Loading...
HomeMy WebLinkAboutPD 2021-0021; 3460 ROOSEVELT STREET; DRAINAGE REPORT; 2021-06-29  3460 Roosevelt Street  Drainage Report bha, Inc.              2  Table of Contents   Chapter 1 – Discussion ..................................................................................................................3 1.1 Vicinity Map ...............................................................................................................4 1.2 Purpose and Scope ....................................................................................................5 1.3 Project Description ....................................................................................................5 1.4 Existing Conditions ....................................................................................................5 1.5 Developed Conditions ...............................................................................................6 1.6 Study Method .............................................................................................................7 1.7 Conclusion ..................................................................................................................9 1.8 Declaration of Responsible Charge .......................................................................10 Chapter 2 – Existing & Developed Hydrology Maps ................................................................11 Chapter 3 – 100-Year Peak Flow Calculations..........................................................................12 3.1 Existing Hydrology Calculations ............................................................................13 3.2 Developed Hydrology Calculations .......................................................................15 Chapter 4 – References ................................................................................................................18 4.1 Methodology - Rational Method Peak Flow Determination ..............................19   3460 Roosevelt Street  Drainage Report            bha, Inc.    3  Chapter 1 Discussion   3460 Roosevelt Street  Drainage Report            bha, Inc.    4  1.1 Vicinity Map   3460 Roosevelt Street  Drainage Report            bha, Inc.    5  1.2 Purpose and Scope The purpose of this report is to publish the results of hydrology and hydraulic computer analysis for the proposed “3460 Roosevelt Street” project site in the City of Carlsbad. The scope of this study is to analyze the results of existing and developed condition hydrology calculations and provide recommendations as to the design and size of various hydraulic systems considered as mitigation of any potential adverse effects of the proposed project. The mitigation measures proposed will include minimizing impervious areas, dispersing runoff towards areas such as landscaping, and installing permeable pavers to attenuate the effects of the development on storm water discharge. The 100-year storm frequency will be analyzed. 1.3 Project Description The 3460 Roosevelt Street project proposes the construction of a two-story main residence/junior accessory dwelling on the westerly half of the property and an accessory structure on the easterly half of the property, permeable and impermeable pavers, onsite yard drains, retaining walls, and various soft/hardscape improvements. The parcel is a rectangular-shaped residential lot located on the east side of Roosevelt Street in the City of Carlsbad, California (APN 204-172-35). The parcel is bordered by Roosevelt Street, on the west, an alley on the east, and developed residential properties on the north and south. The site (0.08 acres) is currently vacant and mildly slopes down to the east. Topographically, the site is relatively flat that slopes towards the alley on its eastern border. The elevation ranges within the project site from approximately 52 feet near the Roosevelt Street to 49 feet near the alley. The project is a new development proposing new impervious areas on an existing undeveloped parcel. The site is currently compromised of sparse grass with scattered shrubs and trees. The onsite soil classification is Type-B as determined from USDA Web Soil Survey (see Chapter 4, References). 1.4 Existing Conditions Storm flows affecting the site are limited to the rainfall that lands directly on the property. In the existing condition, (1) Points of Compliance (POC) has been identified. The project site sheet drains in an easterly direction to POC-1, located near the eastern corner of the property, in an alley. Existing Hydrology Map shows runoff from the property that will drain towards POC-1,   3460 Roosevelt Street  Drainage Report            bha, Inc.    6  located near eastern corner of the project site (Node 20). Table 1 summarizes the existing runoff information from the site. Refer to the Existing Hydrology Map for drainage patterns, areas, and POCs. Table 1 - Existing Condition Peak Flows POC‐1 0.080 0.14 Discharge  Location Drainage Area     (ac) 100‐Year Peak Flow      (cfs) 1.5 Developed Conditions The 3460 Roosevelt Street project proposes the construction of a two-story main residence/junior accessory dwelling on the westerly half of the property and an accessory structure on the easterly half of the property, permeable and impermeable pavers, onsite yard drains, retaining walls, and various soft/hardscape improvements. The disturbed area is 0.080 acres. In the proposed condition, 0.064 acres or 80% of the site will be impervious. Two (2) POCs have been identified. Runoff at Node 20 to Node 30 will surface flow to the easterly side of the project site. Runoff at Node 40 (roof) will drain via down spouts to the ground surface (Node 45), then to a private yard drain. Node 50 will convey (roof and surface) the flow via private yard drains to Node 60. Node 60 will convey the combined flow to POC-2 (Node 70), located in the curb and gutter of Roosevelt Street via a sidewalk underdrain. Prior to discharging from project site, developed site runoff from impervious areas such as rooftops and walkways will be directed onto