Loading...
HomeMy WebLinkAbout2827 WHIPTAIL LOOP; ; CBC2022-0227; PermitBuilding Permit Finaled (cityof Carlsbad Commercial Permit Print Dat e: 06/05/2024 Job Address: 2827 WHIPTAIL LOOP, CARLSBAD, CA 92010 Permit No: Status: CBC2022-0227 Closed -Finaled Permit Type: BLDG-Commercial Work Class: Tenant Improvement Parcel#: 2091202600 Valuation: $1,232,750.00 Occupancy Group: B-Fl +51 #of Dwelling Units: Bedrooms: Bathrooms: Occupant Load: 0 Code Edition: 2019 Sprinkled: Yes Project Title: Track#: Lot#: Project#: Plan #: Construction Type:V-B Orig. Plan Check#: Plan Check #: Applied: 06/24/2022 Issued: 09/06/2022 Finaled Close Out: 06/05/2024 Final Inspection: 05/08/2024 INSPECTOR: Renfro, Chris Kersch, Tim Description: MILIPORE SIGMA PHASE 2B: UNOCCUPIED EQUIPMENT PLATFORM NOTE: THE PORTIONS OF THE SHELL SPACE ARE NOT APPROVED FOR OCCUPANCY Applicant: CHAMPION PERMITS TIM SEAMAN 1127 11TH ST IMPERIAL BEACH, CA 91932-2901 (619) 993-8846 FEE BUILDING PLAN CHECK Property Owner: BERDAN WHIPTAIL LLC 2827 WHIPTAIL LOOP CARLSBAD, CA 92010-6713 BUILDING PLAN REVIEW -MINOR PROJECTS (LDE) BUILDING PLAN REVIEW-MINOR PROJECTS (PLN) COMM/IND Tl -STRUCTURAL SB1473 -GREEN BUILDING STATE STANDARDS FEE STRONG MOTION -COMMERCIAL (SMIP) Total Fees: $5,350.07 Total Payments To Date: $5,350.07 Contractor: BN BUILDERS INC 5825 OBERLIN DR, # STE 1 SAN DIEGO, CA 92121-3709 (858) 550-9433 Balance Due: AMOUNT $1,836.90 $194.00 $98.00 $2,826.00 $50.00 $345.17 $0.00 Please t ake NOTICE that approval of your project includes the "Imposition" of fees, dedications, reservations, or other exactions hereafter collectively referred to as "fees/exaction." You have 90 days from the date this permit was issued to protest imposition of these fees/exactions. If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their imposition. You are hereby FURTHE R NOTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project. NOR DOES IT APPLY to any fees/exactions of which you have previously been given a NOTICE similar to this, or as to which the statute of limitation has previously otherwise expired. Building Division Page 1 of 1 1635 Faraday Avenue, Carlsbad CA 92008-7314 I 442-339-2719 I 760-602-8560 f I www.carlsbadca.gov ("city of Carlsbad Job Address 2827 Whlptan Loop COMMERCIAL .BUILDING PERMIT APPLICATION B-2 Plan Check <lt~Q(l:2--~I Est. Value 7; z.aa 1 150, 01) PC Deposit , , I 41,, • t1'0 Date & ...,ti"--'.2P~L. Sulte:. ____ APN:._209-_1_20-_29 _______ _ Tenant Name#: Millipore Sigma Phae• 28 City Permit CP-1 Lot#: 24 Year Bullt: _20_1_9 ______ _ Year Built:. __ _ Occupancy: B-F1+S1 Construction Type:._m __ Fire sprlnklers(:)YESO NO A/C:0,Es0No BRIEF DESCRIPTION OF WORK: Addition of unoccupied equipment platform, fooUngs and undergrOl.lld plumbing 0 Addltlon/New:. ___________ New SF and Use,, __________ New SF and Use ______ SF Deck, SF Patio Cover, SF Other (Specify), ___ _ □Tenant Improvement: ____ SF, Existing Use: ______ Proposed Use: _____ _ ____ SF, Existing Use: ______ Proposed Use: _____ _ Ii] Other: Addlllon of \l'IOccupled equipment platfonn, misc stee~ 11NCtUrel suppo!,_fflt) 2 s; ,oo slf . R .4 ~ti PRIMARY APPLICANT Name: 11m Seaman Address: P.O. Box 5955 Cl~aiu.VIIIII Phone: <818>993.aa48 State:._CA __ zf~• 81912 Name: MIDlpore Sigma Address: 8211 El Camino Real City: Carlsbed Phone: 858-243-0741 State: CA Zlp:,_92009 ___ _ Email: Um(ld1amplo11penn,'ta.com Email: ollVer.easllleja@mllllporeslgma.com DESIGN PROFESSIONAL CONTRACTOR OF RECO~ Name:CPCAtthllec:ls BuslnessName: £s Y,U/GQF~ Address:31321Jge,RLI\ClSulie113 Address: 2C:,.c::,/ 4 rfT /4:t/t;=-i7'J s::z2 City: Catfsbed State:._CA __ zlp: 9201° City: Stf11TTI..C State:~Zlp: :2 4:/ Z I Phone: 858-4-49-3066 Phone: 2 o G ,. S a-: :z -3 f:<c-3 Ema11: Jean-CleueleQcpc:arc:hlteets.com Email:, ___________________ _ Architect State Ucense: _C-3_1_24_0 ________ CSLB License #:,_.:.7_'7.:..'z ..... l.:..:S"""'/'"""_Class:.__"'"B_...--- Carlsbad Business License# (Required):. ______ _ APPLICANT CERTlFJCA TlON: I certify that I have read the application and state that t above Information ls correct and that the fnformatlonon the pt ans ls accurate. I agree to comply with all Cf ty ordl ances an tate laws i'elatlng to building construction. NAME (PRINT): _Ti_m_s_e_a_m_a_n ____ _ SIGN: -V,J1.u.;..,~~---DATE{o f ,r j /-7 i}-- uas Faraday Ave cartsb1d, CA 92008 Ph: 442·339·2719 £mall: Bulldlngfi?car1sbadg,19X REV.04122 THIS PAGE REQUIRED AT PERMIT ISSUANCE PLAN CHECK NUMBER: _c_sc_20_22_--0_22_1 ___ _ A BUILDING PERMIT CAN BE ISSUED TO EITHER A STATE LICENSED CONTRACTOR OR A PROPERTY OWNER. IF THE PERSON SIGNING THIS FORM IS AN AGENT FOR EITHER ENTITY AN AUTHORIZATION FORM OR LETTER IS REQUIRED PRIOR TO PERMIT ISSUANCE. {OPTION A): LICENSED CONTRACTOR DECLARATION: I herebyaffirm under penal tyof perjury that I am licensed under provisions of Chapter 9 ( commencing with Section 7000) of Division 3 of the Business and Professions Code, and my license is inf ul If orce and effect. I also affirm under penalty of perjury one of the following declarations (CHOOSE ONE}: DI have and will maintain a certificate of consent to self-insure for workers' compensation provided by Section 3700 of the Labor Code, for the performance of the work which this permit is issued. Policy No .. _________________________________________ _ -OR- (!] I have and will maintain worker's compensation, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. My workers' compensation insurance carrier and policy number are: Insurance Company Name: _U>erty __ M_"_'"_.,_1"'"-'_•nce_C<>_. ________________ _ Policy No. wcS&1s-1•sa21042 Expiration Date: _0_310_1_120_23 ______________ _ -OR- D Certificate of Exemption: I certify that in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the workers' compensation Laws of California. WARNING: Failure to secure workers compensation coverage is unlawful and shall subject an employer to criminal penalties and civil fines up to $100,000.00, In addition the to the cost of compensation, damages as provided for in Section 3706 of the labor Code, interest and attorney's fees. CONSTRUCTION LENDING AGENCY, IF ANY: I hereby affirm that there is a construction lending agency for the performance of the work this permit is issued (Sec. 3097 (i) Civil Code). Lender's Name: ______________________ ,Lender's Address: _____________________ _ CONTRACTOR CERT/ Fl CAT/ON: The applicant certifies that all documents and plans clearly and accurately shaw all existing and proposed buildings, structures, access roads, and utilities/utility easements. All proposed modifications and/or additions ore clearly labeled on the site pion. Any potentially existing detail within these plans inconsistent with the site pion ore not approved for construction and may be required to be altered or removed. The city's approval of the application is based on the premise that the submitted documents and plans shaw the correct dimensions of; the property, buildings, structures and their setbacks from property lines and from one another; access roods/easements, and utilities. The existing ond proposed use of each building os stated is true and correct; all easements and other encumbrances to development have been accurately shown and labeled as well as all on-site grading/site preparation. All improvements existing on the property were completed In accordance with all regulations in existence at the time of their construction, unless otherwise noted. NAME (PRINT): _T_im_M_o_rt _____ SIGNATURE: __ ..;..>_-~_"_._-_· ___ DATE: 07/14/2022 Note: If the person signing above Is an authorized agent for the contractor provide a letter of authorization on contractor letterhead. (OPTION B): OWNER-BUILDER DECLARATION: I hereby affirm that I am exempt from Contractor's License Law for the following reason: D I, as owner of the property or my employees with wages as their sole compensation, will do the work and the structure is not intended or offered for sale (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and who does such work himself or through his own employees, provided that such improvements are not intended or offered for sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale). -OR- D I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and contracts for such projects with contractor(s) licensed pursuant to the Contractor's License Law). -OR- DI am exempt under Business and Professions Code Division 3, Chapter 9, Article 3 for this reason: AND, D FORM B-61 "Owner Builder Acknowledgement and Verification Form" is required for any permit issued to a property owner. By my signature below I acknowledge that, except for my personal residence in which I must have resided for at least one year prior to completion of the improvements covered by this permit, I cannot legally sell a structure that I have built as an owner-builder if it has not been constructed in its entirety by licensed contractors./ understand thatacopyof the applicable law, Section 7044of the Business and Professions Code, is available upon request when this application is submitted orat the following Web site: http:! /www.leginfo.ca.gov/calaw.html. OWNER CERT/Ff CAT/ON: The applicant certifies that all documents and plans clearly and accurately show oil existing and proposed buildings, structures, access roads, and utilities/utility easements. All proposed modifications and/or additions are clearly labeled on the site plan. Any potentially existing detail within these plans inconsistent with the site plan are not approved for construction and may be required to be altered or removed. The city's approval of the application is based on the premise that the submitted documents and plans shaw the correct dimensions of; the property, buildings, structures and their setbacks from property lines and from one another; access roads/easements, and utilities. The existing and proposed use of each building as stated is true and correct; all easements and other encumbrances to development hove been accurately shown and labeled as well os all on-site grading/site preparation. All improvements existing on the property were completed in accordance with all regulations in existence at the time of their construction, unless otherwise noted. NAME (PRINT}: _________ _ SIGN: __________ DATE: ______ _ Note: If the person signing above is an authorized agent for the property owner include form 8-62 signed by property owner. 1635 Faraday Ave Carlsbad, CA 92008 Ph: 442-339-2719 Email: Building@carlsbadca.gov 2 REV. 04/22 Building Permit Inspection History Finaled C city of Carlsbad Permit Type: Work Class: Status: Scheduled Date 09/27/2022 10/06/2022 10/13/2022 PERMIT INSPECTION HISTORY for (CBC2022-0227) BLDG-Commercial Tenant Improvement Closed -Finaled Actual Inspection Type Start Date 09/27/2022 BLDG-21 Underground/Underflo orPlumblng Checklist Item Application Date: 06/24/2022 Issue Date: 09/06/2022 Expiration Date: 06/26/2023 IVR Number: 41547 Inspection No. Inspection Status 192672-2022 Partial Pass COMMENTS Owner: BERDAN WHIPTAIL LLC Subdivision: CARLSBAD TCT NO 97-13-03 CB OAKS NOR Address: 2827 WHIPTAIL LOOP CARLSBAD, CA 92010 Primary Inspector Reinspection Inspection· Chris Renfro Reinspection Incomplete Passed BLDG-Building Deficiency Partial pass underground plumbing phase 2B Yes 10/06/2022 BLDG-11 193540-2022 Passed Tim Kersch Complete Foundatlon/Ftg/Plers (Rebar) Checklist Item COMMENTS Passed BLDG-Building Deficiency Yes 10/13/2022 BLDG-11 193783-2022 Partial Pass Chris Renfro Reinspection Incomplete Foundatlon/Ftg/Plers (Rebar) Checklist Item COMMENTS Passed BLDG-Building Deficiency Partial pass Yes 10/18/2022 10/18/2022 BLDG-11 194317-2022 Partial Pass Chris Renfro Reinspection Incomplete Foundatlon/Ftg/Plers (Rebar) Checklist Item BLDG-Building Deficiency COMMENTS Partial pass, see plans 11/09/2022 11 /09/2022 BLDG-21 196172-2022 Partial Pass Chris Renfro Underground/Underflo orPlumblng Checklist Item BLDG-Building Deficiency COMMENTS Partial pass underground plumbing phase 2B, double wall containment on inner, ok to backfill 11/23/2022 11 /23/2022 BLDG-21 197269-2022 Partial Pass Tim Kersch 12/12/2022 12/12/2022 Wednesday, June 5, 2024 Underground/Underflo or Plumbing Checklist Item BLDG-Building Deficiency COMMENTS Partial pass underground plumbing phase 2B, double wall containment on inner, ok to backfill Passed Yes Relnspection Incomplete Passed Yes Reinspection Incomplete Passed Yes Page 1 of 3 PERMIT INSPECTION HISTORY for {CBC2022-0227) Application Date: 06/24/2022 Owner: BERDAN WHIPTAIL LLC Permit Type: BLDG-Commercial Work Class: Tenant Improvement Issue Date: 09/06/2022 Subdivision: CARLSBAD TCT NO 97-13-03 CB Status: Closed -Finaled Expiration Date: 06/26/2023 IVR Number: 41547 OAKS NOR Address: 2827 WHIPTAIL LOOP CARLSBAD, CA 92010 Scheduled Date Actual Inspection Type Start Date Inspection No. Inspection Primary Inspector Relnspection Inspection 12/20/2022 12/28/2022 04/03/2023 06/13/2023 Status BLDG-11 Foundation/Ftg/Piers (Rebar) 198498-2022 Partial Pass Chris Renfro Checklist Item BLDG-Building Deficiency COMMENTS Partial pass, see plans SOG in manufacturing area. OK to pour BLDG-44 Rough/Ducts/Dampers 198688-2022 Partial Pass Chris Renfro Checklist Item BLDG-Building Deficiency COMMENTS Partial pass on supply ducts sealant only. OK to wrap 12/20/2022 BLDG-11 199265-2022 Partial Pass Chris Renfro Foundation/Ftg/Piers (Rebar) Checklist Item BLDG-Building Deficiency COMMENTS Partial pass, see plans Column footings in WFI tank room. OK to pour 12/28/2022 BLDG-11 199746-2022 Partial Pass Chris Renfro Foundation/Ftg/Piers (Rebar) Checklist Item BLDG-Building Deficiency COMMENTS Partial pass, see plans on patch back SOG WFI tank room. OK to pour BLDG-21 Underground/Underflo or Plumbing 199748-2022 Partial Pass Chris Renfro Checklist Item BLDG-Building Deficiency COMMENTS Partial pass underground plumbing phase 2B, for hand wash sink, ok to backfill 04/03/2023 BLDG-11 206882-2023 Cancelled Chris Renfro Foundatlon/Ftg/Piers (Rebar) Checklist Item BLDG-Building Deficiency NOTES Created By Becky Falk COMMENTS TEXT JEFF 619-240-6024 06/13/2023 BLDG-85 T-Bar, Ceiling 213952-2023 Cancelled Grids, Overhead Chris Renfro Wednesday, June 5, 2024 Reinspection Incomplete Passed Yes Reinspection Incomplete Passed Yes Reinspection Incomplete Passed Yes Reinspection Incomplete Passed Yes Re Inspection Incomplete Passed Yes Reinspectlon Incomplete Passed No Created Date 03/31/2023 Reinspection Incomplete Page 2 of 3 Permit Type: Work Class: Status: Scheduled Date 05/08/2024 PERMIT INSPECTION HISTORY for (CBC2022-0227) BLDG-Commercial Application Date: 06/24/2022 Owner: BERDAN WHIPTAIL LLC Tenant Improvement Issue Date: 09/06/2022 Subdivision: CARLSBAD TCT NO 97-13-03 CB Closed -Finaled Expiration Date: IVR Number: Actual Inspection Type Start Date Inspection No. Checklist Item BLDG-Building Deficiency BLDG-14 Frame-Steel-Bolting-Welding (Decks) BLDG-24 Rough-Topout BLDG-34 Rough Electrical BLDG-44 Rough-Ducts-Dampers COMMENTS TEXT OAKS NOR 06/26/2023 Address: 2827 WHIPTAIL LOOP 41547 CARLSBAD, CA 92010 Inspection Primary Inspector Reinspection Inspection Status Passed No No No No No Created Date NOTES Created By Angie Teanio 858-822-9732 Francisco 06/12/2023 05/08/2024 BLDG-Final Inspection Checklist Item 247761-2024 COMMENTS BLDG-Building Deficiency BLDG-Plumbing Final BLDG-Mechanical Final BLDG-Structural Final BLDG-Electrical Final BLDG-SW-Inspection Checklist Item 247760-2024 COMMENTS Are erosion control BMPs functioning properly? Are perimeter control BMPs maintained? Is the entrance stabilized to prevent tracking? Have sediments been tracked on to the street? Has trash/debris accumulated throughout the site? Are portable restrooms properly positioned? Do portable restrooms have secondary containment? Passed Chris Renfro Complete Passed Yes Yes Yes Yes Yes Pas sed Chris Renfro Complete Passed Yes Yes Yes Yes Yes Yes Yes Wednesday, June 5, 2024 Page 3 of 3 August 16, 2022 City of Carlsbad Community Development Department -Building Division 1635 Faraday Ave. Carlsbad. CA 92008 Plan Review: TI Millipore Sigma 2B Address: 2827 Whiptail Loop, Carlsbad, CA Applicant Name: Tim Seaman Applicant Email: tim@championpermits.com OCCUPANCY AND BUILDING SUMMARY: Occupancy Groups: B/S-l/F-1 Occupant Load: NIA Type of Construction: V-B Sprinklers: Yes Stories: l + Mezzanine Area of Work (sq. ft.): 25,000 sq. ft. The plans have been reviewed for coordination with the permit application. Valuation: Confirmed Scope of Work: Confirmed Floor Area: Confirmed Attn: Building & Safety Department, JTrueNorth COMPLIANCE SERVICES City of Carlsbad -FINAL REVIEW City Pennit No: CBC2022-0227 Ttue North No.: 22-018-053 True North Compliance Services, Inc. has completed the final review of the following documents for the project referenced above on behalf of the City of Carlsbad: I. 2. Drawings: One (1) copy dated August 5, 2022, by cpc architects. Structural Calculations: One (I) copy dated August 5, 2022, by miyamoto. The 2019 California Building, Mechanical, Plumbing, and Electrical Codes (i.e., 2018 IBC, UMC, UPC, and 2017 NEC, as amended by the State of California), 2019 California Green Building Standards Code, 2019 California Existing Building Code, and 2019 California Energy Code, as applicable, were used as the basis of our review. Please note that our review has been completed and we have no further comments. We have enclosed the above noted documents bearing our review stamps for your use. Please call if you have any questions or if we can be of further assistance. Sincerely, True North Compliance Services Review By: Amar Hasenin -Plan Review Engineer True North Compliance Services, Inc. 3939 Atlantic Avenue Suite 224, Long Beach, CA 90807 T / 562. 733.8030 • Structural Calculations for Millipore Sigma COMO -PH28 2827 Whiptail Loop W. Carlsbad, CA 9201 0 Recheck Submittal Ml2210066.00 August 5, 2022 True North Compliance Services, Inc. I PLAN REVIEW APPROVAL I THESE PLANS/DOCUMENTS HAVE BEEN REVIEWED FOR COMPLIANCE w1•H THE APPLICABLE CALIFORNIA BUILDING ST ANDAROS CODE:S AS ADOPTED BY THE STATE OF CALIFORNIA AND AMENDED BY THE JURISDICTIOt,; PLAN REVIEW ACCEPTANCE OF DOCUMENTS DOES NOT AJTHORIZE CONS UCTION TO PROCEED IN VI TION OF AAVF E . TATE. NOR LOCAL R LATI av C!P~~-_-_:-__ OATE .............. ......,,i---- HIS SE OF THE PLANS ANO SPECIFICATIONS MUST BE KEPT ON THE JOB SITE AT ALL TIMES AND IT IS UNLAWFUL TO MAKE ANY CHANGES OR ALTERATIONS WITHOUT PERMISSION FROM THE CITY OCCUPANCY OF STRUCTURE($) IS NOT PERMITTED UNTIL FINAi. APPROVAL IS GRANTED BY ALL APPLICABLE DEPARTMENTS. C 2019 Miyamoto lntematlonat, Inc., All rights , .. OMld n,11 document • or any part thereof must not be 'IPf'Oduced fn any form without the Written perrnissb1 of Miyamoto lntematlonal, Inc. 3 -~ en ., ::, 9 "' cc 0 3 0 • Millipore Sigma PH2B Ml2210066.00 . 4 TABLE OF CONTENTS 1. Pipe Support Platform (Comment Sl) ..................... 1 2. Pump Calculations (Comment S2) ......................... 16 3. Process Pad Calculations (Comment S3) ................. 19 4. Chiller Anchorage Calculations (Comment S4) ......... 38 5. Guardrail Calculations (Comment S8) ................... .47 6. Stair Calculations (Comment S9) .......................... 48 [ C © 2021 Miyamoto International, Inc. m1yamoto . ProJect:_,__M_SP_h_2_B _______________ Sheet No: ---- 1 of 49 Project No: _M_12_2_1o_o_s_s _______ Cale. By: _M_J1 ___ Date: ___ _ PIPE SUPPORT PLATFORM (COMMENT S1 ) TYP 1/4 4 PL 1 /2'x5'x5" 1" TYP. ) 5/8" DIA. HEADED ruDs, 2 112· a: \1BED, TYP. j::: ~ 1/2' PL 10' SQ ~ Chk. By: ____ Date: ___ _ 2000LBS, MAX TOTAL HSS4x4x5/16 COL TYP 1/4" STIFFENER PL TYP (4 TOTAL) '--COLUMN TO BEAM PER~ S~B STEEL BEAM PER PLAN ! W6x9 PER PLAN 1/4 8'-0" MAX STEEL BEAM PER PLAN --~ 3/8' STIFFENER PL EA SIDE 1/4 8 ------0 PIPE SUPPORT AT PLATFORM 1/2" = 1'-0" m1yamoto: Project: M ~P\.\ t,e, Project No: MI t 2.. I D .:)(,, <o • DC Sheei~~9 __ • __ Calc. By: f'-'\j \ Date: ___ _ Chk. By: ____ Date: ___ _ p ,P>1: PLA1Fo~"" (c.~""""'~"-"" Sij 'Jei"A,~ 8l~<o-oo 8 -Pvlt.C> "TA&.~ 15.4-l '(.~1 .,;- cc! .. t. s Jl.~1.c 0 If '1,o C>O -~(?~ /5.~,\ \,Jl" oF ""'(."(. tS <.<-t~~o Wt" O •~ jJ(..,,<Hf-r:,Ar" J -1/) i, :r ~ ..,, .... J -I ~ ~ g, r,...1~T .PA~, of f4,.-"'~)' sc,~. Fti<..1-rue ~~;·/\\? ~e-c;,Cw\J PE"'-CJ.-\ \~ (.~( 1.11 14 ) 1 -----.. I. Q At..Lo---A~'-.C Dl..1H Pel. rz.rz-I • {),O'l.~h..~~ "o.(Yt';"(~.t.s)(n ") ,-z...cas' ,·. o k. "S~E ANU-\Oa.., OES1~r,JG'fl ~of.t. AIV<.k..:l.(.A(.ie Or Pn~T ~ C.O"'-'<:.Q.l?i"t: o/ ME"t'AL OEC."'- 3 of 49 m1yamoto. Project: Millipore Sigma Phase 2 Project No: Ml2110296.00 Cale. By: MJI Sheet No. Date: 8/5/22 Chk. By: Date: Equipment Anchorage Forces (Floor-or Roof-Mounted): ASCE 7-16 Pipe Support G.6 x 3.2 -> 3. 7 Notes • References below are for ASCE 7-1 6 except as noted • Values shown are at Strength Design or LRFD level and may be reduced for ASD Seismic Desig11 Force Variables (Sec. 13.1) Component Amplification Factor Component Response Modification Factor Spectral Response Acceleration at shon periods Component lmponance Factor Height in Structure of Point of Attachment of Component Average Roof Height of Structure Overstrength Factor Component Operating Weight Anchored to Concrete Eq11ipme11t Geometry a11d A11chorage l11formatio11 EB 0 a Longitudinal Elevation Center of gravity Anchor point, TYP Transverse Elevation Horizo11tal a11d Vertical Seismic Desig11 Forces 0.4a PS osWp ( z) F = ( ) 1+2-= p R h _f!_ I P F "m•• = 0.3S051,,W" = ap = RP= Sos= IP= z = h = n = 2.50 (Tables 13.5-1 or I 3.6-1) 6.00 (Tables 13.5-1 or 13.6-1) 0. 743 g (Eq. I I .4-3) 1.00 (Sec 13.1.3) 18.0 ft 18.0 ft 2.0 2,000 lbs, WP= 2000 lbs Yes Longitudinal Dimension Transverse Dimension a = 384.0 in b = 105.0 in c = 80.5 in Height to Center of Gravity Number of Anchors. Trans. Side Number of Anchors, Long. Side Total Number of Anchor Points nl = 2 (figure: nl = 2) n2 = 2 (figure: n2 = 3) N = nl x n2 = 4 Anchorage Pattern's Moment of lnenia About Transverse Axis Anchorage Pattern's Moment of lnenia / >'>' = : b2 = 11025 in2 About Longitudinal Axis Critical Loading Angle 0.372 WP 0.223 WP 1.189 WP ( / •a ) 0 = tan _, I=• h = (Eq. 13.3-1) (Eq. 13.3-3) (Eq. I 3.3-2) 0.267 radians 15.3 degrees Govcrnin horizontal seismic desi force coefficient = FORCE IS AT OVERSTRENGTH LEVEL FOR CONC ANCHORAGE Horizontal Seismic Design Force w/ 11 F Vertical Seismic Design Force w/ 11 F v= 0.2SnsW (Sec 13.3.1) Miyamoto International MJI IJ'l X ~ X ~ en en ::r: Pipe Brace Typical Frame Layout with Member Sizes 4 of 49 FRAMES PROVIDE ~FIXITY IN BOTH .,, N4 DIRECTIONS IJ'l X ~ X ~ en en :r: PINNED BASE APPROACH SK-1 Aug 05, 2022 Ph2A Pipe Support.r3d 5 of 49 lllRISA A NFMFTSC:HFK C:OMPANY Company : Miyamoto International Designer : MJI Job Number Model Name : Pipe Brace Checked By : ___ _ Node Coordinates Label X rttl Y fftl z [ftl Detach From Diaphragm 1 N1 0 0 0 2 N2 0 9.5 0 3 N3 8 0 0 4 N4 8 9.5 0 Node Boundary Conditions Node Label X fk/inl Y [k/inl Z fk/inl 1 N1 Reaction Reaction Reaction 2 N3 Reaction Reaction Reaction 3 N2 Reaction 4 N4 Reaction Hot Rolled Steel Section Sets Label Sha e Material Desi Area in2 I in• lzz in• J in• HR1 W10X33 9. 