Code References Calculations per ACt 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2015 General Information Material Properties fc : Concrete 28 day strength 2.50 ksi fy: Rebar Yield 60.0 ksi Ec : Concrete Elastic Modulus = 3,122.0 ksi Concrete Density = 145.0 pcf Values Flexure 0.90 orledr U. Increases based on footing Depth Analysis Settings Footing base depth below soil surface Min Steel % Bending Reinf. = Allow press. increase per foot of depth Min Allow % Temp Reinf. = when footing base is below Min. Overturning Safety Factor = 1.0 : 1 Mm. Sliding Safety Factor 1.0 : 1 Increases based on footing plan dimension Add Ftg Wt for Soil Pressure : Yes Allowable pressure increase per foot of depth Use fig wt for stability, moments & shears : Yes when max. length or width is greater than Add Pedestal Wt for Soil Pressure : No Use Pedestal wt for stability, mom & shear : No Dimensions Soil Design Values Allowable Soil Bearing Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff. 1.50 ksf = No = 250.0 pcf = 0.250 = ft = ksf = 2.0 ft ksf ft Width parallel to X-X Axis = 6.670 ft Length parallel to Z-Z Axis 4.330 ft Footing Thickness 26.0 in Pedestal dimensions... px : parallel to X-X Axis 6.0 in pz: parallel to Z-Z Axis 12.0 in Height in Rebar Centedine to Edge of Concrete... at Bottom of footing = 13.0 in Reinforcing Bars parallel to X-X Axis - Number of Bars - 8.0 Reinforcing Bar Size = # 5 Bars parallel to Z-Z Axis - - Number of Bars = 140 Reinforcing Bar Size # 5 Bandwidth Distribution Check (ACt 15442) - Direction Requiring Closer Separation ig Z-Z Axis # Bars required within zone 78.7% # Bars required on each side of zone 21.3% Applied Loads D Lr L S W E H P: Column Load = 1.43 5.832 0.2590 k OB : Overburden = ksf M-xx = 1.454 13.215 k-ft M-zz = 1.296 5.832 7.268 13.215 k-ft V-x = 0.6850 1.192 k V-z = 0.1370 1.192 k I I I DESERT FOX, LLC. Project Title: MONTECITO APARTMENTS Consulting Structural Engineers Engineer: RRD Project ID: 18-103 969 E. Saratoga St. Project Descr: solar parking canopy Gilbert, AZ 85296 ' .............% T: (480) 205-2094 OX LC. F: (480) 633-9328 . Pne:25jA42O, 4:3PM G I Footing File G\DEET 11BJO8S-11.1i)3--1\SWUCT-1\MONTEC-.1 E enera 00 ing ENERCALC., INC. 1 J Description : Single Post Canopy - DL + LL Lateral (alternate spread footing) DESIGN SUMMARY Mm. Ratio Item Applied Capacity Governing Load Combination PASS 0.9160 Soil Bearing 1.374 ksf 1.50 ksf +0.60D+0.70E+0.60H about X-X axis PASS 1.269 Overturning - X-X 11.058k-ft 14.037 k-ft +0.60D+0.70E+0.60H PASS 1.827 Overturning - Z-Z 11.836k-ft 21.622k-ft +0.600+0.70E+0.60H PASS 1.943 Sliding - X-X 0.8344 k 1.621 k +0.600+0.70E+0.60H PASS 1.943 Sliding - Z-Z 0.8344 k 1.621 k +0.60D+0.70E+0.60H PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.1065 Z Flexure (+X) 3.384 k-ft/ft 31.769 k-ft/ft +1.20D+160Lr+050W+160H PASS 0.02470 Z Flexure (-X) 1.421 k-ft/ft 57.543 k-ft/ft +1.200+0.50L+0.70S+E+1.60H PASS 0.03483 X Flexure (+Z) 1.248 k-ft/ft 35.823 k-ft/ft +0.90D+E+0.90H PASS 0.01480 X Flexure (-Z) 0.5302 k-ft/ft 35.823 k-ft/ft +1.20D+1.6OLr+0.50L+1.60H PASS 0.1223 1-way Shear (+X) 9.175 psi 75.0 psi +1.200+1.60Lr+0.50W+1.60H PASS 0.05261 1-way Shear (-X) 3.946 psi 75.0 psi +1.20D+0.50L+0.70S+E+1.60H PASS 0.05911 1-way Shear (+Z) 4.434 psi 75.0 psi +0.90D+E+0.90H PASS 0.01888 1-way Shear (-Z) 1.416 psi 75.0 psi +1.20D+1.60Lr+0.50L+1.60H PASS 0.05737 2-way Punching 8.605 psi 150.0 psi +1.20D+1.60Lr+0.50W+1.60H Soil Bearing Rotation Axis & Xecc Zecc Actual Soil Bearing Stress @ Location Actual / Allow Load Combination... Gross Allowable (in) Bottom, -Z Top, +Z Left, -X Right, +X Ratio X-X, +D+H 1.50 n/a 0.0 0.3637 0.3637 n/a n/a 0.243 X-X, +D+L+H 1.50 n/a 0.0 0.3637 0.3637 n/a n/a 0.243 X-X, +D+Lr+H 1.50 n/a 0.0 0.5656 0.5656 n/a n/a 0.377 X-X, +D+S+H 1.50 n/a 0.0 0.3637 0.3637 n/a n/a 0.243 X-X, +D+0.750Lr+0.750L+H 1.50 n/a 0.0 0.5151 0.5151 n/a n/a 0.343 X-X. +D+0750L+0750S+H 1.50 n/a 0.0 0.3637 0.3637 n/a n/a 0.243 X-X, +D+0.60W+H 1.50 n/a 1.20 0.3141 0.4132 n/a n/a 0.276 X-X, +D+0.70E+H 1.50 n/a 12.420 0.0 0.9350 n/a n/a 0.623 X-X, +D+0.750Lr+0.750L+0.450W+H 1.50 n/a 0.6355 0.4780 0.5523 n/a n/a 0.368 X-X, +D+0.750L+0.750S+0.450W+H 1.50 n/a 0.9001 0.3265 0.4009 n/a n/a . 0.267 X-X. +D+0.750L+0.7505+0.5250E+H 1.50 n/a 9.354 0.0 0.7609 n/a n/a 0.507 X-X, +0.60D+0.60W+0.60H 1.50 n/a 2.0 0.1686 0.2678 n/a n/a 0.179 X-X, +0.60D+0.70E+0.60H 1.50 n/a 20.468 0.0 1.374 n/a n/a 0.916 Z-Z, +D+H 1.50 1.481 n/a n/a n/a 0.3240 0.4034 0.269 Z-Z, +D+L+H 1.50 1.481 n/a n/a n/a 0.3240 0.4034 0.269 Z-Z, +D+Lr+H 1.50 5.236 n/a n/a n/a 0.3473 0.7839 0.523 Z-Z, +D+S+H 1.50 1.481 n/a n/a n/a 0.3240 0.4034 0.269 Z-Z, +D+0.750Lr+0.750L+H 1.50 4.573 n/a n/a n/a 0.3415 0.6888 0.459 Z-Z, +D+0.750L+0.750S+H 1.50 1.481 n/a n/a n/a 0.3240 0.4034 0.269 Z-Z, +D+0.60W+H 1.50 7.480 n/a n/a n/a 0.1632 0.5642 0.376 Z-Z, +D+0.70E+H 1.50 13.875 n/a n/a n/a 0.0 0.7486 0.499 Z-Z, +D+0.750Lr+0.750L+0450W+H 1.50 7.750 n/a n/a We 0.2208 0.8094 0.540 Z-Z, +D+0.750L+0.7505+0.450W+I-1 1.50 5.980 n/a n/a n/a 0.2034 0.5240 0.349 Z-Z, +D+0.750L+0.750S+0.5250E+H 1.50 10.816 n/a n/a n/a 0.07468 0.6621 0.441 Z-Z, +0.60D+060W+060H 1.50 11.480 n/a n/a n/a 0.03356 0.4029 0.269 Z-Z, +0.60D+0.70E+0.60H 1.50 21.907 n/a n/a n/a 0.0 0.6532 0.436 Overturning Stability Rotation Axis & Load Combination... Overturning Moment Resisting Moment Stability Ratio Status X-X. +D+H None 0.0 k-ft Infinity OK X-X, +D+L+H None 0.0 k-ft Infinity OK X-X, +D+Lr+H None 0.0 k-ft Infinity OK X-X, +D+S+H None 0.0 k-ft Infinity OK X-X. +D+0.750Lr+0.750L+H None 0.0 k-ft Infinity OK X-X, +D+0.750L+0.750S+H None 0.0 k-ft Infinity OK X-X, +D+0.60W+H 1.051 k-ft 22.740 k-ft 21.647 OK X-X, +D+0.70E+H 11.058k-ft 23.133 k-ft 2.092 OK X-X, +D+0.750Lr+0.750L+0.450W+H 0.7879 k-ft . 32.210 k-ft 40.882 OK DESERT FOX, LLC. Consulting Structural Engineers 969 E. Saratoga St. Gilbert, AZ 85296 T: (480) 205-2094 DSMT PDX. LL. F: (480) 633-9328 General Footing ......... - - Project Title: MONTEC ITO APARTMENTS Engineer: RRD Project ID: 18-103 Project Descr: solar parking canopy 20 JAN 2210, 4:03PM UCT-1\MONTEC-1 E Description : Single Post Canopy - DL + LL + Lateral (alternate spread footing) o.14 uric Stablity Rotation Axis & Load Combination. Overturning Moment Resisting Moment Stability Ratio Status X-X, +D+0.750L+0.750S+0.450W+H 0.7879 k-ft . 22.740 k-ft 28.862 OK X-X, +D+0.750L+0.7505+0.5250E+H 8.294 k-ft 23.034 k-ft 2.777 OK X•X, +0.60D+0.60W+0.60H 1.051 k-ft 13.644 k-ft 12.988 OK X-X, +0.60D+0.70E+060H 11.058 k-ft 14.037 k-ft 1.269 OK Z-Z, +D+H 1.296k-ft 35.029 k-ft 27.029 OK Z-Z, +D+L+H .1.296 k-ft . 35.029 k-ft . 27.029 OK Z-Z, +D+Lr+H 7.128 k-ft 54.479 k-ft 7.643 OK Z-Z, +D+S+H 1.296k-ft 35.029 k-ft 27.029 OK Z-Z, +D+0.750Lr+0.750L+H 5.670 k-ft 49.616 k-ft 8.751 OK Z-Z, +D+0.750L+0.750S+H 1.296 k-ft 35.029 k-ft 27.029 OK Z-Z, +D+0.60W+H 6.547 k-ft 35.029 k-ft 5.350 OK Z-Z, +D+0.70E+F-1 12.354 k-ft 35.634 k-ft 2.884 OK Z-Z, +D+0.750Lr+0.750L+0.450W+H 9.608 k-ft 49.616 k-ft 5.164 OK Z-Z, +D+0.750L+0.750S+0.450W+H . 5.234 k-ft 35.029 k-ft 6.692 OK Z-Z, +D+0.750L+0.7505+0.5250E+H 9.590 k-ft 35.483 k-ft 3.70 OK Z-Z, +0.60D+0.60W+0.60H 6.029 k-ft 21.017 k-ft 3.486 OK Z-Z, +060D+070E+060H 11.836 k-ft 21.622k-ft 1.827 OK All units k Force Application Axis Load Combination... Sliding Force Resisting Force Stability Ratio Status X-X, +D+H 0.0k 2.626 k No Sliding OK X-X, +D+L+H 0.0 k 2.626 k No Sliding OK X-X, +D+Lr+H 0.0 k 4.084 k No Sliding OK X-X, +D+S+H 0.0 k 2.626 k No Sliding OK X-X, +D+0.750Lr+0.750L+H 0.0 k 3.719 k No Sliding OK X-X, +D+0.750L+0.7505+H 0.0 k 2.626 k No Sliding OK X-X, +D+0.60W+H 0.4110k 2.626k 6.389 OK X-X, +D+0.70E+F-I 0.8344 k 2.671 k 3.201 OK X-X, +D+0.750Lr+0.750L+0.450W+H 0.3083 k 3.719 k 12.066 OK X-X, +D+0.750L+0.7505+0.450W+H 0.3083 k 2.626k 8.519 OK X-X, +D+0.750L+0.750S+0.5250E+H 0.6258 k 2.660 k 4.250 OK X-X, +0.60D+0.60W+0.60H 0.4110k 1.576k 3.833 OK X-X. +0.60D+0.70E+0.60H 0.8344 k 1.621 k 1.943 OK Z-Z, +D+H 0.0 k 2.626k No Sliding OK Z-Z, +D+L+H 0.0 k 2.626 k No Sliding OK Z-Z, +D+Lr+H 0.0 k 4.084 k No Sliding . OK Z-Z, +D+S+H 0.0 k 2.626k No Sliding OK Z-Z, +D'-0.750Lr+0.750L+H 0.0 k 3.719k No Sliding OK Z-Z, +D+0.750L+0.7505+H 0.0 k 2.626 k No Sliding OK Z-Z, +D+0.750L+0.750S+0.450W+H 0.06165 k 2.626 k 42.593 OK Z-Z, +D+0.750L+0.7505+0.5250E+R 0.6258 k 2.660 k 4.250 OK Z-Z, +0.60D+0.60W+0.60H 0.08220k 1.576k 19.167 OK Z-Z. +0.60D+0.70E+0.60H 0.8344k 1.621 k 1.943 OK Z-Z. +D+0.60W+H 0.08220k 2.626k 31.945 OK Z-Z, +D+0.70E+H 0.8344 k 2.671 k 3.201 OK Z-Z. +D+0.750Lr+0.750L+0.450W+H 0.06165 k 3.719 k 60.330 OK Footing Fle.xure Flexure Axis & Load Combination Mu Side Tension As Req'd Gym. As Actual As PhiMn Status k-ft Surface InA2 InA2 InA2 k-ft X-X, +1.40D+1.60H 0.09608 +Z Bottom 0.0016426814066 Min for Bending 0.6507 35.823 OK X-X, +1.40D+1.60H 0.09608 -Z Bottom 0.0016426814066 Min for Bending 0.6507 35.823 OK X-X, +1.20D+0.50Lr+1.60L+1.60H 0.2223 +Z Bottom 0.0038013922327 Min for Bending 0.6507 35.823 OK X-X, +1.20D+0.50Lri-1.60L+1.60H 0.2223 -Z Bottom 0.0038013922327 Min for Bending 0.6507 35.823 OK X-X, +1.20D+1.60L+0.505+1.60H 0.08236 +Z Bottom 0.0014079827246 Min for Bending 0.6507 35.823 OK X-X, +1.20D+1.60L+0.50S+1.60H 0.08236 -Z Bottom 0.0014079827246 Min for Bending 0.6507 35.823 OK X-X, +1.20D+1.60Lr+0.50L+1.60H 0.5302 +Z Bottom 0.0090705487435 Min for Bending 0.6507 35.823 OK X-X, +1.20D+1.60Lr+0.50L+1.60H 0.5302 -Z Bottom 0.0090705487435 Min for Bending 0.6507 35.823 OK X-X, +1.20D+1.60Lr+0.50W+1.60H 0.5735 +Z Bottom 0.0098116477971 Min for Bending 0.6507 35.823 OK X-X, +1.200+1.60Lr+0.50W+1.60H 0.4869 -Z Bottom 0.0083295492477 Min for Bending 0.6507 35.823 OK I I I DESERT FOX, LLC. Consulting Structural Engineers hi. 969 E. Saratoga St. Gilbert, AZ 85296 ... 