Loading...
HomeMy WebLinkAbout2575 GLASGOW DR; ; CBR2017-2233; PermitBuilding Permit Finaled Residential Permit Print Date: 07/31/2023 Job Address: Permit Type: Parcel#: Valuation: Occupancy Group: #of Dwelling Units: Bedrooms: Bathrooms: Occupant load: Code Edition: Sprinkled: Project Title: 2575 GLASGOW DR, CARLSBAD, CA 92010-5602 BLDG-Residential 2081901700 $22,853.13 Work Class: Track#: lot#: Project#: Plan#: Construction Type: Orig. Plan Check#: Plan Check#: Addition Permit No: Status: {city of Carlsbad CBR2017-2233 Closed -Finaled Applied: 09/25/2017 Issued: 11/21/2017 Fina led Close Out: 07/31/2023 Final Inspection: 10/20/2022 INSPECTOR: Frazee, Tim Collins, Michael Burnette, Paul Renfro, Chris Description: DESAI: 67 SF EXTERIOR BATHROOM ATTACHED TO HOUSE// 132 SF ADDITION TO MASTER BEDROOM// 134 SF BALCONY 1 186 SF DETACHED PATIO COVER// OUTDOOR FIREPLACE Applicant: IVAN LOPEZ 9466 BLACK MOUNTAIN RD, # 210 SAN DIEGO, CA 92126-4550 (858) 779-1225 FEE BUILDING PERMIT FEE ($2000+) BUILDING PLAN CHECK FEE (BLDG) ELECTRICAL BLDG RESIDENTIAL NEW/ADDITION/REMODEL GREEN BUILDING STANDARDS PLAN CHECK & INSPECTION MECHANICAL BLDG RESIDENTIAL NEW/ADDITION/REMODEL PLUMBING BLDG RESIDENTIAL NEW/ADDITION/REMODEL 581473 GREEN BUILDING STATE STANDARDS FEE STRONG MOTION-RESIDENTIAL SWPPP INSPECTION FEE TIER 1 -Medium BLDG SWPPP PLAN REVIEW FEE TIER 1-MEDIUM Total Fees: $988.43 Total Payments To Date: $988.43 Contractor: ECO MINDED SOLUTIONS INC 9530 PADGETT ST, # STE 109 SAN DIEGO, CA 92126-4449 (858) 779-1225 Balance Due: AMOUNT $230.27 $161.19 $41.00 $170.00 $39.00 $49.00 $1.00 $2.97 $238.00 $56.00 $0.00 Please take NOTICE that approval of your project includes the "Imposition" of fees, dedications, reservations, or other exactions hereafter collectively referred to as "fees/exaction." You have 90 days from the date this permit was issued to protest imposition of these fees/exactions. If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their imposition. You are hereby FURTHER NOTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project. NOR DOES IT APPLY to any fees/exactions of which you have previously been given a NOTICE similar to this, or as to which the statute of limitation has previously otherwise expired. Building Division Page 1 of 1 1635 Faraday Avenue, Carlsbad CA 92008-7314 I 442-339-2719 I 760-602-8560 f I www.carlsbadca.gov THE FOLLOWING APPROVALS REQUIRED PRIOR TO PERMIT ISSUANCE: □PLANNING □ENGINEERING □BUILDING □FIRE □HEALTH OHAZMATIAPCD {_ City of Building Permit Application Plan Check N~.2.0 I 1.-2.2., 3 .3 1635 Faraday Ave., Carlsbad, CA 92008 Est. Value 22.e~~- Carlsbad Ph 760-602-2719 Fax: 760-602-8558 Plan Ck. Deposit . email: building@carlsbadca.gov www.carlsbadca.gov Date q_z~-,--, JOB ADDRESS SUITE#/SPACE#/UNIT# IAPzo& 251~ Ci 1-A-SG, () w D/ZtvE -(90 -/70 -0 CT/PROJECT# ' LOT# I PHASE# I# OF UNITS I# BEDROOMS # BATHROOMS I TENANT BUSINESS NAME I CONSTR. TYPE I occ GROUP l'?--0'?·· Z. Sb DESCRIPTION OF WORK: Include Square Feet of Affected Area(s) INS M--/..Urr1 <N Of' 1 uJtJZH €kiJ snt-<, ,:; ,vJ'lC ,tIT,\v/60 re 8(tS ;w,; z_ S,'Of-y 1-ic:JVf;(:) / . .vs7f"\"(..U-f7c.'...v u 1 Ft(Z.(; ovE;,JZ-µ6A-0 $ 7]Zvl IVIZE 1"/!£1;; ,ST"fN9rN4 I ,',Jf3.v ff;,ifv/le ~vff<>Jl-, <,v.; L 1 ,A/@,'; ;J,A 5 ,w ,z.y re ;\11,i zt;, )J/3w '1-1T f-t U-t (? D J',]7.ve,.r,l/lR (e-tn1 (lc'JM / u,;,,,,,J(,r,vl, ,2e,ov,) -~+l(Ai) 0,,(1,,~n,rL.t ~n,c..icP ~ 341. C>~K~,\\) s 'Ilk (.;f\.l !Lt '"('E'-' ,fl.<;l..l ~ cc (1;;0 s>' \i\,\1•\ikA >'A .=-&;1. l6 ,F. n,,,\L-; "A1 .IZ.S--Sf" EXISTING USE \ PROPOSED USE I GARAGE (SF) PATIOS (SF) I DECKS {SF) FIREPLACE \ AIR CONDITIONING \FIRE SPRINKLERS ~ll)bVT/,<L flts1().£M)-'\L YESO, NO□ YES □No □ YES □No□ APPLICANT NAME lv-\,-, PROPERTY OWNER NAME i-1+12.-SI-I f)t;'.541 Primary Contact k:,O<e,.,Z. --ADDRESS ADDRESS '14(c0 i'> i--4<-,". /AO•hV111.v {?o.W Sv1,n,; -z,o 2-:5l5 ~~-5 l"-JCv,.) Dra.vE: CITY STATE ZIP CITY STATE ZIP S'+N D; £,t,O C4-9'212.h CAµS ,,, .\-0 (C4 q 2.() ,o PHONE I FAX PHONE l'AX ([,$';:;) 77'1 (2..U' (@s&)174 IC',"( ( G\'1 I 1'1'3 :,1,s-1 EMAIL EMAIL , vov1 a? e(Cr(I; "ded-&-;, i0 -h cri S.. Co'Y\ DESIGN PROFESSIONAL CONTRACTOR BUS. NAME eeo Ml-\f!)GD Sc>'-" noNS /i;CoM1N()51) 5c,Li.Jne.J,vS ADDRESS ADDRESS C'it\ "'" \:1. M lL ,V-Ou ,Jf','\1,V /Zc.+O 5Ji(e Z.1O c1-4(vG, ,., L,\-{'.l<C, 1'\/to-iAfCA1,v (7-0M Jv tTE?-2.t<.> CITY STATE ZIP CITY STATE ZIP '?W )ier,-,o CA cn,12.t; 5iv\J 0·,c:~o u qz,-u; l'cs~b) 17 '1 ~ PHONE IFAX PHONE - 7,G>,no )719 t--z.1-s-IA'0',1 rr<i ioSA ( 85b)TT"t n . .-z.-s-lo~-4 . EMAIL =1, .. f---rp€e<.CA"•<'ded,solu-hc,v; GOW\ y-p@:; e<.:.o,..,,·;..,cAeolsdv-+.or,:s; C:<YV' I STATE UC.# STATE Lil;.# ICIASS 1t~;c;';",1s} 94 y.,; 0"1 9-4820~ (Sec. 7031.5 Business and Professions Code; Any City or Coun_ty which requires a permit to. construct. alter, improve. demolish or repair any structure. prior to its issuance, also requires the applrcant for such per_mIt to file a signed statement that he rs licensed pursuant to the provIsIons of the Contractor's License LawJChapter 9, commendmgwIth Section 7000 of DrvIsIon 3 of the Bus·Iness and Professions Code) or that he Is exempt therefrom, and the basis for the alleged exemption. Any vIolatIon of Section 031.5 by any applicant for a permit subJects the applicant to a civil penalty of not more than five hundred dollars [$500)) . • Workers' Compensation Declaration: I hereby affirm under penalty of perjury one of the following declarations: D I have and will maintain a certificate of consent to self-insure for workers' compensation as provided by Section 3700 ol the Labor Code, for the performance of the work for ,•,11'1ch this perm·1t is issued. DI have and will maintain workers' compensation, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. My workers' compensation insurance carrier and policy nurnberare:lnsuranceCo._U_~C)_J~• ~O ________ ·--PolicyNo.MSl&JC. JK\ C,.llL___ ___ Expiration Date 'l/,z/1.!1___ __ _ • This section need not be completed ·11 the permit is for one hundred dollars ($100) or less. 0 Certificate of Exemption: I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the Workers· Compensation Laws of California WARNING: Failure to secure workers' compensation coverage is unlawful, and shall subject an employer to criminal penalties and civil fines up to one hundred thousand dollars (& 100,000), in addition to the cost of compensation, for in Section 3706 of the Labor code, interest and attorney's fees. _85 CONTRACTOR SIGNATURE I hereby affirm that I am exempt from Contractor's License Law for the following reason: □ □ □ I, as owner of the property or my employees with wages as their sole compensation, will do the work and :he structure is not intended or offered for sale (Sec. 7044, Business and Professions Code: The Contractor"s License Law does not apply lo an owner of property who builds or improves thereon, and who does such work himself or through his own employees, provided that such improvements are not intended or offered for sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale) I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and contracts for such projects with contractor(s) licensed pursuant to the Contractor's License Law) I am exempt under Section__ Business and Professions Code for this reason: 1. I personally plan lo provide the major labor and materials for construction of the pro)XJsed property improvement. □Yes 0No 2. I (have/ have not) signed an application for a building permit for the proposed work 3. I have contracted with the following person (firm) to provkJe the proposed construct'1on (include name address /phone/ contractors' license number)· 4. I plan to provide portions of the work, but I have hired the following person to coordinate, supervise and provide the major work (include name /address/ phone / contractors' license number): 5. I will provide some of the work, but I have contracted (hired) the following persons to provide the work indicated (include name/ address I phone/ type of work) ,N5 PROPERTY OWNER SIGNATURE □AGENT DATE ' Is the applicant or future building occupant required to submit a business plan, acutely hazardous materials registration form or risk management and prevention program under Sections 25505, 25533 or 25534 of the Presley-Tanner Hazardous Substance Account Act? Yes No Is the apr;licant or future building occupant required to obtain a perrn·11 from the air pollution control o'1str'1cl or air Quality management district? Yes No Is the facility to be constructed within 1,000 feet of the outer boundary of a school site? Yes No IF ANY OF THE ANSWERS ARE YES, A FINAL CERTIFICATE OF OCCUPANCY MAY NOT BE ISSUED UNLESS THE APPLICANT HAS MET OR IS MEETING THE REQUIREMENTS OF THE OFFICE OF EMERGENCY SERVICES AND THE AIR POLLUTION CONTROL DISTRICT. I certify that I have read the application and state that the above infonnation is correct and that the infonnation on the plans is accuratE. I agree to comply with all City ordinances and State raw.; relating to building construction. I hereby aulhorize representative of the City of Car1sbad to enter up::in the al:x:lve mentioned property for inspecUon purposes. I ALSO AGREE TO SAVE, INDEMNIFY AND KEEP HARMLESS THE CITY OF CARLSBAD AG\INST ALL LIABILITIES, JUDGMENTS, COSTS ANO EXPENSES WHICH MAY IN ANYWAY ACCRUE AGAINST SAID CITY IN CONSEQUENCE OF THE GRANTING OF THIS PERMIT OSHA: An OSHA permit is required for exc.avations over S'O' deep and demolition or construction of structures over 3 stories in height EXPIRATION: Every permit issued by the Building Ofocial under e provisions of this Code shall expire by limitation and beaJme null and vokl if the buikling or iMJrk authorized by such permit is not oommenced within 1 180 days from lhe date of such permit or if lhe building or orized b ch permit Is suspended or abandoned at any time after the wrk is commenced for a period of 180 days (Sectbn 106.4.4 Uniform Building Code) L_~APPLICANT's,;IGNATURE ---&-9'--'I-----_ --_ DATE _!A/u; L21:>1, STOP: THIS SECTION NOT REQUIRED FOR BUILDING PERMIT ISSUANCE. Complete the following ONLY if a Certificate of Occupancy will be requested at final inspection. Fax (760) 602-8560, Email buildinq@carlsbadca.gov or Mail the completed form to City of Carlsbad, Building Division 1635 Faraday Avenue, Carlsbad, California 92008. CONTACT NAME ADDRESS CITY STATE PHONE EMAIL DELIVERY OPTIONS PICKUP: MAIL TO: CONTACT (Usted above) CONTRACTOR (On Pg. 1) CONTACT (Listed above} CONTRACTOR (On Pg. 1) ZIP FAX OCCUPANT (Listed above) OCCUPANT (Listed above) MAIL/ FAX TO OTHER:----------------~ A5 APPLICANT'S SIGNATURE CO#: (Office Use Only) OCCUPANT NAME BUILDING ADDRESS CITY STATE ZIP Carlsbad CA OCCUPANT'S BUS. LIC. No. ASSOCIATED CB# ____________ _ NO CHANGE IN USE/ NO CONSTRUCTION CHANGE OF USE/ NO CONSTRUCTION DATE PERMIT INSPECTION HISTORY for (CBR2017-2233) Permit Type: BLDG-Residential Work Class: Addition Status: Closed -Finaled Application Date: 09/25/2017 Owner: Issue Date: 11/21/2017 Subdivision: Expiration Date: 01/03/2023 IVR Number: 6526 Address: 2575 GLASGOW DR CARLSBAD, CA 92010-5602 Scheduled Date Actual Inspection Type Start Date Inspection No. Inspection Primary Inspector Reinspection Inspection 12/13/2019 10/20/2022 Status Checklist Item COMMENTS BLDG-Building Deficiency BLDG-Plumbing Final BLDG-Mechanical Final BLDG-Structural Final BLDG-Electrical Final GFCI receptacles needed on TV wall. Call for reinspection 12/13/2019 BLDG-Final Inspection Checklist Item 113707-2019 COMMENTS BLDG-Building Deficiency BLDG-Plumbing Final BLDG-Mechanical Final BLDG-Structural Final BLDG-Electrical Final 10/20/2022 BLDG-Final Inspection Checklist Item 194626-2022 COMMENTS BLDG-Build'1ng Deficiency BLDG-Plumbing Final BLDG-Mechanical Final BLDG-Structural Final BLDG-Electrical Final Failed Chris Renfro Passed Chris Renfro Monday, July 31, 2023 Passed No No No No No Re inspection Passed No No No No No Passed Yes Yes Yes Yes Yes Incomplete Complete Page 4 of 4 PERMIT INSPECTION HISTORY for (CBR2017-2233) Permit Type: BLDG-Residential Application Date: 09/25/2017 Owner: Work Class: Addition Issue Date: 11/21/2017 Subdivision: Status: Closed -Finaled Expiration Date: 01/03/2023 Address: 2575 GLASGOW DR IVR Number: 6526 CARLSBAD, CA 92010-5602 Scheduled Actual Inspection Type Inspection No. Inspection Primary Inspector Reinspection Inspection Date Start Date Status Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes BLDG-15 Roof/ReRoof 095092-2019 Passed Chris Renfro Complete (Patio) Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes 08/08/2019 08/08/2019 BLDG-84 Rough 100143-2019 Failed Chris Renfro Reinspection Incomplete Combo(14,24,34,44) Checklist Item COMMENTS Passed BLDG-Building Deficiency No contractor on site No BLDG-14 No Frame-Steel-Bolting-Welding (Decks) BLDG-24 Rough-Topout No BLDG-34 Rough Electrical No BLDG-44 No Rough-Ducts-Dampers 08/09/2019 08/09/2019 BLDG-84 Rough 100286-2019 Passed Chris Renfro Complete Combo(14,24,34,44) Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes BLDG-14 Yes Frame-Steel-Bolting-Welding (Decks) BLDG-24 Rough-Topout Yes BLDG-34 Rough Electrical Yes BLDG-44 Yes Rough-Ducts-Dampers 08/14/2019 08/14/2019 BLDG-16 Insulation 100793-2019 Passed Chris Renfro Complete Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes 08/19/2019 08/19/2019 BLDG-18 Exterior 101305-2019 Passed Chris Renfro Complete Lath/Drywall Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes 12/04/2019 12/04/2019 BLDG-Final Inspection 112662-2019 Failed Chris Renfro Reinspection Incomplete Monday, July 31, 2023 Page 3 of 4 PERMIT INSPECTION HISTORY for. (CB~2017-2233) Permit Type: BLDG-Residential Work Class: Addition Status: Closed -Finaled Application Date: 09/25/2017 Owner: Issue Date: 11/21/2017 Subdivision: Expiration Date: 01/03/2023 IVR Number: 6526 Address: 2575 GLASGOW DR CARLSBAD, CA 92010-5602 Scheduled Date Actual Inspection Type Start Date Inspection No. Inspection Status Primary Inspector Reinspection Inspection Checklist Item COMMENTS Passed BLDG-Building Deficiency Roof sheathing OK Yes 08/07/2018 08/07/2018 BLDG-21 066137-2018 Cancelled Chris Renfro Reinspection Incomplete Underground/Underflo or Plumbing Checklist Item COMMENTS Passed BLDG-Building Deficiency No 08/08/2018 08/08/2018 BLDG-84 Rough 06627 4-2018 Failed Chris Renfro Reinspection Incomplete Combo(14,24,34,44) Checklist Item COMMENTS Passed BLDG-Building Deficiency Exterior not wrapped. Call back when No weathertight BLDG-14 No Frame-Steel-Bolting-Welding (Decks) BLDG-24 Rough-Topout No BLDG-34 Rough Electrical No BLDG-44 No Rough-Ducts-Dampers 08/16/2018 08/16/2018 BLDG-84 Rough 067251-2018 Passed Tim Frazee Complete Combo(14,24,34,44) Checklist Item COMMENTS Passed BLOG-Building Deficiency No BLDG-14 No Frame-Steel-Bolting-Welding (Decks) BLDG-24 Rough-Topout No BLDG-34 Rough Electrical No BLDG-44 No Rough-Ducts-Dampers 08/24/2018 08/24/2018 BLDG-17 Interior 068079-2018 Failed Chris Renfro Reinspection Incomplete Lath/Drywall Checklist Item COMMENTS Passed BLDG-Building Deficiency No contractor on site and no inspection No card. Left voicemail with contractor. 05/21/2019 05/21/2019 BLDG-14 092453-2019 Partial Pass Paul Burnette Reinspection Incomplete Frame/Steel/Bolting/We lding (Decks) Checklist Item COMMENTS Passed BLDG-Building Deficiency No 06/19/2019 06/19/2019 BLDG-13 Shear 095093-2019 Passed Chris Renfro Complete Panels/HD (ok to wrap) Monday, July 31, 2023 Page 2 of 4 Building Permit Inspection History Finaled (city of Carlsbad PERMIT INSPECTION HISTORY for {CBR2017-2233) Permit Type: BLDG-Residential Application Date: 09/25/2017 Owner: Work Class: Addition Issue Date: 11/21/2017 Subdivision: Status: Closed -Finaled Expiration Date: 01/03/2023 Address: 2575 GLASGOW DR IVR Number: 6526 CARLSBAD, CA 92010-5602 Scheduled Actual Inspection Type Inspection No. Inspection Primary Inspector Reinspection Inspection Date Start Date Status 12/13/2017 12/13/2017 BLDG-21 043285-2017 Passed Chris Renfro Complete Underground/Underf1o or Plumbing Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes 01/03/2018 01/03/2018 BLDG-11 044829-2018 Passed Michael Collins Complete Foundation/Ftg/Piers (Rebar) Checklist Item COMMENTS Passed BLDG-Building Deficiency Caissons only at Line 6 Yes 01/04/2018 01104/2018 BLDG-11 045028-2018 Partial Pass Chris Renfro Re inspection Incomplete Foundation/Ftg/Piers (Rebar) Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes 02/16/2018 02/16/2018 BLDG-21 049049-2018 Partial Pass Chris Renfro Re inspection Incomplete Underground/Underflo or Plumbing Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes 02122/2018 02/22/2018 BLDG-11 049542-2018 Passed Chris Renfro Complete Foundation/Ftg/Piers (Rebar) Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes 07/12/2018 07/12/2018 BLDG-11 063788-2018 Passed Tim Frazee Complete Foundation/Ftg/Piers (Rebar) Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes BLDG-13 Shear 063786-2018 Passed Tim Frazee Complete Panels/HD (ok to wrap) Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes BLDG-15 Roof/ReRoof 063787-2018 Passed Tim Frazee Complete (Patio) Monday, July 31, 2023 Page 1 of 4 ( City of Carlsbad SPECIAL INSPECTION AGREEMENT B-45 I •1·1 / 11 l' i J Development Services Building Division 1635 Faraday Avenue 760-602-2719 www.carlsbadca.gov In accordance with Chapter 17 of the California Building Code the following must be completed when work being performed requires special inspection, structural observation and construction material testing. A. THIS SECTION MUST BE COMPLETED BY THE PROPERTY OWNER/AUTHORIZED AGENT. Please check if you are Owner-Builder □. (If you checked as owner-builder you must also complete Section B of this agreement.) Name: (Please print)_...S-~ ________ __,,5_ _________ -~-_!_ ____ _ (First) (M.I.) (last) Mailing Address·_2___lf~6 _jS/~H-o11~1cl{A-_ ~-~-.DfC#() _ C4 _<jJ/ Z '- Email-.__~ (! _ e,.c O MM ,),V ~l.J+to11s ._ C.OM. _ _ _ Phone: _E.[t:_] ?ff_:_ _!!_Z f" _ I am: □Property Owner ~operty Owner"s Agent of Record □Architect of Record □Engineer of Record State of California Registration Number:_ _______________ Expiration Date: ________ _ AGREEMENT: I, the undersigned, declare under penalty of perjury under the laws of the State of California, that I have read, understand, acknowledge and promise to comply with the City of Carlsbad requirements for special inspections, structural observations, construction materials testing and off-site fabrication of building components, as prescribed in the statement of :::~:~~=S5ofd :n~h::prov: :a: ~nd, a: :quir: by the Cali:~~~a ~~;z~;~ ------- 8. CONTRACTOR'S STATEMENT OF RESPONSIBILITY (07 CBC, Ch 17, Section 1706). This section must be completed by the contractor I builder/ owner-builder. Contractor's Company Name:_ ,l!!"e,p II{ IIV_)j~~A,f/7/ PIVS ,.Ue.. Please check if you are Owner-Builder D Name: (Please print) ____ ~!'8£_~7"_ ______ .,.-y'._ _______ f P.Jt-./!-P~ ____ _ (First) (M.I.) (Last) Mailing Address -__</ "r~~ -,6~ Aflf'£",A/ 7;211'# A-~,:VP rs~ _J;#___g-0 ~BA t Email· R./"~t~.1!f1NlJlilU!-P"77MS• c!:-1?,,ff ____ Phone:#ff8•"f,lj-_,.ti,/~P __ State of California Contractor's License Number: __ 9 fg,:te:,--2'-__ Expiration Date:~ ~otP•.£~! /! • I acknowledge and, am aware, of special requirements contained in the statement of special inspections noted on the approved plans; • I acknowledge that control will be exercised to obtain conformance with the construction documents approved by the building official; • I will have in-place procedures for exercising control within our (the contractor's) organization, for the method and frequency of reporting and the distribution of the reports; and • I certify that I will have a qualified person within our (the contractor's) organization to exercise such control. • I will provide a final report I letter in compliance with CBC Section 1704.1.2 prior to requesting final inspection. Signature; _ ~Ji F~ _______ Date:_ /~.:?