Loading...
HomeMy WebLinkAboutCUP 2022-0010; CARLSBAD DESALINATION PLANT INTAKE AND DISCHARGE MODIFICATION; ELECTRICAL BUILDING RETAINING WALL LOAD CALCULATIONS AND DESIGN PREPARED FOR POSEIDON WATER COMPANY; 2022-11-281-2112/7/23 THESE PLANS/DOCUMENTS HAVE BEENREVIEWED FOR COMPLIANCE WITH THEAPPLICABLE CALIFORNIA BUILDING STANDARDSCODES AS ADOPTED BY THE STATE OFCALIFORNIA AND AMENDED BY THEJURISDICTION. PLAN REVIEW ACCEPTANCE OFDOCUMENTS DOES NOT AUTHORIZECONSTRUCTION TO PROCEED IN VIOLATION OFANY FEDERAL, STATE, NOR LOCAL REGULATION. BY: _________________ DATE: ________________ True North Compliance Services, Inc. THIS SET OF THE PLANS AND SPECIFICATIONSMUST BE KEPT ON THE JOB SITE AT ALL TIMESAND IT IS UNLAWFUL TO MAKE ANY CHANGES ORALTERATIONS WITHOUT PERMISSION FROM THECITY. OCCUPANCY OF STRUCTURE(S) IS NOTPERMITTED UNTIL FINAL APPROVAL IS GRANTEDBY ALL APPLICABLE DEPARTMENTS. Alaa Atassi 12/12/2023 I POSEIDON CARLSBAD DESALINATION PLANT ELECTRICAL BUILDING RETAINING WALL I Load Calculations and Design GR2022-0047, DWG 539-SA PREPARED FOR POSEIDON WATER COMPANY CALCULATIONS PREPARED BY HDR ENGINEERING, INC. ASHA BARADI, P.E. DATE PREPARED: 11/28/22 QC REVIEWER: BOGDAN BOGDANOVIC, P.Eng. (CANADA) QC REVIEW DATE: 12/02/22 DATE SUBMITTED: 12/23/22 G G G G G G G 2'' W 2''W 2''W G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 15 11 12 13 14 16 17 18 17 18 8.0' 4.5 '5.5 ' 5' 2.5 ' 5'5'1' T Y P . 1' T Y P . 10 ' 12" TYP. 12 " T Y P . 13'2' 9' 17' 12" CIP RETAINING WALL COMPACTED NATIVESOIL 13.82 FL 14.50 FF 14.50 FS 14.50 FS 13.48 FG 13.92 FG 18.00 TOW 13.20 FL 12.21 FL 1.0%2.0% 5. 8 % 13.83 FS13.25 FS 14.50 FS 14.42 FS13.80 FG 14.42 FS13.84 FS 10.6 TC 14.50 FS GRAVEL OVER 18.00 TOW 13.92 FG12.00 TOF 17.25 FL 17.20 EG 13.92 FG12.00 TOF 18.00 TOW13.92 FG12.00 TOF 14.50 FS13.92 FS 13.91 FS13.33 FS 14.42 FS13.84 FS 13.24 FS 12.66 FG 12.60 FG 14.42 FS 13.80 FG 11.50 FG 13.83 FS 13.25 FS 13.24 FS12.66 FS 13.91 FS 13.33 FS 14.50 FS 13.92 FS 12.14 FS 11.56 FG 12.3 FL 10% 10 % EXISTING RETAINING WALL PROTECT IN PLACE 12.65 FS 12.07 FS 12.06 FS11.48 FG 12.73 FS 12.15 FS13.32 FS 12.74 FS 13.32 FS 12.74 FG 13.92 FG 14.50 FS 13.92 FG 13.70 FG 14.50 FS13.92 FG 14.50 FS 13.92 FG 13.40 FG 1.0% GB 4. 0 % 14.42 FS 13.67 FG 14.42 FS13.67 FG CONSTRUCT 2" PVC PIPE @ 2% GRADETO RECONNECT DRAIN LINE RETAINING WALL AND FOOTINGREMOVE EXISTING COMPACTED NATIVE SOIL DISTURBED BY WALL REMOVAL REPLACE GRAVEL OVER FIELD DETERMINE LIMITS JOIN NEW WALL TO EXISTINGEND WALL REMOVAL JOIN NEW WALL TO EXISTING BEGIN WALL REMOVAL 13.70 FS L=31' 10.8 FL 4% 18.00 TOW14.05 FG12.00 TOF 15.00 TOW14.25 FG12.00 TOF WALL AT 3:1 SLOPE TOP OF 14.17 FL 2" PVC,JOIN EXISTING EXISTING 2" PVC PIPEPROTECT IN PLACE (11.9 TC) (11.53 INV)(11.4 EG) GRADED FLOWLINE PERDETAIL ON THIS SHEET GRADED FLOWLINE PERDETAIL ON THIS SHEET 12.19 INV2" PVC, GB (INV. 12.45) BEGIN SECURITY FENCE PER SAN DIEGO REGIONAL STD DWG M-6, JOIN EXISTING FENCE GUTTER GUTTER 16.83 FL GUTTER GUTTER GUTTER 11 ' 10.67 FL/GB 10.17 FL GUTTER 10.5 TC RETAINING WALL PCC GUTTER PERDETAIL ON THIS SHEET BERM TO ALLOW GUTTER OPEN PORTION OF EXISTING END SECURITY FENCE PER SAN DIEGO REGIONAL STD DWG M-6, JOIN EXISTING FENCEBEGIN PIPE GUARDRAIL POST TYPE RAILING STD DWG M-24 END PIPE GUARDRAIL POST TYPE RAILING STD DWG M-24 8.0' EXISTING FENCE TO BE REMOVED PER SAN DIEGO REGIONAL EXISTING FENCE TO BE AS REQUIRED FOR CONSTRUCTION REMOVED AND REPLACED SEE STRUCTURAL SHEETS PER SAN DIEGO REGIONAL PLAN SCALE: 1" = 5' 1 WORST CASE SECTIONCONSIDERED FOR THE WALL DESIGN Project: Poseidon Computed: AB Date: 10/14/22 Subject: Electrical building Retaining Wall Checked: