HomeMy WebLinkAboutPD 2021-0021; 3460 ROOSEVELT STREET; DRAINAGE REPORT; 2021-06-29
3460 Roosevelt Street
Drainage Report bha, Inc.
2
Table of Contents
Chapter 1 – Discussion ..................................................................................................................3
1.1 Vicinity Map ...............................................................................................................4
1.2 Purpose and Scope ....................................................................................................5
1.3 Project Description ....................................................................................................5
1.4 Existing Conditions ....................................................................................................5
1.5 Developed Conditions ...............................................................................................6
1.6 Study Method .............................................................................................................7
1.7 Conclusion ..................................................................................................................9
1.8 Declaration of Responsible Charge .......................................................................10
Chapter 2 – Existing & Developed Hydrology Maps ................................................................11
Chapter 3 – 100-Year Peak Flow Calculations..........................................................................12
3.1 Existing Hydrology Calculations ............................................................................13
3.2 Developed Hydrology Calculations .......................................................................15
Chapter 4 – References ................................................................................................................18
4.1 Methodology - Rational Method Peak Flow Determination ..............................19
3460 Roosevelt Street
Drainage Report bha, Inc.
3
Chapter 1
Discussion
3460 Roosevelt Street
Drainage Report bha, Inc.
4
1.1 Vicinity Map
3460 Roosevelt Street
Drainage Report bha, Inc.
5
1.2 Purpose and Scope
The purpose of this report is to publish the results of hydrology and hydraulic computer
analysis for the proposed “3460 Roosevelt Street” project site in the City of Carlsbad. The
scope of this study is to analyze the results of existing and developed condition hydrology
calculations and provide recommendations as to the design and size of various hydraulic
systems considered as mitigation of any potential adverse effects of the proposed project.
The mitigation measures proposed will include minimizing impervious areas, dispersing
runoff towards areas such as landscaping, and installing permeable pavers to attenuate the
effects of the development on storm water discharge. The 100-year storm frequency will be
analyzed.
1.3 Project Description
The 3460 Roosevelt Street project proposes the construction of a two-story main
residence/junior accessory dwelling on the westerly half of the property and an accessory
structure on the easterly half of the property, permeable and impermeable pavers, onsite
yard drains, retaining walls, and various soft/hardscape improvements. The parcel is a
rectangular-shaped residential lot located on the east side of Roosevelt Street in the City of
Carlsbad, California (APN 204-172-35). The parcel is bordered by Roosevelt Street, on the
west, an alley on the east, and developed residential properties on the north and south. The
site (0.08 acres) is currently vacant and mildly slopes down to the east.
Topographically, the site is relatively flat that slopes towards the alley on its eastern border.
The elevation ranges within the project site from approximately 52 feet near the Roosevelt
Street to 49 feet near the alley.
The project is a new development proposing new impervious areas on an existing
undeveloped parcel. The site is currently compromised of sparse grass with scattered shrubs
and trees. The onsite soil classification is Type-B as determined from USDA Web Soil
Survey (see Chapter 4, References).
1.4 Existing Conditions
Storm flows affecting the site are limited to the rainfall that lands directly on the property.
In the existing condition, (1) Points of Compliance (POC) has been identified. The project
site sheet drains in an easterly direction to POC-1, located near the eastern corner of the
property, in an alley.
Existing Hydrology Map shows runoff from the property that will drain towards POC-1,
3460 Roosevelt Street
Drainage Report bha, Inc.
6
located near eastern corner of the project site (Node 20).
Table 1 summarizes the existing runoff information from the site. Refer to the Existing
Hydrology Map for drainage patterns, areas, and POCs.
Table 1 - Existing Condition Peak Flows
POC‐1 0.080 0.14
Discharge
Location
Drainage Area
(ac)
100‐Year Peak Flow
(cfs)
1.5 Developed Conditions
The 3460 Roosevelt Street project proposes the construction of a two-story main
residence/junior accessory dwelling on the westerly half of the property and an accessory
structure on the easterly half of the property, permeable and impermeable pavers, onsite
yard drains, retaining walls, and various soft/hardscape improvements. The disturbed area
is 0.080 acres. In the proposed condition, 0.064 acres or 80% of the site will be impervious.
Two (2) POCs have been identified. Runoff at Node 20 to Node 30 will surface flow to the
easterly side of the project site. Runoff at Node 40 (roof) will drain via down spouts to the
ground surface (Node 45), then to a private yard drain. Node 50 will convey (roof and
surface) the flow via private yard drains to Node 60. Node 60 will convey the combined flow
to POC-2 (Node 70), located in the curb and gutter of Roosevelt Street via a sidewalk
underdrain.
Prior to discharging from project site, developed site runoff from impervious areas such as
rooftops and walkways will be directed onto the surface of adjacent pervious areas. The
intent is to slow runoff discharges and reduce volume while achieving incidental treatment.
Impervious surfaces and proposed grading have been minimized where feasible. Proposed
drainage patterns will not alter the existing flow pattern and will discharge from the site to
the historic discharge locations.
Table 2 summarizes the expected cumulative 100-year peak flow rates. Per the San Diego
County rainfall isopluvial maps, the design 100-year 6-hours rainfall depth for the site area
is 2.66 inches. Refer to the Developed Hydrology Exhibit for drainage patterns, areas, and
POCs.
3460 Roosevelt Street
Drainage Report bha, Inc.
7
Table 2 – Developed Condition Peak Flows
POC‐1 0.047 0.26
POC‐2 0.033 0.18
Discharge
Location
Drainage Area
(ac)
100‐Year Peak Flow
(cfs)
Table 3 compares the cumulative existing and developed condition peak flows.
Table 3 – Developed Condition Peak Flows
DIFFERENCE 0.000 0.27
Developed
Condition 0.080 0.41
Drainage Area
(ac)
100‐Year Peak Flow
(cfs)
Existing
Condition 0.080 0.14
1.6 Study Method
The method of analysis was based on the Rational Method according to the 2003 San Diego
County Hydrology Manual (SDCHM). The Hydrology and Hydraulic Analysis were done
on HydroSoft by Advanced Engineering Software 2014. The study considers the runoff for
a 100-year storm frequency.
Methodology used for the computation of design rainfall events, runoff coefficients, and
rainfall intensity values are consistent with criteria set forth in the SDCHM. A more
detailed explanation of methodology used for this analysis is listed in Chapter 4 – References
of this report.
Drainage basin areas were determined from the topography and proposed grades shown on
the Precise Grading Plan.
The Rational Method for this project provided the following variable coefficients:
Rainfall Intensity – Initial time of concentration (Tc) values based on Table 3-2 of the SD
HM. Rainfall Isopluvial Maps from the SDCHM were used to determine P6 for 100-year
storm, see References.
I = 7.44x(P6)x(Tc)- 0.645
3460 Roosevelt Street
Drainage Report bha, Inc.
8
P6 for 100-year storm =2.66 inches
Runoff Coefficient - In accordance with the County of San Diego standards, runoff
coefficients were based on land use and soil type. The site was modeled with Type-B soils,
as determined from NRCS Web Soil Survey. Type-B soils have moderate infiltration rates
when thoroughly wetted. An appropriate runoff coefficient (C) for each type of land use in
the subarea was selected from Table 3-1 of SDCHM and multiplied by the percentage of
total area (A) included in that class. The sum of the products for all land uses is the
weighted runoff coefficient (∑[CA]).
For the existing and developed conditions, a runoff coefficient of 0.25 was selected for all
landscape, permeable pavers and pervious areas (0% impervious) and 0.87 for all concrete,
impermeable pavers and roof areas (95% impervious).
The Proposed Hydrology Exhibit shows the proposed onsite drainage system, onsite subareas,
and nodal points. Table 4 summarizes the composite C-values calculated in the existing and
developed conditions.
Table 4 – Composite Runoff Coefficient
20 30 0.02 0.25 0.00 0.87 0.02 0.79
40 45 0.03 0.25 0.00 0.87 0.02 0.83
50 50 0.01 0.25 0.00 0.87 0.01 0.71
60 60 0.02 0.25 0.01 0.87 0.01 0.67
A1
(ac)
C2
A2
(ac)
Ccomp
Note: C‐values taken from Table 3‐1 of San Diego County Hydrology Manual, consistent
with on‐site existing soil types. See References.
Up Node Down
Node
Total Area
(ac)C1
3460 Roosevelt Street
Drainage Report bha, Inc.
9
1.7 Conclusion
As shown in Table 4, the development of the proposed 3460 Roosevelt Street project site will
result in a net increase of peak flow discharged from the project site by 0.27 cfs during a 100-
year storm event. Landscaping areas and impervious areas dispersion will slow runoff
discharges, further decreasing runoff and foster opportunities to maintain the existing
hydrology.
The 3460 Roosevelt Street project satisfies the drainage requirements of the City of
Carlsbad. All storm drain facilities have been sized to convey the 100-year storm event
without any adverse effects. Based on this conclusion, runoff released from the proposed
project site will unlikely cause any adverse impact to downstream water bodies or existing
habitat integrity. Sediment will likely be reduced upon site development.
Peak flow rates listed above were generated based on criteria set forth in SDCHM presented
in Chapter 4 of this report.
3460 Roosevelt Street
Drainage Report bha, Inc.
11
Chapter 2
Existing & Developed Hydrology Maps
LEGEND
K:\Civil 3D\1485\DWG\HYDRO\1485 - Exist. Hydro.dwg, 4/20/2021 11:32:45 AM
LEGEND
K:\Civil 3D\1485\DWG\HYDRO\1485 - Prop. Hydro.dwg, 6/29/2021 2:59:21 PM
3460 Roosevelt Street
Drainage Report bha, Inc.
12
Chapter 3
100-Year Peak Flow Calculations
3460 Roosevelt Street
Drainage Report bha, Inc.
13
3.1 Existing Hydrology Calculations
100-Year Storm
**************************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2014 Advanced Engineering Software (aes)
Ver. 21.0 Release Date: 06/01/2014 License ID 1459
Analysis prepared by:
BHA Inc
5115 Avenida Encinas, Suite L
Carlsbad, CA 92008
************************** DESCRIPTION OF STUDY **************************
* EXISTING 100-YEAR STORM HYDROLOGY *
* 3460 ROOSEVELT STREET *
* 3460 ROOSEVELT STREET, CARLSBAD CA (JN 1111-1485-600) *
**************************************************************************
FILE NAME: K:\HYDRO\1485\1485E100.DAT
TIME/DATE OF STUDY: 17:04 02/26/2021
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.660
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE = 22
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT = .2500
S.C.S. CURVE NUMBER (AMC II) = 0
USER SPECIFIED Tc(MIN.) = 5.000
3460 Roosevelt Street
Drainage Report bha, Inc.