1: (480) 205-2094 DESUAT PDX- LLC, F: (480) 633-9328 Project Title: MONTECITO APARTMENTS Engineer: RRD Project ID: 18-103 Project Descr: solar parking canopy I Pr:2jAN2In, 4:03PM - Et.:r ftLC, INC..19832017, Bud.0 k• Description : Single Post Canopy - DL + LL + Lateral (alternate spread footing) Flexure Axis & Load Combination Mu Side Tension As Reqd Gym. As Actual As PhiMn k-ft Surface In12 inA2 inA2 k-ft X•X, +1.20D+0.50L+1.605+160H 0.08236 +Z Bottom 0.0014079827246 Min for Bending 0.6507 35.823 OK X-X, +1.20D+0.50L+1.605+1.60H 0.08236 -Z Bottom 0.0014079827246 Min for Bending 0.6507 35.823 OK X-X, +1.20D+1.60S+0.50W+1.60H 0.1256 +Z Bottom 0.0021480535557 Min for Bending 0.6507 35.823 OK X-X, +1.20D+1.60S+0.50W+1.60H 0.03908 -Z Bottom 0.0006680110376 Min for Bending 0.6507 35.823 OK X-X, +1.20D+0.50Lr+0.50L+W+1.60H 0.3089 +Z Bottom 0.0052822749272 Min for Bending 0.6507 35.823 OK X-X, +1.20D+0.50Lr+0.50L+W+1.60H 0.1357 -Z Bottom 0.0023209066305 Min for Bending 0.6507 35.823 OK X-X, +1.20D+0.50L+0.505+W+1.60H 0.1689 +Z Bottom 0.0028882235707 Min for Bending 0.6507 35.823 OK X-X, +1.20D+0.50L+0.50S+W+1.60H 0.004204 -Z Top 4.0617743547635 Min for Bending 0.6507 65.103 OK X-X, +1.20D+0.50L+0.705+E+1.60H 1.004 +Z Bottom 0.0171829952890 Min for Bending 0.6507 35.823 OK X-X, +1.20D+0.50L+0.705+E+1.60H 0.5223 -Z Top 0.0050474776444 Min for Bending 0.6507 65.103 OK X-X, +0.90D+W+090H 0.1483 +Z Bottom 0.0025360998869 Min for Bending 0.6507 35.823 OK X-X, +0.90D+W+0.90H 0.02479 -Z Top 0.0002395493244 Min for Bending 0.6507 65.103 OK X-X, +0.90D+E+0.90H 1.248 +Z Bottom 0.0213695727867 Min for Bending 0.6507 35.823 OK X-X, +0.90D+E+0.901-1 0.3919 -Z Top 0.0037873959054 Min for Bending 0.6507 65.103 OK Z-Z, +1.40D+1.60H 0.1439 -X Bottom 0.0024601988897 Min for Bending 0.5727 31.769 OK Z-Z, +1.40D+1.60H 0.5158 +X Bottom 0.0088237796094 Min for Bending 0.5727 31.769 OK Z-Z, +1.200+0.50Lr+1.60L+1.60H 0.3049 -X Bottom 0.0052146356447 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+0.50Lr+1.60L+1.60H 1.221 +X Bottom 0.0209174384284 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+1.60L+0.505+1.60H 0.1233 -X Bottom 0.0021086748090 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+1.60L+0.505+1.60H 0.4421 +X Bottom 0.0075623756984 Min for Bending 0.5727 31.769 OK Z-Z, +1.200+1.60Lr+0.50L+1.60H 0.7044 -X Bottom 0.0120539090563 Min for Bending 0.5727 31.769 OK Z-Z, +1.200+1.60Lr+0.50L+1.60H 2.936 +X Bottom 0.0504132540456 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+1.60Lr+0.50W+1.60H 0.2559 -X Bottom 0.0043762888954 Min for Bending 0.5727 31.769 OK Z-Z, +1.200+1.60Lr+0.50W+1.60H 3.384 +X Bottom 0.0581555280016 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+0.50L+1.605+1.60H 0.1233 -X Bottom 0.0021086748090 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+0.50L+1.605+1.60H 0.4421 +X Bottom 0.0075623756984 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+1.605+0.50W+1.60H 0.3251 -X Top 0.0031419447388 Min for Bending 0.5727 57.543 OK Z-Z, +1.20D+1.60S+0.50W+1.60H 0.8906 +X Bottom 0.0152444355398 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+0.50Lr+0.50L+W+1.60H 0.5920 -X Top 0.0057218068308 Min for Bending 0.5727 57.543 OK Z-Z. +1.20D+0.50Lr+0.50L+W+1,60H 2.118 +X Bottom 0.0363296939351 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+0.50L+0.505+W+1.60H 0.7736 -X Top 0.0074773717071 Min for Bending 0.5727 57.543 OK Z-Z, +1.20D+0.50L+0.505+W+1.60H 1.339 +X Bottom 0.0229372211742 Min for Bending 0.5727 31.769 OK Z-Z, +1.20D+0.50L+0.705+E+1.60H 1.421 -X Top 0.0137417126127 Min for Bending 0.5727 57.543 OK Z-Z. +1.20D+0.50L+0.705+E+1.60H 2.132 +X Bottom 0.0365622643578 Min for Bending 0.5727 31.769 OK Z-Z. +0.90D+W+0.90H 0.8044 -X Top 0.0077755123740 Min for Bending 0.5727 57.543 OK Z-Z, +0.90D+W+0.90H 1.229 +X Bottom 0.0210403719117 Min for Bending 0.5727 31.769 OK Z-Z, +0.90D+E+0.90H 1.291 -X Top 0.0124829706736 Min for Bending 0.5727 57.543 OK +0.90D+E+0.90H 2,167 +X Bottom 0.0371682155839 Min for Bending 0.5727 31.769 OK 81 Ohe Way Shear Load Combination... Vu @ -x Vu @ +X Vu @ -z Vu @ +Z Vu:Max Phi Vn Vu! Phi*Vn Status +1.40D+1.60H 0.38 psi 1.40 psi 0.26 psi 0.26 psi 1.40 psi 75.00 psi 0.02 0.00 +1.20D+050Lr+160L+160H 0.81 psi 3.31 psi 0.59 psi 0.59 psi 3.31 psi 75.00 psi 0.04 0.00 +1.20D+1.60L+0.50S+1.60H 0.33 psi 1.20 psi 0.22 psi 0.22 psi 1.20 psi 75.00 psi 0.02 0.00 +1.20D+1.60Lr+0.50L+1.60H 1.86 Psi 7.95 psi 1.42 psi 1.42 psi 7.95 psi 75.00 psi 0.11 0.00 +1.20D+1.60Lr+0.50W+1.60H 0.64 Psi 9.18 psi 1.28 psi 1.55 psi 9.18 psi 75.00 psi 0.12 0.00 +1.20D+0.50L+1.605+1.60H 0.33 Psi 1.20 psi 0.22 psi 0.22 psi 1.20 psi 75.00 psi 0.02 0.00 +1.20D+1.605+050W+160H 0.90 psi 2.42 psi 0.09 psi 0.35 psi 2.42 psi 75.00 psi 0.03 0.00 +1.20D+0.50Lr+0.50L+W+1.60H 1.64 psi 5.76 psi 0.32 psi 0.86 psi 5.76 psi 75.00 psi 0.08 0.00 +1.20D+0.50L+0.50S+W+1.60H 2.12 psi 3.65 psi 0.05 psi 0.49 psi 3.65 psi 75.00 psi 0.05 0.00 +1.20D+0.50L+0.705+E+1.60H 395 psi 5.81 psi 1.40 psi 3.16 psi 5.81 psi 75.00 psi 0.08 0.00 +0.90D+W+0.90H 2.20 psi 3.35 psi 0.10 psi 0.43 psi 3.35 psi 75.00 psi 0.04 0.00 +0.90D+E+0.90H 3,62 psi 5.91 psi 1.05 psi 4.43 psi 5.91 psi 75.00 psi 0.08 0.00 Two-Way "Pundli(" Shear All units k Load Combination... Vu Phi*Vn Vu! Phi*Vn Status +1.40D+1.60H . 1.56 psi 150.00psi 0.0104 OK +1.20D+0.50Lr+1.60L+1.60H 3.61 osi 150.00psi 0.02405 OK +1.20D+1.60L+0.505+1.60H 1.34 osi 150.000si 0.008911 OK +1.20D+1.6OLr+0.50L+160H 8.61 psi 150.00psi 0.05737 OK +1.20D+1.60Lr+0.50W+1.60H 8.61 psi 150.00psi . 0.05737 OK Status DESERT FOX, LLC. Consulting Structural Engineers 969 E. Saratoga St. / Gilbert, AZ 85296 T. (480) 205-2094 .LC. F: (480) 633-9328 Project Title: Engineer: Project Descr: MONTECITO APARTMENTS RRD solar parking canopy Project ID: 18-103 pred:25j AN' 2ola, 413PM General Footing ~FRCA' Description : Single Post Canopy - DL + LL + Lateral (alternate spread footing) To-Wy"Punchig" hea} All units k Load Combination... Vu Phi*Vn Vu I Phi*Vn Status +1.20D+0.50L+1.605+1.60H 1.34 osi 150.00psi 0.008911 - OK +1.20D+1.605+0.50W+1.60H 1.34 osi 150.00si 0.008911 OK +1.20D+0.50Lr+0.50L+W+1.60H 3.61 psi 150.00psi 0.02405 OK +1.20D+0.50L+0.50S+W+1.60H 1.34 psi 150.00psi 0.008911 OK +1.20D+0.50L+0.705+E+1.60H 1.85 osi 150.00psi 0.01235 OK +0.90D+W+0.90H 1.00 psi 150.00psi 0.006683 OK +0.90D+E+0.90H 1.97 psi 150.00psi 0.01311 OK I I I I I I I I ESR-1976 I Most Widely Accepted and Trusted TABLE 2-ALLOWABLE TENSILE PULL-OUT LOADS (PNOTIQ), pounds-force" 234 ' Steel F,, = 46 ksi, Applied Factor of Safety, C14.0 Screw Designation Nominal Diameter Design Thickness of Member Not in Contact with the Screw Head (in) 0.018 1 0.024 0.00 0.036 0,0.8 0.080 0.075 0.105 0.125 0.187 1 0,250 10-16 0.190 44 58 73 87 116 145 182 254 303 12-14,12-24 0.216 50 66 83 99 132 165 207 289 344 515 689 1/14 1/28 0.250 57 77 96 115 153 191 239 335 398 596 797 For 81:1 inch = 25.4 mm, I lbf = 4.4 N, 1 hal = 689 We. 'For tension connections, the least of the allowable pull-out, pullover, and fastener tension strength found in Tables 2.3. and 5. respectively, must be used for design. 2ANSIIASME standard screw diameters were used in the calculations and are listed in the tables. 3The allowable pull-out capacity for other member thickness can be determined by interpolating within the table. calculate IRFD values, multiply values in table by the ASO safety factor of 3.0 and multiply again with the LRFO 4' factor of 0.5. 'For F. = 58 hal, multiply values by 1.29; for F, = 65 hal, multiply values by 1.44. 'Outside drilling capacity limits. TABLE 3-ALLOWABLE TENSILE PULL-OVER LOADS (P6o1Ifl), pounds4orce1'2'4'5 Steel Fu = 45 ksi, Applied Factor of Safety, 03.0 Screw Designation Nominal Diameter (in.) Head or Integral Washer Diameter Design Thickness of Member in Contact with the Screw Head (in) 0.018 0.024 0.030 0.038 (in.) 0.048 0.060 0.07$ 0.105 0.125 0.187 - 0.250 Hex Washer Head(HWH) 10-16 0.190 0.400 1 162 216 270 324 1 432 540 1 675 1 945 111251 ' 12-14,12-24 0.216 0.415 168 224 280 336 1 448 L 560 700 980 1167 1746 12334 /4-14 '/4-28 0.250 0.500 203 270 338 405 540 1 675 1 844 1 1181 11406 1 210412813 IlIMI with Serrations 10-16 0.190 0.435 176 235 294 352 470 587 1 734 1 1028 1 12231 6 6 1/14 0.250 0.610 203 270 338 405 540 675 844 1181 1406 2104 ' Phillips Pan Head 10-16 0.190 0.365 148 j 197 1 246 1 296 394 J 493 J 616 I 862 11021 I 6 For Sl:l inch '25.4mm, 11bf4.4N,1 ksi6.89MPa. 'For tension connections, the lower of the allowable pull-out pullover, and fastener tension strength found In Tables 2, 3, and 5, respectively must be used for design. 2N'ISIJASME standard screw diameters were used in the calculations and are listed in the tables. 37he allowable pull-over capacity for other member thickness can be determined by interpolating within the table. To calculate LRFD values, multiply values in table by the ASO safety factor of 3.0 and multiply again with the LRFO 4' factor of 0.5. 'For Fu = 58 ksi, multiply values by 1.29; for Fu = 65 Irs, multiply values by 1.44. 'Outside drilling capacity limits. I ESR-1976 I Most Widely Accepted and Trusted TABLE 4-ALLOWABLE SHEAR (BEARING) CAPACITY (P85I0), pounds-force" '' Steel Fu = 45 ksi, Applied Factor of Safety, 03.0 Designation Nominal Diameter Design Thickness of Member Not In Contact Screw Head Design Thickness of Member In Contact with the Screw Head (in) 0.018 0.024 0.030 (in) 0.036 0.048 0.080 0.075 0.105 0.125 0.187 - - 0.250 10.16 0.190 0.018 66 66 66 66 66 66 66 66 66 0.024 102 102 102 102 1 102 102 102 102 102 - - 0.030 111 143 143 143 143 143 143 143 143 - - 0.036 120 152 185 188 188 188 188 188 188 - - 0.048 139 168 199 228 289 289 289 289 289 - - 0.060 139 185 213 239 327 404 404 404 404 - - 0.075 139 185 231 251 337 427 564 564 564 - - 0.105 139 185 231 277 356 436 570 808 808 - - 0.125 139 185 231 277 369 442 571 808 962 - - 12-14 0.216 0.018 71 71 71 71 71 71 71 71 71 71 71 0.024 109 109 109 109 109 109 109 109 109 109 109 0.030 125 152 152 152 152 152 152 152 152 152 152 0.036 136 170 205 200 200 200 200 200 200 200 200 0.048 157 190 223 253 308 308 308 308 308 308 308 0.060 157 210 240 266 362 430 430 430 430 430 430 0.075 157 210 262 282 375 468 601 601 601 601 601 0.105 157 210 262 315 402 483 624 919 919 919 919 0.125 157 210 262 315 420 494 629 919 1094 1094 1094 0.187 157 210 262 315 420 525 642 919 1094 1636 1636 0.250 157 210 262 315 420 525 656 919 1094 1636 2187 0.250 0.018 76 76 76 76 76 76 76 76 76 76 76 0.024 117 117 117 117 117 117 117 117 117 117 117 0.030 142 164 164 164 164 164 164 164 164 164 184 0.036 156 193 215 215 215 215 215 215 215 215 215 0.048 182 218 253 283 331 331 331 331 331 331 331 0.060 182 243 276 300 406 463 463 463 463 463 463 0.075 182 243 304 322 424 521 647 647 647 647 647 0.105 182 243 304 365 461 544 694 1063 1063 1063 1063 0.125 182 243 304 365 486 560 03 1063 1266 1266 1266 0,187 182 243 304 365 486 608 731 1063 1266 1893 1893 0.250 182 243 304 365 486 608 759 1063 1266 1893 2531 For Si: I inch z 25.4 mm,1 1bf44 N. I ksi = 6.89 We. 'The lower of the allowable shear (bearing) and the allowable fastener shear strength found in Tables 4 and 5, respectively, must be used for design. 2ANSIIASME standard screw diameters were used In the calculations and are listed in the tables. 3lhe allowable bearing capacity for other member thickness can be determined by interpolating within the table. 4To calculate LRFD values, multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD 0 factor of 0.5. 'For F,, 58 ksi, multiply values by 1.29; for F,, = 65 kel, multiply values by 1.44. 88hear values do not apply to 5,6 and 8-inch-long '/4-28 screws, due to the fact that they are not fully threaded. TABLE 5-FASTENER STRENGTH OF SCREWS" $.4.5 SCREW DESIGNATION DIAMETER (in.) ALLOWABLE FASTENER STRENGTH NOMINAL FASTENER STRENGTH Tensile, Ps/fl (lb) Shear, PSJn (lb) Tensile, P, (Ib) Shear, P,, (lb) 10-16 0.190 885 573 2654 1718 12-14 0.216 1184 724 3551 2171 12-24 0.216 1 1583 885 4750 2654 1/14 0250 1605 990 4816 2970 1/28 0.250 1922 1308 5767 3925 For SI: Inch = 25.4 mm, 1 Ibf4.4 N, I ksi = 6.89 MPa. 'For tension connections, the least of the allowable pull-out, pullover, and fastener tension strength found in Tables 2, 3, and 5, respectively, must be used for design. 2For shear connection, the lower of the allowable shear (bearing) and the allowable fastener shear strength found in Table 4 and 5, respectively, must be used for design. 