Loading...
HomeMy WebLinkAbout3866; LAKE CALAVERA BOARDWALK & WETLAND MITIGATION; STRUCTURAL ENGINEERING CALCULATIONS; 2016-09-21ENGINEERING CALCULATIONS PROJECT: Lake Calavera Park Restroom 18662 PROJECT LOCATION: Tamarack Ave. Carlsbad, CA 92010 PSE PROJECT NUMBER: Romtec 216-62 DATE: September 21, 2016 BY: Nabil Taha, Ph.D., P.E. 250-A Main Street E-Mail: info@stmcture1.com ph. (541) 850-6300 Klamath Falls, OR. 97601 Web: www.structurel.com fax (541) 850-6233 Precision Structural Engineering, Inc. Subject: Page: References / Software: 10-99 Design Criteria: 100-199 Roof Framing Analysis & Design: 1,000-1,999 First Floor Framing Analysis & Design: 2,000-2,999 Lateral Analysis & Design: 3,000-3,999 250-A Main Street E-Mail: fo@sce1.com ph. (541) 850-6300 Klamath Falls, OR. 97601 Web: www.structurel.com fax (541) 850-6233 Precision Structural Engineering, Inc. /0 References: 1- Literature: 2013 California Building Code (CBC) based on the 2012 International Building Code (IBC). Design of Wood Structures, Donald E. Breyer 4th ED. Masonry Designers' Guide, TMC 5th Edition 2- Software: RISA 3D Version 14.0, RISA Technologies 26212 Dimension Dr. Suite 200 RISA Foot Version 4.0, RISA Technologies, 26212 Dimension Dr. Suite 200 Wood Works Design Office Version 10.0, American Forest & Paper Association 250-A Main Street E-Mail: info@structurel.com ph. (541) 850-6300 Klamath Falls, OR. 97601 Web: www.structurel.com fax (541) 850-6233 /00 Precision Structural Engineering, Inc. 1- Location: - 2- Seismic: Design Criteria: Tamarack Ave. Carlsbad, CA 92010 (Lat. 330 10,14" Long. 1170 17' 15") RC II, SOC D Site Class D Ss 1.061 Si 0.411 SDS 0.761 SD1 0.435 IE 1.0 R 5 3- Wind: Deflection Criteria: Basic wind speed Exposure RC 20 psf 1500 psf DL Floor: LL Floor: DL Roof: Exterior Walls: Floor LL Deflection: Roof IL Deflection: 110 mph (3s.gust) C II 15 psf 40 psf 10 psf 81 psf L/48 0 L/180 Roof Live Load: Soil Bearing Capacity: Gravity Loads: **Other criteria assumed as stated in design calculations. 250-A Main Street E-Mail: info@structurel.com ph. (541) 850-6300 Klamath Falls, OR. 97601 Web: www.structurel.com fax (541) 850-6233 /02 USGS Design Maps Summary Report User-Specified Input I Report Title Lake Calavera Park Restroom Fri September 16, 2016 21:21:49 UTC Building Code Reference Document ASCE 7-10 Standard I (which utilizes USGS hazard data available in 2008) Site Coordinates 33.17070N, 117.28740W Site Soil Classification Site Class D - "Stiff Soil" Risk Category 1/11/111 -. •. -- -: - ............. .. . --•. - ........... .5 . . •. . . ..'5_,•' . . r'4 - . .-..• .•. .. . j . . ........................................................................... . . -S .4. .. Muni ,4-, -.:•• - ....._, V . .. -.- ViU .. -. . ... Ii Carkbacl' . -- . . . - . Ecoiddo . b... '. '-' . USGS-Provided Output S5 = 1.061g SMS= 1.141g SDS = 0.761g S1 = 0.411 g SMI = 0.653 g SD1 = 0.435 g For information on how the SS and Si values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document. MCER Response Spectrum 1.20 0.24 0.1? 0.00 I I 0.00 0.20 0.40 0.60 0.20 1.00 1.20 1.40 1.60 1.20 2.00 Period, T (sec) 0.92 0.20 0.32 0. 2 4 - F-,\ 0.16-- 0.02 -- 0.00- 0.00 0.20 0.40 0.60 0.20 1.00 1.20 1.40 1.60 1.20 2.00 Period, I (sec) Design Response Spectrum For PGAM, TL, C RS, and CR1 values, please view the detailed report. I Although this information is a product of the U.S. Geological Survey',we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge. I JOB NUMBER Romtec216-62 DESIGNER RMH SMS: Max considered spectral response acceleration for short periods SMI: Max considered spectral response acceleration for 1-second period IE Seismic importance factor R: Response modification factor I IBC SEISMIC DESIGN EQUIVALENT LATERAL FORCE PROCEDURE Design Information QNZATTA S1= 0.411 Seismic Design Parameters (Software) SMS= 1.141 Seismic Design Parameters (Software) 5M1 0.653 Seismic Design Parameters (Software) 1.0 ASCE 710Table 1.5-2 Risk 2 Category ASCE 7-10 Table 1.5-1 R 5 ASCE 7-10 Table 12.2-1 h 9.5 Height per ASCE 7-10 Ct 0.02 JASCE 7-10 Table 12.8-2 Design spectral response acceleration SDS: 5% Damped spectral response acceleration at short periods Sol: 5% Damped spectral response acceleration at 1 second period S05 2/3(Sms) 51)S= 213X 1.141 SDS 0.761 SD1=2/3(Sm1) S01 2/3 X 0.653 S01 0.435 2) Seismic design category From Table IBC 1613.3.5(1) D Governing Design D From Table IBC 1613.3.5(2) : D Category Determine design base shear (V) [IBC