Loading...
HomeMy WebLinkAboutPD 2023-0013; AVIARA OAKS ELEMENTARY SCHOOL MODERNIZATION; DRAINAGE REPORT; 2023-10-01 Prepared by: _________________________ Bryan T. Hill, PE R.C.E. 69339     DRAINAGE REPORT for Aviara Oaks Elementary School Modernization Project ID PD2023-0013, GR2023-0022, DWG 543-4A Carlsbad, California Prepared for: Ruhnau Clarke Architects 5751 Palmer Way, Suite C Carlsbad, CA 92010  OCTOBER 2023 TORY R. WALKER ENGINEERING WATERSHED, FLOODPLAIN & STORMWATER MANAGEMENT I RIVER RESTORATION I FLOOD FACILITIES DESIGN I SEDIMENT & EROSION 122 CIVIC CENTER DRIVE, SUITE 206, VISTA, CA 92084 I (760) 414-9212 I TRWENGINEERING.COM   Dr a i n a g e R e p o r t Av i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n Oc t o b e r 2 0 2 3     Pa g e i Jo b # 7 1 7 - 0 2 TA B L E O F C O N T E N T S 1.   IN T R O D U C T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 1   2.   PR O J E C T D E S C RI P T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 1   2. 1 .   So i l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 2   2. 2 .   Pr e - P r o j e c t C o nd i t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 2   2. 3 .   Po s t - P r o j e c t Co n d i t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 2   3.   HY D R O L O G I C A N A L Y S I S .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3   3. 1 .   Pe a k D e s i g n S t o r m C a l c u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  3. 2 .   Pe a k F l o w Su m m a r y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 3   4.   HY D R A U L I C A N A L Y S I S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 3   5.   RE S U L T S A N D C O N C L U S I O N S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 4   6.   RE F E R E N C ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 4    TA B L E S Ta b l e 1 | S u m m a r y o f D e t e n t i o n R o u t i n g Ta b l e 2 | S u m m a r y o f P e a k F l o w R e s u l t s  AT T A C H M E N T S AT T A C H M E N T 1   Lo c a t i o n M a p   AT T A C H M E N T 2   Hy d r o l o g i c S o i l s G r o u p E x h i b i t an d S a n D i e g o C o u n t y C h a r t s   AT T A C H M E N T 3   Ra t i o n a l M e t h o d C a l c u l a t i o n s -  Pr e - p r o j e c t a n d P o s t - p r o j e c t C o n d i t i o n s   AT T A C H M E N T 4   Hy d r a u l i c C a l c u l a t i o n s   AT T A C H M E N T 5   Dr a i n a g e M a p s -  Pr e - P r o j e c t a n d P o s t - P r o j e c t C o n d i t i o n s   E   Dr a i n a g e R e p o r t Av i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n Oc t o b e r 2 0 2 3     Pa g e 1 Jo b # 7 1 7 - 0 2 1. IN T R O D U C T I O N Th e p u r p o s e o f t h i s r e p o r t i s t o s u m m a r i z e t h e hy d r o l o g i c a n d h y d r a u l i c a n a l y s e s o f t h e p r o p o s e d Av i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n p r oj e c t ( P r o j e c t I D . P D 2 0 2 3 - 0 0 1 3 ) . T h i s r e p o r t an a l y z e s t h e f o l l o w i n g : 1. Pr e - p r o j e c t a n d p o s t - p r o j e c t d r a i n a g e c o n d i t i o ns , u s i n g t h e M o d i f i e d R a t i o n a l M e t h o d p e r th e S a n D i e g o C o u n t y H y d r o l o g y M a n u a l ( S D C H M ) f o r a 1 0 0 - y e a r d e s i g n s t o r m 2. De t e n t i o n r o u t i n g t o d e m o n s t r a t e t h a t t h e p r o j e c t w i l l n o t e x c e e d p r e - p r o j e c t f l o w r a t e s at t h e P o i n t o f C o m p l i a n c e ( P O C ) 3. In l e t a n d p i p e s i z i n g c a l c u l a t i o n s , d e m o n s t r a t in g t h a t t h e p r o p o s e d s t o r m d r a i n s y s t e m c a n co l l e c t a n d c o n v e y r u n o f f f r om a 1 0 0 - y e a r d e s i g n s t o r m 2. PR O J E C T D E S C R I P T I O N Th e A v i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n p r o j e c t p r o p o s e s t o r e n o v a t e a n d r e d e v e l o p po r t i o n s o f t h e e x i s t i n g A v i a r a O a k s E l e m e n t a r y S c ho o l l o c a t e d a t 6 9 0 0 A m b r o s i a L a n e i n t h e C i t y of C a r l s b a d . T h e a p p r o x i m a t e l y 9 . 8 a c r e p r o j e c t s i te i s a n e x i s t i n g s c h o o l w i t h c o n c r e t e a n d as p h a l t h a r d s c a p e , l a n d s c a p i n g , a n d m u l t i p l e b u i l d in g s o n s i t e . S t o r m w a t e r r u n o f f i s c o l l e c t e d i n an e x i s t i n g p r i v a t e s t o r m d r a i n s y s t em t h a t c o n v e y s f l o w s t o a 6 0 ” p u bl i c s t o r m d r a i n t h a t r u n s n o r t h to s o u t h t h r o u g h t h e e a s t e r n h a l f o f t h e s i t e , t h e n fl o w s w e s t a d j a c e n t t o t h e n o r t h s i d e o f A v i a r a Pa r k w a y . T h e p r o j e c t p r o p o s e s t o r e m o v e a n d r e p l a c e t h e e x i s t i n g h a r d s c a p e , i n c l u d i n g d r i v e la n e s a n d p a r k i n g l o t , r e n o v a t e f i v e e x i s t i n g b u i l d i n g s , a n d c o n s t r u c t s a n e w b u i l d i n g . R u n o f f f r o m th e p r o p o s e d r e d e v e l o p m e n t i s c o l l e c t e d i n n e w p r iv a t e s t o r m d r a i n s y s t e m s th a t c o n v e y f l o w s t o on e o f t w o b i o f i l t r a t i o n b a s i n s t h a t p r o v i d e w a te r q u a l i t y , h y d r o m o d i f i c a t i o n , a n d p e a k f l o w mi t i g a t i o n . A s m a l l p o r t i o n o f t h e pr o j e c t , c o n s i s t i n g o f d r i v e l a n e a t t h e p r o j e c t e n t r a n c e f r o m Am b r o s i a L a n e , i s u n a b l e t o b e c o l l e c t e d i n a de t e n t i o n s y s t e m a n d l e a v e s t h e s i t e u n d e t a i n e d . So m e o f t h i s a r e a i s r o u t e d t o a p r o p r i e t a r y b i o f il t r a t i o n s y s t e m f o r w a t e r q u a l i t y m i t i g a t i o n . S e e t h e pr o j e c t S t o r m W a t e r Q u a l i t y M a n a g e m e n t P l a n , d a t e d 1 0 / 2 6 / 2 3 f o r a d d i t i o n a l w a t e r q u a l i t y a n d hy d r o m o d i f i c a t i o n m i t i g a t i o n c a l c u l a t i o n s . A l l p r o j ec t r u n o f f i s t r i b u t a r y t o t h e 6 0 ” p u b l i c s t o r m dr a i n , a s i n t h e e x i s t i n g c o n d i t i o n . E   Dr a i n a g e R e p o r t Av i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n Oc t o b e r 2 0 2 3     Pa g e 2 Jo b # 7 1 7 - 0 2 2. 1 . So i l s Pe r t h e G e o t e c h n i c a l I n v e s t i g a t i o n f o r A v i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n , b y N o v a Se r v i c e , t h e p r o j e c t s i t e i s d o m i n a t e d b y d e n s e s i l t y an d c l a y e y s a n d , w i t h v e r y l o w i n f i l t r a t i o n r a t e s . Ba s e d o n t h i s a s s e s s m e n t , T y p e C s o i l s a r e a s s u m e d to b e a n a v e r a g e r e p r e s e n t a t i o n o f t h e s i t e ’ s so i l c h a r a c t e r i s t i c s , s e e d o c u m e n t a t i o n i n A t t a c h me n t 1 . ( s e e H S G m a p / d a t a f r o m U S D A W e b S o i l Su r v e y i n t h e r e p o r t a t t a c h m e n t s ) . 2. 2 . Pr e - P r o j e c t C o n d i t i o n s Th e e x i s t i n g s i t e i s a n e l e m e n t a r y s c h o o l l o c a t e d i m m e d i a t e l y a d j a c e n t t o t h e s o u t h o f A v i a r a O a k s Mi d d l e S c h o o l . T h e s c h o o l s a r e f r o n t e d b y A m b r o s i a L a n e o n t h e w e s t a n d s o u t h w e s t , a n d A v i a r a Pa r k w a y o n t h e s o u t h e a s t . I m m e d i a t e l y t o t h e n o r t h a n d e a s t i s u n d e v e l o p e d o p e n s p a c e . T h e ex i s t i n g d r a i n a g e c o n v e y a n c e i s u r b a n , a n d t h e s i te g e n e r a l l y d r a i n s f r o m t h e n o r t h t o s o u t h . T h e mi d d l e s c h o o l c o m p r i s e s t h e n o r t h e r n , u p s t r e a m h a l f o f t h e p r o p e r t y , a n d t h e e l e m e n t a r y s c h o o l is o n t h e s o u t h e r n h a l f . T h e m i d d l e s c h o o l h a s a p r i v a t e s t o r m d r a i n s y s t e m t h a t c o l l e c t s r u n o f f a n d di s c h a r g e s t o a 6 0 ” p u b l i c s t o r m d r a i n t h a t r u n s n o rt h t o s o u t h o n t h e e a s t s i d e o f t h e p r o j e c t . N o si g n i f i c a n t r u n - o n d r a i n s t o t h e e l e m e n t a r y s c h o o l . St o r m w a t e r r u n o f f f r o m t h e e l e m e n t a r y s c h o o l i s c o l l e c t e d i n m u l t i p l e e x i s t i n g p r i v a t e s t o r m d r a i n ca t c h b a s i n s l o c a t e d t h r o u g h o u t t h e s i t e , a n d t h e m a j o r i t y o f s i t e r u n o f f i s t r i b u t a r y t o t w o 2 4 ” pr i v a t e s t o r m d r a i n s y s t e m s. R u n o f f c o l l e c t e d i n t h e p r i v a t e s y s t e m s i s c o n v e y e d t o t h e e a s t a n d so u t h f o r d i s c h a r g e t o t h e e x i s t i n g 6 0 ” p u b l i c st o r m d r a i n . T h e t w o l o c a t i o n s w h e r e t h e p r i v a t e sy s t e m d i s c h a r g e s t o t h e p u b l i c s y s t e m a r e i d e n t i fi e d i n t h i s s t u d y a s P o in t o f C o m p l i a n c e ( P O C ) 1 an d 2 . T h e p u b l i c s t o r m d r a i n p a s s e s t h r o u g h t h e p r o j e c t , r u n s w e s t a l o n g t h e n o r t h s i d e o f A v i a r a Pa r k w a y , a n d t h e n c o n t i n u e s s o u t h , c r o s s i n g A v i a ra P a r k w a y a t t h e i n t e r s ec t i o n w i t h A m b r o s i a La n e . T h e s t o r m d r a i n u l t i m a t e l y d i sc h a r g e s t o B a t i q u i t o s L a g o o n , ap p r o x i m a t e l y 0 . 7 m i l e s t o t h e so u t h . Tw o p o r t i o n s o f t h e p r o j e c t d r a i n o v e r l a n d t o A m b r os i a L a n e . T h e d r i v e l a n e p r o v i d i n g a c c e s s f r o m Am b r o s i a L a n e d i s c h a r g e s t o t h e s t r e e t ; t h i s d i s c h a rg e l o c a t i o n i s i d e n t i f i e d a s P O C 3 . A p o r t i o n o f th e p l a y g r o u n d a l s o d i s c h a r g e s o v e r la n d t o t h e s t r e e t ; t h i s d i s c h a r g e l o c a t i o n i s i d e n t i f i e d a s P O C 4. S t o r m w a t e r r u n o f f t h a t d i s c h a r g e s t o A m b r o s i a L a n e f r o m P O C 3 a n d P O C 4 i s c o l l e c t e d i n a cu r b i n l e t l o c a t e d n o r t h o f t h e i n t e r s e c t i o n w i t h A v ia r a P a r k w a y . T h i s c u r b i n l e t d i s c h a r g e s t o t h e 60 ” p u b l i c s t o r m d r a i n s y s t e m d o w n s t r e a m o f P O C 1 a n d 2 . E   Dr a i n a g e R e p o r t Av i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n Oc t o b e r 2 0 2 3     Pa g e 3 Jo b # 7 1 7 - 0 2 2. 3 . Po s t - P r o j e c t C o n d i t i o n s Th e p r o j e c t p r o p o s e s t o r e m o v e a n d r e p l a c e t h e e x i s t i n g h a r d s c a p e , i n c l u d i n g d r i v e l a n e s a n d pa r k i n g l o t , r e n o v a t e f i v e e x i s t i n g b u i l d i n g s , a n d c o n s t r u c t a n e w b u i l d i n g a t A v i a r a O a k s El e m e n t a r y S c h o o l . T h e p r o j e c t w i l l c o n s t r u c t n e w p r i v a t e s t o r m d r a i n s y s t e m s t o c o l l e c t r u n o f f f r o m th e p r o p o s e d i m p r o v e m e n t s . T h e p r i v a t e s t o r m d r a i n s y s t e m s w i l l c o n v e y r u n o f f t o o n e o f t w o bi o f i l t r a t i o n b a s i n s d e s i g n e d t o p r o v i d e w a t e r q u a l i t y , h y d r o m o d i f i c a t i o n , a n d p e a k f l o w mi t i g a t i o n . T h e t w o b i o f i l t r a t i o n ba s i n s a r e i d e n t i f i e d a s B M P - 1 an d B M P - 2 . B M P - 1 d i s c h a r g e s t o PO C 1 a n d B M P - 2 d i s c h a r g e s t o P O C 2 . A s m a l l p o r t i o n o f t h e d r i v e l a n e p r o v i d i n g a c c e s s f r o m Am b r o s i a L a n e i s u n a b l e t o b e r o u t e d t o e i t h e r bi o f i l t r a t i o n b a s i n a n d , i n s t e a d , r u n o f f f r o m t h e 8 5 th pe r c e n t i l e s t o r m i s r o u t e d t o a pr o p r i e t a r y b i o f i l t r a t i o n s y s t e m f o r w a t e r q u a l i t y m i t i g a t i o n . L a r g e r st o r m s w i l l b y p a s s t h e s y s t e m a n d w i l l d r a i n i n ba s i n O S - 1 a n d t h e n i n t o A m b r o s i a L a n e ; t h i s di s c h a r g e l o c a t i o n i s P O C 3 . A s m a l l p o r t i o n o f l a nd s c a p e a r e a n o t t r i b u t a r y t o B M P - 1 , d i s c h a r g e s ov e r l a n d t o A m b r o s i a L a n e a t P O C 4 . Th e b i o f i l t r a t i o n s y s t e m s a r e p r o p o s ed o n t h e s o u t h s i d e o f t h e p r o j e c t , a d j a c e n t t o A m b r o s i a L a n e an d A v i a r a P a r k w a y . T h e p r o p o s e d s t o r m d r a i n s y s t e m h o n o r s p r e - pr o j e c t d r a i n a g e p a t t e r n s a n d ou t f a l l l o c a t i o n s . T h e b i o f i l t r a t i o n b a s i n s d i s c h a r g e, v i a s t o r m d r a i n , t o t h e 6 0 ” p u b l i c s t o r m d r a i n th a t p a s s e s t h r o u g h t h e p r o j e c t ; s a m e a s t h e ex i s t i n g c o n d i t i o n . S e e t h e p r o j e c t S t o r m W a t e r Qu a l i t y M a n a g e m e n t P l a n , d a t e d 1 0 / 2 6 / 2 3 f o r w a te r q u a l i t y a n d h y d r o m o d i f i c a t i o n m i t i g a t i o n ca l c u l a t i o n s . 3. HY D R O L O G I C A N A L Y S I S Ad v a n c e d E n g i n e e r i n g S o f t w a r e ( A E S ) i s u s e d f o r c o m p u t i n g t h e p r e - p r o j e c t a n d p o s t - p r o j e c t 1 0 0 - ye a r R a t i o n a l M e t h o d p e a k f l o w s . A E S c o m p u t e s R a t i o n a l M e t h od s t o r m r u n o f f b a s e d u p o n t h e cr i t e r i a s e t f o r t h i n t h e S D C H M . 3. 1 . Pe a k D e s i g n S t o r m C a l c u l a t i o n s Fo r p r e - p r o j e c t a n d p o s t - p r o j e c t c o n d i t i o n s , p e a k f l o w r a t e s a r e c a l c u l a t e d u s i n g t h e S D C H M Ra t i o n a l M e t h o d H y d r o g r a p h p r o c e d u r e ( s e e r e s u l t s i n A p p e n d i x 3 ) f o r a 1 0 0 - y r d e s i g n s t o r m . P e a k fl o w i s e q u a l t o : Q = C I A Wh e r e : Q = p e a k d i s c h a r g e ( c f s ) C = r u n o f f c o e f f i c i e n t E   Dr a i n a g e R e p o r t Av i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n Oc t o b e r 2 0 2 3     Pa g e 4 Jo b # 7 1 7 - 0 2 I = a v e r a g e r a i n f a l l i n t e n s i t y , t a k e n a t t h e t i m e o f c o n c e n t r a t i o n ( i n / h r ) A = d r a i n a g e a r e a ( a c ) 3. 2 . Pe a k F l o w S u m m a r y Th e p r o j e c t p r o p o s e s t o d e t a i n t h e 1 0 0 - y e a r s t o r m o n s i t e t o m i t i g a t e f o r i n c r e a s e s i n p e a k r u n o f f ge n e r a t e d b y t h e d e v e l o p m e n t . De t e n t i o n r o u t i n g c a l c u l a t i o n s a r e p r o v i d e d w i t h i n t h i s s t u d y . 4. HY D R A U L I C A N A L Y S I S A h y d r a u l i c a n a l y s i s o f t h e p r o p o s e d d e t e n t i o n s y s t e m w a s p e r f o r m e d , u s i n g H y d r a f l o w Hy d r o g r a p h s , t o d e m o n s t r a t e t h a t t h e p r o j e c t w i l l a d eq u a t e l y m i t i g a t e t h e i n c r e a s e i n p e a k f l o w ru n o f f g e n e r a t e d b y t h e s i t e b y r e d u c i n g p e a k f l o w s t o p r e - p r o j e c t f l o w r a t e s a t P O C 1 a n d P O C 2 . A h y d r o g r a p h w a s g e n e r a t e d f o r a 1 0 0 - y e a r d e s i g n s t o r m , u s i n g R a t H y d r o s o f t w a r e , a n d r o u t e d th r o u g h a m o d e l o f b i o f i l t r a t i o n b a s i n s B M P - 1 a n d BM P - 2 . C a l c u l a t i o n s a r e i n c l u d e d a s A t t a c h m e n t 4; a s u m m a r y o f t h e r o u t i n g i s p r o v i d e d b e l o w : Ta b l e 1 | S u m m a r y o f D e t e n t i o n R o u t i n g 5. RE S U L T S A N D C O N C L U S I O N S Th e a n a l y s i s w i t h i n t h i s s t u d y d e mo n s t r a t e s t h a t t h e A v i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n pr o j e c t w i l l : 1. Ho n o r p r e - p r o j e c t d r a i n a g e p a t t e r n s a n d d i s c h a r g e l o c a t i o n s . T h e p r o p o s e d p r o j e c t re d u c e s r u n o f f t o a l l f o u r P O C s in t h e 1 0 0 y e a r d e s i g n s t o r m . 2. Pr o v i d e a d e q u a t e d e t e n t i o n t o m i t i g a t e i n c r e a s e s i n p e a k f l o w a s s o c i a t e d w i t h t h e pr o p o s e d p r o j e c t . P e a k f l o w r a t e s ar e s u m m a r i z e d i n t h e t a b l e b e l o w : BM P Tc I N (m i n ) Q1 0 0 I N F L O W (c f s ) Q1 0 0 O U T F L O W (c f s ) BM P - 1 7 . 6 2 4 . 1 1 0 . 6 BM P - 2 7 . 6 8 . 2 4. 6 E   Dr a i n a g e R e p o r t Av i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n Oc t o b e r 2 0 2 3     Pa g e 5 Jo b # 7 1 7 - 0 2 Ta b l e 1 : P r e - p r o j e c t C o n d i t i o n R u n o f f T a b l e Lo c a t i o n Ar e a (a c ) Ru n o f f Co e f f . C Tc ( m i n ) In t e n s i t y I (i n / h r ) Q10 0 ( c f s ) PO C 1 6. 3 6 0 . 5 6 8 . 7 4. 6 8 16 . 8 PO C 2 3. 7 5 0 . 5 3 1 1 . 3 3. 9 5 7. 9 PO C 3 1. 2 2 0 . 6 0 7 . 0 5. 4 4 4. 0 PO C 4 0. 4 5 0 . 6 2 5 . 0 6. 6 9 1. 9 Ta b l e 2 : P o s t - P r o j e c t C o n d i t i o n R u n o f f T a b l e Lo c a t i o n Ar e a (a c ) Ru n o f f Co e f f . C Tc (m i n ) In t e n s i t y I (i n / h r ) Q10 0 , w i t h o u t de t e n t i o n ( c f s ) Q10 0 , w i t h de t e n t i o n (c f s ) PO C 1 8. 6 1 0 . 6 2 7 . 6 5 . 0 9 2 7 . 2 1 3 . 6 PO C 2 2. 9 9 0 . 5 4 7 . 6 5 . 1 0 8 . 2 4 . 6 PO C 3 0. 3 6 0 . 7 7 5 6 . 6 9 1 . 8 7 N / A PO C 4 0. 0 3 0 . 3 0 5 6 . 6 9 0 . 0 6 N / A 6. RE F E R E N C E S 1. Sa n D i e g o C o u n t y , 2 0 0 3 H y d r o l o g y M a n u a l E   Drainage Report Aviara Oaks Elementary School Modernization October 2023    Page 1 Job # 717-02   ATTACHMENT 1 Location Map   CITY OF OCEANS IDE PR OJ ECT PACIFIC OCEAN ?a CITY OF ENCINITAS NOT TO SCALE OF MARCOS   Dr a i n a g e R e p o r t Av i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n Oc t o b e r 2 0 2 3     Pa g e 2 Jo b # 7 1 7 - 0 2 AT T A C H M E N T 2 Hy d r o l o g i c S o i l s G r o u p E x h i b i t a n d S a n D i e g o C o u n t y C h a r t s   E 10/21/23, 5:04 PM Precipitation Frequency Data Server NOAA Atlas 14, Volume 6, Version 2 Location name: Carlsbad, California, USA* Latitude: 33.1031°, Longitude: -117.2789° Elevation: 201 ft** • source: ESRI Maps •• source: USGS POINT PRECIPITATION FREQUENCY ESTIMATES Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, lshani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan NOAA, National Weather Service, Silver Spring, Maryland PF tabular I PF gmghical I Mags & aerials PF tabular I PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches)1 lourationll Average recurrence interval (years) 1 II 2 11 5 II 10 II 25 II 50 II 100 II 200 II 500 II 1000 i s-min I 0.113 0.142 0.182 0.216 0.263 0.302 0.342 0.385 0.447 0.498 (0.095-0.135) (0.119-0.171) (0.152-0.219) (0.179-0.262) (0.211-0.332) (0.236-0.389) (0.261-0.453) (0.286-0.526) (0.317-0.637) (0.340-0.736) ~ 0.162 0.203 0.261 0.309 0.377 0.432 0.490 0.552 0.641 0.713 (0.136-0.194) (0.171-0.245) (0.218-0.314) (0.257-0.376) (0.303-0.476) (0.339-0.557) (0.374-0.649) (0.409-0.753) (0.454-0.913) (0.487-1.05) ~ 0.195 0.246 0.315 0.374 0.456 0.523 0.593 0.668 0.775 0.862 (0.164-0.234) (0.207-0.296) (0.264-0.380) (0.310-0.454) (0.366-0.575) (0.410-0.674) (0.453-0.785) (0.495-0.911) (0.549-1.10) (0.589-1.28) I30-min I 0.275 0.347 0.444 0.527 0.643 0.737 0.836 0.941 1.09 1.22 (0.232-0.330) (0.291-0.417) (0.372-0.535) (0.437-0.640) (0.515-0.811) (0.577-0.950) (0.638-1.11) (0.697-1 .28) (0.774-1.56) (0.830-1.80) ! so-min I 0.390 0.491 0.629 0.746 0.911 1.04 1.18 1.33 1.55 1.72 (0.328-0.468) (0.413-0.590) (0.527-0.758) (0.619-0.907) (0.730-1.15) (0.817-1.34) (0.903-1.57) (0.988-1 .82) (1.10-2.20) (1.18-2.54) ~ 0.541 0.678 0.863 1.02 1.24 1.41 1.59 1.79 2.06 2.29 (0.455-0.649) (0.569-0.814) (0.723-1 .04) (0.846-1 .24) (0.991-1.56) (1 .10-1.82) (1 .22-2.11) (1.32-2.44) (1.46-2.94) (1 .56-3.38) ~ 0.649 0.813 1.03 1.22 1.48 1.68 1.90 2.12 2.44 2.71 (0.546-0.779) (0.683-0.977) (0.866-1.25) (1 .01-1.48) (1.18-1 .86) (1 .32-2.17) (1.45-2.51) (1.57-2.90) (1.73-3.48) (1 .85-4.00) ~ 0.872 1.10 1.39 1.64 1.98 2.26 2.54 2.83 3.24 3.58 (0.734-1.05) (0.920-1.32) (1 .17-1.68) (1.36-2.00) (1.59-2.50) (1 .77-2.91) (1.94-3.36) (2.10-3.86) (2.30-4.63) (2.44-5.29) I I I ~ 1.15 I (1 .d2~~75) 11 (1 .is~2~24) 11 (1.:11~66) 11 (2.~-~~32) I 2.99 3.35 3.73 I (3.~-~6~06) 11 (3.{9~90) I (0.970-1 .38) (2.34-3.85) 12.56-4.43\ (2.76-5.08) ~ 1.44 1.83 2.35 2.77 3.34 3.79 4.24 4.72 5.36 5.87 (1.27-1 .67) (1 .62-2.12) (2.06-2.73) (2.41-3.24) (2.82-4.04) (3.14-4.66) (3.44-5.35) (3.72-6.10) (4.07-7.22) (4.31-8.16) I 2-day 11 (1 _;6~:.05) 11 (2.;o~i.63) 11 (2.:6~3~39) 11 (3.;1~~04) 11 (3.i4~~06) I 4.76 5.35 5.95 I (5.:5~9~13) 11 (5.1/!.3) I (3.94-5.86) (4.33-6.74) (4.70-7.70) I 3-day I 1.99 2.56 3.31 3.93 4.78 5.45 6.13 6.84 7.82 8.59 (1.76-2.30) (2.26-2.97) (2.91-3.85) (3.43-4.60) (4.04-5.78) (4.52-6.71) (4.96-7.73) (5.40-8.85) (5.93-10.5) (6.31-11 .9) I 4-day I 2.17 2.81 3.64 4.33 5.29 6.03 6.80 7.60 8.70 9.57 (1.92-2.52) (2.47-3.25) (3.20-4.23) (3.78-5.07) (4.47-6.38) (5.00-7.43) (5.50-8.56) (5.99-9.83) (6.60-11 .7) (7.02-13.3) I 7-day I 2.56 3.32 4.34 5.18 6.34 7.25 8.20 9.18 10.6 11.6 (2.26-2.96) (2.93-3.85) (3.81-5.04) (4.51-6.06) (5.36-7.65) (6.01-8.93) (6.64-10.3) (7.24-11.9) (8.00-14.2) (8.55-16.2) i 10-day I 2.85 3.72 4.88 5.84 7.17 8.22 9.30 10.4 12.0 13.3 (2.51-3.30) (3.28-4.31) (4.28-5.66) (5.09-6.83) (6.06-8.66) (6.81-10.1) (7.54-11 .7) (8.24-13.5) (9.13-16.2) (9.77-18.5) i 20-day I 3.44 4.54 6.02 7.25 8.97 10.3 11.7 13.2 15.3 17.0 (3.04-3.98) (4.00-5.26) (5.29-6.99) (6.32-8.49) (7.58-10.8) (8.56-12. 