HomeMy WebLinkAboutPD 2023-0016; KINOVATE PRODUCTION FACILITY TI; DRAINAGE STUDY; 2024-03-01
DRAINAGE STUDY FOR
KINOVATE PRODUCTION FACILITY TI
CARLSBAD, CALIFORNIA
PD2023 – 0016
GR2023 – 0026
March 2024
Prepared for:
KINOVATE LIFE SCIENCES
1935 Camino Vida Roble
Carlsbad, CA 92008
Prepared By:
KPFF CONSULTING ENGINEERS
________________________________________________
Engineer of Work: Jeffrey B. Gavazza | PE# C-59894
LA: 700 South Flower Street, Suite 2100
Los Angeles, CA 90017
SD: 3131 Camino Del Rio North, Suite 1080
San Diego, CA 92108
KPFF Job #2200201
(213) 418–0201
Jeff Gavazza
4/30/24
2
Table of Contents
1. Project Location and Scope .................................................................................................................. 3
1.1 Project Location ........................................................................................................................... 3
1.2 Scope of Report ........................................................................................................................... 3
2. Project Description ............................................................................................................................... 4
2.1 Project Site Information .............................................................................................................. 4
2.2 Pre-Development Conditions ...................................................................................................... 4
2.3 Post -Development Conditions .................................................................................................... 5
3. Methodology ........................................................................................................................................ 6
3.1 Hydrology .................................................................................................................................... 6
3.2 Hydraulic Design .......................................................................................................................... 7
4. Results and Conclusions........................................................................................................................ 8
4.1 Results ......................................................................................................................................... 8
4.2 Conclusions ................................................................................................................................ 10
5. References .......................................................................................................................................... 11
Appendix A – Pre- and Post-Development Hydrology Exhibits and FEMA Firmette .................................. 12
Appendix B – Hydrology Calculations ......................................................................................................... 13
Appendix C – Hydraulic Analysis ................................................................................................................. 14
Appendix D – On-Site Hydrograph for the 100-Year 6-Hour Storm Event Detention Volume and Q100
Orifice Sizing Calculation ............................................................................................................................. 15
3
1. Project Location and Scope
1.1 Project Location
The 3.2-acres site is located along the south of Camino Vida Roble, in the City of Carlsbad,
California. The project site is generally bound by Camino Vida Roble to the north, Palomar
Airport Road to the south, and Palomar Oaks Way to the west. Access to the project site is
provided off of Camino Vida Roble. The Assessor’s Parcel Number (APN) is 212-092-18-00.
A site vicinity map is shown in Figure 1-1 below.
Figure 1-1: Site Vicinity Map
1.2 Scope of Report
This report will focus on identifying the hydrologic effects of the proposed development by
studying the 10-year and 100-year flow rates for the pre and post development conditions. This
report will not discuss water quality measures or best management practices for stormwater
mitigation. For information regarding best management practice requirements and
implementation, refer to the project’s Storm Water Quality Management Plan (SWQMP),
prepared by KPFF.
No surface waters are present on the project site or nearby, and site runoff is captured and
discharged into storm drain system. As such, the project is not anticipated to require a separate
CA Regional Water Quality Control Board approval under Federal Clean Water Act Section
401/404.
4
2. Project Description
2.1 Project Site Information
The existing site elevation varies from 256 feet along the southwestern boundary to 250 feet
along the northern boundary (Camino Vida Roble). The Federal Emergency Management
Agency (FEMA) has not mapped any Special Flood Hazard Areas (SFHAs) for the project
site. The FEMA Map for the project site is provided in Appendix A.
2.2 Pre-Development Conditions
The existing site improvement includes an office building and a surface parking lot. In the pre-
developed condition, the site consists of approximately 71% impervious surface, and the
landscape perimeter along the parking lot. The pre-development condition is divided into 5
basins that drain into two separate POCs, per existing grading and site features.
Areas that drain towards POC #1 consists of the driveway and landscape buffer between the
north-easterly edge of parking lot and the public sidewalk on Camino Vida Roble. Areas that
drain towards POC #2 consists of the existing building, surface parking, and landscape areas.
Runoff from the Onsite Basin 2 is collected in a series of onsite storm drain inlets, and
discharges into an 18” RCP located at the north corner of the project site. Refer to Table 2-1
for a summary of the pre-development conditions.
Table 2-1: Pre-Development Runoff Coefficient
DRAINAGE
SUB-BASIN
TOTAL AREA
(AC)
PERVIOUS AREA
(AC)
%
PERVIOUS
%
IMPERVIOUS
Drains to
POC
1 0.31 0.26 0.84 0.16 POC #1
2 0.70 0.11 0.16 0.84 POC #2
3 1.06 0.24 0.23 0.77 POC #2
4 0.89 0.26 0.29 0.71 POC #2
5 0.03 0.03 1.00 0.00 POC #2
ONSITE
TOTAL 2.68 0.61 0.23 0.77 -
PROPERTY
TOTAL 2.99 0.87 0.29 0.71 -
5
2.3 Post -Development Conditions
The proposed site improvement consists of a new truck loading/unloading area, tank farm,
exterior electrical mechanical equipment yard, additional surface parking area and sidewalk.
In the post development condition, the site will consist of 80% impervious surface. The overall
drainage pattern will remain the same as the existing condition, and runoff from the new or
replaced impervious area will be captured and treated using biofiltration basins. Refer to the
project Storm Water Quality Management Plan (SWQMP) for additional details regarding the
post-development stormwater treatment BMPs. Refer to Table 2-2 below for a summary of the
post-development conditions.
Table 2-2: Post-Development Condition Summary
DRAINAGE SUB-BASIN AREA (ac) PERVIOUS AREA (AC) % PERVIOUS % IMPERVIOUS Drains to POC
A 0.31 0.20 0.65 0.35 POC #1
B 1.06 0.14 0.13 0.87 POC #2
E 0.37 0.07 0.19 0.81 POC #2
F 0.03 0.03 1.00 0.00 POC #2
G 0.06 0.00 0.00 1.00 POC #2
H 0.14 0.01 0.07 0.93 POC #2
I 0.12 0.01 0.08 0.92 POC #2
J 0.19 0.02 0.11 0.89 POC #2
K 0.66 0.11 0.17 0.83 POC #2
L 0.05 0.00 0.00 1.00 POC #2
ONSITE TOTAL 2.68 0.39 0.15 0.85 -
PROPERTY TOTAL 2.99 0.59 0.20 0.80 -
6
3. Methodology
3.1 Hydrology
The hydrology calculations are based on the County of San Diego Hydrology Manual (2003).
The project site is 3.2 acres, and therefore the Rational Method was used to calculate the peak
flow rate for the 10-year and 100-year storm events. The Rational Method calculates peak flow
rate (Q) as a function of runoff coefficient (C), rainfall intensity (I), and drainage area (A):
Q = C * I * A
The runoff coefficient (C) for each drainage area was calculated using the following equation:
C = 0.90 × (% Impervious) + Cp × (1 - % Impervious)
Where: Cp = Pervious Coefficient Runoff Value for the soil type
The site’s imperviousness was determined by calculating the impervious area in the pre and
post development conditions. Per Appendix A of the Hydrology Manual and site infiltration
rates, Type D soil is selected for this hydrology analysis. Cp for pervious conditions was
determined to be 0.35, per Table 3-1 of the Hydrology Manual. See Table 3-1 and Table 3-2
for pre- and post- development runoff coefficients.
Rainfall intensities (I) were determined by following the steps outlined in Chapter 3.1.3 of the
Hydrology Manual, where the time of concentration (Tc) was calculated to obtain the intensity.
The overall Tc at the two POCs was computed based off the hydraulically farthest point within
the project area, considering the initial time plus the time of travel.
Lastly, drainage areas (A) were determined by inspecting the existing and proposed conditions
and delineating areas according to grading and site features. The Pre-Development Drainage
Condition and Post-Development Drainage Condition exhibits can be found in Appendix A.
Table 3-1: Pre-Development Runoff Coefficient
DRAINAGE
SUB-BASIN
TOTAL AREA
(AC)
PERVIOUS AREA
(AC)
%
PERVIOUS
%
IMPERVIOUS C
1 0.31 0.26 0.84 0.16 0.44
2 0.70 0.11 0.16 0.84 0.81
3 1.06 0.24 0.23 0.77 0.78
4 0.89 0.26 0.29 0.71 0.74
5 0.03 0.03 1.00 0.00 0.35
ONSITE
TOTAL 2.68 0.61 0.23 0.77 0.77
PROPERTY
TOTAL 2.99 0.87 0.29 0.71 0.74
7
Table 3-2: Post-Development Runoff Coefficient
DRAINAGE
SUB-BASIN AREA (ac)
PERVIOUS AREA
(AC)
%
PERVIOUS
%
IMPERVIOUS C
A 0.31 0.20 0.65 0.35 0.55
B 1.06 0.14 0.13 0.87 0.83
E 0.37 0.07 0.19 0.81 0.80
F 0.03 0.03 1.00 0.00 0.35
G 0.06 0.00 0.00 1.00 0.90
H 0.14 0.01 0.07 0.93 0.86
I 0.12 0.01 0.08 0.92 0.85
J 0.19 0.02 0.11 0.89 0.84
K 0.66 0.11 0.17 0.83 0.81
L 0.05 0.00 0.00 1.00 0.90
ONSITE
TOTAL 2.68 0.39 0.15 0.85 0.82
PROPERTY
TOTAL 2.99 0.59 0.20 0.80 0.79
To comply with the 100-year storm event mitigation requirements, a hydrograph analysis was
conducted using the Qn method based on recommendations from Section 6 of the San Diego
Hydrology Manual. The hydrograph methodology consists of rainfall distribution for a 100-
year, 6-hour storm where the peak flow is calculated at the 4-hour mark, or 2/3rd of the duration
of the storm event. The incremental distribution was computed using equations 6-2, 6-3, and
6-5 from the manual and introduced into a spreadsheet format. The Q100 detention volume
calculated using this method resulted in 16 cubic feet. Refer to Appendix D for the hydrograph
data and the Q100 volume calculations.
3.2 Hydraulic Design
The hydraulic calculations were conducted using Flowmaster software. Refer to Appendix C
for Hydraulic Analysis. The private storm drains within the project limit are designed to convey
the peak runoff rate for a 100-year storm.
