Loading...
HomeMy WebLinkAboutSDP 2019-0005; BMW CARLSBAD; TECHNICAL MEMORANDUM SWMM MODELING FOR HYDROMODIFICATION COMPLIANCE OF BMW CARLSBAD; 2019-12-13- - - - - - - - -... - - .. ... .. .. 0~ 0 RtsV \ e::W ~{2o(u, fee,er-t,( ~ TECHNICAL MEMORANDUM: SWMM Modeling for Hydromodification Compliance of: BMW Carlsbad Prepared For: CDR Prepared by: Luis Pa a, PhD, CPSWQ, ToR, D.WRE. R.C.E. 66377 REC Consultants 2442 Second Avenue San Diego, CA 92101 Telephone: (619) 232-9200 FER 2 6 207~ " .. • • • .. _, - - - - - - - - - TO: FROM: DATE: RE: R·E·C TECHNICAL MEMORANDUM CDR. Luis Parra, PhD, PE, CPSWQ, ToR, D.WRE, CFM. David Edwards, MS, PE, CFM. December 13, 2019 Summary of SWMM Modeling for Hydromodification Compliance for BMW Carlsbad, City of Carlsbad, CA . INTRODUCTION This memorandum summarizes the approach used to model the proposed commercial site in the City of Carlsbad using the Environmental Protection Agency (EPA) Storm Water Management Model 5.0 (SWMM). SWMM models were prepared for the pre and post-developed conditions at the site in order to determine if the proposed LID HMP bio-filtration and underground detention facilities have sufficient volume to meet Order R9-2013-001 requirements of the California Regional Water Quality Control Board San Diego Region (SDRWQCB), as explained in the Final Hydromodification Management Plan (HMP), dated March 2011, prepared for the County of San Diego by Brown and Caldwell. SWMM MODEL DEVELOPMENT The BMW Carlsbad project proposes a commercial structure and servicing parking lots on the currently developed site. Two (2) SWMM models were prepared for this study: the first for the predevelopment and the second for the post-developed conditions. The project site drains to one (1) Point of Compliance (POC-1) located at the existing storm drain system located to the north of the project site. Per Section Gl.2 in Appendix G of the 2016 City of Carlsbad BMP Design Manual, the EPA SWMM model was used to perform the continuous hydrologic simulation. For both SWMM models, flow duration curves were prepared to determine if the proposed HMP facilities are sufficient to meet the current HMP requirements. The inputs required to develop SWMM models include rainfall, watershed characteristics, and BMP configurations. The Oceanside Gage from the Project Clean Water website was used for this study since it is the most representative of the project site precipitation due to elevation and proximity to the project site. Per the California Irrigation Management Information System "Reference Evaporation Zones" (CIMIS ETo Zone Map), the project site is located within the Zone 1 Evapotranspiration Area. Thus evapotranspiration vales for the site were modeled using Zone 1 average monthly values from Table G.1-1 from the 2016 BMP Design Manual. Per the site specific geotechnical investigation and NRCS Web Soil Survey, the project site is situated upon Class B soils. Soils have been assumed to be compacted in the existing developed condition while fully compacted in the post developed conditions. Other SWMM inputs for the subareas are discussed in the appendices to this document, where the selection of parameters is explained in detail. .. .. .. .. .. .. ... .. - - - - BMW Carlsbad HMP Memo December 13, 2019 HMP MODELING PRE DEVELOPED CONDITIONS The current site consists of a developed lot that drains via overland flow to the receiving storm drain system located to the north of the project site within the adjacent Cannon Road. Table 1 below illustrates the pre-developed area to be redeveloped and impervious percentage accordingly. TABLE 1-SUMMARY OF PRE-DEVELOPED CONDITIONS POC OMA Tributary Area, A Impervious Percentage, (Ac) lp111 POC-1 DMA-A 3.71 0% TOTAL --3.71 0% . . . . Notes: (1) -Per the 2013 RWQCB permit, existing condition impervious surfaces are not to be accounted for in existing cond1t1ons analysis . DEVELOPED CONDITIONS Storm water runoff from the proposed project site is routed to one (1) POC located at the existing storm drain location to the north of the project site. Runoff from the developed project site is drained to five (5) onsite receiving BMPS; four (4) biofiltration LID BMP's and a two (2) underground detention vaults that are hydraulically linked to act as a single detention facility. Once flows are routed via the proposed LID BMPs, developed onsite flows are then conveyed to the POC. A small portion of the site is self- mitigating; this area will bypass the LID BMPs and confluence with flows at the aforementioned POC. TABLE 2 -SUMMARY OF POST-DEVELOPED CONDITIONS POC OMA Tributary Area, A Impervious Percentage, Ip (Ac) DMA-lA + Pavers 0.726 61.23 BR-1 0.01843 0% DMA-1B 0.325 61.22% DMA-1B (Pavers) 0.089 0% BR-2 0.00817 0% POC-1 DMA-10 0.341 96.62% DMA-10 (Pavers) 0.053 0% BR-3 0.01279 0% DMA-lC 0.506 92.52% BR-4 0.01 0% DMA-lE 1.325 100% DMA-2A (Self Mitigating) 0.294 6.73% TOTAL --3.71 -- Four (4) LID biofiltration basins and a single underground detention vault are located within the project site and are responsible for handling hydromodification requirements. In developed conditions, the basins will have a surface depth of 0.92 feet and a riser spillway structure (see dimensions in Table 4). Flows will then discharge from the basins via a low flow orifice outlet within the gravel layer. The riser 2 W.O.7063-02 .. .. - - .. - ... - - - - - - - BMW Carlsbad HMP Memo December 13, 2019 structure will act as a spillway such that peak flows can be safely discharged to the receiving underground detention vault. Beneath the basins' invert lies the proposed LID biofiltration portion of the drainage facility. This portion of the basin is comprised of a 3-inch layer of mulch, an 18-inch layer of amended soil (a highly sandy, organic rich composite with an infiltration capacity of at least 5 inches/hr). Two (2) of the BM P's (BR-1 and BR-2) are partial-retention systems; these basins will feature 13-inches of gravel while the remaining two (2) bio-filtration BMPs (BR-3 and BR-4) will be lined and include a 12-inch layer of gravel for additional detention and to accommodate the French drain system. These systems are to be located beneath the biofiltration layers to intercept treated storm water and convey these flows to a single small diameter lower outlet orifice. Once the runoff has been routed by the outlet structure, flows are then drained to the receiving underground detention vaults for additional detention. The two (2) spate vaults are to be constructed at the same elevation and will be linked via the junction box that houses the single outlet structure for the two (2) facilities. Given that the basin elevations are the same and that both basins are constricted by the same outlet structure, these facilities are hydraulically linked and act as a single detention facility for modeling purposes. After these flows have been detained via the detention vault, they will be discharged to the existing storm drain system located within the adjacent Cannon Road. The biofiltration basins were modeled using the biofiltration LID module within SWMM. The biofiltration module can model the underground gravel storage layer, underdrain with an orifice plate, amended soil layer, and a surface storage pond up to the elevation of the invert of the spillway. It should be noted that detailed outlet structure location and elevations will be shown on the construction plans based on the recommendations of this study. Water Quality BMP Sizing It is assumed all storm water quality requirements for the project will be met by the bio-filtration LID BMPs detailed in the SWQMP and other BMPs included within the site design. However, detailed water quality requirements are not discussed within this technical memo. For further information in regards to storm water quality requirements for the project (including sizing and drawdown) please refer to the site specific Storm Water Quality Management Plan (SWQMP). Porous Pavers As an integrated LID BMP design practice, several sections of the project sites parking lots will feature porous pavement/pavers. These porous sections will include a 6-inch layer of gravel to be located beneath the paver to allow for storage of intercepted runoff. There will be no French drain located beneath the paver section such that once the volume of voids of the gravel has been filled with stormwater, any excess storm water will continue to surface flow to the receiving storm water quality bio-filtration basin. The paver base will be unlined to allow for infiltration into the underlying soil. In some DMA's, cross gutters prevent run-on from adjacent impervious areas into these pervious sections, such that the only runoff tributary to these LIDs is the direct precipitation that falls upon them. The DMA's located within the north-eastern portion of the site however do not feature cross gutters, thus allowing for run-on from the adjacent impervious areas. 3 W.O.7063-02 ... - - .. - ... - - - .. - ... .. ... BMW Carlsbad HMP Memo December 13, 2019 To represent these differences within the SWMM model, the DMA's that are run-on to the pervious areas (DMA-lA) are modeled as draining to pervious. Whereas for the porous pavement areas that do not receive run-on, these areas are modeled as their own individual catchment within SWMM, allowing for the accurate representation of impervious runoff from adjacent DMA's to bypass these porous pavement sections and drain directly to the BMP. Additionally, to represent the 6-inches of gravel storage located beneath the porous pavement French Drain, the "Dstore-Perv" value for the catchment representing the porous pavement is set to 4.8-inches (as 12 inches of gravel has only 40% of voids space available for storage, thus 6 X 0.4 = 2.4). It should be noted that the pavers are not treatment control BMPs and as such no draw-down calculations are required; the 57-year continuous hydrologic SWMM model demonstrates the pavers are able to meet their HMP objective. The bio-filtration BMPs downstream of the pavers have been sized for the full DCV and have not been reduced due to the volumetric interception provided by the paver . BMP MODELING FOR HMP PURPOSES Modeling of dual purpose Water Quality/HMP BMPs Four (4) HMP BMP biofiltration basins and two {2) underground detention vaults are proposed hydromodification conformance for the project site. Tables 4, 5 and 6 illustrate the dimensions required for HMP compliance according to the SWMM model that was undertaken for the project. BMP BR-1 BR-2 BR-3 BR-4 TABLE 4 -SUMMARY OF DEVELOPED DUAL PURPOSE WQ & HMP BMPs DIMENSIONS Tributary BMP Gravel Area (Ac) Area111 Depth121 LowerOrlf. Depth Riser Weir Perimeter Total Surface (ftz) (In) D (ln)131 Invert (ft)141 Length151 (ft) Depth161 (ft) 0.726 803 13 0.875 0.75 8.0 0.92 0.414 356 13 0.675 0.75 8.0 0.92 0.394 557 12 0.75 0.75 8.0 0.92 0.506 435 12 0.75 0.75 8.0 0.92 Notes: (1): Area of amended soil equal to area of gravel (2): Includes filter gravel layer, French Drain is set at an elevation of 3-inchesor 4-inches above the base of the facility. (3): Diameter of orifice in gravel layer with invert at bottom of layer; tied with hydromod min threshold (0.l·Q,). Basin (4): Depth of ponding beneath riser structure's surface spillway. (5): Overflow length, the internal perimeter of the riser is 8 ft (2ft x 2ft internal dimensions). (6): Total surface depth of BMP from top crest elevation to surface invert . TABLE 5-SUMMARY OF DETENTION VAULTS: Area (fr) Depth (ft) Volume (ft3) DETENTION VAULT 1,305 8 10,440 Notes: (1): Volume/area to be distributed between the two (2) individual detention facilities. 4 W.O.7063-02 "' .. - ... - - - - - ... - BMW Carlsbad HMP Memo December 13, 2019 TABLE 6-SUMMARY OF DETENTION VAULT RISER DETAILS: Lower Orifice Emergencv Weir BASIN Diameter Number of Elev.111 .