HomeMy WebLinkAboutSUP 96-10; RANCHO CARLSBAD; HYDROLOGIC AND HYDRAULIC STUDIES; 1998-06-30-• --• -...
..
\, ... '
-f..: ... ; t:
.· ..
~ · .. -
.... .. .. --.. .. ..
RANCHO CARLSBAD CHANNEL & BASIN PROJECT
(Job Number 13182)
June 30, 1998
Prepared for:
G.it)' of.~irlsbad
207S Las Palmas Drive
Carlsbad, California 92009-1576
Dennis . • • g, M.S.
R.C.E. #32838
Exp. 6/02
Prepared By:
Rick Engineering Company
Water Resources Division
5620 Friars Road
S'.:111 Di~go. California 921111-2596
·,;19\ "91,.Ji'71'7 ,,.,, I -v, .. ,
,. ..
•
.. ,,... Introduction
.. .. ..
.. ..
-.. --
..
-
..
... .. ..
.. .. ..
.. ..
-
'Ibis report bas been pzepared to summarize the hydrologic and hydraulic studies conducted
by Rick Engineering Cnmpany for the City of Carlsbad as part of the ·Rancho Carlsbad CbanMI and
Basin Project. Rancbc, Carlsbad Mobile Home Padt (RCMHP) is located north of El Camino Real
midway betwan Collep Boulevard and Tamarack Avenue. See the Vicinity Map on tho m,xt paae.
RCMHP contains portions of both Agua Hedionda and Calaveras~-Agua Hedionda Creek
flows westaly tbmup tho soutbem portionofR.CMHP. Calawras Creek flows aouthwetterly along
the northern property bom)dary. Calavaaa Creek conflumcea with Apa Hcdioocla Cmek within
RCMHP app?mmately 300 feet upstn,am of Pl Camjno Hal. TbePedenl Pmeqpmcy Manapmmt .
Agency (FBMA) Flood Insurance Rate Map (FIRM) shows that a large portion of R.CMHP is
imJndatecf by 11M, JOO-year storm. Seo die FIRM in Map Pocbt 1. The purpose of tllll study is to
provide recommendations for miraimizina the 100..year tloodiq in RCMHP. These
recommmidationB include upsueam datmtion basins to decreue 11u, peak flow and OIHdte creek
improvements to increase the meek capadtios.
Rydrolopc Methodoloo
Hydrologlc analyses were prepared to determine the 100-yearpeak discharge within RCMHP
and to analyze proposed detention scenarios. Two hydrologic analyses using the U. S. Army Corpi
of Engineers' HBC-I flood hydrograph program are .included in this report. The first analysi1
modeled the existing detention facilities and ultimate development Ultimate development was
assumed in order to account for the rnexhn11111 anticipated discharge in the watershed. The results
of the first analysis confirmed that the creeks in RCMHP are inadequate to convey the 100-year
Prcpan:clBy:
Rick EnatGCerina Company• Wab!r Raoutca Division 1 DCB:MDL:emn,Rcport/J-l31111.00l
07/0l/91
... .. ..
111 • stonn. Therefore, additional analyses were performed in order to study detention scenarios. The
;J.
,.
11111
..
Ill
...
Ill ..
Ill .. ..
.. (!. ... ..
111111 ..
..
... ... .. ..
,.
..
-..
HEC-1 analysis containing the most desirable detention scenario is included in this report and is
based on the existing and four proposed detention facilities and ultimate development within the
entire watershed. The ffOC.1 input and methodology are discussed below. The HBC-I results are
discussed in the following section.
Prior to preparing the HBC-1 input, previous studies (listed in "Rcfemices'') for RCMHP
were reviewr.d and site visits were performed. The site visit objectives were to verify the watershed
boundm:y and major flow paths of both Aaua Hcdionda and Calaveras Creeks, detenninc existing
detention locatlons, and review proposed ~tion locatiom. Prior to the site.viaits, the watenhed
boundm:y and flow paths were delineat.ecl on the United States Geological Survey's (USGS)
quadrangle maps. The watcrihed was divided into sub-basins in. order to obtain peak flows at
existing and proposed detmtion facility locations and at locations listed in the currmt Flood
Insurance· Study. The watershed boundmy, flow paths, and sub-basin boundaries were vsified
during the site visits and adjusted appropriately. See Map Pocket 2 for the RCMHP watershed
boundm:y map .
During the site_ visits, existing detention facilities such as dams and road emhankmcnta were
noted. Two dams exist within the RCMHP watershed: Calaveras and Squires. Of these two, only
Calaveras dam provides significant detention. It is located within Calaveras Creek and detains the
upstream creek flows. On the other band, Squires Dam is located at the upper end of a drainage
basin and provides minimal detention. The plans for Calaveras Dam were obtained from the
Division of Safety of Dams (DSOD) and the outlet works and storage capacity were modeled in the
hydrologic analyses.
Prcp~By:
Rick Engineering Company • W~ Rcso11rces Division 3 DCB:MDL:cmn.'Rcpon/J•l3182.001
07/0li93
-..
•
·r• -llr, -1111 -• .. -... .. -.. -..
·1•
•: -... .. ...
... ... -~ -...
... ...
...
Ill • .. ..
... ; ..
Furthermore, the following road embankments were identified as potential existing detention
facilities: Business Park Drive (south of Park Center Drive), Sycamore Avenue (north of Grand
A venue), Shadowridge Drive (north of Antiqua Drive), Melrose Drive (north of Cannon Road). and
Melrose Drive (south of Aspen Way). As-built plans for these road crossings were obtained ftom
the appropriate agencies. The culverts and storage capacities of the Sycamore A venue, Sbadowridge
Drive, and Melrose Drive (Cannon Road) facilities were modeled in the hydrologic analyses. The
B.usiness Park l)rive and_~sc· Drive'(Aspen Way)·cn,~ werc.~tmodelcd becatssc ·tha
culverts at these locations are large enough to convey most of the upstream flows with minimal
detention.
Two main criteria were considered in selecting potential proposed detention basin sites.
First, the facilities listed in the Master Drainage Plan were considered. Second, existing or proposed
road crossings were considered. Detention basin construction at road crossings provides several
benefits. Road crossings create a natural location for detention. They are cost-etfective because the
road embankment is used for detention. They do not create a significant increase in environmental
impacts .
The above-mentioned sub-basins and detention facilities were modeled in the HEC-1
program. The program parameters include sub-basin area, rainfall distribution, lag time, and curve
number. These parameters were detenniDed as follows: The sub-basin area was obtained from the
USGS watershed boundary map. The rainfall distribution was based on storm duration and
frequency, as well as the sub-basin's geographic locatio~ The lag time was based on sub-basin
characteristics such as topography, basin shape, vegetative cover, existing development, and stonn
duration. Both rainfall distribution and lag time were generated by utilizing the criteria outlined in
PrepllRd By:
Rick Engineering C,1mpany • W:it.:r Resources Division 4 DCB:MDL:.:m111Report1J-l3182.O01
07/01,98
..
,.
111 ,. the County of San Diego Hydrology Manual. Curve numbers are a function of land use and soil -Ill .. ..
type. The land use coverages were obtained from the City of Carlsbad's Geographic Information
System (GIS). The land use was revised slightly in three locations according to a December 12, 1997
exhibit from the City of Carlsbad. In open space areas, land use was based on vegetatlve cover
estimates obtahied from the Soil Conservation Service's (SCS) San Diego County ~ll lnterpret~tl~n
. ~ .
Study Ground Cover maps, as well as field observatiODS. The soil type coverages are dtJI~ on ,
the SCS's 5'.oil Survey maps~ These ~g~ were. obtained from~ San .Jiiego Assoc~on· of • . . ~ ' . . .
'
Oovc:mments (SANDAG) in digital format. Once the land use an4 soil~-~ established, the
. :/·.~-:;_,:_:~ .. < ·:/ ,
curve numbers wen then calculated using the method o~ _bl &\~Diego County Hydrology
Manual.
; -' .. ;· .
The curve number, lag time, rainfall distn1rution, uid'erea.for each sub-basin wae gmezated . . ..
and input into the HEC-1 program. The HBC-I program then computed tha ninoff hydrograph and
peak discharge for each sub-basin. The ~ detention facilities were modeled in the first HBC-1
analysis, while both existing and proposed detention facilities were modeled in the second HEC-1
analysis.
Hydrologlc Reaults
The results of the two aforementioned HEC-1 analyses for RCMHP are discussed below.
For the first HEC-1 analysis, which modeled the existing detention facilities and ultimate
devel~ent, both six-and 24-hour, 100-year storms were simulated. The 24-bour storm resulted
in higher peak flow discharges at RCMHP for both creeks, thus it was used in all subsequent
analyses.
pjqiarcd a,:
Ride Eoslnoert111 Company • Wat.:r RW>un:es OiYisiM 5 DCB:MDL:"mn/Report/J-11182.001
07,'01/98
.. .. -
•. Appendix 1 contains the 100-year, 24-hour HBC-1 analvsis for the RCMHP watershed with the
•' 'I
-.. .. .. .. .. .. .. -.. .. ..
... -... . ...
...
' ..
... ...
1111
-..
..
..
existing detention facilities and ultimate development
The second HEC-1 analysis modeled both existing and proposed detention facilities and
ultimate development. Several proposed detention scenarios were invcltigated and it was
detcnnined that the most feasible scenario wu the combination of four detention basins. all located
at proposed road crossings. Two of tho JB'OPOSecl &=ntion facni~ are listed in the 1994 Master
Drainap Plan as Detention Basins BJB:-~ ~-.1-·faciliti~-~:(~ immediately upstream
ofRCMHP in Calaveru Creek. Both of~-~~ 1-im ~-desiped u flow-by facilities .
' • ~-. '• • •. • . . ' .. . ;
A flow-by famllty cJetains the higher~ flows, ~ ~k,~ lower flows to pass tbroup tho
basin rdalively und&1alned. The otl,s..% ~ ~ .i-e';;,... llplll-. ill Ap HaliaDla
~-.• ... ;· . . . • . .; ' .. . . .. : . :. . Creek at tho proposed road extcmions of~ Driw (IOiith.of Aspen Way) and Faraday Avenue.
• • 0 0: ~ ~ ,: •• I• • I o • ',: • o 0
Both of the Apa Hedionda detention~'.~ ft~•~: iyj,el wbcro all of the creek flow i1 . '. . . ·. . .... : . . .• ' . ·: :· •. • . . .
dctainad. All pmpoaed detention fBilitlcs·were d•pd to 1;le outside DSOD'sjurisctictional limits,
•, • . .: . .
i.e., leas than SO acre-feet of storap vol~ and lesa ~ 25 feet hip. Appendix 2 contains the
HEC-1 analysis of the 100-year, 24-bour stoma for the llCMHP watcrsbcd with both existing and
proposed detention facilities and ultimate development
Tablo I summarizes the results of both HEC-1 analyse•. The table shows that with the
proposed detention basina. the peak discharge at RCMHP decreased by approximately 1 O to 15
percent. Preliminary design of the proposed detention facilities are discussed below.
Prq,arc:d By: . .
Rick Enpnccring Company • Wata ResoulCCS D1vaslon 6 OCB:MDL:emn.hport/J•lllll.001
07/01,'91
.. -
--
.. .. .. .. -.. ..
... ..
... ?·~· •• .. -,..
~ •• 7• ,~: • .. •f. ·, . ..... :..;_.
;,'. -~--
... -_._ .. -1:.
-.. "' a.•·. ~_..,; .
...... '
.(I.
~--'.~;:j~-
. ,,'>;."-•·. ·,~~•:; .... :r:·1
~-·\:;
... ;_ ,· .
.. • I\:.· ... ,. . ~ , • ... r
Table 1 .
Comparison of 100-year, 24 .. hour Peak Plow DischUI• with Exlatin1 Detention FacWties
and with Both Emtln.1 and Proposed Detentloa l'adlltles
lJltimate Dneloplllent
Rancho Carllbad Mtbtle Rome Park
--fl!
.,~ .:t(€_;~~ ·"7"~3"'~-njT'~'t,;it'": ~-"'~ ~,,,::1·,n·-;~tr.,..--t•'r4 ~~-,.,.~f>✓-\Jt,lj~-•~1 ~ ,;+,-.il'.fl'1 1~-, <~" (~ :~;\•'_;:':~f1{i1 r.•,;-: ~/~If.:,••:\ \"•~•>•i~~ ,✓=-.~
l <·,.:,,,:::"·'/;';t,'4't·t·,;~'"'"'··~,,--'·:,. __ •.•<•;_;, '».;.'. ~,,,,. ,•' -~.¥j·11 ,.r(.~ ,~ :;· 'I•~]~,•' ;~• ,·" :,❖t? '~ti1 ,~•;ir;, ~.~,._l •",: ~( 1 ,,,, ~ ~• 'ilf,...:¥, v· ' .. . ·•:»·,. tff', . , .. ,, , ,i;fL ·I -'1(··, ,., , , .:..J ··,:· ---•,,;,, ,, ' ; , • ,, ~ ~.. i;..,, .,, ;::.., .(; ¥. :., •... _,~ti+({'t'. ,;;. ~ ~'';. . w' ..... ·,,, . ♦ -:,· .. " ~.-::-;~-• $ ,.:-:~:£; • ./1 / • 1 ) I ; , .. ~ ~ / ~•r L~.;:~ ;A / ;'!,if..! j ~ ; I ;> •~ 1 t , i' ~ ; ' • • l J ~ /' • •• _.. t ' A
, \< -~~-'IL;,;;. ·'·~"-'·· .-: ',:S:..,,1 •• ,, )it.:., itiM, lLJ&, • .,,,40,•,b~.:_,,_;,,~. . ,, ;-,,--,., .. ,~1_,._,Jitil
CaJavaasCnck 1.910 1,550
Apa·~(upscieam·of .,
8;050
.. ,
' ·1,600-
conflumcc with CalavaasCreek)
Apa Hedionda (downstream of 9,950 8,970
confluence with CalaverasCreet)
• cti -cubic feet per second
... Pl'lplnll&y: 1 DCB:MDL:.mw'RcportlJ-13112.001
07/01/91 ·. , :_ . Rick Bnglaarina Company -Waler Resources Division ..
..
--.. -
.. -.. .. .. ..
... ..
...
,..
....
...
.... -' ...
.. ..
Preliminary designs were performed for each proposed detention facility to determine the
outlet works required to achi_eve maximum detention, while maintaining the height and storage
volume below DSOD jurisdictional limits. The preliminary design of each detention facility and the
results for each detention facility design are described below.
The most upstream proposed detention facility in Agua Hedionda Creek is at Melrose Drive .
This mcility will be a flow-throup detention basin. Melrose Drive rum north-south and cuuently
en,da just ~uth of Aspen Way ·near'~ ·Carlsbad Co~ bo~ .. Future ·pi.us call 'for the
extension of Melrose Drive to Palomar Airport Road. An existing reinforced concrete box (RCB)
culvert conveys flow under Melrose Drrve and is 10 feet wide by 7 feet high. The existing Melrose
Drive mnbankment provides minima) detention because of the RCB 's large capacity. Hydrologic
calculations show that a 36-inch diameter opetdng at this location will detain the peak ftow discharge
from approximately 450 cubic feet per second (cfs) to 180 cfs. There are two alternatives for
creating the 36-inch openina. One is to replace the existing culvert with a 36-inch RCP and the other
is to construet a concrete burler at the inlet with a 36-inch diameter opening. The resultant storage
volume and ponded water surface elevation (WSBL) with the new outlet works will be
approximately 41 acre-feet and 329 feet, respectively. This will create an inundation area of
approximately seven acres. The estimated outlet velocities for the first and second alternative will
be 2S and 13 feet per second (fps), respectively. The velocity under the first alternative is greater
than the maximum desired velocity of 20 fps. The velocity calculation assumed that the proposed
36-inch RCP was constructed at the slope of the existing culvert, which is one percent. If this
alternative is selected, the final culvert design should analyze methods for reducing the outlet
.. • velocity, such as placing the culvert at a flatter slope or using multiple small diameter culverts. A
... ... .. ..
Pn:p~By:
Rick En1inurin1 Company• Water R,sourc.:s Division 8 DCB:MDL:emntReponlJ•I J 112.00 I
Cl7i01/98
.. ... ..
• d.conceptual plan for the second alternative is included in Map Pocket 3. --.. .. .. ..
-.. -... .. ...
,
The other detention facility proposed for Agua Hedionda Creek is the Faraday Avenue flow-
through detention basin. Currently, Faraday Avenue nins east-west end ends at Orion Street. The
extension of Faraday Avenue to Park Center Drive in the city of Vista is planned as part of Carlsbad
Oaks North Business Park. The hydrologic calculations and preliminary design in this report were
based on the proposed embankment and topographic information shown on the Tentative Map for
c.Isbad'Qaks North B~ss Park.by O'l)ay Co11$11tants, da,ted ~ 6, 1998. ~ cal~ons
• I • • '"
show that a single 6-foot wide by 7-foot high RCB culvert will detain appr<OOrnately 49 acre feet of
storage volume and will pond up to an elevation of 240 feet. The inundation area will be
approximately seven acres. The 100-year peak discharge of 1,0S0 d's entering the detention basin
•
will be detained down to approximately 780 cfs. The apprcmmatc, ~a.lculated outlet velocity will be ,. .
.._( • 19 fps. A conceptual plan for this detention facility is included in Map Pocket 4.
,. ...
...
I ...
...
' ...
....
' ...
~ ... .. ..
,.. ..
...
~ .. ..
•
The two proposed detention facilities in Calaveras Creek are located just upstream of
RCMHP and were designed as tlow-by basins. The first facility, Detention Basin BJB, is located
north of RCMHP at the proposed College Road ex.tension and west of the proposed Cannon Road
extension. College Boulevard currently ends at El Camino Real. North of RC:MHP, the proposed
College Boulevard extension runs roughly east-west. Collep Boulevard intersects the proposed
Cannon Road extension at the northeast comer of RCMHP. Cannon Road currently ends east of
Interstate S at Paseo Del Norte. The proposed Cannon Road extension alignment will be parallel to
Calaveras Creek and immediately north of RCMHP. The detention buin design consists of an
earthen embankment, outlet works, and a small berm. The embankment will have a l 0-foot top
width and a 76-foot crest elevation with 2:1 (borizontal:vertical) side slopes. The outlet works
PreplRd By: . . . lllck En1lnecring Company • Water Rcsourcos Dms1on 9 DCB:r.,WL:11mn1Report/J-13l8l.001
07/0l/98
,. .. ..
• .,,. consist of a single 10-foot wide by 7-foot high RCB and a 48-inch RCP. The 48-inch RCP joins the .. ...
... ...
... ..
... ... .. ..
"' ...
... ...
~-• .... (.
,.. ...
...
I ..
....
.....
...
' ...
... ..
,..
....
...
l • ....
.... ... .. -
RCB downstream of the embankment The RCB then extends to Calaveras Creek. An emergency
spillway is also provided. · The small berm will run parallel to the creek for approximately 1.~00 feet .
The berm will have an approximate 74-foot crest elevation, 10-foot top width, 2:1
(horizontal:vertical) side: slopes, and a weir section. The weir section, locat.ed near the embankment,
will allow flow to enter the buin at an approximate WSBL of 73 feet Hydrologic calc:ulations show
that with the outlet wbdcs ~bed above. a storage v~lume of ~ly·49 acre feet will be
• • ·, • • , • : • I • : •
attahx:cl The resul1ant ponded WSEL will be approximately 75 feet end the inundation area will be
app1oximately t 5 acres. The peak discharge of 1,570 cfs entering the basin will be detained down
to 1,200 cls. Tbe approximate outlet velocity will be 19 fpl for the RCB. Sec Map Pocket S for a
copy of the conceptual design of Detention Basin BJB. .
The other Calavoras Creek detention facility, Detention Basin BJ, is located northeast of
RCMHP at the proposed. College Boulevard extcmion and eaat of the proposed Cannon Road
extension. The earthen embankment will have a crest elevation of approximately 81 feet. a top width
of 10 feet, and 2: 1 side slopes. An emergency spillway will be provided. Appro10rnately 600 feet of
channel improvements upstream of the proposed emb~ are necessary. 1be channel
improvements include grading the creek as follows: Trapezoidal-shaped grass,-lined channel with
a 3-foot bottom width, 4-foot depth, and 2: 1 side slopes. The hydrologic calculations showed that
a 6-foot wide by 3-foot high RCS would detain the peak flow of 670 cfs down to approximately 3S0
cfs. The inundation area is approximately eight acres and the ponded WSBL is approximately 76
feet. The detention basin stores approximately 48 acre feet of water. The calculated outlet velocity
will be approximately 19 fps. See Map Pocket 6 for the conceptual plans for Detention Basin BJ .
Prcp~dBy:
Rick Enainecring COC'Apimy • Wa1&r RcsourtCS Division 10 DCB:MDL:cma, Rq,ort/J •ll 182.001
07/01/98
..
Ila
• .. ,-(). .. ..
... .. .. ... .. ..
... .. .. ...
... ...
,.
,. ..
,.
....
....
' ...
...
....
...
....
... ...
...
' ...
,.. ~. ,. ...
... ..
As discussed above, with the addition of the proposed detention facilities, the peak disci.carge
at RCMHP is decreased by approximately 10 to l S percent. All four of the proposed detention
facilities were dmigned to fall below DSOD'sjurisdictional limits. Also, all the facilities are located
at existing or proposed road crossings and at least one foot of freeboard is maintained at the road
embankments. The resulu are summarized in Table 2, which contains results such as outlet works,
velocity, peak flow discharge into and out of the basin (Q.. and Q.), storage vo~. ponded WSEL,
al)d-surfacc area.
Prepared By:
Ric:k En1lnccrln& Compml)' • WGll:r Rcsourc:cs Division 11 DCB:MDL:cmn,Report/J• ll I S2.IJ01
07/01,98
I f I ,,--,-. r I
Facility
Niune
Melrose
(south of
Aspen Way)
Faraday
BJB
BJ
Pr.:p.ircd By:
I I I 1 f 1 f 1 ,-I ,. ~
r 1 1,1 ' 1 fl 1111 fl fl f It' I
(&,ds
450
l,0S0
1,560
670
Tahle2
Summary of Pn,poaed Det.eation Jaeilitiet
Rancho Carlabad ~••vi wlBuia Project
100-ycar, 24--laoar Storm Eveat
:-q;;;;~;'.Ctl:/,('~,,,,,-110 •• 1!!!!!ffl!~:J'!/'•:Cr•s{,h,:S,
>-•• -_ ,:\_:' __ _.:·/ '.-'.~~J_?; ~~.iilf~:·:~~~}~:~: ~: ~~:-~ktr;: ~--·:v.~IMYi'"-,::
180
780
1,200
350
3611 RCP
6'x7'RCB
1-Uh7'RCB
&48"RCP
6'x3'RCB
329
240
75
76
41 7
49 7
49 1S
48 8
13 (Alt. 2)
25 (Alt. I)
19
19
19
Rick 1:AgiDccring eompany-Wa1er lwoun:u DMsioa 12
DCB:~llll2JIOl
07AH'91
I I
.. .. ..
.. -• Hydraulics -... .. .. ..
111111
11111
11111 .. ...
...
...
.. ...
...
,..
....
,.. ... ,
...
..
..
...
11wl
Hydraulic analyses were perfonned to determine the amount of silt removal and re-grading
requiied to minimize the 100-year flooding at RCMHP. In order to effectively analyu flood levels
in both Agua Hedionda and Calaveras Creeks, the U.S. Anny Corps of Engineers HBC-2 Water
Surface Profiles program w~ used. The program is intended for ~nlating WSELs for steady
gradually varied flow in natural or man-made cbanuels. The effects of various obstructions such as
bridges and culverts may be considered in ~e computations. Tho program also bu capabilities
available for assessins the effects of channel improv~ts .
The input parameters were based on channel and overbank roughnesses, 100-year dischar&e,
downstJeam WSEL, and topography. The channel and overbank: ro1tghnesses wen, determined by
field observations. The 100-year discharge was obtained from the HBC I analysis in Appendix 2
modeling both existing and proposed detention facilities. The downstream WSBL was estimated
in the HEC-2 analysis by using the slope-area method. FEMA-approved HEC-2 CIOSl-sections for
the area downstream of the site were included in the analysis. The 100-ycar discharge for the
downstream area waa obtained using the split-flow analysis from the Flood Insurance Study.
The existing topography was based on June, 199S topographic maps by Manitou
Engineering. The topography was used to prepare cross-sections of both creeks, as well as tho
overbank areas. Since prior studies showed that the creeks were undez.capacity, the original grading
plans for RCMHP were obtained and modeled in the HEC-2 analysis by using the channel
improvement option. The original grading plans were prepared October 15, 1969 and approved by
the City on March 24, 1971. The original design consisted of a trapezoidal channel with an overall
length of approximately 1.2 miles and included both Agua Hcdionda and Calaveras Creeks within
Prcplll'Cd By:
Rick Enginc:cring C.ompany • W111cr Resources Division 13 DCB:MDL:em111Rcport1J-1.3\82.UOI
U7/0l,98
... .. ..
.. ,.,. RCMHP. The side slopes were 2:1 (horizontal:vertical) 4!1ld the approximate bed slopes were 0.1 s ..
... .. .. ... .. ...
... ...
...
.. ...
...
...
111W
.....
... ... ..
.. ... ..
and 0.30 petCCDt in Agua Hedionda Creek and Calaveras Creek, respectively. The bottom width of
Agua Hcdionda Creek varied from SB feet at the Bl Cam!oo Real bridge to 44 ~ upstream of the
confluence. The approximate cbannel depth was 1 l.S feet. The bottom width and channel depth of
Calaveras Creek were four feet and nine feet, rcspcctively .
A HEC-2 amdysis was performed based on 1m oriainal design. The HEC-2 results showed
that a large portion of RCMHP remained inundated by the 100-ycar flood. In order to increase
r-JJaonel capacity, additional channel improvements were modeled in the HBC-2 analysis for the
downstream sections of both crccb. At the Bl~ Real bridge. the bottom width was \Vldcmccl
to 87 feet. Within tho next 1,400 feet upstream of the bridge, the bottom width tbm tapcnd down
to the original design bottom width of 44 feot in Agua Hedionda Creek and four feet in Calaveras
Creek.
. .
The results of the hydraulic study are cnntainecl bl Appendix 3. The xcsults are also depicted
on the RCMBP 100-year Floodplain Map in Map Pock.et 7. The map show& that with the proposed
detention facilities and chaDDcl improvements discwmed above, a majority of RCMHP will be
outside of the 100-year floodplain.
Maintenance Plaa
This Maintmmce Plan contains maintenance requirements for Aqua Hcdiondaand Calaveras
Creek within RCMHP. This plan also contains requiremems for the four upstream detention basins .
It is vital that the creeks and detention basins be maintained on a regular basis to ensure an
._ .• acceptable level of flood protection for RCMHP. It is recommended that the maintenance described .. ... .. ...
PrcpucdBy:
Rldc Eql111SCring Compay -Water Re!OllrClU Division 14 DCB:MOL;emiilRqiortiJ-13 lli.001
01/01/fl.
...
1111 ..
1111 (. below be performed annually prior to the rainy season and after any storm event exceeding the 10--...
111111
year peak discharge .
Aqua Hettionda and Calaveras Creek must be maintained to prevent adverse siltation in each
creek. Siltation will reduce the flow capacity of the creeks and increase the likelihood of immdation
.. within the mobile home park. The first step is to devise a system for monitoring the silt level in each
,,. creek. This can be done using metal posts with markinp placed six inches apart. The posts should
Iii.
,,. ..
... ...
... ...
... ...
,..
.... ..
... ..
1111
..
....
1111 -
be placed vertically_ in each ~ • intervals not cxceediq SO~ feet. The po~ should· extend at
' . · .
least two feet above the creek bed and must be embedded deep enough so that they will not be
moved by large creek flows. A geotecbnical engineer should be consulted for tho required
embedment depth. Once the posts are installed, the silt level can be easily monitored by
maintenance personnel. As the silt level reaches one foot. the silt should be removed by
maintenance crews to the design elevations.
The topographic maps have been reviewed to demrmine the siltation that bas occum,d in both
creeks over the past few yems. The design of the creeb within the mobile home park is shown on
the grading plan for RCMHP approved March 24, 1971. The creek bed elevations on the grading
plan served as the base elevations in determining the amount of siltation in each creek. A
comparison of the il'adina plan with a June 1995 topographic map indicates that the silt in Aqua
Hedionda and Calaveras Creek raised the creek beds as much as seven and five feet, respectively .
lbereforc, siltation has occurred in Agua Hedionda and Calaveras Creek. at a rate of up to 0.3 and
0.2 feet per year. Using these rates and an acceptable silt level of one foot indicates that portions of
the creeks could require maintenance approximately once every three to five years. It is important
to point out that this is a rough approximation because the creek siltation will depend on the
Pn:parcu By:
Rick EnJinccriag Company • W:itcr Rcsour"s Division
DCB:MDL:.:mn,'R,:purt/1-13182.001
07/Oli91
-.. .. .. . .. ...
...
11111.
.... , ... , ... ... • ... \''
...
II'" ...
•·
Ill'
Ill'
Ill'
1111
frequency and magnitude of future stoml events. It is likely that future storm events will not mimic
past events. Additionally, it is possible that maintenance has been performed on the creek between
1971 and 1995, which would affect the calculated siltation rates .
Mabrtenanco ia also required at each of the four ddmtion basins. Main:tmanc,: will involve
keeping the entrance to each of the detention basin outlet facilities free &om silt. Silt should be
removed fi'om an entmo.ce once the silt level reaches six inches above the entrance's flowline
~. The amo• Of ~~OD, S~ be ~-.to determine ·smco ~ outlet facfflty is a •
• I • • 0 • • • "
known m.e. The silt should be removed • ctista~ of 10 feet upstream of the facilities entrance.
This will bavfl urioirnal en.viroJlmmltal impacts an,1 will restore the capacity of the outlet facility.
The maiataaance st.eps described above are essential for protection of RCMHP. The
,n~ must be pcdbrmed routinely by qualified personnel and a sufficient bw1pt should be
established for the maintenance. If any questions arise d111iDg the maintenance, a professional
enpneet spccia1mna in water resourcea should be contacted .
Environmental llsuea
The environmental issue, associated with the Rancho Carlsbad Channel & Basin Project
have been addressed by the environmental consult.ant. RECON" and are MJtmarizcd below. In
reprds to the on-site channel silt removal and improvemen~ it is likely that no environmental
mitigation will be necessary. In regmds to the four proposed detention facilities, tho direct impacts,
mitiption requirements, and potential indirect environmental impacts are listed by habitat type in
Tables 3, 4, and S, respectively. Direct impacts are from embanlcment construction. As mentioned
above, all of the embankments are within footprints of future roadways. Mitigation requirements
,;;;.;aay:
JUck Bnglnccrin1 Company • Waw llcsourca Division 16 DCB :MDL:GIIIIIIRcporVJ• fl 112.001
07/01/91
.. .. .. .. . ..
11111
....
Ill"'
... ...
,... ...
... ..
[illllll
•
... .. ..
=--------··--·-.. ·---·--· -----·--·--l'rtp;ircJ ll> • ·---·-··--------J)f_'H:.\-ll)I .:smi: Hi:p•'r'.-.1-131 ~::?.111;1
Rick F.n;inccrir.:.: ,;·,,,n;·,11:--\\ ·,1.:r ll.:~"•1r.:•!• llh bi,,n 11·_ 1)1, •J~
..
Ill -R.UNOPF SUNMAR.Y
,.
PU>II IN CUBIC F'EET PBR SBOOND
Ill TIMI IN KOURS, AREA IN SQUARE HILBS .. PV.Y. TIM£ OP .&.VEP.>.m: FI.Off FO:! M!'.l!:!HUM PER.IOD !!MW :-1AXU,'Ul4 Tittlil or .. Ol'DATIOlf STATJOli FLOtl PBU fHtO\Jlt Zt•BOUll 72-HOUlt AR.EA STMJK MAX S'l'AOB .. RYI>ROGRAPH AT BSHJICl .nu. 10.51 1'53. 598. s1,. 4.34 ..
ROUTED TO RTBl:3 270. 10,58 USl, sn. 575. 4 . .t4 404.02 10.58 ..
HYDROGIA1'II A.T BSNDC2 357, 10.00
1111
168. "· "· .ss
2 COMIIINKD AT BC1fr8C2 3043, 10.50 161', "'· f42. 4.81
111111 .. R0UT8D '1'0 a'l'aCJ :1028. 10.51 1'19. ""· ,,o. fi,H us.o, 10.H .. IMJR0CIRAIH AT IISJIIICl 1'9, 10.00 353. 145. uo. 1,18
ill .. t 2 c:0MIIDD AT JIOac:3 HIJ. 10,50 UH. 10,. 11,. '·°'
Ill
1111?' ROtrrED 'l'O RTBC4 ,u,. 10.51 19'1. IOS. 1,,. • 1,07 3151,74 10,51
RVD110CJ11M1K A'r asac, 1H. 10.00 85. 35, 33. .31 .. -2 CCINll!DD AT BCJUC:4 J1'8, 10.50 2052. 140. lot. ,.u .. • IMJR00llUB AT Ml 1102. 10,17 181. 3'3, 349. 2.u .. D1St'ft'C 17H, 10.25 811. "-OU'1'aD TO 3'2. Ht. a.n 3'12.:12 L0.25 ... 2 CXINBJJIID A.T BCloNU ss2,. 10.50 2'31. 1202. 1158. ,.:n ... ;·
ROUTED TO l!.TAH2 5235. 10.75 2ata. 1185. 11U. ,.21 JU.91 10.'75 ,..
> IM)IU)(aAPK AT Ml 511&, 10.00 243. 100. ,,. ,ll ... ~ !,
ROUTED TO DB'TSIW)C) HO. 10,l"I 243. .... 100. "· ,83 351,95 10.17
... IIOUTBD '1'0 RTAK2 157. 10.50 2-ll. 100. "· .13 321.H 10.50 .. HYD'IIOGRAPH AT AK.I 11'1. 10.00 367. 150. LU. 1.41 ...
l COHBINBI> AT Nll-3'BC 6311. 10.58 3489. 14H. 1311. 11.45
!Ill
ltOUT&D TO 1'H2·AH7 6191. 10.,1 3U2. 1426. 1374. U.45 ,88,01 10.6? ..
l!Ylll\~PH AT AHoi i:O. to.co 1%. BO. 7?. .70 ..
11111 ;;.o:.mo TC AH4·11H5 -116. 10.00 1~,. ao. 77. .70 360.27 l•l.00 .. ~t"t::R•:,.;r.;~fn. ;.:t ;J,;S . , ,r.. ; C • •J•J ::~:c . :,·,. i, ••. .. ~-..
II • .............. ~-:: : . .-·~; h , : ',:.,, ,.',t .. . .•.•., _, .. , .... _,, .. _ , .. ... ., .. ..
•. ·-:.~ ,:·~'." . .,· .. , .. · •:· . .. ... . , I ·• • ~ • .. ..
• -2 COMlll~ AT COIGUII 1290. 10.01 liiH, 274, 264. 2.35
• .. ~~ Jl0UTBD '1'0 AB6-'1 126'. 10.25 Ht. 27:1. an. 2,SS 111,7' 10.:as
HYmlOQRAPII AT AHi 17'1. 10.00 n. H. 33. .u • .. ll0IJftD '10 Alll-7 11', 10.00 u. 3'. ll. .u 110.2, 10,00 -llYIJRl0(DtAPII J.T All'J !12, 10.01 240. H. H. 1.12 ...
4 CXllaIIIBD AT CCMIDIS '19,S. 11.51 HSS. . 1131. 1'7'4. 15.2'3
11111
1111 IOlffllD TO All7-Allt 7163, 10.ll t4U. 1131. 17H. 11.u lDJ.tt 10,IJ
• • JllmtQGIIAPIIA"t Nit 500. 10,0I 235, "· 92. 1.00 .. 2 CCMBIIIKD AT aJGID .,,.,. 11,71 ,,11, 1911, 114'. H,U ... 1IOU"1'ID 'J'O AIU-10 717'. 10.,2 "'"'· 1197, uu. u.n -AID.0 JJI, 10.00 1H. ""· u. . .. ..
Ill 2 00N8111m A.'f CDNIIJIS ICl2S, 10,92 4115. 2060, 2002. .... .,
IIOIIDD '1'0 AIU,O·IIOA 1025. 11,DO 4111. HSI, 1ff7. 1'.lt 41,72 11.00 .. ... amaoaauan .. "· u., • 21. 10 . 10. .u
:c• 2 0CNBlDD AT ODNIID '"'· 11.00 1131, 2011. 2007. 17,0G
llYDIOGIIANI AT C1 531, 10.00 24'. 102, "· .17 ..
IGJnD 'l'O DlfflllNll& SH, 10.DO 21,. 102. H. . . ., us.ts 10.00 ..
IIOU'l'SD 'l'O C1-C2 37:1, 10.67 u,. ,,. ,s. .17 2411.02 10,6'1 ...
Ill,, IMBlOORU'II A'I' c:a 15'5, 10.25 761. 311. 100. 2.12
... 2 marnD a.-r CXIN8DIII 11,0. 10,21 912. u1. H5. • l.19
.... JamlD 'l'O DCrCAIA 1H1, 11.00 '1U. HJ. 312. J.s, 211.12 11,00 ... ltOln'8D TO c:a-o 1l13, 11,17 .,.,. 291. 211. J.s, 100.25 11,17
1111111
HmROQIIAPII AT C3 ua. 10.00 20,. as. ea. .12 ,.
2 COMIIJ:IISD AT CDIBII• 1560. u.o, n,. 377. 163. 1.,n ..
IM>ll0GJlM'JI AT Cl 667. 10.0, J15. 1:a,. 12', 1.2,
11111 .. 2 CONBINEI> AT coaura 1196. 10.U 1153. sos. '87. 5,65
... IIOIJTID TO cu-ace: 117&. 11,08 1153. 503, 415, 5,65 46.U 11.01 .. • HYDROGltAPH AT RCC 7). 10.00 ll. 1,. u. .15
•
11111 2 COMBIJIEtl AT COMBINE 1906. u .oa 1183. 511, 491. 5.80
11111 2 t'OMBINID AT COMBINE 99411. 11.00 6011. 2585. 2505. 22.80 -
• .. .. ... .. .. .. .. ..
1111
... ...
,.
I..
... ...
... ...
:,•
...
a,,,.
... ...
...
....
... ..
...
1111 ..
Ill .. .. • -1111111 .. ..
Appendix 2
100-year, 24-hour HEC-1 Analysis for Rancho Carlsbad Mobile Home Park
Ultimate Development with Exi1tin1 and Proposed Detention Basins
(File Name: rccbpr.bcl)
Prepared By:
Rick Engineering Company • Water Resources Division
DCB:MOL:cmn/Rcport/J-13182.001
07/01~8
.. ... JIY1'IDGIWllf AT AM su. 10.00 2'1, lGI. . 10,. .n .. -• 2 00MIDIID AT alNIWII 1052. 10.0I '°'· 2, •. H3. 2,J5
0. ll0UTIJ> TO Dn'llnlA .,,,. 10.13 ,o,. 273. 2153. 2.35 2,0.JJ 10.ll .. --------~---""'--····-... .aun:D 'l'O ... , "'· 11,00 '°'· 27J, HJ, :a.JS 1':L.OI 11.00 .. HDROGP._,.Ar Alli 1,,. 10.00 13, :H . 33, ,Jl ...
IOU'l'D'lO AB1•7 u,. 10.,0 IJ. 1,. 33, .n 1H,H 11,ot .. ,., ,12. 10.e, 240, "· ,., 1.u
11111 •
t CXINll__, A'f CDl9m 7521, 10.n HH. llJl, 17't. 11.:aJ ... ... IOUnD '1'D _,_..., 72H, ID.ti -,,:a. 11H, 1191, 11,:H 1DJ,H 10.,a
... lfflJIOGUIII A'f All 100, 10.0I 2J5, "· ,:a. l,Dt ..
I CIIIIIIIID U aaua ,sa,. ,ll,U H11, 1911. 11'9, :&l.2J ,...
I lm'fD 'ft) Alll•lO , .. ,. u.oo HU. ltM. 1NI, ·,u.a ... . .. ,,.
DmOCIUIII U All10 JJI, H,00 151, , .. H, ·" r-
I I CIIINlnaD A"I 00111DI 75H. 11,N ..,.,. 2110. 2001. H.11 ...
er• ..,.ft Mll·llCA 7111, 11.QI nst. 2111. 11n. 11,H tl,13 11,ot
nmocauR,., aCk !k, u.oe H, io. 11, .11 -2 OQNaXIIID A"I aaaa. HOJ, 11,IO t'712, IHI, 2007, 1'7.0t ...
lffmlOmlU'II ,.., C1 531, 10,IO :au. 102. "· .. ., ...
IIOftlD 'l'O Dll19IIII& !21. l0,00 2t9. 102. ... .. ., us.ts 10.ot ...
.I
lll0U'ftlD m C1•Cl2 312, 10.17 laJI. ••• 91. .17 2u.oa H,'7 ... ... imaocllANU 0 15'1, 1.0.as ,,1. Jll, JOO. 2,"12
... 2 CCIIBIJIBD A'1' 00ll8Da 1191, 10.29 HI. '11. us. J,51 ...
JIOVl'ID TO l)ll'IQU.A 1to1. u.eo , ... 2tJ, H2, J.s, :au.12 11.00 ..
IIOU'1S 'l'O c:a-o 117>, 11.1, 141. :au. Hl, , . ., 100,H 11-17 ..
JMJIOCaAJIIAT a .... 10.00 :aot. IS. aa . .12 ,.. .. 2 COMIUID AT CCNllNI 1510, 11,01 n,. .177. HJ. ,.u .. IOU'l'ID TO DltaJI 119'. 11.92 11,. 377. HJ. ,.u 7f,77 11.,a
I .. • HYDIIOGIW'II AT Ct 6'7, 10.01 315. 12,. 12,. l.H ..
ROUTIII 'l'0 Dn"IIC& 352. 11.00 211. 129. ia,. 1.2 .. 76,U u.oo ..
2 COIG:UIID AT CXIIIBDII l5l2, 11.u u,,. 505, tl7, 5,65 ... -
-, ... / .,
~ ... .. (. ...
....
,..
Iii.
,..
11111 .. -
r-...
,.. ...
... ... .. • 1 ... : \,
\
,.
~
,..
....
...
....
.... ...
,... .. -...
... .. ·• .. ...
...
•
RicI<
ENGINEERING
CDMD\NY San Dlfllo • klnnlde
February 11, 2004
Mr. Olen Van Poaki
GVP Consultanta
3764 Cavern Place
Carllblld, California 92008-6585
Oranae • Phoeab • Tunon
W11t,•r R,•w11rt·t•.r,; l)fridun
SUBJECT: CHANOBS TO OUTLET STRUCTURES AT PROPOSED
MBUlOSB AND FARADAY DBTBNTION BASINS
(RICK BNOINBER.ING COMPANY JOB NUMBEl.13182--D)
Dear Mr. Van Peal:
Rick Bnglneerina Company bu completed reYiliom to tho bydrolopc analyai1 for tho watenhed
tributary to Apa Hedioada Creek within the Rancho Clll1bld Mobile Home Pn in the City or
Carland, CaUlbnda. Tbele nmtiom rosulted In c:hanp to the pomecry or the outlet 11n1etum
at the pn,poNd Melrose and P•aday detention basina. Thli Jetter specifi• the reviac,d pamclry
of each oud• atructure •
Modiftcationa to the HEC-1 hydrologic model lncluclod the followiq:
• Bain flcton were reevaluated and changed. appropriately bued on the impact of new
envbmunental rep.latioaa 11114 their ratricdons on tho ullimate dcvolopment of the
watenhcd. Lq times were recalcu1atm based on the modified basin .tston .
• Manniaa~• JOU.._ coeftlclentl in tbe ltrNm roudn1 wen recwaluatocl and
modified in 1he HEC•I where appropriato baaed on tho impact ora.w envlnmmental
replatioa1 and their reatrictiona on tho ultimate devolopmcnc In the watenbecl. • no atoraae routing rating curve for tbe proposed Melrote dctcndon buin wa rcviacicl
baaed on the gradina plans titled "Carlabad Racaway" Project No. C.T. 98-10,
Drawing No. 409e I A, Sheet 4 or 14. dated September 2002 .
• The 11orap routin& ratina curve for dlC proposed Puaday dclention bain wa revised
buod on tho pading pl1111 titled "Carlabad ·Oab North El Puerte Street" Pnaject No.
C.T. 97-13, Drawing No. XXX-XA, Sheet 3 of 7,. elated April 2003, and grading plant
titled '"Carlsbad Oab North Faraday Avenue" Project No. C.T. 97-13, Drawin1 No .
XXX-XA, Sbtots 9 and IO of 19. dated March 2003.
... . ...
;
I ,.
~(. ,.
I ...
,.
... .. ..
...
~
,.. ...
...
....
,.. ...
,.. • i ....
,..
I.
... ...
...
I illllt
,.. ..
,..
I .... .. .. .. ... • ... ..
... ..
Mr. Glen Van Peski
February 11, 2004
Page2
The &eomotrJ of tho Melrose outlet structure wu specified on the abov~mcntioned plana u a
36" reinforced concrete pipe (R.CP) placed within the exiadna 10'x7' reinforced concrete box
(RCB). 'lbe RCP would mainlain the cxiltln1 flowllno elevation. and a concrete wall would bo
constructed to block the void. The modified geometry conaiatl of an oriftce plate with a
rectanplar openin1 of 5.61 wide by 4' tall in place of the 36" RCP. The cxistina Bowline
elevation or 308 ft ii maintained. Thia opening allows approximately 489 c& out of tbo bum.
The ponded wat• IUlface elevation within tho basin it 330.5 ft, which results in approximately
49.3 ac-ftoCstorage.
On Ibo abcmt-mentioned gradiJII plana, the pomctry of the Faraday outlet atructuro WIS
dellpated u a 6' by 7' RCB with a flowline elevadon of 221.14 ft. 1be modified aec,me1ry
apc,cift• a 4.3' wide by 5.7' tall RCB in place of the 61 by 7' a.ca. 11le exittina t\owllne
elcvadoa of221.84 ft·i• maintained. 1bia opening allow, approximately 642 ct. out of the buin.
The ponded water M'fice etevatio■ within the buln ii 241.4 ft. which l'Cllllta in approxtmatoly
49.1 ac-a or-. .
The hydraulics of the Olltlet structunl are 10 scnailive that even the lllahteat chanp in the
dimemiODI rnulll in aipiticat ftuct1Jatioill in storage volume. If the ltnlctma are comlnacted
widl atandardlml cHmcmiom (whole or half' foot iacremcnta) they will not ftmction properly. If
the outlet i1 too lap It uncler-utllizes the available atarap and incl9IHI the ftow rate
clownatream. If it la IOO small the bum will store too much and exceed the 50 ac-ft maximum
volume limit p• the regulatiou of the Divilian of Safety of Dami ())SOD).
Pla1e forwud dis information· to the appropriate coaaultantl eo the s;radin1 pt1111 can be
m'0;4iffm to teflcct tho new outlot=111QdUtc plMtri•
rr. you have any queitions rcgarding:\his-:fotter _p.lca:se -coil!act ·me ai (~19} 291 ..07(11 .
Si.'ncctcl)';
RICK ENOJNEEIUNOi~~:IJT u w
Denni, C. Bowlina. M-~~,__ .....
R.C.B. #32838, .Bxp. 06/06
Principal
DCB:KH:jc.001
i : ,
\.."
... ~.,
--i-
'I
:.• ·,: .
OCU,N BOTTOM· -CONTOUIIS.
DERIVED F.l!OM , 1'68
U.S.G.S. QV,,,O MA~S.
i "I '
• "
.< ·i
,. t' •• 6 .
--,,□·
-,· ·1 ')' • ~ ~ . : • ._ I '. 'i /';-
10
·!'3
1
/· ,., II
, .•
e
0~8CALE;t•a.400' \ I
Aerial Pho>lo Dale , Sopl· Od. 191111!-~ PholD Sea • 1 t/118DO
___ """"""'..,,,,_."'_· ....... llnll-;.,..., .. ~--_...,_,., _Cc>IIOOlli-Onh_C-..,_ sr,.mllAl>aa. Y __ CGnl!dlaBuo\fl'.Jnlllt 11121>MEA!iWIIEVaOII~
-~LS BAD. ~Qb.ks s No ~l#.~E"
,.
0
~,---~-;g_ :.:._ •..
! ~
.I
% ...
,.··o ·O ' _.!. -.,,.·
_:_s: -·o· ••
'.•· .-4 •. ,O
·•g .-'O )>
>_._" .. '~· ·. ;~. . --~--r-
;•~·!fr-; .. ·.
•• :;.:~~r.,1:
.• )1,,)
.. ",:.
_,.. -
,.
~
·N. • . ' . • . ~
' . t
.
. .
}{·}',:~-••
-/}::,:_-·.
·.-r
-~-;(f 11· _;=~.
·luj • : ''.:1:_ t ~.-~ .• l , l --~'.-:·111 -i: .,, .. ·;1 .··.•. !id •
··i i: g· ·.:-
a-..---~-41 ,, ,_,. ~-. ·i --~ r' GI ··> ·jil f : ,. ·:1 .• ·
•' ..
-~ ~F
--··
~-;
\~ .. ~: .. ,
. ' ~
~
i\-<. ~
)i, :,.· I
• .. '!! .. -.........
~ .
-"'t
·i· 1· -~ ... O · ·z
~--~-
• !I ;I
--~
·t;.1 -:g -., ;!;
1 i
,~t_ •.
-~ :Ii {& -~
-~ ~
0,
k
·-
, I<• •';... ._•,
... . .. ~ ,. ... , ..
-..
·:,.;.:._.,j .
• ·\,.•'
I', :_;, !.: !I . l· ' ., . • Ii .' 1\)--'.I· ·•1 ~--. ,~, :? ~---·:·.
,;,_ };, .. -,/_:·
TVbY
I ___ 2.:.c~lt~£-r :.1 r . ~ ·,
(i
CHAD/NG NOTES
(I# ADOITION TO TIE IIEOUI/IEJENTS OF r:HAl'TCR II! 1• tJF f>< CA/11..SMD -lt:IN.L ~. I
/, Tiffi fl'IAJ/ flllDlt£1JCS ALL 0'/HDI /l'fANS /'ffEIII//U$J.r ~ I Y 111£ CITY //F tMLUM lll'IAIID/115 MMRIIM -OIi TlflJ SCT //F !'LUO.
~. -tlF Tlf/1 IUll tlOES IIIJT tDS£II WI a ti£ AW l'OfiT/0/I tJF TIIE ~-=,~~=Tl:~ L:ri:.,7~ ~:r
f'E11TAIII 1ll 1WIS IWO.ICl:T. TIE Dltll/1/EDf Ill ll£!11'0NS/lltc IMfl« ~
-JSC rHESE IUMS IIE6 -·-IS 1/SIO'IDIEJ). '
;J. t/11 -1111. 0, l'UltS tlOES IDT I/El.l8C 11E «IRQIU OI( Dlfll/EEll-1/F'-
-,_ Jl£$1't/l/St•1urr f'DII 1¥ ~/Oil " 111t1t1n AMJ 11111u,_ 01"'11D/£D -I/IS CO#S17/lll:rtlllt. AU '1M IEYISIO/IS 6IMU • -r .,_/TfBI Tri 11tECl1Yalfl/EDff'(Jfl-.
<I. • 11/Er-//F-MT f'PJIIT ,_ TIE C/Tr a,/1/Ea fl/LL 11£ /lffll/llD f'DII ..-,
-Ill TIE -IC I/JI/HT //F ar. "11(111 Tri l'ERIIT I~. • 1:11/TIFll:A'fl: IIF I~ IIJST 1£ F/UJJ -/IS TIE '11Y fJF CMl-AS
Alf M/OITll1/ML JWS/IIED OI( 11£ -ITTCE'S -ICY Iii 11tE II/Ill--fJF ll,000,11111,t/O l'OR r-Af//1 °"1lllfM:C OF LIUILITY. ffi[ IIIISUIMJJt:E UNJDM SJ:~I -iA¥'1t JtiJ·drn
I . •us DIDl'TD1 ,r IBT/Oil MIi, ,,,a tJF TIE Ill/IF-tlt/lL/Jllf -· IKl'Allt/11 /IUI.S -11/C .. IV/I.IC IIIWIT tlF ar IICOIIIIIE 5V'-1r -ITS,_ 'IIE IIIIU1flll llDWf1IIEHT.
•· Mt -~ IC -11/rr/L AU -117 NCIIC IEDI OIJTAIE -TIE t/TY -01'DI -/ATC Mat:11$.
7, -• //F MSC~ 11 DE tt1Y Dtll-/MIU /IOT All1H/IIII/E Ntr
-1/R _,1111 TO IC l'D/Frac, llff/L 11£ IJIOIUrr -·s f'Ollll$S/f/lt 11115 Jl£B( OITA/11£1) AJID A l!lt/1 f/WJIIIS l'Dlllr HU IEDI IUl/l/J.
•• 1111111:YISI-IRU IC I/IIIDC Tri 1HESE ..,_ 1'1110/T TliE MIT1E1/ ...,_ IF TIE CITY Dfll/11:B, •"11 l'ITHIII 1111: 1/EYISIOII aoor, 1111 111£ ,,,_IA'tr SIECT //F 'fHE l'UltS NtD 1IE Ttn.r IIIEC1.
J. _,/6/IW. --IIIIU /IC~ 1IE -,Y //F M CITY -1£1~ ,,_ ff 11tE t/11' _,_.
Ill, PE lllrlfl--• SHM.L /IE 119'I~ 11111£TlE'7 AS•IIIILT -/TIO/IS IY 111£ Ollll&1M/F__,,. l'tlldll Tri F/11111. ACal'TA/ir;E //F Tl/£_. IIY 111£ urr.
11.llf:a§-flitc_ona_tem:ta~ 11C •1.rr.1111DJ n, 1ltl: l'ltOJD:T SllC AT ALL T~ _, _ _,1111/eTIOII.
II. --Air 'llfl1HII/ flTr eASll!llt/lTS, A SrJIU IID'Olfr -IJ/Ell f/F, /AJ ,_.,, !ll&T, IIJ -1'111111' -SIEE1$ _.. ft:/ -.iil:Tlfllt a#MS, -t IIC -,17E1 IY A l'WOFEJII-ae/l/EBI OF Tl/£ STA1C (IF CM.I-IA. ,,,,~11WL1.r 1111/1111 _,_ ,. 111£ FJa.o (IF A/PI./Dl IOILI
IBllll/1"• 11/l IOltlt -T l'fU I£ _,rra, 11> 11E t:/Tr S,,.JIIRJl/1111 IIOIR1flll W/111/ll lllll -I/ti o.,r.r OF H -.U/011 OF hlll rnr1,
II. A IOIU -.tt:rl• _,--"1#'1.IA/1/Z rERlht:ATIM/ I/DA8fNII tllllODtCE nl -Tl-OIITI.I-Ill 111£ lfillLI _., 1$ «I/II/Ra lflt• 111 111£ /~ Ir A MJ/LII., -,T. AU. _,,,,,,LG -IMS IHllJ. I£ IK/IIC -TIE PI-Tllllt IF A _,__ _,_ OF 'fHE
S1X1E OF t:1/l.fF-IA lfllll&/'1M.LY --_,_ Ill 11E hao tlF -.,a IOILS IEf:MIIICS. ALL FIU fll FllrllltE FILL .MIE'AS IMU I£ t:f1NS71IOl:1D Ill -rm, TIE t:ITT,,. --,_ SKCIFICATldll/i -11/C • -,rcc/FICAT/t/111 • ATTMHIII 1P ff /lfE.UII-Y .si,11.) 11/tffTMATIOII. IMILY FID.IJ _,_ -r,u IC _,l"llll "' TIE. -T-l'l/lt. •
14. I WPSnqqttJlllfUUC MC E IEUJ Al M: lfP: MW PR ¥ lfltll(,., PC ww: ,c mccc w: ◄l'RIP12 tr er «-VfT4TIU El~'~ .. =mvaz.row :rf.i
-111£ -,r tlU1fl( (WO Q#__,II AT UMT FIi/£ (Ill rtllllf/111 Al>S lfllt/11 n, ,TA/ITtl/6 O/llllf11NCT/tat. -_,IICS _,. I£ AIIHIAIU 111/fll TO IODIJ.11111, 1IE _,_ l'Ea/1' WIU 1/C -1/IIID ,t
111£ /ftOIErT /-AT 1'HE 11££Tfllll.
16. Ml l#1tSTJa« ffRU"I !WO PH Oil 'WfRICs:lN:Tt<W Mfl'T/W Mil IC MW IY WI tAI ff fl!IPIICM Nreo« l«sPB:Z«P IDHXT & I« Al llMI UI-MU 1111/Sl'JIJII «NtPI' MT «: lf'PftWR lfltlft ZI lcGP £tie. ~rn f.llR'~ ,_11_ "'" 1£ -,,.., 0 /SC. -Ml£ AF1Dt 1,00 "·"· .,,, 1/C ,_ r1111 7IO nu -OAYS tll19'.