Following the guidelines from the conjunctive use facilities for storm water management and
flood control, the post-construction permanent BMP BF-2 is used to detain the 16 cubic feet
of Q100 volume. The undetained Q100 flow rate entering BMP BF-2, computed at 2.06 cfs in
the post-development condition, is mitigated by subtracting the post & pre-construction peak
flow delta of 0.7 cfs for the overall site to yield a detained Q100 flow rate value of 1.36 cfs.
This flow rate is used to design the outflow rate of the Q100 detention orifice size.
Using the County of San Diego Hydraulic Design Manual, the orifice equation was used to
obtain the diameter for the detained Q100 flow rate, which was computed to be 15.85 inches
when using the recommended orifice coefficient of 0.60 for sharp, clean edges. The orifice
head is equivalent to the Q100 detention ponding above the water quality ponding depth at 0.5
inches. The orifice plate is to be provided at the outlet of the catch basin within BMP BF-2,
8
thus meeting the Q100 post-development attenuation on site. Refer to Appendix D for the Q100
orifice sizing calculations.
4. Results and Conclusions
4.1 Results
Table 4-1 and Table 4-2 summarize the hydrology results of the pre- and post- development
conditions during the 10-year and 100-year storm event frequency. The proposed development
will increase the amount of impervious area and thus slightly increase the peak runoff rate. As
seen in Table 4-3 below, the peak runoff rate for POC #1 for the 10-year storm event is
expected to increase from 0.65 cfs to 0.81 cfs in the post development conditions; the peak
runoff rate for POC #2 for the 10-year storm event is expected to increase from 9.84 cfs to
10.56 cfs in the post development conditions. Similarly, Table 4-4 shows the peak runoff rate
for POC #1 for the 100-year storm event is expected to increase from 0.95 cfs to 1.18 cfs; the
peak runoff rate for POC #2 for the 100-year storm event is expected to increase from 11.5 cfs
to 12.2 cfs.
The analysis shows the difference of the post-construction Q100 of 12.2 cfs hydrograph from
the pre-construction Q100 of 11.5 cfs. This peak flow difference of 0.7 cfs is used as the height
of the triangular area that is above the pre-construction Q100 flow. The resultant area is
equivalent to the detention volume in cubic feet, which was computed to be 16 cubic feet. The
detention for this Q100 storage volume is provided at the biofiltration BMP “BF-2”. This BMP
has a minimum surface area of 375 square feet, which yields a Q100 detention depth of 0.042
feet (0.51 inches).
Table 4-1: Pre-Development Peak Runoff Rate
DRAINAGE
SUB-BASIN
RUNOFF
COEFFICIENT
(C)
I10 (in/hr)
@Tc=5
min
I100
(in/hr) AREA (ac) Q10 (cfs) Q100 (cfs)
1 (drains to
POC #1) 0.44 4.8 7 0.31 0.65 0.95
2 (drains to
POC #2) 0.81 4.8 7 0.70 2.73 3.99
3 (drains to
POC #2) 0.78 4.8 7 1.06 3.95 5.75
4 (drains to
POC #2) 0.74 4.8 7 0.89 3.16 4.61
5 (drains to
POC #2) 0.35 4.8 7 0.03 0.05 0.07
Onsite Total
to POC 2
(Tc=7.06 min) 0.77 4.8 5.6 2.68 9.84 11.5
PROPERTY
TOTAL - - - 2.99 10.54 15.37
9
Table 4-2: Post-Development Peak Runoff Rate
DRAINAGE
SUB-BASIN
RUNOFF
COEFFICIENT
(C)
I10 (in/hr)
@Tc=5
min
I
100(in/hr)
AREA
(ac)
Time of
Concentration
Tc (min)
Q10
(cfs)
Q100
(cfs)
A (drains to
POC #1) 0.55 4.8 7 0.31 5 0.81 1.18
B (drains to
POC #2) 0.83 4.8 7 1.06 5 4.21 6.14
E (drains to
POC #2) 0.80 4.8 7 0.37 5 1.41 2.06
F (drains to
POC #2) 0.35 4.8 7 0.03 5 0.05 0.07
G (drains to
POC #2) 0.90 4.8 7 0.06 5 0.27 0.39
H (drains to
POC #2) 0.86 4.8 7 0.14 5 0.59 0.86
I (drains to
POC #2) 0.85 4.8 7 0.12 5 0.49 0.72
J (drains to
POC #2) 0.84 4.8 7 0.19 5 0.77 1.12
K (drains to
POC #2) 0.81 4.8 7 0.66 5 2.56 3.73
L (drains to
POC #2) 0.90 4.8 7 0.05 5 0.21 0.30
Onsite Total
to POC 2 0.82 4.8 5.6 2.68 7.06 10.56 12.2
PROPERTY
TOTAL 0.79 - - 2.99 - 11.37 16.58
10
Table 4-3: Pre- vs. Post- 10 YR PEAK Flow
POC #
PRE - 10 YR PEAK
FLOW (CFS)
POST - 10 YR PEAK
FLOW (CFS) 10 YR INCREASE (CFS) % INCREASE
1 0.65 0.81 0.16 24
2 9.97 10.56 0.59 6
TOTAL 10.54 11.37 0.83 8
Table 4-4: Pre- vs. Post- 100 YR PEAK Flow
POC #
PRE - 100 YR PEAK
FLOW (CFS)
POST - 100 YR PEAK
FLOW (CFS) 100 YR INCREASE (CFS) % INCREASE
1 0.95 1.18 0.23 24
2 11.50 12.24* 0.70 7
TOTAL 15.37 16.58 1.21 8
*12.24 cfs as undetained. This peak flow rate is mitigated using a Q100 detention orifice at the biofiltration
BMP “BF-2” to meet the pre-construction Q100 peak flow rate conditions.
4.2 Conclusions
Although the proposed development will increase the peak runoff rate by 7% at POC 2, the
project will mitigate any impact to the downstream storm drain infrastructure by detaining the
increased Q100 peak flow rate within the biofiltration basin “BF-2”. The 16 cubic feet of Q100
detention volume will be stored by providing 0.5 inches of additional ponding depth above 12
inches of water quality treatment ponding for the given 375 square foot minimum treatment
area. To attenuate the post-construction peak flow rate to pre-construction levels, the catch
basin for BMP BF-2 will have an outlet orifice diameter of 15.85 inches, which has been sized
from reducing the unmitigated Q100 flow rate of 2.06 cfs entering BMP BF-2 by the peak flow
delta of 0.7 cfs for the project site. The resultant outflow of 1.36 cfs exiting this orifice ensures
that the 100-year 6-hr storm event peak flow mitigation is met. The increase in runoff to
Camino Vida Roble by 0.23 cubic feet per second at POC 1 has been assessed as minimal and
does not affect the downstream facilities.
Refer to the project Storm Water Quality Management Plan (SWQMP) for additional details
regarding hydromodification flow control mitigation and calculations.
An existing 10” private storm drain pipe located within Sub-Basin B appears to be undersized
under existing conditions in the event of a 100-year storm. In the event of a 100-year storm,
water bypasses the catch basin and will flow towards the proposed “Type B” curb inlet. The
expected flow was compared to the capacity of the 10” pipe and a spread of 6’ was determined
along the existing gutter (refer to hydraulic calculations provided in the appendix). This
approach is in alignment with Section 5.1.C of the City of Carlsbad Engineering Standards.
The maximum discharge of the outgoing 18” RCP pipe sloped at 2% at POC #2 is 15.98 cfs.
This hydraulic analysis was calculated based off as-built information. Through the detention
at BF-2, no increase in flow is expected to enter the city storm drain system.
11
5. References
County of San Diego Department of Public Works, 2003. San Diego County Hydrology
Manual. https://www.sandiegocounty.gov/dpw/floodcontrol/floodcontrolpdf/hydro-
hydrologymanual.pdf
Federal Emergency Management Agency (FEMA), 2020. National Flood Hazard Layer
FIRMette.
San Diego County Conjunctive Use Facilities for Storm Water Management and Flood
Control, 2020.
12
Appendix A – Pre- and Post-Development Hydrology Exhibits and FEMA
Firmette
National Flood Hazard Layer FIRMette
0 500 1,000 1,500 2,000250
Feet
Ü
SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT
SPECIAL FLOODHAZARD AREAS
Without Base Flood Elevation (BFE)Zone A, V, A99With BFE or DepthZone AE, AO, AH, VE, AR
Regulatory Floodway
0.2% Annual Chance Flood Hazard, Areasof 1% annual chance flood with averagedepth less than one foot or with drainageareas of less than one square mileZone X
Future Conditions 1% Annual
Chance Flood HazardZone X
Area with Reduced Flood Risk due to
Levee. See Notes.Zone X
Area with Flood Risk due to LeveeZone D
NO SCREENArea of Minimal Flood Hazard Zone X
Area of Undetermined Flood HazardZone D
Channel, Culvert, or Storm Sewer
Levee, Dike, or Floodwall
Cross Sections with 1% Annual Chance
17.5 Water Surface Elevation
Coastal Transect
Coastal Transect Baseline
Profile Baseline
Hydrographic Feature
Base Flood Elevation Line (BFE)
Effective LOMRs
Limit of Study
Jurisdiction Boundary
Digital Data Available
No Digital Data Available
Unmapped
This map complies with FEMA's standards for the use of
digital flood maps if it is not void as described below.The basemap shown complies with FEMA's basemapaccuracy standards
The flood hazard information is derived directly from theauthoritative NFHL web services provided by FEMA. This mapwas exported on 5/28/2023 at 5:03 AM and does notreflect changes or amendments subsequent to this date andtime. The NFHL and effective information may change orbecome superseded by new data over time.
This map image is void if the one or more of the following map
elements do not appear: basemap imagery, flood zone labels,
legend, scale bar, map creation date, community identifiers,
FIRM panel number, and FIRM effective date. Map images for
unmapped and unmodernized areas cannot be used for
regulatory purposes.
Legend
OTHER AREAS OF
FLOOD HAZARD
OTHER AREAS
GENERAL
STRUCTURES
OTHER
FEATURES
MAP PANELS
8
B 20.2
The pin displayed on the map is an approximatepoint selected by the user and does not representan authoritative property location.
1:6,000
117°17'31"W 33°7'36"N
117°16'53"W 33°7'6"N
Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020
FEMA
c:::::::::J
1111111
586.39 ft
PRE - PEAK Q100
ONSITE BASIN 2
Area (A) = 2.68 acres
Runoff Coefficient (C) = 0.77
Time of Concentration (Tc) = 7.06 min.