(ft) Width (ft) Elev. 111 (ft) (in) Orifices DETENTION 1.125 1 0.0 5 7.2083 VAULT Notes: (1): Invert of basin surface assumed to be elevation 0.0'. FLOW DURATION CURVE COMPARISON The Flow Duration Curve (FDC) for the site was compared at the POC by exporting the hourly runoff time series results from SWMM to a spreadsheet. Oi and 010 were determined with a partial duration statistical analysis of the runoff time series in an Excel spreadsheet using the Cunnane plotting position method (which is the preferred plotting methodology in the HMP Permit). As the SWMM Model includes a statistical analysis based on the Weibull Plotting Position Method, the Weibull Method was also used within the spreadsheet to ensure that the results were similar to those obtained by the SWMM Model. The range between 10% of Oi and 0 10 was divided into 100 equal time intervals; the number of hours that each flow rate was exceeded was counted from the hourly series. Additionally, the intermediate peaks with a return period "i" were obtained (0; with i=3 to 9). For the purpose of the plot, the values were presented as percentage of time exceeded for each flow rate. FDC comparison at the POC is illustrated in Figure 1 in both normal and logarithmic scale. Attachment 5 provides a detailed drainage exhibit for the post-developed condition. As can be seen in Figure 1, the FDC for the proposed condition with the HMP BMPs is within 110% of the curve for the existing condition in both peak flows and durations. The additional runoff volume generated from developing the site will be released to the existing point of discharge at a flow rate below the 10% Oi lower threshold for POC-1. Additionally, the project will also not increase peak flow rates between the 02 and the 010, as shown in the peak flow tables in Attachment 1. Discussion of the Manning's coefficient (Pervious Areas) for Pre and Post-Development Conditions Typically the Manning's coefficient is selected as n = 0.10 for pervious areas and n = 0.012 for impervious areas. Due to the complexity of the model carried out in pre and post-development conditions, a more accurate value of the Manning's coefficient for pervious areas has been chosen. Taken into consideration the "Handouts on Supplemental Guidance -Handout #2: Manning's "n" Values for Overland Flow Using EPA SWMM V.5'' by the County of San Diego (Reference (6)) a more accurate value of n = 0.05 has been selected (see Table 1 of Reference (6) included in Attachment 7). An average n value between pasture and shrubs and bushes (which is also the value of dense grass) has been selected per the reference cited, for light rain (<0.8 in/hr) as more than 99% of the rainfall has been measured with this intensity. 5 W.O.7063-02 ◄ ... .. .. - - - - - - -... - - - BMW Carlsbad HMP Memo December 13, 2019 SUMMARY This study has demonstrated that the proposed HMP BMPs provided for the BMW Carlsbad project site is sufficient to meet the current HMP criteria if the cross-section areas and volumes recommended within this technical memorandum, and the respective orifice and outlet structure are incorporated as specified within the proposed project site. KEY ASSUMPTIONS 1. Type B Soils is representative of the existing condition site . 2. Two (2) separate detention vaults will be constructed at the same elevation and hydraulically linked, acting as a single detention system. ATTACHMENTS 1. Oi to 010 Comparison Tables 2. FDC Plots (log and natural "x" scale) and Flow Duration Table. 3. List of the "n" largest Peaks: Pre-Development and Post-Development Conditions 4. Elevations vs. Discharge Curves to be used in SWMM 5. Pre & Post Development Maps, Project plan and section sketches 6. SWMM Input Data in Input Format (Existing and Proposed Models) 7. SWMM Screens and Explanation of Significant Variables 8. Geotechnical Documentation 9. Summary files from the SWMM Model REFERENCES [1] -"Review and Analysis of San Diego County Hydromodification Management Plan (HMP): Assumptions, Criteria, Methods, & Modeling Tools -Prepared for the Cities of San Marcos, Oceanside & Vista", May 2012, TRW Engineering. [2] -"Final Hydromodification Management Plan (HMP) prepared for the County of San Diego", March 2011, Brown and Caldwell. [3] -Order R9-20013-001, California Regional Water Quality Control Board San Diego Region (SDRWQCB). [4] -"Handbook of Hydrology", David R. Maidment, Editor in Chief. 1992, McGraw Hill. [S] -"City of Carlsbad BMP Design Manual", February 2016. [6] -"Improving Accuracy in Continuous Hydrologic Modeling: Guidance for Selecting Pervious Overland Flow Manning's n Values in the San Diego Region", 2016, TRW Engineering. 6 W.O.7063-02 BMW Carlsbad HMP Memo December 13, 2019 1,7j 0.5 BMW Carlsbad POC 1-Flow Duration Curve -•-•-•-T-•-~•-•-•-~-•-•-•-•-•-•-•-•-•-•-•-T-•-•-•~ ·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·7la :=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:===========:=======:=az -·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-o. ·-·-·-·-•-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·--Q., ·--·-·-·-·-·-·-·-·-·-·-·-·-·-·-·--·-·-·-·-·-·-·-·~ -·-·-·-·-·-·-· -o, --Exist•~ --Pml'N')V''1 -·-U< ·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·v.so.. -·-·-·-·-·-·-·-·-·-·-·-·-·"0:3Q, .l(ti. -. -. -. -. -• -. -. -. -. -• -. -. -• -• -• -• -• -• nl ----~ 0 lb l 4 11 18 16 o.e o.s~,-- -- - 0 fi l)l 0.1Q, 0 0 o.oz 0.04 O.OG BMW Carlsbad POC 1-Flow Duration Curve --·-·-•-·-·-·-·-·-·-·-·-·-·-·-·-·-·-q,p OOl Percent~• of thine arteadad (%) - --·--- ---Q,, =·=·===·=·=·=:===SI --U~lillf, __ .,,01>u~i..1 O.ll" --a... Figure la and lb. Flow Duration Curve Comparison (logarithmic and normal "x" scale) 7 W.O.7063-02 • .. .. .. .. .. • .. .. • .. • .... .. - .. • .. ... BMW Carlsbad HMP Memo December 13, 2019 ATTACHMENT 1 . Qz to Q10 Comparison Table -POC 1 Return Period Existing Condition (cfs) 2-year 1.465 3-year 1.820 4-year 1.976 5-year 2.057 6-year 2.227 7-year 2.264 8-year 2.383 9-year 2.490 10-year 2.496 8 Mitigated Condition (cfs) Reduction, Exist - Mitigated (cfs) 0.811 0.654 1.063 0.758 1.381 0.595 1.590 0.467 1.886 0.341 1.965 0.299 2.060 0.324 2.098 0.392 2.196 0.300 W.O.7063-02 - .. .. - - ... ... - ... - - .. ATTACHMENT 2 FLOW DURATION CURVE ANALYSIS 1) Flow duration curve shall not exceed the existing conditions by more than 10%, neither in peak flow nor duration. The figures on the following pages illustrate that the flow duration curve in post-development conditions after the proposed BMP is below the existing flow duration curve. The flow duration curve table following the curve shows that if the interval 0.10Q2 -Q10 is divided in 100 sub- intervals, then a) the post development divided by pre-development durations are never larger than 110% (the permit allows up to 110%); and b) there are no more than 10 intervals in the range 101%-110% which would imply an excess over 10% of the length of the curve (the permit allows less than 10% of excesses measured as 101-110%). Consequently, the design passes the hydromodification test. It is important to note that the flow duration curve can be expressed in the "x" axis as percentage of time, hours per year, total number of hours, or any other similar time variable. As those variables only differ by a multiplying constant, their plot in logarithmic scale is going to look exactly the same, and compliance can be observed regardless of the variable selected. However, in order to satisfy the City of CarlsbadHMP example, % of time exceeded is the variable of choice in the flow duration curve. The selection of a logarithmic scale in lieu of the normal scale is preferred, as differences between the pre-development and post-development curves can be seen more clearly in the entire range of analysis. Both graphics are presented just to prove the difference . In terms of the "y" axis, the peak flow value is the variable of choice. As an additional analysis performed by REC, not only the range of analysis is clearly depicted (10% of Ui to Q10) but also all intermediate flows are shown (Q2, OJ, °'4, Us, Q6, Q1, Us and Qg) in order to demonstrate compliance at any range Ox -Ux+1. It must be pointed out that one of the limitations of both the SWMM and SOHM models is that the intermediate analysis is not performed (to obtain Q from i = 2 to 10). REC performed the analysis using the Cunnane Plotting position Method (the preferred method in the HMP permit) from the "n" largest independent peak flows obtained from the continuous time series. The largest "n" peak flows are attached in this appendix, as well as the values of Qi with a return period "i", from i=2 to 10. The Qi values are also added into the flow-duration plot . 2.60 2.40 2.20 2.00 1.80 1.60 1.40 i BMW Carlsbad POC 1-Flow Duration Curve Qi·-·-·-·-· ·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·Qg St :=:=:=:=:=.-:-.-·=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:~ 0s ·-·-·-·-·-·-·-· Qi ·-·-·-·-·-·-·-· ·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·as ·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·~ ·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·e1a -Existing 0 1.20 -Proposed -•-Qx 1.00 0.80 0.60 0.20 O.lt't2 -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• - 0.00 +----------------r------------------.------------'------, 0.0003 0.003 0.03 0.3 Percentage of time exceeded (%) 2.6 2.4 2.2 2 1.8 1.6 1.4 a 1.2 1 0.8 0.6 BMW Carlsbad POC 1-Flow Duration Curve ·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-c.s :=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:~ ·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-Qs ·--·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·tti ·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·113 ·-·- -·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-· -Existing -Proposed -·-Qx .S'li -. -• -. -• -·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-o:5Q2 0.4 -31l2 -·-·-·-·-·-·-·-·-· . -. -. -. -. -. -. -. -. -• -• -• -• -o:3Q2 0.2 .ltt2 -. -. -. -. -. -. -. -. -. -. -. -. -. -. -. -. -. -• -• -• -• -• -• -• -• -• -• 0 4-----------------------~----------------=---------~----------- 0 0.02 0.04 Percentage of time exceeded (%) .. • Flow Duration Curve Data for BMW Carlsbad, City of Carlsbad, CA Q2= 1.47 cfs Fraction 10% • QlO= 2.50 cfs ., Step= 0.0237 cfs Count= 499679 hours 57.00 years • Existing Condition Detention Optimized Pass or Interval Q(cfs) Hours>Q %time Hours>Q %time Post/Pre Fall? 1 0.147 222 4.44E-02 239 4.78E-02 108% Pass 2 0.170 206 4.12E-02 213 4.26E-02 103% Pass 3 0.194 186 3.72E-02 191 3.82E-02 103% Pass 4 0.218 179 3.58E-02 168 3.36E-02 94% Pass 5 0.241 175 3.50E-02 143 2.86E-02 82% Pass 6 0.265 170 3.40E-02 118 2.36E-02 69% Pass 7 0.289 169 3.38E-02 110 2.20E-02 65% Pass 8 0.313 164 3.28E-02 104 2.08E-02 63% Pass .. 9 0.336 152 3.04E-02 99 1.98E-02 65% Pass 10 0.360 149 2.98E-02 93 1.86E-02 62% Pass .. 11 0.384 146 2.92E-02 90 1.80E-02 62% Pass 12 0.408 141 2.82E-02 84 l.68E-02 60% Pass 13 0.431 141 2.82E-02 81 l.62E-02 57% Pass 14 0.455 135 2.70E-02 80 l.60E-02 59% Pass 15 0.479 132 2.64E-02 79 1.58E-02 60% Pass 16 0.502 126 2.52E-02 71 l.42E-02 56% Pass 17 0.526 121 2.42E-02 66 l.32E-02 55% Pass 18 0.550 116 2.32E-02 64 l.28E-02 55% Pass 19 0.574 110 2.20E-02 58 l.16E-02 53% Pass .. 20 0.597 106 2.12E-02 56 l.12E-02 53% Pass 21 0.621 106 2.12E-02 53 l.06E-02 50% Pass 22 0.645 101 2.02E-02 49 9.81E-03 49% Pass -23 0.669 99 l.98E-02 48 9.61E-03 48% Pass 24 0.692 94 l.88E-02 46 9.21E-03 49% Pass 25 0.716 92 l.84E-02 44 8.81E-03 48% Pass 26 0.740 89 l.78E-02 43 8.61E-03 48% Pass 27 0.763 86 l.72E-02 41 8.21E-03 48% Pass 28 0.787 -83 1.66E-02 37 7.40E-03 45% Pass 29 0.811 81 1.62E-02 36 7.20E-03 44% Pass .. 30 0.835 79 l.58E-02 32 6.40E-03 41% Pass -31 0.858 74 l.48E-02 32 6.40E-03 43% Pass 32 0.882 72 l.44E-02 29 5.80E-03 40% Pass 33 0.906 71 1.42E-02 28 5.60E-03 39% Pass -34 0.930 58 l.16E-02 28 5.60E-03 48% Pass 35 0.953 58 l.16E-02 27 5.40E-03 47% Pass 36 0.977 57 l.14E-02 26 5.20E-03 46% Pass - Existing Condition Detention Optimized Pass or Interval Q(cfs) Hours>Q %time Hours>Q %time Post/Pre Fall? 37 1.001 53 l.06E-02 25 5.00E-03 47% Pass • 38 1.025 53 1.06E-02 25 5.00E-03 47% Pass 39 1.048 52 1.04E-02 24 4.80E-03 46% Pass 40 1.072 50 1.00E-02 20 4.00E-03 40% Pass .. 