Loading...
HomeMy WebLinkAboutGPA 06-03; Rancho Milagro MND Attachment 10; General Plan Amendment (GPA)RANCHO MILAGRO PRELIMINARY HYDROLOGY & HYDRAULICS FOR CITY OF CARLSBAD TRACT NO. 06-04 A 19 HOME/25 LOT RESIDENTIAL DEVELOPMENT PREPARED FOR RANCHO MILAGRO LYALL ENTERPRISES INC. 15529 HIGHWAY 79 PAUMA VALLEY, CA 92061 March 11,2009 PREPARED BY r«TY OF CARtSBAD MANITOU ENGINEERING COMPANY 350 W. NINTH AVENUE, SUITE B ESCONDIDO, CA 92025 (760) 741-9921 I. INTRODUCTION n. HYDROLOGIC CONDITIONS m. VICINITY MAP IV. 100- YEAR HYDROLOGY STUDY (OFFSITE) V. OFFSITE HYDROLOGY NODE MAP VI. 100- YEAR HYDROLOGY STUDY (ONSTTE) Vn. ONSriE HYDROLOGY NODE MAP Vm. STREET FLOW CALCS rx. INLET CAPACITY CALC X. HYDRAULIC CALC XI. 10- YEAR HYDROLOGY STUDY (ONSITE) xn. 10" YEAR HYDROLOGY NODE MAP (ONSITE) xm. 2- YEAR HYDROLOGY STUDY (ONSTTE) XIV. 2- YEAR HYDROLOGY NODE MAP (ONSITE) XV. 85* PERCENTILE CAPTURE FOR 24 HOURS c RANCHO MILAGRO HYDROLOGY & HYDRAULICS STUDY INTRODUCTION Welcome to Rancho Milagro located in the SunnyCreek Specific Planning Area in the Northeast Quadrant of the City of Carlsbad, Rancho Milagro is within the City of Carlsbad Local Facilities Management Planning Area known as Zone 15. Vehicle access to the project will be provided by the northerly extension of College Boulevard across Agua Hedionda Creek and the construction of local streets "A" and "K" of Carlsbad Tract No. 2000-18, Cantarini Property. The legal description of the property is Remainder Parcel "A" of Carlsbad Tract No. 96-02, Map No, 12242. ' The Homeowners' Association for Carlsbad Tract No, 96-02 owns and maintains a private conservation easement over the southerly portion of the Rancho Milagro property impacted by the Agua Hedionda Creek Riparian Area and Flood Plain, The Rancho Milagro development is responsible to maintain storm event sheet flow on the slopes tributary to the constructed riparian mitigation area along the north side of SunnyCreek Road, private, from the East Boundary of Rancho Milagro to the SunnyCreek Road Creek crossing. The dominant topographic features of the 'site are Agua Hedionda Creek, the East ~ West Ridge through the middle of the property and the East ~ West drainage area in the northerly portion of the project. The proposed development is concentrated on the East ~ West Ridge, The ridge is currently used to raise truck crops and flowers, depending on the season and market. No agricultural pesticides, fertilizers or farm related fossil fuel residuals, in quantities that would require remediation, were detected within the development area. This study analyzes the 100 year / six hour storm event impact on the Rancho Milagro Project site. The study looks at the hydrology for run on and run off for the pre- developed site and the developed site, street flow conditions and inlet sizing. The analysis is performed with the Advanced Engineering Software (AES) employing the Rational Method for analyzing the Hydrology. All existing drainage patterns are maintained, there are no c diversions. The lots on the south side of the ridge continue to drain directly to Agua Hedionda Creek through the Tract No. 96-02 Riparian Mitigation Area. The lots on the north side of the ridge drain toward the inland drainage area that traverse the site East - West in the northerly portion of the property. The Soils Conservation Service (NRCS) Soils Maps indicates the project site is dominated by Class "D" Soils, The County of San Diego Hydrology Manual dated June 2003, Table 3-1, identifies the run-off coefficient for Low Density Residential (LDR), 1,0 dwelling unit per acre or less in soils type "D" as 0,41 and the public street areas are analyzed with a 0.87 "C" factor. The offsite drainage basin is seventy and one half acres (70.5 acs.) and storm flows are 120 cubic feet per second in a 100 year storm event. The flowage area is confined and lies approximately fourteen (14') feet below the lowest adjacent pad. Lines of inundation are determined for all offsite basins over one square mile or where adjacent pads are near the same elevation of thc drainage course. DECLARATION OF RESPONSIBLE CHARGE I hereby declare that I am the Engineer of Work for this Hydrology and Hydraulics Study/Report for the subject Project; and that I have exercised responsible charge over the preparation of this Study/Report as defmed in Section 6703 of the Califomia Business and Professions Code, and in Section 404.1 of Title 16, Division 5 of the Califomia Code ofRegulations. The subject Study/Report has been prepared in accordance with the guidelines and criteria in the "San Diego County Hydrology Manual", the "San Diego County Drainage Design Manual" and current standards of civil engineering practice. Adolfo Mo Date HYDROLOGIC CONDITIONS ir u^ :>AN uituu L^rARTfiENT OF SAN ITAT ION & FLOOD CONTnOL 100-YEAR 6-HOUR PRECIPITATION ^O-^- ISOPLUVIALS OF 100-YEAR 6-HOUR PRECIPITATION IN TENTHS OF AN INCH 33- U.S. DEPARTMEN NATIONAL OCt'AKIC AND AT: tPCCIAL »TUOICS URANCII. Of fICK OF II 209-^07 \ ^cl^^, A^a fuaccr^^c.. CcrJlshcLd. CaA/^rKm. /U^(.. f) o San Diego County Hydrology Manual Date: June 2003 Seclion; Page: 3 6 of 26 Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS Land T Isc Rimoff Coeflicient "C" Soil Type NKCS Elciiient.s County Elanenfs % IMPI-R A B C D Undi.sturhed Natural Terrain (Natural) Pemianent Open Space 0* 0.20 0.25 0.30 0-35 Low Density Residential (LDR) Residential, 1.0 DU/A or less 10 0-27 0.32 0.36 0.41 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0,34 0.38 0.42 0.46 Low Density Residenlial (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 0.45 > 0.49 K/lediiim Density Residenlial (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 0.48 0.52 Medium Density Residential (MDR) Residential. 7.3 DU/A or less 40 0.48 0.51 0.54 0.57 Medimn Densiiy Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 0.57 0.60 Medium Density Residential (MDR) Residential, I 'l.5 DU/A or less 50 0.55 0.58 0.60 0 63 High I>:nsity Residential (IIDR) Residential, 24.0 DU/A or less 65 0.66 0.67 0.69 0.71 HigJi Density Residential (IIDR) Residential, 43.0 DU/A or less 80 0.76 0.77 0.78 0.79 Commercial/Industrial (N. Com) Neigliborhood Commercial 80 0.76 0.77 0.78 0.79 Commercial/Industrial (G. Com) General Commercial 85 0.80 0.80 0.81 0.82 Commercial/Industrial (O.P. Cora) OiTice Professional/Commercial 90 0.83 0.84 0.84 0.85 Commercial/Industrial (Limited I.) Limited Industrial 90 0.83 0.84 0.84 0.85 Commercial/Industrial (General L) General Industrial 95 0.87 0.87 0.87 0.87 •Tlic values associated wilh 0% iiiiijcrvious may be usc»l for direct c;ilculation ofthe nmoff coefficieni as describod in Section 3.1.2 (representing llie jwrvious ninoff coefficient, Cp, for the soil lype), or for areas tliat will remain undisturted in jierpetuity. Ju.stificatioii must be given lhat thc area will remain natuial forever (e.g., thc area is located in Cleveland National Forest). DU/A = dwelling units per acre NRCS = National Resources Conservation Service o HIGHWAY ^^^^ OF VISTA VICINITY MAP NO SCALE OFFSITE'. HYDROLOGY RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1991 HYDROLOGY MANUAL (c) Copyright 1982-2006 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1252 Analysis prepared by: Manitou Engineering Company + * + + + + + + DE.SCRIPTION OF STUDY **************************** * RANCHO MILAGRO - 100 YEAR STORM * OFFSITE BASIN OUTLETS THROUGH NODE 200 * * JN 1674 * FILE NAME: 1674MILO.DAT TIME/DATE OF STUDY: 13:23 05/24/2007 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA \^ USER SPECIFIED STORM EVEN'i (YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE (INCH) =. 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / 0UT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 17.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximiiiu Allowable Street Flow Dept.h.) vTop-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (Ft*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EOUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 900.00 TO NODE 600.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ^ *USER SPECIFIED(SUBAREA): L RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 8.17 TOTAL AREA(ACRES) = 2.70 TOTAL RUNOFF(CFS) = 8.17 FLOW PROCESS FROM NODE 800.00 TO NODE 700.00 IS CODE = 52 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< >»»TRAVELTIME THRU SUBAREA«<« ELEVATION DATA: UPSTREAM(FEET) = 430.00 DOWNSTREAM(FEET) = 320.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 850.00 CHANNEL SLOPE = 0.1294 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CJiANNEL FLOW THRU SUBAREA (CFS) = 8.17 FLOW VELOCITY(FEET/SEC) = 7.51 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.89 Tc(MIN.) - 6.89 •LONGEST FLOWPATH FROM NODE 900.00 TO NODE 700.00 = 850.00 FEET. FLOW PROCESS FROM NODE 800.00 TO NODE 700.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.001 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFE'ICIENT = .4100 C S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4100 SUBAREA AREA(ACRES) = 9.30 SUBAREA RUNOFF(CFS) = 22.88 TOTAL AREA[ACRES) = 12.0 TOTAL RUNOFF(CFS) = 29.53 TC(MIN.) = 6.89 FLOW PROCESS FROM NODE 700.00 TO NODE 600.00 I.S CODE = 52 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SU3AREA«<« ELEVATION DATA: UPSTREAM(FEET) = 320.00 DOWNSTREAM(FEET) = 220.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 985.00 CHANNEL SLOPE = 0.1015 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA{CFS) = 29.53 FLOW VELOCITY(FEET/SEC) = 10.54 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.56 Tc(MIN.) = 8.44 LONGEST FLOWPATH FROM NODE 900.00 TO NODE 600.00 = 1835.00 FEET. FLOW PROCESS FROM NODE 700.00 TO NODE 600.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.262 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4100 c SUBAREA AREA(ACRES) = 14.70 SUBAREA RUNOFF(CFS) = 31.71 TOTAL AREA(ACRES) = 26.7 TOTAL RUNOFF(CFS) = 57.60 TC(MIN.) = 8.44 FLOW PROCESS FROM NODE 600.00 TO NODE 500.00 IS CODE = 52 >»»COMPUTE NATURAL VALLEY CHANNEL FLOW«<« »»>TRAVELTIME THRU SUBAREA««< ELEVATION DATA: UPSTREAM(FEET) = 220.00 DOWNSTREAM(FEET) = 179.40 CHANNEL LENGTH THRU SUBAREA(FEET) = 365.00 CHANNEL SLOPE = 0.1112 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 57.60 ' FLOW VELOCITY(FEET/SEC) - 12.75 (PER LACFCD/RCFC4WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 0.4 8 Tc(MIN.) - 8.92 LONGEST FLOWPATH FROM NODE 900.00 TO NODE 500.00 = 2200.00 FEET. FLOW PROCESS FROM NODE 600.00 TO NODE 500.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUP.) = 5.079 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4100 SUBAREA AREA(ACRES) = 15.20 SUBAREA RUNOFF(CFS) = 31.65 TOTAL AREA(ACRES) = 41.9 TOTAL RUNOFF(CFS) = 87.24 TC(MIN.) = 8.92 FLOW PROCESS FROM NODE 500.00 TO NODE 400.00 IS CODE = 52 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< ^»»TRAVELTIME THRU SUBAREA««< ELEVATION DATA: UPSTREAM(FEET) = 179.40 DOWNSTREAM(FEET) = 150.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00^ CHANNEL SLOPE = 0.0735 CHANNEL FLOW THRU SUBAREA(CFS) = 87.24 ' FLOW VELOCITY(FEET/SEC) = 12.35 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 0.54 Tc(MIN.) = 9.4 6 LONGEST FLOWPATH FROM NODE 900.00 TO NODE 400.00 = 2600.00 FEET. FLOW PROCESS FROM NODE 500.00 TO NODE 400.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.890 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT =0.4100 SUBAREA AREA(ACRES) = 5.30 SUBAREA RUNOFF(CFS) = 10.63 TOTAL AREA(ACRES) = 47.2 TOTAL RUNOFF(CFS) = 94.63 TC(MIN.) = 9.46 FLOW PROCESS FROM NODE 4 00.00 TO NODE 300.00 IS CODE = 52 »>»COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< ELEVATION DATA: UPSTREAM(FEET) = 150.00 DOWNSTREAM(FEET) = 140.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00: CHANNEL SLOPE = 0.0500 CHANNEL FLOW THRU SUBAREA{CFS) = 94.63 ; FLOW VELOCITY (FEET/SEC) = 10.4 4 (PER LACFCDi/RCFCSWCD HYDROLOGY MANUAL) TRAVEL TIME{MIN.) = 0.32 Tc(MIN.) = 9.78 LONGEST FLOWPATH FROM NODE 900.00 TO NODE 300.00 = 2800.00 FEET. FLOW PROCESS FROM NODE 4 00.00 TO NODE 300.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4:. 786 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4100 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 3.73 TOTAL AREA(ACRES) = 4 9.1 TOTAL RUNOFF(CFS) = 96.35 TC(MIN.) =9.78 FLOW PROCESS FROM NODE 300.00 TO NODE 200.00 IS CODE = 52 >»»COMPUTE NATURAL VALLEY CHANNEL FLOW««< >»»TRAVELTIME THRU SUBAREA««< ; = = = = == = = = == = = = ==== = i== =========== ======= = = ==========p: =========== === ===== = ELEVATION DATA: UPSTREAM(FEET) = 140.00 pOWNSTREAM(FEET) = 124.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 320.001 CHANNEL SLOPE = 0.0481 CHANNEL FLOW THRU SUBAREA(CFS) = 96.35 I FLOW VELOCITY(FEET/SEC) = 10.30 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 0.52 Tc(MIN.) = 10.30 LONGEST FLOWPATH FROM NODE 900.00 TO NODE^ 200.00 = 3120.00 FEET. FLOW PROCESS FROM NODE 300.00 TO NODE 200.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4". 629 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 0 ; AREA-AVERAGE RUNOFF COEFFICIENT = 0.4100 SUBAREA AREA(ACRES) = 3.50 SUBAREA RUNOFF(CFS) = 6.64 TOTAL AREA(ACRES) = 52.6 TOTAL RUNOFF(CFS) = 99.84 TC(MIN.) = 10.30 ******** j,^,*^,***,.*.*********************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 100.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 124.60 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 78.00 MANNING'S N = 0.015 DEPTH OF FLOW IN 36.0 INCH PIPE IS 29.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.27 ESTIMATED PIPE DIAMETER(INCH) = 36.00 PIPE-FLOW(CFS) = 99.84 PIPE TRAVEL TIME(MIN.) = 0.08 122.10 NUMBER OF PIPES = LONGEST FLOWPATH FROM NODE Tc(MIN.) = 900.00 TO NODE 10.38 100.00 = 3198.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 52. 6 99. 84 TC(MIN.) = 10.38 END OF RATIONAL METHOD ANALYSIS OFFSITE HYDROLOGY MAP ONSITE HYDROLOGY **********************T^*****************r*********** ************************* RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE 'W Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1252 Analysis prepared by: Manitou Engineering Company 350 West Ninth Ave., Suite "B" Escondido, CA. 92025 (760) 741-9921 ************************** DESCRIPTION OF STUDY ************************** * 100 YEAR HYDROLOGY STUDY * * DEVELOPED CONDITIONS * * JN 1674 * ************************************************************************** FILE N7\ME: 167 4HRVB.DAT TIME/DATE OF STUDY: 10:49 03/10/2009 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 17.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEEI as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ^^.A.^^ + *^ + ^ + + .^^^ + Jc* + .^ + ******************************************************* FLOW PROCESS FROM NODE 90.00 TO NODE 85.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc{MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 7.26 TOTAL AREA (ACRES) = 2.40 TOTAL RUNO.FF( CFS) = 7.26 **********************************************************************.Jf^.^TlfTt* """^ FLOW PROCESS FROM NODE 85.00 TO NODE 80.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 215.00 DOWNSTREAM ELEVATION(FEET) = 197.89 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) =17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Bac)<-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) - 7.85 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.2 9 HALFSTREET FLOOD WIDTH(FEET) = 8.33 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.84 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.42 STREET FLOW TRAVEL TIME(MIN.) = 1.03 Tc(MIN.) = 6.03 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.535 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4 47 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 1.19 TOTAL AREA(ACRES) = 2.6 PEAK FLOW RATE(CFS) = 7.62 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.14 FLOW VELOCITY(FEET/SEC.) = 4.88 DEPTH*VELOCITY(FT*FT/SEC.) = 1.41 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 80.00 = 300.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 82.00 TO NODE 80.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.535 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4411 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.34 TOTAL AREA(ACRES) = 3.1 TOTAL RUNOFF(CFS) = 8.96 TC(MIN.) = 6.03 **************************************************************************** FLOW PROCESS FROM NODE 80.00 TO NODE 70.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NUN-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 193.50 DOWNSTREAM(FEET) = 183.20 FLOW LENGTH(FEET) = 197.21 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.36 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.96 PIPE TRAVEL TIME(MIN.) = 0.2 7 Tc(MIN.) = 6.30 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 70.00 = 4 97.21 FEET. FLOW PROCESS FROM NODE 70.00 TO NODE 70.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.30 RAINFALL INTENSITY(INCH/HR) = 6.36 TOTAL STREAM AREA(ACRES) = 3.11 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.96 **************************************************************************** FLOW PROCESS FROM NODE 72.00 TO NODE 70.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 3.02 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 3.02 FLOW PROCESS FROM NODE 80.00 TO NODE 70.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< UPSTREAM ELEVATION(FEET) = 197.89 DOWNSTREAM ELEVATION(FEET) = 186.38 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL{DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION ITACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.43 ^^1^ STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.23 HALFSTREET FLOOD WIDTH(FEET) = 5.42 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.16 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.98 STREET FLOW TRAVEL TIME(MIN.) = 0.80 Tc(MIN.) = 5.80 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.704 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4 66 SUBAREA AREA(ACRES) = 0.14 SUBAREA RUNOFF(CFS) = 0.82 TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) ^ 3.56 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.61 FLOW VELOCITY(FEET/SEC.) = 4.12 DEPTH*VELOCITY(FT*FT/SEC.) = 0.98 LONGEST FLOWPATH FROM NODE 7 2.00 TO NODE 7 0.00 = 397.21 FEET. **************************************************************************** FLOW PROCESS FROM NODE 70.00 TO NODE 70.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.80 RAINFALL INTENSITY(INCH/HR) = 6.70 TOTAL STREAM AREA(ACRES) = 1.14 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.5 6 **************************************************************************** FLOW PROCESS FROM NODE 73.00 TO NODE 70.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE«<« USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 7.60 RAIN INTENSITY(INCH/HOUR) = 5.63 TOTAL AREA(ACRES) = 1.83 TOTAL RUNOFF(CFS) = 6.42 **************************************************************************** FLOW PROCESS FROM NODE 7 0.00 TO NODE 70.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 7.60 RAINFALL INTENSITY(INCH/HR) = 5.63 TOTAL STREAM AREA{ACRES) = 1.83 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.4 2 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 8.96 6.30 6.356 3.11 2 3.56 5.80 6.704 1.14 3 6.42 7.60 5.631 1.83 c RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFI,UENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF To INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 16.72 5.80 6.704 2 17.67 6.30 6.356 3 17.35 7.60 5.631 COMPUTED CONFLUENCE-ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 17.67 Tc(MIN.) = 6.30 TOTAL AREA(ACRES) = 6.1 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 70.00 = 4 97.21 FEET. **************************************************************************** FLOW PROCESS FROM NODE ' 70.00 TO NODE 65.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 183.20 DOWNSTREAM(FEET) = 179.17 FLOW LENGTH(FEET) = 92.90 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.49 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 17.67 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 6.41 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 65.00 = 590.11 FEET. **************************************************************************** FLOW PROCESS FROM NODE 65.00 TO NODE 60.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 179.17 DOWNSTREAM(FEET) = 176.30 FLOW LENGTH(FEET) = 66.96 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.42 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 17.67 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 6.50 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 60.00 = 657.07 FEET. **************************************************************************** FLOW PROCESS FROM NODE 60.00 TO NODE 55.00 IS CODE = 31 >>>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< :»>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 175.30 DOWNSTREAM(FEET) = 171.18 FLOW LENGTH(FEET) = 91.80 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.94 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 17.67 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 6.60 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 55.00 = 74 8.87 FEET. c *********************.***.AT **************•. .TT..^ ****** ************** -************ FLOW PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.60 RAINFALL INTENSITY(INCH/HR) = 6.17 TOTAL STREAM AREA(ACRES) =6.08 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.67 **************************************************************************** FLOW PROCESS FROM NODE 70.00 TO NODE 55.