the surface of adjacent pervious areas. The intent is to slow runoff discharges and reduce volume while achieving incidental treatment. Impervious surfaces and proposed grading have been minimized where feasible. Proposed drainage patterns will not alter the existing flow pattern and will discharge from the site to the historic discharge locations. Table 2 summarizes the expected cumulative 100-year peak flow rates. Per the San Diego County rainfall isopluvial maps, the design 100-year 6-hours rainfall depth for the site area is 2.66 inches. Refer to the Developed Hydrology Exhibit for drainage patterns, areas, and POCs.   3460 Roosevelt Street  Drainage Report            bha, Inc.    7  Table 2 – Developed Condition Peak Flows POC‐1 0.047 0.26 POC‐2 0.033 0.18 Discharge  Location Drainage Area     (ac) 100‐Year Peak Flow  (cfs) Table 3 compares the cumulative existing and developed condition peak flows. Table 3 – Developed Condition Peak Flows DIFFERENCE 0.000 0.27 Developed  Condition 0.080 0.41 Drainage Area  (ac) 100‐Year Peak Flow  (cfs) Existing  Condition 0.080 0.14 1.6 Study Method The method of analysis was based on the Rational Method according to the 2003 San Diego County Hydrology Manual (SDCHM). The Hydrology and Hydraulic Analysis were done on HydroSoft by Advanced Engineering Software 2014. The study considers the runoff for a 100-year storm frequency. Methodology used for the computation of design rainfall events, runoff coefficients, and rainfall intensity values are consistent with criteria set forth in the SDCHM. A more detailed explanation of methodology used for this analysis is listed in Chapter 4 – References of this report. Drainage basin areas were determined from the topography and proposed grades shown on the Precise Grading Plan. The Rational Method for this project provided the following variable coefficients: Rainfall Intensity – Initial time of concentration (Tc) values based on Table 3-2 of the SD HM. Rainfall Isopluvial Maps from the SDCHM were used to determine P6 for 100-year storm, see References. I = 7.44x(P6)x(Tc)- 0.645   3460 Roosevelt Street  Drainage Report            bha, Inc.    8  P6 for 100-year storm =2.66 inches Runoff Coefficient - In accordance with the County of San Diego standards, runoff coefficients were based on land use and soil type. The site was modeled with Type-B soils, as determined from NRCS Web Soil Survey. Type-B soils have moderate infiltration rates when thoroughly wetted. An appropriate runoff coefficient (C) for each type of land use in the subarea was selected from Table 3-1 of SDCHM and multiplied by the percentage of total area (A) included in that class. The sum of the products for all land uses is the weighted runoff coefficient (∑[CA]). For the existing and developed conditions, a runoff coefficient of 0.25 was selected for all landscape, permeable pavers and pervious areas (0% impervious) and 0.87 for all concrete, impermeable pavers and roof areas (95% impervious). The Proposed Hydrology Exhibit shows the proposed onsite drainage system, onsite subareas, and nodal points. Table 4 summarizes the composite C-values calculated in the existing and developed conditions. Table 4 – Composite Runoff Coefficient 20 30 0.02 0.25 0.00 0.87 0.02 0.79 40 45 0.03 0.25 0.00 0.87 0.02 0.83 50 50 0.01 0.25 0.00 0.87 0.01 0.71 60 60 0.02 0.25 0.01 0.87 0.01 0.67 A1             (ac) C2 A2             (ac) Ccomp Note: C‐values taken from Table 3‐1 of San Diego County Hydrology Manual, consistent  with on‐site existing soil types. See References. Up Node Down  Node Total Area  (ac)C1   3460 Roosevelt Street  Drainage Report            bha, Inc.    9  1.7 Conclusion As shown in Table 4, the development of the proposed 3460 Roosevelt Street project site will result in a net increase of peak flow discharged from the project site by 0.27 cfs during a 100- year storm event. Landscaping areas and impervious areas dispersion will slow runoff discharges, further decreasing runoff and foster opportunities to maintain the existing hydrology. The 3460 Roosevelt Street project satisfies the drainage requirements of the City of Carlsbad. All storm drain facilities have been sized to convey the 100-year storm event without any adverse effects. Based on this conclusion, runoff released from the proposed project site will unlikely cause any adverse impact to downstream water bodies or existing habitat integrity. Sediment will likely be reduced upon site development. Peak flow rates listed above were generated based on criteria set forth in SDCHM presented in Chapter 4 of this report.   3460 Roosevelt Street  Drainage Report bha, Inc.              11  Chapter 2 Existing & Developed Hydrology Maps LEGEND K:\Civil 3D\1485\DWG\HYDRO\1485 - Exist. Hydro.dwg, 4/20/2021 11:32:45 AM LEGEND K:\Civil 3D\1485\DWG\HYDRO\1485 - Prop. Hydro.dwg, 6/29/2021 2:59:21 PM   3460 Roosevelt Street  Drainage Report bha, Inc.              12  Chapter 3 100-Year Peak Flow Calculations   3460 Roosevelt Street  Drainage Report           bha, Inc.       13  3.1 Existing Hydrology Calculations 100-Year Storm ************************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2014 Advanced Engineering Software (aes) Ver. 21.0 Release Date: 06/01/2014 License ID 1459 Analysis prepared by: BHA Inc 5115 Avenida Encinas, Suite L Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * EXISTING 100-YEAR STORM HYDROLOGY * * 3460 ROOSEVELT STREET * * 3460 ROOSEVELT STREET, CARLSBAD CA (JN 1111-1485-600) * ************************************************************************** FILE NAME: K:\HYDRO\1485\1485E100.DAT TIME/DATE OF STUDY: 17:04 02/26/2021 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.660 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .2500 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000   3460 Roosevelt Street  Drainage Report            bha, Inc.    14  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.008 SUBAREA RUNOFF(CFS) = 0.14 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.14 ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.1 