HomeMy WebLinkAboutSDP 2019-0005; BMW CARLSBAD; TECHNICAL MEMORANDUM SWMM MODELING FOR HYDROMODIFICATION COMPLIANCE OF BMW CARLSBAD; 2019-12-13-
-
-
-
-
-
-
-
-...
-
-
..
...
..
..
0~ 0 RtsV \ e::W
~{2o(u,
fee,er-t,( ~
TECHNICAL MEMORANDUM:
SWMM Modeling for
Hydromodification Compliance of:
BMW Carlsbad
Prepared For:
CDR
Prepared by:
Luis Pa a, PhD, CPSWQ, ToR, D.WRE.
R.C.E. 66377
REC Consultants
2442 Second Avenue
San Diego, CA 92101
Telephone: (619) 232-9200
FER 2 6 207~
"
..
•
•
•
..
_,
-
-
-
-
-
-
-
-
-
TO:
FROM:
DATE:
RE:
R·E·C
TECHNICAL MEMORANDUM
CDR.
Luis Parra, PhD, PE, CPSWQ, ToR, D.WRE, CFM.
David Edwards, MS, PE, CFM.
December 13, 2019
Summary of SWMM Modeling for Hydromodification Compliance for BMW Carlsbad,
City of Carlsbad, CA .
INTRODUCTION
This memorandum summarizes the approach used to model the proposed commercial site in the City of
Carlsbad using the Environmental Protection Agency (EPA) Storm Water Management Model 5.0
(SWMM). SWMM models were prepared for the pre and post-developed conditions at the site in order
to determine if the proposed LID HMP bio-filtration and underground detention facilities have sufficient
volume to meet Order R9-2013-001 requirements of the California Regional Water Quality Control
Board San Diego Region (SDRWQCB), as explained in the Final Hydromodification Management Plan
(HMP), dated March 2011, prepared for the County of San Diego by Brown and Caldwell.
SWMM MODEL DEVELOPMENT
The BMW Carlsbad project proposes a commercial structure and servicing parking lots on the currently
developed site. Two (2) SWMM models were prepared for this study: the first for the predevelopment
and the second for the post-developed conditions. The project site drains to one (1) Point of Compliance
(POC-1) located at the existing storm drain system located to the north of the project site.
Per Section Gl.2 in Appendix G of the 2016 City of Carlsbad BMP Design Manual, the EPA SWMM model
was used to perform the continuous hydrologic simulation. For both SWMM models, flow duration
curves were prepared to determine if the proposed HMP facilities are sufficient to meet the current
HMP requirements.
The inputs required to develop SWMM models include rainfall, watershed characteristics, and BMP
configurations. The Oceanside Gage from the Project Clean Water website was used for this study since
it is the most representative of the project site precipitation due to elevation and proximity to the
project site.
Per the California Irrigation Management Information System "Reference Evaporation Zones" (CIMIS
ETo Zone Map), the project site is located within the Zone 1 Evapotranspiration Area. Thus
evapotranspiration vales for the site were modeled using Zone 1 average monthly values from Table
G.1-1 from the 2016 BMP Design Manual. Per the site specific geotechnical investigation and NRCS Web
Soil Survey, the project site is situated upon Class B soils. Soils have been assumed to be compacted in
the existing developed condition while fully compacted in the post developed conditions. Other SWMM
inputs for the subareas are discussed in the appendices to this document, where the selection of
parameters is explained in detail.
..
..
..
..
..
..
...
..
-
-
-
-
BMW Carlsbad HMP Memo
December 13, 2019
HMP MODELING
PRE DEVELOPED CONDITIONS
The current site consists of a developed lot that drains via overland flow to the receiving storm drain
system located to the north of the project site within the adjacent Cannon Road. Table 1 below
illustrates the pre-developed area to be redeveloped and impervious percentage accordingly.
TABLE 1-SUMMARY OF PRE-DEVELOPED CONDITIONS
POC OMA Tributary Area, A Impervious Percentage,
(Ac) lp111
POC-1 DMA-A 3.71 0%
TOTAL --3.71 0% . . . . Notes: (1) -Per the 2013 RWQCB permit, existing condition impervious surfaces are not to be accounted for in existing cond1t1ons analysis .
DEVELOPED CONDITIONS
Storm water runoff from the proposed project site is routed to one (1) POC located at the existing storm
drain location to the north of the project site. Runoff from the developed project site is drained to five
(5) onsite receiving BMPS; four (4) biofiltration LID BMP's and a two (2) underground detention vaults
that are hydraulically linked to act as a single detention facility. Once flows are routed via the proposed
LID BMPs, developed onsite flows are then conveyed to the POC. A small portion of the site is self-
mitigating; this area will bypass the LID BMPs and confluence with flows at the aforementioned POC.
TABLE 2 -SUMMARY OF POST-DEVELOPED CONDITIONS
POC OMA Tributary Area, A Impervious Percentage, Ip (Ac)
DMA-lA + Pavers 0.726 61.23
BR-1 0.01843 0%
DMA-1B 0.325 61.22%
DMA-1B (Pavers) 0.089 0%
BR-2 0.00817 0%
POC-1 DMA-10 0.341 96.62%
DMA-10 (Pavers) 0.053 0%
BR-3 0.01279 0%
DMA-lC 0.506 92.52%
BR-4 0.01 0%
DMA-lE 1.325 100%
DMA-2A (Self Mitigating) 0.294 6.73%
TOTAL --3.71 --
Four (4) LID biofiltration basins and a single underground detention vault are located within the project
site and are responsible for handling hydromodification requirements. In developed conditions, the
basins will have a surface depth of 0.92 feet and a riser spillway structure (see dimensions in Table 4).
Flows will then discharge from the basins via a low flow orifice outlet within the gravel layer. The riser
2 W.O.7063-02
..
..
-
-
..
-
...
-
-
-
-
-
-
-
BMW Carlsbad HMP Memo
December 13, 2019
structure will act as a spillway such that peak flows can be safely discharged to the receiving
underground detention vault.
Beneath the basins' invert lies the proposed LID biofiltration portion of the drainage facility. This
portion of the basin is comprised of a 3-inch layer of mulch, an 18-inch layer of amended soil (a highly
sandy, organic rich composite with an infiltration capacity of at least 5 inches/hr). Two (2) of the BM P's
(BR-1 and BR-2) are partial-retention systems; these basins will feature 13-inches of gravel while the
remaining two (2) bio-filtration BMPs (BR-3 and BR-4) will be lined and include a 12-inch layer of gravel
for additional detention and to accommodate the French drain system. These systems are to be
located beneath the biofiltration layers to intercept treated storm water and convey these flows to a
single small diameter lower outlet orifice.
Once the runoff has been routed by the outlet structure, flows are then drained to the receiving
underground detention vaults for additional detention. The two (2) spate vaults are to be constructed at
the same elevation and will be linked via the junction box that houses the single outlet structure for the
two (2) facilities. Given that the basin elevations are the same and that both basins are constricted by
the same outlet structure, these facilities are hydraulically linked and act as a single detention facility for
modeling purposes. After these flows have been detained via the detention vault, they will be
discharged to the existing storm drain system located within the adjacent Cannon Road.
The biofiltration basins were modeled using the biofiltration LID module within SWMM. The
biofiltration module can model the underground gravel storage layer, underdrain with an orifice plate,
amended soil layer, and a surface storage pond up to the elevation of the invert of the spillway. It
should be noted that detailed outlet structure location and elevations will be shown on the construction
plans based on the recommendations of this study.
Water Quality BMP Sizing
It is assumed all storm water quality requirements for the project will be met by the bio-filtration LID
BMPs detailed in the SWQMP and other BMPs included within the site design. However, detailed water
quality requirements are not discussed within this technical memo. For further information in regards
to storm water quality requirements for the project (including sizing and drawdown) please refer to the
site specific Storm Water Quality Management Plan (SWQMP).
Porous Pavers
As an integrated LID BMP design practice, several sections of the project sites parking lots will feature
porous pavement/pavers. These porous sections will include a 6-inch layer of gravel to be located
beneath the paver to allow for storage of intercepted runoff. There will be no French drain located
beneath the paver section such that once the volume of voids of the gravel has been filled with
stormwater, any excess storm water will continue to surface flow to the receiving storm water quality
bio-filtration basin. The paver base will be unlined to allow for infiltration into the underlying soil.
In some DMA's, cross gutters prevent run-on from adjacent impervious areas into these pervious
sections, such that the only runoff tributary to these LIDs is the direct precipitation that falls upon them.
The DMA's located within the north-eastern portion of the site however do not feature cross gutters,
thus allowing for run-on from the adjacent impervious areas.
3 W.O.7063-02
...
-
-
..
-
...
-
-
-
..
-
...
..
...
BMW Carlsbad HMP Memo
December 13, 2019
To represent these differences within the SWMM model, the DMA's that are run-on to the pervious
areas (DMA-lA) are modeled as draining to pervious. Whereas for the porous pavement areas that do
not receive run-on, these areas are modeled as their own individual catchment within SWMM, allowing
for the accurate representation of impervious runoff from adjacent DMA's to bypass these porous
pavement sections and drain directly to the BMP.
Additionally, to represent the 6-inches of gravel storage located beneath the porous pavement French
Drain, the "Dstore-Perv" value for the catchment representing the porous pavement is set to 4.8-inches
(as 12 inches of gravel has only 40% of voids space available for storage, thus 6 X 0.4 = 2.4).
It should be noted that the pavers are not treatment control BMPs and as such no draw-down
calculations are required; the 57-year continuous hydrologic SWMM model demonstrates the pavers are
able to meet their HMP objective. The bio-filtration BMPs downstream of the pavers have been sized
for the full DCV and have not been reduced due to the volumetric interception provided by the paver .
BMP MODELING FOR HMP PURPOSES
Modeling of dual purpose Water Quality/HMP BMPs
Four (4) HMP BMP biofiltration basins and two {2) underground detention vaults are proposed
hydromodification conformance for the project site. Tables 4, 5 and 6 illustrate the dimensions required
for HMP compliance according to the SWMM model that was undertaken for the project.
BMP
BR-1
BR-2
BR-3
BR-4
TABLE 4 -SUMMARY OF DEVELOPED DUAL PURPOSE WQ & HMP BMPs
DIMENSIONS
Tributary BMP Gravel
Area (Ac) Area111 Depth121 LowerOrlf. Depth Riser Weir Perimeter Total Surface
(ftz) (In) D (ln)131 Invert (ft)141 Length151 (ft) Depth161 (ft)
0.726 803 13 0.875 0.75 8.0 0.92
0.414 356 13 0.675 0.75 8.0 0.92
0.394 557 12 0.75 0.75 8.0 0.92
0.506 435 12 0.75 0.75 8.0 0.92
Notes: (1): Area of amended soil equal to area of gravel
(2): Includes filter gravel layer, French Drain is set at an elevation of 3-inchesor 4-inches above the base of the facility.
(3): Diameter of orifice in gravel layer with invert at bottom of layer; tied with hydromod min threshold (0.l·Q,).
Basin
(4): Depth of ponding beneath riser structure's surface spillway.
(5): Overflow length, the internal perimeter of the riser is 8 ft (2ft x 2ft internal dimensions).
(6): Total surface depth of BMP from top crest elevation to surface invert .
TABLE 5-SUMMARY OF DETENTION VAULTS:
Area (fr) Depth (ft) Volume (ft3)
DETENTION VAULT 1,305 8 10,440
Notes: (1): Volume/area to be distributed between the two (2) individual detention facilities.
4 W.O.7063-02
"'
..
-
...
-
-
-
-
-
...
-
BMW Carlsbad HMP Memo
December 13, 2019
TABLE 6-SUMMARY OF DETENTION VAULT RISER DETAILS:
Lower Orifice Emergencv Weir
BASIN Diameter Number of Elev.111 .(ft) Width (ft) Elev. 111 (ft) (in) Orifices
DETENTION 1.125 1 0.0 5 7.2083 VAULT
Notes: (1): Invert of basin surface assumed to be elevation 0.0'.
FLOW DURATION CURVE COMPARISON
The Flow Duration Curve (FDC) for the site was compared at the POC by exporting the hourly runoff time
series results from SWMM to a spreadsheet.
Oi and 010 were determined with a partial duration statistical analysis of the runoff time series in an
Excel spreadsheet using the Cunnane plotting position method (which is the preferred plotting
methodology in the HMP Permit). As the SWMM Model includes a statistical analysis based on the
Weibull Plotting Position Method, the Weibull Method was also used within the spreadsheet to ensure
that the results were similar to those obtained by the SWMM Model.
The range between 10% of Oi and 0 10 was divided into 100 equal time intervals; the number of hours
that each flow rate was exceeded was counted from the hourly series. Additionally, the intermediate
peaks with a return period "i" were obtained (0; with i=3 to 9). For the purpose of the plot, the values
were presented as percentage of time exceeded for each flow rate. FDC comparison at the POC is
illustrated in Figure 1 in both normal and logarithmic scale. Attachment 5 provides a detailed drainage
exhibit for the post-developed condition.
As can be seen in Figure 1, the FDC for the proposed condition with the HMP BMPs is within 110% of the
curve for the existing condition in both peak flows and durations. The additional runoff volume
generated from developing the site will be released to the existing point of discharge at a flow rate
below the 10% Oi lower threshold for POC-1. Additionally, the project will also not increase peak flow
rates between the 02 and the 010, as shown in the peak flow tables in Attachment 1.
Discussion of the Manning's coefficient (Pervious Areas) for Pre and Post-Development Conditions
Typically the Manning's coefficient is selected as n = 0.10 for pervious areas and n = 0.012 for
impervious areas. Due to the complexity of the model carried out in pre and post-development
conditions, a more accurate value of the Manning's coefficient for pervious areas has been chosen.
Taken into consideration the "Handouts on Supplemental Guidance -Handout #2: Manning's "n" Values
for Overland Flow Using EPA SWMM V.5'' by the County of San Diego (Reference (6)) a more accurate
value of n = 0.05 has been selected (see Table 1 of Reference (6) included in Attachment 7). An average
n value between pasture and shrubs and bushes (which is also the value of dense grass) has been
selected per the reference cited, for light rain (<0.8 in/hr) as more than 99% of the rainfall has been
measured with this intensity.
5 W.O.7063-02
◄
...
..
..
-
-
-
-
-
-
-...
-
-
-
BMW Carlsbad HMP Memo
December 13, 2019
SUMMARY
This study has demonstrated that the proposed HMP BMPs provided for the BMW Carlsbad project site
is sufficient to meet the current HMP criteria if the cross-section areas and volumes recommended
within this technical memorandum, and the respective orifice and outlet structure are incorporated as
specified within the proposed project site.
KEY ASSUMPTIONS
1. Type B Soils is representative of the existing condition site .
2. Two (2) separate detention vaults will be constructed at the same elevation and hydraulically
linked, acting as a single detention system.
ATTACHMENTS
1. Oi to 010 Comparison Tables
2. FDC Plots (log and natural "x" scale) and Flow Duration Table.
3. List of the "n" largest Peaks: Pre-Development and Post-Development Conditions
4. Elevations vs. Discharge Curves to be used in SWMM
5. Pre & Post Development Maps, Project plan and section sketches
6. SWMM Input Data in Input Format (Existing and Proposed Models)
7. SWMM Screens and Explanation of Significant Variables
8. Geotechnical Documentation
9. Summary files from the SWMM Model
REFERENCES
[1] -"Review and Analysis of San Diego County Hydromodification Management Plan (HMP):
Assumptions, Criteria, Methods, & Modeling Tools -Prepared for the Cities of San Marcos,
Oceanside & Vista", May 2012, TRW Engineering.
[2] -"Final Hydromodification Management Plan (HMP) prepared for the County of San Diego",
March 2011, Brown and Caldwell.
[3] -Order R9-20013-001, California Regional Water Quality Control Board San Diego Region
(SDRWQCB).
[4] -"Handbook of Hydrology", David R. Maidment, Editor in Chief. 1992, McGraw Hill.
[S] -"City of Carlsbad BMP Design Manual", February 2016.
[6] -"Improving Accuracy in Continuous Hydrologic Modeling: Guidance for Selecting Pervious
Overland Flow Manning's n Values in the San Diego Region", 2016, TRW Engineering.
6 W.O.7063-02
BMW Carlsbad HMP Memo
December 13, 2019
1,7j
0.5
BMW Carlsbad POC 1-Flow Duration Curve
-•-•-•-T-•-~•-•-•-~-•-•-•-•-•-•-•-•-•-•-•-T-•-•-•~
·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·7la
:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:===========:=======:=az
-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-o. ·-·-·-·-•-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·--Q.,
·--·-·-·-·-·-·-·-·-·-·-·-·-·-·-·--·-·-·-·-·-·-·-·~
-·-·-·-·-·-·-· -o,
--Exist•~
--Pml'N')V''1
-·-U<
·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·v.so..
