Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
1905 CALLE BARCELONA; 120; CBC2022-0335; Permit
Building Permit Finaled (city of Carlsbad Commercial Permit Print Date: 05/17/2023 Job Address: 1905 CALLE BARCELONA, # 120, CARLSBAD, CA 92009-8451 Permit No: Status: CBC2022-0335 Closed -Finaled Permit Type: BLDG-Commercial 2550120400 $40,117.44 Work Class: Tenant Improvement Parcel#: Valuation: Occupancy Group: M #of Dwelling Units: Track#: Lot#: Project#: Plan#: Bedrooms: Construction Type: Bathrooms: Orig. Plan Check#: Occupant Load: Plan Check#: Code Edition: 2019 Sprinkled: Yes Project Title: Description: NIKE: RACKING MAX HEIGHT (10') / 696.7 SF/ (277 LF) Applicant: Property Owner: PERMIT ADVISORS SAMANTHA AVALOS 8370 WILSHIRE BLVD TREA NW FORUM AT CARLSBAD OWNER LLC 1905 CALLE BARCELONA, # STE 200 CARLSBAD, CA 92009-8451 BEVERLY HILLS, CA 90211-2333 (760) 479-0166 FEE BUILDING PLAN CHECK BUILDING PLAN REVIEW-MINOR PROJECTS (LOE) BUILDING PLAN REVIEW-MINOR PROJECTS (PLN:1 CERTIFICATE OF OCCUPANCY FIRE Plan Review (per hr -Regular Office Hours) SB1473 -GREEN BUILDING STATE STANDARDS FEE STORAGE RACKS> 8 FT HIGH STRONG MOTION -COMMERCIAL (SMIP) Total Fees: $2,108.09 Total Payments To Date: $2,108.09 Applied: 09/08/2022 Issued: 01/10/2023 Finaled Close Out: 05/17/2023 Final Inspection: 05/10/2023 INSPECTOR: Kersch, Tim Contractor: NATIONAL CONTRACTORS INC 2500 ORCHARD LN EXCELSIOR, MN 55331-7801 (952) 881-6123 Balance Due: AMOUNT $609.37 $194.00 $98.00 $16.00 $240.00 $2.00 $937.49 $11.23 $0.00 Please take NOTICE that approval of your project includes the "Imposition" of fees, dedications, reservations, or other exactions hereafter collectively referred to as "fees/exaction." You have 90 days from the date this permit was issued to protest imposition of these fees/exactions. If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their imposition. You are hereby FURTHER NOTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project. NOR DOES IT APPLY to any fees/exaction,; of which you have previously been given a NOTICE similar to this, or as to which the statute of limitation has previously otherwise expired. Building Division Page 1 of 1 1635 Faraday Avenue, Carlsbad CA 92008-7314 I 442-339-2719 I 760-602-8560 f I www.carlsbadca.gov ( City of Carlsbad COMMERCIAL BUILDING PERMIT APPLICATION B-2 Plan Check ________ _ Est. Value PC Deposit Date Job Address 100s CALLE BARCELONA, CARLSBAD, CA 92009 Suite: 12s APN: 255-012·04 ·----- Tenant Name#:_N_iK_E ________________ lot #:_• ____ Year Built: _________ _ Year Built:_2004 __ _ Occupancy:_M __ _ Construction Type:_v_-N __ Fire sprinklers@'Es()No A/C:@YEsQNo BRIEF DESCRIPTION OF WORK: INTERIOR TENANT IMPROVEMENT WITHIN AN EXISTING SHELL BUILDING INCLUDING A ROOF STRUCTURE, DEMISING WALLS, STOREFRONT AND BULKHEAD. THE RECONFIGURATION OF THE SPACE WILL NOT CAUSE A CHANGE TO THE OCCUPANCY TYPE. □ Additlon/New:._N_/_A _____ , _____ New SF and Use,._NI_A ________ New SF and Use -"-'A _____ SF Deck, _NI_A ______ SF Patio Cover, NIA SF Other (Specify)_NI_A __ _ [llrenant Improvement: _aoo_s ___ SF, Existing Use: MERCANTILE Proposed Use: MERCANTILE _____ SF, Existing Use: _______ Proposed Use: ______ _ □ Pool/Spa;_NI_A ___ --'SF Additional Gas or Electrical Features? _N_1A ___________ _ D Solar: NIA KW, NIA Modules, Mounted:0Roof 0Ground D Reroof:._N_,A ____________________________________ _ [l] Plumblng/Mechanlcal/Electrical PME scope of work in support of the new tenant improveme, □ Other: -new plumbing fixtures and connections, replace two rooftop HVAC units, new Interior ductwork new interior lighUng and contro\a, new electrical panels and power distribution. PRIMARY APPLICANT Name: Samantha Avalos Address: 8370 Wilshire Blvd Suite 330 City: Beverly Hills State: CA .Zip: 90211 Phone: 424-330-7970 Email: samantha.avalos@permitadvisoJrs.com DESIGN PROFESSIONAL Name: Don M. Oacumos Address: 960 Atlantic Ave PROPERTY OWNER Name:. __ N_o_rt_h_w_o_o_d_R_e_ta_il_L_L_c_/_M_l_ke_T_u_s_se_v _____ _ Address: 8080 Park Lane Suite 600 City: Dallas State: TX Zip: 75231 Phone: 469-828-3304 Email: mtussey(t!)northwoodrctail.com CONTRACTOR OF RECORD Business Name: 1'89--National Contractors Inc Address: 2300 Orchard Lane City: Alameda State:,.S:__Zlp:,_94_so_1 ___ Oty: Excelsior State:._M_N _ _,.Zip: 55331 Phone: 510-a14-3463 Phone: 952-881-6123 Email: dond@mbharch.com Email: mdudley@ncigc.com Architect State License: e-24274 Exp 0313112023 CSLB License#: a79727 Class:_8 ______ _ Carlsbad Business License# (Required}: BLOS1233198 APPLICANT CERTIFICATION: lcertifythat.lhavereadthe applica . hqtth t/on/scorr,ctandthatthe fnformationonthepfans/saccurate. lagrE·etocomply with all Cf_~,..,....,., tiding construction. NAME (PRINT): __________ _ Samantha Avalos SIGN: 8/3/22 1635 Faraday Ave Carlsbad, CA 92008 Email: Build•ng@carlsbalfca goy REV. 07/21 THIS PAGE REQUIRED AT PERMIT ISSUANCE PLAN CHECK NUMBER: CBC2022-0335 A BUILDING PERMIT CAN BE ISSUED TO EITHER A STATE LICENSED CONTRACTOR OR A PROPERTY OWNER. IF THE PERSON SIGNING THIS FORM IS AN AGENT FOR EITHER ENTITY AN AUTHORIZATION FORM OR LETTER IS REQUIRED PRIOR TO PERMIT ISSUANCE. (OPTION A): LICENSED CONTRACTOR DECLARATION: I hereby aft/ rm underpenaltyof per jury that I am licensed underprovisionsof Chapter 9 ( commendng with Section 7000 )of Division 3 of the Business and Professions Code, and my license is in full force and effect. I also affirm under penalty of perjury one of the following declarations/CHOOSE ONE): D1 have and will maintain a certificate of consent to self-insure for workers' compensation provided by Section 3700 of the Labor Code, for the performance of the work which this permit is issued. PolicyNo. _____________________________________ _ -OR- Q'.11 have and will maintain worker's compensation, as required by Section 3700 of the Labor Code, for the pe_rformance of the work for which this permit Is issued. My workers' compensation insurance carrier and policy number are: Insurance Company Name: The Cinc1nnat1 Insurance Companies Policy No. EWC0491418 Expiration Date: _0_110_2_r2_0_2_3 ___________ _ -OR-O certificate of Exemption: I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the workers' compensation Laws of California. WARNING: Failure to secure workers compensation coverage Is unlawful and shalt subject an employer to criminal penalties and clvll fines up to $100,000.00, In addition the to the cost of compensation, dama1es as provkled for In Section 3706 of the Labor Code, Interest and attorney's fees. CONSTRUCTION LENDING AGENCY, IF 1\NY: I hereby affirm that there is a construction lending agency for the performance of the work this permit is issued (Sec. 3097 (I) Civil Code). lender's Name: NIA Lender's Address: _N_IA __________________ _ CONTRACTOR CERTIFICATION: I certlfythatlhave read the application and state that the above information ls correct and that the information on theplansisaccurate. I agree to comply with all City ordinances and State laws relating to building construction. NAME (PRINT): Michael Dudley SIGNATURE: f'l?tk/d:)4= DATE:._01_-os_-2_02_3 __ _ Note: If the person sfcnlng above is an authorized agt!Mt for the contractor provide a letter of authorization on contractor letterhead. • OR - (OPTION B): OWNER-BUILDER DECLARATION: I hereby affirm that I am exempt from Contractor's License Law for the following reason: n I, as owner of the property or my employees with wages as their sole compensation, will do the work and the structure is not Intended or offered for sale (Sec. 7d44, Business and Professloni Code: The Contractor's License Law does not apply to an owner of property who builds or Improves thereon, and who does such work himself or through his own employees, provided that such improvements are not Intended or offered for sale. If, however, the building or improvement is sold within one year of completion, the owner-builder wlll l1ave the burden of proving that he did not build or Improve for the purpose of sale). -OR-D1, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or Improves thereon, and contracts for such projects with contractor(s) licensed pursuant to the Contractor's license Law). -OR-01 am exempt under Business and Professions Code Division 3, Chapter 9, Article 3 for this reason: AND, D FORM B-61 "Owner Builder Acknowled1ement and Verification Form" Is required for any permit issued to a property owner. By my signature below I acknowledge that, except for my personal residence In which I must have resided for at least one year prior to completion of the improvements covered by this permit, I cannot legally :;ell a structure that I have built as an owner-builder if It has not been constructed in its entirety by licensed contractors. I understand thatacopyof theappltcablelaw, Section 7044 of the &Jslnessand Professions Code, lsavallableuponrequestwhen this application Is submitted or at the following Web site: http: I lwww.leginfo.ca.gov/calaw.html. OWNER CERTIFICATION: I certify that I have read the application and state that the above Information ls correct and that the information on theplanslsaccurate. I agree to comply with all City ordinances and State laws relating to building construction. NAME (PRINT): SIGN: _________ DATE: _____ _ Note: If the person signing above Is an authorized agent for the property owner Include form 8-62 signed by property owner. 1635 Faraday Ave Carlsbad, CA 92008 Ph: 442·339·2719 Fax: 760-602-8558 Email: Bu1fd111g:(W_L,!.fl~h,1dt ··~ 2 REV. 07/21 Building Permit Inspection History Finaled (cityof Carlsbad Permit Type: Work Class: Status: Scheduled Date 05/09/2023 PERMIT INSPE TION HISTORY for (CBC2022-0335) BLDG-Commercial Ten ant Improvement Closed -Finaled Actual Inspection Type Start Date 05/09/2023 BLDG-11 Found ation/Ftg/P iers (Rebar) Checklist Item Application Date: 09/08/2022 Issue Date: 01/10/2023 Expiration Date: 11/06/2023 IVR Number: 43163 Inspection No. Inspection Status 210415-2023 Passed COMMENTS TEXT Owner: TREA NW FORUM AT CARLSBAD OWNER LLC Subdivision: CARLSBAD TCT#92-08 GREEN VALLEY Address: 1905 CALLE BARCELONA, # 120 CARLSBAD, CA 92009-8451 Primary Inspector Reinspection Inspection Tim Kersch Complete Passed Yes BLDG-Building Deficiency NOTES Createcl By Angie Teanio 724-516-0293 Jim// Use rear door// Racking Created Date 05/0812023 05/10/2023 05110/2023 BLDG-Final Inspection 210609-2023 Passed Tim Kersch Complete Wednesday, May 17, 2023 Checklist Item BLDG-Building Deficiency BLDG-Plumbing Final BLDG-Mechanical Final BLDG-Structural Final BLDG-Electrical Final NOTES Created By Angie Teanio COMMENTS TEXT 724-516-0293 Jim// Check holds Passed Yes Yes Yes Yes Yes Created Date 05/09/2023 Page 1 of 1 ~~ECLIPSE ENGINEERING Structural Calculations Sales Floor & Stoclkroom Shelving NIKE LIVE BY LA COSTA 1905 Calle Barcelona -Suite 126 Carlsbad, California 92009 Prepared For: Sales Floor Display Shelving RTC USA World HQ 2800 Golf Road Rolling Meadows, IL 60008 ECLIPSE-ENGINEERING.COM 2022 Stockroom Shelving Pipp Mobile Storage Systems Inc. 2966 Wilson Drive NW Walker, Ml 49534 CBC2022-0335 1905 CALLE BARCELONA #120 MI_0¼(:;',1LA t.Ql)nl-6733 (406)862--37Ui (509)' NIKE RACKING MAX HEIGHT (10') / 696 7 SF/ (277 LF) 2550120400 10/26/2022 CBC2022-0335 --- ~~ECLIPSE ENGINEERING Structural Calculations Sales Floor Display Cases By: RTC USA World HQ RTC NIKE LIVE BY LA COSTA 1905 Calle Barcelona -Suite 126 Carlsbad, California 92009 Prepared For: RTC USA World HQ 2800 Golf Road Rolling Meadows, IL 60008 ECLIPSE~ENGINEERING COM EXP.: SEP 30, 2024 Please note: The calculations contained within justify the seismic resistance of the display fixtures, their base supports, and their connections to the slabs below and the adjacent partition walls for both vertical and lateral forces as required by: the 2019 CBC, ASCE 7-16 and ANSI/RMI-MH16.1 (2012). These calculations account for the fixtures being accessible to the general public. /"11'.1SOULA (406) 721-5733 Wt 11 l EF i:·;H (-406) 862-3715 (508)921-ml (541)3$-8659 PZ1P r \ .. A.Nf' (503) J95,.12'29 1/137 ~~ECL:IPSE ENGINEE RING NIKE CARLSBAD, CALIFORNIA 10/20/2022 Nick Burnam, PE NIKE: CARLSBAD, CALIFORNIA 2019 CBC, 2018 IBC, ASCE 7-16-13.3.1 -1 pit:= lb-ft -2 psf := lb-ft . lb. -2 psi := -1n -3 pct := lb-ft kp := 1000-lb k . k . -2 SI := p-ln Find the Seismic Load Coefficients (Finding the Seismic Design Criteria): ASCE-7 Seismic Design Procedure: Deermine S5 and S1 from maps - De ermine the Site a ass - [B Deermine Fa and Fv - Deermine S05 and S01 _ IE Building's Risk Category - 5s := 1.056 SSC:= "D -Default" Fa:= 1.200 BRC := 2 Importance Facbr - ~ := 0.3 Fv := 1.919 2 So1 := --(Fv·S1) = 0.486 3 Seisrric Deisgn Caegory-SOC = "D" StructlJ"al System - Section 13.5.1 ASCE-7: Arch'I Component Importance Factors -Sales Floor: p := 1.3 (p=1.0 for SOC = 'A', 'B', or 'C) (p=1 .3 for SDC = 'D', 'E', or'P) Seismic Multiplier for Anchorage to Concrete Slab Below (LRFD): 14. Rigid Components -High Deformability Elements and Attachments: Seisrric Analysis Procedure perASCE-7Section 13.3.1: Average Roof Height h, := 30-ft Height of Rack Attachment -Za := 0-ft (0-0" For Ground floor) Seisrric Base Shear Factors: Shear Factor Boundaries: f.!:= 2.0 Vtt := 0.4-ap •Sos -(1 + 2· ZaJ = 0.203 Vttmin := 0.3-Sos· lpt = 0.38 Vumax := 1.6-Sos·lpt = 2.028 Rp hr lpt Seismic Multiplier for Anchorage to Concrete Slab Below (LRFD): Vpa := n -mir{(max(Vttmin, Vtt)), Vttmax] = 0.76 For Fasteners set into Wood Members (Load Duration Faction): Co := 1.60 2/137 ~~ECL.IPSE ENGINEERING NIKE CARLSBAD, CALIFORNIA Seismic Multiplier for Anchorage to Adjacent Stud Walls (ASD): 14. Rigid Components-High Defcrmability Elements and Attachments: Seisrric Analysis Procedure perASCE-7Section 13.3.1: Average Roof Height hr= 30ft Height ofRack Attachment -Za := 10-ft (IJ-0" For Ground floor) lpt = 1.5 10/20/2022 Nick Burnam, PE Seisrri c Base Shear Factors : Shear Factor Boundaries: 0.4-ap •Sos ( Za) vtt := ----. 1 + 2--= o.338 Rp hr Vttmin := 0.3·Sos·lpt = 0.38 lpt Seismic Multiplier for Framing Members (ASD): Vpw := p·0.7-mir{(max(Vttmin,V11)),Vttmax] = 0.346 Seismic Multiplier for Anchorage to Structure Above (ASD): 14. Rigid Components -High Deformability Elements and Attachments: Seisrric Analysis Procedure perASCE-7Secfon 13.3.1: Average Roof Height hr = 30ft Height of Rack Attachment -Za := 18-ft (IJ-0" For Ground floor) Vttmax := 1.6-Sos· lpt = 2.028 lpt = 1.5 Seisrri c Base Shear Factors: Shear Factor Boundaries: v,1 := 0.4-ap·Sos ·(1 + 2-Za) = 0.446 Rp hr Vttmin := 0.3-Sos•lpt = 0.38 Vttmax := 1.6-Sos·lpt = 2.028 lpt Seismic Multiplier for Framing Members (ASD): Vpc := p-0.7-mir{(max(Vttmin, V11)), V11max] = 0.406 3/137 ~~ECLIPSE ENGINEERING NIKE CARLSBAD, CALIFORNIA Tension (pullout) and Shear Values for 1/4"4> x 2-1/2" Steel Screws set into 20 ga. Steel (ASD): Tension (pullover) Value for 1/4"4>x2-1/2" Steel Screws set into 20 ga. Steel (ASD): Tension (pullout) and Shear Values for 1/4"4>x1 -1/2" Steel Screws (ASD): AHov.able Tensioo Force: T pts2s20 := 11 O· lb T prs2s20 := 318·1b Tp1525 := llO·lb Tension (pullover) Value for 1/4"4'x1-1/2" Steel Screws (ASD): 10/20/2022 Nick Burnam, PE ADov.able Shear Force: V52s20 := 2O3·1b V52s := 2O3·1b Tprs25 := 318·1b Limiating Tension and Shear Values: Tpts2s1 := Tp1s2s20 = 11O1b T prs2s1 := T prs2s20 = 318 lb Vs2s1 := Vs2s20 = 2O3 lb Controlling Tension and Shear values for screws fastening the stanchion plates Welcome Fixture to the adjacent wall (ASD): Tension (pullout) and Shear Values for 1/4"4> x 2-1/2" Steel Screws set into 16 ga. Steel (ASD): Tension (pullover) Value for 1/4"4>x2-1/2" Steel Screws set into 16 ga. Steel (ASD): Tstw := 2•Tpts251 = 2201b T srw := 2· T prs251 = 636 lb T pts2516 := 2480lb T prs2516 := 521-lb Vsw := 2•Vs251 = 4O61b Vs2s16 := 1490lb Limiating Tension and ShearValues: T pts252 := T pts2516 = 2480 lb T prs252 := T prs2516 = 521 lb Vs2s2 := Vs2s16 = 149O1b Controlling Tension and Shear values for bolts fastening the Footwear wall to the ceiling above (ASD): Tstc := 2·Tpts252 = 496O1b Tsrc := 2·Tprs252 = 10421b Tension and Shear Values for Single 1/#x2-518" HILTI KH-EZ anchors with 2-1/2" nominal embedment: Allov.able Tensioo Force: Ta2s := 568·1b Vsc := 2·V52s2 = 29801b Alov.able Shear Force: Va2s := 837-lb 4/137 NIKE LIVE BY LA COSTA Carlsbad, California Display Case: Live Welcome Fixture -10'-0" Tall Location: Front of House (Open to the Public) Display Case Geometry - 10/19/2022 NSB Notation Unit Top Bar Height, h = 120.000" Ws = DL+Lls Mr= (0.9-0.2*Sds)*Ws*(d/2) Width, w = 50.125" Depth, d = 11.530" Locations of Connections, he= 118.750" Display Case Loads -Dead Display Case = 95.0 lbs V =Vt*Ws Mo = Vt*h/2*(Ws-Dlb) 0.000" Mc = Mo-Mr T= Mc/d Total, LL = 125.0 lbs Total, DL = 285.0 lbs 100 % Total, LLs = 750.0 lbs Floor Pressure Check - The layout of these fixtures on the plans shows (3) of these 50" wide units set side-by-side. Total Vertical Load, TL= Floor Area of Display Case = Floor Pressure = Allowable Floor Pressure= Floor Pressure Check= 410.0 lbs 4.01 ft2 105 psf 100 psf 1.05 Retail Floor Loading !Floor Over Capacity Seismic Forces -Moments Design Base Shear Coeff, Vt= Seismic Weight, Ws = Total Base Shear, V = 0.346 1035 lbs 358 lbs Overturning Tension, T = 1485 lbs Wall-Supported Check -Tension # of Screws Resisting Force = 2.00 Forces Per Screw= 0 lbs Screw Type = #10 TEK Screw Allowable Load Per Screw = 84 lbs Design Check = NA Anchor Check -Tension Overstrength Factor, O = 2.00 # of Anchors Resisting Force = 4.00 Overturning, Mo= Resisting, Mr= Controlling, Mc= Units Are Free-Standing ASD ASD Shear 2.00 8.00 Forces Per Anchor = 820 lbs 100 lbs Anchor Type= 3/8"¢ x 3" HILTI KB-TZ2 w/ 2.00" Min. Embedment Allowable load Per Anchor = 1448 lbs 1466 lbs Design Check = 0.57 0.07 1790 ft-lbs 363 ft-lbs 1427 ft-lbs Combined Check = 0.57 1.-F-lo_o_r_A_n_c_h_o_rs_a_r_e_A_d_e_q_ua_t_e __ Fasten Unit to Concrete Floor Slab Below with (1) 3/8"<1> x 3" HILTI KB-TZ2 w/ 2.00" Min. Embedment Through the Anchor Base Plate per post 5/137 ~~ECL:IPSE NIKE CARLSBAD,CALIFORN~ 10/20/2022 ENGINEERING Nick Burnam, PE Dimensions and Weights of Steel NIKE "Footwear Wall" Frame System: Fixture Dimensions: T ctal Heigit of Fixture: Width of Fixture: Dep1h of Fixture: h1b := 4267.2-mm = 168.00-in w1 := 1273.2-mm = 50.13-in d1 := 127mm = 5.00-in Tctal Heigit of Fixture: h11 := h1b = 168.00-in Fixture Loads: Maximum Live Load on each Fixture: 125 lbs per unit, dispersed equally over the 52" -wide unit, betv.een the 1 'Z' & 108" heights. Dead Load on Fixture: DL1 := 110-lb DL1 Distributed Dead Load on Fixture: w0L1 := -= 7.86-plf h11 T ctal Vertical Load on Fixture: TL1 := DL1 + LL1 = 235 lb Seismic Loads on the fixtures' members: Live Load on Fixture: Distributed Live Load on Fixture: LL1 := 125-lb = 125 lb LL1 WLL1 := -= 8.93-plf h1b Seisrric DL Base Shear: Seisrric LL Base Shear. Seisrric TL Base Shear: F11 := V · DL1 + U1 = 95.391b Seismic Loads using Full Design Live Load per 52" wide section: The units are laterally supported at both the top and bottom of each unit, therfore the is no resultant Overturning Moment. Seismic Loads at bottoms of fixtures: Seisrric DL Base Shear: Seisrric LL Base Shear. Seisrric TL Base Shear: F1ac1>1 := Vpa• Dl1 + LL1 = 178.681> Seisrric Shear on Anchors: Shear on anchors is only half c:i the overall shear since these fixtures are also fastened at tie tops of the units. Verify Capacity of Single 1/4",x2-5/8" HILTI KH-EZ anchors with 2-1/2" nominal embedment in hardened concrete: 6/137 ~~ECLIPSE NIKE CARLSBAD, CALIFORNIA 10/20/2022 ENG I NEER I NG Nick Burnam, PE Seismic Loads at tops of fixtures -Attachments to Steel Structure Aoove. Seisrric DL Base Srear: Fd1 = 44.65Ib Seisrric Shear on Anchors: Seisrric LL Base Shear: F11 = 50.74Ib Seisrric TL Base Shear: F11 = 95.391b Shear on anchors is only half a the overall shear since these fixtures are also fastened at the tops of the unit. Verify Capacity of Two 1/4"t x 1-1/2" self-drilling steel screws driven into minimum 16 ga. steel members above: Ftv2 -=0.016 Vsc (2) 1/4"t x 1-1/2" self-drilling steel screws driven into minimum 16 ga. steel members above are adequate to transfer the lateral loads to the supporting structure above. Installers have opted to use (2) 3/S"t through bolts to transfer the lateral loads to the supporting structure above. FASTENING POST TO CONCRETE STRUCTURE BELOW: USE,AT MINIMUM, (1) 1/4"<1>x2-5/8" HILTI KH-EZ CONCRETE SCREW PER POST BASE CLIP-TO-SLAB CONNECTION LOCATION IN ORDER TO ADEQUATELY SECURE THE FOOTWEAR WALL POST TO THE SLAB BELOW. FASTENING POST TO STEEL STRUCTURE ABOVE: USE,AT MINIMUM, (2) 3/8"<1> THRU BOLTS, TO FASTEN THE PLATE AT THE TOP OF THE FOOTWEAR POST TO THE EXISTING, MINIMUM 16-GAUGE THICK METAL DECKING. Flexture acting on beam -PSOOO Unistrut Beam: Allowable stress: Section Modulus: Fy := 33-ksi S := .627-in3 Beam Span: Seisrric TL Base Shear: X := 10ft F11 = 95.391b Allowable Moment: Ma := 0.6-Fy-S = 1034.SS lb-ft • Shear caculated in 'Attachment il Steel Structure' Above UNITY: Mmax --=0.231 Ma Max Moment: Mmax := FirX·.25 = 238.Slb-ft • Assumes pinned end connections 7/137 -~~ECLIPSE NIKE LIVE FOOTWEAR WALL -ENGINEERING CJve..r-tw"Y\~r\ ~ef,+re0f\+ F11-Me., \Nri:'j"' + 1)eo..6 L~ = 250 lb L1ve.. L~ -= 205 lb DATE: 10/19/2022 W.:.. DL + LL = 455 lb Vt= o.406 E 0t 101.50 lb 'E-Lt: 83.25 lb E" c: EoL + ELL = 185 I b E"-=-0.2*(Sos)*(DL + LL) = 80 lb C ver\-w-"-~ "@: ~o, = EH*(10'/2)-(0.6*W-Ev)*(1 '/2) l'\o~ = 925 lb*ft -40 lb*ft = 885 lb*ft DESIGNBY: W~Y C) I t- C) -· C) ~ f Kee,~~ ~~~if\ @ \cy> ~ u"~.\-: ·RT = 89 lb (ov~'":Y "R~e,~~ t\~cJ-':r>f\ G lot o!' Uf\.~\ ·. RT = 93 lb ·{ ~";,o,.~\) ieo..cr.oY\ · "'?ec --Oc-a.ce : Ri = 93 lb/3 brace points = 31 lb 13,~c.e ~oMer..\--: Ms= Ri*(7 ft)= 217 lb*ft = 2604 lb*in 8/137 @ ~\O ~vA-._ -r :; 554 lb <ei, e ~\o ~~i:. 7ttt,::. 266 lb ]\\\ o~o..\,\e. lCl\~09'\ -, 2604 lb*in ,....---.. f . f ' t · t\\o ~\t-I ' I ' l -,. .. . · --r.1 ·1 ·. I . I 9/137 P1000 & P1001 Channels P1000 • BEAM LOADING Defl. at Uniform Loading at Deflection Max. Allowable Uniform Span Uniform Load Load Span/180 Span/240 Span/360 In Lbs In Lbs Lbs Lbs 24 1,690 0.06 1,690 1,690 1,690 36 1,130 0.13 1,130 1,130 900 48 850 0.22 850 760 500 60 680 0.35 650 480 320 72 560 0.50 450 340 220 84 480 0.68 330 250 160 96 420 0.89 250 190 130 108 380 1.14 200 150 100 120 340 1.40 160 120 80 144 280 2.00 110 80 60 168 240 2.72 80 60 40 192 210 3.55 60 50 NR 216 190 4.58 50 40 NR 240 170 5.62 40 NR NR P1000 · COLUMN LOADING Max. Allowable Maximum Column Load Applied at C.G. Unbraced Load at Height Slot Face K = 0.65 K = 0.80 K =1.0 K= 1.2 In Lbs Lbs Lbs Lbs Lbs 24 3,550 10,740 9,890 8,770 7,740 36 3,190 8,910 7,740 6,390 5,310 48 2,770 7,260 6,010 4,690 3,800 60 2,380 5,910 4,690 3,630 2,960 72 2,080 4,840 3,800 2,960 2,400 84 1,860 4,040 3,200 2,480 1,980 96 1,670 3,480 2,750 2,110 1,660 108 1,510 3,050 2,400 1,810 .. I 120 1,380 2,700 2,110 .. .. 144 1,150 2,180 1,660 .. .. P1000/P1 001 · ELEMENTS OF SECTION Parameter P1000 P1001 Area of Section 0.555 ln2 1.111 ln2 Axis 1· 1 Moment of Inertia (I) 0.185 In' 0.928 In' Section Modulus (S) 0.202 In' 0.571 In' Radius of Gyration ( r) 0.577 In 0.914 In Axis 2·2 Moment of Inertia (I) 0.236 In' 0.471 In' Section Modulus (S) 0.290 In' 0.580 In' Radius of Gyration (r) 0.651 In 0.651 In I UNISTRur· P1001 • BEAM LOADING Defl. at Uniform Loading at Deflection Max. Allowable Uniform Span Uniform Load Load Span/180 Span/240 Span/360 In Lbs In Lbs Lbs Lbs 24 3,500• 0.02 3,500· 3,500· 3,500· 36 3,190 0.07 3,190 3,190 3,190 48 2,390 0.13 2,390 2,390 2,390 60 1,910 0.20 1,910 1,910 1,620 72 1,600 0.28 1,600 1,600 1,130 84 1,370 0.39 1,370 1,240 830 96 1,200 0.51 1,200 950 630 108 1,060 0.64 1,000 750 500 120 960 0.79 810 610 410 144 800 1.14 560 420 280 168 680 1.53 410 310 210 192 600 2.02 320 240 160 216 530 2.54 250 190 130 240 480 3.16 200 150 100 P1001 · COLUMN LOADING Max. Allowable Maximum Column Load Applied at C.G. Unbraced Load Height at Slot Face In Lbs 24 6,430 36 6,290 48 6,160 60 6,000 72 5,620 84 5,170 96 4,690 108 4,170 120 3,690 144 2,930 Notes: • Load limited by spot weld shear. "Kl/r > 200 NR = Not Recommended. K = 0.65 Lbs 24,280 22,810 21,410 20,210 18,970 16,950 14,890 12,850 10,900 7,630 K =0.80 K =1.0 K=1.2 Lbs Lbs Lbs 23,610 22,700 21,820 21,820 20,650 19,670 20,300 18,670 16,160 18,670 15,520 12,390 16,160 12,390 8,950 13,630 9,470 6,580 11,190 7,250 5,040 8,950 5,730 3,980 7,250 4,640 .. 5,040 .. .. 1. Beam loads are given in /Qmj uniform load (W Lbs) not uniform load (w lbs/ft or w lbs/in). 2. Beam loads are based on a simple span and assumed to be adequately laterally braced. Unbraced spans can reduce beam load carl)'ing capacity. Refer to Page 62 for reduction factors for unbraced lengths. 3. For pierced channel, multiply beam loads by the following factor: "KO" Series ....... 95% "T" Series .......... 85% "HS" Series ....... 90% "SL• Series ........ 85% "H3" Series ........ 90% "DS" Series ........ 70% 4. Deduct channel weight from the beam loads. 5. For concentrated midspan point loads. multiply beam loads by 50% and the corresponding deflection by 80%. For other load conditions refer to page 18. 6. All beam loads are for bending about Axis 1·1. 10/137 • I I ■ I ~;;ECLIPSE NIKE CARLSBAD, CALIFORNIA 10/20/2022 ENGINEERING Nick Burnam, PE Dimensions and Weights of Steel NIKE Apparel Wall Frame System: Fixture Dimensions: T ctal Heig,t of Fixture: Width of Fixture: Depth of Fixture: h1b := 3657.6-mm = 144.00-in w1 := 1264.2-mm = 49.77-in d1 := 248.2mm = 9.77-in T ctal Heig,t of Fixture: Fixture Loads: Maximum Live Load on each Fixture: 125 lbs per unit, dispersed equally over the 52" -wide unit, bet:Y.een the 12" & 108" heights. Dead Load on Fixture: DL1 := 140-lb DL1 Distributed Dead Load on Fixture: w0L1 := -= 11.67-plf h11 T ctal Vertical Load on Fixture: Live Load on Fixture: Distributed Live Load on Fixture: LL1 := 1-(125-lb) = 1251b LL1 WLL1 := -= 10.42-plf h1b Seismic Loads using Full Design Live Load per 48" wide section: Loads at the tops of the units: Loads at the bottoms of the units: 2 wou·h11 Rou := ---= 70 lb 2-h1b wLu·h1b RLLI := = 62.Slb 2 Seismic Loads on the fixtures' members: Seisrric DL Base Shear: Seisrric LL Base Shear. Seisrric TL Base Shear: Seismic Loads using Full Design Live Load per 52" wide section: The units are laterally supported at both the top and bottom of each unit, therfore the is no resultant Overturning Moment. 11/137 ~~ECLIPSE ENGINEERING NIKE CARLSBAD, CALIFORNIA 10/20/2022 Nick Burnam, PE Seismic Loads at bottoms of fixtures: Seisrric DL Base St-ear: Seisrric LL Base Shear: Seisrric TL Base Shear: F1a<1>1 := Vpa·LL1 = 95.041b Seisrric Shear on Anchors: Shear on anchors is only half ex the overall shear since these fixtures are also fastened at tie tops of the unit. Verify Capacity of Single 1/4"cl>x2-5/8" HILTI KH-EZ anchors with 2-1/2" nominal embedment in hardened concrete: Seismic Loads at tops of fixtures: Seisrric DL Base St-ear: Seisrric LL Base Shear: F12 = 43.241b F1v<1>1 -=0.241 Va2s Seisrric TL Base Shear: F12 = 91.681b Seisrric Shear on Anchors: Shear on anchors is only half ex the overall shear since these fixtures are also fastened at tie tops of the unit. Verify Capacity of Four 1/4"«1> x 1-1/2" self-drilling steel screws driven into minimum 16 ga. steel members above: ( ) = 0.208 min T5tw, T5rw USE,AT MINIMUM, (1) 1/4"<j>x2-5/8" HILTI KH-EZ CONCRETE SCREW PER POST BASE CUP-TO-SLAB CONNECTION LOCATION IN ORDER TO ADEQUATELY SECURE THE APPAREL WALL POST TO THE SLAB BELOW. USE,AT MINIMUM, (2) 1/4"<j>x1-1/2" SELF-DRILLING TEK SCREWS, TO FASTEN THE PLATE AT END OF THE APPAREL WALL POST'S SUPPORT STANCHION TO THE EXISTING, MINIMUM 20-GAUGE THICK STEEL STUD WALL FRAMING IN THE ADJACENT WALL. 12/137 ~;;ECLIPSE EN G INE ERING NIKE CARLSBAD, CALIFORNIA 10/20/2022 Nick Burnam, PE Dimensions and Weights of Hang Bar Frame System: Fixture Dimensions: MAX Height of Fixture: Width of Fixture Bar: Dep1h of Rxture Hook: h1b := 4216.40mm = 166.00-in w1 := 1295.40-mm = 51.00-in d1 := 110.58mm = 4.35-in Fixture Loads: Maximum Live Load on each Fixture: 50 lbs per unit, dispersed equally over 1he 48"-wide bar, located between the 76.13" • 87.13" extension heigits away fran the hod<. Dead Load on Rxture: DL3 := 10-lb Live Load on Fixture: LL3 := 1-( 50-lb) = 50 lb DL3 Distributed Dead Load on Fixture: woLJ := -= 2.35-plf W1 Distributed Live Load on Rxture: LL3 WLL3 := -= 11. 76-plf W1 T ctal Vertical Load on Fixture: Seismic Loads on the fixtures' members: Seisrric DL Base Shear: Seisrric LL Base Shear. Fd3 := Vpw·DL3 = 3.461b F13 := Vpw·LL3 = 17.301b Verify Capacity of Four 1/4"~ x 1-1/2" self-drilling steel screws driven into minimum 16 ga. steel members above: Number of Anchors: Seisrric Shear on Anchors: Tension on Anchors: UNITY: Na := 2 Fv3 := 30-lb F13 := TL3 = 601b Ft2 F11 ---+ --= 0.652 Na-Tpts25 Na-V525 Seisrric TL Base Shear: Ft3 ---=0.273 Na-T pts25 FASTENING CABLE TO STEEL STRUCTURE ABOVE BY LOOPING THROUGH UNISTRUT HOLESAND CLAMPING THE CABLE BACK TO ITSELF BELOW THE LOOP: 13/137 ~~ECLIPSE ENGINEERING NIKE CARLSBAD, CALIFORNIA 10/20/2022 Nick Burnam, PE Flexture acting on beam -PJOOO Unistrut Beam -Weak Axis. Allov.eble stress: Fy := 33-ksi Beam Spa,: X := 8ft Sectia, Modulus: S := 0.202-in3 Vertical Hang Force: F12 = 91.681b • Force calculated in 'Attachment to Steel Structure' Above Allowable Moment: Ma := 0.6-Fy-S = 333.3Ib-ft Max Moment: (Ft2) (X -W1) Mmax := 2 · - 2 -= 85.9Ib-ft UNITY: Mmax --=0.258 Ma • Assumes pinned end connections Horizontal load acting on beam -PJ000 Unistrut Beam -Strong Axis. Allov.eble stress: Sectia, Modulus: Allowable Moment: UNITY: Fy := 33-ksi S := 0.290-in3 Ma := 0.6-Fy-S = 478.Slb-ft Mmax --=0.187 Ma Seisrric TL Base Shear: F11 = 95.39 lb • Shear caculated in 'Attachment r, Steel Structure' Above Max Moment: (Ft1) (X -W1) Mmax:= 2 • -2-=89.4Ib-ft • Assumes pinned end connections NEW UNISTRUT P1000 CHANNELSARE ADEQAUTE TO SUPPORT THE TRAPEZE-FRAMED HANG BARS. FASTENING POST TO STEEL STRUCTURE ABOVE: USE,AT MINIMUM, (2) 1/4"<1> THRU BOLTS, TO FASTEN THE PLATE AT THE TOP OF THE FOOTWEAR POST TO NEW UNISTRUT CHANNELS SPANNING 10'-0" FROM JOIST TOP CHORD TO JOIST TOP CHORD. 