Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
2827 WHIPTAIL LOOP; ; CBC2019-0607; Permit
Building Permit Fina.led Commercial Permit Print Date: 03/24/2021 Job Address: 2827 WHIPTAIL LOOP, CARLSBAD, CA 92010 Permit Type: BLDG-Commercial Work Class: Tenant Improvement L'Cityof Carlsbad Permit No: CBC2019-0607 Status: Closed - Finaled Parcel #: 2091202600 Valuation: $300,000.00 Occupancy Group: #of Dwelling Units: Bedrooms: Bathrooms: Occupant Load: Code Edition: Track #: Lot #: Project #: Plan #: Construction Type: Orig. Plan Check #: Plan Check #: Applied: 12/30/2019 Issued: 03/18/2020 DEV2016-0032 Finaled Close Out: Inspector: CRenf Final Inspection: 03/24/2021 Sprinkled: Project Title: CARLSBAD OAKS LOT NORTH 24 Description: EQUIPMENT PLATFORM II UNDERGROUND UTILITIES Applicant: CHAMPION PERMITS TIM SEAMAN P 0 BOX 5955 -CHULA VISTA, CA 91912 (619) 993-8846 Property Owner: R A F GROUP LOT 24 LLC 2827 WHIPTAIL LOOP CARLSBAD, CA 92010 CoApplicant: DPR CONSTRUCTION 1620 FARADAY AVE CARLSBAD, CA 92008 FEE AMOUNT BUILDING PERMIT FEE ($2000+) $1,336.00 BUILDING PLAN CHECK FEE (BLDG) $935.20 ELECTRICAL BLDG COMMERCIAL NEW/ADDITION/REMODEL $89.00 FIRE S Occupancies a 50,000sq. ft. TI $678.00 GREEN BUILDING STANDARDS PLAN CHECK & INSPECTION $175.00 MECHANICAL BLDG COMMERCIAL NEW/ADDITION/REMODEL $55.00 5B1473 GREEN BUILDING STATE STANDARDS FEE $12.00 STRONG MOTION-COMMERCIAL $84.00 Total Fees: $3,364.20 Total Payments To Date: $3,364.20 Balance Due: $0.00 Please take NOTICE that approval of your project includes the "Imposition' of fees, dedications, reservations, or other exactions hereafter collectively referred to as "fees/exaction." You have 90 days from the date this permit was issued to protest imposition of these fees/exactions. If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the protest and any, other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their imposition. You are hereby FURTHER NOTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project. NOR DOES IT APPLY to any fees/exactions of which you have previously been given a NOTICE similar to this, or as to which the statute of limitation has previously otherwise expired. Building Division Page 1 of 1 1635 Faraday Avenue, Carlsbad CA 92008-7314 1 760-602-2700 1 760-602-8560 f I www.carlsbadca.gov DocuSign Envelope ID: A0C869B8-02FC4026-9C4D-A5BC33E02999 (City o.f Carlsbad, COMMERCIAL BUILDING PERMIT APPLICATION B-2 Plan Check '—"1'1 Est. Value 3'1C 10UT PC Deposit Date 20I Job Address 2827 Whiptail Loop S Suite: APN: 209-120-26 CT/Project #: Millipore Sigma Lot It:___________ Fire Sprinklers: ® YES O NO Air Conditioning: ® YES 0 NO Electrical Panel Upgrade: 0 YES 0 NO BRIEF DESCRIPTION OF WORK: Addition of unoccuied equipment platform, misc steel, elevator pit and structural support and underground utilities E] Addition/New:. Living SF, Deck SF, Patio SF, Garage SF Is this to create an Accessory Dwelling Unit? 0 V. O N New Fireplace? 0 Y 0 N, if yes how many? 0 Remodel: SF of affected area Is the'area a conversion or change of use ?OY ON - JJ Pool/Spa: SF Additional Gas or Electrical Features? OSolar: KW, Modules, Mounted:ORoofOGround, Tilt:O VON, RMA:OYON, Battery:OY ON, Panel Upgrade: Ov ON 0 Reroof: '. El Plumbing/Mechanical/Electrical Only: 21 Other: Underground utilities, non occupied equipment platform, misc steel APPLICANT (PRIMARY CONTACT) PROPERTY OWNER Name: Millipore Sigma ' Name: RAF Group Lot 24, LLC Address: 6211 El Camino Address: 315 S. Coast Highway 101, Suite U-12 City: Carlsbad State: CA Zip: 92010 City: Encinitas State: _CA Zip: 92024 Phone: (858)2439741 Phone: (858)3143116 Email: oliver.castilleja@milliporesigma.com Email: edward@rafpg.com DESIGN PROFESSIONAL CONTRACTOR BUSINESS Name: Steven W. Misiura . Name: DPR Construction Address: 2 Tern Lane, Suite 125 Address: 5010 Shoreham 121 City: Burlington State: NJ Zip: 08016 City: San Diego State: CA Zip: 92122 Phone: (609) 387- 1700 Phone: (858) 5977070 Email: smisiura@ceicinc.com Email: maryb@dpr.com Architect State License: C35269 . State License: 953749 Bus. License:_BL0S1233805 (Sec. 7031.5 Business and Professions Code: Any City or County which requires a permit to construct, alter, improve, demolish or repair any structure, prior to its issuance, also requires the applicant for such permit to file a signed statement that he/she is licensed pursuant to the provisions of the Contractor's License Law (Chapter 9, commending with Section 7000 of Division 3 of the Business and Professions Code} or that he/she is exempt therefrom, and the basis for the alleged exemption. Any violation of Section 7031.5 by any applicant for a permit subjects the applicant to a civil penalty of not more than five hundred dollars ($500)). 1635 Faraday Ave Carlsbad, CA 92008 Ph: 760-602-2719 Fax: 760-602-8558 Email: BuildingcarIsbadca.gov B-i Page 1 of 2 Rev. 06/18 oocuSign Envelope ID: A0C869B8-02FC-4026-9C40-A5BC33ED2999 (OPTION A): WORKERS'COMPENSATION DECLARATION: I hearby affirm under penalty of perjury one of the following declarations: I have and will maintain a certificate of consent to self-insure for workers' compensation provided by Section 3700 of the Labor Code, for the performance of the work which this permit is issued. I have and will maintain worker's compensation, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. My workers' compensation insurance carrier and policy number are: Insurance Company Name: InsumnceCXlaban Policy No. WA7.66D.066943.039 Expiration Date: 09101f2020 Certificate of Exemption: I certify that in the performance of the work for which this permit is issued, I shall not pmploy any person in any manner so as to be come subject to the workers' compensation Laws of California. WARNING: Failure to secure workers compensation coverage is unlawful, and shall subject an employer to criminal penalties and civil fines up to $100,000.00, in addition the to the cost of compensation, damages as provided for in Section 3706 of the Labor Code, interest and attorney's fees. CONTRACTOR SIGNATURE: Mary Bubacz HIM DAGENT DATE: 031170020 (OPTION 191 ): OWNER-BUILDER DECLARATION: I hereby affirm that lam exempt from Contractor's License Law for the following reason: U I, as owner of the property or my employees with wages as their sole compensation, will do the work and the structure is not intended or offered for sale (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and who does such work himself or through his own employees, provided that such improvements are not intended or offered for sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale). 11 I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and contracts for such projects with contractor(s) licensed pursuant to the Contractor's License Law). I am exempt under Section' Business and Professions Code for this reason: I personally plan to provide the major labor and materials for construction of the proposed property improvement. OYES 0 NO I (have / have not) signed an application for a building permit for the proposed work. I have contracted with the following person (firm) to provide the proposed construction (include name address / phone / contractors' license number): I plan to provide portions of the work, but I have hired the following person to coordinate, supervise and provide the major work (include name / address /phone/ contractors' license number): S. I will provide some of the work, but I have contracted (hired) the following persons to provide the work indicated (include name / address / phone / type of work): OWNER SIGNATURE: DAGENT DATE: CONSTRUCTION LENDING AGENCY, IF ANY: I hereby affirm that there is a construction lending agency for the performance of the work this permit is issued (Sec. 3097 (i) Civil Code). Lender's Name: Lender's Address: ONLY COMPLETE THE FOLLOWING SECTION FOR NON-RESIDENTIAL BUILDING PERMITS ONLY: Is the applicant or future building occupant required to submit a business plan, acutely hazardous materials registration form or risk management and prevention program under Sections 25505, 25533 or 25534 of the Presley-Tanner Hazardous Substance Account Act? No Is the applicant or future building occupant required to obtain a permit from the air pollution control district or air quality management district? No Is the facility to be constructed within, 1,000 feet of the outer boundary of a school site? No IF ANY OF THE ANSWERS ARE YES, A FINAL CERTIFICATE OF OCCUPANCY MAY NOT BE ISSUED UNLESS THE APPLICANT HAS MET OR IS MEETING THE REQUIREMENTS OF THE OFFICE OF EMERGENCY SERVICES AND THE AIR POLLUTION CONTROL DISTRICT. APPLICANT CERTIFICATION: I certify that I have read the application and state that the above information is correct and that the information on the plans is accurate. I agree to comply with all City ordinances and State laws relating to building construction. I hereby authorize representative of the City of Carlsbad to enter upon the above mentioned property for inspection purposes. I ALSO AGREE TO SAVE, INDEMNIFY AND KEEP HARMLESS THE CITY OF CARLSBAD AGAINST ALL LIABILITIES, JUDGMENTS, COSTS AND EXPENSES WHICH MAY IN ANY WAY ACCRUE AGAINST SAID CITY IN CONSEQUENCE OF, THE GRANTING OF THIS PERMIT.OSHA: An OSHA permit is required for excavations over MY deep and demolition or construction of structures over 3 stories in height. EXPIRATION: Every permit issued by the Building Official under the provisions of this Code shall expire by limitation and become null and void if the building-or work authorized by such permit is not commenced within 180 days from the date of such permit or if the building or work authorized by such permit is suspended or abandoned at any time after the work is commenced for a period of 180 days (Section 105.4.4 Uniform Building Code). p-0ocuSlda by: 3/17/2020 APPLICANT SIGNATURE: Lb" ' DATE: 1635 Faraday Ave Carlsbad, CA 92008 Ph: 760-602-2719 Fax: 760-602-8558 Email: BuiIdingcarISbadCa.gov B-I Page 2 of 2 Rev. 06/18 Permit Type: BLDG-Commercial Application Date: 12/30/2019 Owner: R A F GROUP LOT 24 LLC Work Class: Tenant Improvement Issue Date: 03/18/2020 Subdivision: Status: Closed - Finaled Expiration Date: 07/12/2021 Address: 2827 WHIPTAIL LOOP IVR Number: 23949 CARLSBAD, CA 92010 Scheduled Actual Inspection Type Inspection No. Inspection Primary Inspector Reinspection Inspection Date Start Date Status 01113/2021 01/13/2021 BLDG-33 Service 148209-2021 Partial Pass Chris Renfro Reinspection Incomplete Change/Upgrade Checklist Item COMMENTS Passed BLDG-Building Deficiency Underground 40 water main line to Yes backflow preventer only. OK to backfill 03124/2021 03/24/2021 BLDG-Final Inspection 153557-2021 Passed Chris Renfro Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes BLDG-Plumbing Final Yes BLDG-Mechanical Final Yes BLDG-Structural Final Yes BLDG-Electrical Final Yes Complete Wednesday, March 24, 2021 Page 7 of 7 Permit Type: BLDG-Commercial Application Date: 12130/2019 Owner: R A F GROUP LOT 24 LLC Work Class: Tenant Improvement Issue Date: 03/18/2020 Subdivision: Status: Closed - Finaled Expiration Date: 07/12/2021 Address: 2827 WHIPTAIL LOOP CARLSBAD, CA 92010 IVR Number: 23949 Scheduled Actual Inspection Type Inspection No. Inspection Primary Inspector Reinspection Inspection Date Start Date Status 1110512020 1110512020 BLDG-22 Sewer/Water 143089-2020 Partial Pass Chris Renfro Reinspection Incomplete Service Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass on DW/, See plans for areas Yes inspected. BLDG-24 RoughlTopout 143088.2020 Partial Pass Chris Renfro Reinspection Incomplete Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass quadrant. See plans for areas Yes inspected 1112312020 1112312020 BLDG-17 Interior 144454-2020 Partial Pass Tim Kersch Reinspection Incomplete Lath/Drywall Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass on QC labs and full height Yes walls throughout warehouse A D gridline 2 -5. - 1210212020 12102/2020 BLDG-14 145121-2020 Partial Pass Chris Renfro Reinspection Incomplete Frame/Steel/Bolting/We Iding (Decks) Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass rough combo on ceiling hard Yes lids only in rooms 4231, 4344, 4331; ok to drywall 12/0912020 12/0912020 BLDG-14 145613-2020 Cancelled Chris Renfro Reinspection Incomplete Frame/Steel/Bolting/We Iding (Decks) Checklist Item COMMENTS Passed BLDG-Building Deficiency Cancelled due COVID testing No 1211512020 1211512020 BLDG-14 146218.2020 Partial Pass Chris Renfro Reinspection Incomplete Frame/Steel/Bolting/We Iding (Decks) Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass on rough combo completed in Yes rooms #1437,1435,1433 and 1401. OK to drywall 12/23/2020 12/2312020 BLDG-14 146778.2020 Partial Pass Chris Renfro Reinspection Incomplete Frame/Steel/Bolting/We Iding (Decks) Checklist Item COMMENTS Passed BLDG-Building Deficiency See permit card for areas inspected. Partial Yes pass Rough combo on walls and hard lids. Wednesday, March 24, 2021 Page 6 of 7 Permit Type: BLDG-Commercial Application Date: 12/30/2019 Owner: R A F GROUP LOT 24 LLC Work Class: Tenant Improvement Issue Date: 03/18/2020 Subdivision: Status: Closed - Finaled Expiration Date: 07/12/2021 Address: 2827 WHIPTAIL LOOP IVR Number: 23949 CARLSBAD, CA 92010 Scheduled Actual, Inspection Type Inspection No. Inspection Primary Inspector Reinspection Inspection Date Start.Date Status Checklist Item COMMENTS Passed BLDG-Building Deficiency - Partial pass on DWI, See plans for areas Yes inspected. BLDG-24 RoughlTopout 139008-2020 Partial Pass Chris Renfro Reinspection Incomplete Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial' pass quadrant. See plans for areas Yes inspected. BLDG-44 139009.2020 Partial Pass Chris Renfro Reinspection Incomplete Rough/Ducts/Dampers Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass. Duct sealant inspection on Yes areas in quadrant 2, See plans for highlighted areas. 1010112020 1010112020 BLDG-31 139838.2020 Partial Pass Chris Renfro Reinspection Incomplete Underground/Conduit - Wiring , Checklist Item COMMENTS Passed BLDG-Building Deficiency Underground conduit for electrical Yes equipment on back exterior location, and UFER verification 10/1312020 1011312020 BLDG-14 140649-2020 Partial Pass Chris Renfro Reinspection Incomplete FramelSteel/Boltlng!We [ding (Decks) Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass Yes BLDG-17 Interior 140650-2020 Partial Pass Chris Renfro Reinspection incomplete Lath/Drywall - Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass , Yes 10/22/2020 10/22/2020 BLDG-17 Interior 141702.2020 Partial Pass Chris Renfro Reinspection Incomplete Lath/Drywall Checklist Item ' COMMENTS Passed BLDG-Building Deficiency Partial pass Yes 10/28/2020 10/28/2020 BLDG-17 Interior 142280-2020 Partial Pass Chris Renfro Reinspection Incomplete Lath/Drywall Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass on QC labs and full height Yes walls throughout warehouse Wednesday, March 24, 2021 , Page 5 of 7 Permit Type: BLDG-Commercial Application Date: 12/30/2019 Owner: R A F GROUP LOT 24 LLC Work Class: Tenant Improvement Issue Date: 03/18/2020 Subdivision: Status: Closed - Finaled Expiration Date: 07/12/2021 Address: 2827 WHIPTAIL LOOP CARLSBAD, CA 92010 IVR Number: 23949 Scheduled Actual Inspection Type Inspection No. Inspection Primary Inspector Reinspection Inspection Date Start Date . Status Checklist Item COMMENTS Passed BLDG-Building Deficiency August 31, 2020: Yes 1. Mezzanine concrete deck steel reinforcement rebar-mat, gridlines D through E, approved pending special inspector's final report. BLDG-Building Deficiency See card for areas inspected, pad Yes footings. OK partial pass 09/01/2020 09/0112020 BLDG-11 137174-2020 Partial Pass Chris Renfro Reinspection Incomplete FoundatlonlFtglPlers (Rebar) Checklist Item . COMMENTS Passed BLDG-Building Deficiency Rebar inspection on mezzanine deck. OK Yes to pour special inspection report collected 09/0312020 09103/2020 BLDG-11 137352-2020 Partial Pass Chris Renfro Reinspection Incomplete Foundatlon!FtglPiers (Rebar) Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass cast in Place foundation wall Yes exterior for mechanical yard. OK to pour. Special inspection report collected 09/10/2020 BLDG-24 RoughlTopout 137889-2020 Partial Pass Chris Renfro Reinspection Incomplete Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass on first quadrant, see plans for Yes area inspected. BLDG-44 137890-2020 Failed Chris Renfro Reinspection Incomplete Rough/Ducts/Dampers Checklist Item COMMENTS Passed BLDG-Building Deficiency Not ready • No 09/15/2020 09/15/2020 BLDG-44 138200-2020 Partial Pass Chris Renfro Reinspection Incomplete Rough/Ducts/Dampers Checklist Item COMMENTS . Passed BLDG-Building Deficiency Partial pass. Duct sealant inspection on Yes areas in quadrant one. See plans for highlighted areas. 09/18/2020 09/18/2020 BLDG-24 RoughlTopout 138765-2020 Partial Pass Chris Renfro Reinspection Incomplete Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass on second quadrant. See Yes plans for areas inspected. 09123/2020 BLDG-22 Sewer/Water 139010-2020 Partial Pass Chris Renfro , Reinspection Incomplete Service Wednesday, March 24, 2021 . . . . . Page 4 of 7 Permit Type: BLDG-Commercial Application Date: 12/30/2019 Owner: R A F GROUP LOT 24 LLC Work Class: Tenant Improvement Issue Date: 03/18/2020 Subdivision: Status: Closed - Finaled Expiration Date: 07/1212021 Address: 2827 WHIPTAIL LOOP C IVR Number: 23949 ARLSBAD, CA 92010 Scheduled Actual Inspection Type Inspection No. Inspection Primary Inspector Reinspection Inspection Date Start Date Status 07/0112020 0710112020 BLDG-21 ' 131518.2020 Partial Pass Chris Renfro Reinspection Incomplete UndergroundlUnderflo or Plumbing Checklist Item COMMENTS Passed BLDG-Building Deficiency See plans for sections inspected. Yes Underground waste lines for 3 inch, 4 inch, 6 inch lines and double wall containment system partial passed on 5 psi air test 0710912020 0710912020 BLDG-21 132311.2020 Partial Pass Chris Renfro Reinspection Incomplete UndergroundlUnderflo or Plumbing Checklist Item COMMENTS Passed BLDG-Building Deficiency See plans for sections inspected. Yes Underground Waste lines 07/1612020 07116/2020 BLDG-21 133008-2020 Partial Pass Chris Renfro Reinspection Incomplete Underground/Underflo or Plumbing Checklist Item COMMENTS Passed - BLDG-Building Deficiency See plans for sections inspected. Yes Underground double wall containment lines. Ok to backfill 0713012020 07/30/2020 BLDG-21 134262-2020 Passed Tony Alvarado Complete UndergroundlUnderflo or Plumbing - Checklist Item COMMENTS Passed BLDG-Building Deficiency See plans for sections inspected. Yes Underground double wall containment lines. Ok to backfill BLDG-Building Deficiency July 30, 2020: Yes 1. Underground 4"inch sewer plumbing lines and 2" inch plumbing vent lines (under test), location-mechanical yard exterior location-approved. 