BAB Date: Task: Loading and Stability Check Page: of: Job #: 10341720 No: Project -Poseidon -Electrical Building Retaining wall with Shallow Foundation Task -This sheet calculates the loading on the Retaining wall and Performs the Stability checks Electrical Building RW (Shallow) Lateral General Parameters ltwall := 12i~ lhtow := 1stj lhsoil.R := 17.stj lhsoil.L := 13.92tj lhtof := 12tj ltftg := 2.otj lb:= 1~ IL1r := 3.5tj ILrf := 3.5tj IPGA := 0.49~ h cone := 150pc1 hsoil := 130pc1 h water := 64pc1 IIe := 1.2~ lqall := 2000ps1 Project: Poseidon Subject: Electrical building Retaining Wall Task: Loading and Stability Check Job #: 10341720 Wal thickness Top of wall elevation Soil elevation, right side Soil elevation, left side Top of footing elevation Footing thickness Bottom of footing elevation Unit length Length of footing (left side from face of wall) Length of footing (right side from face of wall) Footing width Computed: AB Date: 10/14/22 Checked: BAB Date: Page: of: No: Peak Ground Acceleration (Geotechnical Draft Report, Table 3-6,HDR, May 2022) Unit weight of concrete Total unit weight of soil (Geotech Draft Report 2022) Unit weight of sea water Importance factor for retaining wal (Risk category Ill) Allowable soil bearing pressure (HOR Geotechnical Team) Lateral surcharge presure on the structure due to vehicles passing by on the adjacent road (ASHTO, Provided by HOR Geotech Team) Note: All retairingwals are constructed abate g:a111dwater elevation Gra111dwater elevation is approximately at El. 5.0. Proper drainage should be provided behind wall to prevent buildup of hydrostatic pressure behind the walls. Electrical Building RW (Shallow) Lateral Wall Pressures and Parameters I<!> := 30deg 1-a := 1 -sin( <I>) = 0_33 1 + sin( <I>) kv := 1 + sin( <I>) = 3 1 -sin( <I>) lko := 1 -sin(<!>)= 0.5 I IHat rest := ko·"fsoil = 65-pcq IHactive := ka·"fsoil = 43.33-pcq IHpassive := kv·"fsoil = 390-pcq Project: Poseidon Computed: AB Date: 10/14/22 Subject: Electrical building Retaining Wall Checked: BAB Date: Task: Loading and Stability Check Page: of: Job #: 10341720 No: Friction angle Coefficient of active earth pressure Coefficient of passive earth pressure Coefficient of at-rest earth pressure At-rest earth unit weight (Using conservative values than the HOR values given in Table 4-3, shown below.) Active earth unit weight (Using conservative values than the HOR values given in Table 4-3, shown below.) Passive earth unit weight (Using conservative values than the HOR values given in Table 4-3, shown below.) Seismic increment (HOR Geotechnical Team) Soil friction coefficient (HOR Geotech Team) Table 3-1. Generalized Soil Design Parameters -Deck Structure (West End) Generalized Soil Type Sand.Fill Sand, Native Santiago Formation ElevatIon1 (feet NGVD 29) +8 to -4 -4 to-23 Below -23 ■ . . 120 120 130 No/9s: pcf=pounds p9r cubic foot. psf=pounds per squaro fool Friction Angle (degrees) 30 32 36 Static Cohesion (psf) 200 50 100 r All elevations are approJ1imale, and the ground surface profile varies from about elevation +6 feet at each end to -20 feet in the center of the structure. Electrical Building RW (Shallow) Lateral Project: Poseidon Computed: AB Subject: Electrical building Retaining Wall Checked: BAB Task: Loading and Stability Check Page: Job #: 10341720 No: 4.3. Spread Fooling Walls Spre ti foo e mughout Uie proje lo nl e ht o these walls ed '; 6 -r d Its a only p po riv eSS!i (EFIP J v: 11 ~ EF:P' co cep n • ·ed to f I l'lydroslatio h • r horizonb!II ' up bas , 't . dasparto soil mtall u 120 pcf m.ay be used fer cak:ula 111 11,e lgh soil over a slruclure and an ,ef:fiee!:h.re til'll we'i of . 