14/137 ~~ECLIPSE ENGINEE RING NIKE CARLSBAD, CALIFORNIA LIGHT WALL FRAMING 10/20/2022 Nick Burnam, PE Wall Studs@ 16" o.c. (assume simple span, Interior, Non-bearing walls): Height of Wall Stud: Coni:,onents & Cladding Wind Pressure on Stud Wall NIA during Seismic Event Loading: Horizonta Force from Seismic Load ct top of shelving units: Unbraced Length, y: hs := 16.00-ft Ptp := 5-psf max{F11, F12) PE := ----= 48 lb 2 Unbraced Length, x: Spacing of Studs: Dead Load Weight of the Partition Wall: Axial Load on Stud Wall: 5s := 16-in Pd1 := 8-psf Unbraced Length, t: kexs := 1.0 Lys := 1.00ft keys:= 1.0 Lxs := 16.00ft kets := 0.8 Lis:= 1.00ft Transverse Pressure on Studs: Transverse Load ai Studs: Ww := Pw·5s = 6.67-plf ►1--------------------------------------Maximum Design Morrents -Shelving Load: Mid-height of Top of Shelving 1/4-Way Between the wall studs: Unit Height hs1 & hs2: 1/3-Way Between hs1 & hs2: 1/2-Way Between hs1 & hs2: 2/3-Way Between hs1 & hs2: hst = 8ft hb1 = 8ft 3/4-Way Between hs1 & hs2: h53 = 8.5 ft hb3=7.Sft hs4 = 8.667ft hb4 = 7 .333 ft hss = 9ft hbs = 7ft Maximum Design Shear -Shelving Load: hss = 9.333 ft hb6 = 6.667ft h57 = 9.5ft ( PE· max{ hs2 , hb2)) ( Ww· hs) Vs1 := -----+ --= 83-lb hs 2 Resultant Moments at Heights Ncted: Ms11 = 3561b-ft Ms1s = 371 lb-ft Ms12 = 3791b-ft Ms16 = 3741b-ft Ms13 = 365 lb· ft Msl7 = 3761b-ft Ms1 := max{ Ms11 , Ms12, Msl3, Msl4 , Ms1s, Ms16, Msl7) = 379 lb-ft Msl4 = 3671b-ft ~TEEL STUD WALL FRAMING@ 16" o.c. • 600S200 • 33 (6" x 2" x 20 Ga.): Steel Modulus of Elasticity: Es = 29000-ksi Steel Yield Strength: Fys = 33-ksi Fvs = 13.2-ksi Steel Bending Stress: Fbs = 21.78-ksi Steel Shear Stress: Area of Stud: As := 0.379-in2 Sectiai Modulus: Sxs := 0.621-in3 Tcrsiona Properties: Number of Studs: Radii of Gyration, x, y, polar: r xs := 2.340-in rys := 0.743-in r0s := 2.855-in Momaits of Inertia: lxs := 2.058-in4 lys := 0.209-in4 Xos := -1.457-in Js := 151-in4 Effective Length Factors: kexs = 1 Steel Shear Modulus: Gs= 11200-ksi Effective Width of Element: w := 2.000-in Tnckness of Elema,t: t := 0.0346-in Cws := 1.593-in6 kets = 0.8 15/137 ~~ECLIPSE EN G IN EERING NIKE CARLSBAD, CALIFORNIA Buck ling and Torsional Stresses -Steel: 2 1i ·Es <rexs := ---= 43-ksi ( kexs·Lxs) 2 r XS 2 1i ·Es <reys := ---= 1097-ksi ( keys·Lys) 2 r ys Ps := 1 -(Xos) 2 = 0.74 r OS (o.658>-c/).Fys if Acs:,; 1.5 = 23.85-ksi ( 0.877) Acs 2 ·Fys if Acs > 1.5 Effective Area: Aas:= As•Nws = 0.379-in2 Norrinal Axial Strength: Pns := Aes·Fns = 9038-lb Axial Force Raio: Shear Stress Ratio: Pvs -=0.034 Pas fwi -=0.017 Fvs Shear Stress, Shelving Load: Bending Stress Ratio: Vs1 Bending Stress, fvs1 := -= 0.219-ksi Shelving Load: As fbsl Combined Axial and -=0.336 Bending Stresses, Fbs Shelving Load: Fa::tor of Safety: 10/20/2022 Nick Burnam, PE Cmws := 0.85 flews := 1.80 AlooobleAxial Load: Pns Pas:= -= 5021-lb news Ms1 fbsl := -= 7.32-ksi Sxs Pvs fbsl -+-=0.37 Pas Fbs uc_ := ~ Pvs ) s 0.15, Pvs \si Pw Cmws·ft.i ,I-+ ~ =0.37 -+- Pas Pas Fbs Pas o..·Fbs . uc_ s 1, "Olecks OK" , "Decrease Load" = "Olecks OK" 16'-0" TALL 6005200-33 (6"x2"x20 Ga.) STUDS@ 16" o.c. ARE SUFFICIENT, AS WALL FRAMING, TO SUPPORT THE SHELVING UNITS WITH THE PRESCRIBED PRODUCT LOAD PER SHELF. 16/137 Screw Capacities Table Notes 1. Capacities based on AISI SlO0 Section E4. 2. When connecting materials of different steel thicknesses or tensile strengths, use the lowest values. Tabulated values assume two sheets of equal thickness are connected. 3. Capacities are based on Allowable Strength Design (ASD) and include safety factor of 3.0. 4. Where multiple fasteners are used, screws are assumed to have a center-to-center spacing of at least 3 times the nominal diameter (d). 5. Screws are assumed to have a center-of-screw to edge-of-steel dimension of at least 1.5 times the nominal diameter (d) of the screw. 6. Pull-out capacity is based on the lesser of pull-out capacity in sheet closest to screw tip or tension strength of screw. 7. Pull-over capacity is based on the lesser of pull-over capacity for sheet closest to screw header or tension strength of screw. 8. Values are for pure shear or tension loads. See AISI Section E4.5 for combined shear and pull-over. 9. Screw Shear (Pss}, tension (Pts), diameter, and head diameter are from CFSEI Tech Note (F701-12). 10. Screw shear strength is the average value, and tension strength is the lowest value listed in CFSEI Tech Note (F701-12). 11. Higher values for screw strength (Pss, Pts), may be obtained by specifying screws from a specific manufacturer. Allowable Screw Connection Capacity (lbs) #6Screw 18Screw 110Screw 112Screw ¼"Screw Thickness Design Fy Fu (Pss • 643 lbs, Pis• 419 lbs) (PIP 1278 lbs, Pts • 586 lbs) (Pss" 1644 lbs, Pts = 1158 lbs) (PIP 2330 lbs, Pts = 2325 lbs) (Pss= 3048 lbs, Pts " 3201 lbs) (MIia) Thickness Yleld T-0. (ksl) (ksi) 0.138" dla, 0.272" Head 0.164" dla, 0.272" Head 0.190" dla, 0.340" Head 0.216" dla, 0.340" Head D.250" dia, O.A09" Head Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over 18 0.0188 33 33 44 24 84 48 29 84 52 33 105 55 38 105 60 44 127 27 0.0283 33 33 82 37 127 89 43 127 96 50 159 102 57 159 110 66 191 30 0.0312 33 33 95 40 140 103 48 140 111 55 175 118 63 175 127 73 211 33 0.0346 33 45 151 61 140 164 72 195 177 84 265 188 95 265 203 110 318 43 0.0451 33 45 214 79 140 244 94 195 263 109 345 280 124 345 302 144 415 54 0.0566 33 45 214 100 140 344 118 195 370 137 386 394 156 433 424 180 521 68 0.0713 33 45 214 125 140 426 149 195 ~23 113 J8ti 557 196 545 600 227 656 97 0.1017 33 45 214 140 140 426 195 195 548 246 386 777 280 775 1,016 324 936 118 0.1242 33 45 214 140 140 426 195 195 548 301 386 777 342 775 1016 396 1 067 54 0.0566 50 65 214 140 140 426 171 195 534 198 386 569 225 625 613 261 752 68 0.0713 50 65 214 140 140 426 195 195 548 249 386 777 284 775 866 328 948 97 0.1017 50 65 214 140 140 426 195 195 548 356 386 777 405 775 1,016 468 1,067 118 0.1242 50 65 214 140 140 426 195 195 548 386 386 777 494 775 1 016 572 1 067 SUPREME* Allowable Screw Connection Capacity (Pounds Per Screw) See back cover for exc/ustve manufacturers of the Supreme Frammg System 16Screw 18Scnlw 110Screw 112Screw ¼"Screw ifhlcknws ~ Yl'li Fu (Pss • 643 lbs, Pis " 419 lbs) (Pss■ 1278 lbs, Pis ,. 586 lbs) (PSS" 1644 lbs, PIS• 1158 lbs) (Pss= 2330 lbs, Pis,. 2325 lbs) (Pss• 3048 lbs, PIS" 3201 lbs) Tensile (ml) (In) (bl) (ksl) 0.138" Dia; o.2n· Head 0.164" Dia; 0.272" Head 0.190" Dia; 0.340" Head 0.216" Dia; 0.340" Head 0.250" Dia; 0.409" Head Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over D25 0.0155 57 65 65 39 137 150 47 137 77 54 171 D20 0.0188 57 65 1421 48 140 150 1 57 166 164 ' 66 208 109 75 208 30EQD 0.0235 57 65 174 ' 60 140 184 1 71 195 236 1 82 260 152 93 260 33EQD 0.0235 57 65 174 1 60 140 184 ' 71 195 236 ' 82 260 152 93 260 33EQS 0.0295 57 65 171 75 140 187 89 195 201 103 326 214 117 326 231 136 392 43EQS 0.0400 57 65 270 102 140 295 121 195 317 140 386 338 159 442 364 184 532 1Values are based on testing using A/SI S100 procedures. *SUPREME products are only available from those SSMA members who are certified to produce SUPREME products. 17/137 Complies With 2009 and 2012 IBC www.SSMA.com 83 1:11-;;1 www.hlltl.us Profis Anchor 2.9.0 Company Spctafier: Page: Proje<t: 1 Amazon Warehouse Address: ECLIPSE ENGINEERING, INC. 365 NE QUIMBY AVE 541-3811-9659 I Sul>-Projet1 I Pos. No.: Pnone I Fax: Date: E-Mall: Specifier's comments: Fixed SheMng Anchors 1 Input data Anchor type and diam•t•r: Effective embedmtnt depth: Material: EvaluaUon Service R&p()ft Issued I Valid: Proof Stand~ instalation: Profile: Base material: Installation: KWIK HUS-EZ (KH-€Z) 11• (2 1/2) h.,.ect• 1.92011l., h,_,• 2.5001n. Carbon Steel ESR-3027 311/2020 I 1211/2021 Design method ACI 313-14 / Mech. -(Reconvnendltd plale lhk:kness: not calculated) aaeked concrete, 2500, fc' = 2,500 psi; h = 4.125 in. hammer drilled hoh, ln1t1letlon condition: Dry 9/3/2020 ~~a .. , ;33 & \ . ., . Reinforoement: tension: condhion B, shear. condition 8; no suppMmental splitting reinforcement present edve reinforoement: none or < No. 4 bar Seismic loads (cat. C, 0, E. or F) Tension load: yes (17.2.3.4.3 (d)) Shear io.o: yes (17.2.3.5.3 (c)) 11 -The anchor calculation Is based on a rigid anchor plate anumption. Geomelry (In.) & Loadl"9 Pb, In.lb) r ~ ! at ¢ : 0 lr'Clla~~,_..IN.lllbecflac:lt;edbag,__.Wll,,_~COl'dilion&nfor~ Pft-~ ... -(c12003-2008KaAG.Fl_.,.!iMSdlaM .... ,..._.,T~QIHIWAG,~ ~ (.,.) X ~ www.hlHl.u1 Company: Specifier. Address: Phone I Fax: E-Mai: ECLIPSE ENQNEERING, INC. 365 NE QUIMBY AVE 541-3811-9659 I 2 Load case/Resulting anchor forces Load case: Design loads Anchor ructions [lb) Tension force: (•Tension, -compression} Ardtcx Tension foree Shear force Shear force x Shear force 1.. 430 430 430 0 max. concrete compreSSNe strain: -[94.] R'l8A. concrete compressive stress: -[psll resulting tension fo,ce;,, (x/y)"(0.000/0.000): o (lb( resul!lng compre<sicn force ;n (x/yp(0.000/0.000~ 0 [lb) 3 Tension load 1:,1-;;1 Profis Anchor 2.9.0 Page: ;i Project Amazon Warehouse Sub-Project I POI. No.: Date: 9/3/2020 Steel Strength• 430 3,679 12 Load N_ [lb] Capacity ♦ N11 (lb) Utltlutlon p.. • N..J♦ N'! Status Pulout Strength" •30 568 76 Concfete Breakout Streogtt,•• 430 1,102 40 • anc:hof having the highest loading ··andlor group (anchofs in tension) 3.1 StNI Strength N .. =ESR~ • N .. ?'N,. Var1ab'81 A... pn.~ 0.05 Calculatlona NujlbJ ~ RHults N.,,J!!1 5,660 refer to ICC-ES ESR-3027 ACl31Pr1◄ Table 17.3.1.1 t,,. (psll 125,000 ~ 0.650 ♦--~ ♦ N..11>1 3,679 q:Mdll&a.,,a;,_...,.,...-~b''9' ........... -....ngconc1aon1W1t1ior~ PROF1$,.,.,,,._(~)200J-2009t-.iAG.Fl-,,.M~ H111i.1N91WNT~olHiaAG.~ N~Pb) 430 OK OK OK www.hlltl.us Page: Project: Company S~fier. Address: Phone I Fax: ECLIPSE ENGINEERING, INC. 365 NE QUIMBY AVE 541-389-9659 I Sul>Project I Pos. No.: E-Mail: 3.2 Pullout Strength NIii\.(, •N1t,2900A,-.J;& t Nillft,/;~N,.. refer to ~C-ES ESR..J027 ACI 318-14 Table 17.3.1.1 Variables ~--2,500 Caleulatlon• -.J;& 1.000 RHulta N~ 1,166 ,.,_ 1.000 ♦-0.650 3.3 Concrete Breakout Strength Nee "{e-)•w.N\lo'c.H't'crp.H~ ♦ N..•N.. N~ 1,166 0.750 At.: see ACI 318-14, Section 17.4.2.1, F",g. R 17.4.2.1(b) Ao.. •911!, •tc.H • (, .~e1,1 )s1.o rr.; 'f-.H • 0.7+ 0.3 (~) S 1.0 'f' Qt.H = MAX(3C. ~) S 1.0 Ca,c Cc N11 •kc>..,'fc~.s Varbllbha h,,(in.) 8c1H(in.] 1.920 0.000 C.c [In.) I<. 2.760 17 Cak:ulatlona ... (In.~ A...Pn-~ 33.18 33.18 RH ulta N .. i!?( ♦-2.261 0.650 ea.Nrin.J 0.000 ,. 1.000 'f'1oe1,11 1.000 t-0.750 Date: ♦---~ 1.000 566 ACI 318-14 Eq. (17.4.2.1a) ACI 318-14 Table 17.3.1.1 ACI 318-14 Eq. (17.4.2.lc) ACI 318-14 Eq. (17.4.2,4} ACI 318-14 Eq. (17.4.2.Sb) ACI 318--14 Eq. (17.4.2.7b) ACI 318--14 Eq. (17 .4.2,2a) c,.ri!(ln.) 6.000 l,(psij 2.500 f !:&N 1.000 t-1.000 .I!!!. 1.000 = 1.000 ♦"-(lb( ~ ~~,_..fnl,j9lbeol'IMMClb..._,._..,_~c;ndilionaWIOfror~ ..-........-~ ... ,.. (c)~l-4'iAG.FL ... 9A 5cNe,, Hilli.•~MTr~olH•AG. ~ ...... (,.) N-(b] 430 .l'..!e.!!. 1.000 N..lbl 430 i=iiS•O Profis Anchor 2.9.0 Amazon Warehouse 9/3/2020 N,,Pbl 2,261 •=iiS•• www.hlhJ.ua Profis Anchor 2.9.0 Company: Paga: 4 Project: Amazon Warehouse Specifier. AddreS5: ECLIPSE ENGINEERING. INC. 365 NE QUIMBY AVE 541-3.19-9659 I Sub-Project I Pos. No.: Phone I Fax: E-Mal: 4 Shear load Steel Strength" Steel failure {with lever am,t P,yout Strength .. Concrete edge faifure in direction x+0 LoadV,.(lb) 430 NIA 430 430 Date: Capacity♦ V. [lb] 837 NIA 1.583 1,374 • anchor having the highest loading "'"anchof' group (relevant anchors} 4.1 StMI Strength V...,-a = ESRv8'ue ♦ V.,,.,.itVIA refer to ICC-ES ESR-3027 ACI 318-14 Tabkt 17.3.1.1 VartablH A.._v !n,~ ---0.05 Calculation• VM,!9 Pb] 1,395 RHutla VM,.,llb) 1.395 4.2 Pryout Slrength f...,(psi) 125,000 .L,,,,_ 0.600 v .. = ... l(e ) ....... ,, ...... 1 • v~2v.,. a~ 0.900 ♦-1.000 Atoe see ACI 318-14, Section 17.4.2. 1, Fig. R 17.4.2.1(b) ,._ =911!, h•• (1 .~)•1.0 ,,..,.•o.1+0.3(~)•1.o v c,,,.N • MAX(3£:, ~) s t.0 c~ c., Nb Zkc) •• "'~.I VartabMa !,, 11,,pn.] 1 1.920 f tN CaePn.) 1.000 2.760 Cak:ufadon• A.,pn.; Ao.. ron.i 33.18 33.18 RHUlta v,.[lt>J t-2,261 0.700 &c,~(in.) 0.000 I<. 17 !fae14:! 1.000 ♦-1.000 ♦ VMPbJ 837 v_(bl 430 ACI 318--14 Eq. (17.S.3.1a) ACI 318-14 Tabie 17.3.1.1 ACI 318-14 Eq. (17.4.2. lc) ACI 318--1◄ Eq. (17.4.2.4) ACI 318-14 Eq. (17.4.2.Sb) ACI 318-14 Eq. (17A.2.7b) ACI 318-14 Eq. (17.4.2.2•) 8c2.Nrlfl.] c_pn.J 0.000 6.000 ,. ~(ps,1 1.000 2,500 ,,_,M !•~ 1.000 1.000 ♦-♦ v,.(lt>J 1.000 1,583 ... N1,.-i1tr--....it11CMCbdfor.__..,,.,_....-.;~.,,db'~ PROflS~(~l~2009tWAG.Fl-lMM~ tt111i.1~T~olHilllAG.~ 91312020 Utlllntion ~ • V .,,,/♦ V" Status 52 OK NIA NIA 28 OK 32 OK .!..!!.!!. 1.000 N,,0bJ 2,261 v_(bJ 430 www.hlttl.ua Company Spocifior: Page: Project Address: ECLIPSE ENGINEERING, INC. 365 NE QUIMBY AVE 541-389-9659 I Sub-Proiect I Pos. No.: Phone I Fax: E-Mail: 4.3 Concrete edge fallure In direction x+ Va :: (e ) ,._ M,V 1' c.V lj,I 1t,V 1' plnW.V Vt, ♦ Vdll:V._ A,. '"ACI 31&-14, Seebon 17.5,2.1, Fig. R 17,5.2.1(b) ~ = 4.Sc!1 ,K, = (1 .~)no \fN,V •0,7 ♦0,3(~) S 1.0 ~,v='*.-l:1.0 v, • (1(t,)°'-~)1. ~c:: Variables c:,1 (In.I c., {!!!-l 6.000 6.000 ~(in.] l, 1.920 1.000 Calculatlont A,. [Wl,~ A,,.[on.~ 61.66 162.00 R•sulta Vu(lb) ·-1,963 0.700 ecV(ln.) 0.000 d, [w,,J 0.250 .K V 1.000 t.,,,,,, 1.000 5 Combined tension and shear loads .I!!!. ~ 0.756 0.514 5/3 ~NV =j\~ •p~ <= 1 Date: ACI 318-14 Eq. (17.5.2.1a) ACI 318-14 Tabfft 17.3.1.1 ACI 31&-14 Eq. (17.5.2.1c) ACI 31&-14 EQ. (17.5.2.5) ACI 318-14 Eq, (17.5.2.Sb) ACI 31&-14 Eq, (17.5.2.8) ACI 31&-14 Eq. (17.5.2.2a) fc,V h, pn.) 1.000 4,125 (, IPS<l •!:!!!!:v 2,500 1.000 ! td.V hv 0.900 1.477 ·-♦ v~ Pb] 1,000 1,374 U1Jllzationp~,J%) Status 96 oi< ~~~_r_--ffl<llt1iecrwi;:udlofag,__,._..._uielll'l8~nb_,..y! PJt..,..~lc.)200).2008HIIIA0 Fl....,.Sd'-1 ~-•~T~ol,.,.AG,U- _. w V,(lb) 3,867 V~(lb) 430 1:11s;, Profis Anchor 2.9.0 5 Amazon Warehouse 9/3/2020 www.hlhl ua Compeny· Specifier. Address: Phone I Fax: E.Mail: 6 Warnings ECLIPSE ENGINEERING, INC. 365 NE QUIMBY AVE 541-389-9659 I Page: Pro)OC1: Sub-Project I Pos. No.: Date: 1:115;1 Profis Anchor 2.9.0 Amazon Warehouse 9/3/2020 • The anchor deStgn methods ii PROFIS Anchor require rigid anchor plates pe, current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distnbution oo the anc:hofs due lo elastic deformations of 1he anchor plate are not considered • the anchor plate is assumed to be suffic::iently &tiff. in order not to be deformed when 1ubjec:ted to the design k>eding. PROFIS Anchof cab.ltates the minimum required anchor pwte thickness with FEM to limit the stress of the anchor plate based on the assumptions expblined above. The proof if the rigid anchor plate assumption ls valid is not carried out by PROFIS Altc:hor. Input data and resutb must be ched(ed fO( agreement with the existng conditions and b plausibilityt • Condition A applies when supplementary reinfofcement i1 used. The ~ factor is lncteased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition 8 appties when supptementary reinforcement Is not used and for PuHout Strength aid Pryout Strength. Refef lo your k>caf standard. • Refer to the manufacturer's product Hterature for deanng and installation instructions. • Checking the transfer of loads into the base material and the shear resistance are required in ac:cordanc:e with ACI 318 or the rfflevant standard! • An anchor design approach for structures assigned to Seismic Design Category C, 0, E or Fis given In AO 318-14, Chapter 17, Section 17 .2.3.4.3 (a) that requires the governing design slrength of an anc:horor group of anc:hcn be limited by ductite tteel fallur•. If this Is NOT the c:as.e, the COMection dttSign {ten&ion) &hal satisfy the provtSions of Section 17 .2.3.4.3 (b), Sec:tion 17.2.3.4.3 (c). or SecllOo 17.2.3.4.3 (d). The connec:tion design (shear) shaff satisfy the p,oviak>ns of Section 17.2.3.5.3 (a). Section 17.2.3.5.3 (b), or Section 17.2.3.5.3 (c:). • Sec:tiOn 17.2.3.4.3 (b) J Section 17.2.3.5.3 {a) require the attac:hmeot the anchors are connecting to the structure be designed to undergO ductile ylektlng et a load Jevel corresponding to anchor bees no greater than the c:ontrofting design 1-trength. Sec:tlon 17.2.3.4.3 (c) I Section 17.2.3.5.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tensk)n I Shear that c:an be ttan.smrned to the anchofs by a non-yieldng attachment Section 17.2.3.4.3 (d) I Section 17.2.3.5.3 (c:) waive the ductility r~irements and requfre the design strength of the anchofs to ~ a exceed the maximum tension I shear obtained from design k>ad combinations that include E. with E increased by(l)~ • Hilti post-installed anchors shall be instaled In accordance with the Hili Manufacturer's Printed Installation lnstrvctlons (MPH). Reference ACI 318-14, S.ction 17.8.1. Fastening meets the design criteria! lnputlllUW!dr-,bmustNCMCUdlrartO'Nfl'W'IIIW•h....-ia~~fof~ Pfl:OFISMd'tot(c::120fn.200tHlliACl,fl-MMkr-. ..-a .,...._Tr___,..dHillAG.Sd,-.n www.hiltl.us Company Specifier: Addrest: Phone I Fax: ECLIPSE ENGINEERING, INC. 365 NE QUIMBY AVE 541--389-96591 E-Mail: 7 Installation data Anc:hof p&ate, 11ee,: - Profile:- Hole diameter In the ftxtwe: - Plato INckness ('1pUI): • Recommended plate thickness: - Oriting method: Hammer driled Cktanlng: Manual cleaning ol the drilled hole acoordilg to Instructions for UM ti required. 7.1 Recommended ac:ceHoriH Dril.!!!i_ Cleo5 • Suitable Rotary Hammer • Manuat bfow.<>ut pump • Property sized dril bit CoordinatH Anchor In. Anchor x y e. c.._ c2 c.., 1 0.000 0.000 30.000 6.000 30.000 6.000 8 Remarks; Your Cooperation Duties •=iiS 110 Profis Anchor 2.9.0 P19t: 7 - Projoa: Amazon WarehOUse Sub-Project I Pos. No.: Date: 9/3/2020 Ancho< type and diameto,: KW1K HUS-EZ (KH-EZ) 114 (2 112) lnstaltation torque: 216.002 in.lb HOM: diameter In the base material: 0.250 in. Hole depth In the base material: 2.875 In. Minimum tlvckness of the base material: 4.125 in. Se.!!!2l_ • TOfque wrench • Any •nd ell information end data contained In the Software concern sotely the use of 1-oi product$ and ¥• based on the pfiociples, formulas and ffCUrity re,gul.ation1 In accordance with Hitti'1 technical dl(ections and operating, mounting and assambty instructions, ele., that must be strictly complied with by the user. Al figUl'ff conlained therein a,e average figures, and thefefore use-specific: lesls: are to be conducted prior lo using the relevant Hlti product. The results of the cek:utations ca1Tied oot by means of the Software are based essent.ialy on the data you put tn. Therefore, you bear the tole responsibility for the absence of em:n, 1ha compteleness and the relevance ot the data to be put in by you. Moree,....,., you bear ~ reaponaiblity for having the results of the c8'cuiat.ion chec;;ked and deared by an expert, particutarty Ylittl regard lo compliance with appficable nonns and permits, prior to using them for your specific facility. The Software serves only as an aid 10 intel'l)fet norms and pennils withoui any guanmtH as lO the absence of errors, the correctness and the relevance of the results: or suitability for a specific: application. • You must take al neeeasa,y and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regug, backup of p«>grams and data and, if appticable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Softwate, you must ensure that you are using the currenl and thus up-to-date version of the Software in each case by can"yV"lg out manuaJ updates via the Hitt! Website. Hitti will not be liable for consequences. auc:h as the recovery of loit or damaged data or programs, ar1aing from a culpabte breach of duty by you. ~~~a::~~~-===~-==~-Sd>W --_. <,J i = Ii S ;u ____________________ _ Hllti PROFIS Engineering 3.0.73 www.hlltl.com Company: Addrau: Phone I Fax: Design: Fastening point ECllPSE ENGINEERING. INC. 376 SW Sk.lff Dr .• Slita 8 5'1-389-96591 J.-8 INCH -HIL TI KB-TZ2 Base of Shelving Unit Specifier"s comments: StockroomShetvlng Anchorage 1 Input data Anchor typa and dlatMter. Item number: Effective lilfflbedment depth: Material: E'l'afuaU<>n Service Repo,t: Issued I Vaid: Proof: Stand-off inslalation: ProNe: Kwik Bott TZ2 • CS 311 (2) hnom2 2210238 KB-TZ2 3/S.3 h_,_. = 2.000 In .. h-= 2,500 In. Carbon S1"4 ESR_,266 711/2021 I 12/112021 Design Melhod ACI 318-14 / Mech Paga: Specifier. E-Mail: Data: Base material: lnt tallatlon: cracked concrete, 2500. f,:' ii: 2.500 psi; h • S.000 in. hamrMt drllled hON, lnetahtlon condition: Ory Reinforcement: SeiJmic k>ads (cat C, 0, E. or F) Geometry On.] & Loading (lb, In.lb) t&n&ion: condition B. ahear: condition B; no suppiemenW q>litting retnfo(cement present edge reinforcement none or < No. 4 bar Tension load: yes (17.2.3.4.3 (d}) Shear load: yes (17.2.3.5.3 le)) ~ 0 • T 'G_o '" 11'4'Ul-. ... r...-1N.i.tbeffl1Ct.«tb'~"""'l'ICl .. ling~.-dklr~ P'ROflS~fcl~2021 .... NJ,fl.-8494~ 1911•~Trao.tnltllolHillAG.~ N N --_. <.,.) 1 nbumam 1115/2021 ,:,,s;, Hlltl PROFIS Englneerlng-3""'.0-.7-3 _________________ _ www.hiltl.com Company: Address: Phone I Fax; De5'gn: Fastening point 1.1 DHlgn rH Ultl ECLIPSE ENGINEERING, INC. 376 SW Bluff Or •• Suite 8 s, 1-389-9659 I 3-8 INCH -HILTI KB-TZ2 Base ol Shelving Unrt Case Description Load case; Design loads 2 Load case/Resulting anchor forces Anchor reaction• (lb) Tension force: (•Tension, -Compression) Page: Specifier. E-Mai: Date: Forces Pb) I Moments po.lb) N • 165; v. • 165; V1 • 0; M.•0;M,•0:M,•0; Anc:ho< Tention force Shear bee Shear fOf~ x Shear fo«::e y 165 165 165 0 max. ooncrele compt'essive 5train: -l'-1 max. conc:rele tomPfessive s.vess: • (ps~ resutUng tension fon:e in (x/y)z(0.OOOI0.000)· 0 [b) rosuWng ccmpresslon fot<:e in (x/y)-(0,000/0.000): 0 Ill>) 3 Tension load Load N.,. [lb} Capacity ♦ N. Pb) Steel Strength• 165 4,869 Pulout Strength" NIA NIA Concrete Breakout Failure"" 165 1,448 • hrghest k>aded andlor .... anchor group (anchors in tension) ~NC.I rod ~inntbo ~ lor(JQINlffftllW ... I'll~~ «Idiot~ PROFIS~(c. )2003-2021 H■AG. fL-i4M ScftNrl Hlllta~ T~ Of ... Nl, $CI\Un nbumam 11/512021 Seismic Max. UtiL 14.rdw:K ~) yes 12 Utlllutlon 11111 • N~ N., Status 4 OK NIA NIA 12 OK i = 1 1 S ;a ____________________ _ Hlltl PROFIS Engineering 3.0.73 www.hUti.com Company, Address: Phone I Fax: Design: Fastening point 3.1 StHI Strength N.,. -= ESR vatue ♦N .. ~N,. VariabMs ~ 0.05 Calculatlona NJ] 6,493 RH uftl; N~ 6,493 ECLIPSE ENGINEERING, INC. 376 SW Bluff Df .• Suite 8 541-389-9659 I 3-8 INCH • HIL Tl KB-TZ2 Base of Sh91ving Unit refer lo ICC-ES ESR-4266 ACI 318-14 Table 17.3.1.1 •.,IJ>SII 126,204 ♦-q_~ 0.750 1.000 3.2 Concrete Breakout Failure N,. =(~) ,i_.,., .fJri VOPJi1N11o ♦ Nc,t, ~N.,. A,.. see ACI 318-14, Sodioo 17.4.2.1, Fig. R 17.4.2.1(b) .... •9'1!, v.,..N =0.7•0.3(~) s 1,0 (~ 1.Sh_.) 'l'cs,Jt =MAX .--:S 1.0 ~ c~ N11 =I\: A, '/t,h~.s Variables h.[ln.J c,.,,, [In.] . .,. 2,000 6.000 1,000 Calculations ~[In.'] ~r.,.'1 "··" 36.00 36.00 1.000 Results N18~i ♦-♦-2,970 0.650 0.750 ♦ N.,._11>1 4,869 Page: Specifier. E-Ma~: Date: 'l._llbl 165 ACI 318,.14 Eq. {17A.2.1a) ACI 318-14 Table 17.3.1.1 ACI 318-14 Eq. (17.◄.2.1c) ACI 318-14 Eq. (17.4.2.5") ACI 318-14 Eq. (17.4.2.7b) ACI 318-14 Eq. (17.4.2.2a) c,.[ln.] I<. 4.375 21 .... ~~b] 1.000 2,970 ♦-♦ Nl>[lb] 1.000 1,448 klllUldN_.tn.an,.,ea Deched(a,dto, ~Wlll\h .... c:onclilloM.-.:1 Jor~ F'ROF1S e~ le )~1 ... 1,r;, FUMIM Sd'INrl ... 1 .WM T~otHIIII AG. sa- N ~ ..... w - ,._,_ 1.000 ~ 165 i,[ps,l 2,500 nbumam 1115/2021 1:115;;1 Hlltl PROFIS Englnaering""'3""'.0-.7-3 __________________ _ www.hlttl.com Company: Addfess: Phone I Fax: Design, Fastening point: 4 Shear load ECLIPSE ENGINEERING, INC. 376 SW Bluff Or., Suite 8 541-389-9659 I J.8 INCH· HILTI KB-TZ2 Base of Shetmg Unit P-: Specifier. E•Mal: Date: L~dV.[1b) Capacity♦ V, PbJ Sleet Strength" 165 Steel failuce (with lell'er arm,♦ NIA Pryo<nStrengw• 165 Concrete edge falture in dlrecbon x+0 165 • highest loaded anchor ••anc::hof group (refevant anchors) 4.1 StHI Strangth V M,eQ = ESR value ♦ V._2;V.,. Varlablff ~ 0.05 C1lculatlons V......J!!1 3,386 Results v~ 3,386 refer 10 ICC-ES ESR-4268 ACl318-14 TabM 17.3.1.1 t,,,IP"l av.- 126,204 1.000 ♦-·~ 0.650 1.000 •v~ 2.201 ~dalMdt_.n.111.N~lur~IWty_.f'lil~CDndi--.andb ~ PROFJSEngll'INmt1c12003-2021~,.C.FL~~ ._.lll,~TJIOlflllRdlillNl,Scf'INII 2,201 NIA 2,079 1,723 v~ 165 Utlllzatton llv • V _,+ V ft 8 NIA 8 10 nbumam 11/5/2021 Statu• OK NIA OK OK •=liS•O Hlltl PROFIS Englneerlng-3-.0-.7-3 ____________________ _ www.hilti.com Compony: Address: Phone I Fax: Oellgn: FaSllil'W'lgpoint: 4.2 Pryout Stre"9th ECLIPSE ENGINEERING. INC. 376 SW Bluff Dr .• StJi1e 8 541-389-96591 :HINCH• Hit. TI KIHZ2 8aH 01 SheMng unit v,. •~[(c;)•..,.•.,.v,.~N,,] • v. ~ "~ A,,. '"ACI 318-1◄, Secticn 17.◄.2.1. Fill• R 17.◄.2.1(b) A,. •9h~ ..... N •0,7 ♦0.J(~) ~1.0 \I'_,. • MAX(~. 1 -:•) s 1.0 ... •k,l. • ..Ji;,,;,• Variabtet ~ h,t(Jn,) 1 2.000 c,.(!!,J ", 4.375 21 Cak.ulatk>na ~, ... •, ~"'-~ 36.00 36.00 R""lu v,.llbl ·-2,970 0.700 c,,,.,(Jn.J 6.000 i.. 1.000 v .. ,,. 1.000 ·-1.000 Pago. Specifio<: E-Mail: Date: A.Cl 318-14 Eq. (17.5.3.1a) A.Cl 318-14 TlbM 17.3.1.1 ACI 318-1◄ Eq. (17.◄.2.1c) ACI 318-1◄ Eq. (17.◄2.Sb) ACI 318-1◄ Eq. (17.◄.2.7b) ACI 318-14 Eq. (17.4.2.2■) ... 1.000 i, IJ»,l 2,500 ·~~ ~{lb) 1.000 2,970 ·-• v,.11>1 1.000 2,079 k1Jlll.tld.llaancl,__,,.,,._1Nodr,tdb~----..... 00tldilol,a--b~ P'ROf\S~(c)200J.2021HaiAG,~lc:IIWI .. ._,,..,_TrlldtNRolHitliAG.~ N ~ ..... <,) - V....J!!!. 165 ---5 nbumam 11/5/2021 i = i i S .n _____________________ _ HIit) PROFIS Engineering 3.0.73 www.hlttl.c.om C<><npanyc Addf"t: PhoMIFu: [)ff;gn: ECUPSE ENGINEERING, INC. 376 SW Bluff Dr., S<Jite 8 541-389-96591 :HINCH-Hit.TI KB-TZ2 ··--8aH 01 SheMng Un,t 4.l Concret• MIG• tallu,. ln dlrKtfon x+ v,. • (~} • .c.'t' •c.v ¥111,.v ,.,.....,.., v. ♦ v. ~v .. "-,, NeACl318-1◄, Section 17.5.2.1, flg. R 17.5.2.1(b) Av. •-4.5c!1 "'""" •0.7+o.J(~} ~ 1.0 ,;,-;;;-: •11.v •'\/~21,0 v, • Hi>" ,,.. ) • · v1: .:: Vari~ C1l flfl,) C11:fin.l V <V 6.000 6.000 1.000 i.. d [on,) ,; IP5'1 1.000 0.375 2,500 Caleulltion• ~, .... , ~, ... ~ .... 75.00 162.00 0.900 R"ultl v,.llbl ·-·-2,461 0.700 1.000 5 Combined tension and shear loads Pago. Sptc,litr. E•Mal: Date: ACI 318-1' Eq. (17.5.2.1e) Aa 318--14 Tat>M 17.3.1.1 ACI 318-14 Eq. (17.5.2.1c) ACI 318-1◄ Eq. (17.5.2.&b) ACI 318-1◄ Eq. (17.5.2.8) ACI 318-1◄ Eq. (17.5.2.2e) !!,[in.) ~(In.) 5,000 2.000 ·-· 1.000 ¥•v V1 1lbl 1.342 4,-103 ·-♦ Vallbl 1.000 1,723 P. Pv ~ Ulilizelion p •• 1%) Stetua 0:114 0.096 513 5 ~NV•P~•P~<-1 lr'IP,IIIWUarv:1,-... --NCfMltMC!b ~ .... --~~--lor~ PROflS~tc)2003-20l1HalNJ,f'L~Sd'IWI H11ll1...-,.0TrtOIIN!t,dttllNJ.SC:ftun OK v,.llbl 165 nbumom 11/Y.!021 •=iiS•• Hlltl PROFIS Englneertng""Jcc.O:c.7:-:3:---------------------- www.hlkl.com Company: AddraH: Phone I Fex: Oes,gn: F■-.Upoint: 6Wamlngs ECLIPSE ENGINEERING, INC~ 376 SW Bluff Dr .. Suite 8 5-11-389-9659 I ~ INCH • HII. TI 1<1!-TZ2 Baeol5-.gUnO Page: Speciflor. E-Mail: Date: nbumam 111Sl2021 • The and'lof" <Msfgn rnetnoa1 In PROFIS Englnfftlng requ.rl rigid anchor pla!H pe< a.rent regu6ab0na (AS 5216.2021, ETAG 001/AMex C, EOTA TR029 Me.). Thi means bad ~lnbubOn on lhe anc:hors due loNl1tlcdetormabon1 ~the anchor plate•• noc c:onsictered-the ln<horplalo1$Q■umod,Ob■■uffici■tllyat>ff.inordornotl0b■o■formodwll0ft■ul>jeclod10lhoelnogn-.g_PROFISEng.-r,g lMI mrwnum required llnCh0r p6ete l'IIC:knHI 'Mth CBFEM 10 limit the stress of the anchor plate based on tha assu,npbC>ns •~ above. TM proof if the r1gld anchot pla11 assumpbOn ii valid 1s not camtd out by PROFIS Engineering. Input data and resuks must be c::hedced for agreement wJth the exitting condition• and for p&au$ibiltyl · Cond-A ■Pl)ie$-• 111■ pole<1tlal c:oncteto failure..,,_ are c:roued by auP!)lomenwr; reinfotcemenc prc,po,1ior1od 10 lie Ille po<enlial concrete fuure pnam Into u,,e structural memt,e,. ConolbOn B applies where sucn aupplemantary reanlorcement • no1 prtMded, o, 'Nhere P'Ak>Ul or p,youl Strength goYeml. • Refer IO aie manufacruRfs product llte<atu,. for dtal'Wlg and lnslllation instNCtionl. • F0t additional informabon abOut A.Cl 318 1tr1ngth design prov111on1, please go lo http1:J/tubmittats.us.hlfti.comlPROflSAnchOl'Oe11gnGuide/ • An anc::hOr design appn»eh for 1tructurn u,Jgned to Seismc Design Category C, 0, E 0t F Is given In ACI 31S.1-4, Chapter 17. Sectk>n 17.2.3.4.3 (1) lhat requlm Ille g<>YOming detlgn -of an -or group of ancl1ons b■ lomiled by du<:lilo steel flit.n. K lhi& ;a NOT tt1o cue, 1h■ connoction -(tens<ln) -Nblfy 1h■ pnM&lc)n& ol Secoon 17.2.3.4.3 lb~ Secoon 17.2.3.4.3 {<), or Section 17.2.3.A.3 (d). The ....-.00 des,gn (&hur) -Nlilfy Ille pr<Mlions ol Sec0on 17,2,3.5.3 (1), 5ecoon 17.2.3.5.3 (b), Of Section 17.2.3.5.3 (C~ • Section 17.2.3.-4.3 (b) / Section 17.2.3.5.3 (1) require the att.ec:hment the anchol1 are connecting IO the structure be designed to undergo ductile vw,fding et a k:lad ~vel corresponding 10 aoc:hor bees no greater than thec:.ontrolingdesign ,1r1ngth. Section 17,2.3.4.3 (c}/ S.Cuon 17.2.3.5.3 (b) waive the ductlity requirM'lents and requh the anchors 10 be designed kw the maximum wnlion / &heat lhat can be transmitted to the anc:hOrl by a non-yieklng attachment. Section 17 .2.3.-4.3 (d) I s«t,,on 17 .2.3.5.3 (c) waive the ductility reqllrements and require hi design strength ot the anchon to equal ot exc.e,e,ct the max.mum W11tion / theal" obtained kom des,gn load combinallona U\111 include E. wttt1 E increased by•., • Hitt1 poal-installed anc:hors lhal be instaNtd In accordance with the Hlti Manuf1ctur41r's Printed ln,,tallalion lnslnJcUons {MPII). Reference ACI 318-1', Section 17.8.1. Fastening meets the design criteria! irllMlt<IIILlandf~l'l'Ulbec:t«:t.eCkWoonllOlmily--.N....._~;;-M-~b£¥ PROA&~(c)2003,.2Cl2t•AG.R.+c .. &nwt .-•• .....,_T,...,_..Gf~AG.ldllM 1') ~ ~ ~ i = i i S • •----------------------Hlltl PROFIS Engineering 3.0.73 www.hlkl.com Cornpafly: Add..-e11: Phone I Fax· DNlgn: F._port 7 Installation data ECLIPSE ENGINEERING, INC. 376 SW stuff Dr., Suite 8 541•38-591 ~INCH•HILTil<l!-TZ2 BaeolShelw,gUnot P•: Specif.er. E-Mli: Date: Anchof type and diameter: Kwik Bolt TZ2 -CS 3/8 (2) hnom2 P,<>(ile; · ,_ -2210236 l<l!-TZ2 318"3 tide diameter in the ftxlure: • Maximum lnslalation IOl'que· 361 in.lib P\ate thk:kness (inpul): -Hole d1eme1er tn the baH matenat; 0.375 in. Hole depth In the base material: 2.750 in. Dnli'lg method: Hammier dfiled Mnmum lhidu'lus of the blM mat.rial: 4.000 S'I. Clea,w,g; Manual"'"""'9olttw.,.. hole""""""1g to 1n.,,..-,. for use ls ,.quir•ct H;fti l<l!-T22 &1ud --2.5 in emoedmenl 318 (2) hnom2. C.ttJon &'"4. in&talabon per ESR-4266 7.1 RKO~ KC.Horin DrilW~ Cleanin9 Setti~ nbumam 111512021 ' 5"otlble Rotary"- • Property med dril bit • Manual-blic>¥M>ut pump • Torau• oontro1a,c1 cordNu impact~ • TOtQOa. wra.nch • Hamme< CoordlnalH Anchor In. Anchor x y c,. c.. c c 0.000 0.000 30.000 6.000 30.000 6.000 lrip.,t~lnllfMlillmr.MN~bc;:or$f~--.,._-...lir,g~Mldlor~ PROFIS El'IQIJMM9 I c )2003-2021 HII AG, FL ..... ~ Hillit 1 ,........-T,..._..,d ,_"'4, ~ i = 11 S ;u ____________________ _ Hlltl PROFIS EnglnHrlng 3.0.73 www.hWtl.