Eq. 16-39] [lBC Eq. 16-40] Equivalent Force Procedure C: Seismic Response Coefficient [ASCE 7-10, 12.8.1] r V CxW W : Total dead load and other applicable loads [ ASCE 7-10, 12.8.1.1, Eq. 12.8-2] Cs = SDS Cs = 0.761 1.0 C5 0.152 Nor greater than C = ) [ASCE 7-10, 12.8.1.1, Eq. 12.8-3] T = T. = Ct( hex) [ASCE 7-10, 12.8.2.1, Eq. 12.8-7] CS - 0.435X1 T,: Approximate Fundamental Period S 0.108X5 075 C5 0.805 T= 0.020 X9.5 T= 0.108 Nor less than [ASCE7-10, 12.8.1.1, Eq. 12.8-5] CS = 0.044 (SDS) ( I ) Cs = 0.044 X 0.761 Xl Cs 0.0335 Governing C = 0.152 V=CsxW V0.152 XW Refer to sheet two for W and Calculated V 1 OF 3 BC SEISMIC DESIGN VERTICLE FORCE DISTRIBUTION EQUIVALENT LATERAL FORCE PROCEDURE JOB NUMBER Romtec 216-62 DESIGNER RMH 1. Determine dead load at each level of building. Structural portion DL (PSF) I Area (SF) Length (FT) Height (FT) Total Weight (LB) a) Roof Diaphram elevation from the base level in ft 8 Roof 10 132 NA NA 1320 Misc. 0 0 0 0 0 Misc. (LBS) 0 NA NA NA 0 5th floor Diaphram elevation from the base level in ft 0 Ext. Walls 0 NA 0 0 0 nt.Walls - - NA 0 0 0 Floor - - 0 NA NA 0 Misc. - 0 0 0 0 Misc. (LBS) 0 NA NA NA 0 4th floor Diaphram elevation from the base level in ft 0 ... Ext. Walls - NA 0 0 0 nt.WaIls - NA 0 0 0 Floor - 0 NA NA 0 Misc. 0 0 0 0 0 Misc. (LBS) 0 NA NA NA 0 3rd floor Diaphram elevation from the base level in ft 0 Ext. Walls 0 NA 0 0 0 nt. Walls 0 NA 0 0 0 Floor 0 0 NA _NA_ 0 Misc. 0 0 0 0 0 Misc. (LBS) 0 NA NA NA 0 2nd floor Diaphram elevation from the base level in ft - . Ext. Walls 0 - NA 0 - - 0 nt. Walls 0 NA 0 - - 0 Floor 0 0 NA NA 0 Misc. 0 0 0 0 0 __________ Misc. (LBS) 0 NA NA NA 0 1st floor Ext. Walls 81 NA 31 8 1 20088 Int. Walls 0 NA 0 0 0 Misc. 0 0 0 0 0 TOTAL DEAD LOAD (LB) =JL_ 21408 2) Determine verticle force distribution at each level ASCE 7-10 12.8-3 F= C x V ASCE 7-10 Eq. 12.8-11 w x C = ASCE7-10 Eq. 12.8-12 w1h' F: Lateral seismic force at any level V: Seismic base shear (Kips) w & w The portion of the total gravity load of the structure (W) located or assigned to level i or x h& h: The height (ft) from the base to level i or x diaphram. k An exponent related to the structures period (T) as follows; T0.5 sec k = 1 T2.5 seck =2 0.5<T<2.5 Interpolate between 1 &2 Refer to sheet one for V (kips) T 0.1082 I V0.152 XW V=0.152 X 21408 V1 3.257 k= 1 Level (floor) Wall Height (ft) Diaphram Height (Ft) W. (kips) W*hk . F. (kips) Allowable F (kips) Roof 8 8 11.364 91 1.000 3.26 2.33 5 0 0 0.000 0 0.000 0 0.00 4 0 0 0.000 0 0.000 0 0.00 3 0 0 0.000 0 0.000 0 0.00 2 1 0 0 1 0.000 1 0 1 0.000 1 0.00 0.00 91 1.000 3.26 2.3 Note: The Total Shear shown in the right hand column is an "allowable" load. 2 OF 3 ASCE 7 Witdspeed ASCE7 Ground Snow Load Related Fesource Sponsors About ArC Contact Search Results Results Query Date: Fri Sep 16 2016 Latitude: 33.1707 Longitude: -117.2874 ASCE 7-10 Windspeeds (3-sec peak gust in mph*): Risk Category I: 160 Risk Category II: 110 Risk Category III-IV: 115 MRI** 10-Year: 72 MRI** 25-Year: 79 MRI** 50-Year: 85 MRI** 100-Year: 91 ASCE 7-05 Windspeed: 85 (3-sec peak gust in mph) ASCE 7-93 Windspeed: 70 (fastest mile in mph) Falibrook -PaL.. Camp Palo titesa Pndleton North Boncall Miles per hour **Mean Recurrence Interval Users should consult with local building officials to determine if there are community-specific wind speed requirements that govern. ME - Print your results WINDSPEED WEBSITE DISCLAIMER While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the windspeed report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the windspeed report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the windspeed load report. Sponsored by the ATC Endowment Fund Applied TechnoloQy Council • 201 Redwood Shores Parkway, Suite 240 • Redwood City, California 94065 • (650) 595-1542 I I /06 MecaWind Pro v2.2.7.0 per ASCE 7-10 - Developed by MECA Enterprises, Inc. Copyright www.mecaenterprises.com Date : 9/16/2016 Project No. : JobNo Company Name : True Designed By : Engineer Address : Address Description : Description City : City Customer Name : Customer State : State Proj Location : Location File Location: C:\Users\Ralph.Hall\AppData\Roaming\MecaWind\Default.wnd Input Parameters: Directional Procedure All Heights Building (Ch 27 Part 1) Basic Wind Speed(V) 110.00 mph Structural Category = II Exposure Category = C Natural Frequency = N/A Flexible Structure No Importance Factor = 1.00 Kd Directional Factor = 0.85 Alpha = 9.50 Zg = 900.00 ft At = 0.11 Bt = 1.00 Am = 0.15 Bin = 0.65 Cc = 0.20 1 = 500.00 ft Epsilon = 0.20 Zmin = 15.00 ft Pitch of Roof = 5.4 : 12 Slope of Roof(Theta) = 24.23 Deg h: Mean Roof Ht = 9.51 ft Type of Roof = MONOSLOPE RHt: Ridge Mt = 11.02 ft Eht: Eave Height = 8.00 ft OH: Roof Overhang at Eave= 3.00 ft Overhead Type = Overhang Bldg Length Along Ridge = 10.00 ft Bldg Width Across Ridge= 6.70 ft Gust Factor Calculations Gust Factor Category I Rigid Structures - Simplified Method Gustl: For Rigid Structures (Nat. Freq.