Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
CD 2021-0024; PALOMAR TRANSFER STATION; DRAINAGE STUDY FOR PALOMAR TRANSFER STATION STORMWATER TREATMENT DESIGN; 2022-07-07
CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis Drainage Study Prepared for Palomar Transfer Station Stormwater Treatment Design CD 2021 – 0024 GR 2022-0014 DWG 442-3C APN: 209 – 050 – 2500 Prepared for: Palomar Transfer Station, Inc., and Republic Services, Inc. 5960 El Camino Real Carlsbad, CA 92008 760-603-0153 Prepared by: Geosyntec Consultants, Inc. 2355 Northside Dr, Suite 250 San Diego, CA 92108 619-297-1530 Richard Gonzalez, PE July 7, 2022 CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis COMPUTATION COVER SHEET Client: Palomar Transfer Station, Inc. Republic Services, Inc. Project: Palomar Transfer Station Stormwater Treatment Design Project/ Proposal No.: CWR0667 Task No. 11/**** Title of Computations HYDROLOGY AND HYDRUALIC ANALYSIS Computations by: Signature 04/21/2021 Printed Name Amber Hooley Date Title Staff Professional Assumptions and Procedures Checked by: (peer reviewer) Signature 3/17/2022 Printed Name Mustafa Ghuneim Date Title Sr. Staff Professional Computations Checked by: Signature 3/18/2022 Printed Name Jose Avina Date Title Project Professional Computations backchecked by: Signature 3/18/2022 Printed Name Mustafa Ghuneim Date Title Sr. Staff Professional Approved by: (pm or designate) Signature 7/7/2022 Printed Name Richard Gonzalez Date Title Project Engineer Approval notes: Revisions (number and initial all revisions) No. Sheet Date By Checked by Approval -- -- Page 3 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis TABLE OF CONTENTS 1 PROJECT DESCRIPTION & OBJECTIVE ...................................................................5 2 DESIGN CRITERIA .......................................................................................................5 3 HYDROLOGIC ANALYSIS ..........................................................................................6 3.1 EXISTING CONDITIONS ..............................................................................................7 3.2 PROPOSED CONDITIONS ............................................................................................8 3.3 TIME OF CONCENTRATION .......................................................................................9 3.4 RATIONAL METHOD ANALYSIS ..............................................................................10 3.5 RUNOFF COEFFICIENTS .............................................................................................11 4 HYDRAULIC ANALYSIS .............................................................................................12 4.1 GRATE & INLET ANALYSIS .......................................................................................12 4.2 NORMAL PIPE DEPTH ANALYSIS ............................................................................13 4.3 RIP RAP ENERGY DISSIPATOR ANALYSIS ............................................................14 5 SWMM METHODOLOGY ............................................................................................15 5.1 SWMM DRAINAGE AREAS SUMMARY ...................................................................16 6 RESULTS ........................................................................................................................16 7 CONCLUSION ................................................................................................................19 8 REFERENCES ................................................................................................................20 Page 4 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis LIST OF FIGURES Figure 1: Existing Drainage Map Figure 2: Proposed Drainage Map LIST OF TABLES Table 1: Drainage Areas Table 2: Runoff Coefficient “C” for Soil Type D Table 3: Manning’s Roughness Coefficients Table 4: Rip Rap Classes and Apron Depth Table 5: Drainage Area Characteristics Summary Table 6: Peak Discharge Estimates for the 100-Year, 6-Hour Design Event Table 7. Change in the Offsite Discharge at Each Outlet Node Table 8: Summary of Grate Inlet Weir Flow Capacity Table 9: Summary of Grate Inlet Orifice Flow Capacity Table 10: Upper Basin Rip Rap Energy Dissipator Table 11: Upper Basin Drawdown Table 12: Summary of SWMM Runoff Volume Captured/Treated and Bypassed LIST OF ATTACHMENTS Attachment 1: Hydrologic Inputs and Analysis Attachment 2: Hydraulic Analysis and (Hydraflow Express) Outputs Attachment 3: SWMM Inputs and Outputs Page 5 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis HYDROLOGY AND HYDRUALIC ANALYSIS PALOMAR TRANSFER STATION CARLSBAD, CA 1 PROJECT DESCRIPTION & OBJECTIVE The project, located at 5960 El Camino Real in Carlsbad, CA, consists of upgrading onsite stormwater conveyances (e.g. pipes, catch basins, and inlets) and installing an advanced active treatment system onsite to treat stormwater to numeric levels established in the Consent Decree (Civil Case No. 3:19-cv-00957-JM-LL). The objectives of this report are to summarize the following analyses performed during the design of the stormwater collection and treatment system at the Palomar Transfer Station in Carlsbad, California (CA) [Facility]: 1. A hydrologic analysis to size the storage and treatment system flowrate to meet the volume- based Best Management Practice (BMP) sizing required by the CA Industrial General Permit (IGP)1, specifically providing 80% capture and treatment of stormwater using local, historical rainfall records, and 2. A design and sizing analysis for the stormwater collection conveyance features (e.g. pipes, catch basins, inlets, pumps, etc.) to demonstrate adequate conveyance of the 100-year, 6- hour design storm event as required by the San Diego County Hydrology Manual (dated June 2003) and City of Carlsbad Engineering Standards Volume 1 General Design Standards (dated February 2016), respectively. 2 DESIGN CRITERIA The following design criteria apply to the conveyance features of this project: The San Diego County Hydraulic Design Manual Section 3.2.1 states that conduits shall convey the 100-year, 6-hour design storm discharge with the hydraulic grade line maintaining a minimum freeboard of 1.0 foot below the ground surface during the design event. 1 NPDES Order WQ 20XX-XXXX-DWQ Amending General Permit for Storm Water Discharges Associated with Industrial Activities Order NPDES NO. CAS000001 Page 6 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis The City of Carlsbad Engineering Standards Volume 1 General Design Standards, Chapter 5 Section 4 Part B requires inlets to be designed to convey the 100-year, 6-hour design storm. The City of Carlsbad Engineering Standards Volume 1 General Design Standards, Chapter 5 Section 1 Part B requires all public storm drain facilities to be designed to carry the 10- year, 6-hour storm event underground. In addition, the design criteria summarized below were used to determine the storage and treatment system sizing for this project. IGP Section X.H.6 “Design Storm Standards for Treatment Control BMPs” outlines three options for volume-based BMP sizing2. Due to site footprint constraints, the first two options (i and ii) were determined to be infeasible, since they require providing storage capable of capturing the full volume of runoff produced from an 85th percentile 24-hour storm event. As a result, the third option (iii) was selected, which includes sizing the BMPs to capture and treat 80% of the annual runoff volume using local, historical rainfall records. Geosyntec used the US Environmental Protection Agency’s (EPA) Storm Water Management Model (SWMM) [EPA August 2016] to conduct a long-term continuous simulation to identify the storage tank, pumping flowrates, conveyance sizing, and treatment flowrate combination capable of capturing 80% or more of stormwater runoff over a long-term period of record to satisfy the requirement of option (iii). Using SWMM is expected to provide a more representative site-specific estimate of stormwater capture accounting for Facility infrastructure complexities and local precipitation records as compared to using the California Stormwater Best Management Practices handbook nomographs referenced in the IGP. Furthermore, the San Diego Regional Water Quality Control Board issued a letter of support, dated December 17, 2021, for the project to install the active treatment system using the 80% capture and treatment of the annual runoff volume. 3 HYDROLOGIC ANALYSIS Hydrologic calculations have been performed to appropriately size proposed stormwater collection infrastructure to convey the peak runoff flowrate during the 100-year, 6-hour rainfall event using the Rational Method in accordance with the San Diego County Hydrology Manual and the inputs are summarized in the subsequent sections below. Since the project is proposing limited improvements, the existing storm drain outfalls were only analyzed to determine whether they meet the 100-year, 6-hour rainfall event sizing; however up-sizing of this existing infrastructure is 2 Sizing the treatment system to meet the IGP Section X.H.6 flow-based design storm standards was not recommended due to the absence of upstream equalization storage Page 7 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis not currently included as results from the long-term continuous simulation does not show ponding or flooding of the existing infrastructure during the 30-year period of record. Proposed stormwater improvements are designed in such a way that flows are directed towards grates and inlets capable of conveying the 100-year, 6-hour design storm peak flowrate and not discharge directly offsite. The calculations below include estimating the peak discharge flowrate from the 100-year, 6-hour design storm event for the drainage areas and subareas delineated to the stormwater collection infrastructure. The conveyance was then sized to provide sufficient capacity to convey this peak flowrate as demonstrated by the results. 3.1 EXISTING CONDITIONS The 9.68 acre project site is an existing industrial site currently developed with a large central building, with miscellaneous hardscape and landscaping. The site is moderately sloped with portions of flat areas for vehicular traffic and steeper slopes for natural terrain. The Site's drainage is delineated into four drainage areas (DAs). The northwest area, DA-1, drains southerly towards the concrete valley gutter which then proceeds southwesterly towards the drainage inlet which then connects to the existing public storm drain system via an 18" pipe towards Orion Road. The eastern and southern area, DA-2, drains southerly towards the concrete valley gutter which then proceeds northeasterly towards the drainage inlet at the northeast corner of the site. Drainage continues southeasterly underground via a 12" pipe along the eastern perimeter until it confluences with a drainage inlet near the southeast corner. Drainage then proceeds southwest in an underground 14" pipe and discharges onto a surface valley gutter near the southeast corner. Drainage continues southwest until it confluences with the southern valley gutter and proceeds southeasterly towards lower middle center of the Site until it ultimately discharges offsite via the valley gutter into the Carlsbad Oaks North Habitat Conservation Area. The southwestern area, DA-3, drains southeasterly towards the southeastern entrance/exit of the gravel employee parking lot. Drainage proceeds downhill in the northern exit road towards Orion Road where it is eventually intercepted by the curb inlet into the upper vegetated basin at the southwest corner. Drainage from the westerly slopes along the eastern onsite private road will also drain southerly towards the upper basin and enter an 18" Corrugated Metal Pipe (CMP) via a flush drainage inlet in the upper vegetated basin, and then outlet into the lower rock basin near the southwest corner between the northern and southern exit roads. Any bypass from the northern exit road curb inlet will be intercepted by a perpendicular trench drain which will drain towards the lower rock basin. The lower rock basin will naturally infiltrate, and any high flows will enter the riser pipe and then outlet to an underground gravel trench just south of the toe of slope of the northern exit road. The central area, DA-4 drains southwesterly towards a curb cut where it then flows down an existing slope. From there, drainage collects within two inlets where it is then conveyed offsite via an 18” CMP. Page 8 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis 3.2 PROPOSED CONDITIONS The proposed conditions are generally similar to the existing conditions except the upper vegetative basin will be deepened and consist of rip rap, a new 75'x25' concrete pad will be built near the southern exit road, and the majority of the Site will confluence to a singular location via new storm drain infrastructure. Drainage areas for each inlet structure were estimated based on proposed grading conditions and existing conditions at the Facility. In order to verify conveyance capacity of existing drainage conveyance and size proposed inlet and outlet structures, the maximum drainage area expected for each structure was used in this analysis. Figure 2 presents the proposed drainage areas for the Facility. Table 1 presents the drainage areas for each inlet structure. Table 1: Drainage Areas Drainage Area Drainage Area (acres) DA-1 1.67 DA-2 5.69 DA-3 1.65 DA-4 0.67 DA-1 will propose storm drain pipes and junction structures that will cross the employee gravel parking lot and discharge into the new upper rip rap basin thus confluencing DA-1 into DA-3. DA- 2 will follow similar drainage patterns but prior to the outfall and just west of the washing bay, this vicinity will be regraded, and new trench drains and drainage inlets will be constructed so flows do not leave the Site. Drainage from DA-4 will also follow similar drainage patterns initially, but the easternmost inlet will be abandoned, and the westernmost inlet will be rerouted towards the new trench drains, where it confluences with drainage from DA-2. From the trench drains, drainage will then continue westerly via a 24" High Density Polyethylene (HDPE) pipe until it terminates at the proposed pump station between the lower rock basin and washing bay. Confluenced flows from DA-1 and DA-3 will drain into the lower rock basin as before but instead of infiltrating, flows will enter a drainage inlet and discharge easterly via a 24" HDPE pipe towards the proposed pump station. Drainage from DA-1, DA-2, DA-3, and DA-4 will confluence into the proposed pump station and be pumped into a proposed treatment system at 270 gallons per minute (gpm), approximately 0.72 cubic feet per second (cfs). Treated water will then be conveyed to the existing 18” CMP that originally served as the outlet for DA-4 under existing conditions. See the SWQMP Report for additional details. Page 9 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis 3.3 TIME OF CONCENTRATION The time of concentration (Tc) for each sub-basin is the time required for a raindrop to travel from the hydraulically most distant point to the outlet of the sub-basin. The time of concentration for a sub-basin is determined by summing the individual travel times associated with overland sheet flow, shallow concentrated flow, pipe flow, and open channel flow. The equations used to calculate travel times are listed below and are based on methodologies in the San Diego County Hydrology Manual and the Hydraulic Engineering Circular No. 22 (HEC-22), Third Edition published by the Federal Highway Administration (dated August 2013). Sheet flow travel time was calculated using Equation 1. 