0 pd ma us ura~ b. ow t e ~p:1licable d!emgn wa e level. Tabl 4-.J. L r Earth IPrus 1.1 CondltlQ!l S8ism!c ric,t! i i I 0 60 ,DOD 8 A do no ctor oJ afi 1y. Th ngine 1.1 pl,cabl'e f l!:Wl'S C load factora d s ,· ~\/1 be added based • . 11d1tlons or mi m11 l'ro ap oodff. Th cul 11 h I . P -3 a l:d be d rop rth . a similar load d1slrlbul pressure. Forces n!Sum rm a -• Is al'il! expec gravity wall ar1d n ay be _ red in e5lim ti e Mismlc te Electrical Building RW (Shallow) Lateral Date: 10/14/22 Date: of: Project: Poseidon Computed: AB Subject: Electrical building Retaining Wall Checked: BAB Task: Loading and Stability Check Job #: 10341720 Table 3 6. CBC Seismic Design Parameters Site Class Lc1 tude Longitude Cale-gory Mapped (5% damped) spectral r .:spon parameter at short !Period (0.2 sec), Ss acceleratron Mapped (5% damped) spectral t ·sPonse ace erauon param ler tong perio (1 .0 c), S Short period (0,2 sec) site coefficient, F Long p riod (1.0 sec) site ooefficienl, F" Long-pared transition period {TU Spectral respons • accelerallon parameter a hort eriod (02 seo), SMS Spectral response accelera on parameter at tong period (1: .0 sec}1 S11.e, Design (5% damped) S:Pectral response acce1eration pa ram ter a short period (0.2 sec),, Sos D s1gn (5% damped) spectral r sponse acceleration param tar at long period 11.0 ec) So Vertical Coefficient C Peak Ground Acceleration (PGA) (g} Site Modified PGA (P,GAt.w) (g) Se sm e Des gn Category I Noles: Page: No: Screen Structure C-Sofl Roe 33.13864 -17.33808 1. 12 0.4 1 2 1.5 8 1.334 0.6 0.889 o. 11.122' 0.493 0.591 D 1. Based on a Risk Calegory rv. S smlc Design Cetego,y to be oonflrmed by structural engJneer. Date: 10/14/22 Date: of: Electrical Building F I 0-Stltf Soil m 33.13848 _, 17.33790 1.2 1.9 0,76 0.51 't .322 2. S(le commentary in ASCEISEI 7-18, Section 11.4.B (or slte.spaclflc ground motion nalysls end ~Exe pllon not '" 2 Electrical Building RW (Shallow) Lateral Project: Poseidon Subject: Electrical building Retaining Wall Task: Loading and Stability Check Job #: 10341720 Calculate Wall Inertial Pressure h := htow -htof = 6 ft tw := twall = 12-in f c := 5000psi Height of retaining wall Thickness of wall Cast-in-place concrete compressive strength Ee := 57000 ✓ f c·psi = 4030.51 • ksi 3 b·tw 4 Modulus of elasticity of concrete I := --= 0.08 ft 12 in g= 386.09·- 2 s Height of retaining wall Height from top of wall to the bottom of footing [E ·b·(t )37 lb k:= c w J = 172903708.13-Stiffnessofwall (h 'l s2 4 -) 2 2n X;= -=0.01s w Natural period of wall Computed: AB Checked: BAB Page: No: Natural period of wall 0.01s is low, therefore Use PGA (MCE.8 Peak ground acceleration) Seismic Inertia load of wall Seismic Inertia load of footing Per Table 3.6 Geotechnica/ Design Report-Drafl, May 2022 Sa_o.022 := 0.493 Using PGA Calculate Seismic Wall Out-o~Plane Pressure (USACE) IFp.USACE := Sa 0_022 ·1conc·tw = 73.95-pstj Seismic wall out-of-plane pressure per USAGE Electrical Building RW (Shallow) Lateral Date: 10/14/22 Date: of: Project: Poseidon Subject: Electrical building Retaining Wall Task: Loading and Stability Check Job #: 10341720 Calculate Seismic Wall Out-of.Plane Pressure (ASCE 7-16) Sa_o.2 := 0.889 ,&.;= 1.25 S05=Response Acceleration parameter at short period 0.2s (Geotechnical Draft Report, Table 3-6,HDR, May 2022) Importance factor of structure per ASCE 7-16 Table 1.5-2 Computed: AB Date: 10/14/22 Checked: BAB Date: Page: of: No: IFp.ASCE := 0.4Sa o.2""'1conc·tw·le = 66.67-psq Seismic wall out of plane pressure perASCE 7-16 12.11 .1 USAGE approach governs. Vertical seismic /oadeffects-ASCE 