HomeMy WebLinkAboutPD 2023-0013; AVIARA OAKS ELEMENTARY SCHOOL MODERNIZATION; DRAINAGE REPORT; 2023-10-01
Prepared by:
_________________________
Bryan T. Hill, PE
R.C.E. 69339
DRAINAGE REPORT
for
Aviara Oaks Elementary School Modernization
Project ID PD2023-0013, GR2023-0022, DWG 543-4A
Carlsbad, California
Prepared for:
Ruhnau Clarke Architects
5751 Palmer Way, Suite C
Carlsbad, CA 92010
OCTOBER 2023
TORY R. WALKER
ENGINEERING
WATERSHED, FLOODPLAIN & STORMWATER MANAGEMENT I RIVER RESTORATION I FLOOD FACILITIES DESIGN I SEDIMENT & EROSION
122 CIVIC CENTER DRIVE, SUITE 206, VISTA, CA 92084 I (760) 414-9212 I TRWENGINEERING.COM
Dr
a
i
n
a
g
e
R
e
p
o
r
t
Av
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
Oc
t
o
b
e
r
2
0
2
3
Pa
g
e
i
Jo
b
#
7
1
7
-
0
2
TA
B
L
E
O
F
C
O
N
T
E
N
T
S
1.
IN
T
R
O
D
U
C
T
I
O
N
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
2.
PR
O
J
E
C
T
D
E
S
C
RI
P
T
I
O
N
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
1
2.
1
.
So
i
l
s
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
2.
2
.
Pr
e
-
P
r
o
j
e
c
t
C
o
nd
i
t
i
o
n
s
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
2
2.
3
.
Po
s
t
-
P
r
o
j
e
c
t
Co
n
d
i
t
i
o
n
s
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
2
3.
HY
D
R
O
L
O
G
I
C
A
N
A
L
Y
S
I
S
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
3.
1
.
Pe
a
k
D
e
s
i
g
n
S
t
o
r
m
C
a
l
c
u
l
a
t
i
o
n
s
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
3.
2
.
Pe
a
k
F
l
o
w
Su
m
m
a
r
y
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
3
4.
HY
D
R
A
U
L
I
C
A
N
A
L
Y
S
I
S
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
3
5.
RE
S
U
L
T
S
A
N
D
C
O
N
C
L
U
S
I
O
N
S
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
4
6.
RE
F
E
R
E
N
C
ES
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
TA
B
L
E
S
Ta
b
l
e
1
|
S
u
m
m
a
r
y
o
f
D
e
t
e
n
t
i
o
n
R
o
u
t
i
n
g
Ta
b
l
e
2
|
S
u
m
m
a
r
y
o
f
P
e
a
k
F
l
o
w
R
e
s
u
l
t
s
AT
T
A
C
H
M
E
N
T
S
AT
T
A
C
H
M
E
N
T
1
Lo
c
a
t
i
o
n
M
a
p
AT
T
A
C
H
M
E
N
T
2
Hy
d
r
o
l
o
g
i
c
S
o
i
l
s
G
r
o
u
p
E
x
h
i
b
i
t
an
d
S
a
n
D
i
e
g
o
C
o
u
n
t
y
C
h
a
r
t
s
AT
T
A
C
H
M
E
N
T
3
Ra
t
i
o
n
a
l
M
e
t
h
o
d
C
a
l
c
u
l
a
t
i
o
n
s
-
Pr
e
-
p
r
o
j
e
c
t
a
n
d
P
o
s
t
-
p
r
o
j
e
c
t
C
o
n
d
i
t
i
o
n
s
AT
T
A
C
H
M
E
N
T
4
Hy
d
r
a
u
l
i
c
C
a
l
c
u
l
a
t
i
o
n
s
AT
T
A
C
H
M
E
N
T
5
Dr
a
i
n
a
g
e
M
a
p
s
-
Pr
e
-
P
r
o
j
e
c
t
a
n
d
P
o
s
t
-
P
r
o
j
e
c
t
C
o
n
d
i
t
i
o
n
s
E
Dr
a
i
n
a
g
e
R
e
p
o
r
t
Av
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
Oc
t
o
b
e
r
2
0
2
3
Pa
g
e
1
Jo
b
#
7
1
7
-
0
2
1.
IN
T
R
O
D
U
C
T
I
O
N
Th
e
p
u
r
p
o
s
e
o
f
t
h
i
s
r
e
p
o
r
t
i
s
t
o
s
u
m
m
a
r
i
z
e
t
h
e
hy
d
r
o
l
o
g
i
c
a
n
d
h
y
d
r
a
u
l
i
c
a
n
a
l
y
s
e
s
o
f
t
h
e
p
r
o
p
o
s
e
d
Av
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
p
r
oj
e
c
t
(
P
r
o
j
e
c
t
I
D
.
P
D
2
0
2
3
-
0
0
1
3
)
.
T
h
i
s
r
e
p
o
r
t
an
a
l
y
z
e
s
t
h
e
f
o
l
l
o
w
i
n
g
:
1.
Pr
e
-
p
r
o
j
e
c
t
a
n
d
p
o
s
t
-
p
r
o
j
e
c
t
d
r
a
i
n
a
g
e
c
o
n
d
i
t
i
o
ns
,
u
s
i
n
g
t
h
e
M
o
d
i
f
i
e
d
R
a
t
i
o
n
a
l
M
e
t
h
o
d
p
e
r
th
e
S
a
n
D
i
e
g
o
C
o
u
n
t
y
H
y
d
r
o
l
o
g
y
M
a
n
u
a
l
(
S
D
C
H
M
)
f
o
r
a
1
0
0
-
y
e
a
r
d
e
s
i
g
n
s
t
o
r
m
2.
De
t
e
n
t
i
o
n
r
o
u
t
i
n
g
t
o
d
e
m
o
n
s
t
r
a
t
e
t
h
a
t
t
h
e
p
r
o
j
e
c
t
w
i
l
l
n
o
t
e
x
c
e
e
d
p
r
e
-
p
r
o
j
e
c
t
f
l
o
w
r
a
t
e
s
at
t
h
e
P
o
i
n
t
o
f
C
o
m
p
l
i
a
n
c
e
(
P
O
C
)
3.
In
l
e
t
a
n
d
p
i
p
e
s
i
z
i
n
g
c
a
l
c
u
l
a
t
i
o
n
s
,
d
e
m
o
n
s
t
r
a
t
in
g
t
h
a
t
t
h
e
p
r
o
p
o
s
e
d
s
t
o
r
m
d
r
a
i
n
s
y
s
t
e
m
c
a
n
co
l
l
e
c
t
a
n
d
c
o
n
v
e
y
r
u
n
o
f
f
f
r
om
a
1
0
0
-
y
e
a
r
d
e
s
i
g
n
s
t
o
r
m
2.
PR
O
J
E
C
T
D
E
S
C
R
I
P
T
I
O
N
Th
e
A
v
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
p
r
o
j
e
c
t
p
r
o
p
o
s
e
s
t
o
r
e
n
o
v
a
t
e
a
n
d
r
e
d
e
v
e
l
o
p
po
r
t
i
o
n
s
o
f
t
h
e
e
x
i
s
t
i
n
g
A
v
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
ho
o
l
l
o
c
a
t
e
d
a
t
6
9
0
0
A
m
b
r
o
s
i
a
L
a
n
e
i
n
t
h
e
C
i
t
y
of
C
a
r
l
s
b
a
d
.
T
h
e
a
p
p
r
o
x
i
m
a
t
e
l
y
9
.
8
a
c
r
e
p
r
o
j
e
c
t
s
i
te
i
s
a
n
e
x
i
s
t
i
n
g
s
c
h
o
o
l
w
i
t
h
c
o
n
c
r
e
t
e
a
n
d
as
p
h
a
l
t
h
a
r
d
s
c
a
p
e
,
l
a
n
d
s
c
a
p
i
n
g
,
a
n
d
m
u
l
t
i
p
l
e
b
u
i
l
d
in
g
s
o
n
s
i
t
e
.
S
t
o
r
m
w
a
t
e
r
r
u
n
o
f
f
i
s
c
o
l
l
e
c
t
e
d
i
n
an
e
x
i
s
t
i
n
g
p
r
i
v
a
t
e
s
t
o
r
m
d
r
a
i
n
s
y
s
t
em
t
h
a
t
c
o
n
v
e
y
s
f
l
o
w
s
t
o
a
6
0
”
p
u
bl
i
c
s
t
o
r
m
d
r
a
i
n
t
h
a
t
r
u
n
s
n
o
r
t
h
to
s
o
u
t
h
t
h
r
o
u
g
h
t
h
e
e
a
s
t
e
r
n
h
a
l
f
o
f
t
h
e
s
i
t
e
,
t
h
e
n
fl
o
w
s
w
e
s
t
a
d
j
a
c
e
n
t
t
o
t
h
e
n
o
r
t
h
s
i
d
e
o
f
A
v
i
a
r
a
Pa
r
k
w
a
y
.
T
h
e
p
r
o
j
e
c
t
p
r
o
p
o
s
e
s
t
o
r
e
m
o
v
e
a
n
d
r
e
p
l
a
c
e
t
h
e
e
x
i
s
t
i
n
g
h
a
r
d
s
c
a
p
e
,
i
n
c
l
u
d
i
n
g
d
r
i
v
e
la
n
e
s
a
n
d
p
a
r
k
i
n
g
l
o
t
,
r
e
n
o
v
a
t
e
f
i
v
e
e
x
i
s
t
i
n
g
b
u
i
l
d
i
n
g
s
,
a
n
d
c
o
n
s
t
r
u
c
t
s
a
n
e
w
b
u
i
l
d
i
n
g
.
R
u
n
o
f
f
f
r
o
m
th
e
p
r
o
p
o
s
e
d
r
e
d
e
v
e
l
o
p
m
e
n
t
i
s
c
o
l
l
e
c
t
e
d
i
n
n
e
w
p
r
iv
a
t
e
s
t
o
r
m
d
r
a
i
n
s
y
s
t
e
m
s
th
a
t
c
o
n
v
e
y
f
l
o
w
s
t
o
on
e
o
f
t
w
o
b
i
o
f
i
l
t
r
a
t
i
o
n
b
a
s
i
n
s
t
h
a
t
p
r
o
v
i
d
e
w
a
te
r
q
u
a
l
i
t
y
,
h
y
d
r
o
m
o
d
i
f
i
c
a
t
i
o
n
,
a
n
d
p
e
a
k
f
l
o
w
mi
t
i
g
a
t
i
o
n
.
A
s
m
a
l
l
p
o
r
t
i
o
n
o
f
t
h
e
pr
o
j
e
c
t
,
c
o
n
s
i
s
t
i
n
g
o
f
d
r
i
v
e
l
a
n
e
a
t
t
h
e
p
r
o
j
e
c
t
e
n
t
r
a
n
c
e
f
r
o
m
Am
b
r
o
s
i
a
L
a
n
e
,
i
s
u
n
a
b
l
e
t
o
b
e
c
o
l
l
e
c
t
e
d
i
n
a
de
t
e
n
t
i
o
n
s
y
s
t
e
m
a
n
d
l
e
a
v
e
s
t
h
e
s
i
t
e
u
n
d
e
t
a
i
n
e
d
.
So
m
e
o
f
t
h
i
s
a
r
e
a
i
s
r
o
u
t
e
d
t
o
a
p
r
o
p
r
i
e
t
a
r
y
b
i
o
f
il
t
r
a
t
i
o
n
s
y
s
t
e
m
f
o
r
w
a
t
e
r
q
u
a
l
i
t
y
m
i
t
i
g
a
t
i
o
n
.
S
e
e
t
h
e
pr
o
j
e
c
t
S
t
o
r
m
W
a
t
e
r
Q
u
a
l
i
t
y
M
a
n
a
g
e
m
e
n
t
P
l
a
n
,
d
a
t
e
d
1
0
/
2
6
/
2
3
f
o
r
a
d
d
i
t
i
o
n
a
l
w
a
t
e
r
q
u
a
l
i
t
y
a
n
d
hy
d
r
o
m
o
d
i
f
i
c
a
t
i
o
n
m
i
t
i
g
a
t
i
o
n
c
a
l
c
u
l
a
t
i
o
n
s
.
A
l
l
p
r
o
j
ec
t
r
u
n
o
f
f
i
s
t
r
i
b
u
t
a
r
y
t
o
t
h
e
6
0
”
p
u
b
l
i
c
s
t
o
r
m
dr
a
i
n
,
a
s
i
n
t
h
e
e
x
i
s
t
i
n
g
c
o
n
d
i
t
i
o
n
.
E
Dr
a
i
n
a
g
e
R
e
p
o
r
t
Av
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
Oc
t
o
b
e
r
2
0
2
3
Pa
g
e
2
Jo
b
#
7
1
7
-
0
2
2.
1
.
So
i
l
s
Pe
r
t
h
e
G
e
o
t
e
c
h
n
i
c
a
l
I
n
v
e
s
t
i
g
a
t
i
o
n
f
o
r
A
v
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
,
b
y
N
o
v
a
Se
r
v
i
c
e
,
t
h
e
p
r
o
j
e
c
t
s
i
t
e
i
s
d
o
m
i
n
a
t
e
d
b
y
d
e
n
s
e
s
i
l
t
y
an
d
c
l
a
y
e
y
s
a
n
d
,
w
i
t
h
v
e
r
y
l
o
w
i
n
f
i
l
t
r
a
t
i
o
n
r
a
t
e
s
.
Ba
s
e
d
o
n
t
h
i
s
a
s
s
e
s
s
m
e
n
t
,
T
y
p
e
C
s
o
i
l
s
a
r
e
a
s
s
u
m
e
d
to
b
e
a
n
a
v
e
r
a
g
e
r
e
p
r
e
s
e
n
t
a
t
i
o
n
o
f
t
h
e
s
i
t
e
’
s
so
i
l
c
h
a
r
a
c
t
e
r
i
s
t
i
c
s
,
s
e
e
d
o
c
u
m
e
n
t
a
t
i
o
n
i
n
A
t
t
a
c
h
me
n
t
1
.
(
s
e
e
H
S
G
m
a
p
/
d
a
t
a
f
r
o
m
U
S
D
A
W
e
b
S
o
i
l
Su
r
v
e
y
i
n
t
h
e
r
e
p
o
r
t
a
t
t
a
c
h
m
e
n
t
s
)
.
2.
2
.
Pr
e
-
P
r
o
j
e
c
t
C
o
n
d
i
t
i
o
n
s
Th
e
e
x
i
s
t
i
n
g
s
i
t
e
i
s
a
n
e
l
e
m
e
n
t
a
r
y
s
c
h
o
o
l
l
o
c
a
t
e
d
i
m
m
e
d
i
a
t
e
l
y
a
d
j
a
c
e
n
t
t
o
t
h
e
s
o
u
t
h
o
f
A
v
i
a
r
a
O
a
k
s
Mi
d
d
l
e
S
c
h
o
o
l
.
T
h
e
s
c
h
o
o
l
s
a
r
e
f
r
o
n
t
e
d
b
y
A
m
b
r
o
s
i
a
L
a
n
e
o
n
t
h
e
w
e
s
t
a
n
d
s
o
u
t
h
w
e
s
t
,
a
n
d
A
v
i
a
r
a
Pa
r
k
w
a
y
o
n
t
h
e
s
o
u
t
h
e
a
s
t
.
I
m
m
e
d
i
a
t
e
l
y
t
o
t
h
e
n
o
r
t
h
a
n
d
e
a
s
t
i
s
u
n
d
e
v
e
l
o
p
e
d
o
p
e
n
s
p
a
c
e
.
T
h
e
ex
i
s
t
i
n
g
d
r
a
i
n
a
g
e
c
o
n
v
e
y
a
n
c
e
i
s
u
r
b
a
n
,
a
n
d
t
h
e
s
i
te
g
e
n
e
r
a
l
l
y
d
r
a
i
n
s
f
r
o
m
t
h
e
n
o
r
t
h
t
o
s
o
u
t
h
.
T
h
e
mi
d
d
l
e
s
c
h
o
o
l
c
o
m
p
r
i
s
e
s
t
h
e
n
o
r
t
h
e
r
n
,
u
p
s
t
r
e
a
m
h
a
l
f
o
f
t
h
e
p
r
o
p
e
r
t
y
,
a
n
d
t
h
e
e
l
e
m
e
n
t
a
r
y
s
c
h
o
o
l
is
o
n
t
h
e
s
o
u
t
h
e
r
n
h
a
l
f
.
T
h
e
m
i
d
d
l
e
s
c
h
o
o
l
h
a
s
a
p
r
i
v
a
t
e
s
t
o
r
m
d
r
a
i
n
s
y
s
t
e
m
t
h
a
t
c
o
l
l
e
c
t
s
r
u
n
o
f
f
a
n
d
di
s
c
h
a
r
g
e
s
t
o
a
6
0
”
p
u
b
l
i
c
s
t
o
r
m
d
r
a
i
n
t
h
a
t
r
u
n
s
n
o
rt
h
t
o
s
o
u
t
h
o
n
t
h
e
e
a
s
t
s
i
d
e
o
f
t
h
e
p
r
o
j
e
c
t
.
N
o
si
g
n
i
f
i
c
a
n
t
r
u
n
-
o
n
d
r
a
i
n
s
t
o
t
h
e
e
l
e
m
e
n
t
a
r
y
s
c
h
o
o
l
.
St
o
r
m
w
a
t
e
r
r
u
n
o
f
f
f
r
o
m
t
h
e
e
l
e
m
e
n
t
a
r
y
s
c
h
o
o
l
i
s
c
o
l
l
e
c
t
e
d
i
n
m
u
l
t
i
p
l
e
e
x
i
s
t
i
n
g
p
r
i
v
a
t
e
s
t
o
r
m
d
r
a
i
n
ca
t
c
h
b
a
s
i
n
s
l
o
c
a
t
e
d
t
h
r
o
u
g
h
o
u
t
t
h
e
s
i
t
e
,
a
n
d
t
h
e
m
a
j
o
r
i
t
y
o
f
s
i
t
e
r
u
n
o
f
f
i
s
t
r
i
b
u
t
a
r
y
t
o
t
w
o
2
4
”
pr
i
v
a
t
e
s
t
o
r
m
d
r
a
i
n
s
y
s
t
e
m
s.
R
u
n
o
f
f
c
o
l
l
e
c
t
e
d
i
n
t
h
e
p
r
i
v
a
t
e
s
y
s
t
e
m
s
i
s
c
o
n
v
e
y
e
d
t
o
t
h
e
e
a
s
t
a
n
d
so
u
t
h
f
o
r
d
i
s
c
h
a
r
g
e
t
o
t
h
e
e
x
i
s
t
i
n
g
6
0
”
p
u
b
l
i
c
st
o
r
m
d
r
a
i
n
.
T
h
e
t
w
o
l
o
c
a
t
i
o
n
s
w
h
e
r
e
t
h
e
p
r
i
v
a
t
e
sy
s
t
e
m
d
i
s
c
h
a
r
g
e
s
t
o
t
h
e
p
u
b
l
i
c
s
y
s
t
e
m
a
r
e
i
d
e
n
t
i
fi
e
d
i
n
t
h
i
s
s
t
u
d
y
a
s
P
o
in
t
o
f
C
o
m
p
l
i
a
n
c
e
(
P
O
C
)
1
an
d
2
.
T
h
e
p
u
b
l
i
c
s
t
o
r
m
d
r
a
i
n
p
a
s
s
e
s
t
h
r
o
u
g
h
t
h
e
p
r
o
j
e
c
t
,
r
u
n
s
w
e
s
t
a
l
o
n
g
t
h
e
n
o
r
t
h
s
i
d
e
o
f
A
v
i
a
r
a
Pa
r
k
w
a
y
,
a
n
d
t
h
e
n
c
o
n
t
i
n
u
e
s
s
o
u
t
h
,
c
r
o
s
s
i
n
g
A
v
i
a
ra
P
a
r
k
w
a
y
a
t
t
h
e
i
n
t
e
r
s
ec
t
i
o
n
w
i
t
h
A
m
b
r
o
s
i
a
La
n
e
.
T
h
e
s
t
o
r
m
d
r
a
i
n
u
l
t
i
m
a
t
e
l
y
d
i
sc
h
a
r
g
e
s
t
o
B
a
t
i
q
u
i
t
o
s
L
a
g
o
o
n
,
ap
p
r
o
x
i
m
a
t
e
l
y
0
.
7
m
i
l
e
s
t
o
t
h
e
so
u
t
h
.
Tw
o
p
o
r
t
i
o
n
s
o
f
t
h
e
p
r
o
j
e
c
t
d
r
a
i
n
o
v
e
r
l
a
n
d
t
o
A
m
b
r
os
i
a
L
a
n
e
.
T
h
e
d
r
i
v
e
l
a
n
e
p
r
o
v
i
d
i
n
g
a
c
c
e
s
s
f
r
o
m
Am
b
r
o
s
i
a
L
a
n
e
d
i
s
c
h
a
r
g
e
s
t
o
t
h
e
s
t
r
e
e
t
;
t
h
i
s
d
i
s
c
h
a
rg
e
l
o
c
a
t
i
o
n
i
s
i
d
e
n
t
i
f
i
e
d
a
s
P
O
C
3
.
A
p
o
r
t
i
o
n
o
f
th
e
p
l
a
y
g
r
o
u
n
d
a
l
s
o
d
i
s
c
h
a
r
g
e
s
o
v
e
r
la
n
d
t
o
t
h
e
s
t
r
e
e
t
;
t
h
i
s
d
i
s
c
h
a
r
g
e
l
o
c
a
t
i
o
n
i
s
i
d
e
n
t
i
f
i
e
d
a
s
P
O
C
4.
S
t
o
r
m
w
a
t
e
r
r
u
n
o
f
f
t
h
a
t
d
i
s
c
h
a
r
g
e
s
t
o
A
m
b
r
o
s
i
a
L
a
n
e
f
r
o
m
P
O
C
3
a
n
d
P
O
C
4
i
s
c
o
l
l
e
c
t
e
d
i
n
a
cu
r
b
i
n
l
e
t
l
o
c
a
t
e
d
n
o
r
t
h
o
f
t
h
e
i
n
t
e
r
s
e
c
t
i
o
n
w
i
t
h
A
v
ia
r
a
P
a
r
k
w
a
y
.
T
h
i
s
c
u
r
b
i
n
l
e
t
d
i
s
c
h
a
r
g
e
s
t
o
t
h
e
60
”
p
u
b
l
i
c
s
t
o
r
m
d
r
a
i
n
s
y
s
t
e
m
d
o
w
n
s
t
r
e
a
m
o
f
P
O
C
1
a
n
d
2
.
E
Dr
a
i
n
a
g
e
R
e
p
o
r
t
Av
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
Oc
t
o
b
e
r
2
0
2
3
Pa
g
e
3
Jo
b
#
7
1
7
-
0
2
2.
3
.
Po
s
t
-
P
r
o
j
e
c
t
C
o
n
d
i
t
i
o
n
s
Th
e
p
r
o
j
e
c
t
p
r
o
p
o
s
e
s
t
o
r
e
m
o
v
e
a
n
d
r
e
p
l
a
c
e
t
h
e
e
x
i
s
t
i
n
g
h
a
r
d
s
c
a
p
e
,
i
n
c
l
u
d
i
n
g
d
r
i
v
e
l
a
n
e
s
a
n
d
pa
r
k
i
n
g
l
o
t
,
r
e
n
o
v
a
t
e
f
i
v
e
e
x
i
s
t
i
n
g
b
u
i
l
d
i
n
g
s
,
a
n
d
c
o
n
s
t
r
u
c
t
a
n
e
w
b
u
i
l
d
i
n
g
a
t
A
v
i
a
r
a
O
a
k
s
El
e
m
e
n
t
a
r
y
S
c
h
o
o
l
.
T
h
e
p
r
o
j
e
c
t
w
i
l
l
c
o
n
s
t
r
u
c
t
n
e
w
p
r
i
v
a
t
e
s
t
o
r
m
d
r
a
i
n
s
y
s
t
e
m
s
t
o
c
o
l
l
e
c
t
r
u
n
o
f
f
f
r
o
m
th
e
p
r
o
p
o
s
e
d
i
m
p
r
o
v
e
m
e
n
t
s
.
T
h
e
p
r
i
v
a
t
e
s
t
o
r
m
d
r
a
i
n
s
y
s
t
e
m
s
w
i
l
l
c
o
n
v
e
y
r
u
n
o
f
f
t
o
o
n
e
o
f
t
w
o
bi
o
f
i
l
t
r
a
t
i
o
n
b
a
s
i
n
s
d
e
s
i
g
n
e
d
t
o
p
r
o
v
i
d
e
w
a
t
e
r
q
u
a
l
i
t
y
,
h
y
d
r
o
m
o
d
i
f
i
c
a
t
i
o
n
,
a
n
d
p
e
a
k
f
l
o
w
mi
t
i
g
a
t
i
o
n
.
T
h
e
t
w
o
b
i
o
f
i
l
t
r
a
t
i
o
n
ba
s
i
n
s
a
r
e
i
d
e
n
t
i
f
i
e
d
a
s
B
M
P
-
1
an
d
B
M
P
-
2
.
B
M
P
-
1
d
i
s
c
h
a
r
g
e
s
t
o
PO
C
1
a
n
d
B
M
P
-
2
d
i
s
c
h
a
r
g
e
s
t
o
P
O
C
2
.
A
s
m
a
l
l
p
o
r
t
i
o
n
o
f
t
h
e
d
r
i
v
e
l
a
n
e
p
r
o
v
i
d
i
n
g
a
c
c
e
s
s
f
r
o
m
Am
b
r
o
s
i
a
L
a
n
e
i
s
u
n
a
b
l
e
t
o
b
e
r
o
u
t
e
d
t
o
e
i
t
h
e
r
bi
o
f
i
l
t
r
a
t
i
o
n
b
a
s
i
n
a
n
d
,
i
n
s
t
e
a
d
,
r
u
n
o
f
f
f
r
o
m
t
h
e
8
5
th
pe
r
c
e
n
t
i
l
e
s
t
o
r
m
i
s
r
o
u
t
e
d
t
o
a
pr
o
p
r
i
e
t
a
r
y
b
i
o
f
i
l
t
r
a
t
i
o
n
s
y
s
t
e
m
f
o
r
w
a
t
e
r
q
u
a
l
i
t
y
m
i
t
i
g
a
t
i
o
n
.
L
a
r
g
e
r
st
o
r
m
s
w
i
l
l
b
y
p
a
s
s
t
h
e
s
y
s
t
e
m
a
n
d
w
i
l
l
d
r
a
i
n
i
n
ba
s
i
n
O
S
-
1
a
n
d
t
h
e
n
i
n
t
o
A
m
b
r
o
s
i
a
L
a
n
e
;
t
h
i
s
di
s
c
h
a
r
g
e
l
o
c
a
t
i
o
n
i
s
P
O
C
3
.
A
s
m
a
l
l
p
o
r
t
i
o
n
o
f
l
a
nd
s
c
a
p
e
a
r
e
a
n
o
t
t
r
i
b
u
t
a
r
y
t
o
B
M
P
-
1
,
d
i
s
c
h
a
r
g
e
s
ov
e
r
l
a
n
d
t
o
A
m
b
r
o
s
i
a
L
a
n
e
a
t
P
O
C
4
.
Th
e
b
i
o
f
i
l
t
r
a
t
i
o
n
s
y
s
t
e
m
s
a
r
e
p
r
o
p
o
s
ed
o
n
t
h
e
s
o
u
t
h
s
i
d
e
o
f
t
h
e
p
r
o
j
e
c
t
,
a
d
j
a
c
e
n
t
t
o
A
m
b
r
o
s
i
a
L
a
n
e
an
d
A
v
i
a
r
a
P
a
r
k
w
a
y
.
T
h
e
p
r
o
p
o
s
e
d
s
t
o
r
m
d
r
a
i
n
s
y
s
t
e
m
h
o
n
o
r
s
p
r
e
-
pr
o
j
e
c
t
d
r
a
i
n
a
g
e
p
a
t
t
e
r
n
s
a
n
d
ou
t
f
a
l
l
l
o
c
a
t
i
o
n
s
.
T
h
e
b
i
o
f
i
l
t
r
a
t
i
o
n
b
a
s
i
n
s
d
i
s
c
h
a
r
g
e,
v
i
a
s
t
o
r
m
d
r
a
i
n
,
t
o
t
h
e
6
0
”
p
u
b
l
i
c
s
t
o
r
m
d
r
a
i
n
th
a
t
p
a
s
s
e
s
t
h
r
o
u
g
h
t
h
e
p
r
o
j
e
c
t
;
s
a
m
e
a
s
t
h
e
ex
i
s
t
i
n
g
c
o
n
d
i
t
i
o
n
.
S
e
e
t
h
e
p
r
o
j
e
c
t
S
t
o
r
m
W
a
t
e
r
Qu
a
l
i
t
y
M
a
n
a
g
e
m
e
n
t
P
l
a
n
,
d
a
t
e
d
1
0
/
2
6
/
2
3
f
o
r
w
a
te
r
q
u
a
l
i
t
y
a
n
d
h
y
d
r
o
m
o
d
i
f
i
c
a
t
i
o
n
m
i
t
i
g
a
t
i
o
n
ca
l
c
u
l
a
t
i
o
n
s
.
3.
HY
D
R
O
L
O
G
I
C
A
N
A
L
Y
S
I
S
Ad
v
a
n
c
e
d
E
n
g
i
n
e
e
r
i
n
g
S
o
f
t
w
a
r
e
(
A
E
S
)
i
s
u
s
e
d
f
o
r
c
o
m
p
u
t
i
n
g
t
h
e
p
r
e
-
p
r
o
j
e
c
t
a
n
d
p
o
s
t
-
p
r
o
j
e
c
t
1
0
0
-
ye
a
r
R
a
t
i
o
n
a
l
M
e
t
h
o
d
p
e
a
k
f
l
o
w
s
.
A
E
S
c
o
m
p
u
t
e
s
R
a
t
i
o
n
a
l
M
e
t
h
od
s
t
o
r
m
r
u
n
o
f
f
b
a
s
e
d
u
p
o
n
t
h
e
cr
i
t
e
r
i
a
s
e
t
f
o
r
t
h
i
n
t
h
e
S
D
C
H
M
.
3.
1
.
Pe
a
k
D
e
s
i
g
n
S
t
o
r
m
C
a
l
c
u
l
a
t
i
o
n
s
Fo
r
p
r
e
-
p
r
o
j
e
c
t
a
n
d
p
o
s
t
-
p
r
o
j
e
c
t
c
o
n
d
i
t
i
o
n
s
,
p
e
a
k
f
l
o
w
r
a
t
e
s
a
r
e
c
a
l
c
u
l
a
t
e
d
u
s
i
n
g
t
h
e
S
D
C
H
M
Ra
t
i
o
n
a
l
M
e
t
h
o
d
H
y
d
r
o
g
r
a
p
h
p
r
o
c
e
d
u
r
e
(
s
e
e
r
e
s
u
l
t
s
i
n
A
p
p
e
n
d
i
x
3
)
f
o
r
a
1
0
0
-
y
r
d
e
s
i
g
n
s
t
o
r
m
.