14
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.008
SUBAREA RUNOFF(CFS) = 0.14
TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.14
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 0.1 TC(MIN.) = 5.00
PEAK FLOW RATE(CFS) = 0.14
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
3460 Roosevelt Street
Drainage Report bha, Inc.
15
3.2 Developed Hydrology Calculations
100-Year Storm
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2014 Advanced Engineering Software (aes)
Ver. 21.0 Release Date: 06/01/2014 License ID 1459
Analysis prepared by:
BHA INC.
5115 AVENIDA ENCINAS, SUITE L
CARLSBAD, CA 92008
************************** DESCRIPTION OF STUDY **************************
* DEVELOPED 100-YEAR STORM HYDROLOGY *
* 3460 ROOSEVELT STREET *
* 3460 ROOSEVELT STREET, CARLSBAD CA (JN 1111-1485-600) *
**************************************************************************
FILE NAME: K:\HYDRO\1485\1485P100.DAT
TIME/DATE OF STUDY: 10:38 04/20/2021
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.660
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT = .7900
S.C.S. CURVE NUMBER (AMC II) = 0
3460 Roosevelt Street
Drainage Report bha, Inc.
16
INITIAL SUBAREA FLOW-LENGTH(FEET) = 51.00
UPSTREAM ELEVATION(FEET) = 51.11
DOWNSTREAM ELEVATION(FEET) = 50.09
ELEVATION DIFFERENCE(FEET) = 1.02
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.163
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.008
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) = 0.12
TOTAL AREA(ACRES) = 0.02 TOTAL RUNOFF(CFS) = 0.12
****************************************************************************
FLOW PROCESS FROM NODE 40.00 TO NODE 45.00 IS CODE = 22
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT = .8300
S.C.S. CURVE NUMBER (AMC II) = 0
USER SPECIFIED Tc(MIN.) = 5.000
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.008
SUBAREA RUNOFF(CFS) = 0.15
TOTAL AREA(ACRES) = 0.03 TOTAL RUNOFF(CFS) = 0.15
****************************************************************************
FLOW PROCESS FROM NODE 45.00 TO NODE 50.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 49.88 DOWNSTREAM(FEET) = 49.14
FLOW LENGTH(FEET) = 49.36 MANNING'S N = 0.010
DEPTH OF FLOW IN 4.0 INCH PIPE IS 2.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 3.37
GIVEN PIPE DIAMETER(INCH) = 4.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 0.15
PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 5.24
LONGEST FLOWPATH FROM NODE 40.00 TO NODE 50.00 = 68.36 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.796
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT = .7100
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.7880
SUBAREA AREA(ACRES) = 0.01 SUBAREA RUNOFF(CFS) = 0.07
TOTAL AREA(ACRES) = 0.0 TOTAL RUNOFF(CFS) = 0.21
TC(MIN.) = 5.24
****************************************************************************
FLOW PROCESS FROM NODE 49.14 TO NODE 48.40 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 49.14 DOWNSTREAM(FEET) = 48.40
FLOW LENGTH(FEET) = 49.45 MANNING'S N = 0.010
DEPTH OF FLOW IN 4.0 INCH PIPE IS 2.5 INCHES
3460 Roosevelt Street
Drainage Report bha, Inc.
17
PIPE-FLOW VELOCITY(FEET/SEC.) = 3.68
GIVEN PIPE DIAMETER(INCH) = 4.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 0.21
PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 5.47
LONGEST FLOWPATH FROM NODE 40.00 TO NODE 48.40 = 117.81 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.616
*USER SPECIFIED(SUBAREA):
USER-SPECIFIED RUNOFF COEFFICIENT = .6700
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.7500
SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.08
TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.29
TC(MIN.) = 5.47
****************************************************************************
FLOW PROCESS FROM NODE 60.00 TO NODE 70.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 48.40 DOWNSTREAM(FEET) = 48.02
FLOW LENGTH(FEET) = 19.00 MANNING'S N = 0.010
DEPTH OF FLOW IN 3.0 INCH PIPE IS 2.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 3.65
GIVEN PIPE DIAMETER(INCH) = 3.00 NUMBER OF PIPES = 2
PIPE-FLOW(CFS) = 0.29
PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 5.55
LONGEST FLOWPATH FROM NODE 40.00 TO NODE 70.00 = 136.81 FEET.
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 0.1 TC(MIN.) = 5.55
PEAK FLOW RATE(CFS) = 0.29
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
3460 Roosevelt Street
Drainage Report bha, Inc.
18
Chapter 4
References
3460 Roosevelt Street
Drainage Report bha, Inc.
19
4.1 Methodology – Rational Method Peak Flow Determination
3/1/2021 Precipitation Frequency Data Server
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=33.1552&lon=-117.3435&data=depth&units=english&series=pds 1/3
NOAA Atlas 14, Volume 6, Version 2
Location name: Carlsbad, California, USA*
Latitude: 33.1552°, Longitude: -117.3435°
Elevation: 50.4 ft**
* source: ESRI Maps
** source: USGS
POINT PRECIPITATION FREQUENCY ESTIMATES
Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra
Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, GeoffreyBonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan
NOAA, National Weather Service, Silver Spring, Maryland
PF_tabular | PF_graphical | Maps_&_aerials
PF tabular
PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches)1
Duration Average recurrence interval (years)
1 2 5 10 25 50 100 200 500 1000
5-min 0.133
(0.112‑0.160)
0.169
(0.142‑0.203)
0.219
(0.183‑0.263)
0.261
(0.217‑0.318)
0.323
(0.259‑0.408)
0.374
(0.293‑0.483)
0.429
(0.328‑0.568)
0.489
(0.363‑0.667)
0.577
(0.409‑0.823)
0.650
(0.444‑0.962)
10-min 0.191
(0.161‑0.230)
0.242
(0.204‑0.291)
0.313
(0.263‑0.378)
0.375
(0.311‑0.456)
0.464
(0.371‑0.584)
0.537
(0.420‑0.692)
0.615
(0.470‑0.814)
0.702
(0.520‑0.957)
0.827
(0.586‑1.18)
0.932
(0.637‑1.38)
15-min 0.231
(0.195‑0.278)
0.293
(0.246‑0.352)
0.379
(0.317‑0.457)
0.453
(0.376‑0.551)
0.561
(0.449‑0.707)
0.649
(0.508‑0.837)
0.744
(0.568‑0.985)
0.848
(0.628‑1.16)
1.00
(0.709‑1.43)
1.13
(0.770‑1.67)
30-min 0.328
(0.276‑0.393)
0.415
(0.349‑0.499)
0.537
(0.450‑0.647)
0.642
(0.533‑0.781)
0.794
(0.636‑1.00)
0.919
(0.720‑1.19)
1.05
(0.805‑1.40)
1.20
(0.890‑1.64)
1.42
(1.00‑2.02)
1.60
(1.09‑2.36)
60-min 0.443
(0.372‑0.531)
0.561
(0.471‑0.674)
0.725
(0.607‑0.874)
0.867
(0.720‑1.05)
1.07
(0.860‑1.35)
1.24
(0.973‑1.60)
1.42
(1.09‑1.88)
1.62
(1.20‑2.21)
1.91
(1.36‑2.73)
2.16
(1.47‑3.19)
2-hr 0.598
(0.503‑0.718)
0.746
(0.627‑0.896)
0.950
(0.796‑1.15)
1.13
(0.935‑1.37)
1.38
(1.11‑1.74)
1.59
(1.24‑2.05)
1.81
(1.38‑2.40)
2.05
(1.52‑2.80)
2.41
(1.71‑3.43)
2.70
(1.85‑4.00)
3-hr 0.704
(0.592‑0.845)
0.875
(0.735‑1.05)
1.11
(0.931‑1.34)
1.31
(1.09‑1.60)
1.60
(1.28‑2.02)
1.84
(1.44‑2.37)
2.09
(1.59‑2.76)
2.36
(1.75‑3.22)
2.75
(1.95‑3.93)
3.08
(2.10‑4.55)
6-hr 0.909
(0.765‑1.09)
1.13
(0.953‑1.36)
1.44
(1.21‑1.74)
1.70
(1.41‑2.06)
2.06
(1.65‑2.60)
2.35
(1.84‑3.03)
2.66
(2.03‑3.52)
2.98
(2.21‑4.07)
3.44
(2.44‑4.91)
3.81
(2.61‑5.64)
12-hr 1.14
(0.963‑1.37)
1.46
(1.22‑1.75)
1.87
(1.57‑2.25)
2.21
(1.83‑2.68)
2.67
(2.14‑3.37)
3.04
(2.38‑3.92)
3.41
(2.60‑4.51)
3.80
(2.81‑5.18)
4.33
(3.07‑6.17)
4.75
(3.24‑7.02)
24-hr 1.39
(1.23‑1.61)
1.82
(1.60‑2.10)
2.36
(2.08‑2.74)
2.80
(2.44‑3.28)
3.40
(2.87‑4.10)
3.85
(3.19‑4.74)
4.31
(3.49‑5.43)
4.78
(3.77‑6.19)
5.42
(4.11‑7.30)
5.92
(4.34‑8.23)
2-day 1.70
(1.50‑1.97)
2.23
(1.97‑2.58)
2.92
(2.56‑3.39)
3.47
(3.03‑4.06)
4.22
(3.57‑5.10)
4.80
(3.98‑5.91)
5.38
(4.36‑6.78)
5.98
(4.71‑7.73)
6.78
(5.14‑9.12)
7.40
(5.43‑10.3)
3-day 1.90
(1.68‑2.20)
2.50
(2.20‑2.89)
3.28
(2.88‑3.81)
3.92
(3.42‑4.58)
4.78
(4.04‑5.77)
5.44
(4.51‑6.70)
6.12
(4.95‑7.71)
6.81
(5.37‑8.81)
7.75
(5.88‑10.4)
8.48
(6.22‑11.8)
4-day 2.07
(1.82‑2.39)
2.72
(2.40‑3.15)
3.58
(3.15‑4.16)
4.29
(3.74‑5.01)
5.25
(4.43‑6.33)
5.99
(4.96‑7.37)
6.74
(5.46‑8.49)
7.52
(5.93‑9.73)
8.58
(6.50‑11.5)
9.40
(6.90‑13.1)
7-day 2.39
(2.11‑2.77)
3.18
(2.80‑3.68)
4.21
(3.70‑4.89)
5.06
(4.42‑5.92)
6.23
(5.27‑7.52)
7.14
(5.92‑8.79)
8.07
(6.54‑10.2)
9.04
(7.13‑11.7)
10.4
(7.86‑13.9)
11.4
(8.37‑15.9)
10-day 2.65
(2.34‑3.07)
3.54
(3.12‑4.10)
4.72
(4.14‑5.47)
5.69
(4.96‑6.66)
7.04
(5.95‑8.49)
8.09
(6.70‑9.96)
9.17
(7.43‑11.6)
10.3
(8.13‑13.3)
11.9
(8.99‑16.0)
13.1
(9.61‑18.2)
20-day 3.23
(2.85‑3.74)
4.35
(3.84‑5.04)
5.87
(5.16‑6.81)
7.14
(6.23‑8.35)
8.92
(7.54‑10.8)
10.3
(8.56‑12.7)
11.8
(9.55‑14.9)
13.4
(10.5‑17.3)
15.5
(11.8‑20.9)
17.3
(12.7‑24.0)
30-day 3.82
(3.37‑4.42)
5.16
(4.55‑5.98)
7.00
(6.15‑8.12)
8.55
(7.45‑10.0)
10.7
(9.08‑13.0)
12.5
(10.4‑15.4)
14.3
(11.6‑18.1)
16.3
(12.9‑21.1)
19.1
(14.5‑25.7)
21.3
(15.7‑29.7)
45-day 4.52
(3.99‑5.23)
6.10
(5.37‑7.06)
8.28
(7.28‑9.62)
10.1
(8.85‑11.9)
12.8
(10.8‑15.5)
15.0
(12.4‑18.5)
17.3
(14.0‑21.8)
19.8
(15.6‑25.6)
23.3
(17.7‑31.3)
26.2
(19.2‑36.4)
60-day 5.22
(4.61‑6.04)
7.01
(6.18‑8.12)
9.51
(8.36‑11.0)
11.7
(10.2‑13.6)
14.8
(12.5‑17.8)
17.3
(14.4‑21.3)
20.1
(16.2‑25.3)
23.0
(18.2‑29.8)
27.3
(20.7‑36.7)
30.8
(22.6‑42.9)
1 Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a
given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not
checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
Please refer to NOAA Atlas 14 document for more information.