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 1.0 9 TOTAL AREA(ACRES) = 0.17 TOTAL RUNOFF(CFS) = 1.09 **************************************************************************** FLOW PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 7.38 TOTAL STREAM AREA(ACRES) = 0.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.09 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 17.67 6.60 6.168 6.08 2 1.09 5.00 7.377 0.17 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO . CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 15.86 5.00 7.377 2 18.58 6.60 6.168 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.58 Tc(MIN.) = 6.60 TOTAL AREA(ACRES) = 6.2 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 55.00 = 748.87 FEET. *********************************************************************Vt****** FLOW PROCESS FROM NODE 55.00 TO NODE 50.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 171.18 DOWNSTREAM(FEET) = 168.28 FLOW LENGTH(FEET) = 64.55 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.80 ESTIMATED PIPE DIAMETER (INCH) 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 18.58 • PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 6.68 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 50.00 = 813.42 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.00 TO NODE 4 5.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 168.28 DOWNSTREAM(FEET) = 145.90 FLOW LENGTH(FEET) = 2 4 3.95 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.33 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 18.58 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 6.90 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 45.00 = 1057.37 FEET. **************************************************************************** FLOW PROCESS FROM NODE 45.00 TO NODE 40.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM{FEET) = 145.90 DOWNSTREAM(FEET) = 132.00 FLOW LENGTH(FEET) = 296.57 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.05 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 18.58 PIPE TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) = 7.25 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 40.00 = 1353.94 FEET. **************************************************************************** FLOW PROCESS FROM NODE 4 0.00 TO NODE 4 0.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«<< TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.25 RAINFALL INTENSITY(INCH/HR) = 5.80 TOTAL STREAM AREA(ACRES) = 6.25 PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.58 ^^^^^^,i.^^^^^^*^^^^** + ^***^ + ***>v************** + ****************************** FLOW PROCESS FROM NODE ' 55.00 TO NCDE 40.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 2.7 6 TOTAL AREA(ACRES) = 0.4 3 TOTAL RUNOFF(L;s; = 2.7 6 **************************************************************************** FLOW PROCESS FROM NODE 4 0.00 TO NODE 4 0.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 7.38 TOTAL STREAM AREA(ACRES) = 0.4 3 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.7 6 **************************************************************************** FLOW PROCESS FROM NODE 73.00 TO NODE 30.00 IS CODE = 22 >>>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<<< *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 2.42 TOTAL AREA(ACRES) = 0.8 0 TOTAL RUNOFF(CFS) = 2.4 2 **************************************************************************** FLOW PROCESS FROM NODE 30.00 TO NODE 25.00 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>» (STREET TABLE SECTION # 1 USED) «<<< UPSTREAM ELEVATION(FEET) = 166.92 DOWNSTREAM ELEVATION(FEET) = 144.00 STREET LENGTH(FEET) = 485.70 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.19 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.23 L HALFSTREET FLOOD WIDTH(FEET) = 5.42 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.87 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.91 STREET FLOW TRAVEL TIME(MIN.) = 2.09 Tc(MIN.) = 7.09 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.888 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.535 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.54 TOTAL AREA(ACRES) = i.l PEAK FLOW RATE(CFS) = 3.47 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.7 0 FLOW VELOCITY(FEET/SEC.) = 3.91 DEPTH*VELOCITY(FT*FT/SEC.) = 0.94 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 25.00 = 30142.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 30.00 TO NODE 25.00 IS CODE = 81 >»»ADDIT10N OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.888 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4 631 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 3.52 TOTAL AREA(ACRES) = 2.6 TOTAL RUNOFF(CFS) = 7.09 TC(MIN.) = 7.09 **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 40.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 139.00 DOWNSTREAM(FEET) = 132.00 FLOW LENGTH(FEET) = 41.80 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.66 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.09 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 7.13 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 40.00 = 30184.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 4 0.00 TO NODE 4 0.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«<< TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 7.13 RAINFALL INTENSITY(INCH/HR) = 5.87 TOTAL STREAM AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.09 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE • 40.00 IS CODE = 7 >»»USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 8.40 RAIN INTENSITY(INCH/HOUR) = 5.28 TOTAL AREA(ACRES) = 2.50 TOTAL RUNOFF(CFS) = 8.30 **************************************************************************** ELOW PROCESS FROM NODE ^0.00 TO NODE 4u.00 IS CODE =• 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE: TIME OF CONCENTRATION(MIN.) = 8.4 0 RAINFALL INTENSITY(INCH/HR) = 5.28 TOTAL STRET^M AREA (ACRES) = 2.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.30 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 18.58 7.25 5.805 6.25 2 2.76 5.00 7.377 0.43 3 7.09 7.13 5.867 2.60 4 8.30 8.40 5.279 2.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 4 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 27.29 5.00 7.377 2 34.71 7.13 5.867 3 34.93 7.25 5.805 4 33.55 8.40 5.279 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 34.93 Tc(MIN.) = 7.25 TOTAL AREA(ACRES) = 11.8 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 40.00 = 30184.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 39.00 IS CODE = 31 »>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<<< >»>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTRE/!^ (FEET) = 132.00 DOWNSTREAM (FEET) = 131.60 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.18 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 34.93 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 7.32 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 39.00 = 30224.50 FEET. FLOW PROCESS FROM NODE 39.00 TO NODE 38.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 131.60 DOWNSTREAM(FEET) = 92.00 FLOW LENGTH(FEET) = 110.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASEJ TO 18.^00 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 35.87 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 34.93 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 7.37 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 38.00 = 30334.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 38.00 TO NODE 36.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 92.00 DOWNSTREAM(FEET) = 82.00 FLOW LENGTH(FEET) = 132.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.73 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 34.93 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 7.49 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 36.00 = 304 65.50 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 11.8 TC(MIN.) = 7.49 PEAK FLOW RATE(CFS) = 34.93 END OF RATIONAL METHOD ANALYSIS **********************************************;*********..^.*y.^..j..^.^.^.^.^^.^.^^^^j^^j^^-^ 1 PROGRAM PACKAGE CONTROL DISTRICT RATIONAL METHOD HYDROLOGY COMPUTER Reference: SAN DIEGO COUNTY FLOOD 2003,1985,1981 HYDROLbGY MANUAL (c) Copyright 1982-2003 Advanced Engiheering Software (aes) Ver. 1.5A Release Date: 01/01/20013 License ID 1252 I Analysis prepared biy: MANITOU ENGINEERING COMPANY 350 WEST 9TH AVE., SullTE B ESCONDIDO, CA 9202:5 ************************** DESCRIPTION OF STUDY ************************** * RANCHO MILAGRO 100 - YEAR STORM ; * ONSITE HYDROLOGY - CONFLUENCE AT NODE 73 i . * JN 1674 I * *********************************************:***************************** FILE NAME: 1674MILB.DAT TIME/DATE OF STUDY: 21:55 06/07/2006 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODELj INFORMATION; 2 003 SAN DIEGO MANUAL CRITERIA I USER SPECIFIED STORM EVENT(YEAR) = 100.00 | 6-HOUR DURATION PRECIPITATION (INCHES) = 2|. 800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 \ SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0,95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FjDR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PR0CEDURE3 FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PljPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FTp (FT) (FT) (FT) (n) 1 17.0 12.0 0.020/0.020/0.020 0. SjO 1.50 0.0313 0.125 0.0150 j GLOBAL STREET FLOW-DEPTH CONSTRAINTS: I 1. Relative Flow-Depth = 0.00 FEET j as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FjT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN! OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* } ! ********^******.****************************** *•+*************** + ******* + ***** FLOW PROCESS FROM NODE 79.00 TO NODE ! 7 8.00 IS CODE = 22 . I »>»RATIONAL METHOD INITIAL SUBAREA ANALYSlis««< *USER SPECIFIED(SUBAREA): | GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .87010 S.C.S. CURVE NUMBER (AMC II) = 0 i USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 7 1377 SUBAREA RUNOFF(CFS) = 0.71 TOTAL AREA (ACRES) = 0.11 TOTAL RUNOFF!(CFS) = 0.71 *************** + * + ****************** + *********i.************************j,**j FLOW PROCESS FROM NODE 7 8.00 TO NODE 76.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SU^AREA««< >»» (STREET TABLE SECTION # 1 USED)««< i UPSTREAM ELEVATION(FEET) = 215.00 DOWNSTRE^ ELEVATION(FEET) STREET LENGTH(FEET) = 360.00 CURB HEIGHT|( INCHES) = 6.0 STREET HALFWIDTH(FEET) =17.00 i 198.41 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(^EET) INSIDE STREET CROSSFALL(DECIMAL) = 0.020 I OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 i = 12.00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNjDFF = 2 STREET PARKWAY CROSSFALL (DECIMAL) =^ 0.020 | Manning's FRICTION FACTOR for Streetflow Sec,tion (curb-tc-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk FOLow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FjLOW: STREET FLOW DEPTH(FEET) =0.17 \ HALFSTREET FLOOD WIDTH(FEET) = 2.40 i AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.5li PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = j 0.61 STREET FLOW TRAVEL TIME (MIN.) = 1.71 Tc(J^IN,) = 6.71 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6j. 103 *USER SPECIFIED(SUBAREA): j GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .870|0 S.C.S. CURVE NUMBER (AMC II) = 0 i' AREA-AVERAGE RUNOFF COEFFICIENT = 0.870 \ SUEAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = TOTAL AREA (ACRES) = 0.31 PEAK FL!OW RATE (CFS) 1.24 1.06 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.20 HALFSTREET FLOOD WIDTH 1. 65 FLOW VELOCITY(FEET/SEC.) = 3.42 DEPTH*VEL0C1TY(FT*FT/SEC.) = 0.67 LONGEST FLOWPATH FROM NODE 79.00 TO NODE ********************************************** FLOW PROCESS FROM NODE 7 8.00 TO NODE FEET) = 3.50 76.00 360.00 FEET, *****:(•************************ 76.00 IS CODE 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK F^OW««< 100 YEAR RAINFALL INTENSITY {INCH/HOUR) = 6j.l03 *USER SPECIFIED(SUBAREA): | RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFI|CIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5860 SUBAREA AREA (ACRES) = 0.50 SUBAREA RUNC)FF(CFS) = 1.25 TOTAL AREA (ACRES) = 0.81 TOTAL RUNOFEf(CFS) = 2.90 TC(MIN.) = 6.71 ! ********************************************** FLOW PROCESS FROM NODE 76.00 TO NODE ****************************** 76.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUlENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAjM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.71 | RAINFALL INTENSITY(INCH/HR) = 6.10 j TOTAL STREAM AREA(ACRES) = 0.81 i PEAK FLOW RATE (CFS) AT CONFLUENCE = 2 . 9|0 ********************************************* *!* ***************************** FLOW PROCESS FROM NODE 77.00 TO NODE 76.00 IS CODE 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIjS<«« *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .870 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7 SUBAREA RUNOFF(CFS) = 1.2 8 TOTAL AREA (ACRES) = 0.20 TOTAL RUNOFFi **************************************************************************** FLOW PROCESS FROM NODE 76.00 TO NODE 377 (CFS) = 1.2! 76.00 IS CODE »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAIM 2 ARE; TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY{INCH/HR) =7.38 TOTAL STREAM AREA(ACRES) = 0.2 0 \ PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.2! ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2.90 6.71 6.103 2 1.28 5.00 7.377 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 3.44 5.00 7.377 2 3.96 6.71 6.103 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS AREA (ACRE) 0.81 0.20 RATIO PEAK FLOW RATE(CFS) = 3.96 TOTAL AREA(ACRES) = 1.01 Tc(MIN.) =! 6.71 LONGEST FLOWPATH FROM NODE 79.00 TO NODE 76.00 = 360.00 FEET, *****************************^**********yr*****j************************ + ***** FLOW PROCESS FROM NODE 76.00 TO NODE 74.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« »»>( STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 198.41 DOWNSTREAM ELEVATION(FEET) = 193.74 STREET LENGTH(FEET) = 92.00 STREET HALFWIDTH(FEET) = 17.00 CURB HEIGHT (INCHES) 6.0 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (iFEET) = INSIDE STREET CROSSFALL(DECIMAL) = 0.020 | OUTSIDE STREET CROSSFALL(DECIMAL) = 0.02 0 ' 12 . 00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF =•• 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 I Manning's FRICTION FACTOR for Streetflow Secjtion (curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Fjlow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOjW(CFS) = 4.11 STREETFLOW MODEL RESULTS USING ESTIMATED F|L0W: STREET FLOW DEPTH(FEET) =0.25 ! HALFSTREET FLOOD WIDTH(FEET) = 6.27 j AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.03 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.01 STREET FLOW TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) =7.09 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5|. 890 *USER SPECIFIED(SUBAREA): I GENERAL INDUSTRIAL RUNOFF COEFFICIENT = . 870|o S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT =0.655 SUBAREA AREA (ACRES) = 0.06 SUBAREA R)JNOFF( CFS) = 0.31 TOTAL AREA(ACRES) = 1.07 PEAK FLOW RATE(CFS) = 4.13 END OF SUBAREA STREET FLOW HYDRAULICS: [ DEPTH(FEET) = 0.2 5 HALFSTREET FLOOD WIDTH(pEET) = 6.27 FLOW VELOCITY(FEET/SEC.) = 4.04 DEPTH*VELbciTY(FT*FT/SEC.) = 1.02 LONGEST FLOWPATH FROM NODE 79.00 TO NODE 74.00 = 452.00 FEET. **********************************************f***************************** FLOW PROCESS FROM NODE 74.00 TO NODE »»>DESIGNATE INDEPENDENT STREAM FOR CONFLU 74.00 IS CODE = ;NCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAi«I 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.09 i RAINFALL INTENSITY{INCH/HR) = 5.89 TOTAL STREAM AREA(ACRES) = 1.07 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.iS **************************************************************************** FLOW PROCESS FROM NODE 75.00 TO NODE »>»RATIONAL METHOD INITIAL SUBAREA ANALYSlS<«« 74.00 IS CODE = 22 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .87d0 S.C.S. CURVE NUMBER (AMC II) = 0 | USER SPECIFIED Tc(MIN.) = 5.000 I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 1.16 | TOTAL AREA(ACRES) = 0.18 TOTAL RUNOFF(CFS) = 1. 16 **********************************************^*****************************v FLOW PROCESS FROM NODE 74.00 TO NODE 74.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.00 i RAINFALL INTENSITY(INCH/HR) =7.38 i TOTAL STREJ^Jvi AREA (ACRES) = 0.18 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.16 ** CONFLUENCE DATA ** i STREAM RUNOFF Tc INTENSITY i AREA NUMBER (CFS) (MIN.) (INCH/HOUR) ! (ACRE) 1 4.13 7.09 5.890 j 1.07 2 1.16 5.00 7.377 j 0.18 I RAINFALL INTENSITY AND TIME OF CONCENTRATION)!' RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. 1 I ** PEAK FLOW RATE TABLE ** | STREAM RUNOFF Tc INTENSITY ! NUMBER (CFS) (MIN.) (INCH/HOUR) j 1 4.45 5.00 7.377 [ 2 5.05 7,09 5.890 | COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWsi: PEAK FLOW RATE(CFS) = 5.05 Tc(MIN.) =! 7.09 TOTAL AREA(ACRES) = 1.25 I LONGEST FLOWPATH FROM NODE 79.00 TO NODEj 74.00 ********************************************** FLOW PROCESS FROM NODE 74.00 TO NODE ****************************** 73.00 IS CODE = 62 4.52.00 FEET. »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUiBAREA««< »»> (STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 193.74 DOWNSTREAM ELEVATION(FEET) = 187.38 STREET LENGTH(FEET) = 115.00 CURB HEIGHT STREET HALFWIDTH(FEET) =17.00 (INCHES) = 6.0 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 | OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 j SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 i Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk F^ow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOl^(CFS) = 5.25 STREETFLOW MODEL RESULTS USING ESTIMATED FioW: STREET FLOW DEPTH(FEET) =0.26 I HALFSTREET FLOOD WIDTH(FEET) = 6.92 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.39 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.16 STREET FLOW TRAVEL TIME(MIN.) = 0.4 4 Tc(MIN.) = 7.53 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5,6 67 *USER SPECIFIED(SUBAREA): j GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.697 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.39 TOTAL AREA(ACRES) = 1.33 PEAK FLOW RATE(CFS) = 5.25 I f END OF SUBAREA STREET FLOW HYDRAULICS; | DEPTH (FEET) = 0.26 HALFSTREET FLOOD WIDTH(t'EET) = 6.92 FLOW VELOCITY (FEET/SEC. ) = 4.40 DEPTH*^/EL<pCITY (FT*FT/SEC. ) = 1.16 LONGEST FLOWPATH FROM NODE 79.00 TO NODE! 73.00 = 567.00 FEET. **********************************************jt***************************** FLOW PROCESS FROM NODE 74.00 TO NODE | 73.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE ?EJ^.K FL0W««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.667 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 0 | AREA-AVERAGE RUNOFF COEFFICIENT = 0.6186 i SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.16 TOTAL AREA(ACRES) = 1.8 3 TOTAL RUNOFFi TC(MIN.) = 7.53 (CFS) = 6.42 **********************************************!****************************** FLOW PROCESS FROM NODE 73.00 TO NODE | 70.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-pRESSURE FLOW) ««< = = ========= === = = = = = = = =.= = = = = = = =: = =: = =; = = = === === = = =t:= = === = = = =: = ==== = = ==: = = = = = = = = = = =: ELEVATION DATA: UPSTREAM(FEET) = 183.38 DOWNSTREAM(FEET) = 182.38 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO IjS.OOO DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.63 1 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =6.42 | PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) |= 7.60 LONGEST FLOWPATH FROM NODE 79.00 TO NODB; 70.00 = 607.00 FEET. END OF STUDY SUMMARY: j TOTAL AREA(ACRES) = 1.83 TC(MIN.) j= 7.60 PEAK FLOW RATE(CFS) = 6.42 i **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1252 Analysis prepared by: Manitou Engineering Company 350 West Ninth Ave., Suite "B" Escondido, CA. 92025 (760) 741-9921 *-^-*:**-k'k-k~kie*-k-*:-^-^-k*'k-*^^-k-A:-^-Jf*!'fe DESCRI PTION OF STUDY * RANCHO MILAGRO - 100 YEAR STORM * * ONSITE HYDOLOGY * * JN 1674 * FILE NAME: 1674H100.DAT TIME/DATE OF STUDY: 10:42 03/10/2009 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT (YEAR) = 100.00 W^ 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 17.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 19.00 TO NODE 17.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 1.7 5 TOTAL AREA(ACRES) = 0.58 TOTAL RUNOFF(CFS) = 1.7 5 **************************************************************************** FLOW PROCESS FROM NODE 17.00 TO NODE 15.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< •»»> (STREET TABLE SECTION # 1 USED)«<« ' UPSTREAM ELEVATION(FEET) = 149.71 DOWNSTREAM ELEVATION(FEET) = 137.50 STREET LENGTH(FEET) = 395.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.41 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.23 HALFSTREET FLOOD WIDTH(FEET) = 5.3 3 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.00 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.70 STREET FLOW TRAVEL TIME(MIN.) = 2.20 Tc(MIN.) = 7.20 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.834 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.552 SUBAREA AREA(ACRES) = 0.2 6 SUBAREA RUNOFF(CFS) = 1.32 TOTAL AREA(ACRES) = 0.8 PEAK FLOW RATE(CFS) = 2.71 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.70 FLOW VELOCITY(FEET/SEC.) = 3.05 DEPTH*VELOCITY(FT*FT/SEC.) = 0.73 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 15.00 = 3 95.