>1 Hz) use 0.85 = 0.85 Gust Factor Category II Rigid Structures - Complete Analysis Zm: 0.6*Ht = 15.00 ft lzrn: Cc*)33/Zm)0.167 = 0.23 Lzm: 1*(Zm/33)aSEpsilon = 427.06 ft (1/(1+0.63*((B+Ht)/Lzm)0.63))0.5 = 0.96 Gust2: 0.925*((1+1.7*lzm*3.4*Q)/(1+1.7*3.4*lzm)) = 0.91 Gust Factor Summary Not a Flexible Structure use the Lessor of Gustl or Gust2 = 0.85 Table 26.11-1 Internal Pressure Coefficients for Buildings, GCpi GCPi : Internal Pressure Coefficient = +1-0.18 Wind Pressurs Main Wind Force Resisting System (MWFRS) - Ref Figure 27.4-1 z 'I B /0?- Kh: 2.01*(Ht/Zg)(2/Alpha) = 0.85 Kht: Topographic Factor (Figure 6-4) = 1.00 Qh: .00256*(V)2I*Kh*Kht*Kd = 22.35 psf Cpww: Windward Wall Cp(Ref Fig 6-6) = 0.80 Roof Area = 139.27 ft2 Reduction Factor based on Roof Area = 0.97 MWFRS-Wall Pressures for Wind Normal to 10 ft Ridge Wall (Normal to Ridge All pressures shown are based upon STRENGTH Design-, with a Load Factor of Wall Cp Pressure Pressure +GCpi (psf) -GCpi (psf) Leeward Wail -0.50 -13.52 -5.48 Side Walls -0.70 -17.32 -9.28 Wall Elev , Kz Kzt Cp qz Press Press Total ft psf +GCpi -GCpi +/-GCpi -------------------------------------------------------------- Windward 11.02 0.85 1.00 0.80 22.35 11.18 19.22 24.70 Windward 8.00 0.85 1.00 0.80 22.35 11.18 19.22 24.70 Roof Location Cp Pressure Pressure - +GCpi (psf) -GCpi (psf) Leeward Norm to Ridge -0.60 -15.42 -7.38 Overhang Top (Leeward) -0.60 -11.40 -11.40 Overhang Sot (Windward only) 0.80 15.20 15.20 Notes - Normal to Ridge Note (1) Per Fig 27.4-1 Note 7, Since Theta > 10 Deg base caics on Mean St Note (2) Wall & Roof Pressures = Qh*(G*Cp - GCPi) Note (3) +GCpi = Positive Internal Bldg Press, -GCPi = Negative Internal Bldg Press Note (4) Total Pressure = Leeward Press + Windward Press (For + or - GCPi) Note (5) Ref Fig 27.4-1, Normal to Ridge (Theta>=10), Theta= 24.2 Deg, h/l= 0.95 Note (6) No internal pressure considered (GCpi = 0) for Overhang - Note (7) overhang bottom based upon windward wall Cp and GCpi = 0. Note (8) X= Along Building ridge, Y = Normal to Building Ridge, Z = Vertical Note (9) MIN = Minimum pressures on Walls = 16 psf and Roof = 8 psf Note (10) Area* = Area of the surface projected onto a vertical plane normal to wind. MWFRS-Wall Pressures for Wind Normal to 10 ft Eave Wall (Normal to Eave) All pressures shown are based upon STRENGTH Design, with a Load Factor of 1 Wall Cp Pressure Pressure +GCpi (psf) -GCpi (psf) Leeward Wall -0.50 -13.52 -5.48 Side Walls -0.70 -17.32 -9.28 Wall Elev Kz Kzt Cp qz Press Press Total ft psf +GCpi -GCpi +/-GCpi - Windward 8.00 0.85 1.00 0.80 22.35 11.18 19.22 24.70 Roof Location Cp Pressure Pressure +GCpi (psf) -GCpi (psf) --------------------------------------------------------------------------- Windward - Min Cp -0.53 -14.09 -6.05 Windward - Max Cp -0.03 -4.59 3.45 Overhang Top Side (Ridge &, Eave) -0.53 -10.07 -10.07 Overhang Sot (Windward only) 0.80 15.20 15.20 Note (1) Ref Fig 27.4-1, Normal to Ridge (Theta>=10), Theta= 24.2 Deg, hll= 0.95 Note (2) No internal pressure considered (GCpi = 0) for overhang Note (3) overhang bottom based upon windward wall Cp and GCpi = 0. Notes - Normal to Eave Note (1) X= Along Building ridge, Y = Normal to Building Ridge, Z = Vertical Note (2( MIN = Minimum pressures on Walls = 16 psf and Roof = 8 psf Note (3) Area* = Area of the surface projected onto a vertical plane normal to wind. MWPRS-Wall Pressures for Wind Normal to 6.7 ft wall (Along Ridge) All pressures shown are based upon STRENGTH Design, with a Load Factor of Wall Cp Pressure Pressure +GCpi (psf) -GCpi (psf) Leeward Wall -0.40 -11.65 -3.60 Side Walls -0.70 -17.32 -9.28 Wall Elev Rz Kzt Cp qz Press Press Total ft psf +GCpi -GCpi +/-GCpi ------------------------------------------------------------------- Windward 11.02 0.85 1.00 0.80 22.35 11.18 19.22 22.83 Windward 8.00 0.85 1.00 0.80 22.35 11.18 19.22 22.83 Roof - Dist from Windward Edge Cp Pressure Pressure +GCpi (psf) -GCpi (psf) ---------------------------------------------------------------- Roof: 0.0 ft to 4.8 ft -1.23 -27.39 -19.34 Roof: 4.8 ft to 9.5 ft -0.72 -17.70 -9.65 Roof: 9.5 ft to 10.0 ft -0.68 -16.95 -8.90 OH Top : 0.0 ft to 4.8 ft -1.23 -31.41 -31.41 Overhang Top : 4.8 ft to 9.5 ft -0.72 -21.72 -21.72 Overhang Top : 9.5 ft to 10.0 ft -0.68 -20.97 -20.97 Notes - Along Ridge Note (1) OH = Overhang, no internal pressure considered for Overhang (GCpi=0) Note (2) Ref Fig 27.4-1, Parallel to Ridge (All), hll= 0.95 Note (3) X= Along Building ridge, Y = Normal to Building Ridge, Z = Vertical Note (4) MIN = Minimum pressures on Walls = 16 psf and Roof = 8 psf Note (5) Area* = Area of the surface projected onto a vertical plane normal to wind. Ii V Precision Structural Engineering, Inc. ROOF FRAMING ANALYSIS & DESIGN: Pages 1,000- 1,999 250-A Main Street E-Mail: info@structurel.com ph. (541) 850-6300 Klamath Falls, OR. 97601 Web: www.structurel.com fax (541) 850-6233 Precision Structural Engineering, Inc. Medford Office 250 Main Street Suite A - Klamath Falls OR 97601 836 Mason Way (off Sage Road). Medford, OR 9750 Tel (541) 850.6300 • FAX (541) 850.6233 Tel (541) 858-8500 www.structurel .com• Email: info@structurel.com PROJECT NO. 01711C SHEET 1000 OF I ' PROJECT NAME L4k( C/t Qej4 c)r DESIGNED BY SUBJECT g.:04 J&6.Z CHECKED BY______________ i. DATE DATE - DL z /0 p, _______cTIIII11I I ILL2 0 fi___2 _-_ I 4cil'i ?or/,'c /c -i LL 20 ?5 1 1) P- L k 'i ) © WoodWorks® SOFTWARE FOR WOOD DESIGN COMPANY PROJECT Sep. 19, 2016 12:40 Roof Decking Design Check Calculation Sheet Wood Works Sizer 10.4 I Loads: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End Loadi Dead Full Area 10.00(6.0") psf Load2 Roof live Full Area 20.00(6.0") psf Self-weight Dead Full UDL 2.0 pif Maximum Reactions (Ibs), Bearing Capacities (IIs) and Bearing Lengths (in): 6'2.8" [ii 5,55,, Unfactored: Dead Roof Live Factored: 21 28 21 28 Total 48 48 Bearing: F'theta 693 693 Capacity Joist 1904 1904 Support 1836 1836 Anal/Des Joist 0.03 0.03 Support 0.03 0.03 Load comb #2 #2 Length 0.50* 0.50* Min req'd 0.50* 0.50* Cb 1.00 1.00 Cb min 1.00 1.00 Cb Support 1.07 1.07 Fcp sup 625 625 iviinimum Dealing iengtn setting usea: -1//--'Tor ena supports Lumber-soft, D.Fir-L, No.2, 2x6 (1-112"x5-112") Supports: All - Timber-soft Beam, D.Fir-L No.2 Roof joist spaced at 6.0" c/c; Total length: 6-2.8"; volume = 0.4 cu.ft.; Pitch: 5.4/12; Lateral support: top= full, bottom= full; Oblique angle: 90.0 deg; Repetitive factor: applied where permitted (refer to online help); /Oci2 F] Wood Works® Sizer SOFTWARE FOR WOOD DESIGN Roof Decking Wood Works® Sizer 10.4 Page 2 Analysis vs. Allowable Stress and Deflection using NDS 2012: Criterion Analysis Value Design Value Unit Analysis/Design Shear x-x fv = 0 Fv' = 180 kips fv/Fv' = 0.00 y-y fv = 8 Fv' = 180 psi fv/Fv' = 0.04 Bending(+) x-x fb = 0, Fb' = 1345 kip-ft fb/Fb' = 0.00 y-y fb = 382 Fb' = 1547 kip-ft fb/Fb' = 0.25 Live Defl'n 0.10 = L/740 0.40 = L/180 in 0.24 Total Defl'n 0.21 = L/345 0.60 = L/120 in 0.35 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fvy' 180 1.00 1.00 1.00 - - - - 1.00. 1.00 - 2 Fby' 900 1.00 1.00 1.00 1.000 1.300 1.15 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - Ey 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear I : LC #2 = D+Lr, V = '44, V design = 42 lbs Bending(+) : LC #2 = D+Lr, M = . 66 lbs-ft Deflection: LC #2 = D+Lr (live) LC #2 = D+Lr (total) D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2012 CALCULATIONS: Deflection: El = 33.3e06 lb-in2 Ely = 2.47e06 lb-in2 "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Bearing: Allowable bearing at an angle F'theta calculated for each support as per NDS 3.10.3 Design Notes: Wood Works analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. . Please verify that the default deflection limits are appropriate for your application. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. SLOPED BEAMS: level bearing is required for all sloped beams. COMPANY PROJECT WoodWorks® SO1WARE FOR WOOD DESIGN Sep. 19, 2016 12:42 Porch Purlin Design Check Calculation Sheet Wood Works Sizer 10.4 Loads: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End Loadi Dead Full Area 10.00(1.00') psf Load2 Roof live Full Area 20.00(1.001 ) psf Self-weight Dead Full UDL 1.2 pif Maximum Reactions (Ibs), Bearing Capacities (Ibs) and Bearing Lengths (in): 3-1" 3-0.5" Unfactored: Dead Roof Live Factored: 17 31 17 31 Total 48 48 Bearing: Capacity Beam 469 469 Support 586 586 Anal/Des Beam 0.10 0.10 Support 0.08 0.08 Load comb #2 #2 Length 0.50* 0.50* Min req'd 0.50* 0.50* Cb 1.00 1.00 Cb min 1.00 1.00 Cb support 1.25 1.25 Fcp sup 625 65 Minimum tearing length setting used: 1/2' tor end supports Lumber-soft, D.Fir-L, No.2, 2x4 (1-112"x3-112") Supports: All - Timber-soft Beam, D.Fir-L No.2 Total length: 3-1.0"; volume = 0.1 cu.ft.; Lateral support: top= full, bottom= at supports; Oblique angle: 66.0 deg; Repetitive factor: applied where permitted (refer to online help); 1-1 F_ Wood Works® Sizer SOFTWARE FOR WOOD DESIGN Porch Purlin Wood Works® Sizer 10.4 Page 2 Analysis vs. Allowable Stress and Deflection usinq NDS 2012: Criterion Analysis Value Design Value Unit Analysis/Design Shear x-x fv = 5 Fv' = 180 kips fv/Fv' = 0.03 y-y fv = 11 Fv' = 180 psi fv/Fv' = 0.06 Biaxial fvx / Fv + fvy / Fvy' = 0.09 Bending(+) x-x fb = 58 Fb! = 1552 kip-ft fb/Fb' = 0.04 y-y fb = 302 Fb' = 1708 kip-ft fb/Fb' = 0.18 Biaxial 3.9-3: fbl/Fbl'+fb2/F 2'/(l-(fb /FbE)"2) = 0.21 Live Defl'n 0.02 = <L/999 0.20 = L/180 in 0.11 Total Defl'n 0.04 = L/883 0.30 = L/120 in 0.14 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fvy' 180 1.00 1.00 1.00 - - - - 1.00 1.00 - 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.500 1.00 1.15 1.00 1.00 - 2 Fby' 900 1.00 1.00 1.00 1.000 1.500 1.10 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = D+Lr, V = 48, V design = 43 lbs Bending(+) : LC #2 = D+Lr, N = 36 lbs-ft Deflection: LC #2 = D+Lr (live) LC #2 = D+Lr (total) D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2012 CALCULATIONS: Deflection: El = 8.57e06 lb-1n2 Ely = 1.57e06 lb-in2 "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. Please verify that the default deflection limits are appropriate for your application. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. Beam is in a system of 3 or more members spaced 24" or less apart. System factors applied according to NDS 4.3.9 Oblique angle: Kzcp = 1 regardless of b and d, and b is used as bearing width. Adjust bearing length for actual support geometry. FIRST FLOOR FRAMING I FOUNDATION ANALYSIS &DESIGN: Pages 2,000 - 2,999 250-A Main Street E-Mail: info@structutel.com ph. (541) 850-6300 Klamath Falls, OR. 97601 Web: www.structurel.com fax (541) 850-6233 Precision Structural Engineering, Inc. Medford Office 250 Main Street, Suite A • Klamath Falls, OR 97601 836 Mason Way (off Sage Road). Medford, OR 97501 Tel (541) 650-6300 • FAX (541) 850-6283 Tel (541) 858-8500 0 www.structurel.com • Email: info@etructurel.com PROJECT NO. ' 12 k SHEET 2c'o O OF 0 PROJECT NAME flftlffovrtn DESIGNED BY 1 )4 DATE SUBJECT F7O CHECKED BY_______________ DATE f1hlS7y B. P DL i&ç2j. o RLL2Op 6 . /.2O pif? L pj3OII. U5 / e .44,..1- s/,1- iilG/JOY) DL 10 o kLL 2 o-c' 6 44, - /.QO pi.ç W II DL fo US E T"Tkc ks& /5e/"o.c, E. W1 fr " N-0 PROJECT: Lake Calavera Restroom 18662 PAGE: CLIENT DESIGN BY RMH JOB NO.: Romtec216-62 DATE: REVIEW BY: Allowable Stress Design of Masonry Bearing Wall Based on TMS 402-11 /2012 IBC INPUT DATA & DESIGN SUMMARY SPECIAL INSPECTION (0N0, 1YES) I Yes TYPE OF MASONRY ( 1=CMU, 2=BRICK) 1 CMU MASONRY STRENGTH m' = 1.5 ksi REBAR YIELD STRESS fy = 60 ksi ALLOWABLE INCREASING? (IBC/CBC 1605.3.2) Yes SERVICE GRAVITY LOAD P = 180 lbs/ft SERVICE LATERAL LOAD w1 = 20.5 plf I ft SERVICE PARAPET LOAD w2 = 0 plf / ft THICKNESS OF WALL t = 6 in PARAPET HEIGHT . = 0 ft WALL HEIGHT h = 10.5 ft ECCENTRICITY e = 0 in MASONRY SPECIFIC WEIGHT Ym = 125 pcf WALL HORIZ. REINF. 1 # 4 WALL VERT. REINF. I # 4 ANALYSIS p1-1 [I Nv, AM2 eL W2 (p11/i() Shear Moment wi (pit/fl) Shear Moment [THE WALL DESIGN IS ADEQUATE.] 32 in o.c. (at middle) 32 in o.c. (at middle) VERT. REINF. AREA AT EACH SIDE A = 0.08 in' EFFECTIVE DEPTH (TMS 1.15.3.5) d = 2.82 in WIDTH OF SECTION b = 12.00 in EFFECTIVE THICKNESS te = 5.63 in MASONRY ELASTICITY MODULUS Em = 1350 ksi STEEL ELASTICITY MODULUS E5 = 29000 ksi THE ALLOWABLE STRESS DUE TO FLEXURE IS MODULAR RATIO n = 21.48 REINFORCEMENT RATIO p = 0.0022 ALLOWABLE STRESS FACTOR SF = 1.333 THE NEUTRAL AXIS DEPTH FACTOR IS k =,..12pn±(pn)2 _pn = 0.26482 THE ALLOWABLE REINF. STRESS DUE TO FLEXURE IS Fb =(SF)(O.33f ) = 660 psi F5 =(1.33 or 1.0)(20) or 32= 32000 psi THE DISTANCE FROM BOTTOM TO M1 IS THE GOVERNING MOMENTS AND AXIAL FORCES ARE S = h + h - ______ Pe 1 ______ - [ 2h hwj - 1.05 - 5.3 ft M1= r IPe+ _..J(h2_h2)1 2 = 297 ft-lbs/ft 2w1h2 L P, = P + (wall weight) = 508 lbs I ft THE GOVERNING SHEAR FORCES ARE h 2 W2 ___________ V1 (h +h,) wi _(h+h)2w Pe - M = 0 ft-lbs/ft - 108 lbs/ft 2 2 2h h P2 = P+(wall weight) = 180 lbs/ft v2 = h 1 — Vi = 108 lbs/ft THE GOVERNING SHEAR STRESS IN MASONRY IS V3 = = 0 lbs/ft MAX(V, , v2 , v3 ) fv = = 1,59 psi tebw DETERMINE THE REGION FOR FLEXURE AND AXIAL LOAD (MDG-3 Tab 12.2.1, Fig 12.2-12 & 13, page 12-25). (—Le— M te 1" Pd 6d Pd2d3 Pd (2d 3) 1. Wall is in compression and not cracked. 