Loading...
HomeMy WebLinkAboutSDP 2021-0029; IONIS PEDESTRIAN BRIDGE; DESIGNED CALCULATIONS; 2023-11-0610660 - Ionis Pedestrian Bridge CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com DESIGN CALCULATIONS Prepared for: BNBuilders 5825 Oberlin Drive, Suite 1 San Diego, CA 92121 Authorized By: CHAD S. McDONALD, PE CALIFORNIA PE# 73479 Record of Revisions No. Date Description 03/03/2023 CUSTOMER SUBMITTAL THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF BRIDGE BROTHERS, INC. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF BRIDGE BROTHERS, INC IS PROHIBITED BRIDGE BROTHERS INC. 1962 HOWELL MILL RD NW, STE. 210 ATLANTA, GA PHONE: 866-258-3401 0 03/28/2023 REVIEWER COMMENTS 1 06/20/2023 REVIEWER COMMENTS 2 11/06/2023 ABUTMENT REVIEWER COMMENTS3 -::,!BRIDGE 1.:1 BROTHERS BRIDGE BROTHERS CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com Design Notes: All design criteria are in accordance with the following where applicable. -AASHTO LRFD Guide Specifications for the Design of Pedestrian Bridges, 2009 -AASHTO LRFD Bridge Design Specifications, 2020, 9th Edition -AASHTO LRFD Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, 2015, 1st Edition-AASHTO Guide Specifications for LRFD Seismic Bridge Design, 2011, 2nd Edition -Steel Deck Institute (SDI), C-2017 Standard For Composite Steel Foor Deck Slabs -AISC 360-16 Specification For Structural Steel Buildings -AISC 303-16 Code of Standard Practice for Steel Buildings and Bridges-AWS D1.1 Structural Steel Welding Code – Steel, 2020 -Guide to Stability Design Criteria for Metal Structures, 2010, 6th Edition The primary function of this structure is to carry pedestrians, bicyclists, & occasional 10,000 lb. vehicles as specified in AASHTO’s LRFD Guide Specification for the Design of Pedestrian Bridges. This structure has NOT been designed for Flood loadings. Materials: HSS Square & Rectangular Tubing shall be Dual Certified ASTM A500 GRB/C -Yield Strength = 50ksi-Ultimate Strength = 62ksiAngle, Plate, & Channel shall be ASTM A572 GR 50 -Yield Strength = 50ksi-Ultimate Strength = 65ksi W-SHAPES SHALL BE ASTM A992 -Yield Strength = 50ksi -Ultimate Strength = 65ksi Decking shall be 4500 PSI – 150 PCF Concrete 10660 - Ionis Pedestrian Bridge General Notes: 1.The Contractor shall verify dimensions, conditions, and elevations before starting work. The Contractor shall inspect all components upon delivery for accuracy and workmanship. The bridge manufacturer and engineer shall be notified immediately if any discrepancies are found. 2.The Contractor shall accept responsibility for all equipment rentals and labor chargesassociated with site work. The bridge manufacturer shall not be held accountable forany charges outside of its contracted scope or due to any freight delays that may occur. 3.The typical notes and details shall apply in all cases unless specifically detailed elsewhere.Where no detail is shown, the construction shall be as shown for other similar work and asrequired by the building code. 4.These calculations are limited to the structural members shown in these calculations only. 5.The Contractor shall be responsible for compliance with local construction safety orders.Approval of shop drawings by the architect or structural engineer shall not be construedas accepting this responsibility. 6.All structural framing members shall be adequately shored and braced during erectionand until full lateral and vertical support is provided by adjoining members. ::,!BRIDGE 1.:1 BROTHERS CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge ::,!BRIDGE 1.:1 BROTHERS BRIDGE SUMMARY Project Specifics: Bridge Type Bridge Finish Vehicle load Additional Point Loads Pratt Painted H-5 N/A Decking 4500psi-150pcfConcrete 5 in. Width: Truss Out-to-out 93 ft Inside Truss SJ ft Clear Walking Surface 8.00 ft Length: Bridge Span Panel Qty Max Panel Spacing Height: Chord CL to CL@ Bridge Center Chord CL to CL@Bridge End Bearing to Top ofDeck@Bridge End 92.0ft 14 78.9 in 6-50 ft 6_50ft 30.0 in VERTICAL LOADINGS: Concentrated Floor Loads (VL): Max Vehicle Load Front Axle Load -20% Rear Aide Load -SO% Max \Vheel/Point Load Pedestrian Live Load (LL): Pedestrian Load Total Live Load Dead Loads (DL): Decking: Decking: 4500psi-150pcf Concrete 5 in. Total Decking Load Total Decking Load Underside Plastic Conduits Conduits (4") Attachment Channels( C5x6. 7) Total Load Railing: IOOOOlbs 20001bs 80001bs 4000 lbs 90 psf 66.240lbs 51.0 psf 51.0 psf 38,709 lbs 21.40 plf 13.43 plf 3,204 lbs Weight 4J2plf 0.09 plf l.65 plf *A .. 4SHTO Pede:.nian 3.2 •_,f....4.SHTO Pufesnian 3 __ 5in. x ll.2in_ 1rhulp1in1 (.i..fSHTO LRFD. 3.0.1.2.5) •_,t_4SlfTO Pufesnian, 3.1 Length Width 92 ft 2.00in 92.0ft 0.19in 3.0 ft 2.00in Max Spacing Qiy (per side} 3.875 in 3 in 78.9 in 0 13 14 Member HSS hhl/16 Railing 3/16" SS Cable Rail L 2x2xl/S Rail Post Total Rail Load 364 lbs Snow Loads (SL): GroWld Snow Load, pg Thennal Factor, C1 Exposure Factor, C,! Snow Importance Factor, t Flat Roof Snow Load, Pf Total Sno\v Load Overturning Wind Loads (OW): Wind Uplift Load Total Wind Uplift Load O.Opsf 12 1.0 II O.Opsf O.Olbs 20 psf 17020 1bs *(.-tSCE 7-10. Figure 7.2-1) *Cold R.ocJ. Unheared Open _fir Sm1ctrm; (.-tSCE 7-16. Tab/6 7.3-2) *Ca16gozy B. PmtiaJ];), Exposed (A.SCE 7-16. Tabl6 7.3-1) •Risk Cai.ego~• Ill (.-iSCE 7-115. Tabl61.5-2) •(.-1.SCE 7-lo. 7.3-1) ••p11r A.ASH TO LRFD 3. 9. 6, SL 1111glibl11 *(.i..-fSHTO Pedestrian, 3.4 ) •.~pplied m th6 ITTmhrard Qrraner Poim of 1h6 Deck CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge HORIZONTAL LOADINGS: Pedestrian Rail Loads (RL): Pedestrian Distributed Load Pedestrian Point Load Horizontal Rail Height from Deck Wind Loads (WL): Ultimate Wind Speed, \I Service Wind Speed, \I Wind Importance Factor, I, Wind Directionality Factor, Kc Gust Effect Factor, G Bridge Height Above Ground, z Height and Exposure Factor, Kz Wind Drag Co efficient, C0 lJltimate Wind Pressu,·e, P, Senice ,Vind Pres.su1·e Fatigue Importance Factor, Ip Fatigue Wind Pressure, Pi,-w Component Truss Top Chord Truss Bottom Chord Truss End Posts Truss Verticals Truss Diagonals Truss Splice. Posts Deck Horizontal Railing Cable Rail Rail Post Total Total Load as if Enclosed Seismic Loads (E): Site Class Horiztontal Response Acceleration, Ss Horiztontal Response Acceleration, S1 Site Amplification Factor, Fa Site Amplification Factor, F, Design Spectral Response Acceleration, So, Design Spectral Response Acceleration, SDI Peak Seismic Ground Acee!. Coeff, PGA Site Coefficient, F pg, A.= Fpg,*PGA = 50 plf 200 lbs 42.0 in 96mph 70 mph 1.15 0.85 1.14 16.9 ft 0.87 2.00 45 .. 8 p.sf 24.3 psf 1.00 10.4 psf Depth of Face to Wind,d 6.0in 6.0in 6.0in 5.0in 3.0in 1.8 in 5.0in 2.0in 02in 2.0in C 0.931 0342 1.000 1.400 0.931 0.479 0.405 1.0 0.405 T,,=2,r* ('1oi:/g)= 125 s Ts= SDI/Sos = 0.51 s To=02Ts= 0.I0s Elastic seismic coefficient, Cs!-!= Design Category (SDC) Seismic Design Force ::,!BRIDGE 1.:1 BROTHERS 0382 C 21,584 lbs •_;_,iSHTO LRFD. 13.8.2 •A.~SHTO LRFD. 13.8.2 *Loading nor to bs applied Ol'-61" oo~ *(..,i,4SHTO Sign.!, Figr1re 3.8.1 b) *(.,L,iSHTO LRFD. 3.4) *(.LJSHTO Pedestrian. 3.4) *(.LJSHTO Sign,. 3.8.5) *(.,L,iSHTO Sign,. 3.8. oJ *midpoint ojmw; se,etion *Based on 3-s Gus1 Wind Speeds & b:pomre C (A...-l.SHTO Signs, 3.8.4) *foo mme., (.,L,iSHTO Sign,. Tabls 3.8.7-1) *(.,L,lSH'l'O Sign,. 3.8.1) *(.,L,iSHTO Sign,. 3.8.1) *Cau1-gory I, l'•lmrn-al IFind Gust.! (.-L~HTOSigm, Tabla 11.6--1 ) *(..LiSHTO Signs. 11.7.1-.. 1; Trnck-Inducc:d Gr1st Loading shall bs errclrided rrnless required b;.,· O.rner (.,L,iSHTO Sign,. 11.7.1.3) Member Length lJltimate Load Ser<ice Load on Fatigue Load on 92.0ft 92.0ft 73 ft 6.0 ft 8.7 ft 6.0 ft 92.0ft 92.0ft 92.0ft 3.0ft •Defaulr on _ fem.bet·, w 2,106 lbs 2,1061bs l66 lbs 114 lbs 99 lbs 401bs 877 lbs 702 lbs 66 lbs 23 lbs l0,139 lbs 17.0 psf *_-fpplied Technology Cor.mcil *_-4.pplied Technology Council •_,L,iSHTO LRFD 3.10.3.2-. •A.~SHTO LRFD 3.10.3.2-3 •.,L4SHTO LRFD 3.10.4.2-3 •.,L4SHTO LRFD 3.10.4.2-ri *(_-ipp}ied T uhnology Cormcil) *--L-4.SHTO Seismic. Table 3_4_2_3-1 •-,L~SHTO LRFD 3.10.4.2-2 •A.~SHTO LRFD 3.10.4.2 *_-i..-f.SHTO Scii:rmic. 3.5 :Member,w 1,120 lbs 1,120 lbs 88 lbs 61 lbs 53 lbs 21 lbs 467 lbs 373 lbs 35 lbs 12lbs 5,391 lbs 9.0 psf :Mem.ber,w 478 lbs 478 lbs 38 lbs 26 1bs 23 1bs 91bs l99lbs l59lbs 15 lbs 5 lbs 2,303 lbs 3.9 psf Member Qty (mndwa,-d) I I 2 12 14 2 I 1 13 14 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge INPUT SUMMARY: Applied Loads (Horizontal): Rail Live Load per Top Chord Ultimate Wind Load Service Wind Load Fatigue Wind Load Applied Loads (Vertical): Decking De.ad Load Rail Dead Load per Truss Vertical Rail Dead Load per Truss End Post Front Ve.hide pe-r Floor Beam Rear Vehicle per Floor Beam Pedestrian Live Load Snow Load Wind Uplift; Windward Truss Wind Uplift; Leeward Truss Conduits Dead Load 50plf 17.0 psf 9.0psf 3.9psf 51.0 psf 4l.41bs 20.Jlbs 20001bs 80001bs 90 psf 0psf 12765 lbs 4255 lbs 42 psf *.,i.~O LRFD, 13.8.2; applied to top chord 6.9 plf 2.9plf 22S.6plf 9143 plf 139 plf 46 plf LOAD COMBINATIONS AND LOAD FACTORS: Limit State: Strength I Strength ID-Light Strength ID-hea>, Senicel Fatigue! Displacement_DL Dispbc.ement_LL Displacement_ VL Displacement_ \VL*** Frequency Combinations: Grarity DLtdKl::i.n.D'&ram SL** RL&LL,VL* 125 125 1.15 0.90 0.90 125 125 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 *Vehic-11/aJ' load shall not be placed in combination with tl18 pedestrian load .. per AASHTO 3.9. 6, SL neg lib le ***Displace111e111_ WL combinmion taiw1 wirli Service Wind Load FATIGUE RESISTANCE DESIGN: Fatigue Design Category Number of Cycles Fatigue Resistance (ksi) ::,!BRIDGE 1.:1 BROTHERS D Infinite 7.000 '!LRFD 2013 ra.1. 0.0.1.2.5-3) Envelopes: \VL ow Ve11ic-al Lateral X 1.00 1.00 X 1.00 1.00 X 1.00 1.00 X 1.00 X X X X 1.00 1.00 X CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge SUMMARY OF STRUCTURAL DESIGN RESULTS: Vertical Envelope Truss Top Chord HSS 6x6xl/4 TC-7 Member Name: TC AASHTO 6_9_4_ 1 ,pP,, = 198_ k AASllTO 6-12_2_2_2 ,pM,,_j = 46_ 7 k*ft AASHTO 6_122-2-2 ,pM,,0 = 46_ 7 k*ft AASHTO 6_ 10_9-2 ,p\ "-= Uk P,J,pP,,_ = 0_83 If P. ,pP,, <0.2, P,.12,pP,,_+Mu/,PMni+Miol,PMno = N/A If P. ,pP,,_ ~.2, P,J,pP,_+(819XJ¼,./,pM,.i+M; ,pM,,_0) = 0_90 P,,= 164.4k Mui = 2.2 k *ft M10= 1.4 k*ft V,,= 1.1 k OK OK OK OK OK (AASHTO 6_9_2_2-1) (AASHTO 6-92-2-2) T russ Bottom Chord HSS 6x6xl/4 BC -7 Member Name: BC AASllTO 6_8_2_ 1 ,pP,, = 248_9 k AASllTO 6_12_2_2-2 AASHTO 6-12-222 AASHTO 6_ 10_92 P. ,pP,. = 0.65 ,p.t\1,,_j = 46_ 7 k*ft ,Pl\1no = 46_ 7 k*ft ,p ,,=7L3 k If P. ,pP,, <0.2, P,.12,pP,.+Mu/,PMni+Mi.,/,PMno = N/A IfP. ,pP,,~.2,P,.l,pP,.+(819XMu/,PM,,.i+M; ,p.t\1..o)= 0.70 Truss End Posts HSS 6x6xl/4 AASHTO 6_9_4_1 ,pPn = 235-1 k AASHTO 6-122-2-2 AASllTO 6-122-22 AASllTO 6_10_9_2 P,/q,Pn = 0.19 ,pM,,, = 46_ 7 k*ft ,pM,,.., = 46_ 7 k*ft IfP,/,pP,, <0_2, P,/2q,Pn M,./q,M,,_1+~.,/q,M,,_0 = 0.37 IfP,/q,Pn ~-2., P,/q,Pn+(8/9)(M,./q,M,,,+M,.,/q,M,..,) = NIA Truss Verticals HSS 5x5xl/4 AASHTO 6_9_4_ 1 ,pP n = 192-9 k AASHTO 6-122-2-2 ,pM,,, = 31-7 k*ft AASHTO 6-122-2-2 ,p:M,,., = 3U k*ft AA.SllTO 6_10_9_2 ,p\ n = 57_9 k P,/q,Pn = 022 If P ,pP n <0-2., P ,/2q,P,, M,./q,M,.,1 M;.,/q,M,,_0 = NIA If P ,./q,P n ~-2, P ,./q,P n +(8/9)(M,./q,M,,, M;.,/q,M,..,) = 0.3 Truss Splice Posts C5x6.7 Channel AASllTO 6_9_4_1 ,pPn = 35J k AASHTO 6_12-2.22 AASllTO 6_1212.2 ,pM,,, = 10.4 k*ft ,p:M,,., = 2..5 k*ft AASHTO 6_10_9_2 ,p\/n = 24.3 k P,./q,P,, = 0.13 IfP t Pn <0_2, P,./241Pn+M,./q,M,,;+~.,/q,M,,_0 = 021 IfP,./q,Pn ~-2, P,./q,Pn+(8/9)(M,./q,M,,, M;.,/q,M,..,) = NIA ::,!BRIDGE 1.:1 BROTHERS P,, = 161.1 k OK Mui = 2.2 k *ft M10= 0.6k*ft V,,=1.lk OK P,.= 45.7 k M,,, = 10.2 k *ft M,0 = 2.3 k *ft V,. = 5.9 k OK P,.=41.Sk M,., = 3.3 k *ft ~ = 2.2 k *ft \,.=1.lk OK P,.= 4.5k M,,, = 1.4 k*ft I\i;o = 0.0 k*ft OK OK OK OK (AASHTO 6_8_2_3-1) (AASHTO 6_82-3-2) Member Name: EP OK OK OK OK (AASHTO 6_9_2_2-1) (AASHTO 6_9_2_2-2) Member Name: V OK OK OK OK (AASHTO 6_92_2-1) (AASllTO 6_9_2_2-2) Member Name: SV OK OK OK OK (AASHTO 6_9_2_2-1) (AASHTO 6_9_2_2-2) CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge Truss Diagonals HSS Sx3xl/4 AASHTO 6.8.2.1 •f>Pn = 160.l k A.ASHTO 6.12.2.2.2 AASHTO 6.12.2.2.2 f M,,,; = 22.4 k*ft ½M,-,., = U J k*ft AASHT06.10.9.2 f\n = 57.9k P,/q,Pn = 03 lfPj q,Pn <0.2, Pj 2q,P,, M,,/q,1\.1,,, M;J q,M,,0 = NIA lfP,/q,P,, e::0.2, P,/q,P,,+(8/9)(M,,/q,M,,i+MiJ q,M,,J = 0.41 End Floor Beams WSx l O AASHTO 6.9.4.1 fPn = 125.5 k AA.SHTO 6.12.2.2.2 AASHTO 6.12.2.2.2 AASHTO 6.10.9.2 P,/q,P,, = 005 ½M,,i = 32. 0 k*ft fM,,., = 6.8 k*ft lfPj q,Pn <0.2, P,/2q,P,, M,,/q,1\11,..; M;J q,M,,., = 033 lfP. q,P,, e::0.2, P,/q,P,, (8/9)(M,,/q,M,,i MiJ q,M,.J = NIA Floor Beams WSxl O AASHTO 6.9.4.1 fPn = 125-5 k AASHTO 6.12.2.2.2 fM,,i = 32.0k*ft AA.SHTO 6.12.2.-.2 f M,,., = 6.8 k*ft AASHTO 6.10.9.2 f\ n = 362 k P,/q,P,, = 0.00 lfP,/q,P,, <0.2, P,/2q,P,,+M,,/q,1\lf,..;+M;J q,M,,., = 0.46 lfP. q,P,, e::0.2, Pj q,P,,+(8/9)(M,,/q,M,,i+M;Jq,M,.J = NIA Floor Splice Beam CSxll.5 Channel AASHTO 6.9.4.1 f P n = 52.2 k AASHTO 6.12.2.2.2 AASHTO 6.12.2.2.2 AASHTO 6.10.9.2 P,/q,P,, = 001 ½M,,,i = 22.4 k*ft f M,co = 5 2 k*ft lfP,/q,P,, <0.2, P,/2q,P,,+M,,/q,M,,,+M;J q,M,,., = 0.34 If P ,/q,P,, e::0 .2, P ,/q,P n +(8/9)(M,,/q,M,,i+MiJ q,M,.J = NI A Floor Bracing HSS 2x2x3/16 AASHTO 6.9.4.1 fP,, = 15.S k AASHTO 6.12.2.2.2 AASHTO 6.12.2.2.2 ½M,,i = 3 3 k*ft f M,,., = 3 .3 k*ft AA.SHTO 6.10.9.2 f\ n = 14.S k Pj q,P,, = 0.01 lfP t Pn <0.2, P,/2q,Pn M,,/q,1\.1,,,+M;J q,M,,0 = 0.00 If P ,/q,P,, e::0 .2., P ,/q,P,, +(8/9)(M,,/q,1\lf,.,;+M;Jq,M,,.,) = NIA ::,!BRI DGE 1.:1 BROTHERS P,,=ss.sk M,,i = 0.4 k *ft Mio = 0.5 k *ft V,,= 0.2k OK P,,= 5.8k M,,i = 9. 7 k*ft Mio = 0.0k*ft \,,= 8.0k OK P,,=o.6k M,,i = 14.6 k,.ft M;o = 0.0 k"ft OK P,,=0.6k M,,i = 7.4 k *ft M;0 = 0.0k,.ft V,,= 4.5k OK P,,= 0.1 k M,,i = 0.0 k*ft M;., = 0.0 k*ft OK Member Name: D OK OK OK OK (AA.SHTO 6.8.2.3-1) (AASHTO 6.8.2.3-2) Member Name: EFB OK OK OK OK (AA.SHTO 6.9.-.2-1) (AASHTO 6.9.2.2-2) Member Name: FB OK OK OK OK (AASHTO 6.9.2.2-1) (AASHTO 6.9.2.2-2) Member Name: SFB OK OK OK OK (AASHTO 6.9.2.2-1) (A.ASHTO 6.9.2.2-2) Member Name: BD OK (AASHTO 6.9.2.2-1) (AASHTO 6.9.2.2-2) CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge SUMMARY OF STRUCTURAL DESIGN RESULTS: Lateral Enve/.ope Truss Top Chord HSS 6x6xl/4 TC -8 Member Name: TC AASHTO 6.9.4.1 ½Pn = 198.7 k AASHTO 6.12.2.2.2 AASHTO 6.12.2.2.2 AASHTO 6.10.9.2 Pul½Pn = 0.50 ½Mni = 46. 7 k*ft ½M,io = 46. k*ft ½\n= 13 k If P ½Pn <0.2, P ]4,Pn+Mu/½Mni+Mi ½Mno = NIA If Puf½Pn ~2, P ½Pn+(819){Mu/½Mni+Miol½Mno) = 0.61 Pu = 100.3 k OK Mu;= 1.3k+ft OK Mio = 4.0k+ft OK Vu = 0.7 k OK OK (AASHTO 6.9.2.2-1) (AASHTO 6.9.2.2-2) Truss Bottom Chord HSS 6x6xl/4 BC -7 Member Name: BC AASHTO 6.8.2.1 AASHTO 6.12.2.2.2 AASHTO 6.12.2.2.2 AASHTO 6.10.9.2 Pul½Pn = 0.42 ½Pn = 248.9k ½M11i = 46. k*ft ½l\>fno = 46. k*ft ½Vn= 13 k If Puf½Pn <0.2, Puf24>Pn+M,,;l½Mni+Miol½Mno = N/A If Pul½P n ~.2, Puf½P n+(819){Mu;/½M,,.i+Miof½l\>fno) = 0.52 Truss End Posts HSS 6x6xl/4 AASHTO 6.9.4.1 ½Pn = 235.1 k AASHTO 6.12.2.2.2 AASHTO 6.12.2.2.2 AASHTO 6.10.9.2 Pul½Pn = 0.12 ½M,-,i = 46. 7 k*ft ½Mn., = 46. 7 k*ft ½Vn = 713 k lfP,/q,Pr, <0.2, Pfl4Pn M,,/q,M,,,i M,.,/q,M,.., = 025 lfPj q,Pn ~-2, P,/q,Pn+(8/9)(M,,/q,M,.,i+M,.,/q,¾..,) = NIA Truss Verticals HSS 5x5xl/4 AASHTO 6.9.4.1 ½Pn = 192.9k AASHTO 6.12.2.2.2 AASHTO 6.12.2.2.2 AASHTO 6.10.9.2 Pul½Pn= 0.11 ½M,-,i = 31.7 k*ft ½Moo = 31.7 k*ft ½Vn = 57.9k If P,/q,P n <0.2, P j?_.q,P n +M,,/q,~i+M,.,/q,M,.., = 0.25 lfPj q,Pn ~.2, P,/q,Pn+(8/9)(M,,/q,M,.,i+M,.,/q,¾..,) = NIA Truss Splice Posts C5x6.7 Channel AASHTO 6.9.4.1 ½Pn = 35. k AASHTO 6.12.2.2.2 ½M,,i = 10.4 k*ft AASHTO 6.12.2.2.2 AASHTO 6.10.9.2 Pul½Pn = 0.06 ½M,,0 = 2.5 k*ft ½Vn = 24.3 k lfP,/q,Pn <0.2., Pj2q,Pn+M,,/q,~i+M,.,/q,~ = 0.09 lfPj q,Pn ~-2, P,/q,Pn+(8/9)(M,,/q,~i M,.,/q,M,..,) = NIA ::,!BRI DGE 1.:1 BROTHERS Pu = 103. k OK Mu;= 1.3 k+ft Mio= 4.0k+ft Vu = 1.6k OK OK OK OK (AASHTO 6.8.2.3-1) (AASHTO 6.8.2.3-2) Member Name: EP Pu = 29.2k OK M.i = 7.5 k+ft OK M;0 = 1.5 k .. ft OK Vu =4.6k OK OK (AASHTO 6.9.2.2-1) (AASHTO 6.9.2.2-2) Member Name: V Pu = 22.1 k OK M.i = 1.1 k+ft OK M;0 = 5.0 k .. ft OK Vu = 8.7 k OK OK (AASHTO 6.9.2.2-1) (AASHTO 6.9.2.2-2) Member Name: SV Pu = 2.0k OK M.i = 0.5 k+ft OK M;0 = 0.0 k .. ft OK OK OK (AASHTO 6.9.2.2-1) (AASHTO 6.9.2.2-2) CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge Truss Diagonals HSS 5:x3xl/4 AASHTO 6.8.2.1 q,P,, = 160.1 k AASHTO 6.12.2.2.2 AASHTO 6.12.2.2.2 AASHTO 6.10.9.2 Pu/q,Pn= 013 q,M,,,i = 22.4 k*ft q,l\i,-,0 = IS. k*ft q,V,,= 5 .9 k IfPj ~Pn <0.2, Pj ~Pn+M./~M,.i+M,.,/q,M,.., = NIA IfPj q,Pn ~-2., P,/~Pn+(8/9)(M./~M,,,i+Mi.,/q,M,.J = 0.26 End Floor Beams W8xl0 A.ASHTO 6.9.4.1 q,Pn = 125.S k AASHTO 6.12.2.2.2 AASHTO 6.12.2.2.2 AASHTO 6.10.9.2 Pu/q,Pn = 0.01 q,M,.,i = 32.0 k*ft q,l\i,-,0 = 6.8 k*ft q,Vn =362k IfPj ~Pn <0.2, P~Pn+M./f M.i+M,.,/q,M,.., = 013 IfPj q,Pn ~-2., P,/f Pn+(8/9)(M./f M,.d M,.,/q,M,.J = NIA Floor Beams W8xl0 AASHTO 6.9.4.1 q,Pn = 125.S k AASHTO 6.12.2.2.2 AASHTO 6.12.2.2.2 AASHTO 6.10.9.2 Pu/q,Pn = 0.00 q,M,.,i = 32.0 k*ft q,l\i,-,0 = 6.8 k*ft q,Vn =362k IfPj ~Pn <0.2, Pj ~Pn+M./f M,.i+Mi.,/q,M,.., = 0.45 IfPj q,Pn ~-2., P,/f Pn+(8/9)(M./f M,.,i+M,.,/q,M,.J = NIA Floor Splice Beam C8xll.5 Channel AASHTO 6.9.4.1 q,P,, = 522 k AASHTO 6.12.2.2.2 AASHTO 6.12.2.2.2 AASHTO 6.10.9.2 Pu/q,Pn = 0 00 q,l'vl,.,i = 22.4 k*ft q,M,.., = S 2 k*ft q,Vn =46.6 k IfPj ~Pn <0.2., P~Pn M,,/f M,.i M,.,/q,M,.., = 0 IS IfPj q,Pn ~-2., P,/f Pn+-(8/9)(M,,/f M,.,i+M,.,/q,M,.J = NIA Floor Bracing HSS 2x2x3/16 AASHTO 6.9.4.1 q,Pn = IS.8 k AASHTO 6.12.2.2.2 AASHTO 6.12.2.2.2 AASHTO 6.10.9.2 Pu/q,Pn = 0.67 q,l'vl,.,i = 3 J k*ft q,M,.., = 3 J k*ft q,V,,= 14.S k IfPj ~Pn <0.2., P~Pn+Mu/f M,.i+M,.,/q,M,.., = NIA IfPj q,Pn ~-2., P,/f Pn+(8/9)(M,,/f M,.,i+M,.,/q,M,.J = 0.67 ::,!BRIDGE 1.:1 BROTHERS Member Name: D Pu=36.6k OK M.i = 0.5 k,.ft OK M;o = 0.2 k,.ft OK Vu = 0.3k OK OK (AASHTO 6.8.2.3-1) (AASHTO 6.8.2.3-2) Member Name: EFB Pu = 0.9k OK M.i = 6.3 k+ft OK M;o = 0.2 k+ft OK Vu = 2.7k OK OK (AASHTO 6.9.2.2-1) (AASHTO 6.9.2.2-2) Member ame: FB Pu = 0.2k OK M.i = 1.7k+ft OK M;o = 2. 7 k,.ft OK Vu = 4.1 k OK OK (A.A.SHTO 6.9.2.2-1) (AASHTO 6.9.2.2-2) Member Name: SFB Pu = 0.2k OK Mui = 3.9 k"ft OK M;o = 0.0 k,.ft OK Vu = 2.0k OK OK (A.ASHTO 6.9.2.2-1) (AASHTO 6.9.2.2-2) Member Name: BD Pu = 10.6k OK Mui = 0.0 k"ft M;0 = 0. 0 k *ft \u = O.Ok OK (A.A.SHTO 6.9.2.2-1) (A.ASHTO 6.9.2.2-2) CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge SIMPLE BEAM EQUATIONS: Horizontal Railing HSS 2x2:x3/16 Unsupported Span L = 78.9in P= 200 lbs W = 50.0 pff lr = 1.75 Max Point Load Ped Live Load Load Factor Resistance Factor q>= LO Live Load Bendmg Moment cj>*Z*Fy = 3.06 k*ft Live Load Deflection V360 = 0.22" End Floor Bea.m: W8xl0 -nsupported Span Max Load Ped. Live Load Load Factor Vehid e Load Bendmg Moment Ped. Load Bendmg Moment L = 99.0 in P = 8000 lbs W = 296 plf lr = 1.75 qiM,, = 32.0 k*ft qiM,, = 32.0 k*ft Live Load Deflection V360 = 0.28" Vehlde Load Deflection V360 = 0.28''' Floor Beam: W8xl0 nsuppo:rted Span Max Load Ped. Live Load Load Factor L = 100.0 in P = 8000 libs W = 591 p]f lr = 1.75 Vehid e Load Bendmg Moment qiM,, = 32.0 k*ft Ped. Load Bendmg Moment qiM,, = 32.0 k*ft Live Load Deflection V360 = 0.28" Ve~de Load Deflection V360 = 0.28" Floor Splice Beam: C8xll.5 Channel Unsupported Span L = 100.0 in Max Load P = 4000 lbs Ped. Live Load W = 296 p]f Load Factor lt = 1.75 Vehid e Load Bendmg Moment qiM,, = 22. 4 k*ft Ped. Load Bendmg Moment ::,!BRIDGE 1.:1 BROTHERS Live Load Deflection Vehlde Load Deflection qilvf,, = 22. 4 k*ft V360 = 0.28" V360 = 0.28''' E = 29000 ksi 1:.: = o.64 m/'4 ~. = 0.64 m"4 ½: = 0.80 in"·3 ~. = 0.80 m"3 Fy= 46 ksi lt*~ = 0.94 k*ft OK Du =0.13'' OK lr*~ = 14.4 k*ft OK lt*~ = 2.9 k*fl OK Du = 0.01" Dvr, = 0.05" OK OK Ir*~= 14.6 k*ft OK Ir*~= 6.0 k*fl OK Du =O.ol " OK Dvr, = 0.05" OK Ir*~= 7 .3 k*fl OK Ir*~= 3.0 k*fl OK Du = 0.01" OK D,,r, = 0.02" OK CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge TOP CHORD STABILITY *(.4.4,SHTOPedesrrian, 6) Induced Loads: Top Chord Induced Axial Comp. E.nd Post Induced Axial Comp. E.nd Post Induced Moment Interior Vertical Induced Moment Mechanical Properties: Steel ASTM: E Fro f ty Fcy r .. F,y 164.4 kips 45. kips 26.0 kip-in 39.6kip-in A500GrC 29000 ksi 62ksi 50ksi 50ksi 36 ksi 29ksi Half-Through Truss -Frame Stiffness: F _S _ l J3 *Factor of Sqfe.tJ,·. 2. 0 for utifacrored loads or 1.33 for fac101d loads b 105 .0 in *floor Beam Span, from centsrline to C6-111srlins of m1ss n1nical:i h 63.9 in L.! 103.9 in lb 30.8 inA4 le 16.0 inA4 r.i 10. inA4 n 14 C (Galam/Jos -15.6c) 2.48 CIJ[Pc(F.S.)] 0.90 1/K 0.61 K 1.64 Lateral Force to be Resisted by Interior Verticals: *FJfectn·e Heigh1,from centerline. of top chord to cemmiine of beam •FJlectf\·e Lmgrh of Diagonal • J.foment of Inertia of F1oor Beam *.\1omenr of Inertia of T rnss Vertical *J.Umumt of Inertia o/Tmss Diagonal •.Nrrmbsr of Panels *Tran.n"Bn"e Frame Spring Constant •Jnu.upolarion/rom Table 7.1.2-1 of Spe.ctficmion Verify limit, 0.01/K > 0.003 0.006 OK Min. Lateral Force, Hr= 0.01/K*P, Desi_gn Mmas -Interior vertical posts Resistance l\ifmax -Interior vertical posts 1.00 kips II 1.6 kip-in 380.S kip-in Lateral Force to be Resisted by End Posts: Min. Lat. Force, 0,01 *E.nd Post Axial Design Mmas -E.nd posts Resistance Mmas -E.nd posts Top Chord Geometry: Depth Width lbickness Area, Gross & Net Sections I, ly Sy fv Unsupported Length Lb Axial-Compression (Gross): ::,!BRIDGE 1.:1 BROTHERS K (from U-Frame Stiffness) KUr (<=120) P, Q 'I' Resistance Unity Che~k 0.46 kips 65.S kip-in 560.0 kip-in 6.0in 6.0in 02in 52 sqin 28.6 inA4 28.6 inA4 9.5 irr'3 2336 2.336 78.9 in 1.64 55.5 92.9ksi 1.000 50.0ksi 0.95 198.7 kips 0,83 *To bs applied a:; laisralforce. to top cjrruss ,·erricals OK •To be applied as lateral fores 10 top cf miss end posts OK *minimum 0.75 per .:L-!SHTO LRFD 4.0.2.5 •.,USHTO LRFD o.9.3 *,L~SHTO LRFD 6.9.2.1 *,L-iSHTO LRFD o.9.4.U *AASHTO LRFD 6.9.4. I *,L-iSHTO LRFD o.5.4.2 OK CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge BRIDGE SERVICEABILITY BRIDGE DEFLECTIONS: Bridge Span Dead Load Deflection Live Load Deflection Vehicle Load Deflection Wind Load Deflection 92.0 ft DoL = 1.28" DLL =J.11" DvL = 0.40" Dv.'L = 0.78" FREQUENCY DESIGN *(.4.ASHTOPedesh·ian, 6) Minimum Vertical Minimum Lateral Reported Vertical Frequency,f Reported Lateral Frequency,f Service Load Deflection -Vertical (in) Service Load Deflection -Lateral (in) FUDdamental Frequency = 0.18*SQRT(g/d0L) Vertical Frequency Lateral Frequency ::,!BRIDGE 1.:1 BROTHERS 3.00 Hz 130Hz 3.I0Hz 0.90Hz 1280 0.780 3.13 Hz 4.01 Hz V360 = 3.0667" OK V360 = 3.0667" OK V360 = 3.0667" OK V360 = 3.0667" OK OK See altematfre checks below per the. AASHIO Pedestrian guide *From DL De_Pection Summa,y *From TFL De_Pection Swmna,y OK OK CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge OPEN SHAPE to HSS CONNECTION, AISCStee!Constructio11Ma1111al 14th, SectionK Open Shape: End Floor Beams HSS: Truss End Posts loduced Loads HSS-Axial Load HSS-Moment Open Shape -Axial Load Open Shape -Mome.nt, in-plane Open Shape -Moment, out-of-plane Apprx. Flange Tension/Compre.ssion, P 46.8 kips J.Jk*ft 5.8kips 9.Jk*ft 0.1 k*ft 42k Mechanical Properties-HSS SreelASTM: E= F.ill.= Geowetrv-HSS Tube Height, H Tube \Vidth, B Material Thickness, t Area, Gross & Net Sections, A I, s, r, A500Gt'C 29000 ksi 62ksi 50ksi 50ksi 37ksi 30ksi 6.0in 6.0in 0.233 in 524 in"2 28.6. 28.6inA4 9.5 in"3 2.34in 2J4in 0.43 in W8x!0 HSS 6x6xl/4 Orienation: Standard Mechanical Properties-Open Shape Stee!ASDI: fsu= f:sy= A992 29000 ksi 65ksi 50ksi 50ksi 38 ksi 29ksi Geowetrv-Open Shape Member Height Flange Width, Bp Flange Thickness, tp 'Web Thickness, tw _.:\rea, Gross & Net Sections, A I, ly s, J.9 in 3_9 in 0205 in 0.lJ0in 2.96in"2 30.8 in"4 2.1 in"4 7.S in"3 323 in 0.84 in Branch Angle, 8 90,;, Liwits of Applicabilitv, AISC Specifications Table Kl.2A HSS \Vall Slenderness: B/t <= 35 26 *OK Flange Slenderness: Bb/t <= 35 19 *OK Width Ratio,~: B,/B >= 025 0.66 *OK Aspect Ratio: Qj<=H/B<=2.0 1.00 *OK Material Strength: Fy <= 52ksi 50 *OK Ductility: Fy/Fu <=0.8 0.8 *OK Design Checks: Local Yielding of Plate, Kl-7 HSS Shear Yielding (Punching), Kl-8 Pn = 10/(B/t)*Fy*t*B, 17.Sk <I> 0_95 ~--------P_n_*4> ____ 16_.9_k_· --~•governs ::,!BRIDGE 1.:1 BROTHERS Check 0.858 <= B, <= B-2t B.,.= 10B/(B/t)<=Bp Pn = 0.6*Fy*t*(2t,,+2B..,) <I> NO U3in 24.3 k 0.95 NIA CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge Local Yielding ofHSS Sidewalls, Kl-9 Check~: LO NO P,.: 2*F,-*t*(5k+lb) 552 k <I> 1.00 P,*<I> NIA H SS Plastification, Kl-12 Check~: 1.0 NO Longitudinal Connection L e-ngth, lb= 6_)in P11.*Sin8 IJ_9k <I> 1.00 P,*<I> NIA Capacity Check: Connection demand, P ControllingPn Unity Check<= 1.0 Weld Design: Ultimate Shear 37 ksi Weld Group: 42k 16.9k 0.25 ltim.ate Tensile 62ksi \Veld _.:\JJ...~ound Nominal \Veld Size I, :(I0l(Blt))*(F,-*tl(F,~•t,,)*B, depth of member, D Web length, T Sop Total Weld Length, L WeldA,ea,A Capacity Check Induced Axial Load A.xi.al Resistance Induced Moment, in-plane Moment Resistance, in-plane Induced Moment, out-of-plane Moment Resistance, out-of-plane Unity Check <=1.0 ::,!BRIDGE 1.:1 BROTHERS 3116in 1.J in J.9in 6_5 in 1430 in"3 l.99irr'l 31.5 in 42 in 5.S kips 124.4kips 1162 kip-in 425.6 kip-in 12 kip-in 593 kip-in 0.34 Local Crippling of HSS Sidewalls, Kl-10 Kl-12 *OK Resistance Factor 0.S Check~: 1.0 and Branch in Compression Utilization Ratio, U Q,: IJ*0.4*Ula P,.: l.6t1*(1 +31,,t(H-lt))*(-'E*F,-)*Q, <I> Pn*t Fillet -~Ia.x Groove -~1Iax Factored Shear Factored Stress Tensile Stress 30 ksi 50 ksi K4-4; effective weld atop flanges A*a s •o S*o OK NO 0372569S75 l.0J3053SS3 1253k 0.75 NIA Kl-6 Kl-16 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge OPEN SHAPE to HSS CONNECTION, AISC Steel Constmction Manual 14th, Section K Opeu Shape: Floor Beams HSS: Truss Verticals luduced Loads HSS -Axial load HSS-Moment Open Shape -Axial load Open Shape - Moment, in-plane Open Shape -Moment, out-of-plane Apptx. Flange Tension/Compression, P 41.6kips 5.9k*ft 4.l kips 11.0k*ft 0.1 k'ft 3.7 k Mechanical Properties-HSS Steel ASill: Fm = Fol11,= Geowetrv-HSS Tube Heigh~ H TubeWidth,B Mate.rial Thickness, t .!\.rea,. Gross & Net Sections, A ,, s, r, AS00G,·C 29000ksi 62ksi 50ksi 50ksi 37ksi 30ksi 5.0in 5.0in 0233 in 430 Ul"2 16.0 in"4 16.0in"I 6.4 in"3 1.9in t.9in 0.43 in W8x!0 HSS 5x5xl/4 Orieuatiou: Standard Mechanical Properties-Qpen Shape Steel ASil·I: Fru = f:.u = A992 29000ksi 65ksi 50 ksi 50ksi 38 ksi 29ksi Geowetrv-Qpeu Shape Member Height Flange \Vidth, Bp Flange Thickness, tp \Veb Thickness, tw .!\.rea, Gross & Net Sections, A ,, ,, s, r, 79in 3.9in 0205 in 0.IJ0in 30.S in"4 2.1 in"4 7.S inA3 32in 0.Sin Branch .'\ngle, 8 90.:,. Limits of Applicabilitv, AJSC Specifications Table Kl.2A HSS \Vall Slenderness: B/t <= 35 Flange Slenderness: B1/t <= 35 Width Ratio,~: B,IB >= 025 Aspect Ratio: 0.5<=H/B<=2.0 Material Strength: Fy <= 52ksi Ductility: Fylfu <=O.S Design Checks: 21 19 0.79 1.00 i0 0.8 *OK *OK *OK *OK *OK *OK Local Yielding of Plate, Kl-7 HSS Shear Yielding (Punching), Kl-8 P,: IO/(Bit)•r,.•r•B, ::,!BRI DGE 1.:1 BROTHERS 21.4 k 0.9i 203k Check 0.85B <: B, <: B-2t B,.: IOB,/(B/t) <: B, <I> NO l.84 in 28.i k 0.95 N/A CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge Local Yielding of HSS SidewaUs, KJ-9 Check~= 1.0 NO P11 =2*fy*t*(5k+lb) 552k <I> 1.00 P,•4> NIA HSS Plastification. Kl -12 Ched~= 1.0 NO Longitudinal Connection Length, lb= 6.5in 19.4k <I> 1.00 Capacity Check: Connection deman~ P Controlling Pr.. Unity Check<= 1.0 Weld Design: Ultimate Shear 37ksi Weld Group: 3.7k 203k 0.18 Ultimate Tensile 62ksi Vleld A.ll-ArnW1d Nominal \Veld Size 3/16 in I. =(10/(B/t))'(F,-'t!(F,. 'tp)*Bp depth of member, D Web length, T Sop Total Weld Length, L WeldArea,A Capacity Check Induced A.xial Load A.xial Resistance Induced Moment, in-plane Moment Resistance, in-plane Induced Moment, out-of-plane Moment Resistance, out-of-plane Unity Check <=1.0 ::,!BRIDGE 1.:1 BROTHERS 2.1 in 7.9in 6_5 in 14.J0in"J 1.99in"3 3tj in 42in 4.5kips 124.4kips 132.0 kip-in 425.6 kip-in 12kip-in 593 kip-in 0.37 Local Crippling of HSS SidewaUs, Kl-10 Kl-12 *OK Resistance Factor 0.8 Check~= 1.0 and Branch in Compression Utilization Ratio, U Q,= l.3*0.4*U/~ P, = 1.6t'*(l +3lsl(H-3t))*(-'E*F,-)*Q, <I> P:n*4> Fillet -:i\llax Groove -~1Iax. Factored Shear Factored Stress Tensile Stress 30 ksi 50 ksi K4-4; effective weld atop flange A'o s•a s•a OK NO 0.414l3867 1.089574279 1303k 0.75 N/A Kl-6 Kl-16 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge OPEN SHAPE to HSS CONNECTION, AISCStee!ConstructionManual 14th, SectionK Open Shape: Truss Splice Posts HSS: Truss Top Chord loduced Loads HSS-Axial Load HSS-Moment Open Shape -Axial Load Open Shape -Moment, in-plane Open Shape -Moment, out-of-plane Apprx. Flange Tension/Compression,. P 42.9kips 3.7k*ft 9.0kips 2.8 k*ft 0.1 k*ft 5.1 k Mechanical Properties-HSS SteelASTM: E= Fl'.i.= f.;.y= Geowetrv-HSS Tube Height, H Tube \Vidth, B Material Thickness, t Ana, Gross & Net Sections, A I, s, r, A500G1·C 29000ksi 62ksi 50ksi 50ksi 37ksi 30ksi 6.0in 6.0in 0233 in 524in"2 28.6. 9.5 in"3 2.3 in 23in 0.43 in C5x6. 7 Channel HSS 6x6xl/4 Orienation: Standard Mechanical Properties-Open Shape Steel ASDI: A572 GR 50 E= 29000 ksi Fru = 65ksi Fry= 50ksi fey = 50ksi f:iu.