-·-·-·-·-·-·-·-·-·-·-·-·-·"0:3Q,
.l(ti. -. -. -. -. -• -. -. -. -. -• -. -. -• -• -• -• -• -•
nl ----~
0
lb
l 4
11
18
16
o.e o.s~,-- -- -
0 fi
l)l
0.1Q,
0
0
o.oz 0.04 O.OG
BMW Carlsbad POC 1-Flow Duration Curve
--·-·-•-·-·-·-·-·-·-·-·-·-·-·-·-·-·-q,p
OOl
Percent~• of thine arteadad (%)
- --·--- ---Q,,
=·=·===·=·=·=:===SI
--U~lillf,
__ .,,01>u~i..1
O.ll"
--a...
Figure la and lb. Flow Duration Curve Comparison (logarithmic and normal "x" scale)
7 W.O.7063-02
• .. ..
..
.. ..
•
.. ..
• ..
•
.... ..
-
..
•
..
...
BMW Carlsbad HMP Memo
December 13, 2019
ATTACHMENT 1 .
Qz to Q10 Comparison Table -POC 1
Return Period Existing Condition (cfs)
2-year 1.465
3-year 1.820
4-year 1.976
5-year 2.057
6-year 2.227
7-year 2.264
8-year 2.383
9-year 2.490
10-year 2.496
8
Mitigated Condition (cfs) Reduction, Exist -
Mitigated (cfs)
0.811 0.654
1.063 0.758
1.381 0.595
1.590 0.467
1.886 0.341
1.965 0.299
2.060 0.324
2.098 0.392
2.196 0.300
W.O.7063-02
-
..
..
-
-
...
...
-
...
-
-
..
ATTACHMENT 2
FLOW DURATION CURVE ANALYSIS
1) Flow duration curve shall not exceed the existing conditions by more than 10%, neither in
peak flow nor duration.
The figures on the following pages illustrate that the flow duration curve in post-development
conditions after the proposed BMP is below the existing flow duration curve. The flow duration
curve table following the curve shows that if the interval 0.10Q2 -Q10 is divided in 100 sub-
intervals, then a) the post development divided by pre-development durations are never larger
than 110% (the permit allows up to 110%); and b) there are no more than 10 intervals in the
range 101%-110% which would imply an excess over 10% of the length of the curve (the permit
allows less than 10% of excesses measured as 101-110%).
Consequently, the design passes the hydromodification test.
It is important to note that the flow duration curve can be expressed in the "x" axis as
percentage of time, hours per year, total number of hours, or any other similar time variable. As
those variables only differ by a multiplying constant, their plot in logarithmic scale is going to
look exactly the same, and compliance can be observed regardless of the variable selected.
However, in order to satisfy the City of CarlsbadHMP example, % of time exceeded is the
variable of choice in the flow duration curve. The selection of a logarithmic scale in lieu of the
normal scale is preferred, as differences between the pre-development and post-development
curves can be seen more clearly in the entire range of analysis. Both graphics are presented just
to prove the difference .
In terms of the "y" axis, the peak flow value is the variable of choice. As an additional analysis
performed by REC, not only the range of analysis is clearly depicted (10% of Ui to Q10) but also
all intermediate flows are shown (Q2, OJ, °'4, Us, Q6, Q1, Us and Qg) in order to demonstrate
compliance at any range Ox -Ux+1. It must be pointed out that one of the limitations of both the
SWMM and SOHM models is that the intermediate analysis is not performed (to obtain Q from
i = 2 to 10). REC performed the analysis using the Cunnane Plotting position Method (the
preferred method in the HMP permit) from the "n" largest independent peak flows obtained
from the continuous time series.
The largest "n" peak flows are attached in this appendix, as well as the values of Qi with a
return period "i", from i=2 to 10. The Qi values are also added into the flow-duration plot .
2.60
2.40
2.20
2.00
1.80
1.60
1.40
i
BMW Carlsbad POC 1-Flow Duration Curve
Qi·-·-·-·-· ·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·Qg
St :=:=:=:=:=.-:-.-·=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:~
0s ·-·-·-·-·-·-·-·
Qi ·-·-·-·-·-·-·-·
·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·as
·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·~
·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·e1a
-Existing
0 1.20 -Proposed
-•-Qx
1.00
0.80
0.60
0.20 O.lt't2 -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• -• -
0.00 +----------------r------------------.------------'------,
0.0003 0.003 0.03 0.3
Percentage of time exceeded (%)
2.6
2.4
2.2
2
1.8
1.6
1.4
a 1.2
1
0.8
0.6
BMW Carlsbad POC 1-Flow Duration Curve
·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-c.s
:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:=:~
·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-Qs
·--·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·tti
·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·113
·-·- -·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-· -Existing
-Proposed
-·-Qx
.S'li -. -• -. -• -·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-o:5Q2
0.4 -31l2 -·-·-·-·-·-·-·-·-· . -. -. -. -. -. -. -. -. -• -• -• -• -o:3Q2
0.2 .ltt2 -. -. -. -. -. -. -. -. -. -. -. -. -. -. -. -. -. -• -• -• -• -• -• -• -• -• -•
0 4-----------------------~----------------=---------~-----------
0 0.02 0.04
Percentage of time exceeded (%)
..
• Flow Duration Curve Data for BMW Carlsbad, City of Carlsbad, CA
Q2= 1.47 cfs Fraction 10% • QlO= 2.50 cfs ., Step= 0.0237 cfs
Count= 499679 hours
57.00 years
• Existing Condition Detention Optimized Pass or
Interval Q(cfs) Hours>Q %time Hours>Q %time Post/Pre Fall?
1 0.147 222 4.44E-02 239 4.78E-02 108% Pass
2 0.170 206 4.12E-02 213 4.26E-02 103% Pass
3 0.194 186 3.72E-02 191 3.82E-02 103% Pass
4 0.218 179 3.58E-02 168 3.36E-02 94% Pass
5 0.241 175 3.50E-02 143 2.86E-02 82% Pass
6 0.265 170 3.40E-02 118 2.36E-02 69% Pass
7 0.289 169 3.38E-02 110 2.20E-02 65% Pass
8 0.313 164 3.28E-02 104 2.08E-02 63% Pass
.. 9 0.336 152 3.04E-02 99 1.98E-02 65% Pass
10 0.360 149 2.98E-02 93 1.86E-02 62% Pass .. 11 0.384 146 2.92E-02 90 1.80E-02 62% Pass
12 0.408 141 2.82E-02 84 l.68E-02 60% Pass
13 0.431 141 2.82E-02 81 l.62E-02 57% Pass
14 0.455 135 2.70E-02 80 l.60E-02 59% Pass
15 0.479 132 2.64E-02 79 1.58E-02 60% Pass
16 0.502 126 2.52E-02 71 l.42E-02 56% Pass
17 0.526 121 2.42E-02 66 l.32E-02 55% Pass
18 0.550 116 2.32E-02 64 l.28E-02 55% Pass
19 0.574 110 2.20E-02 58 l.16E-02 53% Pass .. 20 0.597 106 2.12E-02 56 l.12E-02 53% Pass
21 0.621 106 2.12E-02 53 l.06E-02 50% Pass
22 0.645 101 2.02E-02 49 9.81E-03 49% Pass -23 0.669 99 l.98E-02 48 9.61E-03 48% Pass
24 0.692 94 l.88E-02 46 9.21E-03 49% Pass
25 0.716 92 l.84E-02 44 8.81E-03 48% Pass
26 0.740 89 l.78E-02 43 8.61E-03 48% Pass
27 0.763 86 l.72E-02 41 8.21E-03 48% Pass
28 0.787 -83 1.66E-02 37 7.40E-03 45% Pass
29 0.811 81 1.62E-02 36 7.20E-03 44% Pass .. 30 0.835 79 l.58E-02 32 6.40E-03 41% Pass -31 0.858 74 l.48E-02 32 6.40E-03 43% Pass
32 0.882 72 l.44E-02 29 5.80E-03 40% Pass
33 0.906 71 1.42E-02 28 5.60E-03 39% Pass -34 0.930 58 l.16E-02 28 5.60E-03 48% Pass
35 0.953 58 l.16E-02 27 5.40E-03 47% Pass
36 0.977 57 l.14E-02 26 5.20E-03 46% Pass -
Existing Condition Detention Optimized Pass or
Interval Q(cfs) Hours>Q %time Hours>Q %time Post/Pre Fall?
37 1.001 53 l.06E-02 25 5.00E-03 47% Pass
• 38 1.025 53 1.06E-02 25 5.00E-03 47% Pass
39 1.048 52 1.04E-02 24 4.80E-03 46% Pass
40 1.072 50 1.00E-02 20 4.00E-03 40% Pass .. 41 1.096 50 1.00E-02 20 4.00E-03 40% Pass .. 42 1.119 50 1.00E-02 19 3.80E-03 38% Pass
43 1.143 48 9.61E-03 19 3.80E-03 40% Pass • 44 1.167 47 9.41E-03 18 3.60E-03 38% Pass .. 45 1.191 47 9.41E-03 18 3.60E-03 38% Pass
46 1.214 47 9.41E-03 18 3.60E-03 38% Pass • 47 1.238 43 8.61E-03 18 3.60E-03 42% Pass
48 1.262 43 8.61E-03 18 3.60E-03 42% Pass .. 49 1.286 41 8.21E-03 18 3.60E-03 44% Pass
50 1.309 37 7.40E-03 17 3.40E-03 46% Pass .. 51 1.333 35 7.00E-03 17 3.40E-03 49% Pass
• 52 1.357 35 7.00E-03 16 3.20E-03 46% Pass
53 1.380 35 7.00E-03 16 3.20E-03 46% Pass
54 1.404 33 6.60E-03 15 3.00E-03 45% Pass
• 55 1.428 33 6.60E-03 15 3.00E-03 45% Pass
.. 56 1.452 33 6.60E-03 15 3.00E-03 45% Pass
57 1.475 32 6.40E-03 15 3.00E-03 47% Pass
• 58 1.499 32 6.40E-03 14 2.80E-03 44% Pass
.. 59 1.523 31 6.20E-03 14 2.80E-03 45% Pass
60 1.547 31 6.20E-03 14 2.80E-03 45% Pass
41 61 1.570 30 6.00E-03 13 2.60E-03 43% Pass
"" 62 1.594 29 5.80E-03 12 2.40E-03 41% Pass
63 1.618 27 5.40E-03 11 2.20E-03 41% Pass -64 1.641 26 5.20E-03 11 2.20E-03 42% Pass
65 1.665 25 5.00E-03 11 2.20E-03 44% Pass
66 1.689 23 4.60E-03 11 2.20E-03 48% Pass ... 67 1.713 23 4.60E-03 11 2.20E-03 48% Pass
68 1.736 23 4.60E-03 11 2.20E-03 48% Pass
69 1.760 23 4.60E-03 11 2.20E-03 48% Pass
70 1.784 23 4.60E-03 11 2.20E-03 48% Pass
71 1.808 23 4.60E-03 11 2.20E-03 48% Pass
72 1.831 22 4.40E-03 11 2.20E-03 50% Pass -73 1.855 21 4.20E-03 11 2.20E-03 52% Pass
74 1.879 19 3.80E-03 11 2.20E-03 58% Pass
75 1.903 -18 3.60E-03 10 2.00E-03 56% Pass
76 1.926 18 3.60E-03 9 l.80E-03 50% Pass
77 1.950 18 3.60E-03 9 l.80E-03 50% Pass -78 1.974 17 3.40E-03 9 l.80E-03 53% Pass
79 1.997 17 3.40E-03 9 l.80E-03 53% Pass
80 2.021 16 3.20E-03 9 l.80E-03 56% Pass
81 2.045 14 2.80E-03 9 l.80E-03 64% Pass
-
.. ..
411
411 ..
..
..
.. -..
.. ..
..
..
-
..
Interval Q(cfs)
82 2.069
83 2.092
84 2.116
85 2.140
86 2.164
87 2.187
88 2.211
89 2.235
90 2.258
91 2.282
92 2.306
93 2.330
94 2.353
95 2.377
96 2.401
97 2.425
98 2.448
99 2.472
100 2.496
Existing Condition Detention Optimized Pass or
Hours>Q "time Hours>Q "time Post/Pre Fall?
12 2.40E-03 7 l.40E-03 58% Pass
12 2.40E-03 7 l.40E-03 58% Pass
12 2.40E-03 7 l.40E-03 58% Pass
10 2.00E-03 7 l.40E-03 70% Pass
10 2.00E-03 7 l.40E-03 70% Pass
10 2.00E-03 7 l.40E-03 70% Pass
10 2.00E-03 7 1.40E-03 70% Pass
9 l.80E-03 6 l.20E-03 67% Pass
8 l.60E-03 5 l.00E-03 63% Pass
8 l.60E-03 5 l.00E-03 63% Pass
8 l.60E-03 5 l.00E-03 63% Pass
7 l.40E-03 5 l.00E-03 71% Pass
7 l.40E-03 5 l.00E-03 71% Pass
7 1.40E-03 5 l.00E-03 71% Pass
7 l.40E-03 5 l.00E-03 71% Pass
7 l.40E-03 4 8.0lE-04 57% Pass
7 l.40E-03 4 8.0lE-04 57% Pass
7 1.40E-03 4 8.0lE-04 57% Pass
6 l.20E-03 4 8.0lE-04 67% Pass
Peak Flows calculated with Cunnane Plotting Position
Return Period Pre-dev. Q (cfs) Post-Dev. Q Reduction
(years) (cfs) (cfs)
10 2.496 2.196 0.300
9 2.490 2.098 0.392
8 2.383 2.060 0.324
7 2.264 1.965 0.299
6 2.227 1.886 0.341
5 2.057 1.590 0.467
4 1.976 1.381 0.595
3 1.820 1.063 0.758
2 1.465 0.811 0.654
..
411
.. ..
•
..
11
..
...
..
-
-
-
-
-
-
ATTACHMENT 3
List of the "n" Largest Peaks: Pre & Post-Developed Conditions
Basic Probabilistic Equation:
R = 1/P R: Return period (years).
P: Probability of a flow to be equaled or exceeded any given year (dimensionless) .
Cunnane Equation:
p = i-0.4
n+0.2
Weibull Equation:
p =-i-
n+l
i: Position of the peak whose probability is desired (sorted from large to small)
n: number of years analyzed .
Explanation of Variables for the Tables in this Attachment
Peak: Refers to the peak flow at the date given, taken from the continuous simulation hourly
results of the n year analyzed.
Posit: If all peaks are sorted from large to small, the position of the peak in a sorting analysis is
included under the variable Posit.
Date: Date of the occurrence of the peak at the outlet from the continuous simulation
Note: all peaks are not annual maxima; instead they are defined as event maxima, with a
threshold to separate peaks of at least 12 hours. In other words, any peak P in a time series is
defined as a value where dP/dt = 0, and the peak is the largest value in 25 hours (12 hours
before, the hour of occurrence and 12 hours after the occurrence, so it is in essence a daily
peak).
... ..
..
• ..
..
41
..
-
-
-
...
