HomeMy WebLinkAbout2575 GLASGOW DR; ; CBR2017-2233; PermitBuilding Permit Finaled
Residential Permit
Print Date: 07/31/2023
Job Address:
Permit Type:
Parcel#:
Valuation:
Occupancy Group:
#of Dwelling Units:
Bedrooms:
Bathrooms:
Occupant load:
Code Edition:
Sprinkled:
Project Title:
2575 GLASGOW DR, CARLSBAD, CA 92010-5602
BLDG-Residential
2081901700
$22,853.13
Work Class:
Track#:
lot#:
Project#:
Plan#:
Construction Type:
Orig. Plan Check#:
Plan Check#:
Addition
Permit No:
Status:
{city of
Carlsbad
CBR2017-2233
Closed -Finaled
Applied: 09/25/2017
Issued: 11/21/2017
Fina led Close Out: 07/31/2023
Final Inspection: 10/20/2022
INSPECTOR: Frazee, Tim
Collins, Michael
Burnette, Paul
Renfro, Chris
Description: DESAI: 67 SF EXTERIOR BATHROOM ATTACHED TO HOUSE// 132 SF ADDITION TO MASTER BEDROOM// 134 SF BALCONY 1
186 SF DETACHED PATIO COVER// OUTDOOR FIREPLACE
Applicant:
IVAN LOPEZ
9466 BLACK MOUNTAIN RD, # 210
SAN DIEGO, CA 92126-4550
(858) 779-1225
FEE
BUILDING PERMIT FEE ($2000+)
BUILDING PLAN CHECK FEE (BLDG)
ELECTRICAL BLDG RESIDENTIAL NEW/ADDITION/REMODEL
GREEN BUILDING STANDARDS PLAN CHECK & INSPECTION
MECHANICAL BLDG RESIDENTIAL NEW/ADDITION/REMODEL
PLUMBING BLDG RESIDENTIAL NEW/ADDITION/REMODEL
581473 GREEN BUILDING STATE STANDARDS FEE
STRONG MOTION-RESIDENTIAL
SWPPP INSPECTION FEE TIER 1 -Medium BLDG
SWPPP PLAN REVIEW FEE TIER 1-MEDIUM
Total Fees: $988.43 Total Payments To Date: $988.43
Contractor:
ECO MINDED SOLUTIONS INC
9530 PADGETT ST, # STE 109
SAN DIEGO, CA 92126-4449
(858) 779-1225
Balance Due:
AMOUNT
$230.27
$161.19
$41.00
$170.00
$39.00
$49.00
$1.00
$2.97
$238.00
$56.00
$0.00
Please take NOTICE that approval of your project includes the "Imposition" of fees, dedications, reservations, or other exactions hereafter
collectively referred to as "fees/exaction." You have 90 days from the date this permit was issued to protest imposition of these
fees/exactions. If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the
protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section
3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their
imposition.
You are hereby FURTHER NOTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection
fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this
project. NOR DOES IT APPLY to any fees/exactions of which you have previously been given a NOTICE similar to this, or as to which the
statute of limitation has previously otherwise expired.
Building Division Page 1 of 1
1635 Faraday Avenue, Carlsbad CA 92008-7314 I 442-339-2719 I 760-602-8560 f I www.carlsbadca.gov
THE FOLLOWING APPROVALS REQUIRED PRIOR TO PERMIT ISSUANCE: □PLANNING □ENGINEERING □BUILDING □FIRE □HEALTH OHAZMATIAPCD
{_ City of Building Permit Application Plan Check N~.2.0 I 1.-2.2., 3 .3
1635 Faraday Ave., Carlsbad, CA 92008 Est. Value 22.e~~-
Carlsbad Ph 760-602-2719 Fax: 760-602-8558 Plan Ck. Deposit
.
email: building@carlsbadca.gov
www.carlsbadca.gov Date q_z~-,--,
JOB ADDRESS SUITE#/SPACE#/UNIT# IAPzo& 251~ Ci 1-A-SG, () w D/ZtvE -(90 -/70 -0
CT/PROJECT#
'
LOT# I PHASE# I# OF UNITS I# BEDROOMS # BATHROOMS I TENANT BUSINESS NAME I CONSTR. TYPE I occ GROUP
l'?--0'?·· Z. Sb
DESCRIPTION OF WORK: Include Square Feet of Affected Area(s)
INS M--/..Urr1 <N Of' 1 uJtJZH €kiJ snt-<, ,:; ,vJ'lC ,tIT,\v/60 re 8(tS ;w,; z_ S,'Of-y 1-ic:JVf;(:) / . .vs7f"\"(..U-f7c.'...v u
1 Ft(Z.(; ovE;,JZ-µ6A-0 $ 7]Zvl IVIZE 1"/!£1;; ,ST"fN9rN4 I ,',Jf3.v ff;,ifv/le ~vff<>Jl-, <,v.; L 1 ,A/@,'; ;J,A 5 ,w ,z.y
re ;\11,i zt;, )J/3w '1-1T f-t U-t (? D J',]7.ve,.r,l/lR (e-tn1 (lc'JM / u,;,,,,,J(,r,vl, ,2e,ov,) -~+l(Ai) 0,,(1,,~n,rL.t ~n,c..icP ~ 341.
C>~K~,\\) s 'Ilk (.;f\.l !Lt '"('E'-' ,fl.<;l..l ~ cc (1;;0 s>' \i\,\1•\ikA >'A .=-&;1. l6 ,F. n,,,\L-; "A1 .IZ.S--Sf"
EXISTING USE
\
PROPOSED USE I GARAGE (SF) PATIOS (SF) I DECKS {SF) FIREPLACE
\
AIR CONDITIONING \FIRE SPRINKLERS
~ll)bVT/,<L flts1().£M)-'\L YESO, NO□ YES □No □ YES □No□
APPLICANT NAME lv-\,-, PROPERTY OWNER NAME i-1+12.-SI-I f)t;'.541 Primary Contact k:,O<e,.,Z. --ADDRESS ADDRESS
'14(c0 i'> i--4<-,". /AO•hV111.v {?o.W Sv1,n,; -z,o 2-:5l5 ~~-5 l"-JCv,.) Dra.vE:
CITY STATE ZIP CITY STATE ZIP
S'+N D; £,t,O C4-9'212.h CAµS ,,, .\-0 (C4 q 2.() ,o
PHONE
I
FAX PHONE l'AX ([,$';:;) 77'1 (2..U' (@s&)174 IC',"( ( G\'1 I 1'1'3 :,1,s-1
EMAIL EMAIL
, vov1 a? e(Cr(I; "ded-&-;, i0 -h cri S.. Co'Y\
DESIGN PROFESSIONAL CONTRACTOR BUS. NAME eeo Ml-\f!)GD Sc>'-" noNS /i;CoM1N()51) 5c,Li.Jne.J,vS
ADDRESS ADDRESS
C'it\ "'" \:1. M lL ,V-Ou ,Jf','\1,V /Zc.+O 5Ji(e Z.1O c1-4(vG, ,., L,\-{'.l<C, 1'\/to-iAfCA1,v (7-0M Jv tTE?-2.t<.>
CITY STATE ZIP CITY STATE ZIP
'?W )ier,-,o CA cn,12.t; 5iv\J 0·,c:~o u qz,-u;
l'cs~b) 17 '1
~ PHONE IFAX PHONE -
7,G>,no )719 t--z.1-s-IA'0',1 rr<i ioSA ( 85b)TT"t n . .-z.-s-lo~-4 .
EMAIL =1, ..
f---rp€e<.CA"•<'ded,solu-hc,v; GOW\ y-p@:; e<.:.o,..,,·;..,cAeolsdv-+.or,:s; C:<YV'
I
STATE UC.# STATE Lil;.# ICIASS 1t~;c;';",1s} 94 y.,; 0"1 9-4820~
(Sec. 7031.5 Business and Professions Code; Any City or Coun_ty which requires a permit to. construct. alter, improve. demolish or repair any structure. prior to its issuance, also requires the applrcant for such per_mIt to file a signed statement that he rs licensed pursuant to the provIsIons of the Contractor's License LawJChapter 9, commendmgwIth Section 7000 of DrvIsIon 3 of the Bus·Iness and Professions Code) or that he Is exempt therefrom, and the basis for the alleged exemption. Any vIolatIon of Section 031.5 by any applicant for a permit subJects the applicant to a civil penalty of not more than five hundred dollars [$500)) .
•
Workers' Compensation Declaration: I hereby affirm under penalty of perjury one of the following declarations:
D I have and will maintain a certificate of consent to self-insure for workers' compensation as provided by Section 3700 ol the Labor Code, for the performance of the work for ,•,11'1ch this perm·1t is issued.
DI have and will maintain workers' compensation, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. My workers' compensation insurance carrier and policy
nurnberare:lnsuranceCo._U_~C)_J~• ~O ________ ·--PolicyNo.MSl&JC. JK\ C,.llL___ ___ Expiration Date 'l/,z/1.!1___ __ _ • This section need not be completed ·11 the permit is for one hundred dollars ($100) or less. 0 Certificate of Exemption: I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the Workers· Compensation Laws of
California WARNING: Failure to secure workers' compensation coverage is unlawful, and shall subject an employer to criminal penalties and civil fines up to one hundred thousand dollars (& 100,000), in
addition to the cost of compensation, for in Section 3706 of the Labor code, interest and attorney's fees.
_85 CONTRACTOR SIGNATURE
I hereby affirm that I am exempt from Contractor's License Law for the following reason:
□
□
□
I, as owner of the property or my employees with wages as their sole compensation, will do the work and :he structure is not intended or offered for sale (Sec. 7044, Business and Professions Code: The Contractor"s
License Law does not apply lo an owner of property who builds or improves thereon, and who does such work himself or through his own employees, provided that such improvements are not intended or offered for
sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale)
I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of
property who builds or improves thereon, and contracts for such projects with contractor(s) licensed pursuant to the Contractor's License Law)
I am exempt under Section__ Business and Professions Code for this reason:
1. I personally plan lo provide the major labor and materials for construction of the pro)XJsed property improvement. □Yes 0No
2. I (have/ have not) signed an application for a building permit for the proposed work
3. I have contracted with the following person (firm) to provkJe the proposed construct'1on (include name address /phone/ contractors' license number)·
4. I plan to provide portions of the work, but I have hired the following person to coordinate, supervise and provide the major work (include name /address/ phone / contractors' license number):
5. I will provide some of the work, but I have contracted (hired) the following persons to provide the work indicated (include name/ address I phone/ type of work)
,N5 PROPERTY OWNER SIGNATURE □AGENT DATE
'
Is the applicant or future building occupant required to submit a business plan, acutely hazardous materials registration form or risk management and prevention program under Sections 25505, 25533 or 25534 of the
Presley-Tanner Hazardous Substance Account Act? Yes No
Is the apr;licant or future building occupant required to obtain a perrn·11 from the air pollution control o'1str'1cl or air Quality management district? Yes No
Is the facility to be constructed within 1,000 feet of the outer boundary of a school site? Yes No
IF ANY OF THE ANSWERS ARE YES, A FINAL CERTIFICATE OF OCCUPANCY MAY NOT BE ISSUED UNLESS THE APPLICANT HAS MET OR IS MEETING THE REQUIREMENTS OF THE OFFICE OF
EMERGENCY SERVICES AND THE AIR POLLUTION CONTROL DISTRICT.
I certify that I have read the application and state that the above infonnation is correct and that the infonnation on the plans is accuratE. I agree to comply with all City ordinances and State raw.; relating to building construction.
I hereby aulhorize representative of the City of Car1sbad to enter up::in the al:x:lve mentioned property for inspecUon purposes. I ALSO AGREE TO SAVE, INDEMNIFY AND KEEP HARMLESS THE CITY OF CARLSBAD
AG\INST ALL LIABILITIES, JUDGMENTS, COSTS ANO EXPENSES WHICH MAY IN ANYWAY ACCRUE AGAINST SAID CITY IN CONSEQUENCE OF THE GRANTING OF THIS PERMIT
OSHA: An OSHA permit is required for exc.avations over S'O' deep and demolition or construction of structures over 3 stories in height
EXPIRATION: Every permit issued by the Building Ofocial under e provisions of this Code shall expire by limitation and beaJme null and vokl if the buikling or iMJrk authorized by such permit is not oommenced within
1
180 days from lhe date of such permit or if lhe building or orized b ch permit Is suspended or abandoned at any time after the wrk is commenced for a period of 180 days (Sectbn 106.4.4 Uniform Building Code)
L_~APPLICANT's,;IGNATURE ---&-9'--'I-----_ --_ DATE _!A/u; L21:>1,
STOP: THIS SECTION NOT REQUIRED FOR BUILDING PERMIT ISSUANCE.
Complete the following ONLY if a Certificate of Occupancy will be requested at final inspection.
Fax (760) 602-8560, Email buildinq@carlsbadca.gov or Mail the completed form to City of Carlsbad, Building Division 1635 Faraday Avenue, Carlsbad, California 92008.
CONTACT NAME
ADDRESS
CITY STATE
PHONE
EMAIL
DELIVERY OPTIONS
PICKUP:
MAIL TO:
CONTACT (Usted above)
CONTRACTOR (On Pg. 1)
CONTACT (Listed above}
CONTRACTOR (On Pg. 1)
ZIP
FAX
OCCUPANT (Listed above)
OCCUPANT (Listed above)
MAIL/ FAX TO OTHER:----------------~
A5 APPLICANT'S SIGNATURE
CO#: (Office Use Only)
OCCUPANT NAME
BUILDING ADDRESS
CITY STATE ZIP
Carlsbad CA
OCCUPANT'S BUS. LIC. No.
ASSOCIATED CB# ____________ _
NO CHANGE IN USE/ NO CONSTRUCTION
CHANGE OF USE/ NO CONSTRUCTION
DATE
PERMIT INSPECTION HISTORY for (CBR2017-2233)
Permit Type: BLDG-Residential
Work Class: Addition
Status: Closed -Finaled
Application Date: 09/25/2017 Owner:
Issue Date: 11/21/2017 Subdivision:
Expiration Date: 01/03/2023
IVR Number: 6526
Address: 2575 GLASGOW DR
CARLSBAD, CA 92010-5602
Scheduled
Date
Actual Inspection Type
Start Date
Inspection No. Inspection Primary Inspector Reinspection Inspection
12/13/2019
10/20/2022
Status
Checklist Item COMMENTS
BLDG-Building Deficiency
BLDG-Plumbing Final
BLDG-Mechanical Final
BLDG-Structural Final
BLDG-Electrical Final GFCI receptacles needed on TV wall. Call
for reinspection
12/13/2019 BLDG-Final Inspection
Checklist Item
113707-2019
COMMENTS
BLDG-Building Deficiency
BLDG-Plumbing Final
BLDG-Mechanical Final
BLDG-Structural Final
BLDG-Electrical Final
10/20/2022 BLDG-Final Inspection
Checklist Item
194626-2022
COMMENTS
BLDG-Build'1ng Deficiency
BLDG-Plumbing Final
BLDG-Mechanical Final
BLDG-Structural Final
BLDG-Electrical Final
Failed Chris Renfro
Passed Chris Renfro
Monday, July 31, 2023
Passed
No
No
No
No
No
Re inspection
Passed
No
No
No
No
No
Passed
Yes
Yes
Yes
Yes
Yes
Incomplete
Complete
Page 4 of 4
PERMIT INSPECTION HISTORY for (CBR2017-2233)
Permit Type: BLDG-Residential Application Date: 09/25/2017 Owner:
Work Class: Addition Issue Date: 11/21/2017 Subdivision:
Status: Closed -Finaled Expiration Date: 01/03/2023 Address: 2575 GLASGOW DR
IVR Number: 6526 CARLSBAD, CA 92010-5602
Scheduled Actual Inspection Type Inspection No. Inspection Primary Inspector Reinspection Inspection
Date Start Date Status
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Yes
BLDG-15 Roof/ReRoof 095092-2019 Passed Chris Renfro Complete
(Patio)
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Yes
08/08/2019 08/08/2019 BLDG-84 Rough 100143-2019 Failed Chris Renfro Reinspection Incomplete
Combo(14,24,34,44)
Checklist Item COMMENTS Passed
BLDG-Building Deficiency No contractor on site No
BLDG-14 No
Frame-Steel-Bolting-Welding
(Decks)
BLDG-24 Rough-Topout No
BLDG-34 Rough Electrical No
BLDG-44 No
Rough-Ducts-Dampers
08/09/2019 08/09/2019 BLDG-84 Rough 100286-2019 Passed Chris Renfro Complete
Combo(14,24,34,44)
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Yes
BLDG-14 Yes
Frame-Steel-Bolting-Welding
(Decks)
BLDG-24 Rough-Topout Yes
BLDG-34 Rough Electrical Yes
BLDG-44 Yes
Rough-Ducts-Dampers
08/14/2019 08/14/2019 BLDG-16 Insulation 100793-2019 Passed Chris Renfro Complete
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Yes
08/19/2019 08/19/2019 BLDG-18 Exterior 101305-2019 Passed Chris Renfro Complete
Lath/Drywall
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Yes
12/04/2019 12/04/2019 BLDG-Final Inspection 112662-2019 Failed Chris Renfro Reinspection Incomplete
Monday, July 31, 2023 Page 3 of 4
PERMIT INSPECTION HISTORY for. (CB~2017-2233)
Permit Type: BLDG-Residential
Work Class: Addition
Status: Closed -Finaled
Application Date: 09/25/2017 Owner:
Issue Date: 11/21/2017 Subdivision:
Expiration Date: 01/03/2023
IVR Number: 6526
Address: 2575 GLASGOW DR
CARLSBAD, CA 92010-5602
Scheduled
Date
Actual Inspection Type
Start Date
Inspection No. Inspection
Status
Primary Inspector Reinspection Inspection
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Roof sheathing OK Yes
08/07/2018 08/07/2018 BLDG-21 066137-2018 Cancelled Chris Renfro Reinspection Incomplete
Underground/Underflo
or Plumbing
Checklist Item COMMENTS Passed
BLDG-Building Deficiency No
08/08/2018 08/08/2018 BLDG-84 Rough 06627 4-2018 Failed Chris Renfro Reinspection Incomplete
Combo(14,24,34,44)
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Exterior not wrapped. Call back when No
weathertight
BLDG-14 No
Frame-Steel-Bolting-Welding
(Decks)
BLDG-24 Rough-Topout No
BLDG-34 Rough Electrical No
BLDG-44 No
Rough-Ducts-Dampers
08/16/2018 08/16/2018 BLDG-84 Rough 067251-2018 Passed Tim Frazee Complete
Combo(14,24,34,44)
Checklist Item COMMENTS Passed
BLOG-Building Deficiency No
BLDG-14 No
Frame-Steel-Bolting-Welding
(Decks)
BLDG-24 Rough-Topout No
BLDG-34 Rough Electrical No
BLDG-44 No
Rough-Ducts-Dampers
08/24/2018 08/24/2018 BLDG-17 Interior 068079-2018 Failed Chris Renfro Reinspection Incomplete
Lath/Drywall
Checklist Item COMMENTS Passed
BLDG-Building Deficiency No contractor on site and no inspection No
card. Left voicemail with contractor.
05/21/2019 05/21/2019 BLDG-14 092453-2019 Partial Pass Paul Burnette Reinspection Incomplete
Frame/Steel/Bolting/We
lding (Decks)
Checklist Item COMMENTS Passed
BLDG-Building Deficiency No
06/19/2019 06/19/2019 BLDG-13 Shear 095093-2019 Passed Chris Renfro Complete
Panels/HD (ok to wrap)
Monday, July 31, 2023 Page 2 of 4
Building Permit Inspection History Finaled
(city of
Carlsbad
PERMIT INSPECTION HISTORY for {CBR2017-2233)
Permit Type: BLDG-Residential Application Date: 09/25/2017 Owner:
Work Class: Addition Issue Date: 11/21/2017 Subdivision:
Status: Closed -Finaled Expiration Date: 01/03/2023 Address: 2575 GLASGOW DR
IVR Number: 6526 CARLSBAD, CA 92010-5602
Scheduled Actual Inspection Type Inspection No. Inspection Primary Inspector Reinspection Inspection
Date Start Date Status
12/13/2017 12/13/2017 BLDG-21 043285-2017 Passed Chris Renfro Complete
Underground/Underf1o
or Plumbing
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Yes
01/03/2018 01/03/2018 BLDG-11 044829-2018 Passed Michael Collins Complete
Foundation/Ftg/Piers
(Rebar)
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Caissons only at Line 6 Yes
01/04/2018 01104/2018 BLDG-11 045028-2018 Partial Pass Chris Renfro Re inspection Incomplete
Foundation/Ftg/Piers
(Rebar)
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Yes
02/16/2018 02/16/2018 BLDG-21 049049-2018 Partial Pass Chris Renfro Re inspection Incomplete
Underground/Underflo
or Plumbing
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Yes
02122/2018 02/22/2018 BLDG-11 049542-2018 Passed Chris Renfro Complete
Foundation/Ftg/Piers
(Rebar)
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Yes
07/12/2018 07/12/2018 BLDG-11 063788-2018 Passed Tim Frazee Complete
Foundation/Ftg/Piers
(Rebar)
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Yes
BLDG-13 Shear 063786-2018 Passed Tim Frazee Complete
Panels/HD (ok to wrap)
Checklist Item COMMENTS Passed
BLDG-Building Deficiency Yes
BLDG-15 Roof/ReRoof 063787-2018 Passed Tim Frazee Complete
(Patio)
Monday, July 31, 2023 Page 1 of 4
( City of
Carlsbad
SPECIAL INSPECTION
AGREEMENT
B-45
I •1·1
/ 11 l' i J
Development Services
Building Division
1635 Faraday Avenue
760-602-2719
www.carlsbadca.gov
In accordance with Chapter 17 of the California Building Code the following must be completed when work being performed
requires special inspection, structural observation and construction material testing.
A. THIS SECTION MUST BE COMPLETED BY THE PROPERTY OWNER/AUTHORIZED AGENT. Please check if you are Owner-Builder
□. (If you checked as owner-builder you must also complete Section B of this agreement.)
Name: (Please print)_...S-~ ________ __,,5_ _________ -~-_!_ ____ _
(First) (M.I.) (last)
Mailing Address·_2___lf~6 _jS/~H-o11~1cl{A-_ ~-~-.DfC#() _ C4 _<jJ/ Z '-
Email-.__~ (! _ e,.c O MM ,),V ~l.J+to11s ._ C.OM. _ _ _ Phone: _E.[t:_] ?ff_:_ _!!_Z f" _
I am: □Property Owner ~operty Owner"s Agent of Record □Architect of Record □Engineer of Record
State of California Registration Number:_ _______________ Expiration Date: ________ _
AGREEMENT: I, the undersigned, declare under penalty of perjury under the laws of the State of California, that I have read,
understand, acknowledge and promise to comply with the City of Carlsbad requirements for special inspections, structural
observations, construction materials testing and off-site fabrication of building components, as prescribed in the statement of
:::~:~~=S5ofd :n~h::prov: :a: ~nd, a: :quir: by the Cali:~~~a ~~;z~;~ -------
8. CONTRACTOR'S STATEMENT OF RESPONSIBILITY (07 CBC, Ch 17, Section 1706). This section must be completed by the
contractor I builder/ owner-builder.
Contractor's Company Name:_ ,l!!"e,p II{ IIV_)j~~A,f/7/ PIVS ,.Ue.. Please check if you are Owner-Builder D
Name: (Please print) ____ ~!'8£_~7"_ ______ .,.-y'._ _______ f P.Jt-./!-P~ ____ _
(First) (M.I.) (Last)
Mailing Address -__</ "r~~ -,6~ Aflf'£",A/ 7;211'# A-~,:VP rs~ _J;#___g-0 ~BA t
Email· R./"~t~.1!f1NlJlilU!-P"77MS• c!:-1?,,ff ____ Phone:#ff8•"f,lj-_,.ti,/~P __
State of California Contractor's License Number: __ 9 fg,:te:,--2'-__ Expiration Date:~ ~otP•.£~! /!
• I acknowledge and, am aware, of special requirements contained in the statement of special inspections noted on
the approved plans;
• I acknowledge that control will be exercised to obtain conformance with the construction documents approved by the
building official;
• I will have in-place procedures for exercising control within our (the contractor's) organization, for the method and
frequency of reporting and the distribution of the reports; and
• I certify that I will have a qualified person within our (the contractor's) organization to exercise such control.
• I will provide a final report I letter in compliance with CBC Section 1704.1.2 prior to requesting final
inspection.
Signature; _ ~Ji F~ _______ Date:_ /~.:?_IP_'_/,?'__ ____ _
B-45 Page 1 of 1 Rev. 08/11
STRUCTURAL CALCULATIONS PACKAGE
PLAN CHECK RESPONSES
PATTERSON ENGINEERING,INC
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
TEL 858.605,0937
FAX. 858.605.1414
E.info@pattersoneng.com
Desai Residence,
2575 Glasgow Drive,
Carlsbad, CA 920 I 0
October 18, 20 I 7
Project Number: 17070055
a .
.
~~'~
l ;f•
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
PLAN REVIEW CORRECTION LIST AND RESPONSE
SINGLE FAMILY DWELLINGS AND DUPLEXES
5. Please submit structural calculation from engineer of record for structural review on
resubmittal.
Please see attached calculation below.
11. Will structural elements for "Attached" Patio Cover structure be connected? It appears on
4/S4.2 that the two will not interact. If so, please show a I -inch clearance between framing.
Please see updated detail #4 on Sheet S4.2.
16. Note on plans that surface water will drain away from building and show drainage pattern.
The grade shall fall a minimum of6" within the First 10 feet. Section R 401.3.
Please see note# 9 on Sheet S 1.0 under the heading "Foundation".
17. Show on plans that wood shall be 6" minimum above finish grade or 2-inches above non-
permeable exterior. See 9. S4. I. Section R404. I .6.
Please see note# 10 on Sheet Sl.0 under the heading "Foundation" and note #7 on foundation
plan sheet S3.0. also please see updated detail #9 on sheet S4.I.
18. Structural plans Drawing Status section state that these documents are not for construction.
Please generate final draft for plan review.
Please see updated structural drawing sheets.
19. Not sure if the double line shown behind the spa is for new free-standing masonry/privacy
wall or something that already exists.
Please see updated foundation plan sheet S 3.0. Double line behind the spa is for existing site
wall.
20. No header is shown for window for Bathroom addition.
Please see updated Roof plan sheet S 3.1 and attached calculation below.
2 I. Detail 15 called out on S3 .0 appears to be long to I 5/SD2. l.
Please see updated call out on foundation plan sheet S3.0. and see detail 12 on sheet S2.0 for
typical holdown connection detai I.
22. Please provide and reference detail for welded connection at beam and post located at
Gridline 5-residence post connection.
Please see updated detail #1 on sheet S4.2 for beam to post connection.
23. Where do details on S4.3 pertain to?
S 4.3 Sheet is Typical Masonry Details for masonry construction. See updated sheet S2.4.
24. Note that a complete structural plan review could not be completed at this time due to plans
missing structural calculations. Please submit all necessary documentation on resubmittal.
Please see attached complete set of structural drawing and calculation.
Page 2 of 108
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 20 I
SAN DIEGO, CA 92 I 03
STRUCTURAL CALCULATIONS
TABLE OF CONTENTS
I. STRUCTURAL BASIS OF DESIGN ................................................................................................... 3
2. LATERAL CALCULATIONS ............................................................................................................... 10
3. DIAPHRAGM AND DRAG FORCE CALCULATION ..................................................................... 47
4. VERTICAL CALCULATIONS ........................................................................................................... 49
5. POST AND STUD WALL CALCULATIONS ................................................................................... 69
6. FOUNDATION CALCULATIONS ..................................................................................................... 81
Page 3 of 108
r
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
STRUCTURAL BASIS OF DESIGN
Page 4 of 108
.
tf
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 20 I
SAN DIEGO, CA 92103
STRUCTURAL BASIS OF DESIGN:
The project consists of Addition and alteration in existing building and new addition of steel framed
trellises. The structure is remodeled using wood construction and the foundation system consists of
continuous and isolated footings.
