HomeMy WebLinkAboutSUP 06-11; ROBERTSON RANCH PARK; DRAINAGE STUDY FOR ROBERTSON RANCH PA 12 & 13; 2007-09-24DRAINAGE STUDY
FOR
ROBERTSON RANCH
PA 12 & 13
SUP 06-11
Job No. 06-1172/5
February 23, 2007
Revised: September 24, 2007
1t::
Prepared by:
O'DAY CONSULTANTS, INC.
2710 Loker Avenue West
Suite 100
Carlsbad, California 92010-6603
Tel: (760) 931-7700
Fax: (760) 931-8680
K%sen RCE 60223
Exp. 06/30/08
RECORD COPY
jZiLoO -
Initial Date
iL
60223
6I30108
OF CAL* =
/$7 I
Date
j
DRAINAGE STUDY
FOR
ROBERTSON RANCH
PA 12 & 13
SUP 06-11
Job No. 06-1172/5
February 23, 2007
Revised: September 24, 2007
Prepared by:
O'DAY CONSULTANTS, INC.
2710 Loker Avenue West
Suite 100
Carlsbad, California 92010-6603
Tel: (760) 931-7700
Fax: (760) 931-8680
~ /7 - 7/0
Keith Hansen RCE 60223 Date
Exp. 06/30/08
TABLE OF CONTENTS
SECTION 1
INTRODUCTION
Purpose of Study
Scope
Facilities Proposed in City of Carlsbad Master Plan of Drainage
Proposed Detention Basins
HYDROLOGY
Modified Rational Method Description
Program Process
CONCLUSION
Existing Condition Basin Exhibit
Proposed Condition Basin Exhibit
SECTION 2
Vicinity Map
Runoff Coefficients
Isopluvial Maps
100-Year, 6-Hour
100-Year, 24-Hour
Intensity-Duration Design Chart - Figure 3-1
Overland Time of Flow Nomograph - Figure 3-3
Maximum Overland Flow Length & Initial Time of Concentration - Table 3-2
Nomograph for Determination of Tc for Natural Watersheds - Figure 3-4
San Diego County Soils Interpretation Study
SECTION 3
Hydrology
100-Year Analysis
Proposed Condition
SECTION 4
Temporary Desiltation Basins
POCKET
Exhibit A - Proposed Condition Drainage Map
APPENDIX
Hydrologic and Hydraulic Analyses for Robertson's Ranch dated February 20,
2006 by Wayne W. Chang, MS, PE
INTRODUCTION
Purpose of Study
This preliminary drainage study was prepared to determine proposed runoff quantities for
Planning Areas 12 & 13 within the Robertson Ranch West Project for the purposes of sizing
drainage structures.
Scope
This study analyzes the 100-year flow for proposed conditions of the site, which is a future park
and school.
Runoff from this project is combined with runoff from the larger Agua Hedionda watershed
before leaving the site through the 8'x8' RCB under El Camino Real. Refer to the February 20,
2006 study titled, Hydrologic and Hydraulic Analyses for Robertson's Ranch prepared by
Wayne Chang (Appendix) for pre- and post- developed conditions.
HYDROLOGY
The hydrologic analyses are being performed according to the 2003 San Diego County
Hydrology Manual. The overall drainage area is less than one square mile and includes junctions
of independent drainage systems; therefore, the Modified Rational Method is being used for the
analyses. The Modified Rational Method is applicable to a 6-hour storm duration because the
procedure uses Intensity-Duration Design Charts that are based on a 6-hour storm duration. In
some cases, the 6-hour precipitation must be adjusted based on the ratio of the 6- to 24-hour
precipitation. This will be performed where necessary.
Modified Rational Method Description
The modified rational method, as described in the 2003 San Diego County Flood
Control/Hydrology Manual, is used to estimate surface runoff flows.
The basic equation: Q = CIA
C = runoff coefficient (varies with surface)
I = intensity (varies with time of concentration
A = area in acres U
The proposed condition for planning area (PA) 12 :islow density residential)so a runoff
condition for PA 13is medium density residential' and coefficient of 0.41 is used. The proposp
is estimated to be between 4.3 and 7.3 dwelling units per acre so a runoff coefficient of 0.55 is
used. For the 100-year design storm, the 6-hour rainfall amount is 2.6 inches and the 24-hour
rainfall amount is 4.3 inches. San Diego County Rational-Hydrology Program Package Version
7.4, developed by CivilCADD/CIVILDESIGN Engineering Software 0 (1991-2004), was used
to determine the rainfall amount, times of concentration, corresponding intensities and flows for
the various hydrologic basins within this model. The program was then used to route flows
through drainage conveyance structures and confluence basins per the modified rational method.