12.4.2.2 Sos := 0.889 Spectral response acceleration parameter at short period 0.2 sec (Table 3-6, GEOTECH Report) Ev.I := 0.2·Sos = 0.18 Vertical seismic load effect, ASCE 12.4.4a SMs := 1.334 Spectral response acceleration parameter at short period 0.2 sec (Table 3-6, GEOTECH Report) Cv := 1.322 Vertical coefficient (Table 3-6, GEOTECH Report) SaMv := 0.3·Cv· SMs = 0.53 MCE_R vertical response spectral acceleration for vertical periods less than or equal to 0.025s, ASCE 11 .9.2 2 Sav := --SaMv = 0.353 Design vertical response spectral acceleration,ASCE 11 .9.3 3 Ev.2 := 0.3· Sav = 0.11 Vertical seismic load effect, ASCE 12.4.4b Ev:= max(Ev.l, Ev.2) = 0.18 Governing Vertical seismic load effect, ASCE 12.4.2.2 Seismic Inertia load of wall due to vertical acceleration Seismic Inertia load of footing due yo vertical acceleration Electrical Building RW (Shallow) Lateral Project: Poseidon Subject: Electrical building Retaining Wall Task: Loading and Stability Check Job #: 10341720 Wall Stability Check Load Case-1 LC 1 (Usual -Retained Earth, No water present) : Wall Loading for Stability Calculations Lateral Loading: (hsoil.L -hbof) . MHat restL := PHat restL' ) = 0.653-kip·ft -• -• 3 (hsoil.R -hbof) . MHat restR := PHat restR' ) = 4.57-kip·ft -• -• 3 LEFT RESISTING SIDE Computed: AB Checked: BAB Page: No: DL on Left Side of wall: DL on Side Right of wall: B Date: 10/14/22 Date: of: RIGHT DRIVING SIDE PoL.L := PoL_soil.L + PoL_conc.L = 1923.6 lbf PoL.R := PoL_soil.R + PoL_conc.R = 3552.5 lbf DL of retaining wall: PoL_wall := l.Qiconc·twalr(htow -hbor)·b = 1200lbf Wall Deflection ~x.active_mobilized := 0.001-H = O.l·in Very minimal deflection at the grade elevation due to loading, active pressure will not be mobilized since displacement is less than 0.001 H. Therefore, for driving soil pressures, use at-rest pressures Electrical Building RW (Shallow) Lateral Project: Poseidon Computed: AB Subject: Electrical building Retaining Wall Checked: BAB Task: Loading and Stability Check Page: Job #: 10341720 No: Check Overturning About Point A: MoT_A := MHat_rest.R = 4.57-ft·kip Consider soil pressure from right Side and resisting at-rest soil pressure from left Side (Llf l ( Lrf l ( twall l . MR_A := PoL.L· 2 j + PoL.R Lftg -2 j + PoL_walr Llf + 2 j + MHat_rest.L = 31.02-ktp·ft MRA FSoT A := ----= 6.79 -MoT_A CheckoT := CHECK +-if(FSoT_A ~ 1.0, "GOOD", "BAD") = "GOOD" CHECK Calculate Sliding Force IFSs.req := 1.~ Date: 10/14/22 Date: of: Fslide := (PHat_rest.R -PHat_rest.L) = 1.33-kip Using at-rest earth pressure coefficient for resisting soil sliding force Calculate Resisting Sliding Force ~V := PoL.L + PoL_wall + PoL.R = 6.68-kip Ffriction := µsoil ~V = 3-kip FR:= Ffriction = 3-kip FR FSs := -1 -1 = 2.26 Fslide Checksu := CHECK+-if(FSs ~ FSs.req• "GOOD", "BAD") = "GOOD" CHECK Electrical Building RW (Shallow) Lateral EM 1110-2-2100 Table 3-3 Requ red Factors of Safety for Sliding Project: Poseidon Subject: Electrical building Retaining Wall Task: Loading and Stability Check Job #: 10341720 Calculate Bearing Pressure EM 1110-2-2100 3-10 qa := qall = 2000-psf Allowable Bearing Capacity (MR A-MOT A) x:= --=3.96ft :EV I Lftg I ~:= 2 -x = 0.04ft Checke := CHECK +-ir( e < L:g, "GOOD" , "BAD" J = "GOOD" CHECK qz := --. 