3See Section 4.1 for fastener spacing and end distance requirements. 4Nominal strengths are based on laboratory tests; 5To calculate LRFD values, multiply nominal strength values by the LRFD it' factor of 0.5. I I I I I I I (City of Carlsbad Print Date: 12/17/2018 Permit No: PREV2018-0166 2510 West Ranch St BLDG-Permit Revision 2081951000 $ 0.00 Job Address: Permit Type: Parcel No: Valuation: Occupancy Group: U Dwelling Units: Bedrooms: Project Title Description: Work Class: Commercial Permit Revi5 Status: Closed - Finaled Lot U: Applied: 06/22/2018 Reference U: Issued: 07/03/2018 Construction Type Permit 12/17/2018 Finaled: Bathrooms: Inspector: Orig. Plan Check U: CBC2018-0096 Final Plan Check U: Inspection: MONTECITO: DELTA 2 - REMOVE MODULES AT CARPORTS 1 & 3 Applicant: Owner: ALLIANCE LAND PLANNING AND ENGINEERING SHAPELL MONTECITO LLC INC ELIZABETH SHOEMAKER 8383 Wilshire Blvd, 700 2248 Faraday Ave Beverly Hills, CA 90211-2400 Carlsbad, CA 92008-7208 323-988-7590 760-431-9896 FEE AMOUNT BUILDING PLAN CHECK ADMIN FEE $35.00 MANUAL BUILDING PLAN CHECK FEE $459.38 Total Fees: $ 494.38 Total Payments To Date : $ 494.38 ----_Balance Due: $0.00 Building Division 1635 Faraday Avenue, Carlsbad CA 92008-7314 1 760-602-2700 1 760-602-8560 f I www.carlsbadca.gov c PLAN CHECK REVISION OR Development Services City of DEFERRED SUBMITTAL Building Division Carlsbad APPLICATION 1635 Faraday Avenue 760-602-2719 B-I 5 www.carlsbadca.gov Original Plan Check Number CBC 2018-0096 Plan Revision Number Project Address 2510 West Ranch Drive (Recreational Building - #16) General Scope of Revision/Deferred Submittal: Delta 2 - Solar Carport # 1 and 3 had to remove a couple solar modules due to the drive isle corners. CONTACT INFORMATION: Name Elizabeth Shoemaker Phone 760-550-1957 Fax Address 4938 Newport Ave. # 3 city_San Diego Zip 92107 Email Address elizabeth.shoemaker@gmaii.com or eliabeth@espermits.com Original plans prepared by an architect or engineer, revisions must be signed & stamped by that person. 1 . Elements revised: Plans fl Calculations J Soils EJ Energy fl Other 2. Describe revisions in detail 3. List page(s) where each revision is shown Title Page PV 000 Scope / Site Plan PV 100 Site Plan PV 200 Canopy Layout PV 201 Single Line PV 300 Stringing Layout PV 301 4. Does this revision, in any way, alter the exterior of the project? Li Yes El No Does this revision add ANY new floor area(s)? 9 Yes It No Does this revision affect any fire related issues? Li Yes Ill No Is this a complete set? Yes II No Signature_&JML WIL, Date 6/21/18 1635 Faraday Avenue, Carlsbad, CA 92008 : 760-602- 2719 f 760-602-8558 Email: building@carlsbadca.gov www.carisbadca.gov EsG V/0 . A SAFEbuittCompany DATE: 6/29/2018 JURISDICTION: cCARLBAb PLAN CHECK#.: CBC2018-0166(2018-0096.REV2) PROJECT ADDRESS: 2510 WEST RANCH DRIVE O APPLICANT O JURIS. SET:I PROJECT NAME: REMOVAL OF SOLAR MODULES ON CARPORTS #1 & 3 FOR SHAPELL PORTOLA The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's building codes. The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to: EsGil staff did not advise the applicant that the plan check has been completed. EsGil staff did advise the applicant that the plan check has been completed. Person contacted: Telephone #: Date contacted: (by.t9, ) Email: Mail Telephone Fax In Person REMARKS: By: Bert Domingo Enclosures: EsGil 6/25/2018 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858) 560-1576 CARLSBAD CBC2018-0166(2018-0096.REV2) 6/29/2018 [DO NOT PAY— THIS IS NOTAN INVOICE] VALUATION AND PLAN CHECK FEE JURISDICTION: CARLSBAD PLAN CHECK #.: CBC2018- 0166(2018-0096.REV2) PREPARED BY: Bert Domingo DATE: 6/29/2018 BUILDING ADDRESS: 2510 WEST RANCH DRIVE BUILDING OCCUPANCY: PV BUILDING PORTION AREA (Sq. Ft.) Valuation Multiplier Reg. Mod. VALUE ($) Air Conditioning Fire Sprinklers TOTAL VALUE Jurisdiction Code 1CB IBY Ordinance 1997 UBC Building Permit Fee 1997 UBC Plan Check Fee Ivl Type of Review: Repetitive Fee Repeats * Based on hourly rate Eli Complete Review El Other El Hourly EsGil Fee El Structural Only 3.5 Hrs.@* $105.00 I $367.501 Comments: In addition to the' above fee, an addition fee of $ is due (_. hour@ '/hr;) for thèCalGreen review'. Sheet 1 of 1 (City of Carlsbad Print Date: 12/17/2018 Permit No: PREV2018-0091 Job Address: 2510 West Ranch St Permit Type: BLDG-Permit Revision Work Class: Residential Permit Revisi Status: Closed - Finaled Parcel No: 2081951000 Lot #: Applied: 04/05/2018 Valuation: $ 0.00 Reference U: Issued: 04/19/2018 Occupancy Group: Construction Type Permit 12/17/2018 Finaled: U Dwelling Units: Bathrooms: Inspector: Bedrooms: Orig. Plan Check U: CBC2018-0096 Final Plan Check U: Inspection: Project Title: Description: MONTECITO: STRUCTURAL CHANGES TO SOLAR CARPORTS (ONLY) Applicant: Owner: ALLIANCE LAND PLANNING AND ENGINEERING SHAPELL MONTECITO LLC INC ELIZABETH SHOEMAKER 8383 Wilshire Blvd, 700 2248 Faraday Ave Beverly Hills, CA 90211-2400 Carlsbad, CA 92008-7208 323-988-7590 760-431-9896 FEE AMOUNT MANUAL BUILDING PLAN CHECK FEE $489.37 Total Fees: $ 489.37 Total Payments To Date : $ 489.37 Balance Due: $0.00 - Building Division 1635 Faraday Avenue, Carlsbad CA 92008-7314 1 760-602-2700 1 760-602-8560 f I www.carlsbadca.gov PLAN CHECK REVISION OR Development Services (City of DEFERRED SUBMITTAL Building Division Carlsbad APPLICATION 1635 Faraday Avenue 760-602-2719 B-I 5 www.carisbadca.gov Original Plan Check Number CBC 2018-0096 Plan Revision Number d?a';bfY- c ,69/ Project Address 2510 West Ranch Drive (Recreational Building - #16) General Scope ofRevision/DeferredSubmittal: Delta 1 - Solar Carports to be modified to a single beam design. CONTACT INFORMATION: Elizabeth Shoemaker Phone 7605501957 Address 4939 Newport Ave. #3 City San Diego Zip 92107 Email Address elizabeth.shoemaker@gmail.com Original plans prepared .by.an architect or engineer, revisions must be signed & stamped by that person. 1. Elements revised: 1 Plans W Calculations Soils fl Energy fl Other 2. Describe revisions in detail 3.. List page(s) where each revision is shown Overall Site Plan for the Solar Carports PV 201 Structural Sheets for Single Beam Design Does this revision, in any way, alter the exterior of the project? L1 Yes 1 No Does this revision add ANY new floor area(s)? []Yes [UI No Does this revision affect any fire related issues? L1 Yes Iii No Is this a comple set? • Yes J No Signature Date 4/03/18 1635 Faraday Avenue, Carlsbad, CA 92008 Eh. 760-602-2719 f 760-602-8558 Eniail:building@carlsbadca.gov www.carlsbadca.gov / EsGil A SAFEbuiLt Company DATE: 4/16/2018 D APPLICANT URIS. JURISDICTION: CARLSBAD PLAN CHECK #.: CBC2O1S-0096(2018-0091. REV) SET: I PROJECT ADDRESS: 2510 WEST RANCH DRIVE PROJECT NAME: SOLAR CARPORTS REVISION TO SINGLE BEAM DESIGN FOR ROBERTSON RANCH REC. CENTER The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's building codes. The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. LII The applicant's copy of the check list has been sent to: EsGil staff did not advise the applicant that the plan check has been completed. LII EsGil staff did advise the applicant that the plan check has been completed. Person contacted._ Telephone #: Date contacted: (b : Email: Mail Telephone Fax I PrSon REMARKS: By: Bert Domingo Enclosures: EsGil 4/9/2018 9320 Chesapeake Drive, Suite 208.• San Diego, California 92123 • (858) 560-1468 • Fax(858)560-1576 ' CARLSBAD CBC20 18-0096(2018-0091. REV) 4/16/2018 (DO NOT PAY— THIS IS NOTAN INVOICE] VALUATION AND PLAN CHECK FEE JURISDICTION: CARLSBAD . PLAN CHECK#.: CBC2018- 0096(2018-0091.REV) PREPARED BY: Bert Domingo DATE: 4/16/2018 BUILDING ADDRESS: 2510 WEST RANCH DRIVE BUILDING OCCUPANCY: U IBUILDING PORTION AREA (Sq. Ft.) Valuation Multiplier Reg. Mod. VALUE ($) Air Conditioning Fire Sprinklers TOTAL VALUE Jurisdiction Code ICB IBY Ordinance I 1997 UBC Building Permit Fee vI 1997 UBC Plan Check Fee Type of Review fl Repetitive Fee N' Repeats * Based on hourly rate El Complete Review El Other El Hourly EsGil Fee fl Structural Only 3.5 Hrs. @ * $105.00 I $367.501 Comments: In addition to the above fee, an additional fee of is due ( hour c I- $ Ihr ) for the CaIG reenreew. Sheet 1 of 1 U I. P4 oicAv- A S1i4iso-1.1 1;II_. Project Adress: 2510 W Ranch St., Carlsbad, CA 92010 Engineer: DG Checked By: JE I I I I Issue Date: December 19, 2017 B. S6534 * 12/19/2017 * David Grasas P.E. Phoenix, AZ John Elder, P.E. 480-454-6408 www.unitedsn.com www.unitedstr.com I 4 11 Ik11 TABLE OF CONTENTS PAGES DESIGN CRITERIA AND DESIN LOADS 1--S STRUCTURE KEY PLAN AND LAYOUT q PURL-IN DESIGN 10 - 1-s (a PANEL STRUCTURE BEAM DESIcN LATERAL ANALYSIS AND COLUMN DESIN 23 - 317 FOOTINc DESIN 40 -53 CONNECTION CHEC4 54 -55 0evkl C-moons P.E. Phoenix, AZ John Elder, P.E. 480454-6408 www.unitedstr.com www.unitedstr.com 1 I I I I I I I I I I I I I I I I I I NITED STRUCTURAL DESIGN LLC PROJECT NAME: Montecito Apartments PROJECT LOCATION: CA 92010 ENGINEER: DG REVIEWER: JE DATE: 12/19/2017 Project Name: Montecito Apartments Job Number: CODE California Building Code 2016 LOADS Roof: Dead Load DL: 8.0psf Roof Live Load RLL: 12.0 psf Wind Risk Category V: 100 MPH Exposure Category: C Importance Factor (I): 1.00 Mean Roof Height: 15.0 ft 6: 0.85 0.85 K0: 1.0 K: 0.85 Enclosure Classification : Open Building Seismic Risk Category Importance Factor (It): 1.00 Seismic Site Class: 0 Seismic Design Category: 0 1.097 S: 0.423 Sos: 0.776 SDI : 0.445 R: 2.5 0: 1.25 Ca: 2.5 C: 0.310 Snow Load _ 0.0 psi 0.80 1.20 (Unheated and Open Air Structures) Exposure: C C: 1 0.0 psi 0.0 psi 1.00 P: 0.0 psi Phoenix, AZ 480454-6408 www.unitedstr.com NITED STRUCTURAL DESIGN LLC PROJECT NAME: Montecito Apartments PROJECT LOCATION: 2510W Ranch St., Carlsbad, CA 92010 ENGINEER: DO REVIEWER: JE DATE: 12/19/2017 II1 Dead Load Solar Panels: JJJ p 1 Purlins : C' p:f Beams: 5 psi Misc. Total Dead Load: 8.0 psf Material Strengths Concrete: Assumed f'c: 2500 psi Steel: Rebar: A615, Fy = 60ksi —ASTM ASTM A706, Fy = 60ksi Bolts: ASTM A325N Anchor Rods: ASTM F1554 Gr. 55 W Section: ASTM A992, Fy = 50ksi M, 5, C, MC, L Sections: ASTM A36, Fy = 36ksi HSS Rect. Section: ASTM ASOO Gr. B, Fy = 45ksi HSS Round. Section: ASTM ASOO Gr. B, Fy = 42k5i Light Gage Steel: Fy = 55k5i Soil: Allowable Soil Bearing: 150D psf Allowable Lateral Bearing: 51)5 PSI/ft jie isu,iied sr,d Islets 'tern Tab): 155 2 Inset I BC 2 Phoenix, AZ 480454-6408 www.unitedssr.com 3 United Structural Design LLC JOB TITLE Montecito Apartments P0 Box 33245 Phoenix, AZ 85067 JOB NO. SHEET NO.