II. 'IIE----".llfT -1IE --_,.. _,nw =~=· ::t.T.t:,"'.:.:t-~~-:i=. 11111£ -,_ UFcrl --"' s-. LA/If __ ,,_,
tr. IIE -cm, SIIIIU. --n, ,_ COO( S/BTIO/I R06 IY -/Tr/Ill
AI/ETAILIUI/Tfl111£tl1Y-IIBR --Mtl(l;T SHIM'l/111 1fl£ IESl&II OF -I-, _,., ll.0,,111/1 OR fl1IID/ -/11"'1 1111£ 1111/E
tlF -lfl01BTIIIII ,_ 1M' IMZN/0 tlF 0.1111111 -/111111/11 fNE
Br:IIYIIT/Oil OF 111/!H 1lfE1DI lllt -OI /1/lfllll K I'll'£ t•TA£LAT-11D/Cllt. TNIS IUII 1111ST IC -f'DII AU 11lll1IOIEI Flt/£ ,ur /&•/ 1111
-lltll0'11I--I& W 11tE t/TY DIii-_,. -
-/lit/OIi TO arA*~lt/11. ~CTifi ljjii(&t'.i . A _, tJF 1H£ -m=~. -IT OT 11£ -lr1111 1fl 11£ /I/S1ffrr,, Pft/1/11 TO
II, • lllASTI• -.t IC -1/NT/l A IIIL/0 «ASTJIIII -IT MS llCl1I I/ITAi/& ,_ 1H£ f/Tf OF QllltSIIO. -Ir -.1eAT/Olf RM' II.AST/• "1111 T lltU /It Ml!!-OF M _,,. OF «A$TIIIS QIIEMT/1
II . £1'Z-:::J:m:.' ~"DWu1lle' -,rnz lflU lfOr/Fr 1IE CITf _,_. tll'ElfATIO/tS mu 1/tT IIL'ITMT
-It 'nlr'-TIEE HU _.II& •1T1E1t AIIIHOHITf -H tlTI' ,_,_ 711IIOU.
ltl, AU -TIMS -0/t 1PE I'/ Tr OIi Ml,IAt:EIIT 'f¥11£TO, lllt!l.1#11111 _,_ II'. IIDll.111, A/1/ffllAL. _. 1111 -TIM flF 1'1Nf:11$,
_,_ ff/Ill-, -,l(llt B/III_, -An 0'11E11 Af#CIA1Fll
-11111 Ef/1/lt'IEIIT IHIU. I£ llllf'IQ 1' 1H£ IEll/t» IC1mJI T,OII A.II. -llllffT E1IDI IMY, _, ,_ n,/0/IY -ltO u,,-1• flll _,_
-TIO/IS IIIIIU. II£ -1l11. -,,,, -I/Ill.I'S. IA LIST tlF "Tl' 11/Jt./lMl'S II JIWIILA«E AT 1M' tlfll.:rRl• lll1'MIIDff r:otl/l111f./
II. Pf.1&16~1~~-'J
D , -T Mll'/'11/IM. SHIU. 11£ #TAIi& fWW. ,W, -IC amtlAI. IIIIIU. at IUOSl1BI AT, A Sl1C -II' 1H£ CIT'l' D/6/JltDt, 17< AWllN&IJP
~~'¥',.ff.CJ" S-+'TJ-~ !MIC
IS. --1£-IOGaYrtl1Jll/l11£MD IIIIC-. l/0 lllfn/111£ 711 IE IIDINEII JllllDt ll'ffi/Ft~r 111)'19 (I// 1HC '1AJI.
M . ALL NIPI ~ &£ -1' ,-111.-11111 -Tlltl Ill 1H£ -•• OF •In 1$ Jl#T ff111/rT£0. M.J. t:NmtDI ..US -IIITl:IE1J ~ 11,111£ A
I/flt/MM OIE flfilJtD/T SI/II£.
n . 1'DF l't.MS MC -BT 711 A SIIIIIO ANJ -IET OF ERMltlll -.,u,,s.--«llfTIIOL-LIICU--Al -llr 1W C/71' Cl/Ill-OIi AS ll/1£t:1EII Ir l'1C ~ 11/SPECTIIII. a . AU. Sl.010 111/lU 1/C ,.,_ TO A FIii/iN -Tri 1'iDllllr:£ A /If/,,_
--ACE ANJ atoU IEtTI0/1. T1E S/'tr MILL 1£ UTT /It A IEAT --1it r "116/ITIOII. ALL Slflllf'S, IIWTS I/Ir 011E1/ llatHI /SHIIU IC -.0 -0l1'0SDI OF AT A tl,C -IO tlF IT Tl/£ C/TI' EWIIIUJr.
CARLSBAD OAKS NORTH PK TQ BE IJONf
'IIE -111111' SH/Ill QMST UT TIC Cf)NS11U'fUI DF JU. QIIS NltJ fl.Js,
,G!DII,'. Q9IIIM; IIIWa' ,'¥UQ UIQSIDI( -~ -
I?. ALL Si.QIU WII..I. IE IIIIIICA'fa, STA6/LIZCII, "'-"'"D -IMlltOSCEJ1DJ '1T1i/ll mi f/0/ IMr.r OF 11fE TIIE rHJt.JMll_ Sil..01'£ 11-, TO MAN
AS -Oil 'fNE -llll ~11111 IUJIS.
ltl. ~St:Al'/116 -L IC A-ISl'D (WALL fLCl'U ,INf/ ltl/lS ,16 IIEOl/1/tff
r, 1'HE Clrt .. --l,(»Sr;AN -., IHf' LAIIDSeN'/11/S l'IAIIJ Ft/II '11/S l'RWf:,:r, -11111 /IO. <I/fl.a -4111-111. -AS 1111/CNSJ r, 1'HE r,r, _,11£Dr,,,, ,,,,,,,.,. llllf:C'11111. n . 'fNE __ ,_T ~ II/SU/ti: THAT M.L Nrmr,m•-SMU _,Mrc
rHE -//F 'l1rftC -1/ll l'UIIIS WITlf "'41 -OIi -TIE -AIIO 11111/IAT/tll l'lAI# A/II 11E _, 1INI$ AS /IEOllfllCI) Rlli THIS
_.Ill-WIT/I 11E UIJI01eAl'C -L TUE -f~.
10. S,0. /11111/II I'll£ S/1/lLL 11£ IICI-t:atll£1E I'll'£ II/TN A 1111/IJIIM
•-LOMI 1/F l ,//16o. lllll ,,,,_rr S7w. 111111111 """· fP ~ ,a· INC M Y IE VTILIZD -lf///0 I0'11t rs LESS 111111 ,a FUT UP IIACIIFILU, w,111 ~•
IIOCI( '9 -I-~ m>c •,:• -I'll£ ~ ASnt STA!llff Iris. 111/t -!16 It/LID au /1/1'£.
II. -Nt UI/Ir/M l'Jl'E LIii£ /$ TO .C -AS A lfESJLT OF nE -1/10 -TIOII, IT IHII.L 1£ -.0 rn1>1tlf ,_,., nEr IF lf/lU,IIIQ
a, IIntEET ....-.U -IID'tN:Q 111111 -.r -AC1B' SIIIU, /II OTNDI lll£AS '/Ht ,i,r "1U • If.-1'11>1-»" _, -AS NfflOI/Ell •Y rHE Cl Tr ~IIEDf IIMVtllt 1NE ICOTEtHIICAI. DlllltC11/.
Ill. -ff/11111/lCTIIII INILL WJrl" 11E L/Jt:ATlf/11 .. Al.I. 11t1sr,. FACILITIES IIIIO'IC -IJltl _,, -/ .,RI/If rHE -.,C,:r !l/1£ ff/fYIC/Dm.Y II/EM IF IIIAIJ/116 111 -,r 11/C /ICYISIOIJ OF 11£ -1116 l'tAlfS IF IT II ,_ THAT nE A&/1141. LOOfTIIIIIS MC /It Ct/llFI. ICT WUN TIIC l'IIOl'OSCP -· :U. 1IE ~ SIIIU /IOTIFY VTUTCII VTILITY Clllll'AIIIES IIEE IIEL•I AT
t.CAST ,I 1IU lflllflrlllll Ml'r lfllOR n, STII/ITt• -1111 ICM 11EIII
F"'IL I Tiff A/11 1/tV,L -1/IITC THC -lfl Tlf A _,, IIO'llffEl(1)fTl'IC.
-!IE/f'llrl ALDT l--..flZ-41» 1111W IIIIO-.nu -IFIC EL (1111/1/--#IB A/JEU'lt/A -11:ATIOIIS INDJ~l."41 '1Tr flF ctl.saD /S111!n'S I ~ 0/IIIIKI /ZW/-.-
f/Tr OF --/IDBf.•rP I 1/tr:IAIID •1l11I 1'601-•1721 ,_ SM/TAT/ti/I D/$11/tf:T l1Wl1JS-I-lit ta"H/
14, _,r a.t'.IAAl:t _,.._,
A. lf,fflp,-'fl, -=:· ::.:/l!W,,1!,fS ~~::. -~~
-AltP -,,,rJL ,.--Ill _,(ll./1./ll>A.6/ ---ICll'Al.Clllf',
•· l&7 £fir "'5,,,;J T'fl. 1ffi'·a.o/Am~,r:r: -ST 1/S'RTflR (IS. t•. llrl A.10) _ _,, -,r:/l'M. COl/l',
Ill · F/111/l. IIEl'f/RT Ar -IS/11:1 _,_ DIii-!ITAT/111 AU
-/NI If "'11'UTE. AU E/fmfOII LllW7ll'dL, ll.lll'£ l'IMTUII
-/111/IMT/tal MC lltS'fAUD ,. -rm, CITI' «IOC MID TIE -lllll l'SAlllt /0/ITAIN -C OF -,_/Allt:E
lET1lilt -"" D1111e1r,., -,,·1111am.
/,I/ AS.au/LT -I-l'UII.
Ill _, ~ 11IE ff/LI D/1/I/IZII, _,,t:N HO.llf/CJ
-$Oil _,_ -CITIC, A STAT11EJIT Ar 10
1H£ D//V/1$/PIE -.,rr IF IN!' tlf1IL. -_,a OF
FIEU ---mrs. 1IE -IMLL 1/UD fCIII/£ A "A-"1 Tit S'O/U ,_,_ ll!IIIT rrE
-II# ,as l/tJIE Ill -rt'/H TIE I/E//UIIIOE1IT'S -/IE-Tl-t/1/Tl,I-,,, 1IE '1fB.IIII-I' ,aru -
-1111' ltl/l1U1IEIH$ 1lft'1fl. ff/ IUOltT r,,w Jll./111/LT -OIi~ f'U/1, IF /IE.OIi/-l'f' '11£ ~ITT.
'3. IMS$$ A _,,/118 l'DIIIT 11111 '/NII 1flO.l«1 IS 1#1/U '1111111 1111£ fl/
-· AFTE1I 11/E tlTY -lttalt'S -• 11£St lUIIS •r 11£ -1-7111£ IICSl.8/IT'IO F(/11,,__, 1U/Ofll( 1HS r/U 1/C -lftEZJ l'P/1 ----· #. N IOILS IIEl'IJIIT TlnD) IIB/Jlf#M'Y «rlmnuM lltf'UM,fl(QI BIi K Ml!RSfP Cft-MM W:S: bit CMJ:IW gy 'fP"ffl 41m, .-c is.
1-, l'tl£NllO lr-CllllC --• AIIO -TE-IUL -TC
111'0 WAY AWi PZr ntt«l;f Mir, CT ll·tl MMM "4 tflllrlA. ~ =· ~::-: #" =::iu~tr IF 1/tlS -1/II IUIII. ALL -/Ill ...U I£ IIIIIIC /It -11'11'1 nE --Tl--'61Flt:ATIO/t$ Ill UII IOIU _,,
l1(C/NfI8S NOTtS
/, 11£11/S/tal OF 11ErE l'UJIS Mll'l' IC -I/ID IF 11/E -WIADII# -_ _,,,, ME /IOT (/(l//$r1f/lC18J ,.,. 111 1'HE' IKA/1/.IIE IIATE OF 111£ _,._,..
I. INF DflffPl:E 111111 L«ATIIJII or IIT/LITY 1'11111n111n -Fllt:IL/TIU -
Oil 1H£ UIIITIIIJCT/1/M lf.A#S IIEIIC t/lTAIIIO l'l' II SEMr:11 ti, 11£ l.t/AILllll.r
-· Armtrl0/1 IS QILUP 1' lliC IWS/llt£ Ull'l'lll« OF OT1DI
IITIL/Tr FACILITIU • S17IUt:7lll£J lllr -• Ill A Lflt:Art(lf DIFJVIDtT fl/OIi TMT-• 1IE IUIII. INF -CTI/II IS -1/IO 1' TM£ 1W
lf/EtAIITIOIM/tr l£AII//IE1 1' l'IIOIUT 'IWI: llr/Ll71U -1111 ,W f'IAIIS -
Ml'r OTNOI a1sr1• FACILITIO • -.. , -· 8, 1Hf -CTM //MU I/EJIIFT 1IE Lllt:ATIO/t IF ct Df/STII# FM:ILITIU
I---8/01 1'l11flN /'IE f'IIPBT IITF st/Fr/Clnm.Y
-OF 111£ -fOII Ill l'O,r/T lliC 1/EYISU•S or 11E tt/11J'l1Nt:TIOII 1'IAIIS IF IT" ,rJIJIIO 1111,T TIE ACn. UICATIOIII M£ Ill -lf:T lfl1W INF l'IIOl'OSDI _.,
fMTIIWOHK OIIANTlTllS
an: ~
fll: lll!Mltr
ID#ltllt q qw
--·.......IM!l!UI
IIOD L H2'0UN/n£SNIEl'tll-lUll'tJ!ESI//I.Y. Nl/1-IO-ml'DMC/llf ID lllW>'11l #IS ~R1Fl,&ll(I(
& ~CJDP //lfMl. stalT -MlmE A/IIWOll4t ,_ OTY
RJ/1111111. IIDlllES-'/0 IW.Uttfl lillfT a, -MIISIMlS ID IJlf l1liM N" .fTE
• IIICUl1E$ lllOIIO C'I 111(111 _, !ITC JJiIEll
PHASE 1
C. T. 97-13
PliOJtCT lQCATTON
'IC ClllUIM4 ~If' la}( IT 1/IS l'M'JIXT lS IIJIII £~
SQIIRC£ ()f 'frJPOG&VJIY
1tJIIIJllWftr SNIJIIN tJII IEl!° lfNIS -.S -DIIT 111111M.
--•r-~AIJl4L~fHIIA/ltl/H ,_
_,.,y -I/Eltlf1II QJ'#DillS It> MlDW. 11.#1' AQ'lll/At'Y -lifiAl DESCRJPT10N;
A /lal'lltJI/ llF u,r .... tlF -ACIM ~ 11 /fl£ arr OF CKSIIA4 CfJIJ/f1I' tT SAJf .ami mur llF l:IILRR« NX/lR1#IC "'IW' 1NEIIE1TM1 GI IUJ)# fE()l'R{ZOF '/IE ctMfTr
IIBDflDDI OF $/AII-Ct:llll'Tt ,_,, IC -
fMSIS Of 1/W(NGS
1IE .IIUIS IT~ RIii 1ltlt SUIICf IS 'IC -t'IDIIIIIIIE
S'fSIBl-i 1!JIE C 14B -'IEIRD IIE.lllll& if1fEIJ( 1'1, M:1 11 NltJ fll M:I 11 ASIEl:lllfG If ARl'll:I IT SIIIMYAO llVI,
1£ ,apnrE
BIIP NOTE
Ml. ~ IOII HS /IIIOB:T 1111£ ID IC IIIMUMIED II' '/IE tJt'6P'O
IN1AJII MK OIIIEJIS •111 11£CJ/CVIIDN OF H OIi/ii MEr lll!ltR1$ •-FMAIMY AlllU' All/ ll. REIUE SRl't IHt:H 1111£ 1D ,c IIMfTMD er 1IE arr fF 04II.IW1
BUENA SANIT.4TION DISTRICT
SEC .Sliter No. l FOR eso Nor£$
VICINITY MAP
ll0.-C
JIDEll 1IE r:Nll(JN flOl,D pUP ,S1,111Dt llll$f IE
(ft,Dlnl4t19(117DISSll,WCC'r,Ntr~
f'f1/Jl1S.RJR i'Ms PIIOBT.
.s.!IE
Ill--·
t
BENCHMARK:
SOll.,5 0((1INE£R'S CCRT/flt:ATf
, Zfn.o::.-• e ,-e . A ,nmiu Oil l18D1I IJFIIE 1/FQ(RINI. IW,tll4jUIXJll&/llStEJSli '1E ~ fJF AlfW) 511IS ~ IDlJIY fZl/fn' 11111 A IWl't# Alll1 SIIIIIYOFTll:Jl!l(X)IIXl1(}ltflfE'tllilJ(f-111/iJIIEMS ~N,,OH um: llf Ill:. '1lJg' #~ .IMI/JaC:
1111 CfJIID (F 11£ StJU --ClfJll'I& -Ill$ .snm. -• ~ 11111' ; ~ 111£ tJl1ICC (F '/IE err, --·· -,1,1_,: #--,, p
u 14: :('A'3
Ollli t'iw,&
USt!E DIR10f lWE; ~~J.r
DfCWATION Of li£SPONSIBlE CHAJH¥
1-YIEDNCMTINIH'IJIQ//fl/tfT-Rll fl/$
-. "411/tlll£DEJIQSBl-owtre"8 1IE 1/DlQr IF 'IC l'flOBr AS IIIH& 11 BllPI' l/01 IT 11/E llB6S -~mlf;MSJIHIT'/KfD//1/NIS-7_,,, -~ I Cllll!llS£llil) INAT J£ oel' OF /ffOlr1' /IIIMIC$ NI) _,.. II' l/o£ art lTc:IIUIMII Dtr.s IIOT IBEtC .-;
ASl1GeJl(/F tllllt tr61'~Rlf l'llrJ,BTI/Dlllll
OIMr AM:tlllltl!; g JIMlflilllAIWE~ ff: KIi
CMWSl44~--= (1lq) ISI-TlOO
~a~/ (MIIJ,,.1 .. 1~
IIIDIHY a C4Rll, .II. ~
lt.t:£ 1111 !J5JII DI'. 1,C/.11,;fl,
OWNER'S CllTTflCATE
rh/EJ JOEllT fD!lrr IN4TA -StJU SOE11t I/Ir dlltar'MS atsl (IIJ IIJ. IE/DMED10.1IR1ill!l'-.cl
-~--aJTPCCllll'IICIIIV NltJ SPaHI' /IF INISSIIT.
/W, ~;;;--,,J!""· l4J'1/Df:o,,,c
JJIJII8
CC.111110Cll'-Af/i111llfS L/1. ~QID/l .. ..., ,IIRlil Oll"1NA I/If.II
(Ill) aJ-11/1,J
QWl QICINEill/lNI) ~
11210" -~ I/IC. lllO ll//lflf AIPIC Et SUJE ltll -.-e1.-(1lq),S,-'10I
~~~~tr,~~~ ~a::-~ .RiR,I,_ ~--
'IC -IDII" SHIil IE -,;tV1) liACQ2IIPl!a' SIN 11£ ~ DO/:t.lll1i1$, alRJITNTIIE-ITaHSTlil/Cl1/1ICMIIIG1EDW'IIE~/1aEElt.
1.ClMr.!IMII.-CQE:
1. tlf11/FOW..--
J 1/IS SfT (IF -4. lllSIJUlf1DN.051U-SalJXBAIOISTrt.Jmt. s. 11/E~~RJlt,UU:-(IOIIS1'1tK:1//(rlm/...,. .. mu~m,__.,......,_ a,v....,,,amtl41fD.uc"' -
1. .US llf1'fJll1S Nil «-ltMlf llf /11/lP(.,,,,,.,,,, IJf.lDJ IIE1BIIER JII ,._
I. 11£ $/IN /JB/IJ ~ .-IIIIIIICf ,1111 J/S Ml' IC -II 1IE all' OF DIILSIN7 -a _..,._ __ IJABNJ&US1'11,:J/fJfllllES.MlJNI.
111-fWJ/11DNQIWllll'.PINIISll'Fl'JM1NEIIIIYOlllYtfJll5U11W15
llllED DOOlllll .1111( -• I .J1clJtUM £ii flQaBI I( lDOI.
,,, -~ -ASSDClllllf JtllSOI/ ~ ---~ IIIJft!IIIW1f/lNWBU:MIO '/K~tiF~IIDWf1IBfTIIF-~ SIICIESTIMltDllliTM4Cas {II/P} WlJIJ.. JJIJ!E.· (l(.W{l1TES 111£ lfJfl IIOIUI',; llf.liPfJSES Qlt r. N:llN. (l{MNmES 1/11.Y HWY.
$11J. D/ICS. ME SAN DEr» RET:IOIMI.. S1Ds. llllLSS NOTED Ol1EJifffS£
J.IfJ£ll8
fKS&llr110N l1JJJMJi,, Dll!,l
J1IIJ/llfilDII._, ... ,,., ...... ' , .•...... ------
--(fl"--«YU/E, ····-·················· .-------INUl£S ... , .... , .. ,., .. , ..... , ... ,, •. -----
ES/Mf:t:IJIIIOIII ........ , ............•... ------
=~·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·. ::. ___ ~~
aJT / fll UE ........................... -"f:p.-::::6?.:.::::::::::::::::::::-~·,1--
u a, Ill. JUJf£ /ID. . ,. .. . .. . . . . . . .. . . .. :::y ~ MCI'.
---························-~ ------· ,,, ... ,, ...... , -I"'-
--!/1fJT -.. ' •• ' • • • • • • • • • • • • "_Jll/f
111£(/FSIII/T •• ' ...••............• '.. -------~ --· ······· ... ,,.,, ........... ,' ---lfOf IIICI{ ••• , .•.. , ... , , .• .#-15 IIFE V .... , =>=>=> ,...,.,.., .. ,., .... , ...... -.., ... , .. . -1IPI£ r'OIDl-{IIIJ, IBISNl ~. ~1 ........ .
-~·-·············~--······· ~
1FC r OilOf -· . . . . .. . . .. _._,. . ....... . 181
--····· •• , ., ... >-JO.········.
--4ft--........ '' . .11-,11 ••••• ' •• ' r\
,rrr:,,--........... ....,, ....... ' 05 ---
11·0--...... ,., .. ....,, ......... , ----
lll'DS1111/11-....... ,, .. l>-e,. , .... , .... -.~-
,Z-IUll',L --~-OIISXW,) .. · · · .•. · -_...,_ --
t6'N»S. --~HO#/!Jlll'J .. -· . --e---
11• IUll',r, S1D1111 -~ 11-11 OI BIA/J. , .,,,..,. , -----
•'IUll'LS1rl/fl-~II-O(llllllW,),. JMD •. -------····················-···· -·•-•• -
fJIIIIC/IEICUJ(;, , ••..••.• ,, ••. J>-IJ. .. , ..... , I+=
--·············#-10 ......... _
.IIRIMl'IDl.1-.. ,., ..... JJ$-.1{l:,IIIJIW!J
• Ill/Ill& ,r tll1' (F(lll,MI -
IJ/Ml/ll1L
-u
Ill t:r
,, (A
111.
f Bl
, SA
JEii
IIIIU
IIOU
MOU
IOU
,OU
#SU
ft/U
-IF
llll
au
Tl IA
DIDIID IY:....f.L_ llam..a..Jllll,l
-n, LG. -I!, .&.111111,_
l'IIMCr IIGI.Ll.O.C,,_ -NO.l.Jl::IZ
1111 .... ~a.l IM~ -0,-..,._ ---= =-·-C£0T£CHNK:AJ, NOTE -=-~ -~ (-:!. ,/ Mm.-.;.1,'-
1•1m• 71) /ISll,IE£f/F. _,.,. flOWIT Ft/II n,,s /lltOJECr, .,, lftolTID --w a. ~ -._, :::::,~,~~~~':/~.::U:s:J. PUNNING DIPAR'l'IIINT APPROVAL "AS BUILT"
PIMT/1£'1/EW. !M,iQ.e~llt...-!1/l/01° ~~~ ~
~ ..,.,.,.,,,,....,-=,,...,.==.,,,,..,,,.,.==:=-----lm1,-~-~~~ ~~ DATE • er ~,/J;j°"' 6= -''l~t•c.1>,,.,,.,,=,-.,a,..v.-, ----------,
lt•1-l•01 ·,11 ~ ~,A/14 ~/../._ DA1£ mm t111{! ~ :so...g ~fL v<4t • ~ illiiT 'J £ClDR DATE
I I I I I I I 1uJICtTL~C~ADHlr]
.... l1IIISIDII t:flll1llfJt IUJll 1111:
-r-•-R-nllllR
CARJ.SIW) GM.CS' NOlflH
PHASC1 ",,_,,
• .DIUS' 101£ 1/Sl]) (ll-5f1C Hit f!C Cf111m111C1l(JI/ (F FNMIIAY Al£ (10C,OIIO ~. Q RDf'IC SC fr,._ CT) EUC1RtNC M1:4 IUS NIE RR lit1l1iDla
Oltr NIJ NE NOT TD IE (SI) RR NflllZl'.IITM. t11 lfRIJ0fl suncr aJll11tfZ.
UllltTIOli: It IIEAX-JIIIC /IFIWIMNI
MffRTII04A ltJORET /IEST(T --IIEtORD Flltlt A:4.1: C 111'I {PT. M2 11} r5'1~-'"~_.,, I i ' i • r~ '"'.' -·-·-= --~, II>\'! _.._ .. ,. -1=D ■:;.. II l'Rl:l.ll:Cf NO. I DRAWING NO ....,._.._ arr-.llVWII II';~ C.T. 17-IJ '15-IA
!J..!llll,TlDN: ""4011.J:J.. WU\I; ---·-REVISION D£SCIIIPTION
1:\'lil!IIO!\tl!COAGll.j"I CCI IL 2Gt4 I~,...
-~-·•"-~
)
i .-C",l ~~ ~u, ~ ~
\ )
DW
G
4
1
5
-
9
A
2'
4
1
5
""
4
-
-
+
-
+
,
-
+
-
+
-
+
-
+
-
-
+
-
-
+
-
+
-
t
"
"
"
!
-
I
I
I
i
§
ti
I
l-
l
-
+
-
4
-
-
1
-
+
-
H
-
+
-
+
+
-
H
-
t
-
1
lll
~-
-
·•
I
.
I
I
-
... ...
...
.... ..
... ...
....
,..
,..
....
,-
....
....
Ill"" ...
....
Ill""
,..
....
,.. ...
1111111' ... .. .. .. .. .. ..
ATTACHMENT 2d
.. Table of Contents ....
....
.._ INTRODUCTION
...
....
...
....
....
...
,..
....
,...
....
,..
,.. ...
,..
... ...
,..
111111,
.... ...
... ...
.. ..
Section I
Section II
Section Ill
Section IV
Section V
Section VI
Section VII
Pre-and Post-Development Model Setup ............................................................................ 3
System Representation ........................................................................................................... 6
Continuous Simulation Options ............................................................................................. 9
Biofiltration As LID Control .................................................................................................... 10
Running the Simulation .......................................................................................................... 16
Result Analysis ......................................................................................................................... 16
Summary and Conclusion ....................................................................................................... 27
ATTACHEMENTS
Attachment A SWMM Drainage Management Area Map
Attachment B SWMM Statistics Analysis, Flow Duration Curve and Pass/Fail Table
Attachment C SWMM Input Data Summary and Detail
Attachment D SWMM Drawdown Calculations and Summary
Attachment E SWMM Hydrologic Soil Classification Attachment of Web Soil Survey
llPage
... .. ... ..
... ... .. ...
... ...
... ...
... ... .. ...
... ... .. ...
... ...
INTRODUCTION
This report provides Hydromodification and Water Quality design based on LID (Low Impact Development)
principles for a proposed Industrial site development located adjacent at the corner of Faraday Avenue and EL
Fuerte Street, Carlsbad Oaks Lot 2, Carlsbad, California .
The Hydromodification and Water Quality calculations were performed utilizing continuous simulation
analysis to size the storm water treatment and control facilities. Storm Water Management Model (SWMM)
version 5.0 distributed by USEPA is the basis of all calculations within this report. SWMM generates peak flow
recurrence frequencies and flow duration series statistics based on an assigned rain gauge for pre-
development, unmitigated post-development flows and post-development mitigated flows to determine
compliance with the State Water Resources Control Board Order No.R9-2015-001 and Hydromodification
Management Plan {HMP) requirements .
Total area is 5.78 acres for Lot 2 with a developed tributary area of approximately 5.78 for Lot 2. This tributary
area includes DMA-1 and DMA-2 which make up the main development of the site. DMA-3 and DMA-4 are
"self-mitigating" and is not taken into account for the tributary area of Lot 2. There is one point of compliance
{POC) for each of the projects in the analysis; POC receives flows from basins and drains into an existing public
storm drain at El Fuerte Street, Carlsbad, CA .
The Hydromodification and Water Quality system proposed for this project consists of 2 biofiltration basins
with one point of compliance located at the northeast corner of the project. This system detains storm water
in the basin surface and also in the underdrain reservoir. Bio-filtration filters storm water through plant roots
and a biologically active soil mix, and then releases it into the existing storm drain system which currently
collects the sites storm flows. The resulting mitigated outflows are shown to be equal to or less than all
continuously simulated storms based on the historical data collected from the Oceanside rain gage .
Low Flow Threshold
A downstream channel assessment has not been completed for this project and therefore the low flow
""' threshold utilized for the system analysis is 10% of 2-year storm event (0.1Q2). This will be used as the low
111o flow threshold to meet peak flow frequency and flow duration controls . .. ..
... .. .. ... -.. .. -.. .. 21Page
-Ill -.. .. ...
Ill ---..
1111 ...
1111 ...
1111 ...
1111 ...
... ...
... .. ...
... ...
... ... .. .. -..
.. .. ..
SECTION I. MODEL SETUP
Pre-development Model Setup
The SWMM model for this projects pre-development site is analyzed using historical rain gauge data. The
Oceanside gauge is utilized for this project. That data provides continuous precipitation input to a sub-
catchment with its outfall based on the contributing basins imperviousness.
The imperviousness parameter in SWMM is the amount of effective or directly connected impervious area.
The effective impervious area is the impervious area that drains directly to the Stormwater conveyance
system. The pre-development condition is a vacant land with poor cover of grass and some shrubs with no
trees. For the purpose of this study, the site is assumed to have 0% of impervious surface in the existing
condition.
The site is currently a mass graded pad being served by a Faraday Avenue and El Fuerte Street and also is
served by utilities (sewer, water, recycled water, storm drain, and dry utilities) based on City of Carlsbad
approved drawing numbers 415-9, 415-9A, 415-9J, and 415-91 (Carlsbad Oaks Phase 1 and Phase 2). Existing
mass graded industrial pads sit to the west, east, and north. Drainage flows from southwest to northeast as
sheet flow and is collected in one existing desiltation basin located at the northeast corner of the site
(installed as part of the Carlsbad Oaks mass grading operations).
Once collected in this desiltation basin, the runoff flows through an existing storm drainage pipe across the
eastern property line into an existing storm drain structure located in El Fuerte Street where the mainline
storm drain system runs northeasterly across El Fuerte Street, and into an existing storm drainage detention
basin formed by the intersection of Faraday Avenue and El Fuerte Street (as referenced and designed in the
Rancho Carlsbad Channel & Basin Project Hydrology Study, by Rick Engineering -circa 1985). Once released
from the detention basin (installed and sized to detain the future Carlsbad Oaks Business Park 100-year flows
as well as runoff from the construction of Faraday Avenue) the flows are discharged into Agua Hedionda Creek
back to the north of Faraday Avenue and ultimately Agua Hedionda Lagoon and the Pacific Ocean. This
represents the Carlsbad Hydrologic Unit, Aqua Hedionda HA, Los Monos HSA (904.31). For SWMM model
illustration see figure 3, or Pre-development map in Attachment A of this SWMM report .
Post-Development Model Setup
Figure 3 illustrates each contributing basin discharging its overland flow directly into the biofiltration system .
Each biofiltration layer section has a similar configuration as seen as in the detail drawing below. There is no
actual elevation entered in the program. The bottom elevation of the biofiltration surface storage is assumed
at Oft. Storm drain pipe is also utilized as a detention by having an orifice small flow restrictor at lower invert
elevation of the downstream cleanout box and a bypass orifice/pipe to convey the bigger flow .
The Carlsbad Oaks Lots 2 Industrial project layout proposes to construct a parking lot across the majority of
the property, with drainage to be directed to the 2 biofiltration systems on the site. Once within the water
quality treatment systems, the stormwater infiltrates through the treatment medium into underdrains that
route the flows to the private on site storm drainage system. This system uses new piping to direct the flows
to the existing storm drain stub installed as part of the Carlsbad Oaks Business Park project and ties into the
existing storm drainage system within El Fuerete Street draining northeast toward its outfall location .
3IPage
A90/,f" Al EIEVA ,...,
At RE/IA
A/JOI f/0/{Al AC/YA ro VATr:J/ 1.·1
IIHfll£ IIEclS NA~sal:
ANaC rF NZ/llNCE LIN£fll()I( TCP(F
CfWfl. LAID/ All
SI/All. ltJ
Figure-1. Typical
Bio-filtration Section
APA'CIV ft:lf EMJIGY
0/SS,PA TlR
Ofl(JP fll()I(
CI/T!1JAllll:I\'
Nl/ENCC
IWrF
ml
41 Page
.,
,
\
.
\
I I ' I l
N 0
...
.
J
Q)
"O
0 ~
..
.
.
C:
a,
E a.
0 Q)
> a,
C I
ti
;
0
a.
.
~ ~ ~
V)
I N 00
u:
:
:
Cl/
(1
)
a.
.
Ll
'
I
,,
/
/
\
\
\
/
• •
I • ' I
N
..
,
_g
QJ
"'C
0 ~
..
,
C:
QJ
E a.
0 QJ
~
Cl
' ~
Cl
.
~ ~
;:
Il
l
I
l"
I
"
)
tlO
u::
:
QJ
tl.
O
ro
Cl.
\0
BMPID
BMP -A
BMP -B
BIO-BASIN SUMMARY TABLE
BOX RISER/ ORIFICES
DIAMETER EFFECTIVE Al A2 A3 C D E OVERFLOW
AREA (INCH) (INCH) (INCH) (INCH) (INCH) (FEET) STRUCTURE LOWER
(SQFT) RISER TOP OF CLEAN MEDIA GRAVEL SIZE
BASIN OUT (INCHES) (INCH)
8734.98 6 12.0 6.0 21.0 24 1.5 48x48 2.0
1354.12 6 12.0 6.0 21.0 24 1.5 36x36 1.0
Post-Development Dra inage Management Areas (DMAs)
The DMAs provide an important framework for feasibility screening, BMP prioritization and storm water
management system configuration. DMAs are defined based on drainage patterns of the site and the
BMPs to which they drain. The Bio-Basin Summary Table above, references a gravel depth of 24" which
does not include the 3" minimum of gravel below the perforated pipe (see Figure-1 Typical Biofiltration
Basin). Implying that the total gravel depth for this project is 27" (24" + 3" minimum). This 27" value is
used in the SWMM model calculations the as the total storage depth.
In this project Lot 2 DMAs drain to BMPs A and B. The self-mitigating areas are bypassed to the POC
designated for the project site (see hydromodification exhibit) to keep pre development flows OMA
Table for Post-Development Lot 2. In the SWMM model and table below note that the total areas of
each DMA are equal to the combination of the DMA area and its respective BMP area . For example, in
this project the total area of DMA-1 = (DMA-1 Area)+ (BMP-A Area) OR 4.95ac = (4.75ac) + (0.20ac).
[SUBCATCHMENTS]
Name Outlet Area %1mperv Width %Slope
DMA-1 BMP-A 4.75 82 214.3536 0.9
DMA-2 BMP-B 0.80 73 252.834 0.5
BMP-A POC-1 0.20 0 45.95 0
BMP-B POC-1 0.03 0 5.979 0
Total 5.78
OMA Table for Pre-Development Lot 2
DMAID DMA TOTAL %IMP TYPE (ACRE)
DMA-1 Drains to POC 5.78 0%
Total AREA 5.78
71 Page
IMP
LINER?
YES
YES
SECTION II. SYSTEM REPRESENTATION
SWMM is a distributed model, which means that a study area can be subdivided into any number of
irregular sub-catchments to best capture the effect that spatial variability in topography, drainage
pathways, land cover, and soil characteristics have on runoff generation. For modeling of
Hydromodification calculations, there are four main system representations: Rain gage, Sub-catchment
(contributing basin or LID area), Nodes and Links.
l1me Series Oceanside
100,000 200,000 300·,000 400,000 500,000
Bapsed llrre (~)
Fig. 2.1-Time series rain data, which corresponds to runoff estimates for each of the 508,080 time steps (each
date and hour) of the 58-year simulation period. (Inches/hour vs. elapsed time) (*Note: Time series has a
gap that occurs around 225,000; this gap is a part of the acquired data set and is a period of time when
the decimial was changed from 2 decimals to 1)
Rain Gauge
The properties of a rain gauge describe the source and format of the precipitation data that are applied
to the study area. In this project, the rainfall data consist of a long-term rainfall record stored in a user-
defined Time Series labeled as "Oceanside" rain gauge station. The Oceanside rain station was chosen
due to its data quality and its location to the project site.
The rain gauge supplies precipitation data for one or more sub-catchment areas in a study region taken
from the Project Clean Water website (www.projectcleanwater.org). This data file contains rainfall
intensity, hourly-recorded time interval, and the dates of recorded precipitation each hour. The
Oceanside rain data has approximately 58 years of hourly precipitation data from 8/28/1951 to
5/23/2008 and generates 58 years of hourly runoff estimates, which corresponds to runoff estimates for
each of the 508,080 time steps (each date and hour) of the 58 year simulation period. See figure 2.1 for
hourly precipitation intensity graph for 58 years in inches.
Sub-catchment (contributing basin or LID area)
A basin is modeled using a sub-catchment object, which contains some of the following properties:
8I Page
... .. .. .. .. -..
...
.. .. .. ...
... .. .. ...
.. ...
,..
--
..
1111 ..
Ill
The rate of stormwater runoff and volume depends directly on the precipitation magnitude and its
spatial and temporal distribution over the catchment. Each sub-catchment in SWMM is linked to a rain
gauge object that describes the format and source of the rainfall input for the sub-catchment.
Area
This area is bounded by the sub-catchment boundary. Its value is determined directly from maps or field
surveys of the site or by using SWMM's Auto-length tool when the sub-catchment is drawn to scale on
SWMM's study area map. This Project is divided into several sub-catchments based on its outfall.
Width
Width can be defined as the sub-catchment's area divided by the length of the longest overland flow
path that water can travel. When there are several such paths, one would use an average of their
lengths to compute a width. If overland flow is visualized as running down -slope off an idealized,
rectangular catchment, then the width of the sub-catchment is the physical width of overland flow .
DIRECTION
OF
FLO
Figure-2-2 Irregular subcatchment
shape for width calculations
(DiGiano et al., 1977, p.165).
MAIN
DRAINAGE
CHANNEL
Figure-2-3 Idealized representation
of a subcatchment.
Source: STORM WATER MANAGEMENT MODEL REFERENCE MANUAL VOLUME 1-JANUARY 2016
The method of calculations used following Figure 2-2 involves an estimitation by Guo and Urbonas
(2007). As stated in the Storm Water Management Model Reference Manual Vol. 1
A more fundamental approach to estimating both subcatchment width and slope has recently been
developed by Guo and Urbonas (2007). The idea is to use "shape factors" to convert a natural
watershed as pictured in Figure 2-2 into the idealized overland flow plane of Figure 2-3. A shape factor
is an index that reflects how overland flows are collected in a watershed. The shape factor X for the
actual watershed is defined as A/L 2 where A is the watershed area and Lis the length of the watershed's
main drainage channel (not necessarily the length of overland flow). The shape factor Y for the idealized
watershed is W/L. Requiring that the areas of the actual and idealized watersheds be the same and
that the potential energy in terms of the vertical fall along the drainage channel be preserved, Guo and
9IPage
.. ..
-..
,.. .
,,,.
...
.,.. ...
...
...
' ..
...
...
....
...
...
...
...
i ...
....
-..
Ill .. ..
11111 ,. ..
Urbonas (2007) derive the following expression for the shape factor Y of the idealized watershed:
Y = 2X(l.5 -Z)(2K -X)/(2K -1) (3-12)
where K is an upper limit on the watershed shape factor. Guo and Urbonas (2007) recommend that K be
between 4 and 6 and note that a value of 4 is used by Denver's Urban Drainage and Flood Control
District.
Once Y is determined, the equivalent width W for the idealized watershed is computed as YL.
Applying this approach:
X =(A• 43,560 ft2/acre) / (L2)
Z=Am/A
Z = skew factor, 0.5 ::; Z ::; 1,
Am= larger of the two areas on each side of the channel A= total area.
This width value is considerably lower than those derived from direct estimates of either the
longest flow path length or the drainage channel length. As a result, it would most likely produce a
longer time to peak for the runoff hydrograph .
Slope
This is the slope of the land surface over which runoff flows and is the same for both the pervious and
impervious surfaces. It is the slope of what one considers being the overland flow path or its area-
weighted average if there are several paths in the sub-catchment .
Imperviousness
This is the percentage of sub-catchment area covered by impervious surfaces such as sidewalks and
roadways or whatever surfaces that rainfall cannot infiltrate .
Roughness Coefficient
The roughness coefficient reflects the amount of resistance that overland flow encounters as it runs off
of the sub-catchment surface. The value used for this project's predevelopment is a 0.12 as Shrubs and
Bushes. This was based on the figures in 2-4 and 2-4a and assuming to be the most accurate to the
predevelopment site before mass grading and the "pre-project" and conditions were created. The value
for the post development is 0.05 for an average close gut grass, closely clipped sod.
10 I Page
.. .. .. .. ..
,..
....
,,. ...
...
-... ...
...
,.
'
... ... .. ..
...
111111
,.. ..
Table 3-5 Estimates o( Manning's roughness coefficient for ,werland flow
Source Ground Cover n Rane.c
Smooth asphalt 0.01
Crawford and Linsley Asohalt of concrete navimz 0.014
(1966)" Packed clay 0.03
Li~httuTf 0.20
Dense turf 0.35
Dense shrubbery and forest I itter 0.4
Concrete or asohalt 0.011 0.010-0.013
Engman ( l 986l Bare sand 0.010 0.01-0.016
Graveled surface 0.02 0.012-0.03
Bare day-loam (eroded) 0.02 0.012-0.033
Ran2e ( natural) 0.13 0.01-0.32
Blue£raSS sod 0.45 0.39-0.63
Short llf8SS orairie 0.15 0.10-0.20
Bermuda grass 0.41 0.30-0.48
Yen (2001 )c Smooth asohalt oavement 0.012 0.010-0.01 S
Smooth impervious surface 0.013 O.Oll-0.01S
Tar and sand oavemcnt 0.014 0.012-0.016
Concrete navement 0.017 0.014-0.020
Rough impervious surface 0.019 0.015-0.023
Smooth bare oacked soil 0.021 0.017-0.025
Moderate bare packed soil 0.030 0.025-0.03S
Rough bare packed soil 0.038 0.032-0.045
Gravel soil 0.032 0.025-0.045
Mowed poor £1"8SS 0.038 0.030-0.045
Avera~c 2rass closely cliooed sod 0.050 0.040-0.060
Pasture 0.055 0.040-0.070
Timberland 0.090 0.060..0.J 20
Dense 2tass 0.090 0.060-0.120
Shrubs and bushes 0.120 0.080-0.180
Business land use 0.022 0.014-0.035
Semi-business land use 0.035 0.022-0.050
Industrial land use 0.035 0.020-0.050
Dense residential land use 0.040 0.025-0.060
Suburban residential land use 0.055 0.030-0.080
Parks and lawns 0.075 0.040•0. t 20
8Qbtained by calibration of Stanford Watershed Model.
hComputed by Engman ( 1986) by kinematic wave and storage analysis of measured
rainfall-runoff data .
(Compuled on basis of kinemalic wave analysis .
Source: Storm Water Management Model Reference Manual Volume I -Hydrology
(Revised) ~ January 2016
111Page
Figure 2.4-Pre-Development site view with assumption of 0.12 mannings value
Figure 2-48 : Pre-Project site view after mass grading of the site
12 I Page
.. ..
... ...
...
I ...
' ... ..
...
I ...
,,. ... -...
... ...
...
.... -....
...
' .. ..
~
...
...
... ..
Infiltration Model
The pre-development condition is primarily empty land with moderate vegetation cover. In the model,
clay soil was used for the post-development condition and the pre-development condition for a
conservative approach {yield to a higher runoff). Infiltration of rainfall from the pervious area of a sub-
catchment into the unsaturated upper soil zone can be described using three different infiltration
models: Horton, Green-Ampt, and Curve Number. There is no general agreement on which method of
these three is the best .
The Green-Ampt method was chosen to calculate the infiltration of the pervious areas based on the
availability of data for this project. It is invoked when editing the infiltration property of a sub-
catchment.
The Hydrologic Soil Class identified for this project is a rating of D. This determination was from Web Soil
Survey and is provided as Attachment E of this projects SWMM report .
13IPage
• .. .. ...
..
....
...
....
,..
...
' ) ... .. ...
,,. ...
...
I
i ...
...
....
..
,..
' ....
... ..
...
.. ..
11111' ...
Table 1-Soil Infiltration Parameter
SWMM
Parameter Unit Range Use in San Diego
Name
Infiltration Method
Suction Head Inches
(Green-Ampt)
Conductivity Inches per hour
(Green-Ampt)
Initial Deficit
(Green-Ampt)
Groundwater
LID Controls
Snow Pack
Land Uses
Initial Buildup
Curb Length
yes/no
HORTON
GREEN_AMPT
CURVE NUMBER
1.93 -12.60 presented
in Table A.2 of SWMM
Manual
0.ot -4.74 presented
in Table A.2 of SWMM
Manual by soil texture
class
0.00 -<;0.45 presen¢d
in Table A.3 of SWMM
Manual by hydrologic
soil group
The difference between
soil porosity and initial
moisture content.
Based on the values
provided in Table A.2
of SWMM Manual, the
range for completely
dry soil would be 0.097
to 0.375
yes/no
GREEN_AMPT
Hydrologic Soil Group A: 1.5
Hydrologic Soil Group B: 3.0
Hydrologic Soil Group C: 6.0
Hydrologic Soil Group D: 9.0
Hydrologic Soil Group A: 0.3
Hydrologic Soil Group B: 0.2
Hydtologic Soil Group C: 0.1
Hydtologic Soil Group D: 0.025
Note: reduce conductivity by 25%in
the post-project condition when
native soils will be compacted. For fill
soils in post-project condition, see
Section G.1.4.3 .
Hydrologic Soil Group A: 0.30
Hydrologic Soil Group B: 0.31
Hydrologic Soil Group C: 0.32
Hydrologic Soil Group D: 0.33
Note: in long-term continuous
simulation, this value is not important
as the soil will reach equilibrium after
a few storm events regardless of the
initial moisture content specified.
NO
Project Specific
Not applicable to hydromodification
management studies
Source: Model BMP Design Manual San Diego Region Appendices, February 26, 2016
14 I Page
...
.. .. ...
... ...
... ..
,.. ..
... ...
,..
...
,,.
....
,.. ...
! ...
...
...
...
,. .. -...
.. ,.
1111
LID controls
Utilizing LID controls within a SWMM project is a two-step process that:
Creates a set of scale-independent LID controls that can be deployed throughout the study area,
Assign any desired mix and sizing of these controls to designated sub-catchments .
The LID control type that was selected was a biofiltration cell that contains vegetation grown in an
engineered soil mixture placed above a gravel drainage bed. Biofiltration provides storage,
infiltration (depending on the soil type) and evaporation of both direct rainfall and runoff captured
from surrounding areas. For this project, we do not allow infiltration to the existing/filled soil.
SECTION Ill. CONTINUED SIMULATION OPTIONS
Simulation Dates
These dates determine the starting and ending dates/times of a simulation and are chosen based on the
rain data availability .
Start analysis on 01/03/1951
Start Reporting on 01/03/1951
End Analysis on 05/23/2008
Time Steps
The Time Steps establish the length of the time steps used for runoff computation, routing computation
and results reporting. Time steps are specified in days and hours: minutes: seconds except for flow
routing which is entered as decimal seconds .
Climatology
-Evaporation Data
The available evaporation data for San Diego County that is similar to the Lot 2 project conditions is
taken Table G.1-1: Monthly Average Reference Evapotranspiration by ETo Zone for use in SWMM
Models for Hydromodification Management Studies in San Diego County CIMIS Zone 4 (in/day) .
January February March April May June
0.060 0.080 0.110 0.150 0.170 0.190
July August September October November December
0.190 0.180 0.150 0.110 0.080 0.060
15 I Page
-..
... ...
,..
...
....
....
.... .. ...
... ...
JI"' ...
,..
...
...
I ...
...
....
... ...
...
,.
.. .. .. .. ..
' ...
SECTION IV. BIOFILTRATION AS LID CONTROL
LID controls are represented by a combination of vertical layers whose properties are defined on a per-
unit-area basis. This allows an LID of the same design but differing coverage area to easily be placed
within different sub-catchments of a study area. During a simulation, SWMM performs a moisture
balance that keeps track of how much water moves between and is stored within each LID layer. If the
biofiltration basin is full and water is leaving the upper weir, the flow is divided in two flows: the lower
flow discharging from the bottom orifice directly draining to the point of compliance and the upper flow
is routed at the top of the biofiltration basin and after routing, discharged to the point of compliance. In
this project, we used 100% of the area of this specific sub-catchment for biofiltration.
1.. Surface
Storage Depth
When confining walls or berms are present, this is the maximum depth to which water can pond above
the surface of the unit before overflow occurs (in inches). In this project, storage depths vary. Table 3
shows depths of surface ponding .
Vegetation Volume Fraction
It is the fraction of the volume within the storage depth that is filled with vegetation. This is the volume
occupied by stems and leaves, not their surface area coverage. Normally this volume can be ignored, but
may be as high as 0.1 to 0.2 for very dense vegetative growth. Based on our visual observation in the
field, the average type of vegetation for this site is a low-density vegetation type. Therefore, we used 0.1
for the vegetation volume fraction assuming type of vegetation used is a low-density type .
Surface Roughness
Manning's n value for overland flow over a vegetative surface.
Surface Slope
Slope of porous pavement surface or vegetative swale (percent) .
2.Soil
Thickness
The thickness of the soil layer in inches. We used a typical value of 21 inches soil thickness for a
biofiltration. This includes the 3" of mulch layer per Worksheet B.5-1 in the Carlsbad BMP Manual.
The volume of pore space relative to total volume of soil (as a fraction). We designed it with a soil mix
porosity of 0.40 maximum for a good percolation rate {Countywide Model SUSMP Table Bl -Soil
Porosity Appendix A: Assumed Water Movement Hydraulics for Modeling BMPs).
Field Capacity
Volume of pore water relative to total volume after the soil has been allowed to drain fully (as a
fraction). We used 0.2 for this soil. Below this level, vertical drainage of water through the soil layer does
not occur. (See Table 1-Soil Infiltration Parameter) .
16 I Page
...
... ...
... ...
.. ...
... ...
...
...
I ...
...
Ill"'
...
I ...
,...
,..
...
...
....
...
... ...
...
11111'
1111111
Wilting Point
Volume of pore water relative to total volume for a well-dried soil where only bound water remains (as
a fraction). The moisture content of the soil cannot fall below this limit .
We assumed the minimum moisture content within this biofiltration soil is 0.1.
Conductivity
Hydraulic conductivity for the fully saturated soil is 5 inches/hour. This is a design minimum value for
percolation rate .
Conductivity Slope
Slope of the curve of log (conductivity) versus soil moisture content (dimensionless). Typical values
range from 5 for sands to 15 for silty clay. We designed this soil to have a very good percolation rate
therefore the conductivity slope is 5 .
Suction Head
The average value of soil capillary suction along the wetting front (inches). This is the same parameter as
used in the Green-Am pt infiltration model. Table 1 was utilized to determine the capillary of the soil mix
top layer of a biofiltration system. The suction head will be 1.5 inches.
3. Storage Layer
The Storage Layer page of the LID Control Editor describes the properties of the crushed stone or gravel
layer used in biofiltration cells as a bottom storage/drainage layer. The following data fields are
displayed:
Height
this is the thickness of a gravel layer (inches). Crushed stone and gravel layers are vary ranging from 12
to 36 inches thick. A table is provided to summarized the BMP configurations.
Void Ratio
The volume of void space relative to the volume of solids in the layer. Typical values range from 0.5 to
0.75 for gravel beds. Note that porosity= void ratio/ (1 + void ratio). We designed this void ratio to have
a value of 0.67 .
Seepage Rate
The rate at which water infiltrates into the native soil below the layer (in inches/hour). This would
typically be the Saturated Hydraulic Conductivity of the surrounding sub-catchment if Green-Am pt
infiltration is used. Since the liner beneath the gravel layer is proposed, the seepage rate is assumed to
be O in/hr.
Clogging Factor
Total volume of treated runoff it takes to completely clog the bottom of the layer divided by the void
volume of the layer. For south east biofiltration, a value of O was used to ignore clogging since the
system does NOT consider infiltration to the native soils. Clogging progressively reduces the Infiltration
17 I Page
....
...
...
...
,.. ...
,,,,,. ...
,.. ...
1111111
1111111
Ill'" ...
1111111 .. .. ...
1111111
...
....
Rate in direct proportion to the cumulative volume of runoff treated and may only be of concern for
infiltration trenches with permeable bottoms and no under drains. We assumed zero for the clogging
factor since the infiltration rate is not considered.
4. Underdrain Layer
LID storage layers can contain an optional underdrain system that collects stored water from the bottom
of the layer and conveys it to a conventional storm drain. The Underdrain page of the LID Control Editor
describes the properties of this system. It contains the following data entry fields:
Drain Coefficient and Drain Exponent
Coefficient C and exponent n that determines the rate of flow through the underdrain as a function of
height of stored water above the drain height. The following equation is used to compute this flow rate
(per unit area of the LID unit):
q = C(h-Hdr
where q is the outflow (in/hr), h is the height of stored water (inches), and Hd is the drain height. A
typical value for n would be 0.5 (making the drain act like an orifice.
Drain Offset Height
Height of any underdrain piping above the bottom of a storage layer (inches). In this project, this value
was set to 3" as the underdrain piping is at the bottom of the 24" of the live gravel storage layer but
above the 3" of dead gravel storage.
Table 3 -Summary of LID Drain/flow coefficient
JMP.
NAME
,,1VE
•. Jsitm
BMP-A 8735.0
BMP-B 1354.1
Note:
q = C(h-Hdr
C= C0 A0 ,fig X 12°·5 X 3600 A
bR1F1ce •.
::j,N):r;
2.0
1.0
UD
6 21 27
6 21 27
UNQERDRAIN (>Ffs,JT ••
(IN). ..
. ·.
3
3
0.1469
0.2466
18 I Page
-• ..
1111
...
... ...
...
~ ...
,,,.
...
,..
....
...
,..
,. ...
,...
....
...
....
,...
..
... ...
...
SECTION V. RUNNING THE SIMULATION
In general, the Run time will depend on the complexity of the watershed being modeled, the routing
method used, and the size of the routing time step used. The larger the time steps, the faster the
simulation, but the less detailed the results .
Model Results
SWMM's Status Report summarizes overall results for the 58-yr simulation. The runoff continuity error is
-6.23% and the flow routing continuity error is 0.00%. When a run completes successfully, the mass
continuity errors for runoff, flow routing, and pollutant routing will be displayed in the Run Status
window. These errors represent the percent difference between initial storage+ total inflow and final
storage+ total outflow for the entire drainage system. If they exceed some reasonable level, such as 10
percent, then the validity of the analysis results must be questioned. The most common reasons for an
excessive continuity error are computational time steps that are too long or conduits that are too short .
In addition to the system continuity error, the Status Report produced by a run will list those nodes of
the drainage network that have the largest flow continuity errors. If the error for a node is excessive,
then one should first consider if the node in question is of importance to the purpose of the simulation.
If it is, then further study is warranted to determine how the error might be reduced.
The SWMM program ranks the partial duration series, the exceedance frequency and the return period.
They are computed using the Weibull formula for plotting position. See the flow duration curve and
peak flow frequency on the following pages.