_IP_'_/,?'__ ____ _ B-45 Page 1 of 1 Rev. 08/11 STRUCTURAL CALCULATIONS PACKAGE PLAN CHECK RESPONSES PATTERSON ENGINEERING,INC 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 TEL 858.605,0937 FAX. 858.605.1414 E.info@pattersoneng.com Desai Residence, 2575 Glasgow Drive, Carlsbad, CA 920 I 0 October 18, 20 I 7 Project Number: 17070055 a . . ~~'~ l ;f• PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 PLAN REVIEW CORRECTION LIST AND RESPONSE SINGLE FAMILY DWELLINGS AND DUPLEXES 5. Please submit structural calculation from engineer of record for structural review on resubmittal. Please see attached calculation below. 11. Will structural elements for "Attached" Patio Cover structure be connected? It appears on 4/S4.2 that the two will not interact. If so, please show a I -inch clearance between framing. Please see updated detail #4 on Sheet S4.2. 16. Note on plans that surface water will drain away from building and show drainage pattern. The grade shall fall a minimum of6" within the First 10 feet. Section R 401.3. Please see note# 9 on Sheet S 1.0 under the heading "Foundation". 17. Show on plans that wood shall be 6" minimum above finish grade or 2-inches above non- permeable exterior. See 9. S4. I. Section R404. I .6. Please see note# 10 on Sheet Sl.0 under the heading "Foundation" and note #7 on foundation plan sheet S3.0. also please see updated detail #9 on sheet S4.I. 18. Structural plans Drawing Status section state that these documents are not for construction. Please generate final draft for plan review. Please see updated structural drawing sheets. 19. Not sure if the double line shown behind the spa is for new free-standing masonry/privacy wall or something that already exists. Please see updated foundation plan sheet S 3.0. Double line behind the spa is for existing site wall. 20. No header is shown for window for Bathroom addition. Please see updated Roof plan sheet S 3.1 and attached calculation below. 2 I. Detail 15 called out on S3 .0 appears to be long to I 5/SD2. l. Please see updated call out on foundation plan sheet S3.0. and see detail 12 on sheet S2.0 for typical holdown connection detai I. 22. Please provide and reference detail for welded connection at beam and post located at Gridline 5-residence post connection. Please see updated detail #1 on sheet S4.2 for beam to post connection. 23. Where do details on S4.3 pertain to? S 4.3 Sheet is Typical Masonry Details for masonry construction. See updated sheet S2.4. 24. Note that a complete structural plan review could not be completed at this time due to plans missing structural calculations. Please submit all necessary documentation on resubmittal. Please see attached complete set of structural drawing and calculation. Page 2 of 108 PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 20 I SAN DIEGO, CA 92 I 03 STRUCTURAL CALCULATIONS TABLE OF CONTENTS I. STRUCTURAL BASIS OF DESIGN ................................................................................................... 3 2. LATERAL CALCULATIONS ............................................................................................................... 10 3. DIAPHRAGM AND DRAG FORCE CALCULATION ..................................................................... 47 4. VERTICAL CALCULATIONS ........................................................................................................... 49 5. POST AND STUD WALL CALCULATIONS ................................................................................... 69 6. FOUNDATION CALCULATIONS ..................................................................................................... 81 Page 3 of 108 r PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 STRUCTURAL BASIS OF DESIGN Page 4 of 108 . tf PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 20 I SAN DIEGO, CA 92103 STRUCTURAL BASIS OF DESIGN: The project consists of Addition and alteration in existing building and new addition of steel framed trellises. The structure is remodeled using wood construction and the foundation system consists of continuous and isolated footings. I. CODES The governing building code is the 2016 California Building Code (CBC) as based on the 2015 IBC (ASCE 7-10). Concrete design based on the American Concrete Institute Building Code Requirements for Structural Concrete (ACI 318-14). Masonry design based on TMS 402-13/ACI 530-13/ASCE 5-13 Building Code Requirements and Specification for Masonry Structures (MSJC Code). Steel design based on: AISC Specification for Structural Steel Buildings (AISC 360-IO). AISC 341-10 Seismic Provisions for Structural Steel Buildings. AISI SI 00-07/S2-l O North American Specification for the Design of Cold-Formed Steel Structural Members, with Supplement 1, dated 2010 A WS Structural Welding Code ANSI/A WS Dl.1 and Dl.8 (current edition). Wood design based on: AF&PA NDS-2015 National Design Specification (NDS) for Wood Construction -with Commentary and, NDS supplement -Design Values for Wood Construction, 2015 Edition. AF&PA SDPWS-15 Special Design Provisions for Wind and Seismic. Page 5 of 108 PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DlEGO, CA 92103 DESIGN CRITERIA SUMMARY GOVERNING CODE: CONCRETE: MASONRY: MORTAR: GROUT: REINFORCING STEEL: STRUCTURAL STEEL: WELDING: 2016 California Building Code f' c = 2500 PSI, SPECIAL INSPECTION (U.O.N.) ASTM C90, f' m = I 500 PSI, SPECIAL INSPECTION REQUIRED (U.O.N.) ASTM C270, f' c = 1800 PSI, TYPES ASTM C476, f' c = 2000 PSI ASTM A651, Fy = 40 KS! FOR #3 AND SMALLER ASTM A6l5, Fy = 60 KS! FOR #4 AND LARGER (U.O.N) ASTM A992, Fy = 50 KS! (ALL "W" SHAPES ONLY) ASTM A36, Fy = 36 KS! (STRUCTURAL PLATES, ANGLES,CHANNELS) ASTM A500, GRADE B, Fy = 35 KS! (STRUCTURAL PIPES) E70 -T6 -TYP, FOR STRUCTURAL STEEL E90 SERIES FOR A615 GRADE 60 REINFORCING BARS Shop welding to be in an approved fabricator's shop. Field welding to have continuous special inspection. All welding to be done by certified welders. BOLTS & ASTM Fl 554 THREADED ROD: SAWN LUMBER: DOUG FIR LARCH, ALLOWABLE UNIT STRESSES PER2010 CBC I-JOISTS: BOISE CASCADE -ICC EDR-1336 (BC! MEMBERS) ENGINEERED BOISE CASCADE -ICC ESR-1040 (VERSA-LAM L VL MEMBERS) BEAMS: GLULAMS: DOUGLAS FIR OR DOUGLAS FOR/ HEM GRADE 24F -V4 (SIMPLE SPANS) GRADE 24F -V8 (CANTILEVERS) SOIL: CODE MINIMUM Page 6 of 108 DESIGN LOADS FLAT ROOF LOADS (With Solid Roof): PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 Roofing (Solid ballast Roof) ............................................................................................ = 12.0 psf Sheathing ............................................................................................................................ = 2.0 psf Roof Framing ...................................................................................................................... = 3.0 psf Insulation ........................................................................................................................... = 1.5 psf Ceiling Finish ...................................................................................................................... = 2.0 psf Miscellaneous ..................................................................................................................... = I~ Total Roof Dead Load .................................................................................................................. = 22.0 psf Total Roof Live Load .................................................................................................................... = 20.0 psf Total Roof Load ............................................................................................................................ = 42.0 psf FLAT ROOF LOADS (Open lattice): Roof Framing ...................................................................................................................... = 3.0 psf Miscellaneous ..................................................................................................................... = 2.0 psf Total Roof Dead Load .................................................................................................................. = 5.0 psf Total Roof Live Load .................................................................................................................... = I 0.0 psf Total Roof Load ............................................................................................................................ = 15.0 psf Page 7 of 108 a , , ' :;1) k\, PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 ROOF LOADS WITH TILES: Roofing (Tiles) .... , ........................................................ , .................................. ., ...... ., ...... = 12.0 psf Sheathing,,, .. , .. , ... ,, ... ,,., .. , ..... , .. , ..... ,,,., ....... , ... , .... , .. , ........ , .. ,.,,,,,, .... ,.,,,. .. ,.,.., .... , .. , ... ,, ... ,.,,,.., = 2.0 psf Roof Framing ..... , .. , ..... ,,., ..... , .. , .... ,, ... ,., ... ,, ... ,,., .... ,, ... ,. .. ,,,,., .... ,,.,,. .. ,,,,,,, ... , ....... , ........... ,. .. ,. = 3 .0 psf lnsu lation .. ,. .......... ,. ...... , .. , ,. ................ ,. ..................................... ,. ........... ., . ., ,. .......... ,. . ., ..... = 1.0 psf Ceiling Finish ............... ,.,., .. .,, .. ., .... ., ..... .,.,.,., ........................ ., ............... ., ............... ., .......... = 1 ,5 psf Miscellaneous .. ., ..... ,., .. ,, ..... , .... ,, ........ ,.,, ... ,., .. , .. ,,,.,, , .. ,, .... ,, ...... ,, ,,., .... , .. , .... ,.,,., ........... , ...... , = 2d,filf Total Roof Dead Load .... ., ....... ., ........ ., ................ ., ........................................... , ........................... = 22.0 psf Total Roof Live Load,, .. , ...... , ...... ,, ... ,, .... , ....... ,,,.,., ...... , .... , .. , .... ,, .... , ... , ..... ,., .... ,, .... ,., ..... , ... , ...... , .... = 20.0 psf Total Roof Load .. , ... ,, .... ,., ..... , .. , .. , ..... , ........ , .. , ... , .... , .. , .. ,,, .......... ,,, ..... , ..... , .... ,, ,, .. ,., ... , ... , .. , ........ ,.,.,= 42.0 psf EXTERIOR WALL LOADS: Studs .. , ......................................... , ................................ ., .............. ,. .................................. ,= 1.1 psf Sheathing .......................................................................................................................... = 1,5 psf Gypsum Board .......................... .,., ...... ., .. .,., .. ., ... ., .... , .. ., . ., ...... ., ........... .,,. ...... ., .................. = 2.5 psf Insulation., ...... ., ........ , ... ., .............................. , .... ., .... ., ..... ., ...... ., ...... .,., ...... ., .............. ., ...... = 1.0 psf Finish .............. ., .............. , .... , .. , ................................................ , ...................................... = I 0,5 psf Miscellaneous ....................... ., .................. ., .......................... ., .......................................... = I .4 os f Total Exterior Wall Dead Load ....... ., ........................................................................................... = 18.0 psf Page 6 of 108 INTERIOR WALL LOADS: PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 Studs .................................................................................................................................. = I . I psf Sheathing ......................................................................................................................... = I .5 psf Gypsum Board ................................................................................................................ = 5.0 psf Miscellaneous ................................................................................................................... -2.4 psf Total Interior Wall Dead Load .................................................................................................... = I 0.0 psf Page 9 of 108 PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 LATERAL CALCULATIONS Page 10 of 108 ASCE 7 Windspeed ASCE 7 Ground Snow Load Search Results Query Date: Thu Jul 13 2017 Latitude: 33.1564 Longitude: -117.3042 ASCE 7-10 Windspeeds (3-sec peak gust in mph*): Risk Category I: 100 Risk Category II: 11 O Risk Category Ill-IV: 115 MRI** 10-Year: 72 MRI** 25-Year: 79 MRI** 50-Year: 85 MRI** 100-Year: 91 ASCE 7-05 Windspeed: 85 (3-sec peak gust in mph) ASCE 7-93 Windspeed: 70 (fastest mile in mph) *Miles per hour .. Mean Recurrence Interval Users should consult wi1h local building officials to determine if there are community-specific wind speed requirements that govern, 1[=11 Print your results Related Resources WINDSPEED WEBSITE DISCLAIMER Sponsors About ATC While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the windspeed report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the windspeed report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the windspeed load report. Contact Sponsored by the ATC Endowment Fund · Applied Technology Council · 201 Redwood Shores Parkway, Suite 240 • Redwood City, California 94065 • (650) 595-1542 Page 11 of 108 lilJSGS Design Maps Summary Report User-Specified Input Building Code Reference Document 2012/2015 International Building Code (which utilizes USGS hazard data available in 2008) Site Coordinates 33.15642°N, 117.30416°W Site Soil Classification Site Class C -"Very Dense Soil and So~ Rock" Risk Category I/II/III USGS-Provided Output S5 = 1.083 g S1 = 0.417g iricr vn111,u 11 ~ffll l!lol\1 1111 A •I I CarlsbJ SMS = 1.083 g S M1 = 0.577 g "Vista Sf" M•rcos 1 Escondido• S05 = 0.722 g S01 = 0.384 g For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document. MC£.. Response Spectrum I 10 Cll13 Cllll 117' ~ 11!'<> 0 cu, .,, o1 0 "' 11 .. 11-1> = 1111 ClOO ~-l---+---+--+----1,---+--+--I---+-~ CltX! Cl1ll Cl40 CL&! CLlll I.ID 1.lC 140 Uil !Jl'J 2.00 PetlOd. T ( ~ee) a"' 1111) a.&< IL¥, Q.<11!1 OAO CU2 CL.24 a,o aoo ClOl 1100 0..0 Oes,gn Respoose Spectrum a.a 0.6.l 0.ltJ !.lll IZ! I AO Ull 1.Jl:l 2aJ Pef!Od. T(a«) Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. Thts tool is not a substitute for technical subject-matter knowledge. Page 12 of 108 PATTERSON ENGINEERING, INC. 928 FORT STOCKTON ORNE, SUITE 201 SAN DIEGO, CA 92103 WIND ANALYSIS (ATTACHED PATIO) I. Wind Loading Calculations: Wind Loading Criteria: = 110 mph Basic Wind Speed Exposure Category Enclosure classification Building category = "B" (Exposure: ASCE 7-10, Section 26. 7.3) = partially Enclosed Buildings = JI Importance Factor = 1.0 a) Wind Pressure Calculations: Height of roof Exposure category Importance factor (I) Basic Wind speed (V) Roof Slope Wind directionality factor (Kd) Topographic factor (Kzi) Velocity pressure exposure factor (Kz) = 10'-0" =B = 1.00 =II0mph = 00 = 0.85 (ASCE 7-10, Section 26.6) = 1.0 (ASCE 7-10, Section 26.8) = 0.47 for I 0'-0" (ASCE 7-10, Table 30.3-1) Building is considered as open building Velocity pressure qh = 0.00256 KzKztKN2 Eq. 30.3-1, ASCE 7-10 = 0.00256 x 0.47 x 1.0 x 0.85 x 1102 = 12.37 psf Building is considered as open building with Clear wind flow Refer to output below (Refer secti on 27.4.3, ASCE 7-1 0) Page 13 of 108 WIND LOAD CALCULATION Base shear due to Wind loading(P) Where, A p Lateral Load (WIND) No of columns Lateral Load on each column Wind load calculation on wall Wind pressure on wall Wind load on column due to wall Moment due to Wind loading Lateral Load on each column Moment due to seismic loading =qh X A PATTERSON ENGINEERING, INC. 928 FORT STOCKTON ORNE, SUITE 201 SAN DIEGO, CA 92103 = projected area normal to the wind = (16 X (10/12) = 13.33 = 13.33 sq. ft. = q h X A =12.37 X 13.33 =1651bs = 0.198 kips =3 nos = 165/3 = 55 lbs = 0.055 Kip = 18.0 psf = 18x Trib = 18x7.0 =126plf (conservatively) = 0.055x9+(126x8x8/2) = 4.032 kips-ft = 2.32/1 Kip = 2.32 kips = 2.32x9 = 20.88 kips-ft for bottom 8 '-0" of column Hence, Seismic forces governs design column for seismic loading Page 14 of 108 EQUIVALENT LATERAL FORCE PROCEDURE-BASE SHEAR (201S IOC) ASCE/SEI 7•!0 INPUT SEISMIC PARAMETERS Direction of Seismic Provided Ex.citation Sue Class: D From A (hard) to E (soft) Areas of Building where PROVIDED Regular Structure five N stones or less in height? ASCE 12.8.1.3 system is utilized h,,~ 1800 ft Mean Height of the bldg Ss• I 083 8 s, • 0 417 8 Type of System• Wood shear walls ASCE table 12.2-1 F, • t.000 Table 11 4-1 F,. • t.383 Table 11.4-2 R• 1.25 ASCE table 12.2-1 T""""' t•i. 8 00 sec Actual T from comp. model Risk Category: I or II ASCE table 1-1 S1ructure Type: All other structural systems CODE VALUES SEISMIC PARAMETERS BASE SHEAR le• I ASCE table 11.5-1 Seismic response coefficient. S5 used for C, • 1.083 g ASCE 12.8.1.3 C, • s,,. /(R/1) • 0.578 Eq 128-2 s,,. • 2/3 x F,S, • 0.722 g ASCE Eq. 11.4-3 S06 used for c. • 0. 722 g ASCE 12.8.1.3 Cs need not exceed following. S01 • 2/3 x F,S1 • 0.384 g ASCE Eq. 11.4-4 C, • S01 /((R/l)T] • t.257 Eq 12.8-3 s,,. > 0.50g D ASCE Table 11.6-1 S0 , >0.20g D ASCE Table 11.6-2 Cs shall not be taken less than: c,-0.02 ASCE Table 12.8-2 c,-0010 Eq 12 8-5 x • 0.75 ASCE Table 12.8-2 T,•C,(h,,)'• O 17 sec ASCE Eq. 12.8-7 For structures located where S1 ::!': 0.6g, Cs shall not be taken less than: c.-1.4 Table 12.8-1 Cs• 0.5S I /(R/1) • N/A Eq. 12.8-6 C.T,• 0.24 sec T• 0.24 sec T used for base shear calc Seismic Weight Seismic design category • D ASCE 11.6 c,-0.578 Seismic Resp. Coefficient v-Csx\\'• Base Shear Page 15 of 108 BUILDING WEIGHT DESIGN CRITERIA Code Used Building Code LACity Requirement : 20151BC 2016CBC No CODE MINIMUM BUILDING GRAVITY LOADING SUMMARY Level Height Elevation ft !lOOF 10.00 10.00 . . . •· • Roof Dead Load Includes Cc,hng Dead Load BUILDING WALL LOADING SUMMARY Wall Weight Tvne osf Exterior 18.00 Interior 10.00 Mis. Wall 90.00 BUILDING WEIGHT ROOF Arca L Type (ft) Area I Area 2 Area3 Area 4 Ext. Wall 4.00 Int. Wall . Mis. Wall . TOTALROOFAREA/LOAD Unit Wei~ht osf Dead-I Live-I 22.00 20.00 . . . . w Area (ft) (ft'2) 372.00 1.00 1.00 1.00 372.00 Concrete F'c Steel Fy Bearing Capacity : 1,500 ps Unit Weioht nsf Unit Wei~ht osf Unit Weioht nsf Dcad-2 Live-2 Dcad-3 Live-3 Dead-4 Livc-4 . . . . . . . . . . . . . . . . . . . . . FLOOR DEPTH Level Floor Heioht ft ROOF 1.00 0.00 . 0.00 . 0.00 . 0.00 Dead Weight Load lnsfl (kips) 22.00 8.18 . . . . 18.00 0.47 10.00 90.00 8.65 Page 16 of 108 LATERAL FORCE DISTRIBUTION SEISMIC BASE SHEAR lmponancc faclor, I EQ Acc. @) 5% Damped Design Redundancy fac1or V1111 • VASO - VASI> - WIND BASE SHEAR IBC 2015 v,1111.4 0.413 • 8.7 kips Wind Base Shear 1.00 s,,, -__ .;.co._12~2~ pl •._ _ _..,,,0,. 0578 W 0.413 W 3.57 kips 0.5 kips ASCE7-I0 Table 11.5-1 ASCE7-10 EQ 11.4-3 ASCE7-I0 1234.2 Working Slress (ASD) Level Seismic Base Shear SEISMIC BASE SHEAR GOVERNS [J ~D~E~S~IG~N~B~A~S~EJS~ll~E~A~RL==========:::i■11■-•~ki~p~•=:::JJASD Level Seismic base shear Total I Fpx mm • 0.2•SDs•1•wpx (for flexible Diaphragm) 2 Fpx max -Q.4•SDs•1•wpx (for flexible Diaphragm) 3 25% increased for diaphram irregularity ASCE7-I0 12.10 I.I ASCE7-1012.10.1.1 ASCE7-I 0 12.3.3.4 Page 17 of 108 N) HSS6x6x½" COLUMN (N) 2x10@ 10 O.C. Paga 18 of 108 (N) 2x10@ 10 O.C. N) HSS6x COLUMN Page 19 of 108 II 0 ~ PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRTVE, SUlTE 201 SAN DIEGO, CA 92103 CANTILEVER COLUMN CALCULATIONS Page 21 of 108 CANTILEVER COLUMN DESIGN AT ADDITION Max Axial Load on Column Dead Load Live Load Lateral load = 4.31 kips = 2.93 kips = 2.32 kips Height of column = 9'-0" PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 (see analysis above) Design Cantilever Column for Maximum Force (single column on grid F-7 .5 and Grid 6) Lateral Load on each column = 2.32/1 Kip I Columns supporting Trellis = 2.32 kips From Enercalc output Axial load on column Allowable capacity of column = 7.240 kips = 75.111 kips Axial load < 15% of allowable load 7.240 kips < 11.27 kips Provide HSS 6 x 6 x 1/2" Steel Column (post) Refer to output below. OK (ASCE 7-10 sectionl2.2.5.2) Page 22 of 108 DRIFT CALCULATION FOR CANTILEVER COLUMN Response reduction factor, R Deflection Amplification factor, Cd s ds From Enercalc maximum Drift at Top, oxe h sx = 1.25 = 1.25 = 0.722 = 1.45 in = 9 ft PATTERSON ENGINEERING, JNC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 = 1.25 6x xcd < 0 I -X Table 12.2-1 ASCE7-IO Table 12.12-1 ASCE7-10 6xe xcd <0.02 h I -sx 6xe < 0.02 hsx -Cd 1.45 / (I Ox 12) S 0.02/1.25 0.012 S 0.016 _1_< 2. 