71 36 .6 171 0.583 Member Primary Data Label I Node J Node Rotate(dea) Section/Shape Tyoe Desian List Material Desian Rule 1 M1 N1 N2 HSS4X4X5 Column Tube A500 Gr.C RECT Typical 2 M2 N3 N4 HSS4X4X5 Column Tube A500 Gr.C RECT TYoical 3 M3 N2 N4 180 W6X9 Column Wide Flanae A36 Gr.36 Typical Node Loads and Enforced Displacements (BLC 2 : EQ) Node Label L, D, M Direction Ma nitude k*s2/ft, k*s2*ft N2 L X Member Distributed Loads (BLC 1 : Dead) Member Label Direction Start Ma nitude k/ft, F ksf, k-ft/ft End Ma nitude k/ft, F, ksf k-ft/ft Start Location End Location 1 M3 Y -0.25 -0.25 0 %100 A/SC 15TH (360-16): LRFD Member Steel Code Checks LC Member Shape UC Max Locfftl Shear UC Locfftl Dir Dhi*Pncfk ohi*Pntrk Dhi*Mnwfk-ftl ohi*Mnzzfk-ftl Cb Eon 1 1 M1 HSS4X4X! 0.03 9.5 0.001 9.5 V 120.469 184.5 20.963 20.963 1.667 H1-1b 2 1 M2 HSS4X4X! 0.03 9.5 0.001 9.5 V 120.469 184.5 20.963 20.963 1.667 H1-1b 3 1 M3 W6X9 0.089 4 0.046 8 V 48.084 86.832 4.644 16.423 1.198 H1-1b 4 2 M1 HSS4X4X5 0.171 9.5 0.008 9.5 V 120.469 184.5 20.963 20.963 1.667 H1-1b 5 2 M2 HSS4X4X5 0.172 9.5 0.008 9.5 V 120.469 184.5 20.963 20.963 1.667 H1-1b 6 2 M3 W6X9 0.214 0 0.041 8 V 48.084 86.832 4.644 16.821 2.273 H1-1b 7 3 M1 HSS4X4X' 0.03 9.5 0.001 9.5 V 120.469 184.5 20.963 20.963 1.667 H1-1 b 8 3 M2 HSS4X4X! 0.03 9.5 0.001 9.5 V 120.469 184.5 20.963 20.963 1.667 H1-1b 9 3 M3 W6X9 0.089 4 0.046 8 V 48.084 86.832 4.644 16.423 1.198 H1-1b 10 4 M1 HSS4X4X! 0.043 9.5 0.002 9.5 V 120.469 184.5 20.963 20.963 1.667 H1-1b 11 4 M2 HSS4X4XE 0.043 9.5 0.002 9.5 y 120.469 184.5 20.963 20.963 1.667 H1-1b 12 4 M3 W6X9 0.124 4 0.065 8 V 48.084 86.832 4.644 16.423 1.198 H1-1b 13 5 M1 HSS4X4XE 0.036 9.5 0.001 9.5 y 120.469 184.5 20.963 20.963 1.667 H1-1b 14 5 M2 HSS4X4X' 0.036 9.5 0.001 9.5 V 120.469 184.5 20.963 20.963 1.667 H1-1b RISA-3D Version 19 [ Ph2A Pipe Support.r3d ) Page 1 6 of 49 IIIRISA A NFMFTSr.HFK r.OMPANY Company : Miyamoto International Designer : MJI Job Number : Model Name : Pipe Brace Checked By : ___ _ A/SC 15TH (360-16): LRFD Member Steel Code Checks (Continued) LC Member Shape UC Max Locfftl Shear UC Loclftl Dir phi*Pnclk phi*Pnt[k phi*Mnwlk-ftl phi*Mnzz[k-ftl Cb Eqn 15 5 M3 W6X9 0.107 4 0.055 8 V 48.084 86.832 4.644 16.423 1.198 H1-1b 16 6 M1 HSS4X4X5 0.143 9.5 0.006 9.5 y 120.469 184.5 20.963 20.963 1.667 H1-1b 17 6 M2 HSS4X4X5 0.214 9.5 0.009 9.5 V 120.469 184.5 20.963 20.963 1.667 H1-1b 18 6 M3 W6X9 0.26 8 0.097 8 y 48.084 86.832 4.644 16.821 1.877 H1-1b 19 7 M1 HSS4X4X5 0.214 9.5 0.009 9.5 y 120.469 184.5 20.963 20.963 1.667 H1-1b 20 7 M2 HSS4X4X5 0.143 9.5 0.006 9.5 V 120.469 184.5 20.963 20.963 1.667 H1 -1b 21 7 M3 W6X9 0.258 0 0.097 0 y 48.084 86.832 4.644 16.821 1.878 H1-1b 22 8 M1 HSS4X4X5 0.149 9.5 0.007 9.5 V 120.469 184.5 20.963 20.963 1.667 H1-1b 23 8 M2 HSS4X4X5 0.203 9.5 0.009 9.5 y 120.469 184.5 20.963 20.963 1.667 H1-1b 24 8 M3 W6X9 0.248 8 0.083 8 V 48.084 86.832 4.644 16.821 1.95 H1-1b 25 9 M1 HSS4X4X5 0.203 9.5 0.009 9.5 V 120.469 184.5 20.963 20.963 1.667 H1-1b 26 9 M2 HSS4X4X5 0.149 9.5 0.007 9.5 V 120.469 184.5 20.963 20.963 1.667 H1-1b 27 9 M3 W6X9 0.246 0 0.083 0 V 48.084 86.832 4.644 16.821 1.951 H1-1b 28 10 M1 HSS4X4X5 0.38 9.5 0.017 9.5 y 120.469 184.5 20.963 20.963 1.667 H1-1b 29 10 M2 HSS4X4X5 0.323 9.5 0.014 9.5 V 120.469 184.5 20.963 20.963 1.667 H1-1b 30 10 M3 W6X9 0.463 0 0.125 0 y 48.084 86.832 4.644 16.821 2.089 H1-1b Node Displacements LC Node Label X [in] Y [in] Z [in] X Rotation fradl Y Rotation fradl Z Rotation fradl 1 1 N1 0 0 0 0 0 5.884e-4 2 1 N2 0 -0.001 0 0 0 -1 .186e-3 3 1 N3 0 0 0 0 0 -5.884e-4 4 1 N4 0 -0.001 0 0 0 1.186e-3 5 2 N1 0 0 0 0 0 -1 .328e-2 6 2 N2 1.083 0.001 0 0 0 -1.89e-3 7 2 N3 0 0 0 0 0 -1.327e-2 8 2 N4 1.082 -0.001 0 0 0 -1.888e-3 9 3 N1 0 0 0 0 0 5.884e-4 10 3 N2 0 -0.001 0 0 0 -1.186e-3 11 3 N3 0 0 0 0 0 -5.884e-4 12 3 N4 0 -0.001 0 0 0 1.186e-3 13 4 N1 0 0 0 0 0 8.237e-4 14 4 N2 0 -0.002 0 0 0 -1.66e-3 15 4 N3 0 0 0 0 0 -8.237e-4 16 4 N4 0 -0.002 0 0 0 1.66e-3 17 5 N1 0 0 0 0 0 7.061e-4 18 5 N2 0 -0.001 0 0 0 -1.423e-3 19 5 N3 0 0 0 0 0 -7.061e-4 20 5 N4 0 -0.001 0 0 0 1.423e-3 21 6 N1 0 0 0 0 0 -1.299e-2 22 6 N2 1.117 0 0 0 0 -3.373e-3 23 6 N3 0 0 0 0 0 -1.44e-2 24 6 N4 1.116 -0.003 0 0 0 -5.251e-4 25 7 N1 0 0 0 0 0 1.44e-2 26 7 N2 -1.117 -0.003 0 0 0 5.272e-4 27 7 N3 0 0 0 0 0 1.298e-2 28 7 N4 -1 .117 0 0 0 0 3.371e-3 29 8 N1 0 0 0 0 0 -1.306e-2 30 8 N2 1.108 0 0 0 0 -3.002e-3 31 8 N3 0 0 0 0 0 -1.411e-2 32 8 N4 1.108 -0.002 0 0 0 -8.656e-4 33 9 N1 0 0 0 0 0 1.412e-2 34 9 N2 -1.108 -0.002 0 0 0 8.677e-4 35 9 N3 0 0 0 0 0 1.305e-2 36 9 N4 -1.108 0 0 0 0 3.e-3 RISA-3O Version 19 [ Ph2A Pipe Support.r3d ] Page 2 7 of 49 IIIRISA A NFMFTSCHFK COMPANY Company : Miyamoto International Designer : MJI Job Number Model Name : Pipe Brace Checked By : ___ _ Node Displacements (Continued) LC Node Label X [in] 37 10 N1 0 0 0 0 0 2.771e-2 38 10 N2 -2.217 -0.003 0 0 0 2.803e-3 39 10 N3 0 0 0 0 0 2.664e-2 40 10 N4 -2.215 0.001 0 0 0 4.933e-3 Y linl Z linl X Rotation lradl Y Rotation lradl Z Rotation lradl Warning Log No Data to Print... RISA-3D Version 19 [ Ph2A Pipe Support.r3d ] Page 3 8 of 49 SIMPSON Anchor Designer™ Software Company: Miyamoto International I Date: I 8/4/2022 Strong-Tie Version 3.0.7808.0 <Pl 1.Project information Customer company: Customer contact name: Customer e-mail: Comment: 2. Input Data & Anchor Parameters General Design method:ACI 318-14 Units: Imperial units Anchor Information: Anchor type: Torque controlled expansion anchor Material: Carbon Steel Diameter (inch): 0.500 Nominal Embedment depth (inch): 2.750 Effective Embedment depth, her (inch): 2.250 Code report: ICC-ES ESR-3037 Anchor category: 1 Anchor ductility: Yes hm;n (inch): 3.25 Cao (inch): 4.00 Cm;n (inch): 4.75 Sm;n (inch): 8.00 Recommended Anchor Engineer: MJI Project: MSPh2B Pipe Support Anchorage Address: Phone: E-mail: ---- Project description: Location: Fastening description: Base Material Concrete: Sand-lightweight concrete Topside of steel deck Concrete thickness, h (inch): 3.50 State: Cracked Compressive strength, f c (psi): 4000 4-'c,v: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No Base Plate I Page: I 1/6 Length x Width x Thickness (inch): 10.00 x 10.00 x 0.25 Yield stress: 36000 psi Profile type/size: HSS4X4X5/16 Anchor Name: Strong-Bolt® 2 -1/2"0 CS Strong-Bolt 2, hnom:2.75" (70mm) Code Report: ICC-ES ESR-3037 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com SIMPSON Stron~Tie Anchor Designer TM Software Version 3.0.7808.0 Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17 .2.3.4.2 not applicable Ductility section for shear: 17.2.3.5.2 not applicable Oo factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes Strength level loads: Nua [lb): 906 Vuax [lb]: 726 Vuay [lb): 0 Mux [ft-lb]: 0 Muy [ft-lb): 0 Muz [ft-lb): 0 <Figure 1> 0 ft-lb X 7261b Oft-lb z 9 of 49 Company: Miyamoto International I Date: I 8/4/2022 Engineer: MJI I Page: I 216 Project: MSPh28 Pipe Support Anchorage Address: Phone: E-mail: /MAX UPLIFT WITH 2.0E -0.9D 9061( Oft-lb y Olb Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com SIMPSON Strong;-Tie <Figure 2> Anchor Designer™ Software Version 3.0.7808.0 0 0 0 0 °' °' 00 Company: Engineer: Project: Address: Phone: E-mail: ":J,UU 9.00 10.00 Miyamoto International MJI MSPh2B Pipe Support Anchorage 00 0 0 8 0 0 Lr) 10 of 49 I Date: I 8/4/2022 I Page: I 3/6 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com 11 of 49 Company: Miyamoto International I Date: I 8/4/2022 Engineer: MJI I Page: I 4/6 SIMPSON Strong-Tie Anchor Designer™ Software Project: MSPh2B Pipe Support Anchorage Version 3.0.7808.0 Address: Phone: E-mail: 3. Resulting Anchor forces Anchor Tension load, Nua (lb) Shear load x, Vuax (lb) 226.5 2 2265 3 2265 4 226.5 Sum 906.0 Maximum concrete compression strain (%.): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 906 Resultant compression force (lb): 0 181 .5 181 .5 181 .5 181 .5 726.0 Eccentricity of resultant tension forces in x-axis, e'Nx (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00 4. Steel Strength of Anchor in Tension {Sec. 17.4.1) N.,, (lb) ¢ ¢N•• (lb) 12100 0.75 9075 5. Concrete Breakout Strength of Anchor in Tension {Sec. 17.4.2) Nb = kck✓fcho11•5 (Eq. 17.4.2.2a) kc ;.,, f c (psi) h., (in) 17.0 0.68 4000 2.250 2468 0.75¢Nc1,g =0.75¢ (ANcl ANco) 'Poc.N 'Pe<1.N 'Pc.N'Pcp,NNb (Sec. 17.3.1 & Eq. 17.4.2.1 b) ANc (in2) ANco (in2) Ca.min (in) 'Poc,N 'Pe<1,N 'Pc,N 182.25 45.56 5.00 1.000 1.000 1.00 6. Punout Strength of Anchor in Tension {Sec. 17.4.3) 0.75¢Npn = 0.75¢'f'c.PA.Np(fcl2,500)" (Sec. 17.3.1, Eq. 17.4.3.1 & Code Report) 'Pc.P .-le Np (lb) f c (psi) n ¢ ·- Shear load y, V uay (lb) 0.0 0.0 0.0 0.0 0.0 <Figure 3> 0 4 0 1 'f/cp,N 1.000 2468 0.75¢Npn (lb) 1.0 0.68 2870 4000 0.50 0.65 1203 Shear load combined, ✓(Vuax)2+(Vuay)2 (lb) 181.5 181 .5 181 .5 181.5 726.0 0 2 + 0 2 0.65 4812 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com SIMPSON Company: Miyamoto International Engineer: MJI Strong-Tie Anchor Designer™ Software Version 3.0.7808.0 Project: MSPh2B Pipe Support Anchorage • Address: Phone: E-mail: 8, Steel Strength of Anchor in Shear (Sec. 17,5,1 l V .. (lb) rpg,..,, ,t, rpg,..,,,t,V .. (lb) 6510 1.0 0.65 4232 9. Concrete Breakout Strength of Anchor in Shear (Sec, 17,5,2) Shear perpendicular to edge in x-direction: Vb,= minj7(/e/ de)0-2✓d.k✓fcCa11•5; 9k✓fcCa11•51 (Eq. 17.5.2.2a & Eq. 17.5.2.2b) 1. (in) d. (in) k f c (psi) c.1 (in) Vb> (lb) 2.25 0.500 0.68 4000 5.00 3215 ,t,Vcbgx = r/1 (Ave/ Avoo) 'f'ec,v'f'o<1,v'f'c,v'f'h,VVb, (Sec. 17.3.1 & Eq. 17.5.2.1 b) Avoo (in2) 'f'c,V 80.50 112.50 1.000 1.000 1.000 1.464 10, Concrete Pryout Strength of Anchor in Shear {Sec. 17.5.3) (!Vcpg = ,pkcpNcJ,g = ,pkcp(ANcl ANoo)'f'ec,N'f'o<1,N'f'c,N'f'cp,NNb(Sec. 17.3.1 & Eq. 17.5.3.1b) kcp 1.0 182.25 45.56 1.000 11 Results Interaction of Tensile and Shear Forces {Sec. 11.s.1 Tension Factored Load, Nuo (lb) Steel 227 Concrete breakout Pullout 906 227 Shear Factored Load, Vue (lb) Steel 182 T Concrete breakout x+ 363 Pryout 726 Interaction check N.,./(!Nn Sec. 17.6 .. 1 0.19 V.,./(!Vn 0.00 'f'c,N 1.000 1.000 Design Strength, 0Nn (lb) 9075 4812 1203 Design Strength, 0Vn (lb) 4232 2358 6909 Combined Ratio 18.8% 'f'cp,N 1.000 Ratio 0.02 0.19 0.19 Ratio 0.04 0.15 0.11 1/2"0 CS Strong-Bolt 2, hnom:2.75" (70mm) meets the selected design criteria. 3215 0.70 2468 Permissible 1.0 12 of 49 I Date: I 8/4/2022 I Page: I 5/6 ,t,Vcbgx (lb) 2358 ,t,Vcpg (lb) 0.70 6909 Status Pass Pass (Governs) Pass Status Pass Pass (Governs) Pass Status Pass Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plauslblllty. Sirnp~on Strong Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com SIMPSON Strong-Tie • 12. warnings Anchor Designer™ Software Version 3.0.7808.0 Company: Engineer: Project: Address: Phone: E-mail: 13 of 49 Miyamoto International I Date: I 8/4/2022 MJI I Page: I 6/6 MSPh2B Pipe Support Anchorage --·--·- -Per designer input, the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.4.2 for tension need not be satisfied -designer to verify. -Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied -designer to verify. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc 5956 W. Las Posltas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.slrongtie.com Steel Beam LIC#: KW-06018304, Build:20.22.6.12 MIYAMOTO DESCRIPTION: PH2B Pipe Platform Support Bea CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16 Material Pro erties Analysis Method l oad Resistance Factor Design CHECK OF W16x31 SUPPORTING END OF FRAMES, BEAM IS BRACED AT POST LOCATIONS 14 of 49 Project File: MSPH2.ec6 (c) ENERCALC INC 1983-2022 Beam Bracing : Beam bracing is defined as a set spacing over all spans 50.0 ksi 29,000.0 ksi Bending Axis : Major Axis Bending Unbraced Len ths First Brace starts at 8.0 ft from Left-Most support Regular spacing of lateral supports on length of beam = 8.0 ft ,v,rt;~, Leg Dowe 0(1 .0) E 0 .8820) W16x31 Span = 32.0 ft 0(1.0) E 0.8820) A lied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load(s) for Span Number 1 Point Load : D = 1.0, E = 0.8820 k@ 8.0 ft, (Pipe Support) Point Load : D = 1.0, E = 0.8820 k@ 16.0 ft, (Pipe Support) Point Load : D = 1.0, E = 0.8820 k @ 24.0 ft, (Pipe Support) DESIGN SUMMARY !Maximum Bending Stress Ratio = I Section used for this span Mu : Applied 0.212: 1 W16x31 38.086 k-ft 179.842 k-ft +1.20D+E Maximum Shear Stress Ratio = Section used for this span Vu: Applied Mn • Phi : Allowable Load Combination Span # where maximum occurs Maximum Deflection Span# 1 Max Downward Transient Deflection 0.228 in Ratio = Max Upward Transient Deflection 0.000 in Ratio = Max Downward Total Deflection 0.486 in Ratio= I __ Max Upward Total Deflection 0.000 in Ratio= Maximum Forces & Stresses for Load Combinations 1,682 0 790 0 Vn * Phi : Allowable Load Combination Location of maximum on span Span # where maximum occurs >=360 <360 >=240. <240.0 Span: 1 : E Only Span: 1 : +D+0. ?OE Load Combination Max Stress Ratios Summary of Moment Values Segment Length Span # +1.40D Dsgn. L = 7.95 ft Dsgn. L = 8.05 ft Dsgn. L = 7.95 ft Dsgn. L = 8.05 ft +1.20D Dsgn. L = 7.95 ft Dsgn. L = 8.05 ft Dsgn. L = 7.95 ft Dsgn. L = 8.05 ft +0.90D Dsgn. L = 7.95 ft Dsgn. L = 8.05 ft 1 1 1 1 M V max Mu + max Mu - 0.103 0.021 0.156 0.019 0.155 0.008 0.104 0.021 0.088 0.018 0.134 0.016 0.133 0.007 0.089 0.018 0.066 0.014 0.100 0.012 20.86 27.97 27.97 21.02 17.88 23.97 23.97 18.02 13.41 17.98 20.86 21 .02 17.88 18.02 13.41 Mu Max Mnx Phi•Mnx Cb Rm 20.86 225.00 202.50 1.65 1.00 27.97 199.10 179.19 1.10 1.00 27.97 199.87 179.89 1.10 1.00 21.02 225.00 202.50 1.63 1.00 17.88 225.00 202.50 1.65 1.00 23.97 199.10 179.19 1.10 1.00 23.97 199.87 179.89 1.10 1.00 18.02 225.00 202.50 1.63 1.00 13.41 225.00 202.50 1.65 1.00 17.98 199.10 179.19 1.10 1.00 Design OK 0.028 : 1 W16x31 3.720 k 131.175 k +1.20D+E 0.000 ft Span# 1 Summary of Shear Values VuMax Vnx Phi•vnx 2.80 131 .18 131.18 2.45 131.18 131.18 1.05 131.18 131.18 2.80 131.18 131.18 2.40 131.18 131 .18 2.10 131.18 131 .18 0.90 131.18 131.18 2.40 131.18 131.18 1.80 131 .18 131.18 1.58 131 .18 131.18 15 of 49 I Steel Beam Project File: MSPH2.ec6 LIC#: KW-06018304, Build:20.22.6.12 MIYAMOTO INTERNATIONAL INC (c) ENERCALC INC 1983-2022 DESCRIPTION: PH2B Pipe Platform Support Beam Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V max Mu + max Mu • Mu Max Mnx Phi*Mnx Cb Rm VuMax Vnx Phi*Vnx Dsgn. L = 7.95 ft 1 0.100 0.005 17.98 13.52 17.98 199.87 179.89 1.10 1.00 0.67 131 .18 131.18 Dsgn. L = 8.05 ft 1 0.067 0.014 13.52 13.52 225.00 202.50 1.63 1.00 1.80 131 .18 131.18 +1 .20D+E Dsgn. L = 7.95 ft 0.140 0.028 28.41 28.41 225.00 202.50 1.66 1.00 3.72 131 .18 131.18 Dsgn. L = 8.05 ft 0.212 0.026 38.09 28.41 38.09 199.82 179.84 1.11 1.00 3.42 131 .18 131.18 Dsgn. L = 7 .95 ft 0.211 0.010 38.09 28.63 38.09 200.60 180.54 1.10 1.00 1.34 131 .18 131.18 Dsgn. L = 8.05 ft 0.141 0.028 28.63 28.63 225.00 202.50 1.64 1.00 3.72 131 .18 131.18 +0.90D+E Dsgn. L = 7.95 ft 1 0.118 0.024 23.94 23.94 225.00 202.50 1.66 1.00 3.12 131 .18 131.18 Dsgn. L = 8.05 ft 1 0.178 0.022 32.09 23.94 32.09 200.01 180.00 1.111.00 2.90 131 .18 131 .18 Dsgn. L = 7.95 ft 1 0.178 0.008 32.09 24.12 32.09 200.60 180.54 1.10 1.00 1.11 131 .18 131.18 Dsgn. L = 8.05 ft 1 0.119 0.024 24.12 24.12 225.00 202.50 1.65 1.00 3.12 131 .18 131 .18 Overall Maximum Deflections Load Combination Span Max."·" Defl Location in Span Load Combination Max. "+" Defl Location in Span +D+0.70E 0.4863 16.091 0.0000 0.000 Vertical Reactions Support notation : Far left is #· Values in KIPS Load Combination Overall MAXimum Overall MINimum D Only +0.60D +D+0.70E +D+0.5250E +0.60D+0.70E E Only Support 1 2.923 1.198 1.997 1.198 2.923 2.692 2.124 1.323 Support 2 2.923 1.198 1.997 1.198 2.923 2.692 2.124 1.323 m1yamoto. ProJect: _..._M_S_P_h_2_8 ___... ______________ Sheet No: 16 of 49 Project No: _M_12_2_10_0_66 _______ Cale. By: PUMP ANCHORAGE (COMMENT S2) (6) 3/8" DIA HIL Tl 'KB-TZ2"ANCHORS (3 PER SIDE). EMBED 2" ~EVE ' 11 L:.I • I \_"' '""""' "'"""' PAD PER @ 2 ® ~~~p ANCHORAGE Serles e•1510 6G Base Mounted End Suction Pump •OIIM M ~ ~•u "' -~ . -~ --"' ·-"\."ntAMI'. ,.., ,. . .. .. "' . ' .. -, ., f"u, ,,_ l•!'1 -· 1111., .~ "'' '"' "' ,., . .. .. "' 11,,, . ' .. .. .. .,. tl.Ul '"" .,., ... .. 1:5) "" .. , ◄'Iii *' . . "" .. "' . .. IH ., .. , tt•U ••JJ•, •tt1 -· .... , ~-. ,., , . ··•:, ·-· .. , . . .,, .. ,,, . .. .. .. ... ri.u1 1111'1 J41t, ..., 1m•1 .... .... , '* "'" ""' . . . . .. "' . ' .. .. ., 111)1 . .. ""' ,1,1,i .., ,M .. ~ ,.., m,, 1--w., . !✓ .. ... =~ .. ... -· .. , . . , .. r, . . ,., . . ~--, ••· \l~l) ·-.. ... , ... ,., ... , , .. •m _,, " . .. .. "' . .. .. .. .. , ,.,,, , ... ... , .... 11116, '"" ,,,, 111,, 1'111 1m .. ~" . . V> ., ,,, . .. . .. ... """ .. ~ tt1•, -· ,,,., -I,~, ""' '"' .. , . .. . . ., ... ... .. .. " -· ""' ,,~ ,.it, -,, .. -"" , .. .. ,, ~. ~· b,,... .. .,, " n, ... ,.. .. .. " ""' ""' ..,,, .... ,12001 ... "'' •* .. , j,Slj 1oi-._.ll I!.. I>,•• H " a, ,n, :.: " .,, " ·-·-~, -· ... , "" .. IMUl '" ~" .K .. ,,. . n, .. . uu ~. .. "~ " -· ,ow jOlJ s" .... -· .. , .... nm -· . .. .. " n, ... :.: .;., .. .. " ... ·-· ,~, .. , M• ,,_ .. n• ... ~" . .. .. .. ... "" .. " -*' .. .. ·--"" , .. ,u .. _., . .. .. "" , .. ... . .. "'' " .. . -·-.... M' """ -~ "" "'I -........... -...-.. ------ Chk. By: PUMP WT= 500 LBS, MAX 11 L:.I B-880.48C -, , .. u, '"' -~I '" ' .. '" ,11:, 11-1~, "'" ' " '" ... .~, °"' . .. '" tt.l/J , .. "" : .. '" . u ., 1•Ul ·~, .., '"' , .. ' .. '" jli/1 , .. .,, .. UI.IJ ,,,.h . ., ,:.\, .,, ,11;:i •·· ' '" '" ,~~. ... . ., .,, ., ,,u, ... '" '"' 114•1 ... . " '" IHJ .. r,n, ' .. .., . . "' .~, ' .. '" ,.,, 1,,11 MJI Date: Date: I 17 of 49 m1yamoto. Project: M!!!!_eore Si ma Phase 2 __ _ Project No: Ml21 10296.00 Cale. By: MJI Chk. By: Sheet No. Date: 8/5/22 Date: Equipment Anchora2:e Forces (Floor-or Roof-Mounted): ASCE 7-16 Pump Notes • References below are for ASCE 7-16 except as noted • Values shown are at Strength Design or LRFD level and may be reduced for ASD Seismic Design Force Variables (Sec. 13.1) Component Amplification Factor Component Response Modification Factor Spectral Response Acceleration at short periods Component Importance Factor Height in Structure of Point of Attachment of Component Average Roof Height of Structure Overstrength Factor Component Operating Weight Anchored to Concrete Equipment GeomeflJ' and Anchorage 111/ormation 0 EB 0 Plan Center of gravity Anchor point, TYP a = p 1.00 (Tables 13.5-1 or 13.6-1) R = p 2.50 (Tables 13.5-1 or 13.6-1) Sos= 0.743 g (Eq. I 1.4-3) I = p 1.00 (Sec 13.1.3) z= 0.0 ft h = 18.0 ft n = 2.0 500 lbs, WP = 500 lbs Yes Longitudinal Dimension Transverse Dimension a = 47.0 in b= 23.0 in C = 26.3 in Height to Center of Gravity Number of Anchors, Trans. Side Number of Anchors, Long. Side Total Number of Anchor Points nl = 2 (figure: n l =2) Anchorage Panem's Moment of Inertia About n2 = 3 (figure: n2 = 3) N = nl x n2 = 6 I = N(N+2) 0 2 = xx 12(N-2) 2209 in2 a Transverse Axis Anchorage Pattern's Moment of Inertia / = N b 2 = 793.5 in2 xv 4 Longitudinal Elevation Transverse Elevation Horizontal and Vertical Seismic Design Forces F, = OA( fr (1+2f )= F = 0.3S DS/pWp = Pm~ About Longitudinal Axis Critical Loading Angle 0.223 WP 1.189 WP Govemin horizontal seismic desi n force coefficient = 0.223 Horizontal Seismic Design Force w/ n F 223 lbs Vertical Seismic Design Force w/ n F ,= 0.2S0sW 149 lbs 0 _,(I.,.• a) = tan 1-~ • b = (Eq. I 3.3-1) (Eq. 13.3-3) (Eq. I 3.3-2) (Sec 13.3.1) 0.633 radians 36.3 degrees CONTINUED »> m I Yam Oto Project: Milli ore Sigma Phase 2 Sheet No. e Project No: Ml2110296.00 Cale. By: MJI Date: Chk. By: Date: Equipment Anchorage Forces (Floor-or Roof-Mounted): ASCE 7-16 Pump Notes • References below are for ASCE 7-I 6 except as noted • Values shown are at Strength Design or LRFD level and may be reduced for ASD Reactions with Non-Orthogonal Loading at Worst-Case Angle 0 Maximum compression F cos0• c• b FP sin0• c• a O.9WP -F, T = p +-'-----I, = max 2/ 2/ N Y,V .U .----,::=-----;::::-T--Maximum (Q'o O O tension ' __ .. , crmx FPcos0*c*b + FPsin0*c*a + l.2WP+FP. = 2J_vy 2/xx N EB-+ FPcos0 Reactions with Loading in the Longitudinal Direction ( e = 90 °) 0 0 • Fe •'<5, \. __ , 0 I\ r • WP .-5·: \, __ , 0 Maximum tension Maximum compression EB Reactions with Loading in the Transverse Direction (0 = 0°) FP Maximum compression F vmax n I * n 2 F * c * a O.9WP-FP, Tn,ax = p = 21,,x N FP * C* a l.2WP + PP C = + ,. = nm 2/xx N vmax = F P = n 1 * n 2 0 Maximum tension F *c *b T =~P __ _ max 2] O.9WP-FP, ----~= YY N 0 0 r Results Summary 18 of 49 8/5/22 55 lbs 230 lbs 37 lbs 12 lbs 187 lbs 37 lbs 35 lbs 210 lbs 37 lbs Maximum tension at anchor point= 55 lbs (Governing load case: non-orthogonal) Maximum compression at anchor point = Maximum shear at anchor point = Anchor Bolt Design (LRFD) Tension Service Load per Bolt Shear Service Load per Bolt T = V= 230 lbs (Governing load case: non-orthogonal) 37 lbs (Same value for all load cases) 5.._5:-lb_s _____ FORCE IS LOW, ANCHORS OK 37 lbs BY INSPECTION m1yamoto. ProJect:_.__M_SP_h_2_B __________________ Sheet No: ---- 19 of 49 Project No: MI221ooss Cale. By: MJI Date: ___ _ Chk. By: ----Date: ---- PROCESS EQUIPMENT ANCHORAGE (COMMENT S3) ANCHORAGE S _101_p B PER UNIT ~2 BARS PER SCHEDULE, EQUAU Y SPACED EA DIR. T&B WIDTH x LENGTH W x 'L' PER PLAN MIN PER SCHEDULE PROCESS EQUIPMENT BY OTHERS. TYP (E) SLAB, CUT & DOWEL PER 14/58-001 PROCESS EQUIPMENT PAD AT 0 ;,~'~!ING SLAB ~ OUTLINE OF UNIT ABOVE { ~"v V r-(2) L3x3x1/4x0'-8" EA CORNER ♦ OF UNIT (MIN (8) ANGLES EA UNIT) J lo ~ • ♦ :.. ~p ~ UNIT PAD FOOT PER MFR APPEARANCE MAY VARY FROM THAT SHOWN i,.._ _ ____s;;;:;:;;;;:;;;;;1,t,;___~ 8"MIN. (4) 3/8" EXP ANCHORS EA CORNER, W/ 2 1/8" EFF EMBED (E) SLAB ON GRADE PAD FOOTING PER PLAN & 7/- NCHORAGE AT BIOREACTOR / MIXER 20 of 49 m I Yam Oto Project: Milli ore Sigma Phase 2 Sheet No. e Project No: Ml2110296.00 Cale. By: MJI Date: Chk. By: Date: 8/5/22 Equipment Anchorage Forces (Floor-or Roof-Mounted): ASCE 7-16 1 00OL Reactor Notes • References below are for ASCE 7-16 except as noted • Values shown are at Strength Design or LRFD level and may be reduced for ASD Seismic Design Force Variables (Sec. 13.1) Component Amplification Factor Component Response Modification Factor Spectral Response Acceleration at short periods Component Importance Factor Height in Structure of Point of Attachment of Component Average Roof Height of Structure Overstrength Factor Component Operating Weight Anchored to Concrete Wind Design Force Variables (Sec. 29.5.1) Roof Top Unit Basic Wind Speed Wind Directionality Factor Velocity Pressure Exposure Coefficient Topographic Factor Unit Dimensions Width Length Height Gust Effect Factor -Horizontal Gust Effect Factor -Vertical Equipment Geometry and Anchorage Information 0 EB 0 a Longitudinal Elevation I Center of gravity Anchor point, TYP Transverse Elevation Horizontal and Vertical Seismic Design Forces F, = o 4 ( if (1+2f )= F Pm;, = 0.3S DS I pwp = 3i,= ~= 1.00 (Tables 13.5-1 or 13.6-1) 2.50 (Tables 13.5-1 or 13.6-1) 0.743 g (Eq. 11.4-3) 1.00 (Sec 13.1.3) 0.0 ft Sos = IP= z= h = Q = 12 0 ft FOR CONCRETE ANCHORAGE ,v ,;.___-ONLY Yuk= Kd= K,= I<.,,= W = L= H= (GC,) H = (GC,) V = 2.~ 5,300 lbs, WP= No No 96 MPH 5300 lbs 0.85 (Sec 26.6, Table 26.6-1) 1 (Sec 29.3.1 Table 29.3-1) 1 (Sec 26.8.2) 24 in 1 in 48 in 1 (Sec 29.5.1 ) (Sec 29.5.1) Longitudinal Dimension Transverse Dimension a = 79.0 in b = 66.0 in 59.5 in Height to Center of Gravity Number of Anchors, Trans. Side Number of Anchors, Long. Side Total Number of Anchor Points c = nl = n2 = N =nl x n2 = 2 (figure: n I = 2) 2 (figure: n2 = 3) 4 Anchorage Pattern's Moment of Inertia About l = N( N + 2) a 2 = xx I 2(N -2) 6241 in2 Transverse Axis I = Nb2 --Anchorage Pattern's Moment of Inertia _1,Y 4 4356 in2 About Longitudinal Axis Critical Loading Angle '(l.,..•a) 0 = tan --·-· -= 0.696 radians l ,,•b 99 3 . degrees 0.119 WP (Eq. 13.3-1) 0.223 WP (Eq. 13.3-3) 21 of 49 ·m I yam oto • _P_r_o,,__· e_c_t_: _M_i_lh~'p_o_r_e_S_,iga,__m_a _P_h_a..c..se_2 _____ ~Sh:e::e:~-No. Project No: MI2110296.00 Cale. By: MJI Chk. By: 8/5/22 Equipment Anchorage Forces (Floor-or Roof-Mounted): ASCE 7-16 1 000L Reactor Notes • References below are for ASCE 7-16 except as noted • Values shown are at Strength Design or LRFD level and may be reduced for ASD Govemin horizontal seismic desi n force coefficient = Horizontal Seismic Design Force F Vertical Seismic Design Force F, = 0.2S0sW 1.189 WP 0.223 11 81 lbs 788 lbs (Eq. 13 .3-2) (Sec 13.3.1) CONTINUED >» m I Yam Oto Project: Millipore Sigma Phase 2 Sheet No. • Project No: M12110296.00 Cale. By: MJI Date: Chk. By: Date: Equipment Anchorage Forces (Floor-or Roof-Mounted): ASCE 7-16 JOOOL Reactor Notes • References below are for ASCE 7-I 6 except as noted • Values shown are at Strength Design or LRFD level and may be reduced for ASD Reactio11s with Non-Orthogonal Loading at Worst-Case Angle 0 0 0 Maximum compression Maximum tension C,mx FP cos0* c* b FP sin0* c* a 0.9WP -FP T = ~----+~----• = max 2/ n· 2/ x., N = FP cos0* c* b + FP sin 0* c* a+ l.2WP + FP, 2/_vy 2/xx N F Reactions with Loadi11g in the lo11gitu,li11al Direction ( 0 = 90 °) _,. r_,__, r- Maximum tension Maximum compression EB Reactions with loadi11g in the Transverse Direction (0 = 0°) Fr 0 Maximum compression Maximum tension Results Summary F * c* a T =__,_P __ _ max 2]_,x 0.9WP-FP,, ----~= N F * c * a I.2WP + FP C = P + • ,mx 2 / xx N F * c * b 1.2W + F C = p + p P, nm 2/ N }:V V max 22 of 49 8/5/22 0 lbs 2481 lbs 295 lbs 0 lbs 2232 lbs 295 lbs 0 lbs 2319 lbs 295 lbs Maximum tension at anchor point = 0 lbs (Govemin11: load case: lon11:itudinal) Maximum compression at anchor point = Maximum shear at anchor point = Anchor Bolt Design (LRFD) Tension Service Load per Bolt Shear Service Load per Bolt T= v = 2481 lbs (Governing load case: non-orthogonal) 295 lbs (Same value for all load cases) 0 ~• NO NET UPLIFT, ANCHORAGE REQUIRED FOR SHEAR ONLY 29~ LOAD DOES NOT GOVERN, ------ANCHORAGE DESIGNED FOR 23 of 49 m1yamoto. Project: Millipore Sigma Phase 2 Project No: MI2110296.00 Cale. By: MJI Sheet No. Date: 8/5/22 Chk. By: Date: Equipment Anchorage Forces (Floor-or Roof-Mounted): ASCE 7-16 2000L Reactor Notes • References below are for ASCE 7-16 except as noted • Values shown are at Strength Design or LRFD level and may be reduced for ASD Seismic Design Force Variables (Sec. 13.1) Component Amplification Factor Component Response Modification Factor Spectral Response Acceleration at short periods Component Importance Factor Height in Stmcture of Point of Attachment of Component Average Roof Height of Structure Overstrength Factor Component Operating Weight Anchored to Concrete Equipment Geometry and Anchorage Information 0 Plan a Longitudinal Elevation Center of gravity Anchor point, TYP Transverse Elevation a,,= R1,= 1.00 (Tables 13.5-1 or 13.6-1) 2.50 (Tables 13.5-1 or 13.6-1) 0. 743 g (Eq. 11.4-3) 1.00 (Sec 13.1.3) 0.0 ft Sos= IP= z = h = n = 30.0 ft 2.0E- FOR CONCRETE ANCHORAGE ONLY 10,000 lbs, WP = 10000 lbs No Longitudinal Dimension Transverse Dimension Height to Center of Gravity Number of Anchors, Trans. Side Number of Anchors, Long. Side Total Number of Anchor Points a = 88.0 in b = 75.0 in C = 69.0 in nl = n2 = N = nl x n2 = 2 (figure: n 1 = 2) 2 (figure: n2 = 3) 4 7744 in2 Anchorage Pattern's Moment of Inertia About Transverse Axis Anchorage Pattern's Moment of Inertia I = N b2 = xv 4 5625 in2 About Longitudinal Axis Critical Loading Angle 0 = tan •1( I,,,* 0 )= 0.706 radians I,,* h 40 .4 degrees CONTINUED >» m I Yam Oto Project: Millipore Sigma Phase 2 • Project No: Ml2110296.00 Cale. By: Chk. By: Equipment Anchora2;e Forces (Floor-or Roof-Mounted): ASCE 7-16 2000L Reactor Notes • References below are for ASCE 7-16 except as noted • Values shown are at Strength Design or LRFD level and may be reduced for ASD Reactions with Non-Orthogonal Loadi11g at Worst-Case Angle 0 Maximum compression Sheet No. MJJ Date: Date: 0 0 Maximum tension F cos0* c* b FP sin 0* c* a l .2WP + FP C = p +~-----+ , ,rnx 21 21 N ·"'' xx EB--. FPin8 EB __. F Pcos8 Reactions with Loading i11 tlte Lon.gitudi11al Direction ( 0 = 90 °) Maximum tension Maximum compression Reactio11s with Loadillg in the Tra11sverse Direction (0 = 0°) Fr 0 r Results Summary Maximum compression Maximum tension v mu F *C* a T =~"---"'"' 21_,x 0.9WP-FP, ----~= N C = FP*c*a + 1.2W"+F"' = llllX 21~ N V max F " 0.9WP-FP .. --~-~= N V max 24 of 49 8/5/22 0 lbs 4719 lbs 557 lbs 0 lbs 4245 lbs 557 lbs 0 lbs 4397 lbs 557 lbs Maximum tension at anchor point = 0 lbs (Governing load case: longitudinal) Maximum compression at anchor point= Maximum shear at anchor point = Anchor Bolt Design (LRFD) Tension Service Load per Bolt Shear Service Load per Bolt T= v= 4719 lbs (Governing load case: non-orthogonal) 557 lbs (Same value for all load cases) 0~ NO NET UPLIFT DUE TO lh o ~ OVERTURNING, UNIT IS OK 557 lbs WITH ANCHORS FOR SLIDING ONLY SIMPSON Strong-Tie GI Anchor Designer™ Software Version 3.0. 7808.0 1.Proiect information Customer company: Customer contact name: Customer e-mail: Comment: 2. Input Data & Anchor Parameters General Design method:ACI 318-14 Units: Imperial units Anchor Information: Anchor type: Torque controlled expansion anchor Material: Carbon Steel Diameter (inch): 0.375 Nominal Embedment depth (inch): 2.500 Effective Embedment depth, her (inch): 2.125 Code report: ICC-ES ESR-3037 Anchor category: 1 Anchor ductility: Yes hmln (inch): 4.03 Coe (inch): 6.19 Company: Miyamoto International Engineer: MJI Project: MSPh2B Unit Anchorage Address: Phone: E-mail: Project description: Location: Fastening description: Base Material Concrete: Normal-weight Concrete thickness, h (inch): 12.00 State: Cracked Compressive strength, f c (psi): 3000 41c,v: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No Base Plate 25 of 49 l Date: T 81412022 I Page: I 1/5 Cm1n (inch): 6.00 Length x Width x Thickness (inch): 3.00 x 8.00 x 0.25 Sm1n (inch): 3.00 Recommended Anchor Anchor Name: Strong-Bolt® 2 -3/8"0 CS Strong-Bolt 2, hnom:2.5" (64mm) Code Report: ICC-ES ESR-3037 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com SIMPSON Strong-Tie Load and Geometry Anchor Designer™ Software Version 3.0.7808.0 Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.2 not applicable Ductility section for shear: 17 .2.3.5.2 not applicable Oo factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes Strength level loads: Nua [lb]: 0 Vuax [lb]: 2228 Vuay [lb]: 0 Mux [ft-lb]: 0 Muy [ft-lb]: 0 Muz [ft-lb]: 0 <Figure 1> 0 ft-lb z cl:- Company: Engineer: Project: Address: Phone: E-mail: Olb 26 of 49 Miyamoto International I Date: I 8/4/2022 MJI I Page: I 215 MSPh2B Unit Anchorage - 0 ft-lb O lb FORCE SIZED FOR OVERSTRENGTH AND THAT ONLY 2 OF 4 ANGLES RESIST SLIDING IN A GIVEN DIRECTION 4.0 OVERALL FORCE MULTIPLIER - Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com SIMPSON Anchor Designer™ Software Strong-Tie Version 3.0.7808.0 GI <Figure 2> 1. 