Loading...
HomeMy WebLinkAbout3166; PALOMAR AIRPORT ROAD; PRELIMINARY DRAINAGE STUDY; 1990-09-25n = ~ I fl SP&D Technologies I PRELIMINARY I DRAINAGE STUDY For: •• • El Camino Real and Palomar • : Airport Road Widening • (P.N. 10365) I .'•••. • ..• • •. • I The City of Carlsbad 2075 la's Palmas Drive I Carlsbad, California 92009 I I Prepared By P&D TECHNOLOGIES I 401 West "A" Street Suite 2500 I San Diego, California 92101 (619) 232-4466 I September 25, 1990 I. •. •• •.•. •• • • •• S. • • • • S. I.: •.•. .•• S. •• S.. • • . .5 5 • 0 I I I TABLE OF CONTENTS i Page 1.0 INTRODUCTION 1 I 1.1 Purpose 1.2 Watershed Description 20 METHODOLOGY 2 30 RESULTS 2 40 CONCLUSION 2 I 50 REFERENCES 3 APPENDICES APPENDIX I Methodology. Approach Letter I APPENDIX II: Design Charts. APPENDIX III 10-Year Peak Discharge Calculations Under I .Developed Conditions Using The Computerized Rationale Method. . I . APPENDIX IV: 50-Year Peak Discharge Calculations Under Developed Conditions Using The Computerized Rationale Method. I . . APPENDIX V: 100-Year Peak Discharge Calculations Under Developed Conditions Using The Computerized I Rationale method I APPENDIX VI Catch Basin (Inlet) Design Tables EXHIBITS I EXHIBIT 1 Vicinity map I EXHIBIT 2 Hydrology map Map Pocket I I I 10 INTRODUCTION I P&D Technologies was retained on behalf of the City of Carlsbad to produce a Fmal Design I for full-width street improvements of El Camino Real from Faraday Avenue to Palomar Airport Road Additionally, there will be a section of Palomar Airport Road included El I Camino Real is to be designed as a Prime Arterial Roadway The Palomar Airport Road segment wiff be designed as a Prime Arterial as well 11 PURPOSE I The purpose of this study is to detail the hydrologic analysis and complete culvert sizing I requirements for this Street improvement project m in order to sure adequate storm drain design capacity I L2 WATERSHED DESCRIPTION . ... . . . . . I I The existing roadway alignment of both El Camino Real and Palomar Airport Road in the project area roughly follow a small ridge. As a result, the drainage basins formed by the • '. . I . existing roadway. are small. The drainage basin divisions range in size from 2.5 to 23.3 acres. (After the 23.3 acre basin the next largest is 8.9 acres.) . 20 METHODOLOGY I :..... S...,. " • . Per the City Of Carlsbad requirements, all the hydrology computations as' well as the preliminary hydraulic design are in accordance with both the City 'Standard Design Criteria :and the County of Sari Diego Design and Procedures Manual.' (Please see Section 5.0 I REFERENCES for a complete listing) I 1 1:.: .1 ..::.; :.'.... . . . . .... . . .. ... . . . .. . - -, '--- V I I Our method of approach, which was outlined in a letter to Daniel Clark, dated May 3, 1990, has not changed significantly. The letter is included as Appendix I The following minor revisions should be. noted: -.1. Item 4 - The San Diego County Design Manual "Hydrologic Soil Classification' charts were used to determine the soil groups. I. .:. Item 10 - The 3 different storm event calculations.will be completed for only the adjusted 6-hour storm per the intensity-duration design charts I •:. . Item. 11 With regard to the isopluvial charts, the precipitation values selected were the conservative or larger values and, as such, no "averaging" of isopluvial quantities was required. -3.0- RESULTS I The computenzed results of the previously described Rationale Method for the 10, 50 and 100-year storm events are included in Appendices III through IV, respectively. These results were then utilized in the Improvement Plan Design. 1 40 CONCLUSION --Thisreport represents a preliminary hydrology study. The results of the hydrologic analysis were used as the basis for the preliminary hydraulic design The items which have been I completed include the hydrology for both the on- and off-site areas for the 10, 50 and 100 year storm events. - I. . Hydraulic design elements which have been accomplished thus far include: the mapping of existing culverts, the location and preliminary sizing of curb inlets, as well as the location of new culvert crossings and their preliminary sizing S • I In conclusion, the street improvements to El Camino Real and Palomar Airport Road will I not adversely effect any adjacent property owners Further, it is anticipated that the new proposed curb inlets will greatly improve the safety of these roadways by mitigating surface water flooding and runoff 50 REFERENCES I City of Carlsbad, 6/87, Standard Drainage Design Criteria unpublished Pages 32-37 I City of Carlsbad, 4/87, General Plan Map City of San Diego, 9/88, Standard Drawings Document No 769710 I County of San Diego, 1/85, Design and Procedure Manual San Diego County Department of Public Works Flood Control Division I Soil Conservation Service (SCS), 12173, Soil Survey of San Diego Area California Parts T& H United States Department of Agriculture' I I I I I I I 1 1 •.:''v' . S. . . S ••. •. . . . .. . .. 0 • . . . - 0S 0• •• ,• . • •, •0 0 •0• . •, .- . •0 •"• 5, I . U P&O Technologies Planning 401 W A Street Engineering Suite 2500 Transportation San ieg 1 X619/ 234 3022 Environmental 619/232-44 .66 Landscape Architecture I An Employee Owned Company, 1 July 17, 1990 1036500 .• •..• ' E :.' . . •0•0,•0••• . . . •0• •• •' ' Mr. Daniel Clark, P E, Project Manager City of Carlsbad Municipal Projects 2075 Las Faunas Drive I Carlsbad, CA 92009 I Re El Camino Real/Palomar Airport Road Hydrology Dear. Mr. Clark ( The purpose of this letter is to summarize the understanding of the hydrological aspects of this project The following list is a summary of anticipated methodology 1 All drainage design and requirements will be in accordance with the latest City of Carlsbad Master Drainage Plan; . . . .. 2. The hydrologic analysis will be conducted per the County of San Diego Hydrology Manual.dated January, 1985; . S. , . .. • '0 3•:' Hydrologic Design will be completed in accordance with. the City 'f 'Carlsbad I Standard Drainage Design Criteria (pages 32-37) dated June, 1987, 4. • The SOS's Soil Su rvey of San Diego Area.' California dated December,' 1973, Will be. used 'to' determine the soil groups; • ., ' 5 The Rational Formula will be employed, 1 6 A Hydrology ard Hydraulics Report "cip1ete with input parameters, assumption, calculations, and references-will be assembled and submitted to the City for final I approval, i . 7 As currently envisioned, the calculations will be done using the corresponding computer program, and the computer generated printouts will be included in the I final report, 8 The calculations will be conducted assuming full post-development conditions as depicted on the current General Plan Map for the City of Carlsbad dated April, 1 1987, 9 For watersheds that are designated to remain natural open space (OS), ten I minutes will be added to the computed time of concentration in accordance with Appendix X-A of the County of San Diego Hydrology Manual, 10 The 10, 50 and 100-year, 6 and 24-hour storms will be calculated for this study, 11 Numerous site visits have been conducted from which it has been determined that I portions of the site follow a ridge As such, drainage basins will be very small, contributing only nuisance water with the exception of one or two areas located at the "airport quadrant" Based upon this information and the fact that the I project bisects numerous isopluvials and small drainage basins, it is being proposed that an average isopluvial value be calculated for the nuisance water areas only, and I 12 Hydraulic structures will be recommended for ultimate roadway width buildout of 126 feet. I Should any of the above referenced items not be acceptable to the City, please contact I us within ten (10) days of receipt of this letter,as we are currently progressing in this direction In addition, please feel free to call us at any time should you have any questions or require additional information. : I Sincerely, P&D IECHNGLOGIES I ... : . . . . H. I Marc Jacobson .. .. . . ... Senior Designer MJ:kw . .. . I 4. - -.. _ -. .-. -. - _0 •_ — - - - - .- — JNTERSITY-DUMTWrf DESIGN CHART .1 ••-. ...; Directions for Application: ••• . I. From-pt ' ecipitatioh saps .dete,i1.ne 6 hr. and 24 hr.. mounts for.the seiected.frequenc.y.. These mapsare.printedin the County Hydro10 Manual (10, 50 and 100.yr. maps included in Design and Procedure Manual). Adjust 6 hr. precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr. precipitation. (Not pplicab1e to Desert) Plot 6 hr. precipitation on the right side of the chart. . 1 IOU Draw a line through the point parallel to th plotted lines. ThIs:, line is. the intensity-duration curve fo'. the location being analyzed. P45 __ • • • i4. O . Application Form:. . . . 35(). 0) Selected Frequency 10 yr. 0 VMS ) : 6B L' In.',. p24 ..3_1 r. 24 !2.0 2) Adjusted *B I n. 1.5 3) t mm. S c,&cJL11OWS 4)!- in/hr. hO • • *Not Applicable to Desert. Region 15 2 '20 •4 .' 50': i •.•, ": • • . APPENDIX XI TV-A-14 3. '.: ZZ. . 0). -- -- -NJ-H-i 1• U. > •• 4J 0) - -,.- D1TEHS1TY-DUMT1( DESIGN CH I IlTIflhuhIlI 1, •4r1iIl1flI I,,..IM.M Y' Lt I Equation: .1 744 D X • Intensity (In./Hr.) i1flj P6 6 Hr. Precipitation (In.) :; :fu.I!I!i[Ji ,.D • Duration (Hin.) ' • . • • -- '-'-s '! i! ',: ;'rHJ111' t:1 H1W +L1f "1iiI ! 'IIftJ, 1 ti1j '!. ' 6 iIIti'!&i1j t ; ti I1 .0 g I II ji.i.i it I !I "XL! 1.1 U1. : 45,_.. T111}T!flJi ': • h 1fl Co I IILQ ' I - • I.. I '1;.', ] 2.0 XXX - 0 . JiiflH 1.5 I[11H III EE IUi0 io 40. S.. 2 '. ••3 •.4 .5 e I 0 0 - - - - 0• Directions for Application: . .From preclpitátlon maps deteviine 6 hr and. . 24 lw amounts for. the selected frequency.. These maps are printed in the County Hydrol.o 14anua1:.(10, 50 and 100:yr. maps. included i:n' Design and Procedure ManUal). Adjust ,6 hr. precipitation (If necessary) so that it is within the range of 45% to 65% of the 24 hr. precipitation.. . (Notar.plicable to Desert) Plot 6 hr. precipitation on the rij)t side of the chart. Draw a line through the point parallel to th plotted lines. . This line Is. the intensity-duration curve .fo .the location being analyzed.. Application Form: •0 0) Selected Frequency 50 yr. P6 u Z.1 •1n.,.P24..1l.Z * P24 AdJusted *6a . Z.1 in, 3)t -. .min.:0r(0 4) I- in/hr. - *Not Applicable to Desert Region. .9. APPENDIX XI TV-A-14' • 0 0 .0 ..-• s_._. - -_-'- , INTENSITY-DUMTIUN DESIGN CHART - P D Iuw,iirTIrhU 645 Directions for Application: 6 ) From precipitation naps determIne 6 hr. and sit)' (In./Hr.) 24 hr. amounts for the selected frequency. 0 • 0 County. Hdro10 Precipitatiofl (In.) Manual (10, 50 and 100 yr. maps included in Design and Procedure Manual). ton (Min.) . 0 ... .............0 : . 1•1 ' ii ii 2) Adjust 6 hr. precipitation (if necessary) so 11 1:f1fiI1I;It' that It is withinthe range of 45%to65% of 4314 J.1 I Hf I' the 24 hr. precipitation.. (Not ap1lcabie i•H: :144: .tI 1 Uli 11:1 to Desert) 3) Plot 6 hr. precipitation on the right side -of the chart. 1 ' 4) Draw a line through the point parallel to th .; plotted lines. . • 5) This line is the intensity-duration Curve fo! 6.0.. . . • •. the location being analyzed. .... : . 0 0 0 • 00 0 • 0 r,O 0 0 0 0O "45 4.0 . Application Form: • 35 '0Y Selected Frequency /00 yr. 1 : •• P6 Z75jn., 24R 4 *p1:5?ø%* Adjusted *. 2.0 Z .7 - i n6. 1.5 3) t • mm. .9. ;CALc.ULLT1oNS, c :. ,.. .•. :;' •.•.-; •. 4) I - in/hr. . 7 1.0 *Not Applicable to Desert Region 15 20 30 40 50 1 2 3 4. 5 0 • ••_•••• •.. .............:- • 0. • . 0 • APPENDIX XI 0 •• • . • 0• • Tv-A-44 • I : COUNTY OF SAN DIEGO 10, YEAR .6 .00 PRrPIDITLTnnDEPAMMENr OF SANITATIOPI& U IIUU LUIFI1DIEUiiJ FL000 CONTROL •.• . . . . . . .. . ......... . ... ..... .... ..... '16—' ISOPLuVULs OF-10-YEPJI 6{Ufl _______ - PRECIPlT/TIOr IN ElITIlS OF AN INCH .21 24 , 3 _ 151 jo Ll 78 33 JLL 4.1 45' rA $A Zl U S DEPART1E T or COMM'NATIONAL OCZA ERCE AD SPECIAl. STUDIES DRACi j;l)IR1C N A &UNISTRA IO TIONAL. ATHER SERVICE SAl J"CITh .2$ 6182024 4 22020 20 2020 30'. . .15' . . . 3rn:. COUNTy OF SAN DICCO DEPARTMENT OF SANITATION & I 1O-YER 24 110t PRECIPIT-ATIO 2L4SUPLUVIALS F 10-YEAR 24-HOUR PECIP1T1TIO tr EfITHS OF M. ICH uu 50 LN 3 _ _ SAN CL MENTE ~j IL 16 30 \ - . 5Q[6\\ 1i\20 • 33° \..) DEL LIAR 40. 25 4' ) 70 NU14.- - • / V Pfvp. red by U.S. DEPARTMEI T OF COMMERCE Y. 3PEC T1 _ 451 . 30' 151. 1170 I51 30' .. COUNTY OF SAN DIEGO DEPARTI'ENT OF SANITATION & ret 6' IId' I ritT1ffV'1 FLOOD CONTROL JU-, Y i )-k1UU riU.Ldi I I i i SU IS0PLIJ1I IALS OF 50YEAR 64OUR PrEC PIV-11ThTh I 1LflTtIS OF ft INCH fl :4 5 :_ __ pSANCj'IS 4p 2 22 21.5 2 - j111rfAf((!- pO3Ci " 30 - \ tcs olniDo .••• .• -- •• \\•• \\\3 33" \\ \' : 1) \\-\• , , OONA 5 ,-. - -' • 20 18 22.5 451 Pripmed by.— U.S.. DEPART 20 18 •:• • •. NAOAOCtA!C AND AT: OSPIS URI CADNI3?RAUON 4 JACU,. M • SPtC1At•3y1JDi3 DRANCK. OFFICE QV If DROLoGy; NATIONAl. WEAT H E R S * V I C E 2 iIf1C) lite if ..1 30'. : •. • •• 1180 • • 15' 30' 15' • 1170 'be' . - - S COUNTY OF SAN D!EGO DEPARThENT OF SANITATION 6 rn irrt 'bA IIfltr% FLOOD CONTROL JU -TRECIPITATIO.- ' I tIlUc L'+i1UUi - "2C..' IS0PLUV{ALS OF 5OYEAR 24410UR PRECIPITATION IN ENTHS OF Ati IICH 301 45 - SAN CL MEN iojo SA 40 sill N p 15' • 6 : - • • : •. • - \c 3 ). - ' 33 5NONAC DELMA / -ii a 60-fl 10 ;';ioI - v. U S DEPARTME d OF b7 COMMERCE I ' • NATION OCEANIC AND AT OSPIIERIC ADMttS7RAOf S • •• S • r • (I U - • 54d $!idl4 $Tt.01E3 DRA?4C1f. OFFZCZ OF II tROLOCy. NATIONAt. WEATHER SERVICt • SAt "•• • 5 , .._I ..-• . • : •..... :-.. • • • • •• • •:. 0 • - 3Q* - -' - ~21 15 . • . .•.•.:•.• COUNTY OF SAN DIEGO DEPARTMENT OF SANITATION & 1.004EAR 1"HOW FLOOD .COITrtoL . rRLLJk 1U1 • . "20..' ISOPLUVIALS OF 100YEAR 6HOUR PflECIPIT1tTUJI IN ETHS OF A INCH451 k MECCA 7 \.--- -z7ç 1•i SA I 301p\ _ I \\ - - SAN CL WCNTE 127.5 35 . - • N. ••• _,• . - L. N'-tk 151 !. _______ 3 . • .... . "PO34 ESCOND L1 . in 33 LAPNO 3EL MAR . : •.• . .. • . 2 L CAJO..tJ U/ . • . • . U4L(jU T -- • Ill — •: . . . ' P Itt. •• • r ic ' Np dby U.S. DEPARTMEN F OF-COMMERCE. . •..• . .• J \. • •NATZOIAL,. OCEMc AND AT OSPHERIC AD&3NX3TRAT10K 1PE6AL STUDIES BRA'ICH. OFFICE OF 11 DROL.00Y. $ATZONAL WEATHER SERVICE • • • SA •. o•. / 35 11 0 118' 45' • •:. •.• •3O.: .. •• 15' ...•. 1.17.. . .....• 45s • ••. 3.0 • : :.... • . •. • .%) . r • !tfl'! .-'U - f!1' Il Ln cm .01 CM cm 5; I •.. C,, •'c (::__ __17- ,3/. -. . ••. •. Cbj Cb CIO cm 45 Ic I _ 11 :. E .h • . I \ — - • • a— :to •• IL • •.• • •.: 1-• f • • . • • , I. • •.•• ••••,. I • •-•.•-. I •, F- E CD Q -T I • • •Q 'I i . cn LL- I. 0 • • I II-A U... ......U.. ......... WASENIES .A • UW• • SN•L•••N U..• U UU .SSIVISM an ua.,4u...aul...us..mUUu..paU ...'a....a. u... ..... •a ...0 U... U..• .1. /iuU 7• •••s'4,aU•UUaUU.U'U uaUUU vaauu*i•u5UUU•• a vaup•UP r"=: sr on .UPa UUUUU• u•.0 .i'i.u.i.a .....••............. S••D••U •u•ui••a•U ••••U••RMU••U••••PI ••a••aU U U U IU PPU P —now momessommoumnrarlow. AM ••aUuau••Uu.Ua•U omens monvemarapprIV: srUUsa :::::::::aUU• 0 wages Mao UU.U5U.U•UUUUdPdPiUiUPgIU I•••• U U a aPdU UUUUdU• IUS!iPUU•U O U UUUSUUU SO MDO'-dNMEOP-';dMMMNEE ROMP= now!—_a snoop OWN ' Uu••uu•P!•UUU•suaUa• .dUUU•Uu•uUUUU•u• seem no snow. ~ommon means goes am:: _.. U .•MU: EN: on: .a • U IaUu ? .•• UU •uaU•U•• U•U•U.uIa•UsU..uUUUU•g•UUUU•.....U.uU.uUu.0 àUIUUU!•.UUIUUUUUUUUU•UUUUAUUUUIUUIlUUUUU•UU =.U•••UUUUUUUUU••UsUUUU••SUUUuUU•UUUUU•SUUU•U U.u.u....U...m.s...W•.U...U.......UU......... U•UU•UUUUUUUUUUUUUU•UUUU••UI•UUUU•U•UIURUUU•UWU U•U••U•UUUUUUU•UUUU•UUU NEON U... •U• •U U No UU U UU•• U•UUU•U•UUUUUUUUUUUUUUUUUUUB•UUUUU•UUU..•.• 0.13 20 /4-..LLVI 14 Az • Li ../' ''- i -/ L_1VF 1 t —I iii CL 4— -I I (I, / • qo 1L2 /1 L0 I • /_ _____/ -- , _T7L__! al— l•-4. • / - I :::./ / 04— 1 : . i 'i ii i . . .i 'j . •1 I 2 3 4 5 6 7 8 9 10 20 30 40 50 DISCHARGE (C. F S) • I EXAMPLE Given: Q= 10 S: 25% Chart gives Depth : 04, Velocity : 4 4 f p.s SAN DIEGO COUNTY GUTTER AND ROADWAY DEPARTMENT OF SPECIAL DISTRICT SERVICES DISCHARGE-VELOCITY CHART : I• .: • DESIGN MANUAL: : •. •• : . .. , APPROVED ________________________ DATE Iz/3o/? I APPENDIX--X-D- It TABLE 2 RUNOFF COEFFICIENTS (RATIONAl. METHOD) kJ1 DEVELOPED AREAS (URBAN) Coefficient, C 0; . .. . . Soil. GroUp (.1) Land Use . .. A .H... . Residential - I Single Family 40 45 50 55 45 60 Multi-Units 50 70 Mobile homes .45 .50 55 65 Rural (lots greater than 1/2 acre) 30 35 40 45 CorrvTlercl al(2) .70 75 .80, .85 - 80% Impervious I' IndustrIal (2) 80 85 90 95 90% Impervious NOTES I (l)$011 Group maps are available the offices bf the Department of Public Works (2)Where actual conditions deviate significantly from the tabulated Impervi o u s - ness values of 80% or 90%, the values given for coefficient C, may be revised ' by multiplying 80% or 90% by the ratio of actual Imperviousness to the tabulated imperviousness. However, in no case shall the final coefficient be less than 0.50. For example Consider commercial property on D soil,-gtoup 5 Actual imperviousness 50% Tabulated imperviousness 80% Revised C..2xQ85-'O53 80 I APPENDIX IX-B I Rev. 5/81 2--120 •I 0• 4,0 • • 20 • _30a0\ , - \•• - 11 —20',0 /2 -/8O4 • /0 . '• .• .•• 3 -/200 • B 7 -900 • -800 -600 • —5_DO • -3, — 200 .• NOMOGRAPH FOR DETERM I NATION - OF TIME OF CONCENTRATION (Ic) FOR NATURAL WATERSHEDS DATE . •. I V-A - - - - - - 0L :. -J a3 0 0 0 00• 0 0 00 S.. 0 0 0 0 .... •0• 2 . 0• 0 ..0:.. 0 0 0 ., .. I! Ic / - -- .. ...J., I it C. : "•. 0 . . . ' . 0• 0 •'. '• "S . .:-• SAL ' 0,: 0 . . ;-v •.,, , -01 Ic / —3: 0 0 '• 0 , 0 •....•,- . — —1 '7 S•I — 11 _1 A 1 - — n-.", 0 0 ••°' 0 ..-.- . .-)i.- ;. 'S •S••' #. F,: AA -5i - Ii -1 •' 1.5., I — I - •5. .- t - - 'i' ., ; •. . 1 ••;). ' ' '' . a •. .I...f1 0 'S.. .• -. .. p . -•-t'' ti . . . I • .S'-. ... I. " I I • -a. ••'••• . . -, ?- ' ' S BE 'I .a a IL ti ., ' a L -.. -. ,all• 'i.- _ '',.'. S , 0 - F •' -• I,. Q n. • 0, , ,: . 0 ••0 >r- •' ,0 ' 0 ° - (/)O 0 .. •',•., 0 ,0, 0 ,•,,, 0 0 — 0 ) 1 C • 0 0• •, 0, . 0 '. °•• 0• , 0 . 0 0 0 1: .: . V.. '1 .• . : :.V V ,:V. V V V . V V I V 1 1 . • . V!... • . V V V V APPENDIX III: I V lO-Year Peak Discharge Calculations UnderDeveloped Conditions Using V The Computerized Rationale Method. I I . . . •• V V . V ,; V • . . . V ..:6. I V V•, VV • V V V. San Diego County Rational ftydrology Program I CivilCADD/CivilDESIGN Engineering Software, (C) 1990 Version 2 3 I Rational method hydrology program based on . .':...San Diego County Flood CôntrolDivision'1985 hydrology manual Rational Hydrology.Study ' Date: 9/25/90 . I . ...'.:. citho REAL/PALOMAR AIRPORT ROAD . 10,0 AREA BASIN STUDY 'FILENAME: 'lOCANi . .' I.' "• L"200,4 JOB# 10365 9/24/90 Hydrology Study Control Information • Rational hydrology, study storm event year is 10.0 . I . Map. data precipitation entered: -6 hour, precipitation(inches) = 1.800 24 hour precipitation(inches) = 3.100 'Adjusted 6 hour precipitation (inches) = 1.800 /P24 58.1% ' San Diego hydrology manual 'C' values used Runoff, coefficients by rational method I N P U T DA T A L I S T I N ************ .' ". •' Element Capacity Space Remaining 325 I Element Points and Process used between Points I, Number Upstream 100.000 ' . Downstream 101.000 Process Initial Area .2 101.000'. 102.000 . Street Flow'+ Subarea '3 , 102.000 , 103.000 Pipeflow-Time(user inp) ' '' S ' 103.000 103.000 Confluence I . 5,... . S ' 120.000 121.000 Initial Area 6. ' . 121.000 ' 103.000 ' Street Flow + Subarea I ... , ' S 8 ' 103.000 ' 130.000 ' ' 103.000 131.000 Confluence Initial Area 9 5 . . 131.000 103.000 Street Flow + Subarea 10 ' '. . ' 103.000 103.000 Confluence I II ' ' . 103.000 104.000 Pipeflow Time(user inp) 104.000 . ' 104.000 Confluence, .1.3 110.000 5 111.000 Initial Area '111.000 . 104.000 Street Flow + Subarea . I . . 14 . , .15 ' ' 104.000 104.000 ' Confluence 1,6 ' 140.000 141.000 Initial Area 17 , 141.000 104.000 Street Flow + Subarea .18 . ' 104.000. 104.000 Confluence 1,9.. 104.000 ' , . 105.000 Pipeflow Time(user inp) .20 105.000 105.000 . Confluence' .2.1 . • 150.000 . 151.000 Initial Area : 22 . 151.000 . 152.000 Street Flow + Subarea .23 152.000 174.000 Pipeflow Time(user inp) I ' ' 24 . ,25 174000 160.000 174.000 161.000 Main Stream Confluence . Initial Area 26, 161.000 5 173.000 Street Flow + Subarea 27 173.000 173.000 ' • Confluence 170.000 : . 171.000 .. Initial. Area 171.000 . 172.000 Street plow + Subarea I •" . ..'30. ', '." 172.000 173.000 Pipeflow Time(user inp) .31'. 173.000 173.000 Confluence ':32 . ' 173.000 . :174.000. Pipeflow Time(user inp) '•174.000 174.000 Main Stream Confluence 34 . . . 180.000 . 181.000 Initial Area 3:5 . 181.000 . ' 182.000:. Street Flow'+ Subarea I . ' 36 7'192.000 .' ' ' ' 182.000 . 192.000 ' 192.000 Pipeflow'Time('user inp) Confluence 38 . . 190.000 . 191.000 Initial Area .39 . . • 191.000 • 192.000 'Street Flow.+ Subarea ...40 192.000 192.000' Confluence . 41 . 192.000 . 193.000 Pipeflow Time(user inp) "End of listing........... I I I San Diego County Rational Hydrology Program 'CivilCADD/CivilDESIGN Engineering Software, (c) 1990. Version 2.3 Rational method hydrology program based on San Diego County Flood Control Division .1985 hydrology manual Rational Hydrology Study Date: 9/25/90, --------------------------------------------------------------- EL'CANINO REAL/PALOMAR AIRPORT ROAD ' 100 AREA BASIN STUDY FILENAME': 10CAM1 L .200,4. . JOB# 10365 .9/24/90 :s'********.* Hydrology Study Control Information ********** ----------------------------------------------------------------- Rational hydrology study storm event year is 10.0 Map data precipitation entered: 6., hour, , precipitation(inches) 1.800 24 hour precipitation(inches) = 3.100 Adjusted 6 hour precipitation (inches) = 1.800 P6/.P24 = ' 58.1% San Diego hydrology manual 'C' values used Runoff coefficients by rational method ProceSs'from Point/Station . 100.000 to Point/Station 101.000 'f***' INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea Initial subarea flow distance = 130.00(Ft.) Highest elevation = 318.90(Ft.) LOwest elevation = 318.3.0(Ft.) I ..'. ,Elevatióndifference.= 0.60(Ft.) 'Time' of' concentration calculated by the urban ,..,. areas overland flow method (App X-C) =6.64 mm. TC ,=' (1.8*'(1.1_C)*distanceA.5)/(% slope A(1/3)) .. " .TC =,(l.8*(1.l_0.850'0)*(130.00A.5)/.(. 0.46A(i/3)]= :6.64 Rainfall intensity' (I) =' 3.950 for a '10.0 'year' storm Effective runoff coefficient used for area (Q=KCIA)"isC'.='o.BSo I Subarea runoff = 0 537(CFS) Total initial stream area = 0 160(Ac ) I 'PrOcess from Point/Station ' 101.000 to Point/Station' 102.000 **.SET FLOW TPJJ TIME + SUBAREA FLOW ADDITION ,**.** Top o.f street segment elevation = . 318.300(Ft.) End of, street segment elevtion = ' 315.000(Ft..)'.. ' Length 'of., street segment = 500. 000.(Ft.) 'Height of curb above gutter flowljne ' = 6.0(In.) ,. '. . ' • 'Width' of half street (curb to crown) •= 53.000 (Ft...) Distance from crown to crossfall grade break =., 51.'500(Ft.) ' 'Slope.:from gutter to grade' break (v/hz) = 0.083 Slope' from grade 'break to crown (v/h2)'- = 0.020 •' " "Street" flow is on [1) side(s) of the street. ' I I I I I I I I I 'Distance from curb to property line = 10. 000 (Ft.) : •" Slope from curb to property line (v/hz) = 0.060 Gutter width = 1.500(Ft.) : Gutter hike from flowline = 2 • 000 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 . Manning's N from grade break to crown = 0.0160 •: Estimated mean flow rate at midpoint of street = 4.096(CFS) Depth of flow = 0 • 404 (Ft.) . Average velocity = 2 173 (Ft/s) 'Streetflow:hydraulics at midpoint of street travel: Half street flow width = 13.351(Ft.) .F1ow velocity = 2.17(Ft/s) . . Travel time 3.83 mm. TC = 10.47 mm. . . Adding area flow to street . . •. User.specified 'C' value of 0.700 given for'subarea . Rainfall.int.ensity = 2.944(In/Hr) for a 10.0 year storm ...RuOff coëfficient.use for sub-area, Rational metod,Q=CIA, C = 0.700 Subarea runoff = 4.368(CFS) for 2.120(Ac.). .. ' Total '.runOU.= 4.905(CFS) Total. area = •: •.2.28.(Ac.) ..Street-flow at end of street = 4.905(CFS) . . Ha1.f street flow at end of street = 4.905(CFS) Depth of flow = . 0 • 425 (Ft.) ... . .•. . Average velocity = 2.254(Ft/s) .. . . . . . Flow width (from curb towards crown)= 14 4 01(Ft ) . . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 103.000 i *** PIPEFLOW TRAVEL TIME (User specified size) **** I . 1.Upstréarn point/station elevation = 31150 (Ft.). '• . .. .. I :Downstream point/station elevation 308.50(Ft.) .. ....• Pipe length = 400.00(Ft.) Manning's N =0.013 . . . . No. of.. pipes. = 1 Required pipe flow = . 4 .905(CFS) Given pipe size = 18.00(In.) .. . . . . I.. • Calculated: individual pipe flow = 4.905(CFS) NOrmal flow depth in pipe = 9.41(In.) Flow top width inside, pipe = 17.98 (In.) . I . Critical Depth = 10.22(In.) Pipe 'flow velocity = 5.24(Ft/s) Travel time through pipe = 1.27 mm. Time of concentration (TC) = 11.75 mm. I. I . Process from Point/Station 103.000 to Point/Station 103.000 **.**:CONFLUENCE OF MINOR STREAMS :Along Main Stream number: 1 in normal stream number 1 I Stream flow area = 2.280 (Ac.) Runoff from this stream = 4.905(CFS) Time of concentration = 1.1.75 mm. Rainfall intensity = 2.734(In/Hr) I . ••• ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station120.000 to Point/Station. 121.000 INITIAL AREA EVALUATION **** I''. I 1 I I 1. I I User specified 'C' value of 0.630 given for subarea Initial subarea flow, distance = 100.00(Ft.) '.:'Highest elevation = 315.00(Ft.) :'West elevation = 314.00(Ft.) ". Elevation difference 1.00(Ft.) Time,bf concentration calculated by the urban 'areas.-overland flow method (App X-C) = 8.46 mm. TO (1.8*(1.1-C)*distance'.5)/(% slope' (l/3)) TO *(100.00A .5)/( 1.00'(1/3))= Rainfall intensity (I)= 3.378 for a 10.0 year Effective runoff coefficient used for area (Q=KCIA) Subarea-runoff = 1.149(CFS) Total initial stream area:=. . 0.540(4c.) 8.46 storm is C = 0.630 Process from Point/Station 121.000 to Point/Station 103.000. **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 'Top of, street segment elevation .= . 314.000(Ft.) . . : End.of street segment elevation = 311.700(Ft.) •. Length of street segment = 300.000(Ft.) Height, of, curb above gutter flowline =..* 6 • 0 (In. ).' '• . Width..o.'half street (curb to crown) = 53.000('Ft.') Distance from crown to crossfall grade' break =. 51.500(Ft.)' •.'S1ope.rôrn gutter to grade break (v/hz)= ' 0.083 .'S1ope'from grade break to crown (v/hz) = ' 0.020.'. "•', ' Street flow is on (1) side(s) of the street :.Djstance'f.rom curb to property line ='. 10.000'(Ft..) ..: ':','siope from curb to prOperty line (v/hz) =.' 0.060. " ' Guttir width = I.500(Ft.) Guttèr hike from flowline'= 2.000(In.) . '.. Manning's N in gutter = 0.0150 . . ' ..'. Manning's N 'from gutter to grade break = 0.0150 Manning's N from grade break to' crown = 0.0160 ; Estimated mean flow rate at midpoint of street = ' 2.352(CFS) Depth of flow = 0.339 (Ft.) . Average velocity = 2.083(Ft/s) Street flow hydraulics .ät midpoint of street travel: Hálfétreet flow width = 10.133(Ft.) Flow velocity = 2.08 (Ft/s) . Travel time =' 2.40 mm. TC = 10.86 mm. Adding area flow to street User specified 'C' value of 0.660 given for subarea Rainfall intensity = 2.876(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.660 Subarea runoff = 2.145(CFS) for 1.130(Ac.) Total runoff = 3.294(CFS) Total area = 1.67(Ac.) Street flow.at end of street =' 3.294(CFS) 'Half street flow at end of street = 3.294(CFS) Depth of flow = 0.372 (Ft.) Average velocity = 2.213(Ft/s) Flow width (from curb towards crown)= 11.773(Ft.) Process from Point/Station 103.000 to Point/Station 103.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1 670(Ac ) Run off e from this stream = 3 294(CFS) Tim of concentration = 10.86 min. .'.'Rainfa11. intensity = S 2.876(In/Hr) ..Process from Point/Station 130.000 to Point/Station. . 131.000 ****,INITIAL AREA EVALUATION'**** User, specified 'C' value of 0.750 given for subarea' Initial subarea flow distance = 100.00(Ft.) . . . Highest-:elevation = 315.10(Ft.) . Lowest elevation = 314.80(Ft.) Elevation difference=' 0.30(Ft.) .'Time-,of concentration calculated by' the urban area flow method (App X-C) = 9.41 mm.' TC = . -overland (.1.8*(1. 1_C)*distance'.5)/(% slope" (1/3)] .Tc=.(1.8*(1.1_0.7500)*(100.00A.5)/( 0.30'(1/3))=. 9.41' Rainfall intensity (I) =' 3.154 for a 10.0 year storm . Effective runoff coefficient used for area (Q=KCIA) .is'C= 0.750 'Subarea runoff = 0.497(CFS) ' , Total. initial stream area = 0.210 (Ac.) I ..... Process from Point/Station 131.000 to Point/Station' 103.000 .****.STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** '.Top of street segment elevation = 314.800(Ft.) End of street segment elevation = 311.700 (Ft.) ' "Length of street segment = 445.000(Ft.) Height of curb above gutter flowline = 6.0(In.) I .'.Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) 'Slope from gutter to grade break (v/hz) = 0.083 I .'Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1) side(s) of the street Distance from curb to property line, = 10.000(Ft.) I 'Slope from curb to property line (v/hz) = 0.060 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) 'Manning's N in gutter = 0.0150 I ' Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0160 Estimated mean flow rate, at midpoint of street = 1.845(CFS) I Depth of flow 0.322 (Ft.) Average velocity = .1.922(Ft/s) Streetflow hydraulics at midpoint of street travel: I Halfs'treet flow width = 9.259(Ft.) Flow velocity = 1.92 (.Ft/s) "Travel time = 3.86 mm. TC = 13.27 mm. Adding area flow to street I ' User-.specified 'C' value of 0.720 given for subarea • Rainfall intensity = • 2.527(In/Hr) for a 10.0 year storm • , Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.720 I ' Subarea runoff = 2.074(CFS) for 1.140(Ac.) Total runoff = 2.571(CFS) Total area = 1.35(Ac.) Street flow at end of street = 2.571(CFS) ' Half street flow at end of street = 2.571(CFS) I.'.. Depth of flow = 0 352 (Ft 1 Average velocity = 2 033(Ft/s) Flow width (from curb towards crown)= 10 779(Ft ) ................... . . '. '.' . . I Process from Point/Station .103.000 to Point/Station . 103.000 CONFLUENCE OF MINOR.STREANS ** . . U ..:..'Along Main Stream number: 1 in normal stream number 3 Stream flow area = 1.350(Ac.) Runoff tom. this stream = 2.571(CFS) I .... 'Time of concentration 13.27 mm. '.' Rainfall intensity = . 2.527(In/Hr) . ;. Summary of stream data: .. U . • . Stream 'Flow rate ' TC Rainfall Intensity, No.. • (CFS) ... (mm) (In/Hr) . 4.905 11.75 '' 2.734 .' ''2. . ' 3..294 10.86 ' . ' , . . 2.876 U . " •3 .. 2.571 ' ' 13.27" . '.. . 'S ' 2.527 Qrnax'(l') 1.000 * 1.000 * 4.905) + 0.951 * 1.000 f 3.294) + 1.000 * 0.885 * 2.571) + = , 10.313.' 1.000.* 0.925 * 4.905) + ' I ...'' ,' ' '• . ' ' 1.000 * . 1.000 * '3.294) + 1.000 * 0.818.* 2.571) + = 9.934 Qmax(3).= ' 0.924 * .1.000 4.905) + 0.879 * 1.000 * ' 3.294) + 1.000 * 1.000 * 2.571) + = 10.000 Total 3 streams to,.confluence: .Flow rates before confluence point: ........ 4.905 ' ' 3.294 2.571 ' U . Maximum flow rates at confluence using above data: .10.313 ' .9.934 ,. 10.000 Are'a'of streams before confluence: 2.280 ' 1.670 1.350 Results ofconfluence: . Total, flow rate= . ' 10.313(CFS) Time of. concentration = 11.745 mm. Effective stream area after confluence = 5.300(Ac.) I . 'Process from Point/Station 103.000 to Point/Station . 104.000 '****.PIPEFLOW. TRAVEL TIME (User specified size) '**** I Upstream point/station elevation = 308.50(Ft.) DOwnstream point/station elevation = 307.70(Ft.)' :Pipe length = 105.'OO(F€.) Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = 10.313(CFS) Given pipe size ' 24.00(In.) Calculated individual pipe flow = 10.313(CFS) Normal' flow depth in pipe = 12.32 (In.), Flow top width inside pipe = 23.99 (In ) Crtical Depth = 13.80(In.) I .. 'Ppe.flow velocity = 6.35(Ft/s) ....vé1 tie through pipe = 0.28 mm. Time of concentration (TC) = 12.02 mm. Process from Point/Station .104.000 to Point/Station 104.000 ****CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 I .Stream flow area = 5.300(Ac.) .... Runoff from this stream.= 10.313(CFS) Time.Of concentration = 12.02 mm. Rainfall intensity = 2.693(In/Hr) I . Process from Point/Station 110.000 to Point/Station. 111.000 **** INITIAL AREA EVALUATION **** I User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 130.00(Ft.) Highest elevation =. 318.90(Ft.) Lwest elevation = 318.30(Ft.) I Elevation difference = 0.60(Ft.) Tjme Of concentration calculated by the urban areas overland flow method (App X-C) = 5.31 mm. I : .TC = . (l.8.*(l. 1-C) *distaflCe".5)/(% slope A(l/3)] Tc=(1.8*(1.1_0.9000)*(130.00A.5)/( 0.46'(1/3))= 5.31 :Rainfal]. intensity (I) = 4.561 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.900 I ... . Subarea runoff = 0.657(cFs) 1 Total initial stream area = 0.160(Ac.) Process from Point/Station 111.000 to Point/Station 104.000 I .....****STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 318.300(Ft.) End of street segment elevation = 311.700(Ft.) I .. .Lèngth.of street segment = 900.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) I .Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street I . Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.060 :'Cutter width = 1.500(Ft.). I from f1ow11ne = 2.000(In.) ::Manning's N in gutter .. 0.0150 . . . . . :-Manning's..N..from gutter td grade break = 0.0150 . I... Manning's N from grade-break to crown = 0.0160 .. . .. Estimated mean flow rate .at midpoint of street = 3.325(CFS) Depth of flow.= 0.375(Ft..) . . . . . . . Average velocity = . 2,.177(Ft/s) .. . . ".''.Streetflow'hydrau1ics at midpoint of street travel: 'Hä]fstreet flow width = 11.937 (Ft.) ::. Flow velocity = 2.18(Ft/s) .''Travei.tlme = 6.89 mm. TC° = 12.20 mm. Adding 'area flow to street . User specified 'C' value of 0.850 given for subarea Rainfall intensity = 2.668(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 : .SAarèa.runoff = . 2.948(CFS) for 1.300 (Ac.) :Total runoff = 3.604(CFS) Total area = 1.46(Ac.) Street flow at end of street = 3.604(CFS) Half street flow at end of street = 3.604(CFS) Depth of flow. = 0.384 (Ft.) Average velocity = 2.211(Ft/s) Flow width (from curb towards crown)= 12.361(Ft.) . Process from Point/Station 104.000 to Point/Station 104.000 I . ***• CONFLUENCE OF MINOR STREAMS *** Along Main Stream number: 1 in normal stream number 2 Stream I f].ow.area = 1.460 (Ac.) Runoff from this stream = 3.604(CFS) Time -of concentration = 12.20 mm. Rainfall intensity = •• 2.668(In/Hr) Process from Point/Station 140.000 to Point/Station 141.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea I . Initial subarea flow distance = loo.00(Ft.) Highest elevation = 315.10(Ft.) Lowest elevation = 314.80(Ft.) I Elevation difference = 0.30(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.72 main. TC = (1.8*(1.1-C)*distance".5)/(% slope(1/3)) I ....TC =. (1.8*(1.1_o.8500)*.