TC(MIN.) = 5.00 PEAK FLOW RATE(CFS) = 0.14 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS   3460 Roosevelt Street  Drainage Report            bha, Inc.    15  3.2 Developed Hydrology Calculations 100-Year Storm ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2014 Advanced Engineering Software (aes) Ver. 21.0 Release Date: 06/01/2014 License ID 1459 Analysis prepared by: BHA INC. 5115 AVENIDA ENCINAS, SUITE L CARLSBAD, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * DEVELOPED 100-YEAR STORM HYDROLOGY * * 3460 ROOSEVELT STREET * * 3460 ROOSEVELT STREET, CARLSBAD CA (JN 1111-1485-600) * ************************************************************************** FILE NAME: K:\HYDRO\1485\1485P100.DAT TIME/DATE OF STUDY: 10:38 04/20/2021 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.660 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7900 S.C.S. CURVE NUMBER (AMC II) = 0   3460 Roosevelt Street  Drainage Report            bha, Inc.    16  INITIAL SUBAREA FLOW-LENGTH(FEET) = 51.00 UPSTREAM ELEVATION(FEET) = 51.11 DOWNSTREAM ELEVATION(FEET) = 50.09 ELEVATION DIFFERENCE(FEET) = 1.02 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.163 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.008 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.02 TOTAL RUNOFF(CFS) = 0.12 **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 45.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8300 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.008 SUBAREA RUNOFF(CFS) = 0.15 TOTAL AREA(ACRES) = 0.03 TOTAL RUNOFF(CFS) = 0.15 **************************************************************************** FLOW PROCESS FROM NODE 45.00 TO NODE 50.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 49.88 DOWNSTREAM(FEET) = 49.14 FLOW LENGTH(FEET) = 49.36 MANNING'S N = 0.010 DEPTH OF FLOW IN 4.0 INCH PIPE IS 2.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.37 GIVEN PIPE DIAMETER(INCH) = 4.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.15 PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 5.24 LONGEST FLOWPATH FROM NODE 40.00 TO NODE 50.00 = 68.36 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.796 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7880 SUBAREA AREA(ACRES) = 0.01 SUBAREA RUNOFF(CFS) = 0.07 TOTAL AREA(ACRES) = 0.0 TOTAL RUNOFF(CFS) = 0.21 TC(MIN.) = 5.24 **************************************************************************** FLOW PROCESS FROM NODE 49.14 TO NODE 48.40 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 49.14 DOWNSTREAM(FEET) = 48.40 FLOW LENGTH(FEET) = 49.45 MANNING'S N = 0.010 DEPTH OF FLOW IN 4.0 INCH PIPE IS 2.5 INCHES   3460 Roosevelt Street  Drainage Report            bha, Inc.    17  PIPE-FLOW VELOCITY(FEET/SEC.) = 3.68 GIVEN PIPE DIAMETER(INCH) = 4.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.21 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 5.47 LONGEST FLOWPATH FROM NODE 40.00 TO NODE 48.40 = 117.81 FEET. **************************************************************************** FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.616 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .6700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7500 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.08 TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.29 TC(MIN.) = 5.47 **************************************************************************** FLOW PROCESS FROM NODE 60.00 TO NODE 70.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 48.40 DOWNSTREAM(FEET) = 48.02 FLOW LENGTH(FEET) = 19.00 MANNING'S N = 0.010 DEPTH OF FLOW IN 3.0 INCH PIPE IS 2.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.65 GIVEN PIPE DIAMETER(INCH) = 3.00 NUMBER OF PIPES = 2 PIPE-FLOW(CFS) = 0.29 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 5.55 LONGEST FLOWPATH FROM NODE 40.00 TO NODE 70.00 = 136.81 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.1 TC(MIN.) = 5.55 PEAK FLOW RATE(CFS) = 0.29 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS   3460 Roosevelt Street  Drainage Report           bha, Inc.       18  Chapter 4 References   3460 Roosevelt Street  Drainage Report           bha, Inc.       19  4.1 Methodology – Rational Method Peak Flow Determination 3/1/2021 Precipitation Frequency Data Server https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=33.1552&lon=-117.3435&data=depth&units=english&series=pds 1/3 NOAA Atlas 14, Volume 6, Version 2 Location name: Carlsbad, California, USA* Latitude: 33.1552°, Longitude: -117.3435° Elevation: 50.4 ft** * source: ESRI Maps ** source: USGS POINT PRECIPITATION FREQUENCY ESTIMATES Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, GeoffreyBonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan NOAA, National Weather Service, Silver Spring, Maryland PF_tabular | PF_graphical | Maps_&_aerials PF tabular PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches)1 Duration Average recurrence interval (years) 1 2 5 10 25 50 100 200 500 1000 5-min 0.133 (0.112‑0.160) 0.169 (0.142‑0.203) 0.219 (0.183‑0.263) 0.261 (0.217‑0.318) 0.323 (0.259‑0.408) 0.374 (0.293‑0.483) 0.429 (0.328‑0.568) 0.489 (0.363‑0.667) 0.577 (0.409‑0.823) 0.650 (0.444‑0.962) 10-min 0.191 (0.161‑0.230) 0.242 (0.204‑0.291) 0.313 (0.263‑0.378) 0.375 (0.311‑0.456) 0.464 (0.371‑0.584) 0.537 (0.420‑0.692) 0.615 (0.470‑0.814) 0.702 (0.520‑0.957) 0.827 (0.586‑1.18) 0.932 (0.637‑1.38) 15-min 0.231 (0.195‑0.278) 0.293 (0.246‑0.352) 0.379 (0.317‑0.457) 0.453 (0.376‑0.551) 0.561 (0.449‑0.707) 0.649 (0.508‑0.837) 0.744 (0.568‑0.985) 0.848 (0.628‑1.16) 1.00 (0.709‑1.43) 1.13 (0.770‑1.67) 30-min 0.328 (0.276‑0.393) 0.415 (0.349‑0.499) 0.537 (0.450‑0.647) 0.642 (0.533‑0.781) 0.794 (0.636‑1.00) 0.919 (0.720‑1.19) 1.05 (0.805‑1.40) 1.20 (0.890‑1.64) 1.42 (1.00‑2.02) 1.60 (1.09‑2.36) 60-min 0.443 (0.372‑0.531) 0.561 (0.471‑0.674) 0.725 (0.607‑0.874) 0.867 (0.720‑1.05) 1.07 (0.860‑1.35) 1.24 (0.973‑1.60) 1.42 (1.09‑1.88) 1.62 (1.20‑2.21) 1.91 (1.36‑2.73) 2.16 (1.47‑3.19) 2-hr 0.598 (0.503‑0.718) 0.746 (0.627‑0.896) 0.950 (0.796‑1.15) 1.13 (0.935‑1.37) 1.38 (1.11‑1.74) 1.59 (1.24‑2.05) 