SECTION VI. RESULT ANALYSIS
Development of the Flow Duration Statistics
The flow duration statistics are also developed directly from the SWMM binary output file. It should be
noted right from the start that the "durations" that we are talking about in this section have nothing to
do with the "storm durations" presented in the peak flow statistics section. Other than using the same
sequence of letters for the word, the two concepts have nothing to do with each other and the reader is
cautioned not to confuse the two. The goal of the flow duration statistics is to determine, for the flow
rates that fall within the hydromorphologicaly significant range, the length of time that each of those
flow rates occur. Since the amount of sediment transported by a river or stream is proportional to the
velocity of the water flowing and the length of time that velocity of flow acts on the sediment, knowing
the velocity and length of time for each flow rate is very useful.
Methodology
The methodology for determining the flow duration curves comes from a document developed by the
U.S. Geological Survey (USGS). The first stop on the journey to find this document was a link to the
USGS water site (http://www.usgs.gov/water/). This link is found in Appendix E (SDHMP Continuous
19 I Page
.. • .. -.. ...
Ill" ...
...
...
... ...
... ...
... ...
Ill" ...
Ill" ...
... ...
Ill" ...
... ... .. ...
... ...
... ...
...
...
... ...
Simulation Modeling Primer), found in the County Hydromodification Management Plan1. On this web
site a search for "Flow Duration Curves" leads to USGS Publication 1542-A, Flow-duration curves, by
James K. Searcy 1959 {http://pubs.er.usgs.gov/publication/wspl542A). In this publication the
development of the flow duration curves is discussed in detail.
In Pub 1542-A, beginning on page 7 an example problem is used to illustrate the compilation of data
used to create the flow duration plots. A completed form 9-217-c form shows the monthly tabulation of
flow rates for Bowie Creek near Hattiesburg, Miss. For each flow range the number of readings is
tabulated and then the total number of each flow rate is totaled for the year. It should be noted that
while this example is for a stream with a minimum flow rate of l00cfs, for the purposes of run-off
studies in Southern California the minimum flow rate of zero (0) cfs is the common low flow value. Once
each of the year's data has been compiled the summary numbers from each year are transferred to
form 9-217-d. On this form the total number of each flow rate is again totaled and the percentage of
time exceeded calculated (as will be explained later under the discussion of our calculations). Once the
data has been compiled a graph of Discharge Rate vs. Percent Time Exceeded is developed. As will be
explained in the next section, the use of these curves leads to the amount of time each particular flow
can be expected to occur (based on historical data) .
How to Read the Graphs2
Figure 6-1 shows a flow duration curve for a hypothetical development. The three curves show what
percentage of the time a range of flow rates are exceeded for three different conditions: pre-project,
post-project and post-project with storm water mitigation. Under pre-project conditions the minimum
geomorphically significant flow rate is 0.l0cfs (assumed) and as read from the graph, flows would equal
or exceed this value about 0.14% of the time (or about 12 hours per year) (0.0014 x 365days x 24
hour/day). For post-project conditions, this flow rate would occur more often -about 0.38% of the time
(or about 33 hours per year) (0.0038 x 365days x 24 hour/day). This increase in the duration of the
geomorphically significant flow after development illustrates why duration control is closely linked to
1 FINAL HYDROMODIFICATION MANAGEMENT PLAN, Prepared for County of San Diego, California, March 2011, by
Brown and Caldwell Engineering of San Diego.
(http://www.projectcleanwater.org/images/stories/Docs/LDS/HMP/0311 SD HMP wAppendices.pdf)
2 The graph and the explanation were taken directly from Appendix E of the Hydromodification Plan
20 I Page
protecting creeks from accelerated erosion.
0.60 ..-------,------,---------,--.--_-_-_-_-~,-_-_---:--_-....,~-_-....,--: ....,--: ....,-_---,---_-_-_---,--,
---+-lml)er\10U$ Flow (cfs)
---Pre-Project Flow (cfs) o.7o ----+-----11------i----1--1 --Post.Project Mitigated Flow (cfs)
'lf
l 0.40 !J .II ....
Cl.20
0.10
--Pre-Project 0.205
--Pre-Project 010
0.00 +-----+-----11-----+-----+---+-----+-----+------i
0.00 0.05 0.10 0.1!5 0.2D 0.25 0.30 0.35 0.40
~ Tiru Excud~d
Figure 6-1. Flow Duration Series Statistics for a Hypothetical Development Scenario
Development of Flow Duration Curves
The first step in developing the flow duration curves is to count the number of occurrences of each flow
rate. This is done by first rounding every non-zero flow value to an appropriate number of decimal
places (say two places). This in effect groups each flow into closely related values or "bins" as they are
referred to in publication 9-217d. Then the entire runoff record is queried for each value and the
number of each value counted. The next step is to enter the results of the query into a grid patterned
after form 9-217d. The data is entered in ascending order starting with the lowest flow first. The grid is
composed of four columns. They are (from left to right) Discharge Rate, Number of Periods (count),
Total Periods Exceeding (the total number of periods equal to or exceeding this value), and Percent Time
Exceeded. Starting at the top row (row 1), the flow rate (which is often times zero) is entered with the
corresponding number of times that value was found. The next column is the total number of values
greater than or equal to that flow rate. For the first flow rate point, by definition all flow rate values are
greater than or equal to this value, therefore the total number of runoff records of the rainfall record is
entered here. The final column which is the percent of time exceeded is calculated by dividing the total
periods exceeded by the total number of periods in the study. For the first row this number should be
100%
For the next row (row 2), the flow rate, and the flow rate count are entered. The total number of
periods exceeding for row 2 is calculated by subtracting Number of Periods of row 1 from the Total
Periods Exceeding of line 1. This result is entered in the Total Periods Exceeding on row 2. As was the
case for line 1, the final column is calculated by dividing the total periods exceeded by the total number
of periods in the study. For the second row this number should be something less than 100% and
21 I P age
----.. .. .. ---.. ..
1111 .. ... .. .. ..
Ill
...
.. ..
... ...
... ...
""' ...
... ...
... ...
...
111111 ..
1111
continually decrease as we move down the chart. If all the calculations are correct, then everything
should zero out on the last line of the calculations .
The final step in developing the flow duration curves is to make a plot of the Discharge Rate vs. the
Percent Time Exceeded. For the purposes of this report, the first value corresponding to the zero flow
rate is not plotted allowing the graph to be focused on the actual flow rate values .
The Flow Duration Analysis
The Peak Flow Statistics analysis is composed of the following series of files:
l. The Flow Duration Plot
2. Comparison of the Un-Mitigated Flow Duration Curve to the Pre-Development Curve (Pass/Fail)
3. Comparison of the Mitigated Flow Duration Curve to the Pre-Development Curve (Pass/Fail)
4. The calculations for the Pre-Development flow duration curve development (USGS9217d)
5. The calculations for the Post-Development flow duration curve development (USGS9217d)
6. The calculations for the Mitigated flow duration curve development (USGS9217d)
The Flow Duration Plot
The Flow Duration Curves Plot is the plotting of all three (pre, un-mitigated and mitigated) sets of
Discharge Rate vs. the Percent Time Exceeded data point pair lists. In addition to these curves
horizontal lines are plotted corresponding to the Q10 and Clit (low flow threshold) values. Within the
geomorphically significant range (Q10 -Clit) one can see a visual representation of the relative positions
of the flow duration curves. The flow duration curves are compared in an East/West (horizontal)
direction to compare post development Discharge Rates to pre-development Discharge Rates. The pre-
development curve is plotted in blue and the mitigated curve is plotted in green. As long as the post
development curve lies to the left of the pre-development curve (mostly3), the project meets the peak
flow hydromodification requirements .
Pass/Fail comparison of the curves
The next two sets of data are the point by point comparison of the post-development curve(s) and the
pre-development curve. The Pass/Fail table is helpful in determining compliance since the plotted lines
can be difficult to see at the scales suitable for use in a report. Each point on the post-development
curve has a corresponding "Y" value (Flow Rate), and "X" value(% Time Exceeded). For each point on
the post development curve, the "Y" value is used to interpolate the corresponding Percent Time
Exceeded (X) value from the pre-development curve. Then the Post-development Percent Time
Exceeded value is compared to the pre-development Percent Time Exceeded value. Based on the
relative values of each point, pass/fail criteria are determined point by point .
For each set of data, the upper right hand header value shows the name of the file being displayed (ex .
flowDurationPassFailMitigated.TXT). The first line of the file shows the name of the SWMM output file
(* .out). The next line shows the time stamp of the SWMM file that is being analyzed. The time stamps
of all of the report files should be within a minute or two of each other, otherwise there may have been
3 See hydromodification limits for exceedance of pre-development values
22 I Page
.. .. -.. ..
... ... .. -.. ...
...
...
... ...
... ... ..
... .. ...
... ... -
.. .. .. .. --..
.. ...
tampering with the files. Each report run creates and prints all of the files and reports at one time so all
the time stamps should be very close .
The first column is the zero based number of the point. The next two columns show the post
development "X" and "Y" values. The next column shows the value interpolated between the two
bounding points on the pre-development curve. The next three columns show the true or false values
of the comparison of the two "X" values. The last column shows the resultant pass or fail status of the
point. There are three ways a point can pass. They are:
1. Qpost being outside of the geomorphically significant range Q1r to Q 1 o
2. Qpost being less than Q pre
3. Qpost being less than 110% of the value ofQpre if the point is between Q1rand Q10
There are two ways that a point can fail. They are:
1. Qpost being greater than 110% of Qpre if the point is between Q1r and Q 1 o
2. If more than 10% of the points are between 100% and 110% of Qpre for the points
between Q1r and Q10
A quick scan down the last column will quickly tell if there are any points that fail.
At the bottom of each set of data are the date stamp of the report to the left, and to the right is the
page number/number of pages for the specific set of data (not the pages of the report!). Each new set
of data has its own page numbering. Between the file name in the header row and the page numbering
in the footer row, the engineer can readily scan the document for the data of interest .
Plan Check Suggestions
As was described under the peak flow section, is the responsibility of the reviewing agency to confirm
that the data sets presented are valid results from consistent calculations, and that any and all results
can be duplicated by manual methods and achieve the same results. In light of these goals, the plan
checker is invited to consider the following tasks as part of the plan check process .
Compare the Data Stamps for Each of the Statistics Files Used In This Analysis .
As was described in the Peak Flows section, all report files should have time stamps that are nearly
identical. If the time values are more than a few minutes apart then the potential for inconsistent
results files should be investigated .
Verify the Flow Rate Counts
For each of the pre, and mitigated flow duration tables, a few randomly selected flow value counts
should be checked against the values taken directly from the SWMM file. This can be done by opening
the corresponding SWMM file, selecting the outfall node, selecting Report>Table>By Object, Setting the
time format to Date/Time, selecting the appropriate node value, and clicking the OK button to generate
a table of the date/time/Total Inflow values. Next step is to click in the left most header row of the
SWMM table which will select the entire table. Now from the main menu select Edit>Copy
To>Clipboard. Now open a new blank sheet in MS Excel (or suitable spread sheet program) select cell
23 I Page
.. .. .. .. .. --... .. -.. ..
.. ... -... -..
... ..
... ... -• -.... ..
.. .. -•
-.. ..
Al and paste the results from the clipboard into the spread sheet. Now sort the values based on the
Total Inflow column. This will group all the flow values together enabling the number of occurrences of
each value to be counted. At this point the a few (or all) of the counts on the various USGS9217d.txt
files can be verified.
Manually Verify That the Percent Exceeded Values (form USGS9217d) are Correctly Calculated
The discharge rates and counts are confirmed as was described above. The top row should be the
smallest runoff value (0.00cfs usually). Total Periods Exceeding of the first line should be the total
number of rainfall records in the study. The percentage of Time Exceeding should be the total periods
Exceeding divided by the total number of rainfall records in the study (100% for the first line). For each
successive discharge rate, the total periods exceeding for the current line should be the total periods
exceeding from the line above minus the number of periods from the line above. The number of
periods and the number of periods exceeding should zero out at the last line.
Compare Plotted Curves to Table Data
Randomly check a few of the plotted points against the values verified above.
Verify by Observation that the plotted values of U1oand Uit are reasonable .
Verify that the correct values for each of these return periods are plotted correctly on the graph .
Development of the Peak Flow Statistics
The peak flow statistics are developed directly from the binary output file produced by the SWMM
program. The site is modeled three ways, Pre-Development, Post-Development-Unmitigated, and Post-
Development-Mitigated. For each of these files a specific time period differentiating distinct storms is
chosen. The SWMM results are extracted and each flow value is queried. The majority of the values for
Southern California sites are zero flow. As each successive record is read, as soon as a non-zero value is
read the time and flow value of that record are recorded as the beginning of an event. The first record is
automatically recorded as the "tentative" peak value. As each successive non-zero value is read and the
successive flow value is compared to the peak value and the greater value is retained as the peak value
of the storm. As soon as a successive number of zero values equal to the predetermined storm
separation value, then the time value of the last non-zero value is recorded as the end of the storm, the
duration of the storm is the difference between the end time and the start time, and the peak value is
recorded as the highest flow value between the start and end times .
Once the entire SWMM output file is read all of the distinct storm events will have been recorded in a
special list. The storms will be in the order of their occurrence. To develop the peak flow statistics table
the first step is to sort the storms in descending order of the peak flow value. Once the list is sorted
then the relative rank of each storm is assigned with the highest ranking storm being the storm with the
highest peak flow. There are several methods that can be used to determine which storm should be
ranked above another equally valued storm. For the purposes of these studies an Ordinal ranking is
used so that each storm has a unique rank number. Where two or more storms have equal flow values,
the earlier storm is assigned the higher rank. This is done consistently throughout the storm record.
Since we are only looking at peak flow statistics, it is assumed that the relative ranking of individual (but
equal) storms is irrelevant to the calculations.
24 I Page
.. ..
,.. ..
..
,..
...
... ...
,.. ..
,.. -
.. -... ... .. .. -.. -... .. ... -...
,. .. .. -,. ..
The exceedance frequency and return period are both computed using the Weibull formula for plotting
position. Therefore, for a specific event the exceedance frequency F and the return period in years Tare
calculated using the following equations4:
and T=n+l/m
where m is the event's rank, nR is the total number of events and n is the number of years under
analysis.
Once the Peak flow statistics table is complete, a plot of Return Frequency vs. peak flow is created. All
three conditions (pre, post and mitigated) are plotted on the same plot.
The Peak Flow Statistics Analysis
The Peak Flow Statistics analysis is composed of the following series of files:
1. The Peak Flow Frequency Plot
2. The Comparison of the Un-Mitigated Peak Flow Curve to the Pre-Development Curve (Pass/Fail)
3. The Comparison of the Mitigated Conditions Curve to the Pre-Development Curve (Pass/Fail)
4. The Peak Flow Statistics Calculation for the Pre-Development Curve.
5. The Peak Flow Statistics Calculation for the Un-Mitigated Curve.
6. The Peak Flow Statistics Calculation for the Mitigated Curve.
The Peak Flow Frequency Plot
The Peak Flow Frequency Curves are the plotting of all three (Pre, Un-Mitigated and Mitigated) sets of
return Period vs peak flow data point pair lists. In addition to these curves horizontal lines are plotted
corresponding to the 010, Os, Qi and Oit (low flow threshold) values. Within the geomorphically
significant range (Clio -Oit) one can see a visual representation of the relative positions of the peak flow
curves. The peak flow curves are compared in a North/South (vertical) direction to compare post
development peak flows to pre-development flows. The Pre-Development curve is plotted in blue, the
unmitigated curve is plotted in red, and the mitigated curve is plotted in green. As long as the post
development curve lies below the pre-development curve (mostly5), the project meets the peak flow
hydromodification requirements .
Pass/Fail comparison of the curves
The next two sets of data are the point by point comparison of the post-development curve(s) and the
pre-development curve. The Pass/Fail table is helpful in determining compliance since the plotted lines
can be difficult to see at the scales suitable for use in a report. Each point on the post-development
curve has a corresponding "X" value (Recurrence Interval), and "Y" value (Peak Flow). For each point on
the post development curve, the "X" value is used to interpolate the corresponding peak flow value
from the pre-development curve. Then the Post-development peak flow value is compared to the pre-
development peak flow value. Based on the relative values of each point, pass/fail criteria are
determined point by point .
4 Pg 169-170 STORM WATER MANAGEMENT MODEL APPLICATIONS MANUAL, EPA/600/R-09/000 July 2009
5 See hydromodification limits for exceedance of pre-development values
25 I Page
---
11111 ---.. --.. ..
.,.. .. .. .. .. ..
...
... ...
...
.. ... ..
-• -.. -..
111111
For each set of data, the upper right hand header value shows the name of the file being displayed (ex.
peakFlowPassFailMitigated.TXT). The first line of the file also shows this value. The next line shows the
time stamp of the file that is being analyzed. The time stamps of all of the report files should be within a
minute or two of each other, otherwise there may have been tampering with the files. Each report run
creates and prints all of the files and reports at one time so all the time stamps should be very close. It
should be noted that the SWMM.out files will not have related time stamps since each file is developed
independently .
The first column is the zero based number of the point. The next two columns show the post
development "X" and "Y" values. The next column shows the value interpolated between the two
bounding points on the pre-development curve. The next three columns show the true or false values
of the comparison of the two "Y" values. The last column shows the resultant pass or fail status of the
point. There are three ways a point can pass. They are:
1. Point is outside of the geomorphically significant range 010 -Oit
2. Oiiost being less than O pre
3. Oiiost being less than 110% of the value of Oiire if the point is between Os and 0106
There are four ways that a point can fail. They are:
1. Oiiost being greater than Oiire if the point is between Oit and Os
2. Oiiost being greater than 110% of Oiire if the point is between Oit and 010
3. If more than 10% of the points are between 100% and 110% of Opre for the points between Os
and 010
4. If the frequency interval for points > 100% of Oiire is greater than 1 year for the points between
Os and 010
A quick scan down the last column will quickly tell if there are any points that fail.
At the bottom of each set of data are the date stamp of the report to the left, and to the right is the
page number/number of pages for the specific set of data (not the pages of the report!). Each new set
of data has its own page numbering. Between the file name in the header row and the page numbering
in the footer row, the engineer can readily scan the document for the data of interest .
The Peak Flow Statistics Calculations
There are three sets of data for the Peak Flow Statistics calculations (Pre-Development, Un-Mitigated,
and Mitigated). As was the case for the pass/fail data, the upper right hand corner of each sheet has the
file name. The first row of the data is the SWMM file name. The second row is the SWMM file time
stamp of the file being analyzed. The 4th, 5th, and 6th rows are the calculated values for 0 10, Os, and Qi.
These values are derived by linear interpolation between the nearest bounding points in the listing.
While the relationship between the points in the peak flow analysis is not technically a linear
relationship, the error introduced in using linear interpolation between such relatively close data points
is assumed to be irrelevant. Finally, the footer row shows the report time and the page/number of
pages of the data set.
6 See section on how a point can fail point number 3 hereon
26 I Page
... .. .. .. ----
..
-..
,. ...
...
... ...
... ...
... ..
... .. .. .. .. .. ---.. --
As was previously discussed, each storm listed was determined by reading the flow values directly from
the binary output file from the SWMM program. The storms were then sorted in descending order of
peak flow values. Then each storm was assigned a unique rank, then the Frequency and Return Period
were calculated using Weibull formulas. Every discharge value for the entire rainfall record is listed in
each of these lists. It should be noted that the derivation of these peak flow statistics values use full
precision (i.e. no rounding off) of the SWMM output values. Since the precision of the calculations may
not be the same as the SWMM program uses, and also the assignment of rank to values of equal peak
flow value may differ slightly from the way SWMM calculates the tables, minor variances in the data
values and/or the order of storms can be expected.
Finally, as was previously stated, the values of the Return Period were plotted vs. the peak flow values
to develop the peak flow frequency curves.
Plan Check Suggestions
As is the responsibility of the reviewing agency, any and all methods should be considered to verify that
the SWMM analysis adequately models the site as far as hydrologic discharge is concerned, and that the
data sets presented are valid results from consistent calculations, and that any and all results can be
duplicated by manual methods and achieve the same results. In light of these goals, the plan checker is
invited to consider the following tasks as part of the plan check process .
Compare the Data Stamps for Each of the Statistics Files Used In This Analysis.
For each set of calculations and report files, the first step of the process is to list out all the files in the
report folder and delete those files. The very first step leaves the reports folder completely empty .
Then as each successive step is performed, the results file is placed in the reports folder. Once all of the
results files are complete, then the report file is compiled using the data directly from the files placed in
the results folder. This means that the time stamps on each of the report files in the report should be
within a minute or two depending on the speed of the computer. If the time values are more than a few
minutes apart then the potential for inconsistent results files should be investigated .
Verify A Few Random Storm Statistics
For each of the Pre, Un-mitigate and Mitigated peak flow statics tables, a few randomly selected storms
should be checked against the values taken directly from the SWMM file. This can be done by opening
the corresponding SWMM file, selecting the outfall node, selecting Report>Table>By Object, Setting the
time format to Date/Time, selecting the appropriate node value, and clicking the OK button to generate
a table of the date/time/Total Inflow values. Now scroll down the list to the start date and time of the
randomly selected storm. Verify that the start date, end date, and the highest flow value between the
start and end date correspond to the values shown in the statistics table. Do this for a few storm to
verify that the data corresponds to the SWMM output file. Verify by hand a few of the frequency and
return period values .
Compare Plotted Curves to Table Data
Randomly check a few of the plotted points against the values found in the Peak Flow Frequency Tables.
27 I Page
.. --..
-.. .. ... --..
... -..
.. ..
.. .. -... .. --.. -• -.. .. ... -..
Verify by Observation that the values ofQ10, Qs, Q2 and Q1rare reasonable .
For each value shown on the reports, verify that the value shown for say Ql0 is in between the next
higher return period and the next lower period. Also verify that the correct values for each of these
return periods are plotted correctly on the peak flow frequency graph.
Manually Verify That the Pass Fail Table Is Correctly Calculated
Select at random several points on each of the pass/fail tables to verify that the values for post X/Y and
interpolated Y look reasonable. Also check that the various test results are shown accurately in the
chart and also the final pass/fail result looks accurate .
Drawdown Time of Bio-filtration Surface Ponding
The drawdown time for hydromodification flow control facilities was calculated by assuming a starting
water surface elevation coincident with the peak operating level in the bio-filtration facility such as the
elevation at the weir or the emergency spillway overflow .
The instruction from the county of San Diego Department of Environmental Health (DEH) limits the
drawdown time hydromodification flow control facilities to 96 hours. This restriction was implemented
as mitigation to potential vector breeding issues and the subsequent risk to human health. See
Attachment C for Drawdown time of each pond and derivations of drawdown times for BMPs.
Drawdown time and Calculations are included as Attachment D of this SWMM report .
VII. SUMMARY AND CONCLUSION
Hydromodification calculations were performed utilizing continuous simulation to size storm water
control facilities. SWMM (Storm Water Management Model) version 5.0 distributed by USEPA was used
to generate computed peak flow recurrence and flow duration series statistics .
There are several tributary areas planned as industrial use treated by 2 biofiltration basins (labeled as
BMP-# (Best Management Practices) with a total tributary area of approximately 5.78 acres. The areas
were grouped based on its outfall and were analyzed for pre-development and post-development
conditions; Whole Basin A and Basin B drains to one point of compliance {POC) .
The analyzed SWMM runs attached show that the proposed biofiltration facilities provided with variety
of orifice flow control at the base of the gravel storage configured as shown in Figure 6-1 is in
compliance with the HMP and BMP Manual.
Lot 2
On POC, The flow duration curve on the following page shows the existing condition 17.5 hours
(0.200x365daysx24 hour/day= 17.5 hours) .
With the proposed square footage of LID areas and orifices acting as the low flow restrictor configured
as shown in Figure 1 the duration of the flow is 17.6 hours {0.201x365daysx24 hour/day =17.6 hours) .
This flow duration is higher than the existing but within the allowed 10% to meet compliance .
28 I Page
Therefore, this study has demonstrated that the proposed optimized biofiltration basin is sufficient to
meet the current HMP and BMP criteria (See Table 7-1).
Excel Engineering
Flow Duration Curves
2.5 -Pre Development -Post Development Mlligaled
-,IE-Q10 (2.348cia) -,IE-Qlf (0.1799cf1)
2.0
-1.5 , .
.t! u -.! ftl «
1.0
~ 0 ii:
0.5
0.0
-0.5 . .
.Flow Ourilion Pro0eve~nt~365(days)x24(tvldiy)x(l.2i7('1,),'19.0(hours/ye~) •
Flow Duration Mitigated Post Oeveloprnent•365(dayS)x2◄(hllday)l<0.20-4(%)•17,9(houts/year)
0.00 0.05 0.10 0.15 0.20
(%) Percent Time Exceedance
Table 7-1
29 I P age
STATISTICS ANALYSIS OF THE
SWMM FILES FOR:
ANALYSIS DETAILS
Statistics Selection: Nodes/Total Inflow
Stream Susceptibility to Channel Erosion: High (Qlf = (0.1)Q2)
Assumed time between storms (hours): 24
PRE-DEVELOPMENT SWMM FILE
SWMM file name: V:\19\19079\Engineering\SDP\Storm-SDP\SWMM\19-079-PRE DEV.out
SWMM file time stamp: 2/17/2020 4:21:51 PM
Selected Node to Analyze: POC-1
POST-DEVELOPMENT MITIGATED SWMM FILE
SWMM file name: V:\19\19079\Engineering\SDP\Storm-5DP\SWMM\19-079-POST DEV.out
SWMM file time stamp: 3/18/2020 6:23:13 PM
Selected Node to Analyze: POC-1
MITIGATED CONDITIONS RESULTS
For the Mitigated Conditions:
Peak Flow Conditions PASS
Flow Duration Conditions PASS
The Mitigated Conditions peak flow frequency curve is composed of 766 points. Of the points, 1 point(s) are above
the flow control upper limit (Ql0), 547 point(s) are below the low flow threshold value (Qlf). Of the points within
the flow control range (Qlf to Ql0), 218 point(s) have a lower peak flow rate than pre-development conditions.
These points all pass. There are no points that failed, therefore the unmitigated conditions peak flow
requirements have been met.
The Mitigated Conditions flow duration curve is composed of 100 flow bins (points) between the upper flow
threshold (cfs) and lower flow threshold (cfs). Each point represents the number of hours where the discharge was
equal to or greater than the discharge value, but less than the next greater flow value. Comparing the post-
development flow duration curve to the pre-development curve, 99 point(s) have a lower duration than pre-
development conditions. These points all pass. There are no points that failed, therefore the unmitigated
conditions flow duration requirements have been met.
V:\19\19079\Engineering\SDP\Storm-SDP\SWMM\report parts\Statistics Reports\POC-1\Statistics Results-POC-1.pdf
3/18/2020 6:29 :28 PM software version : 1.0.6785.31877
Excel Engineering
8
7
6 -~ 5 -3
.2 4 LL
.lll: m 3 0..
2
1
Peak Flow Frequency Curves
• • • • • • • • • • • • • •••••••••••• ,I ••••••••••••• '............. • • • • • • • • • • • • • •••••••••••• , •••••
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... .
-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
~
-Hit---t----7------------------------------4· ... · · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
.,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
• • • • • • • • • • • • ·: • • • • • • • • • • • • • • :· • • • • • • • • • • • • • '. • • I -Pre Development -Post Development Mitigated I +f r~-010 (5.417cfs) ~ os (5.210cfs) I
0 j j j ~ 02 (3.995cfs) ~ Olf (0.3995cfs) I I I I I I I I I I I I I ' I I
0 10 20 30 40 50 60
Return Period (Years)
f I f -, r· I f -1 ,-1 f -1 f 1 r I f -1 r , r 1 f ·1 f 1 ,-1 f ·1 f. 1 r· ·-. I I r I
Excel Engineering peakFlowPassFailMitigated.TXT
Compare Post-Development Curve to Pre-Development Curve
post-development SWMM file: V:\19\19079\Engineering\SDP\Storm-SDP\SWMM\19-079-POST DEV.out
post-development time stamp: 3/18/2020 6:23:13 PM
Compared to:
pre-development SWMM file: V:\19\19079\Engineering\SDP\Storm-SDP\SWMM\19-079-PRE DEV.out
pre-development time stamp: 2/17/2020 4:21 :51 PM --
' I
1,.0
,;;, 0 1,.0 I 1,.0 0~
:<-'ii< 0 i ~ 0~ 0-:i. 0-:i. ~ ~ o\o
.,,,_q_ .,,,_<:::J .,,,_t.-i .,,,_-, ..._(:5 i-q_<: <:::j I " q_O<-,; ~~ q_O<-,; q_'-0 r:,<-,; I r:,<-,; .,,,_-, <J.~ ~ : o(l o<l I
0 58.00 6.16 7.46 FALSE FALSE FALSE Pass-Qpost Above Flow Control Upper Limit
1 29.00 4.70 6.19 TRUE FALSE FALSE Pass-Qpost < Qpre
2 19.33 4.51 5.92 TRUE FALSE FALSE Pass-Qpost < Qpre
3 14.50 ' 4.28 I 5.85 TRUE FALSE FALSE Pass-Qoost < Qore
4 11.60 I 4.27 5.51 TRUE FALSE FALSE Pass-Qpost < Qpre
5 9.67 I 4.15 i 5.40 TRUE FALSE FALSE Pass-Qpost < Qore
6 8.29 3.90 I 5.36 TRUE FALSE FALSE Pass-Qoost < Qore
7 7.25 3.64 i 5.30 i TRUE --~-FALSE FALSE Pass-Qpost < Qpre
8 6.44 ! 3.50 I 5.30 I TRUE FALSE FALSE Pass-Qpost < Qpre ----9 5.80 3.33 5.24 TRUE FALSE FALSE Pass-Qpost < Qpre
10 5.27 ! 3.21 5.24 i TRUE FALSE FALSE Pass-Ooost < Qore
11 4.83 I 3.19 5.19 I TRUE FALSE FALSE Pass-Ooost < Qpre
12 4.46 ! 3.18 5.07 i TRUE FALSE FALSE Pass-Qpost < Qpre
13 4.14 3.02 4.98 TRUE FALSE FALSE Pass-Qpost < Qpre
14 3.87 2.90 4.93 TRUE FALSE FALSE Pass-Ooost < Qpre ~ 15 ! 3.63 2.72 4.82 TRUE FALSE FALSE Pass-Qpost < Qpre !
16 3.41 2.68 4.60 TRUE FALSE FALSE Pass-Qpost < Qpre
17 ! 3.22 2.57 4.56 ! TRUE FALSE FALSE Pass-Qpost < Qpre
18 I 3.05 2.57 4.52 TRUE FALSE FALSE Pass-Qpost < Qpre t-------
19 i 2.90 2.55 4.51 TRUE FALSE FALSE Pass-Qpost < Qpre
20 I 2.76 2.51 4.46 I TRUE FALSE FALSE Pass-Qpost < Qore I
21 2.64 2.49 4.46 TRUE FALSE FALSE Pass-Qpost < Qore
22 2.52 2.43 4.36 TRUE FALSE I FALSE Pass-Qpost < Qpre
23 2.42 2.41 4.27 TRUE FALSE FALSE Pass-Qpost < Qpre
24 2.32 2.40 4.15 TRUE FALSE FALSE Pass-Qpost < Qpre
25 2.23 2.29 4.08 TRUE ' FALSE FALSE Pass-Qoost < Qore
26 2.15 2.27 4.06 TRUE : FALSE FALSE Pass-Ooost < Qpre
27 2.07 2.27 4.00 TRUE I FALSE FALSE Pass-Qoost < Qpre
28 2.00 2.24 3.99 TRUE ' FALSE FALSE Pass-Qpost < Qpre -29 1.93 2.22 3.93 TRUE ' FALSE FALSE Pass-Qoost < Qpre
30 1.87 2.12 3.85 TRUE i FALSE FALSE Pass-Qoost < Qore
31 1.81 2.10 3.80 TRUE i FALSE FALSE Pass-Qoost < Oore
32 1.76 2.10 3.74 TRUE i FALSE FALSE Pass-Qoost < Qore
33 1.71 2.08 3.69 TRUE ' FALSE FALSE Pass-Qoost < Oore
3/18/2020 6:29 PM 1/19
,-I r, r 1 r ·· 1 ,-1 ,-1 ,-1 ,---, ,-1 r 1 r , r , r 1 r 1 r , r 1 I I t I f I
Excel Engineering peakFlowPassFailMitigated.TXT
&e
/...;;;.. 0 &e &e I ~ ~'It< 0\:5 fl,..), ~o ~ ~ o\o ~ ~q ~<J ()e ~I, ~,,, .__<::S j q<: " qo~ ~~ qo~ q<..e o<f~ 0~ I ~,,, q~ ~ 0~
I ~
34 I 1.66 2.08
'
3.59 TRUE FALSE FALSE Pass-Qpost < Qpre
35 I 1.61 2.08 i 3.57 TRUE FALSE FALSE Pass-Qpost < Qpre I--·--36 ! 1.57 2.05 I 3.55 TRUE FALSE FALSE Pass-Qpost < Qpre
37 ' I 1.53 I 2.02 3.53 TRUE FALSE FALSE Pass-Qpost < Qpre
38 I 1.49 2.00 i 3.50 TRUE FALSE : FALSE Pass-Qpost < Qpre ' 39 . 1.45 : 1.98 : 3.46 TRUE FALSE FALSE Pass-Qpost < Qpre
40 1.42 ' 1.95 3.43 TRUE FALSE ' FALSE Pass-Qpost < Qpre ·-~--41 I 1.38 1.81 3.43 TRUE FALSE FALSE Pass-Qpost < Qpre I I ~42~-i 1.35 I 1.81 3.38 TRUE FALSE FALSE Pass-Qpost < Qpre
43 r-1.32 I 1.75 3.35 TRUE FALSE FALSE Pass-Qpost < Qpre i I
44 I 1.29 i 1.73 3.33 TRUE FALSE FALSE Pass-Qpost < Qpre
~ 45 -----+-· __ 1.26 _[ 1.69 I 3.30 TRUE FALSE FALSE Pass-Qpost < Qpre
1.69
..
3.26 TRUE FALSE FALSE Pass-Qpost < Qpre 46 1.23 •
47 1.21 1.67 3.26 -TRUE FALSE FALSE Pass-Qpost < Qpre
48 1.18 1.62 3.25 TRUE FALSE FALSE Pass-Qpost < Qpre
49 1.16 1.60 3.14 TRUE FALSE FALSE Pass-Qpost < Qpre
50 1.14 1.60 3.14 TRUE FALSE FALSE Pass-Qpost < Qpre -51 1.12 1.60 3.01 TRUE FALSE ' FALSE Pass-Qpost < Qpre
52 1.09 1.59 I 2.94 TRUE FALSE I FALSE Pass-Qpost < Qpre -+--53 1.07 1.59 2.94 TRUE FALSE FALSE Pass-Qpost < Qpre
54 1.06 1.57 2.91 TRUE FALSE I FALSE Pass-Qpost < Qpre
55 1.04 i 1.54 2.89 TRUE FALSE FALSE Pass-Qpost < Qpre
56 1.02 1.52 2.88 TRUE FALSE ' FALSE Pass-Qpost < Qpre f--------------· 57 ----1.00 1.51 2.87 TRUE FALSE FALSE Pass-Qpost < Qpre
58 0.98 1.47 2.85 TRUE FALSE I FALSE Pass-Qpost < Qore
59 0.97 1.46 2.82 TRUE FALSE ' FALSE Pass-Qpost < Qpre ~ 60 0.95 1.44 2.82 TRUE FALSE i FALSE Pass-Qpost < Qpre
61 0.94 1.42 2.80 TRUE FALSE I FALSE Pass-Qpost < Qpre
62 0.92 1.41 2.80 TRUE FALSE FALSE Pass-Qpost < Qpre
63 0.91 1.37 2.79 TRUE FALSE I FALSE Pass-Qpost < Qpre
64 0.89 1.35 2.78 TRUE FALSE FALSE Pass-Qpost < Qpre
65 0.88 1.35 2.77 TRUE FALSE I FALSE Pass-Qpost < Qpre
66 0.87 1.33 2.77 TRUE FALSE ! FALSE Pass-Qpost < Qpre ~-67 0.85 I 1.29 2.73 TRUE FALSE i FALSE Pass-Qpost < Qpre
68 0.84 1.26 2.71 TRUE ~ FALSE FALSE Pass-Qpost < Qpre I
69 0.83 1.25 2.69 TRUE FALSE FALSE Pass-Qpost < Qpre
f--------------70 0.82 1.25 2.69 TRUE FALSE FALSE Pass-Qpost < Qpre ~-71 I 0.81 1.24 2.69 i TRUE I FALSE FALSE Pass-Qpost < Qpre
72 0.80 1.24 2.69 I TRUE I FALSE FALSE Pass-Qpost < Qpre
73 0.78 1.22 2.67 TRUE : FALSE FALSE Pass-Qpost < Qpre
74 0.77 1.22 2.64 i TRUE I FALSE FALSE Pass-Qpost < Qpre
75 0.76 1.22 2.63 ! TRUE FALSE FALSE Pass-Qpost < Qpre
3/18/2020 6:29 PM 2/19
f I r 1 r 1 f I r-1 ,-1 ,-1 ' 1 ,. 1 f 1 r 1 r 1 r 1 ' 1 r 1 ' 1 r 1 f I I I
Excel Engineering pea kFlowPassFa i IM itigated. TXT
' ~0 ;
~'l!< /.,.;;.. 0 ~o ~0 ~0 cfo I
<>'-5 0.:.. cfo cfo o\o I ~
~q_ ~<::j <::)0 ~/., ~~ ! .... ~ ' ~ q_'-" I c,,<-:i q_O<-:i ~<::-q_Oe, q_'-0 o<l 0<-:i ~~ i q_'l>' ' cfo o<f<-:i I
! ----76. 0.75 i 1.21 I 2.61 TRUE FALSE : FALSE Pass-Qpost < Qpre ··~ 77 0.74 I 1.20 2.59 TRUE FALSE FALSE Pass-Qpost < Qpre
78 0.73 1.20 2.57 TRUE FALSE FALSE Pass-Qpost < Qpre
79 0.73 1.19 2.57 TRUE FALSE FALSE Pass-Qoost < Qpre
80 0.72 1.18 2.57 TRUE FALSE FALSE Pass-Qoost < Qpre
81 0.71 1.18 2.51 TRUE FALSE FALSE Pass-Qpost < Qpre
82 0.70 1.17 I 2.48 TRUE FALSE FALSE Pass-Qpost < Qpre ·--------· ------------·· 83 0.69 1.16 I 2.48 TRUE FALSE FALSE Pass-Qoost < Qpre
84 0.68 1.16 2.45 TRUE FALSE FALSE Pass-Qoost < Qpre
85 0.67 1.15 2.45 TRUE I FALSE FALSE Pass-Qoost < Qpre
86 0.67 1.14 I 2.38 TRUE I FALSE FALSE Pass-Qpost < Qpre I
87 0.66 1.13 2.38 TRUE FALSE FALSE Pass-Qpost < Qpre
88 0.65 1.13 2.36 i TRUE FALSE FALSE Pass-Qpost < Qpre
89 ' 0.64 1.10 2.34 I TRUE FALSE FALSE Pass-Qoost < Qpre
90 i 0.64 1.09 2.32 I TRUE FALSE FALSE Pass-Qoost < Qpre
91 I 0.63 1.08 2.31 TRUE I FALSE FALSE Pass-Qoost < Qpre
92 0.62 1.06 2.30 TRUE FALSE FALSE Pass-Qoost < Qpre --93 , 0.62 1.03 2.29 TRUE FALSE FALSE Pass-Qpost < Qpre -·--M--~ 0.61 1.03 2.27 TRUE FALSE FALSE Pass-Qoost < Qpre
95 0.60 1.02 2.27 TRUE FALSE FALSE Pass-Qoost < Qore
96 i 0.60 0.99 2.25 TRUE FALSE FALSE Pass-Qoost < Qpre
97 0.59 0.99 2.24 TRUE FALSE FALSE Pass-Qpost < Qpre
98 0.59 0.99 2.21 TRUE FALSE i FALSE Pass-Qoost < Qore
99 I 0.58 -+ 0.99 2.21 TRUE FALSE I FALSE Pass-Qpost < Qpre
100 I 0.57 0.95 2.17 TRUE FALSE I FALSE Pass-Qpost < Qpre
101 I 0.57 ! 0.93 2.16 TRUE FALSE I FALSE Pass-Qpost < Qpre
102 0.56 I 0.91 2.16 TRUE FALSE I FALSE Pass-Qpost < Qpre
103 0.56 0.88 2.15 TRUE FALSE FALSE Pass-Qpost < Qpre
104 0.55 0.86 2.13 TRUE FALSE i FALSE Pass-Qpost < Qpre
105 0.55 ' 0.86 2.13 TRUE I FALSE i FALSE Pass-Qpost < Qpre
106 0.54 0.86 2.12 TRUE I FALSE FALSE Pass-Qpost < Qpre
107 0.54 I 0.85 2.12 TRUE I FALSE FALSE Pass-Qpost < Qpre
108 0.53 0.85 I 2.11 TRUE FALSE FALSE Pass-Qpost < Qpre
109 0.53 0.84 2.09 ' TRUE FALSE FALSE Pass-Qpost < Qpre I
110 0.52 0.84 2.08 TRUE FALSE FALSE Pass-Qpost < Qpre -~~-
111 0.52 0.83 2.07 TRUE FALSE FALSE Pass-Qpost < Qpre -· 112 I 0.51 0.83 2.04 TRUE FALSE FALSE Pass-Qpost < Qpre ' ----·+--0.82 2.04 TRUE FALSE FALSE Pass-Qpost < Qpre 113 ' 0.51 i I
114 0.50 0.80 2.04 TRUE FALSE FALSE Pass-Qpost < Qpre
115 0.50 0.80 2.03 TRUE FALSE FALSE Pass-Qpost < Qpre
116 0.50 0.80 2.03 TRUE FALSE I FALSE Pass-Qpost < Qpre -· 117 0.49 0.80 2.01 TRUE FALSE ! FALSE Pass-Qoost < Qore
3/18/2020 6:29 PM 3/19
r 1 r 1 r 1 ' 1 r 1 r 1 r ' ' 1 r I r 1 ' 1 f 1 f 1 r 1 r 1 f 1 r 1 r 1 r 1
Excel Engineering pea kFlowPassFa ii Mitigated. TXT
i &0 I
:<,.i /..,;;.. 0 0 &0 &0 cfo I -~ 0'"5 0" 0" cfo cfo o\o I ~lb) .,,_q_ ,,_<::J (J ,,_I-.,,_-, ..._<:> I J q_<: " q_Or.,;
I
q_Or.,; q_'-0 or.,; o<fr.,; .,,_-, I ~r.,; ~~ I oq_ I q_
I i o<fr.,; I
118 0.49 0.79 I 2.01 TRUE I FALSE FALSE Pass-Qpost < Qpre
119 0.48 0.79 2.01 TRUE FALSE FALSE Pass-Ooost < Qpre
120 0.48 0.78 I 2.01 TRUE FALSE FALSE Pass-Qpost < Qpre
121 0.48 0.77 2.01 I TRUE FALSE FALSE Pass-Qoost < Qore
122 0.47 0.75 2.00 I TRUE FALSE FALSE Pass-Qoost < Qore
123 i 0.47 0.75 I 1.98 I TRUE FALSE FALSE Pass-Qpost < Qpre
124 I 0.46 0.75 1.95 I TRUE FALSE FALSE Pass-Qpost < Qore
125 I 0.46 0.75 ! 1.93 TRUE FALSE FALSE Pass-Qpost < Qpre
126 i 0.46 0.73 1.93 TRUE FALSE FALSE Pass-Qpost < Qpre
127 0.45 0.73 1.91 TRUE FALSE FALSE Pass-Qpost < Qpre
128 I 0.45 0.72 1.91 TRUE FALSE FALSE Pass-Qpost < Qpre -FALSE FALSE Pass-Qpost < Qpre 1.....--...-___ 129 0.45 ' 0.72 1.91 TRUE
130 r-----o.44 0.71 1.87 ! TRUE FALSE FALSE Pass-Qnnst < Qpre
131 I 0.44 0.69 1.86 TRUE FALSE FALSE Pass-Qpost < Qore
132 ! 0.44 0.68 1.86 TRUE FALSE FALSE Pass-Qoost < Qore
133 0.43 0.67 1.85 TRUE FALSE 1 FALSE Pass-Qpost < Qore
134 0.43 i 0.64 1.85 TRUE --FALSE I FALSE Pass-Qpost < Qpre -~ 135 0.43 l 0.64 1.84 TRUE FALSE FALSE Pass-Qpost < Qpre
136 I 0.42 0.64 1.84 TRUE FALSE l FALSE Pass-Qpost < Qore
137 I 0.42 0.63 1.83 TRUE FALSE FALSE Pass-Qpost < Oore
138 0.42 0.63 1.83 TRUE FALSE FALSE Pass-Qpost < Qpre
139 0.41 0.63 1.82 TRUE FALSE FALSE Pass-Qpost < Qore
-~~-~ ~ 140 0.41 i 0.63 1.80 TRUE FALSE FALSE 1 Pass-Qpost < Qpre
141 0.41 I 0.63 1.79 TRUE FALSE FALSE I Pass-Qpost < Qpre
142 0.41 0.62 1.79 TRUE FALSE 1 FALSE Pass-Ooost < Qpre
143 0.40 0.61 1.77 TRUE I FALSE FALSE Pass-Qpost < Qpre
144 0.40 0.61 1.76 TRUE FALSE i FALSE Pass-Qpost < Qore
145 0.40 0.60 1.76 TRUE FALSE ' FALSE Pass-Qoost < Qpre
146 0.40 0.60 1.74 TRUE I FALSE FALSE Pass-Qoost < Qore
~ 147 0.39 0.60 1.74 TRUE FALSE I FALSE Pass-Qpost < Qpre
148 0.39 0.59 1.73 TRUE FALSE i FALSE Pass-Qoost < Qpre
149
I
0.39 0.58 i 1.73 TRUE FALSE FALSE Pass-Qpost < Qpre
150 I 0.38 0.58 1.72 TRUE FALSE FALSE Pass-Qpost < Qpre
151 0.38 0.58 1.71 TRUE FALSE FALSE Pass-Qpost < Qpre
152 0.38 0.58 1.70 I TRUE FALSE FALSE Pass-Qnnst < Qpre
153 i 0.38 I 0.57 1.70 I TRUE FALSE FALSE Pass-Qpost < Qpre
154 0.37 0.57 1.70 TRUE FALSE FALSE Pass-Qpost < Qpre .__
0.57 1.66 I TRUE FALSE FALSE Pass-Qpost < Qpre 155 ' 0.37 :
156 0.37 ' 0.56 I 1.66 ! TRUE FALSE FALSE Pass-Qpost < Qore
'~ 157 0.37 I 0.56 1.64 TRUE FALSE FALSE Pass-Qpost < Qpre
158 0.37 0.56 1.64 1 TRUE FALSE FALSE Pass-Qpost < Qpre
159 l 0.36 0.56 1.62 TRUE FALSE FALSE Pass-Qnnst < Qore
3/18/2020 6:29 PM 4/19
f' 1 f I I' 1 r 1 ,. 1 r 1 ,-1 r 1 r 1 r 1 r 1 r 1 r 1 ,-1 r·1 ,--, r , r· 1 r· 1
Excel Engineering pea kFlowPassFai IM itigated. TXT
T
I 1..0
~i .._;;;.. 0 ,:i,.o 1..0 1..0 cfo ~ 0~ 0~ cfo cfo o\o
,.._<l. ,.._<::J ()0 ,..,.1-.... '1 "(:) i q<: " <l.,tP qO<,; ~~ qO<,; <l.'-0 o<fc,; or:,; .... '1 cfo o<fc,;
C---
~ 160 0.36 0.55 i 1.61 TRUE FALSE FALSE Pass-Qoost < Qpre
161 0.36 0.54 I 1.61 TRUE FALSE FALSE Pass-Qnnst < Qpre
~ -162 0.36 0.54 ! 1.60 TRUE FALSE FALSE Pass-Qoost < Qore
163 0.35 0.53 I 1.59 TRUE FALSE FALSE Pass-Qpost < Qpre
164 0.35 0.52 ! 1.59 TRUE FALSE FALSE Pass-Qoost < Qpre
165 0.35 0.51 1.59 TRUE FALSE FALSE Pass-Qpost < Qpre --166 0.35 0.51 i 1.56 TRUE FALSE FALSE Pass-Qpost < Qpre
167 0.35 0.51 I 1.54 I TRUE FALSE FALSE Pass-Qoost < Qpre i
168 0.34 0.51 1.54 TRUE FALSE FALSE Pass-Qoost < Qore
169 0.34 0.50 1.54 I TRUE FALSE FALSE Pass-Qpost < Qore
170 0.34 0.50 1.53 i TRUE FALSE i FALSE Pass-Qoost < Oore
171 0.34 -+-0.50 1.52 i TRUE FALSE FALSE Pass-Qpost < Qpre L__~·-
172 0.34 0.50 1.51 TRUE I FALSE I FALSE Pass-Qpost < Qpre
173 0.33 0.49 1.50 TRUE i FALSE ! FALSE Pass-Qnnst < Qore
174 0.33 I 0.49 1.50 TRUE I FALSE FALSE Pass-Qpost < Qpre
175 0.33 0.48 1.49 TRUE i FALSE FALSE Pass-Qoost < Qpre
176 0.33 0.48 1.49 TRUE FALSE FALSE Pass-Qpost < Qpre
177 0.33 ! 0.48 1.49 TRUE FALSE FALSE Pass-Qpost < Qpre
178 0.32 0.48 1.49 TRUE FALSE FALSE Pass-Qpost < Qore
179 0.32 ! 0.48 1.48 TRUE FALSE FALSE Pass-Qoost < Qpre
180 0.32 0.47 1.48 TRUE FALSE FALSE Pass-Qpost < Qpre
181 0.32 0.47 1.47 TRUE FALSE FALSE Pass-Qpost < Qpre ---------182 0.32 0.47 1.44 TRUE FALSE FALSE Pass-Qpost < Qpre
183 0.32 0.47 1.43 TRUE FALSE FALSE Pass-Qoost < Qore --184 0.31 0.46 1.41 TRUE FALSE FALSE Pass-Qpost < Qpre
185 I 0.31 0.46 1.39 TRUE FALSE FALSE Pass-Qpost < Qpre
186 0.31 -T 0.46 1.38 TRUE FALSE FALSE Pass-Qoost < Qore
187 0.31 0.46 1.38 TRUE FALSE FALSE Pass-Qpost < Qpre
188 I 0.31 i 0.45 1.37 TRUE FALSE FALSE Pass-Ooost < Qore
189 0.31 0.45 1.36 TRUE FALSE FALSE Pass-Qpost < Qore
190 ! 0.30 0.45 1.34 TRUE FALSE FALSE Pass-Qpost < Qore
191 ' 0.30 0.45 1.33 TRUE FALSE FALSE Pass-Qpost < Qpre
192 0.30 0.45 1.32 ' TRUE FALSE FALSE Pass-Qpost < Qpre I
193 0.30 0.45 1.32 TRUE FALSE FALSE Pass-Qpost < Qpre
194 0.30 0.45 1.32 TRUE FALSE FALSE Pass-Qoost < Qore
195 0.30 -~ ~--0.44 1.31 TRUE i FALSE FALSE Pass-Qpost < Qpre
'---------· 196 0.29 0.44 I 1.29 TRUE FALSE FALSE Pass-Qpost < Oore
C---197 0.29 I 0.43 I 1.29 TRUE I FALSE I FALSE Pass-Qoost < Oore
198 0.29 0.43 1.28 TRUE FALSE FALSE Pass-Qoost < Qore
199 0.29 0.43 1.27 TRUE FALSE FALSE Pass-Qpost < Oore
200 I 0.29 0.42 1.26 TRUE FALSE FALSE Pass-Qoost < Oore
201 0.29 0.42 1.25 TRUE FALSE FALSE Pass-Qoost < Qore
3/18/2020 6:29 PM 5/19
f '1 r 1 ,. 1 r 1 , .. 1 r 1 r 1 r 1 f 1 ' 1 r 1 r 1 r 1 ' 1 r-· ' ,-1 r 1 ,. 1 r I
Excel Engineering peakFlowPassFa ii Mitigated. TXT
&0
~~ 1-.o/-0 0 &0 &0 o<;j ~ 0-.;;5 0-:!,, 0-:!,, cfo cfo o\o
,.,_q_ ,.,_<:J ,.,_t-,.,_-r .._G i-q_<: <:J "' q_Or.,; ~~ I q_Or.,; q_<..0 or.,; or.,; ,.,_-r q_~ 0~ cfo i o<fr.,; I I
202 0.29 i 0.42 i 1.25 TRUE FALSE I FALSE Pass-Opost < Qpre
203 0.28 0.42 I 1.24 TRUE FALSE FALSE Pass-Qpost < Qpre
204 0.28 0.42 i 1.24 TRUE FALSE FALSE Pass-Qpost < Qpre
205 0.28 0.41 I 1.22 TRUE FALSE FALSE Pass-Qpost < Qpre
206 I 0.28 0.41 1.21 TRUE FALSE FALSE Pass-Qpost < Qpre
207 : 0.28 0.41 I 1.21 TRUE FALSE FALSE Pass-Opost < Qpre
208 '. 0.28 0.41 1.19 TRUE I FALSE FALSE Pass-Qpost < Qpre ----. 209 -.. ~ 0.28 0.41 I 1.17 TRUE FALSE FALSE Pass-Qpost < Qpre
210 : 0.28 0.41 1.16 TRUE FALSE FALSE Pass-Qpost < Qpre
211 0.27 0.41 1.16 TRUE i FALSE FALSE Pass-Qpost < Qpre
212 0.27 0.41 1.14 TRUE FALSE FALSE Pass-Qpost < Qpre
213 0.27 0.40 1.14 TRUE FALSE FALSE Pass-Qpost < Qpre --~ --214 0.27 0.40 1.13 TRUE FALSE FALSE Pass-Qpost < Qpre -~ 215 0.27 0.40 1.12 TRUE FALSE FALSE Pass-Qpost < Qpre
216 0.27 0.40 1.12 TRUE FALSE FALSE Pass-Qpost < Qpre
217 0.27 0.40 1.11 I TRUE FALSE FALSE Pass-Opost < Qpre
218 0.27 0.40 I 1.11 TRUE FALSE FALSE Pass-Opost < Qpre
219 0.26 0.40 I 1.10 FALSE FALSE FALSE Pass-Ooost Below Flow Control Threshold ·~
220 I 0.26 0.39 I 1.10 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
221 0.26 0.39 1.09 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold
222 0.26 0.39 1.09 FALSE ! FALSE FALSE Pass-Qpost Below Flow Control Threshold
223 0.26 0.38 1.08 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold ·-224 I 0.26 0.38 1.07 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold
225 0.26 0.38 1.04 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
226 0.26 0.37 1.04 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
227 0.25 0.37 1.02 FALSE ', FALSE FALSE Pass-Qpost Below Flow Control Threshold
228 0.25 0.37 1.02 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
229 0.25 0.37 1.01 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
230 0.25 0.37 1.01 FALSE FALSE : FALSE Pass-Qpost Below Flow Control Threshold
231 0.25 I 0.36 1.01 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
232 0.25 0.36 1.01 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
233 ! 0.25 0.36 1.01 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
234 I 0.25 0.36 1.00 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
235 0.25 0.36 I 1.00 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
236 i 0.25 0.35 1.00 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
237 ! 0.24 0.35 1.00 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
238 I 0.24 0.35 0.99 FALSE FALSE FALSE Pass-Ooost Below Flow Control Threshold
239 0.24 0.35 0.99 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold -----240 0.24 0.34 0.99 FALSE FALSE I FALSE Pass-Ooost Below Flow Control Threshold
241 0.24 I 0.34 0.98 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
242 0.24 0.34 0.98 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -243 0.24 I 0.34 0.97 I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
3/18/2020 6:29 PM 6/19
f 1 f 1 r-1 r 1 ,... 1 ,-1 r· 1 r 1 r 1 r 1 r·1 ' ' r•·•1 ,. 1 r ' ' 1 r ' r· 1 f '
Excel Engineering peakFlowPassFailMitigated.TXT
1 i I &0
I I oq 1,.o/-0 &0 &0
f,..~ o'-5 0~ ~o cfo cfo o\o ~ ~q_ ~(J ()0 ~/,, ~"1 ,,_<:) i-q_<: I
!