Program Process
The Rational-Hydrology program is a computer-aided design program where the user develops a
node link model of the watershed. Developing independent node link models of each interior
watershed and linking these submodels together at confluence points create the node link model.
The program has the capability of performing calculations for 11 different hydrologic and
hydraulic processes. These processes are assigned and printed in the output. They are as
follows:
Initial sub-area input, top of stream.
Street flow through sub-area, includes sub-area runoff.
Addition of runoff from sub-area to stream.
Street inlet and parallel street and pipeflow and area.
Pipeflow travel time (program estimated pipe size).
Pipeflow travel time (user-specified pipe size).
Improved channel travel - Area add option.
Irregular channel travel time - Area add option.
User-specified entry of data at a point.
Confluence at downstream point in current stream.
Confluence of main streams.
CONCLUSION
The results of the preliminary analysis of the Robertson Ranch PA 12 & 13 Drain system are
presented below.
TABLE1 -1
PROPOSED CONDITIONS
100YEAR STORM EVENT
AREA
BASIN (Acres) SOIL C Q (cfs)1 V (fps)2
12 13.41 D 0.41 15.5 17.3
13 6.62 D 0.55 13.0 11.8
I: cfs = cubic feet per second
2: fps = feet per second
G:\OI I0I4\HydmlogyWA I2& 1 3PA 12-13-HYD 4th.doc
SITE
tTh' Or OEANS1O(
wicMWAY. _7&
1TY1IoP
CAR
WY OF IIST4
RflAriLrL.—
pAn :/ U cITY of,
SAN MARCO
ciircw
ENCIM IA S
VICINITY MAP
an Diego County Hydrology Manual SCC11Ofl 3 No: June 2003 Pgc. 6 of 26
Table 3-1
RUNOFF COEFFICIENTS FOR URBAN AREAS
Ddis*wtaed Natural Terrain (Natural) PICUUMMUOPOnspace 0* 0.20 0.25 0.30 0.35
w Density Residential (LDR) Residential. 1.0 DU/A or less 10 0.27 0.32 036 0.41
w Density Residential (L.DR) Residend4 2.0 DU/A or less 20 0.34 0.38 0.42 0.46
iw Density Residential (LD1t) Residential, 2.9 DU/A or less 25 0.38 0.41 0.45 0.49
odium Density Residential (MDR) md.ntil 4.3 DU/A or less 30 0.41 0.45 0.48 0.52
alum Density ResidnhiaI (MDR) ResideitiaI, 7.3 DU/A or Less 40 0.48 0.51 0.54 0.57
idium Density RidIntial (MDR). ResidnhI. 10.9 DU/A or less 45 0.52 0.54 0.57 0.60
alum Density Residential (MDR) Residential 14.5 DU/A or less 50 0.55 0.58 0.60 0.63
h Density Residential (IiDR) 24.0 DU/A or low 65 0.66 0.67 0.69 0.71 h Density Residential (iWit) RbI'1i1. 