Back to Top
PF graphical
3/1/2021 Precipitation Frequency Data Server
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=33.1552&lon=-117.3435&data=depth&units=english&series=pds 2/3
Back to Top
Maps & aerials
Small scale terrain
Large scale terrain
+
–
3km
2mi
+
–
100km
60mi
3/1/2021 Precipitation Frequency Data Server
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=33.1552&lon=-117.3435&data=depth&units=english&series=pds 3/3
Large scale map
Large scale aerial
Back to Top
US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov
Disclaimer
+
–
100km
60mi
+
–
100km
60mi
P6=2.66"Project Location/DW
1/RQJ
:
P24=4.31"Project Location/DW
1/RQJ
:
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
6(&7,215$7,21$/0(7+2'$1'02',),('5$7,21$/0(7+2'
7+(5$7,21$/0(7+2'
7KH 5DWLRQDO 0HWKRG 50 LV D PDWKHPDWLFDO IRUPXOD XVHG WR GHWHUPLQH WKH PD[LPXP
UXQRIIUDWHIURPDJLYHQUDLQIDOO,WKDVSDUWLFXODUDSSOLFDWLRQLQXUEDQVWRUPGUDLQDJHZKHUH
LWLVXVHGWRHVWLPDWHSHDNUXQRIIUDWHVIURPVPDOOXUEDQDQGUXUDOZDWHUVKHGVIRUWKHGHVLJQ
RIVWRUPGUDLQVDQGVPDOOGUDLQDJHVWUXFWXUHV7KH50LVUHFRPPHQGHGIRUDQDO\]LQJWKH
UXQRIIUHVSRQVHIURPGUDLQDJHDUHDVXSWRDSSUR[LPDWHO\VTXDUHPLOHLQVL]H,WVKRXOGQRW
EH XVHG LQ LQVWDQFHV ZKHUH WKHUH LV D MXQFWLRQ RI LQGHSHQGHQW GUDLQDJH V\VWHPV RU IRU
GUDLQDJHDUHDVJUHDWHUWKDQDSSUR[LPDWHO\VTXDUHPLOHLQVL]H,QWKHVHLQVWDQFHVWKH
0RGLILHG5DWLRQDO0HWKRG050VKRXOGEHXVHGIRUMXQFWLRQVRILQGHSHQGHQWGUDLQDJH
V\VWHPVLQZDWHUVKHGVXSWRDSSUR[LPDWHO\VTXDUHPLOHLQVL]HVHH6HFWLRQRUWKH
15&6 +\GURORJLF 0HWKRG VKRXOG EH XVHG IRU ZDWHUVKHGV JUHDWHU WKDQ DSSUR[LPDWHO\
VTXDUHPLOHLQVL]HVHH6HFWLRQ
7KH50FDQEHDSSOLHGXVLQJDQ\GHVLJQVWRUPIUHTXHQF\HJ\HDU\HDU\HDU
HWF7KHORFDODJHQF\GHWHUPLQHVWKHGHVLJQVWRUPIUHTXHQF\WKDWPXVWEHXVHGEDVHGRQ
WKHW\SHRISURMHFWDQGVSHFLILFORFDOUHTXLUHPHQWV$GLVFXVVLRQRIGHVLJQVWRUPIUHTXHQF\
LVSURYLGHGLQ6HFWLRQRIWKLVPDQXDO$SURFHGXUHKDVEHHQGHYHORSHGWKDWFRQYHUWVWKH
KRXUDQGKRXUSUHFLSLWDWLRQLVRSOXYLDOPDSGDWDWRDQ,QWHQVLW\'XUDWLRQFXUYHWKDWFDQ
EHXVHGIRUWKHUDLQIDOOLQWHQVLW\LQWKH50IRUPXODDVVKRZQLQ)LJXUH7KH50LV
DSSOLFDEOHWRDKRXUVWRUPGXUDWLRQEHFDXVHWKHSURFHGXUHXVHV,QWHQVLW\'XUDWLRQ'HVLJQ
&KDUWVWKDWDUHEDVHGRQDKRXUVWRUPGXUDWLRQ
5DWLRQDO0HWKRG)RUPXOD
7KH50IRUPXODHVWLPDWHVWKHSHDNUDWHRIUXQRIIDWDQ\ORFDWLRQLQDZDWHUVKHGDVDIXQFWLRQ
RIWKHGUDLQDJHDUHD$UXQRIIFRHIILFLHQW&DQGUDLQIDOOLQWHQVLW\,IRUDGXUDWLRQHTXDO
WR WKH WLPH RI FRQFHQWUDWLRQ 7F ZKLFK LV WKH WLPH UHTXLUHG IRU ZDWHU WR
Hydrologic Soil Group—San Diego County Area, California
(3460 Roosevelt Street, Carlsbad, CA 92008)
Natural Resources
Conservation Service
Web Soil Survey
National Cooperative Soil Survey
2/23/2021
Page 1 of 436685333668539366854536685513668557366856336685693668533366853936685453668551366855736685633668569467964467970467976467982467988467994468000468006468012468018468024
467964 467970 467976 467982 467988 467994 468000 468006 468012 468018 468024
33° 9' 19'' N 117° 20' 36'' W33° 9' 19'' N117° 20' 34'' W33° 9' 18'' N
117° 20' 36'' W33° 9' 18'' N
117° 20' 34'' WN
Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 11N WGS84
0 10 20 40 60
Feet
0 4 8 16 24
Meters
Map Scale: 1:282 if printed on A landscape (11" x 8.5") sheet.
Soil Map may not be valid at this scale.
MAP LEGEND MAP INFORMATION
Area of Interest (AOI)
Area of Interest (AOI)
Soils
Soil Rating Polygons
A
A/D
B
B/D
C
C/D
D
Not rated or not available
Soil Rating Lines
A
A/D
B
B/D
C
C/D
D
Not rated or not available
Soil Rating Points
A
A/D
B
B/D
C
C/D
D
Not rated or not available
Water Features
Streams and Canals
Transportation
Rails
Interstate Highways
US Routes
Major Roads
Local Roads
Background
Aerial Photography
The soil surveys that comprise your AOI were mapped at
1:24,000.
Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause
misunderstanding of the detail of mapping and accuracy of soil
line placement. The maps do not show the small areas of
contrasting soils that could have been shown at a more detailed
scale.
Please rely on the bar scale on each map sheet for map
measurements.
Source of Map: Natural Resources Conservation Service
Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator
projection, which preserves direction and shape but distorts
distance and area. A projection that preserves area, such as the
Albers equal-area conic projection, should be used if more
accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as
of the version date(s) listed below.
Soil Survey Area: San Diego County Area, California
Survey Area Data: Version 15, May 27, 2020
Soil map units are labeled (as space allows) for map scales
1:50,000 or larger.
Date(s) aerial images were photographed: Jan 24, 2020—Feb
12, 2020
The orthophoto or other base map on which the soil lines were
compiled and digitized probably differs from the background
imagery displayed on these maps. As a result, some minor
shifting of map unit boundaries may be evident.
Hydrologic Soil Group—San Diego County Area, California
(3460 Roosevelt Street, Carlsbad, CA 92008)
Natural Resources
Conservation Service
Web Soil Survey
National Cooperative Soil Survey
2/23/2021
Page 2 of 4
Hydrologic Soil Group
Map unit symbol Map unit name Rating Acres in AOI Percent of AOI
MlC Marina loamy coarse
sand, 2 to 9 percent
slopes
B 0.1 100.0%
Totals for Area of Interest 0.1 100.0%
Description
Hydrologic soil groups are based on estimates of runoff potential. Soils are
assigned to one of four groups according to the rate of water infiltration when the
soils are not protected by vegetation, are thoroughly wet, and receive
precipitation from long-duration storms.
The soils in the United States are assigned to four groups (A, B, C, and D) and
three dual classes (A/D, B/D, and C/D). The groups are defined as follows:
Group A. Soils having a high infiltration rate (low runoff potential) when
thoroughly wet. These consist mainly of deep, well drained to excessively
drained sands or gravelly sands. These soils have a high rate of water
transmission.
Group B. Soils having a moderate infiltration rate when thoroughly wet. These
consist chiefly of moderately deep or deep, moderately well drained or well
drained soils that have moderately fine texture to moderately coarse texture.
These soils have a moderate rate of water transmission.
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist
chiefly of soils having a layer that impedes the downward movement of water or
soils of moderately fine texture or fine texture. These soils have a slow rate of
water transmission.
Group D. Soils having a very slow infiltration rate (high runoff potential) when
thoroughly wet. These consist chiefly of clays that have a high shrink-swell
potential, soils that have a high water table, soils that have a claypan or clay
layer at or near the surface, and soils that are shallow over nearly impervious
material. These soils have a very slow rate of water transmission.