____________ (480) 454-6408 CALCULATED BY DG DATE___________ CHECKED BY JE DATE__________ www.struware.com Code Search Code: California Building Code 2016 Occupancy: Occupancy Group = U Utility & Miscellaneow Risk Category & Importance Factors: Risk Category = Wind factor = 1.00 Snow factor = 0.80 Seismic factor = 1.00 Type of Construction: Fire Rating: Roof = 0.0 hr Floor = 0.0 hr Building Geometry: Roof angle (8) 1.05/12 5.0 deg Building length (L) 100.0 ft Least width (B) 40.0 ft Mean Roof Ht (h) 15.0 ft Parapet ht above grd 0.0 ft Minimum parapet ht 0.0 ft Live Loads: Roof 0 to 200 sf: 20 psf use 12.0 psf 200 to 600 sf: 12 psf over 600 sf: 12 psf N/A Floor: Typical Floor 0 psf Partitions N/A 0 psf 0 psf 0 psf I I I I I P I I I I I I I I I I I I ,-,Speed-up 4 United Structural Design LLC P0 Box 33245 Phoenix, AZ 85067 (480) 454-6408 Wind Loads: ASCE 7- 10 Ultimate Wind Speed 100 mph Nominal Wind Speed 77.5 mph Risk Category Exposure Category C Enclosure Classif. Open Building Internal pressure +1-0.00 Directionality (Kd) 0.85 Kh case 1 0.849 Kh case 2 0.849 Type of roof Monoslope Topographic Factor (Kzt) Topography Flat Hill Height (H) 80.0 ft Half Hill Length (Lh) 100.0 ft Actual H/Lh = 0.80 Use H/Lh = 0.50 Modified Lh = 160.0 ft From top of crest: x = 50.0 ft Bldg up/down wind? downwind H/Lh= 0.50 K1 = 0.000 xlLh = 0.31 K2 = 0.792 zlLh = 0.09 K3 = 1.000 At Mean Roof Ht: Kzt = (1+K1K2K3)A2 = 1.00 JOB TITLE Montecito Apartments JOB NO. SHEET NO. CALCULATED BY DG DATE CHECKED BY JE DATE ESCARPMENT V(z) z 1I 1 11 Speed-up V(z) x(upwind) x(downwind) IItLf IH 2D RIDGE or 3D AXISYMMETRICAL HILL [ii I I I Gust Effect Factor h= 15.0 ft B= 40.0 ft /z(0.6h)= 15.0 ft Flexible structure if natural frequency < 1 Hz (T> 1 second). However, if building h/B <4 then probably rigid structure (rule of thumb). h/B = 0.38 Rigid structure Rigid Structure 0.20 = 500 ft z= 15 ft C = 0.20 gQ,g= 3.4 L= 427.1 ft 0.92 l = 0.23 G = 0.88 use G = 0.85 G = 0.85 Using rigid structure default Flexible or Dynamically Sensitive Structure Natural Frequency (q) = 0.0 Hz Damping ratio (13) = 0 /b = 0.65 0.15 Vz= 84.4 N1 = 0.00 R= 0.000 Rh = 28.282 ri = 0.000 RB = 28.282 rl = 0.000 RL = 28.282 rl = 0.000 = 0.000 R = 0.000 G = 0.000 h= 15.0 ft I I I I I I I I I I I I I I I I I I I 5 United Structural Design LLC JOB TITLE Montecito Apartments P0 Box 33245 Phoenix, AZ 85067 JOB NO. SHEET NO. (480) 454-6408 CALCULATED BY DG DATE CHECKED BY JE DATE Wind Loads - Open Buildings: 0.25 :5 hIL :5 1.0 Ultimate Wind Pressures Type of roof = Monoslope Free Roofs G = 0.85 Wind Flow= Clear Roof Angle = 5.0 deg NOTE: The code requires the MWFRS be Main Wind Force Resisting System designed fora minimum pressure of 16 psf. Kz = Kh (case 2) = 0.85 Base pressure (qh) = 18.5 psf Roof pressures - Wind Normal to Ridge Wind Load Wind Direction = 0 & 180 deg Flow Case Cnw Cnl A Cn = 1.20 0.30 Clear Wind p = 18.8 psf 4.7 psf Cn = -1.10 -0.10 Flow p = -17.3psf 1.6 psf NOTE: 1). Cnw and Cnl denote combined pressures from top and bottom roof surfaces. Cnw is pressure on windward half of roof. Cnl is pressure on leeward half of roof. Positive pressures act toward the roof. Negative pressures act away from the roof. Roof oressures - Wind Parallel to Ridae. V = 90 dea Wind Load Horizontal Distance from Windward Edge Flow Case 15 >h :5 2h > 2h A ' Cn = -----------0.80 -0.60 -0.30 Clear Wind p = -12.6 Ps -9.4 psf -4.7 psf Cn = 0.80 0.50 0.30 Flow 12.6 ps 7.9ps 4.7psf Fascia Panels -Horizontal pressures qp = 18.5 psf Windward fascia: 27.7 psf (GCpn = +1.5) Leeward fascia: -18.5 psf (GCpn = -1.0) Components & Cladding - roof pressures Kz=Kh (case l)= 0.85 a= 4.0 ft a2 = 16.0 sf Base pressure (qh) = 18.5 psf 4a2 = 64.0 sf G= 0.85 Clear _Wind _Flow Effective Wind Area zone 3 zone 2 zone I positive negative positive negative positive negative :5 16 sf 2.93 -3.90 2.20 -1.97 1.47 -1.30 CN >16564sf 2.20 --------------1.97 2.20 -1.97 1.47 -----------1.30 > 64 sf 1.47 --------------1.30 1.47 -1.30 1.47 -1.30 -a?jL .23.Qaf 20.4 psf Wind >16, ~ 64 sf 34.5 psf -30.9 psf is----- 34.5 psf -30.9 psf ---- 23.0 psf -20.4 psf p reure >64 sf 23.0 psf -20.4 psf 23.0 psf -20.4 psf 23.0 psf -20.4 psf 15.0 ft 2h= 30.0 ft I 6 United Structural Design LLC JOB TITLE Montecito Apartments P0 Box 33245 Phoenix, AZ 85067 JOB NO. SHEET NO. I (480) 454-6408 CALCULATED BY DG DATE____________ CHECKED BY JE DATE____________ Location of Wind Pressure Zones WIND DIRECTION Y= O•, IO RTCHED L C 14W WUD DIRECTION Ij Y= O 180 1ROUG1I WIND DIRECTION v = 0°. 180° WIND DIRECTION pfirHED TOUGH WIND DIRECTION Y= 90° MAIN WIND FORCE RESISTING SYSTEM 8<10° MONOSLOPE PITCHED ORTROUOHED ROOF COMPONENTS AND CLADDING I I I I I I I I I I I \VIND DIRECTION/ MONOLO}E Wu DIRECTION 8? 10° 3 3 2 2 11 LJ2H2 ---3 3 Seismic Loads: IBC 2015 Risk Category: I Importance Factor (I): 1.00 Site Class: D Ss (0.2 sec) = 109.70 %g Si (1.0 sec) = 42.30 %g I Strength Level Forces I I United Structural Design LLC P0 Box 33245 Phoenix, AZ 85067 (480) 454-6408 JOB TITLE Montecito Apartments JOB NO. CALCULATED BY DG CHECKED BY JE SHEET NO. DATE DATE 7 Ll Fa = 1.061 Sms = 1.164 SDS = 0.776 Design Category = Fv = 1.577 Smi = 0.667 S01 = 0.445 Design Category = Seismic Design Category = D Number of Stories: 1 Structure Type: All other building systems Horizontal Struct lrregularities:No plan Irregularity Vertical Structural lrregularities:No vertical Irregularity Flexible Diaphragms: Yes Building System: Cantilevered Column Systems detailed to conform to the requirements for: Seismic resisting system: Steel special cantilever column systems System Structural Height Limit: 35 ft Actual Structural Height (hn) = 16.7 ft See ASCE7 Section 12.2.5 for exceptions and other system limitations DESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient (R) = 2.5 Over-Strength Factor (00) = 1.25 Deflection Amplification Factor (Cd) 2.5 SDS = 0.776 5D1 = 0.445 p = redundancy coefficient Seismic Load Effect (E): P Q +1- 0•25DS D = p QE +1- 0.155D QE = horizontal seismic forc Special Seismic Load Effect (Em): 0oQs+/-0.2SosD = 1.3 QE I- 0.155D D= dead loac PERMITTED ANALYTICAL PROCEDURES Simplified Analysis - Use Equivalent Lateral Force Analysis Equivalent Lateral-Force Analysis - Permittec Cu= 1.40 0.165 sec x=0.75 Tmax = CuTa = 0.231 sec UseT 0.165 6 0.310 1.077 0.034 0.310 Design Base Shear V = 0.31 OW Model & Seismic Response Analysis - Permitted (see code for procedure) ALLOWABLE STORY DRIFT Structure Type: All other structures Allowable story drift = 0.020h5x where hsx is the story height below level x I I I I I I Building period coef. ((T) = 0.020 Approx fundamental period (Ta) CThfl' User calculated fundamental period (1) = Long Period Transition Period (TL) = ASCE7 map = Seismic response coef. (Cs) S05l/R = need not exceed Cs = Sd1 I /RT = but not less than Cs 0.044Sdsl = USE Cs = I I 12/19/2017 Design Maps Summary Report JSGS DesignRlapslSummarylReport User—Specifiedlinput ReportiTitle Montecitopts TuetecemberR9O172:31:44R)TC BuiIdingtod&ReferenceFDocument 2012/2015RnternationaIRuiIdtngRode SiteRoordinates 33. 17219°N,R 1731834°W Site l6oilFclassification SiteassRR- RStiffoiI" Riskltategory 1/11/111 SR 1,097I SMSR 1J64 S05R 0.776I S1R 0.423 SMlR 0667ft S01R 0.445 For formationRnRowRhe ICS Rnd IE 1 Rral deterministicroundRnotionsR,RheftirectionftfRnaximumorizontal Response, easeReturnRoRheItpplicationnd seIectRheR2009R4 EHRP"Ruilding RodeReferenceocument. 12 A R,<pmssedFb: Ft.-.p lied, FIbsRoR.1-he &Iongitude=-117.31834409999993&sit.. 1/1 GRID----- --{-----1----4--- - 'F rpLufLIN - I g, TPJRUP irVYFC 'L PfRIMTER PVRUN I I I I I I 1 I I I I I I I I I I I 1 9 TYPICAL KEY PLAN David Grpsas, P.E. Phoenix, AZ John Elder, P.E. 480454-6408 www.unitedstr.com www.unitedstr.com PURL-IN PESIcN 10 Purlin Span 575 ft I Purlin Tributary Width: 5 Dead Load Dead Load : 3.5 psf W01: 22.8 plf I Roof Live Load Roof Live load: 12.0 psI We1i: 78.0 p11 I Snow load Snow load 0.0 psI W5 : 0.0 p11 Wind Load Wind Load : 23.0 psI I Wwi: 149.6 p11 Wind Uplift Load : -20.4 psI WWL: -132.6 p11 I I I I I I I I 1 (Plus Self Weight( 27.0 ft See Output for Purlin Size DonkJ Grapsas, P.E. Phoenix, AZ John Elder, P.E. 480-454-6408 www.unitedstr.com www.unitedstr.com I CFS Version 10.0.0 I Section: 10X3.5X12 GA.cfss Channel 10x3.54.880.105 Page 1 11 Rev. Date: 12/19/2017 3:45:32 PM Printed: 12/19/2017 3:47:17 PM I I F] I 12 I CFS Version 10.0.0 Page 1 Section: 10X3.5X12 GA.cfss Channel 10x3.50.880.105 Rev. Date: 12/19/2017 3:45:32 PM Printed: 12/19/2017 3:47:18 PM Section Inputs ------------------------------------------------------------------------ Material: A653 SS Grade 55 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi 55 ksi Yield Strength, Fy Tensile Strength, Fu 70 ksi Warping Constant Override, Cw 0 in'6 0 in4 Torsion Constant Override, J Stiffened Channel, Thickness 0.105 in Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) l0.880 270.000 0.10690 None 0.000 0.000 0.440 2 3.500 180.000 0.10690 Single 0.000 0.000 1.750 3 10.000 90.000 0.10690 Cee 0.000 0.000 5.000 4 3.500 0.000 0.10690 Single 0.000 0.000 1.750 5 0.880 -90.000 0.10690 None 0.000 0.000 0.440 I I I I I I I I I CFS Version 10.0.0 Analysis: Typical Purlin.cfsa 27 ft Span Simple Beam Rev. Date: 12/19/2017 3:46:51 PM Printed: 12/19/2017 3:47:18 PM Page 1 13 Analysis Inputs Members Section File Revision Date and Time 1 10X3.5X12 GA.cfss 12/19/2017 3:45:32 PM Start Loc. End Loc. Braced R k4 Lm (ft) (ft) Flange (k) (ft) 0.000 27.000 None 0.0000 0.0000 27.000 ex ey (in) (in) 1 0.000 0.000 Supports Type Location Bearing Fastened 10 (ft) (in) 1 XYT 0.000 2.00 No 1.0000 2 XT 9.000 1.00 No 1.0000 3 XT 18.000 1.00 No 1.0000 4 XYT 27.000 2.00 No 1.0000 Loading: Dead Load Type Angle Start Loc. (deg) (ft) 1 Distributed 90.000 0.000 Loading: Wind Load Type Angle Start Loc. (deg) (ft) 1 Distributed 90.000 0.000 Loading: Wind Uplift Type Angle Start Loc. (deg) (ft) 1 Distributed 90.000 0.000 Loading: Roof Live Load Type Angle Start Loc. (deg) (ft) 1 Distributed 90.000 0.000 I I I I I I I I I I I I I I I End Loc. Start End (ft) Magnitude Magnitude 27.000 -0.02280 -0.02280 k/ft End Loc. Start End (ft) Magnitude Magnitude 27.000 -0.14960 -0.14960 k/ft End Loc. Start End (ft) Magnitude Magnitude 27.000 0.13260 0.13260 k/ft End Loc. Start End (ft) Magnitude Magnitude 27.000 -0.07800 -0.07800 k/ft Page 2 CFS Version 10.0.0 Analysis: Typical Purlin.cfsa 27 ft Span Simple Beam Rev. Date: 12/19/2017 3:46:51 PM Printed: 12/19/2017 3:47:18 PM Load Combination: D Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 Load Combination: D+0.6W Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Wind Load 0.600 Load Combination: 0.6D+0.6W Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 0.600 2 Dead Load 0.600 3 Wind Uplift 0.600 Load Combination: D+Lr Specification: 2016 North American Specification - US (ASD) Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Roof Live Load 1.000 Member Check - 2012 North American Specification - US (ASD) Load Combination: D+0.6W Design Parameters at 13.500 ft: Lx 27.000 ft Ly 9.000 ft Lt 9.000 ft Kx 1.0000 KY 1.0000 Kt 1.0000 Section: 10X3.5X12 GA.cfss Material Type: A653 SS Grade 55, Fy=55 ksi Cbx 1.0135 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None k4 0 k Red. Factor, R: 0 Lm 27.000 ft Loads: P Mx Vy My Vx (k) (k-in) (k) (k-in) (k) Total 0.000 130.14 0.000 0.00 0.000 Applied 0.000 130.14 0.000 0.00 0.000 Strength 22.944 143.86 10.757 36.64 13.324 Effective section properties at applied loads: Ae 1.8970 iri2 Ixe 28.804 in'4 lye 2.959 in4 Sxe(t) 5.7608 in3 Sye(l) 