Loading...
HomeMy WebLinkAboutCUP 2022-0010; CARLSBAD DESALINATION PLANT INTAKE AND DISCHARGE MODIFICATION; GEOTECHNICAL DESIGN REPORT CARLSBAD DESALINATION PLANT INTAKE PHASE 2; 2023-08-01 January 2023 (Revised August 2023) | i Geotechnical Design Report Carlsbad Desalination Plant Intake Phase 2 Poseidon Water Carlsbad, California January 2023 (Revised August 2023) ii | January 2023 (Revised August 2023) January 30, 2023 Kiewit Infrastructure Group 8900 Renner Blvd Lenexa, KS 66219 Attn: Mr. Jimmy Huynh Project Manager Subject: Carlsbad Desalination Plant Intake Phase 2 Geotechnical Design Report This revised geotechnical design report presents geotechnical recommendations to support the design of the project including revising the preferred foundation types to cast-in-drilled hole piles. If you have any questions regarding this report, please do not hesitate to contact the undersigned. We appreciate this opportunity to be of service. Respectfully submitted, HDR ENGINEERING, INC. Matt Dennerline, PE, GE 2955 Senior Engineer - Geotechnical Jim Starick, PE, 77738 Project Manager - Geotechnical Reviewed by Gary R. Goldman, PE, GE 2587 Senior Project Manager - Geotechnical January 2023 (Revised August 2023) | iii Contents 1 Introduction .......................................................................................................................................... 1 1.1 Project Description .................................................................................................................... 1 1.2 Purpose and Scope ................................................................................................................... 1 2 Geotechnical Field and Laboratory Investigations .............................................................................. 3 2.1 Previous Explorations ................................................................................................................ 3 2.2 Subsurface Exploration ............................................................................................................. 3 2.3 Geotechnical Laboratory Testing .............................................................................................. 4 3 Geotechnical Findings ......................................................................................................................... 5 3.1 Existing Surface Conditions ...................................................................................................... 5 3.2 Geologic Setting ........................................................................................................................ 5 3.3 Site Geology .............................................................................................................................. 5 3.4 Groundwater .............................................................................................................................. 6 3.5 Subsurface Conditions .............................................................................................................. 6 3.6 Engineering Properties of Subsurface Materials ....................................................................... 8 3.6.1 Shear Strength ............................................................................................................. 8 3.6.2 In-situ Moisture Content and Density ........................................................................... 8 3.6.3 Corrosion Potential ....................................................................................................... 9 3.7 Scour, Erosion, and Sedimentation Potential............................................................................ 9 3.8 Faulting and Seismicity ........................................................................................................... 10 3.8.1 Faults .......................................................................................................................... 10 3.8.2 Fault Rupture .............................................................................................................. 10 3.8.3 Seismic Ground Shaking ............................................................................................ 11 3.8.4 Liquefaction and Seismically Induced Settlement ...................................................... 13 3.8.5 Lateral Spreading ....................................................................................................... 14 3.8.6 Seiches and Tsunami ................................................................................................. 15 3.8.7 Earthquake-induced Flooding .................................................................................... 15 3.9 Flooding ................................................................................................................................... 15 3.10 Slope Stability .......................................................................................................................... 15 3.11 Static Settlement ..................................................................................................................... 17 4 Geotechnical Recommendations ...................................................................................................... 18 4.1 Pile Foundations ...................................................................................................................... 18 4.1.1 Axial Capacity ............................................................................................................. 18 4.1.2 Lateral Capacity ......................................................................................................... 18 4.2 Micropile Foundations ............................................................................................................. 19 4.3 Retaining Structures ................................................................................................................ 19 4.3.1 Spread Footing Walls ................................................................................................. 19 4.3.2 Sheet Pile Walls ......................................................................................................... 20 4.4 Shallow Foundation Bearing Capacity .................................................................................... 21 4.5 Temporary Roadway Design ................................................................................................... 21 5 Construction Considerations ............................................................................................................. 23 5.1 Earthwork and Dredging.......................................................................................................... 23 5.1.1 Above-Waterline Earthwork ....................................................................................... 23 5.1.2 Waterside Earthwork .................................................................................................. 23 iv | January 2023 (Revised August 2023) 5.2 Pile Construction ..................................................................................................................... 23 5.3 Existing Structure Abandonment ............................................................................................. 24 5.4 Temporary Excavations ........................................................................................................... 24 5.5 Cement Type and Corrosion Measures .................................................................................. 24 6 Limitations ......................................................................................................................................... 26 7 References ........................................................................................................................................ 27 Tables Table 3-1. Generalized Soil Design Parameters – Deck Structure (West End) ........................................... 7 Table 3-2. Generalized Soil Design Parameters – Screen Structure and Deck Structure (Central Portion) ............................................................................................................................................. 7 Table 3-3. Generalized Soil Design Parameters – Deck Structure (East End) ............................................ 8 Table 3-4. Summary of Corrosion Test Results ............................................................................................ 9 Table 3-5. Principal Active Faults ............................................................................................................... 10 Table 3-6. CBC Seismic Design Parameters .............................................................................................. 12 Table 3-7. Deck Structure Seismic Design Accelerations .......................................................................... 13 Table 3-8. Slope Stability Summary ............................................................................................................ 17 Table 4-1. Lateral Load Reduction Factors ................................................................................................. 19 Table 4-3. Lateral Earth Pressures ............................................................................................................. 20 Appendices Appendix A. Figures Appendix B. Existing Geotechnical Data by Others Appendix C. Geotechnical Boring Logs – Current Investigation Appendix D. Geophysical Investigation Appendix E. Laboratory Test Results – Current Investigation Appendix F. Analyses January 2023 (Revised August 2023) | 1 1 Introduction 1.1 Project Description The Poseidon Intake Modifications (Project) are proposed at the Claude “Bud” Lewis Carlsbad Seawater Desalination Plant (CDP) in Carlsbad, California. The goal of the Project is to provide a 299 million gallon per day water source to the existing CDP. Considerations for the proposed improvements will include debris removal, fish screens, and equipment access. We understand that the new intake structure is required as the previous water source from the nearby power plant has been decommissioned and will be demolished. A preliminary report was prepared by HDR (2021) and incorporated recommendations for different design alternatives considered for the Project. A previous Geotechnical Design Report was prepared by HDR (2022a) based on the design-build team’s preference to use driven pile foundations to support the proposed structures. This revised report provides updated recommendations to support the design-build team’s revised preference to use drilled piles. The selected design includes a new pile-supported intake structure that will be installed directly north of the existing intake and will contain a series of bar screens and dual flow fish screens. There are five main structural improvements; (1) A "Screen Structure" supporting the bar and fish screens, (2) a "Deck Structure" allowing crane access for maintenance of the Screen Structure and associated features, (3) an uninhabited "Electrical Building" with equipment supporting the Project's electrical requirements, (4) anchors for the floating debris sorting equipment founded within the existing embankments, and (5) retaining walls above and below water. The Deck Structure will consist of one abutment at each end and multiple bents. The existing slopes will be modified with a retaining wall on the levee west of the Deck Structure and riprap slope protection on the east slope. We understand that foundations proposed for the Project will typically consist of 36-inch cast-in-drilled hole piles. The approximate Project location is shown on Figure 1 in Appendix A. Preliminary design drawings including the locations of the main structural improvements are provided on Figures 2 and 3 in Appendix A. 1.2 Purpose and Scope The purpose of this investigation was to review existing geotechnical data and evaluate data from our geotechnical subsurface explorations and laboratory testing, present results of geotechnical analyses, and provide geotechnical recommendations for the selected design concept alternative. The scope of work for the geotechnical design of this Project includes the following tasks: • Literature Review: Review of various documents pertinent to the Project from previous work at the CDP. A list of references used in preparation of this report is presented in Section 7. Relevant existing geotechnical data are included in Appendix B. Locations of previous explorations are shown on Figures 5 and 6 in Appendix A. 2 | January 2023 (Revised August 2023) • Field Exploration and Laboratory Testing: The subsurface exploration program included drilling, logging, and sampling of borings, as well as performing a geophysical investigation, as described in Section 2.1. Laboratory testing was performed on selected soil samples collected from the field exploration to evaluate the engineering properties of the subsurface soils. The approximate location of borings is presented on Figures 4 and 5 in Appendix A. Boring logs and laboratory test results from HDR’s investigation are included in Appendix C and Appendix D, respectively. • Seismic Analysis: Regional seismicity and encountered subsurface conditions were used to perform a ground motion analysis of the Project for use in structural analysis and design. Seismic hazards were identified and are presented in Section 3.8. • Geotechnical Design and Analysis: Geotechnical analysis was performed using the collected data to develop recommendations for design and construction of the proposed Project. Design and construction recommendations are provided in Sections 4 and 5, respectively. • Report Preparation: Relevant geotechnical data were compiled in this report along with our findings, and recommendations for foundation type selection, and construction recommendations for proposed structure, including seismic design parameters for the proposed Project. • Plan and Specification Preparation and Review: Relevant construction documents including Plans and Specifications were prepared in conjunction with the design team. Plans and Specifications prepared by other design team members were reviewed for conformance with this report. January 2023 (Revised August 2023) | 3 2 Geotechnical Field and Laboratory Investigations 2.1 Previous Explorations Previous geotechnical investigations have been performed at the site by Ninyo & Moore (2013 and 2016), Geologic Associates (2008), and Apex/Group Delta (1994). Investigations included hydrogeologic testing including well pump testing, as well as geotechnical investigations for land-side improvements. However, none of the previous investigations took place within the lagoon itself. Selected historical boring logs and laboratory data are included in Appendix B. Locations of those investigations are presented on Figures 5 and 6 in Appendix A. In addition to the geotechnical investigations, we understand that a dredging project was recently performed which also included bathymetric soundings. The most recent available bathymetric map is presented on Figure 7 in Appendix A. 2.2 Subsurface Exploration HDR’s field exploration consisted of advancing five borings to a maximum depth of about 85 feet below ground surface (bgs). Borings were completed in two phases. In the preliminary phase, three 8-inch-diameter, hollow stem auger borings were advanced within the lagoon to the depth of practical refusal, with final depths ranging from about 46 to 76 feet below mudline. During the final phase, two 6.5-inch diameter, mud rotary borings were advanced on the existing riprap-protected embankments to a maximum depth of about 85 feet bgs. Borings were designated as A-21-001 through A-21-003 for the preliminary phase and R-22-004 and R-22-005 for the final phase. Boring A-21-003 was located in the area of a previously proposed design alternative that is not currently part of the Project, but has been included for completeness. In addition, a geophysical investigation was performed by our subcontractor, Atlas Inc., including two refraction microtremor (ReMi) profiles (RL-1 and RL-2). The ReMi technique used recorded surface waves contained in background noise to develop a one- dimensional shear-wave velocity sounding of the study area down to a depth of approximately 100 feet below ground surface (bgs). The boring and geophysical profile locations were recorded using handheld GPS coordinates. The approximate location of the current explorations are shown on Figures 4 and 5 in Appendix A. Standard penetration tests (SPT) were performed within the borings using a 140-pound automatic hammer falling freely for 30 inches. The samplers were driven for a total penetration of 18 inches, or to refusal, and the blow counts per 6 inches of penetration were recorded. Drive samples were collected from the borings using a modified California split-barrel ring sampler. The field sampling procedures were conducted in accordance with ASTM Standard Specifications D 1586 and D 3550 for SPT and split-barrel sampling of soil, respectively. 4 | January 2023 (Revised August 2023) The test borings were logged in the field by a member of HDR technical staff. Each soil sample collected was reviewed and described in accordance with the Unified Soil Classification System (ASTM D2487). All samples were sealed and packaged for transportation to a subconsultant’s laboratory. Geotechnical logs of the borings are included in Appendix C. A summary of geophysical investigation is provided in Appendix D. 2.3 Geotechnical Laboratory Testing Laboratory tests were performed on selected soil samples to evaluate the geotechnical engineering properties of subsurface materials. The following laboratory tests were performed: • In-situ moisture content and density • Atterberg limits • Grain-size distribution • Direct Shear • Corrosivity (soluble sulfate contents, chloride, pH, and resistivity). All laboratory tests were performed in general accordance with ASTM procedures, except corrosivity tests, which were performed in accordance with Caltrans procedures. Results of the laboratory tests are summarized in Table E-1 and presented in Appendix E. January 2023 (Revised August 2023) | 5 3 Geotechnical Findings 3.1 Existing Surface Conditions The proposed improvements pertaining to this Project predominantly take place within the lagoon itself as shown on Figures 2 and 3 in Appendix A. Near the existing intake structure, the lagoon is bordered with riprap-protected embankments and paved roadways and parking lots. Several pipe structures and pump houses as well as minor dock and wharf structures also exist in the Project area. During our field investigation it was noted that several large underground concrete vault or pipe structures exist, especially those connecting to the ‘pond’ water area on the west of the proposed improvements. Surfaces were generally paved and land-side surface elevations in the immediate area of our field investigations ranged from about +5 feet to +15 feet National Geodetic Vertical Datum of 1929 (NGVD 29). Within the lagoon, depths to mudline ranged from about -10 to -19 feet NGVD 29 at our boring locations. A clam-farming operation exists in the lagoon and we understand that it will remain after improvements are constructed. Based on our discussions with the project team, we understand that a recent dredging project was undertaken and completed in 2021. Based on our review of the before and after bathymetry, minor or no dredging occurred at the locations of interest for this Project. 3.2 Geologic Setting The Project area is in the Peninsular Ranges Geomorphic Province. Agua Hedionda Lagoon is the mouth of a river cut valley, typical of the several estuaries that indent the southern California coast. The valley was cut into sedimentary rocks that deeply bury the older metamorphosed volcanic rocks (the Santiago Peak Volcanics of Jurassic Age) which crop out approximately two miles east of the head of the lagoon. The volcanics and associated intrusive igneous rocks of the Southern California Batholith underlie most of the drainage basin of Agua Hedionda Creek (CDFG, 1976). 3.3 Site Geology Geologic units encountered during the previous and current explorations, as well as mapped by CGS (2012) within the Project’s footprint included artificial fill (af), alluvium (Qol), and Santiago Formation bedrock (Tss). Generalized descriptions of these units are provided below. Detailed subsurface conditions are provided on the geotechnical boring logs in Appendix C. A geologic map is presented on Figure 8 in Appendix A. A subsurface cross section is presented on Figure 9 in Appendix A. Artificial Fill (af) Artificial fill was encountered during HDR’s current investigation in the borings performed within the existing rip-rap protected embankments. Artificial fill was also noted during previous investigations and may be expected in areas of dry land where fill may have been placed to raise the grade to its current location. The thickness of the artificial fill 6 | January 2023 (Revised August 2023) encountered during our investigations ranged between about 10 to 14 feet bgs (corresponding bottom elevations ranging from about -2 feet to -3 feet NGVD 29) within the explored areas. Deeper and/or lower quality fill may be encountered at other locations not drilled within the Project site. Generally, the artificial fill encountered during our investigations and by others consists of lean clay, silty to clayey sand with some gravel and occasional cobbles. Alluvium (Qol) Old lacustrine deposits were noted overlying the Santiago Formation. Previous investigations noted that this soil unit contained gravel, shells, and cobbles, and ranged from loose to medium dense. In the current investigation, these deposits generally ranged from medium dense to dense sands with varying amounts of silt or clay and sometimes included shells. Santiago Formation Bedrock (Tss) The previous explorations identified Santiago Formation bedrock at typical depths ranging from about 10 to as deep as 182 feet bgs in the Project area. It was generally encountered as weakly to strongly cemented clayey sandstones and silty claystone. During our investigations near the proposed improvements, the formation was encountered at depths ranging from about 3 to 7 feet below mudline (corresponding elevations ranging from about -13 to -26 feet NGVD 29) for the borings within the lagoon and at depths ranging from about 24 to 34 feet bgs (corresponding elevations ranging from about -19 to -23 feet NGVD 29) for the borings performed within existing embankments. 3.4 Groundwater Groundwater in the Project Area is near sea level and influenced by tidal levels. Design groundwater elevation at approximately +5 feet NGVD 29 was considered for geotechnical analyses. For the slope stability analyses, a lower water elevation of -2 feet NGVD 29 was also considered. Additionally, various tidal levels may need to be considered for different phases of the design. Groundwater was encountered in our borings at approximately -2 and -6 feet NGVD during drilling, but stabilized readings were not taken. 3.5 Subsurface Conditions Based on our review of existing data, surface conditions near existing shoreline at the project area predominantly consist of fill in the upper 10 to 20 feet below ground surface (bgs). The fill generally consists of silty to clayey sand with some gravel and occasional cobbles. This fill is noted in our boring logs which were drilled within the existing embankments. HDR’s Borings A-21-001, A-21-002, R-22-004, and R-22-005 were performed at the southern end of the lagoon near the location of the proposed Alternative 22 improvements. In the upper 30 feet bgs, the soils encountered consisted predominately of loose to dense silty sand and clayey sand with varying amount of gravel for the borings performed on the existing embankments (R-22-004 and R-22-005). A layer of lean clay with sand was also January 2023 (Revised August 2023) | 7 encountered in the upper 5 feet in Boring R-22-005. The mudline was encountered at depths of about 10 to 19 feet below sea level in Borings A-21-001 and A-21-002. From the mudline downward, approximately the upper 5 feet of soil consisted of a medium dense clayey sand. Beneath this layer, the Santiago Formation was encountered. The composition of this formation was generally sandstone with occasional rock clasts, fine sand, and varying fines content. It was recovered as a very dense soil, or a relatively soft rock. Generalized design soil profiles are provided in Table 3-1, Table 3-2, and Table 3-3 below. A subsurface cross section at the approximate location of Alternative 22 improvements is provided on Figure 9 in Appendix A. It is noted that the depths to the Santiago Formation vary greatly in the Project area, as described in Apex/Group Delta (1994) due to historical incision of the bedrock from stream flow action. Based on our review of existing data, the depth to the Santiago formation generally forms a trench whose nadir is located a few hundred feet north of the southern limit of the lagoon. Table 3-1. Generalized Soil Design Parameters – Deck Structure (West End) Generalized Soil Type Elevation1 (feet NGVD 29) Total Unit Weight (pcf) Static Friction Angle (degrees) Cohesion (psf) Sand, Fill +8 to -4 120 30 200 Sand, Native -4 to -23 120 32 50 Santiago Formation Below -23 130 36 100 Notes: pcf=pounds per cubic foot, psf=pounds per square foot 1 All elevations are approximate, and the ground surface profile varies from about elevation +6 feet at each end to -20 feet in the center of the structure. Table 3-2. Generalized Soil Design Parameters – Screen Structure and Deck Structure (Central Portion) Generalized Soil Type Elevation1 (feet NGVD 29) Total Unit Weight (pcf) Static Friction Angle (degrees) Cohesion (psf) Sand, Fill, Upper Sediment mudline to -26 120 32 -- Santiago Formation Below -26 130 36 100 Notes: pcf=pounds per cubic foot, psf=pounds per square foot 1 All elevations are approximate, and the ground surface profile varies from about elevation +6 feet at each end to -20 feet in the center of the structure. See Appendix F for soil design parameters used in slope stability analyses. - - 8 | January 2023 (Revised August 2023) 3.6 Engineering Properties of Subsurface Materials Engineering properties of the subsurface materials were developed based on results of geotechnical field and laboratory tests performed during our subsurface explorations. Results of these laboratory tests are presented in Appendix E and summarized in Table E-1. These test results are briefly discussed below. 3.6.1 Shear Strength Based on the direct shear test results, the cohesion intercept (c) and friction angle (φ) representing the effective ultimate shear strength of the soils tested ranged from about 50 pounds per square foot (psf) to 200 psf and 30 to 37 degrees, respectively. It is noted that blow count data suggests that the Santiago Formation materials are very dense, with sampler refusal encountered in every case. However, direct shear samples tested in this material were limited to zones where sampler recovery was good, gravel was not present, and is subject to sample disturbance and stress relief. Therefore, direct shear testing is likely conservative compared to the actual shear strength in this formation. Based on the laboratory test results, SPT blow counts, and soil types, generalized design shear strength parameters and unit weights were developed for various soil types at the Site. These parameters are presented in Table 3-1, Table 3-2, and Table 3-3; and grouped based on soil type. Specific soil strength parameters used in the pile capacity and slope stability analyses are presented in Section 3.5 and in Appendix F, respectively. 3.6.2 In-situ Moisture Content and Density Selected samples were tested for in-situ moisture content and density. In-situ moisture contents and dry densities ranged from about 7 to 38 percent (19 percent average) and from 102 to 123 pcf (111 pcf average), respectively. Table 3-3. Generalized Soil Design Parameters – Deck Structure (East End) Generalized Soil Type Elevation1 (feet NGVD 29) Total Unit Weight (pcf) Static Friction Angle (degrees) Cohesion (psf) Sand, Fill +8 to -7 120 30 200 Sand, Native -7 to -17 120 32 50 Sand, Native (Post Liquefaction) (2) -7 to -12 120 -- 180 Sand, Native (Post Liquefaction) (2) -12 to -17 120 21 -- Santiago Formation Below -17 130 36 100 Notes: pcf=pounds per cubic foot, psf=pounds per square foot 1 All elevations are approximate, and the ground surface profile varies from about elevation +6 feet at each end to -20 feet in the center of the structure. 2 For post liquefaction analysis per Caltrans (2017). See Appendix F for soil design parameters used in slope stability analyses. -- January 2023 (Revised August 2023) | 9 3.6.3 Corrosion Potential Soil samples from previous and current investigations were subjected to analytical testing to evaluate the potential for corrosion to concrete and ferrous metals using Caltrans Corrosion Guidelines (2018a). Caltrans guidelines define a corrosive soil as a material in which any of the following conditions exist: a chloride content greater than 500 parts per million (ppm); soluble sulfate content greater than 1,500 ppm; or a pH of 5.5 or less. The tests referenced in this report are only a screening process for indication of soil corrosivity. A summary of corrosion test results including both historical and current data is presented in Table 3-4. The subsurface soils at the site, including all samples tested during the current investigation, have a very high chloride content and very low resistivity and are therefore considered highly corrosive. Table 3-4. Summary of Corrosion Test Results Source Boring Number Sample Depth (feet) pH Minimum Resistivity (ohm-cm)1 Sulfates (ppm)2 Chlorides (ppm)3 Ninyo and Moore, 2013 B-6 3-5 9.2 660 160 320 Ninyo and Moore, 2016 GHD-1 40-45 6.9 190 580 2,640 GHD-2 1-4 6.7 1,200 920 90 GeoLogic, 2008 B-9 2-4 8.3 1,050 49 Not Tested B-11 0-3 8.4 5,300 33 B-12 0-2 8.6 7,500 29 B-17 1-3 7.3 500 416 B-18 1-3 7.9 1,400 40 HDR, 2021 and 2022 A-21-001 10 7.1 96 532 3,772 A-21-001 35 8.5 81 598 5,138 A-21-002 20 8.3 115 463 3,140 A-21-003 30 7.6 84 401 6,107 R-22-005 25 8.8 458 659 900 Notes: 1. Text marked in bold where resistivity is considered ‘Severely corrosive’ (NACE, 1984). 2. Sulfate Class indicated per recommendations of American Concrete Institute (2019) is S0 in all cases, however concrete should be designed for Class S1 due to the presence of seawater. 3. Text marked in bold where chloride content is considered high (Caltrans 2018a). - ohm-cm = ohm centimeters; ppm = parts per million 3.7 Scour, Erosion, and Sedimentation Potential We understand that based on the selected alternative, flows within the lagoon may change from their current conditions. Although outside the scope of our work, we recommend that scour be evaluated by a hydrologist prior to final design. Severe scour is not anticipated within the Santiago Formation, although upper sands may be more susceptible to scour. We understand that, under current lagoon flow regimes, sedimentation of the lagoon occurs and requires periodic dredging. The effects of sedimentation on proposed ---------------- 10 | January 2023 (Revised August 2023) improvements should also be considered, with the influence of proposed improvements’ flows also incorporated into design assumptions. 