(100.00A.5)/( 0.30'(l/3))= 6.72 Rainfall intensity (I) = 3.918 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 I . Subarea runoff = 0.466(CFS) Total initial stream area = 0.140(Ac.) I .•. Process from Point/Station 141.000 to Point/Station . 104.000 ****STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of 'street segment elevation =. 314.800 (Ft.) •.• End ofstreet segment elevation = ...3.11.700(Ft.) '2 . . •Length -of, -street segment = 445.000(Ft.). :' • . :'Height.of curb above gutter flowline • 6.0(In.)' : 'Width.' of 'half street (curb to crown) = 53 000.(Ft.') Distance from crown to crossfall grade break = 51 500(Ft ) Slope from gutter to grade break (v/hz) = 0.083 slppe from grade break to crown (v/hz') = • 0.020 . . .. Street flow is on (1) side(s) of the street '• • •. - • Distance from curb to property line = 10 000(Ft ) Slope.frorn.curb to property line (v/hz) = 0.060 'Gutter' width = 1.500 (Ft.) erhi)e from flowline= 2.000(In.) :''Mafln'irig'S'N in gutter = 0.0150 I "Manning's N from gutter to grade break = 0.0150 Manning's 'N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street = 1.549(CFS) Depth of flow = 0.307(Ft.) I ' Average velocity =' 1.871(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreét flow width = 8.516(Ft.) I '.' Flow velocity = 1.87(Ft/s) Travel time = 3.96 mm. TC = 10.69 min. Adding area flow to street User specified 'C' value of 0.850 given for subarea Rainfall, intensity =2.906(In/Hr) for a 10.0 year storm .,'Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea 'runoff = l.'605(CFS) for 0.650 (Ac.) 'Total,' runoff =2.072(CFS) Total area = 0.79 (Ac.) 'Street flow at end of street = 2.072(CFS) Half-.street flow at end of street = 2.072(CFS) ..,.Depth "DePth of'. "flow =0 • 332 (Ft.) :. "Average velocity = 1.959(Ft/s) .Flow'width (from curb towards crown)= 9.773 (Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ''process from Point/Station 104.000 to Point/Station 104.000 I • •'' CONFLUENCE O' MINOR' STREAMS Along Main Stream number 1 in normal stream number 3 Stream flow area = 0.790(.Ac.) ' ' '•' : ' I Runoff from this stream = 2.072(CFS) Time of concentration = 10.69 mm Rainfall intensity = 2..9 0 6 (.In/Hr) I Summary of stream data Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 10.313 12 02 2.693 '2 ': 3.604 12.20 '' . ' ' 2.668 ' •': " 3 2072 1069 2.906 Qmax(1) = I "•' '''c ',,,'•,',• ,,', . 1.000 * l000 * ' 10.313.) .1.000 * 0.985* . 3.604) + • •' ' ' ' 0.927 * 1.000 * 2 072) + = 15 784 Qmax,(2)=' ' ' • • ' 0.990 * 1.000 * 10.313) + • ' ' 1.000 * 1.000 * 3.604) + 0.918 * l'.00Q * 2.072) + = • 15.720 I ' ' 'Qmax'(3) = ':: , 1.000 * 0.889* 10.313) + 1.000 * 0.876 *. 3.604) I 1.000 * 1.1000'* 2.072) + 14 396 Total of 3 streams, to confluence: Flow rates before confluence point: I 10.313 3 604 2 O72 'Maximum flow rates at confluence using above data: I 15.784 15.720''14.396 Area 'of streams before confluence: ..5 ..3-00 1'.460, 0.790 I Results of confluence Total flow rate = 15 784(CFS) Time of concentration = 12.021 mm Effective-stream, . area after confluence = 7.550(Ac.) I Process-from Point/Station 104.000 to Point/Station 105.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 307.20(Ft.) Downstream point/station elevation .= 307.00(Ft.) Pipe length = '15.00(Ft.) Manning's N = 0.013 ........., of. pipes = 1' Required pipe flow = 15.784(CFS) I . Given-pipe-size =. 24.60(In.) '.Calculated individual pipe flow = 15.784(CFS) Normal flow depth in pipe = 13 45(In ) I.. Flow: top width inside pipe = 23.82(In.) :,Cr'jtica]. Depth = 17.19(In.') Pipe flow velocity '= . 8.70(Ft/s) Travel time through pipe = 0.03 min. I Time of concentration (TC) = 12 05 min. I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 105.000 . .......****, CONFLUENCE OF MINOR STREAMS'**** I Along Main Stream number. 1 in normal stream number 1 Stream flow area = 7 550(Ac ) Runoff from this stream = 15.784(CFS) I Time of concentration = 12.05 nun .:-Rainfall intensity = 2.68,9(In/Hr) ' Summary of stream data I Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 15784 1205 2.689 Qmax(1) = I 1.000** 1.000 * 15.784) + = 15.784 Total of 1 streams to confluence I. .. :....low rates before confluence point: 15 784 Maximum flow rates at confluence using above data 15.784 I Area of streams before confluence 7.550 Results of confluence I Total flow rate = 15 784(CFS) Time of concentration = 12.050 min. Effective stream area after, confluence = 7'.550(Ac.) . S I I Process from Point/Station 150 000 to Point/Station 151 000 ****' INITIAL AREA EVALUATION **** j'.•....•.• . ':.user.::speciried 'C' value of 0.850 given -for subarea Initial subarea flow. distance = 100.00 (Ft ) "''Highest elevation = 315.20(Ft ) :.LOVest elevation = 314. 80(Ft.) . . S .. .. I.........: •.' Elevation difference Time of 'concentration calculated by the, urban .. . areas overland flow method (App X-C) = 6.11 mm I.. TC.='...(.l.8*(1'.I_C)*distanceA.5)/(% s16pe'(1/3)J' ... TC = (1.8*(1.l-0.8500)*(100 OOA 5)/( 0 4O'(1/3))= 6 11 Raina11 .inensity '(I) '= 4.168 for a 10.0 year storm I . Effective runoff coefficient used for area -(Q= KCIA) is' C'..= 0.850 Subarea runoff = 0.496(CFS)' Total initial stream area = 0 140(Ac ) ..PrOcess from Point/Station 151.000 to Point/Station 152.000 I . ", .... '****' STREET FLOW TRAVEL TIME +' SUBAREA FLOW ADDITION '.. Top' of street segment elevation '=' 314.800(Ft..) End of street segment elevation = 282 800(Ft ) I .....'' 'tength of street segment = 1410.000(Ft.) '.:Height o..curb above gutter flowline "Width: of. half street (curb to crown) = 53.000(M) . I........... .' Distance- from crown to 'crossfall grade break = 51.500'(Ft.,) ,:'Slope from gutter to grade break (v/hz) =0.08.3 S1'opé'from grade break to crown (v/hz) = ' 0.020' Street, flow is on (1] side(s) of the 'street ' Distance' from curb to property line 10.000(Ft.)' S1op. from curb to property line (v/hz) = 0.060. Guttër'wdth = 1.560(Ft) I. " Gutter hike from flowline 2.000(In.) 'Manning's N in gutter = 0.0150 ......Manning's N from gutter to grade break = 0.0150 I .' Manning's N from grade break to crown = 0.0160 - Estimated-mean flow rate at midpoint of street = ' ' 4.216(CFs) Depth of flow = 0.343 (Ft.) 'Average velocity = 3.609(Ft/s) .'Streëtflow hydraulics at midpoint of street travel: 'Halfstreet flow width = 10.'324(Ft.)' 'Flow velocity = 3.61(Ft/s) .. ' I . 'Travel. 'time = 6.',51 mm. TC = 12.62 Adding area flow to street .User'.speCjfied 'C' value of 0.850 given for subarea, Rainfall intensity =. 2.610(In/Hr) for a 10.0 year storm I : Runoff 'coefficient used for sub-area, Rational method.,Q=KCIA, C 0.850 Subarea runoff = 4.659(CFS) for ' 2.100(Ac.) 'Total I runoff = 5.155(CFS) Total area = ' ' 2.2'4(Ac.) , Street flow at end of street = Half Street flow at end ,of street = 5.155(CFS) ' Depth .of ,f low = 0.363 (Ft.) Average velocity = 3.741(Ft/s) I . Flowwid'th (from curb towards crown)= 11.294(Ft.) 11 .:ProCeSS from Point/Station 152.000 to Point/Station 174.000 TRAVEL TIME (User specified size) **** Upstream point/station elevation = 279 .50(Ft.) Downstream point/station elevation = 279.00(Ft.) '.:.Pipe. length. = .63.00(Ft.) Manning's N = 0.013 'No. ..of: -pipes = 1 Required pipe flow. = 5.155(CFS) .,:Given pipe size = 18.00(In.) ' Calculated individual pipe flow =' 5.155(CFS) Normal flow depth in pipe =. 9.54 (In.) .'..':.:.F1W..'tOp width inside. pipe •= 17.97(In.) ."cri.tical'Depth = 10.49'(In.) Pipe: f'low' velocity = 5.42 (Ft/s) ,:..,Travel time through pipe = 0.19 mm. :'Tirne:of concentration (TC) = 12.81 mm. Process from Point/Station 174 000 to Point/Station 174 000 CONFLUENCE OF MAIN STREAMS :;,The following data inside Main Stream is listed:: In Main Stream number 1 Stream flow area = 2.240 (Ac.) • Runoff from this stream ..= 5.155(CFS) Time of concentration = 12.81 mm Rainfall intensity = 2 585(In/Hr) Program is now starting with Main Stream No 2 ., Process from Point/Station 160.000 to Point/Station 161.000 ***.*':INITIAL AREA EVALUATION .' User specified 'C' value of 0.850 given for subarea -..Initial Initial subarea flow distance = 100.00(Ft.) Highest elevation = 323.90(Ft.) Lowest elevation = 318.30(Ft.) . Elevation difference =• 5.60(Ft.) Time of"concentration calculated by the urban areas-overland flow method (App X-C) = 2.53 mm. .TC = '(1.8*(1.1-C) *distance *.5)/(% slope'(1/3)) TC= [1.8*(1.1_0.8500)*(100.00A.5)/( 5.60(l/3))= .2.53 Rainfall intensity (I).= 7.352 for a 10.0 year storm. Effective runoff coefficient used for area (Q=KCIA) is. C = 0.850 .•.:Subarea runoff = 0.875(CFS) Total initial stream area = 0.140(Ac.) . I ••, • Prodéss from Point/Station 161.000 to Point/Station 173.000 • STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I • :..Top of street segment elevation = 318.300(Ft.) ' End Of street segment elevation = 0 283.800(Ft.) I ;Length of street segment = 690.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown tocrossfall grade break = 51.500(Ft.) I I, I. I. I, I I .1 I. I I I I I Slope froiL.gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street U Distance from curb to property line = 10 000(Ft ) Slope, from curb to property. line •(v/hz) = 0.060 width = 1 • 500 (Ft.) • I ..':"Gutter .': Gutter hike from flowline = 2.000('In.) .........',,'Maflñthgs:N in gutter .... ': ',Mann1nç,"8.N. from gutter to grade break 0.0150 I .'• Manning N from grade 'break to crown = D. 0.150 'Estimated' mean flow rate at midpoint of. street = .3.999 (CFS) Depth of flow = 0 302(Ft ) Average velocity = 5.100(Ft/s) I Streetflow hydraulics at midpoint of street travel .Häl'fstréet' flow width = 8.256(Ft.) '7104"ve1ocity=5.'10(Ft/s) .. . . . .' . Travel time =. 2.25 min .. TC ='' 4.79 mm.' Adding area flow to street ser'specified 'C' value of 0.850 given for subarea ,. , .,. I .Rainfall intensity = 4 876(In/Hr) for a 10 0 year storm ..:Rfloff. coefficient used for sub-area, Rational' method,Q=KCIA, C =.O.-850 Subarea, runoff = . 4.145(CFS) for 1.000 (Ac...): I Total runoff = 5 020(CFS) Total area = 1 14(Ac ) Street flow at end of street = 5 020(CFS) Half-street flow at end of street = . 5.020((ZFS),' 'Depth of flow = 0.321 (Ft.) velocity = 5.294(Ft/.$)' 'Flow width (from curb towards crown)=. 9.196(Ft.) I" " "Process from Point/Station ' 173.000 to Point/Station'.' 173.000 I " '.,****' CONFLUENCE OF MINOR STREAMS ' Along gain Stream number: 2 in normal stream number 1 Stream flow area = 1.140(Ac.) I . ' Runoff from 'this stream =5'.020cFs Time Of concentration 4.79 mm. Rainfall' intensity = ' 4.876(In/Hr) Process from Point/Station 170.000 to Point/Station, 171.000 I ' INITIAL AREA EVALUATION **** User Specified 'C' value of 0.850 given -for subarea initial subarea flow distance = 100.00(Ft.) 'Highest elevation = 323.90(Ft.) Lowest elevation = 318.30(Ft.) 'Elevation difference =' • 5.60(Ft.)' I ' ' Tiine'of concentration calculated by the urban areas overland flow method (App X-C)' =' 2.53 mm. :TC' (1'.8*(1.1_C)*distance.5)/(% slope(1/3)) I ' TC,='(1.8*,(l.1_0.8500,)*.(1oo.00A.5)/( .5.60A(1/3)']= 2.53 Rainfall intensity (I).=7.352 for a 10.0 year storm' 'Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = •0.875(CFS) Total initial stream area = 0.140(Ac.) I Process from Point/Station 171 000 to Point/Station.",-'. oint/Station 172 000 '**** STREET FLOW TRAVEL' TIME. + SUBAREA FLOW ADDITION Top of street segment elevation = 318 300(Ft.) I :End of street segment elevation = 285.000(Ft.) . Length of street segment = 630.000(Ft.) Height of curb above gutter flowliné = 6.0 (In.)' .w idth of half street (curb to crown) = 53.000(Ft.) I.: :-Distance from crown to crossfall grade break = . 51.500(Ft.) .'Slope from: gutter to grade break (v/hz) = 0.083 'Slope from grade break to crown (v/hz): = 0.020 I . ' street flow is on-[1] side(s) of the street . - Distance from curb' to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) 0.060 Gutter width = 1.500(Ft.) I : 'Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150. Manning's N from gutter to grade break = 0.0150 I . Manning'.s N from grade break to crown = 0.0160 Estimated mean flow rate at'midpoint of street = . 3'.718(CFS) Depth. of.flow = 0.296(Ft.) I . Average velocity5.053(Ft/s) .. .'S.treetflow•.hydraulics at.midpoint of street travel: Halfstreet flow width = 7.958 (Ft.) Flow-Velocity = 5..05(Ft/s) I. . Travel time = 2.08 mm. TC = 4.61 mm. Adding area flow to street User specified 'C.' value of 0.850 given for subarea I .Rainfall intensity ,= 4.996(In/Hr) for a 10.0 year storm .Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 3.865(CFS) for . 0.910(Ac.) Total runoff.= 4.739(CFS) Total area = 1.05 (Ac.) I .'. Street flow at end of street = .4.739(CFS) ''Half street flow at end of street = 4.739(CFS) ,.Depth 'of flow = 0.316(Ft..) I Average velocity = 5.237(Ft/s) Flow width (from curb-towards crown)= 8.958(Ft.) I ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++ Process from Point/Station 172.000 to Point/Station 173.000 ****. PIPEFLOW TRAVEL TIME (User specified size) **** I . ' Upstream point/station elevation = 281.50(Ft.) Downstream point/station elevation Pipe length = 168.00.(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.739(CFS) Given, pipe size = .18.00(In.) ,Cálcülated individual pipe flow = 4.739(CFS) I . 'Normal: flow depth in pipe = 8.76(In.) Flow-top width inside pipe = 17.99(In.) Critical Depth = 10.03(In.) Pipe flow velocity =5.55(Ft/s) Travel time through pipe = 0.50 mm. ":Tlme of concentration (TC) = 5.12 mm. 'Process from Point/Station '173.000 to-Point/Station. - 173.000 I **** CONFLUENCE OF MINOR STREANS I Along Main Stream number 2 in normal stream number 2 Stream flow area. = l..050(Ac..) .'Runoff from this stream = 4.739(CFS) I . Time of concentration = 5.12 mm. Rainfall.lntensity = 4.673(In/Hr) Summary of stream data Stream Flow rate TC Rainfall Intensity No.. (CFS) (mm) (In/Hr) 1 5.020 479 4 .876 2 4.739. 5.12 :4.673 'Qmax'(l) = = . 1.000 * 1.000 * 5.020) + 1.000 * 0.936 * 4.739) + = '. 9.456 Qmax(.2) = '. 0.958 * 1.000 * 5.020) + 1 000 * 1.000 * 4.739) + = 9.550 I Total of 2 streams to confluence .' : Flów'ràtesbefore confluence point: 5.020 4 .739 Maximum flow rates at confluence using above data: I . . . 9.45.6 9.550 Area of, streams before confluence: 1.140 1.050 I. .... "Rösults of confluence: Total flow rate = 9.550(CFS) Time of, concentration 5.116 mm. .'Effective stream area after confluence = 2.190(Ac.) I - ... Process from Point/Station 173.000 to Point/Station, 174.000 -PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station-elevation = 279.67(Ft.) :..Downstream point/station elevation = 279.00(Ft.) Pipe length = 85.00(Ft.) Manning's N = 0.013 No of pipes = 2 Required pipe flow = 9 550(CFS) 'Given'pipe 'size = . 18.00(In.) Calculated individual pipe flow = 4.775(CFS) Normal,flow depth in pipe = 9.13 (In.) I Flow top width inside pipe = 18 00(In ) :..Critical Depth = 10.08(In.) Pipe flow velocity = . 5.31(Ft/s) v 0.27 . . •' , ' Trael time through pipe = 0 27 nun I Time of concentration (TC) = 5.38 nun I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 174 000 to Point/Station i74.'00'0 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed In Main Stream number: 2 flow area = 2.190(Ac.) H" :-' Runoff from this stream = 9 550(CFS) Time of concentration = 5'38 min. I Rainfall intensity = 4 522(In/Hr) Summary of stream data Stream Flow rate TC Rainfall Intensity I No (CFS) (mm) (In/Hr) I 1 5.155 12 81 2.585, I .........2 9.550 5.38 4.522 Qmax(i) = I 1.000 * 1..000.*, 5.155) + 0.572 * 1.000 * 9.550) + = 10.614 Qmax(2.) = 1.000 * 0.420 * 5 155) + I 1.000 * 1.0100 * 9.550) + = 11.715.. Total of 2 main streams to confluence I Flow rates before confluence point 5155 9.550 Maximum flow rates at confluence using above data I 10.614 11.715 Area of streams before confluence 2.240 2.190.' I Results of confluence Total flow rate = 11,715 (CFS) Time of concentration = 5 383 mm Effective stream area after confluence = 4 430(Ac ) I Process from Point/Station 180.000 to Point/Station 181 000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea Initial subarea flow distance '. = 100.00(Ft.) .. I Highest elevation = 387 40(Ft ) Lowest elevation = 384 30(Ft ) Elevation difference = 3.10(Ft.) . . . Time of concentration calculated by the urban . 's I.. . areas overland flow method (App X-C) = 3.09 mm. TC = (1 8*(l.l_C)*distance" 5)/(% slope '(l/3)) TC = [1 8*(l 1-0 8500)*(100 OOA 5)/( 3.10-(1/3))= 3-.09-.. I vRainfall intensity (I)'= 6.474 for a 10.0 year storm Effectie runoff coefficient used for area (Q=KCIA) is ..0 = 0 850 Subarea runoff.= 0 770(CFS) Total initial stream area = ' 0.140(Ac.) I I Process from Point/Station 181.000 to Point/Station 182.000 '.*'***.STpET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION'**** Top of street segment elevation = 384 300(Ft ) End of street,segmnent elevation = 324.000(Ft.) Length. of street segment 1387.000'(Ft.) . Height of curb above gutter flowlmne = 6 0(In ) I Wldth,'of':half street (curb to crown) = 53.000(Ft.)' DIstance from crown to crossfall grade break = 51..'500(Ft.) I .. '•' :"Slope from gutter to grade break• (v/hz) = 0.083 Slope from grade break to crown ('v/hz) = 0.020 '.'.Steet flow is on (1] side(s) of the street D'istance:from curb to property, line: = 10.000(Ft.) Slope frol curb to property 'line (v/hz) = 0.020 Gutter width =. 1.500(Ft.) ' Gutter hike from f].Owline = 2.000(m1) Manning's N in gutter = 0.0150 ,' Xanning'i 'N, from gutter to grade break = 010150 Manning's N, from grade break to crown = 0.0150 I ..:Estjmàted"mean flow rate at midpoint of street = 6.301(CFS) = 0.347(Ft.) . .'.Average velocity = 5.207(Ft/s) Streetf low hydraulics at midpoint of street travel: Half street, flow width = 10.524(Ft.) ': "Flow velocity = 5.21(Ft/s) . . Travel tjme,= 4.44 mm. . TC = 7.53 mm. I . 'Adding area flow to street 'User'.Specifed 'C' value of 0.850 given for subarea :Rainfall intensity = . ' 3.643(In/Hr) for a 10.0 year storm I . Runoff coefficient used' for sub-area, Rational method,Q=KCIA, C = 0.850 2 Subarea runoff = 6.224(CFS) for ' 2.010(Ac.) 1.. :"TPta runoff = 6.995(CFS) Total area = .' ' 2.15(Ac.) Street flow 'at end of street= , . 6.995(CFS) flow at end of street =6.995(CFS) Depth' of 'flow. = 0.357 (Ft.) . " . 0 ' •, Average velocity = 5 311(Ft/s) Flow width '(from curb towards crown)= 11 021(Ft ) +++++++++++++++++++++++++++++++++++++++++-f++++++++++++++++++++++++++++ I Process from Point/Station 182 000 to Point/Station 192 000 **** PIP.EFLOW TRAVEL TIME (User specified size) I Upstream point/station elevation = 316 05-(Ft ) :..pownstream point/sta.tion.elevation = 314.14 (Ft.,) Pipe length = 108 00(Ft ) Manning's N 0 013 No'.' 'of pipes = 1 Required 'pipe flow '= 6 .995(CFS) Given pipe size = 18 00(In ) , "• •:',çaiculated,individual pipe flow = . 6.995(.CFS)' '. depth in pipe = 9.01(In.) , ', : •. I Flow top width inside pipe = 18 00(In ) :Critical'- Depth = 12.28 (In) • 'Pipe 'flow velocity = 7.91(Ft/s) ' . ' ,. , • I. .' Travel time through pipe = , 0.23 mm.. Tirne,'of concentration (TC) = ' 7.75 mm. Process"from'Point/Station 192.000 to Point/Station • .192.000 CONFLUENCE OF MINOR STREAMS "' ';.Along. Mainstream number: '1 in normal stream number Stream flow area = 2.150(Ac.) Runoff from this stream '=6.995(CFS) Time. of concentration = 7.75 mm. ' •0,, " "Rainfall intensity = 3.574(In/Hr) ....................................................................... '.'..Process from Point/Station . 190.000 to Point/Station. 191.000 *..***-INITIAL AREA EVALUATION **** 1 , User specified 'C' value of 0.850 given for subarea initial subarea flow distance = 100.00(Ft.) Highest elevation = 395.20(Ft'.) Lowest elevation 390.90(Ft.) . I . Elevation difference = 4.30(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.77 mm. I . TC= (l.8*('l.l-C)*diStanCe".5)/(% slope "(1/3)) Tc,,(1.8(1.1.,0.8500)*(100.00fr..5)/( 4.30"(1/3)]= 2.77. :Rainfáll. intensity (I) =• 6.946 for a 10.0 year storm I .Effective runoff coefficientused for area (Q=KCIA) isC = 0.850 Subarea runoff = 0.827(CFS) Total initial stream area = 0.140(Ac.) I :s'.f10m Point/Station 191.000 to Point/Station 192.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** U ...... .:Topofstreet segment elevation = 390.900(Ft.) End .of street segment elevation = . 324.000(Ft.) I .. Length of. street segment = 1567.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of. half street (curb to crown) = 53.000(Ft.) I . " Distànce'from crown to crossfall grade break = 51.500(Ft.) 'Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) =0.020 Street flow is on [1] side(s) of the street I .Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.060 Gutter width = 1.500(Ft.) I . Gutter hike from flowline = 2.000(In.) ...Manning's. N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 I .. :Manning's.N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street = 7.527(CFS) Depth of flow = 0.369(Ft.) Average velocity = 5.190(Ft/s) I. : • Streetfiow hydraulics at midpoint of street travel: .:Halfstreet flow width = 11.609(Ft.)- Flow velocity = 5.19(Ft/s) .I Travel time'- 5.03 mm. . TC = 7.80 mm.. Adding area flow to street . . :User..'sPecified 'C' value of 0.850 given for subarea . Rainfall intensity = 3.560(In/.Hr) for a .10.0ye ãrstoriu I . ' Runoff coefficient used' for sub-area, Rational 'met'hod,Q=KCIA, C = Subarea runoff = :6.870(CFS) for . 2.270(Ac.) Total runoff =7 696(CFS) Total area = 2 41(Ac ) I Street flow at end of street = 7 696(CFS) Half-:street.*flow at end of street = 7 696(CFS) Depth flow 0.371 (Ft.)' Average velocity = 5.212(Ft/s) .' .... . Flow, width.(from curb towards crown)= 11.722(Ft.) .... . ' . ....Process. from Point/Station 192.000. to Point/Station 192.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number 1 in normal stream number 2 Stream flow area =2.410(Ac.) . Runoff from this stream = 7.696(CFS) Time of concentration = 7.80 min. Rainfall intensity 3.560(In/Hr) .. Summary of. stream data: Stream . Flow rate TC . Rainfall Intensity .. No. . (CFS) (mm) (In/Hr) 1 6.995 775 3 .574 . 2 . 7.696 7.80 . . 3.560 1.000 * 1.000 * 6.995) + 1.000.* .0.99 000 *.0.994 * 7.696) + = 14.646 'Qmàx(2) •= .. . . . ••• 0.996 * 1.000 * 6.995) + I . ..:.. 1.000 * 1.000 * 7.696) + = 14.664 Total. of 2: streams to confluence: - Flow, ràte.s before confluence point.: 6.995 . 7.696 . Maximum flow rates at confluence using above data 14.646 14.664 . : Area. of streams before confluence: 2.150 2.410 . Results of confluence: . . :Total flow rate = 14.664(CFS) Time of concentration = 7.799 mm. :'Effective,stream area after confluence = . 4.560(Ac.) U • •••..• +++++++++++++++++++++++++++++++++++++++±++++++++++++++++++++++++++++++ Process from Point/Station 192.000 to Point/Station 193.000 0 *** PIPEFLOW TRAVEL TIME (User specified size) **** • •.:. Upstream point/station :elevation = 314.14(Ft.) Downstream point/station elevation = 313.50 (Ft ) I Pipe length = 60 00(Ft ) Manning's N = 0,013 No. of pipes = 1 Required pipe flow = 14 664(CFS) given-pipe-.size = 24.00(-In.) 0 • . 0 • I...: .Calcuiated. individual pipe.flow = 14.664.(CFS) . . Normal flow depth in pipe = 13 78(In ) Flow top width inside pipe = 23.73(In.) .. . . . Critical Depth = 16 56(In ) I Pipe flow velocity = 7 85(Ft/s) Travel time through pipe = 0.13 nun Time of concentration (TC) 7.93, nun End of computations., total study area = 16.54 (Ac.) I / I • •••-. :.. •• . 0• • • . •0 •' •• •• I San Diego County Rational Hydrology Program I CivilCADD/CivilDESIGN Engineering Software, (c) 1990 Version 2.3 I Rational S an Diego.County method hydrology Flood program based Control Division .1985 on hydrology manual Rational Hydrology Study Date 9/25/90 I ''EL CAMINO REAL/PALOMAR AIRPORT ROAD 200 AREA BASIN STUDY FILENANE 10CAN2 I L 200,4 JOB# 10365 9/24/90 ********* Hydrology Study Control Information.***,*******'. --------------- Rational hydrology study storm event year is 10-1,0. Map data precipitation entered I 6 hour, precipitation(inches) = 1.800'.. .2 4 hour precipitation(inches) = 3.100 Adjusted 6 hour precipitation (inches) = 1.800* I P6/P24 = 58 1% San Diego hydrology manual 'CO-values used Runoff coefficients by rational method I ************** I N P U T D A T A L I S T I N G ************ I Element Element Points Capacity Space Remaining = 324 and Process used between Points Number Upstream Downstream Process I.. , 200.000 '' 201.000° . Initial' Area .. 201.000 . 202.000 Street Flow +' Subarea 3 ., .. . ' . 202.000 203.000 0 Pipeflow.Time(user inp)' ' . . . .203.000 204.000 Improved Channel Time I .5 . 210.000 204.000 Subarea F'low'Addition 6 204.000 205.000 Pipeflow Time(user inp) I .•. 8 . 205.000 . . '220.000 205.000 221.000 . Main Stream.Confluence Initial Area 1 '9 ' 221.000 . '222.000 . PipeflowTime.(user inp) • 10 . ' 222.009 222.000 Confluence 222.000 Initial Area 2 .-1 222.000 222.000 Confluence .222.000 '223.000 . PipeflowTime(user inp) I ' '' .14 • 1,5' , : ' 223.000 . 205.000 : . 205.000 ° 205.000 . Pipeflow Time (user .inp) Main Stream Confluence 270.000 , 271.000 ' Initial Area 271.000 . 272.000 Street Flow + Subarea I 18' . , .272.O00 . ' 272.000 . Confluence 273.000 ' 274.000 . Initial Area 2:.0 ,' ' 274.000 . 272.000 Street Flow + Subarea : , 2]....: 272.000 • .272.000' . Confluence I 22 .. ', '. 272.000 205.000 0 Pipeflow Tiine('üser inp) 23 ' " .205.000 205.000 MainStream Confluence I . . 24'. 25, . 205000 . 206.000 206.000 . 206.000 Pipeflow Time(user inp) Main Stream Confluence 2'6'- 280.000 281.00,0 Initial Area .2.7 . 281.000 282.000 . Street Flow + Subarea I..... 28 282 000 282 000 Confluence 29 290.000 291 000 Initial Area .30,• . 291.000 282.000 Street Flow + Subarea I 31 282.000 282.000 Confluence 32 282.000 283.000 Pipeflow Time(user inp) ' 33 283.000 206.000 Improved Channel Time 34 206.000 206.000 Main Stream Confluence .35. . 240.000 241.000 Initial Area 36 241.000 252 000 Pipeflow Time(user inp) I 37 252.000 252.000 Confluence 38 250 000 251.000 Initial Area :39: . .•. 251.000 252.000. . Street Flow + Subarea 40 252.000 252.000 Confluence I 41 252 000 263 000 Pipeflow Time(user inp) 42 263.000. 263,000 Confluence 43 260.000 261 000 Initial Area 44 261.000 262 000 Street Flow + Subarea 45 262.000 263 000 Pipeflow Time (user. inp) 46 263.000 263.000 Confluence 263.000 264 000 Pipeflow Time(user inp) I End of listing I I I I I I I I I I I i I San Diego County Rational Hydrology Program I CivilCADD/CivilDESIGN Engineering Software, (c) 1990 Version 2 3 U Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 9/25/90 ' :.• I.. EL ,CANINO REAL/PALOMAR AIRPORT ROAD '• . .. •0• 200 AREA BASIN STUDY . . .. . . FILENAME; 1OCAM2 . . ..., . I L 200,4 JOB# 10365 9/24/90 Hydrology Study Control Information ********** Rational hydrology study storm event year is 10.0 1 Map data precipitation entered: . 0 ''6 hour, .precipitation(inches) = 1.800 ...24--hour-precipitation(inches) = 3.10.0 Adjusted 6' hour precipitation (inches) = 1.800. P6/P24 ' 58.1% .San 'Diego hydrology manual 'C' values used :Runoff coefficients byrational method 'Process 'from Point/Station . 200.000 to Point/Station 201.000 ..****,INITIAL AREA EVALUATION 'User specIfied 'C' value 'of 0.850 given for subarea initial subarea flow distance = 100.00(Ft.) Highest elevation = 315.10(Ft.) Loest elevation = 314.70(Ft.) Elevation difference = 0.40(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.11 mm. .TC = [1.8*(]..1_C)*djstànceA.5)/(% slope "(1/3)) TC'.=,(1..8*(1.1_0.8500)*(100.00A.5)/( 0.40"(1/3))= 6.11 ,Ra'infa1]. intensity (I). '=, 4.168 for a 10.0 year storm, Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 .Subarea.runoff =' 0.496(CFS) Total-initial-stream area = 0.140(Ac.) Process from Point/Station 201.000 to Point/Station 202.000 *.***-,STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION **** TOP 'o.f street segment, elevation = 314.700(Ft.) End Of street segment elevation = 282.800 (Ft.) Length of street segment ''= 1400.000(Ft.) 'Height of'curb above gutter flowline = 6.0(In.) Width of 'half street' (curb to crown) = 53.000 (Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] 'side(s) of the street I I I I LII I I I .71 I I - I. I Distance from curb to property line = 10 000(Ft ) Slope from curb to property line (v/hz) = 0 060 ' Gutter w. idth = 1 500(7t ) Gutter hike from flowline = 2 000(In ) Manning's N in gutter = 0 0150 I .."Mánning's N from gutter to grade break .= 0.0150 Manning's N from grade break to crown ,=, 0.0160 Estimated mean flow rate at midpoint of street =• " 6.696'(CFS)' Depth of flow 0. .390 (Ft.) I .Average velocity = 3'.',937(Ft/s) ,. . .Streetflow hydraulics at midpoint of street travel: .Halfstreet flow width = 12.'643(Ft,.) .I.. ' Flow velocity = 3.94(Ft/s) . ..' Travel' time = 5.93 mm. • TC = 12.03 mm. Adding area flow to street . I . User specified 'C' value of 0.730 given, for subarea. '• Rainfall intensity =, 2.691(In/Hr) for a 10.0 year storm Runoff coèfficient.used for sub-area, Rational method,Q=KCIA, C . Subarea ' runoff = 6.877(CFS) for "3.500(Ac.) I.• .Tbt'a.I runoff = 7.373(CFS) Total area = . 3.64(Ac.) . Street flow at-end of street = 7.373(CFS) Half Street flow at end of street= 7.373(CFS) I . ., Depth 'of flow = 0.400(Ft.) ".:Average velocity = 4.012(Ft/s) ........Flow width: (from curb towards crown)= 13.172(F.t) = 0.730 I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ProceSs from Point/Station 202.000 to Point/Station 203.000 ****. PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation =' 280.50(Ft.) Downstream point/station elevation = '279.90 (Ft.) Pipe'l°ength = •. 38.00'(Ft.) 'Manning's'N= 0.013 No...of pipes= 1 Required pipe flow = 7.373(CFS.).. e Givn pipe size = 18.00(In.) . 'Calculated individual pipe flow 7.373(CFS) Normal flow -depth in pipe.= 9.62(In.) 'Flow top width inside 'pipe = 17.96(In.) Critical Depth 12.61(In.) Pi'pe'f low velocity '= ' 7.68(Ft/s) Travel 'time through pipe = '0.08 mm. Time of concentration (TC) = . 12.12 mm. Process from Point/Station 203.000 to Point/Station 204.000 ****'IMPROVED CHANNEL TRAVEL TIME **** Upstr'eam'point elevation = 279.90(Ft.) Downstream point elevation = 265.00(Ft.) Channel length thru subarea = 1015.00(Ft.) Channel base width . '= •" 2.000(Ft.) Slope or. 'Z' of left 'channel bank = 1.500 Slope 'or 'Z" of right channel bank = 1.500 Manning's. .'N' = 0'. 015 Maximum depth of channel = 1.500(Ft..) F1ôw(q) thru subarea = 7.373(CFS) Depth of flow = 0.466(Ft.) Average velocity = 5.866(Ft/s) I I P1 I I I I Channel flow top width = 3 397(Ft ) Flow Velocity = 5 87(Ft/s) I Travel time = 2.88 min. Time of concentration = 15,00 min. Critical depth = 0 633(Ft ) .Pröcess.from Point/Station 210.000 to Point/Station 204.000 I • **,** SUBAREA FLOW ADDITION Decimal 'fraction, soil group A = 0.000 I .Decimal fraction soil ;group B = 0.000 ':Decimal: fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 (RURAL. (greater than 1/2 acre) area type I Time of concentration = 15400 min. Rainfall intensity =' •' 2.,335(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 I Subarea' runoff = . 24.481(CFS) for 23.300(Ac.) Tótal.•runoff = 31.853(CFS) Total area = 26.94(Ac.), I Process from Point/Station 204.000 to Point/Station 205.000 PIPEFLOW TRAVEL TIME (User specified size) **** 'Upstream . point/station elevation = 265.00 (Ft.) Downstream point/station elevation = 264.40(Ft.) I .•. Pipe length 38.00(Ft.) Manning's N = 0.013 'No,i of pipes = 1 Required pipe flow = 31.853(CFS) ''Given pipe size = 30.00(In.) . .. 'Calculated individual pipe flow = 31.853(CF8) Normal.. flow depth in pipe = 17.06(In.) Flow.top width inside pipe = 29.72(In.) Critical'Depth = 23.06(In.)' ,: :' •. pipe flow velocity = . '.11.05(Ft/s) Travel time through pipe = 0.06,min. 'Time of concentration (TC) = 15.06 mm. Process from Point/Station 205.000 to Point/Station 205.000 I. .. . **** CONFLUENCE OF MAIN. STREAMS **** ',. • The following data inside Main Stream is listed I In Main Stream number 1 Stream flow area = 26 940(Ac ) Runoff from this stream = 31 853(CFS) Time of concentration = 15.-06 min. I Rainfall intensity = 2 329(In/Hr) Program is now.starting with Main Stream No 2 I Process from Point/Station 220.000 to Point/Station 221 000 I **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0 000 Decimal fraction soil group B = 0.'000-, I ".,:.Decimal'. fraction soil':group C = 0.000 •0 .'•'.,''. . Decimalfráction soil .gro.up'D = 1.000 I . ..(RURAL, (greater than-1/2-acre) area type . Time of concentration computed by the .': natural watersheds 'nomograph (App X-A)0 0 I . TC,''(h1.9*1ength(Mi3),'(elevation change)]A.385 *60(in.ifl/hr) + 10 mm. ' Initial subarea flow distance = 750.'OO(Ft.) . Highest..el.èvation = 3.23.50(Ft.) Lowest' elevation = 308.00(Ft.) I Ele'tatiofl difference = 15.50(Ft.) .TC .((11'9*01420A3)/(. 15.50))A.385=. 5.69 + 10 mm. = 15.69 mm. Rainfall, intensity (I) = 2.268 for a 10.0 year storm I .Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = .6.839(CFS) Total initial stream area = ' 6.700(Ac.) I Process from Point/Station 221.000 to Point/Station 222.000 **** PIPEFLOW TRAVEL TIME (User specified size) ..Upstream'point/staUon elevation = 304.00(Ft.) Downstream point/station elevation = 271.00 (Ft.) ,Pipe length = 100.00(Ft.) Manning's N = 0.013 No0.' of-pipes = 1 Required pipe flow = 6.839(CFS) Given, pipe size = 18.00(In.) 0 Calculated individual pipe' flow = 6.839(CFS) Normal. flow depth in pipe = Flow top width inside pipe = 15.09(In.) Critical Depth = 12.14(In.) Plpe'flow velocity =' '0 22.64(Ft/s) -Travel time through pipe = 0.07 mm. ' Time of concentration (TC) = . 15.76 mm. ••0 ++++'++++++++++++++++++++'+++++++++++++,+++++++++++++++++++++++++++++++++ Process 'from Point/Station .222 '.000 to Point/Station . 222.000' '*** CONFLENCE OF MINOR STREAMS **** •' 0 Along Main Stream number: 2 in normal stream number 1 ' 0 Stream flow,, area = .. ' 6.700(Ac.) 'Runoff from this stream = 6.839(CFS) , Time of concentration = . 15.76 mm.. . . 0 • , Rainfall intensity = 2 261(In/Hr) 0'' . ........................................................................ Process from Point/Station ' 230.00,0 to Point/Station 222.000 0 ****'INITIAL AREA EVALUATION **** .,, 0 ' • • 0, Decimal fraction soil grpup A'= 0.000 Decimal fraction soil group 'B = 0.000 Decimal, fraction soil group,.. C'= 0.000' DecImal fraction soil group D =' 1.000 , ' ''•, ' : (RURAL (greater than 1/2 'acre) area type Time of concentration computed by the ' , •0' • • ' natural 'watersheds' nomograph (App X-A)' ' 0 • ' TC.:(il.'9*leflgth(Mj)A3)/(elevat.jon change)J".385 *60(min/hr) +-10 mm. Initial subarea flow distance = 1230.00(Ft.) " ' 0 • Highest elevation =0 318.00(Ft.) I I 1.000 * : 0.942 ,* 8.224) + = 14.585 0.962 * 1000'* 6.839) + 1 000 * 1 000 * 8.224) + = .1-4.804 'Total of 2 streams to confluence: . . Flow rates' before confluence point: 6.839 . 8.224 Maximum flow rates at confluence using above data: 14.585 14.804 Area 'of streams before confluence: 6.700 8.400 Results of confluence Total flow rate 14.804(CFS) Time of concentration = 16.735 mm. Effective stream area after confluence = 15.100 (Ac.) Lowest elevation = 273 90(Ft ) Elevation difference . 