Loading...
HomeMy WebLinkAboutCDP 03-07; THOMPSON RESIDENCE; HYDROLOGY REPORT; 2006-09-01I I I I I ·I I I I I I I I I· I I I I I HYDROLOGY REPORT FOR THOMPSON PROPERTY COP 03-07 CARLSBAD, CALIFORNIA Pre.pared for: SEA,BOURNE DEVELOPMENT CO. P.O. Box 4659 Carlsbad, CA. 92018-4659 Tel. (760) 643-0652 I Fax (760) 643-0642 Philip D. Buccola Registration Expires 3-31-08 Prepared by: BUCCOLA ENGINEERING, INC. 3142 Vista Way, Suite 301 Oceanside, California 92056 ·, ·. _(760) 721:-2000 Revised 9-1-2006 Jtily7, 2006 JN 170-1 Page 1 Prepared By: LBR I I I Section TABLE OF CONTENTS I 1.0 INTRODUCTION I I· I. I I ·1 I I I I I I I ·I I 2.0 EXISTING CONDITION 3.0 DEVELOPED CONDITION 4.0 HYDROLOGY CALCULATIONS 4.1 Determination of Runoff Coefficient 4.2 Determination of Intensity 4.3 Determination of Areas 4.4 Determination of Initial Time of Concentration 4.5 Flood Routing Method 4.6 Hydrology Calculations 5.0 CONCLUSION Page2 i I l I j f: i ! ' I I I I I I I I I 1: I I I I. I I I I I SECTION 1 INTRODUCTION This Hydrology Report has been prepared to outline the design procedures and calculations used to detennine the storm drain facilities proposed for the onsite improvements associated with the Tentative Parcel Map for the Thompson Residence, a single family residential development in the· City of Carlsbad, State of California. The site area is zoned R-1, General Plan Designation RLM. The project site is located south of Poinsettia Lane and west of Aviara Parkway. The · '·pr9jects boundaries ·are bordered by-CT 98-14. along the. north, south and west lines. The . proposed development shall be in accordance with :the City Master Drainage and Storm Water Quality Mat1.agement Plan. The pre-development and post development drainage basins, points of discharges are shown on exhibits A and B attached to the rear of this report. This Preliminary Hydrology Report was prepared in accordance with the following reference documents: · • • • • "Standards" for the Design and Construction of Public Works. Improvements in the City of Carlsbad, "latest edition," April 1993 Standard Specification for Public Works Construction, dated 1994 . San Diego Area Regional Standard Orawings, d_ated March 1995 by the City of San Diego ("Regional Standard Drawings"). / .. i / .,,.,,., Hydrology Manual, County of San Diego, date<:fJune 2003 ("County Design Manual") . 1/... . / •.• ··-,··--:-g . (" --.. . . 'I' \. Page3 I I ·I I ·1 I I I I I I· I -I I I I I I I SECTION2 EXISTING CONDITION The project site is located in the northwest portion of the City of Carlsbad south of Pointsettia Lane, west of Aviara Parkway. The site consists of 1.68 acres. Topographically, the site slopes from the east to the west and a small portion of the lot that drains to the east. There is an existing single fl;llllily residence with associated parking and driveway areas on the site .. Page4 I l I I I I I -1 .. -1 I I I I I I I I I I I I SECTION3 DEVELOPED CONDITION The project,cortsists of grading an added pad area along the east side of the existing single-family lot, Storm drainage facilities will include-use of brow ditches located along the perimeters of the project boundarie~ such that they intercept any offsite flows that discharge toward the property. Onsite runoff is conveyed by either surface drainage or private roadway improvements. Flow is directed towards natural drainage ways or to proposed public streets. The project site is within the drajnage basin ~oundaries of CT.98-14 a single family development that 1s comparative larger in size to this project. The Tentative Map for CT 98-14 has previously been processed with the City of Carlsbad and final Grading Plans are now approved. The Hydrology Report prepared with CT 98-14 is assumed to have accounted for the pre-condition runoff from this project. Page5 I I I I I ·I I I I I I I I I I I 1· I I S:ECTION 4 HYDROLOGY CALCULATIONS The hydrological analysis utilized to calculate the storm runoff for the 100-year storm event was the Rational Method (Q = C * I * A). Using a computer program based on the San Diego County Flood Control Division 1985, 1981 Hydrology Manual © copyright 2003 Advanced Ep.gineering Software (AES) ver. Beta, release date: 1/1/98, Serial No. EDI 740, determines each coinponent of the· Rational Method equation, in which: ·Q ::::: Runoff (cfs ), C = Runoff coefficient, IA = Rainfall intensity (inches/hour), A -Area (acres), Tc = Time of Concentration (initial, overland, street gutter, or pipe). 4.1 Determination of Runoff Coefficient The runoff coefficient (C) is based on the soil group· of the drainage basin. This project lies in Soil Group D,. as determined by referencing the soil survey maps. (See Appendix A-1) Runoff coefficients are also depc;,ndent on the proposed land use of each basin. Coefficients for this project were based from the County of San Diego Hydrology Manual. A runoff coefficient of 0.41 has been used based on Low Density Residential (LDR) -Residential, 1.0 DU/ A or less. Refer to Table 3-1 see within this report. 4.2 Determination· of Intensity Rainfall intensity (I) is a function of the six,-hour precipitation measure and the time of concen- tration for the drainage basin,, as defined by the County of San Diego Hydrology Manual (Appendix A-3). 4.3 Determination of Areas The area (A) of each drainage basin was determined from the Drainage Area Map. The onsite drainage basins have been based on the proposed land use. See Exhibit A for the pre-condition and Exhibit B for the post condition Drainage Basins. Page6 I I I I I I I I I I I I I I I I I 4.4 · Determination of Initial Time of Concentration The initial TC is the overland time period for runoff to travel from the farthest edge of a drainage basin to the street gutter. 