Longest path of travel (L) = 587 ft
Intensity (I100) = 5.6 in./hr.
Q100 = 11.5 cfs V100 = 24.09 fps
SUB-BASIN 1
Area (A) = 0.31 acres
Runoff Coefficient (C) = 0.44
Time of Concentration (Tc) = 5 min.
Longest path of travel (L) = 130 ft
Intensity (I10) = 4.8 in./hr.
Intensity (I100) = 7 in./hr.
Q100 = 0.95 cfs
EXISTING ROOF
AREA (0.06 AC)
DRAINS TO
SUB-BASIN 2
EXISTING ROOF
AREA (0.16 AC)
DRAINS TO
SUB-BASIN 2
EXISTING ROOF
AREA (0.07 AC)
DRAINS TO
SUB-BASIN 3
EXISTING ROOF
AREA (0.06 AC)
DRAINS TO
SUB-BASIN 3
EXISTING ROOF
AREA (0.07 AC)
DRAINS TO
SUB-BASIN 3
EXISTING ROOF
AREA (0.04 AC)
DRAINS TO
SUB-BASIN 3
EXISTING ROOF
AREA (0.04 AC)
DRAINS TO
SUB-BASIN 4
EXISTING ROOF
AREA (0.13 AC)
DRAINS TO
SUB-BASIN 4
EXISTING ROOF
AREA (0.07 AC)
DRAINS TO
SUB-BASIN 2
LONGEST FLOW PATH
-
-
-
-
0
-
-
-
-
z
-
-
-
-
"
-
-
-
-
...,
-
-
-
-
"
-
-
-
-
~
-
-
-
-
:i:
-
-
-
-
"
-
-
-
-
~
-
-
-
-
UJ
-
-
-
-
"
-
-
-
-
0
-
-
-
-
"'
-
-
-
-
<
EXISTING CONDITIONS EXHIBIT
----T---+-T----T----T----T----Tf-----~
1------T----T----T----T----T---
0-04°19'38"
R=2000 oo'
----so--.---~) ti! L~1'-'.:5J__'1~. 0'=5 _' ----Rw,---,------RW
----+-----\--RW--------RW--------WI---------RW--------RW;:: _ __1,...,...,...,...,..., ____ ...,...,...,...,.,..ll---~~--5-----j-[1_-_R_W_-s,;---------"&-----r ------5'3---~=-'5,:,5,_cc----=--==--
PUB 18" P SD S'
ss-0 -2•45-"-----S$----S',---------------,.;S;---1£;-----JLL-C----'AS5--M-I-N----CO::---:-'V~l=o---::A----=R---=o~B§:L---::E=-----ss 1 S5---0---S~-----;;s --~
---G
10' I E S T ,
' ,
' • ' ,
' • '
' ' '
"
I
'1
X
' ' 'fi
'
r~
'
/
'
" : :~ \ \ I
• .. -f'
A K
, I 1· ' ' I I I · , ' ' ' ! ,' ' '
" ' " <' • ~-(·q'' ~-I ,-' '
I ! . :,_ I
\\
I I \l
I ; I
Pl
_I • ' /1 I I I I \•
I (
' '
INAGE SUB-BAS
AREA: 0.
r_
.,
C)
H--Srl-----
l
---1 I I
_'_ {'
------::,i
6-Fr WIDE EASEMENT FOR PUBLIC UTILITIES
INGRESS AND EGRESS, GRANTED TO, SAN
DIEGO GAS & ELEOifRIC COMPANY PER IN~.
NO. 87-328080 REC. 6/12/1987, 0.R.
DRAINAGE SUB-BASIN
4 AREA: 0.89 N:..
Vl Vl
----•
--
-~-----~
...
===-----== -
---=---_:_:___:_ -
DRAINAGE SUB-BASIN
3 AREA: 1.06 AC.
'
I
\
I . ~ \
\~~fi \
\~~'1 ~~ I
l\.-o==4f 1 I
t~~f µ
1~=1~
/ ~STREAM ELEV
256.12'
3 °' • 0
0
w n
L--
TOR O V ~
//. J· ,Y f" ,·
/
// /,,/
/4~1/~Ss
EXISTING SD LINE E)91,NDS
BEYOND PROPER)Y,LINE ,,,
u~
256.05'
0 10' 20'
SCALE: 1 "~20'
G--
G-
\
\
\
LEGEND:
....
-$-
PROPERTY LINE
DRAINAGE AREA BOUNDARY
DIRECTION OF FLOW
POINT OF COMPLIANCE
PERVIOUS AREA
CONSULTANTS
OWNER
700 South Flower Street
Suite 2100
Los Angeles, CA 90017
0: 213.418.0201
www.kpff.com
PROJECT TITI.E
i;:>-----------------<
~ 'i'
z
2>-----------------< <fl ~
""
Copyright THE AUSTIN COMPANY
PROJECT NUMBER 2200201
FILE NAME
DRAWN BY CJ
CHECKED BY
SHEET TITLE
EXISTING DRAINAGE
CONDITION PLAN
SHEET
NUMBER EX01
2D21
ISSUE
DRAINAGE SUB-BASIN K
Area (A) = 0.66 acres
Runoff Coefficient (C) = 0.76
Time of Concentration (Tc) = 5 min.
Longest path of travel (L) = 240 ft
Intensity (I100) = 7 in./hr.
Q100 = 3.73 cfs V100 = 10.32 fps
DRAINAGE SUB-BASIN H
Area (A) = 0.14 acres
Runoff Coefficient (C) = 0.86
Time of Concentration (Tc) = 5 min.
Longest path of travel (L) = 418 ft
Intensity (I100) = 7 in./hr.
Q100 = 0.86 cfs V100 = 3.76 fps
DRAINAGE SUB-BASIN I
Area (A) = 0.12 acres
Runoff Coefficient (C) = 0.85
Time of Concentration (Tc) = 5 min.
Longest path of travel (L) = 620 ft
Intensity (I100) = 7 in./hr.
Q100 = 0.72 cfs V100 = 3.61 fps
DRAINAGE SUB-BASIN G
Area (A) = 0.06 acres
Runoff Coefficient (C) = 0.90
Time of Concentration (Tc) = 5 min.
Longest path of travel (L) = 334 ft
Intensity (I100) = 7 in./hr.
Q100 = 0.39 cfs V100 = 3.09 fps
587.62 ft
DRAINAGE SUB-BASIN L
Area (A) = 0.05 acres
Runoff Coefficient (C) = 0.90
Time of Concentration (Tc) = 5 min.
Longest path of travel (L) = 260 ft
Intensity (I100) = 7 in./hr.
Q100 = 0.30 cfs V100 = 2.87 fps
DRAINAGE SUB-BASIN B
Area (A) = 1.06 acres
Runoff Coefficient (C) = 0.84
Time of Concentration (Tc) = 5 min.
Longest path of travel (L) = 587 ft
Intensity (I100) = 7 in./hr.
Q100 = 6.14 cfs V100 = 4.58 fps
DRAINAGE SUB-BASIN F
Area (A) = 0.03 acres
Runoff Coefficient (C) = 0.35
Time of Concentration (Tc) = 5 min.
Longest path of travel (L) = 62 ft
Intensity (I100) = 7 in./hr.
Q100 = 0.07 cfs V100 = 9.55 fps
POST - PEAK Q100
Time of Concentration (Tc) = 7.06 min.
Longest path of travel (L) = 650 ft
Intensity (I100) = 5.6 in./hr.
Q100, undetained = 12.2 cfs
V100 = 9.55 fps
Q100, detained = 11.5 cfs
DRAINAGE SUB-BASIN A
Area (A) = 0.31 acres
Runoff Coefficient (C) = 0.55
Time of Concentration (Tc) = 5 min.
Longest path of travel (L) = 130 ft
Intensity (I100) = 7 in./hr.
Q100 = 1.18 cfs
DRAINAGE SUB-BASIN E
Area (A) = 0.37 acres
Runoff Coefficient (C) = 0.81
Time of Concentration (Tc) = 5 min.
Longest path of travel (L) = 401 ft
Intensity (I100) = 7 in./hr.
Q100undetained = 2.06 cfs V100 = 7.77 fps
Q100detained = 1.36 cfs
DRAINAGE SUB-BASIN J
Area (A) = 0.19 acres
Runoff Coefficient (C) = 0.85
Time of Concentration (Tc) = 5 min.
Longest path of travel (L) = 588 ft
Intensity (I100) = 7 in./hr.
Q100 = 1.12 cfs V100 = 3.11 fps
EXISTING ROOF
AREA (0.07 AC)
DRAINS TO
SUB-BASIN K
EXISTING ROOF
AREA (0.06 AC)
DRAINS TO
SUB-BASIN K
EXISTING ROOF
AREA (0.16 AC)
DRAINS TO
SUB-BASIN K
EXISTING ROOF
AREA (0.07 AC)
DRAINS TO
SUB-BASIN B
EXISTING ROOF
AREA (0.06 AC)
DRAINS TO
SUB-BASIN B
EXISTING ROOF
AREA (0.07 AC)
DRAINS TO
SUB-BASIN B
EXISTING ROOF
AREA (0.04 AC)
DRAINS TO
SUB-BASIN B
EXISTING ROOF
AREA (0.04 AC)
DRAINS TO
SUB-BASIN E
EXISTING ROOF
AREA (0.13 AC)
DRAINS TO
SUB-BASIN E
LONGEST FLOW PATH
PERVIOUS AREA
SD
0
z
"
PROPOSED CONDITIONS EXHIBIT
PUB. 18" RCP
SD. @ 2.45%
---55
PER DWG .
SLOT FL=247.0
I.E. 237.2
7
S'l-------ss+----
"'
I if
f-
fl t'~ 15•
I P,V¢ ,SD 025% ,
/ / I
: I
t.'>·, . ' . .
I ·1
' '
' ' I '
' ' ' . '
' ' ' '
"
' '
'
' ' I ' ·,
' ' ' ' ' '
. t: : : "' ' : . . ' ~ " ,. I ~ '.,' ' .. ~-~ ' l1r.1 :' DOWNSTI>FA1™ . ' , , 1 T 'r r ,, ,
' \
I
I I
J
I • '
fil
k
fil 7
fil
C •I"~ r7
(/) L _J L _J
l / / ,.,
(/) / /
Iii L _J
r7
L _J
UPSTREAt.t-ElEV-
1
/ \ ~ '\
253.77' 1 1::10 \
'"';(l.+l~I <. ::.\ \ \ IIV • • • • • • \
fil
i
----
I t( :: \ . <· ·,:.· .->>-_:-:-:-::::::::_: \,
~~a==,'lQ;J II I:
'--
---
/;.J
~f-a-#=.02' --------w ~~-~-~------w
ti!