44.10(Ft.) .:TC((1l9*O233O#3)/( 44.10))A.385 6.73 + 10 mm.' = 16.73 mm. I,: ': •.:. 'Rainfall' intensity ('I). = 2.176 for a 10.0 year storm ::",.Effectjve runoff coefflcient'used for area (Q=KCIA) is C = 0.450 I .:Subarea runoff = . 8.224(CFS) 'Total'initiál stream area - 8.400(Ac.) I Process from Point/Station . 222.000 to;Point/Station . 222.000 **** CONFLUENCE OF MINOR STREAMS ,**** Along Main Stream nuibberf 2 in normal stream number ...2 . Stream flow area = 8 400(Ac ) Runoff from this stream = 8 224(CFS) Trne'of':concentration = 16.73 mm. Rainfall intensity = 2 176(In/Hr) Summary of stream data Stream Flow rate TC Rainfall Intensity No (CFS) (min)...'(In/Hr) 1 6839 15 76 2 261 . '4".. 8224 1673 2.176 .,Qrnax(:l)'.= . 1.000 * . '• 1.000* 6.839) + I'. I. I I I I Process from Point/Station . 222.000 to Point/Station 223.000 '.****. PIPEFLOWTRAVEL. TIME. (User specified size) Upstre,am'po,int/station elevation = 270.67 (Ft. ),. Downstrearn'point/station elevation = 270.00(Ft.) Pipe length = 16.00(Ft..) .. Manning's N = 0.013 N. of'pipes = 1 Required pipe flow = . 14.804(CFS) ",:Given pipe,'size = 2'4...00 (In.) Calculated individual pipe'flow. = 14.804(CFS) Normal flow depth in pipe = 9.33 (In.) Flow top width inside pipe = 23. 40(In.) Critical Depth = 16.63(In.) Pipe flow velocity = . 13.11(Ft/s) I I Travel time through pipe = 0 02 nun Ti)ne of concentration (TC) = 16 76 nun I Process from Point/Station 223 000 to Point/Station 205 000 I **** PIPEFLOW TRAVEL TIME (User specified size) **** '•. ' Upstream.Point/station elevation = ,269.67(Ft.) S I '= Downstream point/station elevation = 263 33(Ft ) ' '.. . 'Pipe'.length = 450.00(Ft.) Manning's'N 0.013 ". ''No. '.of'pipes = 1 Required pipe flow = 14.804(CFS) I Given pipe size = 24 00(In ) Calculated-individual pipe flow = 14 804(CFS) Normal flow depth in pipe = 12 • 73 (In.) ' Flow top width inside pipe = 23 96(In ) Critical Depth.= 16.63(In.) . . . ., "Pipeflow'.velocity = 8.76(Ft/s) . Travel, time 'through pipe = ' 0.86 mm. Time of concentration (TC) = 17.61 nun ....................... I Point/Station. ................................ +. +++ +++++++++++++++ ++++ +++ ++ +++................ . '• .Process from Point/Station.205.000 to Point/Station ' 205.000 **** CONFLUENCE OF MAIN STREAMS **** .• . I .. The following data inside Main Stream: is listed: ' in Main' Stream number: 2 'Stream. flOw area = ' 15.100(Ac.) Runoff from this stream =14.804(CFS) Time. of concentration. = 17.61 mm.' Rainfall intensity = 2.105(In/Hr) I Program is now starting with Main Stream No 3 Process from Point/Station 270.000 to Point/Station ' 271.000 ****'INITIAL AREA EVALUATION 'User specified 'C' value of 0.900 given for subarea I .Initial, subarea flow distance = 70.00 (Ft.) Highest elevation = 283.50(Ft.) 'Lowest. elevation = 281.60(Ft.) I Elevation difference = ' 1.90(Ft.) 'Time' of. concentration calculated by the. urban areas. overland flow method (App X-C) = 2.16 mm. TC.=' [1.8*'(l.l-C)*distance".5.)/(% s lope '(1/3)) ,TC = (,l.8*.(l.1-0.9000)*( 70.Q0'.5)/( ' 2.71A(l/3)]= 2.16 Rainfall. intensity (I)-= 8.151 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 I,Subarea'-runoff = 14467(CFS) ' Total initial, stream area = 0.200(Ac.) Process from Point/Station 271.000 to Point/Station 272.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** TOP of street segment elevation = 281.600(Ft.) End of street segment elevation = 267.500(Ft..) I:'' ' Length of street segment = 990 000(Ft ) Height, of curb above gutter flowline = 6.0 (In.)•• I Width of half street (curb to crown) = 53 000(Ft ) Distane from crown to crossfall grade break = 51.500(Ft.) S].ope.:from. gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1) side(s) of the street -Distance' ,from curb to property line = 10.000(Ft.) '.:Slope from curb to property line (v/hz) = 0.060 I .:'Gutter' width = 1 • 500 (Ft.) "Guttër':hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 I .... 'Manhing"s N' from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0160 Estimated mean 'flow rate at midpoint of street = '" 6.969(CFS) ' ',, Depth of 'flow, = 0 • 422. (Ft.) Average velocity .= 3.288(Ft/s) Streetf low hydraulics at midpoint of street travel: Halfs,tre'et. flow width = 14.202(Ft.) I ' ' Flow "velocity = 3.29 (Ft/s) "Travel time" = 5.02 mm. TC = 7.18 mm. Adding area flow to street '' User':specified 'C' value of 0.850 given for subarea' Rainfall', intensity =3.756(In/Hr) for a 10.0 year storm ':Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 'Subarea runoff = 4.789(CFS) for 1.500 (Ac.) Tötalrunoff =6.256(CFS) Total area = ' '1.70(Ac.) 'Street flow at end of street = 6.256(CFS) Half street flow at end of street = 6.256(CFS) I •. .. Depth of' flow = 0.408 (Ft.) Average.velocity =3.217(Ft/s) Flow'width (from curb towards crown)= 13.573(Ft.) 'Process from Point/Station. 272.000 to Point/Station- 272.000 CQNFLUENCE OF MINOR STREAMS Along Main Stream number: 3 in normal stream number 1 I.. 'Stream flow area =' 1.700 (Ac.) Runoff from this stream = 6.256(CFS) Time,'of concentration = 7.18 mm. 'Rainfall intensity = 3.756(In/Hr) .' I Process from Point/Station 273.000 to Point/Station' 274.000 :****.INITIAL AREA EVALUATION **** User. specified 'C' value of 0.850 given for subarea'.,-. Initial' ,subarea'flow distance = 100.00(Ft.) 'Highest' elevation = 288.90(Ft.) '.:Lowest',elevation = 285.70(.,Ft.) Elevation difference = 3.20(Ft.) Time of concentration calculated by the urban 'areas overland flow method '(App X-C) = 3.05 'mm'. TC = E1.8*(l.1_C)*distanceA.5)/(% slope A(1/3)) 'TC = (1.,8*(1.1-0.8500)*(100..0O'.5)/( 3.20"(1/3))=' 3.05 Rainfall 'intensity (I) = 6.518 for a 10.0 year-.storm Effective runoff coefficient used for area (Q=KCIA),'is'C'= 0.850 I Subarea runoff = 0 776(CFS) Total initial stream area = 0 140(Ac ) I I Process from Point/Station 274.000 to Point/Station 272.000 ****:.STREET'.FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of. street segment elevation = 285.'700(Ft.) I :End of street segment elevation = 267.500(Ft.) '.Lengof Street segment = 1015.000(Ft.) Height.'of curb above, gutter flowliné .'= 6.0(In.) Widthof half Street: (curb to crown) = 53.000(Ft.) 'Distance from crown to crossfal.l grade break =. 51.500(Ft.) Slope .from'gutter to grade .break (v/hz) = 0.083. Slope frorn:gradebreak to crown (v/hz) = 0.020 Streét flow, is on (1) aide(s) of the street Distance',from.curb to property line "Slope from. curb to property line (v/hz) = . 0.020 I Gutter width"= 1.500(Ft.) 'Gutter hike 'from flowline = 2.000(In.) . . . 'Manning's N in gutter = -0.0150 . ..Nanning's.N from gutter to grade break 0.0.150: Manning•'..s N from.grade break to crown = 0.0150 'Estimated' mean flow rate at midpoint of street = 4.848(CFS) Depth of' flow = 0.365(Ft.) . . I ' ', Average velocity = 3..461(Ft/s) .. 'Streetflow'hydraulics atmidpoint of street travel: :1 Halfstreet flow width = 1I.394(Ft.) ' I. Flow' velocity = 3.46(Ft/s) a , Trvel time '= 4.89 min. TC = . 7.94 nun. Adding area flow to street 'Usèr'specif led 'C' value of 0.850 given for subarea I ' Rainfall intensity 3.519(In/Hr) for a - 10.0 year storm Runoff coefficient used for sub-area, Rational inethod,Q=KCIA, C = 0.850 Subarea runoff = . 4.397(CFS) for 1.470(Ac.) I .Total runoff .=. 5.173(CFS) Total area = 1.61 (Ac.) Street flow at end of street 5.173(CFS) Half street flow at end of street = 5.173(CFS) I .,Depth of flow = 0.371(Ft.) 'Average velocity = 3.505(Ft/s) Flow width (from curb'towards crown)= 11.718(Ft.) .. 'Process from Point/Station . 272.000 to Point/Station 272.000 CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 1.610(Ac.) I .. 'Runoff. from this stream,' 5.173(CFS) Time of concentration = 7.94 min. Rainfall intensity = ' 3...519('In/Hr) 'Summary of stream data: Y Stream , Flow rate .TC . RainfallIntensity No. (CFS) ' (mm.) ' ' . (In/Hr) 1 6256 7.18. 3.756 2 5.173 7 94 3.1519 Qmax(1) = .1 1.000 * 1.000 •*' .6.256) + '•"• . '1.000 * 0.904 * 5.173) + = 10.93.1 .Qmax(2)..= ". . . . 0.937 * 1.000 '* 6.256) + 0.1.000 * 1.0000* 5.173) + = 11.034 Total of 2 streams to confluence I 'F'ow rates before confluence point: . . 6.256 5.173 . . ......Maximum flow rates at confluence using above data: I............... .,10. 931 11.034 A . . 0 rea of streams before confluence:'. 1.700 1.610 •' 0 0 0 I .:• Results of confluence:' O Total-.flow rate = 11.034(CFS)' • / 0 0 •' •Time'.of 'concentration = 7.941 mm. 0 O 00, Effective stream area after confluence = 3.310(Ac.) '0 ............ ''Pocess .frO Pout/Station 0 272.000 to Point/Station 0 •' 205.000 PIPEFL.OW TRAVEL TIME (User specified size) *** 0 o. :Upstream'point/station elevation = 0 265.00(Ft.)' 0 I .. 'Downstream point/stat ion elevation = '264.40 (Ft.) 0 0 Pipe length = 55.00(Ft..) . Manning's N = 0.013 O No, of. pipes =.1 Required pipe flow = 11.034(CFS)" '0 I 'Given pipe size = 18.00(In.) Calculated individual pipe flow = 11.034(CFS) 0 Normal flow depth in pipe = 14.86(In.) 0 0 0 ' 'Flow top'width inside pipe = 13.66(In.) I .'o Critical Depth =. 15.26(In.) 0 0 O 'Pipe..flów velocity .=' 0 7.08(Ft/s) 0 O .Travel.timé through pipe 0.13 mm. " 0 0 Time of concentration (TC) = • 8.07 mm. 0 0 0 '• Process from Point/Station .' 205.000 to Point/Station 205.000 ,**** CONFLUENCE OF MAIN STREAMS **** 0 I. ..The following data inside Main Stream is listed: in.Main Stream number: 3 0 O , ..-Stream. flow area = • 3.310(Ac.) 0 ' :off from this stream ='1l.034(CFs) 0 Time 'of 'concentration =' . 8.07 mm. 0 Rainfall- intensity = . 3.482(In/Hr) 0 ' 0 I•O" Summary of stream data: 0 Stream ' Flow rate ' TC Rainfall Intensity ' :}IC . • •o (CFS)' . . '(mu) •" (In/Hr) I O • ' . 'if ' 31.853': 15.06 2;329 .14.80417.611 0 ' • 2.105 .' 0 03 'f. 11'.034 , 8.07 . • ' 3.482 ' 0 Qma'x(1) =1 ' ' 0 00 • •: ' 1.000 *' 1.0,000 31.853) + 1 '0 ' 1.: •. : :' , ••" •••' •• ' 0 • •' • ' 0 ' 0 0 • • .00 1.000 * 0. 855 * 14 804) + - 0.669 * 1.000 * J1.034) + = 51 890 I... QmaX(2):.H •.. 0.904 * 1.000 * 31 85 3) + 1.000 * 1.000' * 14 804) + I 0.605 * 1.000 * 11 034) + = 50 266 Q2nax(3) 1.000 * 0.536 * 31 853) + 1.000 * 0.458 * 14 804) + I 1.000 * 1 000 * 11.034) + = 34 89]. Total of 3 main streams to confluence I • Flow rate' s.before confluence point: 31.853 14.804 11.034 S •. °Maximum.flów rates at confluence using above data: 51.890 50.266 . 34.891 . .. . I : Area of Streams before confluence: 26940 15.100 3.310 . I . . Results of confluence: Totai:flowrate = : 51.890(CFS) . Time of concentration = 15.058 mm. I stream area after confluence = . 45.350(Aô.) I •. Procéssfrom Point/Station 205.000 to Point/Station 206.000 ****.PIPEFtOW TRAVEL TIME (User specified size) I . Upstream point/station elevation = 264.10(Ft.) : ..Downstream point/station elevation =. 262.80(Ft.) Pipe length . = 100.00(Ft.) Manning's N,= 0.013 I •: .: . No, of p1pes =.3. Required pipe flow = 51.890(CFS) I. Given pipesize = 36.00(In.) . Caic..1ated.individual pipe flow = 51.890(CFS) I .:.'Normal. flow depth in pipe = 21.82(In.) Flow top. width inside pipe— 35.18(In.) 'Critical Depth = 28.10(In.) I : Pipe flow velocity = 11.58 (Ft/s) Travel, time through pipe = 0.14 mm. Time of concentration (TC) = 15.20 mm. I Process from Point/Station . 206.000 to Point/Station 206.000 I **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 I Stream flow area = 45.350(Ac.) . Runoff from this stream - 51.890(CFS) Time of concentration = 15.20 mm. 1 .Rainfall intensity = S 2.3].5(In/Hr) Program is now starting with Main Stream No. 2 I • PrOcess from Point/Station 280.000 to Point/Station 281.000 ****'IITIALJA EVALUATION **** I .., .• • ' t .- L User specified 'C' value of 0 900 given for subarea Initial subarea flow distance = 100 0O(Ft ) Highest elevation = 281 20(Ft.) ......:'Lowest:. elevation = 280'.80(Ft.) Elevation' difference = 0.40 (Ft.) •' Time of.ôoncentration calculated by the urban areas 'overland flow method (App X-C)- 4.89 mm. '.Tc=: (1.8*(1.1_C)*distance'.5)j(% slope '(l/3)) ; .T .5)/ 'O.40"(1/3))= 4.89 'Rainfall' intensity (I) 4.814 for a 10.0 year storm Effective runoff coefficient. used for area (Q=KCIA) is C'=. 0.900 Subarea runoff = 0.607(CFS) '. Total initial stream area = 0.140(Ac.) •.• ' Process 'from. Point/Station 281.000 to Point/Station 282.000 '**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION '**** 'Top 'óf'street segment elevation = 280.800 (Ft.). End of street segment elevation 267 .'500(Ft.) 'Length of street segment = ' 900.000(Ft.) "Height'of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) 53.000(Ft.) Distance ,from, crown to crossfall grade break = 51.500(Ft.) Slope. from'gutter to grade break (v/hz) = 0.083 Slope' from grade break to.crown (v/hz) '= 0.020 Street flow ison (1) side(s) of the street 'Distance from on to property line = 10.000(Ft.) Slope'.'frOm curb to property line (v/hz) = 0.060 'Gutter width = '1..500(Ft.). ' 0 Gutter hike from flbwljhe = 2.000(In.) 'Manning's N in gutter'- 0.0150 :Manning's N from gutter to grade break = 0.0150 'Manning's N from -grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street = 3.444(CFS) Depth of.flow = 0.344(Ft.) Average velOcity = 2;918(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.381(Ft.) Flow velocity = 2.92(Ft/s) Travel time =' 5.14 min. TC'= 10.03 min. 'Adding area flow to street. User specified 'C' value of 0.850 given for subarea Rainfall intensity. = 3.028(In/Hr) for a 10.0 year storm Runoff.coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 3.371(CFS) for 1.310 (Ac.) Total -runoff = 3.978(CFS) Total area = 1.45(Ac.) Street-fl ' ow at end of street = 3.978(CFS) Half, street flow at end of street = 3.978(CFS) Depth, of. flow = 0.358 (Ft.) Average velocity = 2.994(Ft/s) Flow'width (from curb towards crown)= 11.073(Ft.) Process from Point/Station 282.000 to Point/Station 282.000 **** CONFLUENCE OF MINOR STREAMS **** LI I I j LI I LI I LI I I ' I I Along Main Stream numberi 2 in normal stream number 1 Stream flow area = 1.450(Ac.) Runoff from this stream = 3.978(CFS) .Timeof concentration = 10.03 mm. Rainfall intensity = 3.028(In/Hr) ++++++++++++++ + + + +++++ +-f ++++ ++++ +++ +++++ ++++ +++++ ++++ Process from Point/Station 290.000 to Point/Station 291.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea Initial subarea flow distance = 100.00(Ft.) Mighest'elevation = 286.40(Ft.) Lowest elevation = 284.10(Ft.) Elevation difference 2.30(Ft.) .Time -.of concentration calculated by the urban areas overland flow method (App X-C) = 3.41 mm. TC = (l.8*(1.1-C)*distance'.5)/(% slope A(l/3)] TC= (1.8*(1.1-0.8500)*(100.00'.5)/( 2.30A(1/3)) 3.41 Rainfall intensity (I) = . 6.071 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = . 0.723(CFS) Total initial stream area = 0.140(Ac.) Process .from Point/Station 291.000 to Point/Station 282.000 **** STREET FLOW TRAVEL-TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 284.100(Ft.) End of.. street segment elevation = 267.500(Ft.) Length of street segment = 970.000(Ft.) I.Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) ., Distance from crown to crossfall grade break = 5i.500(Ft.') I . Slope from gutter to grade break (v/hz) = 0.083 :Slope frorn'.grade break to crown (v/hz) = 0.020 Street flow is on (1) side(s) of the street I ... Distance from curb to property line = 10.000(Ft.) . . Slope -from curb to property line (v/hz) = 0.020. Gutter, width = 1.500(Ft.) S . Gutter. hike from fiowline = 2.000(In.) I .. .' Manning's N in gutter = 0.0150 . . S Manning's N from gutter to grade break = 0.0150 Manning's. N from grade break to crown = 0.0150 I Estimated mean flow rate at midpoint of street = 4 335(CFS) Depth. of flow = 0 • 356 (Ft.). . . S.. Average velocity = .3.324(Ft/s) . Streetfiow hydraulics at midpoint of street travel .I 'Halfstreét flow width = 10.'962(Ft.) . ., '••' . • 'Flow' velocity = 3.32(Ft/s) Travel time = 4.86' mi TC = 8.27 mm. Adding, area flow to street . . User Specified 'C' value of 0.850 given for subarea Rainfall intensity = 3 427(In/Hr) for a 10 0 year storm I . Runoff'coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 4..079(CFS) for 1.400(Ac.) . . . Total runoff = 4.801(CFS) Total area = 1.54 (Ac.) Street flow at end of street = 4.801(CFS) I. . . . °5Ha].f.street flow at end of street 4.801(CFS) Depth I of:flow = 0.366(Ft.) r v Aveage:e1ocity = 3.390(Ft/s) ' Flow.width (from curb towards crown)= 11.461(Ft.) I . Process .from Point/Station 282.000 to Point/Station 282.000 I . ***.*. CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.540(Ac.) I .Runoff from this stream ,= 4.801(CFS) ..Tike of concentration = 8.27 mm. Rainfall intensity = 3.427(In/Hr) I Summary of stream data: Stream . Flow rate TC . Rainfall Intensity No. (CFS) (mm) (In/Hr) I... ••• 1 . 3.978 10.03 3.028 12 . 4.801 . 8.27 . 3.427 Qmax(l) =. . . 0 .1.000 * 1.000* 3.978) + 0.883 * 1.000 * 4.801) + = 8.219 I ;•••' Qmax(2) =•.. ... . . . . . . 1.000 * .0.825 * 3.978) + ... . . 1.000 * 1,000 * 4.801) + = ..8083 ..Total. of .2 streams to confluence: . . . 0• :Flowrate.before confluencepoint: . . ... I 3.978 4.801 'Maximum flow rates at confluence using above data: .. .: 8.219 8.083 Area of streams before confluence I 0 0 .1.450 Results of confluence Total flow rate = 8 219(CFS) Time of concentration = 10.026 mm .:..Ef.fectjvé:stream area afterconfluence = 2..990.'(Ac.) •0 •' I Process from Point/Station 282 000 to Point/Station 283..060 PIPEFLOW TRAVEL TIME (User specified size) *** ..Upstrèampoint/station elevation = 263.80(Ft.) Downstreampoint/station elevation = 263.50(Ft.,) Pipe length = 14.00(Ft.) 0 Manning's N = 0.013 . No. of-'pipes = 1 Required pipe flow = 8.219.(CFS) Given pipe size = 'lB.00(In.) . •0 calculated individual pipe..flow = 8.219(CFS) . I.......... Normal flow depth in pipe=..36(In.) 0 • • 0; Flow 'top- width inside pipe = 17.99(In.) Critiôal Depth = 13.32 (In.) I . 'Pipe flow velocity = . 8.85(Ft/s) . . . . Travel time through pipe = 0.03 mm. . Time of concentration (TC) = 10.05 mm. . . • 0 I ':.. .. . . .;• +++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++ I Process from Point/Station 283.000 to Point/Station 206.000 **** IMPROVED CHANNEL TRAVEL TINE **** I Upstream point elevation = 263 50(Ft ) DonStream point elevation : '26 80(Ft.) . . . Channel length thru subarea = 75 00(Ft ) width = . .1..000(Ft.) .•.• or:'z'.of left channel bank = 1.0.00 .' Slope or.. 'Z' of right channel bank ..'=. .1 .000 Manning's 'N' = 0.015 I 'd epth epth of channel = 1 000(Ft ) :r].ow(q)' thr' subarea = 8.219(CFS). . . :. Depth of flow = 0 644(Ft ) Average velocity = 7.760(Ft/s) . . . . Channel flow top width = 2.288 (Ft.) ......Flow..Velbcity = . 7.76(Ft/s) . . . '. Travel time = 0.16 mm. S I . 'Time of concentration = 10.21 mm. Critical depth = 0.938 (Ft.) . . . ,. I' . •. ,. PrOcess from Point/Station.. 206.000 to Point/Station 206.000 ****CONFLUENCE OF MAIN STREAMS **** .1 .. . The following data in Main Stream is listed: In: Main Stream number: 2 . I .Stream flOw area '= 2.990 (Ac.) "Runoff from this stream= . 8.219(CFS) 'Tirné"of concentration =. 10.21 mm. . Rainfall intensity - 2.992(In/Hr) I . ' Summary of stream data:,. Stream Flow rate TC Rainfall Intensity : •No.- (CFS) (mm) (In/H.r) 1 51.890 15.20 . 2.315 "2 8.219 10.21 '..,' S 2.992 1.000 * .1.000 * 51.890) . . I .. .. o774 * 1.000 * 8.219) +,= 58.250 Qmax(2.) = . . ... . . 1.000 * .' 0.672 * 51.890) + I . ' ... . . . •.• . 1.000 * 1.000,* 8.219) + = 43.081 Total of 2 main streams to confluence: Flow rates before confluence point: I 8.219 . S Maximum flow rates at confluence using above data: 5,8.250 43.081 I . • Area of streams before confluence: 45.350 2.990 I . Results of. confluence: Total flow rate = 58.250(CFS) Time of concentration = 15.202 mm. Effective stream area after confluence = 48 340(Ac ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 240 000 to Point/Station 241 000 INITIAL AREA EVALUATION..**** Decimal fraction soil group A = 0.000 Decimal faction soil group B -'0.000 Dècirnàl',fraction soil group C = 0.000 .'.•:' Decimal fraction soil group D = 1.000 (RURAL: (greater than 1/2 acre) area type .I ' :'j 'of' concentratiOn computed by the natural watersheds nomograph (App X-A) Tc.(ll.'9*.length(Mi)A3)/(elevati,on change) ]A.385, *'60(mIn/hr).'+ 10 mm. 'I. .: Initial1 subarea flow distance = 1025.00(Ft.) '•' .. Highest elevation = 322.00(Ft.) Lwest'elevàtion = 289.80(Ft..) •Elevation difference = 32.20(Ft.) ': '• .'• TC=((ll.9'*O..94l'3)/( 32.20)]".385= 6.16 + 10 mm. = " 16.16 mih.' 'Rainfall intensity (I) = 2.226.for a 10.0 year storm ' Effeótiye runoff coefficient used' for area (Q=KCIA) is -C.= 0.450 'Subarea runoff = 5.108(CFS) ' Total initial stream area = . ' 5.100 (Ac.) I " •.' Process from Point/Station 241.000 to Point/Station 252.000 ****PIPEFLOW', TRAVEL TIME (User specified size) **** Upstream' point/station elevation =289.80(Ft.) Downstream point/station elevation = 286,.00'(Ft.) I .. pipe' length = 15.00(Ft.) Manning's N = 0.013' 'No, of pipes = 1 Required pipe flow 5.108(CFS) Given pipe size .= 24.00(In.) Calculated individual pipe flow = 5.108(CFS) I '' 'Normal flow depth in pipe =3.46(In.) Flow top width inside pipe = 16.87(In.) Critical Depth = 9.54 (In.) I ' Pipe'flow'veiocity = 18.29(Ft/s) Travel time through pipe = 0.01 mm. Time'of concentration (TC)' = 16.17 mm. Process' from Point/Station 252.000 to Point/Station ' 252.000 CONFLUENCE OF MINOR STREAMS ** Along. Mainstream number: 1 in normal stream number 1 Stream flow area = 5.100(Ac.) I ' Runoff from this stream =5.108(CFS-) Time of concentration = ' 16.17 mm. "Rainfall intensity = 2...224(In/Hr) I • I 'Process from Point/Station 250.000 to Point/Station 251.000 ' **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.700 given for subarea 1.•"•.• I. I ,.'.. I. I.. I.' I. I I I . 'in'jtial subarea flow distance = 325.00(Ft.) Highest elevation = 317.00(Ft.) Lowéstelevation = 300.00(Ft.)' Elevation' difference = 17.00(Ft.) Time' of concentration calculated by .the urban areas; overland flow method (App X-C) = 7.48 mm. TC (l.8*(l.l_C) *distance A.5)/(% slope' (l/3)) TC= (.1.8*(1.1-0.7000)*(325.00".5)/( 5.23(1/3)]= 7.48 'Rainfall intensity (I) = 3.658 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.700 Subarea runoff = 1.280(CFS) 'Total initial stream area = 0.500 (Ac.) Process. from Point/Station 251.000 to Point/Station', 252.000 STREET****STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 300.000 (Ft.) End of street segment elevation = 288.900(Ft.) Length o'f' street segment = 800. 000 (Ft.) 'Height"of,curb above gutter flowline = . 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) 'Distance from crown to crossfall grade break = 51.500(Ft.) Slope from:gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flowis on [1] side(s) of the street DIétance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.060 Gutter' width = 1.500(Ft.) Gutter' hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street = 3.188(CFS) Depth. of flow = 0.340(Ft.) Average velocity = 2.805(Ft/s) Streétflow hydraulics at midpoint of street travel: .Halfstreet flow-width = 10.168(Ft.) Flow velocity = 2.81(Ft/s) Travel: time = 4.75 mm. TC = 12.23 mm. Adding area flow to street Userspecifi'ed 'C' value of 0.790 given for subarea Rainfall intensity = 2.664(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.790 Subarea runoff = 3.135(CFS) for 1.490(Ac.) ,Tota1runoff,= 4.416(CFS) Total area = • 1.99 (Ac.) Street flow at end of street = 4.416(CFS)' Half street flow at end of street = 4.41'6(CFS) Depth of flow = 0.372 (Ft.) • ' '• ' Average :velocity = 0 2.975(Ft/s) ' ' • •:. ' Flow width (from curb towards crown)= 11.755 ) .Processfrom Point/Station .252 -000 to Point/Station 252.000 **** CONFLUENCE OF MINOR STREAMS Along Main' Stream number: 1 in. normal stream 'number 2 Stream flow area = '1.990 (Ac.) Runoff from this stream = .. .Time.of concentration = Rainfali.intènsity = SUary:of. stream data: 0 • • 4.416(CFS) 12.23 mm. 2.664 (In/Hr) Rainfall Intensity (In/Hr) 2.224 2.664 I I I • • 1.000 * 1.000 ..* 5.108) + . . . 0 0.835 * 1.000 * 4.416) + = Qmax(2) = .; 1.000 * 0.756 .* 5.108) + 1.000. * 1 000 * 4.416) + = Total of 2 streams to confluence: Flow rates before confluence point: 0 .5.108 . 4.416 : Maximum flow rates at. confluence using above data: 8.795 8.278 Area of streams before-confluence: 5.100 1.990 Results of.confluence: Total flaw rate = 8.795(CFS) Time of concentration = 16.172 nun 8.795 8.278 Effective stream area after confluence = 7.090(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process:.from Point/Station 252.000 to Point/Station . 263.000 I **** PIPEFLOW TRAVEL TIME (User specified size) *** Upstream point/station elevation = 285 67(Ft ) I Downstream point/station elevation '- 267 90(Ft ) Piper, length = 133 00(Ft ) Manning's N = 0.013 NO. of pipes =..1 Required pipe flow = 8.795(CFS) I Given pipe size .= 24 00(In ) Calculated individual pipe flow = 8.795(CFS) Normal flow depth in pipe = 5 29(In ) Flow top width inside pipe = 19 89(In I Critical Depth = 12 69(In ) Pipe flow velocity = 17 14(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 16.30 nun I Process from Point/Station 263 000 to Point/Station 263 000 **** CONFLUENCE OF MINOR STREAMS-**** I Along Main Stream number 1 in normal stream number 1 Stream flow area = 7 090(Ac ) Runoff from this stream- 8.795(CFS) Time of concentration = 16.30 nun I Rainfall intensity = 2.213 (In/Hr) I:.•.... +++++,+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 260.000 to Point/Station 261.000 ****-.INITIAL AREA EVALUATION **** "User'-specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 100.00(Ft.) HigheSte1evation = 305.80(Ft.) Lowest elevation = 305.50(Ft.) Elevation difference = 0.30(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.38 mm. TC = (1..8*(l.1_C)*distance.5)/(% slope '(l/3)) TC =.,(1.8*(1.l_0.9000)*(l00.00A.5)/( 0.30"(1/3)]= Rainfall: intensity (I) = 4.525 for a 10.0 year .,Effective,runoff coefficient used for area (Q=KCIA) Subarea runoff = 0.570(CFS) Total initial stream area = 0.140(Ac.) 5.38 storm is C = 0.900 Process 'from Point/Station . 261.000 to Point/Station" . .262.000 ',**** STREET' FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 'Top of street. segment elevation = . 305.500(Ft.)' . .• " '' 'End 'of"st'reet'ségment elevation =, 286.400(Ft.'), " •' ' .:Leñgth Of street segment = 810.000(Ft.) :Hej.ghtof curb above gutter flowline = 6'.0(In.)' •' . . ' .Width of half street (curb to 'crown)' =' 53.000 (Ft.). Distance from crown to crossfall grade break = 51.500(Ft.") Slope from gutter to grade break (v/hz) = 0.083 - 'Slope from grade break-to crown '(v/hz) = 0.020' "Street. flow is ,on [1] side(s) of the street Djstáncé from curb to property line = 10.00'0(Ft.)." Slope' from curb to property line (v/hz) = 0.06,0 'Gutter. width '= 1.500,(Ft.) Gutter hike from flowline = 2.000(In.) . Manning's N' in gutter = , 0.0150 ' ... Manning's N from gutter to grade break = 0.0150 .Manning's N from grade break to crown = 0.0160. 'Estimated mean flow rate at midpoint of street = 2.953(CFS) .Depth of flow = 0.310(Ft.) : Average velocity = 3.461(Ft/s) ' Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.664(Ft.) ' Flow velocity = 3.46(Ft/s) ':Travel time = 3.90 mm. TC 9.28 mm. Adding area flow to street User specified 'C' value of 0.850 given for subarea Rainfall intensity = 3.183(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.850 Subarea runoff = 3.165(CFS) for 1.170 (Ac.) Total runoff = 3.735(CFS) Total area Street flow at end of street = 3.735(CFS) 'Half street flow at end of street = 3.735(CFS) Depth of f 1,0w = 0.330(Ft.) "Average velocity = 3.592(Ft/s) Flow width' (from curb towards crown)= 9.682 (Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I" Li I I I Process from Point/Station 262 000 to Point/Station 263.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 282 50(Ft ) Downstream point/station elevation = 268.10(Ft.) . Pipe length = 16.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.735(CFS) Given pipe size = 18 00(In ) Calculated individual pipe flow = 3 735(CFS) Normal flow depth in pipe.= 2.38(In.) Flow, top width inside pipe = 12.20(In.) Critical Depth = 8 86(In ) I .. Pipe flow velocity = 26.96(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 9.29 min. Process from Point/Station 263.000 to Point/Station 263 000 **:'CONFLUENCE OF MINOR STREAMS **** Along Main Stream number 1 in normal stream number 2 Stream floi area = 1 310(Ac ) 'R11flóff''ZPmthiS stream-= . 3.735(CFS) . Time of concentration = .9 .29 mm Rainfall intensity = 3 181(In/Hr) Summary of stream data Stream Flow, rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 8.795 16.30 2.213 2 3735 929 3181 Qmax(l) = 1.000 * 1.000 * 8.795) + . 0..'696 * 1.000 * 3.7135) + = 11.394 'Qmàx(2) . . . . . . 1.000 * 0.570.* 8.795) + 1.000 * 1.000 * 3,735).+ = .8 .747 Total of 2 streams to confluence Flow, rates before confluence point: . I ... :8.795 .:. 3•735 . . Maximum flow rates at confluence using above data: 11.394 8.747 .. I. Area of. streams before confluence: 7.090 1.310 Results of confluence: . . . . .. Total flow rate = 11.394(CFS) Time of cOncentration = 16.301 mm. Effective stream area after confluence = 8.400(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 263.000 to Point/Station 264.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 267 90(Ft ) '.Downstream point/station elevation = 262.00(Ft.) Pipe length = 42 00(Ft ) Manning's N = 0 013 No. of pipes = 1 Required pipe flow = 11 394(CFS) Given pipe size = 24 00(In ) Caiculated individual pipe flow = 11.394(CFS) Norma] flow depth in pipe .=. 5 94(In ) Flow top width inside pipe = 20 72(In ) Critical Depth = 14 53(In ) Pipê flOw velocity = 18.80 (Ft/s) : Travel time through pipe =. 004 mm. I Time of concentration (TC) = 16.34 nun End of computations, total study area = 56.74 * (Ac.) I San Diego County Rational Hydrology Program I Civi1CADD/Civi1DESIGN Engineering Software, (c) 1990 Version 2 3 Rational method hydrology program based on I San Diego.:County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date 9/24/90 EL CANINO REAL/PALOMAR AIRPORT ROAD 300 AREA BASIN SThDY . . FILENAME: 10 CAM3 . ... . . L 2001 4 . JOB# 10365 . 9/24/90 ---------------------------------------------------------------------- ********* Hydrology Study Control Information ********** Ratibhal hydrology study storm event year is 10.0 I. ..•Map data precipitation entered: 6 hour, precipitation(inches) = 1.800 .:: ••. .24 hour precipitation(inches) = 3.100 Adjusted 6 hour precipitation (inches) = 1.800 .I P6/P24 = 58.1% . . San Diego hydrology manual 'C' values used . :.,Runoff coefficients by rational method ************** I N P U T D A T A . L I S T I N G ************ .. . Element Capacity Space Remaining = 360 I Element Points and,Process used between Points I . . . Upstream . Downstream . Process . 1 300.000 301.000 Initial Area 2. • 301.000 . .. . 302.000 Pipeflow •Tiine(user inp) 3 . 302.000 303.000 Pipeflow Tixne(user inp) I... 4. . 303.000 303.000 . Confluence 5.. .. . 310.000 . 311.000 Initial Area 6 . 311.000 312.000 PipeflowTime(user inp) . 312.000 . 303.000 Pipeflow Time(user inp) I .. 303.000 303.000 Confluence End of listing............ I I Li 0 S . H... San Diego County Rational Hydrology Program CivilCADD/CivilDESIGN Engineering Software, (C) 1990 Version 2.3 Rational method hydrology. program. based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 9/24/90 .EL CAMINO REAL/PALOMAR AIRPORT ROAD 300 AREA BASIN STUDY FILENAME:. 10CAM3 L200,4 . JOB# 10365 9/24/90 ------------------------------------------------------------------------ •: Hydrology Study Control Information ********** Rational hydrology study storm event year is 10.0 I. . Map data precipitation entered: 6-hour., precipitation(inches) = 1.800 .24 hour precipitation(inches) =. 3.100 I.:. Adjusted 6 hour precipitation (inches) = 1.800 P6/P24 = 58.1% San Diego hydrology manual 'C' values used Runoff coefficients by rational method I,.... I Process from Point/Station 300.000 to Point/Station 301.000 .. ****.INITIAL AREA EVALUATION **** User specified 'C' value of 0.730 given for subarea . Initial subarea flow distance = 325.00(Ft.) Highest.e.levation = 320.00(Ft.) t . Lowest-elevation = 307.00(Ft.) . Eieva.tiOn.difference = 13.00(Ft.) . . . Time of concentration calculated .by the urban . . . areas overland flow, method (App X-C) = 7-.56. min. TC.= (.1o8*(1.1_C)*distanceA.5)/(% slope '(1/3)) . . . (.1.8*(1.1_0.7300)*..(325.00A.5.)/( 4.00'(1/3)]= 7.56 . s Rainfall intensity (I) = 3.631 for a 10 0 year storm Effective runoff coefficient used for area (Q=KCIA) is C=0.730 Subarea runoff = 1 007(CFS) Total initial stream area = 0 380(Ac I Process from Point/Station 301 000 to Point/Station 302 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 302 50(Ft ) Downstream point/station elevation = 302 00(Ft ) Pipe length = 32 0O(Ft ) Manning's N = 0 013 ..No.of pipes = 1 Required pipe flow = 1..007(CFS) Given pipe size = 18.00(In.) . ..I. . : Calculated individual pipe flow = 1.007(CFS) .. Normal flow depth in pipe = 3.37 (In.) Flow top width'-inside pipe = 14.05(In.) . Critical Depth = 4 49(In ) .Ppe flow velocity = 4.40(Ft/s) ' Trayel'time through pipe = 0.12 nun. '.' Time of: concentration (TC) = 7.68 mm. Process from. Point/Station 302.000 to Point/Station 303.000 **** PIPEFLOW TRAVEL TIME (User specified size) •**** Upstream point/station elevation = 301.67(Ft.) Downstream, point/station elevation = 293.00(Ft.) Pipe length' = 440.00(Ft.) Manning's N = 0.013 No. 0f.pipes=l Required pipe flow = 1.007(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 1.007(CFS) Normal flow depth in pipe = 3.19(In.) ..Flow top width inside pipe = 13.74(In.) Critical Depth = 4.49 (In.) Pipe 'flow velocity = 4.77 (Ft/s) L Trave time through pipe = 1.54 mm. Time of concentration (TC) = 9.22 Thin. Process from Point/Station 303.000 to Point/Station 303.000 :****.CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.380 (Ac.) Runoff from this stream = 1.007(CFS) Time of concentration = 9.22 mm. 'Rainfall intensity = 3.195(In/Hr) .Proces's.from Point/Station 310.000 to Point/Station. 311.000 INITIAL AREA EVALUATION **** . • 'User'specifièd'C.'value of. 0.700 given for subarea '..iñitial. subarea flow distance = 775.00(Ft.) ' •.• Highest elevation = 322 00(Ft ) Lowest elevation = 314 O0(Ft ) Elevatondifference = 8.00(Ft.) . • . .. Time of concentration calculated by the urban areas overland flow method (App X-C) = i9.83 min. 'c'= (1'.8*(1.1C) *distance '.5)/(%.'slope"(1/3).) • " •• Tc=.[l.8*(1.l_o.7000)*(775.00A.5)'/'( 1.03(1/3))= 19.83 .,...Rainfa'lIintènsity (I) = •, 1.950 for a 10.0 year storm • Effective runoff coefficient used for area (Q=KCIA) is C =,0 700 Subarea runoff 5.050(CFS) • :• '' Total initial stream area = 3 700(Ac ) ': • 'ProcesS,:frorn Point/Station • 311.090 to Point/Station .' 