43.0 DU/A or less 80 0.76 0.77 0.78 0.79 cninercial/lndus*rial (N. Corn) Neighborhood Commercial 80 0.76 0.77 0.78 0.79 cnmecial/lndusirial (G. Corn) General Commercial 85 080 0.80 0.81 0.82 ercaWlndustrial (OP. Corn) Office Professional/Commercial 90 0.83 0.84 0.84 0.85 nmercial/Lud_uswial (Limited I) Limited lndusthal 90 0.83 0.84 0.84 0.85 nmercial/lndusuial (General I.) General Industrial 95 0.87 0.87 0.87 0.87 te values associated with 00/9 impervious may be used for direct calculatien of the ineoff co'iit es diaercd in Section 3.12 (iquesonling the PerVIOUS runoff czen1 Cp, for the soil type),, or foresees that will remain uadiwbod in perpetuity. Jusdfication mud be given that the eras will zmain nnu.aI forever (e.g., the area cated in Cleveland National Forest). A dwelling units per acre
National Resources Conservation Service
3-6
Li
iu.imtñms"IUji1ii
riuiaw VI
vfliwi
on Muse il
-, Tj MW -mr- HAP w- TER
as bi;:-q1MS 231S
LM
.irih.' 'PUP - aLLIIUlUUP LI•!III
Ell
! I P!;I i 2 on sop w-
t4If.. akth I l1IIt1u1L .Irii1.fIIPIas
IP•ISPlWSURb &u•u•i .•i-.i'-- :aaIu•s•U -
' pr uLIlrUIP
' !i1IJ1h1U1fr-lUuu U
JiIUI5RI U moan ' .l. V.* __i_tuuu•i•UiU I
ii j 4.aIu
:'W IUu
5gi,P .. $iuiUIdIUIIUIU i• — I!I. i'iV'lU • -I I wiLS4 hii"1..c ;uuW0020494 r
4IuI.I If IU$i1UISIU.II'lF Cl lUlU5SUI•SII'l•UIISU 1
I'i;1'I II .I'!l!II.làll i Rlb;;iuUS1• I i .•• HP4ftrr.uIsIr ilNriiiiUIIi'UUiiii•Ui
lF'IPI lillitl&U I I •
OR
b0 !LSa'&lI.afl UIIk*Ii'!Ih
of 161
;.'.iiIak'*l.. 1r 4IUMlUUIiUI1UIIU*U t"-' jl.- Owl dooms a U ' 'jS . .P.dUNTII?Iii.IPdI• ".1I uImII
OL . - IIjP •U'jIUIiJIUU
- c-- - .•uUIg dill lII.ilik -dd a Illuui, .i...uu.p: a ii ii lhu.al'Ll...Iaa...pau I!If I'nr .i... $lll •i lUIUlili'il' III'4•FI•
.-
V -I1 !!•1 ..II a•l•liulpuIi*
I • • .1111 £.. LiIIAI - I•MEN 0 - I. . P!(1lcrIIIPIFI • IUI øliit1P4IIIP1!gijill LII! II IiUUI
ei, uuaiI • ij 4ruPula•ar.bUFjp. - -'Al. ' !::;i.U,IUUUIII•••.INUUS• p $1 •UilUlUi.lUUUlUlillUU$$ _______________
10i smogs 1 U ---4 I•tiiuimi.ui..uiiiiiqjuu.0 lII "M1110:20:10: ON
Uiii.11.uii...iiiuIlI IIUIIUlIIUlIlUIIUlU.aauuullsu......III.....s......W.. -llIwr IL
!Iul!rimpnulu.uup...uussv......p..u....ur.a.
" 1ii•l•NaSu•IW •_-_
UR JP'.4'J4N!P IIL4PaU .itft .W.Ir4.S pJ'1Iu•k vaUssa .u.lI1rjo U•UUJI gvja• UW't vauUS! IP4UUWr4i I U U*al UIl,iuL
vu wjr=iIw•ua'r•sk%.Lu I1b4•UI1 IIUuI J4°a U
iu Un .a.iuu U*UUUNS'4fAU UAUVfUU
- ra
Lye i srttr. S U siiv,'t& a &
LIZ VMV Avg IV r4 111111111011K),UrW it
5 '4F4 P .. mra . .%uU iv UN •Jr:•iaU U I•W•L •4S•ájIS 4U US
1,2W, 4UMME
USA. 4o,. J•FK"
...us rui ..a.s.i... ui.ma.uara..r.u' u•••.••••••
sim ui c su iu . a 'uu u r a . uu•uau• a.0
MMI '.'.
aur 1UII55•Nu•&4 iU4UIUS4•PUlSI. uUivaauuUau• Iv.uuuLI.r4prrm.uuuU.J •••••••S••• III U'P UU2 auauuuuum WI •lø.iN•U vmU•auuuua.0
04 II iaaiu• I'll,- Ara 'MEJ OEMPUMENNEUMM
I
U•Ui U, ,ur.,i..ivaaa....m INC ...• IS I IUUU•U RUSU RrL'4&I.Ua ...ra,.a.u.. rd4r.uuMw.0 aip ,-i an P.gama -.
aaI& an Yfj' lU U JY'i •$USU
IVIU
u• NI
I;iaI
SarbI1*fLNN*p UJsamom
UU - 4 st!! .aas iaIN 5CW taSk aaa.. - aa ULN1
, ;$
a
; MIX Pip ..uUSUk55' f5f.5y .
UUU UNNI I .$W IIaU...Ns 4a a k." & -.....