~ Comf)any: AddraH. Phone I FU' Ooslgn: FH1afqpolnt ECUPSE ENGINEERING, INC. 378 SW B$utr Or., Suite 8 541-38!,-96691 3-3 INCH• Hit. Tl KB-TZ2 Bauols..t,tng\Jnl 8 Remarks; Your Cooperation Duties Pogo: Specifier. E-Mail: Date: 9 nbumam 11/5/2021 • Atty and al Information end data coru:lnec:t in the Software conc:em IOMfy the UN of Hikl products and are baled on the prindpl,H, formulas and sea,rity ~ "1 IICC:Cftlanc:awi1h H;!ti'o _,,_direcllono and operating, "'°"""'1gand ~inauucllonl. etc., "81mult bo &trdy ~-bylheUI« ....... ----figlno,and _____ ., .. __ .,uu,g the ,...,.,,, Hili product. TM resuks o, ,-~lions cam.d out by meant of the SoftW8f1i .,.. based essentialy on lhe data you put n Therefore, you bear the ION r~ for the abHOOI of lff0f'I, the comPMii.ness and the relevance of Che oata to be put in by you. Moreovtr, you bear SOie ,-aponsibility for hav111g the resutt, ol the calculation checked and cleared by an expen, pank:uhuty with regard to complance wtth appk.able norms and perl'Ntl. pnor to umg lhem for "JO'JI apeciftc facility. Thi Software serves ooty as an aid 10 inwp,et nonns and permits will'lout any guarantee a 10 the abMnce of errors, the 00rrectMH Ind the relevancl of the results°' tuitabtlity for a apeciftc --• You mu.t tak.e II necHUf'Y and reasonable ateps to prevent or •mil damage caused by the Softwafe. In patbculer, you mutt arrange for Ile regular backup of programs and data and, if applicable. carrr out the upd,atH of the Software offered by Hill on a ,..,. bNJI. tf you do not UM the AuloUpdlte function of the Softwart, you must enture thal you are u"ng the current and thut up-to-date v.-..on of the Software WI Heh caN by cetTying out manual updates Via 1he Hstb Website. Hiilti W1I not be liabit for consequences. such as 1h11 recovery of klst or damaged data oc programs, enPlg from a c:utpabM: breedl of duty by you. l!w011aNr.-~M~b'~_..lhea.di.1nOc:ondlloftl._lof-.,..Wl)'I ~~lcl2C03-202t HiNAG.F\.~i4kNan .-11.~ r,...,....,« .... Ml, ~ N (J) --..... u> ~~ECLIPSE ENGINEERING Structural Calculations Steel Stockroom Shelving By: Pipp Mobile Storage Systems Inc. PIPP PO# 61515 NIKE LIVE BY LA COSTA 1905 Calle Barcelona -Suite 126 Carlsbad, California 92009 Prepared For: Pipp Mobile Storage Systems Inc. 2966 Wilson Drive NW Walker, Ml 49534 ECLIPSE-ENGINEERING .COM so# 130467 2022 EXP.: SEP 30, 2024 Please note: The calculations contained within justify the seismic resistance of the shelving for both vertical and lateral forces as required by: the 2019 CBC, ASCE 7-16 and ANSI/RMI-MH16.1 (2012). These storage shelves are not accessible to the general public. MISSOULA (406)721-6733 WHITEFISH (406)-,u; SPOKANE (509) 821-ml BEND (54]J-- PORTLAND (503) 396-1229 27/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB PIPP MOBILE STORAGE SYSTEMS INC. STEEL STORAGE SHELVING -LIGHT RETAIL CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI Design Inputs: Steel Storage Shelving: RB ELEMENTS UNIT -"A" Shelving Geometry - Height of Shelving Unit = Width of Shelving Unit= Depth of Shelving Unit= Number of Shelves/Unit= Vertical Shelf Spacing = Back to Back Unit? YES Unit Type: FIXED Number of Units per Track? Mobile Anchor Spacing? Wall Supported Unit? Shelving Loading - Live Load per Shelf= Maximum Weight per Shelf= Dead Load per Shelf= Weight of Each Post = Weight of Mobile Carriage= Floor Load Calculations: Total Load on Each Post= Total Load On Each Unit = Floor Area Load = Allowable Floor Loading= Floor Load Under Shelf= Seismic Information - 10.0 4.0 1.5 9 14.4 N/A NO 12.00 70 2.0 7.4 0 192 768 8.0 100 96 ft ft ft in in psf lbs psf lbs lbs lbs lbs ft2 psf psf Steel Yield Stress = 33 ksi Modulus of Elast. = 29000 ksi Eff. Lx Factor= 1.7 Unbraced Length,x = 14.4 in Unbraced Length,y = 14.4 in Type of Post? 14 Ga. Rivet Style L-Post Type of Beam? DRL Low Profile Top Shelf Loaded? YES Intermediate Anchor: Double Display On Plaque Near Shelving Units Per 48.00 in. x 18.00 in. shelf Perforated Metal Shelf Shelving is NOT accessible to public Ground Fir Cone Slab 2500 psi NWC Concrete 3/8"<P KB-TZ2 w/ 2.000" Embedment l oK FOR lOOpsf RETAIL FLOOR LOADING Not Open to the Public SOC: D Risk Category = Seismic Importance Factor (I d= Site Class= II 1.0 D -Default Worst Ca se Assumed Mapped Accel. Parameters: p = 1.3 Ss = 1.056 Fa = 1.200 S1 = 0.380 Fv = 1.920 Structural System: ASCE 7 Section 15.5.1 Steel Storage Shelving: R = 4 Average Roof Height = Height of Base Attachment = Shear Coeff Boundaries= 20 0 ft ft Vmin = 0.037 Vmax = 0.211 Sms = 1.267 Sml = 0.730 ap = 2.5 0'-0" For Ground Floor Location Ground Floor RMI, 2.6.3 RMI, 2.6.3 Sds = 0.845 Sdl = 0.486 Ip= 1.0 ____ o_e_s_ig_n_B_a_se_s_h_e_a_r _c_oe_ff_= ____ v_1 _=_o_.1_9_2 _ __.IAdjusted For ASD RMI, 2.6.3 28/137 ~~EC LI PSE ENGINEERI NG NIKE LIVE BY LA COSTA Carlsbad, California Lateral Force Distribution: per ASCE 7 Section 15.5.1 Total Dead Load per Level= 15.3 lbs Total Live Load per Level = 70 lbs Lateral DL Force per Level = 2.9 lbs Lateral LL Force per Level = 13.5 lbs 67% of LL Force per Level = 9.0 lbs Total DL Base Shear = 26.4 lbs Total LL Base Shear= 121.1 lbs 10/19/2022 NSB LC1: Each Level, Loaded to 67% of its Live Weight Cumulative Moment: 33858 in-lbs LI __ T_o..;.ta;....I_B_as_e_S;....h....;e..;;.a_r = __ ....;1....;.0_7 ·....;.6 _ ___:_:I b;.:s __ --JI LC #1 Governs LC 2: Top Level Only, Loaded to 100% of its Live Weight Cumulative Moment: 16581 in-lbs LI __ T_o_ta_l_B_a_se_S_he_a_r_= ___ 3_9_.9 ___ 1b_s __ _____,I LC #2 Does NOT Govern Load Case #1: Load Case #2: Lateral Force/Shelf: Shelf Heights: Load: % Per Shelf: Load: % Per Shelf: Force #: LC#l: LC #2: hl = 3in 62 1bs 0.6% lSlbs 0.3% Fl= 0.6 lbs 0.1 lbs h2 = 17in 62 1bs 3.2% lS lbs 1.6% F2 = 3.4 lbs 0.6 lbs h3 = 32in 621bs 5.8% 15 1bs 2.9% F3 = 6.3 lbs 1.2 lbs h4= 46in 62 1bs 8.5% l Slbs 4.3% F4= 9.1 lbs 1.7 lbs hS = 61in 621bs 11.1% 151bs 5.6% F5 = 12.0 lbs 2.2 lbs h6 = 75in 62 lbs 13.8% 15 1bs 6.9% F6 = 14.8 lbs 2.8 lbs h7 = 89 in 62 1bs 16.4% lS lbs 8.2% F7 = 17.6 1bs 3.3 lbs h8 = 104in 621bs 19.0% 1S lbs 9.6% F8 = 20.5 lbs 3.8 lbs h9 = 118 in 62 lbs 21.7% 85 lbs 60.7% F9 = 23.3 lbs 24.2 lbs h10 = Oin 0lbs 0.0% O lbs 0.0% HO= 0.0 lbs 0.0 lbs h11 = 0in Olbs 0.0% Olbs 0.0% F11 = 0.0 lbs 0.0 lbs h12 = Oin 0lbs 0.0% Olbs 0.0% H2 = 0.0 lbs 0.0 lbs h13 = Oin 0 lbs 0.0% Olbs 0.0% F13 = 0.0 lbs 0.0 lbs h14 = Oin Olbs 0.0% 0 lbs 0.0% H4 = 0.0 lbs 0.0 lbs h15 = Oin 0 lbs 0.0% 0 lbs 0.0% HS= 0.0 lbs 0.0 lbs h16 = Oin Olbs 0.0% Olbs 0.0% F16 = 0.0 lbs 0.0 lbs h17 = Oin 0 lbs 0.0% 0 lbs 0.0% H7 = 0.0 lbs 0.0 lbs h18 = 0in Olbs 0.0% 0lbs 0.0% F18 = 0.0 lbs 0.0 lbs h19 = Oin 0lbs 0.0% 0lbs 0.0% F19 = 0.0 lbs 0.0 lbs h20= Oin Olbs 0.0% 0lbs 0.0% F20 = 0.0 lbs 0.0 lbs Sum= 100% Sum= 100% Total = 107.6 lbs 39.9 lbs By inspection, the force distribution for intermediate level without live load (case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for t his condition. 29/137 ~~ECLIPSE NIKE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Column Calculations -Combined Bending and Axial Post Type: Double Rivet "L" or "T" Post Width = Depth = Thickness= Column Bending Calculations - Max Column Moment= 1.5 in 1.5 in 0.075 in 16.0 ft-lbs r. = 0.470 s. = 0.044 1. = 0.049 A -p-0.217 Allowable Bending Stress= Bending Stress on Column = 19.8 4.3 ksi ksi I Bending Stress OK in At Top of Unit L/ti in in3 in4 in2 10/19/2022 NSB Column Deflection Calculations - Max Deflection = Deflection Ratio = Allowable Deflection= 0.105 1140 6 in Max Deflection = 5% of Height Column Axial Calculations - DL +PL = DL +PL+ EQ = Column Capacitv Calculations - Controlling Buckling Stress = Allowable Comp. Stress = Fact or of Safety for Comp. = Nominal Column Capacity= Allowable Column Capacity= Static Axial Load on Column= Per "L" Post 192 311 17.3 17.3 1.80 3516 1953 192 Combined Bending And Axial Forces - Critical Buckling Load = 23341 Axial Stress Unity = 0 .159 Bending Stress Unity = 0.189 Combined Stress Unity = 0 .348 lbs lbs ksi ksi lbs lbs lbs lbs IDeflection OK I RMI Load Combination #1 RMI Load Combination #6 IAxial Load OK Magnification Factor = C = m !column is Adequate 0.985 0.85 30/137 ~~ECLIPSE NIKE LIVE BY LA COSTA 10/19/2022 NSB E N G I N E E R I N G Carlsbad, California Overturning and Anti-Tip Calculations Overturning Forces On Anchors (LRFD) Per Back-to-Back Unit Overstrength Factor, Cl = 2.00 Load Combination LCl LC2 Total Weight, w (lbs) 1119 415 Base Shear, Eh (lbs) 236 88 Vertical Seismic Force, Ev (lbs) 189 70 W(lCl ) = (Dlshclf + 0.67 • llshelf) •#of Shelves W(LC2) = Dl shelf •#of Shelves + Llshelf Eh = (Vt • W)/(0.7 • p) Ev = 0.20 • Sds • W Mo(LCl) = n • I (hx • fx/0.7) Mo(LC2) = 0 • Vt/0.7 • ( Dlro,al • (1 + S) + Llshelf • H) Overturning Moment (O=2), Resisting Moment, Mo (ft-lbs) 3281 1469 Mr (ft-lbs) 1227 455 Mr = (0.9 • W -Ev)•~ 2 Mn = Mo-Mr V = ll•Eh # of Anchors Mn T = 7 # of Anchors Net Overturning Moment, Mn (ft-lbs) 2053 1014 Shear Force per Tension Force Anchor, V per Anchor, T {lbs) 118 44 Per Side of Unit (lbs) 342 169 USE: POST INSTALLED ANCHOR BOLTS/ LAG SCREWS AS REQUIRED FOR FLOOR NOTED BELOW Allowable Tension Force = 1448 Allowable Shear Force = 1723 Combined Loading LCl: 0.236 LC2: 0.117 Anti-TiQ Track Design - Type of Anti-Tip Device= NONE Tension per Carria e Anchor= N/A Combined Loading= N/A Tension per Shelf Post= N/A Capacity of Screws to Carriage = N/A Anti-Tip Peg Yield Stress= 40.275 Thickness Anti-Tip Peg Head= 0.09 Width of Anti-Tip Peg Head = 0.43 Section Modulus of Peg Head= 0.0006 Allowable Stress on Leg= 40.275 Bendin~ Stress on Le~ = N/A Anti-Tip Stress Unity = N/A I Section Modulus of Track = 0.093 Spacing of Track A.B's= 0.00 Allowable Alumn. Stress= 21 Bending Stress on Track = N/A Track Stress Unity = N/A lbs lbs lbs lbs lbs ksi in in in3 ksi ksi in3 in ksi ksi 2500 psi NWC Concrete 3/8"q> KB-TZ2 w/ 2.000" Embedment I Floor anchors are adequate IN/A IN/A Steel IN/A 6061-T6 IN/A Fy = 53.700 ksi Fu = 63.800 ksi Fty = 35.000 ksi Ftu = 38.000 ksi I 31 /137 ~~ECLIPSE ENGINEERING Shelf Beam Calculations Shelf Beam Calculations: Steel Yield Stress = Modulus of Elast. = NIKE LIVE BY LA COSTA Carlsbad, California DRL Low Profile 33 29000 ksi ksi Shelf DL = Shelf LL= Beam Type: DRL Low Profile Area of Beam = 0.264 in2 Section Modulus of Beam = Moment of Inertia of Beam = Shelf Width = Shelf Depth = Total Load/Shelf= Distributed Load = 4.0 1.5 84 10.5 Maximum Design Moment= Maxi mum Design Shear= Beam Bending Stress= Bending Stress Unity= Beam Shear Stress= Shear Stress Unity= Max Allowable Deflection = Maximum Beam Deflection = Shelf Beam Rivet Check: Diameter of Rivet = Post Moment Shear on Rivet= Beam Shear on Rivet = Resultant Shear= Bearing Capacity of Rivet = Allowable Shear Stress = Shear Stress on Rivet = Seismic Uplift on Shelves - Vertical Seismic Component = Vertical Total load per Shelf = Connection Points per Shelf = Net Uplift l oad per Shelf = ft ft lbs olf 0.098 0.072 21.0 21.0 2.6 0.130 0.08 0.006 0.267 0.029 0.25 128.1 21.0 129.8 519.8 13.5 2.6 14.2 62.2 4.0 -23.1 in3 in4 ft-lbs lbs ksi ksi in in in lbs lbs lbs lbs ksi ksi lbs lbs Allowable Bending Stress = Allowable Shear Stress= !Bending Stress OK !shear Stress OK l/180 I Deflection OK !Bearing Stress OK IShear Stress OK (1) per Corner lbs 10/19/2022 NSB 2.0 psf 12.00 osf 19.8 13.2 ksi ksi Uplift Forcer per Connection = -5.8 lbs Rivet Connection OK 32/137 :::;:: ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Slab Bearing & Uplift Calculations Slab Design Properties - Minimum Concrete Strength = Thickness of Concrete Slab= Weight of Concrete Slab= Allowable Bearing Pressure= Bearing Loads On Post= Uplift Loads on Post= Slab Bearing Capacity - Depth of Post on Slab= Factored Bearing Load = Required Bearing Area= Critical Section = Soil Pressure on Crit. Section= Section Modulus= Shear Area= Cone. Shear Stress= Allowable Shear Stress= Cone. Bending Stress= Allowable Bending Stress= Slab Uplift Capacity - Required Area to Resist Uplift= Length of Slab Req'd = Worst Case Length of Slab= Distance to Anchor Bolt= Length of 1ft Strip= Shear Force on 1ft Strip= Allowable Shear Force= Bending Moment on 1ft Strip= Allowable Bending Moment= 2500 4 so 500 34 158 273 274 1.5 684 134.00 3.04 734.9 32.0 22 7.8 73.2 8.8 137.5 3.80 0.48 0.75 0.38 0.75 52.S 1760.0 4.9 366.7 psi in psf psf lbs lbs lbs lbs in lbs in2 in plf in3 in psi psi psi psi ft2 ft ft ft ft lbs lbs ft-lbs ft-lbs Assumed Assumed Assumed Dead Load Live Load EQLoad Resultant Uplift 11.58 inches per side For Bending Along Critical Length Plain Concrete per Foot !Shear Stress OK !Bending Stress OK Assume Required Area/ Full Shelf Width Maximum Length Required Length Safety Factor: 2.00 !Shear OK !Bending OK 33/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB PIPP MOBILE STORAGE SYSTEMS INC. STEEL STORAGE SHELVING -LIGHT RETAIL CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI Design Inputs: Steel Storage Shelving: EQUIPMENT UNIT -"B" Shelving Geometry - Height of Shelving Unit= Width of Shelving Unit= Depth of Shelving Unit= Number of Shelves/Unit= Vertical Shelf Spacing= Back to Back Unit? NO Unit Type: FIXED Number of Units per Track? Mobile Anchor Spacing? Wall Supported Unit? Shelving Loading - Live Load per Shelf= Maximum Weight per Shelf= Dead Load per Shelf= Weight of Each Post= Weight of Mobile Carriage= Floor Load Calculations: Total Load on Each Post= Total Load On Each Unit= Floor Area Load = Allowable Floor Loading= Floor Load Under Shelf= Seismic Information - 10.0 4.0 1.5 9 14.4 N/A YES 12.75 75 1.5 7.4 0 196 786 8.0 100 98 ft ft ft in in psf lbs psf lbs lbs lbs lbs ft2 psf psf Steel Yield Stress = 33 ksi Modulus of Elast. = 29000 ksi Eff. Lx Factor= 1. 7 Unbraced Length,x = 14.4 in Unbraced Length,y = 14.4 in Type of Post? 14 Ga. Rivet Style L-Post Type of Beam? DRL Low Profile Top Shelf Loaded? YES Intermediate Anchor: Double Display On Plaque Near Shelving Units Per 48.00 in. x 18.00 in. shelf Wire Grid Shelf Material Shelving is NOT accessible to public Ground Fir Cone Slab 2500 psi NWC Concrete 3/8"<!> KB-T22 w/ 2.000" Embedment joK FOR lOOpsf RETAIL FLOOR LOADING Not Open to the Public SOC: D Risk Category = Seismic Importance Factor (le) = Site Class= Mapped Acee/. Parameters: II 1.0 D -Default p = 1.3 Worst Case Assumed Ss = 1.056 51 = 0.380 Fa= 1.200 Fv = 1.920 Structural System: ASCE 7 Section 15.5.1 Steel Storage Shelving: Average Roof Height= Height of Base Attachment= Shear Coeff Boundaries= 20 0 Vmin = 0.037 Vmax = 0.211 Sms = 1.267 5ml = 0.730 ap = 2.5 0'-0" For Ground Floor Location Ground Floor RMI, 2.6.3 RMI, 2.6.3 Sds = 0.845 Sdl = 0.486 Ip= 1.0 ,----D-e-si_g_n _B_a-se_S_h_e_a_r_C_o_ef_f_= _____ V_, -=-0-.1-9_2 _ __,!Adjusted For ASD RMI, 2.6.3 34/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Lateral Force Distribution: per ASCE 7 Section 15.5.1 Total Dead Load per Level = 12.3 lbs Total Live Load per Level= 75 lbs Lat era I DL Force per Level = 2.4 lbs Lateral LL Force per Level = 14.4 lbs 67% of LL Force per Level = 9.7 lbs Total DL Base Shear= 21.2 lbs Total LL Base Shear= 129.7 lbs LC1: Each Level, Loaded to 67% of its Live Weight Cumulative Moment: Total Base Shear= 108.2 lbs i LC #1 Governs LC 2: To~ Level Onl~, Loaded to 100% of its Live Weight Cumulative Moment: I Total Base Shear= 35.7 lbs i LC #2 Does NOT Govern 10/19/2022 NSB 34049 in-lbs 15537 in-lbs Load Case #1: Load Case #2: Lateral Force/Shelf: Shelf Heights: Load: % Per Shelf: Load: % Per Shelf: Force#: LC#l: LC#2: hl = 3 in 63 lbs 0.6% 12 lbs 0.2% Fl= 0.6 lbs 0.1 lbs h2 = 17in 63 lbs 3.2% 12 lbs 1.4% F2 = 3.5 lbs 0.5 lbs h3 = 32 in 63 lbs 5.8% 12 lbs 2.5% F3 = 6.3 lbs 0.9 lbs h4 = 46in 63 lbs 8.5% 12 lbs 3.6% F4= 9.2 lbs 1.3 lbs h5 = 61 in 63Ibs 11.1% 12 lbs 4.8% F5 = 12.0 lbs 1.7 lbs h6 = 75in 63Ibs 13.8% 12 lbs 5.9% F6 = 14.9 lbs 2.1 lbs h7 = 89in 63 lbs 16.4% 12 lbs 7.1% F7 = 17.7 lbs 2.5 lbs h8 = 104in 63 lbs 19.0% 12 lbs 8.2% F8 = 20.6 lbs 2.9 lbs h9= 118in 63 lbs 21.7% 87 lbs 66.3% F9 = 23.4 lbs 23.6 lbs hlO= Oin Olbs 0.0% Olbs 0.0% FlO = 0.0 lbs 0.0 lbs hll = Oin 0 lbs 0.0% Olbs 0.0% Fll = 0.0 lbs 0.0 lbs h12 = Oin 0 lbs 0.0% Olbs 0.0% F12 = 0.0 lbs 0.0 lbs hl3 = 0 in 0 lbs 0.0% Olbs 0.0% Fl3 = 0.0 lbs 0.0 lbs h14 = Oin o lbs 0.0% Olbs 0.0% F14= 0.0 lbs 0.0 lbs hlS = Oin Olbs 0.0% Olbs 0.0% F15 = 0.0 lbs 0.0 lbs h16= Oin Olbs 0.0% Olbs 0.0% F16 = 0.0 lbs 0.0 lbs h17= Oin Dibs 0.0% Olbs 0.0% F17 = 0.0 lbs 0.0 lbs h18 = Oin Olbs 0.0% Olbs 0.0% F18 = 0.0 lbs 0.0 lbs h19 = Oin 0 lbs 0.0% Olbs 0.0% F19 = 0.0 lbs 0.0 lbs h20 = 0 in Olbs 0.0% Olbs 0.0% F20 = 0.0 lbs 0.0 lbs Sum= 100% Sum= 100% Total= 108.2 lbs 35.7 lbs By inspection, the force distribution for intermediate level without live load (case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for this condition. 35/137 ::;~ECLIPSE NIKE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Column Calculations -Combined Bending and Axial Post Type: Double Rivet 11L11 or 11T" Post Width= Depth= Thickness= Column Bending Calculations - Max Column Moment= 1.5 in 1.5 in 0.075 in 16.1 ft-lbs r = ' 0.470 s = ' 0.044 IK = 0.049 A,= 0.217 Allowable Bending Stress= Bending Stress on Column = 19.8 4.4 ksi ksi ! Bending Stress OK Column Deflection Calculations - Max Deflection= 0.106 in Deflection Ratio= 1134 At Top of Unit L/1':,. in in3 in4 in2 10/19/2022 NSB Allowable Deflection= 6 in Max Deflection= 5% of Height !Deflection OK ! Column Axial Calculations -Per "L" Post DL + PL= 196 lbs DL +PL+ EQ = 311 lbs Column Capaci!Y Calculations - Controlling Buckling Stress= 17.3 ksi Allowable Comp. Stress= 17.3 ksi Factor of Safety for Comp. = 1.80 Nominal Column Capacity= 3516 lbs Allowable Column Capacity= 1953 lbs Static Axial Load on Column= 196 lbs Combined Bending And Axial Forces - Critical Buckling Load = 23341 lbs Axial Stress Unity= 0.159 Bending Stress Unity= 0.190 Combined Stress Unity= 0.350 RMI Load Combination #1 RMI Load Combination #6 !Axial Load OK Magnification Factor = C = m !Column is Adequate 0.985 0.85 36/137 ~~ECLIPSE NIKE LIVE BY LA COSTA 10/19/2022 NSB E N G I N E E R I N G Carlsbad, California Overturning and Anti-Tip Calculations Overturning Forces On Anchors {LRFD) Load Combination LCl LC2 Total Weight, w (lbs) 563 186 Base Shear, Eh (lbs) 119 39 Vertical Seismic Force, Ev (lbs) 95 31 W(lCl) = (DLshelf + 0.67 * LLshcif) *#of Shelves W(LCZ) = DLshe!f *#of Shelves+ llshelf Eh= (Vt• W)/(0.7 • p) Ev = 0.20 * Sds * W Mo(LCl) =fl• L(hx • fx/0.7) Mo(LCZ) = 0. * Vt/0. 7 * ( DLrotal * G· + s) + Llshelf * H) Overstrength Factor, Cl= 2.00 Overturning Resisting Moment, Moment (0=2), Mc Mo (ft-lbs) 1650 673 (ft-lbs) 309 102 Mr= (0.9 * W -Ev)*~ ' Mn= Mo-Mr V il*Eh # of Anchors "" T= d # a{ Anchol"S Net Overturning Moment, Mn (ft-lbs) 1341 571 Shear Force per Tension Force Anchor, V per Anchor, T (lbs) 59 20 Per Side of Unit libs) 447 190 USE: POST INSTALLED ANCHOR BOLTS/ LAG SCREWS AS REQUIRED FOR FLOOR NOTED BELOW Allowable Tension Force= 1448 Allowable Shear Force= 1723 Combined Loading LCl: 0.309 LC2: 0.132 Anti-Ti11 Track Design - Type of Anti-Tip Device= NONE Tension per Carriage Anchor= N/A Combined Loading= N/A Tension per Shelf Post= N/A Capacity of Screws to Carriage= N/A Anti-Tip Peg Yield Stress= 40.275 Thickness Anti-Tip Peg Head = 0.09 Width of Anti-Tip Peg Head = 0.43 Section Modulus of Peg Head = 0.0006 Allowable Stress on Leg= 40.275 Bending Stress on Leg= N/A Anti-Tip Stress Unity= N/A Section Modulus of Track= 0.093 Spacing of Track A.B's= 0.00 Allowable Alumn. Stress= 21 Bending Stress on Track= N/A Track Stress Unity= N/A lbs lbs lbs I lbs lbs ksi in in in3 ksi ksi in3 in ksi ksi 2500 psi NWC Concrete 3/8"cj, KB-TZ2 w/ 2.000" Embedment !Floor anchors are adequate Steel 6061-T6 Fy = 53. 700 ksi Fu = 63.800 ksi Fty = 35.000 ksi Ftu = 38.000 ksi 37/137 ~;;ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Shelf Beam Calculations Shelf Beam Calculations: Steel Yield Stress= Modulus of Elast. = DRL Low Profile 33 29000 ksi ksi Beam Type: DRL Low Profile Area of Beam = 0.264 in2 Section Modulus of Beam = 0.098 in3 Moment of Inertia of Beam= 0.072 in4 Shelf Width = 4.0 Shelf Depth = 1.5 Total Load/Shelf= 86 Distributed Load= 10.6875 Maximum Design Moment= Maximum Design Shear= Beam Bending Stress = Bending Stress Unity= Beam Shear Stress= Shear Stress Unity= Max Allowable Deflection = Maximum Beam Deflection = Shelf Beam Rivet Check: Diameter of Rivet= Post Moment Shear on Rivet= Beam Shear on Rivet= Resultant Shear= Bearing Capacity of Rivet= Allowable Shear Stress = Shear Stress on Rivet= Seismic Uplift on Shelves - Vertical Seismic Component= Vertical Total Load per Shelf= ft ft lbs olf 21.4 21.4 2.6 0.133 0.08 0.006 0.267 0.030 0.25 128.9 21.4 130.6 519.8 13.5 2.7 14.4 62.5 ft-lbs lbs ksi ksi in in in lbs lbs lbs lbs ksi ksi lbs lbs Shelf DL = Shelf LL= Allowable Bending Stress= Allowable Shear Stress= !Bending Stress OK !shear Stress OK L/180 joeflection OK ! Bearing Stress OK !Shear Stress OK Connection Points per Shelf= 4.0 (1) per Corner Net Uplift Load per Shelf= -23.1 lbs 10/19/2022 NSB 1.5 psf 12.75 osf 19.8 13.2 ksi ksi Uplift Forcer per Connection= -5.8 lbs Rivet Connection OK 38/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Wall Supported Unit Calculations Seismic Force at Top of Units - Average Roof Height= Height of Attachment= Shear Coeff Boundaries= 20.0 10.0 ft ft Vmio = 0.253 Vm,, = 1.352 ._ ___ D_e_s..;ig;.n_Ba_s_e_s_h_e_a_r _co_e_f_f_= ____ v_,;..=_o_.3_8_4 _ __,!Adjusted For ASD and "p" Total Weight per Unit= Lateral Force at Top/Bottom = Standard Stud Spacing= 563 108 16 Wall Connections per Unit= 3 lbs lbs in 10/19/2022 NSB Tek Screw Capacity= Force Per Connection= 84 36 lbs lbs Tension Ca . for #10 Screw in 20ga Stud Screw Capacity OK 39/137 :::;; EC LI PS E ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Light Gauge Steel Stud Wall Framing Stud Design Data - 10/19/2022 NSB Height of Wall Studs = 16.0 ft Int. Non-Brg -Worst Case Ht Assumed Location of Point Load = 10.0 Design Lateral Load = 36.1 Additional Lateral Load= 5.0 Design Axial Load = 85.3 Spacing of Studs= 16.0 ft lbs psi lbs in From Shelving Unit Interior Seismic Force Dead Load of Wall Framing TRY: 6" x 2" x 20ga Studs@ 16" o.c. (By Existing Structural Drawings) Width= 6 in rx = 2.340 in Depth= 2 in ry = 0.743 in Thickness= 0.035 in Sx = 0.621 in3 Fy = 33 ksi Ix= 2.058 in4 E= 29000 ksi Ap = 0.379 in2 K= 1.0 Unbraced Length X = 16 ft Unbraced Length Y = 4 ft Stud Capacity - Buckling Stress, X = 42.51 ksi Buckling Stress, Y = 68.58 ksi Allowable Buckling Stress= 26.60 ksi Nominal Axial Strength= 10080 lbs Factor of Safety= 1.92 Allowable Axial Load = 5250 lbs Maximum Design Moment= 348.5 ft-lbs Maximum Design Shear= 75.9 lbs Allowable Bending Stress= 21.78 ksi Actual Bending Stress= 6.74 ksi !Bending Stress OK Allowable Shear Stress= 13.20 ksi Actual Shear Stress= 0.20 ksi !Shear Stress OK Allowable Axial Stress= 13.85 ksi Actual Axial Stress = 0.23 ksi !Axial Stress OK Combined Stress Unity= 0.33 !Combined Stress OK 40/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Slab Bearing & Uplift Calculations Slab Design Properties - Minimum Concrete Strength= Thickness of Concrete Slab= Weight of Concrete Slab= Allowable Bearing Pressure= Bearing Loads On Post = Uplift Loads on Post= Slab Bearing Capacity - Depth of Post on Slab= Factored Bearing Load = Required Bearing Area= Critical Section = Soil Pressure on Crit. Section= Section Modulus= Shear Area= Cone. Shear Stress= Allowable Shear Stress= Cone. Bending Stress= Allowable Bending Stress= Slab Uplift Capacity - Required Area to Resist Uplift:;::; Length of Slab Req'd = Worst Case Length of Slab= Distance to Anchor Bolt= Length of 1ft Strip= Shear Force on 1ft Strip= Allowable Shear Force= Bending Moment on 1ft Strip= Allowable Bending Moment= 2500 4 50 500 28 169 275 276 1.5 696 135.74 3.08 738.3 32.0 22 7.9 73.2 9.1 137.5 0.00 0.00 0.75 0.38 0.75 52.5 1760.0 4.9 366.7 psi in psf psf lbs lbs lbs lbs in lbs in2 in plf in3 in psi psi psi psi ft2 ft ft ft ft lbs lbs ft-lbs ft-lbs Assumed Assumed Assumed Dead Load Live Load EQ Load Resultant Uplift 11.65 inches per side For Bending Along Critical Length Plain Concrete per Foot !Shear Stress OK ! Bending Stress OK Assume Required Area/ Full Shelf Width Maximum Length Required Length Safety Factor: 2.00 !shear OK !sending OK 41/137 ~~ECLIPSE ENGINEERING NI KE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB PIPP MOBILE STORAGE SYSTEMS INC. STEEL STORAGE SHELVING -LIGHT RETAIL CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI Design Inputs: Steel Storage Shelving: Shelving Geometry - Height of Shelving Unit= Width of Shelving Unit= Depth of Shelving Unit= Number of Shelves/Unit= Vertical Shelf Spacing= Back to Back Unit? NO Unit Type: FIXED Number of Units per Track? Mobile Anchor Spacing? Wall Supported Unit? Shelving Loading - Live Load per Shelf= Maximum Weight per Shelf= Dead Load per Shelf= Weight of Each Post= Weight of Mobile Carriage= Floor Load Calculations: Total Load on Each Post= Total Load On Each Unit= Floor Area Load = Allowable Floor Loading= 10.8 ft 4.0 ft 1.5 ft 8 17.7 in N/A in YES 13.50 psf 80 lbs 2.5 psf 7.9 lbs 0 lbs 198 lbs 792 lbs 8.0 ft2 100 psf DESK UNIT -"C" Steel Yield Stress= 33 Modulus of Elast. = 29000 Eff. Lx Factor = 1.7 Unbraced Length,x = 17.7 Unbraced Length,y = 17.7 Type of Post? 14 Ga. Rivet Style L-Post Type of Beam? DRL Low Profile Top Shelf Loaded? YES Intermediate Anchor: Double Display On Plaque Near Shelving Units Per 48.00 in. x 18.00 in. shelf Particle Board Shelf Material Shelving is NOT accessible to public Ground Fir Cone Slab 2500 psi NWC Concrete 3/8"<j, KB-TZ2 w/ 2.000" Embedment ksi ksi in in Floor Load Under Shelf= 99 psf !OK FOR l00psf RETAIL FLOOR LOADING Seismic Information - Not Open to the Public SDC: D Risk Category = Seismic Importance Factor (I,)= Site Class= II 1.0 D -Default p = 1.3 Worst Case Assumed Mapped Accel. Parameters: Ss = 1.056 51 = 0.380 Fa= 1.200 Fv = 1.920 Structural System: ASCE 7 Section 15.5.1 Steel Storage Shelving: Average Roof Height= Height of Base Attachment= Shear Coeff Boundaries= 20 0 R = 4 ft ft Vmin = 0.037 Vmax = 0.211 Sms = 1.267 Sml = 0.730 ap = 2.5 0' -0" For Ground Floor Location Ground Floor RMI, 2.6.3 RMI, 2.6.3 Sds = 0.845 Sdl = 0.486 Ip= 1.0 ._ ___ D_e_s_ig_n_Ba_s_e_s_h_e_a_r c_o_e_f_f _= ____ v_,_=_o_.1_9_2 __ !Adjusted For ASD RMI, 2.6.3 42/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Lateral Force Distribution: per ASCE 7 Section 15.5.1 Total Dead Load per Level= 19.0 lbs Total Live Load per Level= 80 lbs Lateral DL Force per Level = 3.6 lbs Lateral LL Force per Level = 15.4 lbs 67% of LL Force per Level = 10.3 lbs Total DL Base Shear= 29.2 lbs Total LL Base Shear= 123.0 lbs LC1: Each Level, Loaded to 67% of its Live Weight Cumulative Moment: I Total Base Shear= 111.6 lbs I LC #1 Governs LC 2: Tog Level Onll, Loaded lo 100% of its Live Weight Cumulative Moment: I Total Base Shear= 44.5 lbs I LC #2 Does NOT Govern 10/19/2022 NSB 41219 in-lbs 20934 in-lbs Load Case #1: Load Case #2: Lateral Force/Shelf: Shelf Heights: Load: % Per Shelf: Load: % Per Shelf: Force#: LC#l: LC#2: hl = 3 in 73 lbs 0.5% 19 lbs D.3% Fl= 0.6 lbs 0.1 lbs h2 = 32 in 73 lbs 5.6% 19 lbs 2.9% F2 = 6.3 lbs 1.3 lbs h3 = 44in 73 lbs 7.7% 19 lbs 4.0% F3 = 8.6 lbs 1.8 lbs h4= 68in 73Ibs 12.D% 19 lbs 6.2% F4 = 13.4 lbs 2.7 lbs hS = 83in 73lbs 14.6% 19 lbs 7.5% FS = 16.3 lbs 3.3 lbs h6 = 98in 73Ibs 17.3% 19 lbs 8.9% F6 = 19.3 lbs 4.0 lbs h7 = 113in 73 lbs 19.9% 19 lbs 10.2% F7 = 22.2 lbs 4.6 lbs h8 = 127in 73 lbs 22.4% 99 lbs 6D.0% F8 = 24.9 lbs 26.7 lbs h9 = Din Olbs 0.0% Dibs D.D% F9 = 0.0 lbs 0.0 lbs hlD = Din Dibs D.D% O lbs O.D% FlO = 0.0 lbs 0.0 lbs hll = Din Dibs D.D% Dibs D.0% Fll = 0.0 lbs 0.0 lbs h12 = Oin Dibs D.D% D lbs D.D% F12 = 0.0 lbs 0.0 lbs h13 = Din Dibs D.D% D lbs D.D% F13 = 0.0 lbs o.o lbs h14 = Din D lbs D.D% Dibs D.D% F14 = 0.0 lbs 0.0 lbs hlS = Din Olbs D.D% Dibs O.D% FlS = 0.0 lbs 0.0 lbs h16 = O in 0 lbs D.D% Olbs D.D% F16 = 0.0 lbs 0.0 lbs h17 = 0 in Dibs 0.0% Dibs 0.0% F17 = 0.0 lbs 0.0 lbs h18 = Din Dibs D.0% Dibs D.0% F18 = o.o lbs 0.0 lbs h19 = Din Dibs 0.0% Olbs 0.0% F19 = 0.0 lbs 0.0 lbs h2D = Din Dibs 0.0% Dibs D.D% F2D= 0.0 lbs 0.0 lbs Sum= 10D% Sum= 100% Total= 111.6 lbs 44.5 lbs By inspection, the force distribution for intermediate level without live load (case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for this condition. 43/137 ~~ECLIPSE NIKE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Column Calculations -Combined Bending and Axial Post Type: Double Rivet "L" or 11T" Post Width= Depth= Thickness= Column Bending Calculations• Max Column Moment= 1.5 in 1.5 in 0.075 in 33.S ft-lbs r = ' 0.470 s = ' 0.044 I = ' 0.049 A = p 0.217 Allowable Bending Stress= Bending Stress on Column= 19.8 9.1 ksi ksi !Bending Stress OK Column Deflection Calculations • Max Deflection= 0.292 in Deflection Ratio = 442 At Top of Unit L/6. in in3 in4 in2 10/19/2022 NSB Allowable Deflection= 6.45 in Max Deflection = 5% of Height Column Axial Calculations• Per "L" Post DL + PL= 198 lbs DL + PL + EQ = 338 I bs Column Capacity Calculations· Controlling Buckling Stress = 12.9 ksi Allowable Comp. Stress= 12.9 ksi Factor of Safety for Comp. = 1.80 Nominal Column Capacity= 2794 lbs Allowable Column Capacity= 15S2 lbs Static Axial Load on Column= 198 lbs Combined Bending And Axial Forces · Critical Buckling Load = 15370 lbs Axial Stress Unity= 0.218 Bending Stress Unity= 0.399 Combined Stress Unity= 0.617 !Deflection OK ! RMI Load Combination #1 RMI Load Combination #6 !Axial Load OK Magnification Factor= Cm= !Column is Adequate 0.977 0.85 44/137 ~;;ECLIPSE NIKE LIVE BY LA COSTA 10/19/2022 NSB E N G I N E E R I N G Carlsbad, California Overturning and Anti-Tip Calculations Overturning Forces On Anchors (LRFD) Load Combination LCl LC2 Total Weight, w (lbsl 581 232 Base Shear, Eh (lbsl 123 49 Vertical Seismic Force, Ev (lbs) 98 39 W(LCl) = (DLshelf + 0.67 * Llshelf) *#of Shelves W(LC2) = DLshe!f *#of Shelves+ Llshelf Eh= (Vt• W)/(0.7 • p) Ev = 0.20 * Sds * W Mo(LCl) = n • L(hx • fx/0.7) Mo(LC2) = ll * Vt/0.7 * ( Dlratal * (~ + s) + Llshelf * H) Overstrength Factor, Cl= 2.00 Overturning Moment (O=l), Resisting Moment, Mc Mo lft-lbs) 1906 894 (ft-lbs) 318 127 Mr= (0.9 * W -Ev)* 2. 2 Mn=Mo-Mr V T # of Anchor.s !