1.81 (1.38‑2.40) 2.05 (1.52‑2.80) 2.41 (1.71‑3.43) 2.70 (1.85‑4.00) 3-hr 0.704 (0.592‑0.845) 0.875 (0.735‑1.05) 1.11 (0.931‑1.34) 1.31 (1.09‑1.60) 1.60 (1.28‑2.02) 1.84 (1.44‑2.37) 2.09 (1.59‑2.76) 2.36 (1.75‑3.22) 2.75 (1.95‑3.93) 3.08 (2.10‑4.55) 6-hr 0.909 (0.765‑1.09) 1.13 (0.953‑1.36) 1.44 (1.21‑1.74) 1.70 (1.41‑2.06) 2.06 (1.65‑2.60) 2.35 (1.84‑3.03) 2.66 (2.03‑3.52) 2.98 (2.21‑4.07) 3.44 (2.44‑4.91) 3.81 (2.61‑5.64) 12-hr 1.14 (0.963‑1.37) 1.46 (1.22‑1.75) 1.87 (1.57‑2.25) 2.21 (1.83‑2.68) 2.67 (2.14‑3.37) 3.04 (2.38‑3.92) 3.41 (2.60‑4.51) 3.80 (2.81‑5.18) 4.33 (3.07‑6.17) 4.75 (3.24‑7.02) 24-hr 1.39 (1.23‑1.61) 1.82 (1.60‑2.10) 2.36 (2.08‑2.74) 2.80 (2.44‑3.28) 3.40 (2.87‑4.10) 3.85 (3.19‑4.74) 4.31 (3.49‑5.43) 4.78 (3.77‑6.19) 5.42 (4.11‑7.30) 5.92 (4.34‑8.23) 2-day 1.70 (1.50‑1.97) 2.23 (1.97‑2.58) 2.92 (2.56‑3.39) 3.47 (3.03‑4.06) 4.22 (3.57‑5.10) 4.80 (3.98‑5.91) 5.38 (4.36‑6.78) 5.98 (4.71‑7.73) 6.78 (5.14‑9.12) 7.40 (5.43‑10.3) 3-day 1.90 (1.68‑2.20) 2.50 (2.20‑2.89) 3.28 (2.88‑3.81) 3.92 (3.42‑4.58) 4.78 (4.04‑5.77) 5.44 (4.51‑6.70) 6.12 (4.95‑7.71) 6.81 (5.37‑8.81) 7.75 (5.88‑10.4) 8.48 (6.22‑11.8) 4-day 2.07 (1.82‑2.39) 2.72 (2.40‑3.15) 3.58 (3.15‑4.16) 4.29 (3.74‑5.01) 5.25 (4.43‑6.33) 5.99 (4.96‑7.37) 6.74 (5.46‑8.49) 7.52 (5.93‑9.73) 8.58 (6.50‑11.5) 9.40 (6.90‑13.1) 7-day 2.39 (2.11‑2.77) 3.18 (2.80‑3.68) 4.21 (3.70‑4.89) 5.06 (4.42‑5.92) 6.23 (5.27‑7.52) 7.14 (5.92‑8.79) 8.07 (6.54‑10.2) 9.04 (7.13‑11.7) 10.4 (7.86‑13.9) 11.4 (8.37‑15.9) 10-day 2.65 (2.34‑3.07) 3.54 (3.12‑4.10) 4.72 (4.14‑5.47) 5.69 (4.96‑6.66) 7.04 (5.95‑8.49) 8.09 (6.70‑9.96) 9.17 (7.43‑11.6) 10.3 (8.13‑13.3) 11.9 (8.99‑16.0) 13.1 (9.61‑18.2) 20-day 3.23 (2.85‑3.74) 4.35 (3.84‑5.04) 5.87 (5.16‑6.81) 7.14 (6.23‑8.35) 8.92 (7.54‑10.8) 10.3 (8.56‑12.7) 11.8 (9.55‑14.9) 13.4 (10.5‑17.3) 15.5 (11.8‑20.9) 17.3 (12.7‑24.0) 30-day 3.82 (3.37‑4.42) 5.16 (4.55‑5.98) 7.00 (6.15‑8.12) 8.55 (7.45‑10.0) 10.7 (9.08‑13.0) 12.5 (10.4‑15.4) 14.3 (11.6‑18.1) 16.3 (12.9‑21.1) 19.1 (14.5‑25.7) 21.3 (15.7‑29.7) 45-day 4.52 (3.99‑5.23) 6.10 (5.37‑7.06) 8.28 (7.28‑9.62) 10.1 (8.85‑11.9) 12.8 (10.8‑15.5) 15.0 (12.4‑18.5) 17.3 (14.0‑21.8) 19.8 (15.6‑25.6) 23.3 (17.7‑31.3) 26.2 (19.2‑36.4) 60-day 5.22 (4.61‑6.04) 7.01 (6.18‑8.12) 9.51 (8.36‑11.0) 11.7 (10.2‑13.6) 14.8 (12.5‑17.8) 17.3 (14.4‑21.3) 20.1 (16.2‑25.3) 23.0 (18.2‑29.8) 27.3 (20.7‑36.7) 30.8 (22.6‑42.9) 1 Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. Back to Top PF graphical 3/1/2021 Precipitation Frequency Data Server https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=33.1552&lon=-117.3435&data=depth&units=english&series=pds 2/3 Back to Top Maps & aerials Small scale terrain Large scale terrain + – 3km 2mi + – 100km 60mi 3/1/2021 Precipitation Frequency Data Server https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=33.1552&lon=-117.3435&data=depth&units=english&series=pds 3/3 Large scale map Large scale aerial Back to Top US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: HDSC.Questions@noaa.gov Disclaimer + – 100km 60mi + – 100km 60mi P6=2.66"Project Location/DWƒ 1/RQJƒ : P24=4.31"Project Location/DWƒ 1/RQJƒ : 6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI  6(&7,215$7,21$/0(7+2'$1'02',),('5$7,21$/0(7+2' 7+(5$7,21$/0(7+2' 7KH 5DWLRQDO 0HWKRG 50  LV D PDWKHPDWLFDO IRUPXOD XVHG WR GHWHUPLQH WKH PD[LPXP UXQRIIUDWHIURPDJLYHQUDLQIDOO,WKDVSDUWLFXODUDSSOLFDWLRQLQXUEDQVWRUPGUDLQDJHZKHUH LWLVXVHGWRHVWLPDWHSHDNUXQRIIUDWHVIURPVPDOOXUEDQDQGUXUDOZDWHUVKHGVIRUWKHGHVLJQ RIVWRUPGUDLQVDQGVPDOOGUDLQDJHVWUXFWXUHV7KH50LVUHFRPPHQGHGIRUDQDO\]LQJWKH UXQRIIUHVSRQVHIURPGUDLQDJHDUHDVXSWRDSSUR[LPDWHO\VTXDUHPLOHLQVL]H,WVKRXOGQRW EH XVHG LQ LQVWDQFHV ZKHUH WKHUH LV D MXQFWLRQ RI LQGHSHQGHQW GUDLQDJH V\VWHPV RU IRU GUDLQDJHDUHDVJUHDWHUWKDQDSSUR[LPDWHO\VTXDUHPLOHLQVL]H,QWKHVHLQVWDQFHVWKH 0RGLILHG5DWLRQDO0HWKRG 050 VKRXOGEHXVHGIRUMXQFWLRQVRILQGHSHQGHQWGUDLQDJH V\VWHPVLQZDWHUVKHGVXSWRDSSUR[LPDWHO\VTXDUHPLOHLQVL]H VHH6HFWLRQ RUWKH 15&6 +\GURORJLF 0HWKRG VKRXOG EH XVHG IRU ZDWHUVKHGV JUHDWHU WKDQ DSSUR[LPDWHO\  VTXDUHPLOHLQVL]H VHH6HFWLRQ  7KH50FDQEHDSSOLHGXVLQJDQ\GHVLJQVWRUPIUHTXHQF\ HJ\HDU\HDU\HDU HWF 7KHORFDODJHQF\GHWHUPLQHVWKHGHVLJQVWRUPIUHTXHQF\WKDWPXVWEHXVHGEDVHGRQ WKHW\SHRISURMHFWDQGVSHFLILFORFDOUHTXLUHPHQWV$GLVFXVVLRQRIGHVLJQVWRUPIUHTXHQF\ LVSURYLGHGLQ6HFWLRQRIWKLVPDQXDO$SURFHGXUHKDVEHHQGHYHORSHGWKDWFRQYHUWVWKH KRXUDQGKRXUSUHFLSLWDWLRQLVRSOXYLDOPDSGDWDWRDQ,QWHQVLW\'XUDWLRQFXUYHWKDWFDQ EHXVHGIRUWKHUDLQIDOOLQWHQVLW\LQWKH50IRUPXODDVVKRZQLQ)LJXUH7KH50LV DSSOLFDEOHWRDKRXUVWRUPGXUDWLRQEHFDXVHWKHSURFHGXUHXVHV,QWHQVLW\'XUDWLRQ'HVLJQ &KDUWVWKDWDUHEDVHGRQDKRXUVWRUPGXUDWLRQ 5DWLRQDO0HWKRG)RUPXOD 7KH50IRUPXODHVWLPDWHVWKHSHDNUDWHRIUXQRIIDWDQ\ORFDWLRQLQDZDWHUVKHGDVDIXQFWLRQ RIWKHGUDLQDJHDUHD $ UXQRIIFRHIILFLHQW & DQGUDLQIDOOLQWHQVLW\ , IRUDGXUDWLRQHTXDO WR WKH WLPH RI FRQFHQWUDWLRQ 7F  ZKLFK LV WKH WLPH UHTXLUHG IRU ZDWHU WR  Hydrologic Soil Group—San Diego County Area, California (3460 Roosevelt Street, Carlsbad, CA 92008) Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 2/23/2021 Page 1 of 436685333668539366854536685513668557366856336685693668533366853936685453668551366855736685633668569467964467970467976467982467988467994468000468006468012468018468024 467964 467970 467976 467982 467988 467994 468000 468006 468012 468018 468024 33° 9' 19'' N 117° 20' 36'' W33° 9' 19'' N117° 20' 34'' W33° 9' 18'' N 117° 20' 36'' W33° 9' 18'' N 117° 20' 34'' WN Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 11N WGS84 0 10 20 40 60 Feet 0 4 8 16 24 Meters Map Scale: 1:282 if printed on A landscape (11" x 8.5") sheet. Soil Map may not be valid at this scale. MAP LEGEND MAP INFORMATION Area of Interest (AOI) Area of Interest (AOI) Soils Soil Rating Polygons A A/D B B/D C C/D D Not rated or not available Soil Rating Lines A A/D B B/D C C/D D Not rated or not available Soil Rating Points A A/D B B/D C C/D D Not rated or not available Water Features Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads Background Aerial Photography The soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: San Diego County Area, California Survey Area Data: Version 15, May 27, 2020 