7) (9.51-14.8) (10.4-17.1) (11 .6-20.7) ( 12.5-23. 7) I30-day I 4.13 5.48 7.31 8.83 11.0 12.7 14.4 16.3 19.0 21 .1 (3.64-4.78) (4.83-6.35) (6.42-8.49) (7.70-10.3) (9.27-13.2) (10.5-15.6) (11.7-18.2) (12.9-21.1) (14.4-25.6) (15.5-29.4) I45-day I 4.87 6.49 8.67 10.5 13.1 15.1 17.3 19.6 22.9 25.6 (4.29-5.63) (5.71-7.51) (7.62-10.1) (9.16-12.3) (11 .1-15.8) (12.6-18.7) (14.0-21 .8) (15.5-25.4) (17.4-30.8) ( 18.8-35.6) ! so-day I 5.65 7.52 10.1 12.2 15.2 17.6 20.2 23.0 26.9 30.1 (4.98-6.54) (6.62-8.71) (8.83-11 . 7) (10.6-14.3) (12.9-18.4) (14.6-21.7) ( 16.4-25.5) (18.1-29.7) (20.4-36.2) (22.1-41.8) 1 Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound ( or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. Back to Tog PF graphical https://hdsc.nws.noaa.gov/pfds/pfds _printpage.html?lat=33.1031 &lon=-117 .2789&data=depth&units=english&series=pds 1/4 30 25 C: ..c:: 20 .µ a. QJ -c C: 15 0 ·.;:; 19 ·a 10 u QJ ... c... 5 0 C: C -~ .E I LI') 0 ,-t 30 25 C: ..c:: 20 .µ a. QJ -c C 15 0 ·.;:; rtl .µ :§. 10 u ~ c... 5 0 1 PDS-based depth-duration-frequency (DDF) curves Latitude: 33.1031°., Lo11gitude: -117 .2789° C C C: I.. I.. I.. ... ... >, >, >, >, >, .E .E .E ~ ~ ~ ~ ~ rtl rtl rtl rtl rtl N ,.,, <D I I -c -c -c "9 -c I I I N ~ N ,.,, ,;;\-I LI') 0 0 Duratio'ii r--. 0 ,-t rn +.D ,-t 2 5 10 25 50 100 200 Average recurrence interval (years} >, >, >, >, rtl rtl rtl rtl -c -c -c -c I I I I 0 0 Ll'lO N rn 'St +.D 500 1000 ~OAA Atlas 14, Vol urne 6, Version 2 Created (GMT): Sun Oct 22 00:04:44 2023 Average recummce irnteiva'I (years) 1 2 5 10 25 50 100 200 500 1000 Duration 5-rnin 10-mln 15-m n 30--mln 60-min 2-hr 3-hr 6-hr 12-hr 24-hr 2-day 3-day 4-day 7-day 10--day 20--Clay 30--Clay 45-day 60--day Oxnard 0 I Los-:A.nge.,!!.l-o oRfv • Ensenada rside Anahei Cathed:-i lnclfo B hO Q Cily'fo Long eac • oSm,taA , a Parm e-se 'b.Murrieta I San Dieg 0 nsfde li Ensenad-a p 2.54 4.24 0.60 100 2.54 10.0 90 8.0 7.0 ~ 0 .c. cii Cl) .c. 6.0 5.0 4.0 3.0 2.0 g 1.0 ~0 .9 ·~o.8 ~07 0.6 0.5 0.4 0.3 0.2 0.1 r-.... ..... ... , I' :r--. ~ ~ ... I'""" " ~ .. ·~ ..... .... r-,. .... ... ~ ... .... r-,.r-,. ~ I',, i-.... ..... "" ...... "" I' I' ... r-,. ..... ..... ~ "" r,.. ........ ~ r-.... ....... r-,.r-,. ... r-.. ... ~ "'" ..... I',. ........ r,.. r-,."" ' 5 6 7 8 9 10 J, ~ 1-.., ::-,,.. "r--'i-. 1-. , .. ' r-, "r-,.. "' .. 'r-.. ', i-., ' '~ "' ""', ~r-,.. 1, 'r-.. I"', r- "r--r-., .. ~ 'r-.. "I', , .. "",r- i-., "i-,.. .. .. .. .. 1,, .... .... r-,.. 'r-. 'r-. ', r- 15 20 "~ ~ .. ",- .. ~,. " ",- .. "~ .. ",- ",- " 30 Minutes "" r- r-,. "r-"" "r-~ .. r-~ .. r-,. " "r-" r-" "r- " "i.. " r-,. "r- "~ .. .... "'" "i.. ~ 40 50 Duration I = I = p6 = D = EQUATION 7.44 P6 D-0.645 Intensity (in/hr) 6-Hour Precipitation (in) Duration (min} .... ......... ........ .... I', . .... ,i-.. ... r-,. .... i-.. 'r--. ' 'r--. ........ . r-,. ....... ....... ... 'r--. ... i-.. ........ 'i-.. 2 "'r--' .. ... 'r-I" r-,,. ,, r-,. .. ,, r-r-~ r-,. ",- i--r-,.. r-,,. "~ ~ ,, r-,. ~ .. ~ ~,. ... , "" ,,. "~ I"' " ~ .. "'r-, "~ 'r-.... ~,. """, ,, r-,. ",- ... ,. r-,. .. , "~ r- "r-.. ,.~ 3 Hours 4 .. " .. .. .. .. .. .. .. 5 6 O> i 0 !:; -0 co (') 6.0 i 5.5 - 5.0 g 4.5 '§' (') 4.o l 3.5 ~ 3.0 2.5 2.0 1.5 1.0 Intensity-Duration Design Chart -Template Directions for Application: (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual}. (2) Adjust 6 hr precipitation (if necessary} so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert}. (3) Plot 6 hr precipitation on the right side of the chart. (4) Draw a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve for the location being analyzed . Application Form: (a) Selected frequency ___ year p (b} p6 = --in., P24 = --'P 6 = . %(2) 24 (c) Adjusted P6<2) = ___ in. (d) Ix = ___ min. (e) I = __ in./hr . Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. I I I P6 1 -+ 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Duration I I I I I I I I I I I 5 2.63 3.95 5.27 6.59 7.90 9.~ J_9.5_i J_1.~ 13.17 14.49 15.81 7 2.12 3.18 4.24 5.3()_ 6~2,42 &4! Jl.54_ j0.60 11.6~ 12.72 10 1.68 2.53 3.37 4.21 5.05 5.90 6.74 7.58 8.42 9.27 10.11 -15 1.30 1.95 2.59 3.24 3.89 4.54 5.19 5.84 6.49 7.13 7.78 20 1.08 1.62 2.15 2.69 3.23 3.77 4.31 4.85 5.39 5.93 6.46 25 0.93 1.40 1.87 2.33 2.80 3.27 3.73 4.20_ 4.67_ 5.13_ ~5.6..Q_ ,_30 0.83_ 1.24 1.66 2.07 2.49 2.90 3.32 3.73 4.15 ~ ~98 f--40 0.69 1.03 1.38 1.72 2.07 2.41 2.76 3.10 3.45 3.79 4.13 -0.90 >----1 X9T 1.1~.09 3.28 f-3.58 50 0.60 1.19 2.39 2.69 _ _ 2~ 60 0.53 0.80 1.06 1.33 I 1.59 1.86 2.12-2.39 2.65 2.92 3.18 90 0.41 ..Q.§__1__ 0.82 1.0~2 1.23 1.~ 1.6~ f-1.84_ ~4 2.25 -2.45 120 0.34 0.51 0.68 0.85 1.02 1.19 1.36 1.53 1.70 1.87 2.04 150 0.29 0.44 0.59 0.73 0.88 1.03 1.18 c--1.32 --1.62 1.76 1.47 180 0.26 0.39 0.52 -:--r-0.65 0.78 0.91 1.04 1 .18--1.31 1.44-~ ~ 0.22 ~ ,_Q.43 0.54 0.65 0.76 0.87_ 0.98 _ _!.08 1.19 1.30 300 0.19 0.28 0.38 0.47 0.56 0 .66 0.75 0.85 0.94 1.03 1.13 -360 0.17 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.84 0.92 1.00 FIGURE @] 3-3 I-w w LL z w (_) z 4.'. I-CJ) c5 w CJ) a::: :::::> 0 (_) a::: w I- ~ 2.50% slope 2.Q--;-----,.,r11 100 --~1~·=5.::::..:;-.::::.::::.::::.::::.::::.::;:;:;~------~- 0 EXAMPLE: Given: Watercourse Distance (D) = 70 Feet Slope (s) = 1.3% Runoff Coefficient (C) = 0.41 Overland Flow Time (T) = 9.5 Minutes SOURCE: Airport Drainage, Federal Aviation Administration, 1965 T= 1.8(1.1-C)VD 3\fs 20 Cf) w I- :::::> z ~ z w ~ j::: ~ 0 ....J LL 0 z 4.'. ....J a::: w > 0 FIGURE Rational Formula -Overland Time of Flow Nomograph Basin AT (Ac.) A0.90 (Ac.)A0.30 (Ac.) C Remarks A-1 1.90 0.62 1.28 0.50 Parking Lot/Landscape A-2 0.83 0.69 0.14 0.80 Parking Lot A-3 0.71 0.38 0.33 0.62 School Building A-4 0.53 0.13 0.40 0.45 School Building/Landscape A-5 0.49 0.34 0.15 0.72 School Building A-6 0.64 0.41 0.23 0.68 School Building A-7 1.26 0.22 1.04 0.40 Field Total (POC1) 6.36 2.79 3.57 0.56 School B-1 1.27 0.92 0.35 0.73 Asphalt/School Building B-2 2.48 0.54 1.94 0.43 Field/Asphalt Playground Total (POC2) 3.75 1.46 2.29 0.53 School OS-1 1.22 0.60 0.62 0.60 Parking Lot/Landscape OS-2 0.45 0.24 0.21 0.62 Asphalt/Landscape Total (Offsite) 1.67 0.84 0.83 0.60 School Total 11.78 5.09 6.69 0.56 School Assumptions: 1) Two land use types exist on site: Paving/ Roof, Street, Impervious C-Value = 0.90 Landscape, Pervious C-Value = 0.30 2) C-Values have been determined using the equation from section 3.1.2 of County of San Diego Hydrology Manual (June 2003) PRE-PROJECT C-VALUE DETERMINATION Post-Project Drainage Basins Basin AT (Ac.) A0.90 (Ac.)A0.30 (Ac.) C Remarks A-1 0.75 0.29 0.46 0.53 Parking Lot/Landscape A-2 0.70 0.31 0.39 0.57 Parking Lot/Landscape A-3 0.04 0.00 0.04 0.30 Landscape A-4 0.60 0.58 0.02 0.88 Sidewalk/Parking Lot A-5 0.36 0.21 0.15 0.65 Sidewalk/Landscape A-6 0.18 0.11 0.07 0.67 School Building/Landscape A-7 0.31 0.21 0.10 0.71 Parking Lot/Landscape A-8 0.50 0.17 0.33 0.50 School Building A-9 0.65 0.33 0.32 0.60 School Building A-10 0.87 0.67 0.20 0.76 Parking Lot A-11 0.49 0.37 0.12 0.75 Parking Lot A-12 0.35 0.00 0.35 0.30 Biofiltration Basin A-13 0.36 0.22 0.14 0.67 Parking Lot A-14 0.55 0.41 0.14 0.75 School Building A-15 0.64 0.37 0.27 0.65 Paved/Unpaved Playground Total (BMP-1) 7.35 4.25 3.10 0.65 School B-1 0.71 0.50 0.21 0.72 Paved/Unpaved Playground B-2 1.05 0.70 0.35 0.70 Paved Playground B-3 1.23 0.00 1.23 0.30 Field Total (BMP-2) 2.99 1.20 1.79 0.54 School C-1 0.10 0.07 0.03 0.75 Parking Lot Total (BMP-3) 0.10 0.07 0.03 0.75 School BYP-1 1.26 0.36 0.90 0.47 Drive lane/Landscape OS-1 0.26 0.21 0.05 0.78 Drive lane OS-2 0.03 0.00 0.03 0.30 Landscape TOTAL 11.99 6.09 5.90 0.60 School Assumptions: 1) Two land use types exist on site: Paving/ Roof, Street, Impervious C-Value = 0.90 Landscape, Pervious C-Value = 0.30 2) C-Values have been determined using the equation from section 3.1.2 of County of San Diego Hydrology Manual (June 2003) POST-PROJECT C-VALUE DETERMINATION 717_DRN Cvalue Study-PostProject_2023 10 18.xls San Diego County Hydrology Manual Section: 3 Date: June 2003 Page: 6 of 26 Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use Runoff Coefficient “C” Soil Type NRCS Elements County Elements % IMPER. A B C D Undisturbed Natural Terrain (Natural) Permanent Open Space 0*0.20 0.25 0.30 0.35 Low Density Residential (LDR) Residential, 1.0 DU/A or less 10 0.27 0.32 0.36 0.41 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 0.42 0.46 Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 0.45 0.49 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 0.48 0.52 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 0.54 0.57 Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 0.57 0.60 Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 0.60 0.63 High Density Residential (HDR) Residential, 24.0 DU/A or less 65 0.66 0.67 0.69 0.71 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 0.78 0.79 Commercial/Industrial (N. Com) Neighborhood Commercial 80 0.76 0.77 0.78 0.79 Commercial/Industrial (G. Com) General Commercial 85 0.80 0.80 0.81 0.82 Commercial/Industrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 0.84 0.85 Commercial/Industrial (Limited I.) Limited Industrial 90 0.83 0.84 0.84 0.85 Commercial/Industrial (General I.) General Industrial 95 0.87 0.87 0.87 0.87 *The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest). DU/A = dwelling units per acre NRCS = National Resources Conservation Service 3-6 D 4373 Viewridge Avenue Suite B San Diego, California 92123 858.292.7575 944 Calle Amanecer Suite F San Clemente, CA 92673 949.388.7710 www.usa-nova.com NOVA Project No. 2021251 February 8, 2023 Aviara Oaks Elementary School Modernization 6900 Ambrosia Lane Carlsbad, California Submitted to: Carlsbad Unified School District 6225 El Camino Real Carlsbad, California 92009 REPORT UPDATE GEOTECHNICAL INVESTIGATION INFILTRATION AND HYDROLOGIC SOILS GROUP DOCUMENTATION -~ CARLSBAD ~pr Unified School District Report of Update Geotechnical Investigation Aviara Oaks Elementary School Modernization, Carlsbad, CA NOVA Project No. 2021251 February 8, 2023 11 4.2. Site-Specific Geology The western portion of the campus is in cut, underlain by Tertiary Santiago Formation (map symbol Tsa). Moving eastward, the campus transitions from cut conditions to deep fill conditions, where the pre-exiting canyon was infilled to construct the campus. Geologic Cross-Section A-A’ on Plate 2 depicts this transition. Alluvium was identified as overlying the Santiago Formation in the southern portion of the site in Boring B-1. Descriptions of the materials encountered in the borings are presented below. Fill (af):As discussed, the depth of artificial fill across the site increases in depth moving eastward. Fill was encountered in Boring B-11, drilled on the eastern portion of the site, to a maximum depth of 70 feet bgs. The fill is comprised of generally medium dense to dense, light gray-brown and olive brown silty and clayey sand and sandy clay The fill appears to be mostly derived from the underlying Santiago Formation. Figure 4-2 depicts this unit. No record of the placement and compaction of this fill was available at the time of this report. As a result, the fill is considered ‘undocumented’. However, data obtained from the borings and CPT soundings suggest that this fill was engineered. Figure 4-2. Fill at Boring B-3 Quaternary Older Alluvium (Qoa):Beneath the fill in Boring B-1, the site is underlain by alluvium. The geologic map indicates that it is young alluvium; however, due to the relatively dense nature and visual appearance of the alluvium, it is NOVA’s judgement that this unit is more appropriately characterized as older alluvium. As encountered in the borings, the older alluvium consists of yellowish-brown to dark brown silty sand with thin interbedded lenses of yellow sand. Blow counts indicate this unit is dense. Tertiary Santiago Formation (Tsa):The Santiago Formation was encountered at the surface within Borings B-6 and B-11 and deepens moving eastward. As encountered in the borings, this formation is comprised of light gray-brown to yellowish-brown silty and clayey sandstone and sandy claystone, which is very dense and hard. Figure 4-3 depicts this unit. The fill appears to be mostly derived from the underlying Santiago Formation. is comprised of light gray-brown to yellowish-brown silty and clayey sandstone and sandy claystone, which is very dense and hard. THE PROJECT SITE IS DOMINATED BY DENSE SILTY AND CLAYEY SAND, WITH VERY LOW INFILTRATION RATES, SEE PAGE 32 OF THE GEOTECHNICAL INVESTIGATION THAT FOLLOWS HERE. PER GUIDANCE FROM THE NATURAL RESOURCES CONSERVATION SERVICE (NRCS), PROVIDED HERE FOR REFERENCE, INFILTRATION RATES FROM 0.06 TO 0.57 IN/HR ARE CONSISTENT WITH HYDROLOGIC SOILS GROUP TYPE C. GIVEN THAT THE MAXIMUM MEASURED INFILTRATION RATE IS 0.09 IN/HR, TYPE C SOILS ARE ASSUMED WITHIN THE SWQMP TO BE AN AVERAGE REPRESENTATION OF THE SITE'S SOIL CHARACTERISTICS. NOVA Report of Update Geotechnical Investigation Aviara Oaks Elementary School Modernization, Carlsbad, CA NOVA Project No. 2021251 February 8, 2023 32 7. INFILTRATION FEASIBILITY 7.1. Overview NOVA coordinated with the client to provide infiltration testing in the areas most likely to have BMPs. NOVA has evaluated the site as abstracted below after guidance contained in the City of Carlsbad BMP Design Manual, September 2021 (the governing document at the time of the original report). Plate 1 depicts the locations of the percolation test wells and associated exploratory geotechnical borings. This section provides the results of the testing and related recommendations for management of stormwater in conformance with the BMP Manual. Based on infiltration rates of Test Wells P-1 through P-4 divided by the project factor of safety calculated in accordance with Table D.2-3 of the BMP Manual, as well as the deep fills in these areas, stormwater infiltration is not feasible in any appreciable quantity. The BMPs are therefore considered to have a no infiltration condition. The following section provides NOVA’s assessment of the feasibility of stormwater infiltration BMPs utilizing the information developed during the subsurface exploration. 7.2. Percolation Testing The percolation test wells were pre-soaked by filling the holes with water to the ground surface level and testing commenced within a 26-hour window. On the day of testing, two 25-minute trials were conducted in each well. In all of the percolation borings, the pre-soak water percolated less than 6 inches into the soil unit within 25 minutes. Based on the results of the trials in those test wells, water levels were recorded every 30 minutes for 6 hours. At the beginning of each test interval, the water level was raised to approximately the same level as the previous tests, in order to maintain a near-constant head during all test periods. Percolation rates recorded in the field were converted to infiltration rates using the Porchet Method. Table 7-1 summarizes the percolation test conditions and related infiltration rates. Table 7-1. Summary of Percolation Testing Test Location Test Well Depth (feet) Material at Test Depth Infiltration Rate (in/hr, FS=4)1 Infiltration Condition P-1 5 Fill 0.02 No Infiltration P-2 5 Fill 0.04 No Infiltration P-3 5 Fill 0.04 No Infiltration P-4 5 Fill 0.09 Partial Infiltration Note 1: FS indicates ‘Factor of Safety’ As shown in Table 7-1, a factor of safety (FS) is applied to the infiltration rate (I). This factor of safety, calculated for this site as FS = 4, considers the nature and variability of subsurface materials, as well as the natural tendency of infiltration structures to become less efficient with time. NOVA provided the 0.02 0.04 00.04 0.09 I I I I \ J ( ) { ) ( ) Report of Update Geotechnical Investigation Aviara Oaks Elementary School Modernization, Carlsbad, CA NOVA Project No. 2021251 February 8, 2023 33 factor values for the Suitability Assessment section of the table, and the project civil engineer provided the factor values for the Design section. The factor of safety was determined using Section D.2.3 of Appendix D of the BMP Manual. This table is reproduced below as Table 7-2. Table 7-2. Determination of Safety Factor From City of Carlsbad BMP Design Manual, September 2021, Table D.2-3: Determination of Safety Factor 7.3. Review of Infiltration Restrictions Section D.2.1 of the BMP Manual presents restriction elements that should be considered by the project geotechnical professional while assessing the feasibility of infiltration related to geotechnical conditions. These elements are listed in Table 7-3.Based on this assessment, NOVA considers the stormwater infiltration basins in the locations in which they are currently designed to be a restricted condition due the fact it will be located in approximately 50 to 70 feet of existing fill. Consideration Assigned Factor Product (p) Weight (w) Value (v) p=wxv Infiltration Testing Method 0-25 0.50 Suirability Soil Texture Oass 0.25 Refer to 0.50 Assessn1ent Soil Variability 0.25 TableD.2-4 0.75 (A) Depth to Groundwater/Obstruction 0.25 0.25 Suitability Assessment Safety Factor, SA = :Ep 2.0 Pretrea.tment 0.50 1.0 D esign Resiliency 0.25 Refer to TableD.2-4 0.5 (B) Compaction 0.25 0.5 Desig11 Safety Factor, Sa = Lp 2.0 Safety Factor, S = SAX SB 4.0 ~fost be always greater than or equru to 2) Report of Update Geotechnical Investigation Aviara Oaks Elementary School Modernization, Carlsbad, CA NOVA Project No. 2021251 February 8, 2023 34 Table 7-3. Infiltration Restrictions From City of Carlsbad BMP Design Manual, September 2021, Table B.2-1: Infiltration Restrictions 7.4. Suitability of the Site for Stormwater Infiltration The infiltration condition of the proposed BMPs located in fill is considered Restricted by the City of Carlsbad. Infiltration rates determined from the percolation tests indicate that water cannot infiltrate in an appreciable quantity. Therefore, it is NOVA’s recommendation that BMPs should be designed with a no infiltration condition. NOTE: Given the "no infiltration condition", an impermeable liner is proposed to mitigate for the restriction associated with proximity to a steep slope. Restriction Element B:MP is within 100' of Contaminatt'.d Soils E I BMP is within 100' of lndustrial Activities L'lcking Source Control BMP is within 100' of \'V'ell/Groundwater Basin I BJvll) is within 50' of Septic Tanks/Leach Fields I BMP is within 10' of Structures/Tanks/Walls Considerations I I Mandatory BlvIP is within 10' of Sewer Utilities Optional Considerations Result I B:MP is within 10' of Groundwater Table BMP is with.in Hydi:ic SoiJs BMP is within Highly Liquefiable Soils and has Connectivity to Structures Blv1P is within 1.5 Times the Height of Adjacent Steep Slopes (2:25%) City Scaff has Assigned "Restricted" Infiltration Category is within P ed t!y ype D So BivfP is within 10' of Properry Line BMP is within FiJl Depths of 2:5' (Exjsting or Proposed) • M is witl1i.11 10' ofU derrr 1d Utili ·es BMP is within 250' of Ephemeral Stream Other (Provide detailed geotechnical support) Unrestricted. None of tbe restriction elements above are applicable. Is Element Applicable? (Yes/No) 0 Yes 0 0 Yes Restricted. One or more of the restriction elements above are applicable. Restricted 3 (E)BUILDINGKITCHEN/MPR A# 108787 FFE=159.50 (E)BUILDINGADMIN (E)BUILDING 300CLASSROOM FFE=153.48 (E)BUILDING 700CLASSROOM A# 52004 FFE=149.10 (E)BLDG 400CLASSROOM A# 108787 FFE=158.20 (E)BUILDING 500CLASSROOM A# 108787 FFE=149.10 (E) BUILDING 600CLASSROOM A# 108787 FFE=150.28 NEW BUILDING 800CLASSROOM FFE=150.60 (E)BUILDINGLIBRARY FFE=159.43 FFE=159.31 FFE=158.20 T T T B G T BG T --- AS - 2 . 3 (N) 5-30'x32' RELOCATABLE CLASSROOM BLDGS.PC#________ N.I.C.N.I.C.N.I.C.N.I.C. N.I.C. N.I.C.N.I.C. BIO FILTRATIONBASIN, SEE CIVILAND LANDSCAPEDWG. BIO FILTRATIONBASIN, SEE CIVILAND LANDSCAPEDWG. (E)FH (E)FH (E)FH (E)FH (E) PA(E)PA (E) PA (E) PA (E) PA (E)PA (E)PA PLAYFIELD NE PROPERTY LINE PR O P E R T Y L I N E (E) PA (E) PA (E) CONC. (E ) C O N C . (E) CONC. (E) CONC. (E ) C O N C . AM B R O S I A L N KW Y RELO902RELO903RELO904 CR A#114477(2016)RELO901 (N) MODULARCLASSROOM BLDG. CR CR CR RELOCATED(E) RELO.TOILETBLDG. RELO905 DF             CPT-3                    CPT-1  CPT-2     NWE N S 4373 Viewridge Avenue, Suite B San Diego, CA 92123 P: 858.292.7575 944 Calle Amanecer, Suite F San Clemente, CA 92673 P: 949.388.7710 NOVA www.usa-nova.com DRAWING TITLE: PLATE NO. 0 80' 160' DATE: DRAWN BY: REVIEWED BY: DTJ MS PROJECT NO.: SCALE:1"=80' GEOTECHNICAL MATERIALS SPECIAL INSPECTION DVBE SBE SDVOSB SLBE             ?     