1 - -= 810.82-psf :EV ( 6-e l b • Lftg Lftg ) Checkg.1 := CHECK +-if( q 1 < qa, "GOOD" , "BAD") = "GOOD" CHECK Checkg.2 := CHECK +-if( q2 > 0, "GOOD" , "BAD") = "GOOD" CHECK Analyze Footing Load Case - 1 Electrical Building RW (Shallow) Lateral Computed: AB Date: 10/14/22 Checked: BAB Date: Page: of: No: Resultant is in middle third, 100% of base in compression. EM 1110-2-2100, Table 3-5 Project: Poseidon Computed: AB Date: 10/14/22 Subject: Electrical building Retaining Wall Checked: BAB Date: Task: Loading and Stability Check Page: of: Job #: 10341720 Footing Reactions Wall Stability Check Load Case-2 LC 2 (Extreme -MDE) : Take 1' strip for analysis. Wall Loading for stability Calculations (hsoil.R -hbof) . MHactiveR := PHactiveR· )= 3.047-kip·ft . . 3 (hsoil.R -hbof) . MHseisR := PHseisR· ) = 1.477-kip·ft . . 3 PEseis_wall := Eseis_wa1r(htow -htof)·b = 443.7-lbf PEseis := PEseis_wall + PEseis_fdn = 1626.9 lbf PEseis_wall.v := Eseis_wan.v·(htow -htof)·b = 160.02-lbf Electrical Building RW (Shallow) Lateral No: (hsoil.L -hbof) . MHactiveL := PHactiveL· ) = 0.435-kip·ft . . 3 (hsoil.L -hbof) . MHseis L := PHseis L. ) = 0.211 • kip·ft . . 3 LEFT RESISTING SIDE B RIGHT DRIVING SIDE Project: Poseidon Computed: AB Date: 10/14/22 Subject: Electrical building Retaining Wall Checked: BAB Date: Task: Loading and Stability Check Page: of: Job #: 10341720 No: ( htow -htof l htof -hbof . MEseis := PEseis wall" htof -hbof + ) + PEseis fdn" = 3.402-ktp·ft -2 -2 ( twall l Lftg . MEseisvA := PEseis wallv" L1r+--)+ PEseis fdnv·--=0.853-ktp·ft . . -. 2 -. 2 ( twall l Lftg . M EseisvB := PEseis wallv" Lrf+--)+ PEseis fdnv·--=0.853-ktp·ft . • -• 2 -• 2 DL on le-ft side of wall: DL on right side of wall: AW,,.w:= PoL_soil.L + PoL_conc.L = 1923.6 lbf ~:= PoL_soil.R + PoL_conc.R = 3552.5 lbf DL of retaining wall: PoL_wall_seis := Ev· PoL_wall = 213.36 lbf PoL_conc.L.seis := Ev· PoL_conc.L = 186.69 lbf PoL_conc.R.seis := Ev· PoL_conc.R = 186.69 lbf Check Overturning About Point A: ~= MHactive.R + MHseis.R + MHseis.L + 0.7MEseis + 0.7MEseis.v.A = 7.71-kip·ft (Llf l ( twall l MR A.up:= (PoL conc.L -0.7PoL conc.L.seis)· -) + (PoL wall -0.7PoL wall seis)· Llf + --) ··· ---2 ---2 ( Lrf l ( Lrf l ( Llf l + (PoL_soiI.R)· Lftg -2 ) + (PoL_conc.R -0.7PoL_conc.R.seis)· Lftg -2 ) + (PoL_soil.L)· 2 ) = 28.73-kip·ft Electrical Building RW (Shallow) Lateral Project: Poseidon Computed: AB Date: 10/14/22 Subject: Electrical building Retaining Wall Checked: BAB Date: Task: Loading and Stability Check Page: of: Job #: 10341720 No: ---2 ---2 = 32.01-kip-ft (Llf l ( twall l MR A.down := (PoL conc.L + 0.7PoL conc.L.seis)· -) + (PoL wall+ 0.7PoL wall seis)· L1f + --) ••• ( Lrf l ( Lrf l (Llf l + (PoL_soiI.R)· Lftg -2 ) + (PoL_conc.R + 0.7PoL_conc.R.seis)· Lftg -2 ) + (PoL_soil.L)-2 ) ~= MR_A.up = 3.72 MoT_A CheckoT_A := CHECK+-if(FSoT_A > 1.0, "GOOD", "BAD") = "GOOD" CHECK Wall Stability Check (cont} Load Case-2 Calculate Sliding Force Allowing 0.42 inch wall movement for passive would have a passive earth pressure coeifficient of 1.65 as shown in the below figure (Conservative assumption recommended by HOR Geotech team)) ------... ,,._ ... UJUJI:~---." ' 11 Electrical Building RW (Shallow) Lateral Project: Poseidon Computed: AB Date: 10/14/22 Subject: Electrical building Retaining Wall Checked: BAB Date: Task: Loading and Stability Check Page: of: Job #: 10341720 No: PH.passive.L.seis := 0.5·1.65·1soir(hsoil.L -hbof)2b = 1.648-kip Using only 50% of passive earth pressure coefficient contrbution for resisting side force ~:= PHactive.R + PHseis.R + PHseis.L + PEseis -PH.passive.L.seis = 1.95-kip Calculate Resisting Sliding Force (Mobilized Passive Pressure Method) ~Vupward := (PoL_soil.L) + (PoL_conc.L -0.7PoL_conc.L.seis) + (PoL_wall -0.7PoL_wall_seis) + (PoL_soiLR) ··· = 6.27-kip + (PoL_conc.R -0.7PoL_conc.R.seis) ~Vdownward := (PoL_soil.L) + PoL_conc.L + 0.7PoL_conc.L.seis + PoL_wall + 0.7PoL_wall_seis + (PoL_soil.R) ··· = 7.09-kip + PoL_conc.R + 0.7PoL_conc.R.seis ~:= µsoil ~v upward = 2.82· kip ,b.._:= Ffriction = 2.82-kip FR &:= - = 1.4462 Fslide Checks_A := CHECK+-if(FSs ~ FSs.req• "GOOD", "BAD") CHECK Wall Stability Check (cont} Load Case-2 = "GOOD" EM 1110-2-2100 Table 3-3 Requ red Factors of Safety for Sliding Calculate Bearing Pressure ~:= l.5·qall = 3000-psf Check Upward Seismic Effect EM 1110-2-2100 3-10. AlcmableBearhg Capacity min(MR A.up -MOT A) --= 3.35 ft ~Vupward I Lftg I ~:= 2 -x =0.65ft ~:= CHECK +-if( 0 < x < Lftg, "GOOD" , "BAD") = "GOOD" CHECK Electrical Building RW (Shallow) Lateral Resultant is with in the base. EM 1110-2-2100, Tabe 3-5 Project: Poseidon Computed: AB Date: 10/14/22 Subject: Electrical building Retaining Wall Checked: BAB Date: Task: Loading and Stability Check Page: of: Job #: 10341720 No: aw:= ---'----· 1 + - = 1162.66-psf ~Vupward ( 6-e l b·Lt1:g Lt1:g) ~= ---· 1 - -= 403.69-psf ~v upward ( 6-e l b ·Lt1:g Lt1:g) CHECK Analyze Footing Load Case - 2 Upward Seismic Effect (qi -q21 ( ) ~= qi ---• Lrf = 830.61 -psf Lt1:g ) Footing Reactions {qx· lft·L/ 1 2 17 . Mu LC2 := 1. ---+ -·(q1 -qx)·lft·-·Lrf lj = 10.31 -ft·kip -2 2 3 Electrical Building RW (Shallow) Lateral Project: Poseidon Subject: Electrical building Retaining Wall Task: Loading and Stability Check Job #: 10341720 Check Downward Seismic Effed min(MR A.down -MoT A) )k...:= ---=----__,;;;.-= 3.43 ft ~Vdownward I Lftg I ~:= 2 -x = 0.57ft ~:= CHECK +-if( 0 < x < Lftg, "GOOD" , "BAD") = "GOOD" CHECK ~v downward ( 6· e l ~= ----. 1 + - = 1265.34-psf b • Lftg Lftg ) ~v downward ( 6· e l &;= ----. 1 - -= 506.37-psf b • Lftg Lftg ) CHECK Analyze Footing Load Case - 2 Downward Seismic Effed Electrical Building RW (Shallow) Lateral Computed: AB Date: 10/14/22 Checked: BAB Date: Page: of: No: Resultant is with in the base. EM 1110-2-2100, Tabe 3-5 Project: Poseidon Subject: Electrical building Retaining Wall Task: Loading and Stability Check Job #: 10341720 Footing Reactions Wall Stability Check Load Case-3 LC 3 (Unusual -Construction) : Take 1' strip for analysis. Wall Loading for stability Calculations (hsoil.R -hbof) . Mttat rest:= PHat rest R" ) = 4.57-kip·ft - - - 3 (hsoil.R -hbof) . Mttsurch := PHsurch· 2 ) = 3.656-kip·ft LEFT RESISTING SIDE Computed: AB Checked: BAB Page: No: B DL on left side of wall: DL on right side of wall: Date: 10/14/22 Date: of: RIGHT DRIVING SIDE AW,,.w:= PoL_soil.L + PoL_conc.L = 1923.6 lbf ~:= PoL_soil.R + PoL_conc.R = 3552.5 lbf DL of retaining wall: ~:= l.Qiconc·twalr{htow -hbof)·b = 1200lbf Electrical Building RW (Shallow) Lateral Project: Poseidon Subject: Electrical building Retaining Wall Task: Loading and Stability Check Job #: 10341720 Wall Stability Check (cont} Load Case-3 Check Overturning About Point A: ~:= MHsurch + MHat_rest = 8.23 -kip·ft MRA ~=---=3.28 MoT_A MN,XM/\,t,MIJl;/V\··-CHECK+--if(FSoT_A > 1.0, "GOOD", "BAD") = "GOOD" CHECK Calculate Sliding Force ~:= PHsurch + PHat_rest_R = 2.8· kip Calculate Resisting Sliding Force (OOlrEM Method) J.i)L.:= PoL_conc.L + PoL_wall + PoL.R = 5.8-kip ,b.._:= µsoil ~V = 2.61 -kip FR ~=-=0.932 Fslide Checks := CHECK +--if(FS > FS "GOOD" "BAD" ) = "BAD" S - S.req, , CHECK Computed: AB Date: 10/14/22 Checked: BAB Date: Page: of: No: Note: The above stability calculation shows that the retaining wall fails for the sliding as the contribution of soil on the le-ft. side of the wall is not considered But, during the construction of the wall, soil is not allowed to fill on one side of the wall up at a time, soil needs to be filled in batches on both sides of the wall mantaining a required height. Therefore, soil at-rest pressures is considered on the resisiting side for sliding for the wall design as shown below. Electrical Building RW (Shallow) Lateral Project: Poseidon Computed: AB Date: 10/14/22 Subject: Electrical building Retaining Wall Checked: BAB Date: Task: Loading and Stability Check Page: of: Job #: 10341720 No: Wall Stability Check (cont} Load case - 3 Calculate Sliding Force ~:= 1.