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jan 24, 2020—Feb 12, 2020 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. Hydrologic Soil Group—San Diego County Area, California (3460 Roosevelt Street, Carlsbad, CA 92008) Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 2/23/2021 Page 2 of 4 Hydrologic Soil Group Map unit symbol Map unit name Rating Acres in AOI Percent of AOI MlC Marina loamy coarse sand, 2 to 9 percent slopes B 0.1 100.0% Totals for Area of Interest 0.1 100.0% Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Hydrologic Soil Group—San Diego County Area, California 3460 Roosevelt Street, Carlsbad, CA 92008 Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 2/23/2021 Page 3 of 4 Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole. A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not. For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods. The aggregation method "Dominant Condition" first groups like attribute values for the components in a map unit. For each group, percent composition is set to the sum of the percent composition of all components participating in that group. These groups now represent "conditions" rather than components. The attribute value associated with the group with the highest cumulative percent composition is returned. If more than one group shares the highest cumulative percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher group value should be returned in the case of a percent composition tie. The result returned by this aggregation method represents the dominant condition throughout the map unit only when no tie has occurred. Component Percent Cutoff: None Specified Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered. Tie-break Rule: Higher The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie. Hydrologic Soil Group—San Diego County Area, California 3460 Roosevelt Street, Carlsbad, CA 92008 Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 2/23/2021 Page 4 of 4 6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI  IORZIURPWKHPRVWUHPRWHSRLQWRIWKHEDVLQWRWKHORFDWLRQEHLQJDQDO\]HG7KH50 IRUPXODLVH[SUHVVHGDVIROORZV 4 &,$ :KHUH4 SHDNGLVFKDUJHLQFXELFIHHWSHUVHFRQG FIV  & UXQRIIFRHIILFLHQWSURSRUWLRQRIWKHUDLQIDOOWKDWUXQVRIIWKHVXUIDFH QR XQLWV  , DYHUDJHUDLQIDOOLQWHQVLW\IRUDGXUDWLRQHTXDOWRWKH7FIRUWKHDUHDLQ LQFKHVSHUKRXU 1RWH,IWKHFRPSXWHG7FLVOHVVWKDQPLQXWHVXVH PLQXWHVIRUFRPSXWLQJWKHSHDNGLVFKDUJH4  $ GUDLQDJHDUHDFRQWULEXWLQJWRWKHGHVLJQORFDWLRQLQDFUHV &RPELQLQJWKHXQLWVIRUWKHH[SUHVVLRQ&,$\LHOGV FIVVHFRQGV KRXU LQFKHV IRRW DFUH IW KRXU LQFKDFUH )RUSUDFWLFDOSXUSRVHVWKHXQLWFRQYHUVLRQFRHIILFLHQWGLIIHUHQFHRIFDQEHLJQRUHG 7KH50IRUPXODLVEDVHGRQWKHDVVXPSWLRQWKDWIRUFRQVWDQWUDLQIDOOLQWHQVLW\WKHSHDN GLVFKDUJHUDWHDWDSRLQWZLOORFFXUZKHQWKHUDLQGURSWKDWIDOOVDWWKHPRVWXSVWUHDPSRLQWLQ WKHWULEXWDU\GUDLQDJHEDVLQDUULYHVDWWKHSRLQWRILQWHUHVW 8QOLNHWKH050 GLVFXVVHGLQ6HFWLRQ RUWKH15&6K\GURORJLFPHWKRG GLVFXVVHGLQ 6HFWLRQ WKH50GRHVQRWFUHDWHK\GURJUDSKVDQGWKHUHIRUHGRHVQRWDGGVHSDUDWHVXEDUHD K\GURJUDSKVDWFROOHFWLRQSRLQWV,QVWHDGWKH50GHYHORSVSHDNGLVFKDUJHVLQWKHPDLQOLQH E\LQFUHDVLQJWKH7FDVIORZWUDYHOVGRZQVWUHDP &KDUDFWHULVWLFVRIRUDVVXPSWLRQVLQKHUHQWWRWKH50DUHOLVWHGEHORZ 7KHGLVFKDUJHIORZUDWHUHVXOWLQJIURPDQ\,LVPD[LPXPZKHQWKH,ODVWVDVORQJDVRU ORQJHUWKDQWKH7F  6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI  7KHVWRUPIUHTXHQF\RISHDNGLVFKDUJHVLVWKHVDPHDVWKDWRI,IRUWKHJLYHQ7F 7KHIUDFWLRQRIUDLQIDOOWKDWEHFRPHVUXQRII RUWKHUXQRIIFRHIILFLHQW& LVLQGHSHQGHQW RI , RU SUHFLSLWDWLRQ ]RQH QXPEHU 3=1  FRQGLWLRQ 3=1 &RQGLWLRQ LV GLVFXVVHG LQ 6HFWLRQ  7KHSHDNUDWHRIUXQRIILVWKHRQO\LQIRUPDWLRQSURGXFHGE\XVLQJWKH50 5XQRII&RHIILFLHQW 7DEOHOLVWVWKHHVWLPDWHGUXQRIIFRHIILFLHQWVIRUXUEDQDUHDV7KHFRQFHSWVUHODWHGWRWKH UXQRII FRHIILFLHQW ZHUH HYDOXDWHG LQ D UHSRUW HQWLWOHG (YDOXDWLRQ 5DWLRQDO 0HWKRG ³&´ 9DOXHV +LOO WKDWZDVUHYLHZHGE\WKH+\GURORJ\0DQXDO&RPPLWWHH7KH5HSRUWLV DYDLODEOHDW6DQ'LHJR&RXQW\'HSDUWPHQWRI3XEOLF:RUNV)ORRG&RQWURO6HFWLRQDQGRQ WKH6DQ'LHJR&RXQW\'HSDUWPHQWRI3XEOLF:RUNVZHESDJH 7KHUXQRIIFRHIILFLHQWVDUHEDVHGRQODQGXVHDQGVRLOW\SH6RLOW\SHFDQEHGHWHUPLQHGIURP WKHVRLOW\SHPDSSURYLGHGLQ$SSHQGL[$$QDSSURSULDWHUXQRIIFRHIILFLHQW & IRUHDFK W\SHRIODQGXVHLQWKHVXEDUHDVKRXOGEHVHOHFWHGIURPWKLVWDEOHDQGPXOWLSOLHGE\WKH SHUFHQWDJHRIWKHWRWDODUHD $ LQFOXGHGLQWKDWFODVV7KHVXPRIWKHSURGXFWVIRUDOOODQG XVHVLVWKHZHLJKWHGUXQRIIFRHIILFLHQW &$@ *RRGHQJLQHHULQJMXGJPHQWVKRXOGEHXVHG ZKHQDSSO\LQJWKHYDOXHVSUHVHQWHGLQ7DEOHDVDGMXVWPHQWVWRWKHVHYDOXHVPD\EH DSSURSULDWHEDVHGRQVLWHVSHFLILFFKDUDFWHULVWLFV,QDQ\HYHQWWKHLPSHUYLRXVSHUFHQWDJH ,PSHUYLRXV DVJLYHQLQWKHWDEOHIRUDQ\DUHDVKDOOJRYHUQWKHVHOHFWHGYDOXHIRU&7KH UXQRII FRHIILFLHQW FDQ DOVR EH FDOFXODWHG IRU DQ DUHD EDVHG RQ VRLO W\SH DQG LPSHUYLRXV SHUFHQWDJHXVLQJWKHIROORZLQJIRUPXOD  6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI  &  ,PSHUYLRXV &S  ,PSHUYLRXV  :KHUH &S  3HUYLRXV &RHIILFLHQW 5XQRII 9DOXH IRU WKH VRLO W\SH VKRZQ LQ 7DEOH  DV 8QGLVWXUEHG 1DWXUDO 7HUUDLQ3HUPDQHQW 2SHQ 6SDFH  ,PSHUYLRXV  6RLO W\SH FDQ EH GHWHUPLQHG IURP WKH VRLO W\SH PDS SURYLGHGLQ$SSHQGL[$ 7KHYDOXHVLQ7DEOHDUHW\SLFDOIRUPRVWXUEDQDUHDV+RZHYHULIWKHEDVLQFRQWDLQVUXUDO RUDJULFXOWXUDOODQGXVHSDUNVJROIFRXUVHVRURWKHUW\SHVRIQRQXUEDQODQGXVHWKDWDUH H[SHFWHGWREHSHUPDQHQWWKHDSSURSULDWHYDOXHVKRXOGEHVHOHFWHGEDVHGXSRQWKHVRLODQG FRYHUDQGDSSURYHGE\WKHORFDODJHQF\  6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI  5DLQIDOO,QWHQVLW\ 7KHUDLQIDOOLQWHQVLW\ , LVWKHUDLQIDOOLQLQFKHVSHUKRXU LQKU IRUDGXUDWLRQHTXDOWRWKH7F IRUDVHOHFWHGVWRUPIUHTXHQF\2QFHDSDUWLFXODUVWRUPIUHTXHQF\KDVEHHQVHOHFWHGIRU GHVLJQDQGD7FFDOFXODWHGIRUWKHGUDLQDJHDUHDWKHUDLQIDOOLQWHQVLW\FDQEHGHWHUPLQHGIURP WKH,QWHQVLW\'XUDWLRQ'HVLJQ&KDUW )LJXUH 7KHKRXUVWRUPUDLQIDOODPRXQW 3 DQG WKHKRXUVWRUPUDLQIDOODPRXQW 3 IRUWKHVHOHFWHGVWRUPIUHTXHQF\DUHDOVRQHHGHGIRU FDOFXODWLRQRI,3DQG3FDQEHUHDGIURPWKHLVRSOXYLDOPDSVSURYLGHGLQ$SSHQGL[% $Q ,QWHQVLW\'XUDWLRQ 'HVLJQ &KDUW DSSOLFDEOH WR DOO DUHDV ZLWKLQ 6DQ 'LHJR &RXQW\ LV SURYLGHGDV)LJXUH)LJXUHSURYLGHVDQH[DPSOHRIXVHRIWKH,QWHQVLW\'XUDWLRQ 'HVLJQ&KDUW,QWHQVLW\FDQDOVREHFDOFXODWHGXVLQJWKHIROORZLQJHTXDWLRQ , 3' :KHUH 3 DGMXVWHGKRXUVWRUPUDLQIDOODPRXQW VHHGLVFXVVLRQEHORZ  ' GXUDWLRQLQPLQXWHV XVH7F  1RWH7KLVHTXDWLRQDSSOLHVRQO\WRWKHKRXUVWRUPUDLQIDOODPRXQW