List of Peak events and Determination of Q2 and Ql0 (Pre-Development)
BMW Carlsbad -POC 1
T Cunnane Weibull Period of Return
(Year) (cfs) (ds) Peaks (cfs) (Years)
10 2.50 2.59 Date Posit Weibull Cunnane
9 2.49 2.49 0.908 1/15/1978 57 1.02 1.01
8 2.38 2.44 0.923 9/18/1963 56 1.04 1.03
7 2.26 2.29 0.923 1/11/2005 55 1.05 1.05
6 2.23 2.23 0.926 3/15/1986 54 1.07 1.07
5 2.06 2.07 0.926 12/24/1988 53 1.09 1.09
4 1.98 1.99 0.927 2/19/1958 52 1.12 1.11
3 1.82 1.82 0.929 1/6/1979 51 1.14 1.13
2 1.47 1.47 0.986 8/17/1977 50 1.16 1.15
0.992 2/22/1998 49 1.18 1.18
0.992 2/12/2003 48 1.21 1.20
Note: 0.994 11/8/2002 47 1.23 1.23
Cunnane is the preferred 1.039 12/31/2004 46 1.26 1.25
method by the HMP permit. 1.053 2/4/1994 45 1.29 1.28
1.069 3/1/1991 44 1.32 1.31
1.123 11/11/1985 43 1.35 1.34
1.137 4/27/1960 42 1.38 1.38
1.157 2/14/1998 41 1.41 1.41
1.226 1/18/1993 40 1.45 1.44
1.237 12/2/1961 39 1.49 1.48
1.277 2/12/1992 38 1.53 1.52
1.292 2/15/1986 37 1.57 1.56
1.296 3/2/1980 36 1.61 1.61
1.304 1/16/1978 35 1.66 1.65
1.304 1/29/1980 34 1.71 1.70
1.32 3/11/1995 33 1.76 1.75
1.325 1/6/2008 32 1.81 1.81
1.394 12/30/1991 31 1.87 1.87
1.394 2/17/1998 30 1.93 1.93
1.465 1/27/2008 29 2.00 2.00
1.512 2/23/1998 28 2.07 2.07
1.59 10/20/2004 27 2.15 2.15
1.595 2/16/1980 26 2.23 2.23
1.611 2/10/1978 25 2.32 2.33
1.627 11/22/1965 24 2.42 2.42
1.664 2/27/1983 23 2.52 2.53
1.667 1/29/1983 22 2.64 2.65
1.667 2/3/1998 21 2.76 2.78
1.808 3/17/1982 20 2.90 2.92
1.832 1/16/1952 19 3.05 3.08
1.856 11/15/1952 18 3.22 3.25
1.864 12/19/1970 17 3.41 3.45
1.879 10/27/2004 16 3.63 3.67
1.958 4/1/1958 15 3.87 3.92
2.021 1/14/1993 14 4.14 4.21
2.034 3/1/1978 13 4.46 4.54
2.046 2/20/1980 12 4.83 4.93
2.12 2/18/2005 11 5.27 5.40
2.227 10/29/2000 10 5.80 5.96
2.235 2/25/1969 9 6.44 6.65
2.309 2/4/1958 8 7.25 7.53
2.488 9/23/1986 7 8.29 8.67
2.497 2/25/2003 6 9.67 10.21
3.025 1/4/1995 5 11.60 12.43
3.175 1/15/1979 4 14.50 15.89
3.525 1/4/1978 3 19.33 22.00
3.541 10/1/1983 2 29.00 35.75
3.911 4/14/2003 1 58.00 95.33
-...
11
..
..
..
..
..
-
-
-
-
-
-
List of Peak events and Determination of Q2 and Ql0 (Post-Development)
BMW Carlsbad -POC 1
T Cunnane Weibull Period of Return
(Vear) (cfs) (cfs) Peaks (cfs) (Years)
10 2.20 2.22 Date Posit Weibull Cunnane
9 2.10 2.14 0.233 1/14/1993 57 1.02 1.01
8 2.06 2.06 0.237 12/17/1987 56 1.04 1.03
7 1.97 2.01 0.237 10/29/2000 55 1.05 1.05
6 1.89 1.89 0.238 3/2/1983 54 1.07 1.07
5 1.59 1.59 0.238 10/12/1987 53 1.09 1.09
4 1.38 1.41 0.239 2/14/1954 52 1.12 1.11
3 1.06 1.07 0.242 1/6/1977 51 1.14 1.13
2 0.81 0.81 0.243 12/19/1967 50 1.16 1.15
0.243 2/18/2005 49 1.18 1.18
0.271 9/23/1986 48 1.21 1.20
Note: 0.359 4/1/1958 47 1.23 1.23
Cunnane is the preferred 0.372 10/20/2004 46 1.26 1.25
method by the HMP permit. 0.375 1/15/1993 45 1.29 1.28
0.376 1/11/2005 44 1.32 1.31
0.394 12/29/2004 43 1.35 1.34
0.426 1/27/1956 42 1.38 1.38
0.482 12/25/1983 41 1.41 1.41
0.483 1/18/1952 40 1.45 1.44
0.502 1/16/1952 39 1.49 1.48
0.503 2/18/1980 38 1.53 1.52
0.514 1/11/1980 37 1.57 1.56
0.562 1/18/1993 36 1.61 1.61
0.58 10/27/2004 35 1.66 1.65
0.617 1/22/1967 34 1.71 1.70
0.624 3/3/1983 33 1.76 1.75
0.637 1/25/1969 32 1.81 1.81
0.751 3/11/1995 31 1.87 1.87
0.759 11/22/1996 30 1.93 1.93
0.811 12/5/1966 29 2.00 2.00
0.814 1/20/1962 28 2.07 2.07
0.824 3/5/1995 27 2.15 2.15
0.866 11/30/2007 26 2.23 2.23
0.905 1/16/1993 25 2.32 2.33
0.947 1/9/2005 24 2.42 2.42
0.998 1/13/1997 23 2.52 2.53
1.033 2/23/2005 22 2.64 2.65
1.05 3/8/1968 21 2.76 2.78
1.054 1/15/1978 20 2.90 2.92
1.071 1/6/1979 19 3.05 3.08
1.1 2/15/1986 18 3.22 3.25
1.149 2/22/2008 17 3.41 3.45
1.299 3/1/1991 16 3.63 3.67
1.336 1/16/1978 15 3.87 3.92
1.494 2/23/1998 14 4.14 4.21
1.56 1/29/1980 13 4.46 4.54
1.588 11/22/1965 12 4.83 4.93
1.6 3/17/1982 11 5.27 5.40
1.885 2/20/1980 10 5.80 5.96
1.905 3/1/1978 9 6.44 6.65
2.056 2/25/1969 8 7.25 7.53
2.065 2/4/1958 7 8.29 8.67
2.217 2/25/2003 6 9.67 10.21
2.237 1/4/1978 5 11.60 12.43
2.606 10/1/1983 4 14.50 15.89
2.766 1/15/1979 3 19.33 22.00
3.323 1/4/1995 2 29.00 35.75
3.7 4/14/2003 1 58.00 95.33
-
-
-
-
-
....
-
-
-
41
• -
-
-
-
-
-
ATTACHMENT 4
AREA VS ELEVATION
The storage provided beneath the first surface outlet by the LID BMP is entered into the LID
Module within SWMM -please refer to Attachment 7 for further information. The surface bio-
filtration BMPs are bordered by vertical walls, as such the area is constant with depth.
Similarly, the underground detention vault has a constant area as the depth increases due to it
being a walled structure.
DISCHARGE VS ELEVATION
The orifices have been selected to maximize their size while still restricting flows to conform
with the required 10% of the Q2 event flow as mandated in the Final Hydromodification
Management Plan by Brown & Caldwell, dated March 2011. While REC acknowledges that
these orifices are small, to increase the size of these outlets would impact the basin's ability to
restrict flows beneath the HMP thresholds, thus preventing the BMP from conformance with
HMP requirements.
In order to further reduce the risk of blockage of the orifices, regular maintenance of the riser
and orifices must be performed to ensure potential blockages are minimized. A detail of the
orifice and riser structure is provided in Attachment 5 of this memorandum .
The LID low flow orifice discharge relationship is addressed within the LID Module within
SWMM -please refer to Attachment 7 for further information.
-
-
-
-
-
-
-
-
-
-
-
-
-
DISCHARGE EQUATIONS
1) Weir:
Qw = Cw • L . H3f2 (1)
2) Slot:
As an orifice: Q -B • h • c • ✓ 29 (H -hs) s-s s g 2 (2.a)
As a weir: (2.b)
For H > h, slot works as weir until orifice equation provides a smaller discharge. The elevation such that
equation (2.a) = equation (2.b) is the elevation at which the behavior changes from weir to orifice.
3) Vertical Orifices
As an orifice: Q0 = 0.25 • rrD2 • c9 • j29 ( H -~) (3.a)
As a weir: Critical depth and geometric family of circular sector must be solved to determined Q as a function of
H:
Q5 A~r -=-;
B Ter
A ~----D2 er .J H = Yer+~; Ter = 2 YerCD -Yer); Aer = B [aer -sin(aer)]; er
Yer = ~ [1 -sin(O.S • aer)J (3.b.l, 3.b.2, 3.b.3, 3.b.4 and 3.b.5)
There is a value of H (approximately H = 110% D) from which orifices no longer work as weirs as critical depth is
not possible at the entrance of the orifice. This value of H is obtained equaling the discharge using critical
equations and equations (3.b).
A mathematical model is prepared with the previous equations depending on the type o discharge.
The following are the variables used above:
Ow, Os, Oo = Discharge of weir, slot or orifice (cfs)
Cw, Cg: Coefficients of discharge of weir (typically 3.1) and orifice {0.61 to 0.62)
L, B,, D, h, : Length of weir, width of slot, diameter of orifice and height of slot, respectively; (ft)
H: Level of water in the pond over the invert of slot, weir or orifice (ft)
Acr, Tcr, ycr, acr: Critical variables for circular sector: area (sq-ft), top width (ft), critical depth (ft), and angle to the center,
-respectively.
-
-
-
..
,,;
-
-
-
-
-
-
-
-
-
-
-
-
Outlet structure for Discharge of Underground Vault
Discharge vs Elevation Table
Low orifice: 1.125"
Number: 1
Cg-low: 0.61
Middle orifice: 1 "
number of orif: 0
Cg-middle: 0.62
invert elev: 0.25 ft
Lower slot
Invert:
B
h
Upper slot
Invert:
B:
h
0.00 ft
0.00 ft
0.000 ft
0.000 ft
0.00 ft
0.167 ft
h H/D-low H/D-mid Qlow-orif Qlow-weir Qtot-low Qmid-orif
(ft) --(dsl (dsl (cfs) (cfsl
0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.250 2.667 0.000 0.015 0.019 0.Q15 0.000
0.500 5.333 3.000 0.023 0.202 0.023 0.000
0.750 8.000 6.000 0.028 0.283 0.028 0.000
1.000 10.667 9.000 0.033 0.330 0.033 0.000
1.250 13.333 12.000 0.037 0.371 0.037 0.000
1.500 16.000 15.000 0.041 0.407 0.041 0.000
1.750 18.667 18.000 0.044 0.441 0.044 0.000
2.000 21.333 21.000 0.047 0.472 0.047 0.000
2.250 24.000 24.000 0.050 0.502 0.050 0.000
2.500 26.667 27.000 0.053 0.529 0.053 0.000
2.750 29.333 30.000 0.056 0.556 0.056 0.000
3.000 32.000 33.000 0.058 0.581 0.058 0.000
3.250 34.667 36.000 0.060 0.605 0.060 0.000
3.500 37.333 39.000 0.063 0.628 0.063 0.000
3.750 40.000 42.000 0.065 0.650 0.065 0.000
4.000 42.667 45.000 0.067 0.672 0.067 0.000
4.250 45.333 48.000 0.069 0.693 0.069 0.000
4.500 48.000 51.000 0.071 0.713 0.071 0.000
4.750 50.667 54.000 0.073 0.733 0.073 0.000
5.000 53.333 57.000 0.075 0.752 0.075 0.000
5.250 56.000 60.000 0.077 0.771 0.077 0.000
5.500 58.667 63.000 0.079 0.789 0.079 0.000
5.750 61.333 66.000 0.081 0.807 0.081 0.000
6.000 64.000 69.000 0.082 0.824 0.082 0.000
6.250 66.667 72.000 0.084 0.842 0.084 0.000
6.500 69.333 75.000 0.086 0.858 0.086 0.000
6.750 72.000 78.000 0.087 0.875 0.087 0.000
7.000 74.667 81.000 0.089 0.891 0.089 0.000
7.208 76.885 83.496 0.090 0.904 0.090 0.000
7.500 80.000 87.000 0.092 0.923 0.092 0.000
7.750 82.667 90.000 0.094 0.938 0.094 0.000
8.000 85.333 93.000 0.095 0.953 0.095 0.000
Emergency Weir
Invert: 7.208 ft
B: 5 ft
Qmid-weir Qtot-med Qslot-low Qslot-upp Qemer Qtot
(dsl (cfs) (cfs) (cfs) (cfs) (cfs)
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.Q15
0.000 0.000 0.000 0.000 0.000 0.023
0.000 0.000 0.000 0.000 0.000 0.028
0.000 0.000 0.000 0.000 0.000 0.033
0.000 0.000 0.000 0.000 0.000 0.037
0.000 0.000 0.000 0.000 0.000 0.041
0.000 0.000 0.000 0.000 0.000 0.044
0.000 0.000 0.000 0.000 0.000 0.047
0.000 0.000 0.000 0.000 0.000 0.050
0.000 0.000 0.000 0.000 0.000 0.053
0.000 0.000 0.000 0.000 0.000 0.056
0.000 0.000 0.000 0.000 0.000 0.058
0.000 0.000 0.000 0.000 0.000 0.060
0.000 0.000 0.000 0.000 0.000 0.063
0.000 0.000 0.000 0.000 0.000 0.065
0.000 0.000 0.000 0.000 0.000 0.067
0.000 0.000 0.000 0.000 0.000 0.069
0.000 0.000 0.000 0.000 0.000 0.071
0.000 0.000 0.000 0.000 0.000 0.073
0.000 0.000 0.000 0.000 0.000 0.D75
0.000 0.000 0.000 0.000 0.000 0.077
0.000 0.000 0.000 0.000 0.000 0.079
0.000 0.000 0.000 0.000 0.000 0.081
0.000 0.000 0.000 0.000 0.000 0.082
0.000 0.000 0.000 0.000 0.000 0.084
0.000 0.000 0.000 0.000 0.000 0.086
0.000 0.000 0.000 0.000 0.000 0.087
0.000 0.000 0.000 0.000 0.000 0.089
0.000 0.000 0.000 0.000 0.000 0.090
0.000 0.000 0.000 0.000 2.442 2.534
0.000 0.000 0.000 0.000 6.180 6.273
0.000 0.000 0.000 0.000 10.919 11.014
-..
...
...
..
... ..
...
...
...
-
-
-
-
-
-
ATTACHMENT 5
Pre & Post-Developed Maps, Project Plan and Detention
Section Sketches
f
1
BROWN AIID CALDWELL lTHE 4.E'•l l l'll
1
BEST IMAGE
POSSIBLE
\ ---
\
---
--
------.
ENTIRE SITE ULTIMATELY
DISCHARGES TO Cll"Y'S
SD SYSTEM
-Poe
------~-...,.--._;;-:-....-
/ /
/ / /
_1:,1o-// /
/ /
/ / __ ,.,,., /
/
/ /
/ / -/ / / /
/ r,/ / q,v /
I / ;
I I f I I I I
I I / / 7: / I f/eo
1 111 1 cs ;
I I I I / /
I I / : / /
I I I I I J t
I
'
' -I ·s ••• -~-
11
,o ---~---sa ---
cs ---c:s ---
DMA-1C
t
STRUCTURAL BMP-5:
PROPRIETARY BIOFILTRATION (BF-3) FOR
ROOF RUNOFF POLLUTANT CONTROL
ROOF DRAIN
TO BMP-5
PROPOSED ROOF DOWN
DRAIN LOCATION,
CONNECTS TO BMP-5
STRUCTURAL BMP-6:
UNDERGROUND
DETENTION VAULT FOR
HYDROMODIFICATION
MANAGEMENT
t
ROOF DRAIN
TO BMP-5
\
" .
t
" •
-
,·;·!; / \) I ST~UCTURAL BMP-4
BIOFILTRATION (BF-1) FOR POLLUTANT
CONTROL AND HYDROMODIFICATION
MANAGEMENT
\
I ------------'"', --.--=----AUTO CENTER CT
-~-------------------
~-:.17
"
STRUCTURAL BMP-6:
UNDERGROUND DETENTION VAULT FOR
HYDROMODIFICATION MANAGEMENT
"
I
/ I I
'\
'-._
" 103
' '
' '
\ I I I I I I
I 1.5
\ I I \ I
"
I
;
\
!..,/ ti.'
I
" :::s
STRUCTURAL BMP-2:
BIOFILTRA.TION \IV/ PARTIAL RETENTION
(PR-1 ) FOR POLLUTANT CONTROL AND
HYDROMODIFICATION MANAGEMENT
"_/
I . .,A"~ ' ~'\
I
I
I
-\/ --/
/
/
)
\
DMA-1A
I
I
I
I
I
I
I
I
{...