PSTREJ\ril E[EV
255.30'
...
,~\.
• p:j{';if
• -------
' • ~
' ---~:._~~--.. _______
E4s.--------
0
UPSTREAM ELEV
256.12'
UPSTREAM ELEV -,,,
25~
I
I
L--I I
\ I
I
··-1 , I ' ' ' ' '
0 10· 20·
SCALE: 1""=20"
0
0
LEGEND:
--SD--....
-$-
LEGEND
I ·. -. . .J
I I
PROPERTY LINE
STORM DRAIN
DIRECTION OF FLOW
POINT OF COMPLIANCE
CONCRETE PAVING {IMPERVIOUS)
ASPHALT (IMPERVIOUS)
PERMEABLE PAYERS (PERVIOUS)
BIOFILTRATION BASIN (PERVIOUS)
SYNTHETIC LAWN (PERVIOUS)
WOOD DECK (IMPERVIOUS)
CONCRETE PAVERS (IMPERVIOUS)
CONSULTANTS
OWNER
700 South Flower Street
Suite 2100
Los Angeles, CA 90017
0: 213.418.0201
www.kpff.com
PROJECT TITI.E
i;:>-----------------<
~ 'i' z
2>-----------------< <fl ~
""
Copyright THE AUSTIN COMPANY
PROJECT NUMBER 2200201
FILE NAME
DRAWN BY CJ
CHECKED BY
SHEET TITLE
PROPOSED DRAINAGE
CONDITION PLAN
SHEET
NUMBER EX02
2D21
ISSUE
13
Appendix B – Hydrology Calculations
10
1.8 3.2 56
1.8
5
4.8
10-YEAR STORM EVENT
100
9.0
8.0
7.0
._ :::, 0 .c <ii Q) .c
6.0
5.0
4.0
3.0
2.0
g 1.0
~09
·~o.s
~07
0.6
0.5
0.4
0.3
0.2
0.1
1' ' ""'-.. ' -..."I'-.
1' ""r--,. "" I"-."'-_ I'-,.
r--.L • ' -.., ""', 1-..., 1-.., I' ....
' ""
'I'-,., • I'-,. 'i-. 1-. .... r--. I',,. .... .. .... --..., 1-..." "I'-,. .. ..
• ' ..... 1 ..... ...... .... ' • ~
r--. " "I'-. .... I" .. .. r--. ~ ' ' 'I'-,. .. ~ .. ~ .... ' .... 1-. ...
r--.1"-,. ' "" ' r,.._ .. ' ' • I'-,. i.., ..
• I',,. ' ' l"-,.,1"-,., .. .. .. ~ .. ..
"" '"" I'-,.._ .... ... I',,. r-.. ... ~ ~
"r-,. 1-... .. 'r-. ... I', .... ' • I'-,. ', ..
I',,. ' ....
""', .. ...
' 1-., ..
'"'"
....
"'I'-,.
'i-. ..
'i.. .... ....
5 6 7 8 9 10 15 20 30
Minutes
.. .... ...... .. .. .. ~ ..
~ .. .. ..
.... ~ .. .. ..
~ .... .. .... .. ~ ...... ~ ..
.... ..
......
~
40 50
Duration
EQUATION
I = 7.44 P6 D-0.645
I = Intensity (in/hr)
p6 = 6-Hour Precipitation (in)
D = Duration (min)
,, ...
'""' ,r-. ' 'I'-,. !',I",
' I'-,. I• .. .. .. ..
' I'-,. I' .... I', ......
'r-. I• 'i.. .... .. ' ...... .... '~ .. ~ .. ~ ,, .. .. I', .. .. .. .. ,.
"I'-,. .. .... ..
""', I' .. ..
' 'I" ..
I•
'~I'-,. .. .. ..
""r,.. I' .. ..
' r-.,
'""
..
I'-,. 1'-r,.. ~ ..
I•, ~ ..
.... , I',
'r-.
~ .. ..
2 3 4
Hours
5 6
0) ::i: 0 !:;
"U al n
6.o -g;
5.5 ~
5.0 g
4.5 '§' n
4.o l
3.5 .!:';..
3.0
2.5
2.0
1.5
1.0
Intensity-Duration Design Chart -Template
Directions for Application:
(1) From precipitation maps determine 6 hr and 24 hr amounts
for the selected frequency. These maps are included in the
County Hydrology Manual (10, 50, and 100 yr maps included
in the Design and Procedure Manual).
(2) Adjust 6 hr precipitation (if necessary) so that it is with in
the range of 45% to 65% of the 24 hr precipitation (not
applicaple to Desert).
(3) Plot 6 hr precipitation on the right side of the chart .
(4) Draw a line through the point parallel to the plotted lines.
(5) This line is the intensity-duration curve for the location
being analyzed.
Application Form:
(a) Selected frequency ___ year
p
(b) P5 = --in., P24 = --'P 6 = %(2)
24
(c) Adjusted p6<2) = __ in.
{d) Ix = __ min.
(e) I = ___ in./hr.
Note: This chart replaces the Intensity-Duration-Frequency
curves used since 1965.
I I
PG 1 1 1.s 2 2.5 3 3.5 4 4.5 5 5.5 6
Duration I I I I I I I I I I I
5 2.63 3.95 5.27 6.59 7.90 9.22 10.54 11 .86 13.17 14.49 15.81
7 2.12 3.18 4.24 5.30 6.36 7.42 8.48 9.54 10.60 11.66 12.72
10 1.68 2.53 3.37 4.21 5.05 5.90 6.74 7.58 8.42 9.27 10.11 -15 1.30 1.95 2.59 3.24 3.89 4.54 5.19 5.84 6.49 7.13 7.78
20 1.08 1.62 2.15 2.69 3.23 3.77 4.31 4.85 5.39 5.93 6.46
25 0.93 1.40 1.87 2.33 2.80 3.27 3.73 4.20 4.67 5.13 560
30 0.83 1.24 1.6_§_ 2.07 2.49 2.90 3.32-3.73 4.15 4.56 4.98 -40 0.69 1.03 1.38 1.72 20:F 41 2.76 3.10 3.45 3.79 ~13
50 0.60 0.90 1.19 1.49 1.79 2.09 2.39 2.69 2.98 3.28 3.58 -60 0.53 0.80 1.06 1.33 1.59 1.86 2.12 2.39 2.65 2.92 3.1 8
90 0.41 0.61 0.82 1.02 1.23 1.43 1.63 1.84 2.04 2.25 2.45
120 0.3~ 0.51 0.68 0.85-1.02 1.19 1.36 1.53 1,70 1.87 204 ---f--150 0,29 0.44 0.59 0.73 0.88 1.03 1.18 1.32 1.47 1.62 1,76
180 0.26 0.39 0.52 0,65 0.78 0.91 1.04 1.18 1,31 1.44 1.57
240 0.22 0.33 0.43 0.54 0.65 0.76 0.87 0.98 1.08 1.19 130
300 0.19 0.28 0.38 0.47 0.56 0.66 0.75 0.85 0,94 1.03 1.13
~ 0.17 0.25 0.33 0.42 0.50 0.58 --0.84 0.92 1.00 0.67 0.75
50-YEAR STORM EVENT
50
2.4 4.2 57
5
6.3
2.4
100
9.0
8.0
7.0
._
:::, 0 .c
<ii Q) .c
6.0
5.0
4.0
3.0
2.0
g 1.0
~09
·~o.s
~07
0.6
0.5
0.4
0.3
0.2
0.1
1' ' ""'-.. ' -..."I'-.
1' ""r--,. "" I"-."'-_ I'-,.
r--.L • ' -.., ""', 1-..., 1-.., I' .....
' ""
'I'-,., • I'-,. 'i-. 1-. ..... :-.... I',,. .... .. ....
K -.., ' 1-..." "I'-,. .. ...
.... r--: ' ' • ...... 1 ..... ...... ~
r--. ~ "I'-. ..... I", ..
' ' ' f:::: 'I'-,. .. ~ .. ~ .... 1-. ...
r--.1"-,. ""r--,. ~I'-,., I' 'i.. ..
' 1-.::~ ..... ..
• I',,. l"-,.,1"-,., ~t ~ .. ..
"" "I'-,. .. ~ ~~ ... I',,. ...... ~
"r-,. 1-... .. ...I', .... ' • I'-,. ..
I',,. .... ~
""', ..
' 1-., ..
'"'" ....
"'I'-,.
'i-. ..
'i.. .... ....
5 6 7 8 9 10 15 20 30
Minutes
.. .... ...... .. .... ~ ..
~ .. .. ..
.... ~ .. .. ..
~
~ ..
.... .. ~
~
..
.... ..
......
~
40 50
Duration
EQUATION
I = 7.44 P6 D-0.645
I = Intensity (in/hr)
p6 = 6-Hour Precipitation (in)
D = Duration (min)
,, ...
'""' ,r-. ' 'I'-,. !',I", .. .. ' I'-,. I• ....
' I'-,. I' .... I', .. ....
'r-. I• i..i,. .... .. ' i",i", ..... '~ I', .. ~ .. ~ ,, .. ... .. .. .. .. ,.
"I'-,. .. .... ..
..._, I' ... ..
' r--; '"'. i"'i,. ..
'I'-,. "~ .. ~ ..
r,., ~ ' '""
..
I'-,. ~ ..
I•, ..
', I',
'r-.
~ .. ..
2 3 4
Hours
5 6
0)
::i: 0 !:;
"U al n
6.o -g;
5.5 ~
5.0 g
4.5 '§' n
4.o l
3.5 .!:';..
3.0
2.5
2.0
1.5
1.0
Intensity-Duration Design Chart -Template
Directions for Application:
(1) From precipitation maps determine 6 hr and 24 hr amounts
for the selected frequency. These maps are included in the
County Hydrology Manual (10, 50, and 100 yr maps included
in the Design and Procedure Manual).
(2) Adjust 6 hr precipitation (if necessary) so that it is with in
the range of 45% to 65% of the 24 hr precipitation (not
applicaple to Desert).
(3) Plot 6 hr precipitation on the right side of the chart .