P
e
a
k
fl
o
w
i
s
e
q
u
a
l
t
o
:
Q
=
C
I
A
Wh
e
r
e
:
Q
=
p
e
a
k
d
i
s
c
h
a
r
g
e
(
c
f
s
)
C
=
r
u
n
o
f
f
c
o
e
f
f
i
c
i
e
n
t
E
Dr
a
i
n
a
g
e
R
e
p
o
r
t
Av
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
Oc
t
o
b
e
r
2
0
2
3
Pa
g
e
4
Jo
b
#
7
1
7
-
0
2
I
=
a
v
e
r
a
g
e
r
a
i
n
f
a
l
l
i
n
t
e
n
s
i
t
y
,
t
a
k
e
n
a
t
t
h
e
t
i
m
e
o
f
c
o
n
c
e
n
t
r
a
t
i
o
n
(
i
n
/
h
r
)
A
=
d
r
a
i
n
a
g
e
a
r
e
a
(
a
c
)
3.
2
.
Pe
a
k
F
l
o
w
S
u
m
m
a
r
y
Th
e
p
r
o
j
e
c
t
p
r
o
p
o
s
e
s
t
o
d
e
t
a
i
n
t
h
e
1
0
0
-
y
e
a
r
s
t
o
r
m
o
n
s
i
t
e
t
o
m
i
t
i
g
a
t
e
f
o
r
i
n
c
r
e
a
s
e
s
i
n
p
e
a
k
r
u
n
o
f
f
ge
n
e
r
a
t
e
d
b
y
t
h
e
d
e
v
e
l
o
p
m
e
n
t
.
De
t
e
n
t
i
o
n
r
o
u
t
i
n
g
c
a
l
c
u
l
a
t
i
o
n
s
a
r
e
p
r
o
v
i
d
e
d
w
i
t
h
i
n
t
h
i
s
s
t
u
d
y
.
4.
HY
D
R
A
U
L
I
C
A
N
A
L
Y
S
I
S
A
h
y
d
r
a
u
l
i
c
a
n
a
l
y
s
i
s
o
f
t
h
e
p
r
o
p
o
s
e
d
d
e
t
e
n
t
i
o
n
s
y
s
t
e
m
w
a
s
p
e
r
f
o
r
m
e
d
,
u
s
i
n
g
H
y
d
r
a
f
l
o
w
Hy
d
r
o
g
r
a
p
h
s
,
t
o
d
e
m
o
n
s
t
r
a
t
e
t
h
a
t
t
h
e
p
r
o
j
e
c
t
w
i
l
l
a
d
eq
u
a
t
e
l
y
m
i
t
i
g
a
t
e
t
h
e
i
n
c
r
e
a
s
e
i
n
p
e
a
k
f
l
o
w
ru
n
o
f
f
g
e
n
e
r
a
t
e
d
b
y
t
h
e
s
i
t
e
b
y
r
e
d
u
c
i
n
g
p
e
a
k
f
l
o
w
s
t
o
p
r
e
-
p
r
o
j
e
c
t
f
l
o
w
r
a
t
e
s
a
t
P
O
C
1
a
n
d
P
O
C
2
.
A
h
y
d
r
o
g
r
a
p
h
w
a
s
g
e
n
e
r
a
t
e
d
f
o
r
a
1
0
0
-
y
e
a
r
d
e
s
i
g
n
s
t
o
r
m
,
u
s
i
n
g
R
a
t
H
y
d
r
o
s
o
f
t
w
a
r
e
,
a
n
d
r
o
u
t
e
d
th
r
o
u
g
h
a
m
o
d
e
l
o
f
b
i
o
f
i
l
t
r
a
t
i
o
n
b
a
s
i
n
s
B
M
P
-
1
a
n
d
BM
P
-
2
.
C
a
l
c
u
l
a
t
i
o
n
s
a
r
e
i
n
c
l
u
d
e
d
a
s
A
t
t
a
c
h
m
e
n
t
4;
a
s
u
m
m
a
r
y
o
f
t
h
e
r
o
u
t
i
n
g
i
s
p
r
o
v
i
d
e
d
b
e
l
o
w
:
Ta
b
l
e
1
|
S
u
m
m
a
r
y
o
f
D
e
t
e
n
t
i
o
n
R
o
u
t
i
n
g
5.
RE
S
U
L
T
S
A
N
D
C
O
N
C
L
U
S
I
O
N
S
Th
e
a
n
a
l
y
s
i
s
w
i
t
h
i
n
t
h
i
s
s
t
u
d
y
d
e
mo
n
s
t
r
a
t
e
s
t
h
a
t
t
h
e
A
v
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
pr
o
j
e
c
t
w
i
l
l
:
1.
Ho
n
o
r
p
r
e
-
p
r
o
j
e
c
t
d
r
a
i
n
a
g
e
p
a
t
t
e
r
n
s
a
n
d
d
i
s
c
h
a
r
g
e
l
o
c
a
t
i
o
n
s
.
T
h
e
p
r
o
p
o
s
e
d
p
r
o
j
e
c
t
re
d
u
c
e
s
r
u
n
o
f
f
t
o
a
l
l
f
o
u
r
P
O
C
s
in
t
h
e
1
0
0
y
e
a
r
d
e
s
i
g
n
s
t
o
r
m
.
2.
Pr
o
v
i
d
e
a
d
e
q
u
a
t
e
d
e
t
e
n
t
i
o
n
t
o
m
i
t
i
g
a
t
e
i
n
c
r
e
a
s
e
s
i
n
p
e
a
k
f
l
o
w
a
s
s
o
c
i
a
t
e
d
w
i
t
h
t
h
e
pr
o
p
o
s
e
d
p
r
o
j
e
c
t
.
P
e
a
k
f
l
o
w
r
a
t
e
s
ar
e
s
u
m
m
a
r
i
z
e
d
i
n
t
h
e
t
a
b
l
e
b
e
l
o
w
:
BM
P
Tc
I
N
(m
i
n
)
Q1
0
0
I
N
F
L
O
W
(c
f
s
)
Q1
0
0
O
U
T
F
L
O
W
(c
f
s
)
BM
P
-
1
7
.
6
2
4
.
1
1
0
.
6
BM
P
-
2
7
.
6
8
.
2
4.
6
E
Dr
a
i
n
a
g
e
R
e
p
o
r
t
Av
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
Oc
t
o
b
e
r
2
0
2
3
Pa
g
e
5
Jo
b
#
7
1
7
-
0
2
Ta
b
l
e
1
:
P
r
e
-
p
r
o
j
e
c
t
C
o
n
d
i
t
i
o
n
R
u
n
o
f
f
T
a
b
l
e
Lo
c
a
t
i
o
n
Ar
e
a
(a
c
)
Ru
n
o
f
f
Co
e
f
f
.
C
Tc
(
m
i
n
)
In
t
e
n
s
i
t
y
I
(i
n
/
h
r
)
Q10
0
(
c
f
s
)
PO
C
1
6.
3
6
0
.
5
6
8
.
7
4.
6
8
16
.
8
PO
C
2
3.
7
5
0
.
5
3
1
1
.
3
3.
9
5
7.
9
PO
C
3
1.
2
2
0
.
6
0
7
.
0
5.
4
4
4.
0
PO
C
4
0.
4
5
0
.
6
2
5
.
0
6.
6
9
1.
9
Ta
b
l
e
2
:
P
o
s
t
-
P
r
o
j
e
c
t
C
o
n
d
i
t
i
o
n
R
u
n
o
f
f
T
a
b
l
e
Lo
c
a
t
i
o
n
Ar
e
a
(a
c
)
Ru
n
o
f
f
Co
e
f
f
.
C
Tc
(m
i
n
)
In
t
e
n
s
i
t
y
I
(i
n
/
h
r
)
Q10
0
,
w
i
t
h
o
u
t
de
t
e
n
t
i
o
n
(
c
f
s
)
Q10
0
,
w
i
t
h
de
t
e
n
t
i
o
n
(c
f
s
)
PO
C
1
8.
6
1
0
.
6
2
7
.
6
5
.
0
9
2
7
.
2
1
3
.
6
PO
C
2
2.
9
9
0
.
5
4
7
.
6
5
.
1
0
8
.
2
4
.
6
PO
C
3
0.
3
6
0
.
7
7
5
6
.
6
9
1
.
8
7
N
/
A
PO
C
4
0.
0
3
0
.
3
0
5
6
.
6
9
0
.
0
6
N
/
A
6.
RE
F
E
R
E
N
C
E
S
1.
Sa
n
D
i
e
g
o
C
o
u
n
t
y
,
2
0
0
3
H
y
d
r
o
l
o
g
y
M
a
n
u
a
l
E
Drainage Report
Aviara Oaks Elementary School Modernization
October 2023
Page 1 Job # 717-02
ATTACHMENT 1
Location Map
CITY OF OCEANS IDE
PR OJ ECT
PACIFIC
OCEAN
?a
CITY OF ENCINITAS
NOT TO
SCALE
OF
MARCOS
Dr
a
i
n
a
g
e
R
e
p
o
r
t
Av
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
Oc
t
o
b
e
r
2
0
2
3
Pa
g
e
2
Jo
b
#
7
1
7
-
0
2
AT
T
A
C
H
M
E
N
T
2
Hy
d
r
o
l
o
g
i
c
S
o
i
l
s
G
r
o
u
p
E
x
h
i
b
i
t
a
n
d
S
a
n
D
i
e
g
o
C
o
u
n
t
y
C
h
a
r
t
s
E
10/21/23, 5:04 PM Precipitation Frequency Data Server
NOAA Atlas 14, Volume 6, Version 2
Location name: Carlsbad, California, USA*
Latitude: 33.1031°, Longitude: -117.2789°
Elevation: 201 ft**
• source: ESRI Maps
•• source: USGS
POINT PRECIPITATION FREQUENCY ESTIMATES
Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra
Pavlovic, lshani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey
Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan
NOAA, National Weather Service, Silver Spring, Maryland
PF tabular I PF gmghical I Mags & aerials
PF tabular
I PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches)1
lourationll
Average recurrence interval (years)
1 II 2 11 5 II 10 II 25 II 50 II 100 II 200 II 500 II 1000
i s-min I
0.113 0.142 0.182 0.216 0.263 0.302 0.342 0.385 0.447 0.498
(0.095-0.135) (0.119-0.171) (0.152-0.219) (0.179-0.262) (0.211-0.332) (0.236-0.389) (0.261-0.453) (0.286-0.526) (0.317-0.637) (0.340-0.736)
~ 0.162 0.203 0.261 0.309 0.377 0.432 0.490 0.552 0.641 0.713
(0.136-0.194) (0.171-0.245) (0.218-0.314) (0.257-0.376) (0.303-0.476) (0.339-0.557) (0.374-0.649) (0.409-0.753) (0.454-0.913) (0.487-1.05)
~ 0.195 0.246 0.315 0.374 0.456 0.523 0.593 0.668 0.775 0.862
(0.164-0.234) (0.207-0.296) (0.264-0.380) (0.310-0.454) (0.366-0.575) (0.410-0.674) (0.453-0.785) (0.495-0.911) (0.549-1.10) (0.589-1.28)
I30-min I
0.275 0.347 0.444 0.527 0.643 0.737 0.836 0.941 1.09 1.22
(0.232-0.330) (0.291-0.417) (0.372-0.535) (0.437-0.640) (0.515-0.811) (0.577-0.950) (0.638-1.11) (0.697-1 .28) (0.774-1.56) (0.830-1.80)
! so-min I
0.390 0.491 0.629 0.746 0.911 1.04 1.18 1.33 1.55 1.72
(0.328-0.468) (0.413-0.590) (0.527-0.758) (0.619-0.907) (0.730-1.15) (0.817-1.34) (0.903-1.57) (0.988-1 .82) (1.10-2.20) (1.18-2.54)
~ 0.541 0.678 0.863 1.02 1.24 1.41 1.59 1.79 2.06 2.29
(0.455-0.649) (0.569-0.814) (0.723-1 .04) (0.846-1 .24) (0.991-1.56) (1 .10-1.82) (1 .22-2.11) (1.32-2.44) (1.46-2.94) (1 .56-3.38)
~ 0.649 0.813 1.03 1.22 1.48 1.68 1.90 2.12 2.44 2.71
(0.546-0.779) (0.683-0.977) (0.866-1.25) (1 .01-1.48) (1.18-1 .86) (1 .32-2.17) (1.45-2.51) (1.57-2.90) (1.73-3.48) (1 .85-4.00)
~ 0.872 1.10 1.39 1.64 1.98 2.26 2.54 2.83 3.24 3.58
(0.734-1.05) (0.920-1.32) (1 .17-1.68) (1.36-2.00) (1.59-2.50) (1 .77-2.91) (1.94-3.36) (2.10-3.86) (2.30-4.63) (2.44-5.29)
I
I
I
~ 1.15
I (1 .d2~~75) 11 (1 .is~2~24) 11 (1.:11~66) 11 (2.~-~~32) I
2.99 3.35 3.73
I (3.~-~6~06) 11 (3.{9~90) I (0.970-1 .38) (2.34-3.85) 12.56-4.43\ (2.76-5.08)
~ 1.44 1.83 2.35 2.77 3.34 3.79 4.24 4.72 5.36 5.87
(1.27-1 .67) (1 .62-2.12) (2.06-2.73) (2.41-3.24) (2.82-4.04) (3.14-4.66) (3.44-5.35) (3.72-6.10) (4.07-7.22) (4.31-8.16)
I 2-day 11 (1 _;6~:.05) 11 (2.;o~i.63) 11 (2.:6~3~39) 11 (3.;1~~04) 11 (3.i4~~06) I
4.76 5.35 5.95
I (5.:5~9~13) 11 (5.1/!.3) I (3.94-5.86) (4.33-6.74) (4.70-7.70)
I 3-day I
1.99 2.56 3.31 3.93 4.78 5.45 6.13 6.84 7.82 8.59
(1.76-2.30) (2.26-2.97) (2.91-3.85) (3.43-4.60) (4.04-5.78) (4.52-6.71) (4.96-7.73) (5.40-8.85) (5.93-10.5) (6.31-11 .9)
I 4-day I
2.17 2.81 3.64 4.33 5.29 6.03 6.80 7.60 8.70 9.57
(1.92-2.52) (2.47-3.25) (3.20-4.23) (3.78-5.07) (4.47-6.38) (5.00-7.43) (5.50-8.56) (5.99-9.83) (6.60-11 .7) (7.02-13.3)
I 7-day I
2.56 3.32 4.34 5.18 6.34 7.25 8.20 9.18 10.6 11.6
(2.26-2.96) (2.93-3.85) (3.81-5.04) (4.51-6.06) (5.36-7.65) (6.01-8.93) (6.64-10.3) (7.24-11.9) (8.00-14.2) (8.55-16.2)
i 10-day I
2.85 3.72 4.88 5.84 7.17 8.22 9.30 10.4 12.0 13.3
(2.51-3.30) (3.28-4.31) (4.28-5.66) (5.09-6.83) (6.06-8.66) (6.81-10.1) (7.54-11 .7) (8.24-13.5) (9.13-16.2) (9.77-18.5)
i 20-day I
3.44 4.54 6.02 7.25 8.97 10.3 11.7 13.2 15.3 17.0
(3.04-3.98) (4.00-5.26) (5.29-6.99) (6.32-8.49) (7.58-10.8) (8.56-12. 7) (9.51-14.8) (10.4-17.1) (11 .6-20.7) ( 12.5-23. 7)
I30-day I
4.13 5.48 7.31 8.83 11.0 12.7 14.4 16.3 19.0 21 .1
(3.64-4.78) (4.83-6.35) (6.42-8.49) (7.70-10.3) (9.27-13.2) (10.5-15.6) (11.7-18.2) (12.9-21.1) (14.4-25.6) (15.5-29.4)
I45-day I
4.87 6.49 8.67 10.5 13.1 15.1 17.3 19.6 22.9 25.6
(4.29-5.63) (5.71-7.51) (7.62-10.1) (9.16-12.3) (11 .1-15.8) (12.6-18.7) (14.0-21 .8) (15.5-25.4) (17.4-30.8) ( 18.8-35.6)
! so-day I
5.65 7.52 10.1 12.2 15.2 17.6 20.2 23.0 26.9 30.1
(4.98-6.54) (6.62-8.71) (8.83-11 . 7) (10.6-14.3) (12.9-18.4) (14.6-21.7) ( 16.4-25.5) (18.1-29.7) (20.4-36.2) (22.1-41.8)
1 Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for
a given duration and average recurrence interval) will be greater than the upper bound ( or less than the lower bound) is 5%. Estimates at upper bounds are not
checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
Please refer to NOAA Atlas 14 document for more information.
Back to Tog
PF graphical
https://hdsc.nws.noaa.gov/pfds/pfds _printpage.html?lat=33.1031 &lon=-117 .2789&data=depth&units=english&series=pds 1/4
30
25
C:
..c:: 20 .µ a.
QJ -c
C: 15 0 ·.;:;
19 ·a 10 u
QJ ... c...
5
0
C: C -~ .E
I LI') 0 ,-t
30
25
C:
..c:: 20 .µ a. QJ -c
C 15 0 ·.;:;
rtl .µ
:§. 10 u ~ c...
5
0
1
PDS-based depth-duration-frequency (DDF) curves
Latitude: 33.1031°., Lo11gitude: -117 .2789°
C C C: I.. I.. I.. ... ... >, >, >, >, >, .E .E .E ~ ~ ~ ~ ~ rtl rtl rtl rtl rtl N ,.,, <D I I -c -c -c "9 -c I I I N ~ N ,.,, ,;;\-I LI') 0 0 Duratio'ii r--. 0 ,-t rn +.D ,-t
2 5 10 25 50 100 200
Average recurrence interval (years}
>, >, >, >,
rtl rtl rtl rtl -c -c -c -c I I I I 0 0 Ll'lO N rn 'St +.D
500 1000
~OAA Atlas 14, Vol urne 6, Version 2 Created (GMT): Sun Oct 22 00:04:44 2023
Average recummce
irnteiva'I
(years)
1
2
5
10
25
50
100
200
500
1000
Duration
5-rnin
10-mln
15-m n
30--mln
60-min
2-hr
3-hr
6-hr
12-hr
24-hr
2-day
3-day
4-day
7-day
10--day
20--Clay
30--Clay
45-day
60--day
Oxnard 0
I
Los-:A.nge.,!!.l-o oRfv
• Ensenada
rside
Anahei Cathed:-i lnclfo
B hO Q Cily'fo Long eac • oSm,taA , a Parm e-se
'b.Murrieta
I
San Dieg 0
nsfde
li
Ensenad-a p
2.54 4.24 0.60
100
2.54
10.0
90
8.0
7.0
~ 0 .c.
cii Cl) .c.
6.0
5.0
4.0
3.0
2.0
g 1.0
~0 .9
·~o.8
~07
0.6
0.5
0.4
0.3
0.2
0.1
r-.... ..... ... , I' :r--.
~ ~ ... I'""" "
~ .. ·~ ..... .... r-,. ....
... ~ ... ....
r-,.r-,. ~ I',, i-....
..... "" ......
"" I' I' ... r-,. ..... ..... ~
"" r,.. ........ ~ r-....
....... r-,.r-,.
...
r-..
... ~ "'" ..... I',.
........
r,..
r-,.""
' 5 6 7 8 9 10
J,
~ 1-.., ::-,,..
"r--'i-. 1-. , ..
' r-,
"r-,.. "' .. 'r-.. ', i-., ' '~ "' ""', ~r-,.. 1, 'r-..
I"', r-
"r--r-., .. ~ 'r-..
"I', , .. "",r-
i-.,
"i-,.. .. .. ..
..
1,,
....
.... r-,..
'r-.
'r-. ', r-
15 20
"~
~
.. ",-
.. ~,.
"
",-
..
"~
..
",-
",-
"
30
Minutes
"" r-
r-,. "r-"" "r-~ ..
r-~ .. r-,. "
"r-" r-" "r-
" "i..
" r-,.
"r-
"~ ..
....
"'" "i..
~
40 50
Duration
I =
I =
p6 =
D =
EQUATION
7.44 P6 D-0.645
Intensity (in/hr)
6-Hour Precipitation (in)
Duration (min}
.... .........
........ .... I', . .... ,i-..
... r-,.
.... i-..
'r--. ' 'r--. ........ . r-,.
.......
....... ...
'r--.
...
i-..
........
'i-..
2
"'r--' .. ... 'r-I" r-,,. ,, r-,. .. ,, r-r-~ r-,. ",-
i--r-,.. r-,,. "~ ~ ,, r-,.
~ .. ~ ~,.
... ,
""
,,. "~
I"' " ~
.. "'r-, "~
'r-.... ~,.
""", ,, r-,.
",-
... ,. r-,. .. , "~
r-
"r-.. ,.~
3
Hours
4
..
" ..
..
..
..
..
..
..
5 6
O> i 0
!:;
-0
co (')
6.0 i
5.5 -
5.0 g
4.5 '§'
(')
4.o l
3.5 ~
3.0
2.5
2.0
1.5
1.0
Intensity-Duration Design Chart -Template
Directions for Application:
(1) From precipitation maps determine 6 hr and 24 hr amounts
for the selected frequency. These maps are included in the
County Hydrology Manual (10, 50, and 100 yr maps included
in the Design and Procedure Manual}.
(2) Adjust 6 hr precipitation (if necessary} so that it is within
the range of 45% to 65% of the 24 hr precipitation (not
applicaple to Desert}.
(3) Plot 6 hr precipitation on the right side of the chart.
(4) Draw a line through the point parallel to the plotted lines.
(5) This line is the intensity-duration curve for the location
being analyzed .
Application Form:
(a) Selected frequency ___ year
p
(b} p6 = --in., P24 = --'P 6 = . %(2)
24
(c) Adjusted P6<2) = ___ in.
(d) Ix = ___ min.
(e) I = __ in./hr .
Note: This chart replaces the Intensity-Duration-Frequency
curves used since 1965.
I I I
P6 1 -+ 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Duration I I I I I I I I I I I
5 2.63 3.95 5.27 6.59 7.90 9.~ J_9.5_i J_1.~ 13.17 14.49 15.81
7 2.12 3.18 4.24 5.3()_ 6~2,42 &4! Jl.54_ j0.60 11.6~ 12.72
10 1.68 2.53 3.37 4.21 5.05 5.90 6.74 7.58 8.42 9.27 10.11 -15 1.30 1.95 2.59 3.24 3.89 4.54 5.19 5.84 6.49 7.13 7.78
20 1.08 1.62 2.15 2.69 3.23 3.77 4.31 4.85 5.39 5.93 6.46
25 0.93 1.40 1.87 2.33 2.80 3.27 3.73 4.20_ 4.67_ 5.13_ ~5.6..Q_ ,_30 0.83_ 1.24 1.66 2.07 2.49 2.90 3.32 3.73 4.15 ~ ~98 f--40 0.69 1.03 1.38 1.72 2.07 2.41 2.76 3.10 3.45 3.79 4.13 -0.90 >----1 X9T 1.1~.09 3.28 f-3.58 50 0.60 1.19 2.39 2.69 _ _ 2~
60 0.53 0.80 1.06 1.33 I 1.59 1.86 2.12-2.39 2.65 2.92 3.18
90 0.41 ..Q.§__1__ 0.82 1.0~2 1.23 1.~ 1.6~ f-1.84_ ~4 2.25 -2.45
120 0.34 0.51 0.68 0.85 1.02 1.19 1.36 1.53 1.70 1.87 2.04
150 0.29 0.44 0.59 0.73 0.88 1.03 1.18 c--1.32 --1.62 1.76 1.47
180 0.26 0.39 0.52 -:--r-0.65 0.78 0.91 1.04 1 .18--1.31 1.44-~ ~ 0.22 ~ ,_Q.43 0.54 0.65 0.76 0.87_ 0.98 _ _!.08 1.19 1.30
300 0.19 0.28 0.38 0.47 0.56 0 .66 0.75 0.85 0.94 1.03 1.13 -360 0.17 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.84 0.92 1.00
FIGURE @]
3-3
I-w w
LL
z
w (_) z
4.'. I-CJ)
c5
w
CJ)
a:::
:::::>
0 (_)
a::: w I-
~
2.50% slope 2.Q--;-----,.,r11
100 --~1~·=5.::::..:;-.::::.::::.::::.::::.::::.::;:;:;~------~-
0
EXAMPLE:
Given: Watercourse Distance (D) = 70 Feet
Slope (s) = 1.3%
Runoff Coefficient (C) = 0.41
Overland Flow Time (T) = 9.5 Minutes
SOURCE: Airport Drainage, Federal Aviation Administration, 1965
T= 1.8(1.1-C)VD
3\fs
20
Cf) w I-
:::::> z
~
z
w ~
j:::
~ 0
....J LL
0 z
4.'. ....J
a::: w > 0
FIGURE
Rational Formula -Overland Time of Flow Nomograph
Basin AT (Ac.) A0.90 (Ac.)A0.30 (Ac.) C Remarks
A-1 1.90 0.62 1.28 0.50 Parking Lot/Landscape
A-2 0.83 0.69 0.14 0.80 Parking Lot
A-3 0.71 0.38 0.33 0.62 School Building
A-4 0.53 0.13 0.40 0.45 School Building/Landscape
A-5 0.49 0.34 0.15 0.72 School Building
A-6 0.64 0.41 0.23 0.68 School Building
A-7 1.26 0.22 1.04 0.40 Field
Total (POC1) 6.36 2.79 3.57 0.56 School
B-1 1.27 0.92 0.35 0.73 Asphalt/School Building
B-2 2.48 0.54 1.94 0.43 Field/Asphalt Playground
Total (POC2) 3.75 1.46 2.29 0.53 School
OS-1 1.22 0.60 0.62 0.60 Parking Lot/Landscape
OS-2 0.45 0.24 0.21 0.62 Asphalt/Landscape
Total (Offsite) 1.67 0.84 0.83 0.60 School
Total 11.78 5.09 6.69 0.56 School
Assumptions:
1) Two land use types exist on site:
Paving/ Roof, Street, Impervious C-Value = 0.90
Landscape, Pervious C-Value = 0.30
2) C-Values have been determined using the equation from
section 3.1.2 of County of San Diego Hydrology Manual (June 2003)
PRE-PROJECT C-VALUE DETERMINATION
Post-Project Drainage Basins
Basin AT (Ac.) A0.90 (Ac.)A0.30 (Ac.) C Remarks
A-1 0.75 0.29 0.46 0.53 Parking Lot/Landscape
A-2 0.70 0.31 0.39 0.57 Parking Lot/Landscape
A-3 0.04 0.00 0.04 0.30 Landscape
A-4 0.60 0.58 0.02 0.88 Sidewalk/Parking Lot
A-5 0.36 0.21 0.15 0.65 Sidewalk/Landscape
A-6 0.18 0.11 0.07 0.67 School Building/Landscape
A-7 0.31 0.21 0.10 0.71 Parking Lot/Landscape
A-8 0.50 0.17 0.33 0.50 School Building
A-9 0.65 0.33 0.32 0.60 School Building
A-10 0.87 0.67 0.20 0.76 Parking Lot
A-11 0.49 0.37 0.12 0.75 Parking Lot
A-12 0.35 0.00 0.35 0.30 Biofiltration Basin
A-13 0.36 0.22 0.14 0.67 Parking Lot
A-14 0.55 0.41 0.14 0.75 School Building
A-15 0.64 0.37 0.27 0.65 Paved/Unpaved Playground
Total (BMP-1) 7.35 4.25 3.10 0.65 School
B-1 0.71 0.50 0.21 0.72 Paved/Unpaved Playground
B-2 1.05 0.70 0.35 0.70 Paved Playground
B-3 1.23 0.00 1.23 0.30 Field
Total (BMP-2) 2.99 1.20 1.79 0.54 School
C-1 0.10 0.07 0.03 0.75 Parking Lot
Total (BMP-3) 0.10 0.07 0.03 0.75 School
BYP-1 1.26 0.36 0.90 0.47 Drive lane/Landscape
OS-1 0.26 0.21 0.05 0.78 Drive lane
OS-2 0.03 0.00 0.03 0.30 Landscape
TOTAL 11.99 6.09 5.90 0.60 School
Assumptions:
1) Two land use types exist on site:
Paving/ Roof, Street, Impervious C-Value = 0.90
Landscape, Pervious C-Value = 0.30
2) C-Values have been determined using the equation from
section 3.1.2 of County of San Diego Hydrology Manual (June 2003)
POST-PROJECT C-VALUE DETERMINATION
717_DRN Cvalue Study-PostProject_2023 10 18.xls
San Diego County Hydrology Manual Section: 3 Date: June 2003 Page: 6 of 26
Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS
Land Use Runoff Coefficient “C”
Soil Type
NRCS Elements County Elements % IMPER. A B C D
Undisturbed Natural Terrain (Natural) Permanent Open Space 0*0.20 0.25 0.30 0.35
Low Density Residential (LDR) Residential, 1.0 DU/A or less 10 0.27 0.32 0.36 0.41
Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 0.42 0.46
Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 0.45 0.49
Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 0.48 0.52
Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 0.54 0.57
Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 0.57 0.60
Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 0.60 0.63
High Density Residential (HDR) Residential, 24.0 DU/A or less 65 0.66 0.67 0.69 0.71
High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 0.78 0.79
Commercial/Industrial (N. Com) Neighborhood Commercial 80 0.76 0.77 0.78 0.79
Commercial/Industrial (G. Com) General Commercial 85 0.80 0.80 0.81 0.82
Commercial/Industrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 0.84 0.85
Commercial/Industrial (Limited I.) Limited Industrial 90 0.83 0.84 0.84 0.85
Commercial/Industrial (General I.) General Industrial 95 0.87 0.87 0.87 0.87
*The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff
coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area
is located in Cleveland National Forest).
DU/A = dwelling units per acre
NRCS = National Resources Conservation Service
3-6
D
4373 Viewridge Avenue
Suite B
San Diego, California 92123
858.292.7575
944 Calle Amanecer
Suite F
San Clemente, CA 92673
949.388.7710
www.usa-nova.com
NOVA Project No. 2021251
February 8, 2023
Aviara Oaks Elementary School Modernization
6900 Ambrosia Lane
Carlsbad, California
Submitted to:
Carlsbad Unified School District
6225 El Camino Real
Carlsbad, California 92009
REPORT
UPDATE GEOTECHNICAL INVESTIGATION
INFILTRATION AND HYDROLOGIC SOILS GROUP DOCUMENTATION
-~ CARLSBAD ~pr Unified School District
Report of Update Geotechnical Investigation
Aviara Oaks Elementary School Modernization, Carlsbad, CA
NOVA Project No. 2021251
February 8, 2023
11
4.2. Site-Specific Geology
The western portion of the campus is in cut, underlain by Tertiary Santiago Formation (map symbol
Tsa). Moving eastward, the campus transitions from cut conditions to deep fill conditions, where the
pre-exiting canyon was infilled to construct the campus. Geologic Cross-Section A-A’ on Plate 2 depicts
this transition. Alluvium was identified as overlying the Santiago Formation in the southern portion of
the site in Boring B-1.