110 -63 Design of post base connection Height of post Lateral Load on each column HSS 4" x 4"x l /2" Steel post Moment at the base, Mu OK = 9'-0" = 2.32 kips = 2.325x9 = 20.92 kips-ft Use 12xl2x3/4" plate post base with (4) 1 1/8" A307 Anchor bolts with minimum 12" embedment Page 23 of 108 PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN OTEGO, CA 92103 Design of Base Plate Column= Length of Column = Width of Column = Thickness of Column = 6" x 6" x1/2" HSS 6.0 in Maximum axial force = Maximum Moment = Strength of concrete = Crushing strength of concrete = Area of bearing plate required = Size of bearing plate required = L= B= 6.0 in 7240 Ibs 251040 lbs- in 2550 psi 0.020 sq.ft 1.68 in 12 in 12In The combined stress due to the vertical load & moment, M/P = 34.674 cr = [(P) /(b x I))± [(6M) /(bx t2)) Cfmax = O'min = 921 .94 psi -821.39 psi Stresses are less than Crushing Strength of Concrete .... OK Calculation for thickness = 367200 psf The thickness of the base plate is calculated by equating the moment of resistance of the base plate with the moment at the edge of the column. Let "t" be the thickness of the base plate. Stress @ the edge of the column Point of zero stress = Distance from zero stress to right face of column= Distance from zero stress to left face of column= Moment at the edge of column = 6.35 in 2.65 in 3.35 in 203.90 psi -229.04 psi 12286.72 in-lb Page 24 of 108 Equating this moment w/ moment of resistance of base plate, b X t2 / 6 X fb = M t = 0.56 in Hence provide 12" x 12" x 3/4" thk base plate(Minimum) Design Of Bolt For Steel Plate to Footing Connection Tension to be resisted= 31 .28 kips PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 Assuming 1.13in Anchor Bolt embedded 4in minimum into footing As per AISC Table I Bolt Type= Capacity of bolt = A-307 -A ,---,1..,,.9--,,.90-:--,,-:--. No. of Bolts required = 1.57 say 2 nos Hence provide 2 no's A-307 bolts on each side Page 25 of 108 Design of weld Use of¼" Fillet weld all around Design strength of weld Shear strength of weld metal, 0Rn/A PATTERSON ENGINEERING, TNC. 928 FORT STOCKTON DRIVE, surTE 201 SAN DIEGO, CA 92103 = 0.75 x 0.6 x FExx x 0.707 = 0.75 X 0.6 X 70000 X 0.707 = 22271 ksi Strength of base material in shear, 0Rn/A = 0.9 X 0.6 X 36000 = 19440 ksi Hence strength of weld metal governs. Factored Moment at the base, Mu Factored shear force, Vu Section modulus of weld, Sw Consider Z = S= 3 in3 (Conservative), Factored shear stress Factored bending stress Combined stress = 251040 lb-in = 1.6 X 2320 =3712 lbs = (bd + d2/3) X t = (36 + 62 /3) X 0.25 = 12 in3 = 3712 / (6 X 6 X 0.5) = 206.22 psi = 25 1040/(12) = 20920 psi = ✓ (206.222 +209202) = 20921.0 I psi < 22271 psi (Provide of¼" weld is adequate for shear connection of plate to column) Shear Capacity of each Anchor bolt, Shear Force Shear on each bolt T = 3 100 lbs = 2.325 kips = 2.325/4 kips =581 lbs < (Table 1-D AISC) 3100 lbs OK OK Use 12xl2x3/4" Aluminum plate with (4) I 1/8" Dia Anchor bolts with minimum 12" embedment Page 26 of 108 EQUIVALENT LATERAL FORCE PROCEDURE -BASE SHEAR (2015 lllC) i\SCEISEI 7-10 INPUT SEISMIC PARAMETERS Direction of Seismic Provided Excitation Site Class: D From A (hard) Jo E (soft) Areas ofBuilding where PROVIDED Regular Structure five N stories or less in height? ASCE 12.8.1.3 system is utilized h,,-10.00 ft Mean Height of the bldg S,• 1.083 g s, -0.417 g Type of System -Wood shear walls ASCE 1able 12.2-1 F, -1.000 Table 11.4-1 F, -1.383 Table 11.4-2 R• 1.25 ASCE table 12.2-1 T""""' ,~. 8.00 sec Actual T from comp. model R;sk Category: I or II ASCE table 1-1 Structure Type: All other structural systems (•)if not 1nil1blc mput 0 CODE VALUES SEISMIC PARAMETERS BASE SHEAR le• I ASCE table! 1.5-1 Seismic response coefficient: Ss used for C, -1.083 g ASCE 12.8.1.3 C, -Sos /(R/1) -0.578 Eq. 12.8-2 Sos -213 • F,Ss • 0.722 g ASCE Eq. 11.4-3 Sos used for c. • 0. 722 g ASCE 12.8.1 3 Cs need not exceed following· Su, -2/3 • F,.S1 -0.384 g ASCE Eq. 11.4-4 C, -s,,, /[(R/J)T] -1.953 Eq. 12.8-3 Sos > 0.50g D ASCE Table 11.6-1 So, > 0.20g D ASCE Table 11.6-2 Cs shall not be taken less than: c,-0.02 ASCE Table 12.8-2 c,-0.010 Eq. 12.8-5 x • 0.75 ASCE Table 12.8-2 T,•C,(h,,)'• 0.11 sec ASCE Eq. 12.8-7 For structures located where S1 ?! 0.6g, Cs shall not be taken less than· c. • 1.4 Table 12.8-1 Cs• 0.5S I /(R/1) -NIA Eq. 12.8-6 C,T,• 0.16 sec T• 0.16 sec T used for base shear calc. Seismic Weight Seismic design category • D ASCE 11.6 Cs-0 578 Seismic Resp. Coefficient v-Cs x \V -Base Shear Page 27 of 1 08 BUILDING WEIGHT DESIG CRITERIA Code Used Building Code LACi1y Rcquircmcnl SOILS REPORT ____ _ CODE MINIMUM BUILDI G GRAVITY LOADING SUMMARY Level Height Elevation ft .!_00_! 10.00 10.00 -- .. • Roof Dead Load Includes Cc1hng Dead Load BUILDING WALL LOADING SUMMARY Wall Weight T~ osf Ex1erior Interior Mis. Wall BUILDING WEIGHT ROOF Arca Type Arca I Arca 2 Arca 3 Arca4 Ext. Wall Int. Wall Mis. Wall 18.00 10.00 90.00 L (ft) TOTALROOFAREA/LOAD . . . . 4.00 . . Unit Wci2h1 osf Dead-I Live-I 5.00 10.00 -. . . . w Arca (ft) (ft"2) 200.00 . ·-. 1.00 1.00 1.00 200.00 Concrete F'c : Steel Fy Bearing Capacity : 2.500p51 50,000 psi STRL STEEL 60 000 ~ REINF BAR 1,500 ps~ Unit Wei2h1 osf Unit Wci2h1 osf Unit Weill.ht osf I Dcad-2 I Livc-2 Dcad-3 Live-3 Dcad-4 Live-4 . +---. . . . . . . . . . I . . . . I . -I . -. . I . I -. FLOOR DEPTH Level Floor Height ft ROOF 1.00 . 0.00 -0.00 . 0.00 0.00 Dead Weight Load /osf) (kips) 5.00 1.00 . . . 18.00 0.47 10.00 . 90.00 1.47 Page 28 of 108 LATERAL FORCE DISTRIBUTION SEISMIC BASE SHEAR Importance Factoc, I EQ Acc. (ii) 5% Damped Design Rcdwxlancy Factor v,. - VA.SD - VA.SD - WINO BASE SHEAR IBC 2015 Vu11 / I 4 0.413 • I 5 kips Wmd Base Shear SEISMIC BASE SHEAR GOVERNS I 00 Sus -0722 pl • I.JO 0578 w 0.41 3 w 061 kips 0 5 k,ps [I D!lliES~l~G~NLl!B~A~SfE]S]H~E~A~Rc===========1■m --ll(ips Tood I Fpx mm• O 2•SDs'l"wpx (foc Fle,uble Diaphragm) 2 Fpx max• O 4'SDs'l'wpx (for Flex,ble Diaphragm) 3 25% increased for diaphram irregularity ASCE7-J O Table 11.5-1 ASCE7-10 EQ 11.4-3 ASCE7-I O 12 3.4.2 Work mg Stress (ASD) Level Se,sm,c Base Shear ASCE7-10 12 10 I I ASCE7-JO 12 10 I.I ASCE7-IO 12 3 3 4 Page 29 of 108 PATTERSON ENGINEERING, JNC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 WIND ANALYSIS (OPEN LATTICE AREA} 2. Wind Loading Calculations for Open Lattice Area: Wind Loading Criteria: = 110 mph Basic Wind Speed Exposure Category Enclosure classification Building category Importance Factor = "B" (Exposure: ASCE 7-10, Section 26.7.3) = partially Enclosed Buildings = II = 1.0 b) Wind Pressure Calcul ations: Height of roof Exposure category Importance factor (1) Basic Wind speed (V) Roof Slope Wind directionality factor (Kd) Topographic factor (Kn) Velocity pressure exposure factor (Kz) = 10'-0" =B = 1.00 = 110 mph = oo = 0.85 (ASCE 7-10, Section 26.6) = 1.0 (ASCE 7-10, Section 26.8) = 0.47 for 10'-0" (ASCE 7-10, Table 30.3-1 ) Building is considered as open building Velocity pressure qh = 0.00256 KzKztKdV2 Eq. 30.3-1, ASCE 7-IO = 0.00256 X 0.47 X 1.0 x 0.85 X 1102 = 12.37 psf Building is considered as open building with Clear wind fl ow Refer to output below (Refer section 27.4.3, ASCE 7-10) Page 30 of 108 27.4.3, Design Wind Load on Open Structures with Monoslope 1 psf 5 psf CNL = 0.30 3.83 psf I r= oo> psf psf 2 CNL =-0.10 6 -1.28 psf Case B Clear Wind Flow 3 psf psf CNL = -1.20 7 -15.31 psf r=O~ Case A psf psf 4 CNL = -0.60 8 -7.65 psf Case B CaseB Obstructed Wind Flow ASCE 7-10 Figure 27.4-4 p = qhG CN q,= .00256 K, Kzt ~ V2 Roof Angle= 0 Mean Roof Height h = 10 FT Exposure coefficient K, = 0.57 Topography factor Kz1 = 1.00 Directionality factor ~ = 0.85 Building & Structure Risk Category= 11, standard Exp = B (27.4-3) (27 .3-1) T-27.3-1 T-26.8-1 T-26.6-1 IBC T-1604.5 CNw = 1.20 15.31 CNw= -1.10 -14.03 CNw = -0.50 -6.38 CNW= -1.10 -14.03 Wind Speed V = 110 MPH Fig. 26.5-1A, MRI= 700 yrs q,= Gust Effect factor G = 15.01 0.85 PSF 26.9 CN = Net pressure coefficient from T-27.4-1 p = 12.76 CN PSF psf \r= 180°1 psf psf \r= 180°1 psf 1. C NW and C NL denote net pressures (contributions from top and bottom surfaces) for windward and leeward half of roof surfaces, respectively. 2. Clear wind flow denotes relatively unobstructed wind flow with blockage less than or equal to 50%. Obstructed wind flow denotes objects below roof inhibiting wind flow (>50% blockage). 4. Plus and minus signs signify pressures acting towards and away from the top roof surface, respectively Page 31 of 108 WIND LOAD CALCULATION Base shear due to Wind loading(P) Where, A p Lateral Load (WTND) No of columns Lateral Load on each column Base shear due to Seismic loading Lateral Load (SEISMIC) No of columns Lateral Load on each column Hence, seismic base shear governs. =qh xA PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 = projected area normal to the wind = ( 16 x ( I 0/ 12) + 2 ( I 0/2x ( 4/ I 2)) = 17.0 = 17.00 sq. ft. = Qh X A =12.37x 17.0 = 211 lbs = 0.211 kips =4 nos = 211/4 = 53 lbs = 0.053 Kip = 0.61 = 0.61 kips =4 nos = 610/4 = 153 lbs = 0.153 Kip > 0.053 kip Page 32 of 108 \ \ \ I = Page 33 of 108 10 1 s.03 sf I I I Page 34 of 108 I • • ~ :i j Ji ~, ,_ _ 11 Ji , fl ,, ~ J ~l J -•! J: : .: ! . . i! , l i• ti r ,! i i ti ~- .a _ _ ! ~! ! ~- .! . . . _ g~ ~. >- - !l ~ 11 , l - 1 l JI ~ ' !H • ~ ~: -i; -! !I j u !~ i I[ ~ l} • l} • J "' ~ ) ! • j . :; I I ~ e r. r. t ~ Ra ~ii ~~ ; -~ • e ~~ slii ! ~. ; ~ • ! • • , b •• t ; I:! I i 1 I :; ~ r • ; .. •• H .. • ~ i: • i: f '1 f 5-. . 1. . ~ • ~ ~ II i , o I ~ PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRrYE, SUITE 201 SAN DIEGO, CA 92103 CANTILEVER COLUMN DESIGN AT OPEN LATTICE AREA design for max loading along grid-A-I Max Axial Load on Column Dead Load = 0.63 kips Live Load = 0.633 kips Lateral load = 0.43 kips (see analysis above) Height of column = 10'-0" Design Cantilever Column for Maximum Force (Double column on grid Band Grid 1.25 Lateral Load on each column = 0.43/2 Kip I Columns supporting Trellis = 0.215 kips From Enercalc output Axial load on column Allowable capacity of column Axial load 1.263 kips Provide HSS 4x4 xl/2" Steel post Refer to output below. = 1.26 kips = 18.56 kips < 15% of allowable load < 2.78 kips OK (ASCE 7-10 sectionl2.2.5.2) Page 36 of 108 DRIFT CALCULATION FOR CANTTLEVER COLUMN Response reduction factor, R Deflection Amplification factor, Cd Sets From Enercalc maximum Drift at Top, 6xe hsx = 1.25 = 1.25 = 0.722 = 0.545 in = 10 ft PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUrTE 20 I SAN OTEGO, CA 92103 = 1.25 6x xCd < 0 I -X Table 12.2-1 ASCE7-10 Table 12.12-1 ASCE7-I 0 oxe x Cd < 0.02 hsx I - 6xe < 0.02 hsx -Cd 0.55/ ( 1 Ox 12) S 0.02/1.25 0.0045 S 0.016 _1_< 2. 218 -63 Design of post base connection Height of post Lateral Load on each column 4" x 4" x 1/2" HSS Moment at the base, Mu OK = 10'-0" = 0.215 kips =0.215x10 = 2.15 kips-ft Use l2x12xl/2" plate post base with (4) 5/8" Anchor bolts with minimum 12" embedment Factored moment Factored Shear in bolt Lever arm Tmax Tension in each Stud, V T = 2.15xl.4 kips-ft = 3.0 I kips-ft =0.215xl.4 = 0.301 kips = 6.5"min. =3.0 1/0.541 = 5.564 kips = 5564/2 lbs = 2782 lbs Page 37 of 108 Design of Base Plate Column= Length of Column = Width of Column = Thickness of Column = Maximum axial force = Maximum Moment = Strength of concrete = 4" x 4" x1/2" HSS 4.0 in 4.0in 1263lbs 25800 lbs-in PATTERSON ENGINEERING, TNC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIE.GO, CA 92103 Crushing strength of concrete = Area of bearing plate required = Size of bearing plate required = 2550 psi 0.003 sq.ft 0.70 in = 367200 psf H L= B= 12 In 12in The combined stress due to the vertical load & moment, M/P = 20.428 er = [(P) /(bx I))± [(6M) /(bx t2)] Cl"max = Omin = 98.35 psi -80.81 psi Stresses are less than Crushing Strength of Concrete .... OK Calculation for thickness The thickness of the base plate is calculated by equating the moment of resistance of the base plate with the moment at the edge of the column. Let ·t• be the thickness of the base plate. Stress @ the edge of the column Point of zero stress = Distance from zero stress to right face of column= Distance from zero stress to left face of column= Moment at the edge of column = 6.59 in 1.41 in 2.59 in 11 .58 psi -17.42 psi 1666.29 in- lb Equating this moment w/ moment of resistance of base plate, Page 38 of 108 bx t2 / 6 x fb= M t= 0.21 in Hence provide 12" x 12" x 3/4" thk base plate(Minimum) Design Of Bolt For Steel Plate to Footing Connection Tension to be resisted= 3.19 kips PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN OTEGO, CA 92103 Assuming 1.13in Anchor Bolt embedded 4in minimum into footing A-307 Bolt Type= Capacity of bolt = -~~~ ..... No. of Bolts required = 0.16 Hence provide 2 nos A-307 bolts on each side As per AISC Table I -A say 2 nos Page 39 of 108 Design of weld Use of ¼" Fillet weld all around Design strength of weld Shear strength of weld metal, 0Rn/A PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 = 0.75 x 0.6 x FExx x 0.707 = 0.75 X 0.6 X 70000 X 0.707 = 22271 ksi Strength of base material in shear, 0Rn/A = 0.9 X 0.6 X 36000 = 19440 ksi Hence strength of weld metal governs. Factored Moment at the base, Mu Factored shear force, Vu Section modulus of weld, Sw Consider Z = S= 3 in3 (Conservative), Factored shear stress Factored bending stress Combined stress = 25800 lb-in = 1.6 X 430 = 688 lbs = (bd + d2/3) x t = ((6 +42/3) X 0.25 = 5.33 in3 =688 /(4x4x 1/2) = 86 psi = 25800/(5.33) = 4841 psi = ✓ (862 +48412) = 4841. 76 psi < 22274 psi OK (Provide of ¼" weld is adequate for shear connection of plate to column) Shear Capacity of each Anchor bolt, Shear Force Shear on each bolt T = 3100 lbs (Table I-D AISC) = 0.215 kips = 0.215/4 kips = 53 lbs< 3 100 lbs OK Use l2xl2xl/2" plate post base with (4) 5/8" Anchor bolts with minimum 12" embedment Page 40 of 108 EQUIVALENT LATERAL FORCE PROCEDURE -BASE SHEAR (2015 IIJCJ ASCE/Slll 7-10 INPUT SEISMIC PARAMETERS Direction of Seismic Provided Site Class D From A (hard) to E (soft) Excitation Areas ofBu,ldang where PROVIDED Regular Strudurc five N stones or less m height? ASCE 12 8 1.3 system 1s utilized h,,• 1800 n Mean Height of the bldg Ss• I 083 8 s,-0 411 8 Type of System • Wood shear wslls ASCE table 12 2-1 F,•1000 Table 11 4-1 F,•1383 Table 11 4-2 R • 6.5 ASCE table 12 2-1 T .. ,,/'• 8.00 sec Actual T rrom comp model Risk Category I or II ASCE table 1-1 Structure Type All other struc:tural systems CODE VALUES SEISMIC PARAMETERS BASE SHEAR lo• I ASCE table 11.5-1 Seismic response coefficient Ss used for C, • I 083 8 ASCE 12 8 I 3 C, • SD,.f(R/1) • 0 111 Eq 12 8-2 Sn,• 2/3 • F,Ss • 0.722 8 ASCE Eq 11 4-3 S1,. used for C, • 0. 722 8 ASCE 12813 Cs need not exceed following S,,1 •2/3 • F,S1 •0384 8 ASCE Eq 11 4-4 C, • S01 /{(R/l)T]•0242 Eq 12 8-3 s,,. >050g D ASCE Table 11 6-1 s,,, >0.20g D ASCE Table 11 6-2 Cs shall not be taken less than c,-002 ASCE Table 12 8-2 c,-0010 Eq 128-S X • 0.75 ASCE Table 12.8-2 T,•C,(h,,)'• 0.17 SC<: ASCE Eq 12 8-7 For struccurcs located where S1 2: 0 6g. Cs shall not be taken less than c.-14 Table 12 8-1 Cs •0SSI /(R/1)• N/A Eq 12 8-6 C,T, • 024 sec T • 024 sec T used for base shear calc Sc1sm1c Weight Se1sm1c design ca1egory • D ASCE 11 6 Cs• 0 Ill Se1sm1c Resp Coefficient v-Cs •W • Base Shear Page 41 of 108 BUILDING WEIGHT DESIGN CRITERIA Code Used Building Code LACity Requiremenl : SOILS REP .. O_R_T ______________ ---~~~--.. CODE MINIMUM BUILDING GRAVITY LOADING SUMMARY Level Heigh! Elcva1ion ft ,_R_OOF 10.00 10.00 . . . .. • Roof Dead Load Includes Ce1hng Dead Load BUILDING WALL LOADING SUMMARY Wall Weigh1 T~ osf Exterior Interior Mis. Wall BUILDING WEIGHT ROOF Arca Type Area I Area 2 Areal Area4 Ext. Wall Int. Wall Mis. Wall 18.00 10.00 90.00 L (ft) 24.00 . . TOTALROOFAREA /LOAD Unil Weil!.111 osf Dead-I Live-I 22.00 20.00 . . . . . . . w Arca (ft) (fl'2) 78.00 . 1.00 -1.00 I 00 78.00 Concrele F'c S1eel Fy Bearing Capacity : 1,500 psf Unil Wei1thl osf Unil Wei2h1 osf Unil Weillht osf Dead-2 Livc-2 Dead-3 Live-3 Dcad-4 Live-4 . . . . . . . . . . . . . . . . . . . FLOOR DEPTH Level Floor Hei1thl ft ROOF 1.00 . 0.00 . 0.00 . 0.00 . 0.00 Dead Weigh! Load /osO (kips) 22.00 1.72 . . . . . 18.00 2.81 10.00 - 90.00 . 4.52 Page 42 of 108 LATERAL FORCE DISTRIBUTION SEISMIC BASE SHEAR Importance Fac1or, I EQ Ace @l 5% Damped Design Redundancy Factor v,. - VASO - VA.so - WIND BASE SHEAR IBC2015 v.,,11 4 0.079 • 4 S kips Wmd Base Shear I 00 S1,s -0 722 pl • I.JO 0 111 w 0079 w 0.36 kips 0.5 kips -M kips SEISMIC BASE SHEAR GOVERNS [( ~D!EiS~IG~N~B~A~S!EJS[!H~E~A~RL==========311a Tou,I I Fpx mm• 0.2'SDs'l'wpx (for Fle><ible Diaphragm) 2 Fpx max• 0 4'SDs'l'wpx (for Flexible Diaphragm) 3 25% increased for diaphram im:gular1ty ASCE7-10Table 11 5-1 ASCE7-I 0 EQ 11.4-3 ASCE7-10 12 3.4 2 Working Stress (ASD) Level Seismic Base Shear ASCE7-I0 12 10 I I ASCE7-I0 12 10 I I ASCE7-1012 3 3 4 Page 43 of 108 N) HSS6x6~" COLUMN (N) 2x10@ 10 O.C. Paga 4-4 ol 106 (N) 2xl0@ 10 O.C. ✓;/~~// /. / /.. , r " Pogo 45 of 108 I ;;: il ~ , 0 • ~ r ,. . i ~ ~ ~ ; 0. , • i 1 ! ! • C l f 5 ll 1 i i ! Ji • C ~ i 5 ~ . • ' ; ~ ~ ~ i ; " • ~ g ~ , f. ~ s ~ e 1' i ' u • l; ; h ... . r J • ~= -! - ~J ~, p - I I ! 1 u ~ if . J f. ! j ' ![ p :· J • : ~ . I 1 I . ... l} • s I i f "' ~ \ = i; ii l : ; ~ i f i A~ f !} • ! ~ . I• .. H • f 1 ! • : 1 I ~ I I ! ' ! l I . l h. J J :; E- , If ~ . $ ; PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 20 I SAN DIEGO, CA 92103 DIAPHRAGM AND DRAG CALCULATIONS Page 47 of 108 ROOF PATlT.JSO!< lNOt~u:alNG STN:HGTHOCSIGH AU.CW.'Allt.£ SHCAll l<W> t0 7 M0Dn-1Dt) 6n,,.-470 .JU: M',f t'Olt.~F.Jt IRRF..Otl1_..,RITY ~ .. Rl:F-NTRANl t'ORNl~R IRREOULARJTY A!,O Lc,·d De,,j!n KOOF Srl,mk-fM •lmH [-\V Dir. Linc Scunuc fon::c: F (~ 1-h fl(O) 225 2B 22 S I.en thl. 0) II 16 I(, s "fnlO•F.Jl 132 132 132 Shew t,m.:,e V Obi)• "In 0 1091 1091 l.>i1rt ,<ntn•VJIJ 0 48 48 TOlal~w,•(pl()•,ldl+, ,...._ 48 5lr 1lnK1ural I Pt'"'ood(Hbtotbci)•I IDd [d~Naihat6" o.c.(putablt,UC SDPWS:ZOIS) o, Roof'1hta1hla1b 1/2" COX OSB •Ith IOd nlUh •' 6". Pu NDS Tablit.£,2C C:apc1t\ • AIORD fORC[ CALCULATIONS D,.ap \ ffllll•V/U 0 48 Momt.,11 M (l~fl)~l.:/8 0 4500 Ten/Cornn chord t,on:,c (ltK) • M.IB • ¥11.:/SJ) 0 200 AncaofT,-nltte:1A(1n:) 16S 16S Ac1ual ~rcss n-u 00 12 I Allowablc:iln:!H1M S75 S7S 48 4500 200 165 12 I 515 •• 21S Alkw.1Nc cap1e1t) • S75 1-li.6 t honl It adequalt: for 1'.hord fortt '177 22S 0 II 0 132 0 0 0 0 0 48 0 0 0 0 0 0 16S 16S 00 00 m sis 12 ROOF Mkmk fer alont N~ Dir. Lmc ~ICfOl'Ctf 1.-11nU(O) 16S 16S 16S Lena1h t m.l 0 22 5 22.l \I. fnm• Fill 97 97 97 Shear h,ra: V (lh,,i) • "t.n 0 1091 1091 D,.ap , <otO •V/H 0 66 66 Total !lhcar vo,U)• ,·i.. + v .-(,6 Ml" tlructural 1 Ply"ood (unblocked) .. , IOd Edie N•llt at 6" o.c.