41 1.096 50 1.00E-02 20 4.00E-03 40% Pass .. 42 1.119 50 1.00E-02 19 3.80E-03 38% Pass 43 1.143 48 9.61E-03 19 3.80E-03 40% Pass • 44 1.167 47 9.41E-03 18 3.60E-03 38% Pass .. 45 1.191 47 9.41E-03 18 3.60E-03 38% Pass 46 1.214 47 9.41E-03 18 3.60E-03 38% Pass • 47 1.238 43 8.61E-03 18 3.60E-03 42% Pass 48 1.262 43 8.61E-03 18 3.60E-03 42% Pass .. 49 1.286 41 8.21E-03 18 3.60E-03 44% Pass 50 1.309 37 7.40E-03 17 3.40E-03 46% Pass .. 51 1.333 35 7.00E-03 17 3.40E-03 49% Pass • 52 1.357 35 7.00E-03 16 3.20E-03 46% Pass 53 1.380 35 7.00E-03 16 3.20E-03 46% Pass 54 1.404 33 6.60E-03 15 3.00E-03 45% Pass • 55 1.428 33 6.60E-03 15 3.00E-03 45% Pass .. 56 1.452 33 6.60E-03 15 3.00E-03 45% Pass 57 1.475 32 6.40E-03 15 3.00E-03 47% Pass • 58 1.499 32 6.40E-03 14 2.80E-03 44% Pass .. 59 1.523 31 6.20E-03 14 2.80E-03 45% Pass 60 1.547 31 6.20E-03 14 2.80E-03 45% Pass 41 61 1.570 30 6.00E-03 13 2.60E-03 43% Pass "" 62 1.594 29 5.80E-03 12 2.40E-03 41% Pass 63 1.618 27 5.40E-03 11 2.20E-03 41% Pass -64 1.641 26 5.20E-03 11 2.20E-03 42% Pass 65 1.665 25 5.00E-03 11 2.20E-03 44% Pass 66 1.689 23 4.60E-03 11 2.20E-03 48% Pass ... 67 1.713 23 4.60E-03 11 2.20E-03 48% Pass 68 1.736 23 4.60E-03 11 2.20E-03 48% Pass 69 1.760 23 4.60E-03 11 2.20E-03 48% Pass 70 1.784 23 4.60E-03 11 2.20E-03 48% Pass 71 1.808 23 4.60E-03 11 2.20E-03 48% Pass 72 1.831 22 4.40E-03 11 2.20E-03 50% Pass -73 1.855 21 4.20E-03 11 2.20E-03 52% Pass 74 1.879 19 3.80E-03 11 2.20E-03 58% Pass 75 1.903 -18 3.60E-03 10 2.00E-03 56% Pass 76 1.926 18 3.60E-03 9 l.80E-03 50% Pass 77 1.950 18 3.60E-03 9 l.80E-03 50% Pass -78 1.974 17 3.40E-03 9 l.80E-03 53% Pass 79 1.997 17 3.40E-03 9 l.80E-03 53% Pass 80 2.021 16 3.20E-03 9 l.80E-03 56% Pass 81 2.045 14 2.80E-03 9 l.80E-03 64% Pass - .. .. 411 411 .. .. .. .. -.. .. .. .. .. - .. Interval Q(cfs) 82 2.069 83 2.092 84 2.116 85 2.140 86 2.164 87 2.187 88 2.211 89 2.235 90 2.258 91 2.282 92 2.306 93 2.330 94 2.353 95 2.377 96 2.401 97 2.425 98 2.448 99 2.472 100 2.496 Existing Condition Detention Optimized Pass or Hours>Q "time Hours>Q "time Post/Pre Fall? 12 2.40E-03 7 l.40E-03 58% Pass 12 2.40E-03 7 l.40E-03 58% Pass 12 2.40E-03 7 l.40E-03 58% Pass 10 2.00E-03 7 l.40E-03 70% Pass 10 2.00E-03 7 l.40E-03 70% Pass 10 2.00E-03 7 l.40E-03 70% Pass 10 2.00E-03 7 1.40E-03 70% Pass 9 l.80E-03 6 l.20E-03 67% Pass 8 l.60E-03 5 l.00E-03 63% Pass 8 l.60E-03 5 l.00E-03 63% Pass 8 l.60E-03 5 l.00E-03 63% Pass 7 l.40E-03 5 l.00E-03 71% Pass 7 l.40E-03 5 l.00E-03 71% Pass 7 1.40E-03 5 l.00E-03 71% Pass 7 l.40E-03 5 l.00E-03 71% Pass 7 l.40E-03 4 8.0lE-04 57% Pass 7 l.40E-03 4 8.0lE-04 57% Pass 7 1.40E-03 4 8.0lE-04 57% Pass 6 l.20E-03 4 8.0lE-04 67% Pass Peak Flows calculated with Cunnane Plotting Position Return Period Pre-dev. Q (cfs) Post-Dev. Q Reduction (years) (cfs) (cfs) 10 2.496 2.196 0.300 9 2.490 2.098 0.392 8 2.383 2.060 0.324 7 2.264 1.965 0.299 6 2.227 1.886 0.341 5 2.057 1.590 0.467 4 1.976 1.381 0.595 3 1.820 1.063 0.758 2 1.465 0.811 0.654 .. 411 .. .. • .. 11 .. ... .. - - - - - - ATTACHMENT 3 List of the "n" Largest Peaks: Pre & Post-Developed Conditions Basic Probabilistic Equation: R = 1/P R: Return period (years). P: Probability of a flow to be equaled or exceeded any given year (dimensionless) . Cunnane Equation: p = i-0.4 n+0.2 Weibull Equation: p =-i- n+l i: Position of the peak whose probability is desired (sorted from large to small) n: number of years analyzed . Explanation of Variables for the Tables in this Attachment Peak: Refers to the peak flow at the date given, taken from the continuous simulation hourly results of the n year analyzed. Posit: If all peaks are sorted from large to small, the position of the peak in a sorting analysis is included under the variable Posit. Date: Date of the occurrence of the peak at the outlet from the continuous simulation Note: all peaks are not annual maxima; instead they are defined as event maxima, with a threshold to separate peaks of at least 12 hours. In other words, any peak P in a time series is defined as a value where dP/dt = 0, and the peak is the largest value in 25 hours (12 hours before, the hour of occurrence and 12 hours after the occurrence, so it is in essence a daily peak). ... .. .. • .. .. 41 .. - - - ... List of Peak events and Determination of Q2 and Ql0 (Pre-Development) BMW Carlsbad -POC 1 T Cunnane Weibull Period of Return (Year) (cfs) (ds) Peaks (cfs) (Years) 10 2.50 2.59 Date Posit Weibull Cunnane 9 2.49 2.49 0.908 1/15/1978 57 1.02 1.01 8 2.38 2.44 0.923 9/18/1963 56 1.04 1.03 7 2.26 2.29 0.923 1/11/2005 55 1.05 1.05 6 2.23 2.23 0.926 3/15/1986 54 1.07 1.07 5 2.06 2.07 0.926 12/24/1988 53 1.09 1.09 4 1.98 1.99 0.927 2/19/1958 52 1.12 1.11 3 1.82 1.82 0.929 1/6/1979 51 1.14 1.13 2 1.47 1.47 0.986 8/17/1977 50 1.16 1.15 0.992 2/22/1998 49 1.18 1.18 0.992 2/12/2003 48 1.21 1.20 Note: 0.994 11/8/2002 47 1.23 1.23 Cunnane is the preferred 1.039 12/31/2004 46 1.26 1.25 method by the HMP permit. 1.053 2/4/1994 45 1.29 1.28 1.069 3/1/1991 44 1.32 1.31 1.123 11/11/1985 43 1.35 1.34 1.137 4/27/1960 42 1.38 1.38 1.157 2/14/1998 41 1.41 1.41 1.226 1/18/1993 40 1.45 1.44 1.237 12/2/1961 39 1.49 1.48 1.277 2/12/1992 38 1.53 1.52 1.292 2/15/1986 37 1.57 1.56 1.296 3/2/1980 36 1.61 1.61 1.304 1/16/1978 35 1.66 1.65 1.304 1/29/1980 34 1.71 1.70 1.32 3/11/1995 33 1.76 1.75 1.325 1/6/2008 32 1.81 1.81 1.394 12/30/1991 31 1.87 1.87 1.394 2/17/1998 30 1.93 1.93 1.465 1/27/2008 29 2.00 2.00 1.512 2/23/1998 28 2.07 2.07 1.59 10/20/2004 27 2.15 2.15 1.595 2/16/1980 26 2.23 2.23 1.611 2/10/1978 25 2.32 2.33 1.627 11/22/1965 24 2.42 2.42 1.664 2/27/1983 23 2.52 2.53 1.667 1/29/1983 22 2.64 2.65 1.667 2/3/1998 21 2.76 2.78 1.808 3/17/1982 20 2.90 2.92 1.832 1/16/1952 19 3.05 3.08 1.856 11/15/1952 18 3.22 3.25 1.864 12/19/1970 17 3.41 3.45 1.879 10/27/2004 16 3.63 3.67 1.958 4/1/1958 15 3.87 3.92 2.021 1/14/1993 14 4.14 4.21 2.034 3/1/1978 13 4.46 4.54 2.046 2/20/1980 12 4.83 4.93 2.12 2/18/2005 11 5.27 5.40 2.227 10/29/2000 10 5.80 5.96 2.235 2/25/1969 9 6.44 6.65 2.309 2/4/1958 8 7.25 7.53 2.488 9/23/1986 7 8.29 8.67 2.497 2/25/2003 6 9.67 10.21 3.025 1/4/1995 5 11.60 12.43 3.175 1/15/1979 4 14.50 15.89 3.525 1/4/1978 3 19.33 22.00 3.541 10/1/1983 2 29.00 35.75 3.911 4/14/2003 1 58.00 95.33 -... 11 .. .. .. .. .. - - - - - - List of Peak events and Determination of Q2 and Ql0 (Post-Development) BMW Carlsbad -POC 1 T Cunnane Weibull Period of Return (Vear) (cfs) (cfs) Peaks (cfs) (Years) 10 2.20 2.22 Date Posit Weibull Cunnane 9 2.10 2.14 0.233 1/14/1993 57 1.02 1.01 8 2.06 2.06 0.237 12/17/1987 56 1.04 1.03 7 1.97 2.01 0.237 10/29/2000 55 1.05 1.05 6 1.89 1.89 0.238 3/2/1983 54 1.07 1.07 5 1.59 1.59 0.238 10/12/1987 53 1.09 1.09 4 1.38 1.41 0.239 2/14/1954 52 1.12 1.11 3 1.06 1.07 0.242 1/6/1977 51 1.14 1.13 2 0.81 0.81 0.243 12/19/1967 50 1.16 1.15 0.243 2/18/2005 49 1.18 1.18 0.271 9/23/1986 48 1.21 1.20 Note: 0.359 4/1/1958 47 1.23 1.23 Cunnane is the preferred 0.372 10/20/2004 46 1.26 1.25 method by the HMP permit. 0.375 1/15/1993 45 1.29 1.28 0.376 1/11/2005 44 1.32 1.31 0.394 12/29/2004 43 1.35 1.34 0.426 1/27/1956 42 1.38 1.38 0.482 12/25/1983 41 1.41 1.41 0.483 1/18/1952 40 1.45 1.44 0.502 1/16/1952 39 1.49 1.48 0.503 2/18/1980 38 1.53 1.52 0.514 1/11/1980 37 1.57 1.56 0.562 1/18/1993 36 1.61 1.61 0.58 10/27/2004 35 1.66 1.65 0.617 1/22/1967 34 1.71 1.70 0.624 3/3/1983 33 1.76 1.75 0.637 1/25/1969 32 1.81 1.81 0.751 3/11/1995 31 1.87 1.87 0.759 11/22/1996 30 1.93 1.93 0.811 12/5/1966 29 2.00 2.00 0.814 1/20/1962 28 2.07 2.07 0.824 3/5/1995 27 2.15 2.15 0.866 11/30/2007 26 2.23 2.23 0.905 1/16/1993 25 2.32 2.33 0.947 1/9/2005 24 2.42 2.42 0.998 1/13/1997 23 2.52 2.53 1.033 2/23/2005 22 2.64 2.65 1.05 3/8/1968 21 2.76 2.78 1.054 1/15/1978 20 2.90 2.92 1.071 1/6/1979 19 3.05 3.08 1.1 2/15/1986 18 3.22 3.25 1.149 2/22/2008 17 3.41 3.45 1.299 3/1/1991 16 3.63 3.67 1.336 1/16/1978 15 3.87 3.92 1.494 2/23/1998 14 4.14 4.21 1.56 1/29/1980 13 4.46 4.54 1.588 11/22/1965 12 4.83 4.93 1.6 3/17/1982 11 5.27 5.40 1.885 2/20/1980 10 5.80 5.96 1.905 3/1/1978 9 6.44 6.65 2.056 2/25/1969 8 7.25 7.53 2.065 2/4/1958 7 8.29 8.67 2.217 2/25/2003 6 9.67 10.21 2.237 1/4/1978 5 11.60 12.43 2.606 10/1/1983 4 14.50 15.89 2.766 1/15/1979 3 19.33 22.00 3.323 1/4/1995 2 29.00 35.75 3.7 4/14/2003 1 58.00 95.33 - - - - - .... - - - 41 • - - - - - - ATTACHMENT 4 AREA VS ELEVATION The storage provided beneath the first surface outlet by the LID BMP is entered into the LID Module within SWMM -please refer to Attachment 7 for further information. The surface bio- filtration BMPs are bordered by vertical walls, as such the area is constant with depth. Similarly, the underground detention vault has a constant area as the depth increases due to it being a walled structure. DISCHARGE VS ELEVATION The orifices have been selected to maximize their size while still restricting flows to conform with the required 10% of the Q2 event flow as mandated in the Final Hydromodification Management Plan by Brown & Caldwell, dated March 2011. While REC acknowledges that these orifices are small, to increase the size of these outlets would impact the basin's ability to restrict flows beneath the HMP thresholds, thus preventing the BMP from conformance with HMP requirements. In order to further reduce the risk of blockage of the orifices, regular maintenance of the riser and orifices must be performed to ensure potential blockages are minimized. A detail of the orifice and riser structure is provided in Attachment 5 of this memorandum . The LID low flow orifice discharge relationship is addressed within the LID Module within SWMM -please refer to Attachment 7 for further information. - - - - - - - - - - - - - DISCHARGE EQUATIONS 1) Weir: Qw = Cw • L . H3f2 (1) 2) Slot: As an orifice: Q -B • h • c • ✓ 29 (H -hs) s-s s g 2 (2.a) As a weir: (2.b) For H > h, slot works as weir until orifice equation provides a smaller discharge. The elevation such that equation (2.a) = equation (2.b) is the elevation at which the behavior changes from weir to orifice. 3) Vertical Orifices As an orifice: Q0 = 0.25 • rrD2 • c9 • j29 ( H -~) (3.a) As a weir: Critical depth and geometric family of circular sector must be solved to determined Q as a function of H: Q5 A~r -=-; B Ter A ~----D2 er .J H = Yer+~; Ter = 2 YerCD -Yer); Aer = B [aer -sin(aer)]; er Yer = ~ [1 -sin(O.S • aer)J (3.b.l, 3.b.2, 3.b.3, 3.b.4 and 3.b.5) There is a value of H (approximately H = 110% D) from which orifices no longer work as weirs as critical depth is not possible at the entrance of the orifice. This value of H is obtained equaling the discharge using critical equations and equations (3.b). A mathematical model is prepared with the previous equations depending on the type o discharge. The following are the variables used above: Ow, Os, Oo = Discharge of weir, slot or orifice (cfs) Cw, Cg: Coefficients of discharge of weir (typically 3.1) and orifice {0.61 to 0.62) L, B,, D, h, : Length of weir, width of slot, diameter of orifice and height of slot, respectively; (ft) H: Level of water in the pond over the invert of slot, weir or orifice (ft) Acr, Tcr, ycr, acr: Critical variables for circular sector: area (sq-ft), top width (ft), critical depth (ft), and angle to the center, -respectively. - - - .. ,,; - - - - - - - - - - - - Outlet structure for Discharge of Underground Vault Discharge vs Elevation Table Low orifice: 1.125" Number: 1 Cg-low: 0.61 Middle orifice: 1 " number of orif: 0 Cg-middle: 0.62 invert elev: 0.25 ft Lower slot Invert: B h Upper slot Invert: B: h 0.00 ft 0.00 ft 0.000 ft 0.000 ft 0.00 ft 0.167 ft h H/D-low H/D-mid Qlow-orif Qlow-weir Qtot-low Qmid-orif (ft) --(dsl (dsl (cfs) (cfsl 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.250 2.667 0.000 0.015 0.019 0.Q15 0.000 0.500 5.333 3.000 0.023 0.202 0.023 0.000 0.750 8.000 6.000 0.028 0.283 0.028 0.000 1.000 10.667 9.000 0.033 0.330 0.033 0.000 1.250 13.333 12.000 0.037 0.371 0.037 0.000 1.500 16.000 15.000 0.041 0.407 0.041 0.000 1.750 18.667 18.000 0.044 0.441 0.044 0.000 2.000 21.333 21.000 0.047 0.472 0.047 0.000 2.250 