3.0328 in3 Sxe(b) 5.7608 in3 Sye(r) 1.1724 in3 14 I I I I I I I I I I I I I I I I I U I I I I I 15 CFS Version 10.0.0 Analysis: Typical Purlin.cfsa 27 ft Span Simple Beam Rev. Date: 12/19/2017 3:46:51 PM Printed: 12/19/2017 3:47:18 PM Interaction Equations NAS Eq. C5.2.1-1 (P, Mx, My) NAS Eq. C5.2.1-2 (P, Mx, My) NAS Eq. C3.3.1-1 (Mx, Vy) NAS Eq. C3.3.1-1 (My, Vx) Page 3 0.000 + 0.905 + 0.000 = 0.905 <= 1.0 0.000 + 0.905 + 0.000 = 0.905 <= 1.0 Sqrt(0.613 + 0.000)= 0.783 <= 1.0 Sqrt(0.000 + 0.000)= 0.000 <= 1.0 P INISOEG GRADE WITHIN S FEET Of ID IF DRILLING POLE FOUNDATIONS IS 1 PER DETAIL 0152.7 ILO DRILLED P06 76112' 78510' uS' 856(0' 700(0' 021(0' 81. E.I I ONPL rJ 9TTOMOFCOLUMN j 1" BOTTOM OF CAISSON David Graps, P.O. Phoenix, AZ John Elder, P.S. 480-454-6408 f1r:t1c4mi www.uniledstr.com www.unitedstr.com 16 17 Beam Spani :77 tt Beam Trib Width: 0 I 71 I 20.5 ft Snow Load Snow Load : 0.0 psI W51: 0.0 Of Wind Load Wind Load: 23.0 psI WWL: 621.2 p11 I I I See Output for Column Size I I I I I I I David Gropsa, P.E. Phoenix, AZ John Elder, P.E. 480454-6408 Pi0cieaI www.unitedstr.com www.unitedstr.com I I I I I I I Li Dead Load Dead Load: 5.5 psI (PLUS SELF WEIGHT) W01: 148.5 p11 Roof Live Load Roof Live Load : 12.0 psI WRIL: 324.0 Of I I I I I I I I I I I I I I I I I I I 18 Sheet no. 1 Job Ref. Date 12/19/2017 Calc. by JE Tedds calculation version 3.0.12 NITED STRUCTURAL DESIGN LLC. Project Subject Steel Beam STEEL BEAM ANALYSIS & DESIGN (AISC360-10) In accordance with AISC360 141h Edition published 2010 using the LRFD method kip_fi Bending Moment Envelope -221.248 - 1 -221.2 0.0 It I 20.5 Load Envelope -Combination 1 1.007- 0.0- it 20.5 I A 1 B Load Envelope -Combination 2 1.053- 0.0— It 20.5 I A 1 B Shear Force Envelope kips 21.585- 21.6 It 20.5 1 A 1 B Support conditions Support A Vertically restrained Rotationally restrained I I I I I I I I I I I I I I I I I I I U N I TED RUCTURAL DESIGN LLC. Project Subject Steel Beam 19 Sheet no. 2 Job Ref. Date 12/19/2017 Caic. by JE Support B Vertically free Rotationally free Applied loading Beam loads Dead self weight of beam x 1 Dead full UDL 0.148 kips/ft Wind full UDL 0.621 kips/ft Roof live full UDL 0.324 kips/ft Load combinations Load combination 1 Support A Dead x 1.20 Wind x 1.00 Roof live x 0.50 Span 1 Dead 1.20 Wind x 1.00 Roof live x 0.50 Support B Dead x 1.20 Wind x 1.00 Roof live x 0.50 Load combination 2 Support A Dead x 1.20 Wind x 0.50 Roof live x 1.60 Span 1 Dead 1.20 Wind x 0.50 Roof live x 1.60 Support B Dead 1.20 Wind x 0.50 Roof live x 1.60 Analysis results Maximum moment Mmax = 0 kips—ft Mmin = -221.2 kips—ft Maximum moment span I segment I Msi_segi_max = 0 kips—ft Msi_segi_min = -221.2 kips—ft Maximum moment span 1 segment 2 Ms1_se92max = 0 kips—ft Ms1_se92_min = -103.2 kips—ft Maximum moment span 1 segment 3 Ms1_se93_max = 0 kips—ft Ms1_seg3_min = -29.6 kips—ft Maximum shear Vmax = 21.6 kips Vmin = 0 kips Maximum shear span 1 segment I Vsi_segi_max = 21.6 kips Vsi_segi_min = 0 kips Maximum shear span 1 segment 2 Vs1_se92_max = 14.7 kips Vs1_seg2_min = 0 kips Maximum shear span 1 segment 3 Vs1_seg3_max = 7.9 kips Vs1_se93_min = 0 kips Deflection segment 4 &ax 2.1 in mn = 0 in Maximum reaction at support A RA-max = 21.6 kips RA-min = 20.6 kips 20 Sheet no. 3 Job Ref. Date 12/19/2017 Calc. by JE RA—Dead = 3.8 kips RA—Wind = 12.7 kips RA_Roof live = 6.6 kips RB_max = 0 kips RB-min = 0 kips I) NITED STRUCTURAL DESIGN LLC. Project Subject Steel Beam Unfactored dead load reaction at support A Unfactored wind load reaction at support A Unfactored roof live load reaction at support A Maximum reaction at support B Section details Section type W 14x38 (AISC 14th Edn (04.1)) ASTM steel designation A992 Steel yield stress Fy = 50 ksi Steel tensile stress Fu = 65 ksi Modulus of elasticity E = 29000 ksi : r----------------------------1 -0 -0.31' 4-677 Resistance factors Resistance factor for tensile yielding 4ty = 0.90 Resistance factor for tensile rupture Otr = 0.75 Resistance factor for compression 4c = 0.90 Resistance factor for flexure Ob = 0.90 Resistance factor for shear = 1.00 Lateral bracing Span 1 has lateral bracing at supports plus 78 in and 156 in Cantilever tip is unbraced Cantilever support is continuous with lateral and torsional restraint Classification of sections for local buckling - Section B4.1 Classification of flanges in flexure -Table B4.lb(case 10) Width to thickness ratio bf / (2 x tf) = 6.57 Limiting ratio for compact section Xpff = 0.38 x [E / F] = 9.15 Limiting ratio for non-compact section Xm = 1.0 x /[E I F] = 24.08 Compact I I I I I I I I L I I I I I I I I I I 21 Classification of web in flexure - Table B4.1b (case 15) Width to thickness ratio (d - 2 x k) I t, = 39.58 Limiting ratio for compact section Xpwf = 3.76 x [E I Fy] = 90.55 Limiting ratio for non-compact section Xm = 5.70 x I[E I F] = 137.27 Compact Section is compact in flexure Design of members for shear - Chapter G Required shear strength Vr = max(abs(Vmax), abs(Vmin)) = 21.585 kips Web area Aw= d x tw = 4.371 in2 Web plate buckling coefficient k = 5 Web shear coefficient - eq G2-2 C = 1.000 Nominal shear strength - eq G2-1 Vr,= 0.6 x Fy x Aw x C, = 131.130 kips Design shear strength V = x Vn = 131.130 kips PASS - Design shear strength exceeds required shear strength Design of members for flexure in the major axis at span I segment I - Chapter F Required flexural strength Mr = max(abs(Msi_segi_max), abs(Msi_segi_min)) = 221.248 kips—ft Yielding - Section F2.1 Nominal flexural strength for yielding - eq F2-1 Mnyid = Mp = Fy x Z, = 256.25 kips—ft Lateral-torsional buckling - Section F2.2 Unbraced length Lb = Lsi_segi = 78 in Limiting unbraced length for yielding - eq F2-5 Lp = 1.76 x ry x I[E / F] = 65.699 in Distance between flange centroids h0 = d - tf = 13.585 in c=1 rts = 4['(l x C) / S] = 1.822 in Limiting unbraced length for inelastic LTB - eq F2-6 Lr = 1.95 x rts x El (0.7 x F) x x c / (Sx x h0)) + /((J xcl (Sx x h0))2 + 6.76 x (0.7 x F / E)2)] = 195.1 in Cross-section mono-symmetry parameter Rm = 1.000 Lateral torsional buckling modification factor Cb = 1.000 Nominal flexural strength for lateral torsional buckling - eq F2-2 Mnitb = Cb X [M - (M - 0.7 X Fy X S)x (Lb - L) / (L - L)] = 247.029 kips—ft Nominal flexural strength M = min(Mnd, Mnitb) = 247.029 kips—ft Design flexural strength Mc = 4b x M = 222.326 kips—ft PASS - Design flexural strength exceeds required flexural strength Design of members for vertical deflection Consider deflection due to wind loads Limiting deflection 5iim = 2 x L1 /180 = 2.733 in Maximum deflection span 1 8 = max(abs(&ax), abs(ömin)) = 2.122 in PASS - Maximum deflection does not exceed deflection limit I I tNITED RUCTURAL DESIGN LLC Project Subject Steel Beam 22 Sheet no. 5 Job Ref. Date 12/19/2017 Calc. by JE I I I I I I I - ja~B~IqC~W_OF COL MN en BOTTOM OF CAISSON 23 X V 0.0000 0.0000 0.0000 11.7785 -20.4227 10.0000 20.4227 13.5570 Dead Load Dead Load : 8.0 psI WDL: 216.0 pIt Roof Live load Roof Live Load: 12.0 psI W511: 324.0 plf Snow Load Snow Load : 0.0 psI Ws1 0.0 plf Wind Load 1: Base 2: Beam/Column Intersection: Left End Beam Right End Beam: I I I I I I I I I I I I I I I I I I I Wind Flow Load Case Wind Direction Wind Direction Y o0 deg V = 180 deg CA... CA' C.. CAl 0.00 A p = 18.8 psI 4.7 psI B p = -17.3 psI -1.6 psI WIND 1 WINDS Fascia Shear = 508.7 plf Wn.. V1 1.2 k 127.2 plf W01 WIND 2 WIND 6 W,, = 127.2 plf W0 W01 = 508.7 plf W. WIND 3 WIND 7 Wrw = -466.3 plf W W1 = -42.4 plf W 1 = WIND 4 WIND 8 W, = -42.4 plf W,, -466.3 plf W01 = Seismic Load WOL: 216.0 plf Cs: 0.310 SOS: 0.776 V00: 2.7k p: 1.3 See Output for Column Size David c-FaPSSS, P.E. Phoenix, AZ John Elder, P.E. 480-454-6408 Pr116pv: www.unitedstr.com Column Design Strong Axis (From 20 Analysis) Weak Axis (Seismic) Pu: Pu: 12.0k Vu:29k Vu: 3.6k Mu: !144-& - Mu: 42.lk-ft www.unitedstr.com ty STRUCTURAL DESIGN LLC. Sheet no. 1 Job Ref. Date 12/19/2017 Cale. by JE Tedds calculation version 1.0.20 24 Project Subject ANALYSIS Geometry 2D Analysis Geometry (ft) - Steel (AISC) Loading Self weight included Dead - Loading (kips/ft) z WI - Loading (kips/ft,kips) 0 0 FA 2D Analysis CU NITED STRUCTURAL DESIGN LLC Project Subject Sheet no. 2 Job Ref. Date 12/19/2017 Calc. by JE I 25 I I I I I I I I I I I W2 - Loading (kips/ft,kips) z W3 - Loading (kips/ft,kips) z W4 - Loading (kips/ft,kips) I I I I I Sheet no. 3 Job Ref. Date 12/19/2017 Caic. by JE 26 Project Subject 20 Analysis EQ - Loading (kips) z Roof Live - Loading (kips/ft) I I I Results Forces z Strength combinations - Moment envelope (kip_ft) -201.7 I 1 I I I I Sheet no. 4 Job Ref. Date 12/19/2017 Calc. by JE 27 Project Subject 2D Analysis I I I I I Strength combinations - Shear envelope (kips) 19.7 Member results Envelope - Strength combinations Member Shear force Moment Pos (ft) Max abs (kips) Pos (ft) Max (kip_ft) Pos (ft) Mm (kip_ft) BEAM 20.5 19.681 (max abs 20.5 52.383 20.5 -201.729(min) COLUMN 0 2.907 0 113.862 (max) 0 -114.405 Envelope - Strength combinations Member Axial force Pos Max Pos Mm (ft) (kips) (ft) (kips) BEAM 20.5 0.517 20.5 -0.517 COLUMN 0 31.934 (max) 11.78 -1.458 (mm) I I I I I I I I JP NITED RUCTURAL DESIGN LLC Project Subject 20 Analysis 28 Sheet no. 5 Job Ref. Date 12/19/2017 Calc. by JE ST NITED Sheet no. RUCTURAL DESIGN LLC. Job Ref. Project Date Subject Steel Column - Strong Axis Calc. by 29 12/19/2017 JE I I I I I I I I I I STEEL COLUMN DESIGN In accordance with AISC360-10 and the LRFD method d A k e ........... Column and loading details Column details Column section W 14x38 Design loading Required axial strength Moment about x axis at end 1 Moment about x axis at end 2 Maximum moment about x axis Maximum moment about y axis Maximum shear force parallel to y axis Maximum shear force parallel to x axis Material details Steel grade A992 Yield strength Fy = 50 ksi Ultimate strength Fu = 65 ksi Modulus of elasticity E = 29000 ksi Shear modulus of elasticity G = 11200 ksi Unbraced lengths For buckling about x axis L5 = 144 in For buckling about y axis Ly = 144 in Tedds calculation version 1.0.07 Pr = 32 kips (Compression) Mi 114.4 kips—ft M = 114.4 kips—ft Single curvature bending about x axis Mx = max(abs(Mxi), abs(M)) = 114.4 kips_ft My = 0.0 kips—ft V, = 2.9 kips V = 0.0 kips 30 tNITED STRUCTURAL DESIGN LLC. Project Subject Steel Column - Strong Axis I I I Sheet no. 2 Job Ref. Date 12/19/2017 Calc. by JE For torsional buckling Lz = 144 in Effective length factors For buckling about x axis Kx = 2.00 For buckling about y axis Ky = 2.00 For torsional buckling Kz = 1.00 Section classification Section classification for local buckling (ci. B4) Critical flange width b = bf I 2 = 3.385 in Width to thickness ratio of flange Xf = b I tr = 6.573 Depth between root radii h = d - 2 x k = 12.270 in Width to thickness ratio of web Xw = h / tw = 39.581 Compression Limit for nonslender flange = 0.56 x /(E / F) = 13.487 The flange is nonslender in compression Limit for nonslender web = 1.49 x '/(E I F) = 35.884 The web is slender in compression The section is slender in compression