<!' # of Anchors Net Overturning Moment, Mn (ft-lbs) 1588 767 Shear Force per Tension Force Anchor, V per Anchor, T (lbs) 61 24 Per Side of Unit (lbs) 529 256 USE: POST INSTALLED ANCHOR BOLTS/ LAG SCREWS AS REQUIRED FOR FLOOR NOTED BELOW Allowable Tension Force= 1448 Allowable Shear Force= 1723 Combined Loading LCl: 0.366 LC2: 0.177 Anti-Ti!! Track Design - Type of Anti-Tip Device = NONE Tension per Carriage Anchor= N/A Combined Loading= N/A Tension per Shelf Post= N/A Capacity of Screws to Carriage= N/A Anti-Tip Peg Yield Stress= 40.275 Thickness Anti-Tip Peg Head= 0.09 Width of Anti-Tip Peg Head= 0.43 Section Modulus of Peg Head = 0.0006 Allowable Stress on Leg= 40.275 Bending Stress on Leg= N/A Anti-Tip Stress Unity= N/A Section Modulus of Track= 0.093 Spacing of Track A.B's= 0.00 Allowable Alumn. Stress= 21 Bending Stress on Track= N/A Track Stress Unit:t = N/A lbs lbs lbs I lbs lbs ksi in in in3 ksi ksi in3 in ksi ksi 2500 psi NWC Concrete 3/8"cj, KB-T22 w/ 2.000" Embedment !Floor anchors are adequate Steel 6061-T6 Fy = 53.700 ksi Fu= 63.800 ksi Fty = 35.000 ksi Ftu = 38.000 ksi I 45/137 ~;:;ECLIPSE ENGINEERING Shelf Beam Calculations Shelf Beam Calculations: Steel Yield Stress = Modulus of Elast. = NIKE LIVE BY LA COSTA Carlsbad, California DRL Low Profile 33 29000 ksi ksi Shelf DL = Shelf LL= Beam Type: DRL Low Profile Area of Beam= 0.264 in2 Section Modulus of Beam = Moment of Inertia of Beam= Shelf Width = Shelf Depth = Total Load/Shelf= Distributed Load= 4.0 1.5 96 12 Maximum Design Moment= Maximum Design Shear= Beam Bending Stress= Bending Stress Unity= Beam Shear Stress= Shear Stress Unity= Max Allowable Deflection= Maximum Beam Deflection= Shelf Beam Rivet Check: Diameter of Rivet= Post Moment Shear on Rivet= Beam Shear on Rivet= Resultant Shear= Bearing Capacity of Rivet= Allowable Shear Stress= Shear Stress on Rivet= Seismic Uplift on Shelves - Vertical Seismic Component= Vertical Total Load per Shelf= Connection Points per Shelf= Net Uplift Load per Shelf= ft ft lbs olf 0.098 0.072 24.0 24.0 3.0 0.149 0.09 0.007 0.267 0.033 0.25 268.2 24.0 269.3 519.8 13.5 5.5 16.2 72.6 4.0 -27.3 in3 in4 ft-lbs lbs ksi ksi in in in lbs lbs lbs lbs ksi ksi lbs lbs Allowable Bending Stress= Allowable Shear Stress= ! Bending Stress OK !Shear Stress OK L/180 iDeflection OK !Bearing Stress OK !shear Stress OK (1) per Corner lbs 10/19/2022 NSB 2.5 psf 13.50 osf 19.8 13.2 ksi ksi Uplift Forcer per Connection= -6.8 lbs Rivet Connection OK 461137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Wall Supported Unit Calculations Seismic Force at Top of Units - Average Roof Height= Height of Attachment= Shear Coeff Boundaries= 20.0 10.8 ft ft vm,, = 0.253 Vm,, = 1.352 L. ___ D_es_i::.gn_B_as_e_s_h_e_a_r_c_o_ef_f_= _____ v;_, =_o_.3_9_9_---1!Adjusted For ASD and "p" Total Weight per Unit= Lateral Force at Top/Bottom = Standard Stud Spacing= 581 116 16 Wall Connections per Unit= 3 Tek Screw Capacity= Force Per Connection = 84 39 lbs lbs in lbs lbs 10/19/2022 NSB 47/137 ~;:; EC LI PS E ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Light Gauge Steel Stud Wall Framing Stud Design Data - 10/19/2022 NSB Height of Wall Studs= 16.0 ft Int. Non-Brg -Worst Case Ht Assumed Location of Point Load = 10.8 Design Lateral Load = 38.6 Additional Lateral Load= 5.0 Design Axial Load= 85.3 Spacing of Studs= 16.0 ft lbs psf lbs in From Shelving Unit Interior Seismic Force Dead Load of Wall Framing TRY: 6" x 2" x 20ga Studs@ 16" o.c. (By Existing Structural Drawings) Width= 6 in rx = 2.340 in Depth= 2 in ry = 0.743 in Thickness= 0.035 in Sx = 0.621 in3 Fy = 33 ksi Ix= 2.058 in4 E= 29000 ksi Ap = 0.379 in2 K= 1.0 Unbraced Length X = 16 ft Unbraced Length Y = 4 ft Stud Capacity - Buckling Stress, X = 42.51 ksi Buckling Stress, Y = 68.58 ksi Allowable Buckling Stress= 26.60 ksi Nominal Axial Strength= 10080 lbs Factor of Safety = 1.92 Allowable Axial Load = 5250 lbs Maximum Design Moment= 349.4 ft-lbs Maximum Design Shear= 79.3 lbs Allowable Bending Stress= 21.78 ksi Actual Bending Stress= 6.75 ksi !Bending Stress OK Allowable Shear Stress= 13.20 ksi Actual Shear Stress= 0.21 ksi !Shear Stress OK Allowable Axial Stress= 13.85 ksi Actual Axial Stress= 0.23 ksi !Axial Stress OK Combined Stress Unity= 0.33 !Combined Stress OK 48/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Slab Bearing & Uplift Calculations Slab Design Properties - Minimum Concrete Strength= Thickness of Concrete Slab= Weight of Concrete Slab= Allowable Bearing Pressure= Bearing Loads On Post= Uplift Loads on Post = Slab Bearing Capacity - Depth of Post on Slab= Factored Bearing Load = Required Bearing Area = Critical Section = Soil Pressure on Crit. Section = Section Modulus= Shear Area= Cone. Shear Stress= Allowable Shear Stress= Cone. Bending Stress= Allowable Bending Stress= Slab Uplift Capacity- Required Area to Resist Uplift= Length of Slab Req'd = Worst Case Length of Slab= Distance to Anchor Bolt= Length of 1ft Strip= Shear Force on 1ft Strip= Allowable Shear Force= Bending Moment on 1ft Strip= Allowable Bending Moment= 2500 4 50 500 38 160 318 352 1.5 755 148.51 3.34 732.5 32.0 22 8.6 73.2 10.7 137.5 0.00 0.00 0.75 0.38 0.75 52.5 1760.0 4.9 366.7 psi in psf psf lbs lbs lbs lbs in lbs in2 in plf in3 in psi psi psi psi ft2 ft ft ft ft lbs lbs ft-lbs ft-lbs Assumed Assumed Assumed Dead Load Live Load EQ Load Resultant Uplift 12.19 inches per side For Bending Along Critical Length Plain Concrete per Foot !Shear Stress OK !Bending Stress OK Assume Required Area/ Full Shelf Width Maximum Length Required Length Safety Factor: 2.00 !Shear OK !Bending OK 491137 ~i;; EC LI PS E ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB PIPP MOBILE STORAGE SYSTEMS INC. STEEL STORAGE SHELVING -LIGHT RETAIL CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI Design Inputs: Steel Storage Shelving: SFS SUPPLIES UNIT -"D" Shelving Geometry - Height of Shelving Unit= Width of Shelving Unit= Depth of Shelving Unit= Number of Shelves/Unit= Vertical Shelf Spacing= Back to Back Unit? NO Unit Type: FIXED Number of Units per Track? Mobile Anchor Spacing? Wall Supported Unit? Shelving Loading - Live Load per Shelf= Maximum Weight per Shelf= Dead Load per Shelf= Weight of Each Post= Weight of Mobile Carriage= Floor Load Calculations: Total Load on Each Post= Total Load On Each Unit= Floor Area Load = Allowable Floor Loading= Floor Load Under Shelf= Seismic Information - 10.0 4.0 2.0 8 16.4 N/A YES 13.00 100 2.0 7.4 0 239 958 10.0 100 96 ft ft ft in in psf lbs psf lbs lbs lbs lbs ft2 psf psf Steel Yield Stress= Modulus of Elast. = Eff. Lx Factor = Unbraced Length,x = 33 ksi 29000 ksi 1.7 16.4 in Unbraced Length,y = 16.4 in Type of Post? 14 Ga. Rivet Style L-Post Type of Beam? DRL Low Profile Top Shelf Loaded? YES Intermediate Anchor: Double Display On Plaque Near Shelving Units Per 48.00 in. x 24.00 in. shelf Perforated Metal Shelf Shelving is NOT accessible to public Ground Fir Cone Slab 2500 psi NWC Concrete 3/8"4> KB-T22 w/ 2.000" Embedment !OK FOR lOOpsf RETAIL FLOOR LOADING Not Open to the Public SDC: D Risk Category = Seismic Importance Factor (1,) = Site Class= II 1.0 D -Default Worst Case Assumed Mapped Accel. Parameters: p = 1.3 Ss = 1.056 Fa = 1.200 51 = 0.380 Fv = 1.920 Structural System: ASCE 7 Section 15.5.1 Steel Storage Shelving: R = 4 Average Roof Height= Height of Base Attachment= Shear Coeff Boundaries= 20 0 ft ft Vmin = 0.037 Vmax = 0.211 Sms = 1.267 5ml = 0.730 ap = 2.5 0'-0" For Ground Floor Location Ground Floor RMI, 2.6.3 RMI, 2.6.3 Sds = 0.845 Sdl = 0.486 Ip= 1.0 ._ ___ D_e_s_ig_n_Ba_s_e_s_h_e_a_r c_o_e_f_f _= ____ v_,_=_o_.1_9_2 __ !Adjusted For ASD RMI, 2.6.3 50/137 ~;;ECLIPSE NIKE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Lateral Force Distribution: per ASCE 7 Section 15.5.1 Total Dead Load per Level = 19.7 lbs Total Live Load per Level= 100 lbs Lateral DL Force per Level = 3.8 lbs Lateral LL Force per Level = 19.2 lbs 67% of LL Force per Level = 12.9 lbs Total DL Base Shear= 30.3 lbs Total LL Base Shear= 153.8 lbs 10/19/2022 NSB LC1: Each Level, Loaded to 67% of its Live Weight Cumulative Moment: 41959 in-lbs ~_T_o_t_al_B_a_s_e_S_h_ea_r_= ___ 1_3_3_.3 __ 1_b_s --~l LC #1 Governs LC 2: Top Level Only, Loaded to 100% of its Live Weight Cumulative Moment: 21331 in-lbs ._l __ T_o_t_al_B_a_s_e_S_h_ea_r_= ___ 4_9_._5 __ 1_b_s __ __.l LC #2 Does NOT Govern Load Case #1: Load Case #2: Lateral Force/Shelf: Shelf Heights: Load: % Per Shelf: Load: % Per Shelf: Force#: LC#l: LC#2: hl = 3 in 871bs 0.6% 20 lbs 0.3% Fl= 0.8 lbs 0.1 lbs h2 = 19in 871bs 4.0% 20 lbs 1.8% F2 = 5.4 lbs 0.9 lbs h3 = 36in 871bs 7.4% 20 lbs 3.3% F3 = 9.9 lbs 1.6 lbs h4 = 52in 871bs 10.8% 20 lbs 4.8% F4 = 14.4 lbs 2.4 lbs hS = 69in 87 lbs 14.2% 20 lbs 6.3% FS = 18.9 lbs 3.1 lbs h6 = 85in 87 lbs 17.6% 20 lbs 7.9% F6 = 23.4 lbs 3.9 lbs h7 = 102in 87 lbs 21.0% 20 lbs 9.4% F7 = 28.0 lbs 4.6 lbs h8 = 118in 87 lbs 24.4% 120lbs 66.2% F8 = 32.S lbs 32.8 lbs h9 = Din Dibs 0.0% Dibs 0.0% F9 = 0.0 lbs o.o lbs h10 = Din Dibs 0.0% Dibs 0.0% FlO = 0.0 lbs 0.0 lbs h11 = Din Dibs 0.0% Dibs 0.0% F11 = 0.0 lbs 0.0 lbs h12 = Din Dibs 0.0% Dibs 0.0% F12 = 0.0 lbs 0.0 lbs h13 = Din Dibs 0.0% Dibs 0.0% F13 = 0.0 lbs 0.0 lbs h14 = Din Dibs 0.0% Dibs 0.0% F14 = 0.0 lbs 0.0 lbs h15 = Din Dibs 0.0% Dibs 0.0% F15 = o.o lbs 0.0 lbs h16 = Din Dibs 0.0% Dibs 0.0% F16 = 0.0 lbs 0.0 lbs h17 = Din Dibs 0.0% Dibs 0.0% F17 = 0.0 lbs 0.0 lbs h18 = Din Dibs 0.0% Dibs 0.0% F18 = 0.0 lbs 0.0 lbs h19 = Din Dibs 0.0% Dibs 0.0% F19 = 0.0 lbs 0.0 lbs h20 = Din Dibs 0.0% Dibs 0.0% F20 = 0.0 lbs 0.0 lbs Sum= 100% Sum= 100% Total= 133.3 lbs 49.S lbs By inspection, the force distribution for intermediate level without live load {case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for this condition. 51/137 ~~ECLIPSE NIKE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Column Calculations -Combined Bending and Axial Post Type: Double Rivet 11L11 or 11T11 Post Width= Depth= Thickness= Column Bending Calculations - Max Column Moment= 1.5 in 1.5 in 0.075 in 22.7 ft-lbs r = ' 0.470 s = ' 0.044 I = ' 0.049 A = p 0.217 Allowable Bending Stress= Bending Stress on Column= 19.8 6.1 ksi ksi !Bending Stress OK Column Deflection Calculations - Max Deflection= 0.172 in Deflection Ratio = 699 At Top of Unit L/ti in in3 in4 in2 10/19/2022 NSB Allowable Deflection= 6 in Max Deflection = 5% of Height Column Axial Calculations -Per "L" Post DL +PL= 239 lbs DL + PL+ EQ = 348 lbs Column Capacity Calculations - Controlling Buckling Stress= 14.3 ksi Allowable Comp. Stress= 14.3 ksi Factor of Safety for Comp. = 1.80 Nominal Column Capacity= 3067 lbs Allowable Column Capacity= 1704 lbs Static Axial Load on Column= 239 lbs Combined Bending And Axial Forces - Critical Buckling Load= 17870 lbs Axial Stress Unity= 0.204 Bending Stress Unity= 0.270 Combined Stress Unity= 0.474 ! Deflection OK ! RMI Load Combination #1 RMI Load Combination #6 !Axial Load OK Magnification Factor= Cm;: !Column is Adequate 0.976 0.85 52/137 ~~ECLIPSE NIKE LIVE BY LA COSTA 10/19/2022 NSB E N G I N E E R I N G Carlsbad, California Overturning and Anti-Tip Calculations Overturning Forces On Anchors (LRFD) Total Weight, Base Shear, Eh Vertical Seismic Load w Force, Ev Combination (lbs) (lbs) (lbs) LCl 694 146 117 LC2 258 54 44 W(lCl) = (DLsh<?!f + 0.67 * llshelf) * #of Shelves W(LCZ) = DLshelf *#of Shelves+ Llshelf Eh= (Vt• W)/(0.7 • p) Ev = 0.20 * Sds • W Mo(LCl) = n * L(hx * fx/0.7) Mo(LCZ) =fl* Vt/0.7 * (Dlrotal * (~+ s) + Llshelf * H) Overstrength Factor, n = 2.00 Overturning Resisting Moment, Moment (0=2), Net Overturning Moment, Mn Shear Force per Tension Force Mo (ft-lbs) 2049 932 Mc (ft-lbs) 507 188 Mr= (0.9 * W-Ev) *~ ' Mn= Mo-Mr V = Il*Elz # of Anchors "" T= d # of Anchors {ft-lbs) 1542 743 Anchor, V per Anchor, T (lbs) 73 27 Per Side of Unit (lbs) 385 186 USE: POST INSTALLED ANCHOR BOLTS/ LAG SCREWS AS REQUIRED FOR FLOOR NOTED BELOW Allowable Tension Force= 1448 Allowable Shear Force= 1723 Combined Loading LCl: 0.266 LC2: 0.128 Anti-Ti!! Track Design - Type of Anti-Tip Device= NONE Tension per Carriage Anchor= N/A Combined Loading= N/A Tension per Shelf Post= N/A Capacity of Screws to Carriage= N/A Anti-Tip Peg Yield Stress= 40.275 Thickness Anti-Tip Peg Head = 0.09 Width of Anti-Tip Peg Head= 0.43 Section Modulus of Peg Head = 0.0006 Allowable Stress on Leg= 40.275 Bending Stress on Leg= N/A Anti-Tip Stress Unity= N/A Section Modulus of Track= 0.093 Spacing of Track A.B's= 0.00 Allowable Alumn. Stress= 21 Bending Stress on Track= N/A Track Stress Unity= N/A lbs lbs lbs I lbs lbs ksi in in in3 ksi ksi in3 in ksi ksi 2500 psi NWC Concrete 3/8"q, KB-T22 w/ 2.000" Embedment !Floor anchors are adequate Steel 6061-T6 Fy = 53.700 ksi Fu = 63.800 ksi Fty = 35.000 ksi Ftu = 38.000 ksi 53/137 :::~ EC LI PS E ENGINEERING Shelf Beam Calculations Shelf Beam Calculations: Steel Yield Stress= Modulus of Elast. = NIKE LIVE BY LA COSTA Carlsbad, California DRL Low Profile 33 29000 ksi ksi Shelf DL = Shelf LL= 10/19/2022 NSB 2.0 psf 13.00 osf Beam Type: DRL Low Profile Area of Beam = 0.264 in2 Section Modulus of Beam = 0.098 in3 Moment of Inertia of Beam = 0.072 in4 Shelf Width = 4.0 ft Allowable Bending Stress= 19.8 ksi Shelf Depth = 2.0 ft Allowable Shear Stress= 13.2 ksi Total Load/Shelf= 120 lbs Distributed Load = 15 olf Maximum Design Moment= 30.0 ft-lbs Maximum Design Shear= 30.0 lbs Beam Bending Stress= 3.7 ksi Bending Stress Unity= 0.186 I sending Stress OK Beam Shear Stress= 0.11 ksi Shear Stress Unity= 0.009 !shear Stress OK Max Allowable Deflection= 0.267 in L/180 Maximum Beam Deflection = 0.042 in !Deflection OK Shelf Beam Rivet Check: Diameter of Rivet= 0.25 in Post Moment Shear on Rivet= 181.4 lbs Beam Shear on Rivet= 30.0 lbs Resultant Shear= 183.8 lbs Bearing Capacity of Rivet= 519.8 lbs I searing Stress OK Allowable Shear Stress= 13.5 ksi Shear Stress on Rivet= 3.7 ksi !shear Stress OK Seismic U11lift on Shelves - Vertical Seismic Component= 20.3 lbs Vertical Total Load per Shelf= 86.7 lbs Connection Points per Shelf= 4.0 (1) per Corner Net Uplift Load per Shelf= -31.7 lbs Uplift Forcer per Connection= -7.9 lbs Rivet Connection OK 54/137 ~~ECLIPSE ENGINEERING NI KE LIVE BY LA COSTA Carlsbad, California Wall Supported Unit Calculations Seismic Force at Top of Units - Average Roof Height= Height of Attachment= Shear Coeff Boundaries= 20.0 10.0 ft ft Vmio = 0.253 Vm,, = 1.352 ._ ___ D_es_ig_n_Ba_s_e_s_h_e_a_r _c_oe_f_f_= _____ v_, =_o_.3_8_4 _ __.!Adjusted For ASD and "p" Total Weight per Unit= Lateral Force at Top/Bottom= Standard Stud Spacing= 694 133 16 Wall Connections per Unit= 3 Tek Screw Capacity= Force Per Connection = 84 44 lbs lbs in lbs lbs 10/19/2022 NSB 55/137 ::::i; ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Light Gauge Steel Stud Wall Framing Stud Design Data - 10/19/2022 NSB Height of Wall Studs= 16.0 ft Int. Non-Brg -Worst Case Ht Assumed Location of Point Load = 10.0 Design Lateral Load = 44.4 Additional Lateral Load = 5.0 Design Axial Load= 85.3 Spacing of Studs= 16.0 ft lbs psf lbs in From Shelving Unit Interior Seismic Force Dead Load of Wall Framing TRY: 6" x 2" x 20ga Studs@ 16" o.c. (By Existing Structural Drawings) Width= 6 in rx:;;; 2.340 in Depth= 2 in ry = 0.743 in Thickness= 0.035 in Sx = 0.621 in3 Fy = 33 ksi Ix= 2.058 in4 E= 29000 ksi Ap= 0.379 in2 K= 1.0 Unbraced Length X = 16 ft Unbraced Length Y = 4 ft Stud Capacity - Buckling Stress, X = 42.51 ksi Buckling Stress, Y = 68.58 ksi Allowable Buckling Stress= 26.60 ksi Nominal Axial Strength = 10080 lbs Factor of Safety = 1.92 Allowable Axial Load = 5250 lbs Maximum Design Moment= 379.9 ft-lbs Maximum Design Shear= 81.1 lbs Allowable Bending Stress= 21.78 ksi Actual Bending Stress= 7.34 ksi !Bending Stress OK Allowable Shear Stress= 13.20 ksi Actual Shear Stress= 0.21 ksi !Shear Stress OK Allowable Axial Stress = 13.85 ksi Actual Axial Stress = 0.23 ksi !Axial Stress OK Combined Stress Unity= 0.35 !Combined Stress OK 56/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Slab Bearing & Uplift Calculations Slab Design Properties - Minimum Concrete Strength= Thickness of Concrete Slab= Weight of Concrete Slab= Allowable Bearing Pressure= Bearing Loads On Post= Uplift Loads on Post = Slab Bearing Capacity - Depth of Post on Slab = Factored Bearing Load= Required Bearing Area= Critical Section = Soil Pressure on Crit. Section= Section Modulus= Shear Area= Cone. Shear Stress= Allowable Shear Stress= Cone. Bending Stress= Allowable Bending Stress= Slab Uplift Capacity - Required Area to Resist Uplift= Length of Slab Req'd = Worst Case Length of Slab= Distance to Anchor Bolt= Length of 1ft Strip= Shear Force on 1ft Strip= Allowable Shear Force = Bending Moment on 1ft Strip= Allowable Bending Moment= 2500 4 so 500 39 200 256 259 1.5 733 142.70 3.22 739.8 32.0 22 8.3 73.2 10.0 137.5 0.00 0.00 1.00 0.50 1.00 70.0 1760.0 8.8 366.7 psi in psf psf lbs lbs lbs lbs in lbs in2 in plf in3 in psi psi psi psi ft2 ft ft ft ft lbs lbs ft-lbs ft-lbs Assumed Assumed Assumed Dead Load Live Load EQ Load Resultant Uplift 11.95 inches per side For Bending Along Critical Length Plain Concrete per Foot !Shear Stress OK !Bending Stress OK Assume Required Area/ Full Shelf Width Maximum Length Required Length Safety Factor: 2.00 !Shear OK !Bending OK 57/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB PIPP MOBILE STORAGE SYSTEMS INC. STEEL STORAGE SHELVING -LIGHT RETAIL CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI Design Inputs: Steel Storage Shelving: BOPIS UNIT· "E" Shelving Geometry - Height of Shelving Unit= Width of Shelving Unit= Depth of Shelving Unit= Number of Shelves/Unit= Vertical Shelf Spacing= Back to Back Unit? YES Unit Type: FIXED Number of Units per Track? Mobile Anchor Spacing? Wall Supported Unit? Shelving Loading - Live Load per Shelf= Maximum Weight per Shelf= Dead Load per Shelf= Weight of Each Post= Weight of Mobile Carriage= Floor Load Calculations: Total Load on Each Post= Total Load On Each Unit= Floor Area Load = Allowable Floor Loading= Floor Load Under Shelf= Seismic Information - 10.0 4.0 1.5 8 16.4 N/A NO 14.00 80 2.0 7.4 0 191 766 8.0 100 96 ft ft ft in in psf lbs psf lbs lbs lbs lbs ft2 psf psf Steel Yield Stress = 33 ksi Modulus of Elast. = 29000 ksi Eff. Lx Factor = 1.7 Unbraced Length,x = 16.4 in Unbraced Length,y = 16.4 in Type of Post? 14 Ga. Rivet Style L-Post Type of Beam? DRL Low Profile Top Shelf Loaded? YES Intermediate Anchor: Double Display On Plaque Near Shelving Units Per 48.00 in. x 18.00 in. shelf Perforated Metal Shelf Shelving is NOT accessible to public Ground Fir Cone Slab 2500 psi NWC Concrete 3/8"<!> KB-TZ2 w/ 2.000" Embedment !oK FOR lOOpsf RETAIL FLOOR LOADING Not Open to the Public SDC: D Risk Category= Seismic Importance Factor (le) = Site Class= Mapped Accel. Parameters: II 1.0 D -Default p = 1.3 Worst Case Assumed Ss = 1.056 51 = 0.380 Fa= 1.200 Fv = 1.920 Structural System: ASCE 7 Section 15.5.1 Steel Storage Shelving: Average Roof Height= Height of Base Attachment= Shear Coeff Boundaries= 20 0 R = 4 ft ft Vmin = 0.037 Vmax = 0.211 Sms = 1.267 5ml = 0.730 ap = 2.5 0'-0" For Ground Floor Location Ground Floor RMI, 2.6.3 RMI, 2.6.3 Sds = 0.845 Sdl = 0.486 Ip= 1.0 .,_ ___ o_e_s_ig_n_Ba_s_e_s_h_e_a_r _co_e_f_f _= ____ v_,_=_o_.1_9_2 _ __.!Adjusted For ASD RMI, 2.6.3 58/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Lateral Force Distribution: per ASCE 7 Section 15.5.1 Total Dead Load per Level = 15.7 lbs Total Live Load per Level = 80 lbs Lateral DL Force per Level = 3.0 lbs Lateral LL Force per Level= 15.4 lbs 67% of LL Force per Level= 10.3 lbs Total DL Base Shear= 24.1 lbs Total LL Base Shear= 123.0 lbs LC1: Each Level, Loaded to 67% of its Live Weight Cumulative Moment: I Total Base Shear= 106.5 lbs ! LC #1 Governs LC 2: To~ Level Onl~, Loaded lo 100% of its Live Weight Cumulative Moment: I Total Base Shear= 39.5 lbs !Le #2 Does NOT Govern 10/19/2022 NSB 33537 in-lbs 17035 in-lbs Load Case #1: Load Case #2: Lateral Force/Shelf: Shelf Heights: Load: % Per Shelf: Load: % Per Shelf: Force#: LC#l: LC#2: hl = 3 in 69 lbs 0.6% 16 lbs 0.3% Fl= 0.7 lbs 0.1 lbs h2 = 19in 69 lbs 4.0% 16 lbs 1.8% F2 = 4.3 lbs 0.7 lbs h3 = 36in 691bs 7.4% 16 lbs 3.3% F3 = 7.9 lbs 1.3 lbs h4= 52in 691bs 10.8% 161bs 4.8% F4 = 11.5 lbs 1.9 lbs h5 = 69in 691bs 14.2% 161bs 6.3% F5 = 15.1 lbs 2.5 lbs h6 = 85in 69 lbs 17.6% 161bs 7.8% F6 = 18.7 lbs 3.1 lbs h7 = 102in 69 lbs 21.0% 16 lbs 9.4% F7 = 22.4 lbs 3.7 lbs h8 = 118in 691bs 24.4% 96 lbs 66.3% F8 = 26.0 lbs 26.2 lbs h9 = Din 0 lbs 0.0% Dibs 0.0% F9 = 0.0 lbs 0.0 lbs hlO= Qin Dibs 0.0% Dibs 0.0% Fl0 = 0.0 lbs 0.0 lbs hll = Din Dibs 0.0% Dibs 0.0% Fll = 0.0 lbs 0.0 lbs h12 = 0 in Dibs 0.0% Dibs 0.0% F12 = 0.0 lbs 0.0 lbs h13 = 0 in 0 lbs 0.0% Dibs 0.0% F13 = 0.0 lbs 0.0 lbs h14= Din 0 lbs 0.0% Dibs 0.0% F14 = 0.0 lbs 0.0 lbs h15 = Din Dibs 0.0% Dibs 0.0% F15 = 0.0 lbs 0.0 lbs h16= Din Dibs 0.0% Dibs 0.0% F16 = 0.0 lbs 0.0 lbs h17 = Qin Dibs 0.0% Dibs 0.0% F17 = 0.0 lbs 0.0 lbs h18 = 0 in Dibs 0.0% Dibs 0.0% F18 = 0.0 lbs 0.0 lbs h19= Din Dibs 0.0% Dibs 0.0% F19 = 0.0 lbs 0.0 lbs h20 = Din 0 lbs 0.0% Dibs 0.0% F20 = 0.0 lbs 0.0 lbs Sum= 100% Sum= 100% Total= 106.5 lbs 39.5 lbs By inspection, the force distribution for intermediate level without live load (case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for this condition. 59/137 ~~ECLIPSE NIKE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Column Calculations -Combined Bending and Axial Post Type: Double Rivet 11 L11 or 11T" Post Width= Depth= Thickness= Column Bending Calculations - Max Column Moment= 1.5 in 1.5 in 0.075 in 18.1 ft-lbs r X ;: 0.470 s = ' 0.044 I = ' 0.049 A = p 0.217 Allowable Bending Stress= Bending Stress on Column= 19.8 4.9 ksi ksi !Bending Stress OK Column Deflection Calculations - Max Deflection= 0.137 in Deflection Ratio= 874 At Top of Unit L/t:,. in in3 in4 in2 10/19/2022 NSB Allowable Deflection= 6 in Max Deflection= 5% of Height Column Axial Calculations -Per "L" Post DL +PL= 191 lbs DL +PL+ EQ = 308 lbs Column Capacity Calculations - Controlling Buckling Stress = 14.3 ksi Allowable Comp. Stress= 14.3 ksi Factor of Safety for Comp. = 1.80 Nominal Column Capacity= 3067 lbs Allowable Column Capacity= 1704 lbs Static Axial Load on Column= 191 lbs Combined Bending And Axial Forces - Critical Buckling Load = 17870 lbs Axial Stress Unity= 0.181 Bending Stress Unity= 0.215 Combined Stress Unity= 0.396 !Deflection OK ! RMI Load Combination #1 RMI Load Combination #6 !Axial Load OK Magnification Factor= Cm; !Column is Adequate 0.981 0.85 60/137 ~;;ECLIPSE NI KE LIVE BY LA COSTA 10/19/2022 NSB E N G I N E E R I N G Carlsbad, California Overturning and Anti-Tip Calculations Overturning Forces On Anchors (LRFD) Per Back-to-Back Unit Overstrength Factor, Cl = 2.00 Load Combination LCl LC2 Total Weight, w (lbs) 1109 411 Base Shear, Eh (lbs) 234 87 Vertical Seismic Force, Ev (lbs) 187 69 W(LCl) = (Dlshe!f + 0.67 * llshe!f) *#of Shelves W(LC2) = Dlshelf *#of Shelves+ Llshelf Eh= (Vt• W)/(0.7 • p) Ev = 0.20 * Sds * W Mo(LCI) = n • L(hx • fx/0.7) Mo(LC2) = 11 * Vt/0.7 * ( DLTotal * (~ + s) + Llshclf * H) Overturning . . I I Resisting Moment, Moment 0=2, Mc Mo (ft-lbs) 3275 1488 (ft-lbs) 1216 451 d Mr= (0.9* W-Ev) *z Mn= Mo-Mr V = fhEh # of Anchors .. T= d # of Anchurs Net Overturning Moment, Mn (ft-lbs) 2059 1037 Shear Force per Tension Force Anchor, V per Anchor, T (lbs) 117 43 Per Side of Unit (lbs) 343 173 USE: POST INSTALLED ANCHOR BOLTS/ LAG SCREWS AS REQUIRED FOR FLOOR NOTED BELOW Allowable Tension Force= 1448 Allowable Shear Force= 1723 Combined Loading LCl: 0.237 LC2: 0.119 Anti-Ti11 Track Design - Type of Anti-Tip Device= NONE Tension per Carriage Anchor= N/A Combined Loading= N/A Tension per Shelf Post= N/A Capacity of Screws to Carriage= N/A Anti-Tip Peg Yield Stress= 40.275 Thickness Anti-Tip Peg Head= 0.09 Width of Anti-Tip Peg Head= 0.43 Section Modulus of Peg Head = 0.0006 Allowable Stress on Leg= 40.275 Bending Stress on Leg = N/A Anti-Tip Stress Unity= N/A Section Modulus of Track= 0.093 Spacing of Track A.B's= 0.00 Allowable Alumn. Stress= 21 Bending Stress on Track= N/A Track Stress Unit~= N/A lbs lbs lbs I lbs lbs ksi in in in3 ksi ksi in3 in ksi ksi 2500 psi NWC Concrete 3/8"<1> KB-TI2 w/ 2.000" Embedment !Floor anchors are adequate Steel 6061-T6 Fy = 53.700 ksi Fu= 63.800 ksi Fty = 35.000 ksi Ftu = 38.000 ksi 61/137 ~~ECLIPSE ENGINEERING Shelf Beam Calculations Shelf Beam Calculations: Steel Yield Stress= Modulus of Elast. = NIKE LIVE BY LA COSTA Carlsbad, California DRL Low Profile 33 29000 ksi ksi Shelf DL = Shelf LL= 10/19/2022 NSB 2.0 psf 14.00 osf Beam Type: DRL low Profile Area of Beam = 0.264 in2 Section Modulus of Beam = 0.098 in3 Moment of Inertia of Beam = 0.072 in4 Shelf Width = 4.0 ft Allowable Bending Stress= 19.8 ksi Shelf Depth = 1.5 ft Allowable Shear Stress= 13.2 ksi Total load/Shelf= 96 lbs Distributed Load = 12 olf Maximum Design Moment= 24.0 ft-lbs Maximum Design Shear= 24.0 lbs Beam Bending Stress= 3.0 ksi Bending Stress Unity= 0.149 !sending Stress OK Beam Shear Stress= 0.09 ksi Shear Stress Unity= 0.007 !shear Stress OK Max Allowable Deflection = 0.267 in l/180 Maximum Beam Deflection = 0.033 in !Deflection OK Shelf Beam Rivet Check: Diameter of Rivet= 0.25 in Post Moment Shear on Rivet= 145.0 lbs Beam Shear on Rivet= 24.0 lbs Resultant Shear= 146.9 lbs Bearing Capacity of Rivet= 519.8 lbs f Bearing Stress OK Allowable Shear Stress= 13.5 ksi Shear Stress on Rivet= 3.0 ksi !shear Stress OK Seismic U11lift on Shelves - Vertical Seismic Component= 16.2 lbs Vertical Total Load per Shelf= 69.3 lbs Connection Points per Shelf= 4.0 (1) per Corner Net Uplift load per Shelf= -25.4 lbs Uplift Forcer per Connection = -6.3 lbs Rivet Connection OK 62/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Slab Bearing & Uplift Calculations Slab Design Properties - Minimum Concrete Strength= Thickness of Concrete Slab= Weight of Concrete Slab= Allowable Bearing Pressure= Bearing Loads On Post= Uplift Loads on Post= Slab Bearing Capacity - Depth of Post on Slab= Factored Bearing Load = Required Bearing Area = Critical Section = Soil Pressure on Crit. Section= Section Modulus= Shear Area= Cone. Shear Stress = Allowable Shear Stress= Cone. Bending Stress= Allowable Bending Stress= Slab Uplift Capacity- Required Area to Resist Uplift~ Length of Slab Req'd = Worst Case Length of Slab = Distance to Anchor Bolt= Length of 1ft Strip= Shear Force on 1ft Strip= Allowable Shear Force= Bending Moment on 1ft Strip= Allowable Bending Moment= 2500 4 so 500 31 160 273 276 1.5 684 133.72 3.03 736.1 32.0 22 7.8 73.2 8.8 137.5 3.81 0.48 0.75 0.38 0.75 52.5 1760.0 4.9 366.7 psi in psf psf lbs lbs lbs lbs in lbs in2 in plf in3 in psi psi psi psi ft2 ft ft ft ft lbs lbs ft-lbs ft-lbs Assumed Assumed Assumed Dead Load Live Load EQ Load Resultant Uplift 11.56 inches per side For Bending Along Critical Length Plain Concrete per Foot !Shear Stress OK !Bending Stress OK Assume Required Area/ Full Shelf Width Maximum Length Required Length Safety Factor: 2.00 !Shear OK !Bending OK 631137 :::~ECLIPSE ENGINEERING NI KE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB PIPP MOBILE STORAGE SYSTEMS INC. STEEL STORAGE SHELVING -LIGHT RETAIL CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI Design Inputs: Steel Storage Shelving: DIGITAL RETURNS UNIT -"F" Shelving Geometry - Height of Shelving Unit= Width of Shelving Unit= Depth of Shelving Unit= Number of Shelves/Unit= Vertical Shelf Spacing= Back to Back Unit? YES Unit Type: FIXED Number of Units per Track? Mobile Anchor Spacing? 10.0 4.0 1.5 8 16.4 N/A Wall Supported Unit? NO Shelving Loading - Live Load per Shelf= Maximum Weight per Shelf= Dead Load per Shelf= Weight of Each Post= Weight of Mobile Carriage= Floor Load Calculations: Total Load on Each Post= Total Load On Each Unit= Floor Area Load = Allowable Floor Loading= Floor Load Under Shelf= Seismic Information - 14.00 80 2.0 7.4 0 191 766 8.0 100 96 ft ft ft in in psf lbs psf lbs lbs lbs lbs ft2 psf psf Steel Yield Stress= Modulus of Elast. = Eff. Lx Factor= Unbraced Length,x = 33 ksi 29000 ksi 1.7 16.4 in Unbraced Length,y = 16.4 in Type of Post? 14 Ga. Rivet Style L-Post Type of Beam? DRL Low Profile Top Shelf Loaded? YES Intermediate Anchor: Double Display On Plaque Near Shelving Units Per 48.00 in. x 18.00 in. shelf Perforated Metal Shelf Shelving is NOT accessible to public Ground Fir Cone Slab 2500 psi NWC Concrete 3/8"cj, KB-TZ2 w/ 2.000" Embedment !OK FOR lOOpsf RETAIL FLOOR LOADING Not Open to the Public SDC: D Risk Category = Seismic Importance Factor (I,)= Site Class= II 1.0 D -Default p = 1.3 Worst Case Assumed Mapped Acee!. Parameters: Ss = 1.056 51 = 0.380 Fa= 1.200 Fv = 1.920 Structural System: ASCE 7 Section 15.5.1 Steel Storage Shelving: Average Roof Height= Height of Base Attachment= Shear Coeff Boundaries= 20 0 R = 4 ft ft Vmin = 0.037 Vmax = 0.211 Sms = 1.267 5ml = 0.730 ap = 2.5 0'-0" For Ground Floor Location Ground Floor RMI, 2.6.3 RMI, 2.6.3 Sds = 0.845 Sdl = 0.486 Ip= 1.0 .----D-es-i-gn-B-as_e_S_h_e_a_r_C_o_eff_= _____ v_, =-0-.1-9-2---,!Adjusted For ASD RMI, 2.6.3 64/137 ~;;ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Lateral Force Distribution: per ASCE 7 Section 15.5.1 Total Dead Load per Level= 15.7 lbs Total Live Load per Level = 80 lbs Lateral DL Force per Level = 3.0 lbs Lateral LL Force per Level = 15.4 lbs 67% of LL Force per Level = 10.3 lbs Total DL Base Shear= 24.1 lbs Total LL Base Shear= 123.0 lbs LC1: Each Level, Loaded to 67% of its Live Weight Cumulative Moment: I Total Base Shear= 106.5 lbs I LC #1 Governs LC 2: To~ Level Onl1, Loaded to 100% of its Live Weight Cumulative Moment: Total Base Shear= 39.5 lbs I LC #2 Does NOT Govern 10/19/2022 NSB 40224 in-lbs 18709 in-lbs Load Case #1: Load Case #2: Lateral Force/Shelf: Shelf Heights: Load: % Per Shelf: Load: % Per Shelf: Force#: LC#l: LC#2: hl = 3 in 69 lbs 0.5% 16 lbs 0.3% Fl= 0.6 lbs 0.1 lbs h2 = 45in 691bs 7.8% 161bs 3.8% F2 = 8.3 lbs 1.5 lbs h3 = 58in 691bs 9.9% 16 lbs 4.8% F3 = 10.6 lbs 1.9 lbs h4= 70in 691bs 12.1% 16 lbs 5.9% F4 = 12.8 lbs 2.3 lbs hS = 83in 69lbs 14.2% 16 lbs 6.9% FS = 15.1 lbs 2.7 lbs h6 = 95 in 691bs 16.4% 16lbs 8.0% F6 = 17.4 lbs 3.1 lbs h7= 108in 691bs 18.5% 16 lbs 9.0% F7 = 19.7 lbs 3.6 lbs h8 = 120in 691bs 20.7% 96lbs 61.4% F8 = 22.0 lbs 24.2 lbs h9 = Din 0 lbs 0.0% 0 lbs 0.0% F9 = 0.0 lbs 0.0 lbs hlO = Din 0 lbs 0.0% 0 lbs 0.0% FlO = 0.0 lbs 0.0 lbs hll = Din O lbs 0.0% Dibs 0.0% Fll = 0.0 lbs 0.0 lbs h12 = Din o lbs 0.0% 0 lbs 0.0% F12 = 0.0 lbs 0.0 lbs h13 = Oin 0 lbs 0.0% 0 lbs 0.0% F13 = 0.0 lbs 0.0 lbs h14 = Din O lbs 0.0% 0 lbs 0.0% F14 = 0.0 lbs 0.0 lbs h15 = Oin 0 lbs 0.0% 0 lbs 0.0% FlS = 0.0 lbs 0.0 lbs h16 = Oin 0 lbs 0.0% 0 lbs 0.0% F16 = 0.0 lbs 0.0 lbs h17 = Oin 0 lbs 0.0% 0 lbs 0.0% Fl7 = 0.0 lbs 0.0 lbs h18 = Oin 0 lbs 0.0% 0 lbs 0.0% F18 = 0.0 lbs 0.0 lbs h19 = Oin 0 lbs 0.0% 0 lbs 0.0% F19 = 0.0 lbs 0.0 lbs h20 = O in 0 lbs 0.0% 0 lbs 0.0% F20 = 0.0 lbs o.o lbs Sum= 100% Sum= 100% Total= 106.5 lbs 39.5 lbs By inspection, the force distribution for intermediate level without live load (case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for this condition. 