2. Wall is cracked but steel is in compression. 3. Wall is cracked and steel is in tension. REGION 3 APPLICABLE FOR (Ml, P1) REGION 1 APPLICABLE FOR (M2, P2) (cont'd) I CHECK REGION 1 CAPACITY = b t2 1 3447 ft-lbs/ft > M1 [Not applicable] M .= = 6 6 3473 ft-lbs ft > M2 [Satisfactory] CHECK REGION 2 CAPACITY t 2p2 1 117 ft-lbs/ft < Ml [Not applicable] Mm' 2 3bwFb 42 ft-lbs/ft > M2 [Not applicable] CHECK REGION 3 CAPACITY (The moment maybe limited by either the rlasonry compression or steel tension, MDG-3 page 12-25). M. = MJN[-.bJtdFb(d _!f)_ P(Id --) , ASFS(1d _!)+P(L. - )] 2 3 5 622 ft-lbs I ft > M1 [Satisfactory] 1. 552 ft-lbs / ft > M2 [Not applicable] THE ALLOWABLE SHEAR STRESS IS GIVEN BY (TMS 402 2.3.6) F,=(SF)1.125 = 58.095 psi > [Satisfactory] Technical References: 1. "Masonry Designers' Guide, Third Edition" (MDG-3), The Masonry Society, 2001. z I x Loads: DL - Dead Load Results for LC 1, IBC 16-8 Precision Structural Engineering, Inc. SK - 1 Ralph Hall Mat Slab Foundation Sept 19, 2016 at 2:01 PM Romtec 216-62 Slab.fnd \ / N z x .04 Loads: LL - Live Load Results for LC 1, IBC 16-8 Precision Structural Engineering, Inc. Ralph Hall Rorntec216-62 Mat Slab Foundation SK-2 Sept 19, 2016 at 2:01 PM Slab.fnd z x Loads: RLL - Roof Live Load Results for LC 1, IBC 16-8 Precision Structural Engineering, Inc. Ralph Hall Romtec 216-62 Mat Slab Foundation SK-3 Sept 19, 2016 at 2:01 PM Slab.fnd - - - - - - - - - - - - - - - - - - - Results for LC 1, IBC 16-8 Precision Structural Engineering, Inc. Ralph Hall Romtec 216-62 Mat Slab Foundation SK-4 Sept 19, 2016 at 2:01 PM Slab.fnd - Company Precision Structural Engineering, Inc. Sept 19, 2016 11ORISA Designer : Ralph Hall 2:01 PM Job Number : Romtec216-62 Checked By: TECH NO LOGI ES Model Name : Mat Slab Foundation - Concrete Properties rt;i , rl..,.;1 ki.. 1 Conc3000NW 3156 1372 . .15 . ' 1. 1 '- .6 ,.',,,',,.. .145 , L"'J 3 1 CA LCCIL.. 60 )iidi 60 ±2-063500NW_- 3409 1482 .15 - .6 --.145 - -35 -. - i•- ------o--. 3 Conc4000NW 3644 1584 .15 .6 .145 4 1 60 60 4 Conc3000LW 2085 907 15 6 11 3 75 60 60 5 Conc3500LW 2252 979 .15 .6 .11 3.5 .75 60' 60 _L_ Conc4000LW 2408 1047 15 6 11 4 75 60 60 7 Conc2500NW 2856 1250 .15 .6 .145 1 2.5 1 60 60 Slab Rebar Parameters - Label lop Bar Bottom Bar Max lop Bar S ... Min lop Bar S... Max Bot Bar S... Mm Bot Bar S... Spacing Increm... Rebar Options 1 I Typical I N/A I #5 I N/A I N/A 18 I 3 I - 2 - Mid-Depth Onlyl Load Categories 1 DL. - . _•II% 4 flU CO LUOUO 1 -- - - 3 RLL 4 - - Line Loads and Moments (Cat I : DL) - - - Q+,,* D,,,,+ C-4 D,,;,,e .J..ri.,r. ,. fl.,.., 1 ........................ L. NI N2 Y -.911 II IVIOUihIUUCLiit,iViLJ .911- 2 N2 N4 Y 911 911 3 N4 N3 Y .911 .911 N3 Nl Y 911 911 - LineLoadsand Moments (Cat 6: RLL) Oi,.r+ D,-.....f C..,A 0,..,.,1 fl;.........,;..... C....... n — r. n,n, 1 .................... NI N2 Y .911 I .911 N2 N4 Y 911____________II_911 N4 N3 Y -.911 - 1 .911 - --N3 Ni Area Loads (Cat I : DL) Label Base Mag[ksf] Peak Mag[ksf] r 1 AL2 I .015 I .015 Area Loads (Cat 2: LL) Label - Base Magksf] Peak Mag[ksf] I I 1 I AU 1 .04 I .04 Slabs Label Thickness[in] Material Local Axis Angle[deg] I 1 I Sl I 6 I Conc2500NW I 0 Load Combinations I Q...Is, A CC r'..,, r',.,... I-'..., c-..-. r'..., __ ,'_, r_... M9 MON ME U. uIuEflEI1fl II;IE U. RlSAFoundation Version 8.0.1 [\..\... \ ... \ ... \ ... \ ... \Dsg Engr\Foundation\Slab.fnd] - Page 1 2OOc Company : Precision Structural Engineering, Inc. Sept 19, 2016 SA Designer : Ralph Hall . 2:01 PM Job Number : Romtec216-62 Checked By:_____ TECHNOLOGIES Model Name : Mat Slab Foundation Design Strips Strip Reinforcing k 2: I DS2 I ;862 I 1 :01I#5014ir1iNA I Slab Overturning Safety Factors If, CI.,i, R_,rt, c+i +i ru... ..-ri.. +, Rn.. ....r, i RA... .. ... _,. -- ...... 1 Si -- 0 112.027 0 168.057 9.999+ 9.999+ .2._. 2.St 1 0 0 119493 0 179258 9.9'09-F 9.9q9+ 3 3 Si 0 0 205.146 0 307.75 9.999+ 9.999+ 4. .S1 0 0 187.466 0 281.227 9.999+ 9.999+ — Slab Sliding Safety Factors -- lii 1 Si 0 0 10.: 0 103 9.999+ 9.999. _2 2 Si 0 0 10.755 0 10.755 9.999+ 9999+ 3 Si 0 0 18.465 0 18.465 9.999+ 9999+ 4 :Si . 