Loading...
HomeMy WebLinkAboutPIP 06-10; BRESSI RANCH INDUSTRIAL LOTS; DRAINAGE REPORT; 2007-05-01DRAINAGE REPORT FOR BRESSI RANCH LOTS 19-22 INDUSTRIAL AREA PROJECT, CARLSBAD, CALIFORNIA MAY 2007 PIP 06-10 Prepared For: Urban West Strategies 1280 Bison Avenue, B9-609 Newport Beach, CA 92660 Phone 714-567-9260 Prepared By: PROJECT DESIGN CONSULTANTS 701 B Street, Suite 800 San Diego, CA 92101 Project No. 3370.10 Prepared by: Richard Isaac Reviewed by: Nicole Rieger Under the supervision of OF CAL a byReece/J 'C56148— Registration Expires 12/31/08 w '1 .4 L TABLE OF CONTENTS Section Page 1.0 INTRODUCTION ........................................................................................ 1 2.0 PROJECT DRAINAGE BACKGROUND: MASS GRADING AND ULTIMATE CONDITION HYDROLOGY...............................................3 2.1 Mass Grading Hydrology....................................................................3 2.2 Ultimate Condition Hydrology...........................................................3 3.0 HYDROLOGY CRITERIA AND METHODOLOGY................................4 3.1 Hydrology Criteria .............................................................................. 4 3.2 Hydrology Methodology.....................................................................4 3.3 Explanation of AES Rational Method Software ................................5 4.0 HYDROLOGY ANALYSIS RESULTS......................................................6 5.0 HYDRAULIC CRITERIA AND METHODOLOGY .................................7 5.1 Hydraulic Criteria...............................................................................7 5.2 Explanation of AES Hydraulic Software............................................7 6.0 HYDRAULIC ANALYSIS RESULTS .......................................................8 6.1 Storm Drain System............................................................................8 6.2 Inlets...................................................................................................8 6.3 Perimeter Swales................................................................................8 7.0 CONCLUSION............................................................................................8 FIGURES 1.0 Vicinity Map ..................................................................................................2 TABLES 1 Hydrology Criteria.........................................................................................4 2 Hydrology Results..........................................................................................6 1 P:337O\ENGRREPORTSDRAJN3370. 10 Lois I9-22REPORT3370. I0DR-3rd.DOC APPENDICES 1 100-year: 6 & 24-hr. Isopluvials Maps and IDF Design Chart 2 AES Hydrology Computer Output - Proposed Conditions - 1985 Criteria 3 AES Hydrology Computer Output - Proposed Conditions - 2003 Criteria 4 AES Hydraulic Computer Output - Proposed Conditions 5 Bressi Ranch Industrial ABS Hydrology Excerpt - Lot 23 6 Bressi Ranch Industrial ABS Hydrology Excerpt - Innovation Way 7 Catch Basin and Brooks Box Calculations 8 Brow Ditch and Grass Swale Calculations EXHIBITS A Drainage Map - Proposed Conditions B Hydraulic Map - Proposed Conditions 11 Lots I9-22\REP0RT3370.I0DR-3rd.D0C 1.0 INTRODUCTION This drainage report supports the final engineering design of the proposed storm drain improvements associated with Bressi Ranch Industrial Site lots 19 through 22, (Project). The overall Bressi Ranch development is located in the City of Carlsbad, (City) and is bounded by: 1) Palomar Airport Road to the north, 2) Melrose Drive to the east, 3) El Camino Real to the west, and 4) Poinsettia Drive to the south. Within the Bressi Ranch development, the Project is bounded by: 1) Bressi Industrial Lot 23 to the north, 2) Bressi Industrial Lots 16 &18 to the west, 3) Innovation Way to the east, and 4) Gateway Road to the south. Refer to Figure 1: Vicinity Map, for the project location. In general, the Project is part of the Bressi Ranch master planned development consisting of 15 mixed-use Planning Areas (PAs). The existing and proposed Project drainage patterns generally traverse the site southwesterly toward the intersection of Gateway Road and Alicante Road and the intersection of El Camino Real and Town Garden Road. The intended land use of the project site includes twelve buildings with associated surface parking. From a construction standpoint, the industrial site lots 19 through 22 have been mass graded in preparation for the Project precise grading and construction of the storm drain improvements. The backbone storm drain improvements were constructed as part of the overall Industrial and Bressi Ranch Master Plan. The drainage analyses presented herein reflect a final engineering level-of-effort, which includes the peak 100-year storm event hydrologic analyses using finished floor elevations and street grades, with pipe flow routing based on plan inverts. Existing conditions peak 100-year storm runoff and backbone pipe design sizes are from the report by Project Design Consultants, titled Drainage Report For Bressi Ranch PA's 1-5 Industrial Area Project, CT 02-15, Carlsbad California, dated September 2004. See Exhibit A: Ultimate Condition Hydrology Map. Therefore, the purpose of this report submittal is to show that the project does not exceed the original Bressi Ranch Industrial design runoff and that the onsite storm drain system is adequate to convey the project runoff. 1 P:\337O\ENGR\REPORTSDRMM3370.IO Lots I9-22\REP0R1\3370.I0DR-3rd.DOC PROJECT SITE 5 5. cS' INNOVATION ROAD WAY PALOMAR T MELROSE —J DRIVE POINSETTIA LANE EL FUERTE STREET INNOVATION WAY Figure 1: Vicinity Map 2 P:\3370\ENGRP.EPORTSDRMN\3370.I0 Lots I9.22\REPORT3370. IODR-3rd.DOC 2.0 PROJECT DRAINAGE BACKGROUND: MASS GRADING AND ULTIMATE CONDITION HYDROLOGY From a regional drainage perspective, the Industrial site storm drains convey Project storm runoff to the backbone storm drain improvements within El Fuerte Street, Alicante Road, Gateway Road, and El Camino Real. Improvements were constructed as part of the overall Bressi Ranch mass grading and backbone improvements, prior to the start of the Industrial site construction. The project runoff is tributary to the detention basin located along Alicante Road south of Town Garden Road. As the project runoff is tributary to the backbone storm drain system and detention basin, this hydrology analysis focuses on the project impacts on the backbone storm drain system. The overall Bressi Ranch mass grading and backbone drainage improvements have been completed. While the mass grading hydrology accounted for the Project storm runoff in the design of the backbone drainage system, the Project hydrology in this report supersedes the hydrology used to design the backbone storm drain improvements. The following sections address the mass grading and ultimate condition hydrology. 2.1 Mass Grading Hydrology The Project has been mass graded, in preparation for the project precise grading, as part of the overall Bressi Ranch project (City No. CT 00-06). The drainage for the mass graded condition is addressed in the approved PDC "Drainage Report for Bressi Ranch Mass Grading," dated January 2003. The Mass Grading report provides: 1) mass graded condition peak 100-year storm runoff, and 2) ultimate condition peak 100-year storm runoff within the Industrial site. The existing condition for this Project consists of mass graded pads tributary to a desilting basin located northeast of the intersection of Village Green Drive and Town Garden Road. The following section provides a discussion of the ultimate condition hydrology. 2.2 Ultimate Conditions Hydrology The Project hydrology analysis, included herein, reflects the current site layout, and roadway and storm drain alignments and supersedes the ultimate condition hydrology calculations contained in the mass grading report. Specifically, the mass grading ultimate conditions hydrology was based on the Project Design Consultants Drainage Report For Bressi Ranch PA's 1-5 Industrial Area Project, CT 02-15, Carlsbad California, dated September 2004. See Exhibit A for the Project hydrology map. 3 P:3370\ENGRREPORTS\DRA1N\3370.I0 Lou I9.22\REP0RT3370. IODR-3Td.DOC 3.0 HYDROLOGY CRITERIA AND METHODOLOGY 3.1 Hydrology Criteria This section of the report summarizes the drainage criteria that were used in the hydrologic analysis and key elements of the methodology. Also included is a description of the computer model used in the computations. Table 1: Hydrology Criteria Design Storm: 100-year, 6-hour storm Land Use: Industrial and Commercial Runoff Coefficients: Based on criteria presented in the 1985 County of San Diego Hydrology Manual. (2003 Hydrology Manual criteria checked for comparison) Hydrologic Soil Group: Soil Group 'D' Intensity/Time of Concentration: Based on criteria presented in the 1985 County of San Diego Hydrology Manual. (2003 Hydrology Manual criteria checked for comparison) 3.2 Hydrology Methodology The Modified Rational Method was used to determine the peak 100-year storm runoff for the design of the storm drain improvements. Hydrology was analyzed using both 1985 and 2003 manual criteria since the downstream backbone storm drain system was designed using the 1985 County Hydrology Manual. The 1985 criteria produced slightly higher runoff than the 2003 criteria due to higher runoff coefficients in the program selection method and were used for the Project. See Table 2 for a summary of flow, Appendix 2 for 1985 AES hydrology computer runs, and Appendix 3 for 2003 AES hydrology computer runs. Industrial runoff coefficients were used throughout the project with the exception of a small number of areas where large amounts of grass slopes were present. Commercial runoff coefficients were used in these situations. The goal of the Project hydrology analysis was to: . Determine detailed design storm runoff for the sizing of the internal lot storm drain system, storm drain laterals, and outflow pipes that connect to the backbone storm drain improvements. From an analytical perspective, the Project hydrology was prepared using pad grades for the storm drain slopes and the actual storm drain system layout. 4 P:\337O\ENGRREPORTSDRA1N3370. tO Lots I9.22REP0RT'3370. IODR-3rd.DOC Verify that the Project does not adversely impact the backbone storm drain improvements. A comparison was performed between the backbone improvements design runoff and Project hydrology runoff at the two backbone connection locations to determine Project impacts. . The Advanced Engineering Software (AES) Rational Method Program was used to perform the hydrologic calculations. The following section 'provides a brief explanation of the computational procedure used in the computer model. See Appendix 2 and Appendix 3 for the Project hydrology Rational Method computer output and Exhibit A for the Project hydrology map. 3.3 Explanation of AES Rational Method Software The AES Rational Method was used to determine the peak 100-year storm runoff for the Project. The AES Rational Method Hydrology Program is a computer-aided design program where the user develops a node link model of the watershed. The program has the capability of estimating conduit sizes to convey design storm flows, or the user may input specific conduit sizes and open channels. Soil types used in the model are based on hydrologic soil groups as outlined in the Conservation Service's Soil Survey for San Diego County. The rainfall intensity distribution and runoff coefficients utilized by the program can be user-specified to be based on the County of San Diego. Developing independent node link models for each interior watershed and linking these sub- models together at confluence points creates the node link model. The program allows up to five streams to confluence at a node. Stream entries must be made sequentially until all are entered. The program allows consideration of only one confluence at a time. The program has the capability of performing calculations for 17 hydrologic and hydraulic processes. These processes are assigned code numbers, which appear in the printed output. The code numbers and their meanings are as follows: CODE 0: ENTER Comment CODE 1: CONFLUENCE analysis at node CODE 2: INITIAL subarea analysis CODE 3: PIPE/BOX travel time (COMPUTER estimated pipe/box size) CODE 4: PIPE/BOX travel time (USER specified pipe/box size) W P:3370WNGRREPORTSDRA1N3370. 10 Lots 19-22REPORI\3370.10DR-3rd,D0C CODE 5: OPEN CHANNEL travel time CODE 6: STREETFLOW analysis through subarea, includes subarea runoff CODE 7: USER-SPECIFIED hydrology data at a node CODE 8: ADDITION of subarea runoff to MAIN-Stream CODE 9: V-GUTTER flow through subarea CODE 10: COPY MAIN-stream data onto memory BANK CODE 11: CONFLUENCE a memory BANK with the Mainstream memory CODE 12: CLEAR a memory BANK CODE 13: CLEAR the MAIN-stream CODE 14: COPY a memory BANK onto the Main-stream memory CODE 15: HYDROLOGIC data BANK storage functions CODE 16: USER-SPECIFIED Source Flow at a node 4.0 HYDROLOGY ANALYSIS RESULTS The 100-year storm event results were used to determine the preliminary storm drain sizes for the Project. The results of the Rational Method hydrology software analyses are included in Appendices 2 and 3, and summarized below in Table 2. Table 2: Hydrology Results FLOW SUMMARY Location Node Number Mass Graded Conditions Design Flow (cfs) Proposed Conditions Flow (1985) (cfs) Proposed Conditions Flow (2003) (cfs) 175 46.7 46.3 43.3 515 17.8 9.3 10.4 Total 64.5 55.6 53.7 The ultimate peak 100-year runoff from the Project is less than the designed runoff in the Bressi Ranch Industrial study. See Appendix 2 for the AES Modified Rational Method computer output and Exhibit A for the proposed conditions drainage map. Appendix 5 provides excerpts of the N. P:\3370\ENGRREPORTSDRMN3370. 10 Lots 19.22REPORT3370.10DR.-3rd.DOC Bressi Ranch Industrial drainage study hydrology map and AES hydrology calculations for the user input from Lot 23 north of the Project. As a conservative measure, the rational method hydrology calculations incorporate the backbone design inflow of 19.75 cfs from the Bressi Industrial Lot 23 Project rather than the proposed ultimate condition inflow of 14.6 cfs. Generally speaking, flows from the site are below the design values. The confluence of flows downstream of node 180 is less than the total proposed runoff of the expected design flow for that and subsequent pipe reaches. Appendix 6 provides additional excerpts of proposed flow on Innovation Way and cross gutter calculations. Flow on Innovation Way will continue south past the Project entrance via the cross gutter to the inlet on Innovation Way as originally designed in the Bressi Ranch Industrial study. 5.0 HYDRAULIC CRITERIA AND METHODOLOGY The following sections discuss the criteria and methodology employed in the hydraulic analysis of the storm drainage systems. Also included is a brief description of the computer software used in the analyses. 5.1 Hydraulic Criteria The storm drain system, which consists of three main lines, was analyzed for the peak 100-year storm event hydraulic conditions. The existing 30-inch line carries flow from the north swale and Bressi Industrial Lot 23 along the west side of the property to Gateway Road. One 18-inch line is partially existing, with a proposed extension to the east and north, and a baffle box for water quality purposes at the connection to the existing 30-inch line. A second 18" line is also partially existing and connects to the main backbone system in Gateway Road between lots 21 & 22. The existing and proposed storm drain lines are shown in Exhibit B. 5.2 Explanation of AES Hydraulic Software The AES Pipeflow model was used to determine the hydraulic grade line for the storm drainpipe improvements for this project. The AES computational procedure is based on solving Bmoulli's equation for the total energy at each section; and Manning's formula for the friction loss between the sections in each computational reach. Confluences are analyzed using pressure and momentum theory. In addition, the program uses basic mathematical and hydraulic principals to 7 P:\337OENGR\REPORTS'DRA1N337O.IO Lats I9-22REPORT3370.I0DR-3rd.D0C calculate data such as cross sectional area, velocity, wetted perimeter, normal depth, critical depth, and pressure and momentum. Model input basically includes storm drain facility geometry, inverts, lengths, confluence angles, and downstream/upstream boundary conditions, i.e., initial water surface elevations. 6.0 HYDRAULIC ANALYSIS RESULTS Hydraulic grade lines (HGLs) were calculated for the storm drain system. The following sections provide the results and assumptions of the hydraulic design of the storm drain systems and channel improvements. 6.1 Onsite Storm Drain System The pipe configuration was designed for the 100-year storm event and analyzed using the AES pipeflow hydraulic program. The tailwater at the ouffall was set to the hydraulic grade at that location under existing conditions, as determined by storm drain profiles for the master development. The peak flows in the storm drain laterals were also analyzed, using the hydraulic grades obtained in AES analysis of the main lines. This was assumed to be the most conservative assumption for the laterals. 6.2 Inlets Calculations demonstrating the capacity of the proposed Type F inlets and Brooks Boxes are included in Appendix 6. 6.3 Perimeter Drainage Swales The 100-year storm flows presented in Exhibit A were used in the normal depth hydraulic analysis of the proposed channel improvements. A Type B brow ditch is proposed along the north edge of the Project, and grass lined swales at all other locations. The swales vary as to width and depth. The Heastad Methods Flowmaster program was used to calculate normal depth capacity and actual depth of each swale. See Appendix 7 for a map of the section locations and the normal depth calculations. 8 P:3370\ENGR\REPORTSDRAINU370. 10 Lou I9.22REPOWfl3370.10DR-3rd.DOC 7.0 CONCLUSION This drainage report supports the final engineering design of the proposed storm drain improvements associated with The Ocean Collection Lots 19 through 22, (Project), within the Bressi Ranch Industrial Site. As shown in Table 2, Hydrology Results summary, the combined design flow is 64.5 cfs, and the proposed project flow is 55.6 cfs. Therefore there will be no detrimental effect on the existing backbone system in Gateway Road or any of the downstream facilities. The construction phase BMPs associated with the Project will be addressed in the Grading and Erosion Control Plans and the SWPPP. The primary onsite post-construction treatment BMPs will be biofiltration (grass swales) and hydrodynamic separation (Bio Clean Nutrient Separating Baffle Box or equivalent device). For further information on water quality mitigation, refer to the Storm Water Management Plan (SWMP) for Bressi Industrial Lots 19-22, submitted by PDC under separate cover. Post-construction BMP measures will also be enacted for the Project as developed in conjunction with the overall SWMP for Bressi Ranch. This SWMP was provided as part of the approved master Tentative Map submittal. P:337OENGR\REPORTSDRA1N3370.I0 L015 I9-22REP0RT3370.I0DR-3rdD0C APPENDIX 1 100-YEAR, 6 & 24-hr ISOPLUVIAL MAPS AND IDF DESIGN CHART P:3370\ENGRREPORTSDRAtN\3370. 