65/137 ~~ECLIPSE NIKE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Column Calculations -Combined Bending and Axial Post Type: Double Rivet "L" or "T11 Post Width= Depth= Thickness= Column Bending Calculations - Max Column Moment= 1.5 in 1.5 in 0.075 in 46.4 ft-lbs r = ' 0.470 s = ' 0.044 I = ' 0.049 A = p 0.217 Allowable Bending Stress= Bending Stress on Column= 19.8 12.6 ksi ksi !Bending Stress OK Column Deflection Calculations - Max Deflection= 0.507 in Deflection Ratio= 237 At Top of Unit L/1:-,. in in3 in4 in2 10/19/2022 NSB Allowable Deflection= 6 in Max Deflection = 5% of Height Column Axial Calculations -Per "L" Post DL+ PL= 191 lbs DL +PL+ EQ = 317 lbs Column Capacity Calculations - Controlling Buckling Stress= 14.3 ksi Allowable Comp. Stress= 14.3 ksi Factor of Safety for Comp. = 1.80 Nominal Column Capacity= 3067 lbs Allowable Column Capacity= 1704 lbs Static Axial Load on Column= 191 lbs Combined Bending And Axial Forces - Critical Buckling Load = 17870 lbs Axial Stress Unity= 0.186 Bending Stress Unity= 0.550 Combined Stress Unity= 0.736 ! Deflection OK ! RMI Load Combination #1 RMI Load Combination #6 !Axial Load OK Magnification Factor= Cm= !Column is Adequate 0.981 0.85 66/137 ~~ECLIPSE NIKE LIVE BY LA COSTA 10/19/2022 NSB E N G I N E E R I N G Carlsbad, California Overturning and Anti-Tip Calculations Overturning Forces On Anchors (LRFD) Per Back-to-Back Unit Overstrength Factor, Cl= 2.00 Load Combination LCl LC2 Total Weight, w {lbs) 1109 411 Base Shear, Eh {lbs) 234 87 Vertical Seismic Force, Ev {lbs) 187 69 W(LCl) = (Dlsheif + 0.67 * llshelf) *#of Shelves W(LC2) = Dlshelf *#of Shelves+ llshe!f Eh= (Vt• W)/(0.7 • p) Ev = 0.20 * Sds • W Mo(LCl) = n • L(hx • fx/0.7) Mo(LC2) = n*Vt/0.7 * (DLrotal * G+s)+ Llshelf *H) Overturning I Resisting Moment, Moment 0=2), M, Mo {ft-lbs) 3498 1522 {ft-lbs) 1216 451 d Mr= (0.9*W-Ev)*2 Mn= Mo-Mr V = fl*Eh # of Anchors "" T T # of Anchors Net Overturning Moment, Mn {ft-lbs) 2282 1072 Shear Force per Tension Force Anchor, V per Anchor, T {lbs) 117 43 Per Side of Unit {lbs) 380 179 USE: POST INSTALLED ANCHOR BOLTS/ LAG SCREWS AS REQUIRED FOR FLOOR NOTED BELOW Allowable Tension Force= 1448 Allowable Shear Force= 1723 Combined Loading LCl: 0.263 LC2: 0.123 Anti-Ti!! Track Design - Type of Anti-Tip Device= NONE Tension per Carriage Anchor= N/A Combined Loading= N/A Tension per Shelf Post= N/A Capacity of Screws to Carriage= N/A Anti-Tip Peg Yield Stress= 40.275 Thickness Anti-Tip Peg Head= 0.09 Width of Anti-Tip Peg Head= 0.43 Section Modulus of Peg Head = 0.0006 Allowable Stress on Leg= 40.275 Bending Stress on Leg= N/A Anti-Tip Stress Unity= N/A Section Modulus of Track= 0.093 Spacing of Track A.B's= 0.00 Allowable Alumn. Stress= 21 Bending Stress on Track= N/A Track Stress Unity= N/A lbs lbs lbs I lbs lbs ksi in in in3 ksi ksi in3 in ksi ksi 2500 psi NWC Concrete 3/8"<1> KB-TZ2 w/ 2.000" Embedment !Floor anchors are adequate Steel 6061-T6 Fy = 53. 700 ksi Fu= 63.800 ksi Fty = 35.000 ksi Ftu = 38.000 ksi -i-------1 N/A _ 67/137 ~;;; EC LI PS E ENGINEERING Shelf Beam Calculations Shelf Beam Calculations: Steel Yield Stress = Modulus of Elast. = NI KE LIVE BY LA COSTA Carlsbad, California DRL Low Profile 33 29000 ksi ksi Shelf DL = Shelf LL= 10/19/2022 NSB 2.0 psf 14.00 osf Beam Type: DRL Low Profile Area of Beam= 0.264 in2 Section Modulus of Beam= 0.098 in3 Moment of Inertia of Beam= 0.072 in4 Shelf Width = 4.0 ft Allowable Bending Stress= 19.8 ksi Shelf Depth = 1.5 ft Allowable Shear Stress= 13.2 ksi Total Load/Shelf= 96 lbs Distributed Load = 12 olf Maximum Design Moment= 24.0 ft-lbs Maximum Design Shear= 24.0 lbs Beam Bending Stress= 3.0 ksi Bending Stress Unity= 0.149 I Bending Stress OK Beam Shear Stress= 0.09 ksi Shear Stress Unity= 0.007 !shear Stress OK Max Allowable Deflection= 0.267 in L/180 Maximum Beam Deflection = 0.033 in !Deflection OK Shelf Beam Rivet Check: Diameter of Rivet= 0.25 in Post Moment Shear on Rivet= 371.0 lbs Beam Shear on Rivet= 24.0 lbs Resultant Shear= 371.7 lbs Bearing Capacity of Rivet= 519.8 lbs I Bearing Stress OK Allowable Shear Stress= 13.5 ksi Shear Stress on Rivet = 7.6 ksi !shear Stress OK Seismic U11lift on Shelves - Vertical Seismic Component= 16.2 lbs Vertical Total Load per Shelf= 69.3 lbs Connection Points per Shelf= 4.0 (1) per Corner Net Uplift Load per Shelf= -25.4 lbs Uplift Forcer per Connection= -6.3 lbs Rivet Connection OK 68/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Slab Bearing & Uplift Calculations Slab Design Properties - Minimum Concrete Strength = Thickness of Concrete Slab= Weight of Concrete Slab= Allowable Bearing Pressure= Bearing Loads On Post= Uplift Loads on Post = Slab Bearing Capacity - Depth of Post on Slab= Factored Bearing Load = Required Bearing Area= Critical Section = Soil Pressure on Crit. Section= Section Modulus= Shear Area= Cone. Shear Stress= Allowable Shear Stress= Cone. Bending Stress= Allowable Bending Stress= Slab Uplift Capacity - Required Area to Resist Uplift= Length of Slab Req'd = Worst Case Length of Slab= Distance to Anchor Bolt = Length of 1ft Strip= Shear Force on 1ft Strip= Allowable Shear Force = Bending Moment on 1ft Strip= Allowable Bending Moment= 2500 4 50 500 31 160 291 313 1.5 710 139.06 3.15 735.3 32.0 22 8.1 73.2 9.5 137.5 4.23 0.53 0.75 0.38 0.75 52.5 1760.0 4.9 366.7 psi in psf psf lbs lbs lbs lbs in lbs in2 in plf in3 in psi psi psi psi ft2 ft ft ft ft lbs lbs ft-lbs ft-lbs Assumed Assumed Assumed Dead Load Live Load EQ Load Resultant Uplift 11.79 inches per side For Bending Along Critical Length Plain Concrete per Foot !Shear Stress OK ! Bending Stress OK Assume Required Area/ Full Shelf Width Maximum Length Required Length Safety Factor: 2.00 !shear OK !Bending OK 691137 ~~ECLIPSE ENGINEERING NI KE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB PIPP MOBILE STORAGE SYSTEMS INC. STEEL STORAGE SHELVING -LIGHT RETAIL CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI Design Inputs: Steel Storage Shelving: Shelving Geometry - Height of Shelving Unit= Width of Shelving Unit= Depth of Shelving Unit= Number of Shelves/Unit= Vertical Shelf Spacing= Back to Back Unit? NO Unit Type: FIXED Number of Units per Track? Mobile Anchor Spacing? Wall Supported Unit? Shelving Loading - Live Load per Shelf= Maximum Weight per Shelf= Dead Load per Shelf= Weight of Each Post= Weight of Mobile Carriage= Floor Load Calculations: Total Load on Each Post= Total Load On Each Unit= Floor Area Load = Allowable Floor Loading= 10.0 ft 4.0 ft 2.0 ft 5 16.3 in N/A in YES 21.75 psf 170 lbs 2.0 psf 7.4 lbs 0 lbs 240 lbs 960 lbs 10.0 ft2 100 psf OPS BAGS UNIT -"G" Steel Yield Stress= 33 Modulus of Elast. = 29000 Eff. Lx Factor= 1.7 Unbraced Length,x = 16.3 Unbraced Length,y = 16.3 Type of Post? 14 Ga. Rivet Style L-Post Type of Beam? DRL Low Profile Top Shelf Loaded? YES Intermediate Anchor: Double Display On Plaque Near Shelving Units Per 48.00 in. x 24.00 in. shelf Perforated Metal Shelf Shelving is NOT accessible to public Ground Fir Cone Slab 2500 psi NWC Concrete 3/8"¢ KB-TZ2 w/ 2.000" Embedment ksi ksi in in Floor Load Under Shelf= 96 psf !oK FOR lOOpsf RETAIL FLOOR LOADING Seismic Information - Not Open to the Public SDC: D Risk Category= Seismic Importance Factor (le) = Site Class= II 1.0 D -Default p = 1.3 Worst Case Assumed Mapped Acee!. Parameters: Ss = 1.056 51 = 0.380 Fa= 1.200 Fv = 1.920 Structural System: ASCE 7 Section 15.5.1 Steel Storage Shelving: Average Roof Height = Height of Base Attachment= Shear Coeff Boundaries = 20 0 R = 4 ft ft Vmin = 0.037 Vmax = 0.211 Sms = 1.267 5ml = 0.730 ap = 2.5 0'-0" For Ground Floor Location Ground Floor RMI, 2.6.3 RMI, 2.6.3 Sds = 0.845 Sdl = 0.486 Ip= 1.0 .----D-es-ig-n-Ba_s_e_S_h_e_a_r -C-oe_ff_= _____ v_, =-0-.1-9-2---,!Adjusted For ASD RMI, 2.6.3 70/137 :::;:; ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Lateral Force Distribution: per ASCE 7 Section 15.5.1 Total Dead Load per Level= 21.9 lbs Total Live Load per Level = 170 lbs Latera I DL Force per Level = 4.2 lbs Lateral LL Force per Level = 32.7 lbs 67% of LL Force per Level = 21.9 lbs Total DL Base Shear= 21.1 lbs Total LL Base Shear= 163.4 lbs 10/19/2022 NSB LC1: Each Level, Loaded to 67% of its Live Weight Cumulative Moment: 58771 in-lbs ~-T_o_ta_l_B_a_se_S_he_a_r_= ___ 1_3_0._5 __ 1_bs ___ ~I LC #1 Governs LC 2: Top Level Only, Loaded to 100% of its Live Weight Cumulative Moment: 29795 in-lbs ~I __ T_o_t_a_l B_a_s_e_S_h_ea_r_= ___ 5_3_._7 __ 1_b_s __ ~I LC #2 Does NOT Govern Load Case #1: Load Case #2: Lateral Force/Shelf: Shelf Heights: Load: % Per Shelf: Load: % Per Shelf: Force#: LC#l: LC#2: hl = 53 in 136 lbs 12.2% 22 lbs 3.9% Fl= 16.0 lbs 2.1 lbs h2 = 70in 1361bs 16.2% 22 lbs 5.1% F2 = 21.1 lbs 2.8 lbs h3 = 87in 136 lbs 20.1% 22 lbs 6.4% F3 = 26.2 lbs 3.4 lbs h4 = 103in 136 lbs 23.9% 22 lbs 7.6% F4 = 31.1 lbs 4.1 lbs h5 = 120in 136 lbs 27.6% 192 lbs 77.0% F5 = 36.0 lbs 41.4 lbs h6 = Din 0 lbs 0.0% Dibs 0.0% F6 = 0.0 lbs 0.0 lbs h7 = 0 in Dibs 0.0% Dibs 0.0% F7 = 0.0 lbs 0.0 lbs h8 = O in Dibs 0.0% Dibs 0.0% FS = 0.0 lbs 0.0 lbs h9= Din Dibs 0.0% Dibs 0.0% F9 = 0.0 lbs 0.0 lbs hlO= Din Dibs 0.0% Dibs 0.0% FlO= 0.0 lbs 0.0 lbs hll = Din Dibs 0.0% Dibs 0.0% Fll = 0.0 lbs 0.0 lbs h12 = 0 in 0 lbs 0.0% Dibs 0.0% F12= 0.0 lbs 0.0 lbs h13 = Din 0 lbs 0.0% Dibs 0.0% F13 = 0.0 lbs o.o lbs h14 = Din 0 lbs 0.0% Dibs 0.0% F14 = 0.0 lbs 0.0 lbs h15 = Din 0 lbs 0.0% Dibs 0.0% F15 = 0.0 lbs 0.0 lbs h16 = Din 0 lbs 0.0% Dibs 0.0% F16 = 0.0 lbs 0.0 lbs h17 = O in Dibs 0.0% 0 lbs 0.0% F17 = 0.0 lbs 0.0 lbs h18 = Din Dibs 0.0% 0 lbs 0.0% F18 = 0.0 lbs 0.0 lbs h19= Oin 0lbs 0.0% Olbs 0.0% F19 = 0.0 lbs 0.0 lbs h20= 0in Dibs 0.0% Olbs 0.0% F20 = 0.0 lbs 0.0 lbs Sum= 100% Sum= 100% Total= 130.5 lbs 53.7 lbs By inspection, the force distribution for intermediate level without live load (case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for this condition. 71/137 :::~ECLIPSE NIKE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Column Calculations -Combined Bending and Axial Post Type: Double Rivet 11L11 or 11T11 Post Width; Depth; Thickness; Column Bending Calculations - Max Column Moment; 1.5 in 1.5 in 0.075 in 63.2 ft-lbs r X ;; 0.470 s ; ' 0.044 Ix ;;; 0.049 A,; 0.217 Allowable Bending Stress; Bending Stress on Column; 19.8 17.1 ksi ksi !Bending Stress OK Column Deflection Calculations - Max Deflection ; 1.059 in Deflection Ratio; 113 At Top of Unit L/ !). in in3 in4 in2 10/19/2022 NSB Allowable Deflection ; 6 in Max Deflection ; 5% of Height Column Axial Calculations -Per "L" Post DL + PL; 240 lbs DL +PL+ EQ; 351 lbs Column Capacity Calculations - Controlling Buckling Stress; 14.5 ksi Allowable Comp. Stress; 14.5 ksi Factor of Safety for Comp. = 1.80 Nominal Column Capacity= 3101 lbs Allowable Column Capacity= 1723 lbs Static Axial Load on Column = 240 lbs Combined Bending And Axial Forces - Critical Buckling Load = 18265 lbs Axial Stress Unity= 0.204 Bending Stress Unity= 0.753 Combined Stress Unity= 0.957 !Deflection OK ! RMI Load Combination #1 RMI Load Combination #6 !Axial Load OK Magnification Factor= Cm= !Column is Adequate 0.976 0.85 72/137 :::~ECLIPSE NIKE LIVE BY LA COSTA 10/19/2022 NSB E N G I N E E R I N G Carlsbad, California Overturning and Anti-Tip Calculations Overturning Forces On Anchors (LRFD) Total Weight, Base Shear, Eh Vertical Seismic Load w Force, Ev Combination (lbs) (lbs) (lbs) LCl 679 143 115 LC2 280 59 47 W(LCl) = (Dlshelf + 0.67 * LLshelf) *#of Shelves W(LC2) = Dlshelf *#of Shelves+ Llshelf Eh= (Vt• W)/(0.7 • p) Ev = 0.20 * Sds * W Mo(LCl) = n • L(hx • fx/0.7) Mo(LC2) = fi* Vt/0.7* (Dlrotal * (!1+s) +Llshelf * H) Overstrength Factor, Cl= 2.00 Overturning Resisting Moment, Moment (0=2), Net Overturning Moment, Mn Shear Force per Tension Force Mo (ft-lbs) 2221 1093 Mc (ft-lbs) 496 204 Mr= (0.9 * W -Ev)*~ 2 Mn= Mo-Mr V il•Eh # of Anchors "" T= d # of Anchors (ft-lbs) 1725 888 Anchor, V per Anchor, T (lbs) 72 30 Per Side of Unit (lbs) 431 222 USE: POST INSTALLED ANCHOR BOLTS/ LAG SCREWS AS REQUIRED FOR FLOOR NOTED BELOW Allowable Tension Force= 1448 Allowable Shear Force= 1723 Combined Loading LCl: 0.298 LC2: 0.153 Anti-Ti!! Track Design - Type of Anti-Tip Device = NONE Tension per Carriage Anchor= N/A Combined Loadin!:l = N/A Tension per Shelf Post= N/A Capacity of Screws to Carriage = N/A Anti-Tip Peg Yield Stress= 40.275 Thickness Anti-Tip Peg Head= 0.09 Width of Anti-Tip Peg Head= 0.43 Section Modulus of Peg Head = 0.0006 Allowable Stress on Leg= 40.275 Bending Stress on Leg= N/A Anti-Tip Stress Unity= N/A Section Modulus of Track= 0.093 Spacing of Track A.B's= 0.00 Allowable Alumn. Stress= 21 Bending Stress on Track= N/A Track Stress Unity= N/A lbs lbs lbs I lbs lbs ksi in in in3 ksi ksi in3 in ksi ksi 2500 psi NWC Concrete 3/8"¢ KB-TZ2 w/ 2.000" Embedment !Floor anchors are adequate Steel 6061-T6 Fy = 53.700 ksi Fu = 63.800 ksi Fty = 35.000 ksi Flu= 38.000 ksi 73/137 ~;;ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Shelf Beam Calculations Shelf Beam Calculations: Steel Yield Stress = Modulus of Elast. = DRL Low Profile 33 29000 ksi ksi Beam Type: DRL Low Profile Area of Beam= 0.264 in2 Section Modulus of Beam = 0.098 in3 Moment of Inertia of Beam = 0.072 in4 Shelf Width = 4.0 ft Shelf Depth = 2.0 ft Total Load/Shelf= 190 lbs Distributed Load = 23.75 olf Maximum Design Moment= 47.5 ft-lbs Maximum Design Shear= 47.5 lbs Beam Bending Stress= 5.8 ksi Bending Stress Unity= 0.295 Beam Shear Stress= 0.18 ksi Shear Stress Unity= 0.014 Max Allowable Deflection= 0.267 in Maximum Beam Deflection = 0.066 in Shelf Beam Rivet Check: Diameter of Rivet= 0.25 in Post Moment Shear on Rivet= 505.8 lbs Beam Shear on Rivet= 47.5 lbs Resultant Shear= 508.0 lbs Bearing Capacity of Rivet= 519.8 lbs Allowable Shear Stress= 13.5 ksi Shear Stress on Rivet= 10.3 ksi Seismic U11lift on Shelves - Vertical Seismic Component= 32.1 lbs Vertical Total Load per Shelf= 135.8 lbs Shelf DL = Shelf LL= Allowable Bending Stress= Allowable Shear Stress= I sending Stress OK !shear Stress OK L/180 !Deflection OK I searing Stress OK !shear Stress OK Connection Points per Shelf= 4.0 (1) per Corner Net Uplift Load per Shelf= -49.4 lbs 10/19/2022 NSB 2.0 psf 21.75 osf 19.8 ksi 13.2 ksi Uplift Forcer per Connection = -12.3 lbs Rivet Connection OK 74/137 ::;~ EC LI PS E ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Wall Supported Unit Calculations Seismic Force at Top of Units - Average Roof Height= Height of Attachment= Shear Coeff Boundaries= 20.0 10.0 ft ft vmia = 0.253 Vm,, = 1.352 L-___ D_e_s..;ig;.n_B_a_s_e_s_h_e_a_r c_o_e_ff_= ____ v_,;..=_o_.3_8_4 _ ___.!Adjusted For ASD and "p" Total Weight per Unit= Lateral Force at Top/Bottom= Standard Stud Spacing= 679 131 16 Wall Connections per Unit= 3 lbs lbs in 10/19/2022 NSB Tek Screw Capacity= Force Per Connection= 84 44 lbs lbs Tension Ca . for #10 Screw in 20ga Stud Screw Capacity OK 75/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Light Gauge Steel Stud Wall Framing Stud Design Data - 10/19/2022 NSB Height of Wall Studs= 16.0 ft Int. Non-Brg -Worst Case Ht Assumed Location of Point Load = 10.0 ft Design Lateral Load = 43.5 lbs From Shelving Unit Additional Lateral Load= 5.0 psf Interior Seismic Force Design Axial Load = 85.3 lbs Dead Load of Wall Framing Spacing of Studs= 16.0 in TRY: 6" x 2" x 20ga Studs@ 16" o.c. (By Existing Structural Drawings) Width= 6 in rx = 2.340 in Depth= 2 in ry = 0.743 in Thickness= 0.035 in Sx= 0.621 in3 Fy = 33 ksi Ix= 2.058 in4 E= 29000 ksi Ap= 0.379 in2 K= 1.0 Unbraced Length X = 16 ft Unbraced Length Y = 4 ft Stud Capacity - Buckling Stress, X = 42.51 ksi Buckling Stress, Y = 68.58 ksi Allowable Buckling Stress= 26.60 ksi Nominal Axial Strength= 10080 lbs Factor of Safety= 1.92 Allowable Axial Load = 5250 lbs Maximum Design Moment= 376.5 ft-lbs Maximum Design Shear= 80.5 lbs Allowable Bending Stress= 21.78 ksi Actual Bending Stress= 7.27 ksi !Bending Stress OK Allowable Shear Stress= 13.20 ksi Actual Shear Stress= 0.21 ksi !shear Stress OK Allowable Axial Stress= 13.85 ksi Actual Axial Stress= 0.23 ksi !Axial Stress OK Combined Stress Unity= 0.35 !Combined Stress OK 76/137 ::::~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Slab Bearing & Uplift Calculations Slab Design Properties - Minimum Concrete Strength= Thickness of Concrete Slab= Weight of Concrete Slab= Allowable Bearing Pressure= Bearing Loads On Post= Uplift Loads on Post= Slab Bearing Capacity - Depth of Post on Slab= Factored Bearing Load = Required Bearing Area = Critical Section= Soil Pressure on Crit. Section= Section Modulus= Shear Area= Cone. Shear Stress= Allowable Shear Stress= Cone. Bending Stress= Allowable Bending Stress= Slab Uplift Capacity - Required Area to Resist Uplift= Length of Slab Req'd = Worst Case Length of Slab= Distance to Anchor Bolt = Length of 1ft Strip= Shear Force on 1ft Strip= Allowable Shear Force = Bending Moment on 1ft Strip= Allowable Bending Moment= 2500 4 50 500 27 213 278 307 1.5 770 149.06 3.35 743.4 32.0 22 8.7 73.2 10.9 137.5 0.00 0.00 1.00 0.50 1.00 70.0 1760.0 8.8 366.7 psi in psf psf lbs lbs lbs lbs in lbs in2 in plf in3 in psi psi psi psi ft2 ft ft ft ft lbs lbs ft-lbs ft-lbs Assumed Assumed Assumed Dead Load Live Load EQLoad Resultant Uplift 12.21 inches per side For Bending Along Critical Length Plain Concrete per Foot !Shear Stress OK !Bending Stress OK Assume Required Area/ Full Shelf Width Maximum Length Required Length Safety Factor: 2.00 !Shear OK !Bending OK 77/137 ~;::ECLIPSE ENGINEERING NI KE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB PIPP MOBILE STORAGE SYSTEMS INC. STEEL STORAGE SHELVING· LIGHT RETAIL CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI Design Inputs: Steel Storage Shelving: SFS CART UNIT -"H" Shelving Geometry - Height of Shelving Unit= Width of Shelving Unit= Depth of Shelving Unit= Number of Shelves/Unit= Vertical Shelf Spacing= Back to Back Unit? NO Unit Type: FIXED Number of Units per Track? Mobile Anchor Spacing? Wall Supported Unit? Shelving Loading - Live Load per Shelf= Maximum Weight per Shelf= Dead Load per Shelf= Weight of Each Post= Weight of Mobile Carriage= Floor Load Calculations: Total Load on Each Post= Total Load On Each Unit= Floor Area Load= Allowable Floor Loading= Floor Load Under Shelf= Seismic Information - 10.8 4.0 2.0 8 17.7 N/A YES 12.50 100 2.5 7.9 0 248 992 10.0 100 99 ft Steel Yield Stress= 33 ksi ft Modulus of Elast. = 29000 ksi ft Eff. Lx Factor = 1.7 Unbraced Length,x = 17.7 in in Unbraced Length,y = 17.7 in Type of Post? 14 Ga. Rivet Style L-Post Type of Beam? DRL Low Profile Top Shelf Loaded? YES in Intermediate Anchor: Double psf Display On Plaque Near Shelving Units lbs Per 48.00 in. x 24.00 in. shelf psf Particle Board Shelf Material lbs Shelving is NOT accessible to public lbs lbs Ground Fir Cone Slab lbs 2500 psi NWC Concrete ft2 3/8"4> KB-TZ2 w/ 2.000" Embedment psf psf !OK FOR lOOpsf RETAIL FLOOR LOADING Not Open to the Public SDC: D Risk Category = Seismic Importance Factor {I,}= Site Class= II 1.0 D -Default p = 1.3 Worst Case Assumed Mapped Accel. Parameters: Ss = 1.056 51 = 0.380 Fa= 1.200 Fv = 1.920 Structural System: ASCE 7 Section 15.5.1 Steel Storage Shelving: Average Roof Height = Height of Base Attachment = Shear Coeff Boundaries = 20 0 R = 4 ft ft Vmin = 0.037 Vmax = 0.211 Sms = 1.267 5ml = 0.730 ap = 2.5 0'-0" For Ground Floor Location Ground Floor RMI, 2.6.3 RMI, 2.6.3 Sds = 0.845 Sdl = 0.486 Ip= 1.0 ,----D-e-s-ig_n_B_a_s_e_S_h_e_ar_C_o_e_ff_= ____ V_,-=-0-.1-9-2--,!Adjusted For ASD RMI, 2.6.3 78/137 ::;;; ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Lateral Force Distribution: per ASCE 7 Section 15.5.1 Total Dead Load per Level = 24.0 lbs Tota I Live Load per Level = 100 lbs Lateral DL Force per Level = 4.6 lbs Lateral LL Force per Level = 19.2 lbs 67% of LL Force per Level = 12.9 lbs Total DL Base Shear= 36.9 lbs Total LL Base Shear= 153.8 lbs 10/19/2022 NSB LC1: Each Level, Loaded to 67% of its Live Weight Cumulative Moment: 51670 in-lbs L--'T..:o..:ta::.;l..:B..:ac:.se:cc:.S:..:.he::.;a:..;r_= __ ..:1=3::.9:.:.9 _ _;1;:.bs:....... __ ...1! LC #1 Governs LC 2: Top Level Only, Loaded to 100% of its Live Weight Cumulative Moment: 26314 in-lbs LI __ T'-o'-t'-al'-B'-a_s.:.e..:Sc...h.:.eaccr_= ___ 5=..6:.c·.=1 __ 1.:.b.c.s __ _J! LC #2 Does NOT Govern Load Case #1: Load Case #2: Lateral Force/Shelf: Shelf Heights: Load: % Per Shelf: Load: % Per Shelf: Force#: LC#l: LC#2: hl = 3 in 91 lbs 0.5% 241bs 0.3% Fl= 0.7 lbs 0.2 lbs h2 = 32 in 91 lbs 5.6% 24 lbs 2.9% F2 = 7.9 lbs 1.6 lbs h3 = 44in 91 lbs 7.7% 24 lbs 4.0% F3 = 10.8 lbs 2.2 lbs h4= 68in 91 lbs 12.0% 24 lbs 6.2% F4 = 16.7 lbs 3.5 lbs h5 = 83in 91 lbs 14.6% 24 lbs 7.6% F5 = 20.4 lbs 4.2 lbs h6 = 98in 9llbs 17.3% 241bs 8.9% F6 = 24.1 lbs 5.0 lbs h7 = 113in 91 lbs 19.9% 241bs 10.3% F7 = 27.8 lbs 5.8 lbs h8 = 127in 91 lbs 22.4% 124 lbs 59.8% F8 = 31.3 lbs 33.5 lbs h9 = Qin Olbs 0.0% Dibs 0.0% F9 = 0.0 lbs 0.0 lbs hlO= Din Dibs 0.0% Dibs 0.0% FlO = 0.0 lbs 0.0 lbs hll = Oin Dibs 0.0% Dibs 0.0% Fll = 0.0 lbs 0.0 lbs h12 = O in 0 lbs 0.0% Olbs 0.0% F12 = 0.0 lbs 0.0 lbs h13 = Qin Olbs 0.0% 0 lbs 0.0% F13 = 0.0 lbs 0.0 lbs h14= Qin Olbs 0.0% Dibs 0.0% F14 = 0.0 lbs 0.0 lbs h15 = Oin Dibs 0.0% Olbs 0.0% F15 = o.o lbs 0.0 lbs h16= Oin 0 lbs 0.0% Olbs 0.0% F16= 0.0 lbs 0.0 lbs h17 = Oin 0 lbs 0.0% Olbs 0.0% F17 = 0.0 lbs o.o lbs h18 = 0 in Dibs 0.0% Olbs 0.0% F18 = 0.0 lbs 0.0 lbs h19 = Oin Olbs 0.0% Olbs 0.0% F19 = 0.0 lbs 0.0 lbs h20 = Din Olbs 0.0% Olbs 0.0% F20 = 0.0 lbs 0.0 lbs Sum= 100% Sum= 100% Total= 139.9 lbs 56.1 lbs By inspection, the force distribution for intermediate level without live load (case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for this condition. 79/137 ===~ECLIPSE NIKE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Column Calculations -Combined Bending and Axial Post Type: Double Rivet "L" or 11T" Post Width= Depth= Thickness= Column Bending Calculations - Max Column Moment= 1.5 1.5 0.075 42.0 in in in ft-lbs r = ' 0.470 s = ' 0.044 I = ' 0.049 A = p 0.217 Allowable Bending Stress= Bending Stress on Column= 19.8 11.4 ksi ksi !Bending Stress OK Column Deflection Calculations - Max Deflection= 0.366 in Deflection Ratio= 353 At Top of Unit L//'J. in in3 in4 in2 10/19/2022 NSB Allowable Deflection= 6.45 in Max Deflection = 5% of Height Column Axial Calculations -Per "L" Post DL +PL= 248 lbs DL +PL+ EQ = 379 lbs Column Capaci!Jl Calculations - Controlling Buckling Stress= 12.9 ksi Allowable Comp. Stress= 12.9 ksi Factor of Safety for Comp. = 1.80 Nominal Column Capacity= 2794 lbs Allowable Column Capacity= 1552 lbs Static Axial Load on Column = 248 lbs Combined Bending And Axial Forces - Critical Buckling Load = 15370 lbs Axial Stress Unity= 0.244 Bending Stress Unity= 0.503 Combined Stress Unity= 0.748 !Deflection OK ! RMI Load Combination #1 RMI Load Combination #6 !Axial Load OK Magnification Factor= Cm= !Column is Adequate 0.971 0.85 80/137 ~~ECLIPSE NIKE LIVE BY LA COSTA 10/19/2022 NSB E N G I N E E R I N G Carlsbad, California Overturning and Anti-Tip Calculations Overturning Forces On Anchors (LRFD) load Combination LCl LC2 Total Weight, w (lbs) 728 292 Base Shear, Eh (lbs) 154 62 Vertical Seismic Force, Ev (lbs) 123 49 W(LCl) = (DLshelf + 0.67 * Llshelf) *#of Shelves W(LC2) = Dlshelf *#of Shelves+ Llshelf Eh= (Vt• W)/(0.7 • p) Ev = 0.20 * Sds * W Mo(LCl) = n • l:(hx • fx/0.7) Mo(LCZ) = J1 * Vt/0.7 * ( Dlrota! * G + s) + Llshe!f * H) Overstrength Factor, O = 2.00 Overturning I Resisting Moment, Moment O=c2), Mr Net Overturning Moment, Mn Shear Force per Tension Force Anchor, V per Anchor, T Mo (ft-lbs) 2390 1125 (ft-lbs) 532 213 d Mr= (0.9 * W -Ev)* 2 Mn =Mo-Mr V = fi•Eh # of Anchors "" T= d # of Anchors (ft-lbs) 1858 912 (lbs) 77 31 Per Side of Unit (lbs) 464 228 USE: POST INSTALLED ANCHOR BOLTS/ LAG SCREWS AS REQUIRED FOR FLOOR NOTED BELOW Allowable Tension Force= Allowable Shear Force= 1448 1723 Combined Loading LCl: 0.321 LC2: 0.157 Anti-Ti~ Track Design - Type of Anti-Tip Device= NONE Tension per Carriage Anchor= N/A Combined Loading= N/A Tension per Shelf Post= N/A Capacity of Screws to Carriage= N/A Anti-Tip Peg Yield Stress= 40.275 Thickness Anti-Tip Peg Head= 0.09 Width of Anti-Tip Peg Head= 0.43 Section Modulus of Peg Head= 0.0006 Allowable Stress on Leg = 40.275 Bending Stress on Leg= N/A Anti-Tip Stress Unity= N/A Section Modulus of Track= 0.093 Spacing of Track A.B's= 0.00 Allowable Alumn. Stress= 21 Bending Stress on Track= N/A Track Stress Unitl = N/A I lbs lbs lbs lbs lbs ksi in in in3 ksi ksi in3 in ksi ksi 2500 psi NWC Concrete 3/8"<!> KB-T22 w/ 2.000" Embedment !Floor anchors are adequate Steel 6061-T6 Fy = 53.700 ksi Fu = 63 .800 ksi Fty = 35.000 ksi Flu = 38.000 ksi 81/137 :::~ECLIPSE ENGINEERING Shelf Beam Calculations Shelf Beam Calculations: Steel Yield Stress= Modulus of Elast. = NIKE LIVE BY LA COSTA Carlsbad, California DRL Low Profile 33 29000 ksi ksi Shelf DL = Shelf LL= Beam Type: DRL Low Profile Area of Beam = 0.264 in2 Section Modulus of Beam= Moment of Inertia of Beam = Shelf Width = Shelf Depth = Total Load/Shelf= Distributed Load= 4.0 2.0 120 15 Maximum Design Moment= Maximum Design Shear= Beam Bending Stress= Bending Stress Unity= Beam Shear Stress= Shear Stress Unity= Max Allowable Deflection = Maximum Beam Deflection= Shelf Beam Rivet Check: Diameter of Rivet= Post Moment Shear on Rivet= Beam Shear on Rivet= Resultant Shear= Bearing Capacity of Rivet= Allowable Shear Stress= Shear Stress on Rivet = Seismic Uplift on Shelves - Vertical Seismic Component= Vertical Total Load per Shelf= Connection Points per Shelf= Net Uplift Load per Shelf= ft ft lbs olf 0.098 0.072 30.0 30.0 3.7 0.186 0.11 0.009 0.267 0.042 0.25 336.2 30.0 337.6 519.8 13.S 6.9 20.3 91.0 4.0 -34.3 in3 in4 ft-lbs lbs ksi ksi in in in lbs lbs lbs lbs ksi ksi lbs lbs Allowable Bending Stress= Allowable Shear Stress= !Bending Stress OK !shear Stress OK L/180 iDeflection OK !Bearing Stress OK !Shear Stress OK (1) per Corner lbs 10/19/2022 NSB 2.5 psf 12.50 osf 19.8 13.2 ksi ksi Uplift Forcer per Connection = -8.6 lbs Rivet Connection OK 82/137 ~;;ECLIPSE ENGINEERING NI KE LIVE BY LA COSTA Carlsbad, California Wall Supported Unit Calculations Seismic Force at Top of Units - Average Roof Height= Height of Attachment = Shear Coeff Boundaries= 20.0 10.8 ft ft Vmia = 0.253 Vm., = 1.352 L.. ___ D_es_i;;.gn_B_as_e_s_h_e_a_r_c_oe_f_f_= _____ v;., =_o_.3_9_9 _ ___.!Adjusted For ASD and "p" Total Weight per Unit= Lateral Force at Top/Bottom= Standard Stud Spacing= 728 145 16 Wall Connections per Unit= 3 lbs lbs in 10/19/2022 NSB Tek Screw Capacity= Force Per Connection= 84 48 lbs lbs Tension Ca . for #10 Screw in 20ga Stud Screw Ca acity OK 83/137 ~;;;ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Light Gauge Steel Stud Wall Framing Stud Design Data - 10/19/2022 NSB Height of Wall Studs= 16.0 ft Int. Non-Brg -Worst Case Ht Assumed Location of Point Load= 10.8 Design Lateral Load= 48.4 Additional Lateral Load = 5.0 Design Axial Load = 85.3 Spacing of Studs= 16.0 ft lbs psf lbs in From Shelving Unit Interior Seismic Force Dead Load of Wall Framing TRY: 6" x 2" x 20ga Studs@ 16" o.c. (By Existing Structural Drawings) Width= 6 in rx = 2.340 in Depth= 2 in ry = 0.743 in Thickness= 0.035 in Sx = 0.621 in3 Fy = 33 ksi Ix= 2.058 in4 E= 29000 ksi Ap = 0.379 in2 K= 1.0 Unbraced Length X = 16 ft Unbraced Length Y = 4 ft Stud Capacity - Buckling Stress, X = 42.51 ksi Buckling Stress, Y = 68.58 ksi Allowable Buckling Stress= 26.60 ksi Nominal Axial Strength= 10080 lbs Factor of Safety = 1.92 Allowable Axial Load = 5250 lbs Maximum Design Moment= 384.0 ft-lbs Maximum Design Shear= 85.8 lbs Allowable Bending Stress= 21.78 ksi Actual Bending Stress= 7.42 ksi !Bending Stress OK Allowable Shear Stress= 13.20 ksi Actual Shear Stress= 0.23 ksi !Shear Stress OK Allowable Axial Stress= 13.85 ksi Actual Axial Stress= 0.23 ksi !Axial Stress OK Combined Stress Unity= 0.36 !Combined Stress OK 84/137 :::ii; EC LI PS E ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Slab Bearing & Uplift Calculations Slab Design Properties - Minimum Concrete Strength= Thickness of Concrete Slab= Weight of Concrete Slab= Allowable Bearing Pressure= Bearing Loads On Post= Uplift Loads on Post= Slab Bearing Capacity - Depth of Post on Slab= Factored Bearing Load = Required Bearing Area = Critical Section = Soil Pressure on Crit. Section= Section Modulus= Shear Area= Cone. Shear Stress= Allowable Shear Stress= Cone. Bending Stress= Allowable Bending Stress= Slab Uplift Capacity - Required Area to Resist Uplift= Length of Slab Req'd = Worst Case Length of Slab = Distance to Anchor Bolt = Length of 1ft Strip= Shear Force on 1ft Strip= Allowable Shear Force= Bending Moment on 1ft Strip= Allowable Bending Moment= 2500 4 50 500 48 200 299 331 1.5 804 157.43 3.52 735.6 32.0 22 9.1 73.2 11.9 137.5 0.00 0.00 1.00 a.so 1.00 70.0 1760.0 8.8 366.7 psi in psi psf lbs lbs lbs lbs in lbs in2 in pit in3 in psi psi psi psi ft2 ft ft ft ft lbs lbs ft-lbs ft-lbs Assumed Assumed Assumed Dead Load Live Load EQ Load Resultant Uplift 12.55 inches per side For Bending Along Critical Length Plain Concrete per Foot !Shear Stress OK !Bending Stress OK Assume Required Area/ Full Shelf Width Maximum Length Required Length Safety Factor: 2.00 !Shear OK !Bending OK 85/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB PIPP MOBILE STORAGE SYSTEMS INC. STEEL STORAGE SHELVING -LIGHT RETAIL CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI Design Inputs: Steel Storage Shelving: FOOTWEAR MOBILE UNIT-"I" Shelving Geometry· Height of Shelving Unit= Width of Shelving Unit= Depth of Shelving Unit= Number of Shelves/Unit= Vertical Shelf Spacing= Back to Back Unit? NO Unit Type: MOBILE Number of Units per Track? Mobile Anchor Spacing? Wall Supported Unit? Shelving Loading · Live Load per Shelf= Maximum Weight per Shelf= Dead Load per Shelf= Weight of Each Post= Weight of Mobile Carriage= Floor Load Calculations: Total Load on Each Post = Total Load On Each Unit= Floor Area Load = Allowable Floor Loading= Floor Load Under Shelf= Seismic Information - 10.0 4.0 2.5 5 28.8 2 22.50 NO 10.00 100 1.5 7.4 so 151 655 12.0 100 55 ft ft ft in in psf lbs psf lbs lbs lbs lbs ft2 psf psf Steel Yield Stress= Modulus of Elast. = Eff. Lx Factor= 33 ksi 29000 ksi 1.7 Unbraced Length,x = 28.8 in Unbraced Length,y = 28.8 in Type of Post? 14 Ga. Rivet Style L-Post Type of Beam? DRH High Profile Top Shelf Loaded? YES Intermediate Anchor: Double Display On Plaque Near Shelving Units Per 48.00 in. x 30.00 in. shelf Wire Grid Shelf Material Shelving is accessible to public Ground Fir Cone Slab 2500 psi NWC Concrete 3/8"<1> KB-T22 w/ 2.000" Embedment !OK FOR lOOpsf RETAIL FLOOR LOADING Open to the Public SDC: D Risk Category= Seismic Importance Factor (1,) = Site Class= II 1.0 D -Default p = 1.3 Worst Case Assumed Mapped Acee!. Parameters: Ss = 1.056 51 = 0.380 Fa= 1.200 Fv = 1.920 Structural System: ASCE 7 Section 15.5.1 Steel Storage Shelving: Average Roof Height= Height of Base Attachment = Shear Coeff Boundaries= 20 0 R = 4 ft ft Vmin = 0.037 Vmax = 0.211 Sms = 1.267 5ml = 0.730 ap = 2.5 0'-0" For Ground Floor Location Ground Floor RMI, 2.6.3 RMI, 2.6.3 Sds = 0.845 Sdl = 0.486 Ip= 1.5 ._ ___ D_es_ig_n_B_as_e_S_h_e_a_r _c_oe_ff_= _____ v_, =_o_.2_8_8 _ ___.!Adjusted For ASD RMI, 2.6.3 86/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Lateral Force Distribution: per ASCE 7 Section 15.5.1 Total Dead Load per Level = 20.9 lbs Total Live Load per Level= 100 lbs Lateral DL Force per Level= 6.0 lbs Lateral LL Force per Level= 28.8 lbs 67% of LL Force per Level = 19.3 lbs Total DL Base Shear= 30.1 lbs Total LL Base Shear= 144.1 lbs LC1: Each Level, Loaded to 67% of its Live Weight Cumulative Moment: I Total Base Shear= 126.7 lbs I LC #1 Governs LC 2: Tog Level Onli, Loaded to 100% of its Live Weight Cumulative Moment: I Total Base Shear= 59.0 lbs I LC #2 Does NOT Govern 10/19/2022 NSB 26592 in-lbs 18124 in-lbs Load Case #1: Load Case #2: Lateral Force/Shelf: Shelf Heights: Load: % Per Shelf: Load: % Per Shelf: Force#: LC#l: LC#2: hl = 3 in 881bs 1.0% 2llbs 0.3% Fl= 1.3 lbs 0.2 lbs h2 = 32in 881bs 10.5% 2llbs 3.7% F2 = 13.3 lbs 2.2 lbs h3 = 61in 881bs 20.0% 2llbs 7.0% F3 = 25.3 lbs 4.1 lbs h4= 89in 881bs 29.5% 2llbs 10.3% F4= 37.4 lbs 6.1 lbs h5 = 118 in 881bs 39.0% 121 lbs 78.7% F5 = 49.4 lbs 46.4 lbs h6= Oin 0lbs 0.0% 0lbs 0.0% F6 = 0.0 lbs 0.0 lbs h7= Oin 0 lbs 0.0% 0lbs 0.0% F7 = 0.0 lbs 0.0 lbs h8= 0 in 0 lbs 0.0% 0 lbs 0.0% F8 = 0.0 lbs 0.0 lbs h9 = O in 0 lbs 0.0% 0lbs 0.0% F9 = 0.0 lbs 0.0 lbs hlO = 0 in 0 lbs 0.0% 0 lbs 0.0% FlO = 0.0 lbs 0.0 lbs hll = 0 in o lbs 0.0% 0 lbs 0.0% Fll = 0.0 lbs 0.0 lbs h12 = 0 in 0 lbs 0.0% 0 lbs 0.0% F12 = 0.0 lbs 0.0 lbs h13 = 0 in 0 lbs 0.0% 0lbs 0.0% F13 = 0.0 lbs 0.0 lbs h14 = O in 0 lbs 0.0% o lbs 0.0% F14 = 0.0 lbs o.o lbs h15 = 0 in 0 lbs 0.0% 0 lbs 0.0% F15 = 0.0 lbs 0.0 lbs h16 = 0 in 0 lbs 0.0% 0 lbs 0.0% F16 = 0.0 lbs 0.0 lbs h17 = 0 in 0 lbs 0.0% 0lbs 0.0% F17 = 0.0 lbs 0.0 lbs h18 = 0 in 0 lbs 0.0% Dibs 0.0% F18 = 0.0 lbs o.o lbs h19 = 0 in 0 lbs 0.0% 0 lbs 0.0% F19 = 0.0 lbs 0.0 lbs h20 = 0 in 0 lbs 0.0% 0 lbs 0.0% F20= 0.0 lbs 0.0 lbs Sum= 100% Sum= 100% Total= 126.7 lbs 59.0 lbs By inspection, the force distribution for intermediate level without live load (case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for this condition. 