" q_O<,; q;f I q_O<,; q_<..0 o'<i o'<i ! ~"1 q_~
I ' cfo o<:1 o<fe,; I i I
244 0.24 0.33 I 0.96 FALSE FALSE
'
FALSE Pass-Qpost Below Flow Control Threshold
245 0.24 0.33 I 0.96 FALSE FALSE -, FALSE Pass-Qpost Below Flow Control Threshold I
246 I 0.24 0.33 0.94 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
247 0.23 I 0.33 i 0.94 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
248 I 0.23 i 0.33 0.93 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
249 i 0.23
'
0.33 0.93 FALSE FALSE ----FALSE Pass-Qpost Below Flow Control Threshold
250 I 0.23 0.32 0.93 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I
251 _,.._ 0.23 ~ 0.32 0.93 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
252 0.23 ; 0.32 0.92 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
253 ' 0.23 0.32 0.92 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
254 0.23 0.32 0.91 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
255 0.23 0.32 0.91 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
256 0.23 0.32 0.90 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
257 0.23 0.32 0.90 FALSE FALSE FALSE Pass-Qpost Bel.ow Flow Control Threshold
258 0.22 I 0.32 0.90 FALSE FALSE FALSE 1 Pass-Qpost Below Flow Control Threshold
259 0.22 0.31 ' 0.90 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
260 0.22 0.31 0.90 FALSE ! FALSE ; FALSE Pass-Qpost Below Flow Control Threshold
261 0.22 0.31 0.89 FALSE : FALSE FALSE Pass-Qpost Below Flow Control Threshold
262 0.22 0.31 0.89 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
263 0.22 0.31 0.89 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
264 0.22 0.31 I 0.89 FALSE i FALSE i FALSE Pass-Qpost Below Flow Control Threshold
265 0.22 0.30 0.89 FALSE I FALSE
-+--
FALSE Pass-Qpost Below Flow Control Threshold
266 0.22 0.30 ' 0.86 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold e---------267 0.22 I FALSE FALSE FALSE 0.30 0.85 I Pass-Qpost Below Flow Control Threshold
268 0.22 0.30 0.85 FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold
269 0.22 0.30 I 0.84 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
270 0.21 0.29 0.84 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
271 0.21 0.29 I 0.84 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
272 0.21 0.29 I 0.84 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
273 0.21 0.29 i 0.84 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~-274 0.21 0.29 0.81 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
275 0.21 0.28 0.80 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
276 ; 0.21 0.28 0.79 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
277 I 0.21 0.28 0.79 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
278 0.21 0.28 0.78 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
279 0.21 0.28 0.76 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ------280 0.21 0.28 0.76 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ---~1-I 0.21 0.27 0.76 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold ~-
282 0.21 0.27 0.75 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
283 0.20 0.27 0.74 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold
284 0.20 0.27 0.74 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
285 0.20 0.27 I 0.72 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
3/18/2020 6:29 PM 7/19
I 1 r 1 r I ' 1 r I f I ' 1 f 1 ' 1 ' 1 r 1 ' ' ' 1 ' 1 ' 1 r I r ' r I r r
Excel Engineering pea kFlowPassFa ii Mitigated. TXT
I !
I
I
I
1..0 I
._r;.. I &'l, 1..0 O'l :<,..i 0 I ~o i tl 0-.:5 'l,.:.. I o'l cfo o\o
.,.,._<l. .,.,._(J ! ()fl,
I
.,.,._1., .,.,._-, .... ~ <l.~ I " ' <S?Cj q_OCj <J!? q_OCj I <l.'-0 OCj OCj ,,,_ '1 <l. I cfo 0~ o'l I I :
286 I 0.20 0.27 I 0.71 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
287 I 0.20 0.26 0.70 i FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
288 ' 0.20
I
0.26 0.70 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
289 0.20 0.26 0.67 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
290 ' 0.20 0.26 0.67 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
291 I 0.20 0.26 0.67 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
292 0.20 0.26 0.66 I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
293 I 0.20 0.26 0.66 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
294 0.20 0.25 0.66 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
295 i 0.20 0.25 0.65 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
296 i 0.20 0.25 0.63 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
297 0.20 0.25 0.63 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
298 i 0.19 0.25 0.63 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
299 0.19 0.25 0.62 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
300 I 0.19 0.25 0.62 ' FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
301 0.19 0.25 0.61 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
302 0.19 0.25 0.60 i FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
303 0.19 0.25 ' 0.60 I FALSE FALSE ' FALSE Pass-Qpost Below Flow Control Threshold
304 0.19 1 0.25 I 0.60 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
305 0.19 0.25 0.60 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
306 0.19 I 0.24 0.59 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I
307 0.19 I 0.24 0.58 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
308 0.19 I 0.24 0.58 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
309 0.19 I 0.24 0.57 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
310 0.19 0.24 0.57 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
311 I 0.19 0.23 0.57 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
312 ' 0.19 I 0.23 0.56 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
313 I 0.19 I 0.23 0.56 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
314 I 0.18 -i 0.23 0.55 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
315 0.18 0.22 0.55 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
316 0.18 i 0.22 0.53 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
317 0.18 0.22 0.53 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
318 0.18 I 0.22 0.53 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
319 0.18 0.22 0.53 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
320 0.18 0.22 0.53 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
321 0.18 ' 0.22 0.51 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
322
I
0.18 ' 0.22 I 0.51 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ,_,_
323 0.18 0.21 0.50 I FALSE ' FALSE FALSE Pass-Qoost Below Flow Control Threshold ~-324 0.18 ' 0.21 0.50 i FALSE I FALSE FALSE Pass-Qoost Below Flow Control Threshold
325 0.18 I 0.21 0.50 I FALSE FALSE ' FALSE Pass-Qoost Below Flow Control Threshold
326 0.18 I 0.21 i 0.50 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -~-327 0.18 : 0.21 0.50 FALSE I FALSE FALSE Pass-Qoost Below Flow Control Threshold
3/18/2020 6:29 PM 8/19
f I r I r ' f I ' 1 ' 1 r I r 1 r 1 r 1 ' 1 r 1 r 1 J I r I f I f I I I f I
Excel Engineering peakFlowPassFailMitigated.TXT
I
i
I !..0
"1l!< !..~ 0 0 ! !..0 !..0 cfo ~ 0-..;5 0.:;. 0.:;. i cfo cfo o\o ..._<:S i ~q_ q_<: ~(J (J I ~/,, ~-, " q_O<,; <tf q_o" q_,0 I oc,; oc,; 'I',.-, q_~ I 0~ 0~ oc,;
i : cfo
328 0.18 0.21 0.49 : FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold
_ _32!!__ __ 0.18 0.21 0.49 I FALSE -r-FALSE FALSE Pass-Qpost Below Flow Control Threshold I
330 --0.18 -----0.21 0.48 ! FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold
331 0.18 0.21 0.48 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
332 0.17 0.21 0.47 i FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
333 0.17 0.21 0.47 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
334 0.17 0.21 I 0.47 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
--335 0.17 0.21 I 0.47 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
336 0.17 0.20 0.46 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
337 0.17 0.20 0.46 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
338 I 0.17 0.20 I 0.45 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
339 ' 0.17 0.20 0.45 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
0.44 FALSE -I-FALSE FALSE Pass-Qpost Below Flow Control Threshold 340 0.17 0.20
~ 341 i 0.17 0.20 0.44 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
342 i 0.17 0.20 0.44 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
343 0.17 0.20 0.44 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
344 0.17 0.19 0.42 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
345 0.17 I 0.19 0.42 FALSE FALSE ! FALSE Pass-Qoost Below Flow Control Threshold
346 0.17 I 0.19 0.42 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
347 0.17 I 0.19 0.42 FALSE i FALSE I FALSE Pass-Qpost Below Flow Control Threshold
348 0.17 I 0.19 0.40 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold
~ __ 349 ---0.17 I 0.18 0.40 FALSE ; FALSE I FALSE Pass-Qpost Below Flow Control Threshold ----+ -~ 350 0.17 i 0.18 0.40 FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold
351 0.17 ! 0.18 0.40 FALSE i FALSE FALSE Pass-Qoost Below Flow Control Threshold
352 0.16 0.18 0.38 FALSE FALSE ! FALSE Pass-Qpost Below Flow Control Threshold
353 0.16 0.18 0.38 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
354 0.16 0.18 0.38 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
355 0.16 0.18 0.38 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
356 I 0.16 I 0.18 0.37 FALSE FALSE I FALSE Pass-Qoost Below Flow Control Threshold
357 0.16 0.17 0.37 FALSE i FALSE FALSE Pass-Qoost Below Flow Control Threshold
358 ', 0.16 0.17 0.37 I FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
359 I 0.16 0.17 0.33 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
360 0.16 0.16 i 0.33 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
361 7 0.16 0.16 0.33 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
362 I 0.16 0.16 I 0.33 I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
363 i 0.16 0.16 0.32 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
364 7 0.16 0.16 0.32 I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
365 0.16 0.16 0.32 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold --366 0.16 0.16 0.32 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
~ 367 0.16 0.16 0.32 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
368 I 0.16 0.16 0.29 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
369 0.16 0.16 0.29 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
3/18/2020 6:29 PM 9/19
, 1 r 1 I I ' ' J I J I f I J ' J I r 1 r 1 ' 1 I I r ' r 1 r 1 r 1 I I I I
Excel Engineering pea kFlowPassFa i IM itigated. TXT
T
I
&0
:<..~ 1,.o/, ~o 0 &0 &0 0~ ~ I cfo cfo o\o 0"5 I 0.:.. ._G i-~<J. <J.~ ()0 (;j ~t-~-, ' q_O<-j I ~ q_'-0 o<l o<-j ~-, q_<S'
1
~~ I q_O o<:l o<l
370 I 0.16 0.16 0.28 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
371 0.16 r 0.16 0.28 FALSE FALSE -----FALSE Pass-Qpost Below Flow Control Threshold
372 I 0.16 0.16 0.28 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
373 0.16 0.16 0.28 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
374 0.16 0.16 0.28 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
375 0.15 0.16 0.26 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
376 ! 0.15 0.16 0.26 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
377 0.15 ~. 0.16 0.23 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
378 0.15 0.16 0.23 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
379 ' 0.15 0.15 0.23 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
380 I 0.15 0.15 ~ 0.21 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 381 0.15 0.15 0.21 ----382 0.15 0.15 0.20 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
383 0.15 0.15 0.20 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
384 0.15 0.15 0.20 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --385 0.15 0.15 I 0.19 FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold
386 0.15 0.15 0.19 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
387 0.15 0.15 0.18 I FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
388 0.15 0.15 0.18 FALSE : FALSE FALSE Pass-Qnnst Below Flow Control Threshold
389 0.15 0.15 0.18 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold
390 0.15 0.15 0.17 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold
391 0.15 0.15 0.17 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold ----... 392 i 0.15 0.15 0.17 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
393
. ..,.
0.15 0.15 0.16 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
394 0.15 I 0.15 0.16 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
395 ' 0.15 0.15 0.15 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
396 0.15 ! 0.15 0.15 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
397 I 0.15 0.15 0.15 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold ----· 398 I 0.15 i 0.14 0.14 FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
399 0.15 0.14 0.14 FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
400 0.15 I 0.14 0.14 FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
401 0.14 0.14 0.12 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
402 0.14 0.14 0.12 FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
403 0.14 0.14 0.12 FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
404 0.14 0.14 0.12 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
405 0.14 0.14 I 0.12 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
406 0.14 0.14 i 0.12 i FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
407 0.14 0.14 I 0.11 i FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold
408 0.14 0.14 I 0.11 I FALSE I FALSE FALSE Pass-Qnnst Below Flow Control Threshold
409 0.14 0.14 I 0.09 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
410 I 0.14 0.14 0.09 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
411 0.14 0.14 0.09 FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
3/18/2020 6:29 PM 10/19
r ·, r ·1 ' 1 r 1 r 1 r 1 r I r 1 ,·1 r 1 r 1 ,-1 ' 1 r 1 r 1 1· I r· I r I r 1
Excel Engineering peakFlowPassFailMitigated.TXT
I I I
I
I
i I i &0
:<-1!!< ... ~ ,4.0 I 0 &0 &0 0~ ~ 0"5 I 0~ cfo cfo o\o
,.,_<l. ()0 ,.,..1-!
,.,_-, ..._~ j-q_<: <J " q_Or.,; i ~ <l.'0 o<fr.,; o<l ,.,_-, q_t§i i ~~ q_O
i I I I or.,;
I 0~ I
412 I 0.14 0.14 0.08 FALSE I FALSE FALSE Pass-Qoost Below Flow Control Threshold
413 I 0.14 0.14 0.08 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold f----------414 0.14 0.14 0.08 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold i ~--415 0.14 0.14 0.06 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
416 0.14 0.14 0.06 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
417 0.14 0.14 0.06 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold f-418 0.14 0.14 0.06 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
419 0.14 0.14 0.06 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
420 0.14 0.14 0.06 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
421 0.14 0.14 int I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
422 0.14 I 0.14 int FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
423 I 0.14 I 0.14 I n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold --· 424 ----; 0.14 I 0.14 n FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold
425 0.14 0.14 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
426 0.14 0.14 n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
427 0.14 0.14 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
428 0.14 0.14 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ·-·-429 0.14 0.14 n I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
430 0.14 I 0.14 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
431 0.13 0.14 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
432 I 0.13 0.13 n FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold
433 ; 0.13 : 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~-..
434 0.13 i 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
435 r 0.13 I 0.13 n FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold
436 0.13 0.13 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
437 0.13 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
438 0.13 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
439 0.13 0.13 a·z FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold ·-440 0.13 0.13 n FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold
441 0.13 0.13 n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
442 0.13 0.13 n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
443 I 0.13 0.13 n i FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
444 0.13 0.13 n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
445 0.13 I 0.13 n FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold
446 0.13 I 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
447 0.13 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --448 0.13 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
449 0.13 0.13 a·z FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
450 I 0.13 0.13 n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
451 0.13 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
452 0.13 0.12 n FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold
453 0.13 0.12 n FALSE FALSE I FALSE Pass-Qoost Below Flow Control Threshold
3/18/2020 6:29 PM 11/19
f ·1 r 1 r 1 r -, r I ,-, ' 1 ' 1 ' ' r I r 1 I I I I I I ,, 1 r I r I I I I I
Excel Engineering pea kFlowPassFa i IM itigated .TXT
i I &0
f..~ i ... ;;;.. 0 0 &0 &0 cP ~ 0~ 0~ 0~ cP 0~ o\o
-,,,..<J.. ..__~ t-q_<: -,,,..<:::J <:::j '1-..t, 'I-..,, "' q_O<,; ~~ q_O<,; <J.."0 o<:i oc,; 'I-..,, q_'l><:i cP cP I o<:i i I cP
454 0.13 I 0.12 fi FALSE I FALSE I FALSE Pass-Qpost Below Flow Control Threshold
455 0.13 0.12 fi FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold
456 0.13 0.12 ' n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
457 0.13 0.12 I n FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold
458 i 0.13 0.12 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
459 I 0.13 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
460 0.13 0.12 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ---461 I 0.13 0.12 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
462 0.13 0.12 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
463 0.13 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
464 0.13 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
465 0.12 ' 0.12 fi FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
466 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
467 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
468 0.12 0.12 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
469 ' 0.12 0.12 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
470 I 0.12 0.12 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
471 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
472 0.12 0.12 fi FALSE FALSE ' FALSE Pass-Qpost Below Flow Control Threshold
473 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
474 0.12 0.12 fi FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold
475 0.12 0.12 fi FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold
476 0.12 0.12 I fi ~ : FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
477 0.12 0.12 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
478 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
479 0.12 0.12 n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
480 I 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
481 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
482 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
483 0.12 0.11 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
484 0.12 0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~-0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ _ 485 -----+~~ 0.12 _J '
0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ----~-486 I 0.12 !
487 0.12 0.11 I fi i FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold :
488 0.12 0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -489 0.12 0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
490 0.12 0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~-491 0.12 0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
492 0.12 0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
493 0.12 0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
494 0.12 0.11 n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
495 I 0.12 0.11 n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
3/18/2020 6:29 PM 12/19
I 1 r -1 ' 1 ' . ' 1 f I ' 1 I I ' -1 ' 1 f 1 ' 1 r 1 r I r· I ,-1 ,·1 I I I I
Excel Engineering pea kFlowPassFai IM itigated. TXT
I
&0
~'!!< 1-..o/-0 ~o &0 &0 cfo ~ 0-.;:5 0~ cfo cfo o\o
'l<..<l. 'I<..<:) ()0 'l<..t-'I<....., ... ~ $-
i
<l.~
i
" <l.o,,; ' <l.o,,; <l.'0 o<l o'<i 'I<....., <l.'8'
I
~~ I cfo r:,'<i I oq I
496 0.12 ' 0.11 n I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
497 0.12
I
0.11 n ' FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
498 0.12 0.11 I n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold : i
499 0.12 0.11 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
500 0.12 0.11 I fi FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
501 0.12 0.11 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
502 0.12 0.11 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --503 0.12 0.11 ' fi FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
504 0.12 0.11 fi FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
505 0.11 0.11 fi FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
506 0.11 0.11 n FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
507 0.11 0.11 n FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold -----------508 0.11 0.11 fi FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
509 0.11 0.11 fi FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
510 ' 0.11 0.11 in FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
511 0.11 0.11 a·z FALSE FALSE ' FALSE Pass-Qnost Below Flow Control Threshold
512 0.11 0.10 n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold ~ 513 I -0.11 0.10 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~---~-----j 0.11 --0.10 fi FALSE FALSE FALSE Pass-Qnost Below Flow Control Threshold 514 ,
515 i 0.11 0.10 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
516 I 0.11 : 0.10 fi I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
517 0.11 i 0.10 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
518 0.11 0.10 n ! FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
519 0.11 0.10 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
520 0.11 0.10 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
521 0.11 0.10 fi : FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
522 0.11 I 0.10 fi ! FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
523 0.11 0.10 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
524 0.11 0.10 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
525 0.11 0.10 i fi FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold
526 0.11 0.10 ' fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
527 0.11 0.10 fi FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold -~ 528 0.11 0.10 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
529 I 0.11 0.10 n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
530 I 0.11 0.10 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
531 ' 0.11 0.10 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold '
' 532 0.11 0.10 fi ! FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
533 ' 0.11 I 0.10 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold + 534 I 0.11 0.10 n i FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold
535 0.11 0.10 n ' FALSE I FALSE FALSE Pass-Qoost Below Flow Control Threshold
536 I 0.11 ; 0.10 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
537 0.11 I 0.10 n FALSE I FALSE FALSE Pass-Qnost Below Flow Control Threshold
3/18/2020 6:29 PM 13/19
f I ,-, r1 W I I I , . I I r 1 r · 1 r 1 ,-1 , 1 ' 1 r I r 1 1· I f I I I
Excel Engineering peakFlowPassFailMitigated.TXT
1,0
j
' ~ 0 0 1,0 1,0 (fo :<,. ~ ~ ~ ~ cfo cfo r;:;\0
~q_ ~,o <>0 <::>0 ~'-~-, "'"
0~ ' ~ 0 ~ ~ -q_ 1'S' nO q_'-,..o ,..o ~, ~ ' 0"' 0"' <:floe,;
'---------
T
~~ ~q, q_'b'
538 I 0.11 0.1 0 a·z FALSE FALSE FALSE Pass-Q st Below Flow Control Threshold
539 0.11 0.10 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
540 0.11 0.10 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
541 0.11 0.10 ' a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
542 0.11 0.10 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
543 0.11 0.10 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
544 1 0.11 0.10 a·z FALSE FALSE FALSE Pass-Q st Below Flow Control Threshold L 545 r-0.11 ~-0.10 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
546 0.11 • 0.09 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
547 0.11 0.09 a·z FALSE 7 FALSE FALSE I Pass-Qpost Below Flow Control Threshold
548 0.11 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
549 0.11 0.09 a·z FALSE FALSE FALSE Pass-Q-st Below Flow Control Threshold
550-0.11 0.09 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
551 0.11 0.09 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
552 0.11 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
553 0.11 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
554 0.10 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
555 0.10 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
556 0.10 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
557 0.10 0.09 a:z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
558 0.10 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
559 0.10 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
560 0.10 0.09 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 0.10 0.09 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
562 0.10 0.09 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
563 0.10 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
564 0.10 0.09 a·z FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
565 0.10 0.09 a·z FALSE FALSE • FALSE Pass-OQost Below Flow Control Threshold
566 0.10 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
567 I 0.10 0.09 : a·z FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold
568 0.10 0.09 a·z FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold E 569 • .c-0.10 0.09 a·z FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold I
570 0.10 0.08 : a·z FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold I
571 0.10 , 0.08 I a·z FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold
572 0.10 0.08 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
573 0.10 0.08 a·z : FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold
574 0.10 0.08 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
575 0.10 0.08 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
576 ' 0.10 I 0.08 a·z I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 1
1--577 , 0.10 I 0.08 a·z I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
578 0.10 1 0.08 a·z I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
579 1 0.1 0 I 0.08 a·z I FALSE FALSE -r FALSE Pass-Qpost Below Flow Control Threshold
3/18/2020 6:29 PM 14/19
I 1
f I f. I f I f I r 1 r 1 ' 1 ' 1 ' 1 r 1 ,-1 f I f I r I ,. 1 ,. 1 ' 1 I I I I
Excel Engineering peakFlowPassFa ii Mitigated. TXT
&0 !
:<..~ 1,.o/< 0 N,o &0 &0 cfo ~ 0-.:5 0~ cfo cfo o\o
.,.,_<l. ..._<:s {<
' q_<:
l
.,.,_<:::J <::)0 .,.,_I-I .,.,_-, " ~<,; q_O<,; i ~~ q_O<,; q_'-0 "<,; ' "<,; .,.,_-, q_'I>' cfo ' oq "<,;
~ ---~---·...l ____ oq ;
580 I 0.10 I 0.08 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I
~ 581 ___ + 0.10 0.08 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
0.10 0.08 n FALSE --FALSE FALSE Pass-Qpost Below Flow Control Threshold 582 •
583 I 0.10 0.08 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
584 I 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
585 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ----586 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -------587 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
588 0.10 0.08 n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
589 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
590 0.10 0.08 n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
591 0.10 0.08 n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ' 592 ·, 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
~
593 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
594 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
595 0.10 0.07 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
596 r--0.10 L 0.07 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
597 0.10 I 0.07 I n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
598 0.10 0.07 i n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
599 0.10 0.07 ' n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
600 0.10 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -601 0.10 I 0.07 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ·-602 0.10 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
603 0.10 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
604 0.10 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -605 0.10 0.07 i n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
606 0.10 0.07 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
607 0.09 0.07 a:z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
608 0.09 0.07 n i FALSE I FALSE ' FALSE Pass-Qpost Below Flow Control Threshold
609 ' 0.09 0.07 n I FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold
610 0.09 0.07 n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
611 0.09 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~--612 0.09 I 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ---613 0.09 i 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
614 0.09 ' 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
615 0.09 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
616 0.09 0.07 ! n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -617 0.09 i 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
618 0.09 0.07 n FALSE : FALSE i FALSE Pass-Qoost Below Flow Control Threshold
619 0.09 I 0.07 n FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold
620 0.09 0.07 n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
621 i 0.09 0.07 n FALSE FALSE I FALSE Pass-Qoost Below Flow Control Threshold
3/18/2020 6:29 PM 15/19
r 1 ,-, ,-I ,-1 ,-1 f 1 r ' r 1 f -, ' 1 r I , 1 ' 1 r I f I ,-I ' 1 f I , 1
Excel Engineering pea kFlowPassFa i IM itigated. TXT
1..0
~~ ,o/o ~o ~o 1..0 1..0 cfo ~ 0~ cfo cfo o\o
'/'.,.q_ ()0 ()0 '/'.,.I-'I'.,.-, ..._G j q_<: " q_Oc,; ~ q_,0 oc,; oc,; 'I'.,.-, <l~ Q!? I q_O 0~ 0~ o<l I
~-
~-622 I 0.09 i 0.07 ' in FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
623 0.09 0.07 I in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
624 0.09 0.07 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
625 0.09 0.07
•
in FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
626 0.09 I 0.07 I in FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
627 0.09 I 0.07 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
628 0.09 i 0.07 i fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
629 0.09 0.07 I fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
630 0.09 I 0.07 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
631 0.09 0.07 in FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
632 0.09 ! 0.07 in FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
633 ! ~-0.09 0.07 fi FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold
634 0.09 0.07 a:z FALSE ! FALSE FALSE Pass-Qpost Below Flow Control Threshold
635 0.09 0.07 fi FALSE I FALSE ! FALSE Pass-Qoost Below Flow Control Threshold
636 0.09 0.07 fi FALSE I FALSE FALSE Pass-Qoost Below Flow Control Threshold I
637 0.09 0.07 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
638 0.09 0.06 . fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
639 0.09 0.06 fi : FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
640 0.09 0.06 in i FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
641 0.09 0.06 I in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
642 0.09 0.06 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
643 0.09 0.06 fi ; FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
644 0.09 0.06 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
645 0.09 0.06 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 646 0.09 ! 0.06 I in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
647 I 0.09 0.06 fi I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
648 0.09 I 0.06 -, in ; FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --649 0.09 0.06 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I
650 ---0.09 ! 0.06 ! fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
651 0.09 0.06 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
652 0.09 0.06 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
653 ' 0.09 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
654 0.09 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
655 i 0.09 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -~-· 656 0.09 0.06 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
657 0.09 0.06 in FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold ' ---658 I 0.09 0.06 fi FALSE ; FALSE ' FALSE Pass-Qpost Below Flow Control Threshold '
' 659 0.09 0.06 fi FALSE i FALSE I FALSE Pass-Qpost Below Flow Control Threshold
660 0.09 0.06 fi FALSE ! FALSE ' FALSE Pass-Qpost Below Flow Control Threshold
661 0.09 0.06 in FALSE I FALSE I FALSE Pass-Qpost Below Flow Control Threshold
662 I 0.09 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
663 0.09 0.06 fi I FALSE FALSE ! FALSE Pass-Qoost Below Flow Control Threshold
3/18/2020 6:29 PM 16/19
,. 1 r-· 1 ,-1 ,. 1 ,. 1 f 1 ,. 1 r 1 r, r 1 ,--, ,. 1 r 1 J I ,. 1 ,. 1 r·· 1 I I r·1
Excel Engineering pea kFlowPassFai IM itigated. TXT
i
1,.0
~>I!< ~o/1 ~o ~o 1,.0 1,.0 cfo ~ 0"5 cfo cfo o\o .,,.~ I <::)0 <::)0 .,,_t-.,,.~ .... ~ i ~~ " ~OCj r}-~.._0 OCj OCj .,,.~ ~~Cj I ~~ ~o cfo : cfo OCj
' ' 0~
664 : 0.09 I 0.06 I .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
665 0.09 I 0.06 .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
666 0.09 I 0.06 .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
667 : 0.09 I 0.06 I .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
668 I 0.09 ' 0.06 i ' .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
669 ' 0.09 0.06 ' .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
670 0.09 -+-0.06 .n I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold ..
671 0.09 0.06 irz I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
672 0.09 0.06 .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
673 0.09 0.06 a:z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
674 0.09 0.06 .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
675 I 0.09 0.06 .n FALSE I FALSE ' FALSE Pass-Qpost Below Flow Control Threshold
676 0.09 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
677 : 0.09 ' 0.06 I .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
678 0.08 0.06 .n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
679 0.08 I 0.06 .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
680 0.08 0.06 I .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold f------------·· 681 0.08 0.06 .n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
682 0.08 0.06 .n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
683 0.08 0.06 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold -684 0.08 0.06 .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold i ~-685-· I 0.08 0.06 .n FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold
686 0.08 0.06 .n FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold -687 0.08 0.06 .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold ! ---1-688 i 0.08 0.06 i .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
689 ', 0.08 0.06 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
690 I 0.08 I 0.06 I .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
691 0.08 0.06 .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
692 0.08 i 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
693 0.08 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
694 0.08 I 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
695 0.08 0.06 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
696 I 0.08 0.05 .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
697 0.08 0.05 fi FALSE ' FALSE I FALSE Pass-Qpost Below Flow Control Threshold I
698 ' 0.08 0.05 fi FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold
699 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
700 0.08 I 0.05 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
701 0.08 0.05 fi : FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
702 0.08 0.05 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
703 0.08 ' 0.05 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
704 0.08 0.05 fi FALSE FALSE FALSE Pass-Ooost Below Flow Control Threshold
705 I 0.08 0.05 fi FALSE I FALSE FALSE Pass-Qoost Below Flow Control Threshold
3/18/2020 6:29 PM 17/19
'., r 1 ,-1 ,-1 , ·1 r 1 r 1 , .. 1 r -, f ··1 ,-1 ,-1 r . ., , 1 ' 1 r· I r 1 r I r 1
Excel Engineering peakFlowPassFailMitigated.TXT
' I
I 1,.0 I
~>ilt /...,;;-~o ~o
1,.0 1,.0 0~ ~ 0"5 ~ ~ o\o
~q_ <>0 <>0 ~/,, ~-1 ' ,~ J-q_<;: " q_O":J ~ I q_'-0 0":J o~":J ~-1 q_tSP ~~ q_O 0~ I r:,":J ' ~ I
706 i 0.08 i 0.05 fi FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold
707 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
708 0.08 0.05 fi FALSE ~ FALSE FALSE Pass-Qoost Below Flow Control Threshold
709 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
710 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
711 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
712 0.08 0.05 fi FALSE FALSE I FALSE Pass-Qoost Below Flow Control Threshold
713 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
714 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
715 ! 0.08 I 0.05 I fi FALSE : FALSE FALSE Pass-Qoost Below Flow Control Threshold
716 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
717 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
718 0.08 0.05 fi ' FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
719 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
720 ' 0.08 0.05 I in FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
721 ' 0.08 0.05 fi FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold -722 0.08 ' 0.05 a:z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
723 0.08 0.05 fi FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold
724 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
725 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
726 I 0.08 0.05 ' fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
727 0.08 0.05 fi FALSE : FALSE FALSE Pass-Qoost Below Flow Control Threshold
728 I 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
729 i 0.08 i 0.05 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I---· 730 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
731 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
732 0.08 0.05 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
~ 0.05 fi ! FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 733 0.08 i
734 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
735 : 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
736 0.08 I 0.05 i fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
737 0.08 0.05 ! in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
738 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
739 0.08 0.05 fi FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold
740 0.08 0.05 fi FALSE FALSE I FALSE Pass-Qoost Below Flow Control Threshold
741 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
742 0.08 0.05 fi FALSE : FALSE FALSE Pass-Qpost Below Flow Control Threshold
743 I 0.08 0.05 fi FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold ' 744. 0.08 I 0.05 ' fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
745 0.08 ' 0.05 fi I FALSE FALSE I FALSE Pass-Qoost Below Flow Control Threshold ----746 0.08 I 0.05 fi i FALSE FALSE ! FALSE Pass-Qpost Below Flow Control Threshold -~
747 : 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold
3/18/2020 6:29 PM 18/19
f I ' -1 ,-' ,-1 r 1 r, r 1 r 1 r ·1 ,-, r1 ,--, r 1 ,-1 r -, r· 1 r· 1 r 1 ' 1
Excel Engineering peakFlowPassFailMitigated.TXT
I &0
! :<..'!!< ,;;;.. I ~o 0 &0 &0 cfo ~ 0\:5 ' 0.:;. cfo cfo o\o I <::)0 .... ~ {< .,,,._q_ <t ; <J .,,,._~ .,,,._-, " ~<,; q_Oc,; ~ q_,0 oc,; oc,; '!<..-, q_'I>' ~(:, q_O oq oq oc,;
i oq ~. 748 0.08 I 0.05 in FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold i
749 0.08 0.04 in I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
750 0.08 I 0.04 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
751 0.08 0.04 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
752 0.08 0.04 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
753 0.08 0.04 in I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
754 0.08 0.04 in ! FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold ~---+---755 0.08 0.04 in I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
756 -----t·--0.08 0.04 in i FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
757 ' 0.08 0.04 in FALSE FALSE : FALSE Pass-Qpost Below Flow Control Threshold
758 0.08 0.04 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
759 0.08 0.04 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
760 ,, 0.08 0.04 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
761 0.08 ; 0.04 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~-762 0.08 0.04 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
763 0.08 0.04 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
764 0.08 0.04 in I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold
765 I 0.08 0.04 in FALSE FALSE 1 FALSE Pass-Qnnst Below Flow Control Threshold
3/18/2020 6:29 PM 19/19
r -1 r I r 1 ,-1 r 1 ,, 1 r· 1 r 1 , 1 r 1 r 1 r 1 r 1 ,-1 r 1 r , r 1 1 1 r ,
Excel Engineering peakFlowStatisticsPre.csv
SWMM.out file name: V:\19\19079\Engineering\SDP\Storm-SDP\SWMM\19-079-PRE DEV.out ----"""------SWMM.out time stamp: 2/17/2020 4:21 :51 PM
-----~--010: 5.417 -05: 5.210
02: 3.995
Peak Flow Statistics Table Values
Rank Start Date ! End Date I Duration Peak I Frequency Return Period I I
1 I 1995/01/04 16:00:00 1995/01/04 23:00:00 8 7.463 0.24% 58
2 I 2003/02/25 15:00:00 2003/02/25 23:00:00 9 6.187 0.48% 29
3 1958/02/03 05:00:00 I 1958/02/04 15:00:00 35 5.918 I 0.71% •19.33
4 1969/02/24 00:00:00 ' 1969/02/25 21 :00:00 46 5.848 0.95% 14.5 -------5 2004/10/27 03:00:00 i 2004/10/27 16:00:00 14 5.515 I 1.19% 11.6
6 2005/02/18 06:00:00 ! 2005/02/19 01 :00:00 20 5.397 1.43% 9.67 -7 1980/02/19 08:00:00 1980/02/21 07:00:00 48 5.359 ! 1.66% 8.29 I
8 2000/10/29 23:00:00 I 2000/10/30 01 :00:00 3 5.298 1.90% 7.25
9 1993/01/13 21 :00:00 I 1993/01/14 07:00:00 11 5.296 2.14% 16.44
10 1952/01/16 08:00:00 1952/01/16 17:00:00 10 5.242 2.38% _5.8
11 1978/02/28 02:00:00 1978/03/01 10:00:00 33 5.237 2.61% 5.27
12 1982/03/17 12:00:00 1982/03/18 05:00:00 18 5.194 2.85% 4.83
13 I 1978/01/04 17:00:00 1978/01/04 19:00:00 3 5.074 3.09% 4.46
14 1958/04/01 13:00:00 1958/04/01 22:00:00 I 10 4.982 3.33% 4.14 ----
15 1979/01/15 14:00:00 1979/01/15 17:00:00 ! 4 4.933 3.56% 3.87
16 1980/03/02 21 :00:00 1980/03/03 11 :00:00 I 15 4.817 3.80% 3.63
17 1978/02/10 03:00:00 1978/02/10 07:00:00 --~ 5 4.597 4.04% 3.41 -18 1985/11/11 10:00:00 1985/11/12 06:00:00 21 4.564 4.28% 3.22
19 1998/02/03 15:00:00 1998/02/04 00 :00:00 10 4.519 4.51% 3.05
20 I 1991/12/29 16:00:00 I 1991/12/30 04:00:00 13 4.509 4.75% 2.9
21 I 1970/12/19 03:00:00 I 1970/12/19 23:00:00 21 4.462 4.99% 2.76
22 I 1965/11/22 09:00:00 ! 1965/11/23 06:00:00 22 4.459 5.23% 2.64
23 1983/01/29 01 :00:00 1983/01/29 04:00:00 4 4.36 5.46% 2.52
24 1998/02/22 14:00:00 ___j_ 1998/02/24 01 :00:00 36 4.27 5.70% 2.42 ·-------25 2008/01/27 01 :00:00 2008/01/27 23:00:00 23 4.15 ' 5.94% 2.32
26 1980/02/16 19:00:00 1980/02/16 21 :00:00 3 4.084 ! 6.18% 2.23
27 1983/02/27 17:00:00 1983/02/27 20:00:00 4 4.059 ! 6.41% 2.15
28 1998/02/16 18:00:00 1998/02/18 00:00:00 31 4 6.65% 2.07
29 1952/11/15 14:00:00 1952/11/1515:00:00 2 3.995 6.89% 2
30 I 2004/10/20 10:00:00 2004/10/20 16:00:00 ; 7 I 3.927 7.13% .1.93
31 1980/01/28 19:00:00 1980/01/30 17:00:00 I 47 I 3.846 7.36% 11.87
32 1978/01/16 18:00:00 1978/01/17 03:00:00 I 10 3.803 7.60% 11.81
33 1993/02/18 13:00:00 1993/02/18 13:00:00 1 3.741 7.84% 11.76
34 1994/02/04 00:00:00 1994/02/04 12:00:00 13 3.691 8.08% i 1.71 ------
35 2008/01/05 06:00:00 2008/01/07 02:00:00 45 3.593 8.31% •1.66 --
36 1961/12/02 02:00:00 I 1961/12/02 15:00:00 14 3.57 8.55% 1.61
37 1993/01/18 10:00:00 1993/01/18 16:00:00 7 3.548 8.79% 1.57
38 1986/02/15 00:00:00 1986/02/15 10:00:00 11 3.534 9.03% 1.53
39 1963/03/17 01 :00:00 I 1963/03/17 03:00:00 3 3.503 9.26% 1.49
3/18/2020 6:29 PM 1/10
r 1 r ·· 1 r 1 ,-1 r , r , r , r 1 r • 1 r 1 r 1 r , r 1 r -1 r • 1 ,-• 1 r • 1 r 1 r 1
Excel Engineering peakFlowStatisticsPre.csv
Rank Start Date i End Date Duration Peak Frequency I Return Period
40 1972/01/16 21 :00:00 1972/01/17 00:00:00 4 3.459 9.50% i1.45
41 2008/02/22 03:00:00 2008/02/22 10:00:00 8 3.433 9.74% 11.42
42 1995/03/11 03:00:00 1995/03/12 01 :00:00 23 3.429 9.98% :1.38
43 ! 1986/03/15 23:00:00 1986/03/16 20:00:00 22 3.377 I 10.21% 11.35
44 I 1960/04/27 08:00:00 1960/04/27 12:00:00 5 3.352 10.45% !1.32
45 1993/02/08 00:00:00 1993/02/08 11 :00:00 12 3.326 10.69% 11.29
46 1998/02/14 17:00:00 1998/02/14 21 :00:00 5 3.303 10.93% 11.26
47 1981/03/19 20:00:00 1981/03/19 22:00:00 3 3.262 11.16% i 1.23
48 1992/02/12 18:00:00 1992/02/13 08:00:00 15 3.259 11.40% 11.21
49 1977/08/17 02:00:00 1977/08/1711:00:00 10 3.246 11.64% 1.18
50 1982/12/23 00:00:00 1982/12/23 00:00:00 1 3.141 I 11.88% 1.16
51 1991/02/27 19:00:00 1991/03/01 12:00:00 42 I 3.138 12.11% 1.14
52 2005/01/11 01 :00:00 2005/01/11 09:00:00 9 3.013 12.35% 1.12
53 2005/02/21 04:00:00 2005/02/23 08:00:00 53 I 2.942 12.59% i 1.09
54 1969/02/06 09:00:00 1969/02/06 18:00:00 10 I 2.939 12.83% 1.07
55 1980/01/11 00:00:00 1980/01/12 13:00:00 : 38 2.911 13.06% 1.06
56 1980/02/17 22:00:00 I 1980/02/18 08:00:00 I 11 2.89 13.30% 1.04 ~-------c-----1988/12/24 22:00:00 1988/12/25 01 :00:00 2.875 13.54% 1.02 57 i 4 I
58 1978/01/14 17:00:00 I 1978/01/15 06:00:00 14 2.865 13.78% 1 I I
59 2004/12/31 15:00:00 ! 2004/12/31 16:00:00 2 I 2.851 14.01% 0.98 _J_
60 1979/01/05 08:00:00 1979/01/06 08:00:00 ' 25 I 2.818 14.25% 0.97
61 I 1963/09/18 19:00:00 1963/09/18 23:00:00 5 2.817 14.49% 0.95
62 ' 1983/03/01 14:00:00 1983/03/04 06:00:00 65 2.801 14.73% 0.94
63 . 1997/01/12 17:00:00 1997/01/13 08:00:00 16 2.797 14.96% 0.92
64 2001/01/26 17:00:00 2001/01/27 01 :00:00 9 2.79 15.20% 0.91
65 1958/02/19 13:00:00 1958/02/19 16:00:00 4 2.782 15.44% 0.89
66 1983/12/24 19:00:00 1983/12/25 12:00:00 18 2.77 15.68% 0.88 --· --
67 2003/02/12 18:00:00 2003/02/12 20:00:00 3 2.769 15.91% 0.87
68 1971/12/24 08:00:00 1971/12/25 00:00:00 17 2.733 16.15% 0.85
69 1991/03/25 07:00:00 1991/03/27 07:00:00 49 2.708 16.39% 0.84
70 1968/12/25 20:00:00 1968/12/25 22:00:00 3 2.693 16.63% 0.83
71 1968/03/08 06:00:00 1968/03/08 13:00:00 8 2.69 16.86% 0.82 --72 2005/04/28 09:00:00 2005/04/28 10:00:00 2 2.688 I 17.10% 0.81
73 1962/01/20 14:00:00 1962/01/20 21 :00:00 8 2.686 I 17.34% 0.8
74 2005/01/09 05:00:00 2005/01/09 23:00:00 19 2.671 ' 17.58% 0.78 i I
75 2001/02/13 18:00:00 2001/02/14 21 :00:00 ' 28 2.638 ' 17.81% 10.77 I
~ 76 1993/01/15 13:00:00 ' 1993/01/1710:00:00 ' 46 I 2.633 18.05% 0.76 I ~--77--1983/11/24 23:00:00 i 1983/11/25 02:00:00 I 4 I 2.613 18.29% 0.75
78 1988/11/25 09:00:00 I 1988/11/25 11 :00 :00 3 2.587 18.53% I0.74
79 1980/01/09 05:00:00 I 1980/01/09 19:00:00 15 2.574 18.76% 0.73
80 1967/12/18 18:00:00 1967/12/19 13:00:00 20 2.568 19.00% 0.73 ~--81 ' 1983/01/27 09:00:00 1983/01/27 14:00:00 6 2.567 19.24% 0.72
82 I 1992/02/15 13:00:00 1992/02/15 17:00:00 5 2.512 19.48% 0.71
83 1965/12/10 07:00:00 1965/12/10 10:00:00 4 2.483 19.71% 0.7
84 1977/12/28 20:00:00 1977/12/30 03:00:00 32 2.475 19.95% 0.69
85 1983/10/01 02:00:00 1983/10/01 04:00:00 3 2.45 20.19% 0.68
86 I 2007/01/31 00:00:00 2007/01/31 00:00:00 1 2.448 20.43% 0.67
3/18/2020 6:29 PM 2/10
r 1 r -1 ,.--, r-1 r 1 r 1 ,-, r , r • 1 r 1 ,-1 r -1 r 1 r • 1 ,-1 r 1 r-1 r 1 r 1
Excel Engineering peakFlowStatisticsPre.csv
Rank Start Date I End Date Duration Peak Frequency Return Period
87 1975/04/08 09:00:00 I 1975/04/09 01 :00:00 17 I 2.382 I 20.67% ,0.67
88 1994/03/24 23:00:00 1994/03/25 02:00 :00 4 I 2.378
i 20.90% 0.66
89 ·-1978/09/05 19:00:00 1978/09/05 20:00:00 2 2.365 21.14% 10.65
90 1990/02/17 17:00:00 1990/02/17 20:00:00 4 ! 2.34 21.38% 0.64
91 2004/02/22 08:00:00 2004/02/23 08:00:00 ' 25 2.318 21.62% 0.64
92 1952/03/15 21 :00:00 1952/03/16 19:00:00 I 23 2.315 21.85% 0.63
93 I 1960/02/01 23:00:00 1960/02/02 02:00:00 4 2.301 22.09% 0.62
94 2005/01/03 09:00:00 2005/01/04 12:00:00 28 2.291 22.33% 0.62
95 2004/02/26 05:00:00 I 2004/02/26 10:00:00 6 2.272 22.57% 0.61
96 1986/11/18 04:00:00 1986/11/18 08:00:00 5 2.266 22.80% 0.6
97 2007/11/30 09:00:00 2007/11/30 22:00:00 14 2.254 23.04% 0.6
98 1957/01/13 05:00:00 1957/01/13 10:00:00 6 2.243 23.28% 0.59 ---99 1993/02/19 20:00:00 1993/02/20 00:00:00 5 2.212 23.52% 0.59
100 2004/12/28 10:00:00 2004/12/29 10:00:00 25 2.211 23.75% 0.58
101 1995/03/05 08:00:00 1995/03/06 00:00:00 17 2.173 23.99% 0.57
102 1988/01/17 11 :00:00 1988/01/17 13:00:00 3 I 2.161 I 24.23% 0.57
103 1954/01/19 00:00:00 I 1954/01/19 23:00:00 24 2.156 24.47% 0.56
104 2001/01/11 06:00:00 2001/01/12 12:00:00 31 2.153 24.70% 0.56
105 1999/01/26 23:00:00 1999/01/27 00:00:00 2 2.13 24.94% 0.55
106 1966/12/05 03:00:00 1966/12/0514:00:00 12 2.126 25.18% 0.55
107 1960/01/12 04:00:00 1960/01/12 08:00:00 5 2.125 25.42% 0.54
108 1992/03/20 23:00:00 1992/03/21 00:00:00 2 2.116 25.65% 0.54
109 I 1995/01/10 20:00:00 1995/01/12 16:00:00 I 45 j 2.111 25.89% 0.53 -110 1963/11/20 03:00:00 1963/11/21 07:00:00 I 29 I 2.092 26.13% 0.53
111 1958/03/15 20:00:00 I 1958/03/16 13:00:00 I 18 2.082 26.37% 0.52
112 1959/02/11 10:00:00 1959/02/11 13:00:00 4 I 2.074 26.60% 0.52
113 I 2002/11/08 18:00:00 I 2002/11/08 19:00:00 2 2.042 ' 26.84% 10.51 ' --114 1988/04/20 08:00:00 1988/04/21 08:00:00 25 I 2.042 ' 27.08% ,o.51
115 1979/11/07 19:00:00 1979/11/07 20:00:00 2 2.042 27.32% 0.5
116 1959/12/24 13:00:00 1959/12/24 15:00:00 3 2.032 27.55% 10.5
117 1987/12/16 16:00:00 1987/12/17 10:00:00 19 2.03 27.79% 10.5
118 1985/11/29 07:00:00 1985/11/29 15:00:00 9 2.013 28.03% 10.49 ~-
119 2001/02/25 17:00:00 2001/02/2719:00:00 I 51 2.012 28.27% 0.49 I
120 2002/12/20 17:00:00 2002/12/20 22:00:00 6 I 2.012 28.50% 0.48
121 1988/12/21 04:00:00 1988/12/21 08:00:00 5 2.01 28.74% 0.48
122 2003/03/15 18:00:00 2003/03/16 18:00:00 25 2.007 28.98% 0.48
123 1996/11/21 17:00:00 1996/11/22 04:00:00 12 1.997 29.22% 0.47
124 1966/02/07 23:00:00 1966/02/08 01 :00:00 3 1.978 29.45% 0.47
125 1980/02/14 01 :00:00 1980/02/15 02:00:00 26 1.954 29.69% 0.46
126 i 1952/12/02 02:00:00 1952/12/02 03:00:00 ' 2 I 1.93 29.93% 0.46
127 1977/01/03 04:00:00 1977/01/03 06:00:00 3 1 1.929 30.17% 0.46 ·-128 1954/02/13 20:00:00 1954/02/13 23:00:00 4 1.914 30.40% 0.45
129 1958/03/20 23:00:00 1958/03/22 07:00:00 33 1.911 30.64% 0.45
130 1983/04/20 04:00:00 1983/04/20 06:00:00 3 1.909 30.88% 0.45
131 1983/03/24 04:00:00 1983/03/24 06:00:00 3 1.87 ' 31.12% 0.44
132 1976/09/10 06:00:00 1976/09/11 00:00:00 19 1.865 31.35% 0.44
133 2005/01/07 14:00:00 2005/01/07 21 :00:00 8 1.859 31.59% !0.44
3/18/2020 6:29 PM 3/10
r 1 r· 1 r · 1 r 1 r 1 r 1 r -, r -1 r -, r-1 r-· "1 r ·1 r --1 ,-• 1 r 1 r 1 r 1 r 1 r • 1
Excel Engineering peakFlowStatisticsPre.csv
Rank Start Date End Date Duration Peak I Frequency Return Period
134 I 1973/11/23 00:00:00 1973/11/23 02:00:00 ! 3 1.854 31.83% I0.43 --135 1956/01/26 20:00:00 1956/01/27 09:00:00 14 1.849 32.07% 0.43 -· 136 1965/11/16 14:00:00 1965/11/16 19:00:00 6 1.838 32.30% 10.43
137 I 2003/04/14 15:00:00 2003/04/15 00:00:00 I 10 1.835 32.54% 0.42
138 I 1965/04/08 15:00:00 1965/04/10 00:00:00 34 1.835 32.78% 0.42
139 ' 1969/01/24 10:00:00 1969/01/26 21 :00:00 I 60 1.825 33.02% 0.42
140 ' 1981/11/28 04:00:00 1981/11/28 22:00:00 19 1.824 33.25% 0.41
141 I 1957/01/28 04:00:00 I 1957/01/29 20:00:00 41 I 1.799 33.49% !0.41
142 1972/11/16 12:00:00 I 1972/11/1712:00:00 25 ' 1.794 33.73% 0.41
143 1978/02/12 18:00:00 1978/02/14 01 :00:00 32 1.79 33.97% 0.41
144 1998/02/07 17:00:00 1998/02/08 22:00:00 30 1.771 34.20% 0.4 -----~
145 1992/12/07 11 :00:00 1992/12/07 17:00:00 7 1.759 34.44% 0.4
146 2006/10/14 02:00:00 2006/10/14 02:00:00 1 1.756 34.68% 0.4
147 1967/11/30 17:00:00 1967/11/30 17:00:00 1 1.737 34.92% 0.4
148 1967/03/13 12:00:00 1967/03/13 22:00:00 11 1.735 35.15% 0.39
149 1995/01/25 09:00:00 1995/01/26 11 :00:00 27 1.733 35.39% 0.39 -150 1967/01/22 18:00:00 1967/01/23 01 :00:00 I 8 1.731 35.63% 0.39 .~
151 I 1982/01/01 09:00:00 1982/01/01 11 :00:00 ' 3 1.719 ! 35.87% 0.38
152 : 1997/01/15 17:00:00 1997/01/15 20:00:00 4 1.708 36.10% 0.38
153 ' 1987/10/1211:00:00 I 1987/10/12 18:00:00 8 ! 1.7 36.34% 0.38
154 1952/11/30 02:00:00 ! 1952/11/30 05:00:00 4 1.699 36.58% 0.38
155 1964/11/17 17:00:00 ' 1964/11/17 20:00:00 4 1.698 36.82% 0.37 --··--
!
-------156 1958/04/06 18:00:00 1958/04/07 16:00:00 23 I 1.662 37.05% 0.37
_ _ _ 157 --_ 1985/11/25 02:00:00 1985/11/25 06:00:00 5 1.662 37.29% 0.37
158 1955/01/18 16:00:00 1955/01/18 20:00:00 5 1.642 37.53% 0.37
159 1957/05/11 02:00:00 1957/05/11 04:00:00 3 1.641 37.77% 0.37
160 1960/01/14 18:00:00 1960/01/14 22:00:00 5 1.623 38.00% 0.36 --~~-161 1967/11/19 09:00:00 1967/11/19 18:00:00 10 1.611 38.24% 0.36
162 2006/03/11 08:00:00 2006/03/11 09:00:00 2 1.606 38.48% 0.36
163 1982/12/07 23:00:00 1982/12/08 01 :00:00 3 1.599 38.72% 0.36
164 1978/03/30 16:00:00 1978/03/31 06:00:00 : 15 1.592 38.95% 0.35
165 1993/01/06 04:00:00 1993/01/08 01 :00:00 46 1.591 39.19% 0.35 ----
166 1958/04/03 10:00:00 1958/04/03 13:00:00 4 1.586 39.43% 0.35 -167 1956/04/13 00:00:00 1956/04/13 18:00:00 19 1.556 39.67% 0.35
168 ! 2000/03/05 17:00:00 2000/03/05 21 :00:00 5 1.539 39.90% 0.35
169 2001/12/09 17:00:00 2001/12/09 21 :00:00 5 1.539 ' 40.14% 0.34
170 1978/01/09 17:00:00 I 1978/01/11 00:00:00 32 I 1.535 40.38% 0.34 I -171 1998/01/29 18:00:00 1998/01/29 20:00:00 3 1.53 40.62% 0.34
172 1980/03/06 00:00:00 1980/03/06 13:00:00 I 14 1.525 40.86% 0.34
173 ! 1981/01/29 19:00:00 1981/01/29 20:00:00 : 2 1.51 41.09% 0.34
174 I 1960/02/29 07:00:00 1960/03/01 07:00:00 25 1.498 41.33% 0.33
175 1973/03/20 09:00:00 1973/03/20 12:00:00 4 1.498 41.57% 0.33
176 I 1955/01/10 11 :00:00 1955/01/10 12:00:00 2 1.494 41.81% 0.33 ---
177 I 1958/01/25 05:00:00 1958/01/25 06:00:00 2 1.493 42.04% 0.33
178 ! 1973/02/13 01 :00:00 i 1973/02/13 05:00:00 5 1.492 42.28% 0.33
179 I 1993/11/30 05:00:00 I 1993/11/30 05:00:00 1 1.489 ! 42.52% 0.32 -· 180 1991/03/20 08:00:00 I 1991/03/21 10:00:00 27 1.484 42.76% 0.32
3/18/2020 6:29 PM 4/10
r · 1 r 1 r · 1 ,... 1 r 1 r· 1 r 1 r 1 ,--, , .. ·1 r· 1 r· -1 r -, r ·1 r 1 r· 1 r· 1 r 1 r 1
Excel Engineering peakFlowStatisticsPre.csv
Rank I Start Date I End Date Duration Peak Frequency Return Period i
181 1952/01/17 22:00:00 1952/01/18 09:00:00 12 1.477 42.99% 0.32
182 1991/03/19 01 :00:00 1991/03/19 05:00:00 5 1.466 43.23% 0.32
183 1957/03/01 00:00:00 1957/03/01 12:00:00 13 1.443 43.47% 0.32
184 1967/04/11 09:00:00 ' 1967/04/11 11 :00:00 3 1.433 43.71% 0.32
185 1992/01/07 20:00:00 1992/01/08 00:00:00 5 1.409 43.94% 0.31
186 i 1986/09/25 03:00:00 1986/09/25 06:00:00 4 1.392 44.18% 0.31
187 : 1972/11/14 15:00:00 1972/11/1417:00:00 3 1.384 44.42% 0.31
188 1979/03/19 04:00:00 1979/03/20 05:00:00 26 1.38 44.66% 0.31
189 1970/02/28 17:00:00 1970/03/02 04:00:00 36 1.372 44.89% 0.31
190 2004/10/18 08:00:00 2004/10/18 08:00:00 1 1.362 45.13% 0.31
191 1977/01/05 20:00:00 1977/01/07 07:00:00 i 36 1.341 45.37% 0.3
192 1979/03/17 06:00:00 I 1979/03/17 06:00:00 1 1.325 45.61% 0.3
193 1985/12/11 05:00:00 : 1985/12/11 07:00:00 3 1.322 45.84% 0.3
194 I 1992/01/05 10:00:00 : 1992/01/06 05:00:00 20 I 1.319 46.08% 0.3
195 I 1981/03/01 12:00:00 1981/03/02 14:00:00 27 ' 1.318 46.32% i0.3
196 1965/04/03 06:00:00 1965/04/03 07:00:00 2 1.309 46.56% 0.3
197 1952/03/07 15:00:00 1952/03/08 10:00:00 20 1.286 46.79% 0.29
198 1951/12/30 00:00:00 1951/12/30 15:00:00 ' 16 1.285 47.03% 0.29 I
199 1967/11/2113:00:00 1967/11/21 15:00:00 3 1.282 47.27% 0.29
200 1997/01/25 23:00:00 ! 1997/01/26 08:00:00 10 1.267 47.51% 0.29
201 1976/07/22 11 :00 :00 I 1976/07/22 14:00:00 4 1.263 47.74% 0.29
202 I 1975/03/08 10 :00 :00 I 1975/03/08 10:00:00 1 1.253 47.98% 0.29 -203 i 1964/01/21 08:00:00 1964/01/22 10:00:00 27 1.253 48.22% 0.29
204 1986/03/10 08:00:00 1986/03/10 20:00:00 13 1.243 48.46% 0.28 -l--
205 1990/01/17 01 :00:00 1990/01/17 03:00:00 3 ' 1.24 48.69% 0.28
206 1994/02/17 12:00:00 1994/02/17 13:00:00 2 ! 1.223 48.93% 0.28
207 1998/05/12 18:00:00 1998/05/12 21 :00:00 I 4 1.209 49.17% 0.28
208 1970/12/21 09:00:00 1970/12/21 10:00:00 : 2 1.208 49.41% 0.28
209 1984/12/27 03:00:00 1984/12/27 21 :00:00 19 1.19 49.64% 0.28
210 1973/03/08 13:00:00 1973/03/08 16:00:00 4 1.167 49.88% 10.28
211 1978/03/11 22:00:00 1978/03/12 12:00:00 15 1.159 50.12% 0.28
212 1951/11/23 06:00:00 1951/11/23 07:00:00 2 1.159 50.36% 0.27
213 i 1954/11/11 03 :00 :00 I 1954/11/11 11 :00:00 9 1.142 50.59% 10.27
214 1995/01/07 19:00:00 1995/01/08 07:00:00 13 1.136 50.83% 0.27
215 1958/01/26 10:00:00 1958/01/26 11 :00:00 2 1.133 51.07% 0.27
216 2003/12/25 19:00:00 2003/12/25 19:00:00 1 i 1.121 51.31% 0.27
217 1977/03/24 23:00:00 1977/03/25 04:00:00 6 1.118 51.54% 0.27 -218 1965/12/29 20:00:00 1965/12/29 21 :00:00 2 1.109 51.78% 0.27
219 1966/12/06 20:00:00 1966/12/06 22:00:00 3 1.107 52.02% 0.27
220 1982/01/05 09:00:00 I 1982/01/05 17:00:00 9 1.105 52.26% 0.26 ~ 221 1974/12/04 10:00:00 1974/12/04 10:00:00 1 1.105 52.49% 0.26 -222 1957/01/07 14:00:00 1957/01/07 21 :00:00 8 1.088 52.73% 0.26 -·· 223 1976/07/15 15:00:00 1976/07/15 17:00:00 3 1.088 I 52.97% 0.26
224 1976/02/06 05:00:00 1976/02/06 07:00:00 i 3 1.079 53.21% 10.26
225 1970/03/04 23:00:00 1970/03/05 02:00:00 4 1.07 53.44% 0.26
226 i 1973/03/11 13:00:00 1973/03/12 10:00:00 22 ! 1.04 53.68% 10.26
227 1962/03/18 19:00:00 ' 1962/03/19 03:00:00 9 1.038 53.92% 0.26
3/18/2020 6:29 PM 5/10
r 1 r 1 ,-1 r· 1 r 1 r 1 r 1 , 1 r 1 r 1 r • 1 r 1 r ·1 r 1 r 1 r 1 r 1 r 1 r 1
Excel Engineering peakFlowStatisticsPre.csv
Rank Start Date End Date I i Duration I Peak Frequency Return Period
228 1976/07/08 14:00:00 1976/07/08 15:00:00 I 2 I 1.022 I I 54.16% 10.25
229 1960/11/05 21 :00:00 1960/11/06 12:00:00 16 1.019 54.39% 0.25 ..