Descriptions of the materials encountered in the borings are presented below.
Fill (af):As discussed, the depth of artificial fill across the site increases in depth moving
eastward. Fill was encountered in Boring B-11, drilled on the eastern portion of the site, to a
maximum depth of 70 feet bgs. The fill is comprised of generally medium dense to dense, light
gray-brown and olive brown silty and clayey sand and sandy clay The fill appears to be mostly
derived from the underlying Santiago Formation. Figure 4-2 depicts this unit.
No record of the placement and compaction of this fill was available at the time of this report.
As a result, the fill is considered ‘undocumented’. However, data obtained from the borings and
CPT soundings suggest that this fill was engineered.
Figure 4-2. Fill at Boring B-3
Quaternary Older Alluvium (Qoa):Beneath the fill in Boring B-1, the site is underlain by
alluvium. The geologic map indicates that it is young alluvium; however, due to the relatively
dense nature and visual appearance of the alluvium, it is NOVA’s judgement that this unit is
more appropriately characterized as older alluvium. As encountered in the borings, the older
alluvium consists of yellowish-brown to dark brown silty sand with thin interbedded lenses of
yellow sand. Blow counts indicate this unit is dense.
Tertiary Santiago Formation (Tsa):The Santiago Formation was encountered at the surface
within Borings B-6 and B-11 and deepens moving eastward. As encountered in the borings,
this formation is comprised of light gray-brown to yellowish-brown silty and clayey sandstone
and sandy claystone, which is very dense and hard. Figure 4-3 depicts this unit.
The fill appears to be mostly
derived from the underlying Santiago Formation.
is comprised of light gray-brown to yellowish-brown silty and clayey sandstone
and sandy claystone, which is very dense and hard.
THE PROJECT SITE IS DOMINATED BY DENSE SILTY AND CLAYEY SAND, WITH VERY LOW INFILTRATION RATES, SEE PAGE 32 OF THE
GEOTECHNICAL INVESTIGATION THAT FOLLOWS HERE. PER GUIDANCE FROM THE NATURAL RESOURCES CONSERVATION SERVICE
(NRCS), PROVIDED HERE FOR REFERENCE, INFILTRATION RATES FROM 0.06 TO 0.57 IN/HR ARE CONSISTENT WITH HYDROLOGIC SOILS
GROUP TYPE C. GIVEN THAT THE MAXIMUM MEASURED INFILTRATION RATE IS 0.09 IN/HR, TYPE C SOILS ARE ASSUMED WITHIN THE
SWQMP TO BE AN AVERAGE REPRESENTATION OF THE SITE'S SOIL CHARACTERISTICS.
NOVA
Report of Update Geotechnical Investigation
Aviara Oaks Elementary School Modernization, Carlsbad, CA
NOVA Project No. 2021251
February 8, 2023
32
7. INFILTRATION FEASIBILITY
7.1. Overview
NOVA coordinated with the client to provide infiltration testing in the areas most likely to have BMPs.
NOVA has evaluated the site as abstracted below after guidance contained in the City of Carlsbad
BMP Design Manual, September 2021 (the governing document at the time of the original report).
Plate 1 depicts the locations of the percolation test wells and associated exploratory geotechnical
borings. This section provides the results of the testing and related recommendations for management
of stormwater in conformance with the BMP Manual.
Based on infiltration rates of Test Wells P-1 through P-4 divided by the project factor of safety
calculated in accordance with Table D.2-3 of the BMP Manual, as well as the deep fills in these areas,
stormwater infiltration is not feasible in any appreciable quantity. The BMPs are therefore considered
to have a no infiltration condition. The following section provides NOVA’s assessment of the feasibility
of stormwater infiltration BMPs utilizing the information developed during the subsurface exploration.
7.2. Percolation Testing
The percolation test wells were pre-soaked by filling the holes with water to the ground surface level
and testing commenced within a 26-hour window. On the day of testing, two 25-minute trials were
conducted in each well.
In all of the percolation borings, the pre-soak water percolated less than 6 inches into the soil unit within
25 minutes. Based on the results of the trials in those test wells, water levels were recorded every 30
minutes for 6 hours.
At the beginning of each test interval, the water level was raised to approximately the same level as
the previous tests, in order to maintain a near-constant head during all test periods. Percolation rates
recorded in the field were converted to infiltration rates using the Porchet Method.
Table 7-1 summarizes the percolation test conditions and related infiltration rates.
Table 7-1. Summary of Percolation Testing
Test
Location
Test Well
Depth (feet)
Material at
Test Depth
Infiltration Rate
(in/hr, FS=4)1
Infiltration
Condition
P-1 5 Fill 0.02 No Infiltration
P-2 5 Fill 0.04 No Infiltration
P-3 5 Fill 0.04 No Infiltration
P-4 5 Fill 0.09 Partial Infiltration
Note 1: FS indicates ‘Factor of Safety’
As shown in Table 7-1, a factor of safety (FS) is applied to the infiltration rate (I). This factor of safety,
calculated for this site as FS = 4, considers the nature and variability of subsurface materials, as well
as the natural tendency of infiltration structures to become less efficient with time. NOVA provided the
0.02
0.04
00.04
0.09
I I I I
\ J
( )
{ )
( )
Report of Update Geotechnical Investigation
Aviara Oaks Elementary School Modernization, Carlsbad, CA
NOVA Project No. 2021251
February 8, 2023
33
factor values for the Suitability Assessment section of the table, and the project civil engineer provided
the factor values for the Design section. The factor of safety was determined using Section D.2.3 of
Appendix D of the BMP Manual. This table is reproduced below as Table 7-2.
Table 7-2. Determination of Safety Factor
From City of Carlsbad BMP Design Manual, September 2021, Table D.2-3: Determination of Safety
Factor
7.3. Review of Infiltration Restrictions
Section D.2.1 of the BMP Manual presents restriction elements that should be considered by the
project geotechnical professional while assessing the feasibility of infiltration related to geotechnical
conditions. These elements are listed in Table 7-3.Based on this assessment, NOVA considers the
stormwater infiltration basins in the locations in which they are currently designed to be a restricted
condition due the fact it will be located in approximately 50 to 70 feet of existing fill.
Consideration Assigned Factor Product (p)
Weight (w) Value (v) p=wxv
Infiltration Testing Method 0-25 0.50
Suirability Soil Texture Oass 0.25 Refer to 0.50
Assessn1ent Soil Variability 0.25 TableD.2-4 0.75
(A) Depth to Groundwater/Obstruction 0.25 0.25
Suitability Assessment Safety Factor, SA = :Ep 2.0
Pretrea.tment 0.50 1.0
D esign Resiliency 0.25 Refer to
TableD.2-4 0.5
(B) Compaction 0.25 0.5
Desig11 Safety Factor, Sa = Lp 2.0
Safety Factor, S = SAX SB
4.0 ~fost be always greater than or equru to 2)
Report of Update Geotechnical Investigation
Aviara Oaks Elementary School Modernization, Carlsbad, CA
NOVA Project No. 2021251
February 8, 2023
34
Table 7-3. Infiltration Restrictions
From City of Carlsbad BMP Design Manual, September 2021, Table B.2-1: Infiltration Restrictions
7.4. Suitability of the Site for Stormwater Infiltration
The infiltration condition of the proposed BMPs located in fill is considered Restricted by the City of
Carlsbad. Infiltration rates determined from the percolation tests indicate that water cannot infiltrate in
an appreciable quantity. Therefore, it is NOVA’s recommendation that BMPs should be designed with
a no infiltration condition.
NOTE: Given the "no infiltration condition", an impermeable liner is proposed to
mitigate for the restriction associated with proximity to a steep slope.
Restriction Element
B:MP is within 100' of Contaminatt'.d Soils
E
I
BMP is within 100' of lndustrial Activities L'lcking Source Control
BMP is within 100' of \'V'ell/Groundwater Basin
I BJvll) is within 50' of Septic Tanks/Leach Fields
I BMP is within 10' of Structures/Tanks/Walls
Considerations I
I
Mandatory BlvIP is within 10' of Sewer Utilities
Optional
Considerations
Result
I
B:MP is within 10' of Groundwater Table
BMP is with.in Hydi:ic SoiJs
BMP is within Highly Liquefiable Soils and has Connectivity to Structures
Blv1P is within 1.5 Times the Height of Adjacent Steep Slopes (2:25%)
City Scaff has Assigned "Restricted" Infiltration Category
is within P ed t!y ype D So
BivfP is within 10' of Properry Line
BMP is within FiJl Depths of 2:5' (Exjsting or Proposed)
• M is witl1i.11 10' ofU derrr 1d Utili ·es
BMP is within 250' of Ephemeral Stream
Other (Provide detailed geotechnical support)
Unrestricted. None of tbe restriction elements above are applicable.
Is Element
Applicable?
(Yes/No)
0
Yes
0
0
Yes
Restricted. One or more of the restriction elements above are applicable. Restricted
3
(E)BUILDINGKITCHEN/MPR
A# 108787
FFE=159.50
(E)BUILDINGADMIN
(E)BUILDING 300CLASSROOM
FFE=153.48
(E)BUILDING 700CLASSROOM
A# 52004
FFE=149.10
(E)BLDG 400CLASSROOM
A# 108787
FFE=158.20
(E)BUILDING 500CLASSROOM
A# 108787
FFE=149.10
(E)
BUILDING 600CLASSROOM
A# 108787
FFE=150.28
NEW BUILDING 800CLASSROOM
FFE=150.60
(E)BUILDINGLIBRARY
FFE=159.43 FFE=159.31
FFE=158.20
T
T
T
B G
T
BG
T
---
AS
-
2
.
3
(N) 5-30'x32' RELOCATABLE
CLASSROOM BLDGS.PC#________
N.I.C.N.I.C.N.I.C.N.I.C.
N.I.C.
N.I.C.N.I.C.
BIO FILTRATIONBASIN, SEE CIVILAND LANDSCAPEDWG.
BIO FILTRATIONBASIN, SEE CIVILAND LANDSCAPEDWG.
(E)FH
(E)FH
(E)FH
(E)FH
(E) PA(E)PA
(E) PA
(E) PA
(E) PA
(E)PA
(E)PA
PLAYFIELD
NE
PROPERTY LINE
PR
O
P
E
R
T
Y
L
I
N
E
(E) PA (E) PA
(E) CONC.
(E
)
C
O
N
C
.
(E) CONC.
(E) CONC.
(E
)
C
O
N
C
.
AM
B
R
O
S
I
A
L
N
KW Y
RELO902RELO903RELO904
CR
A#114477(2016)RELO901
(N) MODULARCLASSROOM BLDG.
CR CR CR
RELOCATED(E) RELO.TOILETBLDG.
RELO905
DF
CPT-3
CPT-1
CPT-2
NWE
N
S
4373 Viewridge Avenue, Suite B
San Diego, CA 92123
P: 858.292.7575
944 Calle Amanecer, Suite F
San Clemente, CA 92673
P: 949.388.7710
NOVA
www.usa-nova.com
DRAWING TITLE:
PLATE NO.
0 80' 160'
DATE:
DRAWN BY:
REVIEWED BY:
DTJ
MS
PROJECT NO.:
SCALE:1"=80'
GEOTECHNICAL
MATERIALS
SPECIAL INSPECTION
DVBE SBE SDVOSB SLBE
?
CONE PENETRATION TEST
CPT-3
AVIARA OAKS ES - CUSD
6900 AMBROSIA LANE,
CARLSBAD, CALIFORNIA
2021251
JAN 2023
SUBSURFACE
INVESTIGATION MAP
1 OF 2
.5
½
½
½
½
½
CPT-2ACPT-3
½
½
½
½
CPT-3
½
½
CPT-1
4373 Viewridge Avenue, Suite B
San Diego, CA 92123
P: 858.292.7575
944 Calle Amanecer, Suite F
San Clemente, CA 92673
P: 949.388.7710
NOVA
www.usa-nova.com
DRAWING TITLE:
0 80'160'
GEOTECHNICAL
MATERIALS
SPECIAL INSPECTION
DVBE SBE SDVOSB SLBE
?
PLATE NO.
DATE:
DRAWN BY:
REVIEWED BY:
DTJ
MS
PROJECT NO.:
SCALE:1"=80'
AVIARA OAKS ES - CUSD
6900 AMBROSIA LANE,
CARLSBAD, CALIFORNIA
2021251
JAN 2023
GEOLOGIC
CROSS-SECTIONS
2 OF 2
------
-✓----/ -/ -/ .,..,..,.
-----------
l
(210–VI–NEH, January 2009)
United States
Department of
Agriculture
Natural
Resources
Conservation
Service
Part 630 Hydrology
National Engineering Handbook
Chapter 7 Hydrologic Soil Groups
Rain clouds
Cloud formation
Precipitation
Transpiration
from soil
from ocean
Transpir
atio
n
Ocean
Ground water
Rock
Deep percolation
Soil
Percolation
Infiltration
Surface
r
u
n
o
f
f
E v a p oratio n fro m vegetation
from streams
Evaporation
~\ 1 / /1;;:-_
..::::::,; ----
'l/11\f
~r<F>7
. . .
-------=---~
7–1(210–VI–NEH, January 2009)
Chapter 7 Hydrologic Soil Groups
630.0700 Introduction
This chapter defines four hydrologic soil groups, or
HSGs, that, along with land use, management prac-
tices, and hydrologic conditions, determine a soil's
associated runoff curve number (NEH630.09). Runoff
curve numbers are used to estimate direct runoff from
rainfall (NEH630.10).
A map unit is a collection of areas defined and named
the same in terms of their soil components or miscel-
laneous areas or both (NSSH 627.03). Soil scientists
assign map unit components to hydrologic soil groups.
Map unit components assigned to a specific hydrologic
soil group have similar physical and runoff charac-
teristics. Soils in the United States, its territories, and
Puerto Rico have been assigned to hydrologic soil
groups. The assigned groups can be found by consult-
ing the Natural Resources Conservation Service’s
(NRCS) Field Office Technical Guide; published soil
survey data bases; the NRCS Soil Data Mart Web site
(http://soildatamart.nrcs.usda.gov/); and/or the Web
Soil Survey Web site (http://websoilsurvey.nrcs.usda.
gov/).
The NRCS State soil scientist should be contacted if
a soil survey does not exist for a given area or where
the soils within a watershed have not been assigned to
hydrologic groups.
630.0701 Hydrologic soil
groups
Soils were originally assigned to hydrologic soil
groups based on measured rainfall, runoff, and infil-
trometer data (Musgrave 1955). Since the initial work
was done to establish these groupings, assignment
of soils to hydrologic soil groups has been based on
the judgment of soil scientists. Assignments are made
based on comparison of the characteristics of unclas-
sified soil profiles with profiles of soils already placed
into hydrologic soil groups. Most of the groupings are
based on the premise that soils found within a climatic
region that are similar in depth to a restrictive layer or
water table, transmission rate of water, texture, struc-
ture, and degree of swelling when saturated, will have
similar runoff responses. The classes are based on the
following factors:
s INTAKE AND TRANSMISSION OF WATER UNDER THE CON-
ditions of maximum yearly wetness (thoroughly
wet)
s SOIL NOT FROZEN
s BARE SOIL SURFACE
s MAXIMUM SWELLING OF EXPANSIVE CLAYS
The slope of the soil surface is not considered when
assigning hydrologic soil groups.
In its simplest form, hydrologic soil group is deter-
mined by the water transmitting soil layer with the
lowest saturated hydraulic conductivity and depth to
any layer that is more or less water impermeable (such
as a fragipan or duripan) or depth to a water table (if
present). The least transmissive layer can be any soil
horizon that transmits water at a slower rate relative
to those horizons above or below it. For example, a
layer having a saturated hydraulic conductivity of 9.0
micrometers per second (1.3 inches per hour) is the
least transmissive layer in a soil if the layers above and
below it have a saturated hydraulic conductivity of 23
micrometers per second (3.3 inches per hour).
Water impermeable soil layers are among those types
of layers recorded in the component restriction table
of the National Soil Information System (NASIS)
database. The saturated hydraulic conductivity of an
impermeable or nearly impermeable layer may range
Part 630
National Engineering Handbook
Hydrologic Soil GroupsChapter 7
7–2 (210–VI–NEH, January 2009)
from essentially 0 micrometers per second (0 inches
per hour) to 0.9 micrometers per second (0.1 inches
per hour). For simplicity, either case is considered im-
permeable for hydrologic soil group purposes. In some
cases, saturated hydraulic conductivity (a quantitative-
ly measured characteristic) data are not always readily
available or obtainable. In these situations, other soil
properties such as texture, compaction (bulk density),
strength of soil structure, clay mineralogy, and organic
matter are used to estimate water movement. Table
7–1 relates saturated hydraulic conductivity to hydro-
logic soil group.
The four hydrologic soil groups (HSGs) are
described as:
Group A—Soils in this group have low runoff poten-
tial when thoroughly wet. Water is transmitted freely
through the soil. Group A soils typically have less
than 10 percent clay and more than 90 percent sand
or gravel and have gravel or sand textures. Some soils
having loamy sand, sandy loam, loam or silt loam
textures may be placed in this group if they are well
aggregated, of low bulk density, or contain greater
than 35 percent rock fragments.
The limits on the diagnostic physical characteristics of
group A are as follows. The saturated hydraulic con-
ductivity of all soil layers exceeds 40.0 micrometers
per second (5.67 inches per hour). The depth to any
water impermeable layer is greater than 50 centime-
ters [20 inches]. The depth to the water table is greater
than 60 centimeters [24 inches]. Soils that are deeper
than 100 centimeters [40 inches] to a water imperme-
able layer and a water table are in group A if the satu-
rated hydraulic conductivity of all soil layers within
100 centimeters [40 inches] of the surface exceeds 10
micrometers per second (1.42 inches per hour).
Group B—Soils in this group have moderately low
runoff potential when thoroughly wet. Water transmis-
sion through the soil is unimpeded. Group B soils typi-
cally have between 10 percent and 20 percent clay and
50 percent to 90 percent sand and have loamy sand
or sandy loam textures. Some soils having loam, silt
loam, silt, or sandy clay loam textures may be placed
in this group if they are well aggregated, of low bulk
density, or contain greater than 35 percent rock frag-
ments.
The limits on the diagnostic physical characteristics
of group B are as follows. The saturated hydraulic
conductivity in the least transmissive layer between
the surface and 50 centimeters [20 inches] ranges
from 10.0 micrometers per second (1.42 inches per
hour) to 40.0 micrometers per second (5.67 inches
per hour). The depth to any water impermeable layer
is greater than 50 centimeters [20 inches]. The depth
to the water table is greater than 60 centimeters [24
inches]. Soils that are deeper than 100 centimeters [40
inches] to a water impermeable layer and a water table
are in group B if the saturated hydraulic conductivity
of all soil layers within 100 centimeters [40 inches] of
the surface exceeds 4.0 micrometers per second (0.57
inches per hour) but is less than 10.0 micrometers per
second (1.42 inches per hour).
Group C—Soils in this group have moderately high
runoff potential when thoroughly wet. Water transmis-
sion through the soil is somewhat restricted. Group C
soils typically have between 20 percent and 40 percent
clay and less than 50 percent sand and have loam, silt
loam, sandy clay loam, clay loam, and silty clay loam
textures. Some soils having clay, silty clay, or sandy
clay textures may be placed in this group if they are
well aggregated, of low bulk density, or contain greater
than 35 percent rock fragments.
The limits on the diagnostic physical characteristics
of group C are as follows. The saturated hydraulic
conductivity in the least transmissive layer between
the surface and 50 centimeters [20 inches] is between
1.0 micrometers per second (0.14 inches per hour)
and 10.0 micrometers per second (1.42 inches per
hour). The depth to any water impermeable layer is
greater than 50 centimeters [20 inches]. The depth
to the water table is greater than 60 centimeters [24
inches]. Soils that are deeper than 100 centimeters [40
inches] to a restriction and a water table are in group
C if the saturated hydraulic conductivity of all soil lay-
ers within 100 centimeters [40 inches] of the surface
exceeds 0.40 micrometers per second (0.06 inches per
hour) but is less than 4.0 micrometers per second (0.57
inches per hour).
Group D—Soils in this group have high runoff poten-
tial when thoroughly wet. Water movement through
the soil is restricted or very restricted. Group D soils
typically have greater than 40 percent clay, less than 50
percent sand, and have clayey textures. In some areas,
they also have high shrink-swell potential. All soils
with a depth to a water impermeable layer less than 50
centimeters [20 inches] and all soils with a water table
if the saturated hydraulic conductivity of all soil lay-
ers within 100 centimeters [40 inches] of the surface
exceeds 0.40 micrometers per second (0.06 inches per
hour) but is less than 4.0 micrometers per second (0.57
inches per hour).
Soils that are deeper than 100 centimeters [40
inches] to a restriction and a water table are in group
C i
7–3(210–VI–NEH, January 2009)
Part 630
National Engineering Handbook
Hydrologic Soil GroupsChapter 7
within 60 centimeters [24 inches] of the surface are in
this group, although some may have a dual classifica-
tion, as described in the next section, if they can be
adequately drained.
The limits on the physical diagnostic characteristics
of group D are as follows. For soils with a water im-
permeable layer at a depth between 50 centimeters
and 100 centimeters [20 and 40 inches], the saturated
hydraulic conductivity in the least transmissive soil
layer is less than or equal to 1.0 micrometers per sec-
ond (0.14 inches per hour). For soils that are deeper
than 100 centimeters [40 inches] to a restriction or
water table, the saturated hydraulic conductivity of all
soil layers within 100 centimeters [40 inches] of the
surface is less than or equal to 0.40 micrometers per
second (0.06 inches per hour).
Dual hydrologic soil groups—Certain wet soils are
placed in group D based solely on the presence of a
water table within 60 centimeters [24 inches] of the
surface even though the saturated hydraulic conduc-
tivity may be favorable for water transmission. If these
soils can be adequately drained, then they are assigned
to dual hydrologic soil groups (A/D, B/D, and C/D)
based on their saturated hydraulic conductivity and
the water table depth when drained. The first letter
applies to the drained condition and the second to the
undrained condition. For the purpose of hydrologic
soil group, adequately drained means that the seasonal
high water table is kept at least 60 centimeters [24
inches] below the surface in a soil where it would be
higher in a natural state.
Matrix of hydrologic soil group assignment
criteria—The decision matrix in table 7–1 can be used
to determine a soil’s hydrologic soil group. If saturated
hydraulic conductivity data are available and deemed
to be reliable, then these data, along with water table
depth information, should be used to place the soil
into the appropriate hydrologic soil group. If these
data are not available, the hydrologic soil group is
determined by observing the properties of the soil in
the field. Factors such as texture, compaction (bulk
density), strength of soil structure, clay mineralogy,
and organic matter are considered in estimating the
hydraulic conductivity of each layer in the soil profile.
The depth and hydraulic conductivity of any water im-
permeable layer and the depth to any high water table
are used to determine correct hydrologic soil group
for the soil. The property that is most limiting to water
movement generally determines the soil’s hydrologic
group. In anomalous situations, when adjustments to
hydrologic soil group become necessary, they shall be
made by the NRCS State soil scientist in consultation
with the State conservation engineer.
Part 630
National Engineering Handbook
Hydrologic Soil GroupsChapter 7
7–4 (210–VI–NEH, January 2009)
Table 7–1 Criteria for assignment of hydrologic soil group (HSG)
1/ An impermeable layer has a Ksat less than 0.01 μm/s [0.0014 in/h] or a component restriction of fragipan;
duripan; petrocalcic; orstein; petrogypsic; cemented horizon; densic material; placic; bedrock, paralithic;
bedrock, lithic; bedrock, densic; or permafrost.
2/ High water table during any month during the year.
3/ Dual HSG classes are applied only for wet soils (water table less than 60 cm [24 in]). If these soils can be
drained, a less restrictive HSG can be assigned, depending on the Ksat.
Depth to water
impermeable layer 1/
Depth to high
water table 2/
Ksat of least transmissive
layer in depth range
Ksat depth
range
HSG 3/
<50 cm
[<20 in]———D
50 to 100 cm
[20 to 40 in]
<60 cm
[<24 in]
>40.0 μm/s
(>5.67 in/h)
0 to 60 cm
[0 to 24 in]A/D
>10.0 to ≤40.0 μm/s
(>1.42 to ≤5.67 in/h)
0 to 60 cm
[0 to 24 in]B/D
>1.0 to ≤10.0 μm/s
(>0.14 to ≤1.42 in/h)
0 to 60 cm
[0 to 24 in]C/D
≤1.0 μm/s
(≤0.14 in/h)
0 to 60 cm
[0 to 24 in]D
≥60 cm
[≥24 in]
>40.0 μm/s
(>5.67 in/h)
0 to 50 cm
[0 to 20 in]A
>10.0 to ≤40.0 μm/s
(>1.42 to ≤5.67 in/h)
0 to 50 cm
[0 to 20 in]B
>1.0 to ≤10.0 μm/s
(>0.14 to ≤1.42 in/h)
0 to 50 cm
[0 to 20 in]C
≤1.0 μm/s
(≤0.14 in/h)
0 to 50 cm
[0 to 20 in]D
>100 cm
[>40 in]
<60 cm
[<24 in]
>10.0 μm/s
(>1.42 in/h)
0 to 100 cm
[0 to 40 in]A/D
>4.0 to ≤10.0 μm/s
(>0.57 to ≤1.42 in/h)
0 to 100 cm
[0 to 40 in]B/D
>0.40 to ≤4.0 μm/s
(>0.06 to ≤0.57 in/h)
0 to 100 cm
[0 to 40 in]C/D
≤0.40 μm/s
(≤0.06 in/h)
0 to 100 cm
[0 to 40 in]D
60 to 100 cm
[24 to 40 in]
>40.0 μm/s
(>5.67 in/h)
0 to 50 cm
[0 to 20 in]A
>10.0 to ≤40.0 μm/s
(>1.42 to ≤5.67 in/h)
0 to 50 cm
[0 to 20 in]B
>1.0 to ≤10.0 μm/s
(>0.14 to ≤1.42 in/h)
0 to 50 cm
[0 to 20 in]C
≤1.0 μm/s
(≤0.14 in/h)
0 to 50 cm
[0 to 20 in]D
>100 cm
[>40 in]
>10.0 μm/s
(>1.42 in/h)
0 to 100 cm
[0 to 40 in]A
>4.0 to ≤ 10.0 μm/s
(>0.57 to ≤1.42 in/h)
0 to 100 cm
[0 to 40 in]B
0 to 100 cm
[0 to 40 in]C>0.40 to ≤4.0 μm/s
(>0.06 to ≤0.57 in/h)
≤0.40 μm/s
(≤0.06 in/h)
0 to 100 cm
[0 to 40 in]D
I ---I
7–5(210–VI–NEH, January 2009)
Part 630
National Engineering Handbook
Hydrologic Soil GroupsChapter 7
630.0702 Disturbed soils
As a result of construction and other disturbances,
the soil profile can be altered from its natural state
and the listed group assignments generally no longer
apply, nor can any supposition based on the natural
soil be made that will accurately describe the hydro-
logic properties of the disturbed soil. In these circum-
stances, an onsite investigation should be made to
determine the hydrologic soil group. A general set of
guidelines for estimating saturated hydraulic conduc-
tivity from field observable characteristics is presented
in the Soil Survey Manual (Soil Survey Staff 1993).
630.0703 References
Musgrave, G.W. 1955. How much of the rain enters the
soil? In Water: U.S. Department of Agriculture.
Yearbook. Washington, DC. pp. 151–159.
Nielsen, R.D., and A.T. Hjelmfelt. 1998. Hydrologic soil
group assessment. Water Resources Engineering
98. In Abt, Young-Pezeshk, and Watson (eds.),
Proc. of Internat. Water Resources Eng. Conf.,
Am. Soc. Civil Engr: pp. 1297–1302.
Rawls, W.J., and D.L. Brakensiek. 1983. A procedure
to predict Green-Ampt infiltration parameters. In
Advances in infiltration. Proc. of the National Con-
ference on Advances in Infiltration. Chicago, IL.
U.S. Department of Agriculture, Natural Resources
Conservation Service. 1993. Soil Survey Manual.
Agricultural Handbook No. 18, chapter 3. U.S.
Government Printing Office, Washington, DC.
U.S. Department of Agriculture, Natural Resources
Conservation Service. 1993. National Engineering
Handbook, title 210–VI. Part 630, chapters 9 and
10. Washington, DC. Available online at http://di-
rectives.sc.egov.usda.gov/.
U.S. Department of Agriculture, Natural Resources
Conservation Service. 2005. National Soil Sur-
vey Handbook, title 430–VI. Washington, DC.
Available online at http://soils.usda.gov/techni-
cal/handbook/.
Dr
a
i
n
a
g
e
R
e
p
o
r
t
Av
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
Oc
t
o
b
e
r
2
0
2
3
Pa
g
e
3
Jo
b
#
7
1
7
-
0
2
AT
T
A
C
H
M
E
N
T
3
Ra
t
i
o
n
a
l
M
e
t
h
o
d
C
a
l
c
u
l
a
t
i
o
n
s
-
Pr
e
-
p
r
o
j
e
c
t
a
n
d
P
o
s
t
-
p
r
o
j
e
c
t
C
o
n
d
i
t
i
o
n
s
E
Basin Area (Ac.) Imperviousness % C Tc (min) I (in/hr) Q100 (cfs)
A-1 1.90 33 0.50 8.70 4.68 4.41
A-2 0.83 83 0.80 8.70 4.68 3.10
A-3 0.71 54 0.62 8.70 4.68 2.06
A-4 0.53 25 0.45 8.70 4.68 1.11
A-5 0.49 69 0.72 8.70 4.68 1.64
A-6 0.64 64 0.68 8.70 4.68 2.05
A-7 1.26 17 0.40 8.70 4.68 2.39
Total 6.36 44 0.56 8.70 4.68 16.76
Basin Area (Ac.) Imperviousness % C Tc (min) I (in/hr) Q100 (cfs)
B-1 1.27 72 0.73 11.28 3.95 3.69
B-2 2.48 22 0.43 11.28 3.95 4.22
Total 3.75 39 0.53 11.28 3.95 7.90
Basin Area (Ac.) Imperviousness % C Tc (min) I (in/hr) Q100 (cfs)
OS-1 1.22 49 0.60 6.98 5.44 3.95
Basin Area (Ac.) Imperviousness % C Tc (min) I (in/hr) Q100 (cfs)
OS-2 0.45 53 0.62 5 6.69 1.87
NOTE: A 5 MINUTE MIN. TC IS APPLIED TO OS-2
PRE‐PROJECT CONDITION HYDROLOGY SUMMARY
PRE-PROJECT DRAINAGE AREAS TRIBUTARY TO POC-1
PRE-PROJECT DRAINAGE AREAS TRIBUTARY TO POC-2
PRE-PROJECT DRAINAGE AREAS DISCHARGING OVERLAND TO POC-3
PRE-PROJECT DRAINAGE AREAS DISCHARGING OVERLAND TO POC-4
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2016 Advanced Engineering Software (aes)
Ver. 23.0 Release Date: 07/01/2016 License ID 1532
Analysis prepared by:
Tory R. Walker Engineering, Inc.