𝑇௧ ൌ ଵ.଼ሺଵ.ଵିሻ√ ∛ௌ Equation 1 Where: Tti = Overland Sheet Flow travel time in minutes C = Runoff Coefficient (dependent on Land Use and Soil Type D) D = Watercourse Distance (ft) S = Surface Slope (%) After the maximum overland sheet flow length per Table 3-2 in the San Diego County Hydrology Manual, overland sheet flow tends to concentrate and becomes shallow concentrated flow. The velocity of shallow concentrated flow was calculated using Equation 2. 𝑉ൌ𝐾௨ ൈ𝑘ൈ𝑆.ହ Equation 2 Where: V = Velocity in feet per second (fps) Ku = Empirical unit conversion coefficient equal to 3.28 (English) k = Intercept coefficient = 0.457 (grassed waterway), 0.491 (unpaved), or 0.619 (paved) Sp = Slope (%) Page 10 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis The velocity of open channel and pipe flow was calculated using Equation 3. 𝑉ൌೠ 𝑅ଶ/ଷ𝑆ଵ/ଶ Equation 3 Where: V = Velocity (fps) n = Roughness coefficient Ku = Empirical unit conversion coefficient equal to 1.49 (English) R = Hydraulic radius, defined as the flow area divided by wetted perimeter (ft) S = Slope (ft/ft) Once the velocities were calculated, travel time for shallow concentrated flow, open channel flow, and pipe flow were calculated using Equation 4 and used in the rational method analysis below. 𝑇௧ ൌ Equation 4 Where: Tti = Travel time for segment i (minutes) V = Velocity for segment i (fps) L = Flow length for Segment i, (ft) Time of concentration results for each sub-basin are presented in Section 6. 3.4 RATIONAL METHOD ANALYSIS Peak discharges required for sizing the stormwater conveyances (e.g. pipe and open channel flow) are estimated using the Rational Method, which estimates the peak rate of runoff as a function of the drainage area (0.5 square miles or less), runoff coefficient, and rainfall intensity for duration equal to the time of concentration. Per the San Diego County Hydrology Manual, the Rational Method formula (Equation 5) is expressed as follows: Page 11 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis Q = CIA Equation 5 Where: Q = Peak discharge in cubic feet per second (cfs) C = Runoff coefficient (dimensionless) I = Rainfall intensity over a time duration equal to the time of concentration (in/hr) A = Drainage area (acres) The rainfall intensity values for the 100-year, 6-hour storm events are calculated using the following formula (Equation 6) from the San Diego County Hydrology Manual: 𝐼ൌ7.44𝑃𝐷ି.ସହ Equation 6 Where: P6 = Six (6) hour precipitation (inches) D = Duration (min) Results of the rational method analysis are presented in Section 6. 3.5 RUNOFF COEFFICIENTS A critical variable within the Rational Method is the runoff coefficient (i.e. ground cover). The value of this variable influences the time of concentration and the amount of rainfall, which is absorbed by the soil. The runoff coefficient is dependent on rainfall intensity, soil type and cover, percentage of impervious area and antecedent moisture condition (AMC). Runoff coefficient values used in this analysis are based on runoff coefficients for urban areas listed in the San Diego County Hydrology Manual. Both Appendix A (Soil Hydrologic Group) in the San Diego County Hydrology Manual, and the United States Department of Agriculture (USDA) National Resources Conservation Service (NRCS) Web Soil Survey show the project site to have Group D soils (i.e. Soil Type D), which are considered to have very slow infiltration rates when thoroughly wetted (See Attachment 1). Table 2 presents the runoff coefficient values used in this analysis. Table 7 below provides a summary of the weighted runoff coefficients assumed for each DA and subarea. Table 2: Runoff Coefficient “C” for Soil Type D Land Use Runoff Coefficient “C” Undisturbed Natural Terrain (Natural) 0.35 Gravel Lots – similar to Low Density Residential (LDR) 0.41 Commercial/Industrial (General I.) 0.87 Page 12 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis 4 HYDRAULIC ANALYSIS The hydraulic analysis calculations have been prepared in accordance with the methods presented in the San Diego County Hydraulic Design Manual (dated September 2014) and HEC-22. The proposed infrastructure was designed to divert and convey stormwater flow in a controlled manner to limit, to the greatest extent possible, ponding, infiltration, inundation, erosion, slope failure, washout, and overtopping for the 100-year, 6-hour design event. In general, the Facility has curb and gutters along downstream edges to prevent runoff from travelling down the side slopes and convey flow to proposed conveyance features such as channels, swales, or pipes. The following conveyance features are proposed as part of the stormwater treatment design and are designed to convey the 100-year, 6-hour design event. 4.1 GRATE & INLET ANALYSIS The proposed grate inlet capacities were designed to convey the peak discharge inflow during the 100-year, 6-hour design event from their respective drainage areas. There are generally two grate inlets proposed at the Facility for the proposed conveyance system as shown in Figure 2. The first grate inlet is located on the northwest portion of the Facility and collects stormwater flows from DA-1. The second grate inlet including trench drains are located on the south portion of the Facility and collect stormwater flows from DA-2. The grate inlets and trench drains were sized to convey the 100-year, 6-hour design event based on the grated inlets in sag method presented in the San Diego County Hydraulic Design Manual. First, the capacity of the grated inlet operating as a weir was calculated using Equation 7 below. 𝑄ൌ𝐶ௐ𝑃𝑑ଵ/ଶ Equation 7 Where: Q = Inlet capacity for the grated inlet (cfs) Cw = Weir coefficient (Cw = 3.0 for U.S. Traditional Units) Pe = Effective grate perimeter length (ft) = (1 – CL)P CL = Clogging factor = 0.50 P = Actual grate perimeter (ft) d = Flow depth approaching inlet (ft) Page 13 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis Next, the capacity of the grated inlet operating as an orifice was calculated using Equation 8 below. 𝑄ൌ𝐶ை𝐴ሺ2𝑔𝑑ሻଵ/ଶ Equation 8 Where: CO = Orifice coefficient (CO = 0.67 for U.S. Traditional Units) Ae = Effective (clogged) grate area (ft2) = (1 – CA)A CA = Area clogging factor (CA = 0.50) A = Actual opening area of the grate inlet (ft2) g = Gravitational acceleration (g = 32.2 ft/s2) The more conservative (i.e. lower) value of the two results was used for the inlet capacity and compared to the peak discharge inflow from the respective drainage area (See Attachment 2). Grate inlet capacities are presented in Section 6. Also, the upper basin is proposed to be reconstructed with rock rip rap which may result in ponded water in the rock void space. Per the City of Carlsbad BMP Design Manual, projects are required to drain retained water within 96 hours to minimize standing water. To mitigate ponded water, multiple orifices at the base of the existing drainage inlet are proposed. See drawdown results in Section 6. 4.2 NORMAL PIPE DEPTH ANALYSIS Proposed stormwater conveyance features were designed to convey the 100-year, 6-hour design event with the conduit’s hydraulic grade line maintaining a minimum freeboard of 1.0 foot below the ground surface. The Hydraflow Express Extension computer program, developed by Autodesk (Autodesk, 2017), was used to design the proposed stormwater conveyances as well as evaluate the existing outfalls. This program uses Manning's equation (Haan et. al., 1994) presented in Equation 9 to determine the depth in the conveyance feature. 𝑄ൌ ଵ.ସ଼ 𝐴𝑅ଶ ଷൗ𝑆ଵ ଶൗ Equation 9 Where: Q = Discharge (cfs) n = Manning’s roughness coefficient Page 14 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis A = Area in feet squared (ft2) R = Hydraulic radius = Area divided by wetted perimeter (ft) S = Slope (ft/ft) The rip rap apron with No. 2 Backing rock gradation located on the west side of the Facility was assigned a Manning’s roughness coefficient value of 0.037. The proposed drainpipes will be High Density Polyethylene (HDPE) smooth plastic pipes and were assigned a Manning’s roughness coefficient value of 0.013. The existing pipes and outfalls are Corrugated Metal Pipe (CMP) and were assigned a Manning’s roughness coefficient value of 0.024. A summary of the Manning’s roughness coefficients used, including those for conveyance features such as pipe, can be found in Table 3. Manning’s roughness coefficients were selected in accordance with the San Diego County Hydraulic Design Manual (dated 2014). Hydraflow Express outputs for the designed stormwater conveyance features are included in Attachment 2. Table 3. Manning’s Roughness Coefficients Material Manning’s Roughness Coefficient, n Rip rap 0.037 HDPE pipe 0.013 CMP 0.024 4.3 RIP RAP ENERGY DISSIPATOR ANALYSIS A rip rap energy dissipator is proposed at the outlet of the drainage pipe from DA-1 as shown in Figure 2. The energy dissipator was sized based on methods presented in Hydraulic Engineering Circular No. 14 (HEC-14), Third Edition published by the Federal Highway Administration for rip rap aprons. For a circular pipe, the rip-rap size was calculated using Equation 10 below. 𝐷ହ ൌ 0.2 𝐷 ቀ ொ √ మ.ఱቁ ర య ሺ ்ௐሻ Equation 10 Where: D50 = Rip rap size (ft) Q = Discharge (cfs) D = Pipe diameter (ft) Page 15 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis TW = Tailwater depth (ft) = 0.4D (when unknown) g = Acceleration due to gravity = 32.2 ft/s2 The apron dimensions are a function of the pipe diameter, D, and rip rap size, D50. Table 4 below presents the required depth based on each rip-rap size. Table 4. Rip Rap Classes and Apron Depth Class D50 (in) Apron Depth 1 5 3.5D50 2 6 3.3D50 3 10 2.4D50 5 SWMM METHODOLOGY The US EPA SWMM was used to perform a hydrologic and hydraulic modeling long-term simulation of the proposed stormwater collection and treatment system to demonstrate that the proposed design complies with IGP Section X.H.6.a.iii. The USEPA SWMM was used to model stormwater runoff routing of the three drainage areas producing industrial stormwater runoff, DA- 1, DA-2, DA-3 and DA-4. The model was setup to run a 30-year (1/1/1978 to 12/31/2008) continuous simulation of stormwater runoff using rain gage data from a Project Clean Water approved station, the San Diego County Oceanside ALERT rain data (Sensor ID 67). The goals of the model analysis were to determine 1) pumping flowrate and 2) amount of onsite storage to meet the IGP criterion of capturing and treating 80% of the annual runoff volume using historic rainfall records. Model setup incorporated proposed stormwater management features described in the above sections including routing runoff from DA-1 through an 18-inch storm drain, the two existing storage basins, proposed 18-inch and 24-inch gravity pipes, junction structures, pump well, and aboveground pumps to the storage tanks as shown in Figure 2. An iterative process was conducted to optimize pump flowrate into the storage tanks and determine the storage tank volume to achieve the target 80% volumetric capture using continuous long-term simulation and to achieve the flow control requirements set by hydromodification threshold per the City of Carlsbad BMP Design Manual. Pumps rates, treatment flowrates, and storage volumes were adjusted until the design requirements were achieved and Facility space constraints were met. The same model layout was also used to determine the discharge from DA-2 caused by overtopping the proposed curb at the valley gutter outlet, as well as determine whether the existing basins have adequate capacity. A hydrograph for the 100-year, 6-hour design storm was generated Page 16 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis using RATHYDRO based on site conditions, then used as input in the model to run an event-based simulation using the same drainage areas and model components. 