230 1988/11/14 07:00:00 1988/11/14 09:00:00 3 1.014 54.63% 0.25
231 1993/06/0514:00:00 1993/06/05 17:00:00 I 4 1.012 54.87% 0.25
232 1978/02/08 21 :00:00 1978/02/09 02:00:00 6 1.012 55.11% 0.25
233 1957/10/14 05:00:00 1957/10/14 07:00:00 3 1.011 55.34% 0.25
234 2000/02/20 18:00:00 2000/02/21 21 :00:00 28 1.01 55.58% 0.25
235 1987/02/25 02:00:00 1987/02/25 03:00:00 i 2 1.005 55.82% 0.25
236 I 1957/04/20 16:00:00 1957/04/20 19:00:00 4 1.001 56.06% 0.25
237 I 1984/11/2418:00:00 1984/11/24 22:00:00 ! 5 0.999 56.29% 0.25
238 1985/02/09 11 :00:00 1985/02/09 13:00:00 3 0.995 56.53% 0.24
239 1993/01/31 01 :00:00 1993/01/31 01 :00:00 1 0.994 56.77% 0.24
240 1969/02/20 05:00:00 i 1969/02/20 06:00:00 2 0.994 57.01% 0.24
241 I 1969/02/22 03:00:00 1969/02/22 12:00:00 10 0.992 57.24% 0.24
242 1982/04/01 10:00:00 1982/04/01 13:00:00 4 0.979 57.48% 0.24 ~--~---243 1979/03/28 01 :00:00 I 1979/03/28 11 :00 :00 11 I 0.978 57.72% 0.24
244 1978/02/07 18:00:00 1978/02/07 21 :00 :00 4 0.973 57.96% 0.24
245 2005/02/11 12:00:00 2005/02/12 07:00:00 20 0.959 58.19% 0.24
'---· 246 1978/02/05 12:00:00 1978/02/06 12:00:00 25 0.957 58.43% 10.24
247 1966/01/30 08:00:00 1966/01/30 21 :00:00 I 14 0.941 58.67% !0.24
248 1981/02/08 22:00:00 1981/02/09 07:00:00 i 10 0.938 58.91% 0.23
1-----249 I 1974/03/08 01 :00:00 1974/03/08 11 :00:00 11 0.935 59.14% 0.23 ----·-·~ 250 2001/11/24 18:00:00 2001/11/24 20:00:00 3 0.933 59.38% i0.23
251 2003/02/11 18:00:00 I 2003/02/11 18:00:00 1 0.928 59.62% 0.23
252 1995/04/18 11 :00:00 1995/04/18 13:00:00 3 I 0.925 59.86% 0.23
253 ' 1959/02/21 11 :00:00 1959/02/21 18:00:00 8 0.922 60.10% 0.23
254 I 1970/11/30 15:00:00 1970/12/01 00:00:00 10 0.922 60.33% 0.23
255 ' 1966/12/03 08:00:00 1966/12/03 18:00:00 11 0.91 60.57% 0.23 I
256 1984/12/18 23:00:00 I 1984/12/20 04:00:00 30 0.907 60.81% 0.23
257 2006/04/04 19:00:00 I 2006/04/04 23:00:00 5 0.904 61.05% 10.23
258 1962/02/08 11 :00:00 1962/02/08 19:00:00 9 0.902 61.28% 10.23
259 1952/01/13 05:00:00 ! 1952/01/13 14:00:00 10 0.901 61.52% 10.22
260 1954/03/22 13:00:00 1954/03/23 17:00:00 29 0.899 61.76% !0.22
261 1973/02/15 12:00:00 1973/02/15 13:00:00 2 I 0.898 62.00% 0.22
262 2007/04/20 16:00:00 2007/04/20 16:00:00 1 0.894 62.23% 0.22
263 1998/01/09 18:00:00 1998/01/10 18:00:00 25 0.89 62.47% 0.22
264 1996/12/11 09:00:00 1996/12/11 19:00:00 11 0.889 62.71% 0.22
265 ! 1982/01/20 07:00:00 1982/01/21 02:00:00 20 0.888 62.95% 0.22
266 1981/03/05 03:00:00 1981/03/05 09:00:00 7 0.887 63.18% 0.22
267 1958/02/25 09:00:00 I 1958/02/25 10:00:00 2 0.863 63.42% 0.22
268 I 1991/01/09 15:00:00 I 1991/01/09 16:00:00 2 0.851 63.66% 0.22
269 I 1969/02/18 09:00:00 I 1969/02/18 16:00:00 8 0.849 63.90% 0.22
270 1966/02/06 14:00:00 1966/02/06 17:00:00 4 0.843 64.13% 0.22
271 1983/11/12 18:00:00 1983/11/12 20:00:00 3 0.842 64.37% 0.21
272 1978/03/04 15:00:00 1978/03/04 16:00:00 2 I 0.842 64.61% 0.21 ~-273 1993/03/28 03:00:00 1993/03/28 04:00:00 2 I 0.841 64.85% 0.21 .. -1 274 1963/02/09 20:00:00 1963/02/11 01 :00:00 30 I 0.818 65.08% 0.21
3/18/2020 6:29 PM 6/10
r 1 r 1 , • 1 r 1 , 1 r 1 ,. 1 r 1 r , r , r 1 r , r 1 , 1 r 1 r I r 1 r , r 1
Excel Engineering peakFlowStatisticsPre.csv
Rank Start Date End Date I Duration Peak Frequency Return Period
275 1955/02/27 21 :00:00 : 1955/02/27 21 :00:00 I 1 0.805 65.32% 10.21
276 1974/01/07 18:00:00 : 1974/01/08 06:00:00 13 0.8 65.56% 0.21 -----~-
277 1977/05/08 20:00:00 1977/05/09 05:00:00 10 0.791 65.80% 0.21 -----278 1965/12/16 04:00:00 i 1965/12/16 09:00:00 6 0.784 66.03% 0.21
279 1987/12/04 22:00:00 ! 1987/12/04 22:00:00 1 0.777 66.27% 0.21
280 1998/03/25 18:00:00 ! 1998/03/26 19:00:00 26 0.762 66.51% 0.21
281 1998/03/31 18:00:00 1998/03/31 20:00:00 3 0.762 66.75% 0.21
282 1996/02/27 22:00:00 1996/02/27 22:00:00 1 0.758 66.98% ,0.21
283 1965/02/06 22:00:00 1965/02/06 23:00:00 2 0.751 67.22% 0.21
284 1994/03/07 02:00:00 1994/03/07 07:00:00 6 0.741 67.46% 0.2
285 ! 2006/02/28 07:00:00 2006/02/28 07:00:00 1 0.725 67.70% 0.2
286 1978/01/19 09:00:00 1978/01/19 12:00:00 4 0.717 67.93% 0.2
287 I 1982/03/14 23:00:00 1982/03/15 00:00:00 2 0.708 68.17% 0.2
288 I 1998/11/08 09:00:00 1998/11/08 09:00 :00 1 0.705 68.41% 10.2
289 1953/03/01 23:00:00 1953/03/01 23:00:00 1 0.673 68.65% 0.2
290 1982/02/10 15:00:00 1982/02/10 20:00:00 6 0.672 68.88% 0.2
291 1959/02/16 04:00:00 1959/02/16 21 :00:00 18 0.668 69.12% 10.2
292 1983/03/06 06:00:00 I 1983/03/06 06:00:00 1 ' 0.667 69.36% 0.2
293 1971/04/14 12:00:00 ' 1971/04/14 12:00:00 1 ! 0.664 69.60% 0.2
294 1995/01/24 01 :00:00 1995/01/24 01 :00:00 1 --r---0.664 69.83% 0.2
295 i 1954/03/16 23:00:00 1954/03/16 23:00:00 1 0.654 70.07% 0.2
296 1973/02/11 08:00:00 1973/02/11 15:00:00 8 0.651 70.31% 0.2 ------I--· 297 1983/02/08 07:00:00 1983/02/08 07:00:00 1 0.634 70.55% 0.2
298 1969/03/21 14:00:00 1969/03/21 14:00:00 1 0.629 70.78% 0.2 --299 1994/02/07 15:00:00 1994/02/07 16:00:00 2 0.626 71.02% 0.19
300 1954/03/30 05:00:00 1954/03/30 05:00:00 1 0.621 71.26% 0.19
301 1976/03/01 17:00:00 1976/03/01 19:00:00 3 0.619 71.50% 0.19 --302 1988/12/15 21 :00:00 1988/12/16 15:00:00 19 0.611 71.73% 0.19
303 1994/03/19 06:00:00 1994/03/20 07:00:00 26 0.604 71.97% 0.19
304 1966/11/0716:00:00 1966/11/0717:00:00 2 0.602 72.21% 0.19
305 1975/03/10 12:00:00 I 1975/03/11 01 :00:00 14 0.601 72.45% 0.19
306 1983/03/18 07:00:00 1983/03/18 19:00:00 13 0.593 72.68% 0.19
307 1972/01/18 23:00:00 : 1972/01/19 04:00:00 6 0.593 72.92% 0.19
308 1960/11/2618:00:00 I 1960/11/26 21 :00:00 4 0.582 73.16% 0.19
309 l 1999/04/12 02:00:00 i 1999/04/12 04:00:00 3 0.571 73.40% 0.19
310 ! 1954/03/24 20:00:00 1954/03/25 05:00:00 10 I 0.57 73.63% 0.19
311 ' 1976/02/10 08:00:00 1976/02/10 09:00:00 i 2 ! 0.569 73.87% 0.19
312 1996/02/26 14:00:00 1996/02/26 14:00:00 1 I 0.568 74.11% 0.19
313 2001/04/07 18:00:00 2001/04/07 18:00:00 1 0.562 74.35% 0.19
314 1984/12/08 01 :00:00 1984/12/08 02:00:00 2 0.559 i 74.58% 0.19
315 1978/12/17 02:00:00 1978/12/17 02:00:00 1 0.554 74.82% ,0.18
316 1956/01/31 10:00:00 1956/01/31 12:00:00 3 0.541 75.06% 10.18 -~------
317 1980/01/18 04:00:00 I 1980/01/18 05:00:00 2 0.532 75.30% 0.18
318 1969/11/07 10:00:00 I 1969/11/0710:00:00 1 0.529 75.53% 0.18
319 I 1963/09/17 18:00:00 : 1963/09/17 18:00:00 1 0.526 75.77% 0.18
320 1958/03/06 11 :00:00 1958/03/06 15:00:00 5 0.526 76.01% 0.18 ---321 I 1979/01/31 09:00:00 1979/01/31 10:00:00 2 i 0.52 76.25% 0.18
3/18/2020 6:29 PM 7/10
f 1 f I f I f I I 1 I I I I ' 1 ' 1 f I r 1 f I f I f 1 f I f I I 1 I I f I
Excel Engineering peakFlowStatisticsPre.csv
Rank Start Date : End Date Duration Peak Frequency l Return Period
322 1957/03/16 10:00:00 i 1957/03/1611:00:00 2 0.511 76.48% 10.18
323 1969/04/05 22:00:00 I 1969/04/05 22:00:00 1 0.507 76.72% 0.18
324 1992/03/22 17:00:00 I 1992/03/23 04:00:00 12 0.501 76.96% 0.18
325 1980/03/26 00:00:00 1980/03/26 01 :00:00 2 0.498 77.20% ,0.18
326 1987/04/04 16:00:00 1987/04/04 17:00:00 2 0.498 77.43% 0.18
327 1980/03/10 17:00:00 1980/03/10 17:00:00 1 0.497 77.67% 0.18 -----
328 1965/03/31 15:00:00 1965/03/31 18:00:00 4 i 0.496 77.91% 0.18
329 1970/02/10 04:00:00 1970/02/11 04:00:00 25 I 0.493 78.15% 0.18
330 1954/12/10 00:00:00 1954/12/10 00:00:00 1 0.491 78.38% 0.18
331 1983/03/21 05:00:00 1983/03/21 05:00:00 1 i 0.477 78.62% 0.18
332 1998/04/11 18:00:00 1998/04/11 19:00 :00 2 : 0.476 78.86% 0.18
333 1983/04/18 09:00:00 1983/04/18 09:00:00 1 0.475 79.10% 0.17
334 1980/12/07 12:00:00 1980/12/07 13:00:00 : 2 0.473 79.33% 0.17
335 : 1978/03/09 17:00:00 1978/03/09 18:00:00 2 0.468 79.57% 0.17
336 1973/02/07 05:00:00 I 1973/02/07 05:00:00 1 0.467 79.81% 0.17
337 1988/02/02 03:00:00 1988/02/02 17:00:00 15 0.464 80.05% 0.17
338 1960/11/13 00:00:00 1960/11/13 01 :00:00 2 0.458 I 80.29% 0.17
339 1976/02/08 19:00:00 1976/02/09 00:00:00 6 0.455 80.52% 0.17
340 1967/01/24 20:00:00 1967/01/24 23:00:00 4 0.447 80.76% 0.17
341 1996/01/31 07:00:00 1996/02/01 09:00:00 27 0.442 81.00% 0.17
342 1983/03/17 03:00:00 1983/03/17 06:00:00 4 0.439 81.24% 0.17
343 ! 1976/04/15 19:00:00 1976/04/15 19:00:00 1 i 0.435 81.47% 0.17
344 1970/01/16 18:00:00 ! 1970/01/16 20:00:00 3 0.418 81.71% 0.17
345 1962/02/21 06:00:00 1962/02/21 08:00:00 3 0.417 81.95% 0.17
346 1977/12/26 06:00:00 1977/12/26 13:00:00 8 0.416 82.19% 10.17
347 1983/02/02 16:00:00 1983/02/02 19:00:00 4 0.416 82.42% 0.17
348 1952/12/30 20:00:00 1952/12/31 00:00:00 5 0.415 82.66% 10.17 ~--349 1965/01/24 08:00:00 1965/01/24 08:00:00 1 0.402 82.90% 10.17
350 1998/02/19 18:00:00 1998/02/19 19:00:00 2 0.402 83.14% 10.17
351 2001/03/06 18:00:00 2001/03/06 19:00:00 2 0.399 83.37% 0.17
352 1955/04/30 21 :00:00 1955/05/01 03:00:00 7 0.392 I 83.61% 0.17
353 I 1988/04/14 23:00:00 1988/04/15 01 :00:00 3 0.383 I 83.85% 0.16
~354 I 1951/12/12 00:00:00 1951/12/12 04:00:00 5 ! 0.381 84.09% 0.16
355 : 1965/12/14 17:00:00 1965/12/14 18:00:00 2 0.376 84.32% 0.16
356 1963/04/17 06:00:00 1963/04/17 08:00:00 3 0.373 84.56% 0.16
357 2002/12/16 18:00:00 I 2002/12/16 18:00:00 1 0.373 84.80% 0.16
358 1952/12/20 12:00:00 1952/12/20 14:00:00 3 0.366 85.04% 0.16 --
359 1999/02/04 18:00:00 1999/02/04 19:00:00 2 0.341 85.27% 0.16
360 1952/04/10 17:00:00 1952/04/10 20:00:00 4 0.33 85.51% 0.16 ---
361 1957/12/17 06:00:00 1957/12/17 06:00:00 1 0.328 85.75% 0.16
362 I 1983/04/29 09:00:00 1983/04/29 10:00:00 2 0.327 85.99% 10.16
363 I 1962/03/06 21 :00:00 1962/03/06 21 :00:00 1 0.323 i 86.22% 0.16
2004/04/01 22:00:00 -~-2004/04/01 23:00:00 I 2 0.318 86.46% 10.16 364 I i
365 1998/12/06 07:00:00 i 1998/12/06 07:00:00 I 1 0.316 86.70% 0.16
366 -+-2008/02/24 10:00:00 I 2008/02/24 10:00:00 1 0.315 86.94% ,0.16
367 i 1983/02/26 14:00:00 I 1983/02/26 14:00:00 I 1 0.297 87.17% 10.16
368 1979/03/01 11 :00:00 1979/03/01 13:00:00 3 0.294 87.41% 0.16
3/18/2020 6:29 PM 8/10
f 1 ,. 1 r 1 r 1 I 1 I I ' 1 ' 1 f 1 I 1 f 1 ' 1 f I r 1 J 1 f I I I I I I I
Excel Engineering peakFlowStatisticsPre.csv
Rank I Start Date End Date Duration Peak Frequency Return Period
369 I 1978/12/1814:00:00 1978/12/1814:00:00 1 0.293 I 87.65% 0.16
370 I 1985/01/08 02:00:00 1985/01/08 03:00:00 2 0.292 87.89% 0.16
371 1 2008/02/03 09:00:00 2008/02/03 12:00:00 4 0.283 • 88.12% 0.16
372 i 1957/01/26 08:00:00 1957/01/26 08:00:00 • • -1 0.283 88.36% 0.16
373 1978/03/02 12:00:00 1978/03/02 14:00:00 3 0.279 88.60% 0.16
374 1986/03/13 23:0o:oo 1986/03/13 23:0o:oo I 1 0.277 : 88.84% -+-o_.1_6 __________ __,
375 1954/01/2412:00:00 1954/01/2414:00:00 3 0.265 89.07% 0.16
376 1984/12/16 04:00:00 1984/12/16 04:00:00 ! 1 0.263 1 89.31% 0.15
377 1997/12/0618:00:00 1997/12/0618:00:00 1 0.241 89.55% 0.15
378 1952/01/25 09:00:00 1952/01/25 09:00:00 1 0.232 89.79% 0.15
379 1996/02/21 10:00:00 1996/02/21 10:00:00 1 0.226 90.02% 0.15
380 1963/04/26 03:00:00 1963/04/26 03:00:00 1 0.212 90.26% 0.15
1-------3~8~1--1988/04/2311:00:00 1988/04/2311:00:00 I 1 0.208 ! 90.50% 0.15
382 2000/02/1318:00:00 2000/02/1318:00:00 ! 1 0.203 90.74% 0.15
383 1994/01/2715:00:00 1994/01/2715:00:00 I 1 0.203 90.97% 0.15
384 1986/04/06 11 :00:00 1986/04/06 11 :00:00 ; 1 0.201 91.21 % 0.15
-· 385 1996/01/22 07:00:00 1996/01/22 07:00:00 1 0.194 91.45% 0.15
386 1971/02/1711:00:00 1971/02/1711:00:00 1 0.192 91.69% 0.15
387 1993/01/1014:00:00 1993/01/1014:00:00 1 0.185 91.92% 0.15
388 1985/12/03 00:00:00 1985/12/03 00:00:00 1 , 0.179 92.16% 0.15
389 1969/01/2818:00:00 1969/01/28 20:00:00 3 I 0.176 92.40% 0.15
390 1971/12/2813:00:00 1971/12/2815:00:00 3 I 0.173 92.64% 0.15
391 I 1969/01/20 10:00:00 1969/01/20 10:00:00 1 0.171 92.87% 10.15
392 , 1961/01/2612:00:00 1961/01/2612:00:00 1 0.166 93.11% 0.15
393 1979/02/21 06:00:00 1979/02/21 07:00:00 2 0.164 93.35% 0.15
394 I 2006/03/28 23:00:00 , 2006/03/28 23:00:00 1 0.163 93.59% 0.15
395 1987/01/0706:00:00 I 1987/01/0706:00:00 1 0.158 93.82% 0.15
396 1959/12/21 08:00:00 1959/12/21 09:00:00 2 0.149 94.06% 0.15
~-397-. ! 2001/03/10 18:00:00 2001/03/1018:00:00 I 1 0.143 94.30% 0.15
398 I 1996/12/0919:00:00 : 1996/12/0919:00:00 1 0.141 94.54% 0.15
399 i 1962/02/1912:00:00 ! 1962/02/1912:00:00 1 0.136 94.77% 0.15
400 -1 1960/01/25 21:00:00 1960/01/25 21:00:00 1 0.127 95.01% 0.15
401 1983/03/22 21 :00:00 1983/03/22 21 :00:00 I 1 0.123 95.25% 0.15
402 1967/04/2200:00:00 1967/04/2200:00:00 I 1 0.122 95.49% 0.14
403 1967/04/1919:00:00 1967/04/1919:00:00 1 0.121 95.72% 0.14
404 1960/02/10 08:00:00 1960/02/10 08:00:00 1 0.116 95.96% 0.14
405 1962/02/1612:00:00 1962/02/1612:00:00 1 0.115 96.20% 0.14 ·-·-------------i
406 I 1973/03/05 09:00:00 1973/03/05 09:00:00 1 0.115 96.44% 0.14
407 I 1986/01/3119:00:00 1986/01/3119:00:00 1 0.115 96.67% 0.14
408 1995/01/1611:00:00 1995/01/1611:00:00 1 0.111 96.91% 0.14
409 1982/01/2901:00:00 1982/01/2901:00:00 1 I 0.094 97.15% 0.14
410 1975/04/17 09:00:00 1975/04/17 09:00:00 1 0.088 97.39% 0.14
••• 411 1983/12/0318:00:00 I 1983/12/0318:00:00 1 0.083 97.62% 0.14
412 • 1959/12/10 04:00:00 1 1959/12/10 04:00:00 1 0.081 97.86% 0.14
t----41~3-1961/11/2519:00:00 I 1961/11/25 21:00:00 3 0.081 98.10% 10.14
414 1986/01/30 06:00:00 I 1986/01/30 06:00:00 1 0.079 98.34% i0.14
415 1997/01/03 07:00:00 1997/01/03 07:00:00 I 1 0.073 98.57% ,0.14
3/18/2020 6:29 PM 9/10
r ... ,-'1 r -, r 1 r 1 r 1 r 1 r • 1 r 1 r 1 r • 1 r • 1 r 1 , 1 r 1 ,-·-1 r 1 r 1 r 1
Excel Engineering peakFlowStatisticsPre.csv
Rank Start Date End Date ! Duration Peak Frequency Return Period
416 I 1992/02/06 19:00:00 1992/02/06 20:00:00 ' 2 0.065 I 98.81% 0.14 ~-
417 1965/11/15 00:00:00 1965/11/15 02:00:00 3 0.061 99.05% 0.14 ----418 1983/02/07 06:00:00 1983/02/07 06:00:00 1 0.06 99.29% 0.14 . ------419 1995/02/14 06:00:00 1995/02/14 06:00:00 1 0.058 99.52% 0.14
420 1983/12/27 09:00:00 1983/12/27 09:00:00 1 0.054 99.76% 0.14
-End of Data-----------------
3/18/2020 6:29 PM 10/10
,. ··1 r-1 r-1 r 1 ' 1 ' ., ,., ' -1 ' 1 r 1 r 1 ,. 1 r 1 r· 1 ,. 1 r ~ 1 I' I f I
Excel Engineering peakFlowStatisticsPostMitigated.csv
SWMM.out file name: V:\19\19079\Engineering\SDP\Storm-SDP\SWMM\19-079-POST DEV.out
SWMM.out time stamp: 3/18/2020 6:23:13 PM
010:0.000 -------------·-· • -•••
05: 0.000
02: 0.000
Peak Flow Statistics Table Values
Rank Start Date End Date Duration Peak Frequency Return Period
1 1995/01/0310:00:00 1995/01/06 05:00:00 68 I 6.156 0.13% 58
2 2003/02/25 08:00:00 2003/02/28 12:00:00 77 I 4.698 0.26% 29
3 1959102122 03:00:00 195910212102:00:00 120 i 4.511 I --~o-~39~o;._o_----+~19~·~33 _________ ~--1
4 1958/02/03 05:00:00 1958/02/05 20:00:00 64 1 4.279 I 0.52% 14.5
5 1978/02/27 09:00:00 1978/03/05 22:00:00 158 4.273 0.65% 11.6
6 I 1952/01/16 08:00:00 1952/01/1915:00:00 80 4.149 0.77% 9.67
7 2004/10/27 03:00:00 I 2004/10/29 06:00:00 52 3.896 0.90% 8.29
8 I 1965/11/22 08:00:00 I 1965/11/2411:00:00 52 3.635 1.03% 7.25
9 1982/03/1707:00:00 1982/03/1916:00:00 58 3.497 1.16% 6.44
10 2008/02/22 03:00:00 2008/02/25 05:00:00 75 3.326 1.29% 5.8
11 1980/01/2802:00:00 1980/01/3114:00:00 85 3.212 1.42% 5.27
12 1991/12/28 05:00:00 1991/12/31 09:00:00 77 3.189 1.55% 14.83 ·--·
13 I 1980/02/1315:00:00 1980/02/2212:00:00 214 3.176 1.68% 4.46
14 1998/02/2210:00:00 1998/02/2518:00:00 ' 81 3.018 1.81% 4.14
15 •• • 1978/01/1416:00:00 I 1978/01/18 08:00:00 89 2.903 1.94% 3.87
16 1968/03/08 02:00:00 1968/03/09 19:00:00 42 I 2.718 2.06% 3.63
17 1962/01/20 14:00:00 1962/01/2313:00:00 72 I 2.675 2.19% 3.41
18 1978/02/05 12:00:00 1978/02/15 01 :00:00 230 2.57 2.32% 3.22
19 1986/02/13 11 :00:00 1986/02/17 13:00:00 99 2.568 I 2.45% 3.05
20 1998/02/03 08:00:00 1998/02/05 09:00:00 50 I 2.547 2.58% 2.9 ·-
21 I 1980/03/02 21 :00:00 1980/03/04 19:00:00 i 47 2.506 2.71% 12,76
22 I 2005/02/18 06:00:00 1 2005/02/2412:00:00 151 2.488 2.84% 2.64
23 1983/12/2412:00:00 1983/12/27 22:00:00 83 2.428 2.97% 2.52
24 1980/01/0905:00:00 1980/01/1408:00:00 124 2.413 3.10% 2.42
25 1979/01/05 08:00:00 1979/01/07 16:00:00 57 2.4 3.23% 2.32
26 2005/01/07 10:00:00 2005/01/12 15:00:00 126 2.289 3.35% 2.23
27 I 1972/01/1621:00:00 1972/01/2006:00:00 82 2.27 3.48% 2.15
28 ! 1977/08/16 23:00:00 : 1977/08/19 02:00:00 I 52 2.266 3.61% 12.07
29 1996/11/2117:00:00 1996/11/2310:00:00 I 42 2.241 3.74% 12
--30· 1966/12/03 08:00:00 1966/12/08 00:00:00 113 2.221 3.87% 1.93
31 2003/04/14 09:00:00 2003/04/16 09:00:00 49 , 2.119 4.00% 1.87
32 2004/02/26 03:00:00 2004/02/2716:00:00 38 2.102 4.13% 1.81
33 : 1997/01/1217:00:00 1997/01/17 01:00:00 105 2.098 4.26% 1.76
,____ __ 3_4_ .... 1 1993/01/1218:00:00 1993/01/19 22:00:00 1 173 2.083 4.39% 1.71
,____ __ 3_5 1991/02/2719:00:00 1991/03/0217:00:00 I 71 2.076 ' 4.52% 1.66
36 I 2000/10/29 23:00:00 2000/10/31 12:00:00 38 2.075 4.65% 1.61
37 1960/02/01 23:00:00 1960/02/03 08:00:00 34 2.048 4. 77% I 1.57
38 1998/02/1410:00:00 1998/02/2013:00:00 148 i 2.022 4.90% i1.53
39 2007/11/30 09:00:00 2007/12/02 05:00:00 45 1.997 5.03% 1.49
3/18/2020 6:29 PM 1/17
f I
I 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 , 1 r 1 r 1 r· I ,. 1 J I ,-1 ,-1 r 1 f 1 ' 1
Excel Engineering peakFlowStatisticsPostMitigated.csv
Rank Start Date End Date Duration Peak Frequency Return Period
40 1992/02/12 15:00:00 1992/02/14 13:00:00 47 I 1.985 5.16% 1.45
41 1995/03/11 03:00:00 1995/03/13 06:00:00 52 ' 1.946 5.29% 1.42 --42 1995/03/05 06:00:00 1995/03/07 09:00:00 52 I 1.806 ' 5.42% 1.38
43 1958/04/01 11 :00:00 1958/04/04 23:00:00 85 I 1.805 5.55% 1.35
44 1978/01/03 21 :00:00 1978/01/07 05:00:00 81 I 1.748 5.68% 1.32
45 1954/02/13 19:00:00 I 1954/02/15 10:00:00 40 1.734 5.81% 1.29
46 1960/04/27 07:00:00 1 1960/04/28 17:00:00 35 1.692 5.94% 1.26
47 1970/12/17 02:00:00 1970/12/22 14:00:00 133 1.691 6.06% 1.23
48 1985/11/11 08:00:00 1985/11/13 10:00:00 51 1.667 6.19% · 1.21
49 1979/01/14 22:00:00 ! 1979/01/1913:00:00 I 112 1.621 6.32% 1.18
50 I 1971/12/22 10:00:00 1971/12/26 14:00:00 ! 101 1.601 6.45% 1.16
51 +-1969/01/24 10:00:00 I 1969/01/2910:00:00 121 1.596 6.58% 11.14
52 1957/01/13 05:00:00 I 1957/01/1416:00:00 36 1.596 6.71% I 1.12
53 1965/11/14 22:00:00 1965/11/19 01 :00:00 100 1.589 6.84% 11.09
54 1969/02/06 09:00:00 1969/02/08 00:00:00 40 1.586 6.97% 1.07
55 1967/01/22 18:00:00 1967/01/26 00:00:00 79 1.571 7.10% 1.06
56 2004/10/17 11 :00:00 2004/10/21 22:00 :00 108 1.541 7.23% 1.04
57 1987/12/16 15:00:00 1987/12/18 16:00:00 50 1.515 7.35% 1.02
58 1963/03/17 01 :00:00 1963/03/18 12:00:00 36 I 1.515 7.48% 1 --·-gg ____ ---1986/11/17 21 :00:00 1986/11/19 14:00:00 42 ' 1.467 7.61% 0.98
60 1954/01/18 17:00:00 i 1954/01/21 08:00:00 64 1.457 7.74% 0.97
61 I 1985/11/29 07:00:00 1985/11/30 20:00:00 38 i 1.442 7.87% 0.95 -62 1993/02/18 13:00:00 1993/02/21 09:00:00 69 : 1.422 8.00% 0.94 I I
63 I 1958/03/20 21 :00:00 1958/03/23 14:00:00 I 66 1.411 8.13% 0.92
64 2004/12/28 10:00:00 2005/01/01 23:00:00 I 110 1.374 ' 8.26% 0.91
65 2003/02/11 13:00:00 2003/02/14 17:00:00 77 1.353 8.39% 0.89
66 1983/01/27 09:00:00 1983/01/30 11 :00:00 i 75 1.351 8.52% 0.88
67 1952/11/1418:00:00 1952/11/1710:00:00 65 1.333 8.65% 10.87
68 1963/11/20 03:00:00 1963/11/2213:00:00 I 59 1.289 8.77% 0.85 -~-------·-69 1993/02/08 00:00:00 1993/02/10 00:00:00 49 1.265 8.90% 0.84
70 1952/03/15 21 :00 :00 1952/03/17 20:00:00 ' 48 1.254 9.03% 0.83
71 1967/03/13 12:00:00 1967/03/15 05:00:00 42 1.248 9.16% 0.82
72 + 1952/03/07 11 :00:00 1952/03/09 11 :00:00 49 1.242 9.29% 0.81
73 1951/12/29 07:00:00 1951/12/31 20:00:00 62 1.241 9.42% 10.8
74 1961/12/01 23:00:00 1961/12/04 00:00:00 50 1.219 9.55% 0.78
75 i 1958/04/06 18:00:00 1958/04/08 21 :00:00 52 1.217 9.68% 0.77
76 2005/04/28 09:00:00 I 2005/04/29 09:00:00 25 j 1.217 9.81% 0.76
77 1957/01/28 04:00:00 1957/01/30 22:00:00 67 I 1.208 9.94% 0.75
78 1958/03/15 18:00:00 1958/03/17 18:00:00 49 1.202 10.06% 0.74
79 1983/02/24 03:00:00 1983/03/07 04:00:00 266 1.201 10.19% 0.73
80 1987/10/11 19:00 :00 1987/10/14 02:00:00 56 1.188 I 10.32% 0.73
81 1956/04/13 00:00:00 1956/04/14 23:00:00 48 1.182 10.45% 0.72 ·~ 82 1967/12/18 18:00:00 1967/12/20 21 :00:00 52 1.177 10.58% 0.71
83 I 1965/04/07 07:00:00 1965/04/10 19:00:00 85 1.173 10.71% 0.7
84 I 1977/01/0517:00:00 1977/01/08 11 :00:00 67 1.165 10.84% 0.69
85 i 2008/01/05 06:00:00 I 2008/01/08 11 :00:00 78 1.156 10.97% ,0.68
86 1975/04/08 09:00:00 1975/04/10 11 :00:00 51 1.153 11.10% 0.67
3/18/2020 6:29 PM 2/17
,. 1 ,-, r ·1 r 1 r I w· 1 r 1 r , r ·1 ,. ·1 f 1 J 1 I I r I r 1 • 1 r 1 I 1 r I
Excel Engineering peakFlowStatisticsPostMitigated.csv
Rank Start Date End Date Duration Peak Frequency ! Return Period
87 1994/02/04 00:00:00 1994/02/05 17:00:00 42 I 1.145 11.23% i0.67 ·-·----88 2008/01/27 01 :00:00 2008/01/29 09:00:00 57 1.128 11.35% 0.66 -· ------·----------~
89 1956/01/25 19:00:00 1956/01/2815:00:00 69 1.125 11.48% 0.65 f---90 1962/02/07 23:00:00 1962/02/10 08:00:00 58 1.097 I 11.61% 0.64
91 1958/02/19 11 :00:00 1958/02/20 22:00:00 i 36 1.09 i 11.74% 0.64
92 1994/03/24 23:00:00 1994/03/2614:00:00 40 1.08 11.87% 0.63
93 1988/12/24 22:00:00 1988/12/26 06:00:00 I 33 1.062 12.00% 0.62
94 1963/09/17 09:00:00 1963/09/20 03:00:00 I 67 1.034 12.13% 0.62
95 1982/12/22 12:00:00 1982/12/24 04:00:00 ; 41 I 1.03 12.26% 0.61
96 1960/01/10 14:00:00 1960/01/13 14:00:00 73 ' 1.019 12.39% 0.6
97 1967/11/19 09:00:00 I 1967/11/2213:00:00 I 77 0.992 12.52% 0.6
98 1977/05/08 01 :00:00 1977/05/10 13:00:00 61 I 0.989 12.65% 0.59 f-----· 99 1992/01/03 12:00:00 1992/01/09 07:00:00 140 I 0.987 12.77% 0.59
100 -t 2007/01/30 17:00:00 2007/02/01 02:00:00 34 I 0.986 12.90% 0.58
101 1978/09/05 19:00:00 1978/09/07 12:00:00 42 I 0.951 13.03% 0.57
102 1993/01/06 04:00:00 1993/01/0911:00:00 80 0.927 13.16% 0.57
103 I 1997/01/25 22:00:00 1997/01/27 19:00:00 46 0.912 13.29% 0.56
104 1952/11/30 02:00:00 1952/12/03 01 :00:00 72 0.884 13.42% 0.56
105 I 2001/01/26 15:00:00 2001/01/2813:00:00 47 0.865 13.55% 0.55
106 1970/11/29 01 :00:00 1970/12/02 06:00:00 78 0.861 13.68% 0.55
107 1970/02/28 17:00:00 1970/03/03 04:00:00 I 60 0.856 13.81% 0.54
108 2005/01/03 09:00:00 I 2005/01/05 17:00:00 I 57 0.851 13.94% 0.54
109 1957/05/11 02:00:00 1957/05/1212:00:00 I 35 0.846 14.06% 0.53
110 1986/09/24 01 :00:00 ! 1986/09/26 12:00:00 ! 60 0.838 14.19% 0.53
111 2001/02/13 12:00:00 2001/02/16 05:00:00 ' 66 0.838 14.32% 0.52
112 1986/03/15 23:00:00 ~-i 1986/03/17 20:00:00 46 0.827 i 14.45% 0.52
113 1974/03/08 01 :00:00 1974/03/09 18:00:00 42 0.826 ' 14.58% 0.51
114 2005/02/11 05:00:00 2005/02/13 20:00:00 64 0.824 14.71% 0.51
115 1992/12/07 11 :00:00 1992/12/09 00:00:00 38 i 0.804 14.84% 0.5
116 1995/01/07 15:00:00 1995/01/09 14:00:00 48 0.802 14.97% 0.5
117 i 1981/03/18 20:00:00 1981/03/21 04:00:00 57 I 0.8 15.10% 0.5
118 1963/02/09 20 :00:00 1963/02/12 08:00:00 61 I 0.796 15.23% 0.49
119 1991/03/25 06:00:00 1991/03/28 11 :00 :00 78 0.795 15.35% 0.49
120 I 1977/12/25 20:00:00 1977/12/30 22:00:00 123 0.792 15.48% 0.48 -121 1954/11/11 03:00:00 1954/11/12 20 :00 :00 42 0.784 15.61% 0.48
122 1990/02/17 12:00:00 1990/02/19 12:00:00 49 0.771 15.74% 0.48
123 1983/11/24 23:00:00 1983/11/26 08:00:00 34 0.753 15.87% 0.47
124 1968/12/25 20:00:00 1968/12/27 05:00:00 34 0.75 16.00% 0.47
125 1965/12/09 11 :00:00 I 1965/12/11 16:00:00 54 0.747 16.13% 0.46
126 1988/11/24 03:00:00 ' 1988/11/26 17:00:00 63 0.746 16.26% 0.46 I
127 ; 1995/01/10 17:00:00 1995/01/13 21 :00:00 77 0.727 16.39% 0.46 ~12a· 1988/01/17 07:00:00 1988/01/19 03:00:00 45 0.726 + 16.52% 0.45 ~--129 1999/01/25 08:00:00 1999/01/28 03:00:00 68 0.719 16.65% 0.45
130 ' 2002/11/08 14:00:00 2002/11/10 08:00:00 43 0.716 I 16.77% 0.45
131 I 1978/01/09 17:00:00 1978/01/12 04:00:00 60 0.712 I 16.90% 0.44 -132 ! 2003/03/15 12:00:00 2003/03/17 20:00:00 57 0.691 I 17.03% 0.44
133 I 1985/11/2418:00:00 I 1985/11/26 14:00:00 45 : 0.677 17.16% 0.44
3/18/2020 6:29 PM 3/17
,-1 r -1 r • 1 r 1 r 1 r 1 r 1 r 1 r· 1 r ·, r 1 r 1 r 1 r 1 r 1 ,. 1 r I I I f I
Excel Engineering peakFlowStatisticsPostMitigated.csv
Rank Start Date End Date Duration Peak Frequency Return Period
134 1992/03/20 23:00:00 1992/03/24 06:00:00 80
I
0.673 17.29% 0.43 >----~---~~-2001/01/10 23:00:00 2001/01/13 12:00:00 62 0.644 17.42% 0.43
136 I 1980/03/06 00:00:00 i 1980/03/07 15:00:00 40 I 0.641 17.55% 0.43
137 1988/04/20 03 :00:00 1988/04/23 22:00:00 ' 92 0.635 17.68% 0.42
138 1992/02/1514:00:00 1992/02/17 02:00:00 I 37 I 0.635 17.81% 0.42 -139 1959/12/2412:00:00 1959/12/25 18:00:00 31 : 0.635 i0.42 i 17.94%
140 1976/09/10 04:00:00 1976/09/12 08:00:00 : 53 0.635 18.06% 0.41
141 2004/02/22 08:00:00 2004/02/24 13:00:00 54 0.631 18.19% 0.41
142 1981/11/27 01 :00:00 1981/11/30 05:00:00 77 I 0.63 18.32% 0.41
143 1972/11/14 15:00:00 1972/11/18 10:00:00 92 0.616 18.45% 0.41
144 I 1977/01/03 01 :00:00 1977/01/04 08:00:00 32 0.613 18.58% 0.4
145 1988/12/21 02:00:00 1988/12/23 12:00:00 59 0.608 18.71% 0.4
146 1979/11/0719:00:00 1979/11/09 00:00:00 30 0.604 i 18.84% 0.4
147 2006/03/10 19:00:00 2006/03/12 11 :00 :00 41 0.599 18.97% 0.4
148 1964/11/17 16:00:00 1964/11/18 21 :00:00 30 0.597 19.10% 0.39
149 1957/02/28 21 :00:00 1957/03/02 13:00:00 41 0.591 19.23% 0.39
150 1995/01/24 01 :00:00 1995/01/27 06:00:00 I 78 I 0.585 19.35% 0.39 ~-151 2001/02/25 12:00:00 2001/03/01 05:00:00 ! 90 0.583 19.48% 0.38
152 I 2002/12/20 12:00:00 2002/12/22 12:00:00 49 0.583 19.61% 0.38 --
153 ' 1960/02/28 22:00:00 1960/03/02 06:00:00 57 0.577 19.74% 0.38
154 ' 1982/12/07 23:00:00 1982/12/09 07:00:00 33 0.574 19.87% 0.38
155 I 1973/11/23 00:00:00 1973/11/24 06:00:00 31 0.573 20.00% 0.37 -~-156 1960/01/1418:00:00 1960/01/16 06:00:00 37 0.566 20.13% 0.37
157 1998/02/06 18:00:00 I 1998/02/10 00:00:00 I 79 0.56 20.26% 0.37 --158 1959/02/11 10:00:00 ' 1959/02/13 01 :00:00 40 0.559 20.39% 0.37
159 2006/10/14 02:00:00
I
2006/10/15 01 :00:00 24 0.558 20.52% 0.37
160 1981/12/30 10:00:00 1982/01/03 05:00:00 92 0.557 20.65% 0.36 -161 1978/03/30 14:00:00 I 1978/04/01 14:00:00 i 49 0.553 20.77% 0.36
162 1967/11/3017:00:00 I 1967/12/0116:00:00 I 24 0.54 20.90% 0.36
163 1991/03/19 01 :00:00 I 1991/03/22 10:00:00 I 82 I 0.536 21.03% 0.36
164 1998/01/29 13:00:00 1998/01/30 22:00:00 34 0.528 21.16% 0.35
165 1958/01/25 05:00:00 1958/01/27 19:00:00 63 0.523 21.29% 0.35
166 1979/03/17 06:00:00 1979/03/21 14:00:00 105 0.514 21.42% 0.35
167 1978/03/09 17:00:00 1978/03/10 14:00:00 22 I 0.513 21.55% 10.35 -168 1966/02/06 14:00:00 1966/02/09 00:00:00 59 0.513 I 21.68% 0.35
169 1983/03/21 05:00:00 1983/03/25 16:00:00 108 0.506 21.81% 0.34
170 1955/01/10 07:00:00 I 1955/01/11 14:00:00 32 0.502 21.94% 0.34
171 1986/03/08 19:00:00 1986/03/14 19:00:00 ' 145 0.499 22.06% 0.34
172 ! 2003/12/25 04:00:00 2003/12/26 18:00:00 I 39 0.497 22.19% 0.34
173 I 1969/02/18 09:00:00 1969/02/20 23:00:00 63 0.496 22.32% 0.34
174 i 1973/03/20 09:00:00 1973/03/21 15:00:00 31 0.49 22.45% 0.33
~
175 1993/11/30 05:00:00 1993/12/01 05:00:00 25 I 0.488 22.58% i0.33 ----·--~ 176 1966/01/30 08:00:00 ' 1966/01/31 19:00:00 36 0.484 22.71% 0.33
177 2000/03/04 21 :00:00 2000/03/07 02:00:00 54 0.483 22.84% 0.33
178 2006/02/27 23:00:00 2006/03/01 11 :00:00 37 0.48 22.97% 0.33
179 2001/12/09 14:00:00 ! 2001/12/10 20:00:00 I 31 0.48 23.10% 0.32 ----180 1962/03/18 21 :00:00 1962/03/20 05:00:00 33 0.476 23.23% 0.32
3/18/2020 6:29 PM 4/17
•"" ... I I .... ~ ,. .,. .. . .. ., -11 JI 11 ■• -. a I ... ,.
I I ----•• -I' • I I ... -f I ... ----. I I I I • • II""' W ... • I ~ I ■ I W r1 f I f I I I
Excel Engineering pea kFlowStatisticsPostM itigated .csv
Rank Start Date End Date : Duration Peak Frequency Return Period ! :
181
!
1984/12/26 17:00:00 I 1984/12/29 03:00:00 I 59 0.475 23.35% 0.32
182 1981/02/08 20:00:00 I 1981/02/10 11 :00:00 40 0.473 23.48% 0.32
183 I 1983/09/29 14:00:00 1983/10/02 11 :00:00 ! 70 0.47 23.61% 0.32
184 1960/01/25 21 :00:00 1960/01/26 21 :00:00
;-------
25 ----0.466
~
0.32 I 23.74%
185 1 1984/11/2418:00:00 1984/11/25 21 :00 :00 28 0.463 23.87% 0.31 ~-186 1988/04/14 22:00:00 1988/04/16 06:00:00 33 0.459 24.00% 0.31 r----· 187 1983/04/18 05:00:00 1983/04/22 00 :00 :00 92 0.459 24.13% 0.31
188 1952/01/13 05:00:00 1952/01/14 19:00:00 39 0.458 24.26% 0.31
189 1964/01/21 08:00:00 1964/01/23 10:00:00 51 0.455 24.39% 0.31
190 1978/03/11 21 :00:00 I 1978/03/13 11 :00:00 39 0.454 24.52% 0.31
191 1965/03/31 15:00:00 ! 1965/04/05 10:00:00 116 0.449 24.65% :o.3
192 1965/02/06 03:00:00 1965/02/08 01 :00:00 47 0.449 24.77% 0.3
193 1973/03/11 09:00:00 1973/03/13 04:00:00 44 I 0.448 24.90% 0.3
194 1981/01/28 09:00:00 1981/01/31 06:00:00 70 0.446 25.03% 0.3
195 1988/12/15 17:00:00 1988/12/1910:00:00 90 : 0.446 25.16% 0.3
196 1977/03/24 23:00:00 1977/03/26 11 :00 :00 37 0.444 25.29% 0.3
197 1981/03/05 03:00:00 : 1981/03/06 13:00:00 35 0.44 25.42% 0.29
198 1974/01/07 18:00:00 1974/01/09 21 :00:00 52 0.434 I 25.55% 0.29
199 : 1990/01/17 01:00:00 1990/01/18 21 :00:00 45 0.433 25.68% 0.29 --200 : 1979/03/27 07:00:00 1979/03/29 10:00:00 52 0.43 25.81% 10.29
201 ! 1994/03/07 02:00:00 1994/03/08 13:00:00 I 36 0.423 25.94% 10.29
202 1973/02/11 08:00:00 1973/02/14 03:00:00 68 I 0.422 26.06% 0.29
203 1994/03/19 06:00:00 1994/03/21 05:00:00 48 0.422 26.19% 0.29
204 1998/05/12 15:00:00 1998/05/13 18:00:00 28 0.416 26.32% 0.28
205 1982/01/20 06:00:00 1982/01/22 11 :00:00 54 0.416 26.45% 0.28 -206 1984/12/18 10:00:00 1984/12/21 00:00:00 63 0.414 26.58% 0.28 -~
207 1955/01/18 16:00:00 1955/01/20 03:00:00 36 0.413 26.71% 0.28
208 1983/03/17 03:00:00 1983/03/19 22:00:00 68 0.413 I 26.84% 0.28
209 ' 2001/11/24 15:00:00 2001/11/2519:00:00 29 0.412 I 26.97% 0.28
210 : 1951/11/23 03:00:00 1951/11/24 01 :00:00 23 0.41 27.10% 0.28
211 I 1979/01/30 21 :00:00 1979/02/03 07:00:00 83 0.409 I 27.23% 0.28
212 2000/02/20 15:00:00 2000/02/22 19:00:00 53 0.407 27.35% 0.27
213 1976/02/04 12:00:00 1976/02/11 08:00:00 165 0.407 27.48% 0.27
214 1967/04/11 09:00:00 1967/04/12 19:00:00 i 35 0.405 27.61% 10.27
215 1981/02/2815:00:00 I 1981/03/03 18:00:00 76 0.404 27.74% '0,27
216 1985/02/09 08:00:00 I 1985/02/10 15:00:00 32 I 0.403 27.87% 0.27
217 I 1982/01/05 08:00:00 1982/01/06 18:00:00 35 0.403 28.00% 0.27
218 1974/12/04 10:00:00 1974/12/05 16:00:00 31 0.4 28.13% 0.27
219 1976/07/22 12:00:00 1976/07/23 19:00:00 32 0.4 28.26% 0.27
220 1985/12/11 05:00:00 1985/12/12 15:00:00 I 35 0.398 28.39% 0.26
221 1982/03/14 16:00:00 I 1982/03/16 04:00:00 37 0.389 28.52% 0.26 -------222 1960/11/05 21 :00:00 1960/11/07 05:00:00 33 I 0.388 28.65% 0.26 --223 1975/03/08 10:00:00 I 1975/03/12 07:00:00 94 0.386 28.77% 0.26 I
224 1976/07/15 15:00:00 1976/07/16 22:00:00 32 0.384 28.90% 0.26
225 2006/04/04 19:00:00 2006/04/06 06:00:00 36 0.382 29.03% 0.26
226 1965/12/29 20:00:00 1965/12/30 19:00:00 24 0.381 29.16% 0.26
227 1987/01/06 22:00:00 1987/01/08 07:00:00 34 0.374 I 29.29% 0.26
3/18/2020 6:29 PM 5/17
r ·1 ---.. .,..-.. .. .. • • • • • • .. . • •
Excel Engineering
Rank Start Date
228 i 1987/02/23 21:00:00
229 1995/04/16 10:00:00
230 1973/03/08 13:00:00
231 I 1969/11/06 23:00:00
232 2007/04/20 16:00:00
233 I 1970/02/10 04:00:00
234 I 1994/02/07 06:00:00
235 1970/03/04 23:00:00
236 1998/01/09 15:00:00
237 1991/01/09 15:00:00
238 1954/03/20 13:00:00
239 2001/04/07 17:00:00
240 I 1959/02/21 11 :00:00
241 1959/02/16 04:00:00
242 I 1996/01/31 07:00:00
243 1978/01/19 09:00:00
244 1987/12/04 22:00:00
245 1998/03/31 16:00:00
246 i 1965/12/12 22:00:00
247 i 1998/03/25 17:00:00
248 1994/02/17 12:00:00 ~-
249 1982/02/09 22:00:00
~250 1996/12/09 19:00:00
251 1957/01/07 14:00:00
252 1957/10/14 03:00:00
253 I 1983/11/12 00:00:00
254 I 1998/11/08 09:00:00
255 1976/04/1518:00:00
256 ' 1988/11/14 07:00:00
257 2002/12/16 15:00:00
258 1982/01/10 20:00:00
259 1993/03/26 03:00:00 ~.
260 1953/03/01 23:00:00 ~ 261 1988/02/02 04:00:00
262 i 1971/04/14 12:00:00
263 1954/03/16 23:00:00
264 1973/02/15 12:00:00
265 1976/07/08 14:00:00
266 1983/02/06 15:00:00
267 1982/04/01 10:00:00
268 1954/03/30 05:00:00
269 ' 1955/04/30 21 :00:00 ~-270 1993/01/31 01 :00:00 ~ 271 1976/03/01 17:00:00
272 1999/04/11 23:00:00
273 1996/02/25 12:00:00
274 1951/12/12 00:00:00
3/18/2020 6:29 PM
... --• I
I I
I
I I
I
\
I
-
i
;
•"" .. • • ... ,,, .. . ..... • ■ I I
End Date
1987/02/26 07:00:00
1995/04/19 17:00:00
1973/03/09 13:00:00
1969/11/08 08:00:00
2007/04/21 16:00:00
1970/02/12 03:00:00 I
1994/02/08 22:00:00 I
1970/03/06 01 :00:00 !
1998/01/11 13:00:00
1991/01/10 17:00:00
1954/03/25 23:00:00
2001/04/08 21 :00:00
1959/02/22 22:00:00
1959/02/17 20:00:00
1996/02/02 04:00:00
1978/01/20 05:00:00 '
1987/12/06 00:00:00
1998/04/02 01 :00:00
1965/12/17 09:00:00
1998/03/30 00 :00 :00
1994/02/18 18:00:00
1982/02/11 22:00:00
1996/12/12 23:00:00
1957/01/08 23:00:00
1957/10/15 07:00:00
1983/11/14 00:00:00
1998/11/0912:00:00
1976/04/16 19:00:00
1988/11/15 10:00:00
2002/12/17 23:00:00 I
1982/01/11 20:00:00
1993/03/29 01 :00:00
1953/03/02 19:00:00
1988/02/03 23:00:00
1971/04/1513:00:00
1954/03/18 04:00:00
1973/02/16 07:00:00
1976/07/09 20:00:00
1983/02/08 21 :00:00
1982/04/02 16:00:00
1954/03/31 00:00:00
1955/05/02 15:00:00
1993/02/01 03:00:00
1976/03/03 14:00:00
1999/04/13 04:00:00
1996/02/28 14:00:00 i
1951/12/13 07:00:00
....
I I
Duration
59
80
25
34
25
48
41
27
47
27
131
29
36
41
46
21
27
34
108
104
31
49
77
34
29
49
28
26
28
33
25
71
21
44
26
30
20
31
55
31
20
43
27
46
30
75
32
I
I
-
I
I
I
i
i
I
i
I
.,. . -. . I • • I
Peak
0.372
0.368
0.367
0.366
0.361
0.361 --·
0.359
0.358
0.357
0.352
0.351
0.347
0.346
0.344
0.339
0.337
0.336
0.335
0.334
0.331
0.33
0.328
0.327
0.323
0.323
0.321
0.32
0.317
0.316
0.316
0.315
0.315
0.313
0.313
0.31
0.309
0.308
0.308
0.304
0.303
0.301
0.299
0.296
0.295
0.292
0.29
0.289
I
'
I
I
• • •· .,. r --. • • • • • • .... • • .,~ 1ll 1r • r w I I' ■ Ill ■ ■
peakFlowStatisticsPostMitigated.csv
Frequency I Return Period
29.42% 0.25
29.55% 0.25
29.68% 0.25
29.81% 0.25
29.94% 0.25
30.06% 0.25
30.19% 0.25
30.32% 0.25
30.45% 0.25
30.58% 0.25
30.71% 0.24
30.84% 0.24
30.97% 0.24
31.10% 0.24
31.23% 0.24
31.35% 0.24
31.48% 0.24
31.61% 10.24
31.74% 0.24
31.87% 0.24
32.00% 0.23
32.13% 0.23
32.26% 0.23
32.39% 0.23
32.52% 0.23
32.65% 0.23
32.77% 10.23
32.90% 10.23
33.03% 0.23
33.16% 0.23
33.29% 0.23
33.42% 0.22
33.55% 0.22
33.68% 0.22
33.81% 0.22
33.94% 0.22
34.06% 0.22
34.19% 10.22
34.32% 0.22
34.45% 0.22
34.58% 0.22
34.71% 0.22
34.84% 0.22
34.97% ,0.21
35.10% 10.21
35.23% 0.21
35.35% 0.21
6/17
--_.....,---.. ---I I I I I I r-i ____ ,,.,,. .. ""'Ill
l I I I -~~ ,, ... I I ----•,a I I --~-I I
Excel Engineering
Rank i Start Date End Date
275 1980/01/17 22:00:00 1980/01/1917:00:00 I
276 1952/04/10 14:00:00 1952/04/11 18:00:00 !