24.000 24.000 0.050 0.502 0.050 0.000 2.500 26.667 27.000 0.053 0.529 0.053 0.000 2.750 29.333 30.000 0.056 0.556 0.056 0.000 3.000 32.000 33.000 0.058 0.581 0.058 0.000 3.250 34.667 36.000 0.060 0.605 0.060 0.000 3.500 37.333 39.000 0.063 0.628 0.063 0.000 3.750 40.000 42.000 0.065 0.650 0.065 0.000 4.000 42.667 45.000 0.067 0.672 0.067 0.000 4.250 45.333 48.000 0.069 0.693 0.069 0.000 4.500 48.000 51.000 0.071 0.713 0.071 0.000 4.750 50.667 54.000 0.073 0.733 0.073 0.000 5.000 53.333 57.000 0.075 0.752 0.075 0.000 5.250 56.000 60.000 0.077 0.771 0.077 0.000 5.500 58.667 63.000 0.079 0.789 0.079 0.000 5.750 61.333 66.000 0.081 0.807 0.081 0.000 6.000 64.000 69.000 0.082 0.824 0.082 0.000 6.250 66.667 72.000 0.084 0.842 0.084 0.000 6.500 69.333 75.000 0.086 0.858 0.086 0.000 6.750 72.000 78.000 0.087 0.875 0.087 0.000 7.000 74.667 81.000 0.089 0.891 0.089 0.000 7.208 76.885 83.496 0.090 0.904 0.090 0.000 7.500 80.000 87.000 0.092 0.923 0.092 0.000 7.750 82.667 90.000 0.094 0.938 0.094 0.000 8.000 85.333 93.000 0.095 0.953 0.095 0.000 Emergency Weir Invert: 7.208 ft B: 5 ft Qmid-weir Qtot-med Qslot-low Qslot-upp Qemer Qtot (dsl (cfs) (cfs) (cfs) (cfs) (cfs) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.Q15 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.000 0.000 0.000 0.033 0.000 0.000 0.000 0.000 0.000 0.037 0.000 0.000 0.000 0.000 0.000 0.041 0.000 0.000 0.000 0.000 0.000 0.044 0.000 0.000 0.000 0.000 0.000 0.047 0.000 0.000 0.000 0.000 0.000 0.050 0.000 0.000 0.000 0.000 0.000 0.053 0.000 0.000 0.000 0.000 0.000 0.056 0.000 0.000 0.000 0.000 0.000 0.058 0.000 0.000 0.000 0.000 0.000 0.060 0.000 0.000 0.000 0.000 0.000 0.063 0.000 0.000 0.000 0.000 0.000 0.065 0.000 0.000 0.000 0.000 0.000 0.067 0.000 0.000 0.000 0.000 0.000 0.069 0.000 0.000 0.000 0.000 0.000 0.071 0.000 0.000 0.000 0.000 0.000 0.073 0.000 0.000 0.000 0.000 0.000 0.D75 0.000 0.000 0.000 0.000 0.000 0.077 0.000 0.000 0.000 0.000 0.000 0.079 0.000 0.000 0.000 0.000 0.000 0.081 0.000 0.000 0.000 0.000 0.000 0.082 0.000 0.000 0.000 0.000 0.000 0.084 0.000 0.000 0.000 0.000 0.000 0.086 0.000 0.000 0.000 0.000 0.000 0.087 0.000 0.000 0.000 0.000 0.000 0.089 0.000 0.000 0.000 0.000 0.000 0.090 0.000 0.000 0.000 0.000 2.442 2.534 0.000 0.000 0.000 0.000 6.180 6.273 0.000 0.000 0.000 0.000 10.919 11.014 -.. ... ... .. ... .. ... ... ... - - - - - - ATTACHMENT 5 Pre & Post-Developed Maps, Project Plan and Detention Section Sketches f 1 BROWN AIID CALDWELL lTHE 4.E'•l l l'll 1 BEST IMAGE POSSIBLE \ --- \ --- -- ------. ENTIRE SITE ULTIMATELY DISCHARGES TO Cll"Y'S SD SYSTEM -Poe ------~-...,.--._;;-:-....- / / / / / _1:,1o-// / / / / / __ ,.,,., / / / / / / -/ / / / / r,/ / q,v / I / ; I I f I I I I I I / / 7: / I f/eo 1 111 1 cs ; I I I I / / I I / : / / I I I I I J t I ' ' -I ·s ••• -~- 11 ,o ---~---sa --- cs ---c:s --- DMA-1C t STRUCTURAL BMP-5: PROPRIETARY BIOFILTRATION (BF-3) FOR ROOF RUNOFF POLLUTANT CONTROL ROOF DRAIN TO BMP-5 PROPOSED ROOF DOWN DRAIN LOCATION, CONNECTS TO BMP-5 STRUCTURAL BMP-6: UNDERGROUND DETENTION VAULT FOR HYDROMODIFICATION MANAGEMENT t ROOF DRAIN TO BMP-5 \ " . t " • - ,·;·!; / \) I ST~UCTURAL BMP-4 BIOFILTRATION (BF-1) FOR POLLUTANT CONTROL AND HYDROMODIFICATION MANAGEMENT \ I ------------'"', --.--=----AUTO CENTER CT -~------------------- ~-:.17 " STRUCTURAL BMP-6: UNDERGROUND DETENTION VAULT FOR HYDROMODIFICATION MANAGEMENT " I / I I '\ '-._ " 103 ' ' ' ' \ I I I I I I I 1.5 \ I I \ I " I ; \ !..,/ ti.' I " :::s STRUCTURAL BMP-2: BIOFILTRA.TION \IV/ PARTIAL RETENTION (PR-1 ) FOR POLLUTANT CONTROL AND HYDROMODIFICATION MANAGEMENT "_/ I . .,A"~ ' ~'\ I I I -\/ --/ / / ) \ DMA-1A I I I I I I I I {... I I \ \ \ I I I I I I I I I I \ I \ I I 511 I t I ~ ~ I s I 8 I j / I I I \ I \ I \ I I \ I I I I I I I I I I I I LEGEND: ASPHALT (IMPERVIOUS) ----PROPER1Y LINE I . , .1 CONCRETE (IMPERVIOUS) SURFACE FLOW DIRECTION I I I I I I I 11 PERMEABLE PAVERS -so -PROPOSED STORM DRAIN SYSTEM LANDSCAPE (DMA-#) DMAID ROOF AREA 0 OMA SUB-AREA ID MAJOR OMA BOUNDARY ---cD--PROPOSED CONTOUR ----SUB-OMA BOUNDARY .;:.--EXISTING CONTOUR I™ BIOFILTRATION BASIN V////,,;;I UNDERGROUND DETENTION VAULT W/ PARTIAL RETENTION [~rrgr:gu PROPRIETARY BIOFILTRATION DEVICE l e·· >I BIOFILTRATION BASIN GEOTECHN ICAL IN FO : • HYDROLOGIC SOIL GROUP: B • INFILTRATION: 0.041 IN/HR • SOIL EXPANSIVE POTENTIAL VERY LOW • DEPTH TO GROUNDWATER: >50' CCSYA ANALYSIS: NO CRITICAL COURSE SEDIMENT YIELD AREAS TO BE PROTECTED BASED ON WMAA MAPS. BMP DETAILS SEE LID BMP DETAILS IN ATTACHMENT 1E OF SWOMP OMA SUMMARY: SEE ATTACHMENT 1 B OF SWOMP 20 0 20 GRAPHIC SCALE SCALE: 1"= 20' 40 C C E ~ u 2 <C I m co §l n 0 " " " 0 u I "' ::a m, C 0 0 z 0 ---------------------------------..----------------------1"1 PREPARED FOR : AUTONATION INC. 200 SW 1 ST STREET, 14TH FLOOR FORT LAUDERDALE , FL 33301 CONTACT: CLIFF POWELL TEL: (954) 769-6000 PREPARED BY: Tod ay's Ideas. Tomorrow's Rea lity, Commercial Development Resources 412< Wester~, Place #11 2 Newport Beacn CA 92660 T 9,!.9-640-8997 www CDRwest com DMAEXHIBIT I + u "' o; a. ~ ..... ----------------------1~' BMW OF CARLSBAD 1060 AUTO CENTER COURT CARLSBAD, CA 92008 ~ '° -"' 0 N I I s. § ;,-40 SC'.i..£ "' ·' • ~ l;,W SCA!.£ " ' '- -t 6 ·' " - " ' '- -- ~ ' ; ' .. .t ..,.. ! •~ Si.OTT@ 1-!0l.£ FOR \ I/SE WiTI{ f, EXPANSION \ M'CHORS/Nllf'S,h/ltSHERS \ I BOLT HOLE DETA IL j ' i .J .. ' . , ~ r-----ci:,' .-- -.q;y • ',-, . m-.. ·,: ~~ • CJ ~ ' ''' ' ''' ; : I : ''' ''' ''' '' , ' . . ,, ,L_ .. -? ~-.... ' -------~ I TOP VIEW -------- r·----' ' ,..----7 ' . ' c::b~--.. I I : q::i • 'J ' Ff> <? ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ~:, <? ' ' • ' ci, ~"' '<p ' ' • I' __ .,, ' ' ' ' ,_ ___ .J - ,.I,_, '1SWB I , . 4'-3"-/'-9" ,·-o· TOP VIEW ., C ~ lltlS PI/IJWG1 ,,,,, 1£ PlirJTU:T[l] 11T r,,t:r,#//IOil£1JT ll£rol/.OIIM U!; /WD,r;;; :t:~r-"'1m1: m,,i,.,,..-111. liRAllil "'103< l".,?},'l:l (),!(1110/f'AJOr.S l'O(JN; I ~ C ' ' ~ .'? .? ' " ~ J ., ' "- /H/5""1Di.Cl ~t/ifiM/CDl!r //ICOIIVJil!"Of'IICm.Jl)ffi';Q:'; ;!OJ!)llS: ID.l~!AJ 12 It 1a.::;1.DKlll. l!i'L<llDfU/fD/ Mf.7o1S (,R @a i't4llMS F'fJONC . e • ·' ' J 6 ~ ·' ' I .. J -. t i-_ ----------- I-----s·-o··-----" EXTERIOR VIEW (4) S.."f BOLT HO!.£ OUAJL l__ , cI :■==-~~=:-=:_.~;:. ===::; .• c:.;~:§::.=::■::0,I __ ~~,., a. I i-----a·-o·-----j, TOP VIEW ~ ~=--i-·¼--¼~-~ (~)SEE80U I HOLE Df:TAfl I I I I I I I ~-I ~~ I I~ : 1 ! ~ I I I I I I I r------------_j -- >-----e·-1·----- EXTERIOR VIEW ~· 7"-----, TOP VIEW PR0PR£TAJ?'f' A'IC COIIF/0&,'PAL: ,?£ ~ CDf(7l,N(1) Pl r1C1 (>Xl.lll[}lr IS 11£ set£ fmPOifT er,_ -rr. a:uw.ia: 1111.': ~ .,,,_,,,,_,_MIT!ICl.:lrn,IIY'l10aCEDC1ilut'Dr.f!J .. ;.,rr -,,,r,, (JIii 11£ .mo, aJNZM Cf'~ Bio ~Clean URBANPOND PRECAST CONCRETE STORMWATER DETENTION DOUBLE MODULE -EXTERIOR WALL PANEL =, µ ~ ,· -4·-10·-i ~ . " I 8'-o" ELEVATION VIEWA PRGP1?1[1/l/<Y AND CONFIOOfflAL• IJC -co,rJll€i) I{ r,1//; IX!CMl,T IS r:c S:U /JKPt](l'/CY"ramJRJ.,W!flS~ N(;~ IOtMT""'1/lODY. ...,.!!Cil'i>D. /t(JWIIIQ;;}(III~ II --MIii (JJf' 7IC Mlr.Clf a:,,so,r (}F ~ [ --~-~ ::::: -~;.:;-- t-1----,·-,·----, ELEVATION VIEW A I ,· 1------0'-a''----, ELEVATION VIEW B ¾° CHM/FER (TYP) I ' ' ' iu-' ELEVATION VIEW C URBANPOND I PRECAST CONCRETE STORM WATER DETENTION DOUBLE M ODULE -INTERIOR 7 -f i' CIIA1'ffP (m') ,-----s·-r·------, ELEVATION VIEW B r-f-1-------1-:- -- r;-_t--------it-;- ELEVATION VIEW C PROPR/£T/Jrl 1110 COl'iAlJDITIAL: II,£ -tDmtH;J II /Ill.': fJCC.AO.T IS 11C 5aI -,r OT fCRTUJIJ ...., 13 ~ r,11'/ trc.lllD,T, !fr,#/N<'f/llltl' n-. AWl!Cu:'im ~ OR /liJORii N NIY MMC/ rm, wr l>< -,rrtJ, ca,QJ/1 Of ~ Bio ~Clean URBA NPON D PRECAST CONCRETE STORM WATER DETENTION DOUBLE MODULE · PERIMETER ·-- -------·----.-:':\.:----• f'IIIISll{D $NACE~------- C(Jl,/('JCTW $/J8-~ ' ------------------------------------------------------------------------------------------________________________________________ -----------------------------______________________ ------_________________ -----------______________________________ _ -------------------------------------------., \ I )-1 1---~r-m EXTERIOR INTERIOR ~ I I VIEW V/£W p I" 1k I li£.~' g sm1 l===i I I-,;;;;:,, 11 : >-Ill """" ,-1 "'1n~,ILL! ,1' ~lili! ff,""'1,-:L-11 1 -,"", ,==1::::1 l:C-=-11-111 -J=LII-,~-, ,·.1,-,-1,1-111-'-,,-11-,-111-,,-11-,:i~-L.-.,1:1-1,-,-111-=~,11,-.--,1 1-½-1-,ul 1L-I_I 1-J-I--' I ,--,1 ,~ ,·"-~ ·, l_jl -=1-,i'1-=1.1.1 IL =-11-111-'-_-'-,-1,·1-11,-t,.1:1-ll.1._.,-I-I I!-., -:I L. 1:-111-1 _uL..L=l_.1 ,"" I I 11 i' INSTALlATION NOTES \ntTO? rABmC,'}JNfR ~rl()N FOR == (~,rr.; Af/D /fiS.""'-!£D f!f ~ SE£ 11($~ NO'ff 1 1. CO/'fTRACTOR TO PRCWJE At.1 I..ABfJR, £0'.IIPUE/VT, IJ..'.JEl?W..S MO /f/CiDENTALS R£0UiR[!J TO omo.w AN!) 11.'STAJJ. TH[ SYSTtM All[) APPURITTIAA'C[S IN ACCOROANCC :+ITH Tl-ifS DRAW/NC AND THE wt,'UFACTUR'.R'S SP[CIACATIONS, IJNJ.£S5 OT/i'EPWJS[ SWIT! Ill iJJ,NUf'ACTIJR[P'S CO.I/TRACT. 2. VNrr !JUST 8£ INSTAll.tD ON LM!. 8ASl. MANUFACTUR[R RECOJ./MENDS A POURE:n IN Pl.ACE CONCR£Jr BAS£ SUB IJNl.£5S SPWFilO S'f 'f'Hf PROJ[CT ENCINEER. CONTRACTOR IS RESPONSJBI.E FOR VfR!rrlNC PRO.JfCT [NC!N([l?'S RECOIJMENlJf!J BASf SPEC/Fr..AT/0/.15. J. All PIPES MUST BE r7_1/SH WITH INS/OE SURFACE or CONCREJ£. (PIPES CAJl/o/07 11/TT?UOE BCYONO Fl/ISi-/,) WV[Jff or oum.o-,,, PIPE NI/ST BE nUSH WffH DISCHARGE CHMIBD? Fl..00!?. All ~PS AFtOUA'O P'.PES 51-W..L 8£ SfAL,;,'T! WATERf/CHT 'NfTH A !-.'0/J-SHR/NK GROW' i'fR MAMJFAC11.JR£R'S STA,VCARO CONNECnON DITA'! AND SXIJ.L MfIT OR IXCEED REC.'OIIAl PIP£ CONNECnON STM'DARDS. ~-CCNiPACTOR TO SUPPLY ANO /IISTALl AL1 EXll:RNAL CONN[C11NC P!PfS. 5. CTPTP.,1.CTOR RESPONS!S/..£ FOR INST~TION OF A1.1. RISERS, IMNHOL[ FRAMES A'JlJ CCl-fRS. CONTRACTOR TO GROlff ALL FRAJ.1£5 AND COVERS iO MATCH r7N/5H£1) SURFACE IJl','l£SS SPE.CIF:ED OTH€RW!S£. 6. THE: URBANPONlJ UODiJI..E SYST[/,/ IS TO SE INSTALlEO IN ACCORCN(C[ WITH ASfll C~l-90, INSTALU.7/0f_. Of Ut,'/J[RGR()UNO PR[CAST UTIU!Y STRUCTURES PROJ£Cf Pl.AN AND SPECIF!CATX)NS U~'SI 8£ FOLLOWED ALONG wrrH ANY APPUCABI.[ !ft.GUI..AT!l]r,'S. l. DfSIGNATEO £M8ECD[D UFTERS UUST 8£ USfl). USE PROPfR RICCINC ro .tSSURE All. LJFTERS ME EOUAJ..Lr ~C[O ~n"H A AJ/NJJ./1,'IJ 50 OECRff AMC/.£ GI.' SU,ll(;S AS NOiEI) AND IN ACCOR!WJCf lfr.1-f UANIIFAcruRER'S Uti /NG PRCC£0U,'?ES. 8. uaouu:; MUST Bf PU.CED A5 CLOS[ TOCITH[R AS POSSIBLE, A/10 ws Si-V,LJ. NOT BE Gf?[AT[H THAN 1/.f'. Ai.L 00£R10rr StST[M JOINTS 9-W..l 8£ COVERm '(,7:H A J.JJN. 8" JOINT liP./.P (ON SliJES ANO TOP). 9. THt Fill rocm M:0/JNO TH£ !JRBANPQNO JAOOULES IJUS{ BE [)[f'OSITEO FIW.r. AT APPROXi'/JATELY THE SIJI[ EL'VAnON, AROUND All. 5/0[S. AT NO 771./E SHALL rm .. 4.0' 15" DIA. VC OUTLET 4.0' CONCRET WEIR WALL ORIFICE PLATE ELEVATION VIEW NTS rill BEHIND ON[ S/0£ Bf MOR£ TrlAA' t'-0" HrCHER 1HAli rH[ Fill ON THE OPPOSflE 5/{)[. BACKRU S1--W.L 8£ CO!.!PACT[[) IWD/OR VliJRA7£0 TO '761.JR[ THAT BA';KF/Ll JJA'lfRIAL JS II/EU SO.'TElJ AND PROff:RLY INTr:RlOCK[[) CAR£ SH4Ll Bt. TMEN re, PRE'/£,Vf ANY W'f:OGINC ACTION !,C,!JNSJ THE 5'Rl'Cil/R£, AND All. SLOPES w:71-1/N TH£ ARE4 TC 8£ BACJ<fll.i.ll) MUST SE STEPP[{} OR S['<RATElJ TO ,ORl','ENT W£DGING ACTION. CARE SH/.LJ. N..SO BE 7Nf.£N SO AS NO{ T~ DISRUPT /;{[ JC/NT ~p moM 7H[ JO//'{[ 0/Jfi/NG THE BACl<All PROCESS. BACKAU /JAl[li/AJ. /JUST 8£ Ci.IAN, CRUSHED, ANGl..'/M ND. S (MS/;70 llfJ) NJCRECATE CR NAri'.'£ MArr.;"..i.l tr APPROVF:D Br 7H£ S,7£ CEO'TFCHN/r;A!_ [NGiN[[R. IF NATrv'E IIATER14l IS SUSCt.Pnet.£ 70 1.1/CR!WOII, CONFIRM WITH C£0T[C1-!N!CA!, ENC/NffR AND PROV/OE PROTECTl()t.' AS REOtJ/Rm. 10. TH[ F1.lL P/AC[D ON ,?{[ SYSTEJJ S.'WJ. B[ Pi.AC::[) M J1 JJWIMU/1 or 5• LIF15. Ar ND TIME SHAll. /IA,:,J;t.V£Rr OR Vf"HIC'..ES CR&ff& ~ iH[ DESIG.'J HS-20 lOAD,'NC CRl7ERIJ1 m.1\.fl ON roP or rm S'ISilM Wl/WIJT lH[' 1,/{/'l!J.IUM 0£SiGN CQVERI,(;£. If iRJ..','fl IS N[CfSSARY OV[R TH[ srsrru PRJOR iO ACH/£V/NC TH£ t.llNI/JUII DESIGN CO.-fR. fl At4r SE N[CE7.K?Y 70 REC/JC£ TrlE UL7714AT£ LOAIJ/BUROEN Of iHt O?=RAnt.C MACH/N[RI' SO AS NCT 10 £XC££D TH£ CAP/JCl1Y OF 7H[ SmrM. IN SOM[ CtSfS, IN OR".