CONE PENETRATION TEST CPT-3 AVIARA OAKS ES - CUSD 6900 AMBROSIA LANE, CARLSBAD, CALIFORNIA 2021251 JAN 2023 SUBSURFACE INVESTIGATION MAP 1 OF 2 .5  ½  ½  ½  ½                                        ½    CPT-2ACPT-3 ½  ½  ½ ½                                      CPT-3                            ½  ½         CPT-1 4373 Viewridge Avenue, Suite B San Diego, CA 92123 P: 858.292.7575 944 Calle Amanecer, Suite F San Clemente, CA 92673 P: 949.388.7710 NOVA www.usa-nova.com DRAWING TITLE: 0 80'160' GEOTECHNICAL MATERIALS SPECIAL INSPECTION DVBE SBE SDVOSB SLBE         ? PLATE NO. DATE: DRAWN BY: REVIEWED BY: DTJ MS PROJECT NO.: SCALE:1"=80' AVIARA OAKS ES - CUSD 6900 AMBROSIA LANE, CARLSBAD, CALIFORNIA 2021251 JAN 2023 GEOLOGIC CROSS-SECTIONS 2 OF 2 ------ -✓----/ -/ -/ .,..,..,. ----------- l (210–VI–NEH, January 2009) United States Department of Agriculture Natural Resources Conservation Service Part 630 Hydrology National Engineering Handbook Chapter 7 Hydrologic Soil Groups Rain clouds Cloud formation Precipitation Transpiration from soil from ocean Transpir atio n Ocean Ground water Rock Deep percolation Soil Percolation Infiltration Surface r u n o f f E v a p oratio n fro m vegetation from streams Evaporation ~\ 1 / /1;;:-_ ..::::::,; ---- 'l/11\f ~r<F>7 . . . -------=---~ 7–1(210–VI–NEH, January 2009) Chapter 7 Hydrologic Soil Groups 630.0700 Introduction This chapter defines four hydrologic soil groups, or HSGs, that, along with land use, management prac- tices, and hydrologic conditions, determine a soil's associated runoff curve number (NEH630.09). Runoff curve numbers are used to estimate direct runoff from rainfall (NEH630.10). A map unit is a collection of areas defined and named the same in terms of their soil components or miscel- laneous areas or both (NSSH 627.03). Soil scientists assign map unit components to hydrologic soil groups. Map unit components assigned to a specific hydrologic soil group have similar physical and runoff charac- teristics. Soils in the United States, its territories, and Puerto Rico have been assigned to hydrologic soil groups. The assigned groups can be found by consult- ing the Natural Resources Conservation Service’s (NRCS) Field Office Technical Guide; published soil survey data bases; the NRCS Soil Data Mart Web site (http://soildatamart.nrcs.usda.gov/); and/or the Web Soil Survey Web site (http://websoilsurvey.nrcs.usda. gov/). The NRCS State soil scientist should be contacted if a soil survey does not exist for a given area or where the soils within a watershed have not been assigned to hydrologic groups. 630.0701 Hydrologic soil groups Soils were originally assigned to hydrologic soil groups based on measured rainfall, runoff, and infil- trometer data (Musgrave 1955). Since the initial work was done to establish these groupings, assignment of soils to hydrologic soil groups has been based on the judgment of soil scientists. Assignments are made based on comparison of the characteristics of unclas- sified soil profiles with profiles of soils already placed into hydrologic soil groups. Most of the groupings are based on the premise that soils found within a climatic region that are similar in depth to a restrictive layer or water table, transmission rate of water, texture, struc- ture, and degree of swelling when saturated, will have similar runoff responses. The classes are based on the following factors: s INTAKEANDTRANSMISSIONOFWATERUNDERTHECON- ditions of maximum yearly wetness (thoroughly wet) s SOILNOTFROZEN s BARESOILSURFACE s MAXIMUMSWELLINGOFEXPANSIVECLAYS The slope of the soil surface is not considered when assigning hydrologic soil groups. In its simplest form, hydrologic soil group is deter- mined by the water transmitting soil layer with the lowest saturated hydraulic conductivity and depth to any layer that is more or less water impermeable (such as a fragipan or duripan) or depth to a water table (if present). The least transmissive layer can be any soil horizon that transmits water at a slower rate relative to those horizons above or below it. For example, a layer having a saturated hydraulic conductivity of 9.0 micrometers per second (1.3 inches per hour) is the least transmissive layer in a soil if the layers above and below it have a saturated hydraulic conductivity of 23 micrometers per second (3.3 inches per hour). Water impermeable soil layers are among those types of layers recorded in the component restriction table of the National Soil Information System (NASIS) database. The saturated hydraulic conductivity of an impermeable or nearly impermeable layer may range Part 630 National Engineering Handbook Hydrologic Soil GroupsChapter 7 7–2 (210–VI–NEH, January 2009) from essentially 0 micrometers per second (0 inches per hour) to 0.9 micrometers per second (0.1 inches per hour). For simplicity, either case is considered im- permeable for hydrologic soil group purposes. In some cases, saturated hydraulic conductivity (a quantitative- ly measured characteristic) data are not always readily available or obtainable. In these situations, other soil properties such as texture, compaction (bulk density), strength of soil structure, clay mineralogy, and organic matter are used to estimate water movement. Table 7–1 relates saturated hydraulic conductivity to hydro- logic soil group. The four hydrologic soil groups (HSGs) are described as: Group A—Soils in this group have low runoff poten- tial when thoroughly wet. Water is transmitted freely through the soil. Group A soils typically have less than 10 percent clay and more than 90 percent sand or gravel and have gravel or sand textures. Some soils having loamy sand, sandy loam, loam or silt loam textures may be placed in this group if they are well aggregated, of low bulk density, or contain greater than 35 percent rock fragments. The limits on the diagnostic physical characteristics of group A are as follows. The saturated hydraulic con- ductivity of all soil layers exceeds 40.0 micrometers per second (5.67 inches per hour). The depth to any water impermeable layer is greater than 50 centime- ters [20 inches]. The depth to the water table is greater than 60 centimeters [24 inches]. Soils that are deeper than 100 centimeters [40 inches] to a water imperme- able layer and a water table are in group A if the satu- rated hydraulic conductivity of all soil layers within 100 centimeters [40 inches] of the surface exceeds 10 micrometers per second (1.42 inches per hour). Group B—Soils in this group have moderately low runoff potential when thoroughly wet. Water transmis- sion through the soil is unimpeded. Group B soils typi- cally have between 10 percent and 20 percent clay and 50 percent to 90 percent sand and have loamy sand or sandy loam textures. Some soils having loam, silt loam, silt, or sandy clay loam textures may be placed in this group if they are well aggregated, of low bulk density, or contain greater than 35 percent rock frag- ments. The limits on the diagnostic physical characteristics of group B are as follows. The saturated hydraulic conductivity in the least transmissive layer between the surface and 50 centimeters [20 inches] ranges from 10.0 micrometers per second (1.42 inches per hour) to 40.0 micrometers per second (5.67 inches per hour). The depth to any water impermeable layer is greater than 50 centimeters [20 inches]. The depth to the water table is greater than 60 centimeters [24 inches]. Soils that are deeper than 100 centimeters [40 inches] to a water impermeable layer and a water table are in group B if the saturated hydraulic conductivity of all soil layers within 100 centimeters [40 inches] of the surface exceeds 4.0 micrometers per second (0.57 inches per hour) but is less than 10.0 micrometers per second (1.42 inches per hour). Group C—Soils in this group have moderately high runoff potential when thoroughly wet. Water transmis- sion through the soil is somewhat restricted. Group C soils typically have between 20 percent and 40 percent clay and less than 50 percent sand and have loam, silt loam, sandy clay loam, clay loam, and silty clay loam textures. Some soils having clay, silty clay, or sandy clay textures may be placed in this group if they are well aggregated, of low bulk density, or contain greater than 35 percent rock fragments. The limits on the diagnostic physical characteristics of group C are as follows. The saturated hydraulic conductivity in the least transmissive layer between the surface and 50 centimeters [20 inches] is between 1.0 micrometers per second (0.14 inches per hour) and 10.0 micrometers per second (1.42 inches per hour). The depth to any water impermeable layer is greater than 50 centimeters [20 inches]. The depth to the water table is greater than 60 centimeters [24 inches]. Soils that are deeper than 100 centimeters [40 inches] to a restriction and a water table are in group C if the saturated hydraulic conductivity of all soil lay- ers within 100 centimeters [40 inches] of the surface exceeds 0.40 micrometers per second (0.06 inches per hour) but is less than 4.0 micrometers per second (0.57 inches per hour). Group D—Soils in this group have high runoff poten- tial when thoroughly wet. Water movement through the soil is restricted or very restricted. Group D soils typically have greater than 40 percent clay, less than 50 percent sand, and have clayey textures. In some areas, they also have high shrink-swell potential. All soils with a depth to a water impermeable layer less than 50 centimeters [20 inches] and all soils with a water table if the saturated hydraulic conductivity of all soil lay- ers within 100 centimeters [40 inches] of the surface exceeds 0.40 micrometers per second (0.06 inches per hour) but is less than 4.0 micrometers per second (0.57 inches per hour). Soils that are deeper than 100 centimeters [40 inches] to a restriction and a water table are in group C i 7–3(210–VI–NEH, January 2009) Part 630 National Engineering Handbook Hydrologic Soil GroupsChapter 7 within 60 centimeters [24 inches] of the surface are in this group, although some may have a dual classifica- tion, as described in the next section, if they can be adequately drained. The limits on the physical diagnostic characteristics of group D are as follows. For soils with a water im- permeable layer at a depth between 50 centimeters and 100 centimeters [20 and 40 inches], the saturated hydraulic conductivity in the least transmissive soil layer is less than or equal to 1.0 micrometers per sec- ond (0.14 inches per hour). For soils that are deeper than 100 centimeters [40 inches] to a restriction or water table, the saturated hydraulic conductivity of all soil layers within 100 centimeters [40 inches] of the surface is less than or equal to 0.40 micrometers per second (0.06 inches per hour). Dual hydrologic soil groups—Certain wet soils are placed in group D based solely on the presence of a water table within 60 centimeters [24 inches] of the surface even though the saturated hydraulic conduc- tivity may be favorable for water transmission. If these soils can be adequately drained, then they are assigned to dual hydrologic soil groups (A/D, B/D, and C/D) based on their saturated hydraulic conductivity and the water table depth when drained. The first letter applies to the drained condition and the second to the undrained condition. For the purpose of hydrologic soil group, adequately drained means that the seasonal high water table is kept at least 60 centimeters [24 inches] below the surface in a soil where it would be higher in a natural state. Matrix of hydrologic soil group assignment criteria—The decision matrix in table 7–1 can be used to determine a soil’s hydrologic soil group. If saturated hydraulic conductivity data are available and deemed to be reliable, then these data, along with water table depth information, should be used to place the soil into the appropriate hydrologic soil group. If these data are not available, the hydrologic soil group is determined by observing the properties of the soil in the field. Factors such as texture, compaction (bulk density), strength of soil structure, clay mineralogy, and organic matter are considered in estimating the hydraulic conductivity of each layer in the soil profile. The depth and hydraulic conductivity of any water im- permeable layer and the depth to any high water table are used to determine correct hydrologic soil group for the soil. The property that is most limiting to water movement generally determines the soil’s hydrologic group. In anomalous situations, when adjustments to hydrologic soil group become necessary, they shall be made by the NRCS State soil scientist in consultation with the State conservation engineer. Part 630 National Engineering Handbook Hydrologic Soil GroupsChapter 7 7–4 (210–VI–NEH, January 2009) Table 7–1 Criteria for assignment of hydrologic soil group (HSG) 1/ An impermeable layer has a Ksat less than 0.01 μm/s [0.0014 in/h] or a component restriction of fragipan; duripan; petrocalcic; orstein; petrogypsic; cemented horizon; densic material; placic; bedrock, paralithic; bedrock, lithic; bedrock, densic; or permafrost. 2/ High water table during any month during the year. 3/ Dual HSG classes are applied only for wet soils (water table less than 60 cm [24 in]). If these soils can be drained, a less restrictive HSG can be assigned, depending on the Ksat. Depth to water impermeable layer 1/ Depth to high water table 2/ Ksat of least transmissive layer in depth range Ksat depth range HSG 3/ <50 cm [<20 in]———D 50 to 100 cm [20 to 40 in] <60 cm [<24 in] >40.0 μm/s (>5.67 in/h) 0 to 60 cm [0 to 24 in]A/D >10.0 to ≤40.0 μm/s (>1.42 to ≤5.67 in/h) 0 to 60 cm [0 to 24 in]B/D >1.0 to ≤10.0 μm/s (>0.14 to ≤1.42 in/h) 0 to 60 cm [0 to 24 in]C/D ≤1.0 μm/s (≤0.14 in/h) 0 to 60 cm [0 to 24 in]D ≥60 cm [≥24 in] >40.0 μm/s (>5.67 in/h) 0 to 50 cm [0 to 20 in]A >10.0 to ≤40.0 μm/s (>1.42 to ≤5.67 in/h) 0 to 50 cm [0 to 20 in]B >1.0 to ≤10.0 μm/s (>0.14 to ≤1.42 in/h) 0 to 50 cm [0 to 20 in]C ≤1.0 μm/s (≤0.14 in/h) 0 to 50 cm [0 to 20 in]D >100 cm [>40 in] <60 cm [<24 in] >10.0 μm/s (>1.42 in/h) 0 to 100 cm [0 to 40 in]A/D >4.0 to ≤10.0 μm/s (>0.57 to ≤1.42 in/h) 0 to 100 cm [0 to 40 in]B/D >0.40 to ≤4.0 μm/s (>0.06 to ≤0.57 in/h) 0 to 100 cm [0 to 40 in]C/D ≤0.40 μm/s (≤0.06 in/h) 0 to 100 cm [0 to 40 in]D 60 to 100 cm [24 to 40 in] >40.0 μm/s (>5.67 in/h) 0 to 50 cm [0 to 20 in]A >10.0 to ≤40.0 μm/s (>1.42 to ≤5.67 in/h) 0 to 50 cm [0 to 20 in]B >1.0 to ≤10.0 μm/s (>0.14 to ≤1.42 in/h) 0 to 50 cm [0 to 20 in]C ≤1.0 μm/s (≤0.14 in/h) 0 to 50 cm [0 to 20 in]D >100 cm [>40 in] >10.0 μm/s (>1.42 in/h) 0 to 100 cm [0 to 40 in]A >4.0 to ≤ 10.0 μm/s (>0.57 to ≤1.42 in/h) 0 to 100 cm [0 to 40 in]B 0 to 100 cm [0 to 40 in]C>0.40 to ≤4.0 μm/s (>0.06 to ≤0.57 in/h) ≤0.40 μm/s (≤0.06 in/h) 0 to 100 cm [0 to 40 in]D I ---I 7–5(210–VI–NEH, January 2009) Part 630 National Engineering Handbook Hydrologic Soil GroupsChapter 7 630.0702 Disturbed soils As a result of construction and other disturbances, the soil profile can be altered from its natural state and the listed group assignments generally no longer apply, nor can any supposition based on the natural soil be made that will accurately describe the hydro- logic properties of the disturbed soil. In these circum- stances, an onsite investigation should be made to determine the hydrologic soil group. A general set of guidelines for estimating saturated hydraulic conduc- tivity from field observable characteristics is presented in the Soil Survey Manual (Soil Survey Staff 1993). 630.0703 References Musgrave, G.W. 1955. How much of the rain enters the soil? In Water: U.S. Department of Agriculture. Yearbook. Washington, DC. pp. 151–159. Nielsen, R.D., and A.T. Hjelmfelt. 1998. Hydrologic soil group assessment. Water Resources Engineering 98. In Abt, Young-Pezeshk, and Watson (eds.), Proc. of Internat. Water Resources Eng. Conf., Am. Soc. Civil Engr: pp. 1297–1302. Rawls, W.J., and D.L. Brakensiek. 1983. A procedure to predict Green-Ampt infiltration parameters. In Advances in infiltration. Proc. of the National Con- ference on Advances in Infiltration. Chicago, IL. U.S. Department of Agriculture, Natural Resources Conservation Service. 1993. Soil Survey Manual. Agricultural Handbook No. 18, chapter 3. U.S. Government Printing Office, Washington, DC. U.S. Department of Agriculture, Natural Resources Conservation Service. 1993. National Engineering Handbook, title 210–VI. Part 630, chapters 9 and 10. Washington, DC. Available online at http://di- rectives.sc.egov.usda.gov/. U.S. Department of Agriculture, Natural Resources Conservation Service. 2005. National Soil Sur- vey Handbook, title 430–VI. Washington, DC. Available online at http://soils.usda.gov/techni- cal/handbook/.   Dr a i n a g e R e p o r t Av i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n Oc t o b e r 2 0 2 3     Pa g e 3 Jo b # 7 1 7 - 0 2 AT T A C H M E N T 3 Ra t i o n a l M e t h o d C a l c u l a t i o n s - Pr e - p r o j e c t a n d P o s t - p r o j e c t C o n d i t i o n s   E Basin Area (Ac.) Imperviousness % C Tc (min) I (in/hr) Q100 (cfs) A-1 1.90 33 0.50 8.70 4.68 4.41 A-2 0.83 83 0.80 8.70 4.68 3.10 A-3 0.71 54 0.62 8.70 4.68 2.06 A-4 0.53 25 0.45 8.70 4.68 1.11 A-5 0.49 69 0.72 8.70 4.68 1.64 A-6 0.64 64 0.68 8.70 4.68 2.05 A-7 1.26 17 0.40 8.70 4.68 2.39 Total 6.36 44 0.56 8.70 4.68 16.76 Basin Area (Ac.) Imperviousness % C Tc (min) I (in/hr) Q100 (cfs) B-1 1.27 72 0.73 11.28 3.95 3.69 B-2 2.48 22 0.43 11.28 3.95 4.22 Total 3.75 39 0.53 11.28 3.95 7.90 Basin Area (Ac.) Imperviousness % C Tc (min) I (in/hr) Q100 (cfs) OS-1 1.22 49 0.60 6.98 5.44 3.95 Basin Area (Ac.) Imperviousness % C Tc (min) I (in/hr) Q100 (cfs) OS-2 0.45 53 0.62 5 6.69 1.87 NOTE: A 5 MINUTE MIN. TC IS APPLIED TO OS-2 PRE‐PROJECT CONDITION HYDROLOGY SUMMARY PRE-PROJECT DRAINAGE AREAS TRIBUTARY TO POC-1 PRE-PROJECT DRAINAGE AREAS TRIBUTARY TO POC-2 PRE-PROJECT DRAINAGE AREAS DISCHARGING OVERLAND TO POC-3 PRE-PROJECT DRAINAGE AREAS DISCHARGING OVERLAND TO POC-4 ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1532 Analysis prepared by: Tory R. Walker Engineering, Inc. 122 Civic Center Drive Suite 206 Vista, CA 92084 ************************** DESCRIPTION OF STUDY ************************** * AVIARA OAKS ELEMENTARY SCHOOL * * 100YR DESIGN STORM * * PRE-PROJECT ROUTING, BASIN A * ************************************************************************** FILE NAME: BASIN-A.DAT TIME/DATE OF STUDY: 07:37 10/28/2023 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.540 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 30.0 15.0 0.020/0.020/0.020 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): NATURAL DESERT LANDSCAPING RUNOFF COEFFICIENT = .5000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 150.00 UPSTREAM ELEVATION(FEET) = 218.50 DOWNSTREAM ELEVATION(FEET) = 189.00 ELEVATION DIFFERENCE(FEET) = 29.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.013 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.681 SUBAREA RUNOFF(CFS) = 0.17 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.17 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ CHANNEL LENGTH THRU SUBAREA(FEET) = 105.00 REPRESENTATIVE CHANNEL SLOPE = 0.1200 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 90.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 5.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.225 *USER SPECIFIED(SUBAREA): STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .5000 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.87 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.02 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 5.59 SUBAREA AREA(ACRES) = 0.45 SUBAREA RUNOFF(CFS) = 1.40 AREA-AVERAGE RUNOFF COEFFICIENT = 0.500 TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) = 1.56 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 3.41 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 255.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 2 USED)<<<<< ============================================================================ REPRESENTATIVE SLOPE = 0.0600 STREET LENGTH(FEET) = 175.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.89 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.12 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.63 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.24 STREET FLOW TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) = 6.22 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.811 *USER SPECIFIED(SUBAREA): STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .5000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.500 SUBAREA AREA(ACRES) = 0.92 SUBAREA RUNOFF(CFS) = 2.67 TOTAL AREA(ACRES) = 1.4 PEAK FLOW RATE(CFS) = 4.13 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.38 FLOW VELOCITY(FEET/SEC.) = 5.03 DEPTH*VELOCITY(FT*FT/SEC.) = 1.48 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 430.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ CHANNEL LENGTH THRU SUBAREA(FEET) = 115.00 REPRESENTATIVE CHANNEL SLOPE = 0.0560 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 55.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.537 *USER SPECIFIED(SUBAREA): STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .5000 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.79 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.96 AVERAGE FLOW DEPTH(FEET) = 0.11 TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) = 6.71 SUBAREA AREA(ACRES) = 0.48 SUBAREA RUNOFF(CFS) = 1.33 AREA-AVERAGE RUNOFF COEFFICIENT = 0.500 TOTAL AREA(ACRES) = 1.9 PEAK FLOW RATE(CFS) = 5.26 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 4.23 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 = 545.