- QA
W'NgMlw'' 4.W .SIi.IftU P UU çrr?41 'a Of -
f
oil, sj (Ii S -%'ID w IIiU oil 1'5r
E
!'S4-& IS N'illLUt iI IIIU
- I •SUUIJ I. a.'Sl"r, T ' u *a. - IUlI.mu?! .m • r; p: IS;.i,fr NP II I - UI. U P9 uI'UDrI on, SA_m •a •i 'U b. 'a' -•:1kaA-, -'---I LY • A &':-:-- .•,. '--
' .iv ,im&' . . —
'
.iu.iilInuhI;IIlI,ttu,IIiiiiiiiiiIfflT[HtIIIIIIII11111IIIII I'
IlI...IIIIgIIIIIIIHIIHIIIIHIIIII11IIIIIIII
1riJTLt1J._____11111I
'Ulk'1IIj'I $1 !lIl hh1II I
ijiiiIiIfIlIuIIIuIluuuiuIIuhl uulIlIII uiii; !IlIi i:I ; 'I IlIllIllIllIl 111111 lli
i!!IIIIIIIIiIII I
OhIIIIIIiiiII!!!!IIIiiii I1IU II
•
ii.a..uuui.i iiuiiiuiiui i ii; ''i nu liii I III I I i II fl ; i: .
•
HhIIIIIIlIIIIIIIIIIIIJIIIi IJIIIIiIIIIIII 111111 IJIl ill !IIIlII IuI!uIIIi;: !!!HE i!
UiiiiiIIIIliIiiiIiIiIIiiIIIiHUhIIIHIIIIIUhi!!IIIIiIIIH!llllfidli
.........................,,.n,,,,,u ...........
kh
i t
.InI,,, a.. ........
...........
__________. *•..auu.,uiillilflhllli U ulIllIllIll 1111,111 lIlIlI •• uIIIU Ill. llU
......uuuIIIIullllIll,I,I ass a,IIIIsIIIIIIlLlul,III,tI •UIUlIIIIuIIIII.'lI. .•.. I... u.iu•l II Ill II ha..,... . IIhiI 1111 h1.hI — •• U UU I II•III II m M
UluIllIllIhl Ill liii hUh liii I 11111 1111 Iii 1111 I - • aN• IlU III 1111111111 1.1
•••N •• UUU •iuiuisii.•lii Ill Ill IllIllIllIl I I Ill II III II I 1 - • Ull II Illillill I,
SN•••UiUuIuuIIuuIIiII1lIlI)ItIIIlI IlIlhIIlIIIll.HIlIIIII•• .IU.iIIIIIilIIII4IIlIuII I
S NUI I IllillIll Ill I IllIllIulIlIlIlIl II 1111 III I liii •I IlUll1lIII, Ill aaNSa•iiiuui IllIllIllIll Iflflhli 11111 III I I 111 III I WH E N! ME 1111111W IIIIIIlIii uUuNu.u.iii. IllilliHi 111111111111 Ill illf I III IIIiIRU UIIIII IllIllIllil I b RMRU•I•IUIII IllIllIllU I I I IIiI1IlI1I1IIII I 111111 I I H Ii•011111111111111111 1111P
- EJ
- IEEffWfl (i!I1[iJ Fi VTI i!JE!JEZJ&1fIEIUAIE!IJ — EJ 1 E1 EIJ EEtJ EXEI WI1E — &ri r uirrj _____ Ih! [!J1JEEAII!1E1FXEIL!3 __E E [J_'• E! iILE!JEJ
-E HIED nam EEE
:• EJ1L 1J JEJEJ
faRE!JJ RimWE I" "F73WKIMM wJ E IiI[1 [1TWD ]fJIiIiIfl!I1W1
LIAM SKI =E-f-3uiWK3uE3 19--7111
100
20
10
EXAMPLE:
Given: Wate,ourse Dietence (D) = 70 Feet
Slope (a)
Runoff Coefficient (C) = 0.41
Overland Flow Time (T) = 9.5 Minutes
T =1.8(1.1 sy;-
SOURCE: Airport Federal Aviation AdmInistration, 1965
FIGURE
Rational Formula - Overland Time of Flow Homograph
H 3=3
H
San Diego County Hydrology Manual
Date: June 2003
Section: 3
Page: 12 of 26
Note that the Initial Time of Concentration should be reflective of the general land-use at the
upstream end of a drainage basin. A single lot with an area of two or less acres does not have
a significant effect wiere the drainage basin area is 20 to 600 acres
Table 3-2 provides limits of the length (Maximum Length (L7)) of sheet flow to be used in
hydtology studies. Initial Tj values based on average C values for the Land Use Element are
also included. These values can be used in planning and design applications as described
below. Exceptions may be approved by the "Regulating Agency" when submitted with a.
detailed study.
