Loading...
HomeMy WebLinkAbout9417-A; Stagecoach Park Storm Drain System; Stagecoach Park Storm Drain System; 1985-08-21o DEFINITION OF STORM DRAIN SYSTEM SHOWN ON GRADING PLAN FOR STAGECOACH PARK SITE, CITY OF CARLSBAD AUGUST 21, 1985 - JOB NUMBER 9417-A There are two systems extended from Mision Estancia to the creek. One is opposite the future street of Terraza Disoma, the other is opposite the future street of Calle Acervo. These systems are sized to conduct ultimately developed off- site input and additional onsite input from parking lots, recreation buildings and tennis courts including their upstream watersheds. The creek is not altered from the easterly boundary to the inlet apron. Alteration of the creek is from the inlet apron to the rip- rap at Mision Estancia. A cross-section is defined for the most restrictive part of the altered portion. See Exhibits "A" and "B" and channel section hydraulic elements printout. The inlet apron and 24-inch conduit will carry only nuisance flow and periodic minor runoff. Greater runoff will flow down the course of the altered channel. The lined ditch across the existing swale at the northwest corner of the property is to carry only nu i sance . f low. Greater runoff will flow overland into the channel. The existing lined ditch parallel to Mision Estancia will carry flow from that area to the type "F" catch basin. Then via the 18-inch pipe to the existing 66-inch pipe. The balance of the property is to sheet drain into the creek. HYORflULIC ELEMENTS - I O ' 2- (0 Copyright 1982 flduanced Engineering Software [RES] 'ftduanced Engineering Software [RES] REV. 2.Q RELERSE ORTD12/30/82 ******ii*it*OESCRIPIIOH OF RESULT * S I R 6 E C 0 R C H P R R K - C H R H N E L SECTION * C R [ E K 8 Q I T 0 tl * *)Hf ***»*»«(*** »***#»**#)!*** »)>ilRSEL IHPUT IHFQRHflTIQH<(« CKflHHEL Z(HQRIZQHTeL/y[R!KRL) = 16.00 BRSEUIOTH(FEET) = Z5.0Q CaHSTRHf CHBHHEL SLOPE(FEET/FEET> = . FLQU(CFS) = 710.00 GS FRICTION FRCTQR = .010 HQR11RL-DEPTH FLOW IKFORflflTIOK: »>» NORHRL BEPIH.(FEET) = 2.06 FLOU TOP- yiOTH(F[EI) = 9Q.93 riGU ftREfl(SaOflRE FEET) = ' 115.57 HYDRRIILIC OEPTH(FEEI)= 1.31 FLffilfle.RGEUELQCITY(FEET/SEC.) = UHIFQRH FRQODE HUIIBER = .913 PRESSURE * HGHEHTtllKPQUHOS) = RVERRGED UELOCITY HERO(FEET) = .518 SPECIFIC ENERGY(FEET) = 2.609 CRUICflL-OEPTH FLOy IUFGRHRTIOHs CRITICfiL FLOU TOP-UIOTH(FEET) = 87.98 CRITICflL fLOl HREIKSQURRE FEET) = 111.18 CRITICRL FLQU HYORRULIC OEPIH(FEET) = 1.26 CRIIICRL FLOU RUERRGE UELGCITY(FEET/SEC.} = 6.39 CRIIKRL DEPTH(FEET) = 1.97 CRITICflL FLffil PRESSURE + riOtlEIITUft(PQUHOS) = '' 11315.07 fiiitWQ CRITICRL FLQy UELOCITY HERD(fEET) = .633 CRITICflL'FLOU'SPECIFIC EKERGY(FEET) = 2.601 4 Date >I£B&BQ££]S3CT.Page No. PLANNING CONSULTANTS AND CIVIL ENGINEERSENGINEERING COMPANY 365 SO. RANCHO SANTA FE ROAD ® SUITE 100 SAN MARCOS, CALIFORNIA 92.069 0 619/744-4800 n RATIONAL METHOD.HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1381 HYDROLOGY MANUAL (C) Copyright 1382 Advanced Engineering Software EAESJ Especially prepared For: RICK ENGINEERING COMPANY ****#*#***DESCRIPTION OF RESULTS*********^ * STAGECOACH PARK DRAINAGE in/ I ** ""PIPE SIZING CALCS. t*#*#*##-it*#*iHt**if*ifiH USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT*YEAR) = .50.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS*DECIMAL ) TO' USE FOR FRICTION SLOPE = .90 RAINFALL-INTENSITY ADJUSTMENT FACTOR = 1.000 SAN DIEGO HYDROLOGY MANUAL RAINFALL INFORMATION USED SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED Advanced Engineering Software [AES] SERIAL No. A0127A REV. 2.0 RELEASE DATE:10/01/82 #*##*##**###*####**#########***####**##***********##*****#****##***#**#*#*#* FLOW PROCESS FROM NODE 100.15 TO NODE 100.10 IS CODE = 2 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSI3<«« *USER SPECIFIED*SUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT = ' .4500 INITIAL SUBAREA FLOW-LENGTH*FEET ) = G50.00 • " UPSTREAM ELEVATION = "440.00 DOWNSTREAM ELEVATION = 377.90 ELEVATION DIFFERENCE =' 62.10 URBAN SUBAREA OVERLAND TIME OF FLOW*MINUTES ) = 25.583 'CAUTION: SUBAREA SLOPE 'EXCEEDS COUNTY NOMOGRAPH' DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. -CAUTION: SUBftREA FLOWLENGTH EXCEEDS COUNTY NOMOGRAPH DEFINITION.- EXTRAPOLATION OF NOMOGRAPH USED. 50 YEAR RAINFALL INTENSITY*INCH/HOUR ) = '2.056 SUBAREA RUNOFF* CFS) =2.4.1 TOTAi ' ARPAi' AHOPC \ => ? Kf,1 TnTA! Rl iMflPP I Pf'Z.'i =-- 7 4,1 **X*#-»##*##*###***##*# %_,'* **#**##******#***#******##*#* •*V_J_J* ##**#**•*#*•*#**#*# FLOW PROCESS FROM NODE 100.10 TO NODE 100.