(4) Draw a line through the point parallel to the plotted lines.
(5) This line is the intensity-duration curve for the location
being analyzed.
Application Form:
(a) Selected frequency ___ year
p
(b) P5 = --in., P24 = --'P 6 = %(2)
24
(c) Adjusted p6<2) = __ in.
{d) Ix = __ min.
(e) I = ___ in./hr.
Note: This chart replaces the Intensity-Duration-Frequency
curves used since 1965.
I I
PG 1 1 1.s 2 2.5 3 3.5 4 4.5 5 5.5 6
Duration I I I I I I I I I I I
5 2.63 3.95 5.27 6.59 7.90 9.22 10.54 11 .86 13.17 14.49 15.81
7 2.12 3.18 4.24 5.30 6.36 7.42 8.48 9.54 10.60 11.66 12.72
10 1.68 2.53 3.37 4.21 5.05 5.90 6.74 7.58 8.42 9.27 10.11 -15 1.30 1.95 2.59 3.24 3.89 4.54 5.19 5.84 6.49 7.13 7.78
20 1.08 1.62 2.15 2.69 3.23 3.77 4.31 4.85 5.39 5.93 6.46
25 0.93 1.40 1.87 2.33 2.80 3.27 3.73 4.20 4.67 5.13 560
30 0.83 1.24 1.6_§_ 2.07 2.49 2.90 3.32-3.73 4.15 4.56 4.98 -40 0.69 1.03 1.38 1.72 20:F 41 2.76 3.10 3.45 3.79 ~13
50 0.60 0.90 1.19 1.49 1.79 2.09 2.39 2.69 2.98 3.28 3.58 -60 0.53 0.80 1.06 1.33 1.59 1.86 2.12 2.39 2.65 2.92 3.1 8
90 0.41 0.61 0.82 1.02 1.23 1.43 1.63 1.84 2.04 2.25 2.45
120 0.3~ 0.51 0.68 0.85-1.02 1.19 1.36 1.53 1,70 1.87 204 ---f--150 0,29 0.44 0.59 0.73 0.88 1.03 1.18 1.32 1.47 1.62 1,76
180 0.26 0.39 0.52 0,65 0.78 0.91 1.04 1.18 1,31 1.44 1.57
240 0.22 0.33 0.43 0.54 0.65 0.76 0.87 0.98 1.08 1.19 130
300 0.19 0.28 0.38 0.47 0.56 0.66 0.75 0.85 0,94 1.03 1.13
~ 0.17 0.25 0.33 0.42 0.50 0.58 --0.84 0.92 1.00 0.67 0.75
100-YEAR STORM EVENT
100
2.65 4.9 54
7.06
5.6
2.65
I=5.59 IN/HR
100
9.0
8.0
7.0
._
:::, 0 .c <ii Q) .c
6.0
5.0
4.0
3.0
2.0
g 1.0
~09
·~o.s
~07
0.6
0.5
0.4
0.3
0.2
0.1
1' ' ·""'-.. ' -..."I'-.
1' ""r--,. I"-."'-_ I'-,.
r--.L • ' ' ""', 1-..., 1-.., I' .....
~ ' ""
'I'-,., • I'-,. 'i-. 1-. ..... t'-.. I',,. .... .. .... -.... ~ ... , 1-..." "I'-,. .. ... . 1 ..... ...... .... .... ' . ... "" ~
r--. "t-,... ... , ..... I", ..
' ' t-1"-,., 'I'-,. .. ~ .. ~ ' 1-. ...
r--.1"-,. ""r--,.
-~
I' 'i.. ..
' 'i--. ..... ..
• I',,. l"-,.,1"-,., ..... 'r-. ~ .. ..
"" ""i-,. ..... ~--... I',,. ... "" ~
"r-,. 1-... .. ...I', .... ' • I',, ..
I',,. ....
... , ..
' 1-., ..
'"'" ....
""'i-,.
'i-. ..
'i.. .... ....
5 6 7 8 9 10 15 20 30
Minutes
.. .... ...... .. .. .. ~ ..
~ .. .. ..
.... ~ .. .. .. ~ .. ~ ~ .... ~ .. .... .. ~ ..
.... ..
......
~
40 50
Duration
EQUATION
I = 7.44 P6 D-0.645
I = Intensity (in/hr)
p6 = 6-Hour Precipitation (in)
D = Duration (min)
,, ...
'""' ,r-. ' 'I',,
!',I", .... ' I'-,. I• ....
' I',, I' .... I', ......
'i-,. I• i..i,. .... .. ' i",i", .....
'i-,. I', .. ~ .. ~ ,, .. ... .. .. .. .. ,.
'"I'-,. .. .... ..
""',r--. I' ... ..
' ,....
I•._ i"'i,. ..
'I'-,. ,,r-.
~ ..
I' .. ..
' '"" ..
I'-,. ~ ..
I•, ..
.... , I',
'I',,
~ .. ..
2 3 4
Hours
5 6
0)
::i: 0 !:;
"U al n
6.o -g;
5.5 ~
5.0 g
4.5 '§' n
4.o l
3.5 .!:';..
3.0
2.5
2.0
1.5
1.0
Intensity-Duration Design Chart -Template
Directions for Application:
(1) From precipitation maps determine 6 hr and 24 hr amounts
for the selected frequency. These maps are included in the
County Hydrology Manual (10, 50, and 100 yr maps included
in the Design and Procedure Manual).
(2) Adjust 6 hr precipitation (if necessary) so that it is with in
the range of 45% to 65% of the 24 hr precipitation (not
applicaple to Desert).
(3) Plot 6 hr precipitation on the right side of the chart .
(4) Draw a line through the point parallel to the plotted lines.
(5) This line is the intensity-duration curve for the location
being analyzed.
Application Form:
(a) Selected frequency ___ year
p
(b) P5 = --in., P24 = --'P 6 = %(2)
24
(c) Adjusted p6<2) = __ in.
{d) Ix = __ min.
(e) I = ___ in./hr.
Note: This chart replaces the Intensity-Duration-Frequency
curves used since 1965.
I I
PG 1 1 1.s 2 2.5 3 3.5 4 4.5 5 5.5 6
Duration I I I I I I I I I I I
5 2.63 3.95 5.27 6.59 7.90 9.22 10.54 11 .86 13.17 14.49 15.81
7 2.12 3.18 4.24 5.30 6.36 7.42 8.48 9.54 10.60 11.66 12.72
10 1.68 2.53 3.37 4.21 5.05 5.90 6.74 7.58 8.42 9.27 10.11 -15 1.30 1.95 2.59 3.24 3.89 4.54 5.19 5.84 6.49 7.13 7.78
20 1.08 1.62 2.15 2.69 3.23 3.77 4.31 4.85 5.39 5.93 6.46
25 0.93 1.40 1.87 2.33 2.80 3.27 3.73 4.20 4.67 5.13 560
30 0.83 1.24 1.6_§_ 2.07 2.49 2.90 3.32-3.73 4.15 4.56 4.98 -40 0.69 1.03 1.38 1.72 20:F 41 2.76 3.10 3.45 3.79 ~13
50 0.60 0.90 1.19 1.49 1.79 2.09 2.39 2.69 2.98 3.28 3.58 -60 0.53 0.80 1.06 1.33 1.59 1.86 2.12 2.39 2.65 2.92 3.1 8
90 0.41 0.61 0.82 1.02 1.23 1.43 1.63 1.84 2.04 2.25 2.45
120 0.3~ 0.51 0.68 0.85-1.02 1.19 1.36 1.53 1,70 1.87 204 ---f--150 0,29 0.44 0.59 0.73 0.88 1.03 1.18 1.32 1.47 1.62 1,76
180 0.26 0.39 0.52 0,65 0.78 0.91 1.04 1.18 1,31 1.44 1.57
240 0.22 0.33 0.43 0.54 0.65 0.76 0.87 0.98 1.08 1.19 130
300 0.19 0.28 0.38 0.47 0.56 0.66 0.75 0.85 0,94 1.03 1.13
~ 0.17 0.25 0.33 0.42 0.50 0.58 --0.84 0.92 1.00 0.67 0.75
PROJECT
SITE
II ,
j
I I I
• I I I I I ,
I I
--+
I '
I '
I
I
I
I 4
I
J
J J I
I I
--l I J I
I I I I
-t
I
J -l
I I
-j -j
j
J J
-j
I
i
I I
--l j
i j
-l j I I --l j j
J J I I I , , j J ,J J . ~.±•, '•±± • ... , I I I
I
J J ' j ,J J ' a' • · · '•, '-'1·~1 11 ' ' •
i j
j -l j --l j j j --l --l --l J j Jj I : IJ I I J J I Jl J
J J JI I I J' J '
j j
I I
_j
I I
j
J j j
I
l
-t 7
-l
--l
J
_'
J
J
I
-j i
~ J J J J J
+-
I
'
I
--------
I
I
I
c:GIS San c· ·red' ' S· Di~'-'O ,OVC . 'y;/c Have . an c-
I I
PROJECT
SITE
'
\
r\,
-----.. . ' . ' _,
, ----
.L,
_{t
.J
.....
. .
' ' ' .
-' . -N
I'
IL___·-----_--~I
DPW
~GIS
Oepw.menr oi Putiic \-1.'0o~ G1,;o,r.Jpf/H;; lnfom,<100!1 &,v,t:rn
s1lG1s
»(le Have San Diq,:(l Cc,vcrcd!
PROJECT
SITE
I l ~1 ; l-1-H---l---l--t--t-t-t---t----t---t---t-iti-r-n•~f-l,-;;;,• J
)
I\ r------...... ;,~ ~ ~ ', !\,11 , ..-r-~r:-~,
.. .. ~+--t--" ~ r-
r----1--~ ,__,--,--
S~GIS
'.:Xie Have San Diq;o Covered!
PROJECT
SITE
I I I I
\ i--+-,--,.__
I I J
I I I I I I I I I I I I I I I
I I I I I I I I I I J I I I J
I I I I I I I I I I I I I
I I J J 1 I I J I J I J I I J 1 I J I 1
I I
-~
I
--------
I
' . -
-
-
~GIS Sans l)1''"C'()Covcrcd! V/;/c Have . an ~"'
I
I I J J J I I J I
PROJECT
SITE
IL__·-----_--_I
.L
PROJECT
SITE
I I I I
. . . . . . . . • .
-)
. ,-. ' ' .