Table 3-2
MAXIMUM OVERLAND FLOW LENGTH (LM)
& INITIAL TIME OF CONCENTRATION (T1
Element DU/
Acre
.5% 1% 2% 3% 5% 10%
Ti L.. iL IL
Natural 50 13.2 70 12.5 85 10.9 100 10.3 100 8.7 100 6.9
LDR 1 50 12.2 70 11.5 85 10.0 100 9.5 100 8.0 100 6.4
LDR. 2 50 111 ..2 J 9.2 100 88 100 7.4 JQQ 58
LDR. 2.9 50 10.7 70 10.0 85 8.8 95 Wi 100 7.0 100 5.6
MDR 4.3 50 10.2 70 9.6 80 8.1 95 7.8 100 6.7 100 5.3
MDR 7.3 50 9.2 65 8.4 80 7.4 95 7.0 100 6.01100 4.8
MDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 4.5
MDR 14.5 50 8.2 65 7.4 80 6.5 90 6.0 100 5.4 100 4.3
HDR 24 50 6.7 65 6.1 75 5.1 90 4.9 95 4.3 100 3.5
HDR 43 50 5.3 65 4.7 75 4.0 85 3.8 95 3.4 100 2.7
N. Corn 50 5.3 60 4.5 75 4.0 85 3.8 95 3.4 100 2.7
G. Corn 50 4.7 60 4.1 75 3.6 85 3.4 90 2.91 100 2.4
O.P./Com 50 1 4.2 60 1 3.7 70 3.1 80 2.9 90 2.61100 2.2
Limited I. 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2
General 1. 50 3.7 60 3.2 70 2.7 80 2.6 90 2.3 1 100 1.9
See Table 3-1 for more detailed description
EQUATION
AE
Feet Ta QTE
SY-3U
To a Thniofco new nitationhoum)
L Watvcoumo Distancm nlM)
eft
4000 hi on along r. etevoll s One ( Ar• 34)(feet)
3000 Ta
Ho Minutes
2001 4 240
3 1S0
1000
'IS
• 2 120
IN 105
N
0II 'I
4 11 If
1 10
301 SO
• 200 40
L Mae Fed 36
L100
4000 20
TI-' Is
1— 3000 II 0.0_i.. \ 14
1-. 2000 12
1000
1G
1400 \ I
1200 5
1000 7 005
S
To S
500 4
400
300 3
II
40
30
20
10
1200
A L
OURCE: Cal Womia DMs$on of Hlgh (1941) and K(rp3ch (1940)
FIGURE
Homograph for Determlnatton of
ntrnsn (Tal or Travel Time ITft for Natural Vtenteds
;Ida
36
I
-
32
'-
I
D I \ir
GG
D
'0• 4 \ D
6
CHESTNU MY 1,jfJ
.-S rr-' G (H E. 0 i OND
lu
CARLsft4
V,
C
I
B
A
d
Adud Hecd
via
-PIP
7L A
SM12O1
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering software, (c) 1993 Version 3.2
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual
Rational Hydrology Study Date: 02/22/07
------------------------------------------------------------------------
ROBERTSON RANCH PA 12
PROPOSED: PARK
G:\ACCTS\011014\PA1201.0UT
****** Hydrology study Control Information
O'Day consultants, San Deigo, California - S/N 10125 ------------------------------------------------------------------------
Rational hydrology study storm event year is 100.0
Map data precipitation entered:
6 hour, precipitation(inches) = 2.600
24 hour precipitation(inches) = 4.300
Adjusted 6 hour precipitation (inches) = 2.600
P6/P24 = 60.5%
San Diego hydrology manual 'C' values used
Runoff coefficients by rational method
'S.
Process from Point/Station 201.000 to Point/Station 202 000
INITIAL AREA EVALUATION ****
User specified 'C' value of 0.,410 given-for subarea
Initial subarea flow distance = ].00;O0(Ft.)
Highest elevation = 67.70(Ft.)
Lowest elevation = 65.70(Ft.)
Elevation difference = 2.00(Ft.)
Time of concentration calcUlated by the urban
areas overland flow method (App X-C) = 9.86 mm.
TC = f1.8*(1.1_C)*distanceA.5)/(% slopeA(1/3))
rc = (1.8*(1.1_0..4100)*(100.00A.5)/( 2.00A(1/3)]= 9.86
Rainfall intensity (I) = :4.421'for a 100.0 year storm
Effective runoff coefficient used for area (Q=KcIA) is C = 0.410
Subarea runoff = 0.272(CFS)
Total initial stream area = 0.150(Ac.)