(pe.rt.t>k4.l C SOPWS 201~) o, Root1hutMaib 11:Z" CDX OSB ,ddi IOd ■alh _., ... Per NOS Table-U C. 66 Ctp1e1t\ • 215 Qt08D fORCE CALCUl:ec\DONS l)l1n ,•mn •V/ll 0 1,6 66 Momeni M (lb-n)la\\l}/8 0 6137 6117 Tcn./Comp coord torcc (lbs)• M,1l • \\(_:IIJO 0 372 372 Ari:a of !',,... nJ111."1< Alm:) 165 16S 165 AJ:11.111/llrelSM& 00 22 5 22 S Allo\\able~l'ltQ m 51S 575 Allo\\aNc c,paa1) • 57S :z~z~, C'hord b ~Hft" for tltord fortt ,u 16S 0 0 0 'fl 0 0 0 0 0 66 0 0 0 0 0 0 16S 165 00 00 S75 m 23 () 0 0 0 0 0 0 0 0 16S 00 S7S 0 II 0 0 0 0 0 0 0 16S 00 575 0 (I 0 0 0 0 0 0 0 0 0 OK 0 0 0 0 0 0 16S 16S 00 00 S7S m OK I 0 0 0 0 0 0 0 0 0 0 0 OK 0 0 0 0 0 0 16S 16S 00 00 m S75 OK Page 48 of 108 PATTERSON ENG INEERI NG, INC. 928 FORT STOCKTON DRIVE, SUITE 20 I SAN DIEGO, CA 92103 VERTICAL CALCULATIONS Page 49 of 108 0- r - E) l - ~ 'I .J i . ! 1! (N)►CS ~O ' I • ~ • ! ~ ,; EL O a, -( IO J : 6 ~ Pa g e 50 of 10 8 Roof Framing Members: RJ-J £1 11111 l l U}; .,,#-.,-----------~)( 12'-6" From Roof: ( D) ( 5 psf ) . ( 7 plf ) = Lr = 10 psf x 1.33 ft Tnb. = 14 plf Joist Size: 2x6 DF#2 @ 10" O.C. See analysis on next page. PATTERSON ENGINEERING, INC.. 928 FORT STOCKTON DRIVE, SUITE 20 I SAN DIEGO, CA 92103 Page 51 of 108 !wood Beam Description : RJ-1 (Trellis) CODE REFERENCES PATTERS I ENGrNEERING 828 FORT STOCKTON OAAIE SUTE201 ~--~~03 PHOtE: ll58-60>0937 FAX_ 858«15-1414 Calculations per NOS 201 5, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : Douglas Fir -Larch Wood Grade : No.2 Beam Bracing : Completely Unbraced T Fb -Tension Fb-Compr Fc -Pr11 Fe -Perp Fv Ft 0(0.00415) lr(0.0083) T 2x6 Span = 12.50 ft 900.0 psi 900.0psi 1,350.0 psi 625.0psi 180.0psi 575.0psi E : Modulus of Elasticity Ebend-xx 1,600.0ksi Eminbend -xx 580.0ksi Density 32.210pcf Repetitive Member Stress Increase Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load : D = 0.0050, Lr= 0.010 ksf, Tributary Width= 0.830 ft DESl(;N SUMMARY Design OK Maximum Bending Stress Ratio = 0.30& 1 Maximum Shear Stress Ratio = 0.067 : 1 Section used for this span 2x6 Section used for this span 2x6 fb : Actual = 443.04psi fv : Actual = 15.06 psi FB : Allowable = 1,448.54 psi Fv : Allowable = 225.00 psi Load Combination +D+Lr+H Load Combination +O+Lr+H Location of maximum on span = 6.250ft Location of maximum on span = 12.044 ft Span # where maximum occurs Span# 1 Span # where maximum occurs Span# 1 Maximum Deflection Max Downward Transient Deflection 0.138 in Ratio= 1088 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.237 in Ratio= 631 Max Upward Total Deflection 0.000 in Ratio= 0 <240 Overall Maximum Deflections Load Combination Span Max.·-· Defl Location in Span Load Combination Max. • +• Deft Location in Span ..O+lr+H 1 0.2374 6.296 0.0000 0.000 Vertical Reactions Support notation: Far left is #1 Values in KIPS Load Combination Support 1 Support2 Overall MAXimum 0.089 0.089 Overall MINimum 0.022 0.022 ..O+H 0.037 0.037 -t{).{_ +H 0.037 0.037 ..O.tr+H 0.089 0.089 ..O+S+H 0.037 0.037 ..0-+-0. 750Lr-+-0. 750L +H 0.076 0.076 ..0-+-0.750L-+-0.750S+H 0.037 0.037 Page 52 of 108 I J,11111 r 11111 /I l '6" RD= 0.44 Kips RLr= 0.51 Kips From Roof: 13'0" Roof L ., RD= 0.44 Kips RLr= 0.51 Kips (D) ( 5 psf) • (32 plf) W1 = Lr = l0 psf x 6.25 ft Tnb. = 63 plf Beam Size: Use of HSS 10 x 4 x ¼" Steel beam. See analysis on next page. RB-2 Pl Pl J WI i ,1£1 Ll 11111 ,.V l'-6" ~ 10'-0" f l'-6"V RD= 0.63 Kips RLr= 0.63 Kips From Roof: Roof RD= 0.63 Kips RLr= 0.63 Kips (D) (5 psf) • (3plf) W1 = Lr = l0 psf x 0.67 ft Tnb. = 7 plf Load from RB-1: ( Left ) (D) (0.44 kips) =R RB -1 = Lr = 0.51 kips Beam Size:: Use ofHSS 10 x 4 x ¼" Steel beam. See analysis on next page. PATTERSON ENGINEERING, TNC. 928 FORT STOCKTON DRIVE, SUfTE 201 SAN OTEGO, CA 92103 Page 53 of 108 [ Steel Beam IMMtiWl•I3•Ill:Itt:f Description : RB-1 CODE REFERENCES Calculations per AISC 360-10, IBC 2015, ASCE 7-10 Load Combination Set : IBC 2015 Material Properties Analysis Method : Allowable Strength Design Beam Bracing : Beam bracing is defined as a set spacing over all spans Bending Axis : Major Axis Bending Load Combination :II Unbraced Lengths -.'"'------------~ First Brace starts at 0.8330 ft from Left-Most support Regular spacing of lateral supports on length of beam = 0.8330 ft 0(9 032> bd9 0§3} Span • 1.50 ft HSS10x4x114 oco 932> bct9-Q63> ,, Span• 13.0 n HSS10x4xl/4 Fy : Steel Yield : E: Modulus : 50.0 ksi 29,000.0 ksi Span• 1.50 n HSS10x4x114 • A plied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load for Span Number 1 Uniform Load : D = 0.0320, Lr= 0.0630 k/ft, Tributary Width = 1.0 ft Load for Span Number 2 Uniform Load : D = 0.0320, Lr= 0.0630 k/ft, Tributary Width = 1.0 ft Load for Span Number 3 Uniform Load : D = 0.0320, Lr= 0.0630 k/ft, Tributary Width= 1.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio = 0.061 : 1 Section used for this span HSS1 0x4x1/4 Ma : Applied 2.418 k-ft Mn / Omega : Allowable 47.405 k-ft Load Combination •+{H_r-+H, LL Comb Run (•L•) Location of maximum on span 6.418 ft Span # where maximum occurs Span # 2 Maximum Deflection Maximum Shear Stress Ratio = Section used for this span Va : Applied Vn/Omega : Allowable Load Combination Location of maximum on span Span # where maximum occurs Max Downward Transient Deflection 0.019 in Ratio= 8,180 Max Upward Transient Deflection -0.007 in Ratio= 5,217 Max Downward Total Deflection 0.034 in Ratio= 4525 Max Upward Total Deflection -0.012 in Ratio= 2914 Maximum Forces & Stresses for Load Combinations Design OK 0.010 : 1 HSS10x4x1/4 0.7685 k 77.861 k +Cl-+lr-+H, LL Comb Run (LL•) 1.500 ft Span# 1 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax-Ma -Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega +0-++l Dsgn. L = 0.82 ft 1 0.000 0.001 -0.02 0.02 79.17 47.41 1.00 1.00 0.04 130.03 77.86 Dsgn. L = 0.68 ft 1 0.001 0.005 -0.00 -0.06 0.06 79.17 47.41 1.00 1.00 0.35 130.03 77.86 Dsgn. L = 0.16 ft 2 0.001 0.005 -0.00 -0.06 0.06 79.17 47.41 1.00 1.00 0.35 130.03 77.86 Dsgn. L = 0.82 ft 2 0.006 0.004 0.26 -0.00 0.26 79.17 47.41 1.90 1.00 0.34 130.03 77.86 Dsgn. L = 0.82 ft 2 0.010 0.004 0.49 0.26 0.49 79.17 47.41 1.28 1.00 0.30 130.03 77.86 Dsgn. L = 0.82 ft 2 0.014 0.003 0.68 0.49 0.68 79.17 47.41 1.15 1.00 0.26 130.03 77.86 Dsgn. L = 0.82ft 2 0.018 0.003 0.84 0.68 0.84 79.17 47.41 1.09 1.00 0.21 130.03 77.86 Dsgn. L = 0.82 ft 2 0.020 0.002 0.95 0.84 0.95 79.17 47.41 1.06 1.00 0.17 130.03 77.86 Dsgn. L = 0.82 ft 2 0.022 0.002 1.03 0.95 1.03 79.17 47.41 1.04 1.00 0.12 130.03 77.86 Dsgn. L = 0.82 ft 2 0.023 0.001 1.08 1.03 1.08 79.17 47.41 1.02 1.00 0.08 130.03 77.86 Dsgn. L = 0.82 ft 2 0.023 0.000 1.09 1.08 1.09 79.17 47.41 1.00 1.00 0.03 130.03 77.86 Dsgn. L = 0.82 ft 2 0.023 0.001 1.09 1.06 1.09 79.17 47.41 1.01 1.00 0.06 130.03 77.86 Dsgn. L = 0.82 ft 2 0.022 0.001 1.06 0.99 1.06 79.17 47.41 1.02 1.00 Ffj,10 5413i·~9s 77.86 Dsgn. L = 0.82ft 2 0.021 0.002 0.99 0.89 0.99 79.17 47.41 1.03 1.00 ~~ 1~. 77.86 Dsgn. L = 0.82 ft 2 0.019 0.002 0.89 0.75 0.89 79.17 47.41 1.05 1.00 0.19 130.03 77.86 Description : RB-2 CODE REFERENCES Calculations per AISC 360-10, IBC 2015, ASCE 7-10 Load Combination Set : IBC 2015 Material Properties Analysis Method : Allowable Strength Design Beam Bracing : Beam is Fully Braced against lateral-torsional buckling Bending Axis : Major Axis Bending Load Combination :II D(O ... ) Lr1l S1) Span• 1.50 ft HSS10x,b:11◄ 0!0.0031 Lrj0.007) "' Span• 10.0 ft HSS10x-4x1/4 Fy : Steel Yield : E: Modulus : 50.0 ksi 29,000.0 ksi D(0.26) Lr1l.S1) Span• 1.50 ft HSS10x,x1/4 Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load for Span Number 1 Uniform Load : D = 0.0030, Lr = 0.0070 k/ft, Tributary Width = 1.0 ft Point Load : D = 0.440, Lr= 0.510 k@0.0 ft, (From RB-1) Load for Span Number 2 Uniform Load : D = 0.0030, Lr= 0.0070 k/ft, Tributary Width= 1.0 ft Load for Span Number 3 Uniform Load : D = 0.0030, Lr= 0.0070 k/ft, Tributary Width= 1.0 ft Point Load : D = 0.260, Lr = 0.510 k@ 1.50 ft, (From RB-1) DESIGN SUMMARY Maximum Bending Stress Ratio = 0.031 : 1 Section used for this span HSS10x4x1/4 Ma : Applied 1.461 k-ft Mn / Omega : Allowable 47 .405 k-ft Load Combination -+D+lr+H, LL Comb Run (L .. ) Location of maximum on span 1.500ft Span # where maximum occurs Span # 1 Maximum Deflection Maximum Shear Stress Ratio = Section used for this span Va : Applied Vn/Omega : Allowable Load Combination Location of maximum on span Span # where maximum occurs Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.005 in Ratio= -0.008 in Ratio= 0.008 in Ratio = -0.011 in Ratio = 7,073 15,184 4606 11021 Maximum Forces & Stresses for Load Combinations Design OK 0.013 : 1 HSS10x4x1/4 0.9986 k 77.861 k -+D+lr+H, LL Comb Run (L **) 1.500 ft Span# 1 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax -Ma -Max Mnx Mm</Omega Cb Rm Va Max Vnx Vnx/Omega ..O+H Osgn. L = 1.50 fl 1 0.015 0.006 -0.69 0.69 79.17 47.41 1.00 1.00 0.48 130.03 77.86 Osgn. L = 10.00 ft 2 0.015 0.004 -0.00 -0.69 0.69 79.17 47.41 1.00 1.00 0.30 130.03 77.86 Dsgn. L = 1.50 fl 3 0.009 0.004 -0.42 0.42 79.17 47.41 1.00 1.00 0.30 130.03 77.86 ..O+L +H, LL Comb Run (*'L) Osgn. L = 1.50 fl 1 0.015 0.006 -0.69 0.69 79.17 47.41 1.00 1.00 0.48 130.03 77.86 Osgn. L = 10.00 fl 2 0.015 0.004 -0.00 -0.69 0.69 79.17 47.41 1.00 1.00 0.30 130.03 77.86 Dsgn. L = 1.50 fl 3 0.009 0.004 -0.42 0.42 79.17 47.41 1.00 1.00 0.30 130.03 77.86 ..O+L +H, LL Comb Run (*L ') Osgn. L = 1.50 fl 1 0.015 0.006 -0.69 0.69 79.17 47.41 1.00 1.00 0.48 130.03 77.86 Dsgn. L = 10.00 fl 2 0.015 0.004 -0.00 -0.69 0.69 79.17 47.41 1.00 1.00 0.30 130.03 77.86 Osgn. L = 1.50 fl 3 0.009 0.004 -0.42 0.42 79.17 47.41 1.00 1.00 0.30 130.03 77.86 ..O+L+H, LL Comb Run (*LL) Osgn. L = 1.50 fl 1 0.015 0.006 -0.69 0.69 79.17 47.41 1.00 1.00 0.48 130.03 77.86 Dsgn. L = 10.00 ft 2 0.015 0.004 -0.00 -0.69 0.69 79.17 47.41 1.00 1.00 0.30 130.03 77.86 Osgn. L = 1.50 ft 3 0.009 0.004 -0.42 0.42 79.17 47.41 1.00 1.00 1'13!9 55100.HB 77.86 ..O+L+H, LL Comb Run (L j ADDITION MEMMBER Wl £1 I L 1 L l l l lll I, ,., 11'~0" From Roof: (D) (22psf) • (30plf) = Lr = 20 psf x 1.33 ft Tnb. = 27 plf Joist Size: 2x10 DF#2 @ 16" O.C. See analysis on next page. PATTERSON ENGJNEERING, fNC. 928 FORT STOCKTON DRJVE, SUITE 20 I SAN DIEGO, CA 92103 Page 56 of 108 Wood Beam PATTERS ..., ENGINEERING 921 fORT STOCKTON ORJ\IE SU!l:201 ~°S!°c CA ?!!03 PHOIE:~7 FAX: 858-eM-1◄1◄ Description : RJ-2 ( Addition) CODE REFERENCES Calculations per NOS 2015, IBC 2015, CBC 20 16, ASCE 7-10 Load Combination Set : ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Fb. Tension Load Combination ASCE 7-10 Fb -Compr Fe -Pr11 Wood Species : Douglas Fir -Larch Fe · Perp Wood Grade : No.2 Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 0(0.02920) Lr(0.0268) ' 2x10 Span• 5.50 ft 900.0 psi 900.0 psi 1,350.0 psi 625.0 psi 180.0 psi 575.0 psi ___J' E : Modulus of Elasticity Ebend-xx 1,600.0 ksi Eminbend -xx 580. 0 ksi Density 32.210pcf I Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load: D = 0.0220, Lr= 0.020 ksf, Tributary Width = 1.330 ft DESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb : Actual = FB : Allowable = Load Combination Location of maximum on span = Span# where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections Load Combination -+0-+lr-+H Vertical Reactions Load Combination Overall MAXimum Overall MINimum -+0-+f-i -+0-+l-+f-i -+0-+lr-+H -+O+S-+H -+0-+-0. 750Lr-+-0.750L-+f-i -+0-+-0. 750L-+-0.750S-+H Span 1 Support 1 0.192 0.063 0.105 0.105 0.192 0.105 0.170 0.105 0.141: 1 Maximum Shear Stress Ratio 2x10 Section used for this span 174.69psi fv : Actual 1,237.50psi Fv : Allowable -+0-+l r +H Load Combination 3.250ft Location of maximum on span Span# 1 Span # where maximum occurs 0.007 in Ratio = 11489 0.000 in Ratio= 0 <360 0.015 in Ratio= 5183 0.000 in Ratio= 0 <240 Max.·-• Defl 0.0150 Location in Span 3.274 Load Combination Support_2 _ 0.192 0.063 0.105 0.105 0.192 0.105 0.170 0.105 Support notation : Far left is #1 = = = = Max."+" Defl 0.0000 Values in KIPS Design OK 0.071 : 1 2x10 15.88 psi 225.00 psi -+0-+lr-+H 5.741 ft Span# 1 Location in Span 0.000 Page 57 of 108 RB-3 Pl I m £1 I l L 111 l 1 L,! A'--7r 0'-6" RD= 2.76 Kips RLr= 1.88 Kips From Roof: Roof RD= 1.23 Kips RLr= 0.94 Kips ( D) (22 psf) . (121 plf) Wi = Lr = 20 psf x S.5 ftTnb.= 110 plf Load from RB-6: Pi =R ( Left ) = (D ) = (1.62 ki_ps) RB -6 Lr 1.00 kips PATTERSON ENGINEERING, LNC. 928 FORT STOCKTON DRIVE, SUITE 20 I SAN DCEGO, CA 92103 Beam Size: Use of HSS 10 x 4 x ¼" Steel beam is adequate. However use HSS 10 x 6 x ¼" Steel beam See analysis on next page. Wl £lll1llllll1 I, ,. RD= 2.05 Kips RLr= 1.71 Kips From Roof: 15'6" Roof I, ,, RD= 2.05 Kips RLr= 1.71 Kips ( D) (22 psf) . (242 plf) W1 = Lr = 20 psf x 11.0 ft Tnb. = 220 plf Beam Size: Use ofHSS 10 x 4 x ¼" Steel beam. See analysis on next page. Page 58 of 108 [ Steel Beam IM1P35WlldtlH:Jfl:f Description : RB-3 CODE REFERENCES Calculations per AISC 360-10, IBC 2015, ASCE 7-10 Load Combination Set: IBC 2015 Material Properties Analysis Method : Allowable Strength Design Beam Bracing : Beam bracing is defined as a set spacing over all spans Bending Axis : Major Axis Bending Load Combination :II Unbraced Lengths First Brace starts at 1.330 ft from Left-Most support Regular spacing of lateral supports on length of beam = 1.330 ft 0(1.62) Lr1) Fy : Steel Yield : E: Modulus : 11 50.0 ksi 29,000.0 ksi Span= 16.50 ft HSS10x4x1/4 Applied Loads Beam self weight calculated and added to loading Uniform Load : D = 0.1212, Lr= 0.110 k/ft, Tributary Width= 1.0 ft Point Load: D = 1.620, Lr = 1.0 k@0.50 ft, (From RB-6) DESIGN SUMMARY Service loads entered. Load Factors will be applied for calculations. Design OK Maximum Bending Stress Ratio :: 0.196 : 1 Maximum Shear Stress Ratio = 0.059 : 1 Section used for this span HSS10x4x1/4 Section used for this span HSS10x4x1/4 Ma : Applied 9.297 k-ft Va : Applied 4.633 k Mn / Omega : Allowable 47.405 k-ft Vn/Omega : Allowable 77.861 k Load Combination +04.r-++i Load Combination +04.r-++i Location of maximum on span 7.920ft Location of maximum on span 0.000 ft Span # where maximum occurs Span# 1 Span# where maximum occurs Span# 1 Maximum Deflection Max Downward Transient Deflection 0.092 in Ratio= 2,146 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.215 in Ratio= 922 Max Upward Total Deflection 0.000 in Ratio= 0 <240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summar;:__of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax-Ma-Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega ..0-+H Dsgn. L = 1.32 ft 0.046 0.035 2.18 2.18 79.17 47.41 1.37 1.00 2.76 130.03 77.86 Dsgn. L = 1.32 ft 0.070 0.012 3.31 2.18 3.31 79.17 47.41 1.15 1.00 0.95 130.03 77.86 Dsgn. L = 1.32 ft 0.088 0.010 4.18 3.31 4.18 79.17 47.41 1.09 1.00 0.76 130.03 77.86 Dsgn. L = 1.32 fl 0.101 0.007 4.80 4.18 4.80 79.17 47.41 1.05 1.00 0.57 130.03 77.86 Dsgn. L = 1.32 ft 0.109 0.005 5.18 4.80 5.18 79.17 47.41 1.03 1.00 0.38 130.03 77.86 Dsgn. L = 1.32 fl 0.112 0.002 5.30 5.18 5.30 79.17 47.41 1.01 1.00 0.19 130.03 77.86 Dsgn. L = 1.32 fl 0.112 0.002 5.30 5.17 5.30 79.17 47.41 1.01 1.00 0.19 130.03 77.86 Dsgn. L = 1.32 ft 0.109 0.005 5.17 4.80 5.17 79.17 47.41 1.03 1.00 0.38 130.03 77.86 Dsgn. L = 1.40 ft 0.101 0.007 4.80 4.12 4.80 79.17 47.41 1.05 1.00 0.58 130.03 77.86 Dsgn. L = 1.32 ft 0.087 0.010 4.12 3.23 4.12 79.17 47.41 1.09 1.00 0.77 130.03 77.86 Dsgn. L = 1.32 ft 0.068 0.012 3.23 2.08 3.23 79.17 47.41 1.16 1.00 0.96 130.03 77.86 Dsgn. L = 1.32 fl 0.044 0.015 2.08 0.69 2.08 79.17 47.41 1.35 1.00 1.15 130.03 77.86 Dsgn. L = 0.58ft 0.015 0.016 0.69 0.69 79.17 47.41 1.51 1.00 1.23 130.03 77.86 ..O+L-+H Dsgn. L = 1.32ft 0.046 0.035 2.18 2.18 79.17 47.41 1.37 1.00 2.76 130.03 77.86 Dsgn. L = 1.32 ft 0.070 0.012 3.31 2.18 3.31 79.17 47.41 1.15 1.00 0.95 130.03 77.86 Dsgn. L = 1.32 fl 0.088 0.010 4.18 3.31 4.18 79.17 47.41 1.09 1.00 0.76 130.03 77.86 Dsgn. L = 1.32 fl 0.101 0.007 4.80 4.18 4.80 79.17 47.41 1.05 1.00 ~59100.HB 77.86 Dsgn. L = 1.32 ft 0.109 0.005 5.18 4.80 5.18 79.17 47.41 1.03 1.00 0.38 130.03 77.86 ! Description : RB-4 CODE REFERENCES Calculations per AISC 360-10, IBC 2015, ASCE 7-10 Load Combination Set : IBC 2015 Material Pro erties Analysis Method : Allowable Strength Design Beam Bracing : Beam bracing is defined as a set spacing over all spans Bending Axis : Major Axis Bending Load Combination :II Unbraced Lengths First Brace starts at 0.8330 ft from Left-Most support Regular spacing of lateral supports on length of beam = 0.8330 ft Fy : Steel Yield : E: Modulus : 50.0 ksi 29,000.0 ksi HSS10x4x1/4 Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load : D = 0.2420, Lr= 0.220 kif!, Tributary Width= 1.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.307 : 1 Maximum Shear Stress Ratio = 0.048 : 1 Section used for this span HSS10x4x1/4 Section used for this span HSS10x4x1/4 Ma : Applied 14.547 k-ft Va : Applied 3.754 k Mn / Omega : Allowable 47.405 k-ft Vn/Omega : Allowable 77.861 k Load Combination -+0-+l r -+ti Load Combination -+0-+lr-+f-i Location of maximum on span 7.750ft Location of maximum on span 0.000 ft Span # where maximum occurs Span# 1 Span# where maximum occurs Span# 1 Maximum Deflection Max Downward Transient Deflection 0.133 in Ratio= 1,399 Max Upward Transient Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.293 in Ratio= 635 Max Upward Total Deflection 0.000 in Ratio= 0 <240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values • Segment Length Span# M V Mmax+ Mmax -Ma -Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega -+D+H Dsgn. L = 0.78 fl 0.032 0.026 1.51 1.51 79.17 47.41 1.71 1.00 2.05 130.03 77.86 Dsgn. L = 0.85 fl 0.063 0.024 2.98 1.51 2.98 79.17 47.41 1.27 1.00 1.84 130.03 77.86 Dsgn. L = 0.85fl 0.090 0.021 4.27 2.98 4.27 79.17 47.41 1.15 1.00 1.62 130.03 77.86 Dsgn. L = 0.78fl 0.111 0.018 5.27 4.27 5.27 79.17 47.41 1.09 1.00 1.39 130.03 77.86 Dsgn. L = 0.85 fl 0.130 0.015 6.19 5.27 6.19 79.17 47.41 1.07 1.00 1.19 130.03 77.86 Dsgn. L = 0.85fl 0.146 0.012 6.91 6.19 6.91 79.17 47.41 1.05 1.00 0.96 130.03 77.86 Dsgn. L = 0.85 fl 0.157 0.009 7.44 6.91 7.44 79.17 47.41 1.03 1.00 0.74 130.03 77.86 Dsgn. L = 0.77 fl 0.164 0.007 7.76 7.44 7.76 79.17 47.41 1.02 1.00 0.51 130.03 77.86 Dsgn. L = 0.85 fl 0.167 0.004 7.93 7.76 7.93 79.17 47.41 1.01 1.00 0.31 130.03 77.86 Dsgn. L = 0.85 fl 0.167 0.002 7.94 7.90 7.94 79.17 47.41 1.00 1.00 0.14 130.03 77.86 Dsgn. L = 0.85fl 0.167 0.005 7.90 7.68 7.90 79.17 47.41 1.01 1.00 0.37 130.03 77.86 Dsgn. L = 0.78 fl 0.162 0.007 7.68 7.32 7.68 79.17 47.41 1.02 1.00 0.57 130.03 77.86 Dsgn. L = 0.85 fl 0.154 0.010 7.32 6.73 7.32 79.17 47.41 1.03 1.00 0.80 130.03 77.86 Dsgn. L = 0.85 fl 0.142 0.013 6.73 5.95 6.73 79.17 47.41 1.04 1.00 1.02 130.03 77.86 Dsgn. L = 0.85fl 0.126 0.016 5.95 4.99 5.95 79.17 47.41 1.06 1.00 1.25 130.03 77.86 Dsgn. L = 0.77 fl 0.105 0.019 4.99 3.94 4.99 79.17 47.41 1.08 1.00 1.45 130.03 77.86 Dsgn. L = 0.85 fl 0.083 0.022 3.94 2.60 3.94 79.17 47.41 1.14 1.00 1.68 130.03 77.86 Dsgn. L = 0.85 fl 0.055 0.024 2.60 1.07 2.60 79.17 47.41 1.26 1.00 1.91 130.03 77.86 Dsgn. L = 0.54 fl 0.023 0.026 1.07 1.07 79.17 47.41 1.51 1.00 ~601~Ull8 77.86 -+D+L+H l I, /I 6'--0" RD= 4.31 Kips RLr= 2.93 Kips From Roof: Roof 10'0" RD= -0.39 Kips RLr= -0.72 Kips ( D) (22 psf) • (121 plf) W1 = Lr = 20 psf x 5.5 ftTnb.= 110 plf Load from RB-6: Pi =R ( Right ) = (D ) = (1.62 ki_ps) RB -6 Lr 1.00 kips I, ;i PATTERSON ENG INEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 20 I SAN DIEGO, CA 92103 Beam Size: Use ofHSS 10 x 4 x ¼" Steel beam is adequate. However use HSS 10 x 6 x ¼" Steel beam See analysis on next page. RB-6 Pl WI ! gr 11111111i I, .,. 