= 38 ksi F:sy= 29ksi Geowetrv-Open Shape Member Height Flange Width, Bp Flange Thickness, tp Web Thickness, tw . .:\rea, Gross & Net Sections, A I, I, s, 5.0 in 1.8 in 0320 in 0.190 in 1.97 in"2 J_j in"4 0.5 in"4 3.0 in"3 ry t.9in Q_j in Branch . .i\ngle, 8 90° Limits of Applicahilitv, AJSC Specifications Table Kl.2A HSS \Vall Slenderness: B/t <= 35 Flange Slende.mess: Bi/t <= 35 Width Ratio,~: B,IB >= 0.25 Aspect Ratio: 0.5<=HIB<=2.0 Material Strength: Fy <= 52ksi Ductility: fy/fu <=0.8 Design Checks: 26 0.83 1.00 50 0.8 *OK *OK *OK *OK *OK *OK Local Yielding of Plate, Kl-7 HSS Shear Yielding (Punching), Kl-8 P, = 10/(B/t)*f,-*t*Bp ::,!BRIDGE 1.:1 BROTHERS 7.9k 0_95 7.5 k Check 0.85B <= Bp <= B-2t B,. = I 0B/(B/t) <= Bp <I> NO 0.68 in 14.0k 0.95 N/A CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge Local Yielding ofHSS Sidewalls, KJ.9 Check ~= 1.0 NO P,=2*f,*t*(lk-+li,) ll.9k <I> 1.00 HSS Plastification, KI-I 2 Check ~= 1.0 NO Longitudinal Connection Length. lb= 3jin 16.l k <I> 1.00 P,*4> NIA Capacity Check: Connection demand, P ControllingPn Unity Chec.k <= 1.0 Weld Design: Ultimate Shear 37 ksi Weld Group: l.l k J.lk 0.68 Ultimate Tensile 62ksi Weld ."Jl-Around Nominal Weld Size. I, =(10/(B/t))*(fy *t!(F,~•t,,)*Bp depth of member, D Web length, T Sop Total Weld l ength, L WeldArea,A Capacity Check Induced Axial Load Axial Resistance. Induced Moment, in-plane Moment Resistance, in-plane Induced Moment, out-of-plane Moment Resistance, out-of-plane. Unity Check <=1.0 ::,!BRIDGE 1.:1 BROTHERS 4/16in 0.l in 5.0in 3.5 in 2.l9in"3 0.91 in"3 11.0in l.9in 9.0 kips ll.S kips 33.6kip-in JJ.0kip-in 12kip-in 27.0 kip-in 0.64 Local Crippling o!HSS Sidewalls,KI -IO Kl-12 *OK Resistance Factor 0.8 Check ~ = 1.0 and Branch in Compression Utilization Ratio, U Q,= 13*0.4*U/~ P, = 1.6t2*(1 +31,l(H-3t))*(\IE*f ,)*Q, 4> Pn*4> Fillet • ~lax Groove -Max Factored Shear Factored Stress Tensile Stress 30ksi 50 ksi K4-4; effective weld atop flange A.*c, S*o S*o OK NO 02l726l41 I.I J6l12603 14lJk 0.Jl NIA KJ-6 Kl-16 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge OPEN SHAPE to HSS CONNECTION , AISCStee!ConstructionManual 14th, Section K Open Shape: Truss Splice Posts HSS: Truss Bottom Chord loduced Loads HSS -Axial Load HSS -Moment Open Shape -Axial Load Open Shape -Moment, in-plane Open Shape -Moment, out-of-plane Apprx. flange Tension/Compression, P 3.5 k*ft 9.0 1:ips 2.8k*ft 0.1 k*ft 5.1 k Mechanical Properties-HSS SteelASil-1: E= Fru"" Fa.y "" Geometrv-HSS Tube Heigh~ H Tube Width, B Material Thickness, t A.tea, Gross & Net Sections, A I, 1,. s, r, AS00 GrC 29000ksi 62ksi 50ksi 50ksi 37ksi 30ksi 6.0in 6.0in 0233 in 5.24in"2 28.6in"4 28.6in1'-4 9.5 Ul"3 23 in 23 in 0.43 in C5x6. 7 Channel HSS 6x6xl/4 Orienation: Standard Mecbaoical Properties-Open Shape Steel ASTM: A572 GR 50 E= 29000 ksi Fm = 65 ksi Fry = 50 ksi Fey = 50 ksi F,s'll,= 38 ksi Fa.y= 29 ksi Geometrv-Open Shape Member Height flange Width, Bp Flange Thickness, tp \Veb Thickness, tw Area, Gross & Net Sections, A I, 1,. s, 5.0 in I.Sin 0320 in 0.190 in 1.97 in"2 7-5 inA.4 0.5 Ul"4 3.0 U1"3 L9 in 0_5 in Branch Angle, 0 90.:- Limits of Applicabilitv, AISC Specifications Table Kl.2A HSS Wall Slenderness: Bit<= 35 26 *OK Flange Slenderness: Bi/t <= 35 *OK Widtb Ratio,~: B,/13 >-= 025 0.83 *OK Aspect Ratio: 0.5<=H.IB<=2.0 1.00 *OK Material Strength: Fy <= 52ksi 50 *OK Ductility: Fy/fu <=O 8 0.8 *OK Design Checks: Local Yielding of Plate, Kl-7 HSS Shear Yield.iug (Punching), Kl-8 P, = 10/(Bit)*F,-*t*B, ::,!BRI DGE 1.:1 BROTHERS 7.9k 0.95 7.Sk Check 0.85B <= B, <= B-2t B,,, = 10B/(B/t) <= B, <l> NO 0.68 in 14.0k 0.95 N/A CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge Local Yielding of HSS Sidewalls, Kl-9 Check~-1.0 NO P,. ~ 2*F,-*t*(SH1,) 57_9 k <I> 1.00 P,*<I> NIA HSS Plastificatioo, Kl-12 Check ~ ~ 1.0 NO Longitudinal Connection Length, lb= 3.5 in P:r.*Sin9 17.4k <I> 1.00 P,*<I> NIA Capacity Check: Connection demand, P ControllingPn Unity Check<= 1.0 Weld Desigo: Ultimate Shear 37 ksi Weld Group: l.1 k 7.lk 0.68 Ultimate Tensile 62ksi Weld -~-.:.\.round Nominal \Veld Size depth of member, D Web length, T Sop Total Weld l ength, L WeldArea,A Capacity Check Induced . .:\xial Load . .:\xi.al Resistance Induced Moment, in-plane Moment Resistance, in-plane Induced Moment, out-of-plane Moment Resistance, out-of-plane Unity Cherk <=1.0 ::,!BRIDGE 1.:1 BROTHERS 4116 in Qj in 5.0in 3j in 2.59" 0.91 ll1"3 11.0in L9in 9.0kips 57.Skips 33.6kip-in 17.0 kip-in 12 kip-in 27.0 kip-in 0.64 Local Crippling of HSS Sidewalls, Kl -I 0 Kl-12 *OK Resistance Factor 0.8 Check~~ 1.0 and Branch in Compression Utilization Ratio, U Q,: 13*0.4*U/~ P, ~ 1.6t2*(1 +3lo/(H-3t))*('1E*F,-)*Q, <I> P:1*<!> Fillet -Max Groove -;via.-,.: Factored Shear Factored Stress Tensile Stress 30 ksi 50ksi K4-4; effective weld atop flange A*a S*o S*o OK NO 0.093521059 1255109891 Ill.! k 0.75 NIA Kl-6 Kl-16 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge HSS to HSS CONNECTION, AJSC Steel Consm,ction Manual 14tlr, Section K Branch: Truss Diagonals Chord: Truss Top Chord loduced Loads Chord-_'ilia!Load Chord -i\foment Branch-J\.xial Load Branch -Moment; In-Plane Branch -Moment; Out--0f-P1ane 42.9kips 3.7 k•ft 5&.&kips 0.9k-ft 0.4k-ft Geometrv-Chord Chord Height, H Chord\Vidth,B Chord Thckness, t A.rea. Gross & Net Sections I, s, Check Connection Trne: "End Panel: ~ InsideH= Insides= 6.0in 6.0in 0.133in 2S.6in"4 2S.6in"4 9.5 in"3 234 234 0.43 in 2.00in 3.00in 6.00:in 6.00in 6.00in :5.00in 72.00in 7036in 97.91 in 49.09 deg 3.97in 439in 3.89in 5.06in 4.4Sin Joint e/H End Panel; Top End Panel; Bonam i\1id Panel; Top Mid Panel; Bonam 0.84 0 .. 75 0.69 0.69 HSS 5x3xl/4 HSS 6x6xl/4 Orieoation: Standard Orienation: Standard 1\fechanical Properties-HSS Stet'I ASTII: £• A.500 Gr C 29000ksi 62ksi 50ksi 50ksi 30ksi Georuetrr-Branch Branch Height, Hb Branch Width, Bti Branch Thickness, tti Area. Gross & Net Sections 1, s, j\ilidPanel: InsideH"' Inside S"' *Treat as separate Y connection *Treat as separate Y connection *Treat as separate Y connection *Treat as separate Y connection 3.0in 0233in 3J7in"2 10.7in"4 -Uin"..t 7.lin"3 us t.19 0.43in 2.00in 3.00in 6.00in 6.00in 5.00in 5.00in 71.00in 73.S6in IOOJ2in 47.58 deg 4.06in 3.79 in 3.79in 4.15in -U5in T·, Y-and Cross-Connections Nolpre,entlor T-crY-connectlon 9• HSS--to-HSS Connection Vari3bles AJSCSp~cificafions TableK].2 Limits of A.pplicabilitv :USC Specifications Table K1.2A Branch Coruuction: Panel oflnterest· Branch Angle, 0 = Length of branch contact, 1ti"" Load Length Parameter, TJ Chord Slenderness Ratio, y: B/2t U, Strength Ratio Chord Conn~ting Surface(*T or C) Branch Connecting Surface(*T or C) Oi(chord connecting surface) ::,!BRIDGE 1.:1 BROTHERS .. 'Ulgled End 49.09 deg 3.97in 0.66 12.9 026 C T LOO Chord w an Slenderness: Bit<>< 35 Branch Wan SlendMness: ~ti<= 35 Width Ratio, ~: Hi>IB >= 025 Branch Aspe<:t Ratio: 0 .. 5 <ac H11-l'Bt, <: 2.0 Material Strength: Fy<: 52ksi Chord wan Slend=ess: Hit<= 35 Branch Wan Slenderness: Ht/tt,<-35 Width Ratio: H~ >-025 Chord Aspect Ratio: Oj <.,, HIB <.,, 2 .. 0 Ductility: fy!Fu <: 0.8 26 21 0.83 0.60 50 26 13 OlO LOO 0.80 *OK *OK *OK *OK *OK *OK *OK *OK *OK CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge T-, Y-and Cross-Connections: Chord \Vall Plastification, when 13 <= 0 85 Check 6 <= 0.85 4> YES 1.00 48.l k *AJSC Specifications Kl-7 ~-------p•~ ___ 6_3_.7_k __ ~•governs Local Yieldine of Chord Sidewalls, when 6 = l 0 Check 6 = 1.0 4> NIA 1.00 Local Yielding of Branch Due to oeveo Load Distribution, when~> 0.85 Check~> 0.85 4> b..,;(<=B,) P, Capacity Check: Connection deman~ Pti Cont:rollingPn. Connection deman~ Mb Controlling~ UnityChec-k Weld Design: Ultimate Shear 37ksi Weld Group: Nominal \Veld Size \Ve.td NIA 0.95 l8.8 k 63.7k 10.8 kip-in 250.0 kip-in 0.97 Ultimate Tensile 62 ksi l/16 in All-A.roWld L94 in II.Sin Sip= 9.5 in"3 Sop= 8.4 in"3 Capacity Check: Induced Axial Load Axial Resistance Induced Moment, Out-of-plane Moment Resistance, Out-of-plane Induced Moment, In-plane Moment Resistance, In-plane Unity Check ::,!BRIDGE 1.:1 BROTHERS l8.8k 77.7k 4.8 kip-in 2513 kip-in 10.8 kip-in 283.5 kip-in 0.81 *AISC Specifications K.2-9 *AISC Specifications K.2-12 *.,USC Specifications K.2-13 OK Resistance Factor 0.8 K2-13 K4-5; effective weld length A*a s•o s•o OK Shear Yielding (Punching), when 0.85 < 6 <= I - l/y or B/t < lO Check 0.85 < ~ <= I -1/y or Bit< lO 4> P-n*sin8 NIA 0.9l 0.32 Local Crippling of Chord Sidewalls, when 6 = l 0 and Branch in Compression Check 6 = 1.0 and Branch in Compression 4> NIA 0.7l Available Flexural Strength *AISC Specifications Kl..S *,4.JSC Specifications K.2-10 4> 1.00 I ~------~~1,~= ____ 2_l0_.0_ki~·p_-,n_· --~*.4ISC Specifications K4-7 Fillet -Max Groove -Max Factored Shear Factored Tensile Stress Stress 30ksi 50 ksi CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge Brauch: Truss Verticals Chord: Truss Top Chord Induced Loads Chord-Axial load Chord -i\fomrnt Branch-Axial Load Branch -Moment; In-Plane Branch -Moment; Out-<1f..P1ane S0.lk:ips 2.7k*ft -ll.6k:ips 5.9k*ft l.4 k*ft Geowetrv-Chord Chord Height, H Chord\Vidth,B Chord Thickness, t Area, Gross &Net Sections I, Check Co.ouectioo Twe: End Panel: Inside Sz 6.0in 6.0in 0.233in 5.l-fin"2 28.6 in"-' 2S.6 in"4 9.5 in"3 134 2.34 0.43 in 2.00in l.OOin 6.00in 6.00in 6.00in 5.00in 72.00in 70J6in 97.91 in 49.09 deg 3.97in .U9in 3.89in Hl6in .J.4Sin Joint e/H End Panel; Top End Panel; Bottom i\·lid Panel; Top Mid Panel; Bonom 0.84 075 0.69 0.69 HSS 5x5xl/4 HSS 6x6xl/4 Orieuatiou: Standard Orieuatiou: Standard _l\Iechanical Properties-HSS Sm•IASD.I: E- FN= Fry= fey: AS00GrC 29000ksi 62ksi 50ksi 50ksi F:ru= 37ksi 30ksi Geowetn,·-Brauch Branch Height, Hb Branch Width, Bb Branch Thickness, ft) . ..\rea,Gross&Net Sections I, ,, s, :Mid Panel: Inside H= *Trtat as separate Y connection *Trear :.s st>paratt' Y connection *Treat as st>paratt' Y connection *T rnt as St>paratt' Y ronnerrion 5.0in 5.0in 0.233 in 4J0in"2 l6.0in"4 16.0in"4 6.4in"3 1.93 I.93 0.43 in 2.00in 3.00 in 6.00in 6.00in 5.{)()in 5.00in 72.00 in 73.&6 in IOOJ2in -O.5Sdeg 4.06 in 3.79in 3.79in 4.15in .U5in T-, Y-and Cross-Connections Notinsentlor T-or Y-mnnedlcn _____ j __ - i g, HSS-to-HSS Connection Variables .-USC Specifications TableK1.2 Limits of Applicabilitv AISCSpecifications TableK.1.1A Branch Connt>ction· Panet of[nterest: Branch Angle, 8 .. Lmgth of branch contact, lt,'"' Load Length Parameter, 11 Chord Slenderness Ratio, y: B/2t U, Strength Ratio Chord Connecting Swfact'(*T or C) Branch Connecting Surface(*T or C) Qr(chord connecting swfac,) ::,!BRIDGE l=.I BROTHERS Perpendicular End 90.00 deg :5.00in 0.S3 12.9 0JS C C LOO Chord Wall Slendem,ss: Bit<= 35 Branch Wall Slenderness: Bt/t1 <= 3~ Width Ratio,~: Bt,.18 >= 015 Branch .-\sp~t Ratio: 0.5 <z Hb-1Bt, <= 2.0 Material Strength: Fy<= 52ksi Chord Wall Slenderness: Hit<= 35 Branch ·wan Slenderness: 1-ibifb <-35 Width Ratio: Hi,/B >= 0.15 Chord Aspect Ratio: 0.5 <= HIB <= 2.0 Ductility fyJFu <= 0.8 26 21 0.S3 LOO 50 26 21 0.S3 LOO 0.80 *OK *OK *OK *OK *OK *OK *OK I C] B CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge T-, Y-and Cross-Connections: Chord Wall PlastilicatiolL when~<= 0 8l Check~<= 0.85 P:n*sin8 YES 1.00 ll.7 k *AISC Specifications K.2-7 ~-------p'~· ___ 5_3_.1_k __ ~"'gtn·erns Local Yielding of Chord Sidewalls, when f:i = l 0 Check~= 1.0 4> Pn*sin8 NIA 1.00 Local Yielding of Branch Due to Uneven Load Distribution, when~> O 85 Check~> 0.8l 4> Capacity Check: Connection demand, Pb ControllingP11 Connection de.mand, Mt Controlling!\!,. Unity Check Weld Design: Ultimate Shear 37 ksi Weld Group: Nominal Weld Size Weld NIA 0.95 41.6 k il.7 k 70.8 kip-in 260.9kip-in l.04 Ultimate Tensile 62ksi 4116in AU-Around l.94in 13.9 in Sip= 8.8 in"3 Sop= 8.8 in"3 Capacity Check: Induced Axial Load Axial Resistance Induced Moment, Out-of-plane Moment Resistance, Out-of-plane Induced Moment, In-plane Moment Resistance, In-plane Unity Check ::,!BRIDGE 1.:1 BROTHERS 41.6k 73.0 k 16.8 kip-in 261.6 kip-in 70.8 kip-in 261.6 kip-in 0.90 *A/SC Specifications K2-9 *A.JSC Specifications Kl-12 *AISC Specifications K.2-13 OK Resistance Factor 0.8 Kl-13 K4.5; effective weld length A*a S*a S*a OK Shear Yielding (Punching), when 0.8l < ~ <= I - 1/y or Bit< 10 Check 0.85 < ~ <= I -lly orB/t<l0 4> Pn*sin0 NIA 0.95 032 Local Crippling of Chord Sidewalls, when~= 1 0 and Branch in Compression Check ~ = 1.0 and Branch in Compression 4> NIA 0.7l Available Fle>.7lral Strength *A.ISC Specifications K.2.8 *AJSC Specifications K2-10 ~------!\~!,.~-~ ____ 260_.~_:~·p_-m_· --~I *AISC Specifications K4-7 Fillet -i\1Iax Groove -i\1Iax Factored Shear Factored Tensile Stress Stress 30ksi 50ksi CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge Brauch: Truss Diagonals Chord: Truss Bottom Chord Induced Loads Chord -Axial Load Chord -Moment Branch-A..'cial Load Branch -Moment; In-Plane Branch-Moment; Out-of-Plane 1.1 kips 3.5k*ft 58.S kips 0.9k*ft. 0.4k*ft. Geometrv-Chord Chord Height, H ChordWidth,B Chord Thickness, t Ana, Grnss & Net Sections ,. s, Check Connection Trne: End Panel: l/" InsideH"" Inside.S= 6.0in 6.0in 0..233in 5..2.$in"-2 28.6in"4 18.6i:nA4 9.5in"-3 234 0.4]in 2.00in 3.00in 6.00in 6.00in 6.00in 5.00in 72.00in 70.36in 97.91 in 49.09deg 3.9J in U9in 3.S9in Hl6in USin Joint e/H End Panel; Top End Panel; Bon om Mid Panel; I op Mid Panel; Bottom 0.84 0Jl 0.69 0.69 HSS 5x3xl/4 HSS 6x6xl/4 Orieoarioo: Standard Orieoatioo: Standard :Mechanical Propertie.s-HSS Stt-e-lASTM: AS0OGrC 29000ksi 62ksi 50ksi 50ksi Fsu'=' 37ksi Fay'=' 30ksi Geometrv-Branch Branch Height, Hb Branch Width, Bi;, Branch Thickness, ti, Ana,Gross &Net Sections 1, ly s, ~1Iid Panel: InsideH: lnside.S= *Treat as separatt-Y connection *T rt-at as st-paratt-Y connection *Trear as sepantt-Y connection *Treat as separatt-Y connection 3.0in 5.0in 0.233in 337in"-2 10.Jin"-4 4.8in"-4 7.lin"3 1.78 l.19 0.43in 2.00in 3.00in 6.00in 6.00in HlOin 5.00in 72.00 in 73.S6 in IOOJ2in 47.58 deg 4.06in ].J9in 3.J9in 4.15in 4.15in T-, Y-and Cross-Connections Nolprvso,,<kt T-crY-a:mecion g, HSS-to--HSS Connection Variables A.JSCSpeciftcatio11s TableK'!.:! Limits of Applicabilih' AISC Specifications Table D .JA Branch Connection: Paneloflntttest: BranchAng.le,8'"' Length of branch contact, 11) = Load Length Parameter, TJ Chord Slenderness Ratio, y: B/2t U, Strength Ratio Chord Connecting Surface(*T 01 C) Branch Conne<:ting Surface(*T or C) Qr(chord connecting surface) ::,!BRIDGE 1.:1 BROTHERS Angled End 49.09deg 3.9J trl 0.66 12.9 0.09 T T LOO Chord Wall Slenderness: Bit <= 35 Branch Wall Slenderness: ~t1 <-35 Width Ratio, I}: B,,.18 >= 01.5 Branch Aspe<:t Ratio: 0.5 <= Hb!Bt, <= 2.0 Mate.rial Strength: Fy<: 51ksi Chord Wall Slenderness: Wt<"' 35 Branch Wall Slenderness: Hbltt,<= 35 Width Ratio: H?,iB >= 0.15 Chord Aspect Ratio: 0.5 <--HIB <= 2.0 Ductility: Fy/Fu <= 0.S 26 21 0.83 0.60 l0 26 13 0.50 1.00 0.80 *OK *OK *OK *OK *OK *OK *OK *OK *OK CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge T-, Y-aod Cross-CoDDectioos: Chord Wall Plastilicatioo, when~<= O Sl Check~<= O.Sl YES <I> LOO Pn*sin9 48.1 k *.4.ISC Specifications K.2-7 P, 63.lk Local Yieldiue: of Chord Sidewalls, when 13 = 1 0 Check~= LO <I> Pn*sin9 NIA LOO Local Yieldiog of Branch Due to neven Load Distribution, when f3 > 0.85 Check~> O.Si <I> Capacity Check: Connection demand, Pb ControllingP:n Connection demand, Mt, ControllingM:; Unity Check Weld Design: Ultimate Shear 37ksi Weld Group: Nominal Weld Size Vleld NIA 0.9l lS.Sk 63.lk 10.8 kip-in 250.0 kip-in 0.97 Ultimate Tensile 62ksi l/16in }\.11-.:.\.round l.94 in II.Sin S1p= 9.5 inA3 Sop= 8.4 inA3 Capacity Check: Induced . .:\xial Load . .:\xial Resistance Induced Moment, Out-of-plane. Moment Resistance, Out-of-plane Induced Moment, In-plane Moment Resistance, In-plane Unity Check ::,!BRIDGE 1.:1 BROTHERS lS.8 k 77.lk 4.8 kip-in 2il.3 kip-in 10.8 kip-in 283.l kip-in 0.81 *A.ISC Specifications K2-9 *.-4..ISC Specifications K2-l 1 *.-USC Specifications K.2-13 OK Resistance Factor 0.8 K2-13 K4-5; effect;ve weld length A.*a s•o s•o OK Shear Yielding (Punching), when O.Si < ~ <= 1 - 1/y or B/t < 10 Check O.Sl < ~ <= 1 -1/y orBlt<IO NIA <I> 09l 032 Local Crippling of Chord Sidewalls, when f3 = 1 0 and Branch in Compression Check~= LO and Branch in Compre.s sion <I> Pn*sin8 NIA 0.7l Available Flexural Strength *AJSC Specifications K2-S *AJSC Specifications Kl-10 ~------M,,~-~~----2_l0_.~_:~·p_-m_· --~I •AJSC Specifications K4-7 Fillet -Max Groove -Max Factored Shear Factored Tensile Stress Stress 30ksi 50 ksi CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge Brauch: Truss Verticals Cbonl: Truss Bottom Chord luduced Loads Chord-Axial.Load Chord -Moment Branch-_a\.xialLoad Branch -Moment; In-Plane Branch -Moment; Out-0f-Plane 44.0kips 2.7k*ft -H.6kips 5.9k~ 1.4 1..4'1: Geometrv-Chord Chord Height, H ChordWidth,B Chord Thckness, t _.\rea_ Gross & Net Sections I, Check Connection T,pe: End Panel: InsideH"' Insides"' 6.0in 6.0in 0.233in 5.24in"2 28.6in"4 28.6in"4 9-5 in"3 2.34 234 0.43in 2.00in 3.00in 6.00in 6.00in 6.00in 5.00in 72.00in 70.36in 97.9l in 49.09 deg 3.97in .U9in 3.S9in Hl6in -U8in Joint e/H End Panel; Top End Panel; Bottom l\lid Panel; Top 1\1id Panel; Bottom 0.&4 0.75 0.69 0.69 HSS 5x5xl/4 HSS 6x6xl/4 Orienation: Standard Orienatiou: Standard Mechanical Properties-HSS Steel ASill: E• F,y= ASOOGrC 290001.si 62ksi 50ksi 50ksi 30ksi Geometrv-Branch Branch Width, Rt> Branch Thickness, tt) Area, Gross & Net Sections I, F ,,,,. InsideH"' Insides"' *Trear H separate Y connection *T rr-ar H separate Y connection *Trear as separate Y connection *Treat as sepanre Y connection S.O in 0.233 i:n 4.30in"2 l6.0in"4 16.0in"4 6.4in"3 1.93 1.93 0.43 in 2.00 in 3.00 in 6.00 in 6.00 in 5.00 in 5.00 in 72.00in 73.&6in IOOJ2in -'7.S8deg 4J)6 in 3.79in 3.79in 4.15in 4.15in T·, y. and Cross.Connections g, HSS--to--HSS Connection Variables AISCSpeciflcations Table KJ.2 Limits of Applicabilitv .tiSCSpecifications Table K1.JA Branch Connection: Panelofintei-est· Branch Angle, 0 = Length of branch contact, 1ti"' Load Length Parameter, 11 ChordSlendem,ss Ratio. y: B/2t U, Strength Ratio Chord Connecting Surface(*T or q Branch Connecting Surl"ace(*T orq Qc(chord connecting surfac,) ::,!BRIDGE 1.:1 BROTHERS Perpendicular End 90.00 d,g H>Oin 0.83 12.9 0.24 T C 1.00 Chord Wall Slenderness: Bit<= 35 Branch Wall Slendl!'mess: Bi,/t1 <-35 Width Ratio, p: Bt,,IB >= 0.25 Branch Aspect Ratio: 0.5 <= H1i-1Bti <: 2.0 Material Strength: Fy <= ~2ksi Chord Wall Slenderness: Hit<= 35 Branch Wall Slenderness: Hiltb <-35 Width Ratio: Ht,/B >-0.25 Chord Aspect Ratio: 0.5 <= HIB <"' 2.0 Ductility: F~.'IFu <= 0.8 26 21 0.83 1.00 50 26 21 0.83 1.00 0.80 *OK *OK *OK *OK *OK *OK *OK •OK *OK *OK CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge T-, Y-and Cross-Conoec.tions: Chord Wall Plastificalion, when ~ <: 0 Sl Check~<: 0.85 YES <I> 1.00 Pn*sin8 ll.7 k *.-USC Specifications K2-7 P,. 53.7 k Local Yielding of Chord Sidewalls when 13 = l 0 <I> Pn*sin8 NIA 1.00 Local Yielding of Branch Due to Uneven Load Distribution, when~> 0 85 Check~> 0.85 <I> P,. Capacity Check: Connection demand, Pb ControllingP11 Connection demand, Mti Controlling Mn Unity Check Weld Design: Ultimate Shear 37ksi Weld Group: Nominal \Veld Size Weld NIA 0.9l 41.6k ll.7 k 70.8 kip-in 260.9 kip-in 1.04 ltimate Tensile 62ksi 4/16in A.11-Around l.94in 13.9 in Sip= 8.8 in"-3 Sop= 8.8 in"-3 Capacity Check: Induced Axial Load _;~xi.al Resistance Induced Moment, Out-of-plane Moment Resistance, Out-of-plane Induced Moment, In-plane Moment Resistance, In-plane Unity Check ::,!BRIDGE 1.:1 BROTHERS 41.6k 73.0 k 16.8 kip-in 261.6 kip-in 70.8 kip-in 261.6 kip-in 0.90 *A.JSC Specifications K2-9 *.-USC Specifications K.2-12 *,-USC Specifications K2-13 OK Resistance Factor 0.8 Kl-13 K4-5; ejfecttve weld length A*a s•cr s•cr OK Shear Yielding (Punching), whenO.Sl < ~ <: 1- 1/y orB/t< 10 Check 0.85 < ~ <: I -lly orB/t<IO N/A <I> 0.9l 032 Pn*sin8 Local Crippling of Chord Sidewalls, when ~= l O and Branch in Compression Check ~ : 1.0 and Branch in Compression <I> Pn*sin8 P, NIA 0.7l Available Flexural Strength *.--USC Specifications K2.S *AJSC Specifications K.2-10 ~------"-~~~ ____ 260_.~_:~·p_-m_· --~I *A/SC Specifications K4-7 Fillet-;VIax Groove -)!fax Factored Shear Factored Tensile Stress Stress 30ksi 50ksi CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge HSS t.o HSS CONNECTION, AISC Steel Constmction Manual 14th, Section K Branch: Truss Bottom Chord Chord: Truss End Posts Induced Loads Chord-A.xial Load Chord -Moment Branch-_;uial Load Branch - Moment; In-Plane Branch -Moment; Out-of-Plane 46.8 kips 7.7 k*ft LI kips 3.5 k*ft LI k*ft Geowetn,-Chord Chord Height, H 6.0in Chord 'Width, B 6.0in Chord Thickness, t 0233 in Area, Gross & Net Sections 524 in"2 ,, 28.6 irr''-4 ,,. 28.6 in"4 s, 9j in"3 234 ,,. 234 k 0.43 in HSS 6x6xl/4 HSS 6x6xl/4 Orieoatioo: Standard Orieoatioo: Standard Mec.haoical Properties-HSS Steel.ASTM: E= AS00Gr C 29000ksi 62ksi 50ksi 50ksi T-, Y-and Cross-Connections F:ou = 37 ksi f:sy "" 30ksi Geowetrv-Branc.h Branch Height, Hi, 6.0 in Branch Width, !ls 6.0 in Branch Thickness, tb 0233in Area, Gross & Net Sections 5.24 in"2 ,, 28.6 in"4 ,,. 28.6 in"4 s, 9j in"l ,, 234 ,,. 234 k 0.43 in Not present for T-orY-conoedon HSS-to-HSS Connection Variables AISC Specifications Table K.2.2 Limits of Applicabilitv AJSC Specifications Table K2.2A Branch Angle, e = Length of branch contact, lt,= Load Length Parameter, rJ Chord Slenderness Ratio, y: Bilt U, Strength Ratio Chord Connecting Swface(*T or C) Branch Connecting Surface(*T or C) Ot(chord connecting surface) T-1 Y-and Cross-Connections: 90.00 deg 6.00 in LOO 12.9 031 C T LOO Chord Wall Plastificatioo, when 6 <= 0 85 Check~<= 0.85 <I> ::,!BRIDGE 1.:1 BROTHERS Pn*sin8 P, N/A LOO Chord ,va11 Slendemess: B/t <== 35 Branch Wall Slenderness: Bblt1 <== 35 Width Ratio,~: B,/B >= 025 Branch Aspect Ratio: 0.5 <= llt>'Bb <= 2.0 Material Strength: Fy <= 52ksi Chord Wall Slenderness: Wt <= 35 Branch \Vall Slendemess: Ht>/tt, <""' 35 Width Ratio: H,/B >= 025 Chord Aspect Ratio: 0.5 <= WB <= 2.0 Ductility: Fy/Fu <= 0.8 26 26 LOO LOO 50 26 26 LOO LOO 0.80 Shear Yielding (Punching), when 0.85 < ~ <= I - l/ orB/t<l0 Check 0.S5 < p <= t -1/y or Bit < 10 *AJSC Specifications K2-7 P11.*sin8 P, N/A 0.95 0.39 *OK *OK *OK *OK *OK *OK *OK *OK *OK *OK *:USC Specifications K.2-8 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge Local Yieldiu2 of Chord Sidewalls, when~= I 0 Check~= LO 4> Local Crippliug of Chord Sidewalls, when~= 1.0 and Branch in Com ression Check ~ = 1.0 and Branch in Compression 4> N/A 0.75 Pn*sin0 P, YES LOO 1902k 1902k * .. 4..ISC Specifications K2-9 Pr.*sine Local Yieldiog of Branch Due to Uneven Load Distribution, when~> 0 85 •.4JSC Specifications Kl-10 Check~> O.Sl YES 4> 0.9i *AISC Specifications K.2-12 *AISC Specifications K.2-13 Available Fle~,iral Strength ~------M,,~~ ____ 266_:_:~·p_-m_· --~I *A/SC Sp,cificatio11s K4-7 b..,;(<=Bs) 2.33 ~-------p'~· ___ 1_83_2_k_· --~*governs Capacity Check: Connection demand, Pt, Cont:rolling Pn Connection demand, Mt, Controlling Mn Unity Check Weld Desiga: Ultimate Shear 37ksi Weld Group: Nominal \Veld Size Vleld l,,= U k 1832 k 42.6 lcip-m 2663 lcip-m 0.17 Ultimate Tensile 62 ksi 4116m All-ArnWld 233 in 16.7 in Sip= 12.5 in"3 Sop= 12.5 in"3 Capacity Check: Induced AJ<ial Load 1.1 k Axial Resistance Induced Moment, Out-of-plane Moment Resistance, Out-of-plane Induced Moment,. In-plane Moment Resistance. In-plane. Unity Check ::,!BRIDGE 1.:1 BROTHERS 87.6k 12.8 kip-in 3732 kip-in 42.6 lcip-m 3732 lcip-m 0.16 OK Resistance Factor 0.8 Kl-13 K4-5; effective weld length A*a S*a S*a OK Fillet-Max Groove -Max Factored Shear Factored Tensile Stress Stress 30ksi SO ksi CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge MECHANICAL SPLICE ANALYSIS: Splice Analysis-Bottom Chord AASHTO LRFD 6. I 3 Load Factored tension required at splice connection 161,135 lb Bolt edge distance -normal to force Bolt edge distance -direction of force Bolt Spacing Number of columns umber of rows [per chord splice] Total Splice Plate Thickness [across chord] Total Bottom Chord Tube Thickness (across chord] Splice Plate Depth Minimum 1.125 in 1.125 in 2.625 in Splice Plate Length 20.625 in Gross Tensile Area of Splice Plate [per chord] et Tensile Area of Splice Plate [per chord] Tensile Capacity of Splice [per chord] Tear Out -Pattern [per chord] Bottom Chord Bearing [per bolt] Splice Bearing [per bolt] A VG ofTension Req. and Chord Capacity 75% of Chord Capacity Number of Shear Planes per bolt Minimum Bolts Required [per chord splice] -Calculations per chord splice; assumes threads in shear plane 161 ,135 lb 161,135 lb 20,142 lb 20,142 lb 205,017 lb 186,675 lb Actual 1.1875 in 1.25 in 2.625 in 4 2 1.5 in 0.466 in 5 in OK OK OK 20.875 in OK 7.50 sq in 4.50 sq in 234,000 lb OK 561,150lb OK 42,406 lb OK 136,500 lb OK 16 OK Splice Analysis-Top Chord AASHTOLRFD 6.13 Load Factored bearing force required at splice connection 164,404 lb Top Chord Bearing [per bolt] 10,275 lb 42,406 lb OK Splice Bearing [per bolt] 10,275 lb 136,500 lb OK A VG of Compression Req. and Chord Capacity 181,540 lb 75% of Chord Capacity 149,007 lb Minimum Bolts Required [per chord splice] 7 16 OK *Calculations per chord splice; assumes threads in shear plane Shear-Vertical Posts & Floor Beams Load Factored V,,. 93,255 lb *factored from Reactions Minimum Bolts required (total] 4 Bolts -Actual [total] 9 OK ::,!BRI DGE 1.:1 BROTHERS Chord Splice Material Properties A572 Gr 50 •••Do Not Weld*** Tensile yield 50,000 psi Tensile ultimate strength 65,000 psi Shear ultimate 39,000 psi 'l'y 0.95 'l'u 0.80 Fasteners Bolt material (ASTM A325) Nominal diameter Shear Resistance ofBolt, Rn (AASIITO LRFD 6.13.2.7) Resistance Factor (AASIITO LRFD 6.5.4.2) 7/8"-Bolts min 120 ksi 0.875 in 32,471 lb 0.80 Slip-Critical Connection Check Service II Axial Requirement 126,132 lb Kh, Hole Factor Ks, Surface Factor Pt, AASIITO LRFD Table 6.13.2.8-1 N,, number of slip planes Rn, AASIITO LRFD 6.13.2.8 Number of Bolts Required, n,, 0.85 0.30 39.0 kips 1.0 9.9 kips/bolt 13 Vertical Splice Material Properties Fasteners Bolt material (ASTM A325) Nominal diameter Resistance Factor (AASIITO LRFD 6.5.4.2) Working shear force 7/8"-Bolts min 120 ksi 0.875 in 0.80 32,471 lb 0 1.0xDL +1.3xLL 16 OK CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge BEARING PLATE DESIGN: Geometry: Bearing Plate Standard Plate lbickness Plate length Plate Width Hole/Slot Diameter Slot Length Slot CL Longitudinal Edge Dis Slot CL Transv,me Edge Dis Slot Cl to CL tvflfl. Edge Distance (in) *Direction of Slot Min. Edge Distance (in) *Normal to Slot D beNeen Slots *not include slot end radii End Post to Slot CL :ofBolts Reaction(R:) Bearing Failure A.A.SHTO LRFD 6_132-9 ~u= Ultimate Tensile Bearing Resistance (bolts in slots) Yield Tensile Allowable Tear Out load Minimum Support Length Requirements A .. 4.SHTOSei:smic, 4.11 Medium 0.50in IIJ0in 12.50in U5 in 3.00 in 2.75 in 2.00in 6.00in 1.25 in 2.00in 3.25 in 4.00in 1 8561 lbs 0.80 65,000psi 78,000!bs 50,000psi 56,687 lbs Bridge Length, L 92.0 ft Suppon Skew, S Q<' Abutment Ht'ight, H 2.0 ft Support Length, N 10.00in Anchor Bolt Design Shear A.ASHTOlRFD 6.13.2.12 Bolt Grade Bolt Diameter A193-B7 1.00" 0.75 0.78:'isqin l2:5ksi I 13.61,.-ips Anchor Bolt Design Tension A.ASHTO LRFD 6.13.2.10.2 a>v.. 0.80 IT11 .. fv=0.76A!lub .. Induced T,nsion .. ~foment ou Bearing Check Net Uplift? l2:5ksi 59.71,.-ips 0lb, NO Sec. Mod. ofBearing System 0.:5 in"3 -Jactoredjrom Reactions OK OK OK OK OK *0.9Dl + WI lnduc,d Mom,nt Allowable Momtnt NIA ♦Jr-om SIRE/llGTH lll Reactions about X-<n·fs 19,16711:>-in OK Setting Plate Contact Stress Setting Plate Material Uffi,.1\V Max nrtical load on setting plate Ar,aofSettingPlate .'\llowabte Contact Stress (l,;si) lnduc,d Compressive Stress D,sign Coefficient of Friction Weld Analysis 46,628 lbs *From load Factored Reactions 143.Ssq.in 2.:501.:si *A.A.SHTO Table 14.7.2.4-1 032ksi OK 0.20 *.4...4.SHTO Table 14.7.2.5-1 Ultimate load Condition Design Assumptions Ultimate Shear (psi) Tensile (psi) Resistance Factor Strength I Negligable fatigue effects 37,200 Strength Ill Negligable fatigue effects 37,200 Service I Negligable fatigue effects 37,200 Fatigue I Fatigue Considered -Infinite cycles -C types 10,000 End Post Wtlds End Post HSS 6x6xl/4 T etMtmber BtaringPlate ::,!BRIDGE 1.:1 BROTHERS Member Thickness (in) 0l MmberThickness (in) Nominal Weld Size Max Induced Moment (in) in) 02, 1/4 122,889 62,000 0.8 62,000 0.8 62,000 0.8 62,000 1 Section Modulus Induced Weld of Weld (in"3) Stress (psi) 8.7ll 14,043 Fillet -Max Groove - Factored Max Factor Shear Stress Factored 100% 29,760 49,600 100% 29,760 49,600 100% 29,760 49,600 100% 10,000 62,000 Weld Check OK CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge REACTIONS FOR ABUTMENT DESIGN: # of Anchor Locations Total Height Outside Truss Width Total Length Coefficient of Expansion (1/F) Design Temperature Range Seismic Response Coefficient Unfactorecl Loads: Dead Load (DL) Vehicle Load (VL) Live Load (LL) Wind Load (WL) Overturning Wind (OW) Vertical Seismic Load; DL only (E,) Horizontal Seismic Load; DL only (E,J Snow Load (SL) Expansion/Contraction 4 7.00 ft 9.25 ft 92.00 ft 6.50E-06 120° 0.382 Vnfactored Tota.I Loads (lbl) 56,472 10,000 66,240 10,139 17,020 4,602 21,584 0 ;\finimum fa.-pansion Range (in) 0.86 Factored Combinations: AASHTO Load Case l.25*DL + 1. 