08/18/2020 08/18/2020 BLDG-31 ' 135918.2020 Partial Pass Chris Renfro Reinspection Incomplete Underground/Conduit - Wiring Checklist Item COMMENTS Passed BLDG-Building Deficiency Underground conduit for electrical Yes equipment on back exterior location 08/31/2020. 08131/2020 BLDG-11 136974.2020 Partial Pass TonyAlvarado Reinspectiofl Incomplete Foundation/Ftg/Piers (Rebar) Wednesday, March 24, 2021 . Page 3 of 7 Permit Type: BLDG-Commercial Application Date: 12/30/2019 Owner: R A F GROUP LOT 24 LLC Work Class: Tenant Improvement Issue Date: 03/18/2020 Subdivision: Status: Closed - Finaled Expiration Date: 07/12/2021 Address: 2827 WHIPTAIL LOOP IVR Number: 23949 ARLSBAD, CA 92010 C Scheduled Actual Inspection Type. Inspection No. Inspection Primary Inspector Reinspection Inspection Date Start Date Status Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes 0610912020 0610912020 BLDG-112 Steel/Bond 129659-2020 Partial Pass Chris Renfro Reinspection incomplete Beam Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass on SOG. OK to pour Yes BLDG-21 129674-2020 Partial Pass Chris Renfro Reinspection Incomplete UndergroundlUnderflo or Plumbing Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass. See plans highlighted areas Yes inspected. OK to backfill 06115/2020 0611512020 BLDG-21 130178-2020 Partial Pass Tony Alvarado Reinspection Incomplete UndergroundlUnderflo or Plumbing Checklist Item COMMENTS Passed BLDG-Building Deficiency June 15, 2020:Partial pass. See plans Yes highlighted areas inspected. OK to backfill. partial pass for underground-waste and vent plumbing lines of 6 inch, 4 inch and 3 inch plumbing lines under test. OK to cover trench. BLDG-Building Deficiency Partial pass. See plans highlighted areas Yes inspected. OK to backfill 06/17/2020 06/16/2020 BLDG-31 130407-2020 Partial Pass Chris Renfro Reinspection Incomplete Underground/Conduit - Wiring Checklist Item COMMENTS Passed BLDG-Building Deficiency I Yes 06/24/2020 06124/2020 BLDG-31 I31096-2020 Partial Pass Chris Renfro Reinspection Incomplete Underground/Conduit - Wiring Checklist Item COMMENTS Passed BLDG-Building Deficiency Underground conduit for new electrical Yes equipment. OK to backfill 06/26/2020 06/26/2020 BLDG-21 131225-2020 Partial Pass Chris Renfro Reinspection Incomplete UndergroundlUnderflo or Plumbing Checklist Item COMMENTS Passed BLDG-Building Deficiency Underground waste lines for 3 inch, 4 inch, Yes 6 inch lines and double wall containment system partial passed on 5 psi air test Wednesday, March 24, 2021 . Page 2 of 7 Building Permit Inspection History Finaled. ("'City of Carlsbad Permit Type: BLDG-Commercial Application Date: 12/30/2019 Owner: R A F GROUP LOT 24 LLC Work Class: Tenant Improvement Issue Date: 03/18/2020 Subdivision: Status: Closed - Finaled Expiration Date: 07/12/2021 Address: 2827 WHIPTAIL LOOP ARLSBAD, CA 92010 C IVR Number: 23949 Scheduled Actual Inspection Type Inspection No. Inspection Primary Inspector Reinèpection Inspection Date Start Date . Status 0511412020 0511412020 'BLDG-11 127542-2020 Partial Pass Chris Renfro Reinspection Incomplete FoundationlFtg!Piers (Rebar) Checklist Item COMMENTS Passed BLDG-Building Deficiency See card for areas inspected. Grade beam Yes and pad footings. OK partial pass 0511512020 0511512020 BLDG-11 127678-2020 Partial Pass Chris Renfro Reinspection Incomplete Foundation!Ftg!Piers (Rebar) Checklist Item COMMENTS Passed BLDG-Building Deficiency See card for areas inspected, pad , Yes footings. 01< partial pass 05/1812020 0511812020 BLDG-11 127808-2020 Partial Pass Chris Renfro Reinspection Incomplete Foundation!FtglPiers (Rebar) Checklist Item COMMENTS . Passed BLDG-Building Deficiency See Plans for sections Yes 05/2612020 05122/2020 BLDG-11 128299.2020 Partial Pass Tony Alvarado Reinspection Incomplete FoundationlFtg!Piers (Rebar) Checklist Item COMMENTS . Passed BLDG-Building Deficiency See card for areas inspected, pad Yes footings. OK partial pass BLDG-I2 Steel/Bond 128451-2020 Passed Tony Alvarado Complete Beam 0610112020 06101/2020 BLDG-12 Steel/Bond 128867-2020 Partial Pass Paul Burnette Reinspection Incomplete Beam Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes 06103/2020 06/0312020 BLDG-21 129210-2020 Partial Pass Chris Renfro Reinspection Incomplete UndergroundlUnderflo or Plumbing Checklist Item COMMENTS . Passed BLDG-Building Deficiency Partial pass. See plans for area inspected. Yes OK to backfill 06I0812020 0610812020 BLDG-12 Steel/Bond 129503.2020 Partial Pass Paul Burnette Reinspection Incomplete Beam Wednesday, March 24, 2021 Page I of 7 EsGil A SAFEbuiItCompany DATE: 3/11/2020 U APPLICANT U JURIS. JURISDICTION:-Carlsbad PLAN CHECK #.: CBC2019-0607 SET: II PROJECT-ADDRESS: 2827 Whiptail Loop PROJECT NAME: Millipore Sigma Shell T.I. The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's BUILDING codes. LI The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. Lj The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. LI The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. LI The applicant's copy of the check list has been sent to: EsGil staff did not advise the applicant that the plan check has been completed. LI EsGil staff did advise the applicant that the plan check has been completed. Person contacted: Date contacted: Mail Telephone LI REMARKS: By: Bert Domingo EsGil Telephone #: (by: ) Email: Fax In Person Enclosures: 2/25/2020 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858) 560-1576 V. EsGil A SAFEbuitt'Company DATE: 1/29/2020 0 APPLICANT 0 JURIS. JURISDICTION: Carlsbad PLAN CHECK #.: CBC2019-0607 SET: I PROJECT ADDRESS: 2827 Whlptail Loop PROJECT NAME: Millipore Sigma Shell Tenant Improvement El The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. liii The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. LI The applicant's, copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. El The applicant's copy* of the check list has been sent to: LI EsGil staff did not advise the applicant that the plan check has been completed. EsGil staff did advise the applicant that the plan check has been completed. Person contacted: Tim Seaman Telephone #: 619-993-8896 Date contacted: (by: ) Email: tim@championpermits.com Mail Telephone Fax In Person [I REMARKS: By: Jason Pasiut Enclosures: EsGil 12/31/2019 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax(858)560-1576 Carlsbad CBC2019-0607 1/29/2020 PLAN REVIEW CORRECTION LIST TENANT IMPROVEMENTS PLAN CHECK #.: CBC2019-0607 OCCUPANCY: B, S-i TYPE OF CONSTRUCTION: V-B ALLOWABLE FLOOR AREA: unlimited 1 SPRINKLERS?: YES REMARKS: DATE PLANS RECEIVED BY JURISDICTION: 12/30/2019 DATE INITIAL PLAN REVIEW COMPLETED: 1/29/2020 FOREWORD (PLEASE READ): JURISDICTION: Carlsbad USE: Future Tenant ACTUAL AREA: 144,782sf STORIES: 1+ mezzanine HEIGHT: OCCUPANT LOAD: shell DATE PLANS RECEIVED BY ESGIL CORPORATION: 12/31/2019 PLAN REVIEWER: Jason Pasiut This plan review is limited to the technical requirements contained in the California version of the International Building Code, Uniform Plumbing Code, Uniform Mechanical Code, National Electrical Code and state laws regulating energy conservation, noise attenuation and access for the disabled. This plan review is based on regulations enforced by the Building Department. You may have other corrections based on laws and ordinances enforced by the Planning Department, Engineering Department, Fire Department or other departments. Clearance from those departments may be required prior to the issuance of a building permit. Code sections cited are based on the 2016 CBC, which adopts the 2015 IBC. The following items listed need clarification, modification or change. All items must be satisfied before the plans will be in conformance with the cited codes and regulations. Per Sec. 105.4 of the 2015 International Building Code, the approval of the plans does not permit the violation of any state, county or city law. To speed up the recheck process, please note on this list (or a copy) where each correction item has been addressed, i.e., plan sheet number, specification section. etc. Be sure to enclose the marked up list when you submit the revised plans. Carlsbad CBC20 19-0607 1/29/2020 Please make all corrections, as requested in the correction list. Submit FOUR new complete sets of plans for commercial/industrial projects (THREE sets of plans for residential projects). For expeditious processing, corrected sets can be submitted in one of two ways: Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602- 2700. The City will route the plans to EsGil and the Carlsbad Planning, Engineering and Fire Departments. Bring TWO corrected set of plans and calculations/reports to EsGil, 9320 Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of plans and calculations/reports directly to the City of Carlsbad Building Department for routing to their Planning, Engineering and Fire Departments. NOTE: Plans that are submitted directly to EsGil only will not be reviewed by the City Planning, Engineering and Fire Departments until review by EsGilis complete. BUILDING AND LIFE SAFETY REQUIREMENTS Scope of work is for future tenant. Building and Life Safety and Accessibility will be reviewed during tenant improvement phase. UNDERGROUND UTILITIES 2. Approved as submitted by Scott Humphrey. STRUCTURAL May need a drag connection from the brace frame (3.5-3.9 to new W24X76(36) along G.4. Between 4.6-5.3 recommended W24X76 also along G.4. Grid line D recommended for the drag beam to be W27X94. The grade beam should be seen on 15/S8-005. END OF REVIEW To speed up the review process, please note on this list (or a copy) where each correction item has been addressed, i.e., plan sheet, note or detail number, calculation page, etc. Please indicate here if any changes have been made to the plans that are not a result of corrections from this list. If there are other changes, please briefly describe them and where they are located in the plans. Have changes been made to the plans not resulting from this correction list? Please indicate: D Yes L3 No Carlsbad CBC2019-0607 1/29/2020 The jurisdiction has contracted with EsGil, located at 9320 Chesapeake Drive, Suite 208, San Diego, California 92123; telephone number of 858/560-1468, to perform the plan review for your project. If you have any questions regarding these plan review items, please contact Bert Domingo at Esgil. Thank you. Carlsbad CBC2019-0607 1/29/2020 [DO NOT PAY— THIS IS NOT AN INVOICE] VALUATION AND PLAN CHECK FEE JURISDICTION: Carlsbad PLAN CHECK#.: CBC2019-0607 PREPARED BY: Jason Pasiut DATE: 1/29/2020 BUILDING ADDRESS: 2827 Whiptail Loop BUILDING OCCUPANCY: B, S-i BUILDING POR110N AREA (Sq. FL) Valuation Multiplier Reg. Mod. VALUE ($) TI 300,000 Air Condilioring Fire Sprinklers TOTAL VALUE 300,000 Jurisdiction Code 1cb iBY Ordinance 1997 UBC Building. Permit Fee Ld Al 1997 UBC Plan Check Fee t'N Up i Type of Review: rvo Complete Review r Structural Only r' Repetitive Fee I L.:!:i Repeats r I- Other r Hourly 1Hr.@* EsGil Fee I r Comments: Sheet 1 of 1 (city of Carlsbad PLAN CHECK REVIEW TRANSMITTAL Community & Economic Development Department 1635 Faraday Avenue Carlsbad CA 92008 www.carlsbadca.gov DATE: 1/24/2020 PROJECT NAME: Millipore Sigma PROJECT ID: SDP 2016-0001 PLAN CHECK NO: CBC2019-0607 SET: 1 ADDRESS: 2827 Whiptail Loop APN: 2091202600 VALUATION: SCOPE OF WORK: Equipment platform /mechanical work APPUCANT: tim@championpermits.com X This plan check review is complete and has been APPROVED by: Land Development Engineering Final Inspection by Construction Management & Inspection Division required: YesL No This plan check review is NOT COMPLETE. Items missing or incorrect F-1' are listed on the attached checklist. Please resubmit amended plans as required. To determine status by one of the divisions listed below, please contact 760-602-2719. LAND DEVELOPMENT - 760-602-2750 I - F]Laura Coury F-1 Chris Glassen fi Dennis Grubb 760-602-2709 _ 760-602-2784 951-772-0007 Laura.Coury@carlsbadca.gov Christopher.Glassen@carlsbadca.gov Dennis@dgassociates.org Edward Vàlenzuela 71 Linda Ontiveros I LII 760-602-4624 V] 760-602-2773 Edward.Valenzuela@carlsbadca.gov Linda.ontiveros@carlsbadca.gov Sarah Cluff ValRay Nelson [1] 760-602-4619 Sarah.Cluff@carlsbadca.gov Li 760-602-2741 ValRay.Nelson@carlsbadca.gov Remarks: PLANNING DIVISION Development Services <4 e~ll h> BUILDING PLAN CHECK Planning Division 1635 CITY OF' Faraday Avenue APPROVAL (760) 602-4610 CARLSBAD P29 DATE: 1/9/19 PROJECT NAME: PROJECT ID: APN: 2091202600 PLAN CHECK NO: CBC20I9-0607 SET#: I ADDRESS: 2827 WHIPTAIL LOOP This plan check review is complete and has been APPROVED by the PLANNING Division. By: SARAH CLUFF A Final Inspection by the PLANNING Division is required 0 Yes No You may also have corrections from one or more of the divisions listed below. Approval from these divisions may be required prior to the issuance of a building permit. Resubmitted plans should include corrections from all divisions. This plan check review is NOT COMPLETE. Items missing or incorrect are listed on the attached checklist. Please resubmit amended plans as required. Plan Check Comments have been sent to: TIM@CHAMPIONPERMITS.COM For questions or clarifications on the attached checklist please contact the following reviewer as marked: PLANNING ENGINEERING FIRE PREVENTION 760-602-4610 760-602-2750 760-602-4665 Hector Salgado 760-602-4624 Hector.Salgado@carIsbadca.gov Gina Ruiz 760-602-4675 Gina.Ruiz@carlsbadca.gov Sarah Cluff 760-602-4619 Sarah.Ciuif@carisbadca.gov Remarks: ALL INTERIOR T.I. FOR WAREHOUSING, REFERENCE SDP 2016-0001. << , A* > CITY OF CARLSBAD FIRE PREVENTION BUILDING PLAN CHECK FIRE PREVENTION BUREAU FIRE DEPARTMENT 1635 Faraday Avenue Carlsbad CA 92008 www.carlsbadca.gov DATE 2/16/20 PROJECT NAME:. MILLIPORE SIGMA - EQUIPMENT PLATFORM PROJECT ID: PLAN CHECK NO: CBC20I9-0607 ADDRESS: 2827 WHIPTAIL LP This plan check review is complete and has been APPROVED by the FIRE PREVENTION Division. By: DENNIS GRUBB & ASSOCIATES A Final Inspection by the FIRE PREVENTION Division is required N Yes J No **PLEASE BE ADVISED: THIS TRANSMITTAL IS FOR THE PURPOSES OF ISSUING A BUILDING PERMIT AND DOES NOT CONSTITUTE REVIEW NOR APPROVAL OF ANY FIRE PROTECTION SYSTEMS AS THOSE ARE REQUIRED TO BE SUBMITTED THRU A SEPARATE FIRE PREVENTION PERMIT** This plan check review is NOT COMPLETE. Items missing or incorrect are listed on the attached checklist. Please resubmit amended plans as required. Plan Check Comments have been sent to: You may also have corrections from one or more of the divisions listed below. Approval from these divisions may be required prior to the issuance of a building permit. Resubmitted plans should include corrections from all divisions. For questions or clarifications on the attached checklist please contact the following reviewer as marked: PLANNING 760-602-4610 . ENGINEERING 760-602-2750 FIRE PREVENTION 760-602-4665 Dennis Grubb 951-772-0007 dennis@dassocates.or oOv/GSSI (StructuraI Engineers Calculations for 19209A MilliporeSigma TI Carlsbad, CA C' 00) 0- Cl) (000 CN00 CO E CN CN CL 00 C4 O z ...J zz- (2r N W <O LL .1—i- m 0 9 O -'-'- (0 z CS1w 0 (\1 C, CE&IC Two Terri Lane, Suite 125 Burlington, NJ 08016 Phone: 609-387-1700 Fax: 609-387-9322 Project: MilliporeSigma TI Sheet: . OGSSI GSSI No. 19209A structural Engineers Engineers: BS & TZ Date................. TABLE OF CONTENTS 1. load Table .............................................................................. Al Load Combinations ............................................................... BI Computer Model & Floor Framing ....................................... ci Gravity Load Design .............................................................. Dl Seismic Analysis.............................. ......................................El Steel Ordinary Braced Frames (OCBF)........................... Diaphragm Seismic Analysis .........................................Ill Collector I:esign..................................................Ji 9. Foundation Design................................................................ Miscellaneous APPENDIX C - ,.•..--. - C C.' G SS PROJEC SHEET____________ GSSI NO._____________ Structural Engineers ENGR. DATE iQSc . U. 'J •'tvjç LDC Of ~2=t%ft DtL4~t- U —%kEp -A QcsL P- QtL-. Ca LL TA(ex-w~~- ..> 9(r~ Y-/--~, -L - o+ Qr'c\ 97Q.)S oe R-1 Hr 7o frt,iO ,p (a c -h. C OGSSI Project: MilliporeSigma TI Sheet:. GSSI No. 19209A Structural Engineers Engineer: TZ Date:................ C Load Combinations (Allowable Stress Design): (Transverse & Longitudinal directions, N- S & E - W) 1) D+L (1.0 + 0.14SDS)D + 0.7pQE = 1.1OD + 0.7pQE (1.0 + 0.IOSDs)D + 0.525pQE + 0.75L = 1.07D + 0.525pQE + 0.75L (0.6— 0.14SDS)D + 0.7pQE = 0.50D + 0.7pQE C. Load Combinations (Strength Design): (Transverse & Longitudinal directions, N - S & E - W) 1.4D 1.2D+1.6L (1.2 + 0.2SDS)D + PQE +L = 1.34D + PQE + L (0.9 - 0.2SDS)D + PQE =O.76D+PQE Notes: 1) p = 1.0 C .4 41 S OGSSI ltAeer, Project: MilliporeSigina TI Engineer: TZ Sheet.............. OSSI No. 19209A Date:................ Load Combinations (Strength Design) with Overstrength Factor:: Special Steel Moment Frames: (Transverse & Longitudinal directions, N - S & E - W) (1.2 + 0.2SDS)D + !nOQE + L 1.34D + QOQE +L (0.9 - 0.2SDS)D + OQE = 0.76D + flOQE C Notes: 1) .Q = 2.0 for OCBF C C OGSSI Iv Project: MilliporeSigma TI Engineer: TZ Sheet............... GSSI No. 19209A Date:................ Alternative Load Combinations (Allowable Stress Design)*: Foundation Soil Bearing Capacity Analysis**: (Transverse & Longitudinal directions, N - S & E - W) D+L 1.10D + 0.7pQE + 1.OL 0.80D + 0.7pQE C * 2016 California Building Code (2016 CBC) ** The soil bearing capacity can be increased by 1/3 when considering short duration wind or seismic loads per Soil'Report. 0 I. S W I W-2 GSSI Structural Engineers Project: MilliporeSigma TI Engineer: TZ Sheet: U GSSI No. 19209A. Date: 3-D Computer Model C ETABS 2016 16.2.1 12/11/2019 0 © .©. W211(50, MIX50 €) I' M W18X40 e . W1BX40\ W.ISM c • ''".' \ \\ c\ L ... I "W24JiA. waIx5oflfl I ' "o IN R 1 11 immolak-j'II wix jw4o 'R RNIMN IA ' ON I ___________________ 1.. ' A i:~IM\11` MIN M \\ \ ' . '"_.