Loading...
HomeMy WebLinkAbout3166; PALOMAR AIRPORT ROAD; DRAINAGE STUDY; 1991-02-01I EL CAMINO REAL AND PALOMAR AIRPORT ROAD WIDENING I DRAINAGE STUDY I, .5 : • : S. I For $ THE CITY OF CARLSBAD 2075 Las Palm as Drive Carlsbad, Califoinia 92009 I' I S S Prepared By: . S j P&D TECHNOLOGIES 401 West "A" Street I Suite 2500 San Diego, California 92101 I 1 February 1, 1991 I I I .. TABLE OF CONTENTS •. : Page 1 10 INTRODUCTION 1 1.1 Putpose . 1 1 2 Watershed Description 2.0 •.. METHODOLOGY .. i 30 RESULTS 2 1 40 CONCLUSIONS 2 1 50 REFERENCES 3 Exhibit 1 VICINITY MAP t 4 1 60 RUNOFF METHOD OUTLINE 5-8 APPENDICES I APPENDIX Methodologdy Approach Letter. I APPENDIX Design Charts. •. APPENDIX III: 10-Year Peak Discharge Calculations Under I .Developed Conditions Using The Computerized • . . Rationale Method. . . . . . .• APPENDIX IV: 50-Year Peak Discharge Calculations Under • • Developed Conditions Using The Computerized • Rationale Method.• . • •• • • APPENDIX V: • 100-Year Peak Discharge Calculations Under • Developed Conditions Using the computerized • • • • Rationale Method. . 1 APPENDIX VI:,Catch Basin (Inlet) Design Tables • • • . • EXHIBITS •. , • • • EXHIBIT 1:. Vicinity Map • : • • .• • EXHIBIT.2: • Hydrology. Map. • •• • . • • Map Pocket I 10 INTRODUCTION I . P&D Technologies was retained on behalf of the. City of Carlsbad to produce a Final Design for full-width Street improvements of El Camino Real from Faraday Avenue to Palomar I Airport-Road. Additionally, there will be a section of Palomar Airport Road included El Camino Real is to be designed as a Prime Arterial Roadway. The Palomar Airport Road segment will be designed as a Prime Artenal as well 11 PURPOSE The purpose of this study is to detail the hydrologic analysis and complete culvert sizing I requirements for this street improvement project in order to msure adequate storm drain design capacity. 1.2 WATERSHED DESCRIPTION . a,.. . The existing roadway alignment of both El Camino Real and Palomar Airport Road in the 1 project area roughly follow a small ridge Asa result, the drainage basins formed by the existing roadway are small The dramage basin divisions range in size from 2.5 to 23.3 1 acres (After the 23 3 acre basin the next largest is 8 9 acres) 20 METHODOLOGY I Per the City of Carlsbad requirements, all the hydrology computations as well as the I preliminary hydraulic design are in accordance with both the City Standard Design Criteria and the County of, San Diego Design and Procedures ManuaL (Please see Section 5.0 REFERENCES for a complete listing) I 1 -1- I :Our method of approach" Which was outlined in. a letter to Daniel Clark, dated May 3, 1990,. has not changed sigh ficantly The letter is included as Appendix L The following 'minor revisions, should be noted: •. . . ...,.. . .. . . . . 1 Item 4 - The San Diego County Design Manual "Hydrologic Soil Classification" charts were used to determine the soil groups 1 2 Item 10 - The 3 different storm event calculations will be completed for only the I adjusted 6-hour storm per the intensity-duration design charts 3 Item 11 - With regard to the isopluvial charts, the precipitation values selected were I the conservative or larger values and, as such, no "averaging" of isopluvial quantities was required 3.0 RESULTS .. : ..: .•. :. •., . . . ...... ... The computerized results of the previously described Rationale Method for the 10, 50, and 1' 100-year storm events are included in Appendices III through IV, respectively. These results were then utilized in the Improvement Plan Design 4.0 CONCLUSION this report represents a final hydrology study. The results, of the hydrologic analysis were I. used as the basis for the final hydraulic design. . The items which have been completed I include the hydrology for both the on- and off-site areas for the 10, 50, and 100 year storm events. Hydraulic design elements which have been accomplished thus far ,include: the mapping of existing culverts, the location and sizing of curb inlets, as well as the location of new culvert crossings and their respective sizing I -2- EXHIBIT I I VICINITY MAP I NO SCALE LEGEND_ - STUDY AREA •....••S•S•S• I 1 P&D Technologies - Street, Suite 2503 CA 92,101 619232 4,166 I JN 1020400 DATE 9-24-90 I .. •' •', •. • II16'. I C.' DESIGN RUNOFF METhOD '•: - ' : ' I The hydrologic analysis utilized or design of facilities recomeqded I in this report is the Rational Method The Rational Formula is Qp = CiA where I 'Qp = The peak discharge in cubic feet/se'c* * 1 Acre. in/hr. = 1.008, cubic feet/sec. •, . . . I C = Runoff Coefficient (Dimensionless) i = Rainfall intensity (inches/hour) I •.'. , A. .= 'Tributary drainage area .(Ares) If rainfall is applied at a uniform rate to an impervious area, the. runoff attributed to this area would eventually reach'a rate equal. 'to the ' rate of precipitation. The time required to reach this equilibrium is term- ed the time of'concentration.. I For small impervious areas one may assume that if precipitation persists I at a uniform rate for at least as long as the time of concentration the peak discharge will,equal the' precipitation rate. D. DESIGN PROCEDURE . . . . . . . . . .. . . . . . . . . * The following procedure was used in cul.ating.jq of storm flow at various locations along the route. of'the proposed storm drains. ,Wheneyer the term "Manual" is used, it refers to' the "DESIGN AND PROCEDURE MANUAL OF 1 , , SAN DIEGO COUNTY FLOOD CONTROL DISTRICT" dated December 1969. The general' 1 procedure was developed by Los Angeles County Flood Control District and, has' been modified herein for use in San Diego County I . • , :'L ,On the drainage map divide the, runoff area into subareas of from : 20 to .100. acres. ' These divisions should, if possible, be based on the , topography, soil' type, and the land development. The size of the initial area should be ;chosen such -that-the length'.of travel for the water from the • . • ' ' ' ' ' ' ' ' 17 . :.' ''"'' • JI ' • • . '.:"';i•,.:. ' • • . • (" ('i' CV 1 0I ' , I Imost 111-7 remote point to the point o concentration should not exceed 1,000 feet I and if possible be near 500 feet and be of a generally uniform slope 2 Determine the quantity of water for the initial area I a Estimate the initial time of concentration This can be obtained from appendix X-A of the "Manual (Figure 2) I b Determine the type of soil from "Hydrologic Soil Groups .- Runoff Potential" maps of the 'Co'uny Soils interpretation study. I c. Determine the ultimate land use from the Carlsbad General.' Plan. '0 1 •. . ... ' . ' . 1 d. Obtain the runoff coefficient "C" from Table 2'. Obtain the'' intensity (i) from Appendix II "Rainfall Curves for County of San Diego" of the ut1anual (Figure 3). Calculate the quantity of water (Q)" from the "Rational'.' . . Equation", Q CiA. I ... 3. Determine the quantity of water for subsequent subareas as follows: a. Determine the water route' from the point of concentration of ' the previous subarea: to the paint of concentration of the : subarea in question. • S - ' ' ' . ' ' ' ' ' b Calculate the time necessary for the quantity of water arriving . ' at this subarea to pass through to its point of concentration . by the above route The physical properties of this route must be' considered and the velocities obtained from the following: (1). If traveling in a street the velocity can be 'figured. from Appendix X.-O, "Gutter and Roway Discharged- - Velocity Chart" of the "Manual" (Figure-4)., (2) 'If traveling in a' ditch, 'pipe or other regular section • •. ' ' ' calculate the velocity from the actual section. i L r S S • ' ' " ' o1 Vs. f ST.,. Fl-E. 27__,0O ' ' ' ' ' 7 • • SAN [EGO, CA'92101 t.1f I 1 (3) if traveling in a natural watercourse the ieioci:i can be. derived fm Ti cure 1, Velocity In Natura I Valley Channels I c Measure the length of:-flow to tie point of inflow of tie next subarea downstream From the velocity compute the, tine of flow I and add this time to the time for the first area to determine a new time of concentration I When determining,the time of concentration (.T), theex- pected future drainage facility and route is used to; determine I velocity and travel time Wherever junctions pccur, or I . there is a• change in slope or drainagefacility, itisnecessary to calculate the velocity and travel time for the preceding I reach The slope of the Hydraulic grade line is generally assumed to be parallel to the grade slope I d Calculate Q for the second subarea, using the new time of con- I . . centration and continue downstream in similar f a s h i o n u n t i l a junctionwith a 'lateral.- drain is reached. . . e. Start at the upper end of the lateral and car r y i t s Q down to the junction with the main line. . . 1 4 Compute the peak Q at each Junction Let 0A' TA, 'A' corres- ponding to the tributary area with the longer time of concen- tration. Let Q8. 18, IS, correspond to the. tributary area with2 I .. the shorter time of concentration and Q1 I correspond to the . :peakQ and tine of concentration when -the peak flow occurs. . I a If the tributary areas have the same time of concentration,- the tributary q's are added to obtain the Peak Q. . I Q I . b. If the tributary areas have different times of co n c e n t r a t i o n , the smaller of the tributary Q's must be cgrrectd as follows:. . • I .' •\ 1 . . ., ..,. ': ., .' .. 0). The usual case is where the tributary areawith the I longer time of concentration has the larger Q In this case, the sarnller Q is corrected by a ratio I the intensities and added to the larger Q to obtain the peak Q. . The.tabling is then continued downstream- . . 'of using the longer time concentration . . . . I Q Q + Q A A B .TpTA 1 (2) In some cases, the tributary area with the shorter • . . time. of concentration has the largerQ. In this case, the smaller Q is corrected by a ratio of the' I . times of concentration and added, to the larger Q . to obtain the peak 'Q. The tabling is then continued I downstream using the shorter time of concentration + Q Qp Q B. A - TpTB I i TA I I I ..' '•''''i '•'•" I I I - I I - . , . • . .: CC, CA 92101. . . . . . , PHONE 232-4466 : I P&D Technologies ,• Planning 401 WA'-' Street ' - Engineering-- Suite 2500 .. Transportation- : . . - .' '• , San Diego. CA 92101 Environmental . . , . . - . . . 0 S , FAX.619J234-3022 Economics . . . ',. . . . . . .. . •' •619/232-4466 . . . Landscape Architecture I An Employee Owned Company July 17, 1990 1036500 1 * Mr. 'Daniel Clark, P.E., Project Manager. . . . . . '. . ••. . . . . . 'City of Carlsbad . . . ' . . . . , : ' •' ; .. , Municipal Projects 2075 Las Palmas Drive, I Carlsbad, CA 92009 ' Re El Camino Real/Palomar Airport Road Hydrology Dear Mr. Clark Th purpose of this letter is' to suniinarize the understanding of the hydrological aspects of this project The following list is a summary, of anticipated methodology . All drainágedesign'and requirements will be in accordance with the latest City 1 of Carlsbad Master Drainage Plan, . The hydrologic analysis will be conducted per the County of.San Diego Hydrology I . ' Manual dated January, 1985;. ' Hydrologic Design will be 'completed in accordance with the City of Carlsbad Standard Drainage Design Criteria (pages 3237). dated June,' 1987; - The SCS's' Soil Survey" of San Diego Area.. California dated December, 1973,, will be used to determinel the soil groups; 5..-. The Rational Formula will be employed, 1 6 A Hydrology -ir'rl Hydraulics Report "ciplete with input parameters, assumption, calculations, and references will be assembled and submitted to the City for final i approval, II 1 Mr Daniel Clark, P E July 17, 1990,, Page , .' ' , , ' '• ':'. .: ' I I .7. As currently envisioned; the calculations will be 'done 'using the corresponding 'èomputer program, and the computer generated printouts will be included in the final report, The calculations will be .conducted assuming full post-development cOnditions, as depicted on the current General Plan Map fOr the City. Carlsbad dated April, I ' 1987; ., . . ." ,, .. . . , . : •' ' ' 9.. ' For watersheds that are designated to remain natural open space (OS), ten I' . minutes will be added to the computed time of concentration in accordance with Appendix X-A of the' County of San. Diego Hydrology Manual; . . .. I , ' 10. The 10, 50 and 100-year, '6 and 24-hour storms will be calculated for this study; ,. . Numerous site visits have been conducted from which it has been determined that . I . portions of the site follow a ridge. As such, drainage basins will be .veiy small, contributing only nuisance water with the exception of. one or two areas located ' at the "airport quadrant".' 'Based upon this information and 'the' fact that' the project bisects numerous isopluvials and small drainage basins, it is being proposed. that an average isopluvial value be, calculated for the nuisance water areas only; and . . . .. . . . . ' Hydraulic structures will be recommended for ultimate roadway width buildout of'. 126 feet. Should any. of the above referenced items not be acceptable 'to the City, please contact . I us within ten '(10) days, of receipt of this letter,as we are currently progressing in this direction. In addition, please feel free to call us at any .time should you. .have any questions. or require additional information. 1 Sincerely, I P&D ECHN OGIES Marc Jacobson I ' Senior Designer MJ:kw I I S. — — — — — — — — — — — — — . - — — INTENSITY-DUMTIUrI DESIG1! CHART . -I .3 Directions for Application: 1) From precipitation maps determine 6-hr. and :24 hr. amounts for the selected frequency. These maps .are 'printed in the County Hydroloç Manual (10, 50 and 100 yr. maps 'included in t Design and Procedure Manual). '2) Adjust 6 hr. precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr. precipitation. (Not applicable to Desert) . Cn . 3) Plot 6 hr. precipitation on the right side of the chart. 4). Draw a line through the point parallel' to the plotted lines. . 5) This line is the intensity-duration curve for P6 0 the location being analyzed. 4.0 . Application Form: 3.5 0) Selected Frequency 2,5 P6 '. P24g. L 2•0 24 : 2) Adjusted *P 6' 'I.e in. 1.5 3) t ' min. c&ccu1zfl0*45 4) I ' in/hr. • '. 1.0, , • *t Applicable to Desert Region APPENDIX XI IV-A-14 1 /Q >< 10 15 20 30 40' 50' 1 2 ' 3 4 5 6 M4nt,t • . X. 4.. 5, — —__ — — — — — — — — INTENSITY-DURATION DESIGN CHART . : - _- A__i I 9. & 15 20 • 30 40 50' 1 • 2 3 4 5 5 M4ntit 'WF%,,..e i.nrecions Tar App 1) From precipitation naps determine-6 hr. and 24 hr. amounts for the selected frequency. These maps are'printed in the County Hydrolog Manual (10, 50 and 100 yr. maps included in t Design and Procedure Planual). 2) 'Adjust 6 hr. precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr. precipitation.. (Not applicable to Desert) •• . a.. 6 3) Plot 6 hr. precipitation on the right' side of the chart'. . 1 ' 4): 'Draw 'a line through the point parallel to the plotted lines. 5) This line is. the intensity-duration curve 'for :' the location.being analyzed. 4.s 4.0 . Application Form: ' 3 l 0) Selected Frequency '50 yr. :2:5 1) P6' z '.1 i., P 24 2•0 : 2') • Adjusted • in. 1.5 3) t U min. Uci.z1ipi4. 4) I- in/hr. 1.0 • • • .*Not Applicable to.'Desert Region APPENDIX XI IV-A-14 Revised 1/RS — — — .— -- :_ — — — —. -S ' -S - — =log INTENSITY-DUMTIU OCSIGN CHART I 4 I I irIfliniith11iI , i ' i.i.i i nuIir -- S. 9.. & V. 3. uireccions ror ,ppI1cd11on; 1) From precipitation naps determine 6 hr. and 24 hr. amounts for the selected frequency. These maps are printed. in the County Hydroloç ) 0 Manual (109 50 and 100 yr. maps Included in U Design and Procedure Manual).. - 2) Adjust 6 hr. precipitation (if necessary) so that it is' within the range of 45% to '65% of the 24 hr. precipitation... (Not applicable to Desert) Cn . , 3) Plot 6 hr precipitation on the right side' of the chart. ' ,. . : ' . ' 4) Draw a line through the point parallel to the M. plotted lines. . —a. II. • .. . .5) This line is the intensity-duration curve for 6.0 . the location being analyzed.SS " S 5 . 0 0Z INS ' S Application Form: 0) Selected Frequency' IQOyr. P6. Z75j n., p24 24 2•0: , 2) Adjusted . 2..75 in. 1.5 , 3) t ' 'mm. See cLC.ULTIoN,. 4) I ' ' ' In/hr. '*Not Applicable to Desert Region .3 PZ kVJ m2 O 5 15 20 30 ' 40 50 1 2 3 4 5 ' 6 is 'APPENDIX XI IV-A-14 Rpi,i czIr- 1 /Rc vi vi # V n = 1 CM ol cn t_ C) .! a -4 1 , . r) 21--- — :, vi COUNTY OF SAN DIEGO . I DEPARTMENT OF SANITATION FLOOD COWROL & 10-YEAR 24-HOUR PRECIPITATION 0 0 120..' ISOPLU VIALS F 10YEAR 24—HOUR •o : PRECIPITATION IN E1THS OF AN ICH s 60 D1 -N20 ch E MIX 3 r \ O 45L ,) —25 330 - _______ _______ _____ _ _ ____ •\ 4 (•, 40 OCL MAR 70 .25 45- IL U2 0 0 Y.J\\ IN- Ic NATIONA ION $P!CIA. LOANICANDT r:RLoy NATIONA tnSPIIFRIC L SERVICE I Ysl 301 15' 117° 15l 0 30' 151 0 1160 I' LA 0 so U .0 '-4 I- I lu V) U. <00 I. V cc I-)-. >- I \ I J 0Li...j 1)0 U.. II •'. II LA — — — — — — — — — — — — — - — — — - — — - — •— :' - COUNTY OF SAN DIEGO 'DEPARTMENT OF SANITATION &' nn 'irin 1' I,.3AU FLOOD CONTROL iUU I LL4 Uv%'U PRECTITATIN ' •.• ' • • ' 0 20'. 1SOPUJVIALS OF 100-YEAR 6-HOUR' PflEclT!tTIO II E1THS 0 ANI IC11 25 4.5 IAECC LAG A BEACH 4 SAN CL VENTE 151 I, '1ZoJC' 25 iscouui a & - 33° ___ ' \• 30\3A )EL MARSS ' '4 1-2 - ________ ' • ' 3 1* 1: L cAsoY Wo Prepa, :d by — •' 20' U.S. DEPARTMEN r OF COMMERCE NATIONAL OCEANIC AND AT. OSPHERIC ADMINISTRATION ' )JACU! \ IPECIAL$TUDE5 BRANCH.OFFICE OF 11 DROLOGY. NATIONAL WEATHER SERVICE . / ( •_7 •° .(LI1 0 — — I_I 20_35 0 '• 118' 45' • 30' • 15' 117° 45' 30' , 15' , 1160 amm U.. - U U•• S U•S•U ..lUUUU. ••..••• u. Nan LO 0.8 0.7 0.6 05 OA I . 0 DISCHARGE (C. F S.) EXAMPLE: Given: Q: 10 S: 2.5% I. Chart gives: Depth 0.4, Velocity 44 fp.s / I . SAN DIEGO COUNTY GUTTER AND ROADWAY DEPARTMENT OF SPECIAL DISTRICT SERVICES DISCHARGE—VELOCITY CHART .I DESIGN MANUAL . 0 APPENDIX APPROVED . DATE I2//9 L TABLE 2 RUNOFF COEFFICIENTS (RATIONAL METHOD) DEVELOPED AREAS (URBAN) . . . . . .. . . . . L: . . . . . . . . ... ..Coefficiént,C So, I Group M. Land Use . . . ... . A B C D Residential .. Single Family . .: ., . .45 .. .50 .55 I . . Multi-Units 45 50 60 70 J Mobile homes 45 50 55 65 I Rural (lots greater. than 1/2 acre). . .30 35 .40 . .45 Commerci al (2) .. .. . .... - .70 1 .75 1 .80 .85 -. . . . 80% Impervious: .. .. . . . . . . ... . . . . . . .. Industr,al(2) 80 85 90 95 90% Impervious I NOTES Soil Group maps are available at the offices -of the Department of Public Works .(2)Where actual, conditions deviate significantly, from the tabulated impervious-' ness values of 80% or.90%, the values given'for.coefficierit C. may be revised. . by multiplying 80% or 90% by the ratio of actual imperviousness to the I ... tabulated imperviousness. However, in' no case shall the final coefficient be less than 050 For example Consider commercial property on D soil-group Actual imperviousness' 50% . . ., . .. . , P Revised Tabulated imperviousness. 80% 80. . c LO x 0.85 0.53 P I :' IV-A-9 1 . ' . . .. . . . . ,. .. APPENDIX IX-B Rev. 5/81 2 ..... I X&V V '•' ;'. 7DO /00 I -540 SOD \ 100 4 70 • co I 3 I 200 2 3D I 20 \ /8 3000 I j_O • ID 2000 \ /2 \ I 3D NOTE WX FOR NATURAL WATERSHEDS /2D B V . 20 ADD TEN MINUTES TO •' /000V 7 : . V , COMPUTED TIME OF CON- CENTRATION.. 900 800 1 eaD V . /0 SAN DIEGO COUNTY V ' NuMu.,rrT1 rv,( UtItJMINMI ION DEPARTMENT OF SPECIAL DISTRICT SERVICES . OF TIME OF CONCENTRATION (Ic) FOR NATURAL WATERSHEDS I ' . DESIGN MANUAL V V APPROVED V DATE APPFPJflY V-A 11—GG '2 600 (3) I - 500 EXAMPLE 8 10 V •' • . 0 . "-8. 400 .280. 0'9cf, 7V.V_VVV•V - 7 •' - 0/8 15 cfi/t'. " 8 V V V 1 9 300 left 6 V V 5 -6 V - 8 20 (2) 1.90 . 3.8 V , V •V V (3) V 25 4.1 . - ..V V ' ' V V V _______ - 4 V V I . V V V •' V V V -4 Or CL 2 60 50, 1.5 V . LLj V V V V V Z V -40 , , V V 1•5 - V V , • V $•5ILA- V V V V V :LL V ' • V ' V ' ' V - 4 'V ' ' V - 30 , V V V, o x .. V V 20 V V V ' V 1.0 . V V LL 0 - ' V V; — -1.0 -LO e 3 Angle of vring oll 10 w r: ILL .: : i , V V 40 V V V V li!. SCALE WING WALL 1-6 0 FLARE I ,, 30' to 75. 90or'd -.6 , V - (3) . 0 (.at.ns.ons 2 cud..) V V V ' V V V _5 _•5, V to vs. scale (2) or (3) pio).ct IIO?.ZO.IIOtly to Scot. (l) ti,.. vs. straight inclined h.,. I6?OOQII , . -.4 V V V . V ' - 0 and 0 sc0.s,or ,.,.rS. as V IISt?OtIdV I V -.8, V 'V '' ', . ' -.4, -.4' V V V —1 -30 HEADWATER DEPTH ,. V 'FOR BOX CULVERTS V '. WITH INLET CONTROL, V V OUOEAu O Ps.0 ROADS JA?. 963 , V :- "I 18OF 193 I — lilt) 1 .. . . ;: ... ... -,80 .. -10000 -168 :8000 EXAMPLE (I) (2) (3) G. 000 '5.000 144 0 • . -.i32 . -4000 4. 0 I..' . . -3000 ,. -5 —.4 • . - 120 .. . . . .. 0 0 0 - -2000- - . • - —4 .— - 3. . .. — 108 I - °i. I' - 96 - iOoo - . -800. 0 --- I. • S0 -84 .. .. --600 . 0• 2T . 0 -500 400 - L - 2. . --W i 300 0• - 0 •• -.5 - - 1.5 • S S 4/1 __ . S -60 - 200 .. . -S - . . -. I — -. . .5. -00 0• too . 0 • 5 ta > 48 -- t-80 S. . •S . 5, - - 12 - to . :.• - - . - -1.0 -1.0 — .1). 0 -• . - 0 u'50 - SCALE- ENTRANCE . 0 - - - -- S - 40 0- - TYPt. IAJ - 36 -.9. • - 30 •- :s.r. ódq. ftli 5 33 •0 S •t — S. -20 . - 6 S -30 55; 0• -.6 5 0 - Gria.. end ZT - -. • -: - to..7_L..L- - -. ---- S 7 I 24 T 8 - 6 Ti ii tC.ti (2) • (3) p •icl I . • -.2% 5 S 5 • Iio.izo.,Otly to 9 rate (41. then S - . - iii oDolqt cI.id 644 tftoqtt - . • . S 0 • - S S S 0 • S o end 0 •CO'.*• O II.4 at . - - - • - .6- • ,. Il.steoI,d. - .6 - - - rIB - - •, : . . • -- 5 S 5 if 2 W0 - + L 30 90 1 outlet L L diameter D,* 0 0\- I 70 20 6 60 OR/ 50 co E 20 10.9 rIj 0.8 10 C4 10 V CL 1 ___ __ __ __ co CL, to 3 5 10 20 50. 100 200 500 1000 Discharge, ft3/sec I I I I I III I I I I .1. Ill I I 0.1 0.2. 0.30.4 0.6 0.8 ) 2 3 4 .5 6 78-10 15 2025 I : Discharge. m3/sec Fig. 7.45 Design of riprap outlet. protection from a round pipe flowing full, rninn1u. I I tailwater conditions (6, 14) I to find the riprap size and apron length. The apron width at the pipe end shuld ' be 3 times the pipe diameter. Where there is a well-defined channel immediately downstream from the apron, the width of the downstream end of the apron should be equal to the width of the channel. Where there is no well-defined chan- nel immediately downstream from the apron, minimum tailwater conditions apply and the width of the downstream end of the apron should be equal to the pipe diameter plus the length of the apron. EXAMPLE 7.4 Riprap Outlet Protection Design Calculation for Minimum I - Tailwater Condition . Given A flow of 6 ft3/sec (0.17 m3/sec) discharges from a 12-in (30-cm) pipe onto a 2 1 pet grassy slope with no defined channel. Find: The required length, width, and median stone size d,5,o for a.riprap apron. 4 L IPC 1D00 . .. .. I / *Aft/±7h1/± IOO/- cf' 90 80 7/_ 20 A/ J 1 01 : I 70 is 50 Ca V to 40 _A b _ ___ 10 —(—r H : 0.8 E • . / * b / I I I •0.7 20 b 0. 10 C6 q cc 1 10 3 . 5 .10 20 50- 100 200 500 1000 0*scharge ft3/sec I I 11111111 1 11111111 III .1 .2 .3 .4 .5.6.7.8.91 . 2 3 4.5678 10. 15 20 25 I . . . . . . . Discharge. m3/sec Fig. 7.46 Design of riprap outlet protection from a round pipe flowing full;- mAim rum .tailwater conditions. (6, 14) I Solution.. Since the pipe discharges onto a flat area with no defined channel, a mini- mum tailwater condition can be assumed.. . . . ., . 1 .By Fig.-7.45, the apron length L and me&aü stone size d in are 10 ft (3 ) and 0.3 ft (9 cm), respectively. The upstream apron width W,, equals 3 times the pipe diameter D. W1 =3XD4, 1 ... . . . 3(1 ft) = 3.ft: (3(0.3 in) .0.9 in] . . . . • The downstream apron width Wd equals the apron length plus the pipe diameter. . . . I =lft±l0ft=llft* I Note: When a concentrated flov is discharged onto a slope (as in this example), gui: lying ••. . •.. can occur downhill from the outlet protection. The spreading of concentrated flow I . .- •.. .. : . CONSTRUCTION MPSTERIAU SECTION 200 -ROCK MATERIALS 200-1.1 General (p. 66) Adds "Alternate Rock Materials -Type "S" as In Section 400 may be used unless specifi- cally prohibited in Special Provisions". 200-1.6 Stone for Riprap (p. 69) Adds "The individual classes of rocks used In slope protection shall conform to the followings PERCENTAGE LARGER 1HPN' CLASSES Rock 1/2 1/4 No. 2 No.3 Sizes 2 Ton I Ton Ion Ton Backing Backing 4Ton 0-5 7 Ton 50-100 0-5- I Ton 95-100 50-100 0-5 1/2 Ton - 50-100 0-5 1/4 Ton 95-100 - 50-100 200 lb . 93-100 -. 15 lb 95-100 0-5 25 lb 25-75 0-5 5 lb 90-100 23-75 I lb ' 90-100 'The amount of materiel smaller than the smallest Filter-Blanket Upper Layer(s) opt, I0pt.2 • . Vol. Rock Riprap Sec. Sec. . Lower Ft/Sec Class Thick- 200 400 Opt 3 Layer (I) (2) ness "1" (4) (4) (5) (6) • No.3 Back- 6-7 ing .6 3/16" C2 0.0. -- No.2 ' Back- 7-8 ing 1.0 1/4" 63 : 0.0. Fec-. 8-9.5 ing '1.4 3/8" -- 0.0. 3/4", 11/2" 9.5-111 Light '2.0 1/2" - P.B. 1/4 i 1/2" 11-13 Ton 2.7 3/4" -- P.S. Sand 3/4", 1/2 ' I 1/2" 13-13 Ton 3.4 IN -- P.S. Send 15-17 I Ton 4.3 I 1/2" -- Type B Sand 17-20 2. Ton 5.4 2" -- 'Type B ' Sand size listed In the table for any class of rock slope Practical ue of this table is limited to situations protection shall not exceed the percentage limit ' where "T" is less than D. ' listed in the table determined on a weight bails , Comp Hance with the percentage limit shown in the (I) Average velocity in pipe or bottom velocity in table for all other sizes of the individual pieces energy dissipator, whichever Is greater. of any class of rock slope protection shell be de- termined by the ratio of the number of individual ' (2) If desired riprap and filter blanket class is ' pieces larger than the smallest size listed In the - not available, use next larger class. table for that class. a m... . _ - - - _• - - ' - __ __ 4 - 5 Filter blanket thickness • I Foot Cr "1", which- SECTION 201 -CONCRETE, MORTAR AND RELATED WTERiALS ever is less 201-1.2.1 Portland Cement (p. 78) '. Standard Specifications for Public Works Con- struction. ' - First paragraph,' first sentence emend to read:"All A cement to be used or frnished shall be low alkali, •D.0. '• Disintegrated Granite, I P44 to 10 ,.' and shall be either Type I or Type II portland cement conforming to ASTP4 C ISO, or Type lP (MS). portland - P.B. • Processed Miscellaneous Base pozzolan cement conforming to ASPI C 595, unless otherwise specified " Type B • Type- B bedding material, (minimum 75% crushed partIcles, 100 passing 2 1/2" sieve, 101.-1.20 Water (p.,79) 10% passing IN sieve) Second paragraph replace "1,000 ppm (mg/I) of guI- Sand 73% retained on 1200 sIeve fates" with '9,300 (mg/I) ppm of sulfates". 4200-1.7 Plastic Filter Fabric (p.-70) Third paragraph replace "800 ppm (mg/I) of sulfalis" with "1,300 (mg/I) ppm of sulfates". For filter fabrics adjacent to granular materials containing 50 percent .or less by weight fines (minus, (b) Air-entralnlng Admixtures'- No 200 mater Ia I): Last paragraph pmend to read I "A tolerance of plus or minus 1-1/2 percent is allowed.' The air content 83 percent size of material (em)' , ' , , ..of freshly mixed -concrete will be determined Califor- ) I nia Test Method No. 504." EOS(em) 201-10.3 , Concrete Consistency (p. 02) C,en' area not to exceed 36 percent. Second paragraph deletes "and sh'ól I not exceed For filter cloths adjacent to all other soils: amounts shown-.In following tablet". Also, delete - table. (I J.EQS no larger than the opening In the U.S. Standard Sieve No. 70. '. ' , 201-1.4.3 Transit Mixers (p. 83), (2)" 4eñ area not to exceed 10 percent. ' , Add after listing of information for veighmaster's certificate': "Transit mixed concrete may be certl-, No cloth specifiód'should have an open area less than fled by ml* design number provided a copy of the mix 4 percent or an equivalent opening size (EOS) with proportions are kept on file at the plant loca- . openIngs smaller than the opening In a U.S. Standard tion for a period of 4 years after the use of the Sieve Size No. 100. When possible, it Is preferable mix". to specify a cloth' with openings as large as allowa- ble by the criteria. , " . 0201-3.0.1 Water Stops (p. 90) Supplier shall certify that filter cloth-mots Corps ' Water stops to be placed in joints in concrete during . 'of Engineers' guide specification CE-1310. Plastic , , ' construction to prevent the passage of water through filter cloth shall be installed per manufacturer's them, shall- be either fabricated from a plastic con- specifications. . pound, the basic resin of which shall be polyvinyl chlorIde or sheet metal Metal may be copper, lead, L000.C. - - . CROUP - 5014.5 HINICH 2NcILTMTIw PATES EVEN V$N TN0N0L$4.V'4dOTT(0• CO4ZSTPC 011crLv OF O((P WILL TO 110155IV0tv DM2140 0A14 AIC/ON GRAVEL. ONOSO SOILS A $IC.i ONTO a' 1A11A TUIGIQSSION AND VJ4.O RESULT IN A LW PURI PO1IPIT IAL. pour a SOILS UVINO (MT( P4rluTMTION 0(4(5 WNOI TNONO4MLY *4TUO. C615?4IC CIlIttT Of ,so0(MT( I' Y 0(1' TO 01tP. (M1(LV '44.'. TO '4 uNOo 1.4. ol SOILS LIT- N000UT(1Y ,IU( TO MODEVATILT COI 1110U*LS. 11450 5011.5 NAVE A PKIDIVATE Mfl Or WRTIN TA .NZ$SlOL. ., • 5 0 _ £4 t 40 40 rat v PF ow K. • .. P4C AN Ji SAN DIEGO COUNTY • .OF DE PT * OFSPECIAL DISTRICT SERVICES . - CONTROL DIVISION DESIGN MANUAL SOILS MVZ'C 51.511 Io'lLT'.AlIo' RATES .,O. THa'O1Lv -rrn • or (IS SOILS IlITY A AlSO T#IST JAP5555 TI( O45:1:.IAO.n 141(.T 4-; c SOILS 111TH P'001ONT(LS 4210 TO 111.0 T(TTUL( 140. Ste.' I rjtTc.si-. \ . .. •, SOILS HAVE £ 5(0. asic or 1151(0 7as,535510: - .. SOILS IOAVIOC V000 5(0 IL I TA TI '.4(5 TiII usa T( SISIST SO I CL AS S I F IC 1T I ON S .a(ry Of (I) CLAY 552(5. :IT• & 045-. S-41u1115. o-i-IiI 1(01*1401 1*11* TANL(: 131 5321$ ii'- 5ty It cs.s,..s .........s.:IT--- -:5- .-y; .-, -c ,7:.s Y-: . -. 5YS.\ •• \ '4 -. .. N - .).PPROVEC . . . ---S. i*rAC( AND (&) 5'L( OIL (r .0-. 4 I0(vI A VERY SLOt ONTO 0' U TOO 70.0' S - OWl I II APP IX - C 2 - '-: . . - ... . . . ( - - San Diego County Rational Hydrology Progrin CivilCADD/CivilDESIGN Engineering Software, (C) 1990 Version 2.3. Rational method hydrology program based on San-Diego County Flood'Control Division 1985 hydrology manual Rational Hydrology Study : Date: '2/ 1/91. ---------------------------------------------------------------------- EL CANINO REAL/PALOMAR AIRPORT ROAD. 100 AREA BASIN STUDY . ', . '• FILENAME: ELCAN1 L 209,4 JOB# 10365 " : 2/1/91 . . , ********* Hydrology Study.Control Information ********** Rational hydrology study storm event year is 10 0 Map data precipitation entered: 6 hour, precipitation(inches)= 1.800 24 hour precipitation(inches) = 3.100. Adjusted 6 hour precipitation (inches) = 1.800 P6/P24 = 58.1% San Diego hydrology manual 'C' values used Runoff coefficients by rational method I .N P U T D A T A L I S T I N G ************ Element Capacity Space Remaining = 332, ' Element Points, and Process used between Points Number Upstream - Downstream ' Process 1 100.000 . 101.000 Initial Area 2 ' 101.000.. 102.000 , ' Street Flow + Subarea 3 ' 102.000 102.000 Confluence 4 . . 130.000 131.000 Initial Area '5 .131.000 ': 102.000 Street Flow + Subarea - 6 ' '102.000 ' 102.000 Confluence 7 102.000 ', 103.000 Pipeflow Time(user inp) 8 103.000 103.000 Confluence 9 , . 110.000 . 111.000 • Initial Area .10 ' 111.000' 103.000 . Street Flow + Subarea 1.1 ' . 103.000. • 103.000 ' • Confluence 12 ' . ' 120.000 • , 121.000 Initial Area 13 •' '1-21.000 . ' . 103.000 Street Flow+ Subarea 14 103.000 ' 103.000 . Confluence . 15 : 103.000 . ' 104.000 , Pipeflow Time(user inp). 16 . 104.000 .104.000 Main Stream Confluence 17 150.000 . 151.000 , Initial Area 18 151.000 • 152.000 • :Street Flow + Subarea 19 • ' 152.000 152.000 Main Stream Confluence 20 ' • 140.000 ' . 141.000 Initial Area 21 • 141.000 . • 142.000 Street Flow + Subarea 22, 142.000 '152.000 Pipeflow Time(user inp) 23. ' 152.000 152.000 - , Main Stream Confluence 24 152.000 , 153.000' • .Pipeflow Time(user inp) 25 " 153.000 ' 153.000 Main Stream Confluence 26 160.000 ' ' 161.000 Initial Area 27 • 161.000 . , 173.000 • Street Flow + Subarea I I . I 1 28 173 000 173 000 Confluence 29 . ' 170.000 171.000 Initial Area. ,' . , 171.000 , 172.000 -. - Street Flow + Subarea . t. . '. 30 31 172 000 173 000 Pipeflow Tiine(user inp) '--''32 . -173. 000 .- .. 173.000 Confluence- 33 173 000 - 174.000 Pipeflow Time(user inp) I 34 - . -- 174.000. . '. - - -175.000-- ' - 175.000 -Pipeflów Tixnè(user .inp)' -: 35 - -. 175.090 ,- ' Main Stream Confluence- End of listing S I I Ii I I U I I I I:. 1 1, San Diego County Rational Hydrology Program Cxvi1CADD/CivilDESIGN Engineering Software, (C) 1990 Version .2 .3 Rational method hydrology program based on San Diego County Flood Control DivisiOn 1985 hydrology manual Rational Hydrology Study Date 2/ 1/91 EL CAMINO REAL/PALOMAR AIRPORT ROAD 100 AREA BASIN STUDY FILENAME: ELCAN1 L 200,4 JOB# 10365 2/1/91 Hydrology Study Control Information. *********•* Rational hydrology study. storm event year is 10.0 Map data precipitation entered: . . . .. . 6 hour, precipitation(inches) 1.800 24 hour precipitation(inches) = 3.100 • . Adjusted 6 hour precipitation (inches) = 1.800 P6/P24 = 58.1% San Diego hydrology manual 'C' values, used Runoff coefficients by rational method S 'Process froinPoint/Station .100.000 to Point/Station 101.000. **** INITIAL AREA EVALUATION User specified'C' value of .0.690 given for subarea Initial subarea flow distance = 300.00(Ft.) Highest elevation=. 318.30(Ft.) Lowest elevation.= 316.55(Ft.) . . Elevation difference -Time of concentration calculated by the urban areas overland flow method (App X-C) = 15.30 mm. TC = [1.8*(1.1-C)*djstaflce.5)/(% slope(1/3)1 TC = [1.8*(1.1-0.6900)*(300.00.5)/(. '0.58.(l/3)]= 15.30 Rainfall intensity (I) =. 2.305 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C= 0.690 Subarea runoff = 1.432(CFS) •• . Total initial stream area - 0 900(Ac ) Process from Point/Station -. 101.000 to Point/Station 102.000 .**** STREET FLOW TRAVEL TIME + SUBAREA FLOW. ADDITION. **** Top of street segment elevation 316 550(Ft ) End of street segment elevation = 311.350(Ft.). Length of street segment = S 630.000(Ft.) .. . Height of curb.above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) • . Distance from crown to crossfall grade break •= 51.500(Ft.) Slope from gutter to grade break. (v/ht) = 0.087. • . • Slope from grade break to crown (v/hz) • .= 0.020 . • Street flow is on [1] side(s) of the street I ., 1 I 1 I IR Distance from curb to property.line = 'lO.00O(Ft..) Slope from curb to property line (v/hz) Gutter width = l.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N' from grade break to crown =. 0.0150 Estimated mean flow rate at midpoint of street = 2.553(CFS) Depth of flow = 0.340(Ft.) . Average velocity = 2.238.(Ft/s) .. . StreetflOw hydraulics at midpoint of street travel: Halfstreet flow width = '10.189(Ft.) : Flow veloôity = 2.24(Ft/s) . . Travel time =. 4.69 mm."TC = 19.99 mm. Adding area flow to street .. User specified 'C! value of.0.760.given for subarea:: Rainfall intensity = . ' 1.940(In/Hr) for a 10.0 year storm. Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = Subarea runoff ' 2.079(CFS) fOr 1.410(Ac.) Total runoff = . 3.511(CFS) Tot alarea = . 2.31(Ac.) Street flow at end of street-3.511(CFS) Half street flow, at end of street = 3.511(CFS) Depth of flow = 0.371(Ft..), . . Average, velocity = 2.378(Ft/s) Flow width (from curb towards crown)= 11. 720(Ft.) 0.760 ++++++++-f++++++++++++++++±++++++++++++++++++++++++++++++++++±+++++++.+ Process from Point/Station 102.000 to Point/Station 102.000 CONFLUENCE,OF MINOR STREAMS -**** Along Main Stream number: I in normal stream number 1 Stream flow area = 2.310 (Ac.) .. . Runoff from this stream '3.511(CFS) . Time of concentration= :19.99 mm. •, . . I .. Rainfall intensity = 1.940(In/Hr) . . Process from Point/Station ' 130.000 toPoint/Station ' 131.000 **** INITIAL AREA EVALUATION I , ' User specified 'ç"value of 0.780 given for subarea Initial subarea flow distance = 200.00(Ft.) Highest elevation = 314.60(Ft.). Lowest elevation = 313.90(Ft.) Elevation difference ' 0.70(Ft..) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.56 mm. ' TC = [1.'8*(1.1-C)*distance.5)/(% slopé(1/3)] , TC = (1.8*(1.1_0.7800)'*(20000.5)/(' 0.35'(1/3)]:= 11.56 Rainfall intensity (I) = '2.762 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.780 Subarea runoff = . 0.905(CFS) . . . . Total initial stream area = .. 0.420(Ac.) I. . . Process from Point/Station 131.000 to Point/Station 102.000 **** STREET FLOW TRAVEL TIME +, SUBAREA FLOW ADDITION **** ~7, Top of street segment elevation = 313.900(Ft.) '. End-of street segment elevation = 311.350.(Ft.) Length of street segment 340.000(Ft.) Height of curb above gutter flowline = '. 6.0(In.) t Width of half street (curb to crown) = 53.000(Ft..) ' Distance frbm crown to crossfall grade break 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 I .Slope from grade break to crown (v/hz) = 07.02'0. Street flow.is'on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to 'property line (v/hz) = 0.020 S Gutter width = 1.500(Ft.) ., Gutter hike from flowline = 2.'OOO(In.) Manning's Win gutter = 0.0150 . Manning's'N from gutter to grade break = 0.0150 E Manning's N from grade break to crown = 0.0150. stimated mean flow rate at midpoint of street'= '1.778(CFS) Depth of flow = 0.313(Ft.). Average velocity ,= 2.020(Ft/s) . Streetf low hydraulics'át midpoint of street travel: Halfstreet flow width = 8.818 (Ft.) Flow velocity = 2.02 (Ft/s) Travel time = 2.81 mm. TC 14.36 mm. ' Adding area flow to street . - I , User specified 'C' value of 0.780 given for subarea " Rainfall intensity = 2.401(In/Hr) for a . 10.0 year'storm' - Runoff coefficient used for sub-area, Rational inethod,Q=KCIA, C = 0.780 Subarea runoff = 1.517(CFS) for ' 0.810(Ac..) I Total runoff = . 2.422(CFS) Total area = 1.23(AO.) Street flow at end of street . 2.422(CFS) Half street flow at end of street = ' .2.422(CFS) I Depth of flow = 0.340(Ft.) . Average velocity = 2.132(Ft/s) Flow width (from curb towards' crown)= 10.166(Ft.) Process' from Point/Station 1 102.000 to Point/Station • 102.000 CONFLUENCE OF MINOR STREAMS Along Main Stream number: 1 in normal stream number 2 I. Stream flow area' = 1.230(Ac.) Runoff from this stream = . 2.422(CFS) Time of concentration '= 14.36 min. Rainfall intensity = 2.401(In/Hr) S I Summary of stream data: • S S S Stream Flow rate TC No. (CFS) S (mm) 1 • ' 3.511 . 19.99 2 2.422 14.36 Qmax(l) = S 1.000 * ' .000' * 0.808 * , Rainfall Intensity (In/Hr) 1.940 2.401 3.511) + S 2.422) + = 5.468 Qmax(2) 1.000 * 0.719 *' 3.511) + S 1.000 * 1.000 * 2.422) +. •S 4.945 Total of 2 streams to confluence: S Flow rates before, confluence point: 3.511 2.422 Maximum flow rates at confluence using above data: 5.468 4.945. 'S Area of streams before confluence: 2.310 1.230 Results of confluence: Total flow rate = 5.468(CFS) Time of concentration 19.989 mm. Effective stream area after confluence 3.540(4c.) Process from, Point/Station 102.000 to Point/Station .103.000 PIPEFLOW TRAVEL TIME' (User specified size) **** Upstream point/station elevation = 308.50(Ft.) Downstream' point/station elevation = 307.53 (Ft.) Pipe length = 104.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.468(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow ' 5.468(CFS) ' Normal flow depth in pipe = 8.18 (In.) Flow top width inside pipe = 22.75(In.) Critical Depth = 9.90(In.) ' Pipe flow velocity = ' 5.78(Ft/s) S Travel time through pipe = ' 0.30 min.' Time -of concentration (TC) '= 20.29 mm. ++++++++++++++++++++++-F+++++++++++++++ ±++++++++++++++++++4-++++++++++++ Process from Point/Station 103.000 to Point/Station 103.000 **** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 1 in normal stream number i Stream flow area = 3.540(Ac.) Runoff from this stream = '5.468(CFS) S Time of'concentration = ' 20.29 mm. Rainfall intensity = 1.922(In/Hr) 5 5 ++++++++++++++++++++++++++++-f++++++++++++++-I-++++++++++++++++++++++++++ Process from Point/Station . S o•oop to Point/Station 111.000 INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea . Initial subarea flow distance = 300.00(Ft.) Highest elevation = 318.30(Ft.) .5 Lowest elevation' = 316.55(Ft.) S Elevation difference = 1.75(Ft.) S Time of 'concentration calculated by the urban areas overland flow method (App X-C) = 7.46 mm. S TC = [1.8*(1.1_C)*distance.5)/(% s1ope(1/3)] S TC = [1.8*(1.1-0.9000)*(300.00.5)/( 0.58(1/3))= 7.46 Rainfall intensity (I) = 3.663 for a 10.0 year storm ' S Effective runoff coefficient used for area'(Q=KCIA) is ,C = 0.900 Subarea runoff = ' 1.418(CFS) S Total initial stream area = S 0.430(Ac.) S u Process from Point/Station 111.000 to Point/Station , 1.03.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 316.550(Ft.) End. of street segment elevation = 311.350(Ft.) Length of' street segment = •630.000(Ft.) '• Height of curb above gutter flowline 6.0(In) . . Width of half street (curb to crown) = 53.000 (Ft.). Distance from crown tocrossfall grade break' '= 51.500(Ft'.) Slope from gutter to grade break (v/hz'). = 0.087 : Slope from grade break to crown (v/hz) = ' 0.02,0 Street flow is on [1] side(s) of the street . 'Distance from curb to property line .=. 10.000(Ft.) Slope from curb to property line (v/hz). = ' 0.020 Gutter width = l500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N. in gutter = 0.0150 Manning's N from gutter' to grade break = 0.0150 . . Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = .'2.918(CFS) Depth,of flow 0.353 (Ft.) . '. . Average velocity 2.295(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 10.811(Ft.) . . Flow 'velocity =. 2.29(Ft/s) . . Travel time = 4.58 mm. TC = , 12.04 min. Adding area flow to street User specified "C' value of 0.900 given for subarea ' Rainfall intensity = . 2.691(In/Hr)' for a 10.0 year storm. Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 2.204(CFS) for 0.910(Ac.) Total runoff = 3.621(CFS) Total area = '1.34 (Ac.) Street flow at end of street = , 3.621(CFS) Half street flow at end of street = 3.621(CFS) Depth of flow = ' .0.374 (Ft.) Average velocity = . 2.393(Ft/s) Flow width (from curb towards crown)- 11..877(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station ' 103.000 to Point/Station. 103.000 **** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 1' in normal stream number 2 Stream flow'area = 1.340(Ac.) . Runoff from this stream = ' 3.621'(CFS) Time of concentration= '12.04 mm. . . . . Rainfall intensity= 2.691(In/Hr) ' Process from Point/Station 120.000 to Point/Station 121.000 **** INITIAL AREA EVALUATION User specified 'C' value of 0.900.given- for subarea Initial subarea 'flow distance =' 200.00(Ft.) Highest elevation = . 314.60'(Ft.) ' . . Lowest elevation = 313.90(Ft.) I Elevation difference = 0.70(Ft.) Time of concentration calculated by the urban . areas overland flow method (App X-C) .= 7.22 mm. TC = .[l.8*(1.1-C)*distance.5)/(% slope(1/3)] I TC='[l.8*(l.l-0.900ô)*(200.00.5)/( 0.35(1/3))= 7.22 Rainfall intensity' (I) = 3.740 for a 10.0 year storm . Effectiverunoff'coefficient-used for area.(Q=KCIA) is C = 0.900 I . Subarea runoff = . 0.976,(CFS) . Total initial stream area.= . 0.290(Ac.) . .. I Process from Point/Station 121.000 to Point/Station 103.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** S Top of street segment elevation = 313.900(Ft.) End of street segment elevation = 311.350 (Ft.) I Length of street segment 340.000(Ft.) . Height of curb above gutter flowline = 6.0'(In.) Width of half street (curb to crown) = 53.000 (Ft.) .Distance from crown to 'crossfall 'grade break = 51.500(Ft.) I-.. Slope from gutter to grade break (v/hz) = . 0.087 Slope from grade break to crown (v/hz) = 0.020. Street flow is on [1] side(s) of the street I . Distance from curb to property line = 10.000(Ft.). Slope from curb to property line (v/hz) =. 0.020 Gutter width 1.500 (Ft.) Gutter hike from flowline= 2.000(In.) I . Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150' Manning's N from grade break, to crown = 0.0150 I . Estimated mean flow rate at midpoint of' street = 1.801CFS Depth of flow'= 0.314 (Ft.) Average velocity = 2.024(Ft/s). I Streetfiow 'hydraulics 'at midpoint .of street travel: Halfstreet flow width = 8.873 (Ft.) • . . Flow velocity = 2.02(Ft/s) . • Travel time = 2.80mm. TC =' 10.02 mm. I .• . Adding area flow .to street . . '. User specified 'C' value of 0.900 given for subarea Rainfall intensity = ' '3.028(In/Hr) 'for a ' 10.0 year storm Runoff coefficient used for. sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = • 1.335(CFS) for 0.490(Ac.) Total runoff = 2.312(CFS) Total area .= 0.78(Ac.) 'Street flow' at end of street = • 2-.312(CFS) Half street flow at end of street = 2'.312(,CFS) Depth of flow = 0.336 (Ft.) Average, . velocity =. 2114(Ft/s) Flow width (from curb towards crown)= 9.955(Ft.) +++++++++++++++++++++++++.+++++ ++++++++++++++++++++++++++++++++++++++++ Process from Point/Station ' 103.000 to Point/Station • 103.000 *** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = • '0.780(Ac.) • . ' Runoff from this stream = ' 2.312.(CFS) • Time of concentration = 10.02 mm. ' ' Rainfall intensity .=* 3.028(.In/Hr) ' - ,•. S '.0 Summary.of stream data: Stream Flowrate TC'. ' Rainfall Intensity No.. O(CFS) •(min) 'S " (In/Hr) 1 5.468 2029 1922 S 2 3621 1204 2691 3 . .. 2.312 ' 10.02 : '. 3.028 Qmax(1) = 1.000* '' 1.000* 5.468) + 0 , S 0 .0.714 * .1.000* . 3.62l + 0.635. * 1.000 * 2.312) •+ . 9.521 . Qmax(2) = 0 1.000* 0.593 * 5.468) 0 •,, . 0 1.000 * . 1.000 k . 3.621) + 0.889 *0 • o 1.000* 2312')+ '''. 8.920 .0 Qmax(3) =' 0 0 ,, •, 1.000.* 0.494 .* •.'5.468).+. 1.000 '• 0.833*. 3.621)•+... .. " . 1.000* 2312) + = . •. 8.028 0 Total of 3 streams to confluence '. Flow rates before confluence -point:, , 0 ' • 0 , • 5.468 3.621 , 0 2..312 . ••. , — . 0 . 0 Maximum flow rates at. confluence using above data: .0 . 9.521 .8.920 . 8.028 ......0 . Area of streams before confluence: . .. 0 ....0 •00 , 0 0 . H .3.540 0 1.340 • . ' .0.780 '' ' .0'' 0 •, Results of., confluence: . .. , : . • .. •' O Total flow rate = 9.521(CFS) Time of' concentration = 20.289 miñ. :. . • . • .• 0 0 Effective stream area after confluence:= . 0 5.660('Ac.)' .. 0• O .Process 'from Point/Station 0 103.000 to Point/Station 1,04.000 O PIPEFLOW'TRAVEL.TIME (User specified size) Upstream point/station elevation=' 307.20(Ft.) 0 , • ' Downstream point/station.elevation . 307.00(Ft.) ' •• , 'Pipe length = ', 15.00(Ft.) ''Manning's N ' 0.013 .0 '.:.''No.., of pipes— 1 . Required pipe flow = • 9.521(CFS). O Given pipe size .=' 24.100 (In.) 0 .0 , ' • ' ' .0 ' ' Calculated individual pipe flow. = 9.521'(CFS) Normal flow' depth,in pipe= 10.02(In.) O Flow top width inside-pipe. 23.67(In.)... : Critical Depth = '13.22(In'.) ,, o,. 0 • —' . Pipe flow velocity'=7.66(Ft/s) •• . 0 ' ' 0 Travel time'throügh pipe=. , 0.03 mm. " ' . . ' . 0 • Time of concentratión(TC) = 20.32 mm. ' . • .0 •' 'Process from Point/Station ......104.000 to Point/Station .0 104.000 .**** CONFLUENCE OF MAIN STREAMS. O The following data inside Main Stream is listed: In Main Stream number: .1 .0 , , , 0 ' • • ,. Stream "f low' area = 5.660(Ac.) : '• Runoff from this stream 9.521(CFS)' I . Time of concentration = -.2 0.32 min.. . Rainfall intensity = . l.920(In/Hr) ' Summary of stream data Stream Flow rate TC Rainfall Intensity No (CFS) (mm) (In/Hr) I 1 9'.52'1 20.32 .1 .920 Qmax(l)' = .. ' •,• .: . ' ., . ' 1.000 .* 1.000 * 9 521) + = 9.521 . Total of 1 main streams to confluence .I Flow rates before confluence point: : 9.521 . •. ' . ' ' . Maximum flow rates at confluence using above data I 9.521 Area of streams before confluence 5.660 . •: , . .. . . ' ' ,' ' ' I Results of confluence:' . . ' . •. . ' ' Total flow rate Time of concentration =' 20.322 min. I . .Effective stream area after c.on'flüènce . ' 5.'660(Ac.) I Process from Point/Station . 150.000 to Point/Station 151.000 **** INITIAL AREA EVALUATION I . User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = .367.00(Ft.) Highest elevation = 395.20(Ft.) I Lowest elevation 381.60(Ft.) '•• ,. . ' . Elevation difference = 13.60(Ft.)' S Time of concentration calculated by the urban I . areas overland, flow method, (App .X-C) .4.46 mm.''., TC = [l.8*(1.l-C)'*distance.5)/(% slope'(1/3)] TC = •[1.8*(1.1-0.9.000)*(367.00.5)/( 3.71(1'/3'))= 4.46 Rainfall intensity (I) = _`5.108 for a 10.0 year storm . ' Effective runoff coefficient used for area '(Q=KCIA) is C ' 0.900 Subarea runoff = . . 2.4'3'6(CFS) Total 'initial stream area = .. , . 0.530(Ac.) I I ' ..Process from Point/Station • . .151.000 to'Point/Station • 152.000 **** STREET FLOW TRAVEL TIME '+ SUBAREA FLOW ADDITION I .'Top of street segment elevation = ' ' 381.600(Ft.) End'of street segment elevation,= 324.000(Ft.) Length of street segment = 1300.000(Ft.) ' •. S Height of curb above gutter flowline. = 6.0(In.) I .. Width of half street' (curb to crown) = 53.000(Ft.) . Distance from' crown to crossfall grade break 51.500(Ft.) , Slope from gutter to grade break (v/hz)= 0.087 . Slope from grade break to crown (v/hz) = ' 0.020 ' . Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500 (Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint -of street = Depth of flow.= 0.353 (Ft.) Average velocity = 5.317(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width 10.810(Ft.) Flow velocity =. 5.32(Ft/s) Travel time = 4.08 mm. TC = 8.53 'mm.. Adding area flow to street 6. 758 (CFS) User specified 'C' value of 0.900 given for Pubarea Rainfall intensity = 3.360(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA,' C = 0.900 Subarea runoff = 5.685(CFS) for 1.880(Ac.) Total runoff = 8.121(CFS)' Total area = 2.41(Ac.) Street flow at end of street= 8.121(CFS) Half street flow at end of street = 8.121(CFS). Depth of flow = 0.371(Ft.) . . Average velocity = 5.509(Ft/s) Flow width (from curb towards crown)= "11.712(Ft.) I Process from Point/Station 152.000 to Point/Station 152.000 **** CONFLUENCE OF MAIN STREAMS **** I .The following data inside Main Stream is listed: .In Main Stream number: 1 ' Stream flow area = . 2.410(Ac.) Runoff from.this stream = 8.121(CFS) I Time of concentration = 8.53 mm. . Rainfall intensity = 3.360(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station •. 140.000 to Point/Station 141.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea. flow distance = 387.00(Ft.) . Highest elevation .= 387.40(Ft.) Lowest elevation = 375.10(Ft.) Elevation difference = 12.30(Ft.) Time of concentration calculated by the urban ' areas overland flow method (App X-C) = 4.82 mm. TC = (1.8*(1. 1-C) *distance .5)/(% slope (1/3)) TC = [l.8*(1.l_0.9000)*(387.00.5)/( 3.18(1/3)]= 4.82 Rainfall intensity (I) = 4.858 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff 2.448(CFS) ' Total initial stream area =' 0.560(Ac.) . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 141.000 to Point/Station 142.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 375.100(Ft.) End'of street segment elevation' = ' 324.000(Ft.) Length of street segment = 1100.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown=. 0.0150 Estimated mean flow rate at midpoint of street = 6.558(CFS) Depth of flow = 0.348(Ft.) Average velocity = 5.389(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.557(Ft.) Flow velocity = 5.39(Ft/s) Travel time = 3.40. miñ. TC = 8.22 mm. Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity = 3.442(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational lnethod,Q=KCIA, C = 0.900 Subarea runoff = 5.824(CFS) for 1.880(Ac.) Total runoff = 8.272(CFS) Total area = 2.44 (Ac.) Street flow at end of street = 8.272(CFS) Half street flow at end of street = 8.272(CFS) Depth of flow = 0.370(Ft.) Average velocity = 5.635(Ft/s) Flow width (from curb towards crown)= 11.685(Ft.) ++++++++++++++++-f+++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 142.000 to Point/Station 152.000 **** PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation = 316.05(Ft.) Downstream point/station elevation = 314.14 (Ft.) Pipe length = 108.00(Ft.) Manning's'N = 0.013 No. of pipes = 1 Required pipe flow = 8.272(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 8.272(CFS) Normal flow depth in pipe = 9.97 (In.) Flow top width inside pipe = 17.89(In.) Critical Depth = 13.37 (In.) Pipe flow velocity = 8.24 (Ft/s) Travel time through pipe = 0.22 mm. Time of concentration (TC) = 8.44 mm. Process from Point/Station 152.000 to Point/Station 152.000 I I I I Li I I U I I I I I I I I I I . ****, CONFLUENCE OF MAIN STREAMS ** . '• 5 . . I .The following data inside Main Stream is listed:. In Main Stream number: 2 Stream flow area = 2 440(Ac ) I .Runoff from this :stream'= 8.272(CFS) n . .. . . Time of cocentration = .. .8.44 mi. • ', ., '. . . Rainfall intensity .= 3 384(In/Hr) Summary of stream data I Stream Flow rate TC . . Rainfall Intensity . .' No (CFS) (nun) (In/Hr) 1 8121 8,53 . 3360 2' . _8 272 ,., .8.44 .. . .. '. 3.384 . .. •' 1 Qinax(l)' 1.000 *' •.' 1.0.00 *'. 8.121) 0.993 * l.o.00 * ', 8.272) + = 16.334 . . I Qmax(2)'= . '• ' : '... . . . .1.000 .* 0.989 * . 8.121)+ 1.000 * '.1.000 8.272) + 16.303 . I Total of .2 mainstreams to confluence: . .. . Flow rates before confluence point: . ' . -. .. •. . . . 8.121 .,. 8.272 . '" . . . . .. .. I . Maximum flow rates at confluence using above data: ., .. 16.3.34 16.303 '' • . : , ' Area of streams before confluence: ,• •:. . . .. .. ' ' 2.410 . •. 2.44,0 Results of confluence: . ' , .. • ' . ". '. '.. , . - I Total flow rate =' . 16.334(CFS) Time of concentration = 8.532 mm.' .' .. ' "' • ' Effective stream area after confluence =. ,4:.850(Ac.). I Process' from Point/Station . ,' 152.000 to' Point/Station' 153.000 PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation = 319.00(Ft.) .Dostream point/station elevation = '.314.00(Ft.) . . . Pipe length. ,= . 100.00(Ft.) •.Manning's N =0.013 No. of pipes =.1 Required. pipe flow =. . . 16.334(CFS) I . .Given pipe' size ='' . ' 24.00(In'.). Calculated individual pipe flo'w' = ' '16.334(CFS) Normal flow depth in pipe = ' 9.38(In.) I ' . ..Normal top width inside pipe '23 .'42 (In) •' ' Critical Depth = . 17.49(In.) Pipe flow velocity = ' 14.36(Ft/s) Travel time through' pipe = ' 0.12 min.", . '' ' •H ' 5 I . ' Time of concentration (TC) = • '. 8.65 mm. I . +++++++++++++++++++++±++++++++++++++4++++++++++++++++++++++++++++++++. Process from Point/Station. ' 153.000 to Point/Station 153.000 ****.CONFLUENCE OF MAIN STREAMS I .•.:'.'•.'." :,, • I The, following data inside Main Stream is listed: ' .. In Main Stream number: 1 . .. Stream flow area = . . 4.850(Ac.) .. . .. I Runoff from this stream = 16.334(CFS) Time of concentration = .. 8.65 mm. '. Rainfall intensity = .' . 3.331(In/Hr) 1 Summary of stream data: Stream Flow rate TC . Rainfall Intensity No. .. (CFS) . (mm) . . .'; . (In/Hr) .... . 1 . 1.334 8.65 ' 3.331: I Qmax(l) 1.000 * 1.000 * .16.334.)' + = . IS . . Total of .1 main streams to confluence: Flow rates before confluence point: : 16.334 . . . . Maximum flow rates at confluence using above data: I 16.334 ... . . . . Area of streams before confluence: 4.850 I ..,. . . .. ' . 'Results of confluence: Total flow, rate = 16.334'(CFS) Time of concentration = ' 8.648 mm. Effective stream area after confluence = . 4.850(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station , 160.000 to Point/Station . 161.000 INITIAL AREA EVALUATION User specified 'C' value of'O.gOO given for subarea Initial subarea flow distance', = 250.00.(Ft.) I Highest elevatión.= 323.90(Ft.) '. Lowest elevation = .310.50(Ft.) Elevation difference I Time of concentration calculated by the urban, areas overland flow method (App X-C) = 3.25 mm. TC = [1.8*(1.1-C)*distance.5)/(% slópe"(1/3)] I TC = [l.8*(1.1-0.9000)*(250.00.5)/( 5.36(1/3)]=. 3'.25 Rainfall intensity (I).= : 6.258 for a 10.0 year storm Effective runoff coefficient used for 'area (Q=KCIA) is C = 0.900 Subarea runoff = .2.028(cFS) Total initial stream area = '. . ' 0.360(Ac.) I +++++++++++++++.+++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station . 161.000 to Point/Station . 173.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I ' Top of street segment elevation = 310.500(Ft.) 0 End of street segment elevation = 285.200(Ft.) Length of street 'segment = 530. 000(Ft.) R Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000.(Ft.) Distance from crown to crossfall grade break = 51..500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown' (v/hz) = 0.020 I 'Street flow is on (1) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 I Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.844(CFS) Depth of flow = 0.320(Ft.) I Average velocity = 5.162(Ft/s) Streetfiow hydraulics ,at midpoint of Street travel: Halfstreet flow width = 9.143(Ft.) Flow velocity = 5.16(Ft/s) I Travel time = 1.71 min. TC = 4.96, mm. Adding area flow to street User specified 'C' value of 0.900 given for' subarea I Rainfall intensity = 4.765(In/Hr) for a , 10.0 year storm Runoff coefficient ,used for sub-area, Rational inethod,Q=KCIA, C = 0.900 Subarea runoff = 4.288(CFS) for 1.000(Ac.) I Total runoff = 6.316(CFS) Total area = 1.36(Ac.) Street flow at end of street = 6.316(CFS) ' * Half street flow at end of street = 6.316(CFS), Depth ,of flow = 0.343(Ft.) I ' Average velocity = 5.411(Ft/s) Flow width (from curb towards crown) =. 10 . 318 (Ft.) I Process from Point/Station 173.000 to Point/Station 173.000 I **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 1.360 (Ac.) I Runoff from this stream = , 6.316(CFS) Time of concentration = 4.96 min. Rainfall intensity = 4.765(In/Hr) ++++++++++++-f-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station. 171.000. I **** INITIAL AREA EVALUATION **** User specified 'c' value of 0.830 given for subarea .I Initial subarea flow distance = 250.00(Ft.) Highest elevation = 323.90(Ft.) Lowest elevation = 310.50(Ft.) Elevation difference = 13.40(Ft.) I Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.39 mm. TC = [1.8*(1.1_C)*djstance.5)/(% slope'(1/3)] I TC = [1.8*(1.1_0.8300)*(250.00.5)/( 5.36(1/3))=. 4.39 Rainfall intensity (I) = 5.157 for a 10.0 year storm * Effective runoff coefficient used for area (Q=KCIA) is C = 0.830 Subarea runoff'= 1.883(CFS) I Total initial stream area = 0.440.(Ac.),, - I Process from Point/Station 171.000 to Point/Station 172.000 I **** STREET FLOW TRAVEL TIME +' SUBAREA FLOW ADDITION **** Top of street segment elevation = 310.500(Ft.) I .End of street segment elevation = 287.200(Ft.) Length of street segment = 475.000 (Ft.) Height of curb above gutter flowline = . 6.0(In.) Width of half. street . (curb .to crown) 53.000 (Ft.) I .Distance from crown to crossfall grade break = 51.500(Ft.). Slope from gutter to grade break (v/hz)= 0.087 Slope from grade break to crown (v/hz) = 0.020 - I.. Street flow is .on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz)=. 0.020 Gutter width = 1.500(Ft.) . I Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 I Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street= . 3.595(CFS) Depth of flow = 0.294(Ft.) I Average velocity = 4.977(Ft/s) Streetf low. hydraulics at midpoint of street.travel: Halfstreet flow width = 7.874 (Ft.) . Flow velocity = 4.98(Ft/s) . . I Travel time = 1.59 min. TC = 5.98 'min. Adding area flow to street User specified 'C' value of 0.900 given for subarea I .Rainfall intensity = 4.225(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 3.042(CFS) for 0.800(Ac.) Total runoff = 4.925(FS) Total area = . 1.24 (Ac.) I Street flow at end of street = 4.925(CFS) Half street flow at end of street = . 4.925(CFS) Depth of flow= 0.320(Ft.). ,. . I Average velocity = 5.235(Ft/s) Flow width (from curb towards crown)= 9.156(Ft..) I Process from Point/Station . 172.000 to Point/Station 173.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I . Upstream point/station elevation = 283.00(Ft.) Downstream point/station elevation = 281.00(Ft.) I Pipe length = 145.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.925(CFS) Given pipe size = 18.00.(In.) Calculated individual pipe flow = 4.925(CFS) I Normal flow depth in pipe = 7.91(In.) - Flow top width inside, pipe = 17.87(In.) , Critical Depth = 10.25(In.) . . I Pipe flow velocity = 6.59(Ft/s) . Travel time through pipe = 0.37 min. Time of concentration (TC) = 6.35 mm. •. +++ ++++++++ + +++++ +++++ +++++ +++++++ + + Process from Point/Station. 173.000 to Point/Station 173.000 I ****-CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: .1 in normal stream number 2 I . Stream flow area =1.240(Ac.) Runoff. from this Vstream = . 4.925(CFS) Time of concentration .= . 6.35 min. I : Rainfall.intensity = . .. 4.066(In/Hr) . . .. Summary of :stream data:: : . .. V . •. . . Stream Flow rate TC Rainfall Intensity I . No.. (CFS) (mm). . ....... .. . (In/Hr) .... . I. 1 :6316 V . .. V 4.765 . .. 2. 4.,5 . 6.35 . . 4.066 V. . Qmax(1) . I .000 1.000 * 6.3161 + 1 V . ..000 *• 0.782 * . 4.925) + . 10.167. . V Qmax(2) = .0.853 * .1.V000* . ..6.316) + V V I 1 000 * 1 000 * 4 925) + = 10.314 V Total of 2 streams to confluence: I .Flow rates before confluence point: 6.316 . 4.925 .. . . . . • .. . . : . V V Maximum flow rates at confluence usingabove data: I . .10.167 10.314 V V V V Area of streams before confluence: 1.360 . 1.240; Results .of confluence: I Total flow rate= . 10.314(CFS). .Time of concentration = 6.348 mm. V Effective stream area after. confluence:. = V 2.600(Ac.) Process from Point/Station :. 173.000 to Point/Station 174.000 I *** PIPEFLOW TRAVEL TIME (User. specified size) Upstream point/station elevation 280.67 (Ft.) .. . . . I . Downstream point/station elevation =2.8.40(Ft.) V. Pipe length =. .40.00(Ft.) Manning's. N= 0.013 No. of pipes = 1Reqüired,pipe flow = . 10.314(CFS). . V I Given pipe size = . . 18.00(In.) . . . . . . Calculated individual pipe flOw: 10.314(CFS) . V Normal flow depth in pipe = 805(In.) V Flow top width inside pipe. 1790(In.) I . CriticalDepth 14.84(In.) Pipe flow velocity =. 13.48(Ft/s) .. ... . V Travel time.through pipe = . 0.05 min.V., Time of concentration (TC) V mm. ++++++++++++++++.++++++++±+++.++++±+++++++.:,+++++++++++++++++++++++++++++ V Process from Point/Station. 174.000 tO Point/Station .• . 175.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** • V I . Upstream point/station elevation 278.40(Ft.) Downstream point/station elevation = . 276.74(Ft.) . Pipe length = :21700(F't) Manning's N = 0.013 I 'No. of pipes = '2 Requited pipe flow '= 10.314(CFS)' Given pipe size =' 18.'00 (In.) I :Calculated individual pipe flow = 5.157(CFS) . Normal flow depth in pipe := 9.64(In.) Flow top width inside pipe .=.. 17. 95.(In.) .. . . ' . i •. I Critical, Depth =' 1O.49(In.) Pipe flow velocity 5.35(.Ft/s) .. .. . . . . •. 'Travel time through pipe =.. . 0.68 min.•. . ' . . Time of coricentration.(TC) = ' 7.07 I I , Process from Point/Station,. 175.00O ' to Point/Station ..175..000 CONFLUENCE OFMAIN STREAMS The following data inside MainStream is.. listed: I , I . . In Main Stream number: 2'' Stream flow area 2.600(Ac.) Runoff from 'this stream =..' ' 10.314(CFS) I Time of concentration = .7.07 .min. Rainfall intensity .= 3.792 (In/Hr),. Summary of stream data': . '. '. •' ' ' ' ' ' "' " ' I 'Stream ' Flow rate , ..TC. . Rainfall Intensity' No. . (CFS)' ' ., (mm') , ' , .(In/Hr) 1 1 16334 865 3.331 2.- ' .10.314'. , 7.07 , " ' ' ' 3.792 I . ,Qmax(l)' 1.0001* '. 1.000 *, , 16.334)'+ 0.878 * , 'l.00O * .10.314) + = 25.395' Qmax(2) = .1.000 * 0.818 * .16.334) '1.000 * 1.000 * , '10.314)' + = 5 23.675 " S I ' Total of 2 main strearns tb confluence: Flow.rates before' confluence point:"' 16.334 10.314.'.' ' Maximumflow rates 'at confluence using.above data:,' I ' . 25.395 ' 23.675 Area of streams before-confluence,.,- 4.850- 2.600 -' ,., . •' ' 5' ' ' ' ' ' ' 1 Results of confluence:, I ' Total flow rate ,= , .'25.395(CFS) Time of -concentration = ' 8.648 mm.. Effective stream area after confluence = S '' .7.450(Ac.) . End of 'computations, total study area = , ,• 13.11 (Ac.)' I I I San Diego County Rational Hydrology Program I CivilCADD/CivilDESIGN Engineering Software, (C) 1990 Version 2.3 Rational method hydrology program based on I San Diego County Flood Control Division 1985 hydrology manual .Rational.HydrologyStudy Date: 2/ 1/91 EL CAMINO REAL/PALOMAR AIRPORT ROAD S I 200 AREA BASIN STUDY . FILENAME: ELCAN2 I . 1 200,4JOB# 10365 2/1/91 ********* Hydrology Study Control Information ********** I Rational hydrology study. storm event yea - ---------------------------- r is 10.0 Map data precipitation entered: 6 hour, precipitation(inches) = 1.800 24 hour precipitation(inches) = 3.100 Adjusted 6 hour precipitation (inches) = 1.800 I P6/P24 = 58.1% San Diego hydrology manual 'C' values used Runoff coefficients by rational method ************** 1 NP U T D A T A L I S T I N G ************ Element Capacity'Space Remaining = 284 Element Points and Process used between Points I I Number Upstream Downstream 1 200.000 201.000 2 201.000 202.000 3 - 202.000 202.000 4 210.000 211.000 5 . 211.000 212.000 6 .212.000 . 213.000 7 213.000 . 218.000 8 218.000 5 218.000 9 215.000 216.000 10 216.000 217.000 11 217.000 218.000 12 218.000 5 218.000 13 218.000 202.000 14 . 202.000 . 202.000 15 202.000 203.000 16 203.000 . . 204.000 17 235.000 . 204.000 18 204.000 205.000 19 . . 205.000 . 205.000 20 220.000 221.000 21 .221.000 222.000 22 222.000 . 222.000 23 . 230.000 222.000 24 222.000 222.000 25 . 222.000 223.000 26 223.000. 223.000 27 290.000 . 291.000 1 I I L I I I I I Process Initial Area Street Flow + Subarea Main Stream Confluence Initial Area Street Flow + Subarea Pipeflow Time(user inp) Pipeflow Time(user inp) Confluence Initial Area Street Flow + Subarea Pipeflow Time(user inp) Confluence - Pipeflow Time(user inp) Main Stream Confluence Pipeflow Time(user inp) Improved Channel Time Subarea Flow Addition Pipeflow Time(user inp) Main Stream Confluence Initial Area Pipeflow Time(user inp). Confluence . Initial Area Confluence Pipeflow Time(user inp) Confluence Initial Area . 28 291 000 292 000 Street Flow + Subarea 29 ' 292.000. . 223.000 . Pipeflow Time(user inp) 30 223.000 223.000 Confluence . I 31 223.000 .. 205.000 0 Pipeflow' Time (user. 'inp)' 32 205.000, 205 000 Main Stream Confluence 33 270.000 . . 271.000 Initial Area I 34 : 271.000 ''.' 272.000 . ' Street Flow + Subarea' 35 272.000 205 000 Pipeflow Time(user in 36. 2,05.000 . : 205.000 ' Main Stream Confluence 37 205.000 206.000 Pipeflow Time(user inp) I 38 206 000 206.0'00 Main Stream Confluence .39 225.000 ' 226.000 ': Initial Area I . 40 , 41 '. 226.000 . ,. ' .. ; 206.000 , . 206 000. .206.000 . Street Flow + Subarea Main Stream Confluence 42 206.000 207 000 Pipeflow Time(user inp) 43 . 207.000 , '207.000' . 'Main Stream Confluence I 44 '. : ' 280.000 ' 281.000 . Initial Area , .45 , . . . 281.000 , ' 282.000 Street Flow + Subarea .46 ' .282.000' ' 282.000 ' Confluence .' . . 285.000 '286.000., ' Initial Area I. 48 ' 286.000. " .,282.000 ." Street Flow +Subarea , 49 282.000 282.000 Confluence . '50 , 282.000 ., . , 2,07.000 Pipeflow Time(user inp) • I ' 51. 207.000 , ' , ' 207.000 . Main Stream Confluence 52 ' 207.000' ' , 208.000 Pipeflow Time(user inp) 53 ,. ' " 208.000 ' , 208.000: Main Stream Confluence , • 54 240.000 . ' ' '241.000.' ' ' Initial Area I 55 ' 241.000 '252.000 .. Pipeflow Time(user inp) 56 '. . . ' . 252.000 ' 252.000 ,.. Main Stream.Confluence - . 57 58 . ' ' , 251.000 . : 251.000 ' 252.000' . Initia1.Area Street Flow+ Subarea 59 ' .' . . 252.000 '. ' .252.000" •. 'Main Stream Confluence. 60 , ' ' 252.000 , 263.000 , Pipeflow Time(user'inp). 61 , 263.000 ' , , 263.000 MainStream Confluence • 62 ' - 260.000 ' ' ', ' 261.000 Initial Area 63 , '' ' ' 261.000: , . • 262.000 Street Flow ' ,+ Subarea ' 64 . " 262.000' ' ' 263.000 ' Pipeflow'Time(user inp) u 65 ' - 263.000 ' ' ' 263.000 . . Main Stream Confluence 66 , ' , 263.000 ,' ' 264.000 . Pipeflow Time(user inp) ' - 67 . 264.000 ' ' ' 264.000 . Math Stream Confluence 68 '299.900 0 ' 299000 , ' Initial Area U 69 ' ' .299.000 :298.000 • 'Irregular Channel Time • , . 70 ' ,' 299.500. 298.000 ' 'Subarea' Flow Addition 71 298.000 297 000 Pipeflow Time(user inp) • . 72 297.000 ' .. ".297.000. , ' Main Stream Confluence 73 ' - 265.000 .' 266.000 * Initial Area ' I ' '• 74 ' . 266.000 :, ' ' 267.000 .' 267.00O , ' .297.000 . Street Flow + Subarea Pipeflow Time(user inp) 76 'oO 297.000'- . ' 297.000.- , 'Main Stream. Confluence 77 255.000: ' , ' 256.000' Initial Area - 78 :., ' ' 256.000 . .'' , .257.000 Street Flow + Subarea • 79 257.000 0 ' 297.000 ' 0 Pipeflow Time(usér inp) 80 ' ' 297.000 '. '"O', 297.000 , ' MainStream Confluence 81 ' 297.000 : • 296.000 • ' , Pipeflow Time(user inp) 1 82 ', , ' 296.000 ':, 29.5.000 , Improved Channel Time • ' 83 295.000. ' ., . 294.000 . Improved Channel Time ' End of listing I I Li I I I I I I I I I- - I I I San Diego County Rational Hydrology Program CivilCADD/CivilDESIGN. Engineering Software, (C) 1990 Version 2.3 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 2/ 1/91 EL CAMINO REAL/PALOMAR AIRPORT ROAD 200 AREA BASIN STUDY' FILENAME ELCAM2 1 200,4 JOB# 10365-.2/1/91 ---------------------------------------------------------------- ********* Hydrology Study Control Information .********** Rational hydrology study storm event year is 10 ..0 Map data precipitation entered 6 hour, precipitation(inches) 1.800. 24 hour precipitatiön(inches) = 3.100 Adjusted 6 hour precipitation (inches) = 1.800 •0 P6/P24 San Diego hydrology manual 'C' values used Runoff coefficients by rational method Process from Point/Station 200.000 to Point/Station 201.000 **** INITIAL AREA EVALUATION **** User specified 'C'valueof 0.760 given: for subarea Initial subarea flow distance 300.00(Ft.) Highest elevation = 314.60(Ft.) Lowest elevation = 312.70(Ft.). Elevation difference = • 1.90(Ft.) Time of concentration calculated by the urban - areas overland flow method (App X-C) .= .12.34mm. TC = [1.8*(1. 1-C) *distance .5)/(% slope (1/3)) TC= (1.8*(1.l-0.7600)*(300.00.5)/( 0.63(l/3))= 12.34 Rainfall intensity (I)= 2.648 for a 10.0 year storm- Effective-runoff coefficient used for area (Q=KCIA) is C 0.760 Subarea runoff = 1.348'(CFS) Total initial stream area 0.670(Ac.) Process from POint/Station - 201.000 to Point/Station 202.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 312.100(Ft.) End of street segment elevation = 286. 200(Ft.) Length of street segment = 1185.000(Ft.) : Height of curb above gutter.flowline 6.0(In.) • Width of half street (curb to crown) = 53.000(Ft.) •. Distance from crown to crossfall grade break = 51'.500(Ft.) Slope from gutter tograde break (v/hz) = 0.087 - Slope from grade break to crown (v/hz) 0.020 Street flow is on [l]side(s)-of the street I I I . I I Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.060 I Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 I Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.059(CFS) Depth of flow = 0.313 (Ft.) I Average velocity = 3.486(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 8.803 (Ft.) Flow velocity = 3.49(Ft/s) I Travel time = 5.67 mm. TC = 18.01 Thin. Adding area flow to street User specified 'C' value of 0.900 given for subarea I Rainfall intensity = 2.075(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 3.175(CFS) for 1.700(Ac.) I Total runoff = 4.523(CFS) Total area = 2.37 (Ac.). Street flow at end of street = 4523(CFS) Half street flow at end of street = 4.523(CFS) Depth of flow = 0.347 (Ft.) I Average velocity = 3.735(Ft/s) Flow width (from curb towards crown)= 10.529(Ft.) I +++++++++++++++++++++.++++++++++++++++++++++-++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 202.000 I **** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 1 I Stream flow area = 2.370(Ac.) Runoff from this stream = 4.523(CFS) Time of concentration = 18.01 mm. Rainfall intensity = 2.075(In/Hr) I Program is now starting with Main Stream No. 2 I Process from Point/Station 210.000 to Point/Station 211.000 **** INITIAL AREA EVALUATION.**** I User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 300.00(Ft.) I Highest elevation = 314.60(Ft.) Lowest elevation = 312.70(Ft.) Elevation difference = 1.90(Ft.) Time of concentration calculated by the urban I areas overland flow method (App X-C) = 7.26 Thin. TC = (1.8*(1.1-C)*distance .5)/(% slope (1/3)) TC = [1.8*(1.1_0.9000)*(300.00.5)/( 0.63(1/3))= 7.26 I Rainfall intensity (I) = 3.728 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 1.443(CFS) Total initial stream area = 0.430(Ac.) I I Process from Point/Station 211.000 to Point/Station 212.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 312.700(Ft.) End of street segment elevation = 293.300(Ft.) Length of street segment = 785.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street = 3.288(CFS) Depth of flow = 0.315(Ft.) : Average velocity = 3.678(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.897 (Ft.) Flow velocity = 3.68(Ft/s) Travel time = 3.56 min. TC = 10.82 mm. Adding area flow to street User specified ICI value of 0.900 given for subarea Rainfall intensity = 2.883(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 2.854(CFS) for 1.100(Ac.) Total runoff = -4.297(CFS) Total area = 1.53(Ac.) Street flow at end of street = 4.297(CFS) Half street flow at end of Street = 4.297(CFS) Depth of flow = 0.338 (Ft.) Average velocity = 3.854(Ft/s) Flow width (from curb towards crown)= 10.062(Ft.) +++++++++++++++++++++++++++++++4-++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 212.000 to Point/Station 213.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 289.10(Ft.) Downstream point/station elevation '= 284.20(Ft.) Pipe length = 190.00(Ft.) Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = 4.297(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.297(CFS) Normal flow depth in pipe = 6.19 (In.) I Flow top width inside pipe = 17.10(In.) Critical Depth = 9.53(In.) Pipe flow velocity = 7.98(Ft/s) I Travel time through pipe = 0.40 mm. Time of concentration (TC) = 11.22 mm. I Process from Point/Station 213.000 to Point/Station 218.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I I I I I I I I I I I I I Upstream point/station elevation = 283.87(Ft.) Downstream point/station elevation = 280.88 (Ft.) Pipe length = 265.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.297(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 4.297(CFS) Normal flow depth in pipe '= 7.75(In.) Flow top width inside pipe = 17.83 (In.) Critical Depth = 9.53(In.) Pipe flow velocity = 5.90(Ft/s) Travel time through pipe = 0.75 Thin.: Time of concentration (TC) = 11.96 Thin. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++.++++++++++++ Process from Point/Station 218.000 to Point/Station 218.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.530(Ac.) Runoff from this stream = 4.297(CFS) Time of concentration = 11.96 mm. Rainfall intensity = 2.702(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++-I-++++++++++++++++++++++++ Process from Point/Station 215.000 to Point/Station 216.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 200.00(Ft.) Highest elevation = 293.30(Ft.) Lowest elevation = 288.70(Ft.) Elevation difference = 4.60(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.86 Thin. TC = [1.8*(1.1-C)*distance.5)/(% slope(1/3)] TC= [1.8*(1.l-0.9000)*(200.00.5)/( 2.30(1/3))= 3.86 Rainfall intensity(I) = 5.607 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff: = 1.463(CFS) Total initial stream area = 0.290(Ac.) Process from Point/Station 216.000 to Point/Station 217.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 288.700(Ft.) End of street segment elevation = 284.800(Ft.) Length of street segment = 260.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 i I I I I I I I I I I I I I I I I I I P Gutter width = 1 500(Ft ) Gutter hike from 'flowline =. "2.000(In.) Manning's N in gutter =' 0.0150 I Manning's N from gutter to. grade break = 0.0150 Manning's N from gradebreak to crown = 0.0150 Estimated mean flow .rate at midpoint of street = 2.422(cFs) I .' Depth of flow = 03I0(Ft.) '. Average velocity— 2.839(Ft/s) Streetflow hydraulics at midpoint of street travel: I. .. Halfstreet flow width = 8.664(Ft.) . . . Flow velocity =, 2.84(Ft/s) 'Travel time = 1.53 mm. TC = 5.38 min.. ' Adding area flow to street I User specified 'C' value of 0.900 given for subarea Rainfall intensity = 4.522(In/Hr)' for a 10.0 year. storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 I Subarea runoff = . '1.546(CFS) for 0.380(Ac.). Total runo'ff = ,.' 3.'010(CFS) Total area = . 0.67(Ac.) Street flow at end of street= 3.010(CFS) I Half street flow at end of street = 3.010(CFS) Depth of flow = '0.328(Ft.') ., . . . .. Average velocity = 2.946(Ft/s) . Flow width (from curb towards crown)= . 9.588 (Ft.) I . .. Process from Point/Station '217.000 to Point/Station S 218.000 I **** PIPEFLOW TRAVEL TIME (User 'specified size) **** Upstream, point/station elevation = 281.33(Ft.) I . . Downstream point/station elevation = . '280.88 (Ft.) Pipe length = 90.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow' = 3.010(CFS) I Given pipe 'size Calculated individual pipe flow. = 3..010(CFS) Normal flOw depth in pipe = . 7.97 (In.).' ' I . Flow top width inside pipe = 17.88 (In.) Critical Depth = ' 7.92(In.) . Pipe flow velocity = 3.98(Ft/s) . Travel time through pipe = 0.38 mm. ' Time'.of concentration (TC) = , 5.76 min. I +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++f+++++4++++ Process from Point/Station 218.000 to Point/Station ' 218.000 **** CONFLUENCE OF MINOR STREAMS I Along Main Stream number: 2 in normal 'stream number 2 Stream flow area = 0.670 (Ac. . S Runoff from this stream = 3.010(CFS) I . Time of concentration = . 5..76 mm. . Rainfall intensity = 4.329(In/Hr). . . . Summary of stream data: I Stream . Flow rate TC . • Rainfall Intensity No. , (CFS) . (mm)' ,. ' . , (In/Hr) .1 . '1 . 4.297 , 11.96 ' , S . 2..702 , 2 3.010 5.76 " ' ., , '' 4.'329.,' , I Qinax(l) = - .. 1.000 * :1.000 *• 4.297) +. I... . . . 0.624.* 1.000.* 3.010) + • 6.175' . Qmax(2) ' 1.000 * 0.481 * 4.297) '+ . I i 000 * 1...000. * -3.010) + = 5.079 - Total of 2 streams to confluence Flow rates before confluence point: . . ••- . I 4297 3010 Maximum flow rates at confluence using above data: .6.175 5.0.79 . . . .. ' . • I Area of streams. before. confluence:. 1.530 . 0.670 Results of confluence: . .. . . . •. . .. . Total flow rate = . 6.175(CFS) . . . - Time of concentration = . 11.963 min.. . . . 1. Effective stream area after confluence = 2.200(Ac.) . • 1 . Process from Point/Station 218.900 to Point/Station . 202.000 **** PIPEFLOW TRAVEL TIME (User specified size) I . Upstream point/station elevation = 280.55(Ft.). . • Downstream point/station elevation = 280.43 (Ft..). - I . Pipe length . 12.00(Ft.,) Manning's N = 0.013 No. Of pipes = 1 Required pipe flow = 6..175(CFS) Given pipe size = 18.0.0(In.)- . . . . I .Calculated -individual pipe flow 6.175(CFS) . Normal flow .depth in .pipe = • 9.'93(In.) . .. . Flow top .width inside pipe .= 17.90(In.). Critical Depth = 11.52 (In.)- I Pipe flow velocity = -: 6.18 (Ft/s) . .. . • Travel time through pipe 0.03 mm. Time of concentration .(TC).. = 12.00 min.'. . . I +++++++++++++++++.+++++++++++++++++++++++++++++++++++++++++++++++++++++ .J . Process from Point/Station . - 202.000 to Point/Station . 202.000 **** CONFLUENCE OF MAIN STREAMS ****• . . .-- • . . . : The following data inside. Main Stream. is listed: . I : In Main Stream number: 2 . Stream flow area = . 2.200(Ac.) Runoff from this stream = . 6.175(CFS) ...'. 0 I .Time of concentration= 12.00 min. . . •• * • Rainfall intensity = .• 2.697(In/Hr) .••- . . - Summary of stream data: . . . • . .. . • * I Stream Flow rate TC • Rainfall Intensity No. (CFS) . (mm). . . . (In/Hr) .- 1 4523 1801 2 .075 2 . 6.175 12.00 .:. 2.697 . . .1 Qmax(l) . •• . . - . . • . . . . 0 1.000 * 1.000* - 4.523) + . 0.769.* 1.000 * - 6.175) + = .9 275 i Qmax(2) = I 1. 000 * 0.666' * 4.523). + 1.000 * 1.000 * 6.175) + = 9.188 I Total of 2 main streams to confluence: Flow rates.before confluence point: S S 4.523 6.175 S Maximum flow rates at confluence using above data: " S 9.275 9.188 Area of streams before confluence: 1 2370 2.290 Results of confluence I Total flow rate = . 9.275(CFS) Time:of concentration = 18.010 mm. S Effective stream area after confluence . 4.570 (Ac.) I I S Process fromPoint/Station 202.000 to Point/Station 203.000 S *** PIPEFLOW. TRAVEL TIME. (User specified size) **** S S Upstream point/station elevation = 280 10(Ft ) Downstream point/station elevation = . 279.40(Ft.) S Pipe length 30.00 (Ft.) Manning's N = 0.013 No. of pipes .1 Required 'pipe flow'' 9.275(CFS') I. . Given pipe size = 1'8.00(In.) Calculated individual pipe flow = 9.275(CFS) Normal flow .depth in pipe = .9.82(In.) I Flow top width inside pipe = 17 93(In ) Critical Depth = ' 14.13(In.,) .. Pipe flow velocity .= • S 9.41(Ft/s) Travel time through pipe =. '0.05 mm'' 1 Time of concentration (TC) = , 18.06 mm. I , ++++++++++++++++++++++++++++++++++++++++++++++4 ........................ Process fromPoint/Station S 203.000'to 'Point/Station ' '204.000' **** IMPROVED -CHANNEL TRAVEL TIME S Upstream point elevation = 55 279.40(Ft.) S 1 ' .• S Downstream point elevation = S ' 265.60(Ft.) Channel length thru subarea. = 1015.00(Ft.) 'Channel base width 2000(Ft.) S Slope or 'Z' of left channel bank = 1.500 Slope or 'Z' of right channel bank = 1.500' — S Manning's. 'N' = 0.015 SI Maximum depth of channel = ' 1.500(Ft.). Flow(q) thru subarea = ' S 9.275(CFS). Depth' of flow = 0.540(Ft.) I : . Average velocity.=6.109(Ft/s) Channel flow top width = ' 3.621(Ft.) Flow Velocity 6.11(Ft/s) I Travel time = • 2.77 mm. Time of concentration = '20.83 mm. Critical depth = 0.727 (Ft.),' . 5 S , ++++++++++++++++++++++++++++++++++++++++f+.++++++++++++++++++++++++++++ Process from Point/Station .235.000 to Point/Station 204..000 I **** SUBAREA FLOW ADDITION ****- Decimal fraction soil groupA = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Time of concentration = 20.83 mm. Rainfall intensity . 1.889(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational inethod,Q=KCIA, C = 0,850 Subarea runoff = 37.414(CFS) for 23.300(Ac.) Total runoff = 46.689(CFS) Total area = 27.87(Ac.) ++++++++++++++++++++++++++++++++++++±+++++++++++++++++++++++++++++.f-+++ Process from Point/Station 204.000 to Point/Station 205.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 265.60(Ft.) Downstream point/station elevation = 263.44(Ft.) Pipe length = 30.00(Ft.) Manning's N = 0.013 No. of pipes .= 1 Required pipe flow = 46.689(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 46.689(CFS) Normal flow depth in pipe = 12.55(In.) Flow top width inside pipe = 34.31(In.) Critical Depth = 26.69(In.) Pipe flow velocity = . 21.30(Ft/s) Travel time through pipe = 0.02 mm. Time of concentration (TC) = 20.86 mm. ++++++++++++++++++++++++++++++++++-f+++++++++++++++++++++++++++++++++++ Process from Point/Station 205.000 to Point/Station 205.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main. Stream is listed: In Main Stream number: 1 Stream flow area = 27.870(Ac.) Runoff from this stream = 46.689(CFS) Time of concentration = 20.86 mm. Rainfall intensity = . 1.888(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 220.000 to Point/Station 221.000 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group. D =-1.000 [COMMERCIAL area type ] Initial subarea flow distance = 750.00(Ft.) Highest elevation = 323.50(Ft.) Lowest elevation = 308.00(Ft.) . Elevation difference = 15.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) =. 9.68 mm. I I TC =[1.8*(l.l-C)*distance.5)/'(%. s1ope(1/3)] TC = [1.8*(1.1-0..8500)*(750.'00.5)/( 2.01"(1/3))= 9.68 Rainfall intensity (I).= 3.098 for a 10.0 year storm Effective runoff coefficient used for area'.(Q=KCIA)is C = Subarea runoff = 11_64 4 (CFS) Total initial stream area = 6.700(Ac.) 0.850 +++++++++++++++++++++++++++++++++++++++++++++++++±++++++++++++++++++++ Process from Point/Station 221.000 to Point/Station 222.000 **** PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station-elevation = 304.00(Ft.) Downstream point/station-elevation = 271.00'(Ft.) Pipe length = 100.00(Ft.) Manning's N = 0.013 No., of pipes = 1 Required pipe flow = 17.644'(CFS) Given pipe 'size = 18.00(In.) . . Calculated individual pipe flow = .17.644(CFS) Normal flow depth in pipe = .6.67(In.) '. Flow top width inside pipe = ' .17.39(In.') Critical depth could notbe 'calculated. Pipe flow velocity = 29.64(Ft/'s)' . 'Travel time through pipe = 0.06 mm.' .. . S Time of concentration (TC) = . 9.73 mm. I I .. ' ++ ........................................... 'Process from Point/Station 222.000 to Point/Station 222.000 ****'CONFLUENCE OF MINOR STREAMS I , Along Main Stream number: '2 in normal stream number 1 Stream flow area = .. 6.700(Ac.) Runoff from this stream = , 17.644(CFS) . . Time of concentration = • .9.73 min.- Rainfall intensity = 3.087(In/Hr) I , Process from Point/Station .' 230.000 to Point/Station . 222.000 ****INITIAL AREA EVALUATION Decimal .fraction. soil group A = 0.000 . . . . Decimal fraction soil group B = 0.000 . . I Decimal fraction soil group C'= 0.000 Decimal fraction soil group D = 1.000 - [COMMERCIAL area type • ' . ] Initial subarea flow distance '= 1230.00(Ft.), ,I Highest elevation = •318.00(Ft.) •. • S Lowest elevation = ,273.90(Ft.) Elevation difference = 44.'10(Ft.) - I ... Time of concentration calculated, by the urban S. •' areas overland flow method (App X-C)' = 10.31 mm., TC = [1.8*('1. 1-C) *distance .5)/(% slope (1/3)) ' • I . TC= [1.8*(1.1_0.8500)*(1230.00.5)/( 3.59'(1/3))= 10.31 Rainfall intensity (I) =2.973. for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.850 Subarea runoff = . 21.'230(CFS) S , I Total initial stream area = ' 8.400(Ac.) S • • I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.+++.+++++ Process' from Point/Station ', 222.000 to Point/Station '222.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 8.400(Ac.), Runoff from this stream -= .21.230(CFS), V .Timeof concentration = 10.31 mm. V Rainfall intensity = 2.973 (In/Hr) •' 'V Summary of stream data Stream Flow rate V TC No. (CFS) .(min), 1 17.644 , V V 9•73 2 21.230 10.31 Qmax(l) ' 1. 0,00 * 1.000 * 1.000 * 0.944 * Qmax(2) = - 0.963 * 1.000 * '17644-) + ' V 1 000 * 1 000 * 21 . 230) + = 38.2-27 Total' of 2 streams to confluence: Flow rates before confluence point: 17.644' ' ' 21.230• Maximum flow rates at confluence using above data: . V 37.679 V 38.227 Area of streams before confluence: 6.700 ' ' 8.400 V Results of confluence: Total flow rate =1 38.227(CFS) ' •' V Time of concentration = 10.311 mm. Effective, stream area, after confluence = ' ' 15.100(Ac.,) V Process from Point/Station 222.000 to Point/Station V 223.000 **** PIPEFLOW TRAVEL TIME (User .specified size) V **** • : Upstream point/station elevation = V 270.67(Ft.) Downstream point/station elevation = 269.50(Ft.)' V 'V Pipe length = 16.00(Ft.) .' 'Manning's N= 0.013 • , V V ' V No. of pipes"= 1 Required Vpipe.flow V 38.227(CFS) Given pipe size = 24.00(In.) V • ' V V , Calculated individual pipe flow = 38.,227(CFS) Normal flow depth 'in pipe = 13'.75(In.) V Flow top width inside pipe = 23.74(In.) Critical depth could not be calculated. ' ' ' • V ' ' V Pipe flow velocity' = , 20.'55(Ft/s) Travel time through pipe = ' V 0.01 min. Time of concentration (TC) F 10.32 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station '223.000 to Point/Station 223.000 **** CONFLUENCE OF MINOR STREAMS AlongMain 'Stream number: 21n normal stream -number •1 Rainfall Intensity. (In/Hr) V 3.687 2.973 ': V 17.644) ± 21.230) + = 37.679 Stream flow area= 15.100(Ac.) Runoff from this stream = 38.227(CFS) Time of concentration = .10.32 mm. Rainfall intensity = 2.971(In/Hr) I Process from Point/Station 290.000. to Point/Station . 291.000 INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 200.00(Ft..) . ' Highest elevation Lowest elevation = 283.50(Ft.) S Elevation difference = 5.70(Ft.) Time of concentration calculated by the urban . . I .areas overland flow method (App X-C) = 359 min. TC = (1.8*(1.1-C)*distance.5)/(% slope(1/3)] TC = (1.8*(1.1-0.9000)*(200.00.5)/( 2.85.(1/3)]= 3.59 I .Rainfall intensity (I) = 5.871 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0. 900. Subarea runoff .= 1.532(CFS) Total initial stream area = 0.290 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station . 291.000 to Point/Station 292.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation .= 283.500(Ft.) I End of street segment elevation = 278.700(Ft.) Length of street segment = 285.000(Ft.) 'Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break(v/hz) =0.087 I Slope from grade break.to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line Slope from curb to property line (v/hz). = 0.020 I Gutter width = 1.500 (Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street =. 2.616(CFS) I Depth of flow = 0.312(Ft.) . . Average velocity = 3.017(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.743 (Ft.) I, Flow velocity = 3.02 (Ft/s) Travel time = 1.57 min. TC = 5.17 mm. Adding area flow to street . ,I User specified 'C' value of 0.900 given for subarea Rainfall intensity = 4.644(In/Hr) for a • 1O..0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 I. Subarea runoff = 1.714(CFS) for 0.410(Ac.) Total runoff = 3.246(CFS) Total area = 0.70(Ac.) Street flow at end of street 3.246(CPS) Half street flow at end ofstreet = 3.246(CFS) I.. . I Depth of flow = .0.330 (Ft ) Average velocity = 3 131(Ft/s) Flow width (from curb towards crown)= ' 9.666(Ft.). I I Process from Point/Station .292.000 .to Point/Station .223.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= . 274.50(Ft.) ..• ' 0 Downstream point/station elevation = 270.00 (Ft.,) : Pipe length = 150.00(Ft. ) Manning's N = 0.013 . No of pipes = 1 Required pipe flow. = 3 246(CFS) l Given pipe..size = ..18.00(In.)' •. .' . .'. Calculated individual pipe flow = 3 246(CFS) : Normal flow depth in. pipe = ', 5.15(In.).' I ; 'Flow top width inside pipe.=; 16.27(In.) 'Critical Depth ,= . 8.23(In..) Pipe fiow'velocity'= 0 , 7.78(Ft/s) Travel time through pipe = 0.32 mm. 'o 0 Time of concentration (TC) = 5.49 mm Process from Point/Station 223.000 to Point/Station . 223.000 U **** CONFLUENCE OF MINOR STREAMS . Along Main Stream number: -2. in 'normal stream number 2 ,' " . . 0• I Stream flow area = 0 .-0'.700(Ac.), Runoff from this' steam = . '3.246(CFS) 'I. . Time ofconcentration=5.49 mm. .:, . . . .. Rainfall intensity = 4 467(In/Hr) Smiunary, of stream data: I Stream 0 Flow rate . ' TC .. . Rainfall Intensity •" No (CFS) (mm) (In/Hr) I l 38 .227 1032 2971 2 3246 5.49 . 4467 I 0 0 .Qmax(l) = 0 , ': ,' 0 * 001.000 *. . 38.22.7) + 0 0 0 .0 0.665 *. o 1.000 * .3.246) '+ .=. . 40,386 Qmax(2) 1.000 * 0.531*:r' 38.227)+ .-1.000-* 1.000 * 3.246) + = ' 23.'560 I . . Total of 2 streams to 'Oonfluence: 0 ., 0 . 0, " . ' 0 •, , Flow, rates before confluence point: - 38227 3246 1 . Maximum flow, rates at confluence using 'above data: 40.386 '. 23.560'' O , •. Area of 'streams before confluence: -. • ' 0 •, , 0 15.100 •, . 0.700 '. . •. 0 , • •.. 0 I Results of 'confluence: •', 0 . : . . 0 • Totaiflow rate = 40.386(CFS) 0 0 , , • , 0 ' • Time of concentration = • 10.324 mm'. Effective stream area after cànfluence 0= 15.800(Ac.)' I I Process from Point/Station 223.000 to Point/Station 205.000 *** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 268.50(Ft.) Downstream point/station elevation = 263.94 (Ft.) ,I Pipe length = 442.00(Ft'.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 40.386(CFS) Given pipe size = 36.00(In.) ' Calculated individual pipe flow = 40.386(CFS) Normal flow depth in pipe = 20.02 (In..) Flow top width inside pipe = 35.77(In.) Critical Depth = 24.83 (In.) I Pipe flow velocity = 10.00(Ft/s) Travel time through pipe = 0.74 mm. Time of concentration (TC) = 11.06 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 205.000 to Point/Station. 205.000 - **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: I In Main Stream number: 2 Stream flow area = 15.800(Ac.) Runoff from this stream = 40.386(CFS) I Time of concentration = 11.06 min. Rainfall intensity Program is now starting with Main Stream No. 3 +++ + + + + + + + ++ ++ +++++ ++++++ ++++++++++++ +++++++++++++ ++++++++++++++ + Process from Point/Station 270.000 to Point/Station 271.000 I - INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for. subarea I Initial subarea flow distance = 340.00(Ft.) Highest elevation = 285.20(Ft.) Lowest elevation = 279.80(Ft.) Elevation difference = 5.40(Ft.) I Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.69 mm. TC = (l.8*(1.1-C)*distance.5)/(% s1ope(1/3)) I TC = (1.8*(1.1_0.9000)*(340.00.5)/( 1.59(1/3)]= 5.69 Rainfall intensity (I) = 4.363 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 2.670(CFS). I Total initial stream area = 0.680(Ac.) I ++++++++++++++.++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 271.000 to Point/Station 272.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 279.800 (Ft.) End of street segment elevation = 268.280(Ft.) Length of street segment = 779.000(Ft.) I Height of curb above gutter flowline = . 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) 1 . I Slope from gutter to grade break (v/hz) = .0.087 • Slope from grade break to crown (v/hz) = 0.020 • Street' flow is on [1] side(s) of the Street I Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) S .Gutter hike from flowline = 2.000(In.) I Manning's N in gutter = .0.0150 . Manning's N from gutter to grade break = 0.0150 I Manning's.N from grade break to crown E stimated mean flow rate at. midpoint of = .0.0150 street Depth of flow = 0.378(Ft) Average velocity 3.227(Ft/s) Streetf low hydraulics at midpoint of streettravel: I Halfstreet flow width=. 12.064(Ft.) Flow velocity = 3.23(Ft/s) I . Travel time = 4.02 mm. . TC = Adding area flow to street 9.71 min.' 5. 02,7:(CFS) User specified 'C' value of 0.900 given for subarea Rainfall intensity = . 3.090(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 3.337(CFS) for 1.200 (Ac.) Total runoff '= 6.008(CFS)..Total area = 1.88(4c.) 1 .Street flow at end of street'- . 6.008(CFS) Half street flow at end of street = .6.008(CFS).'. Depth of flow = 0.397(Ft.) . . S. Average velocity = . 3.345(Ft/s) I • Flow width (from curb towards crown)= 13.013(Ft.) I Proôess from. Point/Station ' 272.000 to Point/Station 5 205.000 PIPEFLOW TRAVEL TIME (User specified size) **** S I Upstream point/station elevation = 265.14 (Ft.) . S Downstream point/station elevation = 264.44(Ft.) . S Pipe length = 145.00(Ft.) Manning's N = 0.013 I . No.. of pipes = 1 Required pipe flow = 6..008(CFS) Given pipe size = 24.00(In.) . . Calculated individual pipe flow = 6.008(CFS) S • I Normal flow depth in pipe ='. 10.29(In.) . Flow.top width inside pipe.= 23.75(In.) S Critical Depth = 10.41(In.) . . U Pipe flow velocity = 4..67(Ft/s) . S Travel time through pipe = . .0.52 mm. . . . Time of concentration (TC) = 10.23 min.S ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. Process from Point/Station 205000 to Point/Station 205.000 **** CONFLUENCE OF MAIN STREAMS **** S - The following data inside Main Stream is listed:. 5 . In Main Stream number: 3. . . . . .• I Stream flow area = • S 1.880(Ac.) S Runoff from this stream = 6.008(CFS) . S Time of concentration = 10.23 mm. . S .I Rainfall intensity = S 2.988(In/Hr) S ' Summary of stream data: . . . S. I I Stream Flow rate TC Rainfall Intensity No (CFS) (mm) (In/Hr) 1 46689 2086 1888 2 40386 1106 2842 I . 6.008 10.23 Qmax(l) = 1 000 * 1 000 * 46;-689) + I 0 664 * 1 000 * 40 386) + 0 632 * 1.000, * 6 008) + = 77.312 " Qmax(2.).= 1.000 : 0.530 * 46.689) + . . .-•. I . . .1.000 -.•000 * .40.386) +. . ... .. - .0.951 * 1.000 * 6.008). 7.0.861 : Qmax(3) . = . . .. ,.. .-.. ... -. . .. I l 000 * 0.491 * 46 689) + .---0.925 * 40..386) + . . . . . . .1000 * 1.900 *. . .6.008). + = 66.268 Total of 3 main streams to Oonfluence: .- - . . .. Flow rates before confluence, point: 46.68.9. .. 40.386 6.008 1 . Maximum flow rates at confluence using above data: . .. 77.312 70.861 66.268 . . . . Area of streams before confluence: 27.'870 15 800 1 880 Results of I confluence: Total flow rate =. . 77.312(CFS) . . . . .. . . •. Time of concentration = . 20.856 mm.. Effective stream area after confluence = 45 550(Ac ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station . 205.000 to Point/Station . 206.000 **** PIPEFLOW TRAVEL. TIME (User specified 'size), **** Upstream point/station elevation = . 262.44(Ft.) . . • ., . . I Downstream point/station elevation.= 262.13(Ft.) . . Pipe length- 31.00(Ft..) ,•. Manning's N = 0.013 No. of pipes = 1 Required pipe flow =. 77.312(CFS) - . . I . Given pipe size = 48.00(In.)- . .. ., .. Calculated individual pipe flow 77.312(CFS) .. . Normal flow depth in pipe = 25.08(In..) . . •. . 1. ,. Flow tOp-width inside pipe =. -47.95(In.) •: •. . . . Critical Depth = 31.95(In.) . . . • -• . .. - . Pipe flow velocity = . . •11.64(Ft/s). . . . .• • - Travel time throughpipe= 0.04 mm.. •.. .. Time of concentration (TC) .. .20.90mm. ,,. . . • . . ,. I +++++++++++++++++±++++±+++++++++++++++++++++f+++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station . .206.000 **** CONFLUENCE OF MAIN STREAMS **** . . •: • . . . . I The following data inside Main Stream is listed: . . In Main Stream number: 1 • . . .- -. . . . . - ., -- Stream flow area = 45.550 (Ac ) I' I Runoff from this stream = 77.312(CFS) Time of concentration = 20.90 mm. Rainfall intensity = 1.885(In/Hr) I Program is now starting with Main Stream No. 2 I ++++++++++++++++++++++++++++++++++++ +++++-H-+++++±+++++++++++++++++++++ Process from Point/Station 225.000 to Point/Station 226.000 **** INITIAL AREA EVALUATION **** I User specified 'C' value of 0.900 given for subarea Initial subarea.flow distance = 200.00(Ft.) Highest elevation = 278.70(Ft.) I Lowest elevation = 275.10(Ft.) Elevation difference = 3.60(Ft.) Time of concentration calculated by the urban I areas overland flow method (App X-C) = 4.19 mm. TC = [1.8*(1. 1-C) *distance .5)/(% slope (1/3)] TC =[1.8*(1.1-0.9000)*(200.005)/( 1.80(1/3)]= 4.19 I Rainfall intensity (I) = 5.319 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA)' is C = 0.900 Subarea runoff = S 1.484(CFS) Total initial stream area = 0.310(Ac.) I I Process from Point/Station. 226.000 to Point/Station 206.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 275.100(Ft.) I End of street segment elevation = 269.400(Ft.) Length of street segment = 375.000 (Ft.) Height of curb above gutter flowline = 6.0(In.) I Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 I Street flow is on [1] side(s) of the street Distance from curb to property line 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1. 500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.777(CFS) Depth of flow = 0.321(Ft.) ' Average velocity = 2.921(Ft/s) Streetfiow hydraulics at midpoint of street travel:. Halfstreet flow width = 9.210(Ft.) I Flow velocity = 2.92(Ft/s) S Travel time = 2.14 mm. TC = 6.33 mm. Adding area flow to street I User specified 'C' value of 0.900 given for subarea Rainfall intensity = 4.075(In/Hr) for a 10.0 year storm Runoff coefficient, used for sub-area, Rational method,Q=KCIA, C = 0.900 I Subarea runoff = 1.981(CFS) for 0.540(AO.) Total runoff = 3.465(CFS) Total area = 0.85(A6.) S Street flow at end of street = 3.465(CFS) Half Street flow at end of street = S 3.465(CFS)' I S I Depth of flow ,= 0 340(Ft ) Average velocity = .3.038(Ft/s) Flow width (from.curb towards crown)= ,• 10.188(Ft.) '.'.• I ..I Process from Point/Station .. '206.000 to Point/Station '206.000 ****' CONFLUENCE OF MAIN STREAMS . The following data inside Main Stream 'is listed: In Main Stream number 2 Stream flow area = 0 850(Ac ) Runoff from this streám=' 3.4,65(CFS) Time of concentration =6.33 min.. ' , • . Rainfall intensity= •4..075(In/Hr). Summary of stream data I Stream Flow. rate TC Rainfall Intensity No. , . (CFS) . '. (mm)' ,'. . • ' (In/Hr) 1 1 77312 2090 1.885 .6.33 ' . ' 4.075 Qmax(l)'= . . :. ' . . . .'. .. . •. l.0.00'* 1. 000 *. . 7.7.312).+' .. . ., . ' 0.463 * , 1.000 * '3.465) + = 78.914 . Qmax(2) = 1.0 00 * 0 303 * 77 312) + 1.000 * 1.600 * 3 465) + = 26.863; I .' :Total-of 2 mainstreams to confluence: . . '• , Flow'rates' before confluence point- 77 .312: 3.465 , ' ': ' " . •'. •' Maximum flow: rates at confluence usingabove data:. 'I . I 78.514 26.80-. Area of' streams before confluence: 45 550 0.850. I Results of confluence: I . . Total flow rate = ' •78.914(CFS)' . . . .. . Time of concentration= S 20.900..mIn. .• '. . . .. . . Effective stream'area, after confluence .= ...46.400(Ac.')' Process from' Point>'Station . . '206.000 to Point Station. . 207.000 ** PIPEFLOW TRAVEL TIME (User specified éize) . ***.*' .. . • - Upstream point/station-elevation = 261.80(Ft.). . . I. Downstream point/station elevation = •'261.20(Ft.) Pipe length 60.00(Ft.) .Manning'sN 0.013 No. of pipes =1'. Required pipe flow = " . 78..914(CFS) Given pipe size =. • 48.00(In.) •' •. •' .. . ' I Calculated individual pipe flow = '..78.9l4(cFS). . . Normal flow depth in pipe = 25.38(In.) . •' .. . '•' Flow top-width inside pipe = 47.92(In.) 'I. . • Critical Depth— '32.2'9(In.) . . ., . ' ':• - . . Pipe flow velocity = . , 11! 70(Ft/s) . . . • .... . '.. • Travel time through pipe' = 0.09 mm.: , I Time of concentration (TC) = 20.99 mm. +++++++++++++ +++ + + ++ +•+++++++++++++ ++++++ ++++++++++++±++++++++++++ +.+ ++ + Process from Point/Station 207.000 to Point/Station 207.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 46.400(Ac.) . . Runoff from this stream = 78.914(CFS) Time of concentration = 20.99 min. Rainfall intensity = 1.880(In/Hr) Program is now starting with Main Stream-No. 2 Process from Point/Station 280.000 to Point/Station 281.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 40.5.00(Ft.) Highest elevation = 287.20(Ft.) Lowest elevation = 279.80(Ft.) Elevation difference = 7.40(Ft.) Time of. concentration calculated by the urban areas overland flow method (App X-C) = 5.93 min TC = (1.8*(1.1_C)*distance.5)/(% s1ope(1/3)] TC= (1.8*(1.1_0.9000)*(40500.5)/( 1.83(1/3)]= 5.93 Rainfall intensity (I) = 4.250 for a. 10.0 year storm Effective runoff coefficient used for.area.(Q=KCIA) is C = 0.900 Subarea runoff = 3.443(CFS) TQta1 initial stream area = 0.900(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 281.000 to Point/Station 282.000 **** STREET FLOW TRAVEL TIME + SUBAREA. FLOW ADDITION **** Top of street segment elevation = 279.800(Ft.) I End of street segment elevation = 268.700(Ft.) Length of street segment = 864. 000 (Ft.) Height of curb above gutter flowline = 6.0(In.) I Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 I ..Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) I Slope from curb to property line (v/hz) = • 0.020 Gutter width = 1.500 (Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 - I Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.929(CFS) I Depth of flow = 0.403(Ft.) • Average velocity = 3.155(Ft/s) • Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.329(Ft.) . -• 1 • • . Flow velocity = 3.16(Ft/s) Travel time = 4.56 mm. TC = 10.49 mm. Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity = 2.941(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 3.441(CFS) for 1.300(Ac.) Total runoff = 6.883(CFS) Total area = 2.20(Ac.) Street flow at end of street = 6.883(CFS) Half street flow at end of street = 6.883(CFS) Depth of flow = 0.420(Ft.) Average velocity = 3.256(Ft/s) Flow width (from curb towardscrown)= 14.183(Ft.) Process from Point/Station 282.000 to Point/Station 282.