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is
for drained areas and the second is for undrained areas. Only the soils that in
their natural condition are in group D are assigned to dual classes.
Rating Options
Aggregation Method: Dominant Condition
Hydrologic Soil Group—San Diego County Area, California 3460 Roosevelt Street, Carlsbad, CA
92008
Natural Resources
Conservation Service
Web Soil Survey
National Cooperative Soil Survey
2/23/2021
Page 3 of 4
Aggregation is the process by which a set of component attribute values is
reduced to a single value that represents the map unit as a whole.
A map unit is typically composed of one or more "components". A component is
either some type of soil or some nonsoil entity, e.g., rock outcrop. For the
attribute being aggregated, the first step of the aggregation process is to derive
one attribute value for each of a map unit's components. From this set of
component attributes, the next step of the aggregation process derives a single
value that represents the map unit as a whole. Once a single value for each map
unit is derived, a thematic map for soil map units can be rendered. Aggregation
must be done because, on any soil map, map units are delineated but
components are not.
For each of a map unit's components, a corresponding percent composition is
recorded. A percent composition of 60 indicates that the corresponding
component typically makes up approximately 60% of the map unit. Percent
composition is a critical factor in some, but not all, aggregation methods.
The aggregation method "Dominant Condition" first groups like attribute values
for the components in a map unit. For each group, percent composition is set to
the sum of the percent composition of all components participating in that group.
These groups now represent "conditions" rather than components. The attribute
value associated with the group with the highest cumulative percent composition
is returned. If more than one group shares the highest cumulative percent
composition, the corresponding "tie-break" rule determines which value should
be returned. The "tie-break" rule indicates whether the lower or higher group
value should be returned in the case of a percent composition tie. The result
returned by this aggregation method represents the dominant condition
throughout the map unit only when no tie has occurred.
Component Percent Cutoff: None Specified
Components whose percent composition is below the cutoff value will not be
considered. If no cutoff value is specified, all components in the database will be
considered. The data for some contrasting soils of minor extent may not be in the
database, and therefore are not considered.
Tie-break Rule: Higher
The tie-break rule indicates which value should be selected from a set of multiple
candidate values, or which value should be selected in the event of a percent
composition tie.
Hydrologic Soil Group—San Diego County Area, California 3460 Roosevelt Street, Carlsbad, CA
92008
Natural Resources
Conservation Service
Web Soil Survey
National Cooperative Soil Survey
2/23/2021
Page 4 of 4
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
IORZIURPWKHPRVWUHPRWHSRLQWRIWKHEDVLQWRWKHORFDWLRQEHLQJDQDO\]HG7KH50
IRUPXODLVH[SUHVVHGDVIROORZV
4 &,$
:KHUH4 SHDNGLVFKDUJHLQFXELFIHHWSHUVHFRQGFIV
& UXQRIIFRHIILFLHQWSURSRUWLRQRIWKHUDLQIDOOWKDWUXQVRIIWKHVXUIDFHQR
XQLWV
, DYHUDJHUDLQIDOOLQWHQVLW\IRUDGXUDWLRQHTXDOWRWKH7FIRUWKHDUHDLQ
LQFKHVSHUKRXU1RWH,IWKHFRPSXWHG7FLVOHVVWKDQPLQXWHVXVH
PLQXWHVIRUFRPSXWLQJWKHSHDNGLVFKDUJH4
$ GUDLQDJHDUHDFRQWULEXWLQJWRWKHGHVLJQORFDWLRQLQDFUHV
&RPELQLQJWKHXQLWVIRUWKHH[SUHVVLRQ&,$\LHOGV
FIVVHFRQGV
KRXU
LQFKHV
IRRW
DFUH
IW
KRXU
LQFKDFUH
)RUSUDFWLFDOSXUSRVHVWKHXQLWFRQYHUVLRQFRHIILFLHQWGLIIHUHQFHRIFDQEHLJQRUHG
7KH50IRUPXODLVEDVHGRQWKHDVVXPSWLRQWKDWIRUFRQVWDQWUDLQIDOOLQWHQVLW\WKHSHDN
GLVFKDUJHUDWHDWDSRLQWZLOORFFXUZKHQWKHUDLQGURSWKDWIDOOVDWWKHPRVWXSVWUHDPSRLQWLQ
WKHWULEXWDU\GUDLQDJHEDVLQDUULYHVDWWKHSRLQWRILQWHUHVW
8QOLNHWKH050GLVFXVVHGLQ6HFWLRQRUWKH15&6K\GURORJLFPHWKRGGLVFXVVHGLQ
6HFWLRQWKH50GRHVQRWFUHDWHK\GURJUDSKVDQGWKHUHIRUHGRHVQRWDGGVHSDUDWHVXEDUHD
K\GURJUDSKVDWFROOHFWLRQSRLQWV,QVWHDGWKH50GHYHORSVSHDNGLVFKDUJHVLQWKHPDLQOLQH
E\LQFUHDVLQJWKH7FDVIORZWUDYHOVGRZQVWUHDP
&KDUDFWHULVWLFVRIRUDVVXPSWLRQVLQKHUHQWWRWKH50DUHOLVWHGEHORZ
7KHGLVFKDUJHIORZUDWHUHVXOWLQJIURPDQ\,LVPD[LPXPZKHQWKH,ODVWVDVORQJDVRU
ORQJHUWKDQWKH7F
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
7KHVWRUPIUHTXHQF\RISHDNGLVFKDUJHVLVWKHVDPHDVWKDWRI,IRUWKHJLYHQ7F
7KHIUDFWLRQRIUDLQIDOOWKDWEHFRPHVUXQRIIRUWKHUXQRIIFRHIILFLHQW&LVLQGHSHQGHQW
RI , RU SUHFLSLWDWLRQ ]RQH QXPEHU 3=1 FRQGLWLRQ 3=1 &RQGLWLRQ LV GLVFXVVHG LQ
6HFWLRQ
7KHSHDNUDWHRIUXQRIILVWKHRQO\LQIRUPDWLRQSURGXFHGE\XVLQJWKH50
5XQRII&RHIILFLHQW
7DEOHOLVWVWKHHVWLPDWHGUXQRIIFRHIILFLHQWVIRUXUEDQDUHDV7KHFRQFHSWVUHODWHGWRWKH
UXQRII FRHIILFLHQW ZHUH HYDOXDWHG LQ D UHSRUW HQWLWOHG (YDOXDWLRQ 5DWLRQDO 0HWKRG ³&´
9DOXHV+LOOWKDWZDVUHYLHZHGE\WKH+\GURORJ\0DQXDO&RPPLWWHH7KH5HSRUWLV
DYDLODEOHDW6DQ'LHJR&RXQW\'HSDUWPHQWRI3XEOLF:RUNV)ORRG&RQWURO6HFWLRQDQGRQ