75*LL (Strength I) 0.9*DL + l.0*WL + l.0*OW (Strength Ill) l.25*DL + l.0*WL + l.0*OW (Strength Ill) l.0*DL+0.3*E,+l.0*E,+0.5*LL {El.'treme Event Ia) l.0*DL+l.0*E,+0.3*E,+0.5*LL (Extreme Event lb) l.0*DL + l.0*SL + 0.S*LL {El.'treme Event II) l.0*DL + l.0*LL + l.0*WL + l.0*OW (Service I) Positive Y values represent uplift Assume even distribuiion across all anchor locaiions Assumes vehicle load aciing on 2 anchor locaiions Longitudionnl values for fixed end only ::,!BRIDGE 1.:1 BROTHERS RlzR3z - 2,535 2,535 8,561 2,568 - 1,348 z R1 &R3 y R1 & R3 R1zR3z R1yR3y --14,118 --5,000 --16,560 2,535 1,918 -6,383 -1,151 5,396 - -0 -- R1yR3y R1xR3x -46,628 - -4,405 - -9,347 - -22,398 5,136 -22,398 17,121 -22,398 - -23,276 - 11 R1 xR3x R2zR4z -- -- -- -2,535 -- -- 10,792 5,396 -- 2,824 - R2zR4z R2yR4y --46,628 2,535 -12,49"7 2,535 -17,438 8,561 -22,398 2,568 -22,398 --22,398 1,348 -29,570 z R2 & R4 y R2& R4 R2yR4y -14,118 -5,000 -16,560 -1,918 2,128 1,151 - 0 - R2xR4x - - - 5,136 17,121 - - R2xR4x - - - - - - 10,792 - 2,824 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge MEMBER DESIGN-HSS HSS 6x6x1/4 Depth (in) Width (in) Thickness (in) Area (in2), Gross & Net Sections I, (in') 1, (in') S, (in') Z, (in') r, r, Unbraced Length Ls (in) Axial Tension !Grossi - U (LRFD 2017 6.8.2.1) L,,/r <= 200 Prim., 240 Sec. (LRFD 2017 6.! Fty*A (kips) (LRFD 2017 6.8-2.1) Ftu/kt*A (kips) (LRFD 2017 6.8.2.1) <j)y (LRFD 2017 6.5.4.2) <j)u (LRFD 2017 6.5.4.2) Resistance (ksi) -Axial Compression (Gro.s.s) K (LRFD 2017 4.6.2.5) Kl/r <=120 Prim., 140 Sec. (LRFD 2017 6.9 P. (ksi) (LRFD 2017 6.9.4.1.2) Q (LRFD 2017 6.9.4.1.1) P0 (ksi) (LRFD 2017 6.9.4.1) <I> (LRFD 2017 6.5.4.2) Resistance (ksil Shear Resistance k (LRFD 2017 6.10.9.2) C (LRFD 2017 6.10.9.2) V0 (kips) (LRFD 2017 6.10.9.2) <I> (LRFD 2017 6.5.4.2) Resistance (kips) ::,!BRI DGE 1.:1 BROTHERS Truss Too Chord 6.00 6.00 0.233 5.24 28.60 28.60 9.53 11.20 2.336 S,. (in') 2.336 Z, (in') 78.9 1.0 33.8 262.000 324.880 0.95 0.80 47.500 1.64 55.5 92.857 1.0 50.000 0.95 37.915 5.0 1.0 71.310 1.00 71.310 Mechanical Prooerties Strenirth Summarv Steel ASTM: A500Gr C Axial Tensile (kips) 248.900 E (ksi) 29000 Axial Compressive (kips) 198.677 F,. (ksi) 62 Bending (in-kips) (In-Plane) 560.000 F,. (ksi) 50.0 Bending (in-kips) (Out-of-Plane) 560.000 Fcv (ksi) 50.0 Shear (kips) 71.310 F,. (ksi) 35.8 F, (ksi) 28.9 9.53 11.20 Flexure-Yieldine lln-Planel Flexure-Yieldine (Out-of-Plane) M. = M0 (kip-in) (LRFD 2017 6.12.2-2.2) 560.0 M. = M, (kip-in) (LRFD 2017 6.12.2.2 560.0 <j) (LRFD 2017 6.5.4.2) 1.00 <j) (LRFD 2017 6.5.4.2) 1.00 Resistance fksil 50.000 Resistance (ksil 50.000 Flexure-Flani::!'e Loe.al Bucklini:!' fin-Plane, Flexure-Flan•e Local Bucklin• I Out-of-Plane I Ai (LRFD 2017 6.12.2.2.2) 22.8 Ai (LRFD 2017 6.12.2.2.2) 22.8 A,,1 (LRFD 2017 6.12.2.2.2) 27.0 A,,1 (LRFD 2017 6.12.2.2.2) 27.0 1.,, (LRFD 2017 6.12.2.2.2) 33.7 1.,, (LRFD 2017 6.12.2.2.2) 33.7 M. (kip-in) (LRFD 2017 6.12.2.2.2) 612.3 M. (kip-in) (LRFD 2017 6.12.2.2.2) 612.3 <I> (LRFD 2017 6.5.4.2) 1.00 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance lksil 64.226 Resistance (ksil 64.226 Flexure-Web Local Buckling !In-Plane) Flexure-Web Local Buckling (Out-of-Plane) A., (LRFD 2017 6.12.2.2.2) 22.8 A., (LRFD 2017 6.12.2.2.2) 22.8 A,,., (LRFD 2017 6.12.2.2.2) 58.3 A,,., (LRFD 2017 6.12.2.2.2) 58.3 M. (kip-in) (LRFD 2017 6.12.2.2.2) 597.489 M. (kip-in) (LRFD 2017 6.12.2.2.2) 597.489 <I> (LRFD 2017 6.5.4.2) 1.00 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance (ksil 62.674 Resistance (ksil 62.674 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge HSS 6x6x1/4 Depth (in) Width (in) Thickness (in) Area (in2), Gross & Net Sections 1. (in') 1, (in') s.(in3) Zlin') r. r, Unbraced Length 4, (in) Axial Tension (Gross) - U ILRFD 2017 6.8.2.1) 4,/r <= 200 Prim., 240Sec. (LRFD 2017 6.E Fty'A (kips) (LRFD 2017 6.8-2.1) Ftu/kt*A (kips) (LRFD 2017 6.8.2.1) <l>v (LRFD 2017 6.5.4-2) q>u (LRFD 2017 6.5.4.2) Resistance (k.si) -Axial Compression (Gross) K ILRFD 2017 4.6.2.5) KL/r <=120 Prim., 140Sec. (LRFD 2017 6.9 P. (ksi) ILRFD 2017 6.9.4.L2) Q (LRFD 2017 6.9.4.1.1) P0 (ksi) ILRFD 2017 6.9.4.1) <I> (LRFD 2017 6.5.4.2) Resistance (k.sil Shear Resistance k (LRFD 2017 6.10.9.2) C ILRFD 2017 6.10.9.2) v. (kips) ILRFD 2017 6.10.9.2) <I> ILRFD 2017 6.5.4.2) Resistance (kios) ::,!BRI DGE 1.:1 BROTHERS Truss Bottom Chord 6.00 6.00 0.233 5.24 28.60 28.60 9.53 11.20 2.336 Sy (in') 2.336 IZ..lin'l 78.9 1.0 33.8 262.000 324.880 0.95 0.80 47.500 0.75 25.3 446.609 1.0 50.000 0.95 45.326 5.0 1.0 71.310 1.00 71.310 Mechanical Properties Stren.cth Summarv Steel ASTM: A500Gr C Axial Tensile (kips) 248.900 E lksi) 29000 Axial Compressive (kips} 237.506 F,-lksi) 62 Sending (in-kips) (In-Plane) 560.000 F,. lksi) 50.0 Sending (in-kips) (Out-of-Plane) 560.000 Fcv lksi) 50.0 Shear (kips) 71.310 F,. lksi) 35.8 F,. lksi) 28.9 9.53 11-20 Flexure-Yieldin• !In-Plane! Flexure-Yield in• I Out-of-Plane I M0 = M0 (kip-in) (LRFD 2017 6.12.2-2.2) 560.0 M0 = M0 (kip-in) (LRFD 2017 6.12.2.2 560.0 <I> (LRFD 2017 6.5.4.2) 1.00 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance (ksil 50.000 Resistance {k.si) 50.000 Flexure-Flan2e Local Bucklin2 !In-Plane' Flexure-Fla nee Local Bucklin2 (Out-of-Plane) A, ILRFD 2017 6.12-2.2-2) 22.8 A, ILRFD 2017 6.12.2.2.2) 22.8 A,,, (LRFD 2017 6.12.2.2.2) 27.0 A.1 (LRFD 2017 6.12.2.2.2) 27.0 ,\, (LRFD 2017 6.12.2.2.2) 33.7 ,\, (LRFD 2017 6.12.2.2.2) 33.7 M0 (kip-in) (LRFD 2017 6.12.2.2.2) 612.3 M0 (kip-in) (LRFD 2017 6.12.2.2.2) 612.3 <I> (LRFD 2017 6.5.4.2) 1.00 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance lksil 64.226 Resistance lksil 64.226 Flexure-Web Local Buckling (In-Plane) Flexure-Web Loe.al Buckling (Out-of-Plane) A., (LRFD 2017 6.12.2.2.2) 22.8 A., (LRFD 2017 6.12.2.2.2) 22.8 ~ ILRFD 2017 6.12.2.2.2) 58.3 ~ (LRFD 2017 6.12.2.2.2) 58.3 M0 (kip-in) (LRFD 2017 6.12.2.2.2) 597.489 M0 (kip-in) (LRFD 2017 6.12.2.2.2) 597.489 <I> (LRFD 2017 6.5.4.2) 1.00 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance (k.sil 62.674 Resistance (k.sil 62.674 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge HSS 6x6x1/4 Depth (in) Width (in) Thickness (in} Area (in2), Gross & Net Sections I, (in') 1, (in') S, (in') Z(in') ,. r, Unbraced Length 4, (in) Ax'al Tension (Gross) I . U (LRFD 2017 6.8.2.1) 4,/r <= 200 Prim., 240 Sec. (LRFD 2017 6.8 Fty'A (kips) (LRFD 2017 6.8.2.1) Ftu/kt*A (kips) (LRFD 2017 6.8.2.1) <PY (LRFD 2017 6.5.4.2) <j,u (LRFD 2017 6.5.4.2) Resistance (ksi) Axial Compression (Gross) . K (LRFD 2017 4.6.2.5) KL/r <=120 Prim., 140 Sec. (LRFD 2017 6.9 P0 (ksi) (LRFD 2017 6.9.4.1-2) Q (LRFD 2017 6.9.4.1.1) P0 (ksi) (LRFD 2017 6.9.4.1) <j, (LRFD 2017 6.5.4.2) Resistance lk.sil Shear Resistance k (LRFD 2017 6.10.9.2) C (LRFD 2017 6.10.9.2) V0 (kips) (LRFD 2017 6.10.9.2) <j, (LRFD 2017 6.5.4.2) Resistance (kiosl ::,!BRIDGE 1.:1 BROTHERS Truss End Post 6.00 6.00 0.233 5.24 28.60 28.60 9.53 11.20 2.336 Sy (in') 2.336 Z, (in') 87.0 1.0 37.2 262.000 324.880 0.95 0.80 47.500 0.75 27.9 366.920 1.0 50.000 0.95 44.867 5.0 1.0 71.310 1.00 71.310 Mechanical Procerties Stremrth Summarv Steel ASTM: A500Gr C Axial Tensile (kips) 248.900 E (ksi) 29000 Axial Compressive (kips) 235.101 F,. (ksi) 62 Bending (in-kips) (In-Plane) 560.000 F., (ksi) 50.0 Bending (in-kips) (Out-of-Plane) 560.000 F~(ksi) 50.0 Shear (kips) 71.310 F,. (ksi) 35.8 F,. (ksi) 28.9 9.53 11-20 Flexure-Yieldine Un-Plane) Flexure-Yieldine (Out-of-Plane) M. = M0 (kip-in) (LRFD 2017 6.12.2.2.2) 560.0 M. = M, (kip-in) (LRFD 2017 6.12.2.2 560.0 <I> (LRFD 2017 6.5.4.2) 1.00 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance (ksil 50.000 Resistance (ksil 50.000 Flexure-Flanee Local Bucklin• fin-Plane Flexure-Fla nee Local Bucklin• (Out-of-Plane I A, (LRFD 2017 6.12.2.2.2) 22.8 >., (LRFD 2017 6.12.2.2.2) 22.8 >.,, (LRFD 2017 6.12.2.2.2) 27.0 >.,, (LRFD 2017 6.12.2.2.2) 27.0 >.,, (LRFD 2017 6.12.2.2.2) 33.7 >.,, (LRFD 2017 6.12.2.2.2) 33.7 M. (kip-in) (LRFD 2017 6.12.2.2.2) 612.3 M. (kip-in) (LRFD 2017 6.12.2.2.2) 612.3 <j, (LRFD 2017 6.5.4.2) 1.00 <j, (LRFD 2017 6.5.4.2) 1.00 Resistance (ksil 64.226 Resistance (ksil 64.226 Flexure-Web Local Buckling (In-Plane) Flexure-Web Local Buckling (Out-of-Plane) },., (LRFD 2017 6.12.2.2.2) 22.8 },., (LRFD 2017 6.12.2.2.2) 22.8 >.,.. (LRFD 2017 6.12.2.2.2) 58.3 >.,.. (LRFD 2017 6.12.2.2.2) 58.3 M. (kip-in) (LRFD 2017 6.12.2.2.2) 597.489 M. (kip-in) (LRFD 2017 6.12.2.2.2) 597.489 <j, (LRFD 2017 6.5.4.2) 1.00 <j, (LRFD 2017 6.5.4.2) 1.00 Resistance fk.sil 62.674 Resistance (ksi\ 62.674 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge HSS 5x5x1/4 Depth (in) Width (in) Thickness (in) Area (in2), Gross & Net Sections I, (in4) 1, (in4) S, (in3) Z (in3) r, r, Unbraced Length Ls (in) Axial-Tension fGro.ssl U (LRFD 2017 6.8.2.1) L,,/r <= 200 Prim., 240 Sec. (LRFD 2017 6.8 Fty*A (kips) (LRFD 2017 6.8.2.1) Ftu/kt*A (kips) (LRFD 2017 6.8.2.1) (j>y (LRFD 2017 6.5.4.2) (j>u (LRFD 2017 6.5.4.2) Resistance (ksi) Axial-Compression (Gross) K (LRFD 2017 4.6.2.5) KL/r <=120 Prim., 140 Sec. (LRFD 2017 6.9 P, (ksi) (LRFD 2017 6.9.4.1.2) Q (LRFD 2017 6.9.4.1.1) P0 (ksi) (LRFD 2017 6.9.4.1) 4> (LRFD 2017 6.5.4.2) Resistance tk.sil Shear Resistance k (LRFD 2017 6.10.9.2) C (LRFD 2017 6.10.9.2) v. (kips) (LRFD 2017 6.10.9.2) 4> (LRFD 2017 6.5.4.2) Resistance lkiosl ::,!BRIDGE 1.:1 BROTHERS Truss Vertical 5.00 5.00 0.233 4.30 16.00 16.00 6.40 7.61 1-929 S, (in') 1.929 Z, (in3) 72.0 1.0 37.3 215.000 266.600 0.95 0.80 47.500 0.75 28.0 365.226 1.0 50.000 0.95 44.855 5.0 1.0 57.858 1.00 57.858 Mechanical Properties StrenJrth Summarv Steel ASTM: A500Gr C Axial Tensile (kips) 204.250 E (ksi) 29000 Axial Compressive (kips) 192.875 F,. (ksi) 62 Bending (in-kips) (In-Plane) 380.500 F,v (ksi) 50.0 Bending (in-kips) (Out-of-Plane) 380.500 Fe, (ksi) 50.0 Shear (kips) 57.858 F,. (ksi) 35.8 F,. (ksi) 28.9 6.40 7.61 Flexure-Yieldini::!' fln-Planel Flexure-Yieldinl! fOut-of-Planel M. = M, (kip-in) (LRFD 2017 6.12.2.2.2) 380.5 M. = M0 (kip-in) (LRFD 2017 6.12.2.2. 380.5 4> (LRFD 2017 6.5.4.2) 1.00 4> (LRFD 2017 6.5.4.2) 1.00 Resistance lksil 50.000 Resistance lksil 50,000 Flexure-Flan.e:e Local Bucklin£!: (In-Plane Flexure-Flan.e:e Local Bucklin.e: (Out-of-Plane) /..1 (LRFD 2017 6.12.2.2.2) 18.5 /..1 (LRFD 2017 6.12.2.2.2) 18.5 /..,, (LRFD 2017 6.122.2.2) 27.0 /..,, (LRFD 2017 6.12.2.2.2) 27.0 I,.,, (LRFD 2017 6.12.2.2.2) 33.7 I.,, (LRFD 2017 6.12.2.2.2) 33.7 M. (kip--in) (LRFD 2017 6.12.2.2.2) 457.0 M. (kip--in) (LRFD 2017 6.12.2.2.2) 457.0 4> (LRFD 2017 6.5.4.2) 1.00 4> (LRFD 2017 6.5.4.2) 1.00 Resistance (ksi) 71..399 Resistance (ksi) 71..399 Flexure-Web Local Buckling (In-Plane) Flexure-Web Local Buckling (Out-of-Plane) I.., (LRFD 2017 6.12.2-2.2) 18.5 I.., (LRFD 2017 6.12-2.2.2) 18.5 /..,... (LRFD 2017 6.12.2.2.2) 58.3 l,.J>W (LRFD 2017 6.12.2.2.2) 58.3 M. (kip--in) (LRFD 2017 6.12.2.2.2) 411.006 M. (kip--in) (LRFD 2017 6.12.2.2.2) 411.006 4> (LRFD 2017 6.5.4.2) 1.00 4> (LRFD 2017 6.5.4.2) 1.00 Resistance fk.sil 64.220 Resistance tksil 64.220 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge HSS 5x3x1/4 Depth (in) Width (in) Thickness (in) Area (in2), Gross & Net Sections I, (in4) 1, (in4) S,(in') Z(in') r, r. Unbraced Length L,. (in) Axial-Tension (Gros,sl U (LRFD 2017 6.8.2.1) L,./r <= 200 Prim., 240Sec. (LRFD 2017 6.8 Fty'A (kips) (LRFD 2017 6.8.2.1) Ftu/kt*A (kips) (LRFD 2017 6.8.2.1) <i>Y (LRFD 2017 6.5.4.2) <i>u (LRFD 2017 6.5.4.2) Resistance (ksi) Axial-Compression (Gross) K (LRFD 2017 4.6.2.5) KL/r <=120 Prim., 140 Sec. (LRFD 2017 6.9 P. (ksi) (LRFD 2017 6.9.4.1.2) Q (LRFD 2017 6.9.4.1.1) P0 (ksi) (LRFD 2017 6.9.4.1) <I> (LRFD 2017 6.5.4.2) Resistance (k.sil Shear Resistance k (LRFD 2017 6.10.9.2) C (LRFD 2017 6.10.9.2) V0 (kips) (LRFD 2017 6.10.9.2) <I> (LRFD 2017 6.5.4.2) Resistance lkiosl ::,!BRIDGE 1.:1 BROTHERS Truss Dia.e:onal 5.00 3.00 0.233 3.37 10.70 4.81 4.28 5.38 1.782 S, (in3) 1.195 IZ.. (in'l 103.9 1.0 86.9 168.500 208.940 0.95 0.80 47.500 0.75 65.2 67.323 1.0 50.000 0.95 34.809 5.0 1.0 57.858 1.00 57.858 Mechanic.al Properties. Steel ASTM: E (ksi) F,. (ksi) f,v (ksi) F"' (ksi) F,0 (ksi) F, .. (ksi) 3.21 3.77 Flexure-Yieldinl! fin-Plan el M0 = M9 (kip-in) (LRFD 2017 6.12.2.2.2) <I> (LRFD 2017 6.5.4.2) Resistance (ksil Flexure-Flam!:e Local Bucklin.e (In-Plane Ar (LRFD 2017 6.12.2.2.2) },,,,, (LRFD 2017 6.12.2.2.2) >.., (LRFD 2017 6.12.2.2.2) M0 (kip-in) (LRFD 2017 6.12.2.2.2) <I> (LRFD 2017 6.5.4.2) Resistance (ksi] Flexure-Web Local Buckling (In-Plane) >,._ (LRFD 2017 6.12.2.2.2) A,,., (LRFD 2017 6.12.2.2.2) M0 (kip-in) (LRFD 2017 6.12.2.2.2) <I> (LRFD 2017 6.5.4.2) Resistance fk.sil A500Gr C 29000 62 50.0 50.0 35.8 28.9 269.0 1.00 50.000 9.9 27.0 33.7 408.5 1.00 95.440 18.5 58.3 296.732 1.00 69330 StrenITTh Summarv Axial Tensile (kips) 160.075 Axial Compressive (kips) 117.307 Bending (in-kips) (In-Plane) 269.000 Bending (in-kips) (Out-of-Plane) 188.500 Shear (kips) 57.858 Flexure-Yieldini::1: fOut-of-Planel M0 = M9 (kip-in) (LRFD 2017 6.12.2.2 188.5 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance (ksil 50.000 Flexure-Flan.e:e Local Buckline: (Out-of-Plane) Ar (LRFD 2017 6.12.2.2.2) 18.5 A,, (LRFD 2017 6.12.2.2.2) 27.0 >.., (LRFD 2017 6.12.2.2.2) 33.7 M0 (kip-in) (LRFD 2017 6.12.2.2.2) 224.1 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance (k.si) 69.884 Flexure-Web Local Buckling (Out-of-Plane) >,._ (LRFD 2017 6.12.2.2.2) 9.9 A,,., (LRFD 2017 6.12.2.2.2) 58.3 M0 (kip-in) (LRFD 2017 6.12.2.2.2) 205.764 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance tk.sil 64.168 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge HSS 2x2x3/16 Depth (in) Width (in) Thickness (in) Area (in2), Gross & Net Sections I, (in4) 1, (in4) S, (in3) Z (in3) r, r. Unbraced Length Ls (in) Axial-Tension (Gros.st U (LRFD 2017 6.8.2.1) L,,/r <= 200 Prim., 240 Sec. (LRFD 2017 6.8 Fty*A (kips) (LRFD 2017 6.8.2.1) Ftu/kt*A (kips) (LRFD 2017 6.8.2.1) <l>Y (LRFD 2017 6.5.4.2) <t,u (LRFD 2017 6.5.4.2) Resistance (ksi) Axial-Compression {Gross) K (LRFD 2017 4.6.2.5) KL/r <=120 Prim., 140 Sec. (LRFD 2017 6.9 P, (ksi) (LRFD 2017 6.9.4.1.2) Q (LRFD 2017 6.9.4.1.1) P0 (ksi) (LRFD 2017 6.9.4.1) <I> (LRFD 2017 6.5.4.2) Resistance lksil Shear Resistance k (LRFD 2017 6.10.9.2) C (LRFD 2017 6.10.9-2) v. (kips) (LRFD 2017 6.10.9.2) <I> (LRFD 2017 6.5.4.2) Resistance lkiosl ::,!BRI DGE 1.:1 BROTHERS Floor Bracini:!' 2.00 2.00 0.174 1.19 0.64 0.64 0.64 0.80 0.734 S, (in3) 0.734 Z.,(in3) 131.3 1.0 178.9 59.500 73.780 0.95 0.80 47.500 0.75 134.2 15.895 1.0 50.000 0.95 13.243 5.0 1.0 14.848 1.00 14.848 Mechanic.al Prooerties Stremrth Summarv Steel ASTM: A500Gr C Axial Tensile (kips) 56.525 E (ksi) 29000 Axial Compressive (kips) 15.760 F,. (ksi) 62 Bending (in-kips) (In-Plane) 39.850 F, (ksi) 50.0 Bending (in-kips) (Out-of-Plane) 39.850 F"' (ksi) 50.0 Shear (kips) 14.848 F,. (ksi) 35.8 F,. (ksi) 28.9 0.64 0.80 Flexure-Yieldine: fln-Planel Flexure-Yieldinl!" (Out-of-Planel M. = M, (kip-in) (LRFD 2017 6.12.2.2.2) 39.9 M. = M, (kip-in) (LRFD 2017 6.12.2.2. 39.9 <I> (LRFD 2017 6.5.4.2) 1.00 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance lksi) 50.000 Resistance lksil 50.000 Flexure-FlanJ?e Local Bucklin.I:!: (In-Plane Flexure-FlanJ?e Local Bucklin.I:!: (Out-of-Plane) 1,, (LRFD 2017 6.12.2.2.2) 8.5 1,, (LRFD 2017 6.12.2.2.2) 8.5 1,,, (LRFD 2017 6.12.2.2.2) 27.0 A,1 (LRFD 2017 6.12.2-2.2) 27.0 l,,i (LRFD 2017 6.12.2.2.2) 33.7 1.,, (LRFD 2017 6.12.2.2.2) 33.7 M. (kip-in) (LRFD 2017 6.12.2.2.2) 61-2 M. (kip-in) (LRFD 2017 6.12.2.2-2) 61.2 <I> (LRFD 2017 6.5.4.2) 1.00 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance fksil 95.520 Resistance tk.sil 95.520 Flexure-Web Local Buckling (In-Plane) Flexure-Web Local Buckling (Out-of-Plane) A., (LRFD 2017 6.12.2.2.2) 8.5 A., (LRFD 2017 6.12.2.2.2) 8.5 I,.., (LRFD 2017 6.12.2.2.2) 58.3 I,"" (LRFD 2017 6.12.2.2.2) 58.3 M. (kip-in) (LRFD 2017 6.12.2.2.2) 44.767 M. (kip-in) (LRFD 2017 6.12.2.2.2) 44.767 <I> (LRFD 2017 6.5.4.2) 1.00 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance fksil 69.840 Resistance tksil 69.840 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge HSS 2x2x3/16 Depth (in) Width (in) Thickness (in) Area (in2), Gross & Net Sections I, (in4) ly (in4) S, (in') Z (in') r, r. Unbraced Length t.,, (in) Axial-Tension !Gro.s.sl U (LRFD 2017 6.8.2.1) G.Jr <= 200 Prim., 240 Sec. ILRFD 2017 6.8 Fty'A (kips) (LRFD 2017 6.8.2.1) Ftu/kt'A (kips) ILRFD 2017 6.8.2.1) <!,y (LRFD 2017 6.5.4.2) <t,u (LRFD 2017 6.5.4.2) Resistance (ksi) -Axial Compress.ion (Gross) K (LRFD 2017 4.6.2.5) KL/r <=120 Prim., 140 Sec. ILRFD 2017 6.9 P, (ksi) (LRFD 2017 6.9.4.1.2) Q ILRFD 2017 6.9.4.1.1) P0 (ksi) (LRFD 2017 6.9.4.1) <I> ILRFD 2017 6.5.4.2) Resistance (ksil Shear Resistance k ILRFD 2017 6.10.9.2) C (LRFD 2017 6.10.9.2) Va (kips) (LRFD 2017 6.10.9.2) <I> (LRFD 2017 6.5.4.2) Resistance (kips} ::,!BRIDGE 1.:1 BROTHERS Horizontal Rail 2.00 2.00 0.174 1.19 0.64 0.64 0.64 0.80 0.734 Sy (in') 0.734 Z, (in') 78.9 1.0 107.4 59.500 73.780 0.95 0.80 47.500 0.75 80.6 44.076 1.0 50.000 0.95 29.545 5.0 1.0 14.848 1.00 14.848 Mechanical Prooertie:s Steel ASTM: E lksi) F,. lksi) F., lksi) F~lksi) F,. lksi) F,. lksi) 0.64 0.80 Flexure-Yieldine (In-Plane I Ma= M, (kip-in) (LRFD 2017 6.12.2.2.2i' <I> (LRFD 2017 6.5.4.2) I Resistance lksil I Flexure-Flanl!:e Local Bucklin.I? (In-Plane A1 (LRFD 2017 6.12.2.2.2) A,,1 (LRFD 2017 6.12.2.2.2) I.,, (LRFD 2017 6.12.2.2.2) M. (kip-in) (LRFD 2017 6.12.2.2.2) <I> (LRFD 2017 6.5.4.2) Resistance (ksil Flexure-Web local Buckling (In-Plane) A,. ILRFD 2017 6.12.2.2.2) J. . .., ILRFD 2017 6.12.2.2.2) Ma (kip-in) (LRFD 2017 6.12.2.2.2) <I> (LRFD 2017 6.5.4.2) Resistance (ksil A500Gr C 29000 62 50.0 50.0 35.8 28.9 39.9 1.00 50.000 8.5 27.0 33.7 61.2 1.00 95.520 8.5 58.3 44.767 1.00 69.840 Streni:!'th Summarv Axial Tensile (kips) 56.525 Axial Compressive (kips) 35.159 Bending (in-kips) (In-Plane) 39.850 Bending (in-kips) (Out-of-Plane) 39.850 Shear (kips) 14.848 Flexure-Yieldin2: (Out-of-Plane I Ma= M, (kip-in) (LRFD 2017 6.12.2.2 39.9 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance lksil 50.000 Flexure-Flan£e Local Bucklin£ (Out-of-Plane) A1 (LRFD 2017 6.12.2.2.2) 8.5 A,,1 (LRFD 2017 6.12.2.2.2) 27.0 I.,, (LRFD 2017 6.12.2.2.2) 33.7 Ma (kip-in) (LRFD 2017 6.12.2.2.2) 61.2 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance lksil 95.520 Flexure-Web local Buckling (Out-of-Plane) A,. ILRFD 2017 6.12.2.2.2) 8.5 A . .., (LRFD 2017 6.12.2.2.2) 58.3 M0 (kip-in) (LRFD 2017 6.12.2.2.2) 44.767 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance (ksil 69.840 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge MEMBER DESIGN-CHANNEL C5x6 7 Channel Depth (in) Width (in) Web Thickness (in) Flange Thickness (in) Area (in2), Gross & Net Sections I, (in4) ly (in4) S, (in3) Z, (in3) J (in') C,. (in') r0 (in) H h0 (in) r., (in) r, rv Unbraced Length Ls (in) Axial-Tension (Gross) U (LRFD 2017 6.8.2.1) Ls/r <= 200 Prim., 240 Sec. (LRFD 2017 6.8 Fty'A (kips) (LRFD 2017 6.8.2.1) Ftu/kt'A (kips) (LRFD 2017 6.8.2.1) <j,y (LRFD 2017 6.5.4.2) <j,u (LRFD 2017 6.5.4.2) Resistance (ksi) Axial-Compression (Gross) K (LRFD 2017 4.6.2.5) KL/r <=120 Prim., 140 Sec. (LRFD 2017 6.9 P-(ksi) (LRFD 2017 6.9.4.1.3·4) P~ (ksi) (LRFD 2017 6.9.4.1 .. 3-5) P, (ksi) (LRFD 2017 6.9.4.1.2) Q (LRFD 2017 6.9.4.1.1) P0 (ksi) (LRFD 2017 6.9.4.1) <I> (LRFD 2017 6.5.4.2) Resistance (ksi) Shear Resistance k (LRFD 2017 6.10.9.2) C (LRFD 2017 6.10.9.2) V0 (kips) (LRFD 2017 6.10.9.2) <I> (LRFD 2017 6.5.4.2) Resistance (kiosl ::,!BRIDGE l=.I BROTHERS Truss Sol ice Post 5.00 1.75 0.19 0.32 1.97 7.48 0.47 2.99 3.55 0.05 2.22 2.26 0.79 4.68 0.58 1.949 0.488 72.0 1.0 147.4 98.500 128.050 0.95 0.80 47.500 0.75 110.6 23.418 82.574 21.779 1.0 50.000 0.95 18.145 5.0 1.0 24.298 1.00 24.298 Mechanical Prooerties Strenet h Summarv Steel ASTM: A572 GR 50 Axial Tensile (kips) 93.575 E (ksi) 29000 Axial Compressive (kips) 35.746 F,. (ksi) 65.0 Bending (in-kips) (In-Plane) 125 F,. (ksi) 50.0 Bending (in-kips) (Out-of-Plane) 29.8 F~ (ksi) 50.0 Shear (kips) 24.298 F,. (ksi) 37.5 F,. (ksi) 28.9 Z,. (in3) 0.76 Sy (in3) 0.37 t1 (in) 0.32 Flexure-Yieldinl:!: !ln-Planel Web-Cripplin£ M0 = M0 (kip-in) (LRFD 2017 6.12.2.2.5) 177.5 N (LRFD 2017 7.11.2.1) N/A <I> (LRFD 2017 6.5.4.2) 1.00 <I>., (LRFD 2017 6.5.4.2) 0.80 Resistance (ksi) 50.000 Ru (kips) (LRFD 2017 D6.5.3) N/A Flexure-Lateral Torsional fin-Plane I L,, (LRFD 2017 6.12.2.2.5) 20.7 L, (LRFD 2017 6.12.2.2.5) 91.9 M, (kip-in) (LRFD 2017 6.12.2.2.5) 125.0 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance (ksil 41.794 Flexure-Yieldin2: !Out-of-Plane) M0 = M0 (kip-in) (LRFD 2017 6.12.2.2.1 29.8 ), 5.47 ),., 9.15 )-,r 19.99 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge C8x11 5 Channel Depth (in) Width (in) Web Thickness (in) Flange Thickness (in) Area (in2), Gross & Net Sections 1. (in4) 1, (in') s. (in') z. (in3) J (in4) C.. (in6) r0 (in) H h0 (in) ru (in) r. r, Unbraced Length L,. (in) Axial-Tension (Gros,sJ U (LRFD 2017 6.8.2.1) ldr <= 200 Prim., 240Sec. (LRFD 2017 6.8 Fty'A (kips) (LRFD 2017 6.8.2.1) Ftu/kt'A (kips) (LRFD 2017 6.8-2.1) <i>Y (LRFD 2017 6.5.4.2) <i>u (LRFD 2017 6.5.4.2) Resistance (ksi) Axial-Comores,sion (Grossi K (LRFD 2017 4.6.2.5) KL/r <=120 Prim., 140Sec. (LRFD 2017 6.9 P-(ksi) (LRFD 2017 6.9.4.1.3·4) P~ (ksi) (LRFD 2017 6.9.4.1.3·5) P. (ksi) (LRFD 2017 6.9.4.1.2) Q (LRFD 2017 6.9.4.1.1) P0 (ksi) (LRFD 2017 6.9.4.1) <I> (LRFD 2017 6.5.4.2) Resistance lksil Shear Resistance k (LRFD 2017 6.10.9.2) C (LRFD 2017 6.10.9.2) V, (kips) (LRFD 2017 6.10.9.2) <I> (LRFD 2017 6.5.4.2) Resistance fkiosl ::,!BRIDGE 1.:1 BROTHERS Floor Sol ice Beam 8.00 2.26 0-22 0.39 3.37 32.50 1.31 8.13 9.63 0.13 16.50 3.41 0.86 7.61 0.76 3.105 0.623 100.0 1.0 160.4 168.500 219.050 0.95 0.80 47.500 0.75 120.3 19.780 58.464 18.584 1.0 50.000 0.95 15.484 5.0 1.0 46.615 1.00 46.615 Mechanical Proaerties Stremrth Summarv Steel ASTM: A572 GR 50 Axial Tensile (kips) 160.075 E (ksi) 29000 Axial Compressive (kips) 52.180 F,u (ksi) 65.0 Bending (in·kips) (ln·Plane) 268 F., (ksi) 50.0 Bending (in·kips) (Out-of·Plane) 62.0 F=(ksi) 50.0 Shear (kips) 46.615 F,. (ksi) 37.5 F,. (ksi) 28.9 Z, (in3) 1.57 S, (in') 0.78 t1 (in) 0.39 Flexure-Yie.ldln.l:!: (In-Plane) Web--Crioolin.l:!: M, = M, (kip·in) (LRFD 2017 6.12.2.2.5) 481.5 N (LRFD 2017 7.11.2.1) N/A <I> (LRFD 2017 6.5.4.2) 1.00 <l>w (LRFD 2017 6.5.4.2) 0.80 Resistance (ksi) 50.000 Ru (kips) (LRFD 2017 D6.5.3) N/A Flexure-Lateral Torsional Un-Planet lp (LRFD 2017 6.12.2.2.5) 26.4 L, (LRFD 2017 6.12.2.2.5) 95.5 M, (kip-in) (LRFD 2017 6.12.2.2.5) 268.3 <I> (LRFD 2017 6.5.4.2) 1.00 Resistance lksil 33.028 Flexure-Yieldln.e: (Out-of-Plane I M, = M9 (kip-in) (LRFD 2017 6.12.2.2.1 62.0 )➔ 5.79 )_,,, 9.15 )"' 19.99 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge MEMBER DESIGN-W BEAM W8x10 Depth lin) Width lin) Web Thickness lin) Flange Thickness (in) Area (in2), Gross & Net Sections 1. (in4l 1, lin'l S, (in') Sy (in') Z, (in') J (in') G (ksi) C.. (in6) r, r, Unbraced Length I.,, (in) Axial Tension (Gross) - U (LRFD 2017 6.8.2.1) t,,/r <= 200 Prim., 240Sec. (LRFD 2017 6., Fty'A (kips) (LRFD 2017 6.8.2.1) Ftu/kt*A (kips) (LRFD 2017 6.8.2.1) 4,y (LRFD 2017 6.5.4.2) 4,u (LRFD 2017 6.5.4.2) Resistance (ksi) Axial-Compression (Gross) K (LRFD 2017 4.6.2.5) KL/r <=120 Prim., 140 Sec. (LRFD 2017 6.9 Pe (ksi) ILRFD 2017 6.9.4.1.2) Q (LRFD 2017 6.9.4.1.1) P0 (ksi) (LRFD 2017 6.9.4.1) 4> (LRFD 2017 6.5.4.2) Resistance fksil Shear Resistance k (LRFD 2017 6.10.9.2) C (LRFD 2017 6.10.9.2) v. (kips) (LRFD 2017 6.10.9.2) 4> (LRFD 2017 6.5.4.2) Resistance lkiosl ::,!BRIDGE l=.I BROTHERS End Floor Beam 7.89 3_94 0.170 0.205 2.96 30.80 2.09 7.81 1.06 1.66 0.04 11165 30 .. 90 3.226 0.840 100.0 1.0 31.0 148.000 192.400 0.95 0.80 47.500 0.75 23.3 184.307 1.0 50.000 0.95 42.401 5.0 1.0 36.217 1.00 36.217 Mechanical Proaerties Streni:!'th Summarv Steel ASTM: A992 Axial Tensile (kips) 140.600 E (ksi) 29000 Axial Compressive (kips) 125.508 F,u (ksi) 65.0 Bending (in-kips) (In-Plane) 384.412 F<v (ksi) 50.0 Bending (in-kips) (Out-of-Plane) 81.73 F~(ksi) 50.0 Shear I kips) 36.217 F,. (ksi) 37.5 F, (ksi) 28.9 Flexure-YieldinJ? Web-CripplinJ? )y (LRFD 2017 6.12.2.2.1) 9.6 N (LRFD 2017 7.11.2.1) N/A J.., (LRFD 2017 6.12-2.2.1) 9.2 4>., (LRFD 2017 6.5.4.2) 0.80 A,i (LRFD 2017 6.12.2.2.1) 20.0 R., (kips) (LRFD 2017 D6.5 .. 3) N/A M. = M, (ki1rin) (LRFD 2017 6.12.2.2.1) 81.7 4> (LRFD 2017 6.5.4.2) 1.00 Out of Plane Bendin Resistance (ksi) 49.237 M. = M0 (ki1rin) (LRFD 2017 6.12-2.2 83 W eb Bend-Buckling Re.sistance M. (6.12.2.2.1-2) 81.733704 k (LRFD 2017 6.10.1-9.1) 10.6 ~ (LRFD 2017610.1.10 1) 1.6 p (LRFD 2017 6.10.1.10.1) 1.0 R, (LRFD 2017 6.10.1.10.1) 12.2 F~ = (ksi) (LRFD 2017 6.10.1-9.1) 71.4 4> (LRFD 2017 6.5.4.2) 1.00 Resistance (ksil 71.429 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge W8x10 Depth (in) Width (in) Web Thickness (in) Flange Thickness (in) Area (in2). Gross & Net Sections I, (in4) 1, (in4) s. (in') S, (in') Z, (in') J (in4) G (ksi) C., (in6) r, r. Unbraced Length Ls (in) Axial-Tension (Grossl U (LRFD 2017 6.8.2.1) l:>,,/r <= 200 Prim., 240 Sec. (LRFD 2017 6.8 Fty*A (kips) (LRFD 2017 6.8.2.1) Ftu/kt'A (kips) (LRFD 2017 6.8.2.1) 4,y (LRFD 2017 6.5.4.2) 4,u (LRFD 2017 6.5.4.2) Resistance (ksi) Axial Comoression (Gros.sl - K (LRFD 2017 4.6.2.5) KL/r <=120 Prim., 140 Sec. (LRFD 2017 6.9 P, (ksi) (LRFD 2017 6.9.4.1.2) Q (LRFD 2017 6.9.4.1.1) P0 (ksi) (LRFD 2017 6.9.4.1) 4, (LRFD 2017 6.5.4.2) Resistance (k.sil Shear Resistance k (LRFD 2017 6.10.9.2) C (LRFD 2017 6.10.9.2) v. (kips) (LRFD 2017 6.10.9.2) 4, (LRFD 2017 6 5.4.2) Resistance (kiosl ::,!BRIDGE 1.:1 BROTHERS Floor Beam 7.89 3.94 0.170 0.205 2.96 30.80 2.09 7.81 1.06 1.66 0.04 11165 30.90 3.226 0.840 100.0 1.0 31.0 148.000 192.400 0.95 0.80 47.500 0.75 23.3 184.307 1.0 50.000 0.95 42.401 5.0 1.0 36.217 1.00 36.217 Mechanical Prooerties Streneth Summarv Steel ASTM: A992 Axial Tensile (kips) 140.600 E (ksi) 29000 Axial Compressive (kips) 125.508 F,. (ksi) 65.0 Bending (in-kips) (In-Plane) 384.412 F, (ksi) 50.0 Bending (in-kips) (Out-of-Plane) 81.73 Fe, (ksi) 50.0 Shear (kips) 36.217 F,. (ksi) 37.5 F,. (ksi) 28.9 Flexure-Yieldinl! Web--Criaolinl! Ar (LRFD 2017 6.12.2.2.1) 9.6 N (LRFD 2017 7.11.2.1) N/A A,,1 (LRFD 2017 6.12.2.2.1) 9-2 4,., (LRFD 2017 6.5.4.2) 0.80 A,1 (LRFD 2017 6.12.2.2.1) 20.0 R,0 (kips) (LRFD 2017 D6.5.3) N/A M. = M, (kip-in) (LRFD 2017 6.12.2.2.1) 81.7 4, (LRFD 2017 6.5.4.2) 1.00 Out of Plane Bend in Resistance (ksi) 49.237 M. = M, (kip-in) (LRFD 2017 6.12.2.2 83 Web Bend-Buckling Resistance M. (6.12.2.2.1·2) 81.733704 k (LRFD 2017 6.10.1.9.1) 10.6 ~ (LRFD 2017 6.10.1.10.1) 1.6 p (LRFD 2017 6.10.1.10.1) 1.0 Fl, (LRFD 2017 6.10.1.10.1) 12.2 F= = (ksi) (LRFD 2017 6.10.1.9.1) 71.4 4, (LRFD 2017 6.5.4.2) 1.00 Resistance (k.sil 71.429 CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge DESIGN CRITERIA (Deck-as-a-Form): (SDI C-101 Standard, 2.4.A) Geometry and Induced Loads: Dead Load, wc11 (psf) = 51.0 Umform Construction Live Load, Wu (psf) = 20 Ponding Allowance (psf) = 4 Concentrated Construction Live Load, P (lbs)= 150 Span, L (ft)= 6.57 Slab Depth, h (in)= 5 M aterial Properties, B-Deck: Moduhis ofElasticity, E (ksi) = 29,500 Yield Stress,F y (ksi) = 50 Deck Pan Guage 20ga Deck Pan Depth,~ (in)= 1.5 Effective Section Moduhis, Sd (in,/ft) = 0.230 Moment oflinertia, I.i (in4/ft) = 0.219 ASD Allowable J\fome nt: M,, (ft-lb)= f y 9~ ni, = 1.67 Induced Moments (single span): M (ft-lb)= M (ft-lb)= Allowable Deflection: t,. (in)= Induced Deflection (single span): t,. (in)= ::,!BRIDGE 1.:1 BROTHERS Wc11*L2 10 (wc!lnvu) 8 L 1000 5 384 *50psffor Vehicular per AASHTO LRFD, 9.7.4.1 * Sd 573.9 P*L 483.9 OK + = 4 * L2 404.8 OK = 0.07886 * wdl*L2 = 0.0083 OK E*I CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge Effective "Wheel Load Area, Couceutrated Loads: (SDJC-2017 Standard, 2-4.B.11) L (in)= 78.9 X (in)= 39.4 bi (in)= 20 b3 (in)= 10 U in)= 3.5 t, (in)= 0 *deck span length *midspan distance ( center of concentrated load) *tire contact length, per AASHTO LRFD, 3.6.1.2.5 *tire contact width,, per AASHTO LRFD, 3.6.1.2.5 *thickness of concrete above steel deck "thickness of rigid topping above concrete b. = bm -2*(1-xlL)*x = 66.4 *Effective Width of Concentrated Load (in), Single Span Bending b,,., + 4/3*(1-x/L)*x = 53.3 *Effective Width of Concentrated Load (in), Continuous Span Bending bm.,. (1-x/L)*x = 46.7 *Effective Width of Concentrated Load (in), Shear = 49.4 *Effective Length of Concentrated Load (in) .. _.,__ = 27 Induced Loads: ,,, / ~ I I I, ~ u \_J I \ Total Vehicle Load (lbs) Wheel Spacing ( ft) Front Axle Load -20% (lbs) Rear Axle Load -80% (lbs) Max Wheel Load (lbs) Effective Wheel Load Area, Bending ( ft') (y.l x b.) Induced \Vheel Load,. Bending (psf) Effective Wheel Load Area, Shear (ft') 0,V x b.) Induced \Vheel Load, Shear (psf) ::,!BRIDGE 1.:1 BROTHERS 10000 lbs 6 2000 8000 4000 18.3 218.7 16.0 249.5 ~'l'IMI ·er 'otc Figure 2-.2 Ourled--- cfslributioo ol loroa p ~..,--...,-..,-~ s r Nol11 Ffgure 2-3 ,, I I f J r w CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge DESIGN CRITERIA (Composite): (SDI C-1017 Standard, 1.4.B) Geometry and Induced Loads: Dead Load, w.1 (psf) = 51.0 Pedestrian Live Load (psf) = 90 psf Vehicle Live Load, w • (psf) = 219 Cone entrated Live Load, P (lbs) = 1000 Span, L (ft)= 6.57 Material & Section Properties, B-Dec.k: Modulus of Elasticity, E (ksi) = 29,500 Yield Stress., F, (ksi) = 50 Deck Pan Guage = 20ga Deck Pan Depth, d,, (in) = 1.5 Moment of Inertia, l,r(in4/ft) = 0.219 Area of Steel Deck per nit Slab Width, A, (in')= 0.67 Pitch, C, (in) = 6 Average Rtb Width, W, (in)= 3.875 Cracked Composite Neutral Axis Distance, Y« (in)= 1.52 Cracked Composite Neutral Axis Distance, Yc.s (in)= 2. 73 Cracked Section Moment of Inertia, Io-(in4/ft) = 7.105 Cracked Section Modulus., Sa-(inJ /ft)= 2.044 A,lbd, p = 0.013 Unit Slab Width, b (in)= 12 Centroidal Axis of Steel Deck from Top, d (in)= 4.25 Modular Ratio, n = 7.57 Cracked Modulus of Elasticity, E, (ksi) = 3,897.1 Uncracked Composite Neutral Axis Distance, Y« = 2.46 Uncracked Composite Neutral Axis Distance, Y« = 1. 79 ncracked Section Moment of Inertia, I,, (in4/ft) = 16.051 1\'laterial Properties, Concrete: Slab Depth, h (in)= 5 Concrete density, y (pct)= 150 Concrete Strength, r, (ksi) = 4. 