I. CODES
The governing building code is the 2016 California Building Code (CBC) as based on the 2015 IBC
(ASCE 7-10).
Concrete design based on the American Concrete Institute Building Code Requirements for Structural
Concrete (ACI 318-14).
Masonry design based on TMS 402-13/ACI 530-13/ASCE 5-13 Building Code Requirements and
Specification for Masonry Structures (MSJC Code).
Steel design based on:
AISC Specification for Structural Steel Buildings (AISC 360-IO).
AISC 341-10 Seismic Provisions for Structural Steel Buildings.
AISI SI 00-07/S2-l O North American Specification for the Design of Cold-Formed Steel Structural
Members, with Supplement 1, dated 2010
A WS Structural Welding Code ANSI/A WS Dl.1 and Dl.8 (current edition).
Wood design based on:
AF&PA NDS-2015 National Design Specification (NDS) for Wood Construction -with
Commentary and, NDS supplement -Design Values for Wood Construction, 2015 Edition.
AF&PA SDPWS-15 Special Design Provisions for Wind and Seismic.
Page 5 of 108
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DlEGO, CA 92103
DESIGN CRITERIA SUMMARY
GOVERNING
CODE:
CONCRETE:
MASONRY:
MORTAR:
GROUT:
REINFORCING
STEEL:
STRUCTURAL
STEEL:
WELDING:
2016 California Building Code
f' c = 2500 PSI, SPECIAL INSPECTION (U.O.N.)
ASTM C90, f' m = I 500 PSI, SPECIAL INSPECTION REQUIRED (U.O.N.)
ASTM C270, f' c = 1800 PSI, TYPES
ASTM C476, f' c = 2000 PSI
ASTM A651, Fy = 40 KS! FOR #3 AND SMALLER
ASTM A6l5, Fy = 60 KS! FOR #4 AND LARGER (U.O.N)
ASTM A992, Fy = 50 KS! (ALL "W" SHAPES ONLY)
ASTM A36, Fy = 36 KS! (STRUCTURAL PLATES, ANGLES,CHANNELS)
ASTM A500, GRADE B, Fy = 35 KS! (STRUCTURAL PIPES)
E70 -T6 -TYP, FOR STRUCTURAL STEEL
E90 SERIES FOR A615 GRADE 60 REINFORCING BARS
Shop welding to be in an approved fabricator's shop.
Field welding to have continuous special inspection.
All welding to be done by certified welders.
BOLTS & ASTM Fl 554
THREADED ROD:
SAWN LUMBER: DOUG FIR LARCH, ALLOWABLE UNIT STRESSES PER2010 CBC
I-JOISTS: BOISE CASCADE -ICC EDR-1336 (BC! MEMBERS)
ENGINEERED BOISE CASCADE -ICC ESR-1040 (VERSA-LAM L VL MEMBERS)
BEAMS:
GLULAMS: DOUGLAS FIR OR DOUGLAS FOR/ HEM GRADE 24F -V4 (SIMPLE
SPANS)
GRADE 24F -V8 (CANTILEVERS)
SOIL: CODE MINIMUM
Page 6 of 108
DESIGN LOADS
FLAT ROOF LOADS (With Solid Roof):
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
Roofing (Solid ballast Roof) ............................................................................................ = 12.0 psf
Sheathing ............................................................................................................................ = 2.0 psf
Roof Framing ...................................................................................................................... = 3.0 psf
Insulation ........................................................................................................................... = 1.5 psf
Ceiling Finish ...................................................................................................................... = 2.0 psf
Miscellaneous ..................................................................................................................... = I~
Total Roof Dead Load .................................................................................................................. = 22.0 psf
Total Roof Live Load .................................................................................................................... = 20.0 psf
Total Roof Load ............................................................................................................................ = 42.0 psf
FLAT ROOF LOADS (Open lattice):
Roof Framing ...................................................................................................................... = 3.0 psf
Miscellaneous ..................................................................................................................... = 2.0 psf
Total Roof Dead Load .................................................................................................................. = 5.0 psf
Total Roof Live Load .................................................................................................................... = I 0.0 psf
Total Roof Load ............................................................................................................................ = 15.0 psf
Page 7 of 108
a ,
,
' :;1)
k\,
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
ROOF LOADS WITH TILES:
Roofing (Tiles) .... , ........................................................ , .................................. ., ...... ., ...... = 12.0 psf
Sheathing,,, .. , .. , ... ,, ... ,,., .. , ..... , .. , ..... ,,,., ....... , ... , .... , .. , ........ , .. ,.,,,,,, .... ,.,,,. .. ,.,.., .... , .. , ... ,, ... ,.,,,.., = 2.0 psf
Roof Framing ..... , .. , ..... ,,., ..... , .. , .... ,, ... ,., ... ,, ... ,,., .... ,, ... ,. .. ,,,,., .... ,,.,,. .. ,,,,,,, ... , ....... , ........... ,. .. ,. = 3 .0 psf
lnsu lation .. ,. .......... ,. ...... , .. , ,. ................ ,. ..................................... ,. ........... ., . ., ,. .......... ,. . ., ..... = 1.0 psf
Ceiling Finish ............... ,.,., .. .,, .. ., .... ., ..... .,.,.,., ........................ ., ............... ., ............... ., .......... = 1 ,5 psf
Miscellaneous .. ., ..... ,., .. ,, ..... , .... ,, ........ ,.,, ... ,., .. , .. ,,,.,, , .. ,, .... ,, ...... ,, ,,., .... , .. , .... ,.,,., ........... , ...... , = 2d,filf
Total Roof Dead Load .... ., ....... ., ........ ., ................ ., ........................................... , ........................... = 22.0 psf
Total Roof Live Load,, .. , ...... , ...... ,, ... ,, .... , ....... ,,,.,., ...... , .... , .. , .... ,, .... , ... , ..... ,., .... ,, .... ,., ..... , ... , ...... , .... = 20.0 psf
Total Roof Load .. , ... ,, .... ,., ..... , .. , .. , ..... , ........ , .. , ... , .... , .. , .. ,,, .......... ,,, ..... , ..... , .... ,, ,, .. ,., ... , ... , .. , ........ ,.,.,= 42.0 psf
EXTERIOR WALL LOADS:
Studs .. , ......................................... , ................................ ., .............. ,. .................................. ,= 1.1 psf
Sheathing .......................................................................................................................... = 1,5 psf
Gypsum Board .......................... .,., ...... ., .. .,., .. ., ... ., .... , .. ., . ., ...... ., ........... .,,. ...... ., .................. = 2.5 psf
Insulation., ...... ., ........ , ... ., .............................. , .... ., .... ., ..... ., ...... ., ...... .,., ...... ., .............. ., ...... = 1.0 psf
Finish .............. ., .............. , .... , .. , ................................................ , ...................................... = I 0,5 psf
Miscellaneous ....................... ., .................. ., .......................... ., .......................................... = I .4 os f
Total Exterior Wall Dead Load ....... ., ........................................................................................... = 18.0 psf
Page 6 of 108
INTERIOR WALL LOADS:
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
Studs .................................................................................................................................. = I . I psf
Sheathing ......................................................................................................................... = I .5 psf
Gypsum Board ................................................................................................................ = 5.0 psf
Miscellaneous ................................................................................................................... -2.4 psf
Total Interior Wall Dead Load .................................................................................................... = I 0.0 psf
Page 9 of 108
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
LATERAL CALCULATIONS
Page 10 of 108
ASCE 7 Windspeed ASCE 7 Ground Snow Load
Search Results
Query Date: Thu Jul 13 2017
Latitude: 33.1564
Longitude: -117.3042
ASCE 7-10 Windspeeds
(3-sec peak gust in mph*):
Risk Category I: 100
Risk Category II: 11 O
Risk Category Ill-IV: 115
MRI** 10-Year: 72
MRI** 25-Year: 79
MRI** 50-Year: 85
MRI** 100-Year: 91
ASCE 7-05 Windspeed:
85 (3-sec peak gust in mph)
ASCE 7-93 Windspeed:
70 (fastest mile in mph)
*Miles per hour
.. Mean Recurrence Interval
Users should consult wi1h local building officials
to determine if there are community-specific wind speed
requirements that govern,
1[=11 Print your results
Related Resources
WINDSPEED WEBSITE DISCLAIMER
Sponsors About ATC
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors
assume no responsibility or liability for its accuracy. The material presented in the windspeed report should not
be used or relied upon for any specific application without competent examination and verification of its
accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the
use of this information replace the sound judgment of such competent professionals, having experience and
knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in
interpreting and applying the results of the windspeed report provided by this website. Users of the information
from this website assume all liability arising from such use. Use of the output of this website does not imply
approval by the governing building code bodies responsible for building code approval and interpretation for the
building site described by latitude/longitude location in the windspeed load report.
Contact
Sponsored by the ATC Endowment Fund · Applied Technology Council · 201 Redwood Shores Parkway, Suite 240 • Redwood City, California 94065 • (650) 595-1542
Page 11 of 108
lilJSGS Design Maps Summary Report
User-Specified Input
Building Code Reference Document 2012/2015 International Building Code
(which utilizes USGS hazard data available in 2008)
Site Coordinates 33.15642°N, 117.30416°W
Site Soil Classification Site Class C -"Very Dense Soil and So~ Rock"
Risk Category I/II/III
USGS-Provided Output
S5 = 1.083 g
S1 = 0.417g
iricr vn111,u 11
~ffll l!lol\1 1111
A •I I
CarlsbJ
SMS = 1.083 g
S M1 = 0.577 g
"Vista
Sf" M•rcos 1
Escondido•
S05 = 0.722 g
S01 = 0.384 g
For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and
deterministic ground motions in the direction of maximum horizontal response, please return to the application and
select the "2009 NEHRP" building code reference document.
MC£.. Response Spectrum
I 10
Cll13
Cllll
117'
~ 11!'<>
0 cu, .,, o1 0 "'
11 ..
11-1>
=
1111
ClOO ~-l---+---+--+----1,---+--+--I---+-~
CltX! Cl1ll Cl40 CL&! CLlll I.ID 1.lC 140 Uil !Jl'J 2.00
PetlOd. T ( ~ee)
a"'
1111)
a.&<
IL¥,
Q.<11!1
OAO
CU2
CL.24
a,o
aoo
ClOl
1100 0..0
Oes,gn Respoose Spectrum
a.a 0.6.l 0.ltJ !.lll IZ! I AO Ull 1.Jl:l 2aJ
Pef!Od. T(a«)
Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the
accuracy of the data contained therein. Thts tool is not a substitute for technical subject-matter knowledge.
Page 12 of 108
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON ORNE, SUITE 201
SAN DIEGO, CA 92103
WIND ANALYSIS (ATTACHED PATIO)
I. Wind Loading Calculations:
Wind Loading Criteria:
= 110 mph Basic Wind Speed
Exposure Category
Enclosure classification
Building category
= "B" (Exposure: ASCE 7-10, Section 26. 7.3)
= partially Enclosed Buildings
= JI
Importance Factor = 1.0
a) Wind Pressure Calculations:
Height of roof
Exposure category
Importance factor (I)
Basic Wind speed (V)
Roof Slope
Wind directionality factor (Kd)
Topographic factor (Kzi)
Velocity pressure exposure factor (Kz)
= 10'-0"
=B
= 1.00
=II0mph
= 00
= 0.85
(ASCE 7-10, Section 26.6)
= 1.0
(ASCE 7-10, Section 26.8)
= 0.47 for I 0'-0"
(ASCE 7-10, Table 30.3-1)
Building is considered as open building
Velocity pressure qh = 0.00256 KzKztKN2 Eq. 30.3-1, ASCE 7-10
= 0.00256 x 0.47 x 1.0 x 0.85 x 1102
= 12.37 psf
Building is considered as open building with Clear wind flow
Refer to output below
(Refer secti on 27.4.3, ASCE 7-1 0)
Page 13 of 108
WIND LOAD CALCULATION
Base shear due to Wind loading(P)
Where,
A
p
Lateral Load (WIND)
No of columns
Lateral Load on each column
Wind load calculation on wall
Wind pressure on wall
Wind load on column due to wall
Moment due to Wind loading
Lateral Load on each column
Moment due to seismic loading
=qh X A
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON ORNE, SUITE 201
SAN DIEGO, CA 92103
= projected area normal to the wind
= (16 X (10/12)
= 13.33
= 13.33 sq. ft.
= q h X A
=12.37 X 13.33
=1651bs
= 0.198 kips
=3 nos
= 165/3
= 55 lbs
= 0.055 Kip
= 18.0 psf
= 18x Trib
= 18x7.0
=126plf
(conservatively)
= 0.055x9+(126x8x8/2)
= 4.032 kips-ft
= 2.32/1 Kip
= 2.32 kips
= 2.32x9
= 20.88 kips-ft
for bottom 8 '-0" of column
Hence, Seismic forces governs design column for seismic loading
Page 14 of 108
EQUIVALENT LATERAL FORCE PROCEDURE-BASE SHEAR (201S IOC)
ASCE/SEI 7•!0
INPUT SEISMIC PARAMETERS
Direction of Seismic Provided
Ex.citation Sue Class: D From A (hard) to E (soft)
Areas of Building where PROVIDED
Regular Structure five N
stones or less in height? ASCE 12.8.1.3
system is utilized h,,~ 1800 ft Mean Height of the bldg
Ss• I 083 8
s, • 0 417 8
Type of System• Wood shear walls ASCE table 12.2-1 F, • t.000 Table 11 4-1
F,. • t.383 Table 11.4-2
R• 1.25 ASCE table 12.2-1 T""""' t•i. 8 00 sec Actual T from comp. model
Risk Category: I or II ASCE table 1-1 S1ructure Type: All other structural systems
CODE VALUES
SEISMIC PARAMETERS BASE SHEAR
le• I ASCE table 11.5-1 Seismic response coefficient.
S5 used for C, • 1.083 g ASCE 12.8.1.3 C, • s,,. /(R/1) • 0.578 Eq 128-2
s,,. • 2/3 x F,S, • 0.722 g ASCE Eq. 11.4-3
S06 used for c. • 0. 722 g ASCE 12.8.1.3 Cs need not exceed following.
S01 • 2/3 x F,S1 • 0.384 g ASCE Eq. 11.4-4 C, • S01 /((R/l)T] • t.257 Eq 12.8-3
s,,. > 0.50g D ASCE Table 11.6-1
S0 , >0.20g D ASCE Table 11.6-2 Cs shall not be taken less than:
c,-0.02 ASCE Table 12.8-2 c,-0010 Eq 12 8-5
x • 0.75 ASCE Table 12.8-2
T,•C,(h,,)'• O 17 sec ASCE Eq. 12.8-7 For structures located where S1 ::!': 0.6g, Cs shall not be taken less than:
c.-1.4 Table 12.8-1 Cs• 0.5S I /(R/1) • N/A Eq. 12.8-6
C.T,• 0.24 sec
T• 0.24 sec T used for base shear calc Seismic Weight
Seismic design category • D ASCE 11.6 c,-0.578 Seismic Resp. Coefficient
v-Csx\\'• Base Shear
Page 15 of 108
BUILDING WEIGHT
DESIGN CRITERIA
Code Used
Building Code
LACity Requirement :
20151BC
2016CBC
No
CODE MINIMUM
BUILDING GRAVITY LOADING SUMMARY
Level Height Elevation
ft
!lOOF 10.00 10.00
.
. .
•· • Roof Dead Load Includes Cc,hng Dead Load
BUILDING WALL LOADING SUMMARY
Wall Weight
Tvne osf
Exterior 18.00
Interior 10.00
Mis. Wall 90.00
BUILDING WEIGHT
ROOF
Arca L
Type (ft)
Area I
Area 2
Area3
Area 4
Ext. Wall 4.00
Int. Wall .
Mis. Wall .
TOTALROOFAREA/LOAD
Unit Wei~ht osf
Dead-I Live-I
22.00 20.00 .
.
. .
w Area
(ft) (ft'2)
372.00
1.00
1.00
1.00
372.00
Concrete F'c
Steel Fy
Bearing Capacity : 1,500 ps
Unit Weioht nsf Unit Wei~ht osf Unit Weioht nsf
Dcad-2 Live-2 Dcad-3 Live-3 Dead-4 Livc-4
. . . .
. . . . . .
. . . . .
. . . . . .
FLOOR DEPTH
Level Floor Heioht
ft
ROOF 1.00
0.00
. 0.00
. 0.00
. 0.00
Dead Weight Load
lnsfl (kips)
22.00 8.18
. .
.
.
18.00 0.47
10.00
90.00
8.65
Page 16 of 108
LATERAL FORCE DISTRIBUTION
SEISMIC BASE SHEAR
lmponancc faclor, I
EQ Acc. @) 5% Damped Design
Redundancy fac1or
V1111 •
VASO -
VASI> -
WIND BASE SHEAR
IBC 2015
v,1111.4
0.413 • 8.7 kips
Wind Base Shear
1.00 s,,, -__ .;.co._12~2~
pl •._ _ _..,,,0,.
0578 W
0.413 W
3.57 kips
0.5 kips
ASCE7-I0 Table 11.5-1
ASCE7-10 EQ 11.4-3
ASCE7-I0 1234.2
Working Slress (ASD) Level
Seismic Base Shear
SEISMIC BASE SHEAR GOVERNS
[J ~D~E~S~IG~N~B~A~S~EJS~ll~E~A~RL==========:::i■11■-•~ki~p~•=:::JJASD Level Seismic base shear
Total
I Fpx mm • 0.2•SDs•1•wpx (for flexible Diaphragm)
2 Fpx max -Q.4•SDs•1•wpx (for flexible Diaphragm)
3 25% increased for diaphram irregularity
ASCE7-I0 12.10 I.I
ASCE7-1012.10.1.1
ASCE7-I 0 12.3.3.4
Page 17 of 108
N) HSS6x6x½"
COLUMN
(N) 2x10@ 10 O.C.
Paga 18 of 108
(N) 2x10@ 10 O.C.
N) HSS6x
COLUMN
Page 19 of 108
II
0 ~
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRTVE, SUlTE 201
SAN DIEGO, CA 92103
CANTILEVER COLUMN CALCULATIONS
Page 21 of 108
CANTILEVER COLUMN DESIGN AT ADDITION
Max Axial Load on Column
Dead Load
Live Load
Lateral load
= 4.31 kips
= 2.93 kips
= 2.32 kips
Height of column = 9'-0"
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
(see analysis above)
Design Cantilever Column for Maximum Force (single column on grid F-7 .5 and Grid 6)
Lateral Load on each column = 2.32/1 Kip I Columns supporting Trellis
= 2.32 kips
From Enercalc output
Axial load on column
Allowable capacity of column
= 7.240 kips
= 75.111 kips
Axial load < 15% of allowable load
7.240 kips < 11.27 kips
Provide HSS 6 x 6 x 1/2" Steel Column (post)
Refer to output below.
OK
(ASCE 7-10 sectionl2.2.5.2)
Page 22 of 108
DRIFT CALCULATION FOR CANTILEVER COLUMN
Response reduction factor, R
Deflection Amplification factor, Cd
s ds
From Enercalc maximum Drift at Top, oxe
h sx
= 1.25
= 1.25
= 0.722
= 1.45 in
= 9 ft
PATTERSON ENGINEERING, JNC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
= 1.25
6x xcd < 0 I -X
Table 12.2-1 ASCE7-IO
Table 12.12-1 ASCE7-10
6xe xcd <0.02 h I -sx
6xe < 0.02
hsx -Cd
1.45 / (I Ox 12) S 0.02/1.25
0.012 S 0.016
_1_< 2.
110 -63
Design of post base connection
Height of post
Lateral Load on each column
HSS 4" x 4"x l /2" Steel post
Moment at the base, Mu
OK
= 9'-0"
= 2.32 kips
= 2.325x9
= 20.92 kips-ft
Use 12xl2x3/4" plate post base with (4) 1 1/8" A307 Anchor bolts with minimum 12" embedment
Page 23 of 108
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN OTEGO, CA 92103
Design of Base Plate
Column=
Length of Column =
Width of Column =
Thickness of Column =
6" x 6" x1/2" HSS
6.0 in
Maximum axial force =
Maximum Moment =
Strength of concrete =
Crushing strength of concrete =
Area of bearing plate required =
Size of bearing plate required =
L=
B=
6.0 in
7240 Ibs
251040 lbs-
in
2550 psi
0.020 sq.ft
1.68 in
12 in
12In
The combined stress due to the vertical load & moment,
M/P = 34.674
cr = [(P) /(b x I))± [(6M) /(bx t2))
Cfmax =
O'min =
921 .94 psi
-821.39 psi
Stresses are less than Crushing Strength of Concrete .... OK
Calculation for thickness
= 367200
psf
The thickness of the base plate is calculated by equating the moment of resistance of the base plate
with the moment at the edge of the column.
Let "t" be the thickness of the base plate.
Stress @ the edge of the column
Point of zero stress =
Distance from zero stress to right face of
column=
Distance from zero stress to left face of
column=
Moment at the edge of column =
6.35 in
2.65 in
3.35 in
203.90 psi
-229.04 psi
12286.72
in-lb
Page 24 of 108
Equating this moment w/ moment of resistance of base plate,
b X t2 / 6 X fb = M
t = 0.56 in
Hence provide 12" x 12" x 3/4" thk base plate(Minimum)
Design Of Bolt For Steel Plate to Footing
Connection
Tension to be resisted= 31 .28 kips
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
Assuming 1.13in Anchor Bolt embedded 4in minimum into footing
As per AISC Table I
Bolt Type=
Capacity of bolt =
A-307 -A ,---,1..,,.9--,,.90-:--,,-:--.
No. of Bolts required = 1.57 say 2 nos
Hence provide 2 no's A-307 bolts on each side
Page 25 of 108
Design of weld
Use of¼" Fillet weld all around
Design strength of weld
Shear strength of weld metal, 0Rn/A
PATTERSON ENGINEERING, TNC.
928 FORT STOCKTON DRIVE, surTE 201
SAN DIEGO, CA 92103
= 0.75 x 0.6 x FExx x 0.707
= 0.75 X 0.6 X 70000 X 0.707
= 22271 ksi
Strength of base material in shear, 0Rn/A = 0.9 X 0.6 X 36000
= 19440 ksi
Hence strength of weld metal governs.
Factored Moment at the base, Mu
Factored shear force, Vu
Section modulus of weld, Sw
Consider Z = S= 3 in3 (Conservative),
Factored shear stress
Factored bending stress
Combined stress
= 251040 lb-in
= 1.6 X 2320
=3712 lbs
= (bd + d2/3) X t
= (36 + 62 /3) X 0.25
= 12 in3
= 3712 / (6 X 6 X 0.5)
= 206.22 psi
= 25 1040/(12)
= 20920 psi
= ✓ (206.222 +209202)
= 20921.0 I psi < 22271 psi
(Provide of¼" weld is adequate for shear connection of plate to column)
Shear Capacity of each Anchor bolt,
Shear Force
Shear on each bolt
T = 3 100 lbs
= 2.325 kips
= 2.325/4 kips
=581 lbs <
(Table 1-D AISC)
3100 lbs OK
OK
Use 12xl2x3/4" Aluminum plate with (4) I 1/8" Dia Anchor bolts with minimum 12" embedment
Page 26 of 108
EQUIVALENT LATERAL FORCE PROCEDURE -BASE SHEAR (2015 lllC)
i\SCEISEI 7-10
INPUT SEISMIC PARAMETERS
Direction of Seismic Provided
Excitation Site Class: D From A (hard) Jo E (soft)
Areas ofBuilding where PROVIDED
Regular Structure five N
stories or less in height? ASCE 12.8.1.3
system is utilized
h,,-10.00 ft Mean Height of the bldg
S,• 1.083 g
s, -0.417 g
Type of System -Wood shear walls ASCE 1able 12.2-1 F, -1.000 Table 11.4-1
F, -1.383 Table 11.4-2
R• 1.25 ASCE table 12.2-1 T""""' ,~. 8.00 sec Actual T from comp. model
R;sk Category: I or II ASCE table 1-1 Structure Type: All other structural systems
(•)if not 1nil1blc mput 0
CODE VALUES
SEISMIC PARAMETERS BASE SHEAR
le• I ASCE table! 1.5-1 Seismic response coefficient:
Ss used for C, -1.083 g ASCE 12.8.1.3 C, -Sos /(R/1) -0.578 Eq. 12.8-2
Sos -213 • F,Ss • 0.722 g ASCE Eq. 11.4-3
Sos used for c. • 0. 722 g ASCE 12.8.1 3 Cs need not exceed following·
Su, -2/3 • F,.S1 -0.384 g ASCE Eq. 11.4-4 C, -s,,, /[(R/J)T] -1.953 Eq. 12.8-3
Sos > 0.50g D ASCE Table 11.6-1
So, > 0.20g D ASCE Table 11.6-2 Cs shall not be taken less than:
c,-0.02 ASCE Table 12.8-2 c,-0.010 Eq. 12.8-5
x • 0.75 ASCE Table 12.8-2
T,•C,(h,,)'• 0.11 sec ASCE Eq. 12.8-7 For structures located where S1 ?! 0.6g, Cs shall not be taken less than·
c. • 1.4 Table 12.8-1 Cs• 0.5S I /(R/1) -NIA Eq. 12.8-6
C,T,• 0.16 sec
T• 0.16 sec T used for base shear calc. Seismic Weight
Seismic design category • D ASCE 11.6 Cs-0 578 Seismic Resp. Coefficient
v-Cs x \V -Base Shear
Page 27 of 1 08
BUILDING WEIGHT
DESIG CRITERIA
Code Used
Building Code
LACi1y Rcquircmcnl
SOILS REPORT ____ _
CODE MINIMUM
BUILDI G GRAVITY LOADING SUMMARY
Level Height Elevation
ft
.!_00_! 10.00 10.00
--
.. • Roof Dead Load Includes Cc1hng Dead Load
BUILDING WALL LOADING SUMMARY
Wall Weight
T~ osf
Ex1erior
Interior
Mis. Wall
BUILDING WEIGHT
ROOF
Arca
Type
Arca I
Arca 2
Arca 3
Arca4
Ext. Wall
Int. Wall
Mis. Wall
18.00
10.00
90.00
L
(ft)
TOTALROOFAREA/LOAD
. .
. .
4.00 . .
Unit Wci2h1 osf
Dead-I Live-I
5.00 10.00 -. . . .
w Arca
(ft) (ft"2)
200.00 .
·-.
1.00
1.00
1.00
200.00
Concrete F'c :
Steel Fy
Bearing Capacity :
2.500p51
50,000 psi STRL STEEL
60 000 ~ REINF BAR
1,500 ps~
Unit Wei2h1 osf Unit Wci2h1 osf Unit Weill.ht osf
I Dcad-2 I Livc-2 Dcad-3 Live-3 Dcad-4 Live-4 . +---. . .
. . . . . . . I . . . . I . -I . -. . I . I -.
FLOOR DEPTH
Level Floor Height
ft
ROOF 1.00
. 0.00
-0.00
. 0.00
0.00
Dead Weight Load
/osf) (kips)
5.00 1.00 . .
.
18.00 0.47
10.00 .