277 1962/02/19 12:00:00 1962/02/22 01 :00:00
278 1969/03/21 14:00:00 ! 1969/03/22 19:00 :00
279 I 1958/02/25 09:00:00 I 1958/02/26 09:00 :00
280 1969/04/05 22:00:00 1969/04/06 14:00:00
281 1955/02/26 14:00:00 1955/02/28 18:00:00
282 1998/04/11 17:00:00 1998/04/12 13:00:00
283 1987/04/04 09:00:00 1987/04/05 14:00:00
284 1954/12/10 00:00:00 1954/12/1100:00:00
285 1983/04/29 09:00:00 1983/05/02 15:00:00 !
286 1957/12/15 13:00:00 I 1957/12/17 20:00:00 I
287 1973/02/06 07:00:00 1973/02/07 18:00:00
288 1993/06/05 14:00:00 1993/06/06 16:00:00
289 1996/02/21 05:00:00 1996/02/22 13:00:00
290 1980/12/07 12:00:00 1980/12/08 09:00:00
291 1952/12/30 20:00:00 1952/12/31 23:00:00
292 1956/01/31 10:00:00 1956/02/01 04:00:00
293 1966/11/0716:00:00 1966/11/09 03:00:00
294 2001/03/06 17:00:00 2001/03/08 07:00:00
295 1997/12/06 18:00:00 1997/12/08 06:00:00
296 : 1980/03/26 00 :00:00 1980/03/26 23:00:00
297 1980/03/10 17:00:00 1980/03/11 12:00:00
298 1958/03/06 11 :00:00 1958/03/07 21 :00:00
299 1996/01/21 22:00:00 1996/01/22 23:00:00
300 1952/01/25 07:00:00 ! 1952/01/26 11 :00:00
301 I 1978/12/17 02:00:00 1978/12/20 05:00:00
302 1979/02/21 04:00:00 I 1979/02/22 03:00:00 !
303 2000/02/11 19:00:00 2000/02/15 01 :00:00
304 1961/01/26 12:00:00 1961/01/27 19:00:00
305 1957/04/20 16:00:00 1957/04/22 22:00:00
306 1992/02/06 13:00:00 1992/02/08 11 :00:00
307 1959/12/21 03:00:00 ' 1959/12/22 08:00:00
308 1996/10/30 17:00:00 1996/10/31 18:00:00
309 1990/04/04 11 :00:00 1990/04/0513:00:00 I
310 1989/03/25 15:00:00 1989/03/26 23:00 :00
311 1962/03/06 10:00:00 1962/03/07 15:00:00
312 1957/01/26 08:00:00 1957/01/27 02:00:00
313 1969/01/19 01 :00:00 1969/01/22 13:00:00
314 1992/03/02 09:00:00 1992/03/03 21 :00:00 !
315 1951/08/28 12:00:00 1951/08/2916:00:00
316 1984/12/08 01 :00:00 1984/12/09 01 :00:00
317 I 1958/05/11 10:00:00 1958/05/11 21 :00:00
318 1971/02/17 08:00:00 1971/02/18 11 :00:00
319 1986/04/06 04:00:00 1986/04/0710:00:00
320 1979/03/01 11 :00:00 1979/03/02 15:00:00
~ 321 1982/11/0919:00:00 1982/11/11 11 :00:00 i
3/18/2020 6:29 PM
----1 I
Duration I
I
44 I
29
62
30
25
17
53
21 !
30
25
79
56
36 I
27
33
22
28
19
36
39
37
24
20
35 I
26 I
29
76
24
79
32 I
55
47
30
26
27
33
30
19
85
37
29
25
12 '
28
31
29
41
r ... , • 'II I I 1 I
Peak
0.288
0.284
0.278
0.277
0.277
0.276
0.276
0.275
0.274
0.272
0.271
0.27
0.267
0.264
0.263
0.259
0.258
0.258
0.257
0.256
0.254
0.253
0.252
0.252
0.251
0.251
0.25
0.25
0.25
0.249
0.249
0.247
0.244
0.244
0.242
0.236
0.236
0.232
0.231
0.228
0.227
0.224
0.223
0.223
0.223
0.221
0.22
I
I
!
'
I
·-. I 1 r -•· "-. •-• r • ir • r • I I I I I I I • • I • •
peakFlowStatisticsPostMitigated.csv
Frequency Return Period
35.48% 10.21
35.61% i0.21
35.74% ,0.21
35.87% 0.21
36.00% 0.21
36.13% 0.21
36.26% 0.21
36.39% 0.21
36.52% 0.21
36.65% 0.2
36.77% 0.2
36.90% 0.2
37.03% 0.2
37.16% 0.2
37.29% 0.2
37.42% 0.2
37.55% '0.2
37.68% 0.2
37.81% 0.2
37.94% 0.2
38.06% 0.2
38.19% 0.2
38.32% 0.2
38.45% 0.2
38.58% 0.19
38.71% 0.19
38.84% 10.19
38.97% 10.19
39.10% 0.19
39.23% 0.19
39.35% 0.19
39.48% 0.19
39.61% 0.19
39.74% 0.19
39.87% 0.19
40.00% 0.19
40.13% 0.19
40.26% 0.19
40.39% 0.19
40.52% 0.19
40.65% 0.18
40.77% '0.18
40.90% 0.18
41.03% 0.18
41.16% 0.18
41.29% 0.18
41.42% 0.18
7/17
... --·-I I i. l ·-· ~ --1 I ---1 I ,-1 .,. .. I I
.,,_ ...
I I ·--1 I ... , .. I I
Excel Engineering
Rank Start Date End Date '
322 1960/09/11 07:00:00 1960/09/12 07:00:00 I
323 I 1957/03/16 10:00:00 1957/03/17 10:00:00
324 1984/12/16 04:00:00 1984/12/16 21 :00:00
325 1981/02/25 23:00:00 1981/02/26 23:00:00
326 ! 1992/12/27 23:00:00 1992/12/30 03:00:00
327 I 1969/01/14 03:00:00 1969/01/15 12:00:00 I
328 1967/04/22 00:00:00 1967/04/22 18:00:00
329 1976/12/30 18:00:00 1977/01/01 04:00:00 I
330 1962/02/15 22:00:00 1962/02/17 08:00:00 '
331 1974/10/28 14:00:00 1974/10/30 10:00:00
332 1959/04/26 09:00:00 1959/04/27 06:00:00
333 1952/12/20 12:00:00 i 1952/12/21 12:00:00
334 1994/01/25 02:00:00 ! 1994/01/28 05:00:00
335 1957/12/05 06:00:00 1957/12/06 10:00:00
336 1963/04/17 06:00:00 1963/04/18 05:00:00
337 1985/12/02 14:00:00 1985/12/03 18:00:00 i
338 i 1979/10/20 06:00:00 1979/10/21 14:00:00
339 I 1959/12/10 03:00:00 1959/12/11 00:00:00
340 1983/12/03 18:00:00 1983/12/04 19:00:00
341 1976/08/30 14:00:00 1976/08/31 11 :00:00
342 2001/03/10 18:00:00 2001/03/11 12:00:00
343 1986/01/30 07:00:00 ! 1986/02/01 14:00:00 ~-
344 j 1963/04/26 03:00:00 I 1963/04/26 22:00:00
345 : 2004/04/01 22:00:00 2004/04/02 22:00:00
346 1986/10/09 23:00:00 1986/10/11 15:00:00
347 1972/12/04 17:00:00 1972/12/0516:00:00
348 1964/12/27 11 :00:00 1964/12/29 01 :00:00
349 1963/11/15 20:00:00 1963/11/16 16:00:00
350 1986/02/08 01 :00:00 I 1986/02/09 11 :00:00
351 1999/03/25 17:00:00 1999/03/26 16:00:00
352 I 2004/12/05 15:00:00 2004/12/06 14:00:00
353 1999/02/04 12:00:00 1999/02/05 19:00:00
354 1960/11/26 20:00:00 1960/11/2717:00:00
355 1965/01/24 08:00:00 1965/01/25 05:00:00
356 i 1986/12/06 11 :00:00 1986/12/07 23:00:00 '
357 1955/01/16 12:00:00 1955/01/17 13:00:00
358 1954/01/24 12:00:00 1954/01/26 02:00:00
359 2004/02/03 03:00:00 2004/02/04 09:00:00
360 1980/10/16 08:00:00 1980/10/17 02:00 :00
361 1995/02/14 05:00:00 1995/02/15 14:00:00
362 I 1955/02/16 23:00:00 1955/02/18 06:00:00 :
363 1980/04/22 14:00:00 i 1980/04/24 01 :00:00
364 I 2006/03/28 23:00:00 2006/03/30 01 :00:00
365 1984/10/17 10:00:00 1984/10/18 03:00:00
366 1982/11/2914:00:00 1982/12/01 10:00:00
367 1979/02/14 07:00:00 1979/02/15 01 :00:00
368 1968/02/13 07:00:00 1968/02/14 03:00:00
3/18/2020 6:29 PM
---I I
Duration I I
25 '
25 I
18
25
53
34
19
35
35 i
45
22
25
76
29
24
29
33
22 I
26
22
19 i
56
20 '
25
41
24
39
21
35
24
24
32
22
22
37
26 I
39
31
19
34
32 i
36 I
27
18
45
19
21
---. I I
Peak
• • I I
0.219
0.219
0.214
0.214
0.213
0.212
0.212
0.212
0.211
0.211
0.211
0.21
0.21
0.207
0.205
0.205
0.202
0.201
0.199
0.199
0.197
0.197
0.195
0.195
0.192
0.191
0.19
0.188
0.184
0.183
0.18
0.18
0.179
0.176
0.176
0.175
0.172
0.17
0.165
0.165
0.163
0.162
0.161
0.161
0.161
0.16
0.16
I
•• • • _. "W • • .... • • r·w W I r '
peakFlowStatisticsPostMitigated.csv
Frequency Return Period
41.55% 0.18 -~
41.68% 0.18
41.81% 0.18
41.94% 0.18
42.06% 0.18
42.19% 0.18
42.32% 0.18
42.45% 0.18
42.58% 0.18
42.71% 0.18
42.84% 0.18
42.97% 0.17
43.10% 0.17
43.23% 0.17
43.35% 0.17
43.48% 0.17
43.61% 0.17
43.74% 0.17
43.87% 0.17
44.00% 0.17
44.13% 0.17
44.26% 0.17 ~-~---
44.39% 0.17
44.52% 0.17
44.65% 0.17
44.77% 0.17
44.90% 0.17
45.03% 0.17
45.16% 0.17
45.29% 0.17
45.42% 0.17
45.55% 0.16
45.68% 0.16
45.81% 0.16
45.94% 0.16
46.06% 0.16
46.19% 0.16
46.32% 0.16
46.45% 0.16
46.58% 0.16
46.71% 0.16
46.84% 0.16
46.97% 0.16
47.10% 0.16
47.23% 0.16
47.35% 0.16
47.48% 0.16
8/17
• • • •
i1 r-···1 f''I
Excel Engineering
Rank
369
370
371
372
373
374 ~
375 i
376 I
377
378 I
379
380 -· 381
382
383
384
385
386
387 I
388
389
390
391
392
393
394
395
396
397 I
398
399
400 ! ~.
401
402
403
404
405 !
406 !
407 !
408
409
410
411
412
413
414
415
•" .. • • r 1
Start Date
2000/10/26 15:00:00
1990/05/28 11 :00:00
1983/02/02 18:00:00
2006/05/22 08:00:00
1957/01/05 13:00:00
2007/12/07 08:00:00
1952/03/01 01 :00:00
1988/01/05 17:00:00
1980/12/04 16:00:00
1982/01/28 20:00:00
1982/09/26 07:00:00
1975/02/03 11 :00:00
1972/11/11 12:00:00
2006/12/10 04:00:00
2007/08/26 14:00:00
1974/03/02 13:00:00
1968/04/02 00:00:00
1958/09/24 08:00:00
1973/02/28 05:00:00
1970/01/16 11 :00:00
1961/11/25 05:00:00
1995/03/21 15:00:00
1993/02/23 21 :00:00
1974/12/2811:00:00
1971/12/27 18:00:00
1964/03/23 03 :00 :00
1961/11/20 20:00:00
2008/02/03 10:00:00
1957/10/31 04:00:00
2000/04/17 21 :00:00
1975/04/17 09:00:00
1953/01/06 20:00:00
1990/01/31 04:00:00
1967/04/18 23:00:00
1973/11/17 10:00:00
1985/01/07 14:00:00
2006/02/19 07:00:00
2007/12/19 03:00:00
1996/12/27 19:00:00
1996/03/12 23:00:00
1953/04/27 23:00:00
1955/03/11 05:00:00
1998/12/06 07:00:00
1977/12/18 09:00:00
1959/01/06 12:00:00
1955/04/22 08:00:00
1983/04/12 13:00:00
3/18/2020 6:29 PM
. .,.
• I ..... • • r1 I' 1 r 1
I End Date Duration
2000/10/28 04:00:00 38
1990/05/29 09:00:00 I 23
1983/02/04 00:00:00 31
2006/05/23 02:00:00 I 19 I
1957/01/06 08:00:00 : 20
2007/12/09 11 :00:00 52
1952/03/02 06:00:00 30
1988/01/06 12:00:00 20
1980/12/06 01 :00:00 34
I 1982/01/2919:00:00 24
1982/09/27 09:00:00 27
I 1975/02/04 23 :00 :00 37
I 1972/11/12 05:00:00 18
2006/12/11 06:00:00 27
2007/08/27 06:00:00 I 17
1974/03/03 15:00:00 I 27
1968/04/02 18:00:00 19
1958/09/24 23:00:00 16
1973/03/01 01 :00:00 21
1970/01/17 15:00:00 29
1961/11/26 15:00:00 35
1995/03/22 10:00:00 20
1993/02/24 19:00:00 23
1974/12/30 04:00:00 42
1971/12/29 05:00:00 36
1964/03/24 14:00:00 36
1961/11/21 12:00:00 17
2008/02/04 12:00:00 27
1957/10/31 21 :00:00 18
2000/04/18 22:00:00 26
! 1975/04/18 01 :00:00 17
i 1953/01/0819:00:00 48
I 1990/01/31 18:00:00 15
1967/04/20 14:00:00 40
1973/11/1913:00:00 I 52
1985/01/08 19:00:00 30
2006/02/20 04:00:00 22
2007/12/20 04:00:00 26
1996/12/28 23:00:00 29
' 1996/03/14 04:00:00 30
1953/04/28 17:00:00 19
1955/03/11 20:00:00 16
I 1998/12/06 22:00:00 16
1977/12/18 23:00:00 I 15
1959/01/07 01 :00:00 14
1955/04/23 01 :00:00 I 18
1983/04/13 21 :00:00 33
I
i
I
!
:
I
I
I
.. ,. • • • • • •
Peak
0.16
0.16
0.16
0.159
0.158
0.158
0.157
0.157
0.156
0.155
0.155
0.155
0.154
0.153
0.152
0.152
0.151
0.151
0.151
0.151
0.151
0.15
0.149
0.149
0.148
0.147
0.147
0.146
0.145
0.145
0.145
0.145
0.144
0.144
0.144
0.143
0.143
0.142
0.142
0.142
0.141
0.141
0.141
0.14
0.14
0.14
0.14
r 1
Frequency
47.61%
47.74%
47.87%
48.00%
48.13%
48.26%
48.39%
48.52%
48.65%
48.77%
48.90%
49.03%
49.16%
49.29%
49.42%
49.55%
49.68%
49.81%
49.94%
50.06%
50.19%
50.32%
50.45%
50.58%
50.71%
I 50.84%
50.97%
51.10%
I 51.23%
I 51.35%
51.48%
51.61%
51.74%
51.87%
52.00%
52.13%
52.26%
52.39%
: 52.52%
52.65%
52.77%
52.90%
53.03%
53.16%
53.29%
53.42%
53.55%
• • • • r " r • er I • • • • • • • •
peakFlowStatisticsPostMitigated.csv
Return Period
0.16
0.16
,0.16
;0.16
10.16
:0.16
0.16
0.15
0.15
0.15
0.15
0.15 --0.15
0.15
0.15
0.15
:0.15
10.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15 ---~ 0.15
0.15
10.15 --0.15
0.15
0.15
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
:0.14
'0.14
9/17
i i i i r i i i -----,. I I 1 I
.,, ...
I I •• a W"" W • • • • -. I I
Excel Engineering
Rank Start Date End Date I Duration I
416 I 1990/04/17 11 :00:00 1990/04/18 06:00:00 I 20
417 I 1965/03/12 18:00:00 I 1965/03/14 08:00:00 39
418 I 1982/03/26 00:00:00 I 1982/03/26 21 :00:00 22 -· 419 1973/03/05 09:00:00 I 1973/03/07 13:00:00 53
420 I 1958/03/27 17:00:00 1958/03/28 07:00:00 15 ----421
~ i 1967/03/31 14:00:00 I 1967/04/01 05:00:00 16
422 1975/02/09 09:00:00 1975/02/10 17:00:00 33
423 1982/12/29 22:00:00 1982/12/30 13:00:00 16
424 1953/11/1419:00:00 1953/11/15 22:00:00 28
425 1978/11/21 20:00:00 1978/11/2215:00:00 20
426 1979/01/09 14:00:00 1979/01/10 05:00:00 16 .. 427 1957/01/10 03:00:00 1957/01/11 02:00:00 I 24
428 1983/11/20 11 :00:00 1983/11/21 08:00:00 I 22
429 2005/03/22 23:00:00 I 2005/03/23 14:00:00 I 16
430 1997/01/23 10:00:00 1997/01/24 10:00:00 25
431 1995/01/16 11 :00:00 1995/01/17 02:00:00 16
432 1963/09/04 11 :00:00 1963/09/05 05:00:00 19
433 1952/11/23 04:00:00 1952/11/24 00:00:00 21
434 1987/03/22 04:00:00 1987/03/22 18:00:00 15
435 1952/03/13 01 :00:00 1952/03/14 00:00:00 24
436 1990/06/09 18:00:00 1990/06/11 06:00:00 37
437 2005/12/31 21 :00 :00 2006/01/03 16:00:00 I 68 ---438 1995/01/21 06:00:00 1995/01/21 20:00:00 15 i
439 I 1982/11/19 03:00:00 1982/11/20 17:00:00 39
440 1990/02/04 14:00:00 1990/02/05 05:00:00 16
441 I 1976/04/13 08:00:00 I 1976/04/14 03:00:00 20
442 1978/11/24 12:00:00 ! 1978/11/25 04:00:00 17 L..___ _______
443 1954/01/12 13:00:00 ! 1954/01/13 14:00:00 26
444 I 1959/02/08 07:00:00 1959/02/09 14:00:00 32
445 1955/11/14 11 :00:00 1955/11/14 23:00:00 13
446 1960/02/09 02:00:00 1960/02/10 21 :00:00 44 ~-447 1975/11/27 21 :00:00 1975/11/29 11 :00:00 39
448 1995/03/23 13:00:00 1995/03/24 08:00:00 20
449 1957/06/10 06:00:00 1957/06/10 19:00:00 14
450 1974/03/27 11 :00:00 1974/03/27 23:00:00 13
451 1978/01/30 14:00:00 1978/01/31 14:00:00 I 25
452 1995/03/03 14:00:00 I 1995/03/04 03 :00 :00 I 14 ------453 I 1987/10/31 09:00:00 1987/11/0212:00:00 52 --454 2007/02/11 15:00:00 2007/02/12 03:00:00 13
455 1957/02/23 09:00:00 1957/02/24 01 :00:00 17
456 1966/10/10 17:00:00 1966/10/11 05:00:00 13
457 1971/10/16 23:00:00 1971/10/17 19:00:00 21
458 1987/02/14 00:00:00 1987/02/14 14:00:00 15
459 1975/12/20 18:00:00 1975/12/21 09:00:00 16
460 ! 2007/02/28 08:00:00 2007/03/01 06:00:00 I 23
461 1998/12/01 20:00:00 : 1998/12/02 09:00:00 14
462 I 1985/01/28 18:00:00 1985/01/29 15:00:00 22
3/18/2020 6:29 PM
i
I
i
I
I
i
I
I
I
.. ,. -• • I I I I
Peak
0.14
0.14
0.139
0.139
0.139
0.139
0.138
0.138
0.137
0.137
0.137
0.136
0.136
0.136
0.135
0.135
0.135
0.135
0.134
0.133
0.133
0.132
0.132
0.132
0.132
0.13
0.13 ----0.13
0.129
0.129
0.129
0.128 ..
0.128
0.126
0.126
0.126
0.125 ..
0.125
0.125
0.125
0.124
0.124
0.124
0.124
0.123
0.123
0.123
I
I
I
I
• • I I
Frequency
53.68%
53.81%
53.94%
54.06%
54.19%
54.32%
54.45%
54.58%
54.71%
54.84%
54.97%
55.10%
55.23%
55.35%
55.48%
55.61%
55.74%
55.87%
56.00%
56.13%
56.26%
56.39%
56.52%
56.65%
56.77%
56.90%
57.03%
57.16%
57.29%
57.42%
57.55%
57.68%
57.81%
57.94%
58.06%
58.19%
58.32%
58.45%
58.58%
58.71%
58.84%
58.97%
59.10%
59.23%
59.35%
59.48%
59.61%
.. --.. I I
•. ,.
I II
.,. ,.
I • f 1 . . .. ... • • • •
peakFlowStatisticsPostMitigated.csv
Return Period
i0.14
10.14
10.14
10.14 ·-10.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14 -~
0.14
0.14
0.14
0.14
0.13
0.13
0.13
10.13
10.13
0.13 ---0.13
0.13
0.13
0.13
0.13 ----0.13
0.13 ·-0.13
0.13
0.13
0.13
10.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
10.13
10.13
0.13
10/17
i i i i --W I --• I i i i i i .. I 1 i --• •
Excel Engineering
Rank Start Date I End Date
463 1960/11/13 03:00:00 I 1960/11/13 14:00:00
464 1971/01/12 23:00:00 I 1971/01/13 15:00:00
465 1997/01/02 08:00:00 1997/01/04 01 :00:00
466 2005/10/16 22:00:00 2005/10/19 00:00:00
467 1971/02/23 08:00:00 1971/02/23 19:00:00 ' 468 : 2004/03/02 03:00:00 2004/03/0218:00:00
469 I 1993/12/11 20:00:00 1993/12/12 15:00:00 I
' I
470 I 1987/11/04 22:00:00 1987/11/05 23:00:00 I
471 1951/12/19 11 :00:00 1951/12/20 01 :00:00
472 I 1953/02/23 13:00:00 1953/02/24 08:00:00
473 I 1993/01/02 11 :00:00 1993/01/03 03:00:00 I
474 1996/12/06 03:00:00 1996/12/06 22:00:00 1----------------475 1968/11/14 21 :00:00 1968/11/15 15:00:00
476 1990/01/13 14:00:00 : 1990/01/15 00:00:00
477 1985/02/02 06:00:00 1985/02/03 01 :00:00
478 ' 1957/05/21 08:00:00 1957/05/21 21 :00:00
479 ! 1984/12/10 23:00:00 1984/12/11 19:00:00 ---480 1957/10/21 07:00:00 1957/10/21 18:00:00
481 I 1983/12/09 20:00:00 1983/12/10 06:00:00
-482 ' 1992/03/08 05:00:00 1992/03/08 22:00:00
483 1992/03/27 09:00:00 1992/03/27 19:00:00 '
484 2006/03/21 05:00:00 ! 2006/03/21 17:00:00
485 1984/11/13 12:00:00 1984/11/13 22:00:00
486 1965/01/01 01 :00:00 ' 1965/01/01 11 :00:00
487 1970/01/10 03:00:00 1970/01/12 11 :00:00
488 1993/01/10 14:00:00 ; 1993/01/11 02:00:00
489 1989/01/07 19:00:00 I 1989/01/08 05:00:00
490 1952/03/10 22:00:00 1952/03/11 17:00:00
491 1989/05/14 13:00:00 1989/05/1519:00:00
492 1952/12/28 11 :00:00 1952/12/29 02:00:00
493 I 1977/01/29 05:00:00 1977/01/2915:00:00 ..
494 I 1991/03/15 17:00:00 1991/03/16 03:00:00 I
495 1963/03/28 14:00:00 1963/03/29 02:00:00 !
496 1988/08/24 08:00:00 1988/08/25 00 :00 :00
497. 1978/11/11 12:00:00 1978/11/12 19:00:00
498 2004/11/21 10:00:00 2004/11/21 20:00:00
499 1984/04/28 01 :00:00 I 1984/04/28 10:00:00
500 1980/03/21 13:00:00 I 1980/03/22 11 :00:00
501 1969/11/10 06:00:00 1969/11/10 18:00:00
502 i 1964/11/09 17:00:00 1964/11/11 06:00:00
503 1989/02/04 01 :00:00 1989/02/05 05:00:00
504 ! 2008/01/23 23:00:00 2008/01/24 23:00:00 :
505 1977/05/24 08:00:00 1977/05/24 21 :00:00
506 ' 1958/03/11 05:00:00 1958/03/12 12:00:00
507 1991/10/27 03:00:00 1991/10/27 21:00:00
508 1989/03/02 19:00:00 1989/03/03 07:00:00
509 1989/02/09 18:00:00 I 1989/02/10 17:00:00
3/18/2020 6:29 PM
., . -~ ~ .. . -I I I I I I
Duration ! Peak
12 0.123
17 0.123
42 I 0.121
51 0.12
12 0.12
16 0.12
20 I 0.12
26 0.118
15 0.118
20 0.117
17 0.117
20 0.117
19 0.117
35 0.117
20 0.117
14 I 0.116
21 0.116
12 0.115
11 0.115
18 0.115
11 0.115 I
13 0.115
11 0.115
11 0.115
57 0.114
13 0.114
11 0.114
20 0.114
31 0.114
16 0.114
11 ' 0.113
11 0.113
13 0.113
17 0.113
32 0.113 I
11 0.112 :
10 0.112
23 0.111
13 ' 0.111
38 ! 0.111
29 0.11
25 0.11
14 0.108
32 0.108
19 0.108
13 0.107
24 0.107
. .. I I
Frequency
59.74%
59.87%
60.00%
60.13%
60.26%
60.39%
60.52%
60.65%
60.77%
60.90%
61.03%
61.16%
61.29%
61.42%
61.55%
61.68%
61.81%
61.94%
62.06%
62.19%
62.32%
62.45%
62.58%
62.71%
62.84%
62.97%
63.10%
63.23%
63.35%
63.48%
63.61%
63.74%
63.87%
64.00%
64.13%
64.26%
64.39%
64.52%
64.65%
64.77%
64.90%
65.03%
65.16%
65.29%
65.42%
65.55%
65.68%
-,. I I r· ,. I I .. -., -.. I I r 1 • • • •
pea kFlowStatisticsPostM itigated .csv
Return Period
0.13
0.13 -~
0.13 ----~-0.12
0.12
0.12
0.12
0.12
,0.12
0.12
10.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
10.12
10.12
0.12
0.12
0.12
0.12
0.12
10.12
0.12
'0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
10.12
10.12
0.12
0.12
0.12
0.11
0.11
0.11
11/17
.. I .. •
~ --..... ..... .. --.... ---.. ... ~ 'W ---,,. -----.,.~ ... I J I J 'I I I I I I I I I I , I I I
--.-~----· -,.. __ , .. .. ... ------. ..--.,. ...-...... ...... ~-.... .,, ,.. ... . 11 11 II II 11 11 11 11 11 I l
Excel Engineering peakFlowStatisticsPostMitigated.csv
Rank Start Date End Date Duration I Peak Frequency I Return Period
510 I 1997/12/18 18:00:00 1997/12/19 10:00:00 17 0.107 65.81% 10.11
511 2006/12/27 11 :00:00 2006/12/27 19:00:00 9 0.106 65.94% :0.11
512 1976/07/27 03:00:00 1976/07/27 12:00:00 10 0.106 66.06% 10.11 -513 I 1955/01/31 02:00:00 1955/01/31 19:00:00 18 0.105 66.19% 0.11
514 1992/12/18 05:00:00 1992/12/1813:00:00 9 0.105 66.32% 0.11
515 1955/11/17 15:00:00 1955/11/18 06:00:00 16 0.105 66.45% 0.11
516 I 1994/12/25 04:00:00 1994/12/25 16:00:00 13 I 0.104 66.58% 0.11 I
517 I 1979/02/23 05:00:00 I 1979/02/23 16:00:00 12 I 0.104 66.71% 0.11
518 ! 1981/04/19 06:00:00 I 1981/04/1917:00:00 12 0.104 66.84% 0.11
519 1989/02/02 10:00:00 I 1989/02/02 20:00:00 11 0.104 66.97% 0.11
520 I 1975/03/22 12:00:00 1975/03/22 22:00:00 11 0.104 67.10% 0.11 -521 1984/12/03 11 :00:00 1984/12/03 21 :00:00 11 0.104 I 67.23% 0.11
522 I 1962/01/13 04:00:00 1962/01/13 13:00:00 10 0.103 67.35% 0.11
523 1996/01/16 23:00:00 1996/01/1710:00:00 12 0.103 ! 67.48% 0.11
524 1998/03/13 20:00:00 1998/03/15 08:00:00 I 37 0.103 67.61% 0.11
525 2008/02/20 13:00:00 2008/02/21 00:00:00 i 12 0.102 67.74% 0.11
526 I 1987/03/1512:00:00 1987/03/15 20:00:00 ' 9 0.102 67.87% i0.11
527 1989/01/23 23:00:00 1989/01/24 08:00:00 10 0.102 68.00% '0.11
528
'
2001/02/20 19:00:00 ' 2001/02/21 09:00:00 15 0.102 68.13% 0.11
529 I 1972/10/20 04:00:00 ! 1972/10/20 12:00:00 9 I 0.102 68.26% 0.11
530 I 1985/10/22 03:00:00 1985/10/22 10:00:00 8 0.102 68.39% 0.11
531 1956/02/23 23:00:00 1956/02/24 23:00:00 25 0.101 68.52% 0.11 --532 1978/04/15 23:00:00 1978/04/16 07:00:00 9 I 0.101 68.65% 0.11
533 1957/05/1911:00:00 1957/05/19 20:00:00 10 0.1 68.77% 0.11
534 1951/12/05 04:00:00 1951/12/05 18:00:00 15 0.1 68.90% 0.11
535 1967/11/26 22:00:00 1967/11/27 05:00:00 : 8 0.1 69.03% 0.11
536 1982/09/16 14:00:00 1982/09/17 23:00:00 ' 34 0.1 69.16% 0.11
537 1963/02/14 13:00:00 1963/02/14 22:00:00 10 0.1 69.29% i0.11
538 2007/02/19 10:00:00 2007/02/1919:00:00 I 10 0.098 69.42% !0.11
539 1976/11/12 06:00:00 1976/11/12 16:00:00 11 0.098 69.55% 10.11
540 1987/03/05 23:00:00 1987/03/07 01 :00:00 27 0.098 69.68% 0.11
541 1996/03/05 01 :00:00 1996/03/05 10:00:00 10 0.097 69.81% 0.11 ~-542 I 1955/01/02 02:00:00 1955/01/02 15:00:00 14 0.097 69.94% 0.11
543 2001/02/23 19:00:00 2001/02/24 08:00:00 14 0.097 70.06% 0.11
544 2001/11/29 20:00:00 2001/11/30 07:00:00 12 0.096 70.19% 0.11
545 1960/11/03 23:00:00 : 1960/11/04 06:00:00 8 0.096 70.32% 0.11 ~546 ____ ~-1999/06/04 03:00:00 1999/06/04 11 :00:00 9 0.096 70.45% 0.11 ---547 1998/01/03 20:00:00 1998/01/05 01 :00:00 30 0.095 70.58% 0.11
548 1957/01/20 21:00:00 1957/01/21 05:00:00 9 0.093 70.71% 0.11
549 I 1971/12/04 06:00:00 1971/12/0412:00:00 I 7 0.093 70.84% 0.11
550 : 1995/12/23 13:00:00 1995/12/23 21 :00:00 9 0.093 70.97% 0.11
551 -i---2007/02/23 01 :00:00 2007/02/23 07:00:00 7 0.093 71.10% i0.11
552 1979/12/21 10:00:00 1979/12/21 22:00:00 13 0.093 71.23% i0.11
553 1992/02/10 04:00:00 1992/02/10 16:00:00 13 0.093 71.35% 0.11
554 1978/04/08 15:00:00 ' 1978/04/09 03:00:00 13 0.091 I 71.48% 0.11 --
555 2003/11/12 10:00:00 : 2003/11/1217:00:00 8 0.089 71.61% 0.11
556 1973/01/10 04:00:00 I 1973/01/10 10:00:00 7 0.089 71.74% 0.1
3/18/2020 6:29 PM 12/17
r·-, ,-' r·, i i r·, i j i i i j .-, . I f
Excel Engineering
Rank Start Date End Date i
557 1982/03/28 23:00:00 1982/03/29 11 :00:00 '
558 i 1956/12/06 08:00:00 1956/12/06 13:00:00 -559 2000/02/23 20:00:00 2000/02/24 06:00:00 -· 560 1994/11/10 15:00:00 1994/11/10 22:00:00
561 1953/10/22 10:00:00 1953/10/22 19:00:00
562 1975/12/12 20:00:00 1975/12/13 03:00:00
563 1973/02/04 00:00:00 ! 1973/02/04 07:00:00
564 : 1977/03/16 17:00:00 1977/03/22 20:00:00
565 I 1996/01/25 17:00:00 1996/01/26 00:00:00
566 I 1999/01/31 14:00:00 1999/01/31 19:00:00
567 2007/04/23 03:00:00 2007/04/23 09:00:00
568 1974/01/01 10:00:00 1974/01/01 16:00:00
569 1983/01/22 18:00:00 I 1983/01/23 22:00:00
570 1964/03/02 16:00:00 1964/03/02 22:00:00
571 1977/02/24 18:00:00 1977/02/25 08:00:00
572 1962/02/25 01 :00:00 1962/02/25 09:00:00
573 1997/02/11 00:00:00 1997/02/11 08:00:00
574 2000/11/30 12:00:00 2000/11/30 17:00:00
575 I 1977/02/22 08:00:00 1977/02/22 13:00:00 ! --576 -r----1990/01/02 13:00:00 1990/01/02 18:00:00
577 1972/12/07 11 :00:00 1972/12/08 22:00:00
578 1987/03/25 01 :00:00 1987/03/26 04:00:00 .,--579 1981/04/02 13:00:00 1981/04/02 18:00:00
580 1958/02/13 06:00:00 1958/02/13 16:00:00 ---~----~
581 1964/10/15 15:00:00 1964/10/15 20:00:00
582 I 1985/03/27 12:00:00 1985/03/28 19:00:00 :
583 1951/10/11 03:00:00 I 1951/10/11 08:00:00
584 I 1988/12/28 02:00:00 1988/12/28 19:00:00
585 I 1978/03/22 18:00:00 1978/03/23 21 :00:00
586 ' 1966/01/01 03:00:00 1966/01/01 09:00:00
587 1984/01/15 20:00:00 1984/01/16 16:00:00
588 1954/12/04 02:00:00 1954/12/04 08:00 :00
589 1987/12/29 15:00:00 i 1987/12/30 13:00:00
590 ' 1971/03/13 11 :00:00 1971/03/13 15:00:00
591 2001/12/04 20:00:00 2001/12/05 05:00:00
592 2002/02/17 21 :00:00 2002/02/18 05:00:00
593 1955/04/26 14:00:00 1955/04/26 20:00:00
594 2002/03/18 02:00:00 2002/03/18 11 :00 :00
595 1957/04/18 06:00:00 1957/04/1814:00:00
596 I 2001/04/10 20:00:00 I 2001/04/11 06:00:00
597 1961/03/28 10:00:00 1961/03/29 00:00:00
598 1965/09/17 05:00:00 1965/09/17 19:00:00 -599 1965/12/22 05:00:00 1965/12/22 16:00:00
600 1983/01/24 22:00:00 1983/01/26 00:00:00
601 1995/06/16 01 :00:00 1995/06/17 04:00:00
602 1960/03/28 06:00:00 I 1960/03/28 14:00:00 I
603 1962/03/23 03:00:00 1962/03/23 08:00:00
3/18/2020 6:29 PM
i .. I -I
,.
J • • I i
Duration i Peak
13 0.089
6 0.088
11 0.088
8 0.088
10 0.088
8 0.088
8 0.088
148 I 0.087
8 0.087
6 0.086
7 0.086
7 0.086
29 0.086
7 : 0.085
15 0.085
9 0.085
9 0.084
6 0.084
6 0.084
6 0.084
36 0.083
28 0.083
6 0.083
11 0.082
6 0.082
32 0.081
6 0.081
18 0.081
28 I 0.081
7 0.08
21 0.08
7 0.079
23 0.079
5 0.078
10 I 0.078
9 0.077
7 0.077
10 0.076
9 0.076
11 0.075
15 i 0.075
15
I
0.074
12 0.074
27 0.074
28 0.073
9 0.073
6 0.072
!
I
I
'
'
., .•
I I • w I I ... I I" ---,. I I . ,.
I W • • I •
peakFlowStatisticsPostMitigated.csv
Frequency Return Period
71.87% 0.1
72.00% 0.1
72.13% 0.1
72.26% 0.1
72.39% 0.1
72.52% '0.1
72.65% 0.1
72.77% 0.1
72.90% 0.1
73.03% 0.1
73.16% 0.1 -~
73.29% 10.1
73.42% 0.1
73.55% 0.1
73.68% 0.1
73.81% 0.1
73.94% 0.1
74.06% 10.1
74.19% 0.1
74.32% 0.1
74.45% 0.1
74.58% 0.1
74.71% 0.1
74.84% 0.1
74.97% 0.1
75.10% 0.1
75.23% 0.1
75.35% 0.1
75.48% 0.1
75.61% 0.1
75.74% 0.1
75.87% 0.1
76.00% 0.1
76.13% 0.1
76.26% 0.1
76.39% 0.1
76.52% 0.1
76.65% ,0.1
76.77% '0.1
76.90% 0.1
77.03% 0.1
77.16% 0.1
77.29% 0.1
77.42% 10.1
77.55% 0.1
77.68% 0.1
77.81% 0.1
13/17
. , I ,
-'" ■ I r-... ...,.
I I .. .. ■ •
Excel Engineering
Rank
604
605
606
607
608
609
610
611
612
613 i
614
615
616
617 f--618 f-----· 619
620
621 I-----622
623
624
625
626
627
628
629 '
630
631 I
632 i
633
634
635 ~-636
637
638
639 ' 640 i
641
642
643
644 --645 I -646
647
648
649
650
• 1111 r 'II _.-.. ,. I I I I I I
Start Date I
1983/01/1814:00:00
2006/12/17 00:00:00
2005/03/04 14:00:00
1951/10/15 13:00:00
1980/04/28 19:00:00
1981/01/12 14:00:00
1983/10/07 12:00:00
1984/12/13 00:00:00
1985/02/04 01 :00:00 I
1991/12/19 14:00:00
1998/11/28 10:00:00 i
1978/11/14 00:00:00
1978/11/1513:00:00
1975/04/25 11 :00:00
1993/12/14 21 :00:00
1952/12/17 13:00:00
1969/12/09 03:00:00
1987/12/19 22:00:00
1999/01/20 18:00:00
1964/02/29 09:00:00
1987/02/05 15:00:00
1980/05/09 16:00:00
1969/04/03 09:00:00
1951/11/21 00:00:00
-2003/05/03 21 :00:00
1965/11/2514:00:00
1996/02/03 15:00:00
1969/03/13 05:00:00
2005/09/20 09:00:00
1992/03/31 18:00:00
1966/01/27 09:00:00
1952/12/06 08:00:00
1953/11/05 13:00:00
1990/01/22 14:00:00
1985/10/07 13:00:00
1995/12/13 10:00:00
1957/11/14 20:00:00
1979/12/25 13:00:00
1983/12/19 18:00:00
1992/03/29 16:00:00
1978/04/02 22:00:00
1984/11/16 18:00:00
2000/11/11 03:00:00 !
1953/12/04 13:00:00
1971/05/07 23:00:00
1967/12/08 03:00:00
1991/03/13 23:00:00
3/18/2020 6:29 PM
-.,. I I
......
I I
End Date
1983/01/19 17:00:00
2006/12/17 12:00:00
2005/03/05 11 :00:00
1951/10/15 17:00:00
1980/04/29 16:00:00
1981/01/12 18:00:00
1983/10/08 10:00:00
1984/12/13 04:00:00
1985/02/04 05:00:00
1991/12/19 18:00:00
1998/11/29 09:00:00
1978/11/14 04:00:00
1978/11/15 17:00:00
1975/04/25 16:00:00
1993/12/15 04:00:00
1952/12/17 23:00:00
1969/12/09 10:00:00
1987/12/20 02:00:00
1999/01/21 01 :00:00
1964/02/29 13:00:00
1987/02/05 19:00:00
1980/05/10 20:00:00
1969/04/03 16:00:00
1951/11/21 05:00:00
2003/05/04 05:00:00
1965/11/25 20:00:00
1996/02/03 20:00:00
1969/03/13 13:00:00
2005/09/20 11 :00:00
1992/03/31 22:00:00
1966/01/27 19:00:00
1952/12/06 13:00:00
1953/11/0518:00:00
1990/01/22 18:00:00
1985/10/07 16:00:00
1995/12/13 17:00:00
1957/11/15 02:00:00
1979/12/25 17:00:00
1983/12/19 22:00:00
1992/03/29 20:00:00
1978/04/03 01 :00:00
1984/11/16 22:00:00
2000/11/11 09:00:00
1953/12/04 18:00:00
1971/05/08 05:00:00
1967/12/08 15:00:00
1991/03/14 02:00:00
..... I I
I I
'
!
I
!
I
i
.. .. I I
Duration
28
13
22
5
22
5
23
5
5
5
24
5
5
6
8
11
8
5
8
5
5
29
8
6
9
7
6
9
3
5
11
6
6
5
4
8
7
5
5
5
4
5
7
6
7
13
4
.. ... .. 'ti I I I I
Peak
I 0.072
0.072
I 0.072
0.072
I 0.072
0.072
0.072
0.072
0.072
0.072
0.072
I 0.072
! 0.071
0.071
0.071
0.071
0.071
0.071
I 0.07
0.07
I 0.07
0.07
0.069
0.068
0.068
0.067
0.067
0.067
0.067
I 0.066
i 0.066
0.066
0.066
0.066
0.066
I 0.066
! 0.066
! 0.066
0.065
0.065
0.065
0.065
0.064
0.064
0.064
0.063
0.063
I
.. --'ti
I I r '■ I ■ .. . • ■ .. . • ■ .. 11 • • .. . . .
peakFlowStatisticsPostMitigated.csv
Frequency Return Period
77.94% 10.1
78.06% 0.1
78.19% 0.1
78.32% 0.1
78.45% 0.1
78.58% 0.1
78.71% 0.1
78.84% 0.1
78.97% 0.1
79.10% 0.1
79.23% 0.09
79.35% 0.09
79.48% 10.09
79.61% 0.09
79.74% 0.09
79.87% 0.09
80.00% 0.09
80.13% 0.09
80.26% 0.09 --~---80.39% 10.09
80.52% 0.09
80.65% 0.09
80.77% 0.09
80.90% 0.09
81.03% 0.09
81.16% 0.09
81.29% 0.09
81.42% 0.09
81.55% 0.09
81.68% 0.09
81.81% 0.09
81.94% 0.09
82.06% 0.09
82.19% 10.09
82.32% 0.09
82.45% 0.09
82.58% 0.09
82.71% 0.09
82.84% 0.09
82.97% 0.09
83.10% 0.09
83.23% '0.09
83.35% 0.09
83.48% 0.09
83.61% 0.09
83.74% 0.09
83.87% 0.09
14/17
.... . .
.... I a ... I a ., . • •
Excel Engineering
Rank I
I
651
652
653
654
655
656
657
658
659
660
661
662 I
663 -~ ~-664
665
666
667
668
669
670
671
672
673
674
675
676
677
678 --···· 679 ' 680
681
682
683
684 '
685
686
687
688
689 ~-690
691 i
692 ------~ 693 ~~-694 I
695
696 I f--~·---697
-. • • .. 11 r 11 ■ I I ■
Start Date
1977/12/23 07:00:00 ----
1999/04/01 23:00:00
2006/03/03 18:00:00
1985/09/18 16:00:00
1987/11/18 01 :00:00
1983/08/18 14:00:00 I
1997/01/22 05:00:00 !
1975/03/14 06:00:00 I
2000/03/08 21 :00:00 '
1987/07/17 15:00:00
1983/03/28 11 :00:00
1979/11/12 15:00:00
1975/01/30 19:00:00
1983/12/1517:00:00
1987/12/11 09:00:00
1999/04/07 14:00:00
1960/03/13 08:00:00 I 1977/07/22 15:00:00
1969/03/10 13:00:00
1983/11/18 03:00:00
1979/01/25 18:00:00
1982/04/04 15:00:00
1983/01/05 12:00:00
1988/04/18 08:00:00
1981/03/14 16:00:00
1987/02/03 16:00:00
1996/01/28 09:00:00
1977/05/12 13:00:00
2006/04/14 17:00:00 I
1980/05/02 14:00:00
1982/02/17 05:00:00
1986/02/23 10 :00:00 I
1986/03/01 11 :00:00 I
1984/01/04 19:00:00
1989/01/05 22:00:00
1955/12/04 13:00:00
1987/10/28 04:00:00
1984/11/23 09:00:00
2006/03/07 04:00:00
1981/03/10 21 :00:00
1962/02/11 08:00:00
1965/01/07 13:00:00
1978/12/01 22:00:00
1951/10/0811:00:00
1999/03/11 18:00:00
1967/01/31 06:00:00
1995/01/15 05:00:00
3/18/2020 6:29 PM
.. . • • .. 11 • •
End Date
1977/12/2311:00:00
1999/04/02 02:00:00
2006/03/03 22:00:00
1985/09/18 18:00:00
1987/11/18 04:00:00
1983/08/18 15:00:00
1997/01/22 09:00:00
1975/03/14 10:00:00
2000/03/09 02:00:00
1987/07/17 16:00:00
1983/03/28 14:00:00
1979/11/1218:00:00
1975/01/31 00:00:00
1983/12/15 20:00:00
1987/12/1112:00:00
1999/04/07 17:00:00
1960/03/13 11 :00:00
1977/07/2218:00:00
1969/03/11 01 :00:00
1983/11/18 06:00:00
1979/01/25 21 :00:00
1982/04/04 18:00:00
1983/01/05 15:00:00
1988/04/18 11 :00:00
1981/03/14 19:00:00
1987/02/03 19:00:00
1996/01/28 13:00:00
1977/05/1216:00:00
2006/04/1513:00:00
1980/05/02 17:00:00
1982/02/17 08:00:00
1986/02/23 13:00:00
1986/03/01 14:00:00
1984/01/04 22:00:00
1989/01/06 01 :00:00
1955/12/04 17:00:00
1987/10/28 07:00:00
1984/11/23 12:00:00
2006/03/07 08:00:00
1981/03/11 00:00:00
1962/02/11 12:00:00
1965/01/07 17:00:00
1978/12/02 01 :00:00
1951/10/08 11 :00:00
1999/03/11 20:00:00
1967/01/31 11 :00:00
1995/01/15 09:00:00
.. 11 • •
i
I
I
i
I
I
i
I
I I
I I
.. 11 .. "II .. 11 ■ I ■ • • •
Duration Peak
5 0.063
4 0.063
5 0.063
3 0.062
4 0.062
2 0.062
5 i 0.062
5 I 0.062
6 0.062
2 0.062
4 0.062
4 0.061
6 0.061
4 0.061
4 0.061
4 0.061
4 0.06
4 0.06
13 ' 0.06
4 0.06
4 I 0.06
4 0.06
4 0.06
4 0.06
4 0.06
4 0.06
5 0.059
4 0.059
21 0.059
4 0.059
4 0.058
4 0.058
4 I 0.058
4 0.058
4 I 0.058
5 0.058
4 0.058 -4 0.058
5 0.058
4 0.058
5 0.057
5 0.057
4 0.057
1 0.057
3 ' 0.057
6 I 0.056
5 0.056
.. 111 • •
Frequency
84.00%
84.13%
84.26%
84.39%
84.52%
84.65%
84.77%
84.90%
85.03%
I 85.16%
85.29%
85.42%
85.55%
85.68%
85.81%
85.94%
86.06%
86.19%
I 86.32%
I 86.45%
86.58%
86.71%
86.84%
86.97%
87.10%
87.23%
87.35%
87.48%
87.61%
87.74%
87.87%
88.00%
88.13%
88.26%
88.39%
88.52%
88.65%
88.77%
88.90%
89.03%
89.16%
89.29%
89.42%
89.55%
89.68%
i 89.81%
89.94%
I' 11 • • I'. •
• II
If 11 • • .. 11 r • . . . -
peakFlowStatisticsPostMitigated.csv
Return Period
0.09
0.09
10.09
10.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
10.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.08
0.08
0.08
0.08
0.08
10.08
10.08
10.08
i0.08
10.08
0.08
15/17
' !
• • 1 r 1 ., . • •
Excel Engineering
Rank
698
699
700 +--I
701 I
702
703
704
705
706
707
708
709 I
710 I
711 I ~--
712
713
714
715
716
717
718
719
720
721 ~-722
723
724 I
725
726
727
728
729 ~-730
731 I
732
733
734
735
736
737
738 i
739
740
741 I
742
743 ~ 744
• 'II ., 'II • • • •
Start Date
1993/02/26 22:00:00
1975/04/06 03:00:00
1959/10/01 10:00:00
1996/02/12 17:00:00
1978/04/07 05:00:00
1960/12/03 07:00:00
1973/12/01 22:00:00
1983/05/06 12:00:00
2004/12/08 10:00:00
1998/12/19 23:00:00
2004/01/03 01 :00:00
1987/11/14 05:00:00
1971/12/07 06:00:00
1962/05/27 16:00:00
1972/01/09 12:00:00
1981/05/01 15:00:00
1983/01/17 09:00:00
1999/06/02 07:00:00
1980/04/01 19:00:00
1971/12/13 10:00:00
2008/01/22 09:00:00
1998/05/06 21 :00:00
2008/02/14 18:00:00
1980/01/07 11 :00:00
1982/02/08 16:00:00
2007/02/14 01 :00:00
2001/12/21 21 :00:00
1973/03/26 10:00:00
2001/04/21 13:00:00
1952/04/08 05:00:00
1953/01/14 01 :00:00
1963/12/10 03:00:00
1980/03/18 20:00:00
1985/02/20 23:00:00
1956/05/10 03:00:00
1969/03/09 06:00:00
1977/07/20 13:00:00
1960/03/23 13:00:00
1998/04/15 21 :00 :00
1964/02/15 12:00:00
1977/07/27 16:00:00
1958/01/30 17:00:00
1988/11/11 12:00:00
2004/02/18 21 :00:00
1965/04/13 04:00:00
1980/05/08 14:00:00
2005/03/19 16:00:00
3/18/2020 6:29 PM
.. 'II I I
' I
I
--:
I
:
I
I
i
. ,. • • • •
End Date
• •
1993/02/27 03:00:00
1975/04/06 21 :00:00
1959/10/01 11 :00:00
1996/02/12 19:00:00
1978/04/07 07:00:00
1960/12/03 10:00:00
1973/12/02 00:00:00
1983/05/06 14:00:00
2004/12/0814:00:00
1998/12/20 01 :00:00
2004/01/03 03:00:00
1987/11/14 07:00:00
1971/12/07 08:00:00
1962/05/27 19:00:00
1972/01/09 14:00:00
1981/05/01 17:00:00
1983/01/17 11 :00:00
1999/06/02 12:00:00
1980/04/01 21 :00:00
1971/12/13 12:00:00
2008/01/22 11 :00:00
1998/05/07 02:00:00
2008/02/14 20:00:00
1980/01/0713:00:00
1982/02/08 18:00:00
2007/02/14 03:00:00
2001/12/22 00:00:00
1973/03/26 12:00:00
2001/04/21 17:00:00
1952/04/08 11 :00:00
1953/01/14 03:00:00
1963/12/10 05:00:00
1980/03/18 22:00:00
1985/02/21 01 :00:00
1956/05/10 05:00:00
1969/03/09 08:00:00
1977/07/20 14:00:00
1960/03/23 14:00:00
1998/04/16 00:00:00
1964/02/15 15:00:00
1977/07/27 17:00:00
1958/01/30 18:00:00
1988/11/11 12:00:00
2004/02/18 22:00:00
1965/04/13 05:00:00
1980/05/0815:00:00
2005/03/19 21 :00:00
II' If
I I
1
I
I
I
i
i
-
,.
I
.,. 'II
I I
Duration
6
19
2
3
3
4
3
3
5
3
3
3
3
4
3
3
3
6
3
3
3
6
3
3
3
3
4
3
5
7
3
3
3
3
3
3
2
2
4
4
2
2
1
2
2
2
6
:
i
I
• I 'II • .. I
Peak
0.056
0.056
0.056
0.056
0.056
0.055
0.055
0.055
0.055
0.054
0.054
0.054
0.054
0.054
0.054
0.054
0.054
0.054
0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.052
0.052
0.052
0.052
0.052
0.051
0.051
0.051
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.049
0.049
0.049
0.048
0.048
0.048
0.048
'II •
I
I
l
i
'
I
;
• I
,.
I r • I ■ .. I 1 .. • .. • • • .. . • • . -
peakFlowStatisticsPostMitigated.csv
Frequency Return Period
90.06% 0.08
90.19% 0.08
90.32% 0.08
90.45% 0.08
90.58% 0.08
90.71% 0.08
90.84% ·0.08
90.97% 0.08
91.10% 0.08
91.23% 0.08
91.35% 0.08
91.48% 0.08
91.61% 0.08
91.74% 0.08
91.87% 0.08
92.00% 0.08
92.13% 0.08
92.26% 0.08
92.39% 0.08
92.52% 0.08
92.65% 0.08
92.77% i0.08 -·--92.90% 0.08
93.03% 0.08
93.16% 0.08
93.29% 0.08
93.42% 0.08
93.55% 0.08
93.68% 0.08
93.81% 0.08
93.94% 0.08
94.06% :0.08
94.19% 10.08
94.32% 0.08
94.45% 0.08
94.58% 0.08
94.71% 0.08
94.84% 0.08
94.97% 0.08
95.10% 0.08
95.23% 0.08
95.35% 0.08
95.48% 0.08
95.61% 0.08
95.74% 0.08
95.87% 0.08
96.00% 10.08
16/17
■ • -..
--I I --• • r 1 r 1 r 1 .... I I .. . I ■ • • • • r 1 • • 1 r-,. • • • I 1 . .. • • • • " . • 11 • • .,-.. • • r 'II r 11 ._ . . .