4.5 Flood RoutinJ? Method The Modified Rational Method was utilized to calculate peak storm water flows and route the calculated flows through the proposed drainage system. · 4.6 · Hydrology Calculations A swnmary of hydrology calculations fot the pre and post developed 100-year conditions are .listed in Appendix A-8. Each basin is identified with its corresponding area, C-factor, length of flow path, slope of flow path, time of concentration, intensity, and total flow listed. Page7 }, I I f I I I I I I·· I I I I I I I I I SECTIONS CONCLUSION This Hydrology Study has been prepared in conjunction with the Grading Plans for CDP 03-07 of the Thompson Residence. It is intended to identify the proposed drainage basins, flow patterns, approximate runoff values, and any storm drain systems necessary to convey the developed 100-year flows from the su'bject site; Pre-condition drainage basins consist of basins El ----E8. Basins El -E4 is conveyed to an existing natural drainage way-adjacent to the easterly boundary. The .QlOO flow for the existing condition is 2.6 cfs. Basins ES -E8 flow westerly to Crystalline Dr via concrete brow ditch and the existing asphalt drive. The Q 100 discharged for Basins ES -E8 is 1. 72 cfs Post condition drainage basins consist of basins Pl-P4. The balance of the westerly half of the site are unchanged from the pre-condition runoff. (refer to basins E5 -E8 above). Basin Pl -P4 are conveyed to the existing natural drainage way located adjacent to the easterly boundary, similar to existing condition runoff. The post condition QlOO discharge from Basins Pl -P4 is 2. 77 cfs as compared to 2.6 cfs per the pre-eondition analysis, resulting in a net 0.17 cfs increase. in -runoff. This increased runoff volume is considered insignificant and will not impair any downstream facilities .. Page8 I I I I I I I 1· I :I I I I. I. I I -1 I I LIST OF APPENDICES Appendix A. HYDROLOGY A-1 A-2 A-3 A-4 A-5- A-6 A-7 A-8 A.;.9 A-10 Hyclrologic Soil Groups Map -San Diego County Soils Interpretation Study Runoff Coefficients (Rational Method) 100-Year, 6-Hour Precipitation Isopluvials 100-Y ear, 24-Hout Precipitation Isopluvials Intensity-Duration Design-Chart (100-year) Hydrology Calculations·-100 Year Flow Capacity-D75 Brow Ditch . Inlet HWD Analysis -8'' PVC Riser Outlet HWD Analysis --8" PVC Pipe Rip Rap Sizing Chart.,... D-40 Page9 I I ·1 I I I ·1 I I I I I I I I I I I ·I LIST OF FIGURES Figtrre 1. · Location Map (Thomas Bros.) 2. Pre-Condition Hydrology (Exhibit A) 3. Post Condition Hydrology (Exhibit B) Page 10 I I I I I I I I I I t:. _n c In I t as · - . T -------------------- ' ~ (}I , San Diego County Hydrology Manual Date:. June 2003 Table3-1 RUNOJ?F COEFFICIENTS FOR URBAN ARE.AS· Section: Page: 3 6of26 Land Use I Runoff Coefficient "C" - Soil TYJ>e -NRCS Elements Coun Elements %-IMPER. A B C D Undisturbe4 Natural Terrain (Natural) Pennanent Open Space o• 0.20 0.25 0.30 0.35 ,· Low Density Residential" (LOR) ·: R,esidential, 1.0 DU/A or less 10 0.27 0.32 0.36 0.41 Low D~nsity Residential (LOR) Residential, 2.0 DU/A or less 20 0.34 0.38 0.42 0.46 Low Dem,ity Residential (LOR) ·. Residential,.2.9DU/A or less 25 0.38 0.41 0.45 0.49 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 0.48 0.52 Medium Density Residential (MDR) : Resi~ential, 7.3 J)U/A or less 40 0.48 0.51 0.54 0.57 Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54· 0.57 0.60 Medium Density Residential (MDR) Residentiai, 14.5 DU/A or less 50 0.55 0.58 0.60 0.63 High Density Residential (HOR) Residential, 24.0 DU/ A or less 65 0.66 0.67 0.69 ·0.11 High Density Residential (HDR) : Residential, 43.0 DU/A or less 80 0.76 0.77 0.78 0.79 Commercial/Industrial (N. Com) Neighborhood Commercial 80 0.76 0.77 0.78 . 0.79 Commercial/Industrial (G. Com) General Commercial 85 0.80 0.80 0.81 0.82 Commercial/Industrial (O.P. Com) Office ProfessionaV~ommercial 90 0.83 0.84 0.84 0.85 Commercial/Industrial (Limited I.) Limited Industrial 90 0.83 0;84 0.84 0.85 Commercial/Industrial (General I.) · General Industrial 95 0.87 0.87 0.87 0.87 *The values associated with 0% impervious may be· used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest}. · DU/ A = dwelling units per acre • NRCS = National Resources Conservation Service 3-6 ,_.c,.,...,.."'1'-2>.'~..._..,l,-_....~~'•-t..~·-·-··-.. ~.-;~. ~--. .,..,.~ .. ·· .,. ... r:~~~~,i~:iit~ 'filif ~?J~t:{t~trf&mcn, J;,;:;x'it"'~·J1~.1~r,u;~JJ~~l·lt~;.!.~tt ~ .. \:~;;Y;,t.. .. ;:;:~;.· ?~¼ -:t ·'). --,_ ------ ''"ti, ---- County of Sati Diego Hydrology Manual • Rainfall lsopl,,vials 100 Year Rlllnfall Event-6 Hours l •'••····· laoplwlal (lnchn) . DPW •GIS ........ .,~ ..... ~~--..,_ S~GIS WtfHa1,-.:Sm l)i_qn(AvcroJ! - N 'l'l'IIIW.MCIWIIIIWffHDUf-....wffi'o/lMtt .......... + OllliWIAD.~auTMOflMT&o1o,MM'IJlDWl#WtfU O,lolUOWffMILIIYNIGfflMIMfOIIAl'MIICUI.Nll'IMOII. c:.,,,,w.ia.OILM..,_,._,_._ s ......................................... ...__.,.._ ...... _.,, ......... __ _,......._,,,~ ,,. ....................................... .. ,....._...,...~,,__ ....... ...._ 3 0 3 MIies ~ -:t, ~ ----.. ----"--~~''.;>""""''·····~-... -... -~. ,.,~, ~ . 1'4-'~ ~j:·:;.~~·!~ ...... i~~"t.~."t-1i.~'1i-r{'· , . ;.'i'rr,,...1:?·f1'.,, •• :#.~"""'~:;,,;.,,;1-~-i,~~~~£ '(~!?/,iJ~: -(> .. ' :>W.\)lW"'.~j~,i .-1' ·~,~. 't,J?ffftl ~1,·;.<1"..'.'~~~*~~->l:'. f','-4~'Ji;r,.~~ ~~ i•K ~~~-l/ ,~. • ------ County of San Diego Hydrology Manual • Rainfall Jsopluvials 100 Year Rainfall Event'-24,Houn leopluvial (lncMs) ~f;fs .....,_..,,,....,.. .. ,,.N\'$,_,,,#ff' ..... __ 3Mlles e5-I ~ SiiiGIS w·u Have S.,.. l)iqtn ( £IV1."'f(.,J! - ::i ...! - l -V1 I -----;----... , -... ------0 0 . 10 9. 8 7 ,0 6 s. 4 a A .... I ~ , ... 'r-. I 2. , ··I g1 I;, >-o =· 10, .50 0 0 I I I ' I i I I ! I I" ~. ~ I" " ' r-.. .. ""' .... .. r-. . "' " l"i,,, ~ .. • ~ " " ... ~ " . " • .... "" """""" ~" ' ' ... " '. ""' r-... I", . .... !'- .... I', ""' I" I" .... ~ ' I' ~ I" i"' .... ~ ..... I"' " 5 6 7 8 9 10 . - . 1111111111111 . "" . , , · 1111111111111 · .... I:-, r,, . "'.:.. ~ • i-/' ~ ~"'~~---~ ~ .... I'"' ~ . • ... "'" ~ ' . " "" ~"' ... .... "" ~ . ~~~ ' •· r. '.~~ -~ ~ ~~ "'' ~ ~ ~ ~ . . , ..... -~ '" I".~~ ·~ ~~- ·•11-o ~"' . ·' ·~ -~ ~ . ~ ~ ·"'~ . I.,' .. . . ~ 1"-i-, • : .,. . .. ':. ~ I II 111111111111111 I 1111111111111111111 . !111111111111 . ' . ' EQU(\TION I = 7.44 Ps 0-0,545 I = Intensity Qn/tlr) P~:r = 6-Hour Preclpltatlon.