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 50 YEAR RAINFALL INTENSITY*INCH/HOUR> =2.056 SOIL CLASSIFICATION. IS "D" SINGLE FAMILY DEVELOPMENT RUNOFFCOEFFICIENT = .5500 SUBAREA AREA(ACRES) = 12.40 SUBAREA RUNOFF(CFS) = 14.02 TOTAL AREA*ACRES) = 15.00 TOTAL RUNOFF(CFS) =' -16.43 TC(MIN) = 25.59 **#*****###***##********##***********#*******#***#*#*******#**#•*##**#**#**** FLOW PROCESS FROM NODE 100.00 TO NODE 100.35 IS CODE = 3 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ESTIMATED PIPE DIAMETER*INCH) INCREASED TO 18.00 DEPTH OF FLOW IN 18.0 INCH PIPE IS G.7 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 27.2 UPSTREAM NODE ELEVATION = 240.68 DOWNSTREAM NODE ELEVATION =218.00' FLOWLENGTH(FEET) = 74.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER*INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA*CFS) = 16.43 TRAVEL TIME*MIN.) = .05 TCcMIN.) = 25.63 FLOW PROCESS FROM NODE 100.35 TO NODE 100.30 IS CODE = 3 »>»COMPUTE PIFEFLOW TRAVELTIME THRU' SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLCWK«« . . , •ucrin ur TL.UW UN i i . w UNun rirc. ID U.M- PIPEFLOW VELOCITY*FEET/SEC. ) = 10.2 UPSTREAM NODE ELEVATION = 218.00 DOWNSTREAM NODE ELEVATION = 2 IS. 00 FLOWLENGTH*FEET) =•• 90.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER* INCH ) = 21.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 15.43 TRAVEL TIME(MIN.) - .15 TC*MIN.) = 25.78 FLOW PROCESS FROM NODE 180.30 TO NODE 100.30 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< r\ (~\* M— I Ml— hlol— ll/vt III— f^ fir1!— r~\ I— r^f"1 Thin;— n>I""Kir-ii— h'T" f ~r~ r^ r~ t\ I* it i /\r\r~CONFLUENCE VALUES USEu FGr, iwjcPtNucm D 1 Ktnn 1 ARc- ~TThjr~'/~ir" ^-i/-\K>or~hi'Tr^rtTT/Afc!.')n*Tiii!ii"7~r'\ '.. • '-~i r~ "~> /~\i iric ur L/UNtci^ I nn i IUIMV nJ.INU i ca ; - io.'/o RAINFALL INTENSITY < INCH./HOUR )= '2.05 TOTAL STREAM AREA (ACRES) = 15.00 TOTAL STREAM RUNOFF*CFS) AT CONFLUENCE = 16.43 if************************************************** FLOW PROCESS FROM NODE 100.25 TO NODE 100.20 IS CODE = 2 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« COMMERCIAL DEVELOPMEf^NRUNOFF COEFFICIENT = .7508U INITIAL SUB AREA FLWLEN6TH( FEET) = 535.00 U 7 UPSTREAM ELEVATION = 253.30 ... DOWNSTREAM ELEVATION = 220.30 ELEVATION DIFFERENCE 32.40 ... - URBAN SUBAREA OVERLAND. TIME OF FLOW( MINUTES )• = 12.138 • *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH, DEFINITION. EXTRAPOLATION OF NOMOGRAPH.USED. . . . *CAUTIQN: SUBAREA FLOWLEN8TH EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 50 YEAR RAINFALL INTENSITY*INCH/HOUR ) = 3.028 SUBAREA RUNOFF(CFS) = 3.52 TOTAL AREA<ACRES) = 1.55 TOTAL RUNOFF(CFS) = 3.52 ##***.**#****•»•#***»#**»##*#**#***** * * * i- »**##»###*#*##***###*#*#####*#*****#*# FLOW PROCESS FROM NODE 100.20 TO NODE 100.30 IS CODE = 3 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW )<«« ESTIMATED .PIPE DIAMETER(INCH ) INCREASED TO 18.00 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.2 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 5.3 Mnr>TT\r"AM M rv r\ r~ rr! r-1 i A *r T n M ^ * o ~y n>UroincnPiUuucitLcvmiUu — £if.^& DOWNSTREAM NODE ELEVATION = 216.00 FLOWLENGTH(FEET) = 120.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER*INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = .3.52 TRAVEL TIME(MIN.) = .38 TC(MIN.) = 12.52 ********************** TT *************** ^ * * * * *#«.•**##*•»**##**•»# * i ******* S *-**«•* FLOW PROCESS FROM NODE 100.30 TO NODE 100.30 IS CODE = 1 >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION MINUTES) = 12.52 RAINFALL INTENSITY (INCH. /HOUR) = 2.93 TOTAL STREAM AREA (ACRES) = 1.55 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 3.52 CONFLUENCE INFORMATION; STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 '•)£. IB, ~7^J . .43 .52 25 12 .78 .52 1£. 2 .049 .994 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 18.84 14.76 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF(CFS) = 18.84 TIME( MINUTES ) = 25.782 TOTAL AREA(ACRES) = . 16.55 ***#********«*#*#****#**»***##*##****#******#**#•***#*«*#**»******##***##*## FLOW PROCESS FROM NODE 100.30 TO NODE 100.40 IS CODE =3 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»»USING COMP.U.IER-ESTIMATED PIPESIZE' (NON-PRESSURE FLOW)<«« DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.8 INCHES PIPEFLOW UELOCITY(FEr^S5EC. ) = 7.2'''' UPSTREAM NODE ELEVATLJ =216.00 DOWNSTREAM NODE ELEVATION = 213.20 FLOWLENGTH(FEET) = 331.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = o T r> r~ r~ > <*M i Ti "~>i i rMinAnr"/\/pr~c \ ,_.. i rv 04Tirtruuw I nr\u ouDnr\tin\orb; — i o . b4 TRAVEL TIME(MIN.) = .77 TC(MIN.) = 26.55 ***#******«***«*«*************#****** FLOW PROCESS FROM NODE 100.40 TO NODE 100.50 IS CODE = 3 >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.1 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) - 3.5 UPSTREAM NODE ELEUATION = 204.00 DOWNSTREAM NODE ELEUATION = 203.50 FLOWLENSTH(FEET) = 28.