312.000 . **** 'PIPEFLOW TRAVEL TIME (User specified size) Upstream-point/station elevation =. 310. 00(Ft.) •' . Downstream point/station elevation = 306.00(Ft.) . '. Pipe"length = 80.00(Ft.) Manning's N = 0.013 No. of pipes =-1 Required pipe flow = 5 050(CFS) Given pipe size= 24.00(In.) I:' ... calculated individual pipe flow = 5.050(CFS) Normal flow depth in pipe = 5 12(In ) Flow top width inside pipe =19 67(In I Critical Depth = 9 49(In ) P1pE'11-ow'velocity = 10.29(Ft/s) ' Travel time through pipe = 0.13 nun Time' of concentration (TC) 19.96 .min. ' U I Process from Point/Station 312.000 to Point/Station 303.000 ** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 305 67(Ft ) Downstream point/station elevation = 293 00(Ft ) Pipe length = 27 00(Ft ) Manning's N = 0 013 No of pipes = 1 Required pipe flow = 5 050(CFS) U Given pipe size = 24 00(In ) Calculated individual pipe flow = 5 050(CFS) Normal flow depth in pipe = 2 97(In ) I Flow top width inside pipe = 15 81(In ) Critical Depth = 9 49(In ) Pipe flow velocity. = 22 62(Ft/s) Travel time through pipe = 0.02 nun I Time of concentration (TC) = 19 98 nun I ' 'Process from-Point/Station , 303.000 to Poiht/Station303.000 '**** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.700 (Ac.) Runoff from thisstream ' ' 5.050.(CFS) concentration = ' 19.98 mm. ' ' Rainfall intensity = 1.941(In/Hr) Summary of stream data: Stream Flow rate TC , Rainfall Intensity 'No. (CFS) ' (mm) (In/Hr) 'I , • '1 ' 1.007 '9.22 3.195 ' 2' ' , 5.050 19.98 ' 1.941.' ",. Qmax(1) 1.000 * 1.000 * ' 1.007) + 1.000 * 0.462 * ' 5.050)+ = ' ' 3.338' Qmax'(2') = ' I ' • ' ' ' 0.607 *.1.000 * 1.007) + ' 1.000 * 1.000 * 5.050) + = 5 662 Total of 2 'streams to confluence: 'Flow rates before confluence point: ' ,• 1.007 5.050' I ' 'Maximum' flow rates at confluence using above data; • '3.338 ' 5.662 Area of. streams before confluence: i 0.380 3.700 I. . . . .. . :.: :.. .. 1 .. .. . .. : . . . • :. :.' : • I I H I ... • • . •.• . •. . •:. H • ;•• 1 I 1: : .,.: ,. . •• .. . •:.• • ••. . .. APPENDIX IV: •.. I 50-Year Peak Discharge Calculations Under Developed Conditions I Using The Computerized Rationale Method I I I I I :. •• • I •: . . . • • • . I • • San Diego County Rational Hydrology Program .CivilCADD/CivilDESIGN Engineering Software, (c).1990 Version 2.3 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 9/25/90 EL CANINO REAL/PALOMAR AIRPORT ROAD 100 AREA BASIN STUDY FILENAME: 5 OCAMi L 200,4 JOB# 10365 9/24/90 ********* Hydrology ------------------------------------------------------------------------ Study Control Information ********** Rational hydrology study storm event year is 50 0 Map data precipitation entered 6 hour, precipitation(inches) =''2.400 24 hour precipitatxon(inches) = 4.200. Adjusted 6 hour precipitation (inches) = 2.400 P6/P24 = 57 1% San Diego hydrology manual 'ci values used Runoff coefficients by rational method ************** I N P U T D A T A L I S T I N G ****** Element Capacity Space Remaining = 325 Element Points and Process used between Points Number Upstream Downstream Process 1 .. 100.000 101.000 , Initial Area 2 101.000 102.000 Street Flow + Subarea 3 102.000 103.1000 Pipeflow Time(user inp) 4 103'000 103 000 Confluence 5 120 000 121 000 Initial Area 6 121.000 103.000 Street Flow + Subarea 7' 103.000 .. 1Q3.000 - Confluence - .8 8 130.000 131.000 Initial Area 9 131.000 103.000, Street Flow + Subarea' 10 103.000 103.000 'Confluence 11 103.000 104.000 Pipeflow Time(user inp) 12 104.000 104.000 Confluence 13 110.000 111.000 Initial Area 14 , , 111.000 104.000 Street Flow + Subarea 15 104.090 104.000 Confluence 16 • 140.000 V - 141.000 Initial Area 17 141.000 104.000 Street Flow + Subarea 18 , , 104.000 104.000 Confluence 19 104.000 105.000 Pipeflow Tiine(user inp) 20 105.000 105.000 Confluence 21 . • 150.000 151.000 Initial Area 22 151.000 152.000 '. Street Flow + Subarea • 23 152.000 174.000 Pipeflow Tiine(user inp) 2.4 • 174.000 174.000 Main Stream Confluence 25 , 160.000 ' • 161.000 Initial Area 26 161.000. 173.000 Street Flow + Subarea. 27 ' 17Aflfl 17nnn 28 170. 000 171 000 Initial Area 29 . . 171.000 172.000 Street Flow + Subarea I 30 172.000 173.000 Pipeflow Time(user inp) 31 173.000 173.000 Confluence • . 32 173.000 174.000 Pipeflow Time(user inp) . .. . 174.0.00 174.000 Main Stream Confluence I 34 . 180.000 181.000 Initial Area 35 • 181.000 182.000 Street Flow + Subarea :36 .. . 182.000 . 192.000 .PipeflowTime(user inp) I . .• 192.000 192.000 Confluence 38 • 190.000 191.000 Initial Area .39 . 191.000 192.000 . • Street Flow+ Subarea : •.•.40 . •• • 192.000 . 192.000 Confluence I 41 192.000 193.000 Pipeflow Tune(user inp) End of listing . • . I I I I I I I I I I I I I I •..,• ,• I San Diego County Rational Hydrology Program CiviiCADD/CivilDESIGN Engineering Software, (C) 1990 Version 2.3 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology. Study Date: 9/25/90 ------------------------------------------------------------------------ EL CANINO REAL/PALOMAR AIRPORT ROAD 100 AREA BASIN STUDY FILENAME: 5 OCAN 1 - L 200,4 JOB# 10365 9/24/90 ------------------------------------------------------------------------ Hydrology Study Control Information ********** Rational hydrology study storm event year is 50.0 I Map data precipitation entered: 6 hour, precipitation(inches) = 2.400 24 hour precipitation(inches) = 4.200 I Adjusted 6 hour precipitation (inches) '= 2.400 P6/P24 = 57.1% San Diego hydrology manual 'C' values used Runoff coefficients by rational method I I Process from Point/Station 100.000 to Point/Station 101.000 INITIAL AREA EVALUATION **** User,specif led 'C' value of 0.850 given for subarea I Initial subarea flow distance = 130.00(Ft.) Highest elevation = 318.90(Ft.) Lowest elevation = 318.30(Ft.) I Elevation difference = 0.60(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.64 mm. I TC = [1.8*(1.1-C)*distance 1.5)/(% slope"(1/3)) TC = [1.8*(1.1-0.8500)*(130.00'.5)/( 0.46'(1/3)]= 6.64 Rainfall intensity (I) = 5.266 for a 50.0 year storm 'Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 I Subarea runoff = 0.716(CFS) Total initial stream area 0.160(Ac.) I Process from Point/Station 101.000 to Point/Station 102.000 I **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 318.300(Ft.) End of street segment elevation = 315.000(Ft.) I Length of street segment = 500.000(Ft,) Height of curb above gutter flowline = ' 6.0(m1) Width of half street (curb to crown) = 53.000(Ft.) I Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [l)-side( s) of the street ' Distance from curb to property line = 10 000(Ft ) Slope from curb to property line (v/hz) = 0.060 Gutter width = 1 500(Ft ) I Gutter hike from flowline = '2.000 (In ) Manning 's N in gutter = 0.0150 :Manning's N. from gutter to grade break = 0.0150 I Manning's. N from grade break to crown = 0.0160 :1'Estimated. mean flow rate at; midpoint of street = =. 0.438(Ft.) .. ..:Depth:.of.tlow Average velocity = 2.304(Ft/s) Streétf.low.hydraulics at midpoint of.street travel: Halfstreet flow width = 15.058(Ft.) Flow velocity = 2.30(Ft/s) I . Travel time = 3.62 mm. TC = 10.26 mm. Adding area flow to street 5 ..461(CFS) User specified 'C' value of 0.700 given for subarea Rainfall intensity = 3.978(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.700 Subarea runoff - 5.904(CFS) for 2.120(Ac.) Total runoff = 6.620(CFS) Total area = • - 2.28 (Ac.) Street flow at end of street = 6.620(CFS) Half street flow at end of street = 6.620(CFS) Depth ,.f flow = 0.463 (Ft.) Average velocity = 2.400(Ft/s) Flow width (from curb towards crown)= 16.297(Ft.) Process from Point/Station 102.000 to Point/Station 103.000 ****.PIPEP'LOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 311. 50(Ft.) .Downtream point/station elevation = 308.50 (Ft.) Pipe length = 400.00(Ft.) Manning's N =0.013 No. of pipes = 1 Required pipe flow = 6.620(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.620(CFS) Normal flow depth in pipe = . 11.39(In.) Flow top width inside pipe = 17.35(In.) Critical Depth = 11.94(In.) Pipe flow velocity = 5.62(Ft/s) Travel time through pipe = 1.19 mm. Time of concentration (TC) = 11.44 mm. I I +++++++±+++++++++++-f++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 103.000 ***-*.CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number .1 Stream flow area = 2.280(Ac.) Runoff from this stream = 6.620(CFS) Time of concentration = 11.44 mm. Rainfall intensity = . 3.707(In/Hr) • . I . . Proôess from Point/Station 120.000 to Point/Station 121.000 **** INITIAL AREA EVALUATION **** I I I I LI I I I I I I I Li I I I I I [1 I User specified 'C' value of 0.639 given for subarea Initial subarea flow distance = 100.00(Ft.) Highest; elevation = 315.00(Ft.) .test elevation = Elevation difference =.1.00(Ft.) Tirne.of concentration calculated by the urban areas overland flow method (App X-C) = . 8.46 mm. .TC = (1.8*(1.1_C)*distance".5)/(% slope "(l/3)) TC= (1.8*(1.1_0.6300)*(100.00'.5)/( 1.00A (1/3))= Rainfall intensity (I) = 4.504 for a 50.0 year Effective runoff coefficient used for area (Q=KCIA) Subarea. runoff = 1.532(CFS) Total initial stream area = 0.540(Ac.) 8.46 storm is C = 0.630 Process from Point/Station 121.000 to Point/Station 103.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 314.000(Ft.) End of street segment elevation = 311.700(Ft.) Length of street segment = 300.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width-of-half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.060 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street = 3.136(CFS) Depth of flow = 0.367 (Ft.) - Average velocity = 2.193(Ft/s) Streetf].ow hydraulics at midpoint of street travel: Halfstreet flow width = 11.522(Ft.) Flow velocity = 2.19 (Ft/s) Travel time = 2.28 mm. TC = 10.74 mm. Adding area flow to street User specified 'C' value of 0.660 given for subarea Rainfall intensity = 3.862(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.660 Subarea runoff = 2.880(CFS) for 1.130(Ac.) Total runoff = 4.412(CFS) Total area = 1.67 (Ac.) Street flow at end of street = 4.412(CFS) Half street flow at end of street = 4.412(CFS) Depth-of-flow = 0.404 (Ft.) . Average velocity = 2.342(Ft/s) Flow width (from curb towards crown)= 13.348(Ft.) Process from. Point/Station 103.000 to Point/Station: 103.000 **** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 1 in normal stream number 2 Stream.flow area = 1.670(Ac.) 'Runoff from this stream = . 4.412(CFS) Time' àf'concentration = 10.74 mm. 2 Rainfall intensity = 3.862(In/Hr) Process from Point/Station 130.000 to Point/Station 131.000 INITIAL AREA EVALUATION **** User specified 'C' value of 0.750 given for subarea Initial subarea flow distance = 100.00(Ft.) Highest elevation = 315.10(Ft.) Lowest elevation = 314.80(Ft.) Elevation difference = ' 0.30(Ft.) Time,' of concentration calculated by the urban areas overland flow method (App X-C) = 9.41 mm. TC = (1.8*(1.1-C)*distance'.5)/(% slope '(l/3)) TC = ['1.8*(1.1_0.7500)*(100.00'.5)/( 0.30'(l/3)]= 9.41 Rainfall intensity (I) = 4.205 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.750 Subarea runoff = 0.662(CFS) Total initial stream area = 0.210(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 131.000 to Point/Station 103.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 314.800(Ft.) End' of street segment elevation = 311.700(Ft.) Length of street segment = 445.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1) side(s) of the street 'Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.060 Gutter width = 1.500(Ft.) Gutter, hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0160 .,Estimated mean flow rate at midpoint of street = 2.460(CFS) Depth of flow = 0.348 (Ft.) "Average velocity = 2.018(Ft/s) Streetflow hydraulics at midpointof street travel: 'Halfstreet flow width ' 10.568 (Ft.) .Flow'.velocity = 2.02(Ft/s) Travel time 3.68 mm. TC = 13.09 mm.' Adding :area flow to street ' User specified 'C' value of 0.720 given for 'subarea' Rainfall intensity = 3.400(In/Hr) for a, 50.0 -.-year.'-storm ' 'Runoff, coefficient used for sub-area, Rational inethod,Q=KCIA, C = 0.720 :Subareà runoff = 2.790(CFS) for 1.140(Ac.) -Total runoff 3.453'(CFS) Total area = ' .1.35(Ac.). 'Street flow at end of street = 3.453(CFS) :Half street flow at end of street = 3.453(CFS) 'beoth of flow '= 0.382 (Ft.) Average velocity = 2.148(Ft/s) Flow. width (from curb towards crown)= 12 268(Ft ) I Process from Point/Station 103.000 to Point/Station 103.000 ****CQNFLIJENCE.OF MINOR STREAMS **** A1ong Main Stream number: 1 in normal stream. number 3 I Stream flow area = 1.350(Ac.) Runoff from this stream = . 3.453(CFS) I . Time of concentration = 13.09 mm. Rainfall intensity = 3.400(In/Hr) Summary of stream data I Stream Flow rate TC Rainfall Intensity No (CFS) (mm) (In/Hr) 1 6.620 1144 3.707 2. 4.412 10.74 3.862 3453 1309 3.400 I .Qmax(i) = •. . 5 ',. 1.0.00 * 1.000 * 6.620) + .0.960 * 1.000 * 4.412)+ 1.000* 0.874 * 3.453) + = 13.875 I. Qmax(2) 1.000 •* . 0.939 * 6.620) + I .. . 1.000 * -1.000 * 4.412) 1.000 * 0.821 * 3.453) + •1 + = 13.460 . Qmax(3) .= . . . . 0.917 * 1.000 * 6.620) + I . .0.880 * 1.000 * 4.412) + . S . 1.000 * .1.000 * 3453) + = S 13.408 Total of 3 streams to confluence I Flow rates before confluence point: 6.620 4.412 Maximum flow rates at confluence using above data: - 13.875 13.460 . 13.408 Area.. of streams before confluence: . . 2.280 1,670 1 350 Results of confluence I Total. flow, rate = . 13.875.(CFS) .. Time 0f concentration' = 11.443 mm.. Effective stream area after confluence = 5 300(Ac ) ++++++++++++++++++++++++++++-f++++++++.+++++++++++++±+++++++++++++++++++ I . Process from Point/Station I 103.000 to Point/Station . .1.04.000 ****.PI.PEFLOW TRAVEL TIME (User specified size) " Upstream point/station elevation = 308.5'0(Ft.)'. . Downstream point/station elevation = 307.70 (Ft.) Pipe, length = 105.00(Ft.) Manning's N = 0.013 . I No. of pipes = 1 Required pipe flow = 13.875(CFS) . S Given pipe size = 24.00(In.) Calculated individual pipe flow' 13.875(CFS) Normal flow depth in pipe = . 14.84(In.) I Flow top width inside pipe = 23.32(In.) Critical Depth = 16.11(In.) Pipe flow velocity = 6.81(Ft/s) Travel time through pipe = 0.26 mm. Time.of. concentration (TC) = 11.70 mm. Process from Point/Station 104.000 to Point/Station 104.000 ****cONFTJJENCE OF MINOR STREAMS **** Along.Main Stream number: 1 in normal stream number 3. Stream flow area = 5.300(Ac.) Runoff from this stream = 13. 875(CFS) Time.. of concentration = 11.70 mm. Rainfall intensity = 3.654(In/Hr) . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I . Process from Point/Station 110.000 to Point/Station 111.000 ****:INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 130.00(Ft.) . Highest elevation = 318.90(Ft.) Lowest elevation = 318.30(Ft.) I .Elevation difference = 0.60(Ft.) Time: of concentration calculated by the urban areas overland flow method (App X-C) = .5.31 mm. I . TC.= (l.8*(.1.l-C)*distance.'.5)/(% slope "(1/3)] TC=(1.8*(1.1-0.9000)*(130.00".5)/( 0.46'(1/3))= 5.31 Rainfall intensity (I) = 6.082 for a 50.0 year storm Effectiv runoff coefficient used for area (Q=KCIA) is C =.0.900 I .5uarea runoff = 0.876(CFS) . Total initial stream area. =0.160 (Ac.) I . ... Process from Point/Station . 11.1.000 to Point/Station 104.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION. ****. Top of street segment elevation = 318 300(Ft ) End of street segment elevation = 311.700(Ft.). . I. :Length of street segment =. 900.000(Ft.) Height of curb above gutter flowline = 6 0(m ) ....Width -of half street (curb to crown) = 53.000(Ft.) . I ..Distance from crown to crossfall. grade break = 51.500(F.t.) Slope fromgutter to grade break (v/hz) = 0.083 'Slope from grade break to crown (v/hz) = .0.020 Street flow is on (1) side(s) of the street I Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) Gutter width = 1.500(Ft.) I .Gutter hike from flowline = . 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 I . Manning's N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street = 4.43.4(CFS) Depth of flow = 0.407(Ft.) Average velocity = 2.303(Ft/s) Streetflow hydraulics at-midpoint of street travel: S ,.:...:Ha1fs.treet flow width = 13.501(Ft.) S I' :F1OVvelocity'= 2.30(Ft/s) : :. . Travel -time = 6.51 min. TC = 11.83 iflifl. • : Adding area flow to street S I . :User specified 'C' value of 0.850 given for subarea Rainfall :intensity = 3.629(1n/Hr) for a .50.0 year storm Runoff coefficient used for sub-area, Rational.method,Q.=KCIA, C = 0.850 Subarea runoff = 4.010(CFS) for . 1.300(Ac.) I . Total runoff =4.886(CFS) Total area = S 1.46(Ac.) Street flówat end of street = 4.886(CFS) .Hàlf:street flow at end of street = 4.886(CFS) I •.5Depth o. flow = 0.418(Ft.) •.• ., • . •• Average veioàity. = 2.348(Ft/s) S S S . Flow width (from curb towards crown)=., 14.065(Ft.). S 5555•55 Proôess from Point/Station . 104.000 to Point/Station . 104.000 CONFLUENCE OF MINOR STREAMS Along Main Stream number: 1 in normal stream number 2 I Stream flow area = 1.460(Ac.) S S Runoff from this stream = 4.886(CFS) S Time of concentration = 11.83 mm. Rainfall intensity = 3.629(In/Hr) I.; I S Process from Point/Station 140.000 to Point/Station 141.000 **'*.INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea S I Initial subarea flow distance 100.00(Ft.) Highest elevation = 315.10(Ft.) Lowest elevation = 314.80(Ft.) I Elevation difference = 0.30(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.72 mm. TC = [1.8*(1.1_C)*distanceA.5)/(% slope-,(1/3)) I ... TC =.[1.8*(1.1_0.8500)*(100.00A.5)/( 0.30(1/3))= 6.72 Rainfall intensity (I) = 5.224 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 I Subarea runoff = S 0.622(CFS) Total initial stream area = 0.140(Ac.) I Process from Point/Station 141.000 to Point/Station 104.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I • Top of street segment elevation = 314.800 (Ft.) End of street segment elevation = 311.700(Ft.) I Length of street segment = 445.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) I Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street I Distance from curb to property line = 10 000(Ft ) Slope from curb to property line (v/hz) = 0 060 Gutter wIdth = 1.500(Ft.) Gutter hike from I lowline = 2 000(In ) Manning's Kin gutter = 0.0150 * I Manning,' s"' N from gutter to grade break = 0.0150 Manning 's N from grade break to crown ,= 0.0160 Estimated mean flow rate at midpoint of street = 2 065(CFS) Depth of flow = 0 332(Ft ) I Average velocity = 1 958(Ft/s) Streetf low hydraulics at midpoint of street travel Half street.' flow width = 9 758(Ft ) I Flow velocity = 1.96(Ft/s) . . Travel time = 3.79 mm.. TC'= 10.51 mm. Adding area flow to street User specified 'C' valueof0.850 given for subarea I Rainfall intensity= 3.916(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 2.164(CFS) for 0.650 (Ac.) I Total runoff = 2.785(CFS) Total area = 0.79(Ac.) Street flow at end of street = 2.785(CFS) Half street flow at end of street = 2.785(CFS) I . Depth of flow .= . 0.360(Ft.) Average velocity = 2.063(Ft/s) Flow width (from curb towards crown)= 11.170(Ft.) Process from Point/Station 104.000 to Point/Station 104.000 CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 0.790(Ac.) I Runoff from this stream=. .. . 2.785(CFS) Time of concentration = 10.51 min. Rainfall intensity = 3 916(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No (CFS) (mm) (In/Hr) 1 13.875 1170 I 2 . 4.886 11.83 3 . •• 2.785 1.0.51- 1.000 * 0.989 * 4.886) + 0.933 * 1.000 * 2.785) + = Qmax(2) = 0.993 * 1.000 * 13.875) + 1000 * 1.000 * 4.886) + 0.927 * 1000* 2.785) + = Qmax(3) = 0.898. * 13.875) + 1.000 * 0.889 * 4.886) + 1.000 * •. 1.000 *. 2.785) + = Total of 3 streams to confluence: Flow rates before confluence point: I I I I I 3.654 3.629 3.916 = 1.000 * 1.000 * . 1375' + 21.308 21.247 19.592 I ; 13.875 4.886 ' .785 Maximum flow rates at confluence using above data: ', 21.308 21.247 19.592 Area of streams before confluence: 5.-300-' 1.460 0.790 Resültè of confluence: Total'flow,rate = 21.308(CFS) ,Time:of'concentration = 11.700 mm. Effective stream area after confluence = 7.550 (Ac.) Process from Point/Station' 104.000' to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (Userspecified size) *** Upstream-point/station elevation = 307.20(Ft.) ,Downstream -point/station elevation = 307.00(Ft.) Pipe length =. 15.00(Ft.) Manning's N = 0.013 No. of'pipes = 1 Required pipe flow •= 21.308(CFS) Given pipe size = 24.00(In.) 'Calculated individual pipe flow = 21.308(CFS) Normal flow depth in'pipe = ' 16.48(In.) Flow top width inside pipe'= 22.27(In.) Critical Depth = ,19.82(In.) Pipe'f low velocity = 9.27 (Ft/s) Travel time through pipe = 0.03 mm. Time of concentration (TC)=., , 11.73 mm. 'Process from Point/Station 105.000 to Point/Station 105.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1-in normal stream number 1 Stream flow area 7.550(Ac.) Runoff from this stream = 21.308(CFS). Time of concentration = 11.73 mm. Rainfall intensity = 3.649(In/Hr) Summary of.. stream data: Stream Flow rate TC Rainfall Intensity' No. • • (CFS) • (mm) ' ' (In/Hr) I I I I I '1 • • 21.308 11.73 , 3.649 , Qmax(l) • • 1.000* 1.000* 21.308),+ ' 21.30,8' '. • 'Total of 1' streams to confluence: I ... ' ;.F1 o' rates before confluence point: • : ' ' 21.308 . • • Maximum flow rates at confluence using above data: .21.308 •: • . '' 'Area of. streams before confluence: •. ', •:: . •, . . ' , 7.550. • • .. • • 'Results of confluence: ',. . •' • ' Total flow.rate = ' 21.308(CFS): • . . Time of concentration = • 11.727 mm. • Effective stream area after confluence = • 7.550.(Ac.) I, '. •: • '. , .•.• . ,• ' :. ' I I I0•.. I .. ............ ........................................................... Process from Point/Station 150.000 to Point/Station 151.000 .****.INITIAL AREA EVALUATION **** I . User specified 'C' value of 0.850 given for subarea initial, subarea flow distance = 100.00(Ft.) Highest elevation = 315.20(Ft.) Lowest elevation = 314.80(Ft.) I.............Elevation difference =0.40(Ft.) Time of concentration calculated by the urban areas overland, flow method (App X-C) = . 6.11 mm. I . .'TC.= (1.8*(1.1-C)*diStaflce".5)/(% slope "(1/3)) . . .TC =(1.8*(1.'lO.8500)*'(1O0.00'.5)/( 0.40'(1/3))= 6.11 Rainfall intensity (I) = 5.558 for 'a 50.0 year storm I. . :.Effective noff coefficient used for area (Q=KCIA.)' is C =0.850. .. Subarea.'runoff =0.661(CFS) . . . . Total initial stream area = . 0.140(Ac.) . .. I Process •from Point/Station .151.000 to Point/Statidn. 152 000 ****. STREET FLOW'.TRAVEL TIME + SUBAREA FLOW ADDITION **** ":.Top Qfstreet segment elevation = 314.800 (Ft.) End of street segment elevation = 28'2..800(Ft.)' I . Length of street segment = 1410.000 (Ft.) . Height of curb above gutter flowline = 6.0(In.) ..,Width -of half street (curb to crown) = . 53.000(Ft.') I .Distance from crown to crossfall grade break = 51.500.(Ft.) Slope from gutter to grade break (v/hz) .= 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street I Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.060 Gutter width = 1.500(Ft.) I Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = . 0.0150 I . Manning's N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street = 5.622(CFS) Depth of flow— 0.371(Ft.) Average velocity = 3.801(Ft/s) I . 'Streetflow hydraulics at midpoint of street travel: Halfstreet flow width .='. ll.732(Ft.) Flow velocity = 3.80(Ft/s) I . Travel time = 6.18 mm. TC = 12.29 mm. Adding area flow to street User specified 'C' value of 0.850 given for subarea Rainfall intensity = 3.540(In/Hr) for a 50.0 year storm I . Runoff coefficient used for'sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff =6.319(CFS) for 2.100(Ac.) 'Total runoff = 6.981(CFS) Total area = 2.24 (Ac.) I .Stréet flow at end of street = 6.981(CFS) Half street flow at end of street = 6.98.1(CFS) Depth of flow = 0.394 (Ft.) Average velocity = 3.963(Ft/s) I Flow width (from curb towards crown)= 12.881(Ft.) I -S ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ : PrOcess from Point/Station 152.000 to Point/Station 174.000 I PIPEFLOW TRAVEL TIME (User specified size) *** UpStream point/station elevation = 279.50(Ft.) I Downstream point/station elevation = 279.00(Ft.) Pipe length = 63.00(Ft.) Manning's N = 0.013 ,No.' of pipes = 1 Required pipe flow = 6.981(CFS) Givenpipesize = I 18.00(In.) Calculated individual pipe flow = 6.981(CFS) Normal flow depth in pipe = 11.59(In.) Flow top width inside pipe = 17.24(In.) ' Critical Depth = 12.28 (In.) Pipe flow velocity = 5.81(Ft/s) Travel time through pipe = 0.18 mm. Time of concentration (TC) = 12.47 mm. Process from Point/Station 174.000 to Point/Station 174.000 ...****-CONFLUENCE OF MAIN STREAMS **** S The.following data inside Main Stream is listed: 1n Majn Stream number: 1 Strem flow area = 2.240(Aô.) • S unoff. from this stream = 6.981(CFS) S ,.. :Time.'of concentration =12.47 mm. Rainfall; intensity = 3.507(In/Hr) Program is now, starting with Main Stream No. 2 Process frOm Point/Station 160.000 to Point/St'ati,on ' 161.000 I ' ****:INITIAL AREA EVALUATION **** '• User specified 'C' value of 0.850 given for subarea I "Initial subarea flow distance = 100.00(Ft.) Highest elevation = 323.90(Ft.) Lowest elevation = 318.30(Ft.) I ,Elevation difference = 5.60(Ft.) Time of concentration calculated by the urban , areas overland flow method (App X-C) = 2.53 min. TC = (S1.8*(1.1_C)*distance¼.5)/(% slope "(1/3)] I TC=(l.8*(l.1_0.8500)*(100..00A.5)/( 5.60'(1/3))= '2.53 Rainfall intensity (I) .= 9.802 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.850 Subarea runoff = 1.166(CFS) * Total initial stream area = 0.140(Ac.) I Process from Point/Station 161.000 to Point/Station 173.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 318.300(Ft..) End of -street segment elevation = 283.800(Ft.) I , Length of, street segment '= 690.000(Ft.) Height of curb above gutter flowline = 6.0(In.) 'Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = • 51.500 (Ft.) I S. : ;Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 I .Street flow is on (1) side(s) of the street Distance from curb to property line = 10.000.(Ft.) Slope from curb to property line (v/hz) = .0-.060 I . Gutter.width.1.500(Ft.) Gutter. hike from flowline = 2.000 (In.) ... Ma.nnng's N in gutter = 0.0150 Manning'sN from gutter to grade break = 0.0150 I Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.332(CFS) Depth of flow = 0.326(Ft.) I . Average velocity = 5.350(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 9.456(Ft.) Flow velocity = 5.35(Ft/s). I Travel time = 2.15 mm. TC = 4.68 mm. . Adding area flow to street User specified 'C' value of 0.850 given for subarea I .. Rainfall ''Intensity 6.596(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 5.606(CFS) for 1.000 (Ac.) I Total runoff = 6.773(CFS) Total area = 1.14(Ac.). :Street flow at end of street = 6.773(CFS) Half street flow at end of street = 6.773(CFS) Depth of flow = 0.347 (Ft.) I Averagevelocity = 5.586(Ft/s) Flow, width (from curb towards crown)= 10.535(Ft.) I +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 173.000 to Point/Station 173.000 I **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.140(Ac.) I Runoff from this stream.= 6.773(CFS) Time of concentration = 4.68 mm. Rainfall intensity = 6.596(In/Hr) Process from Point/Station 170.000 to. Point/Station 171.000 I . INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea I .Initial subarea flow distance = 100.00(Ft.) Highest elevation = 323.90(Ft.) Lowest elevation = 318.30'(Ft.) Elevation difference = 5.60(Ft.) I .Time.-of concentration calculated by the urban areas overland flow method (App X-C) = 2.53 mm. Tc '='.(l.8*(l.l_c)*djstanceA.5)/(% slope A(l/3)) . . . I TC=.(l.8*(l.l-0.8500)*(100.00".5)/( 5..60"(l/3))= 2.53 Rainfall intensity (I) = 9.802 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) isC = 0.850 Subarea runoff = 1.166(CFS) I Total initial stream area = 0 140(Ac ) U Process from Point/Station 171.000 to Point/Station 172.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of :street segment elevation = 318.300(Ft.) End:of street segment elevation = 285.000(Ft.) Length ófstreet segment = 630.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.060 "Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street = 4.957(CFS) Depth of flow = 0.320(Ft.) Average velocity = 5.274(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.151(Ft.) Flow velocity = 5.27(Ft/s) Travel time = 1.99 mm. TC = 4.52 mm. Adding area flow to street User specified 'C' value of 0.850 given for subarea Rainfall intensity = 6.744(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 5.216(CFS) for 0.910(Ac.) Total. runoff = 6.383(CFS) Total area = 1.05 (Ac.) Street flow at end of street = 6.383(CFS) Half street flow at end of street 6.383(CFS) Depth of. flow = 0.342 (Ft.) Average velocity = 5.500(Ft/s) Flow width (from curb towards crown)= 10.286(Ft.) Process from Point/Station . 172.000 to Point/Station 173.000 ****PIPEFLOW TRAVEL TIME (User specified size) **** : Upstream point/station elevation = 281.50(Ft.) . Downstream point/station elevation = 280.00(7t.) Pipe length = 168.00(Ft.) Manning's N 0.013 No. of pipes = 1 Required pipe flow = 6.383(CFS) .' Given pipe size = 18.00(In.) . • . • :Calculated individual pipe flow = 6.383(CFS) •• Normal flow depth in pipe = 10.50(In.) . Flow ,-top -width inside pipe = 17.75(In.) • Critical Depth = 11.71(In.) • Pipe 'flowvelocity = 5.97(Ft/s) Travel time through pipe = 0.47 mm. Time of concentration (TC) = 4.99 mm. • Process from Point/Station 173.000 to Point/Station 173.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number 2 in normal stream number ..2 Stream flow area = 1 050(Ac ) Runoff from this stream = 6.383(CFS) I . Time ofconcentration = 4.99 mm. YRainfall intensity = 6.328(In/Hr) Summary of stream data: .. I Stream Flow rate TC Rainfall Intensity No.: (CFS) (mm) .(In/Hr) 1 6773 468 6.596 2 6.383 4.99 . 6.328 .Qmax(l)= I . 1.000 * 1.000 * 6.773) + . 1.0.00 * 0.938 * 6.383) + = 12.759 Qmax(2) I .: .. 0.959 * 1.000 * 6.773) + 1.000 * 1.000 * 6.383) + = 12.881 .Total of 2 streams to confluence: . I Flow rates ' .before confluence point: 6.773 6.383 Maximum.flow rates at confluence using above data: I of12.759 12.881 Area . .• streams before confluence: 1.140 1.050 I Results of confluence: Total flow rate = •. 12.881(CFS) Time of concentration = . 4.994 mm. Effective stream area after confluence = 2.190(Ac.) I I Process from Point/Station . 173.000 to Point/Station 174.000 b* PIPEFLOW TRAVEL TIME (User specifi.ed size) **** Upstream point/station elevation = 279.67 (Ft.) I Downstream point/station elevation = 279.00(Ft.) Pipe length = 85.00(Ft.) Manning's N = 0.013 No. of pipes =2 Required pipe flow =. 12.881(CFS) I Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.440(CFS) Normal. flow depth in pipe =. . 10.99 (In.) I Flow top width inside pipe.= 17.55(In.) Critical Depth = 11,77(iii.) . Pipe flow velocity = .5.69(Ft/s) Travel time through pipe = . 0.25 mm. I Time of concentration (TC) = 5.24 In].n I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station .174.000 to Point/Station . 174.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 • . • Stream flow area = 2 190(Ac ) I Runoff from this stream = 12 881(CFS) '. '. Time' of concentration = 5.24 mm. I Rainfall intensity = 6 133(In/Hr) I Summary of stream data Stream Flow rate TC Rainfall Intensity I No (CFS) (mm) (In/Hr) I 1 6.981 12.47-:3 507 2 ' ' 12.881 5.24' ' ' 6.133 Qmax(l) = , . ' . . •,. 1.000 * 1.000 * 6.981) + . I 0.572 * 1-.000 * 12,881) + = 14.347 Qmàx(2) = '• , ' , ' 1.000 * 0.420 * 6.9-81) + I i.000 * 1.000-4 12.881) + = 15.816 Total of 2 main streams to confluence I . 'Flow rates, before confluence point: 6.981 12.881 ' ': •, ,: Maximum flow rates at confluence using above data: 14.34-7 15.816 Area of'streams before confluence: ' 2.240 , 2.190 I Results of confluence Total flow.raté = 15.816(CFS) Time of concentration = 5.243 mm. I 'Effective stream area 'after confluence = ' 4.430 (Ac.), I Process from Point/Station 180.000 to Point/Station 181.000 .**** INITIAL'AREA EVALUATION User' specified 'C' value of 0.850'given for subarea Initial subarea flow distance = 100.00(Ft.)' I Highest elevation = 387.40(Ft.) ' Lowest elevation = 384.30(Ft.) Elevation difference = 3.lO(Ft.) Time of' concentration calculated by the urban I ' 'areas overland flow method (App X-C) = 3.09-min. ,TC = (1.8*(1.1-C)*distance.5)/(% slope '(1/3)) TC= (1.8*(1.1-0.8500)*(100.00fr.5)/(, 3.10'(1/3))=' 3.09 I Rainfall intensity (I) = '8.632 for a 50.0, year storm Effective runoff coefficient used for area (Q=KCIA) Is C = 0.850 Subarea runoff = 1.027(CFS) Total initial' stream area = 0.140(Ac.) I Process from Point/Station '181.000 to Point/Station 182.000 "**** STREET FLOW TRAVEL, TIME + SUBAREA FLOW ADDITION **** 'Top of street segment elevation = ' 384.300(Ft.) End of street segment elevation = •324.000(Ft.) Length of street segment = 1387.000(Ft.) 'Height of curb above gutter flowline = 6.0(In.) I Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft..) Gutter, hike from flowline =. 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street Depth of flow = 0.375(Ft.) Average velocity = 5.504(Ft/s) Streetflow' hydraulics at midpoint of street travel: Halfstreet flow width = 11.932(Ft.) Flow velocity = 5.50(Ft/s') Travel, time = 4.20 mm. TC = 7.29 mm. Adding area flow to street 8 . 401 (CFS) User specified 'C' value of 0.850 given for subarea Rainfall intensity = 4.960(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method ,Q=KCIA, C 0.850 Subarea runoff = 8.474(CFS) for 2.010 (Ac.) Total runoff = 9.501(CFS) Total area = 2.'15(Ac.) Street flow at end of street = 9.501(CFS) Half street flow at end of street = 9.501(CFS) Depth of flow = 0.388 (Ft.) Average velocity = 5'. 642 (Ft/s) ... Flow width (from curb towards crown)= 12.576(Ft.) ...................................................................... I .. process from Point/station . 182.000' to Point/Station 192.000 *** PIPEFLOW TRAVEL TIME (User specified size) I : Upstream point/station elevation = 316.05(.Ft.). Dow nstream"point/station elevation = •314.14(Ft.) Pipe length = 108 .00(Ft.) Manning's N = '0.013 . No. of pipes = 1 Required pipe flow , = 9.501(CFS) I 'Given pipe size = 18.00(In.) CalOulated individual pipe flow = ' .9.501(CFS) 'Normal flow depth in pipe = 10.89(In.) I Flow top width inside pipe ,=' 17 60(In ) 'Critical Depth .= 14.29('In.) ' . ,. ' ••. .. . Pipe flow velocity = 8 50(Ft/s) Travel time through pipe.'= 0.21 mm. ' . . . ,.• Time of concentration (TC) = 7.50 mm. . . . I. . ' Process, from Point/Station 192.000 to Point/Station 192.000 :****-CONFLUENCE OF MINOR STREAMS **** • ' S , S Along Mainstream number: 1 in normal stream number 1 Stream flow area = 2.150(Ac.) I Runoff' from this stream = 9.501(CFS) ' • Time of concentration = 7.50 mm. • ' . Rainfall intensity = 4.869(In/Hr) . ....................................................................... I .Process from Point/Station 190.000 to Point/Station 191.