Process from Point/Station 202.000 to Point/Station 203.000
IRREGULAR CHANNEL FLOW TRAVEL TIME
Estimated mean flow rate at midpoint of channel = 1.631(CFS)
Depth of flow = 0.193(Ft.), Average velocity = 1.098(Ft/s)
Irregular Channel Data
Information entered for subchannel number 1
Point number 'x' coordinate 'Y' coordinate
1 0.00 .0.50
2 20.00 0.00
3 40.00 0.50
Pagel
L SM12O1
Manning's 'N' friction factor = 0.040 -----------------------------------------------------------------
sub-channel flow = 1.632(CFS)
flow, top width = 15.417(Ft.)
velocity= 1.098(Ft/s)
area = 1.485(Sq.Ft)
Froude number = 0.624
upstream point elevation = 65.700(Ft.)
Downstream point elevation = 56.000(Ft.)
Flow length = 490.000(Ft.)
Travel time = 7.44 mm.
Time of concentration = 17.29 mm.
Depth of flow = 0.193(Ft.)
Average velocity = 1.098(Ft/S)
Total irregular channel flow = 1.631(CFS)
Irregular channel normal depth above invert elev. = 0.193(Ft.)
Average velocity of channel(s) = 1.098(Ft/s)
sub-Channel No. 1 critical depth = 0.160(Ft.)
critical flow top width = 12.813(Ft.)
critical flow velocity= 1.590(Ft/s)
critical flow area = 1.026(Sq.Ft)
Adding area flow to channel
user specified 'C' value of 0.410 given for subarea
Rainfall intensity 3.077(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.410
subarea runoff = 1.892(CFS) for 1.500(Ac.)
Total runoff = 2.164(CFS) Total area = 1.65(Ac.)
Process from Point/Station 203.000 to Point/Station 204.000
IRREGULAR CHANNEL FLOW TRAVEL TIME
Estimated mean flow rate at midpoint of channel = 5.901(CFS)
Depth of flow = 0.727(Ft.), Average velocity = 2.233(Ft/5)
Irregular channel Data
Information entered for subchannel number 1 : . --
Point number 'x' coordinate 'V' coordinate
1 0.00 1.00
2 5.00 i0OO
3 10.00 ('1.00
Manning's 'N' friction factor = 0.040
Sub-channel flow = 5.902 (CFS)
' flow top width = 7.272(Ft.)
velocity= 2.233(Ft/s)
area = 2.644(Sq.Ft)
Froude number = 0.652
upstream point elevation = 56.000(Ft.)
Downstream point elevation = 50.000(Ft.)
Flow length = 420.000(Ft.)
Travel time = 3.14 mm.
Time of concentration = 20.43 mm.
Depth of flow = 0.727(Ft.)
Average velocity = 2.233(Ft/s)
Total irregular channel flow = 5.902(CFS)
Irregular channel normal depth above invert elev. = 0.727(Ft.)
Average velocity of channel(s) = 2.233(Ft/s)
Page 2
((1
sub-channel No. 1 critical depth = 0.613(Ft.)
critical flow top width = 6.133(Ft.)
critical flow velocity= 3.139(Ft/s)
critical flow area = 1.881(Sq.Ft)
Adding area flow to channel
user specified 'C' value of 0.410 given for subarea
Rainfall intensity = 2.763(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rationatmethod,Q=KCIA, C = 0.410
subarea runoff = 6.458(CFS) for (5'700(Ac.)
Total runoff = 8.622(CFS) Total area = 7.35(Ac.)
Process from Point/Station 204.000-to Point/Station 204.000
SUBAREA. FLOW-ADDITION -
user specified 'C' value of 0.410 given for subarea
Time of concentration = 20.43 mm.
Rainfall intensity = 2.763(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rationalmeth0d,Q=KCIA, C = 0.410
subarea runoff = 6.866(CFS) for 6;060(Ac.)
Total runoff = 15.488(CFS) Total area = 13.41(Ac.)
End of computations, total study area = 13.41 (Ac.)
Page 3
* O'Day Consultants, Inc. * * 2710 Loker Avenue West, Suite 100 * * Carlsbad, CA 92008 *
Tel: 760-931-7700 Fax: 760-931-8680 *
Inside Diameter
18.00 in.)
*
* *
* *
* *
AAAAAAAAAAAAAAAAAAAAA A
* Water *
* * I
* * C 8.65 in.)
0.720 ft.)
