Loading...
HomeMy WebLinkAboutGPA 06-09; Muroya Subdivision; General Plan Amendment (GPA) (7)-.. ---.. ------- • -, .. ----- • .. MIO!lVl!O AUG 0 7 2009 CITY OF CARLSBAD PLANNING DEPT TENTATIVE MAP DRAINAGE STUDY for MUROYA City of Carlsbad, California Prepared for: Taylor Morrison of California 15 Cushing Irvine, CA 92618 W.O. 0042-219 July 9, 2009 Hunsaker & Associates San Diego, Inc. Raymond L. Martin, R.C.E. Vice President RECEIVED AUG 0' 2009 CITY OF CARLSBAD PLANNING DEPT Recerveo AUG 0' 20D9 CITY OF CARLSBAD PLANNING DEPT MJ:de H:\REPORTS\00421219\A03.doc W.O. 0042-219 7191200910:10 AM - ---• IIIII .... .... 11!111 -• -----• • - Muroya TM Drainage Study TABLE OF CONTENTS Chapter 1 -Executive Summary 1.1 Introduction 1.2 Summary of Existing Conditions 1.3 Summary of Developed Condition 1.4 Summary of Results 1.5 References Chapter 2 -Methodology 2.1 County of San Diego Drainage Design Criteria 2.2 Design Rainfall Determination 100-Year, 6-Hour Rainfalllsopluvial Map 100-Year, 24-Hour Rainfalllsopluvial Map 2.3 Runoff Coefficient Determination 2.4 Rainfall Intensity Determination Urban Watershed Overland Time of Flow Nomograph San Diego County Intensity-Duration Design Chart 2.5 Model Development Summary (from San Diego County Hydrology Manual) Chapter 3 - 1 DO-Year Hydrologic Model for Existing Conditions Chapter 4 -100-Year Hydrologic Model for Developed Conditions Chapter 5 -Detention Basin Design Chapter 6-Existing Condition Hydrology Map Chapter 7 -Developed Condition Hydrology Map Chapter 8 -Appendix SECTION II Ill IV v VI VII VIII DE.:!I..J H:\.~On:TS\004Z'.219\A.C2.doc W.O. 2551-3 5!4!200i 9:09AM -- --• .. .. .. • • -• - .. • -- .. -• -- Muroya TM Drainage Study CHAPTER 1 ·EXECUTIVE SUMMARY 1.1 -Introduction The Muroya project site is located south of Poinsettia Lane, bounded by Black Rail Road to the east and Aviara Parkway to the south within the City of Carlsbad, California (see vicinity map below) . NO SCALE All runoff from the site will drain to two (2) points of discharge, an existing "L" type headwall and the existing basin to the east. Runoff from these storm drain systems eventually discharge into the receiving Batiquitos Lagoon. Per City of Carlsbad requirements, this study analyzes developed and existing condition 1 00-year peak flowrates from the proposed development. Since the site lies outside any FEMA floodplain zones, no Letters of Map Revision will be required. Per City of Carlsbad drainage criteria, the Modified Rational Method should be used to determine peak design flowrates when the contributing drainage area is less than 1.0 square mile. Since the total watershed area discharging from the site is less than 1.0 square mile, the AES-2003 computer software was used to model the runoff response per the Modified Rational Method. Methodology used for the computation of design rainfall events, runoff coefficients, and rainfall intensity values are consistent with criteria set forth in the "County of San Diego Drainage Design CE:CJG H:\REPORTSIOO<Z\219\AOl.doc W.O. 01).42-0219 1112&'2006 5:26 PM ... -.. -.. -.. • -• - • ... ---... ... - ----• .. -.. Muroya TM Drainage Study Manual." A more detailed explanation of methodology used for this analysis is listed in Chapter 2 of this report. 1.2 -Summary of Pre-Developed Conditions In existing condition, the proposed site consists of a small nursery and some natural lightly vegetated hillside that drains in a westerly direction. Runoff from the project site flows in a westerly direction to two (2) points of discharge; an existing "L" type headwall and an existing basin adjacent to Nightshade Road . Storm water runoff generated by the northern portion of the pre-developed site will be conveyed via brow ditch to an existing basin. The runoff is then confluenced with some natural runoff at the existing detention basin prior to connecting with an existing 24-inch RCP storm drain within Nightshade Road. The remaining portion of the site flows southerly to the existing "L" type headwall where it enters the existing 36-inch RCP storm drain along Towhee Lane. Per the "2003 San Diego County Hydrology Manual", a conservative runoff coefficient of 0.42 was selected to represent the current naturally vegetated terrain found on the Muroya site . Table 1 -Summary 100 Year Existing Conditions Runoff Drainage Location Drainage Area 1 00-Year Peak Flow (Ac) {cfs) Existing "L" Type Headwall 14.0 21.7 Existing Basin 3.6 6.7 TOTAL 17.6 28.4 1.3 -Summary of Proposed Development Located on an 18-acre site, the proposed Muroya development will consist of thirty seven (37) single family residences. Per criteria set forth in the "2003 San Diego County Hydrology Manual", a runoff coefficient of 0.57 was selected to quantify the rainfall to runoff response of the site. Storm water runoff generated by the proposed development will be flow to two (2) points of discharge; an existing "L" type headwall and a proposed basin adjacent to Nightshade Road. Storm water runoff generated by the northern portion of the development will be conveyed via a curb and gutter system to an inlet located within Private Street "A". The runoff is then conveyed in a westerly direction via storm drain to a proposed detention basin prior to connection with an existing 24-inch storm drain. It should be noted that this proposed detention facility is for peak flow attenuation only . DE:DJG H:IREPORTS\0042\219\A01.doe w.o. 0042~0219 11/2812006 5:28PM I r------ 1 I I I I L ____ _ I I I I I I I r------ 1 I I I I 1-------- 1 I I I WATERSHED BOUNDARY FLOWLINE NODES SUBAREA AREA lt.oo ACRES I TOWHEE L4c'IE ' I I I I I ~---- 1 I I I I I 1------_L ___ _ I I I ' !.----------- ------------------ I I I I I l, I I I I I )__ i I I I i ~ I 5 :~-+-~~. HUNSAk'ER &ASSOCli\TES 1 •• !lll(;Q. I'IC MUROYA CITY OF CARLSBAD, CALIFORNIA SHEET 1 OF ~ 1 'i :: d .. --- -.. - • • ... .. • • -.. -- - - -- .. ... • -.. Muroya TM Drainage Study Developed storm water runoff is routed through a detention basin located in the northwest corner of the proposed site. In developed conditions, the basin bottom elevation will be 308 feet while the top elevation is 312 feet. Flow will exit the basin via one 1 0-inch orifice built into the side of the 5-foot x 5-foot basin riser. The 1 0-inch orifice will route flow via a storm drain discharging flow to the existing 24-inch RCP storm drain system within Nightshade Road. This orifice has an invert elevation coincident with the basin bottom elevation of 308 feet. The 5-foot x 5-foot riser box, which will surround the outlet pipe, will be built to a top elevation of 311.4 feet. Once floodwaters exceed 311.4 feet in the basin, runoff will spill over the top of the riser and drop to the basin outlet pipe . Emergency spillway calculations show that the proposed riser has adequate capacity to convey the 1 00-year inflow of 11.1 cfs in the event of full clogging of the 1 0-inch orifice . Runoff from the southern portion of the development will drain via a curb and gutter system within Private Drive "C" to a proposed swale. Flow conveyed via the swale will then drain to the natural flow path discharging to an existing type "L" headwall . Runoff from the remainder of the existing natural hillside will also discharge to the existing type "L" headwall. The flow will then enter the existing 36-inch RCP storm drain along Towhee Lane . All pipes, inlet and rip rap design will be sized for the 1 00-year event storm event. Detailed storm drain system calculations will be provided at the final engineering phase. Table 2-Summary 100 Year Developed Conditions Runoff Drainage Location Drainage Area 100-Year Peak Flow (Ac) (cfs) Existing "L" Type 11.0 17.0 Headwall Existing 24-inch RCP 6.6 6.7* Storm Drain TOTAL 17.6 23.7 . -routed v1a detention structure 1.4-Results and Recommendations Tables 3 & 4 summarizes developed versus existing conditions drainage areas and resultant 1 00-year peak flowrates at the storm drain discharge locations. Per San Diego County rainfall isolpluvial maps, the design 1 00-year rainfall depth for the site area is 2.6 inches . DEoDJG H:\REPORTS\0042':Z1!!\A01.dDt w.o.004l..Q219 11/2&1200Ei5:28PM I -------t I I I i WATERSHED FLOWLINE NODES BOUNDARY SUBAREA AREA ________________ _J 1HRASHER PL.o\CE I j1.00 ACRESj I I ~--------- / -> ~;:·_;.·· ..-:. ·--~-~-."'_,. -~ I. /l ~1~~~~:<;~, 5D 5D 100 ------- ·.-.··. -- I DEVELOPED CONDITION HYDROLOGY EXHIBIT FOR: SHEET 1 OF MUROYA 0 1 i i d CITY OF CARLSBAD, CALIFORNIA ~ - .. ---.. -• ,..: .. ----- - --- •• -•.. ---- • -• -- Muroya TM Drainage Study Table 3-Summary of Pre Vs Post Developed Condition 100 Year Runoff Drainage Area 100-Year Discharge Location Peak Flow (acres) (cfs) Existing "L" Type Headwall ~ ~ Pre Developed Conditions 14.0 21.7 Developed Conditions 11.0 17.0 DIFFERENCE -3.0 -4.7 Existing 24-inch RCP Storm --------------------Drain I Existing Basin Pre-Developed Conditions 3.6 6.7 Developed Conditions 6.6 6.7* DIFFERENCE +3.0 -0.0 *=routed v1a detention structure Table 4-Overall Summary of Pre Vs Post Developed Condition 100 Year Runoff Drainage Area 10-Year Overall Discharge Peak Flow (acres) (cfs) Pre Developed Conditions 17.6 28.4 Developed Conditions 17.6 23.7 DIFFERENCE 0.0 -4.7 As shown in the summary tables, development of the existing Muroya project site will have a positive impact upon the receiving storm drain systems. Per Table 4, development of the site will result in a net decrease of approximately 4.7 cfs in runoff. Peak flow rates listed above were generated based on criteria set forth in "San Diego County Hydrology Manual" (methodology presented in Chapter II of this report). Rational Method output is located in Chapter Ill and IV. Final storm drain, inlet and rip rap design details will be provided at the final engineering stage of the development. OE.:OJG H:\REPORTS\0042\219\AD1.doc: W.D. 0042-0219 1112812006 5:26PM -----------< I i ----- WATERSHED BOUNDARY FLOWL/[\JE NODES SUBAREA AREA 11.00 ACRES I I ~---. i THRASHER PLAC! I ~··-I I I ~--­ \ I ~----------I I ~~ ~L : ~~~·i, "-~~~------1---~--·--·-·-·-----+~c.::r::..:::..:.~----·---.. --·-"-····--·---_/ ___ j .~ ---PR<.!-'C:;,~f) .WA;ir; l!?t~1.'i:Nr iJHiT • Pfi\.!"n:;n' ~rdrm fJR;<.•>i .. 1-';!1''-~';.J.' • /'<1:>1-•,]:,CJ; -~~..,-$...<"1\f."R" M<:) \f;Oft; ~ ~"'! uu,r ' I \ \ \ \ \ \ \ \ \ p 2!'7.4 \ \ p 2~3.1 ----------_.\-·-·" -------~------------\ -- \ \ \'A,RMBU ~DP[ .<:·I tJAX j8.66 ACRESj P 27E.6 --------------- I I j j \ / I J "'· \·\. \. \ j I i I I --------------.. ~ I I I I I I I I I I j I · 1~~~~ r''-4.'~ P 25S.!' ·/ I I I I I PREPARED BY: HUNSAk"ER & ASSOCIATES ftAt.lo!IHC»m~S!roct ENGINEI'RJNG Sant>qn,C..!!Zt:1 !JJII:VEYINC PHI5581556-i500·fX!3~)5s:8.'K14 50 0 ~- ,~fX15iiHG CIJR8 INI..£T TO ROlAIN ,--Prr'< DWG .335-5 / /-~~-·~,!~N,·:c:,s~~~.,~~ ,·~i::.~·~-,~~~~;;.CP :Jl~ · .. .........._ (>.t;,m~c. -."V>?I? ffi/.!:T ro fJf A.;:J!J':TW I"C'II.'C\I'(.lJI?!J r.i..