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 17.00 TO NODE 15.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.834 *USER SPECIFIED(SUBAREA): OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4 905 SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 0.76 TOTAL AREA(ACRES) = 1-2 TOTAL RUNOFF(CFS) = 3.4 6 TC(MIN.) = 7.20 v.. **************************************************************************** FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) - 7.20 RAINEALL INTENSITY(INCH/HR) =5.83 TOTAL STREAM AREA(ACRES) = 1.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.4 6 FLOW PROCESS FROM NODE 25.00 TO NODE 15.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4 600 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 2.58 TOTAL AREA(ACRES) = 0.7 5 TOTAL RUNOFF(CFS) = 2.58 **************************************************************************** FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 7.38 TOTAL STREAM AREA(ACRES) = 0.7 6 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.58 ** CONFLUENCE DATA ** STREAM RUNOFF Tc • INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.45 7.20 5.834 1.21 2 2.58 5.00 7.377 0.75 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 4.99 5.00 7.377 2 5.50 7.20 5.834 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.50 Tc(MIN.) = 7.20 TOTAL AREA(ACRES) = 2.0 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 15.00 = 395.00 FEET. 'HW FLOW PROCESS FROM NODE 15.00 TO NODE 10.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 134.10 DOWNSTREAM(FEET) = 133.70 FLOW LENGTH(FEET) = 40.00- MANNING'S N =• 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.90 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.50 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 7.31 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 10.00= 435.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.31 RAINFALL INTENSITY(INCH/HR) = 5.78 TOTAL STREAM AREA(ACRES) = 1.97 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.50 Wf **************************************************************************** FLOW PROCESS FROM NODE 14.00 TO NODE 12.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< OFFICE PROFESSIONAL/COMMERCIAL RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) =1.00 TOTAL AREA(ACRES) = 0.16 TOTAL RUNOFF(CFS) = 1.00 **************************************************************************** FLOW PROCESS FROM NODE 12.00 TO NODE 10.00 IS CODE = 62 »>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« >»>> (STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 145.20 DOWNSTREAM ELEVATION(FEET) = 137.50 STREET LENGTH(FEET) = 190.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) =17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 'W- Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.37 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.19 HALFSTREET FLOOD WIDTH(FEET) = 3.11 AVERAGE FLOW VELOCITY { FEET/SEC . ) = 3..-^0 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.60 STREET FLOW TRAVEL TIME(MIN.) = 0.99 Tc(MIN.) = 5.99 100 YEAR RAINFALL INTENSITY(INCH/HOUR) =6.5 65 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.859 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.74 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 1.64 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.20 HALFSTREET FLOOD WIDTH(FEET) = 3.71 FLOW VELOCITY(FEET/SEC.) = 3.19 DEPTH*VELOCITY(FT*FT/SEC.) = 0.64 LONGEST FLOWPATH FROM NODE 14.00 TO NODE 10.00 = 190.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< s-#*>"^- — _ — — — — —— — — — — —— — — \^ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.99 RAINFALL INTENSITY(INCH/HR) = 6.57 TOTAL STREAM AREA(ACRES) = 0.2 9 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.64 **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 10.00 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 1.7 3 TOTAL AREA(ACRES) = 0.27 TOTAL RUNOFF(CFS) = 1.73 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = ,1 >»>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 7.38 TOTAL STREAM AREA(ACRES) = 0.27 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.73 3 ARE: ** CONFLUENCE DATA *' STREAM NUMBER 1 2 3 RUNOFF (CFS) 5.50 1. 64 1.73 Tc (MIN.) 7 . 31 5. 99 5.00 INTENSITY ;iNCH/HOUR) 5.775 6. 565 7 . 377 AREA (ACRE) 1. 97 0 .29 0.27 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 7 .40 8.02 8 .30 Tc (MIN.) 5.00 5. 99 7 . 31 INTENSITY (INCH/HOUR) 7 . 377 6. 565 5.775 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.30 Tc(MIN.) = 7.31 TOTAL AREA(ACRES) = 2.5 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 10.00 435.00 FEET. FLOW PROCESS FROM NODE 10.00 TO NODE 9.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 133.70 DOWNSTREAM(FEET) = 132.50 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.00 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.30 PIPE TRAVEL TIME(MIN.) = 0.80 Tc(MIN.) = 8.11 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 9.00 = 675.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 9.00 TO NODE 00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<<< ELEVATION DATA: UPSTREAM(FEET) = 132.50 DOWNSTREAM(FEET) = 132.30 FLOW LENGTH(FEET) = 35.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.27 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.30 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 8.22 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 8 . 00 = 710.00 FEET. W()#^ FLOW PROCESS FROM NODE 8.00 TO NODE 40.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 132.30 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 55.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.17 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 8.30 PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) = 8.40 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 40.00 = 132.00 765.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 2.5 TC{MIN.) ! .30 40 Wr END OF RATIONAL METHOD ANALYSIS RATIONAL METHOD HYDROLOGY COMPUTER jpROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003, 1985, 1981 HYDROLcjCY MANUAL (c) Copyright 1982-2006 Advanced Engirjeering Software (aes) Ver. 2.0 Release Date: 06/01/2005 ; License ID 1252 • Analysis prepared by: Manitou.Engineering Company ************************** DESCRIPTION OF STUDY ************************** * 100 YEAR HYDROLOGY STUDY : * * UNDEVELOPED CONDITIONS * * RANCHO MILAGRO JN 167 4 1, * ************************************************************************** ! FILE NAME: 1674UND.DAT ; TIME/DATE OF STUDY: 00:15 05/27/2007 ; USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL llNFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 ; 6-HOUR DURATION PRECIPITATION (INCHES) = 2.i800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 | SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO U$E FOR FRICTION SLOPE =0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURE^ FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIE|EFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURg GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT); (FT) (FT) (FT) (n) 1 17.0- 12.0 0.020/0.020/0.020 O.SQ 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth); - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN | OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ***********************************************;***************************** FLOW PROCESS FROM NODE 50.00 TO NODE 140.00 IS CODE = 22 WnJaB*-"- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSI£j««< _===^„=.=====^===============================^========= *USER SPECIFIED(SUBAREA): I NATURAL DESERT LANDSCAPING RUNOFF COEFFICIENT]' = .3500 S.C.S. CURVE NUMBER (i^C II) = 0 i USER SPECIFIED TG(MIN.) = 5.000 W 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7L377 SUBAREA RUNOFF(CFS) = 1.81 TOTAL AREA (ACRES) = 0.70 TOTAL RUNOFF!(CFS) = 1.81 **************************************************************************** FLOW PROCESS FROM NODE 4 0.00 TO NODE ; 30.00 IS CODE = 52 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««k »»>TRAVELTIME THRU SUBAREA««< ELEVATION DATA: UPSTREAM(FEET) = 172.00 DOWNSTREAM(FEET) = 86.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 364.00| CHANNEL SLOPE = 0.2363 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VEL0CITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 1.81 ; FLOW VELOCITY(FEET/SEC) = 5.33 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 1.14 Tc(MIN.) = 6.|l4 LONGEST FLOWPATH FROM NODE 50.00 TO NODE; 30.00 = 364.00 FEET. **************************************************************************** E^LOW PROCESS FROM NODE 40.00 TO NODE : 30.00 IS CODE = 81 . j »»>ADDITION OF SUBAREA TO MAINLINE PE.AK FLbw««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6^4 63 *USER SPECIFIED(SUBAREA): ; NATURAL DESERT LANDSCAPING RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 Wr AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNG TOTAL AREA(ACRES) = 3.3 TOTAL RUNOF TC(MIN.) = 6.14 F(CFS) = 5.88 (CFS) = 7.46 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 3.3 TC{MIN.);= 6.14 PEAK FLOW RATE(CFS) = 7.46 END OF RATIONAL METHOD ANALYSIS STREET FLOW CALC ************************************************************************ * * * * I HYDRAULIC ELEMENTS - I PI^OGRAM PACKAGE (C) Copyright 1982-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: Ol/oi/2004 License ID 1252 Analysis prepared by: MANITOU ENGINEERING COMPANY 350 WEST 9TH AVE.[ SUITE B ESCONDIDO, CA 92025 TIME/DATE OF STUDY: 09:26 04/19/2005 Problem Descriptions: STREET FLOW CALC AT NODE 80 * • * * • I, »»STREETFLOW MODEL INPUT INFORMAT 10N«« j CONSTANT STREET GRADE(FEET/FEET) = 0.0^2600 CONSTANT STREST FLOW(CFS) = 9.00 | AVERAGE STREETFLOW FRICTION FACTOR(MAILING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH |( FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0[020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) f: 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS; STREET FLOW DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.77| AVERAGE FLOW VELOCITY(FEET/SEC.) = $.08 PRODUCT OF DEPTHScVELOCITY = 1.53 ! Wr ******************************************* t*. **************************** * * * * ; HYDRAULIC ELEMENTS - I pkoGPAM PACKAGE (C) Copyright 1982-2004 Advanced Engineering Software (aes) Ver. 10,0 Release Date: Ol/OtL/2004 License ID 1252 Analysis prepared by; MANITOU ENGINEERINb COMPANY 350 WEST 9TH AVE,|, SUITE S ESCONDIDO, CA 92025 TIME/DATE OF STUDY: 22:44 06/21/2006 Problem Descriptions; STREET FLOW CALC AT NODE 7 3 JN 1674 ************************************************************************ »»STREETFLOW MODEL INPUT INFORMATION«<<; CONSTANT STREET GRADE (FEET/FEET) = 0.0;52600 CONSTANT STREET FLOW(CFS) = 6.4 0 ' AVERAGE STREETFLOW FRICTION FACTOR (MANblING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.50 020000 020000 0.50 ) = 1.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0. OUTSIDE STREET CROSSFALL(DECIMAL) = 0. CONSTANT SYMMETRICAL CURB HEIGHT(FEET) CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) CONSTANT SYMMETRICAL GUTTER-LIP(FEET) H 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) | = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) =0.34 j HALFSTREET FLOOD WIDTH(FEET) = 10.7 0! AVERAGE FLOW VELOCITY (FEET/SEC. ) = ;5.06 PRODUCT OF DEPTH&VELOCITY = 1.72 | ************************************************************************ * * * * HYDRAULIC ELEMENTS - I E^!ROGRAM PACKAGE (C) Copyright 1982-2004 Advanced jEngineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1252 Analysis preparjed by: MANITOU ENGINEERIN|G COMPANY 350 WEST 9TH AVE.j, SUITE B ESCONDIDO, CA '92025 TIME/DATE OF STUDY; 22:47 06/21/2006 | ===============:===========================d==================:.t=:===:====== Problem Descriptions: STREET FLOW CALC ! AT NODE 70 : JN 1674 j ****************************************** *'* **************************** * * * * »»STREETFLOW MODEL INPUT INFORMATION««i CONSTANT STREET GRADE (FEET/FEET) = 0.0|52 600 CONSTANT STREET FLOW(CFS) = 3.60 | AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONST.^NT SYMMETRICAL STRSET HALF-WIDTH[(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.50 INTERIOR STREET CROSSFALL (DECIMAL) = 0|. 020000 OUTSIDE STREET CROSSFALL (DECIMAL) = 0!. 020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) I = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH (FEET!) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP (FEET) '= 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 7.80| AVERAGE FLOW VELOCITY(FEET/SEC.) = k.96 PRODUCT OF DEPTH&VELOCITY = 1.4 0 ! ***********************************************************************^ * * * * j HYDRAULIC ELEMENTS - I pkoGRAM PACKAGE (C) Copyright 1982-2004 Advanced i:ngineering Software (aes) Ver. 10.0 Release Date: 01/0*1/2004 License ID 1252 i Analysis prepared by: MANITOU ENGINEERING COMPANY 3 50 WEST 9TH AVE.'^ SUITE B ESCONDIDO, CA 92025 TIME/DATE OF STUDY: 09:28 04/19/2005 Problem Descriptions; STREET FLOW CALC AT NODE 55 *******************************************)*r**************************** 1 * * * * »»STREETFLOW MODEL INPUT INFORMATION««! CONSTANT STREET GRADE(FEET/FEET) = 0.062600 CONSTANT STREET FLOW(CFS) = 1.10 | AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH;{FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.50 INTERIOR STREET CROSSFALL(DECIMAL) = 01020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0 I 020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET)j= 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) i 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) =0.16 \ HALFSTREET FLOOD WIDTH(FEET) = 1.50i AVERAGE FLOW VELOCITY (FEET/SEC. ) = ^1.33 PRODUCT OF DEPTH&VELOCITY = 0.68 | ************************************************************************ * * * * ' HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2004 Advanced Engineering Software (aes) Ver. 10,0 Release Date: Ol/oi/2004 License ID 1252 j Analysis prepared by; MANITOU ENGINSERINfe COMPANY 350 WEST 9TH AVE.[ SUITE B ESCONDIDO, CA 92025 TIME/DATE OF STUDY: 22:51 06/21/2006 Problem Descriptions: \ STREET FLOW CALC AT NODE 40 JN 1674 \ ************************************************************************ * * * * »»STREETFLOW MODEL INPUT- INFORMATION««; CONSTANT STREET GRADE(FEET/FEET) = 0.039000 CONSTANT STREET FLOW(CFS) = 2,80 \ AVERAGE STREETFLOW FRICTION ENACTOR (MANNING) = 0.015000 CONSTANT SYMMETRICAL ST.REET HJ^LF-WIDTH!'(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15,50 INTERIOR STREET CROSSFALL (DECIMAL) = 01,020000 OUTSIDE STREET CROSSFALL (DECIMAL) = o|. 020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET)j = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) ;= 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET)! = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDfe, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.2 8 HALFSTREET FLOOD WIDTH(FEET) = 7.1 AVERAGE FLOW VELOCITY(FEET/SEC.) = 13.86 PRODUCT OF DEPTH&VELOCITY = 1.09 ************************************************************************ * *** I HYDRAULIC ELEMENTS - I p|\OGRAM PACKAGE (C) Copyright 1982-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1252 Analysis prepared by; MANITOU ENGINEERIN!3 COMPANY 350 WEST 9TH AVE.y SUITE B ESCONDIDO, CA S2025 TIME/DATE OF STUDY; 22:54 06/21/2005 Problem Descriptions: STREET FLOW CALC AT NODE 25 JN 1674 *******************************************;***************************** **** »»STRESTFLOW MODEL INPUT INFORMATION««! CONSTANT STREET GRADE(FEET/FEET) = 0.039000 CONSTANT STREET FLOW(CFS) = 7.10 AVE.RAGE STREETFLOW FRICTION FACTOR (MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET)i = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) ;= 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET)! = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SldE, AND THEN SPLITS STREET FLOW MODEL RESULTS; STREET FLOW DEPTH(FEET) =0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.67 AVERAGE FLOW VELOCITY(FEET/SEC.) = ^4.80 PRODUCT OF DEPTH&VELOCITY = 1.73 *******************************************^r**************************** * * * * HYDRAULIC ELEMENTS - I PflOGRAM PACKAGE (C) Copyright 1982-2006 Advanced Engineering Software (aes) Ver. 13.0 Release Date: 06/01/2006 License ID 1252 Analysis prepared by: Manitou Engineering Company TIME/DATE OF STUDY: 21:18 05/22/2007 Problem Descriptions: STREET FLOW CALC ! AT NODE 15 JN 1674 *******************************************i**************************** * * * * i »»STREETFLOW MODEL INPUT INFORMATION««! CONSTANT STREET GRADE(FEET/FEET) = 0.010000 CONSTANT STREET FLOW(CFS) = 6.90 | AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.50 020000 020000 0.50 1. 50 INTERIOR STREET CROSSFALL(DECIMAL) = 0. OUTSIDE STREET CROSSFALL(DECIMAL) = 0, CONSTANT SYMMETRICAL CURB HEIGHT(FEET) CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) CONSTANT SYMMETRICAL GUTTER-LIP (FEET) =)= 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) i= 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS; STREET FLOW DEPTH(FEET) =0.44 ; HALFSTREET FLOOD WIDTH(FEET) = 15.55; AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.72 PRODUCT OF DEPTH&VELOCITY = 1.19 ^*r- ************************************************************************ * * * * HYD.RAULIC ELEMENTS - I P^^OGRAM PACKAGE (C) Copyright 1982-2004 Advanced Engineering Software (aes) Ver. 10,0 Release Date; Ol/oi/2004 License ID 1252 Analysis prepared by: MANITOU ENGINEERING COMPANY 350 WEST 9TH AVE,> SUITE B ESCONDIDO, CA 92025 TIME/DATE OF STUDY: 23:06 06/21/2006 Problem Descriptions: ; STREET FLOW CALC AT NODE 10 JN 167 4 ************************************************************************ * * * * »»STREETFLOW MODEL INPUT INFORMATION««! CONSTANT STREET GRADE (FEET/FEET) = 0,0|10000 CONSTANT STREET FLOW(CFS) = 3,80 ; AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0,015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH;( FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEpREAK(FEET) = 15.50 INTERIOR STREET CROSSFALL (DECIMAL) = O!. 020000 OUTSIDE STREET CROSSFALL (DECIMAL) = Oj, 020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET)i = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH (FEET)) = 1.50 CONSTANT SYMMETRICAL GUTTER-LI P ( FEET) \= 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET)! = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) =0.36 HALFSTREET FLOOD WIDTH (FEST) = 11.57; AVERAGE FLOW VELOCITY(FEET/SEC.) = !2.57 PRODUCT OF DEPTH&VELOCITY = 0.92 INLET CAPACITY CALC ************************************************************************ * * * * HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: Ol/Oi/2004 License ID 1252 Analysis prepared by: MANITOU ENGINEERING COMPANY 3 50 WEST 9TH AVE.y SUITE B ESCONDIDO, CA 92025 TIME/DATE OF STUDY: 09:34 04/19/2005 Problem Descriptions: INLET CALC AT NODE 80 USE 18' INLET ^•'. • f ************************************************************************ * * * * »»SUMP TYPE BASIN INPUT INFORMATION«« \ Curb Inlet Capacities are approxiraatedi based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins, BASIN INFLOW(CFS) = 9.00 i BASIN OPENING(FEET) =0.33 \ DEPTH OF WATER(FEET) =0.30 | i »»CALCULATED ESTIMATED SUMP BASIN WIjDTH{FEET) = 17.74 Wr' *************+********************************************************** **** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1252 Analysis prepared by: MANITOU ENGINEERING COMPANY 350 WEST 9TH AVE.:, SUITE B ESCONDIDO, CA 92025 TIME/DATE OF STUDY: 23:17 06/21/2006 Problem Descriptions: INLET CALC AT NODE 73 JN 1674 ************************************************************************ * * * * »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 6.40 GUTTER FLOWDEPTH(FEET) = 0.34 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 1.98 0.91 2.00 0.92 2.50 1.14 3.00 1.35 3.50 1.57 4.00 1.79 4.50 2.00 ^^^^ 5.00 2 .21 5.50 2 .42 6.00 2 • 63 6.50 2 .84 7.00 3 . 04 7.50 3 .22 8. 00 3 .38 8.50 3 .55 9.00 3 .71 9.50 3 . 88 10.00 4 .04 10.50 4 .19 11. 00 4 .35 11.50 4, .50 12.00 4, . 65 12.50 4 , .78 13.00 4 , , 90 13.50 5 , .02 14.00 5, , 14 14.50 5, ,25 15. 00 5, ,37 15.50 5. 48 16. 00 5. 59 16. 50 5. 70 17.00 5. 81 17.50 5. 92 18.00 6. 02 18.50 6, 13 19. 00 6. 23 19.50 6. 33 19. 84 6. 4 0 ^limr ************************************************************************ * * * * HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date; 01/01/2004 License ID 1252 Analysis prepared by: MANITOU ENGINEERING COMPANY 350 WEST 9TH AVE., SUITE B ESCONDIDO, CA 32 02 5 TIME/DATE OF STUDY; 23:19 06/21/2006 Problem Descriptions: INLET CALC AT NODE 7 0 USE 14' INLET ************************************************************************ * * * * »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities aro approximated, based on the Bureau of Public Roads nomograph plota for flowby basins and sump basins. STREETFLOW(CFS) = 3.60 GUTTER FLOWDEPTH(FEET) = 0.2 8 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 1.37 0.50 1.50 0.54 2.00 0.72 2.50 0.89 3.00 1.06 3.50 1.23 4.00 1.40 4, .50 1, .56 5, . 00 1 .72 5, ,50 1, .86 6, ,00 1, ,99 6, ,50 2, ,13 7, , 00 2, ,26 7, ,50 2, ,38 8, .00 2, .51 8. ,50 2, , 62 9, ,00 2, ,73 9, , 50 2, , 83 10, ,00 2, , 92 10. ,50 3, ,02 11. .00 3, ,11 11, ,50 3. .21 12. 00 3, ,30 12. 50 3, 39 13. ,00 3. ,48 13. 50 3. .57 13, ,70 3. 