: . . . ,, .,,. . . -... ·,
"~ ~ ~ .
I I I I I
· . ---
. . -~ . . . . . . . .
,='
·-
--. . . . . .
.
.
'
~
e,a\H'1'Y 0 ~i.NDIEc;o •
I -······_--___JI
DPW
~GIS
[lep:I.J""iJ7ient Di P11Mc Works Grn,r,..•pfll/,; /11furrr,.itiw1 &rv,t r.i-:;
14
Appendix C – Hydraulic Analysis
FLOWMASTER
CALCULATIONS FOR
EXISTING SUBDRAINAGE
AREA OUTLETS, Q100
Project Description
Friction Method Manning Formula
Solve For Normal Depth
Input Data
Roughness Coefficient 0.013
Channel Slope 25.00000 %
Diameter 15.00 in
Discharge 11.50 ft³/s
Results
Normal Depth 6.19 in
Flow Area 0.48 ft²
Wetted Perimeter 1.74 ft
Hydraulic Radius 3.29 in
Top Width 1.23 ft
Critical Depth 1.21 ft
Percent Full 41.2 %
Critical Slope 0.02785 ft/ft
Velocity 24.09 ft/s
Velocity Head 9.02 ft
Specific Energy 9.53 ft
Froude Number 6.82
Maximum Discharge 34.74 ft³/s
Discharge Full 32.30 ft³/s
Slope Full 0.03170 ft/ft
Flow Type SuperCritical
GVF Input Data
Downstream Depth 0.00 in
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 in
Profile Description
Profile Headloss 0.00 ft
Average End Depth Over Rise 0.00 %
Normal Depth Over Rise 41.24 %
Downstream Velocity Infinity ft/s
PRE - 15", 25% PVC - 100 YR
1/19/2024 2:00:24 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page
GVF Output Data
Upstream Velocity Infinity ft/s
Normal Depth 6.19 in
Critical Depth 1.21 ft
Channel Slope 25.00000 %
Critical Slope 0.02785 ft/ft
PRE - 15", 25% PVC - 100 YR
1/19/2024 2:00:24 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page
Project Description
Friction Method Manning Formula
Solve For Full Flow Capacity
Input Data
Roughness Coefficient 0.013
Channel Slope 2.00000 %
Normal Depth 18.00 in
Diameter 18.00 in
Discharge 14.85 ft³/s
Results
Discharge 14.85 ft³/s
Normal Depth 18.00 in
Flow Area 1.77 ft²
Wetted Perimeter 4.71 ft
Hydraulic Radius 4.50 in
Top Width 0.00 ft
Critical Depth 1.40 ft
Percent Full 100.0 %
Critical Slope 0.01729 ft/ft
Velocity 8.41 ft/s
Velocity Head 1.10 ft
Specific Energy 2.60 ft
Froude Number 0.00
Maximum Discharge 15.98 ft³/s
Discharge Full 14.85 ft³/s
Slope Full 0.02000 ft/ft
Flow Type SubCritical
GVF Input Data
Downstream Depth 0.00 in
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 in
Profile Description
Profile Headloss 0.00 ft
Average End Depth Over Rise 0.00 %
PRE - 18in, 2% PVC - 100 YR
10/23/2023 3:48:59 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page
GVF Output Data
Normal Depth Over Rise 100.00 %
Downstream Velocity Infinity ft/s
Upstream Velocity Infinity ft/s
Normal Depth 18.00 in
Critical Depth 1.40 ft
Channel Slope 2.00000 %
Critical Slope 0.01729 ft/ft
PRE - 18in, 2% PVC - 100 YR
10/23/2023 3:48:59 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page
FLOWMASTER
CALCULATIONS FOR
PROPOSED
SUBDRAINAGE AREA
OUTLETS, Q100
Project Description
Friction Method Manning Formula
Solve For Full Flow Capacity
Input Data
Roughness Coefficient 0.013
Channel Slope 1.00000 %
Normal Depth 10.00 in
Diameter 10.00 in
Discharge 2.19 ft³/s
Results
Discharge 2.19 ft³/s
Normal Depth 10.00 in
Flow Area 0.55 ft²
Wetted Perimeter 2.62 ft
Hydraulic Radius 2.50 in
Top Width 0.00 ft
Critical Depth 0.66 ft
Percent Full 100.0 %
Critical Slope 0.01060 ft/ft
Velocity 4.02 ft/s
Velocity Head 0.25 ft
Specific Energy 1.08 ft
Froude Number 0.00
Maximum Discharge 2.36 ft³/s
Discharge Full 2.19 ft³/s
Slope Full 0.01000 ft/ft
Flow Type SubCritical
GVF Input Data
Downstream Depth 0.00 in
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 in
Profile Description
Profile Headloss 0.00 ft
Average End Depth Over Rise 0.00 %
POST - B - 100 YR
10/23/2023 3:54:46 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page
GVF Output Data
Normal Depth Over Rise 100.00 %
Downstream Velocity Infinity ft/s
Upstream Velocity Infinity ft/s
Normal Depth 10.00 in
Critical Depth 0.66 ft
Channel Slope 1.00000 %
Critical Slope 0.01060 ft/ft
POST - B - 100 YR
10/23/2023 3:54:46 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page
Project Description
Friction Method Manning Formula
Solve For Normal Depth
Input Data
Roughness Coefficient 0.013
Channel Slope 4.00000 %
Diameter 8.00 in
Discharge 2.06 ft³/s
Results
Normal Depth 5.68 in
Flow Area 0.27 ft²
Wetted Perimeter 1.34 ft
Hydraulic Radius 2.38 in
Top Width 0.60 ft
Critical Depth 0.63 ft
Percent Full 71.0 %
Critical Slope 0.02514 ft/ft
Velocity 7.77 ft/s
Velocity Head 0.94 ft
Specific Energy 1.41 ft
Froude Number 2.07
Maximum Discharge 2.60 ft³/s
Discharge Full 2.42 ft³/s
Slope Full 0.02906 ft/ft
Flow Type SuperCritical
GVF Input Data
Downstream Depth 0.00 in
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 in
Profile Description
Profile Headloss 0.00 ft
Average End Depth Over Rise 0.00 %
Normal Depth Over Rise 71.00 %
Downstream Velocity Infinity ft/s
POST - E - 100 YR
1/19/2024 2:05:26 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page
GVF Output Data
Upstream Velocity Infinity ft/s
Normal Depth 5.68 in
Critical Depth 0.63 ft
Channel Slope 4.00000 %
Critical Slope 0.02514 ft/ft
POST - E - 100 YR
1/19/2024 2:05:26 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page
Project Description
Friction Method Manning Formula
Solve For Normal Depth
Input Data
Roughness Coefficient 0.013
Channel Slope 1.00000 %
Diameter 8.00 in
Discharge 0.39 ft³/s
Results
Normal Depth 3.12 in
Flow Area 0.13 ft²
Wetted Perimeter 0.90 ft
Hydraulic Radius 1.68 in
Top Width 0.65 ft
Critical Depth 0.29 ft
Percent Full 39.0 %
Critical Slope 0.00671 ft/ft
Velocity 3.09 ft/s
Velocity Head 0.15 ft
Specific Energy 0.41 ft
Froude Number 1.24
Maximum Discharge 1.30 ft³/s
Discharge Full 1.21 ft³/s
Slope Full 0.00104 ft/ft
Flow Type SuperCritical
GVF Input Data
Downstream Depth 0.00 in
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 in
Profile Description
Profile Headloss 0.00 ft
Average End Depth Over Rise 0.00 %
Normal Depth Over Rise 39.03 %
Downstream Velocity Infinity ft/s
POST - G - 100 YR
10/23/2023 3:59:50 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page
GVF Output Data
Upstream Velocity Infinity ft/s
Normal Depth 3.12 in
Critical Depth 0.29 ft
Channel Slope 1.00000 %
Critical Slope 0.00671 ft/ft
POST - G - 100 YR
10/23/2023 3:59:50 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page
Project Description
Friction Method Manning Formula
Solve For Normal Depth
Input Data
Roughness Coefficient 0.013
Channel Slope 1.00000 %
Diameter 8.00 in
Discharge 0.86 ft³/s
Results
Normal Depth 4.99 in
Flow Area 0.23 ft²
Wetted Perimeter 1.21 ft
Hydraulic Radius 2.26 in
Top Width 0.65 ft
Critical Depth 0.44 ft
Percent Full 62.4 %
Critical Slope 0.00852 ft/ft
Velocity 3.76 ft/s
Velocity Head 0.22 ft
Specific Energy 0.64 ft
Froude Number 1.11
Maximum Discharge 1.30 ft³/s
Discharge Full 1.21 ft³/s
Slope Full 0.00507 ft/ft
Flow Type SuperCritical
GVF Input Data
Downstream Depth 0.00 in
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 in
Profile Description
Profile Headloss 0.00 ft
Average End Depth Over Rise 0.00 %
Normal Depth Over Rise 62.35 %
Downstream Velocity Infinity ft/s
POST - H - 100 YR
10/23/2023 4:00:42 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page
GVF Output Data
Upstream Velocity Infinity ft/s
Normal Depth 4.99 in
Critical Depth 0.44 ft
Channel Slope 1.00000 %