LH3FDQQRWEH FKDQJHGWR3WRFDOFXODWHDKRXULQWHQVLW\XVLQJWKLVHTXDWLRQ  7KH ,QWHQVLW\'XUDWLRQ 'HVLJQ &KDUW DQG WKH HTXDWLRQ DUH IRU WKH KRXU VWRUP UDLQIDOO DPRXQW,QJHQHUDO3IRUWKHVHOHFWHGIUHTXHQF\VKRXOGEHEHWZHHQDQGRI3IRU WKHVHOHFWHGIUHTXHQF\,I3LVQRWZLWKLQWRRI33VKRXOGEHLQFUHDVHGRU GHFUHDVHGDVQHFHVVDU\WRPHHWWKLVFULWHULD7KHLVRSOXYLDOOLQHVDUHEDVHGRQSUHFLSLWDWLRQ JDXJHGDWD$WWKHWLPHWKDWWKHLVRSOXYLDOOLQHVZHUHFUHDWHGWKHPDMRULW\RISUHFLSLWDWLRQ JDXJHV LQ 6DQ 'LHJR &RXQW\ ZHUH UHDG GDLO\ DQG WKHVH UHDGLQJV \LHOGHG KRXU SUHFLSLWDWLRQ GDWD  6RPH KRXU GDWD ZHUH DYDLODEOH IURP WKH IHZ UHFRUGLQJ JDXJHV GLVWULEXWHGWKURXJKRXWWKH&RXQW\DWWKDWWLPHKRZHYHUVRPHKRXUGDWDZHUHH[WUDSRODWHG 7KHUHIRUHWKHKRXUSUHFLSLWDWLRQGDWDIRU6DQ'LHJR&RXQW\DUHFRQVLGHUHGWREHPRUH UHOLDEOH  6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI  7LPHRI&RQFHQWUDWLRQ 7KH7LPHRI&RQFHQWUDWLRQ 7F LVWKHWLPHUHTXLUHGIRUUXQRIIWRIORZIURPWKHPRVWUHPRWH SDUWRIWKHGUDLQDJHDUHDWRWKHSRLQWRILQWHUHVW7KH7FLVFRPSRVHGRIWZRFRPSRQHQWV LQLWLDOWLPHRIFRQFHQWUDWLRQ 7L DQGWUDYHOWLPH 7W 0HWKRGVRIFRPSXWDWLRQIRU7LDQG7W DUHGLVFXVVHGEHORZ7KH7LLVWKHWLPHUHTXLUHGIRUUXQRIIWRWUDYHODFURVVWKHVXUIDFHRIWKH PRVWUHPRWHVXEDUHDLQWKHVWXG\RU³LQLWLDOVXEDUHD´*XLGHOLQHVIRUGHVLJQDWLQJWKHLQLWLDO VXEDUHDDUHSURYLGHGZLWKLQWKHGLVFXVVLRQRIFRPSXWDWLRQRI7L7KH7WLVWKHWLPHUHTXLUHG IRU WKH UXQRII WR IORZ LQ D ZDWHUFRXUVH HJ VZDOH FKDQQHO JXWWHU SLSH  RU VHULHV RI ZDWHUFRXUVHVIURPWKHLQLWLDOVXEDUHDWRWKHSRLQWRILQWHUHVW)RUWKH50WKH7FDWDQ\SRLQW ZLWKLQWKHGUDLQDJHDUHDLVJLYHQE\  7 F 7L7W 0HWKRGVRIFDOFXODWLRQGLIIHUIRUQDWXUDOZDWHUVKHGV QRQXUEDQL]HG DQGIRUXUEDQGUDLQDJH V\VWHPV:KHQDQDO\]LQJVWRUPGUDLQV\VWHPVWKHGHVLJQHUPXVWFRQVLGHUWKHSRVVLELOLW\ WKDWDQH[LVWLQJQDWXUDOZDWHUVKHGPD\EHFRPHXUEDQL]HGGXULQJWKHXVHIXOOLIHRIWKHVWRUP GUDLQV\VWHP)XWXUHODQGXVHVPXVWEHXVHGIRU7FDQGUXQRIIFDOFXODWLRQVDQGFDQEH GHWHUPLQHGIURPWKHORFDO&RPPXQLW\*HQHUDO3ODQ ,QLWLDO7LPHRI&RQFHQWUDWLRQ 7KHLQLWLDOWLPHRIFRQFHQWUDWLRQLVW\SLFDOO\EDVHGRQVKHHWIORZDWWKHXSVWUHDPHQGRID GUDLQDJHEDVLQ7KH2YHUODQG7LPHRI)ORZ )LJXUH LVDSSUR[LPDWHGE\DQHTXDWLRQ GHYHORSHGE\WKH)HGHUDO$YLDWLRQ$JHQF\ )$$ IRUDQDO\]LQJIORZRQUXQDZD\V )$$  7KHXVXDOUXQZD\FRQILJXUDWLRQFRQVLVWVRIDFURZQOLNHPRVWIUHHZD\VZLWKVORSLQJ SDYHPHQWWKDWGLUHFWVIORZWRHLWKHUVLGHRIWKHUXQZD\7KLVW\SHRIIORZLVXQLIRUPLQWKH GLUHFWLRQSHUSHQGLFXODUWRWKHYHORFLW\DQGLVYHU\VKDOORZ6LQFHWKHVHGHSWKVDUHóRIDQ LQFK PRUH RU OHVV  LQ PDJQLWXGH WKH UHODWLYH URXJKQHVV LV KLJK  6RPH KLJKHU UHODWLYH URXJKQHVV YDOXHV IRU RYHUODQG IORZ DUH SUHVHQWHG LQ 7DEOH  RI WKH +(& )ORRG +\GURJUDSK3DFNDJH8VHU¶V0DQXDO 86$&(   6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI  7KHVKHHWIORZWKDWLVSUHGLFWHGE\WKH)$$HTXDWLRQLVOLPLWHGWRFRQGLWLRQVWKDWDUHVLPLODU WRUXQZD\WRSRJUDSK\6RPHFRQVLGHUDWLRQVWKDWOLPLWWKHH[WHQWWRZKLFKWKH)$$HTXDWLRQ DSSOLHVDUHLGHQWLILHGEHORZ 8UEDQ$UHDV±7KLV³UXQZD\W\SH´UXQRIILQFOXGHV  )ODWURRIVVORSLQJDW  3DUNLQJORWVDWWKHH[WUHPHXSVWUHDPGUDLQDJHEDVLQERXQGDU\ DWWKH³ULGJH´RID FDWFKPHQWDUHD  (YHQDSDUNLQJORWLVOLPLWHGLQWKHDPRXQWVRIVKHHWIORZ3DUNHGRUPRYLQJ YHKLFOHVZRXOG³EUHDNXS´WKHVKHHWIORZFRQFHQWUDWLQJUXQRIILQWRVWUHDPVWKDW DUHQRWFKDUDFWHULVWLFRIVKHHWIORZ  'ULYHZD\VDUHFRQVWUXFWHGDWWKHXSVWUHDPHQGRIFDWFKPHQWDUHDVLQVRPH GHYHORSPHQWV+RZHYHULIIORZIURPDURRILVGLUHFWHGWRDGULYHZD\WKURXJK DGRZQVSRXWRURWKHUFRQYH\DQFHPHFKDQLVPIORZZRXOGEHFRQFHQWUDWHG  )ODWVORSHVDUHSURQHWRPHDQGHULQJIORZWKDWWHQGVWREHGLVUXSWHGE\PLQRU LUUHJXODULWLHVDQGREVWUXFWLRQV0D[LPXP2YHUODQG)ORZOHQJWKVDUHVKRUWHU IRUWKHIODWWHUVORSHV VHH7DEOH  5XUDORU1DWXUDO$UHDV7KH)$$HTXDWLRQLVDSSOLFDEOHWRWKHVHFRQGLWLRQVVLQFH WR VORSHVWKDWDUHXQLIRUPLQZLGWKRIIORZKDYHVORZYHORFLWLHVFRQVLVWHQW ZLWKWKHHTXDWLRQ,UUHJXODULWLHVLQWHUUDLQOLPLWWKHOHQJWKRIDSSOLFDWLRQ  0RVWKLOOVDQGULGJHOLQHVKDYHDUHODWLYHO\IODWDUHDQHDUWKHGUDLQDJHGLYLGH +RZHYHU ZLWK IODW VORSHV RI   PLQRU LUUHJXODULWLHV ZRXOG FDXVH IORZ WR FRQFHQWUDWHLQWRVWUHDPV   3DUNV ODZQV DQG RWKHU YHJHWDWHG DUHDV ZRXOG KDYH VORZ YHORFLWLHV WKDW DUH FRQVLVWHQWZLWKWKH)$$(TXDWLRQ 7KHFRQFHSWVUHODWHGWRWKHLQLWLDOWLPHRIFRQFHQWUDWLRQZHUHHYDOXDWHGLQDUHSRUWHQWLWOHG ,QLWLDO7LPHRI&RQFHQWUDWLRQ$QDO\VLVRI3DUDPHWHUV +LOO WKDWZDVUHYLHZHGE\WKH +\GURORJ\0DQXDO&RPPLWWHH7KH5HSRUWLVDYDLODEOHDW6DQ'LHJR&RXQW\'HSDUWPHQWRI 3XEOLF:RUNV)ORRG&RQWURO6HFWLRQDQGRQWKH6DQ'LHJR&RXQW\'HSDUWPHQWRI3XEOLF :RUNVZHESDJH  6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI  1RWHWKDWWKH,QLWLDO7LPHRI&RQFHQWUDWLRQVKRXOGEHUHIOHFWLYHRIWKHJHQHUDOODQGXVHDWWKH XSVWUHDPHQGRIDGUDLQDJHEDVLQ$VLQJOHORWZLWKDQDUHDRIWZRRUOHVVDFUHVGRHVQRWKDYH DVLJQLILFDQWHIIHFWZKHUHWKHGUDLQDJHEDVLQDUHDLVWRDFUHV 7DEOHSURYLGHVOLPLWVRIWKHOHQJWK 0D[LPXP/HQJWK /0 RIVKHHWIORZWREHXVHGLQ K\GURORJ\VWXGLHV,QLWLDO7LYDOXHVEDVHGRQDYHUDJH&YDOXHVIRUWKH/DQG8VH(OHPHQWDUH DOVRLQFOXGHG7KHVHYDOXHVFDQEHXVHGLQSODQQLQJDQGGHVLJQDSSOLFDWLRQVDVGHVFULEHG EHORZ([FHSWLRQVPD\EHDSSURYHGE\WKH³5HJXODWLQJ$JHQF\´ZKHQVXEPLWWHGZLWKD GHWDLOHG VWXG\ 7DEOH 0$;,08029(5/$1')/2:/(1*7+ /0  ,1,7,$/7,0(2)&21&(175$7,21 7L  (OHPHQW '8 $FUH/0 7L / 0 7L / 0 7L / 0 7L / 0 7L / 0 7L 1DWXUDO  /'5  /'5  /'5  0'5  0'5  0'5  0'5  +'5  +'5  1&RP  *&RP  23&RP  /LPLWHG, *HQHUDO, 6HH7DEOHIRUPRUHGHWDLOHGGHVFULSWLRQ  6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI  $3ODQQLQJ&RQVLGHUDWLRQV 7KHSXUSRVHRIPRVWK\GURORJ\VWXGLHVLVWRGHYHORSIORRGIORZYDOXHVIRUDUHDVWKDWDUHQRW DWWKHXSVWUHDPHQGRIWKHEDVLQ$QRWKHUH[DPSOHLVWKH0DVWHU3ODQZKLFKLVXVXDOO\ FRPSOHWHGEHIRUHWKHDFWXDOGHWDLOHGGHVLJQRIORWVVWUHHWVHWFDUHDFFRPSOLVKHG,QWKHVH VLWXDWLRQVLWLVQHFHVVDU\WKDWWKHLQLWLDOWLPH RIFRQFHQWUDWLRQEHGHWHUPLQHGZLWKRXWGHWDLOHG LQIRUPDWLRQDERXWIORZSDWWHUQV 7R SURYLGH JXLGDQFH IRU WKH LQLWLDO WLPH RI FRQFHQWUDWLRQ GHVLJQ SDUDPHWHUV 7DEOH  LQFOXGHVWKH/DQG8VH(OHPHQWVDQGRWKHUYDULDEOHVUHODWHGWRWKH7LPHRI&RQFHQWUDWLRQ 7KHWDEOHGHYHORSPHQWLQFOXGHGDUHYLHZRIWKHW\SLFDO³OD\RXW´RIWKHGLIIHUHQW/DQG8VH (OHPHQWVDQGUHODWHGIORZSDWWHUQVDQGFRQVLGHUDWLRQRIWKHH[WHQWRIWKH VKHHWIORZUHJLPHQ WKHHIIHFWRISRQGLQJWKHVLJQLILFDQFHWRWKHGUDLQDJHEDVLQGRZQVWUHDPHIIHFWVHWF %&RPSXWDWLRQ&ULWHULD  D 'HYHORSHG'UDLQDJH$UHDV:LWK2YHUODQG)ORZ7LPD\EHREWDLQHGGLUHFWO\IURPWKH FKDUW³5DWLRQDO)RUPXOD±2YHUODQG7LPH RI)ORZ1RPRJUDSK´VKRZQLQ)LJXUH RUIURP7DEOH7KLVFKDUWLVEDVHGRQWKH)HGHUDO$YLDWLRQ$JHQF\ )$$ HTXDWLRQ )$$ )RUWKHVKRUWUDLQGXUDWLRQV PLQXWHV LQYROYHGLQWHQVLWLHVDUHKLJK