90.00
1.47
Page 28 of 108
LATERAL FORCE DISTRIBUTION
SEISMIC BASE SHEAR
Importance Factoc, I
EQ Acc. (ii) 5% Damped Design
Rcdwxlancy Factor
v,. -
VA.SD -
VA.SD -
WINO BASE SHEAR
IBC 2015
Vu11 / I 4
0.413 • I 5 kips
Wmd Base Shear
SEISMIC BASE SHEAR GOVERNS
I 00
Sus -0722
pl • I.JO
0578 w
0.41 3 w
061 kips
0 5 k,ps
[I D!lliES~l~G~NLl!B~A~SfE]S]H~E~A~Rc===========1■m --ll(ips
Tood
I Fpx mm• O 2•SDs'l"wpx (foc Fle,uble Diaphragm)
2 Fpx max• O 4'SDs'l'wpx (for Flex,ble Diaphragm)
3 25% increased for diaphram irregularity
ASCE7-J O Table 11.5-1
ASCE7-10 EQ 11.4-3
ASCE7-I O 12 3.4.2
Work mg Stress (ASD) Level
Se,sm,c Base Shear
ASCE7-10 12 10 I I
ASCE7-JO 12 10 I.I
ASCE7-IO 12 3 3 4
Page 29 of 108
PATTERSON ENGINEERING, JNC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
WIND ANALYSIS (OPEN LATTICE AREA}
2. Wind Loading Calculations for Open Lattice Area:
Wind Loading Criteria:
= 110 mph Basic Wind Speed
Exposure Category
Enclosure classification
Building category
Importance Factor
= "B" (Exposure: ASCE 7-10, Section 26.7.3)
= partially Enclosed Buildings
= II
= 1.0
b) Wind Pressure Calcul ations:
Height of roof
Exposure category
Importance factor (1)
Basic Wind speed (V)
Roof Slope
Wind directionality factor (Kd)
Topographic factor (Kn)
Velocity pressure exposure factor (Kz)
= 10'-0"
=B
= 1.00
= 110 mph
= oo
= 0.85
(ASCE 7-10, Section 26.6)
= 1.0
(ASCE 7-10, Section 26.8)
= 0.47 for 10'-0"
(ASCE 7-10, Table 30.3-1 )
Building is considered as open building
Velocity pressure qh = 0.00256 KzKztKdV2 Eq. 30.3-1, ASCE 7-IO
= 0.00256 X 0.47 X 1.0 x 0.85 X 1102
= 12.37 psf
Building is considered as open building with Clear wind fl ow
Refer to output below
(Refer section 27.4.3, ASCE 7-10)
Page 30 of 108
27.4.3, Design Wind Load on Open Structures with Monoslope
1 psf 5 psf
CNL = 0.30
3.83 psf
I r= oo>
psf psf
2 CNL =-0.10 6
-1.28 psf
Case B
Clear Wind Flow
3 psf psf
CNL = -1.20 7
-15.31 psf
r=O~
Case A
psf psf
4 CNL = -0.60 8
-7.65 psf
Case B CaseB
Obstructed Wind Flow
ASCE 7-10 Figure 27.4-4
p = qhG CN
q,= .00256 K, Kzt ~ V2
Roof Angle= 0
Mean Roof Height h = 10 FT
Exposure coefficient K, = 0.57
Topography factor Kz1 = 1.00
Directionality factor ~ = 0.85
Building & Structure Risk Category= 11, standard
Exp = B
(27.4-3)
(27 .3-1)
T-27.3-1
T-26.8-1
T-26.6-1
IBC T-1604.5
CNw = 1.20
15.31
CNw= -1.10
-14.03
CNw = -0.50
-6.38
CNW= -1.10
-14.03
Wind Speed V = 110 MPH Fig. 26.5-1A, MRI= 700 yrs
q,=
Gust Effect factor G =
15.01
0.85
PSF
26.9
CN = Net pressure coefficient from T-27.4-1
p = 12.76 CN PSF
psf
\r= 180°1
psf
psf
\r= 180°1
psf
1. C NW and C NL denote net pressures (contributions from top and bottom surfaces) for windward and leeward half of roof
surfaces, respectively.
2. Clear wind flow denotes relatively unobstructed wind flow with blockage less than or equal to 50%. Obstructed wind flow
denotes objects below roof inhibiting wind flow (>50% blockage).
4. Plus and minus signs signify pressures acting towards and away from the top roof surface, respectively
Page 31 of 108
WIND LOAD CALCULATION
Base shear due to Wind loading(P)
Where,
A
p
Lateral Load (WTND)
No of columns
Lateral Load on each column
Base shear due to Seismic loading
Lateral Load (SEISMIC)
No of columns
Lateral Load on each column
Hence, seismic base shear governs.
=qh xA
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
= projected area normal to the wind
= ( 16 x ( I 0/ 12) + 2 ( I 0/2x ( 4/ I 2))
= 17.0
= 17.00 sq. ft.
= Qh X A
=12.37x 17.0
= 211 lbs
= 0.211 kips
=4 nos
= 211/4
= 53 lbs
= 0.053 Kip
= 0.61
= 0.61 kips
=4 nos
= 610/4
= 153 lbs
= 0.153 Kip > 0.053 kip
Page 32 of 108
\
\
\
I
=
Page 33 of 108
10
1
s.03 sf I I
I
Page 34 of 108
I • • ~
:i
j
Ji
~,
,_
_
11
Ji
, fl
,,
~
J ~l
J
-•!
J:
:
.:
!
.
.
i!
,
l
i•
ti
r ,!
i
i
ti
~-
.a
_
_
! ~!
!
~-
.!
.
.
.
_
g~
~.
>-
-
!l
~
11
,
l
-
1
l
JI
~ '
!H
•
~ ~:
-i;
-!
!I
j
u
!~
i
I[
~
l}
•
l}
•
J
"'
~
)
!
•
j
.
:;
I I
~ e
r.
r.
t
~
Ra
~ii
~~
;
-~
•
e
~~
slii
!
~.
;
~ •
!
• •
,
b
••
t
;
I:!
I i
1
I
:;
~
r
•
; ..
••
H
..
•
~
i:
•
i:
f '1
f
5-. .
1.
.
~ • ~
~
II
i ,
o
I
~
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRrYE, SUITE 201
SAN DIEGO, CA 92103
CANTILEVER COLUMN DESIGN AT OPEN LATTICE AREA
design for max loading along grid-A-I
Max Axial Load on Column
Dead Load = 0.63 kips
Live Load = 0.633 kips
Lateral load = 0.43 kips (see analysis above)
Height of column = 10'-0"
Design Cantilever Column for Maximum Force (Double column on grid Band Grid 1.25
Lateral Load on each column = 0.43/2 Kip I Columns supporting Trellis
= 0.215 kips
From Enercalc output
Axial load on column
Allowable capacity of column
Axial load
1.263 kips
Provide HSS 4x4 xl/2" Steel post
Refer to output below.
= 1.26 kips
= 18.56 kips
< 15% of allowable load
< 2.78 kips OK
(ASCE 7-10 sectionl2.2.5.2)
Page 36 of 108
DRIFT CALCULATION FOR CANTTLEVER COLUMN
Response reduction factor, R
Deflection Amplification factor, Cd
Sets
From Enercalc maximum Drift at Top, 6xe
hsx
= 1.25
= 1.25
= 0.722
= 0.545 in
= 10 ft
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUrTE 20 I
SAN OTEGO, CA 92103
= 1.25
6x xCd < 0 I -X
Table 12.2-1 ASCE7-10
Table 12.12-1 ASCE7-I 0
oxe x Cd < 0.02 hsx
I -
6xe < 0.02
hsx -Cd
0.55/ ( 1 Ox 12) S 0.02/1.25
0.0045 S 0.016
_1_< 2.
218 -63
Design of post base connection
Height of post
Lateral Load on each column
4" x 4" x 1/2" HSS
Moment at the base, Mu
OK
= 10'-0"
= 0.215 kips
=0.215x10
= 2.15 kips-ft
Use l2x12xl/2" plate post base with (4) 5/8" Anchor bolts with minimum 12" embedment
Factored moment
Factored Shear in bolt
Lever arm
Tmax
Tension in each Stud,
V
T
= 2.15xl.4 kips-ft
= 3.0 I kips-ft
=0.215xl.4
= 0.301 kips
= 6.5"min.
=3.0 1/0.541
= 5.564 kips
= 5564/2 lbs
= 2782 lbs
Page 37 of 108
Design of Base Plate
Column=
Length of Column =
Width of Column =
Thickness of Column =
Maximum axial force =
Maximum Moment =
Strength of concrete =
4" x 4" x1/2" HSS
4.0 in
4.0in
1263lbs
25800 lbs-in
PATTERSON ENGINEERING, TNC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIE.GO, CA 92103
Crushing strength of concrete =
Area of bearing plate required =
Size of bearing plate required =
2550 psi
0.003 sq.ft
0.70 in
= 367200
psf
H
L=
B=
12 In
12in
The combined stress due to the vertical load & moment,
M/P = 20.428
er = [(P) /(bx I))± [(6M) /(bx t2)]
Cl"max =
Omin =
98.35 psi
-80.81 psi
Stresses are less than Crushing Strength of Concrete .... OK
Calculation for thickness
The thickness of the base plate is calculated by equating the moment of resistance of the base plate
with the moment at the edge of the column.
Let ·t• be the thickness of the base plate.
Stress @ the edge of the column
Point of zero stress =
Distance from zero stress to right face of
column=
Distance from zero stress to left face of
column=
Moment at the edge of column =
6.59 in
1.41 in
2.59 in
11 .58 psi
-17.42 psi
1666.29 in-
lb
Equating this moment w/ moment of resistance of base plate,
Page 38 of 108
bx t2 / 6 x fb= M
t= 0.21 in
Hence provide 12" x 12" x 3/4" thk base plate(Minimum)
Design Of Bolt For Steel Plate to Footing
Connection
Tension to be resisted= 3.19 kips
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN OTEGO, CA 92103
Assuming 1.13in Anchor Bolt embedded 4in minimum into footing
A-307 Bolt Type=
Capacity of bolt = -~~~ .....
No. of Bolts required = 0.16
Hence provide 2 nos A-307 bolts on each side
As per AISC Table I
-A
say 2 nos
Page 39 of 108
Design of weld
Use of ¼" Fillet weld all around
Design strength of weld
Shear strength of weld metal, 0Rn/A
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
= 0.75 x 0.6 x FExx x 0.707
= 0.75 X 0.6 X 70000 X 0.707
= 22271 ksi
Strength of base material in shear, 0Rn/A = 0.9 X 0.6 X 36000
= 19440 ksi
Hence strength of weld metal governs.
Factored Moment at the base, Mu
Factored shear force, Vu
Section modulus of weld, Sw
Consider Z = S= 3 in3 (Conservative),
Factored shear stress
Factored bending stress
Combined stress
= 25800 lb-in
= 1.6 X 430
= 688 lbs
= (bd + d2/3) x t
= ((6 +42/3) X 0.25
= 5.33 in3
=688 /(4x4x 1/2)
= 86 psi
= 25800/(5.33)
= 4841 psi
= ✓ (862 +48412)
= 4841. 76 psi < 22274 psi OK
(Provide of ¼" weld is adequate for shear connection of plate to column)
Shear Capacity of each Anchor bolt,
Shear Force
Shear on each bolt
T = 3100 lbs (Table I-D AISC)
= 0.215 kips
= 0.215/4 kips
= 53 lbs< 3 100 lbs OK
Use l2xl2xl/2" plate post base with (4) 5/8" Anchor bolts with minimum 12" embedment
Page 40 of 108
EQUIVALENT LATERAL FORCE PROCEDURE -BASE SHEAR (2015 IIJCJ
ASCE/Slll 7-10
INPUT SEISMIC PARAMETERS
Direction of Seismic Provided Site Class D From A (hard) to E (soft)
Excitation
Areas ofBu,ldang where PROVIDED
Regular Strudurc five N
stones or less m height? ASCE 12 8 1.3
system 1s utilized h,,• 1800 n Mean Height of the bldg
Ss• I 083 8
s,-0 411 8
Type of System • Wood shear wslls ASCE table 12 2-1 F,•1000 Table 11 4-1
F,•1383 Table 11 4-2
R • 6.5 ASCE table 12 2-1 T .. ,,/'• 8.00 sec Actual T rrom comp model
Risk Category I or II ASCE table 1-1 Structure Type All other struc:tural systems
CODE VALUES
SEISMIC PARAMETERS BASE SHEAR
lo• I ASCE table 11.5-1 Seismic response coefficient
Ss used for C, • I 083 8 ASCE 12 8 I 3 C, • SD,.f(R/1) • 0 111 Eq 12 8-2
Sn,• 2/3 • F,Ss • 0.722 8 ASCE Eq 11 4-3
S1,. used for C, • 0. 722 8 ASCE 12813 Cs need not exceed following
S,,1 •2/3 • F,S1 •0384 8 ASCE Eq 11 4-4 C, • S01 /{(R/l)T]•0242 Eq 12 8-3
s,,. >050g D ASCE Table 11 6-1
s,,, >0.20g D ASCE Table 11 6-2 Cs shall not be taken less than
c,-002 ASCE Table 12 8-2 c,-0010 Eq 128-S
X • 0.75 ASCE Table 12.8-2
T,•C,(h,,)'• 0.17 SC<: ASCE Eq 12 8-7 For struccurcs located where S1 2: 0 6g. Cs shall not be taken less than
c.-14 Table 12 8-1 Cs •0SSI /(R/1)• N/A Eq 12 8-6
C,T, • 024 sec
T • 024 sec T used for base shear calc Sc1sm1c Weight
Se1sm1c design ca1egory • D ASCE 11 6 Cs• 0 Ill Se1sm1c Resp Coefficient
v-Cs •W • Base Shear
Page 41 of 108
BUILDING WEIGHT
DESIGN CRITERIA
Code Used
Building Code
LACity Requiremenl :
SOILS REP .. O_R_T ______________ ---~~~--..
CODE MINIMUM
BUILDING GRAVITY LOADING SUMMARY
Level Heigh! Elcva1ion
ft
,_R_OOF 10.00 10.00
. . . .. • Roof Dead Load Includes Ce1hng Dead Load
BUILDING WALL LOADING SUMMARY
Wall Weigh1
T~ osf
Exterior
Interior
Mis. Wall
BUILDING WEIGHT
ROOF
Arca
Type
Area I
Area 2
Areal
Area4
Ext. Wall
Int. Wall
Mis. Wall
18.00
10.00
90.00
L
(ft)
24.00 . .
TOTALROOFAREA /LOAD
Unil Weil!.111 osf
Dead-I Live-I
22.00 20.00 . . . . . . .
w Arca
(ft) (fl'2)
78.00
.
1.00 -1.00
I 00
78.00
Concrele F'c
S1eel Fy
Bearing Capacity : 1,500 psf
Unil Wei1thl osf Unil Wei2h1 osf Unil Weillht osf
Dead-2 Livc-2 Dead-3 Live-3 Dcad-4 Live-4 . . . .
. . . . . . . . . . . . . . .
FLOOR DEPTH
Level Floor Hei1thl
ft
ROOF 1.00 . 0.00 . 0.00 . 0.00 . 0.00
Dead Weigh! Load
/osO (kips)
22.00 1.72 .
. .
. .
18.00 2.81
10.00 -
90.00 .
4.52
Page 42 of 108
LATERAL FORCE DISTRIBUTION
SEISMIC BASE SHEAR
Importance Fac1or, I
EQ Ace @l 5% Damped Design
Redundancy Factor
v,. -
VASO -
VA.so -
WIND BASE SHEAR
IBC2015
v.,,11 4
0.079 • 4 S kips
Wmd Base Shear
I 00
S1,s -0 722
pl • I.JO
0 111 w
0079 w
0.36 kips
0.5 kips
-M kips
SEISMIC BASE SHEAR GOVERNS
[( ~D!EiS~IG~N~B~A~S!EJS[!H~E~A~RL==========311a
Tou,I
I Fpx mm• 0.2'SDs'l'wpx (for Fle><ible Diaphragm)
2 Fpx max• 0 4'SDs'l'wpx (for Flexible Diaphragm)
3 25% increased for diaphram im:gular1ty
ASCE7-10Table 11 5-1
ASCE7-I 0 EQ 11.4-3
ASCE7-10 12 3.4 2
Working Stress (ASD) Level
Seismic Base Shear
ASCE7-I0 12 10 I I
ASCE7-I0 12 10 I I
ASCE7-1012 3 3 4
Page 43 of 108
N) HSS6x6~"
COLUMN
(N) 2x10@ 10 O.C.
Paga 4-4 ol 106
(N) 2xl0@ 10 O.C.
✓;/~~// /. / /.. ,
r "
Pogo 45 of 108
I
;;:
il
~
,
0
•
~
r
,.
.
i
~
~
~
;
0.
, •
i 1
!
!
•
C
l
f
5
ll
1
i
i
! Ji
•
C
~
i
5 ~ . •
'
; ~
~
~
i ;
"
•
~
g
~
,
f. ~ s ~
e
1' i '
u
•
l;
;
h
...
.
r
J •
~=
-!
-
~J
~,
p
-
I
I
! 1
u
~
if
.
J
f.
!
j
'
![
p
:·
J •
:
~
.
I
1
I
.
...
l}
•
s
I i
f
"'
~
\
=
i;
ii
l
:
;
~
i
f i
A~
f
!}
•
!
~
.
I•
..
H
•
f
1
!
•
:
1
I
~
I I
!
'
!
l
I
.
l
h.
J
J
:;
E-
,
If
~
.
$
;
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 20 I
SAN DIEGO, CA 92103
DIAPHRAGM AND DRAG CALCULATIONS
Page 47 of 108
ROOF
PATlT.JSO!< lNOt~u:alNG
STN:HGTHOCSIGH AU.CW.'Allt.£
SHCAll l<W> t0 7 M0Dn-1Dt)
6n,,.-470
.JU: M',f
t'Olt.~F.Jt
IRRF..Otl1_..,RITY
~ .. Rl:F-NTRANl t'ORNl~R IRREOULARJTY
A!,O Lc,·d De,,j!n
KOOF Srl,mk-fM •lmH [-\V Dir.
Linc
Scunuc fon::c: F (~
1-h fl(O) 225 2B 22 S
I.en thl. 0) II 16 I(, s
"fnlO•F.Jl 132 132 132
Shew t,m.:,e V Obi)• "In 0 1091 1091
l.>i1rt ,<ntn•VJIJ 0 48 48
TOlal~w,•(pl()•,ldl+, ,...._ 48
5lr 1lnK1ural I Pt'"'ood(Hbtotbci)•I IDd [d~Naihat6" o.c.(putablt,UC SDPWS:ZOIS) o,
Roof'1hta1hla1b 1/2" COX OSB •Ith IOd nlUh •' 6". Pu NDS Tablit.£,2C
C:apc1t\ •
AIORD fORC[ CALCULATIONS
D,.ap \ ffllll•V/U 0 48
Momt.,11 M (l~fl)~l.:/8 0 4500
Ten/Cornn chord t,on:,c (ltK) • M.IB • ¥11.:/SJ) 0 200
AncaofT,-nltte:1A(1n:) 16S 16S
Ac1ual ~rcss n-u 00 12 I
Allowablc:iln:!H1M S75 S7S
48
4500
200
165
12 I
515
••
21S
Alkw.1Nc cap1e1t) • S75
1-li.6 t honl It adequalt: for 1'.hord fortt
'177
22S 0
II 0
132 0
0 0
0 0
48
0 0
0 0
0 0
16S 16S
00 00 m sis
12
ROOF Mkmk fer alont N~ Dir.
Lmc
~ICfOl'Ctf
1.-11nU(O) 16S 16S 16S
Lena1h t m.l 0 22 5 22.l
\I. fnm• Fill 97 97 97
Shear h,ra: V (lh,,i) • "t.n 0 1091 1091
D,.ap , <otO •V/H 0 66 66
Total !lhcar vo,U)• ,·i.. + v .-(,6
Ml" tlructural 1 Ply"ood (unblocked) .. , IOd Edie N•llt at 6" o.c.(pe.rt.t>k4.l C SOPWS 201~) o,
Root1hutMaib 11:Z" CDX OSB ,ddi IOd ■alh _., ... Per NOS Table-U C.
66
Ctp1e1t\ • 215
Qt08D fORCE CALCUl:ec\DONS
l)l1n ,•mn •V/ll 0 1,6 66
Momeni M (lb-n)la\\l}/8 0 6137 6117
Tcn./Comp coord torcc (lbs)• M,1l • \\(_:IIJO 0 372 372
Ari:a of !',,... nJ111."1< Alm:) 165 16S 165
AJ:11.111/llrelSM& 00 22 5 22 S
Allo\\able~l'ltQ m 51S 575
Allo\\aNc c,paa1) • 57S :z~z~, C'hord b ~Hft" for tltord fortt
,u
16S 0
0 0
'fl 0
0 0
0 0
66
0 0
0 0
0 0
16S 165
00 00
S75 m
23
()
0
0
0
0
0
0
0
0
16S
00
S7S
0
II
0
0
0
0
0
0
0
16S
00
575
0 (I
0 0
0 0
0 0
0 0
0
OK
0 0
0 0
0 0
16S 16S
00 00
S7S m
OK
I
0 0
0 0
0 0
0 0
0 0
0
OK
0 0
0 0
0 0
16S 16S
00 00 m S75
OK
Page 48 of 108
PATTERSON ENG INEERI NG, INC.
928 FORT STOCKTON DRIVE, SUITE 20 I
SAN DIEGO, CA 92103
VERTICAL CALCULATIONS
Page 49 of 108
0-
r
-
E)
l
-
~
'I
.J
i
.
!
1!
(N)►CS
~O
'
I
•
~
•
!
~
,;
EL
O
a,
-(
IO
J
:
6
~
Pa
g
e
50
of
10
8
Roof Framing Members:
RJ-J
£1 11111 l l U};
.,,#-.,-----------~)( 12'-6"
From Roof:
( D) ( 5 psf ) . ( 7 plf ) = Lr = 10 psf x 1.33 ft Tnb. = 14 plf
Joist Size: 2x6 DF#2 @ 10" O.C.
See analysis on next page.
PATTERSON ENGINEERING, INC..
928 FORT STOCKTON DRIVE, SUITE 20 I
SAN DIEGO, CA 92103
Page 51 of 108
!wood Beam
Description : RJ-1 (Trellis)
CODE REFERENCES
PATTERS I
ENGrNEERING
828 FORT STOCKTON OAAIE SUTE201
~--~~03
PHOtE: ll58-60>0937
FAX_ 858«15-1414
Calculations per NOS 201 5, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set: ASCE 7-10
Material Properties
Analysis Method : Allowable Stress Design
Load Combination ASCE 7-10
Wood Species : Douglas Fir -Larch
Wood Grade : No.2
Beam Bracing : Completely Unbraced
T
Fb -Tension
Fb-Compr
Fc -Pr11
Fe -Perp
Fv
Ft
0(0.00415) lr(0.0083)
T
2x6
Span = 12.50 ft
900.0 psi
900.0psi
1,350.0 psi
625.0psi
180.0psi
575.0psi
E : Modulus of Elasticity
Ebend-xx 1,600.0ksi
Eminbend -xx 580.0ksi
Density 32.210pcf
Repetitive Member Stress Increase
Applied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loads
Uniform Load : D = 0.0050, Lr= 0.010 ksf, Tributary Width= 0.830 ft
DESl(;N SUMMARY Design OK
Maximum Bending Stress Ratio = 0.30& 1 Maximum Shear Stress Ratio = 0.067 : 1
Section used for this span 2x6 Section used for this span 2x6
fb : Actual = 443.04psi fv : Actual = 15.06 psi
FB : Allowable = 1,448.54 psi Fv : Allowable = 225.00 psi
Load Combination +D+Lr+H Load Combination +O+Lr+H
Location of maximum on span = 6.250ft Location of maximum on span = 12.044 ft
Span # where maximum occurs Span# 1 Span # where maximum occurs Span# 1
Maximum Deflection
Max Downward Transient Deflection 0.138 in Ratio= 1088
Max Upward Transient Deflection 0.000 in Ratio= 0 <360
Max Downward Total Deflection 0.237 in Ratio= 631
Max Upward Total Deflection 0.000 in Ratio= 0 <240
Overall Maximum Deflections
Load Combination Span Max.·-· Defl Location in Span Load Combination Max. • +• Deft Location in Span
..O+lr+H 1 0.2374 6.296 0.0000 0.000
Vertical Reactions Support notation: Far left is #1 Values in KIPS
Load Combination Support 1 Support2
Overall MAXimum 0.089 0.089
Overall MINimum 0.022 0.022
..O+H 0.037 0.037
-t{).{_ +H 0.037 0.037
..O.tr+H 0.089 0.089
..O+S+H 0.037 0.037
..0-+-0. 750Lr-+-0. 750L +H 0.076 0.076
..0-+-0.750L-+-0.750S+H 0.037 0.037
Page 52 of 108
I
J,11111 r 11111
/I
l '6"
RD= 0.44 Kips
RLr= 0.51 Kips
From Roof:
13'0"
Roof
L .,
RD= 0.44 Kips
RLr= 0.51 Kips
(D) ( 5 psf) • (32 plf) W1 = Lr = l0 psf x 6.25 ft Tnb. = 63 plf
Beam Size: Use of HSS 10 x 4 x ¼" Steel beam.
See analysis on next page.
RB-2
Pl Pl
J WI i ,1£1 Ll 11111
,.V l'-6" ~ 10'-0" f l'-6"V
RD= 0.63 Kips
RLr= 0.63 Kips
From Roof:
Roof
RD= 0.63 Kips
RLr= 0.63 Kips
(D) (5 psf) • (3plf) W1 = Lr = l0 psf x 0.67 ft Tnb. = 7 plf
Load from RB-1:
( Left ) (D) (0.44 kips) =R RB -1 = Lr = 0.51 kips
Beam Size:: Use ofHSS 10 x 4 x ¼" Steel beam.
See analysis on next page.
PATTERSON ENGINEERING, TNC.