Critical Slope 0.00852 ft/ft
POST - H - 100 YR
10/23/2023 4:00:42 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page
Project Description
Friction Method Manning Formula
Solve For Normal Depth
Input Data
Roughness Coefficient 0.013
Channel Slope 1.00000 %
Diameter 8.00 in
Discharge 0.72 ft³/s
Results
Normal Depth 4.45 in
Flow Area 0.20 ft²
Wetted Perimeter 1.12 ft
Hydraulic Radius 2.13 in
Top Width 0.66 ft
Critical Depth 0.40 ft
Percent Full 55.6 %
Critical Slope 0.00784 ft/ft
Velocity 3.61 ft/s
Velocity Head 0.20 ft
Specific Energy 0.57 ft
Froude Number 1.16
Maximum Discharge 1.30 ft³/s
Discharge Full 1.21 ft³/s
Slope Full 0.00355 ft/ft
Flow Type SuperCritical
GVF Input Data
Downstream Depth 0.00 in
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 in
Profile Description
Profile Headloss 0.00 ft
Average End Depth Over Rise 0.00 %
Normal Depth Over Rise 55.59 %
Downstream Velocity Infinity ft/s
POST - I - 100 YR
10/23/2023 4:05:39 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page
GVF Output Data
Upstream Velocity Infinity ft/s
Normal Depth 4.45 in
Critical Depth 0.40 ft
Channel Slope 1.00000 %
Critical Slope 0.00784 ft/ft
POST - I - 100 YR
10/23/2023 4:05:39 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page
Project Description
Friction Method Manning Formula
Solve For Normal Depth
Input Data
Roughness Coefficient 0.013
Channel Slope 0.50000 %
Diameter 12.00 in
Discharge 1.12 ft³/s
Results
Normal Depth 5.60 in
Flow Area 0.36 ft²
Wetted Perimeter 1.50 ft
Hydraulic Radius 2.87 in
Top Width 1.00 ft
Critical Depth 0.45 ft
Percent Full 46.7 %
Critical Slope 0.00590 ft/ft
Velocity 3.11 ft/s
Velocity Head 0.15 ft
Specific Energy 0.62 ft
Froude Number 0.91
Maximum Discharge 2.71 ft³/s
Discharge Full 2.52 ft³/s
Slope Full 0.00099 ft/ft
Flow Type SubCritical
GVF Input Data
Downstream Depth 0.00 in
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 in
Profile Description
Profile Headloss 0.00 ft
Average End Depth Over Rise 0.00 %
Normal Depth Over Rise 46.70 %
Downstream Velocity Infinity ft/s
POST - J - 100 YR
1/19/2024 2:06:33 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page
GVF Output Data
Upstream Velocity Infinity ft/s
Normal Depth 5.60 in
Critical Depth 0.45 ft
Channel Slope 0.50000 %
Critical Slope 0.00590 ft/ft
POST - J - 100 YR
1/19/2024 2:06:33 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page
Project Description
Friction Method Manning Formula
Solve For Normal Depth
Input Data
Roughness Coefficient 0.013
Channel Slope 5.66000 %
Diameter 15.00 in
Discharge 3.73 ft³/s
Results
Normal Depth 5.03 in
Flow Area 0.36 ft²
Wetted Perimeter 1.54 ft
Hydraulic Radius 2.81 in
Top Width 1.18 ft
Critical Depth 0.78 ft
Percent Full 33.6 %
Critical Slope 0.00655 ft/ft
Velocity 10.32 ft/s
Velocity Head 1.65 ft
Specific Energy 2.07 ft
Froude Number 3.29
Maximum Discharge 16.53 ft³/s
Discharge Full 15.37 ft³/s
Slope Full 0.00333 ft/ft
Flow Type SuperCritical
GVF Input Data
Downstream Depth 0.00 in
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 in
Profile Description
Profile Headloss 0.00 ft
Average End Depth Over Rise 0.00 %
Normal Depth Over Rise 33.56 %
Downstream Velocity Infinity ft/s
POST - K - 100 YR
1/19/2024 2:03:13 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page
GVF Output Data
Upstream Velocity Infinity ft/s
Normal Depth 5.03 in
Critical Depth 0.78 ft
Channel Slope 5.66000 %
Critical Slope 0.00655 ft/ft
POST - K - 100 YR
1/19/2024 2:03:13 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page
Project Description
Friction Method Manning Formula
Solve For Normal Depth
Input Data
Roughness Coefficient 0.013
Channel Slope 1.00000 %
Diameter 8.00 in
Discharge 0.30 ft³/s
Results
Normal Depth 2.72 in
Flow Area 0.10 ft²
Wetted Perimeter 0.83 ft
Hydraulic Radius 1.51 in
Top Width 0.63 ft
Critical Depth 0.25 ft
Percent Full 34.0 %
Critical Slope 0.00653 ft/ft
Velocity 2.87 ft/s
Velocity Head 0.13 ft
Specific Energy 0.35 ft
Froude Number 1.24
Maximum Discharge 1.30 ft³/s
Discharge Full 1.21 ft³/s
Slope Full 0.00062 ft/ft
Flow Type SuperCritical
GVF Input Data
Downstream Depth 0.00 in
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 in
Profile Description
Profile Headloss 0.00 ft
Average End Depth Over Rise 0.00 %
Normal Depth Over Rise 33.99 %
Downstream Velocity Infinity ft/s
POST - L - 100 YR
10/23/2023 4:10:12 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page
GVF Output Data
Upstream Velocity Infinity ft/s
Normal Depth 2.72 in
Critical Depth 0.25 ft
Channel Slope 1.00000 %
Critical Slope 0.00653 ft/ft
POST - L - 100 YR
10/23/2023 4:10:12 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page
FLOWMASTER
CALCULATIONS FOR
EXISTING/PROPOSED
GRATE INLETS, Q100
Project Description
Solve For Spread
Input Data
Discharge 6.64 ft³/s
Gutter Width 4.39 ft
Gutter Cross Slope 8.33 %
Road Cross Slope 5.49 %
Grate Width 2.00 ft
Grate Length 3.44 ft
Local Depression 0.00 in
Local Depression Width 0.00 ft
Grate Type P-50 mm (P-1-7/8")
Clogging 50.00 %
Results
Spread 10.19 ft
Depth 8.21 in
Gutter Depression 0.12 ft
Total Depression 0.12 ft
Open Grate Area 3.10 ft²
Active Grate Weir Length 5.44 ft
PRE - GRATE INLET - 3
10/23/2023 4:25:47 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 1of1Page
Project Description
Solve For Spread
Input Data
Discharge 5.17 ft³/s
Gutter Width 4.10 ft
Gutter Cross Slope 8.33 %
Road Cross Slope 2.95 %
Grate Width 2.16 ft
Grate Length 3.41 ft
Local Depression 0.00 in
Local Depression Width 0.00 ft
Grate Type P-50 mm (P-1-7/8")
Clogging 50.00 %
Results
Spread 12.91 ft
Depth 7.22 in
Gutter Depression 0.22 ft
Total Depression 0.22 ft
Open Grate Area 3.31 ft²
Active Grate Weir Length 5.57 ft
PRE - GRATE INLET - 4
10/23/2023 4:28:16 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 1of1Page
Project Description
Solve For Spread
Input Data
Discharge 7.08 ft³/s
Gutter Width 4.10 ft
Gutter Cross Slope 8.33 %
Road Cross Slope 5.49 %
Grate Width 2.00 ft
Grate Length 3.44 ft
Local Depression 0.00 in
Local Depression Width 0.00 ft
Grate Type P-50 mm (P-1-7/8")
Clogging 50.00 %
Results
Spread 10.78 ft
Depth 8.50 in
Gutter Depression 0.12 ft
Total Depression 0.12 ft
Open Grate Area 3.10 ft²
Active Grate Weir Length 5.44 ft
POST - GRATE INLET - B
10/23/2023 4:34:19 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 1of1Page
Project Description
Solve For Spread
Input Data
Discharge 0.39 ft³/s
Gutter Width 4.10 ft
Gutter Cross Slope 8.33 %
Road Cross Slope 2.95 %
Grate Width 2.16 ft
Grate Length 3.41 ft
Local Depression 0.00 in
Local Depression Width 0.00 ft
Grate Type P-50 mm (P-1-7/8")
Clogging 50.00 %
Results
Spread 2.65 ft
Depth 2.65 in
Gutter Depression 0.22 ft
Total Depression 0.22 ft
Open Grate Area 3.31 ft²
Active Grate Weir Length 5.57 ft
POST - GRATE INLET - G
10/23/2023 4:40:38 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 1of1Page
Project Description
Solve For Spread
Input Data
Discharge 0.72 ft³/s
Gutter Width 3.00 ft
Gutter Cross Slope 8.33 %
Road Cross Slope 2.23 %
Grate Width 1.00 ft
Grate Length 1.00 ft
Local Depression 0.00 in
Local Depression Width 0.00 ft
Grate Type P-50 mm (P-1-7/8")
Clogging 50.00 %
Results
Spread 5.49 ft
Depth 3.66 in
Gutter Depression 0.18 ft
Total Depression 0.18 ft
Open Grate Area 0.45 ft²