10'-6" RD= 1.62 Kips RLr= 1.00 Kips From Roof: 21'0" t. ,, Roof RD= 1.62 Kips RLr= 1.00 Kips ( D) (22 psf) • (15 plf) W1 = Lr = 20 psf x 0.67 ft Tnb. = 14 plf Load from RB-4: Pi =R ( Left ) = (D ) = (2.05 kips) RB -4 Lr 1.71 kips Beam Size: Use ofHSS 10 x 4 x ½" Steel beam. See analysis on next page. Page 61 of 108 Description : RB-5 CODE REFERENCES Calculations per AISC 360-10, IBC 2015, ASCE 7-10 Load Combination Set : IBC 2015 Material Proj>erti_es ___________ _ Analysis Method : Allowable Strength Design Beam Bracing : Beam bracing is defined as a set spacing over all spans Bending Axis : Major Axis Bending Load Combination :II Unbraced Len ths First Brace starts at 0.B330 ft from Left-Most support Regular spacing of lateral supports on length of beam = 0.B330 ft 0(1.62) Lr1) ,. ,. OC0.121) Lr(0.11) ,. Span• 6.0 ft HSS10x4x1/4 ,. ,. "' Fy : Steel Yield : E: Modulus : 0(0.121) Lrl0 11) ,. Span• 10.0ft HSS10x4x114 50.0 ksi 29,000.0 ksi • A lied Loads Service loads entered. Load Factors will be applied for calculations. ---------Be am self weight calculated and added to loading Load for Span Number 1 Uniform Load : D = 0.1210, Lr= 0.110 klft, Tributary Width = 1.0 ft Point Load : D = 1.620, Lr= 1.0 k@ 0.750 ft, (From RB-6 Right) Load for Span Number 2 Uniform Load : D = 0.1210, Lr= 0.110 klft, Tributary Width = 1.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio = 0.386 : 1 Section used for this span HSS10x4x1/4 Ma : Applied 18.316 k-ft Mn/ Omega : Allowable 4 7 .405 k-ft Load Combination -+D-+lr-+H, LL Comb Run (LL) Location of maximum on span 6.000ft Span # where maximum occurs Span # 1 Maximum Deflection Maximum Shear Stress Ratio = Section used for this span Va : Applied Vn/Omega : Allowable Load Combination Location of maximum on span Span # where maximum occurs Max Downward Transient Deflection 0.177 in Ratio= 815 Max Upward Transient Deflection -0.038 in Ratio= 3,179 Max Downward Total Deflection 0.420 in Ratio= 343 Max Upward Total Deflection -0.081 in Ratio= 1481 Maximum Forces & Stresses for Load Combinations Design OK 0.053 : 1 HSS10x4x1/4 4 .140 k 77.861 k -+D-+lr-+H, LL Comb Run (L *) 6.000 ft Span# 1 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax-Ma -Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega -+0-+H Osgn. L = 0.83 ft 1 0.004 0.022 -0.18 0.18 79.17 47.41 1.00 1.00 1.74 130.03 77.86 Dsgn. L = 0.83ft 1 0.035 0.024 -0.00 -1.67 1.67 79.17 47.41 1.00 1.00 1.86 130.03 77.86 Dsgn. L = 0.83ft 1 0.069 0.025 -0.00 -3.27 3.27 79.17 47.41 1.00 1.00 1.98 130.03 77.86 Dsgn. L = 0.83 ft 1 0.105 0.027 -0.00 -4.96 4.96 79.17 47.41 1.00 1.00 2.10 130.03 77.86 Dsgn. L = 0.83ft 1 0.142 0.028 -0.00 -6.75 6.75 79.17 47.41 1.00 1.00 2.22 130.03 77.86 Dsgn. L = 0.83ft 1 0.182 0.030 -0.00 -8.64 8.64 79.17 47.41 1.00 1.00 2.33 130.03 77.86 Dsgn. L = 0.83ft 1 0.224 0.032 -0.00 -10.63 10.63 79.17 47.41 1.00 1.00 2.45 130.03 77.86 Dsgn. L = 0.18 ft 1 0.234 0.032 -0.00 -11.09 11.09 79.17 47.41 1.00 1.00 2.48 130.03 77.86 Dsgn. L = 0.62 ft 2 0.234 0.023 -0.00 -11.09 11.09 79.17 47.41 1.04 1.00 1.83 130.03 77.86 Dsgn. L = 0.85 ft 2 0.211 0.022 -0.00 -9.99 9.99 79.17 47.41 1.06 1.00 1.74 130.03 77.86 Dsgn. L = 0.85 ft 2 0.181 0.021 -0.00 -8.57 8.57 79.17 47.41 1.06 1.00 1.62 130.03 77.86 Osgn. L = 0.85 ft 2 0.153 0.019 -0.00 -7.26 7.26 79.17 47.41 1.07 1.00 1.49 130.03 77.86 Dsgn. L = 0.77 ft 2 0.127 0.018 -0.00 -6.04 6.04 79.17 47.41 1.07 1.00 1.37 130.03 77.86 Dsgn. L = 0.85 ft 2 0.106 0.016 -0.00 -5.03 5.03 79.17 47.41 1.08 1.00 P~i 6~ij:~9B 77.86 Dsgn. L = 0.85ft 2 0.085 0.015 -0.00 -4.01 4.01 79.17 47.41 1.09 1.00 77.86 Dsgn. L = 0.85ft 2 0.065 0.013 -0.00 -3.10 3.10 79.17 47.41 1.11 1.00 1.02 130.03 77.86 t Steel Beam l!Ali83Wl•I3•ItI;Jtt:f Description : RB-6 CODE REFERENCES Calculations per AISC 360-10, IBC 2015, ASCE 7-10 Load Combination Set : IBC 2015 Material Propert_ie_s _____ _ • Analysis Method : Allowable Strength Design Beam Bracing : Beam is Fully Braced against lateral-torsional buckling Fy : Steel Yield : E: Modulus : 50.0 ksi 29,000.0 ksi Bending Axis : Major Axis Bending Load Combination :II Span • 21.0 ft HSS10x4x1/2 ,. ,. Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load : D = O 0150, Lr= 0.0140 k/ft, Tributary Width= 1.0 ft, (From Roof) Point Load : D = 2.050, Lr = 1.705 k@ 10.50 ft, (From RB-4) DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.278: 1 Maximum Shear Stress Ratio = 0.018 : 1 Section used for this span HSS10x4x1/2 Section used for this span HSS10x4x1/2 Ma : Applied 23.623 k-ft Va : Applied 2.622 k Mn / Omega : Allowable 85.080 k-ft Vn/Omega : Allowable 143.760 k Load Combination -+D+Lr-+H Load Combination -+D+Lr-+H Location of maximum on span 10.500ft Location of maximum on span 0.000 ft Span # where maximum occurs Span# 1 Span # where maximum occurs Span# 1 Maximum Deflection Max Downward Transient Deflection 0.170 in Ratio = 1,485 Max Upward Transient Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.421 in Ratio= 599 Max Upward Total Deflection 0.000 in Ratio= 0 <240 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax -Ma -Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega -+0-+H Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 1.62 240.08 143.76 -+O+L-+H Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 1.62 240.08 143.76 -+O+Lr-+H Dsgn. L = 21.00 ft 0.278 0.018 23.62 23.62 142.08 85.08 1.00 1.00 2.62 240.08 143.76 -+O+S-+H Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 1.62 240.08 143.76 -+0+0. 750Lr+O. 750L-+H Dsgn. L = 21.00 ft 0.249 0.017 21.19 21.19 142.08 85.08 1.00 1.00 2.37 240.08 143.76 -+0+0.750L+0.750S+H Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 1.62 240.08 143.76 -+0+0.60W-+H Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 1.62 240.08 143.76 -+0+0.70E-+H Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 1.62 240.08 143.76 -+O+O. 750Lr+O. 750L +0.450W-+H Dsgn. L = 21.00 ft 0.249 0.017 21.19 21.19 142.08 85.08 1.00 1.00 2.37 240.08 143.76 -+0+0.750L+0.750S+0.450W-+H Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 1.62 240.08 143.76 -+0+0.750L +O. 750S+0.5250E-+H Dsgn. L = 21.00 ft 0.163 0.011 13.90 13.90 142.08 85.08 1.00 1.00 Ph~s~~-~&a 143.76 +0.60D+0.60W+0.60H BATHROOM ADDITION RJ-3 £11111 l l lLJi I, /I v 6'-6" 71 From Roof: ( D) (22 psf) . (29 plf) = Lr = 20 psf x 1.33 ft Trib. = 27 plf Joist Size: 2xl0 DF#2@ 16" O.C. See analysis on next page. HDR-1 I, /I .3'-0" RD= 0.05 Kips RLr= 0.04 Kips From Roof and Wall: Roof v 71 RD= 0.05 Kips RLr=0.04 Kips ( D) (22 psf) . (30 plf) W1 = Lr = 20 psf x 1.33 ft Trib. = 27 plf Beam Size: Use 4x8 DF#2. See analysis on next page. PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 20 I SAN DlEGO, CA 92103 Page 64 of 108 Wood Beam PATIERSO ENGfNEERING 828 FORT STOCKTON llRJ1/E SUTE201 ~-~SC.~03 PHOtE:~7 FAX: 858-605-1414 Description : RJ-3 ( BAthroom addition) CODE REFERENCES Calculations per NOS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Fb-Tension Load Combination ASC E 7 -1 O Fb -Com pr Fe -Prll Wood Species : Douglas Fir -Larch Fe -Perp Wood Grade : No.2 Fv Ft Beam Bracing : Beam is Fully Braced against lateral-torsion buckling ' ' 0(0.0292&) Lt(0.0266) ' 2x10 Span •8.SO ft 900.0psi 900.0psi 1,350.0 psi 625.0 psi 180.0 psi 575.0 psi ' E : Modulus of Elasticity Ebend-xx 1,600.0 ksi Eminbend -xx 580. 0 ksi Density 32.210pcf ' A lied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load : D = 0.0220, Lr= 0.020 ksf, Tributary Width= 1.330 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.141: 1 Maximum Shear Stress Ratio = 0.071 : 1 Section used for this span 2x10 Section used for this span 2x10 fb : Actual = 174.69psi fv : Actual = 15.88 psi FB : Allowable = 1,237.50psi Fv : Allowable = 225.00 psi Load Combination +D+lr..+i Load Combination +D+lr..+i Location of maximum on span = 3.250ft Location of maximum on span = 5.741 ft Span # where maximum occurs = Span# 1 Span # where maximum occurs = Span# 1 Maximum Deflection Max Downward Transient Deflection 0.007 in Ratio= 11489 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.015 in Ratio= 5183 Max Upward Total Deflection 0.000 in Ratio = 0 <240 Overall Maximum Deflections Load Combination Span Max.•-• Defl Location in Span Load Combination Max. • +' Deft Location in Span .O+lr-tH 1 0.0150 3.274 0.0000 0.000 Vertical Reactions Support notation: Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.192 -0.192 Overall MINimum 0.063 0.063 .0-tH 0.105 0.105 .O+l-tH 0.105 0.105 .O+lr-tH 0.192 0.192 .O+S-tH 0.105 0.105 .0-+-0. 750Lr-+-O. 750L -++I 0.170 0.170 .0-+-0.750L-+-0.750S-++! 0.105 0.105 Page 65 of 108 ll2!I FORT STOCKTON ORJVE SU'TE201 ~W,C.A~03 PHONE: 858-G05--0937 FAX. 858-GQS.1414 -I W_o_o_d_B_e_a_m______ --------------------------~. Description : HOR_ 1 CODE REFERENCES Calculations per NOS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : ASCE 7-10 Material Properties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Wood Species : Douglas Fir -Larch Wood Grade : No. 1 Beam Bracing : Completely Unbraced ... Fb -Tension Fb-Compr Fe -Prll Fe -Perp Fv Ft 0(0 03) Lr(0.027) ... ... ... 1,000.0 psi 1,000.0 psi 1,500.0 psi 625.0 psi 180.0psi 675.0psi •' -\ . ... . .. • • •, I . . T Span• 3.0 ft E : Modulus of Elasticity Ebend-xx 1, 700.0ksi Eminbend -xx 620.0ksi Density 32.210pcf A lied Loads Service loads entered. Load Factors will be applied for calculations. ---·---Beam self weight calculated and added to loads Uniform Load : D = 0.030, Lr = 0.0270 , Tributary Width = 1.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.029 1 Maximum Shear Stress Ratio = 0.022 : 1 Section used for this span 4x6 Section used for this span 4x6 fb : Actual = 46.90psi fv : Actual = 5.02 psi FB : Allowable = 1,622.04psi Fv : Allowable = 225.00 psi Load Combination +0-+i.r-+H Load Combination +0-+i.r-+H Location of maximum on span = 1.500ft Location of maximum on span = 0.000ft Span # where maximum occurs = Span# 1 Span # where maximum occurs Span# 1 Maximum Deflection Max Downward Transient Deflection 0.000 in Ratio= 0<360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.001 in Ratio= 26425 Max Upward Total Deflection 0.000 in Ratio= 0 <240 Overall Maximum Deflections Load Combination Span Max.•.• Defl Location in Span Load Combination Max.'+' Defl Location in Span ..O+lr-+H 1 0.0014 1.511 0.0000 0.000 Vertical Reactions Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support2 Overall MAXimum 0.092 0.092 Overall MINimum 0.031 0.031 ..O+H 0.051 0.051 ..O+l-tH 0.051 0.051 ..O+lr-tH 0.092 0.092 ..O+S-+tt 0.051 0.051 ..0..0. 750Lr..0.750L-+H 0.082 0.082 ..0..0.750L ..0.750S-tH 0.051 0.051 Page 66 of 108 HDR-2 (Above Window) Wl gr 11111111 I, .11 RD= 0.13 Kips RLr= 0.11 Kips 3'-6" From Roof (Bathroom): Roof RD= 0.13 Kips RLr=0.11 Kips (D) (22 psf) • (66 plf) = Lr = 20 psf x 3.0 ft Tnb. = 60 plf Beam Size: Use 4x8 DF#2. See analysis on next page. PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92 103 Page 67 of 108 [wood Beam ID/BM•Irtll•l:11:f Description : HDR_2 (Above Window) CODE REFERENCES Calculations per NDS 2012, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : IBC 2015 Material Properties Analysis Method : Allowable Stress Design Load Combination : Wood Species : Douglas Fir -Larch Wood Grade : No.2 Beam Bracing : Completely Unbraced Fb-Tension Fb -Compr Fe -Prll Fe -Perp Fv Ft 0(0.066) Lr(0.06) 750.0 psi 750.0 psi 700.0 psi 625.0 psi 170.0 psi 475.0 psi ~~·•:" 'c"·;:-_ ·.·lf"'r • •• • : :---'f<1• ,, • ., .. ,_. •. ··~-: ~·~=-, ,, ~. · ... •. .. 1 }·~~ t~!'lj-1: ,1,. ~ t ~: ''I t '1, ~;;\/~~ =~•-• ,-~• • i" loa,l,: ,,.), Span • 3 50 ft E: Modulus of Elasticity Ebend-xx 1,300.0 ksi Eminbend-xx 470.0ksi Density 32.210pcf A plied Loads ___ Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load : D = 0.0220, Lr= 0.020 ksf, Tributary Width = 3.0 ft, (From Roof (Bath)) DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.065: 1 Maximum Shear Stress Ratio 0.042 : 1 Section used for this span 4x8 Section used for this span 4x8 fb : Actual = 78.91 psi fv : Actual = 8.95 psi FB : Allowable = 1,215.31 psi Fv: Allowable = 212.50 psi Load Combination -+O +l r +f-i Load Combination -+O+lr+f-i Location of maximum on span = 1.750ft Location of maximum on span = 2.900ft Span # where maximum occurs Span# 1 Span # where maximum occurs Span# 1 Maximum Deflection Max Downward Transient Deflection 0.001 in Ratio= 29782 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.003 in Ratio= 1357D Max Upward Total Deflection 0.000 in Ratio = 0 <240 Overall Maximum Deflections Load Combination Span Max.•-• Defl Location in Span Load Combination Max. '+' Defl Location in Span ..O+lr+H 1 0.0031 1.763 0.0000 0.000 Vertical Reactions Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support2 Overall MAXimum 0.230 0.230 Overall MINimum 0.075 0.075 ..0-+H 0.125 0.125 ..O+l+H 0.125 0.125 ..O+lr+H 0.230 0.230 ..O+S-+l-1 0.125 0.125 ..O+O. 750Lr+O. 750L +H 0.204 0.204 ..0+0.750L +0.750S+H 0.125 0.125 Page 68 of 108 • PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 20 I SAN DIEGO, CA 92103 STUDWALL AND POST CALCULATIONS Page 69 of 108 POST DESIGN: DEMAND (KIPS) WAD/FLR I EQWAD Post Ht. Post I 10 0.09 I PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 CAPACITY CKIPS) CAPACITY POST WAD SIZE FROM Roof 4.1 (2)2x4 HDR-1 Page 70 of 108 DESIGN LOAD ON EXTERIOR 2x4 WALL Roof Level Design for max. loading Height of wa 11,H Effective length of wall Gravity Roof and ceiling load DL = 22.0 psf LL = 20.0 psf Addi= 18 psf Total Live Load = Total Live Load@ 16 in o.c= Total Dead Load= Total Dead Load @ 16 in o.c= Ps_roof = Ps_roof = @ 16 in o.c= Provide 2x4 @ 16" o.c. stud wall at roof level X 3.25 X 3.25 X 0.0 PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 20 I SAN OIEGO, CA 92103 = 10.00 ft = 9.625 ft ft = 72 plf ft = 65 plf ft = 0 plf = 65 plf = 86.667 lbs = 72 plf = 96 lbs = -18.2 psf = -24.267 plf Page 71 of 108 PATTERS , ENGINEERING 8211 FORl STOCKTON DRIVE Sl.nE201 ~!_ll;.f?_.e~ro PHONE: 851Mi05-0937 FAX: 85IMIOS-141◄ [wood Column -=!I! I Description : 2x4 Stud wall --fEEeRefu~~e~nc~e~s-~------- Calculations per 2015 NOS, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : IBC 2015 General Information Analysis Method : Allowable Stress Design End Fixities Top & Bottom Pinned Overall Column Height 10.0 ft ( Used for non-slender calculat1ons ) Wood Species Douglas Fir -Larch Wood Grade No.2 Fb -Tension 7 50 psi Fb-Compr 750 psi Fe -Prll 700 psi Fe -Perp 625 psi Fv Ft Density 170 psi 475 psi 32.21 pcf Wood Section Name Wood Grading/Manuf. Wood Member Type Exact Width Exact Depth Area Ix ly 2x4 Graded Lumber Sawn 1.50 in Allow Stress Modification Factors 3.50 in Cf or Cv for Bending 1.50 5.250 in'2 Cf or Cv for Compression 1.150 5.359 in'4 Cf or Cv for Tension 1.50 0.9844 in'4 Cm : WetUse Factor 1.0 Ct : Temperature Factor 1.0 Cfu : Flat Use Factor 1 . 0 E : Modulus of Elasticity ... x-x Bending 1300 470 y-y Bending 1300 Axial Kf : Built-op columns 1.0 NOS 15.3.2 No /n0/1-glb only) Basic Minimum 1300 ksi Use Cr : Repetitive ? 470 Applied Loads Column self weight included : 11.743 lbs• Dead Load Factor AXIAL LOADS ... Axial Load at 10.0 ft, D = 0.0960, Lr= 0.0870 k BENDING LOADS ... Lat. Uniform Load creating Mx-x, W = 0.0180 k/ft DESIGN SUMMARY Bending & Shear Check Results PASS Max. Axial-+Bending Stress Ratio = 0.31 78 : 1 Load Combination -+0-+-0.60W+H Governing NOS Forumla Comp+ Mxx, NOS Eq. 3.9-3 Location of max.above base 4. 966 fl At maximum location values are ... Applied Axial Applied Mx Applied My Fe : Allowable PASS Maximum Shear Stress Ratio= Load Combination Location of max.above base Applied Design Shear Allowable Shear Load Combination Results 0.1077k 0.1350 k-ft 0.0 k-fl 309.132 psi 0.03782 : 1 -+D-+-0.60W+H 10.0 ft 15.429 psi 272.0 psi Brace condition for deflection (buckling) along columns : X-X (width) axis : Fully braced against buckling along X-X Axis Y-Y (depth) axis : Lu for Y-Y Axis buckling : 10 ft, K = 1.0 Service loads entered. Load Factors will be applied for calculations. Maximum SERVICE Lateral Load Reactions .. Top along Y-Y 0.090 k Bottom along Y-Y 0.090 k Top along X-X O. 0 k Bottom along X-X O. 0 k Maximum SERVICE Load Lateral Oenections ... Along Y-Y 0.5876 in at 5.034 fl above base for load combination : W Only Along X-X 0.0 in at 0.0 ft above base for load combination : n/a Other Factors used to calculate allowable stresses ... ~ Compression Tuns.ion Cf or Cv : Size based factors 1.500 1.150 Co 0.900 1.000 1.250 1.150 1.250 1.150 1.600 1.600 1.600 Cp 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination -+O+H -+0-+l +H -+0-+lr+H -+D+S+H -+0-+-0.750Lr-+-O. 750L +H -+D-+-0.750L-+-0.750S+H -+0-+-0.60W+H -+0-+-0.70E+H -+0-+-0. 750Lr-+-0.750L-+-0.450W+H Stress Ratio Status Location Stress Ratio Status Location 0.07078 PASS 0.0 ft 0.0 PASS 10.0 ft 0.06965 PASS 0.0 ft 0.0 PASS 10.0 ft 0.1226 PASS 0.0ft 0.0 PASS 10.0 ft 0.06843 PASS 0.0 ft 0.0 PASS 10.0 ft 0.1089 PASS 0.0ft 0.0 PASS 10.0 ft 0.06843 PASS 0.0 ft 0.0 PASS 10.0 ft 0.3178 PASS 4.966 ft 0.03782 PASS 10.0 ft 0.06639 PASS 0.0 ft 0.0 PASS 10.0 ft 0.2563 PASS 4.966 ft 0.02836 PASS 0.0 ft Page 72 of 108 Description : 2x4 Stud wall PATTERSON ENGINEERING 028 FORT STOCKTON ORJ\/E &ne201 SAN ... ?eCA ~03 PHOIE; ll58-605-0937 FAX: 858,«l5.1414 Load Combination Results Load Combination +D-+O. 750L-+0. 750S-+0.450W..+i +D-+0.750L-+0.750S-+0.5250E..+i -+0.60D-+0.60W-+0.60H -+0.60D-+0.70E-+0.60H Maximum Reactions CD 1.600 1.600 1.600 1.600 Cp 0.240 0.240 0.240 0.240 Maximum Axial + Bending Stress Ratios Stress Ratio Status Location 0.2395 PASS 4.966ft 0.06639 PASS 0.0 ft 0.3069 PASS 4.966 ft 0.03983 PASS 0.0ft X-X Axis Reaction Y • Y Axis Reaction Load Combination @Base @Top @Base @Top +D-+H k k +D-+l-+H k k +D-+lr-+H k k +D+S-+H k k +D+O. 750Lr+0.750L +H k k +D+0.750L +0.750S-+H k k +D+0.60W-+H k 0.054 0.054 k +D+0.70E-+H k k +D+0.750Lr+O. 750L +0.450W-+H k 0.041 0.041k +D+O. 750L +0.750S+0.450W-+H k 0.041 0.041k +D+O. 750L +0.750S+0.5250E+H k k +0.60D+0.60W+0.60H k 0.054 0.054 k +0.60D+0.70E+0.60H k k DOnly k k Lr Only k k LOnly k k S Only k k WOnly k 0.090 0.090 k EOnly k k H Only k k Maximum Deflections for Load Combinations Load Combination Max. X-X Deflection Distance Max. Y-Y Deflection Distance +D-+H 0.0000 in 0.000 ft 0.000 in 0.000 ft +D-+l-+H 0.0000 in 0.000 ft 0.000 in 0.000 ft +D-+lr-+H 0.0000 in 0.000 ft 0.000 in 0.000 ft +D+S+H 0.0000 in 0.000 ft 0.000 in 0.000 ft +D+0.750Lr+0.750L +H 0.0000 in 0.000 ft 0.000 in 0.000 ft +D+0.750L+0.750S+H 0.0000 in 0.000 ft 0.000 in 0.000 ft +D+0.60W-+H 0.0000 in 0.000 ft 0.353 in 5.034 ft +D+0.70E-+H 0.0000 in 0.000 ft 0.000 in 0.000 ft +D+0.750Lr+0.750L +0.450W-+H 0.0000 in 0.000 ft 0.264 in 5.034 ft +D+O. 750L +0.750S+0.450W-+H 0.0000 in 0.000 ft 0.264 in 5.034 ft +D+0.750L+0.750S+0.5250E+H 0.0000 in 0.000 fl 0.000 in 0.000 ft +0.60D+0.60W+0.60H 0.0000 in 0.000 ft 0.353 in 5.034 ft +0.60D+0.70E+0.60H 0.0000 in 0.000 ft 0.000 in 0.000 ft DOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft Lr Only 0.0000 in 0.000 ft 0.000 in 0.000 ft LOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft SOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft WOnly 0.0000 in 0.000 ft 0.588 in 5.034 ft EOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft HOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft Maximum Shear Ratios Stress Ratio Status Location 0.02836 PASS 0.0 ft 0.0 PASS 10.0 ft 0.03782 PASS 10.0 ft 0.0 PASS 10.0 ft Note: Only non-zero reactions are listed. Axial Reaction @Base 0.108 k 0.108 k 0.195 k 0.108 k 0.173 k 0.108 k 0.108 k 0.108 k 0.173 k 0.108 k 0.108 k 0.065 k 0.065 k 0.108 k 0.087 k k k k k k Page 73 of 108 Wood Column Description : 2x4 Stud wall Sketches PAITE ENGINEERING 828 FORl S TOCK'TON DRIVE SUTE201 SAN-D1Ef2, CA ~03 PHON:· ~7 FAX· 858«15-1414 y X 1.50In = 0 Mqoads ci - ~ II E ·a, :x:: 002JIW f _ Loads are total entered value. Arrows do not reflect absolute direction. Page 74 of 108 Description : 4x4x1/2' HSS-19 open lattice Code References Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : IBC 2015 General Information Steel Section Name : Analysis Method : ----------~ HSS4x4x1/2 Allowable Strength Overall Column Height 10.0 ft Top & Bottom Fixity Top Free, Bottom Fixed Steel Stress Grade Fy: Steel Yield Brace condition for deflection (buckling) along columns : X-X (width) axis : E : Elastic Bending Modulus Load Combination : 42.0 ksi 19,000.0 ksi IBC 2015 Unbraced Length for X -X Axis buckling = 10 ft, K = 2.1 Y -Y (depth) axis : Unbraced Length !Of Y-Y Axis buckling = 10 ft, K = 2.1 A lied Loads Service loads entered. Load Factors will be applied for calculations. -------------Column self weight included : 214.983 lbs • Dead Load Factor AXIAL LOADS ... From RB-2: Axial Load at 10.0 ft, D = 0.630, LR= 0.6330 k BENDING LOADS ... Lat. Point Load at 10.0 ft creating Mx-x, E = 0.2150 k DESIGN SUMMARY Bending & Shear Check Results PASS Max. Axial-+Bending Stress Ratio = Load Combination Location of max.above base At maximum location values are ... Pa : Axial Pn I Omega : Alowable Ma-x : Applied Mn-x / Omega : Allowable Ma-y : Applied Mn-y / Omega : Allowable PASS Maximum Shear Stress Ratio = Load Combination Location of max.above base At maximum location values are ... Va: Applied Vn / Omega : Allowable Load Combination Results Load Combination -+0-+H -+0-+l-+H -+0-+lr-+H -+O+S-+H -+0+0.750Lr+O. 750L-+H -+0+0.750L +0.750S-+H -+O+O. 60W-+H -+0+0.70E-+H -+0+0.750Lr+0.750L+0.450W-+H -+0+0.750L +0.750S+0.450W-+H -+0+0.750L+0.750S+0.5250E-+H +0.60D+0.60W+0.60H +0.60D+0.70E+0.60H 0.1160 : 1 +D+0.70E+H 0.0 ft 0.8450 k 18.560 k -1.505 k-ft 16.138 k-ft 0.0 k-ft 16.138 k-ft 0.004117 : 1 +D+0.70E+H 0.0 ft 0.1505 k 36.557 k Maximum Axial + Bending stress Ratios Stress Ratio Status Location 0.046 PASS 0.00 ft 0.046 PASS 0.00 ft 0.080 PASS 0.00 ft 0.046 PASS 0.00 ft 0.071 PASS 0.00 ft 0.046 PASS 0.00 ft 0.046 PASS 0.00 ft 0.116 PASS 0.00 ft 0.071 PASS 0.00 ft 0.046 PASS 0.00 ft 0.093 PASS 0.00 ft 0.027 PASS 0.00 ft 0.107 PASS 0.00 ft Maximum SERVICE Load Reactions .. Top along X-X Bottom along X-X Top along Y-Y Bottom along Y -Y Maximum SERVICE Load Deflections ... Along Y-Y 0.5450 in at for load combination : E Only Along X-X 0.0 in at for load combination : Maximum Sbeac Ratios 0.0 k 0.0 k 0.0 k 0.2150 k 1 O. Oft above base 0.0ft above base Stress Ratio Status Location 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.004 PASS 0.00 ft 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.003 PASS 0.00 ft 0.000 PASS 0.00 ft 0.004 PASS 0.00 ft Page 75 of 108 ! Steel Column I. It : .. Description : 4x4x1/2" HSS-19 open lattice Maximum Reactions Note: Only non-zero reactions are listed. X-X Axis Reaction Y -Y Axis Reaction Axial Reaction Load Combination @Base @Top @Base @Top @Base +O..