928 FORT STOCKTON DRIVE, SUfTE 201
SAN OTEGO, CA 92103
Page 53 of 108
[ Steel Beam
IMMtiWl•I3•Ill:Itt:f
Description : RB-1
CODE REFERENCES
Calculations per AISC 360-10, IBC 2015, ASCE 7-10
Load Combination Set : IBC 2015
Material Properties
Analysis Method : Allowable Strength Design
Beam Bracing : Beam bracing is defined as a set spacing over all spans
Bending Axis : Major Axis Bending
Load Combination :II
Unbraced Lengths -.'"'------------~ First Brace starts at 0.8330 ft from Left-Most support
Regular spacing of lateral supports on length of beam = 0.8330 ft
0(9 032> bd9 0§3}
Span • 1.50 ft
HSS10x4x114
oco 932> bct9-Q63> ,,
Span• 13.0 n
HSS10x4xl/4
Fy : Steel Yield :
E: Modulus :
50.0 ksi
29,000.0 ksi
Span• 1.50 n
HSS10x4x114
•
A plied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loading
Load for Span Number 1
Uniform Load : D = 0.0320, Lr= 0.0630 k/ft, Tributary Width = 1.0 ft
Load for Span Number 2
Uniform Load : D = 0.0320, Lr= 0.0630 k/ft, Tributary Width = 1.0 ft
Load for Span Number 3
Uniform Load : D = 0.0320, Lr= 0.0630 k/ft, Tributary Width= 1.0 ft
DESIGN SUMMARY
Maximum Bending Stress Ratio = 0.061 : 1
Section used for this span HSS1 0x4x1/4
Ma : Applied 2.418 k-ft
Mn / Omega : Allowable 47.405 k-ft
Load Combination •+{H_r-+H, LL Comb Run (•L•)
Location of maximum on span 6.418 ft
Span # where maximum occurs Span # 2
Maximum Deflection
Maximum Shear Stress Ratio =
Section used for this span
Va : Applied
Vn/Omega : Allowable
Load Combination
Location of maximum on span
Span # where maximum occurs
Max Downward Transient Deflection 0.019 in Ratio= 8,180
Max Upward Transient Deflection -0.007 in Ratio= 5,217
Max Downward Total Deflection 0.034 in Ratio= 4525
Max Upward Total Deflection -0.012 in Ratio= 2914
Maximum Forces & Stresses for Load Combinations
Design OK
0.010 : 1
HSS10x4x1/4
0.7685 k
77.861 k
+Cl-+lr-+H, LL Comb Run (LL•)
1.500 ft
Span# 1
Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values
Segment Length Span# M V Mmax+ Mmax-Ma -Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega
+0-++l
Dsgn. L = 0.82 ft 1 0.000 0.001 -0.02 0.02 79.17 47.41 1.00 1.00 0.04 130.03 77.86
Dsgn. L = 0.68 ft 1 0.001 0.005 -0.00 -0.06 0.06 79.17 47.41 1.00 1.00 0.35 130.03 77.86
Dsgn. L = 0.16 ft 2 0.001 0.005 -0.00 -0.06 0.06 79.17 47.41 1.00 1.00 0.35 130.03 77.86
Dsgn. L = 0.82 ft 2 0.006 0.004 0.26 -0.00 0.26 79.17 47.41 1.90 1.00 0.34 130.03 77.86
Dsgn. L = 0.82 ft 2 0.010 0.004 0.49 0.26 0.49 79.17 47.41 1.28 1.00 0.30 130.03 77.86
Dsgn. L = 0.82 ft 2 0.014 0.003 0.68 0.49 0.68 79.17 47.41 1.15 1.00 0.26 130.03 77.86
Dsgn. L = 0.82ft 2 0.018 0.003 0.84 0.68 0.84 79.17 47.41 1.09 1.00 0.21 130.03 77.86
Dsgn. L = 0.82 ft 2 0.020 0.002 0.95 0.84 0.95 79.17 47.41 1.06 1.00 0.17 130.03 77.86
Dsgn. L = 0.82 ft 2 0.022 0.002 1.03 0.95 1.03 79.17 47.41 1.04 1.00 0.12 130.03 77.86
Dsgn. L = 0.82 ft 2 0.023 0.001 1.08 1.03 1.08 79.17 47.41 1.02 1.00 0.08 130.03 77.86
Dsgn. L = 0.82 ft 2 0.023 0.000 1.09 1.08 1.09 79.17 47.41 1.00 1.00 0.03 130.03 77.86
Dsgn. L = 0.82 ft 2 0.023 0.001 1.09 1.06 1.09 79.17 47.41 1.01 1.00 0.06 130.03 77.86
Dsgn. L = 0.82 ft 2 0.022 0.001 1.06 0.99 1.06 79.17 47.41 1.02 1.00 Ffj,10 5413i·~9s 77.86
Dsgn. L = 0.82ft 2 0.021 0.002 0.99 0.89 0.99 79.17 47.41 1.03 1.00 ~~ 1~. 77.86
Dsgn. L = 0.82 ft 2 0.019 0.002 0.89 0.75 0.89 79.17 47.41 1.05 1.00 0.19 130.03 77.86
Description : RB-2
CODE REFERENCES
Calculations per AISC 360-10, IBC 2015, ASCE 7-10
Load Combination Set : IBC 2015
Material Properties
Analysis Method : Allowable Strength Design
Beam Bracing : Beam is Fully Braced against lateral-torsional buckling
Bending Axis : Major Axis Bending
Load Combination :II
D(O ... ) Lr1l S1)
Span• 1.50 ft
HSS10x,b:11◄
0!0.0031 Lrj0.007) "'
Span• 10.0 ft
HSS10x-4x1/4
Fy : Steel Yield :
E: Modulus :
50.0 ksi
29,000.0 ksi
D(0.26) Lr1l.S1)
Span• 1.50 ft
HSS10x,x1/4
Applied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loading
Load for Span Number 1
Uniform Load : D = 0.0030, Lr = 0.0070 k/ft, Tributary Width = 1.0 ft
Point Load : D = 0.440, Lr= 0.510 k@0.0 ft, (From RB-1)
Load for Span Number 2
Uniform Load : D = 0.0030, Lr= 0.0070 k/ft, Tributary Width= 1.0 ft
Load for Span Number 3
Uniform Load : D = 0.0030, Lr= 0.0070 k/ft, Tributary Width= 1.0 ft
Point Load : D = 0.260, Lr = 0.510 k@ 1.50 ft, (From RB-1)
DESIGN SUMMARY
Maximum Bending Stress Ratio = 0.031 : 1
Section used for this span HSS10x4x1/4
Ma : Applied 1.461 k-ft
Mn / Omega : Allowable 47 .405 k-ft
Load Combination -+D+lr+H, LL Comb Run (L .. )
Location of maximum on span 1.500ft
Span # where maximum occurs Span # 1
Maximum Deflection
Maximum Shear Stress Ratio =
Section used for this span
Va : Applied
Vn/Omega : Allowable
Load Combination
Location of maximum on span
Span # where maximum occurs
Max Downward Transient Deflection
Max Upward Transient Deflection
Max Downward Total Deflection
Max Upward Total Deflection
0.005 in Ratio=
-0.008 in Ratio=
0.008 in Ratio =
-0.011 in Ratio =
7,073
15,184
4606
11021
Maximum Forces & Stresses for Load Combinations
Design OK
0.013 : 1
HSS10x4x1/4
0.9986 k
77.861 k
-+D+lr+H, LL Comb Run (L **)
1.500 ft
Span# 1
Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values
Segment Length Span# M V Mmax+ Mmax -Ma -Max Mnx Mm</Omega Cb Rm Va Max Vnx Vnx/Omega
..O+H
Osgn. L = 1.50 fl 1 0.015 0.006 -0.69 0.69 79.17 47.41 1.00 1.00 0.48 130.03 77.86
Osgn. L = 10.00 ft 2 0.015 0.004 -0.00 -0.69 0.69 79.17 47.41 1.00 1.00 0.30 130.03 77.86
Dsgn. L = 1.50 fl 3 0.009 0.004 -0.42 0.42 79.17 47.41 1.00 1.00 0.30 130.03 77.86
..O+L +H, LL Comb Run (*'L)
Osgn. L = 1.50 fl 1 0.015 0.006 -0.69 0.69 79.17 47.41 1.00 1.00 0.48 130.03 77.86
Osgn. L = 10.00 fl 2 0.015 0.004 -0.00 -0.69 0.69 79.17 47.41 1.00 1.00 0.30 130.03 77.86
Dsgn. L = 1.50 fl 3 0.009 0.004 -0.42 0.42 79.17 47.41 1.00 1.00 0.30 130.03 77.86
..O+L +H, LL Comb Run (*L ')
Osgn. L = 1.50 fl 1 0.015 0.006 -0.69 0.69 79.17 47.41 1.00 1.00 0.48 130.03 77.86
Dsgn. L = 10.00 fl 2 0.015 0.004 -0.00 -0.69 0.69 79.17 47.41 1.00 1.00 0.30 130.03 77.86
Osgn. L = 1.50 fl 3 0.009 0.004 -0.42 0.42 79.17 47.41 1.00 1.00 0.30 130.03 77.86
..O+L+H, LL Comb Run (*LL)
Osgn. L = 1.50 fl 1 0.015 0.006 -0.69 0.69 79.17 47.41 1.00 1.00 0.48 130.03 77.86
Dsgn. L = 10.00 ft 2 0.015 0.004 -0.00 -0.69 0.69 79.17 47.41 1.00 1.00 0.30 130.03 77.86
Osgn. L = 1.50 ft 3 0.009 0.004 -0.42 0.42 79.17 47.41 1.00 1.00 1'13!9 55100.HB 77.86
..O+L+H, LL Comb Run (L j
ADDITION MEMMBER
Wl
£1 I L 1 L l l l lll
I, ,.,
11'~0"
From Roof:
(D) (22psf) • (30plf) = Lr = 20 psf x 1.33 ft Tnb. = 27 plf
Joist Size: 2x10 DF#2 @ 16" O.C.
See analysis on next page.
PATTERSON ENGJNEERING, fNC.
928 FORT STOCKTON DRJVE, SUITE 20 I
SAN DIEGO, CA 92103
Page 56 of 108
Wood Beam
PATTERS ...,
ENGINEERING
921 fORT STOCKTON ORJ\IE SU!l:201 ~°S!°c CA ?!!03
PHOIE:~7
FAX: 858-eM-1◄1◄
Description : RJ-2 ( Addition)
CODE REFERENCES
Calculations per NOS 2015, IBC 2015, CBC 20 16, ASCE 7-10
Load Combination Set : ASCE 7-10
Material Properties
Analysis Method : Allowable Stress Design Fb. Tension
Load Combination ASCE 7-10 Fb -Compr
Fe -Pr11
Wood Species : Douglas Fir -Larch Fe · Perp
Wood Grade : No.2 Fv
Ft
Beam Bracing : Beam is Fully Braced against lateral-torsion buckling
0(0.02920) Lr(0.0268)
'
2x10
Span• 5.50 ft
900.0 psi
900.0 psi
1,350.0 psi
625.0 psi
180.0 psi
575.0 psi
___J'
E : Modulus of Elasticity
Ebend-xx 1,600.0 ksi
Eminbend -xx 580. 0 ksi
Density 32.210pcf
I
Applied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loads
Uniform Load: D = 0.0220, Lr= 0.020 ksf, Tributary Width = 1.330 ft
DESIGN SUMMARY
Maximum Bending Stress Ratio =
Section used for this span
fb : Actual =
FB : Allowable =
Load Combination
Location of maximum on span =
Span# where maximum occurs =
Maximum Deflection Max Downward Transient Deflection
Max Upward Transient Deflection
Max Downward Total Deflection
Max Upward Total Deflection
Overall Maximum Deflections
Load Combination
-+0-+lr-+H
Vertical Reactions
Load Combination
Overall MAXimum
Overall MINimum
-+0-+f-i
-+0-+l-+f-i
-+0-+lr-+H
-+O+S-+H
-+0-+-0. 750Lr-+-0.750L-+f-i
-+0-+-0. 750L-+-0.750S-+H
Span
1
Support 1
0.192
0.063
0.105
0.105
0.192
0.105
0.170
0.105
0.141: 1 Maximum Shear Stress Ratio
2x10 Section used for this span
174.69psi fv : Actual
1,237.50psi Fv : Allowable
-+0-+l r +H Load Combination
3.250ft Location of maximum on span
Span# 1 Span # where maximum occurs
0.007 in Ratio = 11489
0.000 in Ratio= 0 <360
0.015 in Ratio= 5183 0.000 in Ratio= 0 <240
Max.·-• Defl
0.0150
Location in Span
3.274
Load Combination
Support_2 _
0.192
0.063
0.105
0.105
0.192
0.105
0.170
0.105
Support notation : Far left is #1
=
=
=
=
Max."+" Defl
0.0000
Values in KIPS
Design OK
0.071 : 1
2x10
15.88 psi
225.00 psi
-+0-+lr-+H
5.741 ft
Span# 1
Location in Span
0.000
Page 57 of 108
RB-3
Pl I m
£1 I l L 111 l 1 L,!
A'--7r
0'-6"
RD= 2.76 Kips
RLr= 1.88 Kips
From Roof:
Roof
RD= 1.23 Kips
RLr= 0.94 Kips
( D) (22 psf) . (121 plf) Wi = Lr = 20 psf x S.5 ftTnb.= 110 plf
Load from RB-6:
Pi =R ( Left ) = (D ) = (1.62 ki_ps) RB -6 Lr 1.00 kips
PATTERSON ENGINEERING, LNC.
928 FORT STOCKTON DRIVE, SUITE 20 I
SAN DCEGO, CA 92103
Beam Size: Use of HSS 10 x 4 x ¼" Steel beam is adequate. However use HSS 10 x 6 x ¼" Steel beam
See analysis on next page.
Wl
£lll1llllll1
I, ,.
RD= 2.05 Kips
RLr= 1.71 Kips
From Roof:
15'6"
Roof
I, ,,
RD= 2.05 Kips
RLr= 1.71 Kips
( D) (22 psf) . (242 plf) W1 = Lr = 20 psf x 11.0 ft Tnb. = 220 plf
Beam Size: Use ofHSS 10 x 4 x ¼" Steel beam.
See analysis on next page.
Page 58 of 108
[ Steel Beam
IM1P35WlldtlH:Jfl:f
Description : RB-3
CODE REFERENCES
Calculations per AISC 360-10, IBC 2015, ASCE 7-10
Load Combination Set: IBC 2015
Material Properties
Analysis Method : Allowable Strength Design
Beam Bracing : Beam bracing is defined as a set spacing over all spans
Bending Axis : Major Axis Bending
Load Combination :II
Unbraced Lengths
First Brace starts at 1.330 ft from Left-Most support
Regular spacing of lateral supports on length of beam = 1.330 ft
0(1.62) Lr1)
Fy : Steel Yield :
E: Modulus :
11
50.0 ksi
29,000.0 ksi
Span= 16.50 ft
HSS10x4x1/4
Applied Loads
Beam self weight calculated and added to loading
Uniform Load : D = 0.1212, Lr= 0.110 k/ft, Tributary Width= 1.0 ft
Point Load: D = 1.620, Lr = 1.0 k@0.50 ft, (From RB-6)
DESIGN SUMMARY
Service loads entered. Load Factors will be applied for calculations.
Design OK
Maximum Bending Stress Ratio :: 0.196 : 1 Maximum Shear Stress Ratio = 0.059 : 1 Section used for this span HSS10x4x1/4 Section used for this span HSS10x4x1/4 Ma : Applied 9.297 k-ft Va : Applied 4.633 k Mn / Omega : Allowable 47.405 k-ft Vn/Omega : Allowable 77.861 k
Load Combination +04.r-++i Load Combination +04.r-++i Location of maximum on span 7.920ft Location of maximum on span 0.000 ft Span # where maximum occurs Span# 1 Span# where maximum occurs Span# 1
Maximum Deflection
Max Downward Transient Deflection 0.092 in Ratio= 2,146
Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.215 in Ratio= 922 Max Upward Total Deflection 0.000 in Ratio= 0 <240
Maximum Forces & Stresses for Load Combinations
Load Combination Max Stress Ratios Summar;:__of Moment Values Summary of Shear Values
Segment Length Span# M V Mmax+ Mmax-Ma-Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega
..0-+H
Dsgn. L = 1.32 ft 0.046 0.035 2.18 2.18 79.17 47.41 1.37 1.00 2.76 130.03 77.86 Dsgn. L = 1.32 ft 0.070 0.012 3.31 2.18 3.31 79.17 47.41 1.15 1.00 0.95 130.03 77.86 Dsgn. L = 1.32 ft 0.088 0.010 4.18 3.31 4.18 79.17 47.41 1.09 1.00 0.76 130.03 77.86 Dsgn. L = 1.32 fl 0.101 0.007 4.80 4.18 4.80 79.17 47.41 1.05 1.00 0.57 130.03 77.86 Dsgn. L = 1.32 ft 0.109 0.005 5.18 4.80 5.18 79.17 47.41 1.03 1.00 0.38 130.03 77.86 Dsgn. L = 1.32 fl 0.112 0.002 5.30 5.18 5.30 79.17 47.41 1.01 1.00 0.19 130.03 77.86 Dsgn. L = 1.32 fl 0.112 0.002 5.30 5.17 5.30 79.17 47.41 1.01 1.00 0.19 130.03 77.86 Dsgn. L = 1.32 ft 0.109 0.005 5.17 4.80 5.17 79.17 47.41 1.03 1.00 0.38 130.03 77.86 Dsgn. L = 1.40 ft 0.101 0.007 4.80 4.12 4.80 79.17 47.41 1.05 1.00 0.58 130.03 77.86 Dsgn. L = 1.32 ft 0.087 0.010 4.12 3.23 4.12 79.17 47.41 1.09 1.00 0.77 130.03 77.86 Dsgn. L = 1.32 ft 0.068 0.012 3.23 2.08 3.23 79.17 47.41 1.16 1.00 0.96 130.03 77.86 Dsgn. L = 1.32 fl 0.044 0.015 2.08 0.69 2.08 79.17 47.41 1.35 1.00 1.15 130.03 77.86 Dsgn. L = 0.58ft 0.015 0.016 0.69 0.69 79.17 47.41 1.51 1.00 1.23 130.03 77.86 ..O+L-+H
Dsgn. L = 1.32ft 0.046 0.035 2.18 2.18 79.17 47.41 1.37 1.00 2.76 130.03 77.86 Dsgn. L = 1.32 ft 0.070 0.012 3.31 2.18 3.31 79.17 47.41 1.15 1.00 0.95 130.03 77.86 Dsgn. L = 1.32 fl 0.088 0.010 4.18 3.31 4.18 79.17 47.41 1.09 1.00 0.76 130.03 77.86 Dsgn. L = 1.32 fl 0.101 0.007 4.80 4.18 4.80 79.17 47.41 1.05 1.00 ~59100.HB 77.86 Dsgn. L = 1.32 ft 0.109 0.005 5.18 4.80 5.18 79.17 47.41 1.03 1.00 0.38 130.03 77.86
!
Description : RB-4
CODE REFERENCES
Calculations per AISC 360-10, IBC 2015, ASCE 7-10
Load Combination Set : IBC 2015
Material Pro erties
Analysis Method : Allowable Strength Design
Beam Bracing : Beam bracing is defined as a set spacing over all spans
Bending Axis : Major Axis Bending
Load Combination :II
Unbraced Lengths
First Brace starts at 0.8330 ft from Left-Most support
Regular spacing of lateral supports on length of beam = 0.8330 ft
Fy : Steel Yield :
E: Modulus :
50.0 ksi
29,000.0 ksi
HSS10x4x1/4
Applied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loading
Uniform Load : D = 0.2420, Lr= 0.220 kif!, Tributary Width= 1.0 ft
DESIGN SUMMARY Design OK
Maximum Bending Stress Ratio = 0.307 : 1 Maximum Shear Stress Ratio = 0.048 : 1
Section used for this span HSS10x4x1/4 Section used for this span HSS10x4x1/4
Ma : Applied 14.547 k-ft Va : Applied 3.754 k
Mn / Omega : Allowable 47.405 k-ft Vn/Omega : Allowable 77.861 k
Load Combination -+0-+l r -+ti Load Combination -+0-+lr-+f-i
Location of maximum on span 7.750ft Location of maximum on span 0.000 ft
Span # where maximum occurs Span# 1 Span# where maximum occurs Span# 1
Maximum Deflection
Max Downward Transient Deflection 0.133 in Ratio= 1,399
Max Upward Transient Deflection 0.000 in Ratio = 0 <360
Max Downward Total Deflection 0.293 in Ratio= 635
Max Upward Total Deflection 0.000 in Ratio= 0 <240
Maximum Forces & Stresses for Load Combinations
Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values
• Segment Length Span# M V Mmax+ Mmax -Ma -Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega
-+D+H
Dsgn. L = 0.78 fl 0.032 0.026 1.51 1.51 79.17 47.41 1.71 1.00 2.05 130.03 77.86
Dsgn. L = 0.85 fl 0.063 0.024 2.98 1.51 2.98 79.17 47.41 1.27 1.00 1.84 130.03 77.86
Dsgn. L = 0.85fl 0.090 0.021 4.27 2.98 4.27 79.17 47.41 1.15 1.00 1.62 130.03 77.86
Dsgn. L = 0.78fl 0.111 0.018 5.27 4.27 5.27 79.17 47.41 1.09 1.00 1.39 130.03 77.86
Dsgn. L = 0.85 fl 0.130 0.015 6.19 5.27 6.19 79.17 47.41 1.07 1.00 1.19 130.03 77.86
Dsgn. L = 0.85fl 0.146 0.012 6.91 6.19 6.91 79.17 47.41 1.05 1.00 0.96 130.03 77.86
Dsgn. L = 0.85 fl 0.157 0.009 7.44 6.91 7.44 79.17 47.41 1.03 1.00 0.74 130.03 77.86
Dsgn. L = 0.77 fl 0.164 0.007 7.76 7.44 7.76 79.17 47.41 1.02 1.00 0.51 130.03 77.86
Dsgn. L = 0.85 fl 0.167 0.004 7.93 7.76 7.93 79.17 47.41 1.01 1.00 0.31 130.03 77.86
Dsgn. L = 0.85 fl 0.167 0.002 7.94 7.90 7.94 79.17 47.41 1.00 1.00 0.14 130.03 77.86
Dsgn. L = 0.85fl 0.167 0.005 7.90 7.68 7.90 79.17 47.41 1.01 1.00 0.37 130.03 77.86
Dsgn. L = 0.78 fl 0.162 0.007 7.68 7.32 7.68 79.17 47.41 1.02 1.00 0.57 130.03 77.86
Dsgn. L = 0.85 fl 0.154 0.010 7.32 6.73 7.32 79.17 47.41 1.03 1.00 0.80 130.03 77.86
Dsgn. L = 0.85 fl 0.142 0.013 6.73 5.95 6.73 79.17 47.41 1.04 1.00 1.02 130.03 77.86
Dsgn. L = 0.85fl 0.126 0.016 5.95 4.99 5.95 79.17 47.41 1.06 1.00 1.25 130.03 77.86
Dsgn. L = 0.77 fl 0.105 0.019 4.99 3.94 4.99 79.17 47.41 1.08 1.00 1.45 130.03 77.86
Dsgn. L = 0.85 fl 0.083 0.022 3.94 2.60 3.94 79.17 47.41 1.14 1.00 1.68 130.03 77.86
Dsgn. L = 0.85 fl 0.055 0.024 2.60 1.07 2.60 79.17 47.41 1.26 1.00 1.91 130.03 77.86
Dsgn. L = 0.54 fl 0.023 0.026 1.07 1.07 79.17 47.41 1.51 1.00 ~601~Ull8 77.86
-+D+L+H
l
I,
/I 6'--0"
RD= 4.31 Kips
RLr= 2.93 Kips
From Roof:
Roof
10'0"
RD= -0.39 Kips
RLr= -0.72 Kips
( D) (22 psf) • (121 plf) W1 = Lr = 20 psf x 5.5 ftTnb.= 110 plf
Load from RB-6:
Pi =R ( Right ) = (D ) = (1.62 ki_ps)
RB -6 Lr 1.00 kips
I, ;i
PATTERSON ENG INEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 20 I
SAN DIEGO, CA 92103
Beam Size: Use ofHSS 10 x 4 x ¼" Steel beam is adequate. However use HSS 10 x 6 x ¼" Steel beam
See analysis on next page.
RB-6
Pl
WI ! gr 11111111i
I, .,.
10'-6"
RD= 1.62 Kips
RLr= 1.00 Kips
From Roof:
21'0"
t. ,,
Roof
RD= 1.62 Kips
RLr= 1.00 Kips
( D) (22 psf) • (15 plf) W1 = Lr = 20 psf x 0.67 ft Tnb. = 14 plf
Load from RB-4:
Pi =R ( Left ) = (D ) = (2.05 kips) RB -4 Lr 1.71 kips
Beam Size: Use ofHSS 10 x 4 x ½" Steel beam.
See analysis on next page.
Page 61 of 108
Description : RB-5
CODE REFERENCES
Calculations per AISC 360-10, IBC 2015, ASCE 7-10
Load Combination Set : IBC 2015
Material Proj>erti_es ___________ _
Analysis Method : Allowable Strength Design
Beam Bracing : Beam bracing is defined as a set spacing over all spans
Bending Axis : Major Axis Bending
Load Combination :II
Unbraced Len ths
First Brace starts at 0.B330 ft from Left-Most support
Regular spacing of lateral supports on length of beam = 0.B330 ft
0(1.62) Lr1) ,. ,. OC0.121) Lr(0.11) ,.
Span• 6.0 ft
HSS10x4x1/4
,. ,. "'
Fy : Steel Yield :
E: Modulus :
0(0.121) Lrl0 11) ,.
Span• 10.0ft
HSS10x4x114
50.0 ksi
29,000.0 ksi
•
A lied Loads Service loads entered. Load Factors will be applied for calculations. ---------Be am self weight calculated and added to loading
Load for Span Number 1
Uniform Load : D = 0.1210, Lr= 0.110 klft, Tributary Width = 1.0 ft
Point Load : D = 1.620, Lr= 1.0 k@ 0.750 ft, (From RB-6 Right)
Load for Span Number 2
Uniform Load : D = 0.1210, Lr= 0.110 klft, Tributary Width = 1.0 ft
DESIGN SUMMARY
Maximum Bending Stress Ratio = 0.386 : 1
Section used for this span HSS10x4x1/4
Ma : Applied 18.316 k-ft
Mn/ Omega : Allowable 4 7 .405 k-ft
Load Combination -+D-+lr-+H, LL Comb Run (LL)
Location of maximum on span 6.000ft
Span # where maximum occurs Span # 1
Maximum Deflection
Maximum Shear Stress Ratio =
Section used for this span
Va : Applied
Vn/Omega : Allowable
Load Combination
Location of maximum on span
Span # where maximum occurs
Max Downward Transient Deflection 0.177 in Ratio= 815
Max Upward Transient Deflection -0.038 in Ratio= 3,179
Max Downward Total Deflection 0.420 in Ratio= 343
Max Upward Total Deflection -0.081 in Ratio= 1481
Maximum Forces & Stresses for Load Combinations
Design OK
0.053 : 1
HSS10x4x1/4
4 .140 k
77.861 k
-+D-+lr-+H, LL Comb Run (L *)
6.000 ft
Span# 1
Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values
Segment Length Span# M V Mmax+ Mmax-Ma -Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega
-+0-+H
Osgn. L = 0.83 ft 1 0.004 0.022 -0.18 0.18 79.17 47.41 1.00 1.00 1.74 130.03 77.86
Dsgn. L = 0.83ft 1 0.035 0.024 -0.00 -1.67 1.67 79.17 47.41 1.00 1.00 1.86 130.03 77.86
Dsgn. L = 0.83ft 1 0.069 0.025 -0.00 -3.27 3.27 79.17 47.41 1.00 1.00 1.98 130.03 77.86
Dsgn. L = 0.83 ft 1 0.105 0.027 -0.00 -4.96 4.96 79.17 47.41 1.00 1.00 2.10 130.03 77.86
Dsgn. L = 0.83ft 1 0.142 0.028 -0.00 -6.75 6.75 79.17 47.41 1.00 1.00 2.22 130.03 77.86
Dsgn. L = 0.83ft 1 0.182 0.030 -0.00 -8.64 8.64 79.17 47.41 1.00 1.00 2.33 130.03 77.86
Dsgn. L = 0.83ft 1 0.224 0.032 -0.00 -10.63 10.63 79.17 47.41 1.00 1.00 2.45 130.03 77.86
Dsgn. L = 0.18 ft 1 0.234 0.032 -0.00 -11.09 11.09 79.17 47.41 1.00 1.00 2.48 130.03 77.86
Dsgn. L = 0.62 ft 2 0.234 0.023 -0.00 -11.09 11.09 79.17 47.41 1.04 1.00 1.83 130.03 77.86
Dsgn. L = 0.85 ft 2 0.211 0.022 -0.00 -9.99 9.99 79.17 47.41 1.06 1.00 1.74 130.03 77.86
Dsgn. L = 0.85 ft 2 0.181 0.021 -0.00 -8.57 8.57 79.17 47.41 1.06 1.00 1.62 130.03 77.86
Osgn. L = 0.85 ft 2 0.153 0.019 -0.00 -7.26 7.26 79.17 47.41 1.07 1.00 1.49 130.03 77.86
Dsgn. L = 0.77 ft 2 0.127 0.018 -0.00 -6.04 6.04 79.17 47.41 1.07 1.00 1.37 130.03 77.86
Dsgn. L = 0.85 ft 2 0.106 0.016 -0.00 -5.03 5.03 79.17 47.41 1.08 1.00
P~i 6~ij:~9B 77.86
Dsgn. L = 0.85ft 2 0.085 0.015 -0.00 -4.01 4.01 79.17 47.41 1.09 1.00 77.86
Dsgn. L = 0.85ft 2 0.065 0.013 -0.00 -3.10 3.10 79.17 47.41 1.11 1.00 1.02 130.03 77.86
t Steel Beam
l!Ali83Wl•I3•ItI;Jtt:f
Description : RB-6
CODE REFERENCES
Calculations per AISC 360-10, IBC 2015, ASCE 7-10
Load Combination Set : IBC 2015
Material Propert_ie_s _____ _
•
Analysis Method : Allowable Strength Design
Beam Bracing : Beam is Fully Braced against lateral-torsional buckling
Fy : Steel Yield :
E: Modulus :
50.0 ksi
29,000.0 ksi
Bending Axis : Major Axis Bending
Load Combination :II
Span • 21.0 ft
HSS10x4x1/2
,. ,.