0 0 lJ") U") . • ,-.■I 8.00 00 27 of 49 Company: Miyamoto International I Date: I 8/4/2022 Engineer: MJI I Page: I 3/5 Project: MSPh2B Unit Anchorage Address: Phone: E-mail: - 8 0 • M 0 0 00 8.00 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com SIMPSON Strong'-Tie Anchor Designer™ Software Company: Miyamoto International Engineer: MJI Version 3.0. 7808.0 Project: MSPh2B Unit Anchorage Address: Phone: E-mail: 3. Resulting Anchor Forces Anchor Tension load, Nua (lb) Shear load x, Vuax (lb) Shear load y, Vuay (lb) 1 0.0 2 0.0 Sum 0.0 1114.0 1114.0 2228.0 0.0 0.0 0.0 Maximum concrete compression strain (%0): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 0 <Figure 3> Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'Nx (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00 a. Steel Strength of Anchor in Shear 1sec. 17.5.1) V.sa (lb) ¢g,.,,, ¢ ¢g,.,,,¢Vso (lb) 1800 1.0 0.65 1170 9. Concrete Breakout Strength of Anchor in Shear 1sec. 17.5.2) Shear perpendicular to edge in x-direction: Vbx = minl7(/o/ d.}°-2✓d.k✓fcC011·5; 9.J.✓fcC011•51 (Eq. 17.5.2.2a & Eq. 17.5.2.2b) ,. (in) d. (in) k fc (psi) c., (in) Vbx (lb) 2.13 0.375 1.00 3000 8.00 7516 ¢Vct,gx = ¢(Ave/ A vco)<f'oc.v<f'od.V'l-'c.v'l-'h,vVbx (Sec. 17.3.1 & Eq. 17.5.2.1b) 312.00 288.00 1.000 0.900 1.000 1.000 Shear parallel to edge in y-direction: Vbx = minl7(I.ldo)0•2✓d.k✓fcC011•5; 9k✓fcC011•51 (Eq. 17.5.2.2a & Eq. 17.5.2.2b) lo (in) do (in) ).,, f c (psi) Co1 (in) Vbx (lb) 2.13 0.375 1.00 3000 8.00 7516 ¢V cby =¢ (2)(Avcl Avco) <f'od,V 'f'c.v'l-'h.vVbx (Sec. 17 .3.1, 17.5.2.1 (c) & Eq. 17.5.2.1a) Ave (in2) Avco (in2) 'f'od,V 'f'c,v 'f-'h,v Vbx (lb) 240.00 288.00 1.000 1.000 1.000 7516 10. Concrete pryout Strength of Anchor in Shear /Sec. 17.5.3) 0 1 Vbx (lb) 7516 0.70 28 of 49 I Date: I 8/4/2022 I Page: j 4/5 Shear load combined, ✓(Vuax)2+(Vuay)2 (lb) 1114.0 1114.0 2228.0 + 0 2 ¢Vct,gx (lb) 0.70 5130 ¢Vcby (lb) 8768 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com SIMPSON Stl'Ong-Tie Anchor Designer™ Software Company: Miyamoto International Engineer: MJI Project: MSPh2B Unit Anchorage Version 3.0.7808.0 Address: Phone: E-mail: ¢Vcpg = ipkcpNcbg = ipkcp(ANcl ANco) 'fl .. ,N 'flod,N 'flc,N'flcp,NNb (Sec. 17 .3.1 & Eq. 17.5.3.1 b) kcp 'floc,N 'Pc,N 1.0 78.89 40.64 1.000 1.000 1.000 11. Results 11. lnteract;on of Tensile and Shear Forces (Sec. P,7)? Shear Factored Load, Vua (lb) Design Strength, vNn (lb) Steel 1114 1170 T Concrete breakout x+ 2228 II Concrete breakout y+ 1114 Pryout 2228 5130 8768 3919 3/8"0 CS Strong-Bolt 2, hnom:2.5" (64mm) meets the selected design criteria. 12. Warnings 'Pcp,N 1.000 Ratio 0.95 0.43 0.13 0.57 2884 29 of 49 I Date: l 8/4/2022 I Page: I 5/5 - ¢Vcpg (lb) 0.70 3919 Status Pass (Governs) Pass Pass Pass -Per designer input. the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of ACI 318 17 .2.3.4.2 for tension need not be satisfied -designer to verify. -Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17 .2.3.5.2 for shear need not be satisfied -designer to verify. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com m I Yam Oto Pro·ect: Milli ore Si ma Ph2B Sheet No. e Project No: MI2210066.00 Cale. By MJI Date: Chk. By: __ Date: Equipment Anchorage Forces (Floor-or Roof-Mounted): ASCE 7-16 3000L Mixer Notes • References below are for ASCE 7-10 except as noted • Values shown are at Strength Design or LRFD level and may be reduced for ASD Seismic Design Force Variables Component Amplification Factor Component Response Modification Factor Spectral Response Acceleration at short periods Component Importance Factor Height in Structure of Point of Attachment of Component Average Roof Height ofStmcture Overstrength Factor Component Operating Weight Anchored to Concrete ap = Rp= Sos = IP= z= h= n = 1.00 (Tables 13.5-1 or 13.6-1) 2.50 (Tables 13.5-1 or 13.6-1) 0. 743 g (Eq. 11.4-3) 1.00 (Secl3.l.3) 0.0 ft 20.0 ft 2.0 10000 lbs, WP = 10000 lbs Yes 30 of 49 8/5/22 mlyamoto Project: Mill~eSi maPh2B SheetNo. • Project No: Ml2210066.00 Cale. By MJJ Date: Chk. By: Date: Equipment Anchorage Forces (Floor-or Roof-Mounted): ASCE 7-16 3000L Mixer Notes • References below are for ASCE 7-10 except as noted • Values shown are at Strength Design or LRFD level and may be reduced for ASD Equipment geometry and anchorage information Anchor point, TYP (Asswne 3) Center of gravity Distance to Anchors from Center Height to Center of Gravity Number of Anchors Per Anchor Point 0.223 WP r= 31.0 in c= 60.0 in n= 1 (Eq. 13.3-1) (Eq. 13.3-3) (Eq. 13.3-2) I Fp,,... = 1.6S o.,J PWP = Horizontal Seismic Design Force w/ n F 4458 lbs 8/5/22 ELEVATION - .,_ _____ __. __ c ~----G::..o::..v:..:e:.:m.::i:..:;n...:..:.ho:.:r.::iz:.::o.::nt:.:a:..;1 s:.:e:.:is:.:m:.:i.:.c..=d:.:es:..:;i ..:n:..;f<:.:o.:..:rc:.:e....:c:.::o:.:effi:.:1:.::c:..:ie.::nt:..;= ___ .....::0:.:.2::2:::..,3 ._V_e_rt_ic_a_l_S_ei_s_m_lc_D_es-'ig:a:.n_F_or_c_e_w_i_n _____ F....r.;.•_=_0_.2_S....:0"'5_W...L..=--2-97_2_1b_s _ _,(Sec I 3.3.1) CONTINUED »> Reactio11s with loading causing maximum tension and maximum compression: FP causing max tension X r b Lag Screw Desig11 Tension Service Load per Bolt = Tmax Shear Service Load per Bolt = Vmax T = v = x =r(cos60°)= 15.5 in b = r + x = 46.5 in T O"IJX = Fp • c _ 0.9Wp -FP. b 3 3743 lbs _ Fp • c I .2Wp + FP. COllX ----+ __ ,:___=. = Fir-or Rf-Mounte8, Reel 3 12000 lbs FP V =-= nux 3 1486 lbs 2246 lbs 892 ~UNIT HAS NET UPLIFT & SHEAR, ANCHORAGE SIZED AS REQUIRED ON FOLLOWING PAGES AT OVERSTRENGTH LEVEL 31 of 49 SIMPSON Strong-Tie 41> Anchor Designer™ Software Version 3.0.7808.0 1.Project information Customer company: Customer contact name: Customer e-mail: Comment: 2. Input Data & Anchor Parameters General Design method:ACI 318-14 Units: Imperial units Anchor Information: Anchor type: Torque controlled expansion anchor Material: Carbon Steel Diameter (inch): 0.625 Nominal Embedment depth (inch): 5.125 Effective Embedment depth, h., (inch): 4.500 Code report: ICC-ES ESR-3037 Anchor category: 1 Anchor ductility: Yes hmin (inch): 7.88 Cac (inch): 9.00 Cmin (inch): 6.50 Smin (inch): 2.75 Recommended Anchor Company: Miyamoto International Engineer: MJI Project: MSPh2B 3000L Mixer Anchorage Address: Phone: E-mail: --- Project description: Location: Fastening description: Base Material Concrete: Normal-weight Concrete thickness, h (inch): 12.00 State: Cracked Compressive strength, f c (psi): 3000 4-'c.v: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No Anchor Name: Strong-Bolt® 2 -5/8"0 CS Strong-Bolt 2, hnom:5.125" (130mm) Code Report: ICC-ES ESR-3037 32 of 49 I Date: I 8/4/2022 I Page: I 1/6 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.stronglie.com SIMPSON Sti'Ong-Tie Anchor Designer™ Software Version 3.0.7808.0 Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17 .2.3.4.2 not applicable Ductility section for shear: 17 .2.3.5.2 not applicable Oo factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes Strength level loads: Nua [lb]: 2246 Vuax [lb]: 892 Vuay [lb]: 0 <Figure 1> X 892 1b z t 33 of 49 Company: Miyamoto International I Date: l 8/4/2022 Engineer: MJI I Page: I 216 Project: MSPh2B 3000L Mixer Anchorage Address: Phone: E-mail: 2246 1b ...... _ .. ............ y Olb Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com SIMPSON Strong-Tie <Figure 2> Anchor Designer™ Software Version 3.0. 7808.0 00 Company: Engineer: Project: Address: Phone: E-mail: 8.00 Miyamoto International MJI MSPh2B 3000L Mixer Anchorage 8 0 0 co 34 of 49 I Date: I 8/4/2022 I Page: I 3/6 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com 35 of 49 SIMPSON Company: Miyamoto International I Date: I 8/4/2022 Engineer: MJI l Page: l 4/6 Strong-Tie Anchor Designer™ Software Project: MSPh2B 3000L Mixer Anchorage Version 3.0. 7808.0 Address: Phone: E-mail: 3. Resulting Anchor forces Anchor Tension load, Nua (lb) Shear load x, Vuax (lb) 2246.0 Sum 2246.0 Maximum concrete compression strain (%0): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 2246 Resultant compression force (lb): 0 892.0 892.0 Eccentricity of resultant tension forces in x-axis, e'Nx (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00 4. Steel Strength of Anchor in Tension csec. 17,4,1) Nsa (lb) ¢ 1/!Nsa (lb) 19070 0.75 14303 s. Concrete Breakout Strength of Anchor in Tension csec. 17.4.2) Nb= kck✓r.h.11•5 (Eq. 17.4.2.2a) kc /4a r C (psi) ha, (in) 17 .0 1.00 3000 4.500 8888 0.751/!Nro = 0.75¢ (ANcl A Nee) 'f'&d,N 'Pc,N 'f'cp,NNb (Sec. 17 .3.1 & Eq. 17.4.2.1a) ANcc (in2 C•,mln (in) 'f'c,N Shear load y, Vuay(lb) 0.0 0.0 182.25 182.25 8.00 1.000 1.00 1.000 6 Pullout Strength of Anchor in Tension {Sec 17.4.3\ 0.75(/iNpn = 0.75¢'Pc,PkNp(fcl2,500)" (Sec. 17.3.1, Eq. 17.4.3.1 & Code Report) 'f'c,P /4 • Np (lb) f c (psi) n ¢ 1.0 1.00 6895 3000 0.50 0.65 8888 0.75(/iNpn (lb) 3682 Shear load combined, ✓(Vuox)2+(Vuoy)2 (lb) 892.0 892.0 0.751/!Nro (lb) 0.65 4333 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com 36 of 49 SIMPSON Company: Miyamoto International I Date: I 8/4/2022 Engineer: MJI I Page: I 5/6 St1·ong-Tie Anchor Designer™ Software Version 3.0.7808.0 Project: MSPh2B 3000L Mixer Anchorage Address: Phone: E-mail: s, Steel Strength of Anchor in Shear (Sec, 17,5,1) V .. (lb) ¢r,,out 1/1 ipgroutl/!Vsa (lb) 9930 1.0 0.65 6455 9. Concrete Breakout Strength of Anchor in Shear (Sec. 11.s,21 Shear perpendicular to edge in x-direction: Vbx = minl7(/e/ da)°-2✓d.Aa✓fcca11•5; 9k✓fcCa11.5I (Eq. 17.5.2.2a & Eq. 17.5.2.2b) le (in) da (in) A,, f c (psi) Ca! (in) Vb, (lb) 4.50 0.625 1.00 3000 8.00 10179 I/IV cbx =¢(Ave/Avco) 'l'ed,v'Pc,v'l-'h,vVbx (Sec. 17 .3.1 & Eq. 17.5.2.1a) Ave (in2) Avco (in2) 'l'ed,V 'l'c,v 'l'h,V 240.00 288.00 0.900 1.000 1.000 10179 Shear parallel to edge in y-direction: Vbx = minl7(/e/ da)°·2✓d.k✓fcCai'·5; 9k✓fcCa11•51 (Eq. 17.5.2.2a & Eq. 17.5.2.2b) le (in) da (in) A,, fc (psi) Cat (in) Vbx (lb) 4.50 0.625 1.00 3000 8.00 10179 I/IV cby =l/!(2)(Avcl Avco) 'l'ed,v 'l'c,v 'l'h,vVbx (Sec. 17 .3.1, 17.5.2.1 (c) & Eq. 17.5.2.1 a) Ave (in2) Avco (in2) 'l'ed,V 'l'c,v %,v Vb, (lb) 240.00 288.00 1.000 1.000 1.000 10179 1 o, Concrete Pryout Strength of Anchor in Shear (Sec, 17,5,3) 1/!Vcp = 1/ikcpNcb = 1/ikcp(ANcl ANco)'l'ed,N'l'c,N'l'cp,NNb(Sec. 17.3.1 & Eq. 17.5.3.1a) kcp ANc (in2) ANcc (in2) 'l'ed,N 'l'c,N 'l'cp,N 2.0 182.25 182.25 1.000 1.000 1.000 11. Results Interaction of Tensile and Shear forces (Sec, 17,6,) Tension Factored Load, Nua (lb) Steel 2246 Concrete breakout 2246 Pullout 2246 Shear Factored Load, Vua (lb) Steel 892 T Concrete breakout x+ 892 II Concrete breakout y+ 892 Pryout 892 Interaction check Nuall/!Nn Sec. 17.6 .. 1 0.61 0.00 Design Strength, 0Nn (lb) 14303 4333 3682 Design Strength, 0Vn (lb) 6455 5344 11875 12444 Combined Ratio 61 .0% 8888 Ratio 0.16 0.52 0.61 Ratio 0.14 0.17 0.08 0.07 518"0 CS Strong-Bolt 2, hnom:5.125" (130mm) meets the selected design criteria. 0.70 0.70 0.70 Permissible 1.0 1/!Vcbx (lb) 5344 1/!Vcby (lb) 11875 1/JVcp (lb) 12444 Status Pass Pass Pass (Governs) Status Pass Pass (Governs) Pass (Governs) Pass Status Pass Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.stronglie.com SIMPSON Strong-Tie Ill> 12. Warnings Anchor Designer™ Software Version 3.0.7808.0 Company: Engineer: Project: Address: Phone: E-mail: 37 of 49 Miyamoto International I Date: I 8/4/2022 MJI l Page: l 6/6 MSPh2B 3000L Mixer Anchorage -·-- -Per designer input, the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.4.2 for tension need not be satisfied -designer to verify. -Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied -designer to verify. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com m1yamoto. ProJect:__.__M_SP_h_2_8 ________________ Sheet No: ---- 38 of 49 Project No: _M_12_2_1o_o_ss ________ Cale. By: _M_J1 ___ Date: ___ _ CHILLER ANCHORAGE (COMMENT S4) (6) 314' DIA GALV------. THREADED RODS IN 'SET-3G" EPOXY PER SIDE (12 TOTAL), EMBEDS' 3/4' CHAMFER STD HOOK, TYP LEFT SIDE VIEW E\w'(lRATC)lll:WAT(M(»;~ Lf.fl.E Chk. By: ____ Date: ___ _ CHILLER WT= 30,000 LBS MAX NEOPRENE PAD BY OTHERS ~~+ Md #7@12'0C EACH WAY 90% COMPACTION D TOP VIEW UNIT CENTER OF GRAVITY CO Z (DIMEHSK>N FROM RIGHT TO lEfll CG X (DIMENSION FROM FRONT TO REAR) r 39 of 49 m I Yam Oto Project: Milli ore Sigma Phase 2 Sheet No. • _!'roject No: MI2110296.00 Cale. By: MJI Date: Chk. By: Date: 8/5/22 Equipment Anchorage Forces (Floor-or Roof-Mounted): ASCE 7-16 Chiller Notes • References below are for ASCE 7-16 except as noted • Values shown are at Strength Design or LRFD level and may be reduced for ASD Seismic Design Force Variables (Sec. 13.1) Component Amplification Factor Component Response Modification Factor Spectral Response Acceleration at short periods Component Importance Factor Height in Structure of Point of Attachment of Component Average Roof Height of Structure Overstrength Factor Component Operating Weight Anchored to Concrete Equipment Geometry and Anchorage Jnfor111atio11 Plan a Longitudinal Elevation Center of gravity Anchor point, TYP Transverse Elevation Hol'izontal and Vertical Seismic Design Forces F, = o 4 ( ft (1+ 21 )= F Pm~ = 0.3S DSJ p w p = UNIT IS BASE ISOLATED WITH /NEOPRENE WASHERS 2.5~ (Tables 13.5-1 or 13.6-1) aP = RP= 2.50 (Tables 13.5-1 or 13.6-1) Sos= IP= z = h = D.= 0.743 g (Eq. 11.4-3) 1.00 (Sec 13.1.3) 0.0 ft 18.0 ft 2.0 30,000 lbs, WP = Yes Longitudinal Dimension Transverse Dimension 30000 lbs a = 135.0 in b = 75.0 in 57.0 in Height to Center of Gravity Number of Anchors, Trans. Side Number of Anchors, Long. Side Total Number of Anchor Points c = nl = n2 = N = nl x n2 = 2 (figure: n I = 2) 6 (figure: n2 = 3) 12 Anchorage Pattern's Moment of Inertia About Transverse Axis I __ Nb2 __ Anchorage Pattern's Moment of Inertia .'!Y 4 About Longitudinal Axis Critical Loading Angle 0.297 WP 0.223 WP 1.189 WP ( / ,., a) 0 = tan_, ,: ,., b = (Eq. 13.3-1) (Eq. 13.3-3) (Eq. 13.3-2) 16875 in2 0.872 radians 50.0 degrees Governin horizontal seismic desi n force coefficient= 0.297 Horizontal Seismic Design Force w/ n F 17832 lbs Vertical Seismic Design Force w/ n F v =0.2S0sW 8916 lbs (Sec 13.3.1) CONTINUED >» 40 of 49 m I Yam Oto Project: Milli ore Sigma Phase 2 Sheet No. e Project No: MI21 l 0296.00 Cale. By: MJI Date: Chk. By: Date: 8/5/22 Equipment Anchorage Forces (Floor-or Roof-Mounted): ASCE 7-16 Chiller Notes • References below are for ASCE 7-16 except as noted • Values shown are at Strength Design or LRFD level and may be reduced for ASD Reactions with Non-Orthogonal Loading at Worst-Case Angle 0 0 0 Maximum compression Maximum tension v max F EB ----+ F Pcosfl Reactions with Loading in the Longitudinal Direction (0 = 90°) -◄ fl_,__, r Maximum tension Maximum compression EB Reactions with Loading in the Transverse Direction (0 = 0°) Fr 0 Maximum compression Maximum tension r Results Summary F * c* a T =-"--- max 2/_,x vrnax 0.9W"-F"·· N F,, -~-= n 1 * n 2 F *c*b T =~"---0.9Wp-Fp., --~-~= max 21 )'.Y N V max F /1 ---= n 1 * n 2 2005 lbs 7255 lbs 1486 lbs 11 82 lbs 6432 lbs 1486 lbs 752 lbs 6002 lbs 1486 lbs Maximum tension at anchor point = 200S lbs (Governing load case: non-orthogonal) Maximum compression at anchor point = Maximum shear at anchor point = Anchor Bolt Design (LRFD) Tension Service Load per Bolt Shear Service Load per Bolt 725S lbs (Governing load case: non-orthogonal) 1486 lbs (Same value for all load cases) T = 2005 lbs NET UPLIFT OCCURS, UNIT IS y = 1486 ~~:...s--REQUIRED TO BE ANCHORED SIMPSON Strong-Tie Anchor Designer™ Software Version 3.0.7808.0 1.eroiect Information Customer company: Customer contact name: Customer e-mail: Comment: 2. Input Pata & Anchor Parameters General Design method:ACI 318-14 Units: Imperial units Anchor Information: Anchor type: Bonded anchor Material: F1554 Grade 55 Diameter (inch): 0.750 Effective Embedment depth, he, (inch): 8.000 Code report: ICC-ES ESR-4057 Anchor category: - Anchor ductility: Yes hmln (inch): 9.75 Coe (inch): 18.55 Cmin (inch): 1.75 Sm1n (inch): 3.00 Recommended Anchor Anchor Name: SET-3G -SET-3G w/ 3/4"0 F1554 Gr. 55 Code Report: ICC-ES ESR-4057 0 ..... ,,. .. .,.,," Company: Miyamoto International Engineer: MJI Project: MSPh2B Chiller Anchorage Address: Phone: E-mail: Project description: Location: Fastening description: Base Material Concrete: Normal-weight Concrete thickness, h (inch): 12.00 State: Cracked Compressive strength, f c (psi): 3000 41,,v: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Hole condition: Dry concrete Inspection: Continuous Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable Build-up grout pad: No 41 of 49 I Date: I 8/4/2022 I Page: I 1/6 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Slmp,.on Strong-Tie Company Inc 5956 W. Las Posltas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com SIMPSON Strong-Tie 41 Load and Geometry Anchor Designer TM Software Version 3.0.7808.0 Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: No Ductility section for tension: 17.2.3.4.2 not applicable Ductility section for shear: 17 .2.3.5.2 not applicable Oo factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes Strength level loads: N ua [lb]: 2005 Vuax [lb): 1486 Vuay [lb]: 0 <Figure 1> X 14861b z t ' ' Company: Engineer: Project: Address: Phone: E-mail: 20051b 42 of 49 Miyamoto International I Date: I 8/4/2022 MJI I Page: I 216 MSPh2B Chiller Anchorage --- ' LOADS PER ANCHORAGE ""---FORCES AT OVERSTRENGTH LEVEL y Olb Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com SIMPSON Strong-Tie <Figure 2> Anchor Designer™ Software Version 3.0.7808.0 CX) Company: Engineer: Project: Address: Phone: E-mail: 8.00 Miyamoto International MJI MSPh2B Chiller Anchorage 8 0 0 . CX) 43 of 49 I Date: I 8/4/2022 I Page: l 3/6 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Slmp5on Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com SIMPSON Strong-Tie Anchor Designer™ Software Version 3.0.7808.0 3. Resulting Anchor forces Company: Engineer: Project: Address: Phone: E-mail: Anchor Tension load, N us (lb) Shear load x, Vusx (lb) 2005.0 Sum 2005.0 Maximum concrete compression strain (%0): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 2005 Resultant compression force (lb): O 1486.0 1486.0 Eccentricity of resultant tension forces in x-axis, e'Nx (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00 4. Steel Strength of Anchor in Tension /Sec, 17.4,1) N sa (lb) ¢ ¢N •• (lb) 25050 0. 75 18788 5, Concrete Breakout Strength of Anchor io Tension 1sec, 17.4.2) Nb = kck✓fche,1•5 (Eq. 17.4.2.2a) kc k fc (psi) h., (in) 17.0 1.00 3000 8.000 21069 0.75¢Ncb = 0.75¢ (ANcl A Nco) 'Ped,N'Pc.N'Pcp,NNb (Sec. 17.3.1 & Eq. 17.4.2.1a) A Nc (in2) ANco (in2 Ce.min (in) 'f'&d,N 'f'c,N 400.00 576.00 8.00 0.900 1.00 Ii, Adhesil£e Strength of Anchoc la Tension 1sec, lZ,4 5) Tk.c, = Tk,c,fshon-te,mKsat(fcl 2 ,500)"aN.s&ls Tk.cr (psi) fshorHerm Ksat aN.sels fc (psi) 1310 1.00 1.00 1.00 3000 Nbo = J. eTcr1Tdahe1(Eq. 17.4.5.2) ;.. Tc, (psi) de (in) h., (in) Nbo (lb) 1.00 1369 0.75 8.000 25797 0.75¢Na = 0.75¢(ANal ANae)'l/&d,Na'Pcp,NaNbo (Sec. 17.3.1 & Eq. 17.4.5.1a) A Na (in2) A N.o (in2) CNa (in) Ca,mln (in) 'f'&d,No 333.92 422.18 10.27 8.00 0.934 Miyamoto International MJI MSPh2B Chiller Anchorage ---· Shear load y, Vusy (lb) 0.0 0.0 'flcp.N Nb (lb) 1.000 21069 n Tk.cr (psi) 0.24 1369 'Pp.Na Nao (lb) 1.000 25797 44 of 49 I Date: I 8/4/2022 I Page: I 4/6 Shear load combined, ✓(Vuax)2+(Vusy)2 (lb) 1486.0 1486.0 ¢ 0 .75¢Ncb (lb) 0.65 6419 ¢ 0.75¢N. (lb) 0.65 9287 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com SIMPSON Anchor Designer™ Software Company: Miyamoto International Engineer: MJI Strong-Tie Project: MSPh2B Chiller Anchorage Version 3.0.7808.0 Address: GI Phone: E-mail: s. Steel Strength of Anchor in Shear (Sec. l Z 5.1) Vsa (lb) ¢Prout ¢ av.sols 1pgrou,av.se1s¢V ss (lb) 15030 1.0 0.65 0.75 7327 9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5,21 Shear perpendicular to edge in x-direction: Vb,= minl7(/e/ de)°-2✓d.k✓fcCs11•5; 9k✓fcCs11•51 (Eq. 17.5.2.2a & Eq. 17.5.2.2b) le (in) de (in) ;.,. f c (psi) c., (in) Vb, (lb) 6.00 0.750 1.00 3000 8.00 11154 ¢V cb• =¢(Ave/A vco) 'f'e<1,v'f'c,v%,vVb, (Sec. 17.3.1 & Eq. 17.5.2.1a) 'f'ed,V 'f'c,V 'f'h, V Vbx (lb) 240.00 288.00 0.900 1.000 1.000 11154 Shear parallel to edge in y-direction: Vbx = minl7(/s/ de)°·2✓d.k✓fcc.,'·5; 9k✓fcc.,1•51 (Eq. 17.5.2.2a & Eq. 17.5.2.2b) le (in) da (in) ,18 f c (psi) Ca1 (in) Vb, (lb) 6.00 0.750 1.00 3000 8.00 11154 ¢V cby =¢ (2)(Avcl A vco) 'f'e<1,v 'f'c,v'f'h,VVb, (Sec. 17 .3.1, 17 .5.2.1 (c) & Eq. 17.5.2.1a) A ve (in2) A vco (in2) 'f'e<1,v 'f'c,v %,v Vb, (lb) 240.00 288.00 1.000 1.000 1.000 11154 10 Concrete Pryout strength of Anchor in Shear (Sec. 1Z 5.31 0.70 0.70 45 of 49 I Date: I 8/4/2022 I Page: I 5/6 -- ¢Vcb, (lb) 5856 ¢Vcby (lb) 13013 ¢Vcp = ¢ minlkcpNe ; kcpNcbl = ¢ minlkcp(ANal A Nea) 'f'e<1,Na 'f'cp,NeNoo; kcp(A Ncl ANco) 'f'e<1,N 'f'c,N'f'cp,NNbl (Sec. 17 .3.1 & Eq. 17.5.3.1 a) kcp ANa (in2) A NeO (in2) 'f'e<1,N• 'f'cp,Na Noo (lb) Ne (lb) 2.0 333.92 422.18 0.934 1.000 25797 19050 A Nc (in2) ANco (in2) 'f'ed,N 'f'c,N 'f{p,N Nb (lb) N eb (lb) 400.00 576.00 0.900 1.000 1.000 21069 13168 11. Bel2ults loteractjon ofTenl2ile i!Dd Shear Eorcel2 (Ses;. 17.§.) Tension Factored Load, Nua (lb) Design Strength, 0Nn (lb) Ratio Steel 2005 18788 0.11 Concrete breakout 2005 6419 0.31 Adhesive 2005 9287 0.22 Shear Factored Load, Vua (lb) Design Strength, 0Vn (lb) Ratio Steel 1486 7327 0.20 T Concrete breakout x+ 1486 5856 0.25 II Concrete breakout y+ 1486 13013 0.11 Pryout 1486 18435 0.08 ¢ 0.70 ¢Vcp (lb) 18435 Status Pass Pass (Governs) Pass Status Pass Pass (Governs) Pass (Governs) Pass Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com SIMPSON Strong;-Tie Interaction check Sec. 17.6 .. 1 Anchor Designer™ Software Version 3.0.7808.0 Nualr/JNn Vual,PVn 0.31 0.00 Company: Miyamoto International Engineer: MJI Project: MSPh2B Chiller Anchorage Address: Phone: E-mail: Combined Ratio Permissible 31.2% 1.0 SET-3G w/ 3/4"0 F1554 Gr. 55 with hef = 8.000 inch meets the selected design criteria. 12. Warnings 46 of 49 I Date: I 8/4/2022 I Page: I 6/6 Status Pass -Per designer input, the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.4.2 for tension need not be satisfied -designer to verify. -Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied -designer to verify. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com -m1yamoto. Project: M ':)~ h 2, 13 Project No: MI z:z.1 00 (:, <o. u 0 sneet No: ___ _ ca,c. By: M) \ 111~:49 ___ _ • • I 4 • Chk. By: ____ Date: ___ _ f,0\1.\-• 0,~-oF 1')f ~AIL. I 1/i n ~TD. P1Pi €_ t¾SP o.c. M4,< ... )( ~ 'I F " '5011: ( 1-1') oR Z,,:)C),., /v\Ax ( c 8c. 1(..Qr,s.1. 1) LRF-b ~) 1,oo(l,lo) ... ~?o~ pc( APPt..1CA Gt..t: ~R.~l"Cll"\t: 'f.l\C.,"2.c-1:\ t.n/\0 (wlf''-'<-p.,:>E o .. M~1ivv'\Jj1),._J ( / G.05. i t:c3 I Lr ~) ~1,0* 'X(41.''-li°'o'') ~ 11..l!i~ k -1~ ",M u rt,. IO~~ltjk•P 't't/ C ~ 'S;i'D P ll'f-t y' ".)S' ~'$ l =t ::-1 .. 6.41.1 11v3 ;II y _.CH€'0<. 1.,1€1..0~ n .• a~l<.-l'V/1,0\0 n ~ ~.1SK, T/c e v,l'E\.05 ""R v '3 ft C.,11 f1LL€1 AH. A~o..,NO I AS':>vMt' 1/'-1 O F <;.1R.Lvr"F~E'M--f <.oN,(1B1.vE'5 2 rr ( lt) , ~. <=) ~ /4 "' I , Lt~ •1 ~" -., l:°L.D ¢flt\" I. 1>~1. D l (f-\1~<. ';\otl) " /. 3~,(~)(,.~~)( /.s) 9 :, :, I<. .__, e Lo ~ 1N(t "'A~-e Ptsit ,il.A½v E'fl Wt'tr l oA0tO -= • P.I ~Gi' V I'£ (j) "fl-l el.t.i:~Q.(S OK.; ~~"' >-Ru /(Nlfl-€ "'-L,.JlcLO ~ f.", ~ WE"'CJ)'S >' G:/ '>< ~ l< I. 11:\t ~ I 13 k 51-(e4(. '51"'.<.€~<.,.TH QK ~'Y IN<:,P€<.TorJ m 1yamoto Pr0Ject:..1...M~~~¼'hw1.D..L--------:,mnn l'WU; -•• -. -. • Project No: M\'Z.'2100 bfo,OC Cale. By: MJ \ Mft\:i9~--- Chk. By: ----Date: ---- ~\~\t-J"'E"2. C.AU.$ (Cll'-"'IM("IJt" <:>~ I) eT 4 I L I / °'.) ~ -I t) '2. -t> I-I 't f3, MC.. rt >1\0 . (. --z <;,~~,...,_,._ (.<~"-'"'✓(,'-o'' -{,; ( ~•-b•~ -LoAQ .. 'SELf w~ + ';~/ C\-\l"(l\(>.a.., PL. :: /0 P~f MAX DL • -L \VI: L .:),AO • 40 P~f (PLAtFu~r--) -iREAO<::> P/al),.J\~l: ~R.A<.,rJG.. F-IS~ (.l.\~NNlrl. h I _ ~.,.A,t-,s 1..t'-0 w -')k 12. n.,~ To EA ~,(,r-.1ue:L CH l:(.K... e,t:NC\N <..-,, -w ~1 ,i ((10,~'f)(1.1)+1l),b PL~) -t I.(:,( t.10(1- 1)) = w ~ I l,Li Pl..F ( <:ir(\!',._,<--n-1) ~ f'-"v' ( ~4 ( 7,.'S_} .. 1/'S'& fl,-FT' :J /~. i~ k-11\J i ¢M" • 11 . (,, ( '3<.c,)(o.~) .,. ) tS K-11\J ¢"-"" > Mv ; .. 01<.. ~v(\~ a.+s-( A~')( tJ i U .15 (), \ ) ( ":) ~ J ~ ~'1.l, 11.. O"'-fs'V' 1NSPEu,~rJ c:1--1~<..i<.. DE fLi.= c,,1;1 "-.l l0t>c::H .. ~ ~o .(o PLf DL + ~ PLf L\.... • 110.(,. PLf- A ... s-(....j LY ~ s(~-r~ ~N) ( ~a .,J 1--a 0J)l)4~ ,w' t>K. ~o4 € I ~-o4 ( 1.ch: 1 ~,)( Ss:~) -m1yamoto. Project: l'"T~t:'k(.+"\ Project No: M1 n .,au 1.::,1...vo • o,,t .. ~-S" l RP. '2. s ) 1'M<E ,,.,s-1 iL,. ... 1 . s \.C> rp= 0.'tl:DS~ (t ➔ 7l(iJ) Ip ft~~ Q,\,{(1.s)(c.~'-(~)(1oB~) (:>•c) 1.'5' ___, ,. ~ .,, / 8S# LA,e'(AL F-C>t..U: sneet No: __ _ Cele. By: Mj \ dRt'i: 4_9 __ _ Chk. By: ___ Date: __ _ , , .... (' (AL. \.,J~U) All. 4.(\)1,,N.{) OK.. P:,Y 11'vSl'Ec.J1b"-' • 3 -'< D) Structural Calculations for Millipore Sigma CDMQ -PH2B 3 2. 