10 Lots 19-22REPORVtAppendix.DOC APPENDIX 2 AES HYDROLOGY COMPUTER OUTPUT PROPOSED CONDITIONS 1985 CRITERIA P:337O\ENGRREPORTSDRA1N\3370. 10 Lots 19-22\REPOWflAppcndix.DOC RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Proj ectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY * 3370 - BRESSI INDUSTRIAL LOTS 19-22 * * PROPOSED CONDITIONS - SYS 100 * * 100 YEAR STORM EVENT * * * * **************** * ** FILE NAME: S100Y100.DAT TIME/DATE OF STUDY: 10:25 05/04/2007 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER_DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE! WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ** ********* * * ** ********************************** *** *** ** * FLOW PROCESS FROM NODE 100.00 TO NODE 105.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): INDUSTRIAL DEVELOPMENT RUNOFF-COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 265.00 UPSTREAM ELEVATION(FEET) = 370.00 DOWNSTREAM ELEVATION(FEET) = 365.15 ELEVATION DIFFERENCE(FEET) = 4.85 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.989 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.56 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) = 1.56 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 *USER SPECIFIED(SUBAREA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .7500 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.64 TOTAL AREA(ACRES) = 0.41 TOTAL RUNOFF(CFS) = 2.20 TC(MIN.) = 6.00 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *•* * FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 1.23 TOTAL AREA(ACRES) = 0.63 TOTAL RUNOFF(CFS) = 3.43 TC(MIN.) = 6.00 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 110.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 362.15 DOWNSTREAM(FEET) = 355.76 FLOW LENGTH(FEET) = 135.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.01 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 3.43 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 6.22 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 = 400.00 FEET. FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.405 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 0.98 TOTAL AREA(ACRES) = 0.81 TOTAL RUNOFF(CFS) = 4.41 TC(MIN.) = 6.22 * ** ************************* * * ** ** FLOW PROCESS FROM NODE 110.00 TO NODE 120.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 355.76 DOWNSTREAM(FEET) = 354.93 FLOW LENGTH(FEET) = 87.41 MANNING'S N = 0.011 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.93 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.41 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 6.47 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 120.00 = 487.41 FEET. FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.47 RAINFALL INTENSITY(INCH/HR) = 6.25 TOTAL STREAM AREA(ACRES) = 0.81 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.41 ***** ****************** * * ************************** * * * ********************* * FLOW PROCESS FROM NODE 200.00 TO NODE 205.00 IS CODE = 21 -------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 45.00 UPSTREAM ELEVATION(FEET) = 366.85 DOWNSTREAM ELEVATION(FEET) = 364.00 ELEVATION DIFFERENCE(FEET) = 2.85 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 0.979 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.12 TOTAL AREA(ACRES) = 0.18 TOTAL RUNOFF(CFS) = 1.12 **************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 120.00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) 364.00 DOWNSTREAM(FEET) = 354 .93 CHANNEL LENGTH THRU SUBAREA(FEET) = 180.00 CHANNEL SLOPE = 0.0504 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 99.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.915 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.18 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.88 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 1.04 Tc(MIN.)= 7.04 SUBAREA AREA(ACRES) = 0.38 SUBAREA RUNOFF(CFS) = 2.14 TOTAL AREA(ACRES) = 0.56 PEAK FLOW RATE(CFS) = 3.26 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 3.08 LONGEST FLOW-OATH FROM NODE 200.00 TO NODE 120.00 = 225.00 FEET. FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.04 RAINFALL INTENSITY(INCH/HR) = 5.92 TOTAL STREAM AREA(ACRES) = 0.56 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.26 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.41 6.47 6.247 0.81 2 3.26 7.04 5.915 0.56 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 7.49 6.47 6.247 2 7.43 7.04 5.915 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.49 Tc(MIN.) = 6.47 TOTAL AREA(ACRES) = 1.37 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 120.00 = 487.41 FEET. ** * **** ************ * * * FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.247 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.59 TOTAL AREA(ACRES) = 1.67 TOTAL RUNOFF(CFS) = 9.08 TC(MIN.) = 6.47 ** * * * * ******************* ******************************* ************ FLOW PROCESS FROM NODE 120.00 TO NODE 130.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 354.60 DOWNSTREAM(FEET) = 353.42 FLOW LENGTH(FEET) = 94.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.87 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.08 PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) = 6.67 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 130.00 = 581.41 FEET. ************ ** * * * * ****************************************** * *********** * * * * FLOW PROCESS FROM NODE 130.00 TO NODE 140.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 353.09 DOWNSTREAM(FEET) = 352.51 FLOW LENGTH(FEET) = 65.03 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.85 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.08 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 6.83 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 140.00 = 646.44 FEET. FLOW PROCESS FROM NODE 140.00 TO NODE 150.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 352.18 DOWNSTREAM(FEET) = 349.71 FLOW LENGTH(FEET) = 138.34 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.93 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 9.08 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 7.12 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 150.00 = 784.78 FEET. FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = ---------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.12 RAINFALL INTENSITY(INCH/HR) = 5.87 TOTAL STREAM AREA(ACRES) = 1.67 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.08 * * * * ***************************************** * FLOW PROCESS FROM NODE 300.00 TO NODE 305.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 45.00 UPSTREAM ELEVATION(FEET) = 362.88 DOWNSTREAM ELEVATION(FEET) = 362.20 ELEVATION DIFFERENCE(FEET) = 0.68 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.578 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.25 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.25 FLOW PROCESS FROM NODE 305.00 TO NODE 310.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 362.20 DOWNSTREAM(FEET) = 357.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 160.00 CHANNEL SLOPE = 0.0312 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 99.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.994 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.94 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.97 AVERAGE FLOW DEPTH(FEET) = 0.12 TRAVEL TIME(MIN.) = 0.90 Tc(MIN.) = 6.90 SUBAREA AREA(ACRES) = 1.65 SUBAREA RUNOFF(CFS) = 9.40 TOTAL AREA(ACRES) = 1.85 PEAK FLOW RATE(CFS) = 10.64 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 3.36 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 310.00 = 205.00 FEET. FLOW PROCESS FROM NODE 310.00 TO NODE 150.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SOBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 352.72 DOWNSTREAM(FEET) = 349.71 FLOW LENGTH(FEET) = 148.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.84 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.64 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 7.15 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 150.00 = 353.00 FEET. * ******************* * ************ ** *** * *** ************** FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.15 RAINFALL INTENSITY(INCH/HR) = 5.86 TOTAL STREAM AREA(ACRES) = 1.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.64 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 9.08 7.12 5.874 1.67 2 10.64 7.15 5.858 1.85 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 19.70 7.12 5.874 2 19.70 7.15 5.858 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 19.70 Tc(MIN.) = 7.15 TOTAL AREA(ACRES) = 3.52 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 150.00 = 784.78 FEET. * * *********************************************** * * FLOW PROCESS FROM NODE 150.00 TO NODE 160.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 349.64 DOWNSTREAM(FEET) = 347.67 FLOW LENGTH(FEET) = 107.36 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 11.15 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 19.70 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 7.31 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 160.00 = 892.14 FEET. FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.31 RAINFALL INTENSITY(INCH/HR) = 5.77 TOTAL STREAM AREA(ACRES) = 3.52 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.70 * * ******* ******************* *** * * ************** * *********** FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< GRASS GOOD COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 80 INITIAL SUBAREA FLOW-LENGTH(FEET) = 145.00 UPSTREAM ELEVATION(FEET) = 371.80 DOWNSTREAM ELEVATION(FEET) = 369.80 ELEVATION DIFFERENCE(FEET) = 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 12.657 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.053 SUBAREA RUNOFF(CFS) = 0.11 TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) = 0.11 FLOW PROCESS FROM NODE 401.00 TO NODE 405.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 369.80 DOWNSTREAM(FEET) = 361.40 CHANNEL LENGTH THRU SUBAREA(FEET) = 325.00 CHANNEL SLOPE = 0.0258 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 4.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.266 GRASS GOOD COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 80 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.18 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.08 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 5.03 Tc(MIN.) = 17.68 SUBAREA AREA(ACRES) = 0.09 SUBAREA RUNOFF(CFS) = 0.13 TOTAL AREA(ACRES) = 0.15 PEAK FLOW RATE(CFS) = 0.24 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 1.19 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 405.00 = 470.00 FEET. FLOW PROCESS FROM NODE 405.00 TO NODE 160.00 Is CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 361.35 DOWNSTREAM(FEET) = 359.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 285.00 CHANNEL SLOPE = 0.0065 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 4.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.770 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.45 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.92 AVERAGE FLOW DEPTH(FEET) = 0.18 TRAVEL TIME(MIN.) = 5.15 Tc(MIN.) = 22.84 SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 0.42 TOTAL AREA(ACRES) = 0.33 PEAK FLOW RATE(CFS) = 0.67 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) = 1.03 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 160.00 = 755.00 FEET. * * * * *** * FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 22.84 RAINFALL INTENSITY(INCH/HR) = 2.77 TOTAL STREAM AREA(ACRES) = 0.33 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.67 FLOW PROCESS FROM NODE 410.00 TO NODE 410.00 IS CODE = 7 ---------------------------------------------------------------------------- >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 9.15 RAIN INTENSITY(INCH/HOUR) = 5.00 TOTAL AREA(ACRES) = 4.33 TOTAL RUNOFF(CFS) = 19.75 FLOW PROCESS FROM NODE 410.00 TO NODE 160.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 348.51 DOWNSTREAM(FEET) = 347.67 FLOW LENGTH(FEET) = 251.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.80 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 19.75 PIPE TRAVEL TIME(MIN.) = 0.72 Tc(MIN.) = 9.87 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 160.00 = 251.00 FEET. * * ** *** * * FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 9.87 RAINFALL INTENSITY(INCH/HR) = 4.76 TOTAL STREAM AREA(ACRES) = 4.33 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.75 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 19.70 7.31 5.774 3.52 2 0.67 22.84 2.770 0.33 3 19.75 9.87 4.757 4.33 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 36.29 7.31 5.774 2 36.37 9.87 4.757 3 21.61 22.84 2.770 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 36.37 Tc(MIN.) = 9.87 TOTAL AREA(ACRES) = 8.18 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 160.00 = 892.14 FEET. ** ** * ************* *********************************** * * FLOW PROCESS FROM NODE 160.00 TO NODE 170.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 346.67 DOWNSTREAM(FEET) = 345.11 FLOW LENGTH(FEET) = 233.37 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.61 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 36.37 PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 10.38 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 170.00 = 1125.51 FEET. ****** * * * ** *** *** ** * *** FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< * **************************** ******************* * * ************ * ** * * * ** * * * FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 21 -------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 357.90 DOWNSTREAM ELEVATION(FEET) = 357.00 ELEVATION DIFFERENCE(FEET) = 0.90 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.661 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.78 TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) = 0.78 ********************* * * * ******************** ************** ***** *** ** FLOW PROCESS FROM NODE 162.00 TO NODE 165.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 357.00 DOWNSTREAM(FEET) = 354.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00 CHANNEL SLOPE = 0.0120 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 4.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.506 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.30 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.56 AVERAGE FLOW DEPTH(FEET) = 0.27 TRAVEL TIME(MIN.) = 1.87 Tc(MIN.) = 7.87 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 1.03 TOTAL AREA(ACRES) = 0.36 PEAK FLOW RATE(CFS) = 1.81 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.32 FLOW VELOCITY(FEET/SEC.) = 1.74 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 165.00 = 275.00 FEET. * * ** * * * FLOW PROCESS FROM NODE 165.00 TO NODE 165.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.87 RAINFALL INTENSITY(INCH/HR) = 5.51 TOTAL STREAM AREA(ACRES) = 0.36 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.81 * * * * * * * * ********************** ************** * ************** FLOW PROCESS FROM NODE 700.00 TO NODE 705.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 230.00 UPSTREAM ELEVATION(FEET) = 362.80 DOWNSTREAM ELEVATION(FEET) = 360.00 ELEVATION DIFFERENCE(FEET) = 2.80 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.835 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.69 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.69 * ********** ************************************************************** * * * FLOW PROCESS FROM NODE 705.00 TO NODE 710.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 358.90 DOWNSTREAM(FEET) = 354.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 280.00 CHANNEL SLOPE = 0.0164 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 99.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.409 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.85 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.23 AVERAGE FLOW DEPTH(FEET) = 0.12 TRAVEL TIME(MIN.) = 2.09 Tc(MIN.) = 8.09 SUBAREA AREA(ACRES) = 1.61 SUBAREA RUNOFF(CFS) = 8.27 TOTAL AREA(ACRES) = 1.72 PEAK FLOW RATE(CFS) = 8.96 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 2.60 LONGEST FLOWPATH FROM NODE 700.00 TO NODE 710.00 = 510.00 FEET. FLOW PROCESS FROM NODE 710.00 TO NODE 165.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 354.30 DOWNSTREAM(FEET) = 352.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 141.00 CHANNEL SLOPE = 0.0128 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 4.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.067 GRASS GOOD COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 80 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.11 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.73 AVERAGE FLOW DEPTH(FEET) = 0.70 TRAVEL TIME(MIN.) = 0.86 Tc(MIN.) = 8.95 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.30 TOTAL AREA(ACRES) = 1.85 PEAK FLOW RATE(CFS) = 9.26 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.70 FLOW VELOCITY(FEET/SEC.) = 2.76 LONGEST FLOWPATH FROM NODE 700.00 TO NODE 165.00 = 651.00 FEET. FLOW PROCESS FROM NODE 165.00 TO NODE 165.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.95 RAINFALL INTENSITY(INCH/HR) = 5.07 TOTAL STREAM AREA(ACRES) = 1.