122 Civic Center Drive
Suite 206
Vista, CA 92084
************************** DESCRIPTION OF STUDY **************************
* AVIARA OAKS ELEMENTARY SCHOOL *
* 100YR DESIGN STORM *
* PRE-PROJECT ROUTING, BASIN A *
**************************************************************************
FILE NAME: BASIN-A.DAT
TIME/DATE OF STUDY: 07:37 10/28/2023
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.540
SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
2 30.0 15.0 0.020/0.020/0.020 0.50 1.50 0.0312 0.125 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.50 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
*USER SPECIFIED(SUBAREA):
NATURAL DESERT LANDSCAPING RUNOFF COEFFICIENT = .5000
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 150.00
UPSTREAM ELEVATION(FEET) = 218.50
DOWNSTREAM ELEVATION(FEET) = 189.00
ELEVATION DIFFERENCE(FEET) = 29.50
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.013
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 100.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.681
SUBAREA RUNOFF(CFS) = 0.17
TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.17
****************************************************************************
FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
CHANNEL LENGTH THRU SUBAREA(FEET) = 105.00
REPRESENTATIVE CHANNEL SLOPE = 0.1200
CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 90.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 5.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.225
*USER SPECIFIED(SUBAREA):
STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .5000
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.87
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.02
AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 0.58
Tc(MIN.) = 5.59
SUBAREA AREA(ACRES) = 0.45 SUBAREA RUNOFF(CFS) = 1.40
AREA-AVERAGE RUNOFF COEFFICIENT = 0.500
TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) = 1.56
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 3.41
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 255.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 62
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
============================================================================
REPRESENTATIVE SLOPE = 0.0600
STREET LENGTH(FEET) = 175.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 30.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.89
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.27
HALFSTREET FLOOD WIDTH(FEET) = 7.12
AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.63
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.24
STREET FLOW TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) = 6.22
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.811
*USER SPECIFIED(SUBAREA):
STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .5000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.500
SUBAREA AREA(ACRES) = 0.92 SUBAREA RUNOFF(CFS) = 2.67
TOTAL AREA(ACRES) = 1.4 PEAK FLOW RATE(CFS) = 4.13
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.38
FLOW VELOCITY(FEET/SEC.) = 5.03 DEPTH*VELOCITY(FT*FT/SEC.) = 1.48
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 430.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
CHANNEL LENGTH THRU SUBAREA(FEET) = 115.00
REPRESENTATIVE CHANNEL SLOPE = 0.0560
CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 55.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.537
*USER SPECIFIED(SUBAREA):
STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .5000
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.79
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.96
AVERAGE FLOW DEPTH(FEET) = 0.11 TRAVEL TIME(MIN.) = 0.48
Tc(MIN.) = 6.71
SUBAREA AREA(ACRES) = 0.48 SUBAREA RUNOFF(CFS) = 1.33
AREA-AVERAGE RUNOFF COEFFICIENT = 0.500
TOTAL AREA(ACRES) = 1.9 PEAK FLOW RATE(CFS) = 5.26
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 4.23
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 = 545.00 FEET.
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 1.9 TC(MIN.) = 6.71
PEAK FLOW RATE(CFS) = 5.26
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
FROM NODE 104 TO 105 (POC1), FLOW IS CONVEYED THROUGH
APPROXIMATELY 840 FT OF ONSITE STORM DRAIN.
ASSUME 12" DIA, FLOWING FULL:
FLOW AREA: 3.1416 x 0.5 FT^2= 0.785 SF
FLOW VELOCITY: 5.4 CFS/0.785 SF = 6.88 FT/S
Tc = 6.7 MIN + [840 FT/ (6.88 FT/S)/60] = 8.7 MIN
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2016 Advanced Engineering Software (aes)
Ver. 23.0 Release Date: 07/01/2016 License ID 1532
Analysis prepared by:
Tory R. Walker Engineering, Inc.
122 Civic Center Drive
Suite 206
Vista, CA 92084
************************** DESCRIPTION OF STUDY **************************
* AVIARA OAKS ELEMENTARY SCHOOL *
* 100YR DESIGN STORM *
* PRE-PROJECT ROUTING, BASIN B *
**************************************************************************
FILE NAME: BASIN-B.DAT
TIME/DATE OF STUDY: 07:40 10/28/2023
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.540
SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.50 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
*USER SPECIFIED(SUBAREA):
STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .4300
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 35.00
UPSTREAM ELEVATION(FEET) = 154.50
DOWNSTREAM ELEVATION(FEET) = 154.25
ELEVATION DIFFERENCE(FEET) = 0.25
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.982
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.949
SUBAREA RUNOFF(CFS) = 0.11
TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.11
****************************************************************************
FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
CHANNEL LENGTH THRU SUBAREA(FEET) = 230.00
REPRESENTATIVE CHANNEL SLOPE = 0.0170
CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 90.000
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.959
*USER SPECIFIED(SUBAREA):
NATURAL DESERT LANDSCAPING RUNOFF COEFFICIENT = .4300
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.18
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.16
AVERAGE FLOW DEPTH(FEET) = 0.12 TRAVEL TIME(MIN.) = 3.30
Tc(MIN.) = 11.28
SUBAREA AREA(ACRES) = 2.43 SUBAREA RUNOFF(CFS) = 4.14
AREA-AVERAGE RUNOFF COEFFICIENT = 0.430
TOTAL AREA(ACRES) = 2.5 PEAK FLOW RATE(CFS) = 4.22
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 1.32
LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 265.00 FEET.
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 2.5 TC(MIN.) = 11.28
PEAK FLOW RATE(CFS) = 4.22
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2016 Advanced Engineering Software (aes)
Ver. 23.0 Release Date: 07/01/2016 License ID 1532
Analysis prepared by:
Tory R. Walker Engineering, Inc.
122 Civic Center Drive
Suite 206
Vista, CA 92084
************************** DESCRIPTION OF STUDY **************************
* AVIARA OAKS ELEMENTARY SCHOOL *
* 100YR DESIGN STORM *
* PRE-PROJECT ROUTING, BASIN OS-1 *
**************************************************************************
FILE NAME: OS1RUN.DAT
TIME/DATE OF STUDY: 07:43 10/28/2023
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.540
SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
2 40.0 20.0 0.025/0.025/0.025 0.50 1.50 0.0312 0.125 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.50 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
*USER SPECIFIED(SUBAREA):
NATURAL DESERT LANDSCAPING RUNOFF COEFFICIENT = .6000
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 85.00
UPSTREAM ELEVATION(FEET) = 201.00
DOWNSTREAM ELEVATION(FEET) = 164.00
ELEVATION DIFFERENCE(FEET) = 37.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.852
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.692
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) = 0.20
TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.20
****************************************************************************
FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
CHANNEL LENGTH THRU SUBAREA(FEET) = 160.00
REPRESENTATIVE CHANNEL SLOPE = 0.0180
CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 60.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.10
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.281
*USER SPECIFIED(SUBAREA):
STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .6000
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.90
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.60
AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 1.67
Tc(MIN.) = 5.52
SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 1.39
AREA-AVERAGE RUNOFF COEFFICIENT = 0.600
TOTAL AREA(ACRES) = 0.4 PEAK FLOW RATE(CFS) = 1.58
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 1.98
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 302.00 = 245.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 62
----------------------------------------------------------------------------
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 2 USED)<<<<<
============================================================================
REPRESENTATIVE SLOPE = 0.0500
STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 40.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.025
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.025
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) = 0.025
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.88
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.28
HALFSTREET FLOOD WIDTH(FEET) = 6.45
AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.55
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.28
STREET FLOW TRAVEL TIME(MIN.) = 1.46 Tc(MIN.) = 6.98
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.396
*USER SPECIFIED(SUBAREA):
STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .6000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.600
SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 2.59
TOTAL AREA(ACRES) = 1.2 PEAK FLOW RATE(CFS) = 3.95
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 7.46
FLOW VELOCITY(FEET/SEC.) = 4.89 DEPTH*VELOCITY(FT*FT/SEC.) = 1.49
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 303.00 = 645.00 FEET.
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 1.2 TC(MIN.) = 6.98
PEAK FLOW RATE(CFS) = 3.95
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
Post-Project Drainage Basins
Basin Area (Ac.) Imperviousness % C Tc (min) I (in/hr) Q100 (cfs)
A-1 0.75 39 0.53 7.6 5.09 2.03
A-2 0.70 44 0.57 7.6 5.09 2.02
A-3 0.04 0 0.30 7.6 5.09 0.06
A-4 0.60 97 0.88 7.6 5.09 2.69
A-5 0.36 58 0.65 7.6 5.09 1.19
A-6 0.18 61 0.67 7.6 5.09 0.61
A-7 0.31 68 0.71 7.6 5.09 1.11
A-8 0.50 34 0.50 7.6 5.09 1.28
A-9 0.65 51 0.60 7.6 5.09 2.00
A-10 0.87 77 0.76 7.6 5.09 3.37
A-11 0.49 76 0.75 7.6 5.09 1.88
A-12 0.35 0 0.30 7.6 5.09 0.53
A-13 0.36 61 0.67 7.6 5.09 1.22
A-14 0.55 75 0.75 7.6 5.09 2.09
A-15 0.64 58 0.65 7.6 5.09 2.11
Sub-total 7.35 58 0.65 7.6 5.09 24.13
10.6
BYP-1 1.26 28 0.47 7.6 5.09 3.03
Total 8.61 54 0.62 7.6 5.09 13.63
Basin Area (Ac.)Imperviousness % C Tc (min)I (in/hr)Q100 (cfs)
B-1 0.71 71 0.72 7.6 5.10 2.62
B-2 1.05 67 0.70 7.6 5.10 3.75
B-3 1.23 0 0.30 7.6 5.10 1.88
Total 2.99 40 0.54 7.6 5.10 8.24
4.6
Basin Area (Ac.)Imperviousness % C Tc (min)I (in/hr)Q100 (cfs)
OS-1 0.26 81 0.78 5 6.69 1.36
C-1 0.10 75 0.75 5 6.69 0.50
Total 0.36 79 0.77 5 6.69 1.87
NOTE: A 5 MINUTE MIN. TC IS APPLIED TO OS-1 AND C-1
Basin Area (Ac.)Imperviousness % C Tc (min)I (in/hr)Q100 (cfs)
OS-2 0.03 0 0.30 5 6.69 0.06
NOTE: A 5 MINUTE MIN. TC IS APPLIED TO OS-2
POST‐PROJECT CONDITION HYDROLOGY SUMMARY
BMP-1 DETAINED OUTFLOW (CFS)
BMP-2 DETAINED OUTFLOW (CFS)
PROPOSED DRAINAGE CONDITIONS TRIBUTARY TO POC-2
PROPOSED DRAINAGE CONDITIONS TRIBUTARY TO POC-1
PROPOSED DRAINAGE CONDITIONS TRIBUTARY TO POC-4
PROPOSED DRAINAGE CONDITIONS TRIBUTARY TO POC-3
717_DRN Cvalue Study-PostProject_2023 10 18.xls
I I I I I I
I I I I I I
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2016 Advanced Engineering Software (aes)
Ver. 23.0 Release Date: 07/01/2016 License ID 1532
Analysis prepared by:
Tory R. Walker Engineering, Inc.
122 Civic Center Drive
Suite 206
Vista, CA 92084
************************** DESCRIPTION OF STUDY **************************
* AVIARA OAKS ELEMENTARY SCHOOL *
* 100YR DESIGN STORM *
* POST-PROJECT ROUTING, BASIN A *
**************************************************************************
FILE NAME: 717POSTA.DAT
TIME/DATE OF STUDY: 13:41 10/24/2023
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.540
SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .5300
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 210.00
DOWNSTREAM ELEVATION(FEET) = 169.50
ELEVATION DIFFERENCE(FEET) = 40.50
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.763
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.692
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) = 0.18
TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.18
****************************************************************************
FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
CHANNEL LENGTH THRU SUBAREA(FEET) = 160.00
REPRESENTATIVE CHANNEL SLOPE = 0.0500
CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 50.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.152
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .5300
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.32
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.85
AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 0.93
Tc(MIN.) = 5.70
SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 2.28
AREA-AVERAGE RUNOFF COEFFICIENT = 0.530
TOTAL AREA(ACRES) = 0.8 PEAK FLOW RATE(CFS) = 2.45
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 3.44
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 260.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
REPRESENTATIVE SLOPE = 0.0200
FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 6.00
GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 2.45
PIPE TRAVEL TIME(MIN.) = 0.69 Tc(MIN.) = 6.39
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 510.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.712
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .5700
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.5493
SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 2.28
TOTAL AREA(ACRES) = 1.5 TOTAL RUNOFF(CFS) = 4.55
TC(MIN.) = 6.39
****************************************************************************
FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.712
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .3000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.5426
SUBAREA AREA(ACRES) = 0.04 SUBAREA RUNOFF(CFS) = 0.07
TOTAL AREA(ACRES) = 1.5 TOTAL RUNOFF(CFS) = 4.62
TC(MIN.) = 6.39
****************************************************************************
FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.712
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .8800
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6395
SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 3.02
TOTAL AREA(ACRES) = 2.1 TOTAL RUNOFF(CFS) = 7.63
TC(MIN.) = 6.39
****************************************************************************
FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
REPRESENTATIVE SLOPE = 0.0240
FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 8.53
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 7.63
PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) = 6.63
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 = 630.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.581
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .6700
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6419
SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 0.67
TOTAL AREA(ACRES) = 2.3 TOTAL RUNOFF(CFS) = 8.13
TC(MIN.) = 6.63
****************************************************************************
FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.581
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .6700
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6453
SUBAREA AREA(ACRES) = 0.31 SUBAREA RUNOFF(CFS) = 1.16
TOTAL AREA(ACRES) = 2.6 TOTAL RUNOFF(CFS) = 9.29
TC(MIN.) = 6.63
****************************************************************************
FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
REPRESENTATIVE SLOPE = 0.0140
FLOW LENGTH(FEET) = 90.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 7.22
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 9.29
PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 6.83
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 105.00 = 720.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.471
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .6500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6459
SUBAREA AREA(ACRES) = 0.36 SUBAREA RUNOFF(CFS) = 1.28
TOTAL AREA(ACRES) = 2.9 TOTAL RUNOFF(CFS) = 10.39
TC(MIN.) = 6.83
****************************************************************************
FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.471
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .5000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6247
SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.37
TOTAL AREA(ACRES) = 3.4 TOTAL RUNOFF(CFS) = 11.76
TC(MIN.) = 6.83
****************************************************************************
FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.471
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .6000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6207
SUBAREA AREA(ACRES) = 0.65 SUBAREA RUNOFF(CFS) = 2.13
TOTAL AREA(ACRES) = 4.1 TOTAL RUNOFF(CFS) = 13.89
TC(MIN.) = 6.83
****************************************************************************
FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
REPRESENTATIVE SLOPE = 0.0070
FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 6.17
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 13.89
PIPE TRAVEL TIME(MIN.) = 0.81 Tc(MIN.) = 7.64
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 1020.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 10
----------------------------------------------------------------------------
>>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
============================================================================
****************************************************************************
FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 13
----------------------------------------------------------------------------
>>>>>CLEAR THE MAIN-STREAM MEMORY<<<<<
============================================================================
****************************************************************************
FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .6500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00
UPSTREAM ELEVATION(FEET) = 159.00
DOWNSTREAM ELEVATION(FEET) = 154.70
ELEVATION DIFFERENCE(FEET) = 4.30
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.254
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.692
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) = 0.17
TOTAL AREA(ACRES) = 0.04 TOTAL RUNOFF(CFS) = 0.17
****************************************************************************
FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
CHANNEL LENGTH THRU SUBAREA(FEET) = 135.00
REPRESENTATIVE CHANNEL SLOPE = 0.0140
CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 6.000
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.692
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .6500
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.48
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.73
AVERAGE FLOW DEPTH(FEET) = 0.20 TRAVEL TIME(MIN.) = 1.30
Tc(MIN.) = 4.56
SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 2.61
AREA-AVERAGE RUNOFF COEFFICIENT = 0.650
TOTAL AREA(ACRES) = 0.6 PEAK FLOW RATE(CFS) = 2.78
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.29 FLOW VELOCITY(FEET/SEC.) = 2.05
LONGEST FLOWPATH FROM NODE 110.00 TO NODE 112.00 = 195.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
REPRESENTATIVE SLOPE = 0.0200
FLOW LENGTH(FEET) = 90.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 6.18
GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 2.78
PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 4.80
LONGEST FLOWPATH FROM NODE 110.00 TO NODE 113.00 = 285.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.692
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6962
SUBAREA AREA(ACRES) = 0.55 SUBAREA RUNOFF(CFS) = 2.76
TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) = 5.54
TC(MIN.) = 4.80
****************************************************************************
FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
REPRESENTATIVE SLOPE = 0.0100
FLOW LENGTH(FEET) = 125.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 5.67
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 5.54
PIPE TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) = 5.17
LONGEST FLOWPATH FROM NODE 110.00 TO NODE 114.00 = 410.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 114.00 TO NODE 114.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.551
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .6700
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6901
SUBAREA AREA(ACRES) = 0.36 SUBAREA RUNOFF(CFS) = 1.58
TOTAL AREA(ACRES) = 1.6 TOTAL RUNOFF(CFS) = 7.01
TC(MIN.) = 5.17
****************************************************************************
FLOW PROCESS FROM NODE 114.00 TO NODE 115.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
REPRESENTATIVE SLOPE = 0.0100
FLOW LENGTH(FEET) = 65.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 5.97
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 7.01
PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) = 5.35
LONGEST FLOWPATH FROM NODE 110.00 TO NODE 115.00 = 475.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.406
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7500
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.7045
SUBAREA AREA(ACRES) = 0.49 SUBAREA RUNOFF(CFS) = 2.35
TOTAL AREA(ACRES) = 2.0 TOTAL RUNOFF(CFS) = 9.21
TC(MIN.) = 5.35
****************************************************************************
FLOW PROCESS FROM NODE 115.00 TO NODE 116.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
REPRESENTATIVE SLOPE = 0.0100
FLOW LENGTH(FEET) = 80.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 6.23
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 9.21
PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 5.56
LONGEST FLOWPATH FROM NODE 110.00 TO NODE 116.00 = 555.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 116.00 TO NODE 116.00 IS CODE = 11
----------------------------------------------------------------------------
>>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<<
============================================================================
** MAIN STREAM CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 9.21 5.56 6.247 2.04
LONGEST FLOWPATH FROM NODE 110.00 TO NODE 116.00 = 555.00 FEET.
** MEMORY BANK # 1 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 13.89 7.64 5.089 4.09
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 116.00 = 1020.00 FEET.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 19.32 5.56 6.247
2 21.39 7.64 5.089
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 21.39 Tc(MIN.) = 7.64
TOTAL AREA(ACRES) = 6.1
****************************************************************************
FLOW PROCESS FROM NODE 116.00 TO NODE 116.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.089
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7600
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6625
SUBAREA AREA(ACRES) = 0.87 SUBAREA RUNOFF(CFS) = 3.36
TOTAL AREA(ACRES) = 7.0 TOTAL RUNOFF(CFS) = 23.60
TC(MIN.) = 7.64
****************************************************************************
FLOW PROCESS FROM NODE 116.00 TO NODE 116.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.089
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .3000
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.6452
SUBAREA AREA(ACRES) = 0.35 SUBAREA RUNOFF(CFS) = 0.53
TOTAL AREA(ACRES) = 7.3 TOTAL RUNOFF(CFS) = 24.13
TC(MIN.) = 7.64
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 7.3 TC(MIN.) = 7.64
PEAK FLOW RATE(CFS) = 24.13
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2016 Advanced Engineering Software (aes)
Ver. 23.0 Release Date: 07/01/2016 License ID 1532
Analysis prepared by:
Tory R. Walker Engineering, Inc.
122 Civic Center Drive
Suite 206
Vista, CA 92084
************************** DESCRIPTION OF STUDY **************************
* AVIARA OAKS ELEMENTARY SCHOOL *
* 100YR DESIGN STORM *
* POSTPROJECT ROUTING, BASIN B *
**************************************************************************
FILE NAME: 717POSTB.DAT
TIME/DATE OF STUDY: 14:27 10/24/2023
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.540
SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7000
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 157.60
DOWNSTREAM ELEVATION(FEET) = 156.00
ELEVATION DIFFERENCE(FEET) = 1.60
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.114
WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
THE MAXIMUM OVERLAND FLOW LENGTH = 69.00
(Reference: Table 3-1B of Hydrology Manual)
THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.596
SUBAREA RUNOFF(CFS) = 0.23
TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.23
****************************************************************************
FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00
REPRESENTATIVE CHANNEL SLOPE = 0.0060
CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 5.000
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.355
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7000
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.12
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.50
AVERAGE FLOW DEPTH(FEET) = 0.37 TRAVEL TIME(MIN.) = 1.95
Tc(MIN.) = 7.06
SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 3.75
AREA-AVERAGE RUNOFF COEFFICIENT = 0.700
TOTAL AREA(ACRES) = 1.0 PEAK FLOW RATE(CFS) = 3.94
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.49 FLOW VELOCITY(FEET/SEC.) = 1.79
LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 275.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
REPRESENTATIVE SLOPE = 0.0140
FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 5.88
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 3.94
PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 7.57
LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.00 = 455.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 10
----------------------------------------------------------------------------
>>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
============================================================================
****************************************************************************
FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 13
----------------------------------------------------------------------------
>>>>>CLEAR THE MAIN-STREAM MEMORY<<<<<
============================================================================
****************************************************************************
FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .3000
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 60.00
UPSTREAM ELEVATION(FEET) = 156.00
DOWNSTREAM ELEVATION(FEET) = 155.00
ELEVATION DIFFERENCE(FEET) = 1.00
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.408
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.451
SUBAREA RUNOFF(CFS) = 0.13
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.13
****************************************************************************
FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
CHANNEL LENGTH THRU SUBAREA(FEET) = 130.00
REPRESENTATIVE CHANNEL SLOPE = 0.0150
CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 90.000
MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.793
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .3000
S.C.S. CURVE NUMBER (AMC II) = 0
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.78
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.82
AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 2.65
Tc(MIN.) = 12.06
SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 1.29
AREA-AVERAGE RUNOFF COEFFICIENT = 0.300
TOTAL AREA(ACRES) = 1.2 PEAK FLOW RATE(CFS) = 1.40
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 0.97
LONGEST FLOWPATH FROM NODE 210.00 TO NODE 212.00 = 190.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 212.00 TO NODE 203.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
REPRESENTATIVE SLOPE = 0.0100
FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013
ASSUME FULL-FLOWING PIPELINE
PIPE-FLOW VELOCITY(FEET/SEC.) = 4.01
PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 1.40
PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 12.48
LONGEST FLOWPATH FROM NODE 210.00 TO NODE 203.00 = 290.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 11
----------------------------------------------------------------------------
>>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<<
============================================================================
** MAIN STREAM CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 1.40 12.48 3.711 1.23
LONGEST FLOWPATH FROM NODE 210.00 TO NODE 203.00 = 290.00 FEET.
** MEMORY BANK # 1 CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 3.94 7.57 5.120 1.05
LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.00 = 455.00 FEET.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 4.79 7.57 5.120
2 4.25 12.48 3.711
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 4.79 Tc(MIN.) = 7.57
TOTAL AREA(ACRES) = 2.3
****************************************************************************
FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
REPRESENTATIVE SLOPE = 0.0140
FLOW LENGTH(FEET) = 18.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 6.20
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 4.79
PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 7.62
LONGEST FLOWPATH FROM NODE 200.00 TO NODE 204.00 = 473.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.099
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7200
S.C.S. CURVE NUMBER (AMC II) = 0
AREA-AVERAGE RUNOFF COEFFICIENT = 0.5402
SUBAREA AREA(ACRES) = 0.71 SUBAREA RUNOFF(CFS) = 2.61
TOTAL AREA(ACRES) = 3.0 TOTAL RUNOFF(CFS) = 8.24
TC(MIN.) = 7.62
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 3.0 TC(MIN.) = 7.62
PEAK FLOW RATE(CFS) = 8.24
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT
2003,1985,1981 HYDROLOGY MANUAL
(c) Copyright 1982-2016 Advanced Engineering Software (aes)
Ver. 23.0 Release Date: 07/01/2016 License ID 1532
Analysis prepared by:
Tory R. Walker Engineering, Inc.
122 Civic Center Drive
Suite 206
Vista, CA 92084
************************** DESCRIPTION OF STUDY **************************
* AVIARA OAKS ELEMENTARY *
* 100YR DESIGN STORM *
* POSTPROJECT ROUTING, BASIN C *
**************************************************************************
FILE NAME: 717POSTC.DAT
TIME/DATE OF STUDY: 14:41 10/24/2023
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
2003 SAN DIEGO MANUAL CRITERIA
USER SPECIFIED STORM EVENT(YEAR) = 100.00
6-HOUR DURATION PRECIPITATION (INCHES) = 2.540
SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85
SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
*USER SPECIFIED(SUBAREA):
NEIGHBORHOOD COMMERCIAL RUNOFF COEFFICIENT = .7500
S.C.S. CURVE NUMBER (AMC II) = 0
INITIAL SUBAREA FLOW-LENGTH(FEET) = 85.00
UPSTREAM ELEVATION(FEET) = 148.00
DOWNSTREAM ELEVATION(FEET) = 142.20
ELEVATION DIFFERENCE(FEET) = 5.80
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.062
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.692
NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
SUBAREA RUNOFF(CFS) = 0.50
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.50
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 0.1 TC(MIN.) = 3.06
PEAK FLOW RATE(CFS) = 0.50
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
Dr
a
i
n
a
g
e
R
e
p
o
r
t
Av
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
Oc
t
o
b
e
r
2
0
2
3
Pa
g
e
4
Jo
b
#
7
1
7
-
0
2
AT
T
A
C
H
M
E
N
T
4
Hy
d
r
a
u
l
i
c
C
a
l
c
u
l
a
t
i
o
n
s
E
Dr
a
i
n
a
g
e
R
e
p
o
r
t
Av
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
Oc
t
o
b
e
r
2
0
2
3
Pa
g
e
6
Jo
b
#
7
1
7
-
0
2
De
t
e
n
t
i
o
n
R
o
u
t
i
n
g
–
B
M
P
1
a
n
d
B
M
P
2
E
RATIONAL METHOD HYDROGRAPH PROGRAM
COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY
RUN DATE 10/24/2023
HYDROGRAPH FILE NAME Text1
TIME OF CONCENTRATION 8 MIN.
6 HOUR RAINFALL 2.54 INCHES
BASIN AREA 7.35 ACRES
RUNOFF COEFFICIENT 0.65
PEAK DISCHARGE 24.13 CFS
TIME (MIN) = 0 DISCHARGE (CFS) = 0
TIME (MIN) = 8 DISCHARGE (CFS) = 0.7 TIME (MIN) = 16 DISCHARGE (CFS) = 0.7
TIME (MIN) = 24 DISCHARGE (CFS) = 0.8
TIME (MIN) = 32 DISCHARGE (CFS) = 0.8
TIME (MIN) = 40 DISCHARGE (CFS) = 0.8
TIME (MIN) = 48 DISCHARGE (CFS) = 0.8
TIME (MIN) = 56 DISCHARGE (CFS) = 0.8
TIME (MIN) = 64 DISCHARGE (CFS) = 0.9 TIME (MIN) = 72 DISCHARGE (CFS) = 0.9
TIME (MIN) = 80 DISCHARGE (CFS) = 0.9
TIME (MIN) = 88 DISCHARGE (CFS) = 0.9 TIME (MIN) = 96 DISCHARGE (CFS) = 1
TIME (MIN) = 104 DISCHARGE (CFS) = 1
TIME (MIN) = 112 DISCHARGE (CFS) = 1
TIME (MIN) = 120 DISCHARGE (CFS) = 1.1
TIME (MIN) = 128 DISCHARGE (CFS) = 1.1
TIME (MIN) = 136 DISCHARGE (CFS) = 1.2
TIME (MIN) = 144 DISCHARGE (CFS) = 1.2 TIME (MIN) = 152 DISCHARGE (CFS) = 1.3
TIME (MIN) = 160 DISCHARGE (CFS) = 1.4
TIME (MIN) = 168 DISCHARGE (CFS) = 1.5
TIME (MIN) = 176 DISCHARGE (CFS) = 1.6
TIME (MIN) = 184 DISCHARGE (CFS) = 1.7
TIME (MIN) = 192 DISCHARGE (CFS) = 1.8
TIME (MIN) = 200 DISCHARGE (CFS) = 2.1 TIME (MIN) = 208 DISCHARGE (CFS) = 2.3
TIME (MIN) = 216 DISCHARGE (CFS) = 2.8
TIME (MIN) = 224 DISCHARGE (CFS) = 3.2 TIME (MIN) = 232 DISCHARGE (CFS) = 4.7
TIME (MIN) = 240 DISCHARGE (CFS) = 6.1
TIME (MIN) = 248 DISCHARGE (CFS) = 24.13
TIME (MIN) = 256 DISCHARGE (CFS) = 3.7
TIME (MIN) = 264 DISCHARGE (CFS) = 2.5
TIME (MIN) = 272 DISCHARGE (CFS) = 2
TIME (MIN) = 280 DISCHARGE (CFS) = 1.6 TIME (MIN) = 288 DISCHARGE (CFS) = 1.4
TIME (MIN) = 296 DISCHARGE (CFS) = 1.3
TIME (MIN) = 304 DISCHARGE (CFS) = 1.2 TIME (MIN) = 312 DISCHARGE (CFS) = 1.1
TIME (MIN) = 320 DISCHARGE (CFS) = 1
TIME (MIN) = 328 DISCHARGE (CFS) = 0.9
TIME (MIN) = 336 DISCHARGE (CFS) = 0.9
TIME (MIN) = 344 DISCHARGE (CFS) = 0.8
TIME (MIN) = 352 DISCHARGE (CFS) = 0.8
TIME (MIN) = 360 DISCHARGE (CFS) = 0.7 TIME (MIN) = 368 DISCHARGE (CFS) = 0
BMP-1 INFLOW HYDROGRAPH
Peak Q100< .__I _ _____.
Hydrograph Report
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024 Monday, 10 / 30 / 2023
Hyd. No. 2
100YR PEAK ROUTING
Hydrograph type = Reservoir Peak discharge = 10.55 cfs
Storm frequency = 100 yrs Time to peak = 4.27 hrs
Time interval = 8 min Hyd. volume = 43,555 cuft
Inflow hyd. No. = 1 - 100 YR PEAK INFLOW-BMP1Max. Elevation = 143.56 ft
Reservoir name = BMP-1 Max. Storage = 14,587 cuft
Storage Indication method used.