0 2827 Whiptail Loop W. Carlsbad, CA 92010 Plan Check Submittal Ml2210066.00 June 17, 2022 C 2019 Miyamoto International, Inc., All rights reserved. Thia document or any part thereof must not be reproduce< RECEI\JED JUN 2 4 2022 CITY OF CARLSBAD BUILDING DIVISION CBC2022-0227 2827 WHIPTAIL LOOP > 1---0 • MILIPORE SIGMA PHASE 2B: UNOCCUPIED EQUIPMENT PLATFORM 2091202600 6/24/2022 CBC2022-0227 Millipore Sigma PH2B 1. Basis of Design 2. Loading 2.1 Seismic Loads 2.2 Loading Criteria 3. PH2B Platform 4. WFI Tank Platform Ml2210066.00 ' TABLE OF CONTENTS © 2021 Miyamoto International, Inc. L Millipore Sigma PH2B Ml2210066.00 1. BASIS OF DESIGN © 2021 Miyamoto International, Inc. Millipore Sigma PH2B 2827 Whiptail Loop W. Carlsbad, CA 92010 STRUCTURAL BASIS OF DESIGN PROJECT DESCRIPTION AND SCOPE Project Scope Ml2210066.00 • 06/17/2022 New process equipment anchorage on ground floor of existing building, new equipment platform within southern interior area of existing building, and new access platform and walkway to new tank installation. Additional future items are listed as "on Hold" as they occur. Existing Building Description 2827 Whiptail Loop Building Existing Concrete Panel Building with Panelized Wood Roof, Supported by Steel Web Trusses, Interior Steel Columns, and separate interior mezzanine level(s). Year Constructed: 2015 Building Location 2827 Whiptail Loop W. Carlsbad, CA 92010 Latitude: 33.1431843 Longitude: -117.2550607 APPLICATION OF CODE IN DESIGN The building's design will be based on the 2019 California Building Code (CBC). The structural calculations will consist of the following approach: Codes and Standards • 2019 California Building Code (CBC), Title 24 part 10 with all amendments • 2019 California Existing Building Code (CEBC), Title 24 part 10, with all amendments • Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-16) • Building Code Requirements for Structural Concrete (ACI 318-14) • Specification for Structural Steel Buildings (ANSI/AISC 360-16) • Structural Welding Code -Steel (AWS Dl.1-15, Dl.8-16) • North American Specification for the Design of Cold Formed Steel Structural Members (AISI S100-16 • National Design Specification for Wood Construction with Commentary (NDS-2018) Page 1 of 3 L Millipore Sigma PH2B 2827 Whiptail Loop W. Carlsbad, CA 92010 STRUCTURAL BASIS OF DESIGN Permit Info Authority Having Jurisdiction: Structural Engineer of Record: License Number: Gravity Systems City of San Diego William F. Schell California, #4529 Ml2210066.00 06/17/2022 • The gravity systems and elements are evaluated and/or designed based on the loading prescribed in ASCE 7-16. • Occupancy Live Load (CCR Title 24, Table 1607.1): Description Distributed Reducible? Point Live Partition Live (psf) Load (lbs.) Load (psf) Roof 20 Yes 0 0 Floor (E) Mezzanine 65 Yes 0 15 Access Platform 40 Yes 0 0 Equipment Platform 125 No 2000 20 Lateral System • The building lateral force resisting system (LFRS) and all components will be designed for the critical effects of either seismic or wind forces. • Seismic Design Parameters are: ■ Site Class C ■ Ss = 0.929g ■ S1 =0.341g Sos= 0.743g ■ Equipment Anchorage per Chapter 13 Page 2 of 3 Millipore Sigma PH2B 2827 Whiptail Loop W. Carlsbad, CA 92010 MI2210066.00 , 06/17/2022 STRUCTURAL BASIS OF DESIGN MATERIAL SPECIFICATIONS AND STRENGTHS Reinforcing Steel • ASTM A615 -GR 60 or A706 • ASTM A706 -GR 60 • ASTM A1064 Structural Steel • All Wide Flange Sections: • Pipe: • Hollow Structural Sections (HSS): • Angles/Channels/Tees: • Plates: • Anchor Bolts in Concrete: • Machine Bolts (MB): • High Strength Bolts: • Welding Electrodes: Cold Formed Steel Studs • 18 GA (43 Mils) or thinner: • 16 GA (54 Mils) and thicker: Unless noted otherwise Welded Rebar, Threaded Rebar, lateral element Welded Wire Fabric ASTM -A992 ASTM -AS3 Type E or S, Gr B ASTM -ASOO/Gr C or A1085 ASTM -A36 ASTM -A36, or ASTM -AS72, Gr SO ASTM -F1554, Gr 55 ASTM-A307 ASTM -A325 Type N ASTM -E70xx -Structural Steel ASTM -E80xx -Rebar-to-Steel ASTM -E90xx -Rebar-to-Rebar ASTM A1003 Grade 33 (FY= 33 ksi) ASTM A1003 Grade SO (FY= 50 ksi) Page 3 of 3 t.. Millipore Sigma PH2B Ml2210066.00 2. LOADING © 2021 Miyamoto International, Inc. Millipore Sigma PH28 Ml2210066.00 ._ 2.1 SEISMIC LOADS © 2021 Miyamoto International, Inc. '-l\TC Hazards by Search Information Address: 2827 Whi Coordinates: 33.1431 Elevation: 388 ft Timestamp: 2022-06-1 Hazard Type: Seismic Reference ASCE7-1 Document: Risk Category: II Site Class: C MCER Horizontal R Sa(g) 1.00 0.80 0.60 0.40 0.20 0.00 0 2 4 Basic Parameters Name Value Ss 0.929 S1 0.341 SMs 1.114 SM1 0.512 Sos 0.743 So1 0.341 ~'.DiJ Long1feach 0 Anaheim Irvine 'll' Catalina lslana Essential F.lsh Hal:ii at... @e gle 6 8 Period (s) Description MCER ground motion (period=0.2s) MCER ground motion (period=1.0s) Site-modified spectral acceleration value Site-modified spectral acceleration value Sa(g) 0.60 0.40 0.20 0.00 Numeric seismic design value at 0.2s SA Numeric seismic design value at 1.0s SA 0 0 2 4 •Additional Information Name soc Value D 1.2 1.5 Description Seismic design category Site amplification factor at 0.2s Site amplification factor at 1.0s Terriecula 0 Palm Springs J, o N, Palm Desert 0 D La Qulnta Borrego spn.,ngs Cleveland Anza-Borrego National Forest Desert ' State Park San Diego :.v 0 •Map data ©2022 Google, INEGI 0 Chula Vista .--0 Tijuana 0 Rosarlto 6 8 0 ~ La Ru~ Tecate ~ Guadalupe 0 ,0 Period (s) CRs 0.909 Coefficient of risk (0.2s) CR1 0.917 Coefficient of risk (1 .0s) PGA 0.403 MCEG peak ground acceleration FPGA 1.2 Site amplification factor at PGA PGAM 0.484 Site modified peak ground acceleration TL 8 Long-period transition period ( s) SsRT 0.929 Probabilistic risk-targeted ground motion (0.2s) SsUH 1.021 Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) SsD 1.5 Factored deterministic acceleration value (0.2s) S1RT 0.341 Probabilistic risk-targeted ground motion (1.0s) S1UH 0.372 Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) S1D 0.6 Factored deterministic acceleration value (1 .0s) PGAd 0.5 Factored deterministic acceleration value (PGA) The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Disclaimer Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services. While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. ) I.. Millipore Sigma PH2B Ml2210066.00 2.2 LOADING CRITERIA © 2021 Miyamoto International, Inc. m I Yam Oto Pro~ect: Milli ore Sigma COMO Phase 2B Sheet No. • ProJect No: Ml2210066.00 Cale. By: MJI Date: 6/17/22 ---- Chk. By: Date: Loading Criteria Platform Load Item Gravity Seismic 20 Ga. Metal Deck 3.0 3.0 3-1/4" LW Concrete over 3" Deck 43.5 43.5 Steel Framing (Taken from RAM Output as Avg Wt) 8.5 8.5 Mech./ Elec. / Plumbing 13.5 13.5 Sprinklers 1.5 1.5 Ceiling 5.0 5.0 Miscellaneous 0.0 :E DL 75.0 75.0 Equipment 31.25 psf :E Total Seismic Mass, including self-weight 106.3 psf Live Load 125 psf (unreducible) WFI Access Platform Load Item Gravity Seismic 1/4" Checker Plate 10.0 10.0 0.0 Steel Framing 12.0 0.0 Mech. I Elec. / Plumbing 2.0 2.0 Sprinklers 1.5 1.5 Ceiling 5.0 5.0 Miscellaneous 1.5 1.5 :E DL 32.0 20.0 :E Total Seismic Mass, Not including self-weight 20.0 Live Load 40 psf (reducible) Loading Criteria Millipore Sigma PH28 MI2210066.00 3. PH2B PLATFORM © 2021 Miyamoto International, Inc. II ~!Bentley· RAM Steel 17.03.00.285 DataBase: Platform Building Code: IBC Floor Type: platform co '<I' M ( H.1 , ~) Floor Map Beam Numbers H.7 J) J,1 I '--.. \._ 06/17/22 13: 11 :29 Steel Code: AISC 360-16 LRFD ·-- / J.6 , r K 5 4.4 4.2 4 3.9 3.7 3.5 3.4 3.2 3 2.8 2.6 2.2 2 / Floor Map RAM Steel 17.03.00.285 Page 2/2 DataBase: Platform 06/17/22 13:11:29 ~\Bentley· Building Code: IBC Steel Code: AISC 360-16 LRFD Decks: Deck Label Deck Type Slab Orientatio Action n 1::::::1 3" Floor VERCO W3 Fonnlok One-Way 0.00 degrees 1111111 3" Floor VERCO W3 Formlok One-Way 90.00 degrees G) ~, ~ ~g;" 00 r ~=' ~ I '--1 I <- >:( \ ._,, / <- \ 0) (-\ ;,;::: ~ N W16x31 ~ 1-~ I~~ ', fFll?i ,~ ,~ ~ I ro Wi'tlCQ4 I ~ 'N8x10~ l~-10x1 o, ~w1 ::S:!4v Wai10 ~N N N NIOl § W16x31 1~ ~ "Y1~,,~l[_I~• ~1,4~ I; ~ W16!_31 ex> ~ W~10 :,,: ~ W16x31 °' W18 ol~ ,~,~ W18x60 ~ W16x31 1111 • '"' "" I ,~--,,~ -ll\.)-1~.,~ W16x31 W18x • ~~ W18x60 W16x31 W24x68~. W x14 rn :is "'f!f 0 1 -, W~i)OI --~ W16x31 ----,<c-W18x35 W16x31 W16x31 l:;;:!~12x1 W 2x14 W12x14 / J-18'. W1 6x31 §'-------.ta ~ W1 8x60 ~ W1 6x31 ~ W1 6x31 l~12x1 - w 2x14 ~ ~ w1·114 I 1 -1~ W16x31 ---'-'-'-=--'--"bl . W18x60 W16x31 W16x31 1~12x1 1 ~ ,~-11 W 2x14 W12x14 -,?-W16x31 __ :...:....:...::~. _ W18x60 W16x31 W24x68 !tr, _1 w x14 W12:t14 l 1-J ~ W16x31 ----.,.i::::>t· W1 8x65 W1 6x31 W1 6x31 J"fil,12x1 W 2X14 N ~ ~ W1,i14 ! JJ~ W16x31 W18 ~oJ_ "'~ ~ W18x60 ~ W16x31 ~ W16x31 1~12x1 W 2x14 :i :i i i 1.fil.iiiM w1' 2x14 I 1 -1~ W16x31 W18x ~ ~ W18x71 W16x31 1~~~31 lt12x1 ,~ ~--~ I l W 2x14 ~ W12x14 ·-·:::. ~~18x35:;;:_ --'~~-s..-~~-~-~-~~-~-~-~--'I~m~~ ~-l;M'8x1 _ ,~ Jt.' I._ jN 1~ 1~ I._ I~ 1~ I.. 'Vfflft)c10 2x1 N r-v N 0) N co (.,.) (.,.) r-v .... '.W16x26 ,"S. _,. .... W16x26.. ..... W16x26:...,=-•---.i:., (.,.) ~ (.,.) u, (.,.) ~ (.,.) (D .i,. .i,. r-v .i,. ~ <n ::2 0 0 "'I --3 :a tD '0 -~ -;, "'I = = tD ~ = c::, tD "' .... (JCI = "' ~ m (D ::::J -S' u:; ~ i s: -ti)~ 9: t:o ::s ti) Cl) (IQ Cl) ..... n ~ ~ 0 ""ti -0.. -...... 0 ti) -...J .. g, . 63 0 8 n3o 0 Cl) ..... 0 ~ n 0 0.. ~ 2::;o Cl) 0\ n ::::- vJ -...J 0\ ...._ otv I I'-) ...... -0\ vJ t""' ;.:. ~ ;:: c:, I.O N 00 VI .. ~ -0 0 ., ~ .~ Beam Summary RAM Steel 17.03.00.285 DataBase: Platform 06/1 7 /22 13: 11 :29 ~Jeentley· Building Code: IBC Steel Code: AISC 360-16 LRFD STEEL BEAM DESIGN SUMMARY: Demand/Capacity Limits for: Strength: 0.850 Deflection: 1.000 Floor Type: platform Bm# Length +Mu -Mu <l>Mn Fy Beam Size Studs ft kip-ft kip-ft kip-ft ksi 9 31.75 301.2 0.0 461 .2 50.0 W18X60 u 13 28.25 236.5 0.0 351.3 50.0 Wl6X31 u 22 14 28.25 261.3 0.0 351.3 50.0 W16X31 u 22 15 31.75 327.2 0.0 461 .2 50.0 W18X60 u 16 30.83 273.8 0.0 461 .2 50.0 W18X60 u 17 30.83 289.8 0.0 461.2 50.0 W18X60 u 18 30.83 266.2 0.0 521.3 50.0 W18X50 u 20 19 39.78 1058.1 0.0 1321.2 50.0 W24X94 u 64 20 29.03 249.9 0.0 309.9 50.0 W16X31 u 14 21 29.03 282.4 0.0 359.6 50.0 Wl6X31 u 26 22 29.03 259.4 0.0 391.8 50.0 W18X35 u 20 23 7.33 0.0 -353.2 35.00 1221.3 -359.0 1529.0 50.0 W27X84 u 74 3.00 0.0 -359.0 24 3.00 0.0 -238.4 35.00 1328.8 -415.8 1729.7 50.0 W30X90 u 70 3.00 0.0 -415.8 25 3.00 0.0 -239.9 35.00 1265.7 -380.7 1503.1 50.0 W30X90 u 35 3.00 0.0 -380.7 26 3.00 0.0 -239.3 35.00 1293.7 -392.6 1667.6 50.0 W30X90 56 3.00 0.0 -392.6 42 23.72 280.4 0.0 370.8 50.0 WI 8X35 u 6,3,5 44 20.72 408.9 0.0 563.5 50.0 Wl8X40 u 50 47 7.33 0.0 -41 .7 35.00 210.5 -41 .7 556.6 50.0 W16X45 u 40 56 28.25 254.8 -3.0 339.2 50.0 Wl6X31 u 22 58 27.31 238.7 0.0 33 1.9 50.0 Wl6X31 u 20 59 27.31 240.5 0.0 332.2 50.0 W16X31 u 20 60 27.31 240.5 0.0 332.2 50.0 W I6X3 I u 20 61 28.25 257.1 0.0 351.3 50.0 Wl6X3 1 u 22 62 28.25 257.1 0.0 351.3 50.0 Wl6X31 u 22 63 28.25 270.7 0.0 342.2 50.0 W16X3 l u 22 64 31.75 321.3 0.0 462.9 50.0 W 18X35 u 40 65 31.75 321.1 0.0 461 .2 50.0 W l 8X60 u 66 31.75 322.0 0.0 461.2 50.0 Wl8X60 u 67 30.83 283.5 0.0 460.4 50.0 W18X35 u 40 68 30.83 273.6 0.0 461.2 50.0 W18X60 u II Beam Summary ' RAM Steel 17.03.00.285 Page 2/6 DataBase: Platform 06/17 /22 13: 11 :29 ~!Bentley· Building Code: IBC Steel Code: AISC 360-16 LRFD Bm# Length +Mu -Mu <I>Mn Fy Beam Size Studs 69 30.83 285.2 0.0 461.2 50.0 W18X60 u 70 29.03 271.8 0.0 342.3 50.0 W16X31 u 20 71 29.03 271.8 0.0 342.3 50.0 W16X31 u 20 72 29.03 295.5 0.0 359.6 50.0 W16X31 26 73 27.31 248.4 0.0 332.2 50.0 W16X31 u 20 74 27.31 226.6 0.0 329.5 50.0 W16X3l u 20 75 27.31 243.6 0.0 331.8 50.0 W16X31 u 20 76 28.25 265.5 0.0 351.3 50.0 W16X31 u 22 77 28.25 265 .5 0.0 351.3 50.0 W16X31 u 22 78 28.25 280.4 0.0 342.2 50.0 W16X31 u 22 79 3 1.75 351.8 0.0 498.8 50.0 W18X65 u 80 31.75 331.5 0.0 461 .2 50.0 W18X60 u 81 31.75 381.6 0.0 547.5 50.0 W18X71 u 82 30.83 282.4 0.0 461.2 50.0 W18X60 u 83 30.83 282.4 0.0 461 .2 50.0 Wl8X60 u 84 30.83 294.7 0.0 461 .2 50.0 W18X60 u 85 29.03 286.8 0.0 359.6 50.0 W16X3 l u 26 86 29.03 280.7 0.0 332.4 50.0 W16X31 18 87 29.03 281 .0 0.0 332.4 50.0 W16X31 18 91 19.17 88.1 -45.8 308.9 50.0 Wl6X31 u 17 92 3 1.75 280.9 -38.8 398.0 50.0 W21X48 u 93 31.75 290.0 0.0 461.2 50.0 Wl8X60 u 94 30.83 261.8 0.0 461.2 50.0 W18X60 u 95 30.83 240.7 0.0 461.2 50.0 W18X60 u 96 29.03 243 .8 -22.6 332.4 50.0 W16X31 u 20 97 29.03 241 .2 0.0 309.9 50.0 Wl6X31 u 14 98 8.25 21.7 0.0 65.2 50.0 Wl2Xl4 u 99 8.25 21.7 0.0 65.2 50.0 W12X14 u 100 8.25 21.7 0.0 65.2 50.0 W12X14 u 101 8.25 22 .5 0.0 65 .2 50.0 W12X14 u 102 8.25 22.5 0.0 65.2 50.0 W12X14 u 103 8.25 22.5 0.0 65.2 50.0 W12X14 u 11 6 10.50 0.0 -98.5 16.39 79.9 -98.5 458.0 50.0 W18X40 u 15 , 9 118 9.93 33.6 0.0 46.9 50.0 W10X12 155 7.33 0.1 0.0 41.2 50.0 W12X14 u 156 7.33 0.1 0.0 41.2 50.0 Wl2X14 u 160 8.75 4.0 0.0 49.3 50.0 W12Xl4 u 161 8.75 4.0 0.0 49.3 50.0 Wl2X14 u 162 9.04 4.1 0.0 47.8 50.0 W12X14 u 163 9.06 4.2 0.0 47.7 50.0 W12Xl4 u 168 8.75 5.6 0.0 63.5 50.0 W12X14 u 169 8.75 4.0 0.0 49.3 50.0 Wl2Xl4 u 170 9.04 4.1 0.0 47.8 50.0 W12X14 u 171 9.06 4.2 0.0 47.7 50.0 Wl2Xl4 u Beam Summary RAM Steel 17.03.00.285 Page 3/6 DataBase: Platform 06/17/22 13:11 :29 ~!Bentley· Building Code: IBC Steel Code: AISC 360-16 LRFD Bm# Length +Mu -Mu <l>Mn Fy Beam Size Studs 177 27.31 232.4 -412.1 937.7 50.0 W24X68 u 37 8.25 0.0 -412. l 179 27.31 181.4 -270.1 720.0 50.0 W24X55 u 26 8.25 0.0 -270.1 182 10.50 0.0 -120.6 8.20 0.0 -120.6 202.5 50.0 Wl6X31 183 10.50 0.0 -119.0 8.20 0.0 -119.0 202.5 50.0 Wl6X31 190 8.20 7.1 0.0 49.6 50.0 W12X14 u 193 2.50 0.1 0.0 32.9 50.0 W8Xl0 194 8.19 1.4 0.0 35.3 50.0 Wl2X14 u 195 8.19 1.4 0.0 35.3 50.0 Wl2Xl4 u 196 8.75 1.1 0.0 31.5 50.0 W12X14 u 197 9.04 1.2 0.0 29.7 50.0 W12X14 u 198 8.75 1.1 0.0 31.5 50.0 W12X14 u 199 9.04 1.2 0.0 29.7 50.0 W12Xl4 u 200 8.19 2.3 0.0 50.6 50.0 Wl2Xl4 u 202 8.75 1.1 0.0 31.5 50.0 W12Xl4 u 203 9.04 1.2 0.0 29.7 50.0 Wl2Xl4 u 204 8.19 2.3 0.0 50.6 50.0 Wl2Xl4 u 205 8.75 1.1 0.0 31.5 50.0 W12Xl4 u 206 9.04 1.2 0.0 29.7 50.0 Wl2Xl4 u 216 6.25 0.0 -92.7 124.5 50.0 Wl4X22 217 33.18 1223.4 -204.0 1594.8 50.0 W27X94 u 60 6.25 0.0 -204.0 218 33.18 1203.1 -206. l 1549.5 50.0 W27X94 u 53 6.25 0.0 -206. 1 219 33.18 1122.7 -190.5 1417.8 50.0 W27X84 u 53 6.25 0.0 -190.5 220 33.18 1290.6 -207.1 1644.9 50.0 W27X94 u 70 6.25 0.0 -207. l 221 29.03 113.0 0.0 146.2 50.0 Wl6X31 222 30.83 125.0 0.0 194.6 50.0 Wl6X36 u 223 31.75 137.8 0.0 310.1 50.0 W16X26 u 24 224 28.25 109.0 0.0 310.1 50.0 Wl6X26 u 24 225 36.18 228.3 -15.5 563.7 50.0 Wl6X45 u 40 4.25 0.0 -15.5 226 6.25 0.0 -103.6 202.5 50.0 Wl6X31 u 227 8.25 6.6 0.0 65 .2 50.0 Wl2X14 u 228 27.3 1 99.8 0.0 165.8 50.0 W16X26 229 6.25 0.1 0.0 46.8 50.0 Wl2X14 u 230 6.25 0.1 0.0 46.8 50.0 W1 2X14 u 231 6.25 0.1 0.0 46.8 50.0 W12X14 u 232 6.25 0.1 0.0 46.8 50.0 W12X14 u 241 6.25 0. 1 0.0 46.8 50.0 Wl2X14 u Beam Summary • RAM Steel 17.03.00.285 Page 4/6 DataBase: Platform 06/17/22 13:11 :29 ~!Bentley· Building Code: IBC Steel Code: AISC 360-16 LRFD Bm# Length +Mu -Mu <I>Mn Fy Beam Size Studs 242 6.25 0.1 0.0 46.8 50.0 Wl2X14 u 244 3.00 1.4 0.0 65.2 50.0 W12X14 u 246 3.00 1.4 0.0 65.2 50.0 W12X14 u 247 3.00 1.5 0.0 65.2 50.0 Wl2X14 u 248 3.00 1.5 0.0 65.2 50.0 W12Xl4 u 249 6.25 0.1 0.0 46.8 50.0 Wl2X14 u 250 6.25 0.1 0.0 46.8 50.0 W12X14 u 251 6.25 0.1 0.0 46.8 50.0 W12X14 u 252 6.25 0.1 0.0 46.8 50.0 W12X14 u 255 3.00 1.5 0.0 65.2 50.0 W12X14 u 256 3.00 1.5 0.0 65.2 50.0 W12X14 u 257 3.00 1.4 0.0 65.2 50.0 Wl2X14 u 258 3.00 1.4 0.0 32.9 50.0 W8XI0 259 8.20 0.2 0.0 35 .2 50.0 W12X14 u 260 8.20 0.2 0.0 35.2 50.0 W12X14 u 261 8.20 0.2 0.0 35.2 50.0 W12X14 u 263 8.20 7.5 0.0 49.6 50.0 W12X14 u 264 7.33 7.5 0.0 65.2 50.0 W1 2X14 u 265 8.20 0.2 0.0 35.2 50.0 W12X14 u 266 8.20 0.2 0.0 35.2 50.0 W12X14 u 267 8.20 0.2 0.0 35.2 50.0 W12X14 u 268 8.75 4.4 0.0 55.8 50.0 W12X14 u 269 8.75 4.4 0.0 55.8 50.0 W12X14 u 270 9.04 4.7 0.0 55.6 50.0 W12X14 u 271 9.04 4.7 0.0 55.6 50.0 W12X14 u 272 3.00 1.4 0.0 65.2 50.0 W12Xl4 u 273 3.00 1.4 0.0 65.2 50.0 W12Xl4 u 274 3.00 1.5 0.0 65.2 50.0 W12X14 u 275 3.00 1.5 0.0 65.2 50.0 W12X14 u 276 6.25 0.1 0.0 46.8 50.0 Wl2X14 u 277 6.25 0.1 0.0 46.8 50.0 W12X14 u 278 6.25 0.1 0.0 46.8 50.0 W12X14 u 279 6.25 0.1 0.0 46.8 50.0 W12X 14 u 280 6.25 0.1 0.0 46.8 50.0 W12X14 u 281 9.04 4.7 0.0 55.6 50.0 W12X14 u 282 9.04 4.7 0.0 55.6 50.0 W12Xl4 u 283 8.75 4.4 0.0 55.8 50.0 W12Xl4 u 284 8.75 4.4 0.0 55.8 50.0 W12X14 u 285 3.00 1.4 0.0 65.2 50.0 W12X14 u 286 3.00 1.4 0.0 65.2 50.0 W1 2Xl4 u 287 3.00 1.5 0.0 65.2 50.0 W12X14 u 288 3.00 1.5 0.0 65.2 50.0 W12X14 u 289 9.04 8.8 0.0 51.3 50.0 Wl2X14 u 290 9.04 8.8 0.0 51.3 50.0 Wl2Xl4 u 291 8.50 8.1 0.0 65.2 50.0 W12X14 u Beam Summary RAM Steel 17.03.00.285 Page 5/6 DataBase: Platform 06/17/22 13:11:29 ~!Bentley· Building Code: IBC Steel Code: AISC 360-16 LRFD Bm# Length +Mu -Mu <l>Mn Fy Beam Size Studs 292 8.75 2.6 0.0 53.2 50.0 W12X14 u 293 7.33 1.6 0.0 55.4 50.0 W12X14 u 294 7.33 1.6 0.0 55.4 50.0 W12Xl4 u 295 9.04 1.2 0.0 29.7 50.0 Wl2X14 u 296 9.06 1.2 0.0 29.6 50.0 Wl2X14 u 297 9.04 1.2 0.0 29.7 50.0 W12X14 u 298 8.75 1.1 0.0 31.5 50.0 Wl2X14 u 299 8.75 1.1 0.0 31.5 50.0 Wl2X14 u 300 9.04 1.2 0.0 29.7 50.0 W12X14 u 301 9.06 1.2 0.0 29.6 50.0 Wl2Xl4 u 302 9.04 1.2 0.0 29.7 50.0 Wl2X14 u 303 8.75 1.1 0.0 31.5 50.0 Wl2X14 u 304 8.75 1.1 0.0 31.5 50.0 Wl2Xl 4 u 306 9.04 1.2 0.0 29.7 50.0 W12X14 u 307 9.06 1.2 0.0 29.6 50.0 W12X14 u 308 9.04 1.2 0.0 29.7 50.0 W12Xl4 u 309 8.75 1.1 0.0 31.5 50.0 W12X14 u 310 8.75 1.1 0.0 31.5 50.0 W12X14 u 311 9.06 1.2 0.0 29.6 50.0 W12X14 u 312 9.04 1.2 0.0 29.7 50.0 WI2X14 u 313 9.04 1.2 0.0 29.7 50.0 Wl2X14 u 314 8.75 1.1 0.0 31.5 50.0 Wl2X14 u 315 8.75 1.1 0.0 31.5 50.0 Wl2X14 u 318 8.20 0.2 0.0 35.2 50.0 W12X14 u 324 9.04 18.2 0.0 23.5 50.0 W10Xl2 325 3.00 0.7 0.0 32.9 50.0 W8X10 326 6.25 3.6 0.0 32.9 50.0 W8X10 327 6.25 2.1 0.0 32.9 50.0 W8X10 328 3.50 0.8 0.0 32.9 50.0 W8X10 329 3.50 0.5 0.0 32.9 50.0 W8Xl0 330 3.50 1.0 0.0 32.9 50.0 W8X10 331 3.50 0.7 0.0 32.9 50.0 W8Xl0 332 2.50 0.1 0.0 32.9 50.0 W8X10 333 8.20 1.9 0.0 29.0 50.0 W8Xl0 334 8.20 1.9 0.0 29.0 50.0 W8X10 335 2.08 0.1 0.0 32.9 50.0 W8X10 336 2.08 0.3 0.0 32.9 50.0 W8Xl0 337 3.00 0.6 0.0 32.9 50.0 W8X10 338 7.33 1.1 0.0 23.3 50.0 W8Xl0 339 7.33 1.1 0.0 23 .3 50.0 W8X10 340 7.33 1.1 0.0 23.3 50.0 W8X10 341 7.33 1.1 0.0 23.3 50.0 W8X10 343 6.25 3.2 0.0 32.6 50.0 W8X10 344 5.67 2.5 0.0 32.9 50.0 W8X10 345 6.25 5.1 0.0 32.6 50.0 W8X10 Gravity Column Desi2n Summary RAM Steel 17.03.00.285 DataBase: Platform 06/17 /22 15:57: 17 ~!Bentley· Building Code: IBC Steel Code: AISC360-16 LRFD DEMAND/CAPACITY LIMIT FOR STRENGTH : 0.900 Column Line 322.78ft-69.22ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size I st Floor 101.9 41.3 21.9 I 0.79EqH1-1a 90.0 50 HSS9X9X5/16 Column Line 322. 78ft-l 80.00ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 42.2 0.0 0.0 I 0.53 Eq Axial 0.0 50 HSS8X8Xl /8 Column Line 346.50ft-98.25ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 271 .9 0.0 0.0 I 0.83 Eq Axial 90.0 50 HSS9X9X5/16 Column Line 346.50ft-129.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 273.0 0.0 0.0 I 0.83 Eq Axial 90.0 50 HSS9X9X5/l 6 Column Line 346.50ft-l 60.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 275.2 0.0 0.0 l 0.84 Eq Axial 90.0 50 HSS9X9X5/16 Column Line 346.50ft-189.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 229.9 0.0 0.0 I 0.86 Eq Axial 90.0 50 HSS8X8X5/16 Column Line 381.50ft-98.25ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size I st Floor 339.8 0.0 0.0 1 0.87 Eq Axial 90.0 50 HSS9X9X3/8 Column Line 381.50ft-129.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 328.1 0.0 0.0 I 0.84 Eq Axial 90.0 50 HSS9X9X3/8 Column Line 381.50ft-160.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 349.4 0.0 0.0 I 0.90 Eq Axial 90.0 50 HSS9X9X3/8 Column Line 381.50ft-189.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size I st Floor 312.0 0.0 0.0 I 0.80 Eq Axial 90.0 50 HSS9X9X3/8 ~!Bentley· Gravity Column Desi2n Summary RAM Steel 17.03.00.285 DataBase: Platform Building Code: IBC Page 2/2 06/17/22 15:57:17 Steel Code: AISC360-16 LRFD Column Line 417.68ft-98.25ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 223.5 0.0 0.0 I 0.84 Eq Axial 90.0 50 HSS8X8X5/16 m1yamoto. BASEPLATE CHECK COLUMNS C1, C7 L COLUMNS C3 Pu 1 CONC. FOOTING Pu 1 CONC. FOOTING Sheet No: ___ _ Project: Millipore Sigma COMO -PH2B Project No: MI221ooss.oo Cale. By: _M_JI ___ Date: ---- Chk. By: Date: ___ _ COLUMN PER PLAN Pu_MAX = 340k Try Base Plate 1 1/4" x 1'-3" x 1'-3" qu = 339,000 / (15A2) = 1500 psi <l>Bn = 0.65*0.85*fc = 0.65*0.85*4000 = 2210 psi, OK Mu= 1.5*15*3"2 = 101.25 k-in 2 Zx = 15*1.25"2 / 4 = 5.85 in3 <!>Mn = 0.9*5.85*36 ksi = 189.85 k-in COLUMN PER PLAN Pu_MAX = 272k Try Base Plate 3/4" x 1 '-3" x 1 '-3" qu = 272,000 / ( 15"2) = 1200 psi <l>Bn = 0.65*0.85*fc = 0.65*0.85*4000 = 2210 psi, OK Mu = 1.2*15*3"2 = 81 k-in 2 ZX = 15*0.75"2 / 4 = 2.10 in3 <!>Mn= 0.9*2.10*36 ksi = 68 k-in, NG, USE 1", OK RAM Frame 17.03.00.285 ~!Bentley· DataBase: Platform LOAD COMBINATION CRITERIA: Roof Live Load: Load Combinations 06/17/22 16:15:42 Reducible Notional Loads Live Load factor fl (0.5 or 1.0) Sds (for Ev) Consider with all Combinations in direction of lateral load 1.000 RhoX RhoY LOAD CASE DEFINITIONS: D Dead Load Lp PosLiveLoad Ln NegLiveLoad El Seismic E2 Seismic E3 Seismic E4 Seismic NDI Notional ND2 Notional NLI Notional NL2 Notional ES Drift E6 Drift E7 Drift E8 Drift 0.743 1.300 1.300 RAMUSER RAMUSER RAMUSER EQ_ASCE716_X_ +E_F EQ_ ASCE7 l 6 _X _-E _F EQ_ASCE716_ Y _ +E_F EQ_ASCE716_Y _-E_F NL AISC360 DL X --- NL AISC360 DL Y --- NL AISC360 LL X --- NL AISC360 LL Y ---EQ_ ASCE716 _ X _ +E _ Drft EQ_ASCE716_X_-E_Drft EQ_ ASCE7 l 6 _ Y _ +E _ Drft EQ_ ASCE7 l 6 _ Y _-E _ Drft LOAD COMBINATIONS: IBC 2018 / ASCE 7-16 LRFD 1 * 1.400 D + 1.400 NDl 2 * 1 .400 D + 1 .400 ND2 3 * 1 .400 D -1 .400 ND 1 4 * 1.400 D -1 .400 ND2 5 * 1.200 D + 1.200 ND I + 1.600 Lp + 1.600 NLI 6 * 1.200 D + 1.200 ND2 + 1.600 Lp + 1.600 NL2 7 * 1.200 D -1.200 NDl + 1.600 Lp -1.600 NLl 8 * 1.200 D -1.200 ND2 + 1.600 Lp -1.600 NL2 9 * 1.200 D + 1.200 NDl + 1.600 Ln + 1.600 NLl 10 * 1.200 D + I .200 ND2 + 1.600 Ln + 1.600 NL2 11 * 1.200 D -1.200 ND1 + 1.600 Ln -1.600 NLI 12 * 1.200 D -1.200 ND2 + 1.600 Ln -1.600 NL2 13 * 1.349 D + 1.349 NDl + 1.000 Lp + 1.000 NLl + 1.300 El 14 * 1.349 D + 1.349 NDl + 1.000 Lp + 1.000 NLl + 1.300 E2 15 * 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 1.300 E3 16 * 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 1.300 E4 17 * 1.349 D + 1.349 ND l + 1.000 Lp + 1.000 NLI + 1.300 ES 18 * 1.349 D + 1.349 ND1 + 1.000 Lp + 1.000 NLl + 1.300 E6 19 * 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 1.300 E7 20 * 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 1.300 E8 II ~!Bentley· 21 22 23 24 25 26 27 28 29 30 RAM Frame 17.03.00.285 DataBase: Platform Load Combinations * 1.349 D -1.349 NDJ + 1.000 Lp -1.000 NLJ -1.300 El * 1 .349 D -1.349 NDJ + 1.000 Lp -1.000 NLl -1.300 E2 * 1.349 D -1.349 ND2 + 1.000 Lp -1 .000 NL2 -1.300 E3 * 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 -1.300 E4 * 1 .349 D -1.349 NDl + 1.000 Lp -1.000 NLJ -1.300 ES * 1.349 D -1.349 NDl + 1.000 Lp -1.000 NLJ -1.300 E6 * 1 .349 D -1 .349 ND2 + 1 .000 Lp -1.000 NL2 -1 .300 E7 * 1.349 D -1 .349 ND2 + 1.000 Lp -1 .000 NL2 -1.300 E8 * 1.349 D + 1.349 NDl + 1.000 Ln + 1.000 NLI + 1.300 El * 1.349 D + 1.349 ND1 + 1.000 Ln + 1.000 NLI + 1.300 E2 31 * 1.349 D + 1.349 ND2 + 1.000 Ln + 1.000 NL2 + 1.300 E3 32 * 1 .349 D + 1.349 ND2 + 1.000 Ln + 1.000 NL2 + 1.300 E4 33 * 1.349 D + 1.349 ND 1 + 1.000 Ln + 1.000 NLJ + 1.300 ES 34 * 1.349 D + 1.349 ND1 + 1.000 Ln + 1.000 NLJ + 1.300 E6 35 * 1.349 D + 1.349 ND2 + 1.000 Ln + 1.000 NL2 + 1.300 E7 36 * 1.349 D + 1.349 ND2 + 1.000 Ln + 1.000 NL2 + 1.300 E8 37 * 1 .349 D -1.349 ND1 + 1.000 Ln -1.000 NLJ -1.300 El 38 * 1.349 D -1.349 NDl + 1.000 Ln -1.000 NLJ -1.300 E2 39 * 1.349 D -1.349 ND2 + 1.000 Ln -1.000 NL2 -1.300 E3 40 * 1.349 D -1.349 ND2 + 1.000 Ln -1.000 NL2 -1.300 E4 41 * 1.349 D -1.349 NDJ + 1.000 Ln -1.000 NL1 -1.300 ES 42 * 1.349 D -1.349 ND1 + 1.000 Ln -1.000 NLI -1 .300 E6 43 * 1 .349 D -1.349 ND2 + 1.000 Ln -1.000 NL2 -1.300 E7 44 * 1.349 D -1.349 ND2 + 1.000 Ln -1.000 NL2 -1.300 E8 45 * 1.349 D + 1.349 ND] + 1.300 El 46 * 1.349 D + 1.349 ND I + 1.300 E2 47 * 1 .349 D + 1.349 ND2 + 1.300 E3 48 * 1.349 D + 1.349 ND2 + 1.300 E4 49 * 1.349 D + 1.349 NDI + 1.300 ES 50 * 1.349 D + 1.349 NDJ + 1.300 E6 51 * 1.349 D + 1.349 ND2 + 1.300 E7 52 * 1.349 D + 1.349 ND2 + 1.300 E8 53 * 1.349 D -1.349 NDl -1.300 El 54 * 1.349 D -1.349 ND 1 -1.300 E2 55 * 1.349 D -1.349 ND2 -1.300 E3 56 * 1.349 D -1.349 ND2 -1.300 E4 57 * 1.349 D -1.349 ND1 -1.300 ES 58 * 1.349 D -1.349 ND I -1.300 E6 59 * 1.349 D -1.349 ND2 -1.300 E7 60 * 1.349 D -1.349 ND2 -1.300 E8 61 * 0.751 D + 0.751 NDJ + 1.300 El 62 * 0.751 D + 0.751 NDI + 1.300 E2 63 * 0.751 D + 0.751 ND2 + 1.300 E3 64 * 0.751 D + 0.751 ND2 + 1.300 E4 65 * 0.751 D + 0.751 NDl + 1.300 ES 66 * 0.751 D + 0.751 NDl + 1.300 E6 Page 2/3 06/17/22 16:15:42 II ~!Bentley· RAM Frame 17.03.00.285 DataBase: Platform Load Combinations 67 * 0.751 D +0.751 ND2 + 1.300E7 68 * 0.751 D +0.751 ND2 + 1.300E8 69 * 0.751 D-0.751 NDl -1.300 El 70 * 0.751 D -0.751 NDl -1.300 E2 71 * 0.751 D -0.751 ND2 -1.300 E3 72 * 0.751 D-0.751 ND2-1.300E4 73 * 0.751 D -0.751 NDl -1.300 E5 74 * 0.751 D-0.751 NDJ -1.300E6 75 * 0.751 D -0.751 ND2 -1.300 E7 76 * 0.751 D -0.751 ND2 -1.300 E8 * = Load combination currently selected to use Page 3/3 06/17 /22 16: 15:42 Member Code Check RAM Frame 17.03.00.285 DataBase: Platform ~/Bentley· Building Code: IBC COLUMN INFORMATION: Story Level = 1st Floor Frame Number = 1 Fy (ksi) = 50.00 Column Size = Wl4Xl59 INPUT DESIGN PARAMETERS: Lu for Axial (ft) ___________ _ Lu for Bending (ft) __________ _ K _______________ _ CONTROLLING COLUMN FORCES -SHEAR X-Axis 18.62 18.62 1.00 06/17/22 16:15:42 Steel Code: AISC360-16 LRFD Column Number = 11 Y-Axis 19.00 19.00 1.00 Load Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 1.300 E4 Shear Top Vux (kip) _______ 43.55 Vuy (kip) ______ -0.01 Shear Bot. Vux (kip) _______ 43.55 Vuy(kip) ______ -0.01 SHEAR CHECK: Vux (kip) = 43.55 l .00Vnx (kip) = 335.25 Vux/1.00Vnx = 0.130 Vuy (kip) = -0.01 0.90Vny (kip) = 1002.46 Vuy/0.90Vny = 0.000 CONTROLLING COLUMN FORCES -AXIAL Load Combination: 1.200 D + 1.200 ND2 + 1.600 Lp + 1.600 NL2 AXIAL CHECK: Pu (kip) = 164.69 0.90Pnx (kip) 0.90Pny (kip) 0.90Pn (kip) = CONTROLLING COLUMN FORCES -FLEXURE 1921.22 1657.56 1657.56 Pu/0.90Pnx Pu/0.90Pny Pu/0.90Pn Load Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 1.300 E4 Axial Load (kip)______ 125.68 Moment Top Mux (kip-ft) ______ -395.35 Muy (kip-ft) ______ 0.00 Moment Bot. Mux (kip-ft) ______ 466.03 Muy(kip-ft) ______ -0.19 CALCULATED PARAMETERS: Pu ( kip) = 125.68 0.90Pnx (kip) = 1921.22 0.90Pny (kip) = 1657.56 Mux (kip-ft) = 466.03 0.90Mnx (kip-ft) = 1076.25 Muy(kip-ft) = -0.19 0.90Mny (kip-ft) = 547.50 Mex (kip-ft) = 1038.30 KL/Rx = 35.02 KL/Ry = 56.97 Cmx = 0.26 Cmy = 0.60 Blx = 1.00 Bly = 1.00 B2x = 1.09 B2y = 1.00 Baxial = 1.09 @angle (degrees) = 270.00 Cbx = 2.24 = 0.086 = 0.099 = 0.099 RAM Frame 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC INTERACTION EQUATION: Pu/0.90*Pn=0.065 EqHI-3: 0.111 +0.040 =0.151 Member Code Check Eq HI-lb Per Hl.3: 0.033 + 0.433 + 0.000 = 0.466 Page 2/10 06/17/22 16:15:42 Steel Code: AISC360-16 LRFD II Member Code Check ~!Bentley· RAM Frame 17.03.00.285 DataBase: Platform Building Code: IBC COLUMN INFORMATION: Story Level = 1st Floor Frame Number = 1 Fy (ksi) = 50.00 Column Size = Wl4Xl45 INPUT DESIGN PARAMETERS: Lu for Axial (ft) ___________ _ Lu for Bending (ft) __________ _ K _______________ _ CONTROLLING COLUMN FORCES -SHEAR X-Axis 18.62 18.62 1.00 Page 3/10 06/17/22 16:15:42 Steel Code: AISC360-16 LRFD Column Number = 12 Y-Axis 19.00 19.00 1.00 Load Combination: 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 -1.300 E4 Shear Top Vux (kip) _______ -40.27 Vuy(kip) ______ -0.20 Shear Bot. Vux (kip) _______ -40.27 Vuy (kip) ______ -0.20 SHEAR CHECK: Vux (kip) = -40.27 Vuy (kip) = -0.20 1.00Vnx (kip) 0.90Vny (kip) 301 .92 912.33 Vux/1.00Vnx = 0.133 Vuy/0.90Vny = 0.000 CONTROLLING COLUMN FORCES -AXIAL Load Combination: 1.200 D -1.200 ND2 + 1.600 Lp -1.600 NL2 AXIAL CHECK: Pu (kip) = 147.70 0.90Pnx (kip) 0.90Pny (kip) 0.90Pn (kip) = = CONTROLLING COLUMN FORCES -FLEXURE 1754.15 15 11.91 1511.91 Pu/0.90Pnx Pu/0.90Pny Pu/0.90Pn Load Combination: 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 -1.300 E4 Axial Load (kip)______ 123.57 Moment Top Mux (kip-ft) ______ 339.37 Muy (kip-ft) ______ 0.00 Moment Bot. Mux (kip-ft)______ -441.81 Muy (kip-ft) ______ -3.78 CALCULATED PARAMETERS: Pu ( kip) 123.57 0.90Pnx (kip) = 1754.15 0.90Pny (kip) = 1511.91 Mux (kip-ft) = -441.81 0.90Mnx (kip-ft) = 