EXWWKHGHSWKRIIORRGLQJLVOLPLWHGDQGPXFKRIWKHUXQRIILVVWRUHGWHPSRUDULO\LQWKH RYHUODQG IORZ DQG LQ VKDOORZ SRQGHG DUHDV  ,Q GHYHORSHG DUHDV RYHUODQG IORZ LV OLPLWHGWROHQJWKVJLYHQLQ7DEOH%H\RQGWKHVHGLVWDQFHVIORZWHQGVWREHFRPH FRQFHQWUDWHGLQWRVWUHHWVJXWWHUVVZDOHVGLWFKHVHWF  6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI  E 1DWXUDO2U5XUDO:DWHUVKHGV±7KHVHDUHDVXVXDOO\KDYHDQLQLWLDOVXEDUHDDWWKH XSVWUHDPHQGZLWKVKHHWIORZ7KHVKHHWIORZOHQJWKLVOLPLWHGWRWRIHHWDV VSHFLILHGLQ7DEOH7KH2YHUODQG7LPHRI)ORZ1RPRJUDSK)LJXUHFDQEH XVHG WR REWDLQ 7L  7KH LQLWLDO WLPH RI FRQFHQWUDWLRQ FDQ H[FHVVLYHO\ DIIHFW WKH PDJQLWXGHRIIORZIXUWKHUGRZQVWUHDPLQWKHGUDLQDJHEDVLQ)RULQVWDQFHYDULDWLRQV LQWKHLQLWLDOWLPHRIFRQFHQWUDWLRQIRUDQLQLWLDOVXEDUHDRIRQHDFUHFDQFKDQJHWKH IORZIXUWKHUGRZQVWUHDPZKHUHWKHDUHDLVDFUHVE\7KHUHIRUHWKHLQLWLDO WLPHRIFRQFHQWUDWLRQLVOLPLWHG VHH7DEOH  7KH 5DWLRQDO 0HWKRG SURFHGXUH LQFOXGHG LQ WKH RULJLQDO +\GURORJ\ 0DQXDO   DQG 'HVLJQDQG3URFHGXUH0DQXDO  LQFOXGHGDPLQXWHYDOXHWREHDGGHGWRWKHLQLWLDO WLPHRIFRQFHQWUDWLRQGHYHORSHGWKURXJKWKH.LUSLFK)RUPXOD VHH)LJXUH IRUDQDWXUDO ZDWHUVKHG7KDWSURFHGXUHLVVXSHUFHGHGE\WKHSURFHGXUHDERYHWRXVH7DEOHRU)LJXUH WRGHWHUPLQH7LIRUWKHDSSURSULDWHVKHHWIORZOHQJWKRIWKHLQLWLDOVXEDUHD7KHYDOXHVIRU QDWXUDOZDWHUVKHGVJLYHQLQ7DEOHYDU\IURPWRPLQXWHVGHSHQGLQJRQVORSH,IWKH WRWDOOHQJWKRIWKHLQLWLDOVXEDUHDLVJUHDWHUWKDQWKHPD[LPXPOHQJWKDOORZDEOHEDVHGRQ 7DEOHDGGWKHWUDYHOWLPHEDVHGRQWKH.LUSLFKIRUPXODIRUWKHUHPDLQLQJOHQJWKRIWKH LQLWLDOVXEDUHD 7UDYHO7LPH 7KH7WLVWKHWLPHUHTXLUHGIRUWKHUXQRIIWRIORZLQDZDWHUFRXUVH HJVZDOHFKDQQHO JXWWHUSLSH RUVHULHVRIZDWHUFRXUVHVIURPWKHLQLWLDOVXEDUHDWRWKHSRLQWRILQWHUHVW7KH7W LVFRPSXWHGE\GLYLGLQJWKHOHQJWKRIWKHIORZSDWKE\WKHFRPSXWHGIORZYHORFLW\6LQFHWKH YHORFLW\QRUPDOO\FKDQJHVDVDUHVXOWRIHDFKFKDQJHLQIORZUDWHRUVORSHVXFKDVDWDQLQOHW RUJUDGHEUHDNWKHWRWDO7WPXVWEHFRPSXWHGDVWKHVXPRIWKH7W¶VIRUHDFKVHFWLRQRIWKH IORZSDWK8VH)LJXUHWRHVWLPDWHWLPHRIWUDYHOIRUVWUHHWJXWWHUIORZ9HORFLW\LQD FKDQQHOFDQEHHVWLPDWHGE\XVLQJWKHQRPRJUDSKVKRZQLQ)LJXUH 0DQQLQJ¶V(TXDWLRQ 1RPRJUDSK   6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI  D 1DWXUDO:DWHUVKHGV±7KLVLQFOXGHVUXUDOUDQFKDQGDJULFXOWXUDODUHDVZLWKQDWXUDO FKDQQHOV2EWDLQ7WGLUHFWO\IURPWKH.LUSLFKQRPRJUDSKLQ)LJXUHRUIURPWKH HTXDWLRQ7KLVQRPRJUDSKUHTXLUHVYDOXHVIRUOHQJWKDQGFKDQJHLQHOHYDWLRQDORQJ WKHHIIHFWLYHVORSHOLQHIRUWKHVXEDUHD6HH)LJXUHIRUDUHSUHVHQWDWLRQRIWKH HIIHFWLYHVORSHOLQH 7KLVQRPRJUDSKLVEDVHGRQWKH.LUSLFKIRUPXODZKLFKZDVGHYHORSHGZLWKGDWD IURPDJULFXOWXUDOZDWHUVKHGVUDQJLQJIURPWRDFUHVLQDUHDWRIHHW LQOHQJWKDQGWRVORSH .LUSLFK $PD[LPXPOHQJWKRIIHHW VKRXOGEHXVHGIRUWKHVXEDUHDOHQJWK7\SLFDOO\DVWKHIORZOHQJWKLQFUHDVHVWKH GHSWKRIIORZZLOOLQFUHDVHDQGWKHUHIRUHLWLVFRQVLGHUHGDFRQFHQWUDWLRQRIIORZDW SRLQWVEH\RQGOHQJWKVOLVWHGLQ)LJXUH+RZHYHUEHFDXVHWKH.LUSLFKIRUPXOD KDVEHHQVKRZQWREHDSSOLFDEOHIRUZDWHUVKHGVXSWRIHHWLQOHQJWK .LUSLFK   D VXEDUHD PD\ EH GHVLJQDWHG ZLWK D OHQJWK XS WR  IHHW SURYLGHG WKH WRSRJUDSK\DQGVORSHRIWKHQDWXUDOFKDQQHODUHJHQHUDOO\XQLIRUP -XVWLILFDWLRQQHHGVWREHLQFOXGHGZLWKWKLVFDOFXODWLRQVKRZLQJWKDWWKHZDWHUVKHG ZLOOUHPDLQQDWXUDOIRUHYHU([DPSOHVLQFOXGHDUHDVORFDWHGLQWKH0XOWLSOH6SHFLHV &RQVHUYDWLRQ3ODQ 06&3 DUHDVGHVLJQDWHGDVRSHQVSDFHRUUXUDOLQDFRPPXQLW\¶V *HQHUDO3ODQDQG&OHYHODQG1DWLRQDO)RUHVW E 8UEDQ:DWHUVKHGV)ORZWKURXJKDFORVHGFRQGXLWZKHUHQRDGGLWLRQDOIORZFDQHQWHUWKH V\VWHPGXULQJWKHWUDYHOOHQJWKYHORFLW\DQG7WDUHGHWHUPLQHGXVLQJWKHSHDNIORZLQ WKH FRQGXLW  ,Q FDVHV ZKHUH WKH FRQGXLW LV QRW FORVHG DQG DGGLWLRQDO IORZ IURP D FRQWULEXWLQJ VXEDUHD LV DGGHG WR WKH WRWDO IORZ GXULQJ WUDYHO HJ VWUHHW IORZ LQ D JXWWHU FDOFXODWLRQRIYHORFLW\DQG7WLVSHUIRUPHGXVLQJDQDVVXPHGDYHUDJHIORZ EDVHG RQ WKH WRWDO DUHD LQFOXGLQJ XSVWUHDP VXEDUHDV  FRQWULEXWLQJ WR WKH SRLQW RI LQWHUHVW7KH0DQQLQJHTXDWLRQLVXVXDOO\XVHGWRGHWHUPLQHYHORFLW\'LVFKDUJHVIRU VPDOO ZDWHUVKHGV W\SLFDOO\ UDQJH IURP  WR  FIV SHU DFUH GHSHQGLQJ RQ ODQG XVH GUDLQDJHDUHDDQGVORSHDQGUDLQIDOOLQWHQVLW\ 1RWH7KH050VKRXOGEHXVHGWRFDOFXODWHWKHSHDNGLVFKDUJHZKHQWKHUHLVDMXQFWLRQ IURPLQGHSHQGHQWVXEDUHDVLQWRWKHGUDLQDJHV\VWHP  ),*85( 6285&(&DOLIRUQLD'LYLVLRQRI+LJKZD\V  DQG.LUSLFK  &RPSXWDWLRQRI(IIHFWLYH6ORSHIRU1DWXUDO:DWHUVKHGV $UHD³$´ $UHD³%´ :DWHUVKHG'LYLGH 'HVLJQ 3RLQW $UHD³$´ :DWHUVKHG 'LYLGH / / 'HVLJQ3RLQW :DWHUVKHG2XWOHW 6WUHDP3URILOH (IIHFWLYH6ORSH/LQH $UHD³%´ ( ),*85( 6285&(6DQ'LHJR&RXQW\'HSDUWPHQWRI6SHFLDO'LVWULFW6HUYLFHV'HVLJQ0DQXDO *XWWHUDQG5RDGZD\'LVFKDUJH9HORFLW\&KDUW  (;$03/( *LYHQ4 6  &KDUWJLYHV'HSWK 9HORFLW\ ISV 'HSWK 5(6,'(17,$/675((7 21(6,'(21/< ¶ Q   'LVFKDUJH &)6                          9      I  S  V  9   I  S  V  9   I  S  V  9  I  S  V  9  I  S  V  9   I  S  V  9    I  S  V  9     I  S  V  9   I  S  V 'HSWK)HHW'HSWK)HHW'HSWK)HHW'HSWK)HHW'HSWK)HHW'HSWK)HHW'HSWK)HHWRI6WUHHW6ORSH9    I  S  V    Q  3DYHG&RQFUHWH*XWWHU ),*85( 6285&(86'27)+:$+'6  0DQQLQJ¶V(TXDWLRQ1RPRJUDSK V  Q 6/23(LQIHHWSHUIRRWV+<'5$8/,&5$',86LQIHHW59(/2&,7<LQIHHWSHUVHFRQG9(;$0 3 /( 5  9  (48$7,219 BBBB5VQ                                                                                *(1(5$/62/87,21 528*+1(66&RHIILFLHQWQ 6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI  '(9(/23,1*,1387 '$7$)257+(5$7,21$/0(7+2' 7KLVVHFWLRQGHVFULEHVWKHGHYHORSPHQWRIWKHQHFHVVDU\GDWDWRSHUIRUP50FDOFXODWLRQV 6HFWLRQGHVFULEHVWKH50FDOFXODWLRQSURFHVV,QSXWGDWDIRUFDOFXODWLQJSHDNIORZVDQG 7F¶VZLWKWKH50VKRXOGEHGHYHORSHGDVIROORZV  2Q D WRSRJUDSKLF EDVH PDS RXWOLQH WKH RYHUDOO GUDLQDJH DUHD ERXQGDU\ VKRZLQJ DGMDFHQWGUDLQVH[LVWLQJDQGSURSRVHGGUDLQVDQGRYHUODQGIORZSDWKV 9HULI\WKHDFFXUDF\RIWKHGUDLQDJHPDSLQWKHILHOG 'LYLGHWKHGUDLQDJHDUHDLQWRVXEDUHDVE\ORFDWLQJVLJQLILFDQWSRLQWVRILQWHUHVW7KHVH GLYLVLRQV VKRXOG EH EDVHG RQ WRSRJUDSK\ VRLO W\SH DQG ODQG XVH  (QVXUH WKDW DQ DSSURSULDWHILUVWVXEDUHDLVGHOLQHDWHG)RUQDWXUDODUHDVWKHILUVWVXEDUHDIORZSDWK OHQJWKVKRXOGEHOHVVWKDQRUHTXDOWRIHHWSOXVWKHRYHUODQGIORZOHQJWK 7DEOH  )RUGHYHORSHGDUHDVWKHLQLWLDOVXEDUHDIORZSDWKOHQJWKVKRXOGEHFRQVLVWHQW ZLWK 7DEOH   7KH WRSRJUDSK\ DQG VORSH ZLWKLQ WKH LQLWLDO VXEDUHD VKRXOG EH JHQHUDOO\XQLIRUP :RUNLQJIURPXSVWUHDPWRGRZQVWUHDPDVVLJQDQXPEHUUHSUHVHQWLQJHDFKVXEDUHDLQ WKHGUDLQDJHV\VWHPWRHDFKSRLQWRILQWHUHVW)LJXUHSURYLGHVJXLGHOLQHVIRUQRGH QXPEHUVIRUJHRJUDSKLFLQIRUPDWLRQV\VWHP *,6 EDVHGVWXGLHV 0HDVXUHHDFKVXEDUHDLQWKHGUDLQDJHDUHDWRGHWHUPLQHLWVVL]HLQDFUHV $  