+-i k k 0.845 k +0-+l ..+-i k k 0.845 k +0-+lr..+-i k k 1.478 k +O+S..+-i k k 0.845 k +0-+-0. 750Lr-+0.750L ..+-i k k 1.320 k +0-+0.750L-+0.750S..+-i k k 0.845 k +0-+0.60W..+-i k k 0.845 k +0-+0.70E..+-i k -0.151 k 0.845 k +0-+-0. 750Lr-+0. 7 50L-+O. 450W..+-i k k 1.320 k +0-+-0. 750L-+0.750S-+0.450W..+-i k k 0.845 k +0-+-0. 750L-+0.750S-+0.5250E..+-i k -0.113 k 0.845 k -+0.60D-+0.60W-+0.60H k k 0.507 k -+0.60D-+O. 70E-+0.60H k -0.151 k 0.507 k D Only k k 0.845 k Lr Only k k 0.633 k LOnly k k k SOnly k k k WOnly k k k EOnly k -0.215 k k H Only k k k Maximum Deflections for Load Combinations Load Combination Max. X-X Deflection Distance Max. Y-Y Deflection Distance +O..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft +0-+l..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft +0-+lr..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft +O+S..+-l 0.0000 in 0.000 ft 0.000 in 0.000 ft +0-+-0. 750Lr-+0.750L ..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft +0-+-0. 750L-+0.750S..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft +0-+0.60W..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft +0-+0.70E..+-i 0.0000 in 0.000 ft 0.381 in 10.000 ft +0-+0.750Lr+0.750L+0.450W..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft +0-+-0. 750L-+0.750S+0.450W..+-i 0.0000 in 0.000 ft 0.000 in 0.000 ft +0-+-0. 750L-+0. 750S-+0.5250E..+-i 0.0000 in 0.000 ft 0.286 in 10.000 ft +0.60D-+0.60W+0.60H 0.0000 in 0.000 ft 0.000 in 0.000 ft +0.60D+0.70E+0.60H 0.0000 in 0.000 fl 0.381 in 10.000 ft D Only 0.0000 in 0.000 fl 0.000 in 0.000 ft Lr Only 0.0000 in 0.000 ft 0.000 in 0.000 ft LOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft SOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft WOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft EOnly 0.0000 in 0.000 ft 0.545 in 10.000 ft HOnly 0.0000 in 0.000 ft 0.000 in 0.000 ft Steel Section Proeerties : HSS4x4x1/2 Page 76 of 1 OB [ Steel Column l!Al■Wi'C•l3•I•l:Jff:f Description : 4x4x1/2' HSS-19 open lattice Steel Section Propertie~ Depth = Width Wall Thick Alea Weight C: i5 0 ..,. = = = HSS4x4x1/2 4.000 in I xx Sxx 4.000 in Rxx 0.500 in Z:,. 6.020 in•2 lyy 21.498 pit Syy R yy 0.000 in Load 1 4.00in X 11.90 in•4 5.97 in•3 1.410 in 7.700 in•3 11.900 in•4 5.970 in•3 1.410 in "' 0 0 II .E !2' ., :,: ' 21.000 in•4 C 11.200 in•3 1.l'D M-x Loads '"' Loads are total entered value Arrows do not reflect absolute drection Page 77 of 108 ! [ Steel Column IH/113'?1113•111:Jd:f Description : 6x6x112· HSS-2 patio Code References Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : IBC 2015 General lnf..,o_rm.a_t ... io_n _______ ~-~........:. Steel Section Name : Analysis Method : HSS6x6x1/2 Allowable Strength Overall Column Height 10.0 ft Top & Bottom Fixity Top Free, Bottom Fixed Steel Stress Grade Fy : Steel Yield , A500, Grade B, Fy = 46 ksi, Carbon 46.0 ksi Brace condition for deflection (buckling) along columns : X-X (width) axis: E : Elastic Bending Modulus Load Combination : 19,000.0 ksi IBC 2015 Unbraced Length for X-X Axis buckling = 10 ft. K = 2.1 Y-Y (depth) axis: Unbraced Length for Y-Y Axis buckfing = 10 ft. K = 2.1 A lied Loads Service loads entered. Load Factors will be applied for calculations. Column self weight included : 351.094 lbs• Dead Load Factor AXIAL LOADS ... Load From RB-5 (Left): Axial Load at 10.0 ft, D = 4.310, LR= 2.930 k BENDING LOADS ... Lat. Point Load at 10.0 ft creating Mx-x, E = 2.320 k DESIGN SUMMARY Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = Load Combination Location of max.above base At maximum location values are ... Pa: Axial Pn / Omega : Aftowable Ma-x : Applied Mn-x / Omega : Allowable Ma-y : Applied Mn-y I Omega : Allowable PASS Maximum Shear Stress Ratio= Load Combination Location of max.above base At maximum location values are ... Va : Applied Vn / Omega : Allowable Load Combination Results Load Combination -+{)+ti -+0-+l+ti -+0-+lr+ti -+O•S+ti -+0+0.750Lr+O. 750L +ti -+0+0.750L +0.750S+ti -+0+0.60W+ti -+0+0.70E+ti -+0+0.750Lr+0.750L+0.450W+ti -+0+0.750L+0.750S+0.450W+ti -+0+0.750L+0.750S+0.5250E+ti +0.60D+0.60W+0.60H +0.60D+0.70E+0.60H 0.3884 : 1 +D+0.70E+H 0.0 ft 4.661 k 75.111 k -16.240 k-ft 45.449 k-fl 0.0 k-ft 45.449 k-fl 0.02295 : 1 +D+0.70E+H 0.0 ft 1.624 k 70.779 k Maximum Axial • Bending Stress Ratios Stress Ratio Status Location 0.062 PASS 0.00 ft 0.062 PASS 0.00 ft 0.101 PASS 0.00 ft 0.062 PASS 0.00 ft 0.091 PASS 0.00 ft 0.062 PASS 0.00 ft 0.062 PASS 0.00 ft 0.388 PASS 0.00 ft 0.091 PASS 0.00 ft 0.062 PASS 0.00 ft 0.299 PASS 0.00 ft 0.037 PASS 0.00 ft 0.376 PASS 0.00 ft Maximum SERVICE Load Reactions .. Top along X-X Bottom along X-X Top along Y-Y Bottom along Y-Y Maximum SERVICE Load Deflections ... Along Y-Y 1.449 in at for load combination : E Only Along X-X 0.0 in at for load combination : Maximum Shear Ratios 0.0 k 0.0 k 0.0 k 2.320 k 10.0ft above base 0.0ft above base Stress Ratio Status Location 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.023 PASS 0.00 ft 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.017 PASS 0.00 ft 0.000 PASS 0.00 ft 0.023 PASS 0.00 ft Page 78 of 108 • I Steel Column l!AI/Pffl•I3•Itl:J1:f Description : 6x6x1/2" HSS-2 patio Maximum Reactions Load Combination -+0-+H -+0-+l-+H -+0-+lr-+H -+O+S-+H -+O+O. 750Lr+0.750L-+H -+0+0.750L +0.750S-+H -+0+0.60W-+H -+0+0.70E-+H -+0+0.750Lr+0.750L +0.450W-+H -+O+O. 750L +0.750S+0.450W-+H -+0+0.750L +0.750S+0.5250E-+H +0.60D+0.60W+0.60H +0.60D+0.70E+0.60H DOnly Lr Only L Only SOnly WOnly E Only H Only X-X Axis Reaction @Base @Top k k k k k k k k k k k k k k k k k k k k Maximum Deflections for Load Combinations Load Combination Max. X-X Deflection Distance -+0-+H 0.0000 in 0.000 -+0-+l-+H 0.0000 in 0.000 -+0-+lr-+H 0.0000 in 0.000 -+O+S-+H 0.0000 in 0.000 -+0+0.750Lr+0.750L-+H 0.0000 in 0.000 -+0+0.750L +0.750S-+H 0.0000 in 0.000 -+0+0.60W-+H 0.0000 in 0.000 -+0+0.70E-+H 0.0000 in 0.000 -+0+0.750Lr+0.750L+0.450W-+H 0.0000 in 0.000 -+0+0.750L+0.750S+0.450W-+H 0.0000 in 0.000 -+0+0. 750L +O. 750S+0.5250E-+H 0.0000 in 0.000 +0.60D+0.60W+0.60H 0.0000 in 0.000 +0.60D+0.70E+0.60H 0.0000 in 0.000 DOnly 0.0000 in 0.000 Lr Only 0.0000 in 0.000 LOnly 0.0000 in 0.000 SOnly 0.0000 in 0.000 WOnly 0.0000 in 0.000 E Only 0.0000 in 0.000 H Only 0.0000 in 0.000 Steel Section Pro erties : HSS6x6x1/2 Note: Only non-zero reactions are listed. Y -Y Axis Reaction Axial Reaction @ Base @ Top @Base k 4.661 k k 4.661 k k 7.591 k k 4.661 k k 6.859 k k 4.661 k k 4.661 k -1.624 k 4.661 k k 6.859 k k 4.661 k -1.218 k 4.661 k k 2.797 k -1.624 k 2. 797 k k 4.661 k k 2.930 k k k k k k k -2.320 k k k k Max. Y -Y Deflection Distance ft 0.000 in 0.000 ft ft 0.000 in 0.000 ft ft 0.000 in 0.000 ft ft 0.000 in 0.000 ft ft 0.000 in 0.000 ft ft 0.000 in 0.000 ft ft 0.000 in 0.000 ft ft 1.014 in 10.000 ft ft 0.000 in 0.000 ft ft 0.000 in 0.000 ft ft 0.761 in 10.000 ft ft 0.000 in 0.000 ft ft 1.014 in 10.000 ft ft 0.000 in 0.000 ft ft 0.000 in 0.000 ft ft 0.000 in 0.000 ft ft 0.000 in 0.000 ft ft 0.000 in 0.000 ft ft 1.449 in 10.000 ft ft 0.000 in 0.000 ft Page 79 of 108 [ Steel Column lltAl/113WStl3titl:Jd:f Description : 6x6x112· HSS-2 patio Width Wall Thick Area Weight C 8 <D HSS6x6x1/2 ~---6.-000 in lxx = = = 6.000 in 0.500 in 9.740 in•2 35.109 plf 0.000 in y 6.00in $)()( Rxx b. lyy Syy R yy • 48.30 in•4 J 81.100 in•4 = 16.10 in•3 = 2.230 in = 19.800 in•3 48.300 in•4 C 28.100 in•3 16.100 in•3 = 2.230 in ,,.. M-x Loads "' 0 X d II 1: .QI ., J: Loads are total entered value. Arrows do not reflect absolute dwect,on. Page 80 of 108 PATTERSON ENG INEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 20 I SAN DIEGO, CA 92103 FOUNDATION CALCULATIONS Page 81 of 108 DESIGN OF FOOTING Design of Exterior Wall Footing for bathroomAddition W = Roof load + wall load = 3.25 x 42 + l8x l0 = 3 16.5 plf Allowable soil bearing Width required = 1500 psf = 316.5 I 1500 = 0.22 ft PATTERSO ENGINEERING, fNC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 Provide minimum 12" wide x 15" Deep footing with 2#4 bars at top and bottom. Design of Isolated Footing (with moment @ open lattice Area) Load from beam RB-2 (Right) Height of post Latera l Load on each column Moment at the base, Mu Total load Allowable soil bearing Width required =10'-0" = 0.215 kips =0.21 5xl0 =2. 15 kips-ft =1260lbs = 1500 psf = ✓ I 260/1 500 = 1.0 ft Provide min. 42"x 42" xlS" concrete footing w/ (6) #4 rebar each way. See analysis on next page. Page 82 or 108 Description : Foundation Code References Calculations per ACI 318-11, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : IBC 2015 General Information Material Properties fc : Concrete 28 day strength fy : Rebar Yield Ee : Concrete Elastic Modulus Concrete Density q> Values Flexure Shear Analysis Settings Min Steel % Bending Reinf. Min Allow% Temp Reinf. Min. Overturning Safety Factor Min. Sliding Safety Factor Add Fig Wt for Soil Pressure Use fig wt for stability, moments & shears Add Pedestal Wt for Soil Pressure Use Pedestal wt for stability, mom & shear Dimensions Width parallel to X-X Axis = Length parallel to Z-Z Axis = Footing Thicknes = Pedestal dimensions ... px : parallel to X·X Axis : pz : parallel to z .z Axis = Height Rebar Centerline to Edge of Concrete .. at Bottom of fooling = Reinforcing Bars parallel to X-X Axis Number of Bars = Reinforcing Bar Size = Bars parallel to 2-2 Axis Number of Bars = Reinforcing Bar Siz1 = = = = = = = = = = = 3.50 ft 3.50 ft 15.0 in # # in in in 3.0 in 6.0 4 6.0 4 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a APP.lied Loads D P : Column Load = 0.630 OB : Overburden = M·XX = M-zz = V-x = v.z = 2.50 ksi 60.0 ksi 3,122.0 ksi 145.0 pct 0.90 0.750 0.00180 1.0 : 1 1.0 : 1 Yes Yes No No Lr 0.630 Soil Design Values Allowable Soil Bearing Increase Bearing By Fooling Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff. = Increases based on footing Depth Footing base depth befow soil surface = Allowable pressure increase per foot of deptt= when fooling base is below = Increases based on fooling plan dimension Allowable pressure increase per foot of dept = when maximum length or width is greater4 z ~c.---~~--+--'---i-----"-+--x (") L s w m a. <O (1) I~ E 2.150 0.2150 1.50 ksf Yes 250.0 pct 0.250 ft ksf ft ksf ft H k ksf k-ft k-ft k k Page 83 of 108 • General Footing '. ,,: .. Description : Foundation DESIGN SUMMARY Min. Ratio PASS 0.3105 PASS nla PASS 1.768 PASS 2.841 PASS nla PASS n/a PASS 0.02536 PASS 0.01374 PASS 0.01232 PASS 0.01232 PASS 0.01011 PASS 0.01011 PASS 0.01011 PASS 0.01011 PASS 0.01858 Detailed Results Soil Bearing Rotation Axis & Load Combination ... X-X, +D+H X-X, +D+L+H X-X, +D+Lr+H X-X, +D+S+H X-X, +D-+-0.750Lr-+-0.750L+H X-X, +D-+-0.750L-+-0.750S+H X-X, +D-+-0.60W+H X-X, +D-+-0.70E+H Item Soil Bearing Overturning -X-X Overturning -Z-Z Sliding -X-X Sliding -Z-Z Uplift Z Flexure (+X) Z Flexure (-X) X Flexure (+Z) X Flexure (-Z) 1-way Shear ( +X) 1-way Shear (-X) 1-way Shear ( +Z) 1-way Shear (-Z) 2-way Punching Gross Allowable 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 X-X, +D-+-0.750Lr-+-0.750L-+-0.450W+H 1.50 X-X, +D-+-0.750L-+-0.750S-+-0.450W+H 1.50 X-X, +D-+-0.750L-+-0.750S-+-0.5250E+H 1.50 X-X. -+-0.60D-+-0.60W-+-0.60H 1.50 X-X, -+-0.60D-+-0.70E-+-0.60H 1.50 Z-Z, +D+H 1.50 Z-Z, +D+L+H 1.50 Z-Z, +D+Lr+H 1.50 Z-Z, +D+S+H 1.50 Z-Z, +D-+-0.750Lr-+-0.750L+H 1.50 Z-Z, +D-+-0.750L-+-0.750S+H 1.50 Z-Z, +D-+-0.60W+H 1.50 Z-Z, +D-+-0.70E+H 1.50 Z-Z, +D-+-0.750Lr-+-0.750L-+-0.450W+H 1.50 Z-Z. +D-+-0.750L-+-0.750S-+-0.450W+H 1.50 Z-Z, +D-+-0.750L-+-0.750S-+-0.5250E+H 1.50 Z-Z, -+-0.60D-+-0.60W-+-0.60H 1.50 Z-Z. -+-0.60D-+-0.70E-+-0.60H 1.50 Overturning Stability Rotation Axis & Load Combination ... X-X, +D+H X-X, +D+L+H X-X, +D+Lr+H X-X, +D+S+H X-X, +D-+-0.750Lr-+-0.750L +H X-X, +D-+-0.750L-+-0.750S+H X-X. +D-+-0.60W+H X-X, +D-+-0.70E+H X-X, +D-+-0.750Lr-+-0.750L-+-0.450W+H X-X, +D-+-0.750L-+-0.750S-+-0.450W+H Applied 0.4657 ksf 0.0 k-ft 1.693 k-ft 0.1505 k 0.0 k 0.0 k 0.4538 k-ft 0.2458 k-ft 0.2205 k-ft 0.2205 k-ft 0.7583 psi 0.7583 psi 0.7583 psi 0.7583 psi 2.787 psi Xecc Zecc nla 0.0 nla 0.0 nla 0.0 nla 0.0 nla 0.0 n/a 0.0 n/a 0.0 nla 0.0 nla 0.0 n/a 0.0 nla 0.0 n/a 0.0 nla 0.0 0.0 nla 0.0 n/a 0.0 n/a 0.0 n/a 0.0 n/a 0.0 n/a 0.0 n/a 7.128 n/a 0.0 n/a 0.0 n/a 5.346 n/a 0.0 nla 11.880 nla Overturning Moment None None None None None None None None None None Design OK Capacity Governing Load Combination 1.50 ksf +D-+-0.70E+H about Z-Z axis 0.0 k-ft No Overturning 2.993 k-ft -+-0.60D-+-0.70E-+-0.60H 0.4275 k -+-0.60D-+-O. 70E-+-0.60H 0.0 k No Sliding 0.0 k No Uplift 17.892 k-ft -+-0.90D+E-+-0.90H 17.892 k-ft +1.20D-+-0.50L-+-0.70S+E+1.60H 17.892 k-ft +1.20D+1.60Lr-+-0.50L +1.60H 17.892 k-ft +1.20D+1.60Lr-+-0.50L +1.60H 75.0 psi +1.200+1.60Lr-+-0.50L+1.60H 75.0 psi +1.20D+1.60Lr-+-0.50L +1.60H 75.0 psi +1.20D+1.60Lr-+-0.50L+1.60H 75.0 psi + 1.20D+1.60Lr-+-0.50L +1.60H 150.0 psi +1.20D+1.60Lr-+-0.50L+1.60H Actual Soil Bearini Stress Actual / Allowable Bottom, -Z Top, +Z Le , -X Right, +X Ratio 0.2327 0.2327 n/a nla 0.155 0.2327 0.2327 n/a n/a 0.155 0.2841 0.2841 nla nla 0.189 0.2327 0.2327 nla n/a 0.155 0.2713 0.2713 n/a n/a 0.181 0.2327 0.2327 nla n/a 0.155 0.2327 0.2327 n/a n/a 0.155 0.2327 0.2327 nla n/a 0.155 0.2713 0.2713 nla n/a 0.181 0.2327 0.2327 n/a n/a 0.1 55 0.2327 0.2327 nla nla 0.155 0.1396 0.1396 nla nla 0.093 0.1396 0.1396 n/a n/a 0.093 nla nla 0.2327 0.2327 0.155 nla nla 0.2327 0.2327 0.155 n/a n/a 0.2841 0.2841 0.189 nla n/a 0.2327 0.2327 0.155 n/a n/a 0.2713 0.2713 0.181 nla nla 0.2327 0.2327 0.155 nla nla 0.2327 0.2327 0.155 n/a n/a 0.0 0.4657 0.311 nla nla 0.2713 0.2713 0.181 n/a n/a 0.2327 0.2327 0.155 nla nla 0.05794 0.4074 0.272 nla nla 0.1396 0.1396 0.093 n/a n/a 0.0 0.4231 0.282 Resisting Moment Stability Ratio Status 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK Page 84 of 108 Description : Foundation Overturning Stability Rotation Axis & Load Combination ... X-X, +D-+-0.750L-+-0.750S-+-0.5250E+H X-X, -+-0.60D-+-0.60W-+-0.60H X-X, -+-0.60D-+-0.70E-+-0.60H Z-Z, +D+H Z-Z, +D+l+H Z-Z, +D+lr+H Z-Z, +D+S+H Z-Z, +D-+-0.750Lr-+-0.750L+H Z-Z, +D-+-0.750L-+-0.750S+H Z-Z, +D-+-0.60W+H Z-Z, +D-+-0.70E+H Z-Z, +D-+-0.750Lr-+-0.750L-+-0.450W+H Z-Z, +D-+-0.750L-+-0.750S-+-0.450W+H Z-Z, +D-+-0.750L-+-0.750S-+-0.5250E+H Z-Z, -+-0.60D-+-0.60W-+-0.60H Z-Z, -+-0.60D-+-0.70E-+-0.60H Sliding Stability Force Application Axis Load Combination ... X-X, +D+H X-X, +D+l+H X-X, +D+lr+H X-X, +D+S+H X-X, +D-+-0.750Lr-+-0.750L +H X-X, +D-+-0.750L-+-0.750S+H X-X, +D-+-0.60W+H X-X, +D-+-0.70E+H X-X, +D-+-0.750Lr-+-0.750L-+-0.450W+H X-X, +D-+-0.750L-+-0.750S-+-0.450W+H X-X, +D-+-0.750L-+-0.750S-+-0.5250E+H X-X, -+-0.60D-+-0.60W-+-0.60H X-X, -+-0.60D-+-0.70E-+-0.60H Z-Z, +D+H Z-Z, +D+l+H Z-Z, +D+lr+H Z-Z, +D+S+H Z-Z, +D-+-0.750Lr-+-0.750L+H Z-Z, +D-+-0.750L-+-0.750S+H Z-Z, +D-+-0.750L-+-0.750S-+-0.450W+H Z-Z, +D-+-0.750L-+-0.750S-+-0.5250E+H Z-Z, -+-0.60D-+-0.60W-+-0.60H Z-Z, -+-0.60D-+-0.70E-+-0.60H Z-Z, +D-+-0.60W+H Z-Z, +D-+0.70E+H Z-Z, +D-+-0.750Lr-+-0.750L-+-0.450W+H Footing Flexure Flexure Axis & Load Combination X-X, +1.40D+1.60H X-X, +1.40D+1 .60H X-X, +1.20D-+-0.50Lr+1 .60L +1.60H X-X, +1.20D-+-0.50Lr+1.60L+1.60H X-X, +1.200+1.60L-+-0.50S+1.60H X-X, +1.20D+1.60L-+-0.50S+1.60H X-X, +1.20D+1.60Lr-+-0.50L+1.60H X-X, +1.20D+1.60Lr-+-0.50L+1.60H X-X, +1 .20D+1.60Lr-+-0.50W+1.60H X-X, +1.20D+1.60Lr-+-0.50W+1.60H X-X, +1.20D-+-0.50L+1.60S+1.60H X-X, +1.20D-+-0.50L+1.60S+1.60H X-X, +1.20D+1.60S-+-0.50W+1.60H Overturning __ Moment None None None None None None None None None None 1.693 k-ft None None 1.270 k-ft None 1.693 k-ft Sliding Force 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 0.1505k 0.0 k 0.0 k 0.1129 k 0.0 k 0.1505 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k Mu Which Tension @ k-ft Side? Bot or Top? 0.1103 +Z Bottom 0.1103 -Z Bottom 0.1339 +Z Bottom 0.1339 -Z Bottom 0.09450 +Z Bottom 0.09450 -Z Bottom 0.2205 +Z Bottom 0.2205 -Z Bottom 0.2205 +Z Bottom 0.2205 -Z Bottom 0.09450 +Z Bottom 0.09450 -Z Bottom 0.09450 +Z Bottom Resisting Moment Stability Ratio Status 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 4.988 k-ft 2.946 OK 0.0 k-ft Infinity OK 0.0 k-ft Infinity OK 4.988 k-ft 3.928 OK 0.0 k-ft Infinity OK 2.993 k-ft 1.768 OK All units k Resisting Force Sliding SafetyRatio Status 0.7126 k No Slidini;i OK 0.7126 k No Slidini;i OK 0.8701 k No Slidini;i OK 0.7126 k No Slidino OK 0.8307 k No Slidino OK 0.7126 k No Slidino OK 0.7126 k No Slidino OK 0.7126 k 4.735 OK 0.8307 k No SlidinQ OK 0.7126 k No Slidino OK 0.7126 k 6.313 OK 0.4275 k No Slidino OK 0.4275 k 2.841 OK 0.7126 k No SlidinQ OK 0.7126 k No Slidini;i OK 0.8701 k No SlidinQ OK 0.7126 k No Slidino OK 0.8307 k No SlidinQ OK 0.7126 k No Slidino OK 0.7126 k No Slidini;i OK 0.7126 k No Slidino OK 0.4275 k No SlidinA OK 0.4275 k No Slidini;i OK 0.7126k No Slidino OK 0.7126 k No Slidini;i OK 0.8307 k No SlidinQ OK As Req'd Gvrn. As Actual As Phi"Mn Status in•2 in•2 in•2 k-ft 0.324 Min Temp% 0.3429 17.892 OK 0.324 Min Temp% 0.3429 17.892 OK 0.324 Min Temp% 0.3429 17.892 OK 0.324 Min Temp% 0.3429 17.892 OK 0.324 Min Temp% 0.3429 17.892 OK 0.324 Min Temp% 0.3429 17.892 OK 0.324 Min Temp% 0.3429 17.892 OK 0.324 Min Temp% 0.3429 17.892 OK 0.324 Min Temp % 0.3429 17.892 OK 0.324 Min Temp% 0.3429 17.892 OK 0.324 Min Temp% 0.3429 17.892 OK 0.324 Min Temp% 0.3429 17.892 OK 0.324 Min Temp% 0.3429 17.892 OK Page 85 of 108 !.<!:r~~~:.