60 c Wr ************************************************************************ * * * * HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2004 Advanced Engineering Software (aes) Ver. 10,0 Release Date: 01/01/2004 License ID 1252 Analysis prepared by; MANITOU ENGINEERING COMPANY 350 WEST 9TH AVE,, SUITE B ESCONDIDO, CA 92025 TIME/DATE OF STUDY: 23:29 06/21/2006 Problem Descriptions: INLET CALC AT NODE 55 JN 1674 ************************************************************************ + *** »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 1,10 GUTTER FLOWDEPTH(FEET) = 0,16 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 0.74 0.14 1.00 0.18 1.50 0.27 2.00 0.36 2.50 0.45 3.00 0.53 3.50 0.61 00 50 00 50 00 50 7.00 7.40 0 . 68 0.75 0. 82 0.88 0. 94 1.00 1.06 1.10 ************************************************************************ **** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1252 Analysis prepared by; MANITOU ENGINEERING COMPANY 350 WEST 9TH AVE., SUITE B ESCONDIDO, CA 92025 TIME/DATE OF STUDY: 23:21 06/21/2006 Problem Descriptions; INLET CALC AT NODE 4 0 USE 14' INLET ************************************************************************ * * * * »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 2.8 0 GUTTER FLOWDEPTH(FEET) = 0.28 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 1.07 0.39 1.50 0.54 2.00 0.71 2.30 0.88 3.00 1.05 3,50 1,22 4,00 1.37 4 , ,50 1.51 5, , 00 1. 64 5, ,50 1.77 6, ,00 1. 90 6, ,50 2.02 7, ,00 2. 12 7. ,50 2.22 8. ,00 2.32 8, ,50 2.41 9, 00 2.50 9. 50 2. 60 10. ,00 2. 69 10, 50 2.77 10. ,65 2.80 **********************************************************************v * * * * HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date; 01/01/2004 License ID 1252 Analysis prepared by: MANITOU ENGINEERING COMPANY 350 WEST 9TH AVE., SUITE B ESCONDIDO, CA 92025 TIME/DATE OF STUDY; 23:22 06/21/2006 Problem Descriptions: INLET CALC AT NODE 25 USE 21' INLET FOR FULL INTERCEPTION ************************************************************************ * * * * »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins STREETFLOW(CFS) = 7.10 GUTTER FLOWDEPTH(FEET) = 0.36 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 2.07 1.03 2.50 1.23 3.00 1.47 3.50 1.70 4.00 1.93 4.50 2.16 5.00 2.39 5.50 2, . 62 6.00 2 .84 6,50 3 .07 7.00 3, .28 7.50 3 ,48 8.00 3 .66 8.50 3, .84 9. 00 4. , 02 9.50 4 , ,20 10. 00 4, ,37 10.50 4, .54 11.00 4, .71 11,50 4, .87 12,00 5, ,04 12.50 5, . 19 13 . 00 5, ,33 13.50 5, ,46 14 . 00 5, ,58 14.50 5, ,71 15. 00 5, , 83 15.50 5, ,95 16. 00 6, ,07 16.50 6, ,19 17 .00 6, ,30 17.50 6. ,41 18. 00 6. ,53 18.50 6. ,63 19 . 00 6. 74 19. 50 6, 85 20. 00 6, 95 20.50 7 . 05 20. 73 7. ,10 ************************************************************************ * * * * HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2006 Advanced Engineering Software (aes) Ver. 13.0 Release Date: 06/01/2006 License ID 1252 Analysis prepared by: Manitou Engineering Company TIME/DATE OF STUDY; 21:23 05/22/2007 Proble.-n Descriptions: INLET CALC AT NODE 15 JN 1674 ************************************************************************ * * * * »»SUMP TYPE BASIN INPUT INFORMATION<<<< Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 6.90 BASIN OPENING(FEET) = 0.33 DEPTH OF WATER(FEET) = 0.4 4 »»CALCULATED ESTIMATED SUM? BASIN WIDTH (FEET) = 8.56 c ************************************************************************ * * * * HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1252 Analysis prepared by: MANITOU ENGINEERING COMPANY 350 WEST 9TH AVE., SUITE B ESCONDIDO, CA 92025 TIME/DATE OF STUDY: 23:25 06/21/2006 Problem Descriptions; INLET CALC AT NODE 10 JN 1674 ************************************************************************ + * * * »»SUMP TYPE BASIN INPUT INFORMATION«« • Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 3.8 0 BASIN OPENING(FEET) = 0.33 DEPTH OF WATER (E''EET) = 0.36 »»CALCULATED ESTIMATED SUMP BASIN WIDTH (FEET) = 5.98 HYDRUALIC CALC **************************************************************************** PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD, LACRD, S; OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2006 Advanced Engineering Software (aes) Ver. 13.0 Release Date: 06/01/2006 License ID 1252 Analysis prepared by: Manitou Engineering Company ************************** DESCRIPTION OF STUDY ************************** * PIPE FLOW CALC. * OUTLETS AT NODE 3 6 INTO DETENTION EASIN * JN 167 4 FILE NAME: 1674PFR.DAT TIME/DATE OF STUDY: 21:54 05/22/2007 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOl'/NSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 3 6.00 FLOWLINE ELEVATION = 82.00 PIPE DIAMETER(INCH) = 36.00 PIPE FLOW(CFS) = 36.00 ASSUMED DOWNSTREAM CONTROL KGL = 85.000 L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS NODE 3 6.00 : HGL= < 85.000>;EGL= < 85.403>;FLOWLINE= < 82 000> PRESSURE FLOW UPSTREAM NODE PROCESS FROM NODE 36.00 3 7.00 ELEVATION = TO NODE 37.00 IS CODE = 84!. 08 = 1 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): = 3 6.00 INCHES = 0.01300 PIPE FLOW = 36.00 CFS PIPE DIAiMETER: PIPE LENGTH = 42.12 FEET MANNINGS N! SF=(Q/K)**2 = (( 36.00)/( 666.983))**2 = 0.0029132 HF=L*SF = ( 42.12)*( 0.0029132) = 0.123 NODE 37.00 : HGL= < S5.123>;EGL= < 85.525>;FLOWLINE= < 84.080> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 1.95 NODE 37.00 : HGL= < 87.080>;EGL= < 87.483>;FLOWLINE= < 84.080> PRESSURE FLOW PROCESS FROM NODE 37.00 TO NODE 37.00 IS CODE = 5 UPSTREAM NODE 3 7.00 ELEVATION = 84.08 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY , DELTA KV 1_ 36 ,0 36.00 7 .069 5 . 093 0. .000 0, , 403 2 36, , 0 36.00 7.069 5. 093 --0, ,403 3 0, . 0 0.00 0.000 0 . 000 0 , . 000 - 4 0, , 0 0.00 0.000 0. 000 0 , ,000 - 5 0 , ,0 = ==Q5 EQUALS BASIN INPUT LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0'. 01300 DOVJNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00291 DOVmSTREAM FRICTION SLOPE = 0,00291 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00291 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = 0.015 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.000+ 0.403- 0.403+( 0 . 015) + ( 0.000) = 0.015 NODE 37.00 : HGL= < 87.095>;EGL= < 87.497>;FLOWLINE= < 84.080> tt W«f PRESSURE FLOW PROCESS FROM NODE 3 7.00 TO NODE UPSTREAM NODE 38.00 ELEVATION = 88.00 38.00 IS CODE = 1 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = PIPE LENGTH = SF=(Q/K)**2 = HF=L*SF = ( NODE 3 8.00 3 6.00 CFS PIPE DIAMETER = 36.00 INCHES 90.33 FEET MANNINGS N = 0.01300 (( 36.00)/( 566.983))**2 = 0.0029132 90.33)*( 0.0029132) = 0.263 ; HGL= < 87.358>;EGL= < 87.760>;FLOWLINE= < 000> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 3.54 NODE 38.00 : HGL= < 91.00D>;EGL= < 91.40 3>;FLOWLINE= 88.000> PRESSURE FLOW PROCESS FROM NODE 3 8.00 TO NODE UPSTREAM NODE 3 8.00 ELEVATION = 88.00 38.00 IS CODE = 5 CALCULATE PRESSURE FLOW JUNCTION LOSSES; NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 36 . , 0 36. 00 7 . 069 5 . 093 45 . , 000 0 , . 403 2 36. . 0 36.00 7.069 5. 093 --0 , .403 3 0. .0 0.00 0. 000 0. 000 0 , ,000 - 4 0 . . 0 0 .00 0 . 000 0. 000 0, .000 - 5 0 . , 0 = ==Q5 EQUALS BASIN INPUT 1 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00291 DOWNSTREAM FRICTION SLOPE = 0.00291 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00291 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = 0.015 ENTRANCE LOSSES =0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.236+ 0.403- 0.403+( 0.015)+( 0.000) = 0.251 NODE 38.00 : HGL= < 91.251>;EGL= < 91.653>;FLOWLINE= < 88.000> PRESSURE FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 1 UPSTREAM NODE 39.00 ELEVATION = 126.00 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD); PIPE FLOW = 36.00 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 113.91 FEET MAN'NINGS N = 0.01300 SF=(Q/K)**2 = (( 36.00)/( 665 . 983))**2 = 0.0029132 HF=L*SF = ( 113.91)*( 0.0029132) = 0.332 NODE 39.00 : HGL= < 91.582>;EGL^ < 91 . 985>;FLOWLINE= < 126.000> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 37.42 NODE 39.00 : KGL= < 129.000>;EGL= < 129 . 403>;FLOWLINE= < 126.000> PRESSURE FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 5 UPSTREAM NODE 39.00 ELEVATION = 126.00 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 36 . 0 36 . 00 7 .069 5.093 45.000 0 . 403 2 36.0 35.00 . 7 .069 5 . 093 --0 . 403 3 0 . 0 0.00 0 . 000 0 . 000 0 . 000 - 4 0 . 0 0 . 00 0.000 0.000 0 . 000 - 5 0 . 0== =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Q1*V1*C0S (DELTAl) -Q3*V3*COS (DELTAS!) - Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0.013 00 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00291 DOWNSTREAM FRICTION SLOPE = 0.00291 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00291 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = 0.015 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.236+ 0.403- 0.403+( 0.015)+( 0.000) = 0 NODE 39.00 : HGL= < 129.251>;EGL= < 12 9.653>;FLOWLINE= < 251 126.000> ^^^^ PRESSURE FLOW PROCESS FROM NODE 39.00 TO NODE 40.00 IS CODE = 1 UPSTREAM NODE 40.00 ELEVATION = 132.00 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 3 6.00 CFS PIPE DIAMETER = 3 6.00 INCHES PIPE LENGTH = 36.28 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 = (( 35.00)/( 666.983))**2 = 0.0029132 HF=L*SF = ( 36.28)*( 0.0029132) = 0.106 NODE 40.00 : HGL= < 129.356>;EGL= < 129.759>;FLOWLINE= < 132.000> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 5.64 NODS 40.00 : HGL= < 135.000>;EGL= < 135.403>;FLOWLINE= < 132.000> PRESSURE FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE - 5 UPSTREAM NODE 40.00 ELEVATION = 132.00 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE Dli^METER AREA VELOCITY DELTA KV 1 9.5 24.00 3.142 3.024 50.000 0.142 2 36.0 35.00 7.069 5.093 -- 0.403 3 18.6 24.00 3-142 5.921 10.000 4 7.1 18.00 1.767 4.018 90.000 5 0.8===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEI'IA PRESSURE FLOW JUNCTION FORMULAE USED: DY={Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.0017 5 DOWNSTREAM FRICTION SLOPE = 0.00291 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00234 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = 0.012 ENTRANCE LOSSES = 0.081 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.343+ 0.142- 0.403+( 0.012)+( 0.081) = 0.175 NODE 40.00 : HGL= < 135.436>;EGL= < 135.578>;FLOWLINE= < 132.000> PRESSURE FLOVJ PROCESS FROM NODE 40.00 TO NODE 8.00 IS CODE = 1 UPSTREAM NODE 8.00 ELEVATION = 132.26 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 9.50 CFS PIPE DIAMETER = 24.00 INCHES PIPS LENGTH = 45.54 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 = (( 9.50)/( 226.224))**2 = 0.0017635 HF=L*SF = ( 45.54)*( 0.0017635) = 0.080 NODE 8.00 : HGL= < 135.516>;EGL= < 135.658>;FLOWLINE= < 132.260> PRESSURE FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE UPSTREAM NODE 8 . 00 ELEVATION 132 .26 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER 9.5 9 . 5 0.0 0.0 0.0 = = 24.00 24 . 00 0 . 00 0. 00 AREA 3 .142 3 .142 0 . 000 0.000 VELOCITY DELTA 3 . 024 3 . 024 0 .000 0. 000 =Q5 EQUALS BASIN INPUT=== 45.000 0 . 000 0 . 000 HV 0.142 0 .142 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N=0.01300 DOVJNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00176 DOWNSTREAM FRICTION SLOPE = 0.00176 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00176 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = 0.009 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.033+ 0.142- 0.142+( 0.009)+( 0.000) = 0.092 NODE 8.00 : HGL= < 135.608>;EGL^ < 135.750>;FLOWLINE= < 132.260> PRESSURE FLOW PROCESS FROM NODE 8.00 TO NODE UPSTREAM NODE 9.00 ELEVATION = 132.47 9.00 IS CODE CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD) PIPE FLOW = PIPE LENGTH = SF=(Q/K)**2 = HF=L*SF = ( NODE 9.00 9.50 CFS PIPE DIAMETER = 24.00 INCHES 43.58 FEET MANNINGS N = 0.01300 (( 9.50)/( 226.224))**2 = 0.0017635 43.58)*( 0.0017635) = 0.077 : HGL= < 135.685>;EGL= < 135.827>;FLOWLINE= < 132 . 470> PRESSURE FLOW PROCESS FROM NODE 9.00 TO NODE UPSTREAM NODE 9.00 ELEVATION = 132.47 9.00 IS CODE CALCULATE PRESSURE FLOW JUNCTION LOSSES; NO. DISCHARGE DIAMETER 9.5 9.5 0.0 0.0 0.0 = = 24.00 24. 00 0. 00 0.00 AREA 3 .142 3 .142 0.000 0 . 000 VELOCITY DELTA 3 . 024 3 . 024 0.000 0 . 000 =Q5 EQUALS BASIN INPUT=== 45 . 000 0. 000 0 . 000 HV 0 .142 0.142 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00176 DOWNSTREAM FRICTION SLOPE = 0.00176 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00176 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = 0.009 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.083+ 0.142- 0.142+( 0.009)+( 0.000) = 0.092 NODE 9.00 : HGL= < 135.777>;EGL= < 135.919>;FLOWLINE= < 132.470> PRESSURE FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 1 UPSTREAM NODE 10.00 ELEVATION = 133.70 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD) PIPE FLOW = PIPE LENGTH = SF=(Q/K)**2 = HF=L*SF = ( NODE 10.00 9.50 CFS PIPE DIAMETER .= 24.00 INCHES 246.70 FEET MANNINGS N = 0.01300 (( 9.50)/( 226.224))**2 = 0.0017635 246.70)*( 0.0017635) = 0.435 ; HGL= < 136.212>;EGL= < 136,354>;FLOWLINE= < 133.700> PRESSURE FLOW PROCESS FROM NODE 10.00 TO NODE UPSTREAM NODE 10.00 ELEVATION = 133.70 10.00 IS CODE CALCULATE PRESSURE FLOW JUNCTION LOSSES; NO. DISCHARGE DIAMETER AREA VELOCITY 6.9 24.00 3.142 2.196 9.5 24.00 3.142 3.024 0.0 0.00 0.000 0.000 0,0 0.00 0.000 0.000 2.6===Q5 EQUALS BASIN INPUT=== DELTA 90.000 0.000 0 . 000 KV 0 . 075 0 .142 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00093 DOVJNSTREAM FRICTION SLOPE = 0.00176 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED JUNCTION LENGTH(FEET) = 5.00 FRICTION ENTRANCE LOSSES = 0.028 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.284+ 0.075- NODE 10.00 : HGL= < 136.531>; AS 0 . LOSS 00135 = 0.007 0.142+( 0.007)+( 0.028) = 0.252 :EGL= < 136 . 606>; FLOVJLINE= < 133 700> PRESSURE FLOW PROCESS FROM NODE 10.00 TO NODE 15.00 IS CODE UPSTRE.aM NODE 15.00 ELEVATION = 133.90 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 6.90 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 39.00 FEET MANT>JINGS N = 0.01300 SF=(Q/K)**2 = (( 5.90)/( 226.224))**2 = 0.0009303 KF=L*SF = ( 39.00)*( 0.0009303) = 0.036 NODE 15.00 : KGL= < 135.567>;EGL= < 135.642>;FLOWLINE= < 133.900> PRESSURE FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 8 UPSTREAM NODE 15.00 ELEVATION = 133.90 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 6.90 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = 0.075 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.075) = 0.015 NODE 15.00 : HGL= < 136.657>;EGL= < 136.657>;FLOWLINE= < 133.900> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM **************************************************************************** PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD, S: OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2006 Advanced Engineering Software (aes) Ver. 13.0 Release Date: 06/01/2006 License ID 1252 Analysis prepared by: Manitou Engineering Company ************************** DESCRIPTION OF STUDY ****=*•********************* * PIPE FLOW CALC * LATERAL AT NODE 40 * JN 1674 ************************************************************************** FILE NAME: 1674PFL.DAT TIME/DATE OF STUDY: 22:06 05/22/2007 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DO\^n^STREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 40.00 FLOWLINE ELEVATION = 132.00 PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 18.60 ASSUMED DOWNSTREAM CONTROL HGL = 135.436 L.A. THOMPSON'S EQUATION IS USED FOR JUNCTIO^I ANALYSIS NODE 40.00 : HGL= < 135.436>;EGL= < 13Sl980>;FLOWLINE= < 132.000> PRESSURE FLOW PROCESS FROM NODE 40.00 TO NODE 45.00 IS CODS = 1 UPSTREAM NODE 45.00 ELEVATION = 154-. 90 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 18.50 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 300,00 FEET MAN'NINGS N = 0.01300 SF=(Q/K)**2 = (( 18.60)/( 226.224))**2 = 0.0067600 HF=L*SF = ( 300.00)*( 0.0067600) = 2.028 NODE 45.00 : HGL= < 137 . 464> ; EGL= < 13 800 8> ; FLOWLINE= < 154.900> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 19.44 NODE 45.00 : KGL= < 156.900>;EGL= < 157.444>;FLOWLINE= < 154.900> PRESSURE FLOW PROCESS FROM NODE 45.00 TO NODE 45.00 IS CODE = 5 UPSTREAM NODE 45.00 ELSVATION = 154.90 Wr' CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 18.6 24.00 3.142 5.921 0.000 2 18.6 24.00 3.142 5.921 3 0.0 0.00 0.000 0.000 0.000 4 0.0 0.00 0.000 0.000 0.000 0.0 = =Q5 EQUALS BASIN INPUT= HV 0 . 544 0 . 544 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED; DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0.01300 D05»JNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00676 DOWNSTREAM FRICTION SLOPE = 0.00676 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.0067 6 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = 0.034 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.000+ 0.544- 0.544+( 0.034)+( 0.000) = 0, NODE 45.00 : HGL= < 156.934>;EGL= < 157.47S>;FLOWLINE= < 034 154 , 900> PRESSURE FLOW PROCESS FROM NODE 45.00 TO NODE UPSTREAM NODE 50.00 ELEVATION = 168.28 50.00 IS CODE CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = PIPE LENGTH = SF=(Q/K)**2 = HF=L*SF = ( NODE 50.00 18.60 CFS PIPE DIAMETER = 24.00 INCHES 244.00 FEET MANNINGS N = 0.01300 (( 18.60)/( 226.224))**2 = 0.0067600 244.00)*( 0.0067600) = 1.649 : HGL= < 158.583>;EGL= < 159.128>;FLOWLINE= < 168.280> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 11.70 NODE 50.00 : HGL= < 170.280>;EGL= < 170.824>;FLOWLINE= < 168 .280> PRESSURE FLOW PROCESS FROM NODE 5 0.00 TO NODE UPSTREAM NODE 50.00 ELEVATION = 168.28 50.00 IS CODE = CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY 1 18.6 24.00 3.142 5.921 2 18.6 24.00 3.142 5.921 3 0.0 0.00 0.000 0.000 4 0.0 0.00 0.000 0.000 5 0.0===Q5 EQUALS BASIN INPUT=== DELTA 15.000 0 . 000 0 . 000 HV 0.544 0.544 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00676 DOWNSTREAM FRICTION SLOPE = 0.00676 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED JUNCTION LENGTH(FEET) = 5.00 FRICTION ENTRANCE LOSSES = 0.00 0 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.037+ 0.544- 0.544+( 0.034)+( 0.000) = 0. NODE 50.00 ; HGL= < 170.351>;EGL= < 170.895>;FLOWLINE= < AS 0.00675 LOSS = 0.034 071 168.280> PRESSURE FLOW PROCESS FROM NODE 5 0.00 TO NCDE UPSTREAM NODE 55.00 ELEVATION = 171.18 55,00 IS CODE CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 18.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 62.00 FEET MANNINGS N = 0.013 00 SF=(Q/K)**2 = (( 18.60)/( 226.224))**2 = 0.0067600 HF=L*SF = ( 62.00)*( 0.0067600) = 0.419 NODE 55.00 : HGL= < 170.770>;EGL= < 171.314>;FLOWLINE= < 171.1S0> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 2.41 NODE 55.00 : HGL= < 173.180>;EGL= < 173.724>;FLOWLINE= < 171.180> PRESSURE FLOW PROCESS FROM NODE 55.00 TO NODE UPSTREAM NODE 55.00 ELEVATION = 171.18 55.00 IS CODE CALCULATE PRESSURE FLOW JUNCTION LOSSES; NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 17.7 24.00 3.142 5.634 45.000 2 18.6 24.00 3.142 5.921 3 0.0 0.00 0.000 0.000 0.000 4 0.0 0.00 0.000 0.000 0.000 5 0.9===Q5 EQUALS BASIN INPUT=== HV 0 . 493 0 . 544 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.013 00 UPSTREAM FRICTION SLOPE = 0.00612 DOWNSTREAM FRICTION SLOPE = 0.00676 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED JUNCTION LENGTH(FEET) = 5.00 FRICTION ENTRANCE LOSSES = 0.10 9 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.392+ 0.493- 0,544+( 0.032)+( 0.109) = 0.481 NODE 55.00 : HGL= < 173.713>;EGL= < 174.205>;FLOWLINS= < 171.180> AS 0.00644 LOSS = 0.032 PRESSURE FLOW PROCESS FROM NODS 55.00 TO NODE 60.00 IS CODE = 1 Vwr UPSTREAM NODE 6 0.00 ELEVATION = 176.30 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 17.70 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 92.00 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 = (( 17.70)/( 226.224))**2 = 0.0061217 HF=L*SF = ( 92.00)*( 0.0061217) = 0.563 NODE 60.00 : HGL= < 174.276>;EGL= < 174.769>;FLOWLINE= < 176.300> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 4.02 NODE 60.00 : HGL= < 178.300>;EGL= < 178.793>;FLOWLINE= < 175.300> PRESSURE FLOW PROCESS FROM NODE 6 0.00 TO NODE UPSTREAM NODE 50.00 ELEVATION = 176.30 60.00 IS CODE = CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO, DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 17 . 7 24.00 3 .142 5 . 634 10.000 0 . 493 2 17 . 7 24 . 00 3 .142 5.634 --0 .493 3 0 . 0 0.00 0 . 000 0 . 000 0. 000 - 4 0 . 0 0 . 00 0 . 000 0 . 000 0 . 000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT--= LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED; DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0.01300 DOTiJNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00612 DOWNSTREAM FRICTION SLOPE = 0.00612 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00612 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = 0.031 ENTRANCE LOSSES = 0.00 0 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.015+ 0.493- 0.493+( 0.031)+( 0.000) = 0.046 NODE 60.00 : HGL= < 178.346>;EGL= < 178.838>;FLOWLINE= < 176.300> PRESSURE FLOW PROCESS FROM NODE 50.00 TO NODE UPSTREAM NODE 65.00 ELEVATION = 179.17 65.00 IS CODE = CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 17.70 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 67.00 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 = (( 17.70)/( 226,224))**2 = 0.0061217 HF=L*SF = ( 67.00)*( 0.0061217) = 0.410 NODE 65.00 : HGL= < 178.756>;EGL= < 179.249>;FLOWLINE= < 179.170> PRSSSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 2.41 NODE 65.00 : KGL= < 181.170>;EGL= < 181.653>;FLOWLINE= < 179.170> PRESSURE FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 5 UPSTREAM NODE 65.00 ELEVATION = 179.17 CALCULATE PRESSURE FLOW JUNCTION LOSSES; NO. DISCHARGE DIAMETER 17 . 