0 0 .16.874 0 16874 9999~; 9.999+ RiSAFoundation Version 8.0.1 [\...\...\...\...\...\...\Dsg Engr\Foundation\Slabfnd] Page 2 Precision Structural Engineering, Inc. LATERAL ANALYSIS & DESIGN: Pages 3,000 - 3,999 250-A Main Street E-Mail: info@structurel.com ph. (541) 850-6300 Klamath Falls, OR. 97601 Web: www.structurel.com fax (541) 850-6233 Precision Structural Engineering, Inc. Medford Office 250 Main Street, Suite A' Klamath Falls, OR 97601 836 Mason Way (off Sage Road). Medford, OR 9750 Tel (541) 850-6300 • FAX (541) 850-6233 Tel (541) 858-8500 www.structurel.com 'Email: info@structurel.com PROJECT NO. ,n4lc /-64 SHEET-Z000 OF PROJECT NAME 4/C CCJAV(r4. 1?'Q0' DESIGNED BY SUBJECT La 7k,,-. 46 0 CHECKED By 41&_coary Seca(ijc..f/ TI TI r DATE DATE P: p L WL(p;Oi6)k (f-Pi5.P+ L .1' lb. , £ L 30o I 15 I, 05E 6'6M V e"o.c. r PROJECT: CLIENT•.. JOB NO.: Lake Calavera Restroom 18662 Romtec 216-62 DATE: : PAGE: DESIGN BY: .RMH REVIEW BY: Masonry Shear Wall Design Based on TMS 402-111 2012 IBC (both ASD and SD) INPUT DATA & DESIGN SUMMARY bf1 SPECIAL INSPECTION (O=NO, 1YES) 1 Yes (This option only for local jurisdiction amendments to the code, not part of TMS.) LL_/ / / / A t11 TYPE OF MASONRY ( 1=CMU, 2=BRICK) 1 CMU J±i MASONRY STRENGTH = 1.5 ksi b 12 REBAR YIELD STRESS f5 = 60 ksi ALLOWABLE 30% INCREASING ? (IBC 1605.3.2) Yes SEISMIC PERFORMANCE CATEGORY D Seismic D t (C,D,E, 0=W1ND, 5=GRAVITY) SERVICE AXIAL LOAD P = 1.08 kips, at middle of L SERVICE SHEAR LOAD V = 1.15 kips, (in-plane force) b 21 b22 SERVICE MOMENT LOAD M5 = 9.2 ft-kips, (top flange, bfl, compression) M0 = 0.93 ft-kips, (out-of-plane, left bli & b21, compression) - t1`2 b2j EFFECTIVE HEIGHT OF WALL h = 8 ft LENGTH OF SHEAR WALL Lw = 6 ft, (within vertical control joints) THE WALL DESIGN IS ADEQUATE. THICKNESS OF WALL t = 6 in REINFORCING OF WALL 1 # 4 at each ends, with 4 in center to edge. Ash, Horizontal 1 # 4 @ 24 in o.c. A5 , Vertical 1 4 © 24 in o.c. TOP FLANGE (COMPRESSION) b11 = 0 in, b12 = 0 in, b11 = 6 in ,(TMS 1.9.4.2.3) t11 = 8 in, 1 # 4 @ 32 in o.c., Vertical BOTTOM FLANGE b21 = 0 in b22 0 in , bf2 = 6 in, (TMS 1.9.4.2.3) tf2 = 8 in, 1 # 4 @ 32 in o.c., Vertical ANALYSIS CHECK FLEXURAL & AXIAL CAPACITY BY ALLOWABLE STRESS DESIGN (ASD) 250 200 150 P (k) 100 50 0 .50 I L FORCE DIAGRAM C LU STRAIN DIAGRAM U- M (ft-k) P (load) = 1.08 kips < P (allowable)= P0 = 141.452 kips M (resultant) = (M02 + M 2)°5 = 9.24689 ft-kips < M (allowable) = 55.9911 ft-kips [Satisfactory] Where Em 1350 ksi, (TMS 1.8.2.2.1) A 411 in E5 = 29000 ksi, (TMS 1.8.2,1) A51 = 0.87 in Scale Factor = 1.333 , (TMS 2.1.2.3) f5 0 ksi, (TMS 2.3.3.3) Fb = 0.660 ksi, (TMS 2-18) h I r = 59 , neglected conservatively flanges. Fs = 32.00 ksi, (TMS 2.3.3.1) Pa = 141.452 kips, (TMS 2.3.4.2.1) 3c FLEXURAL & AXIAL CAPACITY BY STRENGTH DESIGN (SD) 0 Fl ' L FORCE DIAGRAM Cl STRAIN DIAGRAM Pu = 1.2 P = 1.296 kips < Wn = 321.927 kips, (TMS 402 3.3.4.1.1) Mu = (1/0.7) (M 2 + M 2)°5 = 13.2098 ft-kips < 4M = 129.607 ft-kips, at P level. [Satisfactory] Where Emu 0.0025 (TMS 3.3.2.c) d 71 in 1 0.9 ,(TMS 3.1.4.1) m 1.5 ksi SHEAR CAPACITY (ASD), (TMS 2.3.6) F _-MAX {(SF)[[4_1.75MIN(1 , , (sF)[-(4_1.75MJN(1 ,Ff = 59 psi > 1.5 fV 4 psi [Satisfactory] (factor 1.5 from IMS 402 1.18.3.2.6.1.2) Fv Maximum (sF) MIN [3 , MAX (2 , 2+{1_MU))]JZ= 103 psi > 1.5f [Satisfactory] HECK MINIMUM REINFORCEMENTS IA,jn = 0.101 ifl2/ft > Ash,actual = Sshmax 24 in > Ssh actual = Asvmin 0.047 in2/ft < Asv,actual = Ssvmax = 24 in > Ssv,actual = HECK MAXIMUM REINFORCEMENT PERCENTAGE nf Pmox = ' = fl 0.0044 > 24n + 0.100 in/ft [Unsatisfactory] (TMS 1.18.3.2.6) 24 in [Satisfactory] (TMS 1.18.3.2.6) 0.100 1n2/ft [Satisfactory] (TMS 1.18.3.2.6) 24 in [Satisfactory] (TMS 1.18.3.2.6) p = 0.0005 [Satisfactory] (TMS 402 2.3.4.4) This requirement is for Stack Bond masonry walls. The walls on this building are Running Bond. Mm. Area = (12" x 5.625") * 0.0007 = 0.047 in2 Precision Structural Engineering, Inc. Medford Office 250 Main Street, Suite A - Klamath Falls, OR 97601 836 Mason. Way (off Sage Road) Medford, OR 97501 41S Tel (541) 850-6300 • FAX (541) 850-623 Tel (541) 858-8500 www.structurel.com Email: info@structurel.com PROJECT NO ROVY14C SHEET3C/' OF PROJECT NAME /—/(Q— Rt4'o0tr, DESIGNED BY DATE SUBJECT Lt4rA/ /866c2 CHECKEDBY DATE /7'c)(2 MIlBum Q. To p c(- Z3 P/ /ip3.OlI I = 93Z IL. o39 /H /L OE CA4U / /> PROJECT: Lake Calavera Restroom 18662 PAGE: CLIENT DESIGN BY RMH JOB NO Romtec 216 62 