Applied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loading
Uniform Load : D = O 0150, Lr= 0.0140 k/ft, Tributary Width= 1.0 ft, (From Roof)
Point Load : D = 2.050, Lr = 1.705 k@ 10.50 ft, (From RB-4)
DESIGN SUMMARY Design OK
Maximum Bending Stress Ratio = 0.278: 1 Maximum Shear Stress Ratio = 0.018 : 1
Section used for this span HSS10x4x1/2 Section used for this span HSS10x4x1/2
Ma : Applied 23.623 k-ft Va : Applied 2.622 k
Mn / Omega : Allowable 85.080 k-ft Vn/Omega : Allowable 143.760 k
Load Combination -+D+Lr-+H Load Combination -+D+Lr-+H
Location of maximum on span 10.500ft Location of maximum on span 0.000 ft
Span # where maximum occurs Span# 1 Span # where maximum occurs Span# 1
Maximum Deflection
Max Downward Transient Deflection 0.170 in Ratio = 1,485
Max Upward Transient Deflection 0.000 in Ratio = 0 <360
Max Downward Total Deflection 0.421 in Ratio= 599
Max Upward Total Deflection 0.000 in Ratio= 0 <240
Maximum Forces & Stresses for Load Combinations
Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values
Segment Length Span# M V Mmax+ Mmax -Ma -Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega
-+0-+H
Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 1.62 240.08 143.76
-+O+L-+H
Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 1.62 240.08 143.76
-+O+Lr-+H
Dsgn. L = 21.00 ft 0.278 0.018 23.62 23.62 142.08 85.08 1.00 1.00 2.62 240.08 143.76
-+O+S-+H
Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 1.62 240.08 143.76
-+0+0. 750Lr+O. 750L-+H
Dsgn. L = 21.00 ft 0.249 0.017 21.19 21.19 142.08 85.08 1.00 1.00 2.37 240.08 143.76
-+0+0.750L+0.750S+H
Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 1.62 240.08 143.76
-+0+0.60W-+H
Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 1.62 240.08 143.76
-+0+0.70E-+H
Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 1.62 240.08 143.76
-+O+O. 750Lr+O. 750L +0.450W-+H
Dsgn. L = 21.00 ft 0.249 0.017 21.19 21.19 142.08 85.08 1.00 1.00 2.37 240.08 143.76
-+0+0.750L+0.750S+0.450W-+H
Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 1.62 240.08 143.76
-+0+0.750L +O. 750S+0.5250E-+H
Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 Ph~s~~-~&a 143.76
+0.60D+0.60W+0.60H
BATHROOM ADDITION
RJ-3
£11111 l l lLJi
I, /I v
6'-6" 71
From Roof:
( D) (22 psf) . (29 plf) = Lr = 20 psf x 1.33 ft Trib. = 27 plf
Joist Size: 2xl0 DF#2@ 16" O.C.
See analysis on next page.
HDR-1
I, /I .3'-0"
RD= 0.05 Kips
RLr= 0.04 Kips
From Roof and Wall:
Roof
v 71
RD= 0.05 Kips
RLr=0.04 Kips
( D) (22 psf) . (30 plf) W1 = Lr = 20 psf x 1.33 ft Trib. = 27 plf
Beam Size: Use 4x8 DF#2.
See analysis on next page.
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 20 I
SAN DlEGO, CA 92103
Page 64 of 108
Wood Beam
PATIERSO
ENGfNEERING
828 FORT STOCKTON llRJ1/E SUTE201
~-~SC.~03
PHOtE:~7
FAX: 858-605-1414
Description : RJ-3 ( BAthroom addition)
CODE REFERENCES
Calculations per NOS 2015, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : ASCE 7-10
Material Properties
Analysis Method : Allowable Stress Design Fb-Tension
Load Combination ASC E 7 -1 O Fb -Com pr
Fe -Prll
Wood Species : Douglas Fir -Larch Fe -Perp
Wood Grade : No.2 Fv
Ft
Beam Bracing : Beam is Fully Braced against lateral-torsion buckling
' '
0(0.0292&) Lt(0.0266)
'
2x10
Span •8.SO ft
900.0psi
900.0psi
1,350.0 psi
625.0 psi
180.0 psi
575.0 psi
'
E : Modulus of Elasticity
Ebend-xx 1,600.0 ksi
Eminbend -xx 580. 0 ksi
Density 32.210pcf
'
A lied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loads
Uniform Load : D = 0.0220, Lr= 0.020 ksf, Tributary Width= 1.330 ft
DESIGN SUMMARY Design OK
Maximum Bending Stress Ratio = 0.141: 1 Maximum Shear Stress Ratio = 0.071 : 1
Section used for this span 2x10 Section used for this span 2x10
fb : Actual = 174.69psi fv : Actual = 15.88 psi
FB : Allowable = 1,237.50psi Fv : Allowable = 225.00 psi
Load Combination +D+lr..+i Load Combination +D+lr..+i
Location of maximum on span = 3.250ft Location of maximum on span = 5.741 ft
Span # where maximum occurs = Span# 1 Span # where maximum occurs = Span# 1
Maximum Deflection
Max Downward Transient Deflection 0.007 in Ratio= 11489
Max Upward Transient Deflection 0.000 in Ratio= 0 <360
Max Downward Total Deflection 0.015 in Ratio= 5183
Max Upward Total Deflection 0.000 in Ratio = 0 <240
Overall Maximum Deflections
Load Combination Span Max.•-• Defl Location in Span Load Combination Max. • +' Deft Location in Span
.O+lr-tH 1 0.0150 3.274 0.0000 0.000
Vertical Reactions Support notation: Far left is #1 Values in KIPS
Load Combination Support 1 Support 2
Overall MAXimum 0.192 -0.192
Overall MINimum 0.063 0.063
.0-tH 0.105 0.105
.O+l-tH 0.105 0.105
.O+lr-tH 0.192 0.192
.O+S-tH 0.105 0.105
.0-+-0. 750Lr-+-O. 750L -++I 0.170 0.170
.0-+-0.750L-+-0.750S-++! 0.105 0.105
Page 65 of 108
ll2!I FORT STOCKTON ORJVE
SU'TE201
~W,C.A~03
PHONE: 858-G05--0937 FAX. 858-GQS.1414
-I W_o_o_d_B_e_a_m______ --------------------------~.
Description : HOR_ 1
CODE REFERENCES
Calculations per NOS 2015, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : ASCE 7-10
Material Properties
Analysis Method : Allowable Stress Design
Load Combination ASCE 7-10
Wood Species : Douglas Fir -Larch
Wood Grade : No. 1
Beam Bracing : Completely Unbraced
...
Fb -Tension
Fb-Compr
Fe -Prll
Fe -Perp
Fv
Ft
0(0 03) Lr(0.027) ... ... ...
1,000.0 psi
1,000.0 psi
1,500.0 psi
625.0 psi
180.0psi
675.0psi
•' -\ . ... . ..
• • •, I . .
T
Span• 3.0 ft
E : Modulus of Elasticity
Ebend-xx 1, 700.0ksi
Eminbend -xx 620.0ksi
Density 32.210pcf
A lied Loads Service loads entered. Load Factors will be applied for calculations. ---·---Beam self weight calculated and added to loads
Uniform Load : D = 0.030, Lr = 0.0270 , Tributary Width = 1.0 ft
DESIGN SUMMARY Design OK
Maximum Bending Stress Ratio = 0.029 1 Maximum Shear Stress Ratio = 0.022 : 1
Section used for this span 4x6 Section used for this span 4x6
fb : Actual = 46.90psi fv : Actual = 5.02 psi
FB : Allowable = 1,622.04psi Fv : Allowable = 225.00 psi
Load Combination +0-+i.r-+H Load Combination +0-+i.r-+H
Location of maximum on span = 1.500ft Location of maximum on span = 0.000ft
Span # where maximum occurs = Span# 1 Span # where maximum occurs Span# 1
Maximum Deflection Max Downward Transient Deflection 0.000 in Ratio= 0<360
Max Upward Transient Deflection 0.000 in Ratio= 0 <360
Max Downward Total Deflection 0.001 in Ratio= 26425 Max Upward Total Deflection 0.000 in Ratio= 0 <240
Overall Maximum Deflections
Load Combination Span Max.•.• Defl Location in Span Load Combination Max.'+' Defl Location in Span
..O+lr-+H 1 0.0014 1.511 0.0000 0.000
Vertical Reactions Support notation : Far left is #1 Values in KIPS
Load Combination Support 1 Support2
Overall MAXimum 0.092 0.092
Overall MINimum 0.031 0.031
..O+H 0.051 0.051
..O+l-tH 0.051 0.051
..O+lr-tH 0.092 0.092
..O+S-+tt 0.051 0.051
..0..0. 750Lr..0.750L-+H 0.082 0.082
..0..0.750L ..0.750S-tH 0.051 0.051
Page 66 of 108
HDR-2 (Above Window)
Wl gr 11111111
I, .11
RD= 0.13 Kips
RLr= 0.11 Kips
3'-6"
From Roof (Bathroom):
Roof
RD= 0.13 Kips
RLr=0.11 Kips
(D) (22 psf) • (66 plf) = Lr = 20 psf x 3.0 ft Tnb. = 60 plf
Beam Size: Use 4x8 DF#2.
See analysis on next page.
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92 103
Page 67 of 108
[wood Beam
ID/BM•Irtll•l:11:f
Description : HDR_2 (Above Window)
CODE REFERENCES
Calculations per NDS 2012, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : IBC 2015
Material Properties
Analysis Method : Allowable Stress Design
Load Combination :
Wood Species : Douglas Fir -Larch
Wood Grade : No.2
Beam Bracing : Completely Unbraced
Fb-Tension
Fb -Compr
Fe -Prll
Fe -Perp
Fv
Ft
0(0.066) Lr(0.06)
750.0 psi
750.0 psi
700.0 psi
625.0 psi
170.0 psi
475.0 psi
~~·•:" 'c"·;:-_ ·.·lf"'r • •• • : :---'f<1• ,, • ., .. ,_. •. ··~-: ~·~=-, ,, ~. · ... •. .. 1 }·~~
t~!'lj-1: ,1,. ~ t ~: ''I t '1, ~;;\/~~ =~•-• ,-~• • i" loa,l,: ,,.),
Span • 3 50 ft
E: Modulus of Elasticity
Ebend-xx 1,300.0 ksi
Eminbend-xx 470.0ksi
Density 32.210pcf
A plied Loads ___ Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loads
Uniform Load : D = 0.0220, Lr= 0.020 ksf, Tributary Width = 3.0 ft, (From Roof (Bath))
DESIGN SUMMARY Design OK
Maximum Bending Stress Ratio = 0.065: 1 Maximum Shear Stress Ratio 0.042 : 1
Section used for this span 4x8 Section used for this span 4x8
fb : Actual = 78.91 psi fv : Actual = 8.95 psi
FB : Allowable = 1,215.31 psi Fv: Allowable = 212.50 psi
Load Combination -+O +l r +f-i Load Combination -+O+lr+f-i
Location of maximum on span = 1.750ft Location of maximum on span = 2.900ft
Span # where maximum occurs Span# 1 Span # where maximum occurs Span# 1
Maximum Deflection Max Downward Transient Deflection 0.001 in Ratio= 29782
Max Upward Transient Deflection 0.000 in Ratio= 0 <360
Max Downward Total Deflection 0.003 in Ratio= 1357D Max Upward Total Deflection 0.000 in Ratio = 0 <240
Overall Maximum Deflections
Load Combination Span Max.•-• Defl Location in Span Load Combination Max. '+' Defl Location in Span
..O+lr+H 1 0.0031 1.763 0.0000 0.000
Vertical Reactions Support notation : Far left is #1 Values in KIPS
Load Combination Support 1 Support2
Overall MAXimum 0.230 0.230
Overall MINimum 0.075 0.075
..0-+H 0.125 0.125
..O+l+H 0.125 0.125
..O+lr+H 0.230 0.230
..O+S-+l-1 0.125 0.125
..O+O. 750Lr+O. 750L +H 0.204 0.204
..0+0.750L +0.750S+H 0.125 0.125
Page 68 of 108
•
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 20 I
SAN DIEGO, CA 92103
STUDWALL AND POST CALCULATIONS
Page 69 of 108
POST DESIGN:
DEMAND (KIPS)
WAD/FLR I EQWAD
Post Ht.
Post I 10 0.09 I
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
CAPACITY CKIPS)
CAPACITY POST WAD SIZE FROM
Roof
4.1 (2)2x4 HDR-1
Page 70 of 108
DESIGN LOAD ON EXTERIOR 2x4 WALL
Roof Level
Design for max. loading
Height of wa 11,H
Effective length of wall
Gravity Roof and ceiling load
DL = 22.0 psf
LL = 20.0 psf
Addi= 18 psf
Total Live Load =
Total Live Load@ 16 in o.c=
Total Dead Load=
Total Dead Load @ 16 in o.c=
Ps_roof =
Ps_roof = @ 16 in o.c=
Provide 2x4 @ 16" o.c. stud wall at roof level
X 3.25
X 3.25
X 0.0
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 20 I
SAN OIEGO, CA 92103
= 10.00 ft
= 9.625 ft
ft = 72 plf
ft = 65 plf
ft = 0 plf
= 65 plf
= 86.667 lbs
= 72 plf
= 96 lbs
= -18.2 psf
= -24.267 plf
Page 71 of 108
PATTERS ,
ENGINEERING
8211 FORl STOCKTON DRIVE Sl.nE201
~!_ll;.f?_.e~ro
PHONE: 851Mi05-0937 FAX: 85IMIOS-141◄
[wood Column -=!I!
I
Description : 2x4 Stud wall
--fEEeRefu~~e~nc~e~s-~-------
Calculations per 2015 NOS, IBC 2015, CBC 2016, ASCE 7-10
Load Combinations Used : IBC 2015
General Information
Analysis Method : Allowable Stress Design
End Fixities Top & Bottom Pinned
Overall Column Height 10.0 ft
( Used for non-slender calculat1ons )
Wood Species Douglas Fir -Larch
Wood Grade No.2
Fb -Tension 7 50 psi
Fb-Compr 750 psi
Fe -Prll 700 psi
Fe -Perp 625 psi
Fv
Ft
Density
170 psi
475 psi
32.21 pcf
Wood Section Name
Wood Grading/Manuf.
Wood Member Type
Exact Width
Exact Depth
Area
Ix
ly
2x4
Graded Lumber
Sawn
1.50 in Allow Stress Modification Factors
3.50 in Cf or Cv for Bending 1.50
5.250 in'2 Cf or Cv for Compression 1.150
5.359 in'4 Cf or Cv for Tension 1.50
0.9844 in'4 Cm : WetUse Factor 1.0
Ct : Temperature Factor 1.0
Cfu : Flat Use Factor 1 . 0
E : Modulus of Elasticity ... x-x Bending
1300
470
y-y Bending
1300
Axial Kf : Built-op columns 1.0 NOS 15.3.2
No /n0/1-glb only) Basic
Minimum
1300 ksi Use Cr : Repetitive ?
470
Applied Loads
Column self weight included : 11.743 lbs• Dead Load Factor
AXIAL LOADS ...
Axial Load at 10.0 ft, D = 0.0960, Lr= 0.0870 k
BENDING LOADS ...
Lat. Uniform Load creating Mx-x, W = 0.0180 k/ft
DESIGN SUMMARY
Bending & Shear Check Results
PASS Max. Axial-+Bending Stress Ratio = 0.31 78 : 1
Load Combination -+0-+-0.60W+H
Governing NOS Forumla Comp+ Mxx, NOS Eq. 3.9-3
Location of max.above base 4. 966 fl
At maximum location values are ...
Applied Axial
Applied Mx
Applied My
Fe : Allowable
PASS Maximum Shear Stress Ratio=
Load Combination
Location of max.above base
Applied Design Shear
Allowable Shear
Load Combination Results
0.1077k
0.1350 k-ft
0.0 k-fl
309.132 psi
0.03782 : 1
-+D-+-0.60W+H
10.0 ft
15.429 psi
272.0 psi
Brace condition for deflection (buckling) along columns :
X-X (width) axis : Fully braced against buckling along X-X Axis
Y-Y (depth) axis : Lu for Y-Y Axis buckling : 10 ft, K = 1.0
Service loads entered. Load Factors will be applied for calculations.
Maximum SERVICE Lateral Load Reactions ..
Top along Y-Y 0.090 k Bottom along Y-Y 0.090 k
Top along X-X O. 0 k Bottom along X-X O. 0 k
Maximum SERVICE Load Lateral Oenections ...
Along Y-Y 0.5876 in at 5.034 fl above base
for load combination : W Only
Along X-X 0.0 in at 0.0 ft above base
for load combination : n/a
Other Factors used to calculate allowable stresses ...
~ Compression Tuns.ion
Cf or Cv : Size based factors 1.500 1.150
Co
0.900
1.000
1.250
1.150
1.250
1.150
1.600
1.600
1.600
Cp
0.240
0.240
0.240
0.240
0.240
0.240
0.240
0.240
0.240
Maximum Axial + Bending Stress Ratios Maximum Shear Ratios
Load Combination
-+O+H
-+0-+l +H
-+0-+lr+H
-+D+S+H
-+0-+-0.750Lr-+-O. 750L +H
-+D-+-0.750L-+-0.750S+H
-+0-+-0.60W+H
-+0-+-0.70E+H
-+0-+-0. 750Lr-+-0.750L-+-0.450W+H
Stress Ratio Status Location Stress Ratio Status Location
0.07078 PASS 0.0 ft 0.0 PASS 10.0 ft
0.06965 PASS 0.0 ft 0.0 PASS 10.0 ft
0.1226 PASS 0.0ft 0.0 PASS 10.0 ft
0.06843 PASS 0.0 ft 0.0 PASS 10.0 ft
0.1089 PASS 0.0ft 0.0 PASS 10.0 ft
0.06843 PASS 0.0 ft 0.0 PASS 10.0 ft
0.3178 PASS 4.966 ft 0.03782 PASS 10.0 ft
0.06639 PASS 0.0 ft 0.0 PASS 10.0 ft
0.2563 PASS 4.966 ft 0.02836 PASS 0.0 ft
Page 72 of 108
Description : 2x4 Stud wall
PATTERSON
ENGINEERING
028 FORT STOCKTON ORJ\/E &ne201
SAN ... ?eCA ~03
PHOIE; ll58-605-0937
FAX: 858,«l5.1414
Load Combination Results
Load Combination
+D-+O. 750L-+0. 750S-+0.450W..+i
+D-+0.750L-+0.750S-+0.5250E..+i
-+0.60D-+0.60W-+0.60H
-+0.60D-+0.70E-+0.60H
Maximum Reactions
CD
1.600
1.600
1.600
1.600
Cp
0.240
0.240
0.240
0.240
Maximum Axial + Bending Stress Ratios
Stress Ratio Status Location
0.2395 PASS 4.966ft
0.06639 PASS 0.0 ft
0.3069 PASS 4.966 ft
0.03983 PASS 0.0ft
X-X Axis Reaction Y • Y Axis Reaction
Load Combination @Base @Top @Base @Top
+D-+H k k
+D-+l-+H k k
+D-+lr-+H k k
+D+S-+H k k
+D+O. 750Lr+0.750L +H k k
+D+0.750L +0.750S-+H k k
+D+0.60W-+H k 0.054 0.054 k
+D+0.70E-+H k k
+D+0.750Lr+O. 750L +0.450W-+H k 0.041 0.041k
+D+O. 750L +0.750S+0.450W-+H k 0.041 0.041k
+D+O. 750L +0.750S+0.5250E+H k k
+0.60D+0.60W+0.60H k 0.054 0.054 k
+0.60D+0.70E+0.60H k k
DOnly k k
Lr Only k k
LOnly k k
S Only k k
WOnly k 0.090 0.090 k
EOnly k k
H Only k k
Maximum Deflections for Load Combinations
Load Combination Max. X-X Deflection Distance Max. Y-Y Deflection Distance
+D-+H 0.0000 in 0.000 ft 0.000 in 0.000 ft
+D-+l-+H 0.0000 in 0.000 ft 0.000 in 0.000 ft
+D-+lr-+H 0.0000 in 0.000 ft 0.000 in 0.000 ft
+D+S+H 0.0000 in 0.000 ft 0.000 in 0.000 ft
+D+0.750Lr+0.750L +H 0.0000 in 0.000 ft 0.000 in 0.000 ft
+D+0.750L+0.750S+H 0.0000 in 0.000 ft 0.000 in 0.000 ft
+D+0.60W-+H 0.0000 in 0.000 ft 0.353 in 5.034 ft
+D+0.70E-+H 0.0000 in 0.000 ft 0.000 in 0.000 ft
+D+0.750Lr+0.750L +0.450W-+H 0.0000 in 0.000 ft 0.264 in 5.034 ft
+D+O. 750L +0.750S+0.450W-+H 0.0000 in 0.000 ft 0.264 in 5.034 ft
+D+0.750L+0.750S+0.5250E+H 0.0000 in 0.000 fl 0.000 in 0.000 ft
+0.60D+0.60W+0.60H 0.0000 in 0.000 ft 0.353 in 5.034 ft
+0.60D+0.70E+0.60H 0.0000 in 0.000 ft 0.000 in 0.000 ft
DOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft
Lr Only 0.0000 in 0.000 ft 0.000 in 0.000 ft
LOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft
SOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft
WOnly 0.0000 in 0.000 ft 0.588 in 5.034 ft
EOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft
HOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft
Maximum Shear Ratios
Stress Ratio Status Location
0.02836 PASS 0.0 ft
0.0 PASS 10.0 ft
0.03782 PASS 10.0 ft
0.0 PASS 10.0 ft
Note: Only non-zero reactions are listed.
Axial Reaction
@Base
0.108 k
0.108 k
0.195 k
0.108 k
0.173 k
0.108 k
0.108 k
0.108 k
0.173 k
0.108 k
0.108 k
0.065 k
0.065 k
0.108 k
0.087 k
k
k
k
k
k
Page 73 of 108
Wood Column
Description : 2x4 Stud wall
Sketches
PAITE ENGINEERING
828 FORl S TOCK'TON DRIVE
SUTE201
SAN-D1Ef2, CA ~03
PHON:· ~7
FAX· 858«15-1414
y
X
1.50In
= 0
Mqoads
ci -
~
II
E
·a, :x::
002JIW f _
Loads are total entered value. Arrows do not reflect absolute direction.
Page 74 of 108
Description : 4x4x1/2' HSS-19 open lattice
Code References
Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combinations Used : IBC 2015
General Information
Steel Section Name :
Analysis Method :
----------~
HSS4x4x1/2
Allowable Strength
Overall Column Height 10.0 ft
Top & Bottom Fixity Top Free, Bottom Fixed
Steel Stress Grade
Fy: Steel Yield
Brace condition for deflection (buckling) along columns :
X-X (width) axis :
E : Elastic Bending Modulus
Load Combination :
42.0 ksi
19,000.0 ksi
IBC 2015
Unbraced Length for X -X Axis buckling = 10 ft, K = 2.1
Y -Y (depth) axis : Unbraced Length !Of Y-Y Axis buckling = 10 ft, K = 2.1
A lied Loads Service loads entered. Load Factors will be applied for calculations. -------------Column self weight included : 214.983 lbs • Dead Load Factor
AXIAL LOADS ...
From RB-2: Axial Load at 10.0 ft, D = 0.630, LR= 0.6330 k
BENDING LOADS ...
Lat. Point Load at 10.0 ft creating Mx-x, E = 0.2150 k
DESIGN SUMMARY
Bending & Shear Check Results
PASS Max. Axial-+Bending Stress Ratio =
Load Combination
Location of max.above base
At maximum location values are ...
Pa : Axial
Pn I Omega : Alowable
Ma-x : Applied
Mn-x / Omega : Allowable
Ma-y : Applied
Mn-y / Omega : Allowable
PASS Maximum Shear Stress Ratio =
Load Combination
Location of max.above base
At maximum location values are ... Va: Applied
Vn / Omega : Allowable
Load Combination Results
Load Combination
-+0-+H
-+0-+l-+H
-+0-+lr-+H
-+O+S-+H
-+0+0.750Lr+O. 750L-+H
-+0+0.750L +0.750S-+H
-+O+O. 60W-+H
-+0+0.70E-+H
-+0+0.750Lr+0.750L+0.450W-+H
-+0+0.750L +0.750S+0.450W-+H
-+0+0.750L+0.750S+0.5250E-+H
+0.60D+0.60W+0.60H
+0.60D+0.70E+0.60H
0.1160 : 1
+D+0.70E+H
0.0 ft
0.8450 k
18.560 k
-1.505 k-ft
16.138 k-ft
0.0 k-ft
16.138 k-ft
0.004117 : 1
+D+0.70E+H
0.0 ft
0.1505 k 36.557 k
Maximum Axial + Bending stress Ratios
Stress Ratio Status Location
0.046 PASS 0.00 ft
0.046 PASS 0.00 ft
0.080 PASS 0.00 ft
0.046 PASS 0.00 ft
0.071 PASS 0.00 ft
0.046 PASS 0.00 ft
0.046 PASS 0.00 ft
0.116 PASS 0.00 ft
0.071 PASS 0.00 ft
0.046 PASS 0.00 ft
0.093 PASS 0.00 ft
0.027 PASS 0.00 ft
0.107 PASS 0.00 ft
Maximum SERVICE Load Reactions ..
Top along X-X
Bottom along X-X
Top along Y-Y
Bottom along Y -Y
Maximum SERVICE Load Deflections ...
Along Y-Y 0.5450 in at
for load combination : E Only
Along X-X 0.0 in at
for load combination :
Maximum Sbeac Ratios
0.0 k
0.0 k
0.0 k
0.2150 k
1 O. Oft above base
0.0ft above base
Stress Ratio Status Location
0.000 PASS 0.00 ft
0.000 PASS 0.00 ft
0.000 PASS 0.00 ft
0.000 PASS 0.00 ft
0.000 PASS 0.00 ft
0.000 PASS 0.00 ft
0.000 PASS 0.00 ft
0.004 PASS 0.00 ft
0.000 PASS 0.00 ft
0.000 PASS 0.00 ft
0.003 PASS 0.00 ft
0.000 PASS 0.00 ft
0.004 PASS 0.00 ft
Page 75 of 108
!
Steel Column
I. It : ..
Description : 4x4x1/2" HSS-19 open lattice
Maximum Reactions Note: Only non-zero reactions are listed.
X-X Axis Reaction Y -Y Axis Reaction Axial Reaction
Load Combination @Base @Top @Base @Top @Base
+O..+-i k k 0.845 k
+0-+l ..+-i k k 0.845 k
+0-+lr..+-i k k 1.478 k
+O+S..+-i k k 0.845 k
+0-+-0. 750Lr-+0.750L ..+-i k k 1.320 k
+0-+0.750L-+0.750S..+-i k k 0.845 k
+0-+0.60W..+-i k k 0.845 k
+0-+0.70E..+-i k -0.151 k 0.845 k
+0-+-0. 750Lr-+0. 7 50L-+O. 450W..+-i k k 1.320 k
+0-+-0. 750L-+0.750S-+0.450W..+-i k k 0.845 k
+0-+-0. 750L-+0.750S-+0.5250E..+-i k -0.113 k 0.845 k
-+0.60D-+0.60W-+0.60H k k 0.507 k
-+0.60D-+O. 70E-+0.60H k -0.151 k 0.507 k
D Only k k 0.845 k
Lr Only k k 0.633 k
LOnly k k k
SOnly k k k
WOnly k k k
EOnly k -0.215 k k
H Only k k k
Maximum Deflections for Load Combinations
Load Combination Max. X-X Deflection Distance Max. Y-Y Deflection Distance
+O..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft
+0-+l..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft
+0-+lr..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft
+O+S..+-l 0.0000 in 0.000 ft 0.000 in 0.000 ft
+0-+-0. 750Lr-+0.750L ..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft
+0-+-0. 750L-+0.750S..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft
+0-+0.60W..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft
+0-+0.70E..+-i 0.0000 in 0.000 ft 0.381 in 10.000 ft
+0-+0.750Lr+0.750L+0.450W..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft
+0-+-0. 750L-+0.750S+0.450W..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft
+0-+-0. 750L-+0. 750S-+0.5250E..+-i 0.0000 in 0.000 ft 0.286 in 10.000 ft
+0.60D-+0.60W+0.60H 0.0000 in 0.000 ft 0.000 in 0.000 ft
+0.60D+0.70E+0.60H 0.0000 in 0.000 fl 0.381 in 10.000 ft
D Only 0.0000 in 0.000 fl 0.000 in 0.000 ft
Lr Only 0.0000 in 0.000 ft 0.000 in 0.000 ft
LOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft
SOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft
WOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft
EOnly 0.0000 in 0.000 ft 0.545 in 10.000 ft
HOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft
Steel Section Proeerties : HSS4x4x1/2
Page 76 of 1 OB
[ Steel Column
l!Al■Wi'C•l3•I•l:Jff:f
Description : 4x4x1/2' HSS-19 open lattice
Steel Section Propertie~
Depth =
Width
Wall Thick
Alea
Weight
C: i5 0 ..,.