5.1 SWMM DRAINAGE AREAS SUMMARY See Section 3.2 for the sub-basin delineation, hydrologic routing, and drainage area characteristics. See Table 5 below for the summary of SWMM input parameters based on drainage area characteristics. Hydrologic Soil Group D was used for this analysis. Table 5. Drainage Area Characteristics Summary Drainage Area ID Area (acres) Imperviousness (Percent) Slope (Percent) Width (ft) DA 1 1.67 56 5.2 146 DA 2.1 1.25 60 4.6 94.7 DA 2.2 1.2 80 4 121.5 DA 2.3 0.35 80 4 47.8 DA 2.4 0.86 83 9.2 85.8 DA 2.5 0.23 80 5.9 49.2 DA 2.6 1.81 50 0.7 358.1 DA 3 1.58 60 2.1 176 DA-4.1 0.3 40 15 79 DA-4.2 0.37 50 10 96 6 RESULTS Peak discharge calculations are summarized in Table 6. Table 7 compares the discharge leaving the site at each outlet location. As described above, all site drainage is routed to the centralized treatment system. When the system and storage experience overflow during large storm events (e.g. 100-year storm) overflow will discharge from the existing swale at the S-208 discharge point. Grate inlet capacity calculations are summarized in Tables 8 and 9. Rip rap energy dissipator sizing is summarized in Table 10. The upper basin orifice drawdown calculations are summarized in Page 17 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis Table 11. See Attachment 1 for hydrologic inputs and analysis, and Attachment 2 for hydraulic inputs, analysis, and outputs. Results of the SWMM continuous 30-year simulation showing rainfall volume generated, captured and treated are summarized in Table 12. The proposed system uses a 270 gpm (0.72 cfs) pump flowrate to direct flows from the pump well to three 21,000-gallon (63,000 gallon total) above ground storage tanks. The storage tanks then feed the proposed treatment system with a 270 gpm (0.72 cfs) flowrate. A separate pump dedicated to flow control is also included as part of this system to satisfy hydromodification flow control requirements. The flow control pump will regulate flows from large storms generating peak flowrates which would not be treated by the system. This combination of conveyance, pumping, storage, and treatment was determined to provide greater than 80% annual stormwater capture over the 30-year simulation. While greater than 80% stormwater capture is demonstrated by the proposed infrastructure, thus meeting the IGP design storm sizing requirements, there may be instances in the future where storm events less than or equal to the 85th percentile 24-hour storm event bypass the treatment system since the system has not been designed explicitly to capture this individual storm event. However, the system described above (with a factor of safety included) is expected to provide more annual stormwater capture than a system sized to capture the 85th percentile 24-hour storm event since the higher treatment flowrates results in a faster drawdown of the storage, thus providing increased opportunities for back-to-back storm capture. Table 6. Peak Discharge Estimates under Existing Conditions Outlet Node Drainage Area Area (acres) Runoff Coefficient Intensity (in/hr) Q100 (cfs) S-103 DA-1 1.67 0.66 6.55 7.27 S-208 DA-2 5.24 0.80 4.57 19.31 S-304 DA-3 1.65 0.52 7.38 6.39 S-404 DA-4 1.12 0.87 7.38 7.25 Total 40.21 Page 18 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis Table 7. Change in the Offsite Discharge at Each Outlet Node Outlet Node Runoff under Existing Conditions (cfs) Runoff under Proposed Conditions (cfs) Proposed Conditions Δ Runoff (cfs) S-103 7.27 0 Drainage to S-103 is rerouted towards treatment system -7.27 S-208 19.31 18.68 Discharge from overtopping the proposed curb under flooded conditions -0.63 S-304 03 0 Existing basin determined to have adequate capacity for proposed conditions 0 S-404 7.25 0.45 Treated drainage from DA-1,2,3,4 is discharged via a pump system -5.81 Table 8. Summary of Grate Inlet Weir Flow Capacity Location Cw Pe (ft) d (ft) Q100 (cfs) NW Grate Inlet 3 4.95 0.65 7.8 Lower Basin 3 6.95 0.65 10.9 South Grate Inlet and Trench Drains 3 96.06 0.20 25.8 Table 9. Summary of Grate Inlet Orifice Flow Capacity Location Co Ae (ft2) g (ft/s2) d (ft) Q100 (cfs) NW Grate Inlet 0.67 5.65 32.2 0.65 24.5 Lower Basin 0.67 6.05 32.2 0.65 26.2 South Grate Inlet and Trench Drains 0.67 48.54 32.2 0.20 116.7 3 S-304 discharges to an existing basin is adequately sized, therefore no water leaves the site at this location under existing conditions. Page 19 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis Table 10. Upper Basin Rip Rap Energy Dissipator Q100 (cfs) D (ft) TW = 0.4D (ft) D50 (in) Rip Rap Class Depth (in) 10.1 1.5 0.6 6 2 20 Table 11. Upper Basin Drawdown CD DOrifice (in) # Orifices d (in) QCapacity (cfs) VBasin&Riprap (ft3) Drawdown Time (hr) 0.61 1.5 3 24 0.11 1522 3.7 Table 12. Summary of SWMM Runoff Volume Captured/Treated and Bypassed Total Volume (million gallons) Percent Treated Captured and Treated 56 - Bypassed 13.6 - Total 69.6 81% 7 CONCLUSION The proposed stormwater improvements at the Palomar Transfer Station are capable of conveying the 100-year, 6-hour storm event. The discharge at each outlet location was determined to be less under the proposed conditions when compared to existing conditions. The proposed storage and pumping/treatment system flowrate described previously was determined to provide 80% long-term capture of stormwater (this result suggests that the system will capture 80% of stormwater on average), thus meeting the IGP design storm sizing requirements. Page 20 of 18 Written by: A. Hooley Date: 4/21/2021 Reviewed by: R. Gonzalez Date: 7/7/2022 Client: RS, PTS Project: Palomar Transfer Station Stormwater Treatment Design Project No.: CWR0667 Task No.: 11/**** CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis 8 REFERENCES Autodesk, Inc, 2017. Hydraflow Express Extension for Autodesk AutoCAD Civil 3D Computer Program. City of Carlsbad BMP Design Manual, September 2021. City of Carlsbad. City of Carlsbad Engineering Standards, Volume 1 General Design Standards, February 2016. City of Carlsbad. Hydraulic Engineering Circular No. 14, Third Edition, Hydraulic Design of Energy Dissipators for Culverts and Channels, 2006. U.S. Department of Transportation, Federal Highway Administration. Hydraulic Engineering Circular No. 22, Third Edition, Urban Drainage Design Manual, 2013. U.S. Department of Transportation, Federal Highway Administration. San Diego County Hydraulic Design Manual: County of San Diego, Department of Public Works, Flood Control Section, September 2014. San Diego County Hydrology Manual: County of San Diego, Department of Public Works, Flood Control Section, June 2003. United States Environmental Protection Agency (US EPA) Stormwater Management Model (SWMM), Version 5.1, September 2015. CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis Figures DA-3 S-304 1.65 6.39 ac cfs S-200 S-201 S-100 S-101 S-202 S-301 S-300 S-102 UPPER BASIN LOWER BASIN S-303 S-103 1.67 7.27 S-208 5.2419.31 ac S-203 S-204 S-205 S-207 S-206 S-302 DA-1 DA-2 ac cfs cfs S-401 S-402 S-404 1.12 7.25 ac cfs S-403 DA-4 S-400 PROJECT NO: FIGURE P:\PROJECT FOLDERS\WASTE MANAGEMENT\CWR0667 - PALOMAR TS SW TREATMENT DESIGN\CAD\FIGURES\DRAINAGE MAPS\EXISTING DRAINAGE MAP - Last Saved by: JAvina on 7/5/22EXISTING DRAINAGE MAP PALOMAR TRANSFER STATION 5960 EL CAMINO REAL, CARLSBAD, CA JULY 2022 1 CWR0667 0 40 80 SCALE IN FEET NS-XXX X.X X.Xaccfs S-103 1.67 7.27 ac cfsSD SDSDSDSDSDSDSDSDSDSDSD FM FM FM FM FM FM FMF M FM FMFMSD SDSDSDSDSDSDS-303 3.26 10.1 9.68 32.63 S-209 5.69 21.52 DA-1 DA-3 DA-1+DA-3 3.32 10.24 ac cfs DA-1+DA-2 +DA-3+DA-4 ac cfs ac cfs DA-2 ac cfs DA-4 DA-2+DA-4 6.3624.14 ac cfs S-200 S-201 S-100 S-101 S-202 S-203 S-204 S-205 S-207 S-206 S-301 S-300 S-302 S-102 S-104a S-104b S-209 S-210 S-211 PUMP WELL UPPER BASIN S-104c S-105 LOWER BASIN STORAGE TANKS (x3) S-106 PUMPS (x3) S-208 S-401 S-402 S-403 TREATMENT SYSTEM ON PAD S-400 0.48 cfs TREATED FLOW, Q100 18.68 cfs OVERFLOW, Q100 PROJECT NO: FIGURE P:\PROJECT FOLDERS\WASTE MANAGEMENT\CWR0667 - PALOMAR TS SW TREATMENT DESIGN\CAD\FIGURES\DRAINAGE MAPS\PROPOSED DRAINAGE MAP - Last Saved by: JAvina on 7/5/22PROPOSED DRAINAGE MAP PALOMAR TRANSFER STATION 5960 EL CAMINO REAL, CARLSBAD, CA JULY 2022 2 CWR0667 0 40 80 SCALE IN FEET S-XXX X.X X.Xaccfs N CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis Attachment 1 Hydrologic Inputs and Analysis Project Location HSG D Hydrologic Soil Group—San Diego County Area, California Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 3/30/2021 Page 1 of 436661503666200366625036663003666350366640036664503666150366620036662503666300366635036664003666450474900474950475000475050475100475150475200475250475300475350 474900 474950 475000 475050 475100 475150 475200 475250 475300 475350 33° 8' 11'' N 117° 16' 9'' W33° 8' 11'' N117° 15' 50'' W33° 8' 1'' N 117° 16' 9'' W33° 8' 1'' N 117° 15' 50'' WN Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 11N WGS84 0 100 200 400 600 Feet 0 30 60 120 180 Meters Map Scale: 1:2,250 if printed on A landscape (11" x 8.5") sheet. Soil Map may not be valid at this scale. MAP LEGEND MAP INFORMATION Area of Interest (AOI) Area of Interest (AOI) Soils Soil Rating Polygons A A/D B B/D C C/D D Not rated or not available Soil Rating Lines A A/D B B/D C C/D D Not rated or not available Soil Rating Points A A/D B B/D C C/D D Not rated or not available Water Features Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads Background Aerial Photography The soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: San Diego County Area, California Survey Area Data: Version 15, May 27, 2020 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jan 23, 2020—Feb 13, 2020 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. Hydrologic Soil Group—San Diego County Area, California Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 3/30/2021 Page 2 of 4 Hydrologic Soil Group Map unit symbol Map unit name Rating Acres in AOI Percent of AOI ClG2 Cieneba coarse sandy loam, 30 to 65 percent slopes, eroded D 0.7 6.6% LeC2 Las Flores loamy fine sand, 5 to 9 percent slopes, eroded D 10.0 93.4% Totals for Area of Interest 10.7 100.0% Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Hydrologic Soil Group—San Diego County Area, California Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 3/30/2021 Page 3 of 4 Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher Hydrologic Soil Group—San Diego County Area, California Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 3/30/2021 Page 4 of 4 San Diego County Hydrology Manual Section: 3 Date: June 2003 Page: 6 of 26 Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use Runoff Coefficient “C” Soil Type NRCS Elements County Elements % IMPER. A B C D Undisturbed Natural Terrain (Natural) Permanent Open Space 0* 0.20 0.25 0.30 0.35 Low Density Residential (LDR) Residential, 1.0 DU/A or less 10 0.27 0.32 0.36 0.41 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 0.42 0.46 Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 0.45 0.49 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 0.48 0.52 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 0.54 0.57 Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 0.57 0.60 Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 0.60 0.63 High Density Residential (HDR) Residential, 24.0 DU/A or less 65 0.66 0.67 0.69 0.71 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 0.78 0.79 Commercial/Industrial (N. Com) Neighborhood Commercial 80 0.76 0.77 0.78 0.79 Commercial/Industrial (G. Com) General Commercial 85 0.80 0.80 0.81 0.82 Commercial/Industrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 0.84 0.85 Commercial/Industrial (Limited I.) Limited Industrial 90 0.83 0.84 0.84 0.85 Commercial/Industrial (General I.) General Industrial 95 0.87 0.87 0.87 0.87 *The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest). DU/A = dwelling units per acre NRCS = National Resources Conservation Service 3-6 3-3 San Diego County Hydrology Manual Section: 3 Date: June 2003 Page: 12 of 26 Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres. Table 3-2 provides limits of the length (Maximum Length (LM)) of sheet flow to be used in hydrology studies. Initial Ti values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the “Regulating Agency” when submitted with a detailed study. Table 3-2 MAXIMUM OVERLAND FLOW LENGTH (LM) & INITIAL TIME OF CONCENTRATION (Ti) .5% 1% 2% 3% 5% 10% Element* DU/ Acre LM Ti LM Ti LM Ti LM Ti LM Ti LM Ti Natural 50 13.2 70 12.5 85 10.9 100 10.3 100 8.7 100 6.9 LDR 1 50 12.2 70 11.5 85 10.0 100 9.5 100 8.0 100 6.4 LDR 2 50 11.3 70 10.5 85 9.2 100 8.8 100 7.4 100 5.8 LDR 2.9 50 10.7 70 10.0 85 8.8 95 8.1 100 7.0 100 5.6 MDR 4.3 50 10.2 70 9.6 80 8.1 95 7.8 100 6.7 100 5.3 MDR 7.3 50 9.2 65 8.4 80 7.4 95 7.0 100 6.0 100 4.8 MDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 4.5 MDR 14.5 50 8.2 65 7.4 80 6.5 90 6.0 100 5.4 100 4.3 HDR 24 50 6.7 65 6.1 75 5.1 90 4.9 95 4.3 100 3.5 HDR 43 50 5.3 65 4.7 75 4.0 85 3.8 95 3.4 100 2.7 N. Com 50 5.3 60 4.5 75 4.0 85 3.8 95 3.4 100 2.7 G. Com 50 4.7 60 4.1 75 3.6 85 3.4 90 2.9 100 2.4 O.P./Com 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 Limited I. 