£R rr; J1CH!21[ REOVIR[O CGJIPACnoN, HANO COUPAC710N MAY 8£ lo'[CESSARY IN CRO[R ro NOT fXCE£l) TH£ A11017!D DESICN L~NG. TJ. A PRE-CONS'JRU{;nDN MUTING rs R[OU!R[l) PRIOR TO P/..ACE/,l[NT or I.JRBANPONO. GENERAL NOTES T. IJANUFJ.Cj/jRfR TO PROVIDF All IIATEPIAI_S UNL£SS ONRMSF /olOT'ED. 2. All O!MEN5f0.VS, E'...IVJ17/0NS, S?ffJf/CAl/ONS ANO CN'ACITl£S AR[ SIJBJ[CT ro CHANG£. FOR ?!<OJECT SPECIFIC !)f?AMIIGS OITI.JUNC EXACT OIUEJiSIONS, WfJCHTS AND ACCESSORIES PWSE CONlACT UVJIJFACTURER. J. ANY VN?/AOON FOUND O'JR/NG CONSTRUCTKJN FROM iH[ Sil[ AN{) SYSTEM .4.\/AlYSiS M!JST BE REPORT'ED TD THE P/?CllfCT OESl(;N [N';INEER, PP.OPf/1':;rlJ'Y ,W, CW/O!h'iW.· ,,..,,,__..,,,.,x,,,;,,c~" ~11'""'"~'6 /'f" >ttf"""'-"''"' ..,=-~!'t"'CtSH:.,.,.,,..,_-rnr,11,.,-;,r7 ki•O!IIJU:.,1"""'"1:~ll!a ~?"ll<!c;;,M -.:o,,,,ng,;"""""1UJ, Bio~Clean A Fortemi Company 9.5" we:r so"" ~. L~-•_ L_·:~~~~:-•~~-,<~7-~:_-_-_-_-_-T' ____ a~~:~ 7'-2.5" t 12' DIA. PVC INLET PIPES FROM ONSITE DETENTION VAULTS A OU TLET ST RU CTU RE WEIR DETAIL (NTS) .~////-~/,• METAL PLATE GREATER ,////,~ ~T'ceH-cAccN76"'""'D°'IAc-. "'o',iP,e'EN,;,l'"N"'G-+~~,@ ,:;;~"'½03--~6," ,;;PV;-;Cy';,Pl"'P"'E icE'rMcBf-:ED~DTE~D ~-IN 4" CONCRETE WALL ~- 1.125"DIA. ORIFICE THRU PLATE FLOW CONTRO L ORIFICE PLATE DETAIL (NTS) DETE NTION SYSTE M DE TAIL S SrrPFrn Oil SEHiWlJJ NiJ_j "'"""'""" -('i[E 8.'0(F/1.1. /{f)/E /) URBANPOND PRECAST CONCRETE STORMWATER DETENTION STANDARD DETAILS .A .t,,a . OVERFLOW WEIR " ,,,, 6" PVC PIPE EMBEDDED IN CONCRETE . 566' 5.0' •• ' METAL PLATE ON OUTLET SIDE OF WEIR " 1 125" ORIFICE ON METAL PLATE OUTLET BOXINV A BMP-3 /1fisfR BMP-4 RISER BMP-1 RISER BMP-1 NOTE: FRENCH DRAIN ENTERS RISER AT ONLY 1 (ONE) SIDE. BM P-4 HORI NTA 4" FRENCH ORA!N . " ... ·" •. • ,., ·:::-::.) . ' BMP-2 HORIZONTAL 4' FRENCH DRAIN HORIZONTAL 4" FRENCH DRAIN co FRENCH DRAIN & BMP RI SER LOCATION DETAIL (N.T.S.) Vti.RIES PER PLAN R AINING RETAINING WALL \ WALL NOTES 3'x3' RISER -'(2,;."";,-,;, INaiTi\Eei,,f.Nl,,AL:c/'il YJ""----- -SZ - - - - --FD±=9--sz - --,-. .,... ~ (""">",...-..;_ I cl OUTI FT PIPE .a I FRENCH DRAIN NOT SHOWN I 4" FREEBOARD 6"PONDING 3" MULCH 16" AMENDED SOIL 3" SAND 3" PEA GRAVEL (a) GR.O.VEL (a): 7' GRAVEL LAYER FD:=! BMP-1 & BM?-2: 6" GRAVEL LAYER FOR 8MP-3 & BMP-4. BASIN CROSS-SECTION (TYP.) (NTS.j GR~VELl FILTER ' NOTES· a RIS A \\1ALL FLOW CONTROL ORIFICE PLATE -~ (d) PLATE '\~ ~} GRAVEL (b): 2" FOR BMP-1 & S!V.P-2: 1" FOR BMP.3 & B\1P-4. (dJ: ¼" FOR BMP-1 ¾" FOR BMP-2. ¾" FOR BMP-3. AND¾' FOR BMP-4 AM N SOIL NOTES: LID ORIFICE DETAIL (N.T.S.) GEOTEXTILE LINER. SEE NOTE (c;, [b): 2" FOR BMP-1 & 8MP-2: 1" FOR BMP-3 & BMP-4. (c): PERMEABLE LINER FOR BMP-1 & BMP-2: IMPERMEABLE LINEA F0.9 BMP-3 & BMP-4 PLACE MENT OF FRENCH DRAIN (F.D.) DETAI L (N.T.S) a"PV SCREW CAP 'r FINISH 9" GAADE _,(. % :''00 zV?,, MULCH 4" PV P RF RAT RAIN CONNECT PIPE T :.AM CLEANOUT OR TO SQUARE RIS:.R F.D. CLEAN OUT (C .O.) DETAI L jN.T.S.) ,l· 0 ' FRFNCH TOP DRAIN "' -GRATE ~ ~~ ~,, ~!,, > . OAlfll"'::C V PLA 1:. 0 " - • I',.. OUTFALL PIPE LOCATION PER PLAN ~ RISER OUTLET DETAIL (N.T.S.j HOT-DIP GALVANIZED PL.P.TE GREATER THAN F.D. W/ DRILLED HOLE NOTES: 4"PV FRENCH DRAIN 1 .0.) INVERT (d): ¼" FOR BMP-1. ¾' FOrl BMP-2. ¾" FOR BMP-3. ¾" FOR BMP-4 FLOW CO NTROL ORIFICE PLATE DETAI L jN.T.S) BASIN DE TAILS SHEET 02 OF 02 ., I "' ,n 0 ,n Q. :> )i' m ., u u 0 -" a T ~I ::; ""1 C ,Q 0 z 2 r----------------------------------.,..----------------------tJ I PREPARED FO R: AUTONATION INC . 200 SW 1 ST STREET, 14TH FLOO R FORT LAUDERDALE, FL 33301 CONTACT CLIFF POWELL TEL: (954) 769-6000 PREPARED BY: Today's Ideas. To morrow's Reality Commercial Development Resources 4121 Wes:erly Plzice #1 12 Newport Beach CA 92660 T 949-640-8997 W#W.CDRwcst com BMPDETAILS + C :€ "-" 1----------------------------t"'' BMW OF CAR LSBAD 1060 AU TO CE NTER CO URT CARLSBAD , CA 92008 ,n 0 ,n vi - ATTACHMENT 6 .. SWMM Input Data in Input Format (Existing & Proposed Models) ... .. ... "" -... .. ... .. .. .. - "' - -.. • 41 ... .. PRE_DEV ... [TITLE) [OPTIONS] .. FLOW UNITS CFS INFILTRATION GREEN AMPT ... FLOW ROUTING KINWAVE START DATE 10/01/1951 .. START TIME 00:00:00 REPORT START DATE 10/01/1951 REPORT START TIME 00:00:00 .. END DATE 09/30/2008 END TIME 23:00:00 .. SWEEP START 01/01 SWEEP END 12/31 .. DRY DAYS 0 REPORT STEP 01:00:00 WET STEP 00:15:00 DRY STEP 04:00:00 ROUTING STEP 0:01:00 ALLOW PONDING NO INERTIAL DAMPING PARTIAL • VARIABLE STEP 0.75 LENGTHENING STEP 0 .. MIN SURFAREA 0 NORMAL FLOW LIMITED BOTH SKIP STEADY STATE NO --• FORCE_MAIN_EQUATION H-W LINK OFFSETS DEPTH MIN SLOPE 0 [EVAPORATION] ;;Type Parameters ··--------------------,, .. MONTHLY 0.03 0.05 0.08 0.11 0.13 0.15 0.15 0.13 DRY ONLY NO .. [ RAIN GAGES] .. , , Rain Time Snow Data ; ;Name Type Intrvl Catch Source ,,---------------------------------.. Oceanside INTENSITY 1:00 1.0 TIMESERIES Oceanside • [SUBCATCHMENTSJ - .. .. ... 111 • .. .. .. ; ;Name ,,-------------- DMA-A [SUBAREAS] ;;Subcatchment ,,-------------- DMA-A [ INFILTRATION) ;;Subcatchrnent DMA-A [OUTFALLS] ;; ; ;Name ,,-------------- POC-1 [TIMESERIES] ; ;Name ,,-------------- Oceanside [REPORT] INPUT NO Raingage Outlet Total Area Oceanside POC-1 3. 71 N-Imperv N-Perv S-Imperv S-Perv 0.012 0.05 0.05 0.1 Suction HydCon IMDmax 3 0.15 0.31 Invert Outfall Stage/Table Tide Elev. Type Time Series Gate ------------------------------------ 0 FREE NO Date Time Value FILE "OsideRain.prn" Pent. Imperv -------- 0 PctZero 25 0 .11 0.08 0.04 0.02 Pent. Curb Snow Width Slope Length Pack ---------------- ---------------- 979 3 0 RouteTo PctRouted OUTLET • .. .. - - -.. .. .. -.. .. .. ... .. .. .. .. .. .. .. • .. • ... - CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS -8510.915 4908.181 -8482.307 8731.478 Units None [COORDINATES] ; ;Node ··--------------'' POC-1 [VERTICES] ; ;Link X-Coord Y-Coord -8483.607 5081.967 X-Coord Y-Coord ··--------------------------------------------------'' [Polygons] ;;Subcatchment ··--------------'' DMA-A [SYMBOLS] ; ;Gage ,,-------------- Oceanside X-Coord Y-Coord -8483.607 6622.951 X-Coord Y-Coord -8489.868 7908.829 PRE_DEV .. ., [TITLE] .. .. - • .. .. -.. .. ... - .. .. .. .. [OPTIONS] FLOW UNITS INFILTRATION FLOW ROUTING START DATE START TIME REPORT START DATE --REPORT START TIME END DATE END TIME SWEEP START SWEEP END DRY DAYS REPORT STEP WET STEP DRY STEP ROUTING STEP ALLOW PONDING INERTIAL DAMPING VARIABLE STEP LENGTHENING STEP MIN SURFAREA CFS GREEN AMPT KINWAVE 10/01/1951 00:00:00 10/01/1951 00:00:00 09/30/2008 23:00:00 01/01 12/31 0 01:00:00 00:15:00 04:00:00 0:01:00 NO PARTIAL 0.75 0 0 NORMAL FLOW LIMITED BOTH SKIP STEADY STATE NO --FORCE_MAIN_EQUATION H-W LINK OFFSETS DEPTH MIN SLOPE 0 [EVAPORATION] ;;Type Parameters MONTHLY DRY ONLY [RAINGAGES] , , ; ;Name 0.03 NO ··-------------- Oceanside [ S UBCATCHMENT S] , , ; ;Name 0.05 Rain Type --------- INTENSITY Raingage 0.08 Time Intrvl 1:00 ··------------------------------, , DMA-lD Oceanside DMA-2A(SM) Oceanside BR-3 Oceanside DMA-lB Oceanside DMA-lC Oceanside BR-2 Oceanside BR-1 Oceanside BR-4 Oceanside DMA-lB(Pavers) Oceanside DMA-lD(Pavers) Oceanside DMA-lE Oceanside DMA-lA+Pavers Oceanside [SUBAREAS] ;;Subcatchment N-Imperv N-Perv POST_DEV 0 .11 0.13 0.15 0.15 0.13 0 .11 0.08 0.04 0.02 Snow Data Catch Source ---------- 1.0 TIME SERIES Oceanside Total Pent. Pent. Curb Outlet Area Imperv Width Slope Length ------------------------ -------------------------------- BR-3 0.341 96. 62 52 1 0 POC-1 0.294 6.73 128 1 0 Vault 0.01279 0 10 0 0 BR-2 0.325 61.22 71 1 0 BR-4 0.506 92. 52 78 1 0 Vault 0.00817 0 10 0 0 Vault 0.01843 0 10 0 0 Vault 0.009986 0 10 0 0 BR-2 0.089 0 77 1 0 BR-3 0.053 0 46 1 0 VAULT 1.325 100 124 1 0 BR-1 0. 726 61. 23 86 1 0 S-Imperv S-Perv PctZero RouteTo PctRouted ··------------------------ ------------------------------------------------------------ DMA-lD 0.012 0.05 0.05 0.1 25 OUTLET .. DMA-2A(SM) 0.012 0.05 0.05 0.1 25 OUTLET BR-3 0.012 0.05 0.05 0.1 25 OUTLET • DMA-lB 0.012 0.05 0.05 0.1 25 OUTLET DMA-lC 0.012 0.05 0.05 0.1 25 OUTLET BR-2 0.012 0.05 0.05 0.1 25 OUTLET .. BR-1 0.012 0.05 0.05 0.1 25 OUTLET BR-4 0.012 0.05 0.05 0.1 25 OUTLET DMA-lB(Pavers) 0.012 0.05 0.05 2.4 25 PERVIOUS 100 - -.. Snow Pack -------- ... DMA-lD(Pavers) DMA-lE DMA-lA+Pavers [ INFILTRATION) ;;Subcatchment ··---------------DMA-lD DMA-2A(SM) .. BR-3 DMA-lB DMA-lC -BR-2 BR-1 BR-4 DMA-lB(Pavers) DMA-lD(Pavers) -DMA-lE DMA-lA+Pavers [LID_ CONTROLS) -;; ··--------------... BR-1 BR-1 BR-1 -BR-1 BR-1 .. BR-2 BR-2 .. BR-2 BR-2 BR-2 411 BR-3 BR-3 .. BR-3 BR-3 BR-3 -BR-4 ... BR-4 BR-4 -BR-4 BR-4 ... [LID USAGE] -;;Subcatchment ··-------------- BR-3 11 BR-2 BR-1 BR-4 -[OUTFALLS] . , , • .. "' .. ; ; Name ··--------------,, POC-1 [STORAGE] ; ;Name Parameters VAULT [OUTLETS] POST_ DEV 0.012 0.05 0.05 2.4 25 0.012 0.05 0.05 0.1 25 0.012 0.05 0.05 2.4 25 Suction HydCon IMDmax -------------------- ---------- 3 0.15 0.31 3 0.15 0.31 3 0.15 0.31 3 0.15 0.31 3 0.15 0.31 3 0.15 0.31 3 0.15 0.31 3 0.15 0.31 3 0.15 0.31 3 0.15 0.31 3 0.15 0.31 3 0.15 0.31 Type/Layer Parameters -------------------- BC SURFACE 7.2 0.00 0.0 0.0 SOIL 18 0.4 0.2 0.1 STORAGE 13 0.67 0.041 0 DRAIN 0.3175 0.5 4 6 BC SURFACE 7.2 0.00 0 0 SOIL 18 0.4 0.2 0.1 STORAGE 13 0.67 0.041 0 DRAIN o:4261 0.5 4 6 BC SURFACE 7.2 0.00 0.0 0.0 SOIL 18 0.4 0.2 0.1 STORAGE 12 0. 67 0 0 DRAIN 0.3362 0.5 3 6 BC SURFACE 7.2 0.00 0.0 0.0 SOIL 18 0.4 0.2 0.1 STORAGE 12 0.67 0 0 DRAIN 0.4306 0.5 3 6 LID Process Number Area Width ------------------------------------------- BR-3 1 557 0 BR-2 1 356 0 BR-1 1 803 0 BR-4 1 435 0 Invert Outfall Stage/Table Elev. Type Time Series ------------------------------------ 0 Invert Elev. 0 FREE Max. Depth 8 Init. Depth 0 Storage curve TABULAR Tide Gate NO Curve Params UBASIN PERVIOUS 100 OUTLET PERVIOUS 100 5 5 5 1. 5 5 5 5 1. 5 5 5 5 1.5 5 5 5 1.5 InitSatur Fromimprv ToPerv ---------- 0 0 0 0 ---------- - - - - - - - - - - 100 100 100 100 0 0 0 0 Ponded Area 0 Evap. Frac. 0 Inlet Outlet Outflow Outlet Qcoeff/ Report File ----------- Infiltration Flap - .. .. .. - .. 41 .. .. .. .. • .. "' .. .. .. .. .. .. .. .. ; ; Name OUTLET [CURVES] ; ;Name ··--------------, , OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET UBASIN UBASIN [TIMESERIES] ; ;Name Node VAULT Type ---------- Rating Storage Date Node POC-1 X-Value ---------- 0.000 0.250 0.500 0.750 1. 000 1.250 1. 500 1.750 2.000 2.250 2.500 2.750 3.000 3 .250 3.500 3.750 4.000 4.250 4.500 4.750 5.000 5.250 5.500 5.750 6.000 6.250 6.500 6.750 7.000 7.250 7.500 7.750 8.000 0 8 Time Y-Value ---------- 0.000 0.015 0.023 0.028 0.033 0.037 0.041 0.044 0.047 0.050 0.053 0.056 0.058 0.060 0.063 0.065 0.067 0.069 0.071 0.073 0.075 0.077 0.079 0.081 0.082 0.084 0.086 0.087 0.089 0.090 2.534 6.273 11.014 1305 1305 Value ··----------------------------------,, Oceanside [REPORT] INPUT CONTROLS NO NO SUBCATCHMENTS ALL NODES ALL LINKS ALL [TAGS] [MAP] FILE "OsideRain.prn" DIMENSIONS -11502.645 3423.967 -5798.942 8802.155 Units None [COORDINATES] ; ;Node POC-1 VAULT [VERTICES] ; ;Link ··--------------,, X-Coord -8925.024 -8933.210 X-Coord Y-Coord 4095.217 5413.160 Y-Coord POST_DEV Height 0 Type TABULAR/HEAD QTable OUTLET Qexpon Gate NO - -.. - - • .. .. - .. ... • .. .. .. - - - .. • .. .. [Polygons] ;;Subcatchment ··-------------- DMA-1D DMA-2A(SM) BR-3 DMA-1B DMA-lC BR-2 BR-1 BR-4 DMA-1B(Pavers) DMA-1D(Pavers) DMA-lE DMA-lA+Pavers [SYMBOLS] ; ;Gage X-Coord ------------------ -8483.607 -6058.201 -8500.000 -10169.293 -6798.942 -9761.905 -11225.284 -6781.305 -9547.158 -7877 .219 -6780. 297 -11217.098 X-Coord Oceanside -8509.615 POST_DEV Y-Coord ------------------ 7590.164 4832.451 6590.164 7631.560 7548.501 6613.757 6616.499 6684.303 7 631. 560 7598.816 5707.855 7656.118 Y-Coord 8557. 