1
0.0 1.1 2.1 3.2 4.3 5.3 6.4 7.5 8.5
Q (cfs)
0.00 0.00
4.00 4.00
8.00 8.00
12.00 12.00
16.00 16.00
20.00 20.00
24.00 24.00
28.00 28.00
Q (cfs)
Time (hrs)
100YR PEAK ROUTING
Hyd. No. 2 -- 100 Year
Hyd No. 2 Hyd No. 1 Total storage used = 14,587 cuft
BMP-1 PEAK OUTFLOW
FREEBOARD: 1 FT MIN.
THE LOWEST ELEVATION ADJACENT TO THE
BASIN IS 144.25 GTR FL FOR THE PARKING AREA
ENTERING THE BASIN. FREEBOARD INCLUDES A
SMALL PORTION OF THE PARKING LOT AT THE
SOUTH END.
1
I
-- -- -- -- -- -- -- --
-- -- -- -- -- -- -- --
-- -- -- -- -- -- -- --
-- -- ----- -- -- --
-- -- ----- -- -- --
-- -- ----- -- -- --
-- -- ----- -- -- --
-- -- ----- -- -- --
-- -- ---\ -- -- -- --
-- -- --~' ~ -- -- --
-- -- ---f -- -- --
-- -- --
JX
-~
-- -- --
--~
-
-'I I I I I I I Ill ~ ,~
[IIIII]
Pond Report 2
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024 Monday, 10 / 30 / 2023
Pond No. 1 - BMP-1
Pond Data
Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 141.75 ft
Stage / Storage Table
Stage (ft)Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage (cuft)
0.00 141.75 7,165 0 0
0.25 142.00 7,480 1,830 1,830
1.25 143.00 8,289 7,880 9,711
2.25 144.00 9,120 8,700 18,411
3.25 145.00 10,460 9,781 28,192
Culvert / Orifice Structures Weir Structures
[A] [B] [C] [PrfRsr][A] [B] [C] [D]
Rise (in)= 1.50 9.00 0.00 0.00
Span (in)= 1.50 36.00 0.00 0.00
No. Barrels = 1 100
Invert El. (ft)= 141.75 142.25 0.00 0.00
Length (ft)= 0.50 0.50 0.00 0.00
Slope (%)= 0.00 0.00 0.00 n/a
N-Value = .013 .013 .013 n/a
Orifice Coeff.= 0.60 0.60 0.60 0.60
Multi-Stage = n/a NoNoNo
Crest Len (ft)= 0.00 0.00 0.00 0.00
Crest El. (ft)= 0.00 0.00 0.00 0.00
Weir Coeff.= 3.33 3.33 3.33 3.33
Weir Type = --- --- --- ---
Multi-Stage = No No No No
Exfil.(in/hr)= 0.000 (by Contour)
TW Elev. (ft)= 0.00
Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00
Stage (ft)
0.00 141.75
1.00 142.75
2.00 143.75
3.00 144.75
4.00 145.75
Elev (ft)
Discharge (cfs)
Stage / Discharge
Total Q
ELEVATION AT LOWEST OPENING: THE ANALYSIS DISREGARDS WATER QUALITY VOLUME
(CONJUNCTIVE USE CRITERIA PER THE SAN DIEGO COUNTY HYDRAULIC DESIGN MANUAL)
- - - - - - - - -
- - - - - - - -/-
- - - - - - -£_ -
/
- - - - - -V-- -
~
- - - - -V" - - -~ ----------i----- - - - - -
~ --------- - - - - - -
r
- - - - - - - - -
Hydrograph Report
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024 Monday, 10 / 30 / 2023
Hyd. No. 2
100YR PEAK ROUTING
Hydrograph type = Reservoir Peak discharge = 10.55 cfs
Storm frequency = 100 yrs Time to peak = 4.27 hrs
Time interval = 8 min Hyd. volume = 43,555 cuft
Inflow hyd. No. = 1 - 100 YR PEAK INFLOW-BMP1Max. Elevation = 143.56 ft
Reservoir name = BMP-1 Max. Storage = 14,587 cuft
Storage Indication method used.
0 2 4 6 9 11 13 15 17 19 21 23 26 28 30 32 34 36 38 41 43 45
Elev (ft)
141.00 141.00
142.00 142.00
143.00 143.00
144.00 144.00
145.00 145.00
Elev (ft)
Time (hrs)
100YR PEAK ROUTING
Hyd. No. 2 -- 100 Year
1. BMP-1 DRAWDOWN
APPROX. 2 DAYS
!-------------
Hydrograph Report
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024Monday, 10 / 30 / 2023
Hyd. No. 5
BMP 1 - EMERGENCY OVER
Hydrograph type = Reservoir Peak discharge = 13.98 cfs
Storm frequency = 100 yrs Time to peak = 4.27 hrs
Time interval = 8 min Hyd. volume = 43,741 cuft
Inflow hyd. No. = 1 - 100 YR PEAK INFLOW-BMP1Max. Elevation = 144.69 ft
Reservoir name = BMP1 Overflow Max. Storage = 6,710 cuft
Storage Indication method used.
4
0.01.12.13.24.35.36.47.5
Q (cfs)
0.000.00
4.004.00
8.008.00
12.0012.00
16.0016.00
20.0020.00
24.0024.00
28.0028.00
Q (cfs)
Time (hrs)
BMP 1 - EMERGENCY OVER
Hyd. No. 5 -- 100 Year
Hyd No. 5Hyd No. 1Total storage used = 6,710 cuft
BMP-1 EMERGENCY OVERFLOW CALCULATIONS
11 1111111
____ ,
.-f"V --
-~ ·--r
-~--7 -
- -
-
~
-
-
-
-
-
--
Pond Report 2
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024 Monday, 10 / 30 / 2023
Pond No. 3 - BMP1 Overflow
Pond Data
Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 144.00 ft
Stage / Storage Table
Stage (ft)Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage (cuft)
0.00 144.00 9,120 0 0
1.00 145.00 10,460 9,781 9,781
Culvert / Orifice Structures Weir Structures
[A] [B] [C] [PrfRsr][A] [B] [C] [D]
Rise (in)= 6.00 0.00 0.00 0.00
Span (in)= 120.00 0.00 0.00 0.00
No. Barrels = 1 000
Invert El. (ft)= 144.00 0.00 0.00 0.00
Length (ft)= 0.50 0.00 0.00 0.00
Slope (%)= 0.00 0.00 0.00 n/a
N-Value = .013 .013 .013 n/a
Orifice Coeff.= 0.60 0.60 0.60 0.60
Multi-Stage = n/a NoNoNo
Crest Len (ft)= 0.00 0.00 0.00 0.00
Crest El. (ft)= 0.00 0.00 0.00 0.00
Weir Coeff.= 3.33 3.33 3.33 3.33
Weir Type = --- --- --- ---
Multi-Stage = No No No No
Exfil.(in/hr)= 0.000 (by Wet area)
TW Elev. (ft)= 0.00
Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00
Stage (ft)
0.00 144.00
0.10 144.10
0.20 144.20
0.30 144.30
0.40 144.40
0.50 144.50
0.60 144.60
0.70 144.70
0.80 144.80
0.90 144.90
1.00 145.00
Elev (ft)
Discharge (cfs)
Stage / Discharge
Total Q
EMERGENCY OVERFLOW STRUCTURE:
CURB INLET WITH 10 FT OPENING
/ /
/
~ ~
~ .....
~
.__ -------r----.. ~v ......
/ /
/ /
RATIONAL METHOD HYDROGRAPH PROGRAM
COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY
RUN DATE 10/24/2023
HYDROGRAPH FILE NAME Text1
TIME OF CONCENTRATION 8 MIN.
6 HOUR RAINFALL 2.54 INCHES
BASIN AREA 2.99 ACRES
RUNOFF COEFFICIENT 0.54
PEAK DISCHARGE 8.24 CFS
TIME (MIN) = 0 DISCHARGE (CFS) = 0
TIME (MIN) = 8 DISCHARGE (CFS) = 0.2 TIME (MIN) = 16 DISCHARGE (CFS) = 0.2
TIME (MIN) = 24 DISCHARGE (CFS) = 0.3
TIME (MIN) = 32 DISCHARGE (CFS) = 0.3
TIME (MIN) = 40 DISCHARGE (CFS) = 0.3
TIME (MIN) = 48 DISCHARGE (CFS) = 0.3
TIME (MIN) = 56 DISCHARGE (CFS) = 0.3
TIME (MIN) = 64 DISCHARGE (CFS) = 0.3 TIME (MIN) = 72 DISCHARGE (CFS) = 0.3
TIME (MIN) = 80 DISCHARGE (CFS) = 0.3
TIME (MIN) = 88 DISCHARGE (CFS) = 0.3 TIME (MIN) = 96 DISCHARGE (CFS) = 0.3
TIME (MIN) = 104 DISCHARGE (CFS) = 0.3
TIME (MIN) = 112 DISCHARGE (CFS) = 0.4
TIME (MIN) = 120 DISCHARGE (CFS) = 0.4
TIME (MIN) = 128 DISCHARGE (CFS) = 0.4
TIME (MIN) = 136 DISCHARGE (CFS) = 0.4
TIME (MIN) = 144 DISCHARGE (CFS) = 0.4 TIME (MIN) = 152 DISCHARGE (CFS) = 0.4
TIME (MIN) = 160 DISCHARGE (CFS) = 0.5
TIME (MIN) = 168 DISCHARGE (CFS) = 0.5
TIME (MIN) = 176 DISCHARGE (CFS) = 0.5
TIME (MIN) = 184 DISCHARGE (CFS) = 0.6
TIME (MIN) = 192 DISCHARGE (CFS) = 0.6
TIME (MIN) = 200 DISCHARGE (CFS) = 0.7 TIME (MIN) = 208 DISCHARGE (CFS) = 0.8
TIME (MIN) = 216 DISCHARGE (CFS) = 0.9
TIME (MIN) = 224 DISCHARGE (CFS) = 1.1 TIME (MIN) = 232 DISCHARGE (CFS) = 1.6
TIME (MIN) = 240 DISCHARGE (CFS) = 2
TIME (MIN) = 248 DISCHARGE (CFS) = 8.24
TIME (MIN) = 256 DISCHARGE (CFS) = 1.3
TIME (MIN) = 264 DISCHARGE (CFS) = 0.8
TIME (MIN) = 272 DISCHARGE (CFS) = 0.7
TIME (MIN) = 280 DISCHARGE (CFS) = 0.6 TIME (MIN) = 288 DISCHARGE (CFS) = 0.5
TIME (MIN) = 296 DISCHARGE (CFS) = 0.4
TIME (MIN) = 304 DISCHARGE (CFS) = 0.4 TIME (MIN) = 312 DISCHARGE (CFS) = 0.4
TIME (MIN) = 320 DISCHARGE (CFS) = 0.3
TIME (MIN) = 328 DISCHARGE (CFS) = 0.3
TIME (MIN) = 336 DISCHARGE (CFS) = 0.3
TIME (MIN) = 344 DISCHARGE (CFS) = 0.3
TIME (MIN) = 352 DISCHARGE (CFS) = 0.3
TIME (MIN) = 360 DISCHARGE (CFS) = 0.3 TIME (MIN) = 368 DISCHARGE (CFS) = 0
BMP-2 INFLOW HYDROGRAPH
Peak Q100
Hydrograph Report
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024Tuesday, 10 / 31 / 2023
Hyd. No. 4
100YR ROUTING - BMP2
Hydrograph type = Reservoir Peak discharge = 4.583 cfs
Storm frequency = 100 yrs Time to peak = 4.27 hrs
Time interval = 8 min Hyd. volume = 14,887 cuft
Inflow hyd. No. = 3 - 100YR PEAK INFLOW-BMP2Max. Elevation = 150.65 ft
Reservoir name = BMP-2 Max. Storage = 3,917 cuft
Storage Indication method used.
4
0.01.12.13.24.35.36.47.58.59.6
Q (cfs)
0.000.00
2.002.00
4.004.00
6.006.00
8.008.00
10.0010.00
Q (cfs)
Time (hrs)
100YR ROUTING - BMP2
Hyd. No. 4 -- 100 Year
Hyd No. 4Hyd No. 3Total storage used = 3,917 cuft
TOP OF POND: 152 FT
1 FT MIN. FREEBOARD IS PROVIDED
BMP-2 PEAK OUTFLOW
11 1111111
" .....,.-: I I I I I I l....V
7' r -
-
Pond Report 2
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024 Tuesday, 10 / 31 / 2023
Pond No. 2 - BMP-2
Pond Data
Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 149.75 ft
Stage / Storage Table
Stage (ft)Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage (cuft)
0.00 149.75 3,550 0 0
1.50 151.25 5,210 6,530 6,530
Culvert / Orifice Structures Weir Structures
[A] [B] [C] [PrfRsr][A] [B] [C] [D]
Rise (in)= 2.00 9.00 0.00 0.00
Span (in)= 2.00 36.00 0.00 0.00
No. Barrels = 2 100
Invert El. (ft)= 149.75 150.08 0.00 0.00
Length (ft)= 0.50 0.50 0.00 0.00
Slope (%)= 0.00 0.00 0.00 n/a
N-Value = .013 .013 .013 n/a
Orifice Coeff.= 0.60 0.60 0.60 0.60
Multi-Stage = n/a NoNoNo
Crest Len (ft)= 0.00 0.00 0.00 0.00
Crest El. (ft)= 0.00 0.00 0.00 0.00
Weir Coeff.= 3.33 3.33 3.33 3.33
Weir Type = --- --- --- ---
Multi-Stage = No No No No
Exfil.(in/hr)= 0.000 (by Wet area)
TW Elev. (ft)= 0.00
Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
Stage (ft)
0.00 149.75
0.20 149.95
0.40 150.15
0.60 150.35
0.80 150.55
1.00 150.75
1.20 150.95
1.40 151.15
1.60 151.35
1.80 151.55
2.00 151.75
Elev (ft)
Discharge (cfs)
Stage / Discharge
Total Q
ELEVATION AT LOWEST OPENING: THE ANALYSIS DISREGARDS WATER QUALITY VOLUME
(CONJUNCTIVE USE CRITERIA PER THE SAN DIEGO COUNTY HYDRAULIC DESIGN MANUAL);----
---~
~ ---~ ----~ C>
~ ------~ ---
~
/ V"
(
I
Hydrograph Report
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024 Tuesday, 10 / 31 / 2023
Hyd. No. 4
100YR ROUTING - BMP2
Hydrograph type = Reservoir Peak discharge = 4.583 cfs
Storm frequency = 100 yrs Time to peak = 4.27 hrs
Time interval = 8 min Hyd. volume = 14,887 cuft
Inflow hyd. No. = 3 - 100YR PEAK INFLOW-BMP2Max. Elevation = 150.65 ft
Reservoir name = BMP-2 Max. Storage = 3,917 cuft
Storage Indication method used.
0.0 1.1 2.1 3.2 4.3 5.3 6.4 7.5 8.5 9.6 10.7 11.7 12.8 13.9 14.9
Elev (ft)
149.00 149.00
150.00 150.00
151.00 151.00
152.00 152.00
Elev (ft)
Time (hrs)
100YR ROUTING - BMP2
Hyd. No. 4 -- 100 Year
2. BMP-2 DRAWDOWN
APPROX. 15 HOURS
==-2-t =========
-~~ --~~--------
v -----~-- -----==t-:::-+-~-+--L-J
Dr
a
i
n
a
g
e
R
e
p
o
r
t
Av
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
Oc
t
o
b
e
r
2
0
2
3
Pa
g
e
7
Jo
b
#
7
1
7
-
0
2
In
l
e
t
,
S
t
o
r
m
D
r
a
i
n
,
a
n
d
R
i
p
R
a
p
S
i
z
i
n
g
E
PH
PH
10'
10'
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD SD SD
S
D
SD
SD
SD
SD
SD
SD
SD SD SD
SDSDSDSD
SD
SD
SD
SD
S
D
SD
SD
SD SD
W W W
W
W
W
W
W
W
W
SD
S
D
SD
SD
SD
SD
SD
SD
SD
SD
SD
S
D
S
D
S
D
SD
SD SD SD
SD
SD
S
D
S
D
SD
SD
SD
SD
SD SD SD SD SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD SD
SD
SD
SD SD
SD
SD
SD
SD CO
M
M
COMM COMM COMM
COMM COMM COMM COMM
COMM
E
E
E
E
E
E
E
E
E E
E
E
E
IRR
IR
R
IR
R
IRR IRR
IRR
IRR
IRR
IRR
IRR
IRR
IR
R
I
R
R
IR
R
IRR
IRR
IRR
IRR
IR
R
IR
R
IRR IR
R IRR
IR
R
IRRIRR
IRRIRR
IR
R
IR
R
IR
R
IR
R
I
R
R
I
R
R
IRR
IR
R
IR
R
IRR
IR
R
IR
R
IR
R
IR
R
IR
R
IR
R
G
G
E
COMM COMM
E
E
CO
M
M
CO
M
M
E
CO
M
M
CO
M
M
E
E
E E
EE
E
E
E
E
E
COMM
COMM
C
O
M
M
COMM
E
E
E
E
E
ECOMM
CO
M
M
C
O
M
M
E
E
CO
M
M
G G G
G
G
E
E
E
E
EECOMMCOMM
E E E E
E E E E E E
E
E
E
E E IR
R
IR
R
IR
R
IRR
IRR
EE
G
G
G
G
G G G G
G
E
EE
IRR
IR
R
IR
R
IRR
IRRIRR
CO
M
M
COMM COMM
CO
M
M
E
E
E
E
E
E E E
G
G
C
O
M
M
C
O
M
M
COMM
E
E
E
E
E
G
G
G
G
G
G
E
G G
G
G G
E
E
G
G
G
SD
(151)
(150)
(149)
(148)
(147)
(146)
(145)
(140)
(151)
(150)
(145)
(153)
(154)
(155)
(160)
(160)
(155)
(154)
(150)
(155)
(1
5
5
)
(15
4
)
(1
5
3
)
(1
5
2
)
(1
5
1
)
(15
0
)
(155
)
(156)
(157)(158)
(15
4
)
(155)
(153)
(154)
(155)
(160)
N
0
0
°
2
0
'
2
2
"
W
2
9
3
.
7
1
'
(156)
(150)(150)
SD
S
D
S
D
167
164
164
165
166
162
162
161
160
16
0
159
163
145
146
145
147
148
149
150
151
152
153
154
155
156
161 160
16
1
162
159
158
161
161
160
142
143
14
4
162
162
163
163
163
164
163
163
164
165
164
165
158
160
16
0
146
147
145
149
150
151
149
148
150
152
153
154
155
156
158
159
158
160 159
161 160
160
165
162
159
159
159
15
9
159
156
155
154
153
152
151
150
149
148
147
158
158
158
158
158
157
15
5
15
4
151
152
153
154
150
148
157
153
154
155
155
156
150
145
14
8
147
147
147
147
148
146
146
145
146
146
146
155
153
154
152
160
161
162
157
158
157
158
156
154155
156
155154
153
153 151
151
153
152
151
153 152
152
152
151
158
15
8
158
159
157 156
156
157
155
158
157
157
156
156
156
155
155
155
15
5
155
15
4
153
151
153
153
152
157
157156
158
141
151
152
153
154
155
151
153
152
150
151 153
152
154
154
149
150
149
145
149
156
154
155
151
153
150
151
154
153153
152
15
1
152
162
163
164
161160
160
161
154
158
157
156
157 156155154
153
153
153
153
153
155
154153
153
153
154155
150
153
158
15
7
15
6
155
155156157
155
156
155
153
162
161
160
158
159
160
157
157
157
157
144145
147148
143
149
146
145
144
143
149
145
146
146
144143
142
142
141
142
141
146
147
148
145144143142
141
141
149
15
0
150
15
0
15
1
15
1
151
145
152
152
151
150
152
153
151
152
152
152
152
151
150
151
150
152
152
152
152
151
150
AVIAR
A
P
A
R
K
W
A
Y
A
M
B
R
O
S
I
A
L
A
N
E
PROPERTY LINE
PROPERTY LINE
NON DISTURBED
AREA
NON
DISTURBED
AREA
(E)
BUILDING 300
CLASSROOM
(E)
BUILDING 700
CLASSROOM
(E)
BLDG 400
CLASSROOM
(E)
BUILDING 500
CLASSROOM
(E)
BUILDING 600
CLASSROOM
NEW BUILDING
800 CLASSROOM
DS DS DS
DS
DS
DS DS
DS
DS
DS
DS
DS
DS
DS
DS DS
DSDS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS DS
NON DISTURBED AREA
BIOFILTRATION
BMP-2, 3,000 SF
BIOFILTRATION BMP-1,
6,300 SF
PROPRIETARY
BIOFILTRATION BMP-3,
MWS-4-4-V
INLET, STORM DRAIN, AND RIP
RAP SIZING
RIP RAP SIZES
STRUCTURE ID Q100 (CFS)V100 (FT/S)ROCK CLASS
RR #1 13.89 6.6 NO.2 BACKING
RR #2 9.21 6.7 NO.2 BACKING
RR #3 3.44 5.3 NO.2 BACKING
RR #4 4.79 5.8 NO.2 BACKING
RR #5 3.37 1.6 NO.2 BACKING
NOTE: RIP RAP ENERGY DISSIPATER IS SIZED PER RSD D-40
CURB INLET SIZES
STRUCTURE ID INLET TYPE
Q100 (CFS)OPENING SIZE
CI #1 CURB INLET, ON GRADE 3.98 13Ft
CI #2 CURB INLET, SAG 2.67 4Ft
CI #3 CURB INLET, ON GRADE 2.65 9Ft
CI #4 CURB INLET, SAG 3.53 5Ft
CI #5 CURB INLET, ON GRADE 1.47 6Ft
NOTE: CURB INLET CALCULATIONS CONSERVATIVELY DISREGARD UPSTREAM AREA DRAINS
LARGEST Q100 TRIBUTARY
TO A 6" PIPE:
A=0.1 AC, PORTION A-5
C=0.9
Tc=5 MIN, I=6.69 IN/HR
Q=0.6 CFS
LARGEST Q100 TRIBUTARY
TO A 12" LANDSCAPE DRAIN:
A=0.11 AC, PORTION A-2
C=0.3
Tc=5 MIN, I=6.69 IN/HR
Q=0.22 CFS
LARGEST Q100 TRIBUTARY
TO A 8" PIPE:
A=0.36 AC, A-13
C=0.67
Tc=5 MIN, I=6.69 IN/HR
Q=1.61 CFS
LARGEST Q100 TRIBUTARY TO
A 12" PIPE:
A=1.24 AC, A-5, A-8, POR. A-9
C=0.9(0.58/1.24)
+0.3(0.66/1.24)=0.58
Tc=5 MIN, I=6.69 IN/HR
Q=4.81 CFS
LARGEST Q100 TRIBUTARY
TO A 18" PRE-CAST CB:
A=0.15 AC, PORTION A-2
C=0.9
Tc=5 MIN, I=6.69 IN/HR
Q=0.90 CFS
LARGEST Q100 TRIBUTARY
TO A 14" FLOOR DRAIN:
A=0.06 AC, PORTION A-4
C=0.9
Tc=5 MIN, I=6.69 IN/HR
Q=0.36 CFS
LARGEST Q100 TRIBUTARY TO THE
REPRESENTATIVE PIPE SIZE IDENTIFIED
LARGEST Q100 TRIBUTARY TO THE
REPRESENTATIVE INLET TYPE
IDENTIFIED
•
II
).
I
-\
I
(
/
(
(
,J
/
•
I I I Ii
I I I I
I I I
i I I
I I
I I
I
I
I
. .
I
•. ...... . ~ • ·,-• . : .•. ·-,.,.
-~ <II • 0
25 0 25 50
SCALE: 1. = 5o•
·-••• ···-c:t., ..
~I • ·; /
I
I
CD I
I
'
RR #4
75
I
TORY R. WALKER
ENGINEERING
122 Civic Center Drive, Suite • • 206 Vista, CA 92084
LEGEND
-440-
-44o-
PROPERTY LINE
EXISTING GROUND CONTOURS
PROPOSED GROUND CONTOURS
~-BASIN DESIGNATION
~-AREA (ACRES)
DRAINAGE BASIN BOUNDARY
- - -DRAINAGE SUB-BASIN BOUNDARY
.-----@ STRUCTURE ID
-..--DIRECTION OF FLOW
OCTOBER 1, 2023
FOR
ELEMENTARY SCHOOL AVIARA OAKS
Post-Project Drainage Basins
Basin Basin Area (Ac.) Imperviousness % C Tc (min) I (in/hr) Q100 (cfs)
CI #1 BYP-1 1.26 28 0.47 5 6.69 3.98
CI #2 A-1 0.75 39 0.53 5 6.69 2.67
CI #3 A-2 0.70 44 0.57 5 6.69 2.65
CI #4 A-4 0.60 97 0.88 5 6.69 3.53
CI #5 A-7 0.31 68 0.71 5 6.69 1.47
RR #3 B-1 0.71 71 0.72 5 6.69 3.44
TRIBUTARY Q100 (5 MIN TC)
NOTE: A 5 MIN TC IS CONSERVATIVELY ASSUMED FOR INLET AND LATERAL STORM DRAIN
SIZING CALCULATIONS. SEE AES HYDROLOGY ROUTING FOR Q100s USED IN SIZING RR #1,
#2, #4, AND #5
717_DRN Cvalue Study-PostProject_2023 10 18.xls
Page 1 of 4
PROJECT:AVIARA OAKS ELEMENTARY DATE:11/1/2023
PROJECT #:717-02 BY:BTH
Inlet Capacity Calculation
Curb Inlet on Grade
Full Interception
From Equation 2-2 from the San Diego County Hydraulic Design Manual, Sept 2014 (SDCHDM, Sept 2014)
LT =
LT =
Q =
a =
y =
Inlet: CI #1 Node:
Type:
Q = 3.98 cfs
a =0.33 ft
y =0.25 ft
LT =12.87 ft
Inlet: CI #3 Node:
Type:
Q = 2.65 cfs
a =0.33 ft
y =0.24 ft
LT =8.80 ft
Q
0.7(a+y)3/2
Curb Inlet on Grade
See Post-Project Condition Runoff Calcs
depth of flow approaching the curb inlet (ft)
length of clear opening of inlet for total inlet for total interception (ft)
flow rate at inlet per drainage analysis
inlet depression (ft)
Per Section 2.3.2.1 in SDCHDM, Sept 2014:
(1) maximum 4" (0.33 ft) depression if curb inlet is separated from traffic lane with shoulder or parking lane
(2) 2" (0.17 ft) depression is allowed when an inlet is adjacent to traffic lanes
4" depression
from Figure 2-4
Curb Inlet on Grade
See Post-Project Condition Runoff Calcs
4" depression
from Figure 2-4
S:\Projects2\717 (Ruhnau Clarke)\02 - Aviara Oaks Elementary\03 Analysis\02 Drainage\Curb Inlet Sizing\717_AOE_DRN Inlet Sizing Calculations.xlsx
11/1/2023 10:19 AM
--
--
Page 2 of 4
PROJECT:AVIARA OAKS ELEMENTARY DATE:11/1/2023
PROJECT #:717-02 BY:BTH
Inlet Capacity Calculation
Curb Inlet on Grade
Inlet: CI #5 Node:
Type:
Q = 1.47 cfs
a =0.33 ft
y =0.21 ft
LT =5.29 ft
Curb Inlet on Grade
See Post-Project Condition Runoff Calcs
4" depression
from Figure 2-4
S:\Projects2\717 (Ruhnau Clarke)\02 - Aviara Oaks Elementary\03 Analysis\02 Drainage\Curb Inlet Sizing\717_AOE_DRN Inlet Sizing Calculations.xlsx
11/1/2023 10:19 AM
--
San Diego County Hydraulic Design Manual Page 2-17
September 2014
Figure 2-4 6-inch Gutter and Roadway Discharge-Velocity Chart
Figure 2-4
CI # 1
CI # 3
CI # 5-~ 0 -Q)
C.
.2
Cl) -Q)
Q) ,_ -Cl)
n = 0.030 n=0.015 n = 0.0175
6" I 1s•
20
15
10
9
8
7
6
5
4
3
2.5
2
1.5
1 +--~r-----#-i--,---~~:---l'-----+.::...._-1::-.,u-------------1
0.9
0.8
0.7
0.6
0.5
0.4
1 2 3 4 5 6 7 8 910 20 30 40 50
Discharge (ft3/s)
Page 1 of 2
PROJECT AVIARA OAKS ELEMENTARY DATE:11/1/2023
PROJECT 717-02 BY:BTH
Inlet Capacity Calculation
Curb Inlet on Sag
Curb Inlet on Sag
From Equation 2-8 from the San Diego County Hydraulic Design Manual, Sept 2014 (SDCHDM, Sept 2014)
Weir Condition:Lw =
Lw =
Cw =
Q =
d =
From Equation 2-9 from the San Diego County Hydraulic Design Manual, Sept 2014 (SDCHDM, Sept 2014)
Orifice Condition:
L =
L =
Q =
h =
g =
do =
do =
y =
a =
h/2 sin =
For standard 6-inch curb inlet opening with a 4-inch depression (SDRSD No. D-12)
Inlet #: CI #2 Node:
Type:
Q = 2.67 cfs
WEIR CONDITION:
Cw =3
d =0.42 ft
Lw =3.27 ft
ORIFICE CONDITION:
y = 0.42 cfs
a =0.33 ft
h/2 sin =0.26 ft Per SDCHDM
do = 0.49 ft
h =0.5 ft curb opening height
L =1.42 ft
LW > L; Use Weir Condition, L = 4 ft
effective depth of flow at curb face
Flow depth of gutter per Figure 2-4
Curb Opening Depression ( 4 inches )
Per Equation 2-10 in SDCHDM
(y+a) - h/2 sin
h/2 sin = 3.1 inches ( 0.26 ft )
depth of flow in adjacent gutter
adjustment for curb inlet throat width (h) and angle of throat incline (q).
curb inlet depression
Per Table 2-1 in SDCHDM
Flow depth of gutter per Figure 2-4
Curb Inlet in Sag
Q
0.67h(2gdo)1/2
Q
gravitational acceleration (ft/s2) = 32.2 ft/s2
flow rate at inlet per drainage analysis
curb opening height
curb opening length
Cwd3/2
weir (opening) length (ft)
flow rate at inlet per drainage analysis
flow depth
weir discharge coefficient = 3.0 per Table 2-1
S:\Projects2\717 (Ruhnau Clarke)\02 - Aviara Oaks Elementary\03 Analysis\02 Drainage\Curb Inlet Sizing\717_AOE_DRN Inlet Sizing Calculations.xlsx
11/1/2023 10:20 AM
-
-
Page 2 of 2
PROJECT AVIARA OAKS ELEMENTARY DATE:11/1/2023
PROJECT 717-02 BY:BTH
Inlet Capacity Calculation
Curb Inlet on Sag
Inlet #: CI #4 Node:
Type:
Q = 3.53 cfs
WEIR CONDITION:
Cw =3
d =0.43 ft
Lw =4.17 ft
ORIFICE CONDITION:
y = 0.1 cfs
a =0.33 ft
h/2 sin =0.26 ft Per SDCHDM
do = 0.17 ft
h =0.5 ft curb opening height
L =3.18 ft
LW > L; Use Weir Condition, L = 5 ft
Per Equation 2-10 in SDCHDM
Curb Inlet in Sag
Per Table 2-1 in SDCHDM
Flow depth of gutter per Figure 2-4
Flow depth of gutter per Figure 2-4
Curb Opening Depression ( 4 inches )
S:\Projects2\717 (Ruhnau Clarke)\02 - Aviara Oaks Elementary\03 Analysis\02 Drainage\Curb Inlet Sizing\717_AOE_DRN Inlet Sizing Calculations.xlsx
11/1/2023 10:20 AM
-
-
RIPRAP #1, NODE 106
Type: j Define ...