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 2.200(Ac.) Runoff from this stream = 6.883(CFS) Time of concentration = 10.49 mm. Rainfall intensity = 2.941(In/Hr) I Process from Point/Station 285.000 to Point/Station 286.000 **** INITIAL AREA EVALUATION **** I User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 300.00(Ft.) Highest elevation = 286.50(Ft.) I Lowest elevation = 280.10(Ft.) Elevation difference = 6.40(Ft.) Time of concentration calculated by the urban I areas overland flow method (App X-C) = 4.84 mm. TC = [1.8*(1. 1-C) *distance* .5)/(% slope (1/3)] TC= [1.8*(1.1_0.9000)*(300.00.5)/( 2.13(1/3)]= 4.84 Rainfall intensity (I) = 4.841 for a 10;0 year storm I Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 1.873(CFS) Total initial stream area = 0.430(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 286.000 to Point/Station 282.000 ****.STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 280.100(Ft.). I End of street segment elevation = 268.700(Ft.) Length of street segment = 761.000(Ft.) Height of curb above gutter flowline = 6.0(In.) I Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 I Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 I I Gutter width = 1 500(Ft ) Gutter hike from flowline = 2.000(In.) . Manning's •N in gutter = 0.0150 I : Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street =. . 4.269 (CFS). I :Depth of flow =. 0.361(Ft.) Average velocity = 3.141.(Ft/s) . S. Streetfiow hydraulics at: midpoint of street. travel: .: :I. Halfstreet flow width .= 11.211.(Ft.) . . . Flow velocity = 3.14(Ft/s) . . . . Travel time = 4 04 min. TC = 8.88 mm Adding area flow to street ' User specified 'C' value of 0.900 given for subarea S Rainfall -intensity = . 3.274(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA,. C =.0.9'00 I .Subarea runoff =. 3.241.(CFS) for 1.100(Ac.) . Total runoff = 5.114(CFS) Total area = 1.53 (Ac.) Street flow at end of street = 5.114(CFS) : Half street flow at end of street I .:Depth of flow = 0.379(Ft.) . . . . Average velocity = 3.254(Ft/s) . . Flow width (from curb towards drown) 12. 120 (Ft.) .I Process from Point/Station 2.82.000 to.Point/Station 282.000 **** CONFLUENCE OF MINOR STREAMS **** Along. Main Stream number: 2 .in normal stream number 2 I Stream flow area = 1.530(Ac.) . . Runoff from this stream. = 5.114 (CFS) . . . . Time of concentration = .8.88 mm. S Rainfall intensity= S. 3..274(In/Hr)'' I . Summary of stream data: Stream Flow rate TC • . • Rainfall Intensity S I. No. (CFS) . (mm) • . . (In/Hr) I i .. 6.883 1049 . . . 2.941 . . 2 . .5.114 8.88 . 3.274 . . 'Qmáx(l)= .. I , 1.000 *1.000 * 6.883). + . 0.898 * 1.000 * 5.114) r+ = 11.477. Qmax(2') = 1.000 •* .0.847.* . 6.883) + . 1.000 * 1.000 * 5.114) + = • 10.942 Total of 2 streams to confluence: Flow rates before confluence point: . . 6.883 • 5.114 .. . . . Maximum flow rates at confluence using above data: . 11.477 10.942 Area of streams before confluence: 2.200 ' 1.530 • . S. • Results of confluence: . . .. .. . . Total flow rate = 11.477(CFS) S S . Time of concentration = 10.490 mm. • ' Effective stream area after confluence = 3.730(Ac.) I I . I . I .. I., 'S t I I .. I. I ... I. 'S 'S I. I Process from Point/Station 282.000 to Point/Station - . 207.000 **** PIPEFLOW. TRAVEL TIME. (Userspecified size) **** •. •. .• Upstream point/station elevation .= 264.50(Ft.) Downstream point/station elevation = 262.45(Ft.) . Pipe length = .. 73.00(Ft.) Manning's. N = 0.013 No, of pipes'= 1 Required pipe flow 11.477(CFS) . Given pipe size = 18.00(In.) -. • Calculated individual pipe flow, = 11.477(CFS) Normalfiow depth in pipe= 10.59(m.) . . Flow top width 'inside pipe 17.72 (In.) ' Critical Depth = 15.51(In.)' -. Pipe flow velocity ,= . 10.61(Ft/s) Travel timè..throughpipe= . 0.11 min. Time of concentration (TC). = 10.60 mm.. Process from Point/Station ' 207.000 to Point/Station 207.000 **** CONFLUENCE OF MAIN STREAMS The. following data inside Main Stream is listed: In Main Stream number: 2 . .. .' . Stream flow-area =. 3.730(Ac.) . . .. . Runoff from this stream = •' . 11.477(CFS) Time of concentration = '10.60 mm. . . Rainfall intensity = 2.920(In/Hr) Summary of stream data: :. . . • Stream Flow rate . TC - • Rainfall Intensity No.. • ... (CFS) . • (mm) . (In/Hr) 78.914 20.99' • .• . •• 1.880 2 11.477 .10.60 • ..2.920 . S • • Qmax(l) 1.000* 1.000 •* -. 78.914)..+ 0.644 •* 1.000* •.. 11.477) + = 86.304 .Qmax.(2) = S. ., .5 - . .. • - 1.000 * -S 0.505 * -. 78.914) + . 1.000 * 1.000 * 11.477)+ 51.355 5 - Total of 2 main streams to confluence: Flow rates before confluence point: . . 78.914 - 11.477 - . .5 . . . - - - ! - . •. Maximum flow rates at confluence using above data: 86.304 - . 51.355. Area of streams before confluence:'.5 - . - • .- - •. 46.400 . - .. 3.730 • .5'- 5 • - - . S Results of confluence: . Total flow rate = 86.304'(CF9) Time-of concentration = S 20.985mm. Effective stream area5after confluence 50. 130 (Ac . ) I.: 1 86.304 Qmax(l) = 1.000 * 1.000 * . . 86.304) .-' 21.01 1.879 1 . ........................................................................ Process' from Point/Station. 207.000 .to Point/Station. 208.000' I PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = . 261.20(Ft.) . Downstream point/station elevation = '261.00(Ft.) " I Pipe 'length = .20.00(Ft.) Manning's N 0.013 . No. of pipes = 1 Required pipe flow'. = 86..304(CFS) ' S Given pipe 'size = .48.00(I.n.) I. ' Calculated individual, pipe flow. '= '86.304(CFS) . .. Normal flow depth in'pipe,= 26.81(Iñ.) Flow top width inside pipe =' 47.67(In.) Critical Depth = ' 3379(In.) ' Pipe flow velocity = ' ' . 11.95(Ft/s) Travel time through pipe ,= 0 03 mm Time of concentration .(TC). = ' 21.01 mm. +.++++++++++++++++++++++++.++++++++++++++++++-f-++++++++++++++++++++++++ I .Process from Point/Station .208.000 t'oPoint/Station . . 208.000 **** CONFLUENCE OF MAIN STREAMS The following data inside Main' Stream is 'listed: . In Main Stream number: 1 Stream flow, area = ' : . 50.130(4c.) Runoff from this stream =.. . 86.304(CFS) . . . I:. . Time of concentration = . 21.01 mm.' . '. Rainfall intensity = l.879(.In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity . No. (CFS) . (mm) ' ." ' . ' . (in/Hr) 86.304 Total of 1 main streams 'to confluence: Flow rates before confluence point: 86.304 ' Maximum flow rates at confluence using above. data: 86.304. . Area of streams before, confluence: 50.130 Results of confluence: . . . Total flow, rate Time of concentration= , 21.013 mm. . Effective stream area after confluence =.' 50.130(Ac.). Process from Point/Station 240.000 to Point/Station . . 241 000 *. INITIAL AREA EVALUATION Decimal fraction soil group A.- 0.000 Decimal fraction soil ,group B =' 0.000 Decimal' fraction'soil group ,C = 0000 10 I I I I I I I 1 I I Decimal fraction soil group D = 1.000 (RURAL (greater than 1/2 acre) area type Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11. 9*length(Mi) 3)/(elevation change)] Initial Subarea flow distance ='1025.00(Ft.) Highest elevation = 322.00(Ft.) Lowest elevation = 289.80(Ft.) Elevation difference = 32.20(Ft.) .385 .*60(min/hr) + .10 mm. I 1 TC=[(11.9*0.19413)/( 32.20)].385= 6.16 + 10 mm. Rainfall intensity (I) = 2.226 for a 10.0 year Effective runoff coefficient used for area (Q=KCIA) Subarea runoff - 5.108(CFS) Total initial stream area = 5.100(Ac.) = 16.16 mm. storm is C = 0.450 I Process from Point/Station S 241.000 to Point/Station 252.000 ** PIPEFLOW TRAVEL TIME (User specified size) **** 1 Upstream point/station elevation = 285.40(Ft.) Downstream point/station elevation = 285.00(Ft.) Pipe length = . 22.00(Ft..) Manning's N = 0.013 ' No. of pipes = 1 Required pipe flow = 5.108(CFS) Given pipe size ,= 24.00(In.) Calculated individual pipe flow =. 5.108(CFS) ' Normal flow depth in pipe '= 6.64 (In.) Flow top width inside pipe = 21.48(In.) Critical Depth = 9.54(In.) I Pipe flow velocity = 7.21(Ft/s) Travel time through pipe = 0.05 mm. Time of concentration (TC) = 16.21 mm. Process from Point/Station 252.000 to Point/Station 252.000 I **** CONFLUENCE OF MAIN STREAMS *** The following data inside Main Stream is listed: In Main Stream number: 1 I Stream flow area = ' 5.100(Ac.) Runoff from this stream = S 5.108(CFS) Time of concentration = 16.21 mm. I Rainfall intensity = . 2.221(In/Hr) Program is now starting with Main Stream No. 2 I Process from Point/Station 5 250.000 to Point/Station . 251.000 I **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900.given for subarea Initial subarea flow distance = 375.00(Ft.) I Highest elevation = 317.00(Ft.) Lowest elevation = 306.80(Ft.) Elevation difference = 10.20(Ft.) I Time of concentration, calculated by the urban areas overland flow method (App X-C) = 4.99 nun. TC = [1.8*(1.1-.C)*distance..5)/(% s1ope(l/3)] TC= [1.8*(1.1-0.9000)*(375.00.5)/( 2.72(1/3).)= 4.99 I S. 1 I Rainfall intensity (I) = 4.746 Effective runoff coefficient used Subarea runoff = 2.477(CFS) Total initial stream area = for a 10.0 year storm for area (Q=KCIA) is C = 0.900 0. 580 (Ac . ) Process from Point/Station 251.000 to Point/Station 252.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 306.800(Ft.) End of street segment elevation = 289.200(Ft.) Length of street segment = 785.000 (Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpOint of street = 4.912(CFS) Depth of flow = 0.355(Ft.) Average velocity = 3.798(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 10.913(Ft.) Flow velocity = 3.80(Ft/s) Travel time = 3.45 mm. TC = 8.44 mm. Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity = 3.384(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 3.472(CFS) for 1.140(Ac.) Total runoff = 5.949(CFS) Total area = 1.72 (Ac.) Street flow at end of street = 5.949(CFS) Half street flow at end of street = 5.949(CFS) Depth of flow = 0.374 (Ft.) Average velocity = 3.942(Ft/s) Flow width (from curb towards crown)= 11.861(Ft.) I Process from Point/Station 252.000 to Point/Station 252.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.720(Ac.) Runoff from this stream = 5.949(CFS) I Time of concentration = 8.44 mm. Rainfall intensity = 3.384(In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) I I I 1 I I I 1 I I I I 1 5108 16.2l V 2.221 V V V I V V 2 V 594,9 8.44 V 3.384. V V V Qmax(1) V V V• V V V V 1.000 V* 1.000 5.108) + V •V V V VV V V V V IV V V V V V ,V V o.656.* V 1.000 * V = 'V 9013 V V V Qmax(2) = V V V V V V V V V V V V V V 1.000 * V 0.521 * V V V 5.108) .I V V V V VV V ; 1.000* 1.000* V5•49) + V 8.608 V V V V Total of 2 main streams to confluence: V V V V V VV : V V• V V V V 'Flaw rates before conflüencè point: V V V V V V V VV:VV V VV V I V V 5.108 V V 5.940 V VV V V V V V V V V V V V V V Maximum flow rates at confluence V using above -data-.- 9.013 VV V V 8.608 V V V V V V V V V VV VV V VV V .. V V V I Area of streams before confluence: V V V V V V V V V V V V V V 5100 1.720 I V V V V Results of confluence: V V V V V V VV V V V V V V VV V V V V V Total flow rate =V V 9.013(CFS) V V V V VV V ,V V V V V V V V V V V Time of concentration V V 16.209 mm. V Effective stream area afterVconfiuence =VV 6.820(Ac.) V V V I I V +++±++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ V V Process from Point/Station V V 252.000 to Point/Station V 263.000. V V V V V **** PIPEFLOW TRAVEL TIME (User specified size) V V V V Upstream point/station elevation =;, 284.77(Ft.) V V V V V V V V V V Downstream point/station elevation = V 266.30(Ft.) V V V V V V V V V V V Pipe length = 146.00 (Ft) VManningls N = 0.013 V V V V V V I No, of pipes- 1 Required pipe flow V V V V 9.013(cFs) V V V V V V V V Given, pipe size= V '2440(I n.) Calculated individual pipe flow *= 9.013(CFS) V I V : Normal flow depth in pipe = V V 543(In.) V V V V V V V V Flow top width inside pipe = 20.08(In.) V V V V V V V V Critical Depth =VV 12.84(In'.V). VVV V V V V V V V V 'V V V Pipe flow velocity — Travel time through pipe .= V V 0.14 mm. V V V V V Time Of concentration (TC) VV V 16.35 mm. V V V V +++++++++++.-++I+++++++++++++±++.f4++++++++4+++++±+++++t+++++++++++++++ .. V V Process from Point/Station : 263.000 to Point/Station V 263000 V I V**** CONFLUENCE OF MAIN STREAMS V**** V V The following data inside Main Stream ISV listed: V V V V V V V In Main Stream number: I I V V Stream flow area 6.820(Ac..) V Runoff from this V stream V 'V 9.013 (CFS) ,V V V V V V V V VV V V V VV V V Time of concentration = V 16.35 mm. V V V Rainfall intensity = V 2.208(In/Hr) V V V V V V V V V V I' Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ V Process from Point/Station. 'V V 26O.000 to Point/Station 261.000 V V V V **** V INITIAL 'A EVALUATION V V V V V V V V V V V V I 1 ., User specified 'C' value of 0.900 given for subarea . . . I .Initial subarea flow distance = 255.00(Ft.) . . . Highest elevation = . 305.80(Ft.) Lowest elevation = 305.00(Ft.) .. •• '• . . Elevation difference= 0.80(Ft.) . I Time of concentration calculated by the urban . areas overland flow.methOd (App X-C) =. 8.46 mm.. .TC = (1.8*(1.1-C)*distance.5)/(% s1opè(1/3)] I, TC = [1.8*(1.1-0.9000)*(255.00.5)/( .0.3l(l/3)]= 8.46 Rainfall intensity (I) = 3.378 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA). is -C.= 0.900 Subarea runoff= 1.125(CFS) 1 Total initial stream area = 0..370(Ac.) I . +++++•+4-++++++++++++++++++++++++++++++++++++++++++++++++++++++++.4++++++ Process from Point/Station 261.000 to Point/Station 262.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of. street segment elevation = 305.000(Ft.) End of street segment elevation = 286.500(Ft.) Length of street segment = 675.000 (Ft.) I . Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) .. . Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz). = 0.020 . . Street flow is on (1] side(s)of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property . line (v/hz) = .0.020 . Gutter width =. 1.500(Ft.) . . . Gutter hike from flowline = •2.000(In.) I . Manning's N in gutter = 0.0150 . Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 I .Estimated mean flow rate at midpoint of street = .• 2.615(CFS) Depth of flow = 0.292 (Ft.) . . Average velocity = 3.705(Ft/s) . .5. Streetfiow hydraulics at midpoint of street travel: . ., I . • Halfstreet flow width = 7.767(Ft.). . . Flow velocity =; .3.70(Ft/s) . . Travel time = .3.04 mm. TC = • 11.50 min. I Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity = 2..772(In/Hr) for a 10.0 year storm I .Runoff coefficient used for sub-area, Rational method,Q=KCIA, C .0.900 ..Subarea runoff = . 2.445(CFS). for 0.980(Ac.) . . Total runoff = 3.570(CFS) Total area =. 1.35 (Ac.) Street flow at end of street = 3.570(CFS) . I . Half street flow:at end of street =.3.570(CFS) Depth of flow = 0.317(Ft.) . . . . . . Average velocity = . 3.893(Ft/s) . . . Flow width (from curb towards crown)= 9025(Ft.) . S I Process from Point/Station . 262.000 to Point/Station 263.000 ** PIPEFLOW TRAVEL TIME (User specified size) I S . Upstream point/station elevation = 282.50(Ft.).' . Downstream point/station elevation = 266.55(Ft.) Pipe length.= 35.00(Ft.) Manning'sN =0.013 . No. of pipes =..l Required pipe flow . ..' 3.570(CFS) Given pipe size = 18.00(In.) •: . . . . Calculated individual pipe flow' = 3.570(CFS). . I .Normal flow depth:in pipe = . 2.75(In.) 0 . Flow top width inside pipe . 12 (In.) . •. . . . • • Critical Depth = 8 65(In ) I Pipe flow velocity '= 20 96(Ft/s) Travel time through pipe = . 0.03 mini ... . .. Time of concentration (TIC) = 11 52 mm . Process from Point/Station.. . . 263.000to Point/Station 263.000 I ****,CONFLUENCE OF MAIN STREAMS **** .• •• . •. •0 The following data inside Main Stream is listed: . I ... In 'Main Stream number: 2. . . . . Stream flow area = . .1.350(Ac.) . . Runoff from this stream = . . 3.570(CFS) . Time of concentration = 11.52 mm Rainfall intensity = 2.768(In/Hr) I. Summary of stream data: . . . . . •• I Stream Flow rate Tc. . Rainfall Intensity • No..(CFS) (mm) (In/Hr) I l 9013 1635 2208 2 . 3.570 11.52 , : . •• 2.768 ...... ... Qmax(l) .= ... . . . . . . 9.013) ,• . . I . 1.000* ,. 1.000* ' +. 0' . 0 • 1.000* 0 3 .570) . +.=0 . . .11.861 0 Qmax(2) = 0 • 0 ••• • 0 - • : ••• • • • 'l. 00*0 * 0.705* •. 9.013) + •' . • . .• • 1.000 * 1.'000 * 3.570) + Total of -.2 main streams to confluence I ' Flow rates before confluenOé.poiht: . . . . •: 9.013 . 3.570. • . . . • • 0 • • • ,. . Maximum flow rates at confluence using above data: I . • . . 11.861 . 9.921 • .. 0 Area of streams before confluence: . .• • . . . . . 6.820. . .1.350. • 0 0• .. •0•, •• Results of confluence:' 0• . . 0 0 Totaiflow rate = .. 11..861(CFS) , 0 • .•. .. ...• I. Time of concentration=. . 16.353 mm. . S .. . . Effective stream area after confluence- =. . 8.170(Ac.) I • ++++±++++++++++++++.+++++++++++++++++++++++++++++.++.+4..++++++++++++ Process from Point/Station • . 263.000 to Point/Station 264.000 *** PIPEFLOW TRAVEL TIME (Usèr,specified size) **** .. • I Upstream point/station elevation = . 266.30(Ft.). •. . . - Downstream point/station elevation = . 262.00(Ft.) • I •. 0,0: .... . ::'. Pipe length =, 34.00(Ft.): MannIng's N = 0.013 No. of pipes = 1 Required pipe flow = ll.861(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 11.861(CFS) Normal flow depth in pipe = 6.23 (In.) Flow topwidth inside pipe = 21.04(In..) Critical Depth = 14.83 (In.) Pipe flOw velocity = 18.33(Ft/s) Travel time through pipe =. 0.03 mm.. Time of concentration (TC).-- 16.38 mjn : Process from Point/station 264.000 to Point/Station 264.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2. . . . Stream flow area =. 8.170(Ac.) . Runoff from this stream = 11.861.(CFS) . . Time of concentration = 16.38 mm. Rainfall intensity = . 2.206(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. - (CFS) . (mm) . (In/Hr) 1 11.861 1638 2.206 Qmax(1) = . . • .. . 1 000'.* 1 000,'* 11.861) + = 11.'861 Total of 1 main streams to confluence: I Flow rates before confluence point: 11.861. Maximum flow rates at confluence using above data: I . 11.861 . .. •• Area of streams before confluence: 8.170 . 0. . Results of confluence Total flow rate = . 11.861(CFS) - I . Time of concentration = 16.384mm. Effective stream area after confluence = . . 8.170(Ac.) I' ++++++++++++++++++t++++++++++++*+++++++++++++++++++++.4++++++++++++++++ Process from Point/Station 299.900 to Point/Station 299.000 **** INITIAL AREA EVALUATION .**** . . . . Decimal fraction soil group A = 0.000 0 Decimal fraction soil group B = 0.000 . I .Decimal fraction soil group C = 0.000 Decimal fraction soil group D= 1.000 • . [RURAL (greater than 1/2 acre) area type ] I Time of concentration computed by the . . .. natural watersheds nomograph (App X-A) . TC = [11.9*1éngth(Mi)3)/(elevationchange)]'.385*60(jfl/hr) + 10 mm. Initial subarea flow.distance = 570.00(Ft.) • I I Highest elevation = 420.00(Ft.) Lowest elevation = 395.00 (Ft.) I Elevation difference = 25.00'(Ft.) TC=[(11.9*0.10803)/( 25.00)].385= 3.45+ 10 min. = 13.45 mm. Rainfall intensity (I) = 2.505 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 I Subarea runoff = 3.I00(CFS) Total initial stream area 2.750(Ac.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station. 299.000 to Point/Station 298.000 IRREGULAR CHANNEL FLOW TRAVEL TIME **** I . Depth of flow = 0.085(Ft.)' Average velocity = 1.498(Ft/s) . ******* Irregular Channel Data *********** I Information entered for subchanñel number 1 : Point number 'X' coordinate 'Y' coordinate I . 1 . . 0.00 . 2.00 2 ' 8.00 0.00 3 32.00' . . 0.00 I' 4 . 40.00 2.00 Manning' ' s 'N' friction factor = 0.040 I Sub-Channel flow = 3.100(CFS) flow top width = 24.680(Ft.) velocity= 1.498(Ft/s) area = 2.070(Sq.Ft) I ' ' ' Froude number = 0.911 Upstream point elevation = 395.000(Ft.) I Downstream point elevation = 281.600(Ft.) Flow length = 2560.000(Ft.) Travel time = 28.49 min'.. , Time of concentration = 41.94 mm. I Depth of flow = 0.085(Ft.) . . . . Average velocity = 1.498(Ft/s) Total irregular channel flow = . 3.100(CFS) I Irregular channel normal depth above invert elev'. = 0.085 (Ft.) Average velOcity of channel(s) = 1.498(Ft/s) I Sub-Channel No. 1 critical depth = .' 0.'080(Ft.) critical flow top width = 24.641(Ft.) critical flow velocity= 1.592(Ft/s) critical flow area = 1.948(Sq.Ft) I . Process from Point/Station299.500 to Point/Station' 298.000 **** SUBAREA FLOW ADDITION **** I Decimal fraction soil group A =0.000 . Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 ' I Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration = 41.94 mm. ' Rainfall intensity = 1.203(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 Subarea runoff = ].7.621(CFS) for 32.550(Ac.) Total runoff = 20.721(CFS) Total area = 35.30(Ac.) Process from Point/Station 298.000 to Point/Station 297.000 PIPEFLOW TRAVEL TIME (User specified -size) **** Upstream point/station elevation = 282.00(Ft.) Downstream point/station elevation = 279.73 (Ft.) Pipe length = 99.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required, pipe flow = 20.721(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 20.721(CFS) Normal flow depth in pipe = 11.06(In.) Flow top width 'inside pipe = 33.22(In.) Critical Depth = ' 17.52(In.) Pipe flow velocity'= ll.24(Ft/s) Travel time through pipe = 0.15 mm. Time of concentration (TC) = 42.09 mm. ++++++++++++++++±+++++++++'++++++++++++++++++++++++++±++++++++++++++.f++ Process from Point/Station 297.000 to Point/Station 297.000 **** CONFLUENCE OF MAIN STREAMS **** The' following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 35.300(Ac.) Runoff from this stream = .20.721(CFS) Time of concentration = 42.09 mm. Rainfall intensity = 1.200(In/Hr) Program is now starting with Main Stream No. 2 ++++++++±+++++++++++++++++++++++++++++++++++++++++++±+++++++++++++++++ Process from Point/Station 265.000 to Point/Station 266.000 **** INITIAL AREA EVALUATION *** User specified 'C' value of 0.900 given for subarea Initial subarea flow-distance = 300.00(Ft.) Highest elevation = 307.00(Ft.) Lowest elevation = 300.00(Ft.) Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.70 mm. TC = (1.8*(1. 1-C) *distánce .5)/(% slope (1/3)) TC = [1.8*(1.1-0.9000)*(30000.5)/( 2.33(1/3)]= 4.70 Rainfall intensity (I) = 4.935 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 1.244(CFS) Total initial stream area = 0.280(Ac.) I Process from Point/Station '266.000 to Point/Station 267.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I I I I I I 1 I I I L I I I Li 1 Top of street segment elevation = 300.000(Ft.) End of street segment elevation = 291.000 (Ft.) Length of street segment = 790.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown). = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = . 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's 'N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.338 (Ft.) Average velocity = 2.615(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 10.049(Ft.) Flow velocity = 2.62(Ft/s) Travel time = 5.03 min. TC = 9.74 mm. Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity = 3.086(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 2.083(CFS) for 0.750(Ac.) Total runoff = 3.326(CFS) Total area = 1.03 (Ac.) Street flow at end of street = 3.326(CFS) Half street flow at end of street = 3.326(CFS) Depth of flow = 0.350(Ft.) Average velocity = 2.681(Ft/s) Flow width (from curb towards crown)= 10.669(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 267.000 to Point/Station 297.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 288.60(Ft.) Downstream point/station elevation = 279.73 (Ft.) Pipe length = 380.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.326(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.326(CFS) Normal flow depth in pipe = 5.56(In.) Flow top width inside pipe = 16.63(In.) Critical Depth = 8.34 (In.) Pipe flow velocity = 7.16(Ft/s) Travel time through pipe = 0.88 mm. Time of concentration (TC) = 10.62 mm. Process from Point/Station 297.000 to Point/Station 297.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 I I I I I I I I I 1 I I I I I 2.909 (CFS) Stream flow area 1.030(Ac.) Runoff from this stream 3.326(CFS) Time of concentration = 10.62 mm. Rainfall intensity = 2.917(In/Hr)' Program is now starting with Main Stream No. 3 I Process from Point/Station 255.000 to Point/Station . 256.000 I INITIAL AREA EVALUATION **** S User, specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 200.00(Ft.) I . Highest elevation = 291.00(Ft.) S Lowest elevation = 287.80.(Ft.) . . . . Elevation difference-3.20(Ft.) S S I .Time of concentration calculated by the urban areas overland flow method (App X-C)' = 4.35 min.. TC = (1.8*(1.1-C)*distance.5)/(% slope(1/3)) TC = [1.8*(1.1-0.9000)*(200.00.5)/(. I.60(1/3)]= , 4.35 I Rainfall intensity (I) = . 5.186 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff .= 1.074(CFS) I Total initial stream area = '0.230(Ac.) , I 'Process from Point/Station 256.000 to Point/Station 257.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION I .. Top of street segment elevation =. 287. 800(Ft.) End of street segment elevation = ,283.900(Ft.) Length of.street segment = 300.000(Ft.) I .Height of curb above gutter: flowline 6.0(In.) Width of half.street (curb to crown) = 71.000(Ft.) S Distance from crown to crossfall grade break = 69.500(Ft.) I Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break, to crown (v/hz) .= 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line' = 10.000(Ft.) I Slope from. curb to property line (v/hz) '=' 0.020 • '. Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) • S I Manning's N in gutter = 0.0150 . Manning's N from gutter, to grade break '= 0.0150' Manning's N from grade break-to crown =. 0.0150 Estimated mean flow rate at midpoint of street = 2.474(CFS) I ..,Depth of flow = 0.318(Ft.) .' S • Average velocity = S '2'.684(Ft/s) . S Streetfiow hydraulics at midpoint of street 'travel: I 'Halfstreet flow width = 9.051(Ft.) , Flow velocity = 2.68(Ft/s) 'Travel time = 1.86 mm. ' TC = . 6.22 min. I Adding area flow to street U ' ser specified. 'C' value of 0.900 given for subarea . S Rainfall intensity = 4.121(In/Hr) for a 10.0 year storm S Runoff coefficient used for sub-area, Rational'method,Q=KCIA, C = 0.900 I Subarea runoff = 2.226(CFS) for 0.600(Ac.) Total runoff = 3.299(CFS) Total area'= . 0.83(Ac.) Street flow at end of street = 3.299(CFS) ' S I *1 Half street flow at end of street = . 3.299(CFS) Depth of flow = 0.343 (Ft.).' Average velocity.= 2.824(Ft/s) Flow width (from curb towards crown) 10.323 (Ft.) . '. Process from Point/Station . 257.000 to Point/Station . 297.000 ****.pIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation = 80.50(Ft.): . Downstream point/station elevation = . 27.9.73(Ft-..) . Pipe length .=. 105.00 (Ft.). Manning's N = 0.013 No., of pipes . 1 Required pipe flow =, . 3.299(CFS) Given pipe size = 18.00(In.). . . . . . . Calculated individual pipe flow . ..3.299(CFS) . ,.. Normal flow depth in pipe''=' 7.55(In.) . . . ., . . Flow top'width.inside pipe = 17.76(In.) .... . . •0 Critical. Depth.= 8.31(In.) Pipe flow velocity. = . 4.70(Ft/s) Travel time through pipe 0.37 Thin.' •, . . . Time of concentration (TC) =. . 6.59 mm. . . Process from.Point/Station' ,. 297.000 to Point/Station . 297.000 I . '• CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: . .. 1 •' In Main Stream number: 3 •.. ' Stream flow area—, 0.830(Ac.)• I . , . . . . ., Runoff from this stream .=- . 3.299(CFS) . . . Time of concentration .=. 6.59 Thin. . . I : Rainfall intensity.= . . 3.970(In/Hr). . . . Summary of stream data: Stream FlOw rate . . . Rainfall Intensity 0 j I No.. . . (CFS) •': (mm) .. . (In/Hr) .. •0 I . .20.721 :42.09.: . ..r . . • 1.200 .2 . . 3.326 .. 10.62 . 0 •. 2.917 . . . 0• • . 3 3.299.. 6.59 . . . . 3.970 . • . .I. Qmax(l) 1.000 * . 1000 * 20.721) .4.. 0.411 * 1.000 *'. .: 3.326) + • : • - I . ' . • 0.302 * . 1.000* '3.299) Qmax(2) ='. . • . .+ = 1.000 * 0.252 * . 20.721) . .+ • . .. 1.000 * . - 1.000,* 3.326) + 0 0 0.335 1000 10.980 0 . Qmax(3) 1.000 * 0.157* .. 1.000 * 0.620*. 3.326) + : I 1.000* 1.000 * 3.299) + = 8.606 I . Total of 3 main streams to confluence: .. Flow rates before confluence .point: . . . 0 • 0 . 20.721 3.326 . 3.299 - . . 0 Maximum flow rates at confluence using above data: '. I 1 23.087 10.980 . 8.606 Area of streams before confluence: I . 35.300 1.030 0.830 - Results of confluence: I ..Total flow rate =. 23.087(CFS) Time of concentration = 42.085 min. Effective stream area after confluence = 37.160(Ac.) Process from Point/Station 297.000 to Point/Station 296.000 I **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 279.40(Ft.) I . Downstream point/station elevation = 278.30 (Ft.) Pipe length =. 46. 00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 23.087(CFS) I Given pipe size = 36.00(In.) Calculated individual pipe flow = 23.087(CFS) Normal flow depth in pipe 11.58(In.) Flow top width inside pipe =. 33.63(In.) ' Critical Depth 18.56(In.) Pipe flow velocity = 11.76(Ft/s) Travel time through pipe= 0.07 min.. 0 Time of concentration (TC) = 42.15mm. I Process from Point/Station. .296.000 to Point/Station 0 295.000 **** IMPROVED CHANNEL TRAVEL TIME '.**** •0 I Upstream point elevation .= 278.30(Ft.) Downstream point elevation = 270.50(Ft.) . Channel length thru subarea = 555.00(Ft.) I . Channel base width = 4.000(Ft.) . Slope or 'Z' of left channel bank = 1.500 Slope or'Z' of right channel bank = 1.500 Manning's 'N' = 0.015 . . ' Maximum -depth of channel = 2.500(Ft.) . Flow(q) thru.subarea = 23.087.(CFS) Depth of flow = 0.632(Ft.) I .Average velocity .= 7.380(Ft/s) Channel flow top width = 5.897 (Ft.) Flow Velocity = 7.38(Ft/s) ' Travel time = 1.25 mm. Time of concentration = 43.40 mm. Critical depth = . 0.898(Ft.) Process from Point/Station . 295.000 to Point/Station . 29.4.000 I ****-IMPROVED CHANNEL TRAVEL TIME Covered channel . . . . Upstream point elevation = 270.50(Ft.) I Downstream point elevation = 270.10(Ft.) Channel length thru subarea = 60.00(Ft.) Channel base width . = 5.000(F.t.) . I .: 0 I San Diego County Rational Hydrology Program CivilCADD/Civi1DESIGN Engineering Software,'(c) 1990 Version 2.3 Rational method hydrology program based on. San Diego County Flood Control Division -1985 -hydrology manual Rational Hydrology Study Date: '2/' 1/91 EL CANINO REAL/PALOMAR AIRPORT ROAD.•• . 0• 300 AREA BASIN STUDY . .'' •' . ,. '. . . .. FILENAME: ELCAN3. . L 200,4 JOB#- 10365 .• ' " . . '. 2/1/91 . " .. . . ' . . . . ********* Hydrology Study Control Inforination' ********** • ------------------------------------------------------------------------------------ Rational hydrology study storm event year. is . 10.0.. Map data precipitation entered 6 hour, 1precipitation'(inches) 1.800 ... S '• ': ' . . S ' 24 hour precipitation(i'nchès) = .3.100 Adjusted '6 hour precipitation (inches) '= 1.800 , ... -. • P6/P24 = 58.1% .. , ' . . .. . . San Diego hydrology manual—IC.'.—values used— Runoff coefficients by rational method .. . . . . . N 'P U T D A T A Elément'Capacity Space'Remaining '= 347 • . . . Element Points -and Process used betwèen'Points , • Number . Upstream Downstream Process 300.'000' . . 301.000 , Initial Area •. . 2 . . . 301.000 ' ,: 302.000' . . Pipeflow ,'. .inp) . , 302.000 . :. ''Main Stream Confluence .. 3 • •. ,302.000 4 . •. •' 310.000 311.000 •' •'. 'Initial Area , , 5 . . ' • "311.000 . 312.000'.. . :pipeflow Time'.(user inp) • 6 •' 312.000' . 7 .. .313.000 . . ' ' 313.000 • . 313.000 • Pipeflow.Time(user inp) Confluence. 8 • 340.000. : • 13.000 Initial Area 9. 5 '313.000. . . 313.000' .. S • Confluence S ' 10' ' • -313. 000' • - . ' 302.0.00. • .' Pipef low Time(user inp) ' 11 ..302.000 302 000 Main Stream Confluence 12. ' , . 302'000 ': : ' 303.000 • Pipeflow Time(userinp) 13 • ,: • " 303.000 '14 . . • ' '..330.000 '• . 303.000 , " ' 331.000 • . Main Stream Confluence . Initial Area ' • 15 . . . • 331.000 332.000: '.' Street Flow + Subarea ', , ,' ' 332.000 . . • 322.000' ' , Pipeflow Tiine(user .inp)',' •' I .,..16 17 ' '' 322.000. 322.000. : : • '' 'Confluence ' ' • 18 '. • . •. '320.000 . . . 321.000 ' ' Initial Area: • '' • • " ' 19 ' • ' .321.000 5. . . 322.000 ": Street Flow +,Subarea. ' ' 20 • . :. 322.000 ' ' 322..000 . S.. S. Confluence .21 '. , ' '322.000. . •• ' 303.000: Pipeflow Tine(user'inp). '. • , 22 . .' 303.000' , . • , '303.000. .. , ':'Main Stream 'Confluence 303.000 • End of listing.. ............. :' ..304 . .000. . . '.PipeflowTime(user inp) . • , ' ' : : II 1 . .. .. San Diego County Rational Hydrology Program Civi1CADD/CivilDESIGN EngineeringSoftware, (C) 1990 Version 2.3 I Rational method hydrology program based on San Diego County Flood Control Division.1985 hydrology manual . Rational Hydrology Study Date: 2/ 1/91 EL CAMINO REAL/PALOMAR AIRPORT. ROAD . S 300 AREA BASIN STUDY . . . FILENAME: ELCAM3 .. . . . L 200,4 JOB# 10365 2/1/91 . ********* Hydrology Study ContrOl Information ********** I - Rational hydrology study storm event year is 10.0 Map data.precipitation entered: 6 hour, precipitation(inches) 24 hour precipitation(inches) = 3.100 I Adjusted 6 hour precipitation (inches) = 1.800 P6/P24 = 58.1% . . . San Diego hydrology manual 'C' values used Runoff coefficients by rational method - ++++++++++++++++++++:4................................................. I Process from Point/Station: 300.000 to Point/Station 301.000 *** INITIAL AREA EVALUATION I .User specified 'C' value of 0.900 given for. subarea Initial subarea flow distance = 400.00(Ft.) .. Highest-elevation •320.00(Ft.) .. I Lowest elevation = 305.50(Ft.) V • . . Elevation difference = 14.50(Ft.) V Time of concentration calculated by the urban . areas overland flow method (App X-C) = 4.69 mm. I.. TC [1.8*(1.1_C)*d1stance5)/(% slope(1/3)] TC= [1.8*(1.1_0.9000)*(400.00.5)/( 3.63(1/3)]= 4.69 '. Rainfall intensity (I) = . 4•944 for a .10.0.yeár storm I .Effective runoff coefficient used forarea (Q=KCIA) is C =0.900 Subarea runoff = 2.314(CFS) . Total initial stream area = • 0.520(Ac.) . . Process from Point/Station 301.000 to Point/Station - . 302.000 I *** PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station, elevation .= . 301.00(Ft.) . . V. I .Downstream point/station elevation = 294.5.0(Ft.) Pipe length =. 388.00(Ft.) : Manning's N= 0.013 s No. of pipes = 1 Required pipe flow .= . 2.314.CFS.) I .Given pipe size 18.00(In.) Calculated individual pipe flow = 2.314(CFS) Normal flow depth inpipe= . .5.02(In.) . . . . .. .. Flow top width inside pipe= 16.15(In.) I Critical Depth = . 6.90(In.) . .. . I Pipe flow velocity I . Travel time through pipe = 1.13 mm. Time of concentration (TC) =' 5.81 mm. I ++++++++++++++++'++++++++++++++++++++++++++++++++-f-+++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station . 302.000 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number:, 1 I Stream flow area = 0.520(.Ac..) Runoff from this stream = 2.314(CFS) Time of concentration = ' . 5.81 mm. '. Rainfall intensity = 4.303(In/Hr) I Program is now starting with Main Stream No.. 2 l Process, from. Point/Station ' 310.000 to Point/Station. 311.000 *** INITIAL AREA EVALUATION **** I ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B.= 0.000- Decimal fraction'soil group C = 0.000 I Decimal fraOtion soil group D = 1.000 [COMMERCIAL area type Initial subarea flow distance =' 775.00(Ft.) I . Highest elevation'= 322.00(Ft.) Lowest elevation= 314.00(Ft.) '. . . . Elevation difference = 8.00(Ft.) ' Time of concentration calculated by the urban I . areas overland flow method (App X-C) = 12.40 mm. TC = [l.8*(l. 1-C).*distance .5)/(% sl'ope (1/3)] . TC= [l.8*(1.1._0.8'500)*(775.00 ..5)/(. 1.O3(1/3)]=, 12.40 I Rainfall intensity (I') = ''2'.. 64.1 for a 10.0, year storm Effective runoff coefficient'used for area (Q=KCIA) is C = 0.850 Subarea runoff =' 8.304(C.FS) .. ' . Total initial stream area • 3.700(Ac.) '. I .Process from Point/Station . " 311.000 to ,Point/Station .. 312.000 **** PIPEFLOW TRAVEL TIME (User specified size)-**** I Upstream, point/station' elevation = , 309,. 93 (Ft.) Downstream-point/station elevation = .305.90(Ft.) Pipe length =' 66.00'(Ft.) ' Manning's N = 0.0l3 ' I . No. of pipes = 1. Required pipe' flow 8.304(CFS) Given pipe size . , ' 24.'OO(In.) Calculated individual pipe flow , =' 8.304(CFS) Normal flow depth in pipe— , 6.25(In.) . . I Flow top width inside pipe = ' 21.07(in.) ' .. . Critical Depth =. 12.32(In.) Pipe flaw velocity.= . . 12.76(Ft/s)" I Travel time through pipe -=', 0.09 mm. ' •' . Time of concentration (TC)'.-- .12.48 mm. . ' . H Process from Point/Station 312.000 to Point/Station 313.000 I **** PIPEFLOW TRAVEL TIME (User specified size) ** Upstream point/station elevation = 305.56(Ft.) Downstream point/station elevation= 299.00(Ft.) I Pipe length = 14.00(Ft.') Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.304(CFS) Given pipe size = 24.00(m) I Calculated individual pipe flow = 8.304(CFS) Normal flow depth in pipe = 3.78(In.) Flow top width inside pipe = 17.48(In.) I Critical Depth = 12.32(In.) Pipe flow velocity = 26.23 (Ft/s) Travel time through pipe = . 0.01 mm. Time of concentration (TC) = . .12.49 mm. I. . I Process from Point/Station . 313.000 to Point/Station 313.000 **** CONFLUENCE OF MINOR STREAMS.**** Along Main Stream number: 2 in normal stream number 1 I Stream flow area = 3.700(Ac.) Runoff from -this stream = 8.304(CFS) Time of concentration = 12.4.9 mm. Rainfall intensity = . 2.628(In/Hr) I Process from Point/Station . .. 340.000 to Point/Station . 313.000 **** INITIAL AREA EVALUATION **** I .User specified 'C' value of 0.500 given for subarea Initial subarea.flow distance = 405.00(Ft.) - Highest elevation =. 310.00(Ft.) . I Lowest elevation = 304.00(Ft.) . .. . Elevation difference = 6.00(Ft.) . Time of concentration calculated by the urban areas overland flow method (App X-C) = 19.07. mm. I TC = [l.8*(I. 1-C) *distance .5)/(% slope (1/3)] TC= [1.8*(1.10.5000)*(405.00-.5)/( 1.48(1/3)]= 19.07 Rainfall intensity (I) = 2.000 for a 10.0 year storm I Effective runoff coefficient used for area (Q=KCIA) is C = 0.500 Subarea runoff = 0.160(CFS) . Total initial stream area = 0.160(Ac.) Process from Point/Station 313.000 to Point/Station 313.000 I ** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 2 in normal stream number 2 I Stream flow area = 0.160(Ac.) . Runoff from this stream = 0.160(CFS) . Time of concentration = 19.07 mm. . . . Rainfall intensity = 2.000(In/Hr) . .. I ..Summary of stream data: . Stream Flow rate TC Rainfall Intensity No.,.(CPS) (mm) . . (In/Hr) I I 8.304, 12. 49 . 2.628 . 2 0.160 19.07 . . , ' 2.000 - :Qmax(1) = . I 1.000* '. , 1.000 *' 8.304)' +. 1.000 * -0.655 * '0.160) + = ' 8.409 Qmax(2) I '•. . .0.761 * 1.0OO * 8.304),+ 1.000* 1.000 * ', ' 0.160)+'= . 6.482 Total of 2 streams to confluence: Flow rates before confluence point: 8.304 0.160 Maximum flow rates at confluence using above data: . -. 8.409 6.482 . . . . Area of streams before confluence: .- 3.766. 0.160 Results of confluence: . . . . . . Total flow rate .= ,... 8.409(CFS) . . . . Time of concentration = 12.491 mm. . . . -. Effective stream area after" confluence = 3.86.0(Ac.) Process from Point/Station '- .313.000 to Point/Station. 302.000 PIPEFLOW. TRAVEL TIME (User specified size) Upstream point/station elevation = 298.67(Ft.) Downstream point/station elevation = 294.00(Ft.) Pipe length = . 8.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow .. 8.409(CFS) .. Given pipe size..= ' 24.00 (In.) . . . . Calculated individual pipe.flow =. 8.409(CFS) Normal -f low depth in pipe = - 3.60(In.)' . . Flow, top width inside 'pipe = :17.14 (In..) Critical Depth = 12.39 (In.). Pipe flow velocity = 28.44(Ft/s) Travel time through pipe - '0,00 mm. . . Time of concentration (TC) 12.50 mm. " ' •.' .- - ++++++++++++++++++++++++44++++ +++++++++++++++++++++++++++++++++++++ Process from Point/Station .. 302.000 to Point/Station '.302.000 **** CONFLUENCE OF MAINSTREAMS -. The following data inside Main Stream is listed:. . In Main Stream number:. 2 Stream flow area = , 3.860(Ac.) Runoff from this stream=' .. 8.409(CFS) Time of concentration = 12.50 mm. Rainfall 'intensity =. 2'.627(In/Hr) Summary of stre'am"data: '- Stream ' Flow rate - TC . . ..'.Rainfall Intensity ' No. - - (CFS) ' , (mm). ' . - . - (In/Hr) 1 2314 581 4303 2 8&nq 12cn - . • - . ' I Qmax(1) = 1.000 * 1.000, * 1.000 * 0.465. * Qmax(2) =' 2.314) + 6.227' 0.611*. .1.000 * 2.314) + . 1.000 * 1.000 * .8-.409) + = 9 822 Total of 2 main streams to confluence Flow rates before confluence point: . . . 2.314' . 8.409 Maximum flow rates at confluence using above data: 6.221 '. 9.822 Area of streams before confluence: 0520 3.860 Results of confluence: . . ., . . . Total flow rate = ..' 9.822(CFS) '. . . Time of concentration = . 12.495 min. .• Effective stream area after confluence = 4 380(Ac ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 'Process , from Point/Station 302.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation = 293 67(Ft ) Downstream point/station elevation 280. 20'(Ft. ) •" Pipe length =. .. 202.00(Ft.)". Manning's N.=..0.013 No. of.pipes =.1 Required pipe flow = 9.822(CFS) Given pipe size = 24 00(In ) Calculated.individual pipeflow = , . 9.822(CFS) Normal flow depth in pipe =" ... 6.66(In.) .. . . . . Flow top width inside pipe= 21.49(In.) Critical Depth = 13.44(In.) '. ., . '.• . • Pipe flow velocity =' 13.82(Ft/s) . . Travel time through pipe = 0 24 min. Time of concentration (TC). = . 12.74 mm. , +++.++++++++++++++++++++++++++++++±+++++++++++++++++,++±++++++++++++++++ Process.from Point/Station • 303.000 to Point/Station .303.000 **** CONFLUENCE' OF MAIN STREAMS ****, •'. : ' ' . The following data inside Main 'Stream is listed: • ' In Main Stream number 1 Stream flow area = 4 380(Ac ) Runoff from' this stream ' ' ',9.822(CFS) •' • • . ' Time of concentration = .12.74 mi. • ' ' Rainfall intensity = 2'.594'(In/Hr) Program is nOw' starting with Main Stream Na. .2 • . • ' ' • ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from' Point/Station" " • 330.000-to Point/Station.' 331.000 **** INITIAL AREA EVALUATION User specified 'C' value of. 0.900. given for subarea Initial subarea flow distance =' 295.00(Ft.). Highest elevation = 305 80(Ft ) I Lowest elevation = 303.90(Ft.) . I .Elevation difference = . 1.90(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C). = 7.16 mm. TC = [1.8*(1.1-C)*distance.5)/(%slope(1/3)] I TC = [1.8*(l.1-0.9000)*(295.00.5)/( 0.64(1/3))= 7.16 Rainfall intensity (I) = .3.762 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 I .Subarea runoff .= 1. 456(CFS) Total initial stream area = 0.430(Ac.) 1 Process from Point/Station. 331.000 to Point/Station 332.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *** Top of street segment elevation = 303.900(Ft.) End of street segment elevation = 289.300(Ft.) I .Length of street segment = 375.000(Ft) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) I Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1) side(s) of the street I Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) I Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 I Estimated mean flow rate at midpoint of street = . 2.370(CFS) Depth of flow = 0.272 (Ft.) Average velocity = 4.252(Ft/s) I .Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 6.745(Ft.) Flow velocity = 4.25(Ft/s). . Travel time = 1.47 mm. TC = 8.63 mm. I Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity = 3.335(In/Hr) for a 10.0 year storm I Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff 1.621(CFS) for 0.540 (Ac.) Total runoff = .3.077(CFS) Total area = 0.97 (Ac.) I Street flow at end of street = 3.077(.CFS) Half street flow at end of street = 3.077(CFS) Depth of flow = 0.291(Ft.) . Average velocity = 4.407(Ft/s) . I Flow width (from curb towards crown)= . 7.718 (Ft.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.++++++++ Process from Point/Station - 332.000 to Point/Station 322.000 ** PIPEFLOW TRAVEL TIME (User specified size) I Upstream point/station elevation = 281.19 (Ft.) . . Downstream point/station elevation = 280.75(Ft.) Pipe length = 55.00(Ft.) . Manning's N = 0.013 No. of pipes = 1 Required pipe flow 3.077(CFS) I Given pipe size =. . 18.00(In.) ' I Calculated individual pipe flow = 3.077((JFS) . Normal flow depth in pipe = •7.09(In.) Flow top width inside pipe 17.59 (In.) . '. I Critical Depth = 8.00(In'.) Pipe flow velocity—.4.76(Ft/s). . . Travel time through pipe ='.. 0.19 mm. Time of concentration.(TC) = 8.82 mm. I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I .Process from Point/Station .322.000 to Point/Station' 322.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number. 2 in normal stream number 1 Stream flow area . 0.970(Ac.) . Runoff from this stream 3.077(CPS) Time ofconcentration = 8.82' min. Rainfall intensity .= 3.288(In/Hr) . . .. I ' Process from Point/Station . .. .320.000 to Point/Station . 321.000. **** INITIAL AREA EVALUATION I .User specified 'C' value of 0.9,00 given for subarea.. Initial subarea flow distance =. 200.00(Ft.) . . Highest elevation =' 305.50(Ft.) . . I Lowest elevation = '303.90(Ft.) Elevation difference = 1.60(Ft.)' Time of concentration' calculated by the urban . . areas overland flow method, (App X-C) = 5.48 mm. I TC = (1.8*(1.1_c)*distance.5)/(% sIope(1/3)) . ' .• TC,= [1,.8*(1'.1_0.9000)*(20,0.00 .5)/( 0.80(1/3))= 5.48 Rainfall intensity (I) = ' 4.468 for a 10.0 year storm I .Effective'runoff. coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = . 1.166(CFS) . ' ' •• •, Total'-initial stream area,= . " 0'.290(Ac.) .. ................... ................. *++-~ ............................... 'Process from Point/Station 321.000 to Po'int/Station ' 322.000 STREET FLOW TRAVEL TIME +.SUBAREA FLOW ADDITION,**** . Top of street.segment elevation = 303.900(Ft.) I .. ' End'Of street segment elevation = . 289.700(Ft.) Length of street segment = '375.000(Ft.) . Height of curb above gutter flowline = 6.0(In.) Width 'of half street (curb'to crown) ' = 53.000(Ft.) I , Distance from crown to crossfall grade.break = 51.500(Ft.). Slope from gutter to grade break (v/hz) = 0.087 Slope 'from grade break to crown (v/hz) = . 0.020'. . I 'Street flow is on [1] side(s) of the street Distance from curb,to property'line = .10.000(Ft.) . . . 'Slope from curb to property line (v/hz) = '. 0.020 . Gutter width— 1.500(Ft.).' ' . ' . • ' Gutter hike from flowline = 2 000(In ) Manning's N in gutter = 0.0160 Manning's N from gutter to grade break = 0.0150.. " I Manning's .N from grade break to crown = '0.0150 Estimated mean. flow rate at midpoint of street =, " 2.252 (CFS) I ., Depth of flow = 0.269(Ft.). 'Average velocity = 4..173(Ft/s) Streetf low hydraulics at midpoint of street travel: I Halfstreet flow width , 6.611(Ft'.') Flow velocity = 4.17(Ft/s) ' :' Travel time 1.50 mm. . TC= . 6.98 mm.' • Adding area flow to Street I User specified 'C' value of 0.900 given, for subarea Rainfall intensity = . 3.824(In/Hr) for a , 10.0 year storm Runoff coefficient used for'sub-area,Rational method,Q=KCIA,.'C = 0.900 I Subarea runoff,= ., ' I.858(CFS) for '0.540(Ac.) ' Total runoff = "3.024(CFS) 'Total area . 0.'83(Ac.) ' : Street flow at end of street =, , 3.024(CFS) •• ' Half street flow at end of street =. . 3.024(CFS) I Depth of flow Average velocity = 4.344(Ft/s) Flow width (from curb towards" crown) = . 7. 705.(Ft.)• Process from Point/Stati'on 322.000 to Point/Station . 322.000 CONFLUENCE OF MINOR STREAMS ****, • ' ', ' • . Along Main Stream number: 2 in normal' stream number 2 I Stream flow area =' 0.830(Ac.) Runoff from this stream'' = . 3.024(CFS) Time of concentration = ' 6.98 mm. Rainfall intensity = 3.824(In/Hr) I Summary of stream data Stream Flow rate TC . . .. Rainfall Intensity' No. , ,', ' (CES) , (mm) ' , • ' , (In/Hr) . I i 3077 882 3.288 2 '. ', 3.024 . ' 6.98 3.824 Qmax(l)= ' , '. " ' ' ' 1,000 * 1.000 * 3 077) + 0.860 *' 1.000 *' ' 3.024.) + = '' 5.678 ' Qmax(2) = , ,' " ' ' . ' ' " • " .. ' l.00O,'* '0.791 ,* , 3.077) +0 1.000 *' , 1.000 * , 3.024) + = '," 5,459 Total of 2 streams to 'confluence:• I' Flow rates before confluence point: . '' ,0 , , '• 0 ' ' 3.077 3.024 ", ' 0 , • " 0 Maximum flow rates, at confl'uence..using above data: 5.678 5.459 I Area of streams before confluence: 0.970 " , O830' O Results of confluence: ' , 0 , , , 0 ' ' ,, ' 0 • ' Total flow rate .=5.678(CFS)" Time of concentration= ' 8.822 mm. ' 0 ' • ' " Effective stream area after confluence =,, 1.800(Ac.) 0 • ++++++++++++++++++++++++++++++++++++++++++++++f+'+++++++++++++. Process from Point/Station.' ' 322.000.to Point/Station 303.000 '• I 'PIPEFLOW TRAVEL TIME (User specified 'sIze) '' 0 i - .• . I.., Upstream point/station elevation ..=. 280.57(Ft.) Downstream point/station, elevation =.. 280.20(Ft.,) Pipe length 46.00 (Ft.) Manning's .N = 0.013 I No. of pipes -= 1 Required pipe -flow = 5.678(CFS) .' Given pipe size =. . 18.00(In.)' '. . .. Calculated individual pipe flow .= 5.678(CFS) Normal flow depth in pipe= 10.08(In.) I Flow top width inside pipe:= 17.87 (In.') . ;. Critical Depth = 11.04(In.) . . Pipe flow velocity = 5.58(Ft/s) •• . - Travel time through pipe '= . 0.14 mm. I Time of concentration (TC).=,. 8.96 mm. ', •. I . Process from Point/Station303000 to Point Station 303.000 **** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: .. In Main Stream number: 2 I . Stream flow area ..= . P1.800 (Ac.). .. . Runoff from this stream— . 5'.678(CFS) 0 Time of concentration =. 8.96 mm. Rainfall intensity .- 3.255.(In/Hr) I Summary of stream data: ... ..... . Stream Flow rate TC Rainfall Intensity No (CFS) (mm) (In/Hr) 1 9822 1274 2594 I. . 2 .' 5.678 . 8.96 . . '3.255: Qmax(l) = . . . . . . -• . . 1.000 * . 1.000*. , 9.822') I . ,. 0.797 * 1.000 * - •. 5.678) + = 14.347. . . Qmax(2) = . .. . . 1.000 * 0 703 * 9.822) + I .. . -. 1.000 .* •' .5.67 8), + . 12.586 . Total of 2 'main streams to confluence: . . .. . . Flow rates before confluencepoint: I . 9.822 5.678 . '-. . . . 0 ' • Maximum flow rates at confluence using above data: 14.347 ' 12.586 0• - ' , , . 0 • . - I .Area of streams, before confluence: 4.380 1.800 I . 'Results of confluence: . -..', • , 0 ' Total - flow rate-. 14.'347(CFS) • j:,, 0, , S - Time of concentration = 12.739 min.;' I - Effective stream area after confluence ' - .6'.180(Ac.) •0 •" '. , I ++++++++++++++++++++++++'++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station . 3.03.000 to. Point/Station 304.000 **** PIPEFLOW TRAVEL TIME (User.'specified size) - Upstream point/station elevation = 0 279.87(Ft.) I H S I I I • 1 APPENDIX IV I 50 -Year Peak Discharge Calculations Under Developed Conditions Using The Computenzed Rationale Method I I - I I 1 I 1 1 I Number 1: .2 3 4 5 6 '7 8 9 10 1]. 12 13 14 15 16' 17 ° 18° 19 20 .21 22 23 24 25 ° 26 27 Upstream 100.000 101.000 102.000 130.000 131.000 102.000 102.000 103.000 110.000 111.000 103.000 '5 120.000 121.000 103.000' 103.000 104 .000. 150.000 151.000 ° 152.000 140.000 141.000 '142 .000 152.000 152.000 15,3.000 160.000, 161.000 Downstream. 101.000 102.000 102.000 131.000 102'.0.00 102.006 103.000 103.000 111.000 103.000 103.000 '121.000 103.000 103.000 104.000° 104.000°' 151.000 152.000 152.000 '141°. 000 142.000 152.000' 152.000 153.000 153.000' ° ' • .161.000 San Diego County Rational Hydrology Program Civi1CADD/CivilDESIGN Engineering Software, (C) 1990. Version 2.3 Rational method hydrology program based on ' S San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 2/ 1/91 EL CANINO. REAL/PALOMAR AIRPORT ROAD .' 100 AREA BASIN STUDY. " FILENAME: ELCAM1 L 200,4 JOB# 10365 2/1/91 ********* Hydrology Study 'Control Information Rational hydrology study storm event year is 50.0 Map data precipitation entered: 6,hour, precipitation(inches)' = 2.400 °. 