~ ~:= PHsurch + PHat_rest_R -PHat_rest_L = 2.3· kip Using at-rest earth pressure coefficient for resisting soil sliding force Calculate Resisting Sliding Force (llOlrEM Method) J.i)L.:= PoL.L + PoL_wall + PoL.R = 6.68-kip FR ~=-=1.304 Fslide rhe"k-:= CHECK +-if(FS > FS "GOOD" "BAD") = "GOOD" ~ S-S.req, , CHECK EM 1110-2-2100 Table 3-3 Requ red Factors of Safety for Sliding Calculate Bearing Pressure ~:= l.15·qall = 2300-psf EM 1110-2-2100 3-10. AlcmableBearhg Capacity min(MR A -MoT A) Jk..:= ---=----=---= 2.81 ft ~v I Lftg I ~:= 2 -x = 1.19ft Length of base in compression MM"fiMNIP.f.-CHECK+-if(X ~ 0.75Lftg, "GOOD", "BAD") = "GOOD" CHECK Electrical Building RW (Shallow) Lateral 75% of base is in compression EM 1110-2-2100, Tabe 3-5 Project: Poseidon Computed: AB Date: 10/14/22 Subject: Electrical building Retaining Wall Checked: BAB Date: Task: Loading and Stability Check Page: of: Job #: 10341720 No: ,&w:= --· 1 + - = 1577.75 -psf :EV ( 6-e l b·Lt1:g Lt1:g) :EV ( 6-e ') &;= --. 1 - -= 91.28-psf b·Lt1:g Lt1:g) ~= CHECK +-if( q1 < qa, "GOOD", "BAD") = "GOOD" CHECK Analyze Footing Load Case - 3 Footing Reactions Electrical Building RW (Shallow) Lateral Project: Poseidon Subject: Electrical building Retaining Wall Task: Loading and Stability Check Job #: 10341720 Calculate Wall Moments and Shear LC 1 (Usual -1.4D+1.6H) No Wa'er present Wal/Loading ~= Hat_resf(hsoil.R -htoi( ¾ )b = 1.8-ft·kip VHat rest:= Hat resf(hsoil.R -htof)2(.!. l).b = 983.13-lbf - -2 LC 1 ultimate reactions for wall reinforcement design Mu:= 1.6(MHat_rest) = 2.884-kip-ft! Vu:= 1.6(VHat_rest) = 1.573-kip LC 2 (Extreme -MOE) : l.ODL+l.6EH+l.OEQ Wal/Loading MHactive := Hactive·(hsoil.R -htof?( ¾ )b = 1201.6-lbf-ft V Hactive := Hactive • ( hsoil.R -htol( ½) b = 65 5 .4 2-lbf MHseis := Hseis·(hsoil.R -htoi( ¾ )b = 582.313-lbf-ft VHseis := Hseis·(hsoil.R -htof?b{½) = 317.63-lbf ~:= Eseis_wa1r(htow -htol(½ )b = 1331.1-lbf-ft LC 2 ultimate reactions for wall reinforcement design ~:= 1.6-MHactive + 1.0(MHseis + MEseis) = 3.836-kip-ft iXJ3.;= 1.6-VHactive + 1.o(vHseis + VEseis) = 1.81 -kip Electrical Building RW (Shallow) Lateral Computed: AB Date: 10/14/22 Checked: BAB Date: Page: of: No: Project: Poseidon Subject: Electrical building Retaining Wall Task: Loading and Stability Check Job #: 10341720 Calculate Wall Moments and Shear (cont) LC 3 (Unusual -Construction) : 1.6DL+l.6EH+l.6ES Wal/Loading ~:= Hsurch·(hsoil.R -htof?(½ )b = 1966.25-lbf-ft Yttsurch := Hsurch·(hsoil.R -htof)b = 715-lbf ~= Hat_resf(hsoil.R -h10i( ¾ )b = 1802.4-lbf-ft ~:= Hat_resf(hsoil.R -h10l(½ )b = 983.13-lbf LC 3 ultimate reactions for wall reinforcement design ~:= 1.6(MHsurch + MHat_rest) = 6.03-kip-ft iXJ3.;= 1.6(VHsurch + VHat_rest) = 2.717-kip Calculated Slab Moments and Shear LC 1 (Usual -Retained Earth. No water present) : Mu_LCI = 8.34-ft·kip Vu_LCI = 4.75-kip LC 2 (Extreme -MDE) : Mu_LC2 = 10.31 -ft-kip Yu_LC2 = 5.58-kip LC 3 (Unusual -Construction) : Mu_LC3 = 13.34-ft-kip Vu_LC3 = 7.01 -kip Electrical Building RW (Shallow) Lateral Computed: AB Date: 10/14/22 Checked: BAB Date: Page: of: No: Project: Poseidon Computed: AB Date: 10/13/2022 1-)~ Subject: Checked: BAB Date: Task: Capacity PaQe: 1 Job#: Electrical Building Retaining Wall (Wall Capacity) RECTANGULAR CONCRETE BEAM/SLAB SECTION ANALYSIS Moment