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given 'for subarea Initial subarea flow distance = 'lOO.00(Ft.) Highest elevation = 395.20(Ft.) Lowest elevation = 390.90(Ft.) Elevation difference = 4.30(Ft.) Time of concentration calculated by the, urban areas overland flow method (App X-C) = 2.77 mm. TC'= '[l.8*(l.l_C)*distanceA.5)/(% slope "(1/3)J TC =(1.8*'(1.1-0.8500)*(100.00.5)/( 4.30A(1/3))= Rainfall intensity (I) = 9.261 for a 50.0 year Effective runoff coefficient used for .area (Q=KCIA) Subarea runoff = 1.102(CFS) Total initial stream area = 0.140(Ac.) Process from Point/Station 191.000 to Point/Station 192.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 390.900(Ft.) End of street segment elevation = 324.000(Ft.) Length of street segment = 1567.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.060 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to' grade break = 0.0150 Manning-Is N from grade break to crown .= 0.0160 Estimated mean flow rate at midpoint of street = 10.037(CFS) Depth of flow = 0.399 (Ft.) 'Average velocity' = 5.486(Ft/s) 'Streetf low hydraulics at midpoint of street travel: Halfstreét flow width'= 13.142(Ft.) Flow velocity ' 5.49(.Ft/s) : ,Travel time = 4.76 mm. . TC = 7.53 mm. Adding area flow to street' ' .User 'specified 'C' value of 0.850 given for subarea Rainfall intensity = ' 4.857(In/Hr)' for a 50.0year'stormtt Runoff coefficient used for sub-area, Rational method,,Q=KCIA, C = 0.850 Subarea runoff = 9.371(CFS) for 2.270(Ac.) ' Total runoff = 10 473(CFS) Total area = 2 41(Ac ) Street -flow at end of street = 10.473(CFS). .. . '. Half: street flow at end of street = 10.473(CFS) . Depth of flow = 0.404 (Ft.) . Average velocity =. 5.532(Ft/s) ..' . Flow: width (from curb towards. crown)= 13.381(Ft.) I I I I I I I I I I I I I I .1 I 2 .77 storm is C = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station - 192.000 to Point/SatiOn "' 192.000 '.*** CONFLUENCE OF MINOR: STREAMS '" 'Aloñg,Main Stream nurnber:.I.in normal stream number 2. I ' 'Stream flow area = 2.41.0 (Ac.) . . .. Runoff from'thisstream= y 10.473(CFS) •' . . .. Time of concentration = 7 53 mm Rainfall, intensity = . I 4.857(In/Hr) 'S . Summary. .of stream, data: Stream ' Flow -rate "TC Rainfall Intensity No.: (CFS) (mm) . , ' (In/H.r) 9.501' 7.50 ' . 4.869 2 ' 10.473 ' 7.53 4.857 Qmax(l) 1.000 * 1.000 * 9.501)' + . 1.000 *0.996 * 10.473) + = .' 19.932 ' .Qmax.(2) Ø997'* 1.000 *, • 9.501) + . . 1.000 * 1.000 * 10.473) + . 19.949 Total of 2 streams to confluence: Flow, rates before confluence point: . . •• I . 9.501 10.473 . Maximum flow rates at confluence using, above data: 19.932 19.949,.. . '' U. : Area of streams'béfore confluence: . . . . 2.150 , 2.410 Results of confluence: Total 'flow I rate = 19.949(CFS) n Time of cocentration =:' 7.528 mm. Effective stream area after confluence = ' 4.560(A c.) I . Process from Point/Station 192.000 to Point/Station. 193.000. I . ' PIPEFLOW TRAVEL TIME' (User specified size).**** , Upstream point/station elevation = 314.14(Ft.)• Downstream point/station elevation = 313.50(Ft.) U . Pipe length = 60.00(Ft.). Manning's N.= 0.013 No. of pipes 1 Required pipe flow = 19.949(CFS) .Given pipe. size = 24.00(In.) U .Calculated individual pipe f1osi = - 19.949(CFS) Normal flow depth in pipe = 17.06(In.) Flow, top width inside pipe = 21.76 (In.). 'Critical Depth = 19.26(In.) . . I Pipe flow velocity = 8.35(Ft/s) Travel, time through .pipe = . 0.12 mm. • Time of concentration (TC) = 7.65 mm. . I .End of computations,, total study area ,= • - 16.54 (Ac.) I I I 1' I I 1 LI I I I I I San Diego County Rational Hydrology Program '..CiviiCADD/ClvilDESIGN Engineering Software, (c).-1990 Version 2.3 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 9/25/90 --------------------------------------------------------------- EL CAMINO REAL/PALOMAR AIRPORT ROAD 200 AREA BASIN STUDY FILENAME: 5 OCAN2 L 200,4 JOB# 10365 '9/2 4/9 0 ------------------------------------------------------------------ ********* Hydrology Study Control Information ********** ------------------------------------------------------------------------ Rational hydrology study storm event year is 50.0 Map data precipitation entered:,, .6 hour, precipitation(inches) = 2.400 24 hour precipitation(inches) = 4.200 Adjusted 6 hour precipitation (inches) = 2.400 P6/P24.= 57.1% San Diego hydrology manual 'C' values used :Runoff coefficients by rational method *********** I N P U T 'D A TA L I S T I N G ******** . Element Capacity Space Remaining = 324 . ' Element Points and Process used between 'Points Number Upstream . Downstream Process '1 ' 200. 000 201.000 Initial Area "2 201.000 202.000 Street Flow + Subarea 3 . 202.000 ' 203.000 PipeflowTime(user inp) 4 S 203.000 204.000 Improved Channel Time 5 . 210.000 204.000 , Subarea Flow Addition 6 ' 204.000 ' 205.000 Pipeflow Time(user inp) 7 205.000 .205.000 'Main Stream Confluence' '8 220.000 221.000 Initial Area 9 ' 221.000 ' 222.000 Pipeflow Time(user inp) 10 222.000 222.000 Confluence 11 230.000 5 • 222.000 Initial Area 12 222.000 222.000 Confluence 13 • . • 222.000 223.000 Pipeflow Time(user inp) • 14 • 223.000 • 205.000 Pipeflow Time(user inp) • 15 205.000 205.000 Main Stream Confluence 16 . 270.000 ' 271.000 Initial Area 17 , 271.000 272.000 Street Flow + Subarea 18 272.000 , 272.000 Confluence 19 273.000 274.000 Initial Area 20 274.000 272.000 , Street Flow + Subarea 21 . 272.000 • 272.000 Confluence 22 272.000 205.000 Pipeflow Time(user inp) 23 205.000 205.000 Main Stream Confluence 24 • 205.000 20.6.000 • Pipeflow Time(user inp) 25 206.000 ' 206.000 Main Stream Confluence 26 280.000 ' 281.000 Initial Area 27 281.000 282.000. Street Flow + Subarea WN ' • .. 28 282.000 282.000 Confluence 29. ' 290.000 291.000 Initial Area i.30 291.000 0 ' 282.000 Street Flow + Subarea ':'. .. .31 •. 282.000 282.000 Confluence • :. 32.'. 282.000 283.000 ''. Pipef'low Time(user •inp) • : 283.000 '. 206.000 °• Improved Channel.Time , . : . .' 206.000 206.000 . Main Stream' Confluence • , ..'35 . 0' 240.000 241.000. iriitial Area •. ...36.,.. 241.000 252.000 ' Pipeflow. Time (user .1np) • ..-37 •. 252.000 252.000 • 0 Confluence • •.. . .38 ' . ' •0 250.000 251.000 0 Initial 'Area'. 0 •: . 0 39 •, 0 • 251.006 0 , 252.000 •, Street Flow ,+ Subarea 0.40 0 0 252.000 •0 252.000 0 Confluence'. '• 0 • , • '.41 . • ,: 252.000 263.000' • Pipeflow Time (user inp) 0 , 42 0 263.000 0 263.000 0 • Conflueiice. 0 43 , 44. :. 260.000. : '0 261.000 • 261.000 0 0 262.000 0 I'ñ.itiál Area Street Flow'+ Subarea • 0' 45 262.000 0 263.000 Pipéflow Time(user inp) 4.6 • . 263.000 . .' . 263.000 • 0 0 Confluence '' 0 .4 7 0 • 263.0.00. .. . . 264.000 ' Pipeflow Time(user inp) I End of listing. .........••• • H •- 0 , . 0 ' I I I 0'• 0 0,' I :.. 1 ' '. 0 0 ••, ' 1• , ': • 0 0 -' I ' 0 •• 0' I ''0 I ,. ' 0 •,• ' I 1. I I I I San Diego County Rational Hydrology Program 1 •.." . ,' Civi1CADD/CivilDESIGN Engineering Software, (c) 1990 Version .2.3 Rational method hydrology program based on San Diego. 'County Flood Control Division 1985 'hydrology manual S , Rational Hydrology Study Date: 9/25/90 EL CANINO REAL/PALOMAR AIRPORT ROAD 200 AREA BASIN STUDY FILENAME: 50CAN2 ' .L 200,4 .' JOB# 10365 9/24/90 5 Hydrology Study Control Information ********** Rational hydrology study storm event year is 50 0 Map data precipitation entered '6 hour, precipitation(.inches) 2.400 : .24 hour precipitation(inches) = .4.200. 5 5 5 5 5 5 5 Adjusted 6 hour precipitation (inches) = .2.400 P6/P24 = 57.1% 'San Diego hydrology manual 'C' values used Runoff coefficients by rational method Process from Point/Station 200.000 to Point/Station 5 201.000 INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea 'Initial, subarea 'flow distance = 100.00(Ft.) .. S '.Highest elevation = 315'.10(Ft.). S ' Lowest elevation = 314.70(Ft.) S , Elevation difference = ' 0.40'(Ft.) S Time of concentration calculated by the urban . 'areas overland flow method (App X-C) = 6.11: mjn TC .(1.8*(1.1C)*dIstance'.5)/(% slopeA'(1/3)] TC = (1.8*(l.1_0.8500)*(100.00A.5)/( 0.40(1/3))= 6.11 Rainfall intensity (I) = 5.558 for a 5:0.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = S 0.661(CFS) Total initial stream area = , '0.140(Ac.) ' Process from Point/Station . 201.000 to Point/Station .202.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of.street segment elevation'= 314.70.0(Ft.) End,'of street segment elevation = 282.800(Ft.) 'Length of street segment = 1400.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown)' = 53.000(Ft.) ' Distance from crown to crossfall grade break = 51.500'(Ft.) Slope from gutter to grade break (v/hz) =. 0.083 Slope from grade break' to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street I I Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.060 I Gutter width .= 1 500(Ft ) •':' Gutter hike from flowline "Manning's N in gutter' = 0.0150; I .. Manning's .N from gutter to grade break = 0.0150 ' ' . Manning's'N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street= 8.929(CPS) Depth' of flow= 0.422(Ft.)' Average' velocity = 4.170(Ft/s) . Streètflow hydraulics at midpoint of street travel: 'Halfstreet'flow width = 14.278(Ft.) Flow velocity = 4.17 (Ft/s) Travel time = . 5.60 -min. TC = 11.70 mm. Adding area flow to street User specified 'C' value of 0.730 given for subarea I Rainfall intensity = 3.654(In/Hr) for a 50.0 year storm Runoff-co - efficient used for sub-area, Rational method,Q=KCIA, C = 0.730 Subarea runoff'= 9.335(CFS) for . 3.500(Ac.) I . Total runoff = 9.997(CFS) Total area'= 3.64(Ac.) 'Street-flow at end of street =. ' 9.997(CFS) Half street flow at end'of street = 9.997(CFS) I .Depth of flow = 0.436(Ft.) Average velocity = 4.268(Ft/s) Flow width (from curb towards crown)= 14.965(Ft.) I ,Process from Point/Station 202.000 to Point/Station 203.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 280 50(Ft ) Downstream point/station elevation = ' 279.90(Ft.) Pipe length = 38.00(Ft.) Manning's N = 0.013 No. of pipes =,1 Required pipe .f low = 9.997(CFS) Given pipe size = 18.00(In.) ' Calculated individual pipe flow = 9.997(CFS) 'Normal flow depth in pipe = ' 11.71(In.) Flow top width inside pipe = 17.17(In.) Critical Depth = 14.62(In.) Pipe flow velocity .= 8..21(Ft/s) Travel time'through p.ipe'= 0.08 mm. Time of concentration (TC), = 11.78 mm. Process from Point/Station 203.000 to Point/Station 204.000 '**** 'IMPROVED CHANNEL TRAVEL. TIME **** Upstream point elevation = 279 90(Ft ) Downstream'point elevation = '• • 265.00(Ft.) Channel length thru subarea = 1015 00(Ft ) 'Channel base width = • 2.000(Ft.) Slope or 'Z' of left channel bank = 1.500 Slope' or ',Z.' of right channel bank 1.500 Manning's''N' , =0.015 ' • Maximum depth of channel' = '1.500 (Ft.) • . " .Flow(q) thru subarea Depth of flow = 0.551(Ft.) ' ' . ' •' Average velocity ,.= 6 416(Ft/s) I" I Channel flow top width = 3 654(Ft ) Flow Velocity = 6 42(Ft/s) Travel time = 2.64 min. Time'of:'concentration = 14.42 mm. Critical depth = 0.758 (Ft.) Process from Point/Station 210.000 to Point/Station 204.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimalfraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 (RURAL (greater than 1/2 acre) area type ] Time of concentration = :14.42 mm. . Rainfall intensity = 3.194(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 -Subarea runoff = 33.487(CFS) for 23.300(Ac.) Total runoff = 43.484(CFS) Total area = 26.94'(Ac.) Process from Point/Station 204.000 to Point/Station 205.000. ***.* PIPEFLOW TRAVEL TIME (User specified size) *** Upstream point/station elevation = 265.00(Ft.) Downstream point/station elevation = •264.40(Ft.) Pipe length = 38.00(Ft.) Manning's N = 0.013 No.of pipes 1 Required pipe flow = 43.484(CFS) Given pipe, size = 30.00(In.) Calculated individual pipe flow = 43.484(CFS) 'Normal flow'depth in pipe = 21.12(In.) Flow top width inside pipe = 27 39(In ) Critical Depth = 26;37(In.) Pipe flow velocity .= 11.77 (Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 14.47 mm. Process from Point/Station 205.000 to Point/Station 205.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed in Main Stream number: 1 Stream flow area 26.940(Ac.) .'Runoff from this stream.= 43.484(CFS) Time of concentration = 14.47 mm. Rainfall intensity = 3.186(In/Hr) Program is now starting with Main Stream No. 2 • , Process from Point/Station 220.000 to Point/Station 221.000 INITIAL AREA EVALUATION **** Decimal, fraction soil group A=Ô.00Ô Decimal fraction soil group B = 0.000 Decimal 'fraction soil group C =. 0.000 Decimal fraction soil group D = 1.000 I .. (RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) I ... TC.= (11.9*length(Mi)3)/(elevation change) )".385 *60(min/hr) + 10 mm. Initial, subarea flow distance = 750..00(Ft.) Highest elevation = 323.50(Ft.) Lowest. elevation = 308.00(Ft.) I.. Elevation difference = 15.50(Ft.) TC=((11.9*0.1420"3)/( 15.50)]'.385= 5.69 + 10 mm. = 15.69 mm. Rainfall.,intensity (I) = 3.024 for a 50.0 year storm I.. .Effective"runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff 9.118(CFS) Total' initial stream 'area = 6.700(Ac.) Process from Point/Station . 221.000 to Point/Station 222.000 1 ** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 304.00(Ft.) I . Downstream-point/station elevation . 271.O0.(Ft.) .,:Pipe length. = 100.00(Ft.) Manning's N = 0.013 'N• .of'-pipes = 1. Required pipe flow = 9.118(CFS) . Given pipe size = 18 • 00 (In.) . . . 1.: .Calôuiated.individual pipe flow . = . 9.118(CFS) . ... . Normal 'flow depth in pipe .= 4.73(In.) . .:. F10 top width inside pipe = 15.84(In.') I.. . •: Critical Depth =14.02 (In.) . . . . . . Pipe flow velocity ' 24.61(Ft/s) . . Travel time through pipe = 0.07 mm. . I... Time of conäentratjon (TC) = . 15.76 mifl .. . . ............................................................ f+++++++ + I . Process from Point/Station 222.000 to Point/Station . 222.000 **** CONFLUENCE OF MINOR STREAMS **** I . Along Main Stream number: 2 in normal stream 'number 1 Stream flow area = 6700(Ac.) Runoff from this stream'= 9.118(CFS) Time of concentration = 15.76 mm. I Rainfall intensity. = 3..016(In/Hr) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 230.000 to Point/Station 222.000 INITIAL AREA EVALUATION **** I :Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 . I . Decimal fraction soil group D = 1.000 [RURAL (greater. than 1/2 'acre) area type J Time of concentration computed by the I natural watersheds .nomograph (,App X-A) :TC.[11.9*length(Mi)A3)/(elevatjon change)J".385 *60(min/hr) + 10 mm. Initial subarea flow distance = 1230.00(Ft.) Highest elevation = 318.00,(Ft'.) Lowest elevation = 273 90(Ft ) Elevation. difference= 44. 10(Ft. ) I TC=((].l 9*0 23303)/( 44 10))" 385= 6.731 + 10 mm = 16.73 nun U Rainfall intensity (I) = 2 901 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 I Subarea runoff = 10.966(CFS) . Total initial stream area 8.400(Ac.) I ... ....................................................................... Process from Point/Station 222.000 to Point/Station 222-000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number 2 in normal stream number 2 Stream flow area Runoff from this stream 10.966(CFS) I Time of concentration = 16.73 mm. Rainfall intensity = 2.901(in/Hr) . Summary of stream data: I Stream Flow rate . TC Rainfall intensity No. (CFS) (mm) .(In/Hr) 1 9118 1576 3.016 2 . . . 10.966 16.73 2.901 I Qmax(l) = 1,000 * 1.000 * 9 118) + 1.000 * 0.942 * 10.966) + = 19.443: I. .: Qfliax(2) .. ... . . 0.962 * 1.000 * 9 118) + 1.000 * 1 000 * 10.966)* + = 19.737. I Total of-2-streams to confluence Flow rates before confluence point 9.118 . 10.966 . ..• . . • S.. I Maximum flow rates at confluence using above data 19.443 19.737 Area of streams before confluence I 6.700 8 400 Results of confluence Total flow rate = 19 737(CFS) Time of concentration = 16 735 mm I Effective stream area after confluence = 15 100(Ac,) I Process from Point/Station 222.000 to Point/Station 223.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 270 67(Ft ) Downstream point/station elevation ,= 270 00(Ft ) Pipe length = 16 00(Ft ) Manning's N = 0.013 I No of pipes = 1 Required pipe flow = 19 737(CFS) Given pipe size = 24 00(In ) Calculated individual pipe flow = 19 737(CFS) I Normal flow depth in pipe ,= 10 95(In ) Flow top width inside pipe = 23 91(m ) Critical Depth = 19 14(mn ) Pipe flow velocity = 14 15(Ft/s) Travel time through pipe = 0.02 mm Time of concentration (TC) = 16.;75 min. I ..Process-from-Point/Station 223,060 to Point/Station 205.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 269 67(Ft ) U Downstream point/station elevation = 263.33(Ft.) Pipe length = . 450.00(Ft.) Manning's N = 0.013 No. of pipes =1 Required pipe flow = 19.737(CFS) I .Given pipe size = 24.00(In.) Calculated individual.pipe flow = 19.737(CFS) Normal.flowdepth in pipe = 15.29.(In.) Flow top width inside pipe = 23..08(In.) I . Critical Depth = 19.14(In.) . Pipe flow velocity = 9.34 (Ft/s) Travel time through pipe . 0.80 mm.. Time of concentration (TC) 17.56 mm. I Process from Point/Station 205.000 to Point/Station 205.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream islisted: In Main Stream number: 2 . Stream. flow area 15.100(Ac.) I . Runoff from this stream = 19.737(CFS) Time of concentration. = 17.56 mm. Rainfall intensity = . 2.813(In/Hr) Program is now starting with Main Stream No 3 I . 0 •• I Process from Point/Station 270.000 to Point/Station . 271.000 INITIAL AREA.EVALUATION User specified 'C' value of 0.900 given for subarea I Initial subarea flow distance = 70.00(Ft.) Highest elevation = 283.50(Ft.) . Lowest elevation= 281.60(Ft.) I Elevation difference = 1.90(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) 2.16 mm. I .TC = (1 8*(l lC)*distance" 5)/(% slope A(1/3)) TC= [1.8*(1.1-0.9000)*(..70.00'%.5)/( 2.71'(1/3)]= 2.16 Rainfall intensity (I) = 10.868 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 I Subarea runoff = 1.956(CFS) Total initial stream area = 0.200 (Ac.) I • • Process from Point/Station • 271.000 to Point/ St , 272.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION'**** Top of street segment elevation =281 600(Ft ) End of street segment elevation = 267.500(Ft.) I .' Length of I street segment = 990.000 (Ft.) " ; gutter flowline = 6.O(In.) Height of above Width of half street (curb to crown) = 53 000(Ft ) from crown .to crossfall grade break 51.500(Ft.') Slope .frómgutter to grade break (v/hz). = 0.083 Slope from grade break to crown (v/hz) = 0020 .'Street flow is on (1] side(s) of the street Distance from curb to property line = 10 000(Ft ) Slope from curb to property line (v/ht) = . 0.060 Gutter width = 1.500(Ft.) . Gutter hike from flowline = 2.000(In.') O Manning's. N in gutter = 0.0150 ,,0 Manning's N from gutter to grade break = '0.0150 O 0 Manning 's N. from grade break to crown - 0.0160 .::Estimated mean flow rate at midpoint of street = Depth of flow = 0.457(Ft.) 0 Average velocity = 0 3.492(Ft/s) Streetflow hydraulics at midpoint of street travel: Half street flow width = 15.996(Ft.) Flow velocity = 3.49(Ft/s) Travel time = 4.73 mm. .TC = , 6.88 mm. 'Addina area flow to street 9.292 (CFS) User specified 'C' value of 0.850 given for subarea 0 O Rainfall intensity = 5.144(In/Hr) for a 50.0 year' storm O Runoff coefficient used for sub-area, Rational method,Q=KCIA, 'C = 0.850 O Subarea runoff'= 6.559(CFS) for 1.500(Ac.) 'TOtal runoff = 8.515(CFS) Total area = 1.70('Ac.) 'Street flow at end of street = 0 8.515(CFS) ' 0 Half street flow at end of street = 8.515(CFS) , 0 Depth of flow = 0.445(Ft.) 'Average velocity = 3.428(Ft/s) ' Flow width (from curb towards crown)= 15.433(Ft,.) +++'+++++++++'+++++±+++++++.+++++++++++++++++++++++++++++++++++++++++++++ Process from Potht/Station 272.000 to Point/Station 272.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 'informal stream number 1 . Stream flow' area = '1.700 (Ac.) 0, 0 Runoff from this stream = 8.515(CFS) 0 " O Time of concentration = 6.88 min. Rainfall 'intensity .= 5.144(In/Hr) ' +++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++ Process from Point/Station 273.000 to Point/Statibn 274.000- **** INITIAL AREA EVALUATION **** User specified "C' value of 0.850 given for subarea ' Initial subarea flow distance = 100.00(Ft.) Highest elevation = 288.90(Ft.) 0 Lowest elevation = 285.70(Ft.) Elevation 'difference = 3.20(Ft.) • Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.05 mm. TC = (1.8*.(1.1-C)*distance-1.5)/'(% slope A(l/3)) TC = [l.8*(l.l_0.8500)*(100.00.5)/( 3.20"(1/3))= 3.05 Rainfall intensity (I) = 8.691 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff. = 1.034(CFS) Total initial stream area = 0.140 (Ac.) "Process from Point/Station 274.000 to Point/Station 272.000 **'** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 285.700(Ft.) End of street segment elevation = 267.500(Ft.) Length of 'Street segment = 1015.000(Ft.) . :Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crössfall grade break = 51.500(Ft.) 'Slope from gutter to grade break (v/hz) = 0.083 .:slope from grade break to crown (v/hz) = 0.020 .' Street flOw is on (1) side(s) of the street Distance from curb to property line = 10.000(F.t.) Slope from curb to property line (v/hz) = 0.020 Gutter width =' 1.500'(Ft.) Gutter hike from flowline = '2.000(In.) . -.'Manning,' s' N - in gutter = 0.0150 0 Manning's N from gutter to grade break = 0.0150 . Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.464(CFS) Depth .o flow .= 0.394(Ft.) ': Average velocity = 3.666(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = '121886(Ft.) Flow velocity = 3.67(Ft/s) Travel time= 4.61 mm. TC 7.67 lain. Adding area flow to street 'User specified 'C' value of 0.850 given for subarea. Rainfall intensity = 4.799(In/1-Ir) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff =, 5.997(CFS) for 1.470'(Ac.) Total runoff = 7.031(CFS) Total area = 1.61(Ac'.) Street' flow at end of, street = ' 7.031(CFS) .,. Half street flow at end of street = 7.031(CFS) ' ' :Depth of, flow = 0.404 (Ft.) Average.velocity = 3.731(Ft/s) . . . Flow width (from curb, towards crown)= 13.350(Ft.) Process. from Point/Station 272.000 to Point/Station 272.000 **** CONFLUENCE OF 'MINOR STREAMS **** Along Main Stream number 3 in normal stream number '.2 ' Stream'flow, area = • 1.610(Ac.) Runoff., from this s,tream 7.031(CFS) 'Time of concentration = 7.67 mm. Rainfall intensity '= 4.799 (In/Hr) Summary of 'stream data: Stream, Flow rate TC " Rainfall Intensity "No'. .' (CFS) (mm) , (In/Hr) 1 8.515 6.88 5.144 2 7.031 .7 .67 4.799 Qmax(1) - - .. .: :.1.600 * 1.000 * 8..515) 1.000 * 0.898* 7.031) .+ = 14.828 omax(2) = 0 933 * 1.'0001 * 8 515) + 1.000* 1.000 * •7.031)+ 14.975 Total of 2 streams•to confluence: I Flow rates before confluence point: 8.515 , .7 .031 Maximum flow rates at confluence using above data I 14.828 14 975 Area of streams before confluence: 1.700 1.610 I Results of confluence Total flow rate = 14.975(CFS) Time of concentration = 7.668 nun Effective stream area after confluence = 3.310-(Ac.) I 0. I Process from Point/Station 272 000 to Point/Station 205.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 265 00(Ft ) I :Downstream-point/station elevation = 264 40(Ft ) Pipe length = 55 O0(Ft ) Manning's N = 0 013 No of pipes = 1 Required pipe flow = 14 975(CFS) I Given pipe size = 18 00(In ) NOTE Norma]. flow is pressure flow in user selected pipe size The approximate hydraulic grade line above the pipe invert is I 2 190(Ft ) at the headworks or, inlet of the pipe(s) Pipe friction loss = 1 117(Ft ) Minor friction loss = 1 673(Ft ) K-factor = 1 50 Pipe flow velocity = 8 47(Ft/s) I Travel time through pipe = 0.11 nun 0 Time of concentration (TC) . 7.78 mm. • 0 • • 0 OI • . • Process from Point/Station 205.000 to Point/Station 205.000 I .. **** CONFLUENCE OF MAIN STREAMS **** 0 The following data inside Main Stream is listed In Main Stream number 3 I Stream flow area = 3 310(Ac ) Runoff from this stream = 14 975(CFS) Time of concentration = 7.78 nun Rainfall intensity 4.756(In/Hr) 0 I . • Summary of stream data: 0 0 • 0 • Stream Flow rate TC Rainfall Intensity I No (CFS) (nun) (In/Hr) I l 43.484 • 14.47 • 3.186 2 19.737 1756 0 2.813 3 14.975 7..78 . •. 4.756 0 Qmax(l) = 1..000. * 1.,000 * 0.670 * 0.883- 1. 000 * 0.591 * Qmax(3) = 1.000 * 1.000 * 1.000 * I I i..1 I I I 1.000 * 0824 * 1.000 * 1.000 * 1.000 * 1.000 * 0.537 * 0.443,: * 1.000' * 43.484) + 19.737) + 14.975). + = 43.484) +, 19.737)' + 14.975) + = 43.484) + 19.737) + 14.975) + = 69.783 66.980 47.083 I . .Total of 3 main streams to confluence: Flow rates before confluence point: 43.484 19.737 14.975 Maximum' flow rates at confluence using above data: I ., 69.783. 66.980 47.083 ' Area of streams before confluence: 26.940 . 15.100 3.310 Results of confluence: .Total flow rate = 69.783('CFS) . Time of concentration = 14.471 mm. Effective stream area after confluence = 45.350(Ac.) I Process from Point/Station 205 000 to Point/Station 206.000 **** PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation =. 264. 1O(Ft. ) Downstream point/station elevation = 262 80(Ft ) I Pipe length = 100 00(Ft ) Manning's N = 0 013 No of pipes = 1 Required pipe flow = 69 783(CFS) Given pipe size = 36 00(In ) I ; .....Calculated individual pipe flow.. =. 69.783(CFS) Normal flow depth inpipe.'= 27.14'(In.) Flow top width inside pipe = 31 01(In I . Critical Depth— 31.87(In.) ' . 'Pipe flow velocity = , 12.20.(Ft/s) Travel time through pipe = 0.14 mm. Time of concentration (TC) = 14.61 min. . ...................................................................... .Process from Point/Station 206.000 to Point/Station , 206.000 **** CONFLUENCE OF MAIN STREAMS **** 'The 'following data inside Main Stream is listed: In Main Stream number 1 Stream, flow area = 45.350 (Ac.) Runoff.from this stream = 69.783(CFS). Time of'concentration = 14.61 mm.' Rainfall intensity = 3.167(In/Hr) Program is now starting with Main Stream No. 2 +++.++++++•+++++++++++++++-++++++++++++++++++++++++ ++++++++++++++++++++ Process from Point/Station • 280.000 to Point/Station 281.000 I I.. I I ****'INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 100.00(Ft.) Highest elevation = 281.20(Ft.) Lowest elevation = 280.80(Ft.) Elevation difference = 0.40(Ft.) Time of "concentration calculated, by the urban areas overland flow method (App X-C) = 4.89 mm. TC = (1.8*(1.1_C)*distanceA.5)/.(% slopeA(1/3)) TC = (1.8*(1.1_0.9000)*(100.00'.5)/( 0.40A(1/3))= 4.89 Rainfall intensity (I) = 6.418 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 0.809(CFS) Total initial stream area,= 0.140(Ac.). 1 ............................................................ Process from Point/Station 281.000. to Point/Station 282.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 280.800(Ft.) End of street segment elevation = 267.500 (Ft.) Length of street segment = .900.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.50.0(Ft.) Slope.from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on[1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.060 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning'sN from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street .= 4.592(CFS) Depth of flow = 0.373 (Ft.) Average velocity = 3.075(Ft/s) . . Streetflow hydraulics at midpoint of .street travel:. Halfstréet flow width 11.795(Ft.) .,Flow -velocity = 3.07(Ft/s) . Travel time =. 4.88 mm. TC = 9.76 mm.. Adding area flow to street . . . Userspecified 'C' value of 0.850 given for subarea Rainfall intensity, 4.106(In/Hr) for a 50.0 year storm Runoff. coefficient used for sub-area., Rational method,Q=KCIA, C =0.850 Subarea runoff = 4.572(CFS) for. , .1.310.(Ac.) Total runoff = . 5.381(CFS) Total area = . 1.45(Aô.) Street.flow at. end of street = 5.381(CFS) . . . . . :Half street flow at end of street = . . 5.381(CFS) : Depth.of flow = 0.389(Ft.) Average velocity - 3 169(Ft/s) Flow, width (from curb towards crown).= 12.631(Ft.) . +++++++++++++++++++++f+++++++++++++-f++++++++'++++++++++++++++++++++++.4-+ Process from Point/Station 282.000 to Point/Station 282.000 **** CONFLUENCE OF MINOR STREAMS I I I I I I El I LI I El I I Hi H Along Main Stream number: 2 in normal stream number 1' : Stream flow area = 1450(Ac) Runoff from this stream = 5.381(CFS) Time of concentration = 9.76 mm. Rainfall intensity 4.106(In/Hr) I +++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 290.000 to Point/Station 291.000 **** INITIAL AREA EVALUATION **** I ' User specified 'C' value of 0.850 given for subarea . Initial subarea flow distance = 100.00(Ft.) Highest elevation = 286.40(Ft.) I .Lowest elevation = 284.10(Ft.) Elevation difference = 2.30(Ft.) Time of concentration calculated by the urban areas overland flow method' (App X-C) = 3.41 mm. I .TC = (1.8*:(1.1_C)*distance1,.5)/(% slopeA(1/3)] TC = (1.8*(1.1_0.8500)*(100,.00A.5)/( 2.30'(1/3))= 3.41 Rainfall intensity (I) = 8.095 for a 50.0 year storm I .Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = . 0.963(CFS) . Total initial stream area = 0.140(Ac.) Process from Point/Station 291.000 to Point/Station 282.000 STREET' FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 284.100(Ft.) End of street segment elevation = 267.500(Ft.) I Length of street segment = 970.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) I Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz). = 0.020 I Street flow is -on (1) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to' property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) I ., Gutter hike from flowline = 2.000(Iri.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 I Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = . 5.780(CFS) Depth of flow = 0.385(Ft.) Average velocity = 3.518.(Ft/s) I . 5treetflow hydraulics at midpoint of street travel: Hal.fstreet flow width = 12.412(Ft.) Flow velocity = 3.52(Ft/s) I ,.Travel time = 4.60 mm. TC = 8.00 mm. 'Adding area flow to street User specified 'C' value of 0.850 given fOr subarea I . Rainfall intensity 4.668(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 5.555(CFS) for 1.400(Ac.) Total runoff = • 6.518(CFS) Total area = 1.54 (Ac.) I.. Street flow at end of street = 6.518(CFS) Half street flow at end of street = 6.518(CFS) Depth of flow = 0. 398.(Ft .) Average' velocity = 3.605(Ft/s) Flow width (from curb towards crown)= 1.059(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++'++ Process from Point/Station 282.000 to. Point/Station 282.000 ** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number 2 in normal stream number ,2 'Strearn'flow area = 1.540(Ac.) Runoff from this. stream =' 6.518(CFS) Time of concentration = . 8.00 mm. Rainfall'.intensity = ' '4,668(In/Hr) Summary of stream data: ' 0 Stream Plow rate TC Rainfall Intensity I No (CFS) (mm) (In/Hr) 1 1 5.381 9 76 4.106 2 ', , 6.18 8.00 Qmax(.l)'=' 1.000 * 1.000 * 5.381) + 0.880 * 1.000 * 6.518) + = 11.1.15, Qmax(2,) = ' . ' '.• . ' ' 1.000.* 0.820 * 5.381) + •" •,' '' . '• ' 1 000 * 1.000 * 6 518) + = 10 929 Total of 2 streams to confluence: Flow rates before confluence point: I ' 5.381 6.518 • .. Maximum flow rates at cOnfluence using above data: 11.115 10.929 I . Area of Streams before confluence: . 1.450: 1.540 R . esults of confluence: ' I . ,Total flow rate = 11.115(CFS) Time of concentration = 9.765 mm. Effective, stream area after confluence = . 2.990(Ac.) Process from Point/Station 282.000 to Point/Station 283.000 PIPEFLOW TRAVEL TIME (User specified size) **** U • ,Upstream point/station elevation = 263.80(Ft.) I Downstrearn'point/station elevation'= 263.50(Ft.) Pipe length = 14.00(Ft.) ' Manning's N = 0.013 No of pipes = 1 Required pipe flow = 11 115(CFS) G,iven,pipe size'= 18.00(11n.) I ' Calculated individual pipe flow = 11.115(CFS) Normal flow -depth in pipe = , l'l..34(In.) Flow top 'width inside pipe = 17.38(In.) '. Critical Depth ,= Pipe flow velocity =, 9.48(Ft/s)' . Travel time through pipe = 0.02 mm. . Time of concentration. (TC) = 9.79 mm. I '. ,0 ' , ,• I . I HI. Process from Point/Station • 283.000 to Point/Station 206.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream 'pointelevation.= '263.50(Ft.) Downstream point elevation= 261.80(Ft.) ,Channel length.thru subarea .= 75.00(Ft.) Channel base width 1.000(Ft.) Slope or 'Z' of left channel bank = 1.000 , Slope or 'Z' of right channel bank = 1.000 Manning's 'N'. = 0.015 ,maximum depth of. channel .= 1.000(Ft.) .Flow (4) thru subarea 11.115(CFS) Depth of flow = 0.755(Ft.) Average velocity—' 8.396(Ft/s) Channel flowtop. width =. 2.509(Ft.) Flow Velocity = 8.40(Ft/s) * Travel time ='. 0.15 mm. Time of concentration 9.94min. Crtiôal depth = - 1.086(Ft.) Proceds .,from-Po.int/Station 206.000 to Point/Station 206.000 ****CONFLUENCE OF MAIN STREAMS **** 1. The.follow.iñg data inside MainStream is listed: 'In Main Stream Inumber: 2 Stream flow, area = 2.990(Ac.) Runoff from this stream = 11.115(CFS) Time of concentration 9.94 mm. Rainfall intensity 4 '4.060(In/H) . • Summary of stream data: Stream. Flow rate TC Rainfall Intensity NO. .. (CFS) (mm). .. ' (In/Hr) .1 • :69.783 14.6.1 '2 11.115 9.94 Qmax(l) 1.000 * 1.000 * 69.783) + 0.780 * 1.000 11.115) + Qmax(2) =. 1.000 *; • 0'.680 * -69.783) + 1.000* 1. P001 •* 11.115) + = Total of 2 main streams to confluence:. Flow rates before confluence point: 69.783 11.1l5 Maximum flow rates at confluence using above data: 78,.454 • 58.592 Area of streams before confluence: 45.350 2.990 Results of confluence: • Total flow rate •. •78.454(CFS) I I 3.167 4.060 78.454 58.592 Time of concentration .= 14 607 nun Effective stream area after confluence = 48 340(Ac ) 1 I '. Process from Point/Station . :240.000 to Point/Station 241.000 "INITIAL AREA EVALUATION'.**** Decimal fraction soil group A = 0.000 I . Decimal fraction soil group B = 0.000 . Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 U. (RURAL (greater than 1/2 acre) area type. . ) Time of concentration computed by the natural watersheds nomograph (App X-A) I •TC = (11.9*length(Mi)A3)/(elevation change) y'.385 *60(znin/hr) + 10 mm. 'Initial subarea flow distance = 1025.00(Ft.) Highest elevation = 322.00(Ft.) Lowest elevation— 289.80(Ft.) I Elevation difference = 0 32.20(Ft.) TC=((11.9*0.1941"3)/( 32.20)]A.385= 6.16 + 10 mm. = 16.16 injn Rainfall intensity (I) = 2.967 for a 50.0 year storm l Effective runoff coefficient used for area (Q=KCIA) is C 0.450 Subarea runoff .= 6.810(CFS) Total initial stream area = 5.100 (Ac.) ... +++++++++++++++++++++++++++++++++++++++±++++++++++++H-++++++++++++++++ Process from Point/Station 241.000 to Point/Station 252.000 '****.LW TRAVEL TIME (User specified size),**** I Upstream point/station elevation = 289.80(Ft.) 0 Downstream point/station elevation = 286.00(Ft.) I .Pipe length = 15.00(Ft.) Manning's N = 0.013 No, of pipes= 1 Required pipe flow = 6.810(CFS) Given pipe size = 24.00(In.) I Calculated individual pipe flow = 6.810(CFS) Normal flow depth in pipe = 3.98(In.) Flow top widthinsideopipe = 17.86(In.) I . Critical Depth = ll.11(In.) Pipe flow velocity = . 