24 hour precipitation(inches)' '.= 4.200 Adjusted 6 hour precipitatiOn (inches) = 2.400 ' - P6/P24 = 57.1% SanDiego hydrology manual 'C' values used Runoff coefficients by rational method ************** I N P U T-' D A T A L I S TI N G ****** Element Capacity Space Remaining =' 332 . Element Points and Process' used between Points Process Initial Area Street Flow + Subarea Confluence Initial Area Street Flow + Subarea Confluence Pipeflow Time'(user inp) Confluence Initial Area. Street Flow + Subarea Confluence Initial Area Street Flow +, Subarea' Confluence Pipeflow Time(user inp) Main Stream Confluence Initial Area Street Flow +. Subarea. Main Stream Confluence Initial Area Street Flow + Subarea Pipeflow ,Time(user inp) 'Main Stream Confluence Pipeflow Tinie'(user inp) Main Stream Confluence Initial Area Street Flow ,+ Subarea I * 28 . ' 173.000 .173.000 Confluence . . 29 . ' 170.000 0 171.000 . 'InitIal Area . I . 30 171.000 " 172.000' Street,Flow+ Subarea 31 0 ' 172.000 '. 173.000 Pipeflow Tiine(uáer inp) 32 . 173.090 '' "173.006 Confluence. 33 0 . 173.000 .174.000 Pipeflôw Tiine(userinp) 34 ' 174.000 "' 175.000 S . Pipeflow Tiiue(user inp) 35 '• • 175.000 . 175.000 Main Stream Confluence : End of listing I I I.. '0'; ..'.. :. ': ' ' ' . '' • I I I I I a . '. 0 ". ' '.. YO' .'. •• 0' ,:' • 0: 0 , " •:: 1 I I I I I . San Diego County Rational Hydrology Program CivilCADD/Civi1DESIGN Engineering Software, (C) 1990 Version 2.3 Rational method hydrology program based, on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 2/ 1/91 I EL CAMINO REAL/PALOMAR AIRPORT ROAD 100 AREA BASIN STUDY FILENAME: ELCAN1 . I L200,4 JOB# 10365 2/1/91 . ********* .Hydrology.Study Control Information ********** Rational hydrology study storm event year is 50.0 Map data precipitation entered: 6 hour,' precipitation(inches)= 2.400. I 24 hour 'precipitation(inches) = 4.200 Adjusted 6 hour precipitation (inches) = 2.400 P6/P24 = 57.1% San Diego hydrology manual' 'C'. values used I Runoff coefficients by rational method I Process from Point/Station '. 100.000' to Point/Station ioi.000 **.** INITIAL AREA EVALUATION I . User specified 'C' value of 0.690 given for subarea Initial subarea flow distance = 300.00(Ft.) Highest elevation . 318.30(Ft.) ' I . Lowest elevation = . 316.55(Ft.) Elevation difference'= .. 1.75(Ft.) . . .• Time of concentration calculated by the urban I . areas Overland flow method (App X-C) = 15.30 mm. TC = [1.8*(1.1_C)*distance.5)/(%.s1opé(1/3)) TC= [1.8*(1.1_0.6900)*(300.00.5)/.( 0.58(1/3)]= 15.30 I Rainfall intensity (1) = 3.074 for a ' 50.0 year storm . Effective runoff coefficient used for area (Q=KCIA) is 'C = 0.690 . Subarea runoff = . 1.909(CFS) Total initial stream area = . 0.900(Ac.). • Process from. Point/Station . 101.000 to Point/Station. 102.000 STREET FLOW TRAVEL TIME, + SUBAREA FLOW ADDITION **** Top' of street. segment elevation = . 316.550(Ft.)' I End of street segment elevation = 311.350(Ft.) Length of street segment = 630..'OOO(Ft.) ' • , Height of curb above gutter. flowline =' 6..0(In.) ' Width of half street (curb to crown) =. 53'.00O(Ft.) 0 - 0 Distance from crown to crossfall grade -break . = 51.500(Ft.) 0 Slope from gutter to grade 'bréak'(v/hz) = 0.087 Slope from grade break.to:crown. (v/hz). = 0.020 I Street flow is on [1] side(s) of the street LD Distance from curb to property line = 10.000(Ft.). I . Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from fiowline = 2.000(In.) I . Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.404(CFS) I Depth of flow = 0.368 (Ft.) Average velocity = 2.364(Ft/s) Streetfiow hydraulics at midpoint of street travel: I Halfstreet flow width = 11.565(Ft.) Flow velocity = 2.36(Ft/s) Travel time = 4.44 mm. TC = 19.74 mm. Adding area flow to street . ' User specified 'C' value of 0.76,0 given for subarea Rainfall intensity = 2.608(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C .= 0.760 I Subarea runoff = 2.795(CFS). for 1.410 (Ac.) Total runoff = 4.703(CFS) Total area= 2.31(Ac.) Street flow at end of street = 4.703(CFS) I . Half street flow at end of street = 4.703(CPS) Depth of flow = 0.402(Ft.) Average velocity = 2.524(Ft/s) Flow width (from curb towards crown)= 13.271(Ft.) 1 SI Process from Point/Station . 102.000 to Point/Station 102.000 **** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 1 in normal stream number 1 I Stream flow area = 2.310 (Ac.) Runoff from this'stream = 4.703(CFS) S Time of concentration = 19.74 mm. Rainfall intensity = 2.608(In/Hr) S I Process from Point/Station . 130.000 to Point/Station 131.000 **** INITIAL AREA EVALUATION **** S I User specified 'C' value of 0.780 given for subarea - Initial 'subarea flow distance = 200.00(Ft.) Highest elevation = 314.60(Ft.) I Lowest elevation = 313.90(Ft.). 5 Elevation' difference = 0.70(Ft.) . Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.56 mm. I TC = [l.8*(l.'l-C)*distance .5)/(% slope ^(1/3)] 5 TC = (1.8*(1.1_0.7800)*(200.00.5)/( 0.35(1/3)]= 11.56 S Rainfall intensity. (I) = 3.683 for a . 50.0 year storm 1 . Effective runoff coefficient used for area (Q=KCIA) is C = 0.780 Subarea runoff = 1.207(CFS) S Total initial stream area = 0.420(Ac.) S S Process from Point/Station 131.000 to Point/Station 102.000 ****'STREET. FLOW TRAVEL TIME + SUBAREA FLOW.ADDITION ** I 1 . Top of street segment elevation = 313.900(Ft.) End of street segment èlévation = 311.350(Ft.) Length of street segment = 340.000(Ft.) I Height of curb above.gutter flowline = 6.0(In.) Width of half street (curb to crown) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter'to grade break (v/hz) = 0.087 . I Slope from grade break to crown (v/hz)' = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) I Slope from curb to -property line (v/hz) 0.020 Gutter width = 1.500(Ft.) ' Gutter hike from flOwline = 2 • 000 (In.) Manning's N in gutter = 0.0150 . . I Manning's N from gutter to grade break = 0.0150 .. Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street .= 2 370(CFS) I Depth of flow =. 0.339'(Ft.).7.. . 'Average.velocity = 2.123(Ft/s) . . Streetflow hydraulics at midpoint of street travel: I Halfstreet flow width '=. 10.068(Ft.) . S Flow velocity- 2.12(Ft/s). : Travel time = . 2.67mm. TC = 14.23 mm. . Adding area flow to street- User specified 'C.' value of 0.780 given for subarea Rainfall intensity = . 3.221(In/Hr) for a 50.0 year storm Runoff coefficient used for-sub-area,-Rational uiethod,Q=KCIA, .0 = 0.780 I . Subarea runoff'= 2.035(CFS) for' 0.'810 (Ac. Total runoff = S 3.242'.(CFS) Total area 1.23(Ac.) Street. flow at end of street = 3.242(CFS) . '• . . I .Half street flow at end of street.= 3.242(CFS) . Depth of flow 0.368 (Ft.)' Average velocity 2.253(Ft/s) . . . . . Flow width (from curb towards crown)= 11.560(Ft.) . I ++++++++++++++++++++++++++++++++++++++++±+++++++++++++++±+++++++++++++ I Process from Point/Station . 102.000 to Point/Station . . 102.000. **** CONFLUENCE OF MINOR STREAMS **** . •.•• •. . .• S Along Main Stream number: 1 in normal stream number 2 I Stream flow area = 1.230(Ac.) . . . . .. . . Runoff from this stream . 3.242(CFS) Time of concentration = 14.23. mm. .' Rainfall intensity. = 3.221(In/Hr). e • • . . • • . . Summary of stream data: • ., . . Stream Flow rate TC Rainfall intensity ' No. •• •(CFS) (min).•. .. (In/Hr) . .I 1 4.703 19.74 . '. S ••• S 2 • 3.242 14.23 •' S 3.221 • S 'S Qmax(l) I . 1.000 * . 1.000*... 4.703).-+ . . 0.810 * • 1.000* . 3.242) + = 8 Qmax(2) . . S. . 7.32 1.000 * . 0.721 * 4.703) + .. . .. S • I .1.000 * • 1.000 * .242) + =6.632 S I ' Total of 2 streams to confluence: Flow rates before confluence point: 4.703 3.242 ' I Maximum flow rates at confluence using above data: 7.328 6.632 Area of streams before confluence: 2.310 1.230 I Results of confluence: - Total flow rate = 7.328(CFS) Time of concentration = 19.740 mm. Effective stream area after confluenôe = 3.540(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 102.000 to Point/Station' 103.000 **** PIPEFLOW TRAVEL TIME (User specified size) I Upstream point/station elevation Downstream point/station elevation = S 307.53(Ft.) Pipe length = . 104.O0(Ft.) Manning's N = 0.013 I No. of pipes =1 Required pipe flow '= 7..328(CFS) Given pipe size = 24.00(In'.) . Calculated individual' pipe flow •= . 7.328(CFS) . Normal flow depth in pipe = 9.57(In.) . I Flow top width inside pipe= 23.50(In..) critical Depth = 11.53 (In.) . . Pipe flow velocity .=. 6.27(Ft/s) I Travel time through pipe 0.28 mm.. Time of concentration (TC) = 20.02 .min. I Process from 'Point/Station .103A00 to Point/Station .103.000 **** CONFLUENCE OF MINOR STREAMS **** Along 'Main Stream number: .1 in normal stream number I Stream flow area = . 3.540(Ac.) . I Runoff, from this stream 7.328(CFS) . Time of concentration ,= 20.02 mm. Rainfall intensity = 2.585(In/Hr) . . . . . . 'Process from Point/Station 110.000 to Point/Station . 11.1.000 I *** INITIAL AREA EVALUATION **** •. S S 5 ' Userspecified 'C' value of 0.900 given for subarea • I ..Initial subarea flow distance = 300.00(Ft.) S • • ' ' Highest elevation= 318.30(Ft.) •• ' .. S • 5 Lowest elevation = 316.55(.Ft.) S • • ' •: . S Elevation -difference = 1.75(Ft.) -• • S I Time of concentration calculated by. the urban areas overland flow method (App X-C) = 7.46 min., TC = [l.8*(1..l_C)*distànce.'5)/(% slope(1/3).) S • • S I .. TC = [1.8*(1.1_0.9000)*(300.00".5)/( 0.58(l/3)]= 7.46 •. Rainfall intensity (1) = . 4.884 for a 50.0. year storm Effective runoff coefficient used for area (Q=KCIA) •j C = 0.900; Subarea runoff = S 1.890(CFS) S . 5 I Total initial stream area = 0 430(Ac ) Process from Point/Station. 111.000 to Point/Station 103.000 ****,STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 316.550(Ft.) End of street segment elevation = 311.350(Ft.) Length of street segment = 630.000(Ft) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) '= 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.890(CFS) Depth of flow = 0.382(Ft.) . Average velocity = 2.428(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width— 12.247(Ft.) Flow velocity = 2.43(Ft/s) Travel time = 4.33 mm. TC = .11.79 mm. Adding area flow to street ' User specified 'C' value of 0.900 given for subarea Rainfall intensity = 3.637(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = S 2.978(CFS) for 6.910(Ac.') Total runoff = 4.869(CFS) Total area = 1.34 (Ac.) Street flow at end of street = 4.869(CFS) Half street flow at end of street = 4.869(CFS) Depth of flow = 0.406(Ft.) Average velocity = 2.542(Ft/s) Flow width (from curb towards crown)= 13'.464(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station , 103.000 to Point/Station 103.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main-Stream number: 1 in normal stream number 2 Stream flow area = 1.340(Ac.) Runoff from this stream = 4.869(CFS) Time of concentration .= 11.79 mm. Rainfall intensity = S 3.637(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++±++++++++++++++++ Process from Point/Station' 120.000 to Point/Station 121.000 **** INITIAL AREA EVALUATION *** S User specified 'C' value of'0..900 given for subarea' Initial subarea flow distance = 200.00(Ft.) S ' Highest elevation = 314.60(Ft.) I I I I I I I 1 Li I Li I Li I I I 1 I Lowest elevation = 313.90(Ft.) ' Elevation difference = 0.70(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 7.22 mm. I TC = [1.8*(1.1-C)*distance.5)/(% slope(1/3)) TC= [1.8*(1.1-0.9000)*(200.00.5)/( 0.35(1/3)J= 7.22 Rainfall intensity (I) = 4.987 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 I Subarea runoff = 1.302(CFS) Total initial stream area = 0.290(Ac.) I Process from Point/Station 121.000 to Point/Station 103.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION I Top of street segment elevation = 313.900(Ft.) End of street segment elevation = 311.350(Ft.) I Length of street segment = 340.000(Ft.) Height of, curb above gutter flowline = 6.0(In'.) Width of half street (curb to crown) = 53.000(Ft.) I Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street I Distance from curb to property line = .10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft,) I Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 I Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.401(CFS) Depth of flow = 0.339(Ft.) - Average velocity = 2.129(Ft/s) l Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 10.127(Ft..) Flow velocity = 2.13(Ft/s) I Travel time = 2.66 mm. TC = 9.89 mm. Adding area flow to street User specified 'C' value of 0.900 given for subarea I Rainfall intensity = .4.074(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational inethod,Q=KCIA, C = 0.900 Subarea runoff = 1.796(CFS) for 0.490(Ac.) Total runoff = 3.098(CFS) Total area = 0.78 (Ac.) ' Street flow at end of street = 3.098(CFS) Half street flow at end of street = 3.098(CFS) Depth of flow = 0.363(Ft.) Average velocity = 2.233(Ft/s) Flow width (from curb towards crown)= 11.335(Ft.)' I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station - 103.00.0 to Point/Station 103.000 *** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 3 Stream flow area = 0.780(Ac.) I Runoff from this stream = 3.098(CFS) Time of concentration = 9.89 mm. I. . ",. . .. •.: . Rainfall intensity = 4.074(In/Hr) . I Summary of stream data: .. . . . . '. Stream' Flow rate . TC Rainfall Intensity No (CFS) (mm) (In/Hr) 1 7328 2002 2.585 I . 2 " 4.869 11.79 .' ' 3.637 .• • . .3- '. 3.098 ' 9.89 . :, ' . 4.074 Qmax(l) 1•000 * 1.000 * 7.328) + . 0.711. * 1.000 * 4.869) + • • .0.634 * 1.000. * 3.098) '4- =. .12.754 Qmax(2) = I ' .1.000 0.589 ' . 7.328)+ • . .. . , . . '. 1.000 * ' 1.000 *" ' 4.869) + 6.893'*. J.000 * A-.098) +.= 11 950 I . Qmax(3) = . . ,• ..' . i.:' ' . 1.000 * 0.494'* 7.328) + 1.000 * ' 0.839 * , ' ' 4.869) + I...,.. . . . -1. 000 • • 1.000* . , 3.098) -4- = . , 10.801' Total of 3 streams.to confluence:'' Flow rates before confluence point: '• . . .' . ' I .7.328 . '4.86,9 .3.098 Maximum flow rates at confluence using above data:' ' . . . '• 12.754 ,. 11.950. ':10.801 I Area -of streams before confluence: 3.540' '. 1.340 ' .' 0.780 Results of confluence: Total flow rate 12.754(CFS). I , ' Time of concentration ='20.016 mm. Effective stream area after confluence= . '• 5.660(Ac.) I Process from Point/Station • •103.000t0'Point/Station ' 104.000 **** PIPEFLOW TRAVEL TIME (User specified size)..'**** 1 . Upstream.point/station elevation= ' 307.20(Ft.)' 'Downstream point/station elevation.= 307..00(Ft.). 'Pipe length: = , 15.00(Ft.) 'Manning's N =0.013 No.-.of pipes .='.1 Required pipe flow '= = 12.754(CFS) '' ' ....• Given pipe size = 24 00(In ) Calculated individual:pipe flow = .. 12.754(CFS) Normal flow depth in pipe = 11.84(In.) Flow top width inside pipe= '24.00(In.) ;5' . S , , , . . •. I . Critical Depth 15.41 (In.). • : •'. • S ' , , • Pipe flow velocity =. ' 8.27'(Ft/s) ' •''• ' S • Travel time through' 'pipe = " , 0.03 'mm.. • 1 , , ', ' ' ' S S , ,Time -of concentration (TC) ,= , 20.05 mm., . •' •, • I S ++++++++++++++++++++++++++++++++++.++++++++±+++++++++++++++++++++++++4' ,S I 'Process from -Point/Station' ' 104.000 to Point/Station 104.000 ' S '**** CONFLUENCE OF MAIN STREAMS **** .5 5 5 5 55 • , ;5 The following data 'inside Main Stream is listed: , ' • I InMain Stream number: 1 ' S " "' . .5 5 ' . S • • I Stream flow area = 5'.660(Ac.) Runoff from this stream = 12.754(CFS) .Time -of concentration = 20.05 mm. Rainfall intensity'= 2.582(In/Hr) . . Summary of stream data: .. . Stream Flow rate :. TC Rainfall Intensity No. (CFS) (mm) (In/Hr) I I I 1 12.754: . 20.05 . 2.582 Qmax(l) =• . 1.000 *, • .1.000 * 12.754) + = Total of 1 main streams to confluence: Flow rates before, confluence point: , 12.754 . ,• . Maximum flow rates,.at confluence using above data: Area of streams before confluence: 5.660- 12.754 I I I I Results of confluence: . Total flow rate = , 12.754(CFS). Time of concentration = .'20.047 mm. Effective stream área'after confluence 5. 660 (Ac ) Process from Point/Station , 150.000 to Point/Station 151.000 **** INITIAL AREA'EVALUATION **** . .. • . . . . .. . User' specified 'C'. value of 0.900,given for subarea Initial subarea'flow distance ,. = 367.00(Ft.). Highest ele nvatio = 395 20(Ft ) Lowest elevation = 381.60(Ft.') . . . . Elevation difference = 13.60(,Ft.) . .. . .. . .. Time of-concentration calculated by the. urban areas overland flow method (App X-C) 4.46 mm. TC = [1 8*(1 l-C)*d1stance 5)/(% slope(1/3)] TC = (1.8*(l..1_0.9000)*(367..00*.5)/( 3.7i(l/3).]=. 4.46 ' ,Rainfall intensity' (I) =" 6.810 fora 50.0 year storm' Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = • 3.249(CFS)' ' . '' •,' •' ' ' Total initial stream area = 0 530(Ac ) Process from Point/Station ' 151.000to Point/Station 152.000 **** STREET FLOW TRAVEL TIME ±'SUBAREA FLOW'ADDITION 1* Top of street segment elevation = 381 600Ft ) End of street segment elevation = 324.000 - (Ft ) Length of street segment 13'OQ.000(Ft.) '• • Height of curb above gutter flowline = ,' 6.0( . In.) . • Width of half -street. (curb to crown) = 53.000(Ft.) Distance from crown to crossfäll'grade break = 51.500(Ft..) • Slone frcmi .rnif+r f-ri -A= hi-ar fly/h,71 n n 0"7 I Li I 1 E I I I Slope from grade break to crown (v/hz)' = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line. (v/hz) = 0.020. Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade breák= 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.382 (Ft.). Average velocity = 5.624(Ft/s) . . Streetflow hydraulics at midpoint of street travel: Halfstreet flowwidth 12.246(Ft.) Flow, velocity = 5.62(Ft/s) . Travel time = 3.85 mm. . TC = 8.31 mm. Adding area flow to street . 9.010 (CFS) User specified 'C' value of 0.900 given for subarea Rainfall intensity = 4.557(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,QKCIA, C = 0.900 Subarea runoff = 7.710(CFS) for 1.880(Ac.) Total runoff .= 10.959(CFS) . Total area = 2.41(Ac.) Street flow at end of street = 10.959(CFS) Half street flow at end of street = 10.959(CFS) Depth of flow = 0.403 (Ft.) Average velocity= 5.854(Ft/s) . . Flow width (from curb towards crown)= 13..302(Ft.) Process from Point/Station 152.000 to Point/Station 152.000 **** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: . . In Main Stream number: 1. . . . Stream flow area = 2.410(Ac.) Runoff from this stream = 10.959(CFS) Time of concentration = 8.31 mm. Rainfall intensity = 4.557(In/Hr) Program is now starting with Main Stream No. 2 ++±+++++++++++++++++++++++++++++++++++++++•++++++±+++++++++++++++++++++ Process from Point/Station . 140.000 to Point/Station 141.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 387.00(Ft.) Highest elevation = 387.40(Ft.) . Lowest elevation = 375.10(Ft.) . . . Elevation difference = 12.30(Ft.) Time.of concentration calculated by the urban areas overland flow method (App X-C) . 4.82 mm. TC = [1.8*(1.1_C) *distance .5)/(% slope (1/3)] TC= [1.8*(1.1_0.9600)*(387.00-.5)/( 3.18(1/3)]= 4.82 Rainfall intensity (I) = 6.477 for a 50.0 year'storm . Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 3.265(CFS) . Total initial. stream area 0.560(Ac.) Process from Point/Station . 141.000. to Point/Station 142.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *** Top of street segment elevation = 375.100(Ft.) End of street segment elevation = 0 324.000(Ft.) Length of street segment = 1100.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = . 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500 (Ft.) Gutter hike from flowline = 2.000.(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.745(CFS) Depth of flow = 0.376(Ft.) Average velocity = 5.697(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 11.968(Ft.) Flow velocity = 5.70(Ft/s) Travel time = 3.22 mm. TC = 8.03 mm. Adding area flow to street User specified 'C', value of 0.900 given for subarea Rainfall intensity = 4.657(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational mnethod,Q=KCIA, C = 0.900 Subarea runoff = 7.879(CFS) for 1.880(Ac.) Total runoff = 11.144(CFS) Total area = 2.44 (Ac.) Street flow at end' of street =. 11.144(CFS) Half street flow at end of street = 11.144(CFS) Depth of flow = 0.402 (Ft.)' Average velocity = 5.985(Ft/s)' Flow width (from curb towards crown)= 13.264(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 142.000 to Point/Station 152.000 **** PIPEFLOW TRAVEL TIME (User specified size) b** Upstream point/station elevation = 316.05(Ft.) Downstream point/station elevation = 314.14 (Ft.) Pipe length = 108.00(Ft.) Manning's N = 0.013 No. of pipes =,1 Required pipe flow = 11.144(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 11.144(CFS) Normal flow depth in pipe = 12.15(In.) Flow top width inside pipe 16.86(In.) Critical Depth = 15.31(In.) Pipe flow velocity = 8.78(Ft/s) . Travel time through pipe = '0.21 mm. Time of concentration (TC) = 8.24 mm.' ++++++++++++++++++++++++++++++++++++++++++++++++++±+++++++++++++++++++ Process from Point/Station. 152.000 to Point/Station 152.000 I I I I U I I I I I 1 Li I Li I I I I I **** CONFLUENCE OF MAIN STREAMS '**** : The following data inside Main Stream is listed: In Main Stream number: 2. Stream flow area = 2.440(Ac.). I Runoff 'from this stream = ,11.144(CFS) 0 Time of concentration = 8.24 mm. Rainfall intensity = .4.582(In/Hr) I Summary of; stream data:. : Stream Flow rate ,.. TC : 'Rainfall Intensity. No. (CF S) (mm) ''' (In/Hr) l 10.959 '' 8.31 . ' .. 4.557 I 2 11. .144'" 8.24 ." 4.582 . Qmax(l) : 1.000* 1.000 *., 10.959)' + .' I . 0.995 *. 1.000 * 11.144) + = '. 22.043 Qmax(2) 1.000 * 0.992 * 10.959) + S I , 1.000 *, 1.000 * 11. i4'4) + = • 22.011 Total of 2 main streams to confluence: Flow rates before confluence point: ., I : 10.959 ' 11.144 . . . Maximum flow rates at confluence using above data: 22.043 ' 22.011 Area of streams before confluence.:- 2.410 . 2,440 I Results of confluence:' , '. ,. . ' , " •: Total flow rate = ' 22.043(CFS) Time of concentration ='. . 8.309 mm. Effective stream area after confluence . 4.'850(Ac.)' 1 Process from 'Point/Station:. .. 152.000 to.Point/Station 0 .153.000 '**** PIPEFLOW TRAVEL TIME (User specified size) . . 0 I .. Upstream point station elevation = .• 319.00(Ft.) . . Downstream point/statiàn elevation—' 314 .00 (Ft.) ,. 0 Pipe length ,=' 100.00(Ft.) Manning's N 0.013 .. • I No. of pipes = 1 Required pipe flow Given pipe size = 24'.00(In.) Calculated individual pipe flow,- 22.043(CFS) Normal flow depth in pipe = .. ll.09(In.) Flow top width inside pipe =. 23.93(In..). Critical Depth = .20.12 (In ) Pipe flow velocity = 15.55(Ft/s) •' ' ' S ' • ,I Travel time through pipe = 0.11 mm. ' '. . . .• Time of concentration (TC) = ' ' 8.42 mm'.' I Process from Point/Station 153.000. to Point/Station 153.000 0' ** CONFLUENCE'OF MAIN STREAMS The following data inside Main Stream is listed: I .. In Main Stream number: 1 . Stream flow area = 4.850(Ac.) 0 Runoff from this stream .= 22.043(CFS). .. Time of concentration = 8.42 mm. 0 I Rainfall intensity = 4.519(Iñ/Hr) Summary of stream data: I . StreamFlow rate •0 TC Rainfall Intensity No .. .(CFS) . (mm) . .. (In/Hr) 1 22043 842 4519 Qmax(l) = 1.000 * 1.000 * 22.043) + = 22.043 I . Total of 1 main streams to confluence: . . Flow rates before confluence point: .1 I . 22.043 Maximum flow rates at confluence using above data: .22.043 Areà.of.streamsbefore cOnfluence: I 4.850 Results of confluence: Total flow rate = . 22.04.3(cFs) 0 •0 Time of concentration = .. 8.416 mm. . .. 0 0 Effective stream area after confluence = 0 4.850(Ac.) . Process from Point/Station 160 000 to Point/Station 161.00+0 **** INITIAL AREA EVALUATION User specified 'C' value of 0.900 given for subarea Initial subarea flow distance •= 250.00(Ft.) 0 0 O Highest elevation = 323.90(Ft.) 0 0 00 Lowest elevation = 310 50(Ft) 0 Elevation difference 0= 13.40(Ft.) : •0 Time of0 concentration calculated by the urban . 0 areas overland flow method (App X-C) = 3.25 min.0 0 TC = (.1.8*(l.1-C)*distance.5)/(% slope(1/3)) TC = .[l.8*(1.1-O.9OOo).*(25Q.00.5)/( 5.36(1/3)]= 3.25 Rainfall intensity (I) 8.345 for. a 50.0 year storm . 0 Effective runoff coefficient used. for area (Q=KCIA) is C =0 0.900 Subarea runoff = 0 2.704(CFS) 0 0 0 Total initial stream area -=. 0 360(Ac ) ++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station.. 161.000 to Point/Station 173.000 O •0 **.** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 0• .310.500(F.t.) S End of street segment elevation = 285 200(Ft ) O 0 Length of street segment =. 530.000(Ft.) 0 0 Height of curb above gutter flowline = 6.0(in.) Width of half street (curb to crown) = 53.000(Ft..) 0 Distance from crown to crossfall grade break. =. .51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line .= 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1. 500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's'N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150. Estimated mean flow rate at midpoint of street = Depth of flow = 0.345 (Ft.) Average velocity = 5.434(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.422(Ft.) Flow velocity = 5.43 (Ft/s) Travel time= 1.63 min. TC = .4.88 mm. Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity = 6.425(In/Hr) for a . 50.0 year storm Runoff coefficient used for sub-area, Rational mnethod,Q=KCIA, C = 0.900 Sübarearunôff = 5.782(CFS) for 1.000 (Ac.) Total runoff = 8.486(CFS) Total area = . 1.36(Ac.) Street flow at end of street = .8.486(CFS) . Half street flow at. end of street = 8.486(CFS) Depth of flow = 0.372 (Ft.) . Average velocity = 5.726(Ft/s) Flow width (from curb towards crown)= 11.746(Ft.) ++++++++++++++++++++++++++++++-f+++++++++++++++++++++++++++++++++++++++ Process from Point/Station 173.000 to Point/Station 173.000 *** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 1 in normal stream number 1 Stream flow area = 1.360(Ac.) . Runoff from this stream = . 8.486(CFS) Time of concentration = 4.88 mm. . . Rainfall intensity = 6.425(In/Hr). . I Process. from Point/Station 170.000 to Point/Station 171.000 **** INITIAL AREA EVALUATION **** I User specified 'C' value of 0.830 given for subarea Initial subarea flow distance = 250.00(Ft..) Highest elevation •323.90(Ft.) . . I Lowest elevation = 310.50(Ft.). •, Elevation difference = . 13.40(Ft.) Time of concentration calculated by .the urban . areas overland flow method (App X-C) = 439 main. I TC = (1.8*(l.1-C)*distance.5)/(% slope(1/3)] TC= [l.8*(l.1_0.8300)*(250.00.5)/( 5.36(1/3)]= 4.39 Rainfall intensity (I) = 6.876 for a 50.0 year storm I Effective runoff coefficient used for area .(Q=KCIA) is.0 = 0.830 Subarea runoff = . 2.511(CFS) Total initial stream area = 0.440(Ac.) •. I I LI I I I I I I i LI LI I 6. 459 (CFS) Process from. Point/Station. 171.000 to Point/Station 172.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 310.500(Ft.) End of street segment elevation = 287.200(Ft.) Length of street segment = 475.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.0.20 Street flow is on [1) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1 • 500 (Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to. grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.794(CFS) Depth of flow = 0.317(Ft.) Average velocity = 5.211(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.041(Ft.) Flow'velocity = . 5.21(Ft/s) Travel time = 1.52 min. TC = 5.9.1 mm. Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity = 5.677(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 4.087(CFS) for 0.800(Ac.) Total runoff = 6.599(CFS) Total area = 1.24 (Ac.) Street flow at end of street = 6.599(CFS) Half street flow at end of street = . 6.599(CFS) Depth of flow = 0.346(Ft.) Average velocity = 5.516(Ft/s) Flow width (from curb towards crown)= 10.458(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station . 172.000 to Point/Station 173.000 **** PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation = 283.00 (Ft.) Downstream point/station elevation = 281.00 (Ft.) Pipe length = 145.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.599(CFS) Given pipe size = 18.00(In.) . Calculated individual pipe flow 6.599(CFS) Normal flow depth in pipe = 9.36(In.) Flow top width inside pipe = 17.99(In.) . Critical Depth = 11.93(In.) Pipe flow velocity = 7.10(Ft/s) Travel time through pipe = 0.34 mm. Time of concentration (TC) =' 6.25 mm. Process from Point/Station 173.000 to Point/Station 173.000 I I I I I I I I I I I I I I 11 I I I 'I '.•. ' '' :. . ., **** CONFLUENCE OF MINOR STREAMS I Along Main Stream number:". 11n normal streainnuniber2 Stream flow area =' ',. 1.240(Ac.) Runoff from this stream ...' 6.599(CFS) I Time of concentration =. 6.25 mm. Rainfall intensity =. . 5.475(In/Hr) . • .' . Summary of stream data: . . • Stream •. Flow rate •: TC . ' •' Rainfall Intensity No ' ' (CFS) ' ' (mm) (In/Hr) '. '•' 1 1 8.486 488 6425 '2, 6.599, "6.25 ' • " . 5.475 ' Qmax(l) . • . . . ' 1.000 * 1.00.0 * 8.486) + . . 1..000.'* . •.0.780.* ' '6.599) + = 13.636 I QmaX'(2) .. .. . .'..' . :. : 0.852 * . '1.000 *' 8.486) 1.000 ,* '' 1.000 •*. .6.599) + = . , 13.831 I .Total of 2 streams to confluence: Flow rates before confluence point: 8.486 6.599 1 , 'Maximum .flow'rates at confluence, using above data: 13.636 '13.831 ' ' : • ' ' ' ' Area of streams before confluence:. " ' ' ''• ' ' I " ' . , 1.360 ' , ' • 1.240'. Results of confluence: Total flaw rate=' 13.83'1(CFS) Time of'concentration = .6.250 mm. I ' Effective stream area. after'confluence = 2.600(Ac.) I . Process from Point/Station 173.000 to'Point/Stàtión ' '174.000 ****'pIpEFLOWTp.AVEL TIME.(User specified size) I Upstream point/station elevation =' 280..67(Ft..) Downstream point/station,èlevatjon,= 278'.40(Ft.') S , Pipe length '= . . 40.00(Ft.) "• 'Manning's N = 0.013 . . . . . .. '. ,.I No.'of pipes 1 --Required pipe flow =' . 13.831(CFS) . . Given' pipe size = • '18.00(In..) ... ; . . • . Calculated individual pipe flow' ". 13.831(CFS)' 'I Normal. flow' depth in pipe = ' :.9.55 (In.) ,0 • . •. ' • ' Flow top width inside pipe 17..97(In.).'', Critical Depth =' 16.52 (In.') ' ' ' ' ' • . .. . 0' Pipe flow veloáity ' 14.51(Ft/S); Travel time through 'pipe =, ...0.05 mm. • ' ''• " . ' ' ' Time of concentration (TC)= ' 6.30 mm. ., . 0 •• •' ' ' '' . ' I • ' ,Process from Point/Station . 174.000 to Point/Station . .. .175.000 PIPEFLOW TRAVEL TIME (User specified size).****. Upstream point/station elevation = ' 278.40(Ft.) : ' 0 Downstream point/station elevation ='. 276.74 (Ft.) ' Pipe, 'length = 0 217.00(Ft.) Manning's N :0013 ' ' ' • 0 •' I No. of pipes = 2 Required pipe flow = 13.831(CFS) I .Given pipe size= 18.00.(In.) Calculated individual pipe flow 6.915(CFS). Normal flow depth in pipe = 11.66(In.) I . Flow top width inside pipe .17..20(In.) ) S S Critical Depth = .12.22(In.. S Pipe flow velocity = 5..71(Ft/s) S S Travel time through pipe =. 0.63 min. I Time of concentration (TC). = 6.93 mm. . S I ++++++++++++++++++++++++++++++++++++++ ++++++++++++++'++++++++++++++++++ Process from Point/Station 175.000 to Point/Station 175.000 S **** CONFLUENCE OF MAIN STREAMS **** S . The following data inside Main. Stream is listed:- In Main Stream number: 2 . . .. S Stream flow area = S 2.600(Ac.) S S S SI . Runoff from this stream 13.831(CFS) S S S Time of concentration = . 6.93 mm. Rainfall intensity 5.123(In/Hr.) * S S * I Summary of stream data:. . •: . 5 .5 5 ,. S Stream Flow rate . TC S Rainfall Intensity S S No. (CFS). . (nUn) S (In/Hr) . 5 1 . 22.043 • . 8.42. •.. 5 •. 4.519 I 2 13.83.1 1 6.93 . .5.123 • 5 5 5 Qmax(1) = 5 1.000* 1.000 *' . 22.043) + S S I . . 0.882 * 1 000 * 13.831) + = - 34.244 5 Qinax(2) =S •S • : S S• 1.000* 0.823* 22.043) 4- .1.000 * 1.000 * 13.831) + = 31.980 S S Total Of 2 main streams to confluence: S S Flow rates before confluence point: • S - . : I ... 22.043 13.831 • - .- 5 5 • 55 Maximum flow rates at confluence using above dãta: ;S 5 34.244 . 31.980. • S 5 • .5 • S Area of streams before confluence: S S • S S 5. • 4.850 . . 2.600 . 5 5• •S .I Results of confluence: • S S • S S Total flow rate = 34.244(CFS) .S . •5 5 .• .. S • S • Time of concentration =. 8.416 mm. S • S • • I . • Effective stream area after confluence S 7.450(Aô..) End of computations,. total.study area : 13.11 '(Ac. S I : '.• •:.I S..- •-: 555 55 I,..... I ************** I N P T .D A T A L I S T I N G ******* Element Capacity Space Remaining = 284 . Element Points and Process used between Points Number Upstream ' Downstream :Process 1' . 200.000 '': 201.000 . . Initial Area . 2 . 201.000 202.600 . . Street Flow +Subarea 3 . 202.000 , . 202.000 Main Stream Confluence 4 . . 210.000 '' 211.000 . Initial Area 5 211.000 . 212.000 Street Flow + Subarea' 6 ' . .212.000 -. 213.000 Pipeflow Tinie(user inp) 7 . 213.000 . ., 218.000 ' Pipeflów 'Time(user inp) 8 218.000 218.000 . Confluence 9 . 215.000 216.000 Initial Area 10 ' ' 216.000 .. .217.000 . Street Flow. + Subarea .11 , .'' 217.000 . 218.000 Pipeflow'Tiine(user inp) 12, 218.000 218.000 Confluence . . 13 . ' 218.000 202.000 . . PipeflowTiiue(user inp) 14 202.000 ' 202.000 Main Stream Confluence 15 . 202.000 . . 203.000 Pipeflow Time(user inp) 16 . .' 203.000 . . .204.000 . ImprOved Channel Time .17 235.000 , ' 204.000 . Subarea Flow Addition 18 ' ; . 204.000 . . 205.000 ' Pipeflow. Time(user inp) 19 ' '205.000 ' 205.000 . Main Stream Confluence 20 . . 220.000' . 221.000 .,Initial Area . 2.1 221.000 . 222.000 • Pipéfiow Time'(user hip) 22 ' 222.000 • ,' : 222.000 ' Confluence • 23 230.000 . •. 222.000 Initial Area • 24 • • . 222.000 • . 222.000 . • Confluence 25 • . . 222.000 . 223.000 • 'Pipeflow Tixne.(user.inp) , 26 223.000 223.000 . Confluence 27" . •, 290.000 ''. . ', 291.000 • Initial 'Area F~ 1 HI 1 I U San Diego County Rational Hydrology Program CivilCADD/CivilDESIGN Engineering Software, (C) 1990 Version 2.3 Rational method hydrology program.based on San Diego County Flood Control Division 1985 hydrology manual, Rational Hydrology Study Date: 2/ 1/91 EL CAMINO REAL/PALOMAR AIRPORT ROAD . 200 AREA BASIN STUDY . . FILENAME: ELCAM2' . . ,. 1. 200,4 JOB# 10365. 2/1/91 . ********* Hydrology Study Control 'Information Rational hydrology study storm event year is . 50.0 Map data precipitation entered: 6 hour,, precipitation(inches) = 2.400 ' 24 hour prècipitation(inches) = 4.200 Adjusted 6 hour precipitation (inches) = . 2.400 P6/P24 = 57.1% . . San Diego hydrology manual '.C' values used . . Runoff coefficients by rational method. I U • 28 ' 291.000 292.000 Street Flow + Subarea • ' 29 , '. 292.000 ' , 223.000 P'ipéfiow Time(user inp) ,. 30 . , ' 223.000 223.000 Confluence 31 223 000 205 000 Pipeflow Time(user inp) - 1 , 32 , 33 ' 205.000 270.000 ' ' ' 205.000 271.000 'Main Stream Confluence Initial 'Area • ' 34: ' ' . . 271.000 , ' ' '272.000 Street Flow ± Subarea 35 ' 272.000 '. 205.000 0 Pipéflow Time(user inp) I ' 36 205.000 ' ''205.000. Main Stream Confluence 37 '. 205.000 ' 206.000 , ' 'Pipeflow Time(user inp) 38 206.000 ' , 206.000 'Main Stream Confluence • ' 39 ' 40 , ' '225.000 ' 226.000 " ' 226.000 ' 206.000 Initial Area Street flow + Subarea 41 ' .20 * 6.000 206.000 ' Main Stream Confluence 42 20.000 207.000 Pipeflow Time(user inp) I : ', ' 207.000 . ' ' 207.000 Main Stream' Confluence • ' ' 44 ' ' ' ' 280.000 281.000 , Initial Area 45 ' . 281.000 '282.000 Street Flow + Subarea • ' 46 282.000 ' ,. 282.000 Confluence 47 ' ' 285.000 . 286.000 ' Initial Area 48, , . 286.000 ' 2,82.000 , Street' Flow + Subarea' 49 50 282.000' 1 2.000 ' .28 282.000 ' 207.000 ' ' 'Confluence.- Pipeflow Timé(user inp) 51 , 207.000 207.000 ., Main Stream Confluence 52 ' , 207.000. ' ' 208.000 Pipeflow Time(user'inp) I 53 ' ' 08.000. :208.000, MainStream Confluence 54 ' 240.000 ' 241.000 . Initial Area 55 241.000 ' 252.000 Pipeflow Time(user inp) • I 56 , ' 57 ' ' 252.000 , '.250.000 .' . 252.000 251.000 .. ' :Main'Stream Confluence initial' Area 58 : 251.000 ' 252.000 '. ' Street Flow + Subarea' 59 ' .252.000 252.000 . MainStream Confluence 60 , 252.000 . . ,263.000 . , Pipeflow Time(user inp) 61 . '263.0.00 , ' ' , 263.000 Main Stream Confluence 260000 ' , 261.000 .. Initial Area I , 63 . ., . 261.000 262.000 Street Flow + Subarea 64 ' , 262.000 ' ' ' 263.000 Pipeflow Time(user* inp), 65 . 263.000 '' 263.000 ' Main' Stream Confluence - '66 . 67. ' 263.000 ' . '. 264.000 ' ' '264.000 264.000 ' ' Pipeflow Time(user inp) '' Main Stream Confluence - 68 . . 299.900 ' 299.000 ' 'Initial Area 69 . , ' 299.000 . ' ' 298.000 . . Irregular. Channel Time 70 , '299.500 ' . '298.000 Subarea Flow Addition 5 . 71 ,' 298.000 ' ' 297.000 . ' ' Pipeflow Time(user inp) 72 . , 297.000 '297.000.' . Main Stream CQnfluence 73 ' ' . 265.000 . 266.000' ' ' Initial Area 1 74 266.000 ' ' 267.000 . Street.Flow + Subarea 75 ' , 267.000 297.000 ' Pipeflow Time(user inp) - I . ' 76 , ' 77 ' ' . ' .297.000 , ' 255.000 ' ' ' 297.000 . ' 256.000 'Main Stream Confluence ' Initial Area • 78 256 000 257..000 .1- Street Flow + Subarea 79 ' ' , 257.000 ' 297.000 Pipeflow Time(user inp) 80 ' , 297.000 . '297.000 , ' : Main Stream Confluence. 81 297.0 * 00 296 000 Pipeflow Time(user inp) . 296.00 295.000 '. Improved Channel Time 83 ,0 End of 295.000 ' listing , 294.000 ' Improved Channel Time I San Diego County Rational Hydrology Program CivilCADD/CivilDESIGN Engineering Software, (c) 1990 '. Version 2.3 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 2/ 1/91 EL CAMINO REAL/PALOMAR AIRPORT. ROAD .' 200 AREA BASIN STUDY . . . . FILENAME: ELCAN2' . V .. 1 200,4 JOB# 10365 2/1/91 ********* Hydrology Study Control Information '• - . Rational hydrology study storm event year -is '50.0 Map data precipitation entered - 6 hour, precipitation(inches) = 2.400 24 hour precipitation(inches) = 4.200 I. Adjusted 6 hour precipitation (inches) = 2.400 . P6/P24 = 57.1% . . San Diego hydrology manual 'C' values used Runoff coefficients by rational method . . . . . +++++++++++++++++++++++++++++++++ +++++++++++±±+++++++++++++++++f+++++ I .Process from Point/Station 20.0.000 to Point/Station 201.000 **** INITIAL AREA EVALUATION I User specified 'C'. value of 0.760 given for, subarea Initial subarea flow distance =' 300..00(Ft'.) Highest elevation = 314.60(Ft.) " . I . Lowest, elevation = 312.70(Ft.')- Elevation difference = 1.90(Ft.) . . .. V Time of concentration calculated by the urban areas overland' flow method' (App X-C) = ' ' 12.34 min.'' ' I TC = (1.8*(1.1_C)*distance.5)/(%' siope(l/3)] TC = (1 8*(1 1-0 7600)*(300 00 5)/( 0.63-(1/3)1= 12 34 Rainfall' intensity (I) = 3.530 for a .50.0 year storm ' .I V Effective runoff coefficient used for' area (Q=KCIA) is C = 0.760 '.Subarea runoff = . . 1.798(CFS)' . . . Total, initial stream area ='' 'V 0.670(Ac.) , Process from Point/Station . 201.000 to -Point/Station 2.02.000 I ****'STREET FLOW TRAVEL TIME' + SUBAREA FLOW ADDITION Top of street segment elevation = 312 700(Ft ) I . End of'street segment elevation = •286.200(Ft.) . - - Length of street segment. = 1185.000.(Ft.) Height of curb above gutter flowline' = 6.0(In.)' I , . Width of half 'street (curb. to crown) = 53.000 (Ft.) Distance from crown'to crossfall grade break 51.500(Ft.) • . V ' Slope from gutter to grade break (v/hz)' =. 0.087 Slope from grade break to crown"(v/hz) '.0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 'lo.00O(Ft.') I Slope from curb to property line '(v/hz) =. 0.060 Gutter width = 1.500(Ft.) ' 0 Gutter 'hike from flowline = 2. 000(In.)' I Manning's N '.in gutter = 0.0150 S Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.078(CFS) I Depth of flow = 0.338 (Ft.)' ' Average velocity =' 3.664(Ft/s) - Streetf low hydraulics at midpoint of street travel: ' Halfstreet flow width = 10.052(Ft.) Flow velocity = 3.66(Ft/s) Travel time = ' 5.39 mm. ' TC = 17.73 mm. Adding area flow to 'street I User specified 'C' value of 0.900 given for subarea Rainfall intensity'= ' ' 2.795(In/Hr) for a 50.0 year storm Runoff coefficient used for' sub-area, Rational method,Q=KCIA, C = 0.900 1 'Subarea runoff = - 4.276.(CFS) for 1.700(Ac.) Total runoff = 6.073(CFS) Total area = 2.37(Ac.) Street flow at end of street = 6.073(CFS) I Half street flow at end of street 6. 073 (CFS) Depth of "flow = , 0.376(Ft.') ' Average velocity = '3.954(Ft/,$) Flow width (from curb towards crown)= 11.973(Ft.) '. I I ' Process from Point/Station 202.000 to Point/Station. '202.000 **** CONFLUENCE OF MAIN STREAMS The following data 'inside Main Stream is listed: I .In Main Stream number: 1 Stream flow area. =- 2.370(Ac.) S Runoff from this stream =, 6.073(CFS) ' I Time of concentration = 17.73 mm. 5 0 Rainfall intensity = 2.795(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 210.000to'Point/Station ' . 211.000 INITIAL AREA EVALUATION 1 User specified 'C' value of 0.900 given for subarea 0 ' Initial subarea.fiow distance = 300.00(Ft.) ' Highest elevation = 314.60(Ft.). 'Lowest'elevation = '312.70(Ft.) I ' Elevation difference = S 1.90(Ft.) Time of concentration calculated by the urban ' S areas overland' flow method (App X-C) =' 7.26 mm. ' ' TC = (1.8*(1.1-C)*distance.5)/(% slope(1/3)) I TC,= (1.8*(i.1-0.9000)*(300.005)/( 0.63(l/3))=' 7.26' Rainfall intensity (I) =" 4.971 for a 50.0 year Storm Effective runoff coefficient used for area' (Q=KCIA) is C = 0.900 I Subarea runoff = ' 1.924(CFS) Total initial stream area = •' ' 0.430(Ac.) ' •S S +++++++++++++++++++++++++++++++++++++++++±++++++++++++++++++++++++++++ I Process from Point/Station 211.000 to Point/Station 212.000 I **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 312.700(Ft.) I End of street segment elevation = 293.300'(Ft.) Length of street segment = 785.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) I Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) 0.020 ' Street flow is on [1] side(s) of-the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter I width = 1.500(Ft.) Gutter 'hike from flowline = 2.000(In.) Manning's N in gutter .,0.0150 Manning's N from gutter to grade break = 0.0150 I Manning's N from grade break to crown = 0.0150 E stimated mean flow rate at midpoint of street = 4.384(CFS) Depth of flow = 0.340(Ft..) I Average 'velocity = '3.868 (Ft/C) ' Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = '10.154(Ft..) ' Flow velocity = 3.87(Ft/s) I Travel time = 3.38 mm. TC = 10.64 mm. Adding area flow to street User specified 'C' value of 0.900 given' for subarea I Rainfall intensity = 3.884(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 3.846(CFS) for 1.100(Ac.) Total runoff = 5.769(CFS) Total area = '1.53 (Ac.) I ' Street flow at end of street =' 5.769(CFS) Half street flow at end of street - ' Depth of -flow 0.366(Ft.) '. I Average velocity = 4.074(Ft/s) Flow width (from curb towards crown)= ' 11.461(Ft.) I +++++'+++++++++±+++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station • 212.000 to Point/Station 213.000 **** PIPEFLOW TRAVEL TIME (User specified size) 1** I Upstream point/station elevation = ' 289.10(Ft.) Downstream point/station elevation = 284.20(Ft.) I Pipe length = 190.00(Ft.). Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.769(CFS) Given pipe size = 18.00(In.) ' Calculated individual, pipe flow = 5.769(CFS) I ' ' Normal flow depth in pipe = 7.26(In.) Flow top width inside pipe = 17.66(In.) ' Critical Depth =ll.12(In.) •' • 1 , Pipe flow velocity = ' 8.65(Ft/s) Travel time through 0 pipe = • .37 mm. , • Time of concentration '(TC) = ' 11.01 mm. • ' Process from Point/Station 213.000 to Point/Station 218.000 I '.• '****' PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 283.87 (Ft.,) Downstream point/station elevation = 280.88(Ft.) Pipe length = 265.00(Ft.) Manning's N =0.013 No. of. pipes = 1 Required.pipe flow = 5.769(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.769(CFS) Normal flow depth in pipe = 9.18(In.) Flow top width. inside pipe = .18.00(In.) Critical Depth = 11.12(In.) Pipe flow velocity = 6.37(Ft/s) Travel time through pipe = 0.69 mm. Time of concentration, (TC) = 11.70 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 218 ,000 to Point/Station 218.000 **** CONFLUENCE OF MINOR STREA14S **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = " 1.530(Ac.) Runoff from this stream = 5.769(CFS) Time of concentration = 11.70 mm. Rainfall intensity = 3.654(In/Hr) Process from Point/Station 215.000 to Point/Station 216.000 *** INITIAL AREA EVALUATION User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 200.00(Ft.) . . . Highest elevation - 293.30(Ft.) Lowest elevation = 288.70(Ft.) Elevation difference = 4.60(Ft.) : Time of concentration calculated by the urban areas overland flow method (App X-C) = , 3.86 mm. TC = [1.8*(1.1-C)*distance.5)/(% s1ope(1/3)] TC.= (1.8*(1.1_0.,9000)*(2'00.00.5)/( . 2..30(1/3)]= 3.86 Rainfall intensity (I) = 7.476 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 1.951(CFS) Total initial stream area = 0..290(Ac.). Process from Point/Station ' 216.000 to Point/Station, 217.000 **** STREET FLOW TRAVEL TIME +.SUBAREA FLOW ADDITION Top of street segment elevation .= 288.700(Ft.) End of street segment elevation = 284.800(Ft.)' - Length of street segment = 260.000(Ft.) Height of curb above gutter flowline = 6.0(In.)' 'Width of half street (curb to crown) =. 53.000(Ft.) Distance from crown to ôrossfall grade break = 51.500(Ft.) Slope from gutter.to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) =. 0.020 I I I I 1 LI I I I 1 I I I El I I I I I Gutter width = 1.500(Ft.) Gutter hike from flowline= 2.000(In.) Manning's N in gutter = 0;0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown =. 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.335(Ft.) Average velocity = 2.983(Ft/s) Streetfiow hydraulics at midpoint of -street travel: HaIfstreet flow width = 9.900 (Ft.) Flow velocity = 2.98(Ftjs) Travel time = 1.45 mm. TC = 5.31 mm. Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity = 6.083(In/Hr) for 'a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 2.080(CFS) for 0.380(Ac.) Total runoff .= •4.032(CFS) Total area = 0.67(Ac.) Street flow at end of Street = 4.032(CFS) Half street flow at end of street = 4.032(CFS) Depth of flow = 0.355(Ft.) Average velocity = 3.108(Ft/s).. Flow width (from curb towards crown)= 10.930(Ft.) I ++++++++++++++++++++++++++++++++++.f+++++++++++++++.I+++++++++++++++++++ Process from Poiñt/Státion 217.000 'to Point/Station 218.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation= 281.33(7t.) Downstream point/station elevation 280.88 (Ft.) Pipe length = 90.00(Ft.) Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = 4.032(CFS) Given pipe size = 18.00(In.) .' Calculated individual pipe flow = . 4.032(CFS) I Normal flow depth in pipe = 9.45(In.) Flow top width inside pipe = 17.98 (In.) Critical Depth = 9.21(In.) . ' Pipe flow velocity = 4.29(Ft/s) Travel time through pipe = 0.35 mm. Time of concentration (TC) = 5.66 min. . ...................................................................... Process from Point/Station . 218.000 to-Point/Station 218.000 *** CONFLUENCE OF MINOR STREAMS **** • • Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0..670(Ac.) S Runoff from this stream = 4.032(CFS) • Time of concentration = 5.66 mm. Rainfall intensity = 5.838(In/Hr) - Summary of stream data: • Stream. Flow rate PC Rainfall Intensity S • No. (CFS) (mm) • • (In/Hr) 1 5.769 11.70. • 3.654 • S • 2 • 4.032 . 5.66 • 5.838. • • S I I I I I Li I I 3.230 (CFS) I Qmax'(1) •oo * .1.000 * 5.769) I 0.626 * 1.000 * 4.032) + = 8.293 Qmax(2) = 1.000 * O 84 * . 5.769) + 1 1.000 * 1 000 * 4.032) + = 6.821 Total of 2 streams to cónflüence: ' I Flow rates before confluence point: S ' 5.769 4.032 Maximum flow rates at. confluence using above data: S I 8293 6821 Area of • streams before confluence: 1530 0670 Results of confluence. I Total flow rate = 8.293(CFS) Time of concentration = 11.703 mm. •: S I Effective stream area after confluence = . 2.200(Aô) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++ Process from Point/Station . ' 218.000 to Point/Station 202.000 I **** PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation = 280.55(Ft.) Downstream point/station elevation = 280.43 (Ft.) . Pipe length = 12 00(Ft ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.293(CFS) . I 'Given pipe size = 18.00(In.) . • . . . Calculated individual pipe flow = 8.253(CFS) Normal flow depth in pipe = 12 06(In ) Flow top width inside pipe = 16.93 (In.) " " S •. S I Critical Depth = 13 37(In ) Pipe flow velocity. = . S 6.59(Ft/s) S • S Travel time through pipe= ' 0.03 mm. . • S • Time of concentration (TC) = 11.73 mm +++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++++++++ I Process from Point/Station 202.000 to Point/Station ' '202.000 **** CONFLUENCE' OF MAIN STREAMS.****. • ' S • • • 55 5 • 5 ' The following data inside Main Stream is listed In Main Stream number: 2 • • • • S ' • ' S • -Stream flow area— ' 2'.200(Ac.) . -' ' S • ' • . ' . S I Runoff from this stream - 8 293(CFS) Time of concentration = 11.73.min. Rainfall intensity = 3 648(In/Hr) I Summary of stream data Stream Flow rate -.TC Rainfall Intensity No. ' (CFS) ' • (mm) ' ' ' .' (In/Hr') S I .1 ' •' 6.073 • 17.73 •' 5' • ' 2.795 I 2 8.293 1173 3648 Qmax(1) = 1.000* '. 1.000 *• ' 6.0'73) + 0 766 * 1 000 * 8.293) + =..i2.427. 1 Qmax(2) = I . .. .. 1.000 * 0.662 * 6.073) + I :.1.000 * . 8.293) + =. 12.311 Total of 2 main streams to confluence: Flow rates before confluence point:, . I . 6.073 ' 8.293 . Maximum flow rates at confluence using above data: 12.427 12.311 I . Area of streams before confluence: . . .2.370 ,. 2.200 . . . Results of confluence:, 0 . Total flow rate .= 12.427(CFS) " . .. Time of concentration = . 17.733 mm. Effective stream area after confluence = . 4.'570(Ac.)' I . Process from 'Point/Station. . 202.000 to Point/Station . 203.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 280.10(Ft.) - . Downstream point/station elevation =. 279'.40(Ft.) Pipe length = 30.00(Ft.) Manning's N = 0.013 .I No. of pipes =1. Required pipe flow =' 12.427(CFS) Given pipe size = 18.00(In.) . . . . . Calculated individual pipe flow '=, 12.'427(CFS) I . Normal flow depth in pipe =, 11.89(In.) . Flow top width inside pipe = 17.04(In.) Critical Depth = . 15'.96(In.) . . . Pipe flow velocity = 10 03(Ft/s) I . Travel time through, pipe = '0.05 mm. . . 'Time of concentration. (TC) = 17.78mm. •. +++++++++++++++++++++++++++++++'+;f++++++++++++++++++++++++++LF+++++++ Process from Point/Station . 203.000 to Point/Station .204.000'. I **** IMPROVED CHANNEL TRAVEL TIME Upstream'point elevation= , 2.79.40(Ft.) 0, Downstream point elevation = 26560(Ft.) .I Channel length thru subarea . 0 1015.00(Ft.) Channel -base width . =' -'2.000(Ft.) Slope or 'Z' of left channel bank = 1.500 1 ... Slope -or 'Z' of right channel, bank '1.500 'Manning's 'N'. . =0.015 . Maximum depth of channel = . .1. 500(Ft.) Flow(q) thru subarea = 12.427 (CFS) I : Depth of flow = ' 0.63,4 (Ft.,) • . ' . I , , Average velocity 6.646(Ft/s) .. . . , . . . . - Channel flow. top'width = , 3.901(Ft0 .. • 0 • Flow Velocity = 6.65(Ft/s)' • .. Travel time = 2.55 min.. Time of concentration ,= 20.33 min. Critical depth = 0 852(Ft ) I Process from Point/Station 235.000 to Point/Station 204.000 I **** SUBAREA FLOW ADDITION **** I Decimal fraction soil group A = 0.000 - Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 (COMMERCIAL area type ] Time of concentration = 20.33 mm. I Rainfall intensity = 2.559(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 50.680(CFS) for 23.300(Ac.) Total runoff = 63.106(CFS) Total area .= 27.87 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 204.000 to Point/Station 205.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 265.60(Ft.) Downstream point/station elevation = 263.44 (Ft.) Pipe length = 30.00(Ft.) Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = 63.106(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 63.106(CFS) Normal flow depth in pipe = 14.77 (In.) I Flow top width inside pipe = 35.41(In.) Critical Depth = 30.66(In.) Pipe flow velocity = 23.12(Ft/s) I Travel time through pipe = 0.02 mm. Time of concentration (TC) = 20.35 mm. I Process from Point/Station 205.000 to Point/Station 205.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 1 ' Stream flow area = 27.870(Ac.) Runoff from this stream = 63.106(CFS) Time of concentration = 20.35 mm. Rainfall intensity= 2.557(In/Hr) I Program is now starting with Main Stream No. 2 I Process from Point/Station 220.000 to Point/Station 221.000 INITIAL AREA EVALUATION I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 I Decimal fraction soil group D 1.000 (COMMERCIAL area type ] Initial subarea flow distance = 750.00(Ft.) I Highest elevation =. 323.50(Ft.) Lowest elevation = 308.00(Ft.) Elevation difference = 15.50(Ft..) Time of concentration calculated by the urban I areas overland flow method (App X-C) = 9.68 mm. 1 TC = [1.8*(1.1.C)*djstance.5)/(% slope(1/3)1 I TC= (1.8*(l.1_0.8500)*(750.00.5)/( 2.07(1/3)]= 9.68 Rainfall intensity (I) = 4.131 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 23.525(CFS) I Total initial stream area = 6.700(Ac.) I Process from Point/Station 221.000 to Point/Station 222.000 *** PIPEFL.OW TRAVEL TIME (User specified size) I Upstream point/station elevation = 304 .,00(Ft.) Downstream point/station elevation = 271.00 (Ft.) Pipe length = 100.00(Ft.) Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = 23.525(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 23.525(CFS) I Normal flow depth in pipe = 7.80(In.) Flow top width insidepipe = 17.84(In.) Critical depth could not be calcUlated. Pipe flow velocity = 32.03 (Ft/s) I . Travel time through pipe =0.05 mm. Time of concentration (TC) = . 9.73 mm. I Process from Point/Station 222.000 to Point/Station 222.000 I **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 6.700(Ac.) I .Runoff from this stream = 23.525(CFS) Time of concentration = 9.73 mm. Rainfall intensity = 4.117(In/Hr) Process from Point/Station . 230.000 to Point/Station 222.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 . Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 I (COMMERCIAL area type . . Initial subarea flow distance = 1230.00(Ft.,) Highest elevation = 318.00(Ft.) Lowest elevation = 273.90(Ft.) I Elevation difference = 44.10(Ft.) Time of concentration calculated by.the urban areas overland flow method (App XC).= 10.31 mm. I TC = [1.8*(1.l_C)*djstance.5)/(% slope(1/3)] TC = (1.8*(1.1_0.8500)*(1230.00.5)/( 3.59(1/3)]= 10.31 Rainfall intensity (I) = 3.965 for 50.0 year storm I Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 28.307(CFS) Total initial stream area = 8.400(Ac) I S S Process from Point/Station 222.000 to Point/Station 222.000 **** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 2 in normal stream number .2 Stream flow area = 8.400(Ac.) . RunOff from this stream = . 28.307(CFS) - Time of concentration = 10.31 mm. Rainfall, intensity = '. 3.965(In/Hr) . Summary of stream data:. . . . . Stream Flow rate . TC . .. Rainfall Intensity . . No. . (CFS) . (mm) . . (In/Hr) i •. 23.25 973 . . . .4.117. ., . 2 28.307 . 10.31 3.965 Qmax(l) = . . . . •. . 0 1.000 * • 1.000 * 23.525) + 1.000 * 0.943 * 28.307) •+ = 50.228 . 'Qmax(2) = . •0 . . 0,963.'*' .1.000 * 23.525) '+ - . 1.000 * . 28.307) +, = 50.963 Total of'2 streams to confluence: . . • .. . . Flow rates before confluence point: . . .. 23.525. 28.307 . . . . Maximum flow rates at confluence using above data: 50.228 50.963 . . . . .• . ... . . ,0 .• Area of streams before..cOnfiuence: . . 6.700 . 8.400 00 Results of confluence: . . . Total flow rate = 50.963(CFS) . . Time of concentration - .10.311mm.. . Effective stream area after confluence .= ' . 15.100 (Ac.) ++++++++++++++++++.+++++++++++++++++++++++++++++++++++++++++±++++++++++ Process from Point/Station .222.000 to Point/Station 223.000. ** PIPEFLOW TRAVEL TIME (User specified size) *** Upstream point/station elevation= 270.67(Ft.) . • . .. . Downstream point/station elevation = .269.50(Ft.): . V Pipe length = 16.00(Ft.) Manning's N = 0.013 .' 0 No. of pipes = 1 Required pipe flow • 50.963(CFS) Given pipe .size = 24.00(In.)' . 0 . •0 • Calculated individual pipe flow = 50.963(CFS) 00 Normal flow depth in pipe = • 16.'73 (In. Flow top width inside pipe =0 22.05(In.) • 0 Critical depth could not be calculated. . 0 • • 0• Pipe flow velocity = . . 21.79(Ft/s) . . "•.. . ' • . Travel time through'pipe= . 0.01mm. • .' . . V Time of concentration (TC)' • 10.32 mm. • 0 +++f+++++++++++++++++f+++++.++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.23.000 to Point/Station 223.000 ** CONFLUENCE OF MINOR STREAMS'**** Along Main Stream number:.2 in normal stream number 1 I Stream flow area = 15.100(Ac.) I Runoff from this stream = 50.963(CFS) Time of concentration = 10.32 mm. Rainfall intensity = 3.962(In/Hr) Process from Point/Station 290.000 to Point/Station 291.000 I **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea I Initial subarea flow distance = 200.00(Ft.) Highest elevation = 289.20(Ft.) Lowest elevation = 283.50(Ft.) Elevation difference = 5.70(Ft.) I Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.59 mm. PC = (1.8*(1.1_C)*djstance.5)/(% slope(1/3)) I TC= [1.8*(1.1_0.9000)*(200.00.5)/( 2.85(1/3)]= 3.59 Rainfall intensity (I) = 7.828 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 2.043(CFS) I Total initial stream area = S 0.290(Ac.) I Process from Point/Station 291.000 to Point/Station 292.000 ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 283.500(Ft.) End of street segment elevation = 278.700(Ft.) Length of street segment = 285.000(Ft.) I Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) I. Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) ' Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(m) I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 I Estimated mean flow rate at midpoint of street = 3.488(CFS) Depth of flow = 0.336(Ft.) Average velocity = 3.172(Ft/è) Streetflow hydraulics at midpoint of street travel: I Halfstreet flow width = 9.986(Ft.) Flow velocity = 3.17(Ft/s) Travel time = 1.50 mm. TC = 5.09 mm. I Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity = 6.252(In/Hr) for a • 50.0 year storm I Runoff coefficient used for sub-area, Rational inethod,Q=KCIA, C 0.900 Subarea runoff = 2.307(CFS) for 0.410(Ac.) Total runoff = 4.350(CFS) Total area = 0.70 (Ac.) Street flow at end of street = 4.350(CFS) Half street flow at end of street = 4.350(CFS) 1 I I I I I I Depth of flow = 0 357(Ft ) Average velocity = 3.305(Ft/s) I Flow width (from curb towards crown)= 11.017(Ft.) I • Process from Point/Station : 292.000 to Point/Station 223.000 **** PIPEFLOW TRAVEL TIME (User specified size) *** S I 'Upstream--point/station elevation .= 274.50 (Ft.) Downstream point/station eievátion= 270.00(Ft.) I Pipe length = 150.00(Ft) Manning's N = 0.013 No. of pipes = 1 Required pipe flow . = 4.350(CFS) . Given pipe size . 18.00(In.) . Calculated individual pipe flow , . 4..350(CFS) I. Normal flow depth in pipe = 5.99(In.). . . . . Flow top width inside pipe ,,= 16 97(In ) . Critical Depth =,*.. 9.60(In.) •. . . I .: Pipe flow velocity = • 8.45(Ft/s) S S Travel time through pipe = 0.30 min. Time of concentration (TC) = .5.38 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 223.000 to Point/Station .223.000 CONFLUENCE OF MINOR STREAMS .**** - Along Main Stream number: 2. in normal stream number .2. I .Stream flow area = . • 0.700(Ac.) :. Runoff from this stream .= • 4.350(CFS) . Time of concentration = 5.38 mm. ,. . . Rainfall intensity = . 6.028(In/Hr) • • . •• . • • . • I •. Summary of stream data: • 5, 5 5 55 • • S Stream Flow rate TC Rainfall Intensity No (CFS) (nun) (In/Hr) 1 • 50.963 • .10.32 5 . • . 3.962 2 • . 4.350 • • • 5.38 : 6.028 Qmax(i) .•• S • • • S. • 5 1.000 * • • 1.000. * 50.963) + S 0.657 * 1 000 * 4.350) + = Qmax(2) = . . 5•. 1.000 * 0.522 * 50.963) + 1.Q00 *. 1.000 * • ., 4.350).+.= Total of 2streams to conflUence: • 5; Flow rates before confluence point: • 50.963 4.350 Maximum flow rates at cOnfluence Using above data: • 53.822 30.930. 5 •• .5 • . Area of streams before confluence: • S 15.100 5 • 0.:700 • S • • • Results of confluence Total flow rate = . 53.822(CFS) S • Time of concentration = 10 324 nun Effective stream area after confluence = 15 800(Ac ) Process from Point/Station 223.000 to Point/Station 205.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 268.50(Ft.) Downstream point/station elevation = 263.94 (Ft.) Pipe length = 442.00 (Ft.) Manning's N = 0.013 No of pipes = 1 Required pipe flow =. 53.822(CFS) Given pipe size = 36.00(In.) Calculated individual, pipe flow = 53.822(CFS) Normal 'flow depth in pipe = 24.23 (In.) Flow top width inside pipe = 33.77(In.) Critical Depth 28.60(In.) Pipe flow velocity = 10.63 (Ft/s) Travel time through pipe = 0.69 mm. Time of concentration (TC)= 11.02 mm. Process from Point/Station 205.000 to Point/Station 205.000 **** CONFLUENCE OF MAIN STREAMS 1** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = , 15.800(Ac.) Runoff from this stream 53.822(CFS) Time of concentration = 11.02 mm. Rainfall intensity = 3.799(In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 270.000 to Point/Station 271.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 340.00(Ft.) Highest elevation = 285.20(Ft'.) Lowest 'elevation = 279.80(Ft.) ' Elevation difference = 5.40(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.69 mm. TC = [l.8*(1.1_C)*djstance.5)/(% s1ope(1/3)] TC= [1.8*(1.1_0.9000)*(340.00.5)/( 1.59(1/3))= 5.69 Rainfall intensity (I) = 5.818 for a 50.0 year. storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = ' 3.561(CFS) Total initial stream area = 0.680(Ac.)' Process from' Point/Station 27,1.000 to Point/Station 272.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION 1** Top of street segment elevation = 279.800(Ft.) End of street segment elevation =. 268.280(Ft.) Length of street segment = 779.000(Ft.) ' Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51..500(Ft.) I I I I I I I I I I I I I I I I I I I Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.409 (Ft.) Average velocity = 3.422(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.623(Ft.) Flow velocity .= 3.42 (Ft/s) Travel time = 3.79 min. TC = 9.48 mm. Adding area flow to street 6. 702 (CFS) user specified 'C' value of 0.900 given for subarea Rainfall intensity = 4.185(In/Hr) for a 50.0 year storm Runoff coefficient used -for sub-area, Rational inethod,Q=KCIA, C = 0.900 Subarea runoff = 4.519(CFS) for 1.200(Ac.) Total runoff = 8.080(CFS) Total area = 1.88(Ac.) Street flow at end of street = 8.080(CFS) Half street flow at end of street = 8.080(CFS) Depth of flow = 0.431(Ft.) Average velocity = 3.561(Ft/s) Flow width (from curb towards crown)= 14.720(Ft.) Process from Point/Station 272.000 to Point/Station 205.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream Point/station elevation = 265.14 (Ft.) Downstream point/station elevation = 264.44 (Ft.) Pipe length = 145.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.080(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 8.080(CFS) Normal flow depth in pipe = 12.20(In.) Flow top width inside pipe = 24.00(In.) Critical Depth = 12.13(In.) Pipe flow velocity = 5.04(Ft/s) Travel time through pipe = 0.48 mm. Time of concentration (TC) = 9.96 mm. I Process from Point/Station 205.000 to Point/Station 205.000 ****.CONFLUENCE OF MAIN STREAMS I The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area 1.880(Ac) Runoff from this stream = 8.080(CFS) .Time of concentration = 9.96 min. Rainfall intensity = 4.053(In/Hr) Summary of stream data: I : Stream , . Flow rate . TC Rainfall 'intensity No , (CFS) (mm) (In/Hr). , 1 ' " 63.106. . 20.35 2.557 ' I •2 53.822 11.02 . . ' . 3.799 ' 3 ' 8.080 , 9.96' , " ' . . . 4Q53 ' Qmax(i) 1.000 * '1.000 * 63.106) '+ ' ' '• . 0.673,* , 1.000*' 53.822) + 0.631 *, , 1.000-* . . 8.080) -f = ' 104.432 ' '•'. .I Qivax(2) 1.000 * 0.541 * 63.106) 1.000 * 1.000 *', '53.822) + 0.937 * , 1.000* 8.080)' +''' ' .95.557 Qmax:(3,.) 1.000 * .0.490 * , 63.106) 1.00,0 * 0.904 * ' 53.822') ' 1 000 * 1 000 * 8.080). + = 87.650 Total of 3 main streams to'cônfl.uence: Flow rates before confluence point:. I' ' 63.106 ' . 53.822. " , .8.080' Maximum flow rates at 'confluence' using above data:, 104.432 ' : 95.557 ': 87.650' Area of streams before confluence: 27 870 15 800 .1 .880 J Results of confluence Total flow rate,= 104.432(CFS) ' ., Time ,of concentration 20.350mm.. 1 ' Effective stream area after -confluence =. '45.550 (Ac.) I ' ' +±+±++++±++++++++++++++++++'+++++++++++++++++++++++++++++++4+++ Process from Point/Station.,' 205.000 to Point/Station ' . 206.000 '**** PIPEFLOW TRAVEL TIME (User specified' size) , **: Upstream point/station élevation='• 262.44(Ft.) Downstream point/station elevation = 'Pipe length = 3l'.0O(Ft.):' Manning 's N =0.013' ' •. I No. 'of pipes =1. Required' pipe flow ' 104.432(CFS) Given pipe size = 48 00(In ) Calculated individual pipe flow = 104 432(CFS) Normal flow depth in pipe = 30.37.(In.) Flow, top width, inside' pipe =' 46.28(In.)., Critical Depth = , 37.12(In.') .' '. ' .•." ' , ' ' ' Pipe flow velocity I Travel-time =-12.47(Ft/s) ' Travel' time through pipe '=''. 0.04 min...- Time of concentration ITC) = 20.39 min. I Process...from"Point/statjon ' .206.000 toPoint/Station' '' 206.000 CONFLUENCE OF MAIN STREAMS The following data inside Main 'Stream is listed: In Main Stream number:. I 'Stream flow area,= ' .45.550(Ac.) I Runoff from this stream = 104.432(CFS) Time of concentration = 20.39 mm. Rainfall intensity = 2.554(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 225.000 to Point/Station 226.000 ' INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea I Initial subarea flow distance = 200.00(Ft.)' Highest elevation = 278.70(Ft.) Lowest elevation = 275.10(Ft.) Elevation difference = 3.60(Ft.) I Time of concentration calculated by the urban areas overland flow method (App X-C). =' 4.19 mm. TC = (1.8*(1.1-C)*distance .5)/(% slope ^(1/3)] I , TC[l.8*(l.l-0.9000)*(200.00.5)/( 1.80(1/3))= .4.19 Rainfall intensity (I) = 7.092 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C . 0.900 Subarea runoff = 1.979(CFS) 'I Total initial stream area = 0.310(Ac.) I Process from Point/Station 226.000 to Point/Station 206.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I . Top of 'street segment. elevation = 275.100(Ft.) End of street segment elevation = 269.400(Ft.) Length of street segment = 375.000(Ft.) I - Height of curb above gutter fiowline = 6.0(Iñ.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to 'crossfall grade break = '51.500(Ft.) I .Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) =. 0.020 Street flow is on, (1] side(s) of the street Distance from curb to property line = 10.000(Ft.) I' Slope from curb to property line (v/hz)' = 0.020, Gutter width= 1.500(Ft.) Gutter hike from flowline = 2.000(In.) U Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade 'break to crown = 0.0150 I ' Estimated mean flow rate at midpoint of street = 3.702(CFS) Depth of flow .= 0.347 (Ft.) Average velocity = 3.075(Ft/s)' Streetfiow hydraulics at midpoint of. street travel: I Halfstreet flow width = 10.495(Ft.') Flow velocity = 3.08(Ft/s) . Travel time = 2.03 min. TC = 6.22 mm. I ' ' Adding area flow to street ' . User specified'C' value of 0.900 given for subarea Rainfall intensity = 5.494(In/Hr) for' a 50.0 year storm I Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff =. 2.670(CFS) for 0.540(Ac.) Total runoff = 4.649(CFS) Total area = 0.85 (Ac.) Street flow at end of street = 4.649(CFS) Half street flow at end of street = 4.649(CFS) Depth of flow = 0.369(Ft ) Average velocity.= .3.212(Ft/s) . . Flow width (from curb towards crown)= 11 596(Ft ) I Process from Point/Station 206.000 to Point/Station 206.000 **** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed In Main Stream number: 1.2 .. i Stream flow area = 0.850 (Ac.) Runoff from this stream =1 4.649(CFS) . . Time of. concentration= .22 mm. . Rainfall intensity = 5 494(In/Hr) I Summary of stream data Stream Flow rate TC Rainfall Intensity No (CFS) in (In/Hr) 1 104.432 20 39 2.554 I .2 . 4.649 6.22. 5.494. Qmax(l) = 1.000 * . 1.000. * 104.432) + . . I 0.465 * 1.000 * 4.649)..+ = 106 593 Qinax(2) = 1.000 * .0.305 * ' 104.432) + .. . I l 000 * 1.000 * 4.649)* + = 36.492 Total of 2 main streams to confluence Fiowrates before confluence point: . 'Maximum 432 4.'649 um flow rates at confluence using above data 106.593 36..492 . . 1 Area of streams before confluence 45.550 0.850 I Results of confluence Total flow rate = 106 593(CFS) Time of concentration = 20.391 min. Effective stream area after confluence =' . 46-.400(Ac.). I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process, from Point/Station 206.000 to -Point/Station.207.000 - . . **** PIPEFLOW TRAVEL TIME (User specified size) I Upstream point/station elevation = 261 80(Ft ) Downstream point/station-elevation = 261.20(Ft.)' . ,. .. .. Pipe length = 60 00(Ft ) Manning's N = 0.013 I ..No. of pipes ' 1 Required pipe flow = 106.'593(CFS) Given pipe size = 48 00(In ) Calculated individual pipe flow. = 106 593(CFS) ' Normal flow depth in pipe = 30 80(In ) Flow top width inside pipe = 46 03(In ) Critical Depth '='' 37.46(In.). . . " •' . . . . . Pipe flow velocity=. , 12.52(Ft/s) Travel time through pipe - 0_08 mm I Time of concentration (TC) = 20.47 mm. I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 207.000 to Point/Station 207.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: I In Main Stream number: 1 Stream flow area = 46.400(Ac.) Runoff from this stream = 106.593(CFS) I Time of concentration = 20.47 mm. Rainfall intensity = 2.547(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 280.000 to Point/Station 281.000 I **** INITIAL AREA EVALUATION **** User. specified 'C' value of 0.900 given for subarea I Initial subarea flow distance = 405.00(Ft.) Highest elevation = 287.20(Ft.) Lowest elevation = 279.80(Ft.) Elevation difference = 7.40(Ft.) I Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.93 mm. TC = (1.8*(1. 1-C) *distance .5)/(% slope (1/3)] I TC= (1.8*(1.1_0.9000)*(405.00.5)/( 1.83(1/3))= 5.93 Rainfall intensity (I) = 5.667 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 4.590(CFS) I Total initial stream area = 0.900(Ac.) I ++++++++++++++±++++++++++++++++++++++++f++++++++++++++++++++++++++++++ Process from Point/Station 281.000 to Point/Station 282.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 279.800(Ft.) End of street segment elevation = 268.700(Ft.) Length of street segment = 864.000(Ft.) I Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) I Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street ' Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 I Estimated mean flow rate at midpoint of street = 7.905(CFS) Depth of flow = 0.437(Ft.) Average velocity = 3.354(Ft/s) Streetfiow hydraulics at midpoint of street travel: I Halfstreet flow width = 15.016(Ft.,) Flow velocity = 3.35(Ft/s) I Travel time = 4.29 mm. TC = 10.22 mm. Adding area flow to street User specified ICI value of 0.900 given for subarea Rainfall intensity = 3.987(In/Hr) for a 50.0 year storm I Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 4.665(CFS) for 1.300 (Ac.) Total runoff = 9.255(CFS) Total area = 2.20(Ac.) I Street flow at end of street = 9.255(CFS) Half street flow at end of street = 9.255(CFS) Depth of flow = 0.457 (Ft.) Average velocity = 3.471(Ft/s) I Flow width (from curb towards crown) 16.013(Ft.) I Process from Point/Station 282.000 to Point/Station 282.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 2-in normal stream number 1 Stream flow area = 2.200 (Ac.) Runoff from this stream = 9.255(CFS) I Time of concentration = 10.22 mm. Rainfall intensity = 3.987(In/Hr) I Process from Point/Station 285.000 to Point/Station 286.000 I **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 300.00(Ft.) ' Highest elevation = 286.50(Ft.) Lowest elevation = 280.10(Ft.) Elevation difference = 6.40(Ft.) I Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.84 mm. TC = [1.8*(l.1_C)*distance.5)/(% slope(1/3)J TC= [1.8*(l.1_0.9000)*(300.0o.5)/( 2.13(1/3)]= 4.84 ' Rainfall intensity (I) = 6.454 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 2.498(CFS) Total initial stream area = 0.430(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 286.000 to Point/Station 282.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION I Top of street segment elevation = 280.100(Ft.) • End of street segment elevation = 268.700(Ft.). Length of street segment = 761.000(Ft.). I Height of curb above gutter flowline = •6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) • Slope from I gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s),-.of the street • - Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) ' 0 I Gutter hike, from flowline'= 2.000(In.) ' Manning's N in gutter ,= 0.0150 Manning's N from gutter to grade break' = 0.0150 Manning's N from grade break to crown = 0.0150 I ' Estimated mean flow rate at midpoint of street = 5.693(CFS) Depth of flow, = . 0.390(Ft.) . . Average velocity. = 3.326(Ft/s) I Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 1,2.685(.Ft.) Flow'velocity = . 3.33(Ft/s) Travel time = 3.81 mm. TC '= ' 8.66 mm.. I ' Adding area flow to street User specified ICI-value of 0.900 given for.subarea Rainfall intensity = 4.438(in/Hr) for a 50.0 year storm I Runoff coefficient used for sub-area, Rational 'method,Q=KCIA, 'C = 0_900 Subarea runoff = ' '4.393(CFS) for 1.100 (Ac.) ' Total runoff = 6.891(CFS) Total area = 1.53 (Ac.) I Street flow at end of street = 6.891(CFS)' Half street flow at end of street = 6.891(CFS) . Depth of flow = . 0.412(Ft.) . Average velocity = 3.460(Ft/s) I ' ' Flow width (from curb towards crown)=' 13.745(Ft.) I Process from Point/Station. 282000 to Point/Station . 282.000 '**** CONFLUENCE OF MINOR STREAMS 'I 'Along Main Stream number: 2 in normal stream number 2 , Stream flow area = . 1.530(Ac.) .Runoff from -this stream=. 6.891(CFS) I .. Time of concentration = 8.66 mm. Rainfall intensity = 4.438(In/Hr) Summary of stream data: I' Stream Flow rate TC ' Rainfall, Intensity' No. , (CFS) . .' (mm) . ., 0 (In/Hr) I ' 9.255 , 1022 . . ' 0 , , 3.987 2 ' 6.891 8.66 , . , : ' 4438. ' I Qmax(1) 1.000 *, , 1.000 * ' 9.255) - .0.899 * 1.000 ' , 6.891) += . ' 15.447 I , ' Qmax(2) 1.000 * 0.847 * ' 9.255) '1.000 * 1.000 * 6.891)-+.= 14 732 I . Total of 2 streams to. confluence: Flow rates before confluence point: 9.255. " ' 6.891 I' Maximum flow rates at,confluence'using above data: . 15.447 ," 14.732: Area of streams before -confluence: .2.200 1.530 I . Results of confluence:. ' Total flow rate = 15,.447(CFS) Time of concentration = 10.220mm. I ' Effective stream area after confluence = 3.730(Ac.) I . ................... .................... ................................ -Process from Point/Station 282.000 to Point/Station . 207.000 **** .PIPEFLOW TRAVEL TIME (User specified size) I Upstream point/station elevation = 264.50 (Ft.) Downstream point/station elevation = 262.45(Ft.) I . I Pipe length =73.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow , = . 15.447(CFS) Given pipe size = .18.00(In.) . . . . I Calculated individual pipe flow =. 15.447(CFS) Normal flow depth in pipe = 13.08(In.). . . .' Flow top width inside pipe = . 16.05(In..) . . . Critical Depth = .16.97(In.) . . ... . . .. I .Pipe flow velocity = . 11.24(Ft/s) . . Travel time through pipe = 0.11 min. . . Time of concentration (TC) = 1033 mm. - Process from Point/Station 207.000 to Point/Station .207.000 **** CONFLUENCE OF MAINSTREAMS The following data inside Main Stream is listed: . I .In Main Stream number: 2•. . . . . Stream -flow area = : 3.730(Ac.) . . . . . Runoff from this stream = . .. 15.447(CFS) . I . Time of concentration 10.33 mm. :. . Rainfall intensity = . .3.960'(In/Hr) Summary of stream data: . .. .. . . . . . 1 . Stream . Flow rate . . TC . . Rainfall Intensity No.: (ups) . (mm) .. . . '(in/Hr) . . 1 106.593 20.47. . . 2.547 . . 2' 15.447 -. 10.33 . . 3.960 . Qmax(1) = .. . . .. . •• .- . . . . :. I . . . 1.000 .* 1.000 * . 106.593) '+ . . 0.643 *' 1.00.0 * . 15.447).+ = 116.529 Qmax(2). =. . . . .. . . . 1.000 0.505 , 106.593) . . . = .1.000 * 1.000.* 15.447) + =, . 69.226 .I . Total of 2 main stream. to confluence: -. . .. . Flow rates before confluence point;' . 106.593 15.447 Maximum flow: rates at conflUence using above data: I . • 116.529 . • 69.226 . . . . . . Area of streams before conf1uezce: . -. .. •. . . . I 46.400' . ' 3.730 . . . . . . . . . . Results of confluence: .. . - .• - ' . . . :: - Total flow.rate = ' 116.529(CFS) -. Time of concentration = - 20.471 mm. Effective stream area after.confiuence = 50..130(Ac'.) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 207.000 to Point/Station 208.000 **** PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation =. 261.20(Ft.)' Downstream point/station elevation = 261.00(Ft.) Pipe length = 20.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe, flow = 116.529(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = ll6529(CFS) Normal flow depth in pipe = 32.81(In.) Flow top width inside pipe =' 44.65(In.) '. Critical Depth = 39.04 (In.) Pipe flow velocity = - 12.73'(Ft/s) S S Travel 'time through pipe = 0.03 mm. Time of concentration.(TC)= 20.50 mm.. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station ' 208.000 *** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed:, S In Main, Stream number:-,1. Stream flow area =. .50.130(Ac.) S S Runoff from this stream = 116.529(CFS) Time of concentration = 20.50 mm.. Rainfall intensity =' S 2.545(In/Hr) Summary of stream data: Stream Flow rate TC .. .- . Rainfall Intensity S ' No (CFS) (mm) (In/Hr) 116.529 20.50 - ' ' 2.545 5 'S Qmax(1) = S ' . - - .• S - . . -S. 1,000 * 1 000 * -116.529) + = 116.529' Total of 1 main streams to confluence: Flow rates before confluence pOint.: '. S 116.529 Maximum flow rates at confluence using above data: 116.529 Area of streams. before confluence: 50.130 I I Results of confluence: - Total f low rate ' 116.529(CFS) Time of concentration = '20.497 mm. Effective stream area after confluence. = 50.130(Ac.) - I Process from Point/Station 2.40.000 to Point/Station 5 241.000 I , - ****.INITIAL AREA EVALUATION Decimal fraction soil, group A = 0.000 Decimal, fraction soil group B = 0.000 I Decimal fraction soil group C = 0 000 Decimal fraction soil group D =1.000 [RURAL (greater than 1/2 acre) area type Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11. 9*length(Mi) 3)/(elevation change))' Initial subarea flow distance = 1025.00(Ft.) Highest elevation = 322.00(Ft.) Lowest elevation = 289.80(Ft.) Elevation difference = 32.20(Ft.) TC=[(11.9*0.19413)/( 32.20)].385= 6.16 + 10 mm. = 16.16 mm. Rainfall intensity (I) = 2.967 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 6.810(CFS) Total initial stream area = 5.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 241.000 to Point/Station 252.000 **** PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation = 285.40(Ft.) Downstream point/station elevation = 285.00(Ft.) Pipe length = 22.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.810(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 6.810(CFS) Normal flow depth in pipe = 7.71(In.) Flow top width inside pipe = 22.41(In.) Critical Depth = ll.11(In.) Pipe flow velocity = 7.82(Ft/s) Travel time through pipe = 0.05 mm. Time of concentration (TC) = 16.21 mm. Process from Point/Station 252.000 to Point/Station S 252.000 **** CONFLUENCE OF MAIN STREAMS *** The following data inside Main Stream is listed: In Main Stream number:-1 Stream flow area = 5.100(Ac.) Runoff from this stream = 6.810(CFS) - Time of concentration = 16.21 mm. Rainfall intensity =. 2.962(In/Hr) Program is now starting with Main Stream No. 2 ++•++++++++++++++++++++++++++++++++.++.++++.++++++++++++++++++++-f-++.+++ Process from Point/Station 250.000 to Point/Station 251.000 * INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial' subareaflow distance = 375.00(Ft.) Highest elevation 317.00(Ft.) Lowest elevation = 306.80(Ft.) S S I Elevation difference= 10.20(Ft..) Time of concentration calculated by the urban - areas overland flow method (App X-C) 4.99 mm. TC = [1.8*(]..1_C)*distance.5)/(% slope(1/3)] TC= [1.8*(1.1_0.9000)*(375.00.5)/( 2.72(1/3)J= 4.99 I 1 I I I LI I I I I 1 .385 *60(mjn/hr) + 10mm. 1 I Rainfall intensity (I) = 6.328 Effective runoff coefficient used Subarea runoff = 3.303(CFS) Total initial stream area = for a 50.0 year storm for area (Q=KCIA) is C =0.900 0. 580 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++•++ Process from Point/Station 251.000 to Point/Station 252.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 306.800(Ft.) End of street segment elevation = 289.200 (Ft.) Length of street segment = 785.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line '(v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline'= 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = . 6.550(CFS) Depth of flow = 0.384 (Ft.) Average velocity = 4.018(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 12.359(Ft.) Flow velocity = 4.02(Ft/s) Travel time = 3.26 min. TC = 8.25 mm. Adding area flow to street User specified 'C'. value of 0.900 given for subarea Rainfall intensity = 4.578(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-;-areaj Rational method,Q=KCIA, C.= 0.900 Subarea runoff = 4.697(CFS) for 1.140(Ac.) Total runoff = .' 8.000(CFS) Total area = .1.72 (Ac.) Street flow at end of street = 8.000(CFS) Half street flow at end of street = 8.000(CFS) Depth of flow = 0.406(Ft.) Average velocity = 4.187(Ft/s) Flow width (from curb towards crown)= 13.448(Ft..) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 252.000 to Point/Station 252.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.720(Ac.) Runoff from this stream '8.000(CFS) . Time of concentration— 8.25 mm. Rainfall intensity = 4.578(In/Hr) Summary of stream data: , Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) I LI I I I I I 1 I I I I [1 I I I I 1 ' 6.810 16.21 . ' 2.962 2 8.000 8.25 .' . . '4.578 . •' . . Qmax(1)= I 1.000 * 1.000 * 6.810) + 0.647 * . 1.000 . 8.000) '+ = , 11.986 . . Qmax(2) I 1.000 * 0.509 1.000 *. 1.000.* 8000) .+ = , 11.467 1 . Total of 2 main streams to cônfluénce:.' Flow rates before confluence point: 6.810 ..' 8.000 ' . . . . Maximum flow rates at confluence using above data: I .'' '11.986' ' . ' 11.467. Area of streams before confluence: . .. . . . I '' ' '• ' 5100 , 1.720 Results of'cOnfluènce: . . ' . . .. .. . '. . Total flow rate = , 11.986(CFS) I Time of concentration = ' 16.20,5 mm. . .. . Effective.stream area after confluence = . 6.820(Ac.); I Process from' Point/Station . 252.000 to -Point/station .'' 263.000 i . . '**** PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation ='' 284.77(Ft.) Downstream point/station elevation = . '266.30(Ft.)' Pipe length . = .146.00 (Ft.) Manning's N'= 0.013 ' . ' . 'No. '.of pipes'=l Required pipe.flow'= . 11.98,6(CFS') , . Given pipe size =.:24.00'(In.). I ; Calculated individual, pipe flow = ' ' 11.986(CFS)V, '. Normal flow depth in 'pipe = ' 6.26(In.)' Flow top width inside pipe =21 07(In ) I : ' Critical Depth =14.92(In.) Pipe flow velocity.= .' 18.'38(Ft/s) ' •• '. ' Travel time through' pipe ." 0. 13 mm.' , '• ' ' V - Time' of concentration' (TC) '= 16.34 mm. I ' Process' from Point/Station ' '. 263.000 to Point/Station 263.000 **** CONFLUENCE OF MAIN STREAMS-,**.**. The following' data.' inside Main Stream is listed: In Main Stream number: 1 ..: •' • . . ,' ' V Stream flow area =. ' .6.820(Ac.) Runoff from this stream = ' 11.98 .6 I Time of -concentration = 16.34min. . •. ' ' V , • ' ' Rainfall intensity 2.946(In/Hr) Program is now starting. with .Main Stream No. 2' • • : - ' V Process from Point/St,ation ' 260.00.0'to'Point/Station . 261.000 INITIAL AREA EVALUATION' **** V '',• • " , ' I I User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 255.00(Ft.) Highest elevation = 305.80(Ft.) I Lowest elevation = 305.00(Ft.) Elevation difference '= 0.80(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 8.46 mm. I TC = [1.8*(1.1-C)*distanc&.5)/(% slope(1/3)] TC = (1.8*(1.1_0.9000)*(255.00.5)/( 0.31(1/3)]= 8.46 Rainfall intensity (I) = 4.504 for a 50.0 year storm ' Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 1.500(CFS) Total initial stream area = 0.370(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 261.000 to Point/Station 262.000 I .**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 305.000(Ft.) End of street segment elevation = 286.500(Ft.) I Length of street segment =. 675.000(Ft.) Height of curb above gutter flowline = 6.0 (In.) Width of half street (curb to crown) = 53.000(Ft.) I Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 I Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) I Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break '= 0.0150 I Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.486(CFS) Depth of.flow = 0.315(Ft.) I .Average velocity = 3.877(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 8.925(Ft.) Flow velocity = 3.88(Ft/s) I Travel time = 2.90 min. TC = 11.36 mm. Adding area flow to street User specified 'C' value of 0.900 given for subarea ' Rainfall intensity = 3.724(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 3.285(CFS) for 0.980(Ac.) Total runoff = 4.785(CFS) Total area = 1.35 (Ac.) I Street flow at end of street = 4.785(CFS) Half street flow at end of street = 4.785(CFS) Depth of flow = 0.343(Ft.) I Average velocity = 4.100(Ft/s) Flow width (from curb towards crown)= 10.317(Ft.) I . Process from Point/Station262.000 to Point/Station 263.000 *** PIPEFLOW TRAVEL TIME (User specified size) . I . I Upstream point/station elevation = 282.50(Ft.) I Downstream point/station elévatioñ = 266.55(Ft.) Pipe length = 35.00(Ft.) Manning's. N = 0.013 . No. of pipes = 1 Required pipe flow .= - 4.785(CFS) I . Given pipe size =18.00(In.) . .•' - . Calculated individual pipe flow = 4.785(CFS) Normal-.flow depth in. pipe =. . 3..3.7 (In..) . . . . . . Flow top width inside pipe ,. 13.71(In.) I . Critical Depth = 10.08(In.) .. . . . Pipe flow velocity 22.86(Ft/s). . . . Travel time through pipe= 0.03 mm. Time of concentration. (TC) = 11.39. min.''. . I . Process from Point/Station263.000 to Point/Station . 263.000. **** CONFLUENCE OF MAIN STREAMS .I The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area I Runoff from this stream = 4 785(CFS) Time of concentration =. .11.39 mm. . . .. . Rainfall intensity = 3.719(In/Hr) . . .. . . . Summary of stream data: Stream Flow, rate; . TC . Rainfall Intensity No. (CFS) : (min) . (In/Hr) . . 1. 11.986. 16•34 S. 2.946 . . . . . ., I . 2. . -4.785'- 11.39 ... 3.719 "Qrnax(l)5- 1.000 * ,' .1.000 * .. 11.986) .0.792 * 1.000* ,. 4.785)+ = 15.777. I .Qmax(2) 1.000 * ,. 0.697* . 11.986) +. . . . . . . 1.000 * . 1.000 * '.• 4.785) + 13.139 I Total, of 2 main streams to confluence: S . • S Flow rates. before confluence, point: . . , • ,. . 11.986 . 4.785 .... .. . . .•. 5. 5,. . I . Maximum flow rates at confluence 'using above data:. ,. 15.777 .. 13.139 Area of streams before confluence:, . .. . . . I •, . - '6.820. ..1.350 Results of confluence:. 1 - Total flow.raté . - 15.7.77(CFS) . . . , . . .. Time of concentration = . . 16.337 mm. . . - .... . ' Effective stream area after cOnfluence = - . 8..170(Ac,.) I I Process from Point/Station .263.000 to Point/Station 264 000 *** PIPEFLOW 'TRAVEL TIME (User specified size) . 0' Upstream point/station elevation= 266.30(Ft.) I Downstream point/station elevation = 262 00(Ft ) I Pipe length = . 34.00(Ft.) Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = 15.777(CFS) Given pipe size = 24.00(Ifl.) Calculated individual pipe flow = 15.777(CFS).. I Normal flow depth in pipe = . 7.21(In.) Flow top width inside pipe = 22.00(In.) Critical Depth. = 17.19(In.) Pipe flow velocity = . 19.89(Ft/s) I . Travel time through pipe = .0.03 mm. . Time of concentration (TC) = 16.37 min. I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 264.000 to Point/Statio.n 264.000 I **** CONFLUENCE OFMAINSTREAI4S . The following data inside Main Stream is listed: In Main Stream number: 1 . . . I Stream flow area = 8.170(Ac.) . . . . Runoff from this stream = 15..777(CFS) .. .. . Time of concentration = 16.37 mm. Rainfall intensity = 2..943(In/Hr) . . . . . I Summary of stream data: . . . Stream Flow rate TC Rainfall Intensity 1 No (CFS) . (mm) . . . (In/Hr) I i 15.777 16.37 . 2.943 .... . . 0 Qmax(l) 1.000 * 1.000 * 15.777) + = . 15.777 I Total of 1 main streams to confluence: . Flow rates before confluence point: . . . 15.777 : • : . . I Maximum flow' rates at confluence using above data: 15.777 . . . . 0 . . Area of streams before confluence: . . I 8170 Results of confluence .1 . Total flow rate = . 15.777(CFS) . . Time of concentration = - 16.366 mm. . Effective stream area after confluence I ++++++++++++++++++++++++++++++++++++++++++++++++++++++.++++++++++++++++, I. Process from Point/Station 299.900 to Point/Station, . 299.000 ****.INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000, I .Decimal fraction 'soil group B = 0.000 . . Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 I .[RURAL (greater than 1/2 acre)' area type . .' Time of concentration computed by the. 'natural watersheds nomograph (App X-A) .TC = (11.9*length(Mi)3)/(elevation changé)].385 *60(inin/hr) + 10 mm. I Initial subarea flow,distance = 570.00(Ft.) Highest élevátion = 420.00(Ft.) . Lowest elevation = 395.00(Ft.) . 0 Elevation differenôe . 25.00(Ft.) TC=((11.9*0.10803)/( 25.00)]-.385=. 3.45 + 10 min.= 1S3.45 Thin. Rainfall intensity (I) = .3.341 for a 50.0 year storm Effective runoff coefficient used for area (Q=KC.IA) is C = 0.450 Subarea runoff = . 4.134(CFS) . . Total initial stream area 2.750 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 299.000. to Point/Station 298.000 ** IRREGULAR CHANNEL FLOW TRAVEL TIME ****' Depth of flow = 0.101(Ft.) Average velocity = 1.677(Ft/s) . . . .. .• ******* irregular Channel Data *********** Information entered for subchañnel number 1 : Point number IXt coordinate 'Y' coordinate 1 . 0.00 . . 2.00 0 . 2 . 8.00 .. 0.00 . .3 . . 32.00 . 0.00 •• 4 . . 40.00 Manning's 'N' friction factor = 0.040 ----------------------------------------------- Sub-Channel flow = . 4.134(CFS) . ' ' flow top width = 24.808(Ft.) velocity= 1.677(Ft/s) . . . ,. •' •. . area = •. . 2.466(Sq.Ft) . Froude number = 0.937 I :Upstream point elevation = . 395.000(Ft.) . . . . Downstream point elevation = 281.600(Ft.) . . . Flow length = 2560.000(Ft.) . . . I . Travel time =25.45 mm. Time of concentration = 38.90 Thin. . 0 Depth of flow = 0.101(Ft.) . . Average velocity = 1.677°(Ft/s) I Total irregular channel flow =. 4.134(CFS) . . Irregular channel normal depth above Invert elev.. = 0.'101(Ft.) Average velocity of channel(s) = 1 677(Ft/s) I Sub-Channel No. 1 critical depth =0 •' 0.. 097 (Ft.) critical flow top width = 24.773(Ft.) 0 critical flow velocity= . 1.753 (Ft/s) 1 ' ' •• ' critical flow area 2.358(Sq.Ft) . Process -from Point/Station 299.500 to Point/Station. 298.000 I *** SUBAREA FLOW ADDITION Decimal fraction soil group A = 0.000 I . Decimal fraction soil, group B = 0.000 Decimal fraction soil group C = 0.000 • - ••. S Decimal fraction soil group D= 1.000 . S [RURAL (greater than 1/2 acre) area type ] S Time of concentration = 38.90 min. Rainfall intensity = 1.684(In/Hr) for a 50.0 year storm Runoff-coefficient used for sub-area, Rational inethod,Q=KCIA, C = 0.450 Subarea runoff = 24.664(CFS) for 32.550 (Ac.) Total runoff = 28.798(CFS) Total area = 35.30(Ac.) Process from Point/Station 298.000 to Point/Station 297.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 282.00(Ft.) Downstream point/station elevation = 279.73 (Ft.) Pipe length = 99.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 28.798(CFS) Given pipe size = 36.00(m.) Calculated individual pipe flow = 28.798(CFS) Normal flow depth in pipe = 13.16(In.) Flow top width inside pipe = 34.67(In.) Critical Depth = 20.84 (In.) Pipe flow velocity = 12.32 (Ft/s) Travel time through pipe = 0.13 mm. Time of concentration (TC) = .39.03 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 297.000 to Point/Station 297.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main.Stream is listed: In Main Stream number: 1 Stream flow area = 35.300 (Ac.) Runoff from this stream = 28.798(CFS) Time of concentration = 39.03 mm. Rainfall intensity = 1.680(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 265.000 to Point/Station 266.000 **** INITIAL AREA EVALUATION User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 300.00(Ft.) Highest elevation = 307.00(Ft.) Lowest elevation = 300.00(Ft.) Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban areas overland flow method (AppX-C) = 4.70 mm. TC = [1.8*(1.1_C)*distance..5)/(% slope(1/3)] TC= [1.8*(1.1_0.9000)*(300.00.5)/( 2.33(1/3))= 4.70 Rainfall intensity (I) = 6.580 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 1.658(CFS) Total initial stream area = 0.28.0 (Ac.) . . Process from Point/Station 266.000 to Point/Station 267.000 ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I I I I I I I I I I I I I I I I I I I U Top of street segment elevation = . 300.000(Ft.) I .•End of street segment elevation = 291.000(Ft.) Length of street segment = 790.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) 41.000(Ft.) I Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to . grade break (v/hz) = 0.087 Slope from grade break to.crown (v/hz) = 0.020 I Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb.to property line (v/hz) = 0.020 I Gutter width = 1.500 (Ft.) Gutter hike from flowline =' .2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 I .Manning's N from grade break to crown =' 0.0150 Estimated mean flow rate at midpoint of street = . 3.879(CFS) Depth of flow = 0.365(Ft.) I .Average velocity = 2.761(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 11.412(Ft.)' Flow velocity= 2.76(Ft/s) I Travel time 477 mm.. TC = 9.47 mm. Adding area flow to street User specified 'C' value of 0.900 given for subarea I Rainfall intensity = 4.188 (In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = . 2.827(CFS) for 0.750 (Ac.) ' Total runoff ,= 4.485(CFS) Total area = 1.03(Ac.) Street flow at end of street = . 4.4.85(CFS) Half street flow at end of street 4.485(CFS) Depth of flow = . 0.380(Ft.) I . Average velocity = 2.841(Ft/s) . Flow width (from curb towards 'crowñ),= 12.149(Ft.) I. ' ...................................................................... Process from Point/Station 267.000 to Point/Station '297.000 **** PIPEFLOW TRAVEL TIME (User specified size) *** Upstream point/station 'elevation = 288.60(Ft.) Downstream point/station elevation = 279.73 (Ft.) I Pipe length = 380.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.485(CFS) Given pipe size = 18.00(In.)' . I Calculated individual pipe 'flow = 4.485(CFS) 'Normal' flow depth in pipe = .6.51(In.)' Flow top width inside pipe = 17.30(In.) . . Critical Depth =. 9.75(In.) ' I Pipe flow velocity = 7.79(Ft/s)' Travel time through pipe = ' 0.81 mm. Time of concentration (TC)= 10.28 min.' I Process from Point/Station . 297.000 to Point/Station 297.000 '**** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2 , ' I Stream flow area = 1.030(Ac.) I Runoff from this stream = 4.485(CFS) Time of concentration = 10.28 mm. Rainfall intensity = 3.971(In/Hr) Program is now starting with Main Stream No. 3 ...................................................................... I Process from Point/Station 255.000 to Point/Station 256.000 **** INITIAL AREA EVALUATION **** I User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 200.00(Ft.) Highest elevation = 291.00(Ft.) I Lowest elevation = 287.80(Ft.) Elevation difference = 3.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.35 mm. I TC = [1.8*(1.l-C)*distance..5)/(% slope(1/3)] TC = (l.8*.(1.1-0.9000)*(200.00.5)/( 1.60(1/3)]= 4.35 Rainfall intensity (I) = 6.915 for a 50.0 year storm I Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 1.431(CFS) Total initial stream area = 0.230(Ac..) Process from Point/Station 256.000 to Point/Station 257.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of.street segment elevation = 287.800(Ft.) End of street segment elevation =283.900(Ft.) Length of street segment = 300.000(Ft.) Height of curb above gutter flowline = 6.O(In.) Width of half .street (curb to crown) = 71.000(Ft.) I Distance from crown to crossfall grade break = 69.500(Ft.) Slope from gutter to grade break (v/hz) 0.087 Slope from grade break to crown (v/hz) = 0.020 I Street flow is on (1] side(s) of.the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = .1.500(Ft.) I Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 - Manning's N from gutter to grade break = 0.0150 I .Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.298(CFS) Depth of flow = 0.343 (Ft.) I Average velocity = 2.824(Ft/s) Streetfiow hydraulics at midpoint of street travel: Half street flow width = 10.322(Ft.) Flow velocity = 2.82(Ft/s) . I .Travel time = 1.77 mm. TC = 6.12 mm. Adding area flow to street User specified 'C' value of. 0.900 given for subarea I Rainfall intensity = 5.549(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 2.996(CFS) for 0.600(Ac.) Total runoff = 4.428(CFS) Total area = • 0.83 (Ac.) I Street flow at end of street = 4.428(CFS) I . •. - Half street flow at end of street 4 . 428 (CFS) Depth of flow = 0.372(Ft.) S Average velocity = 2.988(Ft/s) Flow width (from curb towards crôwn)=' 11.745(Ft.) . . .., Process from-Point./Station :. 257.000 to Point/Station 297.000 **** PIPEFLOW TRAVEL TIME (Userspecified size) **** Upstream point/station elevation = 280.50(Ft.,) S Downstream point/station elevation = 279.73 (Ft.) .,.. Pipe length = 105.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow . = 4.428(CFS) Given pipe size = 18.00 (In.) Calculated individualpipe flow -'=' 4.428(CFS) . Normal flow depth in pipe = ..8.92(In.) . . Flow top width inside pipe = 18.00(In.) . Critical Depth = 9.69(In.) . . Pipe flow velocity. = . 5.07(Ft/s) . . . , Travel time through pipe = 0.35 mm. . . Time of concentration (TC) = 6.47 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from.Point/Station . 297.000 to Point/Station 297.000 **** CONFLUENCE OF MAIN STREAMS.**** The following data inside Main Stream is listed: In Main Stream number 3 Stream flow.aréa= . 0.830(Ac.) . Runoff from this stream = .' . 4.428(CFS). . Time of concentration 6.47 mm. Rainfall 'intensity =, 5.356(In/Hr) .. S Summary of. stream data:. Stream Flow rate TC Rainfall Intensity No. (CFS) . (mm). • (.In/Hr) 1 28.798 3903 1680 2 . . 4.485 10.28 ' . 3.971 . S 3 . 4.428 ' . 6.47 .. . 5.356 . . . Qrnax(1) 1.000 * 1.000 * 28.798) + . •• . 5 0.423 * 1.000 * 4 485) + - 0.314 * , 1.000 * 4.428) Qmax.(2) 1.000 * . 0.263 * , 28.798) +' 'I.. . . 1.000 * • 1.000 * 4.485) + • . .0.742 * • 1.000 * •. .4.428) += 15.356 I Qmax(3) = S 1.000 .* '. 0.166 * •. , 28.798) 1.000 * 0.629 * 4 485) + 1.000 * .1 .000 * 4 428) + = 12.021 1 'Total . of 3 main. streams to confluence: ..• • Flow rates before confluence point: • , • 28.798 '. . 4.485 4.428 . S • Maximum. flow rates at confluence using above data: 32.084 15.356 12.021 Area of streams before confluence: 35.300 1.030 0.830 Results of confluence: Total flow rate = 32.084(CFS) Time of concentration = 39.030 min. Effective stream area after confluence = 37.160.(Ac.) Process from Point/Station 297.000 to Point/Station 296.000. **** PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevatiOn = 279.40(Ft.) Downstream point/station elevation =: 278.30(Ft.) Pipe length = 46.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 32.084(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 32.084(CFS) Normal flow depth in pipe = 13..78(In.) Flow top width inside pipe = 35.00(In.) Critical Depth = 22.05(In.) Pipe flow velocity 12.88(Ft/s) Travel time through pipe = 0.06 mm. Time of concentration (TC) 39.09 min. Process from Point/Station 296.000 to Point/Station 295.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 278.30(Ft.) Downstream point elevation = 270.50(Ft.) Channel length thru subarea = 555.00(Ft.) Channel base width = 4.000(Ft.) Slope or 'Z' of left channel bank:= 1.500 Slope or 'Z' of right channel bank = 1.500 Manning's 'N', = 0.015 Maximum depth of channel = 2.500 (Ft.) Flow(q) thrusubarea= 32.084(CFS) Depth of flow = 0.763 (Ft.) Average velocity = 8.179(Ft/s) Channel flow, top width = 6.288(Ft.) Flow Velocity =' 8.18(Ft/s) ' Travel time 1.13 mm. Time of concentration = 40.22 mm. Critical depth 1.094 (Ft.) Process from Point/Station ' 295.000 to Point/Station' 294.000 **** IMPROVED CHANNEL TRAVEL TIME **** Covered channel Upstream' point elevation = 270.50(Ft.). '. Downstream point elevation= ' 270.10(Ft.) Channel length thru'subarea ' 60.00(Ft.) Channel base width = 5. 000(Ft.) San Diego County Rational Hydrology Program I CivilCADD/CivilDESIGN Engineering Software, (C) 1990 Version 2.3 Rational method hydrology, program based on San Diego County Flood Control Division 1985 hydrology manual I Rational Hydrology Study Date 2/ 1/91 ------------ EL CAMINO REAL/PALOMAR AIRPORT ROAD I 300 AREA BASIN STUDY FILENAME: ELCAM3 L 200,4 JOB# 10365 2/1/91 I ********* Hydrology Study Control Information ********** I Rational hydrology study storm event year is 50.0 = Map data precipitation entered: . . . . I .6 hour, precipitation(inches). = 2.400 . 24 hour precipitation(inches) = 4.200 Adjusted 6 hour precipitation (inches) = 2 400 . P6/P24 = . 57.1% . . . I San Diego hydrology manual 'C' values used Runoff coefficients by rational method ************* I N P U T D A T A L I S T I N G ************ Element Capacity Space Remaining = 347 I Element Points and Process used between Points Number Upstream Downstream Process I l 2 300 000 301.000 301 000 302.GOO . 5 Initial Area . Pipeflow Time(user. inp) 3 302.000 302..000, Main Stream Confluence 4 310.000 311 000 Initial Area I 311.'000 312 000 Pipeflow Time(user inp) 6 312 000 313 000 Pipeflow Time(user inp) 7 5 .5 313.000 .. . .313.000 .. Confluence S 8 340 000 313.000 Initial Area I 9 5 313.000 313.000 5- .5 Confluence 10 313.000 . 5 . .302.000 5 Pipeflow Time(user inp) 11' 12 302.000 302.000 . 302.000 303 000 Main Stream Confluence Pipeflow Time(user inp) 13 303 000 303 000 Main Stream Confluence 14 330.000 331-000 Initial Area 15 .. 331.000 332.000 Street Flow + Subarea 16 332.000 . . 322.000 Pipeflow Time(user inp) 17 . . 322.000 .. . 322.000 Confluence 18 320.000 321.-000 Initial Area I 19 . . . 321.000 5,. . 322.000 Street Flow + Subarea 20 . 322.000 . 322.000 S Confluence S S 21 322 000 303 000 Pipeflow Time(user inp) I.. 22 . .. . 303.000 5 303.000 Main-Stream Confluence 23 303.000' 304 000 Pipeflow Time(user inp) End of.listing .............S I I San Diego County Rational Hydrology Program CivilCADD/CivilDESIGN Engineering Software, (c) 1990 Version -2.3 Rational method hydrology program based on San Diego county Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 2/,1/91 EL CANINO REAL/PALOMAR AIRPORT ROAD 300 AREA BASIN STUDY FILENAME:. ELCAN3 L 200,4 JOB# 10365 2/1/91 ********* Hydrology Study Control Information ********** --------------------------------------------------------------- Rational hydrology study storm event year is 50 ..0 Map data precipitation entered 6 hour, precipitation(inches) 2.400 .. 24 hour precipitation(inches). = 4.200 Adjusted 6 hour precipitation (inches) = 2 400 P6/P24 57. 