I
I
\
\
\
I
I
I
I
I
I
I
I
I
I
\
I
\
I
I
511 I
t I
~ ~ I s I
8 I
j /
I
I
I
\
I
\
I
\
I
I
\
I
I
I
I
I
I
I
I
I
I
I
I
LEGEND:
ASPHALT (IMPERVIOUS) ----PROPER1Y LINE
I . , .1 CONCRETE (IMPERVIOUS) SURFACE FLOW DIRECTION
I I I I I I I 11 PERMEABLE PAVERS -so -PROPOSED STORM DRAIN SYSTEM
LANDSCAPE (DMA-#) DMAID
ROOF AREA 0 OMA SUB-AREA ID
MAJOR OMA BOUNDARY ---cD--PROPOSED CONTOUR ----SUB-OMA BOUNDARY .;:.--EXISTING CONTOUR
I™ BIOFILTRATION BASIN V////,,;;I UNDERGROUND DETENTION VAULT
W/ PARTIAL RETENTION [~rrgr:gu PROPRIETARY BIOFILTRATION DEVICE l e·· >I BIOFILTRATION BASIN
GEOTECHN ICAL IN FO :
• HYDROLOGIC SOIL GROUP: B
• INFILTRATION: 0.041 IN/HR
• SOIL EXPANSIVE POTENTIAL VERY LOW
• DEPTH TO GROUNDWATER: >50'
CCSYA ANALYSIS:
NO CRITICAL COURSE SEDIMENT YIELD AREAS TO BE PROTECTED BASED ON WMAA MAPS.
BMP DETAILS
SEE LID BMP DETAILS IN ATTACHMENT 1E OF SWOMP
OMA SUMMARY:
SEE ATTACHMENT 1 B OF SWOMP
20 0 20
GRAPHIC SCALE
SCALE: 1"= 20'
40
C
C E
~ u 2
<C I m co §l
n
0 " " " 0 u I "' ::a m,
C 0
0 z
0 ---------------------------------..----------------------1"1
PREPARED FOR :
AUTONATION INC.
200 SW 1 ST STREET, 14TH FLOOR
FORT LAUDERDALE , FL 33301
CONTACT: CLIFF POWELL
TEL: (954) 769-6000
PREPARED BY:
Tod ay's Ideas. Tomorrow's Rea lity,
Commercial
Development
Resources
412< Wester~, Place #11 2 Newport Beacn CA 92660
T 9,!.9-640-8997 www CDRwest com
DMAEXHIBIT
I + u "' o; a. ~ ..... ----------------------1~'
BMW OF CARLSBAD
1060 AUTO CENTER COURT
CARLSBAD, CA 92008
~ '° -"' 0 N
I
I
s. § ;,-40 SC'.i..£
"' ·' •
~ l;,W SCA!.£
" ' '-
-t 6
·' "
-
" ' '-
--
~ ' ; ' ..
.t ..,..
! •~ Si.OTT@ 1-!0l.£ FOR
\ I/SE WiTI{ f, EXPANSION
\ M'CHORS/Nllf'S,h/ltSHERS
\ I
BOLT HOLE DETA IL
j
' i .J ..
' . ,
~
r-----ci:,' .-- -.q;y • ',-, . m-.. ·,: ~~ • CJ ~ ' ''' ' ''' ; : I :
''' ''' ''' '' , ' . . ,, ,L_ .. -? ~-.... '
-------~ I
TOP VIEW
--------
r·----' ' ,..----7 ' . ' c::b~--.. I I : q::i • 'J ' Ff> <? ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ~:, <? ' ' • ' ci, ~"' '<p ' ' • I' __ .,, ' '
' ' ,_ ___ .J
-
,.I,_, '1SWB I , .
4'-3"-/'-9" ,·-o·
TOP VIEW
.,
C
~
lltlS PI/IJWG1 ,,,,, 1£ PlirJTU:T[l] 11T
r,,t:r,#//IOil£1JT ll£rol/.OIIM U!;
/WD,r;;; :t:~r-"'1m1: m,,i,.,,..-111. liRAllil "'103<
l".,?},'l:l (),!(1110/f'AJOr.S l'O(JN;
I ~ C ' ' ~ .'? .? ' " ~
J
., ' "-
/H/5""1Di.Cl ~t/ifiM/CDl!r
//ICOIIVJil!"Of'IICm.Jl)ffi';Q:'; ;!OJ!)llS: ID.l~!AJ 12 It
1a.::;1.DKlll. l!i'L<llDfU/fD/
Mf.7o1S (,R @a i't4llMS F'fJONC
. e • ·' '
J 6 ~ ·' ' I ..
J -.
t
i-_ -----------
I-----s·-o··-----"
EXTERIOR VIEW
(4) S.."f BOLT
HO!.£ OUAJL
l__
, cI :■==-~~=:-=:_.~;:. ===::; .• c:.;~:§::.=::■::0,I __ ~~,., a.
I i-----a·-o·-----j,
TOP VIEW
~ ~=--i-·¼--¼~-~ (~)SEE80U
I HOLE Df:TAfl
I
I
I
I
I
I
I
~-I
~~ I
I~ :
1 ! ~
I
I
I
I
I
I
I
r------------_j --
>-----e·-1·-----
EXTERIOR VIEW
~· 7"-----,
TOP VIEW
PR0PR£TAJ?'f' A'IC COIIF/0&,'PAL:
,?£ ~ CDf(7l,N(1) Pl r1C1 (>Xl.lll[}lr IS 11£ set£
fmPOifT er,_ -rr. a:uw.ia: 1111.': ~ .,,,_,,,,_,_MIT!ICl.:lrn,IIY'l10aCEDC1ilut'Dr.f!J
.. ;.,rr -,,,r,, (JIii 11£ .mo, aJNZM Cf'~
Bio ~Clean URBANPOND
PRECAST CONCRETE STORMWATER DETENTION
DOUBLE MODULE -EXTERIOR WALL PANEL
=, µ
~ ,·
-4·-10·-i
~ . " I 8'-o"
ELEVATION VIEWA
PRGP1?1[1/l/<Y AND CONFIOOfflAL•
IJC -co,rJll€i) I{ r,1//; IX!CMl,T IS r:c S:U /JKPt](l'/CY"ramJRJ.,W!flS~ N(;~
IOtMT""'1/lODY. ...,.!!Cil'i>D. /t(JWIIIQ;;}(III~
II --MIii (JJf' 7IC Mlr.Clf a:,,so,r (}F ~
[ --~-~ ::::: -~;.:;--
t-1----,·-,·----,
ELEVATION VIEW A
I
,·
1------0'-a''----,
ELEVATION VIEW B
¾° CHM/FER
(TYP)
I
' ' ' iu-'
ELEVATION VIEW C
URBANPOND
I
PRECAST CONCRETE STORM WATER DETENTION
DOUBLE M ODULE -INTERIOR
7
-f i' CIIA1'ffP
(m')
,-----s·-r·------,
ELEVATION VIEW B
r-f-1-------1-:-
--
r;-_t--------it-;-
ELEVATION VIEW C
PROPR/£T/Jrl 1110 COl'iAlJDITIAL:
II,£ -tDmtH;J II /Ill.': fJCC.AO.T IS 11C 5aI -,r OT fCRTUJIJ ...., 13 ~ r,11'/ trc.lllD,T,
!fr,#/N<'f/llltl' n-. AWl!Cu:'im ~ OR /liJORii N NIY MMC/ rm, wr l>< -,rrtJ, ca,QJ/1 Of ~
Bio ~Clean URBA NPON D
PRECAST CONCRETE STORM WATER DETENTION
DOUBLE MODULE · PERIMETER ·--
-------·----.-:':\.:----•
f'IIIISll{D $NACE~-------
C(Jl,/('JCTW $/J8-~ '
------------------------------------------------------------------------------------------________________________________________ -----------------------------______________________ ------_________________ -----------______________________________ _ -------------------------------------------., \ I )-1 1---~r-m EXTERIOR INTERIOR ~ I I VIEW V/£W p I" 1k I li£.~' g sm1
l===i I I-,;;;;:,, 11 : >-Ill """" ,-1
"'1n~,ILL! ,1' ~lili! ff,""'1,-:L-11 1 -,"", ,==1::::1 l:C-=-11-111 -J=LII-,~-, ,·.1,-,-1,1-111-'-,,-11-,-111-,,-11-,:i~-L.-.,1:1-1,-,-111-=~,11,-.--,1 1-½-1-,ul 1L-I_I 1-J-I--' I ,--,1 ,~ ,·"-~ ·, l_jl -=1-,i'1-=1.1.1 IL =-11-111-'-_-'-,-1,·1-11,-t,.1:1-ll.1._.,-I-I I!-., -:I L. 1:-111-1 _uL..L=l_.1 ,"" I I 11 i'
INSTALlATION NOTES
\ntTO? rABmC,'}JNfR ~rl()N FOR == (~,rr.; Af/D /fiS.""'-!£D f!f ~
SE£ 11($~ NO'ff 1
1. CO/'fTRACTOR TO PRCWJE At.1 I..ABfJR, £0'.IIPUE/VT, IJ..'.JEl?W..S MO /f/CiDENTALS
R£0UiR[!J TO omo.w AN!) 11.'STAJJ. TH[ SYSTtM All[) APPURITTIAA'C[S IN
ACCOROANCC :+ITH Tl-ifS DRAW/NC AND THE wt,'UFACTUR'.R'S SP[CIACATIONS, IJNJ.£S5
OT/i'EPWJS[ SWIT! Ill iJJ,NUf'ACTIJR[P'S CO.I/TRACT.
2. VNrr !JUST 8£ INSTAll.tD ON LM!. 8ASl. MANUFACTUR[R RECOJ./MENDS A POURE:n
IN Pl.ACE CONCR£Jr BAS£ SUB IJNl.£5S SPWFilO S'f 'f'Hf PROJ[CT ENCINEER.
CONTRACTOR IS RESPONSJBI.E FOR VfR!rrlNC PRO.JfCT [NC!N([l?'S RECOIJMENlJf!J
BASf SPEC/Fr..AT/0/.15.
J. All PIPES MUST BE r7_1/SH WITH INS/OE SURFACE or CONCREJ£. (PIPES CAJl/o/07
11/TT?UOE BCYONO Fl/ISi-/,) WV[Jff or oum.o-,,, PIPE NI/ST BE nUSH WffH
DISCHARGE CHMIBD? Fl..00!?. All ~PS AFtOUA'O P'.PES 51-W..L 8£ SfAL,;,'T! WATERf/CHT
'NfTH A !-.'0/J-SHR/NK GROW' i'fR MAMJFAC11.JR£R'S STA,VCARO CONNECnON DITA'! AND
SXIJ.L MfIT OR IXCEED REC.'OIIAl PIP£ CONNECnON STM'DARDS.
~-CCNiPACTOR TO SUPPLY ANO /IISTALl AL1 EXll:RNAL CONN[C11NC P!PfS.
5. CTPTP.,1.CTOR RESPONS!S/..£ FOR INST~TION OF A1.1. RISERS, IMNHOL[ FRAMES A'JlJ
CCl-fRS. CONTRACTOR TO GROlff ALL FRAJ.1£5 AND COVERS iO MATCH r7N/5H£1)
SURFACE IJl','l£SS SPE.CIF:ED OTH€RW!S£.
6. THE: URBANPONlJ UODiJI..E SYST[/,/ IS TO SE INSTALlEO IN ACCORCN(C[ WITH ASfll C~l-90, INSTALU.7/0f_. Of Ut,'/J[RGR()UNO PR[CAST UTIU!Y STRUCTURES PROJ£Cf
Pl.AN AND SPECIF!CATX)NS U~'SI 8£ FOLLOWED ALONG wrrH ANY APPUCABI.[ !ft.GUI..AT!l]r,'S.
l. DfSIGNATEO £M8ECD[D UFTERS UUST 8£ USfl). USE PROPfR RICCINC ro .tSSURE All.
LJFTERS ME EOUAJ..Lr ~C[O ~n"H A AJ/NJJ./1,'IJ 50 OECRff AMC/.£ GI.' SU,ll(;S AS
NOiEI) AND IN ACCOR!WJCf lfr.1-f UANIIFAcruRER'S Uti /NG PRCC£0U,'?ES.
8. uaouu:; MUST Bf PU.CED A5 CLOS[ TOCITH[R AS POSSIBLE, A/10 ws Si-V,LJ. NOT
BE Gf?[AT[H THAN 1/.f'. Ai.L 00£R10rr StST[M JOINTS 9-W..l 8£ COVERm '(,7:H A
J.JJN. 8" JOINT liP./.P (ON SliJES ANO TOP).
9. THt Fill rocm M:0/JNO TH£ !JRBANPQNO JAOOULES IJUS{ BE [)[f'OSITEO FIW.r. AT
APPROXi'/JATELY THE SIJI[ EL'VAnON, AROUND All. 5/0[S. AT NO 771./E SHALL rm
..
4.0'
15" DIA. VC OUTLET
4.0'
CONCRET
WEIR WALL
ORIFICE
PLATE
ELEVATION VIEW
NTS
rill BEHIND ON[ S/0£ Bf MOR£ TrlAA' t'-0" HrCHER 1HAli rH[ Fill ON THE
OPPOSflE 5/{)[. BACKRU S1--W.L 8£ CO!.!PACT[[) IWD/OR VliJRA7£0 TO '761.JR[ THAT
BA';KF/Ll JJA'lfRIAL JS II/EU SO.'TElJ AND PROff:RLY INTr:RlOCK[[) CAR£ SH4Ll Bt.
TMEN re, PRE'/£,Vf ANY W'f:OGINC ACTION !,C,!JNSJ THE 5'Rl'Cil/R£, AND All. SLOPES
w:71-1/N TH£ ARE4 TC 8£ BACJ<fll.i.ll) MUST SE STEPP[{} OR S['<RATElJ TO ,ORl','ENT
W£DGING ACTION. CARE SH/.LJ. N..SO BE 7Nf.£N SO AS NO{ T~ DISRUPT /;{[ JC/NT
~p moM 7H[ JO//'{[ 0/Jfi/NG THE BACl<All PROCESS. BACKAU /JAl[li/AJ. /JUST 8£
Ci.IAN, CRUSHED, ANGl..'/M ND. S (MS/;70 llfJ) NJCRECATE CR NAri'.'£ MArr.;"..i.l tr APPROVF:D Br 7H£ S,7£ CEO'TFCHN/r;A!_ [NGiN[[R. IF NATrv'E IIATER14l IS SUSCt.Pnet.£
70 1.1/CR!WOII, CONFIRM WITH C£0T[C1-!N!CA!, ENC/NffR AND PROV/OE PROTECTl()t.' AS
REOtJ/Rm.
10. TH[ F1.lL P/AC[D ON ,?{[ SYSTEJJ S.'WJ. B[ Pi.AC::[) M J1 JJWIMU/1 or 5• LIF15. Ar
ND TIME SHAll. /IA,:,J;t.V£Rr OR Vf"HIC'..ES CR&ff& ~ iH[ DESIG.'J HS-20 lOAD,'NC
CRl7ERIJ1 m.1\.fl ON roP or rm S'ISilM Wl/WIJT lH[' 1,/{/'l!J.IUM 0£SiGN CQVERI,(;£.
If iRJ..','fl IS N[CfSSARY OV[R TH[ srsrru PRJOR iO ACH/£V/NC TH£ t.llNI/JUII DESIGN
CO.-fR. fl At4r SE N[CE7.K?Y 70 REC/JC£ TrlE UL7714AT£ LOAIJ/BUROEN Of iHt
O?=RAnt.C MACH/N[RI' SO AS NCT 10 £XC££D TH£ CAP/JCl1Y OF 7H[ SmrM. IN
SOM[ CtSfS, IN OR".£R rr; J1CH!21[ REOVIR[O CGJIPACnoN, HANO COUPAC710N MAY 8£ lo'[CESSARY IN CRO[R ro NOT fXCE£l) TH£ A11017!D DESICN L~NG.
TJ. A PRE-CONS'JRU{;nDN MUTING rs R[OU!R[l) PRIOR TO P/..ACE/,l[NT or I.JRBANPONO.