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.9 TC(MIN.) = 6.71 PEAK FLOW RATE(CFS) = 5.26 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS FROM NODE 104 TO 105 (POC1), FLOW IS CONVEYED THROUGH APPROXIMATELY 840 FT OF ONSITE STORM DRAIN. ASSUME 12" DIA, FLOWING FULL: FLOW AREA: 3.1416 x 0.5 FT^2= 0.785 SF FLOW VELOCITY: 5.4 CFS/0.785 SF = 6.88 FT/S Tc = 6.7 MIN + [840 FT/ (6.88 FT/S)/60] = 8.7 MIN ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1532 Analysis prepared by: Tory R. Walker Engineering, Inc. 122 Civic Center Drive Suite 206 Vista, CA 92084 ************************** DESCRIPTION OF STUDY ************************** * AVIARA OAKS ELEMENTARY SCHOOL * * 100YR DESIGN STORM * * PRE-PROJECT ROUTING, BASIN B * ************************************************************************** FILE NAME: BASIN-B.DAT TIME/DATE OF STUDY: 07:40 10/28/2023 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.540 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .4300 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 35.00 UPSTREAM ELEVATION(FEET) = 154.50 DOWNSTREAM ELEVATION(FEET) = 154.25 ELEVATION DIFFERENCE(FEET) = 0.25 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.982 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.949 SUBAREA RUNOFF(CFS) = 0.11 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.11 **************************************************************************** FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ CHANNEL LENGTH THRU SUBAREA(FEET) = 230.00 REPRESENTATIVE CHANNEL SLOPE = 0.0170 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 90.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.959 *USER SPECIFIED(SUBAREA): NATURAL DESERT LANDSCAPING RUNOFF COEFFICIENT = .4300 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.18 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.16 AVERAGE FLOW DEPTH(FEET) = 0.12 TRAVEL TIME(MIN.) = 3.30 Tc(MIN.) = 11.28 SUBAREA AREA(ACRES) = 2.43 SUBAREA RUNOFF(CFS) = 4.14 AREA-AVERAGE RUNOFF COEFFICIENT = 0.430 TOTAL AREA(ACRES) = 2.5 PEAK FLOW RATE(CFS) = 4.22 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 1.32 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 265.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 2.5 TC(MIN.) = 11.28 PEAK FLOW RATE(CFS) = 4.22 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1532 Analysis prepared by: Tory R. Walker Engineering, Inc. 122 Civic Center Drive Suite 206 Vista, CA 92084 ************************** DESCRIPTION OF STUDY ************************** * AVIARA OAKS ELEMENTARY SCHOOL * * 100YR DESIGN STORM * * PRE-PROJECT ROUTING, BASIN OS-1 * ************************************************************************** FILE NAME: OS1RUN.DAT TIME/DATE OF STUDY: 07:43 10/28/2023 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.540 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 40.0 20.0 0.025/0.025/0.025 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): NATURAL DESERT LANDSCAPING RUNOFF COEFFICIENT = .6000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 85.00 UPSTREAM ELEVATION(FEET) = 201.00 DOWNSTREAM ELEVATION(FEET) = 164.00 ELEVATION DIFFERENCE(FEET) = 37.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.852 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.692 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.20 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.20 **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ CHANNEL LENGTH THRU SUBAREA(FEET) = 160.00 REPRESENTATIVE CHANNEL SLOPE = 0.0180 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 60.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.10 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.281 *USER SPECIFIED(SUBAREA): STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .6000 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.90 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.60 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 1.67 Tc(MIN.) = 5.52 SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 1.39 AREA-AVERAGE RUNOFF COEFFICIENT = 0.600 TOTAL AREA(ACRES) = 0.4 PEAK FLOW RATE(CFS) = 1.58 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 1.98 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 302.00 = 245.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 2 USED)<<<<< ============================================================================ REPRESENTATIVE SLOPE = 0.0500 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.025 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.025 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.025 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.88 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 6.45 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.55 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.28 STREET FLOW TRAVEL TIME(MIN.) = 1.46 Tc(MIN.) = 6.98 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.396 *USER SPECIFIED(SUBAREA): STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .6000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.600 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 2.59 TOTAL AREA(ACRES) = 1.2 PEAK FLOW RATE(CFS) = 3.95 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 7.46 FLOW VELOCITY(FEET/SEC.) = 4.89 DEPTH*VELOCITY(FT*FT/SEC.) = 1.49 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 303.00 = 645.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.2 TC(MIN.) = 6.98 PEAK FLOW RATE(CFS) = 3.95 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS Post-Project Drainage Basins Basin Area (Ac.) Imperviousness % C Tc (min) I (in/hr) Q100 (cfs) A-1 0.75 39 0.53 7.6 5.09 2.03 A-2 0.70 44 0.57 7.6 5.09 2.02 A-3 0.04 0 0.30 7.6 5.09 0.06 A-4 0.60 97 0.88 7.6 5.09 2.69 A-5 0.36 58 0.65 7.6 5.09 1.19 A-6 0.18 61 0.67 7.6 5.09 0.61 A-7 0.31 68 0.71 7.6 5.09 1.11 A-8 0.50 34 0.50 7.6 5.09 1.28 A-9 0.65 51 0.60 7.6 5.09 2.00 A-10 0.87 77 0.76 7.6 5.09 3.37 A-11 0.49 76 0.75 7.6 5.09 1.88 A-12 0.35 0 0.30 7.6 5.09 0.53 A-13 0.36 61 0.67 7.6 5.09 1.22 A-14 0.55 75 0.75 7.6 5.09 2.09 A-15 0.64 58 0.65 7.6 5.09 2.11 Sub-total 7.35 58 0.65 7.6 5.09 24.13 10.6 BYP-1 1.26 28 0.47 7.6 5.09 3.03 Total 8.61 54 0.62 7.6 5.09 13.63 Basin Area (Ac.)Imperviousness % C Tc (min)I (in/hr)Q100 (cfs) B-1 0.71 71 0.72 7.6 5.10 2.62 B-2 1.05 67 0.70 7.6 5.10 3.75 B-3 1.23 0 0.30 7.6 5.10 1.88 Total 2.99 40 0.54 7.6 5.10 8.24 4.6 Basin Area (Ac.)Imperviousness % C Tc (min)I (in/hr)Q100 (cfs) OS-1 0.26 81 0.78 5 6.69 1.36 C-1 0.10 75 0.75 5 6.69 0.50 Total 0.36 79 0.77 5 6.69 1.87 NOTE: A 5 MINUTE MIN. TC IS APPLIED TO OS-1 AND C-1 Basin Area (Ac.)Imperviousness % C Tc (min)I (in/hr)Q100 (cfs) OS-2 0.03 0 0.30 5 6.69 0.06 NOTE: A 5 MINUTE MIN. TC IS APPLIED TO OS-2 POST‐PROJECT CONDITION HYDROLOGY SUMMARY BMP-1 DETAINED OUTFLOW (CFS) BMP-2 DETAINED OUTFLOW (CFS) PROPOSED DRAINAGE CONDITIONS TRIBUTARY TO POC-2 PROPOSED DRAINAGE CONDITIONS TRIBUTARY TO POC-1 PROPOSED DRAINAGE CONDITIONS TRIBUTARY TO POC-4 PROPOSED DRAINAGE CONDITIONS TRIBUTARY TO POC-3 717_DRN Cvalue Study-PostProject_2023 10 18.xls I I I I I I I I I I I I ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1532 Analysis prepared by: Tory R. Walker Engineering, Inc. 122 Civic Center Drive Suite 206 Vista, CA 92084 ************************** DESCRIPTION OF STUDY ************************** * AVIARA OAKS ELEMENTARY SCHOOL * * 100YR DESIGN STORM * * POST-PROJECT ROUTING, BASIN A * ************************************************************************** FILE NAME: 717POSTA.DAT TIME/DATE OF STUDY: 13:41 10/24/2023 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.540 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .5300 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 210.00 DOWNSTREAM ELEVATION(FEET) = 169.50 ELEVATION DIFFERENCE(FEET) = 40.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.763 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.692 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.18 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.18 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ CHANNEL LENGTH THRU SUBAREA(FEET) = 160.00 REPRESENTATIVE CHANNEL SLOPE = 0.0500 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.152 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .5300 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.32 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.85 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 0.93 Tc(MIN.) = 5.70 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 2.28 AREA-AVERAGE RUNOFF COEFFICIENT = 0.530 TOTAL AREA(ACRES) = 0.8 PEAK FLOW RATE(CFS) = 2.45 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 3.44 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 260.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.00 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.45 PIPE TRAVEL TIME(MIN.) = 0.69 Tc(MIN.) = 6.39 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 510.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.712 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .5700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5493 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 2.28 TOTAL AREA(ACRES) = 1.5 TOTAL RUNOFF(CFS) = 4.55 TC(MIN.) = 6.39 **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.712 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .3000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5426 SUBAREA AREA(ACRES) = 0.04 SUBAREA RUNOFF(CFS) = 0.07 TOTAL AREA(ACRES) = 1.5 TOTAL RUNOFF(CFS) = 4.62 TC(MIN.) = 6.39 **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.712 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .8800 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6395 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 3.02 TOTAL AREA(ACRES) = 2.1 TOTAL RUNOFF(CFS) = 7.63 TC(MIN.) = 6.39 **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ REPRESENTATIVE SLOPE = 0.0240 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.53 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.63 PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) = 6.63 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 = 630.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.581 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .6700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6419 SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 0.67 TOTAL AREA(ACRES) = 2.3 TOTAL RUNOFF(CFS) = 8.13 TC(MIN.) = 6.63 **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.581 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .6700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6453 SUBAREA AREA(ACRES) = 0.31 SUBAREA RUNOFF(CFS) = 1.16 TOTAL AREA(ACRES) = 2.6 TOTAL RUNOFF(CFS) = 9.29 TC(MIN.) = 6.63 **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ REPRESENTATIVE SLOPE = 0.0140 FLOW LENGTH(FEET) = 90.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.22 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.29 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 6.83 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 105.00 = 720.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.471 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .6500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6459 SUBAREA AREA(ACRES) = 0.36 SUBAREA RUNOFF(CFS) = 1.28 TOTAL AREA(ACRES) = 2.9 TOTAL RUNOFF(CFS) = 10.39 TC(MIN.) = 6.83 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.471 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .5000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6247 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.37 TOTAL AREA(ACRES) = 3.4 TOTAL RUNOFF(CFS) = 11.76 TC(MIN.) = 6.83 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.471 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .6000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6207 SUBAREA AREA(ACRES) = 0.65 SUBAREA RUNOFF(CFS) = 2.13 TOTAL AREA(ACRES) = 4.1 TOTAL RUNOFF(CFS) = 13.89 TC(MIN.) = 6.83 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ REPRESENTATIVE SLOPE = 0.0070 FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.17 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 13.89 PIPE TRAVEL TIME(MIN.) = 0.81 Tc(MIN.) = 7.64 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 1020.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 13 ---------------------------------------------------------------------------- >>>>>CLEAR THE MAIN-STREAM MEMORY<<<<< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .6500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00 UPSTREAM ELEVATION(FEET) = 159.00 DOWNSTREAM ELEVATION(FEET) = 154.70 ELEVATION DIFFERENCE(FEET) = 4.30 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.254 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.692 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.17 TOTAL AREA(ACRES) = 0.04 TOTAL RUNOFF(CFS) = 0.17 **************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ CHANNEL LENGTH THRU SUBAREA(FEET) = 135.00 REPRESENTATIVE CHANNEL SLOPE = 0.0140 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 6.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.692 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .6500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.48 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.73 AVERAGE FLOW DEPTH(FEET) = 0.20 TRAVEL TIME(MIN.) = 1.30 Tc(MIN.) = 4.56 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 2.61 AREA-AVERAGE RUNOFF COEFFICIENT = 0.650 TOTAL AREA(ACRES) = 0.6 PEAK FLOW RATE(CFS) = 2.78 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.29 FLOW VELOCITY(FEET/SEC.) = 2.05 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 112.00 = 195.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 90.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.18 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.78 PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 4.80 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 113.00 = 285.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.692 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6962 SUBAREA AREA(ACRES) = 0.55 SUBAREA RUNOFF(CFS) = 2.76 TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) = 5.54 TC(MIN.) = 4.80 **************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 125.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.67 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.54 PIPE TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) = 5.17 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 114.00 = 410.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 114.00 TO NODE 114.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.551 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .6700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6901 SUBAREA AREA(ACRES) = 0.36 SUBAREA RUNOFF(CFS) = 1.58 TOTAL AREA(ACRES) = 1.6 TOTAL RUNOFF(CFS) = 7.01 TC(MIN.) = 5.17 **************************************************************************** FLOW PROCESS FROM NODE 114.00 TO NODE 115.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 65.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.97 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.01 PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) = 5.35 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 115.00 = 475.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.406 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7045 SUBAREA AREA(ACRES) = 0.49 SUBAREA RUNOFF(CFS) = 2.35 TOTAL AREA(ACRES) = 2.0 TOTAL RUNOFF(CFS) = 9.21 TC(MIN.) = 5.35 **************************************************************************** FLOW PROCESS FROM NODE 115.00 TO NODE 116.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 80.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.23 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.21 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 5.56 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 116.00 = 555.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 116.00 TO NODE 116.00 IS CODE = 11 ---------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 9.21 5.56 6.247 2.04 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 116.00 = 555.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 13.89 7.64 5.089 4.09 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 116.00 = 1020.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 19.32 5.56 6.247 2 21.39 7.64 5.089 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 21.39 Tc(MIN.) = 7.64 TOTAL AREA(ACRES) = 6.1 **************************************************************************** FLOW PROCESS FROM NODE 116.00 TO NODE 116.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.089 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7600 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6625 SUBAREA AREA(ACRES) = 0.87 SUBAREA RUNOFF(CFS) = 3.36 TOTAL AREA(ACRES) = 7.0 TOTAL RUNOFF(CFS) = 23.60 TC(MIN.) = 7.64 **************************************************************************** FLOW PROCESS FROM NODE 116.00 TO NODE 116.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.089 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .3000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6452 SUBAREA AREA(ACRES) = 0.35 SUBAREA RUNOFF(CFS) = 0.53 TOTAL AREA(ACRES) = 7.3 TOTAL RUNOFF(CFS) = 24.13 TC(MIN.) = 7.64 ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 7.3 TC(MIN.) = 7.64 PEAK FLOW RATE(CFS) = 24.13 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1532 Analysis prepared by: Tory R. Walker Engineering, Inc. 122 Civic Center Drive Suite 206 Vista, CA 92084 ************************** DESCRIPTION OF STUDY ************************** * AVIARA OAKS ELEMENTARY SCHOOL * * 100YR DESIGN STORM * * POSTPROJECT ROUTING, BASIN B * ************************************************************************** FILE NAME: 717POSTB.DAT TIME/DATE OF STUDY: 14:27 10/24/2023 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.540 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 157.60 DOWNSTREAM ELEVATION(FEET) = 156.00 ELEVATION DIFFERENCE(FEET) = 1.60 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.114 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 69.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.596 SUBAREA RUNOFF(CFS) = 0.23 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.23 **************************************************************************** FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00 REPRESENTATIVE CHANNEL SLOPE = 0.0060 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.355 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.12 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.50 AVERAGE FLOW DEPTH(FEET) = 0.37 TRAVEL TIME(MIN.) = 1.95 Tc(MIN.) = 7.06 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 3.75 AREA-AVERAGE RUNOFF COEFFICIENT = 0.700 TOTAL AREA(ACRES) = 1.0 PEAK FLOW RATE(CFS) = 3.94 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.49 FLOW VELOCITY(FEET/SEC.) = 1.79 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 275.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ REPRESENTATIVE SLOPE = 0.0140 FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.88 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.94 PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 7.57 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.00 = 455.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 13 ---------------------------------------------------------------------------- >>>>>CLEAR THE MAIN-STREAM MEMORY<<<<< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .3000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00 UPSTREAM ELEVATION(FEET) = 156.00 DOWNSTREAM ELEVATION(FEET) = 155.00 ELEVATION DIFFERENCE(FEET) = 1.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.408 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.451 SUBAREA RUNOFF(CFS) = 0.13 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.13 **************************************************************************** FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ CHANNEL LENGTH THRU SUBAREA(FEET) = 130.00 REPRESENTATIVE CHANNEL SLOPE = 0.0150 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 90.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.793 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .3000 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.78 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.82 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 2.65 Tc(MIN.) = 12.06 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 1.29 AREA-AVERAGE RUNOFF COEFFICIENT = 0.300 TOTAL AREA(ACRES) = 1.2 PEAK FLOW RATE(CFS) = 1.40 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 0.97 LONGEST FLOWPATH FROM NODE 210.00 TO NODE 212.00 = 190.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 212.00 TO NODE 203.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 4.01 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.40 PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 12.48 LONGEST FLOWPATH FROM NODE 210.00 TO NODE 203.00 = 290.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 11 ---------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.40 12.48 3.711 1.23 LONGEST FLOWPATH FROM NODE 210.00 TO NODE 203.00 = 290.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.94 7.57 5.120 1.05 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.00 = 455.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 4.79 7.57 5.120 2 4.25 12.48 3.711 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.79 Tc(MIN.) = 7.57 TOTAL AREA(ACRES) = 2.3 **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ REPRESENTATIVE SLOPE = 0.0140 FLOW LENGTH(FEET) = 18.