WKH6DQ'LHJR&RXQW\'HSDUWPHQWRI3XEOLF:RUNVZHESDJH
7KHUXQRIIFRHIILFLHQWVDUHEDVHGRQODQGXVHDQGVRLOW\SH6RLOW\SHFDQEHGHWHUPLQHGIURP
WKHVRLOW\SHPDSSURYLGHGLQ$SSHQGL[$$QDSSURSULDWHUXQRIIFRHIILFLHQW&IRUHDFK
W\SHRIODQGXVHLQWKHVXEDUHDVKRXOGEHVHOHFWHGIURPWKLVWDEOHDQGPXOWLSOLHGE\WKH
SHUFHQWDJHRIWKHWRWDODUHD$LQFOXGHGLQWKDWFODVV7KHVXPRIWKHSURGXFWVIRUDOOODQG
XVHVLVWKHZHLJKWHGUXQRIIFRHIILFLHQW&$@*RRGHQJLQHHULQJMXGJPHQWVKRXOGEHXVHG
ZKHQDSSO\LQJWKHYDOXHVSUHVHQWHGLQ7DEOHDVDGMXVWPHQWVWRWKHVHYDOXHVPD\EH
DSSURSULDWHEDVHGRQVLWHVSHFLILFFKDUDFWHULVWLFV,QDQ\HYHQWWKHLPSHUYLRXVSHUFHQWDJH
,PSHUYLRXVDVJLYHQLQWKHWDEOHIRUDQ\DUHDVKDOOJRYHUQWKHVHOHFWHGYDOXHIRU&7KH
UXQRII FRHIILFLHQW FDQ DOVR EH FDOFXODWHG IRU DQ DUHD EDVHG RQ VRLO W\SH DQG LPSHUYLRXV
SHUFHQWDJHXVLQJWKHIROORZLQJIRUPXOD
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
& ,PSHUYLRXV&S ,PSHUYLRXV
:KHUH &S 3HUYLRXV &RHIILFLHQW 5XQRII 9DOXH IRU WKH VRLO W\SH VKRZQ LQ
7DEOH DV 8QGLVWXUEHG 1DWXUDO 7HUUDLQ3HUPDQHQW 2SHQ 6SDFH
,PSHUYLRXV 6RLO W\SH FDQ EH GHWHUPLQHG IURP WKH VRLO W\SH PDS
SURYLGHGLQ$SSHQGL[$
7KHYDOXHVLQ7DEOHDUHW\SLFDOIRUPRVWXUEDQDUHDV+RZHYHULIWKHEDVLQFRQWDLQVUXUDO
RUDJULFXOWXUDOODQGXVHSDUNVJROIFRXUVHVRURWKHUW\SHVRIQRQXUEDQODQGXVHWKDWDUH
H[SHFWHGWREHSHUPDQHQWWKHDSSURSULDWHYDOXHVKRXOGEHVHOHFWHGEDVHGXSRQWKHVRLODQG
FRYHUDQGDSSURYHGE\WKHORFDODJHQF\
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
5DLQIDOO,QWHQVLW\
7KHUDLQIDOOLQWHQVLW\,LVWKHUDLQIDOOLQLQFKHVSHUKRXULQKUIRUDGXUDWLRQHTXDOWRWKH7F
IRUDVHOHFWHGVWRUPIUHTXHQF\2QFHDSDUWLFXODUVWRUPIUHTXHQF\KDVEHHQVHOHFWHGIRU
GHVLJQDQGD7FFDOFXODWHGIRUWKHGUDLQDJHDUHDWKHUDLQIDOOLQWHQVLW\FDQEHGHWHUPLQHGIURP
WKH,QWHQVLW\'XUDWLRQ'HVLJQ&KDUW)LJXUH7KHKRXUVWRUPUDLQIDOODPRXQW3DQG
WKHKRXUVWRUPUDLQIDOODPRXQW3IRUWKHVHOHFWHGVWRUPIUHTXHQF\DUHDOVRQHHGHGIRU
FDOFXODWLRQRI,3DQG3FDQEHUHDGIURPWKHLVRSOXYLDOPDSVSURYLGHGLQ$SSHQGL[%
$Q ,QWHQVLW\'XUDWLRQ 'HVLJQ &KDUW DSSOLFDEOH WR DOO DUHDV ZLWKLQ 6DQ 'LHJR &RXQW\ LV
SURYLGHGDV)LJXUH)LJXUHSURYLGHVDQH[DPSOHRIXVHRIWKH,QWHQVLW\'XUDWLRQ
'HVLJQ&KDUW,QWHQVLW\FDQDOVREHFDOFXODWHGXVLQJWKHIROORZLQJHTXDWLRQ
, 3'
:KHUH 3 DGMXVWHGKRXUVWRUPUDLQIDOODPRXQWVHHGLVFXVVLRQEHORZ
' GXUDWLRQLQPLQXWHVXVH7F
1RWH7KLVHTXDWLRQDSSOLHVRQO\WRWKHKRXUVWRUPUDLQIDOODPRXQWLH3FDQQRWEH
FKDQJHGWR3WRFDOFXODWHDKRXULQWHQVLW\XVLQJWKLVHTXDWLRQ
7KH ,QWHQVLW\'XUDWLRQ 'HVLJQ &KDUW DQG WKH HTXDWLRQ DUH IRU WKH KRXU VWRUP UDLQIDOO
DPRXQW,QJHQHUDO3IRUWKHVHOHFWHGIUHTXHQF\VKRXOGEHEHWZHHQDQGRI3IRU
WKHVHOHFWHGIUHTXHQF\,I3LVQRWZLWKLQWRRI33VKRXOGEHLQFUHDVHGRU
GHFUHDVHGDVQHFHVVDU\WRPHHWWKLVFULWHULD7KHLVRSOXYLDOOLQHVDUHEDVHGRQSUHFLSLWDWLRQ
JDXJHGDWD$WWKHWLPHWKDWWKHLVRSOXYLDOOLQHVZHUHFUHDWHGWKHPDMRULW\RISUHFLSLWDWLRQ
JDXJHV LQ 6DQ 'LHJR &RXQW\ ZHUH UHDG GDLO\ DQG WKHVH UHDGLQJV \LHOGHG KRXU
SUHFLSLWDWLRQ GDWD 6RPH KRXU GDWD ZHUH DYDLODEOH IURP WKH IHZ UHFRUGLQJ JDXJHV
GLVWULEXWHGWKURXJKRXWWKH&RXQW\DWWKDWWLPHKRZHYHUVRPHKRXUGDWDZHUHH[WUDSRODWHG
7KHUHIRUHWKHKRXUSUHFLSLWDWLRQGDWDIRU6DQ'LHJR&RXQW\DUHFRQVLGHUHGWREHPRUH
UHOLDEOH
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
7LPHRI&RQFHQWUDWLRQ
7KH7LPHRI&RQFHQWUDWLRQ7FLVWKHWLPHUHTXLUHGIRUUXQRIIWRIORZIURPWKHPRVWUHPRWH
SDUWRIWKHGUDLQDJHDUHDWRWKHSRLQWRILQWHUHVW7KH7FLVFRPSRVHGRIWZRFRPSRQHQWV
LQLWLDOWLPHRIFRQFHQWUDWLRQ7LDQGWUDYHOWLPH7W0HWKRGVRIFRPSXWDWLRQIRU7LDQG7W
DUHGLVFXVVHGEHORZ7KH7LLVWKHWLPHUHTXLUHGIRUUXQRIIWRWUDYHODFURVVWKHVXUIDFHRIWKH
PRVWUHPRWHVXEDUHDLQWKHVWXG\RU³LQLWLDOVXEDUHD´*XLGHOLQHVIRUGHVLJQDWLQJWKHLQLWLDO
VXEDUHDDUHSURYLGHGZLWKLQWKHGLVFXVVLRQRIFRPSXWDWLRQRI7L7KH7WLVWKHWLPHUHTXLUHG
IRU WKH UXQRII WR IORZ LQ D ZDWHUFRXUVH HJ VZDOH FKDQQHO JXWWHU SLSH RU VHULHV RI
ZDWHUFRXUVHVIURPWKHLQLWLDOVXEDUHDWRWKHSRLQWRILQWHUHVW)RUWKH50WKH7FDWDQ\SRLQW
ZLWKLQWKHGUDLQDJHDUHDLVJLYHQE\
7 F 7L7W
0HWKRGVRIFDOFXODWLRQGLIIHUIRUQDWXUDOZDWHUVKHGVQRQXUEDQL]HGDQGIRUXUEDQGUDLQDJH
V\VWHPV:KHQDQDO\]LQJVWRUPGUDLQV\VWHPVWKHGHVLJQHUPXVWFRQVLGHUWKHSRVVLELOLW\
WKDWDQH[LVWLQJQDWXUDOZDWHUVKHGPD\EHFRPHXUEDQL]HGGXULQJWKHXVHIXOOLIHRIWKHVWRUP
GUDLQV\VWHP)XWXUHODQGXVHVPXVWEHXVHGIRU7FDQGUXQRIIFDOFXODWLRQVDQGFDQEH
GHWHUPLQHGIURPWKHORFDO&RPPXQLW\*HQHUDO3ODQ
,QLWLDO7LPHRI&RQFHQWUDWLRQ
7KHLQLWLDOWLPHRIFRQFHQWUDWLRQLVW\SLFDOO\EDVHGRQVKHHWIORZDWWKHXSVWUHDPHQGRID
GUDLQDJHEDVLQ7KH2YHUODQG7LPHRI)ORZ)LJXUHLVDSSUR[LPDWHGE\DQHTXDWLRQ
GHYHORSHGE\WKH)HGHUDO$YLDWLRQ$JHQF\)$$IRUDQDO\]LQJIORZRQUXQDZD\V)$$
7KHXVXDOUXQZD\FRQILJXUDWLRQFRQVLVWVRIDFURZQOLNHPRVWIUHHZD\VZLWKVORSLQJ
SDYHPHQWWKDWGLUHFWVIORZWRHLWKHUVLGHRIWKHUXQZD\7KLVW\SHRIIORZLVXQLIRUPLQWKH
GLUHFWLRQSHUSHQGLFXODUWRWKHYHORFLW\DQGLVYHU\VKDOORZ6LQFHWKHVHGHSWKVDUHóRIDQ
LQFK PRUH RU OHVV LQ PDJQLWXGH WKH UHODWLYH URXJKQHVV LV KLJK 6RPH KLJKHU UHODWLYH
URXJKQHVV YDOXHV IRU RYHUODQG IORZ DUH SUHVHQWHG LQ 7DEOH RI WKH +(& )ORRG
+\GURJUDSK3DFNDJH8VHU¶V0DQXDO86$&(
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
7KHVKHHWIORZWKDWLVSUHGLFWHGE\WKH)$$HTXDWLRQLVOLPLWHGWRFRQGLWLRQVWKDWDUHVLPLODU
WRUXQZD\WRSRJUDSK\6RPHFRQVLGHUDWLRQVWKDWOLPLWWKHH[WHQWWRZKLFKWKH)$$HTXDWLRQ
DSSOLHVDUHLGHQWLILHGEHORZ
8UEDQ$UHDV±7KLV³UXQZD\W\SH´UXQRIILQFOXGHV
)ODWURRIVVORSLQJDW
3DUNLQJORWVDWWKHH[WUHPHXSVWUHDPGUDLQDJHEDVLQERXQGDU\DWWKH³ULGJH´RID
FDWFKPHQWDUHD