'HWHUPLQHWKHOHQJWKDQGHIIHFWLYHVORSHRIWKHIORZSDWKLQHDFKVXEDUHD ,GHQWLI\WKHVRLOW\SHIRUHDFKVXEDUHD  ),*85( *,6+\GURORJLF0RGHO 'DWD%DVH/LQNDJH6HWXS1RGHV6XEDUHDV/LQNV 'HILQH0DMRU)ORZSDWKVLQ6WXG\$UHD 'HILQH6WXG\$UHDV 7ZR/HWWHU,' 6WXG\$UHD6& 6WXG\$UHD/$   'HILQH5HJLRQVRQ6WXG\$UHD%DVLV 1RGH 0DS 5HJLRQ 6WXG\$UHD ,'  /$ 1XPEHU1RGHV 'HILQH0RGHO1RGHV ,QWHUVHFWLRQRI 6XEDUHD%RXQGDULHVZLWK)ORZSDWK/LQHV     6XEDUHD,' /$ 'HILQH0RGHO6XEDUHDVRQ 0DS%DVLV   'HILQH0DSV RU6XEUHJLRQV RQ5HJLRQ%DVLV 6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI   'HWHUPLQH WKH UXQRII FRHIILFLHQW &  IRU HDFK VXEDUHD EDVHG RQ 7DEOH   ,I WKH VXEDUHDFRQWDLQVPRUHWKDQRQHW\SHRIGHYHORSPHQWFODVVLILFDWLRQXVHDSURSRUWLRQDWH DYHUDJHIRU&,QGHWHUPLQLQJ&IRUWKHVXEDUHDXVHIXWXUHODQGXVHWDNHQIURPWKH DSSOLFDEOHFRPPXQLW\SODQ0XOWLSOH6SHFLHV&RQVHUYDWLRQ3ODQ1DWLRQDO)RUHVWODQG XVHSODQHWF &DOFXODWHWKH&$YDOXHIRUWKHVXEDUHD  &DOFXODWH WKH &$ YDOXH V IRUWKHVXEDUHDVXSVWUHDPRIWKHSRLQW V RILQWHUHVW  'HWHUPLQH 3DQG3IRUWKHVWXG\XVLQJWKHLVRSOXYLDOPDSVSURYLGHGLQ$SSHQGL[% ,IQHFHVVDU\DGMXVWWKHYDOXHIRU3WREHZLWKLQWRRIWKHYDOXHIRU3 6HH6HFWLRQIRUDGHVFULSWLRQRIWKH50FDOFXODWLRQSURFHVV 3(5)250,1*5$7,21$/0(7+2'&$/&8/$7,216 7KLVVHFWLRQGHVFULEHVWKH50FDOFXODWLRQSURFHVV8VLQJWKHLQSXWGDWDFDOFXODWLRQRISHDN IORZVDQG7F¶VVKRXOGEHSHUIRUPHGDVIROORZV  'HWHUPLQH 7LIRUWKHILUVWVXEDUHD8VH7DEOHRU)LJXUHDVGLVFXVVHGLQ6HFWLRQ ,IWKHZDWHUVKHGLVQDWXUDOWKHWUDYHOWLPHWRWKHGRZQVWUHDPHQGRIWKHILUVW VXEDUHDFDQEHDGGHGWR7LWRREWDLQWKH7F5HIHUWRSDUDJUDSK D  'HWHUPLQH,IRUWKHVXEDUHDXVLQJ)LJXUH,I7LZDVOHVVWKDQPLQXWHVXVHWKH PLQXWHWLPHWRGHWHUPLQHLQWHQVLW\IRUFDOFXODWLQJWKHIORZ &DOFXODWHWKHSHDNGLVFKDUJHIORZUDWHIRUWKHVXEDUHDZKHUH4S  &$ , ,QFDVHWKDWWKHGRZQVWUHDPIORZUDWHLVOHVVWKDQWKHXSVWUHDPIORZUDWHGXHWRWKH ORQJWUDYHOWLPHWKDWLVQRWRIIVHWE\WKHDGGLWLRQDOVXEDUHDUXQRIIXVHWKHXSVWUHDP SHDNIORZIRUGHVLJQSXUSRVHVXQWLOGRZQVWUHDPIORZVLQFUHDVHDJDLQ  6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI  (VWLPDWHWKH7WWRWKHQH[WSRLQWRILQWHUHVW $GGWKH7WWRWKHSUHYLRXV7FWRREWDLQDQHZ7F &RQWLQXHZLWKVWHSDERYHXQWLOWKHILQDOSRLQWRILQWHUHVWLVUHDFKHG 1RWH7KH050VKRXOGEHXVHGWRFDOFXODWHWKHSHDNGLVFKDUJHZKHQWKHUHLVDMXQFWLRQ IURPLQGHSHQGHQWVXEDUHDVLQWRWKHGUDLQDJHV\VWHP 02',),('5$7,21$/0(7+2' )25-81&7,21$1$/<6,6  7KHSXUSRVHRIWKLVVHFWLRQLVWRGHVFULEHWKHVWHSVQHFHVVDU\WRGHYHORSDK\GURORJ\UHSRUW IRUDVPDOOZDWHUVKHGXVLQJWKH050,WLVQHFHVVDU\WRXVHWKH050LIWKHZDWHUVKHG FRQWDLQVMXQFWLRQVRILQGHSHQGHQWGUDLQDJHV\VWHPV7KHSURFHVVLVEDVHGRQWKHGHVLJQ PDQXDOVRIWKH&LW\&RXQW\RI6DQ'LHJR7KHJHQHUDOSURFHVVGHVFULSWLRQIRUXVLQJWKLV PHWKRGLQFOXGLQJDQH[DPSOHRIWKHDSSOLFDWLRQRIWKLVPHWKRGLVGHVFULEHGEHORZ 7KHHQJLQHHUVKRXOGRQO\XVHWKH050IRUGUDLQDJHDUHDVXSWRDSSUR[LPDWHO\VTXDUHPLOH LQVL]H,IWKHZDWHUVKHGZLOOVLJQLILFDQWO\H[FHHGVTXDUHPLOHWKHQWKH15&6PHWKRG GHVFULEHGLQ6HFWLRQVKRXOGEHXVHG7KHHQJLQHHUPD\FKRRVHWRXVHHLWKHUWKH50RUWKH 050IRUFDOFXODWLRQVIRUXSWRDQDSSUR[LPDWHO\VTXDUHPLOHDUHDDQGWKHQWUDQVLWLRQWKH VWXG\WRWKH15&6PHWKRGIRUDGGLWLRQDOGRZQVWUHDPDUHDVWKDWH[FHHGDSSUR[LPDWHO\ VTXDUHPLOH7KHWUDQVLWLRQSURFHVVLVGHVFULEHGLQ6HFWLRQ 0RGLILHG5DWLRQDO0HWKRG*HQHUDO3URFHVV'HVFULSWLRQ 7KHJHQHUDOSURFHVVIRUWKH050GLIIHUVIURP WKH50RQO\ZKHQDMXQFWLRQRILQGHSHQGHQW GUDLQDJHV\VWHPVLVUHDFKHG7KHSHDN47FDQG,IRUHDFKRIWKHLQGHSHQGHQWGUDLQDJH V\VWHPVDWWKHSRLQWRIWKHMXQFWLRQDUHFDOFXODWHGE\WKH507KHLQGHSHQGHQWGUDLQDJH V\VWHPVDUHWKHQFRPELQHGXVLQJWKH050SURFHGXUHGHVFULEHGEHORZ7KHSHDN47FDQG ,IRUHDFKRIWKHLQGHSHQGHQWGUDLQDJHV\VWHPVDWWKHSRLQWRIWKHMXQFWLRQPXVWEHFDOFXODWHG SULRUWRXVLQJWKH050SURFHGXUHWRFRPELQHWKHLQGHSHQGHQWGUDLQDJHV\VWHPVDVWKHVH  6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI  YDOXHVZLOOEHXVHGIRUWKH050FDOFXODWLRQV$IWHUWKHLQGHSHQGHQWGUDLQDJHV\VWHPVKDYH EHHQFRPELQHG50FDOFXODWLRQVDUHFRQWLQXHGWRWKHQH[WSRLQWRILQWHUHVW 3URFHGXUHIRU&RPELQLQJ,QGHSHQGHQW'UDLQDJH6\VWHPVDWD-XQFWLRQ &DOFXODWHWKHSHDN47FDQG,IRUHDFKRIWKHLQGHSHQGHQWGUDLQDJHV\VWHPVDWWKHSRLQWRI WKHMXQFWLRQ7KHVHYDOXHVZLOOEHXVHGIRUWKH050FDOFXODWLRQV $WWKHMXQFWLRQRIWZRRUPRUHLQGHSHQGHQWGUDLQDJHV\VWHPVWKHUHVSHFWLYHSHDNIORZVDUH FRPELQHGWRREWDLQWKHPD[LPXPIORZRXWRIWKHMXQFWLRQDW7F%DVHGRQWKHDSSUR[LPDWLRQ WKDWWRWDOUXQRIILQFUHDVHVGLUHFWO\LQSURSRUWLRQWRWLPHDJHQHUDOHTXDWLRQPD\EHZULWWHQWR GHWHUPLQHWKHPD[LPXP4DQGLWVFRUUHVSRQGLQJ7FXVLQJWKHSHDN47FDQG,IRUHDFKRI WKHLQGHSHQGHQWGUDLQDJHV\VWHPVDWWKHSRLQWLPPHGLDWHO\EHIRUHWKHMXQFWLRQ7KHJHQHUDO HTXDWLRQUHTXLUHVWKDWFRQWULEXWLQJ4¶VEHQXPEHUHGLQRUGHURILQFUHDVLQJ7F /HW47DQG,FRUUHVSRQGWRWKHWULEXWDU\DUHDZLWKWKHVKRUWHVW7F/LNHZLVHOHW47 DQG,FRUUHVSRQGWRWKHWULEXWDU\DUHDZLWKWKHQH[WORQJHU7F47DQG,FRUUHVSRQGWR WKHWULEXWDU\DUHDZLWKWKHQH[WORQJHU7FDQGVRRQ:KHQRQO\WZRLQGHSHQGHQWGUDLQDJH V\VWHPVDUHFRPELQHGOHDYH47DQG,RXWRIWKHHTXDWLRQ&RPELQHWKHLQGHSHQGHQW GUDLQDJHV\VWHPVXVLQJWKHMXQFWLRQHTXDWLRQEHORZ -XQFWLRQ(TXDWLRQ777     747 747 744     747 74, ,44     74, ,4, ,44  6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI  &DOFXODWH4747DQG476HOHFWWKHODUJHVW4DQGXVHWKH7FDVVRFLDWHGZLWKWKDW4IRU IXUWKHUFDOFXODWLRQV VHHWKHWKUHH1RWHVIRURSWLRQV ,IWKHODUJHVWFDOFXODWHG4¶VDUHHTXDO HJ47 47!47 XVHWKHVKRUWHURIWKH7F¶VDVVRFLDWHGZLWKWKDW4 7KLV HTXDWLRQ PD\ EH H[SDQGHG IRU D MXQFWLRQ RI PRUH WKDQ WKUHH LQGHSHQGHQW GUDLQDJH V\VWHPVXVLQJWKHVDPHFRQFHSW7KHFRQFHSWLVWKDWZKHQ4IURPDVHOHFWHGVXEDUHD HJ 4 LVFRPELQHGZLWK4IURPDQRWKHUVXEDUHDZLWKDVKRUWHU7F HJ4 WKH4IURPWKH VXEDUHDZLWKWKHVKRUWHU7FLVUHGXFHGE\WKHUDWLRRIWKH,¶V ,, DQGZKHQ4IURPD VHOHFWHGVXEDUHD HJ4 LVFRPELQHGZLWK4IURPDQRWKHUVXEDUHDZLWKDORQJHU7F HJ 4 WKH4IURPWKHVXEDUHDZLWKWKHORQJHU7FLVUHGXFHGE\WKHUDWLRRIWKH7F¶V 77  1RWH$WDMXQFWLRQRIWZRLQGHSHQGHQWGUDLQDJHV\VWHPVWKDWKDYHWKHVDPH7FWKH WULEXWDU\IORZVPD\EHDGGHGWRREWDLQWKH4S 4 S 44ZKHQ7 7DQG7F 7 7 7KLVFDQEHYHULILHGE\XVLQJWKHMXQFWLRQHTXDWLRQDERYH/HW47DQG, :KHQ7 DQG7DUHWKHVDPH,DQG,DUHDOVRWKHVDPHDQG77DQG,, 77DQG,,DUH FDQFHOOHGIURPWKHHTXDWLRQV$WWKLVSRLQW47 47 44 1RWH,QWKHXSVWUHDPSDUWRIDZDWHUVKHGDFRQVHUYDWLYHFRPSXWDWLRQLVDFFHSWDEOH :KHQWKHWLPHVRIFRQFHQWUDWLRQ 7F¶V DUHUHODWLYHO\FORVHLQPDJQLWXGH ZLWKLQ XVH WKHVKRUWHU7FIRUWKHLQWHQVLW\DQGWKHHTXDWLRQ4  &$ , 1RWH$QRSWLRQDOPHWKRGRIGHWHUPLQLQJWKH7FLVWRXVHWKHHTXDWLRQ 7F >  &$ 3 4@ 7KLV HTXDWLRQ LV IURP 4  &$ ,  &$  37F  DQG VROYLQJ IRU 7F  7KH DGYDQWDJH LQ WKLV RSWLRQ LV WKDW WKH 7FLV FRQVLVWHQW ZLWK WKH SHDN IORZ 4 DQG DYRLGV LQDSSURSULDWHIOXFWXDWLRQLQGRZQVWUHDPIORZVLQVRPHFDVHV