GENERAL NOTES
T. IJANUFJ.Cj/jRfR TO PROVIDF All IIATEPIAI_S UNL£SS ONRMSF /olOT'ED.
2. All O!MEN5f0.VS, E'...IVJ17/0NS, S?ffJf/CAl/ONS ANO CN'ACITl£S AR[ SIJBJ[CT ro
CHANG£. FOR ?!<OJECT SPECIFIC !)f?AMIIGS OITI.JUNC EXACT OIUEJiSIONS, WfJCHTS
AND ACCESSORIES PWSE CONlACT UVJIJFACTURER. J. ANY VN?/AOON FOUND O'JR/NG CONSTRUCTKJN FROM iH[ Sil[ AN{) SYSTEM .4.\/AlYSiS
M!JST BE REPORT'ED TD THE P/?CllfCT OESl(;N [N';INEER,
PP.OPf/1':;rlJ'Y ,W, CW/O!h'iW.·
,,..,,,__..,,,.,x,,,;,,c~" ~11'""'"~'6 /'f" >ttf"""'-"''"' ..,=-~!'t"'CtSH:.,.,.,,..,_-rnr,11,.,-;,r7 ki•O!IIJU:.,1"""'"1:~ll!a ~?"ll<!c;;,M
-.:o,,,,ng,;"""""1UJ,
Bio~Clean
A Fortemi Company
9.5"
we:r so"" ~. L~-•_ L_·:~~~~:-•~~-,<~7-~:_-_-_-_-_-T' ____ a~~:~ 7'-2.5"
t 12' DIA. PVC INLET
PIPES FROM ONSITE
DETENTION VAULTS
A
OU TLET ST RU CTU RE WEIR DETAIL
(NTS)
.~////-~/,• METAL PLATE GREATER ,////,~
~T'ceH-cAccN76"'""'D°'IAc-. "'o',iP,e'EN,;,l'"N"'G-+~~,@ ,:;;~"'½03--~6," ,;;PV;-;Cy';,Pl"'P"'E icE'rMcBf-:ED~DTE~D
~-IN 4" CONCRETE WALL ~-
1.125"DIA. ORIFICE
THRU PLATE
FLOW CONTRO L ORIFICE PLATE DETAIL
(NTS)
DETE NTION SYSTE M DE TAIL S
SrrPFrn Oil SEHiWlJJ NiJ_j
"'"""'""" -('i[E 8.'0(F/1.1. /{f)/E /)
URBANPOND
PRECAST CONCRETE STORMWATER DETENTION
STANDARD DETAILS
.A .t,,a .
OVERFLOW
WEIR
" ,,,, 6" PVC PIPE
EMBEDDED IN
CONCRETE .
566'
5.0'
•• '
METAL PLATE ON
OUTLET SIDE OF WEIR
"
1 125" ORIFICE ON
METAL PLATE
OUTLET
BOXINV
A
BMP-3 /1fisfR
BMP-4
RISER
BMP-1
RISER
BMP-1
NOTE: FRENCH DRAIN ENTERS RISER AT ONLY 1 (ONE) SIDE.
BM P-4
HORI NTA 4"
FRENCH ORA!N
. " ... ·" •. • ,., ·:::-::.) . '
BMP-2
HORIZONTAL 4'
FRENCH DRAIN
HORIZONTAL 4"
FRENCH DRAIN
co
FRENCH DRAIN & BMP RI SER LOCATION DETAIL
(N.T.S.)
Vti.RIES PER PLAN R AINING RETAINING
WALL \ WALL
NOTES
3'x3' RISER
-'(2,;."";,-,;, INaiTi\Eei,,f.Nl,,AL:c/'il YJ""----- -SZ -
- - - --FD±=9--sz - --,-. .,...
~ (""">",...-..;_ I
cl OUTI FT
PIPE
.a
I FRENCH DRAIN NOT SHOWN I
4" FREEBOARD
6"PONDING
3" MULCH
16" AMENDED SOIL
3" SAND
3" PEA GRAVEL
(a) GR.O.VEL
(a): 7' GRAVEL LAYER FD:=! BMP-1 & BM?-2: 6" GRAVEL LAYER FOR 8MP-3 & BMP-4.
BASIN CROSS-SECTION (TYP.)
(NTS.j
GR~VELl
FILTER
'
NOTES·
a RIS A
\\1ALL
FLOW CONTROL
ORIFICE PLATE
-~ (d) PLATE
'\~ ~} GRAVEL
(b): 2" FOR BMP-1 & S!V.P-2: 1" FOR BMP.3 & B\1P-4.
(dJ: ¼" FOR BMP-1 ¾" FOR BMP-2. ¾" FOR BMP-3. AND¾' FOR BMP-4
AM N
SOIL
NOTES:
LID ORIFICE DETAIL
(N.T.S.)
GEOTEXTILE LINER.
SEE NOTE (c;,
[b): 2" FOR BMP-1 & 8MP-2: 1" FOR BMP-3 & BMP-4.
(c): PERMEABLE LINER FOR BMP-1 & BMP-2: IMPERMEABLE LINEA F0.9
BMP-3 & BMP-4
PLACE MENT OF FRENCH DRAIN (F.D.) DETAI L
(N.T.S)
a"PV
SCREW CAP
'r FINISH 9" GAADE _,(.
% :''00 zV?,,
MULCH
4" PV P RF RAT RAIN
CONNECT PIPE T :.AM
CLEANOUT OR TO SQUARE RIS:.R
F.D. CLEAN OUT (C .O.) DETAI L
jN.T.S.)
,l·
0
' FRFNCH TOP
DRAIN "' -GRATE
~ ~~ ~,, ~!,, > .
OAlfll"'::C V
PLA 1:. 0
" -
•
I',.. OUTFALL PIPE LOCATION PER PLAN
~
RISER OUTLET DETAIL
(N.T.S.j
HOT-DIP GALVANIZED
PL.P.TE GREATER THAN
F.D. W/ DRILLED HOLE
NOTES:
4"PV
FRENCH DRAIN
1 .0.) INVERT
(d): ¼" FOR BMP-1. ¾' FOrl BMP-2. ¾" FOR BMP-3. ¾" FOR BMP-4
FLOW CO NTROL ORIFICE PLATE DETAI L
jN.T.S)
BASIN DE TAILS
SHEET 02 OF 02
.,
I "' ,n 0 ,n
Q. :> )i'
m .,
u
u 0 -" a T
~I
::;
""1
C ,Q
0 z
2 r----------------------------------.,..----------------------tJ I PREPARED FO R:
AUTONATION INC .
200 SW 1 ST STREET, 14TH FLOO R
FORT LAUDERDALE, FL 33301
CONTACT CLIFF POWELL
TEL: (954) 769-6000
PREPARED BY:
Today's Ideas. To morrow's Reality
Commercial
Development
Resources
4121 Wes:erly Plzice #1 12 Newport Beach CA 92660
T 949-640-8997 W#W.CDRwcst com
BMPDETAILS + C
:€ "-" 1----------------------------t"''
BMW OF CAR LSBAD
1060 AU TO CE NTER CO URT
CARLSBAD , CA 92008
,n 0 ,n
vi
-
ATTACHMENT 6 .. SWMM Input Data in Input Format (Existing & Proposed Models) ... ..
...
"" -... ..
...
.. .. ..
-
"' -
-..
•
41
...
..
PRE_DEV ...
[TITLE)
[OPTIONS] .. FLOW UNITS CFS
INFILTRATION GREEN AMPT ... FLOW ROUTING KINWAVE
START DATE 10/01/1951 .. START TIME 00:00:00
REPORT START DATE 10/01/1951
REPORT START TIME 00:00:00 .. END DATE 09/30/2008
END TIME 23:00:00 .. SWEEP START 01/01
SWEEP END 12/31 .. DRY DAYS 0
REPORT STEP 01:00:00
WET STEP 00:15:00
DRY STEP 04:00:00
ROUTING STEP 0:01:00
ALLOW PONDING NO
INERTIAL DAMPING PARTIAL
• VARIABLE STEP 0.75
LENGTHENING STEP 0 .. MIN SURFAREA 0
NORMAL FLOW LIMITED BOTH
SKIP STEADY STATE NO --• FORCE_MAIN_EQUATION H-W
LINK OFFSETS DEPTH
MIN SLOPE 0
[EVAPORATION]
;;Type Parameters
··--------------------,, .. MONTHLY 0.03 0.05 0.08 0.11 0.13 0.15 0.15 0.13
DRY ONLY NO ..
[ RAIN GAGES] .. , , Rain Time Snow Data
; ;Name Type Intrvl Catch Source ,,---------------------------------.. Oceanside INTENSITY 1:00 1.0 TIMESERIES Oceanside
• [SUBCATCHMENTSJ -
.. ..
...
111
•
.. ..
..
; ;Name ,,--------------
DMA-A
[SUBAREAS]
;;Subcatchment ,,--------------
DMA-A
[ INFILTRATION)
;;Subcatchrnent
DMA-A
[OUTFALLS]
;;
; ;Name ,,--------------
POC-1
[TIMESERIES]
; ;Name
,,--------------
Oceanside
[REPORT]
INPUT NO
Raingage Outlet
Total
Area
Oceanside POC-1 3. 71
N-Imperv N-Perv S-Imperv S-Perv
0.012 0.05 0.05 0.1
Suction HydCon IMDmax
3 0.15 0.31
Invert Outfall Stage/Table Tide
Elev. Type Time Series Gate
------------------------------------
0 FREE NO
Date Time Value
FILE "OsideRain.prn"
Pent.
Imperv --------
0
PctZero
25
0 .11 0.08 0.04 0.02
Pent. Curb Snow
Width Slope Length Pack ---------------- ----------------
979 3 0
RouteTo PctRouted
OUTLET
• ..
..
-
-
-..
.. ..
-..
.. ..
... ..
.. .. .. .. .. ..
• ..
•
...
-
CONTROLS NO
SUBCATCHMENTS ALL
NODES ALL
LINKS ALL
[TAGS]
[MAP]
DIMENSIONS -8510.915 4908.181 -8482.307 8731.478
Units None
[COORDINATES]
; ;Node
··--------------'' POC-1
[VERTICES]
; ;Link
X-Coord Y-Coord
-8483.607 5081.967
X-Coord Y-Coord
··--------------------------------------------------''
[Polygons]
;;Subcatchment
··--------------'' DMA-A
[SYMBOLS]
; ;Gage ,,--------------
Oceanside
X-Coord Y-Coord
-8483.607 6622.951
X-Coord Y-Coord
-8489.868 7908.829
PRE_DEV
..
., [TITLE] ..
..
-
•
.. ..
-.. ..
...
-
..
..
.. ..
[OPTIONS]
FLOW UNITS
INFILTRATION
FLOW ROUTING
START DATE
START TIME
REPORT START DATE --REPORT START TIME
END DATE
END TIME
SWEEP START
SWEEP END
DRY DAYS
REPORT STEP
WET STEP
DRY STEP
ROUTING STEP
ALLOW PONDING
INERTIAL DAMPING
VARIABLE STEP
LENGTHENING STEP
MIN SURFAREA
CFS
GREEN AMPT
KINWAVE
10/01/1951
00:00:00
10/01/1951
00:00:00
09/30/2008
23:00:00
01/01
12/31
0
01:00:00
00:15:00
04:00:00
0:01:00
NO
PARTIAL
0.75
0
0
NORMAL FLOW LIMITED BOTH
SKIP STEADY STATE NO --FORCE_MAIN_EQUATION H-W
LINK OFFSETS DEPTH
MIN SLOPE 0
[EVAPORATION]
;;Type Parameters
MONTHLY
DRY ONLY
[RAINGAGES]
, ,
; ;Name
0.03
NO
··--------------
Oceanside
[ S UBCATCHMENT S]
, ,
; ;Name
0.05
Rain
Type
---------
INTENSITY
Raingage
0.08
Time
Intrvl
1:00
··------------------------------, ,
DMA-lD Oceanside
DMA-2A(SM) Oceanside
BR-3 Oceanside
DMA-lB Oceanside
DMA-lC Oceanside
BR-2 Oceanside
BR-1 Oceanside
BR-4 Oceanside
DMA-lB(Pavers) Oceanside
DMA-lD(Pavers) Oceanside
DMA-lE Oceanside
DMA-lA+Pavers Oceanside
[SUBAREAS]
;;Subcatchment N-Imperv N-Perv
POST_DEV
0 .11 0.13 0.15 0.15 0.13 0 .11 0.08 0.04 0.02
Snow Data
Catch Source ----------
1.0 TIME SERIES Oceanside
Total Pent. Pent. Curb
Outlet Area Imperv Width Slope Length ------------------------ --------------------------------
BR-3 0.341 96. 62 52 1 0
POC-1 0.294 6.73 128 1 0
Vault 0.01279 0 10 0 0
BR-2 0.325 61.22 71 1 0
BR-4 0.506 92. 52 78 1 0
Vault 0.00817 0 10 0 0
Vault 0.01843 0 10 0 0
Vault 0.009986 0 10 0 0
BR-2 0.089 0 77 1 0
BR-3 0.053 0 46 1 0
VAULT 1.325 100 124 1 0
BR-1 0. 726 61. 23 86 1 0
S-Imperv S-Perv PctZero RouteTo PctRouted
··------------------------ ------------------------------------------------------------
DMA-lD 0.012 0.05 0.05 0.1 25 OUTLET .. DMA-2A(SM) 0.012 0.05 0.05 0.1 25 OUTLET
BR-3 0.012 0.05 0.05 0.1 25 OUTLET
• DMA-lB 0.012 0.05 0.05 0.1 25 OUTLET
DMA-lC 0.012 0.05 0.05 0.1 25 OUTLET
BR-2 0.012 0.05 0.05 0.1 25 OUTLET .. BR-1 0.012 0.05 0.05 0.1 25 OUTLET
BR-4 0.012 0.05 0.05 0.1 25 OUTLET
DMA-lB(Pavers) 0.012 0.05 0.05 2.4 25 PERVIOUS 100 -
-..
Snow
Pack --------
... DMA-lD(Pavers)
DMA-lE
DMA-lA+Pavers
[ INFILTRATION)
;;Subcatchment ··---------------DMA-lD
DMA-2A(SM) .. BR-3
DMA-lB
DMA-lC -BR-2
BR-1
BR-4
DMA-lB(Pavers)
DMA-lD(Pavers) -DMA-lE
DMA-lA+Pavers
[LID_ CONTROLS) -;; ··--------------... BR-1
BR-1
BR-1 -BR-1
BR-1 ..
BR-2
BR-2 .. BR-2
BR-2
BR-2
411 BR-3
BR-3 .. BR-3
BR-3
BR-3 -BR-4 ... BR-4
BR-4 -BR-4
BR-4 ... [LID USAGE] -;;Subcatchment
··--------------
BR-3
11 BR-2
BR-1
BR-4 -[OUTFALLS] . , ,
•
..
"' ..
; ; Name
··--------------,,
POC-1
[STORAGE]
; ;Name
Parameters
VAULT
[OUTLETS]
POST_ DEV
0.012 0.05 0.05 2.4 25
0.012 0.05 0.05 0.1 25
0.012 0.05 0.05 2.4 25
Suction HydCon IMDmax -------------------- ----------
3 0.15 0.31
3 0.15 0.31
3 0.15 0.31
3 0.15 0.31
3 0.15 0.31
3 0.15 0.31
3 0.15 0.31
3 0.15 0.31
3 0.15 0.31
3 0.15 0.31
3 0.15 0.31
3 0.15 0.31
Type/Layer Parameters --------------------
BC
SURFACE 7.2 0.00 0.0 0.0
SOIL 18 0.4 0.2 0.1
STORAGE 13 0.67 0.041 0
DRAIN 0.3175 0.5 4 6
BC
SURFACE 7.2 0.00 0 0
SOIL 18 0.4 0.2 0.1
STORAGE 13 0.67 0.041 0
DRAIN o:4261 0.5 4 6
BC
SURFACE 7.2 0.00 0.0 0.0
SOIL 18 0.4 0.2 0.1
STORAGE 12 0. 67 0 0
DRAIN 0.3362 0.5 3 6
BC
SURFACE 7.2 0.00 0.0 0.0
SOIL 18 0.4 0.2 0.1
STORAGE 12 0.67 0 0
DRAIN 0.4306 0.5 3 6
LID Process Number Area Width -------------------------------------------
BR-3 1 557 0
BR-2 1 356 0
BR-1 1 803 0
BR-4 1 435 0
Invert Outfall Stage/Table
Elev. Type Time Series ------------------------------------
0
Invert
Elev.
0
FREE
Max.
Depth
8
Init.
Depth
0
Storage
curve
TABULAR
Tide
Gate
NO
Curve
Params
UBASIN
PERVIOUS 100
OUTLET
PERVIOUS 100
5
5 5 1. 5
5
5 5 1. 5
5
5 5 1.5
5
5 5 1.5
InitSatur Fromimprv ToPerv ----------
0
0
0
0
----------
-
-
-
-
-
-
-
-
-
-
100
100
100
100
0
0
0
0
Ponded
Area
0
Evap.
Frac.
0
Inlet Outlet Outflow Outlet Qcoeff/
Report File -----------
Infiltration
Flap
-
..
..
..
-
..
41 ..
..
..
..
• ..
"'
..
..
..
.. .. .. ..
..