5 Composite Moment of Inertia, I,, (in4/ft) = 11.578 SDI Resisting Moment: M,, (ft-lb)= F;- 9.,, 9.,, = 1.67 Induced i\1Ioments: h !,;, (ft-lb) = __ 12 __ • P.,*b, 15 W M (ft-lb)= w01*L1 -P*L 4 M (ft-lb)= (w01+wu) • __ L_' _ 8 Allowable Deflection: t, (in) = __ L __ 1000 Induced Deflection: 0.078857 5,098.9 358.4 OK 1,918.2 OK 1,455.8 OK l'l (in)= 5 * Wc11*L2 = 0.0001 OK ::,!BRIDGE l=.I BROTHERS 384 E*I.i CALCULATIONS PACKAGE T: 866.258.3401 www.bridgebrothers.com 10660 - Ionis Pedestrian Bridge DESIGN CONCRETE SLAB: (SDI C-2017 Standard, 2.4.B com.) Ooe-way Shear Strength, ..\CI 318-14 A, (in2) = 42.0 q>y=0.75 A = 1.00 Vc(kips)= 4.23 Ve <=4*q,V*✓(fc)*Ac/1000 = 8.45 Factored Ped. Max Shear (kips)= 0.78 factored Veh_ Ma.x Shear (kips)= 1.66 Punchiug Shear Resistance: b0 (in)= 66. 7 ll,c (in)= 4.25 ~,= 2.0 (j)\,= 0.75 V"' (kips)= 57 .0 Vpr <= 4*q,V*✓(fc)*bo*hc/1000 = 57.0 Factored Veb. Max Shear (kips)= 6.40 ~egative Reinforcement (top mat): Ped. Max Moment (kip*ft) = 0.98 Veb_ Max Neg. Moment (kip*ft) = 2.07 f,-(ksi)= 60 (j)\,= 0.90 di= 1-75 d,.,_. (in)= 3.3 A,,min (in2/sf) = 0.159 Positive Reinforcement (assumes lower mat): Veh. Max Pos. Moment (kip*ft) = I.IS (j)\,= 0.90 d,,.,. (in)= 4.25 A,,min (in"isf) = 0.069 Reinforc.emeut Limits: Temperature aod Shrinkage, A,,.,., (in'isf) = 0.076 Minimum Spacing. s,,.,;,, (in)= 1.5 Ma.ximum Spacing. s= (in)= 12.8 A,,,., (in21sf)= 0.159 Loogirudinal Bar Size= #4 Longirudinal Bar Spacing (in)= I 0.0 A,,""" (in2/sf) = 0.236 ::,!BRIDGE 1.:1 BROTHERS * . ..\rea above metal form, xl2" Design Strip OK OK OK *perimeter of critical section *ratio of long side to short side of concentrated load or reaction area OK OK *AC! 318-14. Table21.2.2 *From Top to Centroid of Neg Reinforcement *Mu1(4*d) *ACI318-14. Table21.2.2 *From Top to Centroid of Pos Reinforcement (if required) *Mu1(4*d) *ACI 318-14, Table 7.6.1.1 *AC! 318-14, 25.2; Ma., of l.5*D or 1.5" *AC! 318-14, 7.7.2.3 OK OK lolal olab depd,, h 1haded ureas represent B1YJa of conaute available to rual5t shear but W the slab doplh c:awos tho iueas lo CMH\lp IMl1 the 111911 is adjusted lo not exoeed the shape pn,,tded wtlh the deck p.'1ch .. lhe lop dlmena.'on :\ l • ..l ~ Figure 2-1 Onc-\Vuy Shcur Parameters Ad h e s i v e s T e c h n o l o g y C o r p . , 4 5 0 E a s t C o p a n s R d . , P o m p a n o B e ac h , F l o r i d a 3 3 0 6 4 , U S A , P h o n e 0 0 1 ( 8 0 0 ) 8 9 2 - 1 8 8 0 , w w w . a t c e p o x y . c o m Ac t i o n l o a d s : [ l b f ] , [ f t - l b ] Z-2 2 1 8 0 0 1. I n p u t D a t a Ba s e m a t e r i a l : • C r a c k e d c o n c r e t e , T h i c k n e s s o f b a s e m a t e r i a l h = 1 6 . 0 0 0 i n c h Us e r - d e f i n e d s t r e n g t h c l a s s , f ' c=4 5 0 0 p s i • T e n s i o n C o n d i t i o n B , S h e a r C o n d i t i o n B • N o r m a l w e i g h t c o n c r e t e • W i t h e d g e a n d c l o s e l y s p a c e d s t i r r u p r e i n f o r c e m e n t ( a ≤ 3 . 9 3 7 i n c h ) • L o n g - t e r m t e m p e r a t u r e 1 1 0 ° F , Sh o r t - t e r m t e m p e r a t u r e 1 3 0 ° F • H a m m e r d r i l l e d , d r y h o l e Ac t i o n l o a d s : • P r e do m i n a n t l y s t a t i c a n d q u a s i - s t a t i c d e s i g n l o a d s Ac t i o n l o a d s : [ l b f ] , [ f t - l b ] Nz Vx Vy Mz Mx My Fde s i g n Fsu s -2 2 1 8 0 1 7 5 8 4 2 6 3 8 00 0 0- - - 0 0 y x 11 . 5 0 012 6. 0 0 0 12 . 0 0 0 * 1 9 . 0 0 0 * 2. 7 5 0 2 . 7 5 0 24 . 2 5 0 * 12 . 7 5 0 * 11 . 5 0 0 hef=1 2 . 0 0 0 0. 5 0 0 0. 7 5 0 (* d r a w n n o t t o s c a l e ) In s t a l l a t i o n : • S t a n d - o f f w i t h g r o u t i n g Mo r t a r c o m p r e s s i v e s t r e n g t h m u st b e h i g h e r t h a n 3 0 N / m m ² . Di s t a n c e = 0 . 5 0 0 i n c h , r o t a t i on a l r e s t r a i n t g r a d e = 2 . 0 • W i t h o u t g a p f i l l i n g Ba s e pla t e : • A 3 6 , E = 2 9 0 0 7 k s i fy=3 6 2 5 8 p s i , ϕs=0 . 7 4 1 , f yd = ϕs · f y • A s s u m e d : r i g i d p l a t e • C u r r e n t t h i c k n e s s : 0 . 7 5 0 i n c h • R e qui r e d t h i c k n e s s i s n o t c a l c u l a t e d . • R e c t a n gle Si d e l e n gth : 1 1 . 5 0 0 x 1 2 . 5 0 0 i n c h Pr o f i l e : • S q u a r e H S S ( A I S C ) : H S S 6 x 6 x . 2 5 0 H x W x T x F T [ i n c h ] : 6 . 0 0 0 x 6 . 0 0 0 x 0 . 2 5 2 x 0 . 0 0 0 Ac t i o n p o i n t [ i n c h ] : [ - 2 . 2 5 0 , - 0 . 7 5 0 ] Ro t a t i o n c o u n t e r c l o c k w i s e : 0 ° Co o r d i n a t e s o f a n c h o r s [ i n c h ] : No . x y L- x L - y Sl o t t e d h o l e 1 - 3 . 0 0 0 4 . 2 5 0 2 3 . 0 0 0 4 . 2 5 0 Se l e c t e d a n c h o r s : • U L T R A B O N D H Y B - 2 C C & T h r e a d e d R o d G r . B 7 1 " In j e c t i o n a n c h o r V i n y l e s t e r Zi n c p l a t e d De s i g n b a s e d o n A C I 3 1 8 • A p p r o v a l E S R - 4 5 3 5 Is s u e d b y I C C , o n 3 / 1 / 2 0 2 1 • E f f e c t i v e a n c h o r a g e d e p t h hef = 1 2 . 0 0 0 i n c h • D r i l l e d h o l e Φ x h 0 = 1 . 1 2 5 x 1 2 . 0 0 0 i n c h Pr o A n c h o r D e s i g n 1. 0 . 6 (2 1 0 4 2 0 2 1 ) -E x t e n d e d r e p o r t Co m p a n y : B r i d g e B r o t h e r s De s i g n e r : Ad d r e s s : Ph o n e : Fa x : E- m a i l : Pr o j e c t : 1 0 6 6 0 I o n i s Co m m e n t s : Da t e : 3 / 1 0 / 2 0 2 3 Pa g e : 1 / 4 j CX) 14.000* I 10.500 .00 ~ N U.1500 16.000* 19.000* x---------0-------- ( \I • \ c:, ,' ~ ~1 ~- ~/ oQ i\ .,,_· t> ~~ ;I Adhesives Technology Corp., 450 East Copans Rd., Pompano Beach, Florida 33064, USA, Phone 001 (800) 892-1880, www.atcepoxy.com 2. Anchor internal forces and verification of base plate bending stiffness Anchor internal forces [lbf] Anchor No. Tension Shear Shear x Shear y Nsus 00 1 0 15156 8792 -123452 0 17372 8792 14983 Maximum concrete compressive strain [‰]: 0.0897 Maximum concrete compressive stress: 390.17 [psi] Resultant tension force in (x/y=0.000/0.000): 0 [lbf] Resultant compression force in (x/y=-2.250/-0.750): 22180 [lbf] Remark: The edge distance is not to scale. y x Compression 12 Conditions of verification: a)σ ≤ fyd b) N hr ≈ Nhe Nhr :highest anchor tension force on flexurally rigid base plate Nhe :highest anchor tension force on elastic base plate The proof of the base plate bending stiffness was not carried out. 3. Verification at ultimate limit state based on ACI 318-14 3.1 Tension load Related anchor Design Load [lbf] Capacity [lbf] Utilization [%] Status Steel failure ----Not applicable Combined failure ----Not applicable Creep failure ----Not applicable Concrete cone failure ----Not applicable 3.2 Shear Related anchor Design Load [lbf] Capacity [lbf] Utilization [%] Status Steel failure (without l. arm) Pry-out Concrete edge failure (x+) 2 17372 29517 58.9 √ 1 15156 22086 68.6 √ 1,2 28087 28616 98.2 √ Pro Anchor Design 1.0.6 (21042021)-Extended report Company: Bridge Brothers Designer: Address: Phone: Fax: E-mail: Project: 10660 Ionis Comments: Date: 3/10/2023 Page: 2 / 4 \ Adhesives Technology Corp., 450 East Copans Rd., Pompano Beach, Florida 33064, USA, Phone 001 (800) 892-1880, www.atcepoxy.com Steel failure without lever arm VRd,s = Vsa · ϕs,V βV,s = Vua / VRd,s Vsa ϕs,V VRd,s Vua βV,s [lbf][lbf][lbf] 45411 0.65 29517 17372 0.589 Pry-out failure (Ncbg - Eq. (17.4.2.1a, b) Decisive) Vcpg = kcp · Ncpg Ncpg = Ncbg= ψA,N · ψec,V,cp · ψed,N · ψc,N · ψcp,N · Nb Nb = kc · λa · (fc' )0.5 · hef1.5 ψA,N =ANc/ANc0 scr,N = 3 · hef ccr,N = 1.5 · hef ANc0 = scr,N²ψec,V,cp = 1 / (1 + e'V,cp / ccr,N ) ≤ 1.0 ψed,N = 0.7 + 0.3 · ca,min / ccr,N ≤ 1.0 ccr,N / cac ≤ ψcp,N (uncr) = ca,min / cac ≤ 1.0 ψcp,N (cr) = 1.0 VRd,cp = ϕc,V · Vcpg βV,cp = Vua / VRd,cp Nb ANc ANc0 ψA,N ψed,N ψcp,N hef scr,N ccr,N kc λa fc'ψc,N ca,min [lbf][inch²][inch²][inch][inch][inch][psi][inch] cac e'V,cp,x e'V,cp,y ψec,V,cp,x ψec,V,cp,y ψec,V,cp Ncbg kcp ϕc,V Vcpg VRd,cp Vua βV,cp [inch][inch][inch][lbf][lbf][lbf][lbf] 47312 480.156 1295.997 0.370 0.900 1.000 12.000 36.000 18.000 17 1.000 4500 1.00 12.000 30.768 0.000 0.000 1.000 1.000 1.000 15776 2.0 0.70 31551 22086 15156 0.686 Related area for calculation of pry-out failure ANc :y x 12 Concrete edge failure, direction x+ Vcbg = ψA,V · ψec,V · ψed,V · ψc,V · ψh,V · ψα,V · Vb ψA,V = AVc / AVc0 ψα,V = [1 / ( cos²αV + 0.25 sin²αV ) ]0.5 ≥ 1.0 Vb,a = kc,a · (le / da)0.2 · da0.5 · λa · (fc')0.5 · ca11.5 Vb,b = kc,b · λa · (fc')0.5 · ca11.5 Vb = min (Vb,a , Vb,b)le= min (hef , 8da) ψec,V = 1 / [1 + 2e'V / (3ca1 )] ≤ 1.0 ψed,V = 0.7 + 0.3 · ca2 / (1.5ca1 ) ≤ 1.0 ψh,V = ( 1.5 ca1 / ha )0.5 ≥ 1.0 VRd,c = Vcbg · ϕc,V βV,cb = Vua / VRd,c kc,a kc,b hef λa fc'ϕc,V ca1 c'a1 ca2 Vb ψed,V da le [inch][psi][inch][inch][inch][lbf][inch][inch] AVc AVc0 ψA,V ψh,V ψα,V e'V ψec,V ψc,V Vcbg VRd,c Vua βV,cb [inch²][inch²][inch][lbf][lbf][lbf] 7 9 12.000 1.000 4500 0.70 25.000 - 14.000 74139 0.812 1.000 8.000 823.998 2812.494 0.293 1.531 1.128 1.600 0.959 1.400 40880 28616 28087 0.982 Pro Anchor Design 1.0.6 (21042021)-Extended report Company: Bridge Brothers Designer: Address: Phone: Fax: E-mail: Project: 10660 Ionis Comments: Date: 3/10/2023 Page: 3 / 4 0 0 Adhesives Technology Corp., 450 East Copans Rd., Pompano Beach, Florida 33064, USA, Phone 001 (800) 892-1880, www.atcepoxy.com Concrete edge x+ : 2 close-by anchors (except the anchor(s) with slotted hole(s) in x-direction) in the first row are assumed to bear the shear load perpendicular to the edge, if there are more than 2 anchors in the row. The worst case: Anchor 2 bears the shear load perpandicular to the edge (x+). The torsional moment is carried by all anchors. Shear forces [lbf]:Anchor No.Q Qx Qy Qx_V Qy_V Qx_T Qy_T Explanation: 1. Qx_V, Qy_V are the x- and y-components of Anchor forces from the shear loads. 2. Qx_T, Qy_T are the x- and y-components of Anchor forces from the torsional moment. 3. The assumed slotted holes showed in the figure are not active for the calculation of shear force components Qx_T and Qy_T from the torsional moment. They serve as only for the calculation of shear load components from Qx_V and Qy_V. 4. Edge distance is not to scale. 1 12345 0 -12345 0 -12345 0 02 23102 17584 14983 17584 14983 0 0 y x 12 3.3 Combined tension and shear Interaction is not necessary. Anchor-related utilization A-No.βN,s βN,a βN,cb βN,sus βV,s βV,cp βV,cb βN,c,max,E βV,c,max,E βcombi,c,E βcombi,s,E 1 0.000 0.000 0.000 0.000 0.513 0.686 0.982 0.000 0.982 - 0.0002 0.000 0.000 0.000 0.000 0.589 0.543 0.982 0.000 0.982 - 0.000 βN,c,max,E :Highest utilization of individual anchors under tension loading except steel failure βV,c,max,E :Highest utilization of individual anchors under shear loading except steel failureβcombi,c,E :Utilization of individual anchors under combined tension and shear loading except steel failureβcombi,s,E :Utilization of individual anchors under combined tension and shear loading at steel failure 4. Remarks • Capacity verifications of Section 3 are in accordance with ACI 318. For more complex cases which are outside of ACI 318, the same principles of ACI 318 are still used. • For connections with a flexurally rigid base plate, it is assumed that the base plate is sufficiently rigid. However, the current anchor design methods (ETAG, Eurocode, AS 5216, ACI 318, CSA A23.3) do not provide any usable guidance to check for rigidity. In the realistically elastic (flexible) base plate, the tension load distribution between anchors may be different to that in the assumed rigid base plate. The plate prying effects could further increase anchor tension loading. To verify the sufficient base plate bending rigidity, the stiffness condition according to the publication "Required Thickness of Flexurally Rigid Base plate for Anchor Fastenings" (fib Symposium 2017 Maastricht) is used in this software. • For connections with an elastic base plate, the anchor tension forces are calculated with the finite element method with consideration of deformations of base plate, anchors and concrete. Background for design with elastic base plates is described in the paper "Design of Anchor Fastenings with Elastic Base Plates Subjected to Tension and Bending". This paper was published in "Stahlbau 88 (2019), Heft 8" and "5. Jahrestagung des Deutschen Ausschusses für Stahlbeton - DAfStb 2017". Anchor shear forces are calculated with the assumption of a rigid base plate. Attention should be paid to a narrow base plate with a width to length ratio of less than 1/3. • The verification for the ultimate limit state is valid only if the anchors are installed properly in accordance with their ICC or IAPMO Evaluation Report. • Verification of strength of concrete elements to loads applied by fasteners is to be done in accordance with ACI 318. • Rounding errors may cause slight variation in loads due to unit conversions. The load-bearing capacity of the anchorage is:verified ! Pro Anchor Design 1.0.6 (21042021)-Extended report Company: Bridge Brothers Designer: Address: Phone: Fax: E-mail: Project: 10660 Ionis Comments: Date: 3/10/2023 Page: 4 / 4 9' - 8 " S O ) AN C H O R S 1" EXP GAP 12 ' A B U T M E N T O U T T O O U T  10 ' B E A R I N G O U T T O O U T 8" 6((6+((77<36(&7,21 1257+ ,620(75,&9,(:62)1257+$%870(176,7(:$//6 )255()(5(1&(21/< 1'-"0,1 1" EXP GAP -F=-- 1 I + I CHAD S. McDONALD, PE 2550 Sandy Plains Road Suite 225 PMB 103 Marietta, GA 30066 ~~c,h,l l-6tto JNPv'r.5: JOB_~/6...r....;;.N _,__,JS"-----__.BO<....L8_P._/_O l,_b_b ___ _ SHEETNQ. ______ OF ____ _ CALCULATEDBY _____ DATE ___ _ CHECKEDBY _____ DATE ___ _ SCALE 1 ~ 1t ·1:.~ i&An5 0/J \,J~: 1 D L--(-i J (1 ~ ,lio~ 1 Z'36 5" )J/rrw'4vt. J T I 'Z. '~t,. U.,-: (z J {It. ,'S v o Ji) 1 2, S'I> #-I Pr w4K-] 1-?-'~ etvt'im.,avr-'$-41 c.. \-vf!G-HT \ O\l6lc tt~ r~12 S11l'Bl"t1f CH-'Ecl<S! 6" W'l-St-At;> ft9>pcl) 1-Z 't SOIL { ll~pc P) '2,0, 5 1 6-fb~,h.,-, {'3pcf) ~ ) /. 't pt. f )r--1€rlftt.<f w~ G-MT -f w.s. V6\G-+rr o \:-1 t> '' ctrt v frffjc?o fte J.I \4'.n;L.S l;,uy &Vo~ PIIOOUCI 20I I iS"llOSl>eosi20!,.1 ll'oddedl (z) {1oopc.f) {z1-') = ZS'pc/ {~ ') (z,z ') t /)J'!/Ty;/J"C~ J3ffv.iEn) 11-ihtlJ JOB '""' ,.s -BB JJ. IO H, 0 CHAD S. McDONALD, PE 2550 Sandy Plains Road Suite 225 PMB 103 Marietta, GA 30066 SHEETNO. ______ OF ___ _ CALCULATEDBY _____ DATE ___ _ CHECKEDBY _____ DATE ___ _ SCALE ~tJ-rezJ< JL-1{)/N~ f~R oF st!fnt fr.>.) vv,17-1 /fDDJ'1lbN/h_ w/1iL taJ6--TH B'€yotJD FJ~1>11 lfrllr# , 0~ -~ .. , '-(lc~cr!'> (6-eo Fo~ 8/hJcP,t.l-1 ~ R6ts1Jt]Jc'c Ff>f(. g~o'' of wA-tc.. f(f:'rPrJJJtlv&.-..s,,L ~ -Pil:s51vc Y£.~.S.Svae '3hool3/F{""~ {i') ::: ig _91/f(J; -flz,1cfltrN fofl.cf" /0,~471'-/f-r~ (91) -=~-(J~,37l,-lf {ZB1s~c€ h{Z. 2 !.-o,. oF-\J1liL <fVlcH s 1oe oF frrf'/<6WJ/ f/l.f::) -Pit>$ JV€° Pl€"$v~c 3.,o,#a-/f1 t,.11n,\_{Lf') : /'l l(cr,~I -frZ1c1ltJ1.J ,:::,12,,€' ,;b1<:,lifr~ {'f') -:./-z,,7iy/J-i ( ,.,~~(,~ r -s Oj L ovttt H~ hr'P • ~1" ,tik-~P~) [ z.&>, 3"' 't° 82 /3J. --/~ ,:ri--J (~.'to) -= ,, f?9h /!/fr ~l f7JTfrt. Rcs,~~,e ~owr tz¾" l ewc111 nF-wlhA.. • f_<E5 IS'llr"1[Jkf 11 At~ "2 '6,'ho:tL -+ I y, 3?~ r JV, y ,o #-1 i t., ?11(11· := /~'( 1 31, o 'IF PllOOUCT 10!·1 iSno.SlieelS) 105-1 lf'add!OJ Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS ABUTMENT (DL LL load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Code References Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16 22.00 0.00 0.00 12.00 4,000.0 35.0 0.0 300.0 Criteria Soil Data Retained Height =ft Wall height above soil =ft Active Heel Pressure =psf/ftSlope Behind Wall Height of Soil over Toe in Water table above =ft = = 35.00=pcf = Soil Density, Heel = Passive Pressure =psf/ft Allow Soil Bearing =psf Soil Density, Toe 115.00 pcf Footing||Soil Friction =0.400 Soil height to ignorefor passive pressure =12.00 in Equivalent Fluid Pressure Method bottom of footing Surcharge Loads Adjacent Footing Load Load Type 0.0 Lateral Load =0.0 #/ft 0.0 2,350.0 2,770.04.0 Axial Load Applied to Stem Wall to Ftg CL Dist =0.00 ft Wind on Exposed Stem psf0.0= Lateral Load Applied to Stem Surcharge Over Heel =psf Adjacent Footing Load =0.0 lbs Axial Dead Load (Strength Level) =lbs Footing Type Spread Footing Surcharge Over Toe psf Footing Width =0.00 ft...Height to Top =0.00 ft Eccentricity =0.00 in...Height to Bottom =0.00 ft NOT Used To Resist Sliding & Overturning NOT Used for Sliding & Overturning ==0.0 ft Axial Live Load = Base Above/Below Soil lbs = Axial Load Eccentricity ==Poisson's Ratio 0.300 at Back of Wall in (Strength Level) Wind (W)= Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS ABUTMENT (DL LL load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Design Summary Wall Stability RatiosOverturning =3.04 Global Stability =1.48 OK Sliding =1.40 Ratio < 1.5! Total Bearing Load =29,124 lbs...resultant ecc.=29.79 in Eccentricity within middle thirdSoil Pressure @ Toe =2,813 psf OK Soil Pressure @ Heel =265 psf OK Allowable =4,000 psfSoil Pressure Less Than Allowable ACI Factored @ Toe =3,939 psfACI Factored @ Heel =372 psf Footing Shear @ Toe =42.8 psi OK Footing Shear @ Heel =2.9 psi OK Allowable =100.6 psi Sliding Calcs Lateral Sliding Force =10,080.0 lbs less 100% Passive Force less 100% Friction Force Added Force Req'd ....for 1.5 Stability = 0.0= 10,541.6 3,600.0 == 978.4 - lbs lbs lbs OK lbs NG - Masonry Block Type = Stem Construction 2nd Bottom Stem OK Stem OK Shear.....Actual Design Height Above Ftg =7.00ft 0.00 Wall Material Above "Ht"=Concrete Concrete Thickness =28.00 28.00 Rebar Size =##7 9 Rebar Spacing =12.00 6.00 Rebar Placed at =Edge EdgeDesign Data fb/FB + fa/Fa =0.499 0.468 Total Force @ Section =lbs Moment....Actual =ft-# Moment.....Allowable =67,956.8 217,137.5ft-# =psi Shear.....Allowable =100.6 100.6psi Wall Weight =350.0 350.0psf Rebar Depth 'd'=25.56in 25.44 Masonry Data f'm =psiFs =psiSolid Grouting = Modular Ratio 'n'= Equiv. Solid Thick.= Concrete Dataf'c =4,500.0 4,500.0psi Fy =60,000.0 60,000.0 Masonry Design Method ASD= Load Factors Building Code Dead Load 1.200 Live Load 1.600 Earth, H 1.600 Wind, W 1.000 Seismic, E 1.000 psi Service Level =6,300.0 13,552.0lbsStrength Level Service Level Strength Level =33,917.3 101,798.7ft-# Service Level Strength Level =20.5 44.4psi Design Method =SD SD SDSD Vertical component of active lateral soil pressure IS considered in the calculation of soil bearing pressures. Anet (Masonry)=in2 Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS ABUTMENT (DL LL load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Concrete Stem Rebar Area Details 2nd Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) :0.2985 in2/ft (4/3) * As :0.398 in2/ft Min Stem T&S Reinf Area #.### in2 3sqrt(f'c)bd/fy : 3sqrt(4500)(12)(25.5625)/60000 :1.0289 in2/ft Min Stem T&S Reinf Area per ft of stem Height : 0.672 in2/ft 0.0018bh : 0.0018(12)(28) :0.6048 in2/ft Horizontal Reinforcing Options : ============One layer of : Two layers of : Required Area :0.6048 in2/ft #4@ 3.57 in #4@ 7.14 in Provided Area :0.6 in2/ft #5@ 5.54 in #5@ 11.07 in Maximum Area :6.0499 in2/ft #6@ 7.86 in #6@ 15.71 in ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Bottom Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) :0.9003 in2/ft (4/3) * As :1.2004 in2/ft Min Stem T&S Reinf Area 4.704 in2 3sqrt(f'c)bd/fy : 3sqrt(4500)(12)(25.4375)/60000 :1.0238 in2/ft Min Stem T&S Reinf Area per ft of stem Height : 0.672 in2/ft 0.0018bh : 0.0018(12)(28) :0.6048 in2/ft Horizontal Reinforcing Options : ============One layer of : Two layers of : Required Area :1.0238 in2/ft #4@ 3.57 in #4@ 7.14 in Provided Area :2 in2/ft #5@ 5.54 in #5@ 11.07 in Maximum Area :6.0203 in2/ft #6@ 7.86 in #6@ 15.71 in 5.00 13.00 24.00 Footing Torsion, Tu = = ft-lbs0.00 Min. As % Footing Allow. Torsion, phi Tu 0.0018 =ft-lbs Footing Data If torsion exceeds allowable, provide f'c 0.00 =4,500psi Toe Width =ft Heel Width = Key Distance from Toe Key DepthKey Width =in=in = 28.0024.00 5.00 ft Footing Thickness =in 18.00= Cover @ Top =3.00 in@ Btm.=3.00 in Total Footing Width =150.00pcfFooting Concrete DensityFy =60,000 psi Footing Design Results Key: = Factored Pressure Mu' : Upward Mu' : Downward Mu: Design Actual 1-Way Shear Allow 1-Way Shear Toe:#4@ 4.08 in, #5@ 6.32 in, #6@ 8.97 in, #7@ 12.24 in, #8@ 16.11 in, #9@ 20.40 in, #10@ 25.91 in #4@ 4.54 in, #5@ 7.04 in, #6@ 9.99 in, #7@ 13.63 in, #8@ 17.95 in, #9@ 22.72 in, #10@ 28.86 in #4@ 3.96 in, #5@ 6.15 in, #6@ 8.73 in, #7@ 11.91 in =# 7 @ 12.00 in = = = = = 3,939 45,104 5,025 40,079 42.77 100.62 Heel: 372 61,223 97,207 35,984 2.94 100.62 HeelToe psf ft-# ft-# ft-# psi psi Heel Reinforcing =# 7 @ 6.00 in Other Acceptable Sizes & Spacings Key Reinforcing Toe Reinforcing =# 7 @ 6.00 in Min footing T&S reinf AreaMin footing T&S reinf Area per foot If one layer of horizontal bars: 9.330.52 #4@ 4.63 in #5@ 7.18 in#6@ 10.19 in in2in2 /ft If two layers of horizontal bars: #4@ 9.26 in #5@ 14.35 in#6@ 20.37 in supplemental design for footing torsion. phiMn 106,802106,802=ft-# OKOK Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS ABUTMENT (DL LL load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Summary of Overturning & Resisting Forces & Moments .....RESISTING..........OVERTURNING.....Force Distance Moment Distance Moment Item Force ft-#lbs ftft ft-#lbs Sloped Soil Over Heel =Surcharge over Heel = Surcharge Over Heel = = Adjacent Footing Load =Adjacent Footing Load Axial Dead Load on Stem=2,350.0 5.83 13,708.3 =2,770.0 5.83 16,158.3* Axial Live Load on Stem Soil Over Toe Surcharge Over Toe Surcharge Over Toe Load @ Stem Above Soil = = = 575.0 2.50 1,437.5= = = Stem Weight(s) = 7,700.0 6.17 47,483.3 Earth @ Stem Transitions =Footing Weight = 5,400.0 9.00 48,600.0 Key Weight = 700.0 6.17 4,316.7 Added Lateral Load lbs =80,640.0 Vert. Component 1,415.7 18.00 25,483.5 Total = 26,354.1 245,064.9 * Axial live load NOT included in total displayed, or used for overturningresistance, but is included for soil pressure calculation. Total =R.M. =10,080.0 O.T.M. = Resisting/Overturning Ratio =3.04 Vertical Loads used for Soil Pressure =29,124.1 lbs Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance. Soil Over HL (ab. water tbl) Soil Over HL (bel. water tbl) 8,213.3 12.67 12.67 104,035.6 104,035.6 Water Table Buoyant Force = HL Act Pres (ab water tbl) HL Act Pres (be water tbl) 10,080.0 8.00 80,640.0 Hydrostatic Force Tilt Horizontal Deflection at Top of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Defl @ Top of Wall (approximate only)0.096 in The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil. Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS ABUTMENT (DL LL load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Rebar Lap & Embedment Lengths Information Stem Design Segment: 2nd Stem Design Height: 7.00 ft above top of footing Lap Splice length for #7 bar specified in this stem design segment (25.4.2.3a) =30.52 in Development length for #7 bar specified in this stem design segment =23.48 in ________________________________________________________________________________________________________________________ Stem Design Segment: Bottom Stem Design Height: 0.00 ft above top of footing Lap Splice length for #9 bar specified in this stem design segment (25.4.2.3a) =39.24 in Development length for #9 bar specified in this stem design segment =30.19 in Hooked embedment length into footing for #9 bar specified in this stem design segment =9.00 in As Provided =2.0000 in2/ft As Required =1.0238 in2/ft Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS ABUTMENT (DL LL load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: 1'-0" 28" w/ #7@ 12" 28"w/#9@6" i<qJa6J" i~Jm~rO Key #7@6" @Heel 5'-0" 15'-0" 2'-0" lear Cover : 2" 7'-0" 2'-0" 3" 2'-0" 3'-0" Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS ABUTMENT (DL LL load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: DL=2350 ,LL=2770#, Ecc=4" Pp= 3600.00# 10080# ■ Lateral earth pressure due to the soil BELOW water table Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS ABUTMENT (DL, LL, EQ load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Code References Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16 22.00 0.00 0.00 12.00 5,320.0 35.0 0.0 300.0 Criteria Soil Data Retained Height =ft Wall height above soil =ft Active Heel Pressure =psf/ftSlope Behind Wall Height of Soil over Toe in Water table above =ft = = 35.00=pcf = Soil Density, Heel = Passive Pressure =psf/ft Allow Soil Bearing =psf Soil Density, Toe 115.00 pcf Footing||Soil Friction =0.400 Soil height to ignorefor passive pressure =12.00 in Equivalent Fluid Pressure Method bottom of footing Surcharge Loads Adjacent Footing Load Load Type 0.0 Lateral Load =0.0 #/ft 0.0 2,365.0 2,750.02.0 Axial Load Applied to Stem Wall to Ftg CL Dist =0.00 ft Wind on Exposed Stem psf0.0= Lateral Load Applied to Stem Surcharge Over Heel =psf Adjacent Footing Load =0.0 lbs Axial Dead Load (Strength Level) =lbs Footing Type Spread Footing Surcharge Over Toe psf Footing Width =0.00 ft...Height to Top =0.00 ft Eccentricity =0.00 in...Height to Bottom =0.00 ft NOT Used To Resist Sliding & Overturning NOT Used for Sliding & Overturning ==0.0 ft Axial Live Load = Base Above/Below Soil lbs = Axial Load Eccentricity ==Poisson's Ratio 0.300 at Back of Wall in (Strength Level) Wind (W)= Earth Pressure Seismic Load Load at bottom of Triangular Distribution . . . . . . .=408.000 (Strength) Total Strength-Level Seismic Load. . . . .= 3,427.200Total Service-Level Seismic Load. . . . .= 4,896.000 lbs lbspsf Method : Triangular Stem Weight Seismic Load F lbs=Added seismic base force 3,201.7/ Wpp 0.594 gWeight Multiplier Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS ABUTMENT (DL, LL, EQ load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Design Summary Wall Stability RatiosOverturning =1.64 Global Stability =1.48 OK Sliding =0.85 UNSTABLE! Total Bearing Load =29,119 lbs...resultant ecc.=59.33 in Eccentricity outside middle thirdSoil Pressure @ Toe =4,553 psf OK Soil Pressure @ Heel =0 psf OK Allowable =5,320 psfSoil Pressure Less Than Allowable ACI Factored @ Toe =6,375 psfACI Factored @ Heel =0 psf Footing Shear @ Toe =68.7 psi OK Footing Shear @ Heel =33.7 psi OK Allowable =100.6 psi Sliding Calcs Lateral Sliding Force =16,708.9 lbs less 100% Passive Force less 100% Friction Force Added Force Req'd ....for 1.5 Stability = 2,561.2= 10,547.6 3,600.0 == 10,915.7 - lbs lbs lbs NG lbs NG - Masonry Block Type = Stem Construction 2nd Bottom Stem OK Stem OK Shear.....Actual Design Height Above Ftg =7.00ft 0.00 Wall Material Above "Ht"=Concrete Concrete Thickness =28.00 28.00 Rebar Size =##7 9 Rebar Spacing =12.00 6.00 Rebar Placed at =Edge EdgeDesign Data fb/FB + fa/Fa =0.958 0.831 Total Force @ Section =lbs Moment....Actual =ft-# Moment.....Allowable =67,956.8 217,137.5ft-# =psi Shear.....Allowable =100.6 100.6psi Wall Weight =350.0 350.0psf Rebar Depth 'd'=25.56in 25.44 Masonry Data f'm =psiFs =psiSolid Grouting = Modular Ratio 'n'= Equiv. Solid Thick.= Concrete Dataf'c =4,500.0 4,500.0psi Fy =60,000.0 60,000.0 Masonry Design Method ASD= Load Factors Building Code Dead Load 1.200 Live Load 0.500 Earth, H 1.600 Wind, W 1.000 Seismic, E 1.000 psi Service Level =11,331.0 22,239.8lbsStrength Level Service Level Strength Level =65,153.4 180,564.6ft-# Service Level Strength Level =36.9 72.9psi Design Method =SD SD SDSD Vertical component of active lateral soil pressure IS considered in the calculation of soil bearing pressures. Anet (Masonry)=in2 Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS ABUTMENT (DL, LL, EQ load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Concrete Stem Rebar Area Details 2nd Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) :0.5733 in2/ft (4/3) * As :0.7644 in2/ft Min Stem T&S Reinf Area #.### in2 3sqrt(f'c)bd/fy : 3sqrt(4500)(12)(25.5625)/60000 :1.0289 in2/ft Min Stem T&S Reinf Area per ft of stem Height : 0.672 in2/ft 0.0018bh : 0.0018(12)(28) :0.6048 in2/ft Horizontal Reinforcing Options : ============One layer of : Two layers of : Required Area :0.7644 in2/ft #4@ 3.57 in #4@ 7.14 in Provided Area :0.6 in2/ft #5@ 5.54 in #5@ 11.07 in Maximum Area :6.0499 in2/ft #6@ 7.86 in #6@ 15.71 in ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Bottom Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) :1.5968 in2/ft (4/3) * As :2.1291 in2/ft Min Stem T&S Reinf Area 4.704 in2 3sqrt(f'c)bd/fy : 3sqrt(4500)(12)(25.4375)/60000 :1.0238 in2/ft Min Stem T&S Reinf Area per ft of stem Height : 0.672 in2/ft 0.0018bh : 0.0018(12)(28) :0.6048 in2/ft Horizontal Reinforcing Options : ============One layer of : Two layers of : Required Area :1.5968 in2/ft #4@ 3.57 in #4@ 7.14 in Provided Area :2 in2/ft #5@ 5.54 in #5@ 11.07 in Maximum Area :6.0203 in2/ft #6@ 7.86 in #6@ 15.71 in 5.00 13.00 24.00 Footing Torsion, Tu = = ft-lbs0.00 Min. As % Footing Allow. Torsion, phi Tu 0.0018 =ft-lbs Footing Data If torsion exceeds allowable, provide f'c 0.00 =4,500psi Toe Width =ft Heel Width = Key Distance from Toe Key DepthKey Width =in=in = 28.0024.00 5.00 ft Footing Thickness =in 18.00= Cover @ Top =3.00 in@ Btm.