Excel Engineering peakFlowStatisticsPostMitigated.csv
Rank i Start Date End Date ' Duration i Peak Frequency i Return Period
~ i1~ : ~~~~~;~~~ ~~:~~:~~ I ~~~~~;~g ~~:~~:~~ 1 ;
1 ~:~:i 1 ~::~~~ !~:~:
>--------------747--~ 2006/12/22 14:00:00 2006/12/22 15:00:00 2 0.047 96.39% 0.08
748 I 2002/12/29 21 :00:00 2002/12/30 00:00:00 ! 4 0.047 ! 96.52% 0.08
749 1955/11/21 20:00:00 I 1955/11/21 21:00:00 2 0.047 96.65% 0.08
--750 1957/11/04 09:00:00 1 1957/11/0411:00:00 3 0.047 1 96.77% 0.08
751 1 1971/04/26 09:00:00 1971/04/2610:00:00 2 0.046 I 96.90% 0.08
-· 752 1982/04/11 23:00:00 1982/04/12 00:00:00 2 0.046 97.03% 0.08
753 1963/11/06 20:00:00 : 1963/11/06 20:00:00 1 0.045 I 97.16% 10.08
754 198711012310:00:oo 1 198711012311:00:oo 2 0.045 I 97.29% 0.08
1---__ 7_55_ ! 1957/01/24 13:00:00 ! 1957/01/24 14:00:00 2 0.045 I 97.42% 0.08
756 1977/01/26 04:00:00 1977/01/26 05:00:00 2 0.045 97.55% 0.08
757 1981/04/26 21 :00:00 1981/04/26 21 :00:00 1 0.045 97.68% 0.08
758 1999/03/1514:00:00 I 1999/03/1514:00:00 1 0.045 97.81% 0.08
759 1962/05/15 07:00:00 1962/05/15 07:00:00 1 ! 0.045 97.94% 0.08
760 2003/03/22 22:00:00 2003/03/22 23:00:00 2 0.045 98.06% 0.08
761 1966/01/20 03:00:00 1966/01/20 04:00:00 2 . 0.044 98.19% 0.08
~---76T-1964/04/0113:oo:oo 1964/04/0113:oo:oo ! 1 I o.044 ----+-~9~8~.3~2~%--r=o~.0~8--------------;
763 1955/12/07 06:00:00 1955/12/07 06:00:00 1 0.044 98.45% 0.08
764 1968/01/28 04:00:00 I 1968/01/28 04:00:00 1 0.044 98.58% 0.08
765 1956/04/27 12:00:00 I 1956/04/27 12:00:00 1 0.044 98.71% 0.08
766 __ 1963/04/08 12:00:00 1963/04/08 12:00:00 1 __ 0.043 I 98.84% 0.08
767 1999/02/10 00:00:00 1 1999/02/10 00:00:00 1 0.043 I 98.97% 0.08
768 1976/11/2714:00:00 1976/11/2714:00:00 1 0.043 99.10% 0.08
769 1957/11/17 02:00:00 1957/11/17 02:00:00 1 I 0.042 99.23% 10.08
770 1975102114 10:00:00 1915102114 10:00:00 1 0.042 99.35% :o.08
771 2003/11/16 05:00:00 2003/11/16 05:00:00 1 -~ 0.042 99.48% 10.08
772 I 1987/01/2811:00:00 1987/01/2811:00:00 1 1 0.041 99.61% j0.08
773 2001/01/08 21 :00:00 2001/01/08 21 :00:00 1 I 0.041 99.74% 0.08
774 1994/02/20 17:00:00 1994/02/20 17:00:00 1 0.041 99.87% i 0.08
-End of Data-----------------, 1
3/18/2020 6:29 PM 17/17
r ,. . .
Excel Engineering
Flow Duration Curves
--Pre Development -Post Development Mitigated
5
'fi: I~ 010 (5.417cfs) ~ Qlf(0.3995cfs) I
••• I • I• ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • . . • . • • . . • . • • • • • • . . • • • • . • . . . . . . • . . ..••••.•.••••...
4 • l• •••••••••••••••••••.•............. "' ................. I ••••••••••••••••• , •••••••••••••••••
-J!? 3 . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u -Cl) -ns ~
2 . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . ' ....................................... .
~
.2 1 • • • • • • • •••••••I•••••••••••••••••"•••••••••••••••••
u..
0 g ....
0 ~ 0
-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................................. .
: Flow Duration PreDevelopment=365(days)x24(hr/day)x0.241 (%)=21 .1 (hours/year)
: Flow Duration Mitigated Post Development=365(days)x24(hr/day)x0.190(%)=16.6(hourslyear)
-2 • • • I• • • .,, • • • .-• • •, • • • 1 • • • I• • • •• • • • • • • • . • • • , • • • • • • • • ~ • • • .• , • •• • • • I , , , , , , •
0.00 0.05 0.10 0.15 0.20 0.25
(%) Percent Time Exceedance
r • • • ---.... ■ I .... " . ... • • • • • • ---... I I ...---11 I I .. ,.
I I
... ,.
I I .. ,.
I I
,r· •
I I
Excel Engineering
Compare Post-Development Curve to Pre-Development Curve
post-development SWMM file: V:\ 19\ 19079\Engineering\SDP\Storm-SDP\SWMM\ 19-079-POST DEV.out
post-development time stamp: 3/18/2020 6:23:13 PM
Compared to:
pre-development SWMM file: V:\ 19\ 19079\Engineering\SDP\Storm-SDP\SWMM\ 1 !f-°079-PRE DEV.out
pre-development time stamp: 2/17/2020 4:21 :51 PM
I
I fl,0 J; 1,.0 1,.0
~'!!< ~ i <v+~ <v4,fli ~+~ ~+~
o\o o\o
"'-q_ Q:-'b' o\o 0\o I "'-I,, I "'-'1 ,.i-~<i~ I <::>0~ q,o"' I «'o o"' o"' ~+~ ~+~
I
q_0":;j I q_<..0
o\o o\o
0 0.40 0.19 0.24 TRUE FALSE
1 0.45 0.17 0.22 TRUE FALSE
2 0.50 0.15 I 0.21 TRUE FALSE
3 0.55 0.13 0.19 TRUE FALSE
4 0.60 0.11 0.18 TRUE FALSE
5 0.65 0.10 0.16 TRUE FALSE
6 0.70 0.09 0.15 TRUE FALSE
7 0.75 0.08 0.14 TRUE FALSE ~ 8 0.81 0.07 0.13 TRUE : FALSE
9 0.86 I 0.07 0.12 TRUE FALSE
10 0.91 0.06 0.12 TRUE FALSE
11 0.96 0.06 0.11 I TRUE FALSE
12 I 1.01 0.05 0.10 TRUE FALSE ·-· 13 1.06 0.05 0.10 TRUE FALSE I
14 I 1.11 0.04 0.09 TRUE FALSE
15 1.16 0.04 0.09 TRUE FALSE
16 1.21 0.04 0.08 TRUE I FALSE -17 1.26 I 0.03 0.08 TRUE FALSE
18 1.31 0.03 0.07 TRUE FALSE
19 1.36 0.03 0.07 TRUE FALSE
20 1.41 0.03 0.06 TRUE FALSE
21 1.46 0.03 I 0.06 TRUE FALSE
22 __j_ 1.51 0.02 0.06 TRUE FALSE
1.57 0.02 0.05 TRUE FALSE 23 ----+---:
24 I 1.62 0.02 0.05 TRUE FALSE
25 1.67 0.02 0.05 TRUE I FALSE
26 1.72 I 0.02 I 0.05 TRUE ! FALSE
27 1.77 I 0.02 0.04 TRUE FALSE
28 1.82 0.01 0.04 : TRUE FALSE
29 1.87 0.01 0.04 TRUE FALSE
30 1.92 0.01 0.04 TRUE FALSE
31 1.97 0.01 0.04 TRUE FALSE
3/18/2020 6:29 PM
I
I
I
I
' I
II' • I I .... I I
1,.0 ~+~
o\o
o\o .... ~
" ~'1 o"' ~+~
o\o
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
r· 1111
• I
r· 1111 I ■ r·· 11 I I ... 11 • • • • • •
flowDurationPassFailMitigated.TXT
-----
~ ~ ~"' q_'I>'
Pass-Qpost Below Flow Control Threshold
Pass: Post Duration< Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration < Pre Duration --Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
1/3
,, 11 • •
_.,y ... I I --• I .. ,. I I r·1
Excel Engineering
:<..~ ,;;.0 I ~q_ ~~ I q_o"' «.'o
I
I
32 2.02
33 2.07
34 2.12
35 2.17
36 2.22
37 2.28
38 2.33
39 2.38
40 2.43
41 2.48
42 I 2.53
43 I 2.58
44 2.63
45 2.68
46 2.73
47 2.78
48 2.83
49 2.88
50 2.93
51 2.98
52 3.04
53 3.09
54 I 3.14
55 3.19
56 i 3.24
57 I 3.29
58 3.34
59 3.39
60 3.44
61 3.49
62 3.54
63 • 3.59
64 3.64
65 3.69
66 3.75
67 3.80
68 3.85 --69 3.90
70 3.95
71 4.00
3/18/2020 6:29 PM
.. ,. I I --,. I I -· .. I I
I
I o
c,0/lj r!l'J>
I <v..,,. <v..,,.
o\o 0\o ~ ~ , ~()0 ()0
I q_O<,; q_<..0
0.01 0.03
0.01 0.03
0.01 0.03
0.01 0.03
0.01 I 0.03
0.01 0.02
0.01 I 0.02
0.01 0.02
0.01 0.02
0.01 0.02
I 0.01 0.02
0.01 0.02
0.01 0.02
0.00 0.02
0.00 0.02
I 0.00 0.02
0.00 ! 0.01
0.00 0.01
0.00 ' 0.01
0.00 0.01
0.00 0.01
0.00 0.01
0.00 0.01
0.00 0.01
0.00 0.01
0.00 I 0.01
0.00 0.01
0.00 0.01
0.00 0.01
: 0.00 0.01
0.00 0.01
0.00 I 0.01
0.00 0.01
0.00 0.01
0.00 0.01
; 0.00 0.01
0.00 0.01
0.00 I 0.01
0.00 0.01
0.00 0.01
I
I
I
'
I
I
---,. I I .. ,.
I I
&0
~+q
o\o
~t-
o"' +q
o\~
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
I
I
I
I
'
I
I
I
.,, ,. I I . .. I I
&0
~+q
o\o ~...,
o"' ~+q
o\o
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE ---FALSE
r ,.
I I .. ' I I
&0 I
I +q
I o\~ I
o\o ... ~
" i ~...,
I ,s'
~+q
o\o
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
! FALSE
FALSE
FALSE
FALSE
I FALSE
I FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
I FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE ---· FALSE
r ,.
I I r--,. • • .. -. • • .. . • • r'
flowDurationPassFailMitigated.TXT
~ {< ,,,,,,
q_'?>'
Pass: Post Duration< Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration -~ Pass: Post Duration< Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration< Pre Duration --~~--Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration < Pre Duration -~ Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration< Pre Duration
2/3
• • -.
-,. I I -. I I .. . I I
Excel Engineering
I
~'l< I
r,..q_
q_O<,;
'1
72 ~-73
74
75
76 -:
77 I
78
79
80
81
82
83 ·-84
85
86 ' -87
88 -· 89
90
91 I
92 -93
94 I
95 I
96 -· 97
98
99
.. . I I
:\.0 <;;-'rf ~ «'o
4.05
4.10
4.15
4.20
4.25
4.30
4.35
4.40
4.45
4.51
4.56
4.61
4.66
4.71
4.76
4.81
4.86
4.91
4.96
5.01
5.06
5.11
5.16
5.21
5.27
5.32
5.37
5.42
3/18/2020 6:29 PM
.. . I I ... 1111 I I ... . I I
I 00 ,t>
I ;:vfli Vfli : «;i v.,,;:
; ,.,o\o 0\o
I ()0 <J0.:;,
• "-
q_O<,; q_<..0
0.00 0.01
0.00 0.01
0.00 0.01
0.00 0.01
0.00 0.01
I 0.00 0.01
0.00 i 0.01
0.00 0.01
0.00 0.01
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
I 0.00 ' 0.00 I I
0.00 0.00 ----0.00 0.00
0.00 0.00
I 0.00 0.00
i 0.00 I 0.00
I 0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
I
.. ,.
I I .. . I I
&0
<y+~
o\o
"-" oe,;
<y+q
o\o
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
I
I
I
I
I
!
.. . I I II' • I I
&0
<y+~
o\o
"-'1 oe,; q
o\fp
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE -FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
i
I
I
I
'
r • I I r • I I
&0 +~ o\<j)
o\o "<:s " "'--1 oe,;
<y+q
o\o
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
.. . • • r ,. • • .. . • • • • • • • • .. .
flowDurationPassFailMitigated.TXT
~ j-
q_~
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration< Pre Duration
Pass: Post Duration< Pre Duration --Pass: Post Duration < Pre Duration -Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
Pass: Post Duration < Pre Duration
3/3
• • • •
••
••
••
•• ...
....
.... ...
Ill•
••
...
·-
, ..
...
,.
' ...
,.
••
,.
••
•• ...
,.
Excel Engineering USGS9217dPre.csv
Duration Table Summary at Project Discharge Point ----·-·--------
file name: V:\19\19079\Engineering\SDP\Storm-SDP\SWMM\19-079-PRE DE'(~~t __ ---·---------
------time stamp: 2{1?/2020 4:21 :51 PM -----------·---------
----------------·---------------~
DISCHARGE Number of periods when discharge was equal to or greater than DISCHARGE
column but less than that shown on the next line
----------. ------
b"3 &<::-°-' bJ>
t--.0 0(lj 0(lj ~ <;;-'lf 1,.fl «l' «l' ~ ~0
~§ 0 l:1, cl' /...'J>"3 0
0' ~~ <b,$' -~o' ~ ~0 ~ <S" ~v~ ~ 1-.fli
---------------
,,.,.~
·----~-
~(lj --1 0.40 105 1200 0.241 ---·---------------------2 0.45 77 1095 0.220 ---------------3 0.50 73 1018 0.205 -----4 0.55 77 945 0.190 -----··---5 0.60 74 868 0.175 ~----
6 0.65 64 794 0.160 ---· --------7 0.70 42 730 0.147 I------------------
8 0.75 40 688 0.138 ---------------9 0.80 38 648 0.130 -------,_ ______ ·-· ----10 0.86 36 610 0.123 i--------------------_ _. -
11 0.91 36 574 0.115 --·---12 0.96 36 538 0.108 ------13 1.01 31 502 0.101 i-----------. -------------14 1.06 31 471 0.095 -------·--. 15 1.11 19 440 0.088 -.
I-------. 16 1.16 -20 421 0.085 --· -----------17 1.21 23 401 0.081 ---------
18 1.26 21 378 0.076 -----19 1.31 19 357 0.072 ------20 1.36 23 338 0.068 --------------·----21 1.41 19 315 0.063 --22 1.46 21 296 0.060 --23 1.51 18 275 0.055 r------r ·--24 1.57 17 257 0.052 ~ 25 1.62 10 240 0.048 -----~
e------------26 ··--1.67 7 230 0.046
27 1.72 13 223 0.045 ---28 1.77 7 210 0.042 ------29 1.82 12 203 0.041
30 1.87 5 191 0.038 --31 1.92 9 186 0.037 ---32 1.97 13 177 0.036 -----33 2.02 12 164 0.033 . ·-------34 2.07 10 152 0.031 -----~ 2.12 14 142 0.029 -----------36 2.17 6 128 0.026 ~---37 2.22 5 122 0.025 ----38 2.27 5 117 f---0.024
39 2.33 4 112 0.023 ----40 2.38 3 108 0.022 ------------------41 2.43 3 105 0.021 -----· 42 2.48 5 102 0.021 ---· --------43 2.53 4 97 0.020
44 2.58 2 93 0.019
45 2.63 3 91 0.018
46 2.68 6 88 0.018
47 2.73 3 82 0.016 --------·-48 2.78 8 79 0.016 ~------------49 2.83 5 71 0.014 I-------·---··-50 2.88 4 66 0.013 ---·--~ 51 2.93 2 62 0.012
3/18/2020 6:29 PM 1/2
....
...
...
...
...
...
••
••
•• •• , .. ..
Excel Engineering
~0 rz,"-~ ~f/j
~"~ 0
I
i:$
<b~ •1'<,o' <:S'
---------52 2.98 ----
53 3.03 -----_, ___
54 3.09 -----·---55 3.14 --l------56 3.19 ---------57 3.24
58 3.29
59 3.34 ----60 3.39 ------61 3.44 ---------62 3.49 ----------63 3.54
64 3.59 -------65 3.64 ----
66 3.69
67 3.74 I----------68 3.80 -69 3.85 -----70 3.90 ---71 3.95 ~------·---72 4.00 i--------------73 e------4.05
74 4.10 -75 4.15
76 4.20 ~----77 4.25 ~--78 4.30 ----79 4.35 --80 4.40 ~ --81 4.45 -----82 4.50 ----------83 4.56 ~---84 4.61 --85 4.66 I------
86 4.71
87 4.76
88 4.81 ~--89 4.86 ~
90 4.91 ---91 4.96 f-------------92 5.01 -93 5.06 -94 5.11 ---95 5.16 ------96 5.21 ----97 5.26 --------98 5.32
99 5.37 -----100 5.42
--------End of Data-----------------
3/18/2020 6:29 PM
--
--
----
------
-
---
---
-
I
-.
--
----
--
USGS9217dPre.csv
b~ '&-~~ J>J> ;_,o 0flj flj
~0 ~+o ~+o
I ~ ;.J>~ 0 ~
I "~ ;,g ~0 ~ ~.§ ~ c,0
""~ 1 ~0" -
3 60 0.012 -------0 57 0.011 ------
0 57 0.011 ----------3 57 0.011
1 54 0.011 ---·----------3 53 0.011 --
-+--50 -------2 0.010 --2 48 0.010
2 46 0.009 -----------1----· ----------1 44 0.009 -----3 43 0.009 ----3 40 0.008 ------1 37 0.007 -----------1 36 0.007 ---
1 35 0.007 . ---0 34 0.007 -------1 34 0.007 -----1 33 0.007 --1 32 0.006 -----1 31 0.006 ----·----1 30 0.006 ------------------2 29 0.006 --1 27 0.005 --0 26 0.005 ---------0 26 0.005 -----·--1 26 0.005 -------0 25 0.005 ------·-1 25 0.005 ---------0 24 0.005 ----3 24 0.005 -·--------2 21 0.004 ---2 19 0.004 --------0 17 0.003 -----0 17 0.003 -------0 17 0.003
0 17 0.003
1 17 0.003 ----0 16 0.003
1 16 0.003 -·-·-1 15 0.003 --------0 14 0.003 ----1 14 0.003 ----0 13 0.003
1 13 0.003 ----2 12 0.002 --2 10 0.002 -1 8 0.002 --· 1 7 0.001 ------------·---0 6 0.001
2/2
... ...
••
•• ... ...
...
...
...
,.
... ...
...
,.
,.
Excel Engineering USGS9217dPostMitigated.csv
Duration Table Summary at Project Discharge Point -·-. ---· -
. --------file name: V:\ 19\ 19079\Engineering\SDP\Storm-SDP\SWMM\ 19-079-POST DEV.out
time stamp: 3/18/2020 6:23:13 PM ·-----
--. ------·-------------
-------· . --------------------·------
DISCHARGE Number of periods when discharge was equal to or greater than DISCHARGE
column but less than that shown on the next line
1----------------·--------
b"' ~~o., bJ>
fly°ll, IZi ll,flj rt;. 11:-0 <v+<:? <v+o ~ ll,Q;I q0 ~v~ ~Cf, ~ i..J>"' 0
0' ,(~ <if' o' ~ qe ~ <;){a ~v~ ~ c,0 ,,.,.~ qe"
·----------.
1 0.40 119 946 0.190 ------2 0.45 96 827 0.166 -------• -------
3 0.50 106 731 0.147 ----··----· -.--
4 0.55 66 625 0.126 ----·-· _, •-ss••• --5 0.60 61 559 0.112 -· -------· 6 0.65 55 498 0.100
7 0.70 51 443 0.089 ---------8 0.75 35 392 0.079 >----·· 9 0.80 34 357 0.072 --------·-· ------10 0.86 30 323 0.065 --· ----··-·--
11 0.91 16 293 0.059 --·--· 12 0.96 20 277 0.056 --------------------·-13 1.01 14 257 0.052 . --14 1.06 24 243 0.049 ------------15 1.11 22 219 0.044 ---16 1.16 16 197 0.040 -· -----~ -----17 1.21 13 181 0.036 --·--·--· --18 1.26 13 168 0.034 ---· 19 1.31 10 155 0.031 -----20 1.36 10 145 0.029 -· -----· ---21 1.41 6 135 0.027 -------· --· -22 1.46 13 129 0.026 ------------------
23 1.51 7 116 0.023 ------·--·-24 1.57 12 109 0.022 --~----· 25 1.62 5 97 0.020 ~------26 1.67 5 92 0.018 -------27 1.72 8 87 0.017
28 1.77 7 79 0.016 --------· ------·--29 1.82 3 72 0.014
30 1.87 4 69 0.014 >-------31 1.92 2 65 0.013 -· --------32 1.97 3 63 0.013 ~--33 2.02 4 60 0.012
34 2.07 8 56 0.011 ~----
35 2.12--2 48 0.010 I-----------------------36 2.17 5 46 0.009 --. ·----------37 2.22 4 41 0.008 ---.. ·-. --
38 2.27 1 37 0.007 --· ------~ 39 2.33 f-3 36 0.007
40 2.38 3 33 0.007 ~-------41 2.43 2 30 0.006 ---
42 2.48 2 28 0.006 -----43 2.53 3 26 0.005
44 2.58 0 23 0.005
45 2.63 1 23 0.005
46 2.68 1 22 0.004 ---------· ·----47 2.73 0 21 0.004 --~ --·-· 48 2.78 0 21 0.004 ------49 2.83 1 21 0.004 --------50 2.88 1 20 0.004 -· ------· -~----51 2.93 1 19 0.004
3/18/2020 6:30 PM 1/2
....
...
...
...
...
....
...
,. ..
...
...
11-.i
....
,.
, .
....
Excel Engineering USGS9217dPostMitigated.csv
o"' ,fr~O:, be~
rz,'-1\.0 i._,o 0 'l,flj
~ ~'lf q_0 «l, «l, ~v~ 0
L__:I • .,o:-~<:$ ~ .,J>"' 0
rt-,<_~ <b~ ~ e,<:. ~ <>" ~v~ ~q_ i:,0
----~------
"'-o''lf --
q_0<;,
------52 2.98 2 18 0.004 --------53 3.03 0 16 0.003 ------· --------·-----
54 3.09 0 16 0.003 ---------55 3.14 1 16 0.003 -------·----------------~
56 3.19 2 15 0.003 ----------------57 3.24 0 13 0.003 ------------------------·-·-58 3.29 1 13 0.003 ----· ----------59 3.34 0 12 0.002 ------60 3.39 0 12 0.002 --------------·-----61 3.44 0 12 0.002 -----------62 3.49 1 12 0.002 ---· -------63 3.54 1 11 0.002 ---------64 3.59 1 10 0.002 --·-f------65 3.64 0 9 0.002 --------r-----------~-66 3.69 0 9 0.002 ----_ _._
67 3.74 0 9 0.002 --~-----~ 68 3.80 0 9 0.002 --69 3.85 1 9 0.002 -----~ 70 3.90 0 8 0.002 ------------71 3.95 0 8 0.002
72 -4.00 -+-0 8 0.002 -------------73 4.05 0 8 0.002 ----------74 4.10 1 8 0.002 ----------~ 75 4.15 1 7 0.001 ---·-·-------------~ 76 4.20 0 6 0.001 -----------77 4.25 2 6 0.001 ----~------~ 78 4.30 0 4 0.001 ---79 4.35 0 4 0.001 -----
-----80 ----4.40 ~ 0 4 0.001 -~ ----------81 4.45 0 4 0.001 -----82 4.50 1 4 0.001 -------------83 4.56 0 3 0.001 --84 4.61 0 3 0.001 -f---------------~ 85 4.66 1 3 0.001 ---86 4.71 0 2 0.000 ---------·----87 4.76 0 2 0.000 ------88 4.81 0 2 0.000 --89 4.86 0 2 0.000
90 4.91 0 2 0.000 -91 4.96 0 2 0.000
92 5.01 0 2 0.000 -----------93 5.06 0 2 0.000
94 5.11 0 2 0.000 -95 5.16 0 2 0.000 -------------96 5.21 0 2 0.000 ~-----------97 5.26 0 2 0.000 ---------98 5.32 1 2 0.000 ~-------99 5.37 ~-----0 1 0.000 ---100 5.42 0 1 0.000 -------------End of Data-----------------
3/18/2020 6:30 PM 2/2
.... ...
... ...
... ...
...
•• ...
II•
••
...
, .
•• ...
...
, ..
Excel Engineering
END OF STATISTICS ANALYSIS
r 1 r I W"l ' 1 r 1 r 1 ' 1 r 1 r 1 r 1 r 1 r 1 ' 1 r I r 1 I I ! ' • • --
Excel Engineering
Underdrain and Drawdown Results
The following table summarizes the underdrain coefficients used for each of the BMP units and translates
the C factor coefficient to an equivalent round orifice diameter based on l/16th inch increments. The
drawdown equations are based on standard falling head drawdown theory. The primary drawdown number of
interest is the surface drawdown based on vector concerns. The various soil and gravel storage layer
calculations consider the void ratio and porosity of the respective layer. It should be noted that these
drawdown calculations only consider the volume of water within the bioretention units. If the bioretention
unit utilizes any storage above the berm height, then that storage drawdown is in addition to the values
shown in the table below. Those calculations, if present, are shown elsewhere in the report. The
derivation and explanation of the equations used to determine the values displayed in the chart are
discussed in the following two sections of this portion of the report.
.. "i:; a .. QJ .. "' rl C C >< C C ..C: .µ ., Q) V C .. Q) k :i: Q) :i: ..c: :i: Q) :i: -"' ., k u ..... k .... ...... k ..... 0 0 U 0 -0 t,, 0 u .. Q) ..: .. ..... '° 0 k -I< ..... .. 0 .. 0 .µ -0 <ti -0 -0 <ti -0 ...... Q) u .......... u .µ ::> -0 -.µ -., ., :i: .... -:i: ...... 3: k -:i: <ti ..o e Cl 0 Cl _... ..... ' u rn C OJ C OJ C --Ill k k "' ..... Ill O k "' .µ ::> "' H k H fJl k .-i a"' ..... ..... ..... k ::> ..C: k 0 .. .µ ..c: k 0
Cl) z ..:Ill< ..:1-o-::, .... E--<-E--< -E--< -C Q) a ., -a Cl) Cl Cl) -a +-'
BMP-A BMP-A 8735.0 32 0.14699 6 21 24 0.4 0.67 6.1 10.3 25.0 41. 4
BMP-B BMP-B 1354.1 16 0.24657 6 21 24 0.4 0.67 3.6 6.2 14.9 24.7
The character* in the column heading indicates that the values was read directly from the SWMM inp file.
Assume: orifice coefficient Co= 0.61, void ratio for surface= 1.0, centroid of underdrain orifice is located at h=O
SWMM C Factor and Drawdown Results
!" I
.. .. -.. --.. ..
... ..
... ..
... ...
... ..
...
... ...
JIIII ...
JIIII
JIIII ...
....
... ...
...
i...
,.. ...
... ..
...
11111
Excel Engineering
Underdrain C Factor Equations
Based on the slotted drain example in the SWMM Drain Advisor (EPA SWMM 5.1
Help/Contents/Reference/Special Dialog Forms/LID Editors/LID Control
Editor/LID Drain System/Drain Advisor) the underdrain coefficient C is the
ratio of the orifice area (total slot area) to the LID area times a constant
(60,000) .
SWMM Ex: If the drain consists of slotted pipes where the slots act as
orifices, then the drain exponent would be 0.5 and the drain coefficient
would be 60,000 times the ratio of total slot area to LID area. For example,
drain pipe with five 1/4" diameter holes per foot spaced 50 feet apart would
have an area ratio of 0.000035 and a drain coefficient of 2 .
The 60,000 constant in the above example corresponds to the combined
constants in the standard orifice equation:
(Standard Orifice Equation)
q=CoA<>/fg {Ti, (els)
and
(SWMM Underdrain Equation (per unit area))
q=q/Auo
or
q=CoAo;Auo/fg {Ti, refs/sf}
With a Co=0.6 and converting .fin to units of inches and hours the constant
becomes 60,046 .
So the underdrain C factor per unit area of the LID becomes:
C=60,046 Ao/Aun (in"112/hr)
and
q=C*ht/2
inp File Listing
.. .. .. .. .. ..
JIii ...
,.. ...
... ...
... ..
... ...
... ...
...
....
... ...
,..
...
,.. ...
...
JIii ... ..
JIii ..
Excel Engineering
Drawdown Equations
The drawdown equations presented in the chart are the drawdown times for the
respective layers within the bioretention unit {only). If the bioretention
unit includes storage ponding above the berm height, then the drawdown time
for the storage portion is in addition to the values shown in the chart.
Those calculations {if present) are shown elsewhere in the report. For most
cases the storage drawdown time will be comparatively short as compared to
the bioretention drawdown times.
To derive a general formula that relates drawdown time for each layer of the
bioretention unit in terms of the SWMM C factor, we set the change in water
volume with respect to time equal to the standard orifice equation {found in
the County Hydraulics manual):
dh
q = dt nAp = CoAo✓2gh
Where n = porosity of the layer, Ap = area of the BMP unit, Co= orifice
coefficient, Ao= area of the orifice, and g = gravity constant. The
porosity n for the surface layer is 1.0, and the values for the soil and
storage layers read from the SWMM LID definitions .
Solving the definite integral from hl to h2
Solving for T:
ih=h2 1t=T CoAo.fig h-0•5dh = ---dt
h=h1 t=o nAp
CoAo.fig 2(ill -ill) = ---(T) nAp
Or
2n( ill -./hi) = C (T)
where: C = CoAo..fig {in"1/2/hr} Ap
T = 2n(./ii2-../hi) {hr}
C
Where h2{in) is the total beginning head above the underdrain orifice at t=O
and hl{in) is the total ending head above the orifice at t=T. Ex: h2 for
surface= depth of gravel storage plus depth of soil layer plus berm height,
and hl for surface= depth of gravel storage plus depth of soil layer.
inp File Listing
... ...
...
,..
Illa
a..
,.. ...
,.. ...
,.. ...
,..
...
... ...
...
; ...
!II"
,..
,..
I iii.
....
,..
a.. .. ...
...
.. ..
ATTACHMENT 3
Structural BMP Maintenance Information
Use this checklist to ensure the required information has been included in the Structural
BMP Maintenance Information Attachment:
Preliminary DesignlPlanninglCEQA level submittal:
Attachment 3 must identify:
Typical maintenance indicators and actions for proposed structural BMP(s) based
on Section 7. 7 of the BMP Design Manual
Final Design level submittal:
Attachment 3 must identify:
J .,I Specific maintenance indicators and actions for proposed structural BMP(s). This
shall be based on Section 7.7 of the BMP Design Manual and enhanced to reflect
actual proposed components of the structural BMP(s)
J .,I How to access the structural BMP(s) to inspect and perform maintenance
J .,I Features that are provided to facilitate inspection (e.g., observation ports,
cleanouts, silt posts, or other features that allow the inspector to view necessary
components of the structural BMP and compare to maintenance thresholds)
J .,I Manufacturer and part number for proprietary parts of structural BMP(s)
when applicable
J .,I Maintenance thresholds for BMPs subject to siltation or heavy trash(e.g., silt level
posts or other markings shall be included in all BMP components that will trap and
store sediment, trash, and/or debris, so that the inspector may determine how full
the BMP is, and the maintenance personnel may determine where the bottom of
the BMP is . If required, posts or other markings shall be indicated and described
on structural BMP plans.)
J .,I Recommended equipment to perform maintenance
J .,I When applicable, necessary special training or certification requirements
for inspection and maintenance personnel such as confined space entry or
hazardous waste management
.. -111111 ..
1111 .. ...
,.. ..
,..
....
,,.
....
,.. ...
... ...
,.. ..
...
,..
....
,..
'
...
,..
,,.
i ...
... ...
OPERATION & MAINTENANCE (O&M) PLAN
..
Ill -Ill .. ...
,..
,..
,... ...
...
...
....
,. ..
Contents
1. PROJECT DESCRIPTION ................................................................................................... 1
2. OPERATION & MAINTENANCE PLAN .......................................................................... 1
3. Operation & Maintenance of BMP'S ................................................................................... 1
A. Training ................................................................................................................ 2
B. Landscaping ........................................................................................................ 2
C. Irrigation System .................................................................................................. 5
D. Trash Storage Areas ........................................................................................... 5
E. Storm Water Conveyance System Stenciling and Signing .................................. 5
F. Biofiltration ........................................................................................................... 6
G. Outlet Structures .................................................................................................. 8
H. Vector Management Control Requirements ...................................................... 10
,. ATTACHMENTS
....
,..
....
,..
,..
'
,.
....
,..
,..
... ..
A. O&M Exhibit
Al. Inspection & Maintenance Schedule
Bl. Cost Estimate
Cl. BMP Training Log
Dl. Inspection & Maintenance Log
El. Maintenance Indicators (Table 7-2)
-i-
.. .. -..
... ... .. .. ..
.. ... .. .. .. ..
... ... ..
... ..
""'
... ...
... ... ..
.. ... ..
... ...
1. PROJECT DESCRIPTION
The purpose of the project is to build a parking lot with landscaping and several bioretention facilities
(Biofiltration) .
2. OPERATION & MAINTENANCE PLAN
The Operation and Maintenance Plan (O&M) needs to address construction and post-construction
concerns as shown in the Storm Water Mitigation Plan .
3. Operation & Maintenance of BMP'S
It shall be the responsibility of the owner to train all employees for the maintenance and operation of
all BMPs, to achieve the maximum pollutant reduction, as addressed in the approved Project's
SWQMP. The following schedule of (O&M's) must be followed to satisfy the Conditions of Concern
and the Pollutants of Concern as addressed in the approved Project's SWQMP and the City's BMP
manual. This schedule shall include periodic inspections of all Source Control and Treatment Control
BMP's. All maintenance records for training, inspection and maintenance shall be retained and
provided to the city upon request.
All BMPs shall be inspected 30 days prior to October 1st each year and certified to the City
Engineering Department as to their readiness to receive runoff from the annual rainfall season .
The owner will also provide to the City, as part of the maintenance and operation agreement, an
executed maintenance and access easement that shall be binding on the land throughout the life of the
project.
1
... ... -...
... ...
... ...
... ...
JIii"' ...
... ...
... ...
...
...
JIii"'
....
...
..
....
,... ...
...
II,.
,..
,. ...
,.. ...
... ...
Responsible Party for O&M and For Training-Property Owner
Carlsbad Oaks Lot 2
A. Training
Training of Operation and Maintenance personnel is of primary importance to provide knowledge of
the operation and maintenance ofBMPs. Proper training shall provide information that will enable
employees to have in place an effective preventive maintenance program as described in this O & M
manual. The responsible party mentioned above should read the course provided by the San Diego
BMP Manual, to be trained in the purpose and use of BMPs and the maintenance thereof. Proper
preventive maintenance will prevent environmental incidents that may be a health and safety hazard .
New employees should be trained as to the purpose and proper maintenance within the first week of
their employment.
Employee training shall include receiving a copy of this O & M manual; a discussion on the location
and purpose of site specific BMPs, such as Source Control and Treatment Control BMPs; training on
how to inspect and report maintenance problems and to whom they report to; They shall be trained in
site specific Pollutants of Concern so that they can evaluate the functioning of all on-site BMPs .
These Pollutants are identified in section 2 of this report .
A log of all training and reported inspections and maintenance problems along with what was done to
correct the problem shall be kept on the premises at all times.
Employees shall be periodically trained, at a minimum of once a year, to refresh their abilities to
Operate and Maintain all on-site BMPs .
B. Landscaping
Operational and maintenance needs include:
■ Vegetation management to maintain adequate hydraulic functioning and to limit habitat for
disease-carrying animals.
■ Animal and vector control.
■ Periodic sediment removal to optimize performance.
■ Trash, debris, grass trimmings, tree pruning, dead vegetation collection and removal.
■ Removal of standing water, which may contribute to the development of aquatic plant
communities or mosquito breeding areas.
■ Erosion and structural maintenance to prevent the loss of soil and maintain the performance of
all landscaping.
2
... ...
... ...
... ... .. ...
Ill"'
... ...
...
,..
...
....
...
' ...
... ..
,...
...
...
....
...
,.. ...
Inspection Frequency
The facility will be inspected and inspection visits will be completely documented:
• Once a month at a minimum .
• After every large storm (after every storm monitored or these storms with more than 0.50 inch
of precipitation.)
• On a weekly basis during extended periods of wet weather .
Inspect for proper irrigation and fertilizer use, and ensure that all landscaped areas have minimum of
80% coverage .
Aesthetic Maintenance
The following activities will be included in the aesthetic maintenance program:
Grass Trimming: Trimming of grass will be done on all landscaped areas, around fences, at the inlet
and outlet structures, and sampling structures.
Weed Control. Weeds will be removed through mechanical means. Herbicide will not be used because
these chemicals may impact the water quality monitoring .
Functional Maintenance
Functional maintenance has two components:
• Preventive maintenance
• Corrective maintenance
Preventive Maintenance
Preventive maintenance activities to be instituted for landscaped areas are:
• Grass Mowing: Vegetation seed, mix within the landscaped areas, are to be designed to be
kept short to maintain adequate hydraulic functioning and to limit the development of faunal
habitats .
• Trash and Debris: During each inspection and maintenance visit to the site, debris and trash
removal will be conducted to reduce the potential for inlet and outlet structures and other
components from becoming clogged and inoperable during storm events .
• Sediment Removal: Sediment accumulation, as part of the operation and maintenance program
at of landscaped areas, will be monitored once a month during the dry season, after every large
storm (0.50 inch), and monthly during the wet season. Specifically, if sediment reaches a level
at or near plant height, or could interfere with flow or operation, the sediment shall be removed.
If accumulation of debris or sediment is determined to be the cause of decline in design
performance, prompt action (i.e., within ten working days) will be taken to restore the
landscaped areas to design performance standards. Actions will include using additional
vegetation and/or removing accumulated sediment to correct channeling or ponding.
Characterization and Appropriate disposal of sediment will comply with applicable local,
county, state, or federal requirements .
■ Landscaped areas will be re-graded, if the flow gradient has been altered. This should be a sign
that the BMP is failing and the soil matrix may need to be replaced.
3
...
.. ...
... ...
,..
...
,.. ...
,..
....
...
,.. ...
,..
I ... -
,..
... ..
,. ...
• Removal of Standing Water: Standing water must be removed if it contributes to the
development of aquatic plant communities or mosquito breeding areas.
• Fertilization and Irrigation: fertilization and irrigation is to be keep at a minimum.
• Elimination of Mosquito Breeding Habitats. The most effective mosquito control program is
one that eliminates standing water over a period less than 96 hours .
Corrective Maintenance
Corrective maintenance is required on an emergency or non-routine basis to correct problems and to
restore the intended operation and safe function of all landscaped areas .
Corrective maintenance activities include:
• Removal of Debris and Sediment: Sediment, debris, and trash, which impede the hydraulic
functioning of landscaping and prevent vegetative growth, will be removed and properly
disposed. Temporary arrangements will be made for handling the sediments until a permanent
arrangement is made. Vegetation will be re-established after sediment removal.
• Structural Repairs: Once deemed necessary, repairs to structural components of landscaping
will be done within 10 working days. Qualified individuals (i.e., the designers or contractors)
will conduct repairs where structural damage has occurred .
• Embankment and Slope Repairs: Once deemed necessary, damage to the embankments and
slopes of landscaped areas will be repaired within IO working days.
■ Erosion Repair: Where a reseeding program has been ineffective, or where other factors have
created erosive conditions (i.e., pedestrian traffic, concentrated flow, etc.), corrective steps
will be taken to prevent loss of soil and any subsequent danger to the performance and use of
landscaped areas as BMPs. There are a number of corrective actions than can be taken.
• These include erosion control blankets, riprap, or reducing flow velocity.
• Consult with an engineer and contractor to address frequently occurring erosion problems.
■ Elimination of Animal Burrows: animal burrows will be filled and steps taken to remove the
animals if burrowing problems continue to occur (filling and compacting). If the problem
persists, vector control specialists will be consulted regarding removal steps. This consulting is
necessary as the threat of rabies in some areas may necessitate the animals being destroyed
rather than relocated. If the BMP performance is affected, abatement will begin. Otherwise,
abatement will be performed annually in September.
■ General Facility Maintenance: In addition to the above elements of corrective maintenance,
general corrective maintenance will address the overall facility and its associated components.
If corrective maintenance is being done to one component, other components will be inspected
to see if maintenance is needed.
Maintenance Frequency
The maintenance indicators for selected BMPs are included in Attachment Al.
4
..
... ...
... ...
....
,...
,...
....
,... ...
....
....
....
11111" ...
11111"
....
,..
,...
....
,..
....
,..
....
,..
...
...
,.. ...
Debris and Sediment Disposal
Waste generated onsite is ultimately the responsibility of the Owner. Disposal of sediments, debris,
and trash will comply with applicable local, county, state, and federal waste control programs .
Hazardous Waste
Suspected hazardous wastes will be analyzed to determine disposal options. Hazardous wastes
generated onsite will be handled and disposed of according to applicable local, state, and federal
regulations. A solid or liquid waste is considered a hazardous waste if it exceeds the criteria listed in
the CCR, Title 22, Article 11.
C. Irrigation System
Inspection Frequency and Procedure
The Irrigation system shall be checked each week as a minimum. The following items shall be
checked to insure that they are functioning properly:
■ Shut-off devices .
■ All piping and sprinkler heads to insure there are no leaks and that proper water spread is
maintained .
■ All flow reducers.
■ Check for overspray/runoff
D. Trash Storage Areas
■ All trash storage areas shall be inspected daily to insure that they are clean from trash. Also the
following shall be inspected annually 30 days prior to October 1st of each year .
■ Pavement is in good repair.
■ Drainage will not run-off onto adjacent areas.
■ That they remain screened or walled to prevent off-site transport of trash .
■ That all lids are closed and/or awnings are in good repair to minimize direct
precipitation.
■ Signs posted on or near dumpsters with the words "Do not dump hazardous
materials here" or similar.
E. Storm Water Conveyance System Stenciling and Signing
■ Signage/stenciling are to be inspected for legibility and visual obstruction and shall be Repaired
and cleared of any obstruction within 5 working day of inspection .
5
.. .. .. .. .. .. ..
111111
...
111111
.. ...
,.
....
... ...
,..
....
.. ...
,. ...
■ Inspection Frequency: Semi-annually, 30 days prior to October 1st each year, and
monthly during rainy season .
F. Biofdtration
Operational and maintenance needs include:
■ Vegetation management to maintain adequate hydraulic functioning and to limit habitat
for disease-carrying animals.
■ Animal and vector control.
■ Periodic sediment removal to optimize performance.
■ Trash, debris, grass trimmings, tree pruning, dead vegetation collection and removal.
■ Removal of standing water, which may contribute to the development of aquatic plant
communities or mosquito breeding areas.
■ Erosion and structural maintenance to prevent the loss of soil and maintain the performance
of all landscaping.
■ Outlet maintenance: maintain trash free; remove silt; clear clogged outlets and standing
Water after 96 hours.
■ Signs Posted at each bmp that state the following words " PERMANENT WATER
QUALITY TREATMENT FACILITY" "KEEPING OUR WATERWAYS CLEAN""
MAINTAIN WITH CARE -NO MODIFICATIONS WITHOUT AGENCY APPROVAL"
G. Outlet Structures
All outlet structures shall be kept functional at all times. Routine inspection and corrective
maintenance shall include removal of trash sediment and debris and repair of any structural
damage or clogging of orifice outlets. The minimum maintenance frequency shall be 30 days
prior to October 1st each year, weekly during rainy season or within 24 hours prior to
forecasts.
To clean lower orifice in the event of clogging
• This activity will require workers to open catch basin grates to remove debris from the
lower orifice plate.
• Remove grate and visually inspect lower orifice plate and blockage
• Remove debris from inside of catch basin and around orifice plate
■ Replace grate when orifice plate and inside of catch basin are free of debris
H. Vector Management Control Requirements
Due to Clean Water Act requirements and mandates imposed by the Water Quality Control Board,
large quantities of stormwater will be detained onsite in above ground and underground storage
facilities for treatment and storage. These storage facilities are required to dewater or discharge at a
very small flow rate in order to comply with these requirements. The outlet structure for the
underground storage and bioretention facility had to be sized to a variable size between 0.25" to 6" in
order to maintain the maximum allowed discharge flow. The facility was designed to dewater in less
than 96 hours. However, due to its small size and if not properly maintained regularly, it is anticipated
that the outlet might have a tendency to clog frequently. Consequently, the facility may not drain within
96 hours and possibly take substantially longer time. This creates an increased risk for onsite Vector
Issues and bringing their potential for severe harm to human health.
In order to implement vector controls including minimizing the risk for mosquito-borne disease
6
... -•
..
11111 ..
11111 ..
1111 .. .. ..
.. -.. -
111111
-..
... ...
...
lllr:
... ...
Ill" ...
... .. .. ..
... ...
1111111 ..
transmission, It is the responsibility of the Owner to regularly maintain the outlet structures
and monitor the site after every storm event to ensure that the system (comprising of above
ground storage facilities) is dewatered in less than 96 hours. Otherwise the owner will be required
to implement a vector control plan in accordance with California Department of Public Health.
General guidelines to help create a project specific vector control plan for your project:
7
I I ' 1 r I
TYPE BMP
Landscaping &
irrigation
Trash storage
areas
Bio retention
Storm Water
Conveyance
system
Stenciling &
Signing
Outlet
Structures
I 1 ' 1 ' 1 ' 1 ' 1 r I ' 1 ' 1 f 1 f I r I f I f I ' 1 I I
ATTACHMENT "Al" INSPECTION & MAINTENANCE
SCHEDULE
PREVENTATIVE MAINTENANCE AND ROUTINE INSPECTION
Routine Action Maintenance Maintenance MAINTENANCE SITE-SPECIFIC REQUIREMENTS
Indicator Frequency ACTIVITY
Proper irrigation & Less than 80% 30 days prior to Re-seed or Re-plant. All slopes and landscaped areas are to have a
Fertilizer. coverage October 1st each year Repair Irrigation minimum coverage of 80%
and Monthly system with-in 5-days.
Trash free and removal Visual Inspection Daily inspection Remove trash and silt All trash storage areas to be free from trash
of silt Daily. and silt at all times
Trash free and removal of Silt build up of more 30 days prior to Remove trash and silt -All bio-filters to be free from trash and silt at all
silt. Clear Clogged outlets than 2" no trash, October 1st each repair and reseed times, grass area to be free from exposed soil
and Standing Water. Exposed soils, dead year, monthly during exposed areas, maintain and maintained to proper height, ponding of
vegetation, ponded rainy season, and grass height so as not be water for more than 72 hours maintenance will
water, and excessive after Storm Event shorter than 2" or higher be required
vegetation than 5" remove all
(see TC-32) ponded water weekly
inspections, (See TC-32)
Must be legible at all times Fading of paint or Semi-annually, 30 Repaint stenciling and/or Applicable to all stenciling and signs
and have a clear view. illegible letters or days prior to October replace signs 30 days
1st each year & prior to October 1st.
monthly during rainy
season
Must be kept functional at Silt, debris, trash 30 days prior to Silt, debris, trash All outlet structures shall be kept functional at all
all times. Clear Clogged accumulation, Ponding October 1st each accumulation and repair times.
outlets and Standing Water year and weekly any structural damage
Water. during rainy season to the outlet structures.
or within 24 hours
orior to rain forecasts.
' 1
-.. .. -..
1111111
...
Ila,
,..
,..
-... .. ..
,..
'11111
,..
....
,.. .. .. ... -... .. ...
...
... ...
,..
...
,.
ATTACMENT "81"
Annual Estimate to Maintain all BMPs
Landscaping & Bioretention
Maintenance oflandscaping and bio-filters is already included in the
property management responsibilities. Additional cost:
Irrigation System:
Inspection and maintenance of the irrigation system is already included
in the property management responsibilities, Additional cost:
Training:
Once a year & training of new employees within their first
week of employment.
Total Estimated Annual Cost to Maintain BMPs
9
Annual 10-Year
$200 $2,000
$100 $1,000
$100 $1,000
... .. .. -.. ..
... ...
...
I ...
... ...
... ... .. ...
,..
,..
'
...
,.. ...
... ... -..
,..
..
... . ...
ATTACHMENT "C1"
BMP TRAINING LOG
Personnel
Date Type of Training Trained Trainer
Mo/Day/Yr
.. ...
... ...
,..
,.
...
...
..
' ..
... ...
,.. ..
... ... ..
... ... -
,.. ... -.. --... ...
... ...
ATTACHMENT "D1"
INSPECTION AND MAINTENANCE LOG
BMPTYP& DATE Name of Description of BMP Date Repair made
LOCATION M/DN Person Condition/ Description repair and Description repair
Inspecting required if any made and by who
... ...
..
' ...
,..
... ...
...
....
... ... .. .. -...
... .. -...
... -...
,.
I .... ..
! .. .. ..
,..
...
,.. ..
BMPTYP&
LOCATION
ATTACHMENT "D1"
INSPECTION AND MAINTENANCE LOG
DATE Name of Description of BMP Date Repair made
M/D/Y Person Condition/ Description repair and Description repair
Inspecting required if any made and by who
.. ... -.... .. ...
.... -.. --.. ... -... .. ..
.. ..
.. -.. -
.. ..
,. ..
ATTACHMENT "D1"
INSPECTION AND MAINTENANCE LOG
BMPTYP& DATE Name of Description of BMP Date Repair made
LOCATION M/D/Y Person Condition/ Description repair and Description repair
Inspecting required if any made and by who
ATTACHMENT 3 STRUCTURAL BMP
MAINTENANCE INFORMATION
ATTACHMENT E1. MAINTENANCE INDICATORS
T ABLE 7-2. Maintenance Indicators and Actions for Vegetated BMPs
Typical Maintenance lndicator(s) . .
r v t t d BMP Mamtenance Actions 1or cgc a c s
Accumulation of sediment, litter, or
debris
Poor vegetation establishment
Overgrown vegetation
Erosion due to concentrated irrigation
flow
Remove and properly dispose of accumulated materials, without
damage to the vegetation.
Re-seed, re-plant, or re-establish vegetation per original plans.
Mow or trim as appropriate, but not less than the design height of
the vegetation per original plans when applicable (e.g. a vegetated
swale may require a minimum vegetation height).
Repair/re-seed/re-plant eroded areas and adjust the irrigation
system.
Typical Maintenance . .
Indicator(s) for Vegetated BMPs Mamtcnance Actwns
Erosion due to concentrated storm water
runoff flow
Standing water in vegetated swales
Repair/re-seed/re-plant eroded areas, and make appropriate
corrective measures such as adding erosion control blankets,
adding stone at flow entry points, or minor re-grading to restore
proper drainage according to the original plan. If the issue is not
corrected by restoring the BMP to the original plan and grade, the
[City Engineer] shall be contacted prior to any additional repairs or
reconstruction.
Make appropriate corrective measures such as adjusting irrigation
system, removing obstructions of debris or invasive vegetation,
loosening or replacing top soil to allow for better infiltration, or
minor re-grading for proper drainage. If the issue is not corrected
by restoring the BMP to the original plan and grade, the [City
Engineer] shall be contacted prior to any additional repairs or
reconstruction.
Standing water tn bioretention, Make appropriate corrective measures such as adjusting irrigation
biofiltration with partial retention, or system, removing obstructions of debris or invasive vegetation,
biofiltration areas, or flow-through clearing underdrains (where applicable), or repairing/replacing
planter boxes for longer than 96 hours clogged or compacted soils.
following a storm event"'
Obstructed inlet or outlet structure Clear obstructions.
Damage to structural components such Repair or replace as applicable.
as weirs, inlet or outlet structures
"'These BMPs typically include a surface ponding layer as part of their function which may take 96 hours to
drain following a storm event.
TABLE 7-3. Maintenance Indicators and Actions for Non-Vegetated Infiltration BMPs
Typical Maintenance Indicator(s)
for Non-Vegetated Infiltration Maintenance Actions
BMPs
Accumulation of sediment, litter, or
debris m infiltration basin,
pretreatment device, or on permeable
pavement surface
Standing water in infiltration basin
without subsurface infiltration gallery
for longer than 96 hours following a
storm event
Standing water in subsurface
infiltration gallery for longer than 96
hours following a storm event
Standing water in permeable paving
area
Remove and properly dispose accumulated materials.
Remove and replace clogged surface soils.
This condition requires investigation of why infiltration is not
occurring. If feasible, corrective action shall be taken to restore
infiltration (e.g. flush fine sediment or remove and replace clogged
soils). BMP may require retrofit if infiltration cannot be restored.
If retrofit is necessary, the [City Engineer] shall be contacted prior
to any repairs or reconstruction.
Flush fin e sediment from paving and subsurface gravel. Provide
routine vacuuming of permeable paving areas to prevent clogging.
Note: When inspection or maintenance indicates sediment is accumulating in an infiltration BMP,
the DMA draining to the infiltration BMP should be examined to determine the source of the
sediment, and corrective measures should be made as applicable to minimize the sediment supply.
TABLE 7-4. Maintenance Indicators and Actions for Filtration BMPs
Typical Maintenance Indicator(s) for
Maintenance Actions Filtration BMPs
Accumulation of sediment, litter, or debris
Remove and properly dispose accumulated materials.
O bstructed inlet or outlet structure Clear obstructions.
Clogged filter media
Remove and properly dispose filter media, and replace with fresh
media.
Damage to components of the filtration
Repair or replace as applicable. system
Note: For proprietary media filters, refer to the manufacturer's maintenance guide.
If These Sources Will Be
on the Project Site ...
1
Potential Sources of
Runoff Pollutants
0 A. Onsite storm drain
inlets
D Not Applicable
Appendix E: BMP Design Fact Sheets
. .. Then Your SWQMP Must Consider These Source Control BMPs
2
Permanent Controls-Show on
Drawings
0 Locations of inlets.
3
Permanent Controls-List in Table
and Narrative
0 Mark all inlets with the words "No
Dumping! Flows to Bay'' or similar.
See stencil template provided in
Appendix I-4
E-4
4
Operational BMPs-Include in
Table and Narrative
0 Maintain and periodically repaint
or replace inlet markings.
0 Provide storm water pollution
prevention information to new
site owners, lessees, or operators.
0 See applicable operational BMPs
in Fact Sheet SC-44, "Drainage
System Maintenance," in the
CASQA Storm Water Quality
Handbooks at
www.casqa.org/resources/bmp-
handbooks / municipal-bmp-
handbook.
0 Include the following in lease
agreements: ''Tenant shall not
allow anyone to discharge
anything to storm drains or to
store or deposit materials so as to
create a potential discharge to
storm drains."
February 26, 2016
If These Sources Will Be
on the Project Site ...
1
Potential Sources of
Runoff Pollutants
D B. Interior floor
drains and elevator
shaft sump pumps
0 Not Applicable
D C. Interior parking
garages
0 Not Applicable
D D1. Need for future
indoor & structural
pest control
0 Not Applicable
Appendix E: BMP Design Fact Sheets
. .. Then Your SWQMP must consider These Source Control BMPs
2
Permanent Controls-Show on
Drawings
3
Permanent Controls-List in Table
and Narrative
D State that interior floor drains and
elevator shaft sump pumps will be
plumbed to sanitary sewer.
D State that parking garage floor
drains will be plumbed to the
sanitary sewer.
D Note building design features that
discourage entry of pests.
E-5
4
Operational BMPs-Include in
Table and Narrative
D Inspect and maintain drains to
prevent blockages and overflow.
D Inspect and maintain drains to
prevent blockages and overflow.
D Provide Integrated Pest
Management information to
owners, lessees, and operators.
February 26, 2016
If These Sources Will Be
on the Project Site ...
1
Potential Sources of
Runoff Pollutants
0 D2. Landscape/
Outdoor Pesticide
Use
0 Not Applicable
Appendix E: BMP Design Fact Sheets
. .. Then Your S\'<'QMP must consider These Source Control BMPs
2
Permanent Controls-Show on
Drawings
0 Show locations of existing
trees or areas of shrubs and
ground cover to be
undisturbed and retained.
Show self-retaining landscape
areas, if any.
Show storm water treatment
facilities.
3
Permanent Controls-List in Table and
Narrative
State that final landscape plans will
accomplish all of the following.
0 Preserve existing drought tolerant
trees, shrubs, and ground cover to the
maximum extent possible.
0 Design landscaping to mirurruze
irrigation and runoff, to promote
surface infiltration where appropriate,
and to minimize the use of fertilizers
and pesticides that can contribute to
storm water pollution.
0 Where landscaped areas are used to
retain or detain storm water, specify
plants that are tolerant of periodic
saturated soil conditions.
0 Consider using pest-resistant plants,
especially adjacent to hardscape.
0 To ensure successful establishment,
select plants appropriate to site soils,
slopes, climate, sun, wind, rain, land
use, air movement, ecological
consistency, and plant interactions.
E-6
4
Operational BMPs-lnclude in
Table and Narrative
0 Maintain landscaping using
minimum or no pesticides.
0 See applicable operational
BMPs in Fact Sheet SC-41,
"Building and Grounds
Maintenance," in the CASQA
Storm Water Quality
Handbooks at
www.casqa.org/resources/bmp
-handbooks/municipal-bmp-
handbook.
0 Provide IPM information to
new owners, lessees and
operators.
February 26, 2016
If These Sources Will Be
on the Project Site ...