; ; Name
OUTLET
[CURVES]
; ;Name
··--------------, ,
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
UBASIN
UBASIN
[TIMESERIES]
; ;Name
Node
VAULT
Type
----------
Rating
Storage
Date
Node
POC-1
X-Value
----------
0.000
0.250
0.500
0.750
1. 000
1.250
1. 500
1.750
2.000
2.250
2.500
2.750
3.000
3 .250
3.500
3.750
4.000
4.250
4.500
4.750
5.000
5.250
5.500
5.750
6.000
6.250
6.500
6.750
7.000
7.250
7.500
7.750
8.000
0
8
Time
Y-Value
----------
0.000
0.015
0.023
0.028
0.033
0.037
0.041
0.044
0.047
0.050
0.053
0.056
0.058
0.060
0.063
0.065
0.067
0.069
0.071
0.073
0.075
0.077
0.079
0.081
0.082
0.084
0.086
0.087
0.089
0.090
2.534
6.273
11.014
1305
1305
Value ··----------------------------------,,
Oceanside
[REPORT]
INPUT
CONTROLS
NO
NO
SUBCATCHMENTS ALL
NODES ALL
LINKS ALL
[TAGS]
[MAP]
FILE "OsideRain.prn"
DIMENSIONS -11502.645 3423.967 -5798.942 8802.155
Units None
[COORDINATES]
; ;Node
POC-1
VAULT
[VERTICES]
; ;Link
··--------------,,
X-Coord
-8925.024
-8933.210
X-Coord
Y-Coord
4095.217
5413.160
Y-Coord
POST_DEV
Height
0
Type
TABULAR/HEAD
QTable
OUTLET
Qexpon Gate
NO
-
-..
-
-
• ..
..
-
..
...
• .. ..
..
-
-
-
..
• ..
..
[Polygons]
;;Subcatchment
··--------------
DMA-1D
DMA-2A(SM)
BR-3
DMA-1B
DMA-lC
BR-2
BR-1
BR-4
DMA-1B(Pavers)
DMA-1D(Pavers)
DMA-lE
DMA-lA+Pavers
[SYMBOLS]
; ;Gage
X-Coord
------------------
-8483.607
-6058.201
-8500.000
-10169.293
-6798.942
-9761.905
-11225.284
-6781.305
-9547.158
-7877 .219
-6780. 297
-11217.098
X-Coord
Oceanside -8509.615
POST_DEV
Y-Coord ------------------
7590.164
4832.451
6590.164
7631.560
7548.501
6613.757
6616.499
6684.303
7 631. 560
7598.816
5707.855
7656.118
Y-Coord
8557. 692
..
..
..
-
"' -
...
..
...
..
...
..
.. ..
• -
..
•
..
..
ATTACHMENT 7
EPA SWMM FIGURES AND EXPLANATIONS
Per the attached, the reader can see the screens associated with the EPA-SWMM Model in both
pre-development and post-development conditions. Each portion, i.e., sub-catchments,
outfalls, storage units, weir as a discharge, and outfalls (point of compliance), are also shown.
Variables for modeling are associated with typical recommended values by the EPA-SWMM
model, typical values found in technical literature (such as Maidment's Handbook of
Hydrology). Recommended values for the SWMM model have been attained from Appendix G
of the 2016 City of Carlsbad BMP Design Manual.
Soil characteristics of the existing soils were determined from the site specific geotechnical
investigation (located in Attachment 8 of this report) .
A Technical document prepared by Tory R Walker Engineering for the Cities of San Marcos,
Oceanside and Vista (Reference [1]) can also be consulted for additional information regarding
typical values for SWMM parameters .
Manning's roughness coefficients have been based upon the findings of the "Improving
Accuracy in Continuous Hydrologic Modeling: Guidance for Selecting Pervious Overland Flow
Manning's n Values in the San Diego Region" date 2016 by TRW Engineering (Reference [6]) .
~ SWMM 5 -PRE-DEV.inp -[Study Area, Map)
Doto ;_Mop
1-Title/Notes
: .... Options
l... Climatology
lil-Hydrology
$J .. Hydraulics
00· Quality
. $· C<Mves ' r Time Series
.................... ,<;;,
j: ...
p~d
i:0
Ii v1 ;:◊
i!l;;j
' ... Time Pattems
L Mop Labels
Ii ...-t
i Ci" I @
.. • ~i
Hie/Notes
F H~
i @ I' .T
Y-Coordinate
Description
Tag
Report Tools Window Help
2700.000
PRE-DEVELOPED CONDITIONS
Oceanside ~
OMA-A
1111
POC-1 •
im-----------'!~ceanside ,., ...... , .. .,,
1-8509.615
•••••••••••••• Ts557:si32······
--------+--------m Inflows
Treatment
Invert El.
Tide Gate
NO
NO
0
NO
INTENSITY
l1:00 l
11.0 ••• • •• •• ]fiMESE~1Es ·
.... i .. , .......
.. -------··· ·---· ..... ..
------
User-assigned name of rain gage
□ X
Subcatchment DMA-A II
Property !Value I
X-Coordinate :-8483.607
Y-Coordinate 6622.951
Description
Tag
Rain Gage Oceanside
Outlet POC-1 -----···-···-------------· Area 3.71
Width 979
% Slope 3
% lmperv 0
N-lmperv 0.012
D store-I mperv 0.05
Dstore-Perv : 0.1
%Zero-lmperv 25
Subarea Routing OUTLET
Percent Routed 100
Infiltration GREEN_AMPT
Groundwater NO
, ............
Snow Pack
LID Controls :o
, ... ,,.=·-~ ........ -, .... ,
Land Uses :o
Initial Buildup :NONE
Curb Length :O
User-assigned name of subcatchment
Infiltration Editor
Infiltration Method
Property
Suction Head
Conductivity
Initial Deficit
Value
3
.... -, ........ ~••"'"'"'""'""""''w''"'""'"'•'"'"'"·"'
0.15
0.31
X
POST-DEVELOPED CONDITIONS
· -Hie/Notes
;. Options
: ... CliM!oiogy
8 Hydrology
: ;-Rain Gages
~--SW>Catdvrwu
;.. AQU(ers ~ Snow Pack,
:" Unit Hyciographs
'-UOCorbolt F.; Hydraulic;
8 Nodes
!M Jl.l"d.10ns
Oullab
;M Divider,
\ -Stcroge ur.,
~Lri.s
!--Conduits
;. Pcmps
: ... Q,ficei
:. wers
; __ Outlets
~-Tramed:s
+ -4J
Subcatcmlmt DW::ii, ································,,iu
DMA-2A(SMJ
BR·J
DMA·lB
DMA·lC
BR·2
BR·l
BR ..
DMA·lB(Pavcu)
DMA·lD(Povc1t)
DMA-1A+Pave,s
A'-'<>lenglh: Off Offseu: Depth
Y-Coordinate
Description
4991 .922
DMA-1A+Pave
'
BR-1 •
m,.. _______ --·+--------..,,,,.,,,,,,,,w~,
Tag
Inflows
Treatment
Invert El.
Tide Gate
Type
NO
NO
0
NO
FREE
DMA-18 DMA-1 B(Paver
".. (Ill
\~R-2 ..
~~"r
DMA-1D DMA-1D(Pavers) ~ /'
,-3
DMA-1C
'
llR-4 ..
DMA-1E
-··················
DMA-2A(SM) -·•
POG-.1····· •·.
Zoom level 100% X.Y: ·7601.179. 8151.568
I Oceanside
1-s5o9.s15 ···---·------·-i--· . 18557.692
......... __ ,..! .... ., .. ,. . .. , ... b
Description t
-----·--····--·······-·····-··---~··········-----···-·------··--·-··--·-~' Tag i
11NTENSITY
•----•-•·•·-.,, . ., ••. , •• ,.,.,.·-··www•·•· ---~~1
Rain Format
Time Interval 1:00
• Station ID
-Rain Units IN
Name of rainfall data file
X-Coordinate
Y-Coordinate
Description
Tag
-11217.098
7656.118
................................................................................... ,
Rain Gage Oceanside
Outlet BR-1
,.u.,.·-.•~•••~'"•'""••'"'".., ,....___ _____ _
Area 0.726
Width
% Slope
% lmperv
N-lmperv
N-Perv
D store-I mperv
86
61.23
0.012
0.05
0.05
Dstore-Perv 2.4
---1--------&1 %Zero-lmperv 25
Subarea Routing PERVIOUS
Percent Routed 100
nfiltration • GREEN~AMPT
Groundwater NO
Snow Pack
LID Controls 0
Land Uses 0
Initial Buildup NONE
rb Length 0
tchment
Infiltration Editor
Infiltration Method
Property
X
1,..s_u_c_tio_n_H_e_a_d ____ 1:.,_ ... M • .,.. .. ... , .. ,,M, .. ~ .•.• J
Conductivity 0.15
Initial Deficit 0.31
Subcatchment BR-1
Property
Name
X-Coordinate
Y-Coordinate
Description
Tag
Rain Gage
Outlet
Area
Width
% Slope
Value
BR-1
-11225.284
6616.499
Oceanside
Vault
0.01843
10
0
0
a
·----•-'••••·•• .. •"-•""-'•W<•·•·•••••••
0.012
------·---~ ...... ., ........ _....J.--------
N-Perv
D store-I mperv
Dstore-Perv
0.05
0.05
0.1 ·-------%Zero-lmperv 25
Subarea Routing OUTLET
Percent Routed 100
In~~ .. -[GREEN;-AMPT:~: .. :::J
Groundwater NO
Snow Pack
LID Controls
Land Uses 0
Initial Buildup
Curb Length
Infiltration parameters (click to edit)
Infiltration Editor X
Infiltration Method
Property I Value
X-Coordinate
Y-Coordinate 7631.560
Description
Tag
···················•·,·········,·vv······•·····
Rain Gage Oceanside
1rn--------~~.,,,..,...--·-------·-.-
Outlet
····---Area
Width
%2ero-lmperv
Subarea Routing
Percent Routed
Infiltration
R-2
0.325
71
25
OUTLET
100
GREEN_AMPT ---------·-------Groundwater
Snow Pack
LID Controls
Land Uses
Initial Buildup
Curb Length
Infiltration Editor
Infiltration Method
operty
Suction Head
Conductivity
Initial Deficit
NO
NONE
0
0.15
0.31
X
,,,,..,,,,,,,,,,_.,_.,,....,..,,
Name ]DMA-1B(Pavers)
X-Coordinate [-9547.158
Y-Coordinate 17631.560
o~;~ripti~~ r .. . .
Tag
R_ai_n G_a_g_e -----~-,j,-O_c_e_an_s_id~e----·mt
Outlet iBR -2
Area
Width
% Slope
% lmperv
N-lmperv
N-Perv
D store-I mperv
•• ro.089 ....
77
0
0.012
0.05
.05
Dstore-Perv 2.4
%2ero-lmperv 25 -------+------Subarea Routing PERVIOUS
Percent Routed 100
n
Groundwater
Snow Pack
trols 0
REEN_AMPT
0
INONE
················r o ················
r-assigned name of subcatchment
Infiltration Editor
Infiltration Method
ction Head
X
_,_..,..,_._,,.,..,., .. _,_._,_, __ , _ _._, .. __ J>M-M-•--i.
nductivity
0.31
Y-Coordinate
Description
Tag
Rain Gage
6613.757
Oceanside
Outlet Vault
Area 0.00817
idth 10
%Slope .0
% lmperv 0
N-lmperv 0.01 2 . ..,..., .,,..,.,...,,,,.,,.,...,, .... .,,,.,,,..,,,,.,.,, . .,.,,..._...., .. ~,--. ,..,_ ""' ..... ,.,,._.,,_,,,
N-Perv 0.05
D store-I mperv 0.05
store-Perv 0.1 __ ,,.,_.,,,,...,............,..,,.. ...... .,...., __
e.ro-lmperv 25 ·~-··-·-····-··--·-·--+------Subarea Routing UT LET
Percent Routed
Infiltration
0
GREEN_AMPT
Groundwater NO
Snow Pack
LID Controls , 1
....................................................................... .L ..
Land Uses 0
Infiltrat ion Editor
Infiltration Method
Propert_y
Suction Head 13
,_C_o_n_d-uc-t-iv-ity-----~l 0.15 •• •• • •• •• • •• • • • •••
l
[0.31
X-Coordinate
Y-Coordinate
Description
Tag
Rain Gage
Dstore-Perv
-7877.219
7598.816
%Zero-lmperv 25
----·+ Subarea Routing PERVIOUS
Percent Routed 100
Infiltration
Groundwater
Snow Pack
LID Controls
GREEN_AMPT
lNO
0
Initial Buildup l NONE
Curb L~ngth T o
ssigned name of subcatchment
Infiltration Editor
Infiltration Method
Property
Suction Head
X
i-----------•••-•"-VMmM"·-•·-•·•-,-.•,_,M ..... -•
Conductivity
----·--·-----·-+-·--·-·---------1 Initial D elicit 0.31
D store-I mperv
Dstore-Perv
%2ero-lmperv
Subarea Routing
0.1
25
OUTLET
100
GREEN_AMPT
~~~•_..._...._v,,,,...,,,...,,,......,..,........,_,_,,,~.
Initial Buildup
Curb Length
NO
0
0
NONE
0
User-assigned name of subcatchment
Infiltration E01tor
Infiltration Method
Property !Value
X
Suction Head j3 _
1-C-o_n_d-uc-t-iv-ity------,tcJ.15 -•-,~.,, • ., _______ ,,..,,..,..-(~------
Initial Deficit [0.31
0.01 279
10 ---------·-""---------0
0
0.01 2
IM----------"-"·--··~
0.05
0.05
0.1 ---------+----·-----
LID Controls
Land Uses
Initial Buildup
Curb Length
Infiltration Editor
Infiltration Method
25
0
NONE
0
ubcatchment
Propert,v Value
X
Suction Head 13 .
1------------ii-"!o ,.,c,... ...,, ...... ,, ....... ,... -... -. ...i:
Conductivity 0.15
Initial Deficit 0.31
Name DMA-1Q ... -............... , ....... -...... ...,, .. ;_,..... .,.._...,..,,,.... ....,.
X-Coordinate -6798.942
Y-Coordinate 7548.501 ............................................................................................... , ....
Description i
~Zno;,,;:____=~~n.;,;
Outlet 1BR-4
Ar~a •• • -• --I o.5os ...... """"N,M' '•.
idth
o Slope
% lmperv
N-lmperv
N-Perv
D store-I mperv
store-Perv
%Zero-lmperv
Subarea Routing
Percent Routed
I nfiltr at ion
Groundwater
Snow Pack
LID Controls
Land Uses
l
78
0.1
25
OUTLET
100
GREEN_AMPT
NO
0
0
NONE
0
er-assigned name of subcatchment
Infiltration Editor
Infiltration Method
Propert_y
Suction Head
X
1---------·1""-"•····•·"""··· ... '·"". ⇒.-P.4
Conductivity
Initial Deficit 0.31
Y-Coordinate
Description
Tag ........................ ,.
Rain Gage
Outlet
Area
Width
Z Slope
% lmperv
N-lmperv
6684.303
Oceanside
Vault
0.009986
10
0
---~---____ .. ______ ,,,,, ............ .
N-Perv
Dstore-lmperv
Dstore-Perv
0.05
.05
0.1
•25
-----~-----,-~.,-~ .... ., .... ...,,,.,...,_,,_,,,,.,..,~,.,,, . ....,._._.,,,,_.....,,,,,_.,,,
'OUTLET
100
GREEN_AMPT
ter NO
k
NE
0
ser-assigned name of subcatchment
Infiltration Editor X
Infiltration Method
Property
Suction Head
1----------,/',-,~•-... -~----'··-, .......... ⇒,.•.t.,. , .. .t
Conductivity
0.31
X-Coordinate -6780.297
Y-Coordinate 5707.855
Description
Tag
...................................................................... ,.