1%. San Diego hydrologymanual..'C' values used .. . Runoff coefficients by rational method Process from Point/Station 300 000 to Point/Station 301 000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance 400.00(Ft.) Highest elevation = 320.00(Ft.) . . Lowest elevation = 305.5.0(Ft.) : Elevation difference = 14.50(Ft.) 0 Time of concentration calculated by. the urban areas overland flow method •(App X-C) = 4.69 mm. S .TC =[l.8*(1.1_C)*distance.5)/(.%slope(l/3).). TC= [1.8*(1.1_0.9000)*(400.00Y'.5)/( 3.6.3'(l/3))= 4.69 Rainfall intensity (I) = 6.593 for a 50.0 year storm Effective. runoffcoefficient. used for area (Q=KCIA) isC= 0.900 Subarea runoff = 3.085(CFS) S Total initial stream. area =.. .. 0.520(Ac.) S Process from Point/Station • 301.000 to'Point/Station. 5 302.000 PIPEFLOW TRAVEL-TIME (User specified size) *** Upstreampoint/station elevation = 301.00(Ft.) Downstream point/station elevation = 294.50(Ft.) .. Pipe length = 388 00(Ft ) Manning's N = 0 013 No. of pipes =1. Required pipe flow 3.085(CFS) • Given pipe size = 18.'00(In.). S • • S • 5 Calculated individual pipe flow = 3.085.(CFS) Normal flow depth in pipe = • 5..83(In.) S • S S • • • Flow top width inside pipe = .16.85(In..) S S • . Critical Depth = ,8.02-(In.)' Pipe. flow velocity 6.22.(Ft/s) Travel time throuh pipe 1.04 mm. •. Time of concentration (TC) = .5.73 min. I Process from Point/Station 302.000 to Point/Station ., 302.000 **** CONFLUENCE OF MAIN STREAMS I : The following data inside Main: Stream is listed: In Main Stream number: 1. . . . Stream flow area = . 0.520(Ac.) :. I .Runoff from this stream . 3.085(CFS) . . Time of concentration = 5.73 mm.' ., Rainfall intensity = . 5.794(In/Hr)' • . . . I Program is now starting with Main Stream No 2 .I. Process from Point/Station .310.000 to Point/Station . 311.000 ** INITIAL AREA EVALUATION I . Decimal. fraction soil group A = 0.000 Decimal fraction soil group .B = 0.000 . :. Decimal fraction soil group C= .0.000 Decimal fraction soil group D= 1.000 I :(COMMERCIAL area type :' . . ' • . Initial subarea flow distance =' 775.00(Ft.) Highest elevation = 322.00(Ft.) . . . . . . .. ' I Lowest elevation= 314.00(Ft.) . " •: : Elevation difference = 8.00('Ft.) Time of concentration calculated by the urban . areas overland flow method (App X-C) = .12.40 mm.. I . TC = [l.8*(.1.I-C)*distance.5)/(% slope-(1/3.)] TC= [1..8*(1.1-0.8500)*(775.0O.5)/( 1.0'3('1/3))=. 12.40 Rainfall intensity (I) = . 3.521 for a. 50.0 year storm. I . Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 11.073(CFS) .. . . . Total initial stream area = 3.700(Ac.) . . . . Process from Point/Station . 311.000 to Point/Station 312.000 I **** PIPEFLOW. TRAVEL TIME (User specified size) **** Upstream point/station elevation = 309.93(Ft.) .. I . Downstream point/station elevation= 305.9-0 (Ft.) Pipe length = ..66.00(Ft.) Manning's N = 0.013 'No.of pipes =1 Required pipe flow = • 11.073(CFS) • Given pipe size = 24..00(In.) . . . I Calculated individual pipe flow = 11..073(CFS) . Normal flow depth in pipe = 7.24 (In.) . Flow top width inside pipe := 22.03(In.) . .. .. . I .Critical Depth = . 14.31(In.) . . . .. Pipe flow velocity = . 13.85(Ft/s) . ... .. Travel time through pipe= 10.08 mm. . Time of concentration (TC) =. 12.47 mm. . . . .. . I Process from Point/Station 312.000 to Point/Station 313.000 **** PIPEFLOW TRAVEL TIME (User specified size).**** I Upstream point/station è1eation = . 305.56(Ft.) I Downstream point/station elevation =. 299.00 (Ft.) Pipe length = 14 00(Ft ) Manning 's N = 0.-013 I No. of pipes— 1 Required :p'ipe flow = 11.073(CFS) Given pipe size = '. '24.00(In.)'. Calculated individual pipe flow = 11 073(CFS) I Normal flow depth in pipe = 4 34(In ) Flow top width inside pipe = 18.48 (In.) Critical Depth'- 14 31(In ) Pipe flow velocity = 28.56(Ft/s) 1 . Travel time through pipe = '. 0.01 mm. . . Time of concentration (TC) = 12.48 mm I Process from Point/Station .'. ' 313.000 to Point/Station 313.000 CONFLUENCE OF MINOR STREAMS ' Along Main Stream number: 2 in normal stream number 1 Stream-flow-area = 3.700(Ac.) I Runoff from this stream = . 11.073(CFS) Time of concentration = 12.,4 8 min. Rainfall intensity = 3 505(In/Hr) ++++4++++++++++++++.++++#++++#++++'++++++++++++++++4+++++.++++++++++ Process from Point/Station ' 340.000 to Point/Station 313.000 INITIAL AREA EVALUATION **** , '.• -.. ' User specified 'C', value of 0.50.0 given for subarea I Initial subarea flow distance = 405.00(Ft.) - ' Highest elevation = 310.00.(Ft.:) Lowest elevation = 304.00(Ft.) • S Elevation difference ' 6.00(Ft..) Time of 'concentration calculated by,the urban'. .;•• ' ' areas overland flow method (App 'X-C). = 19.07 -min. TC = [1.8*(1.l-C)*distance.5)/(% slope(1/3)] TC = [1.8*(1.1-0.5000)*(405.00.5)/( 1.48(1'/3))= ".19.07 ,Rainfall intensity (I)=' 2.667 för.'a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.500 I Subarea'. runoff = '' 0.213('CFS) Total initial stream area '= 0 160(Ac ) I' ' Process from Point/Station 313.000' to 'Point/Station ' 313.000 *** CONFLUENCE OF MINOR STREAMS -**** 'I Along Main Stream number: 2 in normal stream number 2 Stream flow area = .. 0.160(Ac.). I Runoff frOm this stream 0213(CFS) ' • . Time of concentration = 19.07 mm. , ' ' • ' S Rainfall intensity = S 2.667(In/Hr)' ' ' ' S • ' ' I Summary of stream data Stream. Flow rate TC Rainfall Intensity No..' " (CFS) ' ' ' (mm) ' ' (In/Hr).' I I Ii 11.073 1248 3.505 .2 ' 0.213 .19.07 '• ' .2.667'' : Qmax(l)'= . 0 1.000 * .1.000* 11.073)+ . . '. . I 1 000 * 0.655 * 0.-213) + = 11.21 . 2 Qmax (2.) .. • • - . . . . 0.761 * .. 1.000 * . 11.073) '. • . . •' I 1 000 * 1.000 * 0 213) + = 8.639 Total of 2 streams to confluence I Flow rates before confluence point .11.073 ' 0.213 . . . . . . . . . . Maximum flow rates at confiuerice'usingabóve data:' 11.212. . 8.639 . . .. . . . . . . . .• I Area . of streams before confluence:. 3.700 ". P0.160 .... . . -. Results of confluence:' . . . . .. . .. . I .. Total. flow rate . 11.212(CFS) •.. .. • . . .. Time of concentration = .. .12.483 mm. 'Effective-stream area after confluence =' 3.860(Ac.')- ++++++.++++++++++++++++++++:4++++++.++++++++++++.+++t+++++++++++++++++++:I: Process from-Point/Station 313.000 to Point/Station . 302.000 I 'PIPEFtW TRAVEL TIME (User specified size) Upstream point/station elevation = 298.67(.Ft.) . • I Downstream point/station elevation= , '294.00(Ft.) . Pipe length = '. 8.00(Ft.) . Manning's N = 0.013 . ,.-. No..of pipes.=.l Required pipe flow. = 11.212(CFS) . Given pipe size.= 24.00(In.) . 0, . .. . .. 1 . Calculated. individual pipe flow =. 11.212.(CFS) Normal flow'depth in pi 4.14(.In.) . ' • ': Flow top width inside pipe = 18.14 (In.) . . .. . .I Critical Depth =. . 14.42.(In..)' Pipe flow velocity = 30.98(Ft/s) . .• . . .. Travel time 'through pipe = 0.00 min..' .. . . Time. of concentration (TC). = 12.49. mm. I : ''-process from Point/Station . 302.000 to Point/Station . .302.000 **** CONFLUENCE OF 'MAIN STREAMS 'I . '' • The following' data inside Main Stream is listed.: In 'Main Stream number: 2 Stream flow area = 3.860 (Ac.) . • Runoff from. .this stream'= : 11.212.(CFS) -. : , •• I . Time.of'cOncentration =.12.49 mm. ' ' . 0 - • ' Rainfall intensity = 3..504(In/Hr) 0 , .. . . . • Summary of stream data:. I . Stream ,• Flow rate. ' TC - , , - .' Rainfall Intensity . . No.' (CFS) . • (mm).- ..-. . (In/Hr) . . I ' , 3.085 . ' ' • 0' , . • 5.794' '. 0 2 11.212 1249 3.504 I 1 Ik I I II ~ I I I Qinax(l) = 1•000 * 1.000 * 3.085) 000 * 0.4519 * 11.212) + = 8.226 . I i .Qmax(2) : .. 1 .• •. 0.605 * 1..000* 3.085) + . • ": •009 * 1.000 * 11.212) + = 13 078 . : I . . Total of 2 main, streams to confluence: . -. . Flow -'rates before confluence point: . .: . I 3.085 Maximum flow rates 11.212 . . at confluence using.above data: .. S • . 8.226 13.078. Area Of streams before confluence:. •' 1 0520 3.,.860 Results of confluence: Total flow rate = 13.078(CFS) . . . Time of concentration.'= 12.487 mm. : Effective stream area after cOnfluence = . 4.380(Ac.) Process from Point/Station 302.000 to Point/Station . 303.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 293.67 (Ft..). •. . Downstream point/station èlevation'= . 280.20(Ft.) . Pipe length = . 202.00(Ft) . Manning's N'=.0.013 . No. of pipes 1 Required .pipe flow =. 13.078(CFS) Given, pipe size= 24.00(In.)' Calculated individual pipe flow •= . 13.078(CFS).. . . Normal flow depth in pipe = : 7.72 (In.) . .' Flow top width inside pipe,= 22.42(In.) Critical Depth = 15.62(In.)' . •. Pipe flow, velocity . . 14.99(Ft/s). Travel time through pipe .= 0 22 mm Time of concentration (TC) = 12.71 mm. ++++++++++++++ ++ ++ + +++++ + ++++++++++++ +.+ ++++++ ............. + +++++++++++ Process from Point/Station., 303.000 to Point/Station. . 303.000 **** CONFLUENCE OF MAINSTREAMS **** ' • S. The following data inside .Main Stream is listed: In Main Stream number: 1 Stream flow area = . . 4.380(Ac.) .. .• .' . Runoff from this stream = ' 13.078(CFS) . Tiineof concentration= .12.71 mm. . Rainfall intensity . 3.464(In/Hr) . . . Program is now starting with Main Stream No. 2 . S ++++++++++++++++++++++++++++++++++++++-f++++++++++++++++++++++++++++ Process from Point/Station 330.000 to Point/Station 331.000 ****.INITIAL AREA EVALUATION .**** ... User specified 'C'.value of 0.900.given for subarea .•. Initial subarea flow distance = 295.0.0(Ft'.) . Highest elevation '305.80(Ft.) I Lowest elevation = 303.90(Ft..) . . Elevation difference = 1.90(Ft.)' . I . Time of concentration calculated by the urban areas overland flow method (App X-C) = 7.16 mm. TC = ,[l.8*(l.l-C)*distance.5)/(% slope(1/3)] TC= [1.'8*(1.1-0.9000)*(295.00.5)/( 0.64(1/3)]= 7.16 I . Rainfall intensity (I). = 5.016 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is .0 = 6.900 Subarea 'runoff = 1.941(CF9) Total initial stream area = 0.430(Ac.) 1 . Process from Point/Station 331.0.00 to Point/Station 332.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I ..Top of street segment elevation = . 303.900(Ft.) End of street segment elevation = 289.300(Ft.) . Length of street segment. = 375'.00O(Ft.) . Height of curb above gutter flówline = 6.0(In.) I.. Width of half street (curb to crown) ' = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = .0.087 ' I .Slope from grade break to crown (v/hz) = .0.020 Street flow is on (1] side(s). of the street Distance from curb to property line, = 10.000(Ft.). I Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) . . . . . . . Gutter hike from flowline= 2.000(In.)' Manning's N in gutter'= 0.0150. . •. I . Manning's N.from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.160(CFS) I Depth of flow = 0.293 (Ft.) . Average velocity = 4.425(Ft/s) . Streetflow hydraulics at midpoint, of street travel: Halfstreet flow width = 7.821(Ft.) Flow velocity = 4.42 (Ft/s) Travel time = 1.41 mm.' TC =' 8.57 .min. Adding area flow to street , . .. . .• I . User specified 'C' value of 0.900 given for subarea Rainfall intensity =' 4.466(In/Hr) for a . 50.0 year storm Runoff coefficient used .for sub-area, Rational method,Q=KCIA, C = 0.900 I. Subarea runoff = 2.171(CFS) for 0.540(Ac.) Total runoff - . 4.112(CFS) Total area = . . 0.97(Ac.) Street flow at end of street = ' 4.112(CFS) Half street flow at end of street = ' 4.112(CFS) I . Depth of flow =0.314 (Ft.) ' Average velocity = .. 4..613(Ft/s) . Flow width (from curb towards crown)= 8.881(Ft.) Process from Point/Station 332.000 to Point/Station 322.000 I PIPEFLOW TRAVEL TIME (User, specified size).**** Upstream point/station elevation = . 281.19(Ft.) I Downstream point/station elevation = 280.75'(Ft.) Pipe length • = 55.00(Ft.) Manning's N 0.013 No. of pipes = 1 Required pipe flow = 4.112(CFS) Given pipe size = 18 OO(In ) Calculated individual pipe flow 4.112(CFS) . I .NOrmal flow depth in pipe = '8'.33(In.)' . . Flow top width inside pipe = ' 17.,95(In.) Critical Depth =. 9.32'(In.) . ' .. . . . Pipe flow velocity = . . 5.14(Ft/s) I Travel time through pipe =. . 0.18 mm. Tune of concentration (TC) = 8.75 min. I Process from Point/Station 322.000 to Point/Station 322.000 l CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal, stream number 1 Stream flow area= 0.970(Ac.) . I Runoff from this stream = . 4.112(CFS)" . . Time of .concentration = 8.75 'mm. . .' . Rainfall intensity. = . 4.407(In/Hr) . . . Process from Point/Station . 320.000 to Point/Station 321.000 INITIAL AREA EVALUATION User specified. !C' value of 0.900 given for subarea I .Initial subarea flow distance •= 200.00(Ft.) . Highest elevation = 305.50(Ft.) Lowest elevation = 303.90(Ft'.) I Elevation difference = 1.60(Ft.) . Time of concentration-calculated by the urban areas' Overland flow method (App X-C) = 5.48 mm. TC = [l.8*(1.1-C)*distãnce.5)/(% slope(1/3)]. I . TC = (1.8*(1.1-0.9000)*'(200.00.5)/( 0.80(1/3)]= " 5.48 Rainfall intensity (I) = 5.957 for a .. 50.0 year storm Effective runoff coefficient used 'for area (Q=KCIA) is C 0.9.00 I . Subarea 'runoff = '1.555(CFS) 'Total' initial stream area = ' 0.290(Ac.) I 'Process from Point/Station .321.000 to Point/Station ' 322.000 I **** STREET FLOW TRAVEL TIME + SUBAREA.'FLOW ADDITION **** Top of street segment elevation = . 303.900(Ft.) End of street segment elevation = .' 289.700(Ft.). I Length of street segment = 375.000(Ft.) ' Height of curb above gutter flowline. = 6.0(In.) Width of half street'(curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) I' Slope from gutter to grade break '(v/hz) = 0087 Slope from grade break to crown (v/hz) = 0.020 ' Street flow is on [1] side(s) of the street' I " Distance from curb.to property line =.. 10.000(Ft..) ' 'Slope from curb 'to property line (v/hz') = 0.020 Gutter width .=1.500(Ft..) I Gutter hike from f.lOwline Manning's N in gutter'= 0.0150 Manning's ,N from -gutter to grade break =0.0150 Manning's N from grade break'to crown = 0.0150' Estimated man flow rate at midpoint of street = 3 002(CFS) Depth of flow = 0.290(Ft..) .. ' . . Average velocity =' 4.340(Ft/s) . '• * Streetfiow hydraulics at midpoint of street travel: Halfstreet 'flow, width = .7. 677,(Ft..) Flow velocity = 4.34 (Ft/s) ' Travel time..' 1.44 mm. TC =. 6.92 min. . . .Adding area flow to street.. User specified 'C' value of 0.900 given for subarea Rainfall intensity. 5.125(In/Hr) for' a ' 50.0 year storm Runoff coefficient used for subarea, Rational method,.Q=KcIA., C = 0.900 Subarea.runoff.= . .2.491(CFS) for .0.540(Ac.) Total runoff ' 4.046(CFS)' Total area = . 0.83(Ac.) Street flow at end of street ' 4.046(CFS) Half streetfiowat end of street Depth of flow = 0.,314(Ft.) Average velocity,= ' 4.548'(Ft/s) ,Flow -Width (from curb towards .crown 8.872 (Ft.). Process- from Point/Station ' '322.000 to 'Point/Station ' . 322.000 **** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 2 in normal stream number 2' Stream flow area = ' . '0'.830(Ac.) Runoff, from this stream 4.046'(CFS) Time of concentration ,=' 692 mm. Rain•fall.'intensity = 5.125,(In/Hr) . , ' •. Summary' of stream data: Stream Flow rate '' TC ' . ' , 'Rainfall' Intensity No. (CFS) : (j.i), . . (In/Hr) '. 1 4.112 8.75 , 4.407 . .. '2 , .4.046 '' ' 6.92" . .. . .' ' 5.125 ' Qmax'(l) 1.000 * 1.000"* :' 4.112)+ 0.860 * , .1.000 * .. 4.046)- + = . ' . 7.591 'Qmax(2)7. 1.000 * , 0.791 * , 4.112) 1.000 .* 1 000 * .4 .040 + = 7.'300 Total of 2', streams to confluence:: Flow' rates before confluence point: 4.112 . ' 4.046. Maximum flow rates at confluence using above data: 7.591 - '. 7300 Area of, streams before confluence: .. . 0.970 . ' - 0.830' Results of confluence:..*. Total flow rate = ' 7.591(CFS)' . •' ' . ' ' ' Time of concentration = . 8.751mm. - Effective stream area after confluence = . 1.800(Ac.) . Process from 'Point/Station 322.000't6 Point/Station ' 303.000 *** PIPEFLOW TRAVEL TIME (User specified size). **** . I I I I I I I • Upstream point/station elevation= 280.57(Ft.), •• Downstream point/station elevation = 280 20(Ft ) • .• Pipe length = 46.00(Ft.) Manning's N = 0.013 No. of.pipes=l Required pipe flow = 7.591(CFS) I Given pipe size = 18 00(In ) Calculated individual pipe flow = 7 591(CFS) Normal flow depth inpipe= 12.23(In.) • • Flow top width inside pipe = 16 80(In ) I Critical Depth = 12 81(In ) Pipe flow velocity = 5 93(Ft/s) Travel time through pipe = 0.13 mm Time of concentration (TC) = 8.88 min. I Process from Point/Station 303.000 to Point/Station 303.000 ****,CONFLUENCE OF MAIN. STREAMS **** I The following data inside Main Stream is listed: In Main Stream number :_2 Stream flow area = 1 800(Ac ) I Runoff from this stream = 7 591(CFS) Time of concentration = 8.88 min. Rainfall intensity = 4 366(In/Hr) Summary of stream data I Stream Flow rate TC Rainfall Intensity No (CFS) (mm) (In/Hr) 1 13078 1271 3,464 :2 7.59.1 8.88 4.366 I Qmax(1) = 1.000 * 1 000 * 13.078).+.. 0.793 * 1 000 * 7 591) + = 19 101 I Qmax(2) = 1.000 * 0.699, * '13.078). + 1.000 * 1.000 * 7.591) + = 16.726 I Total of 2 main streams to confluence Flow rates before confluence point -. 13.078 • • 7.591 • •• • • : I Maximum flow rates at confluence using above data 19.101 16.726 Area of streams before confluence 1 4.380 1.800 Results of confluence I.. Total flow rate = 19.101(CFS) • . :Time of concentration= • . 12.712 mm. Effective stream area after confluence = 6 180(Ac ) I +++++.+++++++++++++++++++++++++++++.+++++++++++++++++++++++++++++++++++. Process from Point/Station 303.000 to Point/Station 364.000 1 PIPEFLOWTRAVEL TIME (User specified size). **.**. • • Upstream point/station elevation = 279 87(Ft ) I H I I I I : • • APPENDIX V: I I Using 100-Year Peak Discharge Calculations Under Developed Conditions The Computenzed Rationale Method I I I. • H. I i 8 i. H .. .. San Diego County Rational Hydrology Program CivilCADD/CivilDESIGN Engineering Software, (C) 1996 Version .2.3 Rational method hydrology program based on . San Diego County Flood Control Division 1985 hydrOlogy manual. Rational Hydrology Study . Date 1/31/91 EL CAMINO REAL/PALOMAR AIRPORT ROAD 100 AREA BASIN STUDY . . . . FILENAME ELCAN1 L 200,4 JOB# 10365 2/1/91 --------------------------------------------------- ********* Hydrology Study Control Information **** Rational hydrology study storm event year is 100.0 . Map data precipitation entered :- 6 hour, precipitation(inches) = 2.750 24 hour precipitation(inches) 4.600 Adjusted '6 ,hour precipitation (inches) = 2.750 P6/P24 = 59.81 . . . .• . . . . . . . . :San Diego hydrology manua1'C' values used. . Runoff coefficients by rational method ************** I N P U T D A T A L IS T I N G ************ Element Capacity Space Remaining = 332 Element Points and Process used between Points Number Upstream Downstream Process 1 . . . - 100. 000 . 101.000 - Initial Area 2 101.000 . . 102.000 . Street Flow + Subarea 3 102.000 . 102.000 Confluence 4 130.000 131.000* Initial Area 5 131.000 . 102.000 . Street Flow + Subarea 6 . l02.000. 102.000 Confluence 7 .• . 102.000 . 103.000 PipeflowTime(user inp) 8 103.000 103.000 . Confluence- . 9 . 110.000 111.000 .. . Initial Area 10 111.000 103.000 StreetFlow+ Subarea 11 . . 103.000 103.000 Confluende 12 120.000 . 121.000 . 5 Initial Area . 5 13 . 121.000 103.000 . Street Flow + Subáreá 14 • . . . 103.000 . 103.000 Confluence 15 103.000 . 104.000 . Pipeflow Time(user inp) 16 . 104.000 104.000 .. Main Stream Confluence 17 150.000 151.000 Initial Area 18 . . 151.000 ., 152.000 Street Flow + Subarea S. 19 .152.000 .. 152.000 Main StreamConfluence. 20 .. 140.000 .' 141.000 . Initial Area . 21 . . 141.000 . .142.000 . . Street Flow .+ Subarea 22 142.00.0 • . 152.000 . Pipeflow Time(user inp) 23 . 152.000 5 152.000 Main Stream Confluence 24 152.000 . 153.000. Pipeflow Time(user inp) 25 . 153.000 . 153.000 . Main Stream Confluence 26 160 000 161 000 Initial Area 27 • - 161.000 S • 173.000 . 'Street -Flow +- Subarea 1 28 173 000 173 000 Confluence - 29 . 170.000 . 171.000 Initial Area .171.000 ., 12.000 Street Flow+ Subarea I 30 31 172.000 173.000 PipefIow Tiine(user inp) 32 . . 173.000 . 173.000 . Confluence , 33 .173.000 .i74.00O . Pipeflow Time(usèr inp) 1 .34 .. .' 174.000 . , . 175.000 - . Pipeflow Tinie(user in 35 . 175.000......... 175.000 -. .' Ma.in"Stream Confluence. End of listing.................. 1 I H I I I I I 44 I I I I I I I I I San Diego County Rational Hydrology Program CivilCADD/CivilDESIGN Engineering Software, (C) 1990 Version Z.3 Rational-method hydrology -program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date.: 1/31/91 ---------------------- ------------------------------ EL CANINO REAL/PALOMAR AIRPORT ROAD 100 AREA BASIN STUDY FILENAME: ELCAM1 . . . ... . . L 200,4 JOB# 10365 2/1/91 ********* Hydrology Study Control Information-**.******** ---------------------- Rational hydrology study storm event year is 100.0 ', Map data precipitation entered: . 6 hour, precipitation(inches). = 2.750 24-hour precipitation(inches) = 4.600 Adjusted 6 hour precipitation (inches) = 2.750 P6/P24 = 59.8% San Diego hydrology manuàl'C' values used Runoff coefficients by rational method Process from.Point/Station 100.000 to Point/Station 101.000 .**** INITIAL AREA EVALUATION User specified 'C' value, of .0.690 given-for subarea Initial subarea flow distance = 300 00(Ft ) Highest elevation =' 318.30(Ft.) Lowest, elevation = 316.55(Ft.). Elevation difference - . l.75(Ft.) Time of concentration balculated by the urban -. areas overland flow .method (App.X-C) =' 15.30 mini TC .[1.8*(1.1-C)*distance.5)/(% s1ope(1/.3)) -- TC.=.[1.8*(l.l_0.6900)*(300.00.5)/( 0.58(1/3)]= 15.30. Rainfall intensity (I) = . 3.522 for -a lOO•o year storm Effective runoff coefficient used for area (Q=KCIA) is C = .0.690 - .Subarea-runoff = .2.187(CFs) . .. . Total initial stream area = I •' 0.900(Ac.) Process from Point/Station . 101.000 to Point/Station - - 102.000 **** STREET FLOW TRAVEL TIME + . SUBAREA FLOW. ADDITION Top of street segment. elevation = - 316.550 (Ft.) - End of street segment elevation = 311.350.(Ft.) Length of street-segment = '630.000(Ft.) Height of curb above gutter flowline.-= 6.0(In.) Width of half street (curb to crown) .= 53.000(Ft) . Distance from crown to crossfall grade .break = 51.500('Ft.) Slope from gutter to grade break (v/hz.) = . 0.087 Slope frOm grade break to crown (v/hz) = 0.020 - - Street flow is on [1) side(s) of the street I . I 1 I I I I I 1 I I Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 I . Gutter.width = 1.500(Ft.) Gutter hike from flowline = 2.000(.m.) 0 Manning's N in gutter= 0.0150 . Manning's N from gutter to grade break = 0.0150 I . Manning's N from grade break to crown = . 0.0150 Estimated mean flow rate at midpoint of.street = 3.901(CFS) Depth.of flow = 0.382(Ft,.) . I .Average velocity= 2.429(Ft/s) . . Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width .= .12.261(Ft.) I Flow velocity = 2.43(Ft/s) Travel time = . 4.32 mm. TC = 19.62 mm. Adding area flow to street User specified 'C' value of 0.760 given for subarea I .Rainfall intensity = 3.000(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.760 Subarea runoff = . .3.215(CFS) for 1.410(Ac.) I. . Total runoff =. 5.402(CFS) Total area = 2.31(Ac.) Street flow at end of street = 5.402(CFS) Half street flow at end of street = 5.402(CFS) Depth of flow = 0.418(.Ft.) .. I Average velocity = 2.598(Ft/s) Flow width (from curb towards crown)= 14.060 (Ft.). . I Process from Point/Station . 102.000 to Point/Station 102.000 I ****,CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream. number 1 Stream flow area = 2.310 (Ac.) I .Runoff from this stream = . 5.402(CFS) Time of concentration = 19.62 min. Rainfall intensity = . . 3.000(In/Hr) . Process from Point/Station . 130.000 to Point/Station 131.000 ** INITIAL AREA EVALUATION'**** . . . User specified 'C' value of 0.780 given for subarea I .Initial, subarea flow distance . = 200.00(Ft.) Highest elevation = 314.60(Ft.) Lowest elevation = 313.90(Ft.) I Elevation difference = 0.70(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.56 mm. TC = (1.8*(]..1_C)*distance.5)/(% slope(1/3)) I . TC= [.1.8*(1.1-0.7800)*(200.00.5)/( 0.35(1/3))= 11.56 Rainfall intensity (I) = 4.220 for 100.0 year storm Effective runoff coefficient used for area. (Q=KCIA) is C = 0.780 I .Subarea runoff = . ]. 383(CFS) . Total initial stream area = . 0.420(Ac.) I . Process from Point/Station- 131.000 to Point/Station 102.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I . 0 .1 1 'I 1 I I H I Li V. Top of street segment elevation = 313 900(Ft ) End of street segment elevation = 311 350(Ft ) Length of street segment = 340 000(Ft ) Height of curb above gutter flowline = 6 0(In ) Width of half street (curb to crown) = 53..000(Ft.). Distance from crown to. crossfall grade break 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10 000(Ft ) Slope .from -curb to property line (v/hz) = 0.020 Gutter width = 1 500(Ft ) Gutter hike from flowline = 2 000(In ) Manning's N in gutter. = 0.0150 Manning's N from gutter to grade break ,=. 0.0150 Manning's N from grade break to crown =: 0.0150 Estimated mean flow rate at midpoint of street ,= 2.716(CFS) Depth of flow = 0 • 351 (Ft.) . Average velocity = 2.178(Ft/s) . 0 Streetf low hydraulics at midpoint of street travel: Halfstreet flow width =. 10.698.(Ft.) . . Flow'velocity =. 2.18(Ft/s) . . :. Travel time 2.60 mm. . TC = . 14.16 mm. Adding area flow to street . .. . User specified 'C' value of. 0.780 given for subarea Rainfall intensity = . 3.702(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area,. Rational method,Q=KCIA, C = 0.780 Subarea runoff = . 2.339(CFS) for 0.810(Ac.) Total runoff = 3 722(CFS) Total area - 1 23(Ac ) Street flow at end of street = 3 722(CFS) Half street flow at end of street=. 3..722(CFS) Depth of flow = 0 382(Ft ) Average velocity = 2..316(Ft/s) . . . . . Flow width (from curb towards crown)= 12 266(Ft ) +++++++++++++++++++++++++++++++++++++++++++±.+++++++++++++++++++++++++ Process from Point/Station - . 102.000 to .Point/Station . 102.000 **** CONFLUENCE OFMINORSTREAMS .- Along Main Stream number 1 in normal stream number 2 Stream flow area = 1.230(Ac.) Runoff from this stream = 0 3.722(CFS) Time of concentration— 14.16 mm. . 0 Rainfall intensity= 0 3.702(In/Hr). Summary of stream data Stream Flow rate TC Rainfall Intensity No (CFS) (mm) (In/Hr) 1- . 5.402 . 19.62 .- 0• 3.000 - 2 3722 14..16 3.702 I Qmax(l) = 1•000 * bOO -.. 5.402) + 0 Qmax(2) 0.810 * = .i.QOO * .3.722) + = - .- 8.417 1 000 * 0 722 * 5."402) + 000 * 1.000 *.. 3.722) + = - 7.620 I I .. Total of streams to àonfluence: .. - . 1 . Flow rates before confluence point: . . 5402. •. 3.722 . .. . - .• . - Maximum flow rates at confluence using. above data:. 8.417 ., 7.620. . .• 0 . . 1 .Area f streams before conflu o ence: .. . 2.310 1.230. . . . Results of conflUence: . . . . I Total flow rate = 8 417(CFS) Time of concentration = 19 621 mm Effective streamarea..afterconfluence.=. 3.540(Ac.) Process from Point/Station . 102.000 to Point/Station . 103.000 1 PIPEFLOW TRAVEL TIME (User specified size) •****; -Upstream point/station elevation = 308.50(Ft.) I. : Downstream point/station = Pipe length 104.00(.Ft.)- Manning's .N = 0.013. . No. of pipes.= 1 Required pipe flow .= 8.417(CFS). .: Given pipe size = . -24..00(In.). . . I . Calculated. individual pipe flow - 8.4.17(CFs). .. . Normaiflow depth in pipe. =, . 10.34(In.) . . . . . .. Flow top width inside pipe =- 23.77 (In.) . . .I Critical Depth 12.39(Ifl.)y . . . . .• Pipe flow. velocity = 6.50(Ft/s).. . . . .. . •• Travel time through pipe= . 0.27 min.. . - . . Time of concentration (TC) = 19 89 mm I ... Process from Point/Station 103.000 to Point/StatiOn -103.000 **** CONFLUENCE OF-MINOR STREAMS 'I... . Along Main Stream number: 1 in, normal stream number 1 Stream flow, area = . ..3.540(Ac.) . Runoff from this stream = .. 8.417(CFS) Timéof concentration .= 19.89 mm. I Rainfall intensity = 2974(In/Hr) I Process from- Point/Station .- . 110.000 to Point/Station 111.000 **** INITIAL AREA EVALUATION User specified 'C'. value of .Q.900 given for subarea Initial subarea flow distance = 300.00(Ft.) Highest elevation =. 318.30(Ft.) • .. . . . I . Lowest elevation = 316.55(Ft.').. .. . . .. Elevation difference = 1;75(Ft-.) . 0 Time of concentration calculated by the urban.'. • . .• .I . areas overland flow method -(App X-C.) = 7.46mm. .. . . TC = (1.8*(1.1-C)*distance.5)/(% slope(1/3)] TC = [1.8*(1.1.0.9000)*(300.60.5)/( 0.58(l/3)]=: 7.46 Rainfall intensity (.1) = :5.596 for a 100.0 year storm. 1 Effective runoff coefficient used for area (Q=KCIA) isC= 0.900 Subarea runoff = - . 2.166(CFS) • . -• • Total initial stream areá,=-.. -. 0.430(Ac.) - I . . •0,' . ..•:-- - •:• : U fl I I I I I D LI 1 I Process from Point/Station 111.000 to Point/Station 103.000 **** STREET FLOW TRAVEL-TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 316 550(Ft ) End of street segment elevation = 311.350 (Ft.). Length of street segment =. 630.000(Ft.) Height ofcurb above gutter' .flowline' ,=' '6'.0(In'.) Width of half street -(curb to crown) = 53.000(Ft.) Distance from crown.to ôrossfall grade'break 51.500(Ft.) Slope from gutter: to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) ,= 0.020.. Street flow is on (1.) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from 'curb to property line (v/hz). = 0.020. Gutter width— 1.500(Ft.). Gutter hike from flowline = 2.000(In.)1- Manning's N in gutter =' 0.0150 '• Manning's N from gutter, to grade break = 0.0150 ' Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpolnt'ofstreet = '4.457(CFS) Depth of flow = 0.396 (Ft.) . .• . Average velocity = 2.496(Ft/s) '. Streetflow hydraulics at midpoint of street travel Halfstreet flow width = . 12.975(Ft.) . 0 Flow velocity = 2.50(Ft/s) . . Travel time .4.21 mm. TC = 11.67 min. Adding arèa'f low to street User specified 'C' value Of 0.900 given for subarea Rainfall intensity = . 4.194(In/Hr). for a '100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff.= 3.435(CFS)'for 0.910(Ac'.) Total runoff = 5.601(CFS) Total area =' 1.34(Ac.). Street flOw at end of street = '. 5.6.01(CFS) Half street flow at end of street =. 5.601.(CFS) Depth of flow = :0.422 (Ft..) • " - . ... . , Average velocity = • 2.6'18(Ft/s) . . • : • • •. Flow width (from curb towards crown)=. 14.272(Ft.) • Process from Point/Station 103.00.0 to Point/Station . 103.000 ****. CONFLUENCE OF MINOR STREAMS ***, Along Main. Stream number: 1 in normal stream number 2 Stream flow area = . • 1.340.(Ac.) Runoff from this stream = 5.601(CFS) ' • ' : : • • Time of concentration = 11 67 min. Rainfall intensity = 4.194 (In/Hr) + ++++ +++++ +++++++ ++++++++ ++++± +++++++++++ + ++++++ ++ ++++ ++ +++++++ ++++++ + Process from Point/Station . 120.000 to Point/Station. ' 121.000 **** INITIAL AREA EVALUATION .**** . • , . • . . User specified 'C' value, of 0.900'given for subarea Initial subarea flow distance 200.00(Ft.) Highest elevation 314.60.(Ft.) . S ' S , • ' I I 1 Lowest elevation '313.90(Ft.) Elevation difference '= 0.70(Ft.) Time of concentration calculated by the urban areas overland flow method (A X-C) ' 7.22 mm. TC = '(l.8*(l.l-C)*distance.5)/(%s1ope(l/3)) TC = [1.8*(l.1_0.9000)*(200.00.5)/( 0.35(1/3)]=. 7.22 Rainfall intensity (I) = 5.715 for, a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 1..492(CFS) Total initial stream area = 0.290 (Ac.) ++ ++++±+ + ++ +++ + + + +++++ +++++++++++++++++++++++ ++++++++++ ++ Process from Point/Station 121.000 to Point/Station 103.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment' elevation = 313.900(Ft.) End of street segment elevation = 311.350(Ft.)' Length of street segment = 340.000(Ft.) Height of curb above gutter,fiowline = 6.0(In.) Width of half street (curb to crown) Distance from crown to crossfall grade break, = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = ' 0.020 Street flow is on (1) side(s) of the street Distance from.curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = ' 2.000(In.) 'Manning's N in gutter = 0.0150' ' Manning's N from gutter'to grade break.= 0.015 ,0 Manning's N from grade ,break 'to crown = 0. 0150 Estimated mean flow rate 'at midpoint of street = ' 2.152(CFS) Depth of flow = 0.352 (Ft.) Average velocity ' 2.183(Ft/s) Streetfiow hydraulics at midpoint of.street travel: Halfstreet flow width =' 10.761(Ft..) Flow velocity = 2.18(Ft/s) Travel time = 2.60 mm. , TC .= .9.82 mm. Adding area flow to.street User specified 'C' value of 0.900 given for subarea Rainfall intensity = , 4.688(In/Hr), for a 100.0 year storm Runoff coefficient used for sub-area', Rational-method,Q=KCIA, C = 0.900 Subarea runoff = , 2.067(CFS) for 0.490(Ac,) Total runoff = , '3.559(CFS) Total area = 0.78(Ac.)' Street flow at end of street= 3.559'(CFS) ' Half street flow at end of street = .3.559(CFS) Depth of flow = 0.377 (Ft.) Average velocity = 2.295(Ft/s) Flow width (from, curb towards crown)= .12.034(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station .. 103.000 to Point/Station 103.000 **** CONFLUENCE 'OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number '3 Stream flow area = 0.780(Ac.)' Runoff from. this stream,= ', 3.559(CFS) ' Time .of concentration = 9.82 mm. Rainfal'l.intensity = . 4.688(In/Hr) Summary of stream data: . ... S Stream . Flow rate TC ' .. Rainfall Intensity No (CFS) (min) (In/Hr) .1 8.417 19.89 . . . .2.974 2 5.601 11.67 4.194 . S .3 3,559 9.82 . 4.688 5 •' . S Qrnax(l) ''000 * 1.0.00*..: '8.417)'+' 0.709 * 1.0001.* .5.601) +. 0.634 *. 1.000 * .3.559) +=' 14.646. .. Qmax(2) = . . . .• ' : 1.000 * 0.587 * . 8.'417).+ 1.000 * l.000 .. 5.601)'+ S ' 5 •. . 0.895*' : 1.000 * . " 3.559) + = . 13.724 Qrnax(3) 1.000 * 0.494 * 8.417) + S *• '. 0.8.41.* .5.601) + 1.000 * 1.000 * . ' 3.559)5 + = 12.428 . S Total of 3 streams to cOnfluence: S , , • S •. , S •" Flow rates before ëonfluence point: 8.417 5.601 . ' 5 3.559 Maximum flow rates at confluence using abovedatà.: 14.6.46 . 13.724 ,. 12.428 S 5 Area of streams before confluenôe: 3.540. . 1.340 0.780 T . .. . S Results' of.confluence:' S , , S .' ,' ' •' Total flow-rate = 14.646(CFS) .• . S '. , , 5 Time of concentration =. ' 19.888 mm. , 5. Effective stream area after confluence = . 5.660(Ac.) Process from Point/Station S 103.000 to Point/Station , 104.000 PIPEFLOW TRAVEL TIME (User specified size) **** S Upstream point/station-elevation = 307.20(Ft.) '. S Downstreain'point/station elevation 307.00(Ft.) Pipe'length 15.00.(Ft.) Manning's N =0.013 No. of pipes =-1 Required pipe flow = . 14.646(CFS) Given pipe' size = ' 24.00(In.) . ' . S , S , •• ' Calculated individua1pipe flow .= 14.646(CFS.) Normal, flow depth in pipe.= . 12.84(In.) Flow top width inside pipe = ' 23.94(In.) . • :. Critical Depth = 16.56 (In.). ,: • . '• .' 5 Pipe flow 'velocity = 8.55 (Ft/s) Travel time through pipe .0.03 mm. Time.-of ôoncentration(TC) = 19.92 mm. ++++++++++++++++++++++++++++-+++++-H-+++++++++++++++4+++.++++++++++++++ 'Process from Point/Station S .104.000 to Point/Station 104.000. .**** CONFLUENCE OF MAIN STREAMS' ****' The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area =' ... 5.660(Ac.) - 0 Runoff from this stream = .-14.646(CFS) I . Time of concentration .'--. 19.92 min.. . Rainfall, intensity =" . 2.971(In/Hr)' . Summary of stream data: 1 Stream Flow rate . TC . Rainfall Intensity. No. ,.. .(CFS) . . (mm) ', '- . . (In/Hr) I 1 14.646 19.92 2.971 Qmax(l) .= . . . .. . •. . . I . .. 1.000 * 1:..000 * 14.646) + =' .14.646 Total of 1 main streams.to confluence:;. . Flow rates .bef.ore confluence point: • . . I .. 14.646 0• . . . •' .. Maximum flow rates at confluence using above data:. 14.646 . . '. . I .Area:'of streams before confluence: 5.660 •' . . . . . . . .. . . I. Results of confluence: . . .. - . . . 'Total,flow rate = . 14.,646(CFS) . . . Time of concentration = 19.917 mm.. . . . :. I Effective stream area after confluence = . 5.660(Aá.) I . Process from Point/Station . •150.000'to'Point/Statioñ . 151.000 INITIAL AREA EVALUATION I .User specified. 'C' value of 0.900 given for subarea . I Initial subarea flow distance = 367..00(Ft.) Highest elevation '= 395.20(Ft.) . . . 1 .Lowest elevation = 381.60(Ft.) Elevation difference = 13.60(Ft.) . '. . . . Time, of concentration calculated by the urban . . I .areas overland flow method (App X-C)- 4.46 mi. TC = (1.8*(1.1-C)*distanc,e.5)/(% slope(if3)] . .TC'= [1.8*(1.1-0..9'000)*(367..00..5)/(. 3.71'(1/3,)]= 4.46 Rainfall intensity (,I'). = 7.804' for a . 100.0 year storm I . Effective runoff coefficient used for, area (Q=KCIA) = 0.900 Subarea .runoff . 3.722(CFS) Total initial stream area = . ' 0.530(Ac.) . . I ........................ I + + + + + + +++ ++++++++ ++++ +++++++++++++.............. I. Process from-Point/Station ." 151.000 to' Point/Station 152.000 **** STREET FLOW TRAVEL TIME + 'SUBAREA FLOW ADDITION **** Top of street segment elevation =. 381.600(Ft.) .. . I End. of street segment. elevation =. 324O00(Ft.) Length of street-segment 1300.000(Ft.) .'. Height of curb above gutter flowline' .= 6.0(In.) . I Width of half street (curb, to crown) '= 53.000(Ft.) .. Distance from drown tocrossfall grade break = 51.500(Ft.) Slope.from gutter to grade break (v/hz) =. 0.087 Slope from grade break to cröwn"(v/hz) . ' 0.020 I Li I I I I I I I i I 1 I Li I I I I ' " Street-flow is on (1] Side(s) of the street' Distance from curb to property line = 10.00,0(Ft.) Slope 'from curb to property line' (v/hz) 0.020 ' Gutter width = 1.500(Ft.) 'Gutter hike from flowline=.'2.000(In.) Manning's N in gutter = 0.0150' ' Manning-Is N from gutter to grade break = 0.0150' ' •', Manning's N from grade break to crown = 0.0150 Estimated mean flow 'rate at midpoint of street = 10.324(CFS) Depth..of flow= 0.396(Ft.) Average' velocity= 5.782(Ft/s) ' • ' Streetflow hydraulics at midpoint of,street travel': ' Halfstré'et flow width = 12.973(Ft.) Flow velocity = 5.78(Ft/s)," Travel time = 3.75 mm TC = 8.20-min. Adding,-area flow,to street User specified 'C' value of 0.900 given for subarea Rainfall intensity = ' ' 5.265(In/Hr) for'a: 100.0 year storm Runoff coefficient used -for sub-area, Rational method 1 Q=KCIA, C 0.90O Subarea runoff = ' 8,.'908(CFS) for . 1.880(Ac.) Total runoff =' 12.630(CFS) Total area =', 2.41(Ac.) Street flow at end of'stréet=. 12.630(CFS). ,• Half street flow at end of street , 12.630(CFS) ' Depth of flow = , 0.419(Ft.-) Average velocity 6.031(Ft/s) Flow width (from curb towards crown,)= 14..113 (Ft-.-) +++ ++ ++++ + :+ + +++:H+ + +++++++-H+++ +++ +++++++++ +++++++++++ + ++ Process from Point/Station 152.000 to Point/Station ' 152.000 **** 'CONFLUENCE OF MAIN STREAMS'**** The following 'data inside Main Stream is listed: In Main' Stream number:, 1 Stream .flow area =' 2.410 (Ac..) Runoff from this stream = 12.630(cFS), Time of concentration = 8 20 mm Rainfallintensity = ' 5.265(In/Hr)' Program is now starting with Main Stream No .-2 5 , Process from Point/Station 140.000 to Point/Station 141.000 ****-INITIAL AREA EVALUATION User specified "C' value of 0.900 given for subarea ' 5 initial subarea flow distance ,=.' 387.00(Ft.) 0 Highéstelevation =0 387.40(Ft.), ' 0, • Lowest elevation = 375.10(Ft.) Elevation difference = 12.30(Ft.) Time of concentration calculated by' the urban' areas overland flow method (App X-C) = • 4.82 mm'. TC = (1.8*(1.1-C)*distanàe.5)/(% slope-(1/3)] 0 ' , 'TC = [1.8*'(1.1-0.9000)*(387.00'.5)/( 3.18(1/3).)= 4.82 Rainfall intensity (I) = 7.422 'for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = ' 3.741(CFS) ' • ' ' ' • Total initial stream area .=, 0 560Ac ) Process from Point/Station . 141.000 to Point/Station 142.000 I **** STREET FLOW TRAVEL TIME. + SUBAREA FLOW ADDITION **** Top of street segment elevation '= 375.100(Ft.) I . End of street segment elevation ,= 324.000(Ft.) Length of street segment = 1100.000(Ft.) . . Height of curb above gutter flowline . .= 6.0 (In.) I .Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft..) Slope from gutter to grade break (v/hz) = 0.087 Slope .from grade break to crown (v/hz) = 0.020 I .Street flow is on (1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb'to property line (v/hz) = 0.020 I . . Gutter width = 1..500(Ft.) Gutter hike from flowliné = 2.000(In.) . Manning's N in gutter = 0.0150 . Manning's N from gutter to grade break - 0.0150. I . Manning's Nfrom grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 10.020(CFS) Depth of flow = 0.390(Ft.) •. I Average velocity = 5.856(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 12.683(Ft.) I Flow velocity = 5.86(Ft/s) Travel time P3.13 mm. . TC = 7.95 mm. Adding area flow to street . . User specified 'C' value of 0.900 given for subarea I . Rainfall intensity =5.373(In/Hr) for -a* 100.0 year storm Runoff coefficient used-for sub-area, Rational inethod,Q=KCIA, C = 0.900 Subarea runoff = 9.092(CFS) for 1.880(Ac.) I . Total runoff = 12.833(CFS) . Total area .= . 2.44(Ac) Street flow at end of street = 12.833(CFS) Half street flow at end.of street= 12.833(CFS) . Depth of.flow = 0.418(Ft.) I .Average velocity = 6.165(Ft/s) . Flow width (from curb towards crown)= 14.068(Ft.) I Process from Point/Station. .142.000 to Point/Station 152.000 PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station, elevation = . 31.6.05(Ft..) Downstream point/station elevatiOn = 314.14(Ft.) I Pipe length = 108.00 (Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = . 12.833(CFS) Given pipe size = . 18.00(In.) . . I .Calculated individual pipe flow = 12.833(CFS) Normal flow depth in pipe 13.59(In.) . Flow top width insidepipe = . 15.48 (In.) . . . I . Critical Depth 16.14 (In.) . . Pipe flow velocity = 8.97(Ft/s) . . Travel time through pipe = 0.20 mm.. .. .. Time of concentration (TC) = 8.15 mm. I . ... .. +++ ++++++++++ ++ + ++++++++ + + ++ ++++ ++++++ ++++++++++ ++++++ ++++++++++++ Process from Point/Station 152.000 to Point/Station . 152.000 **** CONFLUENCE OF 'MAIN STREAMS -***'* . 0 I The following data inside;Maiñ Stream is listed: . In Main Stream number:. 2 . . - . Stream flow.area = .2.440(Ac.) I Runoff from this streain'=' 12.833(CFS) . 0 Time of concentration = 8.1.5 mm. . . Rainfall. intensity '=" . 5.:288(In/Hr) I Summary of stream data Stream Flow rate TC Rainfall Intensity No. (CFS). ' (mm) . (In/Hr) •'• I . i 12.630 .8.20 . '' 5.26 I 2' . 12.833 8.15 .". . 5.288 Qmax(1) = ' .: . . - . .;• . 0 1.000 * 1.000 *, '. 12.630) + . 0.996 *'. . 1.000 * .12.833) ± = 25.406 I .. Qmax(2) .-1.000 * 0.993 *: 12.630) + 1.000 * 1.000* 12.833) + = . 25.377 Total of 2 main streams to confluence: . . . Flow rates before confluence point: . . . 12.630 12.833 ,-. . . . . . .. I . Maximum flow rates at confluence using above data: .. . 25.406 25.377 --.- Area of streams -.before confluence:, I 2.410 2440 I.. Results of confluence: . . S.. . . . . . Total.flow rate = , 25.406(CFS) . . .', ' •• . Time of concentration = • '8.204mm. Effective stream area after. confluence = 4.850 (Ac;) I + ++++ +.+ + ++ ++++ + + +++++++ +++++ ++++ +++++++ + +.............................. .I. Process, from Point/Station 152.000 to Point/Station 153.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = •319.00(Ft.) 0 0 Downstream point/statiOn elevation = 314'.00(Ft.) . 0 'Pipe length = . -100.00(Ft.) Manning's N =.0.013 . No. of pipes = 1 Required'pipe flow' = ,, 25.40'6(CFS) I S Given pipe size = '24.00(In.): Calculated individual pipe flow = 25.406(CFS) 'Normal flow depth in pipe = 12.04(In.) . ' ' ' '•O' Flow top width inside pipe= 24.00(In.) Critical Depth = •21.26(In.) Pipe flow velocity = - ••. 16.12(Ft/s) Travel' time thrOugh' pipe' = • 0.10 mm. ' I . Time of concentration (TC) = .. • 8.31 mm. I .......... ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 153.000 to 'Point/Station, 153.000 **** CONFLUENCE OF MAIN STREAMS .**** ' •'. ' - • • '• ' ' 1 - • 0 •• • • 0 • :, •," ,, .: • •_;0 I The following data inside Main -Stream islisted: In Main Stream number 1 I ' , Stream flow area = ' 4'.850(Ac.) Runoff from this. stream 25. 406(CFS) Time-of concentration = '. 8.31 mm. ' Rainfall intensity *=, 5 222 (In/Hr) Summary of stream data Stream 'Flow rate TC ' - 'Rainfall Intensity,' No (CFS) (mm) (In/Hr) '1 25.406 8.31 ' 5.222 ' '1 Qmax(l) 1.000 * 25.406) + ' ' 25.406 I , ' Total of 1 main streams to confluence: Flow rates 'before confluence point: 25.406 I ' Maximum flow 'rates 'at confluence Using abOve' data: 25.406 Area of streams before confluence: i 4 .850 Results of confluence Total flow rate = 25.406(CFS) Time of concentration= , '8.307 mm. Effective stream area after confluence = '; 4.850(Ac.).. Process from Point/Station ... 160.000 to Point/Station .161.000 I " ****--INITIAL AREA EVALUATION User specified 'C" value of 0.900 given for subarea , I ' Initial subarea flow -distance '.= 250.00(Ft'.)' Highest elevation 323.90(Ft.). ' '•''' ., , , , Lowest elevation ,=• 310.50(Ft.). I '. Elevation difference = ' '13.40(Ft.') Time of concentration calculated by the urban areas overland' flow method (App X-C) =- 3.,25 mm., -, TC = (1.8*(1.1-C)*distan'ce.5)/(% slope (I/3)] I . TC ='[1.8*(1.1_0.9000)*(250'.00,.5)/( 5.36(1/3)]= 3.25 ' Rainfall intensity (I)'= '9.561 for a 100.0 year storm Effective runoff coefficient used for, area (Q=KCIA).. is C '= 0.900 Subarea"runoff = 3.098(CFS') I Total initial stream area = , , .' ' 0.360(Ac.) * ' I , Process from Point/Station ''H 161.000 to Point/Station 173.00.0 **** STREET FLOW TRAVEL TIME + SUBAREA 'FLOW ADDITION Top of street 'segment elevation = ' 310.500(Ft.) * End of street segment elevation = . 285.200(Ft.) I , 'Length of street segment ' = '530.000(Ft.) Height of curb above, gutter flowline. 'Width of half street -(curb to crown) ' = ' 53.000(Ft.') ' * Distance ,from crown-to crossfail,grade break = 51.500(7t.) . : Slope from gutter to'grade break (v/hz) = 0.087 . Slope from grade break to crown (v/hz) = 0.020 I Street flow is on [1] side(s) of the street " Distance from curb,to property line = 10.000(Ft.). . ': •' ' Slope from curb to property line',(v/hz) .= 0.020 Gutter. width = I.500(Ft.) ., . . . .I Gutter hike from flowline = 2.000(In.) .. '. . •' Manning's' N in'gutter..= 0.0150 Manning's N from gutter-to grade, break' =. 0.0150 . .' . '• . Manning's N from grade break.to crown =. 0.0150 Estimated mean 'flow rate'at midpoint of street = ' 7.401.(cFS) .Depth of flow = 0.358 (Ft..) . . Average velocity: 5.575.(Ft/s) I Streetfiow hydraulics at midpoint of' 'streettravel: '. Halfstreet flow width = 11.068(Ft.) " .. . Flow velocity. = . 5.58(Ft/s). •' I' . Travel'.time = ' 1.58min, TC = 4.84 mm. Adding 'area flow to street. • ' . User 'specified 'C' value Of 0.900 given .for subarea ' Rainfall intensity = 7."402(In/Hr) 'for a . 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, 'C = 0.900 Subarea runoff = ' ' 6.662(CFS) for ' 1.000(Ac) "Total runoff = ' :9.760(CFS) Total area = ' ' 1.36(Ac.,) Street flow at end' of street = . 9.760(CFS) Half street flow at end of.street = ' 9.760(CFS)' Depth of flow 0.386(Ft.) Average velocity = 5.888(Ft/s) I . Flow width (from curb towards crown)= •12.47.0(Ft.)' I ' 'Process from Point/Station173.000 to Point/Station . . 173.000 **** CONFLUENCE 'OF MINOR STREAMS I .. Along Main Stream number': ,l in normal stream number. 1 Stream flow area .= 1.360(Ac.) Runoff from this stream =. 9.760(CFS) I ' Time of concentration' = 4.84 mm. Rainfall intensity ='. 7.402(In/Hr), I ++++++'+++++++++++++++++++++++++++++++++++++++++++++++++++++++4++±+ Process' from Point/Station ' 170.000 to Point/Station 171.000 I INITIAL AREA EVALUATION 'User specified 'C' value of .0.830 given for subarea ' Initial subarea flow distance" = ' 250.00(Ft.) I ' • Highest elevation Lowest elevation = 310.50(Ft.) 'Elevation' difference = ,13.40(Ft.). I'. Time of concentration calculated by the urban areas overland flow method (App' X-.C) = • 4.39 'miñ. ' TC =.'[1.8*(1.1_C)*distance.5)/(%.slope'(1/3).) S I ' ' TC ='[1.8*(1.1_0.8300)*(250.00.5)/( 5.36'(1/3)]=. 4.39 Rainfall intensity (I) = ' 7.879 for a, 100.0 year storm Effective runoff coefficient, used for area (Q=KCIA). is C = 0.830 ,Subarea runoff = : 2.877(CFS) I Total initial stream area = O..440-(Ac.), +++++ ++++++++++.......... + +++++++ ++++++++++++++++++ + + ++ +.............. Process from Point/Station ' :.171.000 to Point/Station 172.000 I ' **** STREET FLOW TRAVEL TIME + SUBAREA FLOW 'ADDITION **** Top of street segment elevation = 310.500(Ft.) I. End of street segment elevation = 287.200(Ft.) Length of street segment' = 475.000(Ft.)' 'Height of curb above gutter flowline = 6.0(In.), 0 Width of half street (curb to crown) = 53.000(Ft.) ' I Distance from crown to crossfall grade break. = 51.500(Ft.) Slope from gutter to 'grade break (v/hz) = 0.087 Slope from grade break to crown.(v/hz) = 0.020 ' Street flow is on [1] side(s) of the street .' Distance from curb'to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 ' Gutter width = 1.500(Ft.) ,• I' Gutter hike from flbwline = 2.000(In.) Manning's N in gutter = 0.0150 ' Manning's 'N from gutter to grade break = 0.0150 I Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.493(CFS) Depth of flow = 0.329 (Ft.) Average velocity =' 5.336(Ft/s) I ' Streetf1ow hydraulics at midpoint of street travel: Halfstreet flow width = 9.628(Ft.) Flow velocity = 5.34(Ft/'s) I Travel time = 1.48 mm. TC = 5.87 mm. Adding area flow to street , User specified 'C' value of 0.900 given for subarea I . Rainfall intensity = 6.530(In/Hr) for a 100.0 year storm Runoff'coefficjent 'used'for sub-area, Rational method,Q=KcIA, C = 0.900 Subarea' runoff = ' 4.702(CFS) for •0.800(Ac.)' I TOtal runoff ' 7.579(CFS) , Total area = , ' 1.24 (Ac.) ' Street flow at end of street = ' 7.579(CFS) ' Half street flow at end of street = 7.579(CFS) ' Depth of flow = 0.359 (Ft.) '• 0 I 'Average velocity = 5.663(Ft/s) V , Flow width (from curb towards crown)= 11.117(Ft.) ' I Process from Point/Station 0 172.000 to POint/Station 173.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I •, Upstream point/station elevation = '283.00(Ft.) ' Downstream point/station elevation = 281.00(Ft.) 0 I ' ' Pipe length =145.00(Ft.) Manning's N =0.013 No.' of,pipes = 1 Required pipe flow =' ' 7.579(CFS) V V V Given pipe size = ' 18.00(In.) Calculated individual pipe flow = . • 7.579(CFS) I 'Normal flow depth in' pipe = 10.20(In.) Flow top width inside pipe .= 17.84(In.) ' 0 Critical Depth = 12.80(In.,) U Pipe flow velocity = ' 7.34(Ft/s) • 0 ' ,Travel time ,through pipe = ' 0.33 -min.- Time of concentration (TC) = , 6.20 min.. ,+ Process from Point/Station' • 173.900 to Point/Station V 173.000 **** CONFLUENCE OF MINOR STREAMS .**** .Along Main Stream number: 1 in normal stream number 2' Stream flow area = 1.240(Ac) . :Runoff. from this stream =' . 7.579(CFS) Time of concentration = 6 20 mm I Rainfall intensity = 6 304(In/Hr) Summary of stream data I Stream Flow rate TC Rainfall Intensity No (CFS) (mm) (In/Hr) I i 9.760 .4 .84 7,402 2 7579 620 6.304 Qmax(l) ' 1.000* 1.000 * •. 9.760) 1 0,0,0 * 0.780. * 7.579) + = 15 669 9max(2) 0.85.2 * . 1.00.0 * 9.760) + . I 1.000 * 1 000 * 7.579). + = 15.891 , .Total of 2 streams to 'co'n'fluence: : ' •'. .. . I . Flow rates before confluence. point:. . 9.760 7579 Maximum flow rates at confluence using above data I 15.669 15.891 Area of streams before confluence: . . . . 1360 1.240 I Results of confluence Total flow rate =".. .15.891(CFS) .' . . . . . Time of concentration = 6.204 min. Effective stream area after confluence = 2 600(Ac ) I +++++++++++++++++±+++++++++'++++++++++++++++++++++++++++++.+++++++++.++++ - Process from Point/Station 173.000 to Point/StationS. 174.000 I **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 280.67(Ft.) . I . Downstream point/station elevation = . 278.40(Ft.)' . .' Pipe length = 40.00(Ft.) Manning's N =0.013 No. of pipes = 1 Required.pipe. flow =.. 