(in): D = Duration (min) · ~ . ' ~ :".._ .. .... .. I"-""~ ~ .... .... "'r-~ , .. "' I• "~ .~ .... ""' f' ~ ~ ·. I~ . 'I ' 1, .:-,. I'.'~ I"', ••• ' 'r,,. ~~ I"',.; . ~ "" .. • ' i-;;i-. I" ""'' .. I"~ ~~-",.. . I"~~~ ' ~ 'I"' I.._ '~ l"o 1• . " I'"' ~ ""'~· ' 1111111 1111111 . - ~ .g .. ''if n. 6;0:2. as I 5.0 8 :4.51 .4;0 i 3.5,...., I ' Directions fc;>_rAppllcatlon: (1) From precipitation maps.det~rmine 6·hr·and 24 hr ~mounts for th1t l!El~Jreql,lency. Ttl~se ma~ ,re. Included In the . County Hydrology Marwa! (10. 59, and 1QO"yrmaps Included . In the Deslgn·and Procedure· Manual). · (2) Adjust ·s h~ pr~pltaUon (if n~ssary). ~ U)at It '8 within the range ·of 45% to 65% of the.'24-hr precipitation (not · appl!caple to Desert). (3) Plot 6 ~r-precipitation on the right sJde of the chart. (4) Draw a line through the point parallel to·the plotted lines. (5) Thisllne Is the Intensity-duration ~rveforthe.location . being -analyzed. Appll~tJon ·_Form: (~) Selected frequency I tJ'b y~r (b),-P5= ~~(:, In P24=·.5,o .~= S~ %(2) . .,___ ., ,_-P24 - (c) Adjusted 'p6<2> = ol.v, in. (d) fx = -----. min • (e) I = __:_ ln.lhr. Note: This chart replaces the.lntenslty-OuratlQll-'Frequency 1 _ · curves·used slnce.1965. '~.o "l.. 2.5 - .,..,, 2.0 1.5 1.0 !'!-... ~-u z~ :u-i 3 $.if ,-~s s I s.s ·t·--L Duration I I I n I I I. I I I I ·-·--·--11 2;63 3.95 5.27 6.59 -7.90 9.22 ,10.54 11.86 13.17 14,49 .15.81 . 7 2.12 3.18 '4,24 5.30 6.36 7;42 8.48 .9.54 10.60 11.66 12.72 ___ 19 1.68 2.53 3,37 4,~J.:.9-!i 5,90 6.7,f 7.58 8.42 .:!:.2.!. .,.10.,1 __ 1~ 1.30 1.95 2,59 3.24 3.89 4.54 5,19 5.84 6,4? • ..?.:!~ .E!.~- 20 1,08 1,62 2,15 2.69 3,23 3.77 4.31 4.85 5.39 5.93 6.46 =~:::~ -~~~.!.~ .1!rr .!.~ };so '321 3.1a -1.20 •.r;-r-s:;"f~~;~: 30 0.83 1.2-1 1.66 2.07 2.49 2.90 3.32 3.73 ,4.15 4.56 ·4.98 ......... 41:1 ... o.:.s~:. 1:~ .M! .E?2. i9! .. 2.:.~L-~:?9. ~,.1!l ~,~. -~·1.~ .. ,-,, .. ~3 50 0.60 0.90 1.19 1.49 1;79 2.09 2.39 2.69 2.98 3.28 3.58 a]~~~~ ~::I; __ ·::: :·: -~~-~:: --~::· -~--~:!:- -.. 1~ J.>:.3' .. 9~~.! Q~~ .9,!t~ M~ ~.:.1.9 J!!!§ t.53 1.10 he_r. --~-~-...... 150. 0.29. 0.44 0.59 0.73 0.68 1.03 ¼18 _1,32_ J.47. _ 1.62_ 1,76 15 20 30 40 50 1 2 3 4 5 6 teo o~ o.39 o.52 o.65 ,.Q:Z! ~1 J,~ JJ! ~..! ..1,.~. J.s1 _ 240 0.22 o.33 o.~~~o.54 0.as o.76 0.sz_ ~~_,J.08 1.19 _t.30 ·--300. O;IJI_ 0.28 0.38 .0.47. 0.56 0.66, 0.75. __ 0~85 0.94 ,-M~-_113 360 0.17 0.25 0.33 0.<12 0.50 0.68 0.67 0.75 0.84 0.92 1.00 Minutes Duration Hours Intensity-Duration Design Chart -Template 3-1 :I! (11 I I****·*****·******************* 'I#***.***********:********************************* RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT I 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1. SA Relea$e Date: 01/01/2003 License ID 146_3 I Analysis prepared by: BUCCOLA ENGINEERING INC. I 3142 Vista Way, suite 301 Oceanside, California 92056 (760) 721-2000/(760) 721-2046 ·1 ***·*********************** DESCRIPTION OF STUDY *************·***·*********.* * Ei:_[STING CONDITION HYDROLOGY ANALYSIS -100 YEAR * I. * THOMPSON RESIDENCE -CDP 03-07 * * JN: 170 -1, BY: LBR . · · * ' ********~*************~*************************************************** I FILE NAME: G:\1701\1701ER.DAT TIME/PATE OF STUDY: 11:35 09/01/2006 . . ----------------------------------------------------------------------------. . I USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ----------------------------------------------------------------------------. 2003 SAN DIEGO MANUAL CRITERIA I USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 I I SPECIFIED. PERCENT OF GRADIENTS(DECIMAL) TO PSE FOR FRICTION SLOPE= SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS FOR A.LL DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR .COUPLED PIPEFLOW AND STREETFLOW HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: 0.95 WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE I~~~ ~-~:::~-·==~::~== ::~~-=~~~=~~~~:~!= . : =~:=~= =~:::~ =~:=~= ~::::~= MODEL* MANNING FACTOR (n) -------------- I I 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth= o.bo FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) ~-(Depth)*(Velocity) Constraint= 6.0 (FT*FT/S) *SIZE PI.PE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* I * **** ***** **** * ** *** * * * **** ** **** * ***·* * * ** ***--* * ********'If******************** · FLOW PROCESS FROM NODE ~ 100. 00 TG NODE ,. 101. 00 IS. CODE = 21 ~ f I -->>>>>~TIO~AL-METHOD-INIT;[AL-SUBAREA-ANALYSIS<<<<<------------------~~--- I I .-=-=-= . _____ . ___ -.---------· ----------------------------------------------- RESIDENTIAL (,l. DU/AC OR LESS·) RUNOFF --COEFFICIENT = . 4100 sorL CLASSIFICATION rs· "D" S. C. S .· CURVE NUMBER (AMC II) = 82 INITIAL SUBAREA FLOW-LENGTH(FEET) = 160.00 UPSTREAM ELEVATION(FEET) = 296.00 -,,- i l l i ! ! I l I I I I I DOWNSTREAM ELEVATION(FEET) = 270.00 ELEVATION DIFFERENCE(FEET) = 26.00 SUBAREA OVERLAND TIME OF FLOW(MIN.). = 5.76.5 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH= 100.00 (Re·fere:n.ce: Table 3-lB of liydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION!, 100 YEAR RAINFALL INTENSIT-Y (INCH/HOUR) = 6. 249 SUBAREA RUNOFF (CFS) = 0. 82· TOTAL AREA(ACRES) = 0.32{ TOTAL RUNOFF(CFS) = 0.82 ****************************************~*********************************** I FLOW PROCESS FROM NODE l.O·l. OQ1 TO NODE ,1.02. 00 'IS ,CODE = 51 f:::L ---·-----------------------------------------------------------------------.• _.,...,. ..... .,,, .. ".---.,. _ _____,,,..,.. ..... ~_.,,, ""'· -..., >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< I >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< == ... ==.:· ... = ... ==· .· = ··===·· ==· ·= -. ===. -,===· ===============================. =. I I I I I ELEVATION DATA: 'C;JPSTREAM(FEET) = 270.00 DOWNSTREAM(FEET) = CHANNEL LENGTH THRU SUBAREA(FEET) =· 20.0. 00 CHANNEL SLOPE = CHANNEL BASE(FEET) == 5.00 "Z" FACTOR= 0.200 MANNING 1· S FACTOR = () . 0 3 0 MAXIMUM DEPTH (FEET) = 1 . 0 0 100 YEAR RAINJ:i'ALL INTENSITY(INCH/HOUR) = 5.629 RESIDENTIAL (1 .. DU/AC OR LESS') RUNOFF COEFFICIENT= .4100 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 82 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU S-UBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH (FEET) = 0. 