(YHQDSDUNLQJORWLVOLPLWHGLQWKHDPRXQWVRIVKHHWIORZ3DUNHGRUPRYLQJ
YHKLFOHVZRXOG³EUHDNXS´WKHVKHHWIORZFRQFHQWUDWLQJUXQRIILQWRVWUHDPVWKDW
DUHQRWFKDUDFWHULVWLFRIVKHHWIORZ
'ULYHZD\VDUHFRQVWUXFWHGDWWKHXSVWUHDPHQGRIFDWFKPHQWDUHDVLQVRPH
GHYHORSPHQWV+RZHYHULIIORZIURPDURRILVGLUHFWHGWRDGULYHZD\WKURXJK
DGRZQVSRXWRURWKHUFRQYH\DQFHPHFKDQLVPIORZZRXOGEHFRQFHQWUDWHG
)ODWVORSHVDUHSURQHWRPHDQGHULQJIORZWKDWWHQGVWREHGLVUXSWHGE\PLQRU
LUUHJXODULWLHVDQGREVWUXFWLRQV0D[LPXP2YHUODQG)ORZOHQJWKVDUHVKRUWHU
IRUWKHIODWWHUVORSHVVHH7DEOH
5XUDORU1DWXUDO$UHDV7KH)$$HTXDWLRQLVDSSOLFDEOHWRWKHVHFRQGLWLRQVVLQFH
WRVORSHVWKDWDUHXQLIRUPLQZLGWKRIIORZKDYHVORZYHORFLWLHVFRQVLVWHQW
ZLWKWKHHTXDWLRQ,UUHJXODULWLHVLQWHUUDLQOLPLWWKHOHQJWKRIDSSOLFDWLRQ
0RVWKLOOVDQGULGJHOLQHVKDYHDUHODWLYHO\IODWDUHDQHDUWKHGUDLQDJHGLYLGH
+RZHYHU ZLWK IODW VORSHV RI PLQRU LUUHJXODULWLHV ZRXOG FDXVH IORZ WR
FRQFHQWUDWHLQWRVWUHDPV
3DUNV ODZQV DQG RWKHU YHJHWDWHG DUHDV ZRXOG KDYH VORZ YHORFLWLHV WKDW DUH
FRQVLVWHQWZLWKWKH)$$(TXDWLRQ
7KHFRQFHSWVUHODWHGWRWKHLQLWLDOWLPHRIFRQFHQWUDWLRQZHUHHYDOXDWHGLQDUHSRUWHQWLWOHG
,QLWLDO7LPHRI&RQFHQWUDWLRQ$QDO\VLVRI3DUDPHWHUV+LOOWKDWZDVUHYLHZHGE\WKH
+\GURORJ\0DQXDO&RPPLWWHH7KH5HSRUWLVDYDLODEOHDW6DQ'LHJR&RXQW\'HSDUWPHQWRI
3XEOLF:RUNV)ORRG&RQWURO6HFWLRQDQGRQWKH6DQ'LHJR&RXQW\'HSDUWPHQWRI3XEOLF
:RUNVZHESDJH
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
1RWHWKDWWKH,QLWLDO7LPHRI&RQFHQWUDWLRQVKRXOGEHUHIOHFWLYHRIWKHJHQHUDOODQGXVHDWWKH
XSVWUHDPHQGRIDGUDLQDJHEDVLQ$VLQJOHORWZLWKDQDUHDRIWZRRUOHVVDFUHVGRHVQRWKDYH
DVLJQLILFDQWHIIHFWZKHUHWKHGUDLQDJHEDVLQDUHDLVWRDFUHV
7DEOHSURYLGHVOLPLWVRIWKHOHQJWK0D[LPXP/HQJWK/0RIVKHHWIORZWREHXVHGLQ
K\GURORJ\VWXGLHV,QLWLDO7LYDOXHVEDVHGRQDYHUDJH&YDOXHVIRUWKH/DQG8VH(OHPHQWDUH
DOVRLQFOXGHG7KHVHYDOXHVFDQEHXVHGLQSODQQLQJDQGGHVLJQDSSOLFDWLRQVDVGHVFULEHG
EHORZ([FHSWLRQVPD\EHDSSURYHGE\WKH³5HJXODWLQJ$JHQF\´ZKHQVXEPLWWHGZLWKD
GHWDLOHG VWXG\
7DEOH
0$;,08029(5/$1')/2:/(1*7+/0
,1,7,$/7,0(2)&21&(175$7,217L
(OHPHQW
'8
$FUH/0 7L / 0 7L / 0 7L / 0 7L / 0 7L / 0 7L
1DWXUDO
/'5
/'5
/'5
0'5
0'5
0'5
0'5
+'5
+'5
1&RP
*&RP
23&RP
/LPLWHG,
*HQHUDO,
6HH7DEOHIRUPRUHGHWDLOHGGHVFULSWLRQ
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
$3ODQQLQJ&RQVLGHUDWLRQV
7KHSXUSRVHRIPRVWK\GURORJ\VWXGLHVLVWRGHYHORSIORRGIORZYDOXHVIRUDUHDVWKDWDUHQRW
DWWKHXSVWUHDPHQGRIWKHEDVLQ$QRWKHUH[DPSOHLVWKH0DVWHU3ODQZKLFKLVXVXDOO\
FRPSOHWHGEHIRUHWKHDFWXDOGHWDLOHGGHVLJQRIORWVVWUHHWVHWFDUHDFFRPSOLVKHG,QWKHVH
VLWXDWLRQVLWLVQHFHVVDU\WKDWWKHLQLWLDOWLPH RIFRQFHQWUDWLRQEHGHWHUPLQHGZLWKRXWGHWDLOHG
LQIRUPDWLRQDERXWIORZSDWWHUQV
7R SURYLGH JXLGDQFH IRU WKH LQLWLDO WLPH RI FRQFHQWUDWLRQ GHVLJQ SDUDPHWHUV 7DEOH
LQFOXGHVWKH/DQG8VH(OHPHQWVDQGRWKHUYDULDEOHVUHODWHGWRWKH7LPHRI&RQFHQWUDWLRQ
7KHWDEOHGHYHORSPHQWLQFOXGHGDUHYLHZRIWKHW\SLFDO³OD\RXW´RIWKHGLIIHUHQW/DQG8VH
(OHPHQWVDQGUHODWHGIORZSDWWHUQVDQGFRQVLGHUDWLRQRIWKHH[WHQWRIWKH VKHHWIORZUHJLPHQ
WKHHIIHFWRISRQGLQJWKHVLJQLILFDQFHWRWKHGUDLQDJHEDVLQGRZQVWUHDPHIIHFWVHWF
%&RPSXWDWLRQ&ULWHULD
D'HYHORSHG'UDLQDJH$UHDV:LWK2YHUODQG)ORZ7LPD\EHREWDLQHGGLUHFWO\IURPWKH
FKDUW³5DWLRQDO)RUPXOD±2YHUODQG7LPH RI)ORZ1RPRJUDSK´VKRZQLQ)LJXUH
RUIURP7DEOH7KLVFKDUWLVEDVHGRQWKH)HGHUDO$YLDWLRQ$JHQF\)$$HTXDWLRQ
)$$)RUWKHVKRUWUDLQGXUDWLRQVPLQXWHVLQYROYHGLQWHQVLWLHVDUHKLJK
EXWWKHGHSWKRIIORRGLQJLVOLPLWHGDQGPXFKRIWKHUXQRIILVVWRUHGWHPSRUDULO\LQWKH
RYHUODQG IORZ DQG LQ VKDOORZ SRQGHG DUHDV ,Q GHYHORSHG DUHDV RYHUODQG IORZ LV
OLPLWHGWROHQJWKVJLYHQLQ7DEOH%H\RQGWKHVHGLVWDQFHVIORZWHQGVWREHFRPH
FRQFHQWUDWHGLQWRVWUHHWVJXWWHUVVZDOHVGLWFKHVHWF
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
E1DWXUDO2U5XUDO:DWHUVKHGV±7KHVHDUHDVXVXDOO\KDYHDQLQLWLDOVXEDUHDDWWKH
XSVWUHDPHQGZLWKVKHHWIORZ7KHVKHHWIORZOHQJWKLVOLPLWHGWRWRIHHWDV
VSHFLILHGLQ7DEOH7KH2YHUODQG7LPHRI)ORZ1RPRJUDSK)LJXUHFDQEH
XVHG WR REWDLQ 7L 7KH LQLWLDO WLPH RI FRQFHQWUDWLRQ FDQ H[FHVVLYHO\ DIIHFW WKH
PDJQLWXGHRIIORZIXUWKHUGRZQVWUHDPLQWKHGUDLQDJHEDVLQ)RULQVWDQFHYDULDWLRQV
LQWKHLQLWLDOWLPHRIFRQFHQWUDWLRQIRUDQLQLWLDOVXEDUHDRIRQHDFUHFDQFKDQJHWKH
IORZIXUWKHUGRZQVWUHDPZKHUHWKHDUHDLVDFUHVE\7KHUHIRUHWKHLQLWLDO
WLPHRIFRQFHQWUDWLRQLVOLPLWHGVHH7DEOH
7KH 5DWLRQDO 0HWKRG SURFHGXUH LQFOXGHG LQ WKH RULJLQDO +\GURORJ\ 0DQXDO DQG
'HVLJQDQG3URFHGXUH0DQXDOLQFOXGHGDPLQXWHYDOXHWREHDGGHGWRWKHLQLWLDO
WLPHRIFRQFHQWUDWLRQGHYHORSHGWKURXJKWKH.LUSLFK)RUPXODVHH)LJXUHIRUDQDWXUDO
ZDWHUVKHG7KDWSURFHGXUHLVVXSHUFHGHGE\WKHSURFHGXUHDERYHWRXVH7DEOHRU)LJXUH
WRGHWHUPLQH7LIRUWKHDSSURSULDWHVKHHWIORZOHQJWKRIWKHLQLWLDOVXEDUHD7KHYDOXHVIRU
QDWXUDOZDWHUVKHGVJLYHQLQ7DEOHYDU\IURPWRPLQXWHVGHSHQGLQJRQVORSH,IWKH
WRWDOOHQJWKRIWKHLQLWLDOVXEDUHDLVJUHDWHUWKDQWKHPD[LPXPOHQJWKDOORZDEOHEDVHGRQ
7DEOHDGGWKHWUDYHOWLPHEDVHGRQWKH.LUSLFKIRUPXODIRUWKHUHPDLQLQJOHQJWKRIWKH
LQLWLDOVXEDUHD
7UDYHO7LPH
7KH7WLVWKHWLPHUHTXLUHGIRUWKHUXQRIIWRIORZLQDZDWHUFRXUVHHJVZDOHFKDQQHO
JXWWHUSLSHRUVHULHVRIZDWHUFRXUVHVIURPWKHLQLWLDOVXEDUHDWRWKHSRLQWRILQWHUHVW7KH7W
LVFRPSXWHGE\GLYLGLQJWKHOHQJWKRIWKHIORZSDWKE\WKHFRPSXWHGIORZYHORFLW\6LQFHWKH
YHORFLW\QRUPDOO\FKDQJHVDVDUHVXOWRIHDFKFKDQJHLQIORZUDWHRUVORSHVXFKDVDWDQLQOHW
RUJUDGHEUHDNWKHWRWDO7WPXVWEHFRPSXWHGDVWKHVXPRIWKH7W¶VIRUHDFKVHFWLRQRIWKH
IORZSDWK8VH)LJXUHWRHVWLPDWHWLPHRIWUDYHOIRUVWUHHWJXWWHUIORZ9HORFLW\LQD