975.00 Muy(kip-ft) = -3.78 0.90Mny (kip-ft) = 498.75 Mex (kip-ft) = 937.03 KL/Rx = 35.30 KL/Ry = 57.26 Cmx = 0.29 Cmy = 0.60 Blx = 1.00 Bly = 1.00 B2x = 1.09 B2y = 1.00 Baxial = 1.09 @angle (degrees) = 90.00 Cbx = 2.23 = 0.084 = 0.098 = 0.098 RAM Frame 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC INTERACTION EQUATION: Pu/0.90*Pn=0.070 Eq Hl-3: 0.119 + 0.045 = 0.164 Member Code Check Eq Hl-lb Per Hl.3: 0.035 + 0.453 + 0.000 = 0.488 Page 4/10 06/17/22 16:15:42 Steel Code: AISC360-l 6 LRFD II Member Code Check ~!Bentley· RAM Frame 17.03.00.285 DataBase: Platform Building Code: IBC COLUMN INFORMATION: Story Level = 1st Floor Frame Number = Fy (ksi) = 50.00 Column Size = Wl4Xl 59 INPUT DESIGN PARAMETERS: Lu for Axial (ft) ___________ _ Lu for Bending (ft) __________ _ K _______________ _ CONTROLLING COLUMN FORCES -SHEAR X-Axis 18.62 18.62 1.00 Page 5/10 06/17/22 16:15:42 Steel Code: AISC360-l 6 LRFD Column Number = 13 Y-Axis 19.00 19.00 1.00 Load Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 1.300 E4 Shear Top Vux (kip) _______ 39.97 Vuy(kip) ______ -0.01 Shear Bot. Vux (kip)_______ 39.97 Vuy(kip) ______ -0.01 SHEAR CHECK: Vux (kip) = 39.97 1.00Vnx (kip) = 335.25 Vux/1.00Vnx = 0.119 Vuy (kip) = -0.01 0.90Vny (kip) = 1002.46 Vuy/0.90Vny = 0.000 CONTROLLING COLUMN FORCES -AXIAL Load Combination: 1.200 D + 1.200 ND2 + 1.600 Lp + 1.600 NL2 AXIAL CHECK: Pu (kip) = 101.42 0.90Pnx (kip) 0.90Pny (kip) 0.90Pn (kip) CONTROLLING COLUMN FORCES -FLEXURE 1921.22 1657.56 1657.56 Pu/0.90Pnx Pu/0.90Pny Pu/0.90Pn Load Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 1.300 E4 Axial Load (kip)______ 90.10 Moment Top Mux (kip-ft) ______ -339.84 Muy (kip-ft) ______ 0.00 Moment Bot. Mux (kip-ft) ______ 438.30 Muy (kip-ft) ______ -0.13 CALCULATED PARAMETERS: Pu ( kip) = 90.10 0.90Pnx (kip) = 1921.22 0.90Pny (kip) = 1657.56 Mux (kip-ft) = 438.30 0.90Mnx (kip-ft) = l 076.25 Muy(kip-ft) = -0.13 0.90Mny (kip-ft) = 547.50 Mex (kip-ft) = 1038.30 KL/Rx = 35.02 KL/Ry = 56.97 Cmx = 0.28 Cmy = 0.60 Blx = 1.00 Bly = 1.00 B2x = 1.09 B2y = 1.00 Baxial = 1.09 @angle (degrees) = 270.00 Cbx = 2.23 = 0.053 = 0.061 = 0.061 RAM Frame 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC INTERACTION EQUATION: Pu/0.90*Pn=0.047 Eq Hl-3: 0.080 + 0.036 = 0.116 Member Code Check Eq HI-lb Per HI .3 : 0.023 + 0.407 + 0.000 = 0.431 Page 6/10 06/17/22 16:15:42 Steel Code: AISC360-l 6 LRFD Member Code Check RAM Frame 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC BEAM INFORMATION: Story Level Fy (ksi) Beam Size = I st Floor Frame Number = 50.00 = Wl8X86 Left Connection -Reduced Beam Section Right Connnection -Reduced Beam Section a(in) = 5.630 b(in) = 12.000 c(in) = 1.630 Use Reduced Section Properties in Analysis INPUT DESIGN PARAMETERS: Lu for Axial (ft) ___________ _ Lu for Bending (ft) __________ _ K ________________ _ Top Flange Continuously Braced ______ _ Bottom Flange Continuously Braced _____ _ CONTROLLING BEAM SEGMENT FORCES -SHEAR X-Axis 29.83 29.83 1.00 Yes No Load Combination: 1.200 D + 1.200 ND2 + 1.600 Lp + 1.600 NL2 Segment distance (ft) i -end ________ 26.83 j -end _______________ 29.83 SHEAR CHECK: Page 7/10 06/17/22 16:15:42 Steel Code: AISC360-l 6 LRFD Beam Number = 7 Y-Axis 3.00 3.00 1.00 Vux (kip) = -87.21 Vuy (kip) = -0.00 l .00Vnx (kip) 0.90Vny (kip) 264.96 461.54 Vux/1.00Vnx = 0.329 Vuy/0.90Vny = 0.000 CONTROLLING BEAM SEGMENT FORCES -AXIAL Load Combination: 1.400 D + 1.400 NDJ Segment distance (ft) i -end _______ _ j-end ______________ _ AXIAL CHECK: Pu (kip) = 0.00 0.90Pnx (kip) 0.90Pny (kip) 0.90Pn (kip) = 1138.50 = 1138.50 = 1138.50 CONTROLLING BEAM SEGMENT FORCES -FLEXURE 3.00 10.33 Pu/0.90Pnx Pu/0.90Pny Pu/0.90Pn Load Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 1.300 E4 Segment distance (ft) i -end ________ 26.83 j -end _______________ 29.83 CALCULATED PARAMETERS: Pu (kip) = 0.00 0.90Pn (kip) = 1138.50 Mux (kip-ft) = -464.74 0.90Mnx (kip-ft) = 697.50 Muy(kip-ft) = 0.00 0.90Mny (kip-ft) = 181.50 Blx = 1.00 Bly = 1.00 B2x 1.09 B2y = 1.00 Baxial = 1.09 @angle (degrees) = 90.00 Cbx = 1.19 = 0.000 = 0.000 0.000 RAM Frame 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC INTERACTION EQUATION: Pu/0.90*Pn=0.000 Mrx/Mcx = 0.666 Member Code Check Page 8/10 06/17 /22 16: 15:42 Steel Code: AISC360-16 LRFD Member Code Check II ~!Bentley· RAM Frame 17.03.00.285 DataBase: Platform Building Code: IBC Page 9/10 06/1 7 /22 1 6: 1 5 : 4 2 Steel Code: AISC360-16 LRFD BEAM INFORMATION: Story Level Fy (ksi) Beam Size = 1st Floor Frame Number = Beam Number = 8 = 50.00 = W18X86 Left Connection -Reduced Beam Section Right Connnection -Reduced Beam Section a(in) = 5.630 b(in) = 12.000 c(in) = 1.630 Use Reduced Section Properties in Analysis INPUT DESIGN PARAMETERS: Lu for Axial (ft) ___________ _ Lu for Bending (ft) __________ _ K ________________ _ X-Axis 31.24 31.24 1.00 Yes No Y-Axis 3.00 3.00 1.00 Top Flange Continuously Braced ______ _ Bottom Flange Continuously Braced _____ _ CONTROLLING BEAM SEGMENT FORCES -SHEAR Load Combination: 1.200 D + 1.200 ND2 + 1.600 Lp + 1.600 NL2 Segment distance (ft) i -end ________ 28.24 j -end _______________ 31 .24 SHEAR CHECK: Vux (kip) = -55.38 l .00Vnx (kip) = 264.96 Vux/1 .00Vnx = Vuy (kip) = 0.00 0.90Vny (kip) = 461.54 Vuy/0.90Vny = CONTROLLING BEAM SEGMENT FORCES -AXIAL Load Combination: 1.400 D + 1.400 NDl Segment distance (ft) i -end 9.33 j -end 15.67 AXIAL CHECK: Pu (kip) = 0.00 0.90Pnx (kip) = 1138.50 Pu/0.90Pnx 0.90Pny (kip) = 1138.50 Pu/0.90Pny = 0.90Pn (kip) = 1138.50 Pu/0.90Pn = CONTROLLING BEAM SEGMENT FORCES -FLEXURE Load Combination: 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 -1.300 E4 Segment distance (ft) i -end ________ 0.00 j -end _______________ 3.00 CALCULATED PARAMETERS: Pu (kip) = 0.00 0.90Pn (kip) = 1138.50 Mux (kip-ft) = -416.36 0.90Mnx (kip-ft) = 697.50 Muy(kip-ft) = 0.00 0.90Mny (kip-ft) = 181.50 Blx = 1.00 Bly = 1.00 B2x = 1.09 B2y = 1.00 Baxial = 1.09 @angle (degrees) = 90.00 Cbx = 1.11 0.209 0.000 0.000 0.000 0.000 RAM Frame 17.03 .00.285 DataBase: Platform ~!Bentley· Building Code: IBC INTERACTION EQUATION: Pu/0.90*Pn=0.000 Mrx/Mcx = 0.597 Member Code Check Page 10/10 06/17/22 16:15:42 Steel Code: AISC360-16 LRFD Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Column Parameters Story: I st Floor Fy (ksi): 50.00 Frame No: I Size: Wl4Xl59 Frame Type: Special Moment Resisting Frame Criteria Member No: 1 I Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame D1.4a Required Strength ---OK 06/17/22 16:15:42 Steel Code: AISC34 l -I 6 -LRFD Compression: Max Pu (kip) = I 26.48 ---Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 3.000 E4 Tension: Max Pu/<j>Pn = 0.08 OK No tension on column D2.Sb Column Splices -Required Strength Design strength of column splices must meet or exceed the following forces: Required tension and compression strength from Dl.4a. Shear in major axis (kip)= 93.31 ---Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 3.000£4 Shear in minor axis (kip)= 12.39---Combination: 1.349 D + 1.349 NDI + 1.000 Lp + 1.000 NLJ + 3.000 E2 Moment in major axis (kip-ft)= 949.92 ---Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 3.000 E4 Moment in minor axis (kip-ft)= 235.37 ---Combination: 1.349 D + 1.349 NDI + 1.000 Lp + 1.000 NLJ + 3.000 E2 Required shear for column splice is max result from D2.5b and D2. 5c Refer to A/SC 341 section D2. 5b for additional detailing requirements. 358-5.3.2 Column Limitations ---OK Column Depth (in)= 15.00 OK E3.4c(l) Unbraced Connections ---OK Joint Above Column is Restrained Joint Below Column is Restrained E3.5a Basic Requirements (Dl.1 Highly Ductile) ---OK For calculation of web limit: Pu (kip)= 126.48 <j>Py (kip)= 2101.50 Flange b/tf = 6.55 Limit = 7.35 OK Web h/tw = 15.33 Limit = 55.32 OK E3.6g Column Splices (D2.5c Required Shear Strength) Column is at the lowest story. No column splice required Seismic Provisions Member Code Check RAM Structural System 17 .03 .00.285 DataBase: Platform ~!Bentley· Building Code: IBC Column Parameters Story: l st Floor Fy (ksi): 50.00 Frame No: l Size: W14Xl45 Frame Type: Special Moment Resisting Frame Criteria Member No: 12 Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame D1.4a Required Strength ---OK Page 2/28 06/17/22 16:15:42 Steel Code: AISC341-16 -LRFD Compression: Max Pu (kip)= 140.53 ---Combination: 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 - 3.000 E4 Tension: Max Pu/~Pn = 0.09 OK Max Pu (kip)= 5.01 ---Combination: 0.751 D + 0.751 ND2 + 3.000 E4 Max Pu/~Pn = 0.00 OK D2.5b Column Splices -Required Strength Design strength of column splices must meet or exceed the following forces: Required tension and compression strength from D 1. 4a. Shear in major axis (kip)= 74.93 ---Combination: 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 -3.000 E4 Shear in minor axis (kip)= 11.65 ---Combination: 1.349 D + 1.349 NDJ + 1.000 Lp + 1.000 NLJ + 3.000 E2 Moment in major axis (kip-ft)= 820.33 ---Combination: 1.349 D-1.349 ND2 + 1.000 Lp -1.000 NL2 - 3.000 E4 Moment in minor axis (kip-ft)= 221.28 ---Combination: 1.349 D + 1.349 ND/+ 1.000 Lp + 1.000 NLJ + 3.000 E2 Required shear for column splice is max result from D2.5b and D2.5c Refer to A/SC 341 section D2.5b for additional detailing requirements. 358-5.3.2 Column Limitations ---OK Column Depth (in)= 14.80 OK E3.4c(l) Unbraced Connections ---OK Joint Above Column is Restrained Joint Below Column is Restrained E3.5a Basic Requirements (D1.1 Highly Ductile) ---OK For calculation of web limit: Pu (kip)= 140.53 ~Py (kip)= 1921.50 Flange b/tf = 7.11 Limit= 7.35 OK Web h/tw = 16.79 Limit = 54.52 OK E3.6g Column Splices (D2.5c Required Shear Strength) Column is at the lowest story. No column splice required Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Column Parameters Story: 1st Floor Fy (ksi): 50.00 Frame No: 1 Size: W14Xl59 Frame Type: Special Moment Resisting Frame Criteria MemberNo: 13 Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame D1.4a Required Strength ---OK Page 3/28 06/17/22 16:15:42 Steel Code: AISC341-16 -LRFD Compression: Max Pu (kip)= 106.26 ---Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 3.000 E4 Tension: Max Pu/~Pn = 0.06 OK Max Pu (kip)= 8.62 ---Combination: 0.75 1 D-0.751 ND2 -3.000 E4 Max Pu/~Pn = 0.00 OK D2.5b Column Splices -Required Strength Design strength of column splices must meet or exceed the following forces: Required tension and compression strength/ram Dl.4a. Shear in major axis (kip)= 76.46 ---Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 3.000 E4 Shear in minor axis (kip)= 12. 73 ---Combination: 1.349 D -1.349 NDJ + 1.000 Lp -1.000 NLJ -3.000 El Moment in major axis (kip-ft)= 847.55 ---Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 3.000E4 Moment in minor axis (kip-ft)= 241.92 ---Combination: 1.349 D -1.349 NDJ + 1.000 Lp -1.000 NLJ - 3.000 El Required shear for column splice is max result/ram D2.5b and D2.5c Refer to A/SC 341 section D2.5b for additional detailing requirements. 358-5.3.2 Column Limitations ---OK Column Depth (in)= 15.00 OK E3.4c(l) Unbraced Connections ---OK Joint Above Column is Restrained Joint Below Column is Restrained E3.5a Basic Requirements (Dl.1 Highly Ductile)---OK For calculation of web limit: Pu (kip) = l 06.26 ~Py (kip)= 2101.50 Flange b/tf = 6.55 Limit = 7.35 OK Web h/tw = l 5.33 Limit = 55.91 OK E3.6g Column Splices (D2.5c Required Shear Strength) Column is at the lowest story. No column splice required Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~\Bentley· Building Code: IBC Beam Parameters Story: I st Floor Frame No: I Member No: 7 Fy (ksi): 50.00 Size: WI 8X86 Frame Type: Special Moment Resisting Frame Left Connection -Reduced Beam Section Right Connnection -Reduced Beam Section a(in) = 5.630 b(in) = 12.000 c(in) = 1.630 Use Reduced Section Properties in Analysis Criteria Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame Reduced Beam Section (RBS) Bending Check ---OK Distance column Flange to middle RBS (in) Max Moment at RBS (lap-ft) Load Combination Number Reduced plastic modulus -Zrbs (in 3 ) Mu I 0.9 Zrbs Fy End I 11.63 -288.93 24 141.75 0.54 OK EndJ 11.63 -376.90 16 141.75 0.71 OK E3.4b Stability Bracing of Beams (Dl.2b Highly Ductile) ---OK Max Lu (in)= 88.00 Lu Limit = 131.74 OK Lateral Bracing Requirements along Beam Required strength of lateral brace along beam (A-6-7) = 11.61 kip Required stiffness of bracing (A-6-8) = 7736.81 kip / Lb Lateral Bracing Requirements at Plastic Hinge Required strength of lateral brace at hinge = 26.53 kip Required stiffness of bracing (A-6-8) = 5896.00 kip / Lb Cd= 1.0 assumed for eqns (A-6-7/8) Lb = distance between braces (in) Page 4/28 06/17/22 16:15:42 Steel Code: AISC341-l 6 -LRFD The brace closest to the point of inflection should be designed for two times these values (Cd=2) E3.5a Basic Requirements (Dl.1 Highly Ductile) ---OK Flange b/tf = 5.99 Limit = 7.35 OK Web h/tw = 33.46 Limit = 59.01 OK E3.6b Beam-to-Column Connection Requirements Beam-to-column connection must be capable of sustaining a 0.04 radian interstory drift ratio. Requiredfl,exural strength of connection (kip-ft)= 0.8Mp = 620. 00 at story drift angle in (1) All beam-to-columnjoints to demonstrate conformance with E3.6b(l) as indicated in E3.6b(2) 358-5.3.1 Beam Limitations ---OK 5.3. l (2) Beam Depth ---OK Beam Depth (in)= 18.40 OK Shall ower than W36 5.3.1(3) Beam Weight---OK Beam Weight (lb/ft)= 86.09 OK Less than 300lb/ft 5.3.1 ( 4) Beam Flange Thickness ---OK Seismic Provisions Member Code Check ~!Bentley· RAM Structural System 17.03.00.285 DataBase: Platform Building Code: IBC Beam Flange Thickness (in)= 0.770 OK Less than I 3/4 in (44.5mm) 5.3.1(5) Beam Span-Depth Limitation ---OK Beam Span/Depth Ratio = 18.65 Exceeds lower limit of 7.0 Page 5/28 06/17/22 16:15:42 Steel Code: AISC341-l 6 -LRFD Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~jeentley· Building Code: IBC Beam Parameters Story: 1st Floor Frame No: 1 Member No: 8 Fy (ksi): 50.00 Size: Wl 8X86 Frame Type: Special Moment Resisting Frame Left Connection -Reduced Beam Section Right Connnection -Reduced Beam Section a(in) = 5.630 b(in) = 12.000 c(in) = 1.630 Use Reduced Section Properties in Analysis Criteria Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame Reduced Beam Section (RBS) Bending Check ---OK Distance column Flange to middle RBS (in) Max Moment at RBS (kip-ft) Load Combination Number Reduced plastic modulus -Zrbs (in 3 ) Mu I 0.9 Zrbs Fy End I 11.63 -359.36 24 141.75 0.68 OK EndJ 11.63 -272.02 16 141.75 0.51 OK E3.4b Stability Bracing of Beams (Dl.2b Highly Ductile) ---OK Max Lu (in)= 76.00 Lu Limit = 131.74 OK Lateral Bracing Requirements along Beam Required strength of lateral brace along beam (A-6-7) = 11 .61 kip Required stiffness of bracing (A-6-8) = 7736.81 kip / Lb Lateral Bracing Requirements at Plastic Hinge Required strength of lateral brace at hinge = 26.53 kip Required stiffness of bracing (A-6-8) = 5896.00 kip / Lb Cd = 1.0 assumed for eqns (A-6-7/8) Lb = distance between braces (in) Page 6/28 06/17 /22 16: 15:42 Steel Code: AISC341-16 -LRFD The brace closest to the point of inflection should be designed for two times these values (Cd=2) E3.5a Basic Requirements (Dl.1 Highly Ductile) ---OK Flange b/tf= 5.99 Limit = 7.35 OK Web h/tw = 33.46 Limit = 59.01 OK E3.6b Beam-to-Column Connection Requirements Beam-to-column connection must be capable of sustaining a 0. 04 radian interstory drift ratio. Required flexural strength of connection (kip-ft) = 0. 8Mp = 620. 00 at story drift angle in (1) All beam-to-column j oints to demonstrate conformance with E3.6b(J) as indicated in E3.6b(2) 358-5.3.1 Beam Limitations ---OK 5.3.1(2) Beam Depth ---OK Beam Depth (in)= 18.40 OK Sha llower th an W36 5.3.1(3) Beam Weight ---OK Beam Weight (lb/ft)= 86.09 OK Less than 300lb/ft 5.3.1(4) Beam Flange Thickness ---OK Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Beam Flange Thickness (in)= 0.770 OK Less than 1 3/4 in (44.5mm) 5.3.1 (5) Beam Span-Depth Limitation ---OK Beam Span/Depth Ratio = 19.56 Exceeds lower limit of7.0 Page 7/28 06/17/22 16:15:42 Steel Code: AISC34 l -I 6 -LRFD Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Column Parameters Story: 1st Floor Frame No: 2 Fy (ksi): 50.00 Size: W14Xl59 Frame Type: Special Moment Resisting Frame Criteria Member No: 8 Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame D1 .4a Required Strength ---OK Page 8/28 06/17/22 16:15:42 Steel Code: AISC34 l -16 -LRFD Compression: Max Pu (kip) = 182.80 ---Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 3.000 E3 Tension: Max Pu/<j>Pn = 0.11 OK Max Pu (kip)= 2.43 ---Combination: 0.751 D -0.751 ND2 -3.000 E3 Max Pu/<j>Pn = 0.00 OK D2.5b Column Splices -Required Strength Design strength of column splices must meet or exceed the following forces: Required tension and compression strength from Dl.4a. Shear in major axis (kip)= 74.1 I ---Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 3.000 E3 Shear in minor axis (kip)= I 3.06 ---Combination: 1.349 D -1.349 NDJ + 1.000 Lp -1.000 NLJ -3.000 El Moment in major axis (kip-ft)= 849.90 ---Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 3.000 E3 Moment in minor axis (kip-ft)= 248.05 ---Combination: 1.349 D -1.349 NDJ + 1.000 Lp -1.000 NLJ - 3.000 El Required shear for column splice is max result from D2.5b and D2.5c Refer to A/SC 341 section D2.5b for additional detailing requirements. 358-5.3.2 Column Limitations --OK Column Depth (in)= 15.00 OK E3.4c(l) Unbraced Connections ---OK Joint Above Column is Restrained Joint Below Column is Restrained E3.5a Basic Requirements (Dl.1 Highly Ductile) ---OK For calculation of web limit: Pu (kip)= 182.80 <j>Py (kip)= 2101.50 Flange b/tf= 6.55 Limit = 7.35 OK Web h/tw = 15.33 Limit = 53.67 OK E3.6g Column Splices (D2.5c Required Shear Strength) Column is at the lowest story. No column splice required Seismic Provisions Member Code Check ~!Bentley· RAM Structural System 17.03.00.285 DataBase: Platform Building Code: IBC Column Parameters Story: 1st Floor Frame No: 2 Fy (ksi): 50.00 Size: Wl4Xl59 Frame Type: Special Moment Resisting Frame Criteria Member No: 9 Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame D1.4a Required Strength ---OK Page 9/28 06/17/22 16:15:42 Steel Code: AISC34 l-16 -LRFD Compression: Max Pu (kip) = J 82.04 ---Combination: 1.349 D -1.349 ND2 + 1.000 Lp -J .000 NL2 - 3.000 E3 Tension: Max Pu/$Pn = 0.11 OK No tension on column D2.5b Column Splices -Required Strength Design strength of column splices must meet or exceed the following forces: Required tension and compression strength from Dl.4a. Shear in major axis (kip)= 92.44 ---Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 3.000 E3 Shear in minor axis (kip)= 12.58 ---Combination: 1.349 D -1.349 NDJ + 1.000 Lp -1.000 NLJ -3.000 El Moment in major axis (kip-ft)= 961 .23 ---Combination: 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 3.000 E3 Moment in minor axis (kip-ft)= 238.94 ---Combination: 1.349 D-1.349 NDJ + 1.000 Lp -1.000 NLJ - 3.000 El Required shear for column splice is max result from D2.5b and D2.5c Refer to AISC 341 section D2.5b for additional detailing requirements. 358-5.3.2 Column Limitations ---OK Column Depth (in)= 15.00 OK E3.4c(l) Unbraced Connections ---OK Joint Above Column is Restrained Joint Below Column is Restrained E3.5a Basic Requirements (Dl.1 Highly Ductile) ---OK For calculation of web limit: Pu (kip)= J 82.04 $Py (kip)= 2101 .50 Flange b/tf = 6.55 Limit = 7.35 OK Web h/tw = 15.33 Limit = 53.70 OK E3.6g Column Splices (D2.5c Required Shear Strength) Column is at the lowest story. No column splice required Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Column Parameters Story: 1st Floor Frame No: 2 Fy (ksi): 50.00 Size: W14X159 Frame Type: Special Moment Resisting Frame Criteria Member No: I 0 Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame D1.4a Required Strength ---OK Page 10/28 06/17/22 16:15:42 Steel Code: AISC341-16 -LRFD Compression: Max Pu (kip)= 193.05 ---Combination: J .349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 - 3.000 E3 Tension: Max Pu/<j>Pn = 0.12 OK No tension on column D2.5b Column Splices -Required Strength Design strength of column splices must meet or exceed the following forces: Required tension and compression strength from Dl.4a. Shear in major axis (kip)= 74. I I ---Combination: 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 -3.000 E3 Shear in minor axis (kip)= I 2.55 ---Combination: 1.349 D + 1.349 ND/+ 1.000 Lp + 1.000 NLJ + 3.000 E2 Moment in major axis (kip-ft)= 853. 76 ---Combination: 1.349 D-1.349 ND2 + 1.000 Lp -1.000 NL2 - 3.000 E3 Moment in minor axis (kip-ft)= 238.35 ---Combination: 1.349 D + 1.349 NDJ + 1.000 Lp + 1.000 NLJ + 3.000E2 Required shear for column splice is max resultfrom D2.5b and D2.5c Refer to A/SC 341 section D2.5b for additional detailing requirements. 358-5.3.2 Column Limitations --OK Column Depth (in)= 15.00 OK E3.4c(l) Unbraced Connections ---OK Joint Above Column is Restrained Joint Below Column is Restrained E3.5a Basic Requirements (Dl.1 Highly Ductile) --OK For calculation of web limit: Pu (kip)= 193.05 <j>Py (kip)= 2101.50 Flange b/tf = 6.55 Limit = 7.35 OK Web h/tw = 15.33 Limit = 53.38 OK E3.6g Column Splices (D2.5c Required Shear Strength) Column is at the lowest story. No column splice required Seismic Provisions Member Code Check ~!Bentley· RAM Structural System 17.03.00.285 DataBase: Platform Building Code: IBC Beam Parameters Story: 1st Floor Fy (ksi): 50.00 Frame No: 2 Size: WI 8X86 Member No: 3 Frame Type: Special Moment Resisting Frame Left Connection -Reduced Beam Section Right Connnection -Reduced Beam Section a(in) = 5.630 b(in) = 12.000 c(in) = 1.630 Use Reduced Section Properties in Analysis Criteria Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame Reduced Beam Section (RBS) Bending Check ---OK Distance column Flange to middle RBS (in) Max Moment at RBS (kip-ft) Load Combination Number Reduced plastic modulus -Zrbs (in 3 ) Mu I 0.9 Zrbs Fy End I 11.63 -246.81 23 141 .75 0.46 OK EndJ 11.63 -261.87 15 141 .75 0.49 OK E3.4b Stability Bracing of Beams (Dl.2b Highly Ductile) ---OK Max Lu (in)= 77.25 Lu Limit = 131.74 OK Lateral Bracing Requirements along Beam Required strength of lateral brace along beam (A-6-7) = 11.61 kip Required stiffness of bracing (A-6-8) = 7736.81 kip / Lb Lateral Bracing Requirements at Plastic Hinge Required strength of lateral brace at hinge = 26.53 kip Required stiffness of bracing (A-6-8) = 5896.00 kip / Lb Cd= 1.0 assumed for eqns (A-6-7/8) Lb = distance between braces (in) Page 11/28 06/17 /22 16: 15:42 Steel Code: AISC341-16 -LRFD The brace closest to the point of inflection should be designed/or two times these values (Cd= 2) E3.Sa Basic Requirements (Dl.l Highly Ductile) ---OK Flange b/tf = 5.99 Limit = 7.35 OK Web h/tw = 33.46 Limit = 59.01 OK E3.6b Beam-to-Column Connection Requirements Beam-to-column connection must be capable of sustaining a 0. 04 radian interstory drift ratio. Required flexural strength of connection (kip-ft)= 0.8Mp = 620.00 at story drift angle in (1) All beam-to-columnjoints to demonstrate conformance with E3.6b(l) as indicated in E3.6b(2) 358-5.3.l Beam Limitations --OK 5.3.1(2) Beam Depth ---OK Beam Depth (in)= 18.40 OK Shallower than W36 5.3.1(3) Beam Weight ---OK Beam Weight (lb/ft)= 86.09 OK Less than 3001b/ft 5.3.1(4) Beam Flange Thickness ---OK Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Beam Flange Thickness (in)= 0.770 OK Less than 1 3/4 in (44.5mm) 5.3.1(5) Beam Span-Depth Limitation ---OK Beam Span/Depth Ratio = 19.89 Exceeds lower limit of 7.0 Page 12/28 06/17/22 16:15:42 Steel Code: AISC34 l -l 6 -LRFD Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Beam Parameters Story: 1st Floor Frame No: 2 Member No: 4 Fy (ksi): 50.00 Size: W18X86 Frame Type: Special Moment Resisting Frame Left Connection -Reduced Beam Section Right Connnection -Reduced Beam Section a(in) = 5.630 b(in) = 12.000 c(in) = 1.630 Use Reduced Section Properties in Analysis Criteria Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame Reduced Beam Section (RBS) Bending Check ---OK Distance column Flange to middle RBS (in) Max Moment at RBS (kip-ft) Load Combination Number Reduced plastic modulus -Zrbs (in 3 ) Mu I 0.9 Zrbs Fy End I 11.63 -262.79 23 141.75 0.49 OK EndJ 11.63 -231 .39 15 141.75 0.44 OK E3.4b Stability Bracing of Beams (Dl.2b Highly Ductile) --OK MaxLu(in)= 89.00 LuLimit = 131.74 OK Lateral Bracing Requirements along Beam Required strength of lateral brace along beam (A-6-7) = 11.61 kip Required stiffness of bracing (A-6-8) = 7736.81 kip / Lb Lateral Bracing Requirements at Pl astic Hinge Required strength of lateral brace at hinge = 26.53 kip Required stiffness of bracing (A-6-8) = 5896.00 kip / Lb Cd= 1.0 assumed for eqns (A-6-7/8) Lb = distance between braces (in) Page 13/28 06/17/22 16:15:42 Steel Code: AISC341-16 -LRFD The brace closest to the point of inflection should be designed for two times these values (Cd= 2) E3.Sa Basic Requirements (Dl.1 Highly Ductile)---OK Flange b/tf= 5.99 Limit = 7.35 OK Web h/tw = 33.46 Limit = 59 .01 OK E3.6b Beam-to-Column Connection Requirements Beam-to-column connection must be capable of sustaining a 0.04 radian interstory drift ratio. Required flexural strength of connection (kip-ft)= 0.8Mp = 620.00 at story drift angle in (1) All beam-to-column joints to demonstrate conformance with E3.6b(J) as indicated in E3.6b(2) 358-5.3.l Beam Limitations --OK 5.3.1(2) Beam Depth ---OK Beam Depth (in)= 18.40 OK Shallower than W36 5.3.1(3) Beam Weight ---OK Beam Weight (lb/ft)= 86.09 OK Less than 300lb/ft 5.3.1(4) Beam Flange Thickness ---OK Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~\Bentley· Building Code: IBC Beam Flange Thickness (in)= 0.770 OK Less than I 3/4 in (44.5mm) 5.3.1(5) Beam Span-Depth Limitation ---OK Beam Span/Depth Ratio = 17.6 1 Exceeds lower limit of7.0 Page 14/28 06/17/22 16:15 :42 Steel Code: AISC341 -16 -LRFD Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~jsentley· Building Code: IBC Column Parameters Story: I st Floor Fy (ksi): 50.00 Frame No: 4 Size: Wl4Xl59 Frame Type: Special Moment Resisting Frame Criteria MemberNo: 1 Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame D1.4a Required Strength ---OK Page 15/28 06/17 /22 16: 15:42 Steel Code: AISC341-16 -LRFD Compression: Max Pu (kip)= 134.84 ---Combination: 1.349 D + l.349 NDI + 1.000 Lp + l.000 NL! + 3.000 E2 Tension: Max Pu/<j>Pn = 0.08 OK No tension on column D2.Sb Column Splices -Required Strength Design strength of column splices must meet or exceed the following forces: Required tension and compression strength from Dl.4a. Shear in major axis (kip)= 94.36 ---Combination: 1.349 D + 1.349 NDl + 1.000 Lp + 1.000 NLJ + 3.000 E2 Shear in minor axis (kip)= 12.16 ---Combination: 1.349 D-1.349 ND2 + 1.000 Lp-1.000 NL2 -3.000 E3 Moment in major axis (kip-ft)= 1009.22 ---Combination: 1.349 D + 1.349 NDI + 1.000 Lp + 1.000 NLJ + 3.000 E2 Moment in minor axis (kip-ft)= 231.05 ---Combination: 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 - 3.000 E3 Required shear for column splice is max result from D2.5b and D2.5c Refer to A/SC 341 section D2.5b for additional detailing requirements. 