07 TRAVEL TIME (MIN.) Tc (MIN.) ·= 6. 78 1.18 = 3.29 = '1. 01 238.00 0.1600 SUBAREA AREA (ACRES) = 0. 3-1-SQBAREA. RUNOFF(CFS) = 0.72 AREA-AVERA.GE RUNOFF COEFFICIENT= --rr~410 · TOTAL AREA(ACRES) =· 0.63 PEAK FLOW RATE(CFS) = 1.45 ~ND OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0. 08 FLOW VELOCITY (-FEET/SEC.) = · 3. 58 I LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 360.00 FEET. **************************************************************************** • . -:::~ :!~~i~::z::~~::~;:= ::~~ T;o~~~~~F~~~~~: ::; -:o~~ -= ---=---------- I I ===.===========·==-====================~-= '==-============================== TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.)-= 6. 78 RAINFALL INTENSITY(INCH/HR) = 5.63 TOTAL STREAM AREA(ACRES) = 0.63 PEAK FLOW RATE (CFS) AT CONFLUENCE = 1. 45 I * * * * * * ** * ******** *** *'* * ***** * * *** ****·***'*'** ** * *_** * * * * * * * * * * * ** * ** * * * *** **** * FLOW PROCESS FROM NODE 104. 00 TO NODE . -103 .. 00 IS CODE = 21 E3 ---------. --------: ------------= -~,-----~--------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I======================-=-==-==-=--==-=------------------------------------ I I RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT= .4100 SOIL CLASSIFICATION. IS "D" S.C.S. CURVE NUMBER (AMC II) = 82 INlTIAL SUBAREA FLOW-LENGTH(FEET) = 200.00 UPSTREAM ELEVATION(FEET) = 294.00 DOWNSTREAM ELEVATION(fEET) = 272.00 -,7 ... I I I ELEVATION DIFFERENCE(FEET) ::; 22.00 SUB.AREA OVERLAND TIME OF FLOW'(MIN.) = 5.765 WARNING: iNITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH= 100.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND-FLOW LENGTH IS VSED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(lNCH/HOUR) = 6.249 SUBAREA RUNOFF(CFS) = 0.77 I TOTAL ~EA(ACRES) = Q. 30 ::..· TOTAL RUNOFF (CFS) = 0. 77 **********~****************************~************************************ I __ :~~~-~R~C~~~-:~~M-~~~~----=~=~~~-=~-~~~~----=~~~~~-=~-:~~~-: __ :: ___ f1--- >>>.>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< · >>>>>TRAVELTIME THRU SUBAREA (EXIS.TING ELEMENT)<<<<< -I======================================================================== ELEVATION 'DATA': ··UPSTREAM (FEET) = . · 272. 00 DOWNSTREAM (FEET) -= 238. 00 ·1 I I I I CHANNEL LENGTH THRU SUBAREA(FEET) = 150.00 CHANNEL SLOPE= 0.2267 CHANNEL BASE(FEET) = 5.00 · nzir FACTOR= 0.200 MANNING I S FACTOR == 0. 03·0 MAXIMUM DEPTH (FEET) = 1. 00 100 YEAR RAINFALL INTENSITY(INCH/HOlJR) = 5.790 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFF.ICIENT = .4100 SOIL CLASSIFICATION IS 11 p 11 S.C.S. CURVE NUMBER (AMC II) = 82 . TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = .TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH (FEET) = 0. 06 TRAVEL TIME (MIN.) 1.01 = 3.45 = 0.72 Tc(MIN.) = 6.49 SUBAREA.1-\REA(ACRES) AREA-AVERAGE RUNOFF TOTAL AREA(ACRES) = = 0.20 COEFFICIENT 0.50 SUBAREA RUNOFF(CFS) = 0.410 PEAK FLOW RATE(CFS) = END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 3.71 0.47 1.19 LONGEST FLOWPATH FROM NODE . 104.00 TO NODE 102.00 = 350.00 FEET. I * * * * * * * * * * * * * * * * * * * * * * * * * * ** *.* * * * * * * * * * * * * * * * *~* * * * * * * * * .-* * * * * * * * * * * * * * * * * * * * . __ FLOW_ PROCESS_ FROM NODE ____ 1,02. oo TO_ NODE ____ 10:r.·oo _rs_ CODE_= ___ 1 __ ef_-Ci _ I .·>>>>>DESIGNA'.l'E INDEPENDENT srRE;AM. FOR ~o;NF:r,,u~NCE<<<<< ->>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< I I I I I ·1 ======-==-= ,---==-=---------------------------=-----------------------------TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN. ) = 6. 4.9 RAINFALL INTENSITY(INCH/H~) = 5.79 TOTAL ST~EAM AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) AT CONFLUENCE== 1.19 ** CONFLUENCE DATA** srREAM RUNOFF NUMBER (CFS) 1 i.45 2 t.19 Tc (MIN.) 6.78 6.49 INTENSITY (INCH/HOUR) 5.62'9 5.790 AREA (ACRE) 0.63 0.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE** STREAM RUNOFF Tc INTENSITY -,r- NUMBER 1 2 (CFS). 2.58 2.61 (MIN.) 6.49 6.78 ( INCH/HOUR) 5.790 5.629 COMPUTED CONFLUENCE ESTIMATES ARE AS-FOLLOWS: PEAK FLOW RATE (CFS) = ·2. 6l Tc (MIN.) = TOTAL AREA (ACRES) = 1 ~-r3· _ LONGEST FLOWPATH FROM NODE . 10 0 . 0 0 TO NODE 102.00 = 360.00 FEET. l*****************************************i********************************** FLOW PROCESS FROM NODE 20·0 ... @.0,.._'!'~NODE --:2:0=-h-{)"0'1'-IS CODE = 21 ES .1 >>>>>RATIONAL M~THOD INITIAL SUBAREA ANALYSIS<<<<< ===== -==. =======·===~ ====== -==· ===,========================================== RESIDENTIAL (1. DU/AC OR LESS.) RUNOFF. COEFFICIENT = .4100 ·1 _ SOIL CLASSIFICA'l'ION IS. 11 0-11 S-.·C. S; ;CURVE ;NUMBER "(AMC II)· = 82 : · · INITIAL SUBAREA FLOW-LENGTH (F·EET) =-135. 00 I' UPSTREAM ELEVATION (FEET) = 26'9. 00 DOWNSTREAM ELEVATION(FEET) = 255.40 ELEVATION DIFFERENCE(FEET) = 13.60 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.765 I WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE ·MAXIMUM OVERLAND FLOW LENGTH= 100.00 (Reference: Table 3-lB of Hydrology Manual) I THE MAXIMUM OVERLAND FLOW LENGTH·Is USED IN Tc CALCULATION! · 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.249 SUBAREA RUNOfF(CFS) = 0.54 TOTAL AREA(ACRES) = 0.21 TOTAL RUNOFF(CFS) = 0.54 '********************~**********;******************************************** FLOW PROCESS FROM NODE 201. 00 TO NODE ! __ 202 -£.:0 IS CODE = 31 I ------------. ---------. ---. --------.. -----. --. --------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED· PIPESIZE (NON-PRESSURE FLOW)<<<<< -1 ==;L;;i;i;;=;r;i7=;p;;;;~(;;;T)=:===;;~~o;==;;;;~;;;;i(;;;;)=:===;~~~;;==== FLOW LENGTH(FEET) ;::: 70.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000 I DEPTH OF.FLOW IN 8.0 .INCH _PIPE.IS 2.6 INCHES PI'PE-F'.LOW-VELOCITY(FEET/SEC.)' = --5.5t3- ES.TIMATED PIP:f;i: DIAMETER (INCH) = 8. 00 NUMBER OF PIPES = 1 I PIPE-FLOW (CFS) = 0. 54 PIPE TRAVEL TIME (MIN.) = 0. 21 Tc (MIN.) = 5. 