* * I * *
* V
Circular Channel Section
------------------------
Flowrate ..................15.500 CFS
Velocity ..................18.474 fps Pipe Diameter .............18.000 inches
Depth of Flow .............8.645 inches Depth of Flow .............0.720 feet
Critical Depth ............1.415 feet
Depth/Diameter (D/d) 0.480
Slope of Pipe .............10.000 %
X-Sectional Area 0.839 sq. ft. Wetted Perimeter 2.297 feet
A(2/3) ..................0.429
Mannings 'n' ..............0.013
Min. Fric. Slope, 18 inch
Pipe Flowing Full 2.178 %
PA1301. OUT
San Diego County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (C) 1993 version 3.2
Rational method hydrology program based on
San Diego County Flood Control Division 1985 hydrology manual
Rational Hydrology Study Date: 08/08/07 ------------------------------------------------------------------------
ROBERTSON RANCH PA 13
PROPOSED CONDITION
G:\ACCTS011014\PA 12 & 13\4TH PC\PA1301.OuT
Hydrology Study Control Information
------------------------------------------------------------------------
O'Day Consultants, San Deigo, California - S/N 10125 ------------------------------------------------------------------------
Rational hydrology study storm event year is 100.0
Map data precipitation entered:
6 hour, precipitation(inches) = 2.600
24 hour precipitation(inches) = 4.300
Adjusted 6 hour precipitation (inches) = 2.600
P6/P24 = 60.5%
San Diego hydrology manual 'C' values used
Runoff coefficients by rational method
Process from Point/Station r101.000 to Point/Station 102000
INITIAL AREA EVALUATION
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[SINGLE FAMILY area type ] Initial subarea flow distance = 130.00(Ft.)
Highest elevation = 70.80(Ft.)
Lowest elevation = 68.00(Ft.)
Elevation -difference = 2.80(Ft.)
Time of concentration calculated by the urban
areas overland flow method (App X-C) = 8.74 mm. TC = [1.8*(1.1_C)*distanceA.5)/(% slopeA(1/3)]
TC = [1.8*(1.1_0.5500)*(130.00A.5)/( 2.15A(1/3)1= 8.74
Rainfall intensity (I) = 4.778 for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C =(.0.550
subarea runoff = 0.473(CFs) A.
Total initial stream area = 0.180(Ac.)
Process from Point/Station 102.000 to Point/Station 103.000
IRREGULAR CHANNEL FLOW TRAVEL TIME
Estimated mean flow rate at midpoint of channel = 1.261(CFS)
Depth of flow = 0.436(Ft.), Average velocity = 1.328(Ft/s)
Irregular Channel Data -----------------------------------------------------------------
Information entered for subchannel number
Page 1
PA13O1. OUT
Point number 'x' coordinate 'Y' coordinate
1 0.00 1.00
2 5.00- 0.00
3 10.00 1.00
Manning's 'N' frictionfactor = 0.040 -----------------------------------------------------------------
Sub-Channel flow = 1.261(CFS)
flow top width = 4.359(Ft.)
velocity= 1.328(Ft/s)
area = 0.950(Sq.Ft)
Froude number = 0.501
upstream point elevation = 68.000(Ft.)
Downstream point elevation = 66.200(Ft.)
Flow length = 180.000(Ft.)
Travel time = 2.26 mm.
Time of concentration = 11.00 mm.
Depth of flow = 0.436(Ft.)
Average velocity = 1.328(Ft/s)
Total irregular channel flow = 1.261(CFS)
Irregular channel normal depth above invert elev. = 0.436(Ft.)
Average velocity of channel(s) = 1.328(Ft/s)
Sub-Channel No. 1 critical depth = 0.330(Ft.)
critical flow top width = 3.301(Ft.)
critical flow velocity= 2.316(Ft/s)
critical flow area = 0.545(Sq.Ft)
Adding area flow to channel
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D-,=-1.000
[SINGLE FAMILY area type ]
Rainfall intensity = 4.120(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550
Subarea runoff = 1.359(CFS) for 0.600(Ac.)
Total runoff = 1.833(cFS) Total area = 0.78(Ac.)
Process from Point/Station 103.000-to Point/Station 104.000
IRREGULAR CHANNEL FLOW TRAVELTIME
Estimated mean flow rate at midpoint of channel = 3.477(CFS)
Depth of flow = 0.620(Ft.), Average velocity = 1.809(Ft/s)
Irregular channel Data
----------------------------------------------------------------- Information entered for subchannel number 1
Point number 'x' coordinate 'Y' coordinate
1 0.00 1.00
2 5.00 0.00
3 10.00 1.00
Manning's 'N' friction factor = 0.040 -----------------------------------------------------------------
Sub-Channel flow = 3.477(CFs)
flow top width = 6.200(Ft.)
velocity= 1.809(Ft/s)
area = 1.922(Sq.Ft)
Froude number = 0.573
upstream point elevation = 66.200(Ft.)