Flexure Limit for compact flange Xpff = 0.38 x /(E I Fy) = 9.152 Limit for noncompact flange = 1.0 x /(E / F) = 24.083 The flange is compact in flexure Limit for compact web = 3.76 x (E / F) = 90.553 Limit for noncompact web Xrw_r = 5.70 x '/(E / F) = 137.274 The web is compact in flexure The section is compact in flexure Slenderness Member slenderness Slenderness ratio about x axis SR KxL/r49.1 Slenderness ratio about y axis SRy = Ky x Ly / ry = 185.8 Second order effects Second order effects for bending about x axis (ci. App 8.1) Coefficient Cm Cmx = 0.6 + 0.4 X Mi / Mx2 = 1.000 Coefficient a a = 1.0 1 Elastic critical buckling stress Peix =2 x E x lx / (Kin x L, )2 = 5314.1 kips P-8 amplifier Bi = max(1 .0, C x / (1 - ax Pr / Peix)) = 1.006 Required flexural strength Mrx = Bix x Mx = 115.1 kips—ft I I U I I I I I I I Ki NITED Sheet no. 3 STRUCTURAL DESIGN LLC Job Ref. Project Date 12/19/2017 Subject Steel Column - Strong Axis Caic. by JE I I I I I I I 1 I I I I I I I I I I I Second order effects for bending about y axis (ci. App 8.1) Coefficient Cm Cmy = 1.0 Coefficient a a = 1.0 Elastic critical buckling stress Peiy = it2 x E x l / (Kly x L)2 = 368.5 kips P-8 amplifier Bi = max(1 .0, Cmy / (1 - ax P / Peiy)) = 1.095 Required flexural strength Mry = Biy x My = 0.0 kips—ft Shear strength Shear parallel to the minor axis (ci. G2.1) Shear area Web plate buckling coefficient Web shear coefficient Nominal shear strength Design shear strength (cl.GI & G2.1(a)) Resistance factor for shear Design shear strength Reduction factor for slender elements Reduction factor for slender unstiffened elements (E7.1) No slender unstiffened elements therefore QS = 1.000 Reduction factor for slender stiffened elements (E7.2) Initial reduction factor Q = 1.0 For flexural buckling about x axis Elastic critical buckling stress Fex = (it2 x E) / (Kx x L / rx)2 = 118.9 ksi Flexural buckling stress Fcm = Q x (0.658Yx) x Fy = 41.9 ksi Effective web width be = min(h. 1.92 x t x -'I (E / Fcr,) x [1 - 0.34 / (h / t) x ' (E I Fcm)1) A=dxt=4.371 in2 k = 5.0 C= 1.000 V=0.6x FxAxC= 131.1 kips 4v = 1.00 Vcy = 0, x Vny = 131.1 kips PASS - The design shear strength exceeds the required shear strength be = 12.117 in Effective area Ae = A - tw x (h - be) = 11.153 in2 Reduction factor Qax = Ae / A = 0.996 Resultant reduction factor Q = Qs x Qax = 0.996 For flexural buckling about y axis Elastic critical buckling stress Fey = (7t2 x E) / (Ky x L I r)2 = 8.3 ksi Flexural buckling stress Fcry = 0.877 X Fey = 7.3 ksi Effective web width be = min(h, 1.92 x tw x '/ (E I Fcry) x [1 - 0.34 / (h / t) x I (E / Fcry)]) be = 12.270 in Effective area Ae = A - twx (h - be) = 11.200 in2 Reduction factor Qay=Ae/A= 1.000 gr NITED RUCTURAL DESIGN LLC Project Subject Steel Column - Strong Axis 32 Sheet no. 4 Job Ref. Date 12/19/2017 Calc. by JE I Resultant reduction factor Qy= QS x Qay = 1.000 For torsional/flexural-torsional buckling Torsional/flexural-torsional elastic buckling stress Fet = [it2 x E x C / (Kz x L)2 + G x I Flexural buckling stress F11 = Q x (0.658OxFY/Fet) x Fy = 35.9 ksi Effective web width be = min(h, 1.92 x tw x I (E / F) x [1 - 0.34 / (h / t) x ./ (E I F)]) I Effective area Ae = A - tw x (h - be) = 11.200 in2 I Reduction factor Qaz = Ae IA = 1.000 Resultant reduction factor Qz = Qs x Qaz = 1.000 Compressive strength 1 Flexural buckling about x axis (cl. E3) Elastic critical buckling stress Fex = (it2 x E) / (SR)2 = 118.9 ksi Flexural buckling stress about x axis Fcr.= Ox x (0.658 <FYX) x Fy = 41.8 ksi Nominal flexural buckling strength P = F x A9 = 468.0 kips Flexural buckling about y axis (Cl. E3) Elastic critical buckling stress Fey = (712 x E) / (SR)2 = 8.3 ksi Flexural buckling stress about y axis Fcry = 0.877 x Fey = 7.3 ksi Nominal flexural buckling strength Pny=Fcry x A9 = 81.4 kips Torsional and flexural-torsional buckling (cl. E4) Torsional/flexural-torsional elastic buckling stress Fet = [it2 x E x C I (Kz x L)2 + G x J] x 1 / (l + ly) = 62.9 ksi Torsional/flexural-torsional buckling stress Fcrt = Qz x (0658QzxFY/Fet) x Fy = 35.9 ksi Nom. torsional/flex-torsional buckling strength Pt =Fct x Ag = 401.6 kips Design compressive strength (cl.EI) Resistance factor for compression = 0.90 Design compressive strength Pc = c x min(Pnx, Pny, Pet) = 73.3 kips PASS - The design compressive strength exceeds the required compressive strength Flexural strength about the major axis Yielding (cl. F2.1) Nominal flexural strength Md = Mpx = Fy x Z = 256.2 kips—ft Lateral torsional buckling limiting lengths (cl. F2.2) Unbraced length Lb = 144.0 in Limiting unbraced length (yielding) Lp = 1.76 x ry x I(E / F) = 65.7 in Lb > L,, - Limit state of lateral torsional buckling applies tU NITED Sheet no. 5 1 STRUCTURAL DESIGN LLC Job Ref. Project Date 12/19/2017 Subject Steel Column - Strong Axis Calc. by JE I Effective radius of gyration rt5 = (4(I x C) I S) = 1.822 in Distance between flange centroids h0 = d - tf = 13.585 in Factor c c = 1.000 ' Limiting unbraced length (inelastic LTB) Lr = 1.95 x rts x EI(0.7xF) x 'I(Jxc / (Sxxho)) x I[1 + I(1 + 6.76 x (0.7xFxSxho / (ExJxc))2)] Lr = 195.1 in I Lateral torsional buckling modification factor (ci. Fl) Maximum moment in unbraced segment Mmax = Mx = 114.40 kips—ft Moment at centreline of unbraced segment MB = abs((Mxi + M) / 2) = 114.40 kips—ft I Moment at 1/4 point of unbraced segment MA = abs((Mi + MB)/ 2) = 114.40 kips—ft Moment at % point of unbraced segment Mc = abs((M + MB)/ 2) = 114.40 kips—ft I Lateral torsional buckling modification factor Cb = 12.5 x Mmax / (2.5 x Mmax + 3 x MA + 4 x MB + 3 x Mc) Cb = 1.000 Lateral torsional buckling (ci. F2.21 Plastic bending moment Mpx = Fy x Zx = 256.2 kips—ft Nominal flexural strength M_Itb = min(Mpx, Cb x [M - (M - 0.7 x Fy x S) x (Lb - L) / (Lr - Lu)]) M_Itb = 197.6 kips—ft Design flexural strength about the major axis (ci. Fl) Resistance factor for flexure Ob = 0.90 Design flexural strength Mcx = 4b x min(Mfld, Mnxltb) = 177.8 kips—ft PASS - The design flexural strength about the major axis exceeds the required flexural strength I Combinedforces M, / Mry < 0.05 - Moments exist primarily in one plane therefore check combined forces in accordance with clause H1.3. I In-plane instability (cl. 1-1I.3(a)) Available comp. strength in plane of bending Pci = Oc x min(P, Pet) = 361.4 kips Member utilization (eqn Hi-i) UR1 = Pr/(2 X Pci) + Mrx / Mcx = 0.691 Out-of-plane buckling and lateral-torsional buckling (ci. HI.3(b)) Available comp. strength out of plane of bending Pcy = Oc x min(Pny, Pat) = 73.3 kips I Available lat-torsional strength (Cb is 1.0) Mcxitb = 197.6 kip_ft Member utilization (eqn 1-11-2) UR0 = Pr! Pcyx (1.5 - 0.5 x Pr / P) + (Mrx / (Cbx Mcx_ltb))2 = 0.898 PASS - The member is adequate for the combined forces I I I I 33 [11 1 I 34 6 12/19/2017 JE. I I I I I I I I I 1 I I I I I 35 Sheet no. 1 Job Ref. Date 12/19/2017 Caic. by DG U NITED STRUCTURAL DESIGN LLC. Project Subject Steel Column - Weak Axis I I I I I I I I I I I I I I I I I 1 I STEEL COLUMN DESIGN In accordance with A1SC360-10 and the LRFD method '.4 ui Ic 0 -7- -: 4-O.31 -,- Column and loading details Column details Column section W 14x38 Design loading Required axial strength Pr = 12 kips (Compression) Maximum moment about x axis M = 0.0 kips—ft Moment about y axis at end 1 My, = 0.0 kips—ft Moment about y axis at end 2 My2 = 41.8 kips—ft Single curvature bending about y axis Maximum moment about y axis My = max(abs(Mi), abs(M)) = 41.8 kips—ft Maximum shear force parallel to y axis V,,=0.0kips Maximum shear force parallel to x axis Vrx = 3.6 kips Material details Steel grade A992 Yield strength Fy = 50 ksi Ultimate strength Fu = 65 ksi Modulus of elasticity E = 29000 ksi Shear modulus of elasticity G = 11200 ksi Unbraced lengths For buckling about x axis Lx = 138 in For buckling about y axis Ly = 138 in Tedds calculation version 1.0.07 36 U NITED STRUCTURAL DESIGN LLC Project Subject Steel Column - Weak Axis For torsional buckling Lz = 138 in Effective length factors For buckling about x axis Kx = 2.00 For buckling about y axis Ky = 2.00 For torsional buckling Kz = 1.00 Section classification Section classification for local buckling (cl. B4) Critical flange width b = bt I 2 = 3.385 in Width to thickness ratio of flange A.r = b / tr = 6.573 Depth between root radii h = d - 2 x k = 12.270 in Width to thickness ratio of web Xw = h I tw = 39.581 Compression L] I I I 1 I I I Sheet no. 2 Job Ref. Date 12/19/2017 Caic. by DG I I I I I I I I I I I Limit for nonslender flange = 0.56 x 1(E / F) = 13.487 The flange is nonslender in compression Limit for nonslender web Xrw_c = 1.49 x \l(E I Fy) = 35.884 The web is slender in compression The section is slender in compression Flexure Limit for compact flange Apt f = 0.38 x (E I Fy) = 9.152 Limit for noncompact flange = 1.0 x /(E I Fy) = 24.083 The flange is compact in flexure Limit for compact web = 3.76 x 'I(E / F) = 90.553 Limit for noncompact web = 5.70 x 'I(E / F) = 137.274 The web is compact in flexure The section is compact in flexure Slenderness mernoer sienaerness Slenderness ratio about x axis SR KxL/r47.0 Slenderness ratio about y axis SRy = Ky x L/ ry = 178.1 Second order effects Second order effects for bending about x axis (ci. App 8.1) Coefficient Cm Cmx = 1.0 Coefficient cx cx = 1.0 Elastic critical buckling stress Peix = 7T x E x l / (Kix x L)2 = 5786.3 kips P-ö amplifier Bi = max(1 .0, Cmx 1(1 - ax Pr / Peix)) = 1.002 Required flexural strength Mrx = Bix x Mx = 0.0 kips—ft tNITED RUCTURAL DESIGN LLC Project Subject Steel Column - Weak Axis 37 Sheet no. 3 Job Ref. Date 12/19/2017 Calc. by DG I I I I 1 I 1 I I I Second order effects for bending about y axis (ci. App 8.1) Coefficient Cm Cmy = 0.6 + 0.4 X Mi I My2 = 0.600 Coefficient cx a = 1.0 Elastic critical buckling stress Peiy = it2 x E x 1y / (Kly x Ly)2 = 401.3 kips P-S amplifier B1 = max(1 .0, Cmy / (1 - ax Pr / Peiy)) = 1.000 Required flexural strength Mry = Bly x My = 41.8 kips—ft Shear strength Shear parallel to the major axis (ci. G2.1) Shear area Web plate buckling coefficient Web shear coefficient Nominal shear strength Design shear strength (ci.GI & G2.1 (a)) Resistance factor for shear Design shear strength Reduction factor for slender elements Reduction factor for slender unstiffened elements (E7.1) I No slender unstiffened elements therefore QS = 1.000 Reduction factor for slender stiffened elements (E7.2) I Initial reduction factor Q = 1.0 For flexural buckling about x axis Elastic critical buckling stress Fex = (it2 x E) / (Kx x L / rx)2 = 129.5 ksi I Flexural buckling stress Fcrx = Q x (0.658 FY/Fex) x Fy = 42.5 ksi U Effective web width be = min(h, 1.92 x tw x I (E / F) x [1 - 0.34 / (h / t) x ' (E / Fcm)I) Aw2XbfXtf6.973 in2 k = 1.2 Cv= 1.000 Vnx = 0.6 x Fy x Aw x C = 209.2 kips 4v = 0.90 Vcx = Ov x Vnx = 188.3 kips PASS - The design shear strength exceeds the required shear strength Effective area Reduction factor Resultant reduction factor For flexural buckling about y axis Elastic critical buckling stress Flexural buckling stress Effective