DATE REVIEW BY Lateral Force for One-Story Wall Based on 2012 IBC INPUT DATA WALL THICKNESS t = 8 in PARAPET HEIGHT h, = .0 ft WALL HEIGHT h = 10.5 ft TOTAL WALL DENSITY a = 125 ocf Shear Moment W2 (pIt/fl) SEISMIC PARAMETER S5 = 0.761 (ASCE7 Sec 11,44) SEISMIC DESIGN CATEGOR' SDC = D - DIAPHRAGM FLEXIBLE? (O=no, lyris) 1 Yes SEISMIC IMPORTANCE FACTOR 1 I (ASCE 7 Tab 11.5-1) - WIND IMPORTANCE FACTOR I = 1.0 (ASCE 7 Tab 1.5-2) BASIC WIND SPEED V = 110 mph, (ASCE 7 Sec 26.5.1) EXPOSURE CATEGORY (B, C. D) = C - - TOPOGRAPHIC FACTOR K0 = 1 Flat. (ASCE 7 Tab 26.8-1) w (pit/Il) Shear Moment DESIGN SUMMARY Out-of-plane force for wall design w1 = 20.5 pat (Wind governs) Out-of-plane force for parapet design w2 = 53.4 psf (Wind governs) Out-of-plane force for anchorage design F.nm 213 plf (Horizontal direction) (The governing seismic & wind forces have been reduced by 0.7 & 0.6 for ASD) WIND ANALYSIS Out-of-plane wind force for wall design (ASCE 7, Eq. 30.4-1) Wt,'t0a = 0.6q [(GC..) - (Gc 1)] = (0.00256KhKz,Kav2)[(GcP) - (Gc,)] = 20.5 psf Where: K4 = 0.85 , Kd = 0.85 , GC. = -1.35 , GC04 = 0.18 (mean roof h = 10.5 ft, changeable) (Tab. 26.6-1) (corner? Yes • TA = 14 ft) (ASCE 7 Fig. 26.11-1) (ASCE 7 Tab. 28.3-1) (ASCE 730.4.2) Out-of-plane wind force for parapet design (ASCE 7, Eq. 30.9-1) W2,riod = 0.6q, [(GC,) - (Gcp1)1 = (0.00256KhKz,Kav2)[(GcP) (GC j)] = 53.4 psf, (ASCE 7,6.5.12.4.4) Where: <4 =0.85, <a = 0.85, GC, = -1.40, GC0 = 2.80 GC0 = 0.18 (ASCE 7 Tab. 28.3-1) (ASCE 7 Tab. 26.6-1) 1.00 roof, (ASCE 730.4.2) (ASCE 7 Fig. 26.11-1) (TA= 0 2) wall, (ASCE 7 30.4.2) Out-of-plane wind force for anchorage design h ( h ' Fanoh,.ind = Win' lad + hpt,l + W2.nind = 108 pIt (Horizontal) SEISMIC ANALYSIS Out-of-plane seismic force for wall design (ASCE 7, Sec.12.11.1) Wi,setsmlc = 1vL.4X(0.4Js0 w ,0.1w) = 0.30 W0 = 25.4 psf Where: W. = 83.3 psf , I, = 1.0 (IBC Tab 1604.5 & ASCE 7 Tab 1.5-2) Out-of-plane seismic force for parapet design (ASCE 7, Sec. 13.3.1) W22ClanlCM4X[0.3SOSIpW p , N[1.2aPSceIPWP , 1.6Sosl pW pj] = 0.91 W0 = 76.1 psf Where: a0 = 2.5 , to = 1.0 , ft5 = 2.5 (ASCE 7 Tab. 13.5-1) (ASCE 7Sec. 13.1.3) (ASCE 7 Tab. 13.5.1) - Out-of-plane seismic force for anchorage design For masonry or concrete under seismic design category A & B. both flexible & rigid diaphragm (ASCE 7 Sec. 12.11.2) (,h+h) h+h) Fnoi,,oumjo=M4X 0.4SIw ' 40OJ Fmi,s = 3.65W0 2 h h 2 304 plf (Horizontal) Where: F,,,4 280 plf (Not (Not applicable) (ASCE 7 Sec. 12.11.2 & 11.7.3) For seismic design category C and above, flexible diaphragm (ASCE 7 Sec. 12.11.2.1) 2 2 (h+h) h+h) Fe,ni,.onjn,nj0 = M4X 0.8s05IW 0.1W p , 4°°S0s'' Fe,;0 2h = 3.65 W0= 2h 304 plf (Horizontal) For seismic design category C and above, rigid diaphragm (ASCE 7 Sec. 12.11.2 & Sec. 13.3.1) (App(cable) Fennhae;an;oM4X{M4X[03S0SJP , MIN1.2apSs1p , 16S0sJpJ]W p( 400s sI F;} = 3.65 W. = 304 plf (Horizontal) (Not applicable) Where: a5 = 1.0 R0 = 1.5 (ASCE 7 Tab. 13.5.1( (1.5, ASCE 713.4.2 0r2.5, ASCE 7 Tab 13.5-1) 30/i 3oI: T. 1. PROJECT Lake Calavera Restroom 18662 PAGE CLIENT: DESIGN BY: RMH JOB NO.: Romtec216-62 DATE: REVIEW BY: Masonry Beam Design Based on' TMS 402-11 INPUT DATA & DESIGN SUMMARY - b fc SPECIAL INSPECTION (O=NO, IYES) 1 Yes TYPE OF MASONRY (1=CMU,2=BRICK) 1 CMU - MASONRY STRENGTH fm, = 1.5 ksi - REBAR YIELD STRESS f = 60 ksi S :. ALLOWABLE INCREASING ? (IBC/CBC 1605.3.2) Yes SERVICE SHEAR LOAD V = 0.932 k / SERVICE MOMENT LOAD M = 2.039 ft-k .• WIDTH b = 8 in - - EFFECTIVE DEPTH d = 6 in CLEAR SPAN Lc = 8.75 ft LUPL) I T PE (1=bIsMIe, UWIND, 5=IRAVITY) 1 Seismic [THE BEAM DESIGN IS ADEQUATE.] VERTICAL REINF. 0 # 4 © 6 in o.c. TENSION REINFORCEMENT 1 # 4 ANALYSIS ALLOWABLE STRESS FACTOR SF = 1.333 ALLOWABLE REINJF. STRESS (1.33 or 1.0) F5 = 32 ksi ALLOWABLE MASONRY STRESS Fb(SF)(0.33fm') 0.66 ksi MASONRY ELASTICITY MODULUS Em = 1350 ksi, (TMS 402 1.8.2.2.1) STEEL ELASTICITY MODULUS E5 = 29000 ksi, (TMS 402 1.8.2.1) EFFECTIVE WIDTH b = 7.63 in [Satisfactory, Lc < 32 bw] MODULAR RATIO n = 21.48 TENSION REINFORCEMENT RATIO p = 0.004 THE NEUTRAL AXIS DEPTH FACTOR IS THE LEVER-ARM FACTOR IS k = j2pn + (pn)2 - pn = 0.349 j =1— = 0.884 THE TENSILE STRESS IN REINFORCEMENT DUE TO FLEXURE IS M = Ad . d = 23.1 ksi < F5 [SATISFACTORY] THE COMPRESSIVE STRESS IN THE EXTREME FIBER DUE TO FLEXURE IS = 2M = 0.58 ksi Fb [SATISFACTORY] b jkbd2 THE SHEAR STRESS IN MASONRY IS fv = 20.4 psi < Fv MN I(SF) 1. 125Ff . 0. 5 ( , A (sF)2] ) (TSM 402-11 2.3.6) * = 58.0948 psi [SATISFACTORY]