FKDQQHOFDQEHHVWLPDWHGE\XVLQJWKHQRPRJUDSKVKRZQLQ)LJXUH0DQQLQJ¶V(TXDWLRQ
1RPRJUDSK
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
D1DWXUDO:DWHUVKHGV±7KLVLQFOXGHVUXUDOUDQFKDQGDJULFXOWXUDODUHDVZLWKQDWXUDO
FKDQQHOV2EWDLQ7WGLUHFWO\IURPWKH.LUSLFKQRPRJUDSKLQ)LJXUHRUIURPWKH
HTXDWLRQ7KLVQRPRJUDSKUHTXLUHVYDOXHVIRUOHQJWKDQGFKDQJHLQHOHYDWLRQDORQJ
WKHHIIHFWLYHVORSHOLQHIRUWKHVXEDUHD6HH)LJXUHIRUDUHSUHVHQWDWLRQRIWKH
HIIHFWLYHVORSHOLQH
7KLVQRPRJUDSKLVEDVHGRQWKH.LUSLFKIRUPXODZKLFKZDVGHYHORSHGZLWKGDWD
IURPDJULFXOWXUDOZDWHUVKHGVUDQJLQJIURPWRDFUHVLQDUHDWRIHHW
LQOHQJWKDQGWRVORSH.LUSLFK$PD[LPXPOHQJWKRIIHHW
VKRXOGEHXVHGIRUWKHVXEDUHDOHQJWK7\SLFDOO\DVWKHIORZOHQJWKLQFUHDVHVWKH
GHSWKRIIORZZLOOLQFUHDVHDQGWKHUHIRUHLWLVFRQVLGHUHGDFRQFHQWUDWLRQRIIORZDW
SRLQWVEH\RQGOHQJWKVOLVWHGLQ)LJXUH+RZHYHUEHFDXVHWKH.LUSLFKIRUPXOD
KDVEHHQVKRZQWREHDSSOLFDEOHIRUZDWHUVKHGVXSWRIHHWLQOHQJWK.LUSLFK
D VXEDUHD PD\ EH GHVLJQDWHG ZLWK D OHQJWK XS WR IHHW SURYLGHG WKH
WRSRJUDSK\DQGVORSHRIWKHQDWXUDOFKDQQHODUHJHQHUDOO\XQLIRUP
-XVWLILFDWLRQQHHGVWREHLQFOXGHGZLWKWKLVFDOFXODWLRQVKRZLQJWKDWWKHZDWHUVKHG
ZLOOUHPDLQQDWXUDOIRUHYHU([DPSOHVLQFOXGHDUHDVORFDWHGLQWKH0XOWLSOH6SHFLHV
&RQVHUYDWLRQ3ODQ06&3DUHDVGHVLJQDWHGDVRSHQVSDFHRUUXUDOLQDFRPPXQLW\¶V
*HQHUDO3ODQDQG&OHYHODQG1DWLRQDO)RUHVW
E8UEDQ:DWHUVKHGV)ORZWKURXJKDFORVHGFRQGXLWZKHUHQRDGGLWLRQDOIORZFDQHQWHUWKH
V\VWHPGXULQJWKHWUDYHOOHQJWKYHORFLW\DQG7WDUHGHWHUPLQHGXVLQJWKHSHDNIORZLQ
WKH FRQGXLW ,Q FDVHV ZKHUH WKH FRQGXLW LV QRW FORVHG DQG DGGLWLRQDO IORZ IURP D
FRQWULEXWLQJ VXEDUHD LV DGGHG WR WKH WRWDO IORZ GXULQJ WUDYHO HJ VWUHHW IORZ LQ D
JXWWHUFDOFXODWLRQRIYHORFLW\DQG7WLVSHUIRUPHGXVLQJDQDVVXPHGDYHUDJHIORZ
EDVHG RQ WKH WRWDO DUHD LQFOXGLQJ XSVWUHDP VXEDUHDV FRQWULEXWLQJ WR WKH SRLQW RI
LQWHUHVW7KH0DQQLQJHTXDWLRQLVXVXDOO\XVHGWRGHWHUPLQHYHORFLW\'LVFKDUJHVIRU
VPDOO ZDWHUVKHGV W\SLFDOO\ UDQJH IURP WR FIV SHU DFUH GHSHQGLQJ RQ ODQG XVH
GUDLQDJHDUHDDQGVORSHDQGUDLQIDOOLQWHQVLW\
1RWH7KH050VKRXOGEHXVHGWRFDOFXODWHWKHSHDNGLVFKDUJHZKHQWKHUHLVDMXQFWLRQ
IURPLQGHSHQGHQWVXEDUHDVLQWRWKHGUDLQDJHV\VWHP
),*85(
6285&(&DOLIRUQLD'LYLVLRQRI+LJKZD\VDQG.LUSLFK
&RPSXWDWLRQRI(IIHFWLYH6ORSHIRU1DWXUDO:DWHUVKHGV
$UHD³$´ $UHD³%´
:DWHUVKHG'LYLGH
'HVLJQ
3RLQW
$UHD³$´
:DWHUVKHG
'LYLGH
/
/
'HVLJQ3RLQW
:DWHUVKHG2XWOHW
6WUHDP3URILOH
(IIHFWLYH6ORSH/LQH
$UHD³%´
(
),*85(
6285&(6DQ'LHJR&RXQW\'HSDUWPHQWRI6SHFLDO'LVWULFW6HUYLFHV'HVLJQ0DQXDO
*XWWHUDQG5RDGZD\'LVFKDUJH9HORFLW\&KDUW
(;$03/(
*LYHQ4 6
&KDUWJLYHV'HSWK 9HORFLW\ ISV
'HSWK 5(6,'(17,$/675((7
21(6,'(21/<
¶
Q
'LVFKDUJH&)6
9
I
S
V
9
I
S
V
9
I
S
V
9
I
S
V
9
I
S
V
9
I
S
V
9
I
S
V
9
I
S
V
9
I
S
V
'HSWK)HHW'HSWK)HHW'HSWK)HHW'HSWK)HHW'HSWK)HHW'HSWK)HHW'HSWK)HHWRI6WUHHW6ORSH9
I
S
V
Q
3DYHG&RQFUHWH*XWWHU
),*85(
6285&(86'27)+:$+'6
0DQQLQJ¶V(TXDWLRQ1RPRJUDSK
V
Q 6/23(LQIHHWSHUIRRWV+<'5$8/,&5$',86LQIHHW59(/2&,7<LQIHHWSHUVHFRQG9(;$0 3 /(
5
9
(48$7,219 BBBB5VQ
*(1(5$/62/87,21 528*+1(66&RHIILFLHQWQ
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
'(9(/23,1*,1387 '$7$)257+(5$7,21$/0(7+2'
7KLVVHFWLRQGHVFULEHVWKHGHYHORSPHQWRIWKHQHFHVVDU\GDWDWRSHUIRUP50FDOFXODWLRQV
6HFWLRQGHVFULEHVWKH50FDOFXODWLRQSURFHVV,QSXWGDWDIRUFDOFXODWLQJSHDNIORZVDQG
7F¶VZLWKWKH50VKRXOGEHGHYHORSHGDVIROORZV
2Q D WRSRJUDSKLF EDVH PDS RXWOLQH WKH RYHUDOO GUDLQDJH DUHD ERXQGDU\ VKRZLQJ
DGMDFHQWGUDLQVH[LVWLQJDQGSURSRVHGGUDLQVDQGRYHUODQGIORZSDWKV
9HULI\WKHDFFXUDF\RIWKHGUDLQDJHPDSLQWKHILHOG
'LYLGHWKHGUDLQDJHDUHDLQWRVXEDUHDVE\ORFDWLQJVLJQLILFDQWSRLQWVRILQWHUHVW7KHVH
GLYLVLRQV VKRXOG EH EDVHG RQ WRSRJUDSK\ VRLO W\SH DQG ODQG XVH (QVXUH WKDW DQ
DSSURSULDWHILUVWVXEDUHDLVGHOLQHDWHG)RUQDWXUDODUHDVWKHILUVWVXEDUHDIORZSDWK
OHQJWKVKRXOGEHOHVVWKDQRUHTXDOWRIHHWSOXVWKHRYHUODQGIORZOHQJWK7DEOH
)RUGHYHORSHGDUHDVWKHLQLWLDOVXEDUHDIORZSDWKOHQJWKVKRXOGEHFRQVLVWHQW
ZLWK 7DEOH 7KH WRSRJUDSK\ DQG VORSH ZLWKLQ WKH LQLWLDO VXEDUHD VKRXOG EH
JHQHUDOO\XQLIRUP
:RUNLQJIURPXSVWUHDPWRGRZQVWUHDPDVVLJQDQXPEHUUHSUHVHQWLQJHDFKVXEDUHDLQ
WKHGUDLQDJHV\VWHPWRHDFKSRLQWRILQWHUHVW)LJXUHSURYLGHVJXLGHOLQHVIRUQRGH
QXPEHUVIRUJHRJUDSKLFLQIRUPDWLRQV\VWHP*,6EDVHGVWXGLHV
0HDVXUHHDFKVXEDUHDLQWKHGUDLQDJHDUHDWRGHWHUPLQHLWVVL]HLQDFUHV$
'HWHUPLQHWKHOHQJWKDQGHIIHFWLYHVORSHRIWKHIORZSDWKLQHDFKVXEDUHD
,GHQWLI\WKHVRLOW\SHIRUHDFKVXEDUHD
),*85(
*,6+\GURORJLF0RGHO
'DWD%DVH/LQNDJH6HWXS1RGHV6XEDUHDV/LQNV
'HILQH0DMRU)ORZSDWKVLQ6WXG\$UHD
'HILQH6WXG\$UHDV7ZR/HWWHU,'
6WXG\$UHD6&
6WXG\$UHD/$
'HILQH5HJLRQVRQ6WXG\$UHD%DVLV
1RGH
0DS
5HJLRQ
6WXG\$UHD,'
/$
1XPEHU1RGHV
'HILQH0RGHO1RGHV,QWHUVHFWLRQRI
6XEDUHD%RXQGDULHVZLWK)ORZSDWK/LQHV
6XEDUHD,' /$
'HILQH0RGHO6XEDUHDVRQ
0DS%DVLV
'HILQH0DSVRU6XEUHJLRQV
RQ5HJLRQ%DVLV
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
'HWHUPLQH WKH UXQRII FRHIILFLHQW & IRU HDFK VXEDUHD EDVHG RQ 7DEOH ,I WKH
VXEDUHDFRQWDLQVPRUHWKDQRQHW\SHRIGHYHORSPHQWFODVVLILFDWLRQXVHDSURSRUWLRQDWH
DYHUDJHIRU&,QGHWHUPLQLQJ&IRUWKHVXEDUHDXVHIXWXUHODQGXVHWDNHQIURPWKH
DSSOLFDEOHFRPPXQLW\SODQ0XOWLSOH6SHFLHV&RQVHUYDWLRQ3ODQ1DWLRQDO)RUHVWODQG
XVHSODQHWF
&DOFXODWHWKH&$YDOXHIRUWKHVXEDUHD
&DOFXODWH WKH &$YDOXHVIRUWKHVXEDUHDVXSVWUHDPRIWKHSRLQWVRILQWHUHVW
'HWHUPLQH 3DQG3IRUWKHVWXG\XVLQJWKHLVRSOXYLDOPDSVSURYLGHGLQ$SSHQGL[%