3.8 Faulting and Seismicity 3.8.1 Faults Like most of Southern California, the Project area is considered to be seismically active. Our review of available in-house literature indicates that there are no known active or potentially active faults that have been mapped at the site, and the site is not located within a State of California Earthquake Fault Zone (EFZ) (formerly known as an Alquist-Priolo Special Studies Zone) (Bryant and Hart, 2007). There are several major faults in the Project area; Table 3-5 lists seven of the faults with the highest risk contribution near the Project and reports fault distance and magnitude. The faults are sorted by risk contribution using data developed by the U.S. Geological Survey (2023). A fault map is provided on Figure 10 in Appendix A. Faulting information is provided only for site characterization. Design ground motion methodology is described in Section 3.8.3 Table 3-5. Principal Active Faults Fault Name RRUP (kilometers)1 Moment Magnitude1 975-yr Return Period 2475-yr Return Period Rose Canyon Fault Zone (RCFZ) 6.8 6.8 6.9 Oceanside 13.2 7.0 7.0 Carlsbad 12.5 7.1 7.2 Elsinore Temecula Section 38.0 7.6 7.7 Rose Canyon 7.1 6.5 6.6 San Jacinto Anza Section 77.0 8.1 N/A2 Coronado Bank 32.4 7.5 N/A2 Notes: 1. Faults sorted by risk contribution utilizing a 975-year and 2,475-year return period for Site Class C and conterminous dynamic 2014 fault data. Rrup = closest distance from the site to fault rupture plane which is calculated using USGS (2023) methodology. Magnitude per USGS (2023) data. 2. Faults not included on results for 2,475-year return period due to low risk contribution. 3.8.2 Fault Rupture Based on our review of the referenced reports and geologic maps, the Project is not traversed by any known active or potentially active faults. Therefore, the risk of surface fault rupture for the project is considered low. January 2023 (Revised August 2023) | 11 3.8.3 Seismic Ground Shaking To reduce the effects of ground shaking produced by regional seismic events, seismic design should be performed in accordance with the applicable building codes. The basis of design is documented in the Project’s Preliminary Design Report (HDR, 2022b). We understand that the design for the proposed Screen Structure and Electrical Building will be based on the 2019 California Building Code (CBC) and the Deck Structure will be based on AASHTO (2017). The seismic parameters for the screen structure and electrical building are provided in Table 3-6 and were estimated using the SEA/OSHPD Hazard Tool (SEA, 2021) and in accordance with the 2019 California Building Code (CBC) and ASCE/SEI 7-16 Standard (ASCE, 2016). The soils at the electrical building location are potentially liquefiable and therefore classified as Site Class F. In accordance with Section 20.3.1 of ASCE7-16, the electrical building may be designed using Site Class D values if the fundamental period of the structure is less than 0.5 seconds. The value of the seismic response coefficient, CS, shall be determined by Equation 12.8-2 (ASCE, 2016) as limited and described in Section 11.4.8 (ASCE, 2016). The spectral accelerations for the Deck Structure are provided in Table 3-7. The values are based on Caltrans Seismic Design Criteria 2.0 using their application, ARS Online version 3.0.2. The Caltrans criteria is based on the procedures in AASHTO, 2017 with modifications applicable to California including near-fault and basin-amplification factors. The acceleration response spectrum (ARS) to be used for design of ‘ordinary bridges’ is based on a probabilistic analysis using a 975-year return period (5 percent in 50 years) which is considered equivalent to AASHTO and considers adjustments for near-fault and basin-amplification factors. The adjustment factor for near-fault effects was not applicable based on the deaggregated mean distance for spectra acceleration at a period of 1.0 second, which is 29.1 kilometers. Basin effects are not applicable due to the shallow bedrock at the site. A shear wave velocity for materials within 30 meters of the surface (Vs30) of 312 meters per second was used based on the refraction microtremor (ReMi) profiles. 12 | January 2023 (Revised August 2023) Table 3-6. CBC Seismic Design Parameters Category Screen Structure Electrical Building Site Class C – Soft Rock F / D – Stiff Soil (4) Latitude 33.13864 33.13848 Longitude -117.33808 -117.33790 Mapped (5% damped) spectral response acceleration parameter at short period (0.2 sec), SS 1.112 Mapped (5% damped) spectral response acceleration parameter at long period (1.0 sec), S1 0.4 Short period (0.2 sec) site coefficient, Fa 1.2 1.2 Long period (1.0 sec) site coefficient, Fv 1.5 1.9 Long-period transition period (TL) 8 -- Spectral response acceleration parameter at short period (0.2 sec), SMS 1.334 Spectral response acceleration parameter at long period (1.0 sec), SM1 0.6 0.76 Design (5% damped) spectral response acceleration parameter at short period (0.2 sec), SDS 0.889 Design (5% damped) spectral response acceleration parameter at long period (1.0 sec) SD1 0.4 0.51 Vertical Coefficient, Cv 1.122 1.322 Design Response Spectrum Peak Ground Acceleration (g) (1) 0.36 MCEG Peak Ground Acceleration (PGA) (g) (2) 0.493 Site Modified PGA (PGAM) (g) (2) 0.591 Seismic Design Category (3) D Notes: 1. Based on a Risk Category IV. Seismic Design Category to be confirmed by structural engineer. 2. Based on ASCE/SEI 7-16 section 11.4.6 3. Based on ASCE/SEI 7-16 mapped values 4. See commentary in ASCE/SEI 7-16, Section 11.4.8 for site-specific ground motion analysis and “Exception note” 2. January 2023 (Revised August 2023) | 13 Table 3-7. Deck Structure Seismic Design Accelerations Period(s) Design Sa(g) 0 0.41 0.1 0.73 0.2 0.98 0.3 1.01 0.5 0.88 0.75 0.67 1 0.52 2 0.25 3 0.16 4 0.11 5 0.08 Notes: 1. Mean magnitude (for PGA) 6.67 2. Mean site-source distance (km, for Sa at 1s) 29.1 3.8.4 Liquefaction and Seismically Induced Settlement Liquefaction is the loss of soil strength or stiffness due to a buildup of pore-water pressure during ground shaking. Liquefaction is associated primarily with loose (low density), saturated, fine- to medium-grained, cohesionless soils. Effects of liquefaction can include sand boils, settlement, bearing capacity failures, and lateral spreading. Seismically induced settlement consists of dry dynamic settlement (above groundwater) and liquefaction-induced settlement (below groundwater). This settlement occurs primarily within loose to moderately dense sandy soil due to reduction in volume during and shortly after an earthquake event. The Project is located within an area designated as potentially liquefiable by the County of San Diego (2021). A liquefaction susceptibility map is provided on Figure 11 in Appendix A. Liquefaction analyses were performed using the Boulanger and Idriss (2014) methodology and a 0.41 peak ground acceleration (pga) at the locations near the proposed improvements. The pga corresponding to the Deck Structure was use because it is the primary improvement affected by liquefaction. A design groundwater elevation of +5 feet NGVD 29 was considered in the liquefaction analyses (as discussed in Section 3.4). Due to high design groundwater levels, dry sand settlement was negligible. Based on the liquefaction analyses, granular soils layers existing between approximate depths of 15 and 25 feet bgs are susceptible to liquefaction for the proposed improvements located within the existing east embankment (i.e., slope east of the Deck Structure) with estimated liquefaction settlement up to approximately 3 inches. For the improvements located within the west embankment and lagoon (i.e., intake structure) and the Electrical Building location, liquefaction is not anticipated. Design considerations for liquefaction mitigation are provided in Section 4. 14 | January 2023 (Revised August 2023) 3.8.5 Lateral Spreading Lateral spreading is a type of landslide motion generally characterized by progressive cracking and ground motion near a slope face. Lateral spreading is generally associated with liquefiable soils which allow the slope face and surrounding area to flow during or shortly after earthquake ground motions. Lateral spreading was evaluated based on Caltrans design procedures described in Memo to Designers 20-15 (Caltrans, 2017). Flow liquefaction is not assumed at the site. However, restraining action (pile pinning effect) of the foundations may occur. Calculations indicate that lateral spreading forces may be expected for piles penetrating the east embankment. Estimation of lateral spreading and pile pinning effects was performed in general accordance with the recommendations of Caltrans (2017) and utilizing the equations of Bray and Travasarou (2007). A simplified summary of the procedure is as follows: 1. Perform a slope stability analysis to evaluate the performance of the slope without the presence of piles or other restraints. 2. Impart a range of restraining forces on the slope and estimate their corresponding yield acceleration (the required ground acceleration to cause slope failure) to compile a relationship of restraining force versus yield acceleration. 3. Using the above relationship, and for a given earthquake (Mw and PGA), develop estimated displacements versus a range of slope forces. 4. Model the bridge’s piles in a pile load versus displacement (p-y) displacement program such as LPILE, using a liquefied soil profile as appropriate. 5. Impart soil motion corresponding to the deformed slope shape and estimate the load that the pile contributes to resisting slope motion. 6. Repeat the above step for a range of slope displacements to compile a relationship of slope displacement versus force contributed from the piles into the slope. 7. Impart resisting structural force from the bridge foundations that are not subjected to lateral spread. This force was modeled as a simple spring with a response of 1,400kips per inch of lateral movement based on input from the structural design team. 8. Compare the results from Steps 3, 6, and 7 to estimate the equilibrium between the three models: the location at which the slope model and pile model and structural response agree on slope displacements, pile-head displacements, and total slope forces. Further details of the slope stability analysis are presented in Section 3.10. The equilibrium case has a slope deformation of approximately 0.8 inches and results in pile-head displacement of approximately 0.7 inches. The results of the lateral pile analyses for the equilibrium case are presented on Figures 18 through 26 in Appendix F. The mobilized soil reaction is presented in units of pounds per inch of pile depth. Additional details of the lateral pile analyses are presented in Section 4.1.2. January 2023 (Revised August 2023) | 15 3.8.6 Seiches and Tsunami Seiches are large waves generated in enclosed bodies of water in response to ground shaking. Tsunami are waves generated in large bodies of water by fault displacement or major ground movement. The State of California (2009) maps the project site within a tsunami inundation area. Additionally, the proposed improvements are located within an enclosed body of water that may be susceptible to seiche action. Therefore, the risks of seiche and tsunami exist. A site-wide safety and operational plan should be developed for safety and operational measures during a potential seiche or tsunami event. Although outside the scope of this geotechnical report, the potential for seiche or tsunami should be considered in the design of project elements that may be adversely impacted. A tsunami inundation map is presented on Figure 12 in Appendix A. 3.8.7 Earthquake-induced Flooding Earthquake-induced flooding is caused by dam failures or other water-retaining structure failures as a result of seismic shaking. Our review of the California Department of Water Resources Map (CADWR, 2021) found that the project area is not located within areas of potential susceptibility to dam inundation. The potential for earthquake-induced flooding is considered low. 3.9 Flooding Our review of the San Diego GIS Map (SANDAG, 2021) found that the project area is located within a 100-year floodplain. Therefore, the potential for flooding at the Project site exists. 3.10 Slope Stability Based on review of conceptual plans (HDR, 2022), a cross section that represent the west and east embankments at the southern end of the lagoon was developed. Cross section A-A’ (as shown in Appendix A, Figure 9) is the most critical cross section at the Project site. Therefore, this cross section was selected for further analysis in this report. The slope stability analyses included existing and proposed cases for the west and east embankments. The design groundwater levels and soil profiles used in the analyses are presented in Sections 3.4 and 3.5, respectively. The limit equilibrium method available in SLOPE/W slope stability software (Geo-Slope International, 2020) was used to estimate the factor of safety (FOS) against sliding for static, pseudo-static, and post liquefaction cases for the existing and proposed conditions. The global stability of the proposed retaining walls located at the existing west and east embankments was analyzed to confirm the required wall loads for global stability. A special case involving heavy loading of the west embankment during construction was considered. It indicated that tracked loading in the range of 4,000 pounds per linear foot (into section) per track was generally stable for temporary construction conditions. For loads approaching this value, or where heavy point loads or vibrations are anticipated on the levee section, stability of the operation should be considered further. 16 | January 2023 (Revised August 2023) For pseudo-static analyses, a horizontal seismic coefficient (kh) of one-third of the seismic PGA was used in general accordance with the recommendations per Caltrans (2020a) because the Deck Structure is primarily affected by slope stability. Additionally, potentially liquefiable layers were analyzed at the east embankment (see Table 3-3 for layer thickness) using residual strength values in general accordance with the recommendations per Caltrans (2020a and 2020b). Cases were evaluated for both high water (elevation +5 feet NGVD29) and low water (elevation -2 feet NGVD) levels. A rapid drawdown case was not considered a design condition but could potentially occur under extreme tidal conditions. Our analysis indicates that the proposed slopes/walls can be designed to have a global factor of safety of at least 1.5 and 1.1 for static and pseudo-static conditions, respectively. The results are summarized in Table 3-8 and included in Appendix F. Although factors of safety are greater than 1.0, restraining action (pile pinning effect) of the foundations in the east embankment due to lateral spreading may occur based on Caltrans design procedures described in Memo to Designers 20-15 (Caltrans, 2017) as discussed in Section 3.8.5. Existing and proposed slopes within the lagoon that support improvements and operations should be protected with riprap or similar protection to provide surficial stability. Riprap protected slopes are expected to be surficially stable. January 2023 (Revised August 2023) | 17 Table 3-8. Slope Stability Summary Figure in Appendix F Slope Condition Load Case1 Water2 FOS Wall Loading (kips per foot of wall) 1 West Existing Static High 1.87 n/a 2 West Existing Seismic High 1.09 n/a 3 West Existing Equipment Load High 1.47 n/a 4 West Proposed Slope with Wall Static High 1.54 1 5 West Proposed Slope with Wall Seismic High 1.10 3 6 West Proposed Slope with Wall Static Low 1.57 3 7 West Proposed Slope with Wall Seismic Low 1.08 3 8 East Existing Static High 2.72 n/a 9 East Existing Seismic High 1.43 n/a 10 East Existing Post-Liquefaction High 1.54 n/a 11 East Proposed Slope with Riprap Static High 2.21 n/a 12 East Proposed Slope with Riprap Seismic High 1.37 n/a 13 East Proposed Slope with Riprap Post-Liquefaction High 1.31 n/a 14 East Proposed Static Low 1.88 n/a 15 East Proposed Seismic Low 1.31 n/a 16 East Proposed Post-Liquefaction Low 1.10 n/a Notes: 1 Seismic cases use kh = 0.137. Other cases kh = 0. 2 High water case elevation +5 feet NGVD29, low water case elevation -2 feet NGVD29 3.11 Static Settlement Deep, saturated layers of silts and clays which are prone to settlement issues are generally not prevalent near the proposed improvements. Foundations are proposed on pile foundations which will derive support from deeper relatively incompressible layers. Therefore, based on the proposed improvements and the lack of compressible soils present, static settlement is not anticipated to be a design issue. ---- ---- 18 | January 2023 (Revised August 2023) 4 Geotechnical Recommendations Based upon HDR’s evaluation of the subsurface conditions and geologic information (obtained from previous geotechnical reports by other consultants or available online resources), our conclusion is that the proposed Project is feasible from a geotechnical standpoint provided that the recommendations presented in this report are properly incorporated in the design and construction of the Project. The recommendations in this report are considered a minimum and may be superseded by updated geotechnical recommendations or more stringent requirements of the structural engineer and/or the governing agencies. HDR should be notified, in a timely manner, of changes in the Project plans that might impact recommendations in this report. 4.1 Pile Foundations We understand that the preferred foundations for the proposed improvements are 36-inch diameter CIDH piles. Driven 24-inch octagonal precast concrete piles were previously considered, but were not selected due to difficulty and uncertainty of driving in the Santiago Formation. The 36-inch CIDH piles may be constructed using steel casing. Structural capacity of the steel casing should not be considered if the steel casing is not designed to withstand corrosive soils and seawater. 4.1.1 Axial Capacity Axial capacities for 36-inch CIDH piles were estimated using SHAFT software (Ensoft, 2017). Pile capacity was estimated using skin friction only, with end bearing neglected due to the difficulty for good cleanout in underwater drilling conditions. Scour was not considered in the design since scour protection around the piles is planned. Based on discussions with the design team, we understand that the nominal resistances of the piles are in the range of 300-600 kips. It is recommended that a strength limit resistance factor of 0.7 be used for axial capacities in accordance with Caltrans Amendments to AASHTO LRFD Bridge Design Specifications – 8th Edition (Caltrans, 2022). Pile capacities will be dependent on final loading conditions, pile spacing, and other factors and should be confirmed during final design. The pile capacity chart for CIDH piles is provided on Figure 17 of Appendix F. 4.1.2 Lateral Capacity Lateral capacities for 36-inch CIDH piles were estimated using LPILE (Ensoft, 2019b). A critical pile length (beyond which, additional lateral capacity is not gained) of 30 to 35 feet was estimated. Lateral capacity analyses were performed for the lateral spreading evaluation described in Section 3.8.5. Additional lateral capacity analyses for specific layouts, connections, and load conditions are being performed by the project structural engineers. Soil parameters presented in Table 3-1, Table 3-2, and Table 3-3 may be used. Pile groups with center-to-center spacing of less than 8 diameters should use the P- multiplier values listed in Table 4-1. January 2023 (Revised August 2023) | 19 Table 4-1. Lateral Load Reduction Factors Center-to-Center Pile Spacing in the Direction of Loading P-Multipliers Row 1 Row 2 Row 3+ 2.0 B 0.60 0.35 0.25 3.0 B 0.75 0.55 0.40 5.0 B 1.0 0.85 0.70 7.0 B 1.0 1.0 0.90 Source: Caltrans Amendments to AASHTO (2019). Notes: P-multipliers are ratio of load resistance of piles in group to a single pile B = diameter or width of the pile 4.2 Micropile Foundations Micropile-supported foundations are proposed at the debris-sorting station and other non- inhabited equipment foundations. A micropile is a small diameter, drilled and grouted non- displacement pile that is typically reinforced. A micropile is constructed by drilling a borehole, placing steel reinforcement, and grouting the hole. Battered micropiles are proposed to resist lateral forces acting on the equipment foundations. Micropile design should be based on the procedures in the FHWA Micropile Design and Construction Reference Manual (FHWA, 2005). A grout to ground ultimate bond strength (αbond) of 10 psi is recommended for the geotechnical capacity. 4.3 Retaining Structures 4.3.1 Spread Footing Walls Spread footing cantilever retaining walls are proposed at various locations throughout the project to support improvements at different elevations. The maximum retained height of these walls is expected to be approximately 6 feet. Spread footing retaining walls are only proposed above groundwater. Table 4-2 provides a set of equivalent fluid pressure (EFP) values for the design of earth- retaining structures at the project site. The EFP concept is commonly used in the estimation of the design lateral earth pressures applied to a retaining wall or shoring system. EFP is expressed as the unit weight of a fluid (in pcf), which would generate a hydrostatic pressure equal to the anticipated lateral earth pressure at a given depth. This horizontal pressure is applied to a vertical plane extending up from the heel of the wall base, and the weight of soil above the wall heel is included as part of the wall weight. A soil total unit weight of 120 pcf may be used for calculating the weight of the unsaturated soil over a structure and an effective unit weight of 60 pcf may be used for saturated soil below the applicable design water level. 20 | January 2023 (Revised August 2023) Table 4-2. Lateral Earth Pressures Condition Equivalent Fluid Pressure (pcf) Level Ground Retained 2H:1V slope Active 40 63 At-Rest 60 86 Passive 360 (to maximum 4,000 psf) N/A Seismic Increment (1) 21 34 Notes: pcf = pounds per cubic foot; psf = pounds per square foot, EFP = equivalent fluid pressure 1 Assumed to act in addition to other loadings; see detail in this report section. The above values do not contain a factor of safety. The structural engineer should apply the applicable factors of safety and/or load factors during design. Surcharge live loads should be added based on actual conditions or minimum requirements from the applicable codes. The peak ground acceleration used for calculating seismic earth pressure is 0.36g (corresponding to SDS/2.5). The seismic value presented in Table 4-2 should be used in addition to the static earth pressures and should be factored as appropriate. This seismic earth pressure may be assumed to act with a similar load distribution as static earth pressure. Forces resulting from wall inertia effects are expected to be minimal for non- gravity walls and may be ignored in estimating the seismic lateral earth pressure. Drained soil conditions were assumed to develop the design values in Table 4-2 (groundwater level was considered to be below the toe of the wall). Proper drainage should be provided behind the walls to prevent buildup of hydrostatic pressure behind the walls. Resistance to lateral loads can be provided by friction developed between the bottom of footings and the supporting soil and by the passive soil pressure developed on the face of the footings. For design purposes, an allowable coefficient of friction of 0.45 between wall footings and foundation soils may be used. It is recommended that all retaining walls be backfilled with non-expansive granular soils. Backfill for retaining walls should be compacted to a minimum of 95 percent relative compaction (based on ASTM D1557) with moisture content within the limits of the optimum moisture to two percent above optimum moisture content. To mitigate the effects of over- stressing the wall, relatively light construction equipment should be used to achieve the compaction requirement behind retaining walls. 4.3.2 Sheet Pile Walls Sheet pile retaining walls are proposed at the edge of the lagoon to accommodate the proposed deck and screen structures. The combined length of the walls is approximately 200 linear feet and they will retain approximately 25 vertical feet of soil. The sheet piles will be installed a nominal depth into the Santiago Formation and supported by king piles installed to deeper depths. The design of the sheet pile wall is being performed by the structural design team. The soil parameters provided in Table 3-1 and Table 3-3 may be January 2023 (Revised August 2023) | 21 used to calculate lateral earth pressures. Lateral pressures on the walls should also consider surcharge loads, sloping backfill, seismic forces, and differential hydrostatic pressures. 4.4 Shallow Foundation Bearing Capacity Shallow foundations are proposed for the site retaining walls, equipment pads, and enclosures. These shallow foundations, having a minimum embedment of 2 feet below adjacent grade, may be designed for an allowable bearing pressure of 2,000 psf. The allowable bearing pressure may be increased by 200 psf for each additional foot of embedment, up to a maximum of 4,000 psf. Shallow foundations should be constructed on a minimum of 12 inches of compacted engineered fill. The allowable pressure may be increased by one third for short-term loading. A mat foundation is proposed for the electrical building based on minimum CBC requirements for life safety. However, liquefaction settlement during an earthquake could damage the electrical building and utility connections making it unoccupiable. The allowable bearing capacity recommendations above may be used for design of the mat foundation for bearing failure. The mat should also be designed for anticipated static settlements. Portions, or all, of the electrical building may be located above existing underground structures to be abandoned in place (see recommendations in Section 5.3). Settlement of the mat foundation not over existing structures may be estimated using a modulus of vertical subgrade reaction of 100 pounds per cubic inch. For resistance to lateral loads, a coefficient of friction of 0.45 between the mat and foundation soils may be used. 4.5 Temporary Roadway Design We understand that during the CDP Phase 2 Intake construction the existing access to the Aquafarm facility north of the project will be restricted. Two temporary access driveways will be installed to provide vehicular access to the Aquafarm from Carlsbad Boulevard during construction. Once construction on the CDP Intake project is completed (approximately 12 months), the curb, gutter, and sidewalk will be returned to match existing conditions. These temporary driveways will be similar in design to the driveway that was previously constructed for Phase I, now removed. We understand that the Phase I design included a 4-inch section of hot mix asphalt (HMA) over 4 inches of Class 2 aggregate base. We understand that the driveways are intended to serve only for the duration of construction which is temporary in nature. However, we also understand that the City of Carlsbad prefers the driveways to meet a permanent driveway construction standard. Construction traffic is not anticipated to use these driveways which serve only the Aquafarm with vehicular traffic and occasional delivery vehicle access. Based on the guidance provided by the City of Carlsbad Engineering Standards (2022, Section 4.6 B), parking lots and driveways should be designed to a minimum Traffic Index of 4.5, with a minimum asphalt section of 4 inches. Using Caltrans gravel factor calculations for a 20-year design life (Caltrans, 2020c), we calculated minimum pavement sections required using the lowest R-value (15) of the data presented above for 22 | January 2023 (Revised August 2023) conservatism. Based on these calculations a pavement section of 4 inches of asphalt over 4 inches of Class II aggregate base is sufficient and is similar to the existing parking lot areas. Beneath the base section, the upper 1 foot of subgrade should be compacted to 95% of maximum density per ASTM D 1557 test methods. Portland Cement concrete (PCC) used in the driveway transition strips or similar should confirm to the City of Carlsbad Engineering Standards (2022, Section 3.15) using 7.5 inches PCC over 6 inches of aggregate base, with the upper 1 foot of subgrade compacted as described above. January 2023 (Revised August 2023) | 23 5 Construction Considerations 5.1 Earthwork and Dredging 5.1.1 Above-Waterline Earthwork Import soils should meet environmental standards, be granular in nature (with percent passing No. 200 sieve less than 35 percent), free of organic material, free of rock greater than 3 inches in maximum size, have very low expansion potential (with an expansion index less than 21 per ASTM D4829 and plasticity index less than 15), and have a low corrosion impact (classified as non-corrosive per guidelines by Caltrans [2018a], NACE [1984], and ACI [2019], as applicable; see Section 3.6.3.). Exposed subgrade soil surfaces, including all excavation bottoms, should be observed by a representative of the geotechnical engineer prior to placement of fill. Competent excavation bottoms should be scarified to a minimum depth of 8 inches, moisture- conditioned to approximately two percent above the optimum-moisture content, then compacted to a minimum of 95 percent relative compaction (per ASTM D1557) for structural areas. For non-structural areas, fill should be compacted to at least 90 percent relative compaction (per ASTM D1557). 5.1.2 Waterside Earthwork Based on our review of existing preliminary drawings, a gravel or tremie concrete pad is proposed within the lagoon beneath the Deck Structure with a top height of about -15 feet NGVD 29 and a thickness of about 5 feet. We understand that this will serve as a leveling pad and for erosion control in the area. Prior to construction, a dredging and surveying program should be performed to ensure that bottom excavation has been performed to at least elevation -20 feet NGVD 29. It may be practical to end the dredging at a shallower depth if Santiago Formation is encountered sooner and is not practical to dredge. The contractor should ensure that the gravel or concrete pad is placed as level as practical. A submittal of proposed materials and methods should be made by the contractor for the approval of the geotechnical engineer prior to acquiring materials and construction. 