358-5.3.2 Column Limitations ---OK Column Depth (in)= 15.00 OK E3.4c(l) Unbraced Connections ---OK Joint Above Column is Restrained Joint Below Column is Restrained E3.Sa Basic Requirements (Dl.1 Highly Ductile) ---OK For calculation of web limit: Pu (kip) = 134.84 <j>Py (kip) = 210 J .50 Flange b/tf= 6.55 Limit = 7.35 OK Web h/tw = 15.33 Limit = 55 .08 OK E3.6g Column Splices (02.Sc Required Shear Strength) Column is at the lowest story. No column splice required Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Column Parameters Story: 1st Floor Frame No: 4 Fy (ksi): 50.00 Size: W14Xl59 Frame Type: Special Moment Resisting Frame Criteria MemberNo: 2 Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AJSC 358 Provisions to Moment Frame D1.4a Required Strength ---OK Page 16/28 06/17/22 16:15:42 Steel Code: AISC34 l -l 6 -LRFD Compression: Max Pu (kip) = 124.00 ---Combination: 1.349 D -1.349 ND 1 + 1.000 Lp -1.000 NL! - 3.000 E2 Tension : Max Pu/<j>Pn = 0.07 OK Max Pu (kip)= 4.37 ---Combination: 0.751 D + 0.751 ND]+ 3.000 E2 Max Pu/<j>Pn = 0.00 OK D2.5b Column Splices -Required Strength Design strength of column splices must meet or exceed the following forces: Required tension and compression strength.from Dl.4a. Shear in major axis (kip)= 85.36 ---Combination: 1.349 D -1.349 NDl + 1.000 Lp -1.000 NLl -3.000 E2 Shear in minor axis (kip)= 12.33 ---Combination: 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 -3.000 E4 Moment in major axis (kip-ft)= 939.15 ---Combination: 1.349 D -1.349 NDl + 1.000 Lp -1.000 NLl - 3.000 E2 Moment in minor axis (kip-ft)= 234.31 ---Combination: 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 - 3.000 E4 Required shear for column splice is max result from D2.5b and D2.5c Refer to A/SC 341 section D2.5b for additional detailing requirements. 358-5.3.2 Column Limitations ---OK Column Depth (in)= 15.00 OK E3.4c(l) Unbraced Connections ---OK Joint Above Column is Restrained Joint Below Column is Restrained E3.5a Basic Requirements (Dt.1 Highly Ductile) ---OK For calculation of web limit: Pu (kip)= 124.00 <j>Py (kip)= 2101.50 Flange b/tf= 6.55 Limit = 7.35 OK Web h/tw = 15.33 Limit = 55.39 OK E3.6g Column Splices (D2.5c Required Shear Strength) Column is at the lowest story. No column splice required Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Column Parameters Story: I st Floor Fy (ksi): 50.00 Frame No: 4 Size: Wl4Xl59 Frame Type: Special Moment Resisting Frame Criteria Member No: 3 Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame D1.4a Required Strength ---OK Page 17/28 06/17 /22 16: 15:42 Steel Code: AISC341-l 6 -LRFD Compression: Max Pu (kip) = 110.14 ---Combination: 1.349 D + 1.349 ND 1 + 1.000 Lp + 1.000 NL 1 + 3.000 E2 Tension: Max Pu/~Pn = 0.07 OK Max Pu (kip)= 5.21 ---Combination: 0.751 D -0.751 NDl -3.000 E2 Max Pu/~Pn = 0.00 OK D2.Sb Column Splices -Required Strength Design strength of column splices must meet or exceed the following forces: Required tension and compression strength from Dl.4a. Shear in major axis (kip)= 84.62 ---Combination: 1.349 D + 1.349 NDl + 1.000 Lp + 1.000 NLl + 3.000 E2 Shear in minor axis (kip)= 12.50---Combination: 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 -3.000 E3 Moment in major axis (kip-ft)= 950.04 ---Combination: 1.349 D + 1.349 NDl + 1.000 Lp + 1.000 NLl + 3.000 E2 Moment in minor axis (kip-ft)= 237.54 ---Combination: 1.349 D-1.349 ND2 + 1.000 Lp -1.000 NL2 - 3.000 E3 Required shear for column splice is max result from D2.5b and D2.5c Refer to A/SC 341 section D2.5b for additional detailing requirements. 358-5.3.2 Column Limitations --0 K Column Depth (in)= 15.00 OK E3.4c(l) Unbraced Connections ---OK Joint Above Column is Restrained Joint Below Column is Restrained E3.5a Basic Requirements (Dl.l Highly Ductile) ---OK For calculation of web limit: Pu (kip)= 110.14 ~Py (kip)= 2101.50 Flange b/tf = 6.55 Limit = 7.35 OK Web h/tw = 15.33 Limit = 55.80 OK E3.6g Column Splices (02.Sc Required Shear Strength) Column is at the lowest story. No column splice required Seismic Provisions Member Code Check RAM Structural System 17 .03 .00.285 DataBase: Platform ~!Bentley· Building Code: IBC Beam Parameters Story: 1st Floor Frame No: 4 MemberNo: 1 Fy (ksi): 50.00 Size: Wl 8X86 Frame Type: Special Moment Resisting Frame Left Connection -Reduced Beam Section Right Connnection -Reduced Beam Section a(in) = 5.630 b(in) = 12.000 c(in) = 1.630 Use Reduced Section Properties in Analysis Criteria Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame Reduced Beam Section (RBS) Bending Check---OK Distance column Flange to middle RBS (in) Max Moment at RBS (kip-ft) Load Combination Number Reduced plastic modulus -Zrbs (in 3 ) Mu / 0.9 Zrbs Fy End I 11.63 -342.40 22 141.75 0.64 OK EndJ 11 .63 -465.41 14 141.75 0.88 OK E3.4b Stability Bracing of Beams (Dl.2b Highly Ductile) ---OK Max Lu (in)= 69.00 Lu Limit = 131.74 OK Lateral Bracing Requirements along Beam Required strength of lateral brace along beam (A-6-7) = 11.61 kip Required stiffness of bracing (A-6-8) = 7736.81 kip / Lb Lateral Bracing Requirements at Plastic Hinge Required strength of lateral brace at hinge = 26.53 kip Required stiffness of bracing (A-6-8) = 5896.00 kip / Lb Cd = 1.0 assumed for eqns (A-6-7/8) Lb = distance between braces (in) Page 18/28 06/17/22 16:15:42 Steel Code: AISC341-16 -LRFD The brace closest to the point of inflection should be designed for two times these values (Cd= 2) E3.5a Basic Requirements (Dl.1 Highly Ductile) ---OK Flange b/tf = 5.99 Limit = 7.35 OK Web h/tw = 33.46 Limit = 59.01 OK E3.6b Beam-to-Column Connection Requirements Beam-to-column connection must be capable of sustaining a 0. 04 radian interstory drift ratio. Required flexural strength of connection (kip-ft)= 0.8Mp = 620.00 at story drift angle in (1) All beam-to-column j oints to demonstrate conformance with E3.6b(l) as indicated in E3.6b(2) 358-5.3.1 Beam Limitations ---OK 5.3.1(2) Beam Depth ---OK Beam Depth (in)= 18.40 OK Shall ower than W36 5.3.1(3) Beam Weight ---OK Beam Weight (lb/ft)= 86.09 OK Less than 3001b/ft 5.3.1(4) Beam Flange Thickness ---OK Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Beam Flange Thickness (in)= 0.770 OK Less than 1 3/4 in (44.5mm) 5.3 .1(5) Beam Span-Depth Limitation ---OK Beam Span/Depth Ratio = 22.01 Exceeds lower limit of 7.0 Page 19/28 06/17/22 16:15:42 Steel Code: AISC341-16 -LRFD Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~\Bentley· Building Code: IBC Beam Parameters Story: 1st Floor Fy (ksi): 50.00 Frame No: 4 Size: W l 8X86 Member No: 2 Frame Type: Special Moment Resisting Frame Left Connection -Reduced Beam Section Right Connnection -Reduced Beam Section a(in) = 5.630 b(in) = 12.000 c(in) = 1.630 Use Reduced Section Properties in Analysis Criteria Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame Reduced Beam Section (RBS) Bending Check---OK Distance column Flange to middle RBS (in) Max Moment at RBS (kip-ft) Load Combination Number Reduced plastic modulus -Zrbs (in 3 ) Mu / 0.9 Zrbs Fy End I 11 .63 -454.34 22 141.75 0.85 OK EndJ 11.63 -388.23 14 141.75 0.73 OK E3.4b Stability Bracing of Beams (D1.2b Highly Ductile) ---OK Max Lu (in)= 72.70 Lu Limit = 131.74 OK Lateral Bracing Requirements along Beam Required strength of lateral brace along beam (A-6-7) = 11.61 kip Required stiffness of bracing (A-6-8) = 7736.81 kip / Lb Lateral Bracing Requirements at Plastic Hinge Required strength of lateral brace at hinge = 26.53 kip Required stiffness of bracing (A-6-8) = 5896.00 kip / Lb Cd = 1. 0 assumed for eqns ( A-6-7 /8) lb = distance between braces (in) Page 20/28 06/17 /22 16: 15:42 Steel Code: AISC341-16 -LRFD The brace closest to the point of inflection should be designed for two times these values (Cd=2) E3.5a Basic Requirements (DJ.1 Highly Ductile) ---OK Flange b/tf = 5.99 Limit = 7.35 OK Web h/tw = 33.46 Limit = 59.01 OK E3.6b Beam-to-Column Connection Requirements Beam-to-column connection must be capable of sustaining a 0.04 radian interstory drift ratio. Required flexural strength of connection (kip-ft)= 0.8Mp = 620.00 at story drift angle in (1) All beam-to-column joints to demonstrate conformance with E3.6b(l) as indicated in E3.6b(2) 358-5.3.1 Beam Limitations ---OK 5.3.1(2) Beam Depth ---OK Beam Depth (in)= 18.40 OK Shallower th an W36 5.3.1(3) Beam Weight ---OK Beam Weight (lb/ft)= 86.09 OK Less than 300lb/ft 5.3.1(4) Beam Flange Thickness ---OK Seismic Provisions Member Code Check ~!Bentley· RAM Structural System 17.03.00.285 DataBase: Platform Building Code: IBC Beam Flange Thickness (in)= 0.770 OK Less than I 3/4 in (44.5mm) 5.3 .1 (5) Beam Span-Depth Limitation ---OK Beam Span/Depth Ratio = 22.78 Exceeds lower limit of 7.0 Page 21/28 06/1 7 /22 I 6: 15:42 Steel Code: AISC34 l-16 -LRFD Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Column Parameters Story: l st Floor Frame No: 5 Fy (ksi): 50.00 Size: Wl4X159 Frame Type: Special Moment Resisting Frame Criteria Member No: 4 Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame Page 22/28 06/17 /22 16: 15 : 4 2 Steel Code: AISC341-16 -LRFD D1.4a Required Strength ---OK Compression: Max Pu (kip) = 160.09 ---Combination: 1.349. D -1.349 ND l + 1.000 Lp -1.000 NL l - Tension: 3.000 El Max Pu/<j>Pn = 0.10 OK No tension on column D2.5b Column Splices -Required Strength Design strength of column splices must meet or exceed the following forces: Required tension and compression strength from Dl.4a. Shear in major axis (kip)= 84.50 ---Combination: 1.349 D -1.349 NDJ + 1.000 Lp -1.000 NLJ -3.000 El Shear in minor axis (kip)= 12.33 ---Combination: 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 -3.000 E4 Moment in major axis (kip-ft)= 949. 72 ---Combination: 1.349 D -1.349 NDJ + 1.000 Lp -1.000 NLJ - 3.000 El Moment in minor axis (kip-ft)= 234.31 ---Combination: 1.349 D-1.349 ND2 + 1.000 Lp -1.000 NL2 - 3.000 E4 Required shear for column splice is max result from D2.5b and D2.5c Refer to AISC 341 section D2. 5b for additional detailing requirements. 358-5.3.2 Column Limitations ---OK Column Depth (in)= 15.00 OK E3.4c(l) Unbraced Connections ---OK Joint Above Column is Restrained Joint Below Column is Restrained E3.5a Basic Requirements (Dl.1 Highly Ductile) ---OK For calculation of web limit: Pu (kip)= 160.09 <j>Py (kip)= 2101.50 Flange b/tf = 6.55 Limit = 7.35 OK Web h/tw = 15.33 Limit = 54.34 OK E3.6g Column Splices (D2.5c Required Shear Strength) Column is at the lowest story. No column splice required 11 Seismic Provisions Member Code Check ~!Bentley· RAM Structural System 17.03.00.285 DataBase: Platform Building Code: IBC Column Parameters Story: I st Floor Frame No: 5 Fy (ksi): 50.00 Size: WI 4X 159 Frame Type: Special Moment Resisting Frame Criteria Member No: 5 Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame D1 .4a Required Strength ---OK Page 23/28 06/17/22 16:15:42 Steel Code: AISC34 l -l 6 -LRFD Compression: Max Pu (kip)= 203.39 ---Combination: 1.349 D + 1.349 ND I + 1.000 Lp + 1.000 NLI + 3.000 El Tension: Max Pu/~Pn = 0.12 OK No tension on column D2.5b Column Splices -Required Strength Design strength of column splices must meet or exceed the following forces: Required tension and compression strength from Dl.4a. Shear in major axis (kip)= 96.01 ---Combination: 1.349 D -1.349 NDI + 1.000 Lp -1.000 NLI -3.000 El Shear in minor axis (kip)= 12.16 ---Combination: 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 -3.000 E3 Moment in major axis (kip-ft)= 1019.66 ---Combination: 1.349 D-1.349 NDI + 1.000 Lp -1.000 NLI - 3.000 El Mom ent in minor axis (kip-ft)= 231.05 ---Combination : 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 - 3.000 E3 Required shear for column splice is max result from D2.5b and D2.5c Refer to A/SC 341 section D2.5b for additional detailing requirements. 358-5.3.2 Column Limitations --OK Column Depth (in)= 15.00 OK E3.4c(t) Unbraced Connections ---OK Joint Above Column is Restrained Joint Below Column is Restrained E3.5a Basic Requirements (Dt.1 Highly Ductile)---OK For calculation of web limit: Pu (kip)= 203.39 ~Py (kip)= 2101.50 Flange b/tf = 6.55 Limit = 7.35 OK Web h/tw = 15.33 Limit = 53.07 OK E3.6g Column Splices (D2.5c Required Shear Strength) Column is at the lowest story. No column splice required Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Column Parameters Story: 1st Floor Frame No: 5 Fy (ksi): 50.00 Size: W l 4X 159 Frame Type: Special Moment Resisting Frame Criteria Member No: 6 Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame D1.4a Required Strength ---OK Page 24/28 06/ 1 7 /22 16: 15: 4 2 Steel Code: AISC341-16 -LRFD Compression: Max Pu (kip) = 152.66 ---Combination: 1.349 D + 1.349 ND 1 + 1.000 Lp + 1.000 NLl + 3.000 El Tension: Max Pu/<j>Pn = 0.09 OK No tension on column D2.5b Column Splices -Required Strength Design strength of column splices must meet or exceed the following forces: Required tension and compression strength from Dl.4a. Shear in major axis (kip)= 85.09 ---Combination: 1.349 D + 1.349 NDJ + 1.000 Lp + 1.000 NLJ + 3.000 El Shear in minor axis (kip)= 12.50 ---Combination: 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 -3.000 E3 Moment in major axis (kip-ft)= 939.60---Combination: 1.349 D + 1.349 NDJ + 1.000 Lp + 1.000 NLJ + 3.000 El Moment in minor axis (kip-ft)= 237.54 ---Combination: 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 - 3.000 E3 Required shear for column splice is max result from D2.5b and D2.5c Refer to A/SC 341 section D2.5b for additional detailing requirements. 358-5.3.2 Column Limitations ---OK Column Depth (in)= 15.00 OK E3.4c(l) Unbraced Connections ---OK Joint Above Column is Restrained Joint Below Column is Restrained E3.5a Basic Requirements (Dl.1 Highly Ductile) ---OK For calculation of web limit: Pu (kip)= 152.66 <j>Py (kip)= 2101.50 Flange b/tf= 6.55 Limit = 7.35 OK Web h/tw = 15.33 Limit = 54.55 OK E3.6g Column Splices (D2.5c Required Shear Strength) Column is at the lowest story. No column splice required Seismic Provisions Member Code Check ~!Bentley· RAM Structural System 17.03.00.285 DataBase: Platform Building Code: IBC Beam Parameters Story: I st Floor Frame No: 5 Member No: 5 Fy (ksi): 50.00 Size: WI 8X86 Frame Type: Special Moment Resisting Frame Left Connection -Reduced Beam Section Right Connnection -Reduced Beam Section a(in) = 5.630 b(in) = 12.000 c(in) = 1.630 Use Reduced Section Properties in Analysis Criteria Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame Reduced Beam Section (RBS) Bending Check---OK Distance column Flange to middle RBS (in) Max Moment at RBS (kip-ft) Load Combination Number Reduced plastic modulus -Zrbs (in 3 ) Mu I 0.9 Zrbs Fy End I 11.63 -509.25 21 141.75 0.96 OK EndJ 11.63 -406.12 13 141 .75 0.76 OK E3.4b Stability Bracing of Beams (Dl.2b Highly Ductile) ---OK Max Lu (in)= 72.70 Lu Limit = 131.74 OK Lateral Bracing Requirements along Beam Required strength of lateral brace along beam (A-6-7) = 11 .61 kip Required stiffness of bracing (A-6-8) = 7736.81 kip / Lb Lateral Bracing Requirements at Plastic Hinge Required strength of lateral brace at hinge = 26.53 kip Required stiffness of bracing (A-6-8) = 5896.00 kip / Lb Cd= 1.0 assumed for eqns (A-6-7/8) Lb = distance between braces (in) Page 25/28 06/17/22 16:15:42 Steel Code: AISC34 l -I 6 -LRFD The brace closest to the point of inflection should be designed for two times these values (Cd=2) E3.5a Basic Requirements (Dl.1 Highly Ductile) ---OK Flange b/tf = 5.99 Limit = 7.35 OK Web h/tw = 33.46 Limit = 59.01 OK E3.6b Beam-to-Column Connection Requirements Beam-to-column connection must be capable of sustaining a 0. 04 radian interstory drift ratio. Required flexural strength of connection (kip-ft)= 0.8Mp = 620.00 at story drift angle in (1) All beam-to-column joints to demonstrate conformance with E3.6b(l) as indicated in E3.6b(2) 358-5.3.1 Beam Limitations ---OK 5.3.1(2) Beam Depth ---OK Beam Depth (in)= 18.40 OK Shallower than W36 5.3.1(3) Beam Weight ---OK Beam Weight (lb/ft)= 86.09 OK Less than 300lb/ft 5.3.1(4) Beam Flange Thickness ---OK Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~JBentley· Building Code: IBC Beam Flange Thickness (in)= 0.770 OK Less than 1 3/4 in (44.5mm) 5.3.1(5) Beam Span-Depth Limitation ---OK Beam Span/Depth Ratio= 22.78 Exceeds lower limit of 7.0 Page 26/28 06/17/22 16:15:42 Steel Code: AISC34 l-16 -LRFD Seismic Provisions Member Code Check ~!Bentley· RAM Structural System 17.03.00.285 DataBase: Platform Building Code: IBC Beam Parameters Story: 1st Floor Frame No: 5 Member No: 6 Fy (ksi): 50.00 Size: WI 8X86 Frame Type: Special Moment Resisting Frame Left Connection -Reduced Beam Section Right Connnection -Reduced Beam Section a(in) = 5.630 b(in) = 12.000 c(in) = 1.630 Use Reduced Section Properties in Analysis Criteria Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame Reduced Beam Section (RBS) Bending Check---OK Distance column Flange to middle RBS (in) Max Moment at RBS (kip-ft) Load Combination Number Reduced plastic modulus -Zrbs (in 3 ) Mu I 0.9 Zrbs Fy End I 11.63 -413.42 21 141.75 0.78 OK EndJ 11.63 -487.72 13 141.75 0.92 OK E3.4b Stability Bracing of Beams (Dl.2b Highly Ductile) ---OK Max Lu (in)= 69.00 Lu Limit = 131.74 OK Lateral Bracing Requirements along Beam Required strength of lateral brace along beam (A-6-7) = 11.61 kip Required stiffness of bracing (A-6-8) = 7736.81 kip / Lb Lateral Bracing Requirements at Plastic Hinge Required strength of lateral brace at hinge = 26.53 kip Required stiffness of bracing (A-6-8) = 5896.00 kip / Lb Cd = 1.0 assumed for eqns (A-6-7/8) Lb = distance between braces (in) Page 27/28 06/1 7 /22 16: 1 5: 4 2 Steel Code: AISC341-16 -LRFD The brace closest to the point of inflection should be designed for two times these values (Cd= 2) E3.5a Basic Requirements (Dl.1 Highly Ductile) ---OK Flange b/tf= 5.99 Limit = 7.35 OK Web h/tw = 33.46 Limit = 59.01 OK E3.6b Beam-to-Column Connection Requirements Beam-to-column connection must be capable of sustaining a 0. 04 radian interstory drift ratio. Required.flexural strength of connection (kip-ft)= 0.8Mp = 620.00 at story drift angle in (1) All beam-to-column joints to demonstrate conformance with E3.6b(l) as indicated in E3.6b(2) 358-5.3.1 Beam Limitations --OK 5.3.1(2) Beam Depth ---OK Beam Depth (in)= 18.40 OK Shallower than W36 5.3.1(3) Beam Weight ---OK Beam Weight (lb/ft)= 86.09 OK Less than 300lb/ft 5.3.1(4) Beam Flange Thickness ---OK Seismic Provisions Member Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Beam Flange Thickness (in)= 0.770 OK Less than I 3/4 in (44.5mm) 5.3.1(5) Beam Span-Depth Limitation ---OK Beam Span/Depth Ratio = 22.01 Exceeds lower limit of 7.0 Page 28/28 06/17 /22 16: 15: 4 2 Steel Code: AISC341-16 -LRFD Story Displacements ~!Bentley· RAM Frame 17.03.00.285 DataBase: Platform Building Code: IBC CRITERIA: Rigid End Zones: Include Effects: 50.00% Reduction Member Force Output: At Face of Joint P-Delta: Yes Scale Factor: 1.00 Ground Level: Base Mesh Criteria : Max. Distance Between Nodes on Mesh Line (ft) : 4.00 Merge Node Tolerance (in): 0.0100 Geometry Tolerance (in) : 0.0050 Walls Out-of-plane Stiffness Not Included in Analysis. Use Reduced Stiffness for Steel Members (ATSC 360): 1b = 1.00 Sign considered for Dynamic Load Case Results. Rigid Links Included at Fixed Beam-to-Wall Locations Eigenvalue Analysis: Eigen Vectors (Subspace Iteration) LOAD CASE DEFINITIONS: D DeadLoad RAMUSER Lp PosLiveLoad RAMUSER Ln NegLiveLoad RAMUSER El Seismic EQ_ASCE716_X_ +E_F E2 Seismic EQ_ASCE716_X_-E_F E3 Seismic EQ_ASCE716_ Y _ +E_F E4 Seismic EQ_ASCE716_Y_-E_F NDl Notional NL AISC360 DL X ---ND2 Notional NL AISC360 DL Y ---NLI Notional NL AISC360 LL X ---NL2 Notional NL AISC360 LL Y E5 Drift EQ ASCE716 X +E Drft ----E6 Drift EQ_ASCE7 l 6 _ X _-E_Drft E7 Drift EQ ASCE716 Y +E Drft ----E8 Drift EQ_ASCE716_ Y _-E_Drft Level: 1st Floor, Diaph: 1 Center of Mass (ft): (373.98, 144.12) LdC Disp X Disp Y in in D 0.00086 -0.00949 Lp 0.00088 -0.03155 Ln 0.00001 0.00334 El 0.92251 -0.00170 E2 0.92197 0.00159 E3 -0.00025 0.89211 E4 0.00014 0.88975 NDI 0.01097 -0.00000 ND2 -0.00000 0.01059 NL1 0.02628 -0.00000 Theta Z rad 0.00001 0.00004 -0.00000 -0.00009 0.00008 0.00008 -0.00004 -0.00000 0.00000 -0.00000 06/1 7 /22 16: 15 : 4 2 Story Displacements RAM Frame 17.03.00.285 Page 2/2 DataBase: Platform 06/17 /22 16: 15:42 ~!Bentley· Building Code: IBC NL2 -0.00000 0.02539 0.00000 ES 0.42028 -0.00077 -0.00004 E6 0.42004 0.00072 0.00004 E7 -0.00011 0.41346 0.00004 E8 0.00006 0.41236 -0.00002 Seismic Provisions Joint Code Check ~!Bentley· RAM Structural System 17.03.00.285 DataBase: Platform Building Code: IBC 06/17/22 16:15:42 Steel Code: AISC34 l-l 6 -LRFD Joint Parameters Story: 1st Floor Fy (ksi): 50.00 Frame No: 1 Joint No: 2 Column Size: Wl4Xl 59 Joint Frame Type: Special Moment Resisting Frame Criteria Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame Strain Hardening Factor Cpr = 1.10 E3.4a Moment Ratio ---OK Col. Size Bot W14X159 Bm. Size M*pc (kip-ft) 1131.11 Zc (in3) 287.00 Pu (kip) 126.38 Combo# 4 M*pb (kip-ft) Mpr (kip-ft) Muv (kip-ft) Sh+dc/2 (in) 8 W18X86 755.20 714.63 40.57 19.13 7 W18X86 887.84 714.63 173 .21 19 .13 Sh = Distance face-of-column to location of hinge. Mpr = Cpr x Ry x Fy x Zhng, where Zhng = Z at hinge. :EM*pc = :EZc(Fyc-Pu/ Ag) (kip-ft)= 1131.11 :EM*pb (kip-ft)= 1643.04 :EM*pc/ :E M*pb (Eqn E3-l) = 0.69 <= 1.0 NG Exception to 3.4a ---OK Column must conform to one of E3.4a(a) or E3.4a(b) below: E3.4a(a) Column must meet Pre < Pc as well as 1 or 2 below---OK Pre (kip)= 125.68 from Standard Provision load combo number 16 Pc (kip)= 0.3 x Fy x Ag = 700.50 Pre < Pc for all standard load combinations OK , AND 1. Column must be at the top lateral story OK, OR, 2. Exempted columns must meet requirement 2. of E3.4a(a) -Not Performed E3.4a(b) Shear Ratio of stories not applicable as this is the top lateral story. E3.4c Stability Bracing at Beam-to-Column Connections ---OK Joint is restrained in the minor axis at both the top and bottom flange of the moment-frame beams. E3.6d Connection Required Shear Strength Bm No. Col Side Mpr (kip-ft) L (ft) 8 Flange 714.63 28.050 7 Flange 714.63 26.653 0.8Mp(kip-ft) 620.00 620.00 V Max = Max shear from applicable load combinations with Eel Mpr = Cpr x Ry x Fy x Zhng, where Zhng = Z at hinge. V Max (kip) 76.46 108.65 E3.6e(l) Panel-Zone of Beam-to-Column Connections: Strength --OK With Web Plate Bm. Size Bf Red. (in) Z (in3) Z hng (in3) Mpr (kip-ft) 8 W18X86 3.260 186.00 141.75 714.63 7 Wl8X86 3.260 186.00 141.75 714.63 Bm. Mpr (kip-ft) Sh (in) V hng (kip) Mf (kip-ft) Vpz (kip) 8 714.63 11.63 76.460 788.73 536.86 7 714.63 11.63 108.648 819.93 558.09 Sh = Distance face-of-column to location of hinge. Seismic Provisions Joint Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Page 2/6 06/17/22 16:15:42 Steel Code: AISC341-16 -LRFD Vhng = Shear at hinge or col face from applicable load combinations with Eel Mpr = Cpr x Ry x Fy x Zhng, where Zhng = Z at hinge. Required Panel Zone Shear Strength (kip)= 925.62 Panel Zone Shear Reduced by Ve (kip)= 169.33 Axial Comp. for Panel Zone Cale. (kip) = 126.48 -Combination 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 3.000 E4 Panel Zone Strength Without Web Plate (kip)= 443.30 NG Web Plate Reqd Thickness (in)= 1.072 Web Plate Thickness Used (in)= 1.125 Web plate thickness req'd to fillet weld to column flanges (in)= 0.350 Panel Zone Strength With Web Plate (kip)= 949.55 OK E3.6e(2) Panel-Zone of Beam-to-Column Connections: Thickness --OK Plug welds specified so total panel zone thickness must meet Equation E3-7 dz (in)= 16.860 wz (in)= 12.620 Column web thickness (in)= 0.745 Web plate thickness (in)= 1.125 Total panel zone thickness reqd (in)= 0.328 Total provided = 1.870 OK 358 -2.4.4 Continuity Plates ---OK With Stiffeners Bm. Size Fyb (ksi) Bbf (in) 8 W18X86 50.00 11.10 7 W18X86 50.00 l 1.10 358 5.8-6 Face Moment Limit--OK Bm. Size Mf (kip-ft) 8 Wl 8X86 788.73 7 W18X86 819.93 Tbf (in) 0.770 0.770 Mpe (kip-ft) 852.50 852.50 Tf Req. (in) 1.85 1.85 Mf<Mpe OK OK Tf Prov (in) Stiffen 1.19 Yes 1.19 Yes Seismic Provisions Joint Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Joint Parameters Story: l st Floor Fy (ksi): 50.00 Frame No: 1 Joint No: 1 Column Size: Wl4X145 Joint Frame Type: Special Moment Resisting Frame Criteria Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame Strain Hardening Factor Cpr = 1.10 E3.4a Moment Ratio ---OK Col. Size M*pc (kip-ft) 1013.07 Zc (in3 ) 260.00 Pu (kip) 138.48 Page 3/6 06/1 7 /22 16: 15 : 4 2 Steel Code: AISC34 l -16 -LRFD Combo# 12 Bot W14Xl45 Bm. Size M*pb (kip-ft) Mpr (kip-ft) Muv (kip-ft) Sh+dc/2 (in) 7 Wl8X86 847.78 714.63 133.15 19.03 Sh = Distance.face-of-column to location of hinge. Mpr = Cpr x Ry x Fy x Zhng, where Zhng = Z at hinge. :EM*pc = J:Zc(Fyc-Pu/Ag) (kip-ft)= 1013.07 :EM*pb (kip-ft)= 847.78 :EM*pc/ :E M*pb (Eqn E3-1) = 1.19 > 1.0 OK E3.4c Stability Bracing at Beam-to-Column Connections --OK Joint is restrained in the minor axis at both the top and bottom flange of the moment-frame beams. Note! RAM Frame assumes that a beam 1raming into the minor ax is 01the joint, braces the column at the elevation 01both top and bottom nange of the girders connected to the nanges 01the column. E3.6d Connection Required Shear Strength Bm No. Col Side Mpr (kip-ft) L (ft) 0.8Mp(kip-ft) 7 Flange 714.63 26.653 620.00 V Max = Max shear from applicable load combinations with Eel Mpr = Cpr x Ry x Fy x Zhng, where Zhng = Z at hinge. V Max (kip) 83.96 E3.6e(l) Panel-Zone of Beam-to-Column Connections: Strength--OK With Web Plate Bm. Size Bf Red. (in) Z (in3) Z hng (in3) Mpr (kip-ft) 7 Wl8X86 3.260 186.00 141.75 714.63 Bm. Mpr (kip-ft) Sh (in) V hng (kip) Mf (kip-ft) Vpz (kip) 7 714.63 11.63 83.961 796.00 541.81 Sh = Distance face-of-column to location of hinge. Vhng = Shear at hinge or col .face from applicable load combinations with Eel Mpr = Cpr x Ry x Fy x Zhng, where Zhng = Z at hinge. Required Panel Zone Shear Strength (kip) = 458.02 Panel Zone Shear Reduced by Ve (kip)= 83.79 Axial Comp. for Panel Zone Cale. (kip)= 140.53 -Combination 1.349 D -1.349 ND2 + 1.000 Lp -1.000 NL2 -3.000 E4 Panel Zone Strength Without Web Plate (kip)= 392.00 NG Web Plate Reqd Thickness (in)= 0.149 Web Plate Thickness Used (in)= 0.250 Web plate thickness req'd to fillet weld to column flanges (in)= 0.350 Seismic Provisions Joint Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Page 4/6 06/17/22 16:15:42 Steel Code: AISC34 I-1 6 -LRFD Panel Zone Strength With Web Plate (kip)= 503.00 OK E3.6e(2) Panel-Zone of Beam-to-Column Connections: Thickness --OK Plug welds specified so total panel zone thickness must meet Equation £3-7 dz (in)= 16.860 wz (in)= 12.620 Column web thickness (in) = 0.680 Web plate thickness (in)= 0.250 Total panel zone thickness reqd (in)= 0.328 Total provided = 0.930 OK 358 -2.4.4 Continuity Plates ---OK With Stiffeners Bm. Size Fyb (ksi) Bbf (in) Tbf (in) Tf Req. (in) 7 W 18X86 50.00 I 1. 