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.20 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.79 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 7.62 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 204.00 = 473.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.099 *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5402 SUBAREA AREA(ACRES) = 0.71 SUBAREA RUNOFF(CFS) = 2.61 TOTAL AREA(ACRES) = 3.0 TOTAL RUNOFF(CFS) = 8.24 TC(MIN.) = 7.62 ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 3.0 TC(MIN.) = 7.62 PEAK FLOW RATE(CFS) = 8.24 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1532 Analysis prepared by: Tory R. Walker Engineering, Inc. 122 Civic Center Drive Suite 206 Vista, CA 92084 ************************** DESCRIPTION OF STUDY ************************** * AVIARA OAKS ELEMENTARY * * 100YR DESIGN STORM * * POSTPROJECT ROUTING, BASIN C * ************************************************************************** FILE NAME: 717POSTC.DAT TIME/DATE OF STUDY: 14:41 10/24/2023 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.540 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 85.00 UPSTREAM ELEVATION(FEET) = 148.00 DOWNSTREAM ELEVATION(FEET) = 142.20 ELEVATION DIFFERENCE(FEET) = 5.80 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.062 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.692 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.50 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.50 ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.1 TC(MIN.) = 3.06 PEAK FLOW RATE(CFS) = 0.50 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS   Dr a i n a g e R e p o r t Av i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n Oc t o b e r 2 0 2 3     Pa g e 4 Jo b # 7 1 7 - 0 2 AT T A C H M E N T 4 Hy d r a u l i c C a l c u l a t i o n s   E   Dr a i n a g e R e p o r t Av i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n Oc t o b e r 2 0 2 3     Pa g e 6 Jo b # 7 1 7 - 0 2 De t e n t i o n R o u t i n g – B M P 1 a n d B M P 2   E RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 10/24/2023 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 8 MIN. 6 HOUR RAINFALL 2.54 INCHES BASIN AREA 7.35 ACRES RUNOFF COEFFICIENT 0.65 PEAK DISCHARGE 24.13 CFS TIME (MIN) = 0 DISCHARGE (CFS) = 0 TIME (MIN) = 8 DISCHARGE (CFS) = 0.7 TIME (MIN) = 16 DISCHARGE (CFS) = 0.7 TIME (MIN) = 24 DISCHARGE (CFS) = 0.8 TIME (MIN) = 32 DISCHARGE (CFS) = 0.8 TIME (MIN) = 40 DISCHARGE (CFS) = 0.8 TIME (MIN) = 48 DISCHARGE (CFS) = 0.8 TIME (MIN) = 56 DISCHARGE (CFS) = 0.8 TIME (MIN) = 64 DISCHARGE (CFS) = 0.9 TIME (MIN) = 72 DISCHARGE (CFS) = 0.9 TIME (MIN) = 80 DISCHARGE (CFS) = 0.9 TIME (MIN) = 88 DISCHARGE (CFS) = 0.9 TIME (MIN) = 96 DISCHARGE (CFS) = 1 TIME (MIN) = 104 DISCHARGE (CFS) = 1 TIME (MIN) = 112 DISCHARGE (CFS) = 1 TIME (MIN) = 120 DISCHARGE (CFS) = 1.1 TIME (MIN) = 128 DISCHARGE (CFS) = 1.1 TIME (MIN) = 136 DISCHARGE (CFS) = 1.2 TIME (MIN) = 144 DISCHARGE (CFS) = 1.2 TIME (MIN) = 152 DISCHARGE (CFS) = 1.3 TIME (MIN) = 160 DISCHARGE (CFS) = 1.4 TIME (MIN) = 168 DISCHARGE (CFS) = 1.5 TIME (MIN) = 176 DISCHARGE (CFS) = 1.6 TIME (MIN) = 184 DISCHARGE (CFS) = 1.7 TIME (MIN) = 192 DISCHARGE (CFS) = 1.8 TIME (MIN) = 200 DISCHARGE (CFS) = 2.1 TIME (MIN) = 208 DISCHARGE (CFS) = 2.3 TIME (MIN) = 216 DISCHARGE (CFS) = 2.8 TIME (MIN) = 224 DISCHARGE (CFS) = 3.2 TIME (MIN) = 232 DISCHARGE (CFS) = 4.7 TIME (MIN) = 240 DISCHARGE (CFS) = 6.1 TIME (MIN) = 248 DISCHARGE (CFS) = 24.13 TIME (MIN) = 256 DISCHARGE (CFS) = 3.7 TIME (MIN) = 264 DISCHARGE (CFS) = 2.5 TIME (MIN) = 272 DISCHARGE (CFS) = 2 TIME (MIN) = 280 DISCHARGE (CFS) = 1.6 TIME (MIN) = 288 DISCHARGE (CFS) = 1.4 TIME (MIN) = 296 DISCHARGE (CFS) = 1.3 TIME (MIN) = 304 DISCHARGE (CFS) = 1.2 TIME (MIN) = 312 DISCHARGE (CFS) = 1.1 TIME (MIN) = 320 DISCHARGE (CFS) = 1 TIME (MIN) = 328 DISCHARGE (CFS) = 0.9 TIME (MIN) = 336 DISCHARGE (CFS) = 0.9 TIME (MIN) = 344 DISCHARGE (CFS) = 0.8 TIME (MIN) = 352 DISCHARGE (CFS) = 0.8 TIME (MIN) = 360 DISCHARGE (CFS) = 0.7 TIME (MIN) = 368 DISCHARGE (CFS) = 0 BMP-1 INFLOW HYDROGRAPH Peak Q100< .__I _ _____. Hydrograph Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024 Monday, 10 / 30 / 2023 Hyd. No. 2 100YR PEAK ROUTING Hydrograph type = Reservoir Peak discharge = 10.55 cfs Storm frequency = 100 yrs Time to peak = 4.27 hrs Time interval = 8 min Hyd. volume = 43,555 cuft Inflow hyd. No. = 1 - 100 YR PEAK INFLOW-BMP1Max. Elevation = 143.56 ft Reservoir name = BMP-1 Max. Storage = 14,587 cuft Storage Indication method used. 1 0.0 1.1 2.1 3.2 4.3 5.3 6.4 7.5 8.5 Q (cfs) 0.00 0.00 4.00 4.00 8.00 8.00 12.00 12.00 16.00 16.00 20.00 20.00 24.00 24.00 28.00 28.00 Q (cfs) Time (hrs) 100YR PEAK ROUTING Hyd. No. 2 -- 100 Year Hyd No. 2 Hyd No. 1 Total storage used = 14,587 cuft BMP-1 PEAK OUTFLOW FREEBOARD: 1 FT MIN. THE LOWEST ELEVATION ADJACENT TO THE BASIN IS 144.25 GTR FL FOR THE PARKING AREA ENTERING THE BASIN. FREEBOARD INCLUDES A SMALL PORTION OF THE PARKING LOT AT THE SOUTH END. 1 I -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ----- -- -- -- -- -- ----- -- -- -- -- -- ----- -- -- -- -- -- ----- -- -- -- -- -- ----- -- -- -- -- -- ---\ -- -- -- -- -- -- --~' ~ -- -- -- -- -- ---f -- -- -- -- -- -- JX -~ -- -- -- --~ - -'I I I I I I I Ill ~ ,~ [IIIII] Pond Report 2 Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024 Monday, 10 / 30 / 2023 Pond No. 1 - BMP-1 Pond Data Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 141.75 ft Stage / Storage Table Stage (ft)Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage (cuft) 0.00 141.75 7,165 0 0 0.25 142.00 7,480 1,830 1,830 1.25 143.00 8,289 7,880 9,711 2.25 144.00 9,120 8,700 18,411 3.25 145.00 10,460 9,781 28,192 Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr][A] [B] [C] [D] Rise (in)= 1.50 9.00 0.00 0.00 Span (in)= 1.50 36.00 0.00 0.00 No. Barrels = 1 100 Invert El. (ft)= 141.75 142.25 0.00 0.00 Length (ft)= 0.50 0.50 0.00 0.00 Slope (%)= 0.00 0.00 0.00 n/a N-Value = .013 .013 .013 n/a Orifice Coeff.= 0.60 0.60 0.60 0.60 Multi-Stage = n/a NoNoNo Crest Len (ft)= 0.00 0.00 0.00 0.00 Crest El. (ft)= 0.00 0.00 0.00 0.00 Weir Coeff.= 3.33 3.33 3.33 3.33 Weir Type = --- --- --- --- Multi-Stage = No No No No Exfil.(in/hr)= 0.000 (by Contour) TW Elev. (ft)= 0.00 Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 Stage (ft) 0.00 141.75 1.00 142.75 2.00 143.75 3.00 144.75 4.00 145.75 Elev (ft) Discharge (cfs) Stage / Discharge Total Q ELEVATION AT LOWEST OPENING: THE ANALYSIS DISREGARDS WATER QUALITY VOLUME (CONJUNCTIVE USE CRITERIA PER THE SAN DIEGO COUNTY HYDRAULIC DESIGN MANUAL) - - - - - - - - - - - - - - - - -/- - - - - - - -£_ - / - - - - - -V-- - ~ - - - - -V" - - -~ ----------i----- - - - - - ~ --------- - - - - - - r - - - - - - - - - Hydrograph Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024 Monday, 10 / 30 / 2023 Hyd. No. 2 100YR PEAK ROUTING Hydrograph type = Reservoir Peak discharge = 10.55 cfs Storm frequency = 100 yrs Time to peak = 4.27 hrs Time interval = 8 min Hyd. volume = 43,555 cuft Inflow hyd. No. = 1 - 100 YR PEAK INFLOW-BMP1Max. Elevation = 143.56 ft Reservoir name = BMP-1 Max. Storage = 14,587 cuft Storage Indication method used. 0 2 4 6 9 11 13 15 17 19 21 23 26 28 30 32 34 36 38 41 43 45 Elev (ft) 141.00 141.00 142.00 142.00 143.00 143.00 144.00 144.00 145.00 145.00 Elev (ft) Time (hrs) 100YR PEAK ROUTING Hyd. No. 2 -- 100 Year 1. BMP-1 DRAWDOWN APPROX. 2 DAYS !------------- Hydrograph Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024Monday, 10 / 30 / 2023 Hyd. No. 5 BMP 1 - EMERGENCY OVER Hydrograph type = Reservoir Peak discharge = 13.98 cfs Storm frequency = 100 yrs Time to peak = 4.27 hrs Time interval = 8 min Hyd. volume = 43,741 cuft Inflow hyd. No. = 1 - 100 YR PEAK INFLOW-BMP1Max. Elevation = 144.69 ft Reservoir name = BMP1 Overflow Max. Storage = 6,710 cuft Storage Indication method used. 4 0.01.12.13.24.35.36.47.5 Q (cfs) 0.000.00 4.004.00 8.008.00 12.0012.00 16.0016.00 20.0020.00 24.0024.00 28.0028.00 Q (cfs) Time (hrs) BMP 1 - EMERGENCY OVER Hyd. No. 5 -- 100 Year Hyd No. 5Hyd No. 1Total storage used = 6,710 cuft BMP-1 EMERGENCY OVERFLOW CALCULATIONS 11 1111111 ____ , .-f"V -- -~ ·--r -~--7 - - - - ~ - - - - - -- Pond Report 2 Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024 Monday, 10 / 30 / 2023 Pond No. 3 - BMP1 Overflow Pond Data Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 144.00 ft Stage / Storage Table Stage (ft)Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage (cuft) 0.00 144.00 9,120 0 0 1.00 145.00 10,460 9,781 9,781 Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr][A] [B] [C] [D] Rise (in)= 6.00 0.00 0.00 0.00 Span (in)= 120.00 0.00 0.00 0.00 No. Barrels = 1 000 Invert El. (ft)= 144.00 0.00 0.00 0.00 Length (ft)= 0.50 0.00 0.00 0.00 Slope (%)= 0.00 0.00 0.00 n/a N-Value = .013 .013 .013 n/a Orifice Coeff.= 0.60 0.60 0.60 0.60 Multi-Stage = n/a NoNoNo Crest Len (ft)= 0.00 0.00 0.00 0.00 Crest El. (ft)= 0.00 0.00 0.00 0.00 Weir Coeff.= 3.33 3.33 3.33 3.33 Weir Type = --- --- --- --- Multi-Stage = No No No No Exfil.(in/hr)= 0.000 (by Wet area) TW Elev. (ft)= 0.00 Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Stage (ft) 0.00 144.00 0.10 144.10 0.20 144.20 0.30 144.30 0.40 144.40 0.50 144.50 0.60 144.60 0.70 144.70 0.80 144.80 0.90 144.90 1.00 145.00 Elev (ft) Discharge (cfs) Stage / Discharge Total Q EMERGENCY OVERFLOW STRUCTURE: CURB INLET WITH 10 FT OPENING / / / ~ ~ ~ ..... ~ .__ -------r----.. ~v ...... / / / / RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 10/24/2023 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 8 MIN. 6 HOUR RAINFALL 2.54 INCHES BASIN AREA 2.99 ACRES RUNOFF COEFFICIENT 0.54 PEAK DISCHARGE 8.24 CFS TIME (MIN) = 0 DISCHARGE (CFS) = 0 TIME (MIN) = 8 DISCHARGE (CFS) = 0.2 TIME (MIN) = 16 DISCHARGE (CFS) = 0.2 TIME (MIN) = 24 DISCHARGE (CFS) = 0.3 TIME (MIN) = 32 DISCHARGE (CFS) = 0.3 TIME (MIN) = 40 DISCHARGE (CFS) = 0.3 TIME (MIN) = 48 DISCHARGE (CFS) = 0.3 TIME (MIN) = 56 DISCHARGE (CFS) = 0.3 TIME (MIN) = 64 DISCHARGE (CFS) = 0.3 TIME (MIN) = 72 DISCHARGE (CFS) = 0.3 TIME (MIN) = 80 DISCHARGE (CFS) = 0.3 TIME (MIN) = 88 DISCHARGE (CFS) = 0.3 TIME (MIN) = 96 DISCHARGE (CFS) = 0.3 TIME (MIN) = 104 DISCHARGE (CFS) = 0.3 TIME (MIN) = 112 DISCHARGE (CFS) = 0.4 TIME (MIN) = 120 DISCHARGE (CFS) = 0.4 TIME (MIN) = 128 DISCHARGE (CFS) = 0.4 TIME (MIN) = 136 DISCHARGE (CFS) = 0.4 TIME (MIN) = 144 DISCHARGE (CFS) = 0.4 TIME (MIN) = 152 DISCHARGE (CFS) = 0.4 TIME (MIN) = 160 DISCHARGE (CFS) = 0.5 TIME (MIN) = 168 DISCHARGE (CFS) = 0.5 TIME (MIN) = 176 DISCHARGE (CFS) = 0.5 TIME (MIN) = 184 DISCHARGE (CFS) = 0.6 TIME (MIN) = 192 DISCHARGE (CFS) = 0.6 TIME (MIN) = 200 DISCHARGE (CFS) = 0.7 TIME (MIN) = 208 DISCHARGE (CFS) = 0.8 TIME (MIN) = 216 DISCHARGE (CFS) = 0.9 TIME (MIN) = 224 DISCHARGE (CFS) = 1.1 TIME (MIN) = 232 DISCHARGE (CFS) = 1.6 TIME (MIN) = 240 DISCHARGE (CFS) = 2 TIME (MIN) = 248 DISCHARGE (CFS) = 8.24 TIME (MIN) = 256 DISCHARGE (CFS) = 1.3 TIME (MIN) = 264 DISCHARGE (CFS) = 0.8 TIME (MIN) = 272 DISCHARGE (CFS) = 0.7 TIME (MIN) = 280 DISCHARGE (CFS) = 0.6 TIME (MIN) = 288 DISCHARGE (CFS) = 0.5 TIME (MIN) = 296 DISCHARGE (CFS) = 0.4 TIME (MIN) = 304 DISCHARGE (CFS) = 0.4 TIME (MIN) = 312 DISCHARGE (CFS) = 0.4 TIME (MIN) = 320 DISCHARGE (CFS) = 0.3 TIME (MIN) = 328 DISCHARGE (CFS) = 0.3 TIME (MIN) = 336 DISCHARGE (CFS) = 0.3 TIME (MIN) = 344 DISCHARGE (CFS) = 0.3 TIME (MIN) = 352 DISCHARGE (CFS) = 0.3 TIME (MIN) = 360 DISCHARGE (CFS) = 0.3 TIME (MIN) = 368 DISCHARGE (CFS) = 0 BMP-2 INFLOW HYDROGRAPH Peak Q100 Hydrograph Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024Tuesday, 10 / 31 / 2023 Hyd. No. 4 100YR ROUTING - BMP2 Hydrograph type = Reservoir Peak discharge = 4.583 cfs Storm frequency = 100 yrs Time to peak = 4.27 hrs Time interval = 8 min Hyd. volume = 14,887 cuft Inflow hyd. No. = 3 - 100YR PEAK INFLOW-BMP2Max. Elevation = 150.65 ft Reservoir name = BMP-2 Max. Storage = 3,917 cuft Storage Indication method used. 4 0.01.12.13.24.35.36.47.58.59.6 Q (cfs) 0.000.00 2.002.00 4.004.00 6.006.00 8.008.00 10.0010.00 Q (cfs) Time (hrs) 100YR ROUTING - BMP2 Hyd. No. 4 -- 100 Year Hyd No. 4Hyd No. 3Total storage used = 3,917 cuft TOP OF POND: 152 FT 1 FT MIN. FREEBOARD IS PROVIDED BMP-2 PEAK OUTFLOW 11 1111111 " .....,.-: I I I I I I l....V 7' r - - Pond Report 2 Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024 Tuesday, 10 / 31 / 2023 Pond No. 2 - BMP-2 Pond Data Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 149.75 ft Stage / Storage Table Stage (ft)Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage (cuft) 0.00 149.75 3,550 0 0 1.50 151.25 5,210 6,530 6,530 Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr][A] [B] [C] [D] Rise (in)= 2.00 9.00 0.00 0.00 Span (in)= 2.00 36.00 0.00 0.00 No. Barrels = 2 100 Invert El. (ft)= 149.75 150.08 0.00 0.00 Length (ft)= 0.50 0.50 0.00 0.00 Slope (%)= 0.00 0.00 0.00 n/a N-Value = .013 .013 .013 n/a Orifice Coeff.= 0.60 0.60 0.60 0.60 Multi-Stage = n/a NoNoNo Crest Len (ft)= 0.00 0.00 0.00 0.00 Crest El. (ft)= 0.00 0.00 0.00 0.00 Weir Coeff.= 3.33 3.33 3.33 3.33 Weir Type = --- --- --- --- Multi-Stage = No No No No Exfil.(in/hr)= 0.000 (by Wet area) TW Elev. (ft)= 0.00 Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 Stage (ft) 0.00 149.75 0.20 149.95 0.40 150.15 0.60 150.35 0.80 150.55 1.00 150.75 1.20 150.95 1.40 151.15 1.60 151.35 1.80 151.55 2.00 151.75 Elev (ft) Discharge (cfs) Stage / Discharge Total Q ELEVATION AT LOWEST OPENING: THE ANALYSIS DISREGARDS WATER QUALITY VOLUME (CONJUNCTIVE USE CRITERIA PER THE SAN DIEGO COUNTY HYDRAULIC DESIGN MANUAL);---- ---~ ~ ---~ ----~ C> ~ ------~ --- ~ / V" ( I Hydrograph Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024 Tuesday, 10 / 31 / 2023 Hyd. No. 4 100YR ROUTING - BMP2 Hydrograph type = Reservoir Peak discharge = 4.583 cfs Storm frequency = 100 yrs Time to peak = 4.27 hrs Time interval = 8 min Hyd. volume = 14,887 cuft Inflow hyd. No. = 3 - 100YR PEAK INFLOW-BMP2Max. Elevation = 150.65 ft Reservoir name = BMP-2 Max. Storage = 3,917 cuft Storage Indication method used. 0.0 1.1 2.1 3.2 4.3 5.3 6.4 7.5 8.5 9.6 10.7 11.7 12.8 13.9 14.9 Elev (ft) 149.00 149.00 150.00 150.00 151.00 151.00 152.00 152.00 Elev (ft) Time (hrs) 100YR ROUTING - BMP2 Hyd. No. 4 -- 100 Year 2. BMP-2 DRAWDOWN APPROX. 15 HOURS ==-2-t ========= -~~ --~~-------- v -----~-- -----==t-:::-+-~-+--L-J   Dr a i n a g e R e p o r t Av i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n Oc t o b e r 2 0 2 3     Pa g e 7 Jo b # 7 1 7 - 0 2 In l e t , S t o r m D r a i n , a n d R i p R a p S i z i n g   E PH PH 10' 10' SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD S D SD SD SD SD SD SD SD SD SD SDSDSDSD SD SD SD SD S D SD SD SD SD W W W W W W W W W W SD S D SD SD SD SD SD SD SD SD SD S D S D S D SD SD SD SD SD SD S D S D SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD CO M M COMM COMM COMM COMM COMM COMM COMM COMM E E E E E E E E E E E E E IRR IR R IR R IRR IRR IRR IRR IRR IRR IRR IRR IR R I R R IR R IRR IRR IRR IRR IR R IR R IRR IR R IRR IR R IRRIRR IRRIRR IR R IR R IR R IR R I R R I R R IRR IR R IR R IRR IR R IR R IR R IR R IR R IR R G G E COMM COMM E E CO M M CO M M E CO M M CO M M E E E E EE E E E E E COMM COMM C O M M COMM E E E E E ECOMM CO M M C O M M E E CO M M G G G G G E E E E EECOMMCOMM E E E E E E E E E E E E E E E IR R IR R IR R IRR IRR EE G G G G G G G G G E EE IRR IR R IR R IRR IRRIRR CO M M COMM COMM CO M M E E E E E E E E G G C O M M C O M M COMM E E E E E G G G G G G E G G G G G E E G G G SD (151) (150) (149) (148) (147) (146) (145) (140) (151) (150) (145) (153) (154) (155) (160) (160) (155) (154) (150) (155) (1 5 5 ) (15 4 ) (1 5 3 ) (1 5 2 ) (1 5 1 ) (15 0 ) (155 ) (156) (157)(158) (15 4 ) (155) (153) (154) (155) (160) N 0 0 ° 2 0 ' 2 2 " W 2 9 3 . 7 1 ' (156) (150)(150) SD S D S D 167 164 164 165 166 162 162 161 160 16 0 159 163 145 146 145 147 148 149 150 151 152 153 154 155 156 161 160 16 1 162 159 158 161 161 160 142 143 14 4 162 162 163 163 163 164 163 163 164 165 164 165 158 160 16 0 146 147 145 149 150 151 149 148 150 152 153 154 155 156 158 159 158 160 159 161 160 160 165 162 159 159 159 15 9 159 156 155 154 153 152 151 150 149 148 147 158 158 158 158 158 157 15 5 15 4 151 152 153 154 150 148 157 153 154 155 155 156 150 145 14 8 147 147 147 147 148 146 146 145 146 146 146 155 153 154 152 160 161 162 157 158 157 158 156 154155 156 155154 153 153 151 151 153 152 151 153 152 152 152 151 158 15 8 158 159 157 156 156 157 155 158 157 157 156 156 156 155 155 155 15 5 155 15 4 153 151 153 153 152 157 157156 158 141 151 152 153 154 155 151 153 152 150 151 153 152 154 154 149 150 149 145 149 156 154 155 151 153 150 151 154 153153 152 15 1 152 162 163 164 161160 160 161 154 158 157 156 157 156155154 153 153 153 153 153 155 154153 153 153 154155 150 153 158 15 7 15 6 155 155156157 155 156 155 153 162 161 160 158 159 160 157 157 157 157 144145 147148 143 149 146 145 144 143 149 145 146 146 144143 142 142 141 142 141 146 147 148 145144143142 141 141 149 15 0 150 15 0 15 1 15 1 151 145 152 152 151 150 152 153 151 152 152 152 152 151 150 151 150 152 152 152 152 151 150 AVIAR A P A R K W A Y A M B R O S I A L A N E PROPERTY LINE PROPERTY LINE NON DISTURBED AREA NON DISTURBED AREA (E) BUILDING 300 CLASSROOM (E) BUILDING 700 CLASSROOM (E) BLDG 400 CLASSROOM (E) BUILDING 500 CLASSROOM (E) BUILDING 600 CLASSROOM NEW BUILDING 800 CLASSROOM DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DSDS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS NON DISTURBED AREA BIOFILTRATION BMP-2, 3,000 SF BIOFILTRATION BMP-1, 6,300 SF PROPRIETARY BIOFILTRATION BMP-3, MWS-4-4-V INLET, STORM DRAIN, AND RIP RAP SIZING RIP RAP SIZES STRUCTURE ID Q100 (CFS)V100 (FT/S)ROCK CLASS RR #1 13.89 6.6 NO.2 BACKING RR #2 9.21 6.7 NO.2 BACKING RR #3 3.44 5.3 NO.2 BACKING RR #4 4.79 5.8 NO.2 BACKING RR #5 3.37 1.6 NO.2 BACKING NOTE: RIP RAP ENERGY DISSIPATER IS SIZED PER RSD D-40 CURB INLET SIZES STRUCTURE ID INLET TYPE Q100 (CFS)OPENING SIZE CI #1 CURB INLET, ON GRADE 3.98 13Ft CI #2 CURB INLET, SAG 2.67 4Ft CI #3 CURB INLET, ON GRADE 2.65 9Ft CI #4 CURB INLET, SAG 3.53 5Ft CI #5 CURB INLET, ON GRADE 1.47 6Ft NOTE: CURB INLET CALCULATIONS CONSERVATIVELY DISREGARD UPSTREAM AREA DRAINS LARGEST Q100 TRIBUTARY TO A 6" PIPE: A=0.1 AC, PORTION A-5 C=0.9 Tc=5 MIN, I=6.69 IN/HR Q=0.6 CFS LARGEST Q100 TRIBUTARY TO A 12" LANDSCAPE DRAIN: A=0.11 AC, PORTION A-2 C=0.3 Tc=5 MIN, I=6.69 IN/HR Q=0.22 CFS LARGEST Q100 TRIBUTARY TO A 8" PIPE: A=0.36 AC, A-13 C=0.67 Tc=5 MIN, I=6.69 IN/HR Q=1.61 CFS LARGEST Q100 TRIBUTARY TO A 12" PIPE: A=1.24 AC, A-5, A-8, POR. A-9 C=0.9(0.58/1.24) +0.3(0.66/1.24)=0.58 Tc=5 MIN, I=6.69 IN/HR Q=4.81 CFS LARGEST Q100 TRIBUTARY TO A 18" PRE-CAST CB: A=0.15 AC, PORTION A-2 C=0.9 Tc=5 MIN, I=6.69 IN/HR Q=0.90 CFS LARGEST Q100 TRIBUTARY TO A 14" FLOOR DRAIN: A=0.06 AC, PORTION A-4 C=0.9 Tc=5 MIN, I=6.69 IN/HR Q=0.36 CFS LARGEST Q100 TRIBUTARY TO THE REPRESENTATIVE PIPE SIZE IDENTIFIED LARGEST Q100 TRIBUTARY TO THE REPRESENTATIVE INLET TYPE IDENTIFIED • II ). I -\ I ( / ( ( ,J / • I I I Ii I I I I I I I i I I I I I I I I I . . I •. ...... . ~ • ·,-• . : .•. ·-,.,. -~ <II • 0 25 0 25 50 SCALE: 1. = 5o• ·-••• ···-c:t., .. ~I • ·; / I I CD I I ' RR #4 75 I TORY R. WALKER ENGINEERING 122 Civic Center Drive, Suite • • 206 Vista, CA 92084 LEGEND -440- -44o- PROPERTY LINE EXISTING GROUND CONTOURS PROPOSED GROUND CONTOURS ~-BASIN DESIGNATION ~-AREA (ACRES) DRAINAGE BASIN BOUNDARY - - -DRAINAGE SUB-BASIN BOUNDARY .-----@ STRUCTURE ID -..