Side Slope 1 [Zl ): jo.o H : 1V
Side Slope 2 [Z2J:j .-0-.0--H : 1V
Channel Width (BJ jo.o (fl)
Pipe Diameter (DJ: j2.o (fl)
Longitudinal Slope: j0.007 (fl/fl)
r Override Default
Manning's Roughness: j0.0130
r Use Lining
il Lining T ype:j ~W-ov_e_n_P_a-pe_r_N_e_t ----
r♦ Enter Flow: j13.890 (cfs)
r Enter Depth: j1 .273 (fl)
Calculate
Plot... Compute Curves ...
X
Flow 13.890 cfs
Depth 1.273 fl
Area of Flow 2.110 sq fl
Wetted Perimeter 3.695 fl
Hydraulic Radius 0.571 fl
Average Velocity 6.583 fps
Top Width (T) 1.924 fl
Froude Number 1.108
Critical Depth 1.342 fl
Critical Velocity 6.199 fps
Critical Slope 0.00603 fl/fl
Critical Top Width 1.880 fl
Max Shear Stress 0.556 lb/fl'2
Avg Shear Stress 0.249 lb/fl'2
OK Cancel
RIPRAP #2, NODE 11 6
Define ...
Side Slope 1 [Zl ): 10.0 H : 1V
Side Slope 2 [22): l'"o-.o--H : 1V
Channel Width (BJ 10.0 (fl)
Pipe Diameter (DJ: 11.5 (fl)
Longitudinal Slope: 10.01 (fl/fl)
r Override Default
Manning's Roughness: 10.0130
r Use Lining
Lining Type: )'"w_o_v_e_n_P_ap_e_r _N_et ____ i.J_~.,
r♦ Enter Flow: 19.210
r Enter Depth: 11 .089
Calculate
(cfs)
(fl)
Plot... Compute Curves ...
X
Flow 9.210 cfs
Depth 1.089 fl
Area of Flow 1.374 sq fl
Wetted Perimeter 3.059 fl
Hydraulic Radius 0.449 fl
Average Velocity 6.704 fps
Top Width (T) 1.338 fl
Froude Number 1.166
Critical Depth 1.173 fl
Critical Velocity 6.210 fps
Critical Slope 0.00842 fl/fl
Critical Top Width 1.238 fl
Max Shear Stress 0.679 lb/fl'2
Avg Shear Stress 0.280 lb/fl'2
OK Cancel
RIPRAP #3, BASIN 81
Type: ) Circular Define ...
Side Slope 1 [Zl ): jo.o H : 1V
Side Slope 2 [22) j,-0-.0--H : 1V
Channel Width (BJ jo.o (fl)
Pipe Diameter (DJ: jl.5 (fl)
Longitudinal Slope: j0.01 (fl/fl)
r Dveuide Default
Manning's Roughness: j0.0130
r Use Lining
il Lining Type: )~w_o_v_e_n_P_ap_e_r _N_et ___ _
r♦ Enter Flow: '3.440
r Enter Depth: jo.591
Calculate
(cfs)
(fl)
Plot... Compute Curves ...
X
Flow 3.440 cfs
Depth 0.591 fl
Area of Flow 0.646 sq fl
Wetted Perimeter 2.035 fl
Hydraulic Radius 0.318 fl
Average Velocity 15322 fps
Top Width (T) 1.466 fl
Froude Number 1.412
Critical Depth 0.708 fl
Critical Velocity 4.196 fps
Critical Slope 0.00524 fl/fl
Critical Top Width 1.498 fl
Max Shear Stress 0.369 lb/fl'2
Avg Shear Stress 0.198 lb/fl'2
DK Cancel
RIPRAP #4, NODE 204
Type: ) Circular Define ...
Side Slope 1 [Zl ): jo.o H : 1V
Side Slope 2 [22): j'"o-.o--H : 1V
Channel Width (BJ jo.o (fl)
Pipe Diameter (DJ: j1.5 (fl)
Longitudinal Slope: j0.01 (fl/fl)
r Override Default
Manning's Roughness: j0.0130
r Use Lining
Lining Type: )'"w_o_v_e_n_P_ap_e_r _N_et ____ i.J_~.,
r♦ Enter Flow: j4. 790
r Enter Depth: jo. 711
Calculate
(cfs)
(fl)
Plot... Compute Curves ...
X
Flow 4.790 cfs
Depth 0.711 fl
Area of Flow 0.825 sq fl
Wetted Perimeter 2.278 fl
Hydraulic Radius 0.362 fl
Average Velocity 5.808 fps
Top Width (T) 1.498 fl
Froude Number 1.379
Critical Depth 0.841 fl
Critical Velocity 4.699 fps
Critical Slope 0.00570 fl/fl
Critical Top Width 1.489 fl
Max Shear Stress 0.444 lb/fl'2
Avg Shear Stress 0.226 lb/fl'2
OK Cancel
San Diego County Hydraulic Design Manual Page 2-17
September 2014
Figure 2-4 6-inch Gutter and Roadway Discharge-Velocity Chart
Figure 2-4
RIPRAP#5, BASIN A-10
V=1.6 FT/S
-~ 0 -Q)
C.
.2
Cl) -Q)
Q) ,_ -Cl)
n = 0.030 n=0.015 n = 0.0175
6" I 1s•
20
15
10
9
8
7
6
5
4
3
2.5
2
1.5
1 +------'::,....::,--------,f------,---____::.....,,_ _ _,_ __ ---1--.::...~~------------1
0.9
0.8
0.7
0.6
0.5
0.4
1 2 3 4 5 6 7 8 910 20 30 40 50
Discharge (ft3/s)
~ N
a:: 0
Cl N
::::::!: :::,
::::::!: z :i
0
~ N
a:: 0
Cl N
CD
CONCRETE
CHANNEL
Revision By Approved Date
ORIGINAL Kercheval 2/75
Edited T.R. T. Regello 10/15
Edited M.W M. Widelski 10/18
Reviewed RP S. Engeda 03/22
TABLE 7-1 {BELOW) PER JULY 2005
SAN DIEGO COUNTY DRAINAGE DESIGN MANUAL
2D OR 2W MIN.
~OR~
DESIGN VELOCITY ROCK RIP-RAP
THICKNESS {FT/SEC) * CLASS ''r" {MIN)
6-10 NO. 2 BACKING 1.1 FT
CD 10-12 1/4 TON 2.7 FT
12-14 1/2 TON 3.5 FT
14-16 1 TON 4.4 FT
16-18 2 TON 5.4 FT
611 WIDE SLOT
* OVER 20 FT /SEC REQUIRES SPECIAL DESIGN
D = PIPE DIAMETER 0
3D OR 3W
PLAN
2D OR 2W MIN.
SECTION 8-8
W = BOTTOM WIDTH OF CHANNEL
7'.~ s
~b ::::::!: ...J V)
.ST {MIN.)
FLOW
I-
FILTER BLANKET MATERIALS(S) ;:..:;;......____,_
SILL, CLASS 420-C-2000 CONCRETE
SECTION A-A
,.--"""<;=NOTES
1. PLANS SHALL SPECIFY:
{A) ROCK CLASS AND RIP-RAP THICKNESS {T). T SHALL BE
AT LEAST 1.5 TIMES THE NOMINAL EQUIVALENT DIAMETER OF
STONE (d50) OF THE SPECIFIED RIP-RAP.
{B) FILIER BLANKET MATERIAL, NUMBER OF LAYERS AND
THICKNESS.
2. RIP-RAP SHALL BE EITHER QUARRY STONE OR BROKEN
CONCRETE {IF SHOWN ON PLANS). COBBLES ARE NOT
ACCEPTABLE.
3. RIP-RAP SHALL BE PLACED OVER FILTER BLANKET MATERIAL,
WHICH MAY BE EITHER GRANULAR MATERIAL OR NON-WOVEN
GEOTEXTILE FILTER FABRIC; MATERIAL AT WEIGHT SPECIFIED
IN PLANS OR SPECIFICATIONS.
4. SEE TABLE 200-1.7 IN THE SAN DIEGO REGIONAL
SUPPLEMENT TO GREENBOOK FOR SELECTION OF FILTER
BLANKET.
5. RIP-RAP ENERGY DISSIPATERS SHALL BE DESIGNATED AS
EITHER TYPE 1 OR TYPE 2. TYPE 1 SHALL BE WITH
CONCRETE SILL; TYPE 2 SHALL BE WITHOUT SILL.
SAN DIEGO REGIONAL STANDARD DRAWING RECOMMENDED BY 11-IE SAN DIEGO
REGIONAL STANDARDS COMMITTEE
RIP
ENERGY
RAP
DISSIPATER DRAWING
NUMBER D-40
6" STORM DRAIN @ 2%
Type: j Define ...
Side Slope 1 [Zl ): jo.o H : 1V
Side Slope 2 [Z2J:j .-O-.O--H : 1V
Channel Width (BJ jo.o (fl)
Pipe Diameter (DJ: jo.5 (fl)
Longitudinal Slope: j0.02 (fl/fl)
r Override Default
Manning's Roughness: j0.0130
r Use Lining
il Lining T ype:j ~W-ov_e_n_P_a-pe_r_N_e_t ----
r♦ Enter Flow: j0.600
r Enter Depth: j0.325
Calculate
(cfs)
(fl)
Plot... Compute Curves ...
X
Flow 0.600 cfs
Depth 0.325 fl
Area of Flow 0.135 sq fl
Wetted Perimeter 0.938 fl
Hydraulic Radius 0.144 fl
Average Velocity 4.442 fps
Top Width (T) 0.477 fl
Froude Number 1.471
Critical Depth 0.394 fl
Critical Velocity 3.615 fps
Critical Slope 0.01233 fl/fl
Critical Top Width 0.409 fl
Max Shear Stress 0.405 lb/fl'2
Avg Shear Stress 0.180 lb/fl'2
OK Cancel
8" STORM DRAIN @ 2%
Type: ) Circular Define ...
Side Slope 1 [Zl ): jo.o H : 1V
Side Slope 2 [22) j,-0-.0--H : 1V
Channel Width (BJ jo.o (fl)
Pipe Diameter (DJ: j0.667 (fl)
Longitudinal Slope: j0.02 (fl/fl)
r Override Default
Manning's Roughness: j0.0130
r Use Lining
il Lining Type: )~w_o_v_e_n_P_ap_e_r _N_et ___ _
r♦ Enter Flow: j1.610
r Enter Depth: jo.514
Calculate
(cfs)
(fl)
Plot... Compute Curves ...
X
Flow 1.610 cfs
Depth 0.514 fl
Area of Flow 0.289 sq fl
Wetted Perimeter 1.430 fl
Hydraulic Radius 0.202 fl
Average Velocity 5.569 fps
Top Width (T) 0.560 fl
Froude Number 1.366
Critical Depth 0.588 fl
Critical Velocity 4.936 fps
Critical Slope 0.01589 fl/fl
Critical Top Width 0.431 fl
Max Shear Stress 0.642 lb/fl'2
Avg Shear Stress 0.252 lb/fl'2
OK Cancel
12" STORM DRAIN @ 1.8%
Type: j Define ...
Side Slope 1 [Zl ): jo.o H : 1V
Side Slope 2 [Z2J:j .-0-.0--H : 1V
Channel Width (BJ jo.o (fl)
Pipe Diameter (DJ: j1.o (fl)
Longitudinal Slope: j0.018 (fl/fl)
r Override Default
Manning's Roughness: j0.0130
r Use Lining
il Lining T ype:j ~W-ov_e_n_P_a-pe_r_N_e_t ----
r♦ Enter Flow: j4.810
r Enter Depth: j0.825
Calculate
(cfs)
(fl)
Plot... Compute Curves ...
X
Flow 4.810 cfs
Depth 0.825 fl
Area of Flow 0.693 sq fl
Wetted Perimeter 2.280 fl
Hydraulic Radius 0.304 fl
Average Velocity 6.937 fps
Top Width (T) 0.759 fl
Froude Number 1.279
Critical Depth 0.906 fl
Critical Velocity 6.429 fps
Critical Slope 0.01596 fl/fl
Critical Top Width 0.583 fl
Max Shear Stress 0.927 lb/fl'2
Avg Shear Stress 0.342 lb/fl'2
OK Cancel
SUMP CONDITION, GRATE INLETS
(using Chart 3 of "Drainage of Highway Pavements, Hydraulic Engineering Circular No.12)
12" Catch Basin (Q100)
Q100 =0.22 cfs elevation of grate = 165.17 ft.
try 12 " x 12 " grate
then P = (12/12) x 4 = 4.00 ft, A = (12/12)2 = 1.00 ft2
assuming 50% clogging,
P'= P/2 = 2.00 ft, A' = A/2 = 0.50 ft2
then
Q/P' = 0.22 / 2.00 = 0.11 ; h = 0.11 ft (weir formula - Q/P = 3.0 x H3/2)
Q/A' = 0.22 / 0.50 = 0.44 ; h = 0.01 ft (orifice formula - Q/A = 5.37 x H1/2)
therefore h = 0.11 ft; Elevation of ponding = 165.28 ft.
TW= 166.00 Adequate head is available-
SUMP CONDITION, GRATE INLETS
(using Chart 3 of "Drainage of Highway Pavements, Hydraulic Engineering Circular No.12)
14" Catch Basin (Q100)
Q100 =0.36 cfs elevation of grate = 158.00 ft.
try 14 " x 14 " grate
then P = (12/12) x 4 = 4.00 ft, A = (12/12)2 = 1.00 ft2
assuming 50% clogging,
P'= P/2 = 2.00 ft, A' = A/2 = 0.50 ft2
then
Q/P' = 0.36 / 2.00 = 0.18 ; h = 0.15 ft (weir formula - Q/P = 3.0 x H3/2)
Q/A' = 0.36 / 0.50 = 0.72 ; h = 0.02 ft (orifice formula - Q/A = 5.37 x H1/2)
therefore h = 0.15 ft; Elevation of ponding = 158.15 ft.
Adjacent FF= 158.20 Adequate head is available-
SUMP CONDITION, GRATE INLETS
(using Chart 3 of "Drainage of Highway Pavements, Hydraulic Engineering Circular No.12)
18"x18" Catch Basin (Q100)
Q100 =0.90 cfs elevation of grate = 159.85 ft.
try 18 " x 18 " grate
then P = (12/12) x 4 = 4.00 ft, A = (12/12)2 = 1.00 ft2
assuming 50% clogging,
P'= P/2 = 2.00 ft, A' = A/2 = 0.50 ft2
then
Q/P' = 0.90 / 2.00 = 0.45 ; h = 0.28 ft (weir formula - Q/P = 3.0 x H3/2)
Q/A' = 0.90 / 0.50 = 1.80 ; h = 0.11 ft (orifice formula - Q/A = 5.37 x H1/2)
therefore h = 0.28 ft; Elevation of ponding = 160.13 ft.
Adjacent FF= 160.35 Adequate head is available-
..
II,,
D
:a:: t a
8 l-----1-----l----1...---4---l-----1----l--
6
5
4
3
GRATE
• P-1-7/8-4
P+7/8
• P-l· 1/8
Reticuline
OPENING RATIO
0.8
0.9
0.6
0.8
• Curved vane 0.35
30° tilt-bar 0.34
• Tested
o.6t-:-----t---------l--f----t---t...,,,.--:J:,,£-:...-S~....;...::...,,,.,c-~--J._----1...__JL-..1.__..1._~
0.5 1------'------l--h.,,L----+..,£..j,£..~1,,£..,.-4.,,C_,£...../ CURB
0.41-----
0.3
2 3 4 5 6 8 10
i---L --t
A = CLEAR OPENING AREA
P = 2W + L (WITH CURB)
T
w
1
·P = 2(W+ L) (WITHOUT CURB)
20 30 40 50 60 80 100
DISCHAIIE Cl (FT 3/S)
CHART 11. Grate inlet capacity in sump conditions.
71
Dr
a
i
n
a
g
e
R
e
p
o
r
t
Av
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
Oc
t
o
b
e
r
2
0
2
3
Pa
g
e
8
Jo
b
#
7
1
7
-
0
2
Hy
d
r
a
u
l
i
c
G
r
a
d
e
L
i
n
e
(
H
G
L
)
C
a
l
c
u
l
a
t
i
o
n
s
Wa
t
e
r
S
u
r
f
a
c
e
a
n
d
P
r
e
s
s
u
r
e
G
r
a
d
i
e
n
t
(
W
S
P
G
W
)
s
o
f
t
w
a
r
e
i
s
u
s
e
d
t
o
c
a
l
c
u
l
a
t
e
t
h
e
hy
d
r
a
u
l
i
c
g
r
a
d
e
(
H
G
L
)
l
i
n
e
f
o
r
p
r
o
p
o
s
e
d
s
t
or
m
d
r
a
i
n
1
8
”
i
n
d
i
a
m
e
t
e
r
a
n
d
l
a
r
g
e
r
.
Th
e
f
o
u
r
(
4
)
p
r
i
m
a
r
y
s
t
o
r
m
d
r
a
i
n
l
i
n
e
s
a
r
e
i
d
e
n
t
i
f
i
e
d
h
e
r
e
a
s
l
i
n
e
A
1
,
A
2
,
B
1
,
a
n
d
B2
.
1
0
0
y
e
a
r
d
e
s
i
g
n
s
t
o
r
m
f
l
o
w
r
a
t
e
s
f
o
r
A
1
,
A
2
,
a
n
d
B
2
a
r
e
t
a
k
e
n
f
r
o
m
t
h
e
hy
d
r
o
l
o
g
y
r
o
u
t
i
n
g
c
a
l
c
u
l
a
t
i
o
n
s
.
A
5
m
i
n
u
t
e
t
i
m
e
o
f
c
o
n
c
e
n
t
r
a
t
i
o
n
i
s
a
s
s
u
m
e
d
f
o
r
Li
n
e
B
1
d
u
e
t
o
i
t
s
r
e
l
a
t
i
v
e
l
y
s
m
a
l
l
t
r
i
b
ut
a
r
y
a
r
e
a
.
C
a
l
c
u
l
a
t
i
o
n
s
h
e
r
e
d
o
n
o
t
se
p
a
r
a
t
e
o
u
t
i
n
d
i
v
i
d
u
a
l
j
u
n
c
t
i
o
n
s
f
o
r
e
a
c
h
a
r
e
a
d
r
a
i
n
e
n
t
e
r
i
n
g
t
h
e
m
a
i
n
l
i
n
e
.
Ra
t
h
e
r
,
f
l
o
w
f
o
r
e
a
c
h
s
i
g
n
i
f
i
c
a
n
t
s
u
b
-
b
a
si
n
i
s
c
o
n
c
e
n
t
r
a
t
e
d
a
t
m
a
j
o
r
i
n
l
e
t
s
a
n
d
ju
n
c
t
i
o
n
s
.
G
i
v
e
n
t
h
a
t
t
h
e
m
a
i
n
l
i
n
e
p
i
p
e
s
i
ze
i
s
n
o
t
c
h
a
n
g
i
n
g
i
n
t
h
e
p
i
p
e
r
e
a
c
h
e
s
wh
e
r
e
f
l
o
w
i
s
c
o
n
s
o
l
i
d
a
t
e
d
,
a
n
d
t
h
a
t
t
h
e
p
i
p
e
s
a
r
e
g
e
n
e
r
a
l
l
y
f
u
n
c
t
i
o
n
i
n
g
i
n
o
p
e
n
ch
a
n
n
e
l
f
l
o
w
,
t
h
e
h
y
d
r
a
u
l
i
c
i
m
p
a
c
t
o
f
t
h
i
s
s
i
m
p
l
i
f
i
c
a
t
i
o
n
i
s
n
e
g
l
i
g
i
b
l
e
.
W
h
e
r
e
po
s
s
i
b
l
e
,
f
l
o
w
c
o
n
s
o
l
i
d
a
t
i
o
n
i
s
u
s
e
d
t
o
pr
o
v
i
d
e
a
m
o
r
e
c
o
n
s
e
r
v
a
t
i
v
e
c
a
l
c
u
l
a
t
i
o
n
.
Li
n
e
s
B
1
a
n
d
B
2
,
f
o
r
e
x
a
m
p
l
e
,
i
n
c
l
u
d
e
t
h
e
en
t
i
r
e
t
r
i
b
u
t
a
r
y
f
l
o
w
f
o
r
s
u
b
-
b
a
s
i
n
s
B
1
an
d
B
2
,
r
e
s
p
e
c
t
i
v
e
l
y
,
w
i
t
h
i
n
p
i
p
e
r
e
a
c
he
s
w
h
e
r
e
f
l
o
w
a
c
t
u
a
l
l
y
e
n
t
e
r
s
t
h
r
o
u
g
h
mu
l
t
i
p
l
e
i
n
l
e
t
s
a
l
o
n
g
t
h
e
r
e
a
c
h
;
p
r
ov
i
d
i
n
g
a
m
o
r
e
c
o
n
s
e
r
v
a
t
i
v
e
r
e
s
u
l
t
.
TA
I
L
W
A
T
E
R
:
T
h
e
p
r
o
p
o
s
e
d
s
t
o
r
m
d
r
a
i
n
s
y
s
t
em
d
i
s
c
h
a
r
g
e
s
t
o
t
he
e
x
i
s
t
i
n
g
6
0
”
R
C
P
st
o
r
m
d
r
a
i
n
t
h
a
t
p
a
s
s
e
s
t
h
r
o
u
g
h
t
h
e
s
i
t
e
.
Pe
r
r
e
c
o
r
d
d
r
a
w
i
n
g
3
0
2
-
8
,
p
r
o
v
i
d
e
d
f
o
r
re
f
e
r
e
n
c
e
a
t
t
h
e
e
n
d
o
f
t
h
i
s
s
e
c
t
i
o
n
,
th
i
s
s
t
o
r
m
d
r
a
i
n
i
s
o
v
e
r
2
0
f
e
e
t
b
e
l
o
w
gr
o
u
n
d
.
A
d
d
i
t
i
o
n
a
l
l
y
,
t
h
e
r
e
c
o
r
d
d
r
a
w
i
n
g
s
h
o
w
s
t
h
e
H
G
L
b
e
l
o
w
t
o
p
o
f
p
i
p
e
.
Gi
v
e
n
t
h
a
t
t
h
e
p
i
p
e
a
n
d
H
G
L
a
r
e
w
e
l
l
b
e
lo
w
t
h
e
p
r
o
p
o
s
e
d
p
o
i
n
t
s
o
f
c
o
n
n
e
c
t
i
o
n
,
th
e
p
r
o
p
o
s
e
d
s
y
s
t
e
m
w
i
l
l
n
o
t
b
e
i
m
p
a
ct
e
d
b
y
a
t
a
i
l
w
a
t
e
r
c
o
n
d
i
t
i
o
n
.