5.2 Pile Construction The equipment used for drilled piles should be selected carefully by the contractor in consideration of its capability to advance the drilled hole and remove soil cuttings. The contractor should be prepared, with appropriate equipment, to encounter possible gravel and cobble layers as well as hard Santiago Formation materials. Drilling operations are recommended to be observed and evaluated by a representative of the geotechnical engineer to allow further evaluation of the actual subsurface conditions. Pile construction will occur through the lagoon and into the lagoon floor below groundwater. Drilling using casing may be necessary to facilitate the construction of the drilled piles especially in upper soil materials. It is understood that installing steel casing may affect the pile capacity, therefore, steel casing should not be installed deeper than 24 | January 2023 (Revised August 2023) necessary to maintain the stability of the drilled hole. Additionally, steel casing to remain in place should not be installed below elevation -35 feet NAVD88 without the engineer's approval. For casings installed above this elevation, the calculations provided in this report will be slightly conservative. The installation of temporary casing and/or the use of slurry for borehole stability should be in accordance with the Caltrans Standard Specifications (Caltrans, 2018c) to reduce the potential for adversely affecting the frictional resistance of the soils and thereby reduce the load capacity of the piles. Environmental impacts of slurry and drilling spoils in the lagoon, and potential mitigation, should also be evaluated. To maintain a relatively clean hole and achieve high quality CIDH pile construction, it is recommended that the entire construction operation, including drilling of the CIDH pile borehole, lowering of the reinforcing cage, and concrete placement, be carried out consecutively in the same day. Piles within 5 diameters of a freshly poured pile may only be drilled a minimum of 24 hours after placement of concrete. It is recommended that a tremie pipe with pumped concrete be used to avoid concrete segregation during CIDH pile construction. It is recommended that pile installation operations be observed and documented by a representative of the geotechnical engineer to allow for further evaluation of the subsurface conditions and the pile capacity. 5.3 Existing Structure Abandonment We understand that some vaults and other underground structures within the Project area are to be abandoned in place. Prior to abandonment, holes should be drilled through the existing structures to reduce the buildup of hydrostatic and buoyant forces. The voids should be fill with an appropriate type of flowable fill. 5.4 Temporary Excavations Temporary excavations should be conducted in a manner that does not undermine, remove lateral support, or otherwise adversely affect existing structures and other improvements. Temporary excavations must be properly shored, braced, or sloped, in accordance with OSHA standards. Temporary shoring and bracing should be designed in a manner to protect existing improvements. Excavations for footings or other appurtenant structures that are 5 feet or deeper should be laid back or shored in accordance with California Occupational Safety and Health Administration requirements before personnel are allowed to enter. Soil type “C” may be assumed for site soils. For temporary excavations greater than 5 feet deep that cannot be adequately sloped for stability, some form of temporary external support will be required. Shoring should also be designed to resist lateral surcharge from adjacent vehicular traffic, rail loading, construction equipment, material stockpiles, existing structures, and any other sources. 5.5 Cement Type and Corrosion Measures A discussion of soil corrosion results is included in Section 3.6.3. The tests included in this report are only a screening process for indication of soil corrosivity. In general, project elements should be designed for a severe corrosive environment including salt/seawater exposure toward ferrous metals and concrete structures. As described in Section 3.6.3, January 2023 (Revised August 2023) | 25 soils have a very high chloride content and very low resistivities. Cement type should be appropriate for marine environments, and appropriate strength and mix requirements should be selected based on individual structures’ design life and structural requirements. For sensitive buried metallic elements, a corrosion engineer should be consulted. Corrosion should be considered when evaluating steel pile thickness and sacrificial thickness should be included, unless other corrosion protection precludes sacrificial steel loss. A typical estimated corrosion rate for a corrosive soil environment is 0.006 inch per year on all exposed steel surfaces in the ‘splash zone’ and 0.004 inch per year on steel surfaces in the ‘immersed zone’ (Caltrans, 2018a). For steel exposed on multiple surfaces, for example sheet piling, these numbers apply independently to each exposure face. Evaluation and mitigation measures for corrosion are outside the scope of this report. We understand that outside corrosion specialists are developing mitigation measures for the Project. 26 | January 2023 (Revised August 2023) 6 Limitations This geotechnical report has been prepared for the use of HDR and Keiwit for the proposed Carlsbad Desalination Plant Intake Phase 2 Project. The report may not be used by others without the written consent of our client and our firm. The conclusions and recommendations presented in this report have been based upon the generally accepted principles and practices of geotechnical engineering utilized by other competent engineers at this time and place. No other warranty is either expressed or implied. Additionally, the conclusions and recommendations presented in this report have been based upon subsurface information collected by other consultants and the subsurface conditions encountered at discrete and widely spaced locations and at specific intervals below the ground surface. The reported soil and groundwater conditions were interpreted at the exploration locations only. This information was used as the basis of analyses and recommendations provided in this report. Conditions may vary between the exploration locations. If conditions encountered during construction differ from those described in this report, HDR’s recommendations may be subject to modification and such variances should be brought to our attention to evaluate the impact upon the recommendations presented in this report. January 2023 (Revised August 2023) | 27 7 References American Association of State Highway Officials (AASHTO), 2017, AASHTO LRFD Bridge Design Specifications 8th Edition. American Concrete Institute (ACI). 2019. Building Code Requirements for Structural Concrete (ACI 318-19). Apex Geotechnology, Inc. in association with Group Delta Consultants, Inc., 1994, Hydrogeologic Investigation, SDG&E Encina Power Plant, Carlsbad California. American Society of Civil Engineers (ASCE), 2017, Minimum Design Loads for Buildings and Other Structures (ASCE/SEI Standard 7-16), Reston, Virginia. ASTM International. 2022. Book of Standards. Bryant, W.A., and Hart, E.W. 2007. Interim Revision: Fault Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zones Maps: California Geological Survey, Special Publications 42. California Building Standards Commission, 2019, California Building Code, Title 24, Part 2, Volumes 1 and 2. California Department of Fish and Game (CDFG), 1976, The Natural Resources of Agua Hedionda Lagoon. California Department of Transportation (Caltrans), 2017, Memo to Designers 20-15 Lateral Spreading Analysis for New And Existing Bridges, May 2017. Caltrans, 2018a, Corrosion Guidelines, Version 3.0, March. Caltrans, 2018b, Standard Plans. Caltrans, 2018c, Standard Specifications. Caltrans, 2019, Amendments to AASHTO LRFD Bridge Design Specifications. Caltrans, 2020a, Soil Cut Slopes, Caltrans Geotechnical Manual, January 2020. Caltrans, 2020b, Liquefaction-Induced Lateral Spreading, Caltrans Geotechnical Manual, January 2020. Caltrans, 2020c, Highway Design Manual. California Department of Water Resources, 2021, Division of Safety of Dams, California Dam Breach Inundation Maps, https://fmds.water.ca.gov/maps/damim/ website, accessed April 19. California Geological Survey (CGS). 2012. Special Report 217: Geologic Compilation of Quaternary Surficial Deposits in Southern California (2012 Revision). City of Carlsbad, 2022, Engineering Standards Volume 1 General Design Standards, accessed via https://www.carlsbadca.gov/home/showpublisheddocument/330/637425982505630000 Ensoft, 2017, SHAFT, Version 2017.8.10. 28 | January 2023 (Revised August 2023) Ensoft, 2019a, APILE, Version 2019.9.3. Ensoft, 2019b, LPILE, Version 2019.11.02. FHWA, 2005, Micropile Design and Construction Reference Manual, Publication No. FHWA NHI-05-039, December. GeoLogic Associates, 2008, Geotechnical/Environmental Report, Proposed Carlsbad Desalination Project, Reconfigured Site, Encina Generating Station, Carlsbad, California, dated September 22. Hannigan, Patrick J., Rausche, Frank, Likins, G. E., Robinson, B. R., Becker, M. L., 2016, Design and Construction of Driven Pile Foundations, FHWA-NHI-16-009, Geotechnical Engineering Circular (GEC) No. 12-Vol. 1. U.S. Dept. of Transportation, Federal Highway Administration, September 2016. HDR, 2022a, Geotechnical Design Report, Carlsbad Desalination Plant Intake Phase 2, October 2022. HDR, 2022b, Preliminary Design Report, Carlsbad Desalination Plant Intake Screening Phase 2, October 31, 2022 National Association of Corrosion Engineers (NACE). 1984. Corrosion Basics, An Introduction. Ninyo & Moore, 2013, Geotechnical Evaluation, Carlsbad Seawater Desalination Plant (Intake Pump Station Site), 4600 Carlsbad Boulevard, Carlsbad, California, dated August 20. Ninyo & Moore, 2016, Geotechnical Evaluation, New Intake/Discharge Structure, Carlsbad Seawater Desalination Plant, 4600 Carlsbad Boulevard, Carlsbad, California, dated November 30. SANDAG, 2021, San GIS Parcel Lookup Tool, https://sdgis.sandag.org/ website, accessed April 19. State of California, 2009, Tsunami Inundation Map for Emergency Planning, Oceanside Quadrangle/San Luis Rey Quadrangle, San Diego County; produced by California Emergency Management Agency, California Geological Survey, and University of Southern California – Tsunami Research Center; dated June1, mapped at 1:24,000 scale. Structural Engineers Association of California (SEAOC) and OSHPD, 2021, Seismic Design Maps, https://seismicmaps.org/ website, accessed April 15. United States Geological Survey (USGS), 2021, Quaternary Fault and Fold Database for the United States, accessed November 10, 2020, from USGS web site: http//earthquake.usgs.gov/hazards/qfaults/ USGS, 2023. Unified Hazard Tool, < https://earthquake.usgs.gov/hazards/interactive/> Appendix A. Figures Figure 1 0 1 2Miles ± VICINITY MAPCDP INTAKE PHASE 2 GEOTECHNICAL SERVICESPOSEIDON - AGUA HEDIONDA LAGOON / eroject Site © 2021 Microsoft Gorporation Earthstar Geographies SIO © 2021 Tom Tom ---- FIGURE 2 ' ' ' I ~ ISSUE 2 3 DATE DESCRIPTION DISCHARGE POND 4 SCALE: 1" = 60' PROJECT MANAGER S FRIEDMAN DESIGNED BY J. MOYER CHECKED BY R STRATTON DRAWN BY D. CELAYA PROJECT NUMBER 10341720 I / I 5 / / / / \ '- / r / / \ ( / _,,.,.::.::-.; ( \ I - / / / I / I I I / / / / / / .,,' .,,~ / // / / ;'I / / / EASEMENT C \,,;::; I ;::;;::;;::;'( J // / I / I / I I PROPOSED ELECTRICAL :,,---.,, BUILDING 6 7 181 ['gJ -~-=:--..;;;:-~-== _ _J_ I ---=~ - 60% SUBMITTAL NOT FOR CONSTRUCTION ~ POSEIDON CHANNELSIDE a Poseidon Water company CARLSBAD DESALINATION PLANT PHASE 2 INTAKE MODIFICATIONS PRELIMINARY DESIGN 8 AREA DESIGNATIONS AREA 00 -GENERAL -(REMAINING AREA) AREA 01 -SCREEN STRUCTURE/LAGOON ~ AREA 02 -ACCESS BRIDGE AREA 03 -INTAKE AREA AREA04-FOREBAY/IPS AREA L'l_._' -'--'--'--'-'---'--'~,',,,_J,l SCALE: 1 "=60' ~ I 0 60 120 GENERAL PROJECT AREA KEY MAP 180 D C B A FIGURE 3 2 3 4 5 '--./ '--./ TA. 1+20.25 STA. 1+53. ----- ---~,--,_______.,,,____, __ ,~,-- FOUNDATION PLAN SCALE: 1"=10' PILE DATA TABLE TOP OF PILE NOMINAL RESISTANCE (KIPS) CUT-OFF SPECIFIED TIP LOCATION PILE TYPE CONNECTION ELEVATION (FT) DESIGN TIP ELEVATION (FT) ELEVATION (FT) COMPRESSION TENSION BE NT 1 36" DIAM CIDl-l PILE FIXED 420 0 9.69 -60.0(a), -45.0(d) -60.00 BE NT 2 36" DIAM CIDl-l PILE FIXED 500 0 9.69 -65.0(a), -45.0(d) -65.00 BE NT 3 36" DIAM CIDl-l PILE FIXED 560 0 9.69 -70.0(a), -45.0(d) -70.00 BE NT 4 36" DIAM CIDl-l PILE FIXED 540 0 9.69 -70.0(a), -45.0(d) -70.00 BE NT 5 36" DIAM CIDl-l PILE FIXED 520 0 9.69 -70.0(a), -45.0(d) -70.00 BE NT 6 36" DIAM CIDl-l PILE FIXED 500 0 9.69 -65.0(a), -44.0(d) -65.00 BE NT 7 36" DIAM CIDl-l PILE PIN 530 0 9.69 -48.0(a), -34.0(d) -48.00 BE NT S 36" DIAM CIDl-l PILE PIN 350 0 9.69 -42.0(a), -25.0(d) -42.00 WEST RAMP ABUTMENT 36" DIAM CIDl-l PILE FIXED 290 0 7.25 -30.0(a), -21.0(d) -30.00 EAST RAMP BE NT 1 36" DIAM CIDl-l PILE FIXED 330 0 12.75 -40.0(a), -32.0(d) -40.00 EAST RAMP ABUTMENT 36" DIAM CIDl-l PILE FIXED 380 0 9.25 -45.0(a), -24.0(d) -45.00 NOTES: 1. DESIGN TIP ELEVATIONS ARE CONTROLLED BY : (a) COMPRESSION, (b) TENSION, (c) SETTLEMENT, (d) LATERAL LOAD. 2. SPECIFIED TIP ELEVATION Sl-lALL NOT BE RAISED UNLESS AUTl-lORIZED BY THE ENGINEER OF RECO RD. PROJECT MANAGER S. FRIEDMAN DESIGNED BY W. PEERY CHECKED BY N. CHEN DRAWN BY 0. MAUSS 100% SUBMITTAL NOT FOR CONSTRUCTION ISSUE DATE DESCRIPTION PROJECT NUMBER 10341720 6 e POSEIDON CHANNELSIDE a Poseidon Water company CARLSBAD DESALINATION PLANT PHASE 2 INTAKE MODIFICATIONS PRELIMINARY DESIGN 7 (j:_ BENT 8 fT2+T O <, r GHT-OF-WAY l l l \! l 8 CONSTRUCTION NOTES @ 1. 36" CAST-IN-DRILLED HOLE PILE, SEE 02S05 2. SEE SHEET 00G03 FOR BENCHMARK INFORMATION 3. SEE SHEET 00C03 AND 00C06 FOR HORIZONTAL CONTROL POINTS 4. CONTRACTOR TO SURVEY LOCATION OF EXISTING STRUCTURE AND FOOTINGS PRIOR TO BEGINNING CONSTRUCTION. INFORM THE ENGINEER IF THE CLEARANCE BETWEEN EXISTING FOOTING AND NEW PILES IS LESS THAN 5". SCALE: 1"=10' ~ 0 10 20 STRUCTURAL BRIDGE STRUCTURE FOUNDATION PLAN 30 D C B A Figure 4 0 50 100Feet ± BORING LOCATION MAP (1 of 3)CDP INTAKE PHASE 2 GEOTECHNICAL SERVICES POSEIDON - AGUA HEDIONDA LAGOON Esri,HERE,Garmin, Legend HDR Current Field Investigation Boring Previous Alternative 21B (Removed from Project) ~ -- \ \ \ \ \ I \ \ I \ \ \ \ I \ A-21-003 \ \ () --·--------·----· \ .. ---· • ------\ -· -------· © 2022 Microsoft Corporation© 2022 Maxar ©CNES (2022) Distribution Airbus OS© 2022 Tom Tom Figure 5 0 25 50 Feet ± BORING LOCATION MAP (2 of 3)CDP INTAKE PHASE 2 GEOTECHNICAL SERVICESPOSEIDON - AGUA HEDIONDA LAGOON Esri, HERE, Garmin, (c)OpenStreetMap contributors, andthe GIS user community Legend HDR Current Field Investigation Boring P Apex and Group Delta Boring (1994) ?Ninyo & Moore Boring (2013, 2016) "Ninyo & Moore Cone Penetration Test (2016) A-21-002 () AX-B-2 @ NM-GHD-3 $ NM-GHD-2 $ ---- Figure 6 0 10 20Feet ± BORING LOCATION MAP (3 of 3)CDP INTAKE PHASE 2 GEOTECHNICAL SERVICESPOSEIDON - AGUA HEDIONDA LAGOON Esri,HERE,Garmin, Legend !(Geologic Associates Boring (2008) ?Ninyo & Moore Boring (2013, 2016) "Ninyo & Moore Cone Penetration Test (2016) ~ -- NM-T-6 NM-T. ■ NM-T-1 ■ GA-B-17 NM-T-7 ■ NM-T-8 ■ NM-NMB-7 $ NM-CPT-8 0 ■ ■ NM-T-4 NM. NM-■ GA-B-18 0 NM-CPT-7 ■ © 2022 Microsoft Corporation© 2022 Maxar ©CNES (2022) Distribution Airbus OS© 2022 Tom Tom Ele.,,.tion (It, MLLW) Top of P"nnitted dud1illl! deoign template (0 ft, MLLW) Toe ol J>"rmitted dud1illl! dui1n template (-22 It. MLLW: 3:1 (H:V) typicel side slope) CF-01 N: 1,997,112.62 E: 6,227,873.28 Elev.: 10.06 ft (NAVD88) 10.25 ft (MLLW) -- ... ,,~~: ., -IU _, .. ,',,,:: I Bothymetric ourvey conducted by Coostal Frontien Corporation on March 27 and 28, 2021 usilljl •inale-beem ooll,llr. Full bottom covert1.ge not attained Area out.olde of Zones IA. JR 1C, 2 and 3 ourveyed on .March 27 (8:45 AM to 2:30 PM). Are"-within Zoneo IA. 18, IC. 2 "-nd 3 ourveyed on )forch 26 {6:40 AM to 2:00 PM) 2 Horizonto.l deturn is California State Plane Zone 6, NAD 63(:Wll). epoch 2010.00, US Survey teel 3. Vertical datum io National Ocean Service Mean U>wer 1,:,,. Water (NOS MLLW), based on survey marker "CF-01·. 4 Color-coded digital terrain model (DTM) developed from non-biased oouudings nominally opaced 3 ft apart. 5 Spot ,oundingsa renotnlnallyspaced501t aparl 6 Air photo provided by the National Agriculture Imagery Program (NAIP). 7 Sur""y not intended to map obotructioll8. 8 Top of per-milled dredging design template and locaUon of dredging 20nes provided by GHD Scale (US Survey Fed) ~- ae.,,.tion {ft.MLLW) AGUA HEDIONDA OUTER LAGOON 2020-2021 DREDGE CYCLE POST-CONSTRUCTION SURVEY -BATHYMETRY I" = 100· Chocked by. APC Drawn by. CPS 30 March 2021 1 ol 3 Poseidon Resources LP COASTAL FRONTIERS CORPORATION CFC-1082-60-001 0 Figure 7 ± GEOLOGY MAPCDP INTAKE PHASE 2 GEOTECHNICAL SERVICESPOSEIDON - AGUA HEDIONDA LAGOON Reference: CGS, 2012.Qo l Old Lacu strine, Playa, and Estu arine (Paralic) Dep o sits— Slightly to mo derately co nso lidated, mo derately dissectedfine-grained sand, silt, mu d, and clay fro m lake, p laya, andestu arine dep o sits of v ario u s types. Figure 8 0 300 600 Feet Co arse-grained Terirary age fo rmatio ns o f sedimentary o rigin; Santiago fo rmatio n, sandsto ne, co nglo merate, and claystone. Ho lo cene marine beach dep o sits typ ically co nsisting o f p o o rly-gradedsands and grav el size p articles. Qb irss Tss Qb Qol Tss © 2021 Microsoft Corporation© 2021 Maxar ©CNES (2021) Distribution Airbus OS © 2021 TomTom Qb Tss ---- PLAN VIEW Map Legend A-21- R-22-004 A-21-002 () AX-B-2 Ci) reen Structure Current Investigation -Boring Ninyo and Moore -Boring (2013, 2016) Ninyo and Moore -CPT (2016) ReMi Line -22-005 Note: See Geotechnical Report for Boring Details A Electrical ~ Bldg. -$- NM-GHD-2 PROFILE VIEW ____ Access Bridge 0 I I~ SCALE: 1 ":50' A' 60 ~------~-~~ ------.--------------,----------,-------------,----,------------,-------------,-------------i ; (i Intake $tructure (Apprx. Location) ·-.. £ ::1E ~' a, I [ 40 f---------+-~f;=---s~~~ ---------j---A-j\·p=p .... r=ox=i m....-..--.tateG re, u nctSu ri ace -~ i i / -~ i ;,~ ~ =~ it:~ C}l 1~ ~ ::::N ~ ~': ¢;: ~ W.!l?, 20 ~. --:s:_;_-g: --/----;-½lf---------+-------t---------+-------;;;""=,::Q~+----i----------t---~-~~~e ------, 1--------0I ·>w O m't:5-,,..~ in -:i:::i "'= NW" Yw. Q_i,;" Ase ' W.£. c-:-' c.r.d~· ::::Ea, '--r' 1:5 C ~cne v..t") o:::c.9a.. ZCJ 5 ~w.!l?. z(!)O.. 500 ,11)11 ,-= ::::i • (J) e 60 40 20 I JI _I_ 1/-i--tl.,,.._ A~ AC P.-• ~ a::: e>o... v. [11/11) ____, 0) IL • ---_ _,-J---~£. ~-- -SM~~~ ----------,----,;-_'SZ _________ ------~-------:r--,,--_,,-cr"--1--1-·_1_ ._::_1 -----~----------0) N O •• ,;;: ~~ ~~---," is -.'.· ~ s~ .• _21--++++-t-+-t------t----.-...,.,---------, 0 N ···1"<3 ~ •• ........._.,.' == gj;* SC 9 SM · 48 0 ,,: SM • __ :: 36 •• , """ .,!.w_~ '. 0 C)> V SP-·. 3348 • g ~i sc ':'.;;~o SM :;'. 9 ·;; > :' ' wm SP-S~~: 22 • • • r n 1ii uie" SNST -~--50/21' r.: . : .• _: 27 '-J Z , <c:,o.. 7 SNST ·~ 5014" Z -20 f------+-t-\f-+-+-++-S:P-:·.:,:~.-.·. -2:&--:-----+-----~==j=¥'.m ;, -NST'w"l-'::.:::..:_f-+-1-+-t-+t------+--tf.fr;;;;--------j -20 ,.;, ·50/61 ,,;, 5015" • ; ' 62 I - I SNST Z 5015' k 50/5' ~ • '. ·: 59 - SNST • • I SNST • . 5013" '" a., ~ 5016" . : 5ow k 5013. ...., a., ~ :,, · I ~ 5015" , • 66 a., 1 , SNST Z 5013" ~ 5013' i2: 50/5 • I';, : ·./_ 38 I • ...... ~ i1 ,· I :;; 5014" ...... ._. -40 !;NSI l -soc15'-· -----+--------+--ffl.: -soc ;_: oo11·1,--r-------ll':;,*·. =.:....++-+--+++++-------+--s:e-s ol--:-10:---------l -40 ._. Z ~ 1 .. : 5012' ;'? 50/4.1, l,a, • z ,_ z: ~ MLST : 5012" SM ,:, 22 0 0 SNST ~ 8014" \i' 5015' i 50/5' : CL 20 ~ -60 ~~SI ~.::: ?: =::: ~ ~~'..,,..,61. _____ s_Ns-,r t;;,~:t-=-50"--'-14"++++tt--t-+-------t---e~~ • :~ -60 <(>I > :;,-~ 5013' ~ 5016' ,;, ~ SNST ~ 50/4" i 50/5' SNST 1 5014" SNST . ::/3" ~ w ? 50/4' c:;, 5014" .-10015" w -80 ;::, "50'-,,Jr-,,----------t-i---t -t-1_-,--,-----;------------, -80 G;;: 50/6' -100 l---------+-+-+--ll-+-++--------+----------+--------t---------+-------++++-t-tt-+-------+-----------i -100 -120 ~-----l--l---l---ll-l--l--1--------+----------+-------+----------+--------++-+-+--t-il--t---------j------------i -120 -140 f--------====---1--------+----------+-------+--------+-------++++-+-11 1-+-------t-----------i -140 -160 L__--------'--------~------~-------~------~-------~------~--------160 0 50 100 150 200 250 300 350 400 DISTANCE ALONG PROFILE (feet) Material Graphics ~ Clayey SAND t~i~j:J Silty SAND Asphalt ~ Aggregate Base ~,~m Silty SAND with GRAVEL t~:·~~:J Poorly-Graded SAND m Sandy Lean CLAY ~ Clayey SAND with GRAVEL t~:·fil~ Poorly-Graded SAND with SILT X X X X X X X X X X Siltstone g,J Sandstone CROSS SECTION A -A' Boring Legend Group Symbol -SM Material -----j Change Notes: T"" 0 0 I r-,... T"" I <( 28 - N60 -See Note 2 1. Abbreviation for soil group is based on ASTM D2487-11, Unified Soil Classification System N60 blow counts corrected for 2-hammer energy and sampler type. Modified California sampler N-values corrected using 0.6 factor. Hammer efficiency of 70% assumed for historical borings where data was not available 'Sl... Water level reading at the time of drilling REF= Refusal (Blow counts greater than 50/6 inches) GS Elev = Ground Surface Elevation DATE: APRIL 2022 CDP INTAKE PHASE 2 GEOTECHNICAL SERVICES POSEIDON -AGUA HEDIONDA LAGOON FIGURE 9 0 2.5 5Miles ± CDP INTAKE PHASE 2 GEOTECHNICAL SERVICESPOSEIDON - AGUA HEDIONDA LAGOON REGIONAL FAULT MAP Reference: USGS, 2020, ARCGIS Online Database ! ! !Historic (< 150 years), inferred location Historic (< 150 years), moderately constrained location Historic (< 150 years), well constrained location ! ! !Late Quaternary (< 130,000 years), inferred location Late Quaternary (< 130,000 years), moderately contrained location Late Quaternary (< 130,000 years), well constrained location ! ! !Latest Quaternary (<15,000 years), inferred location Latest Quaternary (<15,000 years), moderately constrained location Latest Quaternary (<15,000 years), well constrained location ! ! !Undifferentiated Quaternary (< 1.6 million years), inferred location Undifferentiated Quaternary (< 1.6 million years), moderately constrained location Undifferentiated Quaternary (< 1.6 million years), well constrained location Figure 10 ---- ± LIQUEFACTION SUSCEPTIBILITY MAPCDP INTAKE PHASE 2 GEOTECHNICAL SERVICESPOSEIDON - AGUA HEDIONDA LAGOON Reference: County of San Diego, 2021 Liquefaction Susceptibility Figure 11 0 500 1,000Feet D ~ -- ± TSUNAMI INUNDATION MAPCDP INTAKE PHASE 2 GEOTECHNICAL SERVICESPOSEIDON - AGUA HEDIONDA LAGOON Reference: State of California, 2009. Tsunami_Inundation_Map_for_Emergency_Planning_2009 Figure 12 0 500 1,000Feet D ~ -- Appendix B. Existing Geotechnical Data by Others I. r I 1 .• ). LOGGED BY: FOM DRILL RIG: MJBILE B-61 ci H z 8 .... I ~ µl ....._ Cl :z:.., ..., ~ s~ H Q) 0.. µl 0.. Q) i 0.. 0 ~i µl ""' >< ..., Cl -UJ H <Q - - - - 5- -\} --- 1 SP 33 10 - - - - 2 SP 14 15- - - - 3 SP 21 20 - - - - 4 SP 36 25 - - - - 5 SP 48 30 - - - - 6 SP 52 35 - - - - 7 SP 50 40 4\" - - - 8 SP 54 45 6" - - -1.§ 50 9 SP 6" B 0 R I H G L 0 G I DATE DRILLED: 11-30-93 I BORING ELEVATION: 9:t feet I BORING DIAMETER: 8" l HAMMER WT.: 140 LBS DROP: D E s C R I p T I 0 N Moist to saturated, light grayish-brown, SILTY FINE SAND (SM) FILL trace gravel; becomes saturated 1--trace gravel Medium dense, saturated, light gray, SILTY FINE SAND (SM) ESTUARINE DEPOSITS -sparse gravel and shells ( 13 to 131s' ) -moderate gravel and shells (131s to 15') -approx. 3" layer of shells and gravel at 22' becomes light gray a few pieces of silty clay in cuttings (likely indicate thin clay interbeds) Very dense, saturated, light olive-brown, CLAYEY FINE TO MEDIUM SAND (SC) 30 IN ..., ..., µl ::i:: SANTIAGO FORMATION I BOTTOM OF BORING at SO feet I I BORING NO.: l I u =, ~ H UJ z zo OH UH 0 w t; ::::, a: ~ z 0 (.) ti z ..J ..J w ;= B -1 UJ ..., H UJ ..: H H ~f:;l µl C ....lH Descriptions on this boring log apply only at the specific boring location and at the time the boring was made. The descriptions on this log are not warranted to be representative of subsurface conditions at other locations or times. PROJECT NO . : 1 5 5 5 I SDG&E ENC IHA POWER PLANT I FIGURE NO . : A -2 APEX GEOTECHNOLOGY, INC., in association with GROUP DELTA CONSULTANTS, INC. Engineers and Geologists 1 • l. J B 0 R I N G L 0 G LOGGED BY : FOM I DATE DRILLED: 12-1-93 I BORING ELEVATION: 18:!: feet BORING NO .: DRILL RIG: 1!1JBILE B-61 I BORING DIAMETER: 8" I HAMMER wr.: 14 0 LBS DROP: 30 IN B -2 ci z ~ "' ::c .., ..-1 H .. 0.. "' 0.. .. :i 0.. "' ~ >< o~ "' H - - - - 5- - - - - 10 - - - - - 15 - - - - 1 SP 20- - - - - 25- - - - - 30- - - - 2 SP 35 - - - - 3 SP 40 - - - - 4 . 45 -SP - - - 50 5 SP Descriptions descriptions PROJECT NO . : H 8 ""' I ....... 0 "' s el 3: 0 0 H ..-1 ~~ "' 'v - 48 27 62 59 66 D F: s C R I p T I 0 II 5-'1" Asphalt Concrete Pavement / 6½" Class II Base Moist to saturated, light brown, CLAYEY SAND (SC), with scattered gravel and cobbles ,--pieces of brown, sandy clay below 9' becomes saturated light gray silty sand at tip I u ::, "' ,:,: ..-1 H H ..-1 U'.lZ < ..-1 zo H "' OH "' 3: UH 0 FILL ,. 1----------------------------------------, ., •.· Medium dense, saturated, light gray, SILTY FINE SAND (SM), with shell fragments and sparse gravel (average 1/2") Gravel from 22-'1 to 23' and 23\ to 26½' ESTUARINE DEPOSITS .-:, ,--abundant gravel becomes very dense, saturated, SILTY FINE SAND (SM) .. . .. •· . -····· .. .. .. ..... •.-.. .... -·· .• •-, ,_ .. : .. ,• . ... . . ·. ···-.. -.' : - .. .. -· .. ... · ·.•· -.... .. -· .. -;:·:•.·. on this boring log apply only at the specific boring location and at the time the boring was made . The on this log are not warrantecl to be representative of subsurface conditions at other locations or times . 1 5 5 5 I S D G &. F: F: N C I N A P O W E R P L A N T I FIGURE NO . : A -3 a APEX GEOTECHNOLOGY, INC., in association with GROUP DELTA CONSULTANTS, INC. Engineers and Geologists "' H '!J [3 ..-IH 1 • I 1· ,. I· I' : ,' J B 0 R I N G L 0 G LOGGED BY: FOM I DATE DRILLED: 12-1-93 I BORING ELEVATION: 18+ feet I BORING NO.: DRILL RIG : MOBILE B-61 0 .... z 8 ""' I ~ w ' C :,:: ..., ..-l (/] 5 el .... QI "' w 3 a.. QI ~ "' 0 ~i w .... >< ..-l c~ (/] .... Ill - - - 6 SP 38 55 - - - - 7 SP 10 60 - - - - 8 SP 22 65 - - - - 9 SP 20 70 - - - - 10 SP 19 75 - - - - 11 SP 11 80 - - - - 12 SP 14 85 - - - - 13 SP 50 90 3" - - - 95 -H 14 SPt 100 5" - - - 100 I BORING DIAMETER: 8"' I HAMMER WT.: 140 LBS DROP: 30 IN I B -2 D E s C R I p r I 0 N Very dense, saturated, light gray, SILTY FINE SAND (SM) becomes dense ESTUARINE DEPOSITS u ::::, ..: .... ..-l Ul:Z: ..-l zo w OH 3 Ulc< ........ (/] ..-l H < .... w C . .. . , ·.• .... ·-= ·'· . .. -.. _ ... .. :._ 1---------------------------------+-~ •• • .. Medium dense, saturated, gray, CLAYEY FINE SAND (SC), with sparse shell fragments .. .. •' -.· -.. ..... .... ... : -.. •· . -:•, 1--------------------------------+---l •. .... Medium dense, saturated, light gray, SILTY FINE SAND (SM) -l •• .. -.. ... -Very stiff, saturated, gray, SANDY CLAY (CH) ... 1---------------------------------------,•·. -.... Medium dense, saturated, light gray, SILTY FINE TO MEDIUM SAND (SM) -·.-. -.. 1---------------------------------------·. Stiff, saturated, gray, SANDY CLAY (CH) Very dense, saturated, light olive-gray, CLAYEY MEDIUM SAND (SC) BOTTCt-1 OF BORING at 94~ feet SANTIAGO FORMATION ' ' ·· ... -·· .. -· -.. • -. . . . : I•••.•. • • •• ... ·. . . . . . •.•· '• Descriptions on this boring log apply only at the specific boring location and at the time the boring was made. The descriptions on this log are not warranted to be representative of subsurface conditions at other locations or times . (/] .... ~~ ..-llc< PROJECT NO . : 1 5 5 5 I S D G & E EKCIKA POWER PL AK I I fIGURE NO ' ; A -3 b APEX GEOTECHNOLOGY, INC., in association with GROUP DELTA CONSULTANTS, INC. Engineers and Geologists B 0 R I K G L 0 G LOGGED BY: FOM I DATE DRILLED: 12-3-93 I BORING ELEVATION: 17:!: feet BORING NO.: DRILL RIG: MOBILE B-61 I BORING DIAMETER: 8'" I HAMMER WT.: 140 LBS DROP: 30 IN B -3 E-< I 0 8 z u µ, I ::, Cl] -.., ...... 0 D E s C R I p T I 0 N <>: ...., ::c '"' ...., ~ s el E-< H C/l E-< " 0.. w ...., CllZ < E-< 0.. " ~ 0.. 0 ~i ...., zo E-< ~ 13 w "' >< ...., w OH w 0 ~ U] .... IQ 3: UE-< 0 ...., .... Asphalt. Concrete Pavement - I· -Moist, light. gray, CLAYEY FINE TO MEDIUM SAND (SC), with V 1 V, -scattered gravel 1 C 26 FILL 1/, 1/, 5- -V -~ - 2 C 19 V ~ 10 -,__ becomes reddish brown -V -~ -'v V 3 C 14 -~ -15 -Loose to medium dense, saturated, light gray, CLAYEY FINE SAND (SC) -ESTUARINE DEPOSITS ~ -~ - 4 C 8 •.::.:·_:· .. -.~ 20 -Soft., saturated, light gray, SANDY CLAY (CH) -organic odor ... ... .. --. -.. . .. .. ... . .. .. . -'. ... .. . .. -.. . -.. ··-.. . . : ' -.. 5 C 38 -.. .. 25 -Medium dense, saturated, light gray. SILTY FINE SAND (SM),. with . ; ---. . .. -sparse shell fragments . . -.. -. . --: .. .. .. -' .. -.. -.. .. -.. .. . -.. 6 C 79 -.. 30 -.·. ·---'· -.. -.. -··-.. -. .. --•· . -.. -.. . 7 C 79 .. -.. 35 -·-.... -. . .. · . . , --.. . . -• . --.. . ,. •. ,. -. . -···-.. .. . -. -. -.. .. 8 C 68 ·. -40 -: -.. , ,•: -..... --. ' , .. --·.·. -: : ... ---. . -·-..• i 9 C 35 .. ' .. .. -.. .. 45 -• ... -.. --... -. . : . ' --: ; .. -•.•, .. -: . -·· -,·.· .. -.. .: . -. -· .. -50 10 C 23 -no sample •. .. -, . .. ·•·• . Descriptions on this boring log apply only at the specific boring location and at the time the boring was made. The descriptions on this log are not warranted to be representative of subsurface conditions at other locations or times. PROJECT NO.: 1 5 5 5 I s D G &E ENC I KA p ow E R p L A N T I FIGURE NO.: A -.. a APEX GEOTECHNOLOGY, INC., in association with GROUP DELTA CONSULTANTS, INC. Engineers and Geologists I- B 0 R I N G L 0 G LOGGED BY: FOM I DATE DRILLED: 12-3-93 I BORING ELEVATION: 17! feet T BORING NO.: DRILL RIG: MOBILE B-61, 0 ..... z 8 ~ I ~ ..., -.... 0 :,:; ., o-1 Cl'.l §§ ei ..... "' 0.. ..., 3: 0.."' ~ 0.. 0 ~~ ..., .... >< o-1 0 ~ Cl'.l ..... a::l 10 C 55 - 11 C 100 55 3\" - I t--!----1 50 _µ 12'1 C 1---2 .. 60 -h.::_E.r 100 -3" - --114iSPi-100 6 5 -1--e----l S .. - 70 - - 75 - 80 - - 85 - - 90 - 95 - -100 I BORING DIAMETER: B" I HAMMER WT .: 140 LBS DROP: D E s C R I p T I 0 N Medium dense, saturated, light gray, SILTY FINE SAND (SM), with sparse gravel ESTUARINE DEPOSITS 30 IN l ' u =, <>: ..... o-1 VJ z o-1 zo ..., OH 3: UE-< ..... -..... B - Cl'.l o-1 H < E-< ..., 0 .. ::-·.· _-::: ··=::·.-:,· ::.-:·.·= .=._-:·:.· 1-------------------------------------t"' •.. -. ......... _ Very dense, saturated, light olive-gray, MEDIUM SAND (SW) ~·.::•·.'-· ·•·. -.. SANTIAGO FORMATION (WEATHERED) ::~ -_.~; -·.:· .. . l----------------------------------------1 • .. .-. -.. . Very dense, saturated, light olive-gray, CLAYEY MEDIUM SAND (SC) SANTIAGO FORMATION l BOTTOM OF BORING at 64~ feet I •.. ··-·· .. •·. ..... :.-···· -•' •:: ··-·-···· : ••I .. • ·• . . ·-:=. ·: :. := ::~:;·: '.\. ,_:_:_: ... ,• ..... . . -. .. . .. . ··-. ' .. . -·· .... . 3 Descriptions on this boring log apply only at the specific boring location and at the time the boring was made. The descriptions on this log are not warranted to be representative of subsurface cond1 t1ons at other locations or times. PROJECT NO . : 1 5 5 5 I SD G & E E N C I N A POWER PLAN T I FIGURE NO. : A -4 b APEX GEOTECHNOLOGY, INC., in association with GROUP DELTA CONSULTANTS, INC. Engineers and Geologists Cl'.l ..... ~[3 o-lE-< 1. B O R I N G L O G LOGGED BY: FOM I DATE DRILLED: 12-7-93 l BORING ELEVATION: 9~ feet I BORING NO.: -------------+-----------------11--------------------1 DRILL RIG: M:>BILE B-61 E-< 0 8 z ~ I ~ ..., -..... Cl a: ..., ....l {/) s ei E-< ., 0., ..., 3: 0., ., ~ 0., 0 ~~ ..., .... >< ....l Cl ~ {/) E-< o:i - - - - 5- - - - - 10 -\l -- - - - 15 1 SP 25 - - - - 20 - - - - 2 SP 58 25 - - - - 3 SP so 30 -S\"" - - - 4 SP 58 35 - - - - 5 SP 73 40 - - - - 6 SP 51 45 -6"' - - - 50 SP I BORING DIAMETER: 8" I HAMMER WT.: 140 LBS DROP: 30 IN I B -4 D E S C R I P T I O N Moist, light gray, FINE SILTY SAND (SM), with sparse gravel and cobbles Medium dense, saturated, light yellowish-brown, SILTY FINE SAND (SM), gravel and cobbles to 12 feet FILL ESTUARINE DEPOSITS -sparse gravel from 19 to 21~ feet becomes very dense t becomes light gray ,__ sparse gravel from 29 to 35 feet I u ::, {/) p,: ....l E-< 1-1 ....l C/JZ < ....l zo E-< ..., 01-1 ~ 3: UE-< Cl .n _. t% i)' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ,• ' ~:: ... :· .. . .. ·: .. -.. . ,•· •• ,_ ·!, .. .. ._: .. ... : ... .. ..... . . .. , -.. .. :_·_--.... -· .. .. . . .. -.. .. -·· .. -· ·. .. -•. -.. . . ·-.. .. .. --... .. -. •, ··-.. .. -•, -. , =··· . . -... .. . .. -... •' --• ••■ .. -.. . • . -·· •, .. --.. .. . . -. '• -.. : .. -.. -.. .. ... -. . ... --·: · .. ... .. -. . ... -.. --. -.. -.. .. -' ·-.. ... .. -.. -. .. --; -·:, ' .. -.. . ~ ···: .. -.. .. -••••·• , .. _ .. ····.