~~1~:~g I Description: Foundation Footing Flexure Flexure Axis & Load Combination Mu Which Tension @ As Req'd Gvrn. As Actual As Phi0 Mn Status k-fl Side? Bot or Top? in•2 in•2 in•2 k-fl X-X, +1.200+1.60S+0.50W+1.60H 0.09450 -Z Bottom 0.324 Min Temp% 0.3429 17.892 OK X-X, +1 .20D+0.50Lr+0.50L+W+1.60H 0.1339 +Z Bottom 0.324 Min Temp% 0.3429 17.892 OK X-X, +1.20D+0.50Lr+0.50L+W+1.60H 0.1339 -Z Bottom 0.324 Min Temp% 0.3429 17.892 OK X-X, + 1.20D+0.50L +0.50S+W+ 1.60H 0.09450 +Z Bottom 0.324 Min Temp% 0.3429 17.892 OK X-X, +1.200+0.50L +0.50S+W+1.60H 0.09450 -Z Bottom 0.324 Min Temp % 0.3429 17.892 OK X-X, +1.20D+0.50L+0.70S-+£+1.60H 0.09450 +Z Bottom 0.324 Min Temp % 0.3429 17.892 OK X-X, + 1.20D+0.50L +O. 70S-+£+ 1.60H 0.09450 -Z Bottom 0.324 Min Temp% 0.3429 17.892 OK X-X, +0.90D+W+0.90H 0.07088 +Z Bottom 0.324 Min Temp% 0.3429 17.892 OK X-X, +0.90D+W+0.90H 0.07088 -Z Bottom 0.324 Min Temp % 0.3429 17.892 OK X-X, +0.90D-+E+0.90H 0.07088 +Z Bottom 0.324 Min Temp % 0.3429 17.892 OK X-X, +0.900-+E+0.90H 0.07088 -Z Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.400+1.60H 0.1103 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.400+1.60H 0.1103 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, + 1.200+0.50Lr+1.60L +1.60H 0.1339 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.20D+0.50Lr+1.60L+1.60H 0.1339 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.200+1.60L+0.50S+1.60H 0.09450 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.200+1.60L+0.50S+1.60H 0.09450 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.200+1.60Lr+0.50L+1.60H 0.2205 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.200+ 1.60Lr+0.50L +1 .60H 0.2205 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, + 1.200+1.60Lr+0.50W+ 1.60H 0.2205 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.200+1.60Lr+0.50W+1 .60H 0.2205 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.20D+0.50L+1.60S+1.60H 0.09450 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.200+0.50L+1 .60S+1.60H 0.09450 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.200+1.60S+0.50W+1.60H 0.09450 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.200+1.60S+0.50W+1.60H 0.09450 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z. +1.20D+0.50Lr+0.50L+W+1.60H 0.1339 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.20D+0.50Lr+0.50L+W+1.60H 0.1339 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.200+0.50L +0.50S+W+1.60H 0.09450 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, + 1.200+0.50L +0.50S+W+ 1.60H 0.09450 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +1.20D+0.50L+0.70S-+£+1.60H 0.2458 -X Top 0.324 Min Temp% 0.3429 17.892 OK Z-Z. +1.200+0.50L +0.70S-+£+1.60H 0.4451 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +0.90D+W+0.90H 0.07088 -X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +0.90D+W+0.90H 0.07088 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +0.90D-+E+0.90H 0.2372 -X Top 0.324 Min Temp% 0.3429 17.892 OK Z-Z, +0.900-+E+0.90H 0.4538 +X Bottom 0.324 Min Temp% 0.3429 17.892 OK One Way Shear Load Combination ... Vu @-X Vu @+X Vu @-Z Vu @+Z Vu:Max PhiVn Vu/ Phi'Vn Status +1.400+1.60H 0.3792 psi 0.3792 psi 0.3792 psi 0.3792 psi 0.3792 psi 75 psi 0.005056 OK +1 .20D+0.50Lr+1.60L +1.60H 0.4604 psi 0.4604 psi 0.4604 psi 0.4604 psi 0.4604 psi 75 psi 0.006139 OK +1 .200+1.60L+0.50S+1 .60H 0.325psi 0.325 psi 0.325 psi 0.325 psi 0.325 psi 75 psi 0.004333 OK +1.200+1.60Lr+0.50L +1.60H 0.7583 psi 0.7583 psi 0.7583 psi 0.7583 psi 0.7583 psi 75 psi 0.01011 OK +1.200+1.60Lr+0.50W+1.60H 0.7583psi 0.7583psi 0.7583 psi 0.7583 psi 0.7583 psi 75 psi 0.0101 1 OK +1.20D+0.50L +1.60S+1.60H 0.325 psi 0.325 psi 0.325 psi 0.325 psi 0.325 psi 75 psi 0.004333 OK +1.200+1.60S+0.50W+1.60H 0.325 psi 0.325 psi 0.325 psi 0.325 psi 0.325 psi 75 psi 0.004333 OK +1 .200+0.50Lr+0.50L +W+ 1.60H 0.4604 psi 0.4604 psi 0.4604 psi 0.4604 psi 0.4604psi 75 psi 0.006139 OK +1.200+0.50L+0.50S+W+1.60H 0.325 psi 0.325 psi 0.325 psi 0.325 psi 0.325 psi 75 psi 0.004333 OK + 1.20D+0.50L +O. 70S-+E+ 1.60H 0.3249 psi 0.3249psi 0.325 psi 0.325 psi 0.325 psi 75 psi 0.004333 OK +0.90D+W+0.90H 0.2438 psi 0.2438 psi 0.2438 psi 0.2438 psi 0.2438 psi 75 psi 0.00325 OK +0.900-+E+0.90H 0.2436 psi 0.2436 psi 0.2438 psi 0.2438 psi 0.2438 psi 75 psi 0.00325 OK Punching Shear All units k Load Combination ... Vu Phi'Vn Vu/ Phi'Vn Status +1.400+1 .60H 1.393 psi 150psi 0.00929 OK +1.200+0.50Lr+1 .60L +1.60H 1.692 psi 150psi 0.01128 OK +1.200+1.60L+0.50S+1.60H 1.194 psi 150psi 0.007963 OK + 1.200+1.60Lr+0.50L +1.60H 2.787 psi 150psi 0.01858 OK +1.20D+1 .60Lr+0.50W+1.60H 2.787 psi 150psi 0.01858 OK + 1.20D+0.50L + 1.60S+ 1.60H 1.194 psi 150psi 0.007963 OK +1.200+1 .60S+0.50W+1.60H 1.194 psi 150psi 0.007963 OK +1.20D+0.50Lr+0.50L+W+1.60H 1.692 psi 150psi 0.01128 OK +1.20D+0.50L+0.50S+W+1.60H 1.194 osi 150psi 0.007963 OK +1.20D+0.50L +0.70S-+E+ 1.60H 1.202 psi 150psi 0.008011 OK Page 86 of 108 I General Footing l!AliM3'0S•I1•I•t;Jff:f Description : Foundation Punching Shear Load Combination ... -+-0.90D+W-+-0.90H -+-0.90D-+E-+-0.90H Vu 0.8958 psi 0.9747 psi Phi"Vn 150psi 150psi Vu/ Phi"Vn 0.005972 0.006498 All units k Status OK OK Page 87 of 108 . ! PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN OTEGO, CA 92103 Design of flagpole footing (with moment @ addition) Load from beam RB-5 (left) Max Axial Load on Column Dead Load Live Load Height of post = 4.31 kips = 2.93 kips Lateral Load on each column Wind load at top of column Uniform wind load on column 6" x 6" HSS Steel post Moment at the base, Mu = 9'-0" = 2.32 kips = 0.135 kips =129plf forbottom8'-0"ofcolumn = 2.32x9 = 20.88 kips-ft Provide min.36" dia concrete footing w/ 6'-6" embedment with 8#6 rebar and #4 ties @6" o.c. See analysis on next page. Page 88 of 1 08 PAlTERSO ENGINEERING 928 FORT STOCKTON ORM Sl.fl'E201 ~~fO,CA!'.,!CO PHOhE: lll58-60S-0937 FAX· 858-eO!r 141◄ I Pole Footing Embedded in Soil Description : pole footing Code References Calculations per IBC 2015 1807.3, CBC 2016, ASCE 7-10 Load Combinations Used : IBC 2015 General Information Pole Footing Shape Circular Footing Diameter . . . . . . . . . . . . . . 36.0 in Calculate Min. Depth for Allowable Pressures No Lateral Restraint at Ground Surface Allow Passive . . . . . . . . . . . . . . . . . 250.0 pcf Max Passive . . . . . . . . . . . . . . . . . . psi Controlling Values Governing Load Combination : -+0-+-0.70E+H Lateral Load Moment NO Ground Surface Restraint Pressures at 1/3 Depth Actual Allowable Mlni1111m Required Depth Footing Base Area Maximum Soil Pressure 1.624 k 16.240 k-ft 533.43 psi 534.31 psi 6.50 ft 7.06911•2 0.0 ks! Applied Loads Lateral Concentrated Load Lateral Distributed Load D: Dead Load Lr : Roof Live L: Live S: Snow W:Wind E : Earthquake H : Lateral Earth Load distance above ground surface k k k k 0.1350 k 2.320 k k 10.0 ft Load Combjnauon Results -+O+L+H -+O+Lr+H -+O+S+H -+0-+-0.750Lr-+-O. 750L +H -+0-+-0.750L-+-0.750S+H +D-+-0.60W+H -+0-+-0.70E+H -+0-+-0. 750Lr-+-0.750L-+-0.450W+H k/ft k/ft k/ft kilt 0.1290 klft k/ft k/lt TOP of Load above ground surface 8.0 ft BOTTOM of Load above ground surface 0.0 ft Fon:es@GIOIIICI Surface Loads. (k) Momenls • (11-k) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.700 3.287 1.624 16.240 0.525 2.465 Reqiired Oeplh-(ft) 0.13 0.13 0.13 0.13 0.13 0.13 4.00 6.50 3.50 • f'«I lllter1t ttstr,111 Vertical Load k k k k k k k Pr8SSln 111/3 OepCh Sol Increase Aclull • (psf) Alow-(psf) Factor 0.0 0.0 1.000 0.0 0.0 1.000 0.0 0.0 1.000 0.0 0.0 1.000 0.0 0.0 1.000 0.0 0.0 1.000 324.0 324.9 1.000 533.4 534.3 1.000 289.0 291 .1 1.000 Page 89 of 108 PATTERS ENGINEERING 928 FORT STOCKTON DRIVE WTE201 ~°29,~5!!03 PHON:'. 858-«l5-0937 FI\X· 858«)5.1414 j Pole Footing Embedded in Soil Description : pole footing +D+0.750L+0.750S+0.450W+H +D+O. 750L +O. 750S+0.5250E+H +0.60D+0.60W+0.60H +0.60D+0.70E+0.60H 0.525 1.218 0.700 1.624 2.465 12.180 3.287 16.240 3.50 5.88 4.00 6.50 289.0 477.8 324.0 533.4 • 291.1 1.000 479.6 1.000 324.9 1.000 534.3 1.000 Page 90 of 108 I Concrete Column PATTERSON ENGINEERING 929 FORT STOCKTON DRIVE SUTE:101 --~~03 PHCH: 858-f0i>.0937 FAX: 85IMI05-1◄1◄ Description : -Concrete footing Code References ---Calculations per ACI 318-11 , IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : IBC 2015 Genera l Information ---fc : Concrete 28 day strength = E= = Density = p fy -Main Rebar E -Main Rebar Allow. Reinforcing Limits = Min. Reinf. = Max. Reinf. = 3.0ksi 3,122.0 ksi 145.0 pcf 0.850 60.0 ksi 29,000.0 ksi ASTM A615 Bars Used 1.0% 8.0% Load Combination : IBC 2015 Overall Column Height End Fixity = 6.50 ft Top Free, Bottom Fixed Brace condition for deflection (buckling) along columns : X-X (width) axis : Unbraoed Length for X-X Axis buckling = 10 ft, K = 1.0 Y-Y (depth) axis : Fully braoed against buckling along Y-Y Axis Column Cross S.c..ec.c.ctt...:·o_n ____________________________________ _ Column Dimensions 36.0in Diameter, Column Edge to Rebar Edge Cover = 3.0in Column Reinforcing : 8 -#6 bars Applied Loads Column self weight included : 6,662.14 lbs • Dead Load Factor AXIAL LOADS ... Axial Load at 6.50 ft above base, D = 2.160, L = 1.970 k BENDING LOADS ... Moment acting about X-X axis, W = 5.247, E = 20.920 k-ft DESIGN SUMMARY Load Combination +0.90D+E+0.90H Location of max.above base 6.456 ft Maximum Stress Ratio 0.053 : 1 Ratio = (PuA2+MuA2JA.5 / (PhiPnA2+PhiMnA2JA.5 Pu= 7.940k cp*Pn= 152.632k Mu-x = Mu-y = Mu Angle = Mu at Angle= -20. 920 k-ft <p * Mn-x = 403.222 k-ft 0.0 k-ft <p * Mn-y = 0.0 k-ft 180.0 deg 20.920 k-ft <pMn at Angle = 397.827 k-ft Pn & Mn values located at Pu-Mu vector intersection with capacity curve Column Capacities ... Pnmax : Nominal Max. Compressive Axial Capacity 2,797.81 k Pnmin : Nominal Min. Tension Axial Capacity -211.20 k <p Pn, max : Usable Compressive Axial Capacity 1,664.70 k <p Pn, min : Usable Tension Axial Capacity -147.840 k y Entered loads are factored per load combinations specified by user. Maximum SERVICE Load Reactions .. Top along Y-Y 0.0 k Bottom along Y-Y Top along X-X 0.0 k Bottom along X-X Maximum SERVICE Load Deflections ... Along Y-Y 0.002947 in at 6.50 ft above base for load combination : E Only AlongX-X O.Oin at 0.0ft above base for load combination : 0.0 k 0.0 k General Section Information· <p = 0.70 p =0.850 e p : % Reinforcing 0.3458 % Rebar< Min of 1.0 % 0.850 Reinforcing Area 3.520 inA2 Concrete Area 1,017.88 inA2 Page 91 of 1 OB I Concrete Column PATTERS ENGINEERING 028 FORT STOCl<TON ORlVE SUTE201 SAN-D1Ef2,CA~03 PHONE:~7 FAX. 858«l>1414 Description : -Concrete footing Governing Load Combination Results Governing Factored Load Combination Moment Source Dist. from Axial Load k + 1. 400+ 1.60H +1.20D+0.50Lr+1.60L+1.60H +1.200+1.60L +0.50S+1 .60H +1.200+1.60Lr+0.50L+1.60H +1.200+1.60Lr+0.50W+1.60H + 1.200+0.50L + 1.60S+1.60H +1.20D+1.60S+0.50W+1.60H +1.20D+0.50Lr+0.50L+W+1.60H +1.200+0.50L+0.50S+W+1.60H +1.20D+0.50L+0.70S+E+1.60H +0.90D+W+0.90H +0.90D+E+0.90H Maximum Reactions Load Combination -t{)+H -t{)+L +H -t{)+Lr+H -t{)+S+H -tO-+O. 750Lr-+0.750L +H -tO-+O. 750L-+0.750S+H -t0-+0.60W+H -t0-+0.70E+H -tO-+O. 750Lr-+0.750L-+0.450W+H -t0-+0. 750L-+O. 750S-+0.450W+H -t0-+0. 750L-+O. 750S-+0.5250E+H -+0.60D-+0.60W-+0.60H -+0.60D-+0.70E-+0.60H D Only Lr Only L Only S Only WOnly E Only H Only Sketches l6.0 in X-X Y-Y base ft Pu qi • Pn 6.46 12.35 1,664.70 6.46 13.74 1,664.70 6.46 13.74 1,664.70 6.46 11.57 1,664.70 Actual 6.46 10.59 1,582.00 6.46 11.57 1,664.70 Actual 6.46 10.59 1,582.00 Actual 6.46 11.57 1,277.40 Actual 6.46 11.57 1,277.40 Actual 6.46 11.57 293.81 Actual 6.46 7.94 989.93 Actual 6.46 7.94 152.63 Reaction along X-X Axis @Base @Top k k k k k k k k k k k k k k k k k k k k Bending Analysis k-ft Utilizatio ox ox. Mux oY oY * Muy Alpha (deg) o Mu qi Mn Ratio 0.000 0.007 0.000 0.008 0.000 0.008 0.000 0.007 1.000 -2.62 180.000 2.62 392.68 0.007 0.000 0.007 1.000 -2.62 180.000 2.62 392.68 0.007 1.000 -5.25 180.000 5.25 578.19 0.009 1.000 -5.25 180.000 5.25 578.19 0.009 1.000 -20.92 180.000 20.92 527.48 0.040 1.000 -5.25 180.000 5.25 655.96 0.008 1.000 -20.92 180.000 20.92 397.83 0.053 Note: Only non-zero reactions are listed. Reaction along Y-Y Axis Axial Reaction @Base @Top @Base k 8.822 k k 10.792 k k 8.822 k k 8.822 k k 10.300 k k 10.300 k k 8.822 k k 8.822 k k 10.300 k k 10.300 k k 10.300 k k 5.293 k k 5.293 k k 8.822 k k k k 1.970 k k k k k k k k k ..., ... _ Page 92 of 108 PATTERSON ENG INEERING, lNC. 928 FORT STOCKTON DRIVE, SUITE 20 I SAN DIEGO, CA 92 103 FREE STANDING WALL CALCULATIONS Page 93 of 108 CMU FRE E STANDING WALL FOOTING PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO, CA 92103 Horizontal seismic design force (Fp) From Wall (wall centered on footing) The force (Fp) shall be applied independently in Where =0.4SoslcWp =0.4x0.722xlx l 125 =322.5 lbs Fp = seismic design force Sos= spectral acceleration, short period Ip= component importance factor that varies from to 1.50 Wp= weight h = average wall height of structure with respect to The base Wind load on wall Allowable bearing capacity Stem Data Thickness of stem Vertical Reinforcement Horizontal Reinforcement Base slab Data Width of toe = 12" = #4 @ 16" o.c. = #4 @ 16" o.c. = 16 psf =1500psf = 1995 psf Strength level = 0.722 = 1.0 = 1125 lbs/ft =8'-0" (Section 11.4.4 ASCE 7-10) (Section 13.1.3 ASCE 7-10) (Conservatively) ( I /3 increase for seismic loading) Width of Heel Thickness of base slab = 2'-3" = 3'-3" = 5'-6" (Including stem thickness) Toe Reinforcement Short way Reinforcement Long way Reinforcement Heel Reinforcement Short way Reinforcement Long way Reinforcement Refer to output below. = #4 @ 16" o.c. = #4 @ 12" o.c. = #4 @ 16" o.c. = #4 @ 12" o.c. Page 94 of 108 PATTERSON ENGINEERING art«T~IIN WOl:,,,fM<jW. --fM.. .... MM RetalnPro (c) 1987-2016, Build 11.16.11.12 Title 4'-o"V(BII License: KW-06058766 Cantilevered Retaining Wall License To: PATTERSON ENGINEERING Code: IBC 2015,ACI 318-1 4,ACI 530-13 [c •• rit.e.ri•a--------•· I Soil Data I Retained Height Wall height above soil Slope Behind Wall Height of Soil over Toe Water height over heel 0.00 ft 4.50 ft 0.00 0.00 in 0.0 ft Allow Soil Bearing 1,995.0 psf Equivalent Fluid Pressure Method Active Heel Pressure 45.0 psf/ft Passive Pressure Soil Density, Heel Soil Density, Toe FootingllSoil Friction Soil height to ignore for passive pressure 250.0 psf/ft 110.00 pcf 0.00 pcf 0.250 12.00 in r-:- :~, ~~- I L •• :_l 7~ S!llu•r•c•h•ar•g•e•L•o•a•d•s----1111!1111 .. I [ Lateral Load Appttedto Stem Surcharge Over Heel 0.0 psf I ~ Adjacent Footing Load Used To Resist Sliding & Overturning Surcharge Over Toe 0. O Used for Sliding & Overturning I Axial Load Applied to Stem • Axial Dead Load 0.0 lbs Axial Live Load 0.0 lbs Axial Load Eccentricity 0.0 in Lateral Load ... Height to Top ... Height to Bottom Load Type Wind on Exposed Stem (Strength Level) 0.0 #/ft 0.00 ft 0.00 ft Seismic (E) (Strength Level) 16.0 psf Adjacent Footing Load Footing Width Eccentricity Wall to Ftg CL Dist Footing Type Base Above/Below Soil at Back of Wall Poisson's Ratio .,I s_t_e_m_w_e_i_g_h_t_s_e_is·m-ic_L_o_a_d ____ , Fp / WP Weight Multiplier 0.289 g Added seismic base force [ Design Summary • Wall Stability Ratios Overturning 3.39 OK Slab Resists All Sliding I Total Bearing Load ... resultant ecc. 1,026 lbs 5.31 in [ Stem Construction Design Height Above Ftg Wall Material Above "Ht" Design Method Thickness Rebar Size Rebar Spacing Rebar Placed at I Bottom Stem OK ft= 0.00 Masonry LRFD 8.00 # 4 16.00 Edge 0.0 lbs 0.00 ft 0.00 in 0.00 ft Line Load 0.0 ft 0.300 71.0 lbs • Soil Pressure@ Toe 645 psf OK Soil Pressure@ Heel 40 psf OK Design Data ------------------------- Allowable 1,995 psf Soil Pressure Less Than Allowable ACI Factored@ Toe 902 psf ACI Factored @ Heel 55 psf Footing Shear@ Toe Footing Shear@ Heel Allowable Sliding Cales Lateral Sliding Force 3.1 psi OK 0.3 psi OK 75.0 psi 164.8 lbs Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing pressures. Load Factors Building Code IBC 2015,ACI Dead Load 1.200 Live Load 1.600 Earth, H 1.600 Wind,W 1.000 Seismic, E 1.000 fb/FB + fa/Fa Total Force@Section Service Level Strength Level Moment. ... Actual Service Level Strength Level Moment. .... Allowable Service Level Strength Level Shear ..... Allowable Anet (Masonry) Rebar Depth 'd' lbs= lbs= ft-#= ft-#= psi= psi= psi= in2= in= 0.118 173.4 390.2 3,309.4 1.9 69.7 91.50 5.25 asonry Data ------------------------- fm Fy Solid Grouting Modular Ratio 'n' Wall Weight Equiv. Solid Thick. Masonry Block Type Masonry Design Method Concrete Data fc Fy psi= 1,500 psi= 60,000 Yes 21.48 psf= 78.0 in= 7.60 Medium Weight LRFD psi= psi= Page 95 of 108 Page : 1 PATTERSON ENGINliERING Title 4'-o"~II Page : 2 Date: 14 AUG 2017 "'"".i::;r- l#ICll'A,c-AtrM ---rM.M«>-MW RetainPro (c) 1987-2016, Build 11.16.11.12 License : KW-06058766 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 License To : PATTERSON ENGINEERING [ Footing Dimensions & Strengths Toe Width Heel Width Total Footing Width Footing Thickness Key Width Key Depth Key Distance from Toe 1.17 ft 1.83 3.00 18.00 in 12.00 in 0.00 in 3.75 ft fc = 2,500 psi Fy = 60,000 psi 150.00pcf Fooling Concrete Density Min.As% Cover@Top 2.00 = 0.0018 @ Btm.= 3.00 in • Footing Design Results Isl!! Factored Pressure 902 Mu' : Upward 539 Mu' : Downward 236 Mu: Design = 303 Actual 1-Way Shear 3.13 Allow 1-Way Shear 75.00 Toe Reinforcing = # 4@ 16.00 in Heel Reinforcing # 4@ 16.00 in Key Reinforcing None Spec'd Other Acceptable Sizes & Spacings .liw 55 psf 112ft-# 236 ft-# 124 ft-# 0.31 psi 75.00 psi Toe: Not req'd: Mu < phi•5•1ambda•sqrt(fc)*Sm Heel: Not req'd: Mu < phi•5•1ambda•sqrt(fc)*Sm Key: Slab Resists Sliding • No Force on Key Min fooling T &S reinf Area 1.17 in2 0.39 in2 1ft Min footing T&S reinf Area per foot If one layer of horizontal bars: #4@ 6.17 in #5@ 9.57 in #6@ 13.58 in If two layers of horizontal bars: #4@ 12.35 in #5@ 19.14 in #6@27.16 in Summa of Overturnin Forces & Moments Item Heel Active Pressure Surcharge over Heel Surcharge Over Toe Adjacent Footing Load Added Lateral Load Load @ Stem Above Soil Seismic Stem Self WI Total Resisting/Overturning Ratio ..... OVERTURNING ..... Force Distance Moment lbs ft ft-# 50.6 0.50 25.3 43.2 71.0 164.8 3.75 3.75 O.T.M. 162.0 266.3 453.6 Vertical Loads used for Soil Pressure = 3.39 1,025.9 lbs Soil Over Heel Sloped Soil Over Heel Surcharge Over Heel Adjacent Footing Load Axial Dead Load on Stem • Axial Live Load on Stem Soil Over Toe Surcharge Over Toe Stem Weighl(s) Earth @ Stem Transitions = Fooling Weight = Key Weight Vert. Component ..... RESISTING ..... Force Distance lbs ft 0.0 2.42 351.0 674.9 1.50 1.50 4.25 Moment ft-# 0.0 526.4 1,012.2 Total= 1,025.9 lbs R.M.