E
STORM DRAIN LINE A1
STORM DRAIN LINE A2
STORM DRAIN LINE B1
STORM DRAIN LINE B2
STORM DRAIN
LINE A1
STORM DRAIN
LINE A2
STORM DRAIN
LINE B1
STORM DRAIN
LINE B2
T 1
/ ', 'tJ--tt++-+-Jl-+-f-+--~
)
BIOFILTRATION BMP-3,
MWS-4-4-V
/'-
'<, SCALE.· f" = 50'
I l! 0
---------
TORY R. WALKER
ENGINEERING
122 Civic Cen1er Drive, SJite 206 Vi!to, CA 92084
LEGEND
-PROPERTY LINE
-440-EXISTING GROUND CONTOURS
-440-PROPOSED GROUND CONTOURS
~-BASIN DESIGNATION
~-AREA (ACRES)
DRAJNAGE BASIN BOUNDARY
----DRAJNAGE SUB-BASIN BOUNDARY
~ HYDROLOGIC STUDY NODE
-· · · +-TIME OF CONCENTRATION
FLOW PATH
~ DIRECTION OF FLOW
-■-■
1111111111
■■■■■
■-■-
OCTOBER 1, 2023
HYDRAULIC GRADE LINE
CALCULATIONS
FOR
A~ARA OAKS ELEMENTARY SCHOOL
T1 AVIARA OAKS ELEMENTARY SCHOOL 0
T2 HGL CALCULATION, 100YR DESIGN STORM
T3 STORM DRAIN LINE A1
SO .000 141.250 1 144.100
R 90.000 141.920 1 .013 .000 -20.000 0
R 158.000 142.710 1 .013 .000 10.000 0
R 300.000 143.900 1 .013 .000 10.000 0
JX 301.000 143.910 3 2 .013 4.600 143.910 80.0
.000
R 395.000 144.830 3 .013 .000 10.000 0
JX 396.000 144.840 3 2 .013 1.660 144.840 -90.0
.000
R 515.000 150.000 3 .013 .000 45.000 0
JX 520.000 150.100 3 2 .014 5.180 150.100 -30.0
.000
R 593.000 151.320 3 .013 .000 .000 0
SH 593.000 151.320 3 151.320
CD 1 4 1 .000 2.000 .000 .000 .000 .00
CD 2 4 1 .000 1.000 .000 .000 .000 .00
CD 3 4 1 .000 1.500 .000 .000 .000 .00
Q 2.450 .0
STORM DRAIN LINE A1
INPUT FILE
FILE: 717A1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 1
Program Package Serial Number: 1918
WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:10:54:11
AVIARA OAKS ELEMENTARY SCHOOL
HGL CALCULATION, 100YR DESIGN STORM
STORM DRAIN LINE A1
************************************************************************************************************************** ********
| Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth
Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|
L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
*********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |*******
| | | | | | | | | | | | |
.000 141.250 2.850 144.100 13.89 4.42 .30 144.40 .00 1.34 .00 2.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
90.000 .0074 .0038 .34 2.85 .00 1.25 .013 .00 .00 PIPE
| | | | | | | | | | | | |
90.000 141.920 2.539 144.459 13.89 4.42 .30 144.76 .00 1.34 .00 2.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
68.000 .0116 .0038 .26 2.54 .00 1.08 .013 .00 .00 PIPE
| | | | | | | | | | | | |
158.000 142.710 2.016 144.726 13.89 4.42 .30 145.03 .00 1.34 .00 2.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
5.577 .0084 .0037 .02 2.02 .00 1.20 .013 .00 .00 PIPE
| | | | | | | | | | | | |
163.577 142.757 2.000 144.757 13.89 4.42 .30 145.06 .00 1.34 .00 2.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
31.555 .0084 .0035 .11 2.00 .00 1.20 .013 .00 .00 PIPE
| | | | | | | | | | | | |
195.132 143.021 1.815 144.836 13.89 4.64 .33 145.17 .00 1.34 1.16 2.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
14.963 .0084 .0034 .05 1.81 .51 1.20 .013 .00 .00 PIPE
| | | | | | | | | | | | |
210.095 143.147 1.707 144.853 13.89 4.86 .37 145.22 .00 1.34 1.41 2.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
11.114 .0084 .0037 .04 1.71 .60 1.20 .013 .00 .00 PIPE
| | | | | | | | | | | | |
221.209 143.240 1.618 144.858 13.89 5.10 .40 145.26 .00 1.34 1.57 2.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
8.667 .0084 .0041 .04 1.62 .68 1.20 .013 .00 .00 PIPE
| | | | | | | | | | | | |
229.876 143.312 1.540 144.853 13.89 5.35 .44 145.30 .00 1.34 1.68 2.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
4.204 .0084 .0045 .02 1.54 .76 1.20 .013 .00 .00 PIPE
| | | | | | | | | | | | |
234.080 143.348 1.470 144.818 13.89 5.61 .49 145.31 .00 1.34 1.77 2.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
HYDRAULIC JUMP
STORM DRAIN LINE A1
OUTPUT FILE
FILE: 717A1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 2
Program Package Serial Number: 1918
WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:10:54:11
AVIARA OAKS ELEMENTARY SCHOOL
HGL CALCULATION, 100YR DESIGN STORM
STORM DRAIN LINE A1
************************************************************************************************************************** ********
| Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth
Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|
L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
*********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |*******
| | | | | | | | | | | | |
234.080 143.348 1.199 144.546 13.89 7.07 .78 145.32 .00 1.34 1.96 2.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
4.710 .0084 .0084 .04 1.20 1.24 1.20 .013 .00 .00 PIPE
| | | | | | | | | | | | |
238.790 143.387 1.199 144.586 13.89 7.07 .78 145.36 .00 1.34 1.96 2.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
46.404 .0084 .0080 .37 1.20 1.24 1.20 .013 .00 .00 PIPE
| | | | | | | | | | | | |
285.193 143.776 1.235 145.011 13.89 6.82 .72 145.73 .00 1.34 1.94 2.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
12.341 .0084 .0072 .09 1.23 1.18 1.20 .013 .00 .00 PIPE
| | | | | | | | | | | | |
297.535 143.879 1.286 145.165 13.89 6.51 .66 145.82 .00 1.34 1.92 2.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
2.465 .0084 .0064 .02 1.29 1.09 1.20 .013 .00 .00 PIPE
| | | | | | | | | | | | |
300.000 143.900 1.342 145.242 13.89 6.20 .60 145.84 .00 1.34 1.88 2.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
JUNCT STR .0100 .0069 .01 1.34 1.00 .013 .00 .00 PIPE
| | | | | | | | | | | | |
301.000 143.910 1.844 145.754 9.29 5.26 .43 146.18 .00 1.18 .00 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
94.000 .0098 .0078 .74 1.84 .00 1.11 .013 .00 .00 PIPE
| | | | | | | | | | | | |
395.000 144.830 1.673 146.503 9.29 5.26 .43 146.93 .00 1.18 .00 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
JUNCT STR .0100 .0065 .01 1.67 .00 .013 .00 .00 PIPE
| | | | | | | | | | | | |
396.000 144.840 1.949 146.789 7.63 4.32 .29 147.08 .00 1.07 .00 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
5.080 .0434 .0053 .03 1.95 .00 .61 .013 .00 .00 PIPE
| | | | | | | | | | | | |
401.080 145.060 1.770 146.830 7.63 4.32 .29 147.12 .00 1.07 .00 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
HYDRAULIC JUMP
STORM DRAIN LINE A1
OUTPUT FILE
FILE: 717A1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 3
Program Package Serial Number: 1918
WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:10:54:11
AVIARA OAKS ELEMENTARY SCHOOL
HGL CALCULATION, 100YR DESIGN STORM
STORM DRAIN LINE A1
************************************************************************************************************************** ********
| Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth
Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|
L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
*********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |*******
| | | | | | | | | | | | |
401.080 145.060 .613 145.674 7.63 11.22 1.96 147.63 .00 1.07 1.47 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
37.899 .0434 .0419 1.59 .61 2.91 .61 .013 .00 .00 PIPE
| | | | | | | | | | | | |
438.980 146.704 .621 147.325 7.63 11.04 1.89 149.22 .00 1.07 1.48 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
30.363 .0434 .0384 1.17 .62 2.84 .61 .013 .00 .00 PIPE
| | | | | | | | | | | | |
469.342 148.020 .644 148.664 7.63 10.52 1.72 150.38 .00 1.07 1.48 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
13.825 .0434 .0338 .47 .64 2.65 .61 .013 .00 .00 PIPE
| | | | | | | | | | | | |
483.168 148.620 .668 149.287 7.63 10.03 1.56 150.85 .00 1.07 1.49 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
8.578 .0434 .0297 .25 .67 2.48 .61 .013 .00 .00 PIPE
| | | | | | | | | | | | |
491.745 148.992 .693 149.684 7.63 9.57 1.42 151.11 .00 1.07 1.50 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
5.980 .0434 .0261 .16 .69 2.31 .61 .013 .00 .00 PIPE
| | | | | | | | | | | | |
497.725 149.251 .719 149.969 7.63 9.12 1.29 151.26 .00 1.07 1.50 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
4.421 .0434 .0230 .10 .72 2.15 .61 .013 .00 .00 PIPE
| | | | | | | | | | | | |
502.146 149.443 .746 150.188 7.63 8.70 1.17 151.36 .00 1.07 1.50 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
3.383 .0434 .0202 .07 .75 2.00 .61 .013 .00 .00 PIPE
| | | | | | | | | | | | |
505.529 149.589 .774 150.364 7.63 8.29 1.07 151.43 .00 1.07 1.50 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
2.626 .0434 .0178 .05 .77 1.87 .61 .013 .00 .00 PIPE
| | | | | | | | | | | | |
508.156 149.703 .804 150.507 7.63 7.91 .97 151.48 .00 1.07 1.50 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
2.049 .0434 .0157 .03 .80 1.73 .61 .013 .00 .00 PIPE
STORM DRAIN LINE A1
OUTPUT FILE
FILE: 717A1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 4
Program Package Serial Number: 1918
WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:10:54:11
AVIARA OAKS ELEMENTARY SCHOOL
HGL CALCULATION, 100YR DESIGN STORM
STORM DRAIN LINE A1
************************************************************************************************************************** ********
| Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth
Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|
L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
*********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |*******
| | | | | | | | | | | | |
510.205 149.792 .836 150.628 7.63 7.54 .88 151.51 .00 1.07 1.49 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
1.595 .0434 .0139 .02 .84 1.61 .61 .013 .00 .00 PIPE
| | | | | | | | | | | | |
511.800 149.861 .869 150.730 7.63 7.19 .80 151.53 .00 1.07 1.48 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
1.217 .0434 .0123 .01 .87 1.50 .61 .013 .00 .00 PIPE
| | | | | | | | | | | | |
513.017 149.914 .904 150.818 7.63 6.85 .73 151.55 .00 1.07 1.47 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
.892 .0434 .0109 .01 .90 1.39 .61 .013 .00 .00 PIPE
| | | | | | | | | | | | |
513.909 149.953 .942 150.894 7.63 6.53 .66 151.56 .00 1.07 1.45 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
.613 .0434 .0096 .01 .94 1.28 .61 .013 .00 .00 PIPE
| | | | | | | | | | | | |
514.522 149.979 .981 150.960 7.63 6.23 .60 151.56 .00 1.07 1.43 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
.359 .0434 .0086 .00 .98 1.19 .61 .013 .00 .00 PIPE
| | | | | | | | | | | | |
514.881 149.995 1.023 151.018 7.63 5.94 .55 151.57 .00 1.07 1.40 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
.119 .0434 .0076 .00 1.02 1.09 .61 .013 .00 .00 PIPE
| | | | | | | | | | | | |
515.000 150.000 1.070 151.070 7.63 5.66 .50 151.57 .00 1.07 1.36 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
JUNCT STR .0200 .0044 .02 1.07 1.00 .014 .00 .00 PIPE
| | | | | | | | | | | | |
520.000 150.100 1.459 151.560 2.45 1.40 .03 151.59 .00 .59 .49 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
6.756 .0167 .0005 .00 1.46 .13 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
526.756 150.213 1.347 151.560 2.45 1.47 .03 151.59 .00 .59 .91 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
4.593 .0167 .0005 .00 1.35 .19 .43 .013 .00 .00 PIPE
STORM DRAIN LINE A1
OUTPUT FILE
FILE: 717A1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 5
Program Package Serial Number: 1918
WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:10:54:11
AVIARA OAKS ELEMENTARY SCHOOL
HGL CALCULATION, 100YR DESIGN STORM
STORM DRAIN LINE A1
************************************************************************************************************************** ********
| Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth
Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|
L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
*********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |*******
| | | | | | | | | | | | |
531.348 150.290 1.269 151.559 2.45 1.54 .04 151.60 .00 .59 1.08 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
3.799 .0167 .0005 .00 1.27 .22 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
535.147 150.353 1.204 151.557 2.45 1.61 .04 151.60 .00 .59 1.19 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
3.305 .0167 .0006 .00 1.20 .25 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
538.452 150.408 1.147 151.555 2.45 1.69 .04 151.60 .00 .59 1.27 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
2.945 .0167 .0007 .00 1.15 .28 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
541.397 150.458 1.095 151.553 2.45 1.77 .05 151.60 .00 .59 1.33 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
2.668 .0167 .0007 .00 1.09 .31 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
544.065 150.502 1.047 151.550 2.45 1.86 .05 151.60 .00 .59 1.38 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
2.432 .0167 .0008 .00 1.05 .33 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
546.498 150.543 1.003 151.546 2.45 1.95 .06 151.61 .00 .59 1.41 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
2.224 .0167 .0009 .00 1.00 .36 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
548.722 150.580 .962 151.542 2.45 2.05 .06 151.61 .00 .59 1.44 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
2.037 .0167 .0010 .00 .96 .39 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
550.759 150.614 .924 151.538 2.45 2.14 .07 151.61 .00 .59 1.46 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
1.878 .0167 .0012 .00 .92 .43 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
552.636 150.645 .888 151.533 2.45 2.25 .08 151.61 .00 .59 1.47 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
1.714 .0167 .0013 .00 .89 .46 .43 .013 .00 .00 PIPE
STORM DRAIN LINE A1
OUTPUT FILE
FILE: 717A1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 6
Program Package Serial Number: 1918
WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:10:54:11
AVIARA OAKS ELEMENTARY SCHOOL
HGL CALCULATION, 100YR DESIGN STORM
STORM DRAIN LINE A1
************************************************************************************************************************** ********
| Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth
Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|
L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
*********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |*******
| | | | | | | | | | | | |
554.350 150.674 .854 151.528 2.45 2.36 .09 151.61 .00 .59 1.49 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
1.570 .0167 .0015 .00 .85 .50 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
555.920 150.700 .821 151.521 2.45 2.47 .10 151.62 .00 .59 1.49 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
1.420 .0167 .0017 .00 .82 .54 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
557.340 150.724 .790 151.514 2.45 2.60 .10 151.62 .00 .59 1.50 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
.393 .0167 .0019 .00 .79 .58 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
557.733 150.731 .761 151.492 2.45 2.72 .12 151.61 .00 .59 1.50 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
HYDRAULIC JUMP
| | | | | | | | | | | | |
557.733 150.731 .432 151.163 2.45 5.81 .52 151.69 .00 .59 1.36 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
13.843 .0167 .0156 .22 .43 1.84 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
571.575 150.962 .447 151.409 2.45 5.54 .48 151.89 .00 .59 1.37 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
8.903 .0167 .0136 .12 .45 1.72 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
580.478 151.111 .463 151.574 2.45 5.28 .43 152.01 .00 .59 1.39 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
4.835 .0167 .0119 .06 .46 1.61 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
585.313 151.192 .479 151.671 2.45 5.04 .39 152.06 .00 .59 1.40 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
3.013 .0167 .0104 .03 .48 1.51 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
588.326 151.242 .496 151.738 2.45 4.80 .36 152.10 .00 .59 1.41 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
1.975 .0167 .0091 .02 .50 1.41 .43 .013 .00 .00 PIPE
STORM DRAIN LINE A1
OUTPUT FILE
FILE: 717A1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 7
Program Package Serial Number: 1918
WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:10:54:11
AVIARA OAKS ELEMENTARY SCHOOL
HGL CALCULATION, 100YR DESIGN STORM
STORM DRAIN LINE A1
************************************************************************************************************************** ********
| Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth
Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|
L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
*********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |*******
| | | | | | | | | | | | |
590.301 151.275 .514 151.789 2.45 4.58 .33 152.11 .00 .59 1.42 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
1.309 .0167 .0080 .01 .51 1.32 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
591.610 151.297 .532 151.829 2.45 4.37 .30 152.12 .00 .59 1.44 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
.805 .0167 .0070 .01 .53 1.23 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
592.415 151.310 .551 151.861 2.45 4.16 .27 152.13 .00 .59 1.45 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
.441 .0167 .0062 .00 .55 1.15 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
592.857 151.318 .571 151.888 2.45 3.97 .24 152.13 .00 .59 1.46 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
.143 .0167 .0054 .00 .57 1.07 .43 .013 .00 .00 PIPE
| | | | | | | | | | | | |
593.000 151.320 .592 151.912 2.45 3.78 .22 152.13 .00 .59 1.47 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
STORM DRAIN LINE A1
OUTPUT FILE
ST
O
R
M
D
R
A
I
N
L
I
N
E
A
1
PR
O
F
I
L
E
:C z ]> < -I
n v, n
iO C I
-"U I l"'1 l"'1 -I l"'1 OJ iO iO -iO ]> -I n I Z l> l"'1 ;,;; r
1] STATI □N
2] STATI □N
3] STAT I □N 4] STAT I □N
5] STAT I □N
6] STAT I □N
7] STAT I □N
~~ H~f!B~ 11] STATl □N
12] STATl □N
13] STATI □N
16] STAT I □N
18] STAT I □N
20] STAT I □N
. 000
90. 000
158. 000 163. 577
195. 132
210. 095
221. 209
~~i: ~~B 238. 790
285. 193
297. 535
395. 000
401. 080
438. 980
21 J STAT I □N 469. 342
r
22] STAT I □N
23] STAT I □N
~5~ H~f!B~
35] STAT I □N
36] STAT I □N 37] STAT I □N
51 J STAT I □N
52] STAT I □N 53] STATI □N
483. 168
491. 745
56~: i~~
520. 000
526. 756 531. 348
571. 575
580. 478 585. 313
l"'1 r
l"'1
< -]> .i:,.
--1 -
□ 0 Z 0
V) 0
--1>-w
0 0
0
\
\
--1>-Ul
0 0
0
l
\I
I
.1
]
'
-.i:,.
'-1
0 0
0
--I>-'°
0 0
0
-Ul -
0 0
0
-Ul w
0 0
0
Ul Ul
0 0
0
-Ul
" 0 0
0
-~-~-~Q =
--+---+-----l Q =
I I I 8 =
-------+--------------< Q =
I I I~ :
8 ~ ---+----+--------l Q =
I I I: :
I I I~ =
_ _____,_ _ ____,__-------,Q =
------f--------t---------J Q =
---+-I ----+-1-------il ~ :
-., I I Is;
~\I I la;
~ > ~
~
~
w
C
~
~ > n
~
~
~
13. 890 Ft3/S, V = 4. 421 Ft/S ~
13. 890 Ft3/S, V =
13. 890 Ft3/S, V = 13. 890 Ft3/S, V
13. 890 Ft3/S, V =
13. 890 Ft3/S, V =
13. 890 Ft3/S, V =
i3: ~~8 ~i3~~: ~ ~ 13. 890 Ft3/S, V =
13. 890 Ft3/S, V =
13. 890 Ft3/S, V =
9. 290 Ft3/S, V
7. 630 Ft3/S, V =
7. 630 Ft3/S, V =
4. 421 Ft/S
4. 421 Ft/S 4. 421 Ft/S
4. 637 Ft/S
4. 864 Ft/S
5. 101 Ft/S
5: ~?9 ~i~~ 7. 067 Ft/S
6. 823 Ft/S
6. 505 Ft/S
5. 257 Ft/S
4. 318 Ft/S
11. 037 Ft/S
7. 630 Ft3/S, V = 10. 523 Ft/S
7. 630 Ft3/S, V
7. 630 Ft3/S, V =
7: g38 ~B~~: ~ =
2. 450 Ft3/S, V =
2. 450 Ft3/S, V = 2. 450 Ft3/S, V =
2. 450 Ft3/S, V =
2. 450 Ft3/S, V = 2. 450 Ft3/S, V =
10. 034 Ft/S
9. 567 Ft/S
g: 6~7 ~i~~
1. 397 Ft/S
1. 465 Ft/S 1. 537 Ft/S
5. 540 Ft/S
5. 282 Ft/S 5. 036 Ft/S
w w
C
~
~
Cl
~ > ~
~
~ z
~
> z > ~ ~ w
~ w
,..-..._
~
~ > z
~
~
~
0
~
~
~
~ -__.,
~
~ z
~
>
~
T1 AVIARA OAKS ELEMENTARY 0
T2 HGL CALCULATION, 100YR DESIGN STORM
T3 STORM DRAIN LINE A2
SO .000 141.250 1 144.100
R 33.000 143.030 1 .013 .000 45.000 0
R 80.000 143.750 1 .013 .000 .000 0
JX 81.000 143.760 1 2 .013 2.200 143.760 90.0
.000
R 145.000 144.700 1 .013 .000 10.000 0
JX 146.000 144.710 1 2 .013 1.470 144.710 -50.0
.000
R 267.000 146.700 1 .013 .000 .000 0
SH 267.000 146.700 1 146.700
CD 1 4 1 .000 1.500 .000 .000 .000 .00
CD 2 4 1 .000 .667 .000 .000 .000 .00
Q 5.540 .0
STORM DRAIN LINE A2
INPUT FILE
FILE: 717A2.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 1
Program Package Serial Number: 1918
WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:15: 3
AVIARA OAKS ELEMENTARY
HGL CALCULATION, 100YR DESIGN STORM
STORM DRAIN LINE A2
************************************************************************************************************************** ********
| Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth
Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|
L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
*********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |*******
| | | | | | | | | | | | |
.000 141.250 2.850 144.100 9.21 5.21 .42 144.52 .00 1.17 .00 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
30.352 .0539 .0077 .23 2.85 .00 .64 .013 .00 .00 PIPE
| | | | | | | | | | | | |
30.352 142.887 1.500 144.387 9.21 5.21 .42 144.81 .00 1.17 .00 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
HYDRAULIC JUMP
| | | | | | | | | | | | |
30.352 142.887 .878 143.765 9.21 8.57 1.14 144.91 .00 1.17 1.48 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
1.187 .0539 .0173 .02 .88 1.77 .64 .013 .00 .00 PIPE
| | | | | | | | | | | | |
31.539 142.951 .914 143.865 9.21 8.17 1.04 144.90 .00 1.17 1.46 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
1.461 .0539 .0153 .02 .91 1.64 .64 .013 .00 .00 PIPE
| | | | | | | | | | | | |
33.000 143.030 .952 143.982 9.21 7.79 .94 144.92 .00 1.17 1.44 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
23.260 .0153 .0138 .32 .95 1.52 .93 .013 .00 .00 PIPE
| | | | | | | | | | | | |
56.260 143.386 .981 144.367 9.21 7.52 .88 145.25 .00 1.17 1.43 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
13.250 .0153 .0125 .17 .98 1.43 .93 .013 .00 .00 PIPE
| | | | | | | | | | | | |
69.510 143.589 1.023 144.612 9.21 7.17 .80 145.41 .00 1.17 1.40 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
6.457 .0153 .0111 .07 1.02 1.32 .93 .013 .00 .00 PIPE
| | | | | | | | | | | | |
75.967 143.688 1.069 144.757 9.21 6.84 .73 145.48 .00 1.17 1.36 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
3.107 .0153 .0099 .03 1.07 1.21 .93 .013 .00 .00 PIPE
| | | | | | | | | | | | |
79.074 143.736 1.118 144.854 9.21 6.52 .66 145.51 .00 1.17 1.31 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
.926 .0153 .0089 .01 1.12 1.11 .93 .013 .00 .00 PIPE
STORM DRAIN LINE A2
OUTPUT FILE
FILE: 717A2.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 2
Program Package Serial Number: 1918
WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:15: 3
AVIARA OAKS ELEMENTARY
HGL CALCULATION, 100YR DESIGN STORM
STORM DRAIN LINE A2
************************************************************************************************************************** ********
| Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth
Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|
L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
*********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |*******
| | | | | | | | | | | | |
80.000 143.750 1.173 144.923 9.21 6.21 .60 145.52 .00 1.17 1.24 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
JUNCT STR .0100 .0064 .01 1.17 1.00 .013 .00 .00 PIPE
| | | | | | | | | | | | |
81.000 143.760 1.731 145.491 7.01 3.97 .24 145.74 .00 1.03 .00 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
23.405 .0147 .0044 .10 1.73 .00 .79 .013 .00 .00 PIPE
| | | | | | | | | | | | |
104.405 144.104 1.500 145.604 7.01 3.97 .24 145.85 .00 1.03 .00 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
10.762 .0147 .0041 .04 1.50 .00 .79 .013 .00 .00 PIPE
| | | | | | | | | | | | |
115.167 144.262 1.361 145.623 7.01 4.16 .27 145.89 .00 1.03 .87 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
5.061 .0147 .0040 .02 1.36 .53 .79 .013 .00 .00 PIPE
| | | | | | | | | | | | |
120.228 144.336 1.280 145.616 7.01 4.36 .30 145.91 .00 1.03 1.06 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
1.990 .0147 .0044 .01 1.28 .62 .79 .013 .00 .00 PIPE
| | | | | | | | | | | | |
122.218 144.365 1.214 145.579 7.01 4.58 .33 145.90 .00 1.03 1.18 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
HYDRAULIC JUMP
| | | | | | | | | | | | |
122.218 144.365 .836 145.202 7.01 6.92 .74 145.95 .00 1.03 1.49 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
11.162 .0147 .0117 .13 .84 1.48 .79 .013 .00 .00 PIPE
| | | | | | | | | | | | |
133.380 144.529 .870 145.399 7.01 6.60 .68 146.08 .00 1.03 1.48 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
6.047 .0147 .0103 .06 .87 1.37 .79 .013 .00 .00 PIPE
| | | | | | | | | | | | |
139.427 144.618 .905 145.523 7.01 6.29 .61 146.14 .00 1.03 1.47 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
3.361 .0147 .0092 .03 .90 1.27 .79 .013 .00 .00 PIPE
STORM DRAIN LINE A2
OUTPUT FILE
FILE: 717A2.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 3
Program Package Serial Number: 1918
WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:15: 3
AVIARA OAKS ELEMENTARY
HGL CALCULATION, 100YR DESIGN STORM
STORM DRAIN LINE A2
************************************************************************************************************************** ********
| Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth
Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|
L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
*********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |*******
| | | | | | | | | | | | |
142.788 144.667 .942 145.610 7.01 6.00 .56 146.17 .00 1.03 1.45 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
1.706 .0147 .0081 .01 .94 1.18 .79 .013 .00 .00 PIPE
| | | | | | | | | | | | |
144.494 144.693 .982 145.674 7.01 5.72 .51 146.18 .00 1.03 1.43 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
.506 .0147 .0072 .00 .98 1.09 .79 .013 .00 .00 PIPE
| | | | | | | | | | | | |
145.000 144.700 1.025 145.725 7.01 5.45 .46 146.19 .00 1.03 1.40 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
JUNCT STR .0100 .0046 .00 1.03 1.00 .013 .00 .00 PIPE
| | | | | | | | | | | | |
146.000 144.710 1.351 146.061 5.54 3.30 .17 146.23 .00 .91 .90 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
4.446 .0164 .0025 .01 1.35 .43 .67 .013 .00 .00 PIPE
| | | | | | | | | | | | |
150.446 144.783 1.273 146.056 5.54 3.47 .19 146.24 .00 .91 1.08 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
3.379 .0164 .0028 .01 1.27 .50 .67 .013 .00 .00 PIPE
| | | | | | | | | | | | |
153.825 144.839 1.207 146.046 5.54 3.64 .21 146.25 .00 .91 1.19 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
HYDRAULIC JUMP
| | | | | | | | | | | | |
153.825 144.839 .670 145.509 5.54 7.25 .82 146.33 .00 .91 1.49 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
30.377 .0164 .0164 .50 .67 1.79 .67 .013 .00 .00 PIPE
| | | | | | | | | | | | |
184.202 145.338 .670 146.008 5.54 7.25 .82 146.82 .00 .91 1.49 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
49.633 .0164 .0155 .77 .67 1.79 .67 .013 .00 .00 PIPE
| | | | | | | | | | | | |
233.835 146.155 .694 146.849 5.54 6.92 .74 147.59 .00 .91 1.50 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
14.868 .0164 .0136 .20 .69 1.67 .67 .013 .00 .00 PIPE
STORM DRAIN LINE A2
OUTPUT FILE
FILE: 717A2.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 4
Program Package Serial Number: 1918
WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:15: 3
AVIARA OAKS ELEMENTARY
HGL CALCULATION, 100YR DESIGN STORM
STORM DRAIN LINE A2
************************************************************************************************************************** ********
| Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth
Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|
L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
*********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |*******
| | | | | | | | | | | | |
248.703 146.399 .720 147.119 5.54 6.60 .68 147.80 .00 .91 1.50 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
7.719 .0164 .0120 .09 .72 1.56 .67 .013 .00 .00 PIPE
| | | | | | | | | | | | |
256.422 146.526 .748 147.274 5.54 6.30 .62 147.89 .00 .91 1.50 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
4.658 .0164 .0106 .05 .75 1.45 .67 .013 .00 .00 PIPE
| | | | | | | | | | | | |
261.081 146.603 .776 147.379 5.54 6.00 .56 147.94 .00 .91 1.50 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
2.913 .0164 .0093 .03 .78 1.35 .67 .013 .00 .00 PIPE
| | | | | | | | | | | | |
263.994 146.651 .806 147.457 5.54 5.72 .51 147.97 .00 .91 1.50 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
1.767 .0164 .0082 .01 .81 1.25 .67 .013 .00 .00 PIPE
| | | | | | | | | | | | |
265.761 146.680 .838 147.518 5.54 5.46 .46 147.98 .00 .91 1.49 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
.951 .0164 .0073 .01 .84 1.16 .67 .013 .00 .00 PIPE
| | | | | | | | | | | | |
266.712 146.695 .871 147.567 5.54 5.20 .42 147.99 .00 .91 1.48 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
.288 .0164 .0064 .00 .87 1.08 .67 .013 .00 .00 PIPE
| | | | | | | | | | | | |
267.000 146.700 .908 147.608 5.54 4.95 .38 147.99 .00 .91 1.47 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
STORM DRAIN LINE A2
OUTPUT FILE
ST
O
R
M
D
R
A
I
N
L
I
N
E
A
2
PR
O
F
I
L
E
:c n Cl) n z l> ;o C I < -I -"O I fTl fTl -I fTl tl:I ;o ;o -;o l> -I n I z l> fTl ;;,,;: r
1] STATI □ N . 000
2] STAT I □ N 30. 352
6] STATI □ N 56. 260
7J STAT I □ N 69. 510
8] STAT I □ N 75. 967
12] STATI □ N 104. 405
13] STATI □ N 115. 167 14] STATI □ N 120. 228
17J STATI □ N 133. 380
18] STATI □ N 139. 427
23] STAT I □ N 150. 446
26] STAT I □ N 184. 202
27] STAT I □ N 233. 835
28] STAT I □ N 248. 703
~6~ H~f!B~ ~~?: d~r
fTl r fTl
< -------J> ~ ~ ~ ~ ~ Ul Ul
-I -w Ul '-I '° -w -D 0 0 0 0 0 0 0 Z 0 0 0 0 0 0 0 (/) 0 0 0 0 0 0 0
.-.-. Q =
I \l ).l.l _l _l Q =
=11\ n Q=
Q =
Q =
l;tt ~\; I I ~ ~;
~ i ~
Q=
Q =
-Q =
I 1\---lL \I -I Q =
~ l \k ld Q=
Q =
B :
9. 210 Ft3/S, V =
9. 210 Ft3/S, V =
9. 210 Ft3/S, V =
9. 210 Ft3/S, V =
9. 210 Ft3/S, V =
7. 010 Ft3/S, V =
7. 010 Ft3/S, V = 7. 010 Ft3/S, V =
7. 010 Ft3/S, V =
7. 010 Ft3/S, V =
5. 540 Ft3/S, V =
5. 540 Ft3/S, V =
5. 540 Ft3/S, V =
5. 540 Ft3/S, V =
5. 548 Ft~/~, V: . 4 Ft / , V -
~ ►
~
t-r:1
~
[fl e
~
~
► n
t-r:1
~
~
t-r:1
[fl
[fl e
~
t-r:1
'1
~
5. 212 Ft/S ►
~
~
5. 212 Ft/S t-r:1 z
7. 523 Ft/S ~
7. 1 73 Ft/S
6. 839 Ft/S ► z
3. 967 Ft/S ►
4. 161 Ft/S ~ 4. 364 Ft/S
6. 599 Ft/S ~
6. 292 Ft/S [fl
3. 466 Ft/S ~
[fl
7. 251 Ft/S ~
6. 925 Ft/S
6. 603 Ft/S
t n6~ n~~
~ ► z
R-'
~
~
0
~
~
~
t-r:1 -,_.,
~ ~ z
t-r:1
►
N
T1 AVIARA OAKS ELEMENTARY SCHOOL 0
T2 HGL CALCULATIONS, 100YR DESIGN STORM
T3 STORM DRAIN LINE B1
SO .000 149.500 1 151.400
R 60.000 150.100 1 .013 .000 40.000 0
R 138.000 150.900 3 .013 .000 .000 0
SH 138.000 150.900 1 150.900
CD 1 4 1 .000 1.500 .000 .000 .000 .00
CD 3 4 1 .000 1.000 .000 .000 .000 .00
Q 3.440 .0
STORM DRAIN LINE B1
INPUT FILE
FILE: 717B1.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 1
Program Package Serial Number: 1918
WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:32: 3
AVIARA OAKS ELEMENTARY SCHOOL
HGL CALCULATIONS, 100YR DESIGN STORM
STORM DRAIN LINE B1
************************************************************************************************************************** ********
| Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth
Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|
L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
*********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |*******
| | | | | | | | | | | | |
.000 149.500 1.900 151.400 3.44 1.95 .06 151.46 .00 .71 .00 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
45.674 .0100 .0011 .05 1.90 .00 .59 .013 .00 .00 PIPE
| | | | | | | | | | | | |
45.674 149.957 1.500 151.457 3.44 1.95 .06 151.52 .00 .71 .00 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
14.326 .0100 .0010 .01 1.50 .00 .59 .013 .00 .00 PIPE
| | | | | | | | | | | | |
60.000 150.100 1.364 151.464 3.44 4.38 .30 151.76 .00 .79 .00 1.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
78.000 .0103 .0093 .73 1.36 .00 .78 .013 .00 .00 PIPE
| | | | | | | | | | | | |
138.000 150.900 1.292 152.192 3.44 4.38 .30 152.49 .00 .79 .00 1.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
STORM DRAIN LINE B1
OUTPUT FILE
STORM DRAIN LINE B1
PROFILE
WATER SURFACE PRESSURE GRADIENT ANALYSIS (PLAN & PROFILE) LINE Bl
V) V) V) V) '-'-'-'-+' +' +' +'
L_,_ L_,_ L_,_ L_,_
r---r---0 0
'St 'St (X) (X)
Cf\ Cf\ CV) CV)
-.:i--.:i-
II II II II
> > > >
(/) (/) (/) (/) '-'-'-'-CV) CV) CV) CV) +' +' +' +'
L_,_ L_,_ L_,_ L_,_
0 0 0 0
'St 'St 'St 'St
'St st st st
M M M M
II II II II
157, 000 Cl Cl Cl Cl
155, 000
153, 000
-= 151. 000 ~
149, 000
ELEVATIONS
0 st 0 0 0 r---0 0 0 '° 0 0
CH BANK tri ci cxi 'St '° CV)
SUPER_E - - - - - - - - -
z z z z
CRITICAL D D D D
I-I-I-I-<[ <[ <[ <[
WATER I-I-I-I-V) V) V) V)
,.., ,.., ,..,
INVERT (\J CV) st
T1 AVIARA OAKS ELEMENTARY SCHOOL 0
T2 HGL CALCULATIONS, 100YR DESIGN STORM
T3 STORM DRAIN LINE B2
SO .000 149.500 1 151.400
R 21.000 149.840 1 .013 .000 .000 0
JX 22.000 149.850 1 3 .013 .850 149.850 90.0
.000
R 180.000 152.000 1 .013 .000 90.000 0
R 370.000 153.800 1 .013 .000 .000 0
SH 370.000 153.800 1 153.800
CD 1 4 1 .000 1.500 .000 .000 .000 .00
CD 2 4 1 .000 1.000 .000 .000 .000 .00
CD 3 4 1 .000 1.000 .000 .000 .000 .00
Q 3.940 .0
STORM DRAIN LINE B2
INPUT FILE
FILE: 717B2.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 1
Program Package Serial Number: 1918
WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:44:49
AVIARA OAKS ELEMENTARY SCHOOL
HGL CALCULATIONS, 100YR DESIGN STORM
STORM DRAIN LINE B2
************************************************************************************************************************** ********
| Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth
Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|
L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
*********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |*******
| | | | | | | | | | | | |
.000 149.500 1.900 151.400 4.79 2.71 .11 151.51 .00 .84 .00 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
21.000 .0162 .0021 .04 1.90 .00 .62 .013 .00 .00 PIPE
| | | | | | | | | | | | |
21.000 149.840 1.604 151.444 4.79 2.71 .11 151.56 .00 .84 .00 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
JUNCT STR .0100 .0017 .00 1.60 .00 .013 .00 .00 PIPE
| | | | | | | | | | | | |
22.000 149.850 1.669 151.519 3.94 2.23 .08 151.60 .00 .76 .00 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
15.747 .0136 .0014 .02 1.67 .00 .58 .013 .00 .00 PIPE
| | | | | | | | | | | | |
37.747 150.064 1.500 151.564 3.94 2.23 .08 151.64 .00 .76 .00 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
10.596 .0136 .0013 .01 1.50 .00 .58 .013 .00 .00 PIPE
| | | | | | | | | | | | |
48.342 150.208 1.361 151.569 3.94 2.34 .08 151.65 .00 .76 .87 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
5.863 .0136 .0013 .01 1.36 .30 .58 .013 .00 .00 PIPE
| | | | | | | | | | | | |
54.205 150.288 1.280 151.568 3.94 2.45 .09 151.66 .00 .76 1.06 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
4.682 .0136 .0014 .01 1.28 .35 .58 .013 .00 .00 PIPE
| | | | | | | | | | | | |
58.888 150.352 1.214 151.565 3.94 2.57 .10 151.67 .00 .76 1.18 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
3.972 .0136 .0015 .01 1.21 .40 .58 .013 .00 .00 PIPE
| | | | | | | | | | | | |
62.860 150.406 1.155 151.561 3.94 2.70 .11 151.67 .00 .76 1.26 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
3.455 .0136 .0017 .01 1.16 .44 .58 .013 .00 .00 PIPE
| | | | | | | | | | | | |
66.315 150.453 1.103 151.556 3.94 2.83 .12 151.68 .00 .76 1.32 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
3.041 .0136 .0019 .01 1.10 .49 .58 .013 .00 .00 PIPE
STORM DRAIN LINE B2
OUTPUT FILE
FILE: 717B2.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 2
Program Package Serial Number: 1918
WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:44:49
AVIARA OAKS ELEMENTARY SCHOOL
HGL CALCULATIONS, 100YR DESIGN STORM
STORM DRAIN LINE B2
************************************************************************************************************************** ********
| Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth
Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|
L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
*********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |*******
| | | | | | | | | | | | |
69.356 150.494 1.055 151.549 3.94 2.97 .14 151.69 .00 .76 1.37 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
2.680 .0136 .0021 .01 1.05 .53 .58 .013 .00 .00 PIPE
| | | | | | | | | | | | |
72.036 150.531 1.010 151.541 3.94 3.11 .15 151.69 .00 .76 1.41 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
2.205 .0136 .0024 .01 1.01 .58 .58 .013 .00 .00 PIPE
| | | | | | | | | | | | |
74.241 150.561 .969 151.530 3.94 3.26 .17 151.70 .00 .76 1.43 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
HYDRAULIC JUMP
| | | | | | | | | | | | |
74.241 150.561 .585 151.146 3.94 6.18 .59 151.74 .00 .76 1.46 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
46.260 .0136 .0136 .63 .58 1.65 .58 .013 .00 .00 PIPE
| | | | | | | | | | | | |
120.501 151.190 .585 151.775 3.94 6.18 .59 152.37 .00 .76 1.46 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
39.457 .0136 .0129 .51 .58 1.65 .58 .013 .00 .00 PIPE
| | | | | | | | | | | | |
159.958 151.727 .601 152.329 3.94 5.95 .55 152.88 .00 .76 1.47 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
13.565 .0136 .0115 .16 .60 1.56 .58 .013 .00 .00 PIPE
| | | | | | | | | | | | |
173.522 151.912 .623 152.535 3.94 5.67 .50 153.03 .00 .76 1.48 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
6.478 .0136 .0101 .07 .62 1.46 .58 .013 .00 .00 PIPE
| | | | | | | | | | | | |
180.000 152.000 .646 152.646 3.94 5.41 .45 153.10 .00 .76 1.49 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
133.573 .0095 .0095 1.27 .65 1.36 .65 .013 .00 .00 PIPE
| | | | | | | | | | | | |
313.573 153.265 .646 153.912 3.94 5.41 .45 154.37 .00 .76 1.49 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
32.050 .0095 .0093 .30 .65 1.36 .65 .013 .00 .00 PIPE
STORM DRAIN LINE B2
OUTPUT FILE
FILE: 717B2.WSW W S P G W - CIVILDESIGN Version 14.07 PAGE 3
Program Package Serial Number: 1918
WATER SURFACE PROFILE LISTING Date:10-27-2023 Time:11:44:49
AVIARA OAKS ELEMENTARY SCHOOL
HGL CALCULATIONS, 100YR DESIGN STORM
STORM DRAIN LINE B2
************************************************************************************************************************** ********
| Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth
Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|
L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
*********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |*******
| | | | | | | | | | | | |
345.623 153.569 .654 154.223 3.94 5.32 .44 154.66 .00 .76 1.49 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
16.070 .0095 .0085 .14 .65 1.33 .65 .013 .00 .00 PIPE
| | | | | | | | | | | | |
361.693 153.721 .679 154.400 3.94 5.07 .40 154.80 .00 .76 1.49 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
5.503 .0095 .0075 .04 .68 1.24 .65 .013 .00 .00 PIPE
| | | | | | | | | | | | |
367.196 153.773 .704 154.477 3.94 4.84 .36 154.84 .00 .76 1.50 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
2.210 .0095 .0066 .01 .70 1.16 .65 .013 .00 .00 PIPE
| | | | | | | | | | | | |
369.407 153.794 .731 154.525 3.94 4.61 .33 154.86 .00 .76 1.50 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
.593 .0095 .0058 .00 .73 1.08 .65 .013 .00 .00 PIPE
| | | | | | | | | | | | |
370.000 153.800 .759 154.559 3.94 4.39 .30 154.86 .00 .76 1.50 1.500 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |-
STORM DRAIN LINE B2
OUTPUT FILE
ST
O
R
M
D
R
A
I
N
L
I
N
E
B
2
PR
O
F
I
L
E
z < l"'1 ;:o
-I
:c n Vl
]> ;:o C -I -"U l"'1 -I l"'1 ;:o -;:o n I
]> l"'1 r
lJ STATI □N
2J STAT I □N
4J STATI □N
5J STAT I □N
6J STATI □N 7J STATI □N
14] STATI □N
15] STATI □N
16] STATI □N
17] STATI □N
18] STATI □N
19] STAT I □N
20J STATI □N
21] STATI □N
n J:
I
to ]> z ;,;;
. 000
21. 000
37. 747
48. 342
54. 205 58. 888
120. 501
159. 958
173. 523
180. 000
313. 573
345. 623
361. 693
367. 196
l"'1 r l"'1 <-l> -I>-
-I'° -DO zo (/) 0
Ul Ul Ul Ul -s,J !-11 :--.i
0 0 0 0 0 0 0 0 0 0 0 0
Ul ~
0 0 0
Q =
Q =
Q =
Q =
Q = Q =
Q
Q =
Q =
Q =
Q =
Q =
Q =
Q =
4. 790 Ft3/S, V =
4. 790 Ft3/S, V =
3. 940 Ft3/S, V =
3. 940 Ft3/S, V = 3. 940 Ft3/S, V = 3. 940 Ft3/S, V =
3. 940 Ft3/S, V
3. 940 Ft3/S, V =
3. 940 Ft3/S, V =
3. 940 Ft3/S, V =
3. 940 Ft3/S, V =
3. 940 Ft3/S, V =
3. 940 Ft3/S, V =
3. 940 Ft3/S, V =
2. 711
2. 711
2. 230
2. 338
2. 453 2. 572
6. 177
5. 951
5. 674
5. 410
~ ►
~
~
~
rJJ.