=
=
=
HSS4x4x1/2
4.000 in I xx
Sxx
4.000 in Rxx
0.500 in Z:,.
6.020 in•2 lyy
21.498 pit Syy
R yy
0.000 in
Load 1
4.00in
X
11.90 in•4
5.97 in•3
1.410 in
7.700 in•3
11.900 in•4
5.970 in•3
1.410 in
"' 0
0
II
.E !2' ., :,:
'
21.000 in•4
C 11.200 in•3
1.l'D M-x Loads
'"'
Loads are total entered value Arrows do not reflect absolute drection
Page 77 of 108
!
[ Steel Column
IH/113'?1113•111:Jd:f
Description : 6x6x112· HSS-2 patio
Code References
Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combinations Used : IBC 2015
General lnf..,o_rm.a_t ... io_n _______ ~-~........:.
Steel Section Name :
Analysis Method :
HSS6x6x1/2
Allowable Strength
Overall Column Height 10.0 ft
Top & Bottom Fixity Top Free, Bottom Fixed
Steel Stress Grade
Fy : Steel Yield
, A500, Grade B, Fy = 46 ksi, Carbon
46.0 ksi
Brace condition for deflection (buckling) along columns :
X-X (width) axis:
E : Elastic Bending Modulus
Load Combination :
19,000.0 ksi
IBC 2015
Unbraced Length for X-X Axis buckling = 10 ft. K = 2.1
Y-Y (depth) axis:
Unbraced Length for Y-Y Axis buckfing = 10 ft. K = 2.1
A lied Loads Service loads entered. Load Factors will be applied for calculations.
Column self weight included : 351.094 lbs• Dead Load Factor
AXIAL LOADS ...
Load From RB-5 (Left): Axial Load at 10.0 ft, D = 4.310, LR= 2.930 k
BENDING LOADS ...
Lat. Point Load at 10.0 ft creating Mx-x, E = 2.320 k
DESIGN SUMMARY
Bending & Shear Check Results
PASS Max. Axial+Bending Stress Ratio =
Load Combination
Location of max.above base
At maximum location values are ...
Pa: Axial
Pn / Omega : Aftowable
Ma-x : Applied
Mn-x / Omega : Allowable
Ma-y : Applied
Mn-y I Omega : Allowable
PASS Maximum Shear Stress Ratio=
Load Combination
Location of max.above base
At maximum location values are ... Va : Applied
Vn / Omega : Allowable
Load Combination Results
Load Combination
-+{)+ti
-+0-+l+ti
-+0-+lr+ti
-+O•S+ti
-+0+0.750Lr+O. 750L +ti
-+0+0.750L +0.750S+ti
-+0+0.60W+ti
-+0+0.70E+ti
-+0+0.750Lr+0.750L+0.450W+ti
-+0+0.750L+0.750S+0.450W+ti
-+0+0.750L+0.750S+0.5250E+ti
+0.60D+0.60W+0.60H
+0.60D+0.70E+0.60H
0.3884 : 1
+D+0.70E+H
0.0 ft
4.661 k
75.111 k
-16.240 k-ft
45.449 k-fl
0.0 k-ft
45.449 k-fl
0.02295 : 1
+D+0.70E+H
0.0 ft
1.624 k
70.779 k
Maximum Axial • Bending Stress Ratios
Stress Ratio Status Location
0.062 PASS 0.00 ft
0.062 PASS 0.00 ft
0.101 PASS 0.00 ft
0.062 PASS 0.00 ft
0.091 PASS 0.00 ft
0.062 PASS 0.00 ft
0.062 PASS 0.00 ft
0.388 PASS 0.00 ft
0.091 PASS 0.00 ft
0.062 PASS 0.00 ft
0.299 PASS 0.00 ft
0.037 PASS 0.00 ft
0.376 PASS 0.00 ft
Maximum SERVICE Load Reactions ..
Top along X-X
Bottom along X-X
Top along Y-Y
Bottom along Y-Y
Maximum SERVICE Load Deflections ...
Along Y-Y 1.449 in at
for load combination : E Only
Along X-X 0.0 in at
for load combination :
Maximum Shear Ratios
0.0 k
0.0 k
0.0 k
2.320 k
10.0ft above base
0.0ft above base
Stress Ratio Status Location
0.000 PASS 0.00 ft
0.000 PASS 0.00 ft
0.000 PASS 0.00 ft
0.000 PASS 0.00 ft
0.000 PASS 0.00 ft
0.000 PASS 0.00 ft
0.000 PASS 0.00 ft
0.023 PASS 0.00 ft
0.000 PASS 0.00 ft
0.000 PASS 0.00 ft
0.017 PASS 0.00 ft
0.000 PASS 0.00 ft
0.023 PASS 0.00 ft
Page 78 of 108
•
I Steel Column
l!AI/Pffl•I3•Itl:J1:f
Description : 6x6x1/2" HSS-2 patio
Maximum Reactions
Load Combination
-+0-+H
-+0-+l-+H
-+0-+lr-+H
-+O+S-+H
-+O+O. 750Lr+0.750L-+H
-+0+0.750L +0.750S-+H
-+0+0.60W-+H
-+0+0.70E-+H
-+0+0.750Lr+0.750L +0.450W-+H
-+O+O. 750L +0.750S+0.450W-+H
-+0+0.750L +0.750S+0.5250E-+H
+0.60D+0.60W+0.60H
+0.60D+0.70E+0.60H
DOnly
Lr Only
L Only
SOnly
WOnly
E Only
H Only
X-X Axis Reaction
@Base @Top
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
Maximum Deflections for Load Combinations
Load Combination Max. X-X Deflection Distance
-+0-+H 0.0000 in 0.000
-+0-+l-+H 0.0000 in 0.000
-+0-+lr-+H 0.0000 in 0.000
-+O+S-+H 0.0000 in 0.000
-+0+0.750Lr+0.750L-+H 0.0000 in 0.000
-+0+0.750L +0.750S-+H 0.0000 in 0.000
-+0+0.60W-+H 0.0000 in 0.000
-+0+0.70E-+H 0.0000 in 0.000
-+0+0.750Lr+0.750L+0.450W-+H 0.0000 in 0.000
-+0+0.750L+0.750S+0.450W-+H 0.0000 in 0.000
-+0+0. 750L +O. 750S+0.5250E-+H 0.0000 in 0.000
+0.60D+0.60W+0.60H 0.0000 in 0.000
+0.60D+0.70E+0.60H 0.0000 in 0.000
DOnly 0.0000 in 0.000
Lr Only 0.0000 in 0.000
LOnly 0.0000 in 0.000
SOnly 0.0000 in 0.000
WOnly 0.0000 in 0.000
E Only 0.0000 in 0.000
H Only 0.0000 in 0.000
Steel Section Pro erties : HSS6x6x1/2
Note: Only non-zero reactions are listed.
Y -Y Axis Reaction Axial Reaction
@ Base @ Top @Base
k 4.661 k
k 4.661 k
k 7.591 k
k 4.661 k
k 6.859 k
k 4.661 k
k 4.661 k
-1.624 k 4.661 k
k 6.859 k
k 4.661 k
-1.218 k 4.661 k
k 2.797 k
-1.624 k 2. 797 k
k 4.661 k
k 2.930 k
k k
k k
k k
-2.320 k k
k k
Max. Y -Y Deflection Distance
ft 0.000 in 0.000 ft
ft 0.000 in 0.000 ft
ft 0.000 in 0.000 ft
ft 0.000 in 0.000 ft
ft 0.000 in 0.000 ft
ft 0.000 in 0.000 ft
ft 0.000 in 0.000 ft
ft 1.014 in 10.000 ft
ft 0.000 in 0.000 ft
ft 0.000 in 0.000 ft
ft 0.761 in 10.000 ft
ft 0.000 in 0.000 ft
ft 1.014 in 10.000 ft
ft 0.000 in 0.000 ft
ft 0.000 in 0.000 ft
ft 0.000 in 0.000 ft
ft 0.000 in 0.000 ft
ft 0.000 in 0.000 ft
ft 1.449 in 10.000 ft
ft 0.000 in 0.000 ft
Page 79 of 108
[ Steel Column
lltAl/113WStl3titl:Jd:f
Description : 6x6x112· HSS-2 patio
Width
Wall Thick
Area
Weight
C 8 <D
HSS6x6x1/2
~---6.-000 in lxx
=
=
=
6.000 in
0.500 in
9.740 in•2
35.109 plf
0.000 in
y
6.00in
$)()(
Rxx
b.
lyy
Syy
R yy
•
48.30 in•4 J 81.100 in•4
= 16.10 in•3
= 2.230 in
= 19.800 in•3
48.300 in•4 C 28.100 in•3
16.100 in•3
= 2.230 in
,,.. M-x Loads
"' 0 X d
II
1: .QI .,
J:
Loads are total entered value. Arrows do not reflect absolute dwect,on.
Page 80 of 108
PATTERSON ENG INEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 20 I
SAN DIEGO, CA 92103
FOUNDATION CALCULATIONS
Page 81 of 108
DESIGN OF FOOTING
Design of Exterior Wall Footing for bathroomAddition
W = Roof load + wall load
= 3.25 x 42 + l8x l0
= 3 16.5 plf
Allowable soil bearing
Width required
= 1500 psf
= 316.5 I 1500
= 0.22 ft
PATTERSO ENGINEERING, fNC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
Provide minimum 12" wide x 15" Deep footing with 2#4 bars at top and bottom.
Design of Isolated Footing (with moment @ open lattice Area)
Load from beam RB-2 (Right)
Height of post
Latera l Load on each column
Moment at the base, Mu
Total load
Allowable soil bearing
Width required
=10'-0"
= 0.215 kips
=0.21 5xl0
=2. 15 kips-ft
=1260lbs
= 1500 psf
= ✓ I 260/1 500
= 1.0 ft
Provide min. 42"x 42" xlS" concrete footing w/ (6) #4 rebar each way.
See analysis on next page.
Page 82 or 108
Description : Foundation
Code References
Calculations per ACI 318-11, IBC 2015, CBC 2016, ASCE 7-10
Load Combinations Used : IBC 2015
General Information
Material Properties
fc : Concrete 28 day strength
fy : Rebar Yield
Ee : Concrete Elastic Modulus
Concrete Density
q> Values Flexure
Shear
Analysis Settings
Min Steel % Bending Reinf.
Min Allow% Temp Reinf.
Min. Overturning Safety Factor
Min. Sliding Safety Factor
Add Fig Wt for Soil Pressure
Use fig wt for stability, moments & shears
Add Pedestal Wt for Soil Pressure
Use Pedestal wt for stability, mom & shear
Dimensions
Width parallel to X-X Axis =
Length parallel to Z-Z Axis =
Footing Thicknes =
Pedestal dimensions ...
px : parallel to X·X Axis :
pz : parallel to z .z Axis =
Height
Rebar Centerline to Edge of Concrete ..
at Bottom of fooling =
Reinforcing
Bars parallel to X-X Axis
Number of Bars =
Reinforcing Bar Size =
Bars parallel to 2-2 Axis
Number of Bars =
Reinforcing Bar Siz1 =
=
=
=
=
=
=
=
=
=
=
3.50 ft
3.50 ft
15.0 in
#
#
in
in
in
3.0 in
6.0
4
6.0
4
Bandwidth Distribution Check (ACI 15.4.4.2)
Direction Requiring Closer Separation n/a
# Bars required within zone n/a
# Bars required on each side of zone n/a
APP.lied Loads
D
P : Column Load = 0.630
OB : Overburden =
M·XX =
M-zz =
V-x =
v.z =
2.50 ksi
60.0 ksi
3,122.0 ksi
145.0 pct
0.90
0.750
0.00180
1.0 : 1
1.0 : 1
Yes
Yes
No
No
Lr
0.630
Soil Design Values
Allowable Soil Bearing
Increase Bearing By Fooling Weight
Soil Passive Resistance (for Sliding)
Soil/Concrete Friction Coeff. =
Increases based on footing Depth Footing base depth befow soil surface =
Allowable pressure increase per foot of deptt=
when fooling base is below =
Increases based on fooling plan dimension
Allowable pressure increase per foot of dept =
when maximum length or width is greater4
z
~c.---~~--+--'---i-----"-+--x (")
L s w
m a. <O (1)
I~
E
2.150
0.2150
1.50 ksf
Yes
250.0 pct
0.250
ft
ksf
ft
ksf
ft
H
k
ksf
k-ft
k-ft
k
k
Page 83 of 108
•
General Footing '. ,,: ..
Description : Foundation
DESIGN SUMMARY
Min. Ratio
PASS 0.3105
PASS nla
PASS 1.768
PASS 2.841
PASS nla
PASS n/a
PASS 0.02536
PASS 0.01374
PASS 0.01232
PASS 0.01232
PASS 0.01011
PASS 0.01011
PASS 0.01011
PASS 0.01011
PASS 0.01858
Detailed Results
Soil Bearing
Rotation Axis & Load Combination ...
X-X, +D+H
X-X, +D+L+H
X-X, +D+Lr+H
X-X, +D+S+H
X-X, +D-+-0.750Lr-+-0.750L+H
X-X, +D-+-0.750L-+-0.750S+H
X-X, +D-+-0.60W+H
X-X, +D-+-0.70E+H
Item
Soil Bearing
Overturning -X-X
Overturning -Z-Z
Sliding -X-X
Sliding -Z-Z
Uplift
Z Flexure (+X)
Z Flexure (-X)
X Flexure (+Z)
X Flexure (-Z)
1-way Shear ( +X)
1-way Shear (-X)
1-way Shear ( +Z)
1-way Shear (-Z)
2-way Punching
Gross Allowable
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
X-X, +D-+-0.750Lr-+-0.750L-+-0.450W+H 1.50
X-X, +D-+-0.750L-+-0.750S-+-0.450W+H 1.50
X-X, +D-+-0.750L-+-0.750S-+-0.5250E+H 1.50
X-X. -+-0.60D-+-0.60W-+-0.60H 1.50
X-X, -+-0.60D-+-0.70E-+-0.60H 1.50
Z-Z, +D+H 1.50
Z-Z, +D+L+H 1.50
Z-Z, +D+Lr+H 1.50
Z-Z, +D+S+H 1.50
Z-Z, +D-+-0.750Lr-+-0.750L+H 1.50
Z-Z, +D-+-0.750L-+-0.750S+H 1.50
Z-Z, +D-+-0.60W+H 1.50
Z-Z, +D-+-0.70E+H 1.50
Z-Z, +D-+-0.750Lr-+-0.750L-+-0.450W+H 1.50
Z-Z. +D-+-0.750L-+-0.750S-+-0.450W+H 1.50
Z-Z, +D-+-0.750L-+-0.750S-+-0.5250E+H 1.50
Z-Z, -+-0.60D-+-0.60W-+-0.60H 1.50
Z-Z. -+-0.60D-+-0.70E-+-0.60H 1.50
Overturning Stability
Rotation Axis &
Load Combination ...
X-X, +D+H
X-X, +D+L+H
X-X, +D+Lr+H
X-X, +D+S+H
X-X, +D-+-0.750Lr-+-0.750L +H
X-X, +D-+-0.750L-+-0.750S+H
X-X. +D-+-0.60W+H
X-X, +D-+-0.70E+H
X-X, +D-+-0.750Lr-+-0.750L-+-0.450W+H
X-X, +D-+-0.750L-+-0.750S-+-0.450W+H
Applied
0.4657 ksf
0.0 k-ft
1.693 k-ft
0.1505 k
0.0 k
0.0 k
0.4538 k-ft
0.2458 k-ft
0.2205 k-ft
0.2205 k-ft
0.7583 psi
0.7583 psi
0.7583 psi
0.7583 psi
2.787 psi
Xecc Zecc
nla 0.0
nla 0.0
nla 0.0
nla 0.0
nla 0.0
n/a 0.0
n/a 0.0
nla 0.0
nla 0.0
n/a 0.0
nla 0.0
n/a 0.0
nla 0.0
0.0 nla
0.0 n/a
0.0 n/a
0.0 n/a
0.0 n/a
0.0 n/a
0.0 n/a
7.128 n/a
0.0 n/a
0.0 n/a
5.346 n/a
0.0 nla
11.880 nla
Overturning Moment
None
None
None
None
None
None
None
None
None
None
Design OK
Capacity Governing Load Combination
1.50 ksf +D-+-0.70E+H about Z-Z axis
0.0 k-ft No Overturning
2.993 k-ft -+-0.60D-+-0.70E-+-0.60H
0.4275 k -+-0.60D-+-O. 70E-+-0.60H
0.0 k No Sliding
0.0 k No Uplift
17.892 k-ft -+-0.90D+E-+-0.90H
17.892 k-ft +1.20D-+-0.50L-+-0.70S+E+1.60H
17.892 k-ft +1.20D+1.60Lr-+-0.50L +1.60H
17.892 k-ft +1.20D+1.60Lr-+-0.50L +1.60H
75.0 psi +1.200+1.60Lr-+-0.50L+1.60H
75.0 psi +1.20D+1.60Lr-+-0.50L +1.60H
75.0 psi +1.20D+1.60Lr-+-0.50L+1.60H
75.0 psi + 1.20D+1.60Lr-+-0.50L +1.60H
150.0 psi +1.20D+1.60Lr-+-0.50L+1.60H
Actual Soil Bearini Stress Actual / Allowable
Bottom, -Z Top, +Z Le , -X Right, +X Ratio
0.2327 0.2327 n/a nla 0.155
0.2327 0.2327 n/a n/a 0.155
0.2841 0.2841 nla nla 0.189
0.2327 0.2327 nla n/a 0.155
0.2713 0.2713 n/a n/a 0.181
0.2327 0.2327 nla n/a 0.155
0.2327 0.2327 n/a n/a 0.155
0.2327 0.2327 nla n/a 0.155
0.2713 0.2713 nla n/a 0.181
0.2327 0.2327 n/a n/a 0.1 55
0.2327 0.2327 nla nla 0.155
0.1396 0.1396 nla nla 0.093
0.1396 0.1396 n/a n/a 0.093
nla nla 0.2327 0.2327 0.155
nla nla 0.2327 0.2327 0.155
n/a n/a 0.2841 0.2841 0.189
nla n/a 0.2327 0.2327 0.155
n/a n/a 0.2713 0.2713 0.181
nla nla 0.2327 0.2327 0.155
nla nla 0.2327 0.2327 0.155
n/a n/a 0.0 0.4657 0.311
nla nla 0.2713 0.2713 0.181
n/a n/a 0.2327 0.2327 0.155
nla nla 0.05794 0.4074 0.272
nla nla 0.1396 0.1396 0.093
n/a n/a 0.0 0.4231 0.282
Resisting Moment Stability Ratio Status
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK 0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
Page 84 of 108
Description : Foundation
Overturning Stability
Rotation Axis &
Load Combination ...
X-X, +D-+-0.750L-+-0.750S-+-0.5250E+H
X-X, -+-0.60D-+-0.60W-+-0.60H
X-X, -+-0.60D-+-0.70E-+-0.60H
Z-Z, +D+H
Z-Z, +D+l+H
Z-Z, +D+lr+H
Z-Z, +D+S+H
Z-Z, +D-+-0.750Lr-+-0.750L+H
Z-Z, +D-+-0.750L-+-0.750S+H
Z-Z, +D-+-0.60W+H
Z-Z, +D-+-0.70E+H
Z-Z, +D-+-0.750Lr-+-0.750L-+-0.450W+H
Z-Z, +D-+-0.750L-+-0.750S-+-0.450W+H
Z-Z, +D-+-0.750L-+-0.750S-+-0.5250E+H
Z-Z, -+-0.60D-+-0.60W-+-0.60H
Z-Z, -+-0.60D-+-0.70E-+-0.60H
Sliding Stability
Force Application Axis
Load Combination ...
X-X, +D+H
X-X, +D+l+H
X-X, +D+lr+H
X-X, +D+S+H
X-X, +D-+-0.750Lr-+-0.750L +H
X-X, +D-+-0.750L-+-0.750S+H
X-X, +D-+-0.60W+H
X-X, +D-+-0.70E+H
X-X, +D-+-0.750Lr-+-0.750L-+-0.450W+H
X-X, +D-+-0.750L-+-0.750S-+-0.450W+H
X-X, +D-+-0.750L-+-0.750S-+-0.5250E+H
X-X, -+-0.60D-+-0.60W-+-0.60H
X-X, -+-0.60D-+-0.70E-+-0.60H
Z-Z, +D+H
Z-Z, +D+l+H
Z-Z, +D+lr+H
Z-Z, +D+S+H
Z-Z, +D-+-0.750Lr-+-0.750L+H
Z-Z, +D-+-0.750L-+-0.750S+H
Z-Z, +D-+-0.750L-+-0.750S-+-0.450W+H
Z-Z, +D-+-0.750L-+-0.750S-+-0.5250E+H
Z-Z, -+-0.60D-+-0.60W-+-0.60H
Z-Z, -+-0.60D-+-0.70E-+-0.60H
Z-Z, +D-+-0.60W+H
Z-Z, +D-+0.70E+H
Z-Z, +D-+-0.750Lr-+-0.750L-+-0.450W+H
Footing Flexure
Flexure Axis & Load Combination
X-X, +1.40D+1.60H
X-X, +1.40D+1 .60H
X-X, +1.20D-+-0.50Lr+1 .60L +1.60H
X-X, +1.20D-+-0.50Lr+1.60L+1.60H
X-X, +1.200+1.60L-+-0.50S+1.60H
X-X, +1.20D+1.60L-+-0.50S+1.60H
X-X, +1.20D+1.60Lr-+-0.50L+1.60H
X-X, +1.20D+1.60Lr-+-0.50L+1.60H
X-X, +1 .20D+1.60Lr-+-0.50W+1.60H
X-X, +1.20D+1.60Lr-+-0.50W+1.60H
X-X, +1.20D-+-0.50L+1.60S+1.60H
X-X, +1.20D-+-0.50L+1.60S+1.60H
X-X, +1.20D+1.60S-+-0.50W+1.60H
Overturning __ Moment
None
None
None
None
None
None
None
None
None
None
1.693 k-ft
None
None
1.270 k-ft
None
1.693 k-ft
Sliding Force
0.0 k
0.0 k
0.0 k
0.0 k
0.0 k
0.0 k
0.0 k
0.1505k
0.0 k
0.0 k
0.1129 k
0.0 k
0.1505 k
0.0 k
0.0 k
0.0 k
0.0 k
0.0 k
0.0 k
0.0 k
0.0 k
0.0 k
0.0 k
0.0 k
0.0 k
0.0 k
Mu Which Tension @
k-ft Side? Bot or Top?