19.92 (Ft/s) Travel time through pipe = 0.01 mm. Time of concentration (TC) = 16.17 nun. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station . 252.000 to Point/Station 252.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 I Stream flow area = • 5.100(Ac.) Runoff from this stream .= 6.810(CFS) Time of concentration = '16.17 min. Rainfall intensity = 2.966(In/Hr) I ........... Process from Point/Station 250.000 to Point/Station 251.000 **** INITIAL AREA EVALUATION **** I . . User specified 'C' value of 0.700 given for subarea Initial Subarea flow distance = 325.00(Ft.) : Highest elevation =. 317.00(Ft.). Lowest elevation = 300.00(Ft.')' Eleat'ion,4ifference = 17.00(Ft.) S Time of concentration calculated by the urban areas overland flow method (App X-C) = 7.48 mm. TC,=.(l.81*(1.1_C)*distanceA.5)/(% s]ope'(l/3)]''. '.TC= (1.8*(1.1-0.7000)*(325.00.5)/(. 5.23"(1/3))=' 7.48 Rainfall intensity (I) = 4.878 for a 50.0 year storm Effective.-runoff coefficient used for area (Q=KCIA is:C = '.Subarea runoff .= 1.707(CFS) Total initial stream area = 0 500(Ac ) 0.700 Process from Point/Station 251 000 to Point/Station 252 000 ..,****,.STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION .-**** " Top of street segment elevation = 300 000(Ft ) End of :st'reet segment-elevation 288.900 (Ft.) Length.'of'street segment = 800.000(Ft.) Height of curb'above gutter flowline = 6.0(In.). Width-of half street (curb to crown) ' 53.000:(Ft.) Distance'.from'crown to crossfall grade break = 51.500(Ft.)' Slope from gutter tograde break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 - 'Street'flow is on (1) side(s) of the street ' Distance from curb to property line = 'lO.00O(Ft.) Slope from curb to property line (v/hz) = 0.060 Gutter width = 1.500(Ft.,) Gutter 'hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = '0.0150 Manning's N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street 4.251(CFS) Depth of flow = 0.368 (Ft.) ' Average velocity = 2.954(Ft/s) Streetflow'hydraulics at midpoint of street travel: Halfstreet flow width 11.561(Ft.) Flow velocity = 2.95(Ft/s) Travel time = ' 4.51 mm. TC = 11.99 mm. Adding area flow to street User specified.'C' value of 0.790 given for subarea Rainfall intensity =' 3.597(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.790 Subarea runoff = 4.234(CFS) for 1.490(Ac.) Total runoff = 5.941(CFS) Total area = ' 1.99(Ac.) Street flow'at end of street .= 5.941(CFS) Half street flow at end of street = 5.941(CFS) Depth of flow = 0.404(Ft.) • ' Average'vélocity = 3.151(Ft/s) Flow width' (from curb towards crown)= 13.353(Ft.) +++++++++++±++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 252.000 to Point/Station 252.000 **** CONFLUENCE OF 'MINOR STREAMS **** - Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.9.90(Ac.). Runoff from this stream = 5.941(CF8) U Time of concentration = 11 99 nun Rainfall intensity = 3 597(In/Hr) Summary of stream data I Stream Flow rate TC , , ' Rainfall Intensity No (CFS) (nun) (In/Hr) I 1 6810 1617 2966 2 5.941 11.99 3.597 I Qmax(l) = 1.000 * 1.000 * 6.810) + .0 .825 * 1.0001 * 5.941). + = 11.709 Qmax(2)= I .. ' 1.000 * 0.742 * ' 6.810) + 1.000 * 1.000. * 5,.9.41) + = 10.991 I 'Total of 2. streams to confluence: Flow rates before confluence point: 6.810 5.941 ' Maximum flow rates at confluence using above data: 11.709 :10.991 Area of streams before confluence: 5.100 .1.990 . 'Results of confluence: Total flow rate =' ' 11.709(CFS) Time of concentration = 16.171 nun Effective stream area after confluence = ' 7.090(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 252,000 to Point/Station 263 000 PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation .= 285 67(Ft ) Downstream point /station elevation = 267 90(Ft ) Pipe length = 133 00(Ft ) Manning's N = 0'.013 No.. of pipes '= 1 I' Required pipe flow = 11.709(CFS) Given pipe size = , . 24.00'(In.) .. .. . - Calculated individual pipe flow = . 11..70.9(CFS)' Normal flow depth in pipe = 6 10(Iri I Flow top width inside pipe .= 20 90(In ) Critical Depth = 14 76(In ) :MPe"fl9t1 velocity = 18.62(Ft/s) Travel time through pipe = 0 12 nun I Time of concentration (TC) = 16.29 nun I Process from Point/Station 263.000-to Point/Station 263 000 CONFLUENCE OF MINOR STREAMS I Along Main Stream number i in normal stream number 1 Stream flow area'' 7 090(Ac ) I Runoff from this stream = 11 709(CFS) Time of concentration nu = 16 29 n Rainfall intensity'=.2.952(In/Hr) • . . I I. IProcess from Point/Station. 260.000 to Point/Station 261.000 **** INITIAL AREA EVALUATION **** User specified ICI value of 0.900 given for subarea I initial subarea flow distance = 100.00(Ft.)' Highest elevation = .305.80(Ft.) Lowest elevation = 3'05.50(Ft.) I Elevation difference = 0.30(Ft.) Time of concentration calculated by the urban areas overland-flow method (App X-C) = 5.38 mm. I TC = (1.8*(1.1-C)*distance'.5)/(% slopeA(1/3)) TC = (1.8*(1.1_0.9000)*(100.00A.5)/( 0.30''(1/3)]= 5,38 Rainfall intensity (I).= 6.033 for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 I Subarea runoff = 0.760(CFS) Total initial stream area = 0.140(Ac.) I Process from Point/Station 261.000 to Point/Station 262.000 I : STREET. FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 305.500(Ft.) End of street segment elevation = 286.400(Ft.) I Length of street segment = 810.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width:, of half street (curb to crown) = 53.000(Ft.) I Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown, (v/hz) = . 0.020 Street flow is on (1) side(s) of the street I :• Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.060 Gutter width = 1.500(Ft.) I Gutter hike from flowline = . 2.000(In.) Manning's N.. in gutter = 0.0150 ..Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to' crown = 0.0160 Estimated mean flow rate at midpoint of street = 3.937(CFS) Depth of flow = 0.335(Ft.) 'Average velocity = 3.624(Ft/s) I. .. Streetfiow hydraulics at midpoint of street travel: Haifstreet flow width = 9.919 (Ft.) Flow velocity = 3.62(Ft/s) .I. Travel time =. 3.73 mm. TC = 9.10 mm. Adding area flow to street User specified 'C' value of 0.850 given for subarea Rainfall intensity = 4.296(,In/Hr) for a 50.0 year storm I Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 'Subarea runoff = 4.273(CFS) for 1.170(Ac.) Total runoff = . 5.033(CFS) Total area = 1.31(Ac.) I Street flow at end of street = 5 033(CFS) Ha].f'street 'flow at end of street =. 5.033(CFS) . Depth of flow = 0.358 (Ft.) • ' ' ' . . . ' Average velocity = 3.783(Ft/s) Flow width (from curb towards crown)= 11.081(Ft.): I " . ' . . ' ' ' • ' " ' . ............................................................ .......... Process from Point/Station 262,000 -to Point/Station 263 000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 282 50(Ft ) Downstream point/station elevation = 268 10(Ft ) :Pipe length = 16.00(F4-.) Manning's N = 0.013 No of pipes = 1 Required pipe flow = 5 033(CFS) Given pipe size = 18 00(In ) Calculated individual pipe flow = 5 033 (CFS) :Normai. flow depth in pipe . 2.75(In.). . . ..F1o.wtop width inside pipe= 12.95(In..) Critical Depth: = . 10.36.(In.) . . . Pipe flow velocity. = . 29.47(Ft/s) . . .. . . .. .Trave1time through pipe = . 0.01 Min. .. Time.of concentration (TC) =. 9.11 mm. Process from Point/Station 263.000 to Point/Station 263.000 **** CONFLUENCE OF MINOR STREAMS *** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.310(Ac.). Runoff from this stream = 5.033(CFS) Time of concentration ,= 9.11 min., Rainfall intensity = 4.294(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. . (CFS) (mm) . (In/Hr) 1 11.709 1629 2.952 2 5.033 9.11 . 4.294 Qmáx(1) . . . I 1.000 * 0.687 * Qmnax(2) = 1.000 * 1.000 * 11.709) + 5.033) + = 15.169 1.000 * .1.000* 0.559. * 1.000 .* 11.709) + 5.033) ± = 11.583 Total of 2 streams to confluence: Flow rates before confluence point: 11.709 5.033 Maximum flow rates at. confluence using above data: 15.169 . 11.583 Area of streams before confluence: 7.090 . 1.310 Results of confluence: Total flow rate = 15.169(CFS) Time of concentration = 16.290 mm. -a------ - stream area arcer confluence = 8.400 (Ac.) +++±+++++++++++++++++++++++++++++++++++++++±++++++++++++++++++++++++++ Process from. Point/Station 263.000 to Point/Station . 264.000 *** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 267.90(Ft.) I I I I I I H I I I I San Diego County Rational' Hydrology Program I CivilCADD/CivilDESIGN Engineering Software, (c) ,199ó Version 2.3 I .. Rational method hydrology programbased San Diego'County Flood Control Division on. 1985 hydrology manual Rational HydrolOgy Study Date: 9/24/90 I EL CAMINO REAL/PALOMAR AIRPORT ROAD 300 AREA BASIN STUDY FILENAME: .50CAM3 I L 200,4 'JOB# 103.65 9/24/90 'Hydrology Study Control Information.********** Rational hydrology study storm event year is 50.0 Map data precipitation entered: I 6 hour, precipitation(inches) = 2.400 . . 24 hour precipitation(inches) =.'4,.'200 I .Adjusted 6.hour precipitation (inches) = P6/P24 2.400, San Diego hydrology manual 'C' values used Runoff coefficients by rational method I ...'1 H '. ************** I N P U T D A T A L I S T I N G ************ I ' Element Capacity Space Remaining Element Points and Process used = 360 between. POints Number ,-Upstream . Downstream . •• 'Process 300.000 301.000 . Initial Area 2 301.000 302.000 , Pipeflow Tinie(user inp) . .302.000 , • 303.000 . Pipeflow- Time (user 'inp) Confluence. I , •. • . • 303.000 303.000 5 . . '310.000 . , 311.000 Initial Area 311.000 , •• ' 312.000 Pipeflow Time(user inp) I; . • .' .312.009 303.000 8 , '303.000 303.000 .Pipeflow Time (use r Confluence 1' inp) • End of.listing .............. • . . • ' :. • :• I •..•• 0 I ••• , •0 . I '' 0 , • .•. '0 I .' ' ... .•,. . I.''. San Diego County Rational Hydrology Program '.CivilCADD/CivilDESIGN Engineering Software, (c) 1990 Version 2.3 I . Rational method hydrology program based, on San 'Diego County Flood ContrOl Division 1985 hydrology, manual Rational Hydrology Study . Date: 9/24/90 , I ' EL CAMINO REAL/PALOMAR AIRPORT ROAD S 300 AREA'.BASIN STUDY FILENAME: 50CAM3 . u . L 2001 4 JOB# 10365 9/24/90 - - ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** Rational hydrology study storm event year is '50.0 I Map data precipitation entered: 6 hOur, precipitation(inches) = 2.400 24 hour precipitation(inches) = 4.200 I . Adjusted 6 hour precipitation (inches) = 2.400 ' P6/P24 = ' 57.1% San Diego hydrology manual 'C' values used Runoff coefficients by rational method I I Process from' Point/Station 300.000 to Point/Station 301.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.730 given for subarea I Initial subarea flow distance = 325.00(Ft.) Highest elevation = 320.00(Ft.)' Lowest elevation = 307.00(Ft.) I Elevation difference = 13.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = . 7.56 mm. I ' . TC = [1.8*(1.1-C)*distance".5)/(% slope A(1/3)] TC ='(1.8*(1.1-0.7300)*(325.00'.5)/(' 4.00"(1/3))=7.56 "Rainfall intensity (I) = 4.842 for a 50.0 year storm Effective.runoff coefficient used for ,area (Q=KCIA) is C = 0.730 I Subarea runoff Total initial streamarea = 0.380(Ac.) ' I . ' PrOcess from Point/Station . 301.000 to Point/Station " 302.000 I . •' • •' **** PIPEFLOW TRAVEL TIME (User specified size) ****• Upst.re póint/stati'on'elevation = 302.50.(Ft.)' " .' • Downstream point/station elevation = •. 302.00 (Ft.) I Pipe length = 32 00(Ft ) Manning's N = 0.013 '.:No'..' of pipes = 1 Required' pipe flow ' 1.343(CFS). Given pipe size = 18 00(In ) I Calculated individual pipe flow = 1 343(CFS) Normal'flow depth in pipe = 3.89(In.) ' '• ' Flow top width inside pipe 14.81(In.) Critical Depth = 5.20(In.) ' ' ' Pipe flow velocity = 4 78(Ft/s) Travel time through pipe = 0 11 nun Time of concentration (TC) = 7 68 nun I " Process from Point/Station. 302.000 to Point/Station 303.000 ****.PIPEFLOW TRAVEL TIME (User specified size) I Upstream point/station elevation = 301.67(Ft.') Downstream point/station elevation = 293.00(Ft.) Pipe length = 440.00(Ft.) Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = 1.343(CF8) Given pipe size = 18.00(In.) Calculated individual pipe flow 1.343(CFS) Normal flow depth in pipe = 3.67(In.) I .Flow top width inside pipe = 14.51(In.) Critical Depth = 5.20(In.) : Pipe flow velocity = 5.19 (Ft/s) . I Travel time through pipe.= 1.41 mm. Time of concentration (TC) = 9.09 mm. I Process, from Point/Station 303.000 to Point/Station . 303.000 **** CONFLUENCE OF MINOR STREAMS I Along Main Stream number: 1 in normal 'stream number 1 Stream flow area = ,. 0.3.80(Ac.) I Runoff from this stream = . 1.343.('CFS) i' Time of concentration = 9.09 mm. Rainfall intensity = 4.301(In/Hr) +++.++++++++++++++++++++++++++++++.++++++-t-++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 311.000 I **** INITIAL AREA.EVALUATION *** .User 'specified 'C' value of 0.700 given for subarea Initial subarea, flow distance = 775.00(Ft.) I Highest elevation = 322.00(Ft.) Lowest elevation = 314.00(Ft.) Elevation difference = 8.00(Ft.) I Time of concentration calculated by the urban areas overland flow method (App X-C) = 19.83 mm. .TC = [1.8*(1.1_C)*distanceA.5)/(% slope" (l/3)) I TC = (l.8*(l.l_0.7000)*(775.00'.5)/( 1.03'(1/3))= 19.83 Rainfall, intensity (I)= 2.600 for .a 50.0 year storm Effective runoff coefficient used -for' area (Q=KCIA) is C = 0.700 Subarea runoff = 6.734(CFS) I ' Total initial stream area 3.700(Ac.) I Process from Point/Station 311.000 to Point/Station 312.000 *'* PIPEFLOW TRAVEL TIME (User specified size) *** I Upstream pOint/station elevation = 310.00(Ft.) Downstream point/station elevation = 306.00 (Ft.) Pipe length = 80.00(Ft.) Manning's N ,0.013 I I No. of pipes = 1 Required pipe flow, = 6.734(CFS) Given pipe size = - 24.00(In.) I Calculated individual pipe flow = 6 734(CFS) Normal flow depth in pipe = 5 91(Iri ) F1ow top width.inside pipe 20.68(In.) Critical Depth = ii. 04(In ) Pipe flow velocity = 11.19(Ft/s) 'Travel time through pipe = 0.12 mm. .Time -of concentration (TC) = 19 95 nun Process from Point/Station 312 000 to Point/Station 303.000 ** PIPEFLOW TRAVEL TIME (User specified size) *** Upstream point/station elevation = 305 67(Ft ) Downstream-point/station elevation = 293 00(Ft ) Pipe length' = 27.00(Ft.) Manning's N = 0.013 No. of pipes = i. Required pipe flow = 6.734(CFS) Given pipe size = 24 00(In ) Calculated individual pipe flow = 6 734(CFS) Normal flow depth in pipe = 3 41(In ) Flow top width inside pipe = 16 76(In ) . :Critical Depth -..' 11.04(in.) ' Pipe flow velôcity= . 24.66(Ft/s) Travel time through pipe = ' 0.02 mm. Time .of concentration (TC) •'= ' 19.97 mm. I Process from Point/Station 303.000 to Point/Station 303.006 **** CONFLUENCE OF MINOR STREANS Along. Main Stream number: 1 in normal' stream number 2 Stream flow' area= 3.'700(Ac.) Runoff from this stream 6.734(CFS) Time of concentration = 19 97 nun Rainfall intensity =• 2.588(In/Hr) Summary of stream data Stream Flow. rate TC Rainfall Intensity No (CFS) (nun) (In/Hr) 1 1..343 9,09 4.301 I I I I 2 ' 6.734, 19.97 . .. 2.588 I .Qmax(.l) = •. •• 1.000 *, . , 1.000 *. ' 1.343) + '1-000 * 0 455 * 6.734) + = Qmax(2) = . ' . ' 0.602 * . 1.000 f ' = 1. 343), + 1 000 * 1 000 * 6.734) + = Total of 2' streams to confluence: I Flow rate's before. Oonfluence point: 1.343 .6.734 I Maximum flow rates 4.407 at confluence 7.542 using above data: Area of streams before confluence: 0.380 3.700 , ' • I 4.407 7.542 .: . . .0 ,0 0 0. •:. 0 0 0 i . • : .00 0 0•• 0 0 0 0 0 0 I I I I APPENDIX V 100-Year Peak Discharge Calculations Under Developed Conditions I Usmg The Computerized Rationale Method I 00. 0 : :,• 00 I 'I .. .. •0 • • • •.. :...., •.:. II I :. • 0 • . . 0 • •o• •: •• I 8 0, •. : •0 I I San Diego County Rational Hydrology Program CivilCADD/Civi1DESIGN Engineering Software, (6).1990 Version 2.3 Rational method hydrology program based on San Diego -County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 9/25/90 I i EL CAMINO REAL/PALOMAR AIRPORT ROAD ..100 AREA BASIN STUDY . . FILENAME: ELCAM1 L 200,4 JOB# 10365 9/24/90 ------------------------------------------------------------------------ . ********* Hydrology Study Control Information ********** Rational hydrology study storm event year is 100.0 I Map data precipitation entered: 6 hour,. precipitation(inches) = 2.750 .24-hour' precipitation(inches) = 4.600 I . Adjusted 6 hour precipitation (inches) = 2.750 :P6/P24 =59.8% San Diego hydrology manual 'C' values used Runoff coefficients by rational method I :. •.************** I N P U T D A T A L I S T I N G I . : . •.•. . . Element Capacity Space Remaining = 325 Element Points and Process used between Points Number: Upstream - Downstream Process 100.000 . 101.000 Initial Area 2 . . 101.000 102.000 Street Flow + Subarea i 3. 102.000 103.000 Pipeflow Time(user inp) I . . . . 103.000 . 103.000. Confluence .5 . . 120.000 . 121000 Initial Area -6 . 121.000 103.000 Street Flow + Subarea I. . 7 . 103.000 1.03.000. Confluence 8 . 130.000 131.000 Initial Area ..........9 . 131.000 . 103.000 . Street Flow + Subarea 10 . 103.000 103.000 • Confluence 11 • • 103.000 104.000 Pipeflow Time(user inp) :12 104.000 104.000 Confluence 13 110.000 111.000 Initial Area 14 . 111.000 104.000 Street Flow + Subarea 15 . 104.000 104.000 • Confluence .16 . . 140.000 . 141.000 Initial Area I . .17 - 141.000 104.000 . Street -Flow + Subarea 18 104 000 104.000:'Confluence 19 104.000 105 000 Pipeflow Time(user inp) 20 • -. ., .105.000 - 105.000 . Conflunce 21 150.000 151.000 Initial Area 22 151.000 152 000 Street Flow + Subarea 23 152 000 174.000 Pipeflow Time(user inp) I 24 174.600 174.000 Main Stream Confluence 25 160.000 161.0-00 Initial Area -26. -- - 161.000 173.000 Street Flow+ Subarea 27 173.000 173.000 Confluence 0:28 . 0.• 170.000 171.000 .171.000 172.0000 .30 172.000 173.000 :0:0:31 00 173.000 173.000 174.000 0 173.000 I I :. • 33 .14 •0 . .. 0.350 ... .• 0 174.000 0 180.000 174.000- 181.000 0 181.000 . 182.000 :36 182.000 192.000 0037 192.000 192.000 ... I :38 190.000 0 191.000 0 39 0 0191.000 0 192.000 ..40 O 41 . 192.000 192.0000 I 19.2.000: 193.000 .End of iisting........... • 1 •• .. 0• ••, 00 1 .•;•.. .: Initial Area 0 Street Flow + Subarea Pipeflow Tirne(user inp) Confluence. : PipeflówTime(user inp) O 0 Main Stream Confluence Initial Area Street Flow + Subarea Pipeflow Tinie(user inp) Confluence Initial Area Street Flow + Subarea Confluence. 0 Pipeflow Tiine(user inp) I •. " San Diego County Rational Hydrology Program 1 ' .'. CjvilCADD/CivilDESIGN Engineering Software, (C) 1990 Version 2.3 I : RatIonal method hydrology program based on Sari Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 9/25/90 ------------------------------------------------------------------------ I .. EL CANINO'REAL/PALOMAR AIRPORT ROAD 100 AREA BASIN STUDY • .... 'FILENAME: :"FILENAME: ELCAN1 I . L 200,,4JOB# 10365 9/24/90 ------------------------------------------ • ,********* Hydrology-Study-Control Information ********** ------------------------------------------------------------------------ Rational hydrology study storm event, year is 100.0 I . ':'Map data precipitation entered: :6 hour, precipitation(inches) = 2.750 24 hor'precipitation(inches) = 4.600 ' ü Adjustd 6 hour precipitation (inches) = 2.750 I ..P6/P24,.= .59.8% Sax! 'Diego,.hydrology manual 'C' values used Runoff coefficients by rational method I 0cess from Point/Station100.000t0'Point/Statiôn 101.000 INITIAL AREA EVALUATION **** ' s•" User specified 'C' value of 0.850 given for subarea :', initial subarea flow distance = 130.00(Ft.) ':Highest, elevation = 318.90(Ft.) 'Lowest elevation= 318.30(Ft.) ,,::: 'EIevation difference = 0.60(Ft.)' Time f'cocentration calculated by-the urban '"areas 'overland flow method (App X-C) = ' 6.64 'mm. TC I '(18*(11C)*distanceA'5)/(% slope"(1/3)) PC = ('1..8*(1.i0.8500)*(l30.00A.5)/( ' 0.46-'')']=".. '6.64 Rainfall intensity. (I) 6.035 for a 100.0 year, storm Effective runoff coefficient used for area (Q=KCIA) is C = b.850., I" ' "Subarea runoff =0.821(CFS) Total' initial stream area I : Process from Point/Station 101.000 to Point/Station. ' 102.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION, T9P of street segment elevation = 318.300(Ft.) • End of street segment elevation = 315.000(Ft.) Length.-.'of street segment = 500.000(Ft.) H ' Height of curb above gutter flowline = 6.0(In'.) 'Width'of half street (curb to crown) • = 53.000(Ft.) I Distance from crown to crossfall grade break =' 51. 50.0(Ft.) ' ' :"slope:from gutter to grade break (v/hz) = 0.083 .:Slopé from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street In I I I Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.060 "'.:Gutter. width = 1.500(Ft.) "..:Gutter hike from flowline = 2.000(In.) :'Mannjngs N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 'Manning's N from grade break to crown = 0.0160 ,0 'Estimated mean flow rate at midpoint of street = 6.258(CFS) Depth of flow = 0.455(Ft.) 'Average velocity = 2.371(Ft/s) Streétfiow hydraulics at midpoint of street travel: 'Halfstreet flow width = 15.926(Ft.) Flow'velocity 2.37(Ft/s) Travel' time = 3.51 mm. TC = 10.15 mm. Adding area flow to street User specified 'C' value of 0.700 given for subarea Rainfall intensity = 4.588(In/Hr) for a 100.0 year storm 'Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.700 Subarea runoff = 6.809(cFS) for 2.120(Ac.) Total runoff = 7.630(CFS) Total area = 2.28 (Ac.) Street 'flow at end of street = 7.630(CFS) 0 Half street flow at end.of street = 7.630(CFS) Depth 'of flow = 0.482 (Ft.) , 0 'Average velocity = 2.475(Ft/s) Flow width' (from curb towards crown)= 17.265(Ft..) 'Process from Point/Station ' 102.000 'to Point/Station ' 103.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 3].]. 50(Ft ) Downstream point/station eievation = i • o (it.) ' Pipe.',length 0= 400.00(Ft.) ' Manning's N = 0.013, ' ""No. of pipes ,= 1 Required pipe flow = 7.630'(CFS) ,0 Given.-pipe size = 18.00(In.) 'Calculated individual pipe flow = 7.630(CFS), Normal. flow' depth in pipe Flow top width inside pipe = , 16.49(In.) 'Critical Depth = 12.84 (In.) Pipe-flow-velocity = 0 5.77(Ft/s) 'Travel me through pipe '= 1.16 mm. 0 Time of concentration (TC)0 = 11.31 mm. ' 0 Process from Point/Station 103.000 to Point/Station 103.000 ..****-CONFLUENCE OF MINOR STREAMS AlongMain'Stream number: 1 in normal stream number 1 I ' Stream flow area = 2.280 (Ac.) 0 'Runoff' from this stream = 7.630(CFS) -• Time of concentration = 11.31 mm. Rainfall intensity = 4.280(In/Hr) I ' Process from Point/Station 120.000 to Point/Station ' 121.000 **** INITIAL AREA EVALUATION **** 11 .•User.pecified 'C' value of 0.630 given for subarea :Initial subarea flow distance = 100.00(Ft.) .HigeSte1evation = 315.00(Ft.) LoweSt elevation = 314.00 (Ft.) .. .Eievatlóndifference = 1.00(Ft.). . . .., •. Time. f concentration calculated by the urban areas overland flow method (App X-C) = 8.46mm. TC (l,8*(1.l-C) *distance '.5)/(% slope '(1/3)) . .. . .. . :.(18*(1_06300)*(10005)I( 1.00A (1/3)]=. 8.46 Rainfall intensity (I) = 5.161 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) • . = 0.630 Subarea, runoff 1.756(CFS) Totái: initial .stream area = 0.540(Ac.) I .... Process frOm Point/Station . . 121.000 to Point /Station103.000 FLOW TRAVEL TIME + SUBAREA FLOW ADDITION. ** I . . P o street segment elevation = 314.000(Ft.).'. End of.streët segment elevation = 311.700.(Ft.). Length of street segment = 300 000(Ft ) I .. Height.of curb above gutter flowline =. 6.0(In.) Width of half street (curb to crown) = 53.000(Ft..)' ... . Distance from crown to crossfall grade break = 51.:500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 I . Slope from grade break to crown (v/hz) = 0.020 . Street flow is on (1) side(s) of the street Distàncé from curb to property line = 10.000(Ft.) I , Slope from curb to property line (v/hz) = 0.0.60 Gutter width =1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter 0.0150 :. Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street = 3.593(CFS) I Depth of flow = 0.381(Ft.) Average velocity = 2.250(Ft/s) Streetflow hydraulics at midpoint of street travel: I Halfstreet flow width = 12.226(Ft.) Flow, velocity = 2.25(Ft/s) Travel time = 2.22 mm. TC = 10.68 mm. AddIng area flow to street I ... . .User speOlfied 'C' value of 0.660 given for subarea Rainfall intensity =4.440(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.660 I . Subarea runoff =3.312(CFS) for 1.130(Ac.) Total runoff = 5.067(CFS) Total area = 1.67 (Ac.) Street flow at end of street = 5.067(CFS) Half street flow at end of street = 5.067(CFS) I Depth of flow = 0.420(Ft.) Average velocity = 2.408(Ft/s) Flow width (from curb towards crown)= 14.149(Ft.) I;.. +++++++++++++++++++-f-++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 103.000 to Point/Station 103.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 I'. I:. 1 I I I. Stream flow area = ]. 670(Ac ) f from this stream = 5.067(CFS) •. '. I Time of concentration = 10 68 mm 'Rainfall 'intensity = 4.440(In/Hr) ..Process-from Point/StatIon130.OÔO to,-Point/Station . 131.000 **** 'INITIAL AREA EVALUATION **** . . . .. . .• I ', . : 'Jser,specified 'C'.'value of 0.75' given for subréa'' .Initial, subarea flow distance = 100.00 (Ft.). . I .. Highest elevation = 315.10(.Ft.) ::'-'Lowest elevation = 314.80(Ft.) . . • ' •, ' :' 'Elevation difference = 0.30(Ft.) I '• je of concentration calculated by the urban.. ' ': 'aeasove r rlànd flow method (App X-C) = 9.41 min , '-1. A. siopeA (1/3)) •.,' •: 'TC' (1..8*'(1.1_0.7500)*(100.00A.5)/( 0.'30A(1/3')]= 9.41 I .. "'Rainfall intensity (I) = 4.819 for a 100.0 year, storm Effective runoff coefficient used for area (Q=KCIA) is = 0.750 Subarea runoff = 0.759(CFS) . Total initial stream area = 0.210 (Ac.) . I .•,. Process from Point/Station 131.000 to Point/Station . 103.000 ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION I : ..'Top of-street segment elevation = 314.800(Ft.) End of street segment elevation = 311.700(Ft.) '.Length of street segment = 445.000(Ft.) Height of curb above gutter flowline = 6.0(In.) I Width of half street (curb to crown). = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) 'Slope from gutter to grade break (v/hz) = 0.083 I Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 10.000(Ft.) I Slope from curb to property line (v/hz) = 0.060 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street = 2.819(CFS) I Depth of flow = 0.361(Ft.) Averagevelocity = 2.068(Ft/s) ,Streetflow hydraulics at midpoint of street travel: .Halfstreet flow width = 11.229(Ft.) I 'Flow velocity = 2.07(Ft/s) ' Travel time = 3.59 mm. TC = 13.00 mm. Adding area flow to street I 'User specified 'C' value of 0.720 given for subarea Rainfall intensity = 3.912(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.720 I Subarea 'runoff = 3.211(CFS) for 1.140(Ac.) Total. runoff = 3.970(CFS) Total area = 1.35(Ac.) Street flow at end of street = 3.970(CFS) Half street flow at end of street = 3.970(CFS) Depth of flow = 0 397(Ft.) Average velocity= 2.207(Ft/s) 1• I Flow width (from curb towards crown)= 13 025(Ft ) I Process from Point/Station 103.009 to Point/Station 103.000 CONFLUENCE OF MINOR STREAMS **** I .Along Main Stream number: 1 in normal stream number 3 Stream flow area =. 1.350(Ac.) . Runoff from this stream = 3.970(CFS) I .:Time of concentration = 13.00 mm. ...Rainfall intensity = 3.912(In/Hr) Summary of stream data I Stream Flow rate TC Rainfall Intensity ; No. (CFS) (mm) . . (In/Hr) I 1 7 630 11 31 4.280 2 5067 1068 4.440 I 3.970 i3.00- 3.912 Qmax(l) = 1.000 * 1.000 * . 7.630) + 0.964 * 1.000 * 5.067) + I .. . '•000 *. 0.870 * . 3.970) + = 15.968 •Qmax(2) 1.000 * 0.945 * 7.630) + I l 000 * 1.000 * 5 067) + 1.000 * 0.822 * 3.970) + = 15.537 .Qmax(.3) = . .• . . 0.914 * 1.000 * 7.630) + I .0 .8811 * 1.000 * 5.067) + 1.000 * 1 000 * 3.970) + = 15.410 I Total of 3 streams to confluence Flowrates before confluence.point: 7.630 5.067 3.970 I . Maximum flow rates at confluence using above data: 15.968 15.537 15.410 Area of streams before confluence 2.280 1.670 •. . 1.350 I Results of confluence Total flow rate = 15 968(CFS) :Time of concentration = 11.310 mm. Effective stream -area after confluence= 5.300.(Ac.) I •. Process from Point/Station 103.000 to Point/Station 104.000 **.**. .PIPEFLOW TRAVEL TIME (User specified size.) *** I :. .Upstream point/station elevation = . 308.50(Ft.) "'Dow nstrearn point/station elevation =307.70(Ft.) . ..pe length = 105.00 (Ft.) Manning's N 0.013 I . No.. of pipes = 1 Required pipe flow = 15.968(CFS) Given pipe size = 24 00(In ) Calculated individual pipe flow = 15.968(CFS) Normal flow depth in pipe = 16 36(In ) Flow top width inside pipe = 22 36(In ) Critical Depth = 17 29(In ) I:..Pipefiow velocity = 7.00(Ft/s) Travel 'time through pipe = 0.25 mm. •. I . Time of concentration (TC) = 11.56 mm. Process from Point/Station 104.000 to Point/Station 104.000 I . ****-CONFLUENCE OF MINOR STREAMS Along Main Stream number: 1 in normal stream number 1 I . Stream flow area = 5.300(Ac.) Runoff from this stream = 15.968(CFS) Time of concentration = 11.56 mm. Rainfall intensity = 4.220(In/Hr) I . Process from Point/Station 110.000 to Point/Station 111.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea I Initial subarea flow distance = 130.00(Ft.) Highest elevation = 318.90(Ft.) Lbwest.elevation = 318.30(Ft.) Elevation difference = 0.60(Ft.) Time :of concentration calculated by the urban areas overland flow method (App X-C) = 5.31 mm. I .TC = (l.8*(1.1_C)*djstanceA.5)/(% slope'(1/3)) TC= [1.8*(1.1_0.9000)*(130.00A.5)/( 0.46A(1/3)]= 5.31 Rainfall intensity (I) = 6.969 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 I . Subarea runoff = 1.003(cFS) Total initial stream area = 0.160(Ac.) I . ................................... ................................... Process from Point/Station 111.000 to Point/Station 104.000 I ****'STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of .street segment elevation = 318.300 (Ft.) End of street segment elevation = 311.700(Ft.) I Length of street segment = 900.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) I .Distance from crown to crossfall grade break = 51.50.0(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 .Street.flow is on (1) side(s) of the street I . Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.060 Gutter width = l.500(Ft4. I .. . Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 I . Manning's N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street = 5.080(CFS) Depth of flow = 0.423(Ft.) Average, velocity = 2.367(Ft/s) ...Streetflow hydraulics at midpoint of street travel: Hálfstreet flow width = 14.296(Ft.) I . Flow velocity = 2.37(Ft/s) :Travel time = 6.34 mm. TC = 11.65 mm. Adding area flow to street I : User specified 'C' value of 0.850 given for subarea Rainfall intensity = 4.199(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 I Subarea runoff = 4.640(CFS) for 1.300(Ac.) Total runoff = 5.644(CFS) Total area = 1.46(Ac.) Street flow at end of street = . 5.644(CFS) Half street flow at end of street 5.644(CFS) I . Depth.of flow = 0.435(Ft.) Average velocity = 2.419(Ft/s) Flow width (from curb towards crown)= 14.935(Ft.) Process from Point/Station 104.000 to Point/Station 104.000 I ****'CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 I . Stream flow -area = 1.460(Ac.) Runoff from this stream = 5.644(CFS) Time of concentration = 11.65 mm. Rainfall intensity = 4.199(In/Hr) I . I . Process from Point/Station 140.000 to Point/Station 141.000 ..***.*INITIAL AREA EVALUATION **** .User specified 'C' value of 0.850 given for subarea 1 . Initialsubarea flow distance = 100.00(Ft.) Highest elevation = 315.10(Ft.) : Lowest elevation = 314.80(Ft.) I . Elevation difference 0.30(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.72 mm. I . TC =.t.1.8*(l.l_C)*distanceA.5)/(% slope '(1/3)) . TC= (l.:8*(1.1_0.8500)*(100.00.5)/( 0.30"(1/3))= 6.72 Rainfall intensity (I) = 5.986 for a 100.0 year storm . : Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 I .. :Subarea runoff 0.712(CFS) .,. . .. Total initial stream area = 0.140 (Ac.) . . . . . I •: Process from Point/Station 141 000 to Point/Statio'n''104.000 ****.,STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION . . .. Top of street segment elevation = . 314.800 (Ft .) . End of street segment elevation = . 311.700(Ft;) . . I Length of street segment = 445 000(Ft ) above gutter flowline . = 6.0 (I:) Width of half street (curb to crown) = 53.000( . Ft .) I .Distance from crown to crossfall grade break 15 500 (Ft.) Slope frorngutter to grade break (v/4z) = •• 0.083. Slopefrom grade break to crown (v/hz) = 0.020. . . . Street flow is on (1] side(s) of the street . .. Distance from curb to property line = 10 000(Ft ) Slope from curb to property line (v/hz) = 0.060., ' Gutter width = 1 500(Ft ) Gutter hike from flowline = 2 000(In ) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0160 - Estimated mean flow rate at midpoint of street = 2 366(CFS) Depth of flow = 0 344(Ft ) I ..:Average velocity = 2.004(Ft/s) 'Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10 384(Ft ) I .Flow velocity = 2.00(Ft/s) Travel time = . 3.70 mm. TC = 10.42 mm. Adding area flow to street User: specified 'C' value of 0.850 given for subarea I . Rainfall intensity =4.511(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 2.492(CFS) for 0.650(Ac.) I ..Total runoff = . 3.205(CFS) Total area = 0..79(Ac.) .:.....Street flow at end of street = 3.205(CFS) Hälfstreet flow at end of street =. 3.205(CFS) I . Depth: of flow 0.374 (Ft.) s Average velocity 2.117(Ft/s) Flow width (from curb towards crown)= 11.879(Ft.) Process from Point/Station 104.000 to Point/Station 104.000 I cONFLUENcE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = . Q.790(Ac.) Runoff from this stream = 3.205(CFS) Time of concentration = 10.42 mm. Rainfall intensity = 4.511(In/Hr) I Summary of stream data Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 15968 1156 4.220 I 2 5.644 11.65 A.199. 3 3.205 1042 4.511 Qmax(1) = .1 .000 * 1.1000 * 15.968) + 1.000 * 0.992 * 5.'644)' + 0 935 * 1.000 * 3.205) + = 24 567 Qmax(2) = I 0 995 * 1 000 * l5968) + 1.000 * 1 000 * 5.644) + 0-.931 * 1.000- * 3-.205) + = 24 517 Qmax(3) = 1.000 * 0 902 * 15.968) + 1.000 * 0 895 * 5.644) + I l 000 * 1.000 * 3.205) + = 22 653 Total of 3 streams to confluence Flow rates before confluence point I ....: 0 0.00 •0•:0 :0 .5 . . • •. • •• • • : • - . •. . A5-.968 5.644 3.205 Maximum flow rates at confluence using above data: I 24.567 24.517 22.653 Area 0f streams before confluence: 5300 1.460 . 