-.... - ~ .-.. ····.·-.. .. . . : Descriptions on this boring log apply only at the specific boring location and at the time the boring was made. The descriptions on this log are not warranted to be representative of subsurface conditions at other locations or times. {/) E-< ~ i2 ....lE-< GS GS GS PROJECT NO . : l 5 5 5 I S D G & E ENCINA POWE R PLANT I FIGURE NO . : A -5 a APEX GEOTECHNOLOGY, INC., in association with GROUP DELTA CONSULTANTS, INC. Engineers and Geologists I= B 0 R I N G L 0 G LOGGED BY : FOM DATE DRILLED: 12-7-93 BORING ELEVATION: 9:t feet BORING NO.: DRILL RIG : MOBILE B-61 BORING DIAMETER: 8" HAMMER WT.: 140 LBS DROP : 30 IN B -4 H ' 0 8 z u ... I =o UJ u-1 ...__ Cl D E s C R I <>: _, :c .., _, UJ s el p T I 0 N H H UJ H Q) a.. "" l _, UJZ < H a.. Q) ~ a.. ~~ _, zo H ~~ "-l .... :,. _, "" OH "" Cl "' H "' C!) 3:: 3:: UH Cl -'H Dense to very dense, saturated, light gray, SILTY FINE SAND (SM), with sparse gravel ESTUARINE DEPOSITS -. 55 8 SP 96 :. :•. -' .. • • GS 60 65 70 75 80 85 90 95 100 9 SP 58 10 SP so s~·· 11 SP 39 12 SP 74 13 SP 43 14 SP 79 15 SP 48 16 SP 65 17 SP 60 .... ,-: -.. ·.·: -.. ·-:.--··.·. :.• -.·.· ··-\0 ... ·. . . ~ .. . . . .. · ... ·-'· . . : . .. -. :' •. ':_.;:::, .: ~ :: -~ ■ \ ._ •,: . ·-··.•. .. _ .. . ·• . . . -·. .. .·.··.-,···· ... -· ... ··-.- ..... · ...... .· ·-: . . . ·. ... . .... .. . ::,,:-:-·-:·.-:: -.. . ·-·. Descriptions on this boring log apply only at the specific boring location and at the time the boring was made. The descriptions on this log are not warranted to be representative of subsurface conditions at other locations or times. PROJECT NO . : 1 5 5 5 SD G & E E N C I N A POWER PLANT FIGURE NO . : A -5 b APEX GEOTECHNOLOGY, INC., in association with GROUP DELTA CONSULTANTS, INC. Engineers and Geologists GS GS GS GS !- I, /; I. I ' I B 0 R I K G L 0 G LOGGED BY: FOM DATE DRILLED: 12-7-93 BORING ELEVATION: 9:!: feet BORING NO .: DRILL RIG: MOBIL~B-61 BORING DIAMETER: 8" HAMMER WT.: 140 LBS DROP: 30 IN B -4 z w c... I u ' 0 :c ..., ..., en 5~ ::, en E-< OJ "" w 3: D E s C R I p T I 0 N ,,; ..., 0.. OJ ~ ii. 0 ~ E-< E-< H W'-< >< ..., ..., en z ..; o-Cl.] E-< 11'.l (!) ~ ..., zo E-< w OH w 3: UE-< 0 Very dense, saturated, light gray, SILTY FINE SAND (SM) ESTUARINE DEPOSITS 18 SP 82 105 Stiff, wet, gray CLAY (CH) 19 SP 12 110 20 SP 12 115 (gradational contact) 21 SP 32 120 Dense, saturated, light gray, SILTY SAND (SM) 22 SP 18 125 Very stiff, saturated, gray CLAY (CH) Dense, saturated, light gray, SILTY FINE SAND (SM) 23 SP 41 130 24 SP 51 approximately 6" sandy clay at 134 • 135 BOTTct1 OF BORING at 135~ feet .140 145 150 Descriptions on this boring log apply only at the specific boring location and at the time the boring was made. The descriptions on this log are not warranted to be representative of subsurface conditions at other locations or times. PROJECT NO . ; 1 5 5 5 S D G & E EKCINA POWER PLANT FIGURE NO.: A -5 c APEX GEOTECHNOLOGY, INC., in association with GROUP DELTA CONSULTANTS, INC. Engineers and Geologists Cl.] E-< ;';! [3 ...lE-< Geologic Associates Boring Log BORING NO.: 8-1 6 PAGE: 1 OF 1 JOB NO.: 2008-0075 SITE LOCATION: CARLSBAD DESALINATION PROJECT DRILLING METHOD: a• f HOLLOW STEM AUGER CONTRACTOR: GEOLOGIC ASSOCIATES LOGGED BY: TMP COMMENTS ~--=-C/l t: z . w ::, O.!::!_ ~~ 0 '-' 114.8 111.2 w Q: ::,,..., I-~ !!l---0 ::IE 6.4 5.4 ,..., ~$ _, z m=> 0 ~ 26 22 26 18 45 22 w N,-... i7i 1G w:x: _, (J 0.. z ::IE- ~--- BULK 2.5 2.5 1.4 1.4 1.4 1.4 d z w _, 0.. ~ 1 2 3 4 5 6 7 ~ DATE STARTED: 7/15/08 DATE FINISHED: 7/15/08 ELEVATION: 17 FEET (PBSJ, 2004) GW DEPTH: 14 FEET CAVING DEPTH: NONE OBSERVED TOTAL DEPTH: 20.0 FEET :x:t:i i-w VISUAL FIELD DESCRIPTION 0.. u.. w 0 ' ML FILL: 3 INCHES OF ASPHALT CONCRETE OVER 3 INCHES OF _ .... I-... -1=1--11+'+'. 4l AGGREGATE BASE ._ '-'-1 • ; ' I\. MODERATE YELLOWISH BROWN (10YR 5/4) MOIST, VERY -:::: : : .. : I \ STIFF CLAYEY SILT WITH FINE SAND. ~ '-1-• ·, SM TERRACE DEPOSITS: .•. , : •. LIGHT BROWN {SYR 5/6) MOIST, MEDIUM DENSE, FINE TO ..... -1-......... hl\L.L.i,_J_-+-3 ..... _ ..... --'' ._ __ ~ .. 1--_., .• --11<1..L.L..I __ , ......... I-'-5 1-1- ......... ,_ ._ ._ 7 -..... _ I-'--._ __ a ------~9 :.,.: ... ....--1,_J ---......... __ ..._,o 1-.......... ......... ......... .... '---........ 12 _,_ .... 13 ---,_ -,_ _,_>-14 -,_ _ .... 1-............. ,5 MEDIUM SILTY SAND . ... 015 FEET; COLOR CHANGE TO MEDIUM GRAY {NS}, BECOMES DENSE. MEDIUM GRAY {NS} WET, MEDIUM DENSE FINE CLAYEY SAND. NOTES: 1. TOTAL DEPTH = 20.0 FEET . 2. GROUNDWATER AT APPROXIMATELY 14 FEET DURING DRILLING. 3. BORING BACKFILLED ON 7/15/2008 AND CAPPED WITH CONCRETE PLUG. The data presented on this log is a simplification of actual conditions encountered and applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change with the passage of time. Geologic Associates Boring Log BORING NO.: 8-17 PAGE: 1 OF 1 JOB NO.: 2008-0075 SITE LOCATION: CARLSBAD DESALINATION PROJECT DRILLING METHOD: a• f HOLLOW STEM AUGER CONTRACTOR: GEOLOGIC ASSOCIATES LOGGED BY: TMP COMMENTS 108.7 19.5 40 38 90.1 33.2 57 33 44 45 25 46 81 85 85 BULK 2.5 1.4 2.5 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1 2 3 4 5 6 7 8 9 10 11 12 DAT£ STARTED: 7/14/08 DATE FINISHED: 7 / 14 /08 ELEVATION: 17 FEET (PBSJ, 2004) GW DEPTH: 15 FEET CAVING DEPTH: 10 TO 15 FEET TOTAL DEPTH: 51.5 FEET :?: I W t-w a. I.,._ w 0 .......... L-1- I- VISUAL FIELD DESCRIPTION FILL: 3 INCHES OF ASPHALT CONCRETE OVER 4 INCHES OF AGGREGATE BASE ROCK •. ; ; ~L PALE YELLOWISH BROWN (10YR 6/2) MOIST, HARD CLAYEY " ' I \~S"-"IL"-!.T.:...· -------------------------~ TERRACE DEPOSITS: '--..... • ? . I-'-2 ,• .• 1--._ SM 1--t:-:: --•• , .... -- PALE YELLOWISH BROWN (10YR 6/2) MOIST, DENSE, FINE SILTY SAND WITH INT£RBEDDED CLAYEY SILT LENSES. I- 1.nL.L.J1-r-t-3 I- 1- 1-~-4 ._1- lc -.., ........ I-'--5 I-I- L-L---I- I-I- 2< ._ ._ ~s 1-1- I- 1- 1-._ ~- ._- --9 1---l-1- 1-'-'--10 I-.... _ ._1- 1-~16 I- \ . '. .. .• ' ML MIDDLE LIGHT GRAY (N4) MOIST, VERY STIFF, CLAYEY SILT WITH INT£RBEDDED FINE CLAYEY SAND LENSES. SM DARK YELLOWISH ORANGE (10YR 6/6) WET, DENSE, FINE TO MEDIUM SILTY SAND WITH THIN SCATTERED CLAYEY SILT LENSES. SANTIAGO FORMATION: MEDIUM GRAY (NS) WET, VERY DENSE, FINE TO MEDIUM SILTY SANDSTONE WITH SCATTERED SILT LENSES. V NOTES: 1. TOTAL DEPTH = 51.5 FEET. 2. GROUNDWATER ENCOUNTERED AT 15 FE□ AT TIME OF DRILLING. 3. BORING BACKFILLED ON 7/14/2008 AND CAPPED WITH CONCRETE PLUG. The data presented on this log is a simplification of actual conditions encountered and applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change with the passage of time. Geologic Associates Boring Log BORING NO.: 8-1 8 PAGE: 1 OF 1 JOB NO.: 2008-0075 SITE LOCATION: CARLSBAD DESALINATION PROJECT DRILLING METHOD: 8" If HOLLOW STEM AUGER CONTRACTOR: GEOLOGIC ASSOCIATES LOGGED BY: TMP ~--=-,..... w ~~ Ult:: 0:: z . ::,,..... w=> 1-N g !z COMMENTS 0~ (ll '--' 0 (Il ::, ~~ 0 :::E ~ 0 '--' 109.3 12.1 57 109.5 16.7 68 33 24 34 55 54 85 65 52 72 w N,..... vi fa ~ ::c a.. u :E ~ ~ '--' BULK 2.5 2.5 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 ci z w ...J a.. ~ (ll 1 2 3 4 5 6 7 8 9 10 11 12 ~ DATE STARTED: 7/14/08 DATE FINISHED: 7 /14/08 ELEVATION: 17 FEET (BOYLE/PBSJ, 2004) ~(/) _J _J ~~ GW DEPTH: 14 FEET CAVING DEPTH: NONE ENCOUNTERED TOTAL DEPTH: 51.5 FEET ::c ti ::c ffi ~o ~~ ffi~~~ VISUAL FIELD DESCRIPTION I-w ii: ti C..u.. w ~:::E i~~ Cl --- ----1 FILL: 3 INCHES OF ASPHALT CONCRETE OVER 4 INCHES OF AGGREGATE BASE ROCK 1ML PALE YELLOWISH BROWN (10YR 6/2) MOIST, HARD CLAYEY _ I SILT WITH SCATTERED FINE TO MEDIUM SILTY SAND LENSES. -- :::it11H::::t---ML TERRACE DEPOSITS: -= _2 :: '. . \_ PALE YELLOWISH BROWN (10YR 6/2) MOIST, HARD, CLAYEY ..... _ . _ .. , SILT WITH SCATTERED FINE TO MEDIUM SILTY SAND LENSES. -::: _'. SM PALE YELLOWISH BROWN (10YR 6/2) MOIST, HARD, FINE ..... ,.... ·: SILTY SAND WITH INTERBEDDED FINE CLAYEY SAND LENSES. 1~1'U..I-J:-~~-. ----------------------------------: •• SM PALE YELLOWISH BROWN (10YR 6/2) MOIST, DENSE, FINE TO MEDIUM SILTY SAND WITH INTERBEDDED CLAYEY. SILT LENSES. --,-.. ~--4 ---. , •• ..... - -- PALE YELLOWISH BROWN (1DYR 6/2) WET, MEDIUM DENSE, FINE TO MEDIUM SILTY SANO . 2C -:-6 : ., DARK YELLOWISH ORANGE (10YR 6/6) WET, MEDIUM TO COARSE SILTY SAND. -- ---7 ... ' - 25 --' ... 0 25 FEET: TRACES OF GRAVEL. ----8 : • ------- 3D --9 -----.· ... _-... 10 --- -........ 11 --- -:::: ... 12 ... : --;:;:.: SM -~ -· SANTIAGO FORMATION: GRAYISH ORANGE (10YR 7/4) WET, VERY DENSE, FINE TO MEDIUM SILTY SANDSTONE WITH SCATTERED SILT LENSES. _;>-13 :~~~ 45 - :-14 :::4~ :: _Jll /,.__t_\_~-~AL-uN-g-~-~-R-=E_iJ6,~u~\~ED AT 14 FEET AT TIME OF "" _ -:;~ti DRILLING. -3. BORING BACKFILLED ON 7/14/2008 AND CAPPED ---16 WITH CONCRETE PLUG. The doto presented on this log is o simplification of octuol conditions encountered ond applies only ot the location of this boring ond ot the time of drilling. Subsurface conditions moy differ ot other locations and moy change with the passage of time. 0 5 10 15 20 24 15 12 6.7 15.3 116.3 109.2 GMSC SP-SM SM ASPHALT CONCRETE:Approximately 3.5 inches thick. AGGREGATE BASE:Gray, damp, dense, silty GRAVEL with sand; approximately 3 inches thick. FILL:Brown, moist, medium dense, clayey SAND; scattered gravel. Light brown, moist, medium dense, poorly graded SAND with silt; scattered gravel. Reddish brown to brown, wet, loose, silty SAND; scattered gravel and concrete chunks; roots. Saturated. BORING LOG CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION SITE), CARLSBAD, CALIFORNIA PROJECT NO. 107383002 DATE 7/13 FIGURE A-8 DE P T H ( f e e t ) Bu l k SA M P L E S Dr i v e n BL O W S / F O O T MO I S T U R E ( % ) DR Y D E N S I T Y ( P C F ) SY M B O L CL A S S I F I C A T I O N U. S . C . S . DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/13 BORING NO.NMB-7 GROUND ELEVATION 17'  (MSL)SHEET 1 OF METHOD OF DRILLING 10" Hollow-Stem Auger (Baja Exploration) (CME 75) DRIVE WEIGHT 140 lbs. (Auto-Trip Hammer)DROP 30" SAMPLED BY BTM/NMM LOGGED BY BTM REVIEWED BY GTF 5,__ 1------+-----+---•---------I,--- --- --~ - - - - - -:1~.;;.--- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 20 25 30 35 40 15 19 20 27 SP-SM SM ALLUVIUM:Brownish gray, saturated, medium dense, poorly graded SAND with silt; scattered gravel; shell fragments; micaceous. Cobbles. Brownish gray to reddish gray, saturated, medium dense, silty SAND; interlayered with gray clay. No clay; scattered gravel. SANTIAGO FORMATION:Light gray, saturated, weakly cemented, silty fine-grained SANDSTONE interbedded with gray, saturated, moderately indurated, silty CLAYSTONE. BORING LOG CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION SITE), CARLSBAD, CALIFORNIA PROJECT NO. 107383002 DATE 7/13 FIGURE A-9 DE P T H ( f e e t ) Bu l k SA M P L E S Dr i v e n BL O W S / F O O T MO I S T U R E ( % ) DR Y D E N S I T Y ( P C F ) SY M B O L CL A S S I F I C A T I O N U. S . C . S . DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/13 BORING NO.NMB-7 GROUND ELEVATION 17'  (MSL)SHEET 2 OF METHOD OF DRILLING 10" Hollow-Stem Auger (Baja Exploration) (CME 75) DRIVE WEIGHT 140 lbs. (Auto-Trip Hammer)DROP 30" SAMPLED BY BTM/NMM LOGGED BY BTM REVIEWED BY GTF 5-,__ ,- ,__ ,__ ,-_,__ ___ ~------------------------------------------------ _,_ ,- ,__ ,__ ,_ _ _ ,_ ,- ,__ ,_ _ _ ,_ ,- ~ ,__ ,__ ,__ I Jfln90&1ftoore II I I I 40 45 50 55 60 50/3" 52 50/6" 50/4" SANTIAGO FORMATION: (Continued)Brown, saturated, weakly cemented, silty fine-grained SANDSTONE. Gray. Brownish gray. BORING LOG CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION SITE), CARLSBAD, CALIFORNIA PROJECT NO. 107383002 DATE 7/13 FIGURE A-10 DE P T H ( f e e t ) Bu l k SA M P L E S Dr i v e n BL O W S / F O O T MO I S T U R E ( % ) DR Y D E N S I T Y ( P C F ) SY M B O L CL A S S I F I C A T I O N U. S . C . S . DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/13 BORING NO.NMB-7 GROUND ELEVATION 17'  (MSL)SHEET 3 OF METHOD OF DRILLING 10" Hollow-Stem Auger (Baja Exploration) (CME 75) DRIVE WEIGHT 140 lbs. (Auto-Trip Hammer)DROP 30" SAMPLED BY BTM/NMM LOGGED BY BTM REVIEWED BY GTF 5,__ , - ,-- ,-- ,-- ,-- _,_ ,- - ,-- ,-- ,-- _,_' ,-~ ,-- ,-- ,-- _,_ , ~ ,-- ,-- ,-- ,-- I Jfln90&1ftoore II I I I 60 65 70 75 80 50/6" 50/4" 50/2" 50/6" SANTIAGO FORMATION: (Continued)Brownish gray, saturated, weakly cemented, silty fine-grained SANDSTONE. Brown. BORING LOG CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION SITE), CARLSBAD, CALIFORNIA PROJECT NO. 107383002 DATE 7/13 FIGURE A-11 DE P T H ( f e e t ) Bu l k SA M P L E S Dr i v e n BL O W S / F O O T MO I S T U R E ( % ) DR Y D E N S I T Y ( P C F ) SY M B O L CL A S S I F I C A T I O N U. S . C . S . DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/13 BORING NO.NMB-7 GROUND ELEVATION 17'  (MSL)SHEET 4 OF METHOD OF DRILLING 10" Hollow-Stem Auger (Baja Exploration) (CME 75) DRIVE WEIGHT 140 lbs. (Auto-Trip Hammer)DROP 30" SAMPLED BY BTM/NMM LOGGED BY BTM REVIEWED BY GTF 5,__ , - ,-- ,-- ,-- ,-- _,_, ~ ,-- ,-- ,-- ,-- _,_, - ,-- ,-- ,-- ,-- _,_, ,-- ,-- ,-- ,-- I Jfln90&1ftoore II I I I 80 85 90 95 100 50/3" 50/4" 50/3" SANTIAGO FORMATION: (Continued)Grayish brown, saturated, weakly cemented, silty fine-grained SANDSTONE. Total Depth = 90.3 feet. Groundwater encountered at approximately 16 feet during drilling. Well set shortly after drilling on 1/30/13. Note: Groundwater may rise to a level higher than that measured in the borehole due to seasonal variations in precipitation and several other factors as discussed in the report. BORING LOG CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION SITE), CARLSBAD, CALIFORNIA PROJECT NO. 107383002 DATE 7/13 FIGURE A-12 DE P T H ( f e e t ) Bu l k SA M P L E S Dr i v e n BL O W S / F O O T MO I S T U R E ( % ) DR Y D E N S I T Y ( P C F ) SY M B O L CL A S S I F I C A T I O N U. S . C . S . DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/13 BORING NO.NMB-7 GROUND ELEVATION 17'  (MSL)SHEET 5 OF METHOD OF DRILLING 10" Hollow-Stem Auger (Baja Exploration) (CME 75) DRIVE WEIGHT 140 lbs. (Auto-Trip Hammer)DROP 30" SAMPLED BY BTM/NMM LOGGED BY BTM REVIEWED BY GTF 5,__ ~ ,-- ,-- ,-- ,-- _,_, ,-- ,-- ,-- ,-- _,_, ,-- ,-- - ,-- ,-- _,_ - ,-- ,-- ,-- ,-- I Jfln90&1ftoore II I I I 0 10 20 30 40 14 60 53 50/5" 60 50/4" 50/3" 50/5" 10.4 4.3 15.4 18.9 18.0 107.8 SP FILL:Brown, moist, medium dense, fine to medium SAND; trace silt. Light olive brown; scattered fragments of Santiago Formation. Reddish brown. Brown and reddish brown (mottled). Brown and grayish brown (mottled); scattered gravel; trace clay. No recovery. SANTIAGO FORMATION:Gray, moderately cemented, clayey fine-grained SANDSTONE. Light gray, moderately cemented, silty fine-grained SANDSTONE; scattered manganese deposits; some fine laminations visible. Gray; strongly cemented; trace clay. Brownish gray, moist, strongly cemented, clayey silty fine-grained sandstone; slightly micaceous; scattered iron-oxide lined root casts. Light gray; weakly to moderately cemented; silty fine-grained sandstone; massive. Water added to borehole. Gray; strongly cemented; fine- to medium-grained; trace clay. Light gray; moderately cemented. BORING LOG NEW INTAKE/DISCHARGE STRUCTURE CARLSBAD SEAWATER DESALINATION PLANT, CARLSBAD, CALIFORNIA PROJECT NO. 107393003 DATE 11/16 FIGURE A-1 DE P T H ( f e e t ) Bu l k SA M P L E S Dr i v e n BL O W S / F O O T MO I S T U R E ( % ) DR Y D E N S I T Y ( P C F ) SY M B O L CL A S S I F I C A T I O N U. S . C . S . DESCRIPTION/INTERPRETATION DATE DRILLED 9/02/16 BORING NO.GHD-1 GROUND ELEVATION 19'  (MSL)SHEET 1 OF METHOD OF DRILLING 6" Diameter Hollow Stem Auger (Diedrich D50) (Pac Drill) DRIVE WEIGHT 140 lbs. (Auto-Trip Hammer)DROP 30" SAMPLED BY CAT LOGGED BY CAT REVIEWED BY GTF 2 I I I I .,.00Ww0Gu1k I -------------------------------------1--+-i--~ 'I l''''I I I I 11"1 J ~ t-----'-- 40 50 60 70 80 50/4" 50/5" 50/5" 50/5" 12.9 24.6 SANTIAGO FORMATION: (Continued)Grayish brown, moist, moderately cemented SANDSTONE; scattered strongly cemented/ concretionary layers. Clayey. Trace clay. Wet. Light grayish brown; weakly to moderately cemented; no clay. Light brown. Light gray.Total Depth = 60.5 feet. Groundwater encountered during drilling at approximately 49 feet during drilling. Backfilled shortly after drilling on 9/02/16. Note: Groundwater may rise to a level higher than that measured in borehole due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG NEW INTAKE/DISCHARGE STRUCTURE CARLSBAD SEAWATER DESALINATION PLANT, CARLSBAD, CALIFORNIA PROJECT NO. 107393003 DATE 11/16 FIGURE A-2 DE P T H ( f e e t ) Bu l k SA M P L E S Dr i v e n BL O W S / F O O T MO I S T U R E ( % ) DR Y D E N S I T Y ( P C F ) SY M B O L CL A S S I F I C A T I O N U. S . C . S . DESCRIPTION/INTERPRETATION DATE DRILLED 9/02/16 BORING NO.GHD-1 GROUND ELEVATION 19'  (MSL)SHEET 2 OF METHOD OF DRILLING 6" Diameter Hollow Stem Auger (Diedrich D50) (Pac Drill) DRIVE WEIGHT 140 lbs. (Auto-Trip Hammer)DROP 30" SAMPLED BY CAT LOGGED BY CAT REVIEWED BY GTF 2 -- ====w - - r-, -= - - Sf:- --Ill"" - - - - Ill"" - - - - --,. - - - - - - - - - --- - - - - - - - - I 1fln90&/(t.Oo~e II I I I 0 10 20 30 40 11 27 15 12 2.9 110.6 GWSM ASPHALT CONCRETE:Approximately 6 inches thick. BASE:Gray, moist, medium dense, silty sandy GRAVEL; approximately 4 inches thick. FILL: Dark yellowish brown, moist, loose to medium dense, silty fine SAND with gravel up to 2 inches in diameter; cohesionless/hydraulic fill light brown. Light grayish brown; loose. Gravel and cobble layer from approximately 7 to 11 feet; rounded clasts approximately 1 to 4 inches in diameter. Loose gravel with no matrix caving into borehole around auger. No recovery; on gravel/cobbles. No recovery; on gravel/cobbles. No recovery; on gravel/cobbles. Total Depth = 18 feet. Groundwater not encountered during drilling. Backfilled shortly after drilling on 9/02/16. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG NEW INTAKE/DISCHARGE STRUCTURE CARLSBAD SEAWATER DESALINATION PLANT, CARLSBAD, CALIFORNIA PROJECT NO. 107393003 DATE 11/16 FIGURE A-3 DE P T H ( f e e t ) Bu l k SA M P L E S Dr i v e n BL O W S / F O O T MO I S T U R E ( % ) DR Y D E N S I T Y ( P C F ) SY M B O L CL A S S I F I C A T I O N U. S . C . S . DESCRIPTION/INTERPRETATION DATE DRILLED 9/02/16 BORING NO.GHD-2 GROUND ELEVATION 11'  (MSL)SHEET 1 OF METHOD OF DRILLING 6" Diameter Hollow Stem Auger (Diedrich D50) (Pac Drill) DRIVE WEIGHT 140 lbs. (Auto-Trip Hammer)DROP 30" SAMPLED BY CAT LOGGED BY CAT REVIEWED BY GTF 1 I I I II •~00Ww0Gu1JI I f--f-- f--f-- f--f-- f--f-- f--f--f- f--f-- f--f-- f--f-- f--f--- f--f--f- I ~f-- f--f-- ~ xf-- - f--f--f- f--f-- If-- f--- f-- \ ..... f-->-- 0 10 20 30 40 18 13 6 21.8 10.7 100.7 118.1 GWSM SC SM ASPHALT CONCRETE:Approximately 2 inches thick. BASE:Yellowish brown, moist, medium dense, fine to coarse sandy GRAVEL; approximately 6 inches thick. FILL: Light olive, moist, medium dense, silty SAND; scattered gravel up to approximately 2 inches thick.Light olive and brown (mottled), moist, medium dense, clayey fine to medium SAND; few fine gravel. ALLUVIUM:Gray, moist, medium dense, silty fine SAND. Light brown; wet. Dark yellowish brown; scattered small lenses of olive gray. Brown; cohesionless. Total Depth = 16.5 feet. Groundwater seepage encountered during drilling at approximately 10 feet during drilling; no groundwater measured in boring after drilling. Backfilled with approximately 5 cubic feet of bentonite grout and patched with concrete shortly after drilling on 9/02/16. Note: Groundwater may rise to a level higher than that measured in borehole due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG NEW INTAKE/DISCHARGE STRUCTURE CARLSBAD SEAWATER DESALINATION PLANT, CARLSBAD, CALIFORNIA PROJECT NO. 107393003 DATE 11/16 FIGURE A-4 DE P T H ( f e e t ) Bu l k SA M P L E S Dr i v e n BL O W S / F O O T MO I S T U R E ( % ) DR Y D E N S I T Y ( P C F ) SY M B O L CL A S S I F I C A T I O N U. S . C . S . DESCRIPTION/INTERPRETATION DATE DRILLED 9/02/16 BORING NO.GHD-3 GROUND ELEVATION 10'  (MSL)SHEET 1 OF METHOD OF DRILLING 6" Diameter Hollow Stem Auger (Diedrich D50) (Pac Drill) DRIVE WEIGHT 140 lbs. (Auto-Trip Hammer)DROP 30" SAMPLED BY CAT LOGGED BY CAT REVIEWED BY GTF 1 -- ...... - ---f---------- -!:~) \_ ti :;i';G. I ·HI ._,,.._. L _________________________________ I - - --1 ~ - - - - -I - - --- -- - - - - - - - --- - - - - - - - - I 1fln90&/(t.Oo~e II I I I ijEGG 1 Ninyo & Moore _,:; Q. ., 0 Qt (tsf) Max. Depth: 50.033 (ft) Avg. Interval: 0.164 (ft) 0 fs (tsf) 5 -1 u (psi) Site: NRG Sounding: CPT-06 20 0 Rt(%) 10 Engineer: Brian Date: 5/7/2013 01 :22 0 Clay Clay SBT 12 S.,.nd Sor.! SBT: Soil Behavior Type (Robertson 1990) ijEGG 1 Ninyo & Moore 10 20 g _,:; Q. ., 0 30 Qt (tsf) Max. Depth: 50.197 (ft) Avg. Interval: 0.164 (ft) 0 fs (tsf) 5 -1 u (psi) Site: NRG Sounding: CPT-07 20 0 Rt(%) 10 Engineer: Brian Date: 5/8/2013 09:10 0 SBT 12 Sar..&y sih S. Jiayey -s-ih - SBT: Soil Behavior Type (Robertson 1990) ijEGG 1 Ninyo & Moore _,:; Q. ., 0 0 Qt (tsf) 400 20 30 40 --+-----f---------l so ~__,___,___.___.___.___.___,__,---'L....J Max. Depth: 39. 042 (ft) Avg. Interval: 0.164 (ft) 0 fs (tsf) 5 -1 u (psi) Site: NRG Sounding: CPT-08 20 0 Rt(%) 10 Engineer: Brian Date: 5/8/2013 07:34 0 - SBT 12 ' Silty sa.r..tt J. .sardy sill Silty sand .sand'y : ill SBT: Soil Behavior Type (Robertson 1990) Ninyo & Moore Geotechnical Project Poseidon/Carlsbad Desal Plant Operator DG-RC Filename SDF(248).cpt Job Number 107393003 Cone Number DDG1350 GPS Hole Number T-01 Date and Time 11/1/2016 8:25:21 AM Maximum Depth 6.89 ft EST GW Depth During Test 20.00 ft Net Area Ratio .8 Cone Size 10cm squared Soil Behavior Referance*Soil behavior type and SPT based on data from UBC-1983 0 5 10 15 20 25 30 35 40 45 0 500 TIP TSF 0 10 FRICTION TSF 0 10 Fs/Qt % 0 350 SPT N 0 12 1 - sensitive fine grained 2 - organic material 3 - clay 4 - silty clay to clay 5 - clayey silt to silty clay 6 - sandy silt to clayey silt 7 - silty sand to sandy silt 8 - sand to silty sand 9 - sand 10 - gravelly sand to sand 11 - very stiff fine grained (*) 12 - sand to clayey sand (*) CPT DATA DE P T H (f t ) SO I L BE H A V I O R TY P E - Ill llllliliJ:llln - -......_. I ( ? ( I -- i---,-'----I> -> -=:::::: f=s: J Ll ,--.,:._ ! -- ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Ninyo & Moore Geotechnical Project Poseidon/Carlsbad Desal Plant Operator DG-RC Filename SDF(249).cpt Job Number 107393003 Cone Number DDG1350 GPS Hole Number T-01A Date and Time 11/1/2016 8:41:48 AM Maximum Depth 7.87 ft EST GW Depth During Test 20.00 ft Net Area Ratio .8 Cone Size 10cm squared Soil Behavior Referance*Soil behavior type and SPT based on data from UBC-1983 0 5 10 15 20 25 30 35 40 45 0 500 TIP TSF 0 10 FRICTION TSF 0 10 Fs/Qt % 0 350 SPT N 0 12 1 - sensitive fine grained 2 - organic material 3 - clay 4 - silty clay to clay 5 - clayey silt to silty clay 6 - sandy silt to clayey silt 7 - silty sand to sandy silt 8 - sand to silty sand 9 - sand 10 - gravelly sand to sand 11 - very stiff fine grained (*) 12 - sand to clayey sand (*) CPT DATA DE P T H (f t ) SO I L BE H A V I O R TY P E - Ill llllliliJ:llln - I __,,.-17 ( I --~ ( --v--..___ f _:s - II ? "-( --.---/ -- ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Ninyo & Moore Geotechnical Project Poseidon/Carlsbad Desal Plant Operator DG-RC Filename SDF(251).cpt Job Number 107393003 Cone Number DDG1350 GPS Hole Number T-02 Date and Time 11/1/2016 9:06:34 AM Maximum Depth 22.15 ft EST GW Depth During Test 20.00 ft Net Area Ratio .8 Cone Size 10cm squared Soil Behavior Referance*Soil behavior type and SPT based on data from UBC-1983 0 5 10 15 20 25 30 35 40 45 0 500 TIP TSF 0 10 FRICTION TSF 0 10 Fs/Qt % 0 350 SPT N 0 12 1 - sensitive fine grained 2 - organic material 3 - clay 4 - silty clay to clay 5 - clayey silt to silty clay 6 - sandy silt to clayey silt 7 - silty sand to sandy silt 8 - sand to silty sand 9 - sand 10 - gravelly sand to sand 11 - very stiff fine grained (*) 12 - sand to clayey sand (*) CPT DATA DE P T H (f t ) SO I L BE H A V I O R TY P E - Ill lilllliliJ:llln - r--.. -i-~ f--> I i====----a .> ~ ,..--V ,---~ ~ ( """"" =- ----i .}' ,_ ( r-,.__ =, s;-- ? IJ ~ r :::::,,_ < > L...J ~ ~ C: -3 --\ <c----~ < ~ le_ J ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Ninyo & Moore Geotechnical Project Poseidon/Carlsbad Desal Plant Operator DG-RC Filename SDF(252).cpt Job Number 107393003 Cone Number DDG1350 GPS Hole Number T-03 Date and Time 11/1/2016 10:00:59 AM Maximum Depth 21.98 ft EST GW Depth During Test 20.00 ft Net Area Ratio .8 Cone Size 10cm squared Soil Behavior Referance*Soil behavior type and SPT based on data from UBC-1983 0 5 10 15 20 25 30 35 40 45 0 500 TIP TSF 0 10 FRICTION TSF 0 10 Fs/Qt % 0 350 SPT N 0 12 1 - sensitive fine grained 2 - organic material 3 - clay 4 - silty clay to clay 5 - clayey silt to silty clay 6 - sandy silt to clayey silt 7 - silty sand to sandy silt 8 - sand to silty sand 9 - sand 10 - gravelly sand to sand 11 - very stiff fine grained (*) 12 - sand to clayey sand (*) CPT DATA DE P T H (f t ) SO I L BE H A V I O R TY P E - Ill lilllliliJ:llln - f-+-1 ,_ < ..5 "" ? ( I[_ V r--,,.-P / I;::-~ -:c - ::::= J f ~ - ~ ) ;: S:~ ~ ~ i ===-I - I~ - :,, ? Li' ..;_ ==--l ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Ninyo & Moore Geotechnical Project Poseidon/Carlsbad Desal Plant Operator DG-RC Filename SDF(253).cpt Job Number 107393003 Cone Number DDG1350 GPS Hole Number T-04 Date and Time 11/1/2016 10:24:29 AM Maximum Depth 25.26 ft EST GW Depth During Test 20.00 ft Net Area Ratio .8 Cone Size 10cm squared Soil Behavior Referance*Soil behavior type and SPT based on data from UBC-1983 0 5 10 15 20 25 30 35 40 45 0 500 TIP TSF 0 10 FRICTION TSF 0 10 Fs/Qt % 0 350 SPT N 0 12 1 - sensitive fine grained 2 - organic material 3 - clay 4 - silty clay to clay 5 - clayey silt to silty clay 6 - sandy silt to clayey silt 7 - silty sand to sandy silt 8 - sand to silty sand 9 - sand 10 - gravelly sand to sand 11 - very stiff fine grained (*) 12 - sand to clayey sand (*) CPT DATA DE P T H (f t ) SO I L BE H A V I O R TY P E - Ill llllliliJ:llln - I, <' / ____,--c.----~ {~ Ii: 2 -=== -=--1----,s::'. ,;~ --.... ( --..._ ,_ -~ t· ===-- _s5- 1...-----S" I I I o==--t:>--cc.... ~ }, C 1,,.-----~ r ? ? ~ ... __,,> ) -<:;> > j ~ r=::a ~ ( \ 1=-( ·~ ~ {_ ~ ~ -~ ( Ir I==-..... 2 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Ninyo & Moore Geotechnical Project Poseidon/Carlsbad Desal Plant Operator DG-RC Filename SDF(254).cpt Job Number 107393003 Cone Number DDG1350 GPS Hole Number T-05 Date and Time 11/1/2016 10:58:49 AM Maximum Depth 21.98 ft EST GW Depth During Test 20.00 ft Net Area Ratio .8 Cone Size 10cm squared Soil Behavior Referance*Soil behavior type and SPT based on data from UBC-1983 0 5 10 15 20 25 30 35 40 45 0 500 TIP TSF 0 10 FRICTION TSF 0 10 Fs/Qt % 0 350 SPT N 0 12 1 - sensitive fine grained 2 - organic material 3 - clay 4 - silty clay to clay 5 - clayey silt to silty clay 6 - sandy silt to clayey silt 7 - silty sand to sandy silt 8 - sand to silty sand 9 - sand 10 - gravelly sand to sand 11 - very stiff fine grained (*) 12 - sand to clayey sand (*) CPT DATA DE P T H (f t ) SO I L BE H A V I O R TY P E - Ill llllliliJ:llln - c:: '-------r--;, f / t c> .,_______ t-----; l-< :5 ::::::,. -~ ~ • ( v-= <" 7 ch • I---------~-is--- I I --s f -~ ::::, -:a ~ ' \ ,7 i.-----,--1 ( ~ "--~ ::;,_ _J; -,-j, I= ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Ninyo & Moore Geotechnical Project Poseidon/Carlsbad Desal Plant Operator DG-RC Filename SDF(255).cpt Job Number 107393003 Cone Number DDG1350 GPS Hole Number T-06 Date and Time 11/1/2016 11:18:31 AM Maximum Depth 25.43 ft EST GW Depth During Test 20.00 ft Net Area Ratio .8 Cone Size 10cm squared Soil Behavior Referance*Soil behavior type and SPT based on data from UBC-1983 0 5 10 15 20 25 30 35 40 45 0 500 TIP TSF 0 10 FRICTION TSF 0 10 Fs/Qt % 0 350 SPT N 0 12 1 - sensitive fine grained 2 - organic material 3 - clay 4 - silty clay to clay 5 - clayey silt to silty clay 6 - sandy silt to clayey silt 7 - silty sand to sandy silt 8 - sand to silty sand 9 - sand 10 - gravelly sand to sand 11 - very stiff fine grained (*) 12 - sand to clayey sand (*) CPT DATA DE P T H (f t ) SO I L BE H A V I O R TY P E - Ill llllliliJ:llln - --------? -c-------. 2 1 I=- c;:: :=?" ) r---,..._ ~ -c::: ==,. -==- l~ -1 1..--s"" ~ } ) ) r--= ----->-L--___. • ! ./ v -=-:::=- l L {; ~ ~ ~ c ,r -:> 1----5' / -) ~ ~ t 1 l;s-,,..e- t I~ == "-'1-,. ,~ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Ninyo & Moore Geotechnical Project Poseidon/Carlsbad Desal Plant Operator DG-RC Filename SDF(256).cpt Job Number 107393003 Cone Number DDG1350 GPS Hole Number T-07 Date and Time 11/1/2016 11:46:57 AM Maximum Depth 14.27 ft EST GW Depth During Test 20.00 ft Net Area Ratio .8 Cone Size 10cm squared Soil Behavior Referance*Soil behavior type and SPT based on data from UBC-1983 0 5 10 15 20 25 30 35 40 45 0 500 TIP TSF 0 10 FRICTION TSF 0 10 Fs/Qt % 0 350 SPT N 0 12 1 - sensitive fine grained 2 - organic material 3 - clay 4 - silty clay to clay 5 - clayey silt to silty clay 6 - sandy silt to clayey silt 7 - silty sand to sandy silt 8 - sand to silty sand 9 - sand 10 - gravelly sand to sand 11 - very stiff fine grained (*) 12 - sand to clayey sand (*) CPT DATA DE P T H (f t ) SO I L BE H A V I O R TY P E - Ill lilllliliJ:llln - r----1-1-, (-::::> ( I ---\l---<'. p -==== p D -'----r----..... ~ ~ > --.,_ -<C [;""" -= ===p. ~ 1.----s"" _.s:-~ I? ~ ■ ,_ k:: ~ I~ t:,,-\. , _) ( er ,,.---I-- ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Ninyo & Moore Geotechnical Project Poseidon/Carlsbad Desal Plant Operator DG-RC Filename SDF(257).cpt Job Number 107393003 Cone Number DDG1350 GPS Hole Number T-08 Date and Time 11/1/2016 12:15:07 PM Maximum Depth 41.34 ft EST GW Depth During Test 20.00 ft Net Area Ratio .8 Cone Size 10cm squared P Soil Behavior Referance*Soil behavior type and SPT based on data from UBC-1983 0 5 10 15 20 25 30 35 40 45 0 500 TIP TSF 0 10 FRICTION TSF 0 10 Fs/Qt % 0 350 SPT N 0 12 1 - sensitive fine grained 2 - organic material 3 - clay 4 - silty clay to clay 5 - clayey silt to silty clay 6 - sandy silt to clayey silt 7 - silty sand to sandy silt 8 - sand to silty sand 9 - sand 10 - gravelly sand to sand 11 - very stiff fine grained (*) 12 - sand to clayey sand (*) CPT DATA DE P T H (f t ) SO I L BE H A V I O R TY P E ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Ninyo & Moore Geotechnical Project Poseidon/Carlsbad Desal Plant Operator DG-RC Filename SDF(258).cpt Job Number 107393003 Cone Number DDG1350 GPS Hole Number T-09 Date and Time 11/1/2016 1:03:02 PM Maximum Depth 14.93 ft EST GW Depth During Test 20.00 ft Net Area Ratio .8 Cone Size 10cm squared Soil Behavior Referance*Soil behavior type and SPT based on data from UBC-1983 0 5 10 15 20 25 30 35 40 45 0 500 TIP TSF 0 10 FRICTION TSF 0 10 Fs/Qt % 0 350 SPT N 0 12 1 - sensitive fine grained 2 - organic material 3 - clay 4 - silty clay to clay 5 - clayey silt to silty clay 6 - sandy silt to clayey silt 7 - silty sand to sandy silt 8 - sand to silty sand 9 - sand 10 - gravelly sand to sand 11 - very stiff fine grained (*) 12 - sand to clayey sand (*) CPT DATA DE P T H (f t ) SO I L BE H A V I O R TY P E - Ill llllliliJ:llln - = _..-P f----r----.,_ ------ t -,... µ,-. ~ 'C.. ~ ~ ; ,- --.... ( ( "[? f < h <.....