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 General I. 50 3.7 60 3.2 70 2.7 80 2.6 90 2.3 100 1.9 *See Table 3-1 for more detailed description 3-12 Existing Conditions Length (ft) Top Bottom S (%) Runoff Coefficient Travel Time(min)Length (ft) Top Bottom S (%) Paved/Unpaved Intercept Coefficient V (ft/sec)Travel Time (min)Length (ft) Top Bottom S (ft/ft) Manning's Roughness Coefficient (Pipe Material) Pipe Diameter (ft)Pipe Depth (ft)Angle (radians)PW (ft)Area (ft2)V (ft/sec)**Travel Time (min) S-101 9209 0.21 13%33 338 326 36.4 0.35 2.3 2.3 0.35 7.38 S-102 23159 0.53 32%250 326 313.25 5.1 0.491 3.6 1.1 1.1 0.41 7.38 S-103 40509 0.93 56%215 313.25 312.2 0.5 0.619 1.4 2.5 2.5 0.87 7.38 Total 72877 1.67 100%Total 6.0 0.66 6.55 7.27 S-201 6421 0.15 3%35 338 325 37.1 0.35 2.4 2.4 0.35 7.38 S-202 27493 0.63 12%162 325 312.85 7.5 0.491 4.4 0.6 0.6 0.41 7.38 S-203 71014 1.63 31%263 312.85 311.25 0.6 0.619 1.6 2.8 2.8 0.87 7.38 S-204 15064 0.35 7%315.0 306.8 293.6 0.04 0.013 1.0 1.00 6.28 3.14 0.79 9.3 0.6 0.6 0.87 7.38 S-205 0 0.00 0%82.0 293.6 292.1 0.02 0.013 1.17 1.17 6.28 3.68 1.08 7.1 0.2 0.2 N/A N/A S-206 38332 0.88 17%66 289.90 287.57 3.53 0.619 3.8 0.3 0.3 0.87 7.38 S-207 10094 0.23 4%63 287.57 285.83 2.76 0.619 3.4 0.3 0.3 0.87 7.38 S-208 59875 1.37 26%357 285.83 283.15 0.8 0.619 1.8 3.4 3.4 0.87 7.38 Total 228293 5.24 100%Total 10.5 0.80 4.57 19.31 S-301 4687 0.11 7%20 308.82 305.35 17.3 0.35 2.3 2.3 0.35 7.38 S-302 28741 0.66 40%192 305.35 300.4 2.6 0.491 2.6 1.2 1.2 0.35 7.38 S-303 35724 0.82 50%178 300.4 292 4.7 0.619 4.4 0.7 0.7 0.68 7.38 S-304 2627 0.06 4%37.4 289.1 286.8 0.062 0.024 1.5 0.69 2.98 2.24 0.79 7.7 0.1 0.1 0.50 7.38 Total 71779 1.65 100%Total 5.0 0.52 7.38 6.39 S-401 13042 0.30 27%164 311.38 299.33 7.3 0.87 2.7 2.7 0.87 7.38 S-402 12150 0.28 25%54 299.33 284.45 27.6 0.491 8.5 0.1 0.1 0.87 7.38 S-403 0 0.00 0%135.0 283.3 282.1 0.0090 0.013 0.5 0.5 6.28 1.57 0.20 2.7 0.8 0.8 0.87 7.38 S-404 23603 0.54 48%103.4 --0.019 0.024 1.5 1.14 4.24 3.18 1.44 5.1 0.3 0.3 0.87 7.38 Total 48795 1.12 100%Total 5.0 0.87 7.38 7.25 TOTAL 421744 9.68 Q-TOTAL 40.21 Proposed Conditions Length (ft) Top Bottom S (%) Runoff Coefficient Travel Time(min)Length (ft) Top Bottom S (%) Paved/Unpaved Intercept Coefficient V (ft/sec)Travel Time (min)Length (ft) Top Bottom S (ft/ft) Manning's Roughness Coefficient (Pipe Material) Pipe Diameter (ft)Pipe Depth (ft)Angle (radians)PW (ft)Area (ft2)V (ft/sec)**Travel Time (min) S-201 6421 0.15 2%35 338 325 37.14 0.35 2.4 2.4 0.35 7.38 S-202 27493 0.63 7%162 325 312.85 7.50 0.491 4.4 0.6 0.6 0.41 7.38 S-203 71014 1.63 17%263 312.85 311.25 0.61 0.619 1.6 2.8 2.8 0.87 7.38 S-204 15064 0.35 4%315.0 306.8 293.6 0.04 0.013 1.0 1.00 6.28 3.14 0.79 9.3 0.56 0.6 0.87 7.38 S-205 0 0.00 0%82.0 293.6 292.1 0.02 0.013 1.17 1.17 6.28 3.68 1.08 6.8 0.20 0.2 N/A N/A S-206 38332 0.88 9%66 289.90 287.57 3.53 0.619 3.8 0.3 0.3 0.87 7.38 S-207 10094 0.23 2%63 287.57 285.83 2.76 0.619 3.4 0.3 0.3 0.87 7.38 S-208 79355 1.82 19%312 285.83 283.60 0.71 0.619 1.7 3.0 3.0 0.87 7.38 S-209 0 0.00 0%25.0 280.4 279.95 0.018 0.013 3.2 2.20 N/A 7.60 7.04 14.6 0.03 0.0 N/A N/A S-210 (S-400) 29315 0.67 7% 43.7 279.85 279.55 0.007 0.013 3.2 2.20 N/A 7.60 7.04 9.0 0.08 0.1 0.87 7.38 S-211 (S-100 & S-300)144656 3.32 34% 178.0 277.8 275.95 0.010 0.012 2.0 1.75 4.84 4.84 2.91 8.9 0.33 0.3 0.59 7.38 Total 421744 9.68 100%Total 10.6 0.74 4.54 32.63 Tc (min)Runoff Coefficent 100-year Intensity (in/hr) Q100 (cfs) Sub-basin DA-2 (North + West + East) Sub-basin Area (sq ft) Area (acres) % of Total Area Sheet Flow Shallow Concentrated Flow Open Channel or Pipe Flow Sub-basin DA-2 (East) Sub-basin DA-3 (West) Sub-basin DA-4 Open Channel or Pipe Flow Tc (min)Runoff Coefficent 100-year Intensity (in/hr) Q100 (cfs) Sub-basin DA-1 (North) Sub-basin Area (sq ft) Area (acres) % of Total Area Sheet Flow Shallow Concentrated Flow CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis Attachment 2 Hydraulic Analysis and (Hydraflow Express) Outputs Palomar TS NW Grate Inlet, Inlet in Sag Units 100‐yr Assumptions Cw 3 Weir coefficient = 3 (US) Pe ft 4.95 d ft 0.65 Assume 0.1 ‐ 0.5 ft (.85' per CAD) Qi cfs 7.8 Units Value Assumptions P ft 9.90 Against Curb (Pe = 9.9'), All Sides (Pe = 13.5') per CAD C %50%Clogging factor Peff ft 4.95 Units 100‐yr Assumptions Co 0.67 Orifice Coefficient =0.67 Ae ft^2 5.65 Ae = (1‐C)A C =0.50 clogging factor A =11.36 ft2 per CAD g ft/s^2 32.2 d ft 0.65 Assume 0.1 ‐ 0.5 ft Qi cfs 24.5 Flow Type 100‐yr Qi (cfs)Assumptions Weir Flow 7.78 Orifice Flow 24.49 Known Q Peak Discharge 7.27 DA‐1 Q100(cfs) per Rational Method Weir Flow Q=C*P*d^1.5 Effective Perimeter Pe =(1‐C)*P Orifice Flow Q=C*A*(2*g*d)^0.5 Comparison Use more conservative of the two results but depends on flow type Palomar TS Lower Basin OverFlow Drain, Inlet in Sag Units 100‐yr Assumptions Cw 3 Weir coefficient = 3 (US) Pe ft 6.95 d ft 0.65 Assume 0.5 ft, but 2.5' max Qi cfs 10.9 Units Value Assumptions P ft 13.9 Against Curb (Pe = 10.3'), All Sides (Pe = 13.9') per CAD C %50%Clogging factor Peff ft 6.95 Units 100‐yr Assumptions Co 0.67 Orifice Coefficient =0.67 Ae ft^2 6.05 Ae = (1‐C)A C =0.50 clogging factor A =12.18 ft2 per CAD g ft/s^2 32.2 d ft 0.65 Assume 0.5 ft, but 2.5' max Qi cfs 26.2 Flow Type 100‐yr Qi (cfs)Assumptions Weir Flow 10.93 Orifice Flow 26.23 Known Q Peak Discharge 10.24 DA‐1 + DA‐3 Q100(cfs) per Rational Method Weir Flow Q=C*P*d^1.5 SDRSD D‐15 Effective Perimeter Pe =(1‐C)*P Orifice Flow Q=C*A*(2*g*d)^0.5 Comparison Use more conservative of the two results but depends on flow type Palomar TS Trench Drains, Inlet in Sag Units 100‐yr Assumptions Cw 3 Weir coefficient = 3 (US) Pe ft 96.06 d ft 0.2 Assume 0.1 ‐ 0.5 ft Qi cfs 25.8 Units Value Assumptions P ft 192.11 P = 2*(W+L) ALL SIDES W ft 0.97 L ft 95.08 Assume 24.39"/26.48"=11.05287"/LF for ABT MHD‐24 C %50%Clogging factor Peff ft 96.06 Units 100‐yr Assumptions Co 0.67 Orifice Coefficient =0.67 Ae ft^2 48.54 Ae = (1‐C)A C =0.50 clogging factor A ft^2 92.39 A = L*W g ft/s^2 32.2 d ft 0.2 Assume 0.1 ‐ 0.5 ft Qi cfs 116.7 Flow Type 100‐yr Qi (cfs)Assumptions Weir Flow 25.77 Orifice Flow 116.73 Known Q Peak Discharge 24.14 DA‐2 + DA‐4 Q100(cfs) per Rational Method Weir Flow Q=C*P*d^1.5 Trench Drain Effective Perimeter Pe =(1‐C)*P Orifice Flow Q=C*A*(2*g*d)^0.5 Comparison Use more conservative of the two results but depends on flow type Palomar TS Upper Basin Drawdown Cd 0.61 Orifice Diameter, D (in)1 g (ft^2/s)32.2 Height above Orifice, H (in)24 Orifice Flowrate, Q (cfs)0.04 Number of Orifices 3 QTotal (cfs)0.11 Basin & Rip Rap Volume, V (ft^3)1522 Drawdown Time, V/Q Total (s)13437 Drawdown Time, V/Q Total (hr)3.7 Less than 96 Hours? YES Palomar TS Upper Basin Riprap Unknown Q (cfs)10.1 D (ft)1.5 TW 0.6 0.4D when unknown g 32.2 D50,min (ft)0.42 Class 2 Min Apron Depth (ft)1.38 3.3D 50 D50 (in)6 Apron Depth (in)20 Min Rock Q (cfs)10.1 D (ft)1.5 TW 1.5 1.0D g 32.2 D50,min (ft)0.17 Class 1 Min Apron Depth (ft)0.55 3.5D 50 D50 (in)5 Apron Depth (in)18 Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc. Tuesday, Mar 22 2022 DA-1: 18in HDPE, S=0.5%min, Q=7.27cfs Circular Diameter (ft) = 1.50 Invert Elev (ft) = 100.00 Slope (%) = 0.50 N-Value = 0.012 Calculations Compute by: Known Q Known Q (cfs) = 7.27 Highlighted Depth (ft) = 1.12 Q (cfs) = 7.270 Area (sqft) = 1.42 Velocity (ft/s) = 5.13 Wetted Perim (ft) = 3.14 Crit Depth, Yc (ft) = 1.05 Top Width (ft) = 1.30 EGL (ft) = 1.53 0 1 2 3 Elev (ft)Section 99.50 100.00 100.50 101.00 101.50 102.00 Reach (ft) Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc. Tuesday, Mar 22 2022 DA-2: Ex 12in Pipe, S=4%, Q=7.42cfs Circular Diameter (ft) = 1.00 Invert Elev (ft) = 100.00 Slope (%) = 4.00 N-Value = 0.013 Calculations Compute by: Known Q Known Q (cfs) = 7.42 Highlighted Depth (ft) = 0.87 Q (cfs) = 7.420 Area (sqft) = 0.73 Velocity (ft/s) = 10.23 Wetted Perim (ft) = 2.41 Crit Depth, Yc (ft) = 0.98 Top Width (ft) = 0.67 EGL (ft) = 2.50 0 1 2 3 Elev (ft)Section 99.50 - 100.00 0 100.50 0 101.00 1 101.50 1 102.00 2 Reach (ft) Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc. Tuesday, Mar 22 2022 DA-2: Ex 14in Pipe, S=4%, Q=8.35cfs Circular Diameter (ft) = 1.17 Invert Elev (ft) = 100.00 Slope (%) = 4.00 N-Value = 0.013 Calculations Compute by: Known Q Known Q (cfs) = 8.35 Highlighted Depth (ft) = 0.77 Q (cfs) = 8.350 Area (sqft) = 0.75 Velocity (ft/s) = 11.11 Wetted Perim (ft) = 2.22 Crit Depth, Yc (ft) = 1.11 Top Width (ft) = 1.11 EGL (ft) = 2.69 0 1 2 3 Elev (ft)Section 99.50 100.00 100.50 101.00 101.50 102.00 Reach (ft) Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc. Friday, May 13 2022 DA-2 Ex Outfall (S=2.2% max) User-defined Invert Elev (ft) = 283.21 Slope (%) = 2.20 N-Value = 0.017 Calculations Compute by: Known Q Known Q (cfs) = 19.31 (Sta, El, n)-(Sta, El, n)... ( 0.00, 286.00)-(0.01, 283.33, 0.015)-(2.46, 283.21, 0.015)-(4.80, 283.34, 0.015)-(6.42, 283.47, 0.024)-(6.43, 286.14, 0.015) Highlighted Depth (ft) = 0.54 Q (cfs) = 19.31 Area (sqft) = 2.85 Velocity (ft/s) = 6.78 Wetted Perim (ft) = 7.12 Crit Depth, Yc (ft) = 0.76 Top Width (ft) = 6.41 EGL (ft) = 1.26 -1 0 1 2 3 4 5 6 7 8 Elev (ft)Depth (ft)Section 282.00 -1.21 283.00 -0.21 284.00 0.79 285.00 1.79 286.00 2.79 287.00 3.79 Sta (ft) Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc. Friday, May 13 2022 DA-2 Pr Outfall (S=2.2% max) User-defined Invert Elev (ft) = 283.21 Slope (%) = 2.20 N-Value = 0.017 Calculations Compute by: Known Q Known Q (cfs) = 18.68 (Sta, El, n)-(Sta, El, n)... ( 0.00, 286.00)-(0.01, 283.33, 0.015)-(2.46, 283.21, 0.015)-(4.80, 283.34, 0.015)-(6.42, 283.47, 0.024)-(6.43, 286.14, 0.015) Highlighted Depth (ft) = 0.53 Q (cfs) = 18.68 Area (sqft) = 2.78 Velocity (ft/s) = 6.71 Wetted Perim (ft) = 7.10 Crit Depth, Yc (ft) = 0.74 Top Width (ft) = 6.41 EGL (ft) = 1.23 -1 0 1 2 3 4 5 6 7 8 Elev (ft)Depth (ft)Section 282.00 -1.21 283.00 -0.21 284.00 0.79 285.00 1.79 286.00 2.79 287.00 3.79 Sta (ft) Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc. Tuesday, Mar 22 2022 DA-3: Ex 18in CMP, S=6.2%, Q=5.56cfs Circular Diameter (ft) = 1.50 Invert Elev (ft) = 100.00 Slope (%) = 6.20 N-Value = 0.024 Calculations Compute by: Known Q Known Q (cfs) = 5.56 Highlighted Depth (ft) = 0.66 Q (cfs) = 5.560 Area (sqft) = 0.75 Velocity (ft/s) = 7.38 Wetted Perim (ft) = 2.18 Crit Depth, Yc (ft) = 0.91 Top Width (ft) = 1.49 EGL (ft) = 1.51 0 1 2 3 Elev (ft)Section 99.50 100.00 100.50 101.00 101.50 102.00 Reach (ft) Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc. Tuesday, Mar 22 2022 DA-(1+3): Ex 18in CMP, S=6.2%, Q=10.1cfs Circular Diameter (ft) = 1.50 Invert Elev (ft) = 100.00 Slope (%) = 6.20 N-Value = 0.024 Calculations Compute by: Known Q Known Q (cfs) = 10.10 Highlighted Depth (ft) = 0.94 Q (cfs) = 10.10 Area (sqft) = 1.17 Velocity (ft/s) = 8.64 Wetted Perim (ft) = 2.74 Crit Depth, Yc (ft) = 1.23 Top Width (ft) = 1.45 EGL (ft) = 2.10 0 1 2 3 Elev (ft)Section 99.50 100.00 100.50 101.00 101.50 102.00 Reach (ft) Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc. Wednesday, Mar 23 2022 DA-(1+3): 24in HDPE, S=0.5%min, Q=10.24cfs Circular Diameter (ft) = 2.00 Invert Elev (ft) = 100.00 Slope (%) = 0.50 N-Value = 0.012 Calculations Compute by: Known Q Known Q (cfs) = 10.24 Highlighted Depth (ft) = 1.11 Q (cfs) = 10.24 Area (sqft) = 1.80 Velocity (ft/s) = 5.69 Wetted Perim (ft) = 3.37 Crit Depth, Yc (ft) = 1.15 Top Width (ft) = 1.99 EGL (ft) = 1.61 0 1 2 3 4 Elev (ft)Depth (ft)Section 99.50 -0.50 100.00 0.00 100.50 0.50 101.00 1.00 101.50 1.50 102.00 2.00 102.50 2.50 103.00 3.00 Reach (ft) Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc. Tuesday, Mar 22 2022 DA-2: 24in Trench Drain, S=0.5%min, Q=24.32cfs Rectangular Bottom Width (ft) = 2.00 Total Depth (ft) = 3.20 Invert Elev (ft) = 100.00 Slope (%) = 0.50 N-Value = 0.015 Calculations Compute by: Known Q Known Q (cfs) = 24.32 Highlighted Depth (ft) = 2.23 Q (cfs) = 24.32 Area (sqft) = 4.46 Velocity (ft/s) = 5.45 Wetted Perim (ft) = 6.46 Crit Depth, Yc (ft) = 1.67 Top Width (ft) = 2.00 EGL (ft) = 2.69 0 .5 1 1.5 2 2.5 3 Elev (ft)Depth (ft)Section 99.00 -1.00 100.00 0.00 101.00 1.00 102.00 2.00 103.00 3.00 104.00 4.00 Reach (ft) Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc. Tuesday, Mar 22 2022 DA-2: 24in HDPE, S=1%min, Q=24.32cfs Circular Diameter (ft) = 2.00 Invert Elev (ft) = 100.00 Slope (%) = 1.00 N-Value = 0.012 Calculations Compute by: Known Q Known Q (cfs) = 24.32 Highlighted Depth (ft) = 1.63 Q (cfs) = 24.32 Area (sqft) = 2.74 Velocity (ft/s) = 8.86 Wetted Perim (ft) = 4.51 Crit Depth, Yc (ft) = 1.75 Top Width (ft) = 1.55 EGL (ft) = 2.85 0 1 2 3 4 Elev (ft)DeSection 99.50 -0.50 100.00 0.00 100.50 0.50 101.00 1.00 101.50 1.50 102.00 2.00 102.50 2.50 103.00 3.00 Reach (ft) Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc. Friday, May 13 2022 DA-4 Ex Outfall Circular Diameter (ft) = 1.50 Invert Elev (ft) = 100.00 Slope (%) = 1.90 N-Value = 0.024 Calculations Compute by: Known Q Known Q (cfs) = 7.25 Highlighted Depth (ft) = 1.14 Q (cfs) = 7.250 Area (sqft) = 1.44 Velocity (ft/s) = 5.02 Wetted Perim (ft) = 3.18 Crit Depth, Yc (ft) = 1.05 Top Width (ft) = 1.28 EGL (ft) = 1.53 0 1 2 3 Elev (ft)Section 99.50 100.00 100.50 101.00 101.50 102.00 Reach (ft) Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc. Friday, May 13 2022 DA-4 Pr Outfall Circular Diameter (ft) = 1.50 Invert Elev (ft) = 100.00 Slope (%) = 1.90 N-Value = 0.024 Calculations Compute by: Known Q Known Q (cfs) = 0.45 Highlighted Depth (ft) = 0.25 Q (cfs) = 0.450 Area (sqft) = 0.20 Velocity (ft/s) = 2.30 Wetted Perim (ft) = 1.27 Crit Depth, Yc (ft) = 0.25 Top Width (ft) = 1.12 EGL (ft) = 0.33 0 1 2 3 Elev (ft)Section 99.50 100.00 100.50 101.00 101.50 102.00 Reach (ft) CWR0667/11/**** Palomar Transfer Station Stormwater Treatment Design Hydrology and Hydraulic Analysis Attachment 3 SWMM Inputs and Outputs [TITLE] ;;Project Title/Notes [OPTIONS] ;;Option Value FLOW_UNITS CFS INFILTRATION MODIFIED_GREEN_AMPT FLOW_ROUTING DYNWAVE LINK_OFFSETS DEPTH MIN_SLOPE 0 ALLOW_PONDING NO SKIP_STEADY_STATE NO START_DATE 01/01/1968 START_TIME 00:00:00 REPORT_START_DATE 01/01/1968 REPORT_START_TIME 00:00:00 END_DATE 12/31/2008 END_TIME 00:00:00 SWEEP_START 01/01 SWEEP_END 12/31 DRY_DAYS 0 REPORT_STEP 01:00:00 WET_STEP 00:05:00 DRY_STEP 01:00:00 ROUTING_STEP 0:00:30 RULE_STEP 00:00:00 INERTIAL_DAMPING PARTIAL NORMAL_FLOW_LIMITED BOTH FORCE_MAIN_EQUATION H-W VARIABLE_STEP 0.75 LENGTHENING_STEP 0 MIN_SURFAREA 12.566 MAX_TRIALS 8 HEAD_TOLERANCE 0.005 SYS_FLOW_TOL 5 LAT_FLOW_TOL 5 MINIMUM_STEP 0.5 THREADS 1 [EVAPORATION] ;;Data Source Parameters ;;-------------- ---------------- MONTHLY 0.06 0.08 0.11 0.15 0.17 0.19 0.19 0.18 0.15 0.11 0.08 0.06 DRY_ONLY YES [RAINGAGES] ;;Name Format Interval SCF Source SWMM Pre-Development Inputs ;;-------------- --------- ------ ------ ---------- 1.1-inch-85th CUMULATIVE 0:05 1.0 TIMESERIES 1.1-inch-85th Oceanside VOLUME 1:00 1.0 FILE "C:\Users\JAvina\OneDrive - Geosyntec\Documents\Projects - Temp\Palomar\Rain Gauge\9967Ocea.ncd" 100000 IN [SUBCATCHMENTS] ;;Name Rain Gage Outlet Area %Imperv Width %Slope CurbLen SnowPack ;;-------------- ---------------- ---------------- -------- -------- -------- -------- -------- ---------------- DMA-2 Oceanside SW-200 6.29 75 205 5 0 DMA-3 Oceanside North-Basin 1.59 75 176.4 2.1 0 DMA-2-project-area Oceanside SW-200 0.13 0 23.1 0.028 0 [SUBAREAS] ;;Subcatchment N-Imperv N-Perv S-Imperv S-Perv PctZero RouteTo PctRouted ;;-------------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- DMA-2 0.012 0.15 0.05 0.1 25 OUTLET DMA-3 0.012 0.15 0.05 0.1 25 OUTLET DMA-2-project-area 0.012 0.15 0.05 0.1 25 OUTLET [INFILTRATION] ;;Subcatchment Param1 Param2 Param3 Param4 Param5 ;;-------------- ---------- ---------- ---------- ---------- ---------- DMA-2 9 0.025 0.3 7 0 GREEN_AMPT DMA-3 93 0.5 7 7 0 CURVE_NUMBER DMA-2-project-area 9 0.025 0.3 7 0 GREEN_AMPT [JUNCTIONS] ;;Name Elevation MaxDepth InitDepth SurDepth Aponded ;;-------------- ---------- ---------- ---------- ---------- ---------- SW-200 282.3 0 0 0 0 North-Basin 293.5 1.15 0 0 0 South-Basin 288 4.1 0 0 0 [OUTFALLS] ;;Name Elevation Type Stage Data Gated Route To ;;-------------- ---------- ---------- ---------------- -------- ---------------- POC 260 FREE NO [CONDUITS] ;;Name From Node To Node Length Roughness InOffset OutOffset InitFlow MaxFlow ;;-------------- ---------------- ---------------- ---------- ---------- ---------- SWMM Pre-Development Inputs ---------- ---------- ---------- 18-inch-pipe-2 North-Basin South-Basin 37.4 0.013 0 0 0 0 4 South-Basin SW-200 300 0.01 0 0 0 0 2 SW-200 POC 100 0.012 0 0 0 0 [XSECTIONS] ;;Link Shape Geom1 Geom2 Geom3 Geom4 Barrels Culvert ;;-------------- ------------ ---------------- ---------- ---------- ---------- ---------- ---------- 18-inch-pipe-2 CIRCULAR 1.5 0 0 0 1 4 CIRCULAR 1 0 0 0 1 2 CIRCULAR 1.5 0 0 0 1 [CURVES] ;;Name Type X-Value Y-Value ;;-------------- ---------- ---------- ---------- PUMP Pump1 0 0 PUMP 0.01 0.667 PUMP 8 0.667 PUMP 9 0.667 ; pump-1 Pump4 0 0 pump-1 0.01 1 pump-1 2 1 pump-1 4.5 1 pump-1 10 1 pump-1 15 1 pump-1 16.6 1 ; pump-0.6 Pump4 0 0 pump-0.6 0.01 0.6 pump-0.6 2 0.6 pump-0.6 4.5 0.6 pump-0.6 10 0.6 pump-0.6 15 0.6 pump-0.6 16.6 0.6 ; pump-2 Pump4 0 0 pump-2 0.01 2 pump-2 2 2 pump-2 4.5 2 pump-2 10 2 pump-2 15 2 SWMM Pre-Development Inputs pump-2 16.6 2 ; 100gpm Rating 0 0 100gpm 3.95 0 100gpm 4 0.223 100gpm 9 0.223 ; 210gpm Rating 0 0 210gpm 2 0.467 210gpm 4 0.467 210gpm 9 0.467 ; 290gpm Rating 0 0 290gpm 2 0.64 290gpm 4 0.64 290gpm 9 0.64 ; 60000galbaker Storage 0 1002 60000galbaker 8 1002 60000galbaker 9 1002 ; 20000galbaker Storage 0 334 20000galbaker 8 334 20000galbaker 9 334 ; North-basin Storage 0 0 North-basin 0.5 415.12 North-basin 1 593.28 North-basin 1.15 650.5 ; South-Basin-existing Storage 0 0 South-Basin-existing 0.5 14.46 South-Basin-existing 1 46.33 South-Basin-existing 1.5 88.48 South-Basin-existing 2 140.97 South-Basin-existing 2.5 206.74 South-Basin-existing 3 287.4 South-Basin-existing 3.2 325.6 ; Pump_station Storage 0 19.625 Pump_station 10 19.625 Pump_station 17.15 19.625 ; ;10% volume reduction asssumed due to sedimentation 60kgal_reduced Storage 0 902.3 60kgal_reduced 8 902.3 60kgal_reduced 9 902.3 ; ;existing condition North-Basin-existing Storage 0 50.89 SWMM Pre-Development Inputs North-Basin-existing 0.5 213.71 North-Basin-existing 1 418.61 [REPORT] ;;Reporting Options SUBCATCHMENTS ALL NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS 6249971.378 1993844.489 6250920.751 1994736.807 Units Feet [COORDINATES] ;;Node X-Coord Y-Coord ;;-------------- ------------------ ------------------ SW-200 6250453.344 1994030.649 North-Basin 6250017.213 1994035.517 South-Basin 6250300.550 1993934.234 POC 6250492.379 1993973.139 [VERTICES] ;;Link X-Coord Y-Coord ;;-------------- ------------------ ------------------ [Polygons] ;;Subcatchment X-Coord Y-Coord ;;-------------- ------------------ ------------------ DMA-2 6250305.777 1994025.460 DMA-2 6250319.004 1994054.320 DMA-2 6250326.817 1994058.226 DMA-2 6250345.046 1994066.039 DMA-2 6250364.577 1994073.851 DMA-2 6250381.504 1994082.966 DMA-2 6250397.129 1994094.685 DMA-2 6250415.359 1994107.705 DMA-2 6250358.067 1994213.174 DMA-2 6250322.911 1994201.455 DMA-2 6250298.171 1994187.133 DMA-2 6250268.223 1994217.080 DMA-2 6250240.188 1994285.519 DMA-2 6250309.890 1994312.133 DMA-2 6250363.275 1994338.174 DMA-2 6250342.442 1994366.820 DMA-2 6250248.692 1994616.820 DMA-2 6250311.192 1994664.997 DMA-2 6250347.650 1994584.268 SWMM Pre-Development Inputs DMA-2 6250408.848 1994610.310 DMA-2 6250442.702 1994618.122 DMA-2 6250457.025 1994618.122 DMA-2 6250489.577 1994618.122 DMA-2 6250520.827 1994627.237 DMA-2 6250562.494 1994642.862 DMA-2 6250811.192 1994472.289 DMA-2 6250833.327 1994451.455 DMA-2 6250855.463 1994430.622 DMA-2 6250867.181 1994414.997 DMA-2 6250874.994 1994395.466 DMA-2 6250877.598 1994382.445 DMA-2 6250868.484 1994359.008 DMA-2 6250854.161 1994345.987 DMA-2 6250828.119 1994330.362 DMA-2 6250803.379 1994316.039 DMA-2 6250470.046 1994107.705 DMA-2 6250330.723 1994041.299 DMA-2 6250305.777 1994025.460 DMA-3 6250240.188 1994285.519 DMA-3 6250268.223 1994217.080 DMA-3 6250298.171 1994187.133 DMA-3 6250322.911 1994201.455 DMA-3 6250358.067 1994213.174 DMA-3 6250415.359 1994107.705 DMA-3 6250397.129 1994094.685 DMA-3 6250381.504 1994082.966 DMA-3 6250364.577 1994073.851 DMA-3 6250345.046 1994066.039 DMA-3 6250326.817 1994058.226 DMA-3 6250319.004 1994054.320 DMA-3 6250305.777 1994025.460 DMA-3 6250248.692 1993989.216 DMA-3 6250179.681 1993931.924 DMA-3 6250147.129 1993904.580 DMA-3 6250144.525 1993885.049 DMA-3 6250123.692 1993908.487 DMA-3 6250086.036 1993958.695 DMA-3 6250089.838 1993985.310 DMA-3 6250089.838 1993998.330 DMA-3 6250087.234 1994008.747 DMA-3 6250059.890 1994046.508 DMA-3 6250042.963 1994082.966 DMA-3 6250037.754 1994098.591 DMA-3 6250027.338 1994136.351 DMA-3 6250027.338 1994159.789 DMA-3 6250019.525 1994193.643 DMA-3 6250020.827 1994223.591 DMA-3 6250029.942 1994243.122 DMA-3 6250040.359 1994260.049 SWMM Pre-Development Inputs DMA-3 6250055.984 1994267.862 DMA-3 6250084.629 1994280.883 DMA-3 6250122.390 1994282.185 DMA-3 6250132.806 1994279.580 DMA-3 6250133.953 1994282.009 DMA-3 6250134.109 1994278.278 DMA-3 6250179.681 1994303.018 DMA-3 6250238.275 1994284.789 DMA-3 6250240.188 1994285.519 DMA-2-project-area 6250633.887 1994171.416 DMA-2-project-area 6250667.221 1994072.697 DMA-2-project-area 6250586.451 1994052.184 DMA-2-project-area 6250546.707 1994129.108 [SYMBOLS] ;;Gage X-Coord Y-Coord ;;-------------- ------------------ ------------------ Oceanside 6250094.981 1994482.654 SWMM Pre-Development Inputs EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015) -------------------------------------------------------------- WARNING 02: maximum depth increased for Node North-Basin ********************* Rainfall File Summary ********************* Station First Last Recording Periods Periods Periods ID Date Date Frequency w/Precip Missing Malfunc. ------------------------------------------------------------------------------- 100000 08/28/1951 05/23/2008 60 min 9134 0 0 ********************************************************* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ********************************************************* **************** Analysis Options **************** Flow Units ............... CFS Process Models: Rainfall/Runoff ........ YES RDII ................... NO Snowmelt ............... NO Groundwater ............ NO Flow Routing ........... YES Ponding Allowed ........ NO Water Quality .......... NO Infiltration Method ...... MODIFIED_GREEN_AMPT Flow Routing Method ...... DYNWAVE Surcharge Method ......... EXTRAN Starting Date ............ 01/01/1968 00:00:00 Ending Date .............. 12/31/2008 00:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 01:00:00 Wet Time Step ............ 00:05:00 Dry Time Step ............ 01:00:00 Routing Time Step ........ 30.00 sec Variable Time Step ....... YES Maximum Trials ........... 8 Number of Threads ........ 1 Head Tolerance ........... 0.005000 ft ************************** Volume Depth SWMM Pre-Development Results Runoff Quantity Continuity acre-feet inches ************************** --------- ------- Total Precipitation ...... 332.869 498.680 Evaporation Loss ......... 31.584 47.317 Infiltration Loss ........ 61.947 92.804 Surface Runoff ........... 239.737 359.157 Final Storage ............ 0.000 0.000 Continuity Error (%) ..... -0.120 ************************** Volume Volume Flow Routing Continuity acre-feet 10^6 gal ************************** --------- --------- Dry Weather Inflow ....... 0.000 0.000 Wet Weather Inflow ....... 239.769 78.132 Groundwater Inflow ....... 0.000 0.000 RDII Inflow .............. 0.000 0.000 External Inflow .......... 0.000 0.000 External Outflow ......... 239.961 78.195 Flooding Loss ............ 0.000 0.000 Evaporation Loss ......... 0.000 0.000 Exfiltration Loss ........ 0.000 0.000 Initial Stored Volume .... 0.000 0.000 Final Stored Volume ...... 0.000 0.000 Continuity Error (%) ..... -0.080 *************************** Time-Step Critical Elements *************************** Link 18-inch-pipe-2 (7.45%) Link 2 (1.37%) ******************************** Highest Flow Instability Indexes ******************************** All links are stable. ************************* Routing Time Step Summary ************************* Minimum Time Step : 0.73 sec Average Time Step : 28.19 sec Maximum Time Step : 30.00 sec Percent in Steady State : -0.00 Average Iterations per Step : 2.00 Percent Not Converging : 0.01 Time Step Frequencies : SWMM Pre-Development Results 30.000 - 13.228 sec : 92.74 % 13.228 - 5.833 sec : 5.01 % 5.833 - 2.572 sec : 2.24 % 2.572 - 1.134 sec : 0.00 % 1.134 - 0.500 sec : 0.00 % *************************** Subcatchment Runoff Summary *************************** ------------------------------------------------------------------------------------ ------------------------------------------ Total Total Total Total Imperv Perv Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Runoff Runoff Coeff Subcatchment in in in in in in in 10^6 gal CFS ------------------------------------------------------------------------------------ ------------------------------------------ DMA-2 498.68 0.00 45.77 96.24 330.05 27.17 357.22 61.01 7.45 0.716 DMA-3 498.68 0.00 56.59 53.23 332.93 56.68 389.62 16.82 1.90 0.781 DMA-2-project-area 498.68 0.00 8.54 410.39 0.00 80.57 80.57 0.28 0.10 0.162 ****************** Node Depth Summary ****************** --------------------------------------------------------------------------------- Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Depth Node Type Feet Feet Feet days hr:min Feet --------------------------------------------------------------------------------- SW-200 JUNCTION 0.01 0.43 282.73 12887 16:00 0.43 North-Basin JUNCTION 0.00 0.22 293.72 12887 16:00 0.22 South-Basin JUNCTION 0.01 0.37 288.37 12887 16:00 0.37 POC OUTFALL 0.01 0.42 260.42 12887 16:00 0.42 ******************* Node Inflow Summary ******************* SWMM Pre-Development Results ------------------------------------------------------------------------------------ ------------- Maximum Maximum Lateral Total Flow Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow Occurrence Volume Volume Error Node Type CFS CFS days hr:min 10^6 gal 10^6 gal Percent ------------------------------------------------------------------------------------ ------------- SW-200 JUNCTION 7.53 9.43 12887 16:00 61.3 78.1 -0.075 North-Basin JUNCTION 1.90 1.90 12887 16:00 16.8 16.8 -0.003 South-Basin JUNCTION 0.00 1.90 12887 16:00 0 16.8 -0.021 POC OUTFALL 0.00 9.43 12887 16:00 0 78.2 0.000 ********************** Node Surcharge Summary ********************** No nodes were surcharged. ********************* Node Flooding Summary ********************* No nodes were flooded. *********************** Outfall Loading Summary *********************** ----------------------------------------------------------- Flow Avg Max Total Freq Flow Flow Volume Outfall Node Pcnt CFS CFS 10^6 gal ----------------------------------------------------------- POC 8.64 0.50 9.43 78.189 ----------------------------------------------------------- System 8.64 0.50 9.43 78.189 SWMM Pre-Development Results ******************** Link Flow Summary ******************** ----------------------------------------------------------------------------- Maximum Time of Max Maximum Max/ Max/ |Flow| Occurrence |Veloc| Full Full Link Type CFS days hr:min ft/sec Flow Depth ----------------------------------------------------------------------------- 18-inch-pipe-2 CONDUIT 1.90 12887 16:00 7.65 0.05 0.20 4 CONDUIT 1.90 12887 16:00 6.52 0.30 0.40 2 CONDUIT 9.43 12887 16:00 >50.00 0.17 0.28 *************************** Flow Classification Summary *************************** ------------------------------------------------------------------------------------ - Adjusted ---------- Fraction of Time in Flow Class ---------- /Actual Up Down Sub Sup Up Down Norm Inlet Conduit Length Dry Dry Dry Crit Crit Crit Crit Ltd Ctrl ------------------------------------------------------------------------------------ - 18-inch-pipe-2 1.00 0.48 0.05 0.00 0.39 0.08 0.00 0.00 1.00 0.00 4 1.00 0.06 0.75 0.00 0.11 0.08 0.00 0.00 0.94 0.00 2 1.00 0.14 0.00 0.00 0.78 0.09 0.00 0.00 0.00 0.00 ************************* Conduit Surcharge Summary ************************* No conduits were surcharged. Analysis begun on: Fri Feb 11 22:54:01 2022 Analysis ended on: Fri Feb 11 22:55:21 2022 Total elapsed time: 00:01:20 SWMM Pre-Development Results [TITLE] ;;Project Title/Notes [OPTIONS] ;;Option Value FLOW_UNITS CFS INFILTRATION MODIFIED_GREEN_AMPT FLOW_ROUTING DYNWAVE LINK_OFFSETS DEPTH MIN_SLOPE 0 ALLOW_PONDING NO SKIP_STEADY_STATE NO START_DATE 05/12/2022 START_TIME 00:00:00 REPORT_START_DATE 05/12/2022 REPORT_START_TIME 00:00:00 END_DATE 05/12/2022 END_TIME 08:00:00 SWEEP_START 01/01 SWEEP_END 12/31 DRY_DAYS 0 REPORT_STEP 01:00:00 WET_STEP 00:05:00 DRY_STEP 01:00:00 ROUTING_STEP 0:00:30 RULE_STEP 00:00:00 INERTIAL_DAMPING PARTIAL NORMAL_FLOW_LIMITED BOTH FORCE_MAIN_EQUATION H‐W VARIABLE_STEP 0.75 LENGTHENING_STEP 0 MIN_SURFAREA 12.566 MAX_TRIALS 8 HEAD_TOLERANCE 0.005 SYS_FLOW_TOL 5 LAT_FLOW_TOL 5 MINIMUM_STEP 0.5 THREADS 1 [EVAPORATION] ;;Data Source Parameters ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ MONTHLY 0.06 0.08 0.11 0.15 0.17 0.19 0.19 0.18 0.15 0.11 0.08 0.06 DRY_ONLY YES [RAINGAGES] ;;Name Format Interval SCF Source SWMM 100-year, 6-hour Post Development Analysis Input Files ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐ ‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ DA1‐100‐yr INTENSITY 0:06 1.0 TIMESERIES DA‐1‐100‐yr DA2‐100‐yr INTENSITY 0:10 1.0 TIMESERIES DA‐2‐100‐yr DA3‐100‐yr INTENSITY 0:05 1.0 TIMESERIES DA‐3‐100‐yr DA4‐100‐yr VOLUME 0:05 1.0 TIMESERIES DA‐4‐100‐yr [JUNCTIONS] ;;Name Elevation MaxDepth InitDepth SurDepth Aponded ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ POC‐out 280.92 4.5 0 0 1000 7 306 0 0 0 0 8 296.7 0 0 0 0 10 287.65 0 0 0 600 12 285.91 5 0 .5 1000 [OUTFALLS] ;;Name Elevation Type Stage Data Gated Route To ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Overflow‐treated‐tank 0 FREE NO POC1 280.4 FREE NO DA‐2‐overflow 281 FREE NO [STORAGE] ;;Name Elev. MaxDepth InitDepth Shape Curve Name/Params N/A Fevap Psi Ksat IMD ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ North‐Basin 291.3 1.15 0 TABULAR North‐Basin‐existing 0 1 9 0.02 0.3 South‐Basin 281.8 5 0 TABULAR South‐Basin‐existing 0 1 9 0.02 0.3 pump‐well 274.65 14.45 0 TABULAR Pump_station 0 0 treatment‐storage 290 9 0 TABULAR 63000galbaker 0 0 flow‐control 285 12 0 TABULAR 4000gal 0 0 DA‐2‐trench 277.75 7 0 TABULAR trench‐drain 0 0 SW‐100 