= 1,538.6 If seismic is included, the OTM and sliding ratios be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201 • Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance. [Tilt I Horizontal Deflection at Top of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus Horizontal Defl@ Top of Wall (approximate only) 250.0 pci 0.027 in The above calculation is not valid if the heel soil bearing pressure exceeds that ot the toe because the wall would then tend to rotate into the retained soil Page 96 of 108 Page : 2 PATTERSON ENGi.NEERiNG M'°"f'.O'.'IQI~ _., ~ ----fM...,.WM RetalnPro (c) 1987-2016, Build 11.16.11.12 License : KW-06058766 License To : PATTERSON ENGINEERING 8" w/#4@ 16" Solid Grout #4@16.in @Toe #4@16" @ Heel Title 4'~"'tlr,III Cantilevered Retaining Wall Restrain '-6" • 1'-2 .. _ 1"-10" 3"-0" T Page : 3 Date: 14 AUG 2017 Code: IBC 2015,ACI 31 8-14,ACI 530-13 4'-6" 4'-6" 2"' 3" Page 97 of 108 Page : 3 PATTERSON ENGINEERING ..... .:w.:r- WIS«>tA .. ----fM...,.MM RetalnPro (c) 1987-2016, Build 11.16.11.12 License : KW-06058766 License To : PATTERSON ENGINEERING 16 .00psf (Strength-Level) Title 4'.S"',lf<III Cantilevered Retaining Wall 94# 71# Page : 4 Date: 14 AUG 2017 Code: IBC 2015,ACI 318-14,ACI 530-13 Seismic due to stem self weight Page 98 of 108 Page : 4 CMU LINTEL & WALL CALCULATIONS Page 99 of 1 08 CMU LINTEL (FIRE PLACE) PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRJVE, SUITE 20 I SAN DIEGO, CA 92103 Horizontal seismic design force (Fp) on Lintel due to self-weight The force (Fp) shall be applied independently = 0.4SosleWp =0.4x0.722xl xi 276 = 368.5 lbs Strength level Where Fp = seismic design force Sos= spectral acceleration, short period Ip = component importance factor that varies from to 1.50 Wp = weight of Lintel h = average wall height of structure with respect to the base Wind Force Calculations Wind load on CMU Lintel = 0.722 (Section 11.4.4 ASCE 7-10) = 1.0 (Section 13.1.3 ASCE 7-10) = Wt of Lintel ( I '-2" ft Height x 8 '-1 " Long x l '-0" Thick) = l.17x8.08x 12/12x 135 = 1276 lbs = 2'-5" F 9h = q11G Cr As Eq 29.4-1 ASCE7-10 F Cr As F = 0.00256 KJ<z1Kd V2 = 0.00256 x 0.85 x 1.0 x 0.85 x 1102 = 22.38 psf = q11G Cr As = Force Coefficients Fig. 29.4-1 ASCE7-10 = 1.95 Conservatively = Gross Area = \.17 X 8.08 = 9.45 ft2 = 22.38 X 0.85 X 1.95 X 9.45 = 350.54 lbs = 368.5 lbs Seismic Governs Refer to output below. Page 100 of 108 I Masonry Beam IN;8:i'M•l3•I•l:(fff Description : 8'-1' Lintel I Code References Calculations per ACI 530-13, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : IBC 2015 I General Information fm 1,500.0 psi Clear Span Fs 24,000.0 psi Beam Depth Em = fm • 750.0 Thickness Wall Wt Mull 1.0 End Fixity Block Type Normal Wt Equiv. Solid Thick Lateral Wind Load 22.380 psi Wall Weight Lateral Wall Weight Seismic Factor 0.2888 E Calculate vertical beam weight? Yes n Note! Shear calculated at 'd/2' from edge of beam Left Edge 8.080 ft 1.170ft 12 in Fix-Fix 11.60 in 133.0 psf 1,125.0 ksi 25.778 Right Edge 111111111111 lllllllllllllllllllflllllllllllllllllfllllllllfllllllllllllttlllllllllllllllllllllllllllllllllll 11111111111 1 -# 4 bars elf, 2 sets used 111111111111 111111111111111111111111111111111111111111111111111111111111111111111111♦111111111111111111111111 11111111111 ~08ft_Span ~gth DESIGN SUMMARY . !IBA,NYW J Rebar Size 4.0 # Bars E/F Top Clear 2.0 in Btm Clear 2.0 in # Bar Sets 2 Bar Spacing 5.0 in Shear Rein! Bar Size # 3 Shear Rein! Bar Spacing 12.0 in • • • • Design OK --------- fv/Fv ~ 0.09829 0.06322 Minimum Mn= 1.3 •Fer• S = Vertical Strength As rho np k : ((np)A2+2np)A.5-np j=1-k/3 M:mas=Fb k j b dA2/2 M:Stl = Fs As j d I Detailed Load Combination Results Load Combination +O+H +O+L+H +O+Lr+H +O+S+H ~ 0.02904 0.02812 ~ 0.1025 : 1.00 0.06919 : 1.00 4.138 k-ft 0.40 inA2 0.002858 0.07367 0.3172 0.8943 13.444 k-ft 8.614 k-ft Maximum Moment ~ ~k-ft Vertical Loads 0.8466 k-ft 8.614 k-ft for Load Combination : +0-++l Lateral Loads 0.1711 k-ft 5.894 for Load Combination : +0-+-0. 70E-++l Maximum Shear ~ ~ Vertical Loads for Load Combination : +0-++l 3.951 psi 62.496psi Lateral Loads 1.089 psi 38.730psi for Load Combination : +0-+-0.70E-++l Lateral Strength As rho np k : (npA2+2np)A.5-np j=1-k/3 M:mas=Fb k j b dA2/2 M:Stl = Fs As j d (Checking lateral bending for span) 0.40 inA2 0.003427 0.08835 0.3412 0.8863 8.251 k-ft 5.894 k-ft Vertical Lateral Mmax Mallow fv : Vert Fv : Vert Mactual Mallow fv k·ft k·ft psi psi k·ft k·ft psi 0.85 8.61 3.95 62.50 0.00 5.89 0.00 0.85 8.61 3.95 62.50 0.00 5.89 0.00 0.85 8.61 3.95 62.50 0.00 5.89 0.00 0.85 8.61 3.95 62.50 0.00 5.89 0.00 Page 101 of108 Fv psi 38.73 38.73 38.73 38.73 I Masonry Beam lltWtllMtld•IeJ:Iff:f 1139iM#◄ I Description : 8'-1" Lintel I Detailed Load Combination Results Load Combination Vertical Lateral Mmax Mallow fv : Vert Fv : Vert Mactual Mallow fv Fv k-ft k-ft psi psi k-ft k-ft psi psi +D-+0.750Lr-+0.750L +H 0.85 8.61 3.95 62.50 0.00 5.89 0.00 38.73 +D-+O. 750L-+O. 750S+H 0.85 8.61 3.95 62.50 0.00 5.89 0.00 38.73 +D-+0.60W+H 0.85 8.61 3.95 62.50 0.09 5.89 0.54 38.73 +D-0.60W+H 0.85 8.61 3.95 62.50 0.09 5.89 0.54 38.73 +D-+0.70E+H 0.85 8.61 3.95 62.50 0.17 5.89 1.09 38.73 +D-0.70E+H 0.85 8.61 3.95 62.50 0.17 5.89 1.09 38.73 +D-+O. 750Lr-+0.750L-+0.450W+H 0.85 8.61 3.95 62.50 0.06 5.89 0.41 38.73 +D-+0.750Lr-+0.750L--0.450W+H 0.85 8.61 3.95 62.50 0.06 5.89 0.41 38.73 +D-+0. 750L +O. 750S-+0.450W+H 0.85 8.61 3.95 62.50 0.06 5.89 0.41 38.73 +D-+O. 750L +O. 750S-0.450W+H 0.85 8.61 3.95 62.50 0.06 5.89 0.41 38.73 +D-+O. 750L +O. 750S+0.5250E+H 0.85 8.61 3.95 62.50 0.13 5.89 0.82 38.73 +D-+O. 750L +O. 750S--0.5250E+H 0.85 8.61 3.95 62.50 0.13 5.89 0.82 38.73 +0.60D-+0.60W+0.60H 0.51 8.61 2.37 62.50 0.09 5.89 0.54 38.73 +0.60D--0.60W+0.60H 0.51 8.61 2.37 62.50 0.09 5.89 0.54 38.73 -+0.60D+0. 70E-+0.60H 0.51 8.61 2.37 62.50 0.17 5.89 1.09 38.73 -+0.60D--O. 70E+0.60H 0.51 8.61 2.37 62.50 0.17 5.89 1.09 38.73 Page 102 of 108 PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRIVE, SUITE 201 SAN DIEGO,CA n 103 CMU WALL (FIRE PLACE} Horiwntal seismic design force (Fp) on CMU wall due to self-weight The force (Fp) shall be applied independently Fp = 0.4SosleWp =0.4x0.722xl x8683 = 2507 .65 lbs Where Fp = seismic design force Strength level Sos = spectral acceleration, short period = 0.722 (Section 11.4.4 ASCE 7-10) Ip = component importance factor that varies from to 1.50 = 1.0 (Section 13.1.3 ASCE 7-10) Wp = weight of Lintel = CMU wall Weight (3 '-0" ft Height x 16' -I" Long x 1 '-0" Thick) = 3 X12/]2 X )35 X )6.08 = 8683 lbs (Consider wall weight excluding opening Conservatively) h = average wall height of structure with respect to the base = l '-6" Wind Force Calculations Wind load on CMU Lintel F Cr As F = q11G Cr As Eq 29.4-1 ASCE7-10 = 0.00256 KJ<21Kd V2 = 0.00256 X 0.85 X 1.0 X 0.85 X 1102 = 22.38 psf = q11G Cr As = Force Coefficients Fig. 29.4-1 ASCE7-10 = 1.95 Conservatively = Gross Area =3x16.08 = 48.24 ft2 = 22.38 X 0.85 X 1.95 X 48.24 = 1789.46 lbs Page 103 of 108 Total shear Force =Fp =2507 .65 lbs PATTERSON ENGINEERING, INC. 928 FORT STOCKTON DRJVE, SUITE 201 SAN DIEGO, CA 92103 Seismic Governs Provide 12" Thick CMU wall w/ #4 @ 16" o.c. vertical and horizontal wall reinforcement. Provide 2'-6" wide x 15" Deep Footing w/ #4 @ 16" o.c. at Top & bottom. Refer to output below. Page 104 of 108 PATJ'llRSON ENGINl!ERING ... ~OIM: Title FREE-STANDING W , IT FIRE PLACED Page : 1 Job#: • Dsgnr: Date: 20 SEP 2017 ...... WllW~!,'11' l'fOC.etem, rM'.--,.MM Description .... RetainPro (c) 1987-2016, Build 11.16.11.12 License : KW-06058766 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 License To : PATTERSON ENGINEERING Criteria I L Soil Data I Retained Height Wall height above soil Slope Behind Wall Height of Soil over Toe Water height over heel = 2.00 ft 3.00 ft 0.00 12.00 in 0.0 ft Allow Soil Bearing 1,500.0 psf Equivalent Fluid Pressure Method Active Heel Pressure = 45.0 psf/ft Passive Pressure Soil Density, Heel Soil Density, Toe FootingllSoil Friction Soil height to ignore for passive pressure 250.0 psf/ft 110.00 pct 0.00 pcf 0.350 12.00 in • • • 1 Surcharge Loads I Lateral Load Applied to Stem I Adjacent Footing Load Surcharge Over Heel 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe 0.0 Used for Sliding & Overturning ~ Axial Load Applied to Stem Lateral Load 0.0 #/ft Adjacent Footing Load ... Height to To~ = 0.00 ft Footing Width ... Height to Bottom 0.00 ft Eccentricity Load Type Wind (W) Wall to Ftg CL Dist = ) (Service Level) Footing Type Base Above/Below Soil Axial Dead Load 0.0 lbs Axial Live Load 0.0 lbs Axial Load Eccentricity = 0.0 in Wind on Exposed Stem = 22.4 psf at Back of Wall (Strength Level) Poisson's Ratio [stem Weight Seismic Load I Fp,wp WeightMultiplier 0.288 g Added seismic base force Design Summary Wall Stability Ratios Overturning Sliding Total Bearing Load ... resultant ecc. I 1.87 OK 2.35 OK 1,254 lbs 7.40 in Soil Pressure@ Toe 1,320 psf OK Soil Pressure @ Heel 0 psf OK Allowable 1,500 psf Soil Pressure Less Than Allowable ACI Factored@ Toe 1,848 psf ACI Factored@ Heel 0 psf Footing Shear@ Toe Footing Shear @ Heel = Allowable = Sliding Cales Lateral Sliding Force less 100% Passive Force = less 100% Friction Force = Added Force Req'd .... for 1. 5 Stability = 5.9 psi OK 2.4 psi OK 75.0 psi 402.9 lbs 507.8 lbs 438.8 lbs 0.0 lbs OK 0.0 lbs OK Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing Load Factors Building Code Dead Load Live Load Earth, H Wind,W Seismic, E IBC 2015,ACI 1.200 1.600 1.600 1.000 1.000 ~tern Construction Design Height Above Ftg Wall Material Above "Ht" Design Method Thickness Rebar Size Rebar Spacing Rebar Placed at Design Data fb/FB + fa/Fa Total Force@ Section Service Level Strength Level Moment....Actual Service Level Strength Level Moment. .... Allowable Service Level Strength Level Shear ..... Allowable Anet (Masonry) Rebar Depth 'd' Masonry Data fm Fy Solid Grouting Modular Ratio 'n' Wall Weight Equiv. Solid Thick. Masonry Block Type Masonry Design Method Concrete Data fc Fy I ft= = lbs= lbs= ft-#= ft-#= = psi= psi= psi= in2= in =. psi = psi= psf= in = = = psi= psi = Bottom Stern OK 0.00 Masonry LRFD 12.00 # 4 16.00 Edge 0.133 389.7 777.4 5,840.6 2.8 69.7 139.50 9.00 1,500 60,000 Yes 21.48 124.0 11.60 Medium Weight LRFD 0.0lbs I 0.00 ft 0.00 in 0.00 ft Line Load 0.0 ft 0.300 125.0 lbs Page 105 of 108 Page : 1 PATTERSON .ENGINEERING tafQllfMCrOl:»N. _,.. IMI~ PJOI:....., IM;ISe,MU Title Job#: Description .... AT FIRE PLACED Page : 2 Date: 20 SEP 2017 RetalnPro (c) 1987-2016, Build 11.16.11.12 License : KW-06058766 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 License To: PATTERSON ENGINEERING l Footing Dimensions & Strengths Toe Width = 0.75 ft Heel Width = 1.75 Total Footing Width 2.50 Footing Thickness = 15.00 in Key Width 0.00 in Key Depth 0.00 in Key Distance from Toe 0.00 ft fc = 2,500 psi Fy = 60,000 psi 150.00 pcf Footing Concrete Density Min. As % Cover@ Top 2.00 = 0.0018 @ Btm.= 3.00 in • Q ooting Design Results • I2l:. ~ Factored Pressure = 1,848 0 psf Mu': Upward 451 1 ft-# Mu': Downward = 167 229 ft-# Mu: Design = 284 229 ft-# Actual 1-Way Shear 5.88 2.37 psi Allow 1-Way Shear 75.00 75.00 psi Toe Reinforcing # 4@ 16.00 in Heel Reinforcing = # 4 @ 16.00 in Key Reinforcing = None Spec'd Other Acceptable Sizes & Spacings Toe: Not req'd: Mu< phi*5*Iambda*sqrt(fc)*Sm Heel: Not req'd: Mu < phi*5*Iambda*sqrt(fc)*Sm Key: No key defined Min footing T&S reinf Area Min footing T&S reinf Area per foot If one layer of horizontal bars: #4@ 7.41 in #5@ 11.48 in #6@ 16.30 in 0.81 in2 0.32 in2 1ft If two layers of horizontal bars: #4@ 14.81 in #5@22.96 in #6@32.59 in l Summary of Overturning & Resisting Forces & Moments ..... OVERTURNING ..... ..... RESISTING ..... Force Distance Moment Item Heel Active Pressure Surcharge over Heel Surcharge Over Toe Adjacent Footing Load = Added Lateral Load Load @ Stem Above Soil = Seismic Stem Self Wt Total Resisting/Overturning Ratio lbs ft ft-# 237.7 1.08 257.5 40.3 125.0 402.9 4.75 3.75 O.T.M. 191.3 468.7 917.5 Vertical Loads used for Soil Pressure = 1.87 1,253.8 lbs Soil Over Heel Sloped Soil Over Heel = Surcharge Over Heel Adjacent Footing Load Axial Dead Load on Stem = • Axial Live Load on Stem = Soil Over Toe Surcharge Over Toe Stem Weight(s) = Earth@ Stem Transition~= Footing Weight Key Weight Vert. Component Force Distance lbs ft 165.0 620.0 468.8 2.13 0.38 1.25 1.25 Moment ft-# 350.6 775.0 585.9 Total= 1,253.8 lbs R.M.= 1,711 .6 If seismic is included, the OTM and sliding ratios be 1.1 per section 1807.2.3of lBC 2009or lBC 201 Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance. Tilt I * Axial live load NOT included in total displayed! or used for overturning resistance, but is included for soil pressure ca culation. Horizontal Deflection at Top of wan due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus Horizontal Deft@ Top of Wall (approximate only) 250.0 pci 0.073 in The above catculatioo is not valid if the heel soil bearing pressure exceeds that of the toe because the wall would then tend to rotate into the retained soil, • Page 106 of 108 Page : 2 PATI'ERSON ENGINEERJNG WKIM l'Otr"OI.CIN _., &Ntnr,r,et.:,m PIOL.Ma-~--.MM RetainPro (c) 1987-2016, Build 11.16.11.12 License : KW-06058766 License To : PATTERSON ENGINEERING 12" w/ #4@ 16" Solid Grout #4@16.in @Toe #4@16" @Heel Title FREE-STANDING WA J FIRE PLACE:J Page : 3 Job#: • Dsgnr: Date: 20 SEP 2017 Description .... Cantilevered Retaining Wall I Code: IBC 2015,ACI 318-1~,ACI 530-13 1"-9" 2'-6" lT2 .. • -.3~ 3'-0" 5'-0" 2'-0" 3" Page 107 of 108 Page : 3 PATI'ERSON ENGINEERING MJ(lllltr«C'tftOAllot ... ,. -~ ---,.,_,._...,w .. RetainPro (c) 1987-2016, Build 11.16.11.12 License : KW-06058766 License To : PATTERSON ENGINEERING 22.38psf (Strength-Level) Pp= 507.81# Title FREE-STANDING WALL AT FIRE PLACED Page : 4 Job#: • Dsgnr: Date: 20 SEP 2017 Description .... Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 r 278# 125# Seismic due to stem self weight Page 108of108 Page : 4 STORM WATER POLLUTION PREVENTION NOTES 1. ALL NECESSARY EQUIPMENT AND MATERIALS SHALL BE AVAILABLE ON SITE TO FACILITATE RAPID INSTALLATION OF EROSION AND SEDIMENT CONTROL BMPs WHEN RAIN IS EMINENT. 2. THE OWNER/CONTRACTOR SHALL RESTORE ALL EROSION CONTROL DEVICES TO WORKING ORDER TO THE SATISFACTION OF THE CITY INSPECTOR AFTER EACH RUN-OFF PRODUCING RAINFALL. 3. THE OWNER/CONTRACTOR SHALL INSTALL ADDITIONAL EROSION CONTROL MEASURES AS MAY BE REQUIRED BY THE CITY INSPECTOR DUE TO INCOMPLETE GRADING OPERATIONS OR UNFORESEEN CIRCUMSTANCES WHICH MAY ARISE. 4. ALL REMOVABLE PROTECTIVE DEVICES SHALL BE IN PLACE AT THE END OF EACH WORKING DAY WHEN THE FIVE (5) DAY RAIN PROBABILITY FORECAST EXCEEDS FORTY PECENT ( 40%). SILT AND OTHER DEBRIS SHALL BE REMOVED AFTER EACH RAINFALL. 5. ALL GRAVEL BAGS SHALL CONTAIN 3/4 INCH MINIMUM AGGREGATE. 6. ADEQUATE EROSION AND SEDIMENT CONTROL AND PERIMETER PROTECTION BEST MANAGEMENT PRACTICE MEASURES MUST BE INSTALLED AND MAINTAINED. 7. THE CITY INSPECTOR SHALL HAVE THE AUTHORITY TO ALTER THIS PLAN DURING OR BEFORE CONSTRUCTION AS NEEDED TO ENSURE COMPLIANCE WITH CITY STORM WATER QUALITY REGULATIONS. OWNER'S CERTIFICATE: I UNDERSTAND AND ACKNOWLEDGE THAT I MUST: (1) IMPLEMENT BEST MANAGEMENT PRACTICES (BMPS) DURING CONSTRUCTION ACTIVITIES TO THE MAXIMUM EXTENT PRACTICABLE TO AVOID THE MOBILIZATION OF POLLUTANTS SUCH AS SEDIMENT AND TO AVOID THE EXPOSURE OF STORM WATER TO CONSTRUCTION RELATED POLLUTANTS; AND (2) ADHERE TO, AND AT ALL TIMES, COMPLY WITH THIS CITY APPROVED TIER 1 CONSTRUCTION SWPPP THROUGHOUT THE DURATION OF THE CONSTRUCTION ACTIVITIES UNTIL THE CONSTRUCTION WORK IS COMPLETE AND APPROVED BY THE CITY OF CARLSBAD. ~ --z:- owfJERSOWti~•s AGENT NAME (PRINT) -s;~r•••"'-•S ~J/VYYNER1S AGENT NAME (SIGNATURE) 1rf?rft 9 DATE E-29 STORM WATER COMPLIANCE FORM TIER 1 CONSTRUCTION SWPPP (: c-i' ~R20 ll-'2 2 33 ~-- BEST MANAGEMENT PRACTICES (BMP) SELECTION TABLE Erosion Cantrel Sediment Control BMPs Tracking Non-Storm Water Waste Management and Materials BMPs Control BMPs Management BMPs Pollution Control BMPs C -C C 0 -0 0 :;::; C C 'O :;::; :;::; "' 0 ., 'O ., 'O "' C u u C C "' E C E C c 0 -:, :, 0 ·c: ,9, 0 0 E ., L L :;::; 'O L ., :::; 'O "' "' L --C :, >, "' "' C <I> L C ., c "'"' "' ~ ·c: '-O" L 0 C Oo 0-., 'a. ·c: -Cu, C L u.J ., 0 Best Management Practice' o'd C 0 CD L 0 ., 0 L C> ., > C :;::; "'., "' L ., 0 C ., -., 0 -.c C f-E UL u "' 'O -.; "' :::; C <I> C (BMP) Description ➔ "' u ., (/) ·o ., "' "' ., "' CD •o C "' C 'O "' ~ C D ::::, ~ -., " :i ~ Q,) -0 0 3' C LO -g~ 'O >, 0"' CC 0 ['l E L u 0 ., :;::; C D CD (/) ·-"' Cl:.,::; :!lo u., 0 0 "' " X :::; D c,, D C ., (le E 0 Nu, u en:;:; ., a, C ~ 8, 0 'a. L-;;: " ., 0 " E -" ~ -:, .a E~ = en = 3 1,_:,::; :;s u ·c ·c: o,_ e "' -'O .C C ., u.. u L " :, 'O ·-., ·-'O C 0 L 0 -" 'O 0 0 ---C. 'o ., L-.Q L .a 0 ., u ·5 ~ 0 ·-0 Q> L " u --0 L 0 -" 0 ~ u C 00 0 "' -o -.c " -o -0 = C ·-C ., ~ 0 L 0 ., .c .a L -0 0 -L .Bo OL 0 9-0 o_ 0 C. 0 oo Vi in c:: VJ C ;;: o,_ ., --C> u.J D (/) u C> (/) > (/) (/) o,_ (/) (le o,_ 0 o,_ >U :::; (/) :::; (/) (/) u (/) :::; CASQA Designation ---,) r---00 0, ..., v "' r---00 a N ..., r---00 N ..., v "' ' "' ' I I I I I I I I I I I I I I I I I I I I I u u u u u.J u.J u.J u.J u.J u.J u.J u.J (le (le (/) (/) (/) (/) i i i i i Construction Activity u.J u.J u.J u.J (/) (/) (/) (/) (/) (/) (/) (/) f-f-z z z z Grodina/Soil Disturbance ✓ Trench inn /Excavation V ✓ ✓ ✓ Stockpilinq Drill in a /Borina v Concrete/Asphalt Sawcuttinq ✓ V V V ✓ Concrete Flatwork v ✓ ✓ V Paving V Conduit/Pioe Installation ✓ v V V V Stucco/Mortar Work ..... ✓ y' (/ v Waste Disposal ✓ ✓ v/ / Staqina/Lay Down Area Eauioment Maintenance and Fuelina Hazardous Substance Use/Storoqe Dewaterinq Site Access Across Dirt Other /list): Instructions: 1. Check the box to the left of all applicable construct on activity (first column) expected to occur during construction. 2. Located along the top of the BMP Table is a list of BMP's with it's corresponding California Stormwater Quality Association (CASQA) designation number. Choose one or more BMPs you intend to use during construction from the list. Check the box where the chosen activity row intersects with the BMP column. 3. Refer to the CASQA construction handbook for information and details of the chosen BMPs and how to apply them to the project. PROJECT INFORMATION Site Address: 1-515' Ci i-¾;G,ou.., ;);2,-l\ic Assessor's Parcel Number: '2.06 i90 170C Emergency Contact: Name: 5, EV B0 Th<>MA 5 24 Hour Phone: lg ;t'., \ ~ 7 B (c I 4 G Construction Threat to Storm Water Quality (Che~~ ~DIUM □LOW ., -"' 0 ;;: -C "' ., :, E 0 ., ~ "' oO NC oo :r: :::; "' I i ., -"' o-;;:c ., " E -., ~ "' U 0 CC O O u:::e 00 I i Page 1 of 1 REV 02/16 Building Permit Finaled Revision Permit Print Date: 07/31/2023 Job Address: 2575 GLASGOW DR, CARLSBAD, CA 92010-5602 Permit No: Status: (city of Carlsbad PREV2019-0025 Closed -Finaled Permit Type: BLDG-Permit Revision Work Class: Residential Permit Revision Parcel#: 2081901700 Valuation: $0.00 Occupancy Group: #of Dwelling Units: Bedrooms: Bathrooms: Occupant Load: Code Edition: Sprinkled: Project Title: Track#: Lot#: Project#: Plan#: Construction Type: Orig. Plan Check#: CBR2017-2233 Plan Check#: Description: DESAI: EXTEND BEDROOM OVER PATIO WITH A BALCONY Applicant: IVAN LOPEZ 9466 BLACK MOUNTAIN RD, # 210 SAN DIEGO, CA 92126-4550 (858) 779-1225 FEE BUILDING PLAN CHECK REVISION ADMIN FEE MANUAL BUILDING PLAN CHECK FEE Total Fees: $260.00 Total Payments To Date: Building Division $260.00 Applied: 02/01/2019 Issued: 04/29/2019 Fina led Close Out: 07/31/2023 Final Inspection: INSPECTOR: Contractor: ECO MINDED SOLUTIONS INC 9530 PADGETT ST, # STE 109 SAN DIEGO, CA 92126-4449 (858) 779-1225 Balance Due: AMOUNT $35.00 $225.00 $0.00 Page 1 of 1 1635 Faraday Avenue, Carlsbad CA 92008-7314 I 442-339-2719 I 760-602-8560 f I www.carlsbadca.gov (city of Carlsbad PLAN CHECK REVISION OR DEFERRED SUBMITTAL APPLICATION Development Services Building Division 1635 Faraday Avenue 760-602-2719 www.carlsbadca.gov B-15 -p~, ..\--J:\c-C, B (2. 2-<> i -, -+{3fr/.2 :;i s "5 Original Plan Check NumberCJ,R2PO-223 ~-Plan Revision Number fc.-,,rao LC( -Dtia6 Project Address L5 7,S-0 lA 5 01'.)W .02... . General Scope of Revision/Deferred Submittal: C;Jcft:JJI) v?S71:l-r,(J /3c'-.()~ A-f)j) tz//-lt;-t>IV i /N lrEu t>F &oe 45 Ot:1c1',v.1,11y f)ESo:j;vE(} CONTACT INFORMATION: Name t?J?AP \6:,st-1 Phone "t<:;c3-j/7-S::28"3' Fax~------ Address 1'/U'& f3!4Ct! /f/lo-UN/n.,,_, /J/Z' City 54-N ])fi.~O Zip 7'z ( C.0 Email Address brnd ~ ec.011'1' nded&;, lu+i ons. Com Original plans prepared by an architect or engineer, revisions must be signed & stamped by that person. 1 . Elements revised: &j Plans ~ Calculations D Soils D Energy D Other 2. Describe revisions in detail . c-: To Ct,M1NA-i-£-RoDF" 1----1 4. Does this revision, in any way, alter the exterior of the project? 5. Does this revision add ANY new floor area(s)? gj. Yes 6. Does this revision affect any fire related issues? D Yes 7. Is this a complete set? D Yes ~ No .e7$'Signature ~--- [2f.Yes 0 No iS4 No 3. list page(s) where each revision is shown 0 No Date I ) ~l ( 1 CJ 1635 Faraday Avenue. Carlsbad. CA 92008 Ph: 760-602-2719 Fax: 760-602-8558 Email: building@carlsbadca.gov www.carlsbadca.gov