87/137 ~~ECLIPSE NIKE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Column Calculations -Combined Bending and Axial Post Type: Double Rivet 11L11 or 11T11 Post Width= Depth= Thickness= Column Bending Calculations - Max Column Moment= 1.5 in 1.5 in 0.075 in 37.6 ft-lbs Allowable Bending Stress= 19.8 ksi r = ' 0.470 s = ' 0.044 I = ' 0.049 A = p 0.217 Bending Stress on Column= 10.2 ksi !Bending Stress OK Column Deflection Calculations - Max Deflection= 0.524 in Deflection Ratio= 229 At Top of Unit L/t:,. in in3 in4 in2 10/19/2022 NSB Allowable Deflection= 6 in Max Deflection= 5% of Height Column Axial Calculations -Per "L" Post DL + PL= 151 lbs DL +PL+ EQ = 239 lbs Column Capacity Calculations - Controlling Buckling Stress= 7.3 ksi Allowable Comp. Stress= 7.3 ksi Factor of Safety for Comp. = 1.80 Nominal Column Capacity= 1574 lbs Allowable Column Capacity= 875 lbs Static Axial Load on Column= 151 lbs Combined Bending And Axial Forces - Critical Buckling Load = 5835 lbs Axial Stress Unity= 0.273 Bending Stress Unity= 0.458 Combined Stress Unity= 0.732 ! Deflection OK ! RMI Load Combination #1 RMI Load Combination #6 !Axial Load OK Magnification Factor= Cm= !Column is Adequate 0.953 0.85 88/137 :::~ECLIPSE NIKE LIVE BY LA COSTA 10/19/2022 NSB E N G I N E E R I N G Carlsbad, California Overturning and Anti-Tip Calculations Overturning Forces On Anchors (LRFD) Load Combination LCl LC2 Total Weight, w (lbs) 440 205 Base Shear, Eh (lbs) 139 65 Vertical Seismic Force, Ev (lbs) 74 35 W(LCl) = (Dlshelf + 0.67 * Llshelf) *#of Shelves W(LCZ) = Dlshelf *#of Shelves+ Llshelf Eh= (Vt• W)/(0.7 • p) Ev = 0.20 * Sds * W Mo(LC1) = n • E(hx • fx/0.7) Mo(LCZ) = !1 * Vt/0.7 * ( Dlrota! * G + S) + Llshelf * H) Overstrength Factor, n = 2.00 Overturning I I Resisting Moment, Moment 0=2, M, Mo (ft-lbs) 2038 1161 (ft-lbs) 402 187 Mr= (0.9 * W -Ev)*~ 2 Mn= Mo-Mr fl.*Eh V # of Anchors "" T=,,--,~,-# of Anchors Net Overturning Moment, Mn (ft-lbs) 1637 974 Shear Force per Tension Force Anchor, V per Anchor, T (lbs) 70 32 Per Side of Unit (lbs) 327 195 USE: POST INSTALLED ANCHOR BOLTS/ LAG SCREWS AS REQUIRED FOR FLOOR NOTED BELOW Allowable Tension Force= Allowable Shear Force= 1448 1723 Combined Loading LCl: 0.226 LC2: 0.134 Anti-Ti!! Track Design - lbs lbs Type of Anti-Tip Device= Arm and Track Tension per Carriage Anchor= 1309 lbs Combined Loading= 0.904 I Tension per Shelf Post= 265 lbs Capacity of Screws to Carriage= 1200 lbs Anti-Tip Peg Yield Stress= 40.275 ksi Thickness Anti-Tip Peg Head= 0.09 in Width of Anti-Tip Peg Head= 0.43 in Section Modulus of Peg Head= 0.0006 in3 Allowable Stress on Leg= 40.275 ksi Bending Stress on Leg= 39.39 ksi Anti-Tip Stress Unity= 0.978 Section Modulus of Track= 0.093 in3 Spacing of Track A.B's= 22.50 in Allowable Alumn. Stress= 21 ksi Bending Stress on Track= 16.03 ksi Track Stress Unity= 0.763 2500 psi NWC Concrete 3/8"cj, KB-TZ2 w/ 2.000" Embedment !Floor anchors are adequate !Floor anchors are adequate j(2) 1/4-in screws are adequate Steel !sending Stress OK 6061-T6 !sending Stress OK Fy = 53.700 ksi Fu = 63.800 ksi Fty = 35.000 ksi Ftu = 38.000 ksi 89/137 ~;;ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Shelf Beam Calculations Shelf Beam Calculations: Steel Yield Stress= Modulus of Elast. = DRH High Profile 33 29000 ksi ksi Beam Type: DRH High Profile Area of Beam= 0.264 in2 Section Modulus of Beam= 0.126 in3 Moment of Inertia of Beam= 0.211 in4 Shelf Width = 4.0 Shelf Depth = 2.5 Total Load/Shelf= 115 Distributed Load= 14.375 Maximum Design Moment= Maximum Design Shear= Beam Bending Stress= Bending Stress Unity= Beam Shear Stress = Shear Stress Unity= Max Allowable Deflection= Maximum Beam Deflection= Shelf Beam Rivet Check: Diameter of Rivet= Post Moment Shear on Rivet= Beam Shear on Rivet = Resultant Shear= Bearing Capacity of Rivet= Allowable Shear Stress= Shear Stress on Rivet = Seismic Uplift on Shelves - Vertical Seismic Component= Vertical Total Load per Shelf= ft ft lbs olf 28.8 28.8 2.7 0.138 0.11 0.008 0.267 0.014 0.25 300.6 28.8 301.9 519.8 13.5 6.2 19.4 87.9 ft-lbs lbs ksi ksi in in in lbs lbs lbs lbs ksi ksi lbs lbs Shelf DL = Shelf LL= Allowable Bending Stress= Allowable Shear Stress= ! Bending Stress OK !shear Stress OK L/180 joeflection OK !Bearing Stress OK !Shear Stress OK Connection Points per Shelf= 4.0 (1) per Corner Net Uplift Load per Shelf= -33.3 lbs 10/19/2022 NSB 1.5 psf 10.00 osf 19.8 13.2 ksi ksi Uplift Forcer per Connection= -8.3 lbs Rivet Connection OK 90/137 :::~ EC LI PS E ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Slab Bearing & Uplift Calculations Slab Design Properties - Minimum Concrete Strength= Thickness of Concrete Slab= Weight of Concrete Slab= Allowable Bearing Pressure= Bearing Loads On Post = Uplift Loads on Post= Slab Bearing Capacity - Depth of Post on Slab= Factored Bearing Load= Required Bearing Area = Critical Section= Soil Pressure on Crit. Section= Section Modulus= Shear Area= Cone. Shear Stress= Allowable Shear Stress= Cone. Bending Stress= Allowable Bending Stress= Slab Uplift Capacity - Required Area to Resist Uplift= Length of Slab Req'd = Worst Case Length of Slab= Distance to Anchor Bolt= Length of 1ft Strip= Shear Force on 1ft Strip= Allowable Shear Force= Bending Moment on 1ft Strip= Allowable Bending Moment= 2500 4 50 500 26 125 204 279 1.5 523 102.23 2.31 736.1 32.0 22 5.9 73.2 5.1 137.5 14.55 1.82 1.82 0.91 1.82 127.3 1760.0 28.9 366.7 psi in psf psf lbs lbs lbs lbs in lbs in2 in plf in3 in psi psi psi psi ft2 ft ft ft ft lbs lbs ft-lbs ft-lbs Assumed Assumed Assumed Dead Load Live Load EQ Load Resultant Uplift 10.11 inches per side For Bending Along Critical Length Plain Concrete per Foot !Shear Stress OK !Bending Stress OK Assume Required Area/ Full Shelf Width Maximum Length Required Length Safety Factor: 2.00 !Shear OK !Bending OK 91/137 :::;;; EC LI PS E ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB PIPP MOBILE STORAGE SYSTEMS INC. STEEL STORAGE SHELVING -LIGHT RETAIL CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI Design Inputs: Steel Storage Shelving: Shelving Geometry - Height of Shelving Unit= Width of Shelving Unit= Depth of Shelving Unit= Number of Shelves/Unit= Vertical Shelf Spacing= Back to Back Unit? NO 10.0 4.0 1.3 5 28.8 ft ft ft in FOOTWEAR 48"x15" FIXED UNIT -"J" Steel Yield Stress= Modulus of Ela st. = Eff. Lx Factor = Unbraced Length,x = 33 ksi 29000 ksi 1.7 28.8 in Unbraced Length,y = 28.8 in Type of Post? 14 Ga. Rivet Style L-Post Type of Beam? DRH High Profile Unit Type: FIXED Number of Units per Track? N/A Top Shelf Loaded? YES Mobile Anchor Spacing? Wall Supported Unit? Shelving loading - Live Load per Shelf= Maximum Weight per Shelf= Dead Load per Shelf = Weight of Each Post= Weight of Mobile Carriage= Floor Load Calculations: Total Load on Each Post= Total Load On Each Unit= Floor Area Load = Allowable Floor Loading= Floor Load Under Shelf= Seismic Information - YES 25.25 125 1.5 7.4 0 173 692 7.0 100 99 in Intermediate Anchor: Double psi Display On Plaque Near Shelving Units lbs Per 48.00 in. x 15.00 in. shelf psi Wire Grid Shelf Material lbs Shelving is accessible to public lbs lbs Ground Fir Cone Slab lbs 2500 psi NWC Concrete ft2 3/8"¢ KB-TZ2 w/ 2.000" Embedment psi psi !OK FOR lOOpsf RETAIL FLOOR LOADING Risk Category= Seismic Importance Factor (le) = Site Class= II 1.0 D Open to the Public SOC: D Mapped Accel. Parameters: Ss = 1.056 51 = 0.380 -Default p = 1.3 Fa= 1.200 Fv = 1.920 Structural System: ASCE 7 Section 15.5.1 Steel Storage Shelving: Average Roof Height= Height of Base Attachment= Shear Coeff Boundaries= 20 0 R = 4 ft ft Vmin = 0.037 Vmax = 0.211 Worst Case Assumed Sms = 1.267 5ml = 0.730 ap = 2.5 0'-0" For Ground Floor Location Ground Floor RMI, 2.6.3 RMI, 2.6.3 Sds = 0.845 Sdl = 0.486 Ip= 1.5 .,__ ___ o_e_s_ig_n_Ba_s_e_s_h_e_a_r _co_e_ff_= ____ v_,_=_o_.2_8_8 _ __,!Adjusted For ASD RMI, 2.6.3 92/137 :::;; EC LI PS E NIKE LIVE BY LA COSTA 10/19/2022 ENGINEERING Carlsbad, California NSB Lateral Force Distribution: per ASCE 7 Section 15.5.1 Total Dead Load per Level = 13.4 lbs Tota I Live Load per Level = 125 lbs Lateral DL Force per Level= 3.9 lbs Lateral LL Force per Level= 36.0 lbs 67% of LL Force per Level= 24.1 lbs Total DL Base Shear= 19.3 lbs Total LL Base Shear= 180.2 lbs LC1: Each Level, Loaded to 67% of its Live Weight Cumulative Moment: 29390 in-lbs Total Base Shear= 140.0 lbs !LC #1 Governs LC 2: Tog Level Onli, Loaded to 100% of its Live Weight Cumulative Moment: 18806 in-lbs Total Base Shear= 55.4 lbs !LC #2 Does NOT Govern Load Case #1: Load Case #2: Lateral Force/Shelf: Shelf Heights: Load: % Per Shelf: Load: % Per Shelf: Force#: LC#l: LC#2: hl = 3 in 97lbs 1.0% 13 lbs 0.2% Fl= 1.4 lbs 0.1 lbs h2 = 32 in 97Ibs 10.5% 13 lbs 2.3% F2 = 14.7 lbs 1.3 lbs h3 = 61 in 97 lbs 20.0% 13 lbs 4.3% F3 = 28.0 lbs 2.4 lbs h4 = 89in 97 lbs 29.5% 13 lbs 6.4% F4 = 41.3 lbs 3.5 lbs h5 = 118in 97lbs 39.0% 138 lbs 86.8% F5 = 54.6 lbs 48.1 lbs h6= 0 in 0 lbs 0.0% Dibs 0.0% F6 = 0.0 lbs 0.0 lbs h7 = Din 0 lbs 0.0% Dibs 0.0% F7 = 0.0 lbs 0.0 lbs h8 = Din Dibs 0.0% Dibs 0.0% F8 = 0.0 lbs 0.0 lbs h9 = Din Dibs 0.0% Dibs 0.0% F9 = 0.0 lbs 0.0 lbs hl0 = Din Dibs 0.0% Dibs 0.0% Fl0 = 0.0 lbs 0.0 lbs hll = Din Dibs 0.0% Dibs 0.0% Fll = 0.0 lbs 0.0 lbs h12 = Din 0 lbs 0.0% Dibs 0.0% F12 = 0.0 lbs 0.0 lbs h13 = 0 in 0 lbs 0.0% Dibs 0.0% F13 = 0.0 lbs 0.0 lbs h14 = Din 0 lbs 0.0% 0 lbs 0.0% F14 = 0.0 lbs 0.0 lbs h15 = Din Dibs 0.0% Dibs 0.0% F15 = 0.0 lbs 0.0 lbs h16 = Din Dibs 0.0% Dibs 0.0% F16 = 0.0 lbs 0.0 lbs h17 = Din Dibs 0.0% Dibs 0.0% Fl7 = 0.0 lbs 0.0 lbs h18 = Din Dibs 0.0% Dibs 0.0% F18 = 0.0 lbs 0.0 lbs h19 = Din Dibs 0.0% Dibs 0.0% F19 = 0.0 lbs 0.0 lbs h20 = 0 in o lbs 0.0% Dibs 0.0% F20 = 0.0 lbs 0.0 lbs Sum= 100% Sum= 100% Total= 140.0 lbs 55.4 lbs By inspection, the force distribution for intermediate level without live load (case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for this condition. 93/137 ~;:;ECLIPSE NIKE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Column Calculations -Combined Bending and Axial Post Type: Double Rivet 11L11 or 11T11 Post Width= Depth= Thickness= Column Bending Calculations - Max Column Moment= Allowable Bending Stress= 1.5 in 1.5 in 0.075 in 41.5 ft-lbs 19.8 ksi r = ' 0.470 Sx = 0.044 I = ' 0.049 A = p 0.217 Bending Stress on Column= 11.2 ksi !Bending Stress OK Column Deflection Calculations - Max Deflection = 0.579 in Deflection Ratio = 207 At Top of Unit L//'J. in in3 in4 in2 10/19/2022 NSB Allowable Deflection = 6 in Max Deflection = 5% of Height Column Axial Calculations -Per "L" Post DL+PL= 173 lbs DL + PL+ EQ = 363 lbs Column CapacirL Calculations - Controlling Buckling Stress= 7.3 ksi Allowable Comp. Stress= 7.3 ksi Factor of Safety for Comp. = 1.80 Nominal Column Capacity= 1574 lbs Allowable Column Capacity= 875 lbs Static Axial Load on Column= 173 lbs Combined Bending And Axial Forces - Critical Buckling Load = 5835 lbs Axial Stress Unity= 0.415 Bending Stress Unity= 0.510 Combined Stress Unity= 0.925 !Deflection OK ! RMI Load Combination #1 RMI Load Combination #6 !Axial Load OK Magnification Factor= C = m !Column is Adequate 0.947 0.85 94/137 ~~ECLIPSE NIKE LIVE BY LA COSTA 10/19/2022 NSB E N G I N E E R I N G Carlsbad, California Overturning and Anti-Tip Calculations Overturning Forces On Anchors (LRFD) Load Combination LCl LC2 Total Weight, w (lbs) 486 192 Base Shear, Eh (lbs) 154 61 Vertical Seismic Force, Ev (lbs) 82 32 W(LCl) = (Dlshelf + 0.67 * LLShelf) *#of Shelves W(LCZ) = Dlshelf *#of Shelves+ LLshelf Eh= (Vt• W)/(0.7 • p) Ev = 0.20 * Sds * W Mo(lct) = n • E(hx • fx/0.7) Mo(LCZ) = n * Vt/0.7 * ( Dlrotal * G + S) + Llshelf * H) Overstrength Factor, n = 2.00 Overturning I Resisting Moment, Moment 0=2), Mr Net Overturning Moment, Mn Shear Force per Tension Force Anchor, V per Anchor, T Mo (ft-lbs) (ft-lbs) 2253 222 1130 88 Mr= (0.9 * W -Ev)*~ z Mn= Mo-Mr V # of Anchors "" T= d # of Anchors (ft-lbs) (lbs) (lbs) 2031 77 812 1043 30 417 Per Side of Unit USE: POST INSTALLED ANCHOR BOLTS/ LAG SCREWS AS REQUIRED FOR FLOOR NOTED BELOW Allowable Tension Force= 1448 Allowable Shear Force= 1723 Combined Loading LCl: 0.561 LC2: 0.288 Anti-Ti!! Track Design - Type of Anti-Tip Device= NONE Tension per Carriage Anchor= N/A Combined Loading= N/A Tension per Shelf Post= N/A Capacity of Screws to Carriage= N/A Anti-Tip Peg Yield Stress= 40.275 Thickness Anti-Tip Peg Head= 0.09 Width of Anti-Tip Peg Head= 0.43 Section Modulus of Peg Head = 0.0006 Allowable Stress on Leg= 40.275 Bending Stress on Leg= N/A Anti-Tip Stress Unity= N/A Section Modulus of Track= 0.093 Spacing of Track A.B's= 0.00 Allowable Alumn. Stress= 21 Bending Stress on Track= N/A Track Stress Unit~= N/A lbs lbs lbs I lbs lbs ksi in in in3 ksi ksi in3 in ksi ksi 2500 psi NWC Concrete 3/8"q, KB-TZ2 w/ 2.000" Embedment !Floor anchors are adequate Steel !N/A 6061-TG Fy = 53. 700 ksi Fu= 63.800 ksi Fty = 35.000 ksi Ftu = 38.000 ksi 95/137 :::;;ECLIPSE ENGINEERING Shelf Beam Calculations Shelf Beam Calculations: Steel Yield Stress= Modulus of Elast. = NIKE LIVE BY LA COSTA Carlsbad, California DRH High Profile 33 29000 ksi ksi Shelf DL = Shelf LL= 10/19/2022 NSB 1.5 psf 25.25 osf Beam Type: DRH High Profile Area of Beam= Section Modulus of Beam= Moment of Inertia of Beam= Shelf Width = 4.0 Shelf Depth = 1.3 Total Load/Shelf= 134 Distributed Load = 16.71875 Maximum Design Moment= Maximum Design Shear= Beam Bending Stress= Bending Stress Unity= Beam Shear Stress= Shear Stress Unity= Max Allowable Deflection= Maximum Beam Deflection= Shelf Beam Rivet Check: Diameter of Rivet= Post Moment Shear on Rivet= Beam Shear on Rivet= Resultant Shear= Bearing Capacity of Rivet= Allowable Shear Stress= Shear Stress on Rivet= Seismic Uplift on Shelves - Vertical Seismic Component= Vertical Total Load per Shelf= Connection Points per Shelf= Net Uplift Load per Shelf= Uplift Forcer per Connection= ft ft lbs olf 0.264 0.126 0.211 33.4 33.4 3.2 0.161 0.13 0.010 0.267 0.016 0.25 332.2 33.4 333.9 519.8 13.5 6.8 22.6 97.2 4.0 -35.7 -8.9 in2 in3 in4 ft-lbs lbs ksi ksi in in in lbs lbs lbs lbs ksi ksi lbs lbs Allowable Bending Stress= Allowable Shear Stress= !Bending Stress OK !Shear Stress OK L/180 iDeflection OK !Bearing Stress OK !Shear Stress OK 19.8 13.2 ksi ksi (1) per Corner lbs lbs Rivet Connection OK 96/137 ~~ECLIPSE ENGINEERING NI KE LIVE BY LA COSTA Carlsbad, California Wall Supported Unit Calculations Seismic Force at Top of Units - Average Roof Height= Height of Attachment= Shear Coeff Boundaries= 20.0 10.0 ft ft Vm;, = 0.380 Vm,, = 2.028 ._ ___ D_e_s_ig_n_B_a_s_e_s_h_e_a_r c_o_e_f_f _= ____ v_,_=_o_.s_7_7 _ __,!Adjusted For ASD and "p" Total Weight per Unit= Lateral Force at Top/Bottom = Standard Stud Spacing= 486 140 16 Wall Connections per Unit= 3 Tek Screw Capacity= Force Per Connection= 84 47 lbs lbs in lbs lbs 10/19/2022 NSB 97/137 ~~ECLIPSE NIKE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Light Gauge Steel Stud Wall Framing Stud Design Data - 10/19/2022 NSB Height of Wall Studs= 16.0 ft Int. Non-Brg -Worst Case Ht Assumed Location of Point Load = 10.0 ft Design Lateral Load = 46.7 lbs From Shelving Unit Additional Lateral Load= 5.0 psf Interior Seismic Force Design Axial Load= 85.3 lbs Dead Load of Wall Framing Spacing of Studs= 16.0 in TRY: 6" x 2" x 20ga Studs@ 16" o.c. (By Existing Structural Drawings) Width= 6 in rx = 2.340 in Depth= 2 in ry = 0.743 in Thickness= 0.035 in Sx = 0.621 in3 Fy = 33 ksi Ix= 2.058 in4 E= 29000 ksi Ap = 0.379 in2 K= 1.0 Unbraced Length X = 16 ft Unbraced Length Y = 4 ft Stud Capacity - Buckling Stress, X = 42.51 ksi Buckling Stress, Y = 68.58 ksi Allowable Buckling Stress= 26.60 ksi Nominal Axial Strength= 10080 lbs Factor of Safety = 1.92 Allowable Axial Load = 5250 lbs Maximum Design Moment= 388.4 ft-lbs Maximum Design Shear= 82.5 lbs Allowable Bending Stress= 21.78 ksi Actual Bending Stress= 7.51 ksi !Bending Stress OK Allowable Shear Stress= 13.20 ksi Actual Shear Stress= 0.22 ksi !Shear Stress OK Allowable Axial Stress= 13.85 ksi Actual Axial Stress= 0.23 ksi !Axial Stress OK Combined Stress Unity= 0.36 !Combined Stress OK 98/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Slab Bearing & Uplift Calculations Slab Design Properties - Minimum Concrete Strength= Thickness of Concrete Slab= Weight of Concrete Slab= Allowable Bearing Pressure= Bearing Loads On Post= Uplift Loads on Post= Slab Bearing Capacity- Depth of Post on Slab= Factored Bearing Load = Required Bearing Area = Critical Section= Soil Pressure on Crit. Section= Section Modulus= Shear Area= Cone. Shear Stress= Allowable Shear Stress= Cone. Bending Stress= Allowable Bending Stress= Slab Uplift Capacity - Required Area to Resist Uplift= Length of Slab Req'd = Worst Case Length of Slab= Distance to Anchor Bolt= Length of 1ft Strip= Shear Force on 1ft Strip= Allowable Shear Force= Bending Moment on 1ft Strip= Allowable Bending Moment= 2500 4 so 500 17 156 451 617 1.5 914 179.58 3.95 732.7 32.0 22 10.4 73.2 14.9 137.5 0.00 0.00 0.63 0.31 0.63 43.8 1760.0 3.4 366.7 psi in psi psf lbs lbs lbs lbs in lbs in2 in plf in3 in psi psi psi psi ft2 ft ft ft ft lbs lbs ft-lbs ft-lbs Assumed Assumed Assumed Dead Load Live Load EQ Load Resultant Uplift 13.40 inches per side For Bending Along Critical Length Plain Concrete per Foot !shear Stress OK !Bending Stress OK Assume Required Area/ Full Shelf Width Maximum Length Required Length Safety Factor: 2.00 !Shear OK !Bending OK 99/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB PIPP MOBILE STORAGE SYSTEMS INC. STEEL STORAGE SHELVING -LIGHT RETAIL CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI Design Inputs: Steel Storage Shelving: Shelving Geometry - Height of Shelving Unit= Width of Shelving Unit= Depth of Shelving Unit= Number of Shelves/Unit= Vertical Shelf Spacing= Back to Back Unit? NO 10.0 ft 4.0 ft 2.5 ft 5 28.8 in FOOTWEAR 48"x30" FIXED UNIT -"K" Steel Yield Stress= 33 ksi Modulus of Elast. = 29000 ksi Eff. Lx Factor = 1.7 Unbraced Length,x = 28.8 in Unbraced Length,y = 28.8 in Type of Post? 14 Ga. Rivet Style L-Post Type of Beam? DRH High Profile Unit Type: FIXED Number of Units per Track? N/A Top Shelf Loaded? YES Mobile Anchor Spacing? Wall Supported Unit? Shelving Loading - Live Load per Shelf = Maximum Weight per Shelf= Dead Load per Shelf= Weight of Each Post= Weight of Mobile Carriage= Floor Load Calculations: Total Load on Each Post= Total Load On Each Unit= Floor Area Load = Allowable Floor Loading= Floor Load Under Shelf= Seismic Information - NO 14.50 145 1.5 7.4 0 207 830 12.0 100 69 in Intermediate Anchor: Double psf Display On Plaque Near Shelving Units lbs Per 48.00 in. x 30.00 in. shelf psf Wire Grid Shelf Material lbs Shelving is accessible to public lbs lbs Ground Fir Cone Slab lbs 2500 psi NWC Concrete ft2 3/8"<!> KB-TZ2 w/ 2.000" Embedment psf psf loK FOR lDOpsf RETAIL FLOOR LOADING Risk Category = Seismic Importance Factor (I,)= Site Class= II 1.0 D Open to the Public SDC: D Mapped Accel. Parameters: Ss = 1.056 51 = 0.380 -Default p = 1.3 Fa= 1.200 Fv = 1.920 Structural System: ASCE 7 Section 15.5.1 Steel Storage Shelving: Average Roof Height= Height of Base Attachment= Shear Coeff Boundaries= 20 0 R= 4 ft ft Vmin = 0.037 Vmax = 0.211 Worst Case Assumed Sms = 1.267 5ml = 0.730 ap = 2.5 0'-0" For Ground Floor Location Ground Floor RMI, 2.6.3 RMI, 2.6.3 Sds = 0.845 Sdl = 0.486 Ip= 1.5 ...., ___ D_e_s_ig_n_B_a_s_e_s_h_e_ar_c_o_e_ff_= ____ v_,_=_o._2_8_8 __ !Adjusted For ASD RMI, 2.6.3 100/137 :::;;; ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Lateral Force Distribution: per ASCE 7 Section 15.5.1 Total Dead Load per Level = 20.9 lbs Total Live Load per Level = 145 lbs Lateral DL Force per Level = 6.0 lbs Lateral LL Force per Level = 41.8 lbs 67% of LL Force per Level = 28.0 lbs Total DL Base Shear= 30.1 lbs Total LL Base Shear= 209.0 lbs LC1: Each Level, Loaded to 67% of its Live Weight Cumulative Moment: Total Base Shear= 170.2 lbs I LC #1 Governs LC 2: To~ Level On!~, Loaded to 100% of its Live Weight Cumulative Moment: Total Base Shear= 71.9 lbs I LC #2 Does NOT Govern 10/19/2022 NSB 35712 in-lbs 23434 in-lbs Load Case #1: Load Case #2: Lateral Force/Shelf: Shelf Heights: Load: % Per Shelf: Load: % Per Shelf: Force#: LC #1: LC#2: hl = 3 in 118Ibs 1.0% 2llbs 0.3% Fl= 1.7 lbs 0.2 lbs h2 = 32 in 118Ibs 10.5% 2llbs 2.8% F2 = 17.9Ibs 2.0 lbs h3 = 61 in 118 lbs 20.0% 2llbs 5.4% F3 = 34.0 lbs 3.9 lbs h4= 89in 118Ibs 29.5% 2llbs 8.0% F4= 50.2 lbs 5.7 lbs h5 = 118in 118Ibs 39.0% 166 lbs 83.5% F5 = 66.4 lbs 60.1 lbs h6 = Din Dibs 0.0% Dibs 0.0% F6 = 0.0 lbs 0.0 lbs h7 = Din Dibs 0.0% Dibs 0.0% F7 = 0.0 lbs 0.0 lbs h8 = Din Dibs 0.0% Dibs 0.0% F8 = 0.0 lbs 0.0 lbs h9 = Din Dibs 0.0% Dibs 0.0% F9 = 0.0 lbs o.o lbs hlO= Din Dibs 0.0% 0 lbs 0.0% Fl0 = 0.0 lbs 0.0 lbs hll = Din 0 lbs 0.0% Dibs 0.0% Fll = 0.0 lbs 0.0 lbs h12 = Din Dibs 0.0% Dibs 0.0% F12 = 0.0 lbs 0.0 lbs h13 = Din Dibs 0.0% Dibs 0.0% F13 = 0.0 lbs 0.0 lbs h14= Din Dibs 0.0% 0 lbs 0.0% F14 = 0.0 lbs 0.0 lbs h15 = Din Dibs 0.0% Dibs 0.0% Fl5 = 0.0 lbs 0.0 lbs h16= Din Dibs 0.0% 0 lbs 0.0% F16 = 0.0 lbs 0.0 lbs h17 = Oin D lbs 0.0% D lbs 0.0% F17 = 0.0 lbs 0.0 lbs h18 = Din 0 lbs 0.0% Dibs 0.0% F18 = 0.0 lbs 0.0 lbs h19 = Din 0 lbs 0.0% Dibs 0.0% F19 = 0.0 lbs 0.0 lbs h20= Din 0 lbs 0.0% Dibs 0.0% F20= 0.0 lbs 0.0 lbs Sum= 100% Sum= 100% Total= 170.2 lbs 71.9 lbs By inspection, the force distribution for intermediate level without live load (case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for this condition. 101/137 ~;;;ECLIPSE NIKE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Column Calculations -Combined Bending and Axial Post Type: Double Rivet 11L11 or 11T11 Post Width= Depth= Thickness= Column Bending Calculations - Max Column Moment= Allowable Bending Stress= 1.5 in 1.5 in 0.075 in 50.5 ft-lbs 19.8 ksi r = ' 0.470 Sx;;; 0.044 I = ' 0.049 A,= 0.217 Bending Stress on Column= 13.7 ksi !Bending Stress OK Column Deflection Calculations - Max Deflection = 0. 704 in Deflection Ratio= 170 At Top of Unit L/ I::. in in3 in4 in2 10/19/2022 NSB Allowable Deflection= 6 in Max Deflection= 5% of Height Column Axial Calculations -Per "L" Post DL + PL= 207 lbs DL +PL+ EQ = 320 lbs Column Capacint Calculations - Controlling Buckling Stress= 7.3 ksi Allowable Comp. Stress= 7.3 ksi Factor of Safety for Comp. = 1.80 Nominal Column Capacity= 1574 lbs Allowable Column Capacity= 875 lbs Static Axial Load on Column = 207 lbs Combined Bending And Axial Forces - Critical Buckling Load = 5835 lbs Axial Stress Unity= 0.366 Bending Stress Unity= 0.627 Combined Stress Unity= 0.992 !Deflection OK ! RMI Load Combination #1 RMI Load Combination #6 !Axial Load OK Magnification Factor= Cm= !Column is Adequate 0.936 0.85 102/137 ~~ECLIPSE NIKE LIVE BY LA COSTA 10/19/2022 NSB E N G I N E E R I N G Carlsbad, California Overturning and Anti-Tip Calculations Overturning Forces On Anchors (LRFO) Load Combination LCl LC2 Total Weight, w (lbs) 590 250 Base Shear, Eh (lbs) 187 79 Vertical Seismic Force, Ev (lbs) 100 42 W(LC1) = (Dlshelf + 0.67 * llshelf) *#of Shelves W(LCZ) = Dlshelf *#of Shelves+ Llshelf Eh= (Vt• W)/(0.7 • p) Ev = 0.20 * Sds * W Mo(LCl) = f1 * L(hx * fx/0.7) Mo(LC2) = f1 * Vt/0.7 * (Dlrota! * (~ + s) + llshelf * H) Overstrength Factor, Cl = 2.00 Overturning Moment (Oc=l), Resisting Moment, Mc Mo (ft-lbs) 2737 1447 (ft-lbs) 539 228 Mr= (0.9*W-Ev)*~ ' Mn= Mo-Mr V = il*Hh # of Anchors "' T=-~-# of Anchors Net Overturning Moment, Mn (ft-lbs) 2198 1219 Shear Force per Tension Force Anchor, V per Anchor, T (lbs) 94 40 Per Side of Unit (lbs) 440 244 USE: POST INSTALLED ANCHOR BOLTS/ LAG SCREWS AS REQUIRED FOR FLOOR NOTED BELOW Allowable Tension Force= 1448 Allowable Shear Force= 1723 Combined Loading LCl: 0.304 LC2: 0.168 Anti-Ti11 Track Design - Type of Anti-Tip Device= NONE Tension per Carriage Anchor= N/A Combined Loading= N/A Tension per Shelf Post= N/A Capacity of Screws to Carriage= N/A Anti-Tip Peg Yield Stress= 40.275 Thickness Anti-Tip Peg Head= 0.09 Width of Anti-Tip Peg Head= 0.43 Section Modulus of Peg Head = 0.0006 Allowable Stress on Leg= 40.275 Bending Stress on Le = N/A Anti-Tip Stress Unity= N/A Section Modulus of Track= 0.093 Spacing of Track A.B's= 0.00 Allowable Alumn. Stress= 21 Bending Stress on Track= N/A Track Stress Unity= N/A lbs lbs lbs I lbs lbs ksi in in in3 ksi ksi in3 in ksi ksi 2500 psi NWC Concrete 3/8"<!> KB-TZ2 w/ 2.000" Embedment !Floor anchors are adequate Steel !N/A 6061-T6 Fy = 53. 700 ksi Fu= 63.800 ksi Fty = 35.000 ksi Ftu = 38.000 ksi 103/137 =::~ECLIPSE ENGINEERING Shelf Beam Calculations Shelf Beam Calculations: Steel Yield Stress= Modulus of Elast. = NIKE LIVE BY LA COSTA Carlsbad, California DRH High Profile 33 29000 ksi ksi Shelf DL = Shelf LL= 10/19/2022 NSB 1.5 psf 14.50 osf Beam Type: DRH High Profile Area of Beam = 0.264 in2 Section Modulus of Beam = 0.126 in3 Moment of Inertia of Beam = 0.211 in4 Shelf Width = 4.0 ft Allowable Bending Stress= 19.8 ksi Shelf Depth = 2.5 ft Allowable Shear Stress = 13.2 ksi Total Load/Shelf= 160 lbs Distributed Load = 20 olf Maximum Design Moment= 40.0 ft-lbs Maximum Design Shear= 40.0 lbs Beam Bending Stress= 3.8 ksi Bending Stress Unity= 0.192 leending Stress OK Beam Shear Stress= 0.15 ksi Shear Stress Unity= 0.011 !shear Stress OK Max Allowable Deflection = 0.267 in L/180 Maximum Beam Deflection = 0.019 in I Deflection QK Shelf Beam Rivet Check: Diameter of Rivet= 0.25 in Post Moment Shear on Rivet= 403.7 lbs Beam Shear on Rivet= 40.0 lbs Resultant Shear= 405.6 lbs Bearing Capacity of Rivet= 519.8 lbs leearing Stress OK Allowable Shear Stress= 13.5 ksi Shear Stress on Rivet = 8.3 ksi !shear Stress OK Seismic U11lift on Shelves - Vertical Seismic Component= 27.0 lbs Vertical Total Load per Shelf= 118.1 lbs Connection Points per Shelf= 4.0 (1) per Corner Net Uplift Load per Shelf= -43.8 lbs Uplift Forcer per Connection= -11.0 lbs Rivet Connection OK 104/137 ~~ECLIPSE ENGINEERING NI KE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Slab Bearing & Uplift Calculations Slab Design Properties - Minimum Concrete Strength= Thickness of Concrete Slab= Weight of Concrete Slab= Allowable Bearing Pressure= Bearing Loads On Post= Uplift Loads on Post= Slab Bearing Capacity- Depth of Post on Slab= Factored Bearing Load = Required Bearing Area= Critical Section= Soil Pressure on Crit. Section= Section Modulus= Shear Area= Cone. Shear Stress = Allowable Shear Stress= Cone. Bending Stress= Allowable Bending Stress= Slab Uplift Capacity - Required Area to Resist Uplift= Length of Slab Req'd = Worst Case Length of Slab= Distance to Anchor Bolt= Length of 1ft Strip= Shear Force on 1ft Strip= Allowable Shear Force= Bending Moment on 1ft Strip= Allowable Bending Moment= 2500 4 so 500 26 181 274 375 1.5 712 138.56 3.14 740.4 32.0 22 8.1 73.2 9.5 137.5 4.88 0.61 1.25 0.63 1.25 87.5 1760.0 13.7 366.7 psi in psf psf lbs lbs lbs lbs in lbs in2 in plf in3 in psi psi psi psi ft2 ft ft ft ft lbs lbs ft-lbs ft-lbs Assumed Assumed Assumed Dead Load Live Load EQ Load Resultant Uplift 11.77 inches per side For Bending Along Critical Length Plain Concrete per Foot !Shear Stress OK !Bending Stress OK Assume Required Area/ Full Shelf Width Maximum Length Required Length Safety Factor: 2.00 !Shear OK !Bending OK 105/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB PIPP MOBILE STORAGE SYSTEMS INC. STEEL STORAGE SHELVING -LIGHT RETAIL CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI Design Inputs: Steel Storage Shelving: APPAREL UNIT -"L" Shelving Geometry - Height of Shelving Unit= Width of Shelving Unit= Depth of Shelving Unit= Number of Shelves/Unit= Vertical Shelf Spacing= Back to Back Unit? NO Unit Type: MOBILE Number of Units per Track? Mobile Anchor Spacing? Wall Supported Unit? Shelving loading • live Load per Shelf= Maximum Weight per Shelf= Dead Load per Shelf= Weight of Each Post= Weight of Mobile Carriage= Floor Load Calculations: Total Load on Each Post= Total Load On Each Unit= Floor Area Load = Allowable Floor Loading= Floor Load Under Shelf= Seismic Information. 