\:.1U(>.'I I I I I I I I I I __ _j 50 DEVELOPED CONDITION HYDROLOGY EXHIBIT FOR: MUROYA CITY OF CARLSBAD, CALIFORNIA 100 !50 SHEET 1 OF 1 R•\0321 \ t.Hyd\321 $"H02-DEV .dwg[JJul-09-2009•1 0•17 .. ... - ... - -• ---.. -.. --- • - --------.. -- Muroya TM Drainage Study 1.5 -References County of San Diego Hydrology Manual, June 2003 "Storm Water Management Plan for Muroya", Hunsaker & Associates, San Diego, Inc.; July 2009. "Improvement Plans for Carlsbad Tract No. 98-18", Michael L Benesh Professional Civil Engineer and Land Surveyor; July 2000. MJ:de H:\REPORTS\00421219\A03.doc w.o.0042-219 7/9/200910:10AM • - - ... • • -• - --- --- • • • • .. - Muroya TM Drainage Study CHAPTER2 METHODOLOGY DE:DJG H:\REPORTS\0042\219\AOI.doc W.O. 0042.()219 11/2812005 5:28PM ... --- .. • . , ! --- -• ... ---• • • Muroya TM Drainage Study CHAPTER2 METHODOLOGY 2.1 -County of San Diego Design Criteria DE:OJG H:\REPORTS\0042121!M01.doc W.Q. 0042:-0219 1112BI2005 5:26PM .. - ... .. - - -- - -- , . .. • ,,. .. '!Ill • .. .. .. .. -• San Diego County Hydrology Manual Date: June 2003 Section: Page: 2.3 SELECTION OF HYDROLOGIC METHOD AND DESIGN CRITERIA 2 3 of4 Design Frequency -The flood frequency for determining the design storm discharge is 50 years for drainage that is upstream of any major roadway and 100 years frequency for all design storms at a major roadway, crossing the major roadway and thereafter. The 50-year storm flows shall be contained within the pipe and not encroach into the travel lane. For the I 00-year storm this includes allowing one lane of a four-lane road (four or more lanes) to be used for conveyance without encroaching onto private property outside the dedicated street right-of-way. Natural channels that remain natural within private property are excluded from the right-of-way guideline. Design Method-The choice of method to determine flows (discharge) shall be based on the size of the watershed area. For an area 0 to approximately 1 square mile the Rational Method or the Modified Rational Method shall be used. For watershed areas larger than 1 square mile the NRCS hydrologic method shall be used. Please check with the governing agency for any variations to these guidelines. 2-3 • .... - .. .. •: - ----- • -• .. • .. • • ... ' • • -• -- Muroya TM Drainage Study CHAPTER2 METHODOLOGY 2.2 -Design Rainfall Determination 1 00-Year, 6-Hour Rainfalllsopluvial Map OE:DJG H:\R.E.PORTS\0042"1219\AOt.doc W.O. 0042.(}219 11126/2006 5;28 PM _....:_ __ ·i·----·· --0-__ ,_; -~-~-· -· _,, __ --"~- -·-:-:---..:.·-:--~ -· -·--- _. ____ j_._.--~~--~--'-· --·-·--· --·-----------' ' . ------~--'--'--ro.i-;.-'--,-. ;_.:_ ________ -0-,~. ,----.-· ' : ~ ----·-~ ----'-----··--~-·' •· : ~-=-.~-~~:e~e t=----;:=..=-~=­ -~' -~i~r~ ·-~~GYnt~L} -·---.-.• -----------,-.-~·-,-. -·-7-- ' . ·----·-· ----' ' ----y-: 7'7~~-_ ..... :.~~--,~ ·--.. ~ :;~-·i=· ... ~ _ .. • -;%-;ti-'-.-.-' ----;"-:··-· ' ·:----· ·-'---------- ·•.-~----------·--.. ·------'---,---t·-'-.,--'-----'-- ' . . . ' ' . : . --····-· ---------- -·--~330QQ'-·-'-~-_..:_--+---,-:--::;...~__:_~~.,--_!:~y~'-"'-..=.c'---'--:...:.,.:-J:-~~~~~_;:.=--~,..:.,.::------=----+~---.f-~4~~R.::---f-+-'-~.----'-----'--"-t--;r-'-'--' -----33"oo~ ------~-0- County of San Diego Hydrology Manual Rainfall Isopluvials 100 Year Rainfall Event-6 Hours lsopluvial (inches) ------1-------------· ' . . . : -.--:-------:----'--------··- --------1---;--'--'---- -------~ --· _· _____ . --:--_____ ...;. __ _ ''l '-32"3Q!-,---'----+-----C-.,------'---'-----f-_..:_ __ -,--.:._ _ _..:__:_L..J--'---''--:---'---_..:__:_ __ -+-J--;__,;_----'--.:_;_-.:____+---c--,---'--~-'---'---,---+-'---'-~-,--~---::l2"3Qr-·-·--+~-_:__·_c_~:. _ _:_~--. -- '---'---" ----- -i ~'---'-. --· (o-··-: _. --:---·_:_-._l ~-~-r----~ -~.:...._ _____ .;_,__ __ -· ..-~--~--· ---:--~ ---'-------· __ ._._! _________ ""':"'_....: -'---·-----------·--_· _ _.____ ___ _ ' - _ _;_ .i. -~~--_; _____ . ______ _ ~~e!! ~,r-,..b'(;\1.':'.-:\:! :;~~~!*""";;U.•:rS:"'-~.5 N + s 3 0 3 TI·US t.~A? IS ?ROVJOEO WIT. ... OI!'i WAA'RAIITY OF ANY KINO. ElTHER EXPFtESS OR tMPUED,lNCLUDlNG, BUT NOT UM.IIcO TO, lHE IMPUEO WARRANTIES OF .Y.ERCJ-I.ANTABIUTY AND FITNESS FOR A ?A.'tTICULA~ PURPOSE. Copyright 52nGIS. All Rlgl\ts Rts!IVed. This prl)duas may con!2lll ml01'11iaticn. from lhe SANDAG Regional Wormation S)'slem which canna. b!! reproduced wi!hout the written pemission cf SAI•IOAG. This product may CJnta:n Worrnalion Which has beon ~produced y,itr'J permission graNed by Thomas Bro1tl~ ~s. Miles Muroya TM Drainage Study CHAPTER2 METHODOLOGY 2.2 -Design Rainfall Determination 1 00-Year, 24-Hour Rainfall lsopluvial Map OE:DJG H:\REPDRTS\0042\21 !M01.doc w.o.IJO.I2-Q2.t9 1112&'2000 5:2B PM : __ .:. ___ I_j_'_l._..c___; ~·--.-------------~-----'----~-----~.--... , . . . . _. __ .___________ -m~'-•--;----,---:--~---~--; ~ -----,--.-. ----,-g : . ;~-r r-___________ , ----,---,---tl ~--~ -----. ·-·---·-~-·-: -;-: -·----·--7---,--~ . -... ---·-· ---~ ~ ~ ~~---------------------~ ; ,... ' . ' . -----------~-'--'---:--r-·----,-----:-~ ·T---+~-,-: :.-; ---~ --:---+---:.---;---- Le-·' --, --· --, -___; ____ ~-~ ~--'--' .,.... .,.... g; -, m-7--- ~-:._­.,.... . -----c---,-. . -------'----,-------- . . ' -'-----'~co:',-:;-;--t--: _____ i_c ___ ....; ___ -'----- -~--.i .. ___,....__ -.i----~----!----4--~: ; . ..1....--- -33.30' -~---'----; --- -----71 -,'-~---- ---:· ).--· :· l _____ _ ·-·---!-\----,-- ==~=-=~t=~~~t;~~~~~~J~§~~i±t=~=t~~~~~~~2s~;2~~~1t!~~ff:Ji:~r~~=~=--·-=33~15. ....... ~-.- -33"15' ------- ,---:-:-- -G--__ ; __ ~--~c~ ---~- ------,--·----'-~--·cv. ~-_~--- ---·-·---~--~----.... --. -. --.--·:;; ______ .:..__.;.._ --·--, -:-------. .l-; __ County of San Diego Hydrology Manual Rainfall Isopluvials 100 year Rainfall Event -24 Hours 3 ~- 3 lsopluvial (inches) Miles '"" .... • • ... ... • ---.... ---.. --- - • Muroya TM Drainage Study CHAPTER2 METHODOLOGY 2.3-Runoff Coefficient Determination DE.:DJG H.'\REPORTS\0042\Z19\A.01.Doe W.O. 0042-0219 1112812006 5:28PM I J I j I t • • I I San Diego County Hydrology Manual Date: June 2003 • • • • I I I I I i I • I I I I I J Section: Page: Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use Runoff Coefficient "C" Soil Type NRCS Elements Count Elements % IMPER. A B Undisturbed Natural Terl'ain (Natural) Permanent Open Space 0* 0.20 0.25 Low Density Residential (LDR) Residential, 1.0 DVIA or less 10 0.27 0.32 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 Low Density Residential (LOR) Residential, 2.9 DU/A or less 25 0.38 0.41 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 Medium Density Residential (MDR) Residential, I 0.9 DU/ A or less 45 0.52 0.54 Medium Density Residential (MDR) Residential, 14.5 DU/ A or less 50 0.55 0.58 High Density Residential (I-IDR) Residential, 24.0 DU/A or less 65 0.66 0.67 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 Conuuercial/lndustrial (N. Com) Neighborhood Commercial 80 0.76 0.77 Commercial/Industrial (G. Com) General Commercial 85 0.80 0.80 Commercial/Industrial (O.P. Com) 0 flice Professional/Commercial 90 0.83 0.84 Commercial/Industrial (Limited 1.) Limited Industrial 90 0.83 0.84 Commercial/Industrial General!.) General Industrial 95 0.87 0.87 • j c 0.30 0.36 0.42 0.45 0.48 0.54 0.57 0.60 0.69 0.78 0.78 0.81 0.84 0.84 0.87 I J 3 6 of26 D 0.35 0.41 0.46 0.49 0.52 0.57 0.60 0.63 0.71 0.79 0.79 0.82 0.85 0.85 0.87 I j •The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest). DUIA =dwelling units per acre NRCS =National Resources Conservation Service 3-6 ., ... -• • .. .... ... ... .. - --- -- • • .. Muroya TM Drainage Study CHAPTER2 METHODOLOGY 2.4 -Rainfall Intensity Determination Urban Watershed Overland Time of Flow Nomograph CE:OJG H:\REPORTS\004ZI219\AOf.®c W.O. 0042-Q219 1112812006 5:28PM I I I I l II I I If li I I I I 4 I I I &I I I II II I I i j i j l j tu UJ u.. ~ 0 w () z ~ fQ 0 w (f) 0::: ::> 0 0 0:: w !;( ~ EXAMPLE: Given: Watercourse Distance (D) = 70 Feet Slope (s) = 1.3% Runoff Coefficient (C) = 0.41 Overland Flow Time (T) = 9.5 Minutes T = 1.8 (1.1~C) VD 3vs 20 (f) w ..... ::> z ~ ~ w ;E i= :5: g u.. 0 z 5 0:: w 6 SOURCE: Airport Drainage, Federal Aviation Administration, 1965 FIGURE Rational Formula -Overland Time of Flow Nomograph 3·3 ... • .. - • - ... • ... -- - --- • • Muroya TM Drainage Study CHAPTER2 METHODOLOGY 2.4 -Rainfall Intensity Determination ·San Diego County Intensity-Duration Design Chart DE;DJG H:\REPORTS\0042\2.191A01.doc W.o. ()042 .. 0219 11/2&'2006 5:29 PM I J I I ' J l • I J ' . ' . ' . I t l • 10.0 "' I'" r....i"' 9.0 ..... r-. I' , .... I' 8.0 7.0 ..... ..... :..... ['. ..... i'-:.... EQUATION 6.0 ..... r-...._ : ... :-- ' "' 7.44 Ps D-0.645 P-.1:+~!1-d+~H-~:-A-.1:+*1-'l"!oi-R'IIoHIIIffil+ttti+HI-tH+t+ttltHI I "' Intensity (in/hr) 5.0 4.0 3.0 ~" :.........., ..... I' "'~' 'I' ..... i'o.. ..... 'r--~"', "':-- Ps "' 6-Hour Precipitation (in) l--t-1--t--.::~H--j.::~-1--N:++~:I-R"'I.H~:tmW~i"!ci--H+H-HH+H-fl D == Duration (min) "'r--. .......... I I 0.41-t-++-I-}-++H--H-HI.H+I-H-+H-H4-lffH+IH+Hf..H-IH-H-H+Hl+H+HtlttR'IWiH-+t-t-t+1"--:.::H-+tttffi"lo!d-ttttltt 2"5 :......" "['. 2.0 0.3 _::;;.. = -=f-,..... .... ·-·'= ·-· ·: !===-t:l=-f---·-----· ·---. 1.5 1---1-HHI+H~iHH·IItt----,---·::: =: :::: : :: ---. . I=== ;:::1:::·: -~=----·r=:::::: -=-::::::.~---o.2r:_~_g __ ~-~---E-~-~---~-F--~ .. f-.. ~.~---F-__ f __ f __ ~-~--*· t:t:~~~~~~~~~~~~~~~-~~-~~~~~~~~~J ~::=I= -r--i':-: :: H-t·-H·I·t-t·l+ttltt --:::-::----t -'-' + 0.1~-+~+-~--~-~~~~~~~~~~~~~~~~~~~-r~~~~~~~~~ 5 6 7 8 9 10 15 20 30 40 50 2 3 4 5 6 Minutes Hours Duration Intensity-Duration Design Chart -Template I I I t • f . ' I I Directions for Application: (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are Included in the County Hydrology Manual (10, 50, and 100yr maps included in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that It is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert). (3) Plot 6 hr precipitation on the right side of the chart • (4) Draw a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve for the location being analyzed. Application Form: (a) Selected frequency ___ year (b) Pa = in. P24 = ~ = %12) --• --·p24 -- (c) Adjusted P6(2l = __ in. (d) lx = __ min. (e) I= __ in.lhr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. . ..1 ~! . : .. I I --.I l I .... ! .. . .. . ..... Pti . ... 1 I 1.5 i 2 -0 2.5 I 3 i 3.~_. 4 I 4.5 ' 5 ~ 5.5 6 Durntloii I I I I ' I ' I I I I I I : I ,·-j""---~ - ... ~-~::._-; lTh-~ l1ftl-~:~ __ }!~:gg_HH~i~_ :~~-~·~£4_~4-l ~:~4€1! ~-~:~1 _1-_~-~~:Utt~ ... ___ 10 _1,~ 2.53[3.37_:•1.2_1 J5.os;s,so . 6.741 7.58 j 8.42 _,9.?_7 __ .!Q.-.~_1_ ____ 1_~ _1.30 j.!_,9~i 2.59i_3,24 J.3.6~.t·1 .. 54/5-_19_l' li-!!.1.l_6,o1lJ .. !:1:_1 •. !-!.6 .. _20_ _ ... LOB Ji.l.62l 2.1!ij2.69, ;),2:1[ :!:_?!. _4_,31. -~,_!!~-.... E::l~--~,!J~. _6 •. ~~­........ 25 . 0.93 1.40 1.87 i 2.33 i 2._80 l.:J-27 3.73 4.20 4_.67 ! _5. ]3 _5.60 30 0.83 \ 1.24,1.66j2.07 ,2.4_9!_:! .. -.90 3.321 ~.73+'!·1~,~ ... 56 -~·!18 ····-: ~::lti:~g~t~:lt~~~u~ tti~ ~:~: 1H~ ,,-~:::1~:~~ H~ :.: __ -. ·-.~il. _-o_ .s. 3 ·_o._e_o_. _'.os11.33_··! 1.r.9 .. ~:o_o_~_ .. ,2_~_-'zj' ·2-:39_ .. 2 .. _6_5-.J. 2.9. 2.1 ~· __ ~_.a_ .. _ .......... J!O. 0.4!_!0}i! 0.821 1.02 j L_23j 1,43 1.63 1.84_) 2.0_4_j_ 2.25 t2.45 _ .. 1~(1 0.34/0.51 0.6B,O.B5i!,()?.U-19 1.3.!;,L53_11.70J LB? _2.94 ....... J~IJ 0.29 j0.44J0.59:0.73;0.80i L03 1.18, 1.32 f 1.47 ,L62 .. ~.7(i _ .. _100 0,20 [0.3910·52: 0.~5 i0.7Bj0.91i 1,04 i 1.10. 