=3.00 in Total Footing Width =150.00pcfFooting Concrete DensityFy =60,000 psi Footing Design Results Key: = #4@ 3.96 in, #5@ 6.15 in, #6@ 8.73 in, #7@ 11 Factored Pressure Mu' : Upward Mu' : Downward Mu: Design Actual 1-Way Shear Allow 1-Way Shear Toe:#4@ 2.90 in, #5@ 4.50 in, #6@ 6.39 in, #7@ 8.72 in, #8@ 11.48 in, #9@ 14.54 in, #10@ 18.47 in #4@ 2.90 in, #5@ 4.50 in, #6@ 6.39 in, #7@ 8.72 in, #8@ 11.48 in, #9@ 14.54 in, #10@ 18.47 in =# 7 @ 12.00 in = = = = = 6,375 68,770 5,025 63,745 68.71 100.62 Heel: 0 9,869 80,596 70,727 33.66 100.62 HeelToe psf ft-# ft-# ft-# psi psi Heel Reinforcing =# 7 @ 6.00 in Other Acceptable Sizes & Spacings Key Reinforcing Toe Reinforcing =# 7 @ 6.00 in Min footing T&S reinf AreaMin footing T&S reinf Area per foot If one layer of horizontal bars: 9.330.52 #4@ 4.63 in #5@ 7.18 in#6@ 10.19 in in2in2 /ft If two layers of horizontal bars: #4@ 9.26 in #5@ 14.35 in#6@ 20.37 in supplemental design for footing torsion. phiMn 106,802106,802=ft-# OKOK Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS ABUTMENT (DL, LL, EQ load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Summary of Overturning & Resisting Forces & Moments .....RESISTING..........OVERTURNING.....Force Distance Moment Distance Moment Item Force ft-#lbs ftft ft-#lbs Sloped Soil Over Heel =Surcharge over Heel = Surcharge Over Heel = = Adjacent Footing Load =Adjacent Footing Load Axial Dead Load on Stem=2,365.0 6.00 14,190.0 =2,750.0 6.00 16,500.0* Axial Live Load on Stem Soil Over Toe Surcharge Over Toe Surcharge Over Toe Load @ Stem Above Soil =3,427.2 3,201.7 = = 575.0 2.50 1,437.5= = =Seismic Earth Load = 8.00 27,417.6 Stem Weight(s)13.00 41,621.6Seismic Stem Self Wt = 7,700.0 6.17 47,483.3 Earth @ Stem Transitions =Footing Weight = 5,400.0 9.00 48,600.0 Key Weight = 700.0 6.17 4,316.7 Added Lateral Load lbs =149,679.2 Vert. Component 1,415.7 18.00 25,483.5 Total = 26,369.1 245,546.6 * Axial live load NOT included in total displayed, or used for overturningresistance, but is included for soil pressure calculation. Total =R.M. =16,708.9 O.T.M. = Resisting/Overturning Ratio =1.64 Vertical Loads used for Soil Pressure =29,119.1 lbs If seismic is included, the OTM and sliding ratiosmay be 1.1 per section 1807.2.3 of IBC. Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance. Soil Over HL (ab. water tbl) Soil Over HL (bel. water tbl) 8,213.3 12.67 12.67 104,035.6 104,035.6 Water Table Buoyant Force = HL Act Pres (ab water tbl) HL Act Pres (be water tbl) 10,080.0 8.00 80,640.0 Hydrostatic Force Tilt Horizontal Deflection at Top of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Defl @ Top of Wall (approximate only)0.155 in The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil. Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS ABUTMENT (DL, LL, EQ load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Rebar Lap & Embedment Lengths Information Stem Design Segment: 2nd Stem Design Height: 7.00 ft above top of footing Lap Splice length for #7 bar specified in this stem design segment (25.4.2.3a) =30.52 in Development length for #7 bar specified in this stem design segment =23.48 in ________________________________________________________________________________________________________________________ Stem Design Segment: Bottom Stem Design Height: 0.00 ft above top of footing Lap Splice length for #9 bar specified in this stem design segment (25.4.2.3a) =39.24 in Development length for #9 bar specified in this stem design segment =30.19 in Hooked embedment length into footing for #9 bar specified in this stem design segment =11.25 in As Provided =2.0000 in2/ft As Required =1.5968 in2/ft Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS ABUTMENT (DL, LL, EQ load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: 1'-0" 28" w/ #7@ 12" 28"w/#9@6" i<qJa6J" i~Jm~rO Key #7@6" @Heel 5'-0" 15'-0" 2'-0" lear Cover : 2" 7'-0" 2'-0" 3" 2'-0" 3'-0" Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS ABUTMENT (DL, LL, EQ load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: DL=2365 ,LL=2750# , Ecc=2" Pp= 3600.00# 'lii 0. ,_ M ,.,; "' "' ..,. 3202# ■ Lateral earth pressure due to the soil BELOW water table ■ Seismic lateral earth pressure ■ Seismic due to stem self weight Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS South Abutment (DL, LL load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Code References Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16 18.00 0.00 0.00 12.00 4,000.0 35.0 0.0 300.0 Criteria Soil Data Retained Height =ft Wall height above soil =ft Active Heel Pressure =psf/ftSlope Behind Wall Height of Soil over Toe in Water table above =ft = = 35.00=pcf = Soil Density, Heel = Passive Pressure =psf/ft Allow Soil Bearing =psf Soil Density, Toe 115.00 pcf Footing||Soil Friction =0.400 Soil height to ignorefor passive pressure =12.00 in Equivalent Fluid Pressure Method bottom of footing Surcharge Loads Adjacent Footing Load Load Type 0.0 Lateral Load =0.0 #/ft 0.0 2,365.0 2,750.02.0 Axial Load Applied to Stem Wall to Ftg CL Dist =0.00 ft Wind on Exposed Stem psf0.0= Lateral Load Applied to Stem Surcharge Over Heel =psf Adjacent Footing Load =0.0 lbs Axial Dead Load (Strength Level) =lbs Footing Type Spread Footing Surcharge Over Toe psf Footing Width =0.00 ft...Height to Top =0.00 ft Eccentricity =0.00 in...Height to Bottom =0.00 ft NOT Used To Resist Sliding & Overturning NOT Used for Sliding & Overturning ==0.0 ft Axial Live Load = Base Above/Below Soil lbs = Axial Load Eccentricity ==Poisson's Ratio 0.300 at Back of Wall in (Strength Level) Wind (W)= Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS South Abutment (DL, LL load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Design Summary Wall Stability RatiosOverturning =3.05 Global Stability =1.53 OK Sliding =1.55 OK Total Bearing Load =21,385 lbs...resultant ecc.=28.01 in Eccentricity within middle thirdSoil Pressure @ Toe =2,773 psf OK Soil Pressure @ Heel =48 psf OK Allowable =4,000 psfSoil Pressure Less Than Allowable ACI Factored @ Toe =3,882 psfACI Factored @ Heel =67 psf Footing Shear @ Toe =43.4 psi OK Footing Shear @ Heel =9.0 psi OK Allowable =100.6 psi Sliding Calcs Lateral Sliding Force =6,654.4 lbs less 100% Passive Force less 100% Friction Force Added Force Req'd ....for 1.5 Stability = 0.0= 7,453.8 2,887.5 == 0.0 - lbs lbs lbs OK lbs OK - Masonry Block Type = Stem Construction 2nd Bottom Stem OK Stem OK Shear.....Actual Design Height Above Ftg =7.00ft 0.00 Wall Material Above "Ht"=Concrete Concrete Thickness =24.00 24.00 Rebar Size =##6 7 Rebar Spacing =12.00 6.00 Rebar Placed at =Edge EdgeDesign Data fb/FB + fa/Fa =0.310 0.491 Total Force @ Section =lbs Moment....Actual =ft-# Moment.....Allowable =42,246.4 112,189.5ft-# =psi Shear.....Allowable =100.6 100.6psi Wall Weight =300.0 300.0psf Rebar Depth 'd'=21.63in 21.56 Masonry Data f'm =psiFs =psiSolid Grouting = Modular Ratio 'n'= Equiv. Solid Thick.= Concrete Dataf'c =4,500.0 4,500.0psi Fy =60,000.0 60,000.0 Masonry Design Method ASD= Load Factors Building Code Dead Load 1.200 Live Load 0.500 Earth, H 1.600 Wind, W 1.000 Seismic, E 1.000 psi Service Level =3,388.0 9,072.0lbsStrength Level Service Level Strength Level =13,124.8 55,134.2ft-# Service Level Strength Level =13.1 35.1psi Design Method =SD SD SDSD Vertical component of active lateral soil pressure IS considered in the calculation of soil bearing pressures. Anet (Masonry)=in2 Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS South Abutment (DL, LL load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Concrete Stem Rebar Area Details 2nd Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) :0.1368 in2/ft (4/3) * As :0.1824 in2/ft Min Stem T&S Reinf Area 6.336 in2 3sqrt(f'c)bd/fy : 3sqrt(4500)(12)(21.625)/60000 :0.8704 in2/ft Min Stem T&S Reinf Area per ft of stem Height : 0.576 in2/ft 0.0018bh : 0.0018(12)(24) :0.5184 in2/ft Horizontal Reinforcing Options : ============One layer of : Two layers of : Required Area :0.5184 in2/ft #4@ 4.17 in #4@ 8.33 in Provided Area :0.44 in2/ft #5@ 6.46 in #5@ 12.92 in Maximum Area :5.118 in2/ft #6@ 9.17 in #6@ 18.33 in ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Bottom Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) :0.5765 in2/ft (4/3) * As :0.7686 in2/ft Min Stem T&S Reinf Area 4.032 in2 3sqrt(f'c)bd/fy : 3sqrt(4500)(12)(21.5625)/60000 :0.8679 in2/ft Min Stem T&S Reinf Area per ft of stem Height : 0.576 in2/ft 0.0018bh : 0.0018(12)(24) :0.5184 in2/ft Horizontal Reinforcing Options : ============One layer of : Two layers of : Required Area :0.7686 in2/ft #4@ 4.17 in #4@ 8.33 in Provided Area :1.2 in2/ft #5@ 6.46 in #5@ 12.92 in Maximum Area :5.1032 in2/ft #6@ 9.17 in #6@ 18.33 in 3.50 11.00 18.00 Footing Torsion, Tu = = ft-lbs0.00 Min. As % Footing Allow. Torsion, phi Tu 0.0018 =ft-lbs Footing Data If torsion exceeds allowable, provide f'c 0.00 =4,500psi Toe Width =ft Heel Width = Key Distance from Toe Key DepthKey Width =in=in = 24.0024.00 3.50 ft Footing Thickness =in 14.50= Cover @ Top =3.00 in@ Btm.=3.00 in Total Footing Width =150.00pcfFooting Concrete DensityFy =60,000 psi Footing Design Results Key: = #4@ 4.62 in, #5@ 7.17 in, #6@ 10.18 in, #7@ 1 Factored Pressure Mu' : Upward Mu' : Downward Mu: Design Actual 1-Way Shear Allow 1-Way Shear Toe:#4@ 5.75 in, #5@ 8.91 in, #6@ 12.65 in, #7@ 17.25 in, #8@ 22.71 in, #9@ 28.75 in, #10@ 36.52 in #4@ 6.17 in, #5@ 9.56 in, #6@ 13.58 in, #7@ 18.51 in, #8@ 24.38 in, #9@ 30.86 in, #10@ 39.19 in =# 6 @ 6.00 in = = = = = 3,882 21,896 1,911 19,985 43.37 100.62 Heel: 67 34,682 45,759 11,076 8.95 100.62 HeelToe psf ft-# ft-# ft-# psi psi Heel Reinforcing =# 6 @ 6.00 in Other Acceptable Sizes & Spacings Key Reinforcing Toe Reinforcing =# 6 @ 6.00 in Min footing T&S reinf AreaMin footing T&S reinf Area per foot If one layer of horizontal bars: 5.640.39 #4@ 6.17 in #5@ 9.57 in#6@ 13.58 in in2in2 /ft If two layers of horizontal bars: #4@ 12.35 in #5@ 19.14 in#6@ 27.16 in supplemental design for footing torsion. phiMn 55,63755,637=ft-# OKOK Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS South Abutment (DL, LL load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Summary of Overturning & Resisting Forces & Moments .....RESISTING..........OVERTURNING.....Force Distance Moment Distance Moment Item Force ft-#lbs ftft ft-#lbs Sloped Soil Over Heel =Surcharge over Heel = Surcharge Over Heel = = Adjacent Footing Load =Adjacent Footing Load Axial Dead Load on Stem=2,365.0 4.33 10,248.3 =2,750.0 4.33 11,916.7* Axial Live Load on Stem Soil Over Toe Surcharge Over Toe Surcharge Over Toe Load @ Stem Above Soil = = = 402.5 1.75 704.4= = = Stem Weight(s) = 5,400.0 4.50 24,300.0 Earth @ Stem Transitions =Footing Weight = 3,262.5 7.25 23,653.1 Key Weight = 600.0 4.50 2,700.0 Added Lateral Load lbs =43,253.4 Vert. Component 934.6 14.50 13,551.9 Total = 18,634.6 131,857.8 * Axial live load NOT included in total displayed, or used for overturningresistance, but is included for soil pressure calculation. Total =R.M. =6,654.4 O.T.M. = Resisting/Overturning Ratio =3.05 Vertical Loads used for Soil Pressure =21,384.6 lbs Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance. Soil Over HL (ab. water tbl) Soil Over HL (bel. water tbl) 5,670.0 10.00 10.00 56,700.0 56,700.0 Water Table Buoyant Force = HL Act Pres (ab water tbl) HL Act Pres (be water tbl) 6,654.4 6.50 43,253.4 Hydrostatic Force Tilt Horizontal Deflection at Top of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Defl @ Top of Wall (approximate only)0.096 in The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil. Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS South Abutment (DL, LL load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Rebar Lap & Embedment Lengths Information Stem Design Segment: 2nd Stem Design Height: 7.00 ft above top of footing Lap Splice length for #6 bar specified in this stem design segment (25.4.2.3a) =20.93 in Development length for #6 bar specified in this stem design segment =16.10 in ________________________________________________________________________________________________________________________ Stem Design Segment: Bottom Stem Design Height: 0.00 ft above top of footing Lap Splice length for #7 bar specified in this stem design segment (25.4.2.3a) =30.52 in Development length for #7 bar specified in this stem design segment =23.48 in Hooked embedment length into footing for #7 bar specified in this stem design segment =7.02 in As Provided =1.2000 in2/ft As Required =0.7686 in2/ft Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS South Abutment (DL, LL load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: 24" w/#6@ 12" -- .. . . . . .. 11'-0" . . . . 18'-0" .. 24" w/#7@ 6" --.. . . .. lear Cover : 2" 7'-0" . . 1'-0' ,t 00 ~: .. . I- T 3" ,_ -. 1'-6" #6~6in @ oe 3" #6<§6in 2'-0" @ enter On K ~y * #6@6" @Heel 3'-6" ?'-0" 9'-0" 3'-6" 11'-0" 14'-6" Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS South Abutment (DL, LL load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: DL=2365 ,Ll=2750#, Ecc=2" Pp= 2887.50# 6654# _r=~ =========~1. ~ & Lateral earth pressure due to the soil BELOW water table ~ ~ N ~ ~ ~ ~ N Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS South Abutment (DL, LL, EQ load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Code References Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16 18.00 0.00 0.00 12.00 5,320.0 35.0 0.0 300.0 Criteria Soil Data Retained Height =ft Wall height above soil =ft Active Heel Pressure =psf/ftSlope Behind Wall Height of Soil over Toe in Water table above =ft = = 35.00=pcf = Soil Density, Heel = Passive Pressure =psf/ft Allow Soil Bearing =psf Soil Density, Toe 115.00 pcf Footing||Soil Friction =0.400 Soil height to ignorefor passive pressure =12.00 in Equivalent Fluid Pressure Method bottom of footing Surcharge Loads Adjacent Footing Load Load Type 0.0 Lateral Load =0.0 #/ft 0.0 2,365.0 2,750.02.0 Axial Load Applied to Stem Wall to Ftg CL Dist =0.00 ft Wind on Exposed Stem psf0.0= Lateral Load Applied to Stem Surcharge Over Heel =psf Adjacent Footing Load =0.0 lbs Axial Dead Load (Strength Level) =lbs Footing Type Spread Footing Surcharge Over Toe psf Footing Width =0.00 ft...Height to Top =0.00 ft Eccentricity =0.00 in...Height to Bottom =0.00 ft NOT Used To Resist Sliding & Overturning NOT Used for Sliding & Overturning ==0.0 ft Axial Live Load = Base Above/Below Soil lbs = Axial Load Eccentricity ==Poisson's Ratio 0.300 at Back of Wall in (Strength Level) Wind (W)= Earth Pressure Seismic Load Load at bottom of Triangular Distribution . . . . . . .=332.000 (Strength) Total Strength-Level Seismic Load. . . . .= 2,265.900Total Service-Level Seismic Load. . . . .= 3,237.000 lbs lbspsf Method : Triangular Stem Weight Seismic Load F lbs=Added seismic base force 2,245.3/ Wpp 0.594 gWeight Multiplier Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS South Abutment (DL, LL, EQ load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Design Summary Wall Stability RatiosOverturning =1.54 Global Stability =1.49 OK Sliding =0.91 UNSTABLE! Total Bearing Load =20,957 lbs...resultant ecc.=50.64 in Eccentricity outside middle thirdSoil Pressure @ Toe =4,802 psf OK Soil Pressure @ Heel =0 psf OK Allowable =5,320 psfSoil Pressure Less Than Allowable ACI Factored @ Toe =6,723 psfACI Factored @ Heel =0 psf Footing Shear @ Toe =72.6 psi OK Footing Shear @ Heel =34.1 psi OK Allowable =100.6 psi Sliding Calcs Lateral Sliding Force =11,165.6 lbs less 100% Passive Force less 100% Friction Force Added Force Req'd ....for 1.5 Stability = 995.2= 7,282.8 2,887.5 == 6,578.0 - lbs lbs lbs NG lbs NG - Masonry Block Type = Stem Construction 2nd Bottom Stem OK Stem OK Shear.....Actual Design Height Above Ftg =7.00ft 0.00 Wall Material Above "Ht"=Concrete Concrete Thickness =24.00 24.00 Rebar Size =##6 7 Rebar Spacing =12.00 6.00 Rebar Placed at =Edge EdgeDesign Data fb/FB + fa/Fa =0.655 0.896 Total Force @ Section =lbs Moment....Actual =ft-# Moment.....Allowable =42,246.4 112,189.5ft-# =psi Shear.....Allowable =100.6 100.6psi Wall Weight =300.0 300.0psf Rebar Depth 'd'=21.63in 21.56 Masonry Data f'm =psiFs =psiSolid Grouting = Modular Ratio 'n'= Equiv. Solid Thick.= Concrete Dataf'c =4,500.0 4,500.0psi Fy =60,000.0 60,000.0 Masonry Design Method ASD= Load Factors Building Code Dead Load 1.200 Live Load 0.500 Earth, H 1.600 Wind, W 1.000 Seismic, E 1.000 psi Service Level =6,378.3 15,037.8lbsStrength Level Service Level Strength Level =27,682.8 100,551.5ft-# Service Level Strength Level =24.6 58.1psi Design Method =SD SD SDSD Vertical component of active lateral soil pressure IS considered in the calculation of soil bearing pressures. Anet (Masonry)=in2 Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS South Abutment (DL, LL, EQ load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Concrete Stem Rebar Area Details 2nd Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) :0.2886 in2/ft (4/3) * As :0.3848 in2/ft Min Stem T&S Reinf Area 6.336 in2 3sqrt(f'c)bd/fy : 3sqrt(4500)(12)(21.625)/60000 :0.8704 in2/ft Min Stem T&S Reinf Area per ft of stem Height : 0.576 in2/ft 0.0018bh : 0.0018(12)(24) :0.5184 in2/ft Horizontal Reinforcing Options : ============One layer of : Two layers of : Required Area :0.5184 in2/ft #4@ 4.17 in #4@ 8.33 in Provided Area :0.44 in2/ft #5@ 6.46 in #5@ 12.92 in Maximum Area :5.118 in2/ft #6@ 9.17 in #6@ 18.33 in ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Bottom Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) :1.0514 in2/ft (4/3) * As :1.4018 in2/ft Min Stem T&S Reinf Area 4.032 in2 3sqrt(f'c)bd/fy : 3sqrt(4500)(12)(21.5625)/60000 :0.8679 in2/ft Min Stem T&S Reinf Area per ft of stem Height : 0.576 in2/ft 0.0018bh : 0.0018(12)(24) :0.5184 in2/ft Horizontal Reinforcing Options : ============One layer of : Two layers of : Required Area :1.0514 in2/ft #4@ 4.17 in #4@ 8.33 in Provided Area :1.2 in2/ft #5@ 6.46 in #5@ 12.92 in Maximum Area :5.1032 in2/ft #6@ 9.17 in #6@ 18.33 in 3.50 10.50 18.00 Footing Torsion, Tu = = ft-lbs0.00 Min. As % Footing Allow. Torsion, phi Tu 0.0018 =ft-lbs Footing Data If torsion exceeds allowable, provide f'c 0.00 =4,500psi Toe Width =ft Heel Width = Key Distance from Toe Key DepthKey Width =in=in = 24.0024.00 3.50 ft Footing Thickness =in 14.00= Cover @ Top =3.00 in@ Btm.=3.00 in Total Footing Width =150.00pcfFooting Concrete DensityFy =60,000 psi Footing Design Results Key: = #4@ 4.62 in, #5@ 7.17 in, #6@ 10.18 in, #7@ 1 Factored Pressure Mu' : Upward Mu' : Downward Mu: Design Actual 1-Way Shear Allow 1-Way Shear Toe:#4@ 4.11 in, #5@ 6.37 in, #6@ 9.04 in, #7@ 12.33 in, #8@ 16.24 in, #9@ 20.56 in, #10@ 26.11 in #4@ 4.03 in, #5@ 6.25 in, #6@ 8.88 in, #7@ 12.11 in, #8@ 15.94 in, #9@ 20.18 in, #10@ 25.63 in =# 6 @ 6.00 in = = = = = 6,723 35,416 1,911 33,505 72.59 100.62 Heel: 0 3,075 41,036 37,961 34.13 100.62 HeelToe psf ft-# ft-# ft-# psi psi Heel Reinforcing =# 6 @ 6.00 in Other Acceptable Sizes & Spacings Key Reinforcing Toe Reinforcing =# 6 @ 6.00 in Min footing T&S reinf AreaMin footing T&S reinf Area per foot If one layer of horizontal bars: 5.440.39 #4@ 6.17 in #5@ 9.57 in#6@ 13.58 in in2in2 /ft If two layers of horizontal bars: #4@ 12.35 in #5@ 19.14 in#6@ 27.16 in supplemental design for footing torsion. phiMn 55,63755,637=ft-# OKOK Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS South Abutment (DL, LL, EQ load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Summary of Overturning & Resisting Forces & Moments .....RESISTING..........OVERTURNING.....Force Distance Moment Distance Moment Item Force ft-#lbs ftft ft-#lbs Sloped Soil Over Heel =Surcharge over Heel = Surcharge Over Heel = = Adjacent Footing Load =Adjacent Footing Load Axial Dead Load on Stem=2,365.0 4.33 10,248.3 =2,750.0 4.33 11,916.7* Axial Live Load on Stem Soil Over Toe Surcharge Over Toe Surcharge Over Toe Load @ Stem Above Soil =2,265.9 2,245.3 = = 402.5 1.75 704.4= = =Seismic Earth Load = 6.50 14,728.4 Stem Weight(s)10.50 23,575.9Seismic Stem Self Wt = 5,400.0 4.50 24,300.0 Earth @ Stem Transitions =Footing Weight = 3,150.0 7.00 22,050.0 Key Weight = 600.0 4.50 2,700.0 Added Lateral Load lbs =81,557.6 Vert. Component 934.6 14.00 13,084.6 Total = 18,207.1 125,298.6 * Axial live load NOT included in total displayed, or used for overturningresistance, but is included for soil pressure calculation. Total =R.M. =11,165.6 O.T.M. = Resisting/Overturning Ratio =1.54 Vertical Loads used for Soil Pressure =20,957.1 lbs If seismic is included, the OTM and sliding ratiosmay be 1.1 per section 1807.2.3 of IBC. Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance. Soil Over HL (ab. water tbl) Soil Over HL (bel. water tbl) 5,355.0 9.75 9.75 52,211.3 52,211.3 Water Table Buoyant Force = HL Act Pres (ab water tbl) HL Act Pres (be water tbl) 6,654.4 6.50 43,253.4 Hydrostatic Force Tilt Horizontal Deflection at Top of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Defl @ Top of Wall (approximate only)0.171 in The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil. Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS South Abutment (DL, LL, EQ load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: Rebar Lap & Embedment Lengths Information Stem Design Segment: 2nd Stem Design Height: 7.00 ft above top of footing Lap Splice length for #6 bar specified in this stem design segment (25.4.2.3a) =20.93 in Development length for #6 bar specified in this stem design segment =16.10 in ________________________________________________________________________________________________________________________ Stem Design Segment: Bottom Stem Design Height: 0.00 ft above top of footing Lap Splice length for #7 bar specified in this stem design segment (25.4.2.3a) =30.52 in Development length for #7 bar specified in this stem design segment =23.48 in Hooked embedment length into footing for #7 bar specified in this stem design segment =9.60 in As Provided =1.2000 in2/ft As Required =1.0514 in2/ft Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS South Abutment (DL, LL, EQ load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: 24" w/#6@ 12" - - .. . . . . .. 11'-0" . . . . 18'-0" .. 24" w/#7@6" ---~---- .. . . .. !ear Cover : 2" 7'-0" . . 1'-0' ·l !ij ·-. • . . ,.. .. -. T 3" . . . __,_ 1'-6" #6~6in @ oe 3" #6~6in @ enter On Key 2'-0" #6@6" @Heel 3'-6" 2'-0" 8'-6" 3'-6" 10'-6" 14'-0" Cantilevered Retaining Wall LIC# : KW-06013082, Build:20.23.09.30 Trilogy Engineering (c) ENERCALC INC 1983-2023 DESCRIPTION:IONIS South Abutment (DL, LL, EQ load (with GEOFOAM backfill) Project File: 10660 Ionis Abument.ec6 Project Title:Engineer:Project ID:Project Descr: DL=2365 ,LL=2750# , Ecc=2" Pp= 2887 .50# '1ii a. a, ~ 0 C0 ..,. 8900# 2266# 2245# ■ Lateral earth pressure due to the soil BELOW water table ■ Seismic lateral earth pressure ■ Seismic due to stem self weight Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 1/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Frame Elevation Floor Plan Structure Envelopes Name 1 Vertical 2 Lateral 3 All liiY Tekla Structural' Designer I I I I A B C D E F G H J K L M N 0 A B C D E F G H J K L M N 0 A B C D E F G H J K L M N 0 2 2 1 A B C D E F G H J K L M N 0 Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 2/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 1 Vertical Combination Title 1 Strength I 2 Strength I-VL 7 Displacement DL 8 Displacement LL 10 Displacement VL 13 Extreme Event II 2 Lateral Combination Title 3 Strength III-Light 4 Strength III-Heavy 5 Service I 6 Fatigue I 9 Displacement WL 12 Extreme Event I 13 Extreme Event II 3 All Combination Title 1 Strength I 2 Strength I-VL 3 Strength III-Light 4 Strength III-Heavy 5 Service I 6 Fatigue I 7 Displacement DL 8 Displacement LL 9 Displacement WL 10 Displacement VL 11 Natural Frequency 12 Extreme Event I 13 Extreme Event II liiY Tekla Structural' Designer I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 3/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Axial Force, 1 Vertical, First-order linear, Structure liiY Tekla Structural' Designer I I I I First-order linear -1 Vertical Member Axial Force : (·160.22/163.46kip) Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 4/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Moment Major, 1 Vertical, First-order linear, Structure liiY Tekla Structural' Designer I I I I First-order linear -1 Vertical Member Moment Major : l·l0.2/14.7klp ft) Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 5/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Moment Minor, 1 Vertical, First-order linear, Structure liiY Tekla Structural' Designer I I I I First-order linear -1 Vertical Member Moment Minor: (-3.5/3.Sklp ft) Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 6/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Shear Major, 1 Vertical, First-order linear, Structure liiY Tekla Structural' Designer I I I I First-order linear. 1 Vertical Member Shear Major: [-8.92/8.92klp) Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 7/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Shear Minor, 1 Vertical, First-order linear, Structure liiY Tekla Structural' Designer I I I I First-order linear. 1 Vertical Member Shear Minor : (·l.09/l.09klp) Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 8/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Axial Force, 2 Lateral, First-order linear, Structure liiY Tekla Structural' Designer I I I I First-order linear• 2 Lateral Member Axial Force : (·102.61/99.52kip] Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 9/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Moment Major, 2 Lateral, First-order linear, Structure liiY Tekla Structural' Designer I I I I First-order linear -2 Lateral Member Moment Major : l-6.0/7.Bklp fl) Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 10/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Moment Minor, 2 Lateral, First-order linear, Structure liiY Tekla Structural' Designer I I I I First-order linear• 2 Lateral Member Moment Minor : (·S.5/8.Sklp ft) Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 11/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Shear Major, 2 Lateral, First-order linear, Structure liiY Tekla Structural' Designer I I I I First-order linear -2 Lateral Member Shear Major: l·3.96/4.37kip) Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 12/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Shear Minor, 2 Lateral, First-order linear, Structure liiY Tekla Structural' Designer I I I I First-order linear -2 Lateral Member Shear Minor : (·8.05/7.14klp) Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 13/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Deflection Z, 7 Displacement DL, First-order linear, Structure liiY Tekla Structural' Designer First-order linear• 7 Displacement DL Member Deflection Z: (0.00/l.2Sln] 3.941n 2.9Sin 1.971n 0.981n 0.001n I I I I .... Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 14/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Deflection Z, 8 Displacement LL, First-order linear, Structure liiY Tekla Structural' Designer First-order linear• 8 Displacement LL Member Deflection Z : (0.00/1.llln] 3.94in 2.9Sin 1.97In 0.98In 0.00in -·. I I I I •• :1 .... Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 15/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Deflection Z, 10 Displacement VL, First-order linear, Structure liiY Tekla Structural' Designer First-order linear• 10 Displacement VL Member Deflection Z : {0.00/0.401n] 1.971n l .48in 0.981n 0.491n 0.00in I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 16/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Deflection Y, 9 Displacement WL, First-order linear, Structure Analysis Modal Frequencies 11 Natural Frequency, First-order modal No results available. liiY Tekla Structural' Designer First-order linear -9 Displacement WL Member Deflection Y : I0.00/0. 73in] 3.54in 2.66in l.77in 0.891n 0.00ln I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 17/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Frame Members Floor Members Analysis Member Forces First-order linear 3 All EFB Span 1, W 8x10, A500B-46 liiY Tekla Structural' Designer I I I I A B C D E F G H J K L M N 0 TC-JC-2 T TC.-4 T -TC-6 TC-7 T.C -8 TC-9 TC -10 TC-1 T -TC:..13 <> < <> < <> < <> < <> < <> < <> V, -:: -:: < < -:: .... < ,,<> <> <> <> <> ,,<> '< f'.. '< 'r-'< I-' '< t" '< '< i'.-'< .... ... ,· ... ,s.' f-,s.' I-' ,s.' i-' ~ BC -1 BC -2 BC -3 BC -4 BC -5 BC -6 BC -7 BC -8 BC-9 BC ·lO BC -11 BC.·12 BC -13 A B C D E F G H J K L M N 0 A B C D E F G H J K L M N 0 2 2 ;~_ .., .., .., .., .., .., ~ .., .., .., .., .., .., "' "" , ... "" "" "" "" "" "" "" "" "" "" ~r. "" ~~ ;... " f-,§l t-f-;... ;... t" .... ;... ~ ... i'.