7 17.7 0. 0 0.0 0.0 = = 24 . 00 24 . 00 0.00 0.00 AREA 3 .142 3 .142 0 . 000 0 . 000 VELOCITY DELTA 5.634 5 . 634 0 . 000 0.000 =Q5 EQUALS BASIN INPUT=== 45 . 000 0 . 000 0 .000 HV 0 . 493 0. 493 L.ACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULA.E U^ DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) • ED: UPSTREAM MANNINGS N=0.01300 DOIVNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00512 DOWNSTREAM FRICTION SLOPE = 0.00612 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00612 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = 0.031 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HVl-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.289+ 0.493- 0.493+( 0.031)+( 0.000) = 0, NODE 65.00 : HGL= < 181.489>;EGL= < 181.982>;FLOWLINE= < 319 179 , 170> PRESSURE FLOW PROCESS FROM NODE 65.00 TO NODE 70.00 IS CODE = 1 UPSTREAM NODE 70.00 ELEVATION = 183.20 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 17.70 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 90.00 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 = (( 17,70)/( 226.224))**2 = 0.0061217 HF=L*SF = ( 90.00)*( 0.0061217) = 0.551 NODE 70.00 : HGL= < 18 2 . 0 4 0>; EGL= < 182 . 5 3 3 > ; FLOVJLINE= < 183.200> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AITO EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 3.16 NODE 70.00 : HGL= < 185.200>;EGL= < 185.693>;FLOWLINE= < 183.200> PRESSURE FLOW PROCESS FROM NODE 7 0.00 TO NODE 70.00 IS CODE UPSTREAM NODE 70.00 ELEVATION = 183.20 = 5 CALCULATE PRESSURE FLOW JUNCTION LOSSES; NO. DISCHARGE DIAMETER 9.0 17 .7 6.4 0 . 0 2.3 = 18.00 24.00 18 . 00 0.00 AREA 1.767 3 .142 1.767 0.000 VELOCITY DELTA 5.093 5.634 3 . 622 0.000 ==Q5 EQUALS BASIN INPUT== 10.000 90.000 0 . 000 HV 0 . 403 0.493 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.0073 4 DOWNSTREAM FRICTION SLOPE = 0.00 612 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00673 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = 0.034 ENTRANCE LOSSES = 0.099 JUNCTION LOSSES = DY+HVl-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.691+ 0.403- 0.493+( 0.034)+( 0.099) = 0.733 NODE 70.00 : KGL= < 18 6 . 02 3 > ; EGL= < 186 . 425> ; FLOWLINE-=- < 183.200> PRESSURE FLOW PROCESS FROM NODE 70.00 TO NODE 80,00 IS CODE = 1 UPSTREAM NODE 80.00 ELEVATION = 193.50 CALCULATE PRSSSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 9.0 0 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 197.21 FEST MANNINGS N = 0.01300 SF=(Q/K)**2 = (( 9.00)/( 105.043))**2 = 0.0073409 HF=L*SF = ( 197.21)*( 0.0073409) = 1.448 NODE 80.00 : HGL= < 187.471>;EGL= < 187.873>;FLOWLINE= < 193.500> W PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 7.53 NODE 80.00 ; HGL= < 195 . 000>;EGL= < 195.403>;FLOWLINE= < 193.500> PRESSURE FLOW PROCESS FROM NODE 80.00 TO NODE 80.00 IS CODE = 8 UPSTREAM NODE 80.00 ELEVATION = 193.50 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CPS) = 9.00 PIPE DIAMETER(INCH) = 18.00 PRESSURE FLOW VELOCITY HEAD = 0.403 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.403) = 0.081 NODE 80.00 : HGL= < 19 5 . 483 > ; EGL= < 19 5 . 483> ; FLOVJLINE= < 193.500> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM ***************************************************************************, PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2006 Advanced Engineering Software (aes) Ver. 13.0 Release Date: 06/01/2006 License ID 1252 Analysis prepared by: Manitou Engineering Company ************************** DESCRIPTION OF STUDY ************************** * PIPE FLOW CALC * LATERAL - NODE 40 TO NODE 25 * JN 1674 ************************************************************************** FILENAME: 1674PFL2.DAT TljME/DATE OF STUDY: 22:12 05/22/2007 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT L.ACRD, LACFCD, AND OCEMA DESIGN MANUALS. ^^^^ DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 40.00 FLOWLINE ELEVATION = 132.00 PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 7.10 ASSUMED DOIVNSTREAM CONTROL KGL = 135.43 6 L<A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS NODE 40.00 : HGL= < 135.435>;EGL= < 135.687> ;FLOWLINE= < 132 , , OOO PRESSURE FLOW PROCESS FROM NODE 40.00 TO NODE 25 . 00 IS CODE = = 1 UPSTREAM NODE 2 5.00 ELEVATION = 132.39 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 7.10 CFS PIPE DIAMETER = 1 8.00 INCHES PIPE LENGTH = 3 9.00 FEET MANNINGS N = 0. 01300 SF=(Q/K)**2 = (( 7.10)/( 105.043))'*2 = 0. 0045686 HF=L*SF = ( 39.00)*( 0.0045686) = 0.178 NODE 25.00 : HGL= < 135.614>;EGL= < 135.865>;FLOWLINE= < 132.390> pj^ESSURE FLOW PROCESS FROM NODE 2 5.00 TO NODE 25.00 IS CODE UPSTREAM NODE 25.00 ELEVATION = 132.39 CALCULATE PRESSURE FLOW CATCH EASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 7.10 PIPE DIAMETER(INCH) = 18.00 PRESSURE FLOW VELOCITY HEAD = 0.251 C CATCH BASIN ENERGY LOSS =.2*(VELOCITY HEAD) = .2*( 0.251) = O.050 NODE 25.00 ; HGL= < 135.915>;EGL= < 135.915>;FLOWLINE= < 132.390> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM HYDROLOGY STUDY 10 - YEAR Orange ** County 32-45' — ?! S Countyof SanDiego Hydrology Manual Rainfall I.wpluvials 10 Year RainfyLEi?Hl^:AiI?y!!:? DPW 3 0 3 Miles SanGIS Riverside Counly .• ;: s u x:oii*jiy 32-30' c o J- -bis SanGIS 3 0 3 Miles **************************************************************************** _ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1252 Analysis prepared by: Manitou Engineering Company 350 West Ninth Ave., Suite "B" Escondido, CA. 92025 (760) 741-9921 'k-k-k-k-k'k'k-^-k-k-k-k'k^-k-k-k'k'k-k-k'k'k-^-k'k DESCRI PTION OF STUDY '^•^•^•^•^•^•^•^•^•^•^•^•^•^•^'k'k-k-k-k-k-^'k'k'k-k * 10 YEAR HYDROLOGY * * DEVELOPED CONDITIONS * * JN 167 4 * ************************************************************************** FILE NAME: 1674HR10.DAT TIME/DATE OF STUDY: 11:46 03/10/2009 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 10.00 \^ 5-HOUR DURATION PRECIPITATION (INCHES) = 1.850 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 17.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 90.00 TO NODE 85.00 IS CODE = 22 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 95 USER SPECIFIED Tc(MIN.) = 5.000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.874 SUBAREA RUNOFF(CFS) =4.80 S^. TOTAL AREA(ACRES) = 2.4 0 TOTAL RUNOFF(CFS) = 4.80 **************************************************************************** FLOW PROCESS FROM NODE 85.00 TO NODE 80.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >»» (STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 215.00 DOWNSTREAM ELEVATION(FEET) = 197.89 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW{CFS) = 5.19 STREETFLOW MODEL RESULTS USING ESTIMJ^TED FLOW: STREET FLOW DEPTH(FEET) = 0.2 6 HALFSTREET FLOOD WIDTH(FEET) = 6.8 3 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.44 PRODUCT OF DEPTH&VELOCITY (FT*FT/SEC. ) = 1.17 STREET FLOW TRAVEL TIME{MIN.) = 1.13 Tc(MIN.) = 5.13 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.275 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 95 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4 47 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 0.78 TOTAL AREA(ACRES) = 2.6 PEAK FLOW RATE(CFS) = 4.99 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 6.64 FLOW VELOCITY(FEET/SEC.) = 4.46 DEPTH*VELOCITY(FT* FT/SEC.) = 1.16 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 80.00 = 300.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 82.00 TO NODE 80.00 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<«< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.275 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4411 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 0.8 8 TOTAL AREA(ACRES) = 3.1 TOTAL RUNOFF(CFS) = 5.8 5 TC(MIN.) = 6.13 c **************************************************************************** FLOW PROCESS FROM NODE 80.00 TO NODE 70.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 193.50 DOWNSTREAM(FEET) = 183.20 FLOW LENGTH(FEET) = 197.21 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.01 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.85 PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) = 5.43 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 7 0.00 = 4 97.21 FEET. ************************************************ * * ************************** FLOW PROCESS FROM NODE 7 0.00 TO NODE 7 0.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.4 3 RAINFALL INTENSITY(INCH/HR) = 4.15 TOTAL STREAM AREA(ACRES) = 3.11 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.8 6 **************************************************************************** FLOW PROCESS FROM NODE 72.00 TO NODE 70.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) =4.874 SUBAREA RUNOFF(CFS) = 2.00 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 2.00 **************************************************************************** FLOW PROCESS FROM NODE 80.00 TO NODE 70.00 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<«< »>>> (STREET TABLE SECTION t 1 USED)«<<< UPSTREAM ELEVATION(FEET) = 197.89 DOWNSTREAM ELEVATION(FEET) = 186.38 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 5.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.27 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.21 HALFSTREET FLOOD WIDTH(FEET) = 4.15 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.90 PRODUCT OF DEPTH&VELOCITY^FT*FT/SEC.) =0.82 STREET FLOW TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) = 5.85 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.403 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 95 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4 66 SUBAREA AREA(ACRES) = 0.14 SUBAREA RUNOFF(CFS) = 0.54 TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 2.34 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.21 HALFSTREET FLOOD WIDTH(FEET) = 4.25 FLOW VELOCITY(FEET/SEC.) = 3.91 DEPTH*VELOCITY(FT*FT/SEC.) = 0.83 LONGEST FLOWPATH FROM NODE 72.00 TO NODE 70.00 = 397.21 FEET. **************************************************************************** FLOW PROCESS FROM NODE 70.00 TO NODE 70.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) =5.85 RAINFALL INTENSITY(INCH/HR) = 4.4 0 TOTAL STREAM AREA(ACRES) = 1.14 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.34 FLOW PROCESS FROM NODE 73.00 TO NODE 70.00 IS CODE = 7 >>»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 7.44 RAIN INTENSITY(INCH/HOUR) = 3.77 TOTAL AREA(ACRES) = 1.8 3 TOTAL RUNOFF(CFS) = 4.30 **************************************************************************** FLOW PROCESS FROM NODE 70.00 TO NODE 70.00 IS CODE = 1 >>»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< »»>Am COMPUTE VARIOUS CONFLUENCED STRE.AM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 7.44 RAINFALL INTENSITY(INCH/HR) = 3.77 TOTAL STREAM AREA(ACRES) = 1.83 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.30 ** CONFLUENCE DATA ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 5.86 2.34 4 .30 Tc (MIN.) 6.43 5.85 7 .44 INTENSITY- (INCH/HOUR) 4.146 4 .403 3.772 AREA (ACRE) 3.11 1. 14 1.83 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 11.07 11.78 11. 54 Tc (MIN.) 5.85 5.43 7 .44 INTENSITY (INCH/HOUR) 4 .403 4 .146 3.772 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 11.78 Tc(MIN.) = 6.43 TOTAL AREA(ACRES) = 6.1 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 70.00 497.21 FEET. FLOW PROCESS FROM NODE 7 0.00 TO NODE 65.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 183.20 DOWNSTREAM(FEET) = 179.17 FLOW LENGTH(FEET) = 92.90 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.37 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.78 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 5.55 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 65.00 = 5 90.11 FEET. FLOW PROCESS FROM NODE 65.00 TO NODE 60.00 IS CODE 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTRE.AM (FEET) = 179.17 DOWNSTREAM (FEET) = 176.30 FLOW LENGTH(FEET) = 65.96 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.31 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.78 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 6.64 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 60.00 = 657.07 FEET. **************************************************************************** FLOW PROCESS FROM NODE 60.00 TO NODE 55.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 176.30 DOWNSTREAM(FEET) = 171.18 FLOW LENGTH(FEET) = 91.80 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) - 13.60 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.78 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 6.75 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 55.00 = 748.87 FEET. **************************************************************************** FLOW PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.75 RAINFALL INTENSITY(INCH/HR) = 4.02 TOTAL STREAM AREA(ACRES) = 6.08 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.78 **************************************************************************** FLOW PROCESS FROM NODE 70.00 TO NODE 55.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.874 SUBAREA RUNOFF(CFS) = 0.72 TOTAL AREA(ACRES) = 0.17 TOTAL RUNOFF(CFS) = 0.72 FLOW PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 4.87 TOTAL STREAM AREA(ACRES) = 0.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.72 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 11.78 6.75 4.015 5.08 2 0.72 5.00 4.874 0.17 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.- ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 10.43 5.00 4.874 2 12.38_ 6.75 4.015 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.38 Tc(MIN.) = 6.75 TOTAL AREA(ACRES) = 6.2 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 55.00 = 748.87 FEET. **************************************************************************** FLOW PROCESS FROM NODE 55.00 TO NODE 50.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 171.18 DOWNSTREAM{FEET) = 168.28 FLOW LENGTH(FEET) = 64.55 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.58 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.38 PIPE TRAVEL TIME{MIN.) = 0.08 Tc(MIN.) = 5.84 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 50.00 = 813.42 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.00 TO NODE 45.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 168.28 DOWNSTREAM(FEET) = 14 5.90 FLOW LENGTH(FEET) = 243.95 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.56 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.38 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 7.08 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 4 5.00 = 1057.37 FEET. **************************************************************************** FLOW PROCESS FROM NODE 45.00 TO NODE 40.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 145.90 DOWNSTREAM(FEET) = 132.00 FLOW LENGTH(FEET) = 2 95.57 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.89 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) =12.38 ^ PIPE TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) = 7.47 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 40.00 = 1353.94 FEET. **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOK ^ONFLUENCE«<« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.47 RAINFALL INTENSITY(INCH/HR) = 3.76 TOTAL STREAM AREA(ACRES) = 6.25 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.38 **************************************************************************** FLOW PROCESS FROM NODE 55.00 TO NODE 40.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.874 SUBAREA RUNOFF(CFS) = 1.82 TOTAL AREA(ACRES) = 0.43 TOTAL RUNOFF(CFS) = 1.82 **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE; TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 4.87 TOTAL STREAM AREA(ACRES) = 0.4 3 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.82 **************************************************************************** FLOW PROCESS FROM NODE 73.00 TO NODE 30.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.874 SUBAREA RUNOFF(CFS) = 1.60 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) = 1.60 FLOW PROCESS FROM NODE 30.00 TO NCDE 25.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« »»> (STREET TABLE SECTION # 1 USED) ««< UPSTREAM ELEVATION(FEET) = 168.92 DOWNSTREAM ELEVATION(FEET) = 144.00 STREET LENGTH{FEET) = 485.70 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE E'ROM CROWN TO CROSS.FALL GRADEBREAK (FEET) = 12.00 - INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.10 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.21 HALFSTREET FLOOD WIDTH(FEET) = 4.10 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.57 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.75 STREET FLOW TRAVEL TIME(MIN.) = 2.20 Tc(MIN.) = 7.20 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.851 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 95 AREA-AVERAGE RUNOFF COEFFICIENT = 0.535 L SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.01 TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 2.27 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.21 HALFSTREET FLOOD WIDTH(FEET) = 4.37 FLOW VELOCITY(FEET/SEC.) = 3.67 DEPTH*VELOCITY(FT*FT/SEC.) = 0.78 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 25.00 = 30142.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 30.00 TO NODE 25.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<<< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.851 *USER SPECIFIED(SUBAREA): RESIDENTLAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT - .4100 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4 531 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 2.37 TOTAL AREA(ACRES) = 2.6 TOTAL RUNOFF(CFS) = 4.64 TC(MIN.) = 7.20 FLOW PROCESS FROM NODE 25.00 TO NODE 40.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<<< _ »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 139.00 DOWNSTREAM(FEET) = 132.00 FLOW LENGTH(FEET) = • 41.80 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.62 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.64 PIPE TRAVEL TIME (MIN.) = 0.04 Tc(MIN.) --= 7.25 LONGEST FLOWPATH FROM NODE /3.00 TO NODE 40.00 = 30184.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 4 0.00 TO NODE 4 0.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<«< TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 7.25 RAINFALL INTENSITY(INCH/HR) = 3.84 TOTAL STREAM AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.64 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 4 0.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 8.67 RAIN INTENSITY(INCH/HOUR) = 3.42 TOTAL AREA(ACRES) = 2.50 TOTAL RUNOFF(CFS) = 5.43 **************************************************************************** FLOW PROCESS FROM NODE 4 0.00 TO NODE 4 0.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«<« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE: TIME OF CONCENTRATION(MIN.) = 8.57 RAINFALL INTENSITY(INCH/HR) = 3.42 TOTAL STREAM AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.43 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) 1 (INCH/HOUR) (ACRE) 1 12 . 38 7.47 3.763 5.25 2 1. 82 5.00 4 .874 0.43 3 4 . 64 7 . 25 3.836 2.60 4 5.43 8 . 67 3.418 2 . 50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 4 STRE.AMS . ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 • 17.71 5.00 -4.874 2 22 . 75 7.25 3. 836 3 23.01 7.47 3.763 4 22.08 8.67 3.418 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW PATE (CFS) = 23.01 Tc;(MIN.) = TOTAL AREA(ACRES) = 11.8 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 7.47 40.00 = 30184.50 FEET, **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE - 39.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 132.00 DOWNSTREAM(FEET) = 131.60 FLOW LENGTH(FEET) = 4 0.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.35 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 23.01 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 7.55 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 39.00 = 30224.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 38.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 131.50 DOWNSTREAM(FEET) = 92.00 FLOW LENGTH(FEET) = 110.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 32.26 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 23.01 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 7.50 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 38.00 = 30334.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 38.00 TO NODE 36.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >>»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<<< ELEVATION DATA: UPSTREAM{FEET) = 92.00 DOWNSTREAM(FEET) = 82.00 FLOW LENGTH(FEET) = 132.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.78 ESTIMATED PIPE DIAMETER(INCH) = 18,00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 23.01 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 7.73 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 36.00 = 30465.50 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) 11.8 TC(MIN.) = 7 .73 PEAK FLOW RATE(CFS) 23.01 END OF RATIONAL METHOD ANALYSIS ELEVATION DATA: UPSTREAM(FEET) = 13 9.00 DOV/NSTREAM(FEET) = 132.00 FLOW LENGTH(FEET) = 41.80 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.62 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.54 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 7.2 5 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 40.00 = 30184.