web width I Effective area Reduction factor I I I I I be = 12.055 in AeAtwX(h be)= 11.133 in2 QaxAeIA = 0.994 Qx = Qs x Qax = 0.994 Fey = (it2 x E) / (K x L I ry)2 = 9.0 ksi Fcry = 0.877X Fey = 7.9 ksi be= min(h, 1.92xtwxI(E/Fcn,)x[1-0.34/(h/tw)xI(EIFc)]) be = 12.270 in Ae = A - tw x (h - be) = 11.200 in2 ' Qay = Ae / A = 1.000 tNITED Sheet no. 4 I STRUCTURAL DESIGN LLC Job Ref. Project Date 12/19/2017 Subject Steel. Column - Weak Axis Calc. by DG Resultant reduction factor Qy= Q x Qay = 1.000 I For torsional/flexural-torsional buckling Torsional/flexural-torsional elastic buckling stress Fet = [it2 x E x Cw / (K x L)2 + G x I J] x 1 / (i + l) = 66.6 ksi Flexural buckling stress Fat= 0 x (0.6580xFYIFet) x Fy = 36.5 ksi Effective web width be = min(h, 1.92 x tw x J (E / F) x [1 - 0.34 / (h I t) x '/ (E / Fcd)]) I be = 12.270 in Effective area Ae = A - t x (h - be) = 11.200 in2 Reduction factor Qaz = Ae / A = 1.000 I Resultant reduction factor Qz= Qs x Qaz = 1.000 Compressivestrength I Flexural buckling about x axis (ci. E3) Elastic critical buckling stress Fex = (it2 X E) / (SR)2 = 129.5 ksi Flexural buckling stress about x axis Fcrx= Qx x (0.658 FY/Fex) x Fy = 42.3 ksi Nominal flexural buckling strength Pnx Fc, x A9 = 474.0 kips Flexural buckling about y axis (Cl. E3) Elastic critical buckling stress Fey = (it2 x E) / (SR)2 = 9.0 ksi Flexural buckling stress about y axis Fcry= 0.877 x Fey = 7.9 ksi Nominal flexural buckling strength P, =Fcry x A9 = 88.7 kips Torsional and flexural-torsional buckling (ci. E4) Torsional/flexural-torsional elastic buckling stress Fet = [it2 x E x C I (K x L)2 + G X J] x 1 I (l + l) = 66.6 ksi Torsional/flexural-torsional buckling stress Fcrt= Q x (0.658QzxFY/Fet) x Fy = 36.5 ksi Nom. torsional/flex-torsional buckling strength Pt =Fat x A9 = 409.0 kips Design compressive strength (cl.EI) Resistance factor for compression OC = 0.90 Design compressive strength Pc =or x min(P, Pny, Pet) = 79.8 kips PASS - The design compressive strength exceeds the required compressive strength Flexuralstrengthabout theminoraxis Yielding (ci. F6.1) Nominal flexural strength Mnyd = Mpy = min(Fy x Z,, 1.6 x Fy x S) = 50.4 kips_ft Design flexural strength about the minor axis (ci. Fl) Resistance factor for flexure 4b = 0.90 Design flexural strength Mcy = Ob x Mnyd = 45.4 kips—ft PASS - The design flexural strength about the minor axis exceeds the required flexural strength 38 39 5 12/19/2017 DC I I I I I I I I I I I I I 1 I I 1 I 1 Combined forces Member utilization (cl. H1.1) Equation Hi-lb UR = abs(Pr) /(2 x Pc) + (Mrx I Mcx + Mry / M) = 0.996 PASS - The member is adequate for the combined forces Column Reactions Strong Axis (From 2D Analysis) Pmax :2O k Vmxx 1 9 k Mmax: 33 3 kA 4j I 40 [I See Output for Footing Size I I I I 1 David Grapsas, P.E. John Elder, P.E. Pvcipi Phoenix, AZ 480-454-6408 www.unitcdstr.com www.unitedstr.com Service combinations - Moment envelope (kip_ft) -149.6 Service combinations - Shear envelope (kips) 14.6 I I I I I I I I I I I I I I I I I I I 41 !JNDTED STRUCTURAL DESIGN LLC Project Subject ANALYSIS Geometry Results Forces Geometry (ft) - Steel (AISC) Tedds calculation version 1.0.20 Sheet no. 1 Job Ref. Date 12/19/2017 2D Analysis Calc. by JE JPNI TED STRUCTURAL DESIGN LLC. Project Subject 2D Analysis Sheet no. 2 Job Ref. Date 12/19/2017 Caic. by JE 42 Service combinations - Axial force envelope (kips) Member results Envelope - Service combinations Member Shear force Moment Pos (ft) Max abs (kips) Pos (ft) Max (kip_ft) Pos (ft) Mm (kip_ft) BEAM 20.5 14.617 (max abs 20.5 28.39 20.5 -149.826 (mm) COLUMN 0 1.913 0 68.317 (max) 0 -64.571 Envelope - Service combinations Member Axial force Pos Max Pos Mm (ft) (kips) (ft) (kips) BEAM 20.5 0.43 20.5 -0.43 (mm) COLUMN 0 26.045 (max) 11.78 -0.279 2D Analysis tN I TED RUCTURAL DESIGN LLC Project Subject I I I 43 Sheet no. 3 Job Ref. Date 12/19/2017 Calc. by JE I I I I I tNITED RUCTURAL DESIGN LLC Project Subject FLAGPOLE EMBEDMENT (IBC 201 Pole Footing 44 Sheet no. 1 Job Ref. Date 12/19/2017 Calc. by JE TEDDS calculation version 1.2.00 Soil capacity data Allowable passive pressure Maximum allowable passive pressure Load factor 1(1806.1) Load factor 2 (1806.3.4) Pole geometry Shape of the pole Diameter of the pole Laterally restrained Load data First point load Distance of Pi from ground surface Second point load Distance of P2 from ground surface Uniformly distributed load Start distance of W from ground surface End distance of W from ground surface Applied moment Lsbc = 100 pcf Pmax = 1500 psf LDFi = 1.00 LDF2 = 2.0 Round Dia = 24 in No Pi = 1900 lbs Hi = 0 ft P2 = 0 lbs H2 = 1 ft W = 0 plf a=2ft ai = 4 ft Mi = 68300 lb—ft I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Distance of Mi from ground surface Shear force and bending moment Total shear force Total bending moment at grade Distance of resultant lateral force Embedment depth (1807.3.2.1) Embedment depth provided Allowable lateral passive pressure Factor A Embedment depth required Actual lateral passive pressure psf Pole Footing 45 Sheet no. 2 Job Ref. Date 12/19/2017 Calc. by JE H3 = 12 ft F = P + P2 + W x (al - a) = 1900 lbs Mg PixHi+P2xH2+Wx (al —a)x(a+ai)/2+Ml=68319lb—ft h = abs(M9 / F) = 35.96 ft D = 11.95 ft Si = min(Pmax, Lsbc x min(D, 12 ft) / 3) x LDF1 x LDF2 = 796.5 psf A = 2.34 x abs(F) / (Si x Dia) = 2.8 ft Di = 0.5 x Ax (1 + (1 + ((4.36 x h) /A))°5) = 11.95 ft S2 = (2.34 x abs(F) x ((4.36 x h) + (4 x 0))) / (4 x D2 x Dia) = 796.5 I I I NITED Sheet no. STRUCTURAL DESIGN LLC Job Ref. Project Date Subject Spread Footing Calc. by 12/19/2017 JE HI COMBINED FOOTING ANALYSIS AND DESIGN (AC1318-11) TAT ('1 U, _y_ 4 106" Combined footing details Length of combined footing L = 10.500 ft Width of combined footing B = 5.500 ft Area of combined footing A = L x B = 57.750 ft2 Depth of combined footing h = 24.000 in Depth of soil over combined footing h01i = 0.000 in Density of concrete Pconc = 150.0 lb/ft3 Column details Column base length IA = 12.000 in Column base width bA = 12.000 in Column eccentricity in x epxA = 0.000 in Column eccentricity in y ePyA = 0.000 in Soil details Density of soil Psoit = 120.0 lb/ft3 Angle of internal friction 0'= 25.0 deg Design base friction angle 5 = 19.3 deg Coefficient of base friction tan(s) = 0.350 Allowable bearing pressure Pbearing = 1.500 ksf Axial loading on column Dead axial load on column PGA = 26.000 kips Live axial load on column PQA = 0.000 kips Wind axial load on column PWA = 0.000 kips Total axial load on column PA = 26.000 kips I I I I I I I I I I I I I I I I TEDDS calculation version 2.0.06 tU N I TED Sheet no. 2 STRUCTURAL DESIGN LLC. Job Ref. Project Date 12/19/2017 Subject Spread Footing Calc. by JE Foundation loads Dead surcharge load Live surcharge load Footing self weight Soil self weight Total foundation load Horizontal loading on column base Dead horizontal load in x direction Live horizontal load in x direction Wind horizontal load in x direction Total horizontal load in x direction Dead horizontal load in y direction Live horizontal load in y direction Wind horizontal load in y direction Total horizontal load in y direction Moment on column base Dead moment on column in x direction Live moment on column in x direction Wind moment on column in x direction Total moment on column in x direction Dead moment on column in y direction Live moment on column in y direction Wind moment on column in y direction Total moment on column in y direction Check stability against sliding Resistance to sliding due to base friction Passive pressure coefficient Stability against sliding in x direction FGsur = 0.000 ksf F0sur = 0.000 ksf Fswt = h X Pconc = 0.300 ksf F0i = h50i X Psoil = 0.000 ksf F = A x (FGsur + F0sur + F5 + F50i) = 17.325 kips HGXA = 1.900 kips HoxA = 0.000 kips HWxA = 0.000 kips HxA = 1.900 kips HGyA = 0.000 kips HayA = 0.000 kips HwyA = 0.000 kips HyA = 0.000 kips MGXA = 68.300 kip_ft MQXA = 0.000 kip_ft MwxA = 0.000 kip_ft MxA = 68.300 kip_ft MGyA = 0.000 kip_ft MayA = 0.000 kip_ft MwyA = 0.000 kip_ft MyA = 0.000 kip_ft Hrt0 = max([PGA + (FGsur + F5 + F50i) x A], 0 kips) x tan(s) = 15.172 kips Kp = (1 + sin(')) / (1 - sin(')) = 2.464 I I I I Li I Passive resistance of soil in x direction Hxpas = 0.5 x Kp x (h2 + 2 x h x h50i) x B x Psoil = 3.252 kips Total resistance to sliding in x direction Hxres + Hxpas = 18.425 kips PASS - Resistance to sliding is greater than horizontal load in x direction Check stability against overturning in x direction Total overturning moment MXOT = M + HxA x h = 72.100 kip_ft I Restoring moment in x direction Foundation loading Axial loading on column I 11 Mxsur = A x (FGsur + F5t + Fsoi) x L I 2 = 90.956 kip_ft Mxaxiai = (PGA) x (L / 2 - ep,) = 136.500 kip_ft 0.037 ksf Load combination factors for loads Load combination factor for dead loads yfG = 1.20 Load combination factor for live loads yfQ = 1.60 Load combination factor for wind loads yiw = 0.00 Strength reduction factors Flexural strength reduction factor Of= 0.90 Shear strength reduction factor Os = 0.75 I I I I I I I 1.464 ksf tNITED RUCTURAL DESIGN LLC Sheet no. 3 Job Ref. Date 12/19/2017 Caic. by JE 48 Project Subject Spread Footing Total restoring moment Calculate base reaction Total base reaction Eccentricity of base reaction in x Eccentricity of base reaction in y Check base reaction eccentricity Calculate base pressures Minimum base pressure Maximum base pressure 0.037 ksf Mxres = Mxsur + Mxaxiai = 227.456 kip—ft PASS - Restoring moment is greater than overturning moment in x direction T = F + PA = 43.325 kips eTx = (PA x ep + M + HA x h)/ T = 19.970 in eTy = (PA X epyA + MyA + HyA x h) / T = 0.000 in abs(eTx) / L + abs(ery) / B = 0.158 Base reaction acts within middle third of base ql=T/A-6xTx eTx /(LxA)-6xTxeT/(BxA)=0.037ksf q2=T/A-6xTx eTx /(LxA)+6xTxeTY /(BxA)=0.037ksf q3 = T / A + 6 x T x eix / (L x A) - 6 x T x er / (B x A) = 1.464 ksf q4 = T / A + 6 x T x eTx I (L x A) + 6 x Tx eTy/ (B x A) = 1.464 ksf qmin = min(qi, q2, q3, q4) = 0.037 ksf qmax = max(qi, q2, q3, q4) = 1.464 ksf PASS - Maximum base pressure is less than allowable bearing pressure :~ ~~111 I ~ ~~~ MIME I I 49 I tO N IT ED Sheet no. 4 I STRUCTURAL DESIGN LLC Job Ref. Project Date 12/19/2017 Subject Spread Footing Calc. by JE Ultimate axial loading on column I Ultimate axial load on column PuA = PGA x + PQA x o + PWA x ytw = 31.200 kips Ultimate foundation loads I Ultimate foundation load F = A x [(Fsur + Fswt + F0i) x yc + FQsur x a] = 20.790 kips Ultimate horizontal loading on column I Ultimate horizontal load in x direction H.uA = HGXA x G + HQxA x yfQ + HwxA x yfw = 2.280 kips Ultimate horizontal load in y direction HyuA = HGYA X G + HayA xyfa + HWYA X yfw = 0.000 kips Ultimate moment on column I Ultimate moment on column in x direction MxuA = MGXA x YfG + MQXA x yfQ + MwxA x yfw = 81.960 kip_ft Ultimate moment on column in y direction MyuA = MGYA X ffG + MQyA X fiQ + MwyA x yiw = 0.000 kip_ft I Calculate ultimate base reaction Ultimate base reaction Tu = F + PuA = 51.990 kips Eccentricity of ultimate base