C
~
~
► n
~
~
~
~
Ft/S rJj_
rJJ.
Ft/SC
Ft/S ~
Ft/S ~ Ft/S l .... J
Ft/S
0
~
►
t:,
Ft/S ~
~ z
Ft/S ~
Ft/S~
Ft/S ~ z
►
~ ~
rJJ.
~
rJJ.
,.-._
~
~
5.410 Ft/s ► z
5.319 Ft/S?:='
5. 072 Ft/S
4. 836 Ft/S
~
~
0
~
~
~
~
'-"
~ ~ z
~
t:d
N
GENERAL NOTES
1 , ALL woiu. SHALL BE DO/a ACCORDING TO THE APPROVED PLANS
ANO SPECIJ':ICA'l'IONS, THE CUJtRENT ST,UiDARn !fPl!CT1'1:CATIONS FOR POBLIC WORXS CON5TRUC1'ION (GREEN BOOK), TH.I! SAN
DIEGO ttGIONAL ST).}10U0 OlU.lHNGS AS MODIFIED B't Tllt:
CITY OF CARLSBAD STANDARDS, THE CITY OF CARLS!IAO SUPPLEMENTAL STANDARD DRAWINGS AND ALL APPLICABU: CITY OF C'JffiLSBAD ORDINANCES,
l, TJIE CONTRACTOR SHALL 01:'.SIGN, CONSTRUCT AND MAINTAIN ALL SAFETY DEVICES, Ul'CU.IDI?IG $IIORING1 AND SHALL BE SOLELY JU;SPONSIBLE FOR CONFORMlNG TO ALL LOCAL, STATE ANO ~~~IO:~ ANO KEALTlf STANDARDS, LAWS AND
3. THE CONTRACTOR SHALL COMPORN TO LABOR CODE SECTION 6705
&Y SUBMI'l"l'W'G A O£TAILEO PLAN TO THE CIT'/ ENGINEER
l'.ND/OR COIIC'ERNU> AGENCY SHO'fllKG THX PESIGN OP SKOTUNG, BRACING, SU:>PTNG, OR O'MfP.11 PROVISION'S 'I'O BE MA.DI! POR
WORKER PROTECTION FROM THE HAZAll,D OP CAVDIG GROUND
DURING THE :EXCAVATION OF SUCH TR!NCH OR '1".R!:NCHllS OR DURING THE PIPE INSTALU.TION THEREIN -THIS PUN MUST BE PREPARED FOR ALL 'MU'!NCHH !'IVE FEE'1' (5')•·0R MORP! IN
DEPTH AND APPROVED BY THE CITY ENCINEBH AND/OR CONCERNED AOENCY PRIOR 'l'O EXCAVATION. IP' THE i'LAN VARIES FROM THE SHOllNC SYSTEM STANOARDS ESTABLISHED BY THt CONSTRUCTION SAF!:'n'. ORDERS, THE PIAN SHAU. DE
PREPARJ:D BY A REGIST!::RBD CIVIL OR STRUCTURAL £NQINEER
AT THE CONTRACTOR'S EXrt:NS!:.
4 • TH1l :&:XISTE!'ICE AND LOCATION OF OTILITI STRUC'l'UllS l'.ND FACILITIES SIIOWN ON nm CONSTRUCTION PLANS WEIU!:
OBTAilfED BY A $URCH OF THE: AVAJ:lABLE R£COJtD$. A'l"l'EN"l'lON IS CALLED 'l'O THlt ross:reu EXISTENCE OF 0111ER UT'.ILI'l'Y FACILITIES OR STJUJCTURES NOT KNOWN OR IN A
LOCATION DIFPERJ!NT TR0K THAT SHOWN ON '11:IE PLANS• THE CONTRACTOR IS REQUIREO TO TAKE DUE PRECAUTlONARY MEASURES TO PROTECT THE lll'ILJ:TIES SHOWN ON THE PLAHS AND ANY OTHER EXISTING Fl,,CILI'l'IES OR STRUCTURES NO'l'
SHOWN.
5. TH!: CONTRACTOR SHALL VERIFY THE LOCATION OP' ALL EXISTING F11CILITU!S (ASOVEGROUNO AND UNDERGROOND)
lfITliIN THE PROJECT SITE SUFnCl.ENTLY AHEAD OP THE
CONSTRUCTION TO PERMIT '!'KP. REVISION OF 'rnE CONSTRUCTION PLAHS IF IT IS FOUND ffiE AC"l'UAL LOCATibNS ARE IN CONFLICT WITH THE PROPOS!D WORK.
THE CONTRACTOR SHALL NOTIFY AFFECTED UTILITY COMPANIES AT LRMT ,ie-HOURS PJtIOR TO STARTING CONSTRUCTION NEAR THF.TR FACILITIES AND SHALL COORDINATE TH!: WOR)( WITH
COMPANY REPRESENTATIVE,
SAN DIEGO GAS , ELECTRIC CO, PACIFIC TELEPHONE CO.
CITY 01' CARLSBAD RANCHO LA COSTA CABLE T, V. UNDERGROUND SER.VICI'! AI,mn' COSTA B.EAL MUNICIPAL WATER DISTRICT
619-4l8-601!10
619-560-9347
619-438-363" 6Hl-4l6-3,iOl 800-422-4l3)
619-Ull-27ili
NO WORK SHAU. BE COMMZllCED UNTIL ALL PERMITS HJ\VE BEEN
OBTAIJraD FROH TH!! Ct1'Y ANO OTHER APPROPRIATE ACENCIES. THE CONTRA.CTOR SHALL NOTlF'Y THE CITY OF CAJU.SBAO AT LU.ST FIVE (5) NORXlllG DAYS PRIOR TO STARTING
CONSTRUC'l'ION SO 'nlAT INSPECTION -MAY BB PROV10ED. (PHONE 4)8-3634) ,. --
lfflUU: TRENCHES AR? WITHIN Crh EASEMENTS, A SOILS REPORT PERFORMED BY A QtlAI.IYlED SOILS DlGlNE£R JS REQUIRED. COl'IPAC'l'lON REPORTS SHALL BE SUBMITTED 'I'O THE PUBLIC WORKS INSPECTOR UPON COMPLETION OF 'l?i.t: WORX.
NO REVISIONS WILL 8£ MADE TO THE CONSTRUCTION PLANS WITHOUT THE W1HTTEN AI'PROV11.L OF THE C:IT'II" ENGINE!R NOTED
WITHIN THE REVISION BLOC)( ON THE APPROPRIATE SHEET 01" Tm: PUNS.
ACCESS FOR F:rRE AND OTHER EMERGENCY VEHICLF.S S~ llE MAINTAINED TO THE PROJl:CT SITE AT ALL TIME'S DUR.ING Tm;
CONSTRUCTiotl.
VICINITY MAP
NOTT0 5C,tl.£
P.&D Technologies
401 West -A• Street, Su1te 2500 Sen Diego, Celifornii, 92101 T•l : 1619) 232-.UH
TOP VIEW
5ECTION A-A
PUBLIC STORM DRAIN IMPROVEMENT PLANS
AT THE ALGA K-8 SCHOOL SITE
sioE V/~W
TRASH RACK DE:TAIL
NO SC.ALE
/tf@B"
(veRT. ~EIA/.) INDEX MAP
SECTION B -e,
SCALE= 1• • 2oO'
s,-o-c-~zso -CONCi?ETE . ~
GI-/ i!!ACK(~E DC.TAIL AeD
vc (.S'f..eeve 1'HROUGH z SIDE
Z. ~EfN.)
CALFORNIA COORDINATES
3)7-1685
ASSESOR'S PARCEL ~BER
215-050-11 215-050-U
SOURCE OF TOPOGRAPHY
l ORK TO BE DONE
THE IKPROVEMENTS CONSIST OF THB POLU>WllfG NORI: 'l'O BE DONE
ACCORtllNG TO -mESE PLAN$ AND SPBCI1'ICATIONS AND TKE 1'01.LOWUfG llTANDAROS CUlU\ENT AT nu: TXHE OF CONSTIWCT:l:ON;
TKR CITY OF CARLSBAD STANDARO DESIGN CRlTERll FOR THE DES!CN OF PUBLIC WORKS IMPROVEMENTS THE CITY OF CARU.BAD GRADING OROINANCE (CRAPT!R 11.06), ALL CITY Of' CARLSBAD
SOPPL?:11ENTAL DRAWINOS AND APPLICABLE ORDINANCES, THE SAN
DIEGO AREA REGIONAL STANOAAD OR.AW:INi:.s AS MODil"IED BY THE CITY 01' CARLSBAD , . ,WD Tm: STANQARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION (GREEN a00K) .
NOTE: THESE QUANTITI~ ARE POR BO!'IDDK: ~ allt."f. CONTRACTOR TO VERlFY QUANTJTT.:ES l'OR CONSTRUCTION PORPOSES.
LEGEND
ro:x S'?O.,pwc. SJll80L
'"' 4 EA TYPE "An CLBAllOU'l' l!l
W/ GRATED COVER ALHAMBRA FOUNDRY No. A 1251 OR EQUAL
DECLARATION OF RESPONSIBLE CHARGE
I Nl':.JlE.BY DECLARE THAT I AM 'Ml'E 2NGINBER OF WORK FOR ntlS PROJECT, THAT I KAVE EXERCIZED RUPONSIBLE CHARGB OVER ffl1! DESIGN OF THB PROJECT AS Dl!!PINU> IN SECTION 6703 OP '1'112 i,usn1a,s3 ANO pm)f'&()llION/:l COD£, AND THAT TIIII DEs:IGN IC CONSlSn:N'r WI'l'B CURRENT STANDAM:IS.
I ONDERSTAND THAT THE CK!Clt 01' PROOECT ORAil'.ENGS .ANO. SPl!!Cil'ICATIONS BY THE c:I'l'Y· 01' CARLSBAD IS CONFINED 'l'O A REVIEW ONLY AND DOES NOT RJl!LU:VE ME, 11.S ENGINRER 01' WORK, 01'
KY RESPONSIBILITIES l"OR PROJECT DESIGN~-. I
P ' 0 TECHNOLOQIES ~-e,/4z/s,
,101 W. "A• STREXT. SUITE 2500 I.ARR A. BNER DATE
SAN Oll!:GO, CA 92101 R.C.E. )1757
TEL. (6J.9) ;n:z-"466 ~ l 2a2:~lt/~
LEGAL DESCRIPTION /1$oF'lt+\hr :"'f-:9,<>IV-fAN ) I
PORTION. 01' S:tCTION 26, T 12 S, R ,i W, S.B.M., l:N THE CITY OP
~I.SAAD, COUNTY OF SAN DIEGO, STA'l'E Of' CALIFORNIA. i
BENCHMARK
... lDCATION:
IHII
' OC-01.79 DISC Gtt IH WEST DID OF SOUTH
IIRADIIALL OF 2&• R.C.P .
o. 4 KILB EAST OP l.'.HTERSEC'l'ION
OP LA COSTA AVII. AND S.UOKY ROAD
COUNTY OP SMI DIEGO, DEPT. OP PUBLIC WORICS: __ ~J:'ORT SV0106-0l.10/l.5/85
~ CITY OF CARLSBAD l'""''I L.J__j [NCIINH l'IING t>[~Al'ITM[NT 4,
F,
{fatt!tAFI
HaR w/Lz' >12.·.I{
'EL A1',,G,J.£ P,'lf1v'EN <? 4-5° -2 '
O UN~1s rv:tt4EO \SOIL,
PUBLIC STORM DRAIN AT
~==t==+=================t==t===t==l~TaaH;;"E;a'A<'_L'i:i-G:s·A~K.,-8~5;,C=H=O=O=L=5=17T=E==,
REVIStON DESCRIPTK)N
~fl:> ~ LejtJ
,;,,.f.
/
P&D Technologies
:~~ ~i!~o: A ~afi$!~~ia 59~k61 2500
Ttl: (6l9) ttt•4 .. 6 ~IIK>N OHCAIPTION
NOTE :
ALL PROPOSED GRADING
SHOWN FOR REFERENCE,
ONLY. NOT A PART OF THIS PERMIT
OC-<1179 DISC SETI-N WEST Er«l OF SOUTH HEADWALL Of 24" A.C.P.
Q.4 M!LE EAST Of' INTEfl5EC1ION Of' LA COST..,_ 1'\/E. AND SAXONY f\OAO
CWJTY OF SMI OlE:GO, DEPT. OF Pll8LI WOfU<S:AEPOf\T S\/0106-01,10/15/85
13.87FT
AEVISK>N Dt:SCAIPTION
~
' ' ~~-'.
--. ~
O.◄NILE EASTOFiNTEASECTIONOf LA COST~ AVE. AND SAXOr-lY ROAD
J\~OAOS. FROH:, ~fil;;;'~: ~~g*~ ~t~~86-~~I01~t:ru
PLANS FOR IMPROVEMENT OF
PUBLIC STORM DRAIN AT
THE ALGA K-8 SCHOOL SITE
I RE /SE !NL T STRUCTU £ 1,~ f. II
R~ISION DESCRlf'TM>N
NOTE : /
ALL PROPOSED GRAOING
SHOWN FQJl REFERENCE
ONLY. NOTA PART OF THIS PE~IT
~OESCRlPTION OC-0179 DISC SET 114 WEST OIO aF SQlJTHHEAOW,t,LLOF2-4'R.C.P -
_ _ibCATION:
~ECORDSFROM:
O.+ MlLE EAST OF INTERSECTION CF LA"C0STAAVE.ANOSAXONYR0AD
COUNTY Of SAN DIEGO, DEPT. Of PVBU WORKS:REPORTSV0106-01,10/15/!15
fsiiiITl CITY OF CARLSBAD 1•••m1 L.1...J ENGINHRINO OEPAIHMENT 4,-
CITY EUIN[ER P-~~--f-1
PROJECT NO. I llffAWING "°· ?I> 3.3~ .302--11
Dr
a
i
n
a
g
e
R
e
p
o
r
t
Av
i
a
r
a
O
a
k
s
E
l
e
m
e
n
t
a
r
y
S
c
h
o
o
l
M
o
d
e
r
n
i
z
a
t
i
o
n
Oc
t
o
b
e
r
2
0
2
3
Pa
g
e
5
Jo
b
#
7
1
7
-
0
2
AT
T
A
C
H
M
E
N
T
5
Dr
a
i
n
a
g
e
M
a
p
s
-
Pr
e
-
P
r
o
j
e
c
t
a
n
d
P
o
s
t
-
P
r
o
j
e
c
t
C
o
n
d
i
t
i
o
n
s
E
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD SD SD
S
D
SD
SD
SD
SD
SD
SD
SD SD SD
SD SD
SD
SD
SD
SD
SD
SD SD
W W
W
W
W
SD
SD
SD
SD SD SD
SD
SD
S
D
S
D
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
(151)
(150)
(149)
(148)
(147)
(146)
(145)
(140)
(151)
(150)
(145)
(153)
(154)(155)
(160)
(160)
(155)
(154)
(150)
(155)
(15
5
)
(1
5
4
)
(15
3
)
(15
2
)
(15
1
)
(15
0
)
(15
5
)
(156)(157)(158)
(154
)
(155)
(153)
(154)(155)
(160)
N 0
0
°
2
0
'
2
2
"
W
2
9
3
.
7
1
'
(156)
(150)(150)
41.8%
AVIARA
P
A
R
K
W
A
Y
PROPERTY LINE
PROPERTY LINE
NON
DISTURBED
AREA
NON DISTURBED
AREA
NON DISTURBED AREA
EXIST CURB INLET
CITY OF CARLSBAD GIS
LINEWORK FOR PUBLIC
STORM DRAIN
A
M
B
R
O
S
I
A
L
A
N
E
PRE Q100=16.8 CFS
POC1
POC4
PRE Q100=1.9 CFS
PRE Q100=7.9 CFS
POC2
PRE Q100=4.0 CFS
POC3
PRE-PROJECT CONDITION
•
• I
I
Ii
I ~~~:;±-,.:~-----·~: .:_~-~:'-·.>-~--:~-----·:,· ~~~
0.71
,-......._
~ I ~ _ _ __ 2.48
l ,.
.JO 0 ,,,
SCALE: ,.
60 90
60"
• GOOGLE EARTH, IMAGERY SOURCE. IMAGERY DATE 8/17 /19
TORY R. WALKER
ENG I N E ~6 ~,t~C~92 ~ Drive Suite 122 Civic Center ,
LEGEND
PROPERTY LINE --ROUND CONTOURS
-440-EXISTINGEi GROUND CONTOURS _440_ PROPOS
®-BASIN DESIGNATION
-AREA (ACRES)
N BOUNDARY DRAINAGE BASI
_ _ DRAINAGE SU B-BASIN BOUNDARY ---@ HYDROLOGIC STUDY NODE
F CONCENTRATION +--TIME 0 -··· FLOW PATH
_, DIRECTION OF FLOW
OCTOBER 1, 2023
E(i~ENTARY SCHOOL AVIARA OAKS
PH
PH
10'
10'
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD SD SD
S
D
SD
SD
S
D
SD
SD
SD
SD SD SD
SDSDSDSD
SD
SD
SD
SD
S
D
SD
SD
SD SD
W W W
W
W
W
W
W
W
W
SD
S
D
SD
SD
SD
SD
SD
SD
SD
SD
SD
S
D
S
D
S
D
SD
SD SD SD
SD
SD
S
D
S
D
SD
SD
SD
SD
SD SD SD SD SD
SD
SD
SD
SD
SD
SD
SD
SD
SD
SD SD
SD
SD
SD SD
SD
SD
SD
SD CO
M
M
COMM COMM COMM
COMM COMM COMM COMM
COMM
E
E
E
E
E
E
E
E
E E
E
E
E
IRR
IR
R
IR
R
IRR IRR
IRR
IRR
IRR
IRR
IRR
IRR
IR
R
I
R
R
IR
R
IRR
IRR
IRR
IRR
IR
R
IR
R
IRR IR
R IRR
IR
R
IRRIRR
IRR
IRR
IR
R
IR
R
IR
R
IR
R
I
R
R
I
R
R
IRR
IR
R
IR
R
IRR
IR
R
IR
R
IR
R
IR
R
IR
R
IR
R
G
G
E
COMM COMM
E
E
COM
M
CO
M
M
E
CO
M
M
CO
M
M
E
E
E E
EE
E
E
E
E
E
COMM
COMM
C
O
M
M
COMM
E
E
E
E
E
ECOMM
CO
M
M
C
O
M
M
E
E
CO
M
M
G G G
G
G
E
E
E
E
EECOMMCOMM
E E E E
E E E E E E
E
E
E
E E IR
R
IR
R
IR
R
IRR
IRR
EE
G
G
G
G
G G G G
G
E
EE
IRR
IR
R
IR
R
IRR
IRRIRR
CO
M
M
COM
M
COMM
CO
M
M
E
E
E
E
E
E E E
G
G
C
O
M
M
C
O
M
M
COMM
E
E
E
E
E
G
G
G
G
G
G
E
G G
G
G G
E
E
G
G
G
SD
(151)
(150)
(149)
(148)
(147)
(146)
(145)
(140)
(151)
(150)
(145)
(153)
(154)
(155)
(160)
(160)
(155)
(154)
(150)
(155)
(1
5
5
)
(15
4
)
(15
3
)
(1
5
2
)
(1
5
1
)
(1
5
0
)
(155
)
(156)(157)
(158)
(15
4
)
(155)
(153)
(154)
(155)
(160)
N
0
0
°
2
0
'
2
2
"
W
2
9
3
.
7
1
'
(156)
(150)(150)SD
S
D
S
D
167
164
164
165
166
162
162
161
160
16
0
159
163
14
5
146
145
147
148
149
150
151
152
153
154
155
156
161 160
16
1
162
159
158
161
161
160
142
143
144
162
162
163
163
163
164
163
163
164
165
164
165
158
160
160
146
147
145
149
150
151
149
148
150
152
153
154
155
156
158
159
158
160 159
161 160
160
165
162
159
159
159
15
9
159
156
155
154
153
152
151
150
149
148
147
158
158
158
158
15
8
157
15515
4
151
152
153
154
150
148
157
153
154
155
155
156
150
145
14
8
147
147
147
147
148
146
146
145
146
146
14
6
155
153
154
152
160
161
162
157
158
157
158
156
154155
156 155
154
153
153 151
151
153152
151
153 152
152
152
151
158
15
8
158
159
157
156
156
157
155
158
157
157
156
156
156
155
155
155
15
5
155
15
4
153
151
153
153
152
157
157156
158
141
151
152
153
154
155
151
153
152
150
151 153
152
154
154
149
150
149
145
149
156
154
155
151
153
150
151
154
153153
152
151
152
152
162
163
164
16
1
160
160
161
154
158
157
156
157 156 155154
153
153
153
153
153
155
154
153
153
153
154155
150
15
3
158 157 156
15
5
155156157
155
156
155
153
162
161
160
158
159
160
157
157
157
157
152
151
150
152
151
150
151
150
152
152
153
152
151
150
151
152
152
152
144
145
147148
143
149
146145144143
149
145
146
146
144143
142
142
141
142
141
146
147
148
15
2
145144143142
141
141
149
15
0
150
15
0
15
1
15
1
151
145
AVIAR
A
P
A
R
K
W
A
Y
A
M
B
R
O
S
I
A
L
A
N
E
PROPERTY LINE
PROPERTY LINE
BIOFILTRATION BMP-2,
3,000 SF
BIOFILTRATION BMP-1,
6,300 SF
PROPRIETARY
BIOFILTRATION BMP-3,
MWS-4-4-V
NON DISTURBED
AREA
NON
DISTURBED
AREA
(E)
BUILDING 300
CLASSROOM
(E)
BUILDING 700
CLASSROOM
(E)
BLDG 400
CLASSROOM
(E)
CLASSROOM
NEW BUILDING
800 CLASSROOM
DS DS
DS
DS
DS DS
DS
DS
DS
DS
DS
DS
DS
DS DS
DSDS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS DS
NON DISTURBED AREA
PRE Q100=16.8 CFS
POC1
POST Q100=27.2 CFS
DET Q100=13.6 CFS
POC4
POC-3
PRE Q100=1.9 CFS
POST Q100=0.1 CFS
PRE Q100=4.0 CFS
POST Q100=1.9 CFS
PRE Q100=7.9 CFS
POC2
POST Q100=8.2 CFS
DET Q100=4.6 CFS
BUILDING 500
(E)
BUILDING 600
CLASSROOM
DS
POST-PROJECT CONDITION
•
•
--
---I ------
d A
0.
...
.• • 4. ~
.. _.J .. i'·~· ~
-.
. '. ·"
_,,_ 4 ------<• _ ____,,.__ ---•.~' • "':-:..-;;_~;,;¾~. ;'
-----=-----=--___,=----=----=---~
j --+--t--;.-=:.-u-----1-L-llt •
I .. o\
I \
! \ \
I ---=~~-~::;:::W~l 1 \ •• \~ ~ \ \
I
•.
116 .,.
/
B-3
1.23
···ae::,
••· ... ·-...
--I
-----
·-..
,_...._
201
--------------
··-...
!
~
2S 0 25 50
SCALE: 1" = 50'
TORY R. WALKER
ENGINEERING
122 Civic Cen ter Drive, Sui te 206 Vista, CA 92084
75
LEGEND
PROPERTY LINE
-440-EXISTING GROUND CONTOURS
-440-PROPOSED GROUND CONTOURS
~-BASIN DESIGNATION
~-AREA (ACRES)
DRAINAGE BASIN BOUNDARY
DRAINAGE SUB-BASIN BOUNDARY
HYDROLOGIC STUDY NODE
-• • • -t--TIME OF CONCENTRATION
FLOW PATH
----DIRECTION OF FLOW
OCTOBER 1, 2023
FOR
AVI ARA OAKS ELEMENT ARY SCHOOL