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER*INCH ) = 21.00 NUMBER OF PIPES = 1 n T ni— r~i r\i i Timii niiri/\nr~A/-r-\r~c^ — 1 £> ^Hrirn:rt_Uw i n r\ u ouDrmhmurb/ — I b . o 4 TRAVEL TIME(MIN-) = .05 TC(MIN.) = 26.G0 ****** » * * * * i * * * * •**•**##*# if.********************************* * * * * * -it * * j FLOW PROCESS FROM NODE 200.10 TO NODE 200.00 IS CODE = 2 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFFCOEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH(FEET ) = 1750.00 UPSTREAM ELEVATION = 264.30 DOWNSTREAM ELEVATION = 206,84 ELEVATION DIFFERENCE = 57.46 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES ) = 34.603 *CAUTIO.N: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. *CAUTION: SUBAREA FLOWLENGTH EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 50' YEAR RAINFALL INTENSITYvINCH/HOUR ) = 1.760 SUBAREA RUNOFF(CFS) = 11.71TOTAL AREA(ACRES) = 12.10 TOTAL RUNOFF(CFS) = 11.71 ***** s #•* ********#*##*#*•**# -it *##*#***##******* ****######**####*##**##:if###***## FLOW PROCESS FROM NODE 200.00 TO NODE 200.30 IS CODE = 3 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING'COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ' DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.3 INCHES PIPEFLCW VELOCITY(FEET/SEC.) = 7.3 UPSTREAM NODE ELEVATION = 202.10 DOWNSTREAM NODE ELEVATION = 201.60 FLOWLENGTH(FEET) = ' 44.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 11.71 TRAVEL TIME(MIN.) = .10 TC(MIN.) = 34.70 *#***»#*****»**##»****##**#*****#*****#***#*##*#•*##*#**##*#»#*#*#####***«#*# FLOW PROCESS FROM NODE 200.30 TO NODE 200.30 IS CODE = 1 »'»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<« CONFLUENCE VALUES USfr-^/FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION*MINUTES) » 34.70 RAINFALL INTENSITY (INCH./HOUR) = 1.76 TOTAL STREAM AREA (ACRES) =12.10 TOTAL STREAM RUNOFF*CFS) AT CONFLUENCE = 11.71 *##*#*#****#*##*#####******##*#******#***#*#**#*#*##********##**#*##**#***.»* FLOW PROCESS FROM NODE 208.25 TO NODE 200.20 IS CODE = 2 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT =' .7500 INITIAL SUBAREA FLOW-LENGTH*FEET ) = G10.00 UPSTREAM ELEVATION = 242.00 DOWNSTREAM- ELEVATION - 211.00 ELEVATION DIFFERENCE =31.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES ) = 12.888 *CAUTION= SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMQSRAPH USED. *CAUTIGN: SUBAREA FLOWLENGTH EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 50 YEAR RAINFALL INTENSITY*INCH/HOUR ) = 2.360 SUBAREA RUNOFF(CFS) = 4.44 TOTAL AREA(ACRES) = 2.00 TOTAL RUNOFF(CFS) = 4.44 #*##**#####•*•*#*#*##***##**# **##***###*####*#*****#*###*##***#*##****#*****#* FLOW PROCESS FROM NODE 200.20 TO NODE 200.30 IS CODE = 3 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ESTIMATED PIPE DIAMETER*INCH) INCREASED TO 18.00 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.7 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 9.2 UPSTREAM NODE ELEVATION = 207.50 DOWNSTREAM NODE ELEVATION - 201.60 FLOWLEN6TH(FEET) = 142.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER*INCH ) = 18.00 NUMBER OF PIPES = PIPEFLGW THRU SUBAREA(CFS) = 4.44 TRAVEL TIME(MIN.) = ' .26 TC(MIN.) = 13.15 ********«•*•#****«•*****#******#***#************«•*****#*******#*#**** *•# *#*#**•** FLOW PROCESS FROM NODE 200.30 TO NODE 200.30 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM ' 2 ARE: TIME 'OF CONCENTRATION(MINUTES) = 13.15 RAINFALL INTENSITY (INCH./HOUR) = 2.93 • TOTAL STREAM AREA (ACRES) = 2.00 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE - 4.44 a*************************************************************************** FLOW PROCESS FROM'NODE 200.45 TO NODE 200.30 IS CODE = 2 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER' SPECIFIED*SUBAREA): • run HPMFMT ' piiMnpF rnpppTTTPMT =. INITIAL SUBAREA FLOW-LENGThK FEET) = 240'.00 ... • --'••' UPSTREAM ELEVATION f*A 212.00 '' /-x DOWNSTREAM ELEVATICv_J= 211.30 . (^J /O ELEVATION DIFFERENCE = .70 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES ) = 14.944 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.726 SUBAREA RUNOFF(CFS) = 2.04 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 2.04 it********************* -I******** FLOW PROCESS FROM NODE 200.30 TO NODE 200.30 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MINUTES) = 14.94 RAINFALL INTENSITY (INCH./HOUR) = 2.73 TOTAL STREAM AREA (ACRES) = 1.00 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2.04 