1.~1·l·'·41 _L~Z _____ 24() _0.22 ;0.33l0.43j0.5<(,0.65,0.761 (1.~7; 0,!18 __ 1_,08_1_1,1!1 ... !:=1~ . --~(/11 0.19. [0.28' 0,38 i_()"-17.j0·5..t:lf 0_,~61 0.7!;i il 0._85 __ (),9.4.j ... !,9~t 1 ..• .!.:,1. 360 o.17 i0.25·0.a:il"o.42 .0.50 o.s8, o.67 0.75 0.84, 0.92 1.00 I I ~ ~ i j - .. • ----.... ----.. • • • • - Muroya TM Drainage Study CHAPTER2 METHODOLOGY 2.5 -Model Development Summary (from San Diego County Hydrology Manual) DE:DJG H:'REPORTS\00421219\AOl.doc W.O. 0042...Q2f9 1112&2005 5:28PM ,,. • .. • .. - -.. ---.. - -• ..... - - • • • ... c~--·--------------- San Diego County Hydrology Manual Date: June 2003 3.2 DEVELOPING L"'PUT DATA FOR THERATIONALMETHOD Section: Page: 3 20 of26 This section describes the development of the necessary data to perform RM calculations . Section 3.3 describes the RM calculation process. Input data for calculating peak flows and Tc's with the RM should be developed as follows: 1. On a topographic base map, outline the overall drainage area boundary, showing adjacent drains, existing and proposed drains, and overland flow paths. 2. Verify the accuracy of the drainage map in the field. 3. Divide the drainage area into subareas by locating significant points of interest. T11ese divisions should be based on topography, soil type, and land use. Ensure that an appropriate first subarea is delineated. For natural areas, the first subarea flow path length should be less than or equal to 4,000 feet plus the overland flow length (Table 3-2). For developed areas, the initial subarea flow path length should be consistent with Table 3-2. The topography and slope within the initial subarea should be generally uniform. 4. Working from upstream to downstream, assign a number representing each subarea in the drainage system to each point of interest. Figure 3-8 provides guidelines for node numbers for geographic information system (GIS)-based studies. 5. Measure each subarea in the drainage area to determine its size in acres (A). 6. Determine the length and effective slope of the flow path in each subarea . 7. Identify the soil type for each subarea. 3-20 • - - • 111111 ... • -- - - - .. • • ... ... --- San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 22 of26 8. Determine the runoff coefficient (C) for each subarea based on Table 3-1. If the subarea contains more than one type of development classification, use a proportionate average for C. In determining C for the subarea, use future land use taken from the applicable community plan, Multiple Species Conservation Plan, National Forest land use plan, etc . 9. Calculate theCA value for the subarea . 10. Calculate the l:(CA) value(s) for the subareas upstream of the point(s) of interest. 11. Detennine P6 and P24 for the study using the isopluvial maps provided in Appendix B. If necessary, adjust the value for P6 to be within 45% to 65% of the value for P24· See Section 3.3 for a description ofthe RM calculation process. 3.3 PERFORl\iL"iG RATIONAL l\1ETHOD CALCliLA TIONS This section describes the RM calculation process. Using the input data, calculation of peak flows and Tc's should be performed as follows: 1. Determine Ti for the first subarea. Use Table 3-2 or Figure 3-3 as discussed in Section 3.1.4. If the watershed is natural, the travel time to the dow·nstream end of the first subarea can be added to Ti to obtain the Tc. Refer to paragraph 3 .1.4.2 (a). 2. Determine I for the subarea using Figure 3-1. If Ti was less than 5 minutes, use the 5 minute time to determine intensity for calculating the flow . 3. Calculate the peak discharge flow rate for the subarea, where Qp = :2:(CA) I. In case that the downstream flow rate is less than the upstream flow rate, due to the long travel time that is not offset by the additional subarea runoff, use the upstream peak flow for design purposes until downstream flows increase again . 3-22 - - - .... • --- -... • • ... -• • • --• San Diego County Hydrology Manual Date: June 2003 4. Estimate the Tt to the next point of interest. 5. Add the Tt to the previous Tc to obtain a new Tc. Section: Page: 6. Continue with step 2, above, until the final point of interest is reached . 3 23 of26 Note: The MRM should be used to calculate the peak discharge when there is a junction from independent subareas into the drainage system. 3.4 MODIFIED RATIONAL METHOD (FOR JUNCTION ANALYSIS) The purpose of this section is to describe the steps necessary to develop a hydrology report for a small watershed using the MRM. It is necessary to use the MRM if the watershed contains junctions of independent drainage systems. The process is based on the design manuals of the City/County of San Diego. The general process description for using this method, including an example of the application of this method, is described below . The engineer should only use the :MRM for drainage areas up to approximately 1 square mile in size. If the watershed will significantly exceed l square mile then the NRCS method described in Section 4 should be used. The engineer may choose to use either the RM or the l\1RM for calculations for up to an approximately 1-square-rnile area and then transition the study to the l\TRCS method for additional downstream areas that exceed approximately 1 square mile. The transition process is described in Section 4 . 3.4.1 Modified Rational Method General Process Description The general process for the MRM differs from the RM only when a junction of independent drainage systems is reached. The peak Q, Tc, and I for each of the independent drainage systems at the point of the junction are calculated by the RM. The independent drainage systems are then combined using the MRM procedure described below. The peak Q, Tc, and I for each of the independent drainage systems at the point of the junction must be calculated prior to using the MRM procedure to combine the independent drainage systems, as these 3-23 • ... • • .. • ----- .. • • .. • San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 24 of26 values will be used for the MRM calculations. After the independent drainage systems have been combined, RM calculations are continued to the next point of interest . 3.4.2 Procedure for Combining Independent Drainage Systems at a Junction Calculate the peak Q, Tc, and I for each of the independent drainage systems at the point of the junction. These values will be used for the I\1RM calculations . At the junction of two or more independent drainage systems, the respective peak flows are combined to obtain the maximum flow out of the junction at Tc. Based on the approximation that total runoff increases directly in proportion to time, a general equation may be written to determine the maximum Q and its corresponding Tc using the peak Q, Tc, and I for each of the independent drainage systems at the point immediately before the junction. The general equation requires that contributing Q's be numbered in order of increasing Tc. Let Q1, T1, and h correspond to the tributary area with the shortest Tc. Likewise, let Q2, T2, and h correspond to the tributary area with the nex't longer Tc; Q3, T3, and l3 correspond to the tributary area with the nex1 longer Tc; and so on. When only two independent drainage systems are combined, leave Q3, T 3, and h out of the equation. Combine the independent drainage systems using the junction equation below: Junction Equation: T1 < T2 < T3 I, T, QTI = Q, +-=-Ql +---=. Q3 - -II T3 3-24 - .. .. -.. -----• - --.. -- •• • • • ""' • San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 25 of26 Calculate Qn, Qn, and QT3. Select the largest Q and use the Tc associated with that Q for further calculations (see the three Notes for options). If the largest calculated Q's are equal (e.g., Qn = Qn > QTI), use the shorter of the Tc's associated with that Q . This equation may be expanded for a junction of more than three independent drainage systems using the same concept. The concept is that when Q from a selected subarea (e.g., Q2) is combined with Q from another subarea with a shorter Tc (e.g., Q1), the Q from the subarea with the shorter Tc is reduced by the ratio of the I's (h/I1); and when Q from a selected subarea (e.g., Q2) is combined with Q from another subarea with a longer Tc (e.g., Q3), the Q from the subarea with the longer Tc is reduced by the ratio of the Tc's (T2ff3). Note #1: At a junction of two independent drainage systems that have the same Tc, the tributary flows may be added to obtain the Qp. This can be verified by using the junction equation above. Let Q3, T3, and I3 = 0. When T1 and T2 are the same, I1 and hare also the same, attd T1ff2 and h/I1 = 1. T1/T2 and h/I1 are cancelled from the equations. At this point, Qn = Qn = Q1 + Q2. Note #2: In the upstream part of a watershed, a conservative computation is acceptable. When the times of concentration (Tc's) are relatively close in magnitude (within 10%), use the shorter Tc for the intensity and the equation Q = :E(CA)I. Note #3: . An optional method of determining the Tc is to use the equation Tc = [(2:: (CA)7.44 P6)/Q) !.55 This equation is from Q = I(CA)I = l:(CA)(7.44 P~Tc·645 ) and solving for Tc. The advantage in this option is that the Tc is consistent with the peak flow Q, and avoids inappropriate fluctuation in downstream flows in some cases . 3-25 -- • • --- - - - --.. - • • Muroya TM Drainage Study Modified Rational Method Hydrologic Analysis Computer So ... ftware Package -AES-2003 Design Storm - 1 00-year return interval Land Use -Single-family residential onsite; Soil Type-Hydrologic soil group D was assumed for all areas. Group D soils have very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils with a high swelling potential, soils with a high permanent water table, soils with clay pan or clay layer at or near the surface, and shallow soils over nearly impervious materials, Group D soils have a very slow rate of water transmission. Runoff Coefficient-In accordance with the County of San Diego standards, runoff coefficients were based on land use and slope. Rainfall Intensity-Initial time of concentration values were determined using the County of San Diego standards. The rainfall intensity-duration-frequency curve for the San Diego County was used to determine rainfall intensities. Method of Analysis-The Rational Method is the most widely used hydrologic model for estimating peak runoff rates. Applied to small urban and semi-urban areas with drainage areas less than 0.5 square miles, the Rational Method relates storm rainfall intensity, a runoff coefficient, and drainage area to peak runoff rate. This relationship is expressed by the equation: Q = CIA, where: Q = The peak runoff rate in cubic feet per second at the point of analysis. C = A runoff coefficient representing the area-averaged ratio of runoff to rainfall intensity. I = The time-averaged rainfall intensity in inches per hour corresponding to the time of concentration. A = The drainage basin area in acres . To perform a node-link study, the total watershed area is divided into subareas which discharge at designated nodes. The procedure for the subarea summation model is as follows: (1) Subdivide the watershed into an initial subarea (generally 1 lot) and subsequent subareas, which are generally less than 10 acres in size. Assign upstream and downstream node numbers to each subarea . (2) Estimate an initial T c by using the appropriate nomograph or overland flow velocity estimation. DE.:OJG H:\REPORTS't0042\219\A01.doc: W.O. 0042..Q219 1112812006 5:28PM ... --- - -.. """ --.. - - ---- • - - • - -• Muroya TM Drainage Study (3) Using the initial Tc, determine the corresponding values of I. Then Q = C I A. (4) Using Q, estimate the travel time between this node and the next by Manning's equation as applied to the particular channel or conduit linking the two nodes. Then, repeat the calculation for Q based on the revised intensity (which is a function of the revised time of concentration) The nodes are joined together by links, which may be street gutter flows, drainage swales, drainage ditches, pipe flow, or various channel flows. The AES-99 computer subarea menu is as follows: SUBAREA HYDROLOGIC PROCESS Confluence analysis at node. 1. 