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 7.2 5 RAINFALL INTENSITY(INCH/HR) = 3.84 TOTAL STREAM A.REA(ACRES) = 2.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.6 4 *************************************************************** X ************ FLOW PROCESS FROM NODE 8.00 TO NODE 40.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< «W USER-SPECIFIED VALUES ARS AS FOLLOWS: TC(MIN) = 8.64 RAIN INTENSITY(INCH/HOUR) = 3.43 TOTAL AREA(ACRES) = 3.10 TOTAL RUNOFF(CFS) = 6.2 0 **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<«< >>»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE: TIME OF CONCENTRATION(MIN.) = 8.64 RAINFALL INTENSITY(INCH/HR) = 3.43 TOTAL STREAIM AREA(ACRES) = 3.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.2 0 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 12.38 7.47 3.753 5.25 2 1.82 5.00 4.874 0.43 3 4.64 7.25 3.836 2.50 4 6.20 8.64 3.425 3.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 4 STREAMS. ** PEAK FLOW RATE TABLE ** ^^^^^ STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 18.17 5.00 4.874 2 23.42 7.25 3.836 3 23.59 7.47 3.753 4 22.89 8.54 3.425 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 23.69 Tc(MIN.) = 7.47 TOTAL AREA(ACRES) = 12.4 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 40.00 = 30184.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 39.00 IS CODE = 31 »»>COM?UTE PIPE-FLOW TRAVEL TIME THRU SUEAREA«<« >>>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM (FEET) = 132.00 DOt^JNSTREAM (FEET) = 131.60 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.40 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 23.69 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 7.55 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 39.00 = 30224.50 FEET. ************************************************* ********.****************** FLOW PROCESS FROM NODE 39.00 TO NODE 38.00 IS CODE = 31 >»>>COMPUT£ PIPE-FLOW TRAVEL TIME THRU SUBAREA<«<< »>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« ELEVATION DATA: UPSTREAM(FEET) =- 131.50 DOWNSTREAM(FEET) = 92.00 FLOW LENGTH(FEET) = 110.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 32.51 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 23.69 PIPE TRAVEL TIME(MIN.) = 0.06 Tc{MIN.) = 7.60 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 38.00 = 30334.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 3 8.00 TO NODE 35.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIMS THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM (FEET) = 92.00 DOV'/NSTREAM(FEET) = 82.00 FLOW LENGTH(FEET) = 132.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.87 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 23.69 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN,) = 7.73 LONGEST FLOWPATH FROM NODE 73.00 TO NODS 36.00 = 30466.50 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) 12.4 TC(MIN.) = 7.73 PEAK FLOW RATE(CFS) 23 . 69 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date; 01/01/2003 License ID 1252 Analysis prepared by; MANITOU ENGINEERING COMPANY 350 WEST 9TH AVE., SUITE B ESCONDIDO, CA 92025 ************************** DESCRIPTION OF STUDY ************************** * RANCHO MILAGRO - 10 YEAR STORM * * ONSITE HYDROLOGY OUTLETS AT NODE 73 * * JN 1674 * ************************************************************************** FILE NAME; 1674M10.DAT TIME/DATE OF STUDY: 00:00 06/23/2006 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION; 2003 SAN DIEGO M.ANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 10.00 6-HOUR DURATION PRECIPITATION (INCHES) = 1.850 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18,00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE; USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 17.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS; 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 79.00 TO NODE 78.00 IS CODE = 22 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN,) =5.000 W 10 YEAR RAINFALL INTENSITY(INCH/HOUR) =4,874 SUBAREA RUNOFF(CFS) = 0.47 TOTAL AREA(ACRES) = 0,11 TOTAL RUNOFF{CFS) = 0.4 7 **************************************************************************** FLOW PROCESS FROM NODE 7 8.00 TO NODE 76.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 215.00 DOWNSTREAM ELEVATION(FEET) = 198.41 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.83 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW; STREET FLOW DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.05 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.63 STREET FLOW TRAVEL TIME(MIN.) = 1.4 8 Tc(MIN.) = 6.4 8 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.123 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURA/E NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.870 SUBAREA AREA(ACRES) = 0.2 0 SUBAREA RUNOFF(CFS) = 0,72 TOTAL AREA(ACRES) = 0.31 PEAK FLOW RATE(CFS) = 1.11 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 FLOW VELOCITY(FEET/SEC.) = 4.05 DEPTH*VELOCITY(FT*FT/SEC.) = 0.63 LONGEST FLOWPATH FROM NODE 79.00 TO NODE 76.00 = 360.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 78.00 TO NODE 76.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.123 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5860 ^ SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 0.85 ^ TOTAL AREA(ACRES) = 0.81 TOTAL RUNOFF(CFS) = 1,96 TC(MIN,) = 6,48 '^,1^ **************************************************************************** FLOW PROCESS FROM NODE 76.00 TO NODE 76,00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN,) = 6,48 RAINFALL INTENSITY(INCH/HR) = 4,12 TOTAL STREAM AREA(ACRES) = 0.81 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.95 **************************************************************************** FLOW PROCESS FROM NODE 77,00 TO NODE 76,00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = ,8700 S,C.?. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.874 SUBAREA RUNOFF(CFS) = 0.85 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 0.85 **************************************************************************** FLOW PROCESS FROM NODE 76.00 TO NODE 76.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»,>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE; TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 4.87 TOTAL STREAM AREA(ACRES) =0.20 PEAK FLOW BATE(CFS) AT CONFLUENCE = 0.8 5 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.96 5.48 4.123 0.81 2 0.85 5.00 4.874 0.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2.36 5.00 4.874 2 2.67 6.48 4.123 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 2.67 Tc(.MIN.) = 6.48 TOTAL AREA(ACRES) = 1.01 LONGEST FLOWPATH FROM NODE 79.00 TO NODE 76.00 = 360.00 FEET. ******************+*******************+************************************* FLOW PROCESS FROM NODE 76.00 TO NODE 74.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 198.41 DOWNSTREAM ELEVATION(FEET) = 193.74 STREET LENGTH(FEET) = 92.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.78 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.23 HALFSTREET FLOOD WIDTH{FEET) = 4.97 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3,80 PRODUCT OF DEPTHSVELOCITY(FT*FT/SEC,) = 0,8 6 STREET FLOW TRAVEL TIME(MIN,) = 0,4 0 Tc(MIN,) = 6.89 W 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.965 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.655 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.21 TOTAL AREA (ACRES) = 1.07 PEAK FLOW F(ATE(CFS) = 2.7 8 END OF SUBAREA STREET FLOW HYDRAULICS; DEPTH(FEET) =0.23 HALFSTREET FLOOD WIDTH(FEET) = 4.97 FLOW VELOCITY(FEET/SEC.) = 3.80 DEPTH*VELOCITY(FT*FT/SEC.) = 0.86 LONGEST FLOWPATH FROM NODE 79.00 TO NODE 74.00 = 452.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 74.00 TO NODE 74.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.8 9 RAINFALL INTENSITY(INCH/HR) = 3.97 TOTAL STREAM AREA(ACRES) = 1.07 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.7 8 **************************************************************************** FLOW PROCESS FROM NODE 75.00 TO NODE 74.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = ,8700 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc{MIN.) = 5.000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.874 SUBAREA RUNOFF(CFS) = 0,7 6 TOTAL AREA(ACRES) = 0.18 TOTAL RUNOFF(CFS) = 0.7 6 **************************************************************************** FLOW PROCESS FROM NODE 74.00 TO NODE 74.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL- NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 4,87 TOTAL STREAM AREA(ACRES) = 0,18 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.7 6 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2,78 6.89 3.965 1.07 2 0.76 5.00 4.874 0.18 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 3.02 5.00 4.874 2 3.40 6.89 3.965 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 3.40 Tc(MIN.) = 6.89 TOTAL AREA(ACRES) = 1.23 LONGEST FLOWPATH FROM NODE 79.00 TO NODE 74.00 = 452.00 FEET, **************************************************************************** FLOW PROCESS FROM NODE 74.00 TO NODE 73.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 193.74 DOWNSTREAM ELEVATION(FEET) = 187.38 STREET LENGTH(FEET) = 115.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12,00 INSIDE STREET CROSSFALL(DECIMAL) = 0,02 0 OUTSIDE STREET CROSSFALL(DECIMAL) = 0,020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curfa-to-curb) = 0.0150 Manning's FRICTION FACTOR for Bacli-of-Walk Flow Section = 0.02 00 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.53 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.61 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.08 PRODUCT OF DEPTHSVELOCITY(FT*FT/SEC.) = 0.97 STREET FLOW TRAVEL TIME(MIN.) = 0.47 Tc(MIN.) = 7.35 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.800 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT =0.697 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.2 6 TOTAL AREA(ACRES) = 1,33 PEAK FLOW RATE(CFS) = 3.52 • END OF SUBAREA STREET FLOW HYDRAULICS; DEPTH(FEET) =0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.61 E'LOW VELOCITY (FEET/SEC. ) = 4.07 DEPTH*VELOCITY (FT*FT/SEC. ) = 0.97 LONGEST FLOWPATH FROM NODE 79.00 TO NODE 73.00 = 567.00 FEET, **************************************************************************** FLOW PROCESS FROM NODE 7 4.00 TO NODE 73.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.8 00 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6186 SUB.AREA AREA (ACRES) = 0.50 SUBAREA RUNOFF (CFS) = 0.7 8 TOTAL AREA(ACRES) = 1,83 TOTAL RUNOFF(CFS) = 4.30 TC(MIN.) = 7.35 **************************************************************************** FLOW PROCESS FROM NODE 73,00 TO NODE 70,00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 183.38 DOWNSTREAM(FEET) = 182.38 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.74 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.30 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 7.44 LONGEST FLOWPATH FROM NODE 7 9.00 TO NODE 7 0.00 = 607.00 FEET. END OF STUDY SUMMARY; TOTAL AREA(ACRES) = 1.83 TC(MIN.) = 7.44 PEAK FLOW RATE(CFS) = 4.30 END OF RATIONAL METHOD ANALYSIS V,., RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1252 Analysis prepared by: Manitou Engineering Company 350 West Ninth Ave., Suite "B" Escondido, CA. 92025 (760) 741-9921 ************************** DESCRIPTION OF STUDY ************************** * RANCHO MILAGRO - 10 YEAR STORM * * ONSITE HYDROLOGY * * JN 167 4 * ************************************************************************** FILE NAME: 1674HA10.DAT TIME/DATE OF STUDY; 11:42 03/10/2009 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 10.00 6-HOUR DURATION PRECIPITATION (INCHES) = 1.850 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMJ^L) TO USE FOR FRICTION SLOPE =0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 17.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 19.00 TO NODE 17.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<«< *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.874 SUBAREA RUNOFF(CFS) =1.16 TOTAL AREA(ACRES) = 0.58 TOTAL RUNOFF(CFS) = 1.16 **************************************************************************** FLOW PROCESS FROM NODE 17.00 TO NODE 15.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< '»>» (STREET TABLE SECTION' # ' 1 USED)««< UPSTREAM ELEVATION(FEET) = 149.71 DOWNSTREAM ELEVATION(FEET) = 137.50 STREET LENGTH(FEET) = 395.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.59 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.21 HALFSTREET FLOOD WIDTH(FEET) = 4.04 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.82 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.58 STREET FLOW TRAVEL TIME(MIN.) = 2.33 Tc(MIN.) = 7.33 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.808 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 95 AREA-AVERAGE RUNOFF COEFFICIENT = 0.552 SUBAREA AREA(ACRES) = 0.2 6 SUBAREA RUNOFF(CFS) = 0.8 6 TOTAL AREA(ACRES) = 0.8 PEAK FLOW RATE(CFS) = 1.7 7 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.21 HALFSTREET FLOOD WIDTH(FEET) = 4.37 FLOW VELOCITY(FEET/SEC.) = 2.86 DEPTH*VELOCITY(FT*FT/SEC.) = 0.61 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 15.00 = 395.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 17.00 TO NODE 15.00 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«<< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.808 *USER SPECIFIED(SUBAREA): OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4 905 SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 0.4 9 TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) = 2.26 TC(MIN.) = 7.33 **************************************************************************** FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.33 RAINFALL INTENSITY(INCH/HR) = • 3.81 TOTAL STREAM AREA(ACRES) =1.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.26 **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 15.00 IS CODE = 22 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4 500 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.874 SUBAREA RUNOFF(CFS) = 1.70 TOTAL AREA(ACRES) = 0.7 6 TOTAL RUNOFF(CFS) = 1.70 **************************************************************************** FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 4.87 TOTAL STREAM AREA(ACRES) = 0.7 6 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.70 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2.25 7.33 3.808 1.21 2 1.70 5.00 4.874 0.76 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 3.25 5.00 4.874 2 3.59 7.33 3.808 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 3.59 Tc(MIN.) = 7.33 TOTAL AREA(ACRES) = 2.0 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 15.00 = 395.00 FEET. ,,**************************************************************************** \^ FLOW PROCESS FROM NODE 15.00 TO NODE 10.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 134.10 DOWNSTREAM(FEET) = 133.70 FLOW LENG'rH(FEET) = ' 40.00 MANNING'S N = 0.013' ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.28 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.59 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 7.46 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 10.00 = 435.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR - INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.4 5 RAINFALL INTENSITY(INCH/HR) = 3.77 TOTAL STREAM AREA(ACRES) = 1.97 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.59 V, **************************************************************************** FLOW PROCESS FROM NODE 14.00 TO NODE 12.00 IS CODE = 22 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc{MIN.) = 5.000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.874 SUBAREA RUNOFF(CFS) = 0.68 TOTAL AREA(ACRES) = 0.16 TOTAL RUNOFF(CFS) = 0.68 **************************************************************************** FLOW PROCESS FROM NODE 12.00 TO NODE 10.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<« »»> (STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 145.20 DOWNSTREAM ELEVATION(FEET) = 137.50 STREET LENGTH(FEET) = 190.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 ^^^^^ SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.93 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 'AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.so PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.59 STREET FLOW TRAVEL TIME(MIN.) = 0.83 Tc(MIN.) = 5.83 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.413 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8 70 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.50 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 1.11 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.17 HALFSTREET FLOOD WIDTH(FEET) = 2.18 FLOW VELOCITY(FEET/SEC.) = 3.35 DEPTH*VELOCITY(FT*FT/SEC.) = 0.57 LONGEST FLOWPATH FROM NODE 14.00 TO NODE 10.00 = 322.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.83 RAINFALL INTENSITY(INCH/HR) = 4.41 TOTAL STREAM AREA(ACRES) = 0.2 9 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.11 **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 10.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.874 SUBAREA RUNOFF(CFS) = 1.14 TOTAL AREA(ACRES) = 0.27 TOTAL RUNOFF(CFS) = 1.14 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO.NpDE , 10.00 IS CODE = 1 >»>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«<< »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«<« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) =- 4.87 TOTAL STREAM AREA(ACRES) = 0.27 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.14 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.59 7.46 3.766 1.97 2 1.11 5.83 4.413 0.29 3 1.14 5.00 4.874 0.27 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 4.87 5.00 4.874 2 5.21 5.83 4.413 3 5.43 7.46 3.766 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.43 Tc(MIN.) = 7.45 TOTAL AREA(ACRES) = 2.5 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 10.00 = 435.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 9.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 133.70 DOWNSTREAM(FEET) = 132.50 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.50 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.43 PIPE TRAVEL TIME(MIN.) = 0.89 Tc(MIN.) = 8.35 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 9.00 = 675.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 9.00 TO NODE 8.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 132.50 DOWNSTREAM(FEET) = 132.30 FLOW LENGTH(FEET) = 35.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.74 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.43 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 8.47 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 8.00 = 710.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 40.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 132.30 DOWNSTREAM(FEET) = 132.00 FLOW LENGTH(FEET) = 55.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.55 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.43 PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) = 8.67 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 40.00 = 765.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 2.5 TC(MIN.) = 8.67 PEAK FLOW RATE(CFS) = 5.43 END OF RATIONAL METHOD ANALYSIS HYDROLOGY NODE MAP 10 - YEAR HYDROLOGY STlDY 2 - YEAR ^range^J County ;| County of San Diego Hydrology Manual Rainfall I.sopluviab 1 Vear RainfallEyxnt^^J^ lsopluv-»l (inches) DPW 3 0 3 Miles I- ^range^__ County 33*00'- County of SanDiego Hydrology Manual Rainjall hopluviah 2 Year RjHnhH Event-flours ^&Ys SanGrlS 3 0 3 Miles **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACECAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1252 Analysis prepared by: Manitou Engineering Company 350 West Ninth Ave., Suite "B" Escondido, CA. 92025 (760) 741-9921 ************************** DESCRIPTION OF STUDY ************************** * 2 YEAR HYDROLOGY STUDY * * DEVELOPED CONDITIONS * * JN 1674 * ************************************************************************** FILE NAME: 1674HR02.DAT TIME/DATE OF STUDY: 14:53 03/10/2009 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 2.00 W 6-HOUR DURATION PRECIPITATION (INCHES) = 1.300 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 17.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 5.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 90.00 TO NODE 85.00 IS CODE = 22 >.»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<« *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.425 SUBAREA RUNOFF (CFS) • = 3.37 TOTAL AREA(ACRES) = 2.4 0 TOTAL RUNOFF(CFS) = 3.37 **************************************************************************** FLOW PROCESS FROM NODE 8 5.00 TO NODE 8 0.00 IS CODE = 62 »>,^>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 215.00 DOWNSTREAM ELEVATION(FEET) = 197.8 9 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARfCWAY CROSSFALL (DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.64 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.61 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.21 i""^ PRODUCT OF DEPTH&VELOCITY (FT*FT/SEC. ) = 1.00 'W' STREET FLOW TRAVEL TIME(MIN.) = 1.19 Tc(MIN.) = 6.19 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.985 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.447 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 0.55 TOTAL AREA(ACRES) = 2.6 PEAK FLOW RATE(CFS) = 3.4 8 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.52 FLOW VELOCITY(FEET/SEC.) = 4.12 DEPTH*VELOCITY(FT*FT/SEC.) = 0.98 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 80.00 = 300.