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2 3 11 4 L. .71 .44 .04 7, AkJ*T 13 14 .70 .15 .94 1 2 *~>L .758 .933 .726 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO FORMULA USED FOR 3 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 15.69 13.36 13.72 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF (CFS) = 15.69 TIME( MINUTES ) =-• 34.704 TOTAL AREA(ACRES) = 15.10 »*#**##*###**#**#**#*#****#**###### if*** FLOW PROCESS FROM NODE 200.30 TO NODE 200.35 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.0 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 7.B UPSTREAM NODE ELEVATION = 201.60 DOWNSTREAM NODE ELEVATION = 200.00 FLOWLENGTH(FEET) = 154.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(INCH ) = 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 15.69 TRAVEL TIME(MIN.) = .34 TC(MIN-) •= 35.04 • ****##*»#**#****#**###*#***##*#**#*#*##***#**##***###**#####**##*#*######**# FLOW PROCESS FROM NODE 200.35 TO NODE 200.40 IS CODE = 3 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.00 DEPTH OF FLOW IN 18.0 INCH PIPE'IS 8.2 INCHES PiPrF! nu UF! nnTTY.(.FFFT/SFn, ) = 20.1. ... . UPSTREAM NODE ELEVATION = 200.00 _ „ . -'''• • ' "r DOWNSTREAM NODE ELEV^ON = 189.00"' f^ 11 FLOWLENGTH(FEET) = W0.00 MANNINGS N = .013 ^J // ESTIMATED PIPE DIAMETER*INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA*CFS) = 15.69 TRAVEL TIME(MIN.) = .07 TC*MIN.) = 35.11 FLOW PROCESS FROM NODE 200.40 TO NODE 200.40 IS CODE = >»»DESI6NATE INDEPENDENT STREAM FOR CONFLUENCES «< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE; TIME OF CONCENTRATION*MINUTES) = 35.11 RAINFALL INTENSITY (INCH./HOUR) = 1.75 TOTAL STREAM AREA (ACRES) = 15.10 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 15.69 ***#***#*************#**##***#****#*#*********•*•*#**#***###****•»****#*#**#*#* FLOW PROCESS FROM NODE 200.75 TO NODE 200.40 IS CODE = 2 »»>RATIQNAL METHOD INITIAL SU8AREA ANALYSIS<«« *U3ER SPECIFIED*SUBAREA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8000 INITIAL SUBAREA .FLOW-LENGTH*FEET ) = 300.00 UPSTREAM ELEVATION - 194.00 DOWNSTREAM ELEVATION = 192.50 ELEVATION DIFFERENCE = 1.50 URBAN SUBAREA OVERLAND TIME OF FLOW*MINUTES ) = 12.088 50 YEAR RAINFALL INTENSITY*INCH/HOUR ) = 3.032 SUBAREA RUNOFF*CFS) = 3.10 TOTAL AREA*ACRES) = 1.28 TOTAL RUNOFF(CFS) = 3.10 f******«* *#***#*****######*****#***•*##*********#*##**#»##****#*******«#**##* FLOW PROCESS FROM NODE 200.40 TO NODE 200.40 IS CODE = 1 >»»DESI6NATE INDEPENDENT STREAM FOR CONFLUENCE<«« CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION*MINUTES) = 12.09 RAINFALL INTENSITY * INCH./HOUR) = 3.03 TOTAL STREAM AREA (ACRES) = 1.28 TOTAL STREAM RUNOFF*CFS) AT CONFLUENCE = 3.10 CONFLUENCE INFORMATION' • STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 15.69 35.11 1.747 2 3.10 12.03 3.032 RAINFALL INTENSITY AND TIME'OF CONCENTRATION RATIO FORMULA USED FOR 2 STREAMS. VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS' '17.48 12.15 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS' RUNOFF* CFS') = ' 17.48 TIME* MINUTES ) = 35.109 TOTAL AREA*ACRES) = 1G.38 FLOW "PROCESS FROM NODE 200.40 TO NODE 200.55 IS CODE »>»USIN6 COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW ><«« DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.8 INCHES •PIPEFLOW VELOCITY(FEET/SEC.) - 9.7 UPSTREAM NODE ELEVATION = 189.00 DOWNSTREAM NODE ELEVATION = 187.00 FLOWLENGTH(FEET) = 105.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER*INCH ) - 21.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 17.48 TRAVEL TIMEUIIN.) = .18 TC*MIN.) - 35.29 FLOW PROCESS FROM NODE 200.55 TO NODE 200.65 IS CODE = 3 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ESTIMATED PIPE DIAMETER(INCH ) INCREASED TO 18.00 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.1 INCHES PIPEFLOW VELOCITY<FEET/SEC.) = 27.2 UPSTREAM NODE ELEVATION = 187.00 DOWNSTREAM NODE ELEVATION = 173.00 FLOWLENGTH(FEET) = 48.00 MANNINGS N = .013 .. ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 17.48 TRAVEL TIME(MIN.) = .03 TC(MIN.) = 35.32 FLOW PROCESS FROM NODE 200.65 TO NODE >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<« DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.0 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 15.4 UPSTREAM NODE ELEVATION = 173.00 DOWNSTREAM NODE ELEVATION = 158.97 FLOWLENGTH(FEET) = 220.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER*INCH> = 18.