2. 3 . 4. Initial subarea analysis (including time of concentration calculation). Pipeflow travel time (computer estimated). Pipeflow travel time (user specified). 5. Trapezoidal channel travel time. 6. Street flow analysis through subarea. 7. User -specified information at node. 8. Addition of subarea runoff to main line. 9. V-gutter flow through area. 1 0. Copy main stream data to memory bank 11. Confluence main stream data with a memory bank 12. Clear a memory bank At the confluence point of two or more basins, the following procedure is used to combine peak flow rates to account for differences in the basin's times of concentration. This adjustment is based on the assumption that each basin's hydrographs are triangular in shape. (1 ). If the collection streams have the same times of concentration, then the Q values are directly summed, OE.:DJG H:\REPORTS\0042\219\A01.doc W.O. 0042-02.19 11/281200Ei 5:28PM ,,, ,. 'I'll ,IIIII ~ • .. • ---- - - - - --• • ... • '1111 • .. Muroya TM Drainage Study (2). If the collection streams have different times of concentration, the smaller of the tributary Q values may be adjusted as follows: (i). The most frequent case is where the collection stream with the longer time of concentration has the larger Q. The smaller Q value is adjusted by the ratio of rainfall intensities. (ii). In some cases, the collection stream with the shorter time of concentration has the larger Q. Then the smaller Q is adjusted by a ratio of the T values. DE:OJG H:\REPORTS\0042\219\A01.doc W.O. 0042-0219 1112812006 5:28PM ... • -- • 'till - ---.. ---- - - ,- ... • --- Muroya TM Drainage Study CHAPTER3 100 YEAR EXISTING CONDITIONS HYDROLOGY ANALYSIS DE:DJ(l H;\REPORTS\004Z\219\A01.doc W.O. 0042..Q219 11t28120065:28PM , . ... - -.. - --- - - - - • • .. - *************************************************************************~** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1239 Analysis prepared by: HUNSAKER & ASSOCIATES -SAN DIEGO 10179 Huennekens Street San Diego, Ca. 92121 (858) 558-4500 ************************** DESCRIPTION OF STUDY ************************** * MUROYA DEVELOPMENT * 100 YEAR EXISTING CONDITION HYDROLOGIC ANALYSIS * NOVEMBER, 2006 H&A W.O.# 42-219 ************************************************************************** FILE NAME: H:\AES2003\0042\219\EX-100.DAT TIME/DATE OF STUDY: 13:25 11/15/2006 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE= 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* * * * HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSS FALL IN-I OUT-/PARK-HEIGHT WIDTH LIP NO. (FT) (FT) SIDE I SIDE/ WAY (FT) (FT) (FT) ========= ================= :====== ====== 1 30.0 20.0 0.0~8/0.018/0.020 0.67 2.00 0.0313 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth)*(Velocity) Constraint= 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* HIKE FACTOR (FT) (n) ======= 0.167 0.0150 **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ===~====-=====~============================================================= *USER SPECIFIED(SUBAREA): ARTIICIAL DESERT LANDSCAPING RUNOFF COEFFICIENT = .4200 S.C.S. CURVE NUMBER (AMC II) 0 .... --.. - --... - - - - -• - • - INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 357.00 DOWNSTREAM ELEVATION(FEET) = 347.00 ELEVATION DIFFERENCE(FEET) = 10.00 SUBAREA OVERLAND TIME OF FLOW (MIN.) = 5. 682 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.308 SUBAREA RUNOFF(CFS) 0.79 TOTAL AREA(ACRES) = 0.30 TOTAL RUNOFF(CFS) 0.79 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA {EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 347.00 DOWNSTREAM(FEET) 336.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 368.80 CHANNEL SLOPE 0.0298 CHANNEL BASE(FEET) 10.00 "Z" FACTOR= 99.990 MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) = 5.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.434 *USER SPECIFIED(SUBAREA): ARTIICIAL DESERT LANDSCAPING RUNOFF COEFFICIENT = .4200 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.79 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 1.49 AVERAGE FLOW DEPTH(FEET) 0.12 TRAVEL TIME(MIN.) 4.13 Tc(MIN.) = 9.81 SUBAREA AREA(ACRES) 3.15 SUBAREA RUNOFF {CFS) 5. 87 AREA-AVERAGE RUNOFF COEFFICIENT 0.420 TOTAL AREA(ACRES) = 3.45 PEAK FLOW RATE(CFS) = 6.42 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.15 FLOW VELOCITY(FEET/SEC.) LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1. 75 3.00 = 468.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 336.00 DOWNSTREAM(FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 725.10 CHANNEL SLOPE CHANNEL BASE(FEET) 10.00 "Z" FACTOR= 99.990 MANNING'S FACTOR= 0.030 MAXIMUM DEPTH{FEET) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.681 *USER SPECIFIED(SUBAREA): 5.00 ARTIICI~~ DESERT LANDSCAPING RUNOFF COEFFICIENT = .4200 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 14.63 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH(FEET) 0.16 TRAVEL TIME(MIN.) = 3.68 3.28 244.00 0.1269 Tc(MIN.) = 13.10 SUBAREA AREA (ACRES) 10.56 SUBAREA RUNOFF(CFS) 16.33 AREA-AVERAGE RUNOFF COEFFICIENT 0.420 TOTAL AREA(ACRES) = 14.01 PEAK FLOW RATE(CFS) = 21.66 • -·- -• • .. • - --.... - - - • .. • -- END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) 4.07 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 1193.90 FEET. +--------------------------------------------------------------------------+ I END ANALYSIS TO CENTRAL RECIEVING HEADWALL. BEGIN ANALYSIS FOR RUNOFF I TRIBUTARY TO NORTHERN HEADWALL I +--------------------------------------------------------------------------+ **************************************************************~************* FLOW PROCESS FROM NODE 1. 00 TO NODE 5.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): ARTIICIAL DESERT LANDSCAPING RUNOFF COEFFICIENT = .4200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 357.00 DOWNSTREAM ELEVATION(FEET) = 344.50 ELEVATION DIFFERENCE(FEET) = 12.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.682 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 10.%, IS USED IN Tc CALCULATION! 6. 308 SUBAREA RUNOFF(CFS) 0.19 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) = 0.19 **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 344.50 DOWNSTREAM(FEET) 306.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 536.40 CHANNEL SLOPE 0.0718 CHANNEL BASE(FEET) 10.00 "Z" FACTOR= 99.990 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 4.215 *USER SPECIFIED(SUBAREA): ARTIICIAL DESERT h~SCAPING RUNOFF COEFFICIENT = .4000 S.C.S. CURVE NUMBER {AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.22 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 1.61 AVERAGE FLOW DEPTH (FEET) 0. 07 TRAVEL TIME (MIN.) 4. 93 Tc{MIN.) = 10.61 SUBAREA AREA{ACRES) 2.34 SUBAREA RUNOFF(CFS) 3.95 AREA-AVERAGE RUNOFF COEFFICIENT 0.401 TOTAL AREA{ACRES) = 2.41 PEAK FLOW RATE(CFS) = END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.10 FLOW VELOCITY{FEET/SEC.) 4.07 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 2.15 6.00 = 636.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE= 1 .. -.. -• • • - --.. - - ... .. .. >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.61 RAINFALL INTENSITY(INCH/HR) = 4.22 TOTAL STREAM AREA(ACRES) = 2.41 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.07 +--------------------------------------------------------------------------+ BEGIN OFFSITE EXISTING SINGLE FAMILY TRIBUTARY ANALYSIS +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): RESIDENTAIL (4.3 DU/AC OR LESS) RUNOFF COEFFICIENT= .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 359.00 DOWNSTREAM ELEVATION(FEET) = 352.00 ELEVATION DIFFERENCE(FEET) = 7.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.458 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 6.474 SUBAREA RUNOFF(CFS) 0.50 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) 0.50 **************************************************************************** FLOW PROCESS FROM NODE 21.00 TO NODE 6.00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 352.00 DOWNSTREAM(FEET) 306.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 636.50 CHANNEL SLOPE 0.0723 CHANNEL BASE(FEET) 3.00 "Z" FACTOR= 2.000 MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 3.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.343 *USER SPECIFIED(SUBAREA): RESIDENTAIL (4.3 DU/AC OR LESS) RUNOFF COEFFICIENT .5200 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.98 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 5.61 AVERAGE FLOW DEPTH(FEET) 0.11 TRAVEL TIME(MIN.) 1.89 Tc(MIN.) = 7.35 SUBAREA AREA(ACRES) 1.05 SUBAREA RUNOFF(CFS) 2.92 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) END OF SUBAREA CHANNEL FLOW HYDRAULICS : DEPTH(FEET) = 0.15 FLOW VELOCITY(FEET/SEC.) 6.84 3.33 .. .. .. ... • .. .. -- .. .. -• • - • .. • LONGEST FLOWPATH FROM NODE 20.00 TO NODE 6.00 = 736.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) 7. 3 5 RAINFALL INTENSITY(INCH/HR) = 5.34 TOTAL STREAM AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.33 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 4.07 10.61 4.215 2 3.33 7.35 5.343 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 6.15 7.35 5.343 2 6.70 10.61 4.215 COMPUTED CONFLUENCE PEAK FLOW RATE(CFS) TOTAL AREA(ACRES) = ESTIMATES ARE AS FOLLOWS: 6.70 Tc(MIN.) = 3.61 LONGEST FLOWPATH FROM NODE 20.00 TO NODE AREA (ACRE) 2.41 1.20 RATIO 10.61 6.00 736.50 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 3.61 TC(MIN.) = 6.70 10.61 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS .... • Muroya --- • -.. -... ----- ----• .. .. TM Drainage Study CHAPTER4 100 YEAR DEVELOPED CONDITIONS HYDROLOGY ANALYSIS DE:CJG H:\REPORTS\D042\2.19\A01.doc W.O. 0042~19 11/2&2006 5:28 PM ... - -... ... .. -• ... - ... • -- ... ----- .. • • **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1239 Analysis prepared by: HUNSAKER & ASSOCIATES -SAN DIEGO 10179 Huennekens Street San Diego, Ca. 92121 (858) 558-4500 ************************** DESCRIPTION OF STUDY ************************** * MUROYA * 100 YEAR DEVELOPED CONDITIONS HYDROLOGY ANALYSIS * NOVEMBER, 2006 W.O. # 42-219 ************************************************************************** FILE NAME: H:\AES2003\0042\219\DEV-100.DAT TIME/DATE OF STUDY: 15:56 11/28/2006 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES} = 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL} TO USE FOR FRICTION SLOPE= 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* * * * HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 2 15.0 12.0 10.0 6.0 0.020/0.020/ 0.020/0.020/ --- GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET 0.50 0.50 1.50 0.0313 0.125 0.0150 1.50 0.0313 0.125 0.0150 as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 5.0 (FT*FT/S} *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. * **************************************************************************** FLOW PROCESS FROM NODE 1. 