97 LONGEST FLOWPATH' FROM NODE 200.00 TO NODE 202.00 = 205.00 FEET. I********************•*~****************~*~********************************** FLOW PROCESS FROM .NODE 202 .!00 TO NODJ: .. -202. 00 IS CODE = 81 ,c I"" ------------------------------------------------------------------~~---1 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< =============-== .=-==-=,-======= ==· ==-===-==========================-==-=== 100 YEAR RAINFAL4 INTENS!TY(INCH/HOUR) = 6.107 I RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT= .4100 SOIL CLASSIFICATION IS "D" S.C.S . .CURVE NUMBER (AMC II) = I AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) = 0.11 TOTAL AREA(ACRES) = 0.32 I TC(MIN.) = 5.97 82 = 0.4100 SUBAREA RUNOFF(CFS) = TOTAL RUNOFF(CFS) = 0.28 0.80 -I I I :I I ***•************************************************************************ FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE= 41 • --------• , ·-• ----• ----_, ---------.... <. -• ------,_ ------------------------------------ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>:>.USING USER-SPECIFIED PIPESIZE (EXJ;.ST;I:NG ELEMENT)<<<<< =====·=· -==========.=====-=· =============·====================-====-======== ELEVATION DATA: UPSTREAM(FEET) = 251.00 DOWNSTREAM(FEET) 246.60 ·FLOW LENGTH (FEET) = 100 .-00 MANNING 1-S N == 0. 014 DEPTH OF FLOW IN 24.0 INCH PIPE IS 2.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC~) = 5.30 GIV~N PIPE DIAMETE~(INCH) = 24.00 NUMBER OF PIPES= 1 PIPE-FLOW(CFS) = 0.80 PIPE TRAVEL TIME (MIN.) = 0. 31 Tc (MIN.) = 6. 29 LONGEST.FLOWPATH tROM NODE 200.00 TO NODE 203.00 = 305.00 FEET. I .~************~*********************~**********~***************************** · FLOW PROCESS FROM NODE . ·2 03 . 0 0 TO . NODE· · "2 0.3, . 0-0 IS · CODE = · 1 · · . · --------------_. __ . ___ .-----L---------------------------------------------- I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ======·===== ============ .====== == ===.=== == ============================= TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM I . TIME OF CONCENTRATION (MIN. ) = 6 . 2 9 RAI~FALL INTENSITY (INCH/HR) = 5. 91 1 ARE: TOTAL STREAM AREA(ACRES) = 0.32 I PEAK FLOW RATE(CFS) AT CONFLUENCE= ·o. 00 **************************************************************************** I FLOW PROCESS FROM NODE 206.00 TO NODE · 2·05.oo IS CODE = 21 E:J . --------. .--. ---------. --------. -. --. ---------------------------------------- >>>>>RATIONAL METHOD .INITIAL SUBAREA ANALYSIS<<<<< I I ·1 I I =====.= =========== ======== ======= ==-===== =========================== RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT= .4100 SOIL CLASSIFICATION IS 11 b 11 S.C.S. CURVE NUMBER (AMC II) = 82 INITIAL SUBAREA FLOW-LENGTH (FEET) =. UPSrREAM ELEVATION(FEET) = 292.00 DOWNSTREAM ELEVATION(FEET);,,; 272.50 ELEVA'I'.I-ON DIFFERENCE (FEET) = 1.9. 50 250.00 . , . SUBAREA OVE:F.I,.AND TIME OF FLOW (MIN .. ). = .. 6. 2'63 . WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH= 100.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR-RAINFALL INTENSITY(INCH/HOUR) = 5.924 SUBAREA RUNOFF·(CFS) = 0. 61- TOTAL .AREA (ACRES) = 0 . 2 5 . TOTAL RUNOFF (CFS) = 0.61 **********************************************************************~**** ·I . FLOW PROCESS FROM NODE -~-205. 00 _TO NODE --,204. 00 IS CODE = 61 t:::S --------------------.------------------------------------------------------- 1 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STANDARD CURB SECTION USED)<<<<< ===========.==== ·=======================-=======================~=====--=--- I I UPSTREAM ELEVATION (FEE.T) = 272. 50 DOWNSTREAM ELEVATION (FEET) = 245. 50 STREET LENGTH(FEET) = 260.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 I I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 -o-0 - I I I I I ·I I 1· I OUTSIDE.STREET CROSSFALL(DECIMAL) = 0.020 SPECI:FIED NUMBER OF HALFSTREETS .CARRYING RUNOFF= 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow section(curb-to-curb) = 0.0150 Manni:ngis FRICTION FACTOR for Back-of-Walk Flow Section= 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFl;,JOW MODEL RESULTS US.ING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY (FEET/SEC,) = 6. 08 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.95 STREET FLOW TM VEL TIME (MIN. ) = 0 . 71 Tc (MIN.· ) = 10-0 YEAR RAINFALL INTENSITY (INGH/HOUR) = 5. 526 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT= SOIL CLASSIFICATION. IS 11 0 11 ·· ··• S.C.S. CURVE NUMBER (AMC II) = 82 AREA.-AVERAGE RUNOFF COEFFICIENT = 0.410 6.98 .4100 SUBAR:EA AREA (ACRES) . = ··o ~ 18 .. TOTAL AREA ('ACRES) = 0 . 4 3 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) = END OF SUBAREA STREET },<'LOW HYDRAULICS: 0.81 0.41 DEPTH(FEET) = 0.18 HALFSTREET FLOOD WIDTH(FEET) = 2.60 FLOW VELOCITY(FEET/SEC.) = 5.25 . Dl:!:PTH*VELOCITY(FT*FT/SEC.) = LONGEST FLOWPATH FROM NODE 206.00 TO NODE 204.00 = 510.00 0.97 0.94 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *· *'* * *·* * * * *-* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' .. . . . . I __ :~~~-=~o~~~~-:~~~ -~~D~--__ ~~~!~~--TO ~~~~ ___ -~'~: ~ ~~ -=~ _ ~~~~ _: _ -~=-________ _ >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STAND.ARP CURB SECTION USED)<<<<< I ==;;s;;;;;=;~Ev~;;;;,F;;;>=:==;;;~;;=·=;;;;;;;;;;=;~;;~;;;;,;;;;>=:==;;~~~;== STREET LENGTH(FEET) = 40.00 CURB HEIGHT(INCHES) = 6.0 I. -STREET HALFWIDTH (FEET) = 30. 00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = INSIDE STREET CROSSFALL(DECIWµi} = 0.0~0 I . · OUTS;EDE STREET CRQSSFALL.(DECIMJ\.L) 0. 02 0 SPECIFIED NUMBER OF HALF$TREETS CARRYING RUNOFF= 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 18.50 I Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = Manning's FRICTION FACTOR for Back-of-Walk Flow Section= 0.0200 I 1. **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = .STREETFLOW MODEL RESULTS VSING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.21. HALFSTREET FLOOD WIDTH(FEET) = 4.12 .AVERAGE FLOW VELOCITY (FEET/SEC.) = 3. 4,3 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.71 STREET FLOW TRAVE!.i TIME(MIN.) = 0.19 Tc(.MIN.) = 1.00 YE,AR RAINFALL INTENSITY (INC;H/HOUR) = 5. 