10.0 4.0 2.5 4 38.3 1.5 22.50 NO 18.00 180 1.5 7.4 50 202 860 12.0 100 72 ft ft ft in in psf lbs psf lbs lbs lbs lbs ft2 psf psf Steel Yield Stress = 33 ksi Modulus of Elast. = 29000 ksi Eff. Lx Factor= 1.7 Unbraced Length,x = 38.3 in Unbraced Length,y = 38.3 in Type of Post? 14 Ga. Rivet Style L-Post Type of Beam? DRH High Profile Top Shelf Loaded? YES Intermediate Anchor: Double Display On Plaque Near Shelving Units Per 48.00 in. x 30.00 in. shelf Wire Grid Shelf Material Shelving is NOT accessible to public Ground Fir Cone Slab 2500 psi NWC Concrete 3/8"¢ KB-TZ2 w/ 2.000" Embedment !oK FOR lOOpsf RETAIL FLOOR LOADING Not Open to the Public SDC: D Risk Category = Seismic Importance Factor (I,)= Site Class= Mapped Accel. Parameters: II 1.0 D -Default p = 1.3 Worst Case Assumed Ss = 1.056 51 = 0.380 Fa= 1.200 Fv = 1.920 Structural System: ASCE 7 Section 15.5.1 Steel Storage Shelving: Average Roof Height= Height of Base Attachment = Shear Coeff Boundaries= 20 0 R=4 ft ft Vmin = 0.037 Vmax = 0.211 Sms = 1.267 5ml = 0.730 ap = 2.5 0'-0" For Ground Floor Location Ground Floor RMI, 2.6.3 RMI, 2.6.3 Sds = 0.845 Sdl = 0.486 Ip= 1.0 ,----D-e-si_g_n_B_a-se_S_h_e_a_r_C_o_eff_= _____ v_, -=-0-.1-9_2 _ __,!Adjusted For ASD RMI, 2.6.3 106/137 ~ii:! EC LI PS E ENGINEERING NI KE LIVE BY LA COSTA Carlsbad, California Lateral Force Distribution: per ASCE 7 Section 15.5.1 Total Dead Load per Level = 22.4 lbs Total Live Load per Level = 180 lbs Lateral DL Force per Level = 4.3 lbs Lateral LL Force per Level = 34.6 lbs 67% of LL Force per Level = 23.2 lbs Total DL Base Shear= 17.2 lbs Total LL Base Shear= 138.4 lbs LC1: Each Level, Loaded to 67% of its Live Weight Cumulative Moment: Total Base Shear= 109.9 lbs !Le #1 Governs LC 2: To~ Level Dnl~, Loaded to 100% of its Live Weight Cumulative Moment: I Total Base Shear= 51.8 lbs I LC #2 Does NOT Govern 10/19/2022 NSB 34602 in-lbs 26657 in-lbs Load Case #1: Load Case #2: Lateral Force/Shelf: Shelf Heights: Load: % Per Shelf: Load: % Per Shelf: Force#: LC#l: LC#2: hl = 3 in 143 lbs 1.2% 22 lbs 0.3% Fl= 1.4 lbs 0.l lbs h2 = 41 in 143 lbs 17.1% 22 lbs 3.5% F2 = 18.8 lbs 1.8 lbs h3 = 80in 143 lbs 32.9% 22 lbs 6.7% F3 = 36.2 lbs 3.5 lbs h4 = 118in 1431bs 48.8% 2021bs 89.6% F4 = 53.6 lbs 46.4 lbs h5 = Oin Dibs 0.0% 0lbs 0.0% F5 = a.a lbs a.a lbs h6= Oin Dibs 0.0% Dibs 0.0% F6 = 0.0 lbs a.a lbs h7 = 0in Dibs 0.0% 0 lbs 0.0% F7 = a.a lbs a.a lbs h8 = Din Dibs 0.0% 0 lbs 0.0% F8 = a.a lbs a.a lbs h9 = Din Olbs 0.0% 0lbs 0.0% F9 = a.a lbs a.a lbs h10 = Din 0 lbs 0.0% 0lbs 0.0% F10 = a.a lbs a.a lbs h11 = Din 0 lbs 0.0% Dibs 0.0% F11 = a.a lbs a.a lbs h12 = 0 in 0 lbs 0.0% Dibs 0.0% F12 = a.a lbs a.a lbs h13 = Oin Dibs 0.0% Dibs 0.0% F13 = a.a lbs a.a lbs h14= Din Dibs 0.0% Dibs 0.0% F14 = a.a lbs a.a lbs h15 = Din Dibs 0.0% 0 lbs 0.0% F15 = 0.0 lbs 0.0 lbs h16 = Din Olbs 0.0% 0 lbs 0.0% F16= a.a lbs 0.0 lbs h17 = Oin Olbs 0.0% Olbs 0.0% F17 = a.a lbs 0.0 lbs h18 = Din Olbs 0.0% Olbs 0.0% F18 = a.a lbs a.a lbs h19 = 0 in o lbs 0.0% Dibs 0.0% F19 = 0.0 lbs 0.0 lbs h20 = 0 in 0lbs 0.0% Dibs 0.0% F20 = 0.0 lbs 0.0 lbs Sum= 100% Sum= 100% Total= 109.9 lbs 51.8 lbs By inspection, the force distribution for intermediate level without live load (case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for this condition. 107/137 ~~ECLIPSE NI KE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Column Calculations -Combined Bending and Axial Post Type: Double Rivet 11L11 or 11T11 Post Width= Depth= Thickness= Column Bending Calculations - Max Column Moment= 1.5 in 1.5 in 0.075 in 43.3 ft-lbs r = ' 0.470 s)(. = 0.044 I = ' 0.049 A = p 0.217 Allowable Bending Stress= Bending Stress on Column= 19.8 11.7 ksi ksi !Bending Stress OK Column Deflection Calculations - Max Deflection = 0.837 in Deflection Ratio= 143 At Top of Unit L/t-. in in3 in4 in2 10/19/2022 NSB Allowable Deflection= 6 in Max Deflection= 5% of Height Column Axial Calculations -Per "L" Post DL + PL= 202 lbs DL +PL+ EQ = 273 lbs Column Capacity Calculations - Controlling Buckling Stress= 5.4 ksi Allowable Comp. Stress= 5.4 ksi Factor of Safety for Comp. = 1.80 Nominal Column Capacity= 1172 lbs Allowable Column Capacity= 651 lbs Static Axial Load on Column= 202 lbs Combined Bending And Axial Forces - Critical Buckling Load = 3282 lbs Axial Stress Unity= 0.419 Bending Stress Unity= 0.567 Combined Stress Unity= 0.986 !Deflection OK ! RMI Load Combination #1 RMI Load Combination #6 !Axial Load OK Magnification Factor= Cm= !Column is Adequate 0.889 0.85 108/137 ~~ECLIPSE NIKE LIVE BY LA COSTA 10/19/2022 NSB E N G I N E E R I N G Carlsbad, California Overturning and Anti-Tip Calculations Overturning Forces On Anchors (LRFD) Load Combination LCl LC2 Total Weight, w (lbs) 572 270 Base Shear, Eh (lbs) 121 57 Vertical Seismic Force, Ev (lbs) 97 46 W(LCl) = (DLshelf + 0.67 * LLshelf) *#of Shelves W(LCZ) = Dlshelf *#of Shelves+ Llshelf Eh= (Vt• W)/(0.7 • p) Ev = 0.20 * Sds * W Mo(lCl) = ll • L(hx • fx/0.7) Mo(LCZ) = 11 * Vt/0.7 * (Dlratal * G + s) + llshelf * H) Overstrength Factor, Cl = 2.00 Overturning I Resisting Moment, Moment 0=2), Mr Net Overturning Moment, Mn Shear Force per Tension Force Anchor, V per Anchor, T Mo (ft-lbs) 1829 1067 (ft-lbs) 523 246 Mr= (0.9* W-Ev) *~ 2 Mn= Mo-Mr V = !1*Eh # of Anchors "" T=-~-# of Anchors (ft-lbs) 1307 821 (lbs) 60 28 Per Side of Unit (lbs) 261 164 USE: POST INSTALLED ANCHOR BOLTS/ LAG SCREWS AS REQUIRED FOR FLOOR NOTED BELOW Allowable Tension Force= Allowable Shear Force= 1448 1723 Combined Loading LCl: 0.180 LC2: 0.113 Anti-Tie Track Design - lbs lbs Type of Anti-Tip Device= Arm and Track Tension per Carriage Anchor= 784 lbs Combined Loading= 0.541 I Tension per Shelf Post= 195 lbs Capacity of Screws to Carriage= 1200 lbs Anti-Tip Peg Yield Stress= 40.275 ksi Thickness Anti-Tip Peg Head= 0.09 in Width of Anti-Tip Peg Head= 0.43 in Section Modulus of Peg Head = 0.0006 in3 Allowable Stress on Leg= 40.275 ksi Bending Stress on Leg= 21.75 ksi Anti-Tip Stress Unity= 0.540 Section Modulus of Track= 0.093 in3 Spacing of Track A.B's= 22.50 in Allowable Alumn. Stress= 21 ksi Bending Stress on Track= 8.85 ksi Track Stress Unit~= 0.422 2500 psi NWC Concrete 3/8"<1> KB-TZ2 w/ 2.000" Embedment !Floor anchors are adequate I Floor anchors are adequate U2) 1/4-in screws are adequate Steel I sending Stress OK 6061-T6 !Bending Stress OK Fy = 53.700 ksi Fu= 63.800 ksi Fty = 35.000 ksi Ftu = 38.000 ksi 109/137 ;::~ECLIPSE ENGINEERING Shelf Beam Calculations Shelf Beam Calculations: Steel Yield Stress= Modulus of Elast. = NIKE LIVE BY LA COSTA Carlsbad, California DRH High Profile 33 29000 ksi ksi Shelf DL = Shelf LL= 10/19/2022 NSB 1.5 psf 18.00 osf Beam Type: DRH High Profile Area of Beam = Section Modulus of Beam= Moment of Inertia of Beam= Shelf Width = 4.0 Shelf Depth = 2.5 Total Load/Shelf= 195 Distributed Load = 24.375 Maximum Design Moment= Maximum Design Shear= Beam Bending Stress= Bending Stress Unity= Beam Shear Stress= Shear Stress Unity= Max Allowable Deflection = Maximum Beam Deflection= Shelf Beam Rivet Check: Diameter of Rivet= Post Moment Shear on Rivet= Beam Shear on Rivet= Resultant Shear= Bearing Capacity of Rivet= Allowable Shear Stress c::: Shear Stress on Rivet= Seismic Uplift on Shelves - Vertical Seismic Component= Vertical Total Load per Shelf= Connection Points per Shelf= Net Uplift Load per Shelf= Uplift Forcer per Connection= ft ft lbs olf 0.264 0.126 0.211 48.8 48.8 4.6 0.234 0.18 0.014 0.267 0.023 0.25 346.8 48.8 350.2 519.8 13.5 7.1 32.9 143.0 4.0 -52.8 -13.2 in2 in3 in4 ft-lbs lbs ksi ksi in in in lbs lbs lbs lbs ksi ksi lbs lbs Allowable Bending Stress= Allowable Shear Stress= !Bending Stress OK !shear Stress OK L/180 iDeflection OK !Bearing Stress OK !Shear Stress OK 19.8 13.2 ksi ksi (1) per Corner lbs lbs Rivet Connection OK 110/137 ~;.; EC LI PS E ENGINEERING NI KE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Slab Bearing & Uplift Calculations Slab Design Properties - Minimum Concrete Strength= Thickness of Concrete Slab= Weight of Concrete Slab= Allowable Bearing Pressure= Bearing Loads On Post= Uplift Loads on Post= Slab Bearing Capacity - Depth of Post on Slab= Factored Bearing Load = Required Bearing Area = Critical Section = Soil Pressure on Crit. Section = Section Modulus= Shear Area= Cone. Shear Stress= Allowable Shear Stress= Cone. Bending Stress= Allowable Bending Stress= Slab Uplift Capacity - Required Area to Resist Uplift:= Length of Slab Req'd = Worst Case Length of Slab= Distance to Anchor Bolt= Length of 1ft Strip= Shear Force on 1ft Strip= Allowable Shear Force= Bending Moment on 1ft Strip= Allowable Bending Moment= 2500 4 so 500 22 180 183 199 1.5 576 110,97 2.52 747,7 32.0 22 6.5 73.2 6.2 137.5 8.71 1.09 1.25 0,63 1.25 87.5 1760.0 13.7 366.7 psi in psf psf lbs lbs lbs lbs in lbs in2 in plf in3 in psi psi psi psi ft2 ft ft ft ft lbs lbs ft-lbs ft-lbs Assumed Assumed Assumed Dead Load Live Load EQLoad Resultant Uplift 10.53 inches per side For Bending Along Critical Length Plain Concrete per Foot !Shear Stress OK !Bending Stress OK Assume Required Area/ Full Shelf Width Maximum Length Required Length Safety Factor: 2.00 !Shear OK !Bending OK 111/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB PIPP MOBILE STORAGE SYSTEMS INC. STEEL STORAGE SHELVING· LIGHT RETAIL CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI Design Inputs: Steel Storage Shelving: LAUNCH UNIT -"M" Shelving Geometry - Height of Shelving Unit= Width of Shelving Unit= Depth of Shelving Unit= Number of Shelves/Unit= Vertical Shelf Spacing= Back to Back Unit? YES Unit Type: FIXED Number of Units per Track? Mobile Anchor Spacing? Wall Supported Unit? Shelving Loading - Live Load per Shelf= Maximum Weight per Shelf= Dead Load per Shelf = Weight of Each Post= Weight of Mobile Carriage= Floor Load Calculations: Total Load on Each Post= Total Load On Each Unit= Floor Area Load = Allowable Floor Loading= Floor Load Under Shelf= Seismic Information - 10.0 4.0 1.5 4 38.3 N/A NO 10.00 60 2.5 7.4 0 82 330 8.0 100 41 ft ft ft in in psf lbs psf lbs lbs lbs lbs ft2 psf psf Steel Yield Stress= 33 ksi Modulus of Elast. = 29000 ksi Eff. Lx Factor= 1.7 Unbraced Length,x = 38.3 in Unbraced Length,y = 38.3 in Type of Post? 14 Ga. Rivet Style L-Post Type of Beam? DRH High Profile Top Shelf Loaded? YES Intermediate Anchor: Double Display On Plaque Near Shelving Units Per 48.00 in. x 18.00 in. shelf Particle Board Shelf Material Shelving is NOT accessible to public Ground Fir Cone Slab 2500 psi NWC Concrete 3/8"<1> KB-TZ2 w/ 2.000" Embedment !oK FOR lOOpsf RETAIL FLOOR LOADING Not Open to the Public SDC: D Risk Category= Seismic Importance Factor (I,)= Site Class= II 1.0 D -Default Worst Case Assumed Mapped Accel. Parameters: p = 1.3 Ss = 1.056 Fa = 1.200 51 = 0.380 Fv = 1.920 Structural System: ASCE 7 Section 15.5.1 Steel Storage Shelving: R = 4 Average Roof Height= Height of Base Attachment= Shear Coeff Boundaries= 20 0 ft ft Vmin = 0.037 Vmax = 0.211 Sms = 1.267 5ml = 0.730 ap = 2.5 0'-0" For Ground Floor Location Ground Floor RMI, 2.6.3 RMI, 2.6.3 Sds = 0.845 Sdl = 0.486 Ip= 1.0 ,----D-e-s-ig-n-Ba_s_e_S_h_e_a_r -Co_e_f_f _= ____ V-,-=-0-.1-9-2----,!Adjusted For ASD RMI, 2.6.3 112/137 ~~ECLIPSE NIKE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Lateral Force Distribution: per ASCE 7 Section 15.5.1 Total Dead Load per Level = 22.4 lbs Total Live Load per Level = 60 lbs Lateral DL Force per Level = 4.3 lbs Lateral LL Force per Level = 11.5 lbs 67% of LL Force per Level = 7.7 lbs Total DL Base Shear= 17.2 lbs Total LL Base Shear= 46.1 lbs LC1: Each Level, Loaded to 67% of its Live Weight Cumulative Moment: Total Base Shear= 48.1 lbs ! LC #1 Governs LC 2: ToR Level Onl~, Loaded to 100% of its Live Weight Cumulative Moment: Total Base Shear= 28.7 lbs ! LC #2 Does NOT Govern 10/19/2022 NSB 22363 in-lbs 17379 in-lbs Load Case #1: Load Case #2: Lateral Force/Shelf: Shelf Heights: Load: % Per Shelf: Load: % Per Shelf: Force#: LC#l: LC#2: hl = 3 in 63lbs 0.8% 22 lbs 0.4% Fl= 0.4 lbs 0.1 lbs h2 = 80in 631bs 22.4% 22 lbs 10.3% F2 = 10.8 lbs 3.0 lbs h3 = 118 in 63 lbs 33.0% 22 lbs 15.2% F3 = 15.9 lbs 4.4 lbs h4= 156in 63 lbs 43.8% 82 lbs 74.1% F4 = 21.0 lbs 21.3 lbs hS = Din Olbs 0.0% Dibs 0.0% FS = 0.0 lbs 0.0 lbs h6 = Din Dibs 0.0% Dibs 0.0% F6 = 0.0 lbs 0.0 lbs h7 = Din Dibs 0.0% Dibs 0.0% F7 = 0.0 lbs 0.0 lbs h8 = 0 in Dibs 0.0% Dibs 0.0% F8 = 0.0 lbs 0.0 lbs h9 = 0 in 0 lbs 0.0% Dibs D.0% F9 = 0.0 lbs 0.0 lbs hlD = Din Dibs D.D% Dibs D.D% FlO = 0.0 lbs 0.0 lbs hll = Din 0 lbs D.0% o lbs 0.0% Fll = 0.0 lbs 0.0 lbs h12 = Din Dibs 0.0% Dibs D.0% F12 = 0.0 lbs 0.0 lbs h13 = Qin Dibs 0.0% Dibs 0.0% F13 = 0.0 lbs 0.0 lbs h14= Din Dibs D.0% Dibs D.D% F14 = 0.0 lbs 0.0 lbs hlS = Din Dibs 0.0% Dibs D.D% FlS = 0.0 lbs 0.0 lbs h16= Din Dibs 0.0% Dibs 0.0% F16 = 0.0 lbs 0.0 lbs h17 = Oin Dibs 0.0% Dibs 0.0% F17 = 0.0 lbs 0.0 lbs h18 = Din Dibs D.D% Dibs D.0% F18= o.o lbs 0.0 lbs h19 = Din Dibs D.D% Dibs D.D% F19 = 0.0 lbs 0.0 lbs h20 = Din Dibs D.D% Dibs D.D% F20= 0.0 lbs o.o lbs Sum= 10D% Sum= 10D% Total= 48.1 lbs 28.7 lbs By inspection, the force distribution for intermediate level without live load (case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for this condition. 113/137 ~~ECLIPSE NI KE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Column Calculations -Combined Bending and Axial Post Type: Double Rivet "L" or "T" Post Width= Depth= Thickness= Column Bending Calculations - Max Column Moment= Allowable Bending Stress= 1.5 1.5 0.075 38.3 19.8 in in in ft-lbs ksi r = ' 0.470 s = ' 0.044 Ix :;: 0.049 A,= 0.217 Bending Stress on Column= 10.4 ksi !Bending Stress OK Column Deflection Calculations - Max Deflection = 1.475 in Deflection Ratio= 81 At Top of Unit L/1',. in in3 in4 in2 10/19/2022 NSB Allowable Deflection= 6 in Max Deflection = 5% of Height Column Axial Calculations -Per "L" Post DL +PL= 82 lbs DL + PL+ EQ = 167 lbs Column CapacirL Calculations - Controlling Buckling Stress= 5.4 ksi Allowable Comp. Stress= 5.4 ksi Factor of Safety for Comp. = 1.80 Nominal Column Capacity= 1172 lbs Allowable Column Capacity= 651 lbs Static Axial Load on Column= 82 lbs Combined Bending And Axial Forces - Critical Buckling Load = 3282 lbs Axial Stress Unity= 0.257 Bending Stress Unity= 0.466 Combined Stress Unity= 0.723 !Deflection OK ! RMI Load Combination #1 RMI Load Combination #6 !Axial Load OK Magnification Factor = Cm= !Column is Adequate 0.955 0.85 114/137 :;:~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Overturning and Anti-Tip Calculations Overturning Forces On Anchors (LRFD) Per Back-to-Back Unit Overstrength Factor, 0 = 2.00 Load Combination LCl LC2 Total Weight, w (lbs) 501 299 Base Shear, Eh (lbs) 106 63 Vertical Seismic Force, Ev (lbs) 85 51 W(LCl) = (Dlshelf + 0.67 * llshelf) *#of Shelves W(LC2) = DLshelf *#of Shelves+ Llshe/f Eh= (Vt• W)/(0.7 • p) Ev = 0.20 • Sds * W Mo(LCl) = n • L(hx • fx/0.7) Mo(LC2) =fl* Vt/0.7 * (Dlrota! * (1+ s) + Llshelf * H) Overturning Resisting Moment, Moment (0=2), M, Mo lft-lbs) (ft-lbs) 2208 549 1495 328 Mr = (0.9 * W -Ev)•~ ' Mn= Mo-Mr V fi•th # of Anchors "" T= d # of Anchors Net Overturning Moment, Mn (ft-lbs) 1659 1167 Shear Force per Tension Force Anchor, V per Anchor, T (lbs) (lbs) 53 277 32 195 Per Side of Unit USE: POST INSTALLED ANCHOR BOLTS/ LAG SCREWS AS REQUIRED FOR FLOOR NOTED BELOW Allowable Tension Force= 1448 Allowable Shear Force= 1723 Combined Loading LCl: 0.191 LC2: 0.134 Anti-Ti!! Track Design - Type of Anti-Tip Device= NONE Tension per Carriage Anchor= N/A Combined Loading= N/A Tension per Shelf Post= N/A Capacity of Screws to Carriage= N/A Anti-Tip Peg Yield Stress= 40.275 Thickness Anti-Tip Peg Head = 0.09 Width of Anti-Tip Peg Head = 0.43 Section Modulus of Peg Head = 0.0006 Allowable Stress on Leg= 40.275 Bending Stress on Leg= N/A Anti-Tip Stress Unity= N/A Section Modulus of Track= 0.093 Spacing of Track A.B's= 0.00 Allowable Alumn. Stress= 21 Bending Stress on Track= N/A Track Stress Unity= N/A lbs lbs lbs I lbs lbs ksi in in in3 ksi ksi in3 in ksi ksi 2500 psi NWC Concrete 3/8",t, KB-TZ2 w/ 2.000" Embedment !Floor anchors are adequate Steel 6061-T6 Fy = 53.700 ksi Fu = 63.800 ksi Fty = 35.000 ksi Ftu = 38.000 ksi 115/137 ~~ECLIPSE ENGINEERING Shelf Beam Calculations NI KE LIVE BY LA COSTA Carlsbad, California Shelf Beam Calculations: DRH High Profile Steel Yield Stress= Modulus of Elast. = 33 29000 ksi ksi Beam Type: DRH High Profile Area of Beam= 0.264 in2 Section Modulus of Beam= Moment of Inertia of Beam= Shelf Width = Shelf Depth = Total Load/Shelf= Distributed Load = 4.0 ft 1.5 ft 75 lbs 9.375 olf Maximum Design Moment= Maximum Design Shear= Beam Bending Stress= Bending Stress Unity= Beam Shear Stress= Shear Stress Unity= Max Allowable Deflection= Maximum Beam Deflection= Shelf Beam Rivet Check: Diameter of Rivet= Post Moment Shear on Rivet= Beam Shear on Rivet= Resultant Shear= Bearing Capacity of Rivet= Allowable Shear Stress= Shear Stress on Rivet = Seismic Uplift on Shelves - Vertical Seismic Component= Vertical Total Load per Shelf= 0.126 0.211 18.8 18.8 1.8 0.090 0.07 0.005 0.267 0.009 0.25 306.1 18.8 306.7 519.8 13.5 6.2 12.7 62.6 in3 in4 ft-lbs lbs ksi ksi in in in lbs lbs lbs lbs ksi ksi lbs lbs Shelf DL = Shelf LL= Allowable Bending Stress= Allowable Shear Stress = !Bending Stress OK !shear Stress OK L/180 iDeflection OK !Bearing Stress OK !Shear Stress OK Connection Points per Shelf= 4.0 (1) per Corner Net Uplift Load per Shelf= -24.9 lbs 10/19/2022 NSB 2.5 psf 10.00 osf 19.8 13.2 ksi ksi Uplift Forcer per Connection= -6.2 lbs Rivet Connection OK 116/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Slab Bearing & Uplift Calculations Slab Design Properties - Minimum Concrete Strength = Thickness of Concrete Slab= Weight of Concrete Slab= Allowable Bearing Pressure= Bearing Loads On Post= Uplift Loads on Post= Slab Bearing Capacity - Depth of Post on Slab= Factored Bearing Load = Required Bearing Area= Critical Section = Soil Pressure on Crit. Section = Section Modulus= Shear Area= Cone. Shear Stress = Allowable Shear Stress= Cone. Bending Stress= Allowable Bending Stress= Slab Uplift Capacity - Required Area to Resist Uplift= Length of Slab Req'd = Worst Case Length of Slab= Distance to Anchor Bolt= Length of 1ft Strip= Shear Force on 1ft Strip= Allowable Shear Force= Bending Moment on 1ft Strip= Allowable Bending Moment= 2500 4 50 500 22 60 184 246 1.5 386 76.72 1.63 724.0 32.0 22 4.4 73.2 2.5 137.5 3.07 0.38 0.75 0.38 0.75 52.5 1760.0 4.9 366.7 psi in psf psf lbs lbs lbs lbs in lbs in2 in plf in3 in psi psi psi psi ft2 ft ft ft ft lbs lbs ft-lbs ft-lbs Assumed Assumed Assumed Dead Load Live Load EQ Load Resultant Uplift 8.76 inches per side For Bending Along Critical Length Plain Concrete per Foot !Shear Stress OK !Bending Stress OK Assume Required Area/ Full Shelf Width Maximum Length Required Length Safety Factor: 2.00 !Shear OK !Bending OK 117/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB PIPP MOBILE STORAGE SYSTEMS INC. STEEL STORAGE SHELVING -LIGHT RETAIL CODES: Current Editions of the: IBC & CBC & ASCE 7 & RMI Design Inputs: Steel Storage Shelving: NEW ARIVALS UNIT -"N" Shelving Geometry - Height of Shelving Unit= Width of Shelving Unit= Depth of Shelving Unit= Number of Shelves/Unit= Vertical Shelf Spacing= Back to Back Unit? YES Unit Type: FIXED Number of Units per Track? Mobile Anchor Spacing? 10.0 4.0 1.5 8 16.4 N/A Wall Supported Unit? NO Shelving Loading - Live Load per Shelf= Maximum Weight per Shelf= Dead Load per Shelf= Weight of Each Post= Weight of Mobile Carriage= Floor Load Calculations: Total Load on Each Post= Total Load On Each Unit= Floor Area Load = Allowable Floor Loading= Floor Load Under Shelf= Seismic Information - 14.00 80 2.0 7.4 0 191 766 8.0 100 96 ft ft ft in in psf lbs psf lbs lbs lbs lbs ft2 psf psf Steel Yield Stress = 33 ksi Modulus of Elast. = 29000 ksi Eff. Lx Factor = 1.7 Unbraced Length,x = 16.4 in Unbraced Length,y = 16.4 in Type of Post? 14 Ga. Rivet Style L-Post Type of Beam? DRL Low Profile Top Shelf Loaded? YES Intermediate Anchor: Double Display On Plaque Near Shelving Units Per 48.00 in. x 18.00 in. shelf Perforated Metal Shelf Shelving is NOT accessible to public Ground Fir Cone Slab 2500 psi NWC Concrete 3/8"<1> KB-TZ2 w/ 2.000" Embedment !OK FOR lOOpsf RETAIL FLOOR LOADING Not Open to the Public SDC: D Risk Category= Seismic Importance Factor (I,)= Site Class= Mapped Accel. Parameters: II 1.0 D -Default p = 1.3 Worst Case Assumed Ss = 1.056 Sl = 0.380 Fa= 1.200 Fv = 1.920 Structural System: ASCE 7 Section 15.5.1 Steel Storage Shelving: Average Roof Height= Height of Base Attachment = Shear Coeff Boundaries= 20 0 R = 4 ft ft Vmin = 0.037 Vmax = 0.211 Sms = 1.267 5ml = 0.730 ap = 2.5 0'-0" For Ground Floor Location Ground Floor RMI, 2.6.3 RMI, 2.6.3 5ds = 0.845 Sdl = 0.486 Ip= 1.0 .... ------------------L,,. ___ D_e _s i;;;g n_B_a s_e_s_h_e_a_r _c_o_e ff_= _____ v.;., _=_o_.1_9_2_---1!Adjusted For ASD RMI, 2.6.3 118/137 ~~ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California Lateral Force Distribution: per ASCE 7 Section 15.5.1 Total Dead Load per Level = 15.7 lbs Total Live Load per Level = 80 lbs Lateral DL Force per Level = 3.0 lbs Lateral LL Force per Level= 15.4 lbs 67% of LL Force per Level= 10.3 lbs Total DL Base Shear= 24.1 lbs Total LL Base Shear= 123.0 lbs LC1: Each Level, Loaded to 67% of its Live Weight Cumulative Moment: Total Base Shear= 106.S lbs I LC #1 Governs LC 2: To~ Level Onli, Loaded to 100% of its Live Weight Cumulative Moment: Total Base Shear= 39.S lbs I LC #2 Does NOT Govern 10/19/2022 NSB 40224 in-lbs 18709 in-lbs Load Case #1: Load Case #2: Lateral Force/Shelf: Shelf Heights: Load: % Per Shelf: Load: % Per Shelf: Force#: LC#l: LC#2: hl = 3in 69 lbs 0.5% 16 lbs 0.3% Fl= 0.6 lbs 0.1 lbs h2 = 45in 69 lbs 7.8% 16 lbs 3.8% F2 = 8.3 lbs 1.5 lbs h3 = 58in 69 lbs 9.9% 161bs 4.8% F3 = 10.6 lbs 1.9 lbs h4 = 70in 69 lbs 12.1% 16 lbs 5.9% F4 = 12.8 lbs 2.3 lbs h5 = 83in 69lbs 14.2% 16 lbs 6.9% F5 = 15.1 lbs 2.7 lbs h6 = 95in 691bs 16.4% 16 lbs 8.0% F6 = 17.4 lbs 3.1 lbs h7 = 108 in 691bs 18.5% 16 lbs 9.0% F7 = 19.7 lbs 3.6 lbs h8= 120in 691bs 20.7% 96 lbs 61.4% F8 = 22.0 lbs 24.2 lbs h9= 0 in Dibs 0.0% Dibs 0.0% F9 = 0.0 lbs 0.0 lbs hlD= Oin Dibs 0.0% Olbs 0.0% FlO = 0.0 lbs 0.0 lbs hll = Oin Dibs 0.0% 0 lbs 0.0% Fll = 0.0 lbs 0.0 lbs h12 = Oin Olbs 0.0% Olbs 0.0% F12 = 0.0 lbs 0.0 lbs h13 = Oin Olbs 0.0% Olbs 0.0% F13 = 0.0 lbs 0.0 lbs h14 = Oin 0 lbs 0.0% Olbs 0.0% F14= 0.0 lbs 0.0 lbs h15 = 0 in 0 lbs 0.0% Olbs 0.0% F15 = 0.0 lbs 0.0 lbs h16 = 0 in 0 lbs 0.0% Olbs 0.0% F16 = 0.0 lbs 0.0 lbs h17= 0 in 0 lbs 0.0% Olbs 0.0% F17 = 0.0 lbs 0.0 lbs h18 = Oin Dibs 0.0% Dibs D.D% F18 = 0.0 lbs 0.0 lbs h19 = Oin Dibs 0.0% Dibs D.D% F19 = 0.0 lbs 0.0 lbs h20= Oin Dibs 0.0% Dibs 0.0% F20 = 0.0 lbs 0.0 lbs Sum= 10D% Sum= 10D% Total= 106.5 lbs 39.5 lbs By inspection, the force distribution for intermediate level without live load (case 2) is negligible. Calculate the moment for each column based on the total seismic base shear for each shelf being loaded to 67% of it's allowable live weight. The column at the center of the shelving system is the worst case for this condition. 119/137 ~~ECLIPSE NIKE LIVE BY LA COSTA E N G I N E E R I N G Carlsbad, California Column Calculations -Combined Bending and Axial Post Type: Double Rivet "L" or "T" Post Width= Depth= Thickness= Column Bending Calculations - Max Column Moment= 1.5 in 1.5 in 0.075 in 46.4 ft-lbs r = ' 0.470 s = ' 0.044 Ix :;: 0.049 A,= 0.217 Allowable Bending Stress= Bending Stress on Column= 19.8 12.6 ksi ksi !Bending Stress OK Column Deflection Calculations - Max Deflection = 0.507 in Deflection Ratio= 237 At Top of Unit L/ 1'. in in3 in4 in2 10/19/2022 NSB Allowable Deflection= 6 in Max Deflection= 5% of Height Column Axial Calculations -Per "L" Post DL+ PL= 191 lbs DL +PL+ EQ = 317 lbs Column Capacitv Calculations - Controlling Buckling Stress = 14.3 ksi Allowable Comp. Stress= 14.3 ksi Factor of Safety for Comp. = 1.80 Nominal Column Capacity= 3067 lbs Allowable Column Capacity= 1704 lbs Static Axial Load on Column= 191 lbs Combined Bending And Axial Forces - Critical Buckling Load = 17870 lbs Axial Stress Unity= 0.186 Bending Stress Unity= 0.550 Combined Stress Unity= 0.736 !Deflection OK ! RMI Load Combination #1 RMI Load Combination #6 !Axial Load OK Magnification Factor= C = m !Column is Adequate 0.981 0.85 120/137 ~;;ECLIPSE ENGINEERING NIKE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Overturning and Anti-Tip Calculations Overturning Forces On Anchors (LRFD) Per Back-to-Back Unit Overstrength Factor, o = 2.00 Load Combination LCl LC2 Total Weight, w (lbs) 1109 411 Base Shear, Eh (lbs) 234 87 Vertical Seismic Force, Ev (lbs) 187 69 W(LCl) = (DLshelf + 0.67 * Lls1w1f) *#of Shelves W(LC2) = Dlshelf "'# of Shelves+ Llshelt Eh= (Vt• W)/(0.7 • p) Ev = 0.20 * Sds * W Mo(LCl) = n • J:(hx • fx/0.7) Mo(LC2) = f! * Vt/0.7 * (DLTotal * (; + S) + Llshelf * H) Overturning ( Resisting Moment, Moment 0=2), Mc Mo (ft-lbs) (ft-lbs) 3498 1216 1522 451 d Mr= (0.9 * W -Ev) *2 Mn= Mo-Mr V # of Anchors "" T= d # of Anchors Net Overturning Moment, Mn (ft-lbs) 2282 1072 Shear Force per Tension Force Anchor, V per Anchor, T (lbs) (lbs) 117 380 43 179 Per Side of Unit USE: POST INSTALLED ANCHOR BOLTS/ LAG SCREWS AS REQUIRED FOR FLOOR NOTED BELOW Allowable Tension Force= Allowable Shear Force= 1448 1723 lbs lbs Combined Loading LCl: 0.263 LC2: 0.123 Anti-Ti!! Track Design - Type of Anti-Tip Device= NONE Tension per Carriage Anchor = N/A lbs Combined Loading= N/A I Tension per Shelf Post= N/A lbs Capacity of Screws to Carriage= N/A lbs Anti-Tip Peg Yield Stress= 40.275 ksi Thickness Anti-Tip Peg Head= 0.09 in Width of Anti-Tip Peg Head = 0.43 in Section Modulus of Peg Head = 0.0006 in3 Allowable Stress on Leg= 40.275 ksi Bending Stress on Leg= N/A ksi Anti-Tip Stress Unity= N/A I Section Modulus of Track= 0.093 in3 Spacing of Track A.B's= 0.00 in Allowable Alumn. Stress= 21 ksi Bending Stress on Track = N/A ksi Track Stress Unity= N/A 2500 psi NWC Concrete 3/8"¢ KB-T22 w/ 2.000" Embedment !Floor anchors are adequate Steel IN/A 6061-T6 Fy = 53.700 ksi Fu = 63.800 ksi Fty = 35.000 ksi Ftu = 38.000 ksi I 121/137 :::~ECLIPSE ENGINEERING Shelf Beam Calculations Shelf Beam Calculations: Steel Yield Stress= Modulus of Elast. = NIKE LIVE BY LA COSTA Carlsbad, California DRL Low Profile 33 29000 ksi ksi Shelf DL = Shelf LL= Beam Type: DRL Low Profile Area of Beam = 0.264 in2 Section Modulus of Beam= Moment of Inertia of Beam= Shelf Width = Shelf Depth= Total Load/Shelf= Distributed Load = 4.0 1.5 96 12 Maximum Design Moment= Maximum Design Shear= Beam Bending Stress = Bending Stress Unity= Beam Shear Stress= Shear Stress Unity= Max Allowable Deflection= Maximum Beam Deflection= Shelf Beam Rivet Check: Diameter of Rivet= Post Moment Shear on Rivet= Beam Shear on Rivet= Resultant Shear= Bearing Capacity of Rivet= Allowable Shear Stress= Shear Stress on Rivet = Seismic Uplift on Shelves - Vertical Seismic Component= Vertical Total Load per Shelf= Connection Points per Shelf= Net Uplift Load per Shelf= ft ft lbs olf 0.098 0.072 24.0 24.0 3.0 0.149 0.09 0.007 0.267 0.033 0.25 371.0 24.0 371.7 519.8 13.5 7.6 16.2 69.3 4.0 -25.4 in3 in4 ft-lbs lbs ksi ksi in in in lbs lbs lbs lbs ksi ksi lbs lbs Allowable Bending Stress= Allowable Shear Stress= !Bending Stress OK !Shear Stress OK L/180 joeflection OK !Bearing Stress OK !Shear Stress OK (1) per Corner lbs 10/19/2022 NSB 2.0 psf 14.00 osf 19.8 13.2 ksi ksi Uplift Forcer per Connection= -6.3 lbs Rivet Connection OK 122/137 ~~ECLIPSE ENGINEERING NI KE LIVE BY LA COSTA Carlsbad, California 10/19/2022 NSB Slab Bearing & Uplift Calculations Slab Design Properties - Minimum Concrete Strength = Thickness of Concrete Slab= Weight of Concrete Slab= Allowable Bearing Pressure= Bearing Loads On Post= Uplift Loads on Post= Slab Bearing Capacity - Depth of Post on Slab= Factored Bearing Load = Required Bearing Area = Critical Section= Soil Pressure on Crit. Section= Section Modulus= Shear Area= Cone. Shear Stress= Allowable Shear Stress= Cone. Bending Stress= Allowable Bending Stress= Slab Uplift Capacity - Required Area to Resist Uplift= Length of Slab Req'd = Worst Case Length of Slab= Distance to Anchor Bolt = Length of 1ft Strip= Shear Force on 1ft Strip= Allowable Shear Force= Bending Moment on 1ft Strip= Allowable Bending Moment= 2500 4 50 500 31 160 291 313 1.5 710 139.06 3.15 735.3 32.0 22 8.1 73.2 9.5 137.5 4.23 0.53 0.75 0.38 0.75 52.5 1760.0 4.9 366.7 psi in psf psf lbs lbs lbs lbs in lbs in2 in plf in3 in psi psi psi psi ft2 ft ft ft ft lbs lbs ft-lbs ft-lbs Assumed Assumed Assumed Dead Load Live Load EQ Load Resultant Uplift 11.79 inches per side For Bending Along Critical Length Plain Concrete per Foot !Shear Stress OK !Bending Stress OK Assume Required Area/ Full Shelf Width Maximum Length Required Length Safety Factor: 2.00 !Shear OK !Bending OK 123/137 Screw Capacities Table Notes 1. Capacities based on AISI Sl00 Section E4. 2. When connecting materials of different steel thicknesses or tensile strengths, use the lowest values. Tabulated values assume two sheets of equal thickness are connected. 3. Capacities are based on Allowable Strength Design (ASD) and include safety factor of 3.0. 4. Where multiple fasteners are used, screws are assumed to have a center-to-center spacing of at least 3 times the nominal diameter (d). 5. Screws are assumed to have a center-of-screw to edge-of-steel dimension of at least 1.5 times the nominal diameter (d) of the screw. 6. Pull-out capacity is based on the lesser of pull-out capacity in sheet closest to screw tip or tension strength of screw. 7. Pull-over capacity is based on the lesser of pull-over capacity for sheet closest to screw header or tension strength of screw. 8. Values are for pure shear or tension loads. See AISI Section E4.5 for combined shear and pull-over. 9. Screw Shear (Pss), tension (Pts), diameter, and head diameter are from CFSEI Tech Note (F701-12). 10. Screw shear strength is the average value, and tension strength is the lowest value listed in CFSEI Tech Note (F701-12). 