00 TO NODE 2.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .5700 - - - - ---.. --- - - - -• • S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 342.00 DOWNSTREAM ELEVATION(FEET) = 341.35 ELEVATION DIFFERENCE(FEET) = 0.65 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.691 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 65.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.189 SUBAREA RUNOFF(CFS) 0.92 TOTAL AREA(ACRES) = 0.31 TOTAL RUNOFF(CFS) 0.92 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE= 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION# 1 USED)<<<<< ============================================================================ UPSTREAM ELEVATION(FEET) = 341.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 667.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 15.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL{DECIMAL) OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 0.020 10.00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED STREET FLOW DEPTH(FEET) = 0.31 FLOW: 9.28 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 3.08 STREET FLOW TRAVEL TIME(MIN.) = 3.61 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .5700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.570 0.96 Tc (MIN.) 4.048 11.30 SUBAREA AREA(ACRES) 4.39 TOTAL AREA(ACRES) = 4.70 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYD~~ULICS: DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) 11.92 6.03 10.13 327.50 0.0150 10.84 FLOW VELOCITY(FEET/SEC.) = 3.53 DEPTH*VELOCITY(FT*FT/SEC.) 1.29 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 732.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE= 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ===================================================================~======== ---- • • -- - -... - - - --• IIIII • ELEVATION DATA: UPSTREAM(FEET) = 325.00 DOWNSTREAM(FEET) 306.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 16.20 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 10.84 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 11.51 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 932.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ===================================~================~======================= 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.001 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .4000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF SUBAREA AREA(ACRES) TOTAL AREA(ACRES) TC(MIN.) = 11.51 COEFFICIENT 0.25 4.95 = 0.5614 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) 0.40 11.12 +--------------------------------------------------------------------------+ I I END OF FLOW INTO BASIN I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE= 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< =================~========================================================== USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 18.51 RAIN INTENSITY(INCH/HOUR) = 2.94 TOTAL AREA(ACRES) = 4.95 TOTAL RUNOFF(CFS) = 4.10 **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 10.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 18.51 RAINFALL INTENSITY(INCH/HR) = 2.94 TOTAL STREAM AREA(ACRES) = 4.95 PEAK FLOW RATE(CFS) AT CONFLUENCE= 4.10 **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 21 >>>>>RATIONAL METHOD INITI~~ SUBAREA ANALYSIS<<<<< =========================================================~================== *USER SPECIFIED(SUBAREA): .. --- ... .. ""' • ---• -... -• • - -- ------.. USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 359.00 DOWNSTREAM ELEVATION(FEET) = 352.00 ELEVATION DIFFERENCE(FEET) = 7.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.458 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 6.474 SUBAREA RUNOFF(CFS} 0.77 TOTAL AREA(ACRES) = 0.23 TOTAL RUNOFF(CFS) 0.77 **************************************************************************** FLOW PROCESS FROM NODE 21.00 TO NODE 10.00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 352.00 DOWNSTREAM(FEET) 306.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 636.50 CHANNEL SLOPE 0.0723 CHANNEL BASE(FEET} 3.00 "Z" FACTOR= 2.000 MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 3.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.468 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.85 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 6.49 AVERAGE FLOW DEPTH(FEET) 0.13 TRAVEL TIME(MIN.) 1.63 Tc(MIN.) : 7.09 SUBAREA AREA (ACRES) 1. 4 5 SUBAREA RUNOFF ( CFS) 4 . 12 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 TOTAL AREA(ACRES) : 1.68 PEAK FLOW RATE(CFS) = 4.78 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.18 FLOW VELOCITY(FEET/SEC.) LONGEST FLOWPATH FROM NODE 20.00 TO NODE 7.89 10.00 = 736.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE= >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< 1 ========================~=================================================== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STRE~~ 2 ARE: TIME OF CONCENTRATION(MIN.) 7.09 RAINFALL INTENSITY(INCH/HR) = 5.47 TOTAL STREAM AREA(ACRES) = 1.68 PEAK FLOW RATE(CFS) AT CONFLUENCE = ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) {MIN.) (INCH/HOUR) 1 4.10 18.51 2.945 2 4.78 7.09 5.468 4.78 ~.INFJI.LL INTENSITY AND TIME OF CONCENTRATION AREA (ACRE) 4.95 1. 68 RATIO --- -.. ... ---- - - - - - -- .. • • CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 6.35 7.09 5.468 2 6.67 18.51 2. 945 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 6.67 Tc(MIN.) = 18.51 TOTAL AREA(ACRES) = 6.63 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 10.00 932.00 FEET. +--------------------------------------------------------------------------+ I I END OF FLOW TO EXISTING STORM DRAIN ON NIGHTSHADE ROAD I +------------------------------------------~-------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .5700 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 338.10 DOWNSTREAM ELEVATION(FEET) = 337.45 ELEVATION DIFFERENCE(FEET) = 0.65 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.691 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 65.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.189 SUB.~A RUNOFF(CFS) 0.92 TOTAL AREA(ACRES) = 0.31 TOTAL RUNOFF(CFS) 0.92 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION# 2 USED)<<<<< ============================================================================ UPSTREAM ELEVATION(FEET) = 336.20 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 467.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 6.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 330.00 0.0150 - ... - -- • ---- - - - - - - ... --- • .. • .. • **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.28 7.86 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 2.28 STREET FLOW TRAVEL TIME(MIN.) = 3.42 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .5700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.570 0.65 Tc (MIN.) 4.093 11.11 SUBAREA AREA(ACRES) 2.07 TOTAL AREA(ACRES) = 2.38 SUBAREA RUNOFF(CFS) PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS : DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) 9.83 3.35 4.83 5.55 FLOW VELOCITY(FEET/SEC.) = 2.56 DEPTH*VELOCITY(FT*FT/SEC.) 0.83 LONGEST FLOWPATH FROM NODE 5.00 TO NODE 7.00 = 532.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 7.00 TO NODE 11.00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ======================================================~===================== ELEVATION DATA: UPSTREAM(FEET) = 330.00 DOWNSTREAM(FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 634.70 CHANNEL SLOPE CHANNEL BASE(FEET) 5.00 "Z" FACTOR= 99.990 MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.526 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .4000 S.C.S. CURVE NUMBER (AMC II) = 0 2.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 11.70 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH(FEET) 0.16 TRAVEL TIME(MIN.) = Tc(MIN.) = 14.00 3.66 2.89 244.00 0.1355 8.66 SUBAREA AREA (ACRES) AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA RUNOFF(CFS) 12.22 0.437 TOTAL AREA {ACRES) = 11.04 PEAK FLOW RATE(CFS) = 17.00 END OF SUBAREA CHANNEL FLOW HYDR.li.ULICS: DEPTH(FEET) = 0.18 FLOW VELOCITY(FEET/SEC.) 4.10 LONGEST FLOWPATH FROM NODE 5.00 TO NODE 11.00 = 1166.70 FEET. +--------------------------------------------------------------------------+ FLOW INTO OPEN LAND (PROPOSED DITCH) +--------------------------------------------------------------------------+ =========================~================================================== END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 11.04 TC(MIN.) = 17.00 14.00 ===========================================================================~ ~========================~===============================~==========~======= --- END OF RATIONAL METHOD ANALYSIS --- .... -.. ---• • -- -·- --------.... - ----- ----- - -- - - - ---- - ---- Muroya TM Drainage Study CHAPTER 5 DETENTION BASIN ANALYSIS OE.:DJG H:\R'EPORTS\.004Z\2.19\A01.doc W.O. 0042..()219 1112PJ2006 5:28PM Muroya Detention Basin Results 100 YEAR RESULTS ~~+r;~~~S~~~;;.,;r..-.s)·:r~.-f:J:g,pt:t~;;~ifsi"J"R.r~~';~·a=:'J}, ·fr~t:;7~~~~~.;?.:;.JJC~JiY.~tK~i~f~f ~ r~. }. 1·=-nm:> --wnmaryo ·"'esuus-.or eservou r=servolFF-"·"';"-"~'r.i'-'>~;~J :r.-' · lj . . ··--,, il li -PrOie~ :·~;-Muriiya Del Run Name : RU1l l . · ·,,R·esi.rvcir :_j Res~r:oir-1 .::J[} J 11·. Start of Run : 01Jarlll0000. . Ba$~-iv\ocu;l ~~. · D~v~ 100 :I Ji --Ena or Run : 01JanOl 0500 ' Mel. hi6del :, _:i·tviei __ '_f ,'· __ : __ u : r ' _ Eiiecution Time 16Nov061629 : Cori~ol s;~ :' oJ~~)~ :: _ lr--· _. ''' Volume Units: r. -Inches. r Acre-Feet : :, :-'.• :, ~-H:_cid&t~:Results -__ ...• :-__ ·1 1Jlf>e·akli-.fl~.:;>il150 {cis] Date/TimeoJP~aklnAow : -_-01Jan01 Q4ib --_ :J If]'-::~~~:~;~: 4osso tcisJ oate/Timeorf'eakouinew : D1 i~01 o41? .-.• · -- II! j:i:~,;~: ~~ . ~ ::::~ . .1Zi :~·', . 1-~· _ _ Print Close. . I ... - • -- ... ... • ... --... -.. • - ---- """ Date 31 Dec DO 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 2400 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 002'!1 0025 0026 0027 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 HMS * Summary of Results for Reservoir-1 Project Muroya Det Run Name Run 1 Start of Run OlJanOl 0000 Basin Model Dev_lOO End of Run OlJanOl 0600 Met. Model Met 1 Execution Time 16Nov06 1629 Control Specs Dev_lOO Reservoir Storage (ac-ft) 0.00000 0.00002 0.00008 0.00017 0.00030 0.00046 0.00064 0.00085 0.00108 0.00133 0. 