429 RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT= SOIL CLASSIFICATION IS "'D" S.C.S. CURVE NUMBER (AMC II) = 82 AREA-AVERAGE RUNOFF COEFFICIENT= SUBAREA AREA(ACRES) = 0.01 0.410 . 7.17 .4100 0.99 0.02 0.0150 I I I TOTAL AREA(ACRES)-= 0.44 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) = 0.98 I I END OF SUBAREA STREET FLOW HYDRAULICS: DEPT~(FEET) = 0.21 HALFSTREET fLOOD WIDTH(FEET) = 4.12 FLOW VELOCITY(FEET/SEC.) = 3.40 DEPTH*VELOCITY(FT*FT/SEC.) = LONGEST FLOWPATH .FROM NODE 206.00 TO NODE 203.00 = 550.00 0.71 FEET . . I * * ********·** ****** ******** ** * **.:l!**,***:'J;if-*-*~*.:I!..***** * *** * * ** * * * * * * * * ** ** * * * * * ** * I __ FLow _ :i?R.ocEss _FROM_ NODE ____ 20:i·.-00--iro _NODE ____ 203-;-0,0-I"'s-coDE _ = ___ 1 __ f$-£Z I I- I I I I I I --1 I >>>>>DESIGNATE; INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>.>AND COMPUTE VARIOUS CONfLUENCED STREAM VALUES<<<<< == . =-'=================' ===============·====================================== TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT TIME OF CONCENTRATION(MIN.) = 7.17 RAINFALL INTENSITY(INCH/HR) = 5.43 TOTAL -STREAM AREA (ACRES) ·= -· --o • 44 PEAK FLOW RATE(CFS) AT CONFLUENCE= STREAM ** CONFLUENCE DATA** STREAM RUNOFF NUMBER (CFS) 1 0.80 2 0.98 Tc (MIN.) 6.29 7.17 INTE:r;.JSITY (INCH/HOUR) 5 .. 909 5.429 0.98 2 ARE: AREA (ACRE) 0.32 0.44 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. * * PEAK FLOW RATE S_TREAM RUNOFF NUMBER (CFS) - 1 1.66 2 1. 72 TABLE ** Tc (MIN.) 6.29 7.17 INTENSITY ( INCH/HOUR) _ 5.909 5.429 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 1. .72 Tc (MIN.) = TOTAL AREA(ACRES) = 0;76 LONGEST FLOWPATH FROM NODE 206.00 TO NODE 7.17 203.00 = 550.00 FEET. ====== ·• -=-============== =~============·================================== END,OF _STUDY SUMMARY: TO'.j:'AL AREA(ACRES) = PEAK FLOW RATE(CFS) = *** PEAK FLOW RATE TABLE Q(CFS) Tc(MIN.) 1 1.66 6.29 *** ·-. _,. . O·. 76 -TC (MI~.) = 7,17 1. 72, I 2 1. 7 2, 7 . 1 7 = ===== ===================== ============ ============= ·================== I I- I I = -=·==:.============-======================-================================= END OF RATIONAL METHOD ANALYSIS ! I -I ! f l 1 I **************************************~************************************* I RATIO~AL METHOP HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT I 2003, 198·5, 1981 HYDROLOGY MANUAL · (c) Copyright 1982..a2003 Advanced Engineering Software (aes) Ve-r;. 1.5A Release Date: 01/01/2003· License ID 1463 I Analysis prepared by: BUCCOl;.iA ENGINEERING INC. I 3142 Vista Way, Suite 301 Oceanside, California 92056 (760) 721-2000/{760) 721-2.046 I · *********.*********·******** DESCRIPTION· OF· STUDY·*************·********·****.* * PROPOSED CONDITION HYDROLOGY ANALYSIS -100 YEAR * I * THOMPSON RESIDENCE -CDP 03-07 · * * JN: 170-1, BY: LBR ·· * ******~******************************************************************* I FILE NAME: G:\1701\1701PR.DAT TIME/DATE OF STUDY: 13:39 09/0t/2006 -----------------------------... -------------· -------------------------- I USER SPECIFIED I:IYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------------------------. ----------------------------------------------- 2003 SAN DIEGO MANUAL CRITERIA I USER SPECIFIED STORM EVENT ('Y;EAR) =. 100. 00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.600 SPECIFIED MINIMUM PIPE SIZE.(INCH) = 8. 00 I SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE= SAN DIEGO HYDROLOGY MANUAL 11 Ci1 -,,VALUES USED FOR RATIONAL METHOD NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS 0.95 I FOR ALL DOWNSTREAM ANALYSES . *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW HALF-CROWN TO STREET~CROSSFALL: CURB GUTTER-GEOMETRIES: MODEL* MANNING FACTOR (n) WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE I-~~:· ~1::~· ===~:=~=~ · -~=D~ ~~!=~~~~~~y-=~::~= =~::~ =~::~= ~::~= ======= I I 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. ·Relative Flow-Depth= o.oo FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth)*(Velocity) Constraint= 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY ~IPE.* I******~***************************************••**************************** I __ :~~~-P~~:~~~-:~~~-~~~~-----11~-~ '. ~~-=o-~~~~----=~=~~~-=~-:~~~-=--~=--f-\ ___ _ .>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I I ==========.====================-======' =·=================================== .RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT= .4100 SOIL CLASSIFICATION rs·· "D 11 S.C.S. CURVE NUMBER (AMC II) = ~2 INITIAL SUBAREA FLOW-LENGTH(F~ET) = 160.00 UPSTREAM ELEVATION(FEET) = 296.00 I I I I DOWNSTREAM ELEVAT.ION (FEET) = 270. 00 ELEVATION DIFFERENCE(FEET) = 26~00 SUBAREA OVERLAND TIME OF FLOW(MIN.) =· 5.765 WARNlNG: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THE MAXIMUM OVERLAND FLOW LENGTH= 100.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN 100 YEAR· RAINFALL INTENSITY (.INCH/HOUR) = 6. 249 SUBAREA RUNOFF(CFS) = d.9~ TOTAL AREA (ACRES) = _o-;·J 6----' TOTAL RUNOFF (CFS) = THAN Tc CALCULATION! I * * * * * * * * * * * * * * * * * * * *'* * * * * * * * * * * * * * * * * * * * * * * * * ~"'*"**** * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 1'0Li 00 TO NOOE '2-0-1 .. OOJ IS CODE = 81 I)-. • ---------------------' -----_:. --.J --------------~ ------------------..:J-c,.C... --- >>·>>>ADD;J:TION OF SUBAREA TO MI\INLINE PEAK FLOW<<<<< I =·=====================================.================================= .· 1.00 iEAR RAINFALL INTENSITY (INCH/H:OUR)· ·= 6 ~-2.49 · · I· I I RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT= .4100 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 82 AREA-AVERAGE RUNOFF COEFFICIENT= 0.4100 . . SUB~EA AREA (ACRES) = O ~ 08 7 SUBAREA·· RUNOFF (CFS) = TOTAL AREA(ACRES) = 0.44 . TOTA!,J RUNOFF(CFS) = 0.20 1.13 TC (MIN. ) = 5 . ~ 7 fl; / . * * * * *· * * * * * * * * * * * * * * * * * * * * * * * *~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE . 1~ 'DO NOD:$ 1-.:lP:2:-L.00,7IS CODE = 41 ---------------------------------------------·------------------------------- I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ==== ·======== ~-========== ---= -=======·==,=· :.~. -~,~---~---~ -~=-=-=-=-======================= I I ELEVA.TlON DATA: UPSTREAM(FEET) = 270.00, DOWNSTREAM(FEET) = FLOW LENGTH (FEET) = 135. 00 MANNING'' S N = 0. 014 DE~TH OF FLOW I~ 24.0 INCH PIPE I$ 2.0 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 8'. 91 GIVEN PIPE DIAMETER(INCH) = 24.00 • NUMBER OF PIPES= PIPE-FLOW (-CFS) = 1.13 . . 1 PIPE TRAVEL TJ;ME (MIN.) ··=-0. 25 Tc (MIN.) = 6. 02 250.50 LONGEST FLOWPATH FROM NODE 100·. 00 T0·N0DE· ·/102. 00 = 295. 00 FEET. I. * * ** * ******* * *·*** ** ** * * * **** ****·*·* * *.** *** ** *** ** **** * *** ** * ****.* * * *** ** * * * * * FLOW PROCESS FROM NODE ~ TO NODE 102,. 00 IS CODE = 81 £1";) I --------------_____________________________________________________ J ______ _ >>>>>APDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I I I ==========· ·================ -=============================================== 100 YEAR RAINFALL INTENSITY(INCH/HOUR} = 6.079 RESIDENTIAL (1. DU/AC OR LESS.) RUNOFF COEFFICIENT= .4100 SOIL CLASSIFICATION S.C.S. CURVE NUMBER AREA-AVERAGE RUNOFF SUBAREA AREA(ACRES) TOTAL AREA(ACRES) = TC(MIN.) = 6.02. IS "D" (AMC II) = 82 · COEFFICIENT= 0.4100 = ::::©.:.-5 o. a, ';SUBAREA RUNOFF (CFS) = 0.94_, TOTAL RUNOFF(CFS) = 1.25 2.34 *******~*****************************~************************************** -, L-,!r-- FLOW PROCESS FROM NODE lJ:-0:2. (;}O TO NODE 103. 00 IS CODE = 41 ----------------------·-------------. ------------------------------------->>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< =·=-=======·====-======-=====-=-==-=~=-= --=-=-==-=-=--=-==---=-==-=-==------ 246.00 I ELEVATION DATA: UPSTREAM(FEET). = 246.10. DOWNSTREAM(FEET) = I FLOW LENGTH(FEET) = 6.00 MANNING'S N .. 0.011 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC~) = 6.71 PIPE FLOW VELOCITY= (TOTAL FLOW)/(PIPE CROSS SECTION AREA) I. GIVEN PIPE DIAMETER(INCH) = . 8.00 NUMBER OF PIPES= 1 P!PE-FLOW(CFS) = 2.34 PIPE TRAVEL TIME (MIN.) = 0. 01 Tc (MIN.) = 6. 03 I LONGEST FLOWPATH FROM NODE 100 .. 00 TO NODE 103. 00 = 301. 00 FEET. ************•****************************~********************************** 1--FLOW_ PROCESS. FROM_ NODE__ .·103. 00. T? _NODE----10'4 .00 -IS -CODE_= --51 --Pl( ___ _ >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< 1,= ·;L;;~;i;;=;~;A:~;;s;;;~,;EE;r=:= .. =.=;~~~;;=~;o;;;;;;~,;;;;)=:====.;;;~;;~=. I I I I CHANNEL LENGTH THRU SUBAREA(FEET) = . 40.00 CHANNEL SLOPE= 0.2000 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR=· 0.200 MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR} = ·5.983 RESIDENTIAL (1. OU/AC OR LESS) RUNOFF COEFFlCIENT = .4100 SOIL CLASSiFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 82 TRAVEL ·TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH(FEET} =. 0.10 TRAVEL TIME(MIN.} 2.58 = 4.94 = 0 .. 14 Tc(MIN.) ~ 6.17 SUBAREA AREA(ACRES) AREA-AVERAGE RUNOFF TOTAL AREA(ACRES) = = 0.1,9 COEFFIC:CENT = 1.13 -.. S.UBAR~A RUNOFF (CFS) = 0.410 , .... , ~EAK FLOW RATE(CFS) = 0.47 2.77 I END OF S'IJBAREA CHANNEL FLOW HYDRAULICS : DEPrH(FEET) = o.il FLOW VELOCITY(FEET/SEC.} = 4.95 LONGEST FLOWPATH FROM NODE 10 0 . OQ TO NODE 10 4 . O O = 3 41. O O FEET. I==;~=;;=;;~;=;~;;==============·======= .. =========== .=================== TOTAL AREA (ACRES) = 1:13:. TC (MIN. ) = 6 . 1 7 Y', _ ('4 I ::;EAK ?::: ~=E tF:: : = :: .. 2 '. 7~:: :: . . . • ::::::::::::: .. : ::: :::::::::: I I I I I I END OF RATIONAµ METHOD ANALYSJS ;...~f- -I I I· I I I I I I I I I ·I· I I I I I I tmp#13.txt FLOW CAPACITY ANALYSIS FOR CONCRETE BROW DITCH TYPE B, D-75 Manning Pipe calculator Given Input Data: shape ·............................ circular s9lving for •......•.•..•.....••. Depth of Flow .. DTameter . . . . . . . . . . . . . . . . . . . . . . . . 2. 0000 ft ... Fl oWr·ate -• · ..... '~ . ; . · .... ." .... .". . . . . . , ·2: ·30QO . cfs slope ..... : ..................... ·. O .1440 ft/ft Manning's n . . . . . . . . . . . . . . • . . . . . . ·Q.;0140 computed Results: . Depth ...... , ............... ,·...... ·o.2334 ft Area ... _ ...................•... -. . . 3 .14.16 ft2 wetted Area . .. . . . • . . . . • . • . . . • . . • . O .2050 ft2 Wetted Perimeter ................ 1.3945 ft Pe-rimeter . • . . . ... . . . . . . . . . . . . . . . • 6.2832 ft velocity ................•....... ll.2193 fps Hydraulic Radius . . . .. . . . . . . . . . . . . o .1470 ft Percent Ful 1 . . . . . . .. . . . . . . . . . . . . . 11. 6696 % Full flow Flowrate .... : ......... 79.7141 cfs Full flow velocity .. .. .. .. • .. .. • 25.3738' fps critical Information critical depth: .....•......... · .. 0.5272ft critical .slope . • . . . . . . . . . . . . . . . . 0.0052 ft/ft critical velocity················ 3r4757 fps· cri ti ca 1 area . . . . . . • . • . .. . . . • . . . . o .. 6617 ft2 Critical perimet~r ... : .•..... ~.. 2.1567 ft critical hydraulic radius •...•.. 0.3068 ft critical top width ..•..... ~ ..•. ; 1~7623 ft specific energy . . . . . . . . . . . . . . . • . 2 .1895 ft Minimum energy ..•........•..•... 0.7908 ft Froude number . . . . . . ... . . . . . . . . . . . 4.9506 Flow condition . . . . . . . . . . . . . . . . . . supercriti-cal Z..' -I • Page 1 (\ ~ C),c,t lf s,.. l <f, t.f. 0 I 0 KC~?1PvJ~ ~f:::..tt-Ju.J& WAt,L. tt7 i I I i ! l l I I I· I I I I I I I I I I I I I I I I tmp#7.txt CHECK FOR HWD 8" PVC RISER AND 12"Xi2" ATRIUM GRATE orifice calculator Given rnput ~ata: solving for . . . . .. . . • . . . . . . . . . . . . Headwater F]·owrate .... ·. . . . . . . . . . . . . . . . . . . . 2 .'"3000 tfs coefficient ~···················· 0.9800 · Diameter •................. ~ . . . . . O ~ 6700 ft Tailwater .................. ·.· .. ·.~.!.' •. _Q._0000 'ft computed Results: · Headwater ......... ~ ............. . velocity ..................... ~ .. 0.6886 ft 6.5236 fps Pcl,ge 1 -loe'{ .S1bN~ /:z.~b..11\ltN y W~vt_ I I I I I· I .1 ·I I I I I ii I I tmp#14.txt culvert calculator 8" PVC OUTl-ET PIPE HWD ANALSIS Entered Oata: shape ..•..•..... · .