Capacity of Singly or Doubly Reinforced Sections Per ACI 318-14 Code & USACE EM 1110-2-2104 Input Data: Beam or Slab Section? Slab Rebar dia = 0.750 lin. Reinforcing Yield Strength, fy = 60 ksi Clear cover= 3.000 lin. Concrete Comp. Strength, f 'c = 5 ksi Slab Section Width, b = 12.000 in. Depth to Tension Reinforcing, d = 8.625 in. 3inch Cover Total Slab Section Depth, h = 12.000 in. Tension Reinforcing, As = 0.440 in.A2 #6@12c/c Depth to Compression Reinf., d' = 3.375 in. Compression Reinforcing, A's = 0.440 in.A2 IE b ~1 d'= .37f b-j2" ~1 ,-- A's .7 ~ -• • • =0.44 h d d=8.625" • • •·re • • • T As=0.44 As Singly Reinforced Section Doubly Reinforced Section Flexure Strength Results: Stress Block Data: Reinforcing Criteria: ~1 = 0.80 p= 0.00425 c= 1.640 in. pb = 0.03354 a= 1.312 in. p(min) = 0.00354 As(min) = N.A. in.A2 Et= 0.03699 Tension Controlled Section p(temp) = 0.0030 (total for section) c/d= 0.075 As(temp) = 0.216 in.A2/face <=As= 0.44 in.A2, O.K. cp= 0.90 p(max) = 0.01886 0.25 rb = 0.0084 As(max) = 1.952 in.A2 >=As= 0.44 in.A2, O.K. p <= 0.2Spb No Special Study or Investigation Required, O.K Ultimate Moment Capacity: Mu=I 6.050 I <p~n =~6.57 ft-kips Moment Capacity OK f s-N.A. ks1 Note: <pMn should be >= Mu Electrical bldg RW_Conc. Capacity.xlsx-Electrical Bldg RW 1 of 4 2/1/2023 1-)~ Project: Poseidon Computed: AB Date: 10/13/2022 Subject: Checked: BAB Date: Task: Capacity Page: 1b Job#: V23 (Horizontal shear plane) SHEAR STRENGTH: ACI Approach I Vc=2.ffc * bd I Ve= 14.64 ct,Vn= 10.98 Vu=I 2.750 I Concrete Shear Capacity OK Av= 0.000 stirrups spacing= 18.000 Vs= 0.00 q,Vn= 10.98 SHEAR CAPACITY OK Electrical bldg RW_Conc. Capacity.xlsx-Electrical Bldg RW 2 of4 2/1/2023 Project: Poseidon Computed: AB Date: 10/13/2022 1-)~ Subject: Checked: BAB Date: Task: Capacity PaQe: 1 Job#: Electrical Building Retaining Wall (Footing Capacity) RECTANGULAR CONCRETE BEAM/SLAB SECTION ANALYSIS Moment Capacity of Singly or Doubly Reinforced Sections Per ACI 318-14 Code & USACE EM 1110-2-2104 Input Data: Beam or Slab Section? Slab Rebar dia = 0.750 lin. Reinforcing Yield Strength, fy = 60 ksi Clear cover= 3.000 lin. Concrete Comp. Strength, f 'c = 5 ksi Slab Section Width, b = 12.000 in. Depth to Tension Reinforcing, d = 20.625 in. 3inch Cover Total Slab Section Depth, h = 24.000 in. Tension Reinforcing, As = 0.440 in.A2 #6@12c/c Depth to Compression Reinf., d' = 3.375 in. Compression Reinforcing, A's = 0.440 in.A2 IE b ~1 d'= .37f b-j2" ~1 ,-- A's .7 ~ -• • • =0.44 h d d=20.625" • • •·re • • • T As=0.44 As Singly Reinforced Section Doubly Reinforced Section Flexure Strength Results: Stress Block Data: Reinforcing Criteria: ~1 = 0.80 p= 0.00178 c= 1.640 in. pb = 0.03354 a= 1.312 in. p(min) = 0.00354 As(min) = N.A. in.A2 Et= 0.09263 Tension Controlled Section p(temp) = 0.0030 (total for section) c/d= 0.031 As(temp) = 0.432 in.A2/face <=As= 0.44 in.A2, O.K. cp= 0.90 p(max) = 0.Q1855 0.25 rb = 0.0084 As(max) = 4.590 in.A2 >=As= 0.44 in.A2, O.K. p <= 0.2Spb No Special Study or Investigation Required, O.K Ultimate Moment Capacity: Mu=I 13.500 I <p~n =~0.33 ft-kips Moment Capacity OK f s-N.A. ks1 Note: <pMn should be >= Mu Electrical bldg RW_Conc. Capacity.xlsx-Electrical Bldg RW-foo3npf 4 2/1/2023 1-)~ Project: Poseidon Computed: AB Date: 10/13/2022 Subject: Checked: BAB Date: Task: Capacity Page: 1b Job#: V23 (Horizontal shear plane) SHEAR STRENGTH: ACI Approach I Vc=2.ffc * bd I Ve= 35.00 ct,Vn= 26.25 Vu=I 7.000 I Concrete Shear Capacity OK Av= 0.000 stirrups spacing= 18.000 Vs= 0.00 q,Vn= 26.25 SHEAR CAPACITY OK Electrical bldg RW_Conc. Capacity.xlsx-Electrical Bldg RW-foo~ 4 2/1/2023