-... ~ ... ,.; t" 1 1 A B C D E F G H J K L M N 0 Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 18/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″3.06 0.04 0.0 0.0 2.72 0.0 0.00 0.00 0″0.00 0.00 -6.0 -0.2 -0.83 0.0 0.00 0.00 4′ 4 1/2″1.12 0.04 3.3 0.0 2.72 0.0 0.04 0.00 4′ 4 1/2″0.00 0.00 3.3 0.0 -0.83 0.0 0.04 -0.01 8′ 9″0.50 0.04 4.1 0.2 2.72 0.0 0.00 0.00 8′ 9″-3.06 0.00 -4.0 0.0 -0.83 0.0 0.00 0.00 TC Span 1, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″1.12 0.11 0.0 0.5 42.72 0.9 0.00 0.00 0″0.00 -0.11 -3.7 -0.1 -0.40 0.9 0.00 0.00 3′ 3 7/16″1.05 0.10 0.3 0.6 42.72 0.9 0.00 0.01 3′ 3 7/16″1.05 -0.20 -0.1 0.0 -0.40 0.9 0.00 0.00 6′ 6 7/8″0.98 0.10 3.2 0.8 42.72 0.9 0.00 0.00 6′ 6 7/8″0.00 -0.49 0.0 -0.8 -0.40 0.9 0.00 0.00 Span 2, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.63 0.42 0.0 1.6 79.68 1.6 0.00 0.00 0″0.00 -0.02 -1.1 -0.4 -0.19 1.6 0.00 0.00 3′ 3 7/16″0.56 0.42 1.0 2.9 79.68 1.6 0.01 0.03 3′ 3 7/16″0.56 -0.04 -0.2 -0.2 -0.19 1.6 0.00 0.00 6′ 6 7/8″0.48 0.42 2.7 4.3 79.68 1.6 0.00 0.00 6′ 6 7/8″0.00 -0.33 0.0 -0.7 -0.19 1.6 0.00 0.00 Span 3, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.59 0.29 0.1 4.5 109.76 0.3 0.00 0.00 0″-0.01 -0.36 -0.5 -0.5 -0.52 0.3 0.00 0.00 3′ 3 7/16″0.52 0.00 1.3 3.4 109.76 0.3 0.01 0.04 3′ 3 7/16″-0.01 -0.36 1.3 -0.1 -0.52 0.3 0.01 0.00 6′ 6 7/8″0.44 0.00 2.9 2.2 109.76 0.3 0.00 0.00 6′ 6 7/8″-0.01 -0.37 0.0 -0.5 -0.52 0.3 0.00 0.00 Span 4, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.48 0.29 0.2 2.4 133.20 0.2 0.00 0.00 0″0.00 -0.49 -0.2 -0.4 -0.59 0.2 0.00 0.00 3′ 3 7/16″0.41 0.01 1.6 0.8 133.20 0.2 0.02 0.01 3′ 3 7/16″0.41 -0.49 0.0 0.0 -0.59 0.2 0.00 0.00 6′ 6 7/8″0.34 0.01 2.9 0.1 133.20 0.2 0.00 0.00 6′ 6 7/8″0.00 -0.49 0.0 -0.8 -0.59 0.2 0.00 0.00 Span 5, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.38 0.29 0.7 0.2 149.96 0.3 0.00 0.00 0″0.00 -0.38 -0.1 -0.4 -0.58 0.3 0.00 0.00 liiY Tekla Structural' Designer I I I I I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 19/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 3′ 3 7/16″0.31 0.01 1.9 0.2 149.96 0.3 0.02 0.00 3′ 3 7/16″0.31 -0.38 0.0 -1.5 -0.58 0.3 0.00 -0.02 6′ 6 7/8″0.24 0.00 2.8 0.2 149.96 0.3 0.00 0.00 6′ 6 7/8″0.00 -0.38 0.0 -2.8 -0.58 0.3 0.00 0.00 Span 6, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.28 0.30 1.2 0.4 160.06 0.4 0.00 0.00 0″0.00 -0.25 -0.1 -2.1 -0.54 0.4 0.00 0.00 3′ 3 7/16″0.21 0.01 2.0 0.2 160.06 0.4 0.02 0.00 3′ 3 7/16″0.21 -0.25 0.0 -3.0 -0.54 0.4 0.00 -0.03 6′ 6 7/8″0.13 0.00 2.6 0.0 160.06 0.4 0.00 0.00 6′ 6 7/8″-0.01 -0.30 0.0 -3.8 -0.54 0.4 0.00 0.00 Span 7, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.22 0.30 1.6 0.3 163.46 0.0 0.00 0.00 0″0.00 -0.26 -0.1 -3.3 -0.54 0.0 0.00 0.00 3′ 3 7/16″0.15 0.01 2.0 0.2 163.46 0.0 0.02 0.00 3′ 3 7/16″0.15 -0.26 0.0 -3.6 -0.54 0.0 0.00 -0.04 6′ 6 7/8″0.07 0.00 2.2 0.0 163.46 0.0 0.00 0.00 6′ 6 7/8″-0.04 -0.27 0.0 -3.8 -0.54 0.0 0.00 0.00 Span 8, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.04 0.27 2.2 0.0 163.46 0.2 0.00 0.00 0″-0.05 0.00 0.0 -3.7 -0.54 0.2 0.00 0.00 3′ 3 7/16″-0.11 0.26 2.0 0.2 163.46 0.2 0.02 0.00 3′ 3 7/16″-0.11 -0.01 0.0 -3.6 -0.54 0.2 0.00 -0.04 6′ 6 7/8″0.00 0.26 1.6 0.4 163.46 0.2 0.00 0.00 6′ 6 7/8″-0.18 -0.30 -0.1 -3.5 -0.54 0.2 0.00 0.00 Span 9, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.02 0.28 2.6 0.2 160.06 -0.1 0.00 0.00 0″-0.13 0.00 0.0 -3.9 -0.54 -0.1 0.00 0.00 3′ 3 7/16″-0.21 0.21 2.0 0.4 160.06 -0.1 0.02 0.00 3′ 3 7/16″-0.21 -0.01 0.0 -3.2 -0.54 -0.1 0.00 -0.04 6′ 6 7/8″0.00 0.21 1.2 0.5 160.06 -0.1 0.00 0.00 6′ 6 7/8″-0.28 -0.30 -0.1 -2.5 -0.54 -0.1 0.00 0.00 Span 10, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.00 0.35 2.8 0.6 149.96 -0.2 0.00 0.00 0″-0.24 -0.06 0.0 -3.1 -0.58 -0.2 0.00 0.00 3′ 3 7/16″-0.31 0.34 1.9 0.4 149.96 -0.2 0.02 0.00 3′ 3 7/16″-0.31 -0.06 0.0 -1.9 -0.58 -0.2 0.00 -0.02 6′ 6 7/8″0.00 0.34 0.7 0.2 149.96 -0.2 0.00 0.00 6′ 6 7/8″-0.38 -0.29 -0.1 -0.8 -0.58 -0.2 0.00 0.00 liiY Tekla Structural' Designer I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 20/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Span 11, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.00 0.44 2.9 0.4 133.20 -0.2 0.00 0.00 0″-0.34 -0.26 0.0 -1.3 -0.59 -0.2 0.00 0.00 3′ 3 7/16″-0.41 0.44 1.6 0.2 133.20 -0.2 0.02 0.00 3′ 3 7/16″-0.41 -0.26 0.0 -0.4 -0.59 -0.2 0.00 0.00 6′ 6 7/8″0.00 0.44 0.4 1.6 133.20 -0.2 0.00 0.00 6′ 6 7/8″-0.48 -0.29 -0.2 -1.3 -0.59 -0.2 0.00 0.00 Span 12, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.01 0.36 2.9 1.4 109.76 -0.4 0.00 0.00 0″-0.44 0.00 0.0 -1.5 -0.54 -0.4 0.00 0.00 3′ 3 7/16″0.01 0.35 1.3 2.5 109.76 -0.4 0.01 0.03 3′ 3 7/16″-0.52 0.00 0.0 -0.6 -0.54 -0.4 0.00 -0.01 6′ 6 7/8″0.01 0.35 0.0 3.7 109.76 -0.4 0.00 0.00 6′ 6 7/8″-0.59 -0.29 -0.5 -0.5 -0.54 -0.4 0.00 0.00 Span 13, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.00 0.33 2.7 3.4 79.68 -1.4 0.00 0.00 0″-0.48 -0.32 0.0 -0.7 -0.24 -1.4 0.00 0.00 3′ 3 7/16″-0.56 0.09 1.0 2.4 79.68 -1.4 0.01 0.03 3′ 3 7/16″-0.56 -0.32 -0.2 -0.1 -0.24 -1.4 0.00 0.00 6′ 6 7/8″0.00 0.09 0.0 1.3 79.68 -1.4 0.00 0.00 6′ 6 7/8″-0.63 -0.32 -1.1 -0.4 -0.24 -1.4 0.00 0.00 Span 14, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.00 0.49 3.2 0.6 42.72 -0.8 0.00 0.00 0″-0.98 -0.08 0.0 -0.8 -0.45 -0.8 0.00 0.00 3′ 3 7/16″-1.05 0.20 0.3 0.5 42.72 -0.8 0.00 0.01 3′ 3 7/16″-1.05 -0.08 -0.1 0.0 -0.45 -0.8 0.00 0.00 6′ 6 7/8″0.00 0.09 0.0 0.5 42.72 -0.8 0.00 0.00 6′ 6 7/8″-1.12 -0.11 -3.7 -0.1 -0.45 -0.8 0.00 0.00 EP Span 1, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″1.47 1.70 0.0 0.0 46.56 0.0 0.00 0.00 0″-2.96 -0.01 0.0 0.0 -1.18 0.0 0.00 0.00 3′ 7 1/2″0.23 0.03 0.3 0.4 42.35 -0.6 0.00 0.00 3′ 7 1/2″-0.09 -1.08 -1.3 -0.1 -0.37 -0.6 -0.01 0.00 7′ 3″0.18 0.03 0.0 0.1 42.27 -0.6 0.00 0.00 7′ 3″-0.09 -1.08 -0.6 -3.5 -0.37 -0.6 0.00 0.00 FB Span 1, W 8x10, A500B-46 liiY Tekla Structural' Designer I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 21/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″6.06 0.01 0.0 0.0 2.08 0.0 0.00 0.00 0″0.00 0.00 -4.8 -0.1 -0.47 0.0 0.00 0.00 4′ 4 1/2″0.40 0.01 9.5 0.0 2.08 0.0 0.14 0.00 4′ 4 1/2″0.00 0.00 9.5 0.0 -0.47 0.0 0.14 0.00 8′ 9″0.20 0.01 1.5 0.0 2.08 0.0 0.00 0.00 8′ 9″-6.06 0.00 -4.9 0.0 -0.47 0.0 0.00 0.00 TC Span 1, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″1.12 0.32 0.3 0.0 42.70 0.3 0.00 0.00 0″-0.05 -0.12 -3.7 -0.5 0.00 0.3 0.00 0.00 3′ 3 7/16″1.05 0.32 0.3 0.6 42.70 0.3 0.00 0.01 3′ 3 7/16″-0.05 0.00 -0.1 -0.3 42.70 0.3 0.00 0.00 6′ 6 7/8″0.98 0.48 3.2 1.6 42.70 0.3 0.00 0.00 6′ 6 7/8″-0.05 0.00 0.0 0.0 0.00 0.3 0.00 0.00 Span 2, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.63 0.46 0.1 1.9 79.69 1.0 0.00 0.00 0″-0.04 -0.23 -0.9 0.0 0.00 1.0 0.00 0.00 3′ 3 7/16″0.56 0.46 1.0 3.4 79.69 1.0 0.01 0.04 3′ 3 7/16″-0.04 0.00 -0.1 -0.1 79.69 1.0 0.00 0.00 6′ 6 7/8″0.48 0.46 2.7 4.9 79.69 1.0 0.00 0.00 6′ 6 7/8″-0.04 0.00 -0.2 0.0 0.00 1.0 0.00 0.00 Span 3, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.59 0.00 0.5 4.9 109.76 -0.2 0.00 0.00 0″-0.06 -0.39 -0.5 0.0 0.00 -0.2 0.00 0.00 3′ 3 7/16″0.52 0.00 1.3 3.7 109.76 -0.2 0.01 0.04 3′ 3 7/16″-0.06 -0.39 1.3 0.0 109.76 -0.2 0.01 0.00 6′ 6 7/8″0.44 0.29 2.9 2.4 109.76 -0.2 0.00 0.00 6′ 6 7/8″-0.06 -0.39 -0.1 0.0 0.00 -0.2 0.00 0.00 Span 4, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.48 0.00 0.2 2.6 133.20 -0.2 0.00 0.00 0″0.00 -0.51 -0.1 -0.1 0.00 -0.2 0.00 0.00 3′ 3 7/16″0.41 -0.51 1.6 0.9 133.20 -0.2 0.02 0.01 3′ 3 7/16″0.41 -0.51 1.6 -0.1 133.20 -0.2 0.02 0.00 6′ 6 7/8″0.34 0.28 2.9 0.4 133.20 -0.2 0.00 0.00 6′ 6 7/8″0.00 -0.51 0.0 -0.8 0.00 -0.2 0.00 0.00 Span 5, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.38 0.00 0.7 0.4 149.96 -0.3 0.00 0.00 0″-0.02 -0.41 0.0 -0.2 0.00 -0.3 0.00 0.00 liiY Tekla Structural' Designer I I I I I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 22/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 3′ 3 7/16″0.31 0.00 1.9 0.0 149.96 -0.3 0.02 0.00 3′ 3 7/16″-0.02 -0.41 1.9 -1.5 149.96 -0.3 0.02 -0.02 6′ 6 7/8″0.24 0.28 2.8 0.4 149.96 -0.3 0.00 0.00 6′ 6 7/8″-0.02 -0.41 0.0 -2.8 0.00 -0.3 0.00 0.00 Span 6, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.28 0.06 1.2 0.4 160.06 -0.4 0.00 0.00 0″-0.01 -0.32 0.0 -2.0 0.00 -0.4 0.00 0.00 3′ 3 7/16″0.21 0.06 2.0 0.0 160.06 -0.4 0.02 0.00 3′ 3 7/16″-0.01 -0.27 2.0 -2.9 160.06 -0.4 0.02 -0.03 6′ 6 7/8″0.13 0.28 2.6 0.3 160.06 -0.4 0.00 0.00 6′ 6 7/8″-0.03 -0.27 0.0 -3.8 0.00 -0.4 0.00 0.00 Span 7, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.22 0.26 1.6 0.4 163.46 0.0 0.00 0.00 0″-0.02 -0.30 0.0 -3.2 0.00 0.0 0.00 0.00 3′ 3 7/16″0.15 0.26 2.0 0.5 163.46 0.0 0.02 0.01 3′ 3 7/16″-0.02 -0.11 2.0 -3.5 163.46 0.0 0.02 -0.04 6′ 6 7/8″0.07 0.27 2.2 1.4 163.46 0.0 0.00 0.00 6′ 6 7/8″-0.08 -0.11 0.0 -3.9 0.00 0.0 0.00 0.00 Span 8, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.07 0.06 2.2 1.3 163.46 -0.2 0.00 0.00 0″-0.05 -0.27 0.0 -3.8 0.00 -0.2 0.00 0.00 3′ 3 7/16″0.01 0.06 2.0 0.5 163.46 -0.2 0.02 0.01 3′ 3 7/16″-0.11 -0.26 2.0 -3.6 163.46 -0.2 0.02 -0.04 6′ 6 7/8″0.01 0.30 1.6 0.4 163.46 -0.2 0.00 0.00 6′ 6 7/8″-0.18 -0.26 0.0 -3.4 0.00 -0.2 0.00 0.00 Span 9, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.02 0.23 2.6 0.3 160.06 0.1 0.00 0.00 0″-0.13 -0.28 0.0 -3.9 0.00 0.1 0.00 0.00 3′ 3 7/16″0.01 0.23 2.0 0.0 160.06 0.1 0.02 0.00 3′ 3 7/16″-0.21 -0.06 2.0 -3.2 160.06 0.1 0.02 -0.04 6′ 6 7/8″0.01 0.30 1.2 0.4 160.06 0.1 0.00 0.00 6′ 6 7/8″-0.28 -0.06 0.0 -2.4 0.00 0.1 0.00 0.00 Span 10, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.01 0.36 2.8 0.4 149.96 -0.1 0.00 0.00 0″-0.24 -0.28 0.0 -3.1 0.00 -0.1 0.00 0.00 3′ 3 7/16″0.01 0.36 1.9 0.0 149.96 -0.1 0.02 0.00 3′ 3 7/16″-0.31 0.36 1.9 -1.9 149.96 -0.1 0.02 -0.02 6′ 6 7/8″0.01 0.37 0.7 0.4 149.96 -0.1 0.00 0.00 liiY Tekla Structural' Designer I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 23/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 6′ 6 7/8″-0.38 0.00 0.0 -0.7 0.00 -0.1 0.00 0.00 Span 11, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.00 0.47 2.9 0.4 133.20 0.2 0.00 0.00 0″-0.34 -0.28 0.0 -1.3 0.00 0.2 0.00 0.00 3′ 3 7/16″-0.41 0.47 1.6 0.4 133.20 0.2 0.02 0.00 3′ 3 7/16″-0.41 0.47 1.6 -0.1 133.20 0.2 0.02 0.00 6′ 6 7/8″-0.48 0.47 0.4 1.8 133.20 0.2 0.00 0.00 Span 12, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.06 0.38 2.9 1.6 109.76 0.2 0.00 0.00 0″-0.44 -0.29 -0.1 0.0 0.00 0.2 0.00 0.00 3′ 3 7/16″0.06 0.38 1.3 2.8 109.76 0.2 0.01 0.03 3′ 3 7/16″-0.52 -0.26 1.3 0.0 109.76 0.2 0.01 0.03 6′ 6 7/8″0.06 0.38 0.4 4.1 109.76 0.2 0.00 0.00 6′ 6 7/8″-0.59 -0.26 -0.5 -0.2 0.00 0.2 0.00 0.00 Span 13, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.04 0.00 2.7 4.0 79.69 -0.9 0.00 0.00 0″-0.48 -0.36 -0.2 -0.1 0.00 -0.9 0.00 0.00 3′ 3 7/16″0.04 -0.36 1.0 2.8 79.69 -0.9 0.01 0.03 3′ 3 7/16″-0.56 -0.36 -0.1 -0.2 79.69 -0.9 0.00 0.00 6′ 6 7/8″0.04 0.23 0.1 1.7 79.69 -0.9 0.00 0.00 6′ 6 7/8″-0.63 -0.36 -0.9 -0.4 0.00 -0.9 0.00 0.00 Span 14, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.04 0.04 3.2 1.4 42.70 0.4 0.00 0.00 0″-0.98 -0.48 0.0 -0.3 0.00 0.4 0.00 0.00 3′ 3 7/16″0.04 0.04 0.2 0.5 42.70 0.4 0.00 0.01 3′ 3 7/16″-1.05 -0.27 -0.1 -0.3 42.70 0.4 0.00 0.00 6′ 6 7/8″0.04 0.12 0.2 0.0 42.70 0.4 0.00 0.00 6′ 6 7/8″-1.12 -0.27 -3.7 -0.5 0.00 0.4 0.00 0.00 EP Span 1, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″1.31 0.00 0.0 0.0 46.56 0.0 0.00 0.00 0″-5.90 0.00 0.0 0.0 -1.14 0.0 0.00 0.00 3′ 7 1/2″0.26 1.08 0.3 0.3 42.35 0.6 0.00 0.00 3′ 7 1/2″-0.09 -0.07 -1.4 -0.4 -0.40 0.6 -0.02 0.00 7′ 3″0.21 1.08 0.0 3.5 42.27 0.6 0.00 0.00 7′ 3″-0.09 -0.07 -0.6 -0.1 -0.40 0.6 0.00 0.00 EFB Span 1, W 8x10, A500B-46 liiY Tekla Structural' Designer I I I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 24/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″7.99 0.00 0.0 0.2 5.82 0.0 0.00 0.00 0″0.00 -0.04 -9.7 0.0 -0.77 0.0 0.00 0.00 4′ 4 1/2″1.10 0.00 8.0 0.0 5.82 0.0 0.11 0.01 4′ 4 1/2″0.00 -0.04 8.0 0.0 -0.77 0.0 0.11 0.00 8′ 9″0.50 0.00 4.1 0.0 5.82 0.0 0.00 0.00 8′ 9″-7.99 -0.04 -9.7 -0.2 -0.77 0.0 0.00 0.00 EP Span 1, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″5.90 0.00 0.0 0.0 46.56 0.0 0.00 0.00 3′ 7 1/2″0.10 1.09 0.8 1.0 42.33 -0.6 0.02 0.01 3′ 7 1/2″-0.25 -0.26 -0.4 -0.4 42.33 -0.6 0.00 0.00 7′ 3″0.10 1.09 0.4 3.5 42.24 -0.6 0.00 0.00 7′ 3″-0.25 -0.26 -0.2 -0.4 0.00 -0.6 0.00 0.00 FB Span 1, W 8x10, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″6.06 0.22 0.0 0.0 4.19 0.0 0.00 0.00 0″0.00 0.00 -3.8 -1.0 -0.64 0.0 0.00 0.00 4′ 4 1/2″0.30 0.22 10.6 0.0 4.19 0.0 0.16 0.00 4′ 4 1/2″0.00 0.00 10.6 0.0 -0.64 0.0 0.16 0.00 8′ 9″0.16 0.22 1.6 1.0 4.19 0.0 0.00 0.00 8′ 9″-6.06 0.00 -3.8 0.0 -0.64 0.0 0.00 0.00 EP Span 1, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″4.37 0.01 0.0 0.0 46.56 0.0 0.00 0.00 0″0.00 -1.70 0.0 0.0 0.00 0.0 0.00 0.00 3′ 7 1/2″0.10 0.40 0.9 0.4 42.33 0.6 0.02 0.00 3′ 7 1/2″-0.28 -1.09 -0.4 -1.3 42.33 0.6 0.00 -0.02 7′ 3″0.10 0.40 0.2 0.4 42.24 0.6 0.00 0.00 7′ 3″-0.28 -1.09 -0.2 -3.5 0.00 0.6 0.00 0.00 FB Span 1, W 8x10, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″6.06 0.53 0.1 0.0 0.39 0.0 0.00 0.00 0″0.00 0.00 -3.4 -2.3 -0.56 0.0 0.00 0.00 4′ 4 1/2″0.36 0.53 11.0 0.0 0.39 0.0 0.17 0.00 4′ 4 1/2″0.36 0.00 11.0 0.0 -0.56 0.0 0.17 0.00 8′ 9″0.20 0.53 2.1 2.3 0.39 0.0 0.00 0.00 8′ 9″-6.06 0.00 -3.4 0.0 -0.56 0.0 0.00 0.00 FB Span 1, W 8x10, A500B-46 liiY Tekla Structural' Designer I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 25/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″6.06 0.58 0.2 0.0 0.33 0.0 0.00 0.00 0″0.00 0.00 -3.2 -2.5 -0.57 0.0 0.00 0.00 4′ 4 1/2″0.11 0.58 11.2 0.0 0.33 0.0 0.17 0.00 4′ 4 1/2″0.11 0.00 11.2 0.0 -0.57 0.0 0.17 0.00 8′ 9″0.08 0.58 1.1 2.5 0.33 0.0 0.00 0.00 8′ 9″-6.06 0.00 -3.2 0.0 -0.57 0.0 0.00 0.00 FB Span 1, W 8x10, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″6.06 0.49 0.6 0.0 0.34 0.0 0.00 0.00 0″0.00 0.00 -3.2 -2.1 -0.58 0.0 0.00 0.00 4′ 4 1/2″0.03 0.49 11.2 0.0 0.34 0.0 0.17 0.00 4′ 4 1/2″-0.01 0.00 11.2 0.0 -0.58 0.0 0.17 0.00 8′ 9″0.03 0.49 0.7 2.1 0.34 0.0 0.00 0.00 8′ 9″-6.06 0.00 -3.2 0.0 -0.58 0.0 0.00 0.00 FB Span 1, W 8x10, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″6.06 0.31 1.5 0.0 0.33 0.0 0.00 0.00 0″0.00 0.00 -3.2 -1.4 -0.57 0.0 0.00 0.00 4′ 4 1/2″0.01 0.31 11.2 0.0 0.33 0.0 0.17 0.00 4′ 4 1/2″-0.04 0.00 11.2 0.0 -0.57 0.0 0.17 0.00 8′ 9″0.01 0.31 1.5 1.4 0.33 0.0 0.00 0.00 8′ 9″-6.06 0.00 -3.2 0.0 -0.57 0.0 0.00 0.00 SFB Span 1, W 8x10, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″8.92 0.09 1.0 0.0 0.35 0.0 0.00 0.00 0″-0.01 0.00 -5.1 -0.4 -0.57 0.0 0.00 0.00 4′ 4 1/2″0.00 0.09 14.7 0.0 0.35 0.0 0.23 0.00 4′ 4 1/2″-0.06 0.00 14.7 0.0 -0.57 0.0 0.23 0.00 8′ 9″0.00 0.09 0.4 0.4 0.35 0.0 0.00 0.00 8′ 9″-8.92 0.00 -5.1 0.0 -0.57 0.0 0.00 0.00 FB Span 1, W 8x10, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″6.06 0.00 1.8 0.6 0.33 0.0 0.00 0.00 0″0.00 -0.14 -3.2 0.0 -0.57 0.0 0.00 0.00 4′ 4 1/2″0.00 0.00 11.2 0.0 0.33 0.0 0.17 0.00 4′ 4 1/2″-0.04 -0.14 11.2 0.0 -0.57 0.0 0.17 0.00 8′ 9″0.00 0.00 1.8 0.0 0.33 0.0 0.00 0.00 8′ 9″-6.06 -0.14 -3.2 -0.6 -0.57 0.0 0.00 0.00 FB Span 1, W 8x10, A500B-46 liiY Tekla Structural' Designer I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 26/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″6.06 0.00 1.2 1.4 0.34 0.0 0.00 0.00 0″0.00 -0.33 -3.2 0.0 -0.58 0.0 0.00 0.00 4′ 4 1/2″0.03 0.00 11.2 0.0 0.34 0.0 0.17 0.00 4′ 4 1/2″-0.02 -0.33 11.2 0.0 -0.58 0.0 0.17 0.00 8′ 9″0.03 0.00 1.2 0.0 0.34 0.0 0.00 0.00 8′ 9″-6.06 -0.33 -3.2 -1.4 -0.58 0.0 0.00 0.00 FB Span 1, W 8x10, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″6.06 0.00 1.7 1.9 0.33 0.0 0.00 0.00 0″0.00 -0.44 -3.2 0.0 -0.57 0.0 0.00 0.00 4′ 4 1/2″0.10 0.00 11.2 0.0 0.33 0.0 0.17 0.00 4′ 4 1/2″0.00 -0.44 11.2 0.0 -0.57 0.0 0.17 0.00 8′ 9″0.07 0.00 1.7 0.0 0.33 0.0 0.00 0.00 8′ 9″-6.06 -0.44 -3.2 -1.9 -0.57 0.0 0.00 0.00 FB Span 1, W 8x10, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″8.92 0.00 0.0 1.9 0.38 0.0 0.00 0.00 0″0.00 -0.43 -5.3 0.0 -0.56 0.0 0.00 0.00 4′ 4 1/2″0.32 0.00 14.6 0.0 0.38 0.0 0.23 0.00 4′ 4 1/2″0.00 -0.43 14.6 0.0 -0.56 0.0 0.23 0.00 8′ 9″0.19 0.00 1.9 0.0 0.38 0.0 0.00 0.00 8′ 9″-8.92 -0.43 -5.3 -1.9 -0.56 0.0 0.00 0.00 FB Span 1, W 8x10, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″6.06 0.00 1.3 0.8 3.68 0.0 0.00 0.00 0″0.00 -0.18 -3.8 0.0 -0.64 0.0 0.00 0.00 4′ 4 1/2″0.28 0.00 10.6 0.0 3.68 0.0 0.16 0.00 4′ 4 1/2″0.00 -0.18 10.6 0.0 -0.64 0.0 0.16 0.00 8′ 9″0.16 0.00 1.5 0.0 3.68 0.0 0.00 0.00 8′ 9″-6.06 -0.18 -3.8 -0.8 -0.64 0.0 0.00 0.00 FB Span 1, W 8x10, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″6.06 0.00 0.5 0.1 1.73 0.0 0.00 0.00 0″0.00 -0.01 -4.8 0.0 -0.47 0.0 0.00 0.00 4′ 4 1/2″0.40 0.00 9.5 0.0 1.73 0.0 0.14 0.00 4′ 4 1/2″0.00 -0.01 9.5 0.0 -0.47 0.0 0.14 0.00 8′ 9″0.20 0.00 1.4 0.0 1.73 0.0 0.00 0.00 8′ 9″-6.06 -0.01 -4.9 0.0 -0.47 0.0 0.00 0.00 BC Span 1, HSS 6x6x1/4, A500B-46 liiY Tekla Structural' Designer I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 27/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″1.06 0.21 1.1 0.1 0.00 1.5 0.00 0.00 0″-0.85 -0.10 -3.5 -0.6 -1.87 1.5 0.00 0.00 3′ 3 7/16″0.99 0.21 -1.0 0.1 -1.87 1.5 -0.01 0.00 3′ 3 7/16″-0.45 -0.10 -1.0 -0.6 -1.87 1.5 -0.01 -0.01 6′ 6 7/8″0.92 0.21 3.0 0.8 0.00 1.5 0.00 0.00 6′ 6 7/8″-0.31 -0.10 -1.8 -0.8 -1.87 1.5 0.00 0.00 Span 2, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.61 1.42 2.8 0.2 4.11 0.7 0.00 0.00 0″-0.84 0.00 -0.9 -1.6 -43.76 0.7 0.00 0.00 3′ 3 7/16″0.54 1.42 1.0 3.1 4.11 0.7 0.01 0.04 3′ 3 7/16″-0.43 1.42 1.0 0.0 -43.76 0.7 0.01 0.00 6′ 6 7/8″0.47 1.42 2.7 7.8 4.11 0.7 0.00 0.00 6′ 6 7/8″-0.27 0.00 -0.5 0.0 -43.76 0.7 0.00 0.00 Span 3, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.55 0.03 0.1 8.7 4.58 0.9 0.00 0.00 0″-0.29 -1.20 -0.4 0.0 -80.48 0.9 0.00 0.00 3′ 3 7/16″0.47 0.03 1.3 4.7 4.58 0.9 0.01 0.05 3′ 3 7/16″0.47 -1.20 -0.3 0.0 -80.48 0.9 0.00 0.00 6′ 6 7/8″0.67 0.03 2.7 0.8 4.58 0.9 0.00 0.00 6′ 6 7/8″0.00 -1.20 0.0 0.0 -80.48 0.9 0.00 0.00 Span 4, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.41 0.01 0.7 3.1 5.14 0.4 0.00 0.00 0″-0.41 -0.74 0.0 0.0 -110.40 0.4 0.00 0.00 3′ 3 7/16″0.34 0.01 1.6 0.7 5.14 0.4 0.02 0.01 3′ 3 7/16″-0.03 -0.74 -0.1 0.0 -110.40 0.4 0.00 0.00 6′ 6 7/8″0.55 0.01 2.6 0.1 5.14 0.4 0.00 0.00 6′ 6 7/8″-0.03 -0.74 -0.1 -1.8 -110.40 0.4 0.00 0.00 Span 5, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.30 0.03 1.0 0.2 5.50 0.3 0.00 0.00 0″-0.41 -0.51 0.0 -0.1 -133.68 0.3 0.00 0.00 3′ 3 7/16″0.23 0.03 1.9 0.0 5.50 0.3 0.02 0.00 3′ 3 7/16″-0.02 -0.51 0.0 -1.5 -133.68 0.3 0.00 -0.02 6′ 6 7/8″0.50 0.03 2.5 0.1 5.50 0.3 0.00 0.00 6′ 6 7/8″-0.02 -0.51 -0.1 -3.1 -133.68 0.3 0.00 0.00 Span 6, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.18 0.01 1.5 0.0 5.73 0.4 0.00 0.00 0″-0.41 -0.33 0.0 -1.6 -150.27 0.4 0.00 0.00 3′ 3 7/16″0.11 0.01 2.0 0.0 5.73 0.4 0.02 0.00 3′ 3 7/16″-0.01 -0.33 0.0 -2.7 -150.27 0.4 0.00 -0.03 liiY Tekla Structural' Designer I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 28/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 6′ 6 7/8″0.44 0.01 2.2 0.0 5.73 0.4 0.00 0.00 6′ 6 7/8″-0.02 -0.33 -0.1 -3.8 -150.27 0.4 0.00 0.00 Span 7, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.22 0.30 1.9 0.0 5.86 0.8 0.00 0.00 0″-0.39 -0.16 0.0 -2.9 -160.21 0.8 0.00 0.00 3′ 3 7/16″0.15 0.30 2.1 0.2 5.86 0.8 0.02 0.00 3′ 3 7/16″0.15 -0.16 0.0 -3.5 -160.21 0.8 0.00 -0.04 6′ 6 7/8″0.42 0.30 2.1 1.2 5.86 0.8 0.00 0.00 6′ 6 7/8″-0.05 -0.16 0.0 -4.0 -160.21 0.8 0.00 0.00 Span 8, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.05 0.05 2.1 1.2 5.89 -0.7 0.00 0.00 0″-0.44 -0.30 0.0 -3.7 -160.21 -0.7 0.00 0.00 3′ 3 7/16″-0.10 0.05 2.1 0.2 5.89 -0.7 0.02 0.00 3′ 3 7/16″-0.10 -0.30 0.0 -3.5 -160.21 -0.7 0.00 -0.04 6′ 6 7/8″0.37 0.05 1.9 0.0 5.89 -0.7 0.00 0.00 6′ 6 7/8″-0.17 -0.30 -0.1 -3.4 -160.21 -0.7 0.00 0.00 Span 9, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.02 0.22 2.2 0.0 5.83 -0.2 0.00 0.00 0″-0.45 -0.01 -0.1 -3.7 -150.27 -0.2 0.00 0.00 3′ 3 7/16″0.01 0.22 2.0 0.0 5.83 -0.2 0.02 0.00 3′ 3 7/16″-0.11 -0.01 0.0 -2.9 -150.27 -0.2 0.00 -0.03 6′ 6 7/8″0.39 0.22 1.5 0.0 5.83 -0.2 0.00 0.00 6′ 6 7/8″-0.18 -0.01 0.0 -2.2 -150.27 -0.2 0.00 0.00 Span 10, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.01 0.40 2.5 0.0 5.66 -0.3 0.00 0.00 0″-0.51 -0.05 -0.1 -3.1 -133.68 -0.3 0.00 0.00 3′ 3 7/16″0.01 0.40 1.9 0.0 5.66 -0.3 0.02 0.00 3′ 3 7/16″-0.23 -0.05 0.0 -1.8 -133.68 -0.3 0.00 -0.02 6′ 6 7/8″0.39 0.40 1.0 0.0 5.66 -0.3 0.00 0.00 6′ 6 7/8″-0.30 -0.05 0.0 -0.5 -133.68 -0.3 0.00 0.00 Span 11, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.02 0.63 2.6 0.1 5.36 0.7 0.00 0.00 0″-0.56 -0.01 -0.1 -2.0 -110.40 0.7 0.00 0.00 3′ 3 7/16″0.02 0.63 1.6 0.2 5.36 0.7 0.02 0.00 3′ 3 7/16″-0.34 -0.01 -0.1 0.2 -110.40 0.7 0.00 0.00 6′ 6 7/8″0.39 0.63 0.7 2.1 5.36 0.7 0.00 0.00 6′ 6 7/8″-0.41 -0.01 0.0 0.0 -110.40 0.7 0.00 0.00 Span 12, HSS 6x6x1/4, A500B-46 liiY Tekla Structural' Designer I I I I I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 29/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.00 1.05 2.7 1.3 4.86 -0.9 0.00 0.00 0″-0.67 -0.32 0.0 0.0 -80.48 -0.9 0.00 0.00 3′ 3 7/16″-0.47 1.05 1.3 3.8 4.86 -0.9 0.01 0.04 3′ 3 7/16″-0.47 -0.32 -0.3 3.8 -80.48 -0.9 0.00 0.04 6′ 6 7/8″0.29 1.05 0.1 7.2 4.86 -0.9 0.00 0.00 6′ 6 7/8″-0.55 -0.32 -0.5 -0.8 -80.48 -0.9 0.00 0.00 Span 13, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.25 0.06 2.7 6.5 4.44 -0.7 0.00 0.00 0″-0.47 -1.19 -0.5 -0.3 -43.76 -0.7 0.00 0.00 3′ 3 7/16″0.39 0.06 1.0 2.6 4.44 -0.7 0.01 0.03 3′ 3 7/16″-0.54 -1.19 1.0 -0.1 -43.76 -0.7 0.01 0.00 6′ 6 7/8″0.80 0.06 2.6 0.2 4.44 -0.7 0.00 0.00 6′ 6 7/8″-0.61 -1.19 -0.9 -1.3 -43.76 -0.7 0.00 0.00 Span 14, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.25 0.09 3.0 0.8 0.09 -1.5 0.00 0.00 0″-0.92 -0.21 -1.4 -0.6 -1.08 -1.5 0.00 0.00 3′ 3 7/16″0.27 0.09 -1.2 0.1 0.09 -1.5 -0.01 0.00 3′ 3 7/16″-0.99 -0.21 -1.2 -0.5 -1.08 -1.5 -0.01 -0.01 6′ 6 7/8″0.67 0.09 0.4 0.0 0.09 -1.5 0.00 0.00 6′ 6 7/8″-1.06 -0.21 -3.5 -0.6 -1.08 -1.5 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.00 1.32 1.0 0.0 35.06 -0.7 0.00 0.00 0″-0.73 0.00 0.0 -3.4 -0.30 -0.7 0.00 0.00 3′ 3″-0.73 1.32 0.3 1.5 35.13 -0.7 0.00 0.03 3′ 3″-0.73 1.32 -1.9 1.5 -0.30 -0.7 -0.03 0.03 6′ 6″1.38 1.04 1.3 3.4 41.32 -0.7 0.00 0.00 6′ 6″-0.14 -8.05 0.0 -5.5 -0.50 -0.7 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.94 0.80 0.1 0.0 28.99 -0.8 0.00 0.00 0″-0.62 0.00 -1.6 -2.6 -0.43 -0.8 0.00 0.00 3′ 3″1.11 0.80 1.8 0.0 29.06 -0.8 0.03 0.00 3′ 3″-0.62 0.00 -1.9 -0.1 -0.43 -0.8 -0.03 0.00 6′ 6″0.02 0.81 0.6 2.6 35.19 0.2 0.00 0.00 6′ 6″-2.91 -0.12 -0.8 -0.2 -0.59 0.2 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 liiY Tekla Structural' Designer I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 30/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.34 0.65 0.1 0.0 22.54 -0.5 0.00 0.00 0″-0.57 0.00 -0.5 -2.1 -0.07 -0.5 0.00 0.00 3′ 3″0.51 0.65 0.9 0.1 22.61 -0.5 0.01 0.00 3′ 3″-0.57 0.65 -1.8 0.1 -0.07 -0.5 -0.03 0.00 6′ 6″0.29 0.65 0.4 2.2 28.74 1.8 0.00 0.00 6′ 6″-0.02 -0.36 0.0 -0.2 -0.28 1.8 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.09 0.48 0.1 0.0 16.14 -0.6 0.00 0.00 0″-0.57 0.00 -0.2 -1.5 -0.04 -0.6 0.00 0.00 3′ 3″0.26 0.48 0.4 0.1 16.21 -0.6 0.01 0.00 3′ 3″-0.57 0.48 -1.7 0.1 -0.04 -0.6 -0.03 0.00 6′ 6″0.10 0.49 0.3 1.6 22.34 1.9 0.00 0.00 6′ 6″0.00 -0.43 -0.1 -0.2 -0.11 1.9 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.08 0.32 0.1 0.0 9.73 -0.5 0.00 0.00 0″-0.57 0.00 -0.2 -1.0 -0.01 -0.5 0.00 0.00 3′ 3″0.21 0.32 0.3 0.1 9.80 -0.5 0.01 0.00 3′ 3″-0.57 0.32 -1.7 0.1 -0.01 -0.5 -0.03 0.00 6′ 6″0.04 0.32 0.3 1.1 15.93 1.6 0.00 0.00 6′ 6″-0.06 -0.37 -0.2 -0.1 -0.04 1.6 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.20 0.19 0.1 0.0 6.14 -0.3 0.00 0.00 0″-0.57 0.00 -0.3 -0.6 -0.02 -0.3 0.00 0.00 3′ 3″0.20 0.19 0.4 0.1 6.21 -0.3 0.01 0.00 3′ 3″-0.57 0.19 -1.7 0.1 -0.02 -0.3 -0.03 0.00 6′ 6″0.35 0.19 0.3 0.7 9.49 1.1 0.00 0.00 6′ 6″0.00 -0.23 -0.3 -0.1 -0.02 1.1 0.00 0.00 SV Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.00 0.03 0.2 0.0 0.07 -0.1 0.00 0.00 0″-0.55 0.00 0.0 -0.1 -0.12 -0.1 0.00 0.00 3′ 3″0.13 0.03 0.1 0.0 0.13 -0.1 0.00 0.00 3′ 3″-0.55 0.00 -1.7 0.0 -0.12 -0.1 -0.03 0.00 6′ 6″0.03 0.03 1.8 0.1 8.95 0.3 0.00 0.00 6′ 6″-0.58 -0.08 -0.2 -0.1 -0.02 0.3 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 liiY Tekla Structural' Designer I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 31/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.22 0.00 0.1 0.5 3.29 0.2 0.00 0.00 0″-0.57 -0.16 -0.2 0.0 -0.01 0.2 0.00 0.00 3′ 3″0.22 -0.16 0.5 -0.1 3.36 0.2 0.01 0.00 3′ 3″-0.57 -0.16 -1.7 -0.1 -0.01 0.2 -0.03 0.00 6′ 6″0.38 0.07 0.3 0.0 9.49 -0.5 0.00 0.00 6′ 6″0.00 -0.16 -0.4 -0.6 -0.01 -0.5 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.14 0.00 0.1 1.0 9.73 0.4 0.00 0.00 0″-0.57 -0.32 -0.2 0.0 0.00 0.4 0.00 0.00 3′ 3″0.21 -0.32 0.5 -0.1 9.80 0.4 0.01 0.00 3′ 3″-0.57 -0.32 -1.7 -0.1 9.80 0.4 -0.03 0.00 6′ 6″0.03 0.22 0.3 0.1 15.93 -1.1 0.00 0.00 6′ 6″-0.10 -0.32 -0.5 -1.1 -0.03 -1.1 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.20 0.00 0.1 1.5 16.14 0.5 0.00 0.00 0″-0.57 -0.48 -0.3 0.0 -0.02 0.5 0.00 0.00 3′ 3″0.25 -0.48 0.4 -0.1 16.21 0.5 0.01 0.00 3′ 3″-0.57 -0.48 -1.7 -0.1 -0.02 0.5 -0.03 0.00 6′ 6″0.29 0.30 0.3 0.1 22.34 -1.4 0.00 0.00 6′ 6″0.00 -0.49 -0.6 -1.6 -0.10 -1.4 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.30 0.00 0.3 2.1 22.54 0.5 0.00 0.00 0″-0.58 -0.65 -0.5 0.0 -0.06 0.5 0.00 0.00 3′ 3″0.47 -0.65 0.8 -0.1 22.61 0.5 0.01 0.00 3′ 3″-0.58 -0.65 -1.8 -0.1 -0.06 0.5 -0.03 0.00 6′ 6″0.25 0.27 1.7 0.1 28.74 -1.4 0.00 0.00 6′ 6″-0.61 -0.65 0.0 -2.2 -0.25 -1.4 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.83 0.00 0.1 2.6 28.99 0.7 0.00 0.00 0″-0.62 -0.80 -1.4 0.0 -0.39 0.7 0.00 0.00 3′ 3″1.00 0.00 1.6 0.1 29.06 0.7 0.03 0.00 3′ 3″-0.62 -0.80 -1.9 0.0 -0.39 0.7 -0.03 0.00 6′ 6″0.39 0.10 0.6 0.2 35.19 0.4 0.00 0.00 6′ 6″-2.51 -0.81 -0.7 -2.6 -0.55 0.4 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 liiY Tekla Structural' Designer I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 32/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.09 0.00 0.8 3.4 35.06 0.7 0.00 0.00 0″-0.73 -1.22 0.0 0.0 -0.26 0.7 0.00 0.00 3′ 3″0.09 -1.22 0.4 -1.4 35.13 0.7 0.01 -0.03 3′ 3″-0.73 -1.22 -1.9 -1.4 -0.26 0.7 -0.03 -0.03 6′ 6″1.11 7.14 1.3 4.7 41.32 0.6 0.00 0.00 6′ 6″-0.18 -1.04 -0.1 -3.4 -0.45 0.6 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.02 0.00 0.4 0.3 0.58 0.1 0.00 0.00 0″-0.10 -0.22 0.0 0.0 -58.54 0.1 0.00 0.00 4′ 7 7/16″-0.14 -0.06 0.0 -0.3 0.58 0.1 0.00 -0.04 4′ 7 7/16″-0.14 -0.06 -0.2 -0.3 -58.49 0.1 -0.01 -0.04 9′ 2 15/16″0.00 0.12 0.0 0.0 0.58 0.1 0.00 0.00 9′ 2 15/16″-0.19 -0.05 -0.9 -0.5 -58.44 0.1 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.08 0.01 0.7 0.0 0.46 0.1 0.00 0.00 0″-0.08 -0.05 -0.3 -0.3 -50.43 0.1 0.00 0.00 4′ 7 7/16″0.05 0.12 0.3 0.0 0.46 0.1 0.02 0.01 4′ 7 7/16″-0.12 -0.01 0.0 -0.3 -50.38 0.1 0.00 -0.04 9′ 2 15/16″0.03 0.29 0.1 0.9 0.46 0.1 0.00 0.00 9′ 2 15/16″-0.17 -0.01 -0.4 -0.3 -50.34 0.1 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.01 0.01 0.7 0.6 0.46 0.2 0.00 0.00 0″-0.04 -0.17 0.0 -0.2 -41.12 0.2 0.00 0.00 4′ 7 7/16″-0.09 0.01 0.4 0.2 0.46 0.2 0.02 0.03 4′ 7 7/16″-0.09 0.00 0.0 -0.2 -41.08 0.2 0.00 -0.03 9′ 2 15/16″0.00 0.17 0.0 0.6 0.46 0.2 0.00 0.00 9′ 2 15/16″-0.14 0.00 -0.2 -0.2 -41.03 0.2 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.03 0.00 0.7 0.5 0.15 0.1 0.00 0.00 0″-0.03 -0.21 0.0 -0.2 -32.02 0.1 0.00 0.00 4′ 7 7/16″0.00 0.00 0.4 -0.2 0.15 0.1 0.02 0.00 4′ 7 7/16″-0.07 -0.04 0.0 -0.2 -31.98 0.1 0.00 -0.02 9′ 2 15/16″0.00 0.13 0.0 0.1 0.15 0.1 0.00 0.00 9′ 2 15/16″-0.12 0.00 -0.1 -0.2 -31.93 0.1 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 liiY Tekla Structural' Designer I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 33/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.03 0.00 0.6 0.2 0.04 0.1 0.00 0.00 0″-0.02 -0.19 0.0 -0.1 -22.89 0.1 0.00 0.00 4′ 7 7/16″-0.05 0.00 0.5 -0.3 0.04 0.1 0.03 -0.03 4′ 7 7/16″-0.05 -0.02 0.0 -0.3 -22.84 0.1 0.00 -0.03 9′ 2 15/16″0.00 0.15 0.2 0.0 0.04 0.1 0.00 0.00 9′ 2 15/16″-0.10 -0.01 -0.1 -0.2 -22.79 0.1 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.04 0.00 0.6 0.0 0.00 -0.2 0.00 0.00 0″-0.01 -0.18 0.0 -0.1 -13.77 -0.2 0.00 0.00 4′ 7 7/16″-0.03 -0.02 0.0 -0.4 -13.72 -0.2 0.00 -0.04 9′ 2 15/16″0.00 0.16 0.3 0.0 0.00 -0.2 0.00 0.00 9′ 2 15/16″-0.08 -0.02 0.0 -0.2 -13.68 -0.2 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.05 0.00 0.5 0.0 0.04 -0.3 0.00 0.00 0″0.00 -0.17 0.0 -0.1 -8.51 -0.3 0.00 0.00 4′ 7 7/16″0.00 0.00 0.6 -0.4 0.04 -0.3 0.03 -0.05 4′ 7 7/16″0.00 -0.01 0.0 -0.4 -8.46 -0.3 0.00 -0.05 9′ 2 15/16″0.00 0.17 0.5 0.0 0.04 -0.3 0.00 0.00 9′ 2 15/16″-0.05 -0.01 0.0 -0.2 -8.41 -0.3 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.02 0.21 0.4 0.0 0.59 -0.1 0.00 0.00 0″-0.10 0.00 0.0 -0.3 -58.54 -0.1 0.00 0.00 4′ 7 7/16″-0.14 0.05 0.0 0.3 0.59 -0.1 0.00 0.04 4′ 7 7/16″-0.14 0.00 -0.1 0.0 -58.49 -0.1 -0.01 0.00 9′ 2 15/16″0.00 0.05 0.0 0.5 0.59 -0.1 0.00 0.00 9′ 2 15/16″-0.19 -0.13 -0.9 0.0 -58.44 -0.1 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.08 0.06 0.7 0.3 0.42 -0.1 0.00 0.00 0″-0.08 -0.01 -0.3 0.0 -50.43 -0.1 0.00 0.00 4′ 7 7/16″0.04 0.02 0.3 0.3 0.42 -0.1 0.02 0.04 4′ 7 7/16″-0.12 -0.11 0.0 0.0 -50.38 -0.1 0.00 -0.01 9′ 2 15/16″0.03 0.02 0.1 0.3 0.42 -0.1 0.00 0.00 9′ 2 15/16″-0.17 -0.28 -0.4 -0.8 -50.34 -0.1 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 liiY Tekla Structural' Designer I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 34/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.01 0.17 0.7 0.2 0.42 -0.1 0.00 0.00 0″-0.04 -0.01 0.0 -0.5 -41.12 -0.1 0.00 0.00 4′ 7 7/16″-0.09 0.01 0.4 0.2 0.42 -0.1 0.02 0.03 4′ 7 7/16″-0.09 -0.01 0.0 -0.1 -41.08 -0.1 0.00 -0.02 9′ 2 15/16″0.00 0.01 0.0 0.2 0.42 -0.1 0.00 0.00 9′ 2 15/16″-0.14 -0.17 -0.2 -0.5 -41.03 -0.1 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.03 0.20 0.7 0.3 0.13 -0.1 0.00 0.00 0″-0.03 -0.06 0.0 -0.4 -32.02 -0.1 0.00 0.00 4′ 7 7/16″0.00 0.03 0.4 0.2 0.13 -0.1 0.02 0.02 4′ 7 7/16″-0.07 -0.06 0.0 0.0 -31.98 -0.1 0.00 0.00 9′ 2 15/16″0.00 0.00 0.0 0.2 0.13 -0.1 0.00 0.00 9′ 2 15/16″-0.12 -0.14 -0.1 -0.3 -31.93 -0.1 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.03 0.19 0.6 0.1 0.03 0.2 0.00 0.00 0″-0.02 0.00 0.0 -0.1 -22.89 0.2 0.00 0.00 4′ 7 7/16″-0.05 0.02 0.5 0.3 0.03 0.2 0.03 0.04 4′ 7 7/16″-0.05 0.00 0.0 -0.1 -22.84 0.2 0.00 -0.01 9′ 2 15/16″0.00 0.01 0.2 0.2 0.03 0.2 0.00 0.00 9′ 2 15/16″-0.10 -0.15 0.0 0.0 -22.79 0.2 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.04 0.17 0.6 0.1 0.00 0.2 0.00 0.00 0″-0.01 0.00 0.0 -0.1 -13.77 0.2 0.00 0.00 4′ 7 7/16″-0.03 0.00 0.0 0.4 -13.72 0.2 0.00 0.05 9′ 2 15/16″0.00 0.03 0.3 0.2 0.00 0.2 0.00 0.00 9′ 2 15/16″-0.08 -0.17 0.0 0.0 -13.68 0.2 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.05 0.17 0.5 0.1 0.03 0.3 0.00 0.00 0″0.00 0.00 0.0 0.0 -4.60 0.3 0.00 0.00 4′ 7 7/16″0.01 0.01 0.6 0.4 0.03 0.3 0.03 0.05 4′ 7 7/16″0.00 0.00 0.0 0.4 -4.56 0.3 0.00 0.05 9′ 2 15/16″0.00 0.01 0.5 0.2 0.03 0.3 0.00 0.00 9′ 2 15/16″-0.05 -0.17 0.0 0.0 -4.51 0.3 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 liiY Tekla Structural' Designer I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 35/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.08 0.01 0.7 0.2 0.00 0.1 0.00 0.00 0″-0.08 -0.08 -0.1 -0.2 -50.47 0.1 0.00 