--DIRECTION OF FLOW OCTOBER 1, 2023 FOR ELEMENTARY SCHOOL AVIARA OAKS Post-Project Drainage Basins Basin Basin Area (Ac.) Imperviousness % C Tc (min) I (in/hr) Q100 (cfs) CI #1 BYP-1 1.26 28 0.47 5 6.69 3.98 CI #2 A-1 0.75 39 0.53 5 6.69 2.67 CI #3 A-2 0.70 44 0.57 5 6.69 2.65 CI #4 A-4 0.60 97 0.88 5 6.69 3.53 CI #5 A-7 0.31 68 0.71 5 6.69 1.47 RR #3 B-1 0.71 71 0.72 5 6.69 3.44 TRIBUTARY Q100 (5 MIN TC) NOTE: A 5 MIN TC IS CONSERVATIVELY ASSUMED FOR INLET AND LATERAL STORM DRAIN SIZING CALCULATIONS. SEE AES HYDROLOGY ROUTING FOR Q100s USED IN SIZING RR #1, #2, #4, AND #5 717_DRN Cvalue Study-PostProject_2023 10 18.xls Page 1 of 4 PROJECT:AVIARA OAKS ELEMENTARY DATE:11/1/2023 PROJECT #:717-02 BY:BTH Inlet Capacity Calculation Curb Inlet on Grade Full Interception From Equation 2-2 from the San Diego County Hydraulic Design Manual, Sept 2014 (SDCHDM, Sept 2014) LT = LT = Q = a = y = Inlet: CI #1 Node: Type: Q = 3.98 cfs a =0.33 ft y =0.25 ft LT =12.87 ft Inlet: CI #3 Node: Type: Q = 2.65 cfs a =0.33 ft y =0.24 ft LT =8.80 ft Q 0.7(a+y)3/2 Curb Inlet on Grade See Post-Project Condition Runoff Calcs depth of flow approaching the curb inlet (ft) length of clear opening of inlet for total inlet for total interception (ft) flow rate at inlet per drainage analysis inlet depression (ft) Per Section 2.3.2.1 in SDCHDM, Sept 2014: (1) maximum 4" (0.33 ft) depression if curb inlet is separated from traffic lane with shoulder or parking lane (2) 2" (0.17 ft) depression is allowed when an inlet is adjacent to traffic lanes 4" depression from Figure 2-4 Curb Inlet on Grade See Post-Project Condition Runoff Calcs 4" depression from Figure 2-4 S:\Projects2\717 (Ruhnau Clarke)\02 - Aviara Oaks Elementary\03 Analysis\02 Drainage\Curb Inlet Sizing\717_AOE_DRN Inlet Sizing Calculations.xlsx 11/1/2023 10:19 AM -- -- Page 2 of 4 PROJECT:AVIARA OAKS ELEMENTARY DATE:11/1/2023 PROJECT #:717-02 BY:BTH Inlet Capacity Calculation Curb Inlet on Grade Inlet: CI #5 Node: Type: Q = 1.47 cfs a =0.33 ft y =0.21 ft LT =5.29 ft Curb Inlet on Grade See Post-Project Condition Runoff Calcs 4" depression from Figure 2-4 S:\Projects2\717 (Ruhnau Clarke)\02 - Aviara Oaks Elementary\03 Analysis\02 Drainage\Curb Inlet Sizing\717_AOE_DRN Inlet Sizing Calculations.xlsx 11/1/2023 10:19 AM -- San Diego County Hydraulic Design Manual Page 2-17 September 2014 Figure 2-4 6-inch Gutter and Roadway Discharge-Velocity Chart Figure 2-4 CI # 1 CI # 3 CI # 5-~ 0 -Q) C. .2 Cl) -Q) Q) ,_ -Cl) n = 0.030 n=0.015 n = 0.0175 6" I 1s• 20 15 10 9 8 7 6 5 4 3 2.5 2 1.5 1 +--~r-----#-i--,---~~:---l'-----+.::...._-1::-.,u-------------1 0.9 0.8 0.7 0.6 0.5 0.4 1 2 3 4 5 6 7 8 910 20 30 40 50 Discharge (ft3/s) Page 1 of 2 PROJECT AVIARA OAKS ELEMENTARY DATE:11/1/2023 PROJECT 717-02 BY:BTH Inlet Capacity Calculation Curb Inlet on Sag Curb Inlet on Sag From Equation 2-8 from the San Diego County Hydraulic Design Manual, Sept 2014 (SDCHDM, Sept 2014) Weir Condition:Lw = Lw = Cw = Q = d = From Equation 2-9 from the San Diego County Hydraulic Design Manual, Sept 2014 (SDCHDM, Sept 2014) Orifice Condition: L = L = Q = h = g = do = do = y = a = h/2 sin = For standard 6-inch curb inlet opening with a 4-inch depression (SDRSD No. D-12) Inlet #: CI #2 Node: Type: Q = 2.67 cfs WEIR CONDITION: Cw =3 d =0.42 ft Lw =3.27 ft ORIFICE CONDITION: y = 0.42 cfs a =0.33 ft h/2 sin =0.26 ft Per SDCHDM do = 0.49 ft h =0.5 ft curb opening height L =1.42 ft LW > L; Use Weir Condition, L = 4 ft effective depth of flow at curb face Flow depth of gutter per Figure 2-4 Curb Opening Depression ( 4 inches ) Per Equation 2-10 in SDCHDM (y+a) - h/2 sin h/2 sin = 3.1 inches ( 0.26 ft ) depth of flow in adjacent gutter adjustment for curb inlet throat width (h) and angle of throat incline (q). curb inlet depression Per Table 2-1 in SDCHDM Flow depth of gutter per Figure 2-4 Curb Inlet in Sag Q 0.67h(2gdo)1/2 Q gravitational acceleration (ft/s2) = 32.2 ft/s2 flow rate at inlet per drainage analysis curb opening height curb opening length Cwd3/2 weir (opening) length (ft) flow rate at inlet per drainage analysis flow depth weir discharge coefficient = 3.0 per Table 2-1 S:\Projects2\717 (Ruhnau Clarke)\02 - Aviara Oaks Elementary\03 Analysis\02 Drainage\Curb Inlet Sizing\717_AOE_DRN Inlet Sizing Calculations.xlsx 11/1/2023 10:20 AM - - Page 2 of 2 PROJECT AVIARA OAKS ELEMENTARY DATE:11/1/2023 PROJECT 717-02 BY:BTH Inlet Capacity Calculation Curb Inlet on Sag Inlet #: CI #4 Node: Type: Q = 3.53 cfs WEIR CONDITION: Cw =3 d =0.43 ft Lw =4.17 ft ORIFICE CONDITION: y = 0.1 cfs a =0.33 ft h/2 sin =0.26 ft Per SDCHDM do = 0.17 ft h =0.5 ft curb opening height L =3.18 ft LW > L; Use Weir Condition, L = 5 ft Per Equation 2-10 in SDCHDM Curb Inlet in Sag Per Table 2-1 in SDCHDM Flow depth of gutter per Figure 2-4 Flow depth of gutter per Figure 2-4 Curb Opening Depression ( 4 inches ) S:\Projects2\717 (Ruhnau Clarke)\02 - Aviara Oaks Elementary\03 Analysis\02 Drainage\Curb Inlet Sizing\717_AOE_DRN Inlet Sizing Calculations.xlsx 11/1/2023 10:20 AM - - RIPRAP #1, NODE 106 Type: j Define ... Side Slope 1 [Zl ): jo.o H : 1V Side Slope 2 [Z2J:j .-0-.0--H : 1V Channel Width (BJ jo.o (fl) Pipe Diameter (DJ: j2.o (fl) Longitudinal Slope: j0.007 (fl/fl) r Override Default Manning's Roughness: j0.0130 r Use Lining il Lining T ype:j ~W-ov_e_n_P_a-pe_r_N_e_t ---- r♦ Enter Flow: j13.890 (cfs) r Enter Depth: j1 .273 (fl) Calculate Plot... Compute Curves ... X Flow 13.890 cfs Depth 1.273 fl Area of Flow 2.110 sq fl Wetted Perimeter 3.695 fl Hydraulic Radius 0.571 fl Average Velocity 6.583 fps Top Width (T) 1.924 fl Froude Number 1.108 Critical Depth 1.342 fl Critical Velocity 6.199 fps Critical Slope 0.00603 fl/fl Critical Top Width 1.880 fl Max Shear Stress 0.556 lb/fl'2 Avg Shear Stress 0.249 lb/fl'2 OK Cancel RIPRAP #2, NODE 11 6 Define ... Side Slope 1 [Zl ): 10.0 H : 1V Side Slope 2 [22): l'"o-.o--H : 1V Channel Width (BJ 10.0 (fl) Pipe Diameter (DJ: 11.5 (fl) Longitudinal Slope: 10.01 (fl/fl) r Override Default Manning's Roughness: 10.0130 r Use Lining Lining Type: )'"w_o_v_e_n_P_ap_e_r _N_et ____ i.J_~., r♦ Enter Flow: 19.210 r Enter Depth: 11 .089 Calculate (cfs) (fl) Plot... Compute Curves ... X Flow 9.210 cfs Depth 1.089 fl Area of Flow 1.374 sq fl Wetted Perimeter 3.059 fl Hydraulic Radius 0.449 fl Average Velocity 6.704 fps Top Width (T) 1.338 fl Froude Number 1.166 Critical Depth 1.173 fl Critical Velocity 6.210 fps Critical Slope 0.00842 fl/fl Critical Top Width 1.238 fl Max Shear Stress 0.679 lb/fl'2 Avg Shear Stress 0.280 lb/fl'2 OK Cancel RIPRAP #3, BASIN 81 Type: ) Circular Define ... Side Slope 1 [Zl ): jo.o H : 1V Side Slope 2 [22) j,-0-.0--H : 1V Channel Width (BJ jo.o (fl) Pipe Diameter (DJ: jl.5 (fl) Longitudinal Slope: j0.01 (fl/fl) r Dveuide Default Manning's Roughness: j0.0130 r Use Lining il Lining Type: )~w_o_v_e_n_P_ap_e_r _N_et ___ _ r♦ Enter Flow: '3.440 r Enter Depth: jo.591 Calculate (cfs) (fl) Plot... Compute Curves ... X Flow 3.440 cfs Depth 0.591 fl Area of Flow 0.646 sq fl Wetted Perimeter 2.035 fl Hydraulic Radius 0.318 fl Average Velocity 15322 fps Top Width (T) 1.466 fl Froude Number 1.412 Critical Depth 0.708 fl Critical Velocity 4.196 fps Critical Slope 0.00524 fl/fl Critical Top Width 1.498 fl Max Shear Stress 0.369 lb/fl'2 Avg Shear Stress 0.198 lb/fl'2 DK Cancel RIPRAP #4, NODE 204 Type: ) Circular Define ... Side Slope 1 [Zl ): jo.o H : 1V Side Slope 2 [22): j'"o-.o--H : 1V Channel Width (BJ jo.o (fl) Pipe Diameter (DJ: j1.5 (fl) Longitudinal Slope: j0.01 (fl/fl) r Override Default Manning's Roughness: j0.0130 r Use Lining Lining Type: )'"w_o_v_e_n_P_ap_e_r _N_et ____ i.J_~., r♦ Enter Flow: j4. 790 r Enter Depth: jo. 711 Calculate (cfs) (fl) Plot... Compute Curves ... X Flow 4.790 cfs Depth 0.711 fl Area of Flow 0.825 sq fl Wetted Perimeter 2.278 fl Hydraulic Radius 0.362 fl Average Velocity 5.808 fps Top Width (T) 1.498 fl Froude Number 1.379 Critical Depth 0.841 fl Critical Velocity 4.699 fps Critical Slope 0.00570 fl/fl Critical Top Width 1.489 fl Max Shear Stress 0.444 lb/fl'2 Avg Shear Stress 0.226 lb/fl'2 OK Cancel San Diego County Hydraulic Design Manual Page 2-17 September 2014 Figure 2-4 6-inch Gutter and Roadway Discharge-Velocity Chart Figure 2-4 RIPRAP#5, BASIN A-10 V=1.6 FT/S -~ 0 -Q) C. .2 Cl) -Q) Q) ,_ -Cl) n = 0.030 n=0.015 n = 0.0175 6" I 1s• 20 15 10 9 8 7 6 5 4 3 2.5 2 1.5 1 +------'::,....::,--------,f------,---____::.....,,_ _ _,_ __ ---1--.::...~~------------1 0.9 0.8 0.7 0.6 0.5 0.4 1 2 3 4 5 6 7 8 910 20 30 40 50 Discharge (ft3/s) ~ N a:: 0 Cl N ::::::!: :::, ::::::!: z :i 0 ~ N a:: 0 Cl N CD CONCRETE CHANNEL Revision By Approved Date ORIGINAL Kercheval 2/75 Edited T.R. T. Regello 10/15 Edited M.W M. Widelski 10/18 Reviewed RP S. Engeda 03/22 TABLE 7-1 {BELOW) PER JULY 2005 SAN DIEGO COUNTY DRAINAGE DESIGN MANUAL 2D OR 2W MIN. ~OR~ DESIGN VELOCITY ROCK RIP-RAP THICKNESS {FT/SEC) * CLASS ''r" {MIN) 6-10 NO. 2 BACKING 1.1 FT CD 10-12 1/4 TON 2.7 FT 12-14 1/2 TON 3.5 FT 14-16 1 TON 4.4 FT 16-18 2 TON 5.4 FT 611 WIDE SLOT * OVER 20 FT /SEC REQUIRES SPECIAL DESIGN D = PIPE DIAMETER 0 3D OR 3W PLAN 2D OR 2W MIN. SECTION 8-8 W = BOTTOM WIDTH OF CHANNEL 7'.~ s ~b ::::::!: ...J V) .ST {MIN.) FLOW I- FILTER BLANKET MATERIALS(S) ;:..:;;......____,_ SILL, CLASS 420-C-2000 CONCRETE SECTION A-A ,.--"""<;=NOTES 1. PLANS SHALL SPECIFY: {A) ROCK CLASS AND RIP-RAP THICKNESS {T). T SHALL BE AT LEAST 1.5 TIMES THE NOMINAL EQUIVALENT DIAMETER OF STONE (d50) OF THE SPECIFIED RIP-RAP. {B) FILIER BLANKET MATERIAL, NUMBER OF LAYERS AND THICKNESS. 2. RIP-RAP SHALL BE EITHER QUARRY STONE OR BROKEN CONCRETE {IF SHOWN ON PLANS). COBBLES ARE NOT ACCEPTABLE. 3. RIP-RAP SHALL BE PLACED OVER FILTER BLANKET MATERIAL, WHICH MAY BE EITHER GRANULAR MATERIAL OR NON-WOVEN GEOTEXTILE FILTER FABRIC; MATERIAL AT WEIGHT SPECIFIED IN PLANS OR SPECIFICATIONS. 4. SEE TABLE 200-1.7 IN THE SAN DIEGO REGIONAL SUPPLEMENT TO GREENBOOK FOR SELECTION OF FILTER BLANKET. 5. RIP-RAP ENERGY DISSIPATERS SHALL BE DESIGNATED AS EITHER TYPE 1 OR TYPE 2. TYPE 1 SHALL BE WITH CONCRETE SILL; TYPE 2 SHALL BE WITHOUT SILL. SAN DIEGO REGIONAL STANDARD DRAWING RECOMMENDED BY 11-IE SAN DIEGO REGIONAL STANDARDS COMMITTEE RIP ENERGY RAP DISSIPATER DRAWING NUMBER D-40 6" STORM DRAIN @ 2% Type: j Define ... Side Slope 1 [Zl ): jo.o H : 1V Side Slope 2 [Z2J:j .-O-.O--H : 1V Channel Width (BJ jo.o (fl) Pipe Diameter (DJ: jo.5 (fl) Longitudinal Slope: j0.02 (fl/fl) r Override Default Manning's Roughness: j0.0130 r Use Lining il Lining T ype:j ~W-ov_e_n_P_a-pe_r_N_e_t ---- r♦ Enter Flow: j0.600 r Enter Depth: j0.325 Calculate (cfs) (fl) Plot... Compute Curves ... X Flow 0.600 cfs Depth 0.325 fl Area of Flow 0.135 sq fl Wetted Perimeter 0.938 fl Hydraulic Radius 0.144 fl Average Velocity 4.442 fps Top Width (T) 0.477 fl Froude Number 1.471 Critical Depth 0.394 fl Critical Velocity 3.615 fps Critical Slope 0.01233 fl/fl Critical Top Width 0.409 fl Max Shear Stress 0.405 lb/fl'2 Avg Shear Stress 0.180 lb/fl'2 OK Cancel 8" STORM DRAIN @ 2% Type: ) Circular Define ... Side Slope 1 [Zl ): jo.o H : 1V Side Slope 2 [22) j,-0-.0--H : 1V Channel Width (BJ jo.o (fl) Pipe Diameter (DJ: j0.667 (fl) Longitudinal Slope: j0.02 (fl/fl) r Override Default Manning's Roughness: j0.0130 r Use Lining il Lining Type: )~w_o_v_e_n_P_ap_e_r _N_et ___ _ r♦ Enter Flow: j1.610 r Enter Depth: jo.514 Calculate (cfs) (fl) Plot... Compute Curves ... X Flow 1.610 cfs Depth 0.514 fl Area of Flow 0.289 sq fl Wetted Perimeter 1.430 fl Hydraulic Radius 0.202 fl Average Velocity 5.569 fps Top Width (T) 0.560 fl Froude Number 1.366 Critical Depth 0.588 fl Critical Velocity 4.936 fps Critical Slope 0.01589 fl/fl Critical Top Width 0.431 fl Max Shear Stress 0.642 lb/fl'2 Avg Shear Stress 0.252 lb/fl'2 OK Cancel 12" STORM DRAIN @ 1.8% Type: j Define ... Side Slope 1 [Zl ): jo.o H : 1V Side Slope 2 [Z2J:j .-0-.0--H : 1V Channel Width (BJ jo.o (fl) Pipe Diameter (DJ: j1.o (fl) Longitudinal Slope: j0.018 (fl/fl) r Override Default Manning's Roughness: j0.0130 r Use Lining il Lining T ype:j ~W-ov_e_n_P_a-pe_r_N_e_t ---- r♦ Enter Flow: j4.810 r Enter Depth: j0.825 Calculate (cfs) (fl) Plot... Compute Curves ... X Flow 4.810 cfs Depth 0.825 fl Area of Flow 0.693 sq fl Wetted Perimeter 2.280 fl Hydraulic Radius 0.304 fl Average Velocity 6.937 fps Top Width (T) 0.759 fl Froude Number 1.279 Critical Depth 0.906 fl Critical Velocity 6.429 fps Critical Slope 0.01596 fl/fl Critical Top Width 0.583 fl Max Shear Stress 0.927 lb/fl'2 Avg Shear Stress 0.342 lb/fl'2 OK Cancel SUMP CONDITION, GRATE INLETS (using Chart 3 of "Drainage of Highway Pavements, Hydraulic Engineering Circular No.12) 12" Catch Basin (Q100) Q100 =0.22 cfs elevation of grate = 165.17 ft. try 12 " x 12 " grate then P = (12/12) x 4 = 4.00 ft, A = (12/12)2 = 1.00 ft2 assuming 50% clogging, P'= P/2 = 2.00 ft, A' = A/2 = 0.50 ft2 then Q/P' = 0.22 / 2.00 = 0.11 ; h = 0.11 ft (weir formula - Q/P = 3.0 x H3/2) Q/A' = 0.22 / 0.50 = 0.44 ; h = 0.01 ft (orifice formula - Q/A = 5.37 x H1/2) therefore h = 0.11 ft; Elevation of ponding = 165.28 ft. TW= 166.00 Adequate head is available- SUMP CONDITION, GRATE INLETS (using Chart 3 of "Drainage of Highway Pavements, Hydraulic Engineering Circular No.12) 14" Catch Basin (Q100) Q100 =0.36 cfs elevation of grate = 158.00 ft. try 14 " x 14 " grate then P = (12/12) x 4 = 4.00 ft, A = (12/12)2 = 1.00 ft2 assuming 50% clogging, P'= P/2 = 2.00 ft, A' = A/2 = 0.50 ft2 then Q/P' = 0.36 / 2.00 = 0.18 ; h = 0.15 ft (weir formula - Q/P = 3.0 x H3/2) Q/A' = 0.36 / 0.50 = 0.72 ; h = 0.02 ft (orifice formula - Q/A = 5.37 x H1/2) therefore h = 0.15 ft; Elevation of ponding = 158.15 ft. Adjacent FF= 158.20 Adequate head is available- SUMP CONDITION, GRATE INLETS (using Chart 3 of "Drainage of Highway Pavements, Hydraulic Engineering Circular No.12) 18"x18" Catch Basin (Q100) Q100 =0.90 cfs elevation of grate = 159.85 ft. try 18 " x 18 " grate then P = (12/12) x 4 = 4.00 ft, A = (12/12)2 = 1.00 ft2 assuming 50% clogging, P'= P/2 = 2.00 ft, A' = A/2 = 0.50 ft2 then Q/P' = 0.90 / 2.00 = 0.45 ; h = 0.28 ft (weir formula - Q/P = 3.0 x H3/2) Q/A' = 0.90 / 0.50 = 1.80 ; h = 0.11 ft (orifice formula - Q/A = 5.37 x H1/2) therefore h = 0.28 ft; Elevation of ponding = 160.13 ft. Adjacent FF= 160.35 Adequate head is available- .. II,, D :a:: t a 8 l-----1-----l----1...---4---l-----1----l-- 6 5 4 3 GRATE • P-1-7/8-4 P+7/8 • P-l· 1/8 Reticuline OPENING RATIO 0.8 0.9 0.6 0.8 • Curved vane 0.35 30° tilt-bar 0.34 • Tested o.6t-:-----t---------l--f----t---t...,,,.--:J:,,£-:...-S~....;...::...,,,.,c-~--J._----1...__JL-..1.__..1._~ 0.5 1------'------l--h.,,L----+..,£..j,£..~1,,£..,.-4.,,C_,£...../ CURB 0.41----- 0.3 2 3 4 5 6 8 10 i---L --t A = CLEAR OPENING AREA P = 2W + L (WITH CURB) T w 1 ·P = 2(W+ L) (WITHOUT CURB) 20 30 40 50 60 80 100 DISCHAIIE Cl (FT 3/S) CHART 11. Grate inlet capacity in sump conditions. 71   Dr a i n a g e R e p o r t Av i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n Oc t o b e r 2 0 2 3     Pa g e 8 Jo b # 7 1 7 - 0 2 Hy d r a u l i c G r a d e L i n e ( H G L ) C a l c u l a t i o n s Wa t e r S u r f a c e a n d P r e s s u r e G r a d i e n t ( W S P G W ) s o f t w a r e i s u s e d t o c a l c u l a t e t h e hy d r a u l i c g r a d e ( H G L ) l i n e f o r p r o p o s e d s t or m d r a i n 1 8 ” i n d i a m e t e r a n d l a r g e r . Th e f o u r ( 4 ) p r i m a r y s t o r m d r a i n l i n e s a r e i d e n t i f i e d h e r e a s l i n e A 1 , A 2 , B 1 , a n d B2 . 1 0 0 y e a r d e s i g n s t o r m f l o w r a t e s f o r A 1 , A 2 , a n d B 2 a r e t a k e n f r o m t h e hy d r o l o g y r o u t i n g c a l c u l a t i o n s . A 5 m i n u t e t i m e o f c o n c e n t r a t i o n i s a s s u m e d f o r Li n e B 1 d u e t o i t s r e l a t i v e l y s m a l l t r i b ut a r y a r e a . C a l c u l a t i o n s h e r e d o n o t se p a r a t e o u t i n d i v i d u a l j u n c t i o n s f o r e a c h a r e a d r a i n e n t e r i n g t h e m a i n l i n e . Ra t h e r , f l o w f o r e a c h s i g n i f i c a n t s u b - b a si n i s c o n c e n t r a t e d a t m a j o r i n l e t s a n d ju n c t i o n s . G i v e n t h a t t h e m a i n l i n e p i p e s i ze i s n o t c h a n g i n g i n t h e p i p e r e a c h e s wh e r e f l o w i s c o n s o l i d a t e d , a n d t h a t t h e p i p e s a r e g e n e r a l l y f u n c t i o n i n g i n o p e n ch a n n e l f l o w , t h e h y d r a u l i c i m p a c t o f t h i s s i m p l i f i c a t i o n i s n e g l i g i b l e . W h e r e po s s i b l e , f l o w c o n s o l i d a t i o n i s u s e d t o pr o v i d e a m o r e c o n s e r v a t i v e c a l c u l a t i o n . Li n e s B 1 a n d B 2 , f o r e x a m p l e , i n c l u d e t h e en t i r e t r i b u t a r y f l o w f o r s u b - b a s i n s B 1 an d B 2 , r e s p e c t i v e l y , w i t h i n p i p e r e a c he s w h e r e f l o w a c t u a l l y e n t e r s t h r o u g h mu l t i p l e i n l e t s a l o n g t h e r e a c h ; p r ov i d i n g a m o r e c o n s e r v a t i v e r e s u l t . TA I L W A T E R : T h e p r o p o s e d s t o r m d r a i n s y s t em d i s c h a r g e s t o t he e x i s t i n g 6 0 ” R C P st o r m d r a i n t h a t p a s s e s t h r o u g h t h e s i t e . Pe r r e c o r d d r a w i n g 3 0 2 - 8 , p r o v i d e d f o r re f e r e n c e a t t h e e n d o f t h i s s e c t i o n , th i s s t o r m d r a i n i s o v e r 2 0 f e e t b e l o w gr o u n d . A d d i t i o n a l l y , t h e r e c o r d d r a w i n g s h o w s t h e H G L b e l o w t o p o f p i p e . Gi v e n t h a t t h e p i p e a n d H G L a r e w e l l b e lo w t h e p r o p o s e d p o i n t s o f c o n n e c t i o n , th e p r o p o s e d s y s t e m w i l l n o t b e i m p a ct e d b y a t a i l w a t e r c o n d i t i o n . E STORM DRAIN LINE A1 STORM DRAIN LINE A2 STORM DRAIN LINE B1 STORM DRAIN LINE B2 STORM DRAIN LINE A1 STORM DRAIN LINE A2 STORM DRAIN LINE B1 STORM DRAIN LINE B2 T 1 / ', 'tJ--tt++-+-Jl-+-f-+--~ ) BIOFILTRATION BMP-3, MWS-4-4-V /'- '<, SCALE.· f" = 50' I l! 0 --------- TORY R. WALKER ENGINEERING 122 Civic Cen1er Drive, SJite 206 Vi!to, CA 92084 LEGEND -PROPERTY LINE -440-EXISTING GROUND CONTOURS -440-PROPOSED GROUND CONTOURS ~-BASIN DESIGNATION ~-AREA (ACRES) DRAJNAGE BASIN BOUNDARY ----DRAJNAGE SUB-BASIN BOUNDARY ~ HYDROLOGIC STUDY NODE -· · · +-TIME OF CONCENTRATION FLOW PATH ~ DIRECTION OF FLOW -■-■ 1111111111 ■■■■■ ■-■- OCTOBER 1, 2023 HYDRAULIC GRADE LINE CALCULATIONS FOR A~ARA OAKS ELEMENTARY SCHOOL T1 AVIARA OAKS ELEMENTARY SCHOOL 0 T2 HGL CALCULATION, 100YR DESIGN STORM T3 STORM DRAIN LINE A1 SO .000 141.250 1 144.100 R 90.000 141.920 1 .013 .000 -20.000 0 R 158.000 142.710 1 .013 .000 10.000 0 R 300.000 143.900 1 .013 .000 10.000 0 JX 301.000 143.910 3 2 .013 4.600 143.910 80.0 .000 R 395.000 144.830 3 .013 .000 10.000 0 JX 396.000 144.840 3 2 .013 1.660 144.840 -90.0 .000 R 515.000 150.000 3 .013 .000 45.000 0 JX 520.000 150.100 3 2 .014 5.180 150.100 -30.0 .000 R 593.000 151.320 3 .013 .000 .000 0 SH 593.000 151.320 3 151.320 CD 1 4 1 .000 2.000 .000 .000 .000 .00 CD 2 4 1 .000 1.000 .000 .000 .000 .00 CD 3 4 1 .000 1.500 .000 .000 .000 .00 Q 2.450 .0 STORM DRAIN LINE A1 INPUT FILE FILE: 717A1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 1 Program Package Serial Number: 1918 WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:10:54:11 AVIARA OAKS ELEMENTARY SCHOOL HGL CALCULATION, 100YR DESIGN STORM STORM DRAIN LINE A1 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | .000 141.250 2.850 144.100 13.89 4.42 .30 144.40 .00 1.34 .00 2.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 90.000 .0074 .0038 .34 2.85 .00 1.25 .013 .00 .00 PIPE | | | | | | | | | | | | | 90.000 141.920 2.539 144.459 13.89 4.42 .30 144.76 .00 1.34 .00 2.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 68.000 .0116 .0038 .26 2.54 .00 1.08 .013 .00 .00 PIPE | | | | | | | | | | | | | 158.000 142.710 2.016 144.726 13.89 4.42 .30 145.03 .00 1.34 .00 2.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 5.577 .0084 .0037 .02 2.02 .00 1.20 .013 .00 .00 PIPE | | | | | | | | | | | | | 163.577 142.757 2.000 144.757 13.89 4.42 .30 145.06 .00 1.34 .00 2.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 31.555 .0084 .0035 .11 2.00 .00 1.20 .013 .00 .00 PIPE | | | | | | | | | | | | | 195.132 143.021 1.815 144.836 13.89 4.64 .33 145.17 .00 1.34 1.16 2.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 14.963 .0084 .0034 .05 1.81 .51 1.20 .013 .00 .00 PIPE | | | | | | | | | | | | | 210.095 143.147 1.707 144.853 13.89 4.86 .37 145.22 .00 1.34 1.41 2.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 11.114 .0084 .0037 .04 1.71 .60 1.20 .013 .00 .00 PIPE | | | | | | | | | | | | | 221.209 143.240 1.618 144.858 13.89 5.10 .40 145.26 .00 1.34 1.57 2.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 8.667 .0084 .0041 .04 1.62 .68 1.20 .013 .00 .00 PIPE | | | | | | | | | | | | | 229.876 143.312 1.540 144.853 13.89 5.35 .44 145.30 .00 1.34 1.68 2.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 4.204 .0084 .0045 .02 1.54 .76 1.20 .013 .00 .00 PIPE | | | | | | | | | | | | | 234.080 143.348 1.470 144.818 13.89 5.61 .49 145.31 .00 1.34 1.77 2.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- HYDRAULIC JUMP STORM DRAIN LINE A1 OUTPUT FILE FILE: 717A1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 2 Program Package Serial Number: 1918 WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:10:54:11 AVIARA OAKS ELEMENTARY SCHOOL HGL CALCULATION, 100YR DESIGN STORM STORM DRAIN LINE A1 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | 234.080 143.348 1.199 144.546 13.89 7.07 .78 145.32 .00 1.34 1.96 2.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 4.710 .0084 .0084 .04 1.20 1.24 1.20 .013 .00 .00 PIPE | | | | | | | | | | | | | 238.790 143.387 1.199 144.586 13.89 7.07 .78 145.36 .00 1.34 1.96 2.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 46.404 .0084 .0080 .37 1.20 1.24 1.20 .013 .00 .00 PIPE | | | | | | | | | | | | | 285.193 143.776 1.235 145.011 13.89 6.82 .72 145.73 .00 1.34 1.94 2.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 12.341 .0084 .0072 .09 1.23 1.18 1.20 .013 .00 .00 PIPE | | | | | | | | | | | | | 297.535 143.879 1.286 145.165 13.89 6.51 .66 145.82 .00 1.34 1.92 2.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 2.465 .0084 .0064 .02 1.29 1.09 1.20 .013 .00 .00 PIPE | | | | | | | | | | | | | 300.000 143.900 1.342 145.242 13.89 6.20 .60 145.84 .00 1.34 1.88 2.