> > ~ 1= 'z ----- ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Ninyo & Moore Geotechnical Project Poseidon/Carlsbad Desal Plant Operator DG-RC Filename SDF(259).cpt Job Number 107393003 Cone Number DDG1350 GPS Hole Number T-10 Date and Time 11/1/2016 1:22:08 PM Maximum Depth 15.09 ft EST GW Depth During Test 20.00 ft Net Area Ratio .8 Cone Size 10cm squared Soil Behavior Referance*Soil behavior type and SPT based on data from UBC-1983 0 5 10 15 20 25 30 35 40 45 0 500 TIP TSF 0 10 FRICTION TSF 0 10 Fs/Qt % 0 350 SPT N 0 12 1 - sensitive fine grained 2 - organic material 3 - clay 4 - silty clay to clay 5 - clayey silt to silty clay 6 - sandy silt to clayey silt 7 - silty sand to sandy silt 8 - sand to silty sand 9 - sand 10 - gravelly sand to sand 11 - very stiff fine grained (*) 12 - sand to clayey sand (*) CPT DATA DE P T H (f t ) SO I L BE H A V I O R TY P E - Ill llllliliJ:llln - -r'--., 7 -2-> -6 liii s ~ .,,_i----------. -----., I-------... ,,.., ,.- ( I I> I ( I ·~ ~ I'-=- '--, 1c.__,,_, -_') ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Ninyo & Moore Geotechnical Project Poseidon/Carlsbad Desal Plant Operator DG-RC Filename SDF(260).cpt Job Number 107393003 Cone Number DDG1350 GPS Hole Number T-11 Date and Time 11/1/2016 1:39:59 PM Maximum Depth 20.51 ft EST GW Depth During Test 20.00 ft Net Area Ratio .8 Cone Size 10cm squared Soil Behavior Referance*Soil behavior type and SPT based on data from UBC-1983 0 5 10 15 20 25 30 35 40 45 0 500 TIP TSF 0 10 FRICTION TSF 0 10 Fs/Qt % 0 350 SPT N 0 12 1 - sensitive fine grained 2 - organic material 3 - clay 4 - silty clay to clay 5 - clayey silt to silty clay 6 - sandy silt to clayey silt 7 - silty sand to sandy silt 8 - sand to silty sand 9 - sand 10 - gravelly sand to sand 11 - very stiff fine grained (*) 12 - sand to clayey sand (*) CPT DATA DE P T H (f t ) SO I L BE H A V I O R TY P E - Ill llllliliJ:llln - -r-----=-Ls: :'.5 = ""~ j • ,,---s:- ~ t== =· -----> -~ ,-i---------.... r--. ( r l f ~-~ 1,,-=- ) I~ £_ t:==- ~ ~ 13-) ) ~ > s ( C: '- ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Ninyo & Moore Geotechnical Project Poseidon/Carlsbad Desal Plant Operator DG-RC Filename SDF(261).cpt Job Number 107393003 Cone Number DDG1350 GPS Hole Number T-12 Date and Time 11/1/2016 2:02:52 PM Maximum Depth 24.93 ft EST GW Depth During Test 20.00 ft Net Area Ratio .8 Cone Size 10cm squared Soil Behavior Referance*Soil behavior type and SPT based on data from UBC-1983 0 5 10 15 20 25 30 35 40 45 0 500 TIP TSF 0 10 FRICTION TSF 0 10 Fs/Qt % 0 350 SPT N 0 12 1 - sensitive fine grained 2 - organic material 3 - clay 4 - silty clay to clay 5 - clayey silt to silty clay 6 - sandy silt to clayey silt 7 - silty sand to sandy silt 8 - sand to silty sand 9 - sand 10 - gravelly sand to sand 11 - very stiff fine grained (*) 12 - sand to clayey sand (*) CPT DATA DE P T H (f t ) SO I L BE H A V I O R TY P E - Ill llllliliJ:llln - ~r---::as t= .,.__ ~[::::::, ~ p I I "" < _,-F ,_ > __s:--- < > ~ ; ~ ~__s-;; ? ~ ==-- -=-- f ( { --~ :::;;; h .._ - l.._ ~ -- ~ = -t> [:::::, c-- 2 -C -~ [> I? <-_ b ~ / 1 <~ g. I\ ,I>-D r---1-1-,_ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Ninyo & Moore Geotechnical Project Poseidon/Carlsbad Desal Plant Operator DG-RC Filename SDF(262).cpt Job Number 107393003 Cone Number DDG1350 GPS Hole Number T-13 Date and Time 11/1/2016 2:23:52 PM Maximum Depth 20.51 ft EST GW Depth During Test 20.00 ft Net Area Ratio .8 Cone Size 10cm squared Soil Behavior Referance*Soil behavior type and SPT based on data from UBC-1983 0 5 10 15 20 25 30 35 40 45 0 500 TIP TSF 0 10 FRICTION TSF 0 10 Fs/Qt % 0 350 SPT N 0 12 1 - sensitive fine grained 2 - organic material 3 - clay 4 - silty clay to clay 5 - clayey silt to silty clay 6 - sandy silt to clayey silt 7 - silty sand to sandy silt 8 - sand to silty sand 9 - sand 10 - gravelly sand to sand 11 - very stiff fine grained (*) 12 - sand to clayey sand (*) CPT DATA DE P T H (f t ) SO I L BE H A V I O R TY P E - Ill llllliliJ:llln - r-1 I p -.,____ -\, I) -> ~> ':; { .. ? --~ ... / ~ I'\. ; (_ i < --■- < ~ ::::,. -l.? --~ ~ ! ~ / <[r [ ~ ~ ,-... (__.,,,..,--r ( ~ < == (L-----'" <:.::p ) .. n .... n l ... > <'. :::::, .,-e-----,- I• < ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ I- I I· 1. r I: L I. L J : r "' GRAVEL SAND COBBLES SILT and CLAY Coarse Fine Coarse Medium Fine U.S. STANDARD SIEVE SIZE 7 6 3 2 1 3/4 1/2 1/4 10 16 20 30 40 60 80 140 200 0 100 -.:: --=--' .>-. ) \ ·, \ ' .J \ 90 \ •\ 10 r , \ ~ _, ' ~ ' I l' 80 \. ~~ 20 \. ~ \ " ¥ \ 70 '· 30 '.{ \ '\ \ ' \ 60 \ lJ 40 ~ t!I ' :z: I J II H CIJ .... \ ~ ~ \ II \ I 50 I 50 \ \ ' ' ~ \ I ' \ ' ~ Po. 40 I 60 \ J "" I \ I I 30 \ 70 I I ' 20 ii 80 . \ ' 10 -~,. ~o In ,-I I • ' I I 0 I I I I I I 100 100 50 • l.0.0 5.0 1.0 0.1 0.05 0.01 0.005 0.001 GRAIN SIZE.IN MII..LIM:EJ:ERS SAMPLE DEP'lll SYMBOL CLASSIFICATION LL PI B4-3 29'-30' --0--GRAY POORLY GRADED SAND WITH SILT AND 12% GRAVEL (SP-SM) B4-4 34'-35.5' -0-GRAY WELL-GRADED SAND WITH SILT (SW-SM) B4-6 44'-45' --fr-· GRAY POORLY GRADED SAND WITH SILT (SP-SM) 84-8 54'-55.5' -·-0·-GRAY POORLY GRADED SAND WITH SILT (SP-SM) .GRAIN SIZE DISTRIBUTION . PROJECT: 1555 SDG&E ENCINA POWER PLANT FIGURE: C-1 \.. .) APEX GEOTECHNOLOGY, INC .. in association with GROUP DEL TA CONSULTANTS. INC .. A Joint-Venture Parrnership ; 1- I r r I" "' GRAVEL SAND COBBLES SILT and CLAY Coarse Fine Coarse Medium Fine U.S. STANDARD SIEVE SIZE 7 6 3 2 1 3/4 1/2 1/4 It.. !O 16 20 30 40 60 80 140 200 0 100 •lo' -- - l 1. J \ A. l I " "','\1 I'\. ' 90 \ • t 10 I \ I \ I 80 \ I 20 \ I I I I I I ,, 70 , ,, 30 , I IIJ , ' 60 .I 40 ~ i -H ., fll It H fll ,, ~ ~ l' so ~ 50 ,, ti •' ~ l'I Ci "' Cl ~ 40 " 60 ., ~ I ' 30 70 II 20 \ 80 '"' ... Ii '.) ' I • I .J \ ·., 10 '1 ✓ ~o "' Ill 'I" I I t I II 0 I I I t I II 100 100 50 ·10.0 5.0 1.0 0.1 0.05 0.01 0.005 0;001 GRAIN SIZE IN MILLIMETERS SAMPLE DEPnl SYMBOL CLASSIFICATION LL PI B4-10 64'-65' ---0-GRAY POORLY GRADED SAND ·wlTH SILi: (SP-SM) B4-12 74'-75.5' --0--GRAY SILTY SAND (SM) B4-14 84'-85.5' ----6---GRAY POORLY GRADED SAND WITH SILT (SP-SM) B4-16 94'-95.5' ---0---GRAY POORLY GRADED SAND WITH SILT (SP-SM) .GRAIN SIZE DISTRIBUTION . PROJECT: 1555 SDG&E ENCINA POWER PLANT FIGURE: C-2 \. ~ APEX GEOTECHNOLOGY, INC .. in association with GROUP DELTA CONSULTANTS. INC .. A Joint-Venture Parrnership Coarse Fine Coarse Medium SILT CLAY 3" 2"¾"½" ⅜"4 8 3050 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 107393003 11/16 B-1NEW INTAKE/DISCHARGE STRUCTURE CARLSBAD SEAWATER DESALINATION PLANT CARLSBAD, CALIFORNIA Fine Sample Location 100 D10 16 200 GRAVEL SAND FINES Symbol Plasticity Index Plastic Limit Liquid Limit 1½" 1" Depth (ft)D30 Cu GHD-1 5.0-6.5 -- -- -- 0.13 USCS 0.22 D60 SP0.38 3.0 1.0 2 Passing No. 200 (%) Cc 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 0.00010.0010.010.1110100 PE R C E N T F I N E R B Y W E I G H T GRAIN SIZE IN MILLIMETERS U.S. STANDARD SIEVE NUMBERS HYDROMETER GRADATION TEST RESULTS PROJECT NO.DATE FIGURE 107393003_SIEVE GHD-1 @ 5.0-6.5.xls I I I I I I I I ......... 1\ \ ' \ \ \ \ \ I '\ I ' I • I I I I I I I I I I I I I l(ln90&1(-.0o~e Coarse Fine Coarse Medium SILT CLAY 3" 2"3/4"4 10 30 50 200 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 Fine Sample Location CcCu 1001-1/2" 1" Depth(ft) -- -- -- D60Liquid Limit 3/8" GRAVEL SAND FINES Symbol PlasticityIndexPlasticLimit D30D10 16 PassingNo. 200(%) -- 20 SM Equivalent USCS GHD-1 20.0-21.5 37 26 11 -- 107393003 11/16 CARLSBAD, CALIFORNIA NEW INTAKE/DISCHARGE STRUCTURE B-2CARLSBAD SEAWATER DESALINATION PLANT 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 0.00010.0010.010.1110100 PE R C E N T F I N E R B Y W E I G H T GRAIN SIZE IN MILLIMETERS U.S. STANDARD SIEVE NUMBERS HYDROMETER GRADATION TEST RESULTS PROJECT NO.DATE FIGURE 107393003_SIEVE+HYDRO GHD-1 @ 20.0-21.5.xls I I I I I I I I ~~ ' \ \ \ \ l \ ~ ... _ ... N r--... • • I . I I I I I I I I I I I I I l(ln90&1(toore Coarse Fine Coarse Medium SILT CLAY 3" 2"¾"½" ⅜"4 8 3050 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 USCS -- D60 SM-- -- -- 26 Passing No. 200 (%) CcCu GHD-3 15.0-16.5 -- -- -- -- GRAVEL SAND FINES Symbol Plasticity Index Plastic Limit Liquid Limit 1½" 1" Depth (ft)D30 Fine Sample Location 100 D10 16 200 107393003 11/16 B-3NEW INTAKE/DISCHARGE STRUCTURE CARLSBAD SEAWATER DESALINATION PLANT CARLSBAD, CALIFORNIA 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 0.00010.0010.010.1110100 PE R C E N T F I N E R B Y W E I G H T GRAIN SIZE IN MILLIMETERS U.S. STANDARD SIEVE NUMBERS HYDROMETER GRADATION TEST RESULTS PROJECT NO.DATE FIGURE 107393003_SIEVE GHD-3 @ 15.0-16.5.xls I I I I I I I I 1'a.. I ' \ \ ' i\_ ' ~' I . I I I I I I I I I I I I I l(ln90&1(-.0o~e LOCATION PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 4318 107393003 11/16 B-4 USCS USCS(Entire Sample)(Fraction Finer ThanLIMIT, PL INDEX, PI LIQUID PLASTIC PLASTICITYLIMIT, LL No. 40 Sieve) SYMBOL 20.0-21.0 1137 (FT)DEPTH 26GHD-1 CLASSIFICATION SM ML NEW INTAKE/DISCHARGE STRUCTURE Equivalent CARLSBAD SEAWATER DESALINATION PLANTCARLSBAD, CALIFORNIA CH or OH CL or OL MH or OH ML or OLCL - ML 0 10 20 30 40 50 60 0 102030405060708090100 PL A S T I C I T Y I N D E X , P I LIQUID LIMIT, LL ATTERBERG LIMITS TEST RESULTS PROJECT NO.DATE FIGURE 107393003_ATTERBERG Page 1.xls • / ~v V / V / / V / ~ V / A' V ,/ I/ / / I / l(ln9o&l(too-re X Description Symbol Sample Location 490 Depth(ft)Shear Strength 25.0-25.9Silty SANDSTONE GHD-1 Peak Cohesion, c(psf)Friction Angle, (degrees)Soil Type Formation32 37 100 Formation Ultimate25.0-25.9GHD-1 B-5 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080 Silty SANDSTONE 107393003 11/16 CARLSBAD SEAWATER DESALINATION PLANTNEW INTAKE/DISCHARGE STRUCTURE CARLSBAD, CALIFORNIA 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 SH E A R S T R E S S ( P S F ) NORMAL STRESS (PSF) DIRECT SHEAR TEST RESULTS PROJECT NO.DATE FIGURE 107393003_DIRECT SHEAR GHD-1 @ 25.0-25.9.xls ~ ./' /" ~ / ~ /' ',,,,, ,./ ., .,,,, ~ / _,,, . ./' ,, ,,, / _; ~r ~ / '; ~,, /' / . - ,./' / ~ ~ / /'; / , / ~ "" / • ---- l(ln90&/(loo-re X Description Symbol Sample Location 140 Depth(ft)Shear Strength 5.0-6.5Silty SAND GHD-3 Peak Cohesion, c(psf)Friction Angle, (degrees)Soil Type SM35 35 50 SM Ultimate5.0-6.5GHD-3 B-6 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080 Silty SAND 107393003 11/16 CARLSBAD SEAWATER DESALINATION PLANTNEW INTAKE/DISCHARGE STRUCTURE CARLSBAD, CALIFORNIA 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 SH E A R S T R E S S ( P S F ) NORMAL STRESS (PSF) DIRECT SHEAR TEST RESULTS PROJECT NO.DATE FIGURE 107393003_DIRECT SHEAR GHD-3 @ 5.0-6.5.xls /. ~ ("' / ~- ~ ~ ~/ / ~- A• A ~v .,, ' ~-# /;' # • • ---- l(ln90&/(loo-re X Description Symbol Sample Location 80 Depth(ft)Shear Strength 15.0-16.5Silty SAND GHD-3 Peak Cohesion, c(psf)Friction Angle, (degrees)Soil Type SM23 26 80 SM Ultimate15.0-16.5GHD-3 B-7 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080 Silty SAND 107393003 11/16 CARLSBAD SEAWATER DESALINATION PLANTNEW INTAKE/DISCHARGE STRUCTURE CARLSBAD, CALIFORNIA 0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000 SH E A R S T R E S S ( P S F ) NORMAL STRESS (PSF) DIRECT SHEAR TEST RESULTS PROJECT NO.DATE FIGURE 107393003_DIRECT SHEAR GHD-3 @ 15.0-16.5.xls / / /:_ ~,,. ,. - / ,J / ,.,,., ~ / .-- / ~ ~ ~ ,..... 4 ' ~ r--- / ,- • ---- l(ln90&/(loo-re 1 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 643 2 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 417 3 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 422 920 0.092 580 0.058 11/16 B-8NEW INTAKE/DISCHARGE STRUCTURECARLSBAD SEAWATER DESALINATION PLANTCARLSBAD, CALIFORNIA GHD-1 40.0-45.0 6.9 6.7 CHLORIDE CONTENT 3 (ppm) pH 1SAMPLE DEPTH (FT) SAMPLE LOCATION (Ohm-cm) RESISTIVITY 1 SULFATE CONTENT 2 (%)(ppm) GHD-2 1.0-4.0 1,200 2,640 90 190 107393003 CORROSIVITY TEST RESULTS PROJECT NO. DATE FIGURE 107393003_CORROSIVITY Page 1.xls . October 3, 2016 Ninyo & Moore 5710 Ruffin Road San Diego, California 92123 Attention: Subject: Kai Vedenoja/ Gregory Farrand Report/Laboratory Test Results Project Name: Poseidon/Carlsbad Desai Project No.: 107393002 KTL Project No.: 05-318-137 Dear Mr. Kai Vedenoja/ Gregory Farrand : www.keontanlabs.com email: info@keontanlabs.com Enclosed are results of the laboratory testing program conducted on samples from the above referenced project. Th.e testing performed for this program was conducted in general accordance with testing procedures as follows: TYPE OFTEST Permeability (Triaxial) Attached herewith is Summary of Permeability Test Result (2). TEST PROCEDURE ASTM D 5084 We appreciate the opportunity to provide testing services to Ninyo & Moore. If you have any questions regarding the test results, please contact us. Encls. . d B CA 91765 • Tel.: (909) 860-1896 • Fax: (909) 860-1856 640 N. Diamond Bar Blvd., DIamon ar, KEANTAN LABORATORIES www.keantanlabs.com email: info@keontonlabs.com SUMMERY OF LABORATORY TEST RESULT PROJECT NAME.: Poseidon/Carlsbad Desal KTL NO.: 05-318-137 PROJECT NO.: DATE.: Boring NO. GHD-1 GHD-3 107393002 10-3-2016 MOISTURE CONTENT (%) 13.95 18.51 CLIENT.: Nin yo & Moore SUMMARIZED BY.: K. Tan DRY DENSITY HYDRAULIC CONDUCTIVITY (PCF) (cm/sec) ASTM D 2434/ASTM D 5084 ASTM D 2434/ASTM D 5084 112.59 l.28E-04 106.10 1.60E-04 640 N. Diamond Bar Blvd., Diamond Bar, CA 91765 • Tel.: (909) 860-1896 • Fax: (909) 860-1856 Sample ID Resistivity as-received saturated pH Electrical Conductivity Chemical Analyses Cations calcium Ca2+ magnesium Mg2+ sodium Na1+ potassium K1+ Anions carbonate CO3i- Table 1 -Laboratory Tests on Soil Samples Units ohm-cm ohm-cm mS/cm mg/kg mg/kg mg/kg mg/kg mg/kg Ninyo & Moore HDR Lab #16-0740LAB 28-Nov-16 GHD-1@ 40.0-45.0 na na na na na na na na na GHD-2@ 1.0-4.0 na na na na na na na na na bicarbonate HCO3 1• mg/kg na na fluoride F1-mg/kg na na chloride c11-mg/kg na na sulfate so/-mg/kg na na phosphate PO/-mg/kg na na Other Tests ammonium NH41+ mg/kg na na nitrate NO31-mg/kg na na sulfide 52-qual Negative Negative Redox mV 129 124 Resistivity per ASTM G187, Cations per ASTM D6919, Anions per ASTM D4327, and Alkalinity per APHA 2320-B. Electrical conductivity in millisiemens/cm and chemical analyses were made on a 1 :5 soil-to-water extract. mg/kg = milligrams per kilogram (parts per million) of dry soil. Redox = oxidation-reduction potential in millivolts ND= not detected na = not analyzed 431 West Baseline Road· Claremont, CA 91711 Phone: 909.962.5485 • Fax: 909.626.3316 Page 1 of 1 New Intake/Discharge Structure November 30, 2016 Carlsbad Seawater Desalination Plant, Carlsbad, California Project No. 107393003 107393003 R.doc APPENDIX D PREVIOUS SITE LABORATORY TESTING (GEOLOGIC ASSOCIATES, 2008) Geotechnical/Environmental Report -Carlsbad Seawater Desalination Plant APPENDIXB GEOTECHNICAL LABORATORY TESTING PROCEDURES AND TEST RESULTS Expansion Index Tests: The expansion potential of selected materials was evaluated by the Expansion Index Test, U.B.C. Standard No. 18-2 and ASTM D4829. Specimens are molded under a given compactive energy to approximately the optimum moisture content and approximately 50 percent saturation or approximately 90 percent relative compaction. The prepared I-inch thick by 4- inch diameter specimens are loaded to an equivalent 144 psf surcharge and are inundated with tap water until volumetric equilibrium is reached. The results of these tests are presented in the table below: Sample Location Sample Description Expansion Expansion Index Potential* B-12, 0-2' Brown silty sand with mica 3 Very Low B-16, 1 '-4' Orange brown silty sand with clay 0 Very Low B-17,1'-3' Fine sandy clay 66 Medium '' *Based on the 1997 ed1uon of the U111form Bmldmg Code, prepared by the International Conference ofBmldrng Officials, (ICBO, 1997). Minimum Resistivity and pH Tests: Minimum resistivity and pH tests were performed in general accordance with California Test Method 643 to evaluate the corrosion potential for buried metallic conduits. The results are presented in the table below: Sample Location pH Minimum Resistivity Metallic Corrosion (ohms-cm) Potential** -··· B-9, 2-4' 8,3 1050 Severe B-11,0-3' 8.4 5,300 Moderate B-12, 0-2' 8.6 7,500 Low B-17, 1-3' 7.3 500 Severe B-18,1'-3' 7.9 1400 Severe C *'' per U.S. Navy, 1969. Atterberg Limit Testing: Atterberg Limit Testing (plasticity index) was performed in accordance with ASTM D43 I 8. The results are presented in the following pages. Grain Size Analysis: Grain-size distributions were performed on selected samples in accordance with ASTM D422. The results are presented in the following pages. B-1 (::\,\.1:tfrc\.l'rojrft~UOOH\lOOH-Oll7S • Pm..,ld<IQ De:ml\Drufl Ht[IUrt!>'\Po~ddori llcsal Pliml Rt>' ~-20ll8.1!Qt Soluble Sulfates: The soluble sulfate contents of selected samples were determined by California Test Method 417 to evaluate the potential for sulfate attack (corrosion) to concrete, The test results are presented in the table below: Sample Location Soluble Sulfate Content (ppm) Sulfate Exposure to Concrete*** B-9, 2-4' 49 Negligible B-11,0-3' 33 Negligible B-12, 29 Negligible B-17, l-3' 416 Negligible B-18, I '-3' 40 Negligible *•* Based on Section 1904.3 of the 2007 CBC. Consolidation Testing: Consolidation testing was performed in accordance with ASTM D 2435. The test results are presented on the following pages. R-Value: Resistance "R" value was obtained for three samples. Testing was performed in accordance with California Test 301. The test results are presented below. Sample Location R-Value B-9, 2-4' 38 B-14, 1-3' 47 Direct Shear Testing: Direct shear testing was performed in accordance with ASTM D3080. The results are presented on the following pages. B-2 :E f ~ ~ C u: J Poseidon I E'ncina GRAIN SIZE: ANALYSIS -ASTM D 422 Job#2008-075 U.S. Standard Sie'ile Size 3in 1.~ 100 I I I: I I I , ! l l : ; ~!: 1 ! 1 : : I I 111 I ! 7 90-I-H I! 7' ' 1 1 1 1 l ~-:-7. t i I ! l l : '\_': : t ! -~-···· l l 1 l r I f , : 1 11 , : ' 1 I : I j' , , : j ! ,, ' 3f4in -#8 "" #100 '200 80 f ' 11 ' H-!-1-t--t---t--+--- 111: ' ' 1 ' ' , , ; , : : I I ~ ~ '. +t-+~ 7 , : 7 Tr r : r 7 ' : , ' , : ' , -,H '" , ' ' ' , , , , , , , I I I I 7 """ ' 1 , ' "ti-' " " : ' : LL ' ,, -' '"" " I i : : : : , 7 i '" ' 111111 II 1 ' • , ' , ' , , ' I I I I 60 ' ' ' ' ' ' I 7 ' ' ' ' ' ' ' ' ' ' -' ' ' ' ' ' ' ' ' ' ' ' ' " ' ' ' ", '', ,, ' ' ' """' ' ' ' : ' ' ' ' ' : ' ~ ' ' ' I I I I I I I I •, i i ii ii : : ~ ' : " ' : II 1111 11 I I , ' , ' , 'I I I I I 40 , , ,' : : ' : ' r , , I Ill j 1 J. ~ f ' ' ' " ' ' ' : : ' 30 .u ' ' ' -,, ' : ' : ' : '' r '1 I I I I I I I I I I I I 1 I ! I' ' ' ' ' ' ' "' I " ' : ' ' : : ' : ' : ' ,:, ' , ' : -1, : : ' : ' ' ;i 1 , ' ' I I I I ' 1 ~ " ' ' ' ,, ' ' ' ' ' ' ' ' ' ' ' ' I I ' , ' ' , r ' , :1 : ' ' • -' ' : ' ' 10 • 1 jl I I I : I Ji • , , I' ! J r , I l I 1 l : j I I -0 ' - 100 10 0,1 0.01 0.001 Grain Size (mm) Boring I Sample No. Initial Dry Density (pcf) Initial Moist (%) Test Dry Density (pcf) Test Moist. {%) Percent Passing No. 200 Sieve LL PL Pl Unified Soil Class. Description B-12/1, 0-2· 16.5 SM Silty Sand w. Gravel Geologic Associates Poseidon I C1u/sbad Desai Pfant CONSOLIDATION TEST -ASTM D2435 Job No. 2008•075 Boring/ Sample No. 8-11/2 Depth: 11 -21 Date 07-31-08 1.01 --· -.. _., - 1.00 1111 Natural - - 0.99 -· I-· " ·I--o Submerged + ~--·-... ---1-- 0.98 " ... -..... 0.97 ---· - 0.96 ... - 0,95 .. 0.94 - -· 0.93 -- 0.92 -· --. .. --;, --·-·-· --~ U:l.91 e, ---- 1" -~.90 -. :r: ·--~ .!!! SIity Sand w. trace Clay ~-•• --. " Dry Density: 122.6 pcf (fJ lniHal Water Content: 8.2 % 0.88 Final Water Content: 14.0 % H,0@3200 PSF 0.8/ 0.86 0.85 -~-·--· 0.84 -···-· 0.83 --I--· ·--·I-. ---- 0.82 ..... 0.81 -... .. .. . 0.80 ·-·-'" -.. 0.79 100 1000 10000 100000 Vertical Pressure (psi) Geologic Associates Poseidon I Carlsbad Desai Plant DIRECT SHEAR TEST· ASTM D-3080 JOV II ,!UU1$·UltJ Date: 8-06-08 , peak shear strength 2 strength at 1 /4" displacement 4000 3750 3500 3250 3000 2750 c;::--2500 "' 0. ::;::-2250 o C ~2000 ~ 1750 _ (I) .c {/) 1500 1250 1000 750 500 250 0 t- 0 250 500 760 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 le 3-9/4 ~ Undisturbed & Saturated Normal Pressure (psi) 1000 2000 4000 Normal Pressure (psi) Strain Rate: 0.0042 in./ min. Description Siltstone Dry Density /pcf) lniti"I Water Cnntent 1% 115.8 13.5 Peak Shear Strength (psi) 1070@0,1150" 1990@ 0.0900" 3280@ 0.1550" C = 350 psf <!>= 38 deg. Ultimate Shear Strength (psi) 800 1560 2980 C = 100 psf 4> = 36 deg. Geologic Associates Poseidon I Carlsbad Desai Pl~nt DIRECT SHEAR TEST· ASTM D-3080 JOO II t!UUU·Ulb Date: 8-06-08 4000 3750 3500 3250 3000 2750 c2500 <Jl g ..c 2250 -Ol C ~2000 cij 1760 (1) .s:; (/) 1500 i250 1000 750 500 250 0 :::amole 3-11 /4 0 , peak shear strength 2 strength at 1/4" displacement ... -1-. ,-. 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3260 3500 3750 4000 Normal Pressure (psi) ~ U nd i stu rbed & Saturated Strain Rate: 0.0042 in./ min. Description Silty Sand/ Sandstone Dry Density (pct\ Initial Water Content 1% 108.6 6.4 Normal Pressure (psi) Peak Shear Strength /psfl Ultimate Shear Strength (psi) 1000 2000 4000 1040@ 0.0550" 1690 @ 0.1050" 3340 @ 0.1200" C = 250 psf t = 38 deg. 680 1300 2600 C = 50 psi t= 33 deg. Geologic Associates I GRAVEL SAND FINES I I Coarse Fine Coarse Medium I Fine SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¾" ½"¾w 4 8 16 30 50 100 200 100.0 I l l I I I I I I I I 90.0 I I I t I I I I l I I I I I 1 I I 80.0 I I ' I t I I I I I I I I I I I I I I 1 I 1 f-70.0 ' J: II I I I I \ I (!) I I I I l 1 l I l I I w 60.0 s: I I I I I >-I I I I I I I I I I I co a:: 50.0 I I I I I \, UJ z l I I I I I I l I 1 u:: 40.0 f-I I I I \ z I I I I I I I I I I UJ a 0 30.0 a:: I 1 [ I I ~ UJ Cl.. I I I I I I I I 1 I 20.0 I I I I l I I I l I \ 1 10.0 I I 1 I I I 1 I I I I I 1 I I I 1 I 0.0 1 I I I I 100 10 1 0.1 0 01 0 001 0.0001 GRAIN SIZE IN MILLIMETERS Sample Depth Liquid Plastic Plasticity D10 Passing Symbol Location (fl) Limit Limit Index D30 Deo Cu Cc No. 200 uses (%) • B-6 25.0-26.5 -----0.09 0.15 0.21 2.4 1.2 6 SP-SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln90&/(loo~a GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-1 107383002 8/13 CARLSBAD, CALIFORNIA 10)383002_SIEVE B-6@ 25,0-26 5 xi, GRAVEL SAND FINES I Coarse Fine Coarse Medium Fine SILT I CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¾" ½N¾N 4 8 16 30 50 100 200 100.0 11 :• I --N I I I I I I I I I I 90.0 I I ,, ' 11 I I II ii I I I I I I I I I I I I ~ I I 80.0 I II I I I I I I I I-I I I I I I I I I '~ I I :r: 70.0 11 I i---r 1 11 I I I (9 \ ii:i I I I I I I I I I I I s: 60.0 II I II I I II I J I ii:i I I I I I I I I I I I 0:: 50.0 UJ II I I 11 I 1 II I J ' I z u: I I I I I I I I I I I I-40.0 z I I I I I \l UJ 0 I I I I I I I I I I 0:: 30.0 UJ I I I I I I l\ a.. 20.0 I I I I I I I I I I I I I I I l I I I I I 10.0 I I I l I I I I ~ I I I I I I I I I I 0.0 11 I II I I I I 100 10 1 0 1 O.Q1 0 001 0.0001 GRAIN SIZE IN MILLIMETERS Symbol Sample Depth Liquid Plastic Plasticity D10 D30 Passing Equivalent Location (ft) Limit Limit Index D6-0 Cu Cc No. 200 uses (%) • B-6 40.0-41.5 ---0.08 0.14 0.28 3,5 0.9 8 SP-SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln90&'(10o~a GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-2 107383002 8/13 CARLSBAD, CALIFORNIA 107J8J002_SIEVE 8-6@40 0-41 5~Is GRAVEL SAND FINES l Coarse Fine Coarse Medium Fine SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¾" ½"¾" 4 B 16 30 50 100 200 100.0 -I I I I I I I I I 'I I I 1, II I-1-1-1 I I I\ I II 90.0 \ I I I I I I I I I I I 80.0 1, ' 1, , I 11 ' I I II II I \ I I I I I I I I I I I I I-70.0 I-:r: II II I II I II II (!) I I ' I iii I I I I I I I I I I I s: 60.0 >-II II I II I II I I \i II ID I I 1 I I I I I I I 0::: 50.0 w II II I II I II I I ~ II z u: I I I I I I I I I I I-40.0 II II I II I II I I I \ II z w I I I I I 0 I I I I I I 0::: 30.0 l w I I I I 0.. 20.0 I I I I I I I I I I I I I I I I I I I I I I 10.0 I I I I I I I I I I I I I I I I I I I I I I, I II I I I I 00 100 10 1 01 001 0001 00001 GRAIN SIZE IN MILLIMETERS Sample Depth Liquid Plastic Plasticity Cc Passing Equivalen Symbol Location (ft) Limit Limit Index D10 D30 D60 Cu No. 200 uses (%) • 8-6 50.0-51 .0 --------- -- --26 SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln90&1f.oo~a GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-3 107383002 8/13 CARLSBAD, CALIFORNIA 1073B3002_SIEVE B-6@ 50 0-51,0 xis GRAVEL SAND FINES I Coarse Fine Coarse Medium I Fine SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¾" ½"¾" 4 8 16 30 50 100 200 100.0 1 11 I 11 " I I I I I I I I I I I 90,0 I I ! -I I ' I I I I I I I I I I I I I I I \ I I 80 0 I I I I I -I I-I I I I I I I I I I I :c 70 0 I I j I I (9 w I I I I I I I I I \ I I ~ 60 0 >-I I I I I \ I I co I I I I I I I I I I I IX 50 0 UJ I I I I I I z \ U:: I I I I I I I I I I I I-40.0 z I I I I ' I I UJ I I I I I I I I I \I I (.) IX 30 0 l -UJ I I I I I I 1\ Cl. 20 0 ! I I I I I I I I I I I I I I I I I I I 10.0 I I I I I I I I I I I I I I I I I 00 I I I I ! 100 10 1 0.1 0.01 0 001 0.0001 GRAIN SIZE IN MILLIMETERS Symbol Sample Depth Liquid Plastic Plasticity 010 030 D50 Cc Passing Equivalen1 Location (ft) Limit Limit Index Cu No.200 uses (%) • B-6 75.0-75.5 -------- ---· 18 SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln90 & JYtoo-ra GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-4 107383002 8/13 CARLSBAD, CALIFORNIA 107383002_SIEVE B-6@ 75 0-75 5 xis I GRAVEL SAND FINES I I Coarse Fine Coarse Medium I Fine SILT I CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3H 2' 1½" 1" ¾M ½"¾n 4 8 16 30 50 100 200 100 0 I I fl.-~I I I I I I I I I I II 90.0 ' t I I I I I I I I i ~ I I I : j I I ~!': I 80 0 I I I ' I I I I I I I I I I \ I I I-70 0 ' t-: t I I I II I I I I ~ I I I I I I I I I \ I l UJ s: 60 0 I I I I I >-[D I I I I I I I I I \ I I c:: UJ 50 0 1-II I II I I I \ I z u::: I I I I I I I I I I\ I I I-40,0 I l 1 I I "" r z UJ I I I I j I I I l I () c:: 30 0 I 11! --I I I UJ a. ~ 20.0 I I I I j I I I I I I I I I j I I I I I 10,0 I I I l I I I I I I j I I I I I I I l I I 00 I I I I I 100 10 1 0.1 0.01 0 001 0 0001 GRAIN SIZE IN MILLIMETERS Sample Depth Liquid Plastic Plasticity Dao Passing Symbol Location (ft) Limit Limit Index 010 030 Cu Cc No. 200 uses (%) • B-7 15.0-16.5 - -----------24 SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln9o&l(too~e GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-5 107383002 8/13 CARLSBAD, CALIFORNIA 107383002_SIEVE B-7@ 15.0-16 5 xis I GRAVEL SAND I FINES I I Coarse Fine Coarse Medium I Fine I SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¼" ½" ¾'" 4 8 16 30 50 100 200 100.0 ~ I I I I I I I T T ~ I I II II I II I I -I I I I II 90 0 ' I I I I I I I I l I I BO 0 1, II I f-f-1 f-I I II I! 11 I j I II l I I I I I I I I \ I I I-70 0 ' I I 11 I II I II I I 1 I (9 I I I I I I I I I I I ijJ :s: 60 0 j >-II II I II I I I I ID I I I I I I I I I I I 0::: 50 0 ~ UJ II I II I II II I j \ I II z u:: I I I I I I I I I I I I-40 0 II II I II I I II I I ' I II z UJ I I I I I I I I I I I u 0::: 30.0 II I II I I I I -UJ I\ 0. 20 0 I I I I I I I I I I I I I I I I I I I I \ I I 10 0 I I I I I I I I I f\J I I I I I I I I I I i'---- 00 I I I I I 100 10 1 0 1 0 01 0 001 0 0001 GRAIN SIZE IN MILLIMETERS Sample Depth Liquid Plastic Plasticity D60 Cu Cc Passing Symbol Location (fl) Limit Limit Index D10 D30 No. 200 uses (%) • B-7 20.0-21.5 -----0.16 0.29 0.41 2.6 1.3 5 SP-SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln90&1ftoo~a GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-6 107383002 8/13 CARLSBAD, CALIFORNIA 107383002_SIEVE B-7@20 0-21 5xls I GRAVEL SAND FINES I I Coarse Fine Coarse Medium I Fine SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" )/4" ½. ¾" 4 a 16 30 50 100 200 100 0 ~ I I I I I I I ---., r---. ! I I 90,0 I I I ! I I II I I I I I I I I "~ I I ao.o I I I I I I I ' \ I I I I I I I I I I ~ I I ..... 70 0 . I I :c I I I I I I C!) I I I I I I I I I I\ I I w s: 60.0 I I >-I I I \ I I ID I I I I 1 I I I I \ I I a:: 50 0 w I I I I \ I z u::: I I I I I I I 1 I \I I ..... 40.0 I I I I ~ I z w I I I I I I I I I I 0 a:: 30.0 w I I r I I I Cl. 20 0 I I I I I I I I I I I I I I I I l I I I I 10 0 I I I I I I I I I I I I I I I I I I I I I 00 I I I I t I 100 10 1 01 0,01 0.001 0 0001 GRAIN SIZE IN MILLIMETERS Sample Depth Liquid Plastic Plasticity D10 D30 Cu Passing Symbol Location (fl) Limit Limit Index Deo Cc No. 200 uses (%) • B-7 30.0-31 .5 --------------23 SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln90&/(lOO~a GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-7 107383002 8/13 CARLSBAD, CALIFORNIA 107383002_SIEVE B-7@ 30 0-31 5 xis GRAVEL SAND FINES I Coarse Fine Coarse Medium Fine SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¾" ½"¾" 4 ~ 16 30 50 100 200 100.0 I T i' I II I' I I I I I I I I I I I 90.0 I I I I I ' I I I ~~ I I I I I I I I I I I I 80.0 t-t-... JI J j I 1\ I I-I I I I I I I I I I I 70.0 I I I I I ' I ~ I I I I I I I I I \I I w s: 60.0 I II >-I I I I i\ CD I I l I I I I I I I 0:: w 50.0 J I r I I I \ z u::: I I I I I I I I I I I I-40.0 I I I I I z w 0 I I I I I I I I I I 0:: 30.0 w I I I I I I D.. 20.0 I I I I I I I I I I I I I I I I I I I I I I 10.0 I I I l I I l I I I I I I I I I I l I I 0.0 I I I I I 100 10 1 01 0 01 0.001 0 0001 GRAIN SIZE IN MILLIMETERS Sample Depth Liquid Plastic Plasticity D,o 030 Cu Cc Passing Equivalent Symbol Location (ft) Limit Limit Index Dso No. 200 uses (%) • B-7 45.0-46.5 -.,. ---.. . . .. 