Rain Gage Oceanside
Outlet 'VAULT
Area 1.325
124 "·----·-·----------------1
.012
.05
0.05
0.1
---------l"·"''""--··--· ·-
%Zero-lmperv 25
nm----------"''"''°",,,..,,,.,,,,,,,,,,.,,,,,...., . .,._. . ._.,_.,_.,,, . .,_.,.,,,,, ... ,
Subarea Routing OUTLET
ercent Routed 100
nfiltr ation GREEN_AMPT
Groundwater NO
Snow Pack
LID Controls 0
Land Uses 0
Initial Buildup NONE
Curb Length 0
ssigned name of subcatchment
Infiltration Editor X
Infiltration Method
Property !Value
Suction Head p
1----------;,,,•-.,~·-·-·~.,,-_,.__, ____ ~,
Conductivity I 0.15
Initial Deficit .31
Tag
Rain Gage
Outlet
a
Width
% Slope
% lmperv
N-lmperv
0.05
-----··---1------""'"""·-•'-'=""'.....,,,.,. • ...,
ore-Perv . 0.1
-·----•--·--.. -·l •• -------n
%Zero-lmperv !25 ..... ,,.,,..,,,,,,, ...... ,,,,, . .,,_.,_._~~ .... --~~1------·----·"·" Subarea Routing I OUTLET
Percent Routed l 100
... .,,,.... · ., . ., .,,, ... .,,., .. ., .. .,.,.,,,,+ ..... .,.,,,_ ....... ··---Ml
Infiltration lGREEN_AMPT
LID Controls i 0 ., +
Land Use~------4 o _____ _
Initial Buildup jNONE l ' Curb Length lO
l¾}-----------'L-------·m
-assigned name of subcatchment
Infiltration Editor X
Infiltration Method
Property __
Suction Head 3 -----------------_..,,.;. Conductivity 0.15
Initial Deficit 0.31
Detention Vault
Storage Unit VAULT
Property Value I
Name ....... J~~~~:
><-Coordinate -8933.210
Y-Coordinate 5413.160
Description
Tag
Inflows NO
Treatment NO
Invert El. 0
Max. Depth 8
•'•/ ·-· -, .. ,-.~ .. w .. .-·-... ... , ........ -.,.-.,. ..........
Initial Depth 0
Ponded Area 0
Evap. Factor 0
NO Infiltration
Storage Curve !Tt1iLJLAR ••• "" • •
Functional Cwve
Coefficient 1 000
,...,_._ • ....,.w . ....,M.w ............. ,,.•.-.w,•.v-vw,V.,.,,.,,,.,~ ,,._.,,,._.,,,_.,._,,,, .••.•. ,......,_,_,,,...,_.,_.,,,._,.,,,...,__,,.,.,,.. _,_._.,.,,.,_ ••
Exponent 0
Constant 0
Outlet OUTLET
Property Value
Name iOUTLET
............................. L ... , ....... ,-., .. M, .. ,,. .......... ,.. ................. .., ... •
Inlet Node jVAUL T
Outlet Node
Description
Tag
Inlet Offset
Flap Gate
lPOC-1
jNO --------~-----.--------Rating Curve 1 TABULAR/HEAD
User-assigned name of outlet
Storage Curve Editor
; Curve Name
:tlBJll
Description
0
2 8
3
Depth
(ft)
Area
(ft2)
1305
1305
--➔············································'··········································••;'i 4
5
6
7
8
9 ....
Rating Curve Editor
Curve Name
Description
Head Outflow ,._
(ft) (CFS) [i
1 0.000 !0.000
;
2 0.250 0.015
3 0.500 0.023
4 0.750 0.028
5 1.000 0.033
6 1.250 0.037
7 1.500 0.041
8 1.750 0.044
9 2.000 0.047 .,
~ Yiew... ]
I~, OK
1, Cancel
h.,ot .!:!elp I
EXPLANATION OF SELECTED VARIABLES
Sub Catchment Areas:
Please refer to the attached diagrams that indicate the DMA and Bio-Retention BMPs (BMP) sub areas
modeled within the project site at both the pre and post developed conditions draining to the POC.
Parameters for the pre-and post-developed models include soil type B as determined from the site
specific geotechnical investigation (attached at the end of this appendix). Suction head, conductivity
and initial deficit corresponds to average values expected for these soils types, according to Appendix G
of the 2016 City of Carlsbad BMP Design Manual.
For surface runoff infiltration values, REC selected infiltration values per Appendix G of the 2016 City of
Carlsbad BMP Design Manual corresponding to hydrologic soil type.
Selection of a Kinematic Approach: As the continuous model is based on hourly rainfall, and the time of
concentration for the pre-development and post-development conditions is significantly smaller than 60
minutes, precise routing of the flows through the impervious surfaces, the underdrain pipe system, and
the discharge pipe was considered unnecessary. The truncation error of the precipitation into hourly
steps is much more significant than the precise routing in a system where the time of concentration is
much smaller than 1 hour.
Sub-catchment BMP:
The area of biofiltration must be equal to the area of the development tributary to the biofiltration
facility (area that drains into the biofiltration, equal external area plus bio-retention itself). Five (S)
decimal places were given regarding the areas of the biofiltration to insure that the area used by the
program for the LID subroutine corresponds exactly with this tributary.
LID Usage Editor X LID Usage Editor X
Control Name 1--vi Control Name lmB vi
Number of Replicate Units I, 10 [±J Number of Replicate Units 1, ! I~
Area of Each Unit (sq ft or sq ml I B□ 3
Area of Each Unit (sq ft or sq ml !356 '
% of Subcatchment Occupied 100.0 % of Subcatchment Occupied 100.0
Top Width of Overland Flow I □ Top Width of Overland Flow I □ Surface of Each Unit (ft or ml Surface of Each Unit (ft or ml
................................................
% Initially Saturated I □ % Initially Saturated io '
% of Impervious Area Treated 1100 % of Impervious Area Treated i100 !
LID Usage Editor X LID Usa,ge Editor X
Control Name 1m11 vi Control Name I• vi
Number of Replicate Units I, IGJ ,EJ Number of Replicate Units i, I~
Area of Each Unit (sq ft or sq ml 1557 Area of Each Unit (sq ft or sq m} !435 '
% of Subcatchment Occupied 100.0 % of Subcatchment Occupied 100.0
Top Width of Overland Flow I □ Top Width of Overland Flow !o
Surface of Each Unit (ft or m} Surface of Each Unit (ft or ml '
% Initially Saturated I □ % Initially Saturated lo '
% of Impervious Area Treated I, oo % of Impervious Area Treated !100 '
LID Control Editor X
Control Name:
LID Type:
Process Layers:
Surface ! Soil
Storage Depth i?.2
[in. ormm) ~ ....
Vegetation Volume i□□o
Fraction
Surf ace Roughness ·DO
[Mannings n)
Surf ace Slope I□.□
(percent)
LID Control Editor X
Control Name:
LID Type:
Process Layers: ..... , ..... , ................... , ............................. ,
. Surface Soil .... i Storage Underdrain ... , ................ , ........... , .......... ,
Height ,13
[in. or mm)
Void Ratio iD.67
[\loids I Solids]
Conductivity 1 □.□41
[in/hr or mm/hr)
Clogging Factor iO
Note: use a Conductivity of 0 if the LID
unit has an impermeable bottom.
LID Control Editor X
Control Name:
LID Type: 'a;i:i;{~~roricen' '"·--·;;;, ! \ ,...,, .. ·,· •s··v·+< -.-.. A,, .............. ·<)?'· .. ·:•c.,J
Process Layers:
Surface: Soil Ts't;;rage , U11~erdrain]
Thickness
[in. ormm)
Porosity
[volume fraction]
Field Capacity
(volume fraction]
Wilting Point
[volume fraction)
Conductivity
(in/hr or mm/hr)
Conductivity Slope
Suction Head
[in. or mm)
UD Control Editor
Control Name:
LID Type:
Process Layers:
Drain Coefficient
[in/hr or mm/hr)
Drain Exponent
Drain Off set Height
[in. ormm)
1,a
1□4
1□2
I□,
15
[5 ......
115
Underdrain
1 □.3175
l □.5
Note: use a Drain Coefficient of 0 if the
LID unit has no underdr ain.
......... 1
i
X
LID Control Editor X
Control Name:
LID Type:
Process Layers:
Surface :' S~il
Storage Depth [7·2···· [in. or mm)
Vegetation Volume lo.oo
Fraction
Surf ace Roughness 0
[Mannings n)
Surf ace Slope
(percent) !O
LID Control Editor X
Control Name: J~mE_·_· _______ ~
LID Type:
Process Layers:
Surface Soil
Height
[in. ormm)
Void Ratio
(V aids / Solids)
Conductivity
[in/hr or mm/hr)
Clogging Factor
Storage
lo.s?
10041
Nate: use a Conductivity of O if the LID
unit has an impermeable bottom.
LID Control Editor X
Control Name: !mE I
LID Type: ................. ,_ ...... __ ·-·········· -,.--, 'I I foRetentio/1 C~H.fi,ti ' :;,.,.>7
Thickness [~~ ........................ 1 [in. or mm)
Porosity 104 (volume fraction)
Field Capacity 10.2
[volume fraction)
Wilting Point 10.1 (volume fraction)
Conductivity 15 (in/hr or mm/hr)
Conductivity Slope [5
Suction Head 11.5 [in ormm)
LID Control Editor X
Control Name: lmB I
LID Type: ! 8iofl~t~ qe11 ..;.I
Process Layers:
Surface Soil Underdrain
Drain Coefficient 10.4261
[in/hr or mm/hr)
Drain Exponent Jo5
Drain Off set Height J4 [in. or mm)
Note: use a Drain Coefficient of O if the
LID unit has no underdrain.
LID Control Editor
Control Name:
LID Type:
Process Layers:
~ S~rface [ s~ii'
Storage Depth
[in. or mm)
Vegetation Volume
Fraction
Surf ace Roughness
[Mannings n)
Surface Slope
(percent]
LID Control Editor
X
!7.2
!000
[0.0
100
X
Control Name: ~ltBJ_·_, ________ ~
LID Type:
Process Layers:
Soil
Height
(in. or mm)
Void Ratio
[Voids / Solids)
Conductivity
(in/hr or mm/hr)
Clogging Factor
Storage
112
los7
10
10
Note: use a Conductivity of O if the LID
unit has an impermeable bottom.
LID Control Editor
Control Name:
LID Type: t Bio-A ~tention Cell l···<»· .. , .. • •....•. • ... ,-:;;
Process Layers:
• ·" Soil js tor a~e i U nder~r ~iri;
Thickness 1,s .I (in. or mm]
Porosity 104 (volume fraction)
Field Capacity 102 (volume fraction]
Wilting Point jo1 l [volume fraction)
Conductivity 15 (in/hr or mm/hr)
Conductivity Slope [5. ..................................... 1
Suction Head 115 [in. ormm)
LID Control Editor
Control Name: 1-
LID Type:
Process Layers:
SU1face Soil Underdrain
Drain Coefficient lo3362 (in/hr or mm/hr)
Drain Exponent 105
Drain Off set Height 13 (in. ormm]
Note: use a Drain Coefficient of O if the
LID unit has no underdr ain.
X
X
LID Control Editor
Control Name:
LIO Type:
Process Layers:
'tvM=• Surface Soil Stor~ge,. Underdrain_! ..
Storage O epth !7.~ (in. ormm)
Vegetation Volume I □□□
Fraction
Surf ace Roughness I □□ (Mannings n)
Surf ace Slope
(percent)
UD Control Editor
Control Name:
LID Type:
Process Layers:
Surface Soil
Height
(in. or mm]
Void Ratio
[\I oids / Solids)
Conductivity
[in/hr or mm/hr)
Clogging Factor
I □□
Storage , U nderdr ain:,
:12 L. ...
10.67
i□
Note: use a Conductivity of O if the LI 0
unit has an impermeable bottom.
::::::]
X
X
LID Control Editor X
Control Name: IB
LIO Type:
Process Layers:
Surf~~e·f Soil
Thickness 110
(in. or mm]
_____ ,, ..... ,
I
Porosity l□.4 (volume fraction]
Field Capacity 1□.2
(volume fraction]
Wilting Point I□ 1
(volume fraction]
Conductivity J5 (in/hr or mm/hr)
Conductivity Slope [~
Suction Head 115 (in. ormm]
LID Control Editor X
Control Name: 1-I
LIO Type: l, ~io-R_,,· .. ~erit.' io_ n,.,,,.c .. e1.·.·_,., A ~.. +.;;t_•I
.. , · .. ...W.. .· •. , ... ·.• .... '-:. ..• ·;\:·"'''··.·. '
Process Layers:
Surface ! Soil ~: Sto;a!;lej Underdrain l
0 rain Coefficient
(in/hr or mm/hr)
Drain Exponent
Drain Offset Height
(in. ormm)
[04306
1□ 5
Note: use a Drain Coefficient of O if the
LID unit has no underdrain.
-..
.. ..
-
-..
..
..
•
•
..
..
•
•
•
..
LID Control Editor: Explanation of Significant Variables
Storage Depth:
The storage depth variable within the SWMM model is representative of the storage volume
provided beneath the surface riser outlet and the surface of the bio filtration facility .
In those cases where the surface storage has a variable area that is also different to the area of
the gravel and amended soil, the SWMM model needs to be calibrated as the LID module will
use the storage depth multiplied by the BMP area as the amount of volume stored at the
surface.
Let AeMP be the area of the BMP (area of amended soil and area of gravel). The proper value of
the storage depth S0 to be included in the LID module can be calculated by using geometric
properties of the surface volume. Let Ao be the surface area at the bottom of the surface pond,
and let Ai be the surface area at the elevation of the invert of the first row of orifices (or at the
invert of the riser if not surface orifices are included). Finally, let hi be the difference in
elevation between Ao and Ai. By volumetric definition:
(1)
Equation (1) allows the determination of S0 to be included as Storage Depth in the LID module.
The 3-inches of gravel volume (3-inches x volume of solids (0.6) = 1.8-inches) is then subtracted
from this volume.
Porosity: A porosity value of 0.4 has been selected for the model. The amended soil is to be
highly sandy in content in order to have a saturated hydraulic conductivity of approximately 5
in/hr .
REC considers such a value to be slightly high; however, in order to comply with the HMP
Permit, the value recommended by the Copermittees for the porosity of amended soil is 0.4,
per Appendix A of the Final Hydromodification Management Plan by Brown & Caldwell, dated
March 2011. Such porosity is equal to the porosity of the gravel per the same document .
Void Ratio: The ratio of the void volume divided by the soil volume is directly related to
porosity as n/(1-n). As the underdrain layer is composed of gravel, a porosity value of 0.4 has
been selected (also per Appendix A of the Final HMP document), which results in a void ratio of
0.4/(1-0.4) = 0.67 for the gravel detention layer.
Conductivity: Per the site-specific geotechnical investigation for the project site infiltration is
only feasible for basins to the east of the project site, a factored infiltration rate of 0.041 in/hr
has been used for these facilities. For the western basins, a value of 0 has been assigned for
conductivity accordingly .
..
-
...
-
-..
..
-..
.. ..
.. -
-
-
..
-
Clogging factor: A clogging factor was not used (0 indicates that there is no clogging assumed
within the model). The reason for this is related to the fairness of a comparison with the SOHM
model and the HMP sizing tables: a clogging factor was not considered, and instead, a
conservative value of infiltration was recommended.
Drain (Flow) coefficient: The flow coefficient C in the SWMM Model is the coefficient needed to
transform the orifice equation into a general power law equation of the form:
(2)
where q is the peak flow in in/hr, n is the exponent (typically 0.5 for orifice equation), H0 is the
elevation of the centroid of the orifice in inches (assumed equal to the invert of the orifice for
small orifices and in our design equal to O) and H is the depth of the water in inches.
The general orifice equation can be expressed as:
Q = !!.c .!i:_ 2 (H-Hv)
4 n 144 B 12 (3)
where Q is the peak flow in cfs, D is the diameter in inches, Cg is the typical discharge coefficient
for orifices (0.61-0.63 for thin walls and around 0. 75-0.8 for thick walls), g is the acceleration of
gravity in ft/s2, and H and Ho are defined above and are also used in inches in Equation (3).
It is clear that:
(in)x ABMP ( f ) q hr 12 X 3600 = Q C S (4)
Cut-Off Flow: Q (cfs) and q (in/hr) are also the cutoff flow. For numerical reasons to insure the
LID is full, the model uses cut-off= 1.01 Q .
..
...
..
-Overland Flow Manning's Coefficient per TRWE (Reference (6))
..
-
-
..
...
-
..
-...
-..
-
-...
-
..
...
-...
..
..
..
-
-..
..
-
.. .. ..
-...
-..
-...
-... ..
...
-
-
.. ..
-
appeal of a de facto value, we anticipate that jurisdictions will not be inclined to approve land surfaces
other than short prairie grass. Therefore, in order to provide SWMM users with a wider range of land
surfaces suitable for local application and to provide Copermittees with confidence in the design
parameters, we recommend using the values published by Yen and Chow in Table 3-5 of the EPA SWMM
Reference Manual Volume I -Hydrology.