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.26 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.81 7.87 5.506 0.36 2 9.26 8.95 5.067 1.85 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 10.33 7.87 5.506 2 10.92 8.95 5.067 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.92 Tc(MIN.) = 8.95 TOTAL AREA(ACRES) = 2.21 LONGEST FLOWPATH FROM NODE 700.00 TO NODE 165.00 = 651.00 FEET. ** * * * * * * * ***************** * * FLOW PROCESS FROM NODE 165.00 TO NODE 170.00 IS CODE = 11 ---------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK * 1 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 10.92 8.95 5.067 2.21 LONGEST FLOWPATH FROM NODE 700.00 TO NODE 170.00 = 651.00 FEET. ** MEMORY BANK * 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 36.37 10.38 4.605 8.18 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 170.00 = 1125.51 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 43.97 8.95 5.067 2 46.29 10.38 4.605 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 46.29 Tc(MIN.) = 10.38 TOTAL AREA(ACRES) = 10.39 * * ******* * *********************** * * ******** ***** FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 12 ---------------------------------------------------------------------------- >>>>>CLEAR MEMORY BANK * 1 <<<<< ** ** ********* * ******** * * ****************************** ** FLOW PROCESS FROM NODE 170.00 TO NODE 175.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 344.88 DOWNSTREAM(FEET) = 344.43 FLOW LENGTH(FEET) = 24.60 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.80 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 46.29 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 10.42 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 175.00 = 1150.11 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 10.39 TC(MIN.) = 10.42 PEAK FLOW RATE(CFS) = 46.29 END OF RATIONAL METHOD ANALYSIS RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003, 1985, 1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY 3370 - BRESSI INDUSTRIAL LOTS 19-22 * * PEOPOSED CONDITIONS - SYS 500 * * 100 YEAR STORM EVENT * FILE NAME: S500Y100.DAT TIME/DATE OF STUDY: 10:31 05/04/2007 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER_DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE! WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* * * ******* * * * ********** * * * * * FLOW PROCESS FROM NODE 500.00 TO NODE 505.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 110.00 UPSTREAM ELEVATION(FEET) = 367.00 DOWNSTREAM ELEVATION(FEET) = 366.20 ELEVATION DIFFERENCE(FEET) = 0.80 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.248 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.95 TOTAL AREA(ACRES) = 0.17 TOTAL RUNOFF(CFS) = 0.95 * ******** ***************** *** *************** ****************************** * * FLOW PROCESS FROM NODE 505.00 TO NODE 510.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 366.00 DOWNSTREAM(FEET) = 356.85 CHANNEL LENGTH THRU SUBAREA(FEET) = 353.00 CHANNEL SLOPE = 0.0259 CHANNEL BASE(FEET) = 12.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.022 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.183 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.40 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.23 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 2.64 Tc(MIN.) = 8.64 SUBAREA AREA(ACRES) = 0.66 SUBAREA RUNOFF(CFS) = 2.91 TOTAL AREA(ACRES) = 0.83 PEAK FLOW RATE(CFS) = 3.86 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.12 FLOW VELOCITY(FEET/SEC.) = 2.64 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 510.00 = 463.00 FEET. FLOW PROCESS FROM NODE 510.00 TO NODE 510.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.64 RAINFALL INTENSITY(INCH/HR) = 5.18 TOTAL STREAM AREA(ACRES) = 0.83 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.86 FLOW PROCESS FROM NODE 600.00 TO NODE 605.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 95.00 UPSTREAM ELEVATION(FEET) = 367.00 DOWNSTREAM ELEVATION(FEET) = 366.20 ELEVATION DIFFERENCE(FEET) = 0.80 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.787 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.75 TOTAL AREA(ACRES) = 0.12 TOTAL RUNOFF(CFS) = 0.75 FLOW PROCESS FROM NODE 605.00 TO NODE 510.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 365.80 DOWNSTREAM(FEET) = 356.85 CHANNEL LENGTH THRU SUBAREA(FEET) = 425.00 CHANNEL SLOPE = 0.0211 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 99.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOtJR) = 4.925 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.25 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.11 AVERAGE FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 3.35 Tc(MIN.) = 9.35 SUBAREA AREA(ACRES) = 1.05 SUBAREA RUNOFF(CFS) = 4.91 TOTAL AREA(ACRES) = 1.17 PEAK FLOW RATE(CFS) = 5.66 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) = 2.54 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 510.00 = 520.00 FEET. FLOW PROCESS FROM NODE 510.00 TO NODE 510.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.35 RAINFALL INTENSITY(INCH/HR) = 4.93 TOTAL STREAM AREA(ACRES) = 1.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.66 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.86 8.64 5.183 0.83 2 5.66 9.35 4.925 1.17 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 9.23 8.64 5.183 2 9.32 9.35 4.925 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.32 Tc(MIN.) = 9.35 TOTAL AREA(ACRES) = 2.00 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 510.00 = 520.00 FEET. FLOW PROCESS FROM NODE 510.00 TO NODE 515.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 352.85 DOWNSTREAM(FEET) = 348.61 FLOW LENGTH(FEET) = 92.40 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.42 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 9.32 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 9.49 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 515.00 = 612.40 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 2.00 TC(MIN.) = 9.49 PEAK FLOW RATE(CFS) = 9.32 END OF RATIONAL METHOD ANALYSIS APPENDIX 3 AES HYDROLOGY COMPUTER OUTPUT PROPOSED CONDITIONS 2003 CRITERIA P:337OENGR\REPORTS\DRAIN\3370. 10 Lots 19-22\REP0RT\Appendix.D0C RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 *** ****************** DESCRIPTION OF STUDY ***k**** **** * * ******** * 3370 - BRESSI INDUSTRIAL LOTS 19-22 * * PROPOSED CONDITIONS - SYS 100 * * 100 YEAR STORM EVENT * ****** ***** * * * *** * * ********* * ****************************** ************* * * FILE NAME: S100P100.DAT TIME/DATE OF STUDY: 10:27 05/04/2007 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER_DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 100.00 TO NODE 105.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 265.00 UPSTREAM ELEVATION(FEET) = 370.00 DOWNSTREAM ELEVATION(FEET) = 365.15 ELEVATION DIFFERENCE(FEET) = 4.85 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.040 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 68.30 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 1.76 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) = 1.76 * * * ***************************** *********** *************** * *** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): GENERAL COMMERCIAL RUNOFF COEFFICIENT = .7500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8183 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.72 TOTAL AREA(ACRES) = 0.41 TOTAL RUNOFF(CFS) = 2.48 TC(MIN.) = 3.04 ** * * **************** ******* * * **** * * * * * FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 --------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. GENERAL COMMERCIAL RUNOFF COEFFICIENT = .8200 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 95 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8189 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 1.33 TOTAL AREA(ACRES) = 0.63 TOTAL RUNOFF(CFS) = 3.81 TC(MIN.) = 3.04 * * **************** * FLOW PROCESS FROM NODE 105.00 TO NODE 110.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 362.15 DOWNSTREAM(FEET) = 355.76 FLOW LENGTH(FEET) = 135.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 9.0 INCH PIPE IS 7.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.10 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.81 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 3.26 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 = 400.00 FEET. FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 81 --------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. GENERAL COMMERCIAL RUNOFF COEFFICIENT = .8200 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 95 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8191 SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 1.09 TOTAL AREA(ACRES) = 0.81 TOTAL RUNOFF(CFS) = 4.89 TC(MIN.) = 3.26 FLOW PROCESS FROM NODE 110.00 TO NODE 120.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 355.76 DOWNSTREAM(FEET) = 354.93 FLOW LENGTH(FEET) = 87.41 MANNING'S N = 0.011 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.07 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.89 PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 3.50 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 120.00 = 487.41 FEET. FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 3.50 RAINFALL INTENSITY(INCH/HR) = 7.38 TOTAL STREAM AREA(ACRES) = 0.81 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.89 ************************* * * * * ** **** ** * FLOW PROCESS FROM NODE 200.00 TO NODE 205.00 IS CODE = 21 -------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 45.00 UPSTREAM ELEVATION(FEET) = 366.85 DOWNSTREAM ELEVATION (FEET) = 364.00 ELEVATION DIFFERENCE(FEET) = 2.85 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.501 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 1.16 TOTAL AREA(ACRES) = 0.18 TOTAL RUNOFF(CFS) = 1.16 FLOW PROCESS FROM NODE 205.00 TO NODE 120.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 364.00 DOWNSTREAM(FEET) = 354.93 CHANNEL LENGTH THRU SUBAREA(FEET) = 180.00 CHANNEL SLOPE = 0.0504 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 99.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.37 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.75 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 1.09 Tc(MIN.) = 2.59 SUBAREA AREA(ACRES) = 0.38 SUBAREA RUNOFF(CFS) = 2.44 AREA-AVERAGE RUNOFF COEFFICIENT = 0.870 TOTAL AREA(ACRES) = 0.56 PEAK FLOW RATE(CFS) = 3.59 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 3.05 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 120.00 = 225.00 FEET. FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 2.59 RAINFALL INTENSITY(INCH/HR) = 7.38 TOTAL STREAM AREA(ACRES) = 0.56 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.59 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.89 3.50 7.377 0.81 2 3.59 2.59 7.377 0.56 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 7.22 2.59 7.377 2 8.49 3.50 7.377 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.49 Tc(MIN.) = 3.50 TOTAL AREA(ACRES) = 1.37 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 120.00 = 487.41 FEET. * ********* * * *********** ***************************** * * ****** ** ** * FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Pc = 5-MINUTE. GENERAL COMMERCIAL RUNOFF COEFFICIENT = .8200 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 95 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8363 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.81 TOTAL AREA(ACRES) = 1.67 TOTAL RUNOFF(CFS) = 10.30 TC(MIN.) = 3.50 FLOW PROCESS FROM NODE 120.00 TO NODE 130.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 354.60 DOWNSTREAM(FEET) = 353.42 FLOW LENGTH(FEET) = 94.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.07 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.30 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) 3.70 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 130.00 = 581.41 FEET. ** * ************ ************** * ***************************** * * * FLOW PROCESS FROM NODE 130.00 TO NODE 140.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 353.09 DOWNSTREAM(FEET) = 352.51 FLOW LENGTH(FEET) = 65.03 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.96 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.30 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 3.85 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 140.00 = 646.44 FEET. * ************ *** ************************** ******** * ************* * *** * FLOW PROCESS FROM NODE 140.00 TO NODE 150.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) 352.18 DOWNSTREAM(FEET) = 349.71 FLOW LENGTH(FEET) = 138.34 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.13 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBERS OF PIPES = 1 PIPE-FLOW(CFS) = 10.30 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) = 4.14 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 150.00 = 784.78 FEET. * ***** ******************** * * FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 4.14 RAINFALL INTENSITY(INCH/HR) = 7.38 TOTAL STREAM AREA(ACRES) = 1.67 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.30 *** * * * **** * ** * * * *********** ** *************************************** * FLOW PROCESS FROM NODE 300.00 TO NODE 305.00 IS CODE = 21 -------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 45.00 UPSTREAM ELEVATION(FEET) = 362.88 DOWNSTREAM ELEVATION(FEET) = 362.20 ELEVATION DIFFERENCE(FEET) = 0.68 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.420 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 1.28 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.28 FLOW PROCESS FROM NODE 305.00 TO NODE 310.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 362.20 DOWNSTREAM(FEET) = 357.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 160.00 CHANNEL SLOPE = 0.0312 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 99.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOOR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.58 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.03 AVERAGE FLOW DEPTH(FEET) = 0.12 TRAVEL TIME(MIN.) = 0.88 Tc(MIN.) = 3.30 SUBAREA AREA(ACRES) = 1.65 SUBAREA RUNOFF(CFS) = 10.59 AREA-AVERAGE RUNOFF COEFFICIENT = 0.870 TOTAL AREA(ACRES) = 1.85 PEAK FLOW RATE(CFS) = 11.87 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 3.44 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 310.00 = 205.00 FEET. FLOW PROCESS FROM NODE 310.00 TO NODE 150.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPtJTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 352.72 DOWNSTREAM(FEET) = 349.71 FLOW LENGTH(FEET) = 148.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.07 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.87 PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 3.54 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 150.00 = 353.00 FEET. FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 3.54 RAINFALL INTENSITY(INCH/HR) = 7.38 TOTAL STREAM AREA(ACRES) = 1.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.87 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 10.30 4.14 7.377 1.67 2 11.87 3.54 7.377 1.85 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 22.18 3.54 7.377 2 22.18 4.14 7.377 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 22.18 Tc(MIN.) = 4.14 TOTAL AREA(ACRES) = 3.52 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 150.00 = 784.78 FEET. FLOW PROCESS FROM NODE 150.00 TO NODE 160.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 349.64 DOWNSTREAM(FEET) = 347.67 FLOW LENGTH(FEET) = 107.36 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 12.55 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 22.18 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 4.28 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 160.00 = 892.14 FEET. FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLOENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 4.28 RAINFALL INTENSITY(INCH/HR) 7.38 TOTAL STREAM AREA(ACRES) = 3.52 PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.18 FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ANNUAL GRASS (DRYLAND) GOOD COVER RUNOFF COEFFICIENT = .3500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 80 INITIAL SUBAREA FLOW-LENGTH(FEET) = 145.00 UPSTREAM ELEVATION(FEET) = 371.80 DOWNSTREAM ELEVATION(FEET) = 369.80 ELEVATION DIFFERENCE(FEET) = 2.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 10.551 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 75.69 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.557 SUBAREA RUNOFF(CFS) = 0.11 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) = 0.11 FLOW PROCESS FROM NODE 401.00 TO NODE 405.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 369.80 DOWNSTREAM(FEET) = 361.40 CHANNEL LENGTH THRU SUBAREA(FEET) = 325.00 CHANNEL SLOPE = 0.0258 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 4.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.548 ANNUAL GRASS (DRYLAND) GOOD COVER RUNOFF COEFFICIENT = .3500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 80 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.16 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.08 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 5.00 Tc(MIN.) = 15.55 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.10 AREA-AVERAGE RUNOFF COEFFICIENT = 0.350 TOTAL AREA(ACRES) = 0.15 PEAK FLOW RATE(CFS) = 0.19 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) LONGEST FLOWPATH FROM NODE 400.00 TO NODE 405.00 = 470.00 FEET. * * * FLOW PROCESS FROM NODE 405.00 TO NODE 160.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 361.35 DOWNSTREAM(FEET) = 359.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 285.00 CHANNEL SLOPE = 0.0065 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 4.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.924 GENERAL COMMERCIAL RUNOFF COEFFICIENT = .8200 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 95 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.40 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.87 AVERAGE FLOW DEPTH(FEET) = 0.17 TRAVEL TIME(MIN.) = 5.44 Tc(MIN.) = 21.00 SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 0.43 AREA-AVERAGE RUNOFF COEFFICIENT = 0.606 TOTAL AREA(ACRES) = 0.33 PEAK FLOW RATE(CFS) = 0.59 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.21 FLOW VELOCITY(FEET/SEC.) = 0.99 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 160.00 = 755.00 FEET. FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 21.00 RAINFALL INTENSITY(INCH/HR) = 2.92 TOTAL STREAM AREA(ACRES) = 0.33 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.59 FLOW PROCESS FROM NODE 410.00 TO NODE 410.00 IS CODE = 7 ---------------------------------------------------------------------------- >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 9.15 RAIN INTENSITY(INCH/HOUR) = 5.00 TOTAL AREA(ACRES) = 4.33 TOTAL RUNOFF(CFS) = 19.75 FLOW PROCESS FROM NODE 410.00 TO NODE 160.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 348.51 DOWNSTREAM(FEET) = 347.67 FLOW LENGTH(FEET) = 251.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.80 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 19.75 PIPE TRAVEL TIME(MIN.) = 0.72 Tc(MIN.) = 9.87 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 160.00 = 251.