0.1103 +Z Bottom
0.1103 -Z Bottom
0.1339 +Z Bottom
0.1339 -Z Bottom
0.09450 +Z Bottom
0.09450 -Z Bottom
0.2205 +Z Bottom
0.2205 -Z Bottom
0.2205 +Z Bottom
0.2205 -Z Bottom
0.09450 +Z Bottom
0.09450 -Z Bottom
0.09450 +Z Bottom
Resisting Moment Stability Ratio Status
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
4.988 k-ft 2.946 OK
0.0 k-ft Infinity OK
0.0 k-ft Infinity OK
4.988 k-ft 3.928 OK 0.0 k-ft Infinity OK
2.993 k-ft 1.768 OK
All units k
Resisting Force Sliding SafetyRatio Status
0.7126 k No Slidini;i OK
0.7126 k No Slidini;i OK
0.8701 k No Slidini;i OK
0.7126 k No Slidino OK
0.8307 k No Slidino OK
0.7126 k No Slidino OK
0.7126 k No Slidino OK
0.7126 k 4.735 OK
0.8307 k No SlidinQ OK
0.7126 k No Slidino OK
0.7126 k 6.313 OK
0.4275 k No Slidino OK
0.4275 k 2.841 OK
0.7126 k No SlidinQ OK
0.7126 k No Slidini;i OK
0.8701 k No SlidinQ OK
0.7126 k No Slidino OK
0.8307 k No SlidinQ OK
0.7126 k No Slidino OK
0.7126 k No Slidini;i OK
0.7126 k No Slidino OK 0.4275 k No SlidinA OK
0.4275 k No Slidini;i OK 0.7126k No Slidino OK
0.7126 k No Slidini;i OK
0.8307 k No SlidinQ OK
As Req'd Gvrn. As Actual As Phi"Mn Status in•2 in•2 in•2 k-ft
0.324 Min Temp% 0.3429 17.892 OK
0.324 Min Temp% 0.3429 17.892 OK
0.324 Min Temp% 0.3429 17.892 OK
0.324 Min Temp% 0.3429 17.892 OK
0.324 Min Temp% 0.3429 17.892 OK
0.324 Min Temp% 0.3429 17.892 OK
0.324 Min Temp% 0.3429 17.892 OK
0.324 Min Temp% 0.3429 17.892 OK
0.324 Min Temp % 0.3429 17.892 OK
0.324 Min Temp% 0.3429 17.892 OK
0.324 Min Temp% 0.3429 17.892 OK
0.324 Min Temp% 0.3429 17.892 OK
0.324 Min Temp% 0.3429 17.892 OK
Page 85 of 108
!.<!:r~~~:.~~1~:~g I
Description: Foundation
Footing Flexure
Flexure Axis & Load Combination Mu Which Tension @ As Req'd Gvrn. As Actual As Phi0 Mn Status k-fl Side? Bot or Top? in•2 in•2 in•2 k-fl
X-X, +1.200+1.60S+0.50W+1.60H 0.09450 -Z Bottom 0.324 Min Temp% 0.3429 17.892 OK
X-X, +1 .20D+0.50Lr+0.50L+W+1.60H 0.1339 +Z Bottom 0.324 Min Temp% 0.3429 17.892 OK
X-X, +1.20D+0.50Lr+0.50L+W+1.60H 0.1339 -Z Bottom 0.324 Min Temp% 0.3429 17.892 OK
X-X, + 1.20D+0.50L +0.50S+W+ 1.60H 0.09450 +Z Bottom 0.324 Min Temp% 0.3429 17.892 OK
X-X, +1.200+0.50L +0.50S+W+1.60H 0.09450 -Z Bottom 0.324 Min Temp % 0.3429 17.892 OK
X-X, +1.20D+0.50L+0.70S-+£+1.60H 0.09450 +Z Bottom 0.324 Min Temp % 0.3429 17.892 OK
X-X, + 1.20D+0.50L +O. 70S-+£+ 1.60H 0.09450 -Z Bottom 0.324 Min Temp% 0.3429 17.892 OK
X-X, +0.90D+W+0.90H 0.07088 +Z Bottom 0.324 Min Temp% 0.3429 17.892 OK
X-X, +0.90D+W+0.90H 0.07088 -Z Bottom 0.324 Min Temp % 0.3429 17.892 OK
X-X, +0.90D-+E+0.90H 0.07088 +Z Bottom 0.324 Min Temp % 0.3429 17.892 OK
X-X, +0.900-+E+0.90H 0.07088 -Z Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +1.400+1.60H 0.1103 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +1.400+1.60H 0.1103 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, + 1.200+0.50Lr+1.60L +1.60H 0.1339 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +1.20D+0.50Lr+1.60L+1.60H 0.1339 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +1.200+1.60L+0.50S+1.60H 0.09450 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +1.200+1.60L+0.50S+1.60H 0.09450 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.200+1.60Lr+0.50L+1.60H 0.2205 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +1.200+ 1.60Lr+0.50L +1 .60H 0.2205 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, + 1.200+1.60Lr+0.50W+ 1.60H 0.2205 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +1.200+1.60Lr+0.50W+1 .60H 0.2205 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +1.20D+0.50L+1.60S+1.60H 0.09450 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +1.200+0.50L+1 .60S+1.60H 0.09450 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +1.200+1.60S+0.50W+1.60H 0.09450 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +1.200+1.60S+0.50W+1.60H 0.09450 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z. +1.20D+0.50Lr+0.50L+W+1.60H 0.1339 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +1.20D+0.50Lr+0.50L+W+1.60H 0.1339 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +1.200+0.50L +0.50S+W+1.60H 0.09450 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, + 1.200+0.50L +0.50S+W+ 1.60H 0.09450 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +1.20D+0.50L+0.70S-+£+1.60H 0.2458 -X Top 0.324 Min Temp% 0.3429 17.892 OK
Z-Z. +1.200+0.50L +0.70S-+£+1.60H 0.4451 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +0.90D+W+0.90H 0.07088 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +0.90D+W+0.90H 0.07088 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +0.90D-+E+0.90H 0.2372 -X Top 0.324 Min Temp% 0.3429 17.892 OK
Z-Z, +0.900-+E+0.90H 0.4538 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK
One Way Shear
Load Combination ... Vu @-X Vu @+X Vu @-Z Vu @+Z Vu:Max PhiVn Vu/ Phi'Vn Status
+1.400+1.60H 0.3792 psi 0.3792 psi 0.3792 psi 0.3792 psi 0.3792 psi 75 psi 0.005056 OK +1 .20D+0.50Lr+1.60L +1.60H 0.4604 psi 0.4604 psi 0.4604 psi 0.4604 psi 0.4604 psi 75 psi 0.006139 OK
+1 .200+1.60L+0.50S+1 .60H 0.325psi 0.325 psi 0.325 psi 0.325 psi 0.325 psi 75 psi 0.004333 OK +1.200+1.60Lr+0.50L +1.60H 0.7583 psi 0.7583 psi 0.7583 psi 0.7583 psi 0.7583 psi 75 psi 0.01011 OK
+1.200+1.60Lr+0.50W+1.60H 0.7583psi 0.7583psi 0.7583 psi 0.7583 psi 0.7583 psi 75 psi 0.0101 1 OK +1.20D+0.50L +1.60S+1.60H 0.325 psi 0.325 psi 0.325 psi 0.325 psi 0.325 psi 75 psi 0.004333 OK
+1.200+1.60S+0.50W+1.60H 0.325 psi 0.325 psi 0.325 psi 0.325 psi 0.325 psi 75 psi 0.004333 OK +1 .200+0.50Lr+0.50L +W+ 1.60H 0.4604 psi 0.4604 psi 0.4604 psi 0.4604 psi 0.4604psi 75 psi 0.006139 OK
+1.200+0.50L+0.50S+W+1.60H 0.325 psi 0.325 psi 0.325 psi 0.325 psi 0.325 psi 75 psi 0.004333 OK + 1.20D+0.50L +O. 70S-+E+ 1.60H 0.3249 psi 0.3249psi 0.325 psi 0.325 psi 0.325 psi 75 psi 0.004333 OK
+0.90D+W+0.90H 0.2438 psi 0.2438 psi 0.2438 psi 0.2438 psi 0.2438 psi 75 psi 0.00325 OK
+0.900-+E+0.90H 0.2436 psi 0.2436 psi 0.2438 psi 0.2438 psi 0.2438 psi 75 psi 0.00325 OK
Punching Shear All units k
Load Combination ... Vu Phi'Vn Vu/ Phi'Vn Status
+1.400+1 .60H 1.393 psi 150psi 0.00929 OK
+1.200+0.50Lr+1 .60L +1.60H 1.692 psi 150psi 0.01128 OK
+1.200+1.60L+0.50S+1.60H 1.194 psi 150psi 0.007963 OK
+ 1.200+1.60Lr+0.50L +1.60H 2.787 psi 150psi 0.01858 OK
+1.20D+1 .60Lr+0.50W+1.60H 2.787 psi 150psi 0.01858 OK + 1.20D+0.50L + 1.60S+ 1.60H 1.194 psi 150psi 0.007963 OK
+1.200+1 .60S+0.50W+1.60H 1.194 psi 150psi 0.007963 OK +1.20D+0.50Lr+0.50L+W+1.60H 1.692 psi 150psi 0.01128 OK
+1.20D+0.50L+0.50S+W+1.60H 1.194 osi 150psi 0.007963 OK
+1.20D+0.50L +0.70S-+E+ 1.60H 1.202 psi 150psi 0.008011 OK
Page 86 of 108
I General Footing
l!AliM3'0S•I1•I•t;Jff:f
Description : Foundation
Punching Shear
Load Combination ...
-+-0.90D+W-+-0.90H
-+-0.90D-+E-+-0.90H
Vu
0.8958 psi
0.9747 psi
Phi"Vn
150psi
150psi
Vu/ Phi"Vn
0.005972
0.006498
All units k
Status
OK
OK
Page 87 of 108
. !
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN OTEGO, CA 92103
Design of flagpole footing (with moment @ addition)
Load from beam RB-5 (left)
Max Axial Load on Column
Dead Load
Live Load
Height of post
= 4.31 kips
= 2.93 kips
Lateral Load on each column
Wind load at top of column
Uniform wind load on column
6" x 6" HSS Steel post
Moment at the base, Mu
= 9'-0"
= 2.32 kips
= 0.135 kips
=129plf forbottom8'-0"ofcolumn
= 2.32x9
= 20.88 kips-ft
Provide min.36" dia concrete footing w/ 6'-6" embedment with 8#6 rebar and #4 ties @6" o.c.
See analysis on next page.
Page 88 of 1 08
PAlTERSO ENGINEERING
928 FORT STOCKTON ORM
Sl.fl'E201
~~fO,CA!'.,!CO
PHOhE: lll58-60S-0937
FAX· 858-eO!r 141◄ I Pole Footing Embedded in Soil
Description : pole footing
Code References
Calculations per IBC 2015 1807.3, CBC 2016, ASCE 7-10
Load Combinations Used : IBC 2015
General Information
Pole Footing Shape Circular
Footing Diameter . . . . . . . . . . . . . . 36.0 in
Calculate Min. Depth for Allowable Pressures
No Lateral Restraint at Ground Surface
Allow Passive . . . . . . . . . . . . . . . . . 250.0 pcf
Max Passive . . . . . . . . . . . . . . . . . . psi
Controlling Values
Governing Load Combination : -+0-+-0.70E+H
Lateral Load
Moment
NO Ground Surface Restraint
Pressures at 1/3 Depth
Actual
Allowable
Mlni1111m Required Depth
Footing Base Area
Maximum Soil Pressure
1.624 k
16.240 k-ft
533.43 psi
534.31 psi
6.50 ft
7.06911•2
0.0 ks!
Applied Loads
Lateral Concentrated Load Lateral Distributed Load
D: Dead Load
Lr : Roof Live
L: Live
S: Snow
W:Wind
E : Earthquake
H : Lateral Earth
Load distance above
ground surface
k
k
k
k
0.1350 k
2.320 k
k
10.0 ft
Load Combjnauon Results
-+O+L+H
-+O+Lr+H
-+O+S+H
-+0-+-0.750Lr-+-O. 750L +H
-+0-+-0.750L-+-0.750S+H
+D-+-0.60W+H
-+0-+-0.70E+H
-+0-+-0. 750Lr-+-0.750L-+-0.450W+H
k/ft
k/ft
k/ft
kilt
0.1290 klft
k/ft
k/lt
TOP of Load above ground surface
8.0 ft
BOTTOM of Load above ground surface
0.0 ft
Fon:es@GIOIIICI Surface
Loads. (k) Momenls • (11-k)
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.700 3.287
1.624 16.240
0.525 2.465
Reqiired
Oeplh-(ft)
0.13
0.13
0.13
0.13
0.13
0.13
4.00
6.50
3.50
•
f'«I lllter1t ttstr,111
Vertical Load
k
k
k
k
k
k
k
Pr8SSln 111/3 OepCh Sol Increase
Aclull • (psf) Alow-(psf) Factor
0.0 0.0 1.000
0.0 0.0 1.000
0.0 0.0 1.000
0.0 0.0 1.000
0.0 0.0 1.000
0.0 0.0 1.000
324.0 324.9 1.000
533.4 534.3 1.000
289.0 291 .1 1.000
Page 89 of 108
PATTERS ENGINEERING
928 FORT STOCKTON DRIVE WTE201 ~°29,~5!!03
PHON:'. 858-«l5-0937 FI\X· 858«)5.1414
j Pole Footing Embedded in Soil
Description : pole footing
+D+0.750L+0.750S+0.450W+H
+D+O. 750L +O. 750S+0.5250E+H
+0.60D+0.60W+0.60H
+0.60D+0.70E+0.60H
0.525
1.218
0.700
1.624
2.465
12.180
3.287
16.240
3.50
5.88
4.00
6.50
289.0
477.8
324.0
533.4
•
291.1 1.000
479.6 1.000
324.9 1.000
534.3 1.000
Page 90 of 108
I Concrete Column
PATTERSON
ENGINEERING
929 FORT STOCKTON DRIVE SUTE:101
--~~03
PHCH: 858-f0i>.0937
FAX: 85IMI05-1◄1◄
Description : -Concrete footing
Code References ---Calculations per ACI 318-11 , IBC 2015, CBC 2016, ASCE 7-10
Load Combinations Used : IBC 2015
Genera l Information ---fc : Concrete 28 day strength =
E= =
Density =
p
fy -Main Rebar
E -Main Rebar
Allow. Reinforcing Limits
=
Min. Reinf. =
Max. Reinf. =
3.0ksi
3,122.0 ksi
145.0 pcf
0.850
60.0 ksi
29,000.0 ksi
ASTM A615 Bars Used
1.0%
8.0%
Load Combination : IBC 2015
Overall Column Height
End Fixity
= 6.50 ft
Top Free, Bottom Fixed
Brace condition for deflection (buckling) along columns :
X-X (width) axis :
Unbraoed Length for X-X Axis buckling = 10 ft, K = 1.0
Y-Y (depth) axis :
Fully braoed against buckling along Y-Y Axis
Column Cross S.c..ec.c.ctt...:·o_n ____________________________________ _
Column Dimensions 36.0in Diameter, Column Edge to Rebar Edge
Cover = 3.0in
Column Reinforcing : 8 -#6 bars
Applied Loads
Column self weight included : 6,662.14 lbs • Dead Load Factor
AXIAL LOADS ...
Axial Load at 6.50 ft above base, D = 2.160, L = 1.970 k
BENDING LOADS ...
Moment acting about X-X axis, W = 5.247, E = 20.920 k-ft
DESIGN SUMMARY
Load Combination +0.90D+E+0.90H
Location of max.above base 6.456 ft
Maximum Stress Ratio 0.053 : 1
Ratio = (PuA2+MuA2JA.5 / (PhiPnA2+PhiMnA2JA.5
Pu= 7.940k cp*Pn= 152.632k
Mu-x =
Mu-y =
Mu Angle =
Mu at Angle=
-20. 920 k-ft <p * Mn-x = 403.222 k-ft
0.0 k-ft <p * Mn-y = 0.0 k-ft
180.0 deg
20.920 k-ft <pMn at Angle = 397.827 k-ft
Pn & Mn values located at Pu-Mu vector intersection with capacity curve
Column Capacities ...
Pnmax : Nominal Max. Compressive Axial Capacity 2,797.81 k
Pnmin : Nominal Min. Tension Axial Capacity -211.20 k
<p Pn, max : Usable Compressive Axial Capacity 1,664.70 k
<p Pn, min : Usable Tension Axial Capacity -147.840 k
y
Entered loads are factored per load combinations specified by user.
Maximum SERVICE Load Reactions ..
Top along Y-Y 0.0 k Bottom along Y-Y
Top along X-X 0.0 k Bottom along X-X
Maximum SERVICE Load Deflections ...
Along Y-Y 0.002947 in at 6.50 ft above base
for load combination : E Only
AlongX-X O.Oin at 0.0ft above base
for load combination :
0.0 k
0.0 k
General Section Information· <p = 0.70 p =0.850 e
p : % Reinforcing 0.3458 % Rebar< Min of 1.0 %
0.850
Reinforcing Area 3.520 inA2
Concrete Area 1,017.88 inA2
Page 91 of 1 OB
I Concrete Column
PATTERS ENGINEERING
028 FORT STOCl<TON ORlVE SUTE201
SAN-D1Ef2,CA~03
PHONE:~7
FAX. 858«l>1414
Description : -Concrete footing
Governing Load Combination Results
Governing Factored
Load Combination
Moment Source Dist. from Axial Load k
+ 1. 400+ 1.60H
+1.20D+0.50Lr+1.60L+1.60H
+1.200+1.60L +0.50S+1 .60H
+1.200+1.60Lr+0.50L+1.60H
+1.200+1.60Lr+0.50W+1.60H
+ 1.200+0.50L + 1.60S+1.60H
+1.20D+1.60S+0.50W+1.60H
+1.20D+0.50Lr+0.50L+W+1.60H
+1.200+0.50L+0.50S+W+1.60H
+1.20D+0.50L+0.70S+E+1.60H
+0.90D+W+0.90H
+0.90D+E+0.90H
Maximum Reactions
Load Combination
-t{)+H
-t{)+L +H
-t{)+Lr+H
-t{)+S+H
-tO-+O. 750Lr-+0.750L +H
-tO-+O. 750L-+0.750S+H
-t0-+0.60W+H
-t0-+0.70E+H
-tO-+O. 750Lr-+0.750L-+0.450W+H
-t0-+0. 750L-+O. 750S-+0.450W+H
-t0-+0. 750L-+O. 750S-+0.5250E+H
-+0.60D-+0.60W-+0.60H
-+0.60D-+0.70E-+0.60H
D Only
Lr Only
L Only
S Only
WOnly
E Only
H Only
Sketches
l6.0 in
X-X Y-Y base ft Pu qi • Pn
6.46 12.35 1,664.70
6.46 13.74 1,664.70
6.46 13.74 1,664.70
6.46 11.57 1,664.70
Actual 6.46 10.59 1,582.00
6.46 11.57 1,664.70
Actual 6.46 10.59 1,582.00
Actual 6.46 11.57 1,277.40
Actual 6.46 11.57 1,277.40
Actual 6.46 11.57 293.81
Actual 6.46 7.94 989.93
Actual 6.46 7.94 152.63
Reaction along X-X Axis
@Base @Top
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
Bending Analysis k-ft Utilizatio
ox ox. Mux oY oY * Muy Alpha (deg) o Mu qi Mn Ratio
0.000 0.007
0.000 0.008
0.000 0.008
0.000 0.007
1.000 -2.62 180.000 2.62 392.68 0.007
0.000 0.007
1.000 -2.62 180.000 2.62 392.68 0.007
1.000 -5.25 180.000 5.25 578.19 0.009
1.000 -5.25 180.000 5.25 578.19 0.009
1.000 -20.92 180.000 20.92 527.48 0.040
1.000 -5.25 180.000 5.25 655.96 0.008
1.000 -20.92 180.000 20.92 397.83 0.053
Note: Only non-zero reactions are listed.
Reaction along Y-Y Axis Axial Reaction
@Base @Top @Base
k 8.822 k
k 10.792 k
k 8.822 k
k 8.822 k
k 10.300 k
k 10.300 k
k 8.822 k
k 8.822 k
k 10.300 k
k 10.300 k
k 10.300 k
k 5.293 k
k 5.293 k
k 8.822 k
k k
k 1.970 k
k k
k k
k k
k k
..., ... _
Page 92 of 108
PATTERSON ENG INEERING, lNC.
928 FORT STOCKTON DRIVE, SUITE 20 I
SAN DIEGO, CA 92 103
FREE STANDING WALL CALCULATIONS
Page 93 of 108
CMU FRE E STANDING WALL FOOTING
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO, CA 92103
Horizontal seismic design force (Fp) From Wall (wall centered on footing)
The force (Fp) shall be applied independently in
Where
=0.4SoslcWp
=0.4x0.722xlx l 125
=322.5 lbs
Fp = seismic design force
Sos= spectral acceleration, short period
Ip= component importance factor that varies from to 1.50
Wp= weight
h = average wall height of structure with respect to
The base
Wind load on wall
Allowable bearing capacity
Stem Data
Thickness of stem
Vertical Reinforcement
Horizontal Reinforcement
Base slab Data
Width of toe
= 12"
= #4 @ 16" o.c.
= #4 @ 16" o.c.
= 16 psf
=1500psf
= 1995 psf
Strength level
= 0.722
= 1.0
= 1125 lbs/ft
=8'-0"
(Section 11.4.4 ASCE 7-10)
(Section 13.1.3 ASCE 7-10)
(Conservatively)
( I /3 increase for seismic loading)
Width of Heel
Thickness of base slab
= 2'-3"
= 3'-3"
= 5'-6"
(Including stem thickness)
Toe Reinforcement
Short way Reinforcement
Long way Reinforcement
Heel Reinforcement
Short way Reinforcement
Long way Reinforcement
Refer to output below.
= #4 @ 16" o.c.
= #4 @ 12" o.c.
= #4 @ 16" o.c.
= #4 @ 12" o.c.
Page 94 of 108
PATTERSON ENGINEERING
art«T~IIN
WOl:,,,fM<jW. --fM.. .... MM
RetalnPro (c) 1987-2016, Build 11.16.11.12
Title 4'-o"V(BII
License: KW-06058766 Cantilevered Retaining Wall License To: PATTERSON ENGINEERING Code: IBC 2015,ACI 318-1 4,ACI 530-13
[c •• rit.e.ri•a--------•· I Soil Data I
Retained Height
Wall height above soil
Slope Behind Wall
Height of Soil over Toe
Water height over heel
0.00 ft
4.50 ft
0.00
0.00 in
0.0 ft
Allow Soil Bearing 1,995.0 psf
Equivalent Fluid Pressure Method
Active Heel Pressure 45.0 psf/ft
Passive Pressure
Soil Density, Heel
Soil Density, Toe
FootingllSoil Friction
Soil height to ignore
for passive pressure
250.0 psf/ft
110.00 pcf
0.00 pcf
0.250
12.00 in
r-:-
:~,
~~-
I L •• :_l
7~ S!llu•r•c•h•ar•g•e•L•o•a•d•s----1111!1111 .. I [ Lateral Load Appttedto Stem
Surcharge Over Heel 0.0 psf
I ~ Adjacent Footing Load
Used To Resist Sliding & Overturning
Surcharge Over Toe 0. O
Used for Sliding & Overturning
I Axial Load Applied to Stem • Axial Dead Load 0.0 lbs
Axial Live Load 0.0 lbs
Axial Load Eccentricity 0.0 in
Lateral Load
... Height to Top
... Height to Bottom
Load Type
Wind on Exposed Stem
(Strength Level)
0.0 #/ft
0.00 ft
0.00 ft
Seismic (E)
(Strength Level)
16.0 psf
Adjacent Footing Load
Footing Width
Eccentricity
Wall to Ftg CL Dist
Footing Type
Base Above/Below Soil
at Back of Wall
Poisson's Ratio
.,I s_t_e_m_w_e_i_g_h_t_s_e_is·m-ic_L_o_a_d ____ , Fp / WP Weight Multiplier 0.289 g Added seismic base force
[ Design Summary • Wall Stability Ratios
Overturning 3.39 OK
Slab Resists All Sliding I
Total Bearing Load
... resultant ecc.
1,026 lbs
5.31 in
[ Stem Construction
Design Height Above Ftg
Wall Material Above "Ht"
Design Method
Thickness
Rebar Size
Rebar Spacing
Rebar Placed at
I Bottom
Stem OK ft= 0.00
Masonry
LRFD
8.00
# 4
16.00
Edge
0.0 lbs
0.00 ft
0.00 in
0.00 ft
Line Load
0.0 ft
0.300
71.0 lbs
•
Soil Pressure@ Toe 645 psf OK
Soil Pressure@ Heel 40 psf OK Design Data -------------------------
Allowable 1,995 psf
Soil Pressure Less Than Allowable
ACI Factored@ Toe 902 psf
ACI Factored @ Heel 55 psf
Footing Shear@ Toe
Footing Shear@ Heel
Allowable
Sliding Cales
Lateral Sliding Force
3.1 psi OK
0.3 psi OK
75.0 psi
164.8 lbs
Vertical component of active lateral soil pressure IS NOT
considered in the calculation of soil bearing pressures.
Load Factors
Building Code IBC 2015,ACI
Dead Load 1.200
Live Load 1.600
Earth, H 1.600
Wind,W 1.000
Seismic, E 1.000
fb/FB + fa/Fa
Total Force@Section
Service Level
Strength Level
Moment. ... Actual
Service Level
Strength Level
Moment. .... Allowable
Service Level
Strength Level
Shear ..... Allowable
Anet (Masonry)
Rebar Depth 'd'
lbs=
lbs=
ft-#=
ft-#=
psi=
psi=
psi=
in2=
in=
0.118
173.4
390.2
3,309.4
1.9
69.7
91.50
5.25
asonry Data -------------------------
fm
Fy
Solid Grouting
Modular Ratio 'n'
Wall Weight
Equiv. Solid Thick.
Masonry Block Type
Masonry Design Method
Concrete Data
fc
Fy
psi= 1,500
psi= 60,000
Yes
21.48
psf= 78.0
in= 7.60
Medium Weight
LRFD
psi=
psi=
Page 95 of 108 Page : 1
PATTERSON ENGINliERING
Title 4'-o"~II Page : 2
Date: 14 AUG 2017
"'"".i::;r-
l#ICll'A,c-AtrM ---rM.M«>-MW
RetainPro (c) 1987-2016, Build 11.16.11.12
License : KW-06058766 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13
License To : PATTERSON ENGINEERING
[ Footing Dimensions & Strengths
Toe Width
Heel Width
Total Footing Width
Footing Thickness
Key Width
Key Depth
Key Distance from Toe
1.17 ft
1.83
3.00
18.00 in
12.00 in
0.00 in
3.75 ft
fc = 2,500 psi Fy = 60,000 psi
150.00pcf Fooling Concrete Density
Min.As%
Cover@Top 2.00
= 0.0018
@ Btm.= 3.00 in
• Footing Design Results
Isl!!
Factored Pressure 902
Mu' : Upward 539
Mu' : Downward 236
Mu: Design = 303
Actual 1-Way Shear 3.13
Allow 1-Way Shear 75.00
Toe Reinforcing = # 4@ 16.00 in
Heel Reinforcing # 4@ 16.00 in
Key Reinforcing None Spec'd
Other Acceptable Sizes & Spacings
.liw
55 psf
112ft-#
236 ft-#
124 ft-#
0.31 psi
75.00 psi
Toe: Not req'd: Mu < phi•5•1ambda•sqrt(fc)*Sm
Heel: Not req'd: Mu < phi•5•1ambda•sqrt(fc)*Sm
Key: Slab Resists Sliding • No Force on Key
Min fooling T &S reinf Area 1.17 in2
0.39 in2 1ft Min footing T&S reinf Area per foot
If one layer of horizontal bars:
#4@ 6.17 in
#5@ 9.57 in
#6@ 13.58 in
If two layers of horizontal bars:
#4@ 12.35 in
#5@ 19.14 in
#6@27.16 in
Summa of Overturnin Forces & Moments
Item
Heel Active Pressure
Surcharge over Heel
Surcharge Over Toe
Adjacent Footing Load
Added Lateral Load
Load @ Stem Above Soil
Seismic Stem Self WI
Total
Resisting/Overturning Ratio
..... OVERTURNING ..... Force Distance Moment
lbs ft ft-#
50.6 0.50 25.3
43.2
71.0
164.8
3.75
3.75
O.T.M.
162.0
266.3
453.6
Vertical Loads used for Soil Pressure =
3.39
1,025.9 lbs
Soil Over Heel
Sloped Soil Over Heel
Surcharge Over Heel
Adjacent Footing Load
Axial Dead Load on Stem
• Axial Live Load on Stem
Soil Over Toe
Surcharge Over Toe
Stem Weighl(s)
Earth @ Stem Transitions =
Fooling Weight =
Key Weight
Vert. Component
..... RESISTING .....
Force Distance
lbs ft
0.0 2.42
351.0
674.9
1.50
1.50
4.25
Moment
ft-#
0.0
526.4
1,012.2
Total= 1,025.9 lbs R.M.= 1,538.6
If seismic is included, the OTM and sliding ratios be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201
• Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.
Vertical component of active lateral soil pressure IS NOT considered in the
calculation of Sliding Resistance.
Vertical component of active lateral soil pressure IS NOT considered in the
calculation of Overturning Resistance.
[Tilt I
Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Defl@ Top of Wall (approximate only)
250.0 pci
0.027 in
The above calculation is not valid if the heel soil bearing pressure exceeds that ot the toe
because the wall would then tend to rotate into the retained soil
Page 96 of 108 Page : 2
PATTERSON
ENGi.NEERiNG
M'°"f'.O'.'IQI~ _.,
~ ----fM...,.WM
RetalnPro (c) 1987-2016, Build 11.16.11.12
License : KW-06058766 License To : PATTERSON ENGINEERING
8" w/#4@ 16"
Solid Grout
#4@16.in
@Toe
#4@16"
@ Heel
Title 4'~"'tlr,III
Cantilevered Retaining Wall
Restrain '-6" •
1'-2 .. _ 1"-10"
3"-0"
T
Page : 3
Date: 14 AUG 2017
Code: IBC 2015,ACI 31 8-14,ACI 530-13
4'-6" 4'-6"
2"'
3"
Page 97 of 108 Page : 3
PATTERSON ENGINEERING ..... .:w.:r-
WIS«>tA .. ----fM...,.MM
RetalnPro (c) 1987-2016, Build 11.16.11.12
License : KW-06058766 License To : PATTERSON ENGINEERING
16 .00psf
(Strength-Level)
Title 4'.S"',lf<III
Cantilevered Retaining Wall
94# 71#
Page : 4
Date: 14 AUG 2017
Code: IBC 2015,ACI 318-14,ACI 530-13
Seismic due to stem self weight
Page 98 of 108 Page : 4
CMU LINTEL & WALL CALCULATIONS
Page 99 of 1 08
CMU LINTEL (FIRE PLACE)
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRJVE, SUITE 20 I
SAN DIEGO, CA 92103
Horizontal seismic design force (Fp) on Lintel due to self-weight
The force (Fp) shall be applied independently
= 0.4SosleWp
=0.4x0.722xl xi 276
= 368.5 lbs Strength level
Where
Fp = seismic design force
Sos= spectral acceleration, short period
Ip = component importance factor that varies from
to 1.50
Wp = weight of Lintel
h = average wall height of structure with respect to
the base
Wind Force Calculations
Wind load on CMU Lintel
= 0.722 (Section 11.4.4 ASCE 7-10)
= 1.0 (Section 13.1.3 ASCE 7-10)
= Wt of Lintel ( I '-2" ft Height x 8 '-1 "
Long x l '-0" Thick)
= l.17x8.08x 12/12x 135
= 1276 lbs
= 2'-5"
F
9h
= q11G Cr As Eq 29.4-1 ASCE7-10
F
Cr
As
F
= 0.00256 KJ<z1Kd V2
= 0.00256 x 0.85 x 1.0 x 0.85 x 1102
= 22.38 psf
= q11G Cr As
= Force Coefficients Fig. 29.4-1 ASCE7-10
= 1.95 Conservatively
= Gross Area
= \.17 X 8.08
= 9.45 ft2
= 22.38 X 0.85 X 1.95 X 9.45
= 350.54 lbs
= 368.5 lbs Seismic Governs
Refer to output below.