SWMM-Endorsed Values Will Improve Model Quality
In January 2016, the EPA released the SWMM Reference Manual Volume I -Hydrology (SWMM
Hydrology Reference Manual). The SWMM Hydrology Reference Manual complements the SWMM 5
User's Manual and SWMM 5 Applications Manual by providing an in-depth description of the program's
hydrologic components (EPA 2016). Table 3-5 of the SWMM Hydrology Reference Manual expounds
upon SWMM 5 User's Manual Table A.6 by providing Manning's n values for additional overland flow
surfaces3. The values are provided in Table 1:
Table 1: Manning's n Values for Overland Flow (EPA, 2016; Yen 2001; Yen and Chow, 1983).
Overland Surface Light Rain Moderate Rain Heavy Rain
(< 0.8 in/hr) (0.8-1.2 in/hr) (> 1.2 in/hr}
Smooth asphalt pavement 0.010 0.012 0.015
Smooth impervious surface 0.011 0.013 0.015
Tar and sand pavement 0.012 0.014 0.016
Concrete pavement 0.014 0.017 0.020
Rough impervious surface 0.015 0.019 0.023
Smooth bare packed soil 0.017 0.021 0.025
Moderate bare packed soil 0.025 0.030 0.035
Rough bare packed soil 0.032 0.038 0.045
Gravel soil 0.025 0.032 0.045
Mowed poor grass 0.030 0.038 0.045
Average grass, closely clipped sod 0.040 0.050 0.060
Pasture 0.040 0.055 0.070
Timberland 0.060 0.090 0.120
Dense grass 0.060 0.090 0.120
Shrubs and bushes 0.080 0.120 0.180
Land Use
Business 0.014 0.022 0.035
Semi business 0.022 0.035 0.050
Industrial 0.020 0.035 0.050
Dense residential 0.025 0.040 0.060
Suburban residential 0.030 0.055 0.080
Parks and lawns 0.040 0.075 0.120
For purposes of local hydromodification management BMP design, these Manning's n values are an
improvement upon the values presented by Engman (1986) in SWMM 5 User's Manual Table A.6. Values
from SWMM 5 User's Manual Table A.6, while completely suitable for the intended application to
certain agricultural land covers, comes with the disclaimer that the provided Manning's n values are
valid for shallow-depth overland flow that match the conditions in the experimental plots (Engman,
3 Further discussion is provided on page 6 under "Discussion of Differences Between Manning's n Values" 3
..
-... ATTACHMENT 8 -Geotechnical Documentation
-
-..
-
-...
..
-
-..
-...
..
-
-...
-
Hydrologic Soil Group-San Diego County Area, California
33" fr7"N
33" fr2"N
Map Scale: 1: 1 ,200 if p1ntm ex, A lancB:ape ( 11" X &5") sheet
N ----=====-------=======Meiers o m ~ w oo
A ----====--------========f-eet 0 ffi 100 all ~
Map projection: Web Merollor caner roorooates: WGS84 Edge tics: UTM Zone llN WGS84
USDA Natural Resources
riii Conservation Service
Web Soil Survey
National Cooperative Soil Survey
7/19/2019
Page 1 of 4
33" !r7"N
33" fr2"N
Hydrologic Soil Group-San Diego County Area, California
MAP LEGEND MAP INFORMATIO.N
Area of Interest (AOI) D Area of Interest (AOI)
Soils
Soil Rating Polygons
Ill A
rm AfD
.B
D BID
D C
□ CID
• D
D Not rated or not available
Soil Rating Lines
-A -AID -B -B/D -C -CID -D
, ; Not rated or not available
Soil Rating Points
C A
C AfD
■ B
■ B/D
~DA Natural Resources
riii Conservation Service
lJ C
lJ CID
lJ D
C Not rated or not available
Water Features
Streams and Canals
Transportation
++-i Rails
,...., Interstate Highways
US Routes
Major Roads
Local Roads
Background
• Aerial Photography
Web Soil Survey
National Cooperative Soil Survey
The soil surveys that comprise your AOI were mapped at
1:24,000.
Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause
misunderstanding of the detail of mapping and accuracy of soil
line placement. The maps do not show the small areas of
contrasting soils that could have been shown at a more detailed
scale.
Please rely on the bar scale on each map sheet for map
measurements.
Source of Map: Natural Resources Conservation Service
Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator
projection, which preserves direction and shape but distorts
distance and area. A projection that preserves area, such as the
Albers equal-area conic projection, should be used if more
accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as
of the version date(s) listed below.
Soil Survey Area: San Diego County Area, California
Survey Area Data: Version 13, Sep 12, 2018
Soil map units are labeled (as space allows) for map scales
1 :50,000 or larger.
Date(s) aerial images were photographed: Nov 3, 2014-Nov
22,2014
The orthophoto or other base map on which the soil lines were
compiled and digitized probably differs from the background
imagery displayed on these maps. As a result, some minor
shifting of map unit boundaries may be evident.
7/19/2019
Page 2 of 4
-
-
-
...
-
-
...,
..,
-
"' -... -
-
..
..
-
Hydrologic Soil Group-San Diego County Area, California
CbB
,MIC
I
I
Hydrologic Soil Group
, Carlsbad gravelly loamy I B
i sand, 2 to 5 percent
: slopes
! Marina loamy coarse I B
• sand, 2 to 9 percent !
i slopes
1.5 39.4%
2.3 60.6%
-----~---------+----------+------------J
~
I Totals for Area of Interest 3.8
Description
Hydrologic soil groups are based on estimates of runoff potential. Soils are
assigned to one of four groups according to the rate of water infiltration when the
soils are not protected by vegetation, are thoroughly wet, and receive
precipitation from long-duration storms.
The soils in the United States are assigned to four groups (A, B, C, and D) and
three dual classes (AID, B/D, and C/D). The groups are defined as follows:
Group A. Soils having a high infiltration rate (low runoff potential) when
thoroughly wet. These consist mainly of deep, well drained to excessively
drained sands or gravelly sands. These soils have a high rate of water
transmission.
Group B. Soils having a moderate infiltration rate when thoroughly wet. These
consist chiefly of moderately deep or deep, moderately well drained or well
drained soils that have moderately fine texture to moderately coarse texture .
These soils have a moderate rate of water transmission.
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist
chiefly of soils having a layer that impedes the downward movement of water or
soils of moderately fine texture or fine texture. These soils have a slow rate of
water transmission.
Group D. Soils having a very slow infiltration rate (high runoff potential) when
thoroughly wet. These consist chiefly of clays that have a high shrink-swell
potential, soils that have a high water table, soils that have a claypan or clay
layer at or near the surface, and soils that are shallow over nearly impervious
material. These soils have a very slow rate of water transmission.
If a soil is assigned to a dual hydrologic group (AID, B/D, or C/D), the first letter is
for drained areas and the second is for undrained areas. Only the soils that in
their natural condition are in group D are assigned to dual classes.
Natural Resources
Conservation Service
Web Soil Survey
National Cooperative Soil Survey
100.0%
7/19/2019
Page 3 of 4
-
..
...
-
-
-
..
"" -...
-
""
... ..
-,.
..
Hydrologic Soil Group-San Diego County Area, California
Rating Options
Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Natural Resources
Conservation Service
Web Soil Survey
National Cooperative Soil Survey
7/19/2019
Page 4 of 4
..
ATTACHMENT 9 ..
Summary Files from the SWMM Model
-
-
-
-... ..
..,
..
..
-... ..
...
-
-
-
...
-
-
-
-
-..
-..
-..
-...
-..
-
-..
-..
-
..
PRE_DEV
EPA STORM WATER MANAGEMENT MODEL -VERSION 5.0 (Build 5.0.022)
*********************************************************
NOTE: The summary statistics displayed in this report are
based on results found at every computational time step,
not just on results from each reporting time step.
*********************************************************
****************
Analysis Options
****************
Flow Units ............... CFS
Process Models:
Rainfall/Runoff ........ YES
Snowmelt ............... NO
Groundwater ............ NO
Flow Routing ........... NO
Water Quality .......... NO
Infiltration Method ...... GREEN AMPT
Starting Date ............ OCT-01-1951 00:00:00
Ending Date .............. SEP-30-2008 23:00:00
Antecedent Dry Days ...... 0.0
Report Time Step ......... 01:00:00
Wet Time Step ............ 00:15:00
Dry Time Step ............ 04:00:00
**************************
Runoff Quantity Continuity
**************************
Total Precipitation ..... .
Evaporation Loss ........ .
Infiltration Loss ....... .
Surface Runoff .......... .
Final Surface Storage ... .
Continuity Error (%)
**************************
Volume
acre-feet
208.490
0.768
197. 677
10.899
0.000
-0.410
Depth
inches
674.360
2.485
639.388
35.251
0.000
Volume
Flow Routing Continuity
Volume
acre-feet 10A6 gal
**************************
Dry Weather Inflow
Wet Weather Inflow
Groundwater Inflow
RDII Inflow ............. .
External Inflow ......... .
External Outflow ........ .
Internal Outflow ........ .
Storage Losses .......... .
Initial Stored Volume ... .
Final Stored Volume ..... .
Continuity Error (%)
Subcatchment Runoff Summary
***************************
Subcatchment
DMA-A
Total
Precip
in
674.36
0.000
10.899
0.000
0.000
0.000
10.899
0.000
0.000
0.000
0.000
0.000
Total
Runon
in
0.00
Analysis begun on:
Analysis ended on:
Total elapsed time:
Tue Jul 16 12:54:08 2019
Tue Jul 16 12:54:24 2019
00:00:16
0.000
3.551
0.000
0.000
0.000
3.551
0.000
0.000
0.000
0.000
Total
Evap
in
2.48
Total
Infil
in
639.39
Total
Runoff
in
35.25
Total
Runoff
10A6 gal
3.55
Peak Runoff
Runoff
CFS
3.91
Coeff
0.052
-
-
-..
-...
.,
..
-...
...
-
..
-
-
...
POST_DEV
EPA STORM WATER MANAGEMENT MODEL -VERSION 5.0 (Build 5.0.022)
*********************************************************
NOTE: The summary statistics displayed in this report are
based on results found at every computational time step,
not just on results from each reporting time step.
*********************************************************
****************
Analysis Options
****************
Flow Uni ts ............... CFS
Process Models:
Rainfall/Runoff ........ YES
Snowmel t . . . . . . . . . . . . . . . NO
Groundwater ............ NO
Flow Routing ........... YES
Ponding Allowed ........ NO
Water Quality .......... NO
Infiltration Method GREEN AMPT
Flow Routing Method ...... KINWAVE
Starting Date ............ OCT-01-1951 00:00:00
Ending Date .............. SEP-30-2008 23:00:00
Antecedent Dry Days ...... 0.0
Report Time Step ......... 01:00:00
Wet Time Step ............ 00:15:00
Dry Time Step ............ 04:00:00
Routing Time Step ........ 60.00 sec
**************************
Runoff Quantity Continuity
**************************
Total Precipitation ..... .
Evaporation Loss ........ .
Infiltration Loss ....... .
Surface Runoff .......... .
Final Surface Storage ... .
Continuity Error (%)
**************************
Flow Routing Continuity
**************************
Dry Weather Inflow
Wet Weather Inflow
Groundwater Inflow
RDII Inflow ............. .
External Inflow ......... .
External Outflow ........ .
Internal Outflow ........ .
Storage Losses .......... .
Initial Stored Volume ... .
Final Stored Volume ..... .
Continuity Error (%)
Volume
acre-feet
208.398
22.933
70. 572
116. 713
0.000
-0.873
Volume
acre-feet
0.000
116.713
0.000
0.000
0.000
116. 685
0.000
0.000
0.000
0.000
0.024
********************************
Highest Flow Instability Indexes
********************************
All links are stable .
*************************
Routing Time Step Summary
*************************
Minimum Time Step
Average Time Step
60.00 sec
60.00 sec
Depth
inches
674.360
74.210
228.365
377.673
0.000
Volume
10A6 gal
0.000
38.033
0.000
0.000
0.000
38.023
0.000
0.000
0.000
0.000
-
..
..
...
..
..
..
-
<~
-
..
•
-.,
•
..
-
..
..
Maximum Time Step
Percent in Steady State
Average Iterations per Step
***************************
Subcatchment Runoff Summary
***************************
Total
Precip
Subcatchment in
60.00 sec
0.00
1.00
Total
Runon
in
POST_DEV
Total Total
Evap Infil
in in
Total Total Peak Runoff
Runoff Runoff Runoff Coeff
in 10A6 gal CFS --------------------------------------------------------------------------------------------------------
DMA-lD 674.36
DMA-2A (SM) 674.36
BR-3 674.36
DMA-1B 674.36
DMA-lC 674.36
BR-2 674.36
BR-1 674.36
BR-4 674.36
DMA-1B(Pavers) 674.36
DMA-lD (Pavers) 674.36
DMA-lE 674.36
DMA-lA+Pavers 674.36
***********************
LID Performance Summary
***********************
Subcatchment LID Control
BR-3
BR-2
BR-1
BR-4
******************
Node Depth Summary
******************
Node
POC-1
VAULT
BR-3
BR-2
BR-1
BR-4
Type
OUTFALL
STORAGE
*******************
Node Inflow Summary
*******************
Node
POC-1
VAULT
Type
OUTFALL
STORAGE
**********************
Node Surcharge Summary
0.00
0.00
15402.89
0.00
0.00
15205.17
557.47
28132.37
0.00
0.00
0.00
0.00
Total
Inflow
in
16077 .25
15879.53
1231.83
28806.73
81.95
6.88
822.89
50.94
78.35
694.80
412.72
871.74
2.27
2.27
87 .11
56.17
Evap
Loss
in
823.12
694.60
412.64
871. 75
21. 50
596.04
0.00
247.65
47.62
2050.69
276.03
0.00
672. 29
672.29
0.00
609.37
Infil
Loss
in
0.00
2050.11
275.98
0.00
577.72
74.05
15312.70
382.23
555.20
13156.94
546.16
28059.63
0.01
0.01
592.58
14.15
Surface
Outflow
in
2641.89
2268.89
220.41
9388.01
Average
Depth
Feet
Maximum
Depth
Feet
Maximum
HGL
Feet
Time of Max
Occurrence
days hr:min
0.00
0.12
Maximum
Lateral
Inflow
CFS
0.31
3.41
0.00
7.56
0.00 0 00:00
7.56 18823 17:01
Maximum
Total Time of Max
Inflow Occurrence
CFS days hr:min
3.70 18823 17:00
3.41 18823 17:00
Lateral
Inflow
Volume
10A6 gal
0. 591
37.439
5.35
0.59
5.32
3.37
7.63
2. 92
0.27
7.61
0.00
0.00
21.32
0.28
Drain
Outflow
in
12675.01
10884.29
325.64
18672.01
Total
Inflow
Volume
10A6 gal
38.021
37.439
0.41
0.31
0.42
0.37
0.60
0.38
0.74
0.62
0.00
0.00
1. 60
0.83
Init.
Storage
in
0.00
0.00
0.00
0.00
0.857
0 .110
0.952
0.567
0.823
0.829
0.443
0.974
0.000
0.000
0.879
0.021
Final
Storage
in
0.00
0.00
0.00
0.00
Pent.
Error
-0.39
-0.12
-0.23
-0.43
..
-
-
-
-
-
-
..
-
..
..
..
-
-
..
-
-
-
POST_DEV
**********************
Surcharging occurs when water rises above the top of the highest conduit.
Node
VAULT
*********************
Node Flooding Summary
*********************
Type
STORAGE
No nodes were flooded.
**********************
Storage Volume Summary
**********************
Storage Unit
Average
Volume
1000 ft3
VAULT 0.151
***********************
Outfall Loading Summary
***********************
Outfall Node
POC-1
System
********************
Link Flow Summary
********************
Link
OUTLET
Flow
Freq.
Pent.
9.66
9.66
Type
DUMMY
*************************
Conduit Surcharge Summary
*************************
No conduits were surcharged.
Analysis begun on: Mon Dec
Analysis ended on: Mon Dec
Total elapsed time: 00:00:27
16
16
Hours
Surcharged
Max. Height
Above Crown
Feet
499679.02
Avg E&I
Pent Pent
Full Loss
Avg.
Flow
CFS
0.03
0.03
1 0
Max.
Flow
CFS
3.70
3.70
7.558
Maximum
Volume
1000 ft3
9.864
Total
Volume
10A6 gal
38.021
38.021
Min. Depth
Below Rim
Feet
0.442
Max
Pent
Full
94
Maximum
I Flow I
CFS
Time of Max
Occurrence
days hr:min
Maximum
IVelocl
ft/sec
Max/
Full
Flow
3.40 18823 17:01
16:34:54 2019
16:35:21 2019
Time of Max
Occurrence
days hr:min
18823 17:00
Max/
Full
Depth
Maximum
Outflow
CFS
3.40