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA<CFS> = 17.48 TRAVEL TIME(MIN.) = .24 TC(MIN.) = 35.SB ****************************************»*******#*********«-»**#**#*-»•****#*** FLOW PROCESS FROM NODE 401.10 TO NODE 401.00 IS CODE = 2 >»»RnTIONAL METHOD INITIAL SUBAREA ANALYSIS<«« SOIL CLASSIFICATION IS "D" MULT I-UNITS DEVELOPMENT RUNOFF COEFFICIENT = -.7000 INITIAL 'SUBAREA FLOW-LENGTH*FEET> = 1300.00 UPSTREAM ELEVATION = 225.00 DOWNSTREAM ELEVATION = 170.00; 'ELEVATION DIFFERENCE = 55.00 ' ' URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES ) = 21.759 *CAUTION= SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED, ' ' *CAUTION: SUBAREA FLOWLEN6TH EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 50 YEAR RAINFALL INTENSITY*INCH/HOUR ) = 2.255 qilRARFA RMMnFFi "FS V =. 1.4, JB TOTAL AREA( ACRES) = 9.10 TOTAL RUNOFF(CFS) = . . -14^36; oo FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = '•COMPUTE. PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.9 INCHES PIPEFLOW VELOCITY'* FEET/SEC. ) = 9.8 UPSTREAM NODE ELEVATION = 164.10 DOWNSTREAM NODE ELEVATION = 159.00 FLOWLENGTH(FEET) = 217.00 MANNINGS M = .013 . ESTIMATED PIPE DIAMETER*INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 14-.36 TRAUEL TIME(MIN.) = .37 TC(MIN.) = 22.13 END OF RATIONAL METHOD ANALYSIS O IV R3UONRL METHOD HYDROLO.GV COMPUTER PRQBRflfi PRCtifiGE Reference: SflH DIEGO COUNTY FLOOD CONTROL OI5TRICI 1981 HYDROLOSY I (C) Copyright 1S82 flduanced Engineering Software [RES3 Especially prepared for: RICK ENGINEERING COUPBHY *iHHunMHfx)(D[SCRIPTION OF * 1 0 0 V E fi R " F R E q U E H C Y - • S (J H P S X USER SPECIFIED HYDROLOGY flND.HYORRULIC MODEL INFORMRTION: USER SPECIFIED STORM EUENT(YERR) = 100.00 SPECIFIED HINIMUh PIPE SIZE(INCH) = 18.00 • SPECIFIED PERCENT OF GRROIENIS<OECI!1RL) TO USE FOR FRICTION ELOPE = .90 RRIh'fflLL-INTENSITY ROJUSTHENT FflCTOR = 1.000 OER OF CTIHE.IKTEHSITY] ORTR PflIRS = 10 11 S.UUU 2) 7.500 3) Ifl.Oflfl 1) 15.000 5) 20.000 6) 30.000 7) 10.000 8) 50.000 3) 60. GOO 10) 120.000 SRN OIEGO (ft 3.950 3.150 2.000 2.500 2.000 1.710 1.190 1.330 .850 'ORCLOGY MflHURL T-URLUES USED flduaneed Engirieering Software [flESJ SERIRL No. R0.125R REU. 2.0 RELERSE OBTE:lfl/01/82 fX*»*)HHHHf)HI*#lHHf**iHHt ***«*X IHH FLQU PROCESS FROM NODE 100.25 TO NODE 100.20 IS CODE = 2 »»>RRTIONRL METHOD IHITIBL SUBBREfl RHRLYSIS<«« tUSER SPECIFIED(St)BflRER): COHfOCIRL OEUELOPNENT RUNOFF COEFFICIENT = .7500 INITIBL SUBBREfl FLOU-LENGTH(FEEI) = 535.00 ELECTION = 220.90 ELCUflHON DIFFERENCE = 32.10 O. V-^SUBBREfl OUERLflNfl HUE OF FLOulTES) = 12.138 *CR01!OH: SUBRREfl SLOPE EXCEEDS COONIY NBMPH DEFINITIOH. EXTRRPOLRTION OF NOMOGRflPH USED. . *(MIGN: SUBORER FL01JLEHGIH EXCEEDS COOHIY KOHOGROPH DEFINITION. E«!R(lPOLfiTIOH OF NOtlOGMPH USED. 100 YEBR RfllHFRLL IHIEHSITY(INCH/HOUR) = 3.215 SUBfiREfl ROHOFF(CFS) =3.71 TOTflL fiREfl(flCRES) = 1.55 TOIBE RUHOFF(CFS) = 3.71 FLOU PROCESS FROM NODE 200.25 TO NODE 200.20 IS CODE = 2 »»)RflTIOflftL METHOD INITIRL SDBRRER RNRLYSIS««< *USER SPECIFIED(SUBflREfi): COMMERCIRL OEUELOPMEHT RONOFF COEFFICIENT =, .7500 . INI1IRL SUBRREfl FLOU-LENGTH<FEET) = 610.00 UPSTREfitl ELEyf!TION= 212.00 DOUNSTRERfl ELEUflTIOH = 211.00 ELEUflTIOH DIFFERENCE = 31.00 URBBN SUBflRER OOERLfiNO TIME OF FLflU(l1IHUlE5) = 12.888 *CBUTION: SUBflRER SLOPE EXCEEDS COUHIV NOM06RRPH DEFINITIOH. EXTRRPOLRTIOti OF HOHOGRRPH USED. *CHUTIflH-. SIJBSRER FLOULENGTH EXCEEDS COOtlTY HftlflGRRPH DEflNITIflH. EXTRfiPOLflTIOH OF NOMOGRflPH OSEO. 100 YERR RRINFRLL INTENSIWINCH/HOUR) = 3.132 SUBRRER RDNOFF(CFS) = 1.70 TOTRL flREfl(BCRES) = 2.00 IOIDL RUNOFF(CFS) = 170 ENO OF RflllONRL METHOD RNRLYSIS o. Date job NO.- A Page No. ENGINEERING COMPANY 365 SO. RANCHO SANTA FE ROAD o SUITE 100 SAN MARCOS, CALIFORNIA 92069 & 619/744-4800 PRESSURE PIPE-FLOU HYDRBULICS COMPUTER PROGRftl PBCKBGE (Reference: LBCFD,LBCRD,& OCEHB HYDRflULICS CRITERION) (0 Copyright 1982 flduanced Engineering Software [flES] Especially prepared for: RICK ENGINEERING COMFBNY ***wnnHut*D£SCRIPTION OF RESULT 5********s******************»**************** * * * H S L - 3 0 " PIPE THRU P R R KI N G LOT .* * * NOTE: STEflOY FLOU HYORBULIC HERO-LOSS COMPUTRIIOHS BBSEO OH THE HOST CONSERUBTIUE FORdULfiE FROM THE CURRENT LRCRO.LBCFCD, UNO OCEHB DESIGN (IRNUflLS. DOUNSTRERU PRESSURE PIPE FLOU CONTROL OflTfl: NODE NUI1BER = 200.50 FLOULINE ELECTION = 158.20 PIPE OIBIETER(INCH) = 30.00 PIPE FLOLKCF5) = 62.18 CONTROL HGL = 165.000 Hduanced Engineering Software [flES] SERIflL No. FI0155R REU. 2.2 RELEflSE ORTE:12/17/82 PRESSURE FLOU PROCESS FROM NODE 200.50 TO NODE 200.85 IS CODE = 1 UPSIRERM NODE 200.85 ELEUBTION = 158.9? CRLCOL8TE PRESSURE FLOU FRICTION LOSSES(LfiCFCO): PIPEFLflU=' 62.1B CFS PIPE DIRHETER = 30.00 INCHES' PIPE LENGTH = 25.00 FEET MINGS N = .01300 SF=(Q/t;)«2 = (( 62.18>/< 110.1?1))«2 = .0232031 HF4"SF'='( 25.00)*( .0232031)= .580 NODE '200.85 : HGL=< 165.560>;EGL= < 168.036);FLOUL1NE= < 158.970) PRESSURE FLOU PROCESS FROH NODE 200.85 TO MODE 200.85 IS CODE = 5 UPSIRERfl NODE 200.85 ELEURTION = 158.9? o n HO. D 1 3 1 5 'ISCHflRGE DIflilETER flRER UELOCIIY DELTfi 15.0 30.00 1.909 9/""\ 30.000 62.5 30.00 1.909 12 W 17.5 21.00 3.112 5.561 0.000 0.0 0.00 0.000 0.000 0.000 0.0===Q5 EQUfiLS BRSIN INPUI=== HI) ' 1.305 "'"' •2.516 - - o (* LRCFCD RNO OCENfl PRESSURE FLOU JUNCTION FORNULRE USED: DY=(Q2*U2-qi*Ul*COS(DELTRlH3»U3*COS(OELTR3)- 0:1*U1*CQS(DELTR1))/«fll*fl2>*l6.l) UPSTRERH HRNNIHGS N = .01300 DOUNSTREfiM HRNNIHGS N = .01300 UPSTREBH FRICTION SLOPE = .01201 DOUNSTRERM FRICTION SLOPE = .02320 RUERRGED FRICTION SLOPE IN JUNCTION BSSUMEO BS .01762 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = .070 ENTRRHCE LOSSES = 0.000 JUNCTION LOSSES = DY*HVHU2*(FRICTION LOSSMENTRRNCE LOSSES) JUNCTION LOSSES = 2.156*.1.305- 2.516H .070)*( 0.000) = 1.016 NODE 200.85 :HGL=< 167.806);EGL= < 169.111>;FLOULIHE= < 158.970) PRESSURE FLOU PROCESS FROM NODE 200.85 TO NODE 300.30 IS CODE = 1 UPSTRERM NODE 300.30 ELEUHTION = 159.79 ' CRLCULflTE PRESSURE FLOU FRICTION LOSSES(LHCFCD): PIPE FLOU = 15.00CFS PIPE OlflMETER = 30.00 INCHES PIPE LENGTH = 82.00 FEET (MININGS t! = .01300 SF=(Q.'K>**2 = (( 15.00)/( 110.171))**2 = .0120361 HF=l.*SF = ( 82.00)*( .0120361) = .987 NODE 300.30 : HGL= < 168.793);EGL= < 170.098);FLOULINE= < 159.790) PRESSURE FLOU PROCESS FROM NODE 300.30 TO NODE 300.30 IS CODE = 5 UPSTREflfl NODE 300.30 ELEURTION = 159.99 CRLCULRTE PRESSURE FLOU JUNCTION LOSSES: NO. DISCHRRGE DIRMETER RRER UELOCITY DELTfl HU 1 15.0 30.00 1.909 9.167 10.000 1.305 2 15.0 30.00 1.909 9.16? - 1.305 • 3 0.0 0.00 0.000 0.000 0.000 1 0.0 0.00 0.000 0.000 0.000 5 0.0===05 EOURLS BRSIN INPUT=== LBCFCO RND OCEMR PRESSURE FLOU JUNCTION FORMULRE USED: QY=(Q2*lJ2-Ql*Ul*COS(OELTfll)-Q3*U3*COS(OELTfl3)- Q.1*U1*COS<OELTB1))/((R1+R2)*16.1) UPSTRERtl HRHHIHGS N = .01300 OOUHSTRERH HRHHINGS N = .01300 UPSTRERM FRICTION SLOPE = .01201 DOUHSTREfitl FRICTION SLOPE = .01201 fleflGED FRICTION SLOPE IN JUNCTION RSSUMED RS .01201 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = .018 ENTRRNCE LOSSES = 0.000 JUNCTION LOSSES = DYtHUi-HU2+(FRICIIOH. LOSS)*(ENTRRNLI LOSSES) JUNCTIOli LOSSES = .611+ 1.305- 1.305*( .018)*( 0.000) = .659 NODE 300.30 : HGL= < 169.152);EG1.= < 170.757>;FLOULIHE= ( 159.990) PRESSUSE FLOU PROCESS FROM NODE 300.30 TO NODE 300.20 IS CODE = 1 iiptirprsH wnnr 7,nn ?n nniflnnn= u,? f,? CRLCULRTE PRESSURE FLOU FRICTION LOSSET^CFCD): '"' ( G I *PIPE FLOU = 15.00 CFS PIPE OlR = 30.00 INCHES PIPE LENGTH = 283.00 FEET MRHNINGS II = .01300 SF=(g/k')**2 = (( 15.00)/( 110.171))**2 = .0120361 HF=l*SF = ( 283.00)*( .0120361)= 3.106 NODE 300.20 :HGL=< 172.858>;EGL= < 171.163>;FLOULINE= < 162.620) PRESSURE FLOU PROCESS FROH NODE 300.20 TO HOOE 300.20 IS CODE = 5 IDE 300.20 ELEURTION = 162.82 CRLCOLBTE PRESSURE FLOU JUNCTION LOSSES: NO. OISCHRRGE DIBHETER RRER UELOCIIY DELTfl HI1 1 12.0 30.00 1.909 8.556 0.000 1.137 2 15.0 30.00 1.909 9.16? -- 1.305 3 3.0 12.00 .785 3.820 78.000 5 LflCFCO UNO OCEMfl PRESSURE FLOU JUNCIION FORtlULRE USED: DY=(Q2»U2-Q1*U1*COS<DELTH1H3*U3*CGS<OELTR3>- 01*li1"COS(OELTR1))/((flltR2)*l6.l) UPSIRERM (1RNHIHGS N = .01300 DOUHSIRERH MflHHINGS N = .01300 UPSTRERH FRICTION SLOPE = .01019 QOUNSTREflM FRICIION SLOPE = .01201 HUERRSED FRICTION SLOPE IN JUNCTION RSSUMEO RS .01126 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = .015 ENTRflHCE LOSSES -~ 0.000 JUNCTION LOSSES = DY*HU1-HU2+(FRICIION LOSS)*(ENTRRNCE LOSSES) JUNCTION LOSSES = .321*1.137- 1.305K .015)>( 0.000) = .198 NOOE 300.20 : HGL= ( 173.225);EGL= ( 171.361>;FLOULINE= < 162.820) PRESSURE FLOU PROCESS FROM NODE 300.20 TO NODE 300.00 IS CODE = 1 UPSTRERtl NOOE 300.00 ELECTION = 166.50 CRLCULflTE PRESSURE FLOU FRICTION LOSSES(LRCFCO): PIPE FLOU = 12.00CFS PIPE DIRMETER = 30.00 INCHES PIPE LENGTH = 208.00 FEET HRHNINGS N = .01300 SF=<Q/K)**2 = (( 12.00)/( 110.171))**2 = .0101850 BF=L*SF = ( 208.00)*( .0101850) = 2.181 NODE 300.00 : HGL= < 175.1G6);EGL= < 176.512>;FLOULINE= < 166.500) 'OF PRESSURE FLOU HYORRULICS PIPE SYSTEH ************####****** *^_y* **************#*****#****###* K J* **#******#*#***** -"fl •O PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference^ LACFD , LACRD , 8, OCEMA HYDRAULICS CRITERION) *************#*************#**#***#*#*******+*##***#*****************#«#*### (C) Copyright 1982 Advanced Engineering Software [AES] Especially prepared for; RICK ENGINEERING'COMPANY ******** **DESCRIPTION OF RESULTS******************************************** * * HGL-TO FIELD HOUSE EgAJlMO^ \O-k- 8 S' * . * It****************************** ***#***#***************#*********-tf******#**** NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED' ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD , LACFCD , AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 200.85 FLOWLINE ELEVATION = 158.97 PIPE DIAMETER* INCH) = 24.00 PIPE FLOW(CFS) = 17.48 ASSUMED DOWNSTREAM CONTROL HGL = 167. 