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 9.87 RAINFALL INTENSITY(INCH/HR) = 4.76 TOTAL STREAM AREA(ACRES) = 4.33 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.75 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 22.18 4.28 7.377 3.52 2 0.59 21.00 2.924 0.33 3 19.75 9.87 4.757 4.33 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 30.86 4.28 7.377 2 34.33 9.87 4.757 3 21.51 21.00 2.924 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 34.33 Tc(MIN.) = 9.87 TOTAL AREA(ACRES) = 8.18 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 160.00 = 892.14 FEET. * ********************** * * ********************** ************************ ***** FLOW PROCESS FROM NODE 160.00 TO NODE 170.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 346.67 DOWNSTREAM(FEET) = 345.11 FLOW LENGTH(FEET) = 233.37 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.55 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 34.33 PIPE TRAVEL TIME(MIN.) = 0.52 Tc(MIN.) = 10.39 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 170.00 = 1125.51 FEET. * * * ********* FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK * 1 <<<<< * *********** * * ** ** * * * FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< GENERAL COMMERCIAL RUNOFF COEFFICIENT = .8200 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 95 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 357.90 DOWNSTREAM ELEVATION(FEET) = 357.00 ELEVATION DIFFERENCE(FEET) = 0.90 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.976 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 58.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Pc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.85 TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) = 0.85 * * ******** * ********* FLOW PROCESS FROM NODE 162.00 TO NODE 165.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 357.00 DOWNSTREAM(FEET) = 354.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00 CHANNEL SLOPE = 0.0120 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 4.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.725 GENERAL COMMERCIAL RUNOFF COEFFICIENT = .8200 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 95 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.45 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.62 AVERAGE FLOW DEPTH(FEET) = 0.29 TRAVEL TIME(MIN.) = 1.80 Tc(MIN.) = 5.77 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 1.21 AREA-AVERAGE RUNOFF COEFFICIENT = 0.820 TOTAL AREA(ACRES) = 0.36 PEAK FLOW RATE(CFS) = 1.99 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.33 FLOW VELOCITY(FEET/SEC.) = 1.79 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 165.00 = 275.00 FEET. FLOW PROCESS FROM NODE 165.00 TO NODE 165.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.77 RAINFALL INTENSITY(INCH/HR) = 6.72 TOTAL STREAM AREA(ACRES) = 0.36 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.99 ** * * ********************** * FLOW PROCESS FROM NODE 700.00 TO NODE 705.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 230.00 UPSTREAM ELEVATION(FEET) = 362.80 DOWNSTREAM ELEVATION(FEET) = 360.00 ELEVATION DIFFERENCE(FEET) = 2.80 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.057 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 62.17 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.71 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.71 ** * ** * * * ************************** * FLOW PROCESS FROM NODE 705.00 TO NODE 710.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 358.90 DOWNSTREAM(FEET) = 354.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 280.00 CHANNEL SLOPE = 0.0164 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 99.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.361 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME (MIN.) Tc(MIN.) = 5.02 5.86 = 2.38 = 1.96 SUBAREA AREA(ACRES) = 1.61 SUBAREA RUNOFF(CFS) = 10.31 AREA-AVERAGE RUNOFF COEFFICIENT = 0.870 TOTAL AREA(ACRES) = 1.72 PEAK FLOW RATE(CFS) = 11.02 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.18 FLOW VELOCITY(FEET/SEC.) = 2.73 LONGEST FLOWPATH FROM NODE 700.00 TO NODE 710.00 = 510.00 FEET. ** * *** * * * FLOW PROCESS FROM NODE 710.00 TO NODE 165.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 354.30 DOWNSTREAM(FEET) = 352.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 141.00 CHANNEL SLOPE = 0.0128 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 4.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.679 ANNUAL GRASS (DRYLAND) GOOD COVER RUNOFF COEFFICIENT = .3500 SOIL CLASSIFICATION IS "D" S.C.S6 CURVE NUMBER (AMC II) = 80 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.17 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.88 AVERAGE FLOW DEPTH(FEET) = 0.77 TRAVEL TIME(MIN.) = 0.82 Tc(MIN.) = 5.83 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.30 AREA-AVERAGE RUNOFF COEFFICIENT = 0.833 TOTAL AREA(ACRES) = 1.85 PEAK FLOW RATE(CFS) = 11.02 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.76 FLOW VELOCITY(FEET/SEC.) = 2.88 LONGEST FLOWPATH FROM NODE' 700.00 TO NODE 165.00 = 651.00 FEET. * * * * ** * *** * ****************************** * * FLOW PROCESS FROM NODE 165.00 TO NODE 165.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF, CONCENTRATION(MIN.) = 5.83 RAINFALL INTENSITY(INCH/HR) = 6.68 TOTAL STREAM AREA(ACRES) = 1.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.02 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.99 5.77 6.725 0.36 2 11.02 5.83 6.679 1.85 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 12.89 5.77 6.725 2 12.99 5.83 6.679 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.99 Tc(MIN.) = 5.83 TOTAL AREA(ACRES) = 2.21 LONGEST FLOWPATH FROM NODE 700.00 TO NODE 165.00 = 651.00 FEET. * ************** * ** ** * * * * ** ** FLOW PROCESS FROM NODE 165.00 TO NODE 170.00 IS CODE = 11 ---------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK * 1 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 12.99 5.83 6.679 2.21 LONGEST FLOWPATH FROM NODE 700.00 TO NODE 170.00 = 651.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 34.33 10.39 4.604 8.18 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 170.00 = 1125.51 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 32.26 5.83 6.679 2 43.28 10.39 4.604 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 43.28 Tc(MIN.) = 10.39 TOTAL AREA(ACRES) = 10.39 FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 12 ---------------------------------------------------------------------------- >>>>>CLEAR MEMORY BANK * 1 <<<<< * **** ************ * * ** ********** *********** * FLOW PROCESS FROM NODE 170.00 TO NODE 175.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<(< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 344.88 DOWNSTREAM(FEET) = 344.43 FLOW LENGTH(FEET) = 24.60 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.69 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 43.28 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 10.42 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 175.00 = 1150.11 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 10.39 TC(MIN.) = 10.42 PEAK FLOW RATE (CFS) = 43.28 END OF RATIONAL METHOD ANALYSIS RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: Proj ectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY * 3370 - BRESSI INDUSTRIAL LOTS 19-22 * * PEOPOSED CONDITIONS - SYS 500 * * 100 YEAR STORM EVENT * ******************* * ************************************ * ************* * FILE NAME: S500P100.DAT TIME/DATE OF STUDY: 10:36 05/04/2007 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER.DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE! WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 500.00 TO NODE 505.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< GENERAL COMMERCIAL RUNOFF COEFFICIENT = .8200 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 95 INITIAL SUBAREA FLOW-LENGTH(FEET) = 110.00 UPSTREAM ELEVATION(FEET) = 367.00 DOWNSTREAM ELEVATION(FEET) = 366.20 ELEVATION DIFFERENCE(FEET) = 0.80 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.139 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 54.55 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Pc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 1.03 TOTAL AREA(ACRES) = 0.17 TOTAL RUNOFF(CFS) = 1.03 ** * * * * *********************** * ************ ** FLOW PROCESS FROM NODE 505.00 TO NODE 510.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 366.00 DOWNSTREAM(FEET) = 356.85 CHANNEL LENGTH THRU SUBAREA(FEET) = 353.00 CHANNEL SLOPE = 0.0259 CHANNEL BASE(FEET) = 12.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.022 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOOR) = 6.107 GENERAL COMMERCIAL RUNOFF COEFFICIENT = .8200 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 95 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.70 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.30 AVERAGE FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 2.56 Tc(MIN.) = 6.70 SUBAREA AREA(ACRES) = 0.66 SUBAREA RUNOFF(CFS) = 3.31 AREA-AVERAGE RUNOFF COEFFICIENT = 0.820 TOTAL AREA(ACRES) = 0.83 PEAK FLOW RATE(CFS) = 4.16 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) = 2.67 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 510.00 = 463.00 FEET. FLOW PROCESS FROM NODE 510.00 TO NODE 510.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT. STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.70 RAINFALL INTENSITY(INCH/HR) = 6.11 TOTAL STREAM AREA(ACRES) = 0.83 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.16 **************************************************************************** FLOW PROCESS FROM NODE 600.00 TO NODE 605.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 95.00 UPSTREAM ELEVATION(FEET) = 367.00 DOWNSTREAM ELEVATION(FEET) = 366.20 ELEVATION DIFFERENCE(FEET) = 0.80 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.305 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 56.84 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.77 TOTAL AREA(ACRES) = 0.12 TOTAL RUNOFF(CFS) = 0.77 FLOW PROCESS FROM NODE 605.00 TO NODE 510.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 365.80 DOWNSTREAM(FEET) = 356.85 CHANNEL LENGTH THRU SUBAREA(FEET) = 425.00 CHANNEL SLOPE = 0.0211 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 99.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.299 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.65 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.30 AVERAGE FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 3.08 Tc(MIN.) = 6.39 SUBAREA AREA(ACRES) = 1.05 SUBAREA RUNOFF(CFS) = 5.75 AREA-AVERAGE RUNOFF COEFFICIENT = 0.870 TOTAL AREA(ACRES) = 1.17 PEAK FLOW RATE(CFS) = 6.41 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) = 2.60 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 510.00 = 520.00 FEET. FLOW PROCESS FROM NODE 510.00 TO NODE 510.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.39 RAINFALL INTENSITY(INCH/HR) = 6.30 TOTAL STREAM AREA(ACRES) = 1.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.41 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.16 6.70 6.107 0.83 2 6.41 6.39 6.299 1.17 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Pc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 10.37 6.39 6.299 2 10.37 6.70 6.107 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.37 Tc(MIN.) = 6.39 TOTAL AREA(ACRES) = 2.00 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 510.00 = 520.00 FEET. * ******************* ************* * ** ********** ** * * *********** ********** * FLOW PROCESS FROM NODE 510.00 TO NODE 515.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 352.85 DOWNSTREAM(FEET) = 348.61 FLOW LENGTH(FEET) = 92.40 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.74 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.37 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 6.52 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 515.00 = 612.40 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 2.00 TC(MIN.) = 6.52 PEAK FLOW RATE(CFS) = 10.37 END OF RATIONAL METHOD ANALYSIS APPENDIX 4 AES HYDRAULIC COMPUTER OUTPUT PROPOSED CONDITIONS P:\337O\ENGRREPORTS\DRA1N\3370. 10 Lots 19-22\REPORT\Appendix.DOC PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 3370 - BRESSI INDUSTRIAL LOTS 19-22 * * PROPOSED CONDITIONS - SYS 180 * * 100 YEAR STORM EVENT * *** ***** ******** * * ************************************** * ***************** FILE NAME: S180P100.DAT TIME/DATE OF STUDY: 16:00 05/07/2007 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: '1*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSIJRE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 180.00- 2.25 Dc 1200.28 0.84* 2894.24 FRICTION 175.00- 2.25 Dc 1200.28 1.93* 1241.12 JUNCTION 175.90- 2.25*Dc 1200.28 2.25*Dc 1200.28 FRICTION 170.00- 2.70* 1289.39 2.25 Dc 1200.28 JUNCTION 170.00- 3.76* 1292.55 1.73 879.45 FRICTION 160.00- 2.84* 1010.58 2.04 Dc 846.94 } JUNCTION 160.80- 3•74* 915.74 1.43 371.82 FRICTION 410.00- 2.81* 631.46 1.51 Dc 370.19 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 180.00 FLOWLINE ELEVATION = 323.24 PIPE FLOW = 46.29 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 324.180 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.94 FT.) IS LESS THAN CRITICAL DEPTH( 2.25 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 180.00 : HGL = < 324.081>;EGL= < 339.895>;FLOWLINE= < 323.240> ** * *********************************** * * FLOW PROCESS FROM NODE 180.00 TO NODE 175.00 IS CODE = 1 UPSTREAM NODE ------------------------------------------------------------------------------ 175.00 ELEVATION = 344.10 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 46.29 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 64.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.75 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 2.25 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.93 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM ------------------------------------------------------------------------------ FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0.000 1.932 11.367 3.940 1241.12 0.178 1.885 11.654 3.995 1255.01 0.392 1.838 11.964 4.062 1271.27 0.647 1.791 12.298 4.141 1290.05 0.948 1.744 12.659 4.233 1311.52 1.302 1.696 13.049 4.342 1335.90 1.716 1.649 13.470 4.468 1363.43 2.199 1.602 13.925 4.615 1394.37 2.763 1.555 14.419 4.785 1429.03 3.421 1.508 14.954 4.982 1467.77 4.190 1.461 15.535 5.211 1510.98 5.091 1.414 16.167 5.475 1559.13 6.148 1.366 16.857 5.782 1612.77 7.396 1.319 17.611 6.138 1672.52 8.877 1.272 18.437 6.554 1739.12 10.647 1.225 19.346 7.040 1813.42 12.781 1.178 20.347 7.611 1896.44 15.383 1.131 21.456 8.284 1989.40 18.600 1.084 22.688 9.081 2093.74 22.650 1.036 24.062 10.032 2211.21 27.878 0.989 25.602 11.174 2343.94 34.863 0.942 27.338 12.554 2494.55 44.700 0.895 29.305 14.238 2666.26 59.857 0.848 31.549 16.313 2863.14 64.000 0.841 31.902 16.655 2894.24 NODE 175.00 : HGL = < 346.032>;EGL= ------------------------------------------------------------------------------ < 348.040>;FLOWLINE= < 344.100> * ********* * * ** ************ * ** ************** * * * FLOW PROCESS FROM NODE 175.00 TO NODE 175.90 IS CODE = 5 UPSTREAM NODE ------------------------------------------------------------------------------ 175.90 ELEVATION = 344.43 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 46.29 30.00 DOWNSTREAM 46.29 30.00 LATERAL #1 0.00 0.00 LATERAL *2 0.00 0.00 Q5 0.00===Q5 EQUALS 13.00 344.43 2.25 9.959 - 344.10 2.25 9.959 0.00 0.00 0.00 0.000 0.00 0.00 0.00 0.000 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS (DELTA1) _Q3*V3*COS (DELTA3) - Q4*V4*C05(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01123 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01123 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01123 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.045 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.330)+( 0.000) = 0.330 ------------------------------------------------------------------------------ NODE 175.90 : HGL = < 346.677>;EGL= < 348.217>;FLOWLINE= < 344.430> FLOW PROCESS FROM NODE 175.90 TO NODE 170.00 IS CODE = 1 UPSTREAM NODE 170.00 ELEVATION = 343.89 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 46.29 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 24.00 FEET MANNING'S N = 0.01300 *WARNING -- PIPE INVERT SLOPE IS LESS THAN .0001, AND DEFAULTED TO .0001 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) = 2.50 CRITICAL DEPTH(FT) = 2.25 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.25 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0.000 2.247 9.956 3.787 1200.28 0.013 2.257 9.923 3.787 1200.32 0.050 2.267 9.892 3.787 1200.44 0.113 2.277 9.861 3.788 1200.65 0.202 2.287 9.831 3.789 1200.93 0.316 2.297 9.802 3.790 1201.30 0.455 2.307 9.774 3.792 1201.75 0.620 2.318 9.746 3.793 1202.28 0.810 2.328 9.720 3.796 1202.90 1.026 2.338 9.694 3.798 1203.60 1.269 2.348 9.669 3.801 1204.39 1.537 2.358 9.645 3.803 1205.26 1.832 2.368 9.622 3.807 1206.23 2.153 2.378 9.600 3.810 1207.28 2.501 2.388 9.578 3.814 1208.43 2.876 2.399 9.558 3.818 1209.67 3.279 2.409 9.539 3.823 1211.01 3.710 2.419 9.521 3.827 1212.46 4.170 2.429 9.504 3.832 1214.01 4.659 2.439 9.488 3.838 1215.67 5.180 2.449 9.473 3.844 1217.46 5.732 2.459 9.460 3.850 1219.37 6.320 2.470 9.449 3.857 1221.43 6.945 2.480 9.439 3.864 1223.65 7.614 2.490 9.431 3.872 1226.08 8.348 2.500 9.427 3.881 1228.79 ===> FLOW IS UNDER PRESSURE 24.000 2.698 9.430 4.079 1289.39 ------------------------------------------------------------------------------ NODE 170.00 : HGL = < 346.588>;EGL= < 347.969>;FLOWLINE= < 343.890> * * * * * * * ***** ********* * *************************** * FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 5 UPSTREAM NODE 170.00 ELEVATION = 343.89 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 36.37 30.00 0.00 343.89 2.04 7.409 DOWNSTREAM 46.29 30.00 - 343.89 2.25 9.430 LATERAL #1 9.92 18.00 90.00 345.14 1.21 5.614 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS (DELTA1) _Q3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00786 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01274 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01030 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.010 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.539)+( 0.000) = 0.539 NODE 170.00 : HGL = < 347.655>;EGL= < 348.507>;FLOWLINE= < 343.890> FLOW PROCESS FROM NODE 170.00 TO NODE 160.00 IS CODE = 1 UPSTREAM NODE 160.00 ELEVATION = 346.67 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 36.37 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 236.50 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 36.37)/( 410.174))**2 = 0.00786 HF=L*SF = ( 236.50)*(0.00786) = 1.859 NODE 160.00 : HGL = < 349.514>;EGL= < 350.367>;FLOWLINE= < 346.670> ******** ********************************** * * * * ******************************* * FLOW PROCESS FROM NODE 160.00 TO NODE 160.80 IS CODE = 5 UPSTREAM NODE 160.80 ELEVATION = 347.00 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 19.75 30.00 0.00 347.00 1.51 4.023 DOWNSTREAM 36.37 30.00 - 346.67 2.04 7.409 LATERAL #1 16.63 18.00 90.00 347.67 1.43 9.411 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS (DELTA1) ...Q3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00232 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00786 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00509 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.020 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.621)+( 0.000) = 0.621 NODE 160.80 : HGL = < 350.737>;EGL= < 350.988>;FLOWLINE= < 347.000> * * * *********** * ***************** * ********************** * * ** FLOW PROCESS FROM NODE 160.80 TO NODE 410.00 IS CODE = 1 UPSTREAM NODE 410.00 ELEVATION = 348.51 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 19.75 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 251.