15.891(,CFS) Given pipe size = 18 00(In ) Calculated. individual pipe flow = 15.'891(CFS) . . Normal flow depth in pipe = 10 42(In ) I Flow top width inside pipe, = . 17.78(In.) Critical Depth = . 17.07 (In.) . . Pipe flow, velocity = " . 15.00(Ft/s) Travel time through pipe = 0.04 min. I Time of concentration (TC) = 6.25 mm .I +++++++++++++++++++++++++++++++++++++++++++++'+++++++++++++++++++++++++ Process from Point/Station 174.000 to Point/Station 175.0 . 00 **** PIPEFLOW. TRAVEL TIME (User sPecified.size) I . 'Upstream point/station elevation278..40(Ft.) .. , Downstream point/station elevation— 276'.74(Ft'.) ' . . .. Pipe. length. = 217'.00(Ft.) . Manning's N = 0.013 . . 1 No. "of pipes =.2 Required pipe flow = 15.891(CFS) . Given 'pipe size = .18.00(In.) I ' Calculated. individual pipe flow = 7.946(CFS') Normal flow depth in pipe 12.91(In.)' . .. Flow, top width inside pipe= . 16.21(In.) I . ,Critical Depth ,= 13.11(In.)" Pipe flow velocity = . .' 5.8,5(Ft/s) , .• Travel time through pipe = ". 0.62 mm. . . . . Time of concentration.(TC).= 6.87 mm., I 'Process from Point/Station175.000 to Point/Station . . 175.000 ***.*.CONFLUENCE OF MAIN STREAMS.**** The following data inside' Main Stream is listed: ' I , In Main Stream number:. 2.': Stream flow. area'= . 2.600(Ac.) Runoff from 'this' stream '= 15.891(CFS)' I . Time of concentration ='. .6.87 mm. Rainfail'.intensity = 5.'905(In/Hr) Summary of stream data: I ' Stream ' Flow. 'rate TC 'Rainfall IntensIty, No. , : •(CFS) ' , .(min) , ' '' ' (In Hr) 1 25 406 -..8.31 5.222 2 ' ' 15.891' . . .6.87 ' .: " '5.905 I ' 'Qmax(l) 1.'OoO ' 1.6OO * ' '25.406) 0.884 *' , 1.000*, ' 15.891) + = " 39.461 I ' 'Qmax(2) 1.000 :* 0.827,.* 25.406) * 1.000 * , '15.891)' + = 36.892 I "Total of 2 main streams to Oonf1uence.: ' . Flow rates' before confl,uence" point: 25.406 , 15.891' I ' ' Maximum flow rates at confluence using above data: 39.461 '. 36.892 Area of-,streams before confluence: 4.850 , . , , 2.600 Results of confluence:' I ' Total flow rate'' ' '39.461(CFS). Time of concentration = , 8.307 min'. Effective stream area after, confluence =' ' 7.450(Ac.) End of computations, total study area .=, . '' 13.11 (Ac.) I I I INP U T DATA .LI S TI N G ************ Element'Capacity Space Remaining F 280 .Element,Points and Process' usedbetween Points Number , Upstream 'Down'stream Proces's' .1 ' ' '200.000 . ' ' ' :201.000 , ' Initial'Area 2 . ' 201.000 , 202.000- . Street Flow'+ Subarea 3 . ' 202.000 ' 202.000 Main Stream Confluence '4 210.000 . 211.000 Initial Area'. 5 , ' 211.000.' , 212.000 , Street FlOw + 'Subarea 6 , . .212.000 , , 213.000 , , Pipeflow Time(user inp) 7 ' ' 213.000 . ., . 218.000 ' Pipeflow Time(user inp) - 8 ' 218.000 , . 2.18.000 ' Confluence' 9 . 215.000 " 216.000 ' Initial Area 10 . ., 216.000 '-217.000 " Street Flow + Subarea 11 217.000 ". ' ' 218.000 ' 'Pipeflow Timë(user' inp) .12 ': ,' , 218.000 * . 218.000 ' . Confluence- 13 ' 218.000 , . , 202.000 Pipeflow Time(user inp) 14 . 202.000 '. 202000 ' , ' Main Stream Confluence' 15 ' , 202.000. : : 203.000 , ' Pipeflow Time(user inp) '16 ' 201.000 ' 204.000 " Improved Channel Time 17: 235.000 ' : 204.000 , Subarea Flow Addition 18 ' . ' ' 204.000 , . ' . 205.000 ' Pipeflow Time(user inp) 19 ., 205.000 ', 205.000 ' ' Main Stream'Confluence , 20 ' '" ' ' 220.000 ' 221.000 ' ' Initial Area' 21', ' ' 221.000 , ' ' 222.0,00 -Pipeflow Time(user'inp) 22 , , 222.000 , . . 222.000 . ' Confluence 23 , ' .230.000 .'222.000 'Ini.tial,Area 24 , 222.000 , . " 222.000 ' Confluence , - 25 . - , 222.000 ...,.. 223.000 .. Pipeflow Time(user inp) 26: ' 223.000 , ' ', - 223.000' . Confluence 27. 290.000. .' 291.009 , Initial Area ' ' Li I F I San Diego County Rational 'Hydrology Program CivIlCADD/CivilDESIGN Engineering Software, (c)'1990 Version -2.3 Rational method hydrology program based on ' San' 'Diego 'County Flood Control Division 1985 hydrology manual ... Rational Hydrology Study'',. , Date: 2/ 1/91 , EL CAMIN0 REAL/PALOMAR AIRPORT: ROAD. 200 AREA BASIN STUDY FILENAME: ELCAN2 . 1 200,4 JOB#' 10365 2/1/91 ********* Hydrology Study Control Information ********** Rational hydrology study: storm event year' is:, 100.0 . Map data precipitation entered: 6 hour,,' precipitation(inches)' 2.750 24 hour precipitation(inches)' = 4.600. Adjusted 6 hOur precipitation (inches) , 2.750 P6/P24 = 59.8%. San Diego hydrology manual 'C' values used . . Runoff coefficients by r'ational.method' .1 I 28 291.000 292.000 Street Flow + Subarea 29 292.000 223.000 ...Pipeflow Time(user inp) . 30 223.000 . 223.000 Confluence I 31 223.000 205.000 Pipeflow Time(user inp) 32 . 205.000 205.000 Main Stream Confluence I . 33 34 S 270.000 271.000 . 271.000 . 272.000 Initial Area Street Flow + Subarea. 35 . . . 272.000 . 205.000 . Pipeflow Time(user inp) 36 205.000 205.000 . Main Stream Confluence 1 . 37 . . 205.000 206.000 . . Pipeflow Time(user inp) 38 206.000 206.000 . . Main Stream Confluence .. 39 225.000 226.000 . Initial Area ' 40 226.000 206.000 Street Flow + Subarea 41 206.000 . . 206.000 Main Stream confluence 42 206.000 207.000 Pipeflow Time(user inp) 43 . . 207.000 207.000 Main Stream Confluence I 44 . . . . 280.000 .. . 281.000 . . Initial Area 45 281.000 282.000 Street Flow + Subarea 46 282.000 . 282.000 Confluence 285.000 . 286.000 Initial Area . I 48 286.000 282.000 Street Flow + Subarea 49 . 282.000 282.000. Confluence I 50 51 282.000 . 207.000 . 207.060 207.000 Pipeflow Time(user inp) Main Stream. Confluence 52 .207.000 208.000 Pipeflow Time(user inp) 53 208.000 208.000 . . Main Stream Confluence I . 240.000 . . 241.000 Initial Area 55 241.000 . 252.000 Pipeflow Time(user inp) 56 252.000 252.00.0 Main Stream Confluence. ' 57 . 58 . 250.000 . 251.000 . 251.000 . 252.000 . Initial Area . Street Flow + Subarea 59 . 252.000 252.000 Main Stream Confluence 60 252.000 263.000 Pipeflow Time(user inp) 61 263.000 263.000 Main Stream Confluence 62 260.000 . 261.000 Initial Area 63 261.000 262.000 Street Flow .+ Subarea .64 262.000 . .263.000 . Pipeflow Time(user inp) I 65 263.000 263.000 . Main Stream Confluence 66 . 263.000 264.000 Pipeflow Time(user inp) I 67 68 264.000 299.900 264.000 299.000 Main Stream Confluence Initial Area . 69 . 299.000. 298.000 Irregular Channel Time 7•0 299.500 . 298.000 Subarea Flow Addition I 71 . 298.000 297.000 Pipeflow Time(user inp) . 72 297.000 . 297.000 Main Stream Confluence .73 265.000 . 266.000 . Initial Area ' 74 . . 266.000 . 267.000 . Street Flow + Subarea .75 . 267.000 . . 297.000 Pipeflow Time(user inp) 76 . 297.000 297.000 Main Stream Confluence I :77 78 255.000 256.000 256.000 . 257.000 Initial Area Street Flow + Subarea 79 257.000 . 297.000 Pipeflow Time(user inp) 80 . 297.000 ... 297.000 . Main Stream Confluence 81 . 297.000 296.000 Pipeflow Time(user inp) I 82 . 296.000 296.000 Main Stream Confluence 83 . 275.000 276.000 Initial Area 84 . . 276.000 296.000 Street Flow + Subarea I 85 296.000 296.000 . Main Stream Confluence 86 296.000 295.000 Improved Channel Time 87 295.000 . 294.000 Improved Channel Time San Diego County Rational Hydrology Program CivilCADD/CivilDESIGN Engineering Software, (c) 1990 Version 2.3 Rational method hydrology program basedon . San Diego County Flood Control Division .1985 hydrology manual Rational Hydrology Study Date 2./.1/91 . EL CANINO REAL/PALOMAR AIRPORT ROAD 200 AREA BASIN STUDY . ,. FILENAME:. ELCAN2 . . 1 200,4 . JOB# .10365. 2/1/91 . . -------------------------- ********* Hydrology Study Control Information ********** Rational hydrology study storm event year is 100.0 Map data precipitation entered ..6 hour, precipitation(inches) = 2.750 24 hour precipitation(inches). = .4.600. Adjusted . hour precipitation (inches) = 2.750 - P6/P24. = 59.8%. •• : . . San Diego hydrology manual 'C' values used Runoff coefficients by rational method I Process from Point/Station . •200.000 to Point/Station. 201.000 • . INITIAL AREA EVALUATION .*'*** . . User specified 'C' value of 0.760 given for .subarea I Initial subarea.flow distance. = 300.00(Ft.) Highest elevation = 314 60(Ft ) Lowest elevation .=, 312.70(Ft.) . I .. Elevation difference = . 1.90(Ft.) ... .• . •• . Time of concentration calculated by the,urban . . areas overland flow method (App X-C)- 12.;34 min. 1 . . .TC = (1.8*(1.1-C)*distancé.5)/(% slope' (1/3) . TC = (1.8*(1.1-0.7600)*(.300.00.5)/( 0..63(1/3))= 12.34 Rainfall intensity (I) = . 4.045 for a 100.0 year storm -. Effective runoff coefficient used for area (Q=KCIA)is C= 0.760 I Subarea runoff = .. 2.,060(CFS) . . . Total initial stream area = 0.670(Ac.) . . . I Process from Point/Station 201.000 to Point/Station 202.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = .312.700(Ft:.) End of street segment elevation= 286.200(Ft.) I Length of street segment = 1185.000(Ft.) . Height of curb above gutter flowline = 6.0(In.) Width of half Street .(curb to crown) = 53.000(Ft.) I .Distance from crown to crossfáll grade break = .51.500(Ft.) Slope from gutter to.grade: break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 I Street flow is on (1) side(s) of the street A . • Distance from curb to property.line = 10.000(Ft.) Slope from curb to property line (v/hz)' = 0.060 I Gutter width =. i.500(Ft.) Gutterhike from flowline = 2.000(In.) Manning'sN in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 I Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street . 4.673(CFs) Depth of flow = 0.350(Ft.) . I ' Average velocity = 3.758(Ft/s) Streetflow'hydrauIics at midpoint of street travel: Halfstreet flow width = 10.682(Ft.) I Flow velocity = 3.76(Ft/s) •, Travel time 5.26 mm. TC = 17.60 min. 'Adding. area flow to street . . User specified 'C' value Of 0.900 given for subarea I Rainfall intensity = 3.218(In/Hr) for a. 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KcIA, C = 0.900 Subarea runoff = . 4.923(CFS) for ' 1.7.00(Ac.) I Total runoff = 6.983(CFS) Total area = 2.37(Ac.) 'Street flow at end of street = 6.983(CFS) Half street flow at end of street ,= . .6.983(CFS) I . Depth of flow = 0.3.91(Ft.) Average velOcity = 4.067(Ft/s) Flow width (from curb towards crown)= 12.707(Ft.) : I. . Process from Point/Station . 202.000 to Point/Station 202.000 l **** CONFLUENCE OF MAIN STREAMS.**** The following dataiñside Main Stream is listed: In Main Stream number: 1 I Stream flow area= 2.370(Ac.) . Runoff from.this stream = 6.983(CFS.). Time of concentration = 1760 mm. I Rainfall intensity = 3.218(In/Hr) Program is now starting with Main Stream No. 2 I Process from Point/Station 210.000 to Point/Station 211.000 **** INITIAL AREA EVALUATION **** I User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 300.00'(Ft.) I Highest elevation = ,314.60(Ft.) . • . , Lowest elevation = 312.70(Ft.) . • Elevation difference = 1.90(Ft.) . . • Time of concentration calculated by the, urban I .• areas overland flow method (App X-C) = 7.26 mm. TC = [1.8*(1. 1-C) *distance .5)/(% slope (1/3)) TC= [1.8*(110.9000)*(300.00.5)/( 0.63*(1/3))= '7.26 I Rainfall intensity (I) = •. 5.696 for a • 100.0 year storm Effective runoff coefficient used ,for area (Q=KCIA) is C = 0.900 Subarea runoff = • 2.204(CFS) ' Total initial stream area 0.430(Ac.) I ''' Process from Point/Station 211.000 to Point/Station 212.000 **** STREET FLOW TRAVEL. TIME + SUBAREA FLOW ADDITION **** Top of-street segment elevation = . 312.700(Ft.) .:End of street segment elevation =. 293.300(Ft.) Length of street segment = 785.000(.Ft.) . . Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown). = 53.000(Ft..) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = . 0.087 . . . SlOpe from, grade break to crown (v/hz) = 0.020 Street flow is on (1) side(s) of the, street Distance from curb to property line = 10.000(Ft.)'° Slope from curb to property line (v/hz) 0.020 Gutter width =. .1..500(Ft..) . . . . .. Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 . Manning's 'N from gutter to grade break 0.0150 Manning's N from grade break to crown .= 0.01.50 S Estimatedmean flow rate at midpoint of street = 5.024(CFS) Depth.of flow = 0.352(Ft.) . . Average 'velocity = 3.967(Ft/s) . Streetf low hydraulics at midpoint of street travel: Halfstreet flow width = 10.788(Ft.) . . Flow velocity = 3.97(Ft/s) . . . . Travel time = 3.30 mm. TC = 10.56 . . mm.. Adding area. flow to Street., .. . . . User specified 'C' value of 0.900 given for subarea Rainfall intensity =1 .4.474(In/Hr.) for a .100.0 year storm Runoff coefficient used .for sub-area, Rational method,Q=KCIA, C 0.900 Subarea runoff = . 4.429(CFS) for 1.100(Ac.) Total runoff .= . 6.633(CFS) Total area = 1.53(Ac.), Street flow at end of street..= 6.633(CFS) . Half street flow at end of street = 6.633(CFS) Depth of flow =. 0.380 (Ft.) . . Average velocity = 4.188(Ft/s) Flow width (from curb towards crown)= 12.171(Ft.) Process from. Point/Station .. 212.000 to Point/Station 213.000 PIPEFLOW TRAVEL TIME (User specified size) **** S ' Upstream point/station elevation = 289.10(Ft.) Downstream point/station elevation = 284.20(Ft.) Pipe length = 190.00(Ft.) S Manning's N = 0.013 No. of.pipes =.1 Required pipe flow =.. 6.633(CFS) Given pipe size =' '• 18.00(In.) . •.: Calculated individual pipe flow = . 6.633(CFS) Normal flow depth in pipe= 7.84(In.) Flow top width inside pipe = 17.85(In.) Critical Depth = 11.97(In.) . S Pipe flow velocity = 8.97(Ft/s) Travel time through pipe = 0.35 mm. Time of concentration (TC) =. 10.91 mm. . + +++ ++++ +++++ +++ ++++++++ ++++++ ++ +++ +++ +++++++ + ++++ +++++++++++ +++++ +++ + Prócéss from Point/Station 213.000 to Point/Station • 218.000 **** •PIPEFLOW TRAVEL TIME (User specified size) **** Li I I I I I I I Li I I I I Li I I .1 I Upstream point/station elevation = 283.87 (Ft.) Downstream point/station elevation = 280.88 (Ft.) Pipe length = 265..00(Ft.)' Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.633(CFS) Given pipe size = 18.00(In) Calculated individual pipe flow .= 6.633(CFS) Normal flow depth in pipe =. 10.00(In.) '.Flow top width inside pipe = 17.89(In.) Critical Depth =. 11.97(In.) Pipe flow velocity '= 6.'59(Ft/s). "Traveltime through pipe =, 0.67 mm. Time of concentration (TC) = 11.58 mm. Process from Point/Station 218.000 to Point/Station 218.000 CONFLUENCE OF MINOR STREAMS .**** Along Main Stream number: 2 in normal stream number I Stream flow area= ' 1.530(Ac) Runoff from this stream = 6 • 633 (CFS) Time of concentration = . 11.58 min. Rainfall intensity = 4.215(In/Hr) Process from Point/Station 215.000 to Point/Station 216.000 INITIAL AREA EVALUATION User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 200.00(Ft.) Highest elevation 293.30(Ft.) Lowest elevation = 288.70(Ft.) Elevation difference = 4.60 (Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.86 mm. TC = [1.8*(l.1-C)*distance'. 5)/(% slope (1/3.)) . . . TC = [1.8*(i.1-0.9000)*(200.00.5)/( 2.30(1/3))= 3.86 Rainfall intensity (I) = 8.566 for a 100.0 year-storm Effective runoff coefficient used for area '(Q=KCIA) isC = 0.900 Subarea runoff = . 2.236('CFS) Total initial stream area 0.290(Ac.) ++++ +'......................................... +-+++++ + Process from Point/Station 216.000 to Point/Station 217.000 **** STREET FLOW TRAVEL TIME + SUBAREA 'FLOW ADDITION ***.* Top of Street segment elevation = 288.700(Ft.) End' of street segment elevation = 284.800(Ft.) Length of street segment = •260.000(Ft.) Height of curb above gutter' flowline = ' 6 • 0 (In) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) '= 0.087 • Slope from grade break to crown (v/hz) = 0.020 Street .f low 'is on [1] side(s)', of the street • ' Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) I I I I I I I F_ I I I I I I I I I Gutter width = 1.500'(Ft.) 0 Gutter hike from flowline = 2 000(In ) I Manning's N in gutter.*'- 0.'0150 Manning's N from gutter to grade break = 00.0150 Manning'sNfrom.grade break to crown = 0.0150 I Estimated mean flow rateát midpoint of street , 3.701(CFs) Depth.of flow = 0.347 (Ft.) . . Average velocity = 3.058(Ft/s) . . Streetfiow hydraulics atomidpoint of street travel: I. HaIfstreet' flow width '10.524(Ft..) •• ... . .. .. Flow velocity= 3.06(Ft/s) . Travel time = 1.42 mm. TC . 5.27 mm. . S I 'Adding area flow to street. . . User specified 'C' value .of 0.900 given for subarea Rainfall intensity = . . 70.001(In/Hr) for a yea r ear storm I • Runoff coefficient used for sub-area, Rational method,Q=KcIA, C 0.900 .Subarea runoff = . 2.394(CFS) for 0.380(Ac.) . . Total runoff = 4.'630(CFS) Total area = . . 0.67(Ac) Street flow at end of street= 4.630(CFS.) I . Half street flow -at end of street = . 4..630(CFS) , Depth of flow = 0.369(Ft.). " .. Average velocity = 3.193(Ft/s) . ' •. . ' Flow width (from curb towards crown)= 11.609(Ft.) I Process from Point/Station 217.000, to Point/Station. 218.000. PIPEFLOW TRAVEL TIME (User specified 'size) ' 0 : Upstream point/station elevation = 281.33 (Ft.) Downstream point/station 'elevation = . 280.88(Ft.) Pipe length = 90.00(Ft..) Manning's N = 0.013 , No. of pipes = 1 Required pipe flow = . 4.630(CFS) S I Given pipe size =+ 18.00(In.) . Calculated 'individual pipe flow . = . 4.630(CFS) ".. Normal flow depth in pipe = 10.29'(In.) . I Flow top width inside, pipe = 17.81(In.)'... . Critical Depth = 9.91(In.) Pipe flow velocity = 4 43(Ft/s) Travel time through pipe = 0. 34 m,in.. • • 0 , : • • ' : I Time of concentration (TC) • 5.61 mm. 0' I Process from Point/Station .0218.000 to Point/Station 0 218.000 **** CONFLUENCE-OF-MINOR STREAMS **** I • Along Main Stream number: 2 in normal stream number 2 Stream flow area =. .. 0.670(Ac.) I .Runoff from this stream .=.. 4.630(CFS) . S Time of concentration = 5.'61-min. Rainfall intensity = 6725(In/Nr) . S Summary of stream data I Stream Flow rate • • TC Rainfall Intensity No. ' - (CFS) . (mm) ' .. • (In/Hr) 0, 1 6.633 1158 4215 2 ' • 4.630 " 5..61 ' ' , 6.725 • . ' I .•. S H5 I Qmax(1) = - - . . . 1.000 * .. 1.000 * 6.633) + . I. . 0.627 * 1.000 *4.630) + =. . 9.535 Qnax(2) '= ' '. . •. . .' . . .1.000 .f. 0.4 * 6633) + . . . . 1.000,* 4.630) += ' 7.844 I . 'Total of 2 streams to cônfluènce.. .. . . . . . . .. .' . . Flow rates before 'confluenôe point: ... . . . . I . . 6.633 ' . 4.630 . ' •'. : ' . . •. Maximum flow rates at confluence using above data: ....... . 9.53 7.844 Area confluence:- . . ., . . •.. of streams before I coñf1üence: .. . . 1.530 0•670 :' ' .• . . ' Results of confluence Total flow rate— 9.535(CFS) . -. I .Time of concentration=. 11.582mm. . ... . .. . Effective stream area after confluence = . 2.200(Ac.) . I Process from Point/Station. . .218.000 to Point/Station . 202.000 .****.PIPEFLOW TRAVEL TIME (User specified size) I . Upstream point/station elevation 280.55(Ft.). ' Downstream point/station elevation = •280.43(Ft.) I .Pipe length = . 12.00(Ft.) Manning's N = 0.013. .. No. of pipes = 1 Required pipe flow =' . 9.535(CFS) Given'pipe size = 18.00(In.) Calculated individual pipe flow-- = 9.535(CFS) . . . 1 . Normal 'flow depth in pipe = ..13.45(In.) . . .' . Flow top width inside pipe 15.64(In.). Critical Depth 14.30(In.) •. . . . Pipe flow velocity = . , 6.73(Ft/s) ........ . •.. Travel time through pipe' = . 0.03 mIn. ,' .. . . . . Time of concentration (TC) .=. 11.61 min. Process from. Point/Station 202.000 to Point/Station .. •. 202.000 I .• CONFLUENCE OF RAIN STREAMS The following data inside Main Stream is listed: . . I In Main Stream number: 2 . . •• •. Stream flow area 2.200(Ac.) .. .'. Runoff from.thjs stream =, 9.535(CFS) I Time of concentration = '11.61 mm. • . .•.. . . • Rainfall intensity = . 4..208(In/Hr) Summary of stream data: . . . ., .. ., . . . I Stream . Flow rate TC. '. Rainfall Intensity . . • No. , (CFS) (mm) . ' .. .. •(In/Hr) 1 6.983 1760 3.218 2 .9.535 11.61 •'. • 1 ' 4.208: .. .. . •. Qmax(l) = • ,. ,.. . . . . . . . I . • • .1.000 * i.000 * 6.983) +: . . •. 0.765 .* :. 1.0.00* 9.535)+ = 14.275 Qmax(2) = . . . . .. ,, • ... '. , .. . . .. ... . 1. 000 * 0.660 *.' 6.983) + 1.000 * 1 000 * .9..535) + = 14 142 I Total of 2 main streams to confluence Flow rates before confluence point:. . . . , . .. .. 6.983 9.5.35 .. '; .• . . . . I.. Maximum flow, rates at confluence' using above data: . . 14.275 .' '14142'' . . .. . Area of streams before confluence.: ." ... I 2 .370 2 ..200 Results of confluence I Total flow rate = 14.275(CFS) .' , . ..... ... ... . Time Of'cOncentration =1.7.599 min.*. . . . Effective stream:area after confluence =' 4.570(Ac.) .. I Process from Point/Station . 202.000 to'Point/Station 203.000 I ' PIPEFLOW TRAVEL TIME (User specified size).****. . . Upstream point/station-elevation = . . 280.10(Ft.) I . Downstream point/station elevation= .279.40(Ft.) . . Pipe length = ... 30.00(Ft.) . Manning's N =' 0.013: . No. of :pipes = .1 'Required pipe flow = 14'.275'(CFS) '. .. I . Given, pipe size = ' '18,00(I'n.)' .. . . Calculated' individual pipe flow: '' 14.275(CFS) .. , Normal flow'depth in pipe = 13.22(In.). Flow top width. inside pipe ='. .15.90(In.) . .. . '. . I.. . ;critica]. Depth -= 16.66(In.) Pipe flow velocity '=. . 10.26(Ft/s)' ,. . . . . . . . Travel time through pipe 0.05 mm. Time of.àoncentration (TC) = 17.65 mm. I Process from Point/Station' .. 203.000 to Point/Station ' 204.000' **** IMPROVED 'CHANNEL TRAVEL TIME I . ' Upstream .point elevation = . . 27.9.40(Ft.) '. Downstream point elevation '' 265.60(Ft.) Channel, length .thru subarea =1015.00(Ft.). .' . .. . I .. 'Channel base width , ' = . .2.000(Ft.) Slope or 'Z' of left channel bank =' 1.500 . . . . . . Slope or 'Z'. of right channel bank = '1.500 'Manning's 'N' = 0.015 I . Maximum depth -of channel.: =... 1.500(Ft.)'. .. . . . ....... Flow(g) thru subarea =.. . 14.275(CFS) Depth of flow = 0.683(Ft.) ..' ' '• : . ' ' ' . ' I . Average velocity = . 6.912(Ft/s) .. . . . . . Channel flow top width = 4.049(Ft). 'Flow Velocity = 6.91(Ft/s) Travel time = 2.45 min. Time of concentration .= .20.10 mm. Critical depth.=. . ' ' 0.922(Ft.)' Process from Point/Station 235.000 to, Point/Station ' 1 204.000 I **** SUBAREA FLOW ADDITION **** I Decimal fraction soil Decimal fraction soil group A = 0.000 group .B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraôtion soil group D = 1.000 I [COMMERCIAL area type ) Time of concentration = 20.10 mm. Rainfall intensity =' 2.954(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational methód,Q=KCIA, C = 0.850 U Subarea runoff =.' 58.504(CFS) for 23.300(Ac.) Total runoff 72.779(CFS) Total area = 27.87(Ac.) ++ + + +++++ +++++++ ++ ++ +++++++++++++++++++ + + + + Process from Point/Station 204.000 to Point/Station 205.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 265.60 (Ft.) Downstream point/station elevation = 263.44(Ft.). Pipe length = 30.00(Ft.) Mánning!s N.= 0.013 No. of pipes = 1 Required pipe flow = 72.779(CFS) Given pipe size = . 36.00(In.) . S Calculated individual pipe flow = 72.779(CFS) Normal flow depth in pipe = 15.98 (In.) Flow top width inside pipe = 35.77(In.) Critical Depth = 32.32(In.) Pipe flow velocity = - 24.01(Ft/s) Travel.time through pipe = 0.02 mm. Time of concentration (TC) = 20.12 mm. Process from Point/Station 205.000 to Point/Station 205.000 **** CONFLUENCE OF MAIN STREAMS *1** The following data inside Main Stream is listed: I In Main Stream number: 1 - Stream flow area = 27.870(Ac.) Runoff from this stream = . 72.779(CFS) I Time of concentration = . 20.12 mm. Rainfall intensity = 2.952(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 220.000 to Point/Station 221.000 I **** INITIAL AREA EVALUATION S Decimal fraction soil, group A = 0.000.. I Decimal fraction soil group B = 0.000' Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 5 I . [COMMERCIAL area type S J Initial subarea flow distance = 750.00(Ft.). Highest elevation = 323.50(Ft.) S Lowest elevation = 308.00(Ft.) I Elevation difference = 15.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 9.68 mm. 1• 5- 0 ' TC = [l.8*(l.l-C)*distance.5)/(%.slope(1/3)) TC [l.8*(l.l_0.8500)*(750.00.5)/( 2.07(1/3))= 9.68 Rainfall intensity (I) = 4.733 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 26.956(CFS) Total initial stream area = . 6.700(Ac) ++++++++++++++++++++++++++++++++++++.f-.++++++++++++++++++++++++++++++++ I . Process from Point/Station 221.000 to Point/Station .222.000 **** PIPEFLOW TRAVEL TIME (User spebified size) I . Upstreampoint/station elevation = 304.00(Ft.) Downstream point/station elevation =. 271.00(Ft.) Pipe length = 100.60(Ft.) Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = 26.956(CFS). Given pipe size = 1800(In.) Calculated individual pipe flow = 26.956(CFS) Normal flow depth in pipe = 8.43 (In.) I Flow top width inside pipe = 17.96(In.) Critical depth could not be calculated. Pipe flow velocity = 33.18 (Ft/s) Travel time through pipe = 0.05 mm. I Time of concentration (TC) = 9.73 mm. I Process from Point/Station 222.000 to Point/Station 222.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 2 in normal, stream number I Stream flow area = 6.700 (Ac.) Runoff from this stream = 26.956(CFS) I Time of concentration = 9.73 mm. Rainfall intensity = 4.717(In/Hr) I +±+++++++++++++++++ ++++++±++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 230.000 to Point/Station 2.22.000 I **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B '= 0.000 I Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 (COMMERCIAL area type . ] I Initial subarea flow distance = 1230.00(Ft.) Highest elevation = 318.00(Ft.) Lowest elevation = 273.90(Ft.) . I . Elevation difference = 44.10(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 10.31 min. TC = [1.8*(1.1-C)*distance.5)/(% slope(1/3)] I TC = (1.8*(1..1-0.8500)*(1230.00.5)/( 3.59(1/3)]= 10.31 Rainfall intensity (I) = 4.543 for a 100.0 year storm Effective runoff coefficient used for area' (Q=KCIA) is C = 0.850 I . .Subarea runoff = 32.435(CFS) .. . Total initial stream area = 8.400(Ac.) 11 Process from Point/Station . 222.000 to Point/Station 222.000 ****'CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number,2 . Stream. flow area = 8.400(Ac.) . . Runoff from this stream-. =,- 32.435(CFS) . Time of concentration .= 10.31 mm. •. Rainfall intensity = 4.543(In/Hr) Summary of stream data Stream Flow rate TC Rainfall Intensity No. . (CFS) (mm).. . (In/Hr) 1 26.956 973 4.717 2 :32.435 10.31 . 4.543 Qmax(1) .. • . . . 1.000.* 1.000 * 26.956) + 2 1.'000 * 0.943. * 32.415) + = 57.547 .Qinàx(2) = . .. . . . 0.963 * 1.000 * 26.956) + . * 1.000 * . 32.435)+ . . 58.392 Total of 2 streams toconflüencè: . . . . . Flow rates before confluence point.: . - .. 26.956 32.435 . . . . . Maximum flow rates at confluence using above data: 57.547 ; 58.392 . '.. Area Of streams before confluence:. . . . 6.700 8.400' . . . .. . ... 0 Results of confluence: ... 0• 0•• Total flow rate.= 58.392(CFS.) 0 Time of concentration = 10.311 mm. Effective streamarea after confluence = 15.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station. . 2224000 'to Point/Station 223.000 **** PIPEFLOW TRAVEL TIME (User. specified size) Upstream point/station elevation = . 270.67(Ft.) .. Downstream point/station elevation = 269.50(Ft.) Pipe length. = . 16.00(Ft.).. Manning-Is N = 0.013 No. of pipes = 1 Required pipe flow = . 58.392(CFS) Given pipe size'- 24.00(In.) . Calculated individual pipe flow =.. 58.392(CFS) Normal flow depth in pipe ='. 18.7.5(In.) Flow top width inside pipe = I 19.84(In.) Critical depth could not be calculated. Pipe flow velocity 22! 17(Ft/s) . . Travel time through pipe = . 0.01 mm.- . . Time of concentration (TC) = 10.32 mm. - . •. . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 223.000 to Point/Station 223.000 **** CONFLUENCE OF MINOR STREAMS.**** . • . 0 Along Main Stream number 2 in normal stream number 1 Stream flow area = 15 loo(Ac ) Runoff from this stream = 58 392(CFS) Time of concentration = 10.32 min. Rainfall intensity = 4 539(In/Hr) I : . ...................................................................... Process from Point/Station 290.000 to Point/Station 291.000 I **** INITIAL AREA EVALUATION '**** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 200 00(Ft ) I .Higheste1evation.= 289.20(Ft.) . : . .. Lowest elevation = 28350(Ft.) ,• : , . Elevation difference = 5 70(Ft ) Time 'of concentration calculated by the urban.- areas overland flow method (App X-C) ,= 3.59. min. TC = [1.8*(1.1-C)*distance.5)/(% slope(1/3.)] TC = (1.8*.(1.1_0.'9000)*(200.'0p.5)/( 2.85(1/3))= .359' I Rainfall intensity (I) = ' 8.970 for a 100.0 year .storm.1 Effective runoff coefficient used for area (Q=KCIA) is C = 0.9O0 Subarea runoff = 2.341(CFS)" Total initial stream area = 0 290(Ac ) I : Process from Point/Station ., .291.000 to Point/Station 292.000 **** STREET. FLOW TRAVEL TIME '+ SUBAREA FLOW ADDITION **** .Top of. street segment elevation =. 283.500(Ft'.) 'End of street segment elevation - . 278.700(Ft.) Length of street segment. = ' 285.000'(Ft.) Height of curb above, gutter flowline = 6.0(In.) I ' Width of half street (curb to crown) '= 53.000(Ft.) 'Distance from crown to ärossfall grade, break = 51.500.(Ft.) Slope from gutter'to gradebreak. (v/hz) = 0.087'. : I' Slope from grade break to crown (v/hz) = 0.020 ' Street flow is 'on (1) side(s) of the'streét ' Distance. from curb to property line '= 10.000(Ft.) I Slope from -curb to property line '(v/hz) .=.' 0.020 '. Gutter width = 1 500(Ft ) Gutter hike from flowline =. 2.000(In.) Manning's N in gutter = .0.0150 . . . I' Manning's N from gutter to grade break = 0.0150. ' Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpóintof. street = ' 3.996(CFS) .I Depth of flow 0.349(Ft.),..' ' . ,. '•'' Average velocity= 3.252(Ft/'s) Streetfiow hydraulics at midpoint of street travel: ' Halfstreet flow width = 10.613(Ft.) Flow' velocity Travel time = 1.46 mm. TC = .5.05 mm. Adding area flow to street I .User specified 'C' value of 0.900.given for subarea. Rainfall intensity = ' ' . . 7.198(In/Hr) 'for a 100.0 year storm .Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 I 'Subarea runoff = . ., 2.656(CFS). for 0.410(Ac.) ' Total runoff = 4.997(.CFS) tTotal area = ' . .0.70(Ac.) Street.flow at end of street = 4.997(CFS) Half street flow at end of street .' 4,.997(CFS) . . Depth of flow = 0 371(Ft ) 4 Average velocity 3.395(Ft/s) I Flow width (from curb towards crown)= ll 702 (Ft.) . I Process f rom Point/Station.' 292.000to.Point/Station 223.000 PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 274.5'0-(Ft.) : Downstream point/station. eievàtion= 270.00(Ft.) ., . .', •. Pipe length = 150.00 * (ft ) Manning's N = 0 0.13. I No of pipes = 1 Required pipe flow = 4 997(CFS) Given pipe size = 18.'00 (.In ) Calculated individual pipe' flow =. .. 4.997(CFS) . . .. . . I Normal flow depth in pipe = 6 45(In ) Flow top width inside pipe = 17 26(In ) Critical Depth = 10 32(In ) Pipe flow velocity = .,. 8.78(Ft/s) I Travel time through pipe =. - 0.28 mm.. Time of concentration (TC) = 5.34 nun I . Process. from .223.000 to Point/Station '. .. 223.000 CONFLUENCE OF MINOR STREAMS Along Main Stream number: ,2 'in normal stream number 2 Stream flow area I Runoff from this stream = 4 997(CFS) Time of concentration,- 5.34mm. .. . . . , :Rjfll intensity = " .6..948(In/Hr)' I Summary of stream data Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) '. .' (In/Hr) . • I '1 .58.392 10.32 ., . 4539 ... I. 2 4.997 5.34 ... - ."- 6.948 Qmax(1) . . 1.000 * 1.-000.* • 5.8.392) + ,.. •' I . 0.653 *. 1.000* .. . 4.997) '= 61.657 : Qmax(2) = 1.000 •*. ' 0.517 #. 58.392) •+ . .. .• 1 000 * 1.000 * 4.997) + = 35 179 Total of .2 streamsto confluence': . '•. ' . ', •• ." Flow rates before confluence point:. . . . , 58.392 . 4.997 ... . . • . . , . . '. Maximum flow rates at confluence using above data: . 61.657 35.179 , Area of streams'before confluence: •"•. ••,. • : I . 15.1o6 0.7-00 • •. • • : Results of confluence: ' .' ' • •' • . Total flow rate=' '61.657(CFS) I Time of concentration = 10.324,min. ' 15.800(Ac.)' Effective stream area after,confluence .=.. • •' . . I Process' from Point/Station 223.000 to Point/Station 205.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation 268.50(Ft.) Downstream point/station elevation = 263.94(Ft.) ' Pipe length = 442.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 61.657(CFS) Given pipe size = 36.00(In.) I Calculated individual pipe flow = 61.657(CFS) Normal flow depth in pipe.= 26.95(In.) Flow top width inside pipe = 31.23(In.) Critical Depth = 30.35(In.) I Pipe flow velocity = 10.86(Ft/s) Travel time through pipe = 0.68 mm. Time of concentration (TC) = 11.00 mm. I + ++++ .++++ ++++++++ +++++++++++ ++ ++ + ++ + +++++ + + I Process from Point/Station 205.000 to Point/Station 205.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 2' • Stream flow area 15.800(Ac.) Runoff from this stream = 61.657(CFS) I .. Time of concentration = 11.00 mm. • Rainfall intensity = 4.357(In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 270.000 to Point/Station 271.000 1 ' **** INITIAL AREA 'EVALUATION' User specified 'C' value of 0.900 given for subarea I Initial subarea flow distance = 340.00(Ft.,) Highest elevation = 285.20(Ft.) Lowest elevation = 279.80(Ft.) Elevation differe'nce = 5.40(Ft.) I Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.69 mm., TC = (1.8*(1.1-C)*distance.5)/(% s1ope(1/3)]' I TC= (1.8*(1.1_0.9000)*(340.00.5)/( 1.59(1/3)]= •5.69 Rainfall intensity (I) = ' 6.666 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 4.080(CFS) I Total initial stream area = 0.680(Ac.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station ' 271.000 to Point/Station 272.000 **** STREET FLOW TRAVEL TIME .+ SUBAREA FLOW ADDITION **** I ' Top of street segment elevation = 279.800(Ft.) End of street segment elevation = 268.280(Ft.) Length of street segment = 779.000(Ft.) I Height of curb above gutter flowline' = 6.0(In.) Width of half street (curb to crown) =' 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.)' ri Li I Slope from gutter to grade break (v/hz) = '0.'087 Slope. from grade break to crown (v/hz). = 0.020 I . Street flow is on [1) side(s) of the street. ... Distance from curb to property line = 10.000(Ft.). Slope from curb to property line (v/hz) = 0 020 Gutter width = 1.500 (Ft.') . .. . . I. Gutter.hike from flowline. = 2'.00O(In.) . . Manning's N in gutter = 0 0150 Manning's N from gutter to grade break = 0.0150 I . ,.Manning's N from grade -break to crown = 0.0150 Estimated mean flow rate at -midpoint of street=' 7.680(cFs) Depth of flow .=' 0.425(Ft.) . . . . Average velocity ,= 3.522(Ft/s) I Streetf low hydraulics at midpoint of street. travel: .. . . Halfstreet flow width = 14.415(Ft.) ., . . Flow velocity = 3.52(Ft/s) . . I .Travel time = 3.69 3Dm. TC = . 9.38 mm. .....Adding area floe to street. User specified 'C' value-of-.0.900 given for subarea I Rainfall intensity = . . . 4.830(In/Hr) for a' .100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 5.217(CFS) for . l.200(Ac.) Total runoff = . 9.296(CFS) Total area =. . '1.88(Ac.) I . Street flow at end ofstreet = 9.296(CFS) Half street flow at end of street 9..296(CFS). Depth of flow , 0..448(Ft.) . . .. Average velocity 3.670(Ft/s) . .; . . I . Flow width (from curb, towards crown)=. 15.589(Ft'.) I . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. Process from Point/Station 272.000 to Point/Station 205.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 1 Upstream point/station elevation 265,14(Ft.) Downstream point/station elevation 264.44(Ft.) I. Pipe length = 145.00(Ft.) Manning's N = 0.013 No. of pipes ='i Required pipe .flow = . 9.296(CFS).. Given pipe size = 24 00(In ) Calculated individual pipe flow = •9.296(CFS). . I :Normal flow depth' in pipe = '13.28(In.) Flow top width inside pipe = 23.86(In.) Critical Depth = 13.07(In.). I .Pipe flow velocity 5..21(Ft/s) Travel time through pipe = 0.46 mm. . Time of concentration (TC) = 9.84 mm Process from Point/Station ' 205.000 to Point/Station 205.000 I ****-CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed:' V I In Main Stream number: 3 Stream flow area = 1.880(Ac.). Runoff from this stream =. 9..296(CF8) Time of concentration = 9.84 mm.' I Rainfall intensity = 4.682(In/Hr) V V Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) ' (mm) : , (In/Hr) .' I 1 •. 72.779 20.12 2.952 2 .. ' '61.657 11.00 •' 4.357 H ' I. 3 ' •' 9.296 9.84 '. 4.682 . Qmax(1.)= •' . ; ,' : •• 1.000 '* 1.000' * 72.779) + 0.678 * '. '1.000 * 61.657) -' . . ', 0.630.* 'H 1.Q00 * •. '9.296)' += 120.418 '. • " ' . 1.000 ' 0.547 * 72.779) + - S . I " • . '. 1.000 * 1.000 *; 61.657) + . S . . 0.931 *' 1.000 * 9.296) + =:110.111 • Qmax(3) = ' . . S •, . . ' 1.000S* 0.489 * 72.779)+ •' : ' 1.000 * ' 0.894 * .61.657) + . , . '• . . . . 1.000. * 1 000.* 9 296) + = 100.0-37 TOtal of '3 main streams tO confluence: . . •.' : S.; : Flow rates before confluence' point: . . .. . 72.779 ' . Maximum flow rates 61.657 , 9.296 . . . . at confluence using above data: 120.418' . ' ' 110.111 100.037 . . • . . Area of streams before confluence: . .. .. . . ', 27.870 . . . 15.800 • 1.880. Results of confluence I Total flow rate = 120.418(CFS) Time of concentration '_20_116 mm.. ', . • . . . ..• S Effective 'stream area after confluence = 4.5.550(Ac.) ,•' S , S Process from Point/Station ' 205.000 to Point/Station.: ,. 206.000 PIPEFLOW TRAVEL TIME (User specified size).**** S Upstream point/station elevation.= 262.44 (Ft.) -. . Downstream po'int/station'elevation = •262.13(Ft.) . • Pipe length = 31..0.0(Ft.) . Manning's N = 0.013 . . No; of pipes = 1 Required pipe; flow • 120.41.8(CFS) .. . Given pipe size = '' :49...00(1n.). • . . • • 5 5 Calculated individual' pipe flow. • 120..418(CFS) . - • . Normal flow depth in pipe = 33.66(In.) : • . . '. S • Flow top width inside pipe . ,43.94(In.) . . • S CritiOal Depth= 39.64(In.) • S • • • . , •.. . S • Pipe flow velocity = ..12.80(Ft/s). S • S , • Travel time through pipe 0.04 mm. . '. .5 • .. Time of concentration (TC) =. 20.16 mm.. • . - . •, ;. Process from Point/Station • • '206.000 to Point/Station - '206.000 **** CONFLUENCE OF MAIN STREAMS **** • • • The'following data inside -Main Stream is listed: In Main Stream number: 1 • ' 55 Stream flow area = , 45.550(Ac.)'. 5 I I Runoff from this stream Time of concentration = Rainfall intensity = Program is now starting = 120.418(CFS) 20.16 mm., "2.948(In/Hr) with Main Stream No.. 2 Process from Point/Station 225.000 to Point/Station 226.000 **** .INITjAL AREA EVALUATION User specified 'C' value of 0.900 given for subarea Initial subarea flow distance 200.00(Ft.) . Highest elevation = 278..70(Ft.) Lowest elevation = 275.10(Ft.) Elevation difference 3.60(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.19 mm. TC = [1.8*(1.1-C)*distance.5)/(% s1ope(1/3)3 TC= [1.8*(1.1_0.9000)*(200.00.5)/(.1.80(1/3)]= .4.19 Rainfall intensity (I) = 8.126 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C .= 0.900 Subarea runoff = 2.267(CFS) . . Total initial stream area = 0.310(Ac.) Process from Point/Station . 226.000 to Point/Station 206.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation End of street segment elevation = 269.400(Ft.) Length of street segment = 375.000(Ft.) Height of curb above gutter flowline = 6.0.(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line Slope from curb .to property. line (v/hz)'= 0.020 Gutter width'= 1.500(Ft.) Gutter hike from flowline = 2.000(In.) . . . Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.242(CFS) Depth of flow.= 0.360(Ft.) . Average velocity = 3.155(Ft/s) . . Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 11'.144(Ft1) Flow velocity '= 3.16(Ft/s) Travel time 1.98 mm. TC . 6.17 mm. Adding area flow to street. User specified 'C' value of 0.900 given for subarea Rainfall intensity = 6.329(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area', Rational method,Q=KCIA, C = 0.900 Subarea runoff = 3.076(CFS) for. 0.540(Ac.) Total runoff = ' 5.343(CFS) Total area = . 0.85(Ac.) Street flow at end of street' = . 5.343(CFS) Half street flow at end of street = 5.343(CFS) . Li I I I I I I I I I I I I I I I I Depth of flow = 0 383(Ft ) . Average velocity =. 3.302(Ft/s) •.. . Flow width. (from curb towards crown)= 12.311.(Ft.) . . I :Process from Point/StatiOn. 206.000. to Point/Station 206.000 **** CONFLUENCE OF. MAIN STREAMS I . The following data inside Main Stream is listed: I . n. Main Stream number: 2 'Stream.flów.area.= .• 0:.850.(Ac.) . . . . I. . Runoff from this stream = . . . 5.343(CFS) . . . . . . Time of concentration— 6.17 min. Rainfall intensity = . . .6.32.9(In/Hr) . .. . .• ............... . . Summary of stream data: •. . . .. . . . . . . . : Stream Flow rate • TC . . Rainfall Intensity . . No. (CFS)- . (mi. . .. (In/Hr) .: 1 120.418 20.16 2.948 2 . . 5343 . 6.17 . . 6.329 .. I Qmax(1) = 1.000 *• 1.000 * 120.418) + . S. .0.46.6 * .. 1.0001 * 5.343).+=' 122.907 . I Qmax(2) =. . . . . . . .......... . . . . .... 1.000 * 0.306 * 120 418) + 1.000 * 1.000 * 5.343) + . 42.180 . . I ,.Total of 2 main streams .to confluence:,.•. . . ••• . . Flow rates before confluence point: .. . . .. ., . - : 120.418 .. 5.343 . . ., . .. . . .. •:. I .Maximum flowrates at confluence using above data: .1 • 122.907 :•... 42.80 .. . . ... .. . . . . Area of streams before. confluence: • . . . . 1 45550 0850 Resultsof confluence- Total flow rate = • . 122.907(CFS) . S S • Time of concentration = 20.156 mini- Effective -stream a rea aftQrconfluence = . 46.400(Ac.) H . ... . .; .. .,. . Process from Point/Station 206.000•to Point/Station . . I 207.000 . **** PIPEFLOW TRAVEL.TIME (User...specified.size) . Upstream point/station elevation .= 261.80(Ft.). I .Downstream point/station elevation 261.20(Ft.) . . . Pipe length = . . 6000(Ft.) . Manning's N = 0.013 • . No. of. pipes = 1 Required pipe.flow = 122.907(CFS). . .. I ...Given pipe size = 48.00(In.) . . .. ., . . . . Calculated individual pipe flow. 122.907(CFS) . . . . Normal flow depth in pipe= 34.17(In.) . . . . . . I . Flow top width inside.pipe • :.43.481n.. Critical Depth = 40.01(In.) S . Pipe flow velocity = S 12.84(Ft/s) Travel, time, through pipe = . 0.08 mm. . . ., ,.. • . . , . . . I Time of concentration (TC) = 20 23 min. Process from Point/Station 207.000 to Point/Station 207.000 **** CONFLUENCE OF MAIN STREAMS. The following dat,a 'inside Main Stream is listed: In Main Stream number: 1 '. .. . . . Stream flow area = 46.400(Ac.), . Runoff from this stream = 122..907(CFS) . Time of concentration = 20.23 mm. . Rainfall intensity = . 2.941(In/Hr) . Program is now starting with Main Stream No. 2 . Process from Point/Station .280.000 to Point/Station . , '281.000 ,**** INITIAL AREA EVALUATION User specified 'C' value'of 0.900 given for subarea Initial subarea flow distance: = .405.00 (Ft.) Highest elevation 287.20(Ft.) Lowest elevation = 279.80(Ft.) Elevation difference '= ' 7.40(Ft.) . .. . Time, of concentration calculated by the urban areas overland flow method (App X-C) = 5.93 mm... TC = [1.8*(1'.1-C)*distance.5)/(% slope(1/3)) . TC= [1.8*(l.l-0.9000)*(405.00.5)/( 1.83(1/3)]= 5.93 Rainfall intensity (I);-= 6.493 'for a '100.0 year' storm 'Effective runoff coefficient used for area ,(Q=KCIA) is C = 0.900' Subarea runoff = .5.260(CFS) Total initial stream area = 0 900(Ac ) I I . Process from Point/Station 281.000 to Point/Station 282.000 *'*** STREET FLOW TRAVEL TIME '+ SUBAREA FLOW ADDITION **** Top of street segment elevation=" 279.800(Ft'.) I .End of street segment elevation = . •268.700(Ft.) Length of street segment = 864.000(Ft.) ' Height of.curb above gutter flowline = ' ' 6.0(In.) I. . Width of half street (curb to crown) = 53.000(F.) Distance from crown to crossfall grade break , = 51.500(Ft.) Slope from gutter to grade break (v/hz) . 0.087, I. ' Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the'street ' S Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = '0.020— Gutter width = 1.500(Ft.), ' ', •• Gutter hike from flowline = 2.000(In.) .Manning's N in gutter = 0.0150 • ' S Manning's N from gutter to grade break = 0.0150 Manning's N from grade .break to-crown = 0.01,50 • Estimated mean flow rate at midpoint of street = 9.058(CFS) Depth of flow'= 0.454(Ft.) S ' •• , I ' Average velocity = 3.455(F.t/s) ' ' -•• ' ' S • Streetfiow hydraulics at midpoint of street travel: ' • Halfstreet flow width = 15.873(Ft.) 1 •. ':', .5 ,. Flow velocity = 3.45(Ft/s) Travel time 4.17 mm. TC = 10.09 mm. I : Adding area flow to street . . S User specified 'C' value of 0.900 given for subarea Rainfall intensity ..4'.605(In/Hr) for a 100.0 year storm I Runoff coefficient used for sub-area, Rational method,Q=KcIA, C = 0.900 Subarea runoff = 5.388(CFS) for 1.300(Ac.) Total runoff = 10.648(CFS) Total area = 2'.20(Ac.) Street flow at end of street = . . 10.648(CFS) - 1 . Half street flow at end of street = 10.648(CFS) Depth of flow =. 0.476(Ft.). Average velocity = 3.580(Ft/s) Flow width. (from curb towards crown)= 16.946(Ft.) I Process from Point/Station . 282.000 to Point/Station 282.000 **** CONFLUENCE OF MINOR STREAMS I .. Along Main Stream number: . 2 in normal stream number 1 . Stream flow area = 2.200(Ac) Runoff, from this stream = : 10.648(CFS)- Time of concentration = 10.09 min. I . Rainfall intensity..= 4.605(In/Hr) . I Process from Point/Station 285.000 to Point/Station 286.000 **** INITIAL AREA EVALUATION ** I User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 300.00(Ft.) ' Highest elevation = 286.50(Ft.) Lowest elevation = 280.10(Ft.) Elevation difference = 6.40(Ft.) Time of concentration calculated by the urban I :areas overland flow method (App X-C) = 4.84 mm. TC = [1.8*(1.1-C)*distance.5)/(% slope(1/3)J TC=[1.,8*(l.l_0.9000)*(30000.5)/( 2.13(1/3))= 4.84 I Rainfall intensity (I) = 7.395 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C =0.900 Subarea runoff = 2.862(CPS) Total initial stream area = 0.430(Ac.) I Process from Point/Station 286.000 to Point/Station ' 282.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation= 280.100(Ft) End of street segment elevation = . 268.700(Ft.) S Length of street segment.' = 761.000(Ft.) Height of.curb above gutter flowline .= • 6.0(In.). I Width of half street '(curb to crown) = 53.000(Ft.)- : • Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) 0.087 Slope from grade break to' crown (v/hz) = 0.020,. Street flow is on (I) side(s) of the 'street Distance from curb to property line. = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 5 Gutter width = 1 500 (Ft ) Gutte• hike from f1oline= 2.000(In.) I .Manning's N :in gutter . 0.0150 . . Manning's N from gutter to grade break = 0.0150 .. . . . Manning's N from grade break to-crown = .0.0150 . . Estimated mean flow rate at midpoint of street = ..6.5'23(CFS) I .. . Depth of flow = 0.405(Ft.) . Average velocity = . 3.420(Ft/s) ... . . . Streetfiow hydraulics at midpoint of street travel: '•:• I' . •,.Halfstreetflow.width = 13.433(Ft.) .. . . • . . Flow velocity = 3 42(Ft/s) Travel time = 3 71 mm TC = B.'55' mm I Adding area flow to street User. specified 'C' value of 0.900.given.for subarea •' . Rainfall intens .1 ity : '5125(In/Hr) for a 00.0 year storm Runoff coefficient used forsub-area, Rational method,Q=KCIA, C 0.900 I Subarea runoff ..= 5.074(CFS) for 1.100(Ac.).' : Total runoff =. . . 7.936(CFS) Total, area = 1.53 (Ac.) ' Street flow at end of street = . . •. 7.936(CFS) . . . • I ... Half street flow at end of' street = . 7.9.36(CFS). . Depth of flow = 0 428(Ft ) Average velocity = '3.565(F.t/s) l Flow width (from curb towards crown)= 14 572(Ft ) .I . Process from.Point/Station . 282.000'toPoint/Station . 282.000 ****'CONFLUENCE OF MINOR STREAMS . . S. I . Along Main Stream number: 2 i normal stream number 2 Stream.f low area = -l.530(Ac.). . . '. Runoff from this stream = .. 7.936(CFS) . ..-. ,. Time of concentration =, 8:55 mm.' 1 .Rainfall intensity. = . 5.125(In/Hr). . .5. . Summary of stream-data: •. . . . ..- . . •,. . . . : . . I ..Stream 'Flow rate . TC . •. Rainfall Intensity . . ;No.. . (CFS). . .. (mm) -• . . . (In/Hr) . . . I i 10.648 10.09.4.605 2 7936 855 5125 Qmax(1) = •. . . - .... . . . '. I . . 1.000 * .' 1. , 000 * 10.648) .0.899 * .060 *,. 7.936) Qmax(2) = 5- . . . . . . . .5 • 1.000 * 0.847 *., . :10.648) ,+ • . I .. . . 1.000 *• 1.000 *. .7.936)+ 16.957 Total of-2 streams to confluence: -. .' .. . . I Flow rates before confluence point:. .. . . - 10.648 '. . 7.936 Maximum flow rates at confluence using above data: .' .. I .. . 17.77.9 . . 16.957 . • . . .: . . . . . Area of streams before confluence:- 2.20.0. P1.530 . . . .. . -. I . :Results of-confluence:., •. . :. , •• •; S Total flow rate= 17.779(CFS) S •• .. _S5._. • Time of concentration-= 10095 mm. Effective stream area after confluence - .3.730(Ac.) . S .5. I I : Process from Point/Station282.000 to Point Station 207.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 264.50(Ft.) Downstream point/station elevation = 262.45 (Ft.) ' Pipe length '. 73.00(Ft.) Manning's N = 0.013 . I No. of pipes = 1 Required pipe flow = . 17.779(CFS) Given pipe size. = :'' 18.00(In.) . Calculated individual pipe flow = '1.7.779(CFS) ' '• Normal flow depth in pipe =.. '14.91(In.) " I Flow, top width inside pipe.= 13.58(In.) Critical depth could' not be. calculated. : Pipe flow 'velocity = . .'11.35(Ft/s) I .. Travel time through pipe= , 0. 11 mm.' Time of concentration (TC)' .= ' 10.20 mm.' I ' ' Process'from PoInt/Station:207.000 to Point/Station..' 207.000 **** CONFLUENCE OF MAIN STREAMS .1 The following data inside Main Stream is listed: In Main Stream number: 2 .' '• ' ' .. ' ' . Stream flow area ='3.730(Ac.') "Runoff from this stream = ' 17.779(CFS) Time of concentration = ' 10.20 mm. ''Rainfall intensity = 4.574(In/Hr) I Summary of stream.data: Stream Flow rate . TC ' : ' Rainfall Intensity No (CFS) (mm) (In/Hr) 122.907 20.23 ,. ' 2.941 I . ' 2 17.779 ' 10.20 .' 4.574 Qmax(1) 1.000 * ' 1.000* 122.907) I . 0.643, * .1.000 * .' 17.779)..+ = 134.337 .. I Qmax(2) 1,000,_* 0.504. * . , 122.907) + ' 1.000 * 1.-000.* 17.779) + =. .79.746 I , Total-of 2 main streams'tö cOnfluence: Flow rates before confluence point: . 122.907 ' ', 1 7.779 Maximum flow rates at.confluence'using above data: 134.337 79 746 I Area of streams before confluence: 46.400 3.730' I . 'Results of,confluence: Total flow, rate = 134.337(C'FS)'.. Time.of concentration = 20.234 min. • . . I 'Effective stream area after'.confluence' = ' 50.130(Ac.) I Process from Point/Station. : 207.000 to Point/Station . 208.000 I **** PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation 261.20(Ft.) . . I ..Downstream point/station elevation=. 261.00(Ft.) . Pipe length = . .20.00(Ft.) . Manning's N 0.013 . -.. No. of pipes..=.. i. Required pipe flow 134.337(CFS) . Given pipe size = 48.00 (In.) . •. . • ... .. I .Calculated individual pipe flow = 134.337(CFS) . '.• Normal flow depth in -pipe' = 36.84(In.) . . . Flow top width inside pipe .= 40.55(In.) I .. Critical'Depth.= .41.47(In.) . . . . .• . . Pipe flow velocity 12.99 (Ft/s) .. . S Travel time through pipe = 0.03 mm. . . . . Time of concentration (TC) = 20.26. min. I . Process from Point/Station 208.000 toPoint/Station . 208.000 ****.CONFLUENCE OF MAIN STREAMS I . The following data inside .Main. Stream is listed: . In Main Stream number: 1. . • • Stream flow area = 50.130(Ac.) . . . . . . . Runoff from this stream 134.337(CFS) 5 . I Time of concentration = 20.26 min.'. . .. Rainfall intensity = 2.938(In/Hr). . . . . .. Summary of stream data: . . . . I Stream Flow rate TC . . Rainfall Intensity. . . No (CFS) (mm) (In/Hr) 1 134 337 20 26 .2 .938,, Qmax(1) I . . . 1.000. * 1.000 * . 134.337) + = ,. Total of 1 main streams. to confluence: .. • • . I . Flow rates before confluence point: . . . .. . 134.337. Maximum flow rates at confluence using.. above data:. .134.337 Area of streams before confluence: S .... 