0.00 4′ 7 7/16″0.05 0.01 0.3 -0.3 -50.42 0.1 0.02 -0.04 4′ 7 7/16″-0.12 -0.08 0.3 -0.3 -50.42 0.1 0.02 -0.04 9′ 2 15/16″0.04 0.01 0.3 0.0 0.00 0.1 0.00 0.00 9′ 2 15/16″-0.17 -0.08 -0.4 -0.5 -50.37 0.1 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.02 0.03 0.3 0.0 0.00 0.1 0.00 0.00 0″-0.03 -0.05 0.0 -0.1 -58.50 0.1 0.00 0.00 4′ 7 7/16″-0.07 0.03 0.0 0.0 -58.45 0.1 0.00 0.00 4′ 7 7/16″-0.07 -0.05 0.0 -0.2 -58.45 0.1 0.00 -0.03 9′ 2 15/16″0.00 0.03 0.0 0.2 0.00 0.1 0.00 0.00 9′ 2 15/16″-0.12 -0.05 -0.4 -0.4 -58.41 0.1 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.05 0.01 0.5 0.1 0.00 -0.2 0.00 0.00 0″0.00 -0.01 0.0 -0.3 -8.51 -0.2 0.00 0.00 4′ 7 7/16″0.00 0.01 0.6 0.2 -8.46 -0.2 0.03 0.02 4′ 7 7/16″-0.01 -0.01 0.6 -0.4 -8.46 -0.2 0.03 -0.05 9′ 2 15/16″0.00 0.01 0.5 0.2 0.00 -0.2 0.00 0.00 9′ 2 15/16″-0.05 -0.01 0.0 -0.4 -8.41 -0.2 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.04 0.02 0.6 0.1 0.00 -0.2 0.00 0.00 0″-0.01 -0.02 0.0 -0.2 -13.77 -0.2 0.00 0.00 4′ 7 7/16″-0.03 0.02 0.5 0.2 -13.72 -0.2 0.03 0.02 4′ 7 7/16″-0.03 -0.02 0.5 -0.3 -13.72 -0.2 0.03 -0.04 9′ 2 15/16″0.00 0.02 0.3 0.2 0.00 -0.2 0.00 0.00 9′ 2 15/16″-0.08 -0.02 0.0 -0.4 -13.68 -0.2 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.05 0.00 0.5 0.3 0.00 0.2 0.00 0.00 0″0.00 -0.01 0.0 -0.1 -4.60 0.2 0.00 0.00 4′ 7 7/16″0.01 0.00 0.6 0.4 -4.56 0.2 0.03 0.05 4′ 7 7/16″-0.01 -0.01 0.6 -0.2 -4.56 0.2 0.03 -0.02 9′ 2 15/16″0.00 0.00 0.5 0.4 0.00 0.2 0.00 0.00 9′ 2 15/16″-0.05 -0.01 0.0 -0.2 -4.51 0.2 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 liiY Tekla Structural' Designer I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 36/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.04 0.01 0.6 0.3 0.01 0.2 0.00 0.00 0″-0.01 -0.03 0.0 -0.1 -13.77 0.2 0.00 0.00 4′ 7 7/16″-0.03 0.01 0.5 0.3 0.01 0.2 0.03 0.04 4′ 7 7/16″-0.03 -0.03 0.5 -0.2 -13.72 0.2 0.03 -0.02 9′ 2 15/16″0.00 0.01 0.3 0.4 0.01 0.2 0.00 0.00 9′ 2 15/16″-0.08 -0.03 0.0 -0.2 -13.68 0.2 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.03 0.03 0.6 0.1 0.00 0.1 0.00 0.00 0″-0.02 -0.01 0.0 -0.1 -22.89 0.1 0.00 0.00 4′ 7 7/16″-0.05 0.03 0.5 0.2 -22.84 0.1 0.03 0.03 4′ 7 7/16″-0.05 -0.01 0.5 -0.2 -22.84 0.1 0.03 -0.02 9′ 2 15/16″0.00 0.03 0.2 0.4 0.00 0.1 0.00 0.00 9′ 2 15/16″-0.10 -0.01 0.0 -0.2 -22.79 0.1 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.03 0.06 0.7 0.0 0.00 0.1 0.00 0.00 0″-0.03 0.00 0.0 -0.3 -32.03 0.1 0.00 0.00 4′ 7 7/16″-0.07 0.00 0.4 -0.2 -31.98 0.1 0.02 -0.03 9′ 2 15/16″0.00 0.06 0.0 0.3 0.00 0.1 0.00 0.00 9′ 2 15/16″-0.12 0.00 0.0 -0.2 -31.93 0.1 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.01 0.03 0.7 0.0 0.00 -0.2 0.00 0.00 0″-0.05 -0.01 0.0 -0.4 -41.13 -0.2 0.00 0.00 4′ 7 7/16″-0.09 0.03 0.4 -0.3 -41.08 -0.2 0.02 -0.04 4′ 7 7/16″-0.09 -0.01 0.4 -0.3 -41.08 -0.2 0.02 -0.04 9′ 2 15/16″0.00 0.03 0.0 0.0 0.00 -0.2 0.00 0.00 9′ 2 15/16″-0.14 -0.01 -0.2 -0.2 -41.04 -0.2 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.03 0.01 0.6 0.1 0.00 -0.1 0.00 0.00 0″-0.02 -0.04 0.0 0.0 -22.89 -0.1 0.00 0.00 4′ 7 7/16″-0.05 0.01 0.5 0.2 -22.84 -0.1 0.03 0.02 4′ 7 7/16″-0.05 -0.04 0.5 -0.2 -22.84 -0.1 0.03 -0.03 9′ 2 15/16″0.00 0.01 0.2 0.2 0.00 -0.1 0.00 0.00 9′ 2 15/16″-0.10 -0.04 0.0 -0.4 -22.79 -0.1 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 liiY Tekla Structural' Designer I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 37/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.03 0.00 0.7 0.3 0.00 -0.1 0.00 0.00 0″-0.03 -0.06 0.0 0.0 -32.03 -0.1 0.00 0.00 4′ 7 7/16″-0.07 -0.06 0.4 0.2 -31.98 -0.1 0.02 0.03 9′ 2 15/16″0.00 0.00 0.0 0.2 0.00 -0.1 0.00 0.00 9′ 2 15/16″-0.12 -0.06 -0.1 -0.2 -31.93 -0.1 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.01 0.00 0.7 0.5 0.00 0.2 0.00 0.00 0″-0.05 -0.03 0.0 0.0 -41.13 0.2 0.00 0.00 4′ 7 7/16″-0.09 -0.03 0.4 0.4 -41.08 0.2 0.02 0.05 9′ 2 15/16″-0.14 -0.03 -0.2 0.2 -41.04 0.2 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.10 0.10 0.7 0.2 0.00 0.2 0.00 0.00 0″-0.08 -0.01 -0.2 -0.3 -50.47 0.2 0.00 0.00 4′ 7 7/16″0.06 0.10 0.3 0.3 -50.42 0.2 0.02 0.04 4′ 7 7/16″-0.12 -0.01 0.3 0.3 -50.42 0.2 0.02 0.04 9′ 2 15/16″0.05 0.10 0.4 0.7 0.00 0.2 0.00 0.00 9′ 2 15/16″-0.17 -0.01 -0.4 0.0 -50.37 0.2 0.00 0.00 D Span 1, HSS 5x3x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.02 0.05 0.3 0.1 0.00 -0.1 0.00 0.00 0″-0.05 -0.04 0.0 0.0 -58.50 -0.1 0.00 0.00 4′ 7 7/16″-0.09 0.05 0.0 0.2 -58.45 -0.1 0.00 0.03 4′ 7 7/16″-0.09 -0.04 0.0 0.0 -58.45 -0.1 0.00 -0.01 9′ 2 15/16″0.00 0.05 0.0 0.4 0.00 -0.1 0.00 0.00 9′ 2 15/16″-0.14 -0.04 -0.5 -0.2 -58.41 -0.1 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.70 0.00 0.8 3.4 35.09 -0.3 0.00 0.00 0″-0.19 -1.05 -0.4 0.0 0.00 -0.3 0.00 0.00 3′ 3″0.70 -1.05 1.8 -0.1 35.15 -0.3 0.03 0.00 3′ 3″-0.19 -1.05 -0.3 -0.1 35.15 -0.3 -0.01 0.00 6′ 6″1.57 0.00 0.1 0.0 41.28 -0.3 0.00 0.00 6′ 6″0.00 -1.05 -1.3 -3.4 0.00 -0.3 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.76 0.45 0.2 2.6 28.99 0.5 0.00 0.00 liiY Tekla Structural' Designer I I I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 38/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″-0.17 -0.80 -1.1 -0.6 0.00 0.5 0.00 0.00 3′ 3″0.76 0.45 1.9 0.9 29.06 0.5 0.03 0.02 3′ 3″-0.17 -0.80 -0.3 0.0 29.06 0.5 0.00 0.00 6′ 6″0.00 0.00 0.2 0.0 35.22 -0.3 0.00 0.00 6′ 6″-2.40 -4.96 -0.9 -4.2 0.00 -0.3 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.58 0.02 0.0 2.1 22.54 0.4 0.00 0.00 0″0.00 -0.65 -0.3 -0.1 0.00 0.4 0.00 0.00 3′ 3″0.58 0.02 1.8 0.0 22.61 0.4 0.03 0.00 3′ 3″0.58 -0.65 1.8 0.0 22.61 0.4 0.03 0.00 6′ 6″0.61 0.00 0.3 0.0 28.74 -1.5 0.00 0.00 6′ 6″0.00 -0.65 -1.7 -2.2 0.00 -1.5 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.57 0.04 0.3 1.5 16.14 0.5 0.00 0.00 0″-0.20 -0.49 -0.1 -0.1 0.00 0.5 0.00 0.00 3′ 3″0.57 0.04 1.7 0.1 16.21 0.5 0.03 0.00 3′ 3″-0.20 -0.49 -0.4 -0.1 16.21 0.5 -0.01 0.00 6′ 6″0.26 0.00 0.6 0.0 22.34 -1.5 0.00 0.00 6′ 6″-0.29 -0.53 -0.3 -1.6 0.00 -1.5 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.57 0.03 0.0 1.0 9.73 0.3 0.00 0.00 0″-0.14 -0.32 -0.1 -0.1 0.00 0.3 0.00 0.00 3′ 3″0.57 0.03 1.7 0.0 9.80 0.3 0.03 0.00 3′ 3″-0.14 -0.32 -0.5 -0.1 9.80 0.3 -0.01 0.00 6′ 6″0.22 0.00 0.5 0.0 15.93 -1.1 0.00 0.00 6′ 6″-0.01 -0.37 -0.3 -1.1 0.00 -1.1 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.57 0.02 0.2 0.5 3.29 -0.2 0.00 0.00 0″-0.22 -0.16 -0.1 -0.1 0.00 -0.2 0.00 0.00 3′ 3″0.57 0.02 1.7 0.0 3.36 -0.2 0.03 0.00 3′ 3″-0.22 -0.16 -0.5 -0.1 3.36 -0.2 -0.01 0.00 6′ 6″0.17 0.00 0.4 0.0 9.49 -0.5 0.00 0.00 6′ 6″-0.38 -0.16 -0.3 -0.6 0.00 -0.5 0.00 0.00 SV Span 1, HSS 5x5x1/4, A500B-46 liiY Tekla Structural' Designer I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 39/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.55 0.03 0.0 0.0 0.15 -0.1 0.00 0.00 0″-0.17 -0.01 -0.2 -0.1 -0.12 -0.1 0.00 0.00 3′ 3″0.55 0.03 1.7 0.0 0.22 -0.1 0.03 0.00 3′ 3″-0.17 -0.01 -0.5 0.0 -0.12 -0.1 -0.01 0.00 6′ 6″0.58 0.08 0.3 0.1 8.95 0.3 0.00 0.00 6′ 6″-0.03 0.00 -1.8 0.0 0.00 0.3 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.57 0.19 0.3 0.1 6.14 0.3 0.00 0.00 0″-0.20 -0.03 -0.1 -0.6 0.00 0.3 0.00 0.00 3′ 3″0.57 0.19 1.7 0.1 6.21 0.3 0.03 0.00 3′ 3″-0.20 -0.03 -0.5 0.0 6.21 0.3 -0.01 0.00 6′ 6″0.18 0.30 0.3 0.7 9.49 1.1 0.00 0.00 6′ 6″-0.35 0.00 -0.3 0.0 0.00 1.1 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.57 0.32 0.0 0.1 9.73 -0.5 0.00 0.00 0″-0.12 -0.04 -0.1 -1.0 0.00 -0.5 0.00 0.00 3′ 3″0.57 0.32 1.7 0.1 9.80 -0.5 0.03 0.00 3′ 3″-0.12 -0.04 -0.4 -0.1 9.80 -0.5 -0.01 0.00 6′ 6″0.22 0.52 0.3 1.1 15.93 1.6 0.00 0.00 6′ 6″-0.01 0.00 -0.3 0.0 0.00 1.6 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.57 0.49 0.1 0.1 16.14 -0.6 0.00 0.00 0″-0.06 -0.04 -0.1 -1.5 0.00 -0.6 0.00 0.00 3′ 3″0.57 0.49 1.7 0.1 16.21 -0.6 0.03 0.00 3′ 3″-0.06 -0.04 -0.1 -0.1 16.21 -0.6 0.00 0.00 6′ 6″0.27 0.65 0.2 1.6 22.34 2.0 0.00 0.00 6′ 6″-0.02 0.00 -0.3 0.0 0.00 2.0 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.58 0.65 0.0 0.1 22.54 -0.4 0.00 0.00 0″0.00 -0.03 -0.2 -2.1 0.00 -0.4 0.00 0.00 3′ 3″0.58 0.65 1.8 0.0 22.61 -0.4 0.03 0.00 3′ 3″0.00 -0.03 0.0 0.0 22.61 -0.4 0.00 0.00 6′ 6″0.57 0.69 0.4 2.2 28.74 1.9 0.00 0.00 6′ 6″0.00 0.00 -0.4 0.0 0.00 1.9 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 liiY Tekla Structural' Designer I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 40/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.88 0.80 0.0 0.7 28.99 -0.6 0.00 0.00 0″0.00 -0.54 -1.3 -2.6 0.00 -0.6 0.00 0.00 3′ 3″0.88 0.80 1.9 0.0 29.06 -0.6 0.03 0.00 3′ 3″0.88 -0.54 0.0 -1.0 29.06 -0.6 0.00 -0.02 6′ 6″-2.81 5.67 -1.1 4.7 35.22 0.4 0.00 0.00 V Span 1, HSS 5x5x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.70 1.05 1.0 0.0 35.09 0.3 0.00 0.00 0″-0.26 0.00 -0.4 -3.4 0.00 0.3 0.00 0.00 3′ 3″0.70 1.05 1.8 0.1 35.15 0.3 0.03 0.00 3′ 3″-0.26 1.05 0.0 0.1 35.15 0.3 0.00 0.00 6′ 6″1.84 1.05 -1.3 3.4 41.28 0.3 0.00 0.00 BC Span 1, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″1.06 -0.33 -3.5 0.6 -1.40 -1.5 0.00 0.00 3′ 3 7/16″0.99 -0.33 -0.9 -0.6 -1.40 -1.5 -0.01 -0.01 6′ 6 7/8″0.94 -0.33 3.0 -1.7 -1.40 -1.5 0.00 0.00 Span 2, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.62 1.48 -0.9 -1.9 -43.71 -0.6 0.00 0.00 3′ 3 7/16″0.54 1.48 1.0 3.0 -43.71 -0.6 0.01 0.03 3′ 3 7/16″0.54 1.48 1.0 -0.3 -43.71 -0.6 0.01 0.00 6′ 6 7/8″0.57 1.48 2.7 7.8 0.00 -0.6 0.00 0.00 6′ 6 7/8″0.00 0.00 0.0 -0.1 -43.71 -0.6 0.00 0.00 Span 3, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.55 -1.23 -1.7 8.8 -80.49 0.6 0.00 0.00 3′ 3 7/16″0.53 -1.23 1.3 4.7 -80.49 0.6 0.01 0.05 3′ 3 7/16″0.53 -1.23 -0.2 0.0 -80.49 0.6 0.00 0.00 6′ 6 7/8″0.61 0.00 2.7 0.7 0.00 0.6 0.00 0.00 6′ 6 7/8″0.00 -1.23 0.0 -0.1 -80.49 0.6 0.00 0.00 Span 4, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.41 0.00 0.5 2.9 0.00 0.3 0.00 0.00 0″-0.02 -0.70 0.0 0.0 -110.42 0.3 0.00 0.00 3′ 3 7/16″0.00 -0.70 1.6 0.0 -110.42 0.3 0.02 0.00 6′ 6 7/8″0.00 -0.70 2.6 -1.7 -110.42 0.3 0.00 0.00 Span 5, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.30 0.00 1.0 0.1 0.00 0.2 0.00 0.00 liiY Tekla Structural' Designer I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 41/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.00 -0.49 -0.1 0.0 -133.69 0.2 0.00 0.00 3′ 3 7/16″0.23 -0.49 1.9 -1.5 -133.69 0.2 0.02 -0.02 6′ 6 7/8″0.26 -0.49 2.5 -3.1 -133.69 0.2 0.00 0.00 Span 6, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.18 0.03 1.5 0.1 0.00 -0.4 0.00 0.00 0″-0.04 -0.30 0.0 -1.7 -150.29 -0.4 0.00 0.00 3′ 3 7/16″0.11 0.03 2.0 0.2 -150.29 -0.4 0.02 0.00 3′ 3 7/16″0.11 -0.30 2.0 -2.7 -150.29 -0.4 0.02 -0.03 6′ 6 7/8″0.17 0.03 2.2 0.3 0.00 -0.4 0.00 0.00 6′ 6 7/8″-0.02 -0.30 0.0 -3.7 -150.29 -0.4 0.00 0.00 Span 7, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.22 0.00 1.9 0.8 0.00 -0.8 0.00 0.00 0″-0.10 -0.30 0.0 -3.0 -160.22 -0.8 0.00 0.00 3′ 3 7/16″0.15 0.00 2.1 0.0 -160.22 -0.8 0.02 0.00 3′ 3 7/16″-0.01 -0.30 2.1 -3.5 -160.22 -0.8 0.02 -0.04 6′ 6 7/8″0.11 0.00 2.1 0.0 0.00 -0.8 0.00 0.00 6′ 6 7/8″-0.05 -0.30 0.0 -3.9 -160.22 -0.8 0.00 0.00 Span 8, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.05 0.30 2.1 0.0 0.00 0.7 0.00 0.00 0″-0.10 0.00 0.0 -3.6 -160.22 0.7 0.00 0.00 3′ 3 7/16″0.01 0.30 2.1 0.0 -160.22 0.7 0.02 0.00 3′ 3 7/16″-0.10 0.00 2.1 -3.6 -160.22 0.7 0.02 -0.04 6′ 6 7/8″0.11 0.30 1.9 0.8 0.00 0.7 0.00 0.00 6′ 6 7/8″-0.17 0.00 0.0 -3.5 -160.22 0.7 0.00 0.00 Span 9, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.02 0.19 2.2 0.4 0.00 0.2 0.00 0.00 0″-0.16 -0.06 0.0 -3.5 -150.29 0.2 0.00 0.00 3′ 3 7/16″-0.10 0.19 2.0 0.2 -150.29 0.2 0.02 0.00 3′ 3 7/16″-0.10 -0.06 2.0 -2.9 -150.29 0.2 0.02 -0.03 6′ 6 7/8″0.06 0.19 1.5 0.0 0.00 0.2 0.00 0.00 6′ 6 7/8″-0.18 -0.06 0.0 -2.3 -150.29 0.2 0.00 0.00 Span 10, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″-0.25 0.38 2.5 -3.1 -133.69 -0.2 0.00 0.00 3′ 3 7/16″-0.23 0.38 1.9 0.2 -133.69 -0.2 0.02 0.00 3′ 3 7/16″-0.23 0.38 1.9 -1.8 -133.69 -0.2 0.02 -0.02 6′ 6 7/8″0.01 0.38 1.0 0.4 0.00 -0.2 0.00 0.00 6′ 6 7/8″-0.30 0.00 0.0 -0.6 -133.69 -0.2 0.00 0.00 Span 11, HSS 6x6x1/4, A500B-46 liiY Tekla Structural' Designer I I I I I I I I I I I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 42/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.02 0.58 2.6 0.8 0.00 -0.7 0.00 0.00 0″-0.29 -0.29 0.0 -1.9 -110.42 -0.7 0.00 0.00 3′ 3 7/16″0.02 0.58 1.6 0.1 -110.42 -0.7 0.02 0.00 3′ 3 7/16″-0.34 -0.29 1.6 -0.2 -110.42 -0.7 0.02 0.00 6′ 6 7/8″0.03 0.58 0.6 1.9 0.00 -0.7 0.00 0.00 6′ 6 7/8″-0.41 -0.29 0.0 -1.2 -110.42 -0.7 0.00 0.00 Span 12, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.00 1.08 2.7 0.2 0.00 0.9 0.00 0.00 0″-0.56 0.00 0.0 -1.3 -80.49 0.9 0.00 0.00 3′ 3 7/16″-0.48 1.08 1.3 3.7 -80.49 0.9 0.01 0.04 3′ 3 7/16″-0.48 1.08 -0.2 -0.2 -80.49 0.9 0.00 0.00 6′ 6 7/8″-0.55 1.08 -1.5 7.3 -80.49 0.9 0.00 0.00 Span 13, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.00 0.00 2.7 6.5 0.00 0.7 0.00 0.00 0″-0.55 -1.25 0.0 -0.1 -43.71 0.7 0.00 0.00 3′ 3 7/16″-0.54 -1.25 1.0 2.4 -43.71 0.7 0.01 0.03 3′ 3 7/16″-0.54 -1.25 1.0 -0.3 -43.71 0.7 0.01 0.00 6′ 6 7/8″-0.62 -1.25 -0.9 -1.7 -43.71 0.7 0.00 0.00 Span 14, HSS 6x6x1/4, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″-0.91 0.29 3.0 -1.5 -3.02 1.5 0.00 0.00 3′ 3 7/16″-0.99 0.29 -0.6 -0.5 -3.02 1.5 -0.01 -0.01 6′ 6 7/8″-1.06 0.29 -3.5 0.0 -3.02 1.5 0.00 0.00 BD Span 1, HSS 2x2x3/16, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.00 0.00 0.0 0.0 5.56 0.0 0.00 0.00 0″0.00 0.00 0.0 0.0 -0.05 0.0 0.00 0.00 10′ 11 5/16″0.00 0.00 0.0 0.0 5.56 0.0 0.00 0.00 10′ 11 5/16″0.00 0.00 0.0 0.0 -0.05 0.0 0.00 0.00 BD Span 1, HSS 2x2x3/16, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.00 0.00 0.0 0.0 -9.83 0.0 0.00 0.00 10′ 11 5/16″0.00 0.00 0.0 0.0 -9.83 0.0 0.00 0.00 BD Span 1, HSS 2x2x3/16, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.00 0.00 0.0 0.0 5.16 0.0 0.00 0.00 0″0.00 0.00 0.0 0.0 -0.06 0.0 0.00 0.00 liiY Tekla Structural' Designer I I I I I I I I I I I I I I I I I I I I I I I Project Ionis Job Ref. 10660 Structure Pedestrian Bridge Sheet no. Page 43/43 Calc. by CB Date 3/16/2023 Chk'd by Date 12/15/2022 App'd by Date 12/7/2022 Tekla Structural Designer, version: 22.3.1.0 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 10′ 11 5/16″0.00 0.00 0.0 0.0 5.16 0.0 0.00 0.00 10′ 11 5/16″0.00 0.00 0.0 0.0 -0.06 0.0 0.00 0.00 BD Span 1, HSS 2x2x3/16, A500B-46 Position [ft, in] Shear [kip]Moment [kip ft]Axial Force [kip] Torsion [kip ft] Deflection [in] Major Minor Major Minor Major Minor 0″0.00 0.00 0.0 0.0 -8.56 0.0 0.00 0.00 10′ 11 5/16″0.00 0.00 0.0 0.0 -8.56 0.0 0.00 0.00 liiY Tekla Structural' Designer I I I I I I I I I I I I I I I I I I I I I I I I QUADRANT EPP USA, Inc. • 2120 Fairmont Avenue • P.O. Box 14235 • Reading, PA 19612­4235 Tel: (610) 320­6660 • Fax: (610) 320­6866 Q UA DR A NT tNGINURI/\G PlASTIC fROOU<TS C.U:>dr.mt EPP TIVAR I'!> 1000 UHM\'/ .PE, Virgin I AS n.1 Product 03b S hee11 l'll)IU!\111 l'rr.(l•rTI"" S p"'" k 1>1;.i.11· '.'/,tl.r:t l•h',n,r,~· '.'h11,;1 ,:..t.<111q:.b · -~. S,o.J•,i .• 1 U!'f'J'llllll!\111 l'ft,f\llrTll'U H;n.h~:•., .S,·,.,eC, 1:i·:11: :~ .... ~, 1:-· ,ih ,S:..-:1:1:1 "· 6s·,: '.1!C'f) Ll:rf.Jl!)' :.: J~>k T.,-.;1. 'A:o•!d .•< rltr.n StT~' ►l,,,)IJ'"' 1;:r.111.: C11as:r.·:.k• S.l\'m,i:, ,:11m;n 1:,,..,. ·,1.:.:t:111~ Sb,-: S.11111J:1 I: :O Imp>::, 1101< b~:i r: .... 1;c;,.., .,r =-,;., ;,, .. :-ir ,.., ;,, G,11:' Sufi)' I tr,hll) ,-.,.,.:.r: •J:ln!\ti• I Jl'\l'.fflr.-lll l'Mpt,"11'.!, !'In r .... r,,.,.;.,..; ,. ,,.,. !'1+1••·•· Oi:ltcri: ~,·~•:rl 111:lllt:II:, :~m11;p Oi,tii;,t,tr F~•.t~• ll'IUl!llll 1-'rr.(lt:rtlrt~ CT!,1111,, 1·,~·m:i (..:11\IJ:\\i,•: t.1•·r91-'nr· t,bxm.m !,:11b: -,r1~,:n,~1,:, A, IJ("ltc1:r en-~-~~ .,1 u: ••• -':, •;.'~4 p-.,1 F1,.,,,,,,,.;,1; t.111 l t Ccrn,:lbn:e Pro,:ertlc':i ;«,.11,.,f c.,,::-.:.N3 1-1:..:. us= 11;; t", US-. Chtt \•I I ;11,,_mlMI UAIIIWnll.,_ l'MpA fftlli ;.n "., ,Sh,·~ ::i-1 3! ;.,.,.,. , ........ Alt.dvl, ,'.lt'..:.11:~. ~·o,?~P I · 1 14) ;.11 .. 1;.,. .•• , .. ~." Chcr11.r.dS,~.,:-, 1:111S.r.1,-,..' Sl'-111\ lh•$Sfl:r.\,:, c,n. 'WU:)S.t· i;i·. llrr W;.lf.t .' :i:um H•,•J,:,: ,, k n, • ,.:.Jii;· tli-.; 1~,.:1·,::r~n,, i•1:m:t< ,., ... ttir. :-.?1(•,:,\ .. ~-J:11: :- ,:-).)1: ~: "· ,tu 1,t;I-';. Z.7E¥~ J" .. 11;.p,c:n, ~..:..1t-·F.:. ,1i;11:..::1>i: ~:n:F;.. J3.1 t-'r),. 0,L Cd:' 1( :, 1:~~•l'!;.ff/Of,( I.Ir, trtr. ,_ 1 :c .. 11!' dm, 2.1 -,r1i-»,U(fl~~llt ll!I Ii ~•;11nm ).O:~c Ul!•II""" i..x11, Ur,trtr. 133 1111,;1,~·c )~.)? ·•'.'.'m K l"'I!. •,: !H'C .u,,; •.,;. >S :i:I"• ""'°':, , .... " l.lc11t: ,., Ye~ "' t-...- Yu tw U11trt~ limit-.! Arf.Af A~« ;.4-,;.,11.111\:1: ,\((tjr.,)'( ;.,""l'"h ► l•.c<tjr.,)\I( l'.r, litatt-.1 1,m1,:r., ;l4-,;11i;.111l;o: J•:«t p:,)~( l-nJ11~11 C.~3011in'. ,-::111·«. ,:-:.:,10 ~; :,~::,~· ,: :, :,:i ~tu•,~ .;c, :, ~ .. ; )':;::, r-i S: :, r,,,1 n:: :,.; ~C•O l-$1 .-3;;, V<:i ,,, '., ., 1 ns11~11 :,._ 1 r.11 .. ,·;. "'"" 2., 1-•~1<n:)' I~ : ,o,;,;•~V,ln ;,,::CSl'.l :.1•,.,, ... , 'l►.-(• 1 ns11~11 11:• .i11'i· ;F 2.S-1 3"1. 11,111 l' ·F u ··1 "' ((I ,oh•""' 1: "' Cngll~h ....... .... t ,, ... "' "M, "' 1<ns1u11 -llih,•tJ ~.(.'IT-~?iA .,.J;\;"''·~u• N.<~p::~t ;,,,m~;• .!I,. .\(<~p::.Nt '" -llili:tJ """ .,.,,a.:,1.•.,U11 .l'~((~~:~t ;:{llflfl'l!IIITJ. :\S:'ll ):~ Imm:·~ llfl. ;>.:.11 .. ,t,;;u: 1:1,rn;;-1 lm:11,·H 11, ...!·TI! CSi0'.2t t:Mlfl'l!IIITJ. l ,'5"'.' ~'140 A:; t• :,;.;•11 . .:..-:;;-..• )>}!S :\-$ ,.. ,.;;,::u ;.,;,"l.' ~~•* A-~,, .. : :,~~o A~; ,-· :•:!:II ·o►-. :,:r.. :\n·: :-:.~'> A:;. t> )<~, .",'.; ..... :n:,a, i~ .•, r:,f ··► ;, ... 1.~n-.cv:r.,; 1:10 ~led-1CO /•' ~,.-11l?h1:r~•; 0 •,l ',•;1:•; i:t1111mr.Ml', ;.,;,-... -m,; :\.~-,..• )l•:O ;>hr 11\fl'I',' :\:; ,... :l .. ll A!"l-' ;•1!0 i:t1111fl'lr.M\', A!-"li :-::· 1:~~-;i n:. -':i:t-;;:,:; ·; l',1"111 .e1111 Tinn ·"·~' N: _,;;·,111 Fx1im~ .. ~ 'l. , !I QUADRANT EPP USA, Inc. • 2120 Fairmont Avenue • P.O. Box 14235 • Reading, PA 19612­4235 Tel: (610) 320­6660 • Fax: (610) 320­6866 I·«-"" ;.t. I ;.~1,, 1<>·► K~o,::, ::::·~ o..,~·,i1,1ti•10: riu~ztio ,:nr.r I.fa: Hl,Jbli:->· "'""l'"l:• lil'IIICO """~!·•· ;~ .. . ,riltd l\,·,11,r,·.1 ' Spans, ft Slab depth, in wc, psf Sc, in3 φV, lb Ac, in2 Iav, in4 1 Span 2 Spans 3+ Spans WWF 4 37 1.14 3973 21.3 4.4 6.93 9.12 8.55 0.023 4.5 43 1.38 4609 24.8 6.2 6.55 8.66 8.15 0.027 5 49 1.63 5276 28.3 8.5 6.23 8.27 7.82 0.032 5.5 55 1.88 5975 32.1 11.3 5.96 7.92 7.53 0.036 6 61 2.14 6704 36.0 14.6 5.74 7.61 7.28 0.041 6.5 67 2.40 7465 40.1 18.4 5.59 7.34 7.06 0.045 7 73 2.66 8256 44.3 22.9 5.46 7.09 6.87 0.050 Superimposed Live Load, psf Spans, ft Stud Spacing Slab depth, in φMn, k.in 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 No Studs 4 48.57 400 400 385 330 285 250 220 195 175 155 140 125 110 4.5 58.79 400 400 400 400 350 305 270 240 210 190 170 150 135 5 69.29 400 400 400 400 400 360 320 280 250 225 200 180 160 5.5 80.00 400 400 400 400 400 400 370 325 290 260 235 210 190 6 90.87 400 400 400 400 400 400 400 370 330 295 265 240 215 6.5 101.87 400 400 400 400 400 400 400 400 375 335 300 270 245 7 112.95 400 400 400 400 400 400 400 400 400 370 335 300 270 Deck Type Gage = 20 Fy = 50 ksi f 'c = 3 ksi Concrete Wt = 145 pcf Deck Properties t = 0.0358 in W = 1.9 psf As = 0.57 in2 I = 0.197 in4 Sp = 0.23 in3 Sn = 0.237 in3 Rbe = 2290 lb φVnt = 4280 lb Rbi = 3050 lb req’d studs = 0.79 per ft, 0.75’’ Dia 0.0% ponding has been included Notes: SDI defaults to a maximum uniform load of 400 psf. This limit is to guard against mistakenly prorating high concentrated loads into equivalent uniform loads which require further design. REF#C51222 1.5 Composite 20 GA – 50 KSI NORMAL WEIGHT CONCRETE 21/2" " 36" Cover 11/2" ·~ ®9~®□□rn~[1 ~ METAL DECK<& BAR JOIST ++ Superimposed Live Load, psf Spans, ft Stud Spacing Slab depth, in φMn, k.in 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 One Foot 4 65.03 400 400 400 400 375 315 265 225 195 165 145 125 110 4.5 77.14 400 400 400 400 400 400 365 320 275 235 205 180 160 5 89.25 400 400 400 400 400 400 400 375 335 300 270 245 215 5.5 101.36 400 400 400 400 400 400 400 400 380 340 305 275 250 6 113.48 400 400 400 400 400 400 400 400 400 380 345 310 280 6.5 125.59 400 400 400 400 400 400 400 400 400 400 380 345 310 7 137.70 400 400 400 400 400 400 400 400 400 400 400 375 340 Superimposed Live Load, psf Spans, ft Stud Spacing Slab depth, in φMn, k.in 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 Two Feet 4 58.97 400 400 400 400 355 310 265 225 195 165 145 125 110 4.5 70.39 400 400 400 400 400 370 330 290 260 230 205 180 160 5 81.91 400 400 400 400 400 400 385 340 305 270 245 220 200 5.5 93.50 400 400 400 400 400 400 400 390 345 310 280 250 230 6 105.16 400 400 400 400 400 400 400 400 390 350 315 285 255 6.5 116.86 400 400 400 400 400 400 400 400 400 390 350 315 285 7 128.59 400 400 400 400 400 400 400 400 400 400 385 350 315 Superimposed Live Load, psf Spans, ft Stud Spacing Slab depth, in φMn, k.in 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 Three Feet 4 55.51 400 400 400 380 330 290 255 225 195 165 145 125 110 4.5 66.52 400 400 400 400 400 350 310 275 245 220 195 175 160 5 77.70 400 400 400 400 400 400 360 320 285 255 230 205 185 5.5 89.00 400 400 400 400 400 400 400 370 330 295 265 240 215 6 100.40 400 400 400 400 400 400 400 400 370 330 300 270 245 6.5 111.86 400 400 400 400 400 400 400 400 400 370 335 300 270 7 123.38 400 400 400 400 400 400 400 400 400 400 370 330 300 1.5 Composite 20 GA – 50 KSI NORMAL WEIGHT CONCRETE REF#C51222 m~~®□□rn~[1 ~ METAL DECK<& BAR JOIST ++ TE C H N I C A L G U I D E – C o r DL E ss F AsTE N I N G © 2 0 2 1 D E W A L T – rEV . C SECTION CONTENTS ANCHORS & FASTENERS General InformatIon 1 Co r d l e s s F a s t e n i n g General Information.........................1 Tool Specifications ..........................1 Performance Data ............................2 Stick-E Assemblies .........................4 Ordering Information .......................5 20V MAX* CORDLESS CONCRETE NAILER CCN FASTENERS FOR CONCRETE AND MASONRY CCN FASTENERS FOR STEEL CCN SPECIALTY FASTENERS STICK-E™ ASSEMBLIES SUITABLE BASE MATERIALS •Normal-weight concrete •Lightweight concrete •Grouted concrete masonry (CMU) •Hollow concrete masonry •steel GENERAL INFORMATION CORDLESS CONCRETE NAILER (CCN) Gas-free fastening System INTRODUCTION The 20V MAX* Cordless Concrete Nailer is an operationally gas-free fastening system designed for use in concrete, concrete masonry block and steel applications. running on only a DEWALT 20V MAX* battery, this tool eliminates the need for fuel cells and powder loads. It provides a productive and powerful fastening solution with no licensing requirements, and can operate on the user’s existing DEWALT battery platform. This system is ideal for commercial framing and track installation, light gauge mechanical and electrical installations, and can be considered for insulation, lathing and other surface prep applications. stick-E assemblies are specially designed components for various fastening attachments into concrete, concrete masonry block and steel. GENERAL APPLICATIONS AND USES • Attaching light gauge steel track to concrete, concrete masonry block (CMU) or steel • Attaching mechanical clips and fixings to concrete, concrete masonry block (CMU) or steel • Attaching plywood to concrete or concrete masonry block (CMU) • Attaching lath to concrete, concrete masonry block (CMU) or steel • Attaching furring strips to concrete or concrete masonry block (CMU) FEATURES AND BENEFITS +Gas-free operation and no licensing requirements +Field-serviceable driver blade and tool-free, interchangeable nosepieces +Adjustable power settings, low noise and recoil levels +Comparable application speed to gas concrete nailers +Dual LED lights illuminate work surface and provide tool diagnostics +Can be mounted on a pole tool +600 shots per battery charge (see tool specifications section)** APPROVALS AND LISTINGS • International Code Council, Evaluation service (ICC-Es), Esr-4076 • Code compliant with the International Building Code/International residential Code: 2018 IBC/IrC, 2015 IBC/IrC, 2012 IBC/IrC, and 2009 IBC/IrC • Tested in accordance with AsTM E1190 and ICC-Es AC70 for use in concrete, lightweight concrete, concrete over steel deck, concrete masonry and steel GUIDE SPECIFICATIONS CsI Divisions: 03 15 00 - Concrete Accessories, 05 05 23 - Metal Fastenings, 06 05 23 - Wood, Plastic and Composite Fastenings, 09 22 16.23 - Fasteners. Power-driven fasteners shall be CCN fasteners as supplied by DEWALT, Towson, MD. Fasteners shall be installed in accordance with the published instructions and the Authority Having Jurisdiction. TOOL SPECIFICATIONS Tool Model DCN890P2 DCN891B | DCN891P2 Tool Width 4"4" Tool Length 15.25"15.25" Tool Height 16.25"15" Tool Weight (Bare, without battery)9.35 lbs 8.9 lbs. Pin Length (Range)1/2" to 2-1/4"1/2" to 1" Pin Capacity 33 33 Approximate Shots per Battery Charge**600 600 * For 20V MAX* Maximum initial battery voltage measured without a workload is 20 volts. Nominal voltage is 18.**With 5.0Ah battery pack (driving 0.102" diameter shank, 3/4" long fasteners into concrete) DEWALT. ~--~-------~ .... -. --.. ~ .. . .- : •: •: •: •: • ~ · ~ •: •: •: 1-800-4DEWALT. E -Q) z~ ()'g, ()-§ ----S5 a:~ w~ ..I'+- -Kl ◄ (') z w 1-w a: () z 0 () = w ..I D a: 0 () TE C H N I C A L G U I D E – C o r DL E ss F AsTE N I N G © 2 0 2 1 D E W A L T – rEV . C ANCHORS & FASTENERSPerformance Data Co r d l e s s F a s t e n i n g 2 PERFORMANCE DATA Allowable Loads for CCN Fasteners Driven into Normal Weight Concrete1,2,3,4,5 Shank Type Shank Diameter (inch) MinimumEmbed.(inch) Minimum Spacing(inch) Minimum Edge Distance (inch) Minimum Concrete Compressive Strength (f'c) 2,500 psi 3,000 psi 4,000 psi 6,000 psi Tension (lbs)Shear (lbs)Tension (lbs)Shear (lbs)Tension (lbs)Shear (lbs)Tension (lbs)Shear (lbs) straight 0.102 3/4 4 3-1/4 155 155 175 175 195 170 -- 4 2 125 135 145 155 140 170 -- 0.145 3/4 4 3-1/4 125 125 145 145 140 180 -- 4 2 120 125 140 145 140 180 -- Tapered 0.120 5/8 3-1/4 3-1/4 150 120 170 135 170 145 75 135 2-3/4 150 120 170 135 165 135 75 135 2 150 90 170 100 160 100 75 95 For sI: 1 lbf = 4.48 N, 1 inch = 25.4mm, 1 psi = 6.895 kPa 1. Fasteners must not be driven until the concrete has reached the tabulated compressive strength. 2. Concrete thickness must be a minimum of 3 times the embedment depth of the fastener or 2 inches, whichever is greater. Consideration of smaller spacing and edge distances may be givenbased on application or jobsite testing. 3. The tabulated allowable load values are for the fastener only. Wood or steel members connected to the steel substrate must be investigated in accordance with accepted design criteria. 4. Allowable load capacities are calculated using minimum required safety factors in accordance with ICC-Es AC70; the applied safety factor for the tabulated allowable loads is 5.0. Consideration of additional safety factors may be necessary depending on the application such as life safety. 5. Multiple fasteners are recommended for any attachment for increased reliability. Allowable Loads for CCN Fasteners Driven into Minimum 3,000 psi Sand-Lightweight Concrete and Sand-Lightweight Concrete over Steel Deck1,5,6,7,8 Shank Type Shank Diameter (inch) Minimum Embedment (inch) Installed Directly Into Concrete2 Installed Through 3-inch Deep Steel Deck Panel into Concrete3 Installed Through 1-1/2 -inch Deep Steel Deck Panel into Concrete4 Top Cover(inches) Tension(lbs)Shear (lbs) Tension (lbs)Shear (lbs)Tension (lbs)Shear (lbs)MinimumConcreteToppingThicknessUpper Flute Lower Flute Upper Flute Lower Flute Upper Flute Lower Flute Upper Flute Lower Flute straight 0.102 3/4 145 160 125 105 260 240 105 105 245 240 2 Tapered 0.120 5/8 120 140 95 80 205 185 100 90 205 200 2 For sI: 1 lbf = 4.48 N, 1 inch = 25.4mm, 1 psi = 6.895 kPa 1. Fasteners must not be driven until the concrete has reached the tabulated compressive strength. 2. For straight shank fasteners installed directly into concrete (e.g. top of concrete deck), fastener edge distance must be 3.25 inches minimum and fastener spacing must be 4 inches minimum. Fastener spacing must be a minimum of 4 inches for straight shank fasteners and a minimum of 3.25 inches for tapered shank fasteners. 3. The steel deck must have a minimum base material thickness of 0.035 inch, minimum yield strength, Fy, of 33 ksi, minimum tensile strength of 45 ksi and conform to the profile requirements of Figure 1. Fastener edge distance (lower flute locations) must be a minimum of 1-1/8 inches. Fastener spacing must be a minimum of 4 inches for straight stank fasteners and a minimum of 3.25 inches for tapered shank fasteners. Consideration of smaller spacing and edge distances may be given based on application or jobsite testing. 4. The steel deck must have a minimum base material thickness of 0.035 inch, minimum yield strength, Fy, of 33 ksi, minimum tensile strength of 45 ksi and conform to the profile requirements of Figure 2. Fasteners may be installed in an inverted deck profile provided the requirements of the fastener installation locations are followed. Fastener edge distance (lower flute locations) must be a minimum of 7/8 inch. Fastener spacing must be a minimum of 4 inches for straight stank fasteners and a minimum of 3.25 inches for tapered shank fasteners. Consideration of smaller spacing and edge distances may be given based on application or jobsite testing. 5. Embedment is measured from the surface of the steel deck; the steel deck panel must have a base-metal thickness of 0.030-inch (22 gauge) to 0.048-inch (18 gauge). Consideration for the thickness of the material fastened to the base material must be given to achieve the required embedment for the fasteners. 