806 Advanced Engineering Software CAES] SERIAL No. A0155A REV. 2.2 RELEASE DATE=12717/82 PRESSURE FLOW PROCESS FROM NODE 200.85 TO NODE 200.65 IS CODE = 1 UPSTREAM NODE 200.65 ELEVATION = 173.00 CALCULATE PRESSURE FLOW FRICTION LOSSES*LACFCD ): PIPE FLOW = 17.48 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 220.00 FEET MANNINGS N - .01300 SF=(Q/K>**2 = (( '17.48)/( 226.224))**2 = .0059704 HF=L*SF = ( 220.00)*( .0059704) = 1.313 NODE 200.65 : HGL= < 169.119>;EGL= < 169.600>;FLOWLINE= < 173.000> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 5.88 NODE 200.65 : HGL= < 175.000);EGL= < 175.481>;FLOWLINE= < 173.000) PRESSURE FLOW PROCESS FROM NODE 200.65 TO NODE 200.65—13 CODE" = 5 UPSTREAM NODE 00.ELEVATION =173.00 ~\^__X — - — — - _-_ — -~v / __ _____ , ,__ — _ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. 1 9 J 4 5 DISCHARGE DIAMETER 17.5 24.00 17.5 "24.00 0.0 0.00 0.0 0.00 0.0===Q5 EQUALS AREA 3.142 3.142 0.000 0.000 VELOCITY DELTA 5.564 0.000 5.564 0.000 0.000 0.000 0.000 HV .481 .481 - - BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1 )-Q3*V3*COS(DELTA3 )- Q4*V4*COS(DELTA4) )/((A1+A2 )*16.1 ) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00597 DOWNSTREAM FRICTION SLOPE = .00597 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00597 .024JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = ENTRANCE LOSSES = 0.000 MANHOLE LOSSES GREATER THAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = -.000 MANHOLE LOSSES = .024 JUNCTION LOSSES = DY + HVl-HV2 + ( FRICTION LOSS ) + ( ENTRANCE LOSSES) JUNCTION LOSSES = -.000+ .481- .481+( .024)+( 0.000) = .048 NODE 200.65 •• H6L= < 175 . 048> ; EGL= < 175 . 529> ; FLOWLINE= < 173.000> PRESSURE FLOW PROCESS FROM NODE 200.65 TO NODE 200.55 IS CODE = 1 UPSTREAM NODE 200.55 ELEVATION = 187.00 CALCULATE PRESSURE FLOW FRICTION LOSSES( LACFCD ) = PIPE FLOW = PIPE LENGTH = SF=(Q/K )**2 = HF=L*SF = ( NODE 200.55 17.48 CFS PIPE DIAMETER = 2 48.00 FEET MANNINGS N = . « 17.48)/< 226.224 ) )**2 = . 48.00)*( .0059704) = .287 : HGL= < 175.334>;EGL= < 175.815> 4.00 INCHES 01300 0059704 ;FLOWLINE= <187.000) PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND E6L LOST PRESSURE HEAD USING SOFFIT CONTROL = 13.67 NODE 200.55 : H6L= < 189 . 000> ; EGL= < 189 . 481> ; FLOWLINE=187.000> PRESSURE FLOW PROCESS FROM NODE 200.55 TO NODE 200.55 IS CODE = 5 UPSTREAM NODE 200.55 ELEVATION = 187.00 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. 1 2 3' 4 DISCHARGE 17.5 ' 17.5 0.0 0.0 DIAMETER 24.00 24.00 0.00 0.00 AREA 3.142 3.142 0.000 0.000 VELOCITY 5.564 5.564 0.000 0.000 DELTA 0.000 — 0.000 0:000 HV .481 .481 - - 5 0.0===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2~Q1*V1*COS(DELTA1 )-Q3*V3*COS<DELTAS )- •Q4*V4*COS(DELTA4) )/((A1+A2 )*16.1 ) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00597 DOWNSTREAM FRICTION SLOPE = .00597 FRTP.TTnM...c;i nPF TM JllMHTTnM AS. /UNCTION LENGTH(FEET) = 4,00 FRICTION LOSS = ..,024^' ENTRANCE LOSSES = 0/^0 MANHOLE LOSSES GREATivVTHAN THOMPSON MOMENTUM LOSSES MOMENTUM LOSSES = ' -.000 MANHOLE LOSSES = .024 JUNCTION LOSSES = DY+HUl-HU2+(FRICTION LOSS')+(ENTRANCE LOSSES) JUNCTION LOSSES = -.000+ .481- .481+( .024)+( 0.000) = .048 NODE 200.55 = HGL= < 183.048);EGL= < 189.529);FLOWLINE= < 187.000) PRESSURE FLOW PROCESS FROM NODE 200.55 TO NODE UPSTREAM NODE 200.40 ELEUATION = 187.70 00.40 IS CODE = 1 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD ): PIPE FLOW = 17.48 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 105.00 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 17.48)/( 226.224))**2 = .0059704 HF=L*SF = ( 105.00)*( .0059704) = .627 NODE 200.40 : HGL= < 189 . 675) ; EGL= < 190 . 15B> ; FLOWLINE= <187.700> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .03 NODE 200.40 : HGL= < 189.700>;EGL= <. 190.181>;FLOWLINE= <187.700> PRESSURE FLOW PROCESS FROM NODE 200.40 TO NODE UPSTREAM NODE 200.40 ELEUATION = 187,70 200.40 IS CODE = 5 CALCULATE PRESSURE FLOW JUNCTION LOSSES = NO. 1 2 3 4 DISCHARGE 15.7 17.5 0.0 0.0 DIAMETER 24.00 24.00 0.00 0.00 AREA 3. 