305.85 4 0 TABULAR Junction‐Struct 0 0 6 310.72 5 0 TABULAR Junction‐Struct 0 0 1 301.65 3.45 0 TABULAR Junction‐Struct 0 0 2 299.4 4 0 TABULAR Junction‐Struct 0 0 [CONDUITS] SWMM 100-year, 6-hour Post Development Analysis Input Files ;;Name From Node To Node Length Roughness InOffset OutOffset InitFlow MaxFlow ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ 18‐inch‐pipe‐2 North‐Basin South‐Basin 37.4 0.013 0 0 0 0 24‐inch‐pipe South‐Basin pump‐well 123 0.01 0 6.05 0 0 Out‐pipe POC‐out POC1 50 0.013 0 0 0 0 4 SW‐100 1 113 0.01 0 0.1 0 0 6 1 2 213 0.01 0 0.1 0 0 7 2 North‐Basin 37 0.01 0 0 0 0 24‐inch‐pipe‐1 DA‐2‐trench pump‐well 179 0.01 0 1.45 0 0 conc‐swale‐1 6 7 263 0.013 0 0 0 0 downpipe 7 8 315 0.013 0 0 0 0 conc‐swale‐2 8 10 169 0.013 0 0 0 0 conc‐swale‐3 10 12 63 0.013 0 0 0 0 conc‐swale‐4 12 DA‐2‐trench 338 0.013 0 0 0 0 DA‐2‐overflow DA‐2‐trench DA‐2‐overflow 25 0.013 6.0 0 0 0 [PUMPS] ;;Name From Node To Node Pump Curve Status Sartup Shutoff ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ pump pump‐well treatment‐storage pump‐0.6 ON 4 2 hydro‐pump pump‐well POC‐out pump‐0.6 OFF 4 2 [ORIFICES] ;;Name From Node To Node Type Offset Qcoeff Gated CloseTime ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ TreatedFCBypass flow‐control POC‐out BOTTOM 10.5 0.61 NO 0 treated‐low‐flow flow‐control POC‐out BOTTOM 0 0.61 NO 0 SWMM 100-year, 6-hour Post Development Analysis Input Files [WEIRS] ;;Name From Node To Node Type CrestHt Qcoeff Gated EndCon EndCoeff Surcharge RoadWidth RoadSurf Coeff. Curve ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ treatment‐storage‐overflow treatment‐storage Overflow‐treated‐tank TRANSVERSE 8.5 3.33 NO 0 0 YES 1 South‐Basin DA‐2‐trench ROADWAY 3 3.33 NO 0 0 YES 50 PAVED [OUTLETS] ;;Name From Node To Node Offset Type QTable/Qcoeff Qexpon Gated ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ Treated treatment‐storage flow‐control 0 TABULAR/DEPTH 210gpm NO [XSECTIONS] ;;Link Shape Geom1 Geom2 Geom3 Geom4 Barrels Culvert ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ 18‐inch‐pipe‐2 CIRCULAR 1.5 0 0 0 1 24‐inch‐pipe CIRCULAR 2 0 0 0 1 Out‐pipe CIRCULAR 1.5 0 0 0 1 4 CIRCULAR 1.5 0 0 0 1 6 CIRCULAR 1.5 0 0 0 1 7 CIRCULAR 1.5 0 0 0 1 24‐inch‐pipe‐1 CIRCULAR 2 0 0 0 1 conc‐swale‐1 TRAPEZOIDAL 0.5 2 2 2 1 downpipe CIRCULAR 1.5 0 0 0 1 conc‐swale‐2 TRAPEZOIDAL 0.5 2 2 2 1 conc‐swale‐3 TRAPEZOIDAL 0.5 2 2 2 1 conc‐swale‐4 TRAPEZOIDAL 0.5 2 2 2 1 DA‐2‐overflow RECT_OPEN 0.5 2 0 0 1 SWMM 100-year, 6-hour Post Development Analysis Input Files TreatedFCBypass CIRCULAR 0.167 0 0 0 treated‐low‐flow CIRCULAR 0.167 0 0 0 treatment‐storage‐overflow RECT_OPEN 1 20 0 0 1 RECT_OPEN 1 30 0 0 [CONTROLS] RULE PUMP1 IF NODE treatment‐storage DEPTH < 8 AND NODE pump‐well DEPTH >= 1 THEN PUMP PUMP STATUS = ON ELSE PUMP PUMP STATUS = OFF RULE PUMP2 IF NODE treatment‐storage DEPTH >= 7.5 AND NODE pump‐well DEPTH >= 1 THEN PUMP hydro‐pump STATUS = ON ELSE PUMP hydro‐pump STATUS = OFF [INFLOWS] ;;Node Constituent Time Series Type Mfactor Sfactor Baseline Pattern ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐ 12 FLOW DA‐4‐100‐yr FLOW 1.0 1.0 North‐Basin FLOW DA‐3‐100‐yr FLOW 1.0 1.0 SW‐100 FLOW DA‐1‐100‐yr FLOW 1.0 1.0 6 FLOW DA‐2‐100‐yr FLOW 1.0 1.0 [CURVES] ;;Name Type X‐Value Y‐Value ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ;variable pump rate pump‐hydro Pump4 0 0 pump‐hydro 0.01 0.6 pump‐hydro 4 0.6 pump‐hydro 4.01 0.6 pump‐hydro 8 1 SWMM 100-year, 6-hour Post Development Analysis Input Files pump‐hydro 11 1 ; pump‐1.5 Pump4 0 0 pump‐1.5 0.01 1.5 pump‐1.5 2 1.5 pump‐1.5 4.5 1.5 pump‐1.5 10 1.5 pump‐1.5 15 1.5 pump‐1.5 16.6 1.5 ; pump‐0.6 Pump4 0 0 pump‐0.6 0.01 0.6 pump‐0.6 2 0.6 pump‐0.6 4.5 0.6 pump‐0.6 10 0.6 pump‐0.6 15 0.6 pump‐0.6 16.6 0.6 ; pump‐1 Pump4 0 0 pump‐1 0.01 1 pump‐1 2 1 pump‐1 4.01 1 pump‐1 6 1 pump‐1 15 1 pump‐1 18 1 ; 100gpm Rating 0 0 100gpm 3.95 0 100gpm 4 0.223 100gpm 9 0.223 ; 210gpm Rating 0 0 210gpm 2 0.467 210gpm 4 0.467 210gpm 9 0.467 ; 290gpm Rating 0 0 290gpm 2 0.64 290gpm 4 0.64 290gpm 9 0.64 ; 0.41cfs_control Rating 0 0.41 0.41cfs_control 1 0.41 0.41cfs_control 10 0.41 ; 63000galbaker Storage 0 1264 63000galbaker 8 1264 63000galbaker 9 1264 ; 20000galbaker Storage 0 334 SWMM 100-year, 6-hour Post Development Analysis Input Files 20000galbaker 8 334 20000galbaker 9 334 ; North‐basin Storage 0 0 North‐basin 0.5 415.12 North‐basin 1 593.28 North‐basin 1.15 650.5 ; South‐Basin‐existing Storage 0 0 South‐Basin‐existing 0.5 14.46 South‐Basin‐existing 1 46.33 South‐Basin‐existing 1.5 88.48 South‐Basin‐existing 2 140.97 South‐Basin‐existing 2.5 206.74 South‐Basin‐existing 3 287.4 South‐Basin‐existing 3.2 325.6 ; Pump_station Storage 0 19.625 Pump_station 10 19.625 Pump_station 18.3 19.625 ; ;10% volume reduction asssumed due to sedimentation 60kgal_reduced Storage 0 902.3 60kgal_reduced 8 902.3 60kgal_reduced 9 902.3 ; ;existing condition North‐Basin‐existing Storage 0 50.89 North‐Basin‐existing 0.5 213.71 North‐Basin‐existing 1 418.61 ; 80000galbaker Storage 0 1336.8 80000galbaker 8 1336.8 80000galbaker 9 1336.8 ; 10000gal Storage 0 167 10000gal 8 167 10000gal 9 167 ; ;underground storage 4000gal Storage 0 48.61 4000gal 6 48.61 4000gal 7 48.61 4000gal 8 48.61 4000gal 11 48.61 ; ;7ft diameter manhole pump‐station‐large Storage 0 38.48 pump‐station‐large 12.15 38.48 pump‐station‐large 15.15 7.07 SWMM 100-year, 6-hour Post Development Analysis Input Files pump‐station‐large 17.15 7.07 ; trench‐drain Storage 0 201.6 trench‐drain 3 201.6 trench‐drain 5.85 201.6 trench‐drain 5.86 1000 trench‐drain 6.05 1000 ; parking Storage 0 40414 parking 0.5 40414 ; Junction‐Struct Storage 0 16 Junction‐Struct 4 16 Junction‐Struct 5 16 [TIMESERIES] ;;Name Date Time Value ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ 1.1‐inch‐85th 3/20/2017 0:00 0 1.1‐inch‐85th 0:05 0.002036913 1.1‐inch‐85th 0:10 0.004073826 1.1‐inch‐85th 0:15 0.006110739 1.1‐inch‐85th 0:20 0.008147174 1.1‐inch‐85th 0:25 0.010184087 1.1‐inch‐85th 0:30 0.012221 1.1‐inch‐85th 0:35 0.014283739 1.1‐inch‐85th 0:40 0.016346478 1.1‐inch‐85th 0:45 0.018409217 1.1‐inch‐85th 0:50 0.020471957 1.1‐inch‐85th 0:55 0.022534217 1.1‐inch‐85th 1:00 0.024596957 1.1‐inch‐85th 1:05 0.026686478 1.1‐inch‐85th 1:10 0.028776 1.1‐inch‐85th 1:15 0.030865522 1.1‐inch‐85th 1:20 0.032955043 1.1‐inch‐85th 1:25 0.035044565 1.1‐inch‐85th 1:30 0.037133609 1.1‐inch‐85th 1:35 0.039251348 1.1‐inch‐85th 1:40 0.041368609 1.1‐inch‐85th 1:45 0.04348587 1.1‐inch‐85th 1:50 0.04560313 1.1‐inch‐85th 1:55 0.047720391 1.1‐inch‐85th 2:00 0.049837652 1.1‐inch‐85th 2:05 0.051984087 1.1‐inch‐85th 2:10 0.054130522 1.1‐inch‐85th 2:15 0.056276957 1.1‐inch‐85th 2:20 0.058423391 1.1‐inch‐85th 2:25 0.060569826 1.1‐inch‐85th 2:30 0.062716739 1.1‐inch‐85th 2:35 0.064893304 SWMM 100-year, 6-hour Post Development Analysis Input Files 1.1‐inch‐85th 2:40 0.067070348 1.1‐inch‐85th 2:45 0.069247391 1.1‐inch‐85th 2:50 0.071423957 1.1‐inch‐85th 2:55 0.073601 1.1‐inch‐85th 3:00 0.075778043 1.1‐inch‐85th 3:05 0.077986652 1.1‐inch‐85th 3:10 0.080195739 1.1‐inch‐85th 3:15 0.082404348 1.1‐inch‐85th 3:20 0.084612957 1.1‐inch‐85th 3:25 0.086822043 1.1‐inch‐85th 3:30 0.089030652 1.1‐inch‐85th 3:35 0.091272739 1.1‐inch‐85th 3:40 0.093514826 1.1‐inch‐85th 3:45 0.095756435 1.1‐inch‐85th 3:50 0.097998522 1.1‐inch‐85th 3:55 0.100240609 1.1‐inch‐85th 4:00 0.102482696 1.1‐inch‐85th 4:05 0.104759696 1.1‐inch‐85th 4:10 0.107036696 1.1‐inch‐85th 4:15 0.109313696 1.1‐inch‐85th 4:20 0.111590696 1.1‐inch‐85th 4:25 0.113867696 1.1‐inch‐85th 4:30 0.116144696 1.1‐inch‐85th 4:35 0.118458043 1.1‐inch‐85th 4:40 0.12077187 1.1‐inch‐85th 4:45 0.123085696 1.1‐inch‐85th 4:50 0.125399043 1.1‐inch‐85th 4:55 0.12771287 1.1‐inch‐85th 5:00 0.130026696 1.1‐inch‐85th 5:05 0.132378783 1.1‐inch‐85th 5:10 0.134731348 1.1‐inch‐85th 5:15 0.137083435 1.1‐inch‐85th 5:20 0.139436 1.1‐inch‐85th 5:25 0.141788565 1.1‐inch‐85th 5:30 0.144140652 1.1‐inch‐85th 5:35 0.14653387 1.1‐inch‐85th 5:40 0.148926609 1.1‐inch‐85th 5:45 0.151319826 1.1‐inch‐85th 5:50 0.153713043 1.1‐inch‐85th 5:55 0.156105783 1.1‐inch‐85th 6:00 0.158499 1.1‐inch‐85th 6:05 0.160934783 1.1‐inch‐85th 6:10 0.163371043 1.1‐inch‐85th 6:15 0.165806826 1.1‐inch‐85th 6:20 0.168242609 1.1‐inch‐85th 6:25 0.17067887 1.1‐inch‐85th 6:30 0.173114652 1.1‐inch‐85th 6:35 0.175596348 1.1‐inch‐85th 6:40 0.178078043 1.1‐inch‐85th 6:45 0.180559739 SWMM 100-year, 6-hour Post Development Analysis Input Files 1.1‐inch‐85th 6:50 0.183040957 1.1‐inch‐85th 6:55 0.185522652 1.1‐inch‐85th 7:00 0.188004348 1.1‐inch‐85th 7:05 0.19053387 1.1‐inch‐85th 7:10 0.193063391 1.1‐inch‐85th 7:15 0.195593391 1.1‐inch‐85th 7:20 0.198122913 1.1‐inch‐85th 7:25 0.200652435 1.1‐inch‐85th 7:30 0.203181957 1.1‐inch‐85th 7:35 0.20576313 1.1‐inch‐85th 7:40 0.208344304 1.1‐inch‐85th 7:45 0.210925478 1.1‐inch‐85th 7:50 0.213506652 1.1‐inch‐85th 7:55 0.216087826 1.1‐inch‐85th 8:00 0.218669 1.1‐inch‐85th 8:05 0.221305174 1.1‐inch‐85th 8:10 0.22394087 1.1‐inch‐85th 8:15 0.226577043 1.1‐inch‐85th 8:20 0.229212739 1.1‐inch‐85th 8:25 0.231848913 1.1‐inch‐85th 8:30 0.234484609 1.1‐inch‐85th 8:35 0.23717913 1.1‐inch‐85th 8:40 0.239873652 1.1‐inch‐85th 8:45 0.242568174 1.1‐inch‐85th 8:50 0.245262696 1.1‐inch‐85th 8:55 0.247957217 1.1‐inch‐85th 9:00 0.250651739 1.1‐inch‐85th 9:05 0.253408913 1.1‐inch‐85th 9:10 0.256166087 1.1‐inch‐85th 9:15 0.258923739 1.1‐inch‐85th 9:20 0.261680913 1.1‐inch‐85th 9:25 0.264438087 1.1‐inch‐85th 9:30 0.267195739 1.1‐inch‐85th 9:35 0.270020348 1.1‐inch‐85th 9:40 0.272845435 1.1‐inch‐85th 9:45 0.275670522 1.1‐inch‐85th 9:50 0.278495609 1.1‐inch‐85th 9:55 0.281320217 1.1‐inch‐85th 10:00 0.284145304 1.1‐inch‐85th 10:05 0.287043565 1.1‐inch‐85th 10:10 0.289941348 1.1‐inch‐85th 10:15 0.29283913 1.1‐inch‐85th 10:20 0.295737391 1.1‐inch‐85th 10:25 0.298635174 1.1‐inch‐85th 10:30 0.301532957 1.1‐inch‐85th 10:35 0.304510609 1.1‐inch‐85th 10:40 0.307488261 1.1‐inch‐85th 10:45 0.310465435 1.1‐inch‐85th 10:50 0.313443087 1.1‐inch‐85th 10:55 0.316420739 SWMM 100-year, 6-hour Post Development Analysis Input Files 1.1‐inch‐85th 11:00 0.319398391 1.1‐inch‐85th 11:05 0.32246213 1.1‐inch‐85th 11:10 0.325526348 1.1‐inch‐85th 11:15 0.328590565 1.1‐inch‐85th 11:20 0.331654304 1.1‐inch‐85th 11:25 0.334718522 1.1‐inch‐85th 11:30 0.337782261 1.1‐inch‐85th 11:35 0.340941652 1.1‐inch‐85th 11:40 0.344101043 1.1‐inch‐85th 11:45 0.347259957 1.1‐inch‐85th 11:50 0.350419348 1.1‐inch‐85th 11:55 0.353578739 1.1‐inch‐85th 12:00 0.356737652 1.1‐inch‐85th 12:05 0.360001783 1.1‐inch‐85th 12:10 0.363265913 1.1‐inch‐85th 12:15 0.366530043 1.1‐inch‐85th 12:20 0.369794174 1.1‐inch‐85th 12:25 0.373057826 1.1‐inch‐85th 12:30 0.376321957 1.1‐inch‐85th 12:35 0.379702783 1.1‐inch‐85th 12:40 0.383083609 1.1‐inch‐85th 12:45 0.386464435 1.1‐inch‐85th 12:50 0.389845739 1.1‐inch‐85th 12:55 0.393226565 1.1‐inch‐85th 13:00 0.396607391 1.1‐inch‐85th 13:05 0.400118783 1.1‐inch‐85th 13:10 0.403630174 1.1‐inch‐85th 13:15 0.407141565 1.1‐inch‐85th 13:20 0.410652957 1.1‐inch‐85th 13:25 0.414164348 1.1‐inch‐85th 13:30 0.417675739 1.1‐inch‐85th 13:35 0.421334913 1.1‐inch‐85th 13:40 0.424994565 1.1‐inch‐85th 13:45 0.428654217 1.1‐inch‐85th 13:50 0.432313391 1.1‐inch‐85th 13:55 0.435973043 1.1‐inch‐85th 14:00 0.439632696 1.1‐inch‐85th 14:05 0.443461652 1.1‐inch‐85th 14:10 0.447290609 1.1‐inch‐85th 14:15 0.451120043 1.1‐inch‐85th 14:20 0.454949 1.1‐inch‐85th 14:25 0.458777957 1.1‐inch‐85th 14:30 0.462607391 1.1‐inch‐85th 14:35 0.466632913 1.1‐inch‐85th 14:40 0.470658913 1.1‐inch‐85th 14:45 0.474684435 1.1‐inch‐85th 14:50 0.478710435 1.1‐inch‐85th 14:55 0.482736435 1.1‐inch‐85th 15:00 0.486761957 1.1‐inch‐85th 15:05 0.491020391 SWMM 100-year, 6-hour Post Development Analysis Input Files 1.1‐inch‐85th 15:10 0.495278826 1.1‐inch‐85th 15:15 0.499536783 1.1‐inch‐85th 15:20 0.503795217 1.1‐inch‐85th 15:25 0.508053652 1.1‐inch‐85th 15:30 0.512311609 1.1‐inch‐85th 15:35 0.516850304 1.1‐inch‐85th 15:40 0.521388522 1.1‐inch‐85th 15:45 0.525927217 1.1‐inch‐85th 15:50 0.530465435 1.1‐inch‐85th 15:55 0.535003652 1.1‐inch‐85th 16:00 0.539542348 1.1‐inch‐85th 16:05 0.544300565 1.1‐inch‐85th 16:10 0.549058304 1.1‐inch‐85th 16:15 0.553941348 1.1‐inch‐85th 16:20 0.558824391 1.1‐inch‐85th 16:25 0.563841826 1.1‐inch‐85th 16:30 0.568859739 1.1‐inch‐85th 16:35 0.574025435 1.1‐inch‐85th 16:40 0.579191609 1.1‐inch‐85th 16:45 0.584519435 1.1‐inch‐85th 16:50 0.589847739 1.1‐inch‐85th 16:55 0.595355391 1.1‐inch‐85th 17:00 0.600863043 1.1‐inch‐85th 17:05 0.606570609 1.1‐inch‐85th 17:10 0.612278652 1.1‐inch‐85th 17:15 0.618210522 1.1‐inch‐85th 17:20 0.624142391 1.1‐inch‐85th 17:25 0.630329174 1.1‐inch‐85th 17:30 0.636515957 1.1‐inch‐85th 17:35 0.642994957 1.1‐inch‐85th 17:40 0.649473957 1.1‐inch‐85th 17:45 0.656293478 1.1‐inch‐85th 17:50 0.663113 1.1‐inch‐85th 17:55 0.670335696 1.1‐inch‐85th 18:00 0.677558391 1.1‐inch‐85th 18:05 0.685270826 1.1‐inch‐85th 18:10 0.692983739 1.1‐inch‐85th 18:15 0.701306435 1.1‐inch‐85th 18:20 0.709629609 1.1‐inch‐85th 18:25 0.718746696 1.1‐inch‐85th 18:30 0.727863304 1.1‐inch‐85th 18:35 0.737748 1.1‐inch‐85th 18:40 0.748282652 1.1‐inch‐85th 18:45 0.759624609 1.1‐inch‐85th 18:50 0.772006304 1.1‐inch‐85th 18:55 0.785800304 1.1‐inch‐85th 19:00 0.801679043 1.1‐inch‐85th 19:05 0.821141391 1.1‐inch‐85th 19:10 0.849699304 1.1‐inch‐85th 19:15 0.89958 SWMM 100-year, 6-hour Post Development Analysis Input Files 1.1‐inch‐85th 19:20 0.912929696 1.1‐inch‐85th 19:25 0.922592957 1.1‐inch‐85th 19:30 0.930610043 1.1‐inch‐85th 19:35 0.937631391 1.1‐inch‐85th 19:40 0.943964043 1.1‐inch‐85th 19:45 0.949784 1.1‐inch‐85th 19:50 0.955202696 1.1‐inch‐85th 19:55 0.960294739 1.1‐inch‐85th 20:00 0.965114652 1.1‐inch‐85th 20:05 0.969704043 1.1‐inch‐85th 20:10 0.974094 1.1‐inch‐85th 20:15 0.978309391 1.1‐inch‐85th 20:20 0.982370304 1.1‐inch‐85th 20:25 0.986293 1.1‐inch‐85th 20:30 0.990091348 1.1‐inch‐85th 20:35 0.993777304 1.1‐inch‐85th 20:40 0.997359957 1.1‐inch‐85th 20:45 1.000848391 1.1‐inch‐85th 20:50 1.004249304 1.1‐inch‐85th 20:55 1.007570348 1.1‐inch‐85th 21:00 1.010815348 1.1‐inch‐85th 21:05 1.013991 1.1‐inch‐85th 21:10 1.017101609 1.1‐inch‐85th 21:15 1.020150043 1.1‐inch‐85th 21:20 1.023142043 1.1‐inch‐85th 21:25 1.026079043 1.1‐inch‐85th 21:30 1.028964391 1.1‐inch‐85th 21:35 1.0318 1.1‐inch‐85th 21:40 1.034590652 1.1‐inch‐85th 21:45 1.037337304 1.1‐inch‐85th 21:50 1.040041391 1.1‐inch‐85th 21:55 1.042706739 