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 82.00 TO NODE 80.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<<< 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.985 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4411 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 0.61 TOTAL AREA(ACRES) = 3.1 TOTAL RUNOFF(CFS) = 4.0 9 TC (MIN. ) = 6.19 **************************************************************************** FLOW PROCESS FROM NODE 80.00 TO NODE 70.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 193.50 DOWNSTREAM(FEET) = 183.20 FLOW LENGTH(FEET) = 197.21 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18,000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) =9.95 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.09 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) = 6.52 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 70.00 = 4 97.21 FEET. **************************************************************************** FLOW PROCESS FROM NODE 70.00 TO NODE 7 0.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.52 RAINFALL INTENSITY(INCH/HR) = 2.89 TOTAL STREAM AREA(ACRES) = 3.11 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.09 FLOW PROCESS FROM NODE 72.00 TO NODE 70.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.4 25 SUBAREA RUNOFF(CFS) = 1.4 0 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 1.40 FLOW PROCESS FROM NODE 80.00 TO NODE 70.00 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< UPSTREAM ELEVATION(FEET) = 197.89 DOWNSTREAM ELEVATION{FEET) = 186.38 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) =17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) =12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARECWAY CROSSFALL (DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.59 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.19 HALFSTREET FLOOD WIDTH(FEET) = 3.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.82 PRODUCT OF DEPTH&VELOCITY (FT*FT,'bEC. ) = U.71 STREET FLOW TRAVEL TIME(MIN.) = 0.87 Tc(MIN.) = 5.87 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.088 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4 66 SUBAREA AREA(ACRES) = 0.14 SUBAREA RUNOFF(CFS) = 0.38 TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 1.54 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.19 HALFSTREET FLOOD WIDTH(FEET) = 3.11 FLOW VELOCITY(FEET/SEC.) = 3.82 DEPTH*VELOCITY(FT*FT/SEC.) = 0.72 LONGEST FLOWPATH FROM NODE 72.00 TO NODE 70.00 = 397.21 FEET. FLOW PROCESS FROM NODE 70.00 TO NODE 70.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.87 RAINFALL INTENSITY(INCH/HR) = 3.09 TOTAL STREAM AREA(ACRES) = 1.14 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.64 **************************************************************************** FLOW PROCESS FROM NODE 73.00 TO NODE 70.00 IS CODE = 7 »>»USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 7.49 RAIN INTENSITY(INCH/HOUR) = 2.64 TOTAL AREA(ACRES) = 1.83 TOTAL RUNOFF(CFS) = 3.01 *****************************************************************+********** FLOW PROCESS FROM NODE 70.00 TO NODE 70.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 7.4 9 RAINF.ALL INTENSITY (INCH/HR) =2.64 TOTAL STREAM AREA(ACRES) = 1.8 3 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.01 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.09 6.52 2.887 3.11 2 1.64 5.87 3.088 1.14 3 3.01 7.49 2.639 1.83 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 7.69 5.87 3.088 2 8.25 6.52 2.887 3 8.16 7.49 2.639 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.25 Tc(MIN.) = 6.52 TOTAL AREA(ACRES) = 5.1 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 70.00 = 497.21 FEET. **************************************************************************** FLOW PROCESS FROM NODE 70.00 TO NODE 65.00 IS CODE = 31 , >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 183.20 DOWNSTREAM(FEET) = 179.17 FLOW LENGTH(FEET) = 92.90 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.29 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.25 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 6.56 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 65.00 = 5 90.11 FEET. **************************************************************************** FLOW PROCESS FROM NODE 55.00 TO NODE 50.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 179.17 DOWNSTREAM(FEET) = 176.30 FLOW LENGTH(FEET) = 56.95 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.24 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.25 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 6.75 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 60.00 = 657.07 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.00 TO NODE 55.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 176.30 DOWNSTREAM(FEET) = 171.18 FLOW LENGTH(FEET) = 91.80 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.39 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.25 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 6.88 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 55.00 = 748.87 FEET. **************************************************************************** FLOW PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.88 RAINFALL INTENSITY(INCH/HR) = 2.79 TOTAL STREAM AREA(ACRES) = 5.08 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.25 **************************************************************************** FLOW PROCESS FROM NODE 70.00 TO NODE 55.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.425 SUBAREA RUNOFF(CFS) =0.51 TOTAL AREA(ACRES) = 0.17 TOTAL RUNOFF(CFS) = 0.51 FLOW PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 3.43 TOTAL STREAM AREA(ACRES) = 0.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.51 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 8.25 5.88 2.788 5.08 2 0.51 5.00 3.425 0.17 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 7.22 5.00 3.425 2 8.66 6.88 2.788 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.66 Tc(MIN.) = 6.88 TOTAL AREA(ACRES) = 6.2 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 55.00 = 748.87 FEET. FLOW PROCESS FROM NODE 55.00 TO NODE 50.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 171.18 DOWNSTREAM(FEET) = 168.28 FLOW LENGTH(FEET) = 64.55 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.59 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.56 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 6.97 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 50.00 = 813.42 FEET. FLOW PROCESS FROM NODE 50.00 TO NODE 45.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 168.28 DOWNSTREAM(FEET) = 145.90 FLOW LENGTH(FEET) = 243.95 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.04 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.56 PIPE TRAVEL TIME(MIN.) = 0.27 Tc(MIN.) = 7.24 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 45.00 = 1057.37 FEET. FLOW PROCESS FROM NODE 45.00 TO NODE 40.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<<< ELEVATION DATA: UPSTREAM(FEET) = 145.90 DOWNSTREAM(FEET) = 132.00 FLOW LENGTH(FEET) = 296.57 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.78 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 , PIPE-FLOW(CFS) = 8.66 ^ PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 7.66 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 4 0.00 = 1353.94 FEET. **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.65 RAINFALL INTENSITY(INCH/HR) = 2.60 TOTAL STREAM AREA(ACRES) = 5.25 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.66 FLOW PROCESS FROM NODE 55.00 TO NODE 4 0.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.425 ^ SUBAREA RUNOFF(CFS) = 1.28 TOTAL AREA(ACRES) =. 0.43 TOTAL RUNOFF(CFS) = 1.28 **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 3.4 3 TOTAL STREAM AREA(ACRES) = 0.4 3 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.2 8 *************************************^************************************** FLOW PROCESS FROM NODE 73.00 TO NODE 30.00 IS CODE = 22 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (.AMC II) = 96 USER SPECIFIED Tc(MJN.) = 5.000 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.425 SUBAREA RUNOFF(CFS) = 1.12 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) = 1.12 FLOW PROCESS FROM NODE 30.00 TO NODE 25.00 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 168.92 DOWNSTREAM ELEVATION(FEET) = 144.00 STREET LENGTH(FEET) = 4 8 5.70 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEEll) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARECWAY CROSSFALL (DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.48 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.19 HALFSTREET FLOOD WIDTH(FEET) = 2.95 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.60 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.67 STREET FLOW TRAVEL TIME(MIN.) = 2.25 Tc{MIN.) = 7.25 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.696 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.535 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 0.70 TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 1.5 9 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.19 HALFSTREET FLOOD WIDTH(FEET) = 3.22 FLOW VELOCITY(FEET/SEC.) = 3.58 DEPTH*VELOCITY(FT*FT/SEC.) = 0.68 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 25.00 = 30142.70 FEET. FLOW PROCESS FROM NODE 30.00 TO NODE 25.00 IS CODE = 81 .>>>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.695 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4 631 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 1.66 TOTAL AREA(ACRES) = 2.6 TOTAL RUNOFF(CFS) = 3.25 TC(MIN.) = 7.25 **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 4 0.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<<< .>>>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« ELEVATION DATA: UPSTREAM(FEET) = 139.00 DOWNSTREAM(FEET) = 132.00 FLOW LENGTH(FEET) = 41.80 MANNING'S N = 0.013 N-.' ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.06 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.25 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 7.30 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 40.00 = 30184.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 4 0.00 TO NODE 40.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 7.30 RAINFALL INTENSITY{INCH/HR) = 2.58 TOTAL STREAM AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.25 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 40.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: ""^ TC(MIN) = 8.80 RAIN INTENSITY(INCH/HOUR) = 2.38 'W' TOTAL AREA(ACRES) = 2.50 TOTAL RUNOFF(CFS) = 3.81 **************************************************************************** FLOW PROCESS FROM NODE 4 0.00 TO NODE 40.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE: TIME OF CONCENTRATION(MIN.) = 8.80 RAINFALL INTENSITY(INCH/HR) = 2.38 TOTAL STREAM AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.81 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 8 . 65 7 . 66 2.601 6.25 2 1.28 5 . 00 3. 425 0 .43 3 3.25 7 . 30 2.584 2 . 50 4 3.81 8 . 80 2.379 2 . 50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 4 STREAMS. ^* PEAK FLOW RATE TABLE STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 12.25 5.00 3.425 2 15.80 7.30 2 . 584 3 16.10 7. 66 2. 601 4 15.50 8.80 2.379 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 15.10 Tc(MIN.) = 7.66 TOTAL AREA(ACRES) = 11.8 " LONGEST FLOWPATH FROM NODE 73.00 TO NODE 40.00 30184.50 FEET. FLOW PROCESS FROM NODE 40.00 TO NODE 39.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 132.00 DOWNSTREAM (FEET) = 131.60 FLOW LENGTH(FEET) = 4 0.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.66 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 15.10 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 7.75 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 39.00 = 30224.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 38.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 131.60 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 110.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 29.27 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 16.10 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 7.81 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 38.00 = 92.00 30334.50 FEET. r************************************ *************************************** FLOW PROCESS FROM NODE 38.00 TO NODE 36.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< c ELEVATION DATA: UPSTRE/^ (FEET) = 92.00 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 132.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.48 ESTIM.z\TED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 16.10 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 7.94 !2.00 LONGEST FLOWPATH FROM NODE 73.00 TO NODE 36.00 = 30466.50 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 11.8 TC(MIN.) = 7.94 PEAK FLOW RATE(CFS) = 16.10 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1252 Analysis prepared by: MANITOU ENGINEERING COMPAN 350 WEST 9TH AVE., SUITE B ESCONDIDO, CA 92025 ************************** DESCRIPTION OF STUDY ************************** * RANCHO MILAGRO - 2 YEAR STORM * * ONSITE HYDROLOGY CONFLUENCE AT NODE 73 * * JN 1674 * ************************************************************************** FILE NAME: 1674M02.DAT TIME/DATE OF STUDY; 00:02 06/23/2006 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION; ( *W 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 2.00 6-HOUR DURATION PRECIPITATION (INCHES) = 1.300 SPECIFIED MINIt-IUM PIPE SIZE (INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 17.0 12.0 0.020/0.020/0.050 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS; 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 79.00 TO NODE 78.00 IS CODE = 22 »»>RAT10NAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.425 SUBAREA RUNOFF(CFS) = 0,33 TOTAL AREA(ACRES) = 0.11 TOTAL .-RUNOFF (CFS) = 0.33 **************************************************************************** FLOW PROCESS FROM NODE 78.00 TO NODE 76.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« >»»( STREET TABLE SECTION # 1 USED)«<« UPSTREAM ELEVATION (FEET) = 215.00 DOWNSTREAM EL.EVATION( FEET) = 198.41 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12,00 INSIDE STREET CROSSFALL(DECIMAL) = 0.02 0 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARromY CROSSFALL(DECIMAL) = 0,020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0,0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.58 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) =0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.05 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.63 STREET FLOW TRAVEL TIME(MIN.) = 1.4 8 Tc(MIN.) = 6.4 8 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.8 97 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.870 SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 0.50 TOTAL AREA(ACRES) = 0.31 PEAK FLOW RATE(CFS) = 0.78 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(PEET) = 1.50 FLOW VELOCITY(FEET/SEC.) = 4.05 DEPTH*VELOCITY(FT*FT/SEC.) = 0.63 LONGEST FLOWPATH FROM NODE 79.00 TO NODE 76.00 = 360.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 78.00 TO NODE 76.00 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.897 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5860 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 0.59 TOTAL AREA(ACRES) = 0.81 TOTAL RUNOFF(CFS) = 1.3 8 TC(MIN.) = 6.4 8 c **************************************** * * ******************************** J, * FLOW PROCESS FROM NODE 76.00 TO NODE 76.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.4 8 RAINFALL INTENSITY(INCH/HR) = 2.90 TOTAL STREAM AREA(ACRES) = 0.81 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.38 **************************************************************************** FLOW PROCESS FROM NODE 77.00 TO NODE 76.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 • 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.425 SUBAREA RUNOFF(CFS) = 0.60 TOTAL AREA(ACRES) = 0.2 0 TOTAL RUNOFF(CFS) = 0.60 **************************************************************************** FLOW PROCESS FROM NODE 7 6.00 TO NODE 76.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 3.43 TOTAL STREAM AREA(ACRES) = 0.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.60 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTEN.-ITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1,38 6.48 2.897 0.81 2 0.60 5.00 3.425 0.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA' USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (.MIN.) (INCH/HOUR) 1 1.66 5.00 3.425 2 1.88 6.48 2.897 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1.8 8 Tc(MIN.) = 5.4 8 TOTAL AREA(ACRES) = 1.01 W LONGEST FLOWPATH FROM NODE 79.00 TO NODE 76.00 = 360.00 FEET. *************,**********************************..,.,*j ************************* FLOW PROCESS FROM NODE 76.00 TO NODE 74.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« »»> (STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 198.41 DOWNSTREAM ELEVATION(FEET) = 193.74 STREET LENGTH(FEET) = 92.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL (DECIMAI.) =0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back=-of-Walk Flow Section = 0.02 00 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.95 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.20 HALFSTREET FLOOD WIDTH(FEET) = 3.88 AVERAGE FLOW VELOCITY(FEET/SEC.) =3.63 PRODUCT OF DEPTHSVELOCITY(FT*FT/SEC.) =0.74 STREET FLOW TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 5.90 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.782 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.655 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.15 TOTAL AREA(ACRES) = 1.07 PEAK FLOW RATE(CFS) = 1.95 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0,20 HALFSTREET FLOOD WIDTH(FEET) = 3,88 FLOW VELOCITY(FEET/SEC,) = 3,63 DEPTH*VELOCITY(FT*FT/SEC,) = 0,74 LONGEST FLOWPATH FROM NODE 79,00 TO NODE 74,00 = 452,00 FEET, **************************************************************************** FLOW PROCESS FROM NODE 74,00 TO NODE 74,00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.90 RAINFALL INTENSITY{INCH/HR) = 2.7 8 TOTAL STREAM AREA(ACRES) = 1.07 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.95 ************. **************************************************************** FLOW PROCESS FROM NODE 75.00 TO NODE 74.00 IS CODE = 22 »>»RATIO.NAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.425 SUBAREA RUNOFF(CFS) = 0.54 TOTAL AREA(ACRES) = 0.18 TOTAL RUNOFF(CFS) = 0.54 **************************************************************************** FLOW PROCESS FROM NODE 74.00 TO NODE 74.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 3.43 TOTAL STREAM AREA (ACRES) ••= 0.18 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.54 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.95 6.90 2.782 1.07 2 0.54 5.00 3.425 0.18 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2.12 5.00 3.425 2 2.39 6.90 2.782 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2,39 Tc{MIN,) = 6.90 TOTAL AREA(ACRES) = 1.25 LONGEST FLOWPATH FROM NODE 79.00 TO NODE 74.00 = 452.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 7 4.00 TO NODE 73.00 IS CODE = 62 »>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 193.74 DOWNSTREAM ELEVATION(FEET) = 187.38 STREET LENGTH(FEET) = 115.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 I OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMVTED FLOW(CFS) = 2.48 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) =0.22 HALFSTREET FLOOD WIDTH(FEET) = 4.4 8 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.89 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.84 STREET FLOW TRAVEL TIME(MIN.) = 0.4 9 Tc(MIN.) = 7.4 0 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.661 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.697 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.19 TOTAL AREA(ACRES) = 1.33 PEAK FLOW RATE(CFS) = 2.47 END OF SUBAREA. STREET FLOW HYDRAULICS: DEPTH(FEET) =0.22 HALFSTREET FLOOD WIDTH(FEET) = 4.48 FLOW VELOCITY(FEET/SEC.) = 3,87 DEPTH*VELOCITY(FT*FT/SEC,) = 0,83 LONGEST FLOWPATH FROM NODE 79,00 TO NODE 73,00 = 567,00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 74.00 TO NODE 73.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 2 YEAR RAINFALL INTENSITY{INCH/HOUR) = 2.661 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6186 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 0.55 TOTAL AREA(ACRES) = 1.83 TOTAL RUNOFF(CFS) = 3.01 TC(MIN.) = 7.4 0 **************************************************************************** FLOW PROCESS FROM NODE ' 73.00 TO NODE 70.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA; UPSTREAM(EEET) = 183.38 DOWNSTREAM(FEET) = 182.38 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 -INCH PIPE IS 5.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.01 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.01 PIPE TRAVEL TIME(MIN.) = 0,10 Tc(MIN,) = 7.49 LONGEST FLOWPATH FROM NODE 7 9.00 TO NODE 70.00 = 607.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.83 TC(MIN.) = 7.49 PEAK FLOW RATE(CFS) = 3.01 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1252 Analysis prepared by: Manitou Engineering Company 350 West Ninth Ave., Suite "B" Escondido, CA. 92025 (760) 741-9921 ************************** DESCRIPTION OF STUDY ************************** * RANCHO MILAGRO - 2 YEAR STORM * * ONSITE HYDROLOGY * * JN 1674 * FILE NAME: 1674HA2.DAT TIME/DATE OF STUDY: 14:43 03/10/2009 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 2.00 6-HOUR DURATION PRECIPITATION (INCHES) = 1.300 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 17.