,IQHFHVVDU\DGMXVWWKHYDOXHIRU3WREHZLWKLQWRRIWKHYDOXHIRU3
6HH6HFWLRQIRUDGHVFULSWLRQRIWKH50FDOFXODWLRQSURFHVV
3(5)250,1*5$7,21$/0(7+2'&$/&8/$7,216
7KLVVHFWLRQGHVFULEHVWKH50FDOFXODWLRQSURFHVV8VLQJWKHLQSXWGDWDFDOFXODWLRQRISHDN
IORZVDQG7F¶VVKRXOGEHSHUIRUPHGDVIROORZV
'HWHUPLQH 7LIRUWKHILUVWVXEDUHD8VH7DEOHRU)LJXUHDVGLVFXVVHGLQ6HFWLRQ
,IWKHZDWHUVKHGLVQDWXUDOWKHWUDYHOWLPHWRWKHGRZQVWUHDPHQGRIWKHILUVW
VXEDUHDFDQEHDGGHGWR7LWRREWDLQWKH7F5HIHUWRSDUDJUDSKD
'HWHUPLQH,IRUWKHVXEDUHDXVLQJ)LJXUH,I7LZDVOHVVWKDQPLQXWHVXVHWKH
PLQXWHWLPHWRGHWHUPLQHLQWHQVLW\IRUFDOFXODWLQJWKHIORZ
&DOFXODWHWKHSHDNGLVFKDUJHIORZUDWHIRUWKHVXEDUHDZKHUH4S &$,
,QFDVHWKDWWKHGRZQVWUHDPIORZUDWHLVOHVVWKDQWKHXSVWUHDPIORZUDWHGXHWRWKH
ORQJWUDYHOWLPHWKDWLVQRWRIIVHWE\WKHDGGLWLRQDOVXEDUHDUXQRIIXVHWKHXSVWUHDP
SHDNIORZIRUGHVLJQSXUSRVHVXQWLOGRZQVWUHDPIORZVLQFUHDVHDJDLQ
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
(VWLPDWHWKH7WWRWKHQH[WSRLQWRILQWHUHVW
$GGWKH7WWRWKHSUHYLRXV7FWRREWDLQDQHZ7F
&RQWLQXHZLWKVWHSDERYHXQWLOWKHILQDOSRLQWRILQWHUHVWLVUHDFKHG
1RWH7KH050VKRXOGEHXVHGWRFDOFXODWHWKHSHDNGLVFKDUJHZKHQWKHUHLVDMXQFWLRQ
IURPLQGHSHQGHQWVXEDUHDVLQWRWKHGUDLQDJHV\VWHP
02',),('5$7,21$/0(7+2')25-81&7,21$1$/<6,6
7KHSXUSRVHRIWKLVVHFWLRQLVWRGHVFULEHWKHVWHSVQHFHVVDU\WRGHYHORSDK\GURORJ\UHSRUW
IRUDVPDOOZDWHUVKHGXVLQJWKH050,WLVQHFHVVDU\WRXVHWKH050LIWKHZDWHUVKHG
FRQWDLQVMXQFWLRQVRILQGHSHQGHQWGUDLQDJHV\VWHPV7KHSURFHVVLVEDVHGRQWKHGHVLJQ
PDQXDOVRIWKH&LW\&RXQW\RI6DQ'LHJR7KHJHQHUDOSURFHVVGHVFULSWLRQIRUXVLQJWKLV
PHWKRGLQFOXGLQJDQH[DPSOHRIWKHDSSOLFDWLRQRIWKLVPHWKRGLVGHVFULEHGEHORZ
7KHHQJLQHHUVKRXOGRQO\XVHWKH050IRUGUDLQDJHDUHDVXSWRDSSUR[LPDWHO\VTXDUHPLOH
LQVL]H,IWKHZDWHUVKHGZLOOVLJQLILFDQWO\H[FHHGVTXDUHPLOHWKHQWKH15&6PHWKRG
GHVFULEHGLQ6HFWLRQVKRXOGEHXVHG7KHHQJLQHHUPD\FKRRVHWRXVHHLWKHUWKH50RUWKH
050IRUFDOFXODWLRQVIRUXSWRDQDSSUR[LPDWHO\VTXDUHPLOHDUHDDQGWKHQWUDQVLWLRQWKH
VWXG\WRWKH15&6PHWKRGIRUDGGLWLRQDOGRZQVWUHDPDUHDVWKDWH[FHHGDSSUR[LPDWHO\
VTXDUHPLOH7KHWUDQVLWLRQSURFHVVLVGHVFULEHGLQ6HFWLRQ
0RGLILHG5DWLRQDO0HWKRG*HQHUDO3URFHVV'HVFULSWLRQ
7KHJHQHUDOSURFHVVIRUWKH050GLIIHUVIURP WKH50RQO\ZKHQDMXQFWLRQRILQGHSHQGHQW
GUDLQDJHV\VWHPVLVUHDFKHG7KHSHDN47FDQG,IRUHDFKRIWKHLQGHSHQGHQWGUDLQDJH
V\VWHPVDWWKHSRLQWRIWKHMXQFWLRQDUHFDOFXODWHGE\WKH507KHLQGHSHQGHQWGUDLQDJH
V\VWHPVDUHWKHQFRPELQHGXVLQJWKH050SURFHGXUHGHVFULEHGEHORZ7KHSHDN47FDQG
,IRUHDFKRIWKHLQGHSHQGHQWGUDLQDJHV\VWHPVDWWKHSRLQWRIWKHMXQFWLRQPXVWEHFDOFXODWHG
SULRUWRXVLQJWKH050SURFHGXUHWRFRPELQHWKHLQGHSHQGHQWGUDLQDJHV\VWHPVDVWKHVH
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
YDOXHVZLOOEHXVHGIRUWKH050FDOFXODWLRQV$IWHUWKHLQGHSHQGHQWGUDLQDJHV\VWHPVKDYH
EHHQFRPELQHG50FDOFXODWLRQVDUHFRQWLQXHGWRWKHQH[WSRLQWRILQWHUHVW
3URFHGXUHIRU&RPELQLQJ,QGHSHQGHQW'UDLQDJH6\VWHPVDWD-XQFWLRQ
&DOFXODWHWKHSHDN47FDQG,IRUHDFKRIWKHLQGHSHQGHQWGUDLQDJHV\VWHPVDWWKHSRLQWRI
WKHMXQFWLRQ7KHVHYDOXHVZLOOEHXVHGIRUWKH050FDOFXODWLRQV
$WWKHMXQFWLRQRIWZRRUPRUHLQGHSHQGHQWGUDLQDJHV\VWHPVWKHUHVSHFWLYHSHDNIORZVDUH
FRPELQHGWRREWDLQWKHPD[LPXPIORZRXWRIWKHMXQFWLRQDW7F%DVHGRQWKHDSSUR[LPDWLRQ
WKDWWRWDOUXQRIILQFUHDVHVGLUHFWO\LQSURSRUWLRQWRWLPHDJHQHUDOHTXDWLRQPD\EHZULWWHQWR
GHWHUPLQHWKHPD[LPXP4DQGLWVFRUUHVSRQGLQJ7FXVLQJWKHSHDN47FDQG,IRUHDFKRI
WKHLQGHSHQGHQWGUDLQDJHV\VWHPVDWWKHSRLQWLPPHGLDWHO\EHIRUHWKHMXQFWLRQ7KHJHQHUDO
HTXDWLRQUHTXLUHVWKDWFRQWULEXWLQJ4¶VEHQXPEHUHGLQRUGHURILQFUHDVLQJ7F
/HW47DQG,FRUUHVSRQGWRWKHWULEXWDU\DUHDZLWKWKHVKRUWHVW7F/LNHZLVHOHW47
DQG,FRUUHVSRQGWRWKHWULEXWDU\DUHDZLWKWKHQH[WORQJHU7F47DQG,FRUUHVSRQGWR
WKHWULEXWDU\DUHDZLWKWKHQH[WORQJHU7FDQGVRRQ:KHQRQO\WZRLQGHSHQGHQWGUDLQDJH
V\VWHPVDUHFRPELQHGOHDYH47DQG,RXWRIWKHHTXDWLRQ&RPELQHWKHLQGHSHQGHQW
GUDLQDJHV\VWHPVXVLQJWKHMXQFWLRQHTXDWLRQEHORZ
-XQFWLRQ(TXDWLRQ777
747
747
744
747
74,
,44
74,
,4,
,44
6DQ'LHJR&RXQW\+\GURORJ\0DQXDO 6HFWLRQ'DWH-XQH3DJHRI
&DOFXODWH4747DQG476HOHFWWKHODUJHVW4DQGXVHWKH7FDVVRFLDWHGZLWKWKDW4IRU
IXUWKHUFDOFXODWLRQVVHHWKHWKUHH1RWHVIRURSWLRQV,IWKHODUJHVWFDOFXODWHG4¶VDUHHTXDO
HJ47 47!47XVHWKHVKRUWHURIWKH7F¶VDVVRFLDWHGZLWKWKDW4
7KLV HTXDWLRQ PD\ EH H[SDQGHG IRU D MXQFWLRQ RI PRUH WKDQ WKUHH LQGHSHQGHQW GUDLQDJH
V\VWHPVXVLQJWKHVDPHFRQFHSW7KHFRQFHSWLVWKDWZKHQ4IURPDVHOHFWHGVXEDUHDHJ
4LVFRPELQHGZLWK4IURPDQRWKHUVXEDUHDZLWKDVKRUWHU7FHJ4WKH4IURPWKH
VXEDUHDZLWKWKHVKRUWHU7FLVUHGXFHGE\WKHUDWLRRIWKH,¶V,,DQGZKHQ4IURPD
VHOHFWHGVXEDUHDHJ4LVFRPELQHGZLWK4IURPDQRWKHUVXEDUHDZLWKDORQJHU7FHJ
4WKH4IURPWKHVXEDUHDZLWKWKHORQJHU7FLVUHGXFHGE\WKHUDWLRRIWKH7F¶V77
1RWH$WDMXQFWLRQRIWZRLQGHSHQGHQWGUDLQDJHV\VWHPVWKDWKDYHWKHVDPH7FWKH
WULEXWDU\IORZVPD\EHDGGHGWRREWDLQWKH4S
4 S 44ZKHQ7 7DQG7F 7 7
7KLVFDQEHYHULILHGE\XVLQJWKHMXQFWLRQHTXDWLRQDERYH/HW47DQG, :KHQ7
DQG7DUHWKHVDPH,DQG,DUHDOVRWKHVDPHDQG77DQG,, 77DQG,,DUH
FDQFHOOHGIURPWKHHTXDWLRQV$WWKLVSRLQW47 47 44
1RWH,QWKHXSVWUHDPSDUWRIDZDWHUVKHGDFRQVHUYDWLYHFRPSXWDWLRQLVDFFHSWDEOH
:KHQWKHWLPHVRIFRQFHQWUDWLRQ7F¶VDUHUHODWLYHO\FORVHLQPDJQLWXGHZLWKLQXVH
WKHVKRUWHU7FIRUWKHLQWHQVLW\DQGWKHHTXDWLRQ4 &$,
1RWH$QRSWLRQDOPHWKRGRIGHWHUPLQLQJWKH7FLVWRXVHWKHHTXDWLRQ
7F >&$34@
7KLV HTXDWLRQ LV IURP 4 &$, &$ 37F DQG VROYLQJ IRU 7F 7KH
DGYDQWDJH LQ WKLV RSWLRQ LV WKDW WKH 7FLV FRQVLVWHQW ZLWK WKH SHDN IORZ 4 DQG DYRLGV
LQDSSURSULDWHIOXFWXDWLRQLQGRZQVWUHDPIORZVLQVRPHFDVHV