-.._ '. ' 10 \ '_WIOX4O,\ '._\ _ \\\ _Wi_' ' _' V'I_ ___I_\\_WI8X5 _W18X35_\.._ ffig :_ gn \WI3\ '4 WI_ MMM % N W2IX55:__.c. \S \\wiI_W _ W18X40__ \U% A J__ I'm It I ma "_•"_ '''_ 1- NO WITIN NO- ._..')xs's.' wo k' IU4. I< \' WIM3S .' \ •.WIWC3$\',\\ W5\\'. ILI otLi 4 4 ETABS 2016 16.2.1 12111/2019 C 0 K"'I 8 W21850(4 3o8 - wa,x50cJJ * - 46 W18850(36) W1BX4OcI) WIBX4O(20) WISXSOIW) c-is WV4.fl Its) C.125 C-L25 C,- W18840(30) % .4 W188406 8850(28) WIIX3S(24)0 WISXIS(26) C-1 c-us 6 C-IS 6 w0(6 WISXIS(24) I8($) Ill VI SC wISXSS(24) w.no1, W18X40(30) C.125 ) C-125 - wiexas ar 0 — .woxioS w18X35(28) j C.1 c_i W18840(20) w18835(28)C-125 - 8835(28) W15838t26) 19 • c-i Va"M (4M c-i 10. lxi W18X35() W19X35(28) wl C-0.75 . v - c-us c-i c-I W15840(30) - — - wiex4otd wISXSS(28) W18X35p8) C-I C-0.75 WC.i lAl - wiex35(2e) V64L%35 (25) C1 WIIX4S(01J J- c-I - c-i wx550a0 c-las - ',- WISX3S(28) W18835(28) Wi8X4St2O) _j 7 C-I W15840(30) WISX40(& ' - WIeX3S(28) W11X35t28) 0.I25 c- c- c- J W18840130) ••!- WI8xa5(aS) W18836(28) C125 0 — I - C-S 75 C-I WlaX40 d)- 10 I C075 WI8X40( W18*3816) WI8s) C-I WISX40(30) —1I\ . WI8X3St2t) 18835 )26) C-I c-i C-I W18840(20) W18135 (28) W18X35(28) W6t35(26). 3 C-I C-I 00 w2xss(Q)'9 W18X35)28) VOWS PS) WI8X35t26) to c-os - c.i25 ' 4 C-Ill C-I.25 W!IX4O(20) 28 C-US . 6 W18835 (28) c-us 8 WISXI5(26) c-i W18835(26) c-us W15POINS WISX40(30) W18835(28) WISXI5(28) W18835126) c-i25 C.I.25 - c-I_IS C_i CI ib WISMO(JASO - 8I7554(2.5) W'li1i't I%k wi8M0(d5 W2I000 72 tätipie8igMaD - Z = 18 (ft) Composite Design - Design Data (Sections, Stud, Camber) (AISC 360-10) ( C IAIt .d .1 .. @ 1 0566 w1,$ © 0 0 0 I W%' 0354 0-- 0.639 XI - 0.562 ri iI - 0.510 0.756 DAN FI 0723 ___ :: . .. jW,xl ' —1 I Will 0,704 0 us 3- I Io A 0.287 rwt 0442 Will 3) C.jt'0124 0663 Wm. I I1.1 va 0631 w . - r .St?A kom C& MilliporeSigma WIDw - Mezzanine - Z = 18 (ft) Steel P-M Interaction Ratios (AISC 360-10) C 6. ( MilliporeSigma I IakáiIy..Rzanine - Z = 18 (ft) Steel P-M Interaction Ratios (AISC 360-10) GSSl CrAIsl C Beam Design: Beam: W21x5O Span Spacing I Spacing 2 Additional uniform load Total Uniform Load, w DL = 0.761 kip/ft. LL — 0.636 kip/ft. Parapet = 0.000 kip/ft. Self-weight = 0.050 kip/ft. SheetS..................... 4 GSSI No. 19209A DateS............................ AISC-2010 ASD Mezzanine Dead Load = 83 psf Live Load = 80 psf 36.3 ft AT = 333.1 ft.2 = 10.6 ft R1 = 0.87 = 7.8 ft R2 Z I = kip/ft. Lr = 69.4 psf 1.45 kip/ft Project: MliiiporeSigma TI Engineer: TZ C C Concentrated Load, P1 = kips Location of P, from Left = ft Concentrated Load, P2 kips Location of P2 from Left ft Reaction on Left, R1 = 26 kips Reaction on Right, R2 = 26 kips Maximum Moment, Mm,x = 239 ft-kips USE: Size: W21 x 50 Lb = 4.5 ft. (Unbraced segment length) A 14.7 1fl2 L = 4.59 ft. d = 20.8 in. L, = 13.6 ft. (ASD Table 3-2) t. 0.38 in. SX = 94.5 in3 b,l2t = 6.1 Z. = 110 in3 IICompact section hlt, = 49.4 I = 984 in4 = 8.18 in. F = 50 ksi Ob = 1.67 r, = 1.3 in. E = 29000 ksi fl, = 1.50 Flexural available strength MJQb = 274 k-ft OK Shear available strength Vjfl, = 158 kips OK Deflection AD+L = 5w*01(384*E*i) + 0.0641513*b*(L2 b2)(3 I(E*I*L) = 1.989 Li 240 1.817 in. N.G. Deflection h.0 = 5w*L41(384*E*l) + 0.06415P*b*(L2 b2)2)/(E*l*L) " = 1.115 in. -. ........................-. ----. . GSSI Project: MilliporeSigma TI Sheet...................... 5Uuch,11 £&'"'. Engineer: TZ GSSI No 19209A Date............................. Beam Design: Beam: W21 x55 Span Spacing I Spacing 2 Additional uniform load Total Uniform Load, w DL=, 0934 kip/ft. LL = . . kip/ft. Parapet = 0.000 kip/ft. Self-weight = 0.055 kip/ft. AISC-2010 ASD Mezzanine Dead Load .= 83 psf Live Load = 80 psf = 36.3 ft AT = 408.8 ft.2 = 11.9 ft R1= 0.79 = 10.6 ft R2 = I 'kip/ft. Lr = 63.3 psf = 1.70 kiplft Concentrated Load, P1 = kips Location of P1 from Left ft Concentrated Load, P2 = kips Location of P2 from Left = ft Reaction on Left, R1 31 kips Reaction on Right, R2 = 31 kips Maximum Moment, Mmax = 281 ft-kips USE: Size: W21 x 55 Lb = 4.5 ft. (Unbraced segment length) A = 16.2 in2 L, = 6.11 ft. d = 20.8 in. Lr = 13.6 ft. (ASD Table 3-2) t 0.375 in. Sx = i'm in b/2tf = 7.87 = 126 in3 t sec EOMpac !!!i~l 50 1= 1140 in rX = 8.4 in. F, = 50 ksi b = 1.67 r. = 1.73 in. E = 29000 ksi 0, = 1.50 Flexural available strength MlO,, = 314 k-ft OK Shear available strength VID,, = 156 kips OK Deflection AD.L = 5w*01(384*E*i) + 0.06415P*b*(L2 b2)(3I2)l(E*l*L) 2.019 LI 240 = 1.817 in, N.G. Deflection 6D = 5w*01(384*E*l) + 0.06415P*b*(L2 b2)I(E*i*L) = 1.174 in. fl ETABS 2016 16.2.1 12/11/2019 ::K YIN, Poll \iA Y.\'1pp \;3 MilliporeSigma TI.EDB 1/ £4 4c1P II " cil 4/ cc I ICtPt CoL 3-D View r fl ETABS 2016 16.2.1 pm MilliporeSigma TI.EDB z 7O 3-D View Steel P-M Interaction Ratios (AISC 360-10) i 14 V_.;~ j! ft 4 p .4 DM oç CAu Jq,v ciVbJJ Column Position: VA Column Size: HSS 7 x7 x 1/2 (Steel Tube Column) = 3500 psi F= 36ksi Axial Load: Ra = 152.4 kips (DL + LL )max Minimum Area: Amin = 51.2 In Try Plate WI Length: 13" w/ Width: 13" fpa RalA 0.902ks1 n = 3.175 In. It 4(2fpam2)I(Fy!Ob) = 0.92" Use Conclusion: C 1.67 I "Thickness O GSS i Project: MililporeSigma TI Sheet: structural III"..'. Engineer: TZ GSSI No.: 19209A C, Date............................... Steel Column Base Plate Design (for Concrete ): ASD 10 Column Position: Cl Column Size: HSS 7 x7 x 518 (Steel Tube Column) 3500 psi F,= 36ksi Axial Load: R3 = 247.2 kips (DL + LL )max Minimum Area: Amin = 83.1 In Try Plate W/ Length: 13" Ob 1.67 w/Wldth: 13" pa = RJA = 1.463 Its! n= 3.175 In. t = 4(2fpam2)I(FylOb) = 1.17" Use 1.25 "Thickness C Conclusion: Base Plate: 13" x 13" x 1.25" Steel Column Base Plate Design (for Concrete ): ASD 10 Base Plate: 13" x 13" X 1" GSSI Project: MililporeSigma TI Sheet........................ Sktactu,oI lnghise's Engineer TZ GSSINo.: 19209A C Date............................... Steel Column Base Plate Design (for Concrete): Column Position: C6 Column Size: HSS 6 x6 x 5/8 (Steel Tube Column) fee = 3500 psi 36 ksi Axial Load: R. = 115.8 kips (DL + LL)max Minimum Area: Amin = 38.9 in' Try Plate wl Length: 12" wlWidth: 12" fpa = RJA = 0.804 Its! 3.15 In. t = 4(2fpam2)/(Fy/Ob) = 0.86" Use C. Conclusion: Base Plate: 12" x 12" Steel Column Base Plate Design (for Concrete): Column Position: C7 Column Size: HSS 7 x7 x 518 (Steel Tube Column) fee = 3500 psi F = 36ksi Axial Load: R. = 288.4 kips (DL + LL )max Minimum Area: Amin = 96.9 in Try Plate WI Length: 13"Dbo wlWidth: 13" fpa =Ra1A= 1.707 ksl n= 3.175 in. t = 4(2fpam2)!(Fv10b) = 1.26" Use Conclusion: Base Plate: 13" x 13" ASD 10 1.67 I "Thickness x• 1" ASDIO 1.67 1.5 "Thickness X. 1.5" (Th cm I ETABS 2016 16.2.1 12/11/2019 MilliporeSigma TI.EDB 3-D View Axial Force Diagram (DLLL) [kip] G SIsu SSI c1u0l £ftgl001s$ C,. Project: MilliporeSigma Ti Engineer: TZ Sheet: t I GSSI No.: 19209A. Date: Seismic Force Calculations (2016 CBC & ASCE 7.10) Seismic Loads for Steel Ordinary Concentrically Braced Frames (EQx & EQ) Description Equations Value Remarks Structural System Parameters Seismic Design Category D 2016 CBC Table 1613.5.6 Risk Category Il 2016 CBC Table 1604.5 Seismic Important Factor l ASCE 7-10 Table 1.5-2 Response Modification Coefficient R 3.25 ASCE 7-10 Table 12.2-1 System Overstrength Factor no 2 ASCE 7-10 Table 122-1 Deflection Amplification Factor Cd 3.25 ASCE 7-10 Table 12.2-1 Determine C0 and C, Site Class C Soil Report Short-period site coefficient F. 1.000 2016 CBC Table 1613A.3.3(1) Long-period site coefficient Fv 1.397 2016 CBC Table 1613A.3.3(2) S. 1.037 Soil Report S1 0.403 Soil Report The MCE spetral response accel. SMS 1.037 (=F8S0) ASCE 7-10 Eq. 11.4-1 The MCE spetral response accel. SMI 0.563 (=FS1) ASCE 7-10 Eq.11 .4-2 The design spetral response accel. Ss 0.691 (=SMsx2/3) ASCE 7-10 Eq.11.4-3 The design spetral response accel. SDI 0.375 (=SMIx2!3) ASCE 7-10 Eq.11.4-4 Determine Building Height (in feet) h 19.5 ft. Average building height Period Coefficient Ct 0.02 OCBF Coefficient x 0.75 See above Building Period (in sec.) T = Ct(hj0 0.19 sec. ASCE 7-10 Eq.12.8-7 Determine Base Shear Coeff. C0 Base Shear (Eq.12.8-2) V =(5051JR)W 0.213 W Governs Needs not exceed (Eq.12.8-3) V (S01IJRT)W 0.622 W Does not govern Not less than (Eq.12.8-5) V =0.044W 0.044 W Does not govern Not less than V =(0.5S11JR)W 0.062 W Does not govern (Eq.12.8-S for S10.6g) Design Base Shear (Strength Design) V (Q5) 0.213 W C C Loads 11119/2019 t 91 C ASCE 7-10 Auto Seismic Load Calculation This calculation presents the automatically generated lateral seismic loads for load pattern EQXI according to ASCE 7-10, as calculated by ETABS. Direction and Eccentricity Direction = X + Eccentricity Y Eccentricity Ratio = 5% for all diaphragms Structural Period Period Calculation Method = Approximate Coefficient, C [ASCE Table 12.8-2] C, = 0.02ft Coefficient, x [ASCE Table 12.8-21 x = 0.75 Structure Height Above Base, h h.= 18 ft Approximate Fundamental Period, T0 T. = C, h. = 0.175 sec [ASCE 12.8.2.1 Eq. 12.8-7] Long-Period Transition Period, TL (ASCE = 8 sec 11.4.51 Factors and Coefficients Response Modification Factor, R (ASCE R=3.25 Table 12.2-11 System Overstrength Factor, Oo (ASCE =2 Table 12.2-11 Deflection Amplification Factor, Cd [ASCE C, 3.25 Table 12.2-1] Importance Factor, I (ASCE Table 11.5-1] I = I Ss and SI Source = User Specified Mapped MCE Spectral Response S. 1.037g Acceleration, S s [ASCE 11.4.1] Mapped MCE Spectral Response S, = 0.403g Acceleration, SI[ASCE 11.4.1] Pt Site Class [ASCE Table 20.3-I] = C - Very Dense Soil and Soft Rock Site Coefficient, Fe (ASCE Table 11.4-1] F.= I Site Coefficient, F,, [ASCE Table 11.4-2] F,, = 1.397 Seismic Response MCE Spectral Response Acceleration, S, S=F.S3 S= 1.037g [ASCE 11.4.3, Eq. 11.4-13 MCE Spectral Response Acceleration, 5M1 SM, = F. S, Su, 0.562991g [ASCE 11.4.3, Eq. 11.4-21 Design Spectral Response Acceleration, SOS =i so SOS = 0.691333g C S 11.4.4, Ds [ASCE Eq.11.4-3] Page 36 of 152 Loads 11/19/2019 Design Spectral Response Acceleration, SDI [ASCE 11.4.4, Eq. 11.4-41 Equivalent Lateral Forces Seismic Response Coefficient, C [ASCE 12.8.1.1, Eq. 12.8-21 [ASCE 12.8.1.1, Eq. 12.8-3] [ASCE 12.8.1.1, Eq. 12.8-5] [ASCE 12.8.1.1, Eq. 12.8-61 S0, =.S,, S01 0.3753279 So C,= (R) so' C51 = T (.) C = max (0.044 sos 1,0.01 ) = 0.030419 SI C5 = 0.5 (R)for S, = 0.6g C5flIJ, S C. S Cma, Calculated Base Shear Applied Story Forces C Direction I Period Used I I W V (sec) I (kip) I (kip) X + Ecc. V 0.175 10.2127181 3605.4239 1766.9384 0 Page 37 of 152 Loads 11/19/2019 4 Wwel Load to Stoves.X C 766.9kip Mezzanine ( Base1 _• 0 120 240 360 480 600 720 840 Force klp C Story Elevation X-DIr V-Dir ft kip kip Mezzanine 18 766.9 0 Base 0 0 0 C: Page 38 of 152 Loads 11119/2019 ASCE 7-10 Auto Seismic Load Calculation This calculation presents the automatically generated lateral seismic loads for load pattern EQX2 according to ASCE 7-10, as calculated by ETABS. Direction and Eccentricity Direction = X - Eccentricity Y Eccentricity Ratio = 5% for all diaphragms Structural Period Period Calculation Method = Approximate Coefficient, Ct[ASCE Table 12.8-21 C, = 0.02ft Coefficient, x [ASCE Table 12.8-21 x = 0.75 Structure Height Above Base, h2 = 18 ft Approximate Fundamental Period, T8 T. C, h', T. = 0.175 sec [ASCE 12.8.2.1 Eq. 12.8-7] Long-Period Transition Period, TL [ASCE TL =8 sec 11.4.5] Factors and Coefficients Response Modification Factor, R (ASCE R = 3.25 Table 12.2-1) C System Overstrength Factor, flo EASCE =2 Table 12.2-11 Deflection Amplification Factor. Cd (ASCE Cd = 3.25 Table 12.2-I] Importance Factor, I (ASCE Table 11.5-11 I = I Ss and SI Source = User Specified Mapped MCE Spectral Response S. = 1.037g Acceleration, S8 (ASCE 11.4.11 Mapped MCE Spectral Response s, = 0.403g Acceleration, S1 [ASCE 11.4.1] Site Class [ASCE Table 20.3-1] = C - Very Dense Soil and Soft Rock Site Coefficient, F2 (ASCE Table 11.4-11 F.= I Site Coefficient, F [ASCE Table 11.4-21 F, = 1.397 Seismic Response MCE Spectral Response Acceleration, 5MS Ss = F. Ss SMS = I.037g (ASCE 11.4.3, Eq. 11.4-1) MCE Spectral Response Acceleration, SMI SM, = F, S, SM, =0.562991g [ASCE 11.4.3. Eq. 11.4-2] Design Spectral Response Acceleration, SOS =4 SM. S0 = 0.691333g SOS[ASCE 11.4.4, Eq. 11.4-31 Page 3901152 Applied Story Forces C C Page 40 of 152 Loads Design Spectral Response Acceleration, s. S. 0.375327g SDI 11.4.4, Eq. [ASCE 11.4-4] Equivalent Lateral Forces Seismic Response Coefficient, Cs [ASCE 12.8.1.1, Eq. 12.8-2] - Cs=(.) So, [ASCE 12.8.1.1, Eq. 12.8-3] C. = T(_7) [ASCE 12.8.1.1, Eq. 12.8-5] C5 max (0.044 sos 1,0.01 )=0.030419 SI [ASCE 12.8.1.1. Eq. 12.8-61 C. = 0.5 (R )for S1 = 0.6g C&-:5 C.5 CSmM Calculated Base Shear C Direction Period Used C w I I (sac) (Rip) (kip) 0.175 10.2127181 3605.4239 766.9384 11/19/2019 C Loads 11/19/2019 Lateral Land to Stofloa.X Mezzanine.- - : Base, 0 120 240 360 480 600 720 840 ForCe. kip Story Elevation X.Dir V-Dir ft kip kip Mezzanini 18 766.9 0 Base 0 0 0 C Page 41 of 152 Loads 1111912019 Es ASCE 7-10 Auto Seismic Load Calculation This calculation presents the automatically generated lateral seismic loads for load pattern EQYI according to ASCE 7-10, as calculated by ETABS. Direction and Eccentricity Direction = V + Eccentricity X Eccentricity Ratio = 5% for all diaphragms Structural Period Period Calculation Method = Approximate Coefficient, C1 [ASCE Table 12.8-21 C = 0.02ft Coefficient, x IASCE Table 12.8-2] x = 0.75 Structure Height Above Base, h n h.= 18 ft Approximate Fundamental Period, T8 T. = , ha. T. = 0.175 sec [ASCE 12.8.2.1 Eq. 12.8-71 Long-Period Transition Period, TL [ASCE 11.4.5] TL 8sec Factors and Coefficients Response Modification Factor, R (ASCE Table 12.2-11 R=3.25 C System Overstrength Factor, D [ASCE Table 12.2-I] =2 Deflection Amplification Factor, Cd [ASCE Table 12.2-1] C= 3.25 Importance Factor, I [ASCE Table 11.5-1] I = I Ss and SI Source = User Specified Mapped MCE Spectral Response S,= 1.037g Acceleration, S, [ASCE11.4.1] Mapped MCE Spectral Response Acceleration, S1 (ASCE 11.4.11 S, 0.4031; = Site Class (ASCE Table 20.3-11 = C - Very Dense Soil and Soft Rock Site Coefficient, F8 [ASCE Table 11.4-11 F.= I Site Coefficient, F8 [ASCE Table 11.4-2] F, = 1.397 Seismic Response MCE Spectral Response Acceleration, SMS = F. S3 SMS = 1.037g [ASCE 11.4.3, Eq. 11.4-1] MCE Spectral Response Acceleration, S1 [ASCE 11.4.3, Eq. 11.4-21 S. = F. S, S,, =0.562991g C S 00 Design Spectral Response Acceleration, [ASCE 11.4.4, Eq. 11.4-3] S. =1 SMS S05 = 0.691333g Page 46 of 152 Loads Design Spectral Response Acceleration, S01 [ASCE 11.4.4, Eq. 11.4-4] Equivalent Lateral Forces Seismic Response Coefficient, Cs [ASCE 12.8.1.1, Eq. 12.8-21 [ASCE 12.8.1.1, Eq. 12.8.3] [ASCE 12.8.1.1, Eq. 12.8.51 [ASCE 12.8.1.1, Eq. 12.8-61 SD, =-. Su, S0, 0.375327g SOS C$= (R) SO, C. = C5 = max (O.O44 S0 I,O.O1)=O.O3O419 St C5 O.5 (R) for S. = 0.6g CS.mb, S C.5 C5, Calculated Base Shear Applied Story Forces Direction Period Used W I V (sec) (kip) (kip) V + Ecc. X 0.175 10.2127181 3605.4239 766.9384 Page 47 of 152 C' Loads 11/19/2019 LJtI1SLOIdtO Stodes-Y Mezzanine -( I t Base, 0 120 240 360 480 600 720 840 Force, kip Story Elevation X-Dlr I V-Dir ft kip kip Mezzaninl 18 0 766.9 Base 0 0 0 Page 48 of 152 C Loads 11/19/2019 til ASCE 7-10 Auto Seismic Load Calculation This calculation presents the automatically generated lateral seismic loads for load pattern EQY2 according to ASCE 7-10, as calculated by ETABS. Direction and Eccentricity Direction = V - Eccentricity X Eccentricity Ratio = 5% for all diaphragms Structural Period Period Calculation Method = Approximate Coefficient, CI[ASCE Table 12.8-2] C1 = 0.02ff Coefficient, x [ASCE Table 12.8-21 x = 0.75 Structure Height Above Base, h, = 18 ft Approximate Fundamental Period, T, T. = , T. = 0.175 sec [ASCE 12.8.2.1 Eq. 12.8-71 Long-Period Transition Period, TL (ASCE TL =8 sec 11.4.5) Factors and Coefficients Response Modification Factor, R [ASCE R = 3.25 Table 12.2-1] System Overstrength Factor, Qo (ASCE D.=2 Table 12.2-1) Deflection Amplification Factor, Cd (ASCE Cd= 3.25 Table 12.2-1) Importance Factor, I [ASCE Table 11.5-11 I = I Ss and SI Source = User Specified Mapped MCE Spectral Response S. = 1.037g Acceleration, S, [ASCE 11.4.1) Mapped MCE Spectral Response = 0.403g Acceleration, SI[ASCE 11.4.1) Site Class (ASCE Table 20.3-1) = C - Very Dense Soil and Soft Rock Site Coefficient, Fe [ASCE Table 11.4-11 F.= I Site Coefficient, F [ASCE Table 11.4-21 F, = 1.397 Seismic Response MCE Spectral Response Acceleration, SMS S s = F. Ss S s = 1.037g [ASCE 11.4.3, Eq. 11.4-1] MCE Spectral Response Acceleration, SMI , = F. S, SM, =0.562991g [ASCE 11.4.3, Eq. 11.4-2] C Design Spectral Response Acceleration, Sos[ASCE 11.4.4. Eq. 11.4-31 S = 0.691333g Page 49 of 152 Loads 1111912019 t 11 C Design Spectral Response Acceleration, S01 [ASCE 11.4.4. Eq. 11.4-4] Equivalent Lateral Forces Seismic Response Coefficient, Cs [ASCE 12.8.1.1, Eq. 12.8-2] [ASCE 12.8.1.1, Eq. 12.8-31 [ASCE 12.8.1.1, Eq. 12.8-5] [ASCE 12.8.1.1, Eq. 12.8-6] Calculated Base Shear SOS Cs= (R) S. C = T(-7) C, = max (0.044 S0 1,0.01 ) = 0.030419 S. C,,,,. = 0.5 (R) for S, = 0.6g cs__n !~ C.S CS.maz S. 0.375327g Direction I Period Used W I v (sec) (kip) (kip) V - Ecc. X 0.175 10.2127181 3805.4239 766.9384 Applied Story Forces Page 50 of 152 (i 11 Loads 11/19/2019 -. Laforal Load to Stories .Y Mezzanlne.e_ 7809k1p I Base,1 0 120240360480800720840 Force, kip C Story Elevation X.Dlr Y-Dlr ft kip kip Mezzanine 18 0 766.9 Base 1 0 1 0 1 0 Page 51 of 152 n ETABS 2016 16.2.1 MiHiporeSigma TI.EDB 3-D View en n (Th ETABS 2016 16.2.1 11/19/2019 MilliporeSigma TLEDB 3-D View Steel P.M Interaction Ratios (AISC 360-10) ETABS 2016 16.2.1 11119/2019 z 71 MilliporeSigma TI.EDB 3-D View Steel P-M Interaction Ratios (AISC 360-10) 2.2 F.8 2.2, 2.2 D D.7, --7r fl ETABS 2016 16.2.1 MilliporeSigma TI.EDB Elevation View - 2.2 - Displacements (EQX2) [in] 1) fl ETABS 2016 16.2.1 I , 5.3 5.3 If p F.8 G.4 .;j• I Mezzanine Base 11/19/2019 MilliporeSigma TI.EDB Elevation View - 5.3 - Displacements (EQX1) (in] (TI (T) ETABS 2016 16.2.1 ral 5.410 5.4, 5.4,, D , D.7, E.7, - t o.l.