Page 100 of 108
I Masonry Beam
IN;8:i'M•l3•I•l:(fff
Description : 8'-1' Lintel
I Code References
Calculations per ACI 530-13, IBC 2015, CBC 2016, ASCE 7-10
Load Combinations Used : IBC 2015
I General Information
fm 1,500.0 psi Clear Span
Fs 24,000.0 psi Beam Depth
Em = fm • 750.0 Thickness
Wall Wt Mull 1.0 End Fixity
Block Type Normal Wt Equiv. Solid Thick
Lateral Wind Load 22.380 psi Wall Weight
Lateral Wall Weight Seismic Factor 0.2888 E
Calculate vertical beam weight? Yes n
Note! Shear calculated at 'd/2' from edge of beam
Left Edge
8.080 ft
1.170ft
12 in
Fix-Fix
11.60 in
133.0 psf
1,125.0 ksi
25.778
Right Edge
111111111111 lllllllllllllllllllflllllllllllllllllfllllllllfllllllllllllttlllllllllllllllllllllllllllllllllll 11111111111
1 -# 4 bars elf, 2 sets used
111111111111 111111111111111111111111111111111111111111111111111111111111111111111111♦111111111111111111111111 11111111111
~08ft_Span ~gth
DESIGN SUMMARY
.
!IBA,NYW J
Rebar Size 4.0
# Bars E/F
Top Clear 2.0 in
Btm Clear 2.0 in
# Bar Sets 2
Bar Spacing 5.0 in
Shear Rein! Bar Size # 3
Shear Rein! Bar Spacing 12.0 in
• •
• •
Design OK
---------
fv/Fv
~
0.09829
0.06322
Minimum Mn= 1.3 •Fer• S =
Vertical Strength As
rho
np
k : ((np)A2+2np)A.5-np
j=1-k/3
M:mas=Fb k j b dA2/2
M:Stl = Fs As j d
I Detailed Load Combination Results
Load Combination
+O+H
+O+L+H
+O+Lr+H
+O+S+H
~
0.02904
0.02812
~
0.1025 : 1.00
0.06919 : 1.00
4.138 k-ft
0.40 inA2
0.002858
0.07367
0.3172
0.8943
13.444 k-ft
8.614 k-ft
Maximum Moment ~ ~k-ft
Vertical Loads 0.8466 k-ft 8.614 k-ft
for Load Combination : +0-++l
Lateral Loads 0.1711 k-ft 5.894
for Load Combination : +0-+-0. 70E-++l
Maximum Shear ~ ~
Vertical Loads for Load Combination : +0-++l
3.951 psi 62.496psi
Lateral Loads 1.089 psi 38.730psi
for Load Combination : +0-+-0.70E-++l
Lateral Strength
As
rho
np k : (npA2+2np)A.5-np
j=1-k/3
M:mas=Fb k j b dA2/2
M:Stl = Fs As j d
(Checking lateral bending for span)
0.40 inA2
0.003427
0.08835 0.3412
0.8863
8.251 k-ft
5.894 k-ft
Vertical Lateral
Mmax Mallow fv : Vert Fv : Vert Mactual Mallow fv
k·ft k·ft psi psi k·ft k·ft psi
0.85 8.61 3.95 62.50 0.00 5.89 0.00
0.85 8.61 3.95 62.50 0.00 5.89 0.00
0.85 8.61 3.95 62.50 0.00 5.89 0.00
0.85 8.61 3.95 62.50 0.00 5.89 0.00
Page 101 of108
Fv
psi
38.73
38.73
38.73
38.73
I Masonry Beam
lltWtllMtld•IeJ:Iff:f 1139iM#◄ I Description : 8'-1" Lintel
I Detailed Load Combination Results
Load Combination Vertical Lateral
Mmax Mallow fv : Vert Fv : Vert Mactual Mallow fv Fv
k-ft k-ft psi psi k-ft k-ft psi psi
+D-+0.750Lr-+0.750L +H 0.85 8.61 3.95 62.50 0.00 5.89 0.00 38.73
+D-+O. 750L-+O. 750S+H 0.85 8.61 3.95 62.50 0.00 5.89 0.00 38.73
+D-+0.60W+H 0.85 8.61 3.95 62.50 0.09 5.89 0.54 38.73
+D-0.60W+H 0.85 8.61 3.95 62.50 0.09 5.89 0.54 38.73
+D-+0.70E+H 0.85 8.61 3.95 62.50 0.17 5.89 1.09 38.73
+D-0.70E+H 0.85 8.61 3.95 62.50 0.17 5.89 1.09 38.73
+D-+O. 750Lr-+0.750L-+0.450W+H 0.85 8.61 3.95 62.50 0.06 5.89 0.41 38.73
+D-+0.750Lr-+0.750L--0.450W+H 0.85 8.61 3.95 62.50 0.06 5.89 0.41 38.73
+D-+0. 750L +O. 750S-+0.450W+H 0.85 8.61 3.95 62.50 0.06 5.89 0.41 38.73
+D-+O. 750L +O. 750S-0.450W+H 0.85 8.61 3.95 62.50 0.06 5.89 0.41 38.73
+D-+O. 750L +O. 750S+0.5250E+H 0.85 8.61 3.95 62.50 0.13 5.89 0.82 38.73
+D-+O. 750L +O. 750S--0.5250E+H 0.85 8.61 3.95 62.50 0.13 5.89 0.82 38.73
+0.60D-+0.60W+0.60H 0.51 8.61 2.37 62.50 0.09 5.89 0.54 38.73
+0.60D--0.60W+0.60H 0.51 8.61 2.37 62.50 0.09 5.89 0.54 38.73
-+0.60D+0. 70E-+0.60H 0.51 8.61 2.37 62.50 0.17 5.89 1.09 38.73
-+0.60D--O. 70E+0.60H 0.51 8.61 2.37 62.50 0.17 5.89 1.09 38.73
Page 102 of 108
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRIVE, SUITE 201
SAN DIEGO,CA n 103
CMU WALL (FIRE PLACE}
Horiwntal seismic design force (Fp) on CMU wall due to self-weight
The force (Fp) shall be applied independently
Fp = 0.4SosleWp
=0.4x0.722xl x8683
= 2507 .65 lbs
Where
Fp = seismic design force
Strength level
Sos = spectral acceleration, short period = 0.722 (Section 11.4.4 ASCE 7-10)
Ip = component importance factor that varies from
to 1.50
= 1.0 (Section 13.1.3 ASCE 7-10)
Wp = weight of Lintel = CMU wall Weight
(3 '-0" ft Height x 16' -I" Long x 1 '-0" Thick)
= 3 X12/]2 X )35 X )6.08
= 8683 lbs
(Consider wall weight excluding opening Conservatively)
h = average wall height of structure with respect to
the base
= l '-6"
Wind Force Calculations
Wind load on CMU Lintel
F
Cr
As
F
= q11G Cr As Eq 29.4-1 ASCE7-10
= 0.00256 KJ<21Kd V2
= 0.00256 X 0.85 X 1.0 X 0.85 X 1102
= 22.38 psf
= q11G Cr As
= Force Coefficients Fig. 29.4-1 ASCE7-10
= 1.95 Conservatively
= Gross Area
=3x16.08
= 48.24 ft2
= 22.38 X 0.85 X 1.95 X 48.24
= 1789.46 lbs
Page 103 of 108
Total shear Force =Fp =2507 .65 lbs
PATTERSON ENGINEERING, INC.
928 FORT STOCKTON DRJVE, SUITE 201
SAN DIEGO, CA 92103
Seismic Governs
Provide 12" Thick CMU wall w/ #4 @ 16" o.c. vertical and horizontal wall reinforcement.
Provide 2'-6" wide x 15" Deep Footing w/ #4 @ 16" o.c. at Top & bottom.
Refer to output below.
Page 104 of 108
PATJ'llRSON ENGINl!ERING
... ~OIM:
Title FREE-STANDING W , IT FIRE PLACED Page : 1
Job#: • Dsgnr: Date: 20 SEP 2017 ......
WllW~!,'11'
l'fOC.etem, rM'.--,.MM
Description ....
RetainPro (c) 1987-2016, Build 11.16.11.12
License : KW-06058766 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 License To : PATTERSON ENGINEERING
Criteria I L Soil Data I
Retained Height
Wall height above soil
Slope Behind Wall
Height of Soil over Toe
Water height over heel =
2.00 ft
3.00 ft
0.00
12.00 in
0.0 ft
Allow Soil Bearing 1,500.0 psf
Equivalent Fluid Pressure Method
Active Heel Pressure = 45.0 psf/ft
Passive Pressure
Soil Density, Heel
Soil Density, Toe
FootingllSoil Friction
Soil height to ignore
for passive pressure
250.0 psf/ft
110.00 pct
0.00 pcf
0.350
12.00 in • • •
1 Surcharge Loads I Lateral Load Applied to Stem I Adjacent Footing Load
Surcharge Over Heel 0.0 psf
Used To Resist Sliding & Overturning
Surcharge Over Toe 0.0
Used for Sliding & Overturning
~ Axial Load Applied to Stem
Lateral Load 0.0 #/ft Adjacent Footing Load
... Height to To~ = 0.00 ft Footing Width
... Height to Bottom 0.00 ft Eccentricity
Load Type Wind (W) Wall to Ftg CL Dist = ) (Service Level) Footing Type
Base Above/Below Soil Axial Dead Load 0.0 lbs
Axial Live Load 0.0 lbs
Axial Load Eccentricity = 0.0 in
Wind on Exposed Stem = 22.4 psf at Back of Wall
(Strength Level) Poisson's Ratio
[stem Weight Seismic Load I Fp,wp WeightMultiplier 0.288 g Added seismic base force
Design Summary
Wall Stability Ratios
Overturning
Sliding
Total Bearing Load
... resultant ecc.
I
1.87 OK
2.35 OK
1,254 lbs
7.40 in
Soil Pressure@ Toe 1,320 psf OK
Soil Pressure @ Heel 0 psf OK
Allowable 1,500 psf
Soil Pressure Less Than Allowable
ACI Factored@ Toe 1,848 psf
ACI Factored@ Heel 0 psf
Footing Shear@ Toe
Footing Shear @ Heel =
Allowable =
Sliding Cales
Lateral Sliding Force
less 100% Passive Force =
less 100% Friction Force =
Added Force Req'd
.... for 1. 5 Stability =
5.9 psi OK
2.4 psi OK
75.0 psi
402.9 lbs
507.8 lbs
438.8 lbs
0.0 lbs OK
0.0 lbs OK
Vertical component of active lateral soil pressure IS
NOT considered in the calculation of soil bearing
Load Factors
Building Code
Dead Load
Live Load
Earth, H
Wind,W
Seismic, E
IBC 2015,ACI
1.200
1.600
1.600
1.000
1.000
~tern Construction
Design Height Above Ftg
Wall Material Above "Ht"
Design Method
Thickness
Rebar Size
Rebar Spacing
Rebar Placed at
Design Data
fb/FB + fa/Fa
Total Force@ Section
Service Level
Strength Level
Moment....Actual
Service Level
Strength Level
Moment. .... Allowable
Service Level
Strength Level
Shear ..... Allowable
Anet (Masonry)
Rebar Depth 'd'
Masonry Data
fm
Fy
Solid Grouting
Modular Ratio 'n'
Wall Weight
Equiv. Solid Thick.
Masonry Block Type
Masonry Design Method
Concrete Data
fc
Fy
I
ft=
=
lbs=
lbs=
ft-#=
ft-#=
=
psi=
psi=
psi=
in2=
in =.
psi =
psi=
psf=
in =
=
=
psi=
psi =
Bottom
Stern OK 0.00
Masonry
LRFD
12.00
# 4
16.00
Edge
0.133
389.7
777.4
5,840.6
2.8
69.7
139.50
9.00
1,500
60,000
Yes
21.48
124.0
11.60
Medium Weight
LRFD
0.0lbs I
0.00 ft
0.00 in
0.00 ft
Line Load
0.0 ft
0.300
125.0 lbs
Page 105 of 108 Page : 1
PATTERSON .ENGINEERING
tafQllfMCrOl:»N. _,..
IMI~
PJOI:....., IM;ISe,MU
Title
Job#:
Description ....
AT FIRE PLACED Page : 2
Date: 20 SEP 2017
RetalnPro (c) 1987-2016, Build 11.16.11.12
License : KW-06058766 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13
License To: PATTERSON ENGINEERING
l Footing Dimensions & Strengths
Toe Width = 0.75 ft
Heel Width = 1.75
Total Footing Width 2.50
Footing Thickness = 15.00 in
Key Width 0.00 in
Key Depth 0.00 in
Key Distance from Toe 0.00 ft
fc = 2,500 psi Fy = 60,000 psi
150.00 pcf Footing Concrete Density
Min. As %
Cover@ Top 2.00
= 0.0018
@ Btm.= 3.00 in
• Q ooting Design Results •
I2l:. ~
Factored Pressure = 1,848 0 psf
Mu': Upward 451 1 ft-#
Mu': Downward = 167 229 ft-#
Mu: Design = 284 229 ft-#
Actual 1-Way Shear 5.88 2.37 psi
Allow 1-Way Shear 75.00 75.00 psi
Toe Reinforcing # 4@ 16.00 in
Heel Reinforcing = # 4 @ 16.00 in
Key Reinforcing = None Spec'd
Other Acceptable Sizes & Spacings
Toe: Not req'd: Mu< phi*5*Iambda*sqrt(fc)*Sm
Heel: Not req'd: Mu < phi*5*Iambda*sqrt(fc)*Sm
Key: No key defined
Min footing T&S reinf Area
Min footing T&S reinf Area per foot
If one layer of horizontal bars:
#4@ 7.41 in
#5@ 11.48 in
#6@ 16.30 in
0.81 in2
0.32 in2 1ft
If two layers of horizontal bars:
#4@ 14.81 in
#5@22.96 in
#6@32.59 in
l Summary of Overturning & Resisting Forces & Moments
..... OVERTURNING ..... ..... RESISTING .....
Force Distance Moment
Item
Heel Active Pressure
Surcharge over Heel
Surcharge Over Toe
Adjacent Footing Load =
Added Lateral Load
Load @ Stem Above Soil =
Seismic Stem Self Wt
Total
Resisting/Overturning Ratio
lbs ft ft-#
237.7 1.08 257.5
40.3
125.0
402.9
4.75
3.75
O.T.M.
191.3
468.7
917.5
Vertical Loads used for Soil Pressure =
1.87
1,253.8 lbs
Soil Over Heel
Sloped Soil Over Heel =
Surcharge Over Heel
Adjacent Footing Load
Axial Dead Load on Stem =
• Axial Live Load on Stem =
Soil Over Toe
Surcharge Over Toe
Stem Weight(s) =
Earth@ Stem Transition~=
Footing Weight
Key Weight
Vert. Component
Force Distance
lbs ft
165.0
620.0
468.8
2.13
0.38
1.25
1.25
Moment
ft-#
350.6
775.0
585.9
Total= 1,253.8 lbs R.M.= 1,711 .6
If seismic is included, the OTM and sliding ratios be 1.1 per section 1807.2.3of lBC 2009or lBC 201
Vertical component of active lateral soil pressure IS NOT considered in
the calculation of Sliding Resistance.
Vertical component of active lateral soil pressure IS NOT considered in
the calculation of Overturning Resistance.
Tilt I
* Axial live load NOT included in total displayed! or used for overturning resistance, but is included for soil pressure ca culation.
Horizontal Deflection at Top of wan due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Deft@ Top of Wall (approximate only)
250.0 pci
0.073 in
The above catculatioo is not valid if the heel soil bearing pressure exceeds that of the toe
because the wall would then tend to rotate into the retained soil,
•
Page 106 of 108 Page : 2
PATI'ERSON ENGINEERJNG
WKIM l'Otr"OI.CIN _.,
&Ntnr,r,et.:,m
PIOL.Ma-~--.MM
RetainPro (c) 1987-2016, Build 11.16.11.12
License : KW-06058766 License To : PATTERSON ENGINEERING
12" w/ #4@ 16"
Solid Grout
#4@16.in
@Toe
#4@16"
@Heel
Title FREE-STANDING WA J FIRE PLACE:J Page : 3
Job#: • Dsgnr: Date: 20 SEP 2017
Description ....
Cantilevered Retaining Wall
I Code: IBC 2015,ACI 318-1~,ACI 530-13
1"-9"
2'-6"
lT2 ..
• -.3~
3'-0"
5'-0"
2'-0"
3"
Page 107 of 108 Page : 3
PATI'ERSON
ENGINEERING
MJ(lllltr«C'tftOAllot ... ,. -~ ---,.,_,._...,w ..
RetainPro (c) 1987-2016, Build 11.16.11.12
License : KW-06058766 License To : PATTERSON ENGINEERING
22.38psf
(Strength-Level)
Pp= 507.81#
Title FREE-STANDING WALL AT FIRE PLACED Page : 4
Job#: • Dsgnr: Date: 20 SEP 2017
Description ....
Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13
r 278# 125#
Seismic due to stem self weight
Page 108of108 Page : 4
STORM WATER POLLUTION PREVENTION NOTES
1. ALL NECESSARY EQUIPMENT AND MATERIALS SHALL BE
AVAILABLE ON SITE TO FACILITATE RAPID INSTALLATION
OF EROSION AND SEDIMENT CONTROL BMPs WHEN RAIN
IS EMINENT.
2. THE OWNER/CONTRACTOR SHALL RESTORE ALL EROSION
CONTROL DEVICES TO WORKING ORDER TO THE SATISFACTION
OF THE CITY INSPECTOR AFTER EACH RUN-OFF PRODUCING
RAINFALL.
3. THE OWNER/CONTRACTOR SHALL INSTALL ADDITIONAL EROSION
CONTROL MEASURES AS MAY BE REQUIRED BY THE CITY
INSPECTOR DUE TO INCOMPLETE GRADING OPERATIONS OR
UNFORESEEN CIRCUMSTANCES WHICH MAY ARISE.
4. ALL REMOVABLE PROTECTIVE DEVICES SHALL BE IN PLACE
AT THE END OF EACH WORKING DAY WHEN THE FIVE (5)
DAY RAIN PROBABILITY FORECAST EXCEEDS FORTY PECENT
( 40%). SILT AND OTHER DEBRIS SHALL BE REMOVED AFTER
EACH RAINFALL.
5. ALL GRAVEL BAGS SHALL CONTAIN 3/4 INCH MINIMUM
AGGREGATE.
6. ADEQUATE EROSION AND SEDIMENT CONTROL AND PERIMETER
PROTECTION BEST MANAGEMENT PRACTICE MEASURES MUST
BE INSTALLED AND MAINTAINED.
7. THE CITY INSPECTOR SHALL HAVE THE AUTHORITY TO ALTER
THIS PLAN DURING OR BEFORE CONSTRUCTION AS NEEDED
TO ENSURE COMPLIANCE WITH CITY STORM WATER QUALITY
REGULATIONS.
OWNER'S CERTIFICATE:
I UNDERSTAND AND ACKNOWLEDGE THAT I MUST: (1) IMPLEMENT
BEST MANAGEMENT PRACTICES (BMPS) DURING CONSTRUCTION
ACTIVITIES TO THE MAXIMUM EXTENT PRACTICABLE TO AVOID
THE MOBILIZATION OF POLLUTANTS SUCH AS SEDIMENT AND TO
AVOID THE EXPOSURE OF STORM WATER TO CONSTRUCTION
RELATED POLLUTANTS; AND (2) ADHERE TO, AND AT ALL TIMES,
COMPLY WITH THIS CITY APPROVED TIER 1 CONSTRUCTION SWPPP
THROUGHOUT THE DURATION OF THE CONSTRUCTION ACTIVITIES
UNTIL THE CONSTRUCTION WORK IS COMPLETE AND APPROVED
BY THE CITY OF CARLSBAD. ~ --z:-
owfJERSOWti~•s AGENT NAME (PRINT)
-s;~r•••"'-•S ~J/VYYNER1S AGENT NAME (SIGNATURE)
1rf?rft 9
DATE
E-29
STORM WATER COMPLIANCE FORM
TIER 1 CONSTRUCTION SWPPP (: c-i' ~R20 ll-'2 2 33
~--
BEST MANAGEMENT PRACTICES (BMP) SELECTION TABLE
Erosion Cantrel Sediment Control BMPs Tracking Non-Storm Water Waste Management and Materials BMPs Control BMPs Management BMPs Pollution Control BMPs
C -C C 0 -0 0 :;::; C C 'O :;::; :;::; "' 0 ., 'O ., 'O "' C u u C C "' E C E C c 0 -:, :, 0 ·c: ,9, 0 0 E ., L L :;::; 'O L ., :::; 'O "' "' L --C :, >, "' "' C <I> L C ., c "'"' "' ~ ·c: '-O" L 0 C
Oo 0-., 'a. ·c: -Cu, C L u.J ., 0 Best Management Practice' o'd C 0 CD L 0 ., 0 L C> ., > C :;::; "'., "' L ., 0 C ., -., 0 -.c C f-E UL u "' 'O -.; "' :::; C <I> C (BMP) Description ➔ "' u ., (/) ·o ., "' "' ., "' CD •o C "' C 'O "' ~ C D ::::, ~ -., " :i ~ Q,) -0 0 3' C LO -g~ 'O >, 0"' CC 0 ['l E L u 0 ., :;::; C D CD (/) ·-"' Cl:.,::; :!lo u., 0 0 "' " X :::; D c,, D C ., (le E 0 Nu, u en:;:; ., a, C ~ 8, 0 'a. L-;;: " ., 0 " E -" ~ -:, .a E~ = en = 3 1,_:,::; :;s u ·c ·c: o,_ e "' -'O .C C ., u.. u L " :, 'O ·-., ·-'O C 0 L 0 -" 'O 0 0 ---C. 'o ., L-.Q L .a 0 ., u ·5 ~ 0 ·-0 Q> L " u --0 L 0 -" 0 ~ u C 00 0 "'
-o -.c " -o -0 = C ·-C ., ~ 0 L 0 ., .c .a L -0 0 -L .Bo OL 0 9-0 o_ 0 C. 0 oo Vi in c:: VJ C ;;: o,_ ., --C> u.J D (/) u C> (/) > (/) (/) o,_ (/) (le o,_ 0 o,_ >U :::; (/) :::; (/) (/) u (/) :::;
CASQA Designation ---,) r---00 0, ..., v "' r---00 a N ..., r---00 N ..., v "' ' "' ' I I I I I I I I I I I I I I I I I I I I I u u u u u.J u.J u.J u.J u.J u.J u.J u.J (le (le (/) (/) (/) (/) i i i i i Construction Activity u.J u.J u.J u.J (/) (/) (/) (/) (/) (/) (/) (/) f-f-z z z z
Grodina/Soil Disturbance
✓ Trench inn /Excavation V ✓ ✓ ✓
Stockpilinq
Drill in a /Borina
v Concrete/Asphalt Sawcuttinq ✓ V V V
✓ Concrete Flatwork v ✓ ✓ V
Paving
V Conduit/Pioe Installation ✓ v V V
V Stucco/Mortar Work ..... ✓ y' (/
v Waste Disposal ✓ ✓ v/ /
Staqina/Lay Down Area
Eauioment Maintenance and Fuelina
Hazardous Substance Use/Storoqe
Dewaterinq
Site Access Across Dirt
Other /list):
Instructions:
1. Check the box to the left of all applicable construct on activity (first column) expected to occur during construction.
2. Located along the top of the BMP Table is a list of BMP's with it's corresponding California Stormwater Quality Association (CASQA) designation number. Choose one
or more BMPs you intend to use during construction from the list. Check the box where the chosen activity row intersects with the BMP column.
3. Refer to the CASQA construction handbook for information and details of the chosen BMPs and how to apply them to the project.
PROJECT INFORMATION
Site Address: 1-515' Ci i-¾;G,ou.., ;);2,-l\ic
Assessor's Parcel Number: '2.06 i90 170C
Emergency Contact:
Name: 5, EV B0 Th<>MA 5
24 Hour Phone: lg ;t'., \ ~ 7 B (c I 4 G
Construction Threat to Storm Water Quality
(Che~~
~DIUM □LOW
., -"' 0
;;: -C "' ., :, E 0 ., ~ "' oO NC oo :r: :::;
"' I
i
., -"' o-;;:c .,
" E -., ~ "' U 0 CC O O u:::e
00
I
i
Page 1 of 1 REV 02/16
Building Permit Finaled
Revision Permit
Print Date: 07/31/2023
Job Address: 2575 GLASGOW DR, CARLSBAD, CA 92010-5602
Permit No:
Status:
(city of
Carlsbad
PREV2019-0025
Closed -Finaled
Permit Type: BLDG-Permit Revision Work Class: Residential Permit Revision
Parcel#: 2081901700
Valuation: $0.00
Occupancy Group:
#of Dwelling Units:
Bedrooms:
Bathrooms:
Occupant Load:
Code Edition:
Sprinkled:
Project Title:
Track#:
Lot#:
Project#:
Plan#:
Construction Type:
Orig. Plan Check#: CBR2017-2233
Plan Check#:
Description: DESAI: EXTEND BEDROOM OVER PATIO WITH A BALCONY
Applicant:
IVAN LOPEZ
9466 BLACK MOUNTAIN RD, # 210
SAN DIEGO, CA 92126-4550
(858) 779-1225
FEE
BUILDING PLAN CHECK REVISION ADMIN FEE
MANUAL BUILDING PLAN CHECK FEE
Total Fees: $260.00 Total Payments To Date:
Building Division
$260.00
Applied: 02/01/2019
Issued: 04/29/2019
Fina led Close Out: 07/31/2023
Final Inspection:
INSPECTOR:
Contractor:
ECO MINDED SOLUTIONS INC
9530 PADGETT ST, # STE 109
SAN DIEGO, CA 92126-4449
(858) 779-1225
Balance Due:
AMOUNT
$35.00
$225.00
$0.00
Page 1 of 1
1635 Faraday Avenue, Carlsbad CA 92008-7314 I 442-339-2719 I 760-602-8560 f I www.carlsbadca.gov
(city of
Carlsbad
PLAN CHECK REVISION OR
DEFERRED SUBMITTAL
APPLICATION
Development Services
Building Division
1635 Faraday Avenue
760-602-2719
www.carlsbadca.gov B-15
-p~, ..\--J:\c-C, B (2. 2-<> i -, -+{3fr/.2 :;i s "5
Original Plan Check NumberCJ,R2PO-223 ~-Plan Revision Number fc.-,,rao LC( -Dtia6
Project Address L5 7,S-0 lA 5 01'.)W .02... .
General Scope of Revision/Deferred Submittal: C;Jcft:JJI) v?S71:l-r,(J /3c'-.()~
A-f)j) tz//-lt;-t>IV i /N lrEu t>F &oe 45 Ot:1c1',v.1,11y f)ESo:j;vE(}
CONTACT INFORMATION:
Name t?J?AP \6:,st-1 Phone "t<:;c3-j/7-S::28"3' Fax~------
Address 1'/U'& f3!4Ct! /f/lo-UN/n.,,_, /J/Z' City 54-N ])fi.~O Zip 7'z ( C.0
Email Address brnd ~ ec.011'1' nded&;, lu+i ons. Com
Original plans prepared by an architect or engineer, revisions must be signed & stamped by that person.
1 . Elements revised: &j Plans ~ Calculations D Soils D Energy D Other
2.
Describe revisions in detail
.
c-: To Ct,M1NA-i-£-RoDF"
1----1
4. Does this revision, in any way, alter the exterior of the project?
5. Does this revision add ANY new floor area(s)? gj. Yes
6. Does this revision affect any fire related issues? D Yes
7. Is this a complete set? D Yes ~ No
.e7$'Signature ~---
[2f.Yes
0 No
iS4 No
3.
list page(s) where each
revision is shown
0 No
Date I ) ~l ( 1 CJ
1635 Faraday Avenue. Carlsbad. CA 92008 Ph: 760-602-2719 Fax: 760-602-8558 Email: building@carlsbadca.gov
www.carlsbadca.gov