00160 0. 00187 0. 00211 0 .002H 0.00254 0. 00272 0.00289 0.00304 0.00318 0.00331 0.00343 0.00353 0.00363 0. 00373 0.00382 0.00390 0.00398 0.00405 0.00412 0.00419 0.00425 0. 00431 0.00437 0.00442 0.00446 0.00450 0.00454 0.00457 0.00460 0. 00463 0.00466 Reservoir Elevation (ft) 308.00 308.00 308.00 308.01 308.01 308.02 308.02 308.03 308.04 308.04 308.05 308.06 308.07 308.08 308.08 308.09 308.10 308.10 308.11 308.11 308.11 308.12 308.12 308.12 308.13 308.13 308.13 308.14 308.14 308.14 308.14 308.14 308.15 308.15 308.15 308.15 308.15 308.15 308.15 308.15 308.16 Inflow (cfs) o.oooo 0. 0310 0.0620 0.0930 0.1240 0.1550 0.1860 0.2170 0.2480 0.2790 0. 3100 0.3100 0.3100 0.3100 0.3100 0.3100 0.3100 0.3100 0.3100 0.3100 0.3100 0.3120 0.3140 0.3160 0.3180 0. 3200 0.3220 0.3240 0.3260 0.3280 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0. 33 00 0.3300 0.3300 Outflow (cfs) 0.0000 0.0014 0.0053 0.0117 0.0203 0.0308 0.0431 0.0571 0. 0725 0.0894 0.1075 0.1254 0.1416 0.1565 0.1700 0.1824 0.193 6 0.2039 0.2133 0.2218 0.2296 0.2368 0.2435 0.2498 0.2557 0.2613 0.2666 0.2715 0.2763 0.2807 0.2850 0.2890 0.2926 0.2959 0.2989 0.3016 0.3041 0.3064 0.3085 0.3104 0.3121 .... .. • • • • • ---- - - - -.. .. Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 J= 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 Reservoir Storage (ac-ft) 0.00468 0.00471 0.00473 0.00476 0.00479 0.00481 0.00484 0.00487 0.00490 0.00492 0.00495 0.00497 0.00500 0.00502 0.00503 0.00505 0.00507 0.00508 0.00509 0.00510 0.00512 0.00513 0. 00514 0.00516 0.00518 0.00520 0.00522 0.00524 0.00526 0.00528 0.00530 0.00532 0.00534 0.00536 0.00538 0.00540 0.00542 0.00544 0.00546 0.00548 0.00550 0.00552 0.00554 0.00556 0.00558 0.00560 0.00563 0.00565 0.00567 0.00570 0.00572 Reservoir Elevation (ft) 308.16 308.16 308.16 308.16 308.16 308.16 308.16 308.16 308.16 308.16 308.16 308.17 308.17 308.17 308.17 308.17 308.17 308.17 308.17 308.17 308.17 308.17 308.17 308.17 308.17 308.17 308.17 308.17 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.18 308.19 308.19 308.19 308.19 308.19 308.19 308.19 308.19 Page: 2 Inflow (cfs) 0.3320 0.3340 0. 33 60 0. 33 80 0.3400 0.3420 0.3440 0.3460 0.3480 0. 3500 0.3500 0.3500 0.3500 0.3500 0. 3500 0.3500 0.3500 0.3500 0.3500 0.3500 0.3520 0.3540 0. 3 560 0.3580 0. 3 600 0.3620 0.3640 0.3660 0.3680 0.3700 0.3710 0.3720 0.3730 0.3740 0.3750 0.3760 0.3770 0.3780 0.3790 0.3800 0.3820 0.3840 0.3860 0.3880 0.3900 0.3920 0.3940 0.3960 0.3980 0.4000 0.4010 Outflow (cfs) 0.3138 0.3155 0.3172 0.3190 0.3207 0.3225 0.3243 0.3261 0.3280 0.3298 0.3316 0.3332 0.3347 0. 33 61 0.3373 0.3384 0.3394 0.3404 0. 3412 0.3420 0.3428 0.3437 0. 3447 0.3458 0.3469 0.3482 0.3495 0.3509 0.3523 0.3538 0.3552 0.3567 0.3581 0.3594 0.3608 0.3621 0.3633 0. 3 646 0.3658 0.3670 0.3682 0.3696 0.3709 0.3723 0.3738 0.3753 0.3769 0.3785 0.3801 0.3818 0.3834 ·- - .... • ... ---------- - - - ·- -- Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 Reservoir Storage (ac-ft) 0.00575 0. 00577 0.00579 0.00581 0.00583 0.00586 0.00588 0.00589 0.00591 0.00593 0.00596 0.00598 0.00601 0.00603 0.00606 0.00609 0.00613 0.00616 0.00619 0.00623 0.00626 0.00629 0.00632 0.00635 0.00637 0.00640 0.00642 0.00645 0.00647 0.00649 0.00652 0.00655 0.00659 0.00662 0.00666 0.00670 0.00674 0.00678 0.00683 0.00687 0.00691 0.00695 0.00699 0.00702 0.00705 0.00709 0.00712 0.00714 0.00717 0.00720 0.00723 Reservoir Elevation (ft) 308.19 308.19 308.19 308.19 308.19 308.20 308.20 308.20 308.20 308.20 308.20 308.20 308.20 308.20 308.20 308.20 308.20 308.21 308.21 308.21 308.21 308.21 308.21 308.21 308.21 308.21 308.21 308.21 308.22 308.22 308.22 308.22 308.22 308.22 308.22 308.22 3 08.22 308.23 308.23 308.23 308.23 308.23 308.23 308.23 308.24 308.24 308.24 308.24 308.24 308.24 308.24 Page: 3 Inflow (cfs) 0.4020 0.4030 0.4040 0.4050 0.4060 0.4070 0.4080 0.4090 0.4100 0.4130 0.4160 0.4190 0.4220 0.4250 0.4280 0.4310 0.4340 0.4370 0.4400 0.4410 0. 4420 0. 4430 0.4440 0.4450 0.4460 0.4470 0.4480 0.4490 0.4500 0.4540 0.4580 0.4620 0.4660 0.4700 0.4740 0.4780 0.4820 0.4860 0.4900 0.4910 0.4920 0.4930 0.4940 0.4950 0.4960 0.4970 0.4980 0.4990 0.5000 0.5050 0.5100 Outflow (cfs) 0.3850 0.3866 0.3881 0.3895 0.3909 0.3923 0.3936 0.3949 0.3962 0.3976 0.3991 0.4007 0.4024 0.4043 0.4063 0.4083 0.4104 0.4127 0.4149 0.4172 0.4193 0.4214 0.4233 0.4252 0.4270 0.4287 0.4304 0.4320 0.4335 0.4351 0.4370 0.4390 0.4412 0. 4436 0. 4461 0.4487 0.4515 0.4544 0.4573 0.4602 0. 4630 0.4656 0.4681 0.4704 0.4726 0.4747 0.4767 0.4787 0.4805 0.4824 0. 484 6 ... - - • - -- - --- - - --- Date 01 Jan Ol 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Ol Jan 01 Ol Jan 01 Ol Jan 01 01 Jan 01 Ol Jan Ol Ol Jan 01 Ol. Jan 01 Ol. Jan 01 Ol. Jan 01 Ol. Jan 01 Ol. Jan 01 Ol. Jan 01 Ol. Jan Ol Ol. Jan Ol Ol. Jan 01 Ol. Jan 01 Ol. Jan 01 01 Jan 01 Ol. Jan 01 Ol. Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 03U 0312 0313 Reservoir Storage (ac-ft) 0.00727 0.00731 0.00735 0.00740 0.00745 0.00750 0.00755 0.00761 0.00766 o. 00771 0.00776 0.00781 0.00786 0.00790 0.00795 0.00799 0.00803 0.00807 0.00812 0.00816 0. 00822 0.00828 0.00834 0.00840 0.00847 0.00854 0.00862 0.00870 0.00878 0.00885 0.00893 0.00900 0.00907 O.D09H 0.00921 0.00928 0.00935 0.00942 0.00949 0.00957 0.00965 0.00973 0.00982 0.00992 0.01001 0.01012 0.01022 0. 01033 0.01043 0.01054 0.01065 Reservoir Elevation (ft) 308.24 308.24 308.25 308.25 308.25 308.25 308.25 308.25 308.26 308.26 308.26 308.26 308.26 308.26 308.26 308.27 308.27 308.27 308.27 308.27 308.27 308.28 308.28 308.28 308.28 308.28 308.29 308.29 308.29 308.30 308.30 308.30 308.30 308.30 308.31 308.31 308.31 308.31 308.32 308.32 308.32 308.32 308.33 308.33 308.33 308.34 308.34 308.34 308.35 308.35 308.35 Page: 4 Inflow (cfs) 0.5150 0.5200 0.5250 0.5300 0.5350 0.5400 0.5450 0.5500 0.5520 0.5540 0.5560 0.5580 0.5600 0.5620 0.5640 0.5660 0.5680 0.5700 0.5770 0.5840 0.5910 0.5980 0.6050 0. 6120 0.6190 0.6260 0.6330 0.6400 0.6440 0.6480 0.6520 0.6560 0.6600 0.6640 0.6680 0.6720 0.6760 0.6800 0.6890 0.6980 0.7070 0.7160 0. 7250 0. 7340 0.7430 0.7520 0.7610 0.7700 0. 7770 0.7840 0.7910 Outflow (cfs) 0.4871 0.4898 0.4927 0.4957 0.4990 0.5024 0.5059 0.5096 0. 5132 0.5167 0.5201 0.5234 0.5265 0.5296 0.5325 0.5354 0.5382 0.5409 0.5438 0.5470 0.5506 0.5545 0.5586 0.5630 0.5676 0. 5725 0.5775 0.5827 0.5879 0.5931 0.5981 0-6030 0.6079 0. 6126 0.6173 0. 6220 0.6266 0. 6311 0.6358 0.6409 0. 6463 0.6521 0.6581 0.6644 0.6710 o. 6777 0.6847 0.6918 0.6990 0.7062 0.7134 --- • ----- • - • -• .. • -.. - -• -• -• .. • D10te 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0314 0315 0316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0355 0356 0357 0358 0359 0400 0401 0402 0403 0404 Reservo.ir Storage (ac-ftl 0.01075 0.01086 0.01097 0.01107 0. 01118 0.01129 0.01139 o. 01150 0.01163 0.01178 0.01193 0.01210 0.01227 0.01246 0.01265 0.01286 0.01307 0.01328 0.01349 0.01370 0.01391 0.01413 0.01434 0.01455 0.01476 0.01497 0.01518 0.01542 0.01571 0.01604 0.01642 0.01684 0.01729 0.01778 0.01829 0.01884 0. 01HO 0.02000 0.02064 0.02131 0.02202 0.02276 0.02352 0.02431 0.02512 0.02595 0.02680 0.02820 0.03064 0.03410 0.03860 Reservoir Elevation (ft.) 308.36 308.36 308.37 308.37 308.37 308.38 308.38 308.38 308.39 308.39 308.40 308.40 308.41 308.42 308.42 308.43 308.44 308.44 308.45 308.46 308.46 308.47 308.48 308.48 308.49 308.50 308.51 308.51 308.52 308.53 308.55 308.56 308.58 308.59 308.61 308.63 308.65 308.67 308.69 308.71 308.73 308.76 308.78 308.81 308.84 308.87 308.89 308.94 309.02 309.10 309.21 Page: 5 Inflow (cfs) 0.7980 0.8050 0.8120 0.8190 0.8260 0.8330 0.8400 0.8590 0.8780 0.8970 0.9160 0.9350 0. 9540 0.9730 0.9920 1.0110 1. 0300 1.0440 1.0580 1.0720 1. 0860 1.1000 1.1140 1.1280 1.1420 1.1560 1.1700 1. 2250 1.2800 1. 3350 1.3900 1.4450 1. 5000 1.5550 1.6100 1. 6650 1. 7200 1.7900 1.8600 1. 9300 2.0000 2.0700 2.1400 2.2100 2.2800 2.3500 2.4200 3.2930 4.1660 5.0390 5.9120 Outflow (cfs) 0. 7205 0.7277 0. 7348 0. 7419 0.7490 0.7561 0.7632 0. 7708 0.7794 0.7890 0.7993 0.8105 0. 8223 0. 8348 0. 8478 0.8613 0. 8754 0.8896 0.9039 0.9181 0. 9323 0. 9465 0.9606 0. 9748 0.9889 1. 0030 1. 0171 1. 0331 1. 0524 1. 0749 1.1003 1.1283 1.1586 1.1912 1.2257 1.2620 1.3000 1. 3401 1. 3829 1.4281 1.4754 1. 5248 1. 5760 1.6288 1. 6832 l. 7389 l. 7959 l. 8895 2.0306 2.1424 2.2872 - -- -.. -- • - .. -.. - • ---.. ---- - Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Tillie 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 Reservoir Storage (ac-ft) 0.04407 0.05048 0.05779 0.06596 0.07500 0.08500 0.09472 0.10291 0.10959 0.11480 0.11857 0.12093 0.12191 0.12154 0.11984 0.11685 0.11322 0.10961 0.10601 0.10242 0.09884 0.09528 0.09172 0. 088lB 0.08465 0. 08113 0.07764 0.07420 0.07080 0. 06747 0.06425 0.06115 0.05815 0.05526 0.05246 0.04976 0. 04715 0. 04465 0.04223 0.03991 0.03766 0.03550 0.03342 0.03141 0.02949 0.02768 0.02603 0.02451 0.02311 0.02183 0.02065 Reservoir Elevation (ft) 309.3 5 309.51 309.69 309.90 310.08 310.25 310.41 310.55 310.66 310.75 310.81 310.85 310.87 310.86 310.83 310.78 310.72 310.66 310.60 310.54 310.48 310.42 310.36 310.30 310.24 310.19 310.13 310.07 310.01 309.94 309.86 309.78 309.70 309.63 309.56 309.49 309.43 309.37 309.31 309.25 309.19 309.14 309.09 309.04 308.98 308.92 308.87 308.82 308.77 308.73 308.69 Page: 6 Inflow (cfs) 6.7850 7.6580 8.5310 9.4040 10.2770 11.1500 10.1730 9.1960 8.2190 7.2420 6.2650 5.2880 4.3110 3.3340 2.3570 1.3800 1.3340 1.2880 1.2420 1.1960 1.1500 1.1040 1. 0580 1.0120 0.9660 0.9200 0.9000 0.8800 0.8600 0.8400 0.8200 0.8000 0.7800 0.7600 0.7400 0.7200 0.7080 0.6960 0.6840 0. 6720 0.6600 0.6480 0.6360 0.6240 0.6120 0.6000 0.5930 0.5860 0.5790 0. 5720 0.5650 Outflow (cfs) 2. 4637 2.6704 2.9062 3.1696 3.3767 3. 5300 3.6791 3.8046 3.9070 3.9870 4.0448 4.0810 4.0960 4.0903 4.0643 4.0184 3.9627 3.9073 3.8521 3.7971 3.7422 3.6876 3.6331 3.5788 3.5247 3.4707 3.4172 3.3644 3.3122 3.2185 3.1147 3.0145 2.9178 2.8245 2.7344 2.6473 2.5632 2.4824 2.4045 2.3294 2.2572 2.1875 2.1203 2.0556 1. 9757 1. 8549 1. 7438 1. 6420 1. 5486 1.4627 1.3838 • -.. • .. - - - - - - - - .... --·• - .. Date 01 Jan Ol Ol Jan 01 Ol Jan Ol 01 Jan 01 01 Jan Ol 01 Jan Ol 01 Jan 01 Ol Jan Ol 01 Jan 01 Ol Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan Ol 01 Jan 01 01 Jan 01 01 Jan 01 Ol Jan Ol 01 Jan 01 01 Jan 01 01 Jan 01 Ol Jan 01 01 Jan 01 01 Jan Ol 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan Ol 01 Jan Ol 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Ol Jan Ol 01 Jan 01 Ol Jan Ol Time 0456 0457 0458 0459 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 Reservoir Storage [ac-ft) 0.01957 0.01858 0.01766 0.01681 0.01603 0.01531 0.01465 0.01403 0.01346 0.01294 0.01245 0. 01200 0.01158 0.01119 0.01082 0.01049 0.01017 0.00988 0.00961 0.00936 0.00912 0.00890 0.00870 0.00850 0.00832 0.00815 0.00799 0.00784 0.00769 0.00756 0.00743 0.00730 0.00719 0.00707 0.00697 0.00686 0.00677 0.00667 0.00658 0.00650 0.00642 0.00634 0.00626 0.00619 0.00612 0.00605 0.00599 0.00593 0.00587 0.00581 0.00576 Reservoir Elevation [ft} 308.65 308.62 308.59 308.56 308.53 308.51 308.49 308.47 308.45 308.43 308.42 308.40 308.39 308.37 308.36 308.35 308.34 308.33 308.32 308.31 308.30 308.30 308.29 308.28 308.28 308.27 308.27 308.26 308.26 308.25 308.25 308.24 308.24 308.24 308.23 308.23 308.23 308.22 308.22 308.22 308.21 308.21 308.21 308.21 308.20 308.20 308.20 308.20 308.20 308.19 308.19 Page: 7 Inflow (cfs) 0.5580 0.5510 0. 