Active Grate Weir Length 2.00 ft
POST - GRATE INLET - I
10/23/2023 4:42:45 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 1of1Page
FLOWMASTER
CALCULATIONS FOR
EXISTING/PROPOSED
CURB INLET, Q100
Project Description
Solve For Spread
Input Data
Discharge 2.54 ft³/s
Gutter Width 1.50 ft
Gutter Cross Slope 8.33 %
Road Cross Slope 3.35 %
Curb Opening Length 4.80 ft
Opening Height 0.50 ft
Curb Throat Type Horizontal
Local Depression 0.00 in
Local Depression Width 0.00 ft
Throat Incline Angle 90.00 degrees
Results
Spread 8.32 ft
Depth 4.24 in
Gutter Depression 0.07 ft
Total Depression 0.07 ft
PRE - CURB INLET - 2
10/23/2023 4:46:15 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 1of1Page
Project Description
Solve For Spread
Input Data
Discharge 2.29 ft³/s
Gutter Width 1.50 ft
Gutter Cross Slope 8.33 %
Road Cross Slope 3.35 %
Curb Opening Length 4.80 ft
Opening Height 0.50 ft
Curb Throat Type Horizontal
Local Depression 0.00 in
Local Depression Width 0.00 ft
Throat Incline Angle 90.00 degrees
Results
Spread 7.77 ft
Depth 4.02 in
Gutter Depression 0.07 ft
Total Depression 0.07 ft
POST - CURB INLET - 2
10/23/2023 4:48:24 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 1of1Page
AREA B
GUTTER
SPREAD
Project Description
Solve For Spread
Input Data
Channel Slope 1.60000 %
Discharge 4.89 ft³/s
Gutter Width 3.00 ft
Gutter Cross Slope 0.07 ft/ft
Road Cross Slope 4.78 %
Roughness Coefficient 0.013
Results
Spread 5.92 ft
Flow Area 0.94 ft²
Depth 4.19 in
Gutter Depression 0.07 ft
Velocity 5.22 ft/s
POST - B - GUTTER SPREAD
10/23/2023 4:11:08 PM
Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 1of1Page
15
Appendix D – On-Site Hydrograph for the 100-Year 6-Hour Storm Event
Detention Volume and Q100 Orifice Sizing Calculation
BLOCK PT(N)PN QN Distribution
(min)
Adj. Distribution
(min)QN QPre-Cons
0 0 0 0 0 0 0.00 11.5
1 0.659 0.659 12.238 240 (4-hr peak) 5 0.28 11.5
2 0.843 0.184 3.414 235 10 0.28 11.5
3 0.973 0.130 2.423 230 15 0.29 11.5
4 1.078 0.105 1.944 245 20 0.29 11.5
5 1.167 0.089 1.650 225 25 0.30 11.5
6 1.245 0.078 1.449 220 30 0.30 11.5
7 1.315 0.070 1.300 250 35 0.30 11.5
8 1.379 0.064 1.185 215 40 0.31 11.5
9 1.438 0.059 1.093 210 45 0.31 11.5
10 1.492 0.055 1.017 255 50 0.32 11.5
11 1.544 0.051 0.954 205 55 0.33 11.5
12 1.592 0.048 0.899 200 60 0.33 11.5
13 1.638 0.046 0.852 260 65 0.34 11.5
14 1.682 0.044 0.811 195 70 0.35 11.5
15 1.723 0.042 0.774 190 75 0.35 11.5
16 1.763 0.040 0.742 265 80 0.36 11.5
17 1.802 0.038 0.712 185 85 0.37 11.5
18 1.839 0.037 0.686 180 90 0.38 11.5
19 1.874 0.036 0.662 270 95 0.38 11.5
20 1.909 0.034 0.640 175 100 0.39 11.5
21 1.942 0.033 0.619 170 105 0.40 11.5
22 1.974 0.032 0.601 275 110 0.41 11.5
23 2.006 0.031 0.583 165 115 0.42 11.5
24 2.036 0.031 0.567 160 120 0.43 11.5
25 2.066 0.030 0.552 280 125 0.44 11.5
26 2.095 0.029 0.538 155 130 0.46 11.5
27 2.123 0.028 0.525 150 135 0.47 11.5
28 2.151 0.028 0.512 285 140 0.49 11.5
29 2.178 0.027 0.501 145 145 0.50 11.5
30 2.204 0.026 0.490 140 150 0.52 11.5
31 2.230 0.026 0.479 290 155 0.54 11.5
32 2.255 0.025 0.469 135 160 0.57 11.5
33 2.280 0.025 0.460 130 165 0.58 11.5
34 2.304 0.024 0.451 295 170 0.62 11.5
35 2.328 0.024 0.443 125 175 0.64 11.5
36 2.352 0.023 0.435 120 180 0.69 11.5
37 2.375 0.023 0.427 300 185 0.71 11.5
38 2.397 0.023 0.419 115 190 0.77 11.5
39 2.419 0.022 0.412 110 195 0.81 11.5
40 2.441 0.022 0.406 305 200 0.90 11.5
41 2.463 0.021 0.399 105 205 0.95 11.5
42 2.484 0.021 0.393 100 210 1.09 11.5
43 2.505 0.021 0.387 310 215 1.19 11.5
44 2.525 0.021 0.381 95 220 1.45 11.5
45 2.545 0.020 0.376 90 225 1.65 11.5
46 2.565 0.020 0.370 315 230 2.42 11.5
47 2.585 0.020 0.365 85 235 3.41 11.5
48 2.604 0.019 0.360 80 240 12.24 11.5
49 2.624 0.019 0.355 320 245 1.94 11.5
50 2.642 0.019 0.351 75 250 1.30 11.5
51 2.661 0.019 0.346 70 255 1.02 11.5
52 2.679 0.018 0.342 325 260 0.85 11.5
53 2.698 0.018 0.338 65 265 0.74 11.5
54 2.716 0.018 0.334 60 270 0.66 11.5
55 2.733 0.018 0.330 330 275 0.60 11.5
56 2.751 0.018 0.326 55 280 0.55 11.5
57 2.768 0.017 0.322 50 285 0.51 11.5
58 2.785 0.017 0.318 335 290 0.48 11.5
59 2.802 0.017 0.315 45 295 0.45 11.5
60 2.819 0.017 0.311 40 300 0.43 11.5
61 2.836 0.017 0.308 340 305 0.41 11.5
62 2.852 0.016 0.305 35 310 0.39 11.5
63 2.868 0.016 0.302 30 315 0.37 11.5
64 2.884 0.016 0.299 345 320 0.36 11.5
65 2.900 0.016 0.296 25 325 0.34 11.5
66 2.916 0.016 0.293 20 330 0.33 11.5
67 2.932 0.016 0.290 350 335 0.32 11.5
68 2.947 0.015 0.287 15 340 0.31 11.5
69 2.962 0.015 0.284 10 345 0.30 11.5
70 2.978 0.015 0.282 355 350 0.29 11.5
71 2.993 0.015 0.279 5 355 0.28 11.5
72 3.008 0.015 0.277 360 360 0.28 11.5
Qn Method Tabulated Data
Equation From San Diego County
Hydrology Manual Unit
6-2 PT(N)=0.124P6(NTc)0.355 total rainfall for any given block (N)
6-3 PN = PT(N) - PT(N-1)
6-5 QN = 60CAPN/TC cfs
Variable Unit
P6 2.65 in for 100-year, 6-hr storm event
CPost-Cons 0.82 unitless
APost-Cons 2.68 ac
Tc(Post-Cons)7.1 min
Tc(Pre-Cons)7.1 min
APre-Cons 2.68 ac
IPre-Cons 5.6 in/hr
CPre-Cons 0.77 unitless
QPre-Cons 11.5 cfs
Q100 Storage Volume (cf)Point A Interpolation x y
235 3.414
239.6 11.5
240 12.2
Provided BMP Q100 Area (sf)
Point B Interpolation x y
240 12.2
240.3 11.5
Storage Volume Depth (in)245 1.944
Ho 0.042 ft
Area of Orifice (sf)Ho 0.51 in
1.369
Dia. of Q100 Orifice (in)Co 0.60
15.85
QundetainedBMP 2.06 (undetained Q100 flow rate at BMP "BF-2")
Qpost-pre 0.70 (peak flow delta Post minus Pre conditions)
Qdetained 1.36
Pt 2
Pt 3
Orifice Q100 Depth
Pt 1
Pt 2
Pt 3
Pt 1
(Area of Hydrograph
where Qn exceeds
Qpre-Cons)16
(Area of BMP BF-2
where the Q100
volume is detained)370
(reduction flow rate from BMP "BF-2" to
match Pre construction conditions of site.
Used for orifice sizing)
(Depth of Q100
storage volume divided
by BMP area)0.51
Flow Rates BF-2 (cfs)
Orifice Coefficient
250, 11.5
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
0 50 100 150 200 250 300 350 400
QNFlo
w
R
a
t
e
(
c
f
s
)
Time (min)
Kinovate Drainage Area to POC 2 100-Yr Hydrograph
QN QPre-Cons
235, 3.41
240, 12.24
245, 1.94
245, 11.5
0
2
4
6
8
10
12
14
225 230 235 240 245 250 255
QNFlo
w
R
a
t
e
(
c
f
s
)
Time (min)
Kinovate Drainage Area to POC 2 100-Yr Detention Vol.
QN QPre-Cons QN QPre-Cons
Point A
Point B
Amount of Q100 detention
using triangle area formula
Qn Method Hydrograph
I I I I
_J
I
~
𝑃100 𝑆𝑟𝑙𝑟𝑎𝑒𝑒 𝑉𝑙𝑙𝑟𝑙𝑒=16 𝑎𝑒
𝑀�ℎ𝑙�ℎ𝑙𝑟𝑙 𝐴𝑟𝑎�ℎ𝑙𝑎𝑎𝑙𝑒 𝑆𝑟𝑒𝑎𝑟𝑙𝑒𝑙𝑟 𝐴𝑟𝑒𝑎 𝑙𝑒 𝐴𝑀𝑃 "𝐴𝐹−2"=370 𝑟𝑒
𝑃100 𝑆𝑟𝑙𝑟𝑎𝑒𝑒 𝐴𝑒𝑙𝑟�=16 𝑎𝑒
370 𝑟𝑒=0.042 𝑒𝑟=0.5 �ℎ𝑙
𝑃100 𝑟𝑛𝑐𝑐𝑟𝑎𝑖𝑛𝑐𝑐 𝑎𝑟 𝐵𝐹−2 =2.06 𝑎𝑒𝑟
𝑃100 𝑟𝑖𝑟𝑐𝑐𝑐𝑙𝑟𝑎=𝑃100 𝑛𝑛𝑟𝑟−𝑐𝑛𝑛𝑟𝑟𝑟𝑟𝑐𝑟𝑖𝑛𝑛−𝑃100 𝑛𝑟𝑐−𝑐𝑛𝑛𝑟𝑟𝑟𝑟𝑐𝑟𝑖𝑛𝑛=12.2 𝑎𝑒𝑟−11.5 𝑎𝑒𝑟= 0.7 𝑎𝑒𝑟
𝑃100 𝑐𝑐𝑟𝑎𝑖𝑛𝑐𝑐= 𝑃100 𝑟𝑛𝑐𝑐𝑟𝑎𝑖𝑛𝑐𝑐 𝑎𝑟 𝐵𝐹−2 −𝑃100 𝑟𝑖𝑟𝑐𝑐𝑐𝑙𝑟𝑎=2.06 𝑎𝑒𝑟−0.7 𝑎𝑒𝑟=1.36 𝑎𝑒𝑟
Single Submerged Orifice Equation
𝐻0 =𝑃100 𝑆𝑟𝑙𝑟𝑎𝑒𝑒 𝐴𝑒𝑙𝑟�=0.042 𝑒𝑟
𝐴0 =0.60
𝑃100 𝑐𝑐𝑟𝑎𝑖𝑛𝑐𝑐=1.36 𝑎𝑒𝑟
Solving for cross-sectional area of flow through the orifice yields:
𝐴0 =1.369 𝑟𝑒
Solving for diameter of orifice:
𝐴𝑄100 𝑛𝑟𝑖𝑐𝑖𝑐𝑐= √4𝐴0
𝜋
𝐴𝑄100 𝑛𝑟𝑖𝑐𝑖𝑐𝑐= √4 ∗1.369 𝑟𝑒
𝜋=1.32 𝑒𝑟=𝟏𝟓.𝟖𝟓 𝒉𝒏𝒄𝒉𝒆𝒔
Q100 Orifice Sizing Calculations
Q=C0Aoj2g(Ho)
where:
Q 100 delained = orifice flow discharge (ft3/s)
Co = orifice discharge coefficient
Ao = cross-sectional area of flow through the orifice
(ft2)
g = gravitational acceleration (32.2 ft/s2)
Ho = effective head above orifice (ft)