10 0. 770 1.85 358 5.8-6 Face Moment Limit ---OK Bm. Size Mf (kip-ft) 7 W18X86 796.00 Mpe (kip-ft) 852.50 Mf<Mpe OK Tf Prov (in) Stiffen 1.09 Yes Seismic Provisions Joint Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Page 5/6 06/17/22 16:15:42 Steel Code: AISC341-16 -LRFD Joint Parameters Story: I st Floor Frame No: 1 Joint No: 3 Fy (ksi): 50.00 Column Size: Wl4X159 Joint Frame Type: Special Moment Resisting Frame Criteria Apply one and two story exceptions where applicable Use frame numbers to designate a single line of bracing Apply AISC 358 Provisions to Moment Frame Strain Hardening Factor Cpr = I. 10 E3.4a Moment Ratio ---OK Col. Size M*pc (kip-ft) Zc (in3) Pu (kip) Combo# Bot W14Xl59 1142.51 287.00 104.11 4 Bm. Size M*pb (kip-ft) Mpr (kip-ft) Muv (kip-ft) • Sh+dc/2 (in) 8 W18X86 861 .29 714.63 146.66 Sh = Distance face-of-column to location of hinge. Mpr = Cpr x Ry x Fy x Zhng, where Zhng = Z at hinge. I:M*pc = I:Zc(Fyc-Pu/Ag) (kip-ft)= 1142.51 I:M*pb (kip-ft)= 861.29 I:M*pc/ I: M*pb (Eqn E3-1) = 1.33 > 1.0 OK E3.4c Stability Bracing at Beam-to-Column Connections --OK 19.13 Joint is restrained in the minor axis at both the top and bottom flange of the moment-frame beams. E3.6d Connection Required Shear Strength Bm No. Col Side Mpr (kip-ft) L (ft) 0.8Mp(kip-ft) 8 Flange 714.63 28.050 620.00 V Max = Max shear from applicable load combinations with Eel Mpr = Cpr x Ry x Fy x Zhng, where Zhng = Z at hinge. V Max (kip) 91.99 E3.6e(]) Panel-Zone of Beam-to-Column Connections: Strength ---OK With Web Plate Bm. Size Bf Red. (in) Z (in3) Z hng (in3) Mpr (kip-ft) 8 Wl 8X86 3.260 186.00 141.75 714.63 Bm. Mpr (kip-ft) Sh (in) V hng (kip) Mf (kip-ft) Vpz (kip) 8 714.63 11.63 91.994 803.79 547.11 Sh = Distance face-of-column to location of hinge. Vhng = Shear at hinge or col face from applicable load combinations with Eel Mpr = Cpr x Ry x Fy x Zhng, where Zhng = Z at hinge. Required Panel Zone Shear Strength (kip) = 462.50 Panel Zone Shear Reduced by Ve (kip)= 84.61 Axial Comp. for Panel Zone Cale. (kip)= 106.26 -Combination 1.349 D + 1.349 ND2 + 1.000 Lp + 1.000 NL2 + 3.000 E4 Panel Zone Strength Without Web Plate (kip)= 443.30 NG Web Plate Reqd Thickness (in)= 0.043 Web Plate Thickness Used (in)= 0.250 Web plate thickness req'd to fillet weld to column flanges (in)= 0.350 Panel Zone Strength With Web Plate (kip)= 555.80 OK Seismic Provisions Joint Code Check RAM Structural System 17.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Page 6/6 06/17 /22 I 6: 15:42 Steel Code: AISC341-16 -LRFD E3.6e(2) Panel-Zone of Beam-to-Column Connections: Thickness --OK Plug welds specified so total panel zone thickness must meet Equation E3-7 dz (in)= 16.860 wz (in)= 12.620 Column web thickness (in)= 0.745 Web plate thickness (in)= 0.250 Total panel zone thickness reqd (in) = 0.328 Total provided = 0.995 OK 358 -2.4.4 Continuity Plates ---OK With Stiffeners Bm. Size Fyb (ksi) Bbf (in) 8 Wl8X86 50.00 11.10 358 5.8-6 Face Moment Limit ---OK Bm. Size Mf (kip-ft) 8 Wl8X86 803.79 Tbf (in) 0.770 Mpe (kip-ft) 852.50 Tf Req. (in) 1.85 Mf<Mpe OK Tf Prov (in) Stiffen 1.19 Yes Project: Millipore Sigma PH2B Engineer: MJI Moment Framing Base Plate Design Given: Base Plate: N= B= 24 30 in. (Parallel to Mu ) in. d1= 18 in. (Effective depth of footing) tP = 2.00 in. (Plate thick.) dp = 21 .5 in. Column: W14x159 de= 15 A,;= 46.7 lw = 0.745 b,= 15.6 t,= 1.19 (Effective depth from the anchors to the edge of the plate) e. = 9.5 in. (Distance of anchor to the center line of the column) n = 6 (Number of anchor rods at each side) d = a in. (Diameter of anchor bolts) in.2 (Effective area of each anchor bolt) Sheet: ..................... , .. Ml2210066.00 Date: ......................... . Case -1 Materials: in. f'= C 4.0 ksi in.2 f = y 50 ksi in. fu = 125 ksi in. (Grade 105) in. Loads: Mu = 927.4 k-ft Pu= 201 .0 kips (Compression +) a"= a'= 1.50 1.41 2.5 4.5 in. (Distance from anchor bolts to the edge of base plate) in. (Distance from edge of the column to the edge of base plate) Determine the total concrete force A1 = NxB = 720.0 in.2 A2 = (N + 4d1 )(B + 4d1 ) = 9792 in.2 > Use: A= 2 2 Max. TGRWI HOU! SHCAR KC¥ Pl ICLOW Pl ~"ll H"tGA 60 t<SIJ Vl/(1◄) 1 Vl.'«I fl55' GR~ l<SI ANCHOR 901.TS(UMIED2"'1 VII Pl MlhS'lcH' (GR 50 KS[) ''°'""' The total concrete force is determined from the compressive stress and the length of the stress block as Cu = 0.85<1>caBfc',c}t. = 122.4 a <I> = C 0.6 The total force in the concrete stress block is obtained by taking moments about tension anchor rods Cu= (Mu+ Pue.)/(dp -a/2) = 13038.54 /(dp -a/2) a1 = 37.3 in. a2 = 5.71 in. Use: a= 5.71 in. Cu= 699.4 kips Project: Millipore Sigma PH2B Engineer: MJI The force in the tension anchor rods Tu= Cu· Pu = 498.4 kips The min. required area of the anchor rods is given by Ag= T j<l>(0.75f0 ) <I>= 0.75 = 7.09 < 8.46 in.2 The maximum pressure exerted by the stress block on the base plate P'u = CjaB = 4.1 ksi The maximum bending moment on the base plate M'u = P'u(a' )2/2 = 41 kips-in.Jin width <l>bMp = <l>b(bptp 2/4 )Fy <l>b = 0.9 = 45 kips-in.Jin width > Sheet: ....................... . Ml2210066.00 Date: ......................... . (continued) OK OK 11 ~!Bentley· Spread Footin2 Desi2n RAM Foundation vl 7.03.00.285 DataBase: Platform Building Code: IBC Date: 06/17/22 16:41 :51 Design Code: ACB 18-14 FOOTING DESIGN Footing# 1 Footing Orientation (deg):__ 0.00 Footing Column Location: __ (346.50 - 98.25) Column Orientation (deg): __ 0.00 Length (ft):______ 9.00 Width(ft):______ 9.00 Thickness (ft):______ 1.50 Bottom Reinf. Parallel to Length: 7 -#8 Width: Concrete fc (ksi): 4.00 fct (ksi): CODE Density (pct): 150.00 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS9X9X5/16 7 -#8 Ee (ksi): 3834.25 Base Plate Dimensions (in) 18.00 x 18.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Axial (kip) CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Dead Load: Dead Load: Pos. Live: Pos. Roof: Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT Bar Quantity/Bar Size: 0.000 48.98 133.19 NIA Major 82.44 148.56 234.17 326.12 254.25 292. I 9 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 2 Sec. 8.6 2 2 Bottom Bars Parallel to Length Width 7-#8 7-#8 0.000 -9.73 NIA Minor 84.96 138.32 234.17 302.91 Ld Co/Code Ref. 2 Sec. 8.6 2 Top Bars Parallel to Length Width None None Required Steel/Provided Steel (in2) Required Steel Code Ref. 3.92/ 5.53 4.23/ 5.53 None None Bar Spacing (in) Sec. 24.4.3.2 16.83 Sec. 24.4.3.2 16.83 Bar Depth (in) Cover (in) SOIL CAPACITY Top NIA 14.50 Bottom: 3.00 13.50 Side: Allowable Soil Bearing Capacity (ksf) ______ _ Max Unfactored Soil Bearing (ksf) ________ _ Max Average Unfactored Soil Bearing (ksf) _____ _ Max Soil Bearing for Factored Design (ksf) _____ _ Max Average Soil Bearing for Factored Design (ksf) __ _ 3.00 3.00 2.47 2.47 3.36 3.36 None None None None None None LdCo 69 69 2 2 Spread Footin2 Desi2n RAM Foundation vl 7.03.00.285 DataBase: Platform ~jBentley· Building Code: IBC Page 2/11 Date: 06/17/22 16:41:51 Design Code: ACI318-14 FOOTING DESIGN Footing# 2 Footing Orientation (deg):__ 0.00 Footing Column Location: __ (346.50 - 129.08) Column Orientation (deg): __ 0.00 Length (ft):______ 9.00 Width (ft):_______ 9.00 Thickness (ft):______ 1.50 Bottom Reinf. Parallel to Length: 7 -#8 Width: Concrete fc (ksi): 4.00 fct (ksi): CODE Density (pct): 150.00 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS9X9X5/16 7 -#8 Ee (ksi): 3834.25 Base Plate Dimensions (in) 18.00 x 18.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: Axial (kip) Dead Load: Pas. Live: Pas. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT Bar Quantity/Bar Size: 0.000 50.47 132.74 NIA Major 82.77 148.56 235.10 326.12 255.25 292.19 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 2 Sec. 8.6 2 2 Bottom Bars Parallel to Length Width 7-#8 7-#8 0.000 -9.39 NIA Minor 85.30 138.32 235.10 302.91 Ld Co/Code Ref. 2 Sec. 8.6 2 Top Bars Parallel to Length Width None None Required Steel/Provided Steel (in2) Required Steel Code Ref. 3.94/ 5.53 4.25/ 5.53 None None Bar Spacing (in) Sec. 24.4.3.2 16.83 Sec. 24.4.3.2 16.83 Bar Depth (in) Cover (in) SOIL CAPACITY Top NIA 14.50 13.50 Bottom: 3.00 Side: Allowable Soil Bearing Capacity (ksf) _______ _ Max Unfactored Soil Bearing (ksf) ________ _ Max Average Unfactored Soil Bearing (ksf) _____ _ Max Soil Bearing for Factored Design (ksf) _____ _ Max Average Soil Bearing for Factored Design (ksf) __ _ 3.00 3.00 2.49 2.49 3.37 3.37 None None None None None None LdCo 69 69 2 2 ~!Bentley· Spread Footin2 Desi2n RAM Foundation vi 7.03.00.285 DataBase: Platform Building Code: IBC Page 3/11 Date: 06/17122 16:41 :51 Design Code: ACI318-14 FOOTING DESIGN Footing# 3 Footing Orientation (deg):__ 0.00 Footing Column Location: __ (346.50 - 160.83) Column Orientation (deg): __ 0.00 Length (ft):______ 9.00 Width(ft):______ 9.00 Thickness (ft):______ 1.50 Bottom Reinf. Parallel to Length: 7 -#8 Width: Concrete fc (ksi): 4.00 fct (ksi): CODE Density (pct): 150.00 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS9X9X5116 7 -#8 Ee (ksi): 3834.25 Base Plate Dimensions (in) 18.00 x 18.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (kst) Axial (kip) CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Dead Load: Dead Load: Pos. Live: Pos. Roof: Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT Bar Quantity/Bar Size: 0.000 48.84 135.36 NIA Major 83.45 148.56 237.03 326.12 257.35 292.19 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 2 Sec. 8.6 2 2 Bottom Bars Parallel to Length Width 7-#8 7-#8 0.000 -9.10 NIA Minor 86.00 138.32 237.03 302.91 Ld Co/Code Ref. 2 Sec. 8.6 2 Top Bars Parallel to Length Width None None Required Steel/Provided Steel (in2) Required Steel Code Ref. 3.98/ 5.53 4.28/ 5.53 None None Bar Spacing (in) Sec. 24.4.3.2 16.83 Sec. 24.4.3.2 16.83 Bar Depth (in) Cover (in) SOIL CAPACITY Top NIA 14.50 13.50 Bottom: 3.00 Side: Allowable Soil Bearing Capacity (kst) ______ _ Max Unfactored Soil Bearing (kst) ________ _ Max Average Unfactored Soil Bearing (kst) _____ _ Max Soil Bearing for Factored Design (kst) _____ _ Max Average Soil Bearing for Factored Design (kst) __ _ 3.00 3.00 2.50 2.50 3.40 3.40 None None None None None None LdCo 69 69 2 2 Spread Footini: Desii:n RAM Foundation vl 7.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Page 4/11 Date: 06/17122 16:41 :51 Design Code: ACB 18-14 FOOTING DESIGN Footing# 4 Footing Orientation (deg):__ 0.00 Footing Column Location: __ (381.50 - 98.25) Column Orientation (deg): __ 0.00 Length(ft):______ 10.00 Width (ft):______ 10.00 Thickness (ft):______ 2.00 Bottom Reinf. Parallel to Length: 7 -#8 Width: Concrete fc (ksi): 4.00 fct (ksi): CODE Density (pct): 150.00 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS9X9X3/8 7 -#8 Ee (ksi): 3834.25 Base Plate Dimensions (in) 11.00 X 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Axial (kip) CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Dead Load: Dead Load: Pos. Live: Pos. Roof: Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT Bar Quantity/Bar Size: 0.000 61.85 165.98 NIA Major 97.69 233.38 356.89 500.02 318.55 455.37 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 2 Sec. 8.6 2 2 Bottom Bars Parallel to Length Width 7-#8 7-#8 0.000 -6.53 NIA Minor 100.52 221.99 356.89 475.14 Ld Co/Code Ref. 2 Sec. 8.6 2 Top Bars Parallel to Length Width None None Required Steel/Provided Steel (in2) Required Steel Code Ref. 5.18/ 5.53 5.18/ 5.53 None None Bar Spacing (in) Sec. 24.4.3.2 18.84 Sec. 24.4.3.2 18.84 Bar Depth (in) Cover (in) SOIL CAPACITY Top NIA 20.50 Bottom: 3.00 19.50 Side: Allowable Soil Bearing Capacity (ksf) _______ _ Max Unfactored Soil Bearing (ksf) ________ _ Max Average Unfactored Soil Bearing (ksf) _____ _ Max Soil Bearing for Factored Design (ksf) _____ _ Max Average Soil Bearing for Factored Design (ksf) __ _ 3.00 3.00 2.58 2.58 3.40 3.40 None None None None None None LdCo 69 69 2 2 II ~!Bentley· Spread Footin2 Desi2n RAM Foundation vl 7.03.00.285 DataBase: Platform Building Code: IBC Page 5/11 Date: 06/17/22 16:41 :5 1 Design Code: ACB 18-14 FOOTING DESIGN Footing# 5 Footing Orientation (deg):__ 0.00 Footing Column Location: __ (381.50 - 129.08) Column Orientation (deg): __ 0.00 Length(ft):______ 10.00 Width (ft):______ 10.00 Thickness (ft):______ 2.00 Bottom Reinf. Parallel to Length: 7 -#8 Width: Concrete t'c (ksi): 4.00 fct (ksi): CODE Density (pct): 150.00 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS9X9X3/8 7 -#8 Ee (ksi): 3834.25 Base Plate Dimensions (in) 11 .00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: Axial (kip) Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT Bar Quantity/Bar Size: 0.000 63.40 157.49 NIA Major 94.32 233.38 344.58 500.02 307.56 455.37 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 2 Sec. 8.6 2 2 Bottom Bars Parallel to Length Width 7-#8 7-#8 0.000 -6.55 NIA Minor 97.05 221.99 344.58 475.14 Ld Co/Code Ref. 2 Sec. 8.6 2 Top Bars Parallel to Length Width None None Required Steel/Provided Steel (in2) Required Steel Code Ref. 5.18/ 5.53 5.18/ 5.53 None None Bar Spacing (in) Sec. 24.4.3.2 18.84 Sec. 24.4.3.2 18 .84 Bar Depth (in) Cover (in) SOIL CAPACITY Top NIA 20.50 19 .50 Bottom: 3.00 Side: Allowable Soil Bearing Capacity (ksf) _______ _ Max Unfactored Soil Bearing (ksf) ________ _ Max Average Unfactored Soil Bearing (ksf) _____ _ Max Soil Bearing for Factored Design (ksf) _____ _ Max Average Soil Bearing for Factored Design (ksf) __ _ 3.00 3.00 2.51 2.51 3.28 3.28 None None None None None None LdCo 69 69 2 2 II ~!Bentley· Spread Footini: Desii:n RAM Foundation vl 7.03.00.285 DataBase: Platform Building Code: IBC Page 6/11 Date: 06/17/22 16:41:51 Design Code: ACB 18-14 FOOTING DESIGN Footing# 6 Footing Orientation (deg):__ 0.00 Footing Column Location: __ (381.50 - 160.83) Column Orientation (deg): __ 0.00 Length (ft):______ 10.00 Width(ft):_______ 10.00 Thickness (ft):______ 2.00 Bottom Reinf. Parallel to Length: 7 -#8 Width: Concrete fc (ksi): 4.00 fct (ksi): CODE Density (pcf): 150.00 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS9X9X3/8 7 -#8 Ee (ksi): 3834.25 Base Plate Dimensions (in) 11.00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Axial (kip) CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Dead Load: Dead Load: Pos. Live: Pos. Roof: Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT Bar Quantity/Bar Size: 0.000 62.96 171.15 NIA Major I 00.45 233.38 366.98 500.02 327.56 455.37 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 2 Sec. 8.6 2 2 Bottom Bars Parallel to Length Width 7-#8 7-#8 0.000 -6.62 NIA Minor 103.36 221.99 366.98 475.14 Ld Co/Code Ref. 2 Sec. 8.6 2 Top Bars Parallel to Length Width None None Required Steel/Provided Steel (in2) Required Steel Code Ref. 5.18/5.53 5.18/5.53 None None Bar Spacing (in) Sec. 24.4.3.2 18.84 Sec. 24.4.3.2 18.84 Bar Depth (in) Cover (in) SOIL CAPACITY Top NIA 20.50 19.50 Bottom: 3.00 Side: Allowable Soil Bearing Capacity (ksf) ______ _ Max Unfactored Soil Bearing (ksf) ________ _ Max Average Unfactored Soil Bearing (ksf) _____ _ Max Soil Bearing for Factored Design (ksf) _____ _ Max Average Soil Bearing for Factored Design (ksf) __ _ 3.00 3.00 2.64 2.64 3.49 3.49 None None None None None None LdCo 69 69 2 2 Spread Footin2 Desi2n RAM Foundation vl 7.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Page 7/11 Date: 06/17/22 16:41:51 Design Code: ACI318-14 FOOTING DESIGN Footing# 7 Footing Orientation (deg):__ 0.00 Footing Column Location: __ ( 417 .68 - 98.25) Column Orientation (deg): __ 0.00 Length (ft):______ 8.00 Width (ft):_______ 8.00 Thickness (ft):______ 1.50 Bottom Reinf. Parallel to Length: 6 -#8 Width: Concrete fc (ksi): 4.00 fct (ksi): CODE Density (pct): 150.00 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS8X8X5/16 6 -#8 Ee (ksi): 3834.25 Base Plate Dimensions (in) LOADS } 1.00 X] J.00 Percent of overhang to assume Rigid: 50.00 Surcharge (kst) Axial (kip) CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Dead Load: Dead Load: Pos. Live: Pos. Roof: Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT Bar Quantity/Bar Size: 0.000 42.09 108.09 NIA Major 66.92 132.06 181.42 254.56 210.07 249.69 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 2 Sec. 8.6 2 2 Bottom Bars Parallel to Length Width 6-#8 6-#8 0.000 0.00 NIA Minor 69.25 122.95 181.42 236.46 Ld Co/Code Ref. 2 Sec. 8.6 2 Top Bars Parallel to Length Width None None Required Steel/Provided Steel (in2) Required Steel Code Ref. 3.66/ 4.74 3.66/ 4.74 None None Bar Spacing (in) Sec. 24.4.3.2 17.80 Sec. 24.4.3.2 17.80 Bar Depth (in) Cover (in) SOIL CAPACITY Top NIA 14.50 13.50 Bottom: 3.00 Side: Allowable Soil Bearing Capacity (kst) _______ _ Max Unfactored Soil Bearing (kst) ________ _ Max Average Unfactored Soil Bearing (kst) _____ _ Max Soil Bearing for Factored Design (kst) _____ _ Max Average Soil Bearing for Factored Design (kst) __ _ 3.00 3.00 2.57 2.57 3.49 3.49 None None None None None None LdCo 69 69 2 2 Spread Footin2 Desi2n RAM Foundation v17.03.00.285 DataBase: Platform ~Jeentley· Building Code: IBC Page 8/11 Date: 06/17/22 16:41:51 Design Code: ACB 18-14 FOOTING DESIGN Footing# 8 Footing Orientation (deg):__ 0.00 Footing Column Location: __ (346.50 - 189.08) Column Orientation (deg): __ 0.00 Length (ft):______ 8.00 Width (ft):_______ 8.00 Thickness (ft):______ 1.50 Bottom Reinf. Parallel to Length: 6 -#8 Width: Concrete fc (ksi): 4.00 fct (ksi): CODE Density (pct): 150.00 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS8X8X5/l 6 6 -#8 Ee (ksi): 3834.25 Base Plate Dimensions (in) 12.00 x 12.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: Axial (kip) Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT Bar Quantity/Bar Size: 0.000 39.26 114.22 NIA Major 68.24 132.06 184.47 252.98 215 .50 255.01 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 2 Sec. 8.6 2 2 Bottom Bars Parallel to Length Width 6-#8 6-#8 0.000 -13.85 NIA Minor 70.63 122.95 184.47 234.99 Ld Co/Code Ref. 2 Sec. 8.6 2 Top Bars Parallel to Length Width None None Required Steel/Provided Steel (in2) Required Steel Code Ref. 3.69/ 4.74 3.69/ 4.74 None None Bar Spacing (in) Sec. 24.4.3.2 17.80 Sec. 24.4.3.2 17.80 Bar Depth (in) Cover (in) SOIL CAPACITY Top NIA 14.50 Bottom: 3.00 13.50 Side: Allowable Soil Bearing Capacity (ksf) _______ _ Max Unfactored Soil Bearing (ksf) ________ _ Max Average Unfactored Soil Bearing (ksf) _____ _ Max Soil Bearing for Factored Design (ksf) _____ _ Max Average Soil Bearing for Factored Design (ksf) __ _ 3.00 3.00 2.62 2.62 3.59 3.59 None None None None None None LdCo 69 69 2 2 ~!Bentley· Spread Footin2 Desii:n RAM Foundation vl 7.03.00.285 DataBase: Platform Building Code: IBC Page 9/11 Date: 06/17/22 16:41 :51 Design Code: ACB 18-14 FOOTING DESIGN Footing# 9 Footing Orientation (deg):__ 0.00 Footing Column Location: __ (38 J .50 - 189.08) Column Orientation (deg): __ 0.00 Length (ft):______ 9.00 Width (ft):_______ 9.00 Thickness (ft):______ 2.00 Bottom Reinf. Parallel to Length: 7 -#8 Width: Concrete fc (ksi): 4.00 fct (ksi): CODE Density (pct): 150.00 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS9X9X3/8 7 -#8 Ee (ksi): 3834.25 Base Plate Dimensions (in) J 1.00 x 11.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (kst) Dead Load: Axial (kip) Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT Bar Quantity/Bar Size: 0.000 53.45 154.89 NIA Major 82.32 210.04 288.98 483.82 287.89 455.37 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 2 Sec. 8.6 2 2 Bottom Bars Parallel to Length Width 7-#8 7-#8 0.000 -15.23 NIA Minor 85.21 199.79 288.98 459.68 Ld Co/Code Ref. 2 Sec. 8.6 2 Top Bars Parallel to Length Width None None Required Steel/Provided Steel (in2) Required Steel Code Ref. 4.81 / 5.53 4.81 / 5.53 None None Bar Spacing (in) Sec. 24.4.3.2 16.83 Sec. 24.4.3 .2 16.83 Bar Depth (in) Cover (in) SOIL CAPACITY Top NIA 20.50 19.50 Bottom: 3.00 Side: Allowable Soil Bearing Capacity (kst) ______ _ Max Unfactored Soil Bearing (kst) ________ _ Max Average Unfactored Soil Bearing (kst) _____ _ Max Soil Bearing for Factored Design (kst) _____ _ Max Average Soil Bearing for Factored Design (kst) __ _ 3.00 3.00 2.87 2.87 3.85 3.85 None None None None None None LdCo 69 69 2 2 Spread Footini: Desii:n RAM Foundation vl 7.03.00.285 DataBase: Platform ~!Bentley· Building Code: IBC Page l Oil I Date: 06117122 16:41 :5 1 Design Code: ACl318-14 FOOTING DESIGN Footing# 10 Footing Orientation (deg):__ 0.00 Footing Column Location: __ (322. 78 - 180.00) Column Orientation (deg): __ 0.00 Length (ft):______ 6.00 Width(ft):______ 6.00 Thickness (ft):______ 1.50 Bottom Reinf. Parallel to Length: 5 -#8 Width: Concrete fc (ksi): 4.00 fct (ksi): CODE Density (pct): 150.00 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS8X8Xll8 5 -#8 Ee (ksi): 3834.25 Base Plate Dimensions (in) 10.00 x 10.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (kst) Axial (kip) CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Dead Load: Dead Load: Pos. Live: Pos. Roof: Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT Bar Quantity/Bar Size: 0.000 7.34 20.84 NIA Major 9.95 99.04 24.21 149.69 37.85 244.38 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 2 Sec. 8.6 2 2 Bottom Bars Parallel to Length Width 5-#8 5-#8 0.000 -1.40 NIA Minor 10.54 92.21 24.21 139.01 Ld Co/Code Ref. 2 Sec. 8.6 2 Top Bars Parallel to Length Width None None Required Steel/Provided Steel (in2) Required Steel Code Ref. 3.881 3.95 3.88/ 3.95 None None Bar Spacing (in) Sec. 24.4.3.2 16.25 Sec. 24.4.3.2 16.25 Bar Depth (in) Cover (in) SOIL CAPACITY Top NIA 14.50 Bottom: 3.00 13.50 Side: Allowable Soil Bearing Capacity (kst) ______ _ Max Unfactored Soil Bearing (kst) ________ _ Max Average Unfactored Soil Bearing (kst) _____ _ Max Soil Bearing for Factored Design (kst) _____ _ Max Average Soil Bearing for Factored Design (kst) __ _ 3.00 3.00 1.01 1.01 1.17 1.17 None None None None None None LdCo 69 69 2 2 ~!Bentley· Spread Footin2 Desi2n RAM Foundation vl 7.03.00.285 DataBase: Platform Building Code: IBC Page 11/11 Date: 06/17/22 16:41 :51 Design Code: ACB 18-14 FOOTING DESIGN Footing# 11 Footing Orientation (deg):__ 0.00 Footing Column Location: __ (322.78 - 69.22) Column Orientation (deg): __ 0.00 Length (ft):______ 6.00 Width(ft):______ 6.00 Thickness (ft):______ 1.50 Bottom Reinf. Parallel to Length: 6 -#8 Width: Concrete fc (ksi): 4.00 fct (ksi): CODE Density (pct): 150.00 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS9X9X5/16 6 -#8 Ee (ksi): 3834.25 Base Plate Dimensions (in) 18.00 x 18.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (kst) Dead Load: Axial (kip) Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT Bar Quantity/Bar Size: 0.000 19.85 48.80 NIA Major 20.87 99.04 50.45 164.30 87.03 292.19 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 2 Sec. 8.6 2 2 Bottom Bars Parallel to Length Width 6-#8 6-#8 0.000 -1.74 NIA Minor 22.29 92.21 50.45 152.50 Ld Co/Code Ref. 2 Sec. 8.6 2 Top Bars Parallel to Length Width None None Required Steel/Provided Steel (in2) Required Steel Code Ref. 4.21/ 4.74 4.21 / 4.74 None None Sec. 24.4.3.2 13.00 Sec. 24.4.3.2 Bar Spacing (in) Bar Depth (in) Cover (in) SOIL CAPACITY Top NIA 13.00 14.50 13.50 Bottom: 3.00 Side: Allowable Soil Bearing Capacity (kst) _______ _ Max Unfactored Soil Bearing (ksf) ________ _ Max Average Unfactored Soil Bearing (kst) _____ _ Max Soil Bearing for Factored Design (ksf) _____ _ Max Average Soil Bearing for Factored Design (kst) __ _ 3.00 3.00 2.13 2.13 2.83 2.83 None None None None None None LdCo 69 69 2 2 Beam on Elastic Foundation 1.11. : DESCRIPTION: SMF Grade Beam CODE REFERENCES Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2018 Material Pro erties fc = 4.0 ksi d> Phi Values Flexure : 0.90 fr= fc 112 • 7.50 = 474.342 psi Shear : 0.750 'I' Density = 145.0 pcf p 1 = 0.850 A Lt Wt Factor = 1.0 Elastic Modulus = 3,122.02ksi Soil Subgrade Modulus = 250.0 psi/ (inch deflection) Load Combination !BC 2018 fy -Main Rebar = 60.0 ksi Fy -Stirrups E -Main Rebar = 29,000.0 ksi E -Stirrups Stirrup Bar Size # Number of Resisting Legs Per Stirrup Beam is sui;morted on an elastic foundation, Cross Section & Reinforcing Details Rectangular Section, Width = 48.0 in, Height= 36.0 in Span #1 Reinforcing .... = 40.0 ksi = 29,000.0 ksi = # 3 2 Software • • • • • • • • • • • 8-#8 at 3.250 in from Bottom, from 0.0 to 78.0 ft in this span 6-#8 at 3.0 in from Top, from 0.0 to 78.0 ft in this span ile: • • • • • A lied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Point Load : D = 26.60, L = 61 .020 k @l 4.0 ft Point Load : D = 36.0, L = 82.0 k {Cil 39.0 ft Point Load : D = 23.620, L = 52.420 k @l 74.0 ft Moment : E = 260.0 k-ft, Location = 4.0 ft from left end of this span, (Column Load) Moment : E = 310.0 k-ft, Location = 39.0 ft from left end of this span, (Column Load) Moment : E = 258.0 k-ft, Location = 7 4.0 ft from left end of this span, (Column Load) DESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn • Phi : Allowable Load Combination Location of maximum on span Span# where maximum occurs Maximum Soil Pressure = Allowable Soil Pressure = Shear Stirru Re uirements 0.866: 1 Typical Section -601.37 k-ft 694.19 k-ft +1.349D+0.50L-3.0E 6.424 ft Span# 1 3.645 ksf at Maximum Deflection Max Downward L +Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection Max Upward Total Deflection 0.00 ft LdComb: +D+L-0.5250E 3.990 ksf OK Between 0.00 to 36.71 ft, Vu< PhiVc/2, Req'd Vs = Not Reqd, use stirrups spaced at 0.000 in Between 37.62 to 39.46 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs= Min 11.5.6.3, use stirrups spaced at 3.667 in Between 40.38 to 76.16 ft, Vu< PhiVc/2, Req'd Vs= Not Reqd, use stirrups spaced at 0.000 in Maximum Forces & Stresses for Load Combinations 0.000 in 0.000 in 0.101 in 0.002 in Design OK Beam on Elastic Foundation 118: .e Software ht ENERCALC, INC. 1983-2020, Build:12.20.8.24 .. ,,. : • • . • DESCRIPTION: SMF Grade Beam Load Combination Location (ft) Bending Stress Results ( k-ft ) Segment Length Span# in Span Mu: Max Phi'Mnx Stress Ratio MAXimum Bending Envelope Span# 1 73.412 695.01 899.24 0.77 +1.40D Span# 1 39.459 114.30 899.24 0.13 +1.20D+1.60L Span# 1 39.459 395.80 899.24 0.44 +1.20D+L Span# 1 39.459 284.11 899.24 0.32 +1.20D Span# 1 39.459 97.95 899.24 0.11 +1.349D+0.50L +3.0E Span# 1 74.329 119.38 899.24 0.13 +1.349D+0.50L-3.0E Span# 1 73.412 695.01 899.24 0.77 +0.90D Span# 1 39.459 73.43 899.24 0.08 +0.75140+3.0E Span# 1 74.329 89.04 899.24 0.10 +0.7514D-3.0E Span# 1 1 73.412 672.31 899.24 0.75 Overall Maximum Deflections• Unfactored Loads Load Combination Span Max.•-• Defl Location in Span Load Combination Max.'