•z•t > x MilliporeSigma TI.EDB Elevation View - 5.4 - Displacements (EQXI) (in] I (Th ETABS 2016 16.2.1 n 11/19/2019 , 3.4 3.9 4.4 4.8 1 / 0 1 0 D.,, D MilliporeSigma TI.EDB Elevation View - D - Displacements (EQY2) [in] in n n H ETABS 2016 16.2.1 11/1912019 2.2, 2.8 3.4, 3.9 4.4, G.4 GA G.4 G.4 G.4,, MiltiporeSigma TI.EDB Elevation View - G.4 - Displacements (EQY1) [in] 4 Geometry of Bracing System a= 16.33 ft. h= 18.00 ft. Lb= 24.30 ft. 0= 42.22 ° Be am: W24x68 Fyb = 50 ksi wb = 0.415 in. 11b = 0.585 in. b, = 8.97 in. db = 23.7 in. kdes = 1.09 in. - hs Line D (Level 2) 04 O GSSI Project: Millipore Sigma TI Sheet: ......... ............. SUuiu'aI Engineers Engineer: TZ GSSI No.: 19209A Date............................. OCBF HSS Chevron Brace Connections-Welded Case-11 01 Given: Brace: HSS 7x7x1I2 Gusset Plate: PD= kips F r = 46 ksi Fyg = 36 ksi PL = kips Fob, = 58 ksi F = 58 ksi PE = 162.1 kips db = 7.0 in. E = 29000 ksi = 2 Ides = 0.465 in. P = I A. = 11.6 in.' Welds: E70XX Electrodes 5D8 2 0.691 rbr = 2.63 in. Fu ld = 70 ksl Lb, = 291.6 in. R= 1.4 ksi (Table 1-6-I: 1.4 for HSS, 1.6 for Pipe) C Determine connection design forces: The connection force is taken as the lesser of: T = RYF,,Ab, = 747.0 kips (The strength of the brace in axial tension) P = (I .2+0.2SDS)PD+O.SPL+OOPE = 324.2 kips (Load combination per ASCE 7) Use 324.2 kips for brace connection design Brace-to-gusset weld: 0= 0.75 The maximum fillet weld size 0 <= Fu,,t0sI3.09Mfl = 8.73 sixteenths Try: fltd= 4 D= 6 /16-in, fillet welds to connect the brace to the gusset plate The minimum length of the fillet welds L > PjnId(l .392")D = 97 In. Use: L = 10 In.-Iong fillet welds Governs OK OK The minimum gusset plate thickness required to develop the force delivered by the welds is, = PJ20(0.6F g)Lyg = 0.621 in. Use: t9 = OK C , GSS i Project: Millipore Sigma TI Sheet: ......... .......... SDucu,I Cn&'o" Engineer: TZ GSSI No.: 19209A C1 Date............................. (continued) Check shear lag rupture of brace 0 = 0.75 B = 7 in. ( Brace: HSS 7x7x112 H= 10 in. An Abr 2(tg+118')t.Jes = 10.79 in.2 (Assume 1/8 gap between the brace wall and the gusset plate) X = (82+2BH)14(B+H) = 2.78 in. U1-x/L= 0.72 Ae = UAn = 7.79 in .2 OtPn = øtFubA = 338.8 kips 324.2 kips No coverplate required. Check the Whitmore section 0= 0.9 = 2I.tan300 + B = 18.5 in. OR,= 0Fy. (Lxt9 ) = 450.7 kips 324.2 kips OK C Check Tension Yielding of Gusset Plate 0= 0.9 A=L't9 = 13.9 in.2 = 0FAW = 450.7 kips 324.2 kips OK Gusset plate configuration and the connection interface forces: 0= 42.22 ° = dd2 = 0.00 in. (HSS Chevron Brace Connections to the bottom of the Beam) eb=dl/2= 11.85 in. a=ebtan9= 10.7 in. (Horizontal) I3=e= 0.0 in. (Vertical) r = = 15.99 in. Gusset-to-beam: Hub = (a/r)xP = 217.75 kips Vub = (eb/r)xPU = 240.19 kips GSS I Project: Millipore Sigma TI Sheet•. 0. Suucturai "E"'i Engineer: TZ GSSI No.: 19209A • DateS............................ (continued) Check compression buckling of gusset plate 0 = 0.9 = 8.0 in. (Average unbraced length of the gusset plate) 1g 0.75 in. r=t.J112= 0.217 in. K= 1.2 KLdr= 44.3 4.71(EIF.°5 = 1•7 Fe = 1T2E1(KL/r)2 = 145.4 ksi K= FIFO = 0.2 F, = 32.5 ksi, [Fe, = (0.658k )F for KLIr c 4.71(EIF)°5, Otherwise Fa = 0.877Fe I The required Whitmore width is then = 324.2 kips = P,/0FJ9 = 14.80 in. The Whitmore width along the gusset plate is L'= 18.5 in. > L..rdn OK ci Gusset-to-beam design: Determine the required weld size: Q YO Lwb = 2a = 25.0 in., (Weld Length for gusset to beam ©each side from centerline) = = 8.71 kips/in. = = 9.61 kips/in. fb = 0.00 kips/in. (No bending stress) C _t _rIc+C2 t2i112 'peak - 'avg - M. 'b + 'v J = 12.97 kips/in, Resultant of weld stress = 1.25fa,g = 16.21 kips/in Dweld req = f,I(2x1.392) = 5.82 sixteenths, Required weld size Use: 6116 in. fillet weld @ each side of gusset plate OK Check gusset plate rupture at beam weld tgmin = 6.19Dwe1dreq/Fug = 0.62 in. 19 OK C.. Check compressive stress In web toe of the beam twb = 0.415 in. kb= 1.09 in. N=L.N= 25.00 in. RVb = 240.19 kips OR,= 0[b(N+5kb)]F,b = 631.8 ksi Vub = 240.19 kips 0= 1.0 GSSI Project: MiliporeSigmaTi Sheet.. 8Ivcvrnt ngjn.eii Engineer: TZ GSSI No.: 19209A DateS............................ OCBF Brace-to-Base Connections —Welded a Geometry of Bracing System 91 Line D 1 • -L a = 16.33 ft. (Base) -., . h8 = 18.00, ft. Ltr = 24.30 ft. - O= 42.22 ° (tane = a/h8 ) Beam: W 24x68 Column: HSS 7x7x 112 Fyb = 50 ksi Fyc = 46 ksi twb = 0.415 in. t c = 0.465 in. tib = 0.585 In. tic = 0.465 in. bib = 8.97 in. b1= 7 in. db = 23.7 in. d= 7 in. kdes 1.09 in. kdOS - in. Given: Brace: HSS 7x7x1I2 Gusset Plate: PD = kips Fyt,, = 46 ksi F 9 = 36 ksi PL = kips FUb, = 58 ksi F 9 = 58 ksi PE = 162.1 kips db, = 7.0 in. E = 29000 ksi (1= 2 td" = 0.465 in. P = I As,, = 11.6 in. Welds: E70XX Electrodes S05 = 0.691 r, = 2.63 in. FU Id = 70 ksi Lb,= 291.6 in. Ry = 1.4 ksi (Table 1-6-1) Determine connection design forces: The connection force is taken as the lesser of: T = RyFyjrAbr = 747.0 kips (The strength of the brace in axial tension) P.= (1.2+0.2S)Po+0.5PL+0OPE = 324.2 kips (Load combination per ASCE 7) Governs Use 324.2 kips for brace connection design Brace-to-gusset weld: 0= 0.75 The maximum fillet weld size D<= Fubytdes/3.09Mn = 8.73 sixteenths Try: nweld = 4 r At D = 6 111 64n. fillet welds to connect the brace OK to the gusset plate The minimum length of the fillet welds Lw >= PJnld(l .392Mn)D = 9.70 in. Use: L= 10 in.-long fillet welds OK The minimum gusset plate thickness required to develop the force delivered by the welds is, = PJ20(06F,9)L = 0.621 in. Use: t9 OK C GSS i Project: MillporeSigma TI structural Enhinc.?. Engineer TZ Sheet...................... GSSlNo.: 19209A Date: ............................ (continued) Check shear lag rupture of brace 01 = 0.75 B = 7 In. ( Brace: HSS7x7x1/2 H= 10 in. An = Ab,2(tg 4lI8')Ides = 10.79 in? (Assume 1/8" gap between the brace wall and the gusset plate) x = (B2+2BH)/4(B+H) = 2.78 in. U=1 -x/L= 0.72 Ae =UAn= 7.79 In.2 = Ø,FUbA = 338.8 kips 324.2 kips No coverplate required. Check the Whitmore section 0= 0.9 L' = 2Ltan30° + B = 18.5 in. = ØF,9 (LCtg ) = 450.7 kips 324.2 kip OK C Gusset plate configuration and the connection interface forces: 0= 42.22 0 cose= 0.74 sine = 0.67 Gusset-to-base plate: Hub = PsmO = 217.8 kips Gusset-to-column: V = Pcose = 240.1 kips The collector force to the beam connection Is: Ab = 0 kips (From computer program output) 04 GSSi Project: MiliporeSlgma TI Sheet: .......... ........... SttvCtuibl Engineer: TZ GSSI No.: 19209A DateS............................ (continued) Check compression buckling of gusset plate 0 = 0.9 L9 = 8.0 in. (Average unbraced length of the gusset plate) t9 = 0.75 in. rt9/112= 0.217 in. K= 1.2 KLIr = 44.3 < 4.71(EIF..95 = 17 Fe = 7T El(KLlr)2 = 145.4 ksi K= Fy/Fe = 0.2 Fc, = 32.5 ksi, L F, = (0.658e )F for KLIr c 4.71 (EIF)°5, Otherwise Fer = 0.877FJ The required Whitmore width is then Pu = 324.2 kips 1-w.min = PuIøFc,tg = 14.80 in. The Whitmore width along the gusset plate Is L'= 18.5 in. > L..Mln OK C Gusset-to-Base Plate design: Determine the required weld size: Assume: D = 6 116 in. fillet weld @ each side of gusset plate nWCId= 2 L = HU ntd(1.392"wn )D = 13.0 in. Use: L = 14.0 In., Weld Length from gusset to base plate Gusset-to-column design: Determine the required weld size: Assume: L = 15.0 In., Weld Length from gusset to column & DJd = 6 116 in. fillet weld @ each side of gusset plate nweld = 4 e = dd2 = 3.50 in., The eccentricity of the weld is equal to half of the column depth. a=edL,.c= 0.233 C = 1.90 © k = 0, AISC 360-10, Table 8-11 ç Lmin = 7.0 in. L OK Given: kips PL Z kips PE = 157.5 kips f2= 2 P = I Sos = 0.691 Geometry of Bracing System M Line 2.2 a = 12.33 ft. (Level 2) h= 18.00 ft. Lbr = 21.82 ft. 8= 34.41 ° Beam: W24x55 Fyb = 50 ksi twb = 0.395 in. Ifb = 0.505 in. bfb = 7.01 in. db = 23.6 in. lCdes = 1.01 in. Brace: HSS 7x7x112 . Gusset Plate: Fy r = 46 ksi F = 36 ksi F, = 58 ksi Fug = 58 ksi dbr = 7.0 in. E = 29000 ksi ides = 0.465 in. Aar = 11.6 in. Welds: ETOXX Electrodes rb, = 2.63 in. FU,W !d = 70 ksi j C GSSI Project: Millipore Sigma TI Sheet...................... Stiuctuiel Eiglneeis Engineer TZ GSSI No.: 19209A C DateS............................ OCBF HSS Chevron Brace Connections-Welded Case-2 Ltw 261.8 in. R= 1.4 ksi (Table 1-6.1: 1.4 for HSS, 1.6 for Pipe) Determine connection design forces: The connection force is taken as the lesser of: Tu = RyF,.J,AIJ, = 747.0 kips (The strength of the brace in axial tension) P. =(l.2+0.2SDs)PD+O.5P1+D4PE = 315.0 kips (Load combination per ASCE 7) Governs Use 315.0 kips for brace connection design Brace-to-gusset weld: 0= 0.75 The maximum fillet weld size 0 <= Fubrtdesl3.09 = 8.73 sixteenths Try: nweld 4 D = 6 /16-in. fillet welds to connect the brace OK to the gusset plate The minimum length of the fillet welds L. >= PJn%Id(1.392)D Use: Lw 10 in.-long fillet welds OK The minimum gusset plate thickness required to develop the force delivered by the welds is, tmln = Pu/20(0.6Fu9)Lw = 0.603 in. "CXR re ci Use: t OK I IOGSSI i ii Project: Millipore Sigma TI Engineer: TZ Sheet...................... GSSI No.: 19209A DateS............................ (continued) Check shear lag rupture of brace Ot = 0.75 B = 8 in. ( Brace: HSS 7x7x1/2 H= 10 in. An = Abr - 2( t0 + 1/8" )td.. = 10.79 10 (Assume 1/8" gap between the brace wall and the gusset plate) x = (B2+2BH)/4(B+H) = 3.11 in. U=1-xIL= 0.69 A5 = UAn = 7.43 in.2 OjPn = = 323.2 kips 315 kips No coverplate required. Check the Whitmore section 0 = 0.9 = 2LNtan30° + B = 19.5 in. = øFy. (L'xt9 ) = 475.0 kips 315 kips OK C Check Tension Yielding of Gusset Plate 0= 0.9 = LA= 14.7 ifl.2 OR,, = 0FAW = 475.0 kips 315.0 kips OK Gusset plate configuration and the connection interface forces: e= 34.41 0 ec = dd2 = 0.00 in. (HSS Chevron Brace Connections to the bottom of the Beam) eu=dJ2= 11.80 in. a=ebtan9= 8.1 in. (Horizontal) p=e= 0.0 in. (Vertical) r = [(a+ej2+(I3+eb)21"2 = 14.30 in. Gusset-to-beam: H.b =(a/r)xP.= 177.94 kips VUb = (eb/r)xP. = 259.93 kips OGSSI Project: Millipore Sigma TI Sheet......................... Stft.Clu,0I CrgInos,. Engineer TZ GSSINo.: 19209A C Date:............................ (continued) Check compression buckling of gusset plate 0 = 0.9 L9 = 80 in. (Average unbraced length of the gusset plate) 9= 0.75 in. r=t.j112= 0.217 in. K= 1.2 KLdr = 44.3 < 4.71 (ElF)°5 = 133.7 F0 = TT2EI(KL/r)2 = 145.4 ksi ic=F,IF0 = 0.2 Fcr = 32.5 ksi, [F = (0.658K )F for KLlr < 4.71(ElF)° , Otherwise Fc, = 0.87717e I The required Whitmore width is then Pu = 315 kips =PJøFt9 = 14.38 in. The Whitmore width along the gusset plate is L= 19.5 in. >"On OK Gusset-to-beam design: Determine the required weld size: = 2a = 25.0 in., (Weld Length for gusset to beam @ each side from center line) fv = HUJL = 7.12 kips/in. fa = VIL, = 10.40 kips/in. fb = 0.00 kips/in. (No bending stress) =fav8 [(f0 1fb)2 4fv21"2 = 12.60 kips/in, Resultant of weld stress f, = 1.251y1 = 15.75 kipslin DWeld = f(2x1.392" = 5.66 sixteenths, Required weld size Use: 6116 in. fillet weld @ each side of gusset plate OK Check gusset plate rupture at beam weld tom,= 6.19D/F 0.60 in. OK Check compressive stress In web toe of the beam 0= 1.0 = 0.395 in. kb= 1.01 in. N=L= 25.00 in. R = Vb = 259.93 kips OR. = = 593.5 ksi Vub = 259.93 kips OK C C Given: kips PL = kips PE = 157.5 kips fl = 2 ( p= I SDS = 0.691 OGSSI Project: MillporeSigma TI Sheet•.... SI,Ctvtt 110alneers Engineer: TZ GSSI No.: 19209A Date............................. OCBF Brace-to-Base Connections—Welded Geometry of Bracing System 0 Line 2.2 a = 12.33 ft. (Base) h5 = 18.00 ft. Lb,= 21.82 ft. 0 = 34.41 ° (tane = a/h8 ) Beam: W 24x55 Column: HSS 7x7x 112 Fyb = 50 ksi Fy, = 46 ksi twb = 0.395 in. t c = 0.465 in. tfb = 0.505 in. tqc = 0.465 in. bfb = 7.01 in. b(c = 7 in. db= 23.6 in. d= 7 in. kdes = 1.01 in. kdes = in. Brace: IISS 7x7x112 Gusset Plate: = 46 ksi F 9 = 36 ksi Fubr = 58 ksi F 9 = 58 ksi dbr = 7.0 in. E = 29000 ksi tdes = 0.465 in.' Ai,r = 11.6 in.' Welds: ETOXX Electrodes rbr = 2.63 in. FuvId = 70 ksi Lbr = 261.8 in. R = 1.4 ksi (Table 1-6-1) Determine connection design forces: The connection force is taken as the lesser of: Tu = RyFyt,Ai.ir = 747.0 kips (The strength of the brace in axial tension) Pu = (I.2+O.2SDS)PD+O.5PL+DOPE = 315.0 kips (Load combination per ASCE 7) Governs Use 315.0 kips for brace connection design Brace-to-gusset weld: 0= 0.75 The maximum fillet weld size D <= FubrtdesI3.09' = 8.73 sixteenths Try: nweld = 4 D = 6 /16-in, fillet welds to connect the brace OK to the gusset plate The minimum length of the fillet welds Lw >= PJnd(l .392)D = 9.43 in. Use: L, = 10 in.-tong fillet welds OK The minimum gusset plate thickness required to develop the force delivered by the welds is, 6. = Pj20(0.6F 9)L, = 0.603 in. Use: tg OK O GSSI Project: MiliporeSigma TI Sheet: ... ........... $I,ucturntEiiInee,I Engineer: TZ GSSI No.: 19209A Date (continued) Check shear lag rupture of brace Ot = 0.75 B = 7 in. ( Brace: HSS 7x7x1/2 ) H= 10 in. A. = - 2( t9 + 118' )tde = 10.79 in.2 (Assume 1/8" gap between the brace wall and the gusset plate) X = (B2+2BH)/4(B+H) = 2.78 in. U=1-x/L= 0.72 Ae = UAn = 7.79 ifl.2 tPr = ølFubrAe = 338.8 kips 315 kips No coverplate required. Check the Whitmore section = 0.9 = 2Ljan300 + B = 18.5 in. = øF 9 (Ltg ) = 450.7 kips 315 kips OK C Gusset plate configuration and the connection interface forces: 0= 34.41 cosO= 0.83 sine = 0.57 Gusset-to-base plate: Hub Psine = 178.0 kips Gusset-to-column: V = Pcose = 259.9 kips The collector force to the beam connection Is: An = 0 kips (From computer program output) C GSSI Structuust Project: MiliporeSigma TI Sheet •. . Engineer: TZ GSSI No.: 19209A Date............................. (continued) Check compression buckling of gusset plate CO= 0.9 L9 = 8.0 in. (Average unbraced length of the gusset plate) g = 0.75 in. r=t91.112= 0.217 in. K= 1.2 KLdr = 44.3 4.71(EIF,)°5 = 133.7 Fe = TT2E/(KLIr)2 = 145.4 ksi K=FylFe= 0.2 F = 32.5 ksi, (F = (0.658K )F for KLIr < 4.71(EJF,)°5, Otherwise F = 0.877F] The required Whitmore width is then P = 315.0 kips = PJ0F,t9 = 14.38 in. The Whitmore width along the gusset plate is L 18.5 in. > Lw.ndn OK C Gusset-to-Base Plate design: Determine the required weld size: Assume: D = 6 116 in. fillet weld © each side of gusset plate weld = 2 L = HUb/nId(1.392M )D = 10.7 in. Use: Lwb= 14.0 in., Weld Length from gusset to base plate Gusset-to-column design: Determine the required weld size: Assume: L = 15.0 In., Weld Length from gusset to column & 0weld = 6 116 in. fillet weld @ each side of gusset plate flwetd = 4 e = dJ2 = 3.50 in.. The eccentricity of the weld Is equal to half of the column depth. a=edL= 0.233 C = 1.90 @ k =0, AISC 360-10, Table 8-11 Lain 7.6 in. OK 0. IOGSSI l 's Project: Millipore Sigma TI Sheet: .......................... Engineer: TZ GSSI No.: 19209A Date............................. OCBF HSS Chevron Brace Connections—Welded Case-3 Geometry of Bracing System 0 Line D .4. a = 15.00 ft. (Level 2) h,= 18.00 ft. -r L 23.43 ft. 0= 39.81 0 Beam: W24x55 h5 Fyb = 50 ksi t = 0.395 in. te = 0.505 in. be = 7.01 In. db= 23.6 in. kdes= 1.01 in. Given: Brace: HSS 7x7x112 Gusset Plate: P0 = kips Fyw = 46 ksi F,9 = 36 ksi PL = kips Fubr = 58 ksi F 9 = 58 ksi 166.2 kips dbr = 7.0 in. E = 29000 ksi 00 = 2 lides = 0.465 in. P = I Abr = 11.6 Ifl.L Welds; E70XX Electrodes SDS = 0.691 rbr = 2.63 in. Fumeld = 70 ksi Lb, = 281.2 in. Ry = 1.4 ksi (Table 1-6-1: 1.4 for HSS, 1.6 for Pipe) Determine connection design forces: The connection force Is taken as the lesser of: T = RyFy Abr = 747.0 kips (The strength of the brace in axial tension) P. = (I .2+0.2S05)PD+O.SPL+DOPE = 332.4 kips (Load combination per ASCE 7) Governs Use 332.4 kips for brace connection design Brace-to-gusset weld: 0= 0.75 The maximum fillet weld size D <= F,ftdOsI3.09 Mn = 8.73 sixteenths Try: n= 4 D = 6 /16-in, fillet welds to connect the brace OK to the gusset plate The minimum length of the fillet welds Lw >= Pdflweld(1.392kn )D = 9.9 in. ( Use: L = 10 in.-long fillet welds OK The minimum gusset plate thickness required to develop the force delivered by the welds Is, = PJ20(0.6F)L. = 0.637 in. Use: t9 = OK C C GSSi Project: Millipore Sigma TI Sheet: .......... ........ Stiuc*vrI £IlaJaHri Engineer: TZ GSSI No.: 19209A DateS............................ (continued) Check shear lag rupture of brace Ot = 0.75 B = 7 in. ( Brace: HSS 7x7x1/2 ) H= 10 in. A. = At., - 2( t9 + 1/8° )t o = 10.79 in.2 (Assume 1/8" gap between the brace wall and the gusset plate) X = (B2+2BH)/4(B+H) = 2.78 In. U=1-x/L= 0.72 A0 = UAn = 7.79 In.2 = OtFubAe = 338.8 kips 332.4 kips No coverplate required. Check the Whitmore section 0= 0.9 Uw = 2Ltan300 + B = 18.5 in. OR,, = OFyg (12xt9 ) = 450.7 kips 332.4 kips OK C. Check Tension Yielding of Gusset Plate 0= 0.9 Aw =L= 13.9 in.2 wtg øR=øFA = 450.7 kips 332.4 kips OK Gusset plate configuration and the connection interface forces: 0= 39.81 0 ec = dd2 = 0.00 in. (HSS Chevron Brace Connections to the bottom of the Beam) eb=db12= 11.80 in. a=ebtanO= 9.8 in. (Horizontal) I5=e= 0.0 in. (Vertical) r [(a+ej2+U3+eb)2]"2 = 15.36 In. Gusset-to-beam: H0b(a/r)xP = 212.71 kips V,,, = (cb/r)xP. = 255.43 kips e GSSI Project: Millipore Sigma TI Sheet•.. O Structural cegaoei. Engineer: TZ GSSI No.: 19209A DateS............................ (continued) Check compression buckling of gusset plate 0 = 0.9 Lg = 8.0 in. (Average unbraced length of the gusset plate) Ill = 0.75 In. r=tjI12= 0.217 in. K= 1.2 KLdr= 44.3 < 4.71 (ElF)°5 = 133.7 Fe = TT2E1(KL/r)2 = 145.4 ksl K= F,/Fe = 0.2 IF, = 32.5 ksi, [ Fer = (0.658k )F for KLIr < 4.71(ElF)°5, Otherwise F, = 0.877F0 J The required Whitmore width is then = 332.4 kips w.nn = PuI4DFcitg = 15.17 in. The Whitmore width along the gusset plate Is L,= 18.5 in. OK Gusset-to.beam design: Determine the required weld size: Lb = 2a = 25.0 in.. (Weld Length for gusset to beam © each side from centerline) fv = H1 JL = 8.51 kipslin. fa = V,JL = 10.22 kips/in. = 0.00 kips/in. (No bending stress) = 13.30 kips/in, Resultant of weld stress I, = 1.25favg = 16.62 kips/in Dweld.req = f,/(20.392") = 5.97 sixteenths, Required weld size Use: 6116 in. fillet weld @ each side of gusset plate OK Check gusset plate rupture at beam weld tg.rn = 6.19DweId,req/Fu9 = 0.64 in. t9 OK. Check compressive stress In web toe of the beam 0 = 1.0 6 = 0.395 in. kb= 1.01 in. N=L.= 25.00 in. R = Vb = 255.43 kips ØR.= 0[tWb(N+5kb)]F yb = 593.5 ksi = 255.43 kips CT fl fl ETABS 2016 16.2.1 11/19/2019 / 3.4 3.9 4.4 •4.8 / D• D D 0 ~b 3.433E- MitliporeSigma TI.EDB Elevation View - D Axial Force Diagram (EQY2) [kip] (T fl ETABS 2016 16.2.1 11/19/2019 2.2 22 22 22 2.2 D M7 El a3A -02 10 >X MilliporeSigma TLEDB Elevation View - 2.2 Axial Force Diagram (EQX2) [kip] ftk OGSSI ls Project: MiliporeSigma TI Engineer. TZ Sheet: ........ ............. GSSI No.: 19209A Date: OCBF Brace-to-Base Connections—Welded Geometry of Bracing System (8 Une 2.2 a= 15.00 ft. (Base) h5 = 18.00 ft. Lb, = 23.43 ft. 0= 39.81 ° (tane = a/h5 ) Beam: W 24x55 FVb 50 ksi t. 0.395 In. = 0.505 in. bib = 7.01 in. db= 23.6 In. kdes =1.01 in. Column: HSS 7x7x 112 Fyc = 46 ksi = 0.465 in. tic = 0.465 in. b,= 7 in. d= 7 in. kdes= in. Given: Brace: HSS 7x7x112 Gusset Plate: P0 = kips Fyi,r = 46 ksi F 9 = 36 ksi = kips Fubr = 58 ksi F 9 = 58 ksi PE = 166.2 kips db, = 7.0 In. E = 29000 ksi Do = 2 Ides = 0.465 in. ( P = I A,, = 11.6 ifl. Welds: E70XX Electrodes S08 = 0.691 rbr = 2.63 in. Fuweld = 70 ksi Lbr = 281.2 in. R = 1.4 ksi (Table 1-6-1) Determine connection design forces: The connection force Is taken as the lesser of: T = RYFYbTA T = 747.0 kips (The strength of the brace in axial tension) P4 = (I .2+O.2S1,S)PD+O.5PL+QOPE = 332.4 kips (Load combination per ASCE 7) Governs Use 332.4 kips for brace connection design Brace-to-gusset weld: 0= 0.75 The maximum fillet weld size D <= ' pIthfl = 8.73 sixteenths Try: flwd = 4 D = 6 /16-in, fillet welds to connect the brace OK to the gusset plate The minimum length of the fillet welds Lw > Pjflwold(i .392')D = 9.95 In. Use: L 10 in.-long fillet welds OK The minimum gusset plate thickness required to develop the force delivered by the welds is, Wn = PJ20(0.6F 9)L. = 0.637 in. Use: tg = 3/4 in. OK OGSSI Project: MillporeSigma TI Sheet•. Stfliclufsl £fl51neU$ Engineer: TZ GSSI No.: 19209A C DateS............................ (continued) Check shear lag rupture of brace 0, = 0.75 B = 7 in. ( Brace: HSS 7x7x1/2 H= 10 in. An = Abr - 2( tg + 1/8" )tdes = 10.79 in.2 (Assume 1/8" gap between the brace wail and the gusset plate) x = (B2+2BH)14(B+H) = 2.78 in. U=1-xIL= 0.72 An = UAn = 7.79 in.2 ORn = 0IFUbIAe = 338.8 kips 332.4 kips No coverplate required. Check the Whitmore section 0= 0.9 = 2Ltan30° + B = 18.5 in. OR,= OF., (Lxt9 ) = 450.7 kips 332.4 kips OK (.. Gusset plate configuration and the connection interface forces: 9= 39.81 ° cose= 0.77 sine = 0.64 Gusset-to-base plate: Hb=Psme= 212.8 kips Gusset-to-column: V = Pcose = 255.4 kips The collector force to the beam connection is: An = 0 kips (From computer program output) C GSS i Project: MlllporeSlgma TI Sheet•. Stvuctufbl lEngineei Engineer: TZ GSSI No.: 19209A DateS............................ (continued) Check compression buckling of gusset plate 0= 0.9 L9 = 8.0 in. (Average unbraced length of the gusset plate) t = 0.75 in. r=!12= 0.217 in. K= 1.2 KL9lr = 44.3 < 4.71(ElF)°5 = 133.7 Fe = n2El(KL/r)2 = 145.4 ksi K= Fy/Fe = 0.2 F = 32.5 ksi, I F, = (0.658K )F for KLJr < 4.71 (EIF)°5, Otherwise Fc, = 0.877F,J The required Whitmore width is then Pu = 332.4 kips Lw.mn = PuIøFC,tg = 15.17 in. The Whitmore width along the gusset plate is L= 18.5 in. Lw.ffdn OK C Gusset-to-Base Plate design: Determine the required weld size: Assume: D = 6 116 in. fillet weld @ each side of gusset plate weld 2 Lwb = Hub/flweld(l .392k"n)D = 12.7 in. Use: L = 14.0 in., Weld Length from gusset to base plate Gusset-to-column design: Determine the required weld size: Assume: L,, = 15.0 in., Weld Length from gusset to column & °we1d = e 116 in. fillet weld @ each side of gusset plate nWdd = e = dd2 = 3.50 in., The eccentricity of the weld is equal to half of the column depth. a=eJLK = 0.233 C = 1.90 @ k = 0, AISC 360-10, Table 8-11 Lmn 7.5 in. CI < L. OK C. GSSI Project: MllliporeSigma TI Sheet'.. St,uetu,oI Eqinis,, Engineer: TZ . GSSI No 19209A ( Date:.......................... OCBF Base Plate Design Given: Base Plate for OCBF (Typ.) Column: HSS 7x7x112 Materials: N = 17 in. (Parallel to M) de = 7 in. f' = 3.0 ksi B= 20 in. A = 11.6 in.2 f,= .50 'ks! d1= 18 in. t= 0.465 in. f= 58 ksi (Effective depth of footing) bF = 7 in. tP = 1.25 in. (Plate thick.) tt = 0.465 in. Loads: d = 14.5 in. M= k-ft (Effective depth from the anchors to the edge of the plate) = 409.6 kips e0 = 6 in. (Compression) (Distance of anchor to the center line of the column) P = -242.8 kips n = 8 (Total Number of anchor rods) (Tension) da = 1.25 in. (Diameter of anchor bolts) Ag = 0.969 in.2 (Effective area of each anchor bolt) as = 5 in. (Distance from edge of the column to the edge of base plate) )n3' WA541ERTTP. Determine the total concrete force I I A1 = NxB = 340.0 In. 2 -: -. j .rI (A'IObI A2 = (N + 4d1 )(B + 4d,) . )Ell = 8188 in.2 Lyi (AgfA1 )O.5 = 4.91 ._1,___. i E] 2 * • CG u S) It I . Use: A= 'I 2 Max. & wf • 't.. ,. HI 10. CIA HCR SOLTS HI PLA1E I4ASHER$ (CiRQ W) The total concrete force is determined from the compressive stress and the length of the stress block as C = 0.850aBf'xA •= 0.6 61.2 a I The total force in the concrete stress block Is obtained by taking moments about tension anchor rods C (M + Pea)/(d - a!2) = 2457.60 l(d - a12) a1 25.9 in. a2 = 3.10 in. Use: a n 3.10 in. Cu = 189.8 kips GSS i Project: MiltlporeSlgma TI Sheet . Steuctu,ot Engines'. Engineer: TZ GSSI No. 19209A Date........................... (continued) The force in the tension anchor rods = C - = -219.8 kips TO= P..t = 242.8 kips = 242.8 kips The mm. required area of the anchor rods is given by A9 = TJ4)(0.75f) S = 0.75 = 7.44 Ic nA9 = 7.75 in.2 OK The maximum compressive pressure on the base plate P P,5IB2 = 1.0 ksi The maximum bending moment on the base plate M 1 = P(a' )212 = 12.80 kips-in./in width (Compression effect) all = 2.5 in. N" = 20.0 In. = [(P)2)/N" 3 xe" = 15.18 kips-in./in width (Tension effect) M MAX (M,,M) = 15.18 kips-in.Iin width 0bM = Sb(bpt0214 )Fy Ob 0.9 = 17.58 kips-in./in width OK C C ETABS 2016 16.2.1 11/19/2019 C MilliporeSigma TI.EDB Plan View - Base - Z =0 (ft) Analysis Results 11/19/2019 Ed Table 5.6 - Story Forces (continued) St fLoa 14QJL...PV V[T1MX$MY t °'tCauftcrniho :ItIPkfp kip JKIPflKIP1ft KIP4 Mezzanine SC43A Top 2270.8 -1540.8 Mezzan!ne SC43A Bottom 2304 -1540.8 Mezzanine SC44A Top 2270.8 1540.8 Mezzanine SC44A -4- ------- Bottom 2304 1540.8 5.3 Point Results 0.006071 138654.2565 216385.4719 -195177.6683 0006071 1386542565 2195498166 2257894023 -0.0006395 -138652.7556 216385.4719 -195177.6683 -0.0006395 .138652.7556 219549.9374 -170319.6373 ( C Table 5.7 -Joint Reactions OR Oc.3 ; - jaw, (j0T Løid SAW Label Nflrno 1%19009.00110- PZ FY FZ kip Itip Nip klpft 9lp4t Nip-ft Base 10 20 COMBI -1.5 0.7 64.8 0 0 0 Base 10 20 COMB2 - -2.2 1.4 118.2 0 0 0 Base 10 20 COM3IA -97 1.2 215.2 0 0 0 Base 10 20 COM32A 92.9 1.2 -12.8 ,0 0 0 Base 10 20 COM33A -108.41.2 228.8 0 0 0 Base 10 20 COM34A .104.3 1.2 -26.4 0 - o 0 Base 10 20 COM41A -95.8 0.4 149.2 0 0 0 Base iO 20 COMM 44.1 0.4 48.8 0 0 0 Base 10 20 COM43A -107.2 0.4 162.8 0 0 0 Base 10 20 COM44A 105.5 0.4 92.5 0 0 0 Base 10 20 SC31A -191.9 1.2 329.1 0 0 0 Base 10 20 SC32A 187.9 1.2 -126.7 0 0 0 Base 10 20 SC33A -214.7 1.2 - 356.5 0 0 0 Base 10 20 SC34A 210.6 1.2 -154.1 0 0 0 Base 10 20 SC4IA -190.7 0.4 263.1 0 0 0 Base 10 20 SC42A 189.1 0.4 -192.8 0 0 0 Base 10 20 SC43A -213.5 0.4 290.5 0 0 0 Base 10 20 SC44A 211.8 0.4 -220.1 0 0 0 Base 11 22 COMBI 3.2 0 75.9 0 0 0 Base 11 22 COM162 5.4 0 138 0 0 0 Base 11 22 COM3IA .74.8 0 2.2 0 0 0 10áe 11 22 COM32A 842 0 2342 0 0 0 Base 11 22 COM33A -84.3 0 -11.7 0 0 0 Base 11 22 COM34A 93.7 0 248.2 0 0 0 Base 11 22 COM4IA .77.8 0 .74.8 0 0 0 Base 11 22 COM42A .81.2 0 157.2 0 0 0 Base 11 22 C0643A .87.3 0 48.8 0 0 0 Base 11 22 COM44A 90.7 0 171.1 0 01 0 Base 11 22 SC31A -154.2 0 -113.8 0 0 0 Base 11 22 SC32A 163.7 0 350.3 0. 0 0 Base 11 22 SC33A -173.3 0 -141.7 0 0 0 Base 11 22 SC34A 182.8 0 378.1 0 0 0 Base 11 22 SC4IA -157.2 0 -190.9 0 0 0 Base 11 22 SC42A .160.7 0 2733 0 0 0 Base 11 22 SC43A -176.3 0 -218.7 0 0 0 Base 11 22 SC44A 179.8 0 301.1 0 0 0 Page 27 of 34 C C. Analysis Results 11119/2019 Table 5.7 . Joint Reactions (continued) 1 jdblftt Uniquei ' L1ab$ Ka1i*1oasWCdIthb. LDad ! IFS I FT FZ M* MY Mt kip Up kip k!p1t kip-0, kp4 Base 12 24 COMM -4.4 1 84.9 0 0 0 Base 12 24 COMB2 -7.7 1.9 156.2 0 0 0 Base 12 24 COM31A -86.2 1.6 249.4 0 0 0 Base 12 24 C6M32A 72.8 1.6 174 0 0 0 Base 12 24 COM33A -95.7 1.6 263.3 0 0 0 Base 12 24 C010134k 82.3 1.6 3.4 0 0 0 Base 12 24 COM41A -81.9 0.6 162.1 0 0 0 Base 12 24 COM42A P77.1. 0.6 -70 0 0 0 Base 12 24 COM43A -91.4 0.6 176 0 0 0 Base 12 24 COM44A 86.6 O.S. -83.9 0 0 0 Base 12 24 SC31A -165.6 1.6 365.5 0 0 0 Base 12 24 SC32A 152.3 1.6 -98.7 0 0 0 Base 12 24 SC 33A -184.7 1.6 393.3 0 0 0 Base 12 24 SC34A 171.3 1.6 -126.5 0 0 0 Base 12 24 SC4IA .161.4 0.6 278.1 0 0 0 Base 12 24 SC42A 156.6 0.6 -186 0 0 0 Base 12 24 SC43A -180.4 0.6 306 0 0 0 Base 12 24 SC44A 175.6 0.6 -213.8 0 0 0 Base 15 30 COMB1 1.1 -0.9 70.5 0 0 0 Base 15 30 COM62 1.4 -1.6 130.9 0 0 0 Base 15 30 COM31A -107.3 -1.4 -18.9 0 0 0 Base 15 30 COM32A 110.1 4.4 242 0 0 0 Base 15 30 COM33A -97 -1.4 -6.5 0 0 0 Base 15 30 COM34A 99.8 -1.4 229.7 0 0 0 Base 15 30 COM41A -108.1 -0.5 -92.2 0 0 0 Base 15 30 COM42A 109.3 -0.5 168.8 0 0 0 Base 15 30 COM43A -97.8 -0.5 -79.8 0 0 0 Base 15 30 COM44A 99 -0.5 156.4 0 0 0 Base 15 30 SC3IA -216 -1.4 -149.4 0 0 0 Base 15 30 SC32A 218.8 -1.4 372.5 0 0 0 Base 15 30 S633A -195.4 -1.4 -124.6 0 0 0 Base 15 30 SC34A 198.1 4.4 347.8 0 0 0 Base 15 30 SC41A -216.8 -0.5 -222.7 0 0 0 Base 15 30 SC42A 218 -0.5 299.3 0 0 0 Base 15 30 SC43A -196.2 -0.5 -197.9 0 0 0 Base 15 30 $44A . 197.4 0.5 274.5 0 0 0 Base 134 172 COMB1 -0.2 0 43.3 0 0 0 Base 134 172 COMB2 -0.8 0 77.9 0 0 0 Base 134 172 COM31A -102.7 0 -66.3 0 0 0 Base 134 172 C6M32A 101.4 0 200.1 0 0 0 Base 134 172 COM33A -92 0 -52.4 0 0 0 Base 134 172 COM34A 90.8 0 186.2 0 0 0 Base 134 172 COM41A -102.2 0 -109.7 0 0 0 Base 134 172 COM42A 102 0 156.7 0 0 0 Base 134 172 6OM43A -91.5 0 -95.8 0 0 0 Page 28 of 34 S Analysis Results 11/19/2019 Table 5.7 -Joint Reactions (continued) Stti Joh1t 1 P nlquw Land IFZI F I F Z MX ;M M1J Lahat pJgrn,, j Base 134 172 COM44A 91.3 0 142.8 0 0 0 Base 134 172 ,SC31A -204.7 0 -199.4 0 0 0 Base 134 172 SC32A 203.5 0 333.2 0 0 0 Base .. 0 .;ljj.7. 0 . •0. Base 134 172 SC34A 182.3 0 305.5 0 0 0 Base 134 172 SC4IA •. -204.2 0 :242.8 0 0 0 - V Base 134 172 SC42A 204 0 289.8 0 0 0 Base 134 172 .SC43A .183 0 -215.1 0 0 0 Base 134 172 SC44A 182.8 0 262.1 0 0 0 Base 138 174 LCOMB1. -1.1 91.2 0 0 0 Base 136 174 COMB2 0.1 -2.1 167.6 0 0 0 Base 136 174 - C6M31A -102.1. -1.8 216.4 . 0 0 0 Base 136 174 COM32A 101.9 .1.8 10.1 0 0 0 Base 136 174 .C6M33A 41.5 -1.8 262.5 0 0 0 Base 138 174 COM34A 91.3 -1.8 23.9 0 0 0 Base 138 174 r C6M1A 42.1 . -6.6 182.7 0 0 0 Base 136 174 COM42A 101.9 -0.6 -83.6 0 0 0 Base 136 174 COM43A -91.5. -0.6 168.9 0 0 0 Base 136 174 COM44A 91.2 -0.6 -69.8 0 0 0 Bise 136 174 SC3IA -204.1 -1.8 JL 0 0 0 Base 136 174 SC32A 203.9 -1.8 -123.1 0 0 0 Base 136 174 SC33A 182.8 -1.8 381.9 0 0 0 Base 136 174 SC34A 182.7 -1.8 -95.4 0 0 0 Base 136 174 .SC41A -204.1. -0.6 315.9 0 0 0 Base 136 174 SC42A 203.8 -0.6 -216.8 0 0 0 Base 136 174 SC43A -182.9 -0.6 288.2 0 0 0 Base 136 174 SC44A 182.6 -0.6 -189.1 0 0 0 Base 34 200 : COMBI 1.2 0.1 55.4 0 0 0 Base 34 200 COMB2 1.7 0.1 99 0 0 0 Base 34 200 C01413IA -93.4 0.1 -28.7 0 0 0 Base 34 200 COM32A 96.6 0.1 199.2 0 0 0 Base 34 200 COM33A -104.8 0.1 .42.4 0 0 0 Base 34 200 COMMA 108 0.1 212.9 0 0 0 Base 34 200 COMMA -94.3 0.02919 -83.9 0 0 0 Base 34 200 C6M42A 95.7 0.02952 144.1 0 0 0 Base, 34 200 .COM43A -105.7 0.02945 -97,.5 0 0 0 Base 34 200 COM44A 107.1 0.02927 157.7 0 0 0 Base 34 200 : S631A .188.4 0.1 442.7 0 0 0 Base 34 200 SC32A 191.6 0.1 313.2 0 0 0 Base 34 200 SC33A -211.2 0.1 -170.1 0 0 0 Base 34 200 SC34A 214.4 0.1 340.5 0 0 0 Base 34 200 SC41A -189.3 0.02903 -197.8 0 0 0 Base 34 200 SC42A 190.7 0.02968 258 0 0 0 Base 34 200 SC43A -2121 0.02953 -225.2 0 0 0 Base 34 200 SC44A 213.5 0.02918 285.4 0 0 0 C-. Page 29 of 34 Analysis Results 11/19/2019 Table 5.7 - Joint Reactions (continued) .IY: UnLqo Load ! FX F? I FZ MX M Mz *ø1'Nimo:caeie.oni!KIP* 'p . kp k1 Hk1ft Base Base Base 8 8 8 202 202 202 COMBI COM92 COM31A . OM3 -1.8 -2.7 -111.2 -0.000976 -0.001823 -0.001547 J...0.001555,..57.5. 47.2 85 203.5 0 0 0 .0.. 0 0 0 0 0 0 0 0. Base 8 202 COM33A -100.9 -0.001553 191.1 0 0 0 Base 8 202 COM34A 96 -0.001549 -45.1 0 0 0 Base 8 202 COMMA -109.8 -0.0005263 156.1 0 0 0 Base 8 202 COM42A 107.8 -0.0005334 -104.9 0 0 0 Base 8 202 COM43A -99.4 -0.0005319 143.7 0 0 0 Base Base ............O2 8 202 COM44A 97.5 -0.0005278 -92.5 0 0 0 Base 8 202 SC31A -220 -0.001544 333.9 0 0 Base 8 202 SC32A 2.1 -0.001558 0 15 -188 0 0 0 Base 8 202 SC33A -199.3 -0.001555 309.2 0 0 0 Base 8 202 SC34A 194.4 - -0.001547 -163.2 0 0 0 Base 8 202 SC4IA -218.5 -0.0005227 286.6 0 0 0 Base 8 202 SC42A 216.5 -0.0005369 -235.4 0 0 0 Base 8 202 S43A -197.9 -0.0005339 261.8 0 0 0 Base 8 202 SC44A 195.9 -0.0005257 -210.6 0 0 0 C C Page 30 of 34 C - [I C Analysis Results 11119/2019 Table 5.6 - Story Forces (continued) I Lad P"k VX VY T I StOY Cn*elCn Oce1IpD kip kip Kip kp4i J MX klp.ft I MY mezzanine MAW Top 2270.5 -0.01517 -1540.5 -116233.5239 216385.47191-195177.6663 Mezzanine SC436 Bottom 2304 -0.01517 154O.5 -116233.5239 247279.1599 -198054.7083 Mezzanine SC44B Top 2270.8 0.005775 1540.5 116235.0248 216385.4719 -1951776683 Mezzanine .SC4IB _ Boftom. 0.067752304. 0.5775 .1540.5 J12$5.0248. ,.191820.5941. 198054.3313 5.3 Point Results Table 5.7 -Joint Reactions o Oc..% 40 NOW Lad FX FY NOW 80aet6om11o. kip Kip OX kip MX MY NMI ldp-ft 1Op4 i Klp411 Base 1 2 COMB1 0.9 14.8 81.4 0 0 0 Bise 1 2 COMB2 1.7 27 148.1 0 0 0 Base 1 2 COM318 1.4 -65.3 13.2 0 0 0 Base 1 2 COM32B 1.4 111.5 240.5 0 0 0 Base 1 2 COM33B 1.4 -73.7 2.3 0 0 0 Bose 1 2 COM346 1.4 120 251.4 0 0 0 Base 1 2 COM418 0.5 -80.4 -69.5 0 0 0 Base 1 2 COM42B 0.5 98.4 157.9 0 0 0 Base 1 2 COM43B 0.5 -88.9 -80.4 0 0 0 Base 1 2 COM448 0.5 104.9 168.7 0 0 0 Base 1 2 SC31B 1.4 -153.7 -100.5 0 0 0 Base 1 2 SC32B 1.4 200 354.2 0 0 0 Base 1 2 SC33B 1.4 -170.6 -122.2 0 0 0 Base 1 2 SC348 1.4 216.8 375.9 0 0 0 Base 1 2 SC4I8 0.5 -168.8 -183.2 0 0 0 Base 1 2 SC42B 0.5 184.9 271.6 0 0 0 Base 1 2 SC43B 0.5 -185.7 -204.9 0 0 0 Base 1 2 SC44B 0.5 2011 293.3 0 0 0 Base 2 4 COMB1 0.6 -14.5 62.9 0 0 0 Base 2 4 C6MB2 1.2 -26.6 114.9 0 0 0 Base 2 4 C06B 1 -111.2 212 0 0 0 Base 2 4 COM32B 1 65.7 -15.4 0 0 0 Base 2 4 COM33B 1 -119.6 222.8 0 0 0 Base 2 4 COM34B 1 74.1 46.2 0 0 0 Base 2 4 COM4IB 0.3 -96.3 147.8 0 0 0 Base 2 4 C6M42B 0.3 80.5 -79.5 0 .0 0 Base 2 4 COM43B 0.3 -104.7 158.7 0 0 0 Base 2 4 COM44B 0.3 89 -.-90.4 0 0 0 Base 2 4 SC3IB 1 -199.6 325.7 0 0 0 Base 2 4 S326 1 154.1 -129.1 0 0 0 Base 2 4 SC33B 1 -216.5 347.4 0 0 0 Base 2 4 SC34B 1 171 -150.8 0 0 0 Base 2 4 SC41B 0.3 -184.7 261.5 0 0 0 Base 2 4 SC42B 0.3 169 -1932 0 0 0 Base 2 4 SC439 0.3 -201.6 283.2 0 0 0 Base 2 4 SC44B 0.3 185.8 -214.9 0 0 0 Page 27 of 34 C ( C Analysis Results 11/19/2019 rx VI Table 5.7 . Joint Reactions (continued) [ LabI Lod Name GflØ1Gb*$bO 1 FX FY FZ . kip :klp kip iMxLMYMZ 1411'-ft kip.ft klp! Base 3 6 COMB1 0.6 19.6 68.4 0 0 0 Base 3 6 COMB2 1.2 36.1 125.1 0 0 0 Base 3 6 COM31B 1 -68.5 -2.5 0 0 0 Base QOM328 .0 Base 3 6 COM33B 1 -78 -12.9 0 0 0 Base 3 6 COM34B I 139.7 227 0 0 0 Base 3 6 COM4IB 0.4 -72.4 0 0 0 Base 3 6 COM42B 0.4 110 1487 0 0 0 Base 3 6 COM438 0.4 -98.2 -82.8 0 0 0 Base 3 6 COM44B 0.4 119.5 151.1 0 0 0 Base 3 6 SC31B 1 -167.9 -112 0 0 0 Base 3 6 SC32B I . 229.6 326.1 0 0 0 Base 3 6 SC33B 1 -186.9 -132.9 0 0 0 Base 3 6 SC34B 1 248.5 347 0 0 0 Base 3 6 SC41B 0.4 -188.1 -181.9 0 0 0 Base 3 6 SC42B 0.4 209.4 258.2 0 0 0 Base 3 6 SC438 0.4 :207 -202.8 0 0 0 Base 3 6 SC44B 0.4 228.4 277.1 0 0 0 Base 4 8 COMB1 0.7 -19.3 74.3 0 0 0 Base 4 8 COMB2 1.4 -35.5 135.4 0 0 0 Base 4 8 COM3I6 1.2 -129.8 225.5 0 0 0 Base 4 8 COM328 1.2 69.1 6.4 0 0 0 Base 4 8 COM339 1.2 -139.3 235.9 0 0 0 Base 4 8 COM34B 1.2 78.6 -4 0 0 0 Base 4 8 COM41B 0.4 -109.9 149.9 0 0 0 Base 4 8 COM428 0.4 88.9 -69.2 0 0 0 Base 4 8 COM43B 0.4 -119.4 160.3 0 0 0 Base 4 8 COM44B 0.4 98.4 -79.6 0 0 0 Base 4 8 SC318 1.2 -229.2 335 0 0 0 Base 4 8 SC32B 1.2 168.5 ,103.1 0 0 0 Base 4 8 SC338 1.2 -248.2 355.9 0 0 0 Base 4 8 SC34B 1.2 187.5 -124 0 0 0 Base 4 8 SC418 0.4 .209.3 259.4 0 0 0 Base 4 8 SC42B 0.4 188.4 178.7 0 0 0 Base 4 8 S438 0.4 .228.3 280.3 0 0 0 Base 4 8 S0448 0.4 207.3 -199.6 0 0 0 Base 6 12 COMBI -0.3 -10.6 75.4 0 0 0 Base 6 12 COMB2 -0.6 ,19.2 138 0 0 0 Base 6 12 COM3I8 -0.5 -117.9 239.8 0 0 0 Base 6 12 COM328 -0.5 84.9 47 0 0 0 Base 6 12 COM33B -0.5 -108.6 228.7 0 0 0 Base 6 12 COM348 -0.5 75.7 7.4 0 0 0 Base 6 12 COM4I8 -0.2 -107.1 162.7 0 0 0 Base 6 12 COM428 -0.2 95.7 -80.8 0 0 0 Base 6 12 COM43B -0.2 -97.9 151.6 0 0 0 Page 28 of 34 C C Analysis Results 11/19/2019 G o Table 5.7 - Joint Reactions (continued) t 1Ju*lunino J Load)1114, PT' FZ1MX: MYMZi L 1 4LaboI N*rneCasbanij.IdP KIP KIP KIP.ftfkPo*. Idpftj Base 6 12 COM44B -0.2 86.4 -69.7 0 0 0 Base 6 12 SC3IB . .0.5 -219.3 361.5 0 0 0 Base 6 12 SC32B -0.5 186.3 -125.4 0 0 0 Base. k ._12 ..._0. _O. Base 8 12 SC34B -0.5 167.9 -103.3 0 0 0 Base 6 12 SC4IB -0.2 -208.5 284.4 0 0 0 Base 6 12 SC42B -0.2 197.1 :202.5 0 0 0 Base 6 12 SC438 02 1901 2623 0 0 0 Base 8 12 SC44B -0.2 178.6 -180.4 0 0 0 Base 7 14 . COMBI -0.3 13.1 77 0 0 0 Base 7 14 COMB2 -0.6 24 141.4 0 0 0 Base 7 14 C6M3IB 0.5 -75.3 -2.4 0 0 0 Base 7 14 COM32B -0.5 116.4 244.1 0 0 0 Baie 7 14 COM33B 0.5, .48.6 8.8 0 0 0 Base 7 14 COM348 -0.5 107.7 232.9 0 0 0 Base 7 14 C0M418 -0.2 -68.8 -81.4 0 0 0 Base 7 14 COM428 -0.2 103 165.1 0 0 0 Base 7 14 COM438 -0.2 -80 -70.2 0 0 0 Base 7 14 COM44B -0.2 94.3 153.9 0 0 0 Base 7 14 SC318 -0.5 -171.2 -125.7 0 0 0 Base 7 14 SC32B -0.5 212.2 367.3 0 0 0 Base 7 14 SC33B -0.5 -153.8 -103.3 0 0 0 Base 7 14 SC34B -0.5 194.8 344.9 0 0 0 Base 7 14 S41B -0.2 .184.6 -204.7 0 0 0 Base 7 14 SC42B -02 198.8 288.3 0 0 0 Base 7 14 S043B -0.2 -187.2 -182.3 0 0 0 Base 7 14 SC44B -0.2 181.4 265.9 0 0 0 Base 119 198 COMBI -0.001167 11.5 60.8 0 0 0 Base 119 198 COMB2 -0.002236 20.8 110 0 0 0 Base 119 198 COM3IB 4001196 -83.6 -27.4 0 0 0 Base 119 198 COM328 -0.001883 119.3 216.1 0 0 0 Base 119 198 COM338 -0.001881 -744 1è.3 0 0 0 Base 119 198 COM346 -0.001898 110.1 205.1 0 0 0 Bias 119 198 COM411B .0.0006406 -95.3 -88.7 0 0 0 Base 119 198 COM428 -0.000627 107.7 154.7 0 0 0 Base 119 198 COM43B -0.006249 -86 47.7 0 0 0 Base 119 198 COM448 -0.0009426 98.5 143.7 0 0 0 Base 119 198 SC316 -0.001903 -185.1 -149.1 0 0 0 Base 119 198 SC32B -0.001876 220.8 337.8 0 0 0 Base 119 198 SC33B -0.001872 -166.7 -127 0 0 0 Base 119 198 SC348 -0.001907 202.4 315.7 0 0 0 Base 119 198 SC41B -0.0006473 -196.8 -210.5 0 0 0 Base 119 198 SC428 -0.0006202 209.2 276.5 0 0 0 Base 119 198 SC430 40006161 -178.3 -188.3 0 0 0 Base 119 198 Sc44B -0.0006515 190.8 254.4 0 0 0 Page 29 of 34 c C Analysis Results 11119/2019 Table 5.7 - Joint Reactions (continued) I JoIfltUn(j& Lad LStoIY Lsbol 11am., øaseloombo rEX up, FYFZA1MXMYMZ, kip kip tdp ft klpft Klp.ft Base 162 16 COMB1 -0.3 -12.8 69.4 0 0 0 Base 162 16 COMB2 -0.6 43.5 127.7 0 0 0 Base 162 16 COM31B -0.5 -116 232.3 0 0 0 Base i62 0.. .0.. Base 162 16 COM33B -0.5 -107.3 221.1 0 0 0 Base 162 16 COM34B -0.5 .67 -3 0 0 0 Base 162 16 COM41B -0.2 -102.8 160.9 0 0 0 Base 162 16 C0M428 .0.2 88.9 -85.6 0 0 0 Base 162 16 COM43B -0.2 -94.1 149.7 0 0 0 Base 162 16 COM44B -0.2 80.2 -74.4 0 0 0 Base 162 16 SC31B -0.5 -211.8 355.6 0 0 0 Base 182 16 S632B -0.5 171.6 -137.4 0 0 0 Base 162 16 SC33B -0.5 .194.4 333.2 0 0 0 Base 162 16 S634B -0.5 154.2 -115 0 0 0 Base 162 16 SC418 -0.2 -198.7 284.2 0 0 0 Base 162 16 SC42B -0.2 184.8 -208.8 0 0 0 Base 162 16 SC43B -0.2 -181.3 261.8 0 0 0 Base 162 16 6C446 -0.2 167.3 -186.4 0 0 0 C Page 30 of 34 IOGSSI Structural Engineers fl Project: Milh...reSigma TI Engineer: TZ n Sheet: ................ .............. GSSI No 19209A 0ate................................... Diaphragm Seismic Lateral Load Analysis Check Diaphragm Shear Capacity. 'J- 4. 4 t.. X -X Direction (Transverse, Direction): 3'V.1f . C twl.. ") .6\1, VS t * ' • Wff J. W Wp1 Ewi Flx XFlx FPX Fpx.niin Fpx.max Level (kips) (kips) (kips) (kips) (kips), (kips) (kips) (kips) (used) (used) Mezzanine 3605 3605 3605 766.9 766.9 766.9 498.3 996.5 766.9 766.9 Note: See next page for diaphragm shear capacity. Notes: Chord Analysis ( 2nd Floor: SDS = 0.691 L = 189.5 ft. I 1.00 M = (pF)LJ8 = 18164 k-ft p= 1.0 p 1.0 D= 170.67 ft. (Per ASCE7-0512.3.4.1) T = MID = 106.4 kipS FP.Min = 0.2SlW9. A, = T,/øf = 1.97 in.2 Fp.maz = 0.4S0slW Use: 7#5 Fp =WpFFI I FW1 A= 2.17 in.2 OK py V 1.0 (Per ASCE7-05 § 12.3.4.1) OK S Notes: SDS = 0.691 1= 1.00 Px = 1.0 Fp.min = 0.2SosIW = 0.4SOSIWPZ F =W2F1 I rJVI Chord Analysis 0 Mezzanine: L 173.2 ft. M = (pF)Ll8 = 16601 k-ft D= 189.5 ft. T = MID = 87.6 kips As = TJøf, = 1.62 in.2 Use: 6#5 A= 1.86 in.2 cm G I Project: MlIhreSigma TI Sheet•. structural Engineers Engineer TZ GSSI No 19209A Date................................... Diaphragm Seismic Lateral Load Analysis V Check Diaphragm Shear Capacity. Y -Y Direction ( Longitudinal Direction ):. Wi Wpi EW FPY Fpy.min Fpy.max Level (kips) (kips) (kips) (kips) (kips) (kips) (kips) (kips) (used) (used) Mezzanine 3605 3605 3605 766.9 766.9 766.9 498.3 996.5 766.9 766.9 (O GSSI Project: MilliporeSlgma TI Sheet: .............. ................. StttpctueI EngIAoets Engineer: TZ GSSI No 19209A C , Date: .................................. Collector (Drag) Force Calculation Meizanine (Strength Level) Braced Frame © Grid Line 2.2 in X- direction D G.4 Span I Span 2 Span 3 C ' Total lateral force F = 380.9 kips Total length L = 1732 ft. Average shear q = 2.2 kips/ft. Span Length Grid Distance Hon. Force Ave. Shear Drag Axial Force Number (ft.) Line (ft.) @ wall @ wall (kips) (kips) (k/ft) 0.0 Span 21.3 D 11,0 21.3 0.0 46.9XL 206.1 . -159.2I Span 111.3 132.6 0.0 85.6 174.8 -89.2 Span 3 40.5 G.4 173.2 0.0 0.0 Note: =1 for 2006 IBC 12.3.4.1 p collector elements per MØ = 76.0 k-ft QE = 119.2 kips (Strength Level) ML = 65.5 k-ft k= 1.0 kLjr = 53.3 kL,Ir, = 83.9 Governs! = PID = 263 kips (AISC Spec E.3) P = 166.9 kips P01 = rr2EIj(kL)2 = 1480 ksi B, = CJ(1-aPlP01) = 1.2 C"i Cmx = 1.0 (AISC Table C-C2. 1) F. = IT2EI(kLir)2 = 40.66 ksi OGSSI Project: MilliporeSigma TI Sheet•.. structural Engineers Engineer: TZ GSSI No 19209A C) . Date: .................................. Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line 2.2 Collector Data: W 21 x50 A= 14.7 in.2 l = 984 in.3 r 8.18 in. r= 1.3 in. L = 4.59 ft. L.= 13.6 ft. Mezzanine 8D8 = 0.691 Unsupported Length: L = 36.3 ft. (strong axis) Unsupported Length: L, = 9.1 ft. F 0 50 ksi E = 29000 ksi fl= 1.67 The unfactored gravity loads and moments: Load Comb. ( 5): 1.097 DL + 1.4 QE + LL = 2 (Overstrength amplification factor) = 1.2 (Allowable stress increase factor per ASCEISEI 7-10 §12.4.3.3) M= 102 k-ft Since LP 4 Lb < L. Mcx = 220 . k-ft (AISC ASD Table 3-2 or Table 3-10) Cl PI(PP) + (819)[Ml(PM)] = 0.87 1.0 OK GSS i Project: MililporeSigma TI Sheet.. Suuctu,el £I%II%0S,0 Engineer: TZ GSSI No. 19209A C . IDateS .................................. Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line 2.2 Mezzanine Collector Data: W 2140 SIDS = 0.691 A = 14.7 in.2 Unsupported Length: L = 36.3 ft. (strong axis) I, = 984 in.3 Unsupported Length: L, = 9.1 ft. r= 8.18 in. ry = 1.3 in. F, = 50 ksi LP = 459 ft. E = 29000 ksi Lr = 13.6 ft. Or = 1.67 The unfactored gravity loads and moments: M0 = 76.0 k-ft QE = 119.2 kips (Strength Level) ce- ML = 65.5 k-ft It = 1.0 Cmx = 1.0 (AISC Table C-C2. 1) kLjr = 53.3 F. = w2EI(kLlr)2 kL,lr, = 83.9 Governs! = 40.66 ksi = PJQC = 263 kips (AISC Spec E.3) P = 125.2 kips P01 = n2Elj(kL)2 = 1480 ksi B1 = C4(1-aPI11301) (a = 1.6 for ASD) = 1.2 Load Comb. (6): 1.073 DL + 1.050 QE + 0.75 IL = 2 (Overstrength amplification factor) 1.2 (Allowable stress increase factor per ASCE/SEI 7-10 §12.4.3.3) Mx = 151 k-ft Since L < Lb < M.= 220 k-ft (AISC ASD Table 3-2 or Table 3-10) Pl(PP) + (819)IMj(pM)] = 0.9 1.0 OK OGSS i Project: MilliporeSigma TI Stiuctulel tflIfthSr Engineer: TZ ( Sheet: .............. ............. GSSI No 19209A bate: .................................. Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line 2.2 Mezzanine Collector Data: W 1800 8DS = 0.691 A = 11.8 in.2 Unsupported Length: L 28.0 ft. (strong axis) = 612 in.3 Unsupported Length: L= 7.0 ft. r= 7.21 in. ry = 1.27 in. F = 50 ksi LP = 4.49 ft. E = 29000 ksi L, = 13.1 ft. 0, = 1.67 The unfactored gravity loads and moments: M0= 44.0 k-ft QE = 61.8 kips (Strength Level) ML= 38.8 k-ft k= 1.0 kLjr= 46.7 kLIr, = 66.2 Governs! = NO, = 256 kips (AISC Spec E.3) P = 86.5 kips Pci = IT2Elj(kLx)2 = 1546 ksi B1 = CJ(1-aP/P01) 1.1 Cmx = 1.0 (AISC Table C-C2. 1) Fe = rr2EI(kLlr)2 = 65.17 ksi Load Comb. ( 5): 1.097 DL + 1.4 QE + LL 00 = 2 (Overstrength amplification factor) = 1.2 (Allowable stress increase factor per ASCE/SEI 7-10 §12.4.3.3) M= 53 k-ft Since L c Lb c L, = 173 k-ft (AISC ASD Table 3-2 or Table 3-10) C P!ff3P) + (8I9)EMl(PM)1 = 0.51 1.0 OK MD = 44.0 k-ft QE = 61.8 kips (Strength Level) ML= 38.8 k-ft k = 1.0 kLjr, = 46.7 kLJr, = 66.2 Governs! = P,10, = 256 kips (AISC Spec E.3) P = 64.9 kips P, = w2Eij(kL = 1546 ksi B1= CJ(1.aPIP01) (a = 1.6 for ASD) = 1.1 (Ii = 1.0 (AISC Table C-C2. 1) F = w2EI(kL!r)2 = 65.17 ksi OGSSI Project: MilliporeSigma TI Sheet•.. Stiuctuiel Engleseis Engineer: TZ GSSI No. 19209A C . Date: .................................. Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line 2.2 Collector Data: W 1800 A= 11.8 in.2 ix = 612 in? r 7.21 in. i'., 1.27 In. L = 4.49 ft. L= 13.1 ft. Mezzanine SOS = 0.691 Unsupported Length: L = 28.0 ft. (strong axis) Unsupported Length: L, = 7.0 ft. F= 50 ksi E = 29000 ksi fl = 1.67 The unfactored gravity loads and moments: Load Comb. ( 6): 1.073 DL + 1.050 QE + 0.75 LL 00 = 2 (Overstrerigth amplification factor) 13= 1.2 (Allowable stress increase factor per ASCE/SEI 7-10 §12.4.3.3) M= 82 k-ft Since L < Lb < L, = 173 k-ft (AISCASD Table 3-2 or Table 3-10) -. Pl(PP) + (8I9)IMj(PM)1 = 0.6 1.0 OK fl n ETABS 2016 16.2.1 12111/2019 2.2, 2.2, 2.2 9,. 2.2, 0 F.8 -3.2tE-02 MilliporeSigma TI.EDB Elevation View - 2.2 Axial Force Diagram (EQX2) [kip] rg fl n ETABS 2016 16.2.1 12/11/2019 22, 22 2 22, 2.2 22,. o 0.7 C,3 • F.8 0.4 I • Cd ' - - -1.4 Base MilliporeSigma TI.EDB Elevation View - 2.2 Moment 3-3 Diagram (Dead) [kip-ft] 1.31 -0.5 7.8 cR 4.5 Meanine 4 .8 n ETABS 2016 16.2.1 12/11/2019 2.2 22, 7. 2.2: 2:2, 03 E 3 F 1 F8 GA mi Mezzanine -1.3 4 I Base MiliiporeSigma TI.EDB Elevation View - 2.2 Moment 3-3 Diagram (Live) [kip-ft] 6.9 -OA : 'I 00 OGSSI Project: MilliporeSigma TI Sheet............................... StVUC*UIOI Engineers Engineer: TZ GSSI No 19209A C , Date: .................................. Collector (Drag) Force Calculation Mezzanine (Strength Level) Braced Frame @ Grid Line 5.4 in X- direction D * Span I Span 2 Span 3 C Total lateral force F = 421.5 kips Total length L = 173.2 ft. Average shear q = 2.4 kips/ft. Span Length Grid Distance Hon. Force Ave. Shear Drag Axial Force Number (ft.) Line (ft.) © wall © wall (kips) ('ips) (k/ft) 0.0 Span 1 22.5 D ("Z 22.5 0.0 54.9L 204.0 I49.2 Span 2 132.2 154.7 0.0 172.5Ae 217.5 -44.9 ft0 Span 3 18.5 G.4 173.2 0.0 0.0 C Note: p = I for collector elements per 2006 IBC 12.3.4.1 G.4 M0 = 50.9 k-ft QE = 134.2 kips (Strength Level) ML= 59.8 k-ft k= 1.0 kLjr5 = 44.9 kLIr., = 63.8 Governs! PC = PnIC)c = 262 kips (AISC Spec E.3) P= 187.9 kips 0.1 = w2Elj(kL5)2 = 1668 ksi B1 = C,1(1-aPIP01) = 1.2 C. Cmx = 1.0 (AISC Table C-C2. 1) F = w2E/(kLlr)2 = 70.34 ksi O 10 GSS i Project: MilliporeSigma TI Sheet: ............... Sttoctu'ei Engineers Engineer: TZ GSSI No. 19209A Date................................... Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line 5.3 Collector Data: W 18x4O A= 11.8 in.2 l= 612 in.3 r5= 7.21 in. r 1.27 in. L= 4.49 ft. L= 13.1 ft. Mezzanine SOS = 0.691 Unsupported Length: L = 27.0 ft. (strong axis) Unsupported Length: L = 6.7 ft. F= 50 ksi E = 29000 ksi C= 1.67 The unfactored gravity loads and moments: Load Comb. ( 5): 1.097 DL + 1.4 QE + LL = 2 (Overstrength amplification factor) = 1.2 (Allowable stress increase factor per ASCEFSEI 7-10 §12.4.3.3) M5 M 68 k-ft Since L < Lb < L, M. 2 . 176 . k-ft (AISC ASD Table 3-2 or Table 3-10) C PI(PPC) + = 0.88 1.0 OK OGSSI ti C Project: MilliporeSigma TI Engineer: TZ Sheet............................. GSSI No 19209A Date: .................................. Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line 5.3 Collector Data: W 1800 A= 11.8 in.2 1, z 612 in.3 r= 7.21 in. ry = 1.27 in. L 4.49 ft. L, 13.1 ft. Mezzanine S = 0.691 Unsupported Length: LR = 27.0 ft. (strong axis) Unsupported Length: L1 = 6.7 ft. F = 50 ksi E = 29000 ksi fl= 1.67 The unfactored gravity loads and moments: M0 = 50.9 k-ft QE = 134.2 kips (Strength Level) C - ML= 59.8 k-ft k= 1.0 kLjr, = 44.9 kL,lr,, = 63.8 Governs! PC = PJfl = 262 kips (AISC Spec E.3) P = 140.9 kips P01 = rr2Elj(kL)2 = 1668 ksi B1 = C,J(1-aPIP01) (a = 1.6 for ASD) = 1.2 Cmx im 1.0 (AISC Table C-C2. 1) F. = w2E/(kLlr)2 = 70.34 ksi Load Comb. ( 6): 1.073 DL + 1.050 QE + 0.75 LL Q = 2 (Overstrength amplification factor) = 1.2 (Allowable stress increase factor per ASCE/SEI 7-10 §12.4.3.3) M= 115 k-ft Since L c Lb < L, M0 = 176 k-ft (AISC ASD Table 3-2 or Table 3-10) POP-) (819)[Mj(I3Mj] ETABS 2016 16.2.1 11/20/2019 MilliporeSigma TI.EDB Elevation View - 5.4 Axial Force Diagram (EQXI) [kip] C C ETABS 2016 16.2.1 11/20/2019 C., .3 •53 5.3 .1 F.8 [3,51/1E.02 \3M Mezzanine Base MilliporeSigma TI.EDB Elevation View - 5.3 Axial Force Diagram (EQXI) [kip] C n ETABS 2016 16.2.1 S t I I 5.4 5.4 5.4 5.4, 0 0.7, E.7. F.1 .2.1 MilliporeSigma TI.EDB Elevation View - 5.4 Moment 3-3 Diagram (Dead) [kip-ft] fl fl ETABS 2016 16.2.1 - 11/20/2019 I 5.4 5.4 5.4 5.4, D 0.7, E.7. F.1 -0.2 -1.8 MilliporeSigma TI.EDB Elevation View - 5.4 Moment 3-3 Diagram (Live) [kip-ft] fl - TAP')flll)l 5.3 5.3, 5.3 5.3., E.7 F.1 F.8 G.4 co Mezzanine Base MilliporeSigma TIEDB Elevation View - 5.3 Moment 3-3 Diagram (Dead) [kip-ft] LI n ETABS 2016 16.2.1 n 11/20/2019 5.3 5.3, 5.3 5.3_, I- E.7, F.1 F.8 G.4 an cat Mezzanine Base MilliporeSigma TI.EDB Elevation View - 5.3 Moment 3-3 Diagram (Live) [kip-ft) Project: MilliporeSigma TI Sheet•... IOGSS I Is Engineer: TZ GSSI No 19209A C Date: .................................. Collector (Drag) Force Calculation Mezzanine (Strength Level) Braced Frame @ Grid Line D in Y- direction . - It 56 iz 2.2 5.4 Span I Span 2 Span 3 Total lateral force F = 411.6 kips Total length L = 194.0 ft. Average shear q = 2.1 kips/ft. Span Length Grid Distance Hon. Force Ave. Shear Drag Axial Force Number (ft.) Line (ft.) @ wall © wall (kips) (kips) (klft) 0.0 Span 1 88.5 2.2 88.5 0.0 1. 187.7 193.8 -6.0 A. Span 2 58.3 146.8 0.0 117.7 QO 217.8 -100.1910 Span 3 47.2 5.4 194.0 0.0 0.0 Note: p = 1 for collector elements per 2006 IBC 12.3.4.1 MD = 392.0 k-ft QE = 110.3 kips (Strength Level) ML = 337.8 k-ft k = 1.0 kLjr, = 49.5 kL,lr, = 58.5 Governs! Pc = PlD = 646 kips (AISC Spec E.3) P = 154.4 kips P,1 = Tl 2Elj(kL)2 = 3218 ksi B, = CJ(1-aPlP,1) IS 1.1 C Cmx = 1.0 (AISC Table C-C2. 1) F. = w2El(kLJr)2 = 83.63 ksi OGSSI I C Project: MilliporeSigma TI Engineer: TZ Sheet:............................... GSSI No 19209A Date: .................................. Check Steel Beam Collector (Drag Element) I (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line D Collector Data: W 27x94 A = 27.7 in.2 I, 3270 in.3. r= 10.9 In. r, = 2.12 in. L, = 7.49 ft. L,= 21.6 ft. Mezzanine sos = 0.691 Unsupported Length: L = 44.9 ft. (strong axis) Unsupported Length: L = 10.3 ft. F,= 50 ksi E= 29000 ksi A= 1.67 The unfactored gravity toads and moments: Load Comb. ( 5): 1.097 DL + 1.4 QE + LL CIO = 2 (Overstrength amplification factor) = 1.2 (Allowable stress increase factor per ASCE/SEI 7-10 §12.4.3.3) M= 466 k-ft Since Lb < Mcx = 640. k-ft (AISC ASD Table 3-2 or Table 3-10) (I PI(PP) + (8I9)IMjff3M)] = 0.74 1.0 OK C Project: MilliporeSigma TI OGSSI I , . Engineer: TZ Sheet:........................... GSSI No 19209A Date: .................................. Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line D Mezzanine Collector Data: W 27x94 SOS = 0.691 A = 27.7 in.2 Unsupported Length: Lx = 44.9 ft. (strong axis) I = 3270 in.3 Unsupported Length: L, = 10.3 ft. r 10.9 in. r = 2.12 in. F= 50 ksi L0 = 7.49 ft. E = 29000 ksi Lr = 21.6 ft. De = 1.67 The unfactored gravity loads and moments: M0 = 392.0 k-ft QE = 110.3 kips (Strength Level) ( ML = 337.8 k-ft k = 1.0 C,. = 1.0 (AISC Table C-C2. 1) kLIr. = 49.5 F, = w2EI(kLJr)2 K.A. = 58.5 Governs! = 83.63 ksi PC = PjflC = 646 kips (AISC Spec E.3) P = 115.8 kips P,1 = 1T2Elj(kL)2 3218 ksi B1 = C,J(1-01P,1) (a = 1.6 for ASD) = 1.1 Load Comb. (6): 1.073 DL + 1.050 QE + 0.75 LL Do w 2 (Overstrength amplification factor) 13 = 1.2 (Allowable stress increase factor per ASCE/SEI 7-10 §12.4.3.3) M= 715 k-ft Since L c Lb < M.= 640 k-ft (AISC MD Table 3-2 or Table 3-10) C. PIQ3P) (8/9)(Mj(pM)j OK ETABS 2016 16.2.1 11/20/2019 Id 3.4 3.9 4.4 4.8' D 0 0 C 3A33/E \%\ 3.371E.02 I MilliporeSigma TI.EDB Elevation View - D Axial Force Diagram (EQV2) [kip] n cm ETABS 2016 16.2.1 11/20/2019 Meanine In z lse_> MiltiporeSigma TI.EDB Elevation View D.1 Moment 3-3 Diagram (Dead) [kip-ft] n n n I ETABS 2016 16.2.1 11/20/2019 Mezzane m z . A - MilliporeSigma TIEDS Elevation View - D.1 Moment 3-3 Diagram (Live) [kip-ft] GSS i Project: MilliporeSigma TI SKuctural £n51neen Engineer: TZ GSSI No 19209A Date: .................................. Collector (Drag) Force Calculation Mezzanine (Strength Level) Braced Frame @ Grid Line G.4 in Y- direction L.SL w Cq S4 c7çt - 2.2 Span I C Total lateral force Total length Average shear Span 2 Span 3 F = 394.5 kips L = 185.0 ft. q = 2.1 kips/ft. 5.3 Span Number Length (ft.) Grid Distance Line (ft.) Hon. Force @ wall (kips) Ave. Shear © wall (klft) Drag Axial Force (kips) 0.0 Span 1 25.3 2.2 25.3 0.0 1.0 53.9 202.9 -149.0 .fl, Span 2 71.2 96.4 0.0 2.8.Q, 191.7 -188.9..ç Span 3 88.5 5.3 185.0 0.0 0.0 Note: p = 1 for collector elements per 2006 IBC 12.3.4.1 MD= 331.9 k-ft = 69.0 kips (Strength Level) ML = 290.9 k-ft k= 1.0 kLjr, = 51.7 kL/r, = 67.7 Governs! = PJnC = 529 kips (AISC Spec E.3) P= 96.6 kips P.i = 1T2Elj(kL)2 = 2646 ksi 81 = C,J(1OP!P01) = 1.1 C; CMX = 1.0 (AISC Table C-C2. 1) F. = w2EI(kLlr)2 = 62.40 ksi IOGSSI Stiucturel ngloess Cf Project: MilliporeSigma TI Engineer: TZ Sheet............................. GSSI No. 19209A Date................................... Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line G.4 Collector Data: W 2084 A = 24.7 ifl.2 = 2370 in.3 r 9.79 in. r,= 1.95 in. L= 6.89 ft. L. = 20.3 ft. Mezzanine SDS W 0.691 Unsupported Length: L = 42.2 ft. (strong axis) Unsupported Length: L = 11.0 ft. F= 50 ksi E= 29000 ksi n= 1.67 The unfactored gravity loads and moments: El Load Comb. ( 5): 1.097 DL + 1.4 QE + LL 00 = • 2 (Overstrength amplification factor) = 1.2 (Allowable stress increase féctor per ASCEISEI 7-10 §12.4.3.3) M= 387 k-ft Since L < Lb < L M. = • 492. k-ft (AISC ASD Table 3-2 or Table 3-10) C Pl(PP) + (8/9)[MJ(PM0 )] = 0:73 1.0 OK GSSI Project: MilliporeSigma TI Sheet............................. Suucturol £flIA00r. Engineer: TZ GSSI No. 19209A C. Date................................... Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line G.4 Collector Data: W 2444 A= 24.7 in .2 l 2370 in.3 r= 9.79 in. r= 1.95 in. L= 6.89 ft. L,= 20.3 ft. Mezzanine 8D5 = 0.691 Unsupported Length: L 42.2 ft. (strong axis) Unsupported Length: L = 11.0 ft. F= 50 ksi E = 29000 ksi 0= 1.67 The unfactored gravity loads and moments: = 331.9 k-ft QE = 69.0 kips (Strength Level) ML = 290.9 k-ft k = 1.0 kLlr= 51.7 kL,Ir,, = 67.7 Governs! = P100 = 529 kips (AISC Spec E.3) P = 72.5 kips P01 = w2ElJ(kL)2 = 2646 ksi 81 = C,j(1-aPlP01) (a = 1.6 for ASD) = 1.0 Cmx = 1.0 (AISC Table C-C2. 1) F. = w2El(kLir)2 = 62.40 ksi Load Comb. ( 6): 00= M= Since M. = 1.073 DL + 1.050 QE + 0.75 LL 2 (Overstrength amplification factor) 1.2 (Allowable stress increase factor per ASCE/SEI 7-10 §12.4.3.3) 600 k-ft LP Ic Lb c L. 492 k-ft (AISC ASD Table 3-2 or Table 3-10) C PI(pP0) (8/9)[MxIWMc:)J Ou MD = 248.0 k-ft QE = 119.3 kips (Strength Level) ML = 220.2 k-ft k 1.0 kL/r = 46.2 kL,Ir, = 58.3 Governs! = PJfl = 523 kips (AISC Spec E.3) P = 167.0 kips P01 = n2EIJ(kL)2 = 2995 ksi B1 = C,J(1-aPlP01) = 1.1 C CMX = 1.0 (AISC Table C-C2. 1) F0 = n2E1(kLlr)2 = 84.13 ksi GSS i Project: MilliporeSigma TI structural £flIItOSii Engineer: TZ Sheet: ............ 31............. GSSI No 19209A Date................................... Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line G.4 Collector Data: W 2076 A = 22.4 in.2 l = 2100 in.3 r= 9.69 in. r= 1.92 in. L = 6.78 ft. L, = 19.6 ft. Mezzanine SDS = 0.691 Unsupported Length: L = 37.3 ft. (strong axis) Unsupported Length: L ' 9.3 ft. F, = 50 ksi E = 29000 ksi f= 1.67 The unfactored gravity loads and moments: C. Load Comb. ( 5): 1.097 DL + 1.4 QE + LL 00 = 2 (Overstrength amplification factor) = 1.2 (Allowable Stress increase factor per ASCE/SEI 7-10 §12.4.3.3) M1= 299 k-ft Since L < Lb < L M0 = 461 : k-ft (AISC ASD Table 3-2 or Table 3-10) PI(3PC) + (819)IMj(3Mj] = 0.75 1.0 OK MD = 248.0 k-ft QE = 119.3 kips (Strength Level) ML = 220.2 k-ft k= 1.0 kL/r, = 46.2 kL!r, = 58.3 Governs! Pc = PnlQc = 523 kips (AISC Spec E.3) P = 125.3 kips P01 = Tr2EIj(kL)2 = 2995 ksi 131= CJ(1-aP/P01) (a = 1.6 for ASD) = 1.1 (I Cmx = 1.0 (AISC Table C-C2. 1) Fe = Tr2EI(kLir)2 = 84.13 ksi OGSSI l Project: MililporeSigma TI Engineer: TZ SheetS............................. GSSI No. 19209A Date: .................................. Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor' Location: @ Grid Line G.4 Collector Data: W 2076 A = 22.4. in.2 2100 in.3 r 9.69 in. ry = 1.92 in. L= 6.78 ft. Lr = 19.6 ft. Mezzanine SDS = 0.691 Unsupported Length: L = 37.3 ft. (strong axis) Unsupported Length: L, = 9.3 ft. F= 50 ksi E = 29000 ksi D 1.67 The unfactored gravity loads and moments: Load Comb. ( 6): 1.073 DL + 1.050 - QE + 0.75 LL = 2 (Overstrength amplification factor) = 1.2 (Allowable stress increase factor per ASCEISEI 7-10 §12.4.3.3) M= 462 k4t Since L Ic Lb c Lr 461 k-ft (AISCASD Table 3-2 or Table 3-10) C PlffSP) + (8I9)[Mj(PM)1 = 0.9 1.0 OK I ETABS 2016 16.2.1 11/20/2019 C 22 28 34 39 34 L:">"s, MilliporeSigma TI.EDB Elevation View - G.4 Axial Force Diagram (EQYI) [kip) fl (Th ETABS 2016 16.2.1 11/20/2019 22 • 2.8 3.4 39. 