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 19.00 TO NODE 17.00 IS CODE = 22 >»>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4100 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.425 SUBAREA RUNOFF(CFS) =0.81 TOTAL AREA(ACRES) = 0.58 TOTAL RUNOFF(CFS) = 0.81 FLOW PROCESS FROM NODE 17.00 TO NODE 15.00 IS CODE = 52 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED)<«'« UPSTREAM ELEVATION(FEET) = 149.71 DOWNSTREAM ELEVATION(FEET) = 137.50 STREET LENGTH(FEET) = 395.00 CURB HEIGHT(INCHES) = 5.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.12 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.18 HALFSTREET FLOOD WIDTH(FEET) = 2.84 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.82 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.52 STREET FLOW TRAVEL TIME(MIN.) = 2.34 Tc{MIN.) = 7.34 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.574 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.552 SUBAREA AREA(ACRES) = 0.26 SUBAREA RUNOFF(CFS) = 0.60 TOTAL AREA(ACRES) = 0.8 PEAK FLOW RATE(CFS) = 1.24 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.19 HALFSTREET FLOOD WIDTH(FEET) = 3.22 FLOW VELOCITY(FEET/SEC.) = 2.79 DEPTH*VELOCITY(FT* FT/SEC.) = 0.53 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 15.00 = 395.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 17.00 TO NODE 15.00 IS CODE = 81 >»>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.67 4 *USER SPECIFIED(SUBAREA): OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4 905 SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 0.35 TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) = 1.59 TC(MIN.) = 7.34 **************************************************************************** FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.34 RAINFALL INTENSITY(INCH/HR) = '2.67 TOTAL STREAM AREA(ACRES) = 1.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.59 **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 15.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4 600 S.C.S. CURVE NUMBER (AMC II) = 95 USER SPECIFIED Tc(MIN.) = 5.000 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.425 SUBAREA RUNOFF(CFS) = 1.20 TOTAL AREA(ACRES) = 0.76 TOTAL RUNOFF(CFS) = 1.20 **************************************************************************** FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 3.43 TOTAL STREAM AREA(ACRES) = 0.7 5 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.20 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.59 7.34 2.674 1.21 2 1.20 5.00 3.425 0.76 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2.28 5.00 3.425 2 2.52 7.34 2.674 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2.52 Tc(MIN.) = 7.34 TOTAL AREA(ACRES) = 2.0 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 15.00= 395.00 FEET. ***************************************************************************** FLOW PROCESS FROM NODE 15.00 TO NODE 10.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« ELEVATION DATA: UPSTREAM(FEET) = 134.10 DOWNSTREAM(FEET) = 133.70 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.80 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.52 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 7.48 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 10.00 = 435.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.48 RAINFALL INTENSITY(INCH/HR) = 2.64 TOTAL STREAM AREA(ACRES) =1.97 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.52 FLOW PROCESS FROM NODE 14.00 TO NODE 12.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« *USER SPECIFIED(SUBAREA): STREETS & ROADS (CURBS/STORM DRAINS) RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.425 SUBAREA RUNOFF(CFS) = 0.48 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) = 0.4 8 FLOW PROCESS FROM NODE 12.00 TO NODE 10.00 IS CODE = 52 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<<< >»>> (STREET TABLE SECTION # 1 USED) <<«< UPSTREAM ELEVATION(FEET) = 145.20 DOWNSTREAM ELEVATION(FEET) = 137.50 STREET LENGTH(FEET) = 190.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRi^DEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.65 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = ].50 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.80 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.59 STREET FLOW TRAVEL TIME(MIN.) = 0.83 Tc(MIN.) = 5.83 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.101 *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.870 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.35 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 0.78 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 FLOW VELOCITY(FEET/SEC.) = 3.80 DEPTH*VELOCITY(FT*FT/SEC.) = 0.59 LONGEST FLOWPATH FROM NODE 14.00 TO NODE 10.00 = 322.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.83 RAINFALL INTENSITY(INCH/HR) = 3.10 TOTAL STREAM AREA(ACRES) = 0.2 9 PEAK FLOW .RATE (CFS) AT CONFLUENCE = 0.78 **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 10.00 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<« *USER SPECIFIED(SUBAREA): GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 96 USER SPECIFIED Tc(MIN.) = 5.000 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.425 SUBAREA RUNOFF(CFS) = 0.80 TOTAL AREA(ACRES) = 0.27 TOTAL RUNOFF(CFS) = 0.80 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<«< »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«<« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 3.4 3 TOTAL STREAM AREA(ACRES) = 0.27 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.8 0 3 ARE: ** CONFLUENCE DATA ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 2.52 0.78 0.80 Tc (MIN.) 7.48 5.83 5.00 INTENSITY (INCH/HOUR) 2. 642 3.101 3.425 AREA (ACRE) ' 1. 97 0.29 0.27 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 3.42 3. 66 3.81 Tc (MIN.) 5 . 00 5. 83 7 . 48 INTENSITY (INCH/HOUR) 3.425 3. 101 2.642 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 3.81 Tc(MIN.) = 7.48 TOTAL AREA(ACRES) = 2.5 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 10.00 435.00 FEET. FLOW PROCESS FROM NODE 10.00 TO NODE 9.00 IS CODE 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 133.70 DOWNSTREAM(FEET) = 132.50 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.15 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.81 PIPE TRAVEL TIME(MIN.) = 0.95 Tc(MIN.) = 8.44 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 9.00 = 57 5.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 9.00 TO NODE ,00 IS CODE 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 132.50 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 35.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.36 ESTIMATED PIPE DI.AMETER (INCH) = 18.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 3.81 132.30 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 8.57 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 8.00= 710.00 FEET. FLOW PROCESS FROM NODE 8.00 TO NODE 40.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 132.30 DOWNSTREAM(FEET) = 132.00 FLOW LENGTH(FEET) = 55.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.29 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =3.81 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 8.79 LONGEST FLOWPATH FROM NODE 19.00 TO NODE 40.00= 765.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 2.5 TC(MIN.) = 8.7 9 PEAK FLOW RATE(CFS) = 3.81 END OF RATIONAL METHOD ANALYSIS HYDROLOGY NODE MAP 2 - YEAR 85'^" FERCENT:iLE CAPTURE 24 HOU7'.S RANCH MILAGRO JN 1674 Treatment Controi BMP Fiow based BMPs shall be desinged to mitigate the maximum flow rate of runoff produced from a rainfall Intensity of 0.2 inch of rainfall per hour fbr each hour of a storm event Q = CIA I = 0.2 IN/HR Low Density Residential C = 0.41 LOT NO. PAD AREA (AC) Q (CFS) 4 0.34 0.028 5 0.35 0.029 6 0.27 0.022 7 0.28 0.023 8 0.34 0.028 10 0.33 0.027 11 0.30 0.025 12 0.32 0.026 13 0.44 0.036 2/^ LOT channel calculator Given input Data: shape Trapezoidal Solving for Depth of Flow Flowrate 0.0150 cfs Slope 0.0100 ft/ft Manning's n 0.2500 Height 10.0000 in Bottom width 0.0000 in Left slope 0.3333 ft/ft (V/H) Right slope 0.3333 ft/ft (v/H) CT. OG-O4^ Computed Results: Depth 2.4098 in Velocity 0.1240 fps — Full Flowrate 0.6670 cfs Flow area 0,1210 ft2 Flow perimeter 15.2421 in Hydraulic radius 1.1431 in Top width 14.4601 in Area 2.0835 ft2 Perimeter 63.2512 in Percent full 24.0977 % critical Information Critical depth 0.8269 in critical slope 3.0021 ft/ft Critical velocity 1.0529 fps critical area 0.0142 ft2 Critical perimeter 5.2303 in Critical hydraulic radius 0.3922 in critical top width 4,9619 in Specific energy 0.2011 ft Minimum energy 0.1034 ft Froude number 0.0690 Flow condition Subcritical *=>'»i<o . Courier Tit<\ 9/z. ^' S^4L(r I 2:1 ,r Qx (0.41 < O.Z (9.36./7 ^ Page 1 Vegetated Swale TC-30 The topography of the site shoiiid permit the design of a channel with appropriate slope and cross-sectional area. Site topography may also dictate a need for additionai structural controls, Recommendations for longitudinal slopes range between 2 and 6 percent. Flatter slopes can be used, if sufficient to provide adequate conveyance. Steep slopes increase flow velodty, decrease detention time, and mayrequire energy dissipating and grade check. Steep slopes also can be managed usiag a series of check dams to terrace the swale and reduce the slope to within acceptable Hinits. The use of check dams with swales also promotes infiltration. Additionai Design Guidelines Most of the design guidelines adopted for swale design specify a minimum hydraulic residence time of 9 minutes. This criterion is based on the results of a single study conducted in Seattle, V/ashington (Seattle Metro and Washington Department of Ecology, 1992), and is not well supported. Analysis of the data collected in that study indicates that pollutant removal at a residence time of 5 minutes was not significantiy different, although there is more variability in that data. Therefore, additional research in fhe design criteria for swales is needed, Substantial poUutant removal has also been observed for vegetated controls designed solely for conveyance (Barrett et al, 1998); consequently, some flexibiHty in the design is warranted. Many design guidelines recommend that grass be frequently mowed to maintain dense coverage near the ground surface. Recent research (Colwell et al,, 2000) has showTi mowing frequency or grass height has little or no effect on pollutant removal. Summary of Design Recommendations 1) The swale should have a length that provides a minimiun hydraulic residence time of at least 10 minutes. The maximum bottom width should not exceed 10 feet unless a dividing berm is provided. The depth of flow shouldnot exceed 2/3rds the height of the grass at the peak of the water quality design storm intensity. The channel slope shouldnot exceed 2.5%. 2) A design grass height of 6 inches is recommended. 3) Regardless of the recommended detention time, the swale should be not less than 100 feet in length. 4) The width of the swale should be determined using Manning's Equation, at the peak of the design storm, using a Manning's n of 0.25. 5) The swale canbe sized as both a treatment facility for the design storm and as a conveyance system to pass the peak hydraulic flows of the loo-year storm if it is located "on-line." The side slopes shouldbe no steeper than 3:1 (H:V). 6) Roadside ditches should be regarded as significant potential swale/buffer strip sites and should be utilized for this purpose whenever possible. If flow is to be introduced through curb cuts, place pavement sHghtly above the elevation of the vegetated areas. Cbrb cuts should be at least 12 inches wide to prevent clogging. 7) Swales must be vegetated in order to provide adequate treatment of runoff. It is important to maximize water contact with vegetation and the soil surface. For general purposes, select fine, close-growing, water-resistant grasses. If possible, divert runoff (other than necessary irrigation) during the period of vegetation January 2003 California Stormwater BMP Handbook 5 of 13 New Development and Redeveloprr,ent www.cabmphandbooks.com I / • r'^;^ . }3V70 RANCHO MILAGRO JN 1674 LOTNO. PAD(SF) PAD (AC) GROSS AREA (AC) 1 14670 0.34 0.554 2 10275 0.24 0.551 3 14644 0.34 0.56 9 19094 0.44 0.5 14 19382 0.44 0.529 15 17069 0.39 0.541 16 12778 0.29 0.511 17 13119 0.30 0.556 18 15941 0.37 0.524 19 12860 0.30 0.525 20 13911 0.32 0.56 21 13618 0.31 0.31 BY LOT 20 0.58 0.58 BY LOT 1 1.20 2.40 177,361.00 5.85 9.2 STREET 3.2 12.4 TOTAL PAD = 5.85 AC 15% PERVIOUS IMPERVIOUS PAD = 5.0 AC STREET AREA = 3.2 AC TOTAL IMPERVIOUS AREA = 8.2 TOTAL % IMPERVIOUS = 66% 6>»<VS«^^. THtS R>io -OiSTEU.-riot^ ^yJM^ MoCO ^ /Q Co Z''^- <r/- STa«^o OJ^T^ 6«n=x3«i?- ^€IJ€*^'^C. S-TB^^ ^UJS, TZ> A<ioA- stormceptor CO Sizing Program United States Version 4.0.0 Project Details Project RANCHO MILAGRO Project # 1674 Location CARLSBAD Company MANITOU ENGINEERING Date 05125107 Corrtact Selected Rainfall Station State Califbmia Name ESCONDIDO CHURCH RANCH ID# 2871 Elev. (ft) 722 Latitude N 33 deg 6 min Longitude W 117 deg 5 min Site Parameters Total Area (ac) 12.4 Imperviousness (%) 66 Impervious Area (ac) 8.18 Particte Size Distribution Diam. (um) Percent (%) Spec. Gravity 20 20 1.30 60 20 1.80 150 20 2.20 400 20 2.65 2000 20 2.65 Stormceptor Sizing Tatrfe Stonmceptor Model % Runoff Treated % TSS Removal STC 450 34 51 STC 900 50 62 STC 1200 50 62 STC 1800 50 62 STC 2400 61 68 STC 3600 61 69 STC 4800 73 74 STC 6000 73 74 STC 7200 80 78 STC 11000 87 82 STC 13000 87 83 STC 16000 92 85 Comments : ormceptor CD S"Eing Program Version 4.0.0 Country United States Date 05/25/07 Project Number Project Name Project Location Company Designer Notes Rainfall Station Rainfell File Latitude = Longitude = Elevation = Rainfall Period of Record 1674 RANCHO MILAGRO CARLSBAD MANITOU ENGINEERING ESCONDIDO CHURCH RANCH CA2871.NDC N 33 deg 6 min W 117 deg 5 min 722. ft 1948 to 1958 Site Parameters Total Drainage Area 12.40 ac Totai Imperviousness (%) 66.00 Overiand Flow V/idth 1470. ft >veriand Slope (%) 2.0 .npervious Depression Storage 0.020 in Pervious Depression Storage 0.200 in Impervious Mannings n 0.015 Pervious Mannings n 0.250 Infiltration Parameters Horton Infiltration Used Inttial (Max) Infiltration Rate Final (Min) Infiltration Rate Infiltration Decay Rate (1/sec) 2.44 in/h 0.40 in/h 0.00055 Infiltration Regeneration Rate (1/sec) 0.010 Daily evaporation 0.100 in/day Sediment build-up reduces the storage volume for settiing caicuiations A maintenance cycle of 12 months \^s chosen (The Stormceptor will be cleaned out every 12 months) ^ SS Loading Calculations Buildup / Washoff Loading Chosen Buildup Washoff allocates more washoff in the rising limb of the hydrograph Target Event Mean Concentration (mg/l) 125. Buildup Exponent 0.400 Washoff Exponent 0.200 Availat>ility Factors for Partides >= 400. um Availability = A + Bi'HD A = 0.057 B = 0.040 i = rainfall intensity C= 1.100 Stormwater Particle Size Distribution TabiB Diameter Percent Spedfic Gravity Settling Velodty (um) (%) ft/s 20.0 20.0 1.30 0.0013 60.0 20.0 1.80 0.0051 150.0 20.0 2.20 0.0354 400.0 20.0 2.65 0.2123 2000.0 20.0 2.65 0.9417 (occulated settiing assumed for partides <= 20 um Rainfall records 1948 to 1958 Total rainfall period 11 years Total rainfall = 125.4 in Average annual rainfall = 11.4 in v^.^'"^" event analysts 2.0 hour inter event time used to detenmine # of events < in Events % Vol in % 0.25 480 77.5 29. 23.4 0.50 61 9.9 22. 17.3 0.75 35 5.7 21. 16.9 1.00 22 3.6 19. 15.5 1.25 7 1.1 8. 6.5 1.50 6 1.0 8. 6.4 1.75 2 0.3 3. 2.5 2.00 1 0.2 2. 1.6 2.25 3 0.5 6. 5.1 2.50 0 0.0 0. 0.0 2.75 1 0.2 3. 2.1 3.00 0 0.0 0. 0.0 3.25 0 0.0 0. 0.0 3.50 1 0.2 3. 2.8 3.75 0 0.0 0. 0.0 4.00 0 0.0 0. 0.0 4.25 0 0.0 0. 0.0 4.50 0 0.0 0. 0.0 4.75 0 0.0 0. 0.0 5.00 0 0.0 0. 0.0 5.25 0 0.0 0. 0.0 5.50 0 0.0 0. 0.0 5.75 0 0.0 0. 0.0 v,^ 6.00 0 0.0 0. 0.0 6.25 0 0.0 0. 0.0 6.50 0 0.0 0. 0.0 6.75 0 0.0 0. 0.0 7.00 0 0.0 0. 0.0 7.25 0 0.0 0. 0,0 7.50 0 0.0 0. 0.0 7.75 0 0.0 0. 0.0 8.00 0 0.0 0. 0.0 8.25 0 0.0 0. 0.0 > 8.25 0 0.0 0. 0.0 Totai rain 125. in Number of rain events 619 \^infall intensity analysis Average intensity = 0.21 in/h 0.25 1853 76.3 43. 34.C 0.50 311 12.8 28. 22.3 0.75 137 5.6 21. 16.4 1.00 77 3.2 17. 13.2 1.25 19 0.8 5. 4.2 1.50 16 0.7 6. 4.9 1.75 5 0.2 2. 1.6 2.00 5 0.2 2. 1.9 2.25 1 0.0 1. 0.4 2.50 1 0.0 1. 0.5 2.75 0 0.0 0. 0.0 3.00 1 0.0 1. 0.6 3.25 0 0.0 0. 0.0 3.50 0 0.0 0. 0.0 3.75 0 0.0 0. 0.0 4.00 0 0.0 0. 0.0 4.25 0 0.0 0. 0.0 4.50 0 0.0 0. 0.0 4.75 0 0.0 0. 0.0 5.00 0 0.0 0. 0.0 5.25 0 0.0 0. 0.0 5.50 0 0.0 0. 0.0 5.75 0 0.0 0. 0.0 ' 6.00 0 0.0 0, 0.0 6.25 0 0.0 0. 0.0 6.50 0 0.0 0. 0.0 6.75 0 0.0 0. 0.0 7.00 0 0.0 0. 0.0 7.25 0 0.0 0. 0.0 7.50 0 0.0 0. 0.0 7.75 0 0.0 0. 0.0 8.00 0 0.0 0. 0.0 8.25 0 0.0 0. 0.0 > 8.25 0 0.0 0. 0.0 Total rainfall = 125.4 in Total evaporation = 10.3 in Total infittration = 42.6 in % Rainfall as runoff = 59.0 % Average Event Mean Concentration for TSS (mg/l) 79.6 Removal Simulation Resuits Table Stormceptor Treated Q % Runoff Tank TSS Overall TSS Model cfs Treated Removal (%) Removal (%) STC 450 0.283 34. 71. 51. STC 900 0.636 50. 75. 62. STC 1200 0.636 50. 76. 62. STC 1800 0.636 50. 76. 62. STC 2400 1.059 61. 78. 68. STC 3600 1.059 61. 78. 69. STC 4800 1.766 73. 80. 74. STC 6000 1.766 73. 80. 74. STC 7200 2.472 80. 82. 78. STC 11000 3.531 87. 85. 82. STC 13000 3.531 87. 85. 83. STC 16000 4.944 92. 86. 85. Hydrology Tabte - Vcjiume of Rurroff Tr^ted vs By-Pass Treated Q Treated Vol Over Vol Tot Vol %Trej cfs fts fts fts 0.035 269998. 3061392. 3331389. 81 0,141 752951. 2578444. 3331389. 22.6 0.318 1194348. 2137058. 3331389. 35.9 0.565 1578452. 1752940. 3331389. 47.4 0.883 1906452. 1424926. 3331389. 57.2 1.271 2183399. 1147974. 3331389. 65.5 1.730 2416752. 914623. 3331389. 72.5 2.260 2611458. 719905. 3331389. 78.4 2.860 2770729. 560651. 3331389. 83.2 3.531 2900111. 431263. 3331389. 87.1 4.273 3004461. 326929. 3331389. 90.2 5.085 3086981. 244399. 3331389. 92.7 5.968 3151838. 179547. 3331389. 94.6 6.922 3200715. 130669. 3331389. 96.1 7.946 3237166. 94221. 3331389. 97.2 9.041 3264930. 66457. 3331389. 98.0 10.206 3286381. 45011. 3331389. 98.6 11.442 3300661. 30729. 3331389. 99.1 12.749 3309843. 21548. 3331389. 99.4 14.126 3317090. 14300. 3331389. 99.6 15.574 3321984. 9407. 3331389. 99.7 17.092 3325185. 6205. 3331389. 99.8 13.881 3327166. 4222. 3331389. 99.9 20.341 3328299. 3090. 3331389. 99.9 22.072 3329337. 2052. 3331389. 99.9 23.873 3330418. 971. 3331389. 100.0 25.744 3331027. 362. 3331389. 100.0 27.687 3331389. 0. 3331389. 100.0 29.700 3331389. 0. 3331389. 100.0 31.783 3331389. 0. 3331389. 100.0 End of Simulation DETENTION STORAGB COK5UTATION PROCEDtTRE SINGLE HYDROGRAPH FORH Input Variables rurban ConditionsV Six hour precipitation amount (inches) Pj Time of concentration (min.) "^^ 5 2.8 Coefficient of funoff C Basin area (acres) A CoTnputat:ion Time to peak T, = 2.0T^D/(1 + Kp) = 1.1072T. Time of hydrograph to begin TB = 20 - T, TB ^/.L2 Tiae of hy<3rograph to end -3 >f^ Tg = 20 + 1.5 T, TE 32-45 Peak flow IT, = 7.44 P5/T,°«^ = ^•<^ in./hr. Surrounding flow (Qj) Depth of precipitation for 2 hours D,2o = 7.44 P4/120°'*^^{2 hr.) Dj2a = 0.6785 P« "-"^ / 9 in. Depth of precipitation for hy.drogr.?,-oh DH = (P«T,"")/5.S3 = 0'1& in. Surrounding Intensity Ig = 60{D,jo - DH)/(120 - 2.5T,) Is = in, /hr, Qs = CIsA Qs ^-74 Plot Hydrograph and Surrounding Flow Outflow / Basin Size (Nar.viral Conditions) Outflow C = 0-35 T- == C-I nin. I = 7.44 Pfi/T,°-^^ = ^••^9 in,/hr. QN = CIA Qj^ l-'bO 1. Plot on Hydrograph a. Draw line from surrounding flow intercept with beginning hydrograph limb to (^^ 2. Estimate volume needed for reservoir a. Detennine preliminary reservoir dimensions b. Surrounding flow discharges directly through reservoir without detaining any storage 3. .Size outlet works ^ a. Outlet flow, less than or equal to Qj^ b. Stay within the limits of the reservoir 4. Rout a. Refine reservoir dimensions and/or outflow facility ^le.byd DETENTION STORAGE COMPUTATION PROCEDURE SINGLE HYDROGRAPH FORM Input Variables (Urban Conditions) Six hour precipitation amount (inches) Pg Time of concentration (min.) Coefficient of runoff C 0, HI Basin area (acres) A Computation Time to peak Tp = 2.0T^D/(1 + Kj.) = 1.1072T, Tp \-} . Time of hydrograph to begin TB = 20 - Tp TB ILA Time of hydrograph to end Tg = 20 + 1.5 Tp TE Peak flow Qp = CIA , ^ , ., Qp -~JAi IT, = 7.44 P5/T>«5 = •>. 63 in./hr. Surrounding flow (Q^) Depth of precipitation for 2 hours D,2o =7.44 Ps/120°-**^(2 hr.) Dj2o = 0.6785 P« = /. / in. Depth of precipitation for hydrograph DH = (P6T/-^^^)/5.83 = -^fS in. Surrounding Intensity Ig = 60(D,2o - DH)/(120 - 2.5TJ Is = >^ in./hr. Qs = ClgA Qg > ^ Plot Hydrograph and Surrounding Flow Outflow / Basin Size (Natural Conditions) Outflow C = T = _______ min. I = 7.44 PJT,"*^^ = in./hr. , QN = CIA QN 1. Plot on Hydrograph a. Draw line from surrounding flow intercept with beginning hydrograph limb to 2. Estimate volume needed for reservoir a. Determine preliminary reservoir dimensions b. Surrounding flow discharges directly through reservoir without detaining any storage 3. Size outlet works a. Outlet flow, Qo less than or egual to Qj,^ b. Stay within the limits of the reservoir 4. Rout a. Refine reservoir dimensions and/or outflow facility r. / 5\ 3 0 a t f •