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 19.75)/( 410.171))**2 = 0.00232 HF=L*SF = ( 251.00)*(0.00232) = 0.582 NODE 410.00 : HGL = < 351.319>;EGL= < 351.570>;FLOWLINE= < 348.510> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 410.00 FLOWLINE ELEVATION = 348.51 ASSUMED UPSTREAM CONTROL HGL = 350.02 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: Proj ectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY * 3370 - BRESSI INDUSTRIAL LOTS 19-22 * * PROPOSED CONDITIONS SYS 170 * * 100 YEAR STORM EVENT * ** *********** ***** *********** * *********************************** * ******** S FILE NAME: S170P100.DAT TIME/DATE OF STUDY: 07:14 05/08/2007 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: 17*11 indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 170.00- 3•77* 463.78 0.57 386.46 FRICTION I HYDRAULIC JUMP 165.00- 1.27*Dc 203.17 1.27*Dc 203.17 CATCH BASIN 165.00- 2.14* 153.67 1.27 Dc 57.96 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 170.00 FLOWLINE ELEVATION = 343.89 PIPE FLOW = 10.92 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 347.660 FEET ------------------------------------------------------------------------------ NODE 170.00 : HGL = < 347.660>;EGL= < 348.253>;FLOWLINE= < 343.890> FLOW PROCESS FROM NODE 170.00 TO NODE 165.00 IS CODE = 1 UPSTREAM NODE 165.00 ELEVATION = 348.00 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 10.92 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 9.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.40 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 1.27 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.27 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0.000 1.266 6.860 1.997 203.17 0.005 1.231 7.032 2.000 203.40 0.022 1.197 7.222 2.007 204.11 0.051 1.162 7.432 2.020 205.32 0.095 1.127 7.663 2.040 207.08 0.156 1.092 7.917 2.066 209.42 0.235 1.058 8.197 2.102 212.39 0.337 1.023 8.503 2.146 216.05 0.465 0.988 8.841 2.203 220.46 0.623 0.954 9.212 2.272 225.70 0.819 0.919 9.622 2.357 231.86 1.059 0.884 10.075 2.461 239.05 1.354 0.849 10.577 2.588 247.39 1.715 0.815 11.136 2.741 257.04 2.159 0.780 11.760 2.929 268.18 2.709 0.745 12.459 3.157 281.02 3.394 0.710 13.247 3.437 295.85 4.256 0.676 14.138 3.781 312.99 5.356 0.641 15.153 4.208 332.85 6.786 0.606 16.316 4.742 355.96 8.692 0.571 17.659 5.417 383.00 9.000 0.567 17.830 5.507 386.46 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.77 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) HEAD(FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0.000 3.770 6.179 4.363 463.78 5.091 1.500 6.179 2.093 213.47 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 5.091 1.500 6.178 2.093 213.47 5.110 1.491 6.183 2.085 212.55 5.127 1.481 6.192 2.077 211.72 5.143 1.472 6.204 2.070 210.95 5.157 1.463 6.219 2.063 210.23 5.171 1.453 6.235 2.057 209.55 5.184 1.444 6.253 2.051 208.92 5.196 1.435 6.273 2.046 208.32 5.208 1.425 6.295 2.041 207.76 5.219 1.416 6.318 2.036 207.24 5.229 1.406 6.342 2.031 206.75 5.239 1.397 6.368 2.027 206.29 5.248 1.388 6.395 2.023 205.86 5.256 1.378 6.423 2.019 205.46 5.264 1.369 6.453 2.016 205.10 5.271 1.360 6.483 2.013 204.77 5.277 1.350 6.515 2.010 204.47 5.283 1.341 6.549 2.007 204.20 5.288 1.332 6.583 2.005 203.96 5.293 1.322 6.619 2.003 203.75 5.296 1.313 6.656 2.001 203.57 5.300 1.304 6.694 2.000 203.43 5.302 1.294 6.734 1.999 203.32 5.304 1.285 6.775 1.998 203.23 5.305 1.276 6.817 1.997 203.19 5.305 1.266 6.860 1.997 203.17 9.000 1.266 6.860 1.997 203.17 -------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 2.18 FEET UPSTREAM OF NODE 170.00 DOWNSTREAM DEPTH = 2.796 FEET, UPSTREAM CONJUGATE DEPTH = 0.606 FEET I NODE 165.00 : HGL = < 349.266>;EGL= < 349.997>;FLOWLINE= < 348.000> FLOW PROCESS FROM NODE 165.00 TO NODE 165.00 IS CODE = 8 UPSTREAM NODE 165.00 ELEVATION = 348.00 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 10.92 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 6.86 FEET/SEC. VELOCITY HEAD = 0.731 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.731) = 0.146 NODE 165.00 : HGL = < 350.144>;EGL= < 350.144>;FLOWLINE= < 348.000> * ***************** * * * * *** ** * * ** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 165.00 FLOWLINE ELEVATION = 348.00 ASSUMED UPSTREAM CONTROL HGL = 349.27 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY * 3370 - BRESSI INDUSTRIAL LOTS 19-22 * * PROPOSED CONDITIONS - SYS 515.9 * * 100 YEAR STORM EVENT * * ** ************ * * * ********************************* ** ***** * * ************** FILE NAME: 5159P100.DAT TIME/DATE OF STUDY: 07:30 05/08/2007 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: '*'P indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 515.90- 1.50 177.96 0.70* 222.27 FRICTION 510.00- 1.18*Dc 162.54 1.18*Dc 162.54 CATCH BASIN 510.00- 1.91* 127.68 1.18 Dc 49.66 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 515.90 FLOWLINE ELEVATION = 348.61 PIPE FLOW = 9.32 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 350.110 FEET ------------------------------------------------------------------------------ NODE 515.90 : HGL = < 349.312>;EGL= < 351.357>;FLOWLINE= < 348.610> * * *********************************************** ***** * ** * FLOW PROCESS FROM NODE 515.90 TO NODE 510.00 IS CODE = 1 UPSTREAM NODE 510.00 ELEVATION = 352.85 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.32 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 97.38 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.68 CRITICAL DEPTH(FT) = 1.18 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.18 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0.000 1.180 6.248 1.787 162.54 0.021 1.160 6.354 1.787 162.61 0.087 1.140 6.465 1.790 162.82 0.201 1.120 6.582 1.793 163.17 0.370 1.100 6.706 1.799 163.66 0.599 1.081 6.837 1.807 164.32 0.895 1.061 6.975 1.816 165.14 1.267 1.041 7.120 1.828 166.13 1.723 1.021 7.274 1.843 167.30 2.277 1.001 7.436 1.860 168.66 2.942 0.981 7.608 1.880 170.22 3.734 0.961 7.789 1.904 171.99 4.676 0.941 7.981 1.931 173.99 5.793 0.921 8.183 1.962 176.22 7.119 0.902 8.398 1.997 178.71 8.696 0.882 8.626 2.038 181.46 10.583 0.862 8.867 2.084 184.51 12.855 0.842 9.124 2.135 187.85 15.622 0.822 9.397 2.194 191.53 19.044 0.802 9.687 2.260 195.57 23.369 0.782 9.996 2.335 199.98 29.012 0.762 10.327 2.419 204.81 36.754 0.743 10.680 2.515 210.09 48.351 0.723 11.057 2.622 215.85 69.435 0.703 11.463 2.744 222.14 97.380 0.702 11.471 2.747 222.27 NODE 510.00 : HGL = < 354.030>;EGL= < 354.637>;FLOWLINE= < 352.850> FLOW PROCESS FROM NODE 510.00 TO NODE 510.00 IS CODE = 8 UPSTREAM NODE 510.00 ELEVATION = 352.85 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 9.32 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 6.25 FEET/SEC. VELOCITY HEAD = 0.607 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.607) = 0.121 NODE 510.00 : HGL = < 354.758>;EGL= < 354.758>;FLOWLINE= < 352.850> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 510.00 FLOWLINE ELEVATION = 352.85 ASSUMED UPSTREAM CONTROL HGL = 354.03 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ****************** * 3370 - BRESSI INDUSTRIAL LOTS 19-22 * * PROPOSED CONDITIONS - SYS 160.9 * * 100 YEAR STORM EVENT * ******************************* *** * * * ******************* ****************** FILE NAME: 1609P100.DAT TIME/DATE OF STUDY: 06:15 05/12/2007 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: 11*11 indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 160.90- 3.06* 643.23 1.30 424.85 FRICTION 142.00- 2.53* 540.22 1.59 Dc 401.30 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 160.90 FLOWLINE ELEVATION = 347.68 PIPE FLOW = 19.70 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 350.740 FEET ------------------------------------------------------------------------------ NODE 160.90 : HGL = < 350.740>;EGL= < 351.351>;FLOWLINE < 347.680> FLOW PROCESS FROM NODE 160.90 TO NODE 142.00 IS CODE = 1 UPSTREAM NODE 142.00 ELEVATION = 348.83 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 19.70 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 82.36 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 19.70)/( 226.227))**2 = 0.00758 HF=L*SF = ( 82.36)*(0.00758) = 0.625 NODE 142.00 : HGL = < 351.365>;EGL= < 351.975>;FLOWLINE= < 348.830> * ********************************************** ****** ***** ******* * ** * * * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 142.00 FLOWLINE ELEVATION = 348.83 ASSUMED UPSTREAM CONTROL HGL = 350.42 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ** ******************** ************** *********** * * * * * * * PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (C) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY * 3370 - BRESSI INDUSTRIAL LOTS 19-22 * * PROPOSED CONDITIONS - SYS 143 * * 100 YEAR STORM EVENT * ************************************************************************** FILE NAME: S143P100.DAT TIME/DATE OF STUDY: 06:43 05/12/2007 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 143.00- 3.80* 788.29 1.39 411.73 FRICTION 150.00- 3.69* 766.80 1.59 Dc 401.30 JUNCTION 150.90- 4.19* 470.10 0.87 174.69 FRICTION 140.00- 2.76* 311.99 0.82 183.78 MANHOLE 140.90- 2.43* 275.65 0.97 163.87 FRICTION 130.00- 2.16* 245.87 1.17 Dc 156.77 JUNCTION 130.90- 2.47* 280.37 0.96 164.88 FRICTION 120.00- 1.92* 219.82 1.17 Dc 156.77 JUNCTION 120.90- 2.51* 215.26 0.63 64.87 FRICTION 110.00- 1.79* 135.90 0.81 Dc 59.74 JUNCTION 110.90- 1.89* 138.48 0.39 66.03 FRICTION } HYDRAULIC JUMP 105.00- 0.71*Dc 43.10 0.71*Dc 43.10 CATCH BASIN 105.00- 1.03* 23.25 0.71 Dc 15.22 MAXIMUM NUMBER OF ------------------------------------------------------------------------------ ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 143.00 FLOWLINE ELEVATION = 348.97 PIPE FLOW = 19.70 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 352.770 FEET NODE 143.00 : HGL = < 352.770>;EGL= < 353.381>;FLOWLINE= < 348.970> ****************************************************************************** FLOW PROCESS FROM NODE 143.00 TO NODE 150.00 IS CODE = 1 UPSTREAM NODE 150.00 ELEVATION = 349.21 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 19.70 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 17.19 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 19.70)/( 226.237))**2 = 0.00758 HF=L*SF = ( 17.19)*(0.00758) = 0.130 NODE 150.00 : HGL = < 352.900>;EGL= < 353..511>;FLOWLINE= < 349.210> FLOW PROCESS FROM NODE 150.00 TO NODE 150.90 IS CODE = 5 UPSTREAM NODE 150.90 ELEVATION = 349.71 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 9.08 18.00 0.00 349.71 1.17 5.138 DOWNSTREAM 19.70 24.00 - 349.21 1.59 6.271 LATERAL #1 10.63 18.00 90.00 349.97 1.25 6.015 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2_Q1*V1*COS (DELTA1) _Q3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00747 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00758 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00753 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.030 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.802)+( 0.000) = 0.802 ------------------------------------------------------------------------------ NODE 150.90 : HGL = < 353.903>;EGL= < 354.313>;FLOWLINE= < 349.710> **** *********** * ******* *************************** * * ******* ************ FLOW PROCESS FROM NODE 150.90 TO NODE 140.00 IS CODE = 1 UPSTREAM NODE 140.00 ELEVATION = 352.16 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.08 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 136.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 9.08)/( 105.044))**2 = 0.00747 HF=LSF = ( 136.00)*(0.00747) = 1.016 ------------------------------------------------------------------------------ NODE 140.00 : HGL = < 354.919>;EGL= < 355.329>;FLOWLINE < 352.160> * ********** * ************** * ** * * * ************************ FLOW PROCESS FROM NODE 140.00 TO NODE 140.90 Is CODE = 2 UPSTREAM NODE 140.90 ELEVATION = 352.51 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 9.08 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.14 FEET/SEC. VELOCITY HEAD = 0.410 FEET HMN = .05*(VELOCITY HEAD) = .05*( 0.410) = 0.020 NODE 140.90 : HGL = < 354.940>;EGL= < 355.350>;FLOWLINE= < 352.510> FLOW PROCESS FROM NODE 140.90 TO NODE 130.00 IS CODE = 1 UPSTREAM NODE 130.00 ELEVATION = 353.09 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.08 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 57.92 FEET MANNING'S N = 0.01100 SF=(Q/K)**2 = (( 9.08)/( 124.145))**2 = 0.00535 HF=L*SF = ( 57.92)*(0.00535) = 0.310 NODE 130.00 : HGL = < 355.250>;EGL= < 355.660>;FLOWLINE < 353.090> * ******* * ******************************************* * * FLOW PROCESS FROM NODE 130.00 TO NODE 130.90 IS CODE = 5 UPSTREAM NODE 130.90 ELEVATION = 353.42 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 9.08 18.00 76.00 353.42 1.17 5.138 DOWNSTREAM 9.08 18.00 - 353.09 1.17 5.138 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS (DELTA1) _Q3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00535 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00535 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00535 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.021 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.643)+( 0.000) = 0.643 NODE 130.90 : HGL = < 355.893>;EGL= < 356.303>;FLOWLINE < 353.420> * ****************** * * * **************** * * FLOW PROCESS FROM NODE 130.90 TO NODE 120.00 IS CODE = 1 UPSTREAM NODE 120.00 ELEVATION = 354.60 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.08 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 117.92 FEET MANNING'S N = 0.01100 SF=(Q/K)**2 = (( 9.08)/( 124.143))**2 = 0.00535 HF=L*SF = ( 117.92)*(0.00535) = 0.631 ------------------------------------------------------------------------------ NODE 120.00 : HGL = < 356.524>;EGL= < 356.934>;FLOWLINE= < 354.600> FLOW PROCESS FROM NODE 120.00 TO NODE 120.90 IS CODE = 5 UPSTREAM NODE 120.90 ELEVATION = 354.93 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 4.41 18.00 90.00 354.93 0.81 2.496 DOWNSTREAM 9.08 18.00 - 354.60 1.17 5.138 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 4.67===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS (DELTA1) _Q3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00126 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00535 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00331 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.013 FEET ENTRANCE LOSSES = 0.082 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.520)+( 0.082) = 0.602 NODE 120.90 : HGL = < 357.439>;EGL= < 357.535>;FLOWLINE= < 354.930> FLOW PROCESS FROM NODE 120.90 TO NODE 110.00 IS CODE = 1 UPSTREAM NODE 110.00 ELEVATION = 355.76 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.41 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 87.45 FEET MANNING'S N = 0.01100 SF=(Q/K)**2 = (( 4.41)/( 124.145))**2 = 0.00126 HF=LSF = ( 87.45)*(0.00126) = 0.110 NODE 110.00 : HGL = < 357.549>;EGL= < 357.646>;FLOWLINE < 355.760> **** ********** * * * * * ************************ ** * * * * ********************* * FLOW PROCESS FROM NODE 110.00 TO NODE 110.90 IS CODE = 5 UPSTREAM NODE 110.90 ELEVATION = 355.76 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 3.43 18.00 0.00 355.76 0.71 1.941 DOWNSTREAM 4.41 18.00 - 355.76 0.81 2.496 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.98===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS (DELTA1) _Q3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N =0.01100; FRICTION SLOPE = 0.00076 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00126 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00101 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.019 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.042)+( 0.019) = 0.062 NODE 110.90 : HGL = < 357.649>;EGL= < 357.707>;FLOWLINE < 355.760> * * * * * * ************************ ** * FLOW PROCESS FROM NODE 110.90 TO NODE 105.00 IS CODE = UPSTREAM NODE 105.00 ELEVATION = 361.15 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.43 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 137.39 FEET MANNING'S N = 0.01100 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.38 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 0.71 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.71 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.706 4.192 0.979 43.10 0.014 0.693 4.295 0.980 43.12 0.056 0.680 4.404 0.981 43.20 0.132 0.667 4.517 0.984 43.32 0.243 0.654 4.636 0.988 43.50 0.396 0.641 4.762 0.993 43.74 0.594 0.628 4.894 1.000 44.04 0.845 0.614 5.033 1.008 44.40 1.156 0.601 5.180 1.018 44.82 1.534 0.588 5.335 1.030 45.32 1.991 0.575 5.499 1.045 45.89 2.539 0.562 5.672 1.062 46.54 3.195 0.549 5.856 1.082 47.28 3.977 0.536 6.051 1.105 48.11 4.910 0.523 6.259 1.131 49.03 6.026 0.510 6.480 1.162 50.06 7.369 0.496 6.715 1.197 51.20 8.995 0.483 6.967 1.238 52.46 10.986 0.470 7.236 1.284 53.86 13.461 0.457 7.525 1.337 55.40 16.605 0.444 7.835 1.398 57.09 20.729 0.431 8.169 1.468 58.96 26.417 0.418 8.529 1.548 61.02 34.980 0.405 8.918 1.640 63.28 50.627 0.392 9.339 1.747 65.78 137.390 0.390 9.382 1.758 66.03 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.89 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) HEAD(FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0.000 1.889 1.941 1.947 138.48 10.108 1.500 1.941 1.559 95.60 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 10.108 1.500 1.940 1.559 95.60 10.917 1.468 1.951 1.527 