4.4 4.8 5.3, G 4, G.4, G,4 G.4 G.4. G.4 I.ui 4 MilliporeSigma TI.EDB Elevation View - G.4 Moment 3-3 Diagram (Dead) [kip-ft] a) 8//\\\.3.6 .4 L !.I. [5Ol7/NJ . 129 ~.. fl ETABS 2016 16.2.1 n 11/2012019 2.2 . 2.8 3d 3.9, 4.8 53 G4 G.4 G.4. 64 G,4 G-4 G,4 1•1 . __________________ MilliporeSigma TI.EDB Elevation View - G.4 Moment 3-3 Diagram (Live) [kip-ft] ___________ z 2.6 CD N cm \C"4______ /-1.39E-02 ( O"'GSSI Structural Engineers Project: MilliporeSigma TI Engineer: TZ Sheet No. Project No.: 19209A. Date: Square Spread Footing Design (20 10 CBC) F8 F7 F6 F5 F4 F3 Soil Capacity = 3000 psf Size, WxB 8.0 7.0 6.0 5.0 4.0 3.01 Concrete, f'c = 3000 psi Area, ft-2 64.0 49.0 36.0 25.0 16.0 9.0 Reinforcement, fy = 60,000 psi Footing Thickness, in. 24 21 is,15 15 15 Soil Bearing Capacity 3500 3375 3250 3125 3125 3125! P, allowable, ldps 205 153 109 73 47 26 Pu, allowable, P155 317 236 169 114 73 41 Column Size, in. 10 10 10 8 8I 8 Effective Ftg, d, in. 20 17 14 Il Jill 1 Soils Pressure, ksf 5.01 4.8 4.7 4.6 4.61;4.6 Increase width from = ft. Shear: 11 Increase = psf Punching shear, kips ; 286' 212 150 102 61 30 Maximun Increase = 3000 psf Vu, allowable, kips 394 302 221 137 137 137' Vu OK Vu OK Vu OK Vu OK Vu OK Vu OK Beam shear, kips 9.5 8.0 6.6 5.7 3.4 1.1 Vu, allowable, kips 19.7' 16.8 13.8 10.8 10.8' 10.8 Vu OK Vu OK Vu OK Vu OK Vu OK Vu OK Bending: 10, Mu, ft-kips 31.8 88 22.9 88 15.6 89 10.7 98 6.3i 3.1 28 Ku, psi 581 J) 0.0015 0.0015 0.0015, 0.0017 0.0010 0.0005 As,inA2 3.83 2.84 2.02 1.46: 0.691 0.25 Number of Rebars 9 8 7 6 5 4 Rebar size #7 #7 #6 #6 #5 #4 1As, actual, in A2 5.40 4.80 3.08 2.64 1.55 0.80 As OK I As OK As OK As OK As OK As OK F6A F7A F8A F9A F1O F9 Size, WxB 6.0 7.0 8.0 9.0 10.0 9.0 Area, ft-2 36.0 49.0 64.0 81.0 100.01, 81.0 Footing Thickness, in 42 42 42 42 30 27 Soil Bearing Capacity 4000 4000 4000 4000 37501 3625 P, allowable, kips 125 170 222 281 338 266 4131 Pu, allowable, P1.55 194 264 345 436 523 8' Column Size, in. 10 10 lQ 10 8 Effective Ftg, d, in. 38 38 38 38 26 23 Soils Pressure, ksf 5.4 5.4 5.4 5.4 5.2 5.1 Shear: Punching shear, kips 108 178 259 350 481 379 Vu, allowable, kips 1199 1199 1199 11991: 581 469 Vu OK Vu OK Vu OK Vu OK Vu OK Vu OK Beam shear, kips -3.1 -0.4 2.2 4.9 13.1 115, Vu, allowable, kips 37.5 37.5 37.5 I 37.5 25.6 22.7 Vu OK Vu OK Vu OK Vu OK Vu OK 1 Vu OK Bending: Mu, ft-kips 18.0 25.6i 34.6 44.9 57.0 44.2 Ku, psi 14 20 27 35 94 93 p 0.0002 0.0003 0.0004 0.0006 0.00l6 0.0016 As, jnA2 0.84 1.40 2.16 3.16 6.60 5.21 Number of Rebars 7 8 9 10 10 10 Rebar size 06 07 #7 #7 #8 #7 As, actual, in.A2 I 3.08 4.80 5.40 6.00 7.90 6.00 As OK AsOK AsOK As OK As AsOK C. I S ETABS 2016 16.2.1 12111/2019 SO rII I 4' -4, I --~ V. cio CR I I , I!, V.. c.s MilliporeSigma TIEDB 3-D View Axial Force Diagram (DLLL) [kip] n MilliporeSigma TI—Foundation n 12/12/2019 9:32 AM 3- 3' '-o'•' '- 3:- C-" ' I, • I. II SAFE 2016 16.0.1 Plan View - kip - ft fl fl MilliporeSigma TI—Foundation 12/1212019 9:33 AM E+3 ... . -0.60 I -0.70 -0.80 LL -0.90 -1.20. -1.30 -1.40 -1.50 -1.60 -1.70 -1.80 -1.90 SAFE 2016 16.0.1 Soil Pressure Diagram - (DLLL) (Ib/ft2) kip - ft n cm MifliporeSigma TI—Foundation 12/1212019 9:34 AM SAFE 2016 16.0.1 Soil Pressure Diagram - (AF2IAN) [Ib/ft2J kip - It n MilliporeSigma TI—Foundation n 12/12/2019 9:34 AM E+3 -. 0.50 0.25 0.00 -0.25 L0A -0.50 0 AD ) -1.00 Pax . -1.25 I -1.50 ,f <. -1.75 -2.00 -2.25 -2.50 -2.75 ---------------------------- SAFE 2016 16.0.1 Soil Pressure Diagram - (AF33AN) [Ib/ft21 kip - ft Ix C, MilliporeSigma TI—Foundation 12/1212019 9:35 AM L04L -0;; L 0 4 o.'1Q7 1. -1.00 -1.25 'Sk34.L S, -1.50 -2.00 -2.25 -2.50 -2.75 -3.00 SAFE 2016 16.0.1 Soil Pressure Diagram - (AF23BN) Ilb/ft21 kip - ft C \ (Th MilliporeSigma TI—Foundation 12/12/2019 9:35 AM ----------------- M. SAFE 2016 16.0.1 La,L Cr)D Q',D+ 4 gI. c0 scug%. C I Soil Pressure Diagram - (AF3313N) [Ib/1121 kip - ft fl n MilliporeSigma TI—Foundation 12/11/2019 5:17 PM @ urn c f .IJI Ca C -------------------------------------- I.•t- 8) SAFE 2016 16.0.1 Slab Strip Design - Layers A, B - Top and Bottom Reinforcement Area (Enveloping Flexural)[in2] kip - ft 0.l 0 n H MilliporeSigma TI—Foundation 12/12/2019 10:11 AM ------------------------------------------------------------------------ fr4 410 -4173.6 SAFE 2016 16.0.1 Strip Shear Force Diagram - (COMBI) [kip] kip-ft I - C MilliporeSigma TI—Foundation 12112/2019 10:11 AM SAFE 2016 16.0.1 Strip Shear Force Diagram - (COMB2) [kip] kip - ft 4 MiltiporeStgma TI—Foundation 12/12/2019 10:12 AM Q tk1 I!4 I, AV -------------------------------------- SAFE 2016 16.0.1 Strip Shear Force Diagram - (SC3IA) [kip] kip - ft 16 n MilliporeSigma TI—Foundation 12/12/2019 10:13 AM 0 G k!4 IJ It;!I SAFE 2016 16.0.1 Strip Shear Force Diagram - (SC32A) [kip] kip - ft 4 SAFE 2016 16.0.1 Strip Shear Force Diagram - (SC33A) [kip] kip - ft S n MilliporeSigma TI—Foundation 12/1212019 10:13 AM I..' (•s'..%,_)- j 4, ------------------------------------- ., ' G1 pm 4 MilliporeSigma TI—Foundation 12112/2019 10:14 AM 0 IJ 64 I - --------- SAFE 2016 2016 16.0.1 Strip Shear Force Diagram - (SC34A) [kip] kip - ft n n MilliporeSigma TI—Foundation 12/12/2019 10:14 AM o 0 ------------- :® SAFE 2016 16.0.1 Strip Shear Force Diagram - (COMBI) [kip] kip-ft C, (Th (Th n MilliporeSigma TI—Foundation 1211212019 10:14 AM 0 0 --------------- .1 SAFE 2016 16.0.1 Strip Shear Force Diagram - (COMB2) [kip] kip - ft C) fl MitliporeSigma TI—Foundation 12/12/2019 10:15 AM ------------------------------------------------------------------------- ---------------------------------------- Ir1 SAFE 2016 16.0.1 Strip Shear Force Diagram - (SC3I B) [kip] kip - ft n (Th fl MilliporeSigma TI—Foundation 1211212019 10:1 SAM G C'-o'. - 3' '(oat -vif CO Q SAFE 2016 16.0.1 Strip Shear Force Diagram - (SC32B) [kip] kip - ft 41 n pm I'm MilliporeSigma TI—Foundation 12112/2019 10:15 AM G ------------------------------------------------------------------------- ----------------------------------------------- 1:. ------------------------------------- SAFE 2016 16.0.1 Strip Shear Force Diagram - (SC3313) [kip] kip - ft (Th MilliporeSigma TI—Foundation 12112/2019 10:16 AM 0 0 3.... 0 SAFE 2016 16.0.1 Strip Shear Force Diagram - (SC348) (kipJ kip - ft SHEET_ti I loO G SS I PROJECT GSSI NO._____________ Structural Engineers .ENGR. DATE______________ - j4) t7.5 -• . - fZ...... Z.i. r kp.%4 € / I.ZL[t.1 YL pA c-. '7( go 2. C,.'. ''e '-j -- . I-N ;@ .? NNITN I I but WAY" i 1J: IrE' NMI WAX 5FAh to Tw Vo i1E IM2 (2130444(20) DlJJJi M4400 (34) 44144(241 J Nn24N (el—s 4.514 c.'4 - -. 0UIII2.I4- 0(1,0100 00) - -_0(1.11443 (III lUll)am (34) 04(3)4000 I 1114 0(1Ø414 001 44,u (30.-.-- N300404 (10 WgRial (34454(15 11110 __________ , .-. • 1.11 - IF 04n20011 (Ill-' 011)0100 IYI 0111112443 1301 (241 0(J10444 (34)1 I (2 1341 II I 0(130100001 1 '1 011 14(141 04A1143 4l— 00)11005 (4)me (,Jm&40 004 )W044 1351 444344(24) 4.11 L 'o' -+ll1 —4(G.r I.r I 11-04.1011 TIP II!JC&miftem fm 04IP3433 .11 . (24) 4.1 .._ 0428 (o3-. I 411131440(301 ru,011413 ,28)P 0(1(11005(341 .0414(341 d1434ft 28I.T II? Jit04lvb40ll0LJ 0(131 rows A24'" --- 4.111443 (vie ;.r 041111.13 N)1I4'4J0) hUNb013 (30) W 44,030044) (UsIAOS (28) (34) .4q ___ g_Im _ r 1 111130100J2I (11.3)003 ml \....1311004114 (ii) —04113.13(141 Nr)4wlY 04)12840(228 1. 04,01410(341 ' f(1W005 (34) 1•l •__•_• 443(3' __ - '.i• '• _ilvi ______ _________ _________ lllvbw NW443 (24) (2)13)844 (24) (2)141411(281 41(1124.0) (431_/ (U13b1 IYd IYII \ •l ' 1.14 • ll18 1 E3 104402(44110) 1.11• ' I lI12dC(M F(s) 11.0001(1(65. I - .TW.I4O._r (0000410. • $1447) 01)111005 00) A 0411)4013(28) 44)130311241 1•144 - , 1-Ill.' 1.1114 e.IV. L 04142840_1301_(1 (21)13413_1211 " 4400413DI) _01113)03_l:ei f 1.1V4 5 9-1—e.IV4 1'IV' (1440 Un01l4s8.00eL r0411(4) ç11143411(ll 11843(3? fkj.(34.1 .33430(30)4 (2)0(2840(301 NW I2IL 44)11844(28) 411)1143 (241 Nn282l—.. J-410.24(I) 1IlVj oIu7W - - 104(fJiihP J .•:,..I,_l uoP 841.4 - f 16,(. (3)D' •J).40 I28l4, _j.3.3• (4) 3; 1 't3 C (1 4 Cl' 1141 I ci Ic C 4 4 I J I__l 1 ii ii i I 12 j,AZL I1[ J1 iL 41 :{:... 'Eh:.-•-' I !-.• 2i5Pa.MlNG PLAN WIVAWMan"' for" - Y10443114000843014411118 NM 3144 T151301100444 12 SIR ws&Mj-OR '3?GOl4)1(!! 34(0004(3(6 II 1(0(3440031144 14&0C(00IP(01184000(M 4111)340)44600143.103 I. 8(14411413041 -M44011'CI11L W4404130. 01 )40001144(441100011054JI103 144111 WEXIAIL T0GO40f((2pi?4 ((1000) 4l343Q14c41104.44e 30110) 4404101 (2 f41 (M3343)44wt.j SV 08411003454 lIP 000010430) 5.41441(01 114400) 41)4)411 3G11400l11113J400F0011461102 SHEET r% i. OGSSI PROJECT___ GSSI No.____________ Structural Engineers ENGR. DATE_______________ : ;c Li1 A- - Li. i • ON Or GSS1 Structural Engineers SHEET '.9 PROJECT GSSI NO._____________ C ENGR. DATE_____________ ( C.4c-' c r V' 1? 1i)' 1.4 P. •1t (g )-/ I ? 11x ' ('•. 1 - .. .ç r\..VIA v '1 1_ I.-. '-, .t5s ~ rT~- n; C SHEET________ GSS I PROJECT GSSI NO.____________ Structural Engineers ENGR. DATE______________ I vzAA I I _i C — Ih .etS . I t dli - C 4 S I I . I • 4 . I • : 5 . . . C C ( C SHEET OGSSI PROJECT OSS! NO.____________ Structural Engineers ENGR. DATE_______________ $ I I jr 14 ..-I \1k6 tA lU9 • I • . I I I 4 I C aI-Milk NOVA Report of Preliminary Geotechnical Investigation Revised April 20, 2017 Lot 24, Carlsbad Oaks North Business Park NOVA Project No. 2016472 6.3.2 Seismic Design Parameters Table 6-1 (following page) provides seismic design parameters for the site in accordance with 2013 CBC and mapped spectral acceleration parameters found at: http:llearthguake.usgs.gov/designmaps/us/apolication.php. Table 6-1. Seismic Design Parameters. Site Class C Parameter Value Site Latitude (decimal degrees) 33.1422 Site Longitude (decimal degrees) -117.2546 Site Coefficient, Fa 1.000 Site Coefficient, F 1.397 Mapped Short Period Spectral Acceleration, Ss 1.037 Mapped One-Second Period Spectral Acceleration, S1 . 0.403 Short Period Spectral Acceleration Adjusted for Site Class, SMS 1.037 One-Second Period Spectral Acceleration Adjusted for Site Class, SM, 0.563 Design Short Period Spectral Acceleration, SDS 0.692 Design One-Second Period Spectral Acceleration, SD! 0.375 Peak Ground Acceleration, PGA 0.4 6.4 Corrosivity and Sulfates 6.4.1 Corrosivity Electrical resistivity, chloride content, and pH level are all indicators of the soil's tendency to corrode ferrous metals. Chemical tests were performed on representative samples by Clarkson Laboratory and Supply, Inc. of Chula Vista. The results of the testing are tabulated on Table 6-2. Table 6-2. Summary of Corrosivity Testing of the Near Surface Soil Paranieter . Ults. Value pH standard unit 7.9 Resistivity Ohm-cm 7,200 Water Soluble Chloride ppm 32 Water Soluble Sulfate ppm 1 27 Caltrans considers a site to be 'corrosive' if one or more of the following conditions exist for representative soil and/or water samples taken at the site: chloride concentration is 500 parts per million (ppm) or greater; sulfate concentration is 2,000 ppm or greater; or, the pH is 5.5 or less. 21 CC NOVA Report of Preliminary Geotechnical Investigation Lot 24, Carlsbad Oaks North Business Park Revised April 20, 2017 NOVA Project No. 2016472 Based on the Caltrans criteria, the on-site soils would be considered 'corrosive' to buried metals. Records of this testing are provided in Appendix C. These records include estimates of the life expectancy of buried metal culverts of varying gauge. 6.4.2 Sulfates and Concrete As shown on Table 6-2, the soil sample tested indicated water-soluble sulfate (SO4) content of 27 parts per million ('ppm,' 0.003% by weight). With SO4 < 0.10 percent by weight, the American Concrete Institute (ACI) 318-08 considers a soil to have no potential to be injurious to concrete by sulfate attack. Table 6-3 shows the Exposure Categories considered by ACI. Table 6-3. Exuosure Categories and Requirements for Water-Soluble SuIfqfp Exposure Category Class Water-Soluble Sulfate (SO4) In Soil (percent by weight) ct Type' (ASTM C1SO) Mal Water- Cement Ratio Miñ. t' (psi) Not SO SO4<0.10 - - - Moderate SI 0.10< SO4 <0.20 II 0.50 4,000 Severe S2 0.20 < SO4 2.00 V 0.45 4,500 Very severe S3 SO4 > 2.0 V + pozzolan 0.45 4,500 Adapted from: ACI 318-08, Building Code Requirements for Structural Concrete 6.4.3 Limitations Testing to determine several chemical parameters that indicate a potential for soils to be corrosive to construction materials are traditionally completed by the Geotechnical Engineer, comparing testing results with a variety of indices regarding corrosion potential. Like most geotechnical consultants, NOVA does not practice corrosion engineering. Should you require more information, a specialty corrosion consultant should be retained to address these issues. 6.5 Shallow Foundations 6.5.1 Footings Allowable Contact Stress ('Bearing Pressure') Spread footings established in the Unit 1 engineered fill may be used to support the building where designed to the parameters listed below. Minimum Dimensions. Footings should be at least 24 inches wide and embedded at least 24 inches below the lowest adjacent grade. Contact Stress. Continuous and isolated footings placed on properly compacted fill may be designed using an allowable (net) contact stress of 3,000 pounds per square foot (psi) based on the minimum embedment and width mentioned above. An allowable increase of 500 psf for each additional 12 inches in depth may be utilized, if desired. In no case should the maximum allowable contact stress should be greater than 4,000 psf. The maximum bearing value applies to combined dead and sustained live loads (DL + LL). The allowable bearing pressure may be increased by one-third when considering transient live loads, including seismic and wind forces. 22 C C 4 NOVA Report of Preliminary Geotechnical Investigation Revised April 20, 2017 Lot 24, Carlsbad Oaks North Business Park NOVA Project No. 2016472 Lateral Resistance. Resistance to lateral loads will be provided by a combination of friction between the soil and foundation interface and passive pressure acting against the vertical portion of the footings. For calculating allowable lateral resistance, a passive pressure of 300 psf per foot of depth and a frictional coefficient of 0.35 may be used. No reduction is necessary when combining frictional and passive resistance. Settlement If the structure supported on spread footings as recommended above will settle on the order of 1 inch or less, with about 80% of this settlement occurring during the construction period. The differential settlement between adjacent columns is estimated on the order of V2 inch over a horizontal distance of 40 feet. The estimated seismic settlement (on the order of V2 inch or less, as is discussed in Section 5) would occur in addition to this movement. 6.5.2 Conventional Slab-On-Grade Concrete slabs may be designed using a modulus of subgrade reaction of 110 pounds per cubic inch (pci) provided the subgrade is prepared as described in Section 6.1 of this report. From a geotechnical standpoint, NOVA recommends a slab-on-grade be a minimum 5 inches thick with No. 3 rebar placed at the center of the slab at 18 inches on center in each direction. The Structural Engineer should design the actual thickness and reinforcement based on anticipated loading conditions and expected settlements. ( Minor cracking of concrete after curing due to drying and shrinkage is normal and should be expected; however, concrete is often aggravated by a high water/cement ratio, high concrete temperature at the time of placement, small nominal aggregate size, and rapid moisture loss due to hot, dry, and/or windy weather conditions during placement and curing. Cracking due to temperature and moisture fluctuations should also be expected. The use of low-slump concrete or low water/cement ratios can reduce the potential for shrinkage cracking. To reduce the potential for excessive cracking, concrete slabs-on-grade should be provided with construction or weakened plane joints at frequent intervals. Joints should be laid out to form approximately square panels. 6.5.3 Underslab Moisture Barrier Ground supported slabs that support moisture-sensitive floor coverings or equipment may be protected by an underslab moisture barrier regardless of the alternative selected for ground floor slab design. Moisture barriers normally include two components, as described below. Capillary Break. A "capillary break" consisting of a thin (typically 4-inch thick) layer of compacted, well-graded gravel or crushed stone placed below the floor slab. This porous fill should be clean coarse sand or sound, durable gravel with not more than 5 percent coarser than the 1-inch sieve or more than 10 percent finer than the No.4 sieve, such as AASHTO Coarse Aggregate No. 57. Vapor Membrane. A minimum 15-mil polyethylene membrane, or similarly-rated vapor barrier, should be placed over the porous fill to preclude floor dampness. Membranes set below floor slabs should be rugged enough to withstand construction. A minimum 15 mil low permeance ç vapor membrane should meet or exceed the Class A rating as defined by ASTM E 1745-97 and have a permeance rating less than 0.01 perms as described in ASTM E 96-95 and ASTM E 154- 23 12/11/2019 '3s 1613-1, — — I8 257 ts Q) "— % I ns VIM' w ( fl$f•t31' -L; ETABS 2016 16.2.1 .ti_. c4 < )% viI t% F1J .''f IJ C yJ \G MilliporeSigma Tl_Foundation.EDB Plan View - Base - Z = 0 (It) IOGSSI lluieers Project: MilliporeSigma TI Engineer: TZ Sheet:................................ GSSI No 19209A DateS.................................. Diaphragm Seismic Lateral Load Analysis Check Diaphragm Shear Capacity. !12h1.4h/170.67 =1.605 T X -X Direction (Transverse Direction): WI Wp1 LW1 F1,1 IFI,x Fpx Fpx.mjn Fpx.max Level (kips) (kips) (kips) (kips) (kips) (kips) (kips) (kips) (used) (used) 3605 3605 766.9 766.9 766.9 498.3 996.5 766.9 766.9 VL = ". Note 71 See next page for diaphragm shear capacity. . *- 3 = ?Lj D.C.. Chord Analysis ä 2nd Floor: 0.691 L= 189.5 ft. 1.00 M = (pF)LI8 = 18164 k-ft 1.0 p = 1.0 D = 170.67 ft. (Per ASCE7-0512.3.4.1) T, = MID = 106.4 kips Fp,mjn = 0.2SosIWpx (1.k' £) A3 = TIøf, = 1.97 in.2 - _'•$• I PflI3X —0.4SDsMp,s Use: ti F=WEF1 IEW1 S,.r A= 2.17 in.2 OK 4-*Jdc Mezzanine 3605 Notes: SOS 1= p11= Py= 1.0 (Per ASCE7-05 § 12.3.4.1) OK Notes: 1). S= 0.691 1 1.00 p 1.0 Fp,min = 0.2S05IW Fp.max = 0.4SDSlWpx F =WF1 / YWI Chord Analysis 01 Mezzanine: L = 173.2 ft. M = (pF)LI8 = 16601 k-ft D= 189.5 ft. 1,, = MID = 87.6 kips = TJøç = 1.62 in.2 Use: 6#5 As 1.86 in.2 O GSS I Project: MilliporeSigma TI Sheet: ................................ structural Engineer Engineer: TZ GSSI No 19209A Date................................... Diaphragm Seismic Lateral Load Analysis Check Diaphragm Shear Capacity. [(766.9"/2)11.4]I(189.5') = 1.445 klf - = 1.461 klf, OK Y -Y Direction ( Longitudinal Direction): W1 W91 EWi Fly KF,,y FIRY - Fpy.mln Fpy.max FPY pyFpy Level (kips) (kips) (kips) (kips) (kips) (kips) (kips) (kips) (used) (used) Mezzanine 3605 3605 3605 766.9 766.9 766.9 498.3 996.5 766.9 766.9 4PLW311orW3FORMLOKTM 51/2 in. TOTAL SLAB DEPTH ".— o Light Weight Concrete 1 Hour Fire Rating Maximum Unshored Clear Span (ft-in.) Concrete Properties 0 Deck Number of Deck Spans Density Uniform Weight Uniform Volume Compressive 0 Gage 1 2 3 (pcf) (psi) (yd31100ft2) Strength, V.(psi) 22 10-7° 11.6 11-11" 110 36.7 1.235 3000 21 11'-6" 12'-4' 12-9" Notes: 12-1 134 13'-6' Volumes and weights do not include allowance for deflection. Weights are for concrete only and do not include weight of steel deck. 19 12-6° 14-5° 14-8 Total slab depth is nominal depth from top of concrete to bottom of steel deck. 18 12'-l? 15-8' 154. 16 13-7° 16-11 15'-11" 0 Shoring is required for spans greater than those shown above. See Footnote I on page 69 for required bearing. Allowable Superimposed Loads (psf) I Deck Number of Span (ft-In.) I Gage Deck Spans 8.0 8.6" 9.0" 9'-6° 10'-0' 10-6" 11'-0 I1'-6" 12.0" 12'-6" 13-0" 13-6" 14-0" 154" 16-4- 1 278 251 228 209 191 176 I 128 116 106 96 88 80 74 62 52 22 2 278 251 228 209 191 176 163 152 106 96 88 80 74 62 52 0 3 278 251 228 209 191 176 163 152 106 96 88 80 74 62 52 1 300 271 247 225 207 191 177 164 117 107 98 90 82 69 59 21 2 300 271 247 225 207 191 177 164 153 1 107 98 90 82 69 59 ( 3 300 271 247 225 207 191 177 164 153 143 98 90 82 69 59 1 321 290 264 241 221 204 189 175 163 I 117 107 98 90 77 65 20 2 321 290 264 241 221 204 189 175 163 152 143 1 98 90 77 65 3 321 290 264 241 221 204 189 175 163 152 143 134 I 90 77 65 1 363 328 298 273 250 231 214 198 185 173 I 125 116 107 91 78 19 2 363 328 298 273 250 231 214 198 185 173 162 152 138 91 78 3 363 328 298 273 250 231 214 198 185 173 162 152 138 91 78 1 400 132 122 105 90 I 364 331 302 277 256 237 220 205 191 I 143 18 2 400 364 331 302 277 256 237 220 205 191 176 161 146 119 90 3 400 364 331 302 277 256 237 220 205 191 176 161 146 119 90 1 400 400 395 361 332 306 283 263 243 222 201 179 I 152 131 108 I 16 2 400 400 395 361 332 306 283 263 243 222 201 179 161 131 108 3 400 400 395 361 332 306 283 263 243 222 201 179 161 131 F 108 See footnotes on page 69. Shoring required in shaded areas to right of heavy line. I Allowable Diaphragm Shear Strengths, q (plf) Attachment Deck Span (ft-In.) Pattern Gage 84. 84" 91-0" 9-6" 10-0" 10-6" iv-r 11.6 12-0 121.6" 13.0" 13-6 14-0" 15-0" 16-0° I 22 q 1439 1427 1417 1407 1398 1391 1384 1377 1371 1366 1361 1356 1352 1344 1337 21 q 1439 1426 1414 1403 1394 1385 1378 1370 1364 1358 1352 1347 1342 1334 1326 20 q 1441 1427 1414 1402 1392 1383 1374 1367 1360 1353 1347 1341 1336 1327 1319 I 3613 19 q 1452 1435 1420 1407 1395 1384 1374 1365 1357 1349 1342 1335 1329 1318 1309 18 q 1468 1449 1432 1416 1403 1390 1379 1369 1359 1351 1343 1335 1328 1316 1305 16 q 1512 1488 1467 1448 1431 1415 1401 1388 1376 1366 1356 1346 1338 1322 1309 22 q 1541 1519 1500 1482 1466 1452 1439 1427 1416 1406 1397 1388 1380 1366 1353 4 21 q 1562 1538 1516 1497 1479 1463 1449 1436 1424 1413 1403 1393 1384 1369 1355 20 q 1584 1557 1534 1513 1494 1476 14.61 1447 1433 1421 1410 1400 1391 1373 1358 3614 4 19 q 1635 1604 1576 1551 1529 1509 1491 1474 1459 1445 1432 1420 1408 1388 1371 18 q 1688 1652 1621 1593 1568 1545 1524 1505 1487 1471 1457 1443 1430 1407 1387 4 16 q 1807 1763 1724 1688 1657 1628 1602 1578 1557 1536 1518 1501 1485 1456 1431 See footnotes on page 69. 76 • VFS - REVISED 61112016 VERCO DECKING, INC. www.vercodeck.com Project: MilliporeSigma TI Sheet ................................. 0 skuctutai En5csits - . ....... !!k 1,..# Engineer: TZ . GSSI No. 19209A c 4 Collector (Drag) Force Calculation Mezzanines (Strength Level) Braced Frame @ Grid Line D in 'f-direction ill-ti:-,'1m u1io 9'vJVP DV r', Ak- 2.2 5.4 Span I Span 2 Span 3 Total lateral force F = 411.6 kips Total length L = 194.0 ft. Average shear q = 2.1 kips/ft. Drag Axial Force Span Length Grid Distance Hurl. Force Ave. Shear Number (ft.) Line (ft.) @ wall @ wall (klps) (kips) 0.0 Span 1 88.5 2.2 ( 88.5 0.0 187.T 193.8 -6.O Span 2 58.3 146.8 0.0 117.7iL 217.8. .100.I rte Span 3 47.2 5.4 194.0 0.0 0.0 I Note: p = I for collector elements per 2006 IBC 12.3.4.1 Project: MilliporeSigma TI Engineer: TZ Sheet: .......... All ............... GSSiNo 19209A Dates .................................. Mo w 392.0 k-ft QE = 110.3 kips (Strength Level) ML= 337.8 k-ft km 1.0 kLJr. = 53.9 kL/r1, • 62.3 Governs! = P,lfl = 683 kips (AISC Spec E.3) P = 154.4 kips P,1 = Tr2Elj(kL)2 = 2952 ksi 131 = CJ(1-aPIP61) = 1.1 Lel Cmx = 1.0 (AISC Table C-CZ 1) F, = TT2E1(kLlr)2 73.69 ksi Check Steel Beam Collector (Drag Element) (AISC 10- ASO) for Load Combinations with Overstrength Factor Location: @ Grid Line D Collector Data: W 20103 A = 30.3 in? Ix = 3000 In. r 10 in. r= 1.99 In. L = 7.03 ft. L= 21.9 ft. Mezzanine 5D8 = 0.691 Unsupported Length: L = 44.9 ft. (strong axis) Unsupported Length: L. = 10.3 ft. F= 50 ksi E a 29000 ksl = 1.67 The unfactored gravity loads and moments: LoadComb.(5): 1.097 DL+ 1.4 Q+ LL Do w 2 (Overstrength amplification factor) = 1.2 (Allowable stress increase factor per ASCEISEI 7-10 §12.4.3.3) 469 k4t Since L < Lb < L, = t1k-ft (AISCASD Table 3-2 or Table 3-10) PIØIP,) + (8l9)(MJ(MJ1 0.73 C 1.0 OK OGSSI Project: MiltlporeSlgma TI Sheet:... Stucw'.I Engineer: TZ GSSI No. 19209A C) . 0at8................................... Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line D Collector Data: W201103 A = 30.3 in.2 3000 in.3 r= 10 in. r,= 1.99 in. L= 7.03 ft. L,= 21.9 ft. Mezzanine SDS = 0.691 Unsupported Length: L = 44.9 ft. (strong axis) Unsupported Length: L. = 10.3 ft. F, = 50 ksl E = 29000 ksl O 1.67 The unfactored gravity loads and moments: Mo= 392.0 k-ft Oz = 110.3 kips (Strength Level) ML= 337.8 k-ft It a 1.0 kLjr. a 53.9 kL1r, = 62.3 Governs I P = P/DC = 683 kips (AISC Spec E.3) P. 115.8 kips P01 = w2Eij(kL)2 = 2952 ksl B1 = CJ(1-aPlP.1) (a = 1.6 for ASD) 1.1 C = 1.0 (AISC Table C-C2. 1) F0 = w2EI(kLlr)2 = 73.69 ksl Load Comb. (6): 1.073 DL + 1.050 QE + 0.75 LL fl,, = 2 (Overstrength amplification factor) = 1.2 (Allowable stress increase factor per ASCEISEI 7-10 §12.4.3.3) M 719 k-ft Since L < Lb < L M== 639 k-ft (AISC ASD Table 3-2 or Table 3-10) PI(PP0) + (819)IMjfftMjI = 1.0 To 1.0 OK = 138.3 k-ft QE = 81.4 kips (Strength Level) ML= 122.2 k-ft It = 1.0 kLIr = 36.9 kL1Jr., = 83.6 Governs! P = PJOC = 291 kips (AISC Spec £3) P= 114.0 kips P,1 = ir2ElJ(kLj2 3419 ksi B1 = CJ(1.aPlP,1) = 1.1 101 Cam = 1.0 (AISC TWO C-C2. 1) F. = w2E1(kLlr)2 40.93 ksl fOGSSI Project: MililporeSigma TI 5tiuctw•IEAgHOst. Engineer: TZ GSSI No 19209A 0 Date: .................................. Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line D Collector Data: W 2055 A 16.2 in.2 = 1350 In.3 r a 9.11 in. ry w 1.34 In. L = 4.73 ft. L, a 13.9 ft. Mezzanine SOS C 0.691 Unsupported Length: L = 28.0 ft. (strong axis) Unsupported Length: L. = 9.3 ft. F = 50 ksi E = 29000 ksi 0= 1.67 The onfactored gravity loads and moments: LoadComb.(5): 1.097 DL+ 1.4 QE LL 0= 2 (Overstrength amplification factor) ON 1.2 (Allowable stress increase factor per ASCEISEI 7-10 §12.4.3.3) Mx = 160 k-ft Since Lb < L, Mc, = k-ft (AISCASD Table 3-2 or Table 3-10) 0 Pi(PP) + (8191MJ(PMc,j] = 0.77 1.0 OK MD = 138.3 k-ft Oz = 81.4 kips (Strength Level) ML W 122.2 k-ft k a 1.0 kLJr, 36.9 kLIr, = 83.6 Governs I = PJOC = 291 kips (AISC Spec E.3) P = 85.5 kips Pet = n2EIJ(kLj2 = 3419 ksi B, = CJ(1.aPlP,) (a = 1.6 forASD) = 1.0 0 Cmx = 1.0 (AISC Table C-C2. 1) F = ir2El(kLlr)2 = 40.93 ksi OGS51 Project: MllliporeSigma Ti aivtuiailnginssys Engineer TZ GSSI No 19209A C:) Date: .................................. Check Steel Beam Collector (Drag Element) (AISC 10 - ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line D Collector Data: W 2055 A a 16.2 in.2 In = 1350 in.3 r= 9.11 in. r a 1.34 In. LP = 4.73 ft. L, = 13.9 ft. Mezzanine SOS, 0.691 Unsupported Length: L a 28.0 ft. (strong axis) Unsupported Length: L. = 9.3 ft. F=. 50 ksi E 29000 ksi De w 1.67 The unfactored gravity loads and moments: Load Comb. (6): 1.073 DLf 1.050 QE 0.75 LL 2 (Overstrength amplification factor) = 1.2 (Allowable stress increase factor per ASCE!SEI 7-10 §12.4.3.3) Mx no 250 k-ft Since L < Lb < L Men = 266 k-ft (AISC ASD Table 3-2 or Table 3-10) C PI(pP) + (8I9)[MJ(pMJ] = 0.9 1.0 GSSI0 &A Project: MilllporeSigma TI Sheet•................... SI,,.' (IIIIMSIS Engineer: TZ GSSI No 19209A 0 Date: .................................. Check Steel Beam Collector (Drag Element) (AISC 10 - ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line D Mezzanine Collector Data: W 241162 Sos o 0.691 A 18.2 in.2 Unsupported Length: L1 = 32.0 ft. (strong axis) I.=,1550 In .3 Unsupported Length: L. = 8.0 ft. r = 9.23 in. r = 1.38 in. F, = 50 ksi L 0 4.87 ft. E = 29000 ksi L,= 14.4 ft. 0. = 1.67 The unfactored gravity loads and moments: MDM 169.4 k-ft QE = 66.3 kips (Strength Level) ML= 150.7 k-ft It = 1.0 Cmx = 1.0 (AISC Table C-C2. 1) kL/r, = 41.6 F• = rr2EI(kLlr)2 kLJr, a 69.6 Governs! = 59.08 ksi P.= PJC = 382 kips (AISC Spec E.3) P = 92.8 kips P.1 = w2Elj(kLij2 = 3006 ksi B, = Cj(1-aPlP.1) = 1.1 Load Comb. (5): 1.097 DL+ 1.4 QE LL 00 2 (Overstrength amplification factor) = 1.2 (Allowable stress increase factor per ASCE/SEI 7-10 §12.4.3.3) M 195 k-ft Since L c Lb < L, CK = :t. 'kft (AISC ASD Table 3-2 or Table 3-10) PI(ØP) + (819)tMj(PM)] = 0.64 1.0 OK Ee F- Project: MilliporeSlgma TI Sheet fOGSS1 Engineer: Tz GSSI No. 19209A Date................................... Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line D Collector Data: W 2062 A= 1.2 in.2 1. = 1550 in? r= 9.23 in. r = 1.38 In. L 4.87 ft. L, = 14.4 ft. Mezzanine SOS = 0.691 Unsupported Length: L, = 32.0 ft. (strong axis) Unsupported Length: L = 8.0 ft. Fy n 50 ksi E = 29000 ksl fl a 1.67 The unfactored gravity loads and moments: M0 = 169.4 k-ft QE = 66.3 kips (Strength Level) MLM 150.7 k-ft k= 1.0 kLJr, 41.6 kL1Jr = 69.6 Governs! =Pjar = 382 kips (AISC SpecE.3) P = 69.6 kips P,1 = ir2Elj(kLj2 3006 ksl 131 M C,J(1-aPlP.1) (a = 1.6 for ASD) = 1.0 Cmx = 1.0 (AISC Table C.C2. 1) F, = w2EI(kLlr)2 = 59.08 ksl Load Comb. (6): 1.073 DL+ 1.050 QE 0.75 LL no = 2 (Overstrength amplification factor) = 12 (Allowable stress Increase factor per ASCEISEI 7-10 §12.4.3.3) M 306 k-ft Since L < Lb < I-, M = 332 k-ft (AISC ASD Table 3-2 or Table 3-10) C PROP,) + (8l9)[Mj(M,1JJ 0.8 1.0 OK ETABS 2016 16.2.1 11/20/2019 0 0 3.4• . 39 4.4 4.8 S S.' •5. 0 D 0 0' .'44/\ MlUiporeSigma TI.EDB Elevation View - D Axial Force Diagram (EQY2) [kip) ETABS 2016 16.2.1 1112012019 MilhiporeSigma TI.EDB Elevation View - D.1 Moment 3-3 Diagram (Dead) [kip-ft) C ETABS 2016 16.2.1 11/20/2019 I manadw . z MilliporeSigma TLEDB Elevation View - 0.1 Moment 3-3 Diagram (Live) [kip-ftj O GSSI Project: MilliporeSigma TI Sheet: ............ Stii.ctuaIgronsere Engineer. TZ GSSI No 19209A C) Date................................... Collector (Drag) Force Calculation Mezzanine (Strength Level Braced Frame © Grid Line G.4 in Y- direction - - Si.. 2.2 5.3 Span Span Span Total lateral force F = 394.5 kips Total length L = 185.0 ft. Average shear q = 2.1 klpslft. Span Length Grid Distance Hod. Force Ave. Shear Drag Axial Force Number (ft.) Line (ft.) @ wall @ wall (kips) (kips) (klft) 0.0 Span 1 25.3 2.2 25.3 0.0 (° 53.9 14 202.9 -149.0 Span 71.2 96.4 0.0 2.81% 1913 -188.9 Span 3 88.5 5.3 185.0 0.0 0.0 (1 Note: p = 1 for collector elements per 2006 IBC 12.3.4.1 fOGSS1 Project: MifliporeSigma TI suuctu'alenaJw$.s Engineer: TZ GSSI No 19209A TD Datr................................... Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line 0.4 Collector Data: W 24x84 A = 247 in.2 i= 2370 In.3 r a 9.79 In. r = 1.95 in. L 0 6.89, ft. L,= 20.3 ft. Mezzanine 5DS = 0.691 Unsupported Length: L = 42.2 ft. (strong axis) Unsupported Length: L. = 11.0 ft. F, = 50 ksi E = 29000 ksi fl= 1.67 The unfactored gravity loads and moments: MD = 331.9 k-ft QE = 69.0 kips (Strength Level) ML= 290.9 k-ft It a 1.0 kLJr, a 51.7 kL,Jr, 67.7 Governs! = PJO = 529 kips (AISC Spec E.3) P = 96.6 kips P,1 a n2Eij(kLj2 = 2646 Its! B1 = CJ(1-uPIP.1) = 1.1 Cm* M 1.0 (AISC Table C-C2. 1) F, = n2E!(kLlr)2 62.40 ksi E* LoadComb.(5): 1.097 DL+ 1.4 Q5+ LL = 2 (Overstrength amplification factor) = 1.2 (Allowable stress increase factor per ASCEISEI 7-10 §12.4.3.3) Mx 387 k-ft Since L < Lb 'C L. me ik-ft (AISC ASD Table 3-2 or Table 3-10) PIØIP,) + (8I9)[MjWM,JJ = 0.73 1.0 OK The unfactored gravity loads and moments: MD = 331.9 k-ft QF = 69.0 kips (Strength Level) ML 290.9 k-ft k= 1.0 kLJr= 51.7 kLIr, = 67.7 Governs! Pc = PJOc = 529 kips (AISC Spec E.3) P= 72.5 kips P,1 = u2EIJ(kL)2 = 2646 ksi 131= CJ(1-aP1P.1) (a = 1.6 for ASD) = 1.0 Al C, = 1.0 (AISC Table C-C2. 1) F. = n3El(kL/r)2 = 62.40 ksi XG iOGSSI Project: MllliporoSigma TI Sheet.3'.......... Engineer: TZ GSSI No. 19209A 0 Date................................... Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line GA Collector Data: W 2*84 A = 241 in.2 Ix = 2370 In.3 r 9.79 in. r,= 1.95 In. L = 6.89 ft. L, a 20.3 ft. Mezzanine 8D8 =0.691 Unsupported Length: L = 42.2 ft. (strong axis) Unsupported Length: L, • 11.0 ft. F a 50 ksl E= 29000 ksi fl= 1.67 Load Comb. (6): 1.073 DL + 1.050 QE + 0.75 LL ft0 = 2 (Overstrength amplification factor) 1.2 (Allowable stress Increase factor per ASCEISEI 7-10 §12.4.3.3) M 600 k-ft Since L1 < Lb < L M. = 492 k-ft (AISC ASD Table 3-2 or Table 3-10) C) P4131') 4 (819)tMjWM0Jj sk Project: MilliporeSigma TI Shoot: ............. OGS51 tnactu.t(nWns... Engineer: TZ GSSI No. 19209A Date................................... Check Steel Beam Collector (Drag Element) (AISC 10. ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line GA Collector Data: W 2076 A= 22.4 In? = 2100 In.3 r= 9.69 In. r,5 1.92 in. L = 6.78 ft. L, 19.6 ft. Mezzanine SDS = 0.691 Unsupported Length: L1 37.3 ft. (strong axis) Unsupported Length: L. = 9.3 ft. F= 50 ksi E a 29000 ksl fl0 = 1.67 The unfactored gravity loads and moments: Mom 248.0 k-ft QIE = 119.3 kips (Strength Level) (D ML: 2202 k-ft kLJr, = 46.2 kLblrJ = 58.3 Governs I = PJOr = 523 kips (AISC Spec E.3) P = 167.0 kips P,1 = u'2EIj(kL)2 = 2995 ksi 131 = CJ(1-aP1P.1) = 1.1 C 1.0 (AISC Table C-C2. 1) F, = w2El(kLlr)2 = 84.13 ksi Load Comb. ( 5 ): 1.097 DL+ 1.4 QE LL Do = 2 (Overstrength amphfication factor) = 1.2 (Allowable stress Increase factor per ASCEISEI 7-10 §12.4.3.3) M 299 k-ft Since LP < Lb < = .iéiik-ft (AISCASD Table 3-2 or Table 3-10) 0 PROP.) (819flMj(ØMcJ1 OK MO= 248.0 k-ft QE = 119.3 kips (Strength Level) MO 220.2 k-ft It = 1.0 kLJr, = 46.2 kLJr, = 58.3 Governs I =Pr 0C = 523 kips (AISC Spec £3) P = 125.3 kips P.1 = w2EIJ(kL)2 = 2995 ksl 1310 CJ(1.aPIP.1) (a = 1.6 for ASD) = 1.1 0 C = 1.0 (AISC Table C-C2. 1) rT2EI(kLfr)2 84.13 ksi foGSSJ Project: MllilporeSigma TI Sheet ..................1............... SDuctu'ol 040' Engineer: TZ GSSI No 19209A C.) 0ate................................... Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line GA Collector Data: W2076 A = 22.4 In.2 = 2100 In.3 r = 9.69 in. r = 1.92 In. L a 6.78 ft. L, = 19.6 ft. Mezzanine S S a 0.691 Unsupported Length: L = 37.3 ft. (strong axis) Unsupported Length: L. = 9.3 ft. F,= 50 ksl E= 29000 ksl Q 1.67 The urifactored gravity loads and moments: Load Comb. (6): 1.073 DL + 1.050 Qe + 0.75 LL = 2 (Overstrength amplification factor) = 1.2 (Allowable stress increase factor per ASCE/SEI 7-10 §12.4.3.3) M = 462 k-ft Since L C Lb < Lr = 461 k-ft (AISC ASD Table 3-2 or Table 3-10) PI(P) + (8I9)[MJ(Mj] 0.9 OK MD = 258.4 k-ft GE = 79.4 kips (Strength Level) ML= 229.5 k-ft It = 1.0 kLJr 46.1 kL,lrd, = 58.2 Governs! = PJOC m 524 kips (AISC Spec E.3) P 111.2 kips P,1 w2EiJ(kL3)2 = 3008 ksl B1 = CJ(1-aP/P,1) = 1.1 01 Cmx = 1.0 (AISC Table c-C2. 1) F, = ir2El(kLlr)2 84.50 ksl Project: MllilporeSlgma TI 'i"OGSSI UUCtUI$I gaglaseft Engineer TZ GSSI No. 19209A Date: .................................. Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line G.4 between 4.6 & 5.3 Mezzanine Collector Data: W 24'76 Ss = 0.691 A = 22.4 In? Unsupported Length: L 37.2 ft. (strong axis) 1= 21OO In.3 Unsupported Length: L,= 9.3 ft. r= 9.69 in. r m 1.92 in. F= 50 ksi L = 6.78 ft. E = 29000 Its! L, 0 19.6 ft. Q= 1.67 The unfactored gravity loads and moments: 0 LoadComb.(5): 1.097 DL+ 1.4 QE LL 00 = 2 (Overstrength amplification factor) = 1.2 (Allowable stress increase factor per ASCEISEI 7-10 §12.4.3.3) M 301 k-ft Since L7 c Lb < L. Mu = Nk-ft (AISCASD Table 3-2 or Table 3-10) PI(PP,) + (819)[MJ(ØMj) = 0.66 1.0 OK 0 fOGSSI Project: MilliporeSigma Ti Stiucluisi Engineer: TZ GSSI No 19209A Date: .................................. Check Steel Beam Collector (Drag Element) (AISC 10- ASD) for Load Combinations with Overstrength Factor Location: @ Grid Line 0.4 between 4.6 & 5.3 Mezzanine Collector Data: W 2476 803 M 0.691 A = 22.4 In.2 Unsupported Length: L1 = 37.2 ft. (strong axis) = 2100 in.0 Unsupported Length: L. = 9.3 ft. r 9.69 in. r. = 1.92 in. F = 50 ksl L = 6.78 ft. E a 29000 ksl L, = 19.6 ft. fl= 1.67 The unfactored gravity loads and moments: MD a 258.4 k-ft QE = 79.4 kips (Strength Level) ML = 229.5 k-ft k= 1.0 kLjr, = 46.1 kL11lr1 = 58.2 Governs! PC = P,IOC = 524 kips (AISC Spec £3) P = 83.4 kips = w2EIj(kLj2 • 3008 ksl B, = C,j(1-011R01) (a = 1.6 for ASD) 1.0 C, = 1.0 (AISC Table C-C2. 1) F. = n2EI(kUr)2 = 84.50 ksi Load Comb. (6): 1.073 DL + 1.050 QE + 0.75 IL Do • 2 (Overstrength amplification factor) 1:2 (Allowable stress Increase factor per ASCE/SEI 7-10 512.4.3.3) M= 470 k-ft Since L .c Lb < L, Mu = 461 k-ft (AISC ASD Table 3-2 or Table 3-10) Pl(pP) + (8I9)[MJ(pMj] = 0.9 1.0 OK ETABS 2016 16.2.1 11/20/2019 C 27 .28 .34 39 $34 04 F] C MilUporeSigma TI.EDB Elevation View - G.4 Axial Force Diagram (EQYI) (kip] 0 0 0 ETABS 2016 16.2.1 1112012019 2.2. 2.6 3.4 3.9 44, 4.8 53, GA G.4; GA. 04 Ga G,4 64 -- - I) MilliporeSigma TLEDB Elevation View - G.4 Moment 3-3 Diagram (Dead) [kip-ft] CI 8 .a6 .2.9 ETABS 2016 16.2.1 1112012019 2.2. 2,8 34 3.9 4,4 48 . 53 t Gd GA 0.4 • G.4 04 G.4 04 -1.39M C4 MilliporeSigma TI.EDB Elevation View - G.4 Moment 3-3 Diagram (Live) [kip-ft) .5 2.6 1 /Y 7/\J3A