0.79.0 I . . Results of confluence: Total flow rate = 24 567(CFS) - Time of concentration = 11.560 mm. Effective stream area after confluence = . 7.550(Ac.) I . . I Process from Point/Station 104.000 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 307 20(Ft ) I Downstream point/station elevation = 307 00(Ft ) ........Pipe :length = 15.00(Ft.) Manning's N .= 0.013. 'No. of -pipes = 1 Required pipe flow = 24.567(.CFS.) -G.iven..pipe size 24.00(In.) Calculated individual pipe flow = 24 567(CFS) Normal flow depth in pipe = 18 52(Iri ) I Flow top width inside pipe = 20 15(In ) Critical Depth = 21 02(In ) Pipe flow velocity = 9 46(Ft/s) Travel time through pipe = 0.03 min. I Time of concentration (TC) = 11 59 'min. .. I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 105.'000 **.**'CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number 1 in normal stream number 1 Stream flow area = 7 550(Ac )w . :Runof f- :-frbm this stream = ., 24.567.(CFS) I Time of concentration = 11.59 mm Rainfall intensity = 4 214(In/Hr) Summary of stream data i I Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) I 24.567 1 11 59 4.214 Qmax(l) = I .1 .000 * 1 000 * 24.567) + 24.567 Total of 1 streams to confluence Flow rates before confluence point: 0 - 24.567 Maximum flow rates at confluence using above data 24.567 0 I Area of streams before confluence 0 •,•0• 7.550 Results of confluence.: 0 0 I -Total flow, rate = 24.567 (CFS) 0 . Time of concentration = 11.586 min. Effective stream area after confluence = 7 550(Ac ) I I.. I :....Proáess from Point/Station 150.000 to Point/Station 151.000 '****. INITIAL AREA EVALUATION I User specified 'C' value of 0.850 given for subarea Initial subarea flow distance = 100.00(Ft.) Highest elevation = 315.20(Ft.) Lowest elevation = 314.80(Ft) Elevation difference0.40(Ft.) Time of concentration calculated by the urban areas. overland flow method (App X-C) = 6.11 mm. I ... TC = 1.8*'1.1_c*distanceA.5/% slope '(1/3)] .TC= (1..8*(1.1_0.8500)*(100.00A.5)/( 0.40(1/3))= 6.11 Rainfall intensity (I) = 6.368 for a 100.0 year storm I Total. Efféctl coefficient used for area (Q=KCIA) is C =0.850 ubarea runoff =0.758(CFS) initial stream area = 0.140(Ac.) I Process from Point/Station 151000 to Point/Station . 152.000 'STREETFLOW TRAVEL TIME + SUBAREA FLOW'ADDITION. Top of street segment elevation = 314 800(Ft ) ,End of'streét segment elevation = 282.800(Ft.) Length'àf•street segment . = 1410..000(Ft.) ". . . . Height of curb above gutter flowline = 6 0(In.) '.'.Wjdth.of half street '(curb.to crown) = 53.000(F.t.) . ... . ......,Pistance from crown to croSsfall grade break '=.' 51500(Ft.)' .........Sl pe o from gutter to grade break (v/hi) = 0.083. •.. Slope frorn,grade break to; crown '(v/hz) '. '0.020: Street flow is on (1) side(s) of the street ;-Distance- from curb to property line = 10 000(Ft ) Slope from, curb to property line (v/hz) =' 0.060H . Gutter-width = 1.500(Ft.) . I..:. . . Gutter.hikè from flowline 2.000(In.). Mann.ing.'.sN in gutter = 0.0150. :. Manning's" N from gutter to grade' break = 0.0150' . I . Manning"s'N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street . 6.442(CFs) Depth of flow = 0..386(Ft.) . .. Average velocity = 3.901(Ft/s) . .. I . 'Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.445(Ft.) Flow velocity = 3.90(Ft/s) I . Travel time =6.02 min. TC = 12.13 mm. Adding. area flow to street User specified 'C' value of 0.850 given for subarea.. ' Rainfall intensity = . 4.091(In/Hr) for, a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 7.302(CFs) for 2.100(Ac.) :.Total 'runoff = 8.060(CFS) Total area = 2.24 (Ac.) Street flow at end of street = ' 8.060(CFS) Half street flow at end of street = 8.060(CFS) Depth 'of flow = 0.410(Ft.) Average velocity = 4.078(Ft/s) I Flow width (from curb towards crown)= 13.689(Ft.) I . ..................................................................... ,0 Process from from Point/Station 152.000 to Point/Station 174.000 '****.PIPEFLOW TRAVEL TIME (User specified size) **** :Upstream. point/station elevation—. 279.50(Ft.). 1 .. ' Downstream point/station elevation = 279.00(Ft.) Pipe -length = 63.00(Ft.) Manning's.N = 0.013 . No. of pipes = 1 Required pipe flow = . 8.060,(CFS)' Given pipe size = 18.00(In.) . .:'Calcülatéd individual pipe flow = . . 8.060(CFS) . ': Norma1 -flow depth in. pipe = 12.88(In.)' . '•Flow top.width inside pipe. = 16.24(In.) : CriticalDepth =13.20(In.) . . . Pipe flow velocity = 5.96(Ft/s) .Travel time through pipe = 0.18 mm. •, .':.:. Time of 'concentration (TC) .= 12.31 mm. ' '• ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I ' Process from Point/Station 174.000 to Point/Station 174.000 **** CONFLUENCE OF MAINSTREAMS ': •• The' following data inside MainStream is listed:'..,' • ' :..In Ma'in.Streám,number: 1 Stréamflow area = 2.240(Ac.) Runoff from 'this stream = ' 8 060 (CFS) ' ".... . I .." Time' of.concentration =12.31 mm. :.' 'Rainfall intensity = 4.053(In/Hr) Program,. is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++.+++++++++++++++++++++++++ "Process from Point/Station 160.000 to Point/Station, 161.000 INITIAL AREA EVALUATION User 'specified 'C' value of 0.850 given for subarea Initial subarea flow distance = 100.00(Ft.) Highest elevation = 323.90(Ft.) 'Lowest elevation = 318.30(Ft.) .' Elevation difference = 5.60(Ft.) 'Time of concentration calculated by the urban areas.overland flow method (App X-C) = 2.53 mm. 'TC ='[1..8*(1.1_C)*distance'.5)/(% slope "(1/3)] TC= (1.8*(1.l-0.8500)*(loo.00'.5)/,( 5.60A(1/3))= 2.53 Rainfall intensity (I) = 11.232 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 'Subarea runoff = 1.337(CFS) ' Total initial stream area = 0.140(Ac.) I . Process from Point/Station 161.000 to Point/Station 173.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I . Top of street segment elevation = 318.300(Ft.) End of street segment elevation = 283.800(Ft.) I Length of street segment = 690.000(Ft.) Height of curb above gutter flowline = 6.0(In.) 'Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) SIopefrom gutter to grade break (v/hz) = 0.083 slope::from grade break to crown (v/hz) = 0.020 Street. flow is on (1) side(s) of the street -,•,,•: Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.060 'Gutter .width ' 1.500(Ft.) 'Gutter hike from flowline = 2.000(In.) ".Manning's:N in gutter = 0.0150 'Manning'sN from gutter to grade break =' 0.0150' Manning"s.N'from grade break to crown = 0.0150 .'..: Estimated -mean flow -rate at midpoint, of street ' 6.110 (CFS) 'Depth of flow = 0.338(t..) Average velocity = 5.481(Ft/s) .'.Steef'1ow hydraulics 'at midpoint of street travel:' ' Halfstreet flow width = 10 061(Ft ) I Flow. velocity. = 5.48 (Ft/s) Travel time ,.:r 2.10 min. TC = 4.63 mm "Adding area' flow to street ' •, •' , : ' User specified 'C' value of 0 850 given for subarea I' ", .•' •' Rainfall ''intensity =•7.612(In/Hr). for a 1.00 ... O'year storm Runolf'c,oefficient used for éub-area, Rational methOd,Q=KCiA, C = 0.850 'Subarea ruoff'=- 6.470(CFS)' for 1.000(Ac..')". '. .'. 'Total runoff =7.806(CFS,) Total area = -'. ,.1.14(Ac-.) .' : " Street flOw at end of street = ' 7.806'(CFS) Half 'street flow at end of street = ' 7.806(p FS) Depth.of flow = 0.361(Ft.)' Average velocity =5,739 (Ft/s) 'Flow 'width (from curb towards crown) = 11.215 ,) I ' . • .................................... Process -from Point/Station 173.000 to Point/station - ' 173.000 I ' •" '** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.140(Ac.) Runoff from this stream = 7.806(CFS) Time of' concentration = 4.63' mm. - , Rainfall, intensity = 7.612(In/H'r) Process from Point/Station 170.000 to Point/Station 171.000 'INITIAL AREA EVALUATION **** User. specified 'C' value of 0.850 given for subarea I .' 'Initial subarea flow distanc'e, = 100.00(Ft.) Highest, elevation = 323.90(Ft.) Lowest elevation = ' 318.30(Ft.) - ElevatiOn difference = 5.60(Ft.) I . ,.'Time,of concentration calculated by.the urban -areas overland flow method (App X-C) = 2.53 mm. TC =' [l.8*(1.1_C)*djstance.5)/(% slope" (1/3)] I TC.,(1.8*(l.l_0.8500)*(100.00A.S)/( 5.60"(1/3)]= 2.53 Rainfall intensity (I) = 11.232 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is' C = 0.850 Subarea runoff = 1.337(CFS) I Total initial stream area = 0.140(Ac.) I Process from Point/Station 171-:060 to Point/Station 172 000 ...****.STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 318 300(Ft ) I '• End of street segment elevation = 285.000(Ft.). Length of street segment = 630.000(Ft.) Height of curb above gutter 'flowline. = 6 • 0 (In.)• I .. Width of half Street (curb to crown) = 53.000(Ft.)' :Distance from crown to croasfall grade break = 51.500(Ft..) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 1 .' Street flow is on (1] side(s) of the street .Distanôe from curb to property line = 10.000(Ft.) ' Slope from curb to property line (v/hz) = 0.060 Gutter width = 1.500(Ft.) , Gutter hike from flowline = 2.000(In.) :'Manning's N in gutter = 0.0150 . Manning's N from gutter to grade break = 0.0150' I Manning's N from grade break to crown = 0.0160' Estimated 'mean flow rate at midpoint of street = 5.680(CFS) Depth of' flow = 0.332(Ft.) . I.. Average velocity = 5.392(Ft/s) . . •Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.752 (Ft.) I . '. 'Flow velocity = 5.39(Ft/s) Travel time = 1.95 min. TC = 4.48 mm. .' . Adding area flow to street S . User' specified 'C' value of 0.850 given for subarea I . Rainfall intensity = 7.776(In/Hr) for a 100.0 year'storm Runoff' coefficient used for sub-area, Rational methOd,Q=KCIA, C = 0.850 'Subarea runoff = 6.015(CFS) for 0.910 (Ac.) I . Total runoff = 7.351(CFS) Total area =1.05 (Ac.) Street flOw at end of street = . 7.351(CFS) Half street flow at end of street = 7.351(CFS) Depth of flow = 0.356(Ft.) I Average velocity = 5.639(Ft/s) Flow,width (from.curb towards crown)= 10.960(Ft.) I Process from Point/Station 172.000 to Point/Station 173.000 **** 'PIPEFLOW TRAVEL TIME (User specified size) **** U ' Upstream point/station elevation = 281.50(Ft.) Downstream point/station elevation = 280.00(Ft.) I .'Pipe length = 168.00(Ft.) Manning's N = 0.013 :NO. "of pipes = 1 Required pipe flow = 7.351(CFS) Given pipe size = 18.00(In.) I .. :.:.Flow individual pipe flow = 7.351(CFS) Normal flow depth in pipe = 11.53 (In.) Flow top width inside pipe = 17.27(In.) Critical Depth = 12.60(In.) I Pipe flow velocity = 6.15(Ft/s) Travel time through pipe = • 0.46 mm. : . .Time. of concentration (TC) = 4.94 mm. • • Process':.from Point/Station 173.0,00 to Point/Station 173.000 CONFLUENCE OF MINOR STREAMS **** I "'Along Main Stream number 2 in normal stream number 2 Stream flow area = 1 050(Ac ) Runoff from this stream = 7.351(CFS) I Time of concentration = 4.94 mm ''Rainfa'i'l intensity = 7.305(In/Hr) ., .'. Summary of stream data I •. 'Stream ..Flow rate TC ' . Rainfall Intensity .No •.(CFS) (mm) '(In/Hr) 1 7.806 4.63 . 7.612 2 ' 7.351 4.94 7.305 Qmax(l) =S 1.000 * 1.000 * 7.806) + 1.000 * 0.938 * .7.351) '+ = 14.704 :Qmax('2)"= . '. 0.960 * 1.000 * .7.806) + 1.000 * 1.000 * 7.351) + 14.843 I" . Total -of 2 streams to confluence: . Flow 'rates, before confluence 'point: 7.80.6' 7.351 Maximum flow rates at confluence using above data: .14.704 14.843 ' Area" of streams before confluence: 1.140 1.050 ' I ' " Results of, confluence: Total flow rate = 14.843(CFS) ' 'Time' of concentration =4.937 mm. Effective-stream area after confluence = . 2.190(Ac.) Process from Point/Station 173.000 to Point/Station . 174.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstre,ám'point/station elevation '= 279.67 (Ft'.) Downstream point/station elevation = 279.00(Ft.) Pipe length = . 85.00(Ft.) Manning's N.= 0.013 No. .o'f-pipe's = 2, Required pipe flow =, 14.843(CFS) ..Given pipe size = ' 18.00(In.) : Calculated individual pipe flow. = 7.422(CFS) Normal flow depth in pipe = 12.14(In.) 'Flow top width inside pipe =16.87 (In.) Critiôal Depth, = 12.67(In.) ' 'Pipe flow velocity = 5.86(Ft/s) 'Travel time through -pipe = 0.24 mm. I ' Time of concentration (TC) = 5.18 mm. Process 'from 'Point/Station174.000 to Point/Station 174.000 .**** CONFLUENCE OF MAIN STREAMS **** I ' ' : The following data inside Main Stream is listed: In Main Stream number: .2 Stream flow area = 2.190(Ac.) .:. '" Ru.ndff from this stream = 14.843'(CFS) S Time óf-concentration = 5.18 mm... ."Rainall intensity = 7.083(In/Hr) '.'Summary of stream data: :Streàm Flow rate TC Rainfall Intensity No.: ' (CFS) (mm) '(In/Hr) 8.060 12.31 4.053 14.843 5.18 7.083 '.Qmax(l.) =' 1•000 * 1.000 * 8.060) ~ 0.572 * 1.000 14.843). += 16.552 :Qmax(2) =, . 1.000 * 0.421 * 8.060) + -..1.000 * 1.000* 14.843) ,= 18.235 Total 'of '2 main streams to confluence: I 'Flow rated -before confluence point: 8.060 14.843 :Maximum flow rates at confluence using above data: I .. •' 16.552 18.235 Area Of streams before confluence: .. 2.240 2.190 'Results of confluence: . Total, flow rate = 18.235(CFS) I • Time of concentration = 5.179 mm. :Effective stream area after confluence = 4.430(Ac.) I . • Process from Point/Station180.000 to Point/Station 181.000 f*** INITIAL AREA EVALUATION **** I .,,.User specified 'C' value of 0.850 given for subarea Initial' subarea flow. distance I . Highest elevation = 38.7.40(Ft.) Lowest elevation = 384.30(Ft.) 'Elevation difference = 3.10(Ft.) Time of, concentration calculated by the urban I ...areas, overland flow method (App X-C) = 3.09 mm.' '(1.8*(1.1-C)*distanceA.5)/(% slope'(1/3)) TC = [I.8*(1.1.0.8500)*(100.00".5)/( 3.1o'(1/3))=' 3.09 I' . Rainfall intensity (I) = 9.891 fora 100.0 year 'storm . Effective runoff coefficient used for area (QKCI'A) is C'= 0.850 :Subarea runoff = 1.177(CFS) '' ... Totalinitial stream area = ' 0.140(Ac.') I I : •.,.Process,from Point/Station,' . .. 181.000 to Point/Station182.000 STREET.FLOW'TRAVEL TIME.. + SUBAREA' FLOW ADDITION.**** I '..Top of street segment elevation = 384.300(Ft.')', .. End.of street segment elevation • 324.000(Ft.)'. .' ':Lèngth','óf,.street segment = . 1387.000(Ft.) . Height of curb above gutter flowline = 6 0(In ) Wldth:.of half street (curb to crown) = 53. 000(Ft.) :. Distance. from crown to crossfall grade break = 51.500(Ft.) I :. ''Slope.'from gutter to grade break (v/hz) = 0.083 ..Slopefrom grade break to crown (v/hz) 0.020 Street flow is on (1) side(s) of the street I :Distance.from curb to property line = lO'.00O(Ft.) Slope.from curb to property line .(v/hz) .= 0.020. Gütterwidth = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) I .. Manning's.N in gutter = 0.0150 . . . Manning's N from gutter to grade break.= 0.0150 Manning's N from grade break to crown = 0.0150 I .Estimated mean flow rate at midpoint of street = 9.626(CFS) Depth ..of. flow = 0.390(Ft.) .:Average velocity = 5.657(Ft/s) Streetflow hydraulics at midpoint of street travel: I . • Halfstreet flow width = 12.646(Ft.) Flow velocity =5.66(Ft/s) Travel time = 4.09 mm. TC = 7.17 nun. I Adding area. flow to street User. specified 'C' value of 0.850 given for subarea Rainfall intensity = 5.741(In/Hr) for a 100.0 year storm I Runoff. coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea :runoff = 9.809(CFS) for 2.010 (Ac.) Total runoff = 10.986(CFS) Total area = 2.15(Ac.) Street flow at end of street = 10.986(CFS) I , Half Street flow at end of street = 10.986(CFS) Depth •f flow = 0.404 (Ft.) Average velocity = 5.813(Ft/s) Flow width (from curb towards crown)= 13.369(Ft.) I . Process from Point/Station 182.000 to Point/Station 192.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I :.Upream point/station elevation = 316.05(Ft.) Downstream point/station elevation = 314.14 (Ft.) .Pipe.length = 108.00(Ft.) Manning's N = 0.013 I .. . No. of pipes = 1 Required pipe flow = 10.986(CFS) Given pipe size = 18.00(In.) Calàulated individual pipe flow = 10.986(CFS) Normal flow .depth in pipe = 12.02 (In.) I • . FlOw top width inside pipe = 16.95(In.) Critiôà]. Depth = 15.23(In.) Pipe flow velocity = 8.75(Ft/s) Travel tithe through pipe = 0.21 mm. I • •... 'Tirne..of concentration (TC) = 7.38 mm. I PrOcess from Point/Station 192.000 to Point/Station • 192.000 CONFLUENCE OF MINOR STREAMS **** I ' : Along Main Stream number: 1 in normal stream number 1 • 'Stream. flow, area 2.150 (Ac.) . • I. • Runoff from this stream 10.986(CFS) .Time of concentration = . 7.38 mm. • . . .. .. 'Rai.'nfall intensity = 5.637(In/Hr) . . • .S I / I I ''Process from Point/Station 190.000 to Point/Station 191.000 'INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea Initial'stibarea flow distance = 100.00(Ft.) Highest elevation = 395.20(Ft.) Lowest' elevation = 390.90(Ft.) 'Elevation difference = 4.30(Ft.) Time of concentration calculated by the urban are overland flow method (App X-C) = 2.77 mm. TC =(1.8*(1.1_C)*djstanceA.5)/(% slope '(1/3)) TC = (1,8*(1.1_0.8500)*(100.00A.5)/( 4.30"(1/3))= 2.77 Rainfall intensity (I) = 10.612 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 1.263(CFS) Total initial stream area = 0.140(Ac.) +±+++4+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.++++ Process from Point/Station 191.000 to Point/Station 192.000 **.** STREET 'FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 'Top of street segment elevation = 390.900(Ft.) ,."End'.of..street segment elevation = ' 324.000(Ft.)I 'Length of treet segment' = 1567.000(Ft.) Height-of curb ,above-gutter flowline' = 6.0('In.,) ', Width,of half street (curb to crown') =' '53,.000(Ft.) DistáncC from crown to crossfall grade break =: 5l50O(Ft'.) Slope 'from gutter to grade break (v/hz) = ,0.083 'Slope from grade break to crown (v/hz) =" 0.020' Street flaw' is on [1] side(s) of the street Distance' from curb to property-line = 10.0'00(Ft,.) "Slope' from curb to property line (v/hz) = 0.060 Gutter width = 1.500(Ft.) ' Gutter hike from flowline = 2 000(In ) Manning's 'N in gutter = 0.0150 ' ' ' ' •• ' Manning's N from gutter to grade break '= 0.0150' Manning's.N from grade break to crown = 0.0160:." - :.'Estifll d' ate mean flow' rate at midpoint of street = - , 11.500(CFS) "Depth: of flow = 0.415(Ft.) ' ' ,' •. 'Average 'velocity = 5.638(Ft/s) "Streetfiow hydraulics at midpoint of street travel: HalfstrCet flow width = 13.919(Ft.) ' Flow, velocity = 5.64 (Ft/s) " Travel 'time = 4.63 min.,TC = 7.40 mm. Adding area flow to street User'. specified 'C' value of 0.850 given for subarea Rainfall intensity = 5.627(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea,runoff = 10.857(CFS) for 2.270(Ac.) Total runoff = 12.120(CFS) Total area = ' 2.41(Ac.) ',Street, flow at end of street = 12.120(CFS) Half street flow at end of street = 12.120(CFS) ' Depth. of'flow= 0.421(Ft.) Average velocity = 5.698(Ft/s) Flow width (from curb towards crown)= 14.228(Ft.) I I I I I I I I i 1 I I I I Li I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 192 000 to Point/Station 192.000 ***.*''CONFLUENCE OF MINOR STREAMS '' Along' Main Stream number: 1 in normal stream number 2 I . ,': .Strearnflow area = . 2.410(Ac.) Runoff from this stream = 12.120(CFS) Time :of, concentration = '7.40 mm. ::"Rainfall intensity = 5.627(In/Hr) Summary of stream data Stream Flow rate TC ' ' Rainfall Intensity No. (CFS) (mm) (In/Hr) .1 •. '10.986 ' 7.38 .' ' 5.637 I 2 12.120 7.40 5.627 Qmax(.1)' = 1.000 * . 1.000 * 10.986) + 1.000 *0.997 . , 12.120) + = 23.070 Qmax(2) = 0.998 * 1.000 * 10.986) + I i 000 * 1.000 * 12.120) + = 23.084 '.Total of 2 streams to confluence.: Flow rates before confluence point I 10.986 12.120 Maximum flow rates at confluence using above data:. . . ;•'..' .23.070 , 23.084 I Area of streams before confluence ' 2.150 '. 2.410 .. Results'of confluence: Total flow rate = 23 084(CFS) I Time of concentration = 7.400 nun Effective stream area after confluence = 4 560(Ac ) I Process from Point/Station 192 000 to Point/Station 193 000 PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 314 14(Ft ) Downstream point/station elevation = 313 50(Ft ) I Pipe length = 60 00(Ft ) Manning's N = 0.,613' No. of pipes = 2. Required pipe flow = 23 084(CFS) Given pipe size = 24 00(In ) I Calculated individual pipe flow = 23 084(CFS) Normal flow depth in pipe = 19 41(In ) Flow top width inside pipe = 18 88(In ) Critical Depth = 20.49(In ) I Pipe flow velocity = 8 48(Ft/s) Travel time through pipe = 0.12 nun Time of concentration (TC)= 7.52 min. I End of computations, total study area = 16.54 (Ac.) I I I I I I I I I _ I I I I 24 hour préc'ipitation(inches) =' 4.600 ' ' Adjusted 6 hour precipitation (inches) 2.750 P6/P24:,.'=' 59.8% San Diego hydrology manual "C' values used : .:...Runoff coefficients by rational method ************** I N P U T D A T A L I S T I N G ************ . ••':. . " Element Capacity Space Remaining = 324 '• Element Points and Process used between Points'- Upstream Num. er Downstream Process .1 •, '•.' 200.000 201.000 Initial Area . 2 201.000 202.000 Street Flow + Subarea 3 . 202.000 203.000 Pipeflow Time(user inp) '; 4' 203.000 204.000 Improved Channel Time 5' 210.000 204.090 . Subarea -Flow Addition 204.000 205.000 Pipeflow Tiine(user'.inp) 7' 205.000 205.000 'Main Stream Confluence 8:1 220.000 221.000 Initial Area 9 '• 221.000 222.000 Pipeflow Time(user inp) '.10 222.000 222.000 Confluence 11 230.000 222.000 Initial Area 12 ., ' 222.000 , 222.000 Confluence 13' . 222.000 223.000 5 Pipeflow Time(user inp) 14 223.000 205.000 • Pipeflow Time(user inp) '15 : 205.000 205.000 Main Stream Confluence 16 • 270.000 271.000 Initial Area 17 • , • 271.000 272.000 Street Flow + Subarea 18 , ' ' 272.000 272.000 Confluence • 19' • ' 273.000 274.000 Initial Area 20 • 274.000 . 272.0.00' Street Flow + Subarea 21 . 272.000 • 272.000 Confluence 22 . 272.000 205.000 Pipeflow Time(user inp) ' • 2.3 205.000 205.000 MainStream Confluence .24 • 205.000 206.000 Pipeflow Time(user inp) 25 .: . • 206.000 , 206.000 Main Stream Confluence 26 • 280.000 281.000 Initial Area 27 281.000 282.000 Street Flow + Subarea I :' .. San Diego County Rational Hydrology Program: I Civi1CADD/Civi.1DESIGN Engineering Software, (C) 1990 Version 2.3 I Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date 9/25/90 I EL CANINO REAL/PALOMAR AIRPORT ROAD 200 AREA BASIN STUDY FILENAME: ELCAN2 S L 200,4 JOB# 10365 9/24/90 ********* Hydrology Study Control Information ********** Rational hydrology study storm event year is 10Q..0 I Map data precipitation entered 6 hour, precipitation(inches) = 2.750 28 282.000 282.000 Confluence 29 290.000 291.000 Initial Area 30: 291.000 282.000 Street. Flow 4-Subarea '31 ', " . 282.000 . 282.000 Confluence. S 32 '" 282.000 283.000 Pipeflow Time(user inp) 283.000 206.000' . Improved Channel Time 34' '• 206.000 . 206.000. .' Main Stream Confluence • . 35..--- :. .,. 240.000 241.000 . Initial Area I 36.: 37 ' '., 241.000 . . I 252.000 252.000' 252.000. ' Pipeflow Time(user inp) " Confluence .............38: "' 250.000 251.000 Initial Area. 251.000 252.000 Street Flow +' Subarea .............40''.: , 252.000 . 252.000 Confluence I' 41 252.000 263.000 ' Pipé1ow Time(user inp) .42. ' . ' ' 263.000 '. 263.000 Confluence ..... 44 . .260.000 .' . 261.000. 261.000 262.000 Initial Area. Street Flow'+ Subarea 45 . . 262.000' 263.000 . • Pipeflow Time(user .inp) '4,6 . ' .263.000'. . 263.000 Confluence 47 . ' . 263.000 264.000 Pipeflow Time(user inp) End of listing....,......... U U '..' • ' U...... II : ' •'" S '•, San Diego County Rational Hydrology Program Civi'l.CADD/CivilDESIGN Engifleering Software, (C) 1990 Verion 2.3 Rational method hydrology program based on .SanDiegoCounty Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 9/25/90 .ELCANINO REAL/PALOMAR AIRPORT ROAD 200 AREA BASIN STUDY - 'FILENAME: 'ELCAM2 L 200,4 JOB# 10365 9/24/90 -------------------------------------------------------------------------- ********* Hydrology Study Control Information ********** Rational hydrology study storm event year is 100 0 I . Map data precipitation entered: 6 hour, :Precipitation(inches) 2.750 1 .24 hour' precipitation (inches) = 4.600 Adjusted' 6hour precipitation (inches) = 2.750 P6/P24:=: 59.8% San Diego hydrology manual 'C' values used Runoff coefficients by rational method I:'... I Process from Point/Station 200.000 to Point/Station 201.000 INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea I .Initial subarea flow.distance = 100.00(Ft.) Highest elevation = 315.10(Ft.) Lowest elevation = 314.70(Ft.) I Elevation difference = 0.40(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C). = 6 1 mm. I . 'TC = [1.8*(1.1_C)*distanceA.5)/(% slopeA(1/3)) =,(1.8*(1.1_0.8500)*(100.00A.5)/( 0.40^(1/3)]= 6.11 Rainfall intensity (I) = 6.368 for a 100.0 year-storm Effective runoff coefficient used for area (Q=KCIA) is C= 0.850 I ;Subarea runoff = 0.758(CFS) 0 Total .initial stream area = 0.140(Ac.) I . Process from Point/Station201.000 to Point/Station 202.000 ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION,**** I Top, of street segment elevation End of street segment elevation = 282.800(Ft.) I •0 .. ::Length of: street segment = 1400.000(Ft.) 0 Height of 'curb above gutter flowline = 6.0(In.) .......Width of half street (curb to crown) = 53.000(Ft.) I I Distance from crown to crossfall grade break = 51.500(Ft.). Slope.from gutter to grade break (v/hz) = 0.083 , Slope from grade break to crown (v/hz) = 0.020 H'.Street flow'is on (l).side(s) of the street I .,. ' '•, •• :' • . • Distance from curb to property line = 10 000(Ft ) U .'..'Slope.fromcurb to property line (v/hz). = 0.060 Gutter width = 1 500(Ft ) Gutter-:hike from flowline = 2.000(In.) Manning's.N in gutter = 0.0150 .. I Manning's N from gutter to grade break = 0.0150 'Manning's N from grade break to crown = 0.0160 • . Estimated mean flow rate at midpoint of.street=.. 10.231(CFS) I Depth of flow = 0.439 (Ft.) Averagévelocity = 4.289.(Ft/s) Streétf low hydraulics at midpoint of street travel: Ha1fstrèet flow width = 15.109(Ft.) U .Flow velocity'= 4.29(Ft/s) Travel 5.44 min. time = TC = 11.55 min. Adding area flow to street User.'specified 'C' value of 0.730 given for subarea 'Rainfall intensity = 4.223(In/Hr) for a' 100.'.O year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.730 Subarea"runoff = 10.789(CFS) for 3.500(Ac..) I . Total runoff =11.547(CFS) Total area = .3.64(Ac.) 'Street flow at end of street = 11.547(CFS) Half: street flow at end of street = 11.547(CFS) I ... .Depth::of flow = 0.454 (Ft.) . Avèrãge velocity = 4.400(Ft/s) . 'Flow width (from curb towards crown)= 15.881(Ft.). ' Process from Point/Station 202.000 to Point/Station 203.000 .•. . **** PIPEFLOW TRAVEL TIME (User specified size) U Upstream point/station elevation = 280 50(Ft ) I : Downstream point/station elevation = 279.90(Ft.) Pipe length = 38.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow. = . 11.547(CFS). Given pipe size' = 18.00(In.) . U .Calculated individual pipe 'flow = 11.547(CFS) Normal flow depth in pipe = 13.04(In.) Flow top width inside pipe = 16.08(In.) Critical Depth = 15.54(In.) : Pipe flow velocity = . 8.42(Ft/s) ..Travel time through pipe = 0.08 main. . Time 'of'concentration (TC) = 11.62 main. 1 Process from Point/Station203.000 to Point/Station ' 204.000 IMPROVED CHANNEL TRAVEL TIME **** 1. ::Upstream point elevation = 279.90(Ft.) I . Downstream point elevation = 265.00(Ft.) Channel length thru subarea = 1015.00(Ft.) Channel base width ' 2.000(Ft.) :U • Slope br, 'Z' of left channel bank = 1.500 • . Slope or 'Z.' of right channel bank = 1.500 ........Manning's 'N' = 0.015 I' :• Maximum depth of channel = .1.500(Ft.) . Fiow(q) thru subarea = 11.547(CFS) .D . .. .epthof flow '= • 0..596(Ft.) . Average velocity = 6 688(Ft/s) Channel flow top width = 3.789 (Ft ) Flow. Velocity = 6 69 (Ft/s) Travel time = 2.53 mm e Tim ofconcentration = 14.15 min. Critical depth = 0 820(Ft ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 204.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soilgroup A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 ... (RURAL (greater than 1/2 acre) area type ] Time of concentration = 14.15 mm. Rainfall intensity = 3.704(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 Subarea runoff = 38.832(CFS) for 23.300 (Ac.) Total runoff = 50.379(CFS) Total area= 26.94(Ac.) I . Process from Point/Station 204.000 to Point/Station 205.000 ** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 265.00(Ft.) Downstream point/station elevation = 264.40(Ft.) I Pipe length = 38.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 50.379(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 50.379(CFS) I ..Normal flow depth in pipe = 24.00(In.) Flow: top width inside pipe = 24.00(In.) Critical Depth = 27.63 (In.) I . .Pipe flow velocity = 11.97 (Ft/s) Travel time through pipe = 0.05 mm. : :Time of concentration (TC) = 14.21 mm. . . Process from Point/Station 205.000 to Point/Station 205.000 I **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed I .,In,..,Main Stream nunther: 1 Stream flow area = 26 940(Ac ) .Runoff::-from this stream = 50.379(CFS) . . . I Time of concentration ..= 14.21 min. Rainfall. .-intensity = . 3.695(In/Hr) . . .... Program is now starting with Main Stream No 2 I Process from Point/Station 220.000 to Point/Station 22.1.000, I ****INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 . . . ;. Decimal fraction soil group B = 0.000 . . I Decimal fraction soil group C = 0.000 'Decimal fraction soil group D =.1.000 (RURAL (greater than 1/2 acre) area type ) - Time 'of concentration computed by the natural watersheds nomograph (App X-A) .TC = (11.9*length(Mi)A3)/(eleVatiOfl change) )'.385 Initial subarea flow distance = 750.00(Ft.) Highest elevation = 323.50(Ft.) Lowest elevation = 308.00(Ft.) Elevation difference = 15.50(Ft.) I I *60(mjn/hr) + 10 Thin. ;'.TC=((3,l.9*0.1420A3)/( 15.50)]'.385= 5.69 + 10 mm. . 'Rainfall intensity (I) = 3.465 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) ..Suba±ea'runoff = 10.448(CFS) Total initial stream area = 6.700(Ac.) = 15.69 mm. storm is C = 0.450 I .'.Process.from Point/Station .221.000 to Point/Station . 222.000 **** PIPEFLOW TRAVEL TIME (User specified size).***.*. Upstream point/station elevation = 304.00(Ft.).' :.Pownstream:.po.int/station elevation = 271.00(Ft..)' Pipè length. '= 100.00(Ft.) Manning's N = 0.013 "Nó.-of pipes = 1 Required pipe flow = .10.448,(CFS) . . ''Given pipe size = 18.00(In.) Calculated individual pipe flow = 10.448(CFS). . . 'Normal flOw' depth in pipe = 5.07(In.) Flow top .width inside pipe .= 16.19(In.) Critical Depth = 14 92(In ) ,.:P'ipe' flow, velocity = 25.59(Ft/.$) . . . . .' '., : . •, Travel time through pipe = 0.07 nun Time of concentration (TC) = 15.75 nun ........ I .... :.'Process from. Point/Station 222.000 to Point/Station . 222.000 CONFLUENCE OF !NOR STREAMS ** . . . I . Along Main Stream number: 2 in normal stream number 1 Stream flow area = 6.700 (Ac.) - Runoff from this stream = 10.448(CFS) Time Of' concentration = 15.75 Thin. Rainfall intensity = 3.456(In/Hr) I . ++++.++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++ Process from Point/Station 230.000 to Point/Station 222.000 **** INITIAL AREA EVALUATION **** I . •• Deôimal fraction soil group A = 0.000 Decimal fraction soil group -B = 0.000 Decimal fraction soil group. C = 0.000 I . Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type ) * Time of concentration computed by the I .natural. watersheds nomograph (App X-A) TC:= (U.9*length(Mi)"3)/(elevation change) 'J'.385 *60(min/hr) + 10 mm. Initial subarea flow distance = 1230.00(Ft.) Highest elevation = 318.00(Ft.) . Lowest elevation = 273 90(Ft ) Elevation djfferencé = 44.10(Ft.) I TC=ull.9*O.2330fr 3/( 44.10H'.385= 6.73 + 10 mm. = 16.73 Rainfall intensity (I) 3.324 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 I Subarea runoff = 12.565(CFS) Total initial stream area = 8 400(Ac ) Process from Point/Station 222.000 to Point/Station 222.900 ** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 2 in normal stream number 2 Stream flow area = 8.400(Ac.) I Runoff from this stream = 12.565(CFS) Time of concentration = 16.73 mm. '.'RaThfall intensity = 3.324(In/Hr) Summary of stream data I Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 10.448 15.75 3..456 2 12565 1673 3.324 I Qmax(1) = 1.000 * 1 000 * 10.448) + 1.000 * 0.941 * 12.565) + = 22 277 I, .Qmax(2) ........ . .• . . .0 .962 * 1.000 * 10.448) + 1.000 * 1.000. * 12.565) + = 22 614 I Total of 2 streams to confluence Flow rates before confluence point _10.448 12.565 I Maximum flow rates at confluence using above data 22.277 22.614 Area of streams before confluence I :.U.... 6.100 8.400 .: . ..' . . Results of confluence: :. Total flow rate = 22 614(CFS) Time of .concentration= 16.735 mm. . Effective stream area after confluence = 15.100.(Ac.) I ... Process from Point/Station 222.000 to Point/Station 223.000 PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 270 67(Ft ) . • Downstream point/station elevation = 270.00 (Ft.) Pipe. .length = 16.00(Ft4 Manning's N = 0.013 I .. •O of:pipes = i Required pipe flow = 22.614(cFs) Given pipe size = 24.00(In.) . • Calculated individual pipe flow = 22.614(CFS) . I Normal flow depth in pipe = 11 84(In ) Flow top width inside pipe = 24.00(In.) Critical Depth = 20 34(In ) Pipe flow velocity = 14.65(Ft/s) ...:Travel time through pipe =, 0.02 mm. Time of concentration (TC) = 16.75 mm. I I . Process. from Point/Station 223.000to Point/Station . .• 205.000 **** OW IPEFL TRAVEL TIME (User specified size) 1 :Upstream.pojnt/station elevation = 269.67(Ft.) . . ... .:.ownStream:point/station elevation = 263.33(Ft..).: ..'PiP :leflgth 450.00(Ft.). Manning's.N = 0.013 No. :o.fpipes = .1 Required pipe flow. = 22.614(CFS) . I :Given pipe size = 24. 00(In.) . 0 Calculated: individual pipe flow = 22.614(CFS).. 0 Normal flow depth in pipe = 16 88(In ) I .Flow top width inside pipe = 21.93 (In.) •. ... Critical Depth = 20 34(In ) Pipe.. flow velocity .= 9.58(Ft/s) .. . 0 Travel time through pipe = 0.78 min. I Time of concentration (TC) = 17.54-min. I .. Process from Point/Station 205.000 to Point/Station .205.000 CONFLUENCE OF MAIN STREAMS I . .The..follow.ing data inside Main Stream is listed: : In Main Stream number: 2 0 Stream flow area = 15.100(Ac.) 0 I . • Runoff from this stream =22.614(cFs) 00 Time of concentration = 17.54 mm.. Rainfall intensity = 3.225(In/Hr) Program isnow starting with Main Stream No. 3 I . Process from Point/Station 270.000 to Point/Station 271.000 ****..INITIAL AREA EVALUATION **** I User specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 70.00(Ft.) Highest elevation = 283.50(Ft.) 0 Lowest elevation = 281.60(Ft.) I .Elevation difference = 1.90(Ft.) Time..of concentration calculated by -the urban areas overland flow method (App X-C) = 2.16 mm. I . TC = .(1.8*(]..1_C)*diStaflCe".5)/(% slope "(1/3)) H 0 TC=(1.8*(i.1-0..9000)*( 70.00A.5)/( 2.7l'(1/3)]= 2.16 Rainfall intensity (I) = 12.453 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 I Subarea runoff = 2.242(CFS) Total initial stream area ,= 0.200(Ac.) 1 Process from Point/Station. 271.000 to Point/Station 272.