92.18 11.711 1.436 1.969 1.497 88.83 12.496 1.405 1.993 1.466 85.57 13.271 1.373 2.023 1.437 82.38 14.039 1.341 2.057 1.407 79.27 14.799 1.309 2.095 1.378 76.25 15.550 1.278 2.138 1.349 73.33 16.292 1.246 2.185 1.320 70.50 17.024 1.214 2.238 1.292 67.77 17.745 1.182 2.295 1.264 65.15 18.455 1.151 2.357 1.237 62.65 19.151 1.119 2.425 1.210 60.26 19.832 1.087 2.500 1.184 57.99 20.496 1.055 2.581 1.159 55.86 21.141 1.024 2.669 1.134 53.85 21.762 0.992 2.765 1.111 51.99 22.357 0.960 2.870 1.088 50.28 22.921 0.928 2.985 1.067 48.72 23.448 0.897 3.111 1.047 47.33 23.932 0.865 3.249 1.029 46.11 24.363 0.833 3.401 1.013 45.08 24.730 0.801 3.569 0.999 44.24 25.019 0.770 3.755 0.989 43.62 25.211 0.738 3.962 0.982 43.23 25.282 0.706 4.192 0.979 43.10 137.390 0.706 4.192 0.979 43.10 -------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 17.52 FEET UPSTREAM OF NODE 110.90 I DOWNSTREAM DEPTH = 1.193 FEET, UPSTREAM CONJUGATE DEPTH = 0.391 FEET I NODE 105.00 : ------------------------------------------------------------------------------ HGL = < 361.856>;EGL= < 362.129>;FLOWLINE= < 361.150> FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 8 UPSTREAM NODE 105.00 ELEVATION = 361.15 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.43 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.19 FEET/SEC. VELOCITY HEAD = 0.273 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.273) = 0.055 ------------------------------------------------------------------------------ NODE 105.00 : HGL = < 362.184>;EGL= < 362.184>;FLOWLINE= < 361.150> * * ******* ** *** * ******* *********** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 105.00 FLOWLINE ELEVATION = 361.15 ASSUMED UPSTREAM CONTROL HGL = 361.86 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: Proj ectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 *k**************** * * ****** DESCRIPTION OF STUDY * *************** * 3370 - BRESSI INDUSTRIAL LOTS 19-22 * * PROPOSED CONDITIOSN - SYS 150.8 * * 100 YEAR STORM EVENT * FILE NAME: 1508P100.DAT TIME/DATE OF STUDY: 07:05 05/12/2007 * * ***************************************** * *** NODE NUMBER 150.80- 310.00- 310.00- GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ PROCESS HEAD (FT) MOMENTUM(POUNDS) DEPTH (FT) MOMENTUM(POUNDS) 4.19* 695.19 0.73 229.68 FRICTION } HYDRAULIC JUMP 1.17*Dc 174.98 1.17*Dc 174.98 CATCH BASIN 1.75* 97.03 1.17 Dc 59.91 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 150.80 FLOWLINE ELEVATION = 349.71 PIPE FLOW = 10.64 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 353.900 FEET ------------------------------------------------------------------------------ NODE 150.80 : HGL = < 353.900>;EGL= < 354.078>;FLOWLINE < 349.710> ** * ************************ * ******************** * FLOW PROCESS FROM NODE 150.80 TO NODE 310.00 IS CODE = 1 UPSTREAM NODE 310.00 ELEVATION = 352.72 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 10.64 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 143.55 FEET MANNING'S N = 0.01100 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.72 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 1.17 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.17 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0.000 1.169 5.579 1.652 174.98 0.032 1.151 5.685 1.653 175.04 0.133 1.133 5.796 1.655 175.24 0.310 1.114 5.912 1.657 175.57 0.572 1.096 6.032 1.662 176.05 0.928 1.078 6.158 1.668 176.67 1.388 1.060 6.290 1.675 177.45 1.968 1.042 6.427 1.684 178.40 2.680 1.024 6.570 1.695 179.51 3.545 1.006 6.720 1.708 180.80 4.583 0.988 6.878 1.723 182.28 5.822 0.970 7.042 1.740 183.95 7.294 0.952 7.215 1.761 185.82 9.039 0.934 7.396 1.784 187.92 11.109 0.916 7.586 1.810 190.24 13.570 0.897 7.786 1.839 192.80 16.509 0.879 7.996 1.873 195.62 20.045 0.861 8.218 1.911 198.71 24.344 0.843 8.452 1.953 202.08 29.650 0.825 8.698 2.001 205.77 36.342 0.807 8.958 2.054 209.78 45.053 0.789 9.234 2.114 214.14 56.974 0.771 9.526 2.181 218.88 74.781 0.753 9.835 2.256 224.02 107.058 0.735 10.163 2.340 229.59 143.550 0.734 10.169 ------------------------------------------------------------------------------ 2.341 229.68 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4.19 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0.000 4.190 3.387 4.368 695.19 112.977 2.000 3.387 2.1.78 265.87 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 112.977 2.000 3.386 2.178 265.87 114.619 1.967 3.398 2.146 259.61 116.197 1.933 3.421 2.115 253.60 117.734 1.900 3.450 2.085 247.78 119.238 1.867 3.485 2.056 242.14 120.710 1.834 3.526 2.027 236.68 122.152 1.800 3.571 1.999 231.40 123.565 1.767 3.621 1.971 226.29 124.949 1.734 3.676 1.944 221.38 126.301 1.701 3.736 1.918 216.65 127.620 1.667 3.801 1.892 212.13 128.905 1.634 3.870 1.867 207.82 130.152 1.601 3.946 1.843 203.72 131.359 1.568 4.026 1.820 199.84 132.522 1.534 4.113 1.797 196.20 133.637 1.501 4.205 1.776 192.80 134.697 1.468 4.304 1.756 189.65 135.698 1.435 4.410 1.737 186.77 136.631 1.401 4.523 1.719 184.16 137.488 1.368 4.644 1.703 181.85 138.260 1.335 4.774 1.689 179.84 138.933 1.302 4.913 1.677 178.15 139.493 1.268 5.062 1.667 176.79 139.924 1.235 5.222 1.659 175.80 140.202 1.202 5.394 1.654 175.19 140.302 1.169 5.579 1.652 174.98 143.550 1.169 5.579 1.652 174.98 --------------END OF HYDRAULIC JUMP ANALYSIS------------------------ PRESSURE+MOMENTUM BALANCE OCCURS AT 135.87 FEET UPSTREAM OF NODE 150.80 DOWNSTREAM DEPTH = 1.429 FEET, UPSTREAM CONJUGATE DEPTH = 0.948 FEET I NODE 310.00 : HGL = < 353.889>;EGL= < 354.372>;FLOWLINE= < 352.720> FLOW PROCESS FROM NODE 310.00 TO NODE 310.00 IS CODE = 8 UPSTREAM NODE 310.00 ELEVATION = 352.72 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES (LACFCD): PIPE FLOW = 10.64 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY = 5.58 FEET/SEC. VELOCITY HEAD = 0.484 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.484) = 0.097 NODE 310.00 : HGL = < 354.469>;EGL= < 354.469>;FLOWLINE= < 352.720> * * * * ***** * UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 310.00 FLOWLINE ELEVATION = 352.72 ASSUMED UPSTREAM CONTROL HGL = 353.89 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS APPENDIX 5 BRESSI RANCH INDUSTRIAL AES HYDROLOGY EXCERPT LOT 23 P:.337O\ENGRREPORTS\DRAIN\3370. 10 Lots 19-22REPORT\Appendix.DOC FLOW PROCESS FROM NODE 795.00 TO NODE 800.00 Is CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 381.00 DOWNSTREAM ELEVATION(FEET) = 379.00 ELEVATION DIFFERENCE(FEET) = 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.857 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.18 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.18 FLOW PROCESS FROM NODE 800.00 TO NODE 881.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 379.00 DOWNSTREAM(FEET) 370.00 FLOW LENGTH(FEET) = 750.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.97 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 1.18 PIPE TRAVEL TIME(MIN.) = 3.15 Tc(MIN.) = 9.15 LONGEST FLOWPATH FROM NODE 795.00 TO NODE 881.00 = 850.00 FEET. FLOW PROCESS FROM NODE 805.00 TO NODE 805.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< *USER SPECIFI INDUSTRIAL DE S.C.S. CURVE SUBAREA AREA, TOTAL AREA(AC TC(MIN.) = IMBER AMCII) = I RES) 4.]3 S1 S) .:Tl FLOW PROCESS FROM NODE 805.00 TO NODE 810.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<(<<< ELEVATION DATA: UPSTREAM(FEET) = 366.60 DOWNSTREAM(FEET) = 350.50 FLOW LENGTH(FEET) = 309.00 MANNING'S N = .0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.14 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 19.75 PIPE TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) = 9.52 LONGEST FLOWPATH FROM NODE 795.00 TO NODE 810.00 = 1159.00 FEET. FLOW PROCESS FROM NODE 810.00 TO NODE 810.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.52 RAINFALL INTENSITY(INCH/HR) = 4.87 TOTAL STREAM AREA(ACRES) = 4.33 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.75 FLOW PROCESS FROM NODE 815.00 TO NODE 816.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 364.00 DOWNSTREAM ELEVATION(FEET) = 362.00 ELEVATION DIFFERENCE(FEET) = 2.00 URBAN SUBAREA OVERLAND TIME OFFLOW(MIN.) = 2.857 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.18 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.18 FLOW PROCESS FROM NODE 816.00 TO NODE 820.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 362.00 DOWNSTREAM(FEET) = 358.00 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.56 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.18 PIPE TRAVEL TIME(MIN.) = 2.11 Tc(MIN.) = 8.11 LONGEST FLOWPATH FROM NODE 815.00 TO NODE 820.00 = 550.00 FEET. FLOW PROCESS FROM NODE 820.00 TO NODE 820.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.402 *USER SPECIFIED(SUBAREA): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 7.78 TOTAL AREA(ACRES) = 1.80 TOTAL RUNOFF(CFS) = 8.96 TC(MIN.) = 8.11 FLOW PROCESS FROM NODE 820.00 TO NODE 810.00 Is CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPOTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 355.60 DOWNSTREAM(FEET) = 350.50 FLOW LENGTH(FEET) = 45.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.74 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.96 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 8.15 LONGEST FLOWPATH FROM NODE 815.00 TO NODE 810.00 = 595.00 FEET. FLOW PROCESS FROM NODE 810.00 TO NODE 810.00 IS CODE = ------------------------------------------------------------------------ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.15 RAINFALL INTENSITY(INCH/HR) = 5.38 TOTAL STREAM AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.96 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 19.75 9.52 4.871 4.33 2 8.96 8.15 5.382 1.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 26.84 8.15 5.382 2 27.86 9.52 4.871 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 27.86 Tc(MIN.) = 9.52 TOTAL AREA(ACRES) = 6.13 LONGEST FLOWPATH FROM NODE 795.00 TO NODE 810.00 = 1159.00 FEET. FLOW PROCESS FROM NODE 810.00 TO NODE 830.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 350.50 DOWNSTREAM(FEET) = 349.10 FLOW LENGTH(FEET) = 27.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.49 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 27.86 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 9.54 LONGEST FLOWPATH FROM NODE 795.00 TO NODE 830.00 = 1186.00 FEET. FLOW PROCESS FROM NODE 830.00 TO NODE 830.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<< APPENDIX 6 BRESSI RANCH INDUSTRIAL AES HYDROLOGY EXCERPT INNOVATION WAY P:'337O\ENGR\REPORTSDRA1N\3370. 10 Lots 19-22\REPOWflAppendix.DOC * *********** ********** * * * * ***************** * ** ******** FLOW PROCESS FROM NODE 720.00 TO NODE 720.00 IS CODE = 1 -------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.64 RAINFALL INTENSITY(INCH/HR) = 4.53 TOTAL STREAM AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.09 **************************************************************************** FLOW PROCESS FROM NODE 740.00 TO NODE 745.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 382.00 DOWNSTREAM ELEVATION(FEET) = 380.40 ELEVATION DIFFERENCE(FEET) = 1.60 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.309 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.62 ** *** ** ******************************* * * * ***** * ** * FLOW PROCESS FROM NODE 745.00 TO NODE 750.00 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION * 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 380.40 DOWNSTREAM ELEVATION(FEET) = 370.00 STREET LENGTH(FEET) = 646.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetfiow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.77 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.24 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.22 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.65 STREET FLOW TRAVEL TIME(MIN.) = 4.85 Tc(MIN.) = 10.85 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.475 USER SPECIFIED(SUBAREA): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 0.53 SUBAREA RUNOFF(CFS) = 2.25 TOTAL AREA(ACRES) = 0.63 PEAK FLOW RATE(CFS) = 2. END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.21 FLOW VELOCITY(FEET/SEC.) = 2.48 DEPTH*VELOCITY(FT*FT/SEC.) = 0.82 LONGEST FLOWPATH FROM NODE 740.00 TO NODE 750.00 = 746.00 FEET. FLOW PROCESS FROM NODE 750.00 TO NODE 720.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 361.60 DOWNSTREAM(FEET) = 361.40 FLOW LENGTH(FEET) = 5.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.85 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.88 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 10.87 LONGEST FLOWPATH FROM NODE 740.00 TO NODE 720.00 = 751.00 FEET. Worksheet Worksheet for Irregular Channel Project Description Worksheet center Flow Element Irregular Chani Method Mannings Fort Solve For Channel DeptP Input Data Channel Sic 020000 ft/ft Discharge 2.88 cis Options Current Roughness Methc ,ved Lotter's Method Open Channel Weighting wed Loners Method Closed Channel Weightin Hortons Method Results Mannings Coefficiei 0.015 Water Surface Elev 375.54 ft Elevation Range 5.37 to 375.87 Flow Area 1.1 ft2 Wetted Perimeter 12.39 ft Top Width 12.38 ft Actual Depth 0.17 ft Critical Elevation 375.57 ft Critical Slope 0.006866 ft/ft Velocity 2.72 ft/s Velocity Head 0.11 ft Specific Energy 375.65 ft Froude Number 1.64 Flow Type Supercritical Calculation Messages: Water elevation exceeds lowest end station by 0.77302192e-2 ft. Roughness Segments Start End Mannings Station Station Coefficient 0+00 0+26 0.015 Natural Channel Points Station Elevation (ft) (ft) 0+00 375.53 0+06 375.37 0+26 375.87 Project Engineer PDC p:% cross gutter.fm2 PROJ ECTDESIGN CONSULTANTS FlowMaster v7.0 [7.00053 05/12/07 11:20:59 AM © Haestad Methods, Inc. 37 Brookside Road Watert5ury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Cross Section Cross Section for Irregular Channel Project Description Worksheet center Flow Element Irregular Chani Method Manning's Fort - Solve For Channel Depth Section Data Mannings Coefficiel 0.015 Channel Slope 0.020000 fl/ft Water Surface Elev 375.54 ft Elevation Range 5.37 to 375.87 Discharge 2.88 cis 375.75 375.65 375.55( 375.45 375.35 0+00 0+05 0+10 0+15 0+20 0+25 0+30 V:1O.ON H:1 N TS Project Engineer PDC p:\...\flowmasterinnovation cross gutter.1m2 PROJECIDESIGN CONSULTANTS FlowMaster v7.0 (7.0005] 05/12/07 11:20:44 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 APPENDIX 7 CATCH BASIN AND BROOKS BOX CALCULATIONS P:\3370\ENGR\REPORTS\DRAIN\3370. 10 Lots 19-22REPORT\Appendix.DOC Bressi Industrial Lots 19-22 Type 'F' Catch Basins Orifice & Weir Analysis Location Number Orifice Flow Weir Flow Governing Node Flow Area_Opening of Analysis Analysis Flow Number Q100 Openings Head Head Condition Length Height Area (cfs) (ft.) (ft.) (sq. ft.) ________ (ft.) (ft.) 105 1 3.43 3 0.75 1.94 2 0.03 0.33 Weir Flow 160 0.67 3 0.75 1.94 1 0.01 0.18 Weir Flow 165 10.92 3 0.75 1.94 2 0.34 0.72 Weir Flow 510 1 10.37 3 0.75 1.94 1 2 0.31 0.69 Weir Flow ORIFICE EQUATION IS DEFINED AS: Q = CoA(2gH)111 WHERE: Co = ORIFICE COEFFICIENT A = FLOW AEREA, ft."2 g = GRAVITATIONAL ACCELERATION, (ft./sec.) H = HEAD MEASURED FROM THE CENTROID OF THE OPENING, ft. 3/2 WEIR EQUATION IS DEFINED AS: Q = CLH" WHERE: Cw = WEIR COEFFICIENT L = WEIR OPENING WIDTH, ft. H = HEAD ABOVE THE BOTTOM OF THE OPENING, ft. ORIFICE COEFFICIENT = 0.60 WEIR COEFFICIENT = 3.00 Node No. Flow (cfs) Box (in) Depth (ft) 110 0.98 24x24 0.01 120 3.26 24x24 0.12 310 10.64 36x36 0.37 Depth (ft) No. 722 Flow (cfs) 24x24 Flow (cfs) 36x36 Flow (cfs) 0.00 0.00 0.00 0.00 0.05 1.56 2.15 3.87 0.10 1 2.20 3.04 5.48 0.15 2.70 3.73 6.71 0.20 3.12 4.30 7.75 0.25 3.48 4.81 8.66 0.30 3.82 5.27 9.49 0.35 4.12 5.69 10.25 0.40 1 4.41 6.09 10.96 0.45 4.67 6.46 1 11.62 0.50 4.93 6.81 12.25 Brooks Box's 14.00 .12.00 -- Ar 10.00---- 8.00 8.00-- 110, 0K .2 / 6.00 - Ar 2.00 -- / .1,0000 41 0.00 0.00 0.10 0.20 0.30 0.40 0.50 Depth (ft) -4- No. 722 -.- 24x24 -a- 36x36 BROOKS BOX CAPACITIES Q = CA(2gH)'.5 Brooks Box Total Opening 21.5x21.5 Slots - Total Area Available (sq in) Total Area Available (%) C Clogged (%) Open Area (sq in) Open Area (sq ft) Depth (if) Flow (cfs) No. Length (in) Width (in) No 722 462 32 9.5 0.69 209 45 0.6 0 209 11 0.00 0.00 No 722 462 32 9.5 0.69 209 45 0.6 0 209 1.451 0.05 1.56 No 722 462 32 9.5 0.69 209 45 0.6 0 209 1.451 0.10 2.20 No 722 462 32 9.5 0.69 209 45 0.6 0 209 1.451 0.15 2.70 No 722 462 32 9.5 0.69 209 45 0.6 0 209 1.451 0.20 3.12 No 722 462 32 9.5 0.69 209 45 0.6 0 209 1.451 0.25 3.48 No 722 462 32 9.5 0.69 209 45 0.6 0 209 1.451 0.30 3.82 No 722 462 32 9.5 0.69 209 45 0.6 0 209 1.451 0.35 4.12 No 722 462 32 9.5 0.69 209 45 0.6 0 209 1.451 040 4.41 No 722 462 32 9.5 0.69 209 45 0.6 0 209 1.451 0.45 4.67 No 722 462 32 9.5 0.69 209 45 0.91 0 1 209 1.451 0.50 1 4.93 Brooks Box Total Opening 24x24 (sq in) Slots Total Area Available (sq in) Total Area Available (%) C Clogged (%) Open Area (sq in) Open Area (sq if) Depth (if) Flow (cfs) No. Length (in) Width (in) 24x24 576 120 3.5 0.69 289 50 0.6 0 289 2.005 0.00 0.00 24x24 576 120 3.5 0.69 289 50 0.6 0 289 2.005 0.05 2.15 24x24 576 120 3.5 0.69 289 50 0.6 0 289 2.005 0.10 3.04 24x24 576 120 3.5 0.69 289 50 0.6 0 289 2.005 0.15 3.73 24x24 576 120 3.5 0.69 289 50 0.6 0 289 2.005 0.20 4.30 24x24 576 120 3.5 0.69 289 50 0.6 0 289 2.005 1 0.25 4.81 24x24 576 120 3.5 0.69 289 50 0.6 0 1 289 2.005 0.30 1 5.27 24x24 576 120 3.5 0.69 289 50 0.6 0 289 2.005 0.35 5.69 24x24 1 576 120 3.5 0.69 289 50 0.6 0 289 2.005 0.40 6.09 24x24 576 120 3.5 0.69 289 50 0.6 0 289 2.005 0.45 6.46 24x24 1 576 1 1201 3.5 0.69 289 50 1 0.6 0 289 1 2.005 0.50 6.81 Brooks Box Total Opening 36x36 (sq in) Slots Total Area Available (sq in) Total Area Available (%) C Clogged (%) Open Area (sq in) Open Area (sq ft) Depth (if) Flow (cfs) No. Length (in) Width (in) 36x36 1296 216 3.5 0.69 520 40 öT 0 520 3.609 0.00 0.00 36x36 1296 216 3.5 0.69 520 1 40 0.6 0 520 3.609 1 0.05 3.87 36x36 1296 216 3.5 0.69 520 40 0.6 0 520 3.609 0.10 5.48 36x36 1296 216 3.5 0.69 520 40 0.6 0 520 3.609 0.15 6.71 36x36 1296 216 3.5 0.69 520 40 0.6 0 520 3.609 0.20 7.75 36x36 1296 216 3.5 0.69 520 40 0.6 0 520 3.609 0.25 8.66 36x36 1296 216 3.5 0.69 520 40 0.6 0 1 520 3.609 0.30 1 9.49 36x36 1296 216 3.5 0.69 520 1 40 0.6 0 520 3.609 0.35 10.25 36x36 1296 216 3.5 0.69 520 40 0.6 0 520 3.609 0.40 10.96 36x36 1296 216 3.5 0.69 520 40 0.6 0 520 3.609 0.45 11.62 36x36 1296 1 f Tfl 3.5 1 0.69 520 40 0.6 0 520 3.609 0.50 12.25 - - —e- -0667 - - -* &503 - - - —000-- - - - —o- - - -+ -039-- - - - -0.250-- 2— 0 lAAA —279 sq In_. 