+' Defl Location in Span Span 1 0.1013 0.000 0.0000 0.000 Detailed Shear lnfonnation Span Distance 'd' Vu (k) Mu d'Vu/Mu Phi'Vc Comment Phi'Vs Spacing (in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) Req'd Suggest +1.349D+0.50L-3.0E 0.00 33.00 10.69 10.69 0.00 1.00 163.50 Vu< PhiVd2 NotReqd 0.00 0.00 +1.349D+0.50L-3.0E 0.92 33.00 28.43 28.43 9.08 1.00 163.50 Vu< PhiVd2 NotReqd 0.00 0.00 +1.349D+0.50L-3.0E 1.84 33.00 44.13 44.13 34.44 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 2.75 33.00 57.77 57.77 74.20 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 3.67 33.00 69.32 69.32 126.48 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 4.59 33.00 -75.06 75.06 705.16 1.00 163.50 Vu< PhiVd2 NotReqd 0.00 0.00 +1.349D+0.50L +3.0E 5.51 33.00 -72.99 72.99 635.54 1.00 163.50 Vu< PhiVd2 NotReqd 0.00 0.00 +1.349D+0.50L +3.0E 6.42 33.00 -70.14 70.14 567.83 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 7.34 33.00 -66.70 66.70 502.73 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 8.26 33.00 -62.83 62.83 440.79 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 9.18 33.00 -58.67 58.67 382.41 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 10.09 33.00 -54.36 54.36 327.84 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 11.01 33.00 -50.00 50.00 277.22 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 11.93 33.00 -45.69 45.69 230.60 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 12.85 33.00 -41.50 41.50 187.94 1.00 163.50 Vu< PhiVd2 NotReqd 0.00 0.00 +1.349D+0.50L +3.0E 13.76 33.00 -37.49 37.49 149.12 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +0.7514D-3.0E 14.68 33.00 34.16 34.16 252.14 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 15.60 33.00 32.06 32.06 296.17 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 16.52 33.00 30.55 30.55 267.48 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 17.44 33.00 29.09 29.09 240.18 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 18.35 33.00 27.76 27.76 214.22 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 19.27 33.00 26.65 26.65 189.48 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 20.19 33.00 25.80 25.80 165.76 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 21.11 33.00 25.27 25.27 142.82 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 22.02 33.00 25.12 25.12 120.36 1.00 163.50 Vu< PhiVd2 NotReqd 0.00 0.00 +1.349D+0.50L-3.0E 22.94 33.00 25.38 25.38 98.04 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 23.86 33.00 26.08 26.08 75.48 1.00 163.50 Vu< PhiVd2 NotReqd 0.00 0.00 +1.349D+0.50L-3.0E 24.78 33.00 27.25 27.25 52.28 1.00 163.50 Vu< PhiVd2 NotReqd 0.00 0.00 +1.349D+0.50L-3.0E 25.69 33.00 28.91 28.91 28.01 1.00 163.50 Vu< PhiVd2 NotReqd 0.00 0.00 + 1.349D+0.50L-3.0E 26.61 33.00 31.05 31.05 2.21 1.00 163.50 Vu< PhiVd2 NotReqd 0.00 0.00 +1.349D+0.50L-3.0E 27.53 33.00 33.70 33.70 25.55 1.00 163.50 Vu< PhiVd2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 28.45 33.00 36.83 36.83 55.74 1.00 163.50 Vu< PhiVd2 NotReqd 0.00 0.00 Beam on Elastic Foundation ile:M Software cop 1.11. : DESCRIPTION: SMF Grade Beam Detailed Shear lnfonnation Span Distance 'd' Vu (k) Mu d'Vu/Mu Phi'Vc Comment Phi'Vs Spacing (in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) Req'd Suggest +1.349D+0.50L-3.0E 29.36 33.00 40.43 40.43 88.80 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 30.28 33.00 44.46 44.46 125.17 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1.349D+0.50L-3.0E 31.20 33.00 48.89 48.89 165.23 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1.349D+0.50L-3.0E 32.12 33.00 53.67 53.67 209.37 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 33.04 33.00 58.71 58.71 257.88 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 33.95 33.00 63.95 63.95 311.03 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 34.87 33.00 69.27 69.27 368.98 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1.349D+0.50L-3.0E 35.79 33.00 74.55 74.55 431.81 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 36.71 33.00 79.64 79.64 499.48 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 37.62 33.00 84.40 84.40 571.84 1.00 163.50 PhiVc/2 < Vu <= Min 11.5.6 0.00 3.67 +1.349D+0.50L-3.0E 38.54 33.00 88.62 88.62 648.55 1.00 163.50 PhiVc/2 < Vu <= Min 11.5.6 0.00 3.67 +1.349D+0.50L +3.0E 39.46 33.00 -82.63 82.63 648.30 1.00 163.50 PhiVc/2 < Vu <= Min 11.5.6 0.00 3.67 +1.349D+0.50L +3.0E 40.38 33.00 -77.87 77.87 571.75 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 41.29 33.00 -72.76 72.76 499.56 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 42.21 33.00 -67.46 67.46 432.06 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 43.13 33.00 -62.12 62.12 369.43 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 44.05 33.00 -56.86 56.86 311.69 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 44.96 33.00 -51.79 51.79 258.78 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 45.88 33.00 -46.98 46.98 210.52 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 46.80 33.00 -42.51 42.51 166.68 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1.349D+0.50L +3.0E 47.72 33.00 -38.43 38.43 126.94 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1.349D+0.50L +3.0E 48.64 33.00 -34.79 34.79 90.95 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 49.55 33.00 -31.61 31.61 58.29 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 50.47 33.00 -28.92 28.92 28.55 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 51.39 33.00 -26.73 26.73 1.27 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1 .349D+0.50L +3.0E 52.31 33.00 -25.03 25.03 23.98 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 53.22 33.00 -23.82 23.82 47.68 1.00 163.50 Vu < PhiVc/2 NotReqd 0.00 0.00 +1 .349D+0.50L +3.0E 54.14 33.00 -23.08 23.08 70.27 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 55.06 33.00 -22.78 22.78 92.18 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1.349D+0.50L +3.0E 55.98 33.00 -22.91 22.91 113.82 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1.349D+0.50L +3.0E 56.89 33.00 -23.42 23.42 135.57 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L +3.0E 57.81 33.00 -24.26 24.26 157.80 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1.349D+0.50L +3.0E 58.73 33.00 -25.39 25.39 180.80 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +0.7514D-3.0E 59.65 33.00 26.85 26.85 80.00 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +0.7514D-3.0E 60.56 33.00 29.20 29.20 103.91 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 61.48 33.00 31.95 31.95 62.46 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 62.40 33.00 35.30 35.30 91.07 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 63.32 33.00 38.90 36.90 122.73 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 64.24 33.00 42.70 42.70 157.70 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 65.15 33.00 46.64 46.64 196.14 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 66.07 33.00 50.66 50.66 238.21 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 66.99 33.00 54.69 54.69 283.96 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 67.91 33.00 58.62 58.62 333.41 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1.349D+0.50L-3.0E 68.62 33.00 62.36 62.36 386.47 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1.349D+0.50L-3.0E 69.74 33.00 65.76 65.76 442.96 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1.349D+0.50L-3.0E 70.66 33.00 66.69 68.69 502.57 1.00 163.50 Vu< PhiVc/2 Not Reqd 0.00 0.00 +1 .349D+0.50L-3.0E 71 .56 33.00 70.98 70.96 564.87 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1.349D+0.50L-3.0E 72.49 33.00 72.44 72.44 629.27 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1 .349D+0.50L-3.0E 73.41 33.00 72.86 72.86 695.01 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1 .349D+0.50L +3.0E 74.33 33.00 -52.89 52.89 119.38 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1 .349D+0.50L +3.0E 75.25 33.00 -40.11 40.11 70.11 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1 .349D+0.50L +3.0E 76.16 33.00 -25.33 25.33 32.57 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 +1 .349D+0.50L +3.0E 77.08 33.00 -8.57 8.57 8.60 1.00 163.50 Vu< PhiVc/2 NotReqd 0.00 0.00 Millipore Sigma PH2B Ml2210066.00 • • 4. WFI TANK PLATFORM © 2021 Miyamoto International, Inc. m1yamoto. Project: Millipore Sigma CDMO -PH28 Project No: MI2210066.oo Sheet No: ___ _ calc. By: _M_J_I __ _ Date: WFI PLATFORM STRUCTURE J ii tE/\',SIIG ! {E:)l'l'!hl) I I I iE:}WblO I I I I I I ;-;l I l ~i -______ J. ___________ : Nt.10 iE,V,'EA1L I 1t w~_,•o 1-\\ ~ ,E1v,1,•o 1 ; ~ ~ _: ~ ~ w e ~ i : , .. $',2Slr(V.1.FJ eo -· ~ i -· M4.5 Chk. By: ____ Date: EO eo F\/MtE PLATFORM EOUIP MAX TOTAL MIGHT• 2.500 LBS I ~ I W11.Xl0 -· I ..... , I ~~+---'~-,--I------ --"_.._="--+--1-----·--• -· I / , W&:wa.s-" I .,..,_, '-t-1+--,,1-_,~.,=l- 1---+-'~-,,~--~ I -· lt s WW.5 !t ...... lb3x1l◄ UV, TY9 Of(IIATTACH cp .... , ~ y : : D ---+-w~,~2'30~-i---~ '#----□ ! ~--------, ------------------------~ \_HMORAl,"" I WFITNIC 111 AROUNO PERiMETER WT• 26,000 I.BS MAX TO S.• +14'. r, t __ ------_ _j_ -------------------- I I I I I I I I I I -----!-------------------I- I I [ .. , r-10-,,i, f' ltiW BOILER PNJ ~ y er 10'.6" WFIPllMP, TYP.OF 14) WT•350L8S 11~11r ,.1:,.-" 1rTANKFOUND1,TION I (I) (I) CX> X CX> X Ul I (I) (I) CX> X CX> X Ul I (I) (I) CX> X ~ Ul I Cl) Cl) 0, >< 0, >< c.r, I Cl) Cl) 0, >< 0, >< c.r, I Cl) Cl) 0, ~ >< c.r, :r: (f) (f) 00 X 00 X u, :r: (f) (f) 00 X 00 X u, :r: (f) (f) 00 X 00 X u, :x: en en CJ) >< CJ) >< (Jl :x: en en CJ) ?;; >< (Jl -0 04 ksf I en en CJ) >< CJ) >< (Jl I (/) (/) ~ CX> >< 0, I (/) (/) CX> >< CX> >< 0, I (/) (/) CX> X ~ 0, I (/) (/) (X) X (X) X u, I (/) (/) (X) X ~ u, 0.2 k I (/) (/) (X) X (X) X u, IIIRISA A NFMFTSC':HFK r.OMPANY Company : Miyamoto International Designer : MJI Job Number Model Name : WFI Platform Checked By : ___ _ Node Boundary Conditions Node Label X fk/inl Y fk/inl Z fk/inl 1 N24 Reaction Reaction Reaction 2 N25 Reaction Reaction Reaction 3 N23 Reaction Reaction Reaction 4 N22 Reaction Reaction Reaction Hot Rolled Steel Section Sets Label Shape Type Desi!:in List Material Design Rule Area [in2] lyy [in•] lzz [in•] J [in•] 1 PBM1 W12X30 Beam Wide Flanae A992 Typical 8.79 20.3 238 0.457 2 PBM2 W12X30 Beam Wide Flange A992 Typical 8.79 20.3 238 0.457 3 INTBM1 W12X19 Beam Wide Flanae A992 Typical 5.57 3.76 130 0.18 4 INTBM2 W6X8.5 Beam Wide Flange A992 TYPical 2.52 1.99 14.9 0.033 5 STRGR C12X20.7 Beam Channel A36 Gr.36 Typical 6.08 3.86 129 0.369 6 LANDING W6X8.5 Beam Wide Flanae A992 Typical 2.52 1.99 14.9 0.033 7 MFCOL HSS8X8X5 Column Tube A500 Gr.C RECT Typical 8.76 85.6 85.6 136 8 STAIRCOL HSS4X4X4 Column Tube A500 Gr.C RECT Typical 3.37 7.8 7.8 12.8 Member Primary Data Label I Node J Node Section/Shape TYPe Desian List Material Desian Rule 1 M1 N1 N2 PBM1 Beam Wide Flanae A992 TYPical 2 M2 N3 N4 PBM1 Beam Wide Flange A992 Typical 3 M3 N4 N2 PBM2 Beam Wide Flanae A992 TYPical 4 M4 N3 N1 PBM2 Beam Wide Flanae A992 TvPical 5 M5 N4 N25 MFCOL Column Tube A500 Gr.C RECT Typical 6 M6 N2 N23 MFCOL Column Tube A500 Gr.C RECT TYPical 7 M7 N1 N22 MFCOL Column Tube A500 Gr.C RECT Typical 8 MB N3 N24 MFCOL Column Tube A500 Gr.C RECT TYPical 9 M11 N7 N5 INTBM1 Beam Wide Flange A992 Typical 10 M12 N8 N6 INTBM1 Beam Wide Flanae A992 TYPical 11 M13 N16 N17 INTBM2 Beam Wide Flanae A992 TvPical 12 M14 N28 N31 INTBM2 Beam Wide Flange A992 Typical 13 M15 N31 N30 INTBM2 Beam Wide Flanae A992 Typical 14 M16 N30 N29 INTBM2 Beam Wide Flange A992 Typical 15 M17 N32 N34 INTBM2 Beam Wide Flange A992 Typical 16 M18 N34 N36 INTBM2 Beam Wide Flanae A992 TvPical 17 M19 N36 N33 INTBM2 Beam Wide Flanae A992 Typical 18 M20 N37 N39 INTBM2 Beam Wide Flanae A992 TvPical 19 M21 N39 N41 INTBM2 Beam Wide Flange A992 TvPical 20 M22 N41 N35 INTBM2 Beam Wide Flanae A992 Typical 21 M23 N38 N44 INTBM2 Beam Wide Flanae A992 Tvoical 22 M24 N44 N42 INTBM2 Beam Wide Flange A992 Typical 23 M25 N43 N45 INTBM2 Beam Wide Flange A992 Tvoical 24 M26 N45 N46 INTBM2 Beam Wide Flanae A992 TvPical 25 M27 N47 N48 INTBM2 Beam Wide Flange A992 Tvoical 26 M28 N48 N49 INTBM2 Beam Wide Flanae A992 Tvoical 27 M29 N21 N19 INTBM2 Beam Wide Flange A992 Tvoical 28 M30 N19 N20 INTBM2 Beam Wide Flanae A992 Tvoical 29 M31 N20 N46 INTBM2 Beam Wide Flange A992 Typical 30 M32 N46 N21 INTBM2 Beam Wide Flanae A992 TvPical RISA-3D Version 19 [ WFI Platform.r3d ] Page 1 'IIIRISA A NFMFTSr.HFK r.OMPANY Company : Miyamoto International Designer : MJI Job Number Model Name : WFI Platform Checked By : ___ _ Basic Load Cases BLC Descriotion Cateaorv Y Gravitv Nodal Distributed Area(Member) 1 Self Dead DL -1 1 2 Suoer Dead DL 4 3 Live LL 1 4 ELX ELX 4 1 5 ELZ ELZ 4 1 6 BLC 1 Transient Area Loads None 108 7 BLC 3 Transient Area Loads None 108 8 BLC 4 Transient Area Loads None 108 9 BLC 5 Transient Area Loads None 108 Load Combinations Descriotion Solve P-Delta BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1 Deflection 1 Yes y DL 1 2 Deflection 2 Yes y DL 1 LL 1 ELZ -1 3 Deflection 3 Yes y DL 1 LL 1 ELX -1 4 IBC 16-1 Yes y DL 1.4 NL 1 5 IBC 16-2 a) Yes y DL 1.2 LL 1.6 LLS 1.6 RLL 0.5 NL 1 6 IBC 16-2 b) Yes y DL 1.2 LL 1.6 LLS 1.6 NL 1 7 IBC 16-3 a) Yes y DL 1.2 RLL 1.6 LL 0.5 LLS 1 NL 1 8 IBC 16-5 a) Yes y DL 1.2 Rho*ELX 1 LL 0.5 LLS 1 9 IBC 16-5 b) Yes y DL 1.2 Rho*ELZ 1 LL 0.5 LLS 1 10 IBC 16-5 c) Yes y DL 1.2 Rho*ELX -1 LL 0.5 LLS 1 11 IBC 16-5 d) Yes y DL 1.2 Rho*ELZ -1 LL 0.5 LLS 1 12 IBC 16-7 a) Yes y DL 0.9 Rho*ELX 1 13 IBC 16-7 b) Yes y DL 0.9 Rho*ELZ 1 14 IBC 16-7 c) Yes y DL 0.9 Rho*ELX -1 15 IBC 16-7 d) Yes y DL 0.9 Rho*ELZ -1 Envelope A/SC 15TH (360-16): LRFD Member Steel Code Checks Member Shape Code CheckLocfft LC Shear CheckLocrtt Dir LC ohi*Pnc fk ohi*Pnt fk ohi*Mn v-v fk-ft ohi*Mn z-z [k-ft Cb Ean 1 M1 W12X30 0.398 0 10 0.086 0 V 6 193.896 395.55 35.85 74.026 1.352 H1-1 2 M2 W12X30 0.343 0 10 0.079 24 V 6 193.896 395.55 35.85 74.682 1.36~ H1-1 3 M3 W12X30 0.105 14 11 0.039 14 V 11 255.776 395.55 35.85 161.625 1.94~ H1-1 4 M4 W12X30 0.106 14 11 0.04 0.729 V 9 255.776 395.55 35.85 161 .625 1.934 H1-1 5 M5 HSSSXSX! 0.309 0 8 0.016 14 V 8 319.153 394.2 94.125 94.125 1.667 H1-1 6 M6 HSSSXSXE 0.334 0 11 0.019 14 V 8 319.153 394.2 94.125 94.125 1.66i H1-1 7 M7 HSSSXSX! 0.335 0 11 0.019 14 V 10 319.153 394.2 94.125 94.125 1.667 H1-1 8 MS HSS8X8XE 0.309 0 10 0.016 14 V 10 319.153 394.2 94.125 94.125 1.66i H1-1t 9 M11 W12X19 0.255 7.875 6 0.067 14 V 6 108.31 250.65 11.175 92.625 1 H1-1t 10 M12 W12X19 0.261 7 6 0.066 14 V 6 108.31 250.65 11 .175 92.625 1 H1-1 11 M13 W6X8.5 0.154 4 6 0.033 0 V 6 48.308 113.4 5.646 19.221 1.251 H1-1 12 M14 W6X8.5 0.081 4 6 0.022 8 V 6 48.308 113.4 5.646 17.516 1.14E H1-1t 13 M15 W6X8.5 0.086 4 6 0.022 0 V 6 48.308 113.4 5.646 17.6 1.15: H1-1 14 M16 W6X8.5 0.081 4 6 0.022 0 V 6 48.308 113.4 5.646 17.515 1.14€ H1-1 15 M17 W6X8.5 0.08 4 6 0.021 8 V 6 48.308 113.4 5.646 17.516 1.14E H1-1 16 M18 W6X8.5 0.081 4 6 0.023 0 V 6 48.308 113.4 5.646 17.515 1.14E H1-1 17 M19 W6X8.5 0.069 4 6 0.021 0 V 6 48.308 113.4 5.646 17.52 1.14€ H1-1 18 M20 W6X8.5 0.081 4 6 0.019 8 V 6 48.308 113.4 5.646 17.516 1.14E H1-1 19 M21 W6X8.5 0.079 4 6 0.023 8 V 6 48.308 113.4 5.646 17.608 1.152 H1-1 20 M22 W6X8.5 0.072 4 6 0.02 8 V 6 48.308 113.4 5.646 17.48 1.14~ H1-1 21 M23 W6X8.5 0.08 4 6 0.02 8 V 6 48.308 113.4 5.646 17.516 1.14€ H1-1 22 M24 W6X8.5 0.08 4 6 0.023 8 V 6 48.308 113.4 5.646 17.608 1.15, H1-1t RISA-3D Version 19 [ WFI Platform.r3d ] Page2 IIIRISA A NFMFTl'i(;HFK (;(lMPANY Company : Miyamoto International Designer : MJI Job Number Model Name : WFI Platform Checked By: ___ _ EnvelopeAISC 15TH (360-16): LRFD Member Steel Code Checks (Continued) Member Shape Code CheckLoc[ft LC Shear CheckLodft Dir LC ohi*Pnc fk iohi*Pnt fk ohi*Mn v-v fk-ft ohi*Mn z-z lk-ft Cb Eqn 23 M25 W6X8.5 0.081 4 6 0.021 8 V 6 48.308 113.4 5.646 17.516 1.14{ IH1-1t 24 M26 W6X8.5 0.078 4 6 0.023 0 V 6 48.308 113.4 5.646 17.517 1.14{ H1-1 I 25 M27 W6X8.5 0.08 4 6 0.022 8 V 6 48.308 113.4 5.646 17.516 1.146 H1-1t 26 M28 W6X8.5 0.09 3.917 6 0.025 0 V 6 48.308 113.4 5.646 17.557 1.14~ H1-1I 27 M29 W6X8.5 0.04 2.658 6 0.019 0 V 6 77.809 113.4 5.646 20.974 1.16{ H1-1I 28 M30 W6X8.5 0.032 2.713 6 0.014 5.315 V 6 77.809 113.4 5.646 20.974 1.169 H1 -1t 29 M31 W6X8.5 0.044 2.711 6 0.023 0 V 6 74.015 113.4 5.646 20.974 1.16i H1-1I 30 M32 W6X8.5 0.031 2.5 6 0.017 5 V 6 81 .255 113.4 5.646 20.974 1.153 H1-1t Envelope Node Displacements Node Label X linl LC Y [inl LC Z [inl LC X Rotation rrad LC Y Rotation rradl LC Z Rotation lrad1 LC 1 N1 max 1.166 8 -0.002 13 1.017 9 1.519e-3 9 4.36e-4 10 -1 .104e-3 14 2 min -1.168 10 -0.009 5 -1.021 11 -6.954e-4 15 -4.826e-4 8 -6.822e-3 5 3 N2 max 1.166 8 -0.002 13 1.024 9 1.501e-3 9 4.54e-4 10 6.832e-3 6 4 min -1.169 10 -0.009 5 -1 .02 11 -7.115e-4 15 -4.638e-4 8 1.103e-3 12 5 N3 max 1.085 8 -0.001 15 1.017 9 6.854e-4 13 4.631e-4 10 -5.168e-4 14 6 min -1.091 10 -0.008 5 -1.021 11 -1.533e-3 11 -4.866e-4 8 -5.885e-3 5 7 N4 max 1.084 8 -0.001 15 1.024 9 7.191e-4 13 4.615e-4 10 5.993e-3 6 8 min -1 .092 10 -0.008 5 -1 .02 11 -1.481e-3 11 -4.832e-4 8 5.367e-4 12 9 NS max 1.166 8 -0.237 14 1.02 9 1.513e-3 9 4.62e-4 10 -1 .29e-3 12 10 min -1.168 10 -0.675 5 -1.021 11 -7.008e-4 15 -4.848e-4 8 -4.428e-3 5 11 N6 max 1.166 8 -0.237 12 1.023 9 1.507e-3 9 4.564e-4 10 4.425e-3 6 12 min -1.169 10 -0.675 5 -1.021 11 -7.061e-4 15 -4.901e-4 8 1.291e-3 14 13 N7 max 1.085 8 -0.171 14 1.02 9 6.777e-4 13 4.56e-4 10 -8.685e-4 12 14 min -1.092 10 -0.583 5 -1.021 11 -1.52e-3 11 -4.852e-4 8 -3.824e-3 5 15 NB max 1.085 8 -0.171 12 1.023 9 6.7e-4 13 4.568e-4 10 3.769e-3 6 16 min -1 .092 10 -0.585 5 -1.021 11 -1 .508e-3 11 -4.886e-4 8 8.591e-4 14 17 N16 max 1.125 8 -0.301 12 1.023 9 -4.351e-4 13 4.628e-4 10 4.274e-3 6 18 min -1 .13 10 -0.909 5 -1.021 11 -7.075e-4 4 -4.863e-4 8 1.173e-3 14 19 N17 max 1.125 8 -0.019 14 1.024 9 3.498e-4 15 4.588e-4 10 6.423e-3 6 20 min -1.13 10 -0.061 5 -1 .02 11 -3.919e-4 9 -4.972e-4 8 8.301e-4 12 21 N19 max 1.105 8 -0.001 13 1.024 9 -1.889e-4 15 4.577e-4 10 6.218e-3 6 22 min -1.111 10 -0.044 5 -1.02 11 -6.614e-4 5 -4.897e-4 8 6.939e-4 12 23 N20 max 1.084 8 -0.073 12 1.023 9 6.662e-4 13 4.567e-4 10 6.269e-3 6 24 min -1 .092 10 -0.326 5 -1 .02 11 -1 .502e-3 11 -4.844e-4 8 1.873e-3 12 25 N21 max 1.125 8 -0.184 12 1.023 9 -1 .057e-4 14 4.572e-4 10 8.841e-3 6 26 min -1 .13 10 -0.573 5 -1.02 11 -7.999e-4 8 -4.847e-4 8 2.916e-3 12 27 N22 max 0 12 0 13 0 13 8.292e-3 9 4.36e-4 10 1.185e-2 10 28 min 0 10 0 5 0 11 -8.842e-3 11 -4.826e-4 8 -8.014e-3 12 29 N23 max 0 8 0 13 0 13 8.361e-3 9 4.54e-4 10 8.019e-3 14 30 min 0 14 0 5 0 11 -8.818e-3 11 -4.638e-4 8 -1.183e-2 8 31 N24 max 0 12 0 15 0 9 8.817e-3 9 4.631e-4 10 1.076e-2 10 32 min 0 10 0 5 0 15 -8.317e-3 11 -4.866e-4 8 -7.714e-3 12 33 N25 max 0 8 0 15 0 9 8.849e-3 9 4.615e-4 10 7.728e-3 14 34 min 0 14 0 5 0 15 -8.33e-3 11 -4.832e-4 8 -1.072e-2 8 35 N28 max 1.155 8 0.001 15 1.017 9 8.507e-4 6 4.516e-4 10 -1.02e-3 14 36 min -1.158 10 -0.032 9 -1.021 11 -4.206e-5 15 -4.854e-4 8 -6.688e-3 5 37 N29 max 1.155 8 0.001 15 1.024 9 8.241e-4 9 4.57e-4 10 6.715e-3 6 38 min -1.158 10 -0.032 9 -1.02 11 -5.838e-5 15 -4.795e-4 8 1.025e-3 12 39 N30 max 1.155 8 -0.27 12 1.023 9 4.039e-3 6 4.566e-4 10 4.381e-3 6 40 min -1 .158 10 -0.785 5 -1.021 11 1.167e-3 15 -4.918e-4 8 1.258e-3 14 41 N31 max 1.155 8 -0.271 14 1.02 9 4.03e-3 6 4.643e-4 10 -1 .23e-3 12 42 min -1.158 10 -0.785 5 -1.021 11 1.19e-3 15 -4.86e-4 8 -4 .342e-3 5 43 N32 max 1.143 8 -0.005 15 1.017 9 6.045e-4 6 4.561e-4 10 -9.359e-4 14 44 min -1.146 10 -0.052 5 -1.021 11 8.099e-5 13 -4.844e-4 8 -6.554e-3 5 RISA-3D Version 19 [ WFI Platform.r3d ] Page 3 IIIRISA A NFMFTSr.HFK r.OMPANY Company : Miyamoto International Designer : MJI Job Number Model Name : WFI Platform Checked By : ___ _ Envelope Node Displacements (Continued) Node Label Xfinl LC Y linl LC Zlinl LC X Rotation rradl LC Y Rotation rradl LC Z Rotation rrad LC 45 N33 max 1.143 8 -0.004 15 1.024 9 5.738e-4 6 4.569e-4 10 6.598e-3 6 46 min -1.147 10 -0.05 5 -1.02 11 6.669e-5 13 -4.851e-4 8 9.469e-4 12 47 N34 max 1.143 8 -0.296 14 1.02 9 2.576e-3 6 4.52e-4 10 -1.17e-3 12 48 min -1.146 10 -0.869 5 -1 .021 11 6.806e-4 15 -4.828e-4 8 -4.255e-3 5 49 N35 max 1.131 8 -0.015 15 1.024 9 4.527e-4 11 4.583e-4 10 6.481e-3 6 50 min -1 .136 10 -0.06 5 -1.02 11 -2.783e-4 13 -4.881e-4 8 8.69e-4 12 51 N36 max 1.143 8 -0.295 12 1.023 9 2.583e-3 6 4.563e-4 10 4.338e-3 6 52 min -1.147 10 -0.869 5 -1 .021 11 6.624e-4 15 -4.786e-4 8 1.224e-3 14 53 N37 max 1.131 8 -0.016 15 1.017 9 4.706e-4 11 4.567e-4 10 -8.521e-4 14 54 min -1.136 10 -0.062 5 -1 .021 11 -2.662e-4 13 -4.856e-4 8 -6.42e-3 5 55 N38 max 1.12 8 -0.016 13 1.017 9 2.587e-4 15 4.578e-4 10 -7.683e-4 14 56 min -1.125 10 -0.062 5 -1 .021 11 -4.804e-4 9 -4.87e-4 8 -6.286e-3 5 57 N39 max 1.131 8 -0.305 14 1.02 9 5.303e-4 6 4.572e-4 10 -1 .11e-3 12 58 min -1.136 10 -0.909 5 -1 .021 11 -5.56e-5 4 -4.853e-4 8 -4.169e-3 5 59 N40 max 1.119 8 -0.014 13 1.024 9 2.543e-4 15 4.562e-4 10 6.364e-3 6 60 min -1.125 10 -0.059 5 -1.02 11 -4.924e-4 9 -4.952e-4 8 7.912e-4 12 61 N41 max 1.131 8 -0.304 12 1.023 9 5.206e-4 6 4.565e-4 10 4.295e-3 6 62 min -1.136 10 -0.909 5 -1.021 11 -7.774e-5 4 -4.994e-4 8 1.19e-3 14 63 N42 max 1.12 8 -0.293 12 1.023 9 -8.203e-4 13 4.627e-4 10 4.252e-3 6 64 min -1.125 10 -0.894 5 -1.021 11 -1.723e-3 5 -4.672e-4 8 1.156e-3 14 65 N43 max 1.108 8 -0.005 13 1.017 9 -8.853e-5 15 4.575e-4 10 -6.844e-4 14 66 min -1.114 10 -0.051 5 -1.021 11 -6.146e-4 5 -4.861e-4 8 -6.152e-3 5 67 N44 max 1.12 8 -0.295 14 1.02 9 -8.113e-4 13 4.592e-4 10 -1 .049e-3 12 68 min -1.125 10 -0.894 5 -1.021 11 -1.689e-3 5 -4.874e-4 8 -4.083e-3 5 69 N45 max 1.108 8 -0.266 14 1.02 9 -1.501e-3 13 4.572e-4 10 -9.89e-4 12 70 min -1.114 10 -0.827 5 -1.021 11 -3.674e-3 5 -4.873e-4 8 -3.997e-3 5 71 N46 max 1.108 8 -0.264 12 1.023 9 -1.487e-3 13 4.571e-4 10 4.209e-3 6 72 min -1.114 10 -0.827 5 -1.021 11 -3.673e-3 5 -4.867e-4 8 1.122e-3 14 73 N47 max 1.096 8 0.001 13 1.017 9 3.427e-5 13 4.712e-4 10 -6.006e-4 14 74 min -1 .102 10 -0.032 2 -1.021 11 -8.705e-4 2 -4.885e-4 8 -6.018e-3 5 75 N48 max 1.096 8 -0.223 14 1.02 9 -1.983e-3 13 4.651e-4 10 -9.287e-4 12 76 min -1.103 10 -0.718 5 -1.021 11 -5.093e-3 5 -4.857e-4 8 -3.911e-3 5 77 N49 max 1.097 8 -0.221 12 1.023 9 -1.942e-3 13 4.57e-4 10 3.989e-3 6 78 min -1 .103 10 -0.718 5 -1 .021 11 -5.031e-3 5 -4.846e-4 8 9.907e-4 14 Warning Log No Data to Print... RISA-3D Version 19 [ WFI Platform.r3d ) Page4 Building Permit Finaled Revision Permit Print Date: 06/05/2024 Job Address: 2827 WHIPTAIL LOOP, CARLSBAD, CA 92010 Permit No: Status: C cityof Carlsbad PREV2022-0118 Closed -Finaled Permit Type: BLDG-Permit Revision Work Class: Commercial Permit Revision Parcel #: 2091202600 Valuation: $0.00 Occupancy Group: 8-Fl +Sl #of Dwelling Units: Bedrooms: Bathrooms: Occupant Load: O Code Edition: 2019 Sprinkled: Yes Project Title: Track#: Lot#: Project#: Plan#: Construction Type: 111-8 Orig. Plan Check#: CBC2022-0227 Plan Check #: Applied: 10/11/2022 Issued: 11/03/2022 Finaled Close Out: 06/05/2024 Final Inspection: INSPECTOR: Description: MIU PORE SIGMA PHASE 28: RELOCATED DRAINS & FOUNDATIONS IN MANUFACTURING -ADD DRAIN IN UTILTY YARD Applicant: CHAMPION PERMITS TIM SEAMAN 112711TH ST IMPERIAL BEACH, CA 91932-2901 (619) 993-8846 FEE BUILDING PLAN CHECK FEE (manual) BUILDING PLAN REVIEW -Revisions Total Fees: $184.50 Building Division Property Owner: BERDAN WHIPTAIL LLC 2827 WHIPTAIL LOOP CARLSBAD, CA 92010-6713 Total Payments To Date: $184.50 Contractor: BN BUILDERS INC 5825 OBERLIN DR, # STE 1 SAN DIEGO, CA 92121-3709 (858) 550-9433 Balance Due: 1635 Faraday Avenue, Carlsbad CA 92008-7314 I 442-339-2719 I 760-602-8560 f I www.carlsbadca.gov AMOUNT $120.00 $64.50 $0.00 Page 1 of 1 { City of Carlsbad PLAN CHECK REVISION OR DEFERRED SUBMITTAL APPLICATION B-15 Development Services Building Division 1635 Faraday Avenue 760-602-2719 www.carlsbadca.gov Original Plan Check Number CBC2022-0227 Project Address 2827 Whiptail Loop W. Plan Revision Number PR.bl 2D 22-O\\<n G IS f R f RELOCATED DRAINS AND FOUNDATIONS IN MANUFACTURING AREA. enera cope o evision/De erred Submittal: _________________ _ ANOTHER DRAIN WAS ADDED IN THE UTILITY YARD. CONTACT INFORMATION: Name Tim Seaman Phone 619-993-8846 ________ Fa,._ _______ _ Address P. 0. Box 5955 City Chula Vista Z. 91912 IP ----- Email Address tim@championpermits.com Original plans prepared by an architect or engineer, revisions must be signed & stamped by that person. 1 . Elements revised: Iii Plans D Calculations D Soils D Energy D Other 2. 3. Describe revisions in detail List page(sJ where each revision is shown Updated Sheet Index 2728-A0-000-PH2B Added Construction Change Description 2728-A0-001-PH2B Added Drains 2728-M2-002-PH2B Added Drains 2728-M2-003-PH2B Updated drains for equipment layout changes 2728-M5-U1 0-PH2B Updated drains for equipment layout changes 2728-M5-U15-PH2B Added new fixture 2728-M7-001-PH2B Updated foundations for equipment layout changes 2728-S2-120-PH2B 4. Does this revision, in any way, alter the exterior of the project? D Yes liJ No 5. Does this revision add ANY new floor area(s)7 D Yes Iii No 6. Does this revision affect any fire related issues? D Yes D No 7. Is this a complete set? D Yes Iii No ..@'.S'Signature _______________ _ Date 1 0/1 0/2022 1635 Faraday Avenue, Carlsbad, CA 92008 fb.: 760-602-2719 fax: 760-602-8558 ~ building@carlsbadca.gov www.carlsbadca.gov True Nortl1 COMPLIANCE SERVICES October 27, 2022 City of Carlsbad Community Development Department -Building Division 1635 Faraday Ave. City of Carlsbad -FINAL REVIEW City Permit No: PREY2022-0118 True North No.: 22-018-343 Carlsbad, CA 92008 Plan Review: Revision Drain Addition Address: 2827 Whiptail Loop, Carlsbad, CA Applicant Name: Tim Seaman Applicant Email: tim@championpermits.com OCCUPANCY AND BUILDING SUMMARY: Occupancy Groups: B Occupant Load: NIA Type of Construction: NI A Sprinklers: NIA Stories: NI A Area of Work (sq. ft.): NIA sq. ft. The plans have been reviewed for coordination with the permit application. Valuation: See Notes Below Scope of Work: Confirmed Floor Area: Confirmed Notes: Valuation was not specified on application Attn: Building & Safety Department, True North Compliance Services, Inc. has completed the final review of the following documents for the project referenced above on behalf of the City of Carlsbad: l. Drawings: One (1) copy dated October 6, 2022, by CPC Architects. 2. Structural Calculations: One (I) copy dated October 14, 2022, by Miyamoto. The 2019 California Building, Mechanical, Plumbing, and Electrical Codes (i.e., 2018 IBC, UMC, UPC, and 201 7 NEC, as amended by the State of California), 2019 California Green Building Standards Code, 20 l 9 California Existing Building Code, and 2019 California Energy Code, as applicable, were used as the basis of our review. Please note that our review has been completed and we have no further comments, however, we bring the following to your attention: I. This project is Hourly. Please charge the applicant the following hours of plan review. True North Compliance Services, Inc. 3939 Atlantic Avenue Suite 116, Long Beach, CA 90807 T / 562.733.8030