142 3.142 0.000 0.000 UELOCITY 4.994 5.564 0.000 0.000 DELTA 0.000 — 0.000 0.000 HU .387 .481 - - S 1.8===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED; DY=(Q2*V2-Q1*U1*COS(DELTA1 )-Q3*U3*COS(DELTAS>- Q4*U4*COS(DELTA4 ) )/((A1+A2 )*16.1 ) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00481 DOWNSTREAM FRICTION SLOPE = .00597 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00539 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = .022 ENTRANCE LOSSES = .096 JUNCTION LOSSES - DY+HUl-HU2+(FRICTION LOSS ) + (ENTRANCE LOSSES) JUNCTION LOSSES = .187+ .387- .481+( .022)+( .096) = .211 NODE 200.40 : HGL= < 190.005>;EGL= < 190.392>;FLOWLINE= < 187.700> PRESSURE FLOW PROCESS FROM NODE 200.40 TO NODE UPSTREAM NODE 200.35 ELEUATION = 200.00 200.35 IS CODE = 1 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD ) = PIPE FLOW = 15.G9 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 80.00 FEET MANNINGS N = .01300 SF = (Q/K>**2 = (( 15.69)/( 226,224»**2 = .0048103 HF=L*SF = ( 80.00)*( .0048103) = .385 NODE 200.35 : HGL= < 190.389>;EGL= < 190.777>;FLOWLINE= < 200.000) PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL RF HFftR IISTNfi SOFFIT f,ONTROi..= . 1 1 . fi J NODE - 200.3S : HSL= < 2¥2 .000TTF6L= <T~~202T387> ; FLOWLIN6- < 200.000> PRESSURE FLOW PROCESS FROM NODE 200.35 TO NODE 200.35 IS CODE = 5 UPSTREAM NODE 200.35 ELEVATION = 200.00 CALCULATE PRESSURE NO. 1 O•C 3 4 5 FLOW JUNCTION LOSSES: DISCHARGE DIAMETER 15. 15. 0. 0. 0. 7 7 0 0 0 O<L 2 ===Q5 4 4 0 0 .00 .00 .00 .00 EQUALS AREA 3; 142 3.142 0.000 0.000 VELOCITY 4 4 0 0 .994 .994 .000 .000 DELTA 25 0 0 .000 — .000 .000 HV .387 .387 - - BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*U2-Ql*>Ji*COS(DELTAl )-Q3*V3*CQS( DELTA3 )- Q4*V4*COS(DELTA4 ) )/( ( A1+A2 >* IB . 1 ) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00481 DOWNSTREAM FRICTION SLOPE = .00481 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00481 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = .019 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2-KFRICTIQN LOSS ) + ( ENTRANCE LOSSES) JUNCTION LOSSES - .073+ .387- .387+( .019 >+( 0.000) = .092 NODE 200.35 = HGL= < 202 .092> ; EBL= < 202 . 479> ; FLOWLINE= < 200.000) PRESSURE -FLOW PROCESS FROM NODE 200.35 TO NODE 200.30 IS CODE = 1 UPSTREAM NODE 200.30 ELEVATION = 201.60 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD ):. PIPE FLOW = 15.69 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 120.00 FEET MANNINGS N = .01300 SF=(Q/K>**2 = (( 15.B9>/( 226.224)>**2 = .0048103 HF=L*SF = ( 120.00)*( .0048103) = .577 NODE 200.30 : HGL= < 202.669>;EGL= < 203.056>;FLOWLINE= < 201.600> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .93 . NODE 200.30 : H6L= < 203.600>;EGL= < 203.987>;FLOWLINE= < 201.600> PRESSURE FLOW PROCESS FROM NODE 200.30 TO NODE 200.30 IS CODE = 5 UPSTREAM NODE 200.30 ELEVATION = 201.60 CALCULATE PRESSURE FLOW JUNCTION LOSSES = ' NO. 1 2 3 •4 5 DISCHARGE 4.4 15.7 11.3 0.0 DIAMETER 18.00 • 24.00 24.00 0.00 0.0===Q5 EQUALS AREA 1.767 3.142 3.142 0.000 VELOCITY 2.513 4.994 3.584 0.000 DELTA 75.000 — 45.000 0.000 HV .098 .387 - - BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*CQS(DELTA1 )-Q3*V3*COS(DELTAS )- Q4*V4*COS(DELTA4) )/((Al+A2 >*16.1 ) { UPSTREAM MANNINGS N = C.01300 DOWNSTREAM MANNINGS N = .01300 IIPQTRPAM FRTHTTflM. ,QI n.PF = B(?,17q DOWNSTREAM FRICTION SLOPE = • .00481 • AVERAGED FRICTION SLP \ IN JUNCTION ASSUMED AS . 0033P" JUNCTION LENGTH*FEETV^J 4.00 FRICTION'LOSS = ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+*FRICTION LOSS ) + (ENTRANCE LOSSES) JUNCTION LOSSES = .594+ .098- .387+( .013)+( 0.000) = .318 NODE 200.30 = HGL= < 204.207>;EGL= < 204.305>;FLOWLINE= < 201.600> PRESSURE FLOW PROCESS FROM NODE 200.30 TO NODE 200.20 IS CODE = 1 UPSTREAM NODE 200.20 ELEVATION = 207.50 CALCULATE PRESSURE FLOW FRICTION LOSSES*LACFCD ): PIPE FLOW = 4.44 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 142.00 FEET MANNINGS N = .01300 SF=(Q/K)**2 = (( 4.44)/(, 105.044))##2 = .00178BB HF=L*SF = ( 142.00)*( .00178BB) = .254 NODE 200.20 : HGL = < 204.461>;EGL= .< 204.559>;FLOWLINE= < 207.500) PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 4.54 MODE 200.20 : HGL= < 209.000>;EGL= < 209.098>;FLOWLINE= < 207.500> PRESSURE FLOW PROCESS FROM NODE 200.20 TO NODE 200.20 IS CODE = 8 UPSTREAM NODE 200.20 ELEUATION = 207.50 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES*LACFCD )• PIPE FLOW(CFS) = 4.44 PIPE DIAMETER*INCH) = 18.00 PRESSURE FLOW VELOCITY HEAD .098 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2** .098) = .020 NODE 200.20 : HGL= < 209.118>;EGL= < 209.118>;FLOWLINE= < 207.500> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM cost ficxnl culver' >n 'e«l Qssign aucftorge role in efl HEAD FOR CONCRETE PIPE CULVERTS FLOWING FULL Plate 2.6-0611 .300.1, T^P too.