1..22 g_f — 243 sa In !9J — ..a ft — 171 gjn1.188 sft_ — _.a5 sq In 0.938 2A-ft — .99 63 sq In = 0.438 sq ft In 28.8 sq In 0.200 sq ft 7.2 sq In = 0.050 sq ft 2i. NO. 2424 TOP SECTION OR EXTENSION W/O KNOCKOUT AVAILABLE Wi WIThOUT GALS rl NO. 2424 BOTTOM 36' 36' NO. 2424 CAST IRON PARKWAY GRATE WT. 115#. CD-W03 NO. 2424 STEEL PARKWAY OR TRAFFIC COVER WI. 80. PARKWAY TRAFFIC op, 26f oe 26j NO. 2424 STEEL 26 PARKWAY GRATE 1 WT. 48#. NO. 2424 STEEL WT. 96#. 26' NO. 2424 LOWER SECTION W/ KNOCKOUT AVAILABLE 111Th O WITHOUT GALVANIZED FRE. LOWER HI LBS. I AVAILABLE **2424 L12 12' 606 )W/(2) 8. X 14' K( 2424 LIB 11' 909 JW/(2 BLX 14' KO 2424 L24 ' 1030 tW/(2 14' X 14' KO BOTTOM HT LW. J AVAILABLE **2424 B30 3O'I3975/(2) 14' X 14• KO 2424 B36 j4050/(2) 14' X 14' K( * WITH ** WITH FRAME ONLY OR WITHOUT FRAME 241 X 24' CATCH BASIN DATE 'INS NAM 7-8-64 . NO. 2424 BROOKS PROLWTS INC. NO.1-10 mnlrvnu 48' 48' > w %70 -W037 NO. 3636 TOP SECTION OR EXTENSION AVAILABLE WITH CR WITHOUT GALV. FRAME 6' Tll~ SEE CHART i 1 36<3 NO. 3 WI KN SEE CHART k IN, NO. 3636 STEEL TRAFFIC GRATE WT. 301#. > > TOP OR EXT HL SECTION LBS. AVAILABLE *3636 16 r 525 NO K.O. **3635 Tiff" I' 1050 NO K.O. 3636 EIS T' 1392 NO K.O. *3636 T21 21- 1B27 V/ (2) 14. X 14' KO 3636 E24 2088 1/ 2 14' X 14' KO *3636 129 29' 2523 (I 2 14' X 14' KO LOWER HTjLBS. AVAILABLE 3636 L48 4814200 WI(2) 14' X 14' KO BOTTOM IHTJLBS.1AVAILABLE 3636 B49 499 154931W/(2) 14' X 14' 3635 B61 165371W/(2) 14' X 14' * WITH FRAME ONLY ** WITH OR WITHOUT FRAME 36' X 36' CATCH BASIN WITH 6m WALLS DATE DRAWING M-46ER 11-23-88 1 NO. 3636 BROOKS PROOLETS INC. APPENDIX 8 BROW DITCH AND GRASS SWALE CALCULATIONS P:337O\ENGR\REPORTS\DRA1N\3370. 10 Lots 19-22\REP0RT\Appendix.D0C a' C ;6 24min a. 12 3 0 3 410 C 0. I.. vi 0 SI 0. 12 30 min 2 - x 5' .0 C SI .0 S C'.4 . Cut Slope Cut Slope - Bottom may be 3 470—C-2000 concrete or 3 2500 psi, air placed concrete rounded at the option with 1 1\2 x 1 1/2 17 gage of the contractor, stucco netting. TYPE A TYPE B BROW DITCH C" C 'a C 3 0 5) 0. 0 5' '- Cut or Fill Slope Bottom may be rounded at the option of the contractor.— i-Cut or Fill Slope 3 470—C-2000 concrete or 3" 2500 psi, air placed concrete with 1 1\2 x 1 1/2 17 gage stucco netting. TYPE D TERRACE DITCH NOTES Longitudinal slope of lined ditch shall be 2% minimum. Over slope down ditches shall employ 6 thickened edge section at both sides of ditch. LEGEND ON PLANS BY CD NE SAN EGO 'Revision Approved ll 2/7j RECOMMEND SAN DIEGO REGIONAL STANDARD DRAWING REQOtffi. STANDAS COMMITTEE ORIGINAL Kerchevo? !R.C. DRAINAGE DITCHES Ch E._19246 Date DRANG D-75 NUMBER Concrete Brow Ditch and Grass Lined Swales Section Number Type of Ditch From to Capacity (cfs) Depth (ft) Proposed (cfs) Depth (ft) I Type B 400 401 16.00 1.00 0.11 0.09 2 Type B 401 405 16.00 1.00 0.24 0.12 2 Grass 401 405 15.29 0.60 0.24 0.13 3 Grass 405 160 44.83 1 0.67 0.21 4 Grass 162 165 66.27 1 1.81 0.26 5 Grass 710 165 21.05 120 9.26 0.88 6 Grass 605 610 16.08 2.60 5.66 1.76 7 Grass 505 510 97.24 1.90 3.86 0.57 8 Grass 105 105 5.64 0.50 0.64 0.22 9 Grass 100 105 59.73 1.27 1.56 0.32 Node 400-401 Type B Brow Ditch Capacity Worksheet for Circular Channel Project Description Worksheet Node 400-401 Type B Brow Ditc Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coeffic 0.013 Channel Slope 020000 ft/ft Diameter 24.0 In Discharge 16.00 cis Results Depth 1.00 ft Flow Area 1.6 ft2 Wetted Perlme 3.14 It Top Width 0.00 ft Critical Depth 1.44 ft Percent Full 50.0 % Critical Slope 0.006614 ft/ft Velocity 10.18 ft/s Velocity Head 1.61 It Specific Energ 2.61 It Froude Numbe 2.03 Maximum Disc 34.41 cfs Discharge Full 31.99 cis Slope Full 0.005003 ft/ft Flow Type 3upercritical Project Engineer PDC p:\...337O.1O lots 19-22fiowmasteñswales.fm2 PROJECIDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05/05/07 02:28:40 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 400-401 Type B Brow Ditch Capacity Cross Section for Circular Channel Project Description Worksheet Node 400-401 Type B Brow Ditc Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coeffic 0.013 Channel Slope 020000 ft/ft Depth 1.00 ft Diameter 24.0 In Discharge 16.00 cis 24.0 in 1.00 ft V:1N H:1 N TS Project Engineer PDC p:% lots 1922\flowmaster'swaIes.fm2 PROJECTDESIGN CONSULTANTS FlMaster v7.0 [7.0005] 05/05/07 02:29:22 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 400-401 Type B Brow Ditch Depth Worksheet for Circular Channel Project Description Worksheet Node 400-401 Type B Brow 0 Flow Element Circular Channel Method Mannings Formula Solve For Channel Depth Input Data Mannings Coeffic 0.013 Channel Slope 020000 ft/ft Diameter 24.0 In Discharge 0.11 cfs Results Depth 0.09 It Flow Area 0.0 ft2 Wetted Penme 0.83 It Top Width 0.00 It Critical Depth 0.11 It Percent Full 4.3 % Critical Slope 0.006104 ft/ft Velocity 2.36 ft/s Velocity Head 0.09 It Specific Energ: 0.17 It Froude Numbe 1.74 Maximum Disc 34.41 cfs Discharge Full 31.99 cfs Slope Full 0.000000 ft/ft Flow Type 3,upercritical Project Engineer PDC p:\...3370.10 lots 19-22\fIowmasterswales.fm2 PROJECIDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05105107 01:30:08 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 400-401 Type B Brow Ditch Depth Cross Section for Circular Channel Project Description Worksheet Node 400-401 Type B Brow D Flow Element Circular Channel Method Mannings Formula Solve For Channel Depth Section Data Mannings Coeffic 0.013 Channel Slope 020000 ft/ft Depth 0.09 ft Diameter 24.0 in Discharge 0.11 cfs 24.0 in V: 1 H:1 N TS Project Engineer PDC p:\...\3370.1O lots 19-22flowmaster\swales.fm2 PROJECTOESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05105107 02:30:41 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 401-405 Type B Brow Ditch Depth Worksheet for Circular Channel Project Description Worksheet Node 401-405 Type B Brow 0 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coeffic 0.013 Channel Slope 020000 ft/ft Diameter 24.0 in Discharge 0.24 cfs Results Depth 0.12 ft Flow Area 0.1 ft2 Wetted Perime 1.00 ft Top Width 0.00 ft Critical Depth 0.17 ft Percent Full 6.2 % Critical Slope 0.005498 Mt Velocity 3.00 ft/s Velocity Head 0.14 ft Specific Energ: 0.26 ft Froude Numbe 1.83 Maximum Disc 34.41 cfs Discharge Full 31.99 cfs Slope Full 0.000001 Mt Flow Type 33upercritical Project Engineer PDC p:\...\3370.1O lots 19-22fiowmaster\swaIes.fni2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 (7.0005) 05/05/07 02:36:00 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 401-405 Type B Brow Ditch Depth Cross Section for Circular Channel Project Description Worksheet Node 401-405 Type B Brow D Flow Element Circular Channel Method Mannings Formula Solve For Channel Depth Section Data Mannings Coeffic 0.013 Channel Slope 020000 ft/ft Depth 0.12 ft Diameter 24.0 in Discharge 0.24 cfs V:1 H:1 N TS Project Engineer POC p:% lots 19-22%.11owmasteñswales.f1m2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05/05107 02:36:28 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 401-405 Swale Capacity Worksheet for Irregular Channel Project Description Worksheet Node 401-405 Swale C Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 005000 ft/ft Water Surface Elev 360.00 ft Options Current Roughness Methcved Lotter's Method Open Channel Weighting wed Lotter's Method Closed Channel Weightini Horton's Method Results Mannings Coeffic 0.030 Elevation Range .40 to 360.00 Discharge 15.29 cfs Flow Area 9.8 ft2 Wetted Perimetei 32.53 ft Top Width 32.50 ft Actual Depth 0.60 ft Critical Elevation 359.86 ft Critical Slope 0.021462 ft/ft Velocity 1.57 ft/s Velocity Head 0.04 ft Specific Energy 360.04 ft Froude Number 0.50 Flow Type Subcritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.0 0+32.5 0.030 Natural Channel Points Station Elevation (ft) (ft) 0+00.0 360.00 0+24.3 359.40 0+32.5 360.00 Project Engineer PDC p:...3370.10 lots 19-22flowmasteñswales.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05/05/07 02:14:20 PM © Haestad Methods, Inc. 37 Brockside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 401-405 Swale Capacity Cross Section for Irregular Channel Project Description Worksheet Node 401-405 Swale C Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficlei 0.030 Channel Slope 0.005000 ft/ft Water Surface Elev 360.00 ft Elevation Range 3.40 to 360.00 Discharge 15.29 cfs 1-111 INOW 9 IV" ; rllj~ I off V:10.ON H:1 N TS Project Engineer PDC p:...3370.10 lots 19-22\flowmasterswales.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05/05/07 02:15:14 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 401-405 Swale Depth Worksheet for Irregular Channel Project Description Worksheet Node 401-405 Swak Flow Element Irregular Channel Method Mannings Formula Solve For Channel Depth Input Data Channel Sic 005000 ft/ft Discharge 0.24 cfs Options Current Roughness Methc )ved Lotters Method Open Channel Weighting wed Lotters Method Closed Channel Welghtln Hortons Method Results Mannings Coefficiec 0.030 Water Surface Elev 359.53 ft Elevation Range ).40 to 360.00 Flow Area 0.4 ft2 Wetted Perimeter 6.85 ft Top Width 6.84 ft Actual Depth 0.13 ft Critical Elevation 359.49 ft Critical Slope 0.037833 ftlft Velocity 0.56 ft/s Velocity Head 0.00 ft Specific Energy 359.53 ft Froude Number 0.39 Flow Type Subcritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.0 0+32.5 0.030 Natural Channel Points Station Elevation (ft) (ft) 0+00.0 360.00 0+24.3 359.40 0+32.5 360.00 Project Engineer PDC p:% lots 19-22\flowmasteñswales.frn2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 (7.0005) 05/05/07 02:17:20 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 401-405 Swale Depth Cross Section for Irregular Channel Project Description Worksheet Node 401-405 Swah Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficiei 0.030 Channel Slope 0.005000 ft/ft Water Surface Elev 359.53 It Elevation Range ).40 to 360.00 Discharge 0.24 cis it $me WIN I I I V:10.ON H:1 N TS Project Engineer PDC p:...3370.10 lots 19-22flowmasteñswaIes.fm2 PROJECTDES!GN CONSULTANTS FlowMaster v7.0 [7.0005] 05105/07 02:17:47 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 405-160 Swale Capacity Worksheet for Irregular Channel Project Description Worksheet Node 405-160 Swale C Flow Element Irregular Channel Method Mannings Formula Solve For Discharge Input Data Channel Slope 010000 ft/ft Water Surface Elev 358.00 ft Options Current Roughness Methc wed Lotters Method Open Channel Weighting wed Lotters Method Closed Channel Weightini Hortons Method Results Mannlngs Coeffic 0.030 Elevation Range 7.00 to 358.10 Discharge 44.83 cfs Flow Area 14.4 ft2 Wetted Penmetei 28.85 ft Top Width 28.78 ft Actual Depth 1.00 ft Critical Elevation 357.90 ft Critical Slope 0.017125 ft/ft Velocity 3.12 ft/s Velocity Head 0.15 ft Specific Energy 358.15 ft Froude Number 0.78 Flow Type SubcrItical Roughness Segments Start End Mannings Station Station Coefficient 0+00.0 0+30.0 0.030 Natural Channel Points Station Elevation (ft) (ft) 0+00.0 358.00 0+16.6 357.00 0+30.0 358.10 Project Engineer PDC p:\...3370.10 lots 19-22flowmasteñswaIes.frn2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05/05/07 02:25:18 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 405-160 Swale Capacity Cross Section for Irregular Channel Project Description Worksheet Node 405-160 Swale C Flow Element Irregular Channel Method Mannings Formula Solve For Discharge Section Data Mannings Coefficlei 0.030 Channel Slope 0.010000 ft/ft Water Surface Elev 358.00 ft Elevation Range 7.00 to 358.10 Discharge 44.83 cfs 358.20 358.00 357.80 357.60 357.40 357.20 357.00 0+00.0 0+05.0 0+10.0 0+15.0 0+20.0 0+25.0 0+30.0 V:10.ON H:1 NTS Project Engineer PDC p:...337O.1O lots 19-22\flowmasterswaIes.fm2 PROJECIDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05/05107 02:26:01 PM © Haestad Methods, Inc. 37 Brookslde Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 405-160 Swale Depth Worksheet for Irregular Channel Project Description Worksheet Node 405-160 Swak Flow Element Irregular Channel Method Mannings Formula Solve For Channel Depth Input Data Channel Sic 010000 ft/ft Discharge 0.67 cis Options Current Roughness Methoved Lotters Method Open Channel Weighting wed Lotters Method Closed Channel Welghtln Hortons Method Results Mannings Coefflciei 0.030 Water Surface Elev 357.21 ft Elevation Range 7.00 to 358.10 Flow Area 0.6 ft2 Wetted Perimeter 5.97 ft Top Width 5.95 ft Actual Depth 0.21 ft Critical Elevation 357.17 ft Critical Slope 0.029841 ft/ft Velocity 1.09 ft/s Velocity Head 0.02 ft Specific Energy 357.23 ft Froude Number 0.60 Flow Type Subcritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.0 0+30.0 0.030 Natural Channel Points Station Elevation (ft) (ft) 0+00.0 358.00 0+16.6 357.00 0+30.0 358.10 Project Engineer PDC p:...3370.10 lots 19-22flowmast&swales.fm2 PROJECIDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05/05/07 02:40:31 PM © Haestad Methods, Inc. 37 Brookslde Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of I Node 405-160 Swale Depth Cross Section for Irregular Channel Project Description Worksheet Node 405-160 Swab Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficiet 0.030 Channel Slope 0.010000 ft/ft Water Surface Elev 357.21 ft Elevation Range T.00 to 358.10 Discharge 0.67 cis 358.20 358.00 357.80 357.60 357.40 357.20 357.00 0+00.0 0+05.0 0+10.0 0+15.0 0+20.0 0+25.0 0+30.0 V:1O.ON H:1 N TS Project Engineer PDC p:% lots 1922\flowmasterswales.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05/05107 02:40:57 PM © Haestad Methods, Inc. 37 Brockslde Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 162-165 Swale Capacity Worksheet for Irregular Channel Project Description Worksheet Node 162-165 Swale C Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 060000 ft/ft Water Surface Elev 354.00 ft Options Current Roughness Methc wed Lotters Method Open Channel Weighting wed Lotters Method Closed Channel Weightini Horton's Method Results Mannings Coeffic 0.030 Elevation Range 1.00 to 356.60 Discharge 66.27 cfs Flow Area 8.7 ft2 Wetted Penmetep 17.67 ft Top Width 17.47 ft Actual Depth 1.00 ft Critical Elevation 354.27 ft Critical Slope 0.015045 ft/ft Velocity 7.59 ft/s Velocity Head 0.89 ft Specific Energy 354.89 ft Froude Number 1.89 Flow Type Supercritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.0 0+25.2 0.030 Natural Channel Points Station Elevation (if) (ft) 0+00.0 354.00 0+14.5 353.00 0+25.2 356.60 Project Engineer PDC p:...337O.1O lots 19-22fiowmasterswales.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05/07/07 07:52:25 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of I Node 162-165 Swale Capacity Cross Section for Irregular Channel• Project Description Worksheet Node 162-165 Swale C Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficiei 0.030 Channel Slope 0.060000 ft/ft Water Surface Elev 354.00 ft Elevation Range 3.00 to 356.60 Discharge 66.27 cis 357.00 356.50 356.00 355.50 355.00 354.50 354.00 353.50 353.00 0+00.0 0+10.0 0+20.0 0+30.0 V:10.ON H:1 N TS Project Engineer PDC p:% lots 19-22flowmasteñswales.fni2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05107/07 07:52:40 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 162-165 Swale Depth Worksheet for Irregular Channel Project Description Worksheet Node 162-165 Swak Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Input Data Channel Sic 060000 ft/ft Discharge 1.81 cfs Options Current Roughness Methc wed Lotters Method Open Channel Weighting wed Lotters Method Closed Channel Weighting Horton's Method Results Mannings Coefficiei 0.030 Water Surface Elev 353.26 ft Elevation Range 3.00 to 356.60 Flow Area 0.6 ft2 Wetted Perimeter 4.58 ft Top Width 4.53 ft Actual Depth 0.26 ft Critical Elevation 353.31 ft Critical Slope 0.024932 ft/ft Velocity 3.08 ft/s Velocity Head 0.15 ft Specific Energy 353.41 ft Froude Number 1.51 Flow Type Supercritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.0 0+25.2 0.030 Natural Channel Points Station Elevation (ft) (ft) 0+00.0 354.00 0+14.5 353.00 0+25.2 356.60 Project Engineer PDC p:....337O.1O lots 19-22fiowmaster\swales.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 (7.0005) 05/07/07 07:55:59 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 162-165 Swale Depth Cross Section for Irregular Channel Project Description Worksheet Node 162-165 Swak Flow Element Irregular Channel Method Mannlngs Formula Solve For Channel Depth Section Data Mannings Coefficiel 0.030 Channel Slope 0.060000 ft,'ft Water Surface Elev 353.26 ft Elevation Range LaO to 356.60 Discharge 1.81 cis 357.00 356.50 356.00 355.50 355.00 354.50 354.00 353.50 353.00 0+00.0 0+10.0 0+20.0 0+30.0 V:1O.ON. H:1 N TS Project Engineer PDC p:\...\3370.1O lots 19-22.fiowmasteñswaIes.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 (7.0005) 05/07/07 07:56:37 AM © Haestad Methods, Inc. 37 Brockside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 710-165 Swale Capacity Worksheet for Irregular Channel Project Description Worksheet Node 710-165 Swale C Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 010000 ftlft Water Surface Elev 354.00 ft Options Current Roughness Methoved Lotters Method Open Channel Weighting wed Loners Method Closed Channel Weightin Horton's Method Results Mannings Coeffic 0.030 Elevation Range 1.80 to 354.90 Discharge 21.05 cfs Flow Area 6.1 ft2 Wetted Perimetei 10.58 ft Top Width 10.20 ft Actual Depth 1.20 ft Critical Elevation 353.89 ft Critical Slope 0.016857 Mt Velocity 3.44 ft/s Velocity Head 0.18 ft Specific Energy 354.18 ft Froude Number 0.78 Flow Type Subcritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.0 0+12.0 0.030 Natural Channel Points Station Elevation (ft) (ft) 0+00.0 354.00 0+07.8 352.80 0+12.0 354.90 Project Engineer PDC p:...3370.10 lots 19-22\flowmaster',swales.1rn2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05107/07 08:12:18 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 710-165 Swale Capacity Cross Section for Irregular Channel Project Description Worksheet Node 710-165 Swale C Flow Element Irregular Channel Method Mannlngs Formula Solve For Discharge Section Data Mannings Coefficiei 0.030 Channel Slope 0.010000 ft/ft Water Surface Elev 354.00 ft Elevation Range 2.80 to 354.90 Discharge 21.05 cis 355.00 354.50 354.00 353.50 353.00 352.50 I I I 0+00.0 0+04.0 0+08.0 0+12.0 V:10.0f\ H:1 N TS Project Engineer PDC p:\...3370.10 lots 19-22flowmasteriswales.