692 .. .. .. - "' - ... .. ... .. ... .. .. .. • - .. • .. .. ATTACHMENT 7 EPA SWMM FIGURES AND EXPLANATIONS Per the attached, the reader can see the screens associated with the EPA-SWMM Model in both pre-development and post-development conditions. Each portion, i.e., sub-catchments, outfalls, storage units, weir as a discharge, and outfalls (point of compliance), are also shown. Variables for modeling are associated with typical recommended values by the EPA-SWMM model, typical values found in technical literature (such as Maidment's Handbook of Hydrology). Recommended values for the SWMM model have been attained from Appendix G of the 2016 City of Carlsbad BMP Design Manual. Soil characteristics of the existing soils were determined from the site specific geotechnical investigation (located in Attachment 8 of this report) . A Technical document prepared by Tory R Walker Engineering for the Cities of San Marcos, Oceanside and Vista (Reference [1]) can also be consulted for additional information regarding typical values for SWMM parameters . Manning's roughness coefficients have been based upon the findings of the "Improving Accuracy in Continuous Hydrologic Modeling: Guidance for Selecting Pervious Overland Flow Manning's n Values in the San Diego Region" date 2016 by TRW Engineering (Reference [6]) . ~ SWMM 5 -PRE-DEV.inp -[Study Area, Map) Doto ;_Mop 1-Title/Notes : .... Options l... Climatology lil-Hydrology $J .. Hydraulics 00· Quality . $· C<Mves ' r Time Series .................... ,<;;, j: ... p~d i:0 Ii v1 ;:◊ i!l;;j ' ... Time Pattems L Mop Labels Ii ...-t i Ci" I @ .. • ~i Hie/Notes F H~ i @ I' .T Y-Coordinate Description Tag Report Tools Window Help 2700.000 PRE-DEVELOPED CONDITIONS Oceanside ~ OMA-A 1111 POC-1 • im-----------'!~ceanside ,., ...... , .. .,, 1-8509.615 •••••••••••••• Ts557:si32······ --------+--------m Inflows Treatment Invert El. Tide Gate NO NO 0 NO INTENSITY l1:00 l 11.0 ••• • •• •• ]fiMESE~1Es · .... i .. , ....... .. -------··· ·---· ..... .. ------ User-assigned name of rain gage □ X Subcatchment DMA-A II Property !Value I X-Coordinate :-8483.607 Y-Coordinate 6622.951 Description Tag Rain Gage Oceanside Outlet POC-1 -----···-···-------------· Area 3.71 Width 979 % Slope 3 % lmperv 0 N-lmperv 0.012 D store-I mperv 0.05 Dstore-Perv : 0.1 %Zero-lmperv 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO , ............ Snow Pack LID Controls :o , ... ,,.=·-~ ........ -, .... , Land Uses :o Initial Buildup :NONE Curb Length :O User-assigned name of subcatchment Infiltration Editor Infiltration Method Property Suction Head Conductivity Initial Deficit Value 3 .... -, ........ ~••"'"'"'""'""""''w''"'""'"'•'"'"'"·"' 0.15 0.31 X POST-DEVELOPED CONDITIONS · -Hie/Notes ;. Options : ... CliM!oiogy 8 Hydrology : ;-Rain Gages ~--SW>Catdvrwu ;.. AQU(ers ~ Snow Pack, :" Unit Hyciographs '-UOCorbolt F.; Hydraulic; 8 Nodes !M Jl.l"d.10ns Oullab ;M Divider, \ -Stcroge ur., ~Lri.s !--Conduits ;. Pcmps : ... Q,ficei :. wers ; __ Outlets ~-Tramed:s + -4J Subcatcmlmt DW::ii, ································,,iu DMA-2A(SMJ BR·J DMA·lB DMA·lC BR·2 BR·l BR .. DMA·lB(Pavcu) DMA·lD(Povc1t) DMA-1A+Pave,s A'-'<>lenglh: Off Offseu: Depth Y-Coordinate Description 4991 .922 DMA-1A+Pave ' BR-1 • m,.. _______ --·+--------..,,,,.,,,,,,,,w~, Tag Inflows Treatment Invert El. Tide Gate Type NO NO 0 NO FREE DMA-18 DMA-1 B(Paver ".. (Ill \~R-2 .. ~~"r DMA-1D DMA-1D(Pavers) ~ /' ,-3 DMA-1C ' llR-4 .. DMA-1E -·················· DMA-2A(SM) -·• POG-.1····· •·. Zoom level 100% X.Y: ·7601.179. 8151.568 I Oceanside 1-s5o9.s15 ···---·------·-i--· . 18557.692 ......... __ ,..! .... ., .. ,. . .. , ... b Description t -----·--····--·······-·····-··---~··········-----···-·------··--·-··--·-~' Tag i 11NTENSITY •----•-•·•·-.,, . ., ••. , •• ,.,.,.·-··www•·•· ---~~1 Rain Format Time Interval 1:00 • Station ID -Rain Units IN Name of rainfall data file X-Coordinate Y-Coordinate Description Tag -11217.098 7656.118 ................................................................................... , Rain Gage Oceanside Outlet BR-1 ,.u.,.·-.•~•••~'"•'""••'"'".., ,....___ _____ _ Area 0.726 Width % Slope % lmperv N-lmperv N-Perv D store-I mperv 86 61.23 0.012 0.05 0.05 Dstore-Perv 2.4 ---1--------&1 %Zero-lmperv 25 Subarea Routing PERVIOUS Percent Routed 100 nfiltration • GREEN~AMPT Groundwater NO Snow Pack LID Controls 0 Land Uses 0 Initial Buildup NONE rb Length 0 tchment Infiltration Editor Infiltration Method Property X 1,..s_u_c_tio_n_H_e_a_d ____ 1:.,_ ... M • .,.. .. ... , .. ,,M, .. ~ .•.• J Conductivity 0.15 Initial Deficit 0.31 Subcatchment BR-1 Property Name X-Coordinate Y-Coordinate Description Tag Rain Gage Outlet Area Width % Slope Value BR-1 -11225.284 6616.499 Oceanside Vault 0.01843 10 0 0 a ·----•-'••••·•• .. •"-•""-'•W<•·•·••••••• 0.012 ------·---~ ...... ., ........ _....J.-------- N-Perv D store-I mperv Dstore-Perv 0.05 0.05 0.1 ·-------%Zero-lmperv 25 Subarea Routing OUTLET Percent Routed 100 In~~ .. -[GREEN;-AMPT:~: .. :::J Groundwater NO Snow Pack LID Controls Land Uses 0 Initial Buildup Curb Length Infiltration parameters (click to edit) Infiltration Editor X Infiltration Method Property I Value X-Coordinate Y-Coordinate 7631.560 Description Tag ···················•·,·········,·vv······•····· Rain Gage Oceanside 1rn--------~~.,,,..,...--·-------·-.- Outlet ····---Area Width %2ero-lmperv Subarea Routing Percent Routed Infiltration R-2 0.325 71 25 OUTLET 100 GREEN_AMPT ---------·-------Groundwater Snow Pack LID Controls Land Uses Initial Buildup Curb Length Infiltration Editor Infiltration Method operty Suction Head Conductivity Initial Deficit NO NONE 0 0.15 0.31 X ,,,,..,,,,,,,,,,_.,_.,,....,..,, Name ]DMA-1B(Pavers) X-Coordinate [-9547.158 Y-Coordinate 17631.560 o~;~ripti~~ r .. . . Tag R_ai_n G_a_g_e -----~-,j,-O_c_e_an_s_id~e----·mt Outlet iBR -2 Area Width % Slope % lmperv N-lmperv N-Perv D store-I mperv •• ro.089 .... 77 0 0.012 0.05 .05 Dstore-Perv 2.4 %2ero-lmperv 25 -------+------Subarea Routing PERVIOUS Percent Routed 100 n Groundwater Snow Pack trols 0 REEN_AMPT 0 INONE ················r o ················ r-assigned name of subcatchment Infiltration Editor Infiltration Method ction Head X _,_..,..,_._,,.,..,., .. _,_._,_, __ , _ _._, .. __ J>M-M-•--i. nductivity 0.31 Y-Coordinate Description Tag Rain Gage 6613.757 Oceanside Outlet Vault Area 0.00817 idth 10 %Slope .0 % lmperv 0 N-lmperv 0.01 2 . ..,..., .,,..,.,...,,,,.,,.,...,, .... .,,,.,,,..,,,,.,.,, . .,.,,..._...., .. ~,--. ,..,_ ""' ..... ,.,,._.,,_,,, N-Perv 0.05 D store-I mperv 0.05 store-Perv 0.1 __ ,,.,_.,,,,...,............,..,,.. ...... .,...., __ e.ro-lmperv 25 ·~-··-·-····-··--·-·--+------Subarea Routing UT LET Percent Routed Infiltration 0 GREEN_AMPT Groundwater NO Snow Pack LID Controls , 1 ....................................................................... .L .. Land Uses 0 Infiltrat ion Editor Infiltration Method Propert_y Suction Head 13 ,_C_o_n_d-uc-t-iv-ity-----~l 0.15 •• •• • •• •• • •• • • • ••• l [0.31 X-Coordinate Y-Coordinate Description Tag Rain Gage Dstore-Perv -7877.219 7598.816 %Zero-lmperv 25 ----·+ Subarea Routing PERVIOUS Percent Routed 100 Infiltration Groundwater Snow Pack LID Controls GREEN_AMPT lNO 0 Initial Buildup l NONE Curb L~ngth T o ssigned name of subcatchment Infiltration Editor Infiltration Method Property Suction Head X i-----------•••-•"-VMmM"·-•·-•·•-,-.•,_,M ..... -• Conductivity ----·--·-----·-+-·--·-·---------1 Initial D elicit 0.31 D store-I mperv Dstore-Perv %2ero-lmperv Subarea Routing 0.1 25 OUTLET 100 GREEN_AMPT ~~~•_..._...._v,,,,...,,,...,,,......,..,........,_,_,,,~. Initial Buildup Curb Length NO 0 0 NONE 0 User-assigned name of subcatchment Infiltration E01tor Infiltration Method Property !Value X Suction Head j3 _ 1-C-o_n_d-uc-t-iv-ity------,tcJ.15 -•-,~.,, • ., _______ ,,..,,..,..-(~------ Initial Deficit [0.31 0.01 279 10 ---------·-""---------0 0 0.01 2 IM----------"-"·--··~ 0.05 0.05 0.1 ---------+----·----- LID Controls Land Uses Initial Buildup Curb Length Infiltration Editor Infiltration Method 25 0 NONE 0 ubcatchment Propert,v Value X Suction Head 13 . 1------------ii-"!o ,.,c,... ...,, ...... ,, ....... ,... -... -. ...i: Conductivity 0.15 Initial Deficit 0.31 Name DMA-1Q ... -............... , ....... -...... ...,, .. ;_,..... .,.._...,..,,,.... ....,. X-Coordinate -6798.942 Y-Coordinate 7548.501 ............................................................................................... , .... Description i ~Zno;,,;:____=~~n.;,; Outlet 1BR-4 Ar~a •• • -• --I o.5os ...... """"N,M' '•. idth o Slope % lmperv N-lmperv N-Perv D store-I mperv store-Perv %Zero-lmperv Subarea Routing Percent Routed I nfiltr at ion Groundwater Snow Pack LID Controls Land Uses l 78 0.1 25 OUTLET 100 GREEN_AMPT NO 0 0 NONE 0 er-assigned name of subcatchment Infiltration Editor Infiltration Method Propert_y Suction Head X 1---------·1""-"•····•·"""··· ... '·"". ⇒.-P.4 Conductivity Initial Deficit 0.31 Y-Coordinate Description Tag ........................ ,. Rain Gage Outlet Area Width Z Slope % lmperv N-lmperv 6684.303 Oceanside Vault 0.009986 10 0 ---~---____ .. ______ ,,,,, ............ . N-Perv Dstore-lmperv Dstore-Perv 0.05 .05 0.1 •25 -----~-----,-~.,-~ .... ., .... ...,,,.,...,_,,_,,,,.,..,~,.,,, . ....,._._.,,,,_.....,,,,,_.,,, 'OUTLET 100 GREEN_AMPT ter NO k NE 0 ser-assigned name of subcatchment Infiltration Editor X Infiltration Method Property Suction Head 1----------,/',-,~•-... -~----'··-, .......... ⇒,.•.t.,. , .. .t Conductivity 0.31 X-Coordinate -6780.297 Y-Coordinate 5707.855 Description Tag ...................................................................... ,. Rain Gage Oceanside Outlet 'VAULT Area 1.325 124 "·----·-·----------------1 .012 .05 0.05 0.1 ---------l"·"''""--··--· ·- %Zero-lmperv 25 nm----------"''"''°",,,..,,,.,,,,,,,,,,.,,,,,...., . .,._. . ._.,_.,_.,,, . .,_.,.,,,,, ... , Subarea Routing OUTLET ercent Routed 100 nfiltr ation GREEN_AMPT Groundwater NO Snow Pack LID Controls 0 Land Uses 0 Initial Buildup NONE Curb Length 0 ssigned name of subcatchment Infiltration Editor X Infiltration Method Property !Value Suction Head p 1----------;,,,•-.,~·-·-·~.,,-_,.__, ____ ~, Conductivity I 0.15 Initial Deficit .31 Tag Rain Gage Outlet a Width % Slope % lmperv N-lmperv 0.05 -----··---1------""'"""·-•'-'=""'.....,,,.,. • ..., ore-Perv . 0.1 -·----•--·--.. -·l •• -------n %Zero-lmperv !25 ..... ,,.,,..,,,,,,, ...... ,,,,, . .,,_.,_._~~ .... --~~1------·----·"·" Subarea Routing I OUTLET Percent Routed l 100 ... .,,,.... · ., . ., .,,, ... .,,., .. ., .. .,.,.,,,,+ ..... .,.,,,_ ....... ··---Ml Infiltration lGREEN_AMPT LID Controls i 0 ., + Land Use~------4 o _____ _ Initial Buildup jNONE l ' Curb Length lO l¾}-----------'L-------·m -assigned name of subcatchment Infiltration Editor X Infiltration Method Property __ Suction Head 3 -----------------_..,,.;. Conductivity 0.15 Initial Deficit 0.31 Detention Vault Storage Unit VAULT Property Value I Name ....... J~~~~: ><-Coordinate -8933.210 Y-Coordinate 5413.160 Description Tag Inflows NO Treatment NO Invert El. 0 Max. Depth 8 •'•/ ·-· -, .. ,-.~ .. w .. .-·-... ... , ........ -.,.-.,. .......... Initial Depth 0 Ponded Area 0 Evap. Factor 0 NO Infiltration Storage Curve !Tt1iLJLAR ••• "" • • Functional Cwve Coefficient 1 000 ,...,_._ • ....,.w . ....,M.w ............. ,,.•.-.w,•.v-vw,V.,.,,.,,,.,~ ,,._.,,,._.,,,_.,._,,,, .••.•. ,......,_,_,,,...,_.,_.,,,._,.,,,...,__,,.,.,,.. _,_._.,.,,.,_ •• Exponent 0 Constant 0 Outlet OUTLET Property Value Name iOUTLET ............................. L ... , ....... ,-., .. M, .. ,,. .......... ,.. ................. .., ... • Inlet Node jVAUL T Outlet Node Description Tag Inlet Offset Flap Gate lPOC-1 jNO --------~-----.