1
Potential Sources of
Runoff Pollutants
D E. Pools, spas,
ponds, decorative
fountains, and other
water features.
0 Not Applicable
O F. Food service
[Z] Not Applicable
Appendix E: BMP Design Fact Sheets
. .. Then Your SWQMP must consider These Source Control BMPs
2
Permanent Controls-Show on
Drawings
D Show location of water feature
and a sanitary sewer cleanout in
an accessible area within 10 feet.
0 For restaurants, grocery stores,
and other food service
operations, show location
(indoors or in a covered area
outdoors) of a floor sink or other
area for cleaning floor mats,
containers, and equipment.
On the drawing, show a note that
this drain will be connected to a
grease interceptor before
discharging to the sanitary sewer.
All cleaning for restaurant facility will
be done indoors. Indoor kitchen area
is connected to aease interceptor.
3
Permanent Controls-List in Table
and Narrative
D If the local municipality requires
pools to be plumbed to the sanitary
sewer, place a note on the plans and
state in the narrative that this
connection will be made according to
local requirements.
0 Describe the location and features of
the designated cleaning area.
□Describe the items to be cleaned in
this facility and how it has been sized
to ensure that the largest items can be
accommodated.
E-7
4
Operational BMPs-lnclude
in
Table and Narrative
D See applicable operational
BMPs in Fact Sheet SC-72,
"Fountain and Pool
Maintenance," in the CASQA
Storm Water Quality
Handbooks at
www.casqa.org/resources/bm
p-handbooks/municipal-
bmp-handbook.
February 26, 2016
If These Sources Will
Be on the Project Site
1
Potential Sources
of
0 G. Refuse areas
0 Not Applicable
-Appendix E: BMP Design Fact Sheets
... Then Your SWQMP must consider These Source Control BMPs
2
Permanent Controls-Show
on Drawings
0 Show where site refuse and
recycled materials will be
handled and stored for
pickup. See local municipal
requirements for sizes and
other details of refuse areas.
0 If dumpsters or other
receptacles are outdoors,
show how the designated
area will be covered, graded,
and paved to prevent run-
on and show locations of
berms to prevent runoff
from the area. Also show
how the designated area will
be protected from wind
dispersal.
0 Any drains from dumpsters,
compactors, and tallow bin
areas must be connected to
a grease removal device
before discharge to sanitary
sewer.
3
Permanent Controls-List
in Table and Narrative
0 State how site refuse will
be handled and provide
supporting detail to what
is shown on plans.
0 State that signs will be
posted on or near
dumpsters with the
words "Do not dump
hazardous materials
here" or similar.
E-8
4
Operational BMPs-Include in
Table and Narrative
0 State how the following will be implemented:
Provide adequate number of receptacles. Inspect
receptacles regularly; repair or replace leaky
receptacles. Keep receptacles covered.
Prohibit/prevent dumping of liquid or hazardous
wastes. Post "no hazardous materials" signs. Inspect
and pick up litter daily and clean up spills
immediately. Keep spill control materials available
on-site. See Fact Sheet SC-34, ''Waste Handling and
Disposal" in the CASQA Storm Water Quality
Handbooks at www.casqa.org/resources /bmp-
handbooks/municipal-bmp-handbook.
February 26, 2016
1
Potential Sources of
Runoff Pollutants
D H. Industrial
processes.
0 Not Applicable
D I. Outdoor storage
of equipment or
materials. (See rows J
and K for source
control measures for
vehicle cleaning,
repair, and
maintenance.)
0 Not Applicable
2
Permanent Controls-Show on
Drawings
D Show process area.
D Show any outdoor storage
areas, including how materials
will be covered. Show how
areas will be graded and
bermed to prevent run-on or
runoff from area and
protected from wind dispersal.
D Storage of non-hazardous
liquids must be covered by a
roof and/ or drain to the
sanitary sewer system, and be
contained by berms, dikes,
liners, or vaults.
D Storage of hazardous materials
and wastes must be in
compliance with the local
hazardous materials ordinance
and a Hazardous Materials
Management Plan for the site.
Appendix E: BMP Design Fact Sheets
3
Permanent Controls-List in Table and
Narrative
□If industrial processes are to be located
onsite, state: "All process activities to be
performed indoors. No processes to
drain to exterior or to storm drain
system."
□Include a detailed description of
materials to be stored, storage areas, and
structural features to prevent pollutants
from entering storm drains.
□Where appropriate, reference
documentation of compliance with the
requirements of local Hazardous
Materials Programs for:
• Hazardous Waste Generation
• Hazardous Materials Release
Response and Inventory
• California Accidental Release
Prevention Program
• Aboveground Storage Tank
• Uniform Fire Code Article 80
Section 103(b) & (c) 1991
• Underground Storage Tank
E-9
4
Operational BMPs-Include
in Table and Narrative
Table and Narrative
D See Fact Sheet SC-10, "Non-
Storm Water Discharges" in
the CASQA Storm Water
Quality Handbooks at
https: // www.casqa.org/resou
rces/bm_R-handbooks.
□See the Fact Sheets SC-31,
"Outdoor Liquid Container
Storage" and SC-33,
"Outdoor Storage of Raw
Materials" in the CASQA
Storm Water Quality
Handbooks at
www.casqa.org/resources/bm
p-handbooks/municipal-bmp-
handbook.
February 26, 2016
1
Potential Sources of
Runoff Pollutants
D J. Vehicle and
Equipment Cleaning
[l] Not Applicable
2
Pennanent Controls-Show on Drawings
O Show on drawings as appropriate:
(1) Commercial/ industrial facilities having
vehicle / equipment cleaning needs must
either provide a covered, bermed area for
washing acttvtttes or discourage
vehicle/ equipment washing by removing
hose bibs and installing signs prohibiting such
uses.
(2) Multi-dwelling complexes must have a
paved, bermed, and covered car wash area
(unless car washing is prohibited onsite and
hoses are provided with an automatic shut-
off to discourage such use).
(3) Washing areas for cars, vehicles, and
equipment must be paved, designed to
prevent run-on to or runoff from the area,
and plumbed to drain to the sanitary sewer.
( 4) Commercial car wash facilities must be
designed such that no runoff from the facility
is discharged to the storm drain system.
Wastewater from the facility must discharge
to the sanitary sewer, or a wastewater
reclamation system must be installed.
E-10
3
Pennanent Controls-List in
Table and Narrative
0 If a car wash area is not
provided, describe measures
taken to discourage onsite
car washing and explain how
these will be enforced.
Appendix E: BMP Design Fact Sheets
4
Operational BMPs-Include in
Table and Narrative
Describe operational measures to
implement the following (if
applicable):
D Washwater from vehicle and
equipment washing operations
must not be discharged to the
storm drain system.
0 Car dealerships and similar
may rinse cars with water
only.
0 See Fact Sheet SC-21,
"Vehicle and Equipment
Cleaning," in the CASQA
Storm Water Quality
Handbooks at
www.casqa.org/resources/bm
p-handbooks/municipal-bmp-
handbook.
February 26, 2016
If These Sources Will Be
on the Project Site ...
1
Potential Sources of
Runoff Pollutants
K.
D Vehicle/Equipment
Repair and
Maintenance
0 Not Applicable
Appendix E: BMP Design Fact Sheets
. .. Then Your SWQMP must consider These Source Control BMPs
Permanent Controls-Show on
Drawings
D Accommodate all vehicle
equipment repair and
maintenance indoors. Or
designate an outdoor work area
and design the area to protect
from rainfall, run-on runoff, and
wind dispersal.
D Show secondary containment for
exterior work areas where motor
oil, brake fluid, gasoline, diesel
fuel, radiator fluid, acid-
containing batteries or other
hazardous materials or hazardous
wastes are used or stored. Drains
must not be installed within the
secondary containment areas.
D Add a note on the plans that
states either (1) there are no floor
drains, or (2) floor drains are
connected to wastewater
pretreatment systems prior to
discharge to the sanitary sewer
and an industrial waste discharge
permit will be obtained.
Permanent Controls-List in
Table and Narrative
D State that no vehicle repair or
maintenance will be done
outdoors, or else describe the
required features of the
outdoor work area.
D State that there are no floor
drains or if there are floor
drains, note the agency from
which an industrial waste
discharge permit will be
obtained and that the design
meets that agency's
requirements.
D State that there are no tanks,
containers or sinks to be used
for parts cleaning or rinsing
or, if there are, note the
agency from which an
industrial waste discharge
permit will be obtained and
that the design meets that
agency's requirements.
E-11
Operational BMPs-lnclude in
Table and Narrative
In the report, note that all of the following
restrictions apply to use the site:
D No person must dispose of, nor permit
the disposal, directly or indirectly of
vehicle fluids, hazardous materials, or
rinsewater from parts cleaning into
storm drains.
D No vehicle fluid removal must be
performed outside a building, nor on
asphalt or ground surfaces, whether
inside or outside a building, except in
such a manner as to ensure that any
spilled fluid will be in an area of
secondary containment. Leaking
vehicle fluids must be contained or
drained from the vehicle immediately.
D No person must leave unattended drip
parts or other open containers
containing vehicle fluid, unless such
containers are in use or in an area of
secondary containment.
February 26, 2016
1
Potential Sources of
Runoff Pollutants
O L. Fuel Dispensing
Areas
0 Not Applicable
2
Permanent Controls-Show on
Drawings
0 Fueling areas 16 must have
impermeable floors (i.e., portland
cement concrete or equivalent smooth
impervious surface) that are (1) graded
at the minimum slope necessary to
prevent ponding; and (2) separated
from the rest of the site by a grade
break that prevents run-on of storm
water to the MEP.
O Fueling areas must be covered by a
canopy that extends a minimum of ten
feet in each direction from each
pump. [Alternative: The fueling area
must be covered and the cover's
minimum dimensions must be equal
to or greater than the area within the
grade break or fuel dispensing area 1.]
O The canopy [or cover] must not drain
onto the fueling area.
3
Permanent Controls-List
in Table and Narrative
Appendix E: BMP Design Fact Sheets
4
Operational BMPs-lnclude in
Table and Narrative
□ The property owner must dry sweep
the fueling area routinely.
See the Business Guide Sheet,
"Automotive Service-Service
Stations" in the CASQA Storm
Water Quality Handbooks at
https: // www.casqa.org/resources /b
mp-handbooks.
16 The fueling area must be defined as the area extending a minimum of 6.5 feet from the comer of each fuel dispenser or the length at which the hose and nozzle assembly may be
operated plus a minimum of one foot, whichever is greater.
E-12 February 26, 2016
1
Potential Sources of
Runoff Pollutants
M. Loading Docks
0 Not Applicable
2
Permanent Controls-Show on
Drawings
□ Show a preliminary design for the
loading dock area, including
roofing and drainage. Loading
docks must be covered and/ or
graded to minimize run-on to and
runoff from the loading area. Roof
downspouts must be positioned to
direct storm water away from the
loading area. Water from loading
dock areas should be drained to
the sanitary sewer where feasible.
Direct connections to storm
drains from depressed loading
docks are prohibited.
□ Loading dock areas draining
directly to the sanitary sewer must
be equipped with a spill control
valve or equivalent device, which
must be kept closed during
periods of operation.
□ Provide a roof overhang over the
loading area or install door skirts
( cowling) at each bay that enclose
the end of the trailer.
3
Permanent
Controls-List in
E-13
Appendix E: BMP Design Fact Sheets
4
Operational BMPs-Include in
Table and Narrative
□ Move loaded and unloaded items indoors as
soon as possible.
□ See Fact Sheet SC-30, "Outdoor Loading and
Unloading," in the CASQA Storm Water
Quality Handbooks at
www.casqa.org/resources/bmp-
handbooks/municipal-bmp-handbook.
February 26, 2016
1
Potential Sources of
Runoff Pollutants
D N. Fire Sprinkler
Test Water
0 Not Applicable
0. Miscellaneous Drain
or Wash Water
□Boiler drain lines
□Condensate drain
lines
□Rooftop
equipment
□Drainage sumps
□Roofing, gutters,
and trim
□Not Applicable
2
Permanent Controls-
Show on Drawings
Appendix E: BMP Design Fact Sheets
3
Permanent Controls-List in Table and
Narrative
□Provide a means to drain fire sprinkler test water
to the sanitary sewer.
□Boiler drain lines must be directly or indirectly
connected to the sanitary sewer system and may
not discharge to the storm drain system.
□Condensate drain lines may discharge to
landscaped areas if the flow is small enough that
runoff will not occur. Condensate drain lines
may not discharge to the storm drain system.
□Rooftop mounted equipment with potential to
produce pollutants must be roofed and/ or have
secondary containment.
D Any drainage sumps onsite must feature a
sediment sump to reduce the quantity of
sediment in pumped water.
□Avoid roofing, gutters, and trim made of copper
or other unprotected metals that may leach into
runoff.
E-14
4
Operational BMPs-Include in
Table and Narrative
D See the note in Fact Sheet SC-
41, "Building and Grounds
Maintenance," in the CASQA
Storm Water Quality
Handbooks at
www.casga.org/resources/bm
p-handbooks/municipal-bmp-
handbook
February 26, 2016
1
Potential Sources of
Runoff Pollutants
!ti P.
sidewalks,
parking lots.
D Not Applicable
Plazas,
and
2
Permanent Controls-Show on
Drawings
3
Permanent Controls-List in
Table and Narrative
E-15
Appendix E: BMP Design Fact Sheets
4
Operational BMPs-Include in
Table and Narrative
0 Plazas, sidewalks, and parking lots must
be swept regularly to prevent the
accumulation of litter and debris.
Debris from pressure washing must be
collected to prevent entry into the
storm drain system. Washwater
containing any cleaning agent or
degreaser must be collected and
discharged to the sanitary sewer and
not discharged to a storm drain.
February 26, 2016
I
ATTACHMENT 3a
STRUCTURAL MAINTENANCE PLAN
ATTACHMENT 3A -MAY 2019
MAINTENACE INDICATORS
Typical Maintenance lndicator(s)
Maintenance Actions for Vegetated BMPs
Accumulation of sediment, litter, or Remove and properly dispose of accumulated materials, without
debris damage to the vegetation.
Poor vegetation establishment Re-seed, re-plant, or re-establish vegetation per original plans.
Overgrown vegetation
Mow or trim as appropriate, but not less than the design height of
the vegetation per original plans when applicable (e.g. a vegetated
swale may require a minimum vegetation height).
Erosion due to concentrated irrigation Repair/re-seed/re-plant eroded areas and adjust the irrigation
flow system.
Repair/re-seed/re-plant eroded areas, and make appropriate
corrective measures such as adding erosion control blankets,
Erosion due to concentrated storm water adding stone at flow entry points, or minor re-grading to restore
runoff flow proper drainage according to the original plan. If the issue is not
corrected by restoring the BMP to the original plan and grade,
The County must be contacted prior to any additional repairs or
reconstruction.
Make appropriate corrective measures such as adjusting irrigation
system, removing obstructions of debris or invasive vegetation,
loosening or replacing top soil to allow for better infiltration, or
Standing water in vegetated swales minor re-grading for proper drainage. If the issue is not corrected
by restoring the BMP to the original plan and grade, County staff
in the Watershed Protection Program must be contacted prior to
any additional repairs or reconstruction.
Standing water in bioretention, Make appropriate corrective measures such as adjusting irrigation biofiltration with partial retention, or
biofiltration areas, or flow-through system, removing obstructions of debris or invasive vegetation,
planter boxes for longer than 96 hours clearing underdrains (where applicable), or repairing/replacing
following a storm event"' clogged or compacted soils.
Obstructed inlet or outlet structure Clear obstructions.
Damage to structural components such as Repair or replace as applicable. weirs, inlet or outlet structures
*These BMPs typically include a surface ponding layer as part of their function which may take 96 hours to
drain following a storm event.
ATTACHMENT 3A -MAY 2019 2
,... ...
,...
...
... ...
,..
' ...
,..
' ...
...
....
,..
,..
--.
,..
...
...
....
...
... ...
,... ...
... ...
...
,..
I ....
,. ...
ACCESS AND MAINTENANCE
Structural BMP-A
Structural BMP-A is constructed in the northeast corner of the proposed site on Lot 2. Please see
Figure I.11-2 of Attachment 36 for site overview and BMP location. Access for inspection and
maintenance is provided through the parking lot west of the structural BMP .
BMP-A is designed as a bioretention basin with a 48"x48" catch basin to attenuate a 100-year storm
event. The basin design consist of layered sand and gravel aggregate with 6" surface ponding.
Inspection of the outlet pipe will be performed through the grated lid of the catch basin. No
proprietary parts have been used in the construction of this bioretention basin.
Maintenance of BMP-1 will be performed, at minimum, when these thresholds are exceeded:
• Grass higher than 4"
• Wilting and/ or dying trees, shrubs or grass
• Erosive conditions cause ponding area side slopes to exceed 3:1
• Silt buildup of more than 2"
• Ponding surface drawdown time exceeds 24 hours
• Ponding elevation exceeds top of pond elevation
In order to perform maintenance on the structural BMP, it is recommended that lawn and shrub
care equipment be used. Compaction of BMP soils shall be avoided and it is recommended that
heavy equipment not be used.
No special training or certification is needed in inspecting or maintaining this BMP.
Structural BMP-B
Structural BMP-B is constructed on the southeast side of the proposed site on Lot 2. Please see
Figure 1.11-2 of Attachment 36 for site overview and BMP location. Access for inspection and
maintenance is provided through the parking lot west of the structural BMP .
BMP-B is designed as a bioretention basin with a 36"x36" catch basin to attenuate a 100-year storm
event. The basin design consist of layered sand and gravel aggregate with 6" surface ponding .
Inspection of the outlet pipe will be performed through the grated lid of the catch basin. No
proprietary parts have been used in the construction of this bioretention basin .
Maintenance of BMP-2 will be performed, at minimum, when these thresholds are exceeded:
• Grass higher than 4"
• Wilting and/ or dying trees, shrubs or grass
• Erosive conditions cause ponding area side slopes to exceed 3: 1
• Silt buildup of more than 2"
• Ponding surface drawdown time exceeds 24 hours
• Ponding elevation exceeds top of pond elevation
ATTACHMENT 3A-MAY 2019 3
.. ...
... ...
... ...
...
... -... -... .. ...
... ...
... ...
,..
111111
,.
.. ... -... -...
... ..
.. .. ..
In order to perform maintenance on the structural BMP, it is recommended that lawn and shrub
care equipment be used. Compaction of BMP soils shall be avoided and it is recommended that
heavy equipment not be used .
No special training or certification is needed in inspecting or maintaining this BMP .
ATTACHMENT 3A-MAY 2019 4
...
...
... ...
...
Ill'"'
....
,.. ...
.... ...
... ...
.... ...
.... ...
....
....
,. ...
.... ...
...
..
,.. ...
... ..
ATTACHMENT 3b
DRAFT MAINTENANCE AGREEMENT
ATTACHMENT 3B -MAY 2019
... ...
,..
....
,..
...
...
....
...
....
...
....
...
...
,..
,..
...
... ...
... ..
,. ..
RECORDING REQUESTD BY:
WHEN RECORDED MAIL TO:
ro ert owner
SPACE ABOVE THIS LINE FOR RECORDER'S USE
MAINTENANCE NOTIFICATION AGREEMENT FOR CATEGORY 1
STORMWATER STRUCTURAL BMP's
THIS AGREEMENT is made on the ___________ day of ___ , 20 _____ _
_______________________ , the Owner(s) of the hereinafter described real property:
Address ____________________ , Post Office ______ Zip Code _________ _
Assessor Parcel No.(s)
List, identify, locate (plan/drawing number) and describe the Structural
Owner(s) of the above property acknowledge the existence of the storm water Structural Best Management Practice on the said
property. Perpetual maintenance of the Structural BMP{s) is the requirement of the State NPDES Permit, Order No. R9-2015-0001,
Section E.3.e.(1 ){ c) and the County of San Diego Watershed Protection Ordinance {WPO) Ordinance No. 10385 Section 67.812
through Section 67.814, and County BMP Design Manual (BMP DM) Chapters 7 & 8. In consideration of the requirement to
construct and maintain Structural BMP{s), as conditioned by Discretionary Permit, Grading Permit, and/or Building Permit {as may
be applicable), I/we hereby covenant and agree that:
1. I/We are the owner{s) of the existing {or to be constructed concurrently) premises located on the above described property.
2. I/We shall take the responsibility for the perpetual maintenance of the Structural BMP{s) as listed above in accordance with
the maintenance plan and in compliance with County's self-inspection reporting and verification for as long as I/we have
ownership of said property{ies).
3. I/We shall cooperate with and allow the County staff to come onto said property(ies) and perform inspection duties as
prescribed by local and state regulators.
4. I/We shall inform future buyer{s) or successors of said property(ies) of the existence and perpetual maintenance requirement
responsibilities for Structural BMP{s) as listed above and to ensure that such responsibility shall transfer to the future owner(s).
5. I/We will abide by all of the requirements and standards of Section 67.812 through Section 67.814 of the WPO (or renumbering
thereof) as it exists on the date of this Agreement, and which hereby is incorporated herein by reference.
This Agreement shall run with the land. If the subject property is conveyed to any other person, firm, or corporation, the instrument
that conveys title or any interest in or to said property, or any portion thereof, shall contain a provision transferring maintenance
responsibility for Structural BMP{s) to the successive owner according to the terms of this Agreement. Any violation of this
Agreement is grounds for the County to impose penalties upon the property owner as prescribed in County Code of Regulatory
Ordinances, Title 1, Division 8, Chapter 1 Administrative Citations §§ 18.1 O 1-18.116.
Owner(s) Signature(s)
Print Owner(s) Name(s) and Title
STATE OF CALIFORNIA
COUNTY OF _______ _
On ___________ before me, ________________________ Notary Public,
personally appeared ________________ who proved to me on the basis of satisfactory evidence to be
the person(s) whose name{s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the
same in his/her/their authorized capacity{ies), and that by his/her/their signature(s) on the instrument the person(s) or the entity
upon behalf of which the person(s) acted, executed the instrument.
I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.
WITNESS my hand and official seal.
ATTACHMENT 3B -MAY 2019 2
,.. ...
,..
...
,.. ...
,... ...
... ...
...
... ... .. ...
... ...
,.. ...
... ...
...
...
... ...
..
11111
,. ...
Chapter 7: Long Term Operation and Maintenance
• The sump area of a structural BMP should not exceed 20 feet in depth due to the loss of
efficiency of a vactor truck. The water removal rate is three to four times longer when the depth
is greater than 20 feet. Deep structures may require additional equipment (stronger vactor trucks,
ladders, more vactor pipe segments) .
• All manhole access points to underground structural BMPs must include a ladder or steps.
Measures to facilitate inspection of the structural BMP
• Structural BMPs shall include inspection ports for observing all underground components that
require inspection and maintenance .
• Silt level posts or other markings shall be included in all BMP components that will trap and
store sediment, trash, and/ or debris, so that the inspector may determine how full the BMP is,
and the maintenance personnel may determine where the bottom of the BMP is. Posts or other
markings shall be indicated and described on structural BMP plans .
• Vegetation requirements including plant type, coverage, and minimum height when applicable
shall be provided on the structural BMP and/ or landscaping plans as appropriate or as required
by the [City Engineer] .
• Signage indicating the location and boundary of the structural BMP is recommended .
When designing a structural BMP, the engineer should review the typical structural BMP
maintenance actions listed in Section 7.7 to determine the potential maintenance equipment and
access needs.
When selecting permanent structural BMPs for a project, the engineer and project owner should
consider the long term cost of maintenance and what type of maintenance contracts a future
property owner, homeowners association or property owners association will need to manage. The
types of materials used (e.g. proprietary vs. non-proprietary parts), equipment used (e.g. landscape
equipment vs. vactor truck), actions/labor expected in the maintenance process and required
qualifications of maintenance personnel (e.g. confined space entry) affect the cost of long term
O&M of the structural BMPs presented in the manual.
7.7 Maintenance Indicators and Actions for
Structural BMPs
This Section presents typical maintenance indicators and expected maintenance actions
(routine and corrective) for typical structural BMPs.
There are many different variations of structural BMPs, and structural BMPs may include multiple
components. For the purpose of maintenance, the structural BMPs have been grouped into four
categories based on common maintenance requirements:
• Vegetated infiltration or filtration BMPs
• Non-vegetated infiltration BMPs
• Non-vegetated filtration BMPs
• Detention BMPs
7-6 February 2016
I
Chapter 7: Long Term Operation and Maintenance
The project civil engineer is responsible for determining which categories are applicable based on
the components of the structural BMP, and identifying the applicable maintenance indicators from
within the category. Maintenance indicators and actions shall be shown on the construction plans
and in the project-specific O&M Plan.
During inspection, the inspector checks the maintenance indicators. If one or more thresholds are
met or exceeded, maintenance must be performed to ensure the structural BMP will function as
designed during the next storm event.
7. 7 .1 Maintenance of Vegetated Infiltration or Filtration BMPs
"Vegetated infiltration or filtration BMPs" are BMPs that include vegetation as a component of the
BMP. Applicable Fact Sheets may include INF-2 (bioretention), PR-1 (biofiltration with partial
retention), BF-1 (biofiltration) or Ff-1 (vegetated swale). The vegetated BMP may or may not
include amended soils, subsurface gravel layer, underdrain, and/ or impermeable liner. The project
civil engineer is responsible for determining which maintenance indicators and actions shown below
are applicable based on the components of the structural BMP.
7. 7 .2 Maintenance of Non-Vegetated Infiltration BMPs
"Non-vegetated infiltration BMPs" are BMPs that store storm water runoff until it infiltrates into
the ground, and do not include vegetation as a component of the BMP (refer to the "vegetated
BMPs" category for infiltration BMPs that include vegetation). Non-vegetated infiltration BMPs
generally include non-vegetated infiltration trenches and infiltration basins, dry wells, underground
infiltration galleries, and permeable pavement with underground infiltration gallery. Applicable Fact
Sheets may include INF-1 (infiltration basin) or INF-3 (permeable pavement). The non-vegetated
infiltration BMP may or may not include a pre-treatment device, and may or may not include above-
ground storage of runoff. The project civil engineer is responsible for determining which
maintenance indicators and actions shown below are applicable based on the components of the
structural BMP.
TABLE 7-2. Maintenan ce Indicators and Actions for Vegetated BMPs
Typical Maintenance .Maintenance Actions lndicator(s) for Vegetated BMPs
Accumulation of sediment, litter, or Remove and properly dispose of accumulated materials, without
debris damage to the vegetation.
Poor vegetation establishment Re-seed, re-plant, or re-establish vegetation per original plans.
Overgrown vegetation Mow or trim as appropriate, but not less than the design height of
the vegetation per original plans when applicable (e.g. a vegetated
swale may require a minimum vegetation height).
Erosion due to concentrated irrigation Repair/ re-seed/ re-plant eroded areas and adjust the irrigation
flow system.
7-7 February 2016
Chapter 7: Long Term Operation and Maintenance
Typical Maintenance . .
I d . ( ) c V d BMP Mamtenance Act10ns n 1cator s 1or egetate s
Erosion due to concentrated storm
water runoff flow
Standing water in vegetated swales
Repair/re-seed/re-plant eroded areas, and make appropriate
corrective measures such as adding erosion control blankets,
adding stone at flow entry points, or minor re-grading to restore
proper drainage according to the original plan. If the issue is not
corrected by restoring the BMP to the original plan and grade, the
[City Engineer] shall be contacted prior to any additional repairs
or reconstruction.
Make appropriate corrective measures such as adjusting irrigation
system, removing obstructions of debris or invasive vegetation,
loosening or replacing top soil to allow for better infiltration, or
minor re-grading for proper drainage. If the issue is not corrected
by restoring the BMP to the original plan and grade, the [City
Engineer] shall be contacted prior to any additional repairs or
reconstruction.
Standing water in bioretention, Make appropriate corrective measures such as adjusting irrigation
biofiltration with partial retention, or system, removing obstructions of debris or invasive vegetation,
biofiltration areas, or flow-through clearing underdrains (where applicable), or repairing/replacing
planter boxes for longer than 96 hours clogged or compacted soils.
following a storm event"'
Obstructed inlet or outlet structure Clear obstructions.
Damage to structural components such Repair or replace as applicable.
as weirs, inlet or outlet structures
>fcl'hese BMPs typically include a surface ponding layer as part of their function which may take 96 hours to
drain following a storm event.
7-8 February 2016
Chapter 7: Long Term Operation and Maintenance
TABLE 7-3. Maintenance Indicators and Actions for Non-Vegetated Infiltration BMPs
Typical Maintenance Indicator(s)
for Non-Vegetated Infiltration Maintenance Actions
BMPs
Accumulation of sediment, litter, or
debris in infiltration basin, pre-Remove and properly dispose accumulated materials. treatment device, or on permeable
pavement surface
Standing water in infiltration basin
without subsurface infiltration gallery Remove and replace clogged surface soils. for longer than 96 hours following a
storm event
This condition requires investigation of why infiltration is not
Standing water in subsurface occurring. If feasible, corrective action shall be taken to restore
infiltration (e.g. flush fine sediment or remove and replace infiltration gallery for longer than 96 clogged soils). BMP may require retrofit if infiltration cannot be hours following a storm event restored. If retrofit is necessary, the [City Engineer] shall be
contacted prior to any repairs or reconstruction.
Standing water in permeable paving Flush fine sediment from paving and subsurface gravel. Provide
area routine vacuuming of permeable paving areas to prevent clogging.
Damage to permeable paving surface Repair or replace damaged surface as appropriate.
Note: When inspection or maintenance indicates sediment is accumulating in an infiltration BMP,
the OMA draining to the infiltration BMP should be examined to determine the source of the
sediment, and corrective measures should be made as applicable to minimize the sediment supply.
7. 7 .3 Maintenance of Non-Vegetated Filtration BMPs
"Non-vegetated filtration BMPs" include media filters (FT-2) and sand filters (FT-3). These BMPs
function by passing runoff through the media to remove pollutants. The project civil engineer is
responsible for determining which maintenance indicators and actions shown below are applicable
based on the components of the structural BMP.
TABLE 7-4. Maintenance Indicators and Actions for Filtration BMPs
Typical Maintenance Indicator(s) for Maintenance Actions Filtration BMPs
Accumulation of sediment, litter, or Remove and properly dispose accumulated materials. debris
Obstructed inlet or outlet structure Clear obstructions.
Clogged filter media Remove and properly dispose filter media, and replace with
fresh media.
Damage to components of the filtration Repair or replace as applicable. system
Note: For proprietary media filters, refer to the manufacturer's maintenance guide.
7-9 February 2016
ATTACHMENT 3 STRUCTURAL BMP
MAINTENANCE INFORMATION
ATTACHMENT El. MAINTENANCE INDICATORS
TABLE 7-2. Maintenance Indicators and Actions for Vegetated BMPs
Typical Maintenance Jndicator(s) . .
r v t t d Bl\1P Maintenance Acttons 1or cge a e s
Accumulation of sediment, litter, or
debris
Poor vegetation establishment
Overgrown vegetation
Erosion due to concentrated irrigation
flow
Remove and properly dispose of accumulated materials, without
damage to the vegetation.
Re-seed, re-plant, or re-establish vegetation per original plans.
Mow or trim as appropriate, but not less than the design height of
the vegetation per original plans when applicable ( e.g. a vegetated
swale may require a minimum vegetation height).
Repair/re-seed/re-plant eroded areas and adjust the irrigation
system.
Typical Maintenance . .
I d • t ( ) r v t t d BMP Maintenance Actions n tea or s 1or cge a c s
Erosion due to concentrated storm water
runoff flow
Standing water in vegetated swales
Repair/re-seed/re-plant eroded areas, and make appropriate
corrective measures such as adding erosion control blankets,
adding stone at flow entry points, or minor re-grading to restore
proper drainage according to the original plan. If the issue is not
corrected by restoring the BMP to the original plan and grade, the
[City Engineer] shall be contacted prior to any additional repairs or
reconstruction.
Make appropriate corrective measures such as adjusting irrigation
system, removing obstructions of debris or invasive vegetation,
loosening or replacing top soil to allow for better infiltration, or
minor re-grading for proper drainage. If the issue is not corrected
by restoring the BMP to the original plan and grade, the [City
Engineer] shall be contacted prior to any additional repairs or
reconstruction.
Standing water in bioretention, Make appropriate corrective measures such as adjusting irrigation
biofiltration with partial retention, or system, removing obstructions of debris or invasive vegetation,
biofiltration areas, or flow-through clearing underdrains (where applicable), or repairing/replacing
planter boxes for longer than 96 hours clogged or compacted soils.
following a storm event*
Obstructed inlet or outlet structure Clear obstructions.
Damage to structural components such Repair or replace as applicable.
as weirs, inlet or outlet structures
>f<These BMPs typically include a surface ponding layer as part of their function which may take 96 hours to
drain following a storm event.
TABLE 7-3. Maintenance Indicators and Actions for Non-Vegetated Infiltration BMPs
Typical Maintenance Indicator(s)
for Non-Vegetated Infiltration Maintenance Actions
BMPs
Accumulation of sediment, litter, or
debris in infiltration basin,
pretreatment device, or on permeable
pavement surface
Standing water in infiltration basin
without subsurface infiltration gallery
for longer than 96 hours following a
storm event
Standing water m subsurface
infiltration gallery for longer than 96
hours following a storm event
Standing water in permeable paving
area
Remove and properly dispose accumulated materials.
Remove and replace clogged surface soils.
This condition requires investigation of why infiltration is not
occurring. If feasible, corrective action shall be taken to restore
infiltration (e.g. flush fine sediment or remove and replace clogged
soils). BMP may require retrofit if infiltration cannot be restored.
If retrofit is necessary, the [City Engineer] shall be contacted prior
to any repairs or reconstruction.
Flush fine sediment from paving and subsurface gravel. Provide
routine vacuuming of permeable paving areas to prevent clogging.
Note: When inspection or maintenance indicates sediment is accumulating in an infiltration BMP,
the DMA draining to the infiltration BMP should be examined to determine the source of the
sediment, and corrective measures should be made as applicable to minimize the sediment supply.
TABLE 7-4. Maintenance Indicators and Actions for Filtration BMPs
Typical Maintenance lnclicator(s) for
Maintenance Actions Filtration BMPs
Accumulation of sediment, litter, or debris
Remove and properly dispose accumulated materials.
Obstructed inlet or outlet structure Clear obstructions.
Clogged filter media Remove and properly dispose filter media, and replace with fresh
media.
D amage to components of the filtration
Repair or replace as applicable. system
Note: For proprietary media filters, refer to the manufacturer's maintenance guide.
If These Sources Will Be
on the Project Site ...
1
Potential Sources of
Runoff Pollutants
0 A. Onsite storm drain
inlets
D Not Applicable
Appendix E: BMP Design Fact Sheets
. .. Then Your SWQMP Must Consider These Source Control BMPs
2
Permanent Controls-Show on
Drawings
0 Locations of inlets.
3
Permanent Controls-List in Table
and Narrative
0 Mark all inlets with the words "No
Dumping! Flows to Bay" or similar.
See stencil template provided in
Appendix I-4
E-4
4
Operational BMPs-Include in
Table and Narrative
0 Maintain and periodically repaint
or replace inlet markings.
0 Provide storm water pollution
prevention information to new
site owners, lessees, or operators.
0 See applicable operational BMPs
in Fact Sheet SC-44, "Drainage
System Maintenance," in the
CASQA Storm Water Quality
Handbooks at
www.casqa.org/resources/bmp-
handbooks/municipal-bmp-
handbook.
0 Include the following in lease
agreements: ''Tenant shall not
allow anyone to discharge
anything to storm drains or to
store or deposit materials so as to
create a potential discharge to
storm drains."
February 26, 2016
If These Sources Will Be
on the Project Site ...
1
Potential Sources of
Runoff Pollutants
D B. Interior floor
drains and elevator
shaft sump pumps
[l] Not Applicable
D C. Interior parking
garages
[l] Not Applicable
D Dt. Need for future
indoor & structural
pest control
[l] Not Applicable
-Appendix E: BMP Design Fact Sheets
. .. Then Your SWQMP must consider These Source Control BMPs
2
Permanent Controls-Show on
Drawings
3
Permanent Controls-List in Table
and Narrative
D State that interior floor drains and
elevator shaft sump pumps will be
plumbed to sanitary sewer.
D State that parking garage floor
drains will be plumbed to the
sanitary sewer.
D Note building design features that
discourage entry of pests.
E-5
4
Operational BMPs-Include in
Table and Narrative
D Inspect and maintain drains to
prevent blockages and overflow.
D Inspect and maintain drains to
prevent blockages and overflow.
D Provide Integrated Pest
Management information to
owners, lessees, and operators.
February 26, 2016
If These Sources Will Be
on the Project Site ...
1
Potential Sources of
Runoff Pollutants
0 D2. Landscape/
Outdoor Pesticide
Use
0 Not Applicable
-Appendix E: BMP Design Fact Sheets
. .. Then Your SWQMP must consider These Source Control BMPs
2
Permanent Controls-Show on
Drawings
0 Show locations of existing
trees or areas of shrubs and
ground cover to be
undisturbed and retained.
Show self-retaining landscape
areas, if any.
Show storm water treatment
facilities.
3
Permanent Controls-List in Table and
Narrative
State that final landscape plans will
accomplish all of the following.
0 Preserve existing drought tolerant
trees, shrubs, and ground cover to the
maximum extent possible.
0 Design landscaping to rrururruze
irrigation and runoff, to promote
surface infiltration where appropriate,
and to minimize the use of fertilizers
and pesticides that can contribute to
storm water pollution.
0 Where landscaped areas are used to
retain or detain storm water, specify
plants that are tolerant of periodic
saturated soil conditions.
0 Consider using pest-resistant plants,
especially adjacent to hardscape.
0 To ensure successful establishment,
select plants appropriate to site soils,
slopes, climate, sun, wind, rain, land
use, air movement, ecological
consistency, and plant interactions.
E-6
4
Operational BMPs-Include in
Table and Narrative
0 Maintain landscaping using
minimum or no pesticides.
0 See applicable operational
BMPs in Fact Sheet SC-41,
"Building and Grounds
Maintenance," in the CASQA
Storm Water Quality
Handbooks at
www.casqa.org/resources/bmp
-handbooks/municipal-bmp-
handbook.
0 Provide IPM information to
new owners, lessees and
operators.
February 26, 2016
If These Sources Will Be
on the Project Site ...
1
Potential Sources of
Runoff Pollutants
□ E. Pools, spas,
ponds, decorative
fountains, and other
water features.
D Not Applicable
D F. Food service
[l] Not Applicable
Appendix E: BMP Design Fact Sheets
. .. Then Your SWQMP must consider These Source Control BMPs
2
Permanent Controls-Show on
Drawings
D Show location of water feature
and a sanitary sewer cleanout in
an accessible area within 10 feet.
D For restaurants, grocery stores,
and other food service
operations, show location
(indoors or in a covered area
outdoors) of a floor sink or other
area for cleaning floor mats,
containers, and equipment.
On the drawing, show a note that
this drain will be connected to a
grease interceptor before
discharging to the sanitary sewer.
All cleaning for restaurant facility will
be done indoors. Indoor kitchen area
is connected to ~ease interceptor.
3
Permanent Controls-List in Table
and Narrative
D If the local municipality requires
pools to be plumbed to the sanitary
sewer, place a note on the plans and
state in the narrative that this
connection will be made according to
local requirements.
□Describe the location and features of
the designated cleaning area.
D Describe the items to be cleaned in
this facility and how it has been sized
to ensure that the largest items can be
accommodated.
E-7
4
Operational BMPs-Include
in
Table and Narrative
D See applicable operational
BMPs in Fact Sheet SC-72,
"Fountain and Pool
Maintenance," in the CASQA
Storm Water Quality
Handbooks at
www.casqa.org/resources/bm
p-handbooks/municipal-
bmp-handbook.
February 26, 2016
If These Sources Will
Be on the Project Site
1
Potential Sources
of
0 G. Refuse areas
D Not Applicable
-Appendix E: BMP Design Fact Sheets
... Then Your SWQMP must consider These Source Control BMPs
2
Permanent Controls-Show
on Drawings
0 Show where site refuse and
recycled materials will be
handled and stored for
pickup. See local municipal
requirements for sizes and
other details of refuse areas.
0 If dumpsters or other
receptacles are outdoors,
show how the designated
area will be covered, graded,
and paved to prevent run-
on and show locations of
berms to prevent runoff
from the area. Also show
how the designated area will
be protected from wind
dispersal.
0 Any drains from dumpsters,
compactors, and tallow bin
areas must be connected to
a grease removal device
before discharge to sanitary
sewer.
3
Permanent Controls-List
in Table and Narrative
0 State how site refuse will
be handled and provide
supporting detail to what
is shown on plans.
0 State that signs will be
posted on or near
dumpsters with the
words "Do not dump
hazardous materials
here" or similar.
E-8
4
Operational BMPs-lnclude in
Table and Narrative
0 State how the following will be implemented:
Provide adequate number of receptacles. Inspect
receptacles regularly; repair or replace leaky
receptacles. Keep receptacles covered.
Prohibit/ prevent dumping of liquid or hazardous
wastes. Post "no hazardous materials" signs. Inspect
and pick up litter daily and clean up spills
immediately. Keep spill control materials available
on-site. See Fact Sheet SC-34, ''Waste Handling and
Disposal" in the CASQA Storm Water Quality
Handbooks at www.casqa.org/resources/bmp-
handbooks/municipal-bmp-handbook.
February 26, 2016
1
Potential Sources of
Runoff Pollutants
D H. Industrial
processes.
0 Noc Applicable
D I. Outdoor storage
of equipment or
materials. (See rows J
and K for source
control measures for
vehicle cleaning,
repair, and
maintenance.)
0 Not Applicable
2
Permanent Controls-Show on
Drawings
D Show process area.
D Show any outdoor storage
areas, including how materials
will be covered. Show how
areas will be graded and
bermed to prevent run-on or
runoff from area and
protected from wind dispersal.
D Storage of non-hazardous
liquids must be covered by a
roof and/ or drain to the
sanitary sewer system, and be
contained by berms, dikes,
liners, or vaults.
D Storage of hazardous materials
and wastes must be in
compliance with the local
hazardous materials ordinance
and a Hazardous Materials
Management Plan for the site.
Appendix E: BMP Design Fact Sheets
3
Permanent Controls-List in Table and
Narrative
□If industrial processes are to be located
onsite, state: "All process activities to be
performed indoors. No processes to
drain to exterior or to storm drain
system."
□Include a detailed description of
materials to be stored, storage areas, and
structural features to prevent pollutants
from entering storm drains.
□Where appropriate, reference
documentation of compliance with the
requirements of local Hazardous
Materials Programs for:
• Hazardous Waste Generation
• Hazardous Materials Release
Response and Inventory
• California Accidental Release
Prevention Program
• Aboveground Storage Tank
• Uniform Fire Code Article 80
Section 103(b) & (c) 1991
• Underground Storage Tank
E-9
4
Operational BMPs-Include
in Table and Narrative
Table and Narrative
D See Fact Sheet SC-10, "Non-
Storm Water Discharges" in
the CASQA Storm Water
Quality Handbooks at
https://www.casqa.org/resou
rces /bmo-handbooks.
□See the Fact Sheets SC-31,
"Outdoor Liquid Container
Storage" and SC-33,
"Outdoor Storage of Raw
Materials" in the CASQA
Storm Water Quality
Handbooks at
www.casqa.org/resources/bm
p-handbooks/municipal-bmp-
handbook.
February 26, 2016
1
Potential Sources of
Runoff Pollutants
2
Permanent Controls-Show on Drawings
□ J. Vehicle and I D Show on drawings as appropriate:
Equipment Cleaning
[Z] Not Applicable
(1) Commercial/industrial facilities having
vehicle / equipment cleaning needs must
either provide a covered, bermed area for
washing activities or discourage
vehicle/ equipment washing by removing
hose bibs and installing signs prohibiting such
uses.
(2) Multi-dwelling complexes must have a
paved, bermed, and covered car wash area
(unless car washing is prohibited onsite and
hoses are provided with an automatic shut-
off to discourage such use).
(3) Washing areas for cars, vehicles, and
equipment must be paved, designed to
prevent run-on to or runoff from the area,
and plumbed to drain to the sanitary sewer.
( 4) Commercial car wash facilities must be
designed such that no runoff from the facility
is discharged to the storm drain system.
Wastewater from the facility must discharge
to the sanitary sewer, or a wastewater
reclamation system must be installed.
E-10
3
Permanent Controls-List in
Table and Narrative
D If a car wash area is not
provided, describe measures
taken to discourage onsite
car washing and explain how
these will be enforced.
Appendix E: BMP Design Fact Sheets
4
Operational BMPs-Include in
Table and Narrative
Describe operational measures to
implement the following (if
applicable):
D Washwater from vehicle and
equipment washing operations
must not be discharged to the
storm drain system.
D Car dealerships and similar
may rinse cars with water
only.
D See Fact Sheet SC-21,
"Vehicle and Equipment
Cleaning," in the CASQA
Storm Water Quality
Handbooks at
www.casqa.org/resources/bm
p-handbooks/municipal-bmp-
handb__QQk.
February 26, 2016
IfThese Sources Will Be
on the Project Site ...
1
Potential Sources of
Runoff Pollutants
K.
D Vehicle/Equipment
Repair and
Maintenance
0 Not Applicable
Appendix E: BMP Design Fact Sheets
. .. Then Your SWQMP must consider These Source Control BMPs
Pennanent Controls-Show on
Drawings
D Accommodate all vehicle
equipment repair and
maintenance indoors. Or
designate an outdoor work area
and design the area to protect
from rainfall, run-on runoff, and
wind dispersal.
D Show secondary containment for
exterior work areas where motor
oil, brake fluid, gasoline, diesel
fuel, radiator fluid, acid-
containing batteries or other
hazardous materials or hazardous
wastes are used or stored. Drains
must not be installed within the
secondary containment areas.
D Add a note on the plans that
states either (1) there are no floor
drains, or (2) floor drains are
connected to wastewater
pretreatment systems prior to
discharge to the sanitary sewer
and an industrial waste discharge
permit will be obtained.
Pennanent Controls-List in
Table and Narrative
D State that no vehicle repair or
maintenance will be done
outdoors, or else describe the
required features of the
outdoor work area.
D State that there are no floor
drains or if there are floor
drains, note the agency from
which an industrial waste
discharge permit will be
obtained and that the design
meets that agency's
requirements.
D State that there are no tanks,
containers or sinks to be used
for parts cleaning or rinsing
or, if there are, note the
agency from which an
industrial waste discharge
permit will be obtained and
that the design meets that
agency's requirements.
E-11
Operational BMPs-Include in
Table and Narrative
In the report, note that all of the following
restrictions apply to use the site:
D No person must dispose of, nor permit
the disposal, directly or indirectly of
vehicle fluids, hazardous materials, or
rinsewater from parts cleaning into
storm drains.
D No vehicle fluid removal must be
performed outside a building, nor on
asphalt or ground surfaces, whether
inside or outside a building, except in
such a manner as to ensure that any
spilled fluid will be in an area of
secondary containment. Leaking
vehicle fluids must be contained or
drained from the vehicle immediately.
D No person must leave unattended drip
parts or other open containers
containing vehicle fluid, unless such
containers are in use or in an area of
secondary containment.
February 26, 2016
1
Potential Sources of
Runoff Pollutants
□ L. Fuld Dispensing
Areas
0 Not Applicable
2
Permanent Controls-Show on
Drawings
0 Fueling areas 16 must have
impermeable floors (i.e., portland
cement concrete or equivalent smooth
impervious surface) that are (1) graded
at the minimum slope necessary to
prevent ponding; and (2) separated
from the rest of the site by a grade
break that prevents run-on of storm
water to the MEP.
□ Fueling areas must be covered by a
canopy that extends a minimum of ten
feet in each direction from each
pump. [Alternative: The fueling area
must be covered and the cover's
minimum dimensions must be equal
to or greater than the area within the
grade break or fuel dispensing area 1.]
O The canopy (or cover] must not drain
onto the fueling area.
3
Permanent Controls-List
in Table and Narrative
Appendix E: BMP Design Fact Sheets
4
Operational BMPs-Include in
Table and Narrative
□ The property owner must dry sweep
the fueling area routinely.
See the Business Guide Sheet,
"Automotive Service-Service
Stations" in the CASQA Storm
Water Quality Handbooks at
https: // www.casqa.org/resources/b
mp-handbooks.
16 The fueling area must be defined as the area extending a minimum of 6.5 feet from the comer of each fuel dispenser or the length at which the hose and nozzle assembly may be
operated plus a minimum of one foot, whichever is greater.
E-12 February 26, 2016
1
Potential Sources of
Runoff Pollutants
M. Loading Docks
0 Not Applicable
2
Permanent Controls-Show on
Drawings
D Show a preliminary design for the
loading dock area, including
roofing and drainage. Loading
docks must be covered and/ or
graded to minimize run-on to and
runoff from the loading area. Roof
downspouts must be positioned to
direct storm water away from the
loading area. Water from loading
dock areas should be drained to
the sanitary sewer where feasible.
Direct connections to storm
drains from depressed loading
docks are prohibited.
D Loading dock areas draining
directly to the sanitary sewer must
be equipped with a spill control
valve or equivalent device, which
must be kept closed during
periods of operation.
D Provide a roof overhang over the
loading area or install door skirts
(cowling) at each bay that enclose
the end of the trailer.
3
Permanent
Controls-List in
E-13
Appendix E: BMP Design Fact Sheets
4
Operational BMPs-Include in
Table and Narrative
D Move loaded and unloaded items indoors as
soon as possible.
D See Fact Sheet SC-30, "Outdoor Loading and
Unloading," in the CASQA Storm Water
Quality Handbooks at
www.casqa.org/resources/bmp-
handbgoks/municipal-bmp-handbook.
February 26, 2016
1
Potential Sources of
Runoff Pollutants
□ N. Fire Sprinkler
Test Water
0Not Applicable
0. Miscellaneous Drain
or Wash Water
□Boiler drain lines
□ Condensate drain
lines
□Rooftop
equipment
□Drainage sumps
□Roofing, gutters,
and trim
ONot Applicable
2
Permanent Controls-
Show on Drawings
Appendix E: BMP Design Fact Sheets
3
Permanent Controls-List in Table and
Narrative
□Provide a means to drain fire sprinkler test water
to the sanitary sewer.
□Boiler drain lines must be directly or indirectly
connected to the sanitary sewer system and may
not discharge to the storm drain system.
□ Condensate drain lines may discharge to
landscaped areas if the flow is small enough that
runoff will not occur. Condensate drain lines
may not discharge to the storm drain system.
□Rooftop mounted equipment with potential to
produce pollutants must be roofed and/ or have
secondary containment.
□Any drainage sumps onsite must feature a
sediment sump to reduce the quantity of
sediment in pumped water.
□Avoid roofing, gutters, and trim made of copper
or other unprotected metals that may leach into
runoff.
E-14
4
Operational BMPs-lnclude in
Table and Narrative
□ See the note in Fact Sheet SC-
41, "Building and Grounds
Maintenance," in the CASQA
Storm Water Quality
Handbooks at
www.casqa.org/resources/bm
p-handbooks/municipal-bmp-
handbook
February 26, 2016
1
Potential Sources of
Runoff Pollutants
0 P.
sidewalks,
parking lots.
D Not Applicable
Plazas,
and
2
Permanent Controls-Show on
Drawings
3
Permanent Controls-List in
Table and Narrative
E-15
Appendix E: BMP Design Fact Sheets
4
Operational BMPs-Include in
Table and Narrative
0 Plazas, sidewalks, and parking lots must
be swept regularly to prevent the
accumulation of litter and debris.
Debris from pressure washing must be
collected to prevent entry into the
storm drain system. Washwater
containing any cleaning agent or
degreaser must be collected and
discharged to the sanitary sewer and
not discharged to a storm drain.
February 26, 2016
ATTACHMENT 4
City standard Single Sheet BMP (SSBMP) Exhibit
[Use the City's standard Single Sheet BMP Plan.]
BMPTABLE
BMP# BMPTYPE SYMBOL CAS/J,4# Ql/ANTITY
HYOROMOOIFICATION & TREATMENT CONTROL
0-0
BIOF/l. lli'A 110N ?t:t;t:?i 10,4!6 SF AREA TC-32
SOl/RCE CONTROL
0 INLET 3EA. STENC/UNG N/A SC-50
0 SHUPING N/A 5EA. SE-7
0 /YA/ER _Q_ 4 EA. {llJAUTY 570\I
PERMANENT WATER QUALITY
TREATMENT FACILITY
KEEPING DUR WATER WAYS Cl.£11N
M/\INTAN il'IT,i CA:;:f NO MDDIFICATONS Wl'li'.lUT A3ENCY APPR
DETAIL
WATER QUALITY SIGN-PLACED AT
EACH BI0FILTRAll0N BASIN
NOTE: ALL BIOFILTRATION AREAS WILL
HAVE A SIGN POSTED TO BE
VISIBLE AT ALL TIMES.
DRAWING#
523-9A
523-9A
523--9A
523-9A
SHEET#(S) INSPECTION MAINTENANCE
FREQl/ENCY FREQl/ENCY
3, 5-8 Ol/ARTERLY SEMI-ANNI/Ail Y
3, 5-8 Ol/ARTERLY !'EARLY
3, 5-8 JIEEKLY WEEKLY
3, 5-8 N/A N/A
ATTACHMENT 4
SINGLE SHEET BMP PLAN
CARLSBAD OAKS LOT 2
-
-----
SCALE: f"=,f.(J'
0 40 80 /20 /50
-
PARTY RESPONSIBLE FOR MA/NlENANCE:
MICHAEL KALSHEl/R
(760)-525-8834
NAM£·
CONTACT'
AOORESS.· 3405 HIGHLANO OR/vE -STE 100
CARLSBAO. CA .92ll0
PLAN PREPAR[l) BY:
NAM£·
COMPANr:
At;ORESS.·
PHONE NO.
ROBERT 0£N11NO
EXCEL ENGINEERING
440 STATE PL
ESCONDIDO CA .92029
706.745.8188
C£R17RCA110N: R.C£ 45629
SIGNAll/RE
BAfPNOlES:
!.
2
3.
4.
5.
6.
THESE BMPS ARE MANDATORY TO BE INSTAilED PER
MANl/FACll/RER's RECOMMENOAllONS OR THESE PLANS:
NO CHANGES TO THE PROPOSED BMPS ON THIS SHEET WITHOUT
PRIOR APPROVAL FROM THE CITY ENGINEER.
NO Sl/BS111//110NS TO lHE MATERIAL OR TYPES OR PLANllNG
T'rPES l't!THOl/T PRIOR APPROVAL FROM 1HE CITY ENGINEER.
NO OCCl/PANCY Will 8£ GRANTEO l/NllL 1H£ CITY INSP£C110N
STAFF HAS INSP£C7FlJ 1HIS PROJECT FOR APPROPRIATE Bl.IP
CONSlli'l/CllON ANO INSTALLA 110N.
REFER TO MAINTENANCE AGREEMENT OOCUMENT.
SEE PROJECT SIIMP FOR AOO/llONAL INFORMA 110N.
BVP CONSllrtlCllCW ANO INSPECTICW NOTES:
ll/£ EOIY llfLL /1£1?/FY 1J-IAT PERMANENT BMPS ARE
CONSll?LIClEiJ ANO OPEJ?AllNG IN COMPUANCE 1111J-I 1l-l£
APPLJCABL£ REOIJll?EJ,f£NJS. PRIOR TO OCCUPANCY THE EOIY
ML/ST PROl40£:
1. PHOTOGRAPHS OF 1l-lE INSTALLA 710N OF PB/I.IANENT 81,/PS
PRIOR TO CONSll?l/CllON, /JIJRING CONSll?L/CllON, ANO AT
RNAL INSTALLA 110N.
2. A IIU STAMP£1J LET/ER /1£Rln1NG 1J-IAT PERMANENT 81,/PS
ARE CONSll?LIClEiJ ANO OPERAllNC PER 1J-IE REOIJIREJIEN!S
OF ll/E APPRO!,EO PLANS:
3. PHOTOCRAPHS TO lfl?IFY 1J-IAT PERMANENT /YA/ER (){JAUTY
ll?EA lJ.IENT S/0\IAGE HAS BFEN INSTALf.£0.
INSPECTOR DATE
SHEET
1 CITY OF CARLSBAD
ENGINEERING DEPARTMENT
1-----------------------t-------+--t------jl----jBMP SITE PLAN:
CARLSBAD OAKS LOT 2
APPROVED:
JASON S. GELDERT RCE 63912 EXPIRES 9 30 20 DATE
REVISION DESCRIPTION
OWN BY: AG.ll.CV'--J...C"--"-"
1--D_A TE _ __,__IN_l_TI_A_L+_D_A_TE _ _...__IN_ITI_A_L_ CHKD BY: __ _
RVWD BY: OTHER APPROVAL CITY APPROVAL
PROJECT NO.
SOP 2019-0014
DRAWING NO.
523-9A