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- JUNCT STR .0100 .0069 .01 1.34 1.00 .013 .00 .00 PIPE | | | | | | | | | | | | | 301.000 143.910 1.844 145.754 9.29 5.26 .43 146.18 .00 1.18 .00 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 94.000 .0098 .0078 .74 1.84 .00 1.11 .013 .00 .00 PIPE | | | | | | | | | | | | | 395.000 144.830 1.673 146.503 9.29 5.26 .43 146.93 .00 1.18 .00 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- JUNCT STR .0100 .0065 .01 1.67 .00 .013 .00 .00 PIPE | | | | | | | | | | | | | 396.000 144.840 1.949 146.789 7.63 4.32 .29 147.08 .00 1.07 .00 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 5.080 .0434 .0053 .03 1.95 .00 .61 .013 .00 .00 PIPE | | | | | | | | | | | | | 401.080 145.060 1.770 146.830 7.63 4.32 .29 147.12 .00 1.07 .00 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- HYDRAULIC JUMP STORM DRAIN LINE A1 OUTPUT FILE FILE: 717A1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 3 Program Package Serial Number: 1918 WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:10:54:11 AVIARA OAKS ELEMENTARY SCHOOL HGL CALCULATION, 100YR DESIGN STORM STORM DRAIN LINE A1 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | 401.080 145.060 .613 145.674 7.63 11.22 1.96 147.63 .00 1.07 1.47 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 37.899 .0434 .0419 1.59 .61 2.91 .61 .013 .00 .00 PIPE | | | | | | | | | | | | | 438.980 146.704 .621 147.325 7.63 11.04 1.89 149.22 .00 1.07 1.48 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 30.363 .0434 .0384 1.17 .62 2.84 .61 .013 .00 .00 PIPE | | | | | | | | | | | | | 469.342 148.020 .644 148.664 7.63 10.52 1.72 150.38 .00 1.07 1.48 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 13.825 .0434 .0338 .47 .64 2.65 .61 .013 .00 .00 PIPE | | | | | | | | | | | | | 483.168 148.620 .668 149.287 7.63 10.03 1.56 150.85 .00 1.07 1.49 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 8.578 .0434 .0297 .25 .67 2.48 .61 .013 .00 .00 PIPE | | | | | | | | | | | | | 491.745 148.992 .693 149.684 7.63 9.57 1.42 151.11 .00 1.07 1.50 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 5.980 .0434 .0261 .16 .69 2.31 .61 .013 .00 .00 PIPE | | | | | | | | | | | | | 497.725 149.251 .719 149.969 7.63 9.12 1.29 151.26 .00 1.07 1.50 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 4.421 .0434 .0230 .10 .72 2.15 .61 .013 .00 .00 PIPE | | | | | | | | | | | | | 502.146 149.443 .746 150.188 7.63 8.70 1.17 151.36 .00 1.07 1.50 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 3.383 .0434 .0202 .07 .75 2.00 .61 .013 .00 .00 PIPE | | | | | | | | | | | | | 505.529 149.589 .774 150.364 7.63 8.29 1.07 151.43 .00 1.07 1.50 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 2.626 .0434 .0178 .05 .77 1.87 .61 .013 .00 .00 PIPE | | | | | | | | | | | | | 508.156 149.703 .804 150.507 7.63 7.91 .97 151.48 .00 1.07 1.50 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 2.049 .0434 .0157 .03 .80 1.73 .61 .013 .00 .00 PIPE STORM DRAIN LINE A1 OUTPUT FILE FILE: 717A1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 4 Program Package Serial Number: 1918 WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:10:54:11 AVIARA OAKS ELEMENTARY SCHOOL HGL CALCULATION, 100YR DESIGN STORM STORM DRAIN LINE A1 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | 510.205 149.792 .836 150.628 7.63 7.54 .88 151.51 .00 1.07 1.49 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 1.595 .0434 .0139 .02 .84 1.61 .61 .013 .00 .00 PIPE | | | | | | | | | | | | | 511.800 149.861 .869 150.730 7.63 7.19 .80 151.53 .00 1.07 1.48 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 1.217 .0434 .0123 .01 .87 1.50 .61 .013 .00 .00 PIPE | | | | | | | | | | | | | 513.017 149.914 .904 150.818 7.63 6.85 .73 151.55 .00 1.07 1.47 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- .892 .0434 .0109 .01 .90 1.39 .61 .013 .00 .00 PIPE | | | | | | | | | | | | | 513.909 149.953 .942 150.894 7.63 6.53 .66 151.56 .00 1.07 1.45 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- .613 .0434 .0096 .01 .94 1.28 .61 .013 .00 .00 PIPE | | | | | | | | | | | | | 514.522 149.979 .981 150.960 7.63 6.23 .60 151.56 .00 1.07 1.43 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- .359 .0434 .0086 .00 .98 1.19 .61 .013 .00 .00 PIPE | | | | | | | | | | | | | 514.881 149.995 1.023 151.018 7.63 5.94 .55 151.57 .00 1.07 1.40 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- .119 .0434 .0076 .00 1.02 1.09 .61 .013 .00 .00 PIPE | | | | | | | | | | | | | 515.000 150.000 1.070 151.070 7.63 5.66 .50 151.57 .00 1.07 1.36 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- JUNCT STR .0200 .0044 .02 1.07 1.00 .014 .00 .00 PIPE | | | | | | | | | | | | | 520.000 150.100 1.459 151.560 2.45 1.40 .03 151.59 .00 .59 .49 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 6.756 .0167 .0005 .00 1.46 .13 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 526.756 150.213 1.347 151.560 2.45 1.47 .03 151.59 .00 .59 .91 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 4.593 .0167 .0005 .00 1.35 .19 .43 .013 .00 .00 PIPE STORM DRAIN LINE A1 OUTPUT FILE FILE: 717A1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 5 Program Package Serial Number: 1918 WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:10:54:11 AVIARA OAKS ELEMENTARY SCHOOL HGL CALCULATION, 100YR DESIGN STORM STORM DRAIN LINE A1 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | 531.348 150.290 1.269 151.559 2.45 1.54 .04 151.60 .00 .59 1.08 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 3.799 .0167 .0005 .00 1.27 .22 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 535.147 150.353 1.204 151.557 2.45 1.61 .04 151.60 .00 .59 1.19 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 3.305 .0167 .0006 .00 1.20 .25 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 538.452 150.408 1.147 151.555 2.45 1.69 .04 151.60 .00 .59 1.27 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 2.945 .0167 .0007 .00 1.15 .28 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 541.397 150.458 1.095 151.553 2.45 1.77 .05 151.60 .00 .59 1.33 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 2.668 .0167 .0007 .00 1.09 .31 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 544.065 150.502 1.047 151.550 2.45 1.86 .05 151.60 .00 .59 1.38 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 2.432 .0167 .0008 .00 1.05 .33 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 546.498 150.543 1.003 151.546 2.45 1.95 .06 151.61 .00 .59 1.41 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 2.224 .0167 .0009 .00 1.00 .36 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 548.722 150.580 .962 151.542 2.45 2.05 .06 151.61 .00 .59 1.44 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 2.037 .0167 .0010 .00 .96 .39 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 550.759 150.614 .924 151.538 2.45 2.14 .07 151.61 .00 .59 1.46 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 1.878 .0167 .0012 .00 .92 .43 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 552.636 150.645 .888 151.533 2.45 2.25 .08 151.61 .00 .59 1.47 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 1.714 .0167 .0013 .00 .89 .46 .43 .013 .00 .00 PIPE STORM DRAIN LINE A1 OUTPUT FILE FILE: 717A1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 6 Program Package Serial Number: 1918 WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:10:54:11 AVIARA OAKS ELEMENTARY SCHOOL HGL CALCULATION, 100YR DESIGN STORM STORM DRAIN LINE A1 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | 554.350 150.674 .854 151.528 2.45 2.36 .09 151.61 .00 .59 1.49 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 1.570 .0167 .0015 .00 .85 .50 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 555.920 150.700 .821 151.521 2.45 2.47 .10 151.62 .00 .59 1.49 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 1.420 .0167 .0017 .00 .82 .54 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 557.340 150.724 .790 151.514 2.45 2.60 .10 151.62 .00 .59 1.50 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- .393 .0167 .0019 .00 .79 .58 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 557.733 150.731 .761 151.492 2.45 2.72 .12 151.61 .00 .59 1.50 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- HYDRAULIC JUMP | | | | | | | | | | | | | 557.733 150.731 .432 151.163 2.45 5.81 .52 151.69 .00 .59 1.36 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 13.843 .0167 .0156 .22 .43 1.84 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 571.575 150.962 .447 151.409 2.45 5.54 .48 151.89 .00 .59 1.37 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 8.903 .0167 .0136 .12 .45 1.72 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 580.478 151.111 .463 151.574 2.45 5.28 .43 152.01 .00 .59 1.39 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 4.835 .0167 .0119 .06 .46 1.61 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 585.313 151.192 .479 151.671 2.45 5.04 .39 152.06 .00 .59 1.40 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 3.013 .0167 .0104 .03 .48 1.51 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 588.326 151.242 .496 151.738 2.45 4.80 .36 152.10 .00 .59 1.41 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 1.975 .0167 .0091 .02 .50 1.41 .43 .013 .00 .00 PIPE STORM DRAIN LINE A1 OUTPUT FILE FILE: 717A1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 7 Program Package Serial Number: 1918 WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:10:54:11 AVIARA OAKS ELEMENTARY SCHOOL HGL CALCULATION, 100YR DESIGN STORM STORM DRAIN LINE A1 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | 590.301 151.275 .514 151.789 2.45 4.58 .33 152.11 .00 .59 1.42 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 1.309 .0167 .0080 .01 .51 1.32 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 591.610 151.297 .532 151.829 2.45 4.37 .30 152.12 .00 .59 1.44 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- .805 .0167 .0070 .01 .53 1.23 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 592.415 151.310 .551 151.861 2.45 4.16 .27 152.13 .00 .59 1.45 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- .441 .0167 .0062 .00 .55 1.15 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 592.857 151.318 .571 151.888 2.45 3.97 .24 152.13 .00 .59 1.46 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- .143 .0167 .0054 .00 .57 1.07 .43 .013 .00 .00 PIPE | | | | | | | | | | | | | 593.000 151.320 .592 151.912 2.45 3.78 .22 152.13 .00 .59 1.47 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- STORM DRAIN LINE A1 OUTPUT FILE ST O R M D R A I N L I N E A 1 PR O F I L E :C z ]> < -I n v, n iO C I -"U I l"'1 l"'1 -I l"'1 OJ iO iO -iO ]> -I n I Z l> l"'1 ;,;; r 1] STATI □N 2] STATI □N 3] STAT I □N 4] STAT I □N 5] STAT I □N 6] STAT I □N 7] STAT I □N ~~ H~f!B~ 11] STATl □N 12] STATl □N 13] STATI □N 16] STAT I □N 18] STAT I □N 20] STAT I □N . 000 90. 000 158. 000 163. 577 195. 132 210. 095 221. 209 ~~i: ~~B 238. 790 285. 193 297. 535 395. 000 401. 080 438. 980 21 J STAT I □N 469. 342 r 22] STAT I □N 23] STAT I □N ~5~ H~f!B~ 35] STAT I □N 36] STAT I □N 37] STAT I □N 51 J STAT I □N 52] STAT I □N 53] STATI □N 483. 168 491. 745 56~: i~~ 520. 000 526. 756 531. 348 571. 575 580. 478 585. 313 l"'1 r l"'1 < -]> .i:,. --1 - □ 0 Z 0 V) 0 --1>-w 0 0 0 \ \ --1>-Ul 0 0 0 l \I I .1 ] ' -.i:,. '-1 0 0 0 --I>-'° 0 0 0 -Ul - 0 0 0 -Ul w 0 0 0 Ul Ul 0 0 0 -Ul " 0 0 0 -~-~-~Q = --+---+-----l Q = I I I 8 = -------+--------------< Q = I I I~ : 8 ~ ---+----+--------l Q = I I I: : I I I~ = _ _____,_ _ ____,__-------,Q = ------f--------t---------J Q = ---+-I ----+-1-------il ~ : -., I I Is; ~\I I la; ~ > ~ ~ ~ w C ~ ~ > n ~ ~ ~ 13. 890 Ft3/S, V = 4. 421 Ft/S ~ 13. 890 Ft3/S, V = 13. 890 Ft3/S, V = 13. 890 Ft3/S, V 13. 890 Ft3/S, V = 13. 890 Ft3/S, V = 13. 890 Ft3/S, V = i3: ~~8 ~i3~~: ~ ~ 13. 890 Ft3/S, V = 13. 890 Ft3/S, V = 13. 890 Ft3/S, V = 9. 290 Ft3/S, V 7. 630 Ft3/S, V = 7. 630 Ft3/S, V = 4. 421 Ft/S 4. 421 Ft/S 4. 421 Ft/S 4. 637 Ft/S 4. 864 Ft/S 5. 101 Ft/S 5: ~?9 ~i~~ 7. 067 Ft/S 6. 823 Ft/S 6. 505 Ft/S 5. 257 Ft/S 4. 318 Ft/S 11. 037 Ft/S 7. 630 Ft3/S, V = 10. 523 Ft/S 7. 630 Ft3/S, V 7. 630 Ft3/S, V = 7: g38 ~B~~: ~ = 2. 450 Ft3/S, V = 2. 450 Ft3/S, V = 2. 450 Ft3/S, V = 2. 450 Ft3/S, V = 2. 450 Ft3/S, V = 2. 450 Ft3/S, V = 10. 034 Ft/S 9. 567 Ft/S g: 6~7 ~i~~ 1. 397 Ft/S 1. 465 Ft/S 1. 537 Ft/S 5. 540 Ft/S 5. 282 Ft/S 5. 036 Ft/S w w C ~ ~ Cl ~ > ~ ~ ~ z ~ > z > ~ ~ w ~ w ,..-..._ ~ ~ > z ~ ~ ~ 0 ~ ~ ~ ~ -__., ~ ~ z ~ > ~ T1 AVIARA OAKS ELEMENTARY 0 T2 HGL CALCULATION, 100YR DESIGN STORM T3 STORM DRAIN LINE A2 SO .000 141.250 1 144.100 R 33.000 143.030 1 .013 .000 45.000 0 R 80.000 143.750 1 .013 .000 .000 0 JX 81.000 143.760 1 2 .013 2.200 143.760 90.0 .000 R 145.000 144.700 1 .013 .000 10.000 0 JX 146.000 144.710 1 2 .013 1.470 144.710 -50.0 .000 R 267.000 146.700 1 .013 .000 .000 0 SH 267.000 146.700 1 146.700 CD 1 4 1 .000 1.500 .000 .000 .000 .00 CD 2 4 1 .000 .667 .000 .000 .000 .00 Q 5.540 .0 STORM DRAIN LINE A2 INPUT FILE FILE: 717A2.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 1 Program Package Serial Number: 1918 WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:15: 3 AVIARA OAKS ELEMENTARY HGL CALCULATION, 100YR DESIGN STORM STORM DRAIN LINE A2 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | .000 141.250 2.850 144.100 9.21 5.21 .42 144.52 .00 1.17 .00 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 30.352 .0539 .0077 .23 2.85 .00 .64 .013 .00 .00 PIPE | | | | | | | | | | | | | 30.352 142.887 1.500 144.387 9.21 5.21 .42 144.81 .00 1.17 .00 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- HYDRAULIC JUMP | | | | | | | | | | | | | 30.352 142.887 .878 143.765 9.21 8.57 1.14 144.91 .00 1.17 1.48 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 1.187 .0539 .0173 .02 .88 1.77 .64 .013 .00 .00 PIPE | | | | | | | | | | | | | 31.539 142.951 .914 143.865 9.21 8.17 1.04 144.90 .00 1.17 1.46 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 1.461 .0539 .0153 .02 .91 1.64 .64 .013 .00 .00 PIPE | | | | | | | | | | | | | 33.000 143.030 .952 143.982 9.21 7.79 .94 144.92 .00 1.17 1.44 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 23.260 .0153 .0138 .32 .95 1.52 .93 .013 .00 .00 PIPE | | | | | | | | | | | | | 56.260 143.386 .981 144.367 9.21 7.52 .88 145.25 .00 1.17 1.43 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 13.250 .0153 .0125 .17 .98 1.43 .93 .013 .00 .00 PIPE | | | | | | | | | | | | | 69.510 143.589 1.023 144.612 9.21 7.17 .80 145.41 .00 1.17 1.40 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 6.457 .0153 .0111 .07 1.02 1.32 .93 .013 .00 .00 PIPE | | | | | | | | | | | | | 75.967 143.688 1.069 144.757 9.21 6.84 .73 145.48 .00 1.17 1.36 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 3.107 .0153 .0099 .03 1.07 1.21 .93 .013 .00 .00 PIPE | | | | | | | | | | | | | 79.074 143.736 1.118 144.854 9.21 6.52 .66 145.51 .00 1.17 1.31 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- .926 .0153 .0089 .01 1.12 1.11 .93 .013 .00 .00 PIPE STORM DRAIN LINE A2 OUTPUT FILE FILE: 717A2.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 2 Program Package Serial Number: 1918 WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:15: 3 AVIARA OAKS ELEMENTARY HGL CALCULATION, 100YR DESIGN STORM STORM DRAIN LINE A2 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | 80.000 143.750 1.173 144.923 9.21 6.21 .60 145.52 .00 1.17 1.24 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- JUNCT STR .0100 .0064 .01 1.17 1.00 .013 .00 .00 PIPE | | | | | | | | | | | | | 81.000 143.760 1.731 145.491 7.01 3.97 .24 145.74 .00 1.03 .00 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 23.405 .0147 .0044 .10 1.73 .00 .79 .013 .00 .00 PIPE | | | | | | | | | | | | | 104.405 144.104 1.500 145.604 7.01 3.97 .24 145.85 .00 1.03 .00 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 10.762 .0147 .0041 .04 1.50 .00 .79 .013 .00 .00 PIPE | | | | | | | | | | | | | 115.167 144.262 1.361 145.623 7.01 4.16 .27 145.89 .00 1.03 .87 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 5.061 .0147 .0040 .02 1.36 .53 .79 .013 .00 .00 PIPE | | | | | | | | | | | | | 120.228 144.336 1.280 145.616 7.01 4.36 .30 145.91 .00 1.03 1.06 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 1.990 .0147 .0044 .01 1.28 .62 .79 .013 .00 .00 PIPE | | | | | | | | | | | | | 122.218 144.365 1.214 145.579 7.01 4.58 .33 145.90 .00 1.03 1.18 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- HYDRAULIC JUMP | | | | | | | | | | | | | 122.218 144.365 .836 145.202 7.01 6.92 .74 145.95 .00 1.03 1.49 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 11.162 .0147 .0117 .13 .84 1.48 .79 .013 .00 .00 PIPE | | | | | | | | | | | | | 133.380 144.529 .870 145.399 7.01 6.60 .68 146.08 .00 1.03 1.48 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 6.047 .0147 .0103 .06 .87 1.37 .79 .013 .00 .00 PIPE | | | | | | | | | | | | | 139.427 144.618 .905 145.523 7.01 6.29 .61 146.14 .00 1.03 1.47 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 3.361 .0147 .0092 .03 .90 1.27 .79 .013 .00 .00 PIPE STORM DRAIN LINE A2 OUTPUT FILE FILE: 717A2.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 3 Program Package Serial Number: 1918 WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:15: 3 AVIARA OAKS ELEMENTARY HGL CALCULATION, 100YR DESIGN STORM STORM DRAIN LINE A2 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | 142.788 144.667 .942 145.610 7.01 6.00 .56 146.17 .00 1.03 1.45 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 1.706 .0147 .0081 .01 .94 1.18 .79 .013 .00 .00 PIPE | | | | | | | | | | | | | 144.494 144.693 .982 145.674 7.01 5.72 .51 146.18 .00 1.03 1.43 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- .506 .0147 .0072 .00 .98 1.09 .79 .013 .00 .00 PIPE | | | | | | | | | | | | | 145.000 144.700 1.025 145.725 7.01 5.45 .46 146.19 .00 1.03 1.40 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- JUNCT STR .0100 .0046 .00 1.03 1.00 .013 .00 .00 PIPE | | | | | | | | | | | | | 146.000 144.710 1.351 146.061 5.54 3.30 .17 146.23 .00 .91 .90 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 4.446 .0164 .0025 .01 1.35 .43 .67 .013 .00 .00 PIPE | | | | | | | | | | | | | 150.446 144.783 1.273 146.056 5.54 3.47 .19 146.24 .00 .91 1.08 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 3.379 .0164 .0028 .01 1.27 .50 .67 .013 .00 .00 PIPE | | | | | | | | | | | | | 153.825 144.839 1.207 146.046 5.54 3.64 .21 146.25 .00 .91 1.19 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- HYDRAULIC JUMP | | | | | | | | | | | | | 153.825 144.839 .670 145.509 5.54 7.25 .82 146.33 .00 .91 1.49 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 30.377 .0164 .0164 .50 .67 1.79 .67 .013 .00 .00 PIPE | | | | | | | | | | | | | 184.202 145.338 .670 146.008 5.54 7.25 .82 146.82 .00 .91 1.49 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 49.633 .0164 .0155 .77 .67 1.79 .67 .013 .00 .00 PIPE | | | | | | | | | | | | | 233.835 146.155 .694 146.849 5.54 6.92 .74 147.59 .00 .91 1.50 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 14.868 .0164 .0136 .20 .69 1.67 .67 .013 .00 .00 PIPE STORM DRAIN LINE A2 OUTPUT FILE FILE: 717A2.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 4 Program Package Serial Number: 1918 WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:15: 3 AVIARA OAKS ELEMENTARY HGL CALCULATION, 100YR DESIGN STORM STORM DRAIN LINE A2 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | 248.703 146.399 .720 147.119 5.54 6.60 .68 147.80 .00 .91 1.50 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 7.719 .0164 .0120 .09 .72 1.56 .67 .013 .00 .00 PIPE | | | | | | | | | | | | | 256.422 146.526 .748 147.274 5.54 6.30 .62 147.89 .00 .91 1.50 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 4.658 .0164 .0106 .05 .75 1.45 .67 .013 .00 .00 PIPE | | | | | | | | | | | | | 261.081 146.603 .776 147.379 5.54 6.00 .56 147.94 .00 .91 1.50 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 2.913 .0164 .0093 .03 .78 1.35 .67 .013 .00 .00 PIPE | | | | | | | | | | | | | 263.994 146.651 .806 147.457 5.54 5.72 .51 147.97 .00 .91 1.50 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 1.767 .0164 .0082 .01 .81 1.25 .67 .013 .00 .00 PIPE | | | | | | | | | | | | | 265.761 146.680 .838 147.518 5.54 5.46 .46 147.98 .00 .91 1.49 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- .951 .0164 .0073 .01 .84 1.16 .67 .013 .00 .00 PIPE | | | | | | | | | | | | | 266.712 146.695 .871 147.567 5.54 5.20 .42 147.99 .00 .91 1.48 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- .288 .0164 .0064 .00 .87 1.08 .67 .013 .00 .00 PIPE | | | | | | | | | | | | | 267.000 146.700 .908 147.608 5.54 4.95 .38 147.99 .00 .91 1.47 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- STORM DRAIN LINE A2 OUTPUT FILE ST O R M D R A I N L I N E A 2 PR O F I L E :c n Cl) n z l> ;o C I < -I -"O I fTl fTl -I fTl tl:I ;o ;o -;o l> -I n I z l> fTl ;;,,;: r 1] STATI □ N . 000 2] STAT I □ N 30. 352 6] STATI □ N 56. 260 7J STAT I □ N 69. 510 8] STAT I □ N 75. 967 12] STATI □ N 104. 405 13] STATI □ N 115. 167 14] STATI □ N 120. 228 17J STATI □ N 133. 380 18] STATI □ N 139. 427 23] STAT I □ N 150. 446 26] STAT I □ N 184. 202 27] STAT I □ N 233. 835 28] STAT I □ N 248. 703 ~6~ H~f!B~ ~~?: d~r fTl r fTl < -------J> ~ ~ ~ ~ ~ Ul Ul -I -w Ul '-I '° -w -D 0 0 0 0 0 0 0 Z 0 0 0 0 0 0 0 (/) 0 0 0 0 0 0 0 .-.-. Q = I \l ).l.l _l _l Q = =11\ n Q= Q = Q = l;tt ~\; I I ~ ~; ~ i ~ Q= Q = -Q = I 1\---lL \I -I Q = ~ l \k ld Q= Q = B : 9. 210 Ft3/S, V = 9. 210 Ft3/S, V = 9. 210 Ft3/S, V = 9. 210 Ft3/S, V = 9. 210 Ft3/S, V = 7. 010 Ft3/S, V = 7. 010 Ft3/S, V = 7. 010 Ft3/S, V = 7. 010 Ft3/S, V = 7. 010 Ft3/S, V = 5. 540 Ft3/S, V = 5. 540 Ft3/S, V = 5. 540 Ft3/S, V = 5. 540 Ft3/S, V = 5. 548 Ft~/~, V: . 4 Ft / , V - ~ ► ~ t-r:1 ~ [fl e ~ ~ ► n t-r:1 ~ ~ t-r:1 [fl [fl e ~ t-r:1 '1 ~ 5. 212 Ft/S ► ~ ~ 5. 212 Ft/S t-r:1 z 7. 523 Ft/S ~ 7. 1 73 Ft/S 6. 839 Ft/S ► z 3. 967 Ft/S ► 4. 161 Ft/S ~ 4. 364 Ft/S 6. 599 Ft/S ~ 6. 292 Ft/S [fl 3. 466 Ft/S ~ [fl 7. 251 Ft/S ~ 6. 925 Ft/S 6. 