35 SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 1(ln90&1f-OO~e GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-8 107383002 8/13 CARLSBAD, CALIFORNIA 107383002.SIEVE B-7@45 0-46 5xls GRAVEL SAND I FINES I Coarse Fine Coarse Medium Fine I SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¾" ½"¾" 4 ~ 16 30 50 100 200 100.0 II T I II I II 11 --I T I I I I I I I I I ~~ I I 90.0 I I j-I I I I II I I I I I I I I I I I I I \ I I 80.0 I I I I I 1--I I I I I I I I I \ I I 70.0 :r: I I I I ' I ~ I I I I I I I I I I I w ~ 60.0 \ >-II I I I I \ I CD I I I I I I I I I I I 0:: w 50.0 I rTI I I \l z u:: I I I I I I I I I I 1--40,0 I I I I i\ z w 0 I I I I I I I I I 0:: 30.0 -w I I I I I a. ~ 20 0 j I I I I I I I I I I I I I I I I I I I 10 0 1 I I I I I I l I I I I I I I I I I 00 I I I I I 100 10 1 0 1 0.01 0.001 0,0001 GRAIN SIZE IN MILLIMETERS Symbol Sample Depth Liquid Plastic Plasticity D10 D30 Dao Cu Cc Passing Equivalent Location (ft) Limit Limit Index No. 200 uses (%) • B-7 70.0-70,6 ---- --- ------22 SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln9o&l(too~e GRADATION TEST RESULTS FIGURE PROJECT NO, DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-9 107383002 8/13 CARLSBAD, CALIFORNIA 107383002_SIEVE B-7@ 70 0-70 6 xis GRAVEL SAND FINES I Coarse Fine Coarse Medium Fine SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¾" ½"¾" 4 B 1~ 30 50 100 200 100.0 II ,, 11 I T II I ' 11 I I l I I I I I I ri~,..., I I 90 0 -1, ' I L I'-L -ll I I I I ' I I I I l I I I I I \ I I 80.0 II II I II I I I \ I I I I I I I I I I I I I-70.0 H-1 :r: II II I I I ~ (.9 w I I I I I I I I I I 3: 60.0 iii II II I II I I I 1\ I I I I I I I I I I 0::: 50.0 UJ II II I II I I I I z u: I I I I I I I I I I I I-40.0 I I I j I I z UJ (.) I I I I I I I I I I 0::: 30.0 UJ I I I I I I CL 20.0 I I I I I I I I I I I I I I I I I I I I I I 10.0 I I I I I I I I I I I I j I I I I I I 0.0 Ii II I I I I I 100 10 1 01 O.D1 0 001 00001 GRAIN SIZE IN MILLIMETERS Sample Depth Liquid Plastic Plasticity 010 Deo Cc Passing Equivalen' Symbol Location (ft) Limit Limit Index 030 Cu No. 200 uses (%) • B-7 85.0-85.3 -.. -· -------34 SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln90 & iV\OOI'& GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-10 107383002 8/13 CARLSBAD, CALIFORNIA 101383002_SIEVE B-1@ 85 0-85 3 xis SAMPLE SAMPLE LOCATION DEPTH (FT) B-7 1.0-5.0 INITIAL MOISTURE (%) 9.5 PERFORMED IN GENERAL ACCORDANCE WITH PROJECT NO. DATE 107383002 8/13 10738J002_EXPANSION Page 1 xis COMPACTED DRY DENSITY (PCF) FINAL MOISTURE (%) VOLUMETRIC SWELL (IN) EXPANSION POTENTIAL INDEX EXPANSION 110.0 18.7 0.048 47 Low 0 UBC STANDARD 18-2 0 ASTM D 4829 EXPANSION INDEX TEST RESULTS FIGURE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) CARLSBAD, CALIFORNIA C-11 SAMPLE LOCATION B-6 SAMPLE DEPTH (FT) 3.0-5.0 9.2 RESISTIVITY 1 (Ohm-cm) 660 SULFATE CONTENT 2 (ppm) (%) 160 0.016 1 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 643 2 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 417 3 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 422 PROJECT NO. 107383002 107383002_CORROSIVITY Page 1 xis DATE 8/13 CORROSIVITY TEST RESULTS CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) CARLSBAD, CALIFORNIA CHLORIDE CONTENT 3 (ppm) 320 FIGURE C-12 SAMPLE LOCATION B-6 SAMPLE DEPTH (FT) 3.0-5.0 SOIL TYPE Clayey SAND (SC) PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 2844/CT 301 PROJECT NO. 107383002 107383002_R-Value TABLE page 1.xls DATE 8/13 R-VALUE TEST RESULTS CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) CARLSBAD, CALIFORNIA R-VALUE 15 FIGURE C-13 Carlsbad Seawater Desalination Plant (Intake Pump Station Site) August 20, 2013 4600 Carlsbad Boulevard, Carlsbad, California Project No. 107383002 107383002 R Intake Pump Station rev.doc APPENDIX C NINYO & MOORE LABORATORY TESTING Classification Soils were visually and texturally classified in accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D 2488. Soil classifications are indicated on the logs of the exploratory borings in Appendix A. In-Place Moisture and Density Tests The moisture content and dry density of relatively undisturbed samples obtained from the ex- ploratory borings were evaluated in general accordance with ASTM D 2937. The test results are presented on the logs of the exploratory borings in Appendix A. Gradation Analysis Gradation analysis tests were performed on selected representative soil samples in general accor- dance with ASTM D 422. The grain-size distribution curves are shown on Figures C-1 through C-10. These test results were utilized in evaluating the soil classifications in accordance with USCS. Expansion Index Tests The expansion index of a selected material was evaluated in general accordance with ASTM D 4829. The specimen was molded under a specified compactive energy at approximately 50 percent saturation. The prepared 1-inch thick by 4-inch diameter specimen was loaded with a surcharge of 144 psf and was inundated with tap water. Readings of volumetric swell were made for a period of 24 hours. The results are presented on Figure C-11. Soil Corrosivity Tests Soil pH, and resistivity tests were performed on a representative sample in general accordance with CT 643. The soluble sulfate and chloride content of the selected sample was evaluated in general accordance with CT 417 and CT 422, respectively. The test results are presented on Figure C-12. R-Value The resistance value, or R-value, for site soils was evaluated in general accordance with Califor- nia Test (CT) 301. A samples was prepared and evaluated for exudation pressure and expansion pressure. The equilibrium R-value is reported as the lesser or more conservative of the two calcu- lated results. The test results are shown on Figure C-13. I GRAVEL SAND FINES I I Coarse Fine Coarse Medium I Fine SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¾" ½"¾w 4 8 16 30 50 100 200 100.0 I l l I I I I I I I I 90.0 I I I t I I I I l I I I I I 1 I I 80.0 I I ' I t I I I I I I I I I I I I I I 1 I 1 f-70.0 ' J: II I I I I \ I (!) I I I I l 1 l I l I I w 60.0 s: I I I I I >-I I I I I I I I I I I co a:: 50.0 I I I I I \, UJ z l I I I I I I l I 1 u:: 40.0 f-I I I I \ z I I I I I I I I I I UJ a 0 30.0 a:: I 1 [ I I ~ UJ Cl.. I I I I I I I I 1 I 20.0 I I I I l I I I l I \ 1 10.0 I I 1 I I I 1 I I I I I 1 I I I 1 I 0.0 1 I I I I 100 10 1 0.1 0 01 0 001 0.0001 GRAIN SIZE IN MILLIMETERS Sample Depth Liquid Plastic Plasticity D10 Passing Symbol Location (fl) Limit Limit Index D30 Deo Cu Cc No. 200 uses (%) • B-6 25.0-26.5 -----0.09 0.15 0.21 2.4 1.2 6 SP-SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln90&/(loo~a GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-1 107383002 8/13 CARLSBAD, CALIFORNIA 10)383002_SIEVE B-6@ 25,0-26 5 xi, GRAVEL SAND FINES I Coarse Fine Coarse Medium Fine SILT I CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¾" ½N¾N 4 8 16 30 50 100 200 100.0 11 :• I --N I I I I I I I I I I 90.0 I I ,, ' 11 I I II ii I I I I I I I I I I I I ~ I I 80.0 I II I I I I I I I I-I I I I I I I I I '~ I I :r: 70.0 11 I i---r 1 11 I I I (9 \ ii:i I I I I I I I I I I I s: 60.0 II I II I I II I J I ii:i I I I I I I I I I I I 0:: 50.0 UJ II I I 11 I 1 II I J ' I z u: I I I I I I I I I I I I-40.0 z I I I I I \l UJ 0 I I I I I I I I I I 0:: 30.0 UJ I I I I I I l\ a.. 20.0 I I I I I I I I I I I I I I I l I I I I I 10.0 I I I l I I I I ~ I I I I I I I I I I 0.0 11 I II I I I I 100 10 1 0 1 O.Q1 0 001 0.0001 GRAIN SIZE IN MILLIMETERS Symbol Sample Depth Liquid Plastic Plasticity D10 D30 Passing Equivalent Location (ft) Limit Limit Index D6-0 Cu Cc No. 200 uses (%) • B-6 40.0-41.5 ---0.08 0.14 0.28 3,5 0.9 8 SP-SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln90&'(10o~a GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-2 107383002 8/13 CARLSBAD, CALIFORNIA 107J8J002_SIEVE 8-6@40 0-41 5~Is GRAVEL SAND FINES l Coarse Fine Coarse Medium Fine SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¾" ½"¾" 4 B 16 30 50 100 200 100.0 -I I I I I I I I I 'I I I 1, II I-1-1-1 I I I\ I II 90.0 \ I I I I I I I I I I I 80.0 1, ' 1, , I 11 ' I I II II I \ I I I I I I I I I I I I I-70.0 I-:r: II II I II I II II (!) I I ' I iii I I I I I I I I I I I s: 60.0 >-II II I II I II I I \i II ID I I 1 I I I I I I I 0::: 50.0 w II II I II I II I I ~ II z u: I I I I I I I I I I I-40.0 II II I II I II I I I \ II z w I I I I I 0 I I I I I I 0::: 30.0 l w I I I I 0.. 20.0 I I I I I I I I I I I I I I I I I I I I I I 10.0 I I I I I I I I I I I I I I I I I I I I I I, I II I I I I 00 100 10 1 01 001 0001 00001 GRAIN SIZE IN MILLIMETERS Sample Depth Liquid Plastic Plasticity Cc Passing Equivalen Symbol Location (ft) Limit Limit Index D10 D30 D60 Cu No. 200 uses (%) • 8-6 50.0-51 .0 --------- -- --26 SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln90&1f.oo~a GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-3 107383002 8/13 CARLSBAD, CALIFORNIA 1073B3002_SIEVE B-6@ 50 0-51,0 xis GRAVEL SAND FINES I Coarse Fine Coarse Medium I Fine SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¾" ½"¾" 4 8 16 30 50 100 200 100.0 1 11 I 11 " I I I I I I I I I I I 90,0 I I ! -I I ' I I I I I I I I I I I I I I I \ I I 80 0 I I I I I -I I-I I I I I I I I I I I :c 70 0 I I j I I (9 w I I I I I I I I I \ I I ~ 60 0 >-I I I I I \ I I co I I I I I I I I I I I IX 50 0 UJ I I I I I I z \ U:: I I I I I I I I I I I I-40.0 z I I I I ' I I UJ I I I I I I I I I \I I (.) IX 30 0 l -UJ I I I I I I 1\ Cl. 20 0 ! I I I I I I I I I I I I I I I I I I I 10.0 I I I I I I I I I I I I I I I I I 00 I I I I ! 100 10 1 0.1 0.01 0 001 0.0001 GRAIN SIZE IN MILLIMETERS Symbol Sample Depth Liquid Plastic Plasticity 010 030 D50 Cc Passing Equivalen1 Location (ft) Limit Limit Index Cu No.200 uses (%) • B-6 75.0-75.5 -------- ---· 18 SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln90 & JYtoo-ra GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-4 107383002 8/13 CARLSBAD, CALIFORNIA 107383002_SIEVE B-6@ 75 0-75 5 xis I GRAVEL SAND FINES I I Coarse Fine Coarse Medium I Fine SILT I CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3H 2' 1½" 1" ¾M ½"¾n 4 8 16 30 50 100 200 100 0 I I fl.-~I I I I I I I I I I II 90.0 ' t I I I I I I I I i ~ I I I : j I I ~!': I 80 0 I I I ' I I I I I I I I I I \ I I I-70 0 ' t-: t I I I II I I I I ~ I I I I I I I I I \ I l UJ s: 60 0 I I I I I >-[D I I I I I I I I I \ I I c:: UJ 50 0 1-II I II I I I \ I z u::: I I I I I I I I I I\ I I I-40,0 I l 1 I I "" r z UJ I I I I j I I I l I () c:: 30 0 I 11! --I I I UJ a. ~ 20.0 I I I I j I I I I I I I I I j I I I I I 10,0 I I I l I I I I I I j I I I I I I I l I I 00 I I I I I 100 10 1 0.1 0.01 0 001 0 0001 GRAIN SIZE IN MILLIMETERS Sample Depth Liquid Plastic Plasticity Dao Passing Symbol Location (ft) Limit Limit Index 010 030 Cu Cc No. 200 uses (%) • B-7 15.0-16.5 - -----------24 SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln9o&l(too~e GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-5 107383002 8/13 CARLSBAD, CALIFORNIA 107383002_SIEVE B-7@ 15.0-16 5 xis I GRAVEL SAND I FINES I I Coarse Fine Coarse Medium I Fine I SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¼" ½" ¾'" 4 8 16 30 50 100 200 100.0 ~ I I I I I I I T T ~ I I II II I II I I -I I I I II 90 0 ' I I I I I I I I l I I BO 0 1, II I f-f-1 f-I I II I! 11 I j I II l I I I I I I I I \ I I I-70 0 ' I I 11 I II I II I I 1 I (9 I I I I I I I I I I I ijJ :s: 60 0 j >-II II I II I I I I ID I I I I I I I I I I I 0::: 50 0 ~ UJ II I II I II II I j \ I II z u:: I I I I I I I I I I I I-40 0 II II I II I I II I I ' I II z UJ I I I I I I I I I I I u 0::: 30.0 II I II I I I I -UJ I\ 0. 20 0 I I I I I I I I I I I I I I I I I I I I \ I I 10 0 I I I I I I I I I f\J I I I I I I I I I I i'---- 00 I I I I I 100 10 1 0 1 0 01 0 001 0 0001 GRAIN SIZE IN MILLIMETERS Sample Depth Liquid Plastic Plasticity D60 Cu Cc Passing Symbol Location (fl) Limit Limit Index D10 D30 No. 200 uses (%) • B-7 20.0-21.5 -----0.16 0.29 0.41 2.6 1.3 5 SP-SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln90&1ftoo~a GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-6 107383002 8/13 CARLSBAD, CALIFORNIA 107383002_SIEVE B-7@20 0-21 5xls I GRAVEL SAND FINES I I Coarse Fine Coarse Medium I Fine SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" )/4" ½. ¾" 4 a 16 30 50 100 200 100 0 ~ I I I I I I I ---., r---. ! I I 90,0 I I I ! I I II I I I I I I I I "~ I I ao.o I I I I I I I ' \ I I I I I I I I I I ~ I I ..... 70 0 . I I :c I I I I I I C!) I I I I I I I I I I\ I I w s: 60.0 I I >-I I I \ I I ID I I I I 1 I I I I \ I I a:: 50 0 w I I I I \ I z u::: I I I I I I I 1 I \I I ..... 40.0 I I I I ~ I z w I I I I I I I I I I 0 a:: 30.0 w I I r I I I Cl. 20 0 I I I I I I I I I I I I I I I I l I I I I 10 0 I I I I I I I I I I I I I I I I I I I I I 00 I I I I t I 100 10 1 01 0,01 0.001 0 0001 GRAIN SIZE IN MILLIMETERS Sample Depth Liquid Plastic Plasticity D10 D30 Cu Passing Symbol Location (fl) Limit Limit Index Deo Cc No. 200 uses (%) • B-7 30.0-31 .5 --------------23 SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln90&/(lOO~a GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-7 107383002 8/13 CARLSBAD, CALIFORNIA 107383002_SIEVE B-7@ 30 0-31 5 xis GRAVEL SAND FINES I Coarse Fine Coarse Medium Fine SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¾" ½"¾" 4 ~ 16 30 50 100 200 100.0 I T i' I II I' I I I I I I I I I I I 90.0 I I I I I ' I I I ~~ I I I I I I I I I I I I 80.0 t-t-... JI J j I 1\ I I-I I I I I I I I I I I 70.0 I I I I I ' I ~ I I I I I I I I I \I I w s: 60.0 I II >-I I I I i\ CD I I l I I I I I I I 0:: w 50.0 J I r I I I \ z u::: I I I I I I I I I I I I-40.0 I I I I I z w 0 I I I I I I I I I I 0:: 30.0 w I I I I I I D.. 20.0 I I I I I I I I I I I I I I I I I I I I I I 10.0 I I I l I I l I I I I I I I I I I l I I 0.0 I I I I I 100 10 1 01 0 01 0.001 0 0001 GRAIN SIZE IN MILLIMETERS Sample Depth Liquid Plastic Plasticity D,o 030 Cu Cc Passing Equivalent Symbol Location (ft) Limit Limit Index Dso No. 200 uses (%) • B-7 45.0-46.5 -.,. ---.. . . .. 35 SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 1(ln90&1f-OO~e GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-8 107383002 8/13 CARLSBAD, CALIFORNIA 107383002.SIEVE B-7@45 0-46 5xls GRAVEL SAND I FINES I Coarse Fine Coarse Medium Fine I SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¾" ½"¾" 4 ~ 16 30 50 100 200 100.0 II T I II I II 11 --I T I I I I I I I I I ~~ I I 90.0 I I j-I I I I II I I I I I I I I I I I I I \ I I 80.0 I I I I I 1--I I I I I I I I I \ I I 70.0 :r: I I I I ' I ~ I I I I I I I I I I I w ~ 60.0 \ >-II I I I I \ I CD I I I I I I I I I I I 0:: w 50.0 I rTI I I \l z u:: I I I I I I I I I I 1--40,0 I I I I i\ z w 0 I I I I I I I I I 0:: 30.0 -w I I I I I a. ~ 20 0 j I I I I I I I I I I I I I I I I I I I 10 0 1 I I I I I I l I I I I I I I I I I 00 I I I I I 100 10 1 0 1 0.01 0.001 0,0001 GRAIN SIZE IN MILLIMETERS Symbol Sample Depth Liquid Plastic Plasticity D10 D30 Dao Cu Cc Passing Equivalent Location (ft) Limit Limit Index No. 200 uses (%) • B-7 70.0-70,6 ---- --- ------22 SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln9o&l(too~e GRADATION TEST RESULTS FIGURE PROJECT NO, DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-9 107383002 8/13 CARLSBAD, CALIFORNIA 107383002_SIEVE B-7@ 70 0-70 6 xis GRAVEL SAND FINES I Coarse Fine Coarse Medium Fine SILT CLAY I U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2' 1½" 1" ¾" ½"¾" 4 B 1~ 30 50 100 200 100.0 II ,, 11 I T II I ' 11 I I l I I I I I I ri~,..., I I 90 0 -1, ' I L I'-L -ll I I I I ' I I I I l I I I I I \ I I 80.0 II II I II I I I \ I I I I I I I I I I I I I-70.0 H-1 :r: II II I I I ~ (.9 w I I I I I I I I I I 3: 60.0 iii II II I II I I I 1\ I I I I I I I I I I 0::: 50.0 UJ II II I II I I I I z u: I I I I I I I I I I I I-40.0 I I I j I I z UJ (.) I I I I I I I I I I 0::: 30.0 UJ I I I I I I CL 20.0 I I I I I I I I I I I I I I I I I I I I I I 10.0 I I I I I I I I I I I I j I I I I I I 0.0 Ii II I I I I I 100 10 1 01 O.D1 0 001 00001 GRAIN SIZE IN MILLIMETERS Sample Depth Liquid Plastic Plasticity 010 Deo Cc Passing Equivalen' Symbol Location (ft) Limit Limit Index 030 Cu No. 200 uses (%) • B-7 85.0-85.3 -.. -· -------34 SM PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 l(ln90 & iV\OOI'& GRADATION TEST RESULTS FIGURE PROJECT NO. DATE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) C-10 107383002 8/13 CARLSBAD, CALIFORNIA 101383002_SIEVE B-1@ 85 0-85 3 xis SAMPLE SAMPLE LOCATION DEPTH (FT) B-7 1.0-5.0 INITIAL MOISTURE (%) 9.5 PERFORMED IN GENERAL ACCORDANCE WITH PROJECT NO. DATE 107383002 8/13 10738J002_EXPANSION Page 1 xis COMPACTED DRY DENSITY (PCF) FINAL MOISTURE (%) VOLUMETRIC SWELL (IN) EXPANSION POTENTIAL INDEX EXPANSION 110.0 18.7 0.048 47 Low 0 UBC STANDARD 18-2 0 ASTM D 4829 EXPANSION INDEX TEST RESULTS FIGURE CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) CARLSBAD, CALIFORNIA C-11 SAMPLE LOCATION B-6 SAMPLE DEPTH (FT) 3.0-5.0 9.2 RESISTIVITY 1 (Ohm-cm) 660 SULFATE CONTENT 2 (ppm) (%) 160 0.016 1 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 643 2 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 417 3 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 422 PROJECT NO. 107383002 107383002_CORROSIVITY Page 1 xis DATE 8/13 CORROSIVITY TEST RESULTS CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) CARLSBAD, CALIFORNIA CHLORIDE CONTENT 3 (ppm) 320 FIGURE C-12 SAMPLE LOCATION B-6 SAMPLE DEPTH (FT) 3.0-5.0 SOIL TYPE Clayey SAND (SC) PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 2844/CT 301 PROJECT NO. 107383002 107383002_R-Value TABLE page 1.xls DATE 8/13 R-VALUE TEST RESULTS CARLSBAD SEAWATER DESALINATION PLANT (INTAKE PUMP STATION AND PIPE CORRIDOR) CARLSBAD, CALIFORNIA R-VALUE 15 FIGURE C-13 Appendix C. Geotechnical Boring Logs – Current Investigation Figure Date APR 2021 Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2 Carlsbad, CA Boring Legend BLOWS/FOOT* * NUMBER OF BLOWS OF 140 LB HAMMER FALLING 30 INCHES TO DRIVE A 2 INCH O.D. (1-3/8 INCH I.D.) SPLIT-BARRELSAMPLER THE LAST 12 INCHES OF AN 18-INCH DRIVE (ASTM-1586 STANDARD PENETRATION TEST). BOULDERS UNC. COMP. STRENGTH (TSF) COBBLES GRAVEL RELATIVE DENSITY FI N E - G R A I N E D S O I L S >5 0 % P A S S E S NO . 2 0 0 S I E V E CONSISTENCY SAND MEDIUM PENETRATION RESISTANCE FINE VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE STABILIZED WATER LEVEL MEASUREMENT(WITH DATE) INITIAL WATER LEVEL MEASUREMENT(WITH DATE) CO A R S E - G R A I N E D S O I L S >5 0 % R E T A I N E D O N NO . 2 0 0 S I E V E PEAT ORGANIC ORGANIC GW GP GM GC SW SP SM SC CL ML OL CH MH OH PT CLEAN GRAVELS <5% FINES PRIMARILY ORGANIC MATTER, DARK IN COLOR, AND ORGANIC ODOR SOIL GROUP NAMES & LEGEND OTHER SYMBOLS WELL-GRADED GRAVEL POORLY-GRADED GRAVEL SILTY GRAVEL CLAYEY GRAVEL WELL-GRADED SAND POORLY-GRADED SAND SILTY SAND CLAYEY SAND LEAN CLAY SILT ORGANIC CLAY OR SILT FAT CLAY ELASTIC SILT ORGANIC CLAY OR SILT COMPONENTPERCENTAGE FINE SILTS ANDCLAYS CRITERIA FOR ASSIGNING SOIL GROUP NAMES GROUPSYMBOL SANDS >50% OF COARSEFRACTION PASSESNO 4. SIEVE UNIFIED SOIL CLASSIFICATION SYSTEM (ASTM D-2487) 1040200 WELL Concrete Grout/Fill Bentonite/Grout Seal Sand Pack + Solid Pipe Sand Pack + Slotted Pipe GRAIN SIZES MATERIALS Asphalt Aggregate Base Boulders & Cobbles Fill Topsoil MATERIALTYPES HIGHLY ORGANIC SOILS INCREASING VISUALMOISTURE CONTENT COARSECOARSE CLEAN SANDS <5% FINES GRAVELS WITH FINES >12% FINES INORGANIC BLOWS/FOOT (N60) SILTS AND CLAYS LIQUID LIMIT<50 SILTS AND CLAYS LIQUID LIMIT>50 INORGANIC SANDS AND FINES >12% FINES Cu 4 AND 1 Cc 3 Cu < 4 AND/OR 1 > Cc > 3 FINES CLASSIFY AS ML OR MH FINES CLASSIFY AS CL OR CH Cu 6 AND 1 Cc 3 Cu < 6 AND/OR 1 > Cc > 3 FINES CLASSIFY AS ML OR MH FINES CLASSIFY AS CL OR CH PI>7 AND PLOTS>"A" LINE PI>4 AND PLOTS<"A" LINE LL (oven dried)/LL (not dried)<0.75 PI PLOTS >"A" LINE PI PLOTS <"A" LINE LL (oven dried)/LL (not dried)<0.75 SILT & CLAY U.S.STANDARDSIEVE 12"3"3/4" GRAVELS >50% OF COARSEFRACTION RETAINEDON NO 4. SIEVE SAND & GRAVEL 4 0 - 4 5 - 10 11 - 30 31 - 50 OVER 50 0 - 1 2 - 4 5 - 8 9 - 15 16 - 30 OVER 30 NOTES VERY SOFT SOFT MEDIUM STIFF STIFF VERY STIFF HARD 0 - 1/4 1/4 - 1/2 1/2 - 1 1 - 2 2 - 4 OVER 4 WETMOISTDRY MOSTLY SOMELITTLE FEW TRACE >50% 30 - 50%15 - 29% 5 - 14% <5% bgs c CD CN CR CU DS EI HY MD N60 PI PR RV SA SE TC TR UC UU BELOW GROUND SURFACE COHESION CONSOLIDATED DRAINED TRIAXIAL CONSOLIDATION CORROSIVITY CONSOLIDATED UNDRAINED TRIAXIAL DIRECT SHEAR EXPANSION INDEX HYDROMETER MAX DENSITY (COMPACTION) BLOW COUNT, Corrected for Hammer Energy Only PLASTICITY INDEX PERMEABILITY R-VALUE SIEVE ANALYSIS SAND EQUIVALENT CYCLIC TRIAXIAL TIME RATE OF CONSOLIDATION UNCONFINED COMPRESSION UNCONSOLIDATED UNDRAINED TRIAXIAL SAMPLERS SPT (2" OD) Modified California (3" OD) California (2.5" OD) Bulk Shelby Tube HQ Core Sonic Core 0 10 20 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 50 60 70 80 PL A S T I C I T Y I N D E X ( % ) 7 4 PLASTICITY CHART LIQUID LIMIT (%) LE G E N D 2 0 2 1 - 0 8 P O S E I D O N A G U A H E D I O N D A L A G O O N . G P J F O L S O M 3 - 3 0 - 1 1 . G D T 4 / 2 2 / 2 1 MH & OH "U" L I N E PI = 0 . 9 ( L L - 8 ) PI = 0 . 7 3 ( L L - 2 0 ) "A" L I N E ML & OL CH & OH CL-ML CL & OL I I - - -- - --- - \ I \ I ~ 1/ V V I/ / V / f / ,,v / / // V I I/ y ~ I 20 28 24.5 feet measured tomudline from barge deck at07:45 24.2 feet to mudline at 08:55 24.1 feet to mudline at 09:45 24.1 feet to mudline at 10:55 4250/4" 3350/3" 3550/5" 50/2" 5.0 19.0 21.1 Clayey SAND (SC); wet; Estimated soil type, notsampled due to drilling method and boreholeestablishment. SANDSTONE; Santiago Formation, recovered asSilty Sand (SM), very dense, olive gray, wet, fineSAND few orange rock fragments BIT DIAMETER:8" DATE: START 4/3/21 END 4/3/21 DATE: DRILL METHOD:HSA LOGGED BY:MG TIME: DEPTH:-24.5 ft BOREHOLE DEPTH (ft):45.5 LATITUDE:33.13888 ELEVATION (ft):-19 CHECKED BY (DATE): STATION & OFFSET:NA, NA DEPTH: X GROUNDWATER DATA: NOT ENCOUNTERED DRILLING COMPANY:Pacific Drilling HAMMER EFFICIENCY:89.6% EFFICIENCY MEASURED GW NOT MEASURED TIME: DATE: DRILL RIG:Diedrich D50 CASING TIP DEPTH:NA HAMMER TYPE:Automatic LONGITUDE:-117.33814 % F I N E S DE P T H ( f t ) EL E V A T I O N ( f t ) Boring Log REMARKS SA M P L E R SA M P L E N O . / CO R E R U N FI E L D B L O W S / 6 i n PO C K E T P E N ( k s f ) DR Y D E N S I T Y ( p c f ) MO I S T U R E CO N T E N T ( % ) OT H E R T E S T S MA T E R I A L GR A P H I C Boring A-21-001 DESCRIPTION HD R B O R I N G L O G I R V I N E 2 0 2 1 - 0 8 P O S E I D O N A G U A H E D I O N D A L A G O O N . G P J F O L S O M 3 - 3 0 - 1 1 . G D T 4 / 2 9 / 2 1 Date APR 2021 Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2Carlsbad, CA 0 5 10 15 20 25 -20 -25 -30 -35 -40 -45 □ □ □ I I 22 24.4 feet to mudline at 12:00 24.9 feet to mudline at 13:25 25.1 feet to mudline at 15:10 50/5" 50/4" 1650/6" 50/3" 109 107 19.9 21.8 larger rock fragments up to 3 inches in diameter Boring terminated at 45.5 feet below mudline % F I N E S DE P T H ( f t ) EL E V A T I O N ( f t ) Boring Log REMARKS SA M P L E R SA M P L E N O . / CO R E R U N FI E L D B L O W S / 6 i n PO C K E T P E N ( k s f ) DR Y D E N S I T Y ( p c f ) MO I S T U R E CO N T E N T ( % ) OT H E R T E S T S MA T E R I A L GR A P H I C Boring A-21-001 DESCRIPTION HD R B O R I N G L O G I R V I N E 2 0 2 1 - 0 8 P O S E I D O N A G U A H E D I O N D A L A G O O N . G P J F O L S O M 3 - 3 0 - 1 1 . G D T 4 / 2 9 / 2 1 Date APR 2021 Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2Carlsbad, CA 30 35 40 45 -50 -55 -60 ~/ ----'-~ ~··y ----'-~ [;(·: ·;- ~,~ -e P-···y ----'-~ -P-···y ----'-~ ~··y ----'-~ ~··y ----'-~ ~···;- ----'-~ -t:8: P-···y ----'-~ -~··y ----'-~ ~··y ----'-~ ~···;- ----'-~ P-···y ----'-~ -~ ~··y ----'-~ -~··y ----'-~ ~···;- ----'-~ P-···y ----'-~ ~··y ----'-~ ~··y -~ ----'-~ ·•·A.··· 1-)~ I I 34 18.2 feet measured tomudline from barge deck at06:55 17.2 feet to mudline at 08:15 16.6 feet to mudline at 09:15 6 9 6 3350/2" 2250/6" 50/5" 2850/3" 2550/5" 109 106 123 22.5 19.0 21.4 12.6 Clayey SAND (SC); medium dense; gray tobrownish gray; wet; medium to fine SAND; fewcoarse GRAVEL, few seashells SANDSTONE; Santiago Formation, recovered asSilty Sand (SM), very dense, gray, wet, fineSAND medium to fine SAND fine SAND, increased fines few rock fragments BIT DIAMETER:8" DATE: START 4/5/21 END 4/5/21 DATE: DRILL METHOD:HSA LOGGED BY:MG TIME: DEPTH:-15.0 ft BOREHOLE DEPTH (ft):75.5 LATITUDE:33.13887 ELEVATION (ft):-10 CHECKED BY (DATE): STATION & OFFSET:NA, NA DEPTH: X GROUNDWATER DATA: NOT ENCOUNTERED DRILLING COMPANY:Pacific Drilling HAMMER EFFICIENCY:89.6% EFFICIENCY MEASURED GW NOT MEASURED TIME: DATE: DRILL RIG:Diedrich D50 CASING TIP DEPTH:NA HAMMER TYPE:Automatic LONGITUDE:-117.33788 % F I N E S DE P T H ( f t ) EL E V A T I O N ( f t ) Boring Log REMARKS SA M P L E R SA M P L E N O . / CO R E R U N FI E L D B L O W S / 6 i n PO C K E T P E N ( k s f ) DR Y D E N S I T Y ( p c f ) MO I S T U R E CO N T E N T ( % ) OT H E R T E S T S MA T E R I A L GR A P H I C Boring A-21-002 DESCRIPTION HD R B O R I N G L O G I R V I N E 2 0 2 1 - 0 8 P O S E I D O N A G U A H E D I O N D A L A G O O N . G P J F O L S O M 3 - 3 0 - 1 1 . G D T 4 / 2 9 / 2 1 Date APR 2021 Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2Carlsbad, CA 0 5 10 15 20 25 -15 -20 -25 -30 -35 □ □ □ I I 46 14 15.7 feet to mudline at 10:10 15.1 feet to mudline at 11:10 14.6 feet to mudline at 12:20 14.5 feet to mudline at 13:25 50/1" 50/4" 50/5" 50/6" 3750/4" 50/6" 113 115 16.4 14.6 decreased fines % F I N E S DE P T H ( f t ) EL E V A T I O N ( f t ) Boring Log REMARKS SA M P L E R SA M P L E N O . / CO R E R U N FI E L D B L O W S / 6 i n PO C K E T P E N ( k s f ) DR Y D E N S I T Y ( p c f ) MO I S T U R E CO N T E N T ( % ) OT H E R T E S T S MA T E R I A L GR A P H I C Boring A-21-002 DESCRIPTION HD R B O R I N G L O G I R V I N E 2 0 2 1 - 0 8 P O S E I D O N A G U A H E D I O N D A L A G O O N . G P J F O L S O M 3 - 3 0 - 1 1 . G D T 4 / 2 9 / 2 1 Date APR 2021 Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2Carlsbad, CA 30 35 40 45 50 55 -40 -45 -50 -55 -60 -65 ~ ~ 17 14.8 feet to mudline at 14:15 15.2 feet to mudline at 15:20 16 feet to mudline at 16:10 50/5" 50/4" 50/4" 50/6"105 22.2 medium to fine SAND Boring terminated at 75.5 feet below mudline % F I N E S DE P T H ( f t ) EL E V A T I O N ( f t ) Boring Log REMARKS SA M P L E R SA M P L E N O . / CO R E R U N FI E L D B L O W S / 6 i n PO C K E T P E N ( k s f ) DR Y D E N S I T Y ( p c f ) MO I S T U R E CO N T E N T ( % ) OT H E R T E S T S MA T E R I A L GR A P H I C Boring A-21-002 DESCRIPTION HD R B O R I N G L O G I R V I N E 2 0 2 1 - 0 8 P O S E I D O N A G U A H E D I O N D A L A G O O N . G P J F O L S O M 3 - 3 0 - 1 1 . G D T 4 / 2 9 / 2 1 Date APR 2021 Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2Carlsbad, CA 60 65 70 75 -70 -75 -80 -85 ~/ ----'-~ ~··y --~ ----'-~ [;(·: ·;- ~,~ P-···y ----'-~ P-···y ----'-~ ~··y ----'-~ ~··y --a ----'-~ ~···;- ----'-~ P-···y ----'-~ ~··y ----'-~ ~··y ----'-~ ~···;- ----'-~ --~ P-···y ----'-~ ~··y ----'-~ ~··y ----'-~ ~···;- ----'-~ P-···y ----'-~ --~ [1/.}° 1-)~ I I 7 25.7 feet measured tomudline from barge deck at13:45 no sample recovery 26 feet to mudline at 14:53 21022 4 4 4 92127 101720 102 23.7 Silty, clayey SAND (SC-SM); Estimated soil type,not sampled due to drilling method and boreholeestablishment. Poorly-graded SAND with SILT (SP-SM);medium dense; gray; wet; medium to fine SAND;few fines dense; fine SAND trace shells in sampler BIT DIAMETER:8" DATE: START 4/2/21 END 4/2/21 DATE: DRILL METHOD:HSA LOGGED BY:MG TIME: DEPTH:-26.0 ft BOREHOLE DEPTH (ft):45.5 LATITUDE:33.14055 ELEVATION (ft):-18 CHECKED BY (DATE): STATION & OFFSET:NA, NA DEPTH: X GROUNDWATER DATA: NOT ENCOUNTERED DRILLING COMPANY:Pacific Drilling HAMMER EFFICIENCY:89.6% EFFICIENCY MEASURED GW NOT MEASURED TIME: DATE: DRILL RIG:Diedrich D50 CASING TIP DEPTH:NA HAMMER TYPE:Automatic LONGITUDE:-117.33855 % F I N E S DE P T H ( f t ) EL E V A T I O N ( f t ) Boring Log REMARKS SA M P L E R SA M P L E N O . / CO R E R U N FI E L D B L O W S / 6 i n PO C K E T P E N ( k s f ) DR Y D E N S I T Y ( p c f ) MO I S T U R E CO N T E N T ( % ) OT H E R T E S T S MA T E R I A L GR A P H I C Boring A-21-003 DESCRIPTION HD R B O R I N G L O G I R V I N E 2 0 2 1 - 0 8 P O S E I D O N A G U A H E D I O N D A L A G O O N . G P J F O L S O M 3 - 3 0 - 1 1 . G D T 4 / 2 9 / 2 1 Date APR 2021 Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2Carlsbad, CA 0 5 10 15 20 25 -20 -25 -30 -35 -40 -45 - ~Y::%'°¾ ~~ ~1·-_:::<-~ , . •••• ... • I .·ll". •.•· , . •,..••1 .·ll". •.•· , . •••• ... • I .·ll". •.•· - □ □ □ I I 31 17 slow drilling, 26.1 feet tomudline at 15:45 26 feet to mudline at 16:45 50/6" 4050/3" 50/4" 50/6" 103 110 25.0 20.1 17.7 SANDSTONE; Santiago Formation, recovered as Silty Sand (SM), very dense, olive gray, wet, fineSAND decreased fines Boring terminated at 45.5 feet below mudline % F I N E S DE P T H ( f t ) EL E V A T I O N ( f t ) Boring Log REMARKS SA M P L E R SA M P L E N O . / CO R E R U N FI E L D B L O W S / 6 i n PO C K E T P E N ( k s f ) DR Y D E N S I T Y ( p c f ) MO I S T U R E CO N T E N T ( % ) OT H E R T E S T S MA T E R I A L GR A P H I C Boring A-21-003 DESCRIPTION HD R B O R I N G L O G I R V I N E 2 0 2 1 - 0 8 P O S E I D O N A G U A H E D I O N D A L A G O O N . G P J F O L S O M 3 - 3 0 - 1 1 . G D T 4 / 2 9 / 2 1 Date APR 2021 Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2Carlsbad, CA 30 35 40 45 -50 -55 -60 ~/ ----'-~ ~··y ----'-~ [;(·: ·;- ~,~ -~ P-···y ----'-~ P-···y ----'-~ -~··y ----'-~ ~··y ----'-~ ~···;- ----'-~ -~ P-···y ----'-~ ~··y ----'-~ -~··y ----'-~ ~···;- ----'-~ P-···y ----'-~ -B ~··y ----'-~ ~··y ----'-~ ~···;------'-~ P-···y ----'-~ ~··y ----'-~ ~··y -rx: ----'-~ ·•·A.··· - 1-)~ I I 37 26 6 Abundant coarse GRAVEL;rounded to subrounded fromabout 15-20 feet. Very littlerecovery 4 4 6 5 710 7 6 3 121919 61317 101421 6.8 20.6 17.7 21.4 PI PISA Asphalt Concrete; 6 inches Base; 5 inches Clayey SAND (SC); gray; moist; fine SAND; few fine GRAVEL; (FILL) medium dense; brownish gray; medium to fineSAND Silty SAND (SM); medium dense; olive brown;moist; fine SAND; (FILL) Clayey SAND with GRAVEL (SC); loose; olivebrown; moist; coarse to fine SAND; coarse to fineGRAVEL; increased moisture; (FILL) wet Silty SAND with GRAVEL (SM); dense; olivebrown; wet; coarse to fine SAND; coarse to fineGRAVEL; (NATIVE) Poorly-graded SAND with SILT (SP-SM); dense;dark gray; wet; medium to fine SAND; trace seashells gray; wet; coarse to fine SAND DATE: START 3/24/22 END 3/24/22 DATE: LOGGED BY:MF TIME: DEPTH:13.0 ft BOREHOLE DEPTH (ft):81 33.13872 ELEVATION (ft):11 CHECKED BY (DATE): STATION & OFFSET:NA, NA DEPTH:GROUNDWATER DATA: NOT ENCOUNTERED DRILLING COMPANY:Pacific Drilling LATITUDE: DRILL METHOD: HSA/MUD BIT DIAMETER: 6.5"/ 4" HAMMER EFFICIENCY:95% EFFICIENCY MEASURED GW NOT MEASURED TIME: DATE: DRILL RIG:Yeti M10 CASING TIP DEPTH:NA HAMMER TYPE:Automatic LONGITUDE:-117.33851 % F I N E S DE P T H ( f t ) EL E V A T I O N ( f t ) Boring Log REMARKS SA M P L E R SA M P L E N O . / CO R E R U N FI E L D B L O W S / 6 i n PO C K E T P E N ( k s f ) DR Y D E N S I T Y ( p c f ) MO I S T U R E CO N T E N T ( % ) OT H E R T E S T S MA T E R I A L GR A P H I C Boring R-22-004 DESCRIPTION HD R B O R I N G L O G I R V I N E 2 0 2 1 - 0 8 P O S E I D O N A G U A H E D I O N D A L A G O O N . G P J F O L S O M 3 - 3 0 - 1 1 . G D T 4 / 2 5 / 2 2 Date APR 2021 Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2 Carlsbad, CA 0 5 10 15 20 25 10 5 0 -5 -10 -15 □ □ □ I I 3 38 42 91215 2050/5" 2750 4650/3" 3550/5" >9 119 117 115 7.2 16.3 14.4 18.1 DSSA DSSA Poorly-graded SAND (SP); medium dense; darkgray; wet; trace fine GRAVEL SANDSTONE; Santiago Formation, recovered asClayey SAND (SC); very dense; pale brown; wet;fine SAND; few mica brownish gray SANDSTONE; Santiago Formation, recovered asSilty SAND (SM); very dense; light gray; wet;fine SAND SANDSTONE; Santiago Formation, recovered asPoorly-graded SAND with SILT (SP-SM); verydense; light gray; wet; fine to medium SAND % F I N E S DE P T H ( f t ) EL E V A T I O N ( f t ) Boring Log REMARKS SA M P L E R SA M P L E N O . / CO R E R U N FI E L D B L O W S / 6 i n PO C K E T P E N ( k s f ) DR Y D E N S I T Y ( p c f ) MO I S T U R E CO N T E N T ( % ) OT H E R T E S T S MA T E R I A L GR A P H I C Boring R-22-004 DESCRIPTION HD R B O R I N G L O G I R V I N E 2 0 2 1 - 0 8 P O S E I D O N A G U A H E D I O N D A L A G O O N . G P J F O L S O M 3 - 3 0 - 1 1 . G D T 4 / 2 5 / 2 2 Date APR 2021 Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2 Carlsbad, CA 30 35 40 45 50 55 -20 -25 -30 -35 -40 -45 - - - - I I Very little recovery80/4" 50/4" 85/5" 1350/4"16.5 SANDSTONE; Santiago Formation, recovered asLean CLAY with SAND (CL); hard; brownishgray; wet; fine SAND; low plasticity SANDSTONE; Santiago Formation, recovered asSilty SAND (SM); very dense; gray; wet; fineSAND SANDSTONE; Santiago Formation, recovered asPoorly-graded SAND with SILT (SP-SM); verydense; light olive gray; wet; fine to mediumSAND; trace sea shells Boring terminated at 81 feet below ground surface (bgs).Groundwater measured at 13 feet bgs.Boring backfilled with cement-bentonite grout. % F I N E S DE P T H ( f t ) EL E V A T I O N ( f t ) Boring Log REMARKS SA M P L E R SA M P L E N O . / CO R E R U N FI E L D B L O W S / 6 i n PO C K E T P E N ( k s f ) DR Y D E N S I T Y ( p c f ) MO I S T U R E CO N T E N T ( % ) OT H E R T E S T S MA T E R I A L GR A P H I C Boring R-22-004 DESCRIPTION HD R B O R I N G L O G I R V I N E 2 0 2 1 - 0 8 P O S E I D O N A G U A H E D I O N D A L A G O O N . G P J F O L S O M 3 - 3 0 - 1 1 . G D T 4 / 2 5 / 2 2 Date APR 2021 Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2 Carlsbad, CA 60 65 70 75 80 -50 -55 -60 -65 -70 ~/ ----'-~ ~:,.:~· -e ~/ ----'-~ -~ .. -;: ----'-~ ~• -;: ----'-~ [;(·:-;: ~,~ ~···;- ----'-~ -~ ~···;- ----'-~ -~··;- ----'-~ ~··;- ----'-~ ~··;- ----'-~ ··~·;· K/ ----'-~ -C8: ~···;- ----'-~ -~··;- ----'-~ ~··;- ----'-~ ~··;- ----'-~ ~···;- ----'-~ -~··;- ----'-~ -~··;- ----'-~ ~··;- ----'-~ ··~·;· K/ ----'-~ ~···;- ----'-~ -rx ~··;- ----'-~ ..... - 1-)~ I I 41 22 20 5 16 Sample in bag Disturbed sample 7 715 3 4 5 2 2 7 81013 2450/4" 8.0 116 104 110 15.5 17.2 38.3 26.8 18.3 DS DS SA DSCRSA Asphalt Concrete; 3 inches Base; 4 inches Lean CLAY with SAND (CL); light gray; moist; medium to fine SAND; low plasticity; few fineGRAVEL; (FILL) Clayey SAND (SC); medium dense; light gray;moist; medium to fine SAND; (FILL) Clayey SAND (SC); loose; brownish gray; moist;medium to fine SAND; trace sea shells; (NATIVE) Silty SAND (SM); loose; dark gray; moist; coarseto fine SAND; trace wood pieces/organicswettrace fine GRAVEL Poorly-graded SAND with SILT (SP-SM);medium dense; dark gray; wet; fine SAND; tracewood pieces/organics SANDSTONE; Santiago Formation, recovered asSilty SAND (SM); very dense; bluish gray; wet;mediun to fine SAND; trace CLAY DATE: START 3/25/22 END 3/25/22 DATE: LOGGED BY:MF TIME: DEPTH:14.5 ft BOREHOLE DEPTH (ft):85.4 33.13861 ELEVATION (ft):8 CHECKED BY (DATE): STATION & OFFSET:NA, NA DEPTH:GROUNDWATER DATA: NOT ENCOUNTERED DRILLING COMPANY:Pacific Drilling LATITUDE: DRILL METHOD: HSA/MUD BIT DIAMETER: 6.5"/ 4" HAMMER EFFICIENCY:95% EFFICIENCY MEASURED GW NOT MEASURED TIME: DATE: DRILL RIG:Yeti M10 CASING TIP DEPTH:NA HAMMER TYPE:Automatic LONGITUDE:-117.33777 % F I N E S DE P T H ( f t ) EL E V A T I O N ( f t ) Boring Log REMARKS SA M P L E R SA M P L E N O . / CO R E R U N FI E L D B L O W S / 6 i n PO C K E T P E N ( k s f ) DR Y D E N S I T Y ( p c f ) MO I S T U R E CO N T E N T ( % ) OT H E R T E S T S MA T E R I A L GR A P H I C Boring R-22-005 DESCRIPTION HD R B O R I N G L O G I R V I N E 2 0 2 1 - 0 8 P O S E I D O N A G U A H E D I O N D A L A G O O N . G P J F O L S O M 3 - 3 0 - 1 1 . G D T 4 / 2 5 / 2 2 Date APR 2021 Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2 Carlsbad, CA 0 5 10 15 20 25 5 0 -5 -10 -15 □ □ □ I I 33 50/5" 50/1"4350/3" 3550/5" 3650/4" 4050/2" 18.9 16.4 19.4 18.7 SA SANDSTONE; Santiago Formation, recovered as Silty SAND (SM); very dense; light brownishgray; wet; fine SAND; trace CLAY SANDSTONE; Santiago Formation, recovered asClayey SAND (SC); very dense; olive brown; wet;medium to fine SAND light brownish gray SILTSTONE; Santiago Formation, recovered as Sandy SILT (ML); hard; light olive brown; wet;fine SAND; low plasticity % F I N E S DE P T H ( f t ) EL E V A T I O N ( f t ) Boring Log REMARKS SA M P L E R SA M P L E N O . / CO R E R U N FI E L D B L O W S / 6 i n PO C K E T P E N ( k s f ) DR Y D E N S I T Y ( p c f ) MO I S T U R E CO N T E N T ( % ) OT H E R T E S T S MA T E R I A L GR A P H I C Boring R-22-005 DESCRIPTION HD R B O R I N G L O G I R V I N E 2 0 2 1 - 0 8 P O S E I D O N A G U A H E D I O N D A L A G O O N . G P J F O L S O M 3 - 3 0 - 1 1 . G D T 4 / 2 5 / 2 2 Date APR 2021 Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2 Carlsbad, CA 30 35 40 45 50 55 -20 -25 -30 -35 -40 -45 -50 ~/ ----'-~ -~··y ----'-~ [;(·: ·;- ~,~ -e ~···;- ----'-~ ~···;- ----'-~ ~··y ----'-~ -~··y ----'-~ ~···;- ----'-~ ·•:...