1.1‐inch‐85th 22:00 1.045332391 1.1‐inch‐85th 22:05 1.047922652 1.1‐inch‐85th 22:10 1.050478 1.1‐inch‐85th 22:15 1.052999391 1.1‐inch‐85th 22:20 1.055488739 1.1‐inch‐85th 22:25 1.057947 1.1‐inch‐85th 22:30 1.060375609 1.1‐inch‐85th 22:35 1.062775043 1.1‐inch‐85th 22:40 1.065147696 1.1‐inch‐85th 22:45 1.067492609 1.1‐inch‐85th 22:50 1.069813609 1.1‐inch‐85th 22:55 1.072108304 1.1‐inch‐85th 23:00 1.074380043 1.1‐inch‐85th 23:05 1.076627391 1.1‐inch‐85th 23:10 1.078852739 1.1‐inch‐85th 23:15 1.081055609 1.1‐inch‐85th 23:20 1.083236957 1.1‐inch‐85th 23:25 1.085398696 SWMM 100-year, 6-hour Post Development Analysis Input Files 1.1‐inch‐85th 23:30 1.087540348 1.1‐inch‐85th 23:35 1.089662391 1.1‐inch‐85th 23:40 1.091765304 1.1‐inch‐85th 23:45 1.093851 1.1‐inch‐85th 23:50 1.095918043 1.1‐inch‐85th 23:55 1.097967391 1.1‐inch‐85th 3/21/2017 0:00 1.1 ; ;3‐inch storm event (hypothetical) test‐large‐storm 3/20/2017 0:00 0 test‐large‐storm 0:05 0.005555217 test‐large‐storm 0:10 0.011110435 test‐large‐storm 0:15 0.016665652 test‐large‐storm 0:20 0.022219565 test‐large‐storm 0:25 0.027774783 test‐large‐storm 0:30 0.03333 test‐large‐storm 0:35 0.038955652 test‐large‐storm 0:40 0.044581304 test‐large‐storm 0:45 0.050206955 test‐large‐storm 0:50 0.05583261 test‐large‐storm 0:55 0.061456955 test‐large‐storm 1:00 0.06708261 test‐large‐storm 1:05 0.072781304 test‐large‐storm 1:10 0.07848 test‐large‐storm 1:15 0.084178696 test‐large‐storm 1:20 0.08987739 test‐large‐storm 1:25 0.095576086 test‐large‐storm 1:30 0.101273479 test‐large‐storm 1:35 0.107049131 test‐large‐storm 1:40 0.112823479 test‐large‐storm 1:45 0.118597827 test‐large‐storm 1:50 0.124372173 test‐large‐storm 1:55 0.130146521 test‐large‐storm 2:00 0.135920869 test‐large‐storm 2:05 0.141774783 test‐large‐storm 2:10 0.147628696 test‐large‐storm 2:15 0.15348261 test‐large‐storm 2:20 0.159336521 test‐large‐storm 2:25 0.165190435 test‐large‐storm 2:30 0.171045652 test‐large‐storm 2:35 0.176981738 test‐large‐storm 2:40 0.182919131 test‐large‐storm 2:45 0.188856521 test‐large‐storm 2:50 0.19479261 test‐large‐storm 2:55 0.20073 test‐large‐storm 3:00 0.20666739 test‐large‐storm 3:05 0.212690869 test‐large‐storm 3:10 0.218715652 test‐large‐storm 3:15 0.224739131 test‐large‐storm 3:20 0.23076261 SWMM 100-year, 6-hour Post Development Analysis Input Files test‐large‐storm 3:25 0.23678739 test‐large‐storm 3:30 0.242810869 test‐large‐storm 3:35 0.248925652 test‐large‐storm 3:40 0.255040435 test‐large‐storm 3:45 0.261153914 test‐large‐storm 3:50 0.267268696 test‐large‐storm 3:55 0.273383479 test‐large‐storm 4:00 0.279498262 test‐large‐storm 4:05 0.285708262 test‐large‐storm 4:10 0.291918262 test‐large‐storm 4:15 0.298128262 test‐large‐storm 4:20 0.304338262 test‐large‐storm 4:25 0.310548262 test‐large‐storm 4:30 0.316758262 test‐large‐storm 4:35 0.32306739 test‐large‐storm 4:40 0.329377827 test‐large‐storm 4:45 0.335688262 test‐large‐storm 4:50 0.34199739 test‐large‐storm 4:55 0.348307827 test‐large‐storm 5:00 0.354618262 test‐large‐storm 5:05 0.361033045 test‐large‐storm 5:10 0.367449131 test‐large‐storm 5:15 0.373863914 test‐large‐storm 5:20 0.38028 test‐large‐storm 5:25 0.386696086 test‐large‐storm 5:30 0.393110869 test‐large‐storm 5:35 0.399637827 test‐large‐storm 5:40 0.406163479 test‐large‐storm 5:45 0.412690435 test‐large‐storm 5:50 0.41921739 test‐large‐storm 5:55 0.425743045 test‐large‐storm 6:00 0.43227 test‐large‐storm 6:05 0.438913045 test‐large‐storm 6:10 0.44555739 test‐large‐storm 6:15 0.452200435 test‐large‐storm 6:20 0.458843479 test‐large‐storm 6:25 0.465487827 test‐large‐storm 6:30 0.472130869 test‐large‐storm 6:35 0.478899131 test‐large‐storm 6:40 0.48566739 test‐large‐storm 6:45 0.492435652 test‐large‐storm 6:50 0.49920261 test‐large‐storm 6:55 0.505970869 test‐large‐storm 7:00 0.512739131 test‐large‐storm 7:05 0.519637827 test‐large‐storm 7:10 0.526536521 test‐large‐storm 7:15 0.533436521 test‐large‐storm 7:20 0.540335217 test‐large‐storm 7:25 0.547233914 test‐large‐storm 7:30 0.55413261 SWMM 100-year, 6-hour Post Development Analysis Input Files test‐large‐storm 7:35 0.561172173 test‐large‐storm 7:40 0.568211738 test‐large‐storm 7:45 0.575251304 test‐large‐storm 7:50 0.582290869 test‐large‐storm 7:55 0.589330435 test‐large‐storm 8:00 0.59637 test‐large‐storm 8:05 0.603559565 test‐large‐storm 8:10 0.610747827 test‐large‐storm 8:15 0.61793739 test‐large‐storm 8:20 0.625125652 test‐large‐storm 8:25 0.632315217 test‐large‐storm 8:30 0.639503479 test‐large‐storm 8:35 0.646852173 test‐large‐storm 8:40 0.654200869 test‐large‐storm 8:45 0.661549565 test‐large‐storm 8:50 0.668898262 test‐large‐storm 8:55 0.676246955 test‐large‐storm 9:00 0.683595652 test‐large‐storm 9:05 0.691115217 test‐large‐storm 9:10 0.698634783 test‐large‐storm 9:15 0.706155652 test‐large‐storm 9:20 0.713675217 test‐large‐storm 9:25 0.721194783 test‐large‐storm 9:30 0.728715652 test‐large‐storm 9:35 0.736419131 test‐large‐storm 9:40 0.744123914 test‐large‐storm 9:45 0.751828696 test‐large‐storm 9:50 0.759533479 test‐large‐storm 9:55 0.767236955 test‐large‐storm 10:00 0.774941738 test‐large‐storm 10:05 0.782846086 test‐large‐storm 10:10 0.790749131 test‐large‐storm 10:15 0.798652173 test‐large‐storm 10:20 0.806556521 test‐large‐storm 10:25 0.814459565 test‐large‐storm 10:30 0.82236261 test‐large‐storm 10:35 0.830483479 test‐large‐storm 10:40 0.838604348 test‐large‐storm 10:45 0.846723914 test‐large‐storm 10:50 0.854844783 test‐large‐storm 10:55 0.862965652 test‐large‐storm 11:00 0.871086521 test‐large‐storm 11:05 0.879442173 test‐large‐storm 11:10 0.887799131 test‐large‐storm 11:15 0.896156086 test‐large‐storm 11:20 0.904511738 test‐large‐storm 11:25 0.912868696 test‐large‐storm 11:30 0.921224348 test‐large‐storm 11:35 0.929840869 test‐large‐storm 11:40 0.93845739 SWMM 100-year, 6-hour Post Development Analysis Input Files test‐large‐storm 11:45 0.94707261 test‐large‐storm 11:50 0.955689131 test‐large‐storm 11:55 0.964305652 test‐large‐storm 12:00 0.972920869 test‐large‐storm 12:05 0.981823045 test‐large‐storm 12:10 0.990725217 test‐large‐storm 12:15 0.99962739 test‐large‐storm 12:20 1.008529565 test‐large‐storm 12:25 1.017430435 test‐large‐storm 12:30 1.02633261 test‐large‐storm 12:35 1.035553045 test‐large‐storm 12:40 1.044773479 test‐large‐storm 12:45 1.053993914 test‐large‐storm 12:50 1.063215652 test‐large‐storm 12:55 1.072436086 test‐large‐storm 13:00 1.081656521 test‐large‐storm 13:05 1.091233045 test‐large‐storm 13:10 1.100809565 test‐large‐storm 13:15 1.110386086 test‐large‐storm 13:20 1.11996261 test‐large‐storm 13:25 1.129539131 test‐large‐storm 13:30 1.139115652 test‐large‐storm 13:35 1.149095217 test‐large‐storm 13:40 1.159076086 test‐large‐storm 13:45 1.169056955 test‐large‐storm 13:50 1.179036521 test‐large‐storm 13:55 1.18901739 test‐large‐storm 14:00 1.198998262 test‐large‐storm 14:05 1.209440869 test‐large‐storm 14:10 1.219883479 test‐large‐storm 14:15 1.23032739 test‐large‐storm 14:20 1.24077 test‐large‐storm 14:25 1.25121261 test‐large‐storm 14:30 1.261656521 test‐large‐storm 14:35 1.272635217 test‐large‐storm 14:40 1.283615217 test‐large‐storm 14:45 1.294593914 test‐large‐storm 14:50 1.305573914 test‐large‐storm 14:55 1.316553914 test‐large‐storm 15:00 1.32753261 test‐large‐storm 15:05 1.339146521 test‐large‐storm 15:10 1.350760435 test‐large‐storm 15:15 1.362373045 test‐large‐storm 15:20 1.373986955 test‐large‐storm 15:25 1.385600869 test‐large‐storm 15:30 1.397213479 test‐large‐storm 15:35 1.409591738 test‐large‐storm 15:40 1.421968696 test‐large‐storm 15:45 1.434346955 test‐large‐storm 15:50 1.446723914 SWMM 100-year, 6-hour Post Development Analysis Input Files test‐large‐storm 15:55 1.459100869 test‐large‐storm 16:00 1.471479131 test‐large‐storm 16:05 1.484456086 test‐large‐storm 16:10 1.497431738 test‐large‐storm 16:15 1.510749131 test‐large‐storm 16:20 1.524066521 test‐large‐storm 16:25 1.537750435 test‐large‐storm 16:30 1.551435652 test‐large‐storm 16:35 1.565523914 test‐large‐storm 16:40 1.579613479 test‐large‐storm 16:45 1.594143914 test‐large‐storm 16:50 1.608675652 test‐large‐storm 16:55 1.623696521 test‐large‐storm 17:00 1.63871739 test‐large‐storm 17:05 1.654283479 test‐large‐storm 17:10 1.669850869 test‐large‐storm 17:15 1.686028696 test‐large‐storm 17:20 1.702206521 test‐large‐storm 17:25 1.719079565 test‐large‐storm 17:30 1.73595261 test‐large‐storm 17:35 1.75362261 test‐large‐storm 17:40 1.77129261 test‐large‐storm 17:45 1.789891304 test‐large‐storm 17:50 1.80849 test‐large‐storm 17:55 1.828188262 test‐large‐storm 18:00 1.847886521 test‐large‐storm 18:05 1.868920435 test‐large‐storm 18:10 1.889955652 test‐large‐storm 18:15 1.912653914 test‐large‐storm 18:20 1.935353479 test‐large‐storm 18:25 1.960218262 test‐large‐storm 18:30 1.985081738 test‐large‐storm 18:35 2.01204 test‐large‐storm 18:40 2.040770869 test‐large‐storm 18:45 2.071703479 test‐large‐storm 18:50 2.105471738 test‐large‐storm 18:55 2.143091738 test‐large‐storm 19:00 2.18639739 test‐large‐storm 19:05 2.239476521 test‐large‐storm 19:10 2.317361738 test‐large‐storm 19:15 2.4534 test‐large‐storm 19:20 2.489808262 test‐large‐storm 19:25 2.51616261 test‐large‐storm 19:30 2.53802739 test‐large‐storm 19:35 2.557176521 test‐large‐storm 19:40 2.57444739 test‐large‐storm 19:45 2.59032 test‐large‐storm 19:50 2.605098262 test‐large‐storm 19:55 2.618985652 test‐large‐storm 20:00 2.632130869 SWMM 100-year, 6-hour Post Development Analysis Input Files test‐large‐storm 20:05 2.64464739 test‐large‐storm 20:10 2.65662 test‐large‐storm 20:15 2.668116521 test‐large‐storm 20:20 2.679191738 test‐large‐storm 20:25 2.68989 test‐large‐storm 20:30 2.700249131 test‐large‐storm 20:35 2.710301738 test‐large‐storm 20:40 2.72007261 test‐large‐storm 20:45 2.729586521 test‐large‐storm 20:50 2.738861738 test‐large‐storm 20:55 2.747919131 test‐large‐storm 21:00 2.756769131 test‐large‐storm 21:05 2.76543 test‐large‐storm 21:10 2.773913479 test‐large‐storm 21:15 2.78222739 test‐large‐storm 21:20 2.79038739 test‐large‐storm 21:25 2.79839739 test‐large‐storm 21:30 2.806266521 test‐large‐storm 21:35 2.814 test‐large‐storm 21:40 2.821610869 test‐large‐storm 21:45 2.829101738 test‐large‐storm 21:50 2.836476521 test‐large‐storm 21:55 2.843745652 test‐large‐storm 22:00 2.850906521 test‐large‐storm 22:05 2.857970869 test‐large‐storm 22:10 2.86494 test‐large‐storm 22:15 2.871816521 test‐large‐storm 22:20 2.878605652 test‐large‐storm 22:25 2.88531 test‐large‐storm 22:30 2.891933479 test‐large‐storm 22:35 2.89847739 test‐large‐storm 22:40 2.904948262 test‐large‐storm 22:45 2.911343479 test‐large‐storm 22:50 2.917673479 test‐large‐storm 22:55 2.923931738 test‐large‐storm 23:00 2.93012739 test‐large‐storm 23:05 2.936256521 test‐large‐storm 23:10 2.942325652 test‐large‐storm 23:15 2.948333479 test‐large‐storm 23:20 2.95428261 test‐large‐storm 23:25 2.960178262 test‐large‐storm 23:30 2.966019131 test‐large‐storm 23:35 2.971806521 test‐large‐storm 23:40 2.977541738 test‐large‐storm 23:45 2.98323 test‐large‐storm 23:50 2.98886739 test‐large‐storm 23:55 2.994456521 test‐large‐storm 3/21/2017 0:00 3 ; DA‐1‐100‐yr 5/12/2022 0:00 0 SWMM 100-year, 6-hour Post Development Analysis Input Files DA‐1‐100‐yr 0:06 0.2 DA‐1‐100‐yr 0:12 0.2 DA‐1‐100‐yr 0:18 0.2 DA‐1‐100‐yr 0:24 0.2 DA‐1‐100‐yr 0:30 0.2 DA‐1‐100‐yr 0:36 0.2 DA‐1‐100‐yr 0:42 0.2 DA‐1‐100‐yr 0:48 0.2 DA‐1‐100‐yr 0:54 0.2 DA‐1‐100‐yr 1:00 0.2 DA‐1‐100‐yr 1:06 0.2 DA‐1‐100‐yr 1:12 0.2 DA‐1‐100‐yr 1:18 0.2 DA‐1‐100‐yr 1:24 0.2 DA‐1‐100‐yr 1:30 0.2 DA‐1‐100‐yr 1:36 0.2 DA‐1‐100‐yr 1:42 0.3 DA‐1‐100‐yr 1:48 0.3 DA‐1‐100‐yr 1:54 0.3 DA‐1‐100‐yr 2:00 0.3 DA‐1‐100‐yr 2:06 0.3 DA‐1‐100‐yr 2:12 0.3 DA‐1‐100‐yr 2:18 0.3 DA‐1‐100‐yr 2:24 0.3 DA‐1‐100‐yr 2:30 0.3 DA‐1‐100‐yr 2:36 0.3 DA‐1‐100‐yr 2:42 0.4 DA‐1‐100‐yr 2:48 0.4 DA‐1‐100‐yr 2:54 0.4 DA‐1‐100‐yr 3:00 0.4 DA‐1‐100‐yr 3:06 0.5 DA‐1‐100‐yr 3:12 0.5 DA‐1‐100‐yr 3:18 0.5 DA‐1‐100‐yr 3:24 0.6 DA‐1‐100‐yr 3:30 0.6 DA‐1‐100‐yr 3:36 0.7 DA‐1‐100‐yr 3:42 0.9 DA‐1‐100‐yr 3:48 1 DA‐1‐100‐yr 3:54 1.4 DA‐1‐100‐yr 4:00 2 DA‐1‐100‐yr 4:06 7.27 DA‐1‐100‐yr 4:12 1.1 DA‐1‐100‐yr 4:18 0.8 DA‐1‐100‐yr 4:24 0.6 DA‐1‐100‐yr 4:30 0.5 DA‐1‐100‐yr 4:36 0.4 DA‐1‐100‐yr 4:42 0.4 DA‐1‐100‐yr 4:48 0.4 DA‐1‐100‐yr 4:54 0.3 DA‐1‐100‐yr 5:00 0.3 SWMM 100-year, 6-hour Post Development Analysis Input Files DA‐1‐100‐yr 5:06 0.3 DA‐1‐100‐yr 5:12 0.3 DA‐1‐100‐yr 5:18 0.3 DA‐1‐100‐yr 5:24 0.2 DA‐1‐100‐yr 5:30 0.2 DA‐1‐100‐yr 5:36 0.2 DA‐1‐100‐yr 5:42 0.2 DA‐1‐100‐yr 5:48 0.2 DA‐1‐100‐yr 5:54 0.2 DA‐1‐100‐yr 6:00 0.2 DA‐1‐100‐yr 5/12/2022 6:06 0 ; DA‐2‐100‐yr 0:00 0 DA‐2‐100‐yr 5/12/2022 0:10 0.8 DA‐2‐100‐yr 0:20 0.8 DA‐2‐100‐yr 0:30 0.8 DA‐2‐100‐yr 0:40 0.8 DA‐2‐100‐yr 0:50 0.9 DA‐2‐100‐yr 1:00 0.9 DA‐2‐100‐yr 1:10 0.9 DA‐2‐100‐yr 1:20 1 DA‐2‐100‐yr 1:30 1 DA‐2‐100‐yr 1:40 1 DA‐2‐100‐yr 1:50 1.1 DA‐2‐100‐yr 2:00 1.1 DA‐2‐100‐yr 2:10 1.2 DA‐2‐100‐yr 2:20 1.3 DA‐2‐100‐yr 2:30 1.4 DA‐2‐100‐yr 2:40 1.4 DA‐2‐100‐yr 2:50 1.6 DA‐2‐100‐yr 3:00 1.7 DA‐2‐100‐yr 3:10 1.9 DA‐2‐100‐yr 3:20 2.1 DA‐2‐100‐yr 3:30 2.6 DA‐2‐100‐yr 3:40 2.9 DA‐2‐100‐yr 3:50 4.3 DA‐2‐100‐yr 4:00 6.2 DA‐2‐100‐yr 4:10 21.57 DA‐2‐100‐yr 4:20 3.5 DA‐2‐100‐yr 4:30 2.3 DA‐2‐100‐yr 4:40 1.8 DA‐2‐100‐yr 4:50 1.5 DA‐2‐100‐yr 5:00 1.3 DA‐2‐100‐yr 5:10 1.2 DA‐2‐100‐yr 5:20 1.1 DA‐2‐100‐yr 5:30 1 DA‐2‐100‐yr 5:40 0.9 DA‐2‐100‐yr 5:50 0.9 DA‐2‐100‐yr 6:00 0.8 DA‐2‐100‐yr 5/12/2022 6:10 0 SWMM 100-year, 6-hour Post Development Analysis Input Files ; DA‐3‐100‐yr 5/12/2022 0:00 0 DA‐3‐100‐yr 0:05 0.1 DA‐3‐100‐yr 0:10 0.1 DA‐3‐100‐yr 0:15 0.1 DA‐3‐100‐yr 0:20 0.1 DA‐3‐100‐yr 0:25 0.2 DA‐3‐100‐yr 0:30 0.2 DA‐3‐100‐yr 0:35 0.2 DA‐3‐100‐yr 0:40 0.2 DA‐3‐100‐yr 0:45 0.2 DA‐3‐100‐yr 0:50 0.2 DA‐3‐100‐yr 0:55 0.2 DA‐3‐100‐yr 1:00 0.2 DA‐3‐100‐yr 1:05 0.2 DA‐3‐100‐yr 1:10 0.2 DA‐3‐100‐yr 1:15 0.2 DA‐3‐100‐yr 1:20 0.2 DA‐3‐100‐yr 1:25 0.2 DA‐3‐100‐yr 1:30 0.2 DA‐3‐100‐yr 1:35 0.2 DA‐3‐100‐yr 1:40 0.2 DA‐3‐100‐yr 1:45 0.2 DA‐3‐100‐yr 1:50 0.2 DA‐3‐100‐yr 1:55 0.2 DA‐3‐100‐yr 2:00 0.2 DA‐3‐100‐yr 2:05 0.2 DA‐3‐100‐yr 2:10 0.2 DA‐3‐100‐yr 2:15 0.2 DA‐3‐100‐yr 2:20 0.2 DA‐3‐100‐yr 2:25 0.3 DA‐3‐100‐yr 2:30 0.3 DA‐3‐100‐yr 2:35 0.3 DA‐3‐100‐yr 2:40 0.3 DA‐3‐100‐yr 2:45 0.3 DA‐3‐100‐yr 2:50 0.3 DA‐3‐100‐yr 2:55 0.3 DA‐3‐100‐yr 3:00 0.3 DA‐3‐100‐yr 3:05 0.4 DA‐3‐100‐yr 3:10 0.4 DA‐3‐100‐yr 3:15 0.4 DA‐3‐100‐yr 3:20 0.4 DA‐3‐100‐yr 3:25 0.5 DA‐3‐100‐yr 3:30 0.5 DA‐3‐100‐yr 3:35 0.6 DA‐3‐100‐yr 3:40 0.6 DA‐3‐100‐yr 3:45 0.7 DA‐3‐100‐yr 