603 Ft/S t n6~ n~~ ~ ► z R-' ~ ~ 0 ~ ~ ~ t-r:1 -,_., ~ ~ z t-r:1 ► N T1 AVIARA OAKS ELEMENTARY SCHOOL 0 T2 HGL CALCULATIONS, 100YR DESIGN STORM T3 STORM DRAIN LINE B1 SO .000 149.500 1 151.400 R 60.000 150.100 1 .013 .000 40.000 0 R 138.000 150.900 3 .013 .000 .000 0 SH 138.000 150.900 1 150.900 CD 1 4 1 .000 1.500 .000 .000 .000 .00 CD 3 4 1 .000 1.000 .000 .000 .000 .00 Q 3.440 .0 STORM DRAIN LINE B1 INPUT FILE FILE: 717B1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 1 Program Package Serial Number: 1918 WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:32: 3 AVIARA OAKS ELEMENTARY SCHOOL HGL CALCULATIONS, 100YR DESIGN STORM STORM DRAIN LINE B1 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | .000 149.500 1.900 151.400 3.44 1.95 .06 151.46 .00 .71 .00 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 45.674 .0100 .0011 .05 1.90 .00 .59 .013 .00 .00 PIPE | | | | | | | | | | | | | 45.674 149.957 1.500 151.457 3.44 1.95 .06 151.52 .00 .71 .00 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 14.326 .0100 .0010 .01 1.50 .00 .59 .013 .00 .00 PIPE | | | | | | | | | | | | | 60.000 150.100 1.364 151.464 3.44 4.38 .30 151.76 .00 .79 .00 1.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 78.000 .0103 .0093 .73 1.36 .00 .78 .013 .00 .00 PIPE | | | | | | | | | | | | | 138.000 150.900 1.292 152.192 3.44 4.38 .30 152.49 .00 .79 .00 1.000 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- STORM DRAIN LINE B1 OUTPUT FILE STORM DRAIN LINE B1 PROFILE WATER SURFACE PRESSURE GRADIENT ANALYSIS (PLAN & PROFILE) LINE Bl V) V) V) V) '-'-'-'-+' +' +' +' L_,_ L_,_ L_,_ L_,_ r---r---0 0 'St 'St (X) (X) Cf\ Cf\ CV) CV) -.:i--.:i- II II II II > > > > (/) (/) (/) (/) '-'-'-'-CV) CV) CV) CV) +' +' +' +' L_,_ L_,_ L_,_ L_,_ 0 0 0 0 'St 'St 'St 'St 'St st st st M M M M II II II II 157, 000 Cl Cl Cl Cl 155, 000 153, 000 -= 151. 000 ~ 149, 000 ELEVATIONS 0 st 0 0 0 r---0 0 0 '° 0 0 CH BANK tri ci cxi 'St '° CV) SUPER_E - - - - - - - - - z z z z CRITICAL D D D D I-I-I-I-<[ <[ <[ <[ WATER I-I-I-I-V) V) V) V) ,.., ,.., ,.., INVERT (\J CV) st T1 AVIARA OAKS ELEMENTARY SCHOOL 0 T2 HGL CALCULATIONS, 100YR DESIGN STORM T3 STORM DRAIN LINE B2 SO .000 149.500 1 151.400 R 21.000 149.840 1 .013 .000 .000 0 JX 22.000 149.850 1 3 .013 .850 149.850 90.0 .000 R 180.000 152.000 1 .013 .000 90.000 0 R 370.000 153.800 1 .013 .000 .000 0 SH 370.000 153.800 1 153.800 CD 1 4 1 .000 1.500 .000 .000 .000 .00 CD 2 4 1 .000 1.000 .000 .000 .000 .00 CD 3 4 1 .000 1.000 .000 .000 .000 .00 Q 3.940 .0 STORM DRAIN LINE B2 INPUT FILE FILE: 717B2.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 1 Program Package Serial Number: 1918 WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:44:49 AVIARA OAKS ELEMENTARY SCHOOL HGL CALCULATIONS, 100YR DESIGN STORM STORM DRAIN LINE B2 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | .000 149.500 1.900 151.400 4.79 2.71 .11 151.51 .00 .84 .00 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 21.000 .0162 .0021 .04 1.90 .00 .62 .013 .00 .00 PIPE | | | | | | | | | | | | | 21.000 149.840 1.604 151.444 4.79 2.71 .11 151.56 .00 .84 .00 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- JUNCT STR .0100 .0017 .00 1.60 .00 .013 .00 .00 PIPE | | | | | | | | | | | | | 22.000 149.850 1.669 151.519 3.94 2.23 .08 151.60 .00 .76 .00 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 15.747 .0136 .0014 .02 1.67 .00 .58 .013 .00 .00 PIPE | | | | | | | | | | | | | 37.747 150.064 1.500 151.564 3.94 2.23 .08 151.64 .00 .76 .00 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 10.596 .0136 .0013 .01 1.50 .00 .58 .013 .00 .00 PIPE | | | | | | | | | | | | | 48.342 150.208 1.361 151.569 3.94 2.34 .08 151.65 .00 .76 .87 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 5.863 .0136 .0013 .01 1.36 .30 .58 .013 .00 .00 PIPE | | | | | | | | | | | | | 54.205 150.288 1.280 151.568 3.94 2.45 .09 151.66 .00 .76 1.06 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 4.682 .0136 .0014 .01 1.28 .35 .58 .013 .00 .00 PIPE | | | | | | | | | | | | | 58.888 150.352 1.214 151.565 3.94 2.57 .10 151.67 .00 .76 1.18 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 3.972 .0136 .0015 .01 1.21 .40 .58 .013 .00 .00 PIPE | | | | | | | | | | | | | 62.860 150.406 1.155 151.561 3.94 2.70 .11 151.67 .00 .76 1.26 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 3.455 .0136 .0017 .01 1.16 .44 .58 .013 .00 .00 PIPE | | | | | | | | | | | | | 66.315 150.453 1.103 151.556 3.94 2.83 .12 151.68 .00 .76 1.32 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 3.041 .0136 .0019 .01 1.10 .49 .58 .013 .00 .00 PIPE STORM DRAIN LINE B2 OUTPUT FILE FILE: 717B2.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 2 Program Package Serial Number: 1918 WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:44:49 AVIARA OAKS ELEMENTARY SCHOOL HGL CALCULATIONS, 100YR DESIGN STORM STORM DRAIN LINE B2 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | 69.356 150.494 1.055 151.549 3.94 2.97 .14 151.69 .00 .76 1.37 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 2.680 .0136 .0021 .01 1.05 .53 .58 .013 .00 .00 PIPE | | | | | | | | | | | | | 72.036 150.531 1.010 151.541 3.94 3.11 .15 151.69 .00 .76 1.41 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 2.205 .0136 .0024 .01 1.01 .58 .58 .013 .00 .00 PIPE | | | | | | | | | | | | | 74.241 150.561 .969 151.530 3.94 3.26 .17 151.70 .00 .76 1.43 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- HYDRAULIC JUMP | | | | | | | | | | | | | 74.241 150.561 .585 151.146 3.94 6.18 .59 151.74 .00 .76 1.46 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 46.260 .0136 .0136 .63 .58 1.65 .58 .013 .00 .00 PIPE | | | | | | | | | | | | | 120.501 151.190 .585 151.775 3.94 6.18 .59 152.37 .00 .76 1.46 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 39.457 .0136 .0129 .51 .58 1.65 .58 .013 .00 .00 PIPE | | | | | | | | | | | | | 159.958 151.727 .601 152.329 3.94 5.95 .55 152.88 .00 .76 1.47 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 13.565 .0136 .0115 .16 .60 1.56 .58 .013 .00 .00 PIPE | | | | | | | | | | | | | 173.522 151.912 .623 152.535 3.94 5.67 .50 153.03 .00 .76 1.48 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 6.478 .0136 .0101 .07 .62 1.46 .58 .013 .00 .00 PIPE | | | | | | | | | | | | | 180.000 152.000 .646 152.646 3.94 5.41 .45 153.10 .00 .76 1.49 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 133.573 .0095 .0095 1.27 .65 1.36 .65 .013 .00 .00 PIPE | | | | | | | | | | | | | 313.573 153.265 .646 153.912 3.94 5.41 .45 154.37 .00 .76 1.49 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 32.050 .0095 .0093 .30 .65 1.36 .65 .013 .00 .00 PIPE STORM DRAIN LINE B2 OUTPUT FILE FILE: 717B2.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 3 Program Package Serial Number: 1918 WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:44:49 AVIARA OAKS ELEMENTARY SCHOOL HGL CALCULATIONS, 100YR DESIGN STORM STORM DRAIN LINE B2 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | 345.623 153.569 .654 154.223 3.94 5.32 .44 154.66 .00 .76 1.49 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 16.070 .0095 .0085 .14 .65 1.33 .65 .013 .00 .00 PIPE | | | | | | | | | | | | | 361.693 153.721 .679 154.400 3.94 5.07 .40 154.80 .00 .76 1.49 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 5.503 .0095 .0075 .04 .68 1.24 .65 .013 .00 .00 PIPE | | | | | | | | | | | | | 367.196 153.773 .704 154.477 3.94 4.84 .36 154.84 .00 .76 1.50 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- 2.210 .0095 .0066 .01 .70 1.16 .65 .013 .00 .00 PIPE | | | | | | | | | | | | | 369.407 153.794 .731 154.525 3.94 4.61 .33 154.86 .00 .76 1.50 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- .593 .0095 .0058 .00 .73 1.08 .65 .013 .00 .00 PIPE | | | | | | | | | | | | | 370.000 153.800 .759 154.559 3.94 4.39 .30 154.86 .00 .76 1.50 1.500 .000 .00 1 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- STORM DRAIN LINE B2 OUTPUT FILE ST O R M D R A I N L I N E B 2 PR O F I L E z < l"'1 ;:o -I :c n Vl ]> ;:o C -I -"U l"'1 -I l"'1 ;:o -;:o n I ]> l"'1 r lJ STATI □N 2J STAT I □N 4J STATI □N 5J STAT I □N 6J STATI □N 7J STATI □N 14] STATI □N 15] STATI □N 16] STATI □N 17] STATI □N 18] STATI □N 19] STAT I □N 20J STATI □N 21] STATI □N n J: I to ]> z ;,;; . 000 21. 000 37. 747 48. 342 54. 205 58. 888 120. 501 159. 958 173. 523 180. 000 313. 573 345. 623 361. 693 367. 196 l"'1 r l"'1 <-l> -I>- -I'° -DO zo (/) 0 Ul Ul Ul Ul -s,J !-11 :--.i 0 0 0 0 0 0 0 0 0 0 0 0 Ul ~ 0 0 0 Q = Q = Q = Q = Q = Q = Q Q = Q = Q = Q = Q = Q = Q = 4. 790 Ft3/S, V = 4. 790 Ft3/S, V = 3. 940 Ft3/S, V = 3. 940 Ft3/S, V = 3. 940 Ft3/S, V = 3. 940 Ft3/S, V = 3. 940 Ft3/S, V 3. 940 Ft3/S, V = 3. 940 Ft3/S, V = 3. 940 Ft3/S, V = 3. 940 Ft3/S, V = 3. 940 Ft3/S, V = 3. 940 Ft3/S, V = 3. 940 Ft3/S, V = 2. 711 2. 711 2. 230 2. 338 2. 453 2. 572 6. 177 5. 951 5. 674 5. 410 ~ ► ~ ~ ~ rJJ. C ~ ~ ► n ~ ~ ~ ~ Ft/S rJj_ rJJ. Ft/SC Ft/S ~ Ft/S ~ Ft/S l .... J Ft/S 0 ~ ► t:, Ft/S ~ ~ z Ft/S ~ Ft/S~ Ft/S ~ z ► ~ ~ rJJ. ~ rJJ. ,.-._ ~ ~ 5.410 Ft/s ► z 5.319 Ft/S?:=' 5. 072 Ft/S 4. 836 Ft/S ~ ~ 0 ~ ~ ~ ~ '-" ~ ~ z ~ t:d N GENERAL NOTES 1 , ALL woiu. SHALL BE DO/a ACCORDING TO THE APPROVED PLANS ANO SPECIJ':ICA'l'IONS, THE CUJtRENT ST,UiDARn !fPl!CT1'1:CATIONS FOR POBLIC WORXS CON5TRUC1'ION (GREEN BOOK), TH.I! SAN DIEGO ttGIONAL ST).}10U0 OlU.lHNGS AS MODIFIED B't Tllt: CITY OF CARLSBAD STANDARDS, THE CITY OF CARLS!IAO SUPPLEMENTAL STANDARD DRAWINGS AND ALL APPLICABU: CITY OF C'JffiLSBAD ORDINANCES, l, TJIE CONTRACTOR SHALL 01:'.SIGN, CONSTRUCT AND MAINTAIN ALL SAFETY DEVICES, Ul'CU.IDI?IG $IIORING1 AND SHALL BE SOLELY JU;SPONSIBLE FOR CONFORMlNG TO ALL LOCAL, STATE ANO ~~~IO:~ ANO KEALTlf STANDARDS, LAWS AND 3. THE CONTRACTOR SHALL COMPORN TO LABOR CODE SECTION 6705 &Y SUBMI'l"l'W'G A O£TAILEO PLAN TO THE CIT'/ ENGINEER l'.ND/OR COIIC'ERNU> AGENCY SHO'fllKG THX PESIGN OP SKOTUNG, BRACING, SU:>PTNG, OR O'MfP.11 PROVISION'S 'I'O BE MA.DI! POR WORKER PROTECTION FROM THE HAZAll,D OP CAVDIG GROUND DURING THE :EXCAVATION OF SUCH TR!NCH OR '1".R!:NCHllS OR DURING THE PIPE INSTALU.TION THEREIN -THIS PUN MUST BE PREPARED FOR ALL 'MU'!NCHH !'IVE FEE'1' (5')•·0R MORP! IN DEPTH AND APPROVED BY THE CITY ENCINEBH AND/OR CONCERNED AOENCY PRIOR 'l'O EXCAVATION. IP' THE i'LAN VARIES FROM THE SHOllNC SYSTEM STANOARDS ESTABLISHED BY THt CONSTRUCTION SAF!:'n'. ORDERS, THE PIAN SHAU. DE PREPARJ:D BY A REGIST!::RBD CIVIL OR STRUCTURAL £NQINEER AT THE CONTRACTOR'S EXrt:NS!:. 4 • TH1l :&:XISTE!'ICE AND LOCATION OF OTILITI STRUC'l'UllS l'.ND FACILITIES SIIOWN ON nm CONSTRUCTION PLANS WEIU!: OBTAilfED BY A $URCH OF THE: AVAJ:lABLE R£COJtD$. A'l"l'EN"l'lON IS CALLED 'l'O THlt ross:reu EXISTENCE OF 0111ER UT'.ILI'l'Y FACILITIES OR STJUJCTURES NOT KNOWN OR IN A LOCATION DIFPERJ!NT TR0K THAT SHOWN ON '11:IE PLANS• THE CONTRACTOR IS REQUIREO TO TAKE DUE PRECAUTlONARY MEASURES TO PROTECT THE lll'ILJ:TIES SHOWN ON THE PLAHS AND ANY OTHER EXISTING Fl,,CILI'l'IES OR STRUCTURES NO'l' SHOWN. 5. TH!: CONTRACTOR SHALL VERIFY THE LOCATION OP' ALL EXISTING F11CILITU!S (ASOVEGROUNO AND UNDERGROOND) lfITliIN THE PROJECT SITE SUFnCl.ENTLY AHEAD OP THE CONSTRUCTION TO PERMIT '!'KP. REVISION OF 'rnE CONSTRUCTION PLAHS IF IT IS FOUND ffiE AC"l'UAL LOCATibNS ARE IN CONFLICT WITH THE PROPOS!D WORK. THE CONTRACTOR SHALL NOTIFY AFFECTED UTILITY COMPANIES AT LRMT ,ie-HOURS PJtIOR TO STARTING CONSTRUCTION NEAR THF.TR FACILITIES AND SHALL COORDINATE TH!: WOR)( WITH COMPANY REPRESENTATIVE, SAN DIEGO GAS , ELECTRIC CO, PACIFIC TELEPHONE CO. CITY 01' CARLSBAD RANCHO LA COSTA CABLE T, V. UNDERGROUND SER.VICI'! AI,mn' COSTA B.EAL MUNICIPAL WATER DISTRICT 619-4l8-601!10 619-560-9347 619-438-363" 6Hl-4l6-3,iOl 800-422-4l3) 619-Ull-27ili NO WORK SHAU. BE COMMZllCED UNTIL ALL PERMITS HJ\VE BEEN OBTAIJraD FROH TH!! Ct1'Y ANO OTHER APPROPRIATE ACENCIES. THE CONTRA.CTOR SHALL NOTlF'Y THE CITY OF CAJU.SBAO AT LU.ST FIVE (5) NORXlllG DAYS PRIOR TO STARTING CONSTRUC'l'ION SO 'nlAT INSPECTION -MAY BB PROV10ED. (PHONE 4)8-3634) ,. -- lfflUU: TRENCHES AR? WITHIN Crh EASEMENTS, A SOILS REPORT PERFORMED BY A QtlAI.IYlED SOILS DlGlNE£R JS REQUIRED. COl'IPAC'l'lON REPORTS SHALL BE SUBMITTED 'I'O THE PUBLIC WORKS INSPECTOR UPON COMPLETION OF 'l?i.t: WORX. NO REVISIONS WILL 8£ MADE TO THE CONSTRUCTION PLANS WITHOUT THE W1HTTEN AI'PROV11.L OF THE C:IT'II" ENGINE!R NOTED WITHIN THE REVISION BLOC)( ON THE APPROPRIATE SHEET 01" Tm: PUNS. ACCESS FOR F:rRE AND OTHER EMERGENCY VEHICLF.S S~ llE MAINTAINED TO THE PROJl:CT SITE AT ALL TIME'S DUR.ING Tm; CONSTRUCTiotl. VICINITY MAP NOTT0 5C,tl.£ P.&D Technologies 401 West -A• Street, Su1te 2500 Sen Diego, Celifornii, 92101 T•l : 1619) 232-.UH TOP VIEW 5ECTION A-A PUBLIC STORM DRAIN IMPROVEMENT PLANS AT THE ALGA K-8 SCHOOL SITE sioE V/~W TRASH RACK DE:TAIL NO SC.ALE /tf@B" (veRT. ~EIA/.) INDEX MAP SECTION B -e, SCALE= 1• • 2oO' s,-o-c-~zso -CONCi?ETE . ~ GI-/ i!!ACK(~E DC.TAIL AeD vc (.S'f..eeve 1'HROUGH z SIDE Z. ~EfN.) CALFORNIA COORDINATES 3)7-1685 ASSESOR'S PARCEL ~BER 215-050-11 215-050-U SOURCE OF TOPOGRAPHY l ORK TO BE DONE THE IKPROVEMENTS CONSIST OF THB POLU>WllfG NORI: 'l'O BE DONE ACCORtllNG TO -mESE PLAN$ AND SPBCI1'ICATIONS AND TKE 1'01.LOWUfG llTANDAROS CUlU\ENT AT nu: TXHE OF CONSTIWCT:l:ON; TKR CITY OF CARLSBAD STANDARO DESIGN CRlTERll FOR THE DES!CN OF PUBLIC WORKS IMPROVEMENTS THE CITY OF CARU.BAD GRADING OROINANCE (CRAPT!R 11.06), ALL CITY Of' CARLSBAD SOPPL?:11ENTAL DRAWINOS AND APPLICABLE ORDINANCES, THE SAN DIEGO AREA REGIONAL STANOAAD OR.AW:INi:.s AS MODil"IED BY THE CITY 01' CARLSBAD , . ,WD Tm: STANQARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION (GREEN a00K) . NOTE: THESE QUANTITI~ ARE POR BO!'IDDK: ~ allt."f. CONTRACTOR TO VERlFY QUANTJTT.:ES l'OR CONSTRUCTION PORPOSES. LEGEND ro:x S'?O.,pwc. SJll80L '"' 4 EA TYPE "An CLBAllOU'l' l!l W/ GRATED COVER ALHAMBRA FOUNDRY No. A 1251 OR EQUAL DECLARATION OF RESPONSIBLE CHARGE I Nl':.JlE.BY DECLARE THAT I AM 'Ml'E 2NGINBER OF WORK FOR ntlS PROJECT, THAT I KAVE EXERCIZED RUPONSIBLE CHARGB OVER ffl1! DESIGN OF THB PROJECT AS Dl!!PINU> IN SECTION 6703 OP '1'112 i,usn1a,s3 ANO pm)f'&()llION/:l COD£, AND THAT TIIII DEs:IGN IC CONSlSn:N'r WI'l'B CURRENT STANDAM:IS. I ONDERSTAND THAT THE CK!Clt 01' PROOECT ORAil'.ENGS .ANO. SPl!!Cil'ICATIONS BY THE c:I'l'Y· 01' CARLSBAD IS CONFINED 'l'O A REVIEW ONLY AND DOES NOT RJl!LU:VE ME, 11.S ENGINRER 01' WORK, 01' KY RESPONSIBILITIES l"OR PROJECT DESIGN~-. I P ' 0 TECHNOLOQIES ~-e,/4z/s, ,101 W. "A• STREXT. SUITE 2500 I.ARR A. BNER DATE SAN Oll!:GO, CA 92101 R.C.E. )1757 TEL. (6J.9) ;n:z-"466 ~ l 2a2:~lt/~ LEGAL DESCRIPTION /1$oF'lt+\hr :"'f-:9,<>IV-fAN ) I PORTION. 01' S:tCTION 26, T 12 S, R ,i W, S.B.M., l:N THE CITY OP ~I.SAAD, COUNTY OF SAN DIEGO, STA'l'E Of' CALIFORNIA. i BENCHMARK ... lDCATION: IHII ' OC-01.79 DISC Gtt IH WEST DID OF SOUTH IIRADIIALL OF 2&• R.C.P . o. 4 KILB EAST OP l.'.HTERSEC'l'ION OP LA COSTA AVII. AND S.UOKY ROAD COUNTY OP SMI DIEGO, DEPT. OP PUBLIC WORICS: __ ~J:'ORT SV0106-0l.10/l.5/85 ~ CITY OF CARLSBAD l'""''I L.J__j [NCIINH l'IING t>[~Al'ITM[NT 4, F, {fatt!tAFI HaR w/Lz' >12.·.I{ 'EL A1',,G,J.£ P,'lf1v'EN <? 4-5° -2 ' O UN~1s rv:tt4EO \SOIL, PUBLIC STORM DRAIN AT ~==t==+=================t==t===t==l~TaaH;;"E;a'A<'_L'i:i-G:s·A~K.,-8~5;,C=H=O=O=L=5=17T=E==, REVIStON DESCRIPTK)N ~fl:> ~ LejtJ ,;,,.f. / P&D Technologies :~~ ~i!~o: A ~afi$!~~ia 59~k61 2500 Ttl: (6l9) ttt•4 .. 6 ~IIK>N OHCAIPTION NOTE : ALL PROPOSED GRADING SHOWN FOR REFERENCE, ONLY. NOT A PART OF THIS PERMIT OC-<1179 DISC SETI-N WEST Er«l OF SOUTH HEADWALL Of 24" A.C.P. Q.4 M!LE EAST Of' INTEfl5EC1ION Of' LA COST..,_ 1'\/E. AND SAXONY f\OAO CWJTY OF SMI OlE:GO, DEPT. OF Pll8LI WOfU<S:AEPOf\T S\/0106-01,10/15/85 13.87FT AEVISK>N Dt:SCAIPTION ~ ' ' ~~-'. --. ~ O.◄NILE EASTOFiNTEASECTIONOf LA COST~ AVE. AND SAXOr-lY ROAD J\~OAOS. FROH:, ~fil;;;'~: ~~g*~ ~t~~86-~~I01~t:ru PLANS FOR IMPROVEMENT OF PUBLIC STORM DRAIN AT THE ALGA K-8 SCHOOL SITE I RE /SE !NL T STRUCTU £ 1,~ f. II R~ISION DESCRlf'TM>N NOTE : / ALL PROPOSED GRAOING SHOWN FQJl REFERENCE ONLY. NOTA PART OF THIS PE~IT ~OESCRlPTION OC-0179 DISC SET 114 WEST OIO aF SQlJTHHEAOW,t,LLOF2-4'R.C.P - _ _ibCATION: ~ECORDSFROM: O.+ MlLE EAST OF INTERSECTION CF LA"C0STAAVE.ANOSAXONYR0AD COUNTY Of SAN DIEGO, DEPT. Of PVBU WORKS:REPORTSV0106-01,10/15/!15 fsiiiITl CITY OF CARLSBAD 1•••m1 L.1...J ENGINHRINO OEPAIHMENT 4,- CITY EUIN[ER P-~~--f-1 PROJECT NO. I llffAWING "°· ?I> 3.3~ .302--11   Dr a i n a g e R e p o r t Av i a r a O a k s E l e m e n t a r y S c h o o l M o d e r n i z a t i o n Oc t o b e r 2 0 2 3     Pa g e 5 Jo b # 7 1 7 - 0 2 AT T A C H M E N T 5 Dr a i n a g e M a p s - Pr e - P r o j e c t a n d P o s t - P r o j e c t C o n d i t i o n s E SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD S D SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD W W W W W SD SD SD SD SD SD SD SD S D S D SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD (151) (150) (149) (148) (147) (146) (145) (140) (151) (150) (145) (153) (154)(155) (160) (160) (155) (154) (150) (155) (15 5 ) (1 5 4 ) (15 3 ) (15 2 ) (15 1 ) (15 0 ) (15 5 ) (156)(157)(158) (154 ) (155) (153) (154)(155) (160) N 0 0 ° 2 0 ' 2 2 " W 2 9 3 . 7 1 ' (156) (150)(150) 41.8% AVIARA P A R K W A Y PROPERTY LINE PROPERTY LINE NON DISTURBED AREA NON DISTURBED AREA NON DISTURBED AREA EXIST CURB INLET CITY OF CARLSBAD GIS LINEWORK FOR PUBLIC STORM DRAIN A M B R O S I A L A N E PRE Q100=16.8 CFS POC1 POC4 PRE Q100=1.9 CFS PRE Q100=7.9 CFS POC2 PRE Q100=4.0 CFS POC3 PRE-PROJECT CONDITION • • I I Ii I ~~~:;±-,.:~-----·~: .:_~-~:'-·.>-~--:~-----·:,· ~~~ 0.71 ,-......._ ~ I ~ _ _ __ 2.48 l ,. .JO 0 ,,, SCALE: ,. 60 90 60" • GOOGLE EARTH, IMAGERY SOURCE. IMAGERY DATE 8/17 /19 TORY R. WALKER ENG I N E ~6 ~,t~C~92 ~ Drive Suite 122 Civic Center , LEGEND PROPERTY LINE --ROUND CONTOURS -440-EXISTINGEi GROUND CONTOURS _440_ PROPOS ®-BASIN DESIGNATION -AREA (ACRES) N BOUNDARY DRAINAGE BASI _ _ DRAINAGE SU B-BASIN BOUNDARY ---@ HYDROLOGIC STUDY NODE F CONCENTRATION +--TIME 0 -··· FLOW PATH _, DIRECTION OF FLOW OCTOBER 1, 2023 E(i~ENTARY SCHOOL AVIARA OAKS PH PH 10' 10' SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD S D SD SD S D SD SD SD SD SD SD SDSDSDSD SD SD SD SD S D SD SD SD SD W W W W W W W W W W SD S D SD SD SD SD SD SD SD SD SD S D S D S D SD SD SD SD SD SD S D S D SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD CO M M COMM COMM COMM COMM COMM COMM COMM COMM E E E E E E E E E E E E E IRR IR R IR R IRR IRR IRR IRR IRR IRR IRR IRR IR R I R R IR R IRR IRR IRR IRR IR R IR R IRR IR R IRR IR R IRRIRR IRR IRR IR R IR R IR R IR R I R R I R R IRR IR R IR R IRR IR R IR R IR R IR R IR R IR R G G E COMM COMM E E COM M CO M M E CO M M CO M M E E E E EE E E E E E COMM COMM C O M M COMM E E E E E ECOMM CO M M C O M M E E CO M M G G G G G E E E E EECOMMCOMM E E E E E E E E E E E E E E E IR R IR R IR R IRR IRR EE G G G G G G G G G E EE IRR IR R IR R IRR IRRIRR CO M M COM M COMM CO M M E E E E E E E E G G C O M M C O M M COMM E E E E E G G G G G G E G G G G G E E G G G SD (151) (150) (149) (148) (147) (146) (145) (140) (151) (150) (145) (153) (154) (155) (160) (160) (155) (154) (150) (155) (1 5 5 ) (15 4 ) (15 3 ) (1 5 2 ) (1 5 1 ) (1 5 0 ) (155 ) (156)(157) (158) (15 4 ) (155) (153) (154) (155) (160) N 0 0 ° 2 0 ' 2 2 " W 2 9 3 . 7 1 ' (156) (150)(150)SD S D S D 167 164 164 165 166 162 162 161 160 16 0 159 163 14 5 146 145 147 148 149 150 151 152 153 154 155 156 161 160 16 1 162 159 158 161 161 160 142 143 144 162 162 163 163 163 164 163 163 164 165 164 165 158 160 160 146 147 145 149 150 151 149 148 150 152 153 154 155 156 158 159 158 160 159 161 160 160 165 162 159 159 159 15 9 159 156 155 154 153 152 151 150 149 148 147 158 158 158 158 15 8 157 15515 4 151 152 153 154 150 148 157 153 154 155 155 156 150 145 14 8 147 147 147 147 148 146 146 145 146 146 14 6 155 153 154 152 160 161 162 157 158 157 158 156 154155 156 155 154 153 153 151 151 153152 151 153 152 152 152 151 158 15 8 158 159 157 156 156 157 155 158 157 157 156 156 156 155 155 155 15 5 155 15 4 153 151 153 153 152 157 157156 158 141 151 152 153 154 155 151 153 152 150 151 153 152 154 154 149 150 149 145 149 156 154 155 151 153 150 151 154 153153 152 151 152 152 162 163 164 16 1 160 160 161 154 158 157 156 157 156 155154 153 153 153 153 153 155 154 153 153 153 154155 150 15 3 158 157 156 15 5 155156157 155 156 155 153 162 161 160 158 159 160 157 157 157 157 152 151 150 152 151 150 151 150 152 152 153 152 151 150 151 152 152 152 144 145 147148 143 149 146145144143 149 145 146 146 144143 142 142 141 142 141 146 147 148 15 2 145144143142 141 141 149 15 0 150 15 0 15 1 15 1 151 145 AVIAR A P A R K W A Y A M B R O S I A L A N E PROPERTY LINE PROPERTY LINE BIOFILTRATION BMP-2, 3,000 SF BIOFILTRATION BMP-1, 6,300 SF PROPRIETARY BIOFILTRATION BMP-3, MWS-4-4-V NON DISTURBED AREA NON DISTURBED AREA (E) BUILDING 300 CLASSROOM (E) BUILDING 700 CLASSROOM (E) BLDG 400 CLASSROOM (E) CLASSROOM NEW BUILDING 800 CLASSROOM DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DSDS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS NON DISTURBED AREA PRE Q100=16.8 CFS POC1 POST Q100=27.2 CFS DET Q100=13.6 CFS POC4 POC-3 PRE Q100=1.9 CFS POST Q100=0.1 CFS PRE Q100=4.0 CFS POST Q100=1.9 CFS PRE Q100=7.9 CFS POC2 POST Q100=8.2 CFS DET Q100=4.6 CFS BUILDING 500 (E) BUILDING 600 CLASSROOM DS POST-PROJECT CONDITION • • -- ---I ------ d A 0. ... .• • 4. ~ .. _.J .. i'·~· ~ -. . '. ·" _,,_ 4 ------<• _ ____,,.__ ---•.~' • "':-:..-;;_~;,;¾~. ;' -----=-----=--___,=----=----=---~ j --+--t--;.-=:.-u-----1-L-llt • I .. o\ I \ ! \ \ I ---=~~-~::;:::W~l 1 \ •• \~ ~ \ \ I •. 116 .,. / B-3 1.23 ···ae::, ••· ... ·-... --I ----- ·-.. ,_...._ 201 -------------- ··-... ! ~ 2S 0 25 50 SCALE: 1" = 50' TORY R. WALKER ENGINEERING 122 Civic Cen ter Drive, Sui te 206 Vista, CA 92084 75 LEGEND PROPERTY LINE -440-EXISTING GROUND CONTOURS -440-PROPOSED GROUND CONTOURS ~-BASIN DESIGNATION ~-AREA (ACRES) DRAINAGE BASIN BOUNDARY DRAINAGE SUB-BASIN BOUNDARY HYDROLOGIC STUDY NODE -• • • -t--TIME OF CONCENTRATION FLOW PATH ----DIRECTION OF FLOW OCTOBER 1, 2023 FOR AVI ARA OAKS ELEMENT ARY SCHOOL