·:· -~ ~/ ----'-~ ~··y ----'-~ ~···;- ----'-~ -~··y ----'-~ ~··y ----'-~ -~ ~··y ----'-~ ~···;- ----'-~ ~··y ----'-~ -~··y ----'-~ ~··y ----'-~ -~ ~···;- ----'-~ ~··y ----'-~ ~··y ----'-~ -~··y ----'-~ ~···;- ----'-~ ~··y -----'-~ ~··y ----'-~ ~··y ----'-~ ~···;- -----'-~ [;(·: ·;-. X X X X X X -~ X X X X X X X X X X X X X X X X X X X X -X X .,, .,, 1-)~ I I Very little recovery 50/4" 50/4" 50/4" SANDSTONE; Santiago Formation, recovered asSilty SAND (SM); very dense; olive gray tobrownish gray; wet; fine SAND; trace CLAY SANDSTONE; Santiago Formation, recovered asPoorly-graded SAND with SILT (SP-SM); verydense; light gray; wet; coarse to fine SAND Boring terminated at 85.3 feet below ground surface (bgs).Groundwater measured at 14.5 feet bgs.Boring backfilled with cement-bentonite grout. % F I N E S DE P T H ( f t ) EL E V A T I O N ( f t ) Boring Log REMARKS SA M P L E R SA M P L E N O . / CO R E R U N FI E L D B L O W S / 6 i n PO C K E T P E N ( k s f ) DR Y D E N S I T Y ( p c f ) MO I S T U R E CO N T E N T ( % ) OT H E R T E S T S MA T E R I A L GR A P H I C Boring R-22-005 DESCRIPTION HD R B O R I N G L O G I R V I N E 2 0 2 1 - 0 8 P O S E I D O N A G U A H E D I O N D A L A G O O N . G P J F O L S O M 3 - 3 0 - 1 1 . G D T 4 / 2 5 / 2 2 Date APR 2021 Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2 Carlsbad, CA 60 65 70 75 80 85 -55 -60 -65 -70 -75 X X X X X X X X X X -X X X X X X X X X X X X X X X X X X -X X X X X X X X ~/ ----'-~ -~ ~··;- ----'-~ ~··;- ----'-~ ~··;- ----'-~ -~··-;· ----'-~ ~·-;· ----'-~ -~·-;· ----'-~ ~·-;· ----'-~ ~··-;· ----'-~ -~·-;· ----'-~ :·~·;· ~/ ----'-~ -~ ~··-;· ----'-~ P-.. -;· ----'-~ ~·-;· ----'-~ -~·-;· ----'-~ ~··-;· ----'-~ -P-.. -;· ----'-~ ~·-;· ----'-~ ~·-;· ----'-~ -~··-;· ----'-~ P-.. -;· ----'-~ -1'5<" ~·-;· • ,i 1-)~ I I Appendix D. Geophysical Investigation Page | 1 6280 Riverdale Street San Diego, CA 92120 (877) 215-4321 | oneatlas.com April 20, 2021 Atlas No. 121139SWG Report No. 1 MR. GARY GOLDMAN, PE, GE HDR, INC. 350 SOUTH GRAND AVENUE, SUITE 29 LOS ANGELES, CALIFORNIA 90071 Subject: Geophysical Evaluation Carlsbad Boulevard Poseidon ReMi Study Carlsbad, California Dear Mr. Goldman: In accordance with your authorization, Atlas Technical Consultants has performed a geophysical evaluation pertaining to the Carlsbad Boulevard Poseidon ReMi Study project located at 4600 Carlsbad Boulevard in Carlsbad, California (Figure 1). The purpose of our study was to develop two one-dimensional (1-D) shear-wave velocity profiles to be used for design and construction at the project site. Our services were conducted on April 9th, 2021. This report presents the survey methodology, equipment used, analysis, and findings from our study. Our scope of services for the project included the performance of two refraction microtremor (ReMi) profiles (RL-1 and RL-2) at designated areas of the project site (Figure 2). The ReMi technique uses recorded surface waves (specifically Rayleigh waves) that are contained in background noise to develop a 1-D shear-wave velocity sounding of the study area down to a depth, in this case, of approximately 100 feet below ground surface (bgs). The depth of exploration is dependent on the length of the line and the frequency content of the background noise. The results of the ReMi method are displayed as a 1-D profile which represents the average condition across the length of the line. The ReMi method does not require an increase of material velocity with depth; therefore, low velocity zones (velocity inversions) are detectable with the ReMi method. Our ReMi evaluation included the use of a 24-channel Geometrics Geode seismograph and 24, 4.5-Hz vertical component geophones. The geophones were spaced 10 feet apart for a total line length of 230 feet for RL-1 and RL-2. A total of 15 records, 32 seconds in duration for each line, were recorded and then downloaded to a field computer. The data was later processed using Surface Plus 9.1 - Advanced Surface Wave Processing Software (Geogiga Technology Corp., 2020), which uses the refraction microtremor method (Louie, 2001), and other surface wave analysis methods. The program generates phase-velocity dispersion curves for each record and provides an interactive dispersion modeling tool where the users determine the best fitting model. A,..• A~ ____,. { I L >~ Atlas No. 121139SWG Report No. 1 Page | 2 The result is a 1-D shear-wave velocity model of the site with roughly 85 to 95 percent accuracy. Figure 2 depicts the general line location and site conditions in the study area. Table 1 and Figures 3a and 3b present the results from our evaluation. Based on our analysis of the collected data, the average characteristic site shear-wave velocity down to a depth of 100 feet below ground surface is 988 feet per second at location RL-1 and 1062 feet per second at location RL-2 (IBC, 2018). This value corresponds to IBC seismic Site Class `D`. It should be noted the ReMi results represent the average condition across the length of the line. Table 1 – ReMi Results Line No. Depth (feet) Shear Wave Velocity (feet/second) RL-1 (N-S) 0 – 10.6 550.5 10.6 – 20.31 674.2 20.31 – 31.48 899 31.48 – 44.91 946.4 44.91 – 61.66 1261.2 61.66 – 81.76 1247.4 81.76 – 106.41 1583.6 106.41 – 133.68 1602.7 133.68 – 150 2174.5 RL-2 (NE-SW) 0 – 10.28 537.6 10.28 – 19.51 667.3 19.51 – 27.61 913 27.61 – 33.15 999.7 33.15 – 62.39 1252 62.39 – 71.63 1272 71.63 – 89.03 1569 89.03 – 131.8 2144 131.8 – 150 2213 The field evaluation and geophysical analyses presented in this report have been conducted in general accordance with current practice and the standard of care exercised by consultants performing similar tasks in the project area. No warranty, express or implied, is made regarding the conclusions and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be present. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluating will be performed upon request. A..-■ At:!!!. _____,.., I L ,~ Atlas No. 121139SWG Report No. 1 Page | 3 This document is intended to be used only in its entirety. No portions of the document, by itself, is designed to completely represent any aspect of the project described herein. Atlas should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document. This report is intended exclusively for use by the client. Any use of or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties’ sole risk. We appreciate the opportunity to be of service on this project. Should you have questions related to this report, please contact the undersigned at your convenience. Respectfully submitted, Atlas Technical Consultants, LLC Evan C. Anderson Patrick F. Lehrmann, P.G., P.Gp. Senior Staff Geophysicist Principal Geologist/Geophysicist ECA:pfl:ds Attachments: Figure 1 – Site Location Map Figure 2 – Seismic Line Location Map Figure 3a – ReMi Results, RL-1 Figure 3b – ReMi Results, RL-2 Distribution: Mr. Gary Goldman at gary.goldman@HDRinc.com SITE LOCATION MAP Carlsbad Boulevard Poseidon Remi Study Carlsbad, California Project No.: 121139SWG Date: 04/21 NORTH VALLEY !VEY RANCH / RANCHO OEL ORO ,. 76 GUAJOME Vista OCEAN HILLS BRESSI RANCH OLIVENHAIN Encinitas A..,, ,. e, --rt I Li~ Figure 1 Lake San Marcos Rancho Santa Fe San Marcos Figure 2 SEISMIC LINE LOCATION MAP Carlsbad Boulevard Poseidon ReMi StudyCarlsbad, California Project No.: 121139SWG Date: 04/21 approximate scale in feet 75 1500 225 300 C a r l s b a d B o u l e v a r d RL-2 View to the southwest R L - 1 RL-2 RL-1 View to the north ReMi Line LEGEND RL-2 A..,.• ,. -. --rt I Ci~ Vs Model 0 500 1000 1500 2000 2500 0 -Vs1 00'= 988 tus -10 - -20 -30 ■ -40 -;:;-. -50 (I) ~ -...,;. ~ -60 0 j::: ~ -70 LU u:I -80 ~ j::: ,q: -90 ...J LU 0:: -100 -11 0 -120 -1 30 -140 -150 SHEAR-WAVE VELOCITY (feet per second) ReMiRESULTS Carlsbad Boulevard Poseidon ReMi Study A .... A~ Carlsbad, Cal ifornia --rt I LfT".::r- RL-1 Figure 3a Project No.: 121139SWG I Date: 04/21 Vs Model 0 500 1000 1500 2000 2500 0 -Vs100'= 1062 ft/s -10 l -20 -30 -40 -;::.. -50 (I) ~ '-,;. ~ -60 0 j::: § -70 LU crj -80 ~ j::: <( -90 -.I LU a:: -100 -110 -1 20 -1 30 - -140 -150 SHEAR-WAVE VELOCITY (feet per second) ReMiRESULTS Carlsbad Boulevard Poseidon ReMi Study A ... I A ~ Carlsbad, California --rt I Cf~ RL-2 Figure 3b Project No.: 1211 39SWG I Date: 04/21 Appendix E. Laboratory Test Results – Current Investigation TABLE E-1 SUMMARY OF SOIL LABORATORY DATA Project: Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2 Project No.: 10202077 Peak Gravel (%) Sand (%) Fines (%) Max. Dry Density (pcf) Optimum Moisture Content (%) LL PL PI ' (deg) c' (psf) ' (deg) c' (psf) Undrained Shear Strength (ksf) Swell (+) or Collapse (-) (%) Swell or Collapse Pressure (ksf) pH Resistivity (-cm) Sulfate (ppm) Chloride (ppm) A-21-001 10.0 SM -31 19.0 0 80 20 7.1 96 532 3772 A-21-001 15.0 SM -36 21.1 2 70 28 NP NP NP A-21-001 30.0 SM -51 20.3 109 A-21-001 35.0 SM -56 8.5 81 598 5138 A-21-001 40.0 SM -61 21.8 107 0 78 22 A-21-002 0.0 SC -14 22.5 1 65 34 29 18 11 A-21-002 5.0 SM -19 20.5 109 42 250 34 100 A-21-002 15.0 SM -29 21.4 106 41 200 35 50 A-21-002 20.0 SM -34 8.3 115 463 3140 A-21-002 25.0 SM -39 12.6 123 A-21-002 30.0 SM -44 3 51 46 A-21-002 40.0 SM -54 0 86 14 A-21-002 45.0 ML -59 16.4 113 A-21-002 55.0 ML -69 14.6 115 38 200 33 50 A-21-002 65.0 SM -79 0 83 17 A-21-002 75.0 SM -89 22.2 105 A-21-003 15.0 SP-SM -38 1 92 7 A-21-003 20.0 SM -43 23.7 102 36 150 32 100 A-21-003 30.0 SM -53 25.0 103 7.6 84 401 6107 A-21-003 35.0 SM -58 20.1 0 69 31 NP NP NP A-21-003 40.0 SM -63 17.7 110 A-21-003 45.0 SM -68 0 83 17 R-22-004 5.0 SC 5 37 36 18 18 R-22-004 7.0 SM 3 6.8 R-22-004 10.0 SC 0 21 53 26 32 15 17 R-22-004 15.0 SM -5 20.6 R-22-004 20.0 SP-SM -10 17.7 R-22-004 25.0 SP-SM -15 21.4 6 R-22-004 30.0 SP -20 7.2 119 2 95 3 36 50 31 50 R-22-004 35.0 SC -25 16.3 117 38 R-22-004 45.0 SM -35 14.4 115 0 58 42 36 400 32 100 R-22-004 50.0 SP-SM -40 18.1 R-22-004 80.0 SP-SM -70 16.5 R-22-005 5.0 SC 5 15.5 117 41 39 750 37 200 R-22-005 10.0 SC 0 17.2 104 22 32 250 30 200 R-22-005 15.0 SM -5 38.3 1 79 20 R-22-005 20.0 SM -10 26.8 5 R-22-005 25.0 SM -15 18.3 110 0 84 16 35 400 30 100 8.8 458 659 900 R-22-005 30.0 SM -20 18.9 R-22-005 35.0 SC -25 16.4 0 67 33 R-22-005 40.0 SC -30 19.4 Dr y D e n s i t y ( p c f ) Gradation Compaction Atterberg Limits Direct Shear Strength Ultimate Soil Type (USCS) Sample Depth (ft)Boring No.Sample Elev. (ft) Mo i s t u r e C o n t e n t ( % ) UU Triaxial Consolidation R- V a l u e Corrosion Analyses Ex p a n s i o n I n d e x Sa n d E q u i v a l e n t 1-)~ TABLE E-1 SUMMARY OF SOIL LABORATORY DATA Project: Carlsbad Seawater Desalination Plant (CDP) Intake Phase 2 Project No.: 10202077 Peak Gravel (%) Sand (%) Fines (%) Max. Dry Density (pcf) Optimum Moisture Content (%) LL PL PI ' (deg) c' (psf) ' (deg) c' (psf) Undrained Shear Strength (ksf) Swell (+) or Collapse (-) (%) Swell or Collapse Pressure (ksf) pH Resistivity (-cm) Sulfate (ppm) Chloride (ppm)Dr y D e n s i t y ( p c f ) Gradation Compaction Atterberg Limits Direct Shear Strength Ultimate Soil Type (USCS) Sample Depth (ft)Boring No.Sample Elev. (ft) Mo i s t u r e C o n t e n t ( % ) UU Triaxial Consolidation R- V a l u e Corrosion Analyses Ex p a n s i o n I n d e x Sa n d E q u i v a l e n t R-22-005 55.0 ML -45 18.7 The laboratory tests were performed in general accordance with the following standards: Corrosivity Tests - DOT CA 532/643 - pH, DOT CA 417 - soluble sulfates, DOT CA 422 - chlorides, DOT CA 643 - minimum resistivity Unconsolidated Undrained Triaxial Test - ASTM Test Method D2850 Direct Shear Test - ASTM Test Method D3080 Atterberg Limits Test - ASTM Test Method D4318 Dry Density Test - ASTM Test Method D2937 Moisture Content Test - ASTM Test Method D2216 No. 200 Wash Test - ASTM Test Method D1140 Compaction Test - ASTM Test Method D1557 Resistance R-Value and Expansion Pressure - Cal Test 301 Grain Size Analysis and Hydrometer - ASTM Test Method D422 One-Dimensional Consolidation Test - ASTM Test Method D2435 1-)~ GRAIN SIZE DISTRIBUTION CURVE ASTM D 6913 Client Name: HDR Tested by: SM Date: 04/15/21Project Name: Poseidon - CDP Intake Computed by: NR Date: 04/19/21Project No.: 10295144 Checked by: AP Date: 04/21/21 Gravel Sand Silt & Clay A-21-001 1 10 0 80 20 SM A-21-001 2 15 2 70 28 SM A-21-001 7 40 0 78 22 SM Symbol Boring No. Sample No.Sample Depth (feet) Percent Soil Type U.S.C.SAtterberg Limits LL:PL:PI N/A N/P N/A 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 PE R C E N T P A S S I N G B Y W E I G H T PARTICLE SIZE (mm) HYDROMETERSIEVE NUMBERSIEVE OPENING SAND SILT OR CLAYGRAVEL COARSE FINE COARSE MEDIUM FINE 1 j AP Engineering and Testing, Inc. __,..4~ DBEI MBEISBE -~~=----2607 Pomona Boulevard I Pomona, CA 91768 -t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com ~ 1 ,t "I; is'. .. \~ -.1: ~ *"(;:, *rf' ~(;:, ;i? (;:Ji;::, ~ R)i;::, *" *" *re r, -"" ~, "' ~ Le , \ l '1 \ \ 0 □ GRAIN SIZE DISTRIBUTION CURVE ASTM D 6913 Client Name: HDR Tested by: JT Date: 04/14/21Project Name: Poseidon - CDP Intake Computed by: NR Date: 04/19/21Project No.: 10295144 Checked by: AP Date: 04/21/21 Gravel Sand Silt & Clay A-21-002 0 0 1 65 34 SC A-21-002 6 30 3 51 46 SM A-21-002 8 40 0 86 14 SM Symbol Boring No. Sample No.Sample Depth (feet) Percent Soil Type U.S.C.SAtterberg Limits LL:PL:PI 29:18:11 N/A N/A 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 PE R C E N T P A S S I N G B Y W E I G H T PARTICLE SIZE (mm) HYDROMETERSIEVE NUMBERSIEVE OPENING SAND SILT OR CLAYGRAVEL COARSE FINE COARSE MEDIUM FINE 1 j AP Engineering and Testing, Inc. __,..4~ DBEI MBEISBE -~~=----2607 Pomona Boulevard I Pomona, CA 91768 --t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com ~ 1 ,t "\; >s'. .. \~ -.1: ~ *"(;:, *rf' ~(;:, ;i? (;:Ji;::, ~ R)i;::, *" *" *re r, A ""'~ ~ r-,. ~ _,_, ,.. " ,~ ' l \ ~ ' \ \ ~ ' ' \\ ~ \□ ' \ I \ I \ 0 □ GRAIN SIZE DISTRIBUTION CURVE ASTM D 6913 Client Name: HDR Tested by: JT Date: 04/14/21Project Name: Poseidon - CDP Intake Computed by: NR Date: 04/19/21Project No.: 10295144 Checked by: AP Date: 04/21/21 Gravel Sand Silt & Clay A-21-002 13 65 0 83 17 SM Soil Type U.S.C.SAtterberg Limits LL:PL:PI N/A Symbol Boring No. Sample No.Sample Depth (feet) Percent 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 PE R C E N T P A S S I N G B Y W E I G H T PARTICLE SIZE (mm) HYDROMETERSIEVE NUMBERSIEVE OPENING SAND SILT OR CLAYGRAVEL COARSE FINE COARSE MEDIUM FINE J AP Engineering and Testing, Inc. -'4~ DBE IM BEISBE ~=---2607 Pomona Boulevard I Pomona, CA 91768 Iii -t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com ~ ~ 1,di-~ --1~ --1t it-*"(;::, *~ it-(;:) *'O(;;:, ~ ~ ...., r-~ ' ' I\ ' ' \ ' ' \ ~ 0 (;::,(;::, b? R)(;;:, *" *"' *ri; \ \ " GRAIN SIZE DISTRIBUTION CURVE ASTM D 6913 Client Name: HDR Tested by: SM Date: 04/15/21Project Name: Poseidon - CDP Intake Computed by: NR Date: 04/19/21Project No.: 10295144 Checked by: AP Date: 04/21/21 Gravel Sand Silt & Clay A-21-003 2 15 1 92 7 SP-SM A-21-003 6 35 0 69 31 SM A-21-003 8 45 0 83 17 SM Symbol Boring No. Sample No.Sample Depth (feet) Percent Soil Type U.S.C.SAtterberg Limits LL:PL:PI N/A N/P N/A 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 PE R C E N T P A S S I N G B Y W E I G H T PARTICLE SIZE (mm) HYDROMETERSIEVE NUMBERSIEVE OPENING SAND SILT OR CLAYGRAVEL COARSE FINE COARSE MEDIUM FINE 1 j AP Engineering and Testing, Inc. __,..4~ DBEI MBEISBE -~~=----2607 Pomona Boulevard I Pomona, CA 91768 -t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com ~ \ 0 □ GRAIN SIZE DISTRIBUTION CURVE ASTM D 6913 Client Name: HDR Tested by: TV Date: 04/06/22 Project Name: Poseidon - CDP Intake Computed by:JP Date: 04/06/22 Project No.: 10202077 Checked by: AP Date: 04/07/22 Gravel Sand Silt & Clay R-22-004 3 10 21 53 26 SC R-22-004 7 30 2 95 3 SP R-22-004 10 45 0 58 42 SM Symbol Boring No. Sample No. Sample Depth (feet) Percent Soil Type U.S.C.S Atterberg Limits LL:PL:PI 32:15:17 N/A N/A 4"3"2"1½" 1"¾"#60 #100 #140 #200 ⅜"#4 #10 #20 #40 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 PARTICLE SIZE (mm) PE R C E N T P A S S I N G B Y W E I G H T HYDROMETERSIEVE NUMBERSIEVE OPENING SAND SILT OR CLAYGRAVEL COARSE FINE COARSE MEDIUM FINE 11 j AP Engineering and Testing, Inc. __,..4~ DBEI MBEISBE -~~=----2607 Pomona Boulevard I Pomona, CA 91768 -t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com I I I I I n, I I I I I I == .... \ , _., 11 \ " 0 □ GRAIN SIZE DISTRIBUTION CURVE ASTM D 6913 Client Name: HDR Tested by: TV Date: 04/06/22 Project Name: Poseidon - CDP Intake Computed by:JP Date: 04/06/22 Project No.: 10202077 Checked by: AP Date: 04/07/22 Gravel Sand Silt & Clay R-22-005 3 15 1 79 20 SM R-22-005 5 25 0 84 16 SM R-22-005 7 35 0 67 33 SC* *Note: Based on visual classification of sample Soil Type U.S.C.S Atterberg Limits LL:PL:PI N/A N/A N/A Symbol Boring No. Sample No. Sample Depth (feet) Percent 4"3"2"1½" 1"¾"#60 #100 #140 #200 ⅜"#4 #10 #20 #40 0 10 20 30 40 50 60 70 80 90 100 0.0010.010.1110100 PARTICLE SIZE (mm) PE R C E N T P A S S I N G B Y W E I G H T HYDROMETERSIEVE NUMBERSIEVE OPENING SAND SILT OR CLAYGRAVEL COARSE FINE COARSE MEDIUM FINE J AP Engineering and Testing, Inc. -'4~ DBE IMBEISBE ~=---2607 Pomona Boulevard I Pomona, CA 91768 Iii -t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com I I I I ~ 1 I I ... .... ,..., ~~~,:~ \ ls'.' \, 1 ,~ Ll ' .., \ \\ 1 \ ' I I I \ \ ~. ++-+-+-+-+-t--t-+-----++-,--+-+-+-+----,f---+----++-t-+-t--+-+--t--7'c l~~r 0 □ Client Name:HDR Tested By: DK Date: 04/13/21 Project Name:Poseidon - CDP Intake Computed By: NR Date: 04/19/21 Project No.:10295144 Checked By: AP Date: 04/21/21 PROCEDURE USED Wet Preparation X Dry Preparation X Procedure A Multipoint Test Procedure B One-point Test Symbol Boring Number Sample Number Depth (feet)LL PL PI Plasticity Chart Symbol A-21-001 2 15 NP NP NP * NP denotes "non-plastic" ATTERBERG LIMITS ASTM D 4318 CL-ML CL ML or OL CH or OH MH or OH 0 10 20 30 40 50 60 0 102030405060708090100 PL A S T I C I T Y I N D E X ( P I ) LIQUID LIMIT (LL) 30 35 40 45 50 10 100 Mo i s t u r e C o n t e n t ( % ) Number of Blows 25 II I AP Engineering and Testing, Inc. ~.A,,,., DBE JMBE JSBE ~ ~ 2607 Pomona Boulevard I Pomona, CA 91768 --t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com □ □ □ □ /v Client Name:HDR Tested By: DK Date: 04/13/21 Project Name:Poseidon - CDP Intake Computed By: NR Date: 04/19/21 Project No.:10295144 Checked By: AP Date: 04/21/21 PROCEDURE USED Wet Preparation X Dry Preparation X Procedure A Multipoint Test Procedure B One-point Test Symbol Boring Number Sample Number Depth (feet)LL PL PI Plasticity Chart Symbol ♦A-21-002 0 0 29 18 11 CL ATTERBERG LIMITS ASTM D 4318 CL-ML CL ML or OL CH or OH MH or OH 0 10 20 30 40 50 60 0 102030405060708090100 PL A S T I C I T Y I N D E X ( P I ) LIQUID LIMIT (LL) 20 25 30 35 40 10 100 Mo i s t u r e C o n t e n t ( % ) Number of Blows 25 II I AP Engineering and Testing, Inc. ~.A,,,., DBE JMBE JSBE ~ ~ 2607 Pomona Boulevard I Pomona, CA 91768 --t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com □ □ □ □ ~ /v ...... .... Client Name:HDR Tested By: DK Date: 04/13/21 Project Name:Poseidon - CDP Intake Computed By: NR Date: 04/19/21 Project No.:10295144 Checked By: AP Date: 04/21/21 PROCEDURE USED Wet Preparation X Dry Preparation X Procedure A Multipoint Test Procedure B One-point Test Symbol Boring Number Sample Number Depth (feet)LL PL PI Plasticity Chart Symbol A-21-003 6 35 NP NP NP * NP denotes "non-plastic" ATTERBERG LIMITS ASTM D 4318 CL-ML CL ML or OL CH or OH MH or OH 0 10 20 30 40 50 60 0 102030405060708090100 PL A S T I C I T Y I N D E X ( P I ) LIQUID LIMIT (LL) 20 25 30 35 40 10 100 Mo i s t u r e C o n t e n t ( % ) Number of Blows 25 II I AP Engineering and Testing, Inc. ~.A,,,., DBE JMBE JSBE ~ ~ 2607 Pomona Boulevard I Pomona, CA 91768 --t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com □ □ □ □ /v Client Name:HDR Tested By: LS Date: 04/05/22 Project Name:Poseidon - CDP Intake Computed By: NR Date: 04/06/22 Project No.:10202077 Checked By: AP Date: 04/07/22 PROCEDURE USED Wet Preparation X Dry Preparation X Procedure A Multipoint Test Procedure B One-point Test Symbol Boring Number Sample Number Depth (feet)LL PL PI Plasticity Chart Symbol ♦R-22-004 1 5 36 18 18 CL ▲R-22-004 3 10 32 15 17 CL ATTERBERG LIMITS ASTM D 4318 CL-ML CL ML or OL CH or OH MH or OH "U " Lin e "A " Lin e 0 10 20 30 40 50 60 0 102030405060708090100 LIQUID LIMIT (LL) PL A S T I C I T Y I N D E X ( P I ) 25 30 35 40 45 10 100 Number of Blows Mo i s t u r e C o n t e n t ( % ) 25 II I AP Engineering and Testing, Inc. 61'!t,,._' DBE JMBE JSBE ~ ~ 2607 Pomona Boulevard I Pomona, CA 91768 --t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com □ □ □ □ 1-----+-...... /--+--~,,,r~ .J' ' .. ........ /v .......... ,....... -... --.. ---. ..  Client:HDR Tested By:ST Date:04/16/21  Project Name:Poseidon ‐ CDP Intake Computed By:NR Date:04/19/21  Project No.:10295144 Checked by:AP Date:04/21/21  Boring No.:A‐21‐001  Sample No.:5 Depth (ft):30  Sample Type:Mod. Cal.  Soil Description:Silty Sand  Test Condition:Inundated Shear Type:Regular  Wet              Unit Weight    (pcf) Dry           Unit Weight  (pcf) Initial  Moisture  Content (%) Final  Moisture  Content (%) Initial Degree  Saturation  (%) Final Degree  Saturation   (%) Normal  Stress  (ksf) Peak     Shear  Stress (ksf) Ultimate     Shear  Stress (ksf) 2 1.524 1.308 6 4.098 3.564100 DIRECT SHEAR TEST RESULTS ASTM D 3080 130.5 108.9 19.9 20.3 98 0 1 2 3 4 5 6 0 0.1 0.2 0.3 Sh e a r S t r e s s ( k s f ) Shear Deformation (Inches) 2 ksf 6 ksf 0 1 2 3 4 5 6 7 01234567891011121314 Sh e a r S t r e s s ( k s f ) Normal Stress (ksf) Peak Ultimate Normal Stress: I -AP Engineering and Testing, Inc . • ~ DBE IMBEISBE _ --= 2607 Pomona Boulevard I Pomona, CA 91768 -t. 909.869.6316 I f. 909.869.6318 I www.a12laboratory.com ~ - , __ - / , __ -- / / ---------------------------r - • 0 n ) B  Client:HDR Tested By:LS Date:04/15/21  Project Name:Poseidon ‐ CDP Intake Computed By:NR Date:04/19/21  Project No.:10295144 Checked by:AP Date:04/21/21  Boring No.:A‐21‐002  Sample No.:1 Depth (ft):5  Sample Type:Mod. Cal.  Soil Description:Silty Sand  Test Condition:Inundated Shear Type:Regular  Wet              Unit Weight    (pcf) Dry           Unit Weight  (pcf) Initial  Moisture  Content (%) Final  Moisture  Content (%) Initial Degree  Saturation  (%) Final Degree  Saturation   (%) Normal  Stress  (ksf) Peak     Shear  Stress (ksf) Ultimate     Shear  Stress (ksf) 0.5 0.690 0.444 1 1.212 0.804 2 2.052 1.476 100 DIRECT SHEAR TEST RESULTS ASTM D 3080 129.4 108.7 19.0 20.5 93 0 1 2 3 0 0.1 0.2 0.3 Sh e a r S t r e s s ( k s f ) Shear Deformation (Inches) 0.5 ksf 1 ksf 2 ksf 0 1 2 3 4 012345678 Sh e a r S t r e s s ( k s f ) Normal Stress (ksf) Peak: C=250 psf; ɸ=42˚ Ultimate: C=100 psf; ɸ=34˚ Normal Stress: AP Engineering and Testing, Inc. DBE IMBEISBE ~-=---= 2607 Pomona Boulevard I Pomona, CA 91768 -------= t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com - • 0 ~/ j V~\-✓ ., k(,;, ~  Client:HDR Tested By:LS Date:04/15/21  Project Name:Poseidon ‐ CDP Intake Computed By:NR Date:04/19/21  Project No.:10295144 Checked by:AP Date:04/21/21  Boring No.:A‐21‐002  Sample No.:3 Depth (ft):15  Sample Type:Mod. Cal.  Soil Description:Silty Sand  Test Condition:Inundated Shear Type:Regular  Wet              Unit Weight    (pcf) Dry           Unit Weight  (pcf) Initial  Moisture  Content (%) Final  Moisture  Content (%) Initial Degree  Saturation  (%) Final Degree  Saturation   (%) Normal  Stress  (ksf) Peak     Shear  Stress (ksf) Ultimate     Shear  Stress (ksf) 1 1.103 0.756 2 2.028 1.427 4 3.744 2.953 99 DIRECT SHEAR TEST RESULTS ASTM D 3080 127.2 104.8 21.4 22.4 95 0 1 2 3 4 5 0 0.1 0.2 0.3 Sh e a r S t r e s s ( k s f ) Shear Deformation (Inches) 1 ksf 2 ksf 4 ksf 0 1 2 3 4 5 6 0123456789101112 Sh e a r S t r e s s ( k s f ) Normal Stress (ksf) Peak: C=200 psf; ɸ=41˚ Ultimate: C=50 psf; ɸ=35˚ Normal Stress: AP Engineering and Testing, Inc. DBE IMBEISBE ~-=---= 2607 Pomona Boulevard I Pomona, CA 91768 -------= t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com - • 0 ./ / r ../ l/. .. /"' ~ .~ / ~r  Client:HDR Tested By:LS Date:04/14/21  Project Name:Poseidon ‐ CDP Intake Computed By:NR Date:04/19/21  Project No.:10295144 Checked by:AP Date:04/21/21  Boring No.:A‐21‐002  Sample No.:11 Depth (ft):55  Sample Type:Mod. Cal.  Soil Description:Silty Sand  Test Condition:Inundated Shear Type:Regular  Wet              Unit Weight    (pcf) Dry           Unit Weight  (pcf) Initial  Moisture  Content (%) Final  Moisture  Content (%) Initial Degree  Saturation  (%) Final Degree  Saturation   (%) Normal  Stress  (ksf) Peak     Shear  Stress (ksf) Ultimate     Shear  Stress (ksf) 4 3.397 2.696 8 6.507 5.287 10 8.184 6.648 85 99 DIRECT SHEAR TEST RESULTS ASTM D 3080 132.1 115.3 14.6 16.9 0 2 4 6 8 10 0 0.1 0.2 0.3 Sh e a r S t r e s s ( k s f ) Shear Deformation (Inches) 4 ksf 8 ksf 10 ksf 0 2 4 6 8 10 02468101214161820 Sh e a r S t r e s s ( k s f ) Normal Stress (ksf) Peak: C=200 psf; ɸ=38˚ Ultimate: C=50 psf; ɸ=33˚ Normal Stress: AP Engineering and Testing, Inc. DBE IMBEISBE ~-=---= 2607 Pomona Boulevard I Pomona, CA 91768 ------= t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com - • 0 J~ /' (: ~ v / f' / l/ ~ '('/ 'I' ~ ~ /'  Client:HDR Tested By:LS Date:04/15/21  Project Name:Poseidon ‐ CDP Intake Computed By:NR Date:04/19/21  Project No.:10295144 Checked by:AP Date:04/21/21  Boring No.:A‐21‐003  Sample No.:3 Depth (ft):20  Sample Type:Mod. Cal.  Soil Description:Silty Sand  Test Condition:Inundated Shear Type:Regular  Wet              Unit Weight    (pcf) Dry           Unit Weight  (pcf) Initial  Moisture  Content (%) Final  Moisture  Content (%) Initial Degree  Saturation  (%) Final Degree  Saturation   (%) Normal  Stress  (ksf) Peak     Shear  Stress (ksf) Ultimate     Shear  Stress (ksf) 1 0.912 0.720 2 1.728 1.356 4 3.108 2.628 100 DIRECT SHEAR TEST RESULTS ASTM D 3080 125.6 101.6 23.7 24.4 97 0 1 2 3 4 0 0.1 0.2 0.3 Sh e a r S t r e s s ( k s f ) Shear Deformation (Inches) 1 ksf 2 ksf 4 ksf 0 1 2 3 4 012345678 Sh e a r S t r e s s ( k s f ) Normal Stress (ksf) Peak: C=150 psf; ɸ=36˚ Ultimate: C=100 psf; ɸ=32˚ Normal Stress: AP Engineering and Testing, Inc. DBE IMBEISBE ~-=---= 2607 Pomona Boulevard I Pomona, CA 91768 -------= t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com - •  Client:Edison/Ninyo & Moore Tested By:ST Date:04/05/22  Project Name:Havilah Substation Computed By:NR Date:04/06/22  Project No.:13‐191 Checked by:AP Date:04/07/22  Boring No.:R‐22‐004  Sample No.:7 Depth (ft):30  Sample Type:Mod. Cal.  Soil Description:Poorly‐Graded Sand  Test Condition:Inundated Shear Type:Regular  Wet              Unit Weight    (pcf) Dry           Unit Weight  (pcf) Initial  Moisture  Content (%) Final  Moisture  Content (%) Initial Degree  Saturation  (%) Final Degree  Saturation   (%) Normal  Stress  (ksf) Peak     Shear Stress  (ksf) Ultimate     Shear  Stress (ksf) 2 1.548 1.260 4 3.240 2.520 6 4.524 3.684 ASTM D 3080 127.9 119.4 7.2 15.2 47 100 DIRECT SHEAR TEST RESULTS 0 1 2 3 4 5 6 0 0.1 0.2 0.3 Shear Deformation (Inches) Sh e a r S t r e s s ( k s f ) 2 ksf 4 ksf 6 ksf 0 1 2 3 4 5 6 7 01234567891011121314 Normal Stress (ksf) Sh e a r S t r e s s ( k s f ) Peak: C=50 psf; ɸ=36˚ Ultimate: C=50 psf; ɸ=31˚ Normal Stress: AP Engineering and Testing, Inc. ~~ DBE IMBEISBE ~~-= 2607 Pomona Boulevard I Pomona, CA 91768 =------= t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com - • -0 / (' ◄✓ , .,,- / - ./ ~y~ /2 c ~ ;.-- / '('  Client:HDR Tested By:ST Date:04/04/22  Project Name:Poseidon ‐ CDP Intake Computed By:NR Date:04/06/22  Project No.:10202077 Checked by:AP Date:04/07/22  Boring No.:R‐22‐004  Sample No.:10 Depth (ft):45  Sample Type:Mod. Cal.  Soil Description:Silty Sand  Test Condition:Inundated Shear Type:Regular  Wet              Unit Weight    (pcf) Dry           Unit Weight  (pcf) Initial  Moisture  Content (%) Final  Moisture  Content (%) Initial Degree  Saturation  (%) Final Degree  Saturation   (%) Normal  Stress  (ksf) Peak     Shear Stress  (ksf) Ultimate     Shear  Stress (ksf) 4 3.427 2.604 6 5.039 3.780 8 6.348 5.112 ASTM D 3080 131.0 114.5 14.4 17.5 82 100 DIRECT SHEAR TEST RESULTS 0 1 2 3 4 5 6 7 8 0 0.1 0.2 0.3 Shear Deformation (Inches) Sh e a r S t r e s s ( k s f ) 4 ksf 6 ksf 8 ksf 0 1 2 3 4 5 6 7 8 012345678910111213141516 Normal Stress (ksf) Sh e a r S t r e s s ( k s f ) Peak: C=400 psf; ɸ=36˚ Ultimate: C=100 psf; ɸ=32˚ Normal Stress: I -AP Engineering and Testing, Inc. ~~ DBE IMBEISBE ~~-= 2607 Pomona Boulevard I Pomona, CA 91768 --t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com . . . f ---------------------------- •  Client:HDR Tested By:SM Date:04/06/22  Project Name:Poseidon ‐ CDP Intake Computed By:NR Date:04/06/22  Project No.:10202077 Checked by:AP Date:04/07/22  Boring No.:R‐22‐005  Sample No.:1 Depth (ft):5  Sample Type:Mod. Cal.  