Downstream point elevation = 63.300(Ft.)
Page 2
PA1301. OUT
Flow length = 250.000(Ft.)
Travel time = 2.30 mm.
Time of concentration = 13.30 mm.
Depth of flow = 0.620(Ft.)
Average velocity = 1.809(Ft/s)
Total irregular channel flow = 3.477(CFS)
Irregular channel normal depth above invert elev. = 0.620(Ft.)
Average velocity of channel(s) = 1.809(Ft/s)
Sub-Channel No. 1 critical depth = 0.496(Ft.)
* critical flow top width = 4.961(Ft.)
critical flow velocity= 2.826(Ft/s)
critical flow area = 1.231(Sq.Ft)
Adding area flow to channel
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[SINGLE FAMILY area type ]
Rainfall intensity = 3.644(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550
Subarea runoff = 2.806(CFS) for 1400(Ac.)
Total runoff = 4.639(CFS) Total area = 2.18(Ac.)
+++++++-H-++++++++++++++++++++-f++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 104.000 to Point/Station 105c000
IRREGULAR CHANNEL FLOW TRAVEL TIME 11c
Estimated mean flow rate at midpoint of channel = 7.202(CFS)
Depth of flow = 0.838(Ft.), Average velocity = 2.053(Ft/s)
Irregular Channel Data -----------------------------------------------------------------
Information entered for subchannel number 1
Point number 'x' coordinate 'v' coordinate
1 0.00 2 1.00
2 5.O0 0.00
3 10.00 1.00
Manning's 'N' friction'factor = 0.040'
Sub-Channel flow = 7.202(CFS)'
flow top width = 8.377(Ft.)
velocity= 2.053(Ft/s)
area = 3.509(Sq.Ft)
Froude number = 0.559
Upstream point elevation = 63.300(Ft.)
Downstream point elevation = 61.600(Ft.)
Flow length = 170.000(Ft.)
Travel time = 1.38 mm.
Time of concentration = 14.68 mm.
Depth of flow = 0.838(Ft.)
Average velocity = 2.053(Ft/s)
Total irregular channel flow = 7.202(CFS)
Irregular channel normal depth above invert elev. = 0.838(Ft.)
Average velocity of channel(s) = 2.053(Ft/s)
Sub-Channel No. 1 critical depth = 0.664(Ft.) * ' critical flow top width = 6.641(Ft.)
critical flow velocity= 3.267(Ft/s)
critical flow area = 2.205(Sq.Ft)
Page 3
PA1301 . OUT
Adding area flow to channel
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[SINGLE FAMILY area type ]
Rainfall intensity = 3.419(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550
Subarea runoff = 4.532(CFS) for 2.410(Ac.)
Total runoff = 9.171(cFs) Total area= 4.59(Ac.)
Process from Point/Station 105.000 to Point/Station 105.000
SUBAREA FLOW ADDITION
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[SINGLE FAMILY area type ]
Time of concentration = 14.68 mm.
Rainfall intensity = 3.419(In/Hr) for a 100.0 year storm
Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550
Subarea runoff = 3.818(CFs) for 2.030(Ac.)
Total runoff = 12.989(cFs) Total area = 6.62(Ac.)
End of computations, total study area = 6.62 (Ac.)
Page 4
* O'Day Consultants, Inc. * * 2710 Loker Avenue West, Suite 100 * * Carlsbad, CA 92008 *
Tel: 760-931-7700 Fax: 760-931-8680 *
Inside Diameter
24.00 in.)
*
* *
* *
* *
AAAAAAAA*AAAAAAAAAAAA - - A
* Water *
* * I
* •* ( 6.27 in.)
0.522 ft.)
* * I * * I * V
Circular Channel Section ------------------------
Flowrate ..................13.000 CFS
Velocity ..................19.902 fps
Pipe Diameter .............24.000 inches
Depth of Flow .............6.269 inches
Depth of Flow .............0.522 feet
Critical Depth ............1.297 feet
Depth/Diameter (D/d) 0.261
Slope of Pipe .............14.800 %
X-Sectional Area 0.653 sq. ft.
Wetted Perimeter 2.146 feet ARA(2/3) ..................0.296
Mannings 'n' ..............0.013
min. Fric. Slope, 24 inch
Pipe Flowing Full 0.330 %