5440 0.5370 0.5300 0.5240 0.5180 0.5120 0.5060 0.5000 0.4940 0.4880 0.4820 0.4760 0.4700 0.4660 0.4620 0.4580 0. 4540 0.4500 0.4460 0. 4420 0.4380 0.4340 0.4300 0.4260 0.4220 0.4180 0.4140 0.4100 0.4060 0.4020 0.3980 0.3940 0.3900 0.3870 0.3840 0.3810 0.3780 0.3750 0. 3720 0.3690 0.3660 0.3630 0.3600 0.3580 0.3560 0.3540 0.3520 0.3500 0.3480 Outflow (cfs) 1. 3113 1.2445 1.1830 1.1264 1.0741 1.0258 0.9813 0.9401 0.9021 0.8669 0. 8343 0.8040 0.7758 0.7497 0. 7253 0.7026 0.6815 0.6620 0.6438 0.6269 0.6111 0.5964 0.5826 0.5696 0.5575 0.5461 0.5353 0.5251 0.5155 0.5064 0.4977 0.4894 0.4815 0.4740 0.4668 0.4599 0.4533 0.4471 0.4411 0.4354 0.4299 0.4247 0.4196 0.4148 0.4101 0.4056 0.4013 0.3972 0.3933 0.3896 0.3860 ... IIIII -Dat~ Time Reservoir Reservoir Inflow Outflow -Storage Elevation (cfs) (cfs) (ac-ft) (ft) 01 Jan 01 0547 0. 00571 308.19 0.3460 0.3826 • Ol Jan 01 0548 0.00566 308.19 0.3440 0.3792 01 Jan 01 0549 0. 00561 308.19 0.3420 0.3760 01 Jan 01 0550 0.00557 308.19 0.3400 0.3730 01 Jan 01 0551 0.00552 308.18 0.3380 0.3700 -01 Jan 01 0552 0.00548 308.18 0.3360 0. 3671 01 Jan 01 0553 0.00544 308.18 0.3340 0.3642 01 Jan 01 0554 0.00540 308.18 0.3320 0.3615 ,.., 01 Jan 01 0555 0.00535 308.18 0.3300 0.3588 01 Jan 01 0556 0.00532 308.18 0.3280 0.3562 -01 Jan 01 0557 0.00528 308.18 0. 3260 0.3536 -01 Jan 01 0558 0.00524 308.17 0.3240 0.3511 01 Jan 01 0559 0.00520 308.17 0.3220 0.3486 -01 Jan 01 0600 0.00517 308.17 0.3200 0.3462 ,. - • -.. --.. • .. • .... • .... • -.. -.. -• -Page: 8 • .. .. .. • -STAG~~TORAGETABLE MUROYA Elevation Area Total Volume (ft) (acres) (acre-ft.) 308.0 0.0246 0.00 309.0 0.0365 0.03 -310.0 0.0491 0.07 311.0 0.0622 0.13 312.0 0.0763 0.20 .. .. • -.. -... - -.. ., ----.. 11/27/2006 1 of 1 H:\EXCEL\0042\219\Stage-Storage-ENG.xls .. -- - - - .. - -• -- - - .. ----- ... DISCHARGE RATING CURVE Riser Perforations Calculations Based on Orifice Equation BOTIOM ELEVATION OF HOLE NO.1= HOLE NO. 1 DIAMETER = NUMBER OF ORIFICES= WEIR EQUATION Q = CLH312 where Headwate Elevation (feet) 308 309 310 311 312 313 314 C =Weir Coefficient = 3.0 when H = 0.5 feet = 3.3 when H >= 1.0 feet L = Length of the Weir (feet) H =Water Height over Weir (feet) Hole 1 (1) Riser-Orif (cfs) 0.00 2.01 3.30 4.22 4.97 5.62 6.21 H:\EXCa\0042\219\0RtFtCE·Basin..ds 1112712006 MUROYA ORIFICE CALCULATIONS 308.00 feet 10.0 inches 1.0 0.833333 feet 0.545415 area (sq ft) Orifice Equation ... Q.rifice = CA(2gh)112 where C = Orifice Coefficient 0.60 (per Brater & King "Handbook of Hydraulics") A = Cross Sectional Area of the Orifice g = Gravitational Constant 32.2 feeUs2 h = Effective Head on the Orifice Measured from the Centroid of the Opening ... """ ... • ... • ... • ... • ... • .. • ---- --• -• ---• • • RATING TABLE FOR FLOW OVER RISER BOX Detention Basin Muroya 5' x 5' Concrete Riser ( 4' x 4' opening) WEIR EQUATION Q= CLH312 where ORIFICE EQUATION C = Weir Coefficient = 3.0 when H = 0.5 feet = 3.3 when H >= 1.0 feet L = Length of the Weir (feet) H =Water Height over Weir (feel) Q = CA(2gH)1r.! C = Orifice Coefficient =0.60 A = Cross Sectional Area of Orifice (ft2) g = Gravitational Constant (32.2 fVs2) H =Water Height over Centroid of Orifice (ft) Water Height (feet) Riser Length (feet) Riser Width (feet) Weir Coeff. Weir Length (feet) Orifice Coeff. Orifice Area (ft'l Weir Flow (cfs) Orifice Weir Orifice Flow Flow Flow CLOGGING FACTOR 10% (cfs) (cfs) (cfs) 0.2 4 4 2.7 16.00 0.6 16.00 3.84 34.45 3.45 29.29 0.4 4 4 2.7 16.00 0.6 16.00 10.93 48.72 9.84 41.42 f~;:·~~~:~·~~·i~1AT;:~:~\~:~ .:.~j-~~~:·~~ ~·K/~;;~){~ :~f:.ti(:~g:~~~·~~:~~l!~Lff.Qfl~ZL ~9~Pi ·j:t~~~~1R:QQ1~~.!tt2:~7.!~Jjl{M~A:t:;F_;,~~·~.:~;;2:f·.J~t~4EX®t:i~·J 0.6 4 4 3.1 16.00 0.6 16.00 22.68 59.67 20.41 50.72 0.8 4 4 3.2 16.00 0.6 16.00 36.06 68.91 32.46 58.57 1.0 4 4 3.3 16.00 0.6 16.00 52.80 77.04 47.52 65.48 1.2 4 4 3.3 16.00 0.6 16.00 69.41 84.39 62.47 71.73 1.4 4 4 3.3 16.00 0.6 16.00 87.46 91.15 78.72 77.48 1.6 4 4 3.3 16.00 0.6 16.00 106.86 97.45 96.17 82.83 1.8 4 4 3.3 16.00 0.6 16.00 127.51 103.36 114.76 87.86 2.0 4 4 3.3 16.00 0.6 16.00 149.34 108.95 134.41 92.61 2.5 4 4 3.3 16.00 0.6 16.00 208.71 121.81 187.84 103.54 3.0 4 4 3.3 16.00 0.6 16.00 274.36 133.44 246.92 113.42 3.5 4 4 3.3 16.00 0.6 16.00 345.73 144.13 311.16 122.51 4.0 4 4 3.3 16.00 0.6 16.00 422.40 154.08 380.16 130.97 H:\EXCEL\0042121 9\0v&111ow-Riser-.xls .. .. -Rational Method Hydrograph Calculations for .. MUROYA City of Carlsbad, CA illll 01oo= 11.15 cfs Tc= 10 min C= 0.4 #= 36 p100.6= 2.6 in A= 4.95 acres -(7.44 *P6*D'-. 645) (/*D/60) (V1-VO) (LI VI .::l7) (Q=ciA) (Re-ordered) D I VOL AVOL I (INCR) Q VOL ORDINATE -# {MIN} {IN/HR) {IN) (IN) (INIHR) (CFS) (CF) SUM= .. 0 0 0.00 0.00 0.73 4.38 11.15 6690 0.00 1 10 4.38 0.73 0.20 1.22 2.42 1452 0.31 -2 20 2.80 0.93 0.14 0.87 1.72 1030 0.31 3 30 2.16 1.08 0.12 0.70 1.38 827 0.33 .. 4 40 1.79 1.19 0.10 0.59 1.17 702 0.33 5 50 1.55 1.29 0.09 0.52 1.03 616 0.35 -6 60 1.38 1.38 0.08 0.47 0.92 553 0.35 .. 7 70 1.25 1.46 0.07 0.42 0.84 504 0.37 8 80 1.15 1.53 0.07 0.39 0.77 465 0.38 -9 90 1.06 1.59 0.06 0.36 0.72 433 0.40 10 100 0.99 1.65 0.06 0.34 0.68 406 0.41 ... 11 110 0.93 1.71 0.05 0.32 0.64 382 0.44 12 120 0.88 1.76 0.05 0.31 0.60 362 0.45 13 130 0.84 1.81 0.05 0.29 0.57 345 0.49 .... 14 140 0.80 1.86 0.05 0.28 0.55 329 0.50 15 150 0.76 1.91 0.04 0.27 0.53 315 0.55 -16 160 0.73 1.95 0.04 0.26 0.50 303 0.57 17 170 0.70 2.00 0.04 0.25 0.49 292 0.64 -18 180 0.68 2.04 0.04 0.24 0.47 281 0.68 19 190 0.66 2.08 0.04 0.23 0.45 272 0.77 20 200 0.63 2.11 0.04 0.22 0.44 263 0.84 21 210 0.61 2.15 0.04 0.21 0.43 255 1.03 """ 22 220 0.60 2.19 0.03 0.21 0.41 248 1.17 23 230 0.58 2.22 0.03 0.20 0.40 241 1.72 ·-24 240 0.56 2.26 0.03 0.20 0.39 235 2.42 • 25 250 0.55 2.29 0.03 0.19 0.38 229 11.15 26 260 0.54 2.32 0.03 0.19 0.37 223 1.38 -27 270 0.52 2.35 0.03 0.18 0.36 218 0.92 28 280 0.51 2.38 0.03 0.18 0.35 213 0.72 -29 290 0.50 2.41 0.03 0.18 0.35 208 0.60 30 300 0.49 2.44 0.03 0.17 0.34 204 0.53 -31 310 0.48 2.47 0.03 0.17 0.33 200 0.47 .. 32 320 0.47 2.50 0.03 0.16 0.33 196 0.43 33 330 0.46 2.53 0.03 0.16 0.32 192 0.39 -34 340 0.45 2.55 0.03 0.16 0.31 188 0.36 35 350 0.44 2.58 0.03 0.16 0.31 185 0.34 -36 360 0.43 2.61 0.00 0.00 0.00 0 0.32 SUM= 20057 cubic feet -0.46 acre-feet • Check: V = C*A*Ps -V= 0.43 acre-feet OK --RM-Hydrograph-Muroya.xls 11/27/2006 .. .. • .. - .. - .. ... -- - ----.. - Muroya TM Drainage Study CHAPTERS EXISTING CONDITIONS HYDROLOGY MAP DE:DJG H:\REPORTS\004212151\AOl.doc W.O. 0042.(1219 11/2812006 5:.28 PM \ ; I I I I I I I r-------- 1 I L ____ _ I I -------I I I I I I I I r-------------- I I I I I I I I I 1 I 1------- 1 I I --I----- I LEGEND \ I j --- WATERSHED BOUNDARY FLOWLINE NODES SUBAREA AREA --- ----- J7.00 ACRES I I I I I I I I I II II I I I I 15 ACRES I I ' I ' I ' I ' ~~ '@ I~ .:?:; 0 "l p 2fl74 \ \ --------- \ \ \ \ \ ~--- i w~-- ' \ '"------- ' ' p 285.1 P 29J.I p 2389 I \ I I TOWHEE LANE ----------- I I ~--- I I I I I I I I I I ~ ___ _L ____ I I I ~ L--------~ ' E-< I I ~ I ,-- P 2BI I p 2768 p 2724 I P 26B1 p 263.8 I ------- I I I I ' I I I I I I I I I I I I I I I I I l )_ I I ' H&!\ 7/9/:2009 ~--------------- /1 I I I I I I I I I I // I / I / I / I / I p 2599 I I ------ I I I I I I I I I I p 2560 ----------------------- I I I I I I I I I I p 253.0 ----- = = = = = = = = ---------------- I I I I I ---.::::: -------. r------=: ;::::; :::;:: ""' --~ / , ___ .:::_ ::__ =:: I I p 2495 ; I P24M I I I I I I p 2435 PREPARED BY: EXISTING CONDTION HYDROLOGY EXHIBIT FOR: SHEET 1 OF HUNSAKER & ASSOCIATES MUROYA SAN DIEGO, INC. 1 !'LANNING 10179 Huen11ekens S, eet ENGINEERING San D1ego, Ca 9211:1 5URVEYI:.IG PH(B58)558-.4500 FX(858)558 N 14 CITY OF CARLSBAD, CALIFORNIA R•\0321 \&Hyd\321$H01-EX.dwg[ 1275JNov-27 -2006•15•30 01 o; t 0 ;:i \ Muroya TM Drainage Study CHAPTER 7 DEVELOPED CONDITIONS HYDROLOGY MAP Oa:o.JG H:IREFQRTS\O[).IZ\2\!l'IAO\.dce w.a. 00-12.();?;19 1112512006 5:28PM cosTA CI1Y OF ENCINITAS VICINITY MAP NO SCALE ' I \\ ! 1\ I II 1 II ' II I II II , II I II II I II II !/) II ' -~ ------- I I I I I I I _ _L __ /1 II LEGEND I j__ - I --_, ,-' -j \ L ....._ !r--1 --!_ --~ ~ F·""·"'J ~ WATERSHED BOUNDARY FLOWLINE NODES ------------- THRASHER PlACE I I I ~ I L I --- I ---, \ \ \ I ' I \ \ p 2931 p 288.9 p 2974 ---------_....--- --------------- -------- p 2851 'I I I TOWHEE lANE --------- p 2811 ----- -I I I ~---------- 1 , --I :-~ -1 !..._ ! r- p 276.6 p 2724 I p 2681 I I I I I -------------~---- I I I ---- ~~ 50 0 50 100 !50 ~ -I I I SCALE !'=50' P 25JB p 2599 I I p 256 0 I ,I I p 2530 p 249.5 ' I PREPARED BY: DEVELOPED CONDITION HYDROLOGY EXHIBIT FOR: SHEET -------1 ... ... Muroya TM Drainage Study - ... .. ... - .. .. -CHAPTERS -APPENDIX • .. • -• - .. - OE.:MJ H:':..~EPORTS\0~2121 !:!'.A02..da:: W.O. 2551-3 :514/~007 9:0a AM - ' --------------< I WATERSHED BOUNDARY FLOWLINE NODES SUBAREA AREA ,..... _______ ----- I -------------------------~ THRASHER PLACE I p ::91.4 11.00 ACRES I u H u II II I I I ---------1 I I I I ··'-------------~-#----·-·-·--·---·-------.f--2~.:...::::::.:: ____________ / \ \ \ jB.66 ACRES I /EXI~·TING "L" p 276.6 ---------- I i I I j i \ -~ J \ \ \ \ I I I I \ -------- HUNSAk'ER & ASSOCJA TES f'I..At«NG 11111')Hl.crTo.-kall~l ENOMffitiNG San O..~c. C.. 9!1ll $1JlVE'I'INC f'HI.&SII~~500· FY.(II'ill)S5&.UW Cl.IRIJ /rTL[T Tc• 111 11:1 llrCit' I.UIIf;' 50 0 ~""!..--50 I I 100 !50 I J------- 1 I I I I I I I j DEVELOPED CONDITION HYDROLOGY EXHIBIT FOR: MUROYA CITY OF CARLSBAD, CALIFORNIA SHEET 1 OF 1 R• \0321 \&Hy d\321SH02-DE V .dwg[]Jul-09-2009•1 0•37 - -• • ,. .. .. • • .. • • .. --- .. • • .. • -- 1-2 I T 1-1 Title: Muroya h:\stormcad\0042\219\dev_sd.stm ? .. ?> / / 05/03/07 05:09:23 PM © Haestad Methods, Inc. Scenario: Base 1-3 1-7 ~ _ , :-1 1_, _i _ ! N l 0) I I I w I ~ a.... \' a.... \{/ ! P-8 P-7 ,----:--] ./"! i . A '--' ~ 1 __ 1 ~ 1-5 1-8 Outfall Hunsaker & Associates San Diego, Inc 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 (.0 I a.... 1-4 -1 ,_. ,_, ·-' 1-6 Project Engineer: DJG StormCAD v5.5 [5.5005] Page 1 of 1 .. • • .. • .. - • -• .. • -• --.. ----- Title: Muroya h:\stormcad\0042\219\dev_sd.stm 05/03/07 05:10:23 PM 1·3-., Sa: IH)Ofi ·.,_ lnv Out 302.80 ft Rim: 312.3Dh Sump: 302.80 fi <5.54 ft 24 in:h Co-:1::.et! ~· s • o.ossm Mt Hvd~uJi:: Grade Lire O.rt: 299.50 r. HYdraulic G.~de line In: 30~.26 ii ! I --·--· ----- ---------·--------315.o-J --------·--310.00 ---------------' 305.00 -·--·-----------------------' 295.0J 135.t5ft <,i:·S=O.D Hvd:auli:; G.-a:E Lin Hydraufio G:ao. li .. ----C 290.00 ··----------·---· 2B5.DJ --------------~ 280.00 -------·---~-~/~;~~:~--275.00 l;w In: 265.00 it PJm:272.DD ft Sump: 265.00 ft ---·--------265.o-J 7-00 Project Engineer. DJG StonnCAD v5.5 [5.5005] Page 1 of 1 , . Title: Muroya h:lstormcad\0042\219\dev_sd.stm 05/03/07 05:11:25 PM , ' , . , . , ' 1·7 ··--. Slo:O•OOII kw Ott 312.00 h Rlnr.315.001i Sump: 312.00 fl ____ _.,, ... 