11. Higher values for screw strength (Pss, Pts}, may be obtained by specifying screws from a specific manufacturer. Allowable Screw Connection Capacity (lbs) 16Scrtw 18Screw 110Scr41W 112Scrtw ¼"Scrtw Thickness Design Fy Fu (Pss • 643 lbs, Pis., 419 lbs) (Pss= 1278 lbs, Pis 2 586 lbs) (Pss: 1644 lbs, Pis • 1158 lbs) (PIP 2330 lbs, Pis • 2325 lbs) (Pss= 3048 lbs, PIS• 3201 lbs) (lllls) Th~= T-0. (bl) 0.138" dia, 0.272" Head 0.164" dia, 0.272" Head 0.190" dia, 0.340" Head 0.216" dla, 0.340" Head G.250" dla, 0.409" Head Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over 18 0.0188 33 33 44 24 84 48 29 84 52 33 105 55 38 105 60 44 127 27 0.0283 33 33 82 37 127 89 43 127 96 50 159 102 57 159 110 66 191 30 0.0312 33 33 95 40 140 103 48 140 111 55 175 118 63 175 127 73 211 33 0.0346 33 45 151 61 140 164 72 195 177 84 265 188 95 265 203 110 318 43 0.0451 33 45 214 79 140 244 94 195 263 109 345 280 124 345 302 144 415 54 0.0566 33 45 214 100 140 344 118 195 370 137 386 394 156 433 424 180 521 68 0.0713 33 45 214 125 140 426 149 195 O,J 1IJ JOO 557 196 545 600 227 656 97 0.1017 33 45 214 140 140 426 195 195 548 246 386 777 280 775 1,016 324 936 118 0.1242 33 45 214 140 140 426 195 195 548 301 386 777 342 775 1016 396 1,067 54 0.0566 50 65 214 140 140 426 171 195 534 198 386 569 225 625 613 261 752 68 0.0713 50 65 214 140 140 426 195 195 548 249 386 777 284 775 866 328 948 97 0.1017 50 65 214 140 140 426 195 195 548 356 386 777 405 775 1,016 468 1,067 118 0.1242 50 65 214 140 140 426 195 195 548 386 386 777 494 775 1,016 572 1 067 SUPREME* Allowable Screw Connection Capacity (Pounds Per Screw) See back cover for exc/ustvo manufacturers of the Supremo Frammg System 16Scrtw 18Scrtw 110Scrtw 112Scrtw ¼"Scrtw lnickneu Th=-v:li Fu (Pss • 643 lbs, Pis• 419 lbs) (Pss2 1278 lbs, Pis" 586 lbs) (Pss: 1644 lbs, Pis• 1158 lbs) (Pss• 2330 lbs, Pis • 2325 lbs) (Pssa 3048 lbs, PIS • 3201 lbs) T..a. (mil) (In) (bl) (bl) 0.138" Ola; 0.272" Head 0.164" Dia; 0.272" Head 0.190" Dia; 0.340" Head 0.216" Ola; 0.340" Head G.250" Ola; 0.409" Head Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over Shear Pull-Out Pull-Over 025 0.0155 57 65 65 39 137 150 47 137 77 54 171 D20 0.0188 57 65 142 I 48 140 150 I 57 166 164 I 66 208 109 75 208 30EQD 0.0235 57 65 174 1 60 140 184 1 71 195 236 1 82 260 152 93 260 33EOD 0.0235 57 65 174 1 60 140 184 1 71 195 236 I 82 260 152 93 260 . 33EQS 0.0295 57 65 171 75 140 187 89 195 201 103 326 214 117 326 231 136 392 43EQS 0.0400 57 65 270 102 140 295 121 195 317 140 386 338 159 442 364 184 532 'Values are based on testing using AISI S100 procedures. *SUPREME products are only available from those SSMA members who are certified to produce SUPREME products. 124/137 Complles With 2009 and 2012 IBC www.SSMA.com 83 i = i i S ;u ____________________ _ Hlltl PROFIS Engineering 3.0.73 www.hlkl.com Company: Address: Phone I Fax: O.sv,: F■~point ECLIPSE ENGINEERING, INC. 376 SW Bluff Or., Suite 8 541-389-9659 I 3-81NCH•HILTIKS-TZ2 ea .. o1 s-.og Urot S~tfter'• comm.ma: SIOdu'oomSheMng Anchorage 1 Input data Anchor typti and dltm•ter. Item nl.l1'1b«: Effoc:tlYe--. Malerial. Evoluollon SoMce Repon: luuedlVatid: Prool; s-lnatob1ion: P,olh; Kwlk Bolt T22 • CS 311 (2) hnom2 2210238 KS, TZ2 318x3 h._ • 2.000 In., h..., • 2.500 In. ClttonSleel ESR◄268 7/1/2021 I 1211/2021 Design Melhod ACI 318-14 / Moch Pago: Specifier. E-Mail: Dale: Base mat..-ial; 1n,uuat1on: crack.ct c:onetete, 2500, fc' • 2,500 psi: h • 5.000 in. h.ammw drtlted hole, lnstalaUon condition: Dry -- Seismic: toads (eat C, 0, E. or F) Geomevy On.I & Loading Ob, lnJbJ tenlk,n· condilion B. IM¥ condibon 8, no ~ spitting renorc:ement present edge reinforcement none or < No. 4 ba' Tenllcn load: yes (17.2.3.4.3 id)) S-lood: yes (17.2.3.5,3 (c)) ' 0 • T '(;o ,, 1n&u-. ..,.,._.,.._ i. ohl<Md b' ~._.,;. Ultlin8 condiillront .-.db ,._.bit.¥ l>ROftSe,..._.,.lc )200S-2021HlliAG,Fl-84MSC,...,. t-.i11t,,,...,_T~oli'tmAG,ScroMII ..... N ~ ..... (,.) nbumam 11/5l2021 i = i i S -I • ----------------------Hlltl PROFIS Engineering 3.0.73 www.httu.com Company: Addresa: Phone I Fax: Design· Futenongpcon< 1.1 OHlgn rHull, c ... ECLIPSE ENGINEERING, INC. 376 SW Bluff 0..., Surte 8 54 1-389-9659 I 3-8 INCH • HIL TI K8-TZ2 Base ol SheMng Uril Ootcription Loed case: Design bads 2 Load case/Resulting anchor forces Anchor rHc:tlons (lbl Tension bee: {+TentlOO, -comp,enion) Page: Specfler: E-Moi: Oa1t· Fo«:es 11b) / Moments pn.lbl N• 165;V,.'"' 165:V,•0, M,•O;M,=O;M,•0; Anchor Teoalon force Shear force Shear lotce x Shew fo,ce J_ 165 165 165 --0 max. ooncrete compt'Ul,lve strain: • r'-1 max. concnte compresliYI stress: • (psi) resultklg tension f0«.0 In (xly)-(0.000.l0.000) O llbl resulting compression Ion:<> In (x/y)-(0.000/0.000): 0 llbl 3 Tension load l<>lldN.(lb) C-cfty ♦ N, (lb! SIMI Strength" 165 4,889 Pulout Strength" NIA Conetete Breakout F-".1-re .. 165 • ltoghel1 loaded·-··--1-1n tension) ~ ... __,,_.._._~b~-Wlllh ..... ~-i1orpa.wibf.1y! PROFts~ltllOOWCll .-AG,fl. ... Mta-1 ~Ila......,_ T~~t-9111AG W- N/A 1.448 nburnam 11/512021 Seismic Max. Util. Anchor ~I yes -,i UtUtutlon ,,. ■ N.;t N,. Status • OK NIA NIA 12 OK i=iiS,U HIIII PROFIS Englneerlng""3'"'.o'"'.1""3 _________________ _ www.hllti.com Company: Addreaa: Phone I Fax: O.sign: Fas1ening point: 3.1 Stfff Strength N.. = ESR value ♦ N .. ~Nwa Vari1bM1 ~ 0,05 Calculations ~ 6,493 RHUlta ~ 6,493 ECLIPSE ENGINEERING, INC. 376 SW Bluff Dr., Suite 8 541-389-96591 3-8 INCH • HIL 11 KB-TZ2 Ba&e of Snelving Unit refer lO ICC-ES ESR-4266 ACI 318--1-' Table 17.3.1.1 ~ 126,2(),1 ♦-·--0.750 1.000 3.2 Concrete BrHkout Fa[lure Na, : (~) '41_,.,. 'i'c,N •-..N~ ♦ Ne11 ;t.Nw ~ see ACI 318-14, S&ction 17.4.2.1, Fig. R 17.4.2.1(b) ..... •911!, II' IOCl.til : 0.7 ♦ 0.3 (~) S 1.0 _ (e•-1.5h•} 'l'caN -MAX c --0-S 1.0 ,., ~ N0 •kc_ A. V°l~h~..t VarlablH h,(ln.J e,.,, (In,) 2.000 6.000 Calculations ~(in,'J ~lln-') 36.00 36.00 RHulta N,_~J ♦-2,970 0.650 ..... 1,000 ., .. ,. 1.000 ♦ 0.750 Pogo: Specifief: E-Mail: Date: ·~ ~l 4,869 165 ACI 318-14 Eq. {17.-1.2.1a) ACI 316--1.C Table 17.3.1.1 ACI 318-14 Eq. (17,4.2.1e) ACI 318-1' Eq. (17.4.2.5b) ACI 318-14 Eq. (17.4.2.7b) ACI 318-14 Eq. (17,4.2.2a) e,.(ln.J .. 4.375 21 .... ~~b] 1.000 2,970 ♦-♦ Na~I 1.000 1,448 lnpuilO.laandf"'-lbm..ll:leCNdi;edlb,ountoffl'lllr.,,.uMncl~ar'IOJor~ PROFlSE~(c:)2003-2Q21HlliAG.FL-MIM~ ... ,~Tf9demerllol ... AG.SC11Mn ..... N CJ) --..... (,) _-.J_ '· i, iPS>l 1.000 2,500 N....Jl!>!. 165 nbumam 11/512021 i = 11 S ,U _____________________ _ Hlltl PROFIS Engineering 3.0.73 www.hJttl.com Company: Addntss: Phone I Fax: Design: Fastening Point 4 Shear load ECLIPSE ENGINEERING, INC. 376 SW 8luff Dr., Suite 8 541-389-9659 I 3-8 INCH • HIL Tl KS-TZ2 Base of Shefvlng Unit P-: Specifier: E-Mal: Data: Load V.,. (lb] Capacity♦ v,_ (lb) Steel Strength" 165 Steel raifure (with lever arm)" NIA Pryout Strength"" 165 Concrete edge failure in direction x+0 165 • highest loaded anchor ••anchor group (retevant andlors) ... 1 Steel Strength V •·• = ESR vak>e • v_i.v,. Variables ~pn,'J 0.05 Cakulatlons v~ 3,366 RHutts v~ 3,386 refer 10 tcC-ES ESR~266 ACI 318-14 Tabfe 17.3.1.1 t,.[PSI] u.,._,_ 126,204 1.000 ·-·-0.650 1.000 •V~ 2,201 ..,._.,.andtNl&l mut1.be ehedlocltctCOf1IOnnll)'.-. h~oonclir;intandbpaudil.~ PROFIS~(t l2003-2021HilliAG,FL-i4CMScMll'I Hai11~r,.,,.._..,o1H111AG.Sd1Nn 2.201 NIA 2,079 1,723 v~ 165 Utlllzatlon ltv • V _,+ V,. 8 NIA 8 10 nbumam 11/5/'2021 Status OK NIA OK OK i=iiS-n Hlltl PROFIS Englneerlng""3-.0,-,.7,.,.3 _________________ _ www.hltu.com Company: Addreu: Phone I Fax: Design: Fastening poklt: .-.2 Pryout StAngth ECLIPSE iNGINEERING, INC. 376 SW Bluff Dr., Sutte 8 541-389-96591 3-8 INCH • HIL TI KS-TZ2 Base of Shetwlg Unit v,. =1c,,[{~),..,..,,_.v,._.No] • v,. ~v.,,. ~ see ACI 318-14, Section 17,4.2.1, flg. R 17.4.2.1(b) ~ -=9h~ (c,..,) VINI.N •0,]♦Q.J ~ s1,0 1' _,, =MAX(~.~) :i; 1.0 ~ CK N~ =k.,>-.'W0 h~5 VarlablH k!! h•lln.J c.,,.fln.f 2.000 6.000 C fin.) k, A, 4.375 21 1.000 Calculations &,,fin.~ ~1;,,.'1 .... 36.00 36.00 1.000 RHulll v .. ~bJ ♦--♦-2.970 0.700 1.000 Page: Specifier. E-Ma~: Date: ACI 31S.14 Eq. (17.5.3.10) ACI 318-14 Tabfe 17.3.1.1 ACI 318-14 Eq. (17.4.2.1c) ACI 31S.14 Eq. (17.4.2.5b) ACI 31S.14 Eq. (17.4.2.7b) ACI 318,.14 Eq. (17.4.2.2a} . "' 1.000 i,fpsJJ 2,500 •~.N ~fib{ 1.000 2,970 ♦-♦ v,.flbl 1.000 2,079 ....,.,._.iv .... ffutbec:hecMclklr~'M91N .... ~aldb~bilil)1 PROFts~Cc):zo0l.'2Q:21.._AG,A.-94 .. SchUl'I Halil•....,.w.ciTnlCll!na'\al.,_AG.Sdl.-. ..... N :::! ..... w v~ 165 nbumam 11/512021 i = Ii S ,O _____________________ _ Hlltl PROFIS Engineering 3.0.73 www.hiNl.com Company: Address: Phone I Fax: Design: F astenlng point: ECLIPSE ENGINEERING, INC. 376 SW Bluff Dr., Suite 8 541-389-96591 3-8 INCH • HIL Tl KS-TZ2 Bose ol Shelving UM 4.3 Concrete edg• fallu,.. In direction x+ Vclf : (~) Y td.V '¥c,v '¥11,v .,_ .... y V,, ♦ vat, ~vw A.,, see ACI 31S.14, Soaion 17.5.2.1. F9. R 17.5.2.1(b) ~ •4.sc:1 'ti'wv •0.7+o.3(~) s1.0 -fi'JZ '¥11,v ="V~~1.0 v, ·Hir ✓c;;) A, "i.c:t Var1abt.s ~1fN"I.J Cll[lr'I,) v<, 6.000 6.000 1.000 A, d [on.) 1;1Pst1 1.000 0.375 2,500 Cakulatlons ~I"-] ~fln-1 "'.o,v 75.00 162.00 0.900 RHutb v,.pb) ♦-♦-2,461 0.700 1.000 5 Combined tension and shear loads Page: Specifier: E-Mal: Date: ACI 31S.14 Eq. f17.5.2.1a) ACI 318~14 Table 17,3.1.1 ACI 318-14 Eq. (17.5.2.1c) ACI 31S.14 Eq. (17.5.2.6b) ACI 31S.14 Eq. (17.5.2.8) ACI 31S.14 Eq. (17.5.2.2a) h1 [Wl.] ~ pn.J 5.000 2.000 ·-· 1.000 .h,Y v,~I 1.342 4.403 ♦-♦ V11Pbl 1.000 1,723 P, P, ~ Utlllzalion p (%) Stab.JI 0.114 0.096 513 5 OK J3 ...... •P~•Jl~<•1 ~daas,dr'NUl&IIINltbe~b~Mltlh ...... ~alMlklf~ PROFtS EJIQ-.io4 c 12003-2011 HIii AG. fL ... !M SdllMin Hait•~ T~« ... AG,Sdlun v .. ~1 165 nbumam 11/Sl2021 i = ii S ;u ____________________ _ Hiltl PROFIS Engineering 3.0.73 www.hlltJ.com Company: Address: Phone I Fax: Deoign: Fastening point: 6 Warnings ECLIPSE ENGINEERING, INC. 376 SW Bluff Or .• Suite 8 541-389-9659 I ~ INCH • HIL Tl KB-TZ2 Base of SheMng Unit Page:_ Specifier. E-Mai: Data: 7 nbumam 1115/2021 • The ancho( design methods In PROFIS Engineering require ngid anchor plates per current regulations (AS 5216:2021. ETAG 001/Allnex C, EOTA TR029 etc.). This meant load r.-o11tnbution on the anchor's due to ala&tic deformations of the anchor piate are not considered -the anchor piate is assumed to be sufficiently 5titf, in Of'der not to be deformed when subjected to the design loading. PROFIS Engfl8eriog calculates lhe minimum ,.ciuired anchor plate lhiduless with CBFEM to limit the stress of the ancno, plate based on the asaumptions ~above.The proof W the rigid anchor plate assumption is valid Is not earned out by PROFIS Engineering. Input data and results mu5t be chedced to, agreement with the exlttulg conditions and for plauslbilityl • Condition A applies whe,e the potentia concrete failure surleces are crOSHd by supplementary reif'lforoement proportioned to tie the potential eoocrete failure prism into the slNClUtal member. Condrtion B applies where auch supplementary reinforcement is not pra.-,cted, or where pulout or pryout strength pems. • Refer to the manufacttKer'1 product literature for deaning and lnstalallon Instruction&. • For add1llc>nal information about ACI 318 strength design proyilK>OI, please go to httpt:llaubmittab.us.hiltJ.com/PROFISAnchort)esignGuide/ • All anchor design approach for structures assigned to seismic Design Cat6gOl'yC. D, E or Fis given inACI 318--14. Chapter 17, Section 17 .2.3.4.3 (a) thit reqtkes the goveming design strength of an and'lor or group of and')cQ be limited by ductile steel falture. If this tS NOT the case, lhe ~ design (tension) shall satisfy the provisions of Section 17.2.3.4.3 lb). Section 17.2.3.4.3 (c), or Section 17.2.3.4.3 {d). The comect>on 0e,;gn (shear) shal satisfy lhe provisions of Sec1lon 17.2.3.5.3 (a), Section 17,2.3.5.3 (b). o, Soc1ioo 17.2.3.5.3 (c). • Section 17.2.3.4.3 (b) I Sedion 17.2.3.5.3 (a) require the attact,ment the anchors are connecting to the strvct...-e be designed to undergo ductile ytelding at a bad levef oorrespondtng to anchor forces no greater lhan the controlting design strength. Section 17.2.3.4.3 (c) / Section 17.2.3.5.3 (b) waive lhe duetiity reqlkements and require the anchor$ to be designed for the maximum tension/ shear that can be transmitted to the anchcn by a nc:,n.y,elding attachment Section 17.2.3.4.3 (d)/ Sectlon 17.2.3.5.3 (c) waive the ductility requirements and require the design strength o1 the ancnon to equal o, exceed the maximum lenslOfl J shear obtained from design k>ad combinatlOOs that indude E, with E lnaeased by coo- • Hitti post-1nstaled anchor5 shall be Wlslaled in accordance with the Hilti Manufacturets Printed lnstaffation Instructions (MPII). Reference ACI 316-14, Section 17.8.1. Fastening meets the design criteria! lnpYIMLiandf_.,,..__bocnock.:IIDrCOf'lklrmllr..-NPWngoondlbw..ikw~ PROF!$~ ( t)2003-2021 HIIIAG, fi.-e414 Sd..n t-alil 1 ,...._, T~ol ta AG.~ ..... N 00 --..... (,.) _, i=iiS•O Hlltl PROFIS Englneering-3-.0-.7-3 __________________ _ www.hiltl.com Company: AddfeS&: Phone I Fax: Design.: Fastening pow: 7 Installation data ECLIPSE ENGINEERING, INC. 376 SW BkJff Dr., Suile 8 541-389-9659 I U INCH • HILTI KB-TZ2 Base of Shelving Unit Pago: Specifier: E-Mail: Date: Anchor type and diameter: Kwik Bott TZ2 • CS 318 (2} hnom2 Profile: • Item number: 2210236 KB--TZ2 318K3 Hole diameter in the fixture: • Maximum lnstaUation torque: 361 in.lb ptate thickness (input): • Hole diatneter in the base material: 0.375 in. Hole depth In the base material; 2.750 tn. Drilling method: Hammer driled Minimum thickness of the base material: 4.000 in. Cktaning: Manual cleaning of the driffed hate eocording to instructions for use is required. Hilti KS.TZ2 stud anchor with 2.5 in embedment, 318 (2} hnom2, Carbon slffl. installation per ESR-4266 7 .1 Recomm•nct.ct acc•saorlea Dril~ Cleaning • Suitab&e Rotary Hammer • Manual bk>w-out pump • Property s:ized dnl bit CoordlnatH Anchor In • Anchor .. c_ c. ·-0.000 0.000 30.000 6.000 30.000 6.000 tlJIUldNNr-..ltiJMUII.NctwdlMtorCO,Wm,...,.wif'l-.;."""'"9c:onclilioMandlu~ PAOFIS~tc)~.tC21~AG.FL.f4t4Sc:Nll"I HAila,..._...aT~~l-9liNJ.Sdlurl Setti_r>2_ • Torque conttoled cordless impact IOCli • Torque wrench • Hammer nbumam 11l5/2021 i = i i S ;n ____________________ _ Hlltl PROFIS Engineering 3.0.73 www.hlttl.c:om Company, Address: Ptl<>MIFax: Design: FastlitfWlg poltlt: ECLIPSE ENGINEERING, INC. 376 SW Bluff Or., Suite 8 541-38&-9659 j J.8 INCH • HK. TI KB-TZ2 Baso ol Shelwlg Unit 8 Remarks; Your Cooperation Duties Page, Specifier E-Mail: Date: nbumam 11/512021 • My~ al Information and data oontalned In 11'18 Software ooneem SO,ety the uN of Hitti products and are based on the pnnc:ipMs. formulas and security regulaliont in accordance with HiN:i'1 tachnacal directions and operating, mounting and anembty instructions, etc., that must be stridty oomplie<I with by the user. Al figures c:ont.amed tlefein are average figurea. and therefore lJS8-6pec:ffic t&sts are to be conducted prior to using tne retevant Hitli product. The results of the catculationa carried out by means of the Software are based essentlaly on the data )'OU put in. Theref0f'e, you bear lhe sole responsiblity k>r the absence of emn, 1he completeness and the relevance of the data to be put in by you. Moreover, you bear so4e responsibility for having the resutts of the cak:utation checked and deared by an expert, particularly with regard to oompllance wtth appffcabfe normg and permits, prior to umg them for your specific facility. The Softwilre sen,es ooly as an aid to nterpret nomu; and permits without any guarantee as to the absence of errors. the oorrectneu and ltle rektvance of the results or suitability Jex a specific appl;eation. • You must take al necessary and reasonable steps to prevent or fimit damage caused by the Software. In particular, you must arrange for the regular badwp of program• and data and, it apptic:abht, carry out the updates of the Soltw$1°& offered by Hill on a regular ba111. It yOU do not use the AutoUpdate function of lhe Software, you must enaure that you are using lhe current aoCI thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Websi1e. Hilb Wil not be lalble fcl< consequences, such as the recove,y of lost°' damaged data or p,ograms. ans1ng from a culpabkl, breach of duty by you . .,...~~rcdltrr-..oed'lockedforCIOl'ltonNrt.,.....,.~~en:11ofpll,,.M~ AAOFIS ~(c)2'00).2Qi!1 HIIIAG, fl-M .. SctlWI tWil• ~ TMtffla'kd .-AG,~ ..... N co --..... (,) Geometric Properties -Area -Ix --·---Ixy '·"'f"'' 0.049 ln"4 -0.029 in"4 --Iy 0.049 ln"4 Sx+ 0.044 ln"3 Sx-0.120 in"3 -Sy+ 0.044 in"3 Sy--Xe - 0.120jin"3 0.4061in Ye rx I-- ry 0.406,in 0.473,in 0.473jin Polar Properties ---~ 0.097lin"4 Ip [rp -=--L _ ____. 0.6691in ShapeBuilder 12.00.0001 www.iesweb.com -1 1 -1 l Principal Properties 11 12 Sl+ Sl----- S2+ S2- rl r2 a ECLIPSE ENGINEERING, P.C. nburnam S:\Favorites\PIPP\Pipp Drawing Files\ ••• \L-Post No Holes.sbf Thursday, October 6, 2022 10:29 AM 0.078r n"4 Torsion Properties Cw 0.000r "6 0.626 0.019 in"4 0.074 in"3 0.074 in"3 0.035 in"3 0.036 in"3 0.599 in 0.296 in 45.000 deg H J Xsc Yse ro Bl 0.000 in"4 0.041 1 in 0.041 in __ 0.845lin 0.000 in Plastic Propertie~ Xpna l Overa.!!_Prope,_!ties Ypna Depth _ ±_ 1.500 I in -j ~ZZ:x.y 0.074 in 0.074 in 0.080 in"3 0.080 in"3 Perimeter 5.920 in Weight o.ooi1 K/ft ---------- Width --1.500 j in ---~- 130/137 Geometric Pro erties T Area 0.401 in"2 ~ Ix 0.183 in"4 Ixy 0.000 in"4 Iy 0.191 in"4 o.~in"3 ___ Sx+ 0.291jin"3 Sx- Sy+ 0.113 in"3 - Sy-0.113 in"3 Xe 1.693t Ye 0.629 in rx 0.676 in ry 0.692 in Polar Properties ~ ' --,- y ShapeBuilder 12.00.0001 www.iesweb.com 0.375 in"4 0.967 in Principal Properties e 12 f51+ r -- rl r2 a Overall Properties Depth I + Perimeter Weight t ---- Width I ECLIPSE ENGINEERING, P.C. nburnam S:\Favorites\PIPP\Pipp Drawing Files\ ... \T-Post No Holes.sbf Thursday, October 6, 2022 10:14 AM Torsion Properties J 0.192_r"4 f 0.059 in"6 0.96? 0.183 in"4 r 0.000 in"4 -~ 0.113 in"3 0.113 in"3 Xsc 1.6931in ~ I 0.140,in"3 1vse 0.807 in 0.291 in"3 ro 0.983 in ------4 o.oooro-J 0.692 in Bl t 0.676 in 90.000 deg Plastic Properties E -~ d 1.693 In 1 tYpna --+ 0.328in 1.938Jin fzx -t 0.231 in"3 14.29~in Zy .l. 0.205}n"3 0.001 K/ft 3.3871 n ... 131 /137 1----------ij---------< 1 l [~I±±;±±I±J I 0 6) ® ® ... ---,,~~•-.-.·-,-~ ,\ -• •• -• -~ ~I:~ ~! ;f A , . /4 ,· ' ol·,_ J \ . e ___ . ..,., .... ,_._._/_ "l • ' :i; 3 ~. :, r X §' '.i ~ e ' lg °!Cit ~~ .:.=. o;oe ~ ~ ~ ~ ~ ~ ~ ~ r i H -.;;:; .;\;;J i:.i iJ ifjf HI Jqrn .!.!!! tpf H _ ~~ f, tn E •f~Pl ~~ h ~~ f 5' X X cil p ! ! ~~ ~ H ~ (,.) @) ® H''1[j ® flf u.; .-.;a;;;;~! 'i ~~\1 .:;: -J i Hi . fl Tr~~ :,; 3 3 3 'I: ,-a i,; ~ ~ l fi 61 I ; e .. 1 ~ II ~~~ i H rp~ # ff> s=.~ $; •• i t••""-J 333 -"-i 1 Hit! (~5:I 11 llllllll•ll•lr MOBILE STORAGE SYSTEMS INC. NIKE -RB ELEMENTS UNITS WILL BE 10' HIGH WITH 9 SHELVES 8 OPENINGS SHELVING UNIT PARTS : • 2966 WILSON DRIVE NW GRAND RAPIDS, Ml 49534 TEL: 800.234, 7477 FAX: 616.791.9916 WWW. PIPPMOBILE.COM E-MAIL: CUSTOMERSERV@PIPPMOBILE.COM ~rnh ~~~~~-,A~t,-> \11'1_)~\Jb)V}!;;}\]V\W~ '\."~T TUPRKiHT D0UIU OOUIL[AMf OOUIIUltlVCT HAHG&t.R SHO.fMATERIAL M«l I.PSKIEDOW'H LOWPROFU ~-""Ill> *two large Akro bins per shelf level -16 total EACH LEVEl. © >_/ ~ EACH COflHOt I [Y[l[TS o,EN EACH lfVn »PAOx. 1).5" a>ol L\Ot lEVU '.G)..CHl.fVEI. 5pec,f1C,;1t1on-:,: He".l~t• IO' 9' 5,ze• 48' X /8' No of 5h~II l.-vels 8 5hdt Ooc::-1.n<J5• 7 Shelf \i1atcr a,, I ' \Vt11tc MDF 4 "' • 4 "' • 4 "' • 4 "' • f ;. N 1 "' f N .., 1 NIKE Desk Elevation 'L" Upn-:,ht po,;t 129' Tall 1/3" Deep I" MDF -White Shelf low rroMe Beam 11111 p1pp· MOBILE STORAGE SYSTEMS INC. I f Rad,~ Grommet • Spaced 3" 0 C. from Back Low ProMe Be.am AKRO Bm~ -4 On Bottom Tier ._ -:-.•c--LRA Beam On Bottom Tier Only MN/J/1,li.~.tlClll"ECJlCAIICN""°OU.,,,DOICNIMCl~MPIIUO(l(OM'.M"IIM""°~--Ml'lll'Jf'llfflOl..,,YOIUllOIUGEMIE.14 #4JliOilWlflKMC,""1 .. 00Nl),WQ.0St:OTOO-..MOIIIWJ>NM~~-~Olll~OMIITIWtllCll'lCR:f'IIIO.IE(1Fa.llllMD! n-€Y~\l:KOPIEl'WDNICDIW.Cl!'U)'MTl'IOtJTTMf.MWmMCCIISIHT<11,._watSJOIW)f$'VSTOIS. .......,_CQIITJICfllffl!ntlS~Olt5"lCAOIIOIS:IWUCONS11"llfltxJIQ.I.ISM:l'\llllQO,NXVf#«:(Ol-fMUll!UfllC"'l:lNIWl'l"lEfDMHSDfSQIIIKSf.01Ww.os1WU.ltll.'l'l~lO'-asaL&:.CI~ ._,.,...,..miRAOt,YSTtWNC.. IIOlt1"$~1$""(M0(0f(lltW()lll,lllC)IW.ll'\,IIIIIIIOXS°"Y.U$(.l)FQIIICCll,,ST-....c1101t11£CUOITNGCCllflMtTOlt~<U.IIUPOiSal.ffi',Qltt'UIOW,$1ArctMllQCM.COO(C(UIUl,l(:( .... lllfWWICS,"-MS.~OC..W."""°""'"0lOOl.lllCI.Oi1'll«O""°"'~'°"#IOIIXOr,MQ.O""fANO~N ~llffl'N:O.lllf.i-=Nl&l"ICMlftlr,Q.11'Jn.~OIM:rWICJl'ff&Oif'"""UOIIIFl#IWQISffllfO~"l"l.eGoffMOIIIUIICIM.#'lf."Y°"'8.N..IDM'N31CNS#DJl'k'.:IDT10N5SIO.lO•~ffQF.Wf~~-Hllll'AC1\.WCCtemlUCTUlf:GN.•~-~1¥N,-111011'\ffllFl'.OJl'I' aitlf/ll00'tCO,.~ff>'tO(U!XlW\Waflf:1CJllfACT1.MI.CONSJIIUCTIONll<"Ml.,.,.t«a.l'IIILIEIGllt-W:NLUS,Pffi,,caawo,r,AQOMAUIM!NOLMl.tl'Y101tl'M.DnlGJ,i,0Wo0a~~loWll"IOJII.N;Sfft:tmH0011~ .. u -z ■ ~ -~ .. "' ■ ~ -~ -o -1-"' LlJ _J iii 0 ~ (/.) w 1--t _J Q_ Q_ =:) (/.) (/.) LL (/.) w ~ 1--t z I 133/1 1111111111·i1·1· OBILE STORAGE SYSTEMS INC. GRAND RAPIDS, Ml 49534 TEL: 800.234.7477 FAX: 616.791.9916 WWW.PIPPMOBILE.COM E·MAIL: CUSTOMERSERV@PIPPMOBILE.COM NIKE -DIGI TAL RETURNS UNITS WILL BE 10' HIGH WITH 7 SHEL YES AND 1 HANG LEVEL SHELVING UNIT PARTS: @~GD(!)~®@ '1."~ Tl#'MoH1" D00k£ OOl.W.fNV(T OCIUIUlll'off H,U,,Ga,t.i. St«I.FIMTDW. IIMT IWSl0COOWll LOW ,-o,u: (PCRf" $Tm.) ~3;ID HAHGUJt ffi"TAUAT)Oft ~ TOP LML • WltfGIOO ..... ~ ----..... (,.) -... 11 111111111 111 Ir MOBILE STORAGE SYSTEMS INC. NIKE B □P IS UNITS WILL BE 1 O' HIGH WITH 8 SHELVES 7 OPENINGS SHELVING UNIT PARTS: ' 2966 WILSON DRIVE NW GRAND RAPIDS, Ml 49534 TEL: 800.234. 7477 FAX: 616.791.9916 WWW.PIPPMOBILE.COM E-MAIL: CUSTOMERSERV@PIPPMOBILE.COM @edbG)~®~ ''\,: LftlCiH'T T UJ'ltlGKT DOU8lE DOl.9U IW£T 00UIU llVtT liANGaAA SHClf M,t.TtltlM. ltlYfT \JPSIOEXIOWM LOW PROfll£ (PCRr STC£l) EACH LMl ~ EACHCORHfR UNIT EQUIPPED WITH CAGE PANELS / DOORS APPROX. 15" 0P£N V.CH t.EVQ. '.G) EACHLML 11111 lllll•ll•lr MOBILE STORAGE SYSTEMS INC. NIKE SFS CART UNITS WILL BE 10'·9" HIGH WITH 8 SHELVES 7 OPENINGS SHELVING UNIT PARTS : 2966 WILSON DRIVE NW GRANO RAPIDS, Ml 49534 TEL: 800.234. 74TT FAX: 616.791 .9916 WWW. PIPPMOBILE. COM E-MAIL: CUSTOMERSERV@PIPPMOBILE. COM @@©@®®®- ~~(4\(1'\~~~ ~ d-=i1 \Q1.)~\Jb)~\Jll)~~ ~~J~ L" UPRIGHT T lJl1ttGHT DOUll1 00Uet..E mrT OOUkf laVIT HAHG1.U SHru' MAT£RIAL KAt«:.Mll MTALUTlON RMT l.lPSID£tlOWH LOWPftOfl.£ ~Ml.'°! ...... <,J 01 --...... UCH LMt ©----- UCHl.lVEI. © r ,...-------{i:) EJ,CH CORNER 15· i ,,. i 11· i i I , ... '-+ i ,,. E) UCHL.Mt E) UCHL.Mt '----(o} '-'CH LMl. 1111111111• I 1■ 1r MOBILE STORAGE SYSTEMS INC. NIKE DPS BAGS UNITS WILL BE 10' HIGH WITH 5 SHELVES 5 OPENINGS SHELVING UNIT PARTS: t 2966 WILSON DRIVE NW GRAND RAPIDS, Ml 49534 TEL: 800.234. 74TT FAX: 616.791.9916 WWW.PIPPMOBILE.COM E-MAIL: CUSTOMERSERV@PIPPMOBILE.COM @@©@®®© <ID~ (t)~(f?®~ "\."'-"IC,tff T Uf"NGKT OOUll£ DOUltLANET OOUIU:ltMT ~ SHnfMA.TUIAI.. ltlVCT lJPSIO£DOWN LOW~ f"A'~-U.a~ ,-(Ii) EACH CORNER -::::. ~ EACH LEVEL E'ACH LEV£L 2•·-:J _,,,,-,,.·.,¥ .,... . 5pec.; ·'1c.3ton5: 11e,c,,hc, IO' 511.;: 48' 0( 3G· X 30 No. of She,I Le,eb· 5 5h~!t M.1ter,a, • W1,·e G,,. d f N "' N ! I NI KE-Shoe Elevation MESH IVIDER 2-1 5" nd Deckin<3 on Lev I I ~4 IIIII P IPP. MOBILE STORAGE SYSTEMS INC . SbeMng Parts ©-~ ,.. ... 0plntngi, 10>-~--- v;-.t~ ..... ,~ l&""ttr ..,..,1r .16',}A' 41".1tk" Wt.JO" 41"'irW """'••~ •.. ~ ,. .• ,r 41".w.J' •.. ,.... .... , ... ··•JO" 4il"'11JCr ,..._,_,.. ... M..et.'lliOlliluWII.INIOVf(:Fl:llfw;:Nl""°UM,OUl:)"5NC~Rfl'IIUl£HUTHl.lllfff ..... ll.'C)~~'IMEPIOUITTO,."""..::atlTM.la!MIDIIS ""°NQ-TIWJl(O,'"""'•OOf"llO.OltCl.OaDIOOTI'tEMCIIIIURONMG(ll;N(Cll(W""™MY-Cllll'1ilOJliC'f0r,4(111!WIM..aJlt"'lliCTQMO IKV~\'f:lf.Ol~Wl!NltJDE\fl.Ol'llllllffltOUfM~CQliSEM'ff1/,.,,MCaJ:SlQ'W,;EfflTB4 \IISUII.COIIUCIMntTIOf~C)lltftQJlC,l,110f11SWll.CONSTTMICONll.\lSM:f'\Cl(ICt:CIJrCCUINQ.O#IW[tlillllJTM:TlONS.'NrTlflD111)1$1)N$CflTI-Uf:QIU'MIQ91""ll~fllll((OCQo-'fltlCIUO~ 0Mifll'PNIOta.lfl0IIIAOll't'SttllS,C. lll()f~THIS~ll~r01111Wo,itMJOW.~CM.YFuxtlfOIICONS~ntCCUNTN<Occimw:TON"'31MS.IU~~QIFUCA/li.fl•f'CNCLOCril000£(:()WU•••,tt.,u~ll'WCS,.WTQOC1C.MCMOWlCOfOUCl.(flcT1Ml(l)l,P(Jrj~!IQll~SYMO.OTNCIOMMo .. #IU()ll)NQl'lffl-llEQIJIIEWfWl'SflllllCMlfOffClflff.NOl«Offl«f.WIOIU:IOf' .... 110&fN'EIIE<'aTflFOAIICll'ltC'"l.8QlffM0111JH>!UM'IOlll...tr1tOM"'9MIHJlf'ECIRCAncMPICU.Oll:"'911F13>ffO.llltfl'""°°'C()W"'W:KJll~,r,cl\J,l,ICOCTIIJC1'10111fGIC,•bM'.l«lNl##J~RMfllilf""'\f"_..Dr¥ Q.DT.w:l(llt~fOltCCIDf.00lif'Ul.'a.,OM:.ICr ....... C,011SfflUCntllllM<lNl,.,,ltl09LtMJ.■IBDtWU.bl.!'ffMOa..f~ffSfoQO/tSAbMf;N:,1.11rAffY,'Ol'l~ct:SIIGfro'.Qwc.QNOOll:~~ml'\.IM!WQ..DfNOOIICQrl~ II Ill lllll1il1 1•· MOBILE SlORAGE SYSTEMS INC ~ ~ ,er 1-,..-J ~ Hingtng Loeiat10n1 •' ·~ I I ,. I I I I I I~ I Hang Voit -Shelving Parts Ust 30"/36"0 x 36"/48'W X lO'H 4 Shelves, 4 Hang Levels :,.:.:_~;'! -.,.,;..-~,~ ~ -=- Shelving Parts @ llmighu_ l iL 1-,)$ -I 120* High ··e Post 14WugeStffl @ WfdtPrnfileBearn/QA\-J4Gmt0tStttl 30•0A8eam l6*0A8Hm 43•QA.8Nm @~ 2·x•·~nlngt .10S Round. S G~ Stffi Wire 36*11]0* -43"1130" 36"x 36* ◄rx 36" I ~~~ 16GaugeSteel (not shown In d .. am) © Ordr: Prcfiwttfd Mrt:N Sbd( 22G~ugeStttf SO+°"'Optn 36"xJO" 48°1130" 36*ic 36* ◄8°1. )6* (notffiOWnWl~r;,m) 136/13 I I llllllll1 ll1 lr MOBILE STORAGE SYSTEMS INC. NIKE NE\./ ARRIVALS UNITS WILL BE 10' HIGH WITH 7 SHELVES AND 1 HANG LEVEL SHELVING UNIT PARTS: 2966 WILSON DRIVE NW GRAND RAPIDS, Ml 49534 TEL: 800.234. 7477 FAX: 616.791.9916 WWW.PIPPMOBILE.COM E-MAIL: CUSTOMERSERV@PIPPMOBILE.COM ® ® © © (t) (f) @ ~~~r4\~~~ 4 tet~1 \Q1)~\Jb)\e::)\j![)~® >~,~ 1."'-"IGNT TUNIGHT DOUllf OOUk!AMT 00l.8lfMYf'T ~ SH(U'""4T'ERtAL ~IMSTAUATlOM mtT Ul"Sl0UlOW7'I LOW PIOfU (PERF Sl'EEl) ...... <,.) ~ ...... 39"0pffllng ,-----@ TOP LEVEL • WIRE GRID . .. 11111111111 111 Ir MOBILE STORAGE SYSTEMS INC. NIKE LAUNCH UNITS WILL BE 10' HIGH WITH 5 SHELVES 4 OPENINGS SHELVING UNIT PARTS: •' 2966 WILSON DRIVE NW GRAND RAPIDS, Ml 49534 TEL: 800.234.7477 FAX: 616.791 .9916 WWW.PIPPMOBILE.COM E-MAIL: CUSTOMERSERV@PIPPMOBILE.COM @@©@©®© ~~ ~fin"\ ~~~.···.i'.i•• \Q1) ~ \Jb)V!:::) \][) \W~ '\." ""IGHT T IA>PJGKT 00U9I.E 00UBU llfVET DOUILE NVIT 1-WfGMJI. SH(Lf MATfflM. ltfVET I.PSl)(()()WW lOWPROflt.£ !K#OUfUCT.&U UNIT EQUIPPED WITH CAGE PANELS / DOORS ~ EACH CORNER Hazardous Materials Questionnaire County of San Diego, Department of Environmental Health and Quality PO Box 129261, San Diego, CA 92112-9261 Record ID #: Not in System Plan Check#: DEH2022-HHMBP-012213 Balance Due: $87 _QQ (858) 505-6700 (800) 253-9933 www.sdcdehq.org Business Name Nike lnC Business Contact Samantha Avalos Telephone# Plan FHe # (424) 330-7970 Project Address 1905 Calle Barcelona, SUITE# 126 City Carlsbad State CA Zip Code 92009 APN# 0000000 Applicant Applicant E-Mail Applicant Telephone# Samantha Avalos samantha.avalos@permitadvtsors.com (424) 330•7970 The foUowlng queatfons represent th• facl lty'• actlv •• NOT the spac c pro ct deacrtptlon, PART f; FJBE DEPARTMENT· MAZABQOUS METERIALS DIVISION: OCCUPANCY Cl.ASSIEICATIQN: (Not required for proJecta within the Cfty of San Diego.) Indicate by selecting the item, whether your business will use, process, or store any of the fo!lowlng hazardous materials. !f any of the Items are selected, Applicant must contact the Fire Protection Agency with jurisdiction prior to plan submlltal Occupancy Rating: M FactUty's Square Footage (Including proposed project): 6008 □ Explosive or Blasting Agents □ a Water React1ves O COl'roslves □ □ □ Compressed Gases Flammable/Combustible Liquids Flammable Solids □ □ □ Organfc Peroxides Oxidizers Pyrophorics □ □ □ Cryogenics Highly Toxic or Toxic Materials Radloact!ves □ □ Other Health Hazards None of These Unstable Readives PART H· SAM PlfGO COUNIY DEPARTMENT Of ENYIRONMFNTAI HFAI TM -H.6U:POOUS MATERIAi 8 DIVISION fHMQ)· If the answer to any of the questions Is yes, appUcanl mus! contact Iha County of San Diego Hazardous Materials Olvislon, In person at 5500 Overland Ave,, Suite 110, Sen Diego, CA {12123, or by phone at (858) 505-6700 prior to Issuance of a building perm/I. FEES ARE REQUIRED. Project Completion Date: 1/912023 YES 1. □ 2 □ 3 □ 4. □ 5. □ 6 □ 7. □ a □ NO Ill Ill "' □ Iii Iii Ill Iii ts your business tlsted on lhe reverse side of this form? (check all lhat apply) WIii your business dispose of Hazardous Substances or Medlcal Waste In any amount? Will your business store or handle Hazardous Substances In quantities equal to or greater than 55 gallons, 500 pounds, or 200 cubic feel? Will your business handle carcinogens or reproductive toxins In any quanlily? Will your business use an existing, or Install an underground storage lank? WIii your business store or handle Regulated Substances (CaJARP)? WIii your business use or Install a Hazardous Waste Tank System (Title 22, Article 10)? Wlll your business store petroleum in tanks or containers at your facility with a total storage capacity equal to or greater then 1,320 gallons? {California's Aboveground Petroleum Storage Act). □ □ □ Ca/ARP Exempt CalARP Required CalARP Complete Review Date: PART Hf· SAN PtEGO COUNJY AIR PQLLUJIQN CONTROL DISTRICT (APCQI· If the answer to Question #1 Is 'Yes' and the answer to Question #2 is 'No', the applicant must contact the APCD prior to the lssuance of a building or demolllion permit If any answer to Questions#3, #4, or#5 is 'Yes', the applicant must contact the APCO prior to the Issuance of a building or demolition permit If the answer to Question #3 or #4 is 'Yes', the applicant may need to submi1 an asbestos notification form to the APCO at leas! 10 working days prior to commencing demoUtlon or renovation {some resldential projects may be exempt from the notification requirements). Contact the APCO at 10124 Old Grove Road, San Diego, CA 92131 or telephone (858) 586-2600 lor more Information. YES NO 1 '" □ 2. Iii O 3. □ Iii 4. 0 Iii Will any existing building materials be disturbed as part of lhls projecl? (lfthe answer is 'Yes', an asbestos survey may be reqUired,) Has a survey been performed to determine the presence of asbestos containing materials? Will the project Involve handling or disturbance of any asbestos containing materials? Will the project involve the removal of any load supporting structural member? 5 □ Iii Wilt the subject facUlly OI' construction activities indude operations or equipmenl that emit or are capable of em!ltlng an air contaminant? (See the APCD factsheet at hltp: l/www.sdapcd .orglinfo/factstpermlts, pdf 6. □ Ill (ANSWER ONLY IF QUESTION 5 IS 'YES') Will the subject fac/1/ty be located within 1,000 feet of the outer boundary of a school (K through 12)? Search the Callfornla School Directory at http:t/www .cde.ca.gov/re/sd/ for public and prlvale schools or contact the appropriate school district. Bflefly describe business activities: Briefly describe proposed project: Retail space seJHng shoes and dothlng; this Is• Nike Store Interior tenanta lmprovment w/ MEP work. I declare under penalty of perjury that lo the besl of my knowledge and bettef, the responses made hereln are true and correct. □; Fees Acknowledged: II Samantha Avalos 8119/2022 Name of Owner or Authorized Agent Date FOR OFFICIAL USE ONLY FIRE DEPARTMENT OCCUPANCY CLASSIFICATION: BY: DATE: __________ _ EXEMPT OR NO FURTHER INFORMATION RELEASED FOR BUILDING PERMIT BUT NOT FOR RELEASED FOR OCCUPANCY REQUIRED OCCUPANCY COUNTY-HMO" APCD COUNTY-HMO APCD COUNTY-HMO APCD ~'f Of S~ d'--)"' (),(',. u 4i-V1t:Wif: "() M. M.'.ltllflt!Z !";,!G~JATUl<,E 81]012022 U.lH •~1n "A slamp ,n !his box only exempts businesses from completing or updating a Hazardous Materials Business Plan. Other permitting requirements may stdl app y DEHQ_ HMD_HMBP _OuesliOnoaita v 2 0 (8/2021) Ptinlecl on: 8/30/2022@4:58 PM