3:50 0.9 DA‐3‐100‐yr 3:55 1.3 DA‐3‐100‐yr 4:00 1.7 SWMM 100-year, 6-hour Post Development Analysis Input Files DA‐3‐100‐yr 4:05 6.39 DA‐3‐100‐yr 4:10 1 DA‐3‐100‐yr 4:15 0.7 DA‐3‐100‐yr 4:20 0.5 DA‐3‐100‐yr 4:25 0.4 DA‐3‐100‐yr 4:30 0.4 DA‐3‐100‐yr 4:35 0.3 DA‐3‐100‐yr 4:40 0.3 DA‐3‐100‐yr 4:45 0.3 DA‐3‐100‐yr 4:50 0.3 DA‐3‐100‐yr 4:55 0.2 DA‐3‐100‐yr 5:00 0.2 DA‐3‐100‐yr 5:05 0.2 DA‐3‐100‐yr 5:10 0.2 DA‐3‐100‐yr 5:15 0.2 DA‐3‐100‐yr 5:20 0.2 DA‐3‐100‐yr 5:25 0.2 DA‐3‐100‐yr 5:30 0.2 DA‐3‐100‐yr 5:35 0.2 DA‐3‐100‐yr 5:40 0.2 DA‐3‐100‐yr 5:45 0.2 DA‐3‐100‐yr 5:50 0.2 DA‐3‐100‐yr 5:55 0.1 DA‐3‐100‐yr 6:00 0.1 DA‐3‐100‐yr 5/12/2022 6:05 0 ; DA‐4‐100‐yr 5/12/2022 0:00 0 DA‐4‐100‐yr 0:05 0.1 DA‐4‐100‐yr 0:10 0.1 DA‐4‐100‐yr 0:15 0.1 DA‐4‐100‐yr 0:20 0.1 DA‐4‐100‐yr 0:25 0.1 DA‐4‐100‐yr 0:30 0.1 DA‐4‐100‐yr 0:35 0.1 DA‐4‐100‐yr 0:40 0.1 DA‐4‐100‐yr 0:45 0.1 DA‐4‐100‐yr 0:50 0.1 DA‐4‐100‐yr 0:55 0.1 DA‐4‐100‐yr 1:00 0.1 DA‐4‐100‐yr 1:05 0.1 DA‐4‐100‐yr 1:10 0.1 DA‐4‐100‐yr 1:15 0.1 DA‐4‐100‐yr 1:20 0.1 DA‐4‐100‐yr 1:25 0.1 DA‐4‐100‐yr 1:30 0.1 DA‐4‐100‐yr 1:35 0.1 DA‐4‐100‐yr 1:40 0.1 DA‐4‐100‐yr 1:45 0.1 DA‐4‐100‐yr 1:50 0.1 DA‐4‐100‐yr 1:55 0.1 SWMM 100-year, 6-hour Post Development Analysis Input Files DA‐4‐100‐yr 2:00 0.1 DA‐4‐100‐yr 2:05 0.2 DA‐4‐100‐yr 2:10 0.2 DA‐4‐100‐yr 2:15 0.2 DA‐4‐100‐yr 2:20 0.2 DA‐4‐100‐yr 2:25 0.2 DA‐4‐100‐yr 2:30 0.2 DA‐4‐100‐yr 2:35 0.2 DA‐4‐100‐yr 2:40 0.2 DA‐4‐100‐yr 2:45 0.2 DA‐4‐100‐yr 2:50 0.2 DA‐4‐100‐yr 2:55 0.2 DA‐4‐100‐yr 3:00 0.2 DA‐4‐100‐yr 3:05 0.2 DA‐4‐100‐yr 3:10 0.3 DA‐4‐100‐yr 3:15 0.3 DA‐4‐100‐yr 3:20 0.3 DA‐4‐100‐yr 3:25 0.3 DA‐4‐100‐yr 3:30 0.3 DA‐4‐100‐yr 3:35 0.4 DA‐4‐100‐yr 3:40 0.4 DA‐4‐100‐yr 3:45 0.5 DA‐4‐100‐yr 3:50 0.6 DA‐4‐100‐yr 3:55 0.9 DA‐4‐100‐yr 4:00 1.1 DA‐4‐100‐yr 4:05 4.35 DA‐4‐100‐yr 4:10 0.7 DA‐4‐100‐yr 4:15 0.5 DA‐4‐100‐yr 4:20 0.4 DA‐4‐100‐yr 4:25 0.3 DA‐4‐100‐yr 4:30 0.3 DA‐4‐100‐yr 4:35 0.2 DA‐4‐100‐yr 4:40 0.2 DA‐4‐100‐yr 4:45 0.2 DA‐4‐100‐yr 4:50 0.2 DA‐4‐100‐yr 4:55 0.2 DA‐4‐100‐yr 5:00 0.2 DA‐4‐100‐yr 5:05 0.1 DA‐4‐100‐yr 5:10 0.1 DA‐4‐100‐yr 5:15 0.1 DA‐4‐100‐yr 5:20 0.1 DA‐4‐100‐yr 5:25 0.1 DA‐4‐100‐yr 5:30 0.1 DA‐4‐100‐yr 5:35 0.1 DA‐4‐100‐yr 5:40 0.1 DA‐4‐100‐yr 5:45 0.1 DA‐4‐100‐yr 5:50 0.1 DA‐4‐100‐yr 5:55 0.1 DA‐4‐100‐yr 6:00 0.1 DA‐4‐100‐yr 5/12/2022 6:05 0 SWMM 100-year, 6-hour Post Development Analysis Input Files [REPORT] ;;Reporting Options SUBCATCHMENTS ALL NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS 6249971.378 1993844.489 6250920.751 1994736.807 Units Feet [COORDINATES] ;;Node X‐Coord Y‐Coord ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ POC‐out 6250251.270 1993963.530 7 6250627.795 1994451.959 8 6250727.075 1994199.860 10 6250575.511 1994120.642 12 6250485.417 1994081.588 Overflow‐treated‐tank 6250016.138 1993968.449 POC1 6250317.185 1993931.065 DA‐2‐overflow 6250364.388 1993950.669 North‐Basin 6250007.284 1994178.001 South‐Basin 6249999.906 1994106.568 pump‐well 6250156.112 1994033.366 treatment‐storage 6250061.394 1994003.867 flow‐control 6250134.196 1993963.530 DA‐2‐trench 6250328.299 1994019.840 SW‐100 6249992.626 1994347.848 6 6250480.650 1994506.810 1 6250003.537 1994289.610 2 6249996.274 1994238.769 [VERTICES] ;;Link X‐Coord Y‐Coord ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ TreatedFCBypass 6250248.057 1993885.633 [SYMBOLS] ;;Gage X‐Coord Y‐Coord ;;‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ DA1‐100‐yr 6249713.016 1994660.235 DA2‐100‐yr 6249711.995 1994629.606 DA3‐100‐yr 6249711.995 1994597.957 DA4‐100‐yr 6249711.995 1994568.349 SWMM 100-year, 6-hour Post Development Analysis Input Files EPA STORM WATER MANAGEMENT MODEL ‐ VERSION 5.1 (Build 5.1.015) ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ********************************************************* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ********************************************************* **************** Analysis Options **************** Flow Units ............... CFS Process Models: Rainfall/Runoff ........ YES RDII ................... NO Snowmelt ............... NO Groundwater ............ NO Flow Routing ........... YES Ponding Allowed ........ NO Water Quality .......... NO Flow Routing Method ...... DYNWAVE Surcharge Method ......... EXTRAN Starting Date ............ 05/12/2022 00:00:00 Ending Date .............. 05/12/2022 08:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 01:00:00 Routing Time Step ........ 30.00 sec Variable Time Step ....... YES Maximum Trials ........... 8 Number of Threads ........ 1 Head Tolerance ........... 0.005000 ft ************************** Volume Volume Flow Routing Continuity acre‐feet 10^6 gal ************************** ‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐ Dry Weather Inflow ....... 0.000 0.000 Wet Weather Inflow ....... 0.000 0.000 Groundwater Inflow ....... 0.000 0.000 RDII Inflow .............. 0.000 0.000 External Inflow .......... 1.658 0.540 External Outflow ......... 1.237 0.403 Flooding Loss ............ 0.154 0.050 Evaporation Loss ......... 0.000 0.000 Exfiltration Loss ........ 0.000 0.000 Initial Stored Volume .... 0.000 0.000 Final Stored Volume ...... 0.227 0.074 SWMM 100-year, 6-hour Post Development Analysis Result Files Continuity Error (%) ..... 2.335 ************************* Highest Continuity Errors ************************* Node DA‐2‐trench (3.63%) Node flow‐control (‐2.86%) Node pump‐well (1.81%) Node treatment‐storage (1.49%) *************************** Time‐Step Critical Elements *************************** Link DA‐2‐overflow (72.16%) Link 7 (19.66%) Link Out‐pipe (7.76%) ******************************** Highest Flow Instability Indexes ******************************** Link Treated (79) Link 24‐inch‐pipe‐1 (3) Link 24‐inch‐pipe (2) Link TreatedFCBypass (1) ************************* Routing Time Step Summary ************************* Minimum Time Step : 0.83 sec Average Time Step : 2.54 sec Maximum Time Step : 30.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 2.15 Percent Not Converging : 0.05 Time Step Frequencies : 30.000 ‐ 13.228 sec : 0.02 % 13.228 ‐ 5.833 sec : 7.94 % 5.833 ‐ 2.572 sec : 22.72 % 2.572 ‐ 1.134 sec : 53.67 % 1.134 ‐ 0.500 sec : 15.66 % ****************** Node Depth Summary ****************** SWMM 100-year, 6-hour Post Development Analysis Result Files ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Depth Node Type Feet Feet Feet days hr:min Feet ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ POC‐out JUNCTION 0.17 0.21 281.13 0 07:59 0.21 7 JUNCTION 0.41 1.24 307.24 0 04:14 0.68 8 JUNCTION 0.15 0.43 297.13 0 04:14 0.26 10 JUNCTION 0.18 0.50 288.15 0 04:02 0.31 12 JUNCTION 0.36 2.19 288.10 0 04:00 0.49 Overflow‐treated‐tank OUTFALL 0.00 0.00 0.00 0 00:00 0.00 POC1 OUTFALL 0.17 0.21 280.61 0 07:59 0.21 DA‐2‐overflow OUTFALL 0.13 0.50 281.50 0 04:05 0.32 North‐Basin STORAGE 0.13 0.49 291.79 0 04:05 0.26 South‐Basin STORAGE 1.69 3.01 284.81 0 04:05 2.32 pump‐well STORAGE 8.40 9.96 284.61 0 04:06 9.45 treatment‐storage STORAGE 3.37 6.23 296.23 0 08:00 6.23 flow‐control STORAGE 7.92 11.22 296.22 0 07:59 11.20 DA‐2‐trench STORAGE 5.34 6.64 284.39 0 04:07 6.32 SW‐100 STORAGE 0.14 0.54 306.39 0 04:06 0.28 6 STORAGE 0.43 4.98 315.70 0 04:13 0.36 1 STORAGE 0.20 0.77 302.42 0 04:06 0.38 2 STORAGE 0.09 0.34 299.74 0 04:06 0.18 ******************* Node Inflow Summary ******************* ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Maximum Maximum Lateral Total Flow Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow Occurrence Volume Volume Error Node Type CFS CFS days hr:min 10^6 gal 10^6 gal Percent ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐ POC‐out JUNCTION 0.00 0.45 0 07:59 0 0.0641 0.048 7 JUNCTION 0.00 15.39 0 04:13 0 0.348 0.019 8 JUNCTION 0.00 15.33 0 04:14 0 0.348 0.000 SWMM 100-year, 6-hour Post Development Analysis Result Files 10 JUNCTION 0.00 15.32 0 04:14 0 0.348 0.000 12 JUNCTION 4.35 9.00 0 04:05 0.0434 0.341 ‐0.009 Overflow‐treated‐tank OUTFALL 0.00 0.00 0 00:00 0 0 0.000 gal POC1 OUTFALL 0.00 0.45 0 07:59 0 0.0641 0.000 DA‐2‐overflow OUTFALL 0.00 18.68 0 04:07 0 0.339 0.000 North‐Basin STORAGE 6.39 12.31 0 04:05 0.0655 0.149 ‐0.006 South‐Basin STORAGE 0.00 12.28 0 04:05 0 0.149 0.013 pump‐well STORAGE 0.00 12.16 0 04:06 0 0.203 1.846 treatment‐storage STORAGE 0.00 0.60 0 00:06 0 0.127 1.514 flow‐control STORAGE 0.00 0.47 0 02:02 0 0.0663 ‐2.782 DA‐2‐trench STORAGE 0.00 20.43 0 04:05 0 0.413 3.772 SW‐100 STORAGE 7.27 7.27 0 04:06 0.0831 0.0831 0.063 6 STORAGE 21.56 21.56 0 04:10 0.348 0.348 ‐0.003 1 STORAGE 0.00 7.23 0 04:06 0 0.0831 ‐0.038 2 STORAGE 0.00 7.11 0 04:06 0 0.0831 0.000 ********************** Node Surcharge Summary ********************** Surcharging occurs when water rises above the top of the highest conduit. ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Max. Height Min. Depth Hours Above Crown Below Rim Node Type Surcharged Feet Feet ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 10 JUNCTION 0.33 0.000 0.000 12 JUNCTION 0.37 1.691 2.809 ********************* Node Flooding Summary ********************* SWMM 100-year, 6-hour Post Development Analysis Result Files Flooding refers to all water that overflows a node, whether it ponds or not. ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Total Maximum Maximum Time of Max Flood Ponded Hours Rate Occurrence Volume Depth Node Flooded CFS days hr:min 10^6 gal Feet ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 10 0.33 7.12 0 04:14 0.050 0.000 ********************** Storage Volume Summary ********************** ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Average Avg Evap Exfil Maximum Max Time of Max Maximum Volume Pcnt Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss Loss 1000 ft3 Full days hr:min CFS ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ North‐Basin 0.011 4 0 0 0.063 22 0 04:05 12.28 South‐Basin 0.103 8 0 0 0.322 25 0 04:05 12.19 pump‐well 0.165 58 0 0 0.195 69 0 04:06 12.13 treatment‐storage 4.254 37 0 0 7.870 69 0 08:00 0.47 flow‐control 0.385 66 0 0 0.545 93 0 07:59 0.45 DA‐2‐trench 1.268 55 0 0 1.965 85 0 04:07 18.68 SW‐100 0.002 4 0 0 0.009 14 0 04:06 7.23 6 0.007 9 0 0 0.080 100 0 04:13 15.39 1 0.003 6 0 0 0.012 22 0 04:06 7.11 2 0.001 2 0 0 0.005 8 0 04:06 7.11 *********************** Outfall Loading Summary SWMM 100-year, 6-hour Post Development Analysis Result Files *********************** ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Flow Avg Max Total Freq Flow Flow Volume Outfall Node Pcnt CFS CFS 10^6 gal ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Overflow‐treated‐tank 0.00 0.00 0.00 0.000 POC1 98.98 0.30 0.45 0.064 DA‐2‐overflow 72.41 4.51 18.68 0.339 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ System 57.13 4.81 19.00 0.403 ******************** Link Flow Summary ******************** ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Maximum Time of Max Maximum Max/ Max/ |Flow| Occurrence |Veloc| Full Full Link Type CFS days hr:min ft/sec Flow Depth ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 18‐inch‐pipe‐2 CONDUIT 12.28 0 04:05 9.88 0.23 0.66 24‐inch‐pipe CONDUIT 12.16 0 04:06 3.87 0.44 1.00 Out‐pipe CONDUIT 0.45 0 07:59 3.00 0.04 0.14 4 CONDUIT 7.23 0 04:06 10.91 0.28 0.40 6 CONDUIT 7.11 0 04:06 7.87 0.52 0.51 7 CONDUIT 7.11 0 04:06 18.31 0.11 0.27 24‐inch‐pipe‐1 CONDUIT 11.53 0 04:06 3.67 0.41 1.00 conc‐swale‐1 CONDUIT 15.39 0 04:13 10.26 1.34 1.00 downpipe CONDUIT 15.33 0 04:14 15.11 0.85 0.56 conc‐swale‐2 CONDUIT 15.32 0 04:14 11.17 0.77 0.93 conc‐swale‐3 CONDUIT 8.35 0 04:21 6.28 0.59 1.00 conc‐swale‐4 CONDUIT 9.00 0 04:05 6.00 0.68 1.00 DA‐2‐overflow CONDUIT 18.68 0 04:07 18.68 1.02 1.00 pump PUMP 0.60 0 00:06 1.00 hydro‐pump PUMP 0.00 0 00:00 0.00 TreatedFCBypass ORIFICE 0.09 0 07:59 treated‐low‐flow ORIFICE 0.36 0 07:59 treatment‐storage‐overflow WEIR 0.00 0 00:00 0.00 1 WEIR 0.04 0 04:05 0.01 Treated DUMMY 0.47 0 02:02 *************************** Flow Classification Summary *************************** SWMM 100-year, 6-hour Post Development Analysis Result Files ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐ Adjusted ‐‐‐‐‐‐‐‐‐‐ Fraction of Time in Flow Class ‐‐‐‐‐‐‐‐‐‐ /Actual Up Down Sub Sup Up Down Norm Inlet Conduit Length Dry Dry Dry Crit Crit Crit Crit Ltd Ctrl ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐ 18‐inch‐pipe‐2 1.00 0.01 0.06 0.00 0.74 0.20 0.00 0.00 1.00 0.00 24‐inch‐pipe 1.00 0.00 0.00 0.00 0.88 0.00 0.00 0.12 0.13 0.00 Out‐pipe 1.00 0.01 0.00 0.00 0.00 0.99 0.00 0.00 0.06 0.00 4 1.00 0.00 0.00 0.00 0.00 0.07 0.00 0.93 0.02 0.00 6 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 7 1.00 0.00 0.00 0.00 0.06 0.94 0.00 0.00 1.00 0.00 24‐inch‐pipe‐1 1.00 0.00 0.00 0.00 0.98 0.00 0.00 0.02 0.02 0.00 conc‐swale‐1 1.00 0.00 0.03 0.00 0.66 0.31 0.00 0.00 0.95 0.00 downpipe 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 conc‐swale‐2 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.99 0.00 conc‐swale‐3 1.00 0.00 0.00 0.00 0.02 0.98 0.00 0.00 0.94 0.00 conc‐swale‐4 1.00 0.00 0.00 0.00 0.77 0.23 0.00 0.00 0.82 0.00 DA‐2‐overflow 1.00 0.28 0.00 0.00 0.00 0.72 0.00 0.00 0.01 0.00 ************************* Conduit Surcharge Summary ************************* ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Hours Hours ‐‐‐‐‐‐‐‐‐ Hours Full ‐‐‐‐‐‐‐‐ Above Full Capacity Conduit Both Ends Upstream Dnstream Normal Flow Limited ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 18‐inch‐pipe‐2 0.01 0.01 4.33 0.01 0.01 SWMM 100-year, 6-hour Post Development Analysis Result Files 24‐inch‐pipe 3.70 3.70 4.84 0.01 0.01 24‐inch‐pipe‐1 6.92 6.92 7.58 0.01 0.01 conc‐swale‐1 0.30 0.30 0.66 0.25 0.25 conc‐swale‐2 0.01 0.01 0.33 0.01 0.01 conc‐swale‐3 0.33 0.33 0.37 0.01 0.01 conc‐swale‐4 0.37 0.37 7.51 0.01 0.01 DA‐2‐overflow 0.01 0.08 0.01 0.08 0.01 *************** Pumping Summary *************** ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Min Avg Max Total Power % Time Off Percent Number of Flow Flow Flow Volume Usage Pump Curve Pump Utilized Start‐Ups CFS CFS CFS 10^6 gal Kw‐hr Low High ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ pump 98.29 18 0.00 0.60 0.60 0.127 4.41 0.0 0.0 hydro‐pump 0.00 0 0.00 0.00 0.00 0.000 0.00 0.0 0.0 Analysis begun on: Fri May 13 14:11:19 2022 Analysis ended on: Fri May 13 14:11:19 2022 Total elapsed time: < 1 sec SWMM 100-year, 6-hour Post Development Analysis Result Files