reaction in x eTxu = (PuA X ep + MxuA + HxuA x h) I Tu = 19.970 in I Eccentricity of ultimate base reaction in y eTyu = (PuA x ePyA + M + HyA x h) / Tu = 0.000 in Calculate ultimate base pressures qiu = TUIA - 6XTuXeTxu/(LXA) - 6xTuxeTyu/(BxA) = 0.044 ksf I q2u = TUIA - 6xTxeixJ(LxA) + 6xTx eTyu/(BxA) = 0.044 ksf q3u = TU/A + 6xTUxeTXJ(LxA) - 6xTUxeTJ(BxA) = 1.756 ksf I q4u = TUIA + 6xTUxeTXJ(LxA) + 6xTUxeT/(BXA) = 1.756 ksf Minimum ultimate base pressure qminu = min(qiu, q2u, q3u, q4u) = 0.044 ksf I Maximum ultimate base pressure Calculate rate of change of base pressure in x direction qmaxu = max(qiu, q2u, q3u, q4u) = 1.756 ksf Left hand base reaction fuL = (qiu + q2u) x B / 2 = 0.243 kips/ft I Right hand base reaction fuR = (q3u + q4u) x B / 2 = 9.660 kips/ft Length of base reaction L = L = 126.000 in Rate of change of base pressure C = (fuR - fuL) I Lx = 0.897 kips/ft/ft I Calculate footing lengths in x direction Left hand length LL = L / 2 + epxA = 5.250 ft Right hand length LR = L / 2 - eFYA = 5.250 ft I Calculate ultimate moments in x direction Ultimate positive moment in x direction M = fuL X LL / 2 + Cx X U.3 I 6 - Fu X LL2 / (2 X L) + HxuA X h + MxuA = 84.210 kip_ft • Position of maximum negative moment L = 5.250 ft Ultimate negative moment in x direction Mxneg = fuR X LR2 12 - Cx X LR3 / 6 - Fu x LR2 I (2 X L) - HxuA X h - MxuA I Mxneg = -2.310 kip_ft I I Sheet no. 5 Job Ref. Date 12/19/2017 50 Subject Spread Footing Caic. by JE Calculate rate of change of base pressure in y direction I Top edge base reaction fuT = (q2u + q4u) x L I 2 = 9.453 kips/ft Bottom edge base reaction fuB = (qiu + q3u) x L / 2 = 9.453 kips/ft I Length of base reaction L = B = 5.500 ft Rate of change of base pressure C = (f8 - fi) / Ly = 0.000 kips/ft/ft Calculate footing lengths in y direction I Top length LT = B / 2 + ePyA= 2.750 ft Bottom length L6 = B / 2 - epyA = 2.750 ft Calculate ultimate moments in y direction I Ultimate moment in y direction My = fuT x Li2 /2 + C x LT I 6 - Fu x LT / (2 x B) = 21.450 kip—ft Material details I Compressive strength of concrete f' = 2500 psi Yield strength of reinforcement fy 60000 psi Cover to reinforcement cnom = 3.000 in I Concrete type Normal weight Concrete modification factor X = 1.00 I Moment design in x direction Reinforcement provided 7 No. 6 bars bottom and 7 No. 6 bars top Depth of tension reinforcement dx = h - cnom - 4xB / 2 = 20.625 in I Area of tension reinforcement provided As_xBrov = NxB X It X OxB2 / 4 = 3.093 in2 Area of compression reinforcement provided As_xTrov = NxT X It X OxT2 / 4 = 3.093 in2 Minimum area of reinforcement As-.-min = 0.0018 x h x B = 2.851 in2 I Spacing of reinforcement 5xBj,rov = (B - 2 x cnom) I max(Nxs - 1, 1) = 10.000 in Maximum spacing of reinforcement Smax = min(3 x h, 18in) = 18.000 in I PASS - Reinforcement provided exceeds minimum reinforcement required Depth of compression block ax = As_xB_prov x f / (0.85 x f'r, x B) = 1.32 in Neutral axis factor 3i = 0.85 I Depth to the neutral axis cna_x = ax / 3i = 1.56 in Strain in reinforcement £tx = 0.003 X (dx - Cna_x) / cna_x = 0.03675 PASS- The section has adequate ductility (ci. 10.3.5) I Nominal moment strength required Mnx = abs(M) / Of = 93.567 kip_ft Moment capacity of base Mcapx = As_xBv X fy X [dx - (As_xB..prov X fy / (1.7 X f'c X B))] Mcapx = 308.686 kip_ft PASS - Moment capacity of base exceeds nominal moment strength required Negative moment design in x direction Reinforcement provided 7 No. 6 bars top and 7 No. 6 bars bottom I Depth of tension reinforcement dx = h - cnxm - 4T / 2 = 20.625 in Area of tension reinforcement provided As_Trov = NxT x it x OxT2 / 4 = 3.093 in2 I 1 Area of compression reinforcement provided Minimum area of reinforcement Spacing of reinforcement Maximum spacing of reinforcement Depth of compression block Neutral axis factor I Depth to the neutral axis Strain in reinforcement Nominal moment strength required I Moment capacity of base Moment design in y direction I Reinforcement provided Depth of tension reinforcement I Area of tension reinforcement provided Area of compression reinforcement provided Minimum area of reinforcement Spacing of reinforcement I Maximum spacing of reinforcement Depth of compression block Neutral axis factor Depth to the neutral axis Strain in reinforcement Nominal moment strength required Moment capacity of base I I 1 tNITED RUCTURAL DESIGN LLC Sheet no. 6 Job Ref. 51 Project Date 12/19/2017 Subject Spread Footing Cale. by JE As_xBprov = NxB X It X IxB2 / 4 = 3.093 in2 As_x_min = 0.00 18 x h x B = 2.851 in2 5xTfirov = (B -2 X Cnom) / max(Ni- 1, 1) = 10.000 in 5max = min(3 x h, 18in) = 18.000 in PASS - Reinforcement provided exceeds minimum reinforcement required ax=AsxTj,rovxfy/(0.85xf'cxB)= 1.32 in I3i= 0.85 Cna_x=axll3i = 1.56 in ELX = 0.003 X (dx - Cna_x) / Cna_x = 0.03675 PASS - The section has adequate ductility (ci. 10.3.5) Mnxneg = abs(M09) / ctt = 2.567 kip_ft Mcapxneg = As_xTj,rov X fy X [dx - (As_xr_prov X fy / (1.7 X f'c X B))] Mcapxneg = 308.686 kip_ft PASS - Moment capacity of base exceeds nominal moment strength required 13 No. 6 bars bottom and 13 No. 6 bars top dy = h - cnom - ixB - 4yB/2 = 19.875 in As..yB_prov = NyB x it x OYB2 / 4 = 5.743 in2 As.jij,rov = NyT x it x ci2 / 4 = 5.743 in2 Asy_min = 0.0018 x h x = 5.443 in2 5y8jr0v = (L -2 x cnom) / max(NB - 1, 1) = 10.000 in 5max = min(3 x h, 18in) = 18.000 in PASS - Reinforcement provided exceeds minimum reinforcement required ay = As,erov x f / (0.85 x f c x L) = 1.29 in = 0.85 cna=ay/3i=1.51in Et.y = 0.003 x (d - cna) / cna = 0.03638 PASS - The section has adequate ductility (cl. 10.3.5) Mny = abs(M) / ilif = 23.833 kip_ft Mcapy = Asj&prov X fy X [dy (AsyBprov X fy / (1.7 X f'c X L))] Mcapy = 552.254 kip_ft PASS - Moment capacity of base exceeds nominal moment strength required Calculate ultimate shear force at d from right face of column Ultimate pressure for shear d from face of column qsu = (qiu + C x (L / 2 + ep + IA / 2 + d) I B + q4u) / 2 qsu = 1.509 ksf Area loaded for shear at d from face of column As B x min(3 x (LI 2 - eTx), L /2 - ep, - IAI 2 - d) = 16.672 ft2 Ultimate shear force at d from face of column = A x (qsu - Fu /A) = 19.160 kips Shear design at d from right face of column Strength reduction factor in shear Os = 0.75 1 I I I 1 I I I I I I I I I I I I I I I I I I I NITED STRUCTURAL DESIGN LLC Project Subject Nominal shear strength Vnsu = Vsu / Os = 25.546 kips Concrete shear strength = 2 x x (fc x 1 psi) x (B x d) = 136.125 kips PASS - Nominal shear strength is less than concrete shear strength Calculate ultimate punching shear force at perimeter of d / 2 from face of column Ultimate pressure for punching shear qpuA = q1U+[(L/2+ep-IJ2-d/2)+(IA+2xd/2)/2]xCJB-[(B/2+epA-bi2- d12)+(bA+2XdI2)I2JXCyIL qpuA = 0.900 ksf Average effective depth of reinforcement d = (d + d) I 2 = 20.250 in Area loaded for punching shear at column ApA = (IA+2XdI2)X(bA+2XdI2) = 7.223 ft2 Length of punching shear perimeter upA = 2X(IA+2Xd/2)+2X(bA+2Xd/2) = 10.750 ft Ultimate shear force at shear perimeter VpuA = P + (F I A - qp) x App. = 27.298 kips Punching shear stresses at perimeter of d I 2 from face of column Nominal shear strength VnpA = V I 4 = 36.397 kips Ratio of column long side to short side 3A = max(lA, bA) / min(lA, bA) = 1.000 Column constant for interior column MA = 40 Concrete shear strength VQ i = (2 + 4 I 3A) x x /(f'c x 1 psi) x up, x d = 783.675 kips ye_p_u = (asA x d / upA + 2) x ? x 4(f'c x 1 psi) x upA x d = 1081.350 kips Vc_pju = 4 X ? X I(f'e x 1 psi) x UpA x d = 522.450 kips Vs_p = min(V_p_u, V_p_uu, V_p_uuu) = 522.450 kips PASS - Nominal shear strength is less than concrete shear strength 13 No. 6 bars btm (10" c/c) 13 No.6 bars top (10" c/c) 7 No.6 bars btm (10 c/c), 7 No.6 bars top (10 c/c) - - - One way shear at d from column face Two way shear at d / 2 from column face Spread Footing 52 Sheet no. 7 Job Ref. Date 12/19/2017 Calc. by JE I I I I I NITED STRUCTURAL DESIGN LLC. Project Subject Spread Footing 53 Sheet no. 8 Job Ref. Date 12/19/2017 Caic. by JE I I I I I I I I I %'rJ N IT ED RUCTURAL DESIGN LLC PROJECT NAME: Montecito Apartments PROJECT LOCATION: 2510W Ranch St., Carlsbad, CA 92010 ENGINEER: OG REVIEWER: JE DATE: 12/19/2017 Connection Design Connection Inputs Member Sizes Flange bf Depth d Design Summary Beam Size: Tts 6.77 in 14.10 In Steel Column Embedment d,,,,1 7: OK Column Size:, 5'$X36 6.77 in 14.10 In Pole Footing Reinforcing •#: OK Spread Footing Reinforcing 5t. OK Reactions Hodg Plate Size: b7 . OK Pu : 31.9 hips Vu: 2.9 kips Mu: 114 k-ft Pole Footing Properties Design Concrete Strength : 2,500 psi Footing Diameter : 24 Footing Depth H : 12,0 ft Steel Column Embedment d,.,j: 4 0 ft Footing Pressure: 7905 psI Size of Rebar Tales #9 No. of Rebar Tales Each Side of Column: 2 Spread Footing Properties Design Concrete Strength : 2,SOO psi Size of Rebar Each Side 29 No. of Rebar Tales Each Side of Column: 3 Hodge Plate Connection Plate Strength : 50 ksi Plate Width: 5755 OK Plate Height 12 irs OK Minimum Weld Length = 18.6 in Plate Thickness 0 75 sr Minimum Plate Thickness = 0.5 in Weld Size 0 (0/16) Embedment of Steel Column in Pole Footing Check Column : W14X38 . Column Flange Width bE : 6.6 in Column Embedment da,t : 48.0 in : Effective Column Flange Width bfeff : 3.9 in (0.60obf) . tp: 0.6 ...,T7 Concrete Bearing Capacity tpbn : 1275 psi ((pxo.$5x1'c) Bearing Section Modulus Sb : 1511.42 ina3 (bf,axda,12I6) . Ultimate Bearing Pressure bu : 908.30 psi (Mu/Sb + Vu/(bf 5xd.,,)) .. 4,_ ,.. .•. : Demand Capacity Ration OCR: 71': (buI(pbn) : Pole Footing Reinforcing Check . Size of Rebar Tales: 119 Column depth dc : 14.1 In . .. 2 .. : No. of Rebar Tales Each Side of Column: Area of Reinforcing Ab: 2.00 inxi . .—rs f9' Bearing Pressure at Si: Bearing Pressure at 52 : 265.5 psf 796.5 psf -I .-i 1 Equivalent Force Peq: 8.S hips Ultimate Moment Mu: 45 k-ft . . Reinforcing depth d: 16.0 in Concrete Design a: 0.9 3.5 in Concrete Bearing Capacity yMn : 111 k-ft (q,x.Abx60k51x(d.a/2) .:........-.-' Demand Capacity Ration OCR: .. -F Phoenix, AZ 775-351-9037 www.unitedstr.com 54 I I I I I I I I I I ITED TRUCTURAL DESIGN LLC PROJECT NAME: PROJECT LOCATION: 2510W F',,nch i I L I ENGINEER: DO REVIEWER: if DATE: 12/19/2O17 Spread Footing Reinforcing Check Column : W14X38 Column depth dc : 14.1 In Size of Rebar Each Side: #9 No. of Rebar Each Side of Column: 3 A ----I-.. Area of Reinforcing Ab: 3.00 inn2 Ultimate Shear Force Vu : 129.3 kips Area of Shear Reinforcing Av: 6.00 in-2 I _________ p : 0.9 /............. Capacityof Shear Reinforcing ipVn : 194.4 kips ((pxo.6x6OksixAv) / Demand Capacity Ration DCR: -.4---.... Spread Footing Reinforcing Check Column : W14X38 Column depth dc : 14.1 In Column Flange Width bfc : 6.8 In Beam : W14X38 Beam depth db : 14.1 in Beam Flange Width bfb: 6.8 In Ultimate Tensile Force Tu : 129.3 kips - 0.9 Plate Width: 5.8 in Plate Thickness: 0.8 In CapaciiyofHodgc Plate cpPn : 194.1 kips Demand Capacity Ration OCR Minimum Weld Length: 18.6 In . I 55 Phoenix, AZ 775-351-9037 www.uniicdsir.com