Soil Description:Clayey Sand  Test Condition:Inundated Shear Type:Regular  Wet              Unit Weight    (pcf) Dry           Unit Weight  (pcf) Initial  Moisture  Content (%) Final  Moisture  Content (%) Initial Degree  Saturation  (%) Final Degree  Saturation   (%) Normal  Stress  (ksf) Peak     Shear Stress  (ksf) Ultimate     Shear  Stress (ksf) 1 1.632 0.921 2 2.476 1.728 4 3.936 3.240 134.3 116.3 15.5 16.5 93 99 DIRECT SHEAR TEST RESULTS ASTM D 3080 0 1 2 3 4 5 0 0.1 0.2 0.3 Shear Deformation (Inches) Sh e a r S t r e s s ( k s f ) 1 ksf 2 ksf 4 ksf 0 1 2 3 4 5 6 0123456789101112 Normal Stress (ksf) Sh e a r S t r e s s ( k s f ) Peak: C=750 psf; ɸ=39˚ Ultimate: C=200 psf; ɸ=37˚ Normal Stress: AP Engineering and Testing, Inc. ~~ DBE IMBEISBE ~~-= 2607 Pomona Boulevard I Pomona, CA 91768 =-----= t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com - • 0 / 0 / ~ ~/ / / / ~) -r / , /1..' /  Client:HDR Tested By:SM Date:04/06/22  Project Name:Poseidon ‐ CDP Intake Computed By:NR Date:04/06/22  Project No.:10202077 Checked by:AP Date:04/07/22  Boring No.:R‐22‐005  Sample No.:2 Depth (ft):10  Sample Type:Mod. Cal.  Soil Description:Clayey Sand  Test Condition:Inundated Shear Type:Regular  Wet              Unit Weight    (pcf) Dry           Unit Weight  (pcf) Initial  Moisture  Content (%) Final  Moisture  Content (%) Initial Degree  Saturation  (%) Final Degree  Saturation   (%) Normal  Stress  (ksf) Peak     Shear Stress  (ksf) Ultimate     Shear  Stress (ksf) 1 0.840 0.780 2 1.512 1.332 4 2.819 2.592 DIRECT SHEAR TEST RESULTS ASTM D 3080 122.2 104.2 17.2 22.1 75 97 0 1 2 3 4 0 0.1 0.2 0.3 Shear Deformation (Inches) Sh e a r S t r e s s ( k s f ) 1 ksf 2 ksf 4 ksf 0 1 2 3 4 5 012345678910 Normal Stress (ksf) Sh e a r S t r e s s ( k s f ) Peak: C=250 psf; ɸ=32˚ Ultimate: C=200 psf; ɸ=30˚ Normal Stress: AP Engineering and Testing, Inc. ~~ DBE IMBEISBE ~~-= 2607 Pomona Boulevard I Pomona, CA 91768 =------= t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com - • 0 / ./ ~~, ~ ~~ ~ y ~  Client:HDR Tested By:ST Date:04/04/22  Project Name:Poseidon ‐ CDP Intake Computed By:NR Date:04/06/22  Project No.:10202077 Checked by:AP Date:04/07/22  Boring No.:R‐22‐005  Sample No.:5 Depth (ft):25  Sample Type:Mod. Cal.  Soil Description:Silty Sand  Test Condition:Inundated Shear Type:Regular  Wet              Unit Weight    (pcf) Dry           Unit Weight  (pcf) Initial  Moisture  Content (%) Final  Moisture  Content (%) Initial Degree  Saturation  (%) Final Degree  Saturation   (%) Normal  Stress  (ksf) Peak     Shear Stress  (ksf) Ultimate     Shear  Stress (ksf) 2 1.869 1.308 3 2.604 1.860 5 3.984 3.120 ASTM D 3080 130.2 110.1 18.3 19.5 93 99 DIRECT SHEAR TEST RESULTS 0 1 2 3 4 5 0 0.1 0.2 0.3 Shear Deformation (Inches) Sh e a r S t r e s s ( k s f ) 2 ksf 3 ksf 5 ksf 0 1 2 3 4 5 6 0123456789101112 Normal Stress (ksf) Sh e a r S t r e s s ( k s f ) Peak: C=400 psf; ɸ=35˚ Ultimate: C=100 psf; ɸ=30˚ Normal Stress: AP Engineering and Testing, Inc. ~~ DBE IMBEISBE ~~-= 2607 Pomona Boulevard I Pomona, CA 91768 =------= t. 909.869.6316 I f. 909.869.6318 I www.aplaboratory.com - • 0 / ./ V )/ l ~ ., / ,,,,,,, ,,,,,,, ~/; r o ,,,,,,, ) // ,,, ,,,, CORROSION TEST RESULTS Client Name: HDR AP Job No.: 21-0418 Project Name: Poseidon - CDP Intake Date:04/14/21 Project No.: 10295144 Boring Sample Depth Soil pH Sulfate Content Chloride Content No. No. (feet) Description (ppm)(ppm) A-21-001 1 10 Silty Sand 7.1 532 3772 A-21-001 6 35 Silty Sand 8.5 598 5138 NOTES: Resistivity Test and pH: California Test Method 643Sulfate Content : California Test Method 417Chloride Content : California Test Method 422ND = Not DetectableNA = Not Sufficient SampleNR = Not Requested MinimumResistivity(ohm-cm) 96 81 I AP Engineering and Testing, Inc. ~~ DBEIMBEISBE _ .=_--=: 2607 Pomona Boulevard I Pomona, CA 91768 t . 909.869.6316 I f. 909.869.6318 I www.a12laboratorl£.com CORROSION TEST RESULTS Client Name: HDR AP Job No.: 21-0418 Project Name: Poseidon - CDP Intake Date:04/14/21 Project No.: 10295144 Boring Sample Depth Soil pH Sulfate Content Chloride Content No. No. (feet) Description (ppm)(ppm) A-21-002 4 20 Silty Sand 8.3 463 3140 NOTES: Resistivity Test and pH: California Test Method 643Sulfate Content : California Test Method 417Chloride Content : California Test Method 422ND = Not DetectableNA = Not Sufficient SampleNR = Not Requested 115 MinimumResistivity(ohm-cm) I AP Engineering and Testing, Inc. ~~ DBEIMBEISBE _ .=_--=: 2607 Pomona Boulevard I Pomona, CA 91768 t . 909.869.6316 I f. 909.869.6318 I www.a12laboratorl£.com CORROSION TEST RESULTS Client Name: HDR AP Job No.: 21-0418 Project Name: Poseidon - CDP Intake Date:04/14/21 Project No.: 10295144 Boring Sample Depth Soil pH Sulfate Content Chloride Content No. No. (feet) Description (ppm)(ppm) A-21-003 5 30 Silty Sand 7.6 401 6107 NOTES: Resistivity Test and pH: California Test Method 643Sulfate Content : California Test Method 417Chloride Content : California Test Method 422ND = Not DetectableNA = Not Sufficient SampleNR = Not Requested 84 MinimumResistivity(ohm-cm) I AP Engineering and Testing, Inc. ~~ DBEIMBEISBE _ .=_--=: 2607 Pomona Boulevard I Pomona, CA 91768 t . 909.869.6316 I f. 909.869.6318 I www.a12laboratorl£.com CORROSION TEST RESULTS Client Name: HDR AP Job No.: 22-0380 Project Name: Poseidon - CDP Intake Date:04/04/22 Project No.: 10202077 Boring Sample Depth Soil pH Sulfate Content Chloride Content No. No. (feet) Description (ppm)(ppm) R-22-005 5 25 Silty Sand 8.8 659 900 NOTES: Resistivity Test and pH: California Test Method 643 Sulfate Content : California Test Method 417 Chloride Content : California Test Method 422 ND = Not Detectable NA = Not Sufficient Sample NR = Not Requested Minimum (ohm-cm) 458 Resistivity I AP Engineering and Testing, Inc. ~~ DBEIMBEISBE _ .=_--=: 2607 Pomona Boulevard I Pomona, CA 91768 t . 909.869.6316 I f. 909.869.6318 I www.a12laboratorl£.com Appendix F. Analyses 1.87 Distance (feet) 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 Color Name Model Unit Weight (pcf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Med dense - Sand Mohr-Coulomb 120 50 32 Horz Seismic Coef.: 0 Slope Stability Analysis:HVW6LGH +LJK:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH([LVWLQJ6WDWLF&DVH □ □ □ • 1.09 Distance (feet) 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 Color Name Model Unit Weight (pcf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Med dense - Sand Mohr-Coulomb 120 50 32Horz Seismic Coef.: 0.137 Slope Stability Analysis:HVW6LGH +LJK:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH([LVWLQJ6HLVPLF&DVH □ □ □ • 1.47 Distance (feet) 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 Color Name Model Unit Weight (pcf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Med dense - Sand Mohr-Coulomb 120 50 32 Magnitude: 4,000 lbf Horz Seismic Coef.: 0 Slope Stability Analysis:HVW6LGH +LJK:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH([LVWLQJ6WDWLF&DVHZLWK/RDGLQJ □ □ □ • 1.54 Distance (feet) 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 Color Name Model Unit Weight (pcf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Med dense - Sand Mohr-Coulomb 120 50 32 Magnitude: 1,000 lbf Horz Seismic Coef.: 0 Slope Stability Analysis:HVW6LGH +LJK:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH3URSRVHG:DOO6WDWLF&DVH □ □ □ • 1.10 Distance (feet) 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 Color Name Model Unit Weight (pcf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Med dense - Sand Mohr-Coulomb 120 50 32 Horz Seismic Coef.: 0.137 Magnitude: 3,000 lbf Slope Stability Analysis:HVW6LGH +LJK:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH3URSRVHG:DOO6HLVPLF&DVH □ □ □ • 1.57 Distance (feet) 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 Color Name Model Unit Weight (pcf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Med dense - Sand Mohr-Coulomb 120 50 32 Magnitude: 3,000 lbf Horz Seismic Coef.: 0 Slope Stability Analysis:HVW6LGH /RZ:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH3URSRVHG:DOO6WDWLF&DVH □ □ □ • 1.08 Distance (feet) 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 Color Name Model Unit Weight (pcf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Med dense - Sand Mohr-Coulomb 120 50 32 Horz Seismic Coef.: 0.137 Magnitude: 3,000 lbf Slope Stability Analysis:HVW6LGH /RZ:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH3URSRVHG:DOO6HLVPLF&DVH □ □ □ • 2.72 Distance (feet) 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 Color Name Model Unit Weight (pcf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Med dense - Sand Mohr-Coulomb 120 50 32Horz Seismic Coef.: 0 Slope Stability Analysis(DVW6LGH +LJK:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH([LVWLQJ6WDWLF&DVH □ □ □ • 1.43 Distance (feet) 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 Color Name Model Unit Weight (pcf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Med dense - Sand Mohr-Coulomb 120 50 32 Horz Seismic Coef.: 0.137 Slope Stability Analysis(DVW6LGH +LJK:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH([LVWLQJ6HLVPLF&DVH □ □ □ • 1.54 Distance (feet) 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 Color Name Model Unit Weight (pcf) Cohesion (psf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Liquefiable soil 1 Undrained (Phi=0) 120 180 Liquefiable soil 2 Mohr-Coulomb 120 0 21 Horz Seismic Coef.: 0 Slope Stability Analysis(DVW6LGH +LJK:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH([LVWLQJ3RVW/LTXHIDFWLRQ&DVH □ □ □ ■ • 2.21 Distance (feet) 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 Color Name Model Unit Weight (pcf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Med dense - Sand Mohr-Coulomb 120 50 32 Rip Rap Mohr-Coulomb 150 0 50 Horz Seismic Coef.: 0 Slope Stability Analysis(DVW6LGH +LJK:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH3URSRVHG6ORSH6WDWLF&DVH □ □ □ □ • 1.37 Distance (feet) 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 Color Name Model Unit Weight (pcf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Med dense - Sand Mohr-Coulomb 120 50 32 Rip Rap Mohr-Coulomb 150 0 50 Horz Seismic Coef.: 0.137 Slope Stability Analysis(DVW6LGH +LJK:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH3URSRVHG6ORSH6HLVPLF&DVH □ □ □ □ • 1.31 Distance (feet) 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 Color Name Model Unit Weight (pcf) Cohesion (psf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Liquefiable soil 1 Undrained (Phi=0) 120 180 Liquefiable soil 2 Mohr-Coulomb 120 0 21 Rip Rap Mohr-Coulomb 150 0 50 Horz Seismic Coef.: 0 Slope Stability Analysis(DVW6LGH +LJK:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH3URSRVHG6ORSH3RVW/LTXHIDFWLRQ&DVH □ □ □ ■ □ • 1.88 Distance (feet) 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 Color Name Model Unit Weight (pcf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Med dense - Sand Mohr-Coulomb 120 50 32 Rip Rap Mohr-Coulomb 150 0 50 Horz Seismic Coef.: 0 Slope Stability Analysis(DVW6LGH /RZ:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH3URSRVHG6ORSH6WDWLF&DVH □ □ □ □ • 1.31 Distance (feet) 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 Color Name Model Unit Weight (pcf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Med dense - Sand Mohr-Coulomb 120 50 32 Rip Rap Mohr-Coulomb 150 0 50 Horz Seismic Coef.: 0.137 Slope Stability Analysis(DVW6LGH /RZ:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH3URSRVHG6ORSH6HLVPLF&DVH □ □ □ □ • 1.10 Distance (feet) 140 160 180 200 220 240 260 280 300 320 340 360 380 400 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 El e v a t i o n ( f e e t - N G V D 2 9 ) -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 Color Name Model Unit Weight (pcf) Cohesion (psf) Effective Cohesion (psf) Effective Friction Angle (°) Clayey Sand Mohr-Coulomb 122 200 30 Dense sand/silt Mohr-Coulomb 120 100 36 Liquefiable soil 1 Undrained (Phi=0) 120 180 Liquefiable soil 2 Mohr-Coulomb 120 0 21 Rip Rap Mohr-Coulomb 150 0 50 Horz Seismic Coef.: 0 Slope Stability Analysis(DVW6LGH /RZ:DWHU Figure Notes: &DUOVEDG'HVDOLQDWLRQ3ODQW,QWDNH3KDVH3URSRVHG6ORSH3RVW/LTXHIDFWLRQ&DVH □ □ □ ■ □ • !" # $%& # '( !) !* # '( # " +# , -. +$ / 0, 1 2 3 , 1 2 3 43 3 / , 0 3 5 2 ! $)" 6 7# 8 , 9 : : , $! $" /!"/ # ' %#& $ %# % " * + #%7%! "% $ &/ ) #% # 6 & ! 6$' #; ! 6%7 % # %66 # %6 ! !%"( < < , < , < ,, <-, <=, <0, <>, <., < , < , < , < , , , , .,, ;,,, ;.,, ! " # $ # %& ! !% ' >< !%#) 3 ! $ 3 " $ ? ' ! $ ? ' " 3 ! $ I I I ~ -i--->- = ~ === ...... >- \ \ \~ ···.' ~ ' . •. Ill,. \~ . ··\ " ·. '-. \.,.'\'-'~ . . '~ .... \ ~ .. -. " \ ,· •· . \ ~ . " \ ' •• .. \ . 'I> ' ' . . ~ . \ ' 'II . . . '\, " . . ....._ ' . . ' ' .. '" . . . \ "~ ~ . . " \, . . "" .. . ' " .. . . " ' . \ ' . . \ "-' . . ' . '~ . . -, ~~ '"• . "' ' . . ~ • . . \ ' . "~ \ . ~ . . ' . ~ '" . . ' \ . '\ " \ '\ ~, ' I'\ " \ ~ ~ \ " \ &5(673,/( 0,'6/23(3,/( )LJXUH /$7(5$/635($',1*$1$/<6,6 352-(&71$0(326(,'21 ,17$.(02',),&$7,2163+$6(,, 352-(&7180%(5 IN LIINE - I BENT 7 STA 2 78.75 T 6S AZ 46.00 0 0 0 ENT 8 STA 2+91i.50 4i 17 Soil Movement or Lateral Pile Deflection (in) LATERAL PILE DEFLECTION - CREST PILES (EAST EMBANKMENT) De p t h ( f t ) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Load Case 4 Soil Movement, Case 4 Sand Sand Soft Clay Soft Clay Sand Soil Movement or Lateral Pile Deflection (in) LATERAL PILE DEFLECTION - CREST PILES (EAST EMBANKMENT) De p t h ( f t ) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Load Case 4 Soil Movement, Case 4 Sand Sand Soft Clay Soft Clay Sand LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 Figure 19 - - - - -r-- - - - - -r-- - - - --T-- - - - - - -r-- - - - - -r-- - - - ---t-- - ---r-------r-------r-------+-------- - - - -+-- - - - - - -+-- - - - - - -+-- - - - - - -+-- - - - - - -+-- - - - - -+-- - I I I - - - - -+-- - - - - - -+-- - - - - - -+-- - - ---~-------~-------~-------+------- - - - -+-- - - - - - -+-- - - - - - -+-- - - ___ L _______ L _______ L _______ L __ _ - - - - -l_ _ - - - - - -l_ _ - - - - - -l_ _ - - _______ I _______ I _______ I _______ I _______ I ___ _ ------r-------r-------+--------+--------+--------+-------+--- -------r-------r-------+--------+--------+--------+-------+--- -------+--------+--------+--------+--------+--------+--------+---- I I I I I I I _______ L _______ L _______ L _______ 1._ _______ 1._ _______ 1_ _______ 1_ __ _ I I I I I I I _______ L _______ L _______ L _______ L _______ L _______ L _______ L __ _ Shear Force (kips) SHEAR FORCE- CREST PILES (EAST EMBANKMENT) De p t h ( f t ) -100 -80 -60 -40 -20 0 20 40 60 80 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Load Case 4 Sand Sand Soft Clay Soft Clay Sand LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 Figure 20 -----I ------1------T -----------r -- - - - - --t - - - - --1-- - - - -t-- - - - - - - - - - -r - - - - + - - - - --I - - - - - -t-- - - - -7 - -- - - - --t - - - - - -I-- - - - -+ - - - - - - - - - - -t-- - - - + - - - - --I - - - - - -t-- - - - -7 - - - -- - - - --t - - - - --1-- - - - -+ - - - - - - - - - - -t-- - I I I I I I I I - -+-- - - - --1 - - - - - -I-- - - - ----1 - - - - - - - - - --+ - - - - --1-- - - - -+-- - - - - - - - - - -I-- - --~-----~------L-----~------------1----- ____ _J _____ _ ______ L __ - - - - -_I - - - - - - - - - - -_I - - - - - - - -T - - - - --1-- - - - -r - - - - -7 - - - - - -- - - - --1-- - - - -T - - - - - - - - - - -r - - - -t-- - - - --1-- - - - -r - - - - -7 - - - - - -- --t - - - - --1-- - - - -t-- - - - - - - - - - -r - - - - + - - - - --I - - - - - -t-- - - - -7 - - - - - - - - - --t - - - - - -I-- - - - -+ - - - - - - - - - - -t-- - - - + - - - - --I - - - - - -t-- - - - -7 - - - - - - - - - - --t - - - - --1-- - - - -+ - - - - - - - - - - -t-- - - -+-- - - - --1 - - - - - -I-- - - - ----1 - - - - -1-- - - - --+ - - - - --1-- - - - -+-- - - - - - - - - - -I-- - - -.L - - - - --1 - - - - - - L - - - - -_J - - - - - - - - - - -j_ - - - - - -I - - - - - -.L - - - - - - - - - - -L - - I I I I __ .L ______ I ______ L _____ _J _ _ _ _ _ _ _ ___ j_ ______ I ______ .L _ _ _ _ _ _ _____ L __ I I I I I I I I __ .l ______ I ______ L _____ _J _ _ _ _ _ _ _ _ J_ ______ I ______ .l _ _ _ _ _ _ _____ L __ - - - - -_I - - - - - - Bending Moment (in-kips) BENDING MOMENT- CREST PILES (EAST EMBANKMENT) De p t h ( f t ) -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Load Case 4 Sand Sand Soft Clay Soft Clay Sand LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 Figure 21 ----r---- ----r---- - - --f-- - - - - - --1-- - --1-- -----7----7----7----+----+---- I I I I I I I I ----f------------~----~----~----➔----➔---- - - -_f----- - - - - - --1-- - -----~----~----~----➔----➔---- -_I_ - - - ----I --------1-----1-----1-----1 --------7 ----7 ----7 --------I ---- ----r --------1-----1-----1-----1 --------7 ----7 ----7 -------I ---- - - - -r - - - - - - - -1-- - - -1-- - --1-- - --1 - - - - - - - ----, - - - -7 - - - ----t - - - - - - - --t - - - - - - - -f-- - - - - - --1-- - --1-- - --1-- - --1-- - - - - - -7 - - - -7 - - - ----t - - - - --f-- - - - - - --1-- - --1-- - --1-- - --1-- - - - - --f----- - - - - - --1-- - --1-- - --1-- - --1-- - - ----L--------1-----1-----1-----1----____ _J ___ _ I I ____ L ________ 1 _____ 1 _____ 1 _____ 1 ________ _J __ I I I I I ____ L ____ ------------------~------~----~----i ____ i ___ _ ------------------~---- Mobilized Soil Reaction (lb/in) MOBILIZED SOIL REACTION- CREST PILES (EAST EMBANKMENT) De p t h ( f t ) -1000 -500 0 500 1000 1500 2000 2500 3000 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Load Case 4 Sand Sand Soft Clay Soft Clay Sand LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 Figure 22 -----r-------r-------r-------T _______ T ______ _ ----r-------r-------r--------r--------r------- ----t--------t--------t--------+-------+------- - -t-- - - - - - -t-- - - - - - -+-- - - - - - -+-- - - - - -+-- - - - - - I I I I I -------~-------~--------------~-------+-------+-------+------- -------1 ------- -------i-------r-------r-------r-------T-------T------- ------r-------r-------r-------T _______ T _______ T ______ _ ----r-------r-------r--------r--------r--------r------- --t--------t--------t--------t--------+-------+------- -t--------t--------t--------t--------+-------+------- -------~-------------~-------~-------+-------+-------+------- -----L-------L-------L-------L _______ J_ ______ _ I I I I I ____ L _______ L _______ L _______ .L _______ J_ ______ _ I I I I I ____ L _______ L _______ l_ _______ _l_ _______ l_ ______ _ Soil Movement or Lateral Pile Deflection (in) LATERAL PILE DEFLECTION - MID-SLOPE PILES (EAST EMBANKMENT) De p t h ( f t ) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Load Case 4 Soil Movement, Case 4 Sand Sand Soft Clay Soft Clay Sand Soil Movement or Lateral Pile Deflection (in) LATERAL PILE DEFLECTION - MID-SLOPE PILES (EAST EMBANKMENT) De p t h ( f t ) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Load Case 4 Soil Movement, Case 4 Sand Sand Soft Clay Soft Clay Sand LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 Figure 23 ___ L _______ L _______ L _______ L ______ L ______ L _______ L _______ ~--- -----1-------1-------1--- I I ___ L _______ L _______ L ______ L _______ L _______ L _______ L _______ ~--- - - - - - -l-- - - - - - -+-- - - - - - -+-- - - - - - -+-- - - - - - -+-- - ---r-------r-------r-------r-------r-------r-------1--- -----t--------1--------t--------t--------t--------t--------+--- I I I I I I I -------r-------r-------,-------i-------i-------i-------i--- Shear Force (kips) SHEAR FORCE- MID-SLOPE PILES (EAST EMBANKMENT) De p t h ( f t ) -140 -120 -100 -80 -60 -40 -20 0 20 40 60 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Load Case 4 Sand Sand Soft Clay Soft Clay Sand LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 Figure 24 I I _____ L _____ l_ _____ _l _____ _J ___________ I ______ I ______ L _____ L _____ _l_ __ - - - --1-- - - - -+ - - - - --+-- - - ----1-- - - --1-- - - --1-- - - --f-- - - - -I-- - - - -+ - - ◊ I I I _____ L _____ l_ _____ _l _____ _J ___________ I ______ I ______ L _____ L _____ .l __ - - - --1-- - - - -+-- - - --+-- - - ----1-- - - - - - - - --1-- - - --1-- - - --f-- - - -I-- - - - -+ - - -----r-----T-----1-----7----- I -----L-----J_ _ ----_J _ ----_J _ ----------1----1------L -----L -----.L -- - - - - -t-- - - - -+-- - - --+-- - - -7-- - - -- - --1-- - - - -f-- - - - -t-- - - - -+ - - I I I I -----,-----T-----,-----7----- Bending Moment (in-kips) BENDING MOMENT- MID-SLOPE PILES (EAST EMBANKMENT) De p t h ( f t ) -9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Load Case 4 Sand Sand Soft Clay Soft Clay Sand LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 Figure 25 I I ____ _l _____ I _____ L ____ _l _____ I _____ L __ _ - - - --+ - - - --1-- - - -I-- - - -4 - - - --1-- - -I-- - - ----1 - - - --1-- - - -+-- - - ----1 - - - - - ----I -----1-----I ----I -----1----I ----I -----1-----I ----I ----- I : 1◊ I I I I I ____ _l _____ I _____ L ____ -1 _____ I _____ L ____ _J _ _ __I _____ .l ____ _J ____ _ - - - --+ - - - --1-- - - -I-- - - --+ - - - --1-- - - -I-- - - ----1 - - - --1-- - -+-- - - ----1 - - - - - ------1 -----1-----L ----J -----1-----L ----_J -----1-----.L ---- - - - --+ - - - --1-- - - -t-- - - ---t - - - --1-- - - -t-- - - -7 - - - --1-- - - - + - - - Mobilized Soil Reaction (lb/in) MOBILIZED SOIL REACTION- MID-SLOPE PILES (EAST EMBANKMENT) De p t h ( f t ) -1000 -500 0 500 1000 1500 2000 2500 3000 3500 4000 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Load Case 4 Sand Sand Soft Clay Soft Clay Sand Mobilized Soil Reaction (lb/in) MOBILIZED SOIL REACTION- MID-SLOPE PILES (EAST EMBANKMENT) De p t h ( f t ) -1000 -500 0 500 1000 1500 2000 2500 3000 3500 4000 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Load Case 4 Sand Sand Soft Clay Soft Clay Sand LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 Figure 26 I I ______ I ______ L _ _ _ _ _ _ _____ L _____ _l ______ I _____ _ ------I -----I ------1------ I I --------------------------- ' ' I I I I _____ _l_ ______ I ______ L _ _ _ _ _ _ _____ L _____ -1 ______ I _____ _ --1-- - - - - + - - - - --1-- - - - -l-- - - - - - - - - - -f-- - - - ----t - - - - --1-- - - - - - - - - -7 - - - - -1-- - - - - T - - - - --1-- - - - -r - - - - - - - - - - -r - - - - -7 - - - - - -1-- - - - - I~ -----1------j_ ------1------L -----------L -----J ------1------ - - - --1-- - - - - + - - - - --1-- - - - -t-- - - - - - - - - - -f-- - - - ---t - - - - --1-- - - - - ------I -----7 ------I------ ! " # $ Figure 27LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 ---r-------r-------r-------r------r-_____ T _______ T _______ T __ _ ---r-------r-------r-------r-----r------r-------r--------t--- ---r-------r-------r-------r------t-------r-------r--------t--- ---j--------j--------j--------+------+-------+-------+-------+--- - - - - -+ - - - - - - -+ - - - - - - -+ - - - - - - - -.L _ - - - - - -.L _ - - - - - -J_ _ - - I I I I I I I ___ L _______ L _______ L _______ L __ - - - - -.L _ - - - - - -.L _ - - - - - -J_ _ - - I I I I ___ L _______ L _______ L _______ I _______ I _______ I ___ _ I --------------- ' -------1 ------- I I --,-------,-------,-------,-------1-------i-------i--- ----r-------r-------r-------T _______ T _______ T _______ T __ _ -----1-------1-------r-------1-------1-------1-------1--- ------r-------r-------r-------r--------t--------t--------t--- -------j--------j--------+--------+-------+-------+-------+--- -------l--------l--------+--------+--------+-------+-------+--- _______ j_ _______ j_ _______ j_ _______ .L-------+-------+-------+--- _______ L _______ L _______ L _______ l_ _______ .L _______ .L _______ J_ __ _ I I I I I I I _______ L _______ L _______ L _______ l_ _______ _l_ _______ _l_ _______ J_ __ _ ! " ! Figure 28LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 - - -7 - - - -1-- - --t - - - - I - - - -t-- - - - - -7 - - - -1-- - --t - - - - I - - - -t-- - - - - ----! - - - -I-- - -+ - - --1-- - -+-- - - - - --I - - - -1-- - --+ - - --1-- - -+-- - - - - -_j - - - -1-- - -J_ - - - - I - - - -L - - - _ _ _ _j ____ I ____ J_ ____ I ____ L __ _ I I 1◊ I: ___ _J ____ I ____ J_ ____ I ____ l_ __ _ ____ I ________ I ___ _ - - - _ I_ - - - I I -------- ' I ----1--------1---- I ----1--------1---- - - --;-- - --1-- - -r-- - - - - -r- - -----i-- - - - - --;-- - --1-- - -r-- - - - - -r- - - -+-- --1-- - -+-- - -----f---- - - --+-- --1-- - -+-- - -----f---- I I ____ L ___ _j ___ _ I I I ____ L ___ _J ___ _ _ ___ L _ - - -_I_ - - - - - -7 - - - -1-- - ---r - - - -1 - - - -r - - - - - - -r - - -7 - - - - - - -7 - - - -1-- - --t - - - - 1 - - - -r - - - - - - -r - - -7 - - - -----r- - - -----i - - - -1-- - --t - - - -1 - - - -r - - - - - - -r - - -----i - - - - - --t - - - -1 - - - -r - - - - - - -r - - - ----! - - - -I-- - -+ - - --1-- - -+-- - - - - - -f---- - ----! - - - - - -+ - - --1-- - -+-- - - - - - -f---- - - ----! - - - -I-- - -+ - - --1-- - -+-- - - - - - -f---- - ----! - - - - - - -+ - - --1-- - -+-- - - - - - -f---- - - --I - - - -1-- - --+ - - - -I - - - -+-- - - - - - -~ - - --I - - - - - --+ - - - -I - - - -+-- - - - - - -~ - ___ _j ____ I ____ J_ ____ I ____ L _ _ _ _ ___ L ___ _j _ _ _ _ _ _ J_ ____ I ____ L _ _ _ _ ___ L _ I I I ___ _J ____ I ____ J_ ____ I ____ l_ _ _ _ _ ___ L ___ _J _ _ _ _ _ J_ ____ I ____ l_ _ _ _ _ ___ L _ ____ I ________ I ___ _ - - - _ I_ - - - I ! " # Figure 29LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 - - - - --t-- - - --1-- - - - --r-- - - - - - - - - -r-- - --1-- - - - --t-- - - --1-- - - - -t-- - - - - - - - - - -t-- - ---! - - - - --1-- - - - --+ - - - - --1-- - - - - + - - - - - - - - - - -f---- - - - - --I - - - - --1-- - - - ---+ - - - - --1-- - - - -+-- - - - - - - - - - -j_ - - - -.L - - - - --1 - - - - -- - - - -_j - - - - - -1-- - - - ---1 - - - - --1-- - - - -.L - - - - - - - - - - -L - - I ____ _j ______ I ______ --1 ______ 1 ______ .L _ _ _ _ _ _ _____ L __ I I I I I I _ _J ______ I ______ __l ______ I ______ .l _ _ _ _ _ _ _____ L __ - - - - -_I - - - - - -- - - - -_I_ - - - - - - - - - -_I - - - - - - I I ------------ ' I I I I I --T ------i------I -----7 ------I------I -----1------T -----------I -- --T ------1------r -----7 ------1------I ----1------T -----------r -- --T ------1------I -----7 ------1-------t -----1------T -----------I -- - --t - - - - --1 - - - - - -t-- - - - ----t - - - - - -1-- - - - --t - - - - -1-- - - - -t-- - - - - - - - - - -t-- - --+-----~------~-----~------~------ - - --1-- - - - -+-- - - - - - - - - -f---- - --+-----~------~-----~------~----------f----- - -.L - - - - --1 - - - - - - L - - - - --I - - - - - -1-- - ---+ - - - - - - I - - - - - -+-- - - - - - - - - - - L - - __ .L ______ I ______ L _____ _j ______ I_ _ _ __ --1 ______ I ______ .L _ _ _ _ _ _ _____ L __ _ _ .L ______ I ______ L _____ _j ______ I_ _ ___ --1 ______ I ______ .L ____ _ ______ I______ _ _____ I _____ _ - - - - -_I - - - - - -I I ______ L __ ),;(' ! " # Figure 30LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 - - - - T - - - - --1-- - - - -r - - - - -7 - - - - - -r - - - - -7 - - - - - -1-- - - - - --------t ------1----T ------1------t------7 ------r---------t ------1------ - - - - ----1 - - - - - -1-- - -T - - - - --1-- - - - -t-- - - - -7 - - - - - -r-- - - - ----t - - - - - -1-- - - - - - - - --1-- - - - -+-- - - - -----1 - - - - - -f---- - - - ---+ - - - - --1-- - - - - -----4------~-----+----1-- - - - -+-- - - - -_j - - - - - -f---- - - - -4 - - - - --1-- - - - - I I I I I I I I I _____ _J ______ I ____ J_ ______ I ______ l_ _____ _J ______ L _____ _J ______ I _____ _ - - - - -_I_ - - - - -- - - - -_I_ - - - - - I -------- 1 ------I------T ------1------I -----7 ------I -----7 ------I------ - - - - -1-- - - - - T - - - - --1-- - - - -r - - - - -7 - - - - - -r - - - - -7 - - - - - -1-- - - - - ----1------T ------1------r -----I ------I -----I ------1------ - -1-- - - - -T - - - - --1-- - - - -t-- - - - -7 - - - - - -r-- - - - ----t - - - - - -1-- - - - - -1-- - - - -+ - - - - --1-- -F -~ - - - --T -- - - -~ - - - - -4 - - - - --1-- - - - - - - - - - + - - - - --1-- - - - -+-- - - - -----1 - - - - - -f---- - - - ---+ - - - - --1-- - - - - - - --!-- - - - --1-- - - - -+-- - - - -_j - - - - - -f---- - - - -4 - - - - --1-- - - - - ___ _l_ ______ I ______ L _____ _J ______ L _____ -1 ______ I _____ _ _ _ _ _ _ _J ______ I_ _ _ __ J_ ______ I ______ l_ _____ _J ______ L _____ _J ______ I _____ _ - - - - - _ I_ - - - - - - _ I_ I - - - - -_I_ - - - - -- - - - -_I_ - - - - - ! " # Figure 31LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 - - - - -+-- - - - - - -+-- - - - - - -+-- - - ---r-------r-------r-------r--- - - - --r-- - - - - --r-- - - - - --r-- - ____ I------- 1 ___ L _______ L _______ L ______ L _______ L _______ _l_ _______ _l_ _______ l_ __ _ - - - - - -+-- - - - - - -+-- - - - - - -+-- - - - - - -+-- - - - - - -+-- - -r-------r-------r-------r-------r-------r--- _j_ _______ j_ _______ j_ _______ +--------+--------+--------+---- -----r-------r-------r-------r--------r--------r--------r--- I I I I I I I -------,-------,-------,-------,-------,-------,-------T--- ! " ! Figure 32LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 _______ j_ _______ j_ _______ j_ _______ j_ _______ j_ __ ----+--------+-------- -------r-------r-------r-------r-------r--------------t------- _______ L _______ L _______ L _______ L _______ L _______ _l_ ______ l_ ______ _ -------f----------f----------+--------+--------+--------+------+------- -------r-------r-------r-------r-------r-------T---___ T ______ _ _______ j_ _______ j_ _______ j_ _______ j_ _______ j_ _____ _ -------+-------- -------r-------r-------r-------r-------r-------r--------t------- I I I I I I I -------,-------,-------,-------,-------,------,-------T------- ! Figure 33LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 I ------ --------------- ' - - - - -_I_ - - - - -- - - - -_I_ - - - - -- - - - - _ I_ - - - - - - --1-- - - - -_J _ - - --+ - - - - - -l-- - - - --1-- - - - -_J _ - - - - --+ - - - - - -l-- - - - --1-- - ------1------7 --------t ------t-------1---------,---------t ------t-------1--- - - - - - _ I_ - - I ____ L ______ I ______ _J ______ __l ______ L ______ I __ _ - - - - --1-- - - - -----1 - - - - - --+ - - - - -l-- - - - --1-- - - - -----j-- - - - --+ - - - - - -+-- - - - --1-- - ------1------7 ------I ------------1------7------I ------I ------1--- I ------ ------ ' - - - - -_I_ - - - - -------___ I _____ _ - - - - - _ I_ - - 1◊ - - - - --1-- - - - -_J - - - - - --+ - - - - - -l-- - - --1-- - - - -_J _ - - - - --+ - - - - - -l-- - - - --1-- - - - - - --1-- - - - -7 - - - - - ----t - - - - - -t-- - - --1-- - - - -----1-- - - - ----t - - - - - -t-- - - - --1-- - I I I I I -----I------7 ------I ------I ------I--- ! " # $ % Figure 34LATERAL SPREADING ANALYSIS PROJECT NAME : POSEIDON INTAKE MODIFICATIONS PHASE II PROJECT NUMBER : 10341720 - - - -_I_ - - - -- - - -_I_ - - - - -I - - - --1-- - - -+-- - - --I - - - --1-- - - -+-- - - --I - - - - - ___ !__ ___ _ I ____ L ____ _J _____ I _____ L ____ _J _____ I _____ L ____ _J ____ _ -1-- - - -l-- - - ----! - - - --1-- - - -+-- - - ----! - - - --1-- - - -+-- - - -----1 - - - - - - - - -_I_ - - - -- - - -_I_ - - - - - - --1-- - - -l-- - - --I - - - --1-- - - -+-- - - --I - - - --1-- - - -+-- - - --I - - - - - - - - ----t - - - --1-- - - -t-- - - ----1 - - - --1-- - - -t-- - - ----1 - - - --1-- - - -t-- - - -----1 - - - - - I I I I I I I I I ------I ----7 -----1-----I ----7 -----1-----I ----7 -----