--------Rating Curve 1 TABULAR/HEAD User-assigned name of outlet Storage Curve Editor ; Curve Name :tlBJll Description 0 2 8 3 Depth (ft) Area (ft2) 1305 1305 --➔············································'··········································••;'i 4 5 6 7 8 9 .... Rating Curve Editor Curve Name Description Head Outflow ,._ (ft) (CFS) [i 1 0.000 !0.000 ; 2 0.250 0.015 3 0.500 0.023 4 0.750 0.028 5 1.000 0.033 6 1.250 0.037 7 1.500 0.041 8 1.750 0.044 9 2.000 0.047 ., ~ Yiew... ] I~, OK 1, Cancel h.,ot .!:!elp I EXPLANATION OF SELECTED VARIABLES Sub Catchment Areas: Please refer to the attached diagrams that indicate the DMA and Bio-Retention BMPs (BMP) sub areas modeled within the project site at both the pre and post developed conditions draining to the POC. Parameters for the pre-and post-developed models include soil type B as determined from the site specific geotechnical investigation (attached at the end of this appendix). Suction head, conductivity and initial deficit corresponds to average values expected for these soils types, according to Appendix G of the 2016 City of Carlsbad BMP Design Manual. For surface runoff infiltration values, REC selected infiltration values per Appendix G of the 2016 City of Carlsbad BMP Design Manual corresponding to hydrologic soil type. Selection of a Kinematic Approach: As the continuous model is based on hourly rainfall, and the time of concentration for the pre-development and post-development conditions is significantly smaller than 60 minutes, precise routing of the flows through the impervious surfaces, the underdrain pipe system, and the discharge pipe was considered unnecessary. The truncation error of the precipitation into hourly steps is much more significant than the precise routing in a system where the time of concentration is much smaller than 1 hour. Sub-catchment BMP: The area of biofiltration must be equal to the area of the development tributary to the biofiltration facility (area that drains into the biofiltration, equal external area plus bio-retention itself). Five (S) decimal places were given regarding the areas of the biofiltration to insure that the area used by the program for the LID subroutine corresponds exactly with this tributary. LID Usage Editor X LID Usage Editor X Control Name 1--vi Control Name lmB vi Number of Replicate Units I, 10 [±J Number of Replicate Units 1, ! I~ Area of Each Unit (sq ft or sq ml I B□ 3 Area of Each Unit (sq ft or sq ml !356 ' % of Subcatchment Occupied 100.0 % of Subcatchment Occupied 100.0 Top Width of Overland Flow I □ Top Width of Overland Flow I □ Surface of Each Unit (ft or ml Surface of Each Unit (ft or ml ................................................ % Initially Saturated I □ % Initially Saturated io ' % of Impervious Area Treated 1100 % of Impervious Area Treated i100 ! LID Usage Editor X LID Usa,ge Editor X Control Name 1m11 vi Control Name I• vi Number of Replicate Units I, IGJ ,EJ Number of Replicate Units i, I~ Area of Each Unit (sq ft or sq ml 1557 Area of Each Unit (sq ft or sq m} !435 ' % of Subcatchment Occupied 100.0 % of Subcatchment Occupied 100.0 Top Width of Overland Flow I □ Top Width of Overland Flow !o Surface of Each Unit (ft or m} Surface of Each Unit (ft or ml ' % Initially Saturated I □ % Initially Saturated lo ' % of Impervious Area Treated I, oo % of Impervious Area Treated !100 ' LID Control Editor X Control Name: LID Type: Process Layers: Surface ! Soil Storage Depth i?.2 [in. ormm) ~ .... Vegetation Volume i□□o Fraction Surf ace Roughness ·DO [Mannings n) Surf ace Slope I□.□ (percent) LID Control Editor X Control Name: LID Type: Process Layers: ..... , ..... , ................... , ............................. , . Surface Soil .... i Storage Underdrain ... , ................ , ........... , .......... , Height ,13 [in. or mm) Void Ratio iD.67 [\loids I Solids] Conductivity 1 □.□41 [in/hr or mm/hr) Clogging Factor iO Note: use a Conductivity of 0 if the LID unit has an impermeable bottom. LID Control Editor X Control Name: LID Type: 'a;i:i;{~~roricen' '"·--·;;;, ! \ ,...,, .. ·,· •s··v·+< -.-.. A,, .............. ·<)?'· .. ·:•c.,J Process Layers: Surface: Soil Ts't;;rage , U11~erdrain] Thickness [in. ormm) Porosity [volume fraction] Field Capacity (volume fraction] Wilting Point [volume fraction) Conductivity (in/hr or mm/hr) Conductivity Slope Suction Head [in. or mm) UD Control Editor Control Name: LID Type: Process Layers: Drain Coefficient [in/hr or mm/hr) Drain Exponent Drain Off set Height [in. ormm) 1,a 1□4 1□2 I□, 15 [5 ...... 115 Underdrain 1 □.3175 l □.5 Note: use a Drain Coefficient of 0 if the LID unit has no underdr ain. ......... 1 i X LID Control Editor X Control Name: LID Type: Process Layers: Surface :' S~il Storage Depth [7·2···· [in. or mm) Vegetation Volume lo.oo Fraction Surf ace Roughness 0 [Mannings n) Surf ace Slope (percent) !O LID Control Editor X Control Name: J~mE_·_· _______ ~ LID Type: Process Layers: Surface Soil Height [in. ormm) Void Ratio (V aids / Solids) Conductivity [in/hr or mm/hr) Clogging Factor Storage lo.s? 10041 Nate: use a Conductivity of O if the LID unit has an impermeable bottom. LID Control Editor X Control Name: !mE I LID Type: ................. ,_ ...... __ ·-·········· -,.--, 'I I foRetentio/1 C~H.fi,ti ' :;,.,.>7 Thickness [~~ ........................ 1 [in. or mm) Porosity 104 (volume fraction) Field Capacity 10.2 [volume fraction) Wilting Point 10.1 (volume fraction) Conductivity 15 (in/hr or mm/hr) Conductivity Slope [5 Suction Head 11.5 [in ormm) LID Control Editor X Control Name: lmB I LID Type: ! 8iofl~t~ qe11 ..;.I Process Layers: Surface Soil Underdrain Drain Coefficient 10.4261 [in/hr or mm/hr) Drain Exponent Jo5 Drain Off set Height J4 [in. or mm) Note: use a Drain Coefficient of O if the LID unit has no underdrain. LID Control Editor Control Name: LID Type: Process Layers: ~ S~rface [ s~ii' Storage Depth [in. or mm) Vegetation Volume Fraction Surf ace Roughness [Mannings n) Surface Slope (percent] LID Control Editor X !7.2 !000 [0.0 100 X Control Name: ~ltBJ_·_, ________ ~ LID Type: Process Layers: Soil Height (in. or mm) Void Ratio [Voids / Solids) Conductivity (in/hr or mm/hr) Clogging Factor Storage 112 los7 10 10 Note: use a Conductivity of O if the LID unit has an impermeable bottom. LID Control Editor Control Name: LID Type: t Bio-A ~tention Cell l···<»· .. , .. • •....•. • ... ,-:;; Process Layers: • ·" Soil js tor a~e i U nder~r ~iri; Thickness 1,s .I (in. or mm] Porosity 104 (volume fraction) Field Capacity 102 (volume fraction] Wilting Point jo1 l [volume fraction) Conductivity 15 (in/hr or mm/hr) Conductivity Slope [5. ..................................... 1 Suction Head 115 [in. ormm) LID Control Editor Control Name: 1- LID Type: Process Layers: SU1face Soil Underdrain Drain Coefficient lo3362 (in/hr or mm/hr) Drain Exponent 105 Drain Off set Height 13 (in. ormm] Note: use a Drain Coefficient of O if the LID unit has no underdr ain. X X LID Control Editor Control Name: LIO Type: Process Layers: 'tvM=• Surface Soil Stor~ge,. Underdrain_! .. Storage O epth !7.~ (in. ormm) Vegetation Volume I □□□ Fraction Surf ace Roughness I □□ (Mannings n) Surf ace Slope (percent) UD Control Editor Control Name: LID Type: Process Layers: Surface Soil Height (in. or mm] Void Ratio [\I oids / Solids) Conductivity [in/hr or mm/hr) Clogging Factor I □□ Storage , U nderdr ain:, :12 L. ... 10.67 i□ Note: use a Conductivity of O if the LI 0 unit has an impermeable bottom. ::::::] X X LID Control Editor X Control Name: IB LIO Type: Process Layers: Surf~~e·f Soil Thickness 110 (in. or mm] _____ ,, ..... , I Porosity l□.4 (volume fraction] Field Capacity 1□.2 (volume fraction] Wilting Point I□ 1 (volume fraction] Conductivity J5 (in/hr or mm/hr) Conductivity Slope [~ Suction Head 115 (in. ormm] LID Control Editor X Control Name: 1-I LIO Type: l, ~io-R_,,· .. ~erit.' io_ n,.,,,.c .. e1.·.·_,., A ~.. +.;;t_•I .. , · .. ...W.. .· •. , ... ·.• .... '-:. ..• ·;\:·"'''··.·. ' Process Layers: Surface ! Soil ~: Sto;a!;lej Underdrain l 0 rain Coefficient (in/hr or mm/hr) Drain Exponent Drain Offset Height (in. ormm) [04306 1□ 5 Note: use a Drain Coefficient of O if the LID unit has no underdrain. -.. .. .. - -.. .. .. • • .. .. • • • .. LID Control Editor: Explanation of Significant Variables Storage Depth: The storage depth variable within the SWMM model is representative of the storage volume provided beneath the surface riser outlet and the surface of the bio filtration facility . In those cases where the surface storage has a variable area that is also different to the area of the gravel and amended soil, the SWMM model needs to be calibrated as the LID module will use the storage depth multiplied by the BMP area as the amount of volume stored at the surface. Let AeMP be the area of the BMP (area of amended soil and area of gravel). The proper value of the storage depth S0 to be included in the LID module can be calculated by using geometric properties of the surface volume. Let Ao be the surface area at the bottom of the surface pond, and let Ai be the surface area at the elevation of the invert of the first row of orifices (or at the invert of the riser if not surface orifices are included). Finally, let hi be the difference in elevation between Ao and Ai. By volumetric definition: (1) Equation (1) allows the determination of S0 to be included as Storage Depth in the LID module. The 3-inches of gravel volume (3-inches x volume of solids (0.6) = 1.8-inches) is then subtracted from this volume. Porosity: A porosity value of 0.4 has been selected for the model. The amended soil is to be highly sandy in content in order to have a saturated hydraulic conductivity of approximately 5 in/hr . REC considers such a value to be slightly high; however, in order to comply with the HMP Permit, the value recommended by the Copermittees for the porosity of amended soil is 0.4, per Appendix A of the Final Hydromodification Management Plan by Brown & Caldwell, dated March 2011. Such porosity is equal to the porosity of the gravel per the same document . Void Ratio: The ratio of the void volume divided by the soil volume is directly related to porosity as n/(1-n). As the underdrain layer is composed of gravel, a porosity value of 0.4 has been selected (also per Appendix A of the Final HMP document), which results in a void ratio of 0.4/(1-0.4) = 0.67 for the gravel detention layer. Conductivity: Per the site-specific geotechnical investigation for the project site infiltration is only feasible for basins to the east of the project site, a factored infiltration rate of 0.041 in/hr has been used for these facilities. For the western basins, a value of 0 has been assigned for conductivity accordingly . .. - ... - -.. .. -.. .. .. .. - - - .. - Clogging factor: A clogging factor was not used (0 indicates that there is no clogging assumed within the model). The reason for this is related to the fairness of a comparison with the SOHM model and the HMP sizing tables: a clogging factor was not considered, and instead, a conservative value of infiltration was recommended. Drain (Flow) coefficient: The flow coefficient C in the SWMM Model is the coefficient needed to transform the orifice equation into a general power law equation of the form: (2) where q is the peak flow in in/hr, n is the exponent (typically 0.5 for orifice equation), H0 is the elevation of the centroid of the orifice in inches (assumed equal to the invert of the orifice for small orifices and in our design equal to O) and H is the depth of the water in inches. The general orifice equation can be expressed as: Q = !!.c .!i:_ 2 (H-Hv) 4 n 144 B 12 (3) where Q is the peak flow in cfs, D is the diameter in inches, Cg is the typical discharge coefficient for orifices (0.61-0.63 for thin walls and around 0. 