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 (7.0005] 05/07/07 08:05:07 AM @ Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of I Node 710-165 Swale Depth Worksheet for Irregular Channel Project Description Worksheet Node 710-165 Swak Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Input Data Channel Sk 010000 ft/ft Discharge 9.26 cfs Options Current Roughness Methc )ved Lotter's Method Open Channel Weighting wed Latter's Method Closed Channel Welghtini Horton's Method Results Mannings Coefficiei 0.030 Water Surface Elev 353.68 ft Elevation Range 2.80 to 354.90 Flow Area 3.3 ft2 Wetted Perimeter 7.77 ft Top Width 7.50 ft Actual Depth 0.88 ft Critical Elevation 353.58 ft Critical Slope 0.018809 ft/ft Velocity 2.80 ft/s Velocity Head 0.12 ft Specific Energy 353.80 ft Froude Number 0.74 Flow Type Subcritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.0 0+12.0 0.030 Natural Channel Points Station Elevation (ft) (ft) 0+00.0 354.00 0+07.8 352.80 0+12.0 354.90 Project Engineer PDC p:\...337O.1O lots 19-22fiowmasterswa1es.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05107/07 08:09:24 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 710-165 Swale Depth Cross Section for Irregular Channel Project Description Worksheet Node 710-165 Swak Flow Element Irregular Channel Method MannIngs Formula Solve For Channel Depth Section Data Mannings Coefficiel 0.030 Channel Slope 0.010000 ftlft Water Surface Elev 353.68 ft Elevation Range 280 to 354.90 Discharge 9.26 cis 355.00 354.50 354.00 353.00 352.50' I I I 0+00.0 0+04.0 0+08.0 0+12.0 V:10.ON H:1 N TS Project Engineer PDC p:...3370.10 lots 19-22fiowmastervswaIes.fm2 PROJEC1DESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05107/07 08:09:50 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 605-610 Swale Capacity Worksheet for Irregular Channel Project Description Worksheet Node 605-610 Swale C Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 008000 ft/ft Water Surface Elev 360.00 ft Options Current Roughness Methcved Lotters Method Open Channel Weighting wed Lotters Method Closed Channel Weightin Horton's Method Results Mannings Coeffic 0.300 Elevation Range p.40 to 361.00 Discharge 16.08 cfs Flow Area 31.0 ft2 Wetted Perlmetei 24.40 ft Top Width 23.82 ft Actual Depth . 2.60 ft Critical Elevation 358.35 ft Critical Slope 1.736522 ft/ft Velocity 0.52 ft/s Velocity Head 0.00 ft Specific Energy 360.00 ft Froude Number 0.08 Flow Type Subcritical - Roughness Segments Start End Mannings Station Station Coefficient 0+00.0 0+27.4 0.300 Natural Channel Points Station Elevation (ft) (ft) 0+00.0 361.00 0+12.9 357.40 0+27.4 360.00 Project Engineer PDC p:...337O.1O lots 19-22%.flowmasteñswales.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 (7.0005) 05107/07 08:20:09 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 605-610 Swale Capacity Cross Section for Irregular Channel Project Description Worksheet Node 605-610 Swale C Flow Element Irregular Channel Method Mannlngs Formula Solve For Discharge Section Data Mannings Coefficlei 0.300 Channel Slope 0.008000 ft/ft Water Surface Elev 360.00 ft Elevation Range 7.40 to 361.00 Discharge 16.08 cis 361.00 360.50 360.00 359.50 359.00 358.50 358.00 357.50 357.00 0+00.0 0+10.0 0+20.0 0+30.0 V:10.ON H:1 N TS Project Engineer PDC p:\...3370.10 lots 19-22%.flowmasterswales.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05/07/07 08:20:58 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 605-610 Swale Depth Worksheet for Irregular Channel Project Description Worksheet Node 605-610 Swak Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Input Data Channel Sk 008000 ft/ft Discharge 5.66 cfs Options Current Roughness Methc )ved Lotte?s Method Open Channel Weighting wed Lotter's Method Closed Channel Welghtln Horton's Method Results Mannings Coefficiei 0.300 Water Surface Elev 359.16 ft Elevation Range P.40 to 361.00 Flow Area 14.2 ft2 Wetted Perimeter 16.50 ft Top Width 16.10 ft Actual Depth 1.76 ft Critical Elevation 358.02 ft Critical Slope 1.995490 ftlft Velocity 0.40 ft/s Velocity Head 0.00 ft Specific Energy 359.16 ft Froude Number 0.08 Flow Type Subcritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.0 0+27.4 0.300 Natural Channel Points Station Elevation (ft) (ft) 0+00.0 361.00 0+12.9 357.40 0+27.4 360.00 Project Engineer PDC p:L3370.10 lots 19-22flowmasterswaIes.1m2 PROJECTOESIGN CONSULTANTS FlowMaster v7.0 [7.00051 05/07/07 08:28:32 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 605-610 Swale Depth Cross Section for Irregular Channel Project Description Worksheet Node 605-610 Swak Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficlei 0.300 Channel Slope 0.008000 ftlft Water Surface Elev 359.16 ft Elevation Range 7.40 to 361.00 Discharge 5.66 cis 361.00 360.50 360.00 359.50 359.00 358.50 358.00 357.50 357.00 0+00.0 0+10.0 0+20.0 0+30.0 V:1O.ON H:1 N TS Project Engineer PDC p:L3370.10 lots 19-22flowmasterswaIes.frn2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.00051 05/07/07 08:28:57 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 505-510 Swale Capacity Worksheet for Irregular Channel Project Description Worksheet Node 505-510 Swale C Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 007000 ft/ft Water Surface Elev 364.80 ft Options Current Roughness Methc wed Lotters Method Open Channel Weighting wed Lotters Method Closed Channel Weightln Horton's Method Results Mannings Coeffic 0.030 Elevation Range 2.90 to 365.00 Discharge 97.24 cfs Flow Area 24.5 ft3 Wetted Penmetei 26.15 ft Top Width 25.80 ft Actual Depth 1.90 ft Critical Elevation 364.56 ft Critical Slope 0.014214 ft/ft Velocity 3.97 ft/s Velocity Head 0.24 ft Specific Energy 365.04 ft Froude Number 0.72 Flow Type Subcritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.0 0+26.5 .0.030 Natural Channel Points Station Elevation (ft) (ft) 0+00.0 364.80 0+19.1 362.90 0+26.5 365.00 Project Engineer PDC p:...3370.10 lots 19-22%.l1owmaster\swales.fm2 PROJECTOESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05/07/07 08:33:12 AM © Haestad Methods, inc. 37 Brookslde Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 505-510 Swale Capacity Cross Section for Irregular Channel Project Description Worksheet Node 505-510 Swale C Flow Element Irregular Channel Method Mannings Formula Solve For Discharge Section Data Mannings Coefficlep 0.030 Channel Slope 0.007000 ft/ft Water Surface Elev 364.80 ft Elevation Range 2.90 to 365.00 Discharge 97.24 cis 365.00 364.50 364.00 363.00 362.50 L...__ 0+00.0 0+05.0 0+10.0 0+15.0 0+20.0 0+25.0 0+30.0 V:1 o.oN H:1 N TS Project Engineer PDC p: ... 337O.1O lots 19-22flowmasteñswales.fm2 PROJEC1DESIGN CONSULTANTS FlowMaster v7.0 (7.0005) 05/07/07 08:38:10 AM C Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 505-510 Swale Depth Worksheet for Irregular Channel Project Description Worksheet Node 505-510 Swah Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Input Data Channel SIc 007000 Mt Discharge 3.86 cfs Options Current Roughness Meth ,ved Loners Method Open Channel Weighting wed Loiter's Method Closed Channel Weightin Horton's Method Results Mannings Coefficiei 0.030 Water Surface Elev 363.47 ft Elevation Range 2.90 to 365.00 Flow Area 2.2 ft2 Wetted Perimeter 7.80 ft Top Width 7.69 ft Actual Depth 0.57 ft Critical Elevation 363.36 ft Critical Slope 0.021894 ft/ft Velocity 1.77 ft/s Velocity Head 0.05 ft Specific Energy 363.52 ft Froude Number 0.59 Flow Type Subcritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.0 0+26.5 0.030 Natural Channel Points Station Elevation (ft) (ft) 0+00.0 364.80 0+19.1 362.90 0+26.5 365.00 Project Engineer PDC p:% lots 19-22flowmaster',swales.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 (7.0005) 05/07/07 08:34:48 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 505-510 Swale Depth Cross Section for Irregular Channel Project Description Worksheet Node 505-510 Swale Flow Element Irregular Channel Method Mannings Formula Solve For Channel Depth Section Data Mannings Coefficiei 0.030 Channel Slope 0.007000 ft/ft Water Surface Elev 363.47 ft Elevation Range ?.90 to 365.00 Discharge 3.86 cfs 365.00 364.50 364.00 363.50 363.00 362.50 0+00.0 0+05.0 0+10.0 0+15.0 0+20.0 0+25.0. 0+30.0 V:1O.OF\ H:1 N TS Project Engineer POC p:....3370.10 lots 19-22flowmasteñswaIes.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 (7.0005] 05/07/07 08:35:36 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 105-105 Swale Capacity Worksheet for Irregular Channel Project Description Worksheet Node 105-105 Swale C Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 008000 ft/ft Water Surface Elev 365.30 ft Options Current Roughness Methoved Lofter's Method Open Channel Weighting wed Lotter's Method Closed Channel Weighting Horton's Method Results Mannings Coeffic 0.030 Elevation Range t.80 to 367.00 Discharge 5.64 cfs Flow Area 3.2 ft' Wetted Perimetei 12.97 ft Top Width 12.88 ft Actual Depth 0.50 ft Critical Elevation 365.21 ft Critical Slope 0.022378 ft/ft Velocity 1.75 ft/s Velocity Head 0.05 ft Specific Energy 365.35 ft Froude Number 0.62 Flow Type Subcritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.0 0+18.6 0.030 Natural Channel Points Station Elevation (ft) (ft) 0+00.0 365.30 0+11.2 364.80 0+18.6 367.00 Project Engineer PDC p:\....3370.10 lots 19-22\flowmasteñswales.fm2 PROJECTDESIGN CONSULTANTS FiowMaster v7.0 [7.0005) 05/07/07 08:42:41 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 105-105 Swale Capacity Cross Section for Irregular Channel Project Description Worksheet Node 105-105 Swale C Flow Element Irregular Channel Method Mannings Formula Solve For Discharge Section Data Mannings Coefficiei 0.030 Channel Slope 0.008000 ft/ft Water Surface Elev 365.30 ft Elevation Range 1.80 to 367.00 Discharge 5.64 cfs 367.00 366.50 366.00 365.50 365.00 364.50' I I I I 0+00.0 0+04.0 0+08.0 0+12.0 0+16.0 0+20.0 V:10.ON H:1 N TS Project Engineer PDC p: ... 337O.1O lots 19-22\flowmasteñswales.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005 05107/07 08:43:18 AM C Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 105-105 Swale Depth Worksheet for Irregular Channel Project Description Worksheet Node 105-105 Swak Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Input Data Channel Sic 008000 Mt Discharge 0.64 cfs Options Current Roughness Methc ,ved Lotter's Method Open Channel Weighting wed Lotter's Method Closed Channel WeIghtln Horton's Method Results Mannings Coefficie, 0.030 Water Surface Elev 365.02 ft Elevation Range $.80 to 367.00 Flow Area 0.6 ft2 Wetted Perimeter 5.73 ft Top Width 5.70 ft Actual Depth 0.22 ft Critical Elevation 364.97 ft Critical Slope 0.029956 Mt Velocity 1.02 ft/s Velocity Head 0.02 ft Specific Energy 365.04 ft Froude Number 0.54 Flow Type Subcritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.0 0+18.6 0.030 Natural Channel Points Station Elevation (ft) (ft) 0+00.0 365.30 0+11.2 364.80 0+18.6 367.00 Project Engineer PDC p:..3370.10 lots 19-22flowmasterswales.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05/07/07 08:44:19 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of I Node 105-105 Swale Depth Cross Section for Irregular Channel Project Description Worksheet Node 105-105 Swak Flow Element Irregular Channel Method Mannings Formula Solve For Channel Depth Section Data Mannlngs Coefficlei 0.030 Channel Slope 0.008000 ft/ft Water Surface Elev 365.02 ft Elevation Range $.80 to 367.00 Discharge 0.64 cfs 367.00 366.50 366.00 365.50 365.00 364.50' I I I I I 0+00.0 0+04.0 0+08.0 0+12.0 0+16.0 0+20.0 V:1O.OF\ H:1 N TS Project Engineer PDC p:\...337O.1O lots 19-22\flowmasterswales.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 (7.0005) 05/07/07 08:44:46 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 100-105 Swale Capacity Worksheet for Irregular Channel Project Description Worksheet Node 100-105 Swale C Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 060000 ft(ft Water Surface Elev 367.00 It Options Current Roughness Methoved Lotte?s Method Open Channel Weighting wed Lotters Method Closed Channel Weightin Horton's Method Results Mannings Coeffic 0.030 Elevation Range 5.73 to 367.20 Discharge 59.73 cfs Flow Area 6.8 ft2 Wetted Penmetel 11.00 It Top Width 10.69 ft Actual Depth 1.27 It Critical Elevation 367.36 ft Critical Slope 0.014692 ftlft Velocity 8.80 ft/s Velocity Head 1.20 It Specific Energy 368.20 It Froude Number 1.95 Flow Type Supercritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.0 0+11.4 0.030 Natural Channel Points Station Elevation (It) (ft) 0+00.0 367.20 0+05.2 365.73 0+11.4 367.00 Project Engineer PDC p:\...3370.10 lots 19-22flowmaster\swales.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05/07/07 08:51:56 AM C Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 100-105 Swale Capacity Cross Section for Irregular Channel Project Description Worksheet Node 100-105 Swale C Flow Element Irregular Channel Method Mannings Formula Solve For Discharge Section Data Mannings Coefficiei 0.030 Channel Slope 0.060000 ft/ft Water Surface Elev 367.00 ft Elevation Range 3.73 to 367.20 Discharge 59.73 cfs 367.20 367.00 366.80 366.60 366.40 366.20 366.00 365.80 365.60 0+00.0 0+04.0 0+08.0 0+12.0 V:10.0\ H:1 N TS Project Engineer PDC p:\...337O.1O lots 19-22f1owmasterswales.11m2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05/07/07 08:52:41 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 100-105 Swale Depth Worksheet for Irregular Channel Project Description Worksheet Node 100-105 Swak Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Input Data Channel Sic 060000 ft/ft Discharge 1.56 cis Options Current Roughness Methc wed Lotters Method Open Channel Weighting wed Lotters Method Closed Channel Weightin Horton's Method Results Mannings Coefficiei 0.030 Water Surface Elev 366.05 ft Elevation Range 5.73 to 367.20 Flow Area 0.4 ft2 Wetted Perimeter / 2.80 ft Top Width 2.73 ft Actual Depth 0.32 ft Critical Elevation 366.12 ft Critical Slope 0.023578 ft/ft Velocity 3.54 ft/s Velocity Head 0.19 ft Specific Energy 366.25 ft Froude Number 1.55 Flow Type Supercritical Roughness Segments Start End Mannlngs Station Station Coefficient 0+00.0 0+11.4 0.030 Natural Channel Points Station Elevation (ft) (ft) 0+00.0 367.20 0+05.2 365.73 0+11.4 367.00 Project Engineer PDC p:% lots 19-22flowmaster',swales.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 05/07/07 08:54:03 AM © Haestad Methods, Inc. 37 Brockside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Node 100-105 Swale Depth Cross Section for Irregular Channel Project Description Worksheet Node 100-105 Swak Flow Element Irregular Channel Method Mannings Formula Solve For Channel Depth Section Data Mannings Coefficlei 0.030 Channel Slope 0.060000 ft/ft Water Surface Elev 366.05 ft Elevation Range 5.73 to 367.20 Discharge 1.56 cis 367.20 367.00 366.80 366.60 366.40 366.20 366.00 365.80 365.60 0+00.0 0+04.0 0+08.0 0+12.0 V:1 o.ol\ H:1 NITS Project Engineer PDC p:% lots 19-22flowmaster\swales.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 (7.0005) 05107/07 08:54:22 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 EXHIBIT A DRAINAGE MAP PROPOSED CONDITION P:337O\ENGRREPORTS\DRA1N3370. 10 Lots 19-22REPORT\Appendix.DOC i wom. all, Jim a; I I PROPOSED FLOW=46.3 cfs EG36866 OPOSED PUBLIC 12 WATER 951 1.1 TO To FINISH GROUND 363.00 TO 365.01 5 0*71 PfIP.ANS / 1 'C 36Z57 Vc 36260 BIKE PAD PER / T03629 2 TO Tfi 99 TO 365 [105 0 28 / AROHI7ECT FLAWS (1)1') rc 363.75 TC 364. 9 • Fl? 36666 0 85 1 6 362.96 0038296 To 363.71 TO 364 1 t 5500, TYP I 1' SEE NOTE 1 FG 36280 4 <= 364.11 Tr Fl? 1 2L F TO 36387 386. TO 366.8 -, Fl? 368.20 00368.66 TO 36.8 0 TO 368.3 - 1 36 FS 362.80 15:62.; T 362.6 363.42 TO ;24 _ 105fic 80 11,20 r fS r 0.85 1.2 , ,EQ6250 .f..Q696 / 0.I546o r IN 1-355.76 1036613 Fl? 3 01 . 0 TO 61 TO 355.3 035 . . / 362 27 (035 Fl? 6 Fl? . 584 625 ' ,36540 TO 6596 036 lB •. TO 86.10 - . - • •, ' UA 10362.4 Fl? 362.85 ' • I " '• _________ . - I ooWssPt5 go118 F 0 Fl? 36220 . . UND! Z I6J4LAN., i5 B66.16 I Z RE Fl? 362.66 TO 362.46 ' I •. (Tn'.i 085 I 1 0 ,' , ,' L • I '01 CONFORM 0 EXIST. CURB CUTTER Ah, Fl? 7.95 F 3 6 11036676 SIDEWALK. SUBAREA HYDROLOGY KEY 36 5 T036368 j Fl? 362.46 , 365.70 FL 366.0 Fl? 362.86 / . 364.0 •. 16' 371.28 EXIST SO TO TC76 BE RMO REMOVEDFl? 362.66 2 o FG J6 7c 43 T DOSEAM NODE OF SUBAREA - ROMUPSEAMT A IN ACRES O DOSEAM NODE OF Oovsr TO FINISH 2A XIS TM.H. • •4 _CONlRlBU77NG ARE FOR DRIVZ WAY IMPROVI R54O- -"F•--.. . . ,-'---'.•-. ..-- IM=362.32 . " EXI CUL- -C •' TC 35.61 FC 7330 TO 74.3 5 130 M N E-SA . 0 2.00% 14+ 9.16 RUNOFF COEFFICIENT (C) 42 1.00% • : 31% • . . . . • . . . , . D - 140 11+70 N E REroI'TD 01 , n j' 6;6 + . 4556 PEAK 100 YR RUNOFF (cFs) 6279 IM J63.090 362.92 12 TO 354.73 TO 36575 END 10 CURS B ,rl ID TO. 32 i 374.65 GB 4+566 (CORRESPONDING TO AREA FROM 36217 - 6260 ., .o '. . ':. UPSEAM TO D0SEAM NODE) 36235 Fl? 36248 . . . . . . - '.. . TO 36 75 TO 364.50 . www F 3 ••TC TO 365.75 Fl? 36585 16' 366.62 Fl? 36616 FL 56 3:2:1 TW 370.06 Fl? 366.16 Fl? 362.42 ' Fl? 361.8 •' F 351.85 1...... T0337 C3 .08 IT FG 365.70 TC 365.50 TC J62.2; 0.12 CONFORM TO EXIST. CURB, 36242 0.95 0.7 . 1036367 ..: 0.95 0.8 Fl? 366.10 0.85 FO 362.42 • TO 365.50 ' 6 C 66.16 Fl? 366.16 FG 366.16 OOIIIVSPWT LOCATION . .. r UNDER SIDEWALK . . . ..' -. (Tn'PER ARCHITECT PLANS '. , ' ' , .. • .365.53 ,) ' TO 362.2 • ,,.' . . , . . . . • ,.,,. :,,,,:° 5230 TO 6202 TO 36.75 TO 364.38 •''9 41 0 65.9 TO 3 96 IC 35 96 TO J66. IRANSF 6210 . ro DRAINAGE SUBAREA 3 ' 36 .03 ,''' TO 3 AR HIlt T A TC J6 95 . TO 363.00 T 364.35 IC 355.0 3 3652 S36.22 TCJ DRAINAGE INIT/AL AREA - - - - - - CURB RAMP Fl? 362 • Fl? 361. 26 _ES_ - 'CURB CUT FS PER ARCHITECT 00 3 - - - ________ IC j84.93 I FLOW DIRECT/ON PLANS (In') Fl? 382 70 ' C 363.84 64 I 10 364.95 FS FS F 6 Fl?3 '5 ' ' 1' • C 4.63 3=62 C 363. 2 T 363.8 TO 36475 Fl? 364 6 • ., ,.. •' FG HYDROLOGY NODE Fl? 36456 BIKE PAD PER , Fl? 362.26 ' . 10362. 0% TC 364.76 • ARCHITECT PLANS TOP FG J64.96 FL 361.08 362.1: T 363.97 SEE NOTE 1 PEAK FLOVVI?A it AT LOCA liON (CFS) Q(100)=XXX <= CURB FG M4.96 ,.. ' I C 54.9 H 0362.0 L --•: :6 rl \ JRISBON 10362 CUTTER. • I 7- -- -uff __• SEENoTE1,r(P Fl? 362.26 C 6085 IC 367.6 10 62O0 Fl? 354.96 361.57 64. I Fl? 364.95 'A'' • • 103600' . 4 TO 00 • • , , . . IC 35 20 TC 364.08 TO 3647 • DOHFIGRCUT LOCATION 679 4 C 206 - ' T 397 C 362. F 5 8 WATER METETO STORM DRAIN R TOPi 353. 1 \ I IC 360.84 361.95 SEE NOTE 1 3 96 00Q6.P_ROOSE0U9LIO I2ATER - • - T 3 TC , 64 FL 3634 - ? OWl? 448-8 TO 36124 360 . 59 10 36086 / RI H 363 10 364.76 510 0.66 360.57 x Fl? 364.96 .7 FL 358.1 . TO 3 .94 3t =Y687 TO 3 2.50 T 94.18 TO 3 9.34 10 .50 TO 59.60 10 59.15 T 3 .2 64.6 - Fl? 364.96 0.85 . 0 RISER FL . • Fl? 354.80 7563 FL 59 Fl? 36520 35 .6 . , . • SIDEWALK SORSD uNutlyumAIN D-27 HP F7 35Z6 . . • ' FL 362.0 - . . Fl? 361.50 * ' Fl? 383.1 V A ,-•' • . .' 1E 134628 IWEF 2-OPENIN N luRE AD 0 . 0: 80 120 GRAPHICAL SCALE SCALE: iN = 40' DESIGN FL 0 W= 17.8 cfs PROPOSED FLOW=9.3 cfs I P:\3J70\ENGR\REPORTS\DRAIN\3370.lO Lots 19-22\EXH\(A)H)VROLOGYMAP.dwg 5/7/2007 11:23:21 AM EXHIBIT B HYDRAULIC MAP PROPOSED CONDITION P:\337O\ENGRREPORTSDRA!N\3370. 10 Lots 19-22REPORT\Appendix.DOC