1'·9 __./ I ®.00 It 24 b1<h Contrtlle @ s. 0.21766711111 ,I EncriJY Grn!le Uno Out 300.08 fl llyllraulic Grode Uno In: J 12.77 It j !··· 0100 Profile Scenario: Base Profile: Profile -3 Scenario: Base ~8 Sin: Ot6011 lnv In: 298.9411 lnv In: 298.94 II lnv Otrt: 298.9411 rtitn:311.9411 Sump: 298.94 ft 1 320.00 I 315.00 310.00 305.00 300.00 j 295.00 1+00 Sialion(fl) Hunsaker & Associates San Diego, Inc Elevnlion (II) © Haestad Methods, Inc. 37 Brool<side Road Waterbury, CT 06708 USA +1-203-755-1666 f ' , ' ' ' , . , ' f ' ' ' f I J ' ' ' f I Project Engineer: DJG StormCAD v5.5 (5.5005] Page 1 of 1 f I ' ' I I , ' 1-4 ."--' Sta:O+OOfl "-. lnv Out: 304.74 rt '"""'-.\ Rim: 308.00 II Sump: 304.74 It Profile Scenario: Base Profile: Profile-2 Scenario: Base ~-1·8 1·6··\ Sla: 0+63 It lnv In: 299.3811 lnv Out: 299.0511 Rim: 310.60 II Sump: 299.05 II /.-~..---Sta: 1+0811 .------lnv In: 298.94 rt // lnv In: 298.94 ft .--lnv Out 298.9411 " ,, Rim: 311.94 It Sump: 298.94 ft '" ... , ' ''-·1·5 Sta: 1+24 It lnv In: 298.76 It lnv In: 298.40 fl lnv Out: 298.40 It Rim:311.90ft Sump: 298.40 fl 315.00 310.00 305.00 Elevation (fl) Title: Muroya P-6------ 63.21 n (iiJ s = 0.0847971Uft HydrauUc Gradel.ine Out: 299.72 fl Hydraulic Grade Line In: 305.45 fl P-7 0+00 44.36 It 24 inch Concrete Hydraulic Grade Line Out: 299.93 ft Hydraulic Grade Line In: 299.98 fl @ s "'o.0024Bo rvn 1+00 Station (ft) Hunsaker & Associates San Diego, Inc 300.00 --P-8 295.00 2+00 16.00 fi 24 inch Concrete @ S ~ 0.033750 fUll Hydraulic Grade Line Out: 300.11 ft Hydraulic Grade Line In: 299.931l h :\stormcad\0042\219\dev _sd .stm 05/03/07 05:11:03 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 , . f ' ' ' ' ' ' ' , ' I I ' . r ' , ' I I , ' r I ' 1 Project Engineer: DJG StormCAD v5.5 [5.5005] Page 1 of 1 I I , 1 f ' ' ' , 1 Label Upstream Jownstrean Node Node P-2 1-3 t-5 P-3 1-5 1-2 P-4 1-2 1-1 P-5 1-1 Outfall P-6 1-4 1-6 P-7 1-6 1-8 P-8 1-8 1-5 P-9 1-7 1-8 Title: Muroya h:\slormcad\00421219\dev_sd.stm 05/04/07 09:07;04 AM , . ' . , . , . Scenario: Base Combined Pipe\Node Report Length Section Full Average Upstream Downstream Constructed Hydraulic (It) Size Capacity Velocity Invert Invert Slope Grade (cfs) (fUs) Elevation Elevation (tuft) Line In (It) (ft) (It) 45.54 24inch 67.38 17.70 302.80 298.76 0.088713 304.26 135.65 24 Inch 24.95 9.02 298.40 296.75 0.012164 300.11 203.03 24 Inch 24.54 8,88 296.42 294.03 0.011772 298.13 258.71 241nch 75.34 21.81 293.70 265.00 0.110935 295.49 63.21 241nch 65.87 11.66 304.74 299.38 0.084797 305.45 44.36 24 Inch 11.26 3.30 299.05 298.94 0.002480 299.98 16.00 24inch 41.56 9.70 298.94 298.40 0.033750 299.93 60.00 24inch 105.54 17.00 312.00 298.94 0.217667 312.77 Hunsaker & Associates San Diego, Inc © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 , . , .. , . ' 1 , .. f I , ' r ' I I Hydraulic Total Grade System Line Out Flow (ft) (cfs) 299.50 16.40 298.27 23.07 295.57 23.07 265.81 26.17 299.72 4.10 299.93 4.10 300.11 6.67 299.93 4.78 Project Engineer: DJG StormCAD v5.5 [5.5005] Page 1 of 1 I I , ' ' . ' I ~ <:I i:: I, VICINrTY MAP NO SCAL: LEGAL DESCRIPTION: A i":ifTlfl{ CF U: SOIJili V1 CF TrE Sal,m=_,!.$i Ill. r.F Tt£ SOOi:-MST Ill. U Sicr.-!11 22, Tr:N:O.'SH!I' 12 Sll..!ffl, li:JrJ::' ~Si, 5JN ~t?;H.i ~ W TrE C!rr CF CA.~. CCUiTr CF SuilJS:O. Sr~TElT~. A~ ror:F.r...J.LF.AI 'Ti5iSF. ASSESSOR'S PARCEL NUHBER: Z/5-0700-& CALIFORNIA COORDINATES: 1976-'..Z4G DEVELOPER: /IYUM;,'Cs Si!.O FlE'i SirET,. Stri: ZOO C@..!a<D, C4 91Xa (i60) 603-'..t'JI SOURCE OF TOPOGRAPHY: t.!lm1 G.=.Ar-."'S'3 JJ.70£.E~A~~ SI.NrA A'/J., C4 92705 (7!4)51.J..I.Z29 DJ.e.J-'N,ZX<J ABBREVIATIONS Cl CLF!l/J:..:I ,o/H E'!£( El.EYJ.nr:H li'H .=!. Fwwl.Ui s l'? Ft.J:iXJP.--'" Si) FS FNS<el !AAFACE sr G5 GP.J.t£ 2;:-=._.:x TC IE IM'Sff Ei.:'l'.A'i'J.:IJ lr ffl /".4Yr'...E IH NSF k.IS<il.:J.i:Fa-lot' NTS NarTr;~ w p P.w~""Y.J.Tlal liS fC ?cKi r; CUi'IA tJP- fCR f;;;M CF b.-: k71P.V FCC fr:wr CF CI:1P:1.Jl) ~Ci"I.A iVi: ffiC Fr;wr CF RFi&SE Clni'.Alr.E p_ Pfr.rsrrY LIC F'll fotiT IF ~,c.!L IH:Eic=-ax>~ (VC) FICP ~C~P?E i11GiiTil'WAY fe-..:..J.t!ED WAia s;:'.+Si' s.t:?.<!JP.t."l Giro~F:i Tonr Ci.P.3 ir:ra:fa:rm iCP a: WJ.!.I. Ysmc!L CI1M! WJTa'? WATa'?S!F.= MICHAEL L. BENESH Proftssional Gvil Engineer and LAnd Suro!Jor ~ ~ 41!4 s..m rm oal~ ll=d, Mllbroo\; CA 92li2a l'h=760728-6931l F.AX760897..2163 B-M:W::MI.ll~...!l..= WORK To BE DONE: Carts6nu Z'raeL no. 98-r 8 ..Jmp.ruuel.liene C'Ptans Carna,ion C'Prope''U TIE ~7 JICii!f sr~ i£ ~II ~Y.:E wrtrf TrE ~ !XC.J'SfG ORelT Ai nE 11'£ CF ClHSi?..rnai, JS Dl?!!CIED Ef iiE C!iY EHuN:!;R I. Ct.~Hc.t«::!PALCa:E z. cr.r"' ~ S;"A.'l);.'CS .!. Ti<S5=7<F~ I... P.sa.!mai ,\?:L LSJ!. OJ.lS 515199. S. TIE Sr~ Sfs:RCJ.TT:NS FOi ?f£L'C ffi:P.I:s Cik~ (~ Eoa;}. 6. S«s li?.;;;T B ~mE !T Gc:&'l..!, k.. 01. S Ji/JJ~E 1. TIE SJA• U-=co A. a PSKXU. Sr~ ~...!li":ms' :.~ .:s I" .A r Be.~-;:; 3t r,..r CnY rF CLrz..sl.D Si.!JlJ.Ui!JS. e. ~ Co.!siAL. ~fJE"~Fswr C!N:Jii<C16 ~asr::/99 9, CJ!'H.D. ST.uaJ.l!'JS. 8 5t':aiCJ.natS F:P. W.!G, ~~WAS~ ,S:e, LEGEND ~ CM". 1;:. u St"5ll O!wmTr REFERENCE DRAWINGS: DECLARATION OF RESPONSIBLE CHARGE lrESYCeo...AF-&.ATIA"!11£ElM"ERfFiiOi!f.=a:i rr.zsrna.e:r.. r~iiHJ~ UClCIXO ~S.: C-'.!~fJI=::! iif~fF ififP.TD..E:T J.SElBW s:cTICNCZ! CF U: ~"ESS .wJ ~Cree; J.VJ lr"AI llECSGYJSCGE-~ ilfnl aF.!!!fT S7Jiet.:OS. I w::ssrm; lri:!T irEC-E:X rF F.:!J..EalF.!itw.;'S Nt;SS:.~11:16 gy rr£CliY tF C!Z!.Z!:J JS t::!N1S ro ~ .t:E.a O'LY nD cars 1M' IS.Er'E 1£ ~ eee cr if""~ rF ,'ff TCP:l~FfP.f!i::l.E'T !.CSQL INDEX HAP $CJJ..E; j"::/00' Underground Service Alert ~ CALL: TOLL FREE ~ 1-B00-422-4133 11-!iCI ~::; D.l'I'S !iEF~ "!'t:J i:lC AC DI!Z (6? F.C.C. &,r....,y ra. STAir~\ Wi1i:"'!~ P.c.c. = Gurra (60LfSfU'/) IY..<a: S!1ET 1/.lJ'e S.r;; o'DS'I) Sm=; Sr.N 8' FW: WA1Ei"-'IN B' G'laC!. W.S.?. (10 G.l) Z'EI.CN-(H 2'AVIA~ 2" • R.c.P. srrm /J!i.J.:N li' R.c.P. S7rP.t C<iUI G-Z', TTP: G G-! TYP! A C'f.H)S..? /'r/9 E-1', GS-21 (CSJJ GH31C(C.S..D.), G-!Z' P3 Ctrr Si'!CFre.:. TKM Ai NJ.'CAia OI'.I!)W-J OflrJW-<l OfnO W-12 or.;ow.;, IJ<llii CL.rs NEr Trrr; 'D'"' 1:-1 !Se= P'.A•J e-; a. ;s .• .A¥) WIUC!L ~ CSlJ OS-I FF-Cf:l.l.M DS-5 L r :: I.E; rr t:.:Nia !.bE CAUTION: i<T: !1;eln:F Csl'f5/LN r~-a TdAT Tr£ us~ t:EN6 uoiffs crrnfi H4:: Rs=ss ro CA.~.A!J ~"CP.!.L w,.ua Dsm;a-srJK:.U!:S ~~1D~~~ ~~s CSlJ 0. ::Rf..=E:5 TO CITY tF c.:.:r--XAD STA~a=!ltlt!i+?.'U Pi-~ AT mE tr...tiK s;TE, QE C£."fi'El SCP.SlJ [).: fi5:aS rD ~N !)BN Ct1:Nrr li:~:JJ.. Si.t.'&.,!;!J Dli.!.w:.;; wu r..q;;;u rou c:r WhC/1 rH£'1 •~':"'..!. 1: IMi:cJ.iS AS ~B P5t CJrt rT CArr-..SJ.D Si~ 5Z,~J SF J,!07 LF Jl8 LF 5 E.lOI i,IX2 SF ~"!5 SF ~ LF -o--7 Em! 1 ® J2 E.lOI ---£::-·-Em! *""' E.lOI t;i.l SF j E.ta~ z fAC'< F-."6 LF 5I. L: ;Q EA.ai £to; .! Ex-; El.CI 5 EJ.c; I f:.c-1 !Z2 tF Zl.!> U' c:::zSv j EJ.OI J EJ.OI EJ.o; z EJ.OI 1 BASIS OF BEARINGS: NOiFY.,...·~------,.,-------::-"-•.;.A!J.::.' ,;_IIIFEfe=-=IZJ;;-:STo::.'ANJl?.J;_:_:.;:..;../J!iJ.::.'::.Jf'l\',;;':..;· ·::."';.:."-"".:.=AS:..;~==.·:..;"'.;;.SL'I..:..:.C::.I!:-o:..;;./?5::.""""-...::· =' ::.ST.=r=-<1!>.:-..:.· ::.::.!JP.;.:.~..:..:."":..;'!U.$===~,..:.'S..:.~_=::.B..:.Ul-=,,..:. _~.:;:""==----, CARLSBAD /1UNICIPAL WAlcH DISTRICT CITY OF CARLSBAD FIRE DEPARTHENT "' ~• ~~ TIE 8Jss Cf' B!J.P.JIG:S rrit iieie ?..JJI$ IS iF-SU.Jrrll.H rF iJE $(/.J;}£).ST VI. C'F ~ St:uih?f!S1' VJ. CF i:-E Sr;UiJEJ.ST (/!. r:F SEcT!&'~ Z2. Tf'i'MEP.P 12 SO'.r.~ P,J.N;E I. k"";;i, SAN ~D r-'.ar:tw. .!S S1afN rR ir.?-r--.P-1 fF SUi-a fi.AP No. J0774. SAJD ue a&=s Naml86=sB'fr H-Sr. s.tD ~ JKJ rt'f ~z SJfj'I,N IEffli J.~: 11 T?.!S cr n= CAl.Fri£1. C/X:Ii!JIIAT:Sm?( ~ .Z.7. ZOE 6. CWS ~FlO!~ /15'$ CP. lESISI".AY t:P.."!J.l"lr.JiC:'NIEi?!S rFs.tiD~ BENCHHARK: ~ OC-0179 D5t SCT ~ a:!iE.'IJ rF S!:J./Irl~.tU. cr l4'RC? OJ.I'/u fAsT cr ~ CF u r:am AlE AMI SA:Dit RlltD. /i!;Crm; FD< Camr CF S1J1 0So, &fi'r. CF P.EUC ~~ !i5mr S'rfJr,(HJ(IO/!Sr.5 /J.67 OArtH:I'/.S.L .~ CFF.J!.(s)_,!_ FHF!!:7 ..J:J&.. r;..::.l'. Jl,7"17' _.LF.JiW, 5:.a:..~..ss~~ Ft:F'U711N_4, c;_=.J! ~~~~~~~~~~--~~~~~€-~ F.~,...J!5'tLU. .I . .,. City of Carlsbad II ~~I ~!Jeki'l¥!/r . ;oq::::..., CARLSBAD TRACT No. 98-18 II~~; C./1. W.D. 99·508 ·. I . -§ ! • .. ;, 5 I , I • i l n I • u H - 0 ~ z Cl z c s: Ill m :D 0 I z Cl z c s: m m J:l I a ~ z GJ z c s: CD m :D fUJ 0 ~ol~ ~..Jz ~ . GJ [ I ~ -m m e :0 • l - ·-·' .. I L_ ____ _ El.NiliHTS?.!l'EfirJJ.!J~ Fa D;n;. JZZ-7 JNJ JZZ.zA Rlir..At::Ji.t.Pam!M /)q.AGeJBr~ GRAPHIC SCALE MEM~;~A~·~"~laJa;~~~M~,~~~j~~~~~ro (INFEfT) 11/irif~'o n: 24 ' I L~ ;g "' ,, .. 8~~~ I~~~~ 26 ~~~~27 J-~/'f'lit I SCALE: 1'=40' BENCHMARK: ~ OC.;J/79 IJSC SEr IN K$1' fgJ IF Sar.<i /;EJ.t;WJ41. rr z~·IICI' O.G 11~ EJ.sr CF INrasifrrol r1" U Cos;A A-.;. AN) Sl.Wir llo.m RP"'...E:S f;Qt: C!l.NTr CF SA'/ fJ:EfO. ~ CF lf.EUC 11!?.:£- REr.liT SI0/06-DT,/C//SI<S ~ I I ~g ~"' 28 "'"' ~~ "'-~29 30 I J/ STORH DRAIN CENTER LINE DATA lia. llr.!.TA!C~I R.toas I L=vliTIII ii'E!'.J..=!!CS lA I Nla't.J.'!.I.'E I . I uo· I z~ 'IIC? 15(1).1) 13 I J!l"ZJ'/.8" I t.S.OO' 25.81" Z4'1iC? 15{"/J-{) IC Nt..e?O'SJ.'C I I 19.97" ZL' RC? ISC'J.!J ZJ N I.B?J'S4'E I I J4.50'1 ZI.'RC?/S(lJ.() SEE NJrc BEJ.!)Jf 23 Nl.c?J'SI.'E 1 I 11.or I z~ 'R!J' tS(m) WIWAIE ili.'-!7 JaNiS J I ~~~·1!JV.'E I /16.1.0'1 Zl.' KJ' J;u,i-0 wrN~i"S iH¥rt .JG..-riS I. I 1.6'16'59' I l.iOO' J6.JS' I Zl.. RC? /5(1)./) wr.v .. ua TlfihT ...lOHiS 5 11 es·zz·w w 1 I ala· I Z/.. RC? f5CtJ.{) WIWAia rJGrT ..Ja1fi5 6 1 11 es•zz·w w I I tll0.7a I Je'liC? l"M-D 1 I t.S'*C"O'CO" I zz.so· I 11.61' I ta' Fi':? 2GIY.r0 8 I NI.9'Jl'5/.'E I s.ta· I Je'RC? ZCC().{} 9 I .VI.'Jl'SI.'E I I I.J.co· M' liC? /SiiN) wi'N~ra lt~T~ 10 I N 79'56 'Zi' E I I J7.5J' ll'liC? /SC(}./) ft'I'N.sTS ilrihT .lo!NiS /,\_;;:_· TIC cti\'!:F:£r: CO'S CN TrE l'ISa CF' A!.!~ Ci:'Na::iE F'J?E nET if N.:r-...AEJ TD fRG"Il!:£ A HNH.11 r:£ 1·1.1? c;Sl i1; ~ '1i'lel TIE {a;C-N va.c-::rns £le5 za F..P.s. r;; Cmr::iEiE ~ s;;e.or;rr1 :~ rtSE ie.C16 SH.!!.!.. 6: fr=S(Y.tO P.ll 6' ""'-l ri;;y;, ID!>n;-----1 r· Hll. ----,-, ,,-- Nom: l F:;; ~ sr.A.tJ.. ;: ca-s;a.'CiS J.; l' 1-Sff.c.!l. lrt:i?t.!.!... 2. J.L!.. ;ENrRCiN; a1A!.l 5! .fl.. .e..:.~ s. c~ .YJ~ = Q...t.sS 5!JO.C-t=.A;O c:x:==rE. CONCRETE PIPE SLOPE ANCHOR IIOi To SC1I.£ Underground Service Alert ~ CALL: TOLL FREE \!tl 1-S00-422-4133 T,.;.RS. w:PJl."'iC D.\'r'S ~=<E' 'rW DC CAUTION: ~rl rr~.H rn£ USA CE.'IiS NOrF."ES C/4. r 1/f...sE llil../Tifi S2..CI,;;.'VG TO mE C....t:wa. 1'1-eE CCCt.D EE Gila U1"l.d!:S PReS£NT AT THE WORK SliE.. rr.:E c:3ifER it"!.L J.CI"~ YOU C-F w.'ltlll rt£1 H-U NOr;:r. ""' 1---+-+-----------t--+--+___,r---~C[) 1 city f~.!../i.~-~sbad 1 QJ JIIJB MICHAEL L. BENESH Profe.r.rional C:Vz'l Engineer and lAndS ~or 404 5omb Live Ook Pci Rc>l, l'2!lmcol; C6. 92028 1'bcn:760728-6938 FAX760m-Ztli5 E.-MDhMlJ!~ 1--+----ir-------------ir--+--t--+--11=''"-""FIB STORH DRAIN I l .......,,..,..__tJr ~~~~:.'f--,---_-_-... f-_-_-_-_-_-_-_-_-_-_-:_-_-_-_-_-_-_-_-_-_-_-_-_-_-""-t_-_-_-_-""-"L---_-:_t------i----_--i; ~=•~<'!it~&z.'W~ I I II~~ = ... CT 98-18 C. H. W.O. 99-508 - r--- 0 I z Gl z c s: ID !ll >r----~ ~ 0 ~ I ' ! z • til z i c s: .• m ~ m :Il J r--- 0 . ~ j • z i til z I c s: m qj l.f'o • d) I ~ • -~~ • I z I 1 ~ m -!ll