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *** Top of. street segment elevation = . 281.600(Ft.) End of street segment elevation = 267.500(Ft.) :Leth of. street segment = 990.000(Ft.) Height Of curb above gutter flowline = 6.0(In.) I....................... Width of half street (curb to crown) = 53.000(Ft.) ,...bstance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 .. .. ..: Slope. from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street : :I.Di.stance from curb to property line = 10.000(Ft.). ......:SlPP from curb to property line (v/hz) = 0.060 . Gutter width =3. 500(Ft ) Gutter.hiké from flowline = 2.000(ln.) Manning.'sN in gutter = 0.0150 .. . . . I . .. •: .'• . Manning's N from gutter to grade break = 0.0150 S Manning's N from grade break to crown = 0.0160 . . ..Estimatéd:mean flow rate at midpoint of street = . . 10.648(CFS) Pepthof: flow =0.475(Ft.) . Average velocity = . 3.595(Ft/s) . ... .Street-flow-hydraulics at midpoint of street travel: . Haifstreet flow width = 16.909(Ft.) . . .. . .:Flow velocity = 3.59(Ft/s) . .. ,. . . Travel time = 4.59 mm. TC = . 6.75 mm.. . •. Addng area flow to street .. . I .•• User specified 'C' value of 0.850 given for subarea : Rainfall intensity = 5.971(In/Hr) for a 100.0 year storm RunOff: coefficient used for sub-area,. Rational method,Q=KCIA, C = 0.850 .• Subarea runoff = 7.613(CFS) for 1.500(Ac.) : .Total.runoff =. 9.855(CFS) Total area = 1.70(Ac,) Street. flow, at end of Street = 9.855(CFS) . Half street. flow at end of street = 9.855(CFS) . Depth of flow = 0 • 464 (Ft.) Aierage velocity = 3.536(Ft/s) Flow width (from curb towards crown)= 16.385(Ft.) Process from Point/Station 272.000 to Point/Station 272.000 I . .**.**..CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 I . Stream flow area = 1.700(Ac.) Runoff from this stream = 9.855(CFS) Time of concentration = 6.75 mm. Rainfall intensity = 5.971(In/Hr) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I .process from Point/Station 273.000 to Point/Station 274.000 INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea I Initial subarea flow distance = 100.00(Ft.) Highest elevation 288.90(Ft.) elevation = 285.70(Ft.) I Elevation difference = 3.20(Ft.) Time. ofconcentration calculated by the urban areas overland flow method (App X-C) = 3.05 mm. I TC = (1,.8*.(1.1_C)*distance".5)/(% slope A(1/3)) .TC = [1.8*(1.l-0.8500)*(100.00.5)/( 3.20'(1/3))= 3.05 Rainfall .intensity (I) = 9.958 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 I Subarea runoff = ]. 185(CFS) Total-'. initial stream area = 0.140(Ac.) I I . Processfrom.Point/Statiofl 274.000 to Point/Station 272.000 ****,-STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 285.700(Ft.) End of street segment elevation = 267.500(Ft.) :Length of.street segment = 1015.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 .....Slope-from .. .Slope from grade break to crown (v/hz) = 0.020 street flow is on (1) side(s) of the street Distance from curb to property line = 10.000(Ft.). Slope from curb to prOperty line (v/hz) 0.020 Gutterl width = 1.500 (Ft.). Gutter hike from flowline = 2. 000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 :M ing'sN from grade break to crown = 0.0150 S Estimated mean flow rate at midpoint of street = 7.407(CFS) Depth Of flow = 0.410(Ft.) Average velocity = 3.771(Ft/s) Streetfiow hydraulics at midpoint of street travel: :Ha1ftreetflow width = 13.643(Ft.) Flow velocity = 3.77(Ft/s) . : Travel :time = 4.49 mm. TC = 7.54 mm. Adding area flow to street User specified 'C' value of 0.850 given for subarea Rainfall intensity. = . 5.559(In/Hr) for a 100.0 year storm Runoff cOefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 6.946(CFS) for 1.470(Ac.) Total runoff = 8.131(CFS) Total area = 1.61(Ac.) Street flow at end of street = 8.131(CFS) Half street flow at end of street = 8.131(CFS) Depth of flow = 0.4.2.0(Ft.) Average velocity = 3.846(Ft/s) Flow width (from curb towards crown)= 14.183 (Ft.) Process from Point/Station 272.000 to Point/Station 272.000 ****.CÔNFLUENCE OF MINOR STREAMS **** .Along Main Stream number: 3 in normal stream number 2 Stream flow area = 1.610 (Ac.) Runoff from this stream = 8.131(CFS) Time of concentration = 5 7.54 mm. Rainfall intensity = S 5.559(In/Hr) Summary of stream data: Stream No. I I I I I I I I I I I I 1 I .5. I . Flow rate TC Rainfall Intensity (CFS) (mm) (In/Hr) 9.855 . 6.7S 5.971 2 8.131 7 54 5 559 Qmax (1) . . . . . I i 000 * 1.000 * 9 855) + •-.. : •:. •.., •1.000 * 0.895 * 8.131) + = . 17.13.4.. . .Qrnax(2).= . . . . .. .. . .... . .0 •931 * 1.000 .* . 9.855) + ... . . . I. ØØ * 1.000 ,* 8.131) + = :.. 17.307 Total of.2 streams to confluence: . .. I .Flow rates before confluence point: . 9.855 8.131 . . S. Maximum flow rates at confluence using above data: . I ... .'. 17.134 17.307 Area of streams before confluence: 1.700 1.610 of confluence: I . Results: Total flow rate = 17.307(CFS) . Time of concentration = 7.539 mm. Effective stream area after confluence = 3.310(Ac.) I ...................... 5 . . . Process. fromPoint/Station 272.000 to Point/Station 205.000 PIPE?LOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 265.00(Ft.) I Downstream point/station elevation = 264.40(Ft.) ..Pipe-length = 55.00(Ft.) Manning's N = 0.013 No..of pipes = 1 Required pipe flow = 17.307(CFS) I . Given pipe size = 18.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is .3.127(Ft.) at the headworks or inlet of the-pipe(s) I . .Pipe friction loss = 1.492(Ft.) Minor friction loss = 2.234(Ft.) K-factor = 1.50 Pipe flow.velocity = 9.79(Ft/s) I .Travel time through pipe = . 0.09 mm. Time of concentration (TC) = 7.63 mm. I Process from Point/Station . 205.000 to Point/Station 205.000 **** CONFLUENCE OF MAIN STREAMS I . The following data inside Main Stream is listed: In Main Stream number: 3 I . .Stream flow area = '3.310(Ac.) Runoff from this stream '= . 17.307(CFS) Time of concentration = 7.63 mm. Rainfall intensity = 5.515(In/Hr) I Summary.of stream data: Stream Flow rate . TC Rainfall Intensity No. (CFS) (mm). (In/Hr) 1 :50.379 . 14.21 3.695 I .2 22.614 . 17.54 . . 3.225 3 17.307 7.63 . 5.515 .Qmax(1) = I: •. . .. 1. 000 1.000.* . 50.379) + 1. 000 * 0.'810 -* .22.614) + 0.670 * 1.000 * 17.307) + = 80.292 0.873 * 1.000 * 50.379) + 1.000 * 1.000 * 22.614) + 0.585 * 1.000 * 17.307) + = Qmax(3) = 1.000 * 0.537 * 50.379). + 1.000 * 0.435* 22.614) + 1.000 * 1.000 * '.17.307) + = Total, of 3 main streams to confluence: Flow.rates before confluence .point: 50.379 22.614 17.307 ;Maxinum flow rates at confluence using above data: 8.0.292 76.714 ' 54.221 Area of streams before confluence: . .26.940. 15.100 3.310 76. 714 54.,221- Results of confluence: Total. flow rate = 80. 292 (CFS) Time of concentration = 14.205mm. Effective stream area after confluence = 45 350(Ac ) I ++±++++++++++•+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 205.000 to Point/Station 206.000 ****..PIPEFLOW TRAVEL TIME (User specified size) ** Upstream point/station elevation = 264.10(Ft.) Downstream-point/station elevation = 262.80(Ft.) Pipe length = 100.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 80.292(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = '80.292(CFS) Normal flow depth in pipe = 31.78(In.) ,'Flow..top width inside pipe = 23.16(m.) ' Critical Depth = 33.27(In.) Pipe' flow.velocity = 12.16 (Ft/s) ' Travel time through pipe = 0.14 mm. . ., Time of 'concentration (TC) = 14.34 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.00,0 to Point/Station .206.006 ,**** CONFLUENCE'OF MAIN STREAMS 'The-following data inside Main Stream is listed In Main Stream number 1 .$tréam.f low area = . 45.350(Ac.) . .. .. 'Runoff from this stream = RO. 292 (CFS) Time' of concentration = 14.34 mi 'Rainfall intensity ''-. '3.672(In/Hr) ' H • . Program is now starting with Main Stream No 2 ++++++++++++++++++++++++++H-++++++++++++++++++++++++++++++++++++*++-+ 'Process from Point/Station 280.000 to Point/Station •. 281.000 1- . ,. I I I I **** INITIAL AREA EVALUATION **** User.. specified 'C' value of 0.900 given for subarea initialsubarea flow distance = 100.00(Ft.) Highest. elevation = 281.20(Ft.) .Lowe . st elevation = 280.80(Ft.) Elevation difference 0.40(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.89 mm. TC [l.8*(l.l_C)*diStançe".5)/(% slopeA(l/3)) TC =.(1.8*(1.1_0.9000)*(100.00".5)/( 0.40"(1/3))= 4.89 Rainfall intensity (I) = 7.354 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 0.927(CFS) Total-'initial stream area = 0.140(Ac.) Process from Point/Station 281.000 to Point/Station 282.000 ****$TREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 280.800(Ft.) End of street segment elevation = 267.500(Ft.) Length of street segment = 900.000 (Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.060 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street = 5.262(CFS) Depth of flow = 0.387(Ft.) Average veloôity = 3.155(Ft/s) . Streetfiow hydraulics at midpoint of street travel: Halfstreèt flow width = 12.510(Ft.) . . .. . .Flowvelocity = 3 • 16 (Ft/s) 1. Travel time = 4.75 mm. TC = 9.64 mm. Adding area flow to -street . : • User '-specified 'C' value of 0.850 given for subarea . . Rainfall intensity = 4..744(In/Hr) for a 100.:0.yearstorm .RnOffcoefficient used for sub-area, Rational rnethod,Q=KCIA, C = 0.80 Stibareá runoff = 5.283(CFS) for 1.310 (Ac.).. . T0talr.1n01ff = 6.210(CFS) Total area = . .1.45(Ac.) Streetflowat end of street = 6.210(CFS) .. . Half street flow at end of street = 6.210(CFS) Depth of flow = 0.405(Ft...) 1 Average velocity =,. 3 • 260 (Ft/s) . . : F1ow.width (from curb towards crown)= 13.425(Ft.). . . • I . Process from Point/Station 282.000 to Point/Station 282.000 ****.CONFLUENCE OF MINOR STREAMS **** I I I I I I I Li I I I I I I I I I.. I I Along Main Stream number: 2 in normal stream number 1 I . :Stream flow area = 1.450(Ac.) :'Runoff from this stream = 6.210(CFS) Time of. concentration = 9.64 mm. Rainfall intensity = 4.744(In/Hr) I Process from Point/Station 290.000 to Point/Station 291.000 **** "INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea 'Initial, subarea flow distance = 100.00(Ft.) ..Highest elevation = 286.40(Ft.) ., Lowest elevation = 284.10(Ft.) Elevation difference =2.30(Ft.) . . . Time of concentration calculated by the. urban Areas overland flow method (App X-C) = 3.41 mm. Td ,'(1.'8*(1.1_C)*distanCefr'.5)/(% slope '(l/3)) .' .. T.0 =('1.8*(ll-08500)'*(l0000'%5)/( 2.3O' (l/3)]= , 3.41 Rainfall intensity (I) = 9.2.76 for a 100.0 year storm I Effective runoff coefficient used for area (Q=KCIA) is C = 0-850 Subarea runoff = 1 104(CFS) Total initial stream area = 0 140(Ac ) ProcCss':'.'from Point/Station 291.000 to Point/Station . 282.000 I , ' ****.,STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ':1 •Top of street segment elevation = . 284.100(Ft..)' 'End of" street segment elevation = 267.500 (Ft.) ;Length.of street segment = 970.000(Ft.) . Height of .curb above gutter flowline = 6.0(In.). 'Width' of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break Slope from gutter to grade break (v/hz) = 0.083.. Slope, from grade break to crown (v/hz) =0.020 I , ' Street flow is on (1] side(s) of the street. Dist'ancefrom curb to property line = 10.000(Ft.) S].opefrom curb.to property line (v/hz) =0.020' ''Gutter width = 1.500(Ft.) I Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 ' Manning's N from gutter to grade break = 0.0150 I . Manning's.N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.623(CFS) Depth Of flow = 0.400(Ft.) I ' Average velocity = 3.617(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 13.147(Ft.) Flow velocity =3.62(Ft/s) I .Travel' time 447 mm. TC = 7.88 mm. Adding area flow to street User specified 'C' value of 0.850 given for subarea I . ' Rainfall intensity = 5.404(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 :subarea runoff = 6.430(CFS) for 1.400(Ac.) - Total runoff = 7.534(CFS) Total area = 1.54 (Ac.) .::Street flow at end of street = 7.534(CFS) .áif. street flow at end of street 7.534(CFS) ..:.. : : -.'Depth Depth of flow =0 • 414 (Ft.) .Average.velocity = 3.716(Ft/s) •0 Flow width (from curb towards crown)= 13.875(Ft.) :. Process from Point/Station 282.000 to Point/Station 282.000 I .. ****.CONFLUENCE OF MINOR STREAMS **** Along Main Stream number 2 in normal stream number 2 I Stream flow area = 1 540(Ac ) . Runoff from this stream = 7.534(CFS) . .. Time of concentration = 7 88 min. Rainfall intensity = 5 404(In/Hr) I Summary of stream data ':. Stream. Flow rate Tc . Rainfall: Intensity No (CFS) (mm) (In/Hr) 1 6210 964 4744 2 7.534 7 88 5 404 Qmax.(l). = '•••''' 0 . . .' .• 1.000 * 1.0001 * 6.210) + I 0.878 * 1.000 * 534) + = 12.825 Qmax(2) = 1.000 * 0.817 * 6.210) + I 1.000 * 1.000 * 534) + = 12 610 Total of 2 streams to confluence ............:.Flow ätes before confluence point: I 6.210 7534 Maximum flow rates at. confluence using above data: . 12.825 12.610 . I .Area of streams before confluence: 1.450 1.540 . . Results of confluenôe: . . I . Total flow rate = 12.825(CFS) .' Time of concentration = 9.640 mm'. EffectIve stream area after confluence = 2.990(Ac.) I Process from Point/Station 282.000 to Point/Station 283.000 i . .****PIPEFLOW TRAVEL TIME (User specified size) **** U Upstream point/station elevation = 263.80(Ft.). I Downstream point/station elevation = 263.50(Ft.) .pipe length = 14.00(Ft.) Manning's N = 0.013 of pipes = 1 Required pipe flow = 12.825(CFS). Given pipe size = 18.00-(In.) I Calculated individual pipe flow = 12.825(CFS) Norma1.flw depth in pipe = 12.56(In.) :Flow.top width, inside pipe = 16.53(In.) I Critical Depth 16.13 (in.) Pipe flow velocity 9,74(Ft/s) , .Travel time through pipe = 0.02 mm. 'Time of concentration (TC) = 9.66 mm. I '. ..• . . I I Process from Point/Station 283 000 to Point/Station 206.000 ...****,.IMPROVED CHANNEL TRAVEL TIME **** I Upstream point elevation = 263 50(Ft ) :Pownstrea'n.point elevation = 261..80 (Ft.) . . Channel.,length thru subarea = 75 00(Ft ) I . Chaflflél base width 1.000(Ft.) Slope or 'Z' of left channel bank .= 1 000 Slope or 'z' of right channel bank = 1.000 Manning's 'N' = 0 015 Maximum depth of channel = 1 000(Ft ) Flow(q) thru subarea = 12 825(CFS) I Depth of flow. = 0 812(Ft ) Average velocity = 8.,712 (Ft/s) Channel flow top width = 2 625(Ft ) Flow Velocity .= 8 71(Ft/s) I mm Travel time = 0 14 ..Time of:concentration = 9.81 mm-. Critical depth = 1 156(Ft ) . .:process from Point/Station 206.000 to Point/Station 206.000 **** CONFLUENCE OF MAIN STREAMS * The following data inside Main Stream is listed I ...In Main Stream number: .2 Stream flôware = 2.990(Ac.) . Runoff from this stream = 12 • 825 (CFS) I .. Time of- concentration = 9.81 -mm. Rainfall intensity = 4 692(In/Mr) Summary of stream data I Stream Flow rate TC Rainfall Intensity No. . (CFS) -. (mm) . (In/Hr) I •i• 86.292 14.34 3.672 2. . 12.825 9.81 4.692 Qmäx(1) . .. I .. . 1.000 * 1.000 *- 80.292) + 0.783 * 1.000 * 12.825) + = 90.328 Qmax(2) = . I l 000 * 0 684 * 80 292) + 1 000 * 1.000 * 12 825) + = 67 727 °Totálôf 2 main streams to confluence: I Flow rates before confluence point: 80.292 12.825 • Maximum flow rates at confluence using above data: I . •90.328 67.727 Area of streams before -confluence:. - 45.350 • 2.990 Results of confluence: Total. flow rate = • 90.328(CFS) I Time of concentration = 14.'342 mm Effective stream area after confluence = 48.340(Ac ) I I Process from Point/Station 240 000 to Point/Station 241 000 INITIAL AREA EVALUATION **** .1 . ' 'Deciaai.fraction soil group A = 0.000 I :.. Decimal ' fraction soil group B =. 0.000 .. . ••' ..:'.:.pecimal.eraction soil group C = 0.000 . . . ..., . ..............Decia1 fraction soil group D = 1.000 . . • 0 I .; (RURAL(greater than 1/2 acre) area type ] . ... . Time of concentration computed by the natural watersheds nomograph (App X-A) . .. . . I.. TC = (1.9*1eflgth(M1)A3)/(e1eVati0n,change)]A.385*60(min/4r) + 10 x :.nitjal subarea flow distance = 1025.00(Ft.) •' : Highest elevation = 322.00(Ft.) 0 0 •• twest'.elèvation = 289.80(Ft.) . . I . Elevation difference =32.20(Ft.) : ITC=((1i..9*0.1941'3)/( 32.20)]'.385= 6.16 + 10 mm'.. = 16.16 mm." Rainfall intensity (I) = 3.400 for a 100.0 year storm. I :•Effective.runoff coefficient used for area (Q=KCIA) is C = 0.450 S,tibarea runoff = 7.803(CFS) Total initial stream area = 5.100(Ac.) . I .. ..'. Process, from Point/Station 241.000 to Point/Station 252.000 I :,•**** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 289.80(Ft.) Downstream. point/station elevation = 1 286.00(Ft.) . . ,Pipe..iength =. 15.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.803(CFS) .:Given.pipe size = 24.00(In.) . I . Calculated individual pipe flow = 7.803(CFS)' Normal flow depth in pipe = . 4.25(In.) Flow .top 'Width inside pipe = 18.33(In.) I . Critical Depth = 11.93 (In.) . . Pipe 'fiow'velocity = 20.74(Ft/s) Travel ,time through pipe = 0.01 mm. Time of concentration (TC) = 16.17 Thin.. +++++'+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ . Process from Point/Station 252.000 to Point/Station 252.000 *'***CONFLUNçE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 I , Stream flow area = 5.100(Ac.) ....unofffrom this stream = 7.803(CFS) T.imueof concentration = 16.17 Thin. ...Rainfall-intensity Rainfall intensity = 0 3.398(In/Hr) 0 ++++f+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.+ Proôess from Point/Station 250.000 to Point/Station 251.000 INITIAL AREA EVALUATION **** 1 Li User specified 'C' value of 0.700 given for subarea Initial, subarea flow distance = 325 00(Ft ) : lHighest elevation = 317.00(Ft.): :Iwest elevation = 300.00(Ft.) S .Elevation difference = 17.00(Ft.) : I : Time of concentration calculated by the urban xareasoverland flow method (App X-C) = 7.48 mm. TC= (1.8*(1.1_C)*distance'.5)/(% slopeA(l/3)) .TC(.l.8*:(l.l_0.7000)*(325.00.5)/( 5.23'(1/3))= 7.48 Rainfall intensity (I)= 5.589 for a 100.0 year storm . .::Effect.ive runoff coefficient used for area (Q=KCIA) is C = 0.700 Subarea runoff = 1.956(CFS) Total initial stream area = 0.500 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station . 251.000 to Point/Station 252.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I . Top of. street segment elevation = 300.000(Ft.) Endofstreet segment elevation = 288.900(Ft.) Length.óf street segment 800.000(Ft.) I :. :Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 53.000(Ft.) Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 I . . slope from grade break to crown (v/hz) = 0.020 Street.flow is on (1] side(s) of the street Distance from curb to property line = 10.000(Ft.) I :. Slope from curb to property line (v/hz) = 0.060 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) I .: Manning's N in gutter = 0.0150 "Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0160 Estimated mean flow rate: at midpoint of street = 4.871(CFS) Depth of flow = 0.382 (Ft.) Average velocity = .3.031(Ft/s) Streetflow hydraulics at midpoint of street travel: I ...Halfstreet flow width = 12.266(Ft.) Flowvelocity = 3.03(Ft/s) Travel-.time = 4.40 mm. TC = 11.88 mm. Adding area flow to street I . User specified 11 value of 0.790 given for subarea Rainfall intensity = 4.147(In/Hr) for a 100.0year.storm Runoff coefficient used for sub-area, Rational method,Q=KCIA,. C = 0.790 I . ••• ..Subaréa:runoff 4.881(CFS.) for 1.490(Ac.) . ;Total runoff = 6.837(CFS) Total area = . . 1.99.(Ac) Street. flow at end of street .= 6.837 (CFS) . Half-:street flow at end of street = . 6.837(CFS). . I ...Depth of:flow = 0.420(Ft.) . . . . .: •.• .. . Average velocity = 3 241(Ft/s) Flow width (from curb towards crown)= 14 166(Ft.) I I Process from Point/Station 252 000 to Point/Station 252.000 **** CONFLUENCE OF MINOR STREAMS **** :: :Along Main Stream number: . 1 in normal stream number -2 : I '. .... . S . .. .... . . .. 'b.",' stream.flow area = 1.990 (Ac.) Runoff from this stream = 6.837(CFS) :.'. 'Time 'of. concentration =, 11.88 mm. Rainfall. 'intensity = 4.147(In/Hr) .,'Summary 'of stream data: I Stream Flow rate TC Rainfall Intensity No (CFS) (mm) (In/Hr) I 7.803 1617 3.398 .2. '. 6.837 11.88 4.147 I , Qmax(1) = • 1.000 * 1.000 * 7.803) + .0.820 * . •000 * 6.837) + = 13.407 Qmax(2) = . 1•000 *0.734 * 7.803) + 1.000* 1.000 * 6.837) + = • 12.569 I ' 'Total of' 2 streams to confluence: Flow rates before confluence point: 7.803 6.837 I . Maximum flow rates at confluence using above data: 13,.407 12.569 ,Area. óf streams before confluence: 5.10.0 , 1.990 Results of confluence; , 'Tota'l'flow rate 13.407(CFS) S 'T1me. Of concentration 16.170 mm. Effective stream area after confluence = 7.090 (Ac.) "Process frOm 'Point/Station'252.000 to Point/Station 263.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 285 67(Ft ) Downstream point/station'elevation = 267.90(Ft.) Pipe.length = 133.00(Ft.) Manning's N = 0.013 No.. of -pipes. = 1 Required pipe'.flow = I3.40'7.(CFS) I Given pipe size = 24 00(In ) Calculated individual pipe flow = 13 407(CFS) Normal flow depth in pipe = 6.53(In.) I Flow top width inside pipe '= 21 36(In ) Critical Depth = 15 81(In ) :P'ipe..'flOw velocity = ' 19.36(Ft/s) .. . . Travel time -through pipe = 0.11 nun I Time of concentration (TC) = 16.28 nun I Process from Point/Station 263.'000 to Point/Station 263 000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: .1 in' nora1 'stream number 1' ' Stream flow area = 7 090(Ac ) I Runoff from this stream = 13 407(CFS) Time of concentration = 16.28 mm. . . ' • Rainfall intensity = 3.383 (In/lir) I I. 'rocess from Point/Station 260.000 to Point/Station 261.000 INITIAL AREA EVALUATION **** F : .User 'specified 'C' value of 0.900 given for subarea Initial subarea flow distance = 100.00(Ft.) Highest elevation = 305.80(Ft.) LoweEt'. elevation = 305.50(Ft.) Elevation difference = 0.30(Ft.) Tjme.of concentration calculated by the urban areas' overland flow method (App X-C) = 5.38 mm. I .TC . (1,.8*(1.1-C)*diStanCe".5)/(% slope" (1/3)) :.:..,.'=.'.(1.8*(1.10.9000)*(100.00fr.5)/( 0.30'(1/3))= 5.38 .,.Rainfall-intensity (I) = 6.913 for a 100.0 year storm .'Effective' runoff coefficient used for area (Q=KCIA) is C = 0.900 'Subáreá runoff = 0.871(CFS) . . Total Initial stream area = 0.140(Ac.) I Process from Point/Station 261,000 to Point/Station 262 000 . I.:'. :. **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *'* Top of street segment elevation = 305 500(Ft ) End of street segment elevation = 286 400(Ft ) .:'.ngth.of.street segment = 810.000(Ft.) ...........eight' of curb above gutter flowline = 6.0 (in.) . Width 'of. half street. (curb to crown) = 53. 000(Ft.) . I .... Distance from crown to crossfall grade break = 51.500(Ft.) Slope from gutter to grade break (v/hz) = 0.083 . H'Slope from. grade break to crown (v/hz) = 0.020., . .. Stréet"flow''is on (1) side(s) of the street •. I. :':D1Sta!Ce"fr0m curb to property line = 10.000(Ft.) . Slope from curb to property line (v/hz) = 0 060 Gutter width = 1.500(Ft.) . . . I .... . Gutter: hike from flowline = 2.000(In.)' . Manning's N in gutter = 0.0150 ...Manning's'N from gutter to grade break = 0.0150 . I ... Manning's N from grade break to crown = 0.0160 Estimated mean flow rate at midpoint of street = .4..511(CFS)' Depth'of flow = 0.348 (Ft.) Average velocity = 3.710(Ft/s) I ."H Streetflow hydraulics at midpoint of street travel: aifstreet flow width = 10.552(Ft.) . . Flow, velocity = 3.71(Ft/s) I ' Travel' time = 3.64 min. TC = 9.02 mm. Adding area flow to street User specified 'C' value of 0.850given for subarea Rainfall intensity = 4.953(In/Hr) for a 100.0 year storm I "Runoff coefficient used for sub-area, Rational .methód,Q=KCIA, C = 0.850 Subarea runoff = . 4.926(CFS) for 1.170(Ac.) runoff = 5.797(CFS) Total area = .1.31(Ac.) I . Street flow at end of street = .5.797(CFS) Half' street flow at end of street = 5.797(CFS) Depth of flow = 0.372 (Ft.) ..Averag1e'velocity = 3.883(Ft/s) I . Flow width (from curb towards crown)= 11.791(Ft.) I 13.407 :2 : 5.797 Qmax(1) = 1.000 * • 0.683 * Qmax(2) = 16.28 9 .03 1.000 * 1.900 * 3 .3 83 4.950 - 13.407). + 5.797) + •=. 17.368 I . +++++.+++++++++++++++++++++++++++++++++++++++++++++++++ : •prcéss from Point/Station 262.000 to Point/Station 263.000 I *** PIPEFWW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 282 50(Ft ) . Downstream point/station elevation = 268.10(Ft.) .P.ipe..legth =16.00(Ft.) Manning's N = 0.013 :. :.:No:. of pipes = 1 Required pipe flow = 5.797(CFS) I .. :.:. Given pipe size =18.00(In.) alc4ated individual pipe flow = 5.797(CFS) . ...Normal-,flow depth in pipe = 2..95(In.) Flow top width inside pipe = 13 32(In ) I s... critical Depth = 11.15(In.) .. . Pipe flow velocity = 30 74(Ft/s) Travel time through pipe = 0.01 mm. . . . Time of concentration (TC) = 9.03. min. I Process from Point/Station 263.0'00 to Point/Station 263 000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number 1 in normal stream number, 2 Stream flow area = 1 310(Ac ) Runoff from this stream = 5.797(CFS) I Time of concentration = 9 03 mm Rainfall intensity = 4 950(In/Hr) Summary of stream data I Stream Flow rate TC Rainfall Intensity No (CFS) (nun) (In/Hr) 1.000 * 0.554 * 13.407) + 1.000 * 1.000 * 5.797) + = 13.227 Total of 2 streams to confluence: Flow rates be,fore confluence point: •• 13.407. 5.797 . • • . . Maximum flow rates at confluence using above data: 17.368 13.227 . .Area of streams before confluence: 7.090 1.310 . Resu1ts of confluence: Total flow rate = 17.368(CFS) . Timeof concentration = 16.285 mm. Effective stream area after. confluence = .8.400 (Ac.) ++++H++++-I+++++++++++++±-+++++++++++++++±+++±+++++++++±±+++++++++ Process from Point/Station 263.000 to Point/Station 264.000 **** .PIPEFLOW TRAVEL TIME (User specified size) **** • Upstream point/statIon, elevation = 267.90(Ft.) I I I I - I I I I Downstream point/station elevation = 262 00(Ft ) I Pipe length = 42 00(Ft ) Manning's N = 0 013 No of pipes = 1 Required pipe flow = 17 368(CFS) Given pipe size = 24 00(In ) Calculated individual pipe flow , = 17 368(CFS) I Normal flow depth in pipe = 7 37(In ) Flow top width inside pipe = 22 14(In ) -Critical Depth = 18.02(In.) . . :. I . Pipe flow velocity = ..21.22(Ft/s) . . . .. .. Travel time through pipe= 0.03.min. . . . . . . Time of concentration (TC) = • • 16.32 mm. • . 'End 'of computations, total study' area. ,= 56.74 (Ac.),. I San Diego County Rational Hydrology Program U Civi1CADD/CivilDESIGN Engineering Software, (c) 1990 Version 2.3 Rational method hydrology, program based on I San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date 9/24/90 I ... ELCAMINQ REAL/PALOMAR AIRPORT ROAD . ----------------------- .300 AREA BASIN STUDY .. . . ........Fl . LENAXE: . EIAM3 . I .L,2001 4.. .JOB# 10365 . 9/24/90 ------------------------------------------------------------------- . ********* Hydrology Study Control Information ********** . Rational hydrology study storm event year is 100.0 Map data precipitation entered: . . .1 I .6 hour, precipitation(inches) = 2.750 .24 hôurprecipitation(inches). = 4.600 . . Adjusted .6 hour precipitation (inches) = 2.750 I . . . P6/P24 = . 59.8% . . . San Diego hydrology manual 'C' values used Runoff. cóefficients'by rational method 0 0 : ************** I N P U T. D A T- A L I S T I N G ************ . Element Capacity Space Remaining= 360 I :. Element.Points and Process used between Points Upstream . Downstream Process : I Number. 300.000 301.000 Initial Area 2 . 301.000 .• 302.000 . Pipeflow Time(üser inp) 0 302.000 303.000 0 Pipeflow Tiine(user inp) 303.000 . 303.090 . •0 Confluence I J5 0 . 310.000 311.000 . Initial Area .6 . . 311.000 • 312.000 .Pipeflow Time(user inp) I . 7 0. 312.000 . 303.000 . .8 . 303.000 303.000 . Pipeflow Tiine(user Confluence inp) End of listing........... .00 T •. . . I I San Diego County Rational Hydrology Program I CivilCADD/CivilDESIGN Engineering Software, (c) 1990 Version 2.3 I Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual .0, Rational Hydrology Study .. Date:. 9/24/90 .• 0 'EL' .CANINO REAL/PALOMAR AIRPORT ROAD 300 AREA BASIN STUDY 0 0 FILENAME: .ELCAM3' I . .:L 2.004 JOB# 103,65 9/24/90 0 ********* Hydrology Study Control Information ********** 'Rational hydrology study storm event year is 100.0 I ......0-hour, Map data precipitation entered 6 hour, 'precipitation(inches) = 2.750 '24hàur'preciitation(inches) = 4.600 Adjusted 6 hour precipitation (inches) = 2.750 0 'P6/P24 , ' 59.8% . . ,o San Diego hydrology manual 'C' values used Runoff coefficients by rational method I •. •0• I Process ' from Point/Station 300.000 to Point/Station 301.000 .*,***.INITIAL AREA EVALUATION **** U User. specified 'C' value of 0.730 given for subarea ...Initial-.subarea flow distance = 325 00(Ft ) Highest elevation = 320.00(Ft.) ......' ...Lowest elevation = 307.00(Ft.) Elevation difference, = 13.00(Ft.) . Time of concentration calculated by the urban ,0 '• ..áreas.'overland flow method' (App X-C) = , 7.56 mm. ' I...... . TC = .(1.8*0(1.1_C)*distanceA,5)/(% slope '(l/3)) 0 TC = (1 8*(1.l-0 7300)*(325 00" 5)/( 4 00"(1/3))= 7 56 Rainfall intensity (I) = '5.548 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.730 I ..000000 '0 Subarea runoff = . 1.539(CFS) 0 ' '0," ' Total initial stream area = 0 380(Ac ) I Process from Point/Station 30.1+000 to Point/Station 302 000 I **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 302 50(Ft ) Downstream point/station elevation = 302 00(Ft ) I Pipe length = 32 00(Ft ) Manning's N = 0.013 0• .........' '-No-...' o ppés = 1 Required pipe flow = . 1'.539(CFS) o _:..Given. pipe size = 18 00(In ) I Calculated individual pipe flow..= 1 539(CFS) Normal flow depth in pipe '= 4 16(In ) Flow top width inside pipe = 15 18(In ) Critical Depth = 5 58(In ) Pipe flow velocity = 4 98(Ft/s) S .'Travel'.time through pipe = 0.11 mm. . Time of concentration (TC) = 7.67 min.F I Process from Point/Station 302.000 to Point/Station ' 303.000 **** PI'PEFLOW TRAVEL TIME (User specified size) .**4:*, I . 'Upstream point/station elevation = 301.67(Ft.) Downstream point/station, elevation = 293.00(Ft.) Pipe length = 440.00(Ft.) Manning's N = 0.013 I . No'. of pipes = 1 Required pipe flow = 1.539(CFS) Given'.pipe size ' 18.00(In.) 'Calculated individual pipe flow = , 1.539(CFS) Normal .f low depth in pipe = ' 3.93(In.) I .. ...F'low'top width inside pipe = 14.87(In.) Critical Depth = 5.58(In.) 'pipe '.flow velocity = . .5.40(Ft/s) Travel 'time through pipe = 1.36 mm. Time of concentration (TC) = 9.03 mm. 'Process from Point/Station 303.000 to Point/Station 303.000 *.*** CONFLUENCE OF MINOR STREAMS I - . "Along. 'Main Stream number: .1 in normal stream number 1 ........'Stream' flow area = 0.380 (Ac.) :Runoff from this stream =1.539(CFS) Time of concentration = 9.03 mm. .'Rainfall intensity = 4.949(In/Hr) Process from Point/Station 310.000 to Point/Station 311.000 INITIAL AREA EVALUATION 'User specified 'C' value of 0.700 given for subarea .'Initial subarea flow distance. = 775.00(Ft.) ' 'Hlghest,elevation.= 322.00(Ft.) ,-Lowest elevation = 314.00(Ft.) Elevation difference = 8 00(Ft ) I Time of concentration calculated by the urban s 'area"overland flow method (App X-C) = , 19.83mm.. TC = (l.8*(l.l-C)*distance' 5)/(% slope '(1/3)] 'TC. '= ('1.8*(1.1_0.7000)*(775.00A.5)/( .1.'03"(1/3)]='. '19.83 Rainfall-.intensity (I) = 2.979 'for a 10.0.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0 700 ":Subarea 'runoff = 7.716(CFS) I Total initial stream area = 3 700(Ac ) I Process from Point/Station 311.000 to Point/Station 312,000', PIPEFLOW TRAVEL TIME (User specified size) **** -Upstreani.'point/station elevation = 310.00(Ft.) .'.Downstream..point/station elevation = '306.00(Ft.) Pipe 'length = 80.00(Ft.) Manning's N = 0.013 ,; No. of pipes i--.1 Required pipe flow = 7 716(CFS) Given pipe size = 24.00(In.) I Calculated individual pipe flow = 7 716(CFS) Normal flow depth in pipe = 6 33(In ) ...........iow to Width inside pipe 21.16(In.) . I l: Critical Depth = 11.86(In.) . S ':.'.Pipe flow, velocity = " 11.64(Ft/s) Travel, time through pipe = 0.11 mm. of concentration (TC) : 19.95 mm. I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from-Point/Station 312 000 to Point/Station 303 000 **** PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation = 305 67(Ft ) I Downstream point/station elevation = 293 00(Ft ) Pipe length = 27 00(Ft ) Manning's N = 0.013 No. of pipes =l Required pipe flow = 7 7i.6(CFS) '':..Givenpipe.size =24.00(In.) .. '. . Calculated individual pipe flow, = 7 716(CFS) Normal flow depth in pipe = '3.'64 (In ) I Flow top width inside pipe = 17 22(In ) Critical Depth = 11 86(In ) Pipe flow velocity = 25 67(Ft/s) Travel time through pipe = 0.02 mm I Time of concentration (TC) = 19 97 min. I +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++ Process from Point/Station 303.000 to Point/Station 303.00.0' **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number 1 in normal stream number 2 Stream flow area =. 3.700(Ac.) . Runoff from this stream = 7.716(CFS) 1.. .. ': .Time,of concentration = 19.97 mm. Rainfall intensity = 2.966(In/Hr) ... Summary of, stream data: ' I . ' Stream Flow rate. TC Rainfall Intensity No. . (CFS) •. (mm) S (in/Hr) 1.539 . 9.03 4.949 2 •. ' • 7.716 19.97 2.966 '. • I. . ' Qmax(1) = 1. 090, 1.000 * 1.539) + . . . • ..".' • 5 1.000 * 0.452 * 7.716) + = • 5.028 • :.. ,:Qmax(2) 'Q.599•*' 1.000 * 1.539) + 1.000 * 1.000 * 7.716) + = , 8.638 :Total of2streams to confluence: . . Flow rates ,before confluence point: 1.539 S 7.716 I . Maximum flow rates 5.028 at confluence using 8.638 above ,data: Area of streams before confluence: 0.380 3.700 I,. — -. — — — — — — — — — — — — -S — — — CATCH BASIN'DESIGN TABLE SHEET. I -F.._Zl VIA ___ S .. JOB HO. i fchno9ics .IOQ CAM DY____________ DATE lo on At;~loj S . •:. . OPt)iJ( iTnIET LIE STA' JL CM IN .1: AREA HO o"o AC GRADE CFS $TIEET' DEPTH Y Fr, . OUTTtR OLPRE$$ION GRATE CFS cuRbl CFS INLET LENGTH FT BYPASS CFS HOlES -i " Z Z 73 07 033 7 j c 1.67 S 4Z 033 I Q 4~2 OF pj, /35 37 c97 033 - 033 (-104 .7 C? 311 07 37 o.33. iI5I-z 15 3. Z, i - •.. S ___ ___ ____ . 3 0.33 Z9 I ___ ___ i•°5 7.' ___ __ ____ . 1 lt -Isa /5 ?-.11 /z...fz. 401.3 -- IZ.3 ____ S S . S . _____ _____ -g-, 15 AN ruci I)L7p. z-i' _____ - - ______ ______ ______ _______ ______ ______ ______ ______ ______ . IJ6A,J0. I P&DTochnologios IT=- JOB uo. CALC. uv_ DATE GRATE CURB INLIT BYPASS MINIM JIM - • _ I1I- I N IMEM- MAIN IMMINNIMEM -- -- p -- 1 EXHIBIT I I \I rs TO Ilk 4.1 - Zia - 'A' I • ' ,, r 1JI I Ir • - I. -'!'"' - - — -- .' 1: ' 4 I • - ,. A - I ( iu 1/• -- 1' I '.,wI I., .: .' _-- - --- - - - . I -. o - I 44 BW dr 4 04 ob I • /1,rli Idrj aw 73 Jft It. Sw lb - . h jr • - , rl .'-' . ..w. • _____ -. - . p S ' - . I .. -. . -- -.- - - • - - •" - ,— - a - -•- -.- -• .-• - 's _.l S I I I' I - •• .-. - - I • ,.'--'_ I -)}i •• vp op At of a If-I' - - .•.. --• .-. -•- . -.• ;•. • a • • a ,1 . I • " ;• ,, ----e I • I S S A t - 'Olt ' ,4LOMAR AI10RT 1'D / p_I 1 - I c