•.. · ............ . Number of Barrels ....•........... solvi·ng for .................... . chart Number· •...•.............•.•. Scale Number ••••r••••••••••••••• chart Description· •....•.. ·. : .... . seal e pees ri,p:ti on ............... , . overt_oppi ng .... -................. ~ Fl owrate ....................... . Manning's n . ~ .................. . Roadway Elevation .............. . Inlet Elevation ................ . outlet Elevation •...•..•........ oi ameter .... ~ .................. . Length ....... _ .................. . Entrance Loss~··············~··· tai,l.water .... ~ . •-................ . circular· 1 Headwater 1 . 1 PVC P~PE CULVERT ROUNDED ENTRANCE ·off····· · 2.3000 cfs 0.0110 250.5000 ft 246.1000 ft 246.0000 ft 0.6700 ft 6.0000 ft ·0.0000 0 •. 6100 ft computed Results: Headwater ..... _ ................. . sl Ope •......••.• ~ •.••.•.•....• ~ . 248.2371 ft Inlet control . 0. 0167 ft/ft velocity ....................... . Messages: Inlet head> outlet head. computing Inlet control headwater. · -so 1 vi ng Inlet Equati·on 2 6. solving Inlet Eqµation 28. Headwater: 248.2371 ft 6.5236 fps PIS-HEAD-INLET OUTLET CHARGE WATER-CONTROL CONTROL FLOW NORMAL CRITICAL Flow ELEV. DEPTH DEPTH TYPE DEPTH ,DEPTH ~ ft ft ft ft ft 0.46 246.70 0.00 0.60 0.67 0.92 246.80 0.00 0.70 0.67 1.38 246.96 0.00 o.a6 0.67 1.84 247.19 ().00 1.09 0.67 2.30 247.48 o.oo 1.38 b.67 2.76 247.84 o~oo 1. 74 0.67 3.22 248.Z6 0.00 2.16 0.67 . 3.68 248.75 0.00 2.65 0.67 4.14 249.30 CLOO 3.20 0.67 4.60 249.92 0.00 3,82 NA NA NA NA NA NA NA NA NA NA 0.23 0.67 0.33 0.67 0.43. 0.67 0.54 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 o .. 67 0.67 0.67 0.67 0.67 Page 1 --1'>' - ·-O"'O · OUTLET VEL. 'DEPTH fps ft 1.30 0.67 2.61 0.67 3.91 0.67 5.22 0.67 6. 52 0.67 7.83 0.67 9.13 0.67 10.44 0.67 11.74 0.67 13.05 0.67 TAILWATER VEL. DEPTH fps ft 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 I 1· ·1 -1 I I ·1 ·1 I I I I I I I I I I E ::, -~ ::i ~ 0 .... -E 9. ,.., ~ ~ ... 0. 0 N ~ ~ 0 0 N Concrete -Channel .. p-r-rt4(p S-(UrJ(i ~rz..-r 2D OR 2 W min. Al 152mm (6") Wide Slot 3D OR 3W PLAN CD 4-~ J;l. ~ s v-;. b•f T (min) Design Velocit) Rock m/sec (ft/sec * Classification 1.8-3 320mm (1.1ft) (6-10) No. 2 Backing 3-3.7 220 kg (10-12} (1/4 ton) 823mm (2. 7ft) 3.7-4.3 450 kg . (12-14) (1/2 ton) 1.1m {3.5ft) 4.3-4.9 900 k~ 1.3m {4.4ft) (14-16) (1 ton 4.9-5.5 1.8 tonne 1.6m. ·c!1.4ft) {16-18) (2 ton) •over 5.5 mps (18 fps) requires special design D = Pipe Diameter W = Bottom Width of Channel ~, ~ 'P --er _,J ·e .2 -(/) Ii'? .... I- Filter Blanket Sill, Class 249kg/nt -C-13Mpa (420-C-2000) Concrete SECTION A-A NOTES 1. Plans shall specify: A) Rock Class and thickness (T). B) Filter material, number of layers .and thickness. 2. Rip rap shall be either quarry stone or broken concrete {if shown on the pfans.) Cobbles are riot acceptable. ~-Rip rap shall be placed over filter blanket which may be either granular material or filter fabric ( woven filter slit film fabric shall not be used). 4. See Regional Supplement Amendments for selection of filter blanket. SECTION 8-8 5. Rip rap energy dissipators shall be designated as either ~ Type· 1 or Type 2. Type 1 shall be with concrete sill; Type 2 shall be without sill: . Revision ORIGINAL · Add Metric Add ip Rap T bl T. Stanton -s: Brady 04/06 ~ RECOMMENDED BY lHE SAN DIEGO SAN DIEGO RE~IONAL ST ANDA RD DRAWING REGIONAL STANDARDS COMMITTEE RIP RAP ENERGY DISSIPATOR Chairperson R.C.E. 19246 Date DRAWING NUMBER D-40 ft/D tJA>f3 ,... ;IIIIIJ .-, I_. \ rw 1 , :.11111111 ,111111111· 11111111 allPI ,.,,r · rlflllJ ·" ....... I . . . \ . ,---,-______ ---SEE ----• l~ ~7' ~~~ -;:J--,.' ,. ;) ~ ;g. ~ liP .ril//llJ ·""" . \,1/1//h :J//IIJ F-:• ,-.-,,-..,.....1127 ... l--1----l I S[[WHZ l'MWIIUIM I IA511CMU, J fAS(OfAIIII 4 MKtU6UlM I IAKO IJf.MIO, , ...... ," J IASIIWrtl( IAUIOltlll• • ,.uuw1111.• :, .,_,. '-t: LEGEND A10 1.50 AC #1 TC BASIN BOUNDARY FLOW DIRECTION ARROW BASIN DESIGNATION BASIN AREA IN ACRES NODE# DESIGNATION Q100 100 YEAR DISCHARGE IN CUBIC FEET PER SECOND EXHIBIT A SCALE 1" ~ 40' ----40 0 40 80 'l 7J'1 11 II NN NN (.,j ... 1s-~"' .S-l t,!J-<'-' AclOJ-5-L Ac/OlS-l ~01s-z 'l 7J-C 11 II NN NN NlN CNO EXISTING CONDITION HYDROLOGY MAP / I I ,,1., / "< -!j. / I,,! c,,O -, r, ;/OY f 13 "' / / FOR: THOMPSON RESIDENCE ;\7~ 'l 7J'1 II II NN ...... CJ ' I I I /:?-/coo , I I I 1-STORY 1-STORY 1-STORY ,/ ____ --f--L-·' / <- --~ \ !3+110 ' I I rl\.~T-2ift>IW-fffr11-=--ssrrmoRwY---/.~~1f?gjd, I I PREPARED IN THE OFFICE OF: 2-STORY 760/721-2000 BUCCOLA ENGINEERING, . inc 3 f 42 Vista Way, Suite 30 f, Oceanside, CA 92056 SWALE [6 I "I ·1 025~ = 1H MPSoN@-WirA C1 9g~ DWG. 4/JJh-G -, I 0 C'l 0 7C A(jOlS-l 'l 7J'l 11 II NN u,O, CDO (JI~ TRA T We / I 1-STORY 152 (4 0.20 1-225.4 (?; "i r ~ "i 1-STORY " X Wa11 CDP X 8 MIN. 0()=2.61 tfs--._ =1.13 AC, 03-07 (/ '23.5 II EXHIBIT A SHEET 1 OF 1 REVISED: SEPTEMBER 1. 2006 REVISED: JULY 7, 2006 REVISED: DECEMBER 22, 2004 REVISED: SEPTEMBER 8, 2003 PREPARED: JANUARY 28. 2003 LEGEND A10 1.50 AC #1 TC Q100 BASIN BOUNDARY FLOW DIRECTION ARROW BASIN DESIGNATION BASIN AREA IN ACRES NODE# DESIGNATION EXHIBITB SCALE 1" = 40' ------40 0 40 80 / i. ~ =-=---:iL -= _----\ A;i;JOlS-I ., cJ'1 11 II NN NN "" ... 101s-;Y'"' OlS-J ---= ..:::::.v_-_- AJJOlS-l 1 J.~01S-Z !-~01S-Z PROPOSED CONDITION HYDROLOGY MAP 1-STORY 2-STOR~~ f"--"-~ 11 II ~~ Q'.___i 1-STORY I --\Z: _---I sz -_J FOR: THOMPSON RESIDENCE 1 I k \ \ ,, ,---- I • I TRACT I X I X I i 77 cJ77 D 1111 "'"' ......_ cncn N c_,, en .. oicn 0UNDARY <.ti 1-STORY f ~~:cs,;~~I A~OlS-l ,VJO!S-z: PREPARED IN THE OFFICE OF: 760/721-2000 BUCCOLA ENGINEERING, . inc 3142 Vista Way, Suite 301, Oceanside, CA 92056 I I' ,I •: \ --'C-------------_-J,..,_ ' \ \~ ,\~Ols-1 153 TH MPSDlv@411,?iJTA CT 98~ DWG. 40,1",-G cl -, I 0 C'l 0 A A~01S-l !-~01S-Z 77 cl77 11 II NN cnm <DO u,N 2-ST0RY TRA T \ 1-STORY 152 D 1-STORY -STO Y 77 c)'l 11 II NN mm O!=' o--J 1-STORY X all I I CDP 03-07 EXHIBITB SHEET 1 OF 1 REVISED: SEPTEMBER 1, 2006 REVISED: JULY 7, 2006 REVISED: DECEMBER 22, 2004 REVISED: SEPTEMBER 8, 2003 PREPARED: JANUARY 28, 2003