50.130 I Results of confluence: .5. . Total flow rate 134.3.37(CFS) Time of concentration =: 20.260 mm. . . . . . ., Effective stream area after confluence = 50.130 (Ac.)' I . Process from Point/Station .240-000 to. Point/Station 241.000 **** INITIAL AREA EVALUATION **** . . . '• S Decimal fraction soil group A = 0.000 . • . . Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.10001.- Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ) I Time of concentration computed by the natural watersheds nomograph (App X-A) TC = (11.9*length(Mi)3)/(elevation change)].385 *60(mjn/hr) + 10 mm. Initial subarea flow distance 1025.00(Ft.). 1 Highest elevation = 322.00(Ft.) Lowest elevation = 289.80(Ft.) Elevation difference 32.20(Ft.) I TC=[(11.9*0.19413)/( 32.26)].385= 6.16 + 10 mm. = 16.16 mm. Rainfall intensity (I) = '3.400 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 7.803(CFS) I Total initial stream area = 5.100(Ac.) I Process from Point/Station 241.000 to Point/Station 252.000 **** PIPEFLOW TRAVEL TIME '(User specified size) **** I Upstream point/station elevation = 285.40(Ft.) Downstream point/station elevation = 285.00(Ft.) I ' Pipe length = 22.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.803(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow 7.803(CFS) I Normal flow depth in pipe = 8.28(In.) Flow top width inside pipe = 22.82(In.) Critical Depth = 11.93 (In.) I Pipe flow velocity = 8.12(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 16.20 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 252.000 to Point/Station 252.000 I CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 I Stream flow area = 5.100(Ac.) Runoff from this stream = 7.803(CFS) Time of concentration = 16.20 mm. I Rainfall intensity = 3.394(In/Hr) Program is now starting with Main Stream No. 2 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 250.000 to Point/Station ' 251.000 I **** INITIAL. AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 375.00(Ft.) I Highest elevation = 317.00(Ft.) Lowest elevation = 306.80(Ft.) Elevation difference = 10.20(Ft.) I Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.99 mm. TC = ['l.8*(1.l_C)*djstance.5)/(% slope(1/3)) TC = [1.8*(1.1-3.9000)*(375.00.5)/( .2.72(1/3)]=. 4.99 I Rainfall intensity (I) = 7.251 for .a 100.0 year storm Effective -runoff coefficient used for area (Q=KCIA) is C = O..9OO Subarea runoff = 3.785(CFS). I •. Total-initial stream aréa= . 0.580(Ac.) . I - Process from.Point/Station 251.000 to Point/Station 252.000 **** STREET -FLOW TRAVEL TIME .+ SUBAREA FLOW ADDITION.**** I Top of street segment elevation = . 306.800(Ft.) End.of street segment elevation = 289.200(Ft.) I .Length of street segment = 785.000(Ft.). Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) I . Slope from gutter to grade break (v/hz) = .. .0.087 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1) side(s) of the street I Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) .= 0.020 Gutter width = 1.500(Ft.) : I Gutter hike from flowline =. 2.000(In.) Manning's N in gutter = 0.0150 . . Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown = 0.0150 I . Estimated mean flow rate at midpoint of street= . 7.505(CFS) Depth of. flow = 0.39.9(Ft.) Average velocity = 4.131(Ft/s) I Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.092(Ft.) . . . Flow velocity = 4.13 (Ft/s). Travel time = 3.17 min. TC =' 8.16 mm. I •Adding area flow to street U - ser specified 'C' value of 0.900. given for -subarea Rainfall intensity = . ; 5.282(In/Hr) for a 100.0 year storm I .Runoff coefficient used for sub-area,-Rational method,Q=KCIA, C = 0.900 Subarea runoff = . 5.420(CFS) for . 1.140 (Ac.) Total runoff = 9.205(CFS) Total area =. 1.72(Ac.) I Street flow at end of street = . . 9.205(CFS) Half street flow at end of street = 9.205(CFS) Depth of flow = . 0.422 (Ft.) . Average velocity = 4.312(Ft/s) I Flow width (from curb towards Crown) = 14.255 (Ft.) I Process from Point/Station . 252.000 to Point/Station 252.000 CONFLUENCE OF MAIN STREAMS **** I .The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.720(Ac..) . .. . . I .Runoff from this stream = . 9.205(CFS) Time of concentration = 8.16 mm. Rainfall intensity = . 5.282(In/Hr) . . .. . I Summary of stream data: Stream Flow rate TC . Rainfall Intensity No. (CFS) . (mm) . (In/Hr) I Ii 7 803 16.'20- 3 394 2 9205 816 5282 Qmax(i) 1.000..* ''1.000' * 7 803)+ I 0.643 * 1.000 * ..'9.205);+ 13.717 'V Qmax(2) •, '.' V V , V 1.000 * 0.504, * 7..803).- + I i 000 * 1.000 * 9.205) + = 13-.135 Total of 2 main streams to confluence Flow rates before confluence point: ' . , . •, ' , I 7803 9.205 Maximum flow rates at confluence using above data - ... '. 13.717 13.135 I .. Area of streams -before confluence:' 5.100 1.720 I •' ' Results of' confluence: ' V ,' , •, .. V Total flow rate = 13 717(CFS) Time áf' concentration .16.203mm. V " •' I ' Effective stream area after confluence = V 6.820(A.c.)".'.. . V I , ' ++++++++++++++++.++.+4++++++++++++++++++++++++++++++++++++++++.'+4+++ Process from-Point/Station.' . .' "252.000 to Point/Station:' 263.000 'V ****PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station'elevation = :284.77(Ft.) V , Downstream point/station' elevation = ';266.30(Ft..) . '.. ' . . V ' '• , ' Pipe length = ' 146.00(Ft.) V 'Manning's N 0.013 .' No. of pipes =1' Required pipe flow.. = ,- 13.717(cFs) Given pipe size = . ' 24.00(In.) Calculated individual pipe flow '= ' 13.7.17(CFS)' .' . ,I Normal flow depth .in pipe' = , 6.70(In.): . Flow top width inside pipe = -21.54 (In ) Critical Depth. = ' 15.99(In.). Pipe flow velocity .=' 19.11(Ft/s). I . Travel time through pipe = V '0.13 mm. Time of concentration (TC) = 16.33 mm I . Process from Point/Station: ' '263.000 to-Point/Station . 263.000 I ****.CONFLUENCE OF MAIN STREAMS **** The' following data inside Main Stream is 'listed: - , V In Main Stream number: I " ' Stream flow area =. V , 6.'820(Ac.) Runoff from, this stream = ,V 13.717(CFS) . , , , . ' •V , V Time of concentration =' '16.33 mm. Rainfall intensity '= , V. 3.377(In/Hr) I ' Program is now starting with Main. Stream. No. 2 Process from Point/Station260.000-to Point/Station 261.000 ****.INITIAL AREA EVALUATION I , V ' , , V V , V V V , V ,• , V , V ,, V , V I User specified 'C' value of 0.900 given for subarea I; Initial subarea flow distance = 255.00(Ft.) .. Highest elevation 305.80(Ft.) . . Lowest elevation = 305.00(Ft.) Elevation difference = 0.80(Ft.) . . .. I Time of concentration calculated-by the urban areas overland flow method (App-X-C) = 8 46 min. TC = [1.8*(1.1-C)*distance.5)/(% slope(1/3)) - I TC= (1.8*(1.1-0.9000)*(255.60.5)/( .,0.31!-(1/3)]= •8.46 Rainfall intensity (1) = 5.161 for a 100.00 year storm Effective runoff coefficient used for. atea (Q=KCIA) is C= 0.900 Subarea runoff 1.719(CFS) . 1 Total initial stream area = 0 370(Ac. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 261.000 to Point/Station .262.000 **** STREET FLOW TRAVEL TIME. + SUBAREA FLOW ADDITION **** Top of street segment elevation = :305.000(Ft.) . . End of street segment elevation = 286.500(Ft.) Length of street segment = 675.000(Ft.) . Height of curb above gutter flowlmne = 6 0(In ) Width of half street (curb to crown) 53.000(Ft.) . . Distance from crown to crossfall grade break = 51.500 (Ft.) Slope from gutter to grade break (v/hz) = . 0.087. Slope from grade break to crown (v/hz) =. 0.020 Street flow is on [1] side(s) . of the street Distance from curb to property line = 10.000(Ft.) .. Slope from curb to property line (v/hz).,= 0.020 Gutter width= 3.500(Ft.) . .. . Gutter hike from flowline = 2.000(In.). Manning's Nm gutter = .0.0150 a . . . .1 . Mnning's N from gutter to grade break = 0.0150 . Manning's N from grade break,tô crown .= 0.0150 Estimated mean flow rate at midpoint of street-.= - 3.995(CFS) Depth of flow =. 0.327(Ft.) . Average velocity =3.969(Ft/s) . . . . . .. - Streetflow hydraulics at midpoint of. Street travel: Halfstreet flow width =9.508(Ft.) . . . . . Flow velocity, 3.97(Ft/s) . . . Travel time .= 2.83 mm. TC= 11.29 mm. Adding area flow to street . . . User specified 'C'. value of 0.900 given for subarea . . Rainfall intensity = . 4.283(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900. Subarea runoff =.3..778(CFS) for . 0.980(Ac,) . Totalrunóff = 5.497(CPS) Total area = . 1.35(Ac.) Street flow at-end of street = . . 5.497(CFS) . . Half Street flow at end of street =. 5.497(.CFS) Depth of flow= 0.356(Ft.) .. . Average velocity = 4.208(Ft/s) . . . Flow width (from curb towards crown)= 10.971(Ft.) Process from Point/Station 262.000 to Point/Station 263.000 ,**** PIPEFLOW TRAVEL TIME (User specified size) ****. . I Upstream point/station elevation = . 282.50(Ft.) Downstream point/station elevation = . 266.55(Ft.) : .. Pipe lengthf = 35,.00(Ft.) Manning's N =' 0.013 . . . No—of pipes = 1 Réquiredpipeflow .= .5.14917 (CTS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.497(CFS)' Normal flow depth in pipe '= . 3.39(In.,) •. :. Flow top width 'inside' pipe 14.07(In.) . . . . .• Critical Depth = 10.84('In'.) I - ,' Pipe flow velocity = . 23.81(Ft/s.)' . •. . . •. " ... Travel time through pipe =. 0.02 mm. Time of concentration (TC) = 11.32 min. Process from Point/Station 263.000 to Point/Station 263.000 I ****' CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: 1 In Main Stream number: 2' •. . .. . . ' •." . ' Stream flow area = 1.350(Ac.) ' .'. . . • Runoff from this stream'=. 5.497(CFS) I ..Time of concentration = 11.32,min. " •. - •. Rainfall intensity. = . . . 4...278'(In/Hr). ,. .• . . Summary of stream data: . •• ' . : . I ,Stream Flow rate ." . TC . .• Rainfall, Intensity No (CFS) (mm) (In/Hr) 1 13.717 16 ..33 3377 2 ' 5.497- . . 11.32 ' . . " .4.278 . .. . .•. I .. Qm1) '1.1000' *' 1.000 * : 13.717) + -• •. . . . , 0.789 .*. '1.000 * ' , '5.497) '+ = 18.057 . Qmax(2) I . . 1.000 * 0.693 * 13.717) + . S 1.000 * . -1•.000 ". 5.497) + =. - 15.005 ., I .Total'of .2.main streams to confluence;' Flow' rates before, confluence point: 13.717 . . 5.497 . Maximum flow -rates at confluence.. using above data: .18.057 . 15.005 ' • • . ' . ,:. - ' Area of streams before confluence: . • 6.820 1.350 , • , - . . .. , " , Results of confluence: - - . •' . - •. : • • I . Total flow rate = - 18.057(CFS) - Time of. concentration = 16.331 mm. ."' • '5 'S Effective stream area after confluence = S • 8.170(Ac,.).' Process from Point/Station . . ,. -263.000 to Point/Station 264.000 i S PIPEFLOW TRAVEL TIME (User specified size) - **** . - - S. • L Upstream point/station elevation = 266.30(Ft.) Downstream point/station elevation = '262..00(Ft.) I Pipe length = 34 0O(Ft ) Manning's N = 0 013 No, of pipes = 1 Required pipe flow . 18.057(CFS)'' I Given pipe size = 24 00(In ) Calculated individual pipe flow = 18.057(CFS) 0 Normal flow depth in.pipe, = .7.73(In) Flow top width inside pipe = 22 43(In ) I Critical Depth= 18.36(In.) . Pipe flow velocity = .: 20.65(Ft/s) . . Travel time through pipe = 0.03 mm. .. . . Time of concentration (TC) =. 16.36 min. I . Process from Point/Station 264.000 to Point/Station 264.000 **** CONFLUENCE OF MAIN STREAMS **** U ..The following data inside Main: Stream is listed: : In Main Streamñümber: 1 . . .... . Stream flow area = . •8.170(Ac.) . . • . I .Runoff.from this. stream . 18.057(CFS) . . . Time of concentration 16.36 mm. . . .. Rainfall intensity = . . 3.373(In/Hr) . . . Summary. of stream data: .. . 1 . . Stream. Flow rate •TC Rainfall Intensity . - No. . (CFS) ., (mm). . . . . (In/Hr) . 1 18057 1.6.36, 3373 Q(l) = . . ... . . . . . . . . . . I . .. • 1.000 * 1.000* 18.057) + 18.057 Total of I main streams to confluence: . . . I . Flow rates before confluence point: . .. . . . 18.057 . . - 0• 0 . Maximum flow rates at confluence using above data: . . 18.057 I .Area of streams before coñfluencè: 8 170 I Results of confluence Total flow rate = . 18.057(CFS) . . . . . . . Time. of concentration = 16.358 mm. .. . Effective stream area after confluence . ,8.170(Ac.) : 1 .. Process from Point/Station. . 299.900 to Point/Station299.000 INITIAL AREA EVALUATION I Decimal fraction soil group A = 0.000 0 Decimal fraction soil group B = 0.000 0 • • I Decimal fraction soil group C = 0.000 . .. . Decimal fraction soil group.D =ri.000 . [RURAL (greater than 1/2 acre) area type ) 0 • Time ofconcentration computed by the •. - •- : natural, watersheds nomogràph (App X-A) • . . . .. . • . . , TC = (11.9*1ength(Mi)3)/(elevation change)].385 .*60(min/hr) '+ 10 mm. Initial subarea flow distance' = 570.00(Ft.) . • 0 : I Highest elevation = 420.00(Ft.) . . Lowest elevation = 395..00(Ft.) Elevation difference = 25.00(Ft.) . . . . TC=[('11.9*0.10803)/( 25.O0)].385= 3.45 +.10 fun. = 13.45 mm. Rainfall intensity (I) = 3.828 for a . 100.0 year storm Effective runoff coefficièntused.for area (Q=KCIA) is C.,=.0.450 Subarea runoff = : 4.737(CFS) 0 ,.. Total initial stream area '=-. 2'..7.5 0 (Ac ) Process from Point/Station 299.000 to Point/Station 298.000 I •**** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow. =. 0.11O(Ft.) . . . . . ,.. •. Average.veloóity = . 1.768(Ft/s) . .. : . IrregularChannél Datà*********** :. ------------------------------------------------ ----------------- InformatIon entered for subchannèl'number 1 : I.. Point number 'X' coordinate : 'Y'. coordinate. .. 1 . 0.00 . ,2.00 ,. 0 2 . .• 8.00 . . •• 0.00 . 0• 3 . . •. 32.00. •• : •: 0.00 •. . . I . .. 4 . . . . . . 40.00 2.00 Manning's 'N.' friction factor = . 0.040 . . I .. Sub-Channel flow. •4.737(CFS) . . . . ' . • flow top width = . . 24877Ft.) .• . 1 velocity . 1.768(Ft/s) . . . . . I area = 2.679(Sq.Ft) . . Froude number = 0.950 Upstream point elevation = 395.000(Ft.) . . . . . . .,. Downstream point elevation = 281.600:(Ft.) • . ,. . Flow length = 2560.000(Ft.) . . . . . Travel time = 24.13 mm. . . . Time of concentration = ., 37.57 mm. . . Depth of flow = 0.110(Ft.) • . . . . .. Average velocity = . 1.768(Ft/s) .. . I .Total irregular. channel flow = : . 4.737(.cFs) . Irregular channel normal depth above invert elev. = 0.110 (Ft.) Average velocity, of chanhel(s) = l.768(Ft/s) . .. . . . I . Sub-Channel No. 1 critical depth . 0.105(Ft.) 1 I critical flow top width = 0 24.844(Ft..) I . • ' I . critical ..flow velocity=' l.839(Ft/s) critical flow.area = 2'.576(Sq.Ft) I Process from Point/Station 299.500 to Point/Station 298.000 **** SUBAREA FLOW ADDITION **** •r : ... . I . • Decimal fraction soil group A = 0.000 Decimal fraction soil group..B = 0.000 . • . • . •. . . I Decimal fraction soil. group C = 0.000' 0 . Decimal fraction soil group D.= 1.000 : [RURAL (greater than 1/2 acre) area type 0 Time of concentration = 37.57 min.. 0 • I I Rainfall intensity = . 1.973(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 Subarea runoff = . . 28.898(CFS) for 32.550(Ac.) I Total runoff = 33.635(CFS) Total area = 35.30(Ac.). I . Process. from Point/Station .298.000 to Point/Station 297.000 PIPEFLOW TRAVEL TIME (User specified size) I Upstream point/station elevation = 282.00(Ft.) Downstream point/station elevation = 279.73 (Ft.) Pipe length = . 99.00(Ft.) Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = . . 33.635(CFS) Given pipe size = 36.00(In.) . Calculated individual pipe flow, 33.635(CFS) I Normal flow depth in pipe= 14. 31(In.) . Flow top width inside pipe = 35.23 (In.) Critical Depth = 22.58(In.) .. 1. . Pipe flow velocity = 12.85(Ft/s) . . Travel time through pipe = . 0.13 mm.. . V Time of concentration(TC) = 37.70 mm. U . . ++++++++++++++++++++++++++++++++++++++++++++++++++++*+++++++++++++++++ Process from Point/Station 297.000 to Point/Station 297.000 CONFLUENCE OF MAIN STREAMS **** V V V The following data inside Main Stream is listed: V In Main Stream number: 1 . V I .Stream flow area = 35.300(Ac.) Runoff from this stream 31.635(CFS) Time of concentration = 37.70 mm...: V I .Rainfall intensity= 1.969(In/Hr) - . Program is now, starting with Main Stream No. 2 V l +++++++++++++++++++++++++++++±++++++++++++++++++++++++++++ ++++++++++++ Process from Point/Station .. 265.000 to Point/Station 266.000 **** INITIAL AREA EVALUATION **** S •' . . . . I User specified 'C' value of 0.900 given for subarea V Initial subarea flow distance 300.00(Ft.) V I Highest elevation = 307.00(Ft.) V Lowest. elevation = 300.00(Ft.) Elevation difference = 7.00(Ft.) . Time of concentration calculated by the urban I areas overland flow method (App XC) = . 4.70 mm. TC = [1.8*(1.1-C)*distance.5)/(% slope(1/3)) TC = [1.8*(1.1-0.9000)*(300.'00.5)/.( 2.33(1/3)1= 4.70 I Rainfall intensity (I) V .7.539 for a .100.0 year storm V . Effective runoff coefficient used for areaV (Q=KCIA) is C = 0.900 Subarea runoff = 1.900(CFS) V V V Total initial stream area . 0.280(Ac.) V V + +++ +++ ++ + + +++++++++++++++++++++++++ +++++++++ +++++++ +++ +++++ ++ +++++++ + I Process from Point/Station V 266.000 to Point/Station V 267.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I I Top of street segment elevation = 300.000(Ft.) V End of street segment elevation = 291.000(Ft.) V I Length of. street segment 790.000(Ft.). V Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = . 41. 000(Ft. ) V Distance from crown.to crossfall grade break = 39.500(Ft.) I .. Slope from gutter to grade break (v/hz) = .0.087 V V Slope from grade break to crown (v/hz) = 0.020 .. . Street flow is on [1].side(s) of the street I Distance from curb :to property line = 10'. 000 (Ft.) V. V Slope from curb.td property line (v/hz) = 0.020 ', V Gutter width = 1.500(Ft.). V Gutter hike from flowline = 2.000(In.) . . . I V Manning's Win gutter = 0.0150 V V V Manning's N from gutter to grade break =' 0.0150 V V Manning's N from grade break to crown= 00150 V V I -Estimated mean flow rate at midpoint of street =' V 4.444(CFS) Depth of flow = 0.379 (Ft.') V V Average velocity = 2.836(Ft/s)' I Streetflow hydraulics at midp9int of street travel: V V Halfstreet flow width = . '12102(Ft) V V V Flow velocity =. 2.84(Ft/s) V Travel time =. 4.64 mm. VV TC = 9.34 mm. . I V Adding area flow to street V User specified 'C' value of .0.900 given for subarea; '' V Rainfall intensity .— V. V,4.841(.In/Hr) for a .100.0 year storm I. . Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = '3.268(,CFS) for' 0.750(Ac.) Total runoff = V 5.167(CFS) Total area = V 1.03(Ac.) . V Street flow at end Of Street I . Half street flow at end of 'street = V 5.167(CFS) V, Depth of 'flow Average velocity'= . V2.924(Ft/S) V ' Flow, width, (from curb towards crown)= 12.902(Ft.) - I Process fromPoint/Station . . 267.000 to Point/Station 297.000 **** PIPEFLOW TRAVEL TIME V(User specified'size) I V Upstream point/station elevation =. 288.60(Ft.) Downstream point/station elevation =. 279.73(Ft.) , V Pipe length = 380.00(Ft.) V Manning's N =0.013 I. No. of pipes = 1 'Required pipe flow = V 5.16V7(CFS) Given pipe size = . 18.00(In.) Calculated individual pipe flow = ' 5.167(CFS) I Normal flow depth in pipe = 7.03 (In.) Flow ,top width inside pipe'= ' 17.56(In.) V Critical Depth =. '10.50(In.) Pipe 'flow velocity = V ' ,8.09(Ft/s) I Travel time through pipe = ' 0.78 mm. Time of concentration (TC) = ' 10.13 mm. I ++++++++++++++++++++++++++++++++++.+++V+.+++.+.+..+++++++.++...+.+++. V Process from Point/Station , 297.000 to Point/Station , 297.000 CONFLUENCE OF MAIN STREAMS The.-following data inside Main Stream is listed: V ' in Main' Stream number: 2 I Stream flow area = 1.030(Ac'.) Runoff from this stream = , 5.167(CFS) Time of concentration = '10.13 mm. Rainfall intensity = 4.596(In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 255.000 to, Point/Station 256.000 INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 200.00(Ft.) Highest elevation.= 291.00(Ft.) Lowest elevatiOn = 287.80(Ft.) Elevation difference = 3.20(Ft.) Time of concentration calculated by the urban. areas overland flow method (App X-C) = 4.35 mm. TC =[1.8*(1.1-C)*distance.5)/(% slope(1/3)) TC = [1.8*(1.1-0.9000)*(200.00.5)/( 1.60(1/3)]= 4.35 Rainfall intensity (I) = 7.923 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 1.640(CFS) Total initial stream area'= 0.230(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++-I-+++++++++++++++++++ Process from Point/Station 256.000 to Point/Station 257.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 287.800(Ft.) End of street segment elevation = 283.900(Ft.) Length of street segment = 300.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 71.000(Ft.) Distance from crown to crossfall grade break = 69.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to -grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.779(CFS) Depth of flow = 0.356(Ft.) Average velocity = 2.897(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 10.963(Ft.) Flow velocity = 2.90(Ft/s) Travel time = 1.73 mm. TC = 6.08 mm. Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity = 6.388(In/Hr) for a 100.0 year storm Runoff, coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 3.449(CFS) for 0.600(Ac.) Total runoff = ' 5.090(CFS) Total area = 0.83 (Ac.) Street flow at end of street = 5.090(CFS) I [I I I U I I I I I I I I I El I I I . Half street flow at. end of street = . 5..090(CFS). .. •. Depth of flow = 0.386(Ft.') . . . . . ... . ... Average velocity = 3.072(Ft/s) . .. .. . ... .. I Flow width (from. curb towa.rds.crown)= 12.466 . . (Ft.) : I . : Process from Point/Station 257.000 to Point/Station . 297.000 ** PIPEFLOW TRAVEL TIME (User specified size) **** I ... Upstreampoint/station elevation 280..50(Ft.) . . Downstream point/station elevation = 279.73 (Ft..). . Pipe length. =. 105.00.(Ft..) . Manning I's N = 0.013 •. .. . I ... No. of pipes= 1 Required pipe flow . 5.090(CFS). Given pipe size = . 18.00(In.) . . . Calculated individual pipe flow = 5.090(.CFS) . . I ... Normal flow. depth in pipe = . 9.69(In..) .. . Flow top width inside pipe . 17.95 (In.)_ . 0 . Critical Depth.= 10.42(In.) . . . ... . . S •. Pipe flow velocity = 5.25(Ft/s) . .. . . I.. . Travel time throughpipe = . 0.33mm. .. . Time of concentration (TC) = Z.41 min. I Process from Point/Station . 297.000 to Point/Station . 297.000 I ****,CONFLUENCE OF MAIN STREAMS . ., . . The following data inside Main Stream is listed: . In Main Stream number: 3 . .. ., . ... . . .' . . .. ..I . Stream.flów area = 0.830.(Ac.) . . . . . S... Runoff from this stream = ., . 5.690(CF9) . • . . : Time of concentration =. . 6.41 mi .1 •: .. . . S. Rainfall intensity = . .. 6.171(in/Hr) . .. . . . I Summary of stream data . . Stream . Flow rate TC . . '. Rainfall Intensity .. . I . No. (CFS)' (•.) . . . ... (In/Hr) I i .33 .635 37.70 1.969 2 .5.167 10.13 . S 4.59.6 - 3 . . 5.090 6.41 . • S 6.1.71 . . Qmax(1) . . . . . ..• ... . S . 1.000 1.000'* .. 33.635) 0.428 * 1.000. * .5.167). ± • . .5• 5. . • . 0.319 * 1.000 * • 5.090) +.= . 37.471 • I .. Qmax(2) •. . . • . . • . . . . . 1.000 . •. 0.269 * 33.635) + • : . 1.000 * • 1.000 • .. 5.167) +• . • . . . I .: • 0.745 *-.1.000 * • 5.090) + . 5 17.991. • Qmax(3)•. .• 5 5. 5 S • . 5 1.0001 * 0.170 * . 33.635) + .. . . 1.000* 0.633 * 5.167)-f . . .• . S I • • ..••• .1.000 * S li . 5.090)+ = •. 14.082 Total of j.-main streams toconfluénce: . S • S . I Flow rates before confluence .point: . .' S • • . . • 33.635 - 5.167 5.090 • .. . S • • • Maximum ,flow rates at conflüeñce using above data: . .. S I 37.471 17.991 14.082 Area of streams before confluence: 1 35.300 1.030 0.830 I Results of confluence: Total flow rate . 37.471(CFS) Time of concentration = 37.703 min'.. Effective stream area after confluence = 37.160(Ac.) ...................................................................... I . Process from Point/Station 297.000 to Point/Station 296.000 PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 279.40(Ft.) Downstream point/station elevation = 278.30(Ft.) Pipe length = 46.00(Ft.) Manning's N = 0.013. I No. of pipes = 1 Required pipe flow = 37.471(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 37.471(CFS) Normal flow depth in pipe = 15.00(In.) I ,. Flow top width inside pipe = 35.50(In.) Critical Depth = 23.88(In.) Pipe flow velocity = . . 13.43(Ft/s) Travel time through pipe = - 0.06 mm.. 1 . Time. of concentration (TC) = 37.76 min. I ++++++++++++++++++++++++++++++++++++++•+++++++++±++++++++++++++++++++++ Process from Point/Station . .296.000 to Point/Station 296.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: • In Main Stream number: 1 . I . Stream flow area 37.160(Ac.) Runoff from this stream = 37.471(CFS) Time .of concentration =. 37.76 mm. Rainfall intensity = 1.967(In/Hr) Program is now starting with-Main Stream No. 2 I Process from Point/Station 275.000 to Point/Station 276.000 **** INITIAL AREA EVALUATION **** 0 I User specified 'C' value of 0.900 given for subarea Initial subarea flow distance =. 300.00(Ft.) Highest elevation = 307.00(Ft.) 0 • I Lowest elevation = 300.00(Ft.) O Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban I. areas overland flow method (App X-C) = 4.70 mm. TC = [1.8*(1.1_C)*distance.5)/(% slope(1/3)) 0 TC = [1.8*(1.1-0.9000)*(300.00.5)/( 2.33(i/3)]= 4.70 Rainfall intensity. (I) = 7.539 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 2.918(CFS) 0 Total initial stream area = 0.430(Ac.) I •0 Process from Point/Station 276.000 to Point/Station 296.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION.**** Top of street segment .elevation,= 300.000(Ft.) End of street segment elevation = 283.700(Ft.) Length of street segment = 1180.000(Ft.,) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) ; Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.0.20 Street flow is on (1) side(s)-of the street Distance from curb to property line = 10..000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) ' Gutter hike from flowline = 2.000(In.) . Manning's N in gutter = 0.0.150 Manning's. N from gutter to 'grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = . . 8.685(CFS) Depth of flow = 0.444(Ft.) Average velocity = 3'.521(Ft/s) Streetfiow hydraulics at midpoint, of street travel: Halfstreet flow width = 15.375(Ft.) . Flow velocity = 3.52(Ft/s) . Travel time . 5.58 mm. TC = 10.29 min. Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity = 4.550(In/Hr) for a 100.0 year' storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.900 Subarea runoff = 6.961(CFS) for 1.700(Ac.) Total runoff = 9.879(CFS) Total area = 2.13 (Ac.) Street flow at end of street = 9.879(CFS) Half street flow at end 'of street = 9.879(CFS) Depth of flow = 0.461(Ft.)' . Average velocity.= 3.622(Ft/s) , Flow, width (from curb towards crown)= I6.202(Ft.) +++++.+++++++++++++++++++++++++++++++++++++++++++++++++++++++.+++++++++ Process from Point/Station 296.000.to Point/Station 296.000 **** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.130(Ac.) Runoff from this stream = ' 9.879(CFS) Time of concentration = 10.29 mm. Rainfall intensity = 4.550(In/Hr) Summary of stream data: I I Li Stream Flow rate TC No. (CFS) . (mm) 1 37.471 37.76 2 9.879 . 10.29 Qmax(1) = Rainfall Intensity (In/Hr) 1.967 4.550 I I I I F Li I I I I I 1 1 I I I Li I . 1.000 * 1.000 * .. 37.471) 4- 0. 432 1.000 * .9.879) +=. 41:741. I. ' Qmax(2)= . . . . '. . . . 1.000 *. 0.272 .* • 37.471) + . 1 000 * 1 000 * 9 879) + = 20.087 I Total -of 2-.main streams to confluence: . . Flow rates before confluence point:. . .. .... . . 37.471 9.879 •.•. . •. . .. . . I Maximum flow rates at confluence using above 41.741 20.:.087, Area of streams before confluence: i 37.160 2130 Results of confluence: I . Total flow.rate = . 41.741(CFS) . Time of concentration ,=-".37.760 mm Effective stream-area-after confluence . 39.290(Ac.) Process from Point/Station . 296.0.00 to Point/Station 295.000 I ****.IMPROVED CHANNEL TRAVEL TIME .. . . Upstream point elevation.= . 278.30(Ft.) . I . Downstream point elevation = 270.50(Ft.) .-•. . - Channel length thru subarea. = 555.00(Ft.) Channel base width =• . 4.000(Ft.) . . . •• Slope or 'Z' of left channel bank = 1.500 .I • . Slope or 'Z' of rightchaflnel bank .= i.500 .. . Manning's 'N' .= 0.015 MaximUm depth of channel = 2.500 (Ft.) . . .1 .Flow(q) thru subarea = . . 41.741(CFS) :. . . Depth of flow = 0.884(Ft.) Average velocity= . 8.861(Ft/s) . . . . ... I . Channel flow top width = 6.653 (Ft.-) . . . Flow Velocity = 8.86(Ft/s) •. .. . . . . Travel time = 1.04 min.•. . . . Time of concentration .=- 38.80 mm. I Critical depth = .. 1.266(Ft.).. . . . . . I . Process from -Po.int/Station,' 295.000 to Point/Station . .294.000 ** IMPROVED CHANNEL TRAVEL TIME.****. I . Covered channel . . . -. • Upstream point elevation = . 270.50(Ft.) .• . . Downstream point elevation = . 270.10(Ft.) - .., . . .• I. .Channel length thru.. subarea-,. 60.00(Ft.) . . . Channel base width .= 5.000(Ft.) . Slope or 'Z' of left channel bank = 0.000 . . . I .Slope or 'Z' of.right channel.bank= 0.000 . Manning's 'N' = 0.015 Maximum depth of channel = 2.500 (Ft.) . • . Flow(q) thru sübárea = . 41.741(CFS). . . . . . I Depth of.flow = 1.191(Ft.). . . . . . . . .. . . Average velocity = . 7..009(Ft/s) - . . . Channel flow top width .= 5.000(Ft.) . . . 1.. . I San Diego County Rational Hydrology Program CivilCADD/CivilDESIGN Engineering Software, (C) 1990 Version 2.3 Rational method hydrology ' program based: on '. . San Diego County Flood Control Division '1985 hydrology manual Rational Hydrology Study Date 1/31/91 EL CAMINO REAL/PALOMAR AIRPORT ROAD 300 AREA BASIN STUDY FILENAME: ELCAN3 L 200,4 JOB# 10365 --------------------------------------------------------------------- 2/1/91 ********* Hydrology Study Control Information ********** Rational ----------------- hydrology study storm event year is 100 0 Map data precipitation entered: ' 6 hour, precipitation(inches) 2.750. 24 hour precipitation(inches) = 4.'600 Adjusted 6 hour precipitation (inches) = 2 750 P6/P24 = 59 8% San Diego hydrology, manual 'C" values used .. . . ' Runoff 'coefficients by 'rational method . . . '. . *********** I N P U T D A T A L I S T I N G ************ Element Capacity Space Remaining = 347 Element Points and Process used between Points Number Upstream Downstream Process 1 300.000 301 000 Initial Area 2 . ' ,' ' 301.000 , ' - 3,02.000'' ' Pipeflow Time(user inp) 3 302.000 302 000 Main Stream Confluence 4 , 310.000 : ' ' 311.000 '., ' Initial Area 5 311.000 312.000 Pipeflow Time(user inp) 6 312.000 . . '313.000' ,. . 7.inp) Pipeflow Time(user 313.000 , ' ' 313.000 . .. ':. Confluence 8 340.000 313.000 Initial Area 313.00.0 .-' . 313.000 '' Confluence . 10 . ' , . .313.0.00 , , 302.0.00 Pipeflow Time(user inp) 302..000.. , 302.000 . . Main Stream Confluence 12 302 000 303 000 Pipeflow Time(user inp) '.13 ' ' 303.000. , ' 303.000 'Main Stream Confluence . 14 330.1000 331 000 Initial Area 15'' ' .331.000 ': 332.000 Street Flow + Subarea 16 . •, , -332.000.' 322.000' , Pipeflow Time(user jflp); ' 17 322.000 . . . 322.000 ' Confluence 18 320.'000'. 321 000 Initial Area 19 ' .321.000 '' 322.000 ,, ',. Street Flow .+ Subarea 20 ' 322.000 .322.000. ' Confluence '. 21 , . . '. 322.000 303.000 ., Pipeflow Time(user inp) ' 22 '. ' 303.000. 303.000 •.. Main Stream Confluence . 23 " . 303.000 " 304.000 ' . Pipeflow Time(user inp)' . End of listing 7 IM San Diego County Rational Hydrology Program Civi1CADD/CivilDESIGN Engineering. Software, (c) 1990 *,Version 2.3 Rational-meth " od hydrology program based on San Diego Couty. Flood Control Division 1985-hydrology manual Rational Hydrology Study Date: 1/31/91 EL CANINO REAL/PALOMAR AIRPORT ROAD, 300 AREA BASIN STUDY ' FILENAME: ELCAN3 L 200,4 JOB# 10365'. 2/1/91 ' Hydrology Study Control Information ********** Rational hydrology study storm event year, 'is 100.0 Map data precipitation' entered: 6 hour', prec.ipitation(inches) = '2.750 24 hour'precipitation(inches)= 4.600 Adjusted 6 hour precipitation (inches) = 2.750 P6/P24 = 59.8% San, Diego hydrology manual 'C' values used Runoff coefficients by rational method +++ + + + +++++++++ + +++++++++++++++++++++++++++++++++++++-f Process from Point/Station ' '. 300.000 to Point/Station •, 301.000 INITIAL AREA EVALUATION User' specified "C' value of 0.900 given for-subarea Initial subarea' flow distance = 400.00(Ft.) - Highest 'elevation = 320.00(Ft.) Lowest elevation = 305.50(Ft..) Elevation difference = 14.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) 4.69 mm. TC = [1.8*(1.1-C)*distance.5)/(% siope(1/3)) TC = [1.8*(1.1-0.9000)*(400.00.5)/( .3.63(1/3)]= '4.69 Rainfall intensity (I) = 7.554 for a 100.0 year storm Effective runoff. coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = . 3.535(CFS) Total, initial stream area = .0.520(Ac.) . I , Process from Point/Station. 301.000 to Point/Station . 302.000 *** PIPEFLOW TRAVEL TIME (User specified size) I Upstream point/station elevation— 301.00(Ft.) Downstream point/station elevation = 294.50(Ft'.) . .. . I Pipe length = 388.00 (Ft.'.) Manning's N = 0.013 No. of pipes 1 Required pipe flow =' 3.535(CFS)'. Given pipe size = ' ' 18.00(In.,) ' I' Calculated individual pipe flow = '3.535(CFS) 'Normal' flow depth in pipe = 6.26(In.) Flow top width inside pipe '= 17.15(In.) Critical Depth = 8.61(In.) I I I LI I I 1 I I I I I I LI I Pipe flow velocity = 6.47'(Ft/s) , 'Travel time through pipe = '1.00 nun. I Time of concentration (TC) = 5.69 mm Process from Point/Station '' 302.000 to Point/Station 302.000 **,**• CONFLUENCE OF' MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 1' 'Stream'flowarèa= ,0.520(Ac.) Runoff from this stream ' 3.535(CFS) I ' Time of concentration= :5.69mm.. Rainfall intensity =. 6.668(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-f.+++++ ,Process from Point/Station 310.000 to Point/Station' 311.000 ***.* INITIAL AREA EVALUATION Decimal fraction soil group A =.O..000 I 'Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 I ' (COMMERCIAL area type Initial subarea flow distance =' 775.00(Ft.) Hi'ghest'elevation = 322.00(Ft.) Lowest elevation = . 314. 00 (Ft.), I Elevation difference = 8.00(Ft.)' ' Time of concentration calculated by the urban "areas overland flow method '(App X-C) = 12.40 mm. ' I TC = [1.8*(1.1-C)*distátice.5)/('% s1ope(1/3)] TC = (.1.8*(1.l-0.8500)*(775.00.5)/( ' 1.03(1/3)]= 12.40 Rainfall intensity. (I) = 4.034 for a' 100.0 year storm Effective runoff coefficient'used'for area (Q=KCIA) is C =0.850 I Subarea runoff Total initial stream area = ' 3.700(Ac.) ' I Process from Point/Station 311.000 to Point/Station ' 312.000 i PIPEFLOW TRAVEL TIME (User specified size) ' I . Upstream point/station elevation Downstream point/station elevation = 305.90(Ft.)' I ' Pipe length =66.00(Ft.) Manning's N = 0.013 No. of pipes = 1 -Required'pipe flow •= '12.687(CFS) Given pipe size = , 24.00(In.') I ' • Calculated individual pipe flow =, 12.687(CFS) Norma] flow depth in pipe = • 7.78(m.) Flow top width inside pipe = 22.46(m) Critical Depth = 15.36(In.) 1 ' Pipe flow velocity = 14.40(Ft/s) Travel time through pipe = 0.08 mm. 0 ' Time of concentration (TC) = ' 12.47 min. I I Process from Point/Station 312.000 to Point/Station.,,, 313.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 305.56(Ft.) S Downstream point/station elevation = 299.00(Ft.) Pipe length . 1'4.00(Ft.) Manning's N = 0.013 - No. of pipes = .1 Required pipe flow 12.687(CFS) Given pipe size = 24.00(In.) Calculated individualpipe flow. 12.687(CFS) Normal flow-depth-in pipe = 4.65(In-.) . . Flow -top width insidepipe = 18.97(In.). Critical Depth = 15.36('In.) . Pipe flowvelocity = 29.74(Ft/s) Travel time through pipe = . 0.01 mm.: Time of concentration (TC) = 12.48 mm. Process from Point/Station 313.000 to Point/Station 313.000. ****-CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2-in normal stream number 1 Stream flow area = 3.700(Ac.) . . Runoff from this stream = 12.687(CFS) . S Time of concentration = 12.48 mm. . Rainfall intensity .= 4.017(In/Hr), '. I +++++++++±++++++++++++++++++++++++++++++++±+++++++++++++++.f.f+++++++++ Process from Point/Station 340.00.0 to Point/Station 313.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.500 given for subarea Initial subarea flow distance = 405.00(Ft.) . Highest elevation = 3'10.00(Ft.) . . . . . . Lowest elevation = 304.00(Ft.) Elevation difference. = 6.00(Ft.) .5. Time of concentration calculated by the urban . areas -overland flow method (App X-C) = .19.07 mm. TC = (1.8*(1.1-C)*distance.5)/(% slope(1/3)] TC=[l.8*(l.1.-0.5000)*(405.00.5)/( 1.48(1/3)]= 19.07 Rainfall -intensity (I) = .3.056 fora 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.500 Subarea runoff = S 0.244(CFS) . Total initial stream area '= • S 0.160(Ac.) I . Process from Point/Station . 313.000 to Point/Station313.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.160(Ac.) I Runoff from this stream 0.244(CFS) f . . Time o concentration 19.07 fun. . ... . ..: Rainfall intensity= . 3.056(In/Hr) I Summary of stream data: . . . Stream Flow rate TC • Rainfall Intensity - No. . (CFS). . .(min) . . (In/Hr) • I I I I I I I I I I I i 12687 1248 4.017- 2 0.244 . .19.07 •' •' 3.056 -: Qmax(l) 1.000 ,*', 1.000 * " 12.687) 1.000* ' 0.655 * '0.244,) + = ' ' 12.847 0761 '* .. 1.000 * 12.687) + 1 000 * 1.000 * 0 244) + = 9.897 Total of 2 streams to confluence I .. , Flow 'rates before ,conflüence point: . . ' '. .. . . 12.687 '. 0.244 Maximum flow' rates at confluence using above' data: I . .12.847 '. ' '9.897 . ""r• . •'' . .'' ' Area of streams, before confluence:. ' 3.700 .. .. Results of confluence.*.. I . • Total flow rate Time of ôoncentration=' 12.480 mm. "Effective.str'eam area' after confluence = '., 3.860(Ac.) • +++++++++.+++++++++++++++++++++++++++++++++++++++++++++++'+++ Process from Point/Station 313.000 to Point/,Statión ' , 302.000 I **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 298.67(Ft.).. Downstream point/station elevation ;=.' 194.00(Ft.) .' Pipe length = ' 8.00(Ft.) ' Manning'sN =. 0.013' No. of pipe's = 1 Required pipe flow 12.84,7(CFS)' 'Given pipe size = 24.00(In,.) I Calculated individual pipe.'flow '= . '12.847'(CFS) Normal flow depth in pipe = 4 43(In ) Flow top width inside pipe'= 18.62(In.)' I , Critical Depth = 15.47'(In..) 'Pipe flow velocity = 32.25(Ft/s) ' ' •" ' ' ' , Travel time -through pipe = ', 0.00mm,, Time 'of concentration (TC) = 12.48,mi,n. Process from Point/Station 302.000 to Point/Station ' ' 302.000 CONFLUENCE, OF MAIN STREAMS I . The following data inside,Main Stream is listed:' In Main Stream number: '2 ', , • ' " ' Stream flow area = . 3.860(Ac.) I Runoff from this stream = ' ' 12.847(CFS) Time of' concentration = 12.48 mm. Rainfall intensity = ' . ,.. 4.016(In/Hr) Summary of stream data:" I 'Stream . Flow rate . TC " ' , 'Rainfall Intensity No." ' (CFS) (mm) . ' . ' (In/Hr) 3.535.' , .5.69 , ' . ' , ' 6.68 . •' . ..' . ' 2 ' 12.847' ' 12.48 " ' ' ' ' 4.016 I Qmax(l) = 1.000 * 1.000 I l 000 * 0 456 * 12 847) + = 388 . .Qmax(2) , . 0.602 *, 1.000* ." 3.535) + ' . .. 1.000 * 1. 000 * 12.847)'.+ =' 14.976 I Total of 2 main streams to confluence Flow rates before confluence point: •. . . . 1 .. • . . 3535.. 12.847 Maximum flow rates at confluence using above data:, . . . .' 9.388' •. ' 14.976 . •2' . •• . ••. 'S. '• Area of streams before confluence: .• ' . .' ' ' . ' o..so 3.860 I Results of confluence Total flow rate = 14.976(CFS) Time of concentration.. - '.. .12.484, min. . .'. . ,.. . . Effective'strearn area after confluence '= . .. 4.380(Ac) I . Process from Point/Station. • 302.000 to Point/Station 303.000 ** PIPEFLOW TRAVEL TIME (Us'er.specified size) **** I . 'Upstream point/station elevation = 293.67(Ft.). . . ' .. Downstream point/station elevation = '280.20(Ft.) 'Pipe length '= ' 202.00(Ft..) Manning's N =0.013 . No. of pipes, = 1 Requ'iredp'ipe 'flow -= 14..976(CFS) Given 'pipe size =' . 24.00(In.)':. Calculated individual pipe flow =, , 14.976(CFS).. Normal flow depth in pipe- 8.29(.In.) I . Flow 'top width -inside pipe = 22.82(In..) Critical Depth = 16.74.(In.) ' . ' " ' -• ' . - Pipe flow velocity = ' 15.56(Ft/s) .Travel time. through pipe = ' 0.22 mm., Time of concentration (TC) .12,70. min. Process from Point/Station ' 303.00.0 to Point/Station 303.000 ***'* CONFLUENCE OF MAIN STREAMS I ' The following data inside Main -Stream is listed: In Main. Stream number: '1' . •. . . . . , , . Stream flow area .= '. 4.380(Ac.) ' • ."• • " 'Runoff from this 'stream Time of concentration = 12.70 mm. Rainfall intensity = 3.971(In/Hr) ' •. -. ' .' Program is now starting with Main Stream No 2 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.+++.++++ I . ' Process from' Point/Station ' 330.000 to Point/Station '331.000 INITIAL AREA EVALUATION I User specified 'C'. value of 0.900 given forsubarea . Initial 'subarea flow distance = 295.00(Ft.')' .• , ' ' ' Highest elevation , 305.80(Ft..) I I Lowest elevation = 303.90(Ft.) Elevation difference = 1.90(Ft.) I Time of concentration calculated by the urban , areas overland flow method. (App X-C) = 7.16 mm. TC = [1.8*(1.1-C)*distance.5)/(% slope(1/3)] TC= [1.8*(1.1-0.9000)*(295.00.5)/( 0.64(:I/3)]= 7.16 I Rainfall intensity (I) = 5.748 for a 100.0 year storm Effective runoff coefficient used for 'area (Q=KCIA) is, C = 0.900 Subarea runoff = 2.224(CFS) Total initial stream area = 0 430(Ac ) I Process from Point/Station 331.000 to Point/Station 332.000. ****,STREET FLOW TRAVEL'TIME+ SUBAREA FLOW ADDITION I Top of street Segment elevation = 303.900 (Ft.) End of street. segment elevation = 289.300(Ft.) . . . Length of street segment = 375.000(Ft.) I .-Height of curb above, gutter flowline = ' 6.Q(In.)' Width of half street (curb 'to crown) = 53.000(Ft.) Distance from crown to crossfalI grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.08.7 I .Slope from grade break to crown (v/hz)' = 0.020 'Street flow is on [1) side(s). of the street . Distance from curb to property line = 10.000(Ft.) I Slope from curb to property line. (v/hz) . 0.020 ' V Gutter width = 1.500(Ft.) Gutter hike 'frOm flowline = 2.000(In.) Manning's N in-gutter 0.0150 ' I Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown' = 0.0150 Estimated mean, flow rate at midpoint of street = I 3.621(CFS) Depth of flow = 0.304 (Ft.)'. V Average velocity = 4.519(Ft/s) , Streetflow hydraulics'at midpoint of street travel: I Halfstreet flow width = 8.360(Ft.) Flow velocity = 4.52(Ft/s) Travel time 1.38 rain . . 'TC = 8.54 mm. V '.. Adding area flow to, street ' User specified 'C' value of 0.900 given for subarea V Rainfall intensity..=5.129(in/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C'= 0.900 I . ' Subarea. runoff =2.493(CFS) for 0.540(Ac.) . Total runoff = 4.717(CFS) Total area = 0.97(Ac,) Street flow at end of street = • . 4.717(CFS) I ' Half street flow at end of street =. 4.717(CFS)' Depth of flow = . 0.326(Ft.) ' V Average velocity = 4.723(Ft/s) Flow width (from curb towards crown)= 9.467 (Ft.)' . +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.+++++ I Process from Point/Station 332.000 to Point/Station 322.000 **** PIPEFLOW TRAVEL TIME (User'specified size) **** V Upstream point/station elevation = 281.19(Ft.) I Downstream pOint/station elevation = 280.75(Ft.) . V Pipe length = 55.00(Ft.) Manning's N = 0.013' V V V No. of pipes = 1 Required pipe flow = 4.717.(CFS) V I V . I Given pipe -size = 18.00(In.) Calculated individual pipe flow .4.717(CFS) I .Normal flow depth in pipe 9.02 (In.) Flow top width inside pipe . 18.00(In.) Critical Depth = 10.01(In.) . Pipe flow velocity '= 5.32(Ft/s) I .Travel time through pipe = 0.17 mm. Time of concentration (TC) = 872 mm. I . Process from Point/Station . 322.000to Point/Station 322.000 CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = . 0.970 (Ac) I Runoff from this stream = 4.717(CFS) Time of concentration = •8.72 mm. Rainfall intensity =. . 5.063(In/Hr) Process from Point/Station . 320.000 to Point/Station 321.000 I ** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea I Initial subarea flow distance = 200..00(Ft.) Highest elevation = 305.50(Ft.) Lowest elevation = 303.90(Ft.) Elevation difference = 1.60(Ft.) I' Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.48 mm. TC = (l.8*(l.1-C)*distance5)/(% slope(1/3)) I TC = [18*(1.1_0.9000)*(200..00.5)/( 0.80(1/3))= 5.48 Rainfall intensity (I) = 6.826 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff =. . l.782(CFS) I Total initial stream area = 0.290(Ac.) U Process from Point/Station .321.000 to Point/Station 322.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of Street segment elevation = 303.900(Ft.) End of street segment elevation =. 289.700(Ft.) Length of street segment = 375.000(Ft.) Height of curb above gutter flowline = . 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51. 500(Ft.) I Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street R Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) • I . Manning's N in gutter = 0.0150 • Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 I ...... I Estimated mean flow rate at midpoint of street . : 3.440(CFS) Depth of.f low =.. ,0.301(Ft.) I . Average velocity = 4.430(Ft/s) . . . 'Streetfl.ow hydraulics at iuidpoiñt'of street travel:. ,• Halfstreet' flow width = 8.210(Ft.) . ' Flow velocity = 4.43(Ft/s) I . Travel, time =• 1.41 mm. .TC = 6.90 mm. . :. Adding area flow to street User specified 'C' value of 0.900 given for subarea . '. 1 .. 'Rainfall .intensity.= . 5.889(In/Hr)' for. a ioo.'o year storm Runoff ,coefficient'used forsub-arèa, Rational method,Q=KCIA, C =0.900 Subarea runoff .= ; . 2.862(CFS) for 0.540(Ac.) . Total runoff =: 4.644(CFS) Total-area =, .. . '0.83(Ac.) I.. Street flow at end of street = . .4.644(CFS). . .. . . Half.street flow at end of street =.. .Depth of. flow =.: 0.326(Ft.) ' . . .. •• .. .' Average velocity =. 4.656(Ft/s) ,.. . . . ., . ••;• . .. 1 Flow'width.(from curb towards crown)= 9.459(Ft.) . . . • . I ... ++++++++++++++++-H++++++++++4+++++++++++++++++++.+++.++++.++4 +++++++++ Process from Point/Station . 322.000 to Point/Station 322.000 **** CONFLUENCE OF. MINOR STREAMS I . . Along Main Stream number': 2. in normal stream number 2 . . •. Stream .flow area = . .0.830(Ac.)' I . Runoff, from this stream = .4..644(CFS) .. , . . Time of concentration =: . 6.. 90 'mm. , . . . . .. Rainfall intensity =. . 5'.889(In/Hr) .' . . Summary of stream data-'': • ., .. . . .. .. Stream . Flow rate TC . Rainfall Intensity No. (CFS.) (mm) . . .' ... (In/Hr) . 4.717 8.72 .. . . . . 5.063 . .... .• . 2 . . 4.644. . 6.90 . •' . 5.889 ,. I .. Qmax(I) .. . . . . .. . .. .. . 1.000 * . .]•oo * . . 4.717) + . . '0.860 * 1.000 *' . 4.644') + = . . 8.709 Qmax(2).=' . . •• . .. .. . ... . ... . . . . . . 1.000 * . . 0.791.* 4.717)'H4-. . 1.000' 1,000 * , 4.644) + . 1 . 8.376 . I Total of 2 streams to.confluence: Flow rates before confluence point: ' . . . . . ... 4.717 4.644' . .: . .. . .. . .. .. ., .. . ,I Maximum flow rates at confluence using 'above data: 8.709 . 8.376 ' ' ' . •'2 . • •..' Area of streams before confluence: 0•970 : 0.830 . . •: .. , . Results of confluence: .. . . ... ..; Total' flow rate Time of concentration = • 8.715 mm. .....' , .. . , I • ' Effective stream -.area after confluence = . . 1.800(Ac.) I .+++++++±++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station' 322.000 'to Point/Station 303.000 **** PIPEFLOW TRAVEL TIME (User specified size) .**** I Upstream point/station elevation =. 280.57(Ft.) I Downstream point/station elevation = 280 20(Ft ) Pipe length =-.46..00(Ft ) Manning's N = 0 013 No of pipes .= 1 Required pipe flow = 8 709(CFS) Given pipe size = 18 00(In ) I Calculated individual pipe flow = 8 709(CFS) Normal flow depth in pipe ,=' 13 66(In ) Flow top width inside pipe = 15 39(In ) I Critical Depth .= 13 71(In ) Pipe flow velocity = 6 05(Ft/s) Travel time through pipe .- 0 13 nun I Time of concentration (TC) = .8 .84 nun ++ +++++ + ++++ +++ +++ ++++ +++++++ ++++++++++++++ + + + I Process from Point/Station 303 000 to Point/Station 303 000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed In Main Stream numberi 2 Stream flow area = 1 800(Ac ) Runoff from this stream = 8 709(CFS) I Time of concentration = 8.84 nun Rainfall intensity ,= 5 016(In/Hr) Summary of stream data I Stream Flow rate TC Rainfall Intensity No (CFS) (nun) (In/Hr) 1 14976 1270 3.971 2 8.709 884 5.016 I Qniax(l) = 1.000 * .1-000 * 14.'976) + 0.1792. * 1.000 1 * 8 709) + = 21.872 I Qmax(2) = 1.000 * 0.696 *. 14.976) + 1.'000"* 1 000 * &.709) + = 19.136 . I Total of 2 main streams to confluence Flow rates before confluence point 14976 8.709 I Maximum flow rates at confluence using above data I 21.872 19.136: Area of streams before confluence i 4,380 1.800 Results of confluence Total flow rate = 21 872(CFS) Time of concentration = 12.700 nun Effective stream area after confluence = 6 180(Ac ) I ++++++++++++++++++++++•++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station '304.000 T I **** PIPEFLOW RAVEL TIME (User specified size),**** Upstream point/station elevation = 279 87(Ft ) I I — — — — — — — -. — — — — — — — — — — CATCH BASIN DESIGN TABLE SHEET_( 3 JOB No I P&DTcchnoioges ••••_. CAM BY__________ DATE Ot4iN TflfT STA. AREA • N 0.AC. DL&IWAOE A*(A a CFS 'STREET GRADE . DEPTH Ft GUTTER oep-RESSION ORATE 0 • CFS CURS IHUT 0 CFS • INLET LENGTH FT. ' BYPASS 0 CFS NOTES . Z31 SVHP c74 ..• .5 - ____. . ____ 1.1-50 1 197, ___ J.Z3 3.7z su .; 212 • . 7,OiO ____ O.7 35 c93 .33 -_•)4 . 9 Vz.fr -- ?p4.c4i • Z1' 1Z3 7 3 10.7 V ' • ZjI -------------- .3.3 IZ.7 U15t Z9, 5-1 17°-l7 7.& .9 O.3 7• o • • ____ j1 — — — — — — — — — — — — — - — — — — — :1 CATCH, BASIN DESIGN TABLE SHEET_.QE JOB I CAL C BY_ P Technologies DATE C - (o~iic Q1 L , ULZ CoA O1JiAit'i 3TflUT I STA - AREA HO. 1o0r AC. J . CFS • STREET : • DEPTH Fr. • GUTTER OPRE$SIOU GRATE CFS CuRB ! CFS • LENGTH FT. Q CFS • NOTES ZCO -Z07- Z 57 0. 3 33 _____ 7Z- _____ _____ U$ I 17'6 -1 9 14 .'33,67 13 Lq-1 0 0 Z7O-Z77 93c f 04 O3 1° 3 Q - c'3 3'1 O.3 0.3 S.1 _J3' - Z. 10 (0. S(M9 0 — / cS suriç' (2A3 0 0 070 0 .0 f7 37 0.33 : Uot1'15* 1 - I7l 9. Zi -z AZC,2, 33 • ___ ___ /3S 2& O. — /4' 0 us d0j -7-67 0 ____ /.(..• 7 ____ ____ z. (z. 0 _____ j,• 47 _____ o.e33 52 (. • • a.3T • _____ /1. a Osf3'i-I — ge (. O.4b c233 - 9.S3 0 c7. (I . P&D Technologies . . . . . . 401 West A" Street ..• . Suite 2500 . . . San Diego, CA 92101.: . . . .I 619•2324466 . . . . . . . By Date Client . .. Sheet No. Of : I Checked Date Job Job No. /03 I L C-& 4PcRT I Fk ,TThZ C ' CLCU LT I o 14M-F £TE7 PJ VJ: S :. •.• :. .cot. ?Gr0:. ( I CotJ1 -i 9 U7C f . .. . . I _ t . - I 55'—tl573t t4JJPQ.P LZ557 ' J:Tcc I - C 0- Vfl 15 D5c??6 . I - I c' ¶)(57 -Ko 1' 7;3 ) I I . P&D Technologies V 401 West A" Street . . V V V V •., Suite 2500 San Diego, CA 92101 I . 619•2324466 . . . •.V .: - V V . . .. Date ZIc7( Client . V V V Sheet No. I 3 ... I . Checked . . Date . V . V Job irr 'Job No. O36> . V V.. I 1-1N 1 03 -104, U-1IMT. CO\I2 I 7 ' V V V V V . V V• V V I . V V QJ/ .pFlIuV ctj S L . V I 1 Wu= & I ± I F* ADD —O u- W4 LV-TiL) I (jC oii-i VL1ry I SO7t 1'-R crry /13 J I Z7CA a z_I 'T/1C4& 71/FAC4Mi I QL1Z ( 17i(iV._- I . P&D Technologies . . . . . . :. 401 West A" Street . . . . . ;, . . •. . . Suite 2500 San Diego, CA 92101 . S S ....S I.. . 6192324466 S S S S S S S , By 17C Date 7 (. c Client . . S .. . Sheet No. 3 Of 53 S ' Cheôked Date . . Job R(P tZi S(j Job No. S 1 F7 /S../ 'p W'- -7 FP I &lI 47 C-4 L' I . 55 5 S . 55: M / tJ. TJ 55S 5 . S/7N 5QI C(WL 5 55 •S ci 50' \Q1:317 \/J ' S VJ7.ti55. :.AJdI9' 5 5 5. I i -\ C/T L'&T VD-( D /WY-J S - 7 / r1T/ c2çp ) I • ______________ -Tr ki c'c1 I - / 0 1 'I 550 ov__ /.r7 ' TMK4& ANP OF ca I Ilk 411 4 V W f rg 41 I 4. jw- -77 WO *: sJ * r rj 'A' vp : •T • a q. 'S . . r. -. r S - - - -in 4w 1. Vw IL 46 1-4 01 owle 41 - uI4_ J_• 4t LEGEND — - -- 77 LX o w q 1b SL 06 ap lit 4-1 ap 4' I '...... Aw &- A ...T ' " me 0 01 ra P&D Technologies :- .Q 5o HYDROLOGY M 4 -101 West "A'Street, Sufte 2500 EL CAMINO REAL AND IT I PALOMAR AIRPORT RD. OF -% - . A . i A '.--in Dego, CA 92101 619-232-4466 OW 7,C or