75-0.8 for thick walls), g is the acceleration of gravity in ft/s2, and H and Ho are defined above and are also used in inches in Equation (3). It is clear that: (in)x ABMP ( f ) q hr 12 X 3600 = Q C S (4) Cut-Off Flow: Q (cfs) and q (in/hr) are also the cutoff flow. For numerical reasons to insure the LID is full, the model uses cut-off= 1.01 Q . .. ... .. -Overland Flow Manning's Coefficient per TRWE (Reference (6)) .. - - .. ... - .. -... -.. - -... - .. ... -... .. .. .. - -.. .. - .. .. .. -... -.. -... -... .. ... - - .. .. - appeal of a de facto value, we anticipate that jurisdictions will not be inclined to approve land surfaces other than short prairie grass. Therefore, in order to provide SWMM users with a wider range of land surfaces suitable for local application and to provide Copermittees with confidence in the design parameters, we recommend using the values published by Yen and Chow in Table 3-5 of the EPA SWMM Reference Manual Volume I -Hydrology. SWMM-Endorsed Values Will Improve Model Quality In January 2016, the EPA released the SWMM Reference Manual Volume I -Hydrology (SWMM Hydrology Reference Manual). The SWMM Hydrology Reference Manual complements the SWMM 5 User's Manual and SWMM 5 Applications Manual by providing an in-depth description of the program's hydrologic components (EPA 2016). Table 3-5 of the SWMM Hydrology Reference Manual expounds upon SWMM 5 User's Manual Table A.6 by providing Manning's n values for additional overland flow surfaces3. The values are provided in Table 1: Table 1: Manning's n Values for Overland Flow (EPA, 2016; Yen 2001; Yen and Chow, 1983). Overland Surface Light Rain Moderate Rain Heavy Rain (< 0.8 in/hr) (0.8-1.2 in/hr) (> 1.2 in/hr} Smooth asphalt pavement 0.010 0.012 0.015 Smooth impervious surface 0.011 0.013 0.015 Tar and sand pavement 0.012 0.014 0.016 Concrete pavement 0.014 0.017 0.020 Rough impervious surface 0.015 0.019 0.023 Smooth bare packed soil 0.017 0.021 0.025 Moderate bare packed soil 0.025 0.030 0.035 Rough bare packed soil 0.032 0.038 0.045 Gravel soil 0.025 0.032 0.045 Mowed poor grass 0.030 0.038 0.045 Average grass, closely clipped sod 0.040 0.050 0.060 Pasture 0.040 0.055 0.070 Timberland 0.060 0.090 0.120 Dense grass 0.060 0.090 0.120 Shrubs and bushes 0.080 0.120 0.180 Land Use Business 0.014 0.022 0.035 Semi business 0.022 0.035 0.050 Industrial 0.020 0.035 0.050 Dense residential 0.025 0.040 0.060 Suburban residential 0.030 0.055 0.080 Parks and lawns 0.040 0.075 0.120 For purposes of local hydromodification management BMP design, these Manning's n values are an improvement upon the values presented by Engman (1986) in SWMM 5 User's Manual Table A.6. Values from SWMM 5 User's Manual Table A.6, while completely suitable for the intended application to certain agricultural land covers, comes with the disclaimer that the provided Manning's n values are valid for shallow-depth overland flow that match the conditions in the experimental plots (Engman, 3 Further discussion is provided on page 6 under "Discussion of Differences Between Manning's n Values" 3 .. -... ATTACHMENT 8 -Geotechnical Documentation - -.. - -... .. - -.. -... .. - -... - Hydrologic Soil Group-San Diego County Area, California 33" fr7"N 33" fr2"N Map Scale: 1: 1 ,200 if p1ntm ex, A lancB:ape ( 11" X &5") sheet N ----=====-------=======Meiers o m ~ w oo A ----====--------========f-eet 0 ffi 100 all ~ Map projection: Web Merollor caner roorooates: WGS84 Edge tics: UTM Zone llN WGS84 USDA Natural Resources riii Conservation Service Web Soil Survey National Cooperative Soil Survey 7/19/2019 Page 1 of 4 33" !r7"N 33" fr2"N Hydrologic Soil Group-San Diego County Area, California MAP LEGEND MAP INFORMATIO.N Area of Interest (AOI) D Area of Interest (AOI) Soils Soil Rating Polygons Ill A rm AfD .B D BID D C □ CID • D D Not rated or not available Soil Rating Lines -A -AID -B -B/D -C -CID -D , ; Not rated or not available Soil Rating Points C A C AfD ■ B ■ B/D ~DA Natural Resources riii Conservation Service lJ C lJ CID lJ D C Not rated or not available Water Features Streams and Canals Transportation ++-i Rails ,...., Interstate Highways US Routes Major Roads Local Roads Background • Aerial Photography Web Soil Survey National Cooperative Soil Survey The soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: San Diego County Area, California Survey Area Data: Version 13, Sep 12, 2018 Soil map units are labeled (as space allows) for map scales 1 :50,000 or larger. Date(s) aerial images were photographed: Nov 3, 2014-Nov 22,2014 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. 7/19/2019 Page 2 of 4 - - - ... - - ..., .., - "' -... - - .. .. - Hydrologic Soil Group-San Diego County Area, California CbB ,MIC I I Hydrologic Soil Group , Carlsbad gravelly loamy I B i sand, 2 to 5 percent : slopes ! Marina loamy coarse I B • sand, 2 to 9 percent ! i slopes 1.5 39.4% 2.3 60.6% -----~---------+----------+------------J ~ I Totals for Area of Interest 3.8 Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (AID, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture . These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (AID, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 100.0% 7/19/2019 Page 3 of 4 - .. ... - - - .. "" -... - "" ... .. -,. .. Hydrologic Soil Group-San Diego County Area, California Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 7/19/2019 Page 4 of 4 .. ATTACHMENT 9 .. Summary Files from the SWMM Model - - - -... .. .., .. .. -... .. ... - - - ... - - - - -.. -.. -.. -... -.. - -.. -.. - .. PRE_DEV EPA STORM WATER MANAGEMENT MODEL -VERSION 5.0 (Build 5.0.022) ********************************************************* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ********************************************************* **************** Analysis Options **************** Flow Units ............... CFS Process Models: Rainfall/Runoff ........ YES Snowmelt ............... NO Groundwater ............ NO Flow Routing ........... NO Water Quality .......... NO Infiltration Method ...... GREEN AMPT Starting Date ............ OCT-01-1951 00:00:00 Ending Date .............. SEP-30-2008 23:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 01:00:00 Wet Time Step ............ 00:15:00 Dry Time Step ............ 04:00:00 ************************** Runoff Quantity Continuity ************************** Total Precipitation ..... . Evaporation Loss ........ . Infiltration Loss ....... . Surface Runoff .......... . Final Surface Storage ... . Continuity Error (%) ************************** Volume acre-feet 208.490 0.768 197. 677 10.899 0.000 -0.410 Depth inches 674.360 2.485 639.388 35.251 0.000 Volume Flow Routing Continuity Volume acre-feet 10A6 gal ************************** Dry Weather Inflow Wet Weather Inflow Groundwater Inflow RDII Inflow ............. . External Inflow ......... . External Outflow ........ . Internal Outflow ........ . Storage Losses .......... . Initial Stored Volume ... . Final Stored Volume ..... . Continuity Error (%) Subcatchment Runoff Summary *************************** Subcatchment DMA-A Total Precip in 674.36 0.000 10.899 0.000 0.000 0.000 10.899 0.000 0.000 0.000 0.000 0.000 Total Runon in 0.00 Analysis begun on: Analysis ended on: Total elapsed time: Tue Jul 16 12:54:08 2019 Tue Jul 16 12:54:24 2019 00:00:16 0.000 3.551 0.000 0.000 0.000 3.551 0.000 0.000 0.000 0.000 Total Evap in 2.48 Total Infil in 639.39 Total Runoff in 35.25 Total Runoff 10A6 gal 3.55 Peak Runoff Runoff CFS 3.91 Coeff 0.052 - - -.. -... ., .. -... ... - .. - - ... POST_DEV EPA STORM WATER MANAGEMENT MODEL -VERSION 5.0 (Build 5.0.022) ********************************************************* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ********************************************************* **************** Analysis Options **************** Flow Uni ts ............... CFS Process Models: Rainfall/Runoff ........ YES Snowmel t . . . . . . . . . . . . . . . NO Groundwater ............ NO Flow Routing ........... YES Ponding Allowed ........ NO Water Quality .......... NO Infiltration Method GREEN AMPT Flow Routing Method ...... KINWAVE Starting Date ............ OCT-01-1951 00:00:00 Ending Date .............. SEP-30-2008 23:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 01:00:00 Wet Time Step ............ 00:15:00 Dry Time Step ............ 04:00:00 Routing Time Step ........ 60.00 sec ************************** Runoff Quantity Continuity ************************** Total Precipitation ..... . Evaporation Loss ........ . Infiltration Loss ....... . Surface Runoff .......... . Final Surface Storage ... . Continuity Error (%) ************************** Flow Routing Continuity ************************** Dry Weather Inflow Wet Weather Inflow Groundwater Inflow RDII Inflow ............. . External Inflow ......... . External Outflow ........ . Internal Outflow ........ . Storage Losses .......... . Initial Stored Volume ... . Final Stored Volume ..... . Continuity Error (%) Volume acre-feet 208.398 22.933 70. 572 116. 713 0.000 -0.873 Volume acre-feet 0.000 116.713 0.000 0.000 0.000 116. 685 0.000 0.000 0.000 0.000 0.024 ******************************** Highest Flow Instability Indexes ******************************** All links are stable . ************************* Routing Time Step Summary ************************* Minimum Time Step Average Time Step 60.00 sec 60.00 sec Depth inches 674.360 74.210 228.365 377.673 0.000 Volume 10A6 gal 0.000 38.033 0.000 0.000 0.000 38.023 0.000 0.000 0.000 0.000 - .. .. ... .. .. .. - <~ - .. • -., • .. - .. .. Maximum Time Step Percent in Steady State Average Iterations per Step *************************** Subcatchment Runoff Summary *************************** Total Precip Subcatchment in 60.00 sec 0.00 1.00 Total Runon in POST_DEV Total Total Evap Infil in in Total Total Peak Runoff Runoff Runoff Runoff Coeff in 10A6 gal CFS -------------------------------------------------------------------------------------------------------- DMA-lD 674.36 DMA-2A (SM) 674.36 BR-3 674.36 DMA-1B 674.36 DMA-lC 674.36 BR-2 674.36 BR-1 674.36 BR-4 674.36 DMA-1B(Pavers) 674.36 DMA-lD (Pavers) 674.36 DMA-lE 674.36 DMA-lA+Pavers 674.36 *********************** LID Performance Summary *********************** Subcatchment LID Control BR-3 BR-2 BR-1 BR-4 ****************** Node Depth Summary ****************** Node POC-1 VAULT BR-3 BR-2 BR-1 BR-4 Type OUTFALL STORAGE ******************* Node Inflow Summary ******************* Node POC-1 VAULT Type OUTFALL STORAGE ********************** Node Surcharge Summary 0.00 0.00 15402.89 0.00 0.00 15205.17 557.47 28132.37 0.00 0.00 0.00 0.00 Total Inflow in 16077 .25 15879.53 1231.83 28806.73 81.95 6.88 822.89 50.94 78.35 694.80 412.72 871.74 2.27 2.27 87 .11 56.17 Evap Loss in 823.12 694.60 412.64 871. 75 21. 50 596.04 0.00 247.65 47.62 2050.69 276.03 0.00 672. 29 672.29 0.00 609.37 Infil Loss in 0.00 2050.11 275.98 0.00 577.72 74.05 15312.70 382.23 555.20 13156.94 546.16 28059.63 0.01 0.01 592.58 14.15 Surface Outflow in 2641.89 2268.89 220.41 9388.01 Average Depth Feet Maximum Depth Feet Maximum HGL Feet Time of Max Occurrence days hr:min 0.00 0.12 Maximum Lateral Inflow CFS 0.31 3.41 0.00 7.56 0.00 0 00:00 7.56 18823 17:01 Maximum Total Time of Max Inflow Occurrence CFS days hr:min 3.70 18823 17:00 3.41 18823 17:00 Lateral Inflow Volume 10A6 gal 0. 591 37.439 5.35 0.59 5.32 3.37 7.63 2. 92 0.27 7.61 0.00 0.00 21.32 0.28 Drain Outflow in 12675.01 10884.29 325.64 18672.01 Total Inflow Volume 10A6 gal 38.021 37.439 0.41 0.31 0.42 0.37 0.60 0.38 0.74 0.62 0.00 0.00 1. 60 0.83 Init. Storage in 0.00 0.00 0.00 0.00 0.857 0 .110 0.952 0.567 0.823 0.829 0.443 0.974 0.000 0.000 0.879 0.021 Final Storage in 0.00 0.00 0.00 0.00 Pent. Error -0.39 -0.12 -0.23 -0.43 .. - - - - - - .. - .. .. .. - - .. - - - POST_DEV ********************** Surcharging occurs when water rises above the top of the highest conduit. Node VAULT ********************* Node Flooding Summary ********************* Type STORAGE No nodes were flooded. ********************** Storage Volume Summary ********************** Storage Unit Average Volume 1000 ft3 VAULT 0.151 *********************** Outfall Loading Summary *********************** Outfall Node POC-1 System ******************** Link Flow Summary ******************** Link OUTLET Flow Freq. Pent. 9.66 9.66 Type DUMMY ************************* Conduit Surcharge Summary ************************* No conduits were surcharged. Analysis begun on: Mon Dec Analysis ended on: Mon Dec Total elapsed time: 00:00:27 16 16 Hours Surcharged Max. Height Above Crown Feet 499679.02 Avg E&I Pent Pent Full Loss Avg. Flow CFS 0.03 0.03 1 0 Max. Flow CFS 3.70 3.70 7.558 Maximum Volume 1000 ft3 9.864 Total Volume 10A6 gal 38.021 38.021 Min. Depth Below Rim Feet 0.442 Max Pent Full 94 Maximum I Flow I CFS Time of Max Occurrence days hr:min Maximum IVelocl ft/sec Max/ Full Flow 3.40 18823 17:01 16:34:54 2019 16:35:21 2019 Time of Max Occurrence days hr:min 18823 17:00 Max/ Full Depth Maximum Outflow CFS 3.40