6. The tabulated allowable load values are for the fastener only. Wood or steel members connected to the steel substrate must be investigated in accordance with accepted design criteria. 7. Allowable load capacities are calculated using minimum required safety factors in accordance with ICC-Es AC70; the applied safety factor for the tabulated allowable loads is 5.0.Consideration of additional safety factors may be necessary depending on the application such as life safety. 8. Multiple fasteners are recommended for any attachment for increased reliability. Figure 1 - Fastener Installation Through Soffit of 3-inch Deep Concrete-filled Composite Steel Deck Floor and Roof Assemblies Figure 2 - Fastener Installation Through the Soffit of 1-1/2 inch Deep Concrete-filled Composite Steel Deck Floor and Roof Assemblies 3" (Typ.) SAND-LIGHTWEIGHT CONCRETE OVER STEEL DECK (MINIMUM 3,000 PSI) FastenersPin (Typ) Concrete Topping Thickness Min. 4-1/2" Lower Flute (Ridge) Upper Flute (Valley) 1-1/8" Min. Steel Deck Gauge Min. Concrete Topping Thickness 1-1/2" (Typ.)Min. Typ.1-3/4" Upper Flute (Valley) Lower Flute (Ridge) Steel Deck Gauge Min. SAND-LIGHTWEIGHT CONCRETE OVER STEEL DECK (MINIMUM 3,000 PSI) FastenersPin (Typ) 7/8" Min. G) ~n ,,o ro ~:a !a ~-r-cB m ~en tB-cn 3n 0 z n :a m ..... m z ► -r-m :a -n n z - H ·: .. , ;,t}'.!:·5,' >.-: .. , > .. •. r~ ~~·-~~· ,.: ... DEWALi ,-:-.. \>:·.. \>:·.. \>:· .. . ', "<l : ____ ._:...... • : '?. ,"~ www.DEWALT.com TECHNICAL GUIDE – CorDLEss FAsTENING ©2021 DEWALT – rEV. C ANC H O R S & F A S T E N E R S Pe r f o r m a n c e D a t a 3 Cordless Fastening Al l o w a b l e L o a d s f o r C C N F a s t e n e r s D r i v e n i n t o C o n c r e t e M a s o n r y U n i t s 1,2 , 3 , 4 , 5 , 6 Sh a n k Ty p e Sh a n k Di a m e t e r (i n c h ) Min i m u m Em b e d m e n t (in c h ) Mi n i m u m Ed g e Di s t a n c e (i n c h ) Ho l l o w C M U Gr o u t e d C M U Fa c e S h e l l Mo r t a r J o i n t Fa c e S h e l l Mo r t a r J o i n t To p o f G r o u t e d C e l l Te n s i o n (l b s ) Sh e a r (l b s ) Te n s i o n (l b s ) Sh e a r (l b s ) Te n s i o n (l b s ) Sh e a r (l b s ) Te n s i o n (l b s ) Sh e a r (l b s ) Te n s i o n (lb s ) Sh e a r (lb s ) str a i g h t 0. 1 0 2 7/ 8 3- 3 / 4 70 14 5 55 11 5 85 11 0 60 10 0 14 0 12 0 0. 1 4 5 3/ 4 3- 3 / 4 10 5 65 65 55 - - - - - - Ta p e r e d 0. 1 0 2 5/ 8 3- 3 / 4 65 45 60 80 60 70 60 80 13 5 10 0 2 65 45 - - 60 70 - - - - Fo r sI: 1 l b f = 4 . 4 8 N , 1 i n c h = 2 5 . 4 m m , 1 p s i = 6 . 8 9 5 k P a 1. Co n c r e t e m a s o n r y u n i t s m u s t b e m i n i m u m l i g h t w e i g h t u n i t s c o n f o r m i n g t o A sTM C 9 0 . T h e m i n i m u m n o m i n a l s i z e o f t h e C M U m u s t b e 8 i n c h e s h i g h b y 8 i n c h e s w i d e b y 1 6 i n c h e s l o n g , w i t h a m i n i m u m 1 - 1 / 4 - i n c h - t h i c k f a c e s h e l l t h i c k n e s s . 2. Fa s t e n e r s m u s t b e i n s t a l l e d a m i n i m u m o f 1 - 1 / 4 i n c h e s f r o m t h e v e r t i c a l m o r t a r j o i n t s . A l l o w a b l e l o a d s f o r f a s t e n e r s i n s t a l l e d in v e r t i c a l m o r t a r j o i n t s i s o u t s i d e t h e s c o p e o f t h i s d a t a . 3. Fo r s t r a i g h t s h a n k f a s t e n e r s , m i n i m u m f a s t e n e r s p a c i n g i s 4 i n c h e s c e n t e r - t o - c e n t e r . F o r t a p e r e d s h a n k f a s t e n e r s , m i n i m u m f a s te n e r s p a c i n g i s 2 i n c h e s c e n t e r - t o - c e n t e r . 4. she a r l o a d s f o r f a s t e n e r s i n s t a l l e d i n t h e f a c e s h e l l o r t o p o f g r o u t e d c e l l s c a n b e a p p l i e d i n a n y d i r e c t i o n . she a r d i r e c t i o n c a n b e h o r i z o n t a l o r v e r t i c a l a l o n g t h e C M U w a l l p l a n e . 5. Th e a l l o w a b l e t e n s i o n a n d s h e a r v a l u e s a r e f o r t h e f a s t e n e r s o n l y . M e m b e r s c o n n e c t e d t o t h e c o n c r e t e m a s o n r y m u s t b e i n v e s t i g a te d i n a c c o r d a n c e w i t h a c c e p t e d d e s i g n c r i t e r i a . 6. All o w a b l e l o a d c a p a c i t i e s a r e c a l c u l a t e d u s i n g m i n i m u m r e q u i r e d s a f e t y f a c t o r s i n a c c o r d a n c e w i t h I C C - E s A C 7 0 ; t h e a p p l i e d s a f e t y f a c t o r f o r t h e t a b u l a t e d a l l o w a b l e l o a d s i s 5 . 0 . Co n s i d e r a t i o n o f a d d i t i o n a l s a f e t y f a c t o r s m a y b e n e c e s s a r y d e p e n d i n g o n t h e a p p l i c a t i o n s u c h a s l i f e s a f e t y . Al l o w a b l e L o a d s f o r C C N F a s t e n e r s i n S t e e l 1,5 Sh a n k T y p e Sh a n k Di a m e t e r (i n c h ) Mi n i m u m Sp a c i n g (i n c h ) Mi n i m u m Ed g e Di s t a n c e (i n c h ) Al l o w a b l e L o a d s In A S T M A 3 6 / A 1 1 0 1 S t e e l Al l o w a b l e L o a d s AS T M A 5 7 2 G r a d e 5 0 o r A S T M A 9 9 2 S t e e l 1/ 4 2 3/ 8 3 1/ 2 3,4 1/ 4 2 3/ 8 3 1/ 2 4 Te n s i o n (l b s ) Sh e a r (l b s ) Te n s i o n (l b s ) Sh e a r (l b s ) Te n s i o n (l b s ) Sh e a r (lb s ) Te n s i o n (lb s ) Sh e a r (lb s ) Te n s i o n (lb s ) Sh e a r (lb s ) Te n s i o n (lb s ) Sh e a r (lb s ) Ta p e r e d (1 / 2 - i n c h - l o n g ste e l p i n ) 0. 1 2 0 1 1/ 2 17 0 31 5 16 5 26 5 15 5 22 0 18 5 34 0 16 5 27 0 16 0 23 0 Fo r sI: 1 l b f = 4 . 4 8 N , 1 i n c h = 2 5 . 4 m m , 1 p s i = 6 . 8 9 5 k P a 1. ste e l b a s e m a t e r i a l m u s t h a v e m i n i m u m y i e l d a n d t e n s i l e s t r e n g t h s ( F y a n d F u) e q u a l t o 3 6 k s i a n d 5 8 k s i , r e s p e c t i v e l y f o r A 3 6 / A 1 1 0 1 s t e e l a n d e q u a l t o 5 0 k s i a n d 6 5 k s i , r e s p e c t i v e l y f o r A5 7 2 G r a d e 5 0 o r A 9 9 2 s t e e l . 2. Fa s t e n e r s m u s t b e d r i v e n t o w h e r e t h e f u l l p o i n t l e n g t h o f t h e f a s t e n e r p e n e t r a t e s t h r o u g h t h e s t e e l b a s e m a t e r i a l . 3. Fa s t e n e r p o i n t p e n e t r a t i o n i s n o t n e c e s s a r y p r o v i d e d a m i n i m u m e m b e d m e n t d e p t h o f 0 . 2 9 5 i n c h i s a c h i e v e d . 4. Fa s t e n e r p o i n t p e n e t r a t i o n i s n o t n e c e s s a r y p r o v i d e d a m i n i m u m e m b e d m e n t d e p t h o f 0 . 2 9 5 i n c h i s a c h i e v e d . A l l o w a b l e l o a d v a l u e ap p l i e s t o s t e e l b a s e m a t e r i a l w i t h t h i c k n e s s o f 1 / 2 i n c h an d g r e a t e r . 5. All o w a b l e l o a d c a p a c i t i e s a r e c a l c u l a t e d u s i n g m i n i m u m r e q u i r e d s a f e t y f a c t o r s i n a c c o r d a n c e w i t h I C C - E s A C 7 0 ; t h e a p p l i e d s a f e t y f a c t o r f o r t h e t a b u l a t e d a l l o w a b l e l o a d s i s 5 . 0 . Co n s i d e r a t i o n o f a d d i t i o n a l s a f e t y f a c t o r s m a y b e n e c e s s a r y d e p e n d i n g o n t h e a p p l i c a t i o n s u c h a s l i f e s a f e t y . 6. Mu l t i p l e f a s t e n e r s a r e r e c o m m e n d e d f o r a n y a t t a c h m e n t f o r i n c r e a s e d r e l i a b i l i t y . Al l o w a b l e T e n s i l e P u l l - O v e r S t r e n g t h s f o r L i g h t G a u g e S t e e l F r a m i n g w i t h C C N F a s t e n e r s 1, 2 , 3 Sh a n k Ty p e Sh a n k Di a m e t e r (i n c h ) He a d Dia m e t e r (i n c h ) 16 G a u g e 18 G a u g e 20 G a u g e 22 G a u g e 25 G a u g e Al l o w a b l e (l b s ) Al l o w a b l e (l b s ) Al l o w a b l e (l b s ) Al l o w a b l e (l b s ) All o w a b l e (lb s ) str a i g h t 0. 1 0 2 0.2 5 33 5 27 0 20 0 17 0 12 0 0. 1 4 5 0.2 5 33 5 27 0 20 0 17 0 12 0 Ta p e r e d 0. 1 2 0 0.2 5 33 5 27 0 20 0 17 0 12 0 1. Ta b u l a t e d p u l l - o v e r s t r e n g t h s w e r e c a l c u l a t e d i n a c c o r d a n c e w i t h I C C - E s A C 7 0 a n d A I sI s10 0 - 1 2 . A l l o w a b l e l o a d v a l u e s a r e b a s e d o n a s a f e t y f a c t o r o f 3 . 0 . 2. All o w a b l e p u l l o v e r c a p a c i t i e s o f s h e e t s t e e l o r f r a m i n g m e m b e r s h o u l d b e c o m p a r e d t o t h e f a s t e n e r t e n s i l e c a p a c i t y i n c o n c r e t e , m a s o n r y o r s t e e l t o d e t e r m i n e t h e c o n t r o l l i n g r e s i s t a n c e l o a d . 3. she e t s t e e l o r f r a m i n g m e m b e r w i t h t e n s i l e s t r e n g t h o f 4 5 k s i a s s u m e d f o r c a l c u l a t i n g t a b u l a t e d v a l u e s . ... ! a ffl I a Ill I ~ ~ CORDLESS CONCRETE NAILER (CCN) Gas-Free Fastening System TECHNICAL GUIDE – CorDLEss FAsTENING ©2021 DEWALT – rEV. C ANC H O R S & F A S T E N E R S Cordless Fastening 4 StIcK- e aSS em BlIeS ST I C K - E A S S E M B L I E S - S E L E C T I O N G U I D E A N D P E R F O R M A N C E D A T A 1, 2 , 3 , 4 , 5 , 6 , 7 , 8 Tr a d e / Co n t r a c t o r Ap p l i c a t i o n St i c k - E A c c e s s o r y St i c k - E a n d F a s t e n e r Fa s t e n e r Ca t . N o . De s c r i p t i o n Su i t a b l e B a s e Ma t e r i a l Al l o w a b l e Lo a d lb s . Min . P i n Em b e d . in . Sh a n k Di a . x L e n g t h in . CC N Sy s t e m Pin C a t . N o . Pl a s t e r e r & I n s u l a t o r In s t a l l i n g w i r e l a t h e f o r s t u c c o o r su r f a c i n g a p p l i c a t i o n s DF D 4 0 5 1 0 1 La t h i n g W a s h e r 1" Co n c r e t e 60 5/ 8 0. 1 0 2 x 3 / 4 or 0. 1 0 2 x 0 . 7 8 0 ( K ) DC N 8 9 0 0 7 5 or DC N 8 9 0 7 8 0 4 Ho l l o w / G r o u t e d Blo c k ( C M U ) 55 5/ 8 At t a c h i n g r i g i d e x t e r i o r f o a m i n s u l a t i o n DF D 4 0 5 7 1 6 In s u l a t i o n W a s h e r 1- 7 / 1 6 " Co n c r e t e 30 5/ 8 0. 1 0 2 x 1 - 1 / 4 DC N 8 9 0 1 2 5 Ho l l o w / G r o u t e d Blo c k ( C M U ) 30 5/ 8 At t a c h i n g D e n s G l a s s ® b o a r d DF D 4 0 5 9 0 1 De n z G l a s s Wa s h e r 1 - 1 / 4 " Li g h t G a u g e ste e l F r a m i n g 15 20 18 g a u g e 16 g a u g e 0. 1 0 8 x 1 - 3 / 8 ( K ) DC N 8 9 0 4 1 3 8 0 Ele c t r i c a l At t a c h i n g 3 / 8 " D i a . f l e x i b l e B X c a b l e DF D 4 0 5 3 3 8 BX C l i p 3 / 8 " Co n c r e t e 10 5/ 8 0. 1 0 2 x 3 / 4 or 0. 1 0 2 x 0 . 7 8 0 ( K ) DC N 8 9 0 0 7 5 or DC N 8 9 0 7 8 0 4 Ho l l o w / G r o u t e d Blo c k ( C M U ) 10 5/ 8 At t a c h i n g 1 / 2 " d i a m e t e r c o n d u i t DF D 4 0 5 3 1 2 r Co n d u i t C l i p 1 / 2 " Co n c r e t e 10 5/ 8 Ho l l o w / G r o u t e d Blo c k ( C M U ) 10 5/ 8 At t a c h i n g 3 / 4 " d i a m e t e r c o n d u i t DF D 4 0 5 3 3 4 r Co n d u i t C l i p 3 / 4 " Co n c r e t e 10 5/ 8 Ho l l o w / G r o u t e d Blo c k ( C M U ) 10 5/ 8 Att a c h i n g 1 " d i a m e t e r c o n d u i t DF D 4 0 5 3 1 0 r Co n d u i t C l i p 1 " Co n c r e t e 10 5/ 8 Ho l l o w / G r o u t e d Blo c k ( C M U ) 10 5/ 8 Ha n g i n g 1 / 2 " d i a m e t e r c o n d u i t DF D 4 0 5 4 1 2 Min i C o n d u i t Cla m p 1 / 2 " Co n c r e t e 10 5/ 8 Ha n g i n g 3 / 4 " d i a m e t e r c o n d u i t DF D 4 0 5 4 3 4 Min i C o n d u i t Cla m p 3 / 4 " Co n c r e t e 10 5/ 8 Ha n g i n g 1 " d i a m e t e r c o n d u i t DF D 4 0 5 4 1 0 Min i C o n d u i t Cla m p 1 " Co n c r e t e 10 5/ 8 Fo r t e m p o r a r y l i g h t i n g o r w i r e s t r a p p i n g (u s i n g z i p - t i e o r v e l c r o ) DF D 4 0 5 9 0 2 Ca b l e T i e Do n u t 1 - 1 / 4 " Co n c r e t e 10 5/ 8 Me c h a n i c a l & E l e c t r i c a l At t a c h i n g p e n c i l r o d , ho o k s & w i r e a s s e m b l i e s DF D 4 0 5 5 5 0 rig h t A n g l e Cl i p 9 0 ° Co n c r e t e 75 5/ 8 0. 1 0 2 x 3 / 4 or 0. 1 0 2 x 0 . 7 8 0 ( K ) DC N 8 9 0 0 7 5 or DC N 8 9 0 7 8 0 4 At t a c h i n g p e n c i l r o d , ho o k s & w i r e a s s e m b l i e s DF D 4 0 5 5 3 0 An g l e C l i p 6 0 ° Co n c r e t e 75 5/ 8 Ha n g i n g 1 / 4 " t h r e a d e d r o d DF D 4 0 5 2 1 4 rod H a n g e r 1 / 4 " Co n c r e t e 75 5/ 8 Ha n g i n g 3 / 8 " t h r e a d e d r o d DF D 4 0 5 2 3 8 rod H a n g e r 3 / 8 " Co n c r e t e 75 5/ 8 Ha n g i n g 1 / 4 " t h r e a d e d r o d DF D 4 0 5 2 1 5 Po s t N u t rod Ha n g e r 1 / 4 " Co n c r e t e 75 5/ 8 Ha n g i n g 3 / 8 " t h r e a d e d r o d DF D 4 0 5 2 3 9 Po s t N u t rod Ha n g e r 3 / 8 " Co n c r e t e 75 5/ 8 she e t M e t a l At t a c h d u c t s t r a p s t o s u s p e n d H V A C DF D 4 0 5 1 1 2 str a p M t l W a s h e r 1/ 2 " Co n c r e t e 50 5/ 8 0. 1 0 2 x 3 / 4 o r 0. 1 0 2 x 0 . 7 8 0 ( K ) DC N 8 9 0 0 7 5 o t DC N 8 9 0 7 8 0 4 Co n c r e t e At t a c h i n g # 3 r e b a r / d o w e l s o r wi r e b a s k e t s DF D 4 0 5 3 0 0 reb a r / D o w e l Ba s k e t C l i p Co n c r e t e 50 5/ 8 0. 1 0 2 x 3 / 4 o r 0. 1 0 2 x 0 . 7 8 0 ( K ) DC N 8 9 0 0 7 5 o r DC N 8 9 0 7 8 0 4 De n s G l a s s i s a r e g i s t e r d t r a d e m a r k o f G e o r g i a - P a c i f i c . K = K n u r l e d 1. Fa s t e n e r s i n s t a l l e d i n t o c o n c r e t e o r c o n c r e t e m a s o n r y b l o c k m u s t n o t b e d r i v e n u n t i l t h e b a s e m a t e r i a l h a s r e a c h e d t h e m i n i m u m sp e c i f i e d c o m p r e s s i v e s t r e n g t h . E m b e d m e n t i s m e a s u r e d f r o m th e s u r f a c e o f t h e b a s e m a t e r i a l t o t h e e n d o f t h e f a s t e n e r . 2. Fo r f a s t e n e r s i n s t a l l e d i n t o c o n c r e t e , t h e m e m b e r t h i c k n e s s m u s t b e a m i n i m u m o f 3 t i m e s t h e e m b e d m e n t d e p t h o f t h e f a s t e n e r o r 2 i n c h e s , w h i c h e v e r i s g r e a t e r . 3. Fo r i n s t a l l a t i o n s i n t o c o n c r e t e o r c o n c r e t e m a s o n r y b l o c k , m i n i m u m f a s t e n e r e d g e a n d e n d d i s t a n c e i s 3 - 3 / 4 i n c h e s ; m i n i m u m f a s t en e r s p a c i n g i s 4 i n c h e s c e n t e r - t o - c e n t e r . 4. Fo r i n s t a l l a t i o n s i n t o c o n c r e t e m a s o n r y b l o c k , f a s t e n e r s m a y b e i n s t a l l e d i n t o t h e f a c e s h e l l o r h o r i z o n t a l m o r t a r j o i n t . T h e f ac e s h e l l t h i c k n e s s o f h o l l o w c o n c r e t e m a s o n r y b l o c k m u s t b e 1 - 1 / 4 i n c h min i m u m . F a s t e n e r s m u s t b e i n s t a l l e d a m i n i m u m o f 1 - 1 / 4 i n c h f r o m t h e v e r t i c a l m o r t a r j o i n t s ; a l l o w a b l e l o a d s f o r f a s t e n e r s i n s ta l l e d i n v e r t i c a l m o r t a r j o i n t s i s o u t s i d e t h e s c o p e o f t h i s d a t a . 5. All o w a b l e l o a d c a p a c i t i e s f o r c o n c r e t e a r e b a s e d o n a m i n i m u m c o n c r e t e c o m p r e s s i v e s t r e n g t h o f 3 0 0 0 p s i ; a l l o w a b l e l o a d c a p a c i t ie s i n c o n c r e t e m a y b e i n c r e a s e d b y 1 5 p e r c e n t f o r in s t a l l a t i o n s i n t o 4 0 0 0 p s i c o n c r e t e a n d a l l o w a b l e l o a d c a p a c i t e s m u s t b e r e d u c e d b y 1 0 p e r c e n t f o r i n s t a l l a t i o n s i n t o 2 5 0 0 p s i c o n c r e t e . A l l o w a b l e l o a d c a p a c i t e s f o r c o n c r e t e m a s o n r y b l o c k are b a s e d o n a m i n i m u m m a s o n r y c o m p r e s s i v e s t r e n g t h o f 2 0 0 0 p s i . 6. All o w a b l e l o a d c a p a c i t i e s f o r c o n c r e t e a n d c o n c r e t e m a s o n r y b l o c k a r e c a l c u l a t e d u s i n g m i n i m u m r e q u i r e d s a f e t y f a c t o r s i n a c c o r da n c e w i t h I C C - E s A C 7 0 ; t h e a p p l i e d s a f e t y f a c t o r f o r t h e ta b u l a t e d a l l o w a b l e l o a d s i s 5 . 0 . C o n s i d e r a t i o n o f a d d i t i o n a l s a f e t y f a c t o r s m a y b e n e c e s s a r y d e p e n d i n g o n a p p l i c a t i o n s u c h a s lif e s a f e t y . 7. All o w a b l e l o a d s f o r l i g h t g a u g e s t e e l f r a m i n g a r e c a l c u l a t e d u s i n g m i n i m u m r e q u i r e d s a f e t y f a c t o r s i n a c c o r d a n c e I C C - E s A C 2 5 9 u s i n g l i g h t g a u g e s t e e l f r a m e d p a n e l s s h e a t h e d w i t h De n s G l a s s ; t h e a p p l i e d s a f e t y f a c t o r f o r t h e t a b u l a t e d a l l o w a b l e l o a d s i s 3 . 0 . L i g h t g a u g e s t e e l f r a m i n g m e m b e r s m u s t b e m i n i m u m 1 8 g a u g e t h i c k n e s s . A l l o w a b l e n e g a t i v e ( o u t w a r d ) t r a n s v e r s e pr e s s u r e o n t h e p a n e l s m u s t n o t e x c e e d 1 5 p s f f o r t h e s p e c i f i e d s h e a t h i n g t h i c k n e s s , m a x i m u m s t e e l s t u d s p a c i n g a n d f a s t e n e r s p ac i n g . C o n s i d e r a t i o n o f a d d i t i o n a l s a f e t y f a c t o r s m a y b e ne c e s s a r y d e p e n d i n g o n t h e a p p l i c a b l e d e s i g n m e t h o d a n d / o r t h e a p p l i c a t i o n s u c h a s l i f e s a f e t y . W o o d m e m b e r s a n d / o r o t h e r p r o p r ie t a r y m a t e r i a l s c o n n e c t e d t o t h e l i g h t g a u g e s t e e l s u b s t r a t e mu s t b e i n v e s t i g a t e d f o r c o m p l i a n c e w i t h t h e a p p l i c a b l e c o d e s . 8. Mu l t i p l e f a s t e n e r s a r e r e c o m m e n d e d f o r a n y a t t a c h m e n t f o r i n c r e a s e d r e l i a b i l i t y . I J ii,,I I Ill 11:1 I CORDLESS CONCRETE NAILER (CCN) Gas-Free Fastening System TECHNICAL GUIDE – CorDLEss FAsTENING ©2021 DEWALT – rEV. C ANC H O R S & F A S T E N E R S 5 Cordless Fastening or Der InG I nf o r m a t Ion OR D E R I N G I N F O R M A T I O N CC N C o n c r e t e F a s t e n e r s Ca t . N o . Sh a n k D i a . in . Le n g t h in . Fi n i s h Ty p i c a l A p p l i c a t i o n s Bo x Ct n . DC N 8 9 0 0 7 5 0. 1 0 2 3/ 4 Zin c Me t a l t r a c k t o c o n c r e t e 10 0 0 6 DC N 8 9 0 1 0 0 0. 1 0 2 1 Zin c Me t a l t r a c k t o c o n c r e t e 10 0 0 6 DC N 8 9 0 1 2 5 0. 1 0 2 1- 1 / 4 Zin c Fix t u r e t o c o n c r e t e o r b l o c k 10 0 0 6 DC N 8 9 0 1 5 0 0. 1 0 2 1- 1 / 2 Zin c Fix t u r e t o c o n c r e t e o r b l o c k 10 0 0 6 DC N 8 9 1 2 0 7 5 0. 1 2 0 3/ 4 Zin c Me t a l t r a c k t o c o n c r e t e o r b l o c k 10 0 0 6 DC N 8 9 1 0 7 5 0. 1 4 5 3/ 4 Zin c Me t a l t r a c k t o c o n c r e t e 10 0 0 6 DC N 8 9 0 2 2 5 0. 1 3 7 2- 1 / 4 Zin c 2x w o o d t o c o n c r e t e 50 0 6 Fa s t e n e r s h a v e a h e a d d i a m e t e r o f 0 . 2 5 - i n c h a n d z i n c p l a t e d a c c o r d i n g t o A sTM B 6 9 5 , C l a s s 5 . CC N S t e e l F a s t e n e r s Ca t # Sh a n k D i a . in . Le n g t h in . Fi n i s h Ty p i c a l A p p l i c a t i o n s Bo x Ct n . DC N 8 9 1 0 5 0 0 0. 1 2 0 1/ 2 Zin c Me t a l t r a c k t o s t e e l 10 0 0 6 Fa s t e n e r s h a v e a h e a d d i a m e t e r o f 0 . 2 5 - i n c h a n d z i n c p l a t e d a c c o r d i n g t o A sTM B 6 9 5 , C l a s s 5 . CC N S p e c i a l t y F a s t e n e r s Ca t # Sh a n k Dia . in . St e p Dia . in . Le n g t h in . Kn u r l (K ) Fi n i s h Ty p i c a l A p p l i c a t i o n s Bo x Ct n . DC N 8 9 4 1 3 8 0 0. 1 0 8 - 1- 3 / 8 Ye s Zin c Ply w o o d / F i b e r g l a s s g y p s u m sh e a t h i n g t o s t e e l s t u d 10 0 0 6 DC N 8 9 1 0 6 8 0 0. 1 2 0 0. 1 0 2 0. 6 8 0 - Ye l l o w Zin c Me t a l t r a c k t o s t e e l or h a r d c o n c r e t e 10 0 0 6 DC N 8 9 1 7 3 0 0 0. 1 2 0 0. 1 0 2 0. 7 3 0 - Ye l l o w Zin c 1/ 4 " p l y w o o d , f u r r i n g s t r i p t o st e e l o r h a r d c o n c r e t e 10 0 0 6 DC N 8 9 0 7 8 0 4 0. 1 0 2 0. 0 8 8 0. 7 8 0 Ye s Zin c ste e l , s t u d s , p r e c a s t c o n c r e t e , blo c k , sti c k - E a c c e s s o r i e s 10 0 0 6 Fa s t e n e r s h a v e a h e a d d i a m e t e r o f 0 . 2 5 - i n c h a n d z i n c p l a t e d a c c o r d i n g t o A sTM B 6 9 5 , C l a s s 5 . To o l s a n d A c c e s s o r i e s Ca t # De s c r i p t i o n Bo x Ct n . DC N 8 9 0 B Co r d l e s s C o n c r e t e N a i l e r ( B a r e T o o l ) , 2 - 1 / 4 " L o n g P i n C a p a c i t y DC N 8 9 0 4 sta n d a r d / D r y w a l l C o n t a c t T r i p , K i t B o x 1 - DC N 8 9 0 P 2 Co r d l e s s C o n c r e t e N a i l e r ( K i t ) , 2 - 1 / 4 " L o n g P i n C a p a c i t y Tw o 2 0 V * M A X P r e m i u m L i t h i u m I o n B a t t e r i e s ( 5 A h ) , Ch a r g e r D C N 8 9 0 4 sta n d a r d / D r y w a l l C o n t a c t T r i p , K i t B o x 1 - DC N 8 9 1 B 20 V M A X * M a g a z i n e C o r d l e s s C o n c r e t e N a i l e r ( B a r e T o o l ) DC N 8 9 1 2 0 V M A X * C o r d l e s s C o n c r e t e N a i l e r , D C N 8 9 0 7 1 " M a g a z i n e DC N 8 9 0 5 sta n d a r d / D r y w a l l N o s e P i e c e , K i t B o x 1 - DC N 8 9 1 P 2 20 V M A X * C o r d l e s s C o n c r e t e N a i l e r ( K I T ) DC N 8 9 1 2 0 V M A X * C o r d l e s s C o n c r e t e N a i l e r , ( 2 ) D C B 2 0 5 2 0 V M A X * X r Li t h i u m I o n B a t t e r i e s ( 5 A H ) , D C N 8 9 0 7 1 " M a g a z i n e , D C N 8 9 0 5 sta n d a r d / D r y w a l l N o s e P i e c e , C h a r g e r , K i t B o x 1- - DC N 8 9 0 1 rep l a c e m e n t D r i v e r B l a d e 10 4 DC N 8 9 0 2 Ma g n e t i c sti c k - E ™ C o n t a c t T r i p ( n o s e p i e c e ) 10 4 DC N 8 9 0 3 stic k - E ™ C o n t a c t T r i p ( n o s e p i e c e ) 10 4 DC N 8 9 0 4 sta n d a r d / D r y w a l l C o n t a c t T r i p ( n o s e p i e c e ) 10 4 DC N 8 9 0 5 6' P o l e T o o l ( f o r C o r d l e s s C o n c r e t e N a i l e r o n l y ) (p o l e t o o l c a n b e u s e d a s 3 ' o r 6 ' e x t e n s i o n ) 1 3 DC N 8 9 0 6 2- 1 / 4 " D e e p T o o l M a g a z i n e 1 - DC N 8 9 0 7 1" D e e p T o o l M a g a z i n e 1 - ... ! a ffl I a Ill I ~ ~ t CORDLESS CONCRETE NAILER (CCN) Gas-Free Fastening System TECHNICAL GUIDE – CorDLEss FAsTENING ©2021 DEWALT – rEV. C ANC H O R S & F A S T E N E R S orDer InG I n f o r m a t Ion Cordless Fastening 6 St i c k - E A s s e m b l i e s Ca t . N o . De s c r i p t i o n Ct n Q t y . Ms t r Q t y . DF D 4 0 5 1 0 1 stic k - E L a t h i n g W a s h e r 1 " 10 0 10 0 0 DF D 4 0 5 1 0 0 La t h i n g W a s h e r ( N o stic k - E ) 10 0 10 0 0 DF D 4 0 5 7 1 6 stic k - E I n s u l a t i o n W a s h e r 1 - 7 / 1 6 " 10 0 10 0 0 DF D 4 0 5 9 0 1 sti c k - E D e n z G l a s s W a s h e r 1 - 1 / 4 " 25 0 10 0 0 DF D 4 0 5 3 3 8 sti c k - E B X C l i p 3 / 8 " 10 0 10 0 0 DF D 4 0 5 4 1 2 stic k - E C o n d u i t C l a m p 1 / 2 " 50 20 0 DF D 4 0 5 4 3 4 stic k - E C o n d u i t C l a m p 3 / 4 " 50 20 0 DF D 4 0 5 4 1 0 stic k - E C o n d u i t C l a m p 1 " 50 10 0 DF D 4 0 5 3 1 2 r stic k - E M i n i C o n d u i t C l i p 1 / 2 " 10 0 10 0 0 DF D 4 0 5 3 3 4 r stic k - E M i n i C o n d u i t C l i p 3 / 4 " 10 0 10 0 0 DF D 4 0 5 3 1 0 r stic k - E M i n i C o n d u i t C l i p 1 " 10 0 10 0 0 DF D 4 0 5 9 0 2 sti c k - E C a b l e T i e D o n u t 1 - 1 / 4 " 10 0 10 0 0 DF D 4 0 5 5 5 0 sti c k - E rig h t A n g l e C l i p 9 0 ° 10 0 10 0 0 DF D 4 0 5 5 3 0 sti c k - E A n g l e C l i p 6 0 ° 10 0 10 0 0 DF D 4 0 5 2 1 4 stic k - E rod H a n g e r 1 / 4 " - 2 0 10 0 10 0 0 DF D 4 0 5 2 3 8 stic k - E rod H a n g e r 3 / 8 " - 1 6 10 0 10 0 0 DF D 4 0 5 2 1 5 sti c k - E P o s t N u t rod H a n g e r 1 / 4 " - 2 0 10 0 10 0 0 DF D 4 0 5 2 3 9 sti c k - E P o s t N u t rod H a n g e r 3 / 8 " - 1 6 10 0 10 0 0 DF D 4 0 5 1 1 2 sti c k - E str a p M t l W a s h e r 1 / 2 " 10 0 10 0 0 DF D 4 0 5 3 0 0 sti c k - E reb a r / D o w e l B a s k e t C l i p 10 0 10 0 0 DF D 4 0 5 6 1 0 stic k - E squ a r e W a s h e r 1 " 10 0 10 0 0 DF D 4 0 5 1 0 2 stic k - E ss sea l i n g W a s h e r 3 / 4 " 10 0 10 0 0 An g l e c l i p s a r e 3 / 4 - i n c h w i d e a n d 2 m m t h i c k w i t h a 5 / 1 6 - i n c h w i r e h o l e . reb a r / d o w e l b a s k e t c l i p s a r e s i z e d t o a c c e p t # 3 r e b a r a n d 3 / 8 - i n c h d o w e l s . I J ii,,I I Ill 11:1 I CORDLESS CONCRETE NAILER (CCN) Gas-Free Fastening System Product Features Sharp convex drill point has precise cutting edges to improve drill performance with less effort. Non-walking point provides fast material engagement. Unique point to thread design extrudes the metal preventing stripout. Point to thread design maximizes pullout performance and minimizes backout. Four head styles available to handle various applications. Climaseal®finish provides excellent corrosion resistance and lower tapping torque. Preferred most by electrical, decking, HVAC and metal building contractors. TEKS ® Self-Drilling Fasteners Product Specifications Diameter.......................#6, #8, #10, #12 and 1/4 Thread Form................6-20 8-18 10-16, 10-24 12-14 1/4-14 Head Style...................#6: #2 Phillips Pan #8: 1/4” HWH; #2 Phillips Pan #10: 5/16'' HWH; 5/16'' HWH with Serrations; #2 Phillips Pan; #2 Phillips Oval #12: 5/16'' HWH 1/4: 5/16'' HWH Drill Point.....................Teks 1 Teks 2 Teks 3 Finish...........................#6, #8, Electro-zinc #10, #12 and 1/4 Climaseal Head Styles Hex Washer Hex Oval Head Pan Head Hex Washer Head with Serrations Applications Stitch roof deck and wall panel sidelaps. HVAC, electrical trim accessories to steel framing. Residential steel frame construction. Brick ties to steel framing. Track to stud and stud splicing. Hat channel to stud. 5 Approvals and Listings Factory Mutual (J.I. 2 X 9A2 AM), ICC ER-3056, ICC ESR-1976 LIG H T DUT Y STE E L - TO - S TE E L APP L I C A T I O N S PROD U C T REP O R T NO. 02 7 0 1 1/4-14 x 7/8 Teks 1 Now Available with ABOT™ (Anti-Backout Threadform) e 1Tw8u ildex _._ _._ .A.. .& A standard screwgun with a depth sensitive nosepiece should be used to install Teks. For optimal fastener performance, the screwgun should be a minimum of 4 amps and have a RPM range of 0-2500. Adjust the screwgun nosepiece to properly seat the fastener. New magnetic sockets must be correctly set before use. Remove chip build-up as needed. The fastener is fully seated when the head is flush with the work surface. Overdriving may result in torsional failure of the fastener or stripout of the substrate. The fastener must penetrate beyond the metal structure a minimum of 3 pitches of thread. Dia. #6 #8 #12 1/4 Pt. 2 2 1 3 1 1 26 278 294 398 – 432 511 24 466 496 584 455 703 849 22 526 560 659 526 753 885 20 758 740 884 728 1018 1244 18 845 1060 1374 1266 1452 1764 16 – – – 1540 – – 14 – – – 1552 – – TEKS SELF-DRILLING FASTENERS Selector Guide Dia. Pt. 2 2 1 3 1 1 26 120 119 148 124 159 208 24 183 193 241 208 261 329 22 248 265 311 266 338 428 20 296 298 357 299 390 562 18 471 491 565 499 649 800 16 679 703 826 708 908 1151 14 847 959 1111 967 1259 – 12 – – 1796 1474 1949 – Fastener Steel Gauge PULLOUT VALUES (average lbs. ultimate) Fastener Steel Gauge (lapped) SHEAR VALUES (average lbs. ultimate) #10 12 .105'' 14 .075'' 16 .060'' 18 .048'' 20 .036'' 22 .030'' 24 .024'' 26 .018'' Gauge No. Decimal Equivalent SHEET STEEL GAUGES Teks®and Climaseal®are trademarks of ITW Buildex and Illinois Tool Works, Inc. © 2010 ITWBuildex and Illinois Tool Works, Inc. The values listed are ultimate averages achieved under laboratory conditions and apply to Buildex manufactured fasteners only. Appropriate safety factors should be applied to these values for design purposes. Product Report No. 02701 Part Head Drill Drill & Tap Max. Material Box Number Description Style Point Capacity Attachments Qty Applications 1208200 6-20 x 3/8'' Pan #2 .036-.100 .100 20,000 1563200 6-20 x 3/8'' HWH #2 .036-.100 20,000 1527200 6-20 x 1/2'' Pan #2 .036-.100 20,000 1210200 8-18 x 1/2'' Pan #2 .036-.100 .205 10,000 1213200 8-18 x 3/4'' Pan #2 .036-.100 .455 10,000 1218200 8-18 x 1'' Pan #2 .036-.100 .705 8,000 1196200 8-18 x 1/2'' HWH #2 .036-.100 .205 10,000 1199200 8-18 x 5/8'' HWH #2 .036-.100 .330 10,000 1200200 8-18 x 3/4'' HWH #2 .036-.100 .455 10,000 1202200 8-18 x 1'' HWH #2 .036-.100 .705 8,000 1204200 8-18 x 1-1/2'' HWH #2 .036-.100 1.205 4,000 1107053 10-16 x 3/4'' HWH #1 .018-.095 .220 5,000 1109053 12-14 x 3/4'' HWH #1 .018-.095 .205 4,000 1399053 1/4-14 x 7/8'' HWH #1 .018-.095 .380 5,000 1398000 10-16 x 1/2'' Pan #3 .036-.175 .150 10,000 1541000 10-16 X 5/8'' Pan #3 .036-.175 .200 5,000 1224000 10-16 x 3/4'' Pan #3 .036-.175 .325 5,000 1542000 10-16 x 3/4'' Oval #3 .036-.175 .325 5,000 1397000 10-16 x 1/2" HWH #3 .036-.175 .150 5,000 1127000 10-16 x 5/8" HWH #3 .036-.175 .200 5,000 1128000 10-16 x 3/4" HWH #3 .036-.175 .325 5,000 1129000 10-16 x 1" HWH #3 .036-.175 .575 5,000 1544000 10-16 x 1'' Oval #3 .036-.175 .575 5,000 1545000 10-16 x 1'' Pan #3 .036-.175 .575 5,000 1130000 10-16 x 1-1/4" HWH #3 .036-.175 .825 4,000 1546000 10-16 x 1-1/4'' Oval #3 .036-.175 .825 5,000 1131000 10-16 x 1-1/2" HWH #3 .036-.175 1.075 3,000 1550000 10-24 x 3/4''HWH #3 .036-.175 .323 5,000 1551000 10-24 x 1'' HWH #3 .036-.175 .575 5,000 †1786200 10-24 x 5/8'' *HWH #2 .036-.175 .200 5,000 †1707200 10-16 x 3/4'' *HWH #3 .036-.175 .323 5,000 †1821200 10-16 x 3/4'' *HWH #3 .036-.175 .323 5,000 • HVAC, electrical trim accessories to steel framing • Residential steel frame construction • Track to stud • Hat channel to stud • Stud splicing • Clips, duct straps, brick ties or accessories to steel framing • Stitching roof deck, wall panel sidelaps or duct work #6 #8 #10-16 #12 1/4 Fastener (dia-tpi) 6-20 8-18 10-16 10-24 12-14 1/4-14 Tensile (lbs. min.) 1285 1545 1936 2702 2778 4060 Shear (avg. lbs. ult.) 750 1000 1400 1500 2000 2600 Torque (min. in. lbs.) 25 42 61 65 92 150 FASTENER VALUES 6 • Vibration resistance; HVAC Applications. * With serrations under head. † Electro-zinc finish. 1349 West Bryn Mawr Avenue Itasca, Illinois 60143 630-595-3500 Fax: 